


Parallel Processing
0907536

Instructor: Dr. Fahed Jubair
Computer Engineering Department

University of Jordan

Parallel Processing

• Parallel processing is using multiple processors in 
parallel to solve a computation problem more 
quickly than a single processor

• Parallel computing requires parallel machines + 
parallel programs
§ Parallel machines (aka multiprocessors) have hardware 

organizations such that multiple processors can perform 
multiple jobs in parallel

§ Parallel programs are programs that explicitly specify how 
computation and data are divided among the multiple 
processors of a parallel machine

© All Right Reserved



Class Objective

1. Study the most common parallel machine architectures
2. Shared-memory programming with OpenMP
3. Distributed-Memory programming with MPI
4. GPU programming with CUDA
5. Study some commonly-used parallel algorithms 

§ Examples: parallel sorting and parallel matrix multiplication

© All Right Reserved

Textbook

Peter Pacheco, Introduction to 
Parallel Programming, 1st edition, 
2011

http://www-users.cs.umn.edu/~karypis/parbook/

© All Right Reserved



Additional References

Ananth Grama, Anshul Gupta, George 
Karypis, Vipin Kumar., Introduction to 
Parallel Computing, 2nd edition, 2010

Michael J. Quinn, Parallel 
programming in C with MPI and 
OpenMP, 2003

© All Right Reserved

Prerequisites

All students are assumed to be familiar with
• Basic data structures
• Execution analysis of algorithms
• Basic design principles of uniprocessor architecture 
• Writing C and C++ programs

© All Right Reserved



Instructor Information

• Fahed Jubair
• B.Sc., University of Jordan
• Ph.D., Purdue University

© All Right Reserved

Grading Policy

• Programming Assignments 20% 
• Midterm Exam 30%
• Final Exam 50%

© All Right Reserved



Class Policy

• Attendance is important
• Do not come late
• Cheating will NOT be tolerated
• No makeup exams
• Course website: Microsoft teams
• Contact: fjubair@ju.edu.jo

© All Right Reserved

Questions?

© All Right Reserved



From Sequential to Parallel 
Computing

Instructor: Dr. Fahed Jubair
Computer Engineering Department

University of Jordan

Serial Computers

• Defined by the von Nuemann architecture 
• Consists of a central processing unit (CPU), main memory 

and an interconnection between the CPU and memory
• Executes (more or less) a single job at a time 

Machine Model 

■  First computers had fixed programs (electronic calculator) 
■  von Neumann architecture (1945, for EDVAC project) 

□  Instruction set for control flows stored in memory 
□  Program is treated as data, which allows the exchange of code 

during runtime and self-modification 
□  Introduced the von Neumann bottleneck 

■  CPUs are built from logic gates, which are built from transistors 
■  Multiple CPUs (SMP) were always possible, but exotic 

16 

Central Unit 

Memory 
Control Unit 

Arithmetic Logic Unit Input 

Output Bu
s 

© All Right Reserved.



HW-SW Abstraction in 
Serial Computers

SW program

HW architecture

OS Compiler
Special SW for maintaining the 
abstraction between HW and SW

© All Right Reserved.

Programmers Want Simplicity

• Programmers want perfect HW-SW abstraction by writing 
programs that are 
§ Unaware of any HW details
§ Serial, i.e., assume in-order, sequential execution

• Programmers also want their already-written programs to 
automatically run faster on new HW architectures without 
making any source-code changes

But how often do new HW architectures come out? 

© All Right Reserved.



HW Technology Trend
in Serial Computers

© All Right Reserved.

Serial Processors Are Secretly 
Not Serial

Due to Moore’s law, HW architects were able to use more gate 
logic for exploiting instruction level parallelism (ILP) in CPUs
§ Superscalar execution

§ Multiple functional units that execute instructions in parallel
§ Instruction Pipelining

§ Overlapped execution of sequential instructions
§ Speculative, out-of-order execution

§ Reorder instructions that have no dependency
§ Branch prediction and memory load value prediction

§ Hardware multithreading
§ Interleaved execution of multiple threads on multiple functional units

© All Right Reserved.



Why Superscalars Are 
Still Serial Processors?

• Because they maintain the illusion of in-order, 
sequential execution to the programmer
§ “if no one saw it, then it didn't happen”

• In other words, parallelism in HW is invisible to SW
§ The HW-SW abstraction remains simple
§ Serial programs are enough 

© All Right Reserved.

The Free Lunch is Over

As of 2003, the trend in doubling the clock speed per 
year has stopped due to the following three problems: 
1. The power wall (the main problem)
2. The memory wall
3. The ILP wall

© All Right Reserved.



The Power Wall

• Physics problem: as clock frequency increases, leakage 
power dissipation gets exponentially worse

• Clock frequency increased by a factor of 4000 in less than 
two decades

• Any more significant increase in clock frequency requires 
heroic cooling that is not possible (integrated chips would 
simply melt!)

© All Right Reserved.

The Kind of Power Dissipation needed 
To Keep Doubling The Clock Speed

ECE 4100/6100  (23)

The Current Power TrendThe Current Power Trend

Source: Intel Corp.

4004
8008
8080

8085

8086

286 386
486

Pentium®
P6

1

10

100

1000

10000

1970 1980 1990 2000 2010
Year

Po
w

er
 D

en
si

ty
 (W

/c
m

2 )

Hot Plate

Nuclear
Reactor

Rocket
Nozzle

Sun’s
Surface

ECE 4100/6100  (24)

Improving Power/Improving Power/PerfomancePerfomance

• Consider constant die size and decreasing 
core area each generation = more cores/chip
� Effect of lowering voltage and frequency Æ power 

reduction
� Increasing cores/chip Æ performance increase

Better power performance!

leakddstdddd IVIVfCVP �� 2D

© All Right Reserved.



The Memory Wall

• Refers to the growing disparity of speed between CPU and 
memory outside the CPU chip

Memory Speed:
Widening of the Processor-DRAM Performance Gap

Courtesy of Elsevier, Computer Architecture, Hennessey and Patterson, fourth edition 12

© All Right Reserved.

The Processor-DRAM 
Performance Gap

• From 1986 to 2000, CPU speed improved at an annual 
rate of 55% while memory access speed only improved at 
10%

• Memory latency is a barrier to computer performance
• Current architectures have ever growing caches to bridge 

this gap between the CPU and memory
• Any more significant increase in CPU speed will impose 

a vary challenging task to bridge the gap between the 
CPU and memory 

© All Right Reserved.



The ILP Wall

• To keep doubling the clock frequency, more aggressive 
ILP mechanisms are needed

• However, more aggressive ILP means deeper pipelines 
and more complex functional units, which makes the 
power leakage problem worse!

© All Right Reserved.

New Trend: Multicores

§ Moore’s law is still working and the number of transistors 
keeps increasing

§ Give up the old trend: stop using these additional 
transistors to build a faster but more complex uniprocessor

§ New trend: use these transistors to build multi simpler 
processors that cooperate together to perform faster

§ We refer to theses chips as multicores
§ With multicores, leakage power increases linearly (not 

exponentially)

© All Right Reserved.



Multicore Processor Example:
Intel Haswell

• June 2013
• 22 nm technology
• 1.4 billion transistors
• 4 cores
• 3.1 GHz
• 6 MB L3 Cache
• Hyperthreading

© All Right Reserved.

Sequential Programming 
No longer works

• All modern processors are multicores
• With multicores, we can simultaneously execute more 

than one job a at a time (thus, improving throughput)
• However, multicores cannot automatically make the 

execution time (latency) of a serial program faster
• To make programs run faster, we need to rewrite them 

into an explicitly parallel programs 
§ The era of sequential programming is over! 

© All Right Reserved.



The Rise of 
Parallel Programming

• Explicit parallel programs explicitly specify how 
concurrent computation is performed by the multiple 
processors of a parallel machine

• The merit: parallel programs achieve faster computation 

• The problem: parallel programs are significantly more 
difficult to write than sequential programs 

© All Right Reserved.

Example: Parallel Sum

• Let us develop a parallel algorithm (written in pseudo-code) 
to compute the sum of 1000 integers stored in an array 
§ Assume the algorithm will run on a multicore machine with 8 

cores: core 0, core 1, …, core 7
§ Let us use the term “thread” to refer to each sequence of 

instructions executed on a core 
§ Therefore, we have 8 threads: thread 0, thread 1, …, thread 7 

such that thread i executes on core i
§ Let the variable thread_id refer to the thread number 

sum = 0
for ( i = 0; i < 1000; i++) 

sum = sum + A[ i ]

Note that the sequential 
version is trivial

© All Right Reserved.



Example (cont.)
Parallel Sum Algorithm

• We have 1000 integers and 8 threads ⇒ make each thread 
computes the sum of 125 integers

• Our parallel sum algorithm works as follows:
i. First, each thread computes its partial sum independently
ii. Then, combine partial sums from each thread into a global sum

© All Right Reserved.

Example (cont.)
First Step: Partition The Work

• Let variables lb and ub determine the lower and upper array 
bounds for each thread 

• Let variable my_sum determines the partial sum computed by 
each thread

• Note that each thread has its own private copy of lb, ub and 
my_sum

lb = 125 * thread_id
ub = lb + 124
my_sum = 0
for ( i = lb ; i < ub ; i++) 

my_sum = my_sum + A[ i ]

Wait! how does this 
code get executed by 
the 8-core parallel 
machine?

© All Right Reserved.



Example (cont.)
Execution Model

• The same program is duplicated among threads
• This paradigm is referred to as the single-program-multiple-data 

(SPMD)

lb = 125 * thread_id
ub = lb + 124
my_sum = 0
for ( i = lb ; i < ub ; i++) 

my_sum = my_sum + A[ i ]

Thread 0 lb = 0 , ub = 124
Thread 1 lb = 125 , ub = 249
Thread 2 lb = 250 , ub = 374
Thread 3 lb = 375 , ub = 499
Thread 4 lb = 500 , ub = 624
Thread 5 lb = 625 , ub = 749
Thread 6 lb = 750 , ub = 874
Thread 7 lb = 875 , ub = 999

At runtime

© All Right Reserved.

Example (cont.)
Second Step: Combine Partial Sums 

• Let variable global_sum be a global variable that each threads 
updates with its partial sum 

• We will let thread 0 be responsible for initializing global_sum
• Note that there is a single copy of global_sum that is shared between 

all threads 

if ( thread_id = 0 )
global_sum = 0

lb = 125 * thread_id
ub = lb + 124
my_sum = 0
for ( i = lb ; i <= ub ; i++) 

my_sum = my_sum + A[ i ]
global_sum = global_sum + my_sum

• Note that the order at 
which threads update 
global_sum is random 

• Here, the order is not 
important because 
addition is associative 

© All Right Reserved.



Example (cont.)
Race Condition Scenario

if ( thread_id = 0 )
global_sum = 0

lb = 125 * thread_id
ub = lb + 124
my_sum = 0
for ( i = lb ; i <= ub ; i++) 

my_sum = my_sum + A[ i ]

global_sum = global_sum + my_sum

Assume threads 1 & 3 arrived 
here simultaneously

Also assume the current status 
of global sum and partial sums 
is:
my_sum (thread1) = 20
my_sum (thread3) = 33
global_sum = 60

© All Right Reserved.

Example (cont.)
Race Condition Scenario

Thread 1 loads global_sum from 
memory intro register (i.e., R)

R = 60

Thread 3 loads global_sum from 
memory intro register (i.e., R)

R = 60

Thread 1 adds my_sum to R
R = 60 + 20 = 80

Thread 3 adds my_sum to R
R = 60 + 33 = 93

Thread 1 stores R into global_sum Thread 3 stores R into global_sum

• Depending on which threads stores its value last, global_sum could 
be either 80 or 93  

• This is called a race condition, which occurs when at least two 
threads simultaneously access a shared variable and at least on of 
these threads is performing a write operation   

© All Right Reserved.



Example (cont.)
Synchronization

• To eliminate race conditions, programmers must 
synchronize between threads by forcing them to 
sequentially update the global sum by their partial sums

• Therefore, we will use a critical section as our form of 
synchronization

• A critical section is executed by a thread atomically, i.e., 
uninterrupted by any other thread

© All Right Reserved.

Example (cont.)
Critical Section

if ( thread_id = 0 )
global_sum = 0

lb = 125 * thread_id
ub = lb + 124
my_sum = 0
for ( i = lb ; i <= ub ; i++) 

my_sum = my_sum + A[ i ]

critical section {
global_sum = global_sum + my_sum

}

© All Right Reserved.



Example (cont.)
Another Race Condition Scenario

if ( thread_id = 0 )
global_sum = 0

lb = 125 * thread_id
ub = lb + 124
my_sum = 0
for ( i = lb ; i <= ub ; i++) 

my_sum = my_sum + A[ i ]

critical section {
global_sum = global_sum + my_sum

}

Thread 0 has the responsibility of 
initializing global_sum to 0

A race condition could occur if 
thread 0 is too slow that some 
other threads reached the critical 
section before thread 0 
initializes global_sum to 0

© All Right Reserved.

Example (cont.)
Barriers

• One way to eliminate the data race shown in the previous 
slide is to force all threads to wait for thread 0 to initialize 
global_sum to 0  

• To do so, we will use a barrier, which is a form of 
synchronization where all threads must wait untill all 
other threads reach the same point in execution

• The hardware architecture must support the thread-
waiting mechanisms of barriers

© All Right Reserved.



Example (cont.)
Final Parallel Code

if ( thread_id = 0 )
global_sum = 0

threads_barrier

lb = 125 * thread_id
ub = lb + 124
my_sum = 0
for ( i = lb ; i <= ub ; i++) 

my_sum = my_sum + A[ i ]

critical section {
global_sum = global_sum + my_sum

}

Very different from the 
trivial sequential code!

© All Right Reserved.

Example (cont.)
Performance Analysis

• Ideally, our parallel algorithm aims to achieve 8-times faster 
execution than sequential version (i.e., achieves linear speedup)

• But parallelism has overheads:
§ Work partitioning overhead: extra computation needed to partition 

computation among threads 
§ Synchronization overhead:

o Barriers force fast threads to wait for slow threads
o Critical sections are executed serially

§ The creation and termination of threads also have an overhead

• To write efficient parallel programs, programmers need to think 
about how to minimize parallelism overheads in their codes

© All Right Reserved.



Example (cont.)
Scalability 

• Ideally, we want our algorithm to perform faster when 
executed on a parallel machine with higher number of cores
§ i.e., our algorithm needs to be scalable

• The problem is parallelism overhead, which increases as the 
number of cores (or threads) increases 

• This imposes yet another challenge to programmers: how to 
write scalable parallel programs!

© All Right Reserved.

Challenges in 
Writing Parallel Programs

1. Programmers need to think parallel
§ Rewrite the sequential algorithm into a parallel algorithm
§ In some cases, the parallel algorithm is a totally new algorithm

2. Programmers need to understand the architecture of the 
underlying parallel machine (HW-SW abstraction is gone!)
§ HW details affect the programmer’s decision on how to find 

efficient partitioning of computation between threads
§ HW details affect the programmer’s decision on how to choose 

efficient synchronization methods

© All Right Reserved.



Challenges in 
Writing Parallel Programs

3. Testing and debugging parallel programs is hard 
§ For example, some race conditions are very subtle that may not 

occur for the first 999999 runs, and occurs on the 1000000th run

4. Parallelism has an overhead 
§ If not properly handled, this overhead can kill the scalability of a 

parallel program

© All Right Reserved.

How To Write 
A Parallel Program?

• In general, there are three approaches for writing an 
explicit parallel program:
1. Write from scratch
2. Parallelize an existing sequential program
3. Parallelize an existing sequential program by a compiler

Done manually

© All Right Reserved.



Wait! Why Not Always Use
A Parallelizing Compiler?

• A parallelizing compiler converts a sequential program into a 
parallel program

• The merit: it is automatic!
• The problem: so far, parallelizing compilers have shown 

limited success due to the significant complexity of creating 
parallel programs

• Examples on existing parallelizing compilers: SUIF, PLUTO, 
Rose, Cetus, Polaris, and Intel C++ compiler

Compiler
Sequential 
Program

Parallel
Program

© All Right Reserved.

Parallel Program Types

Parallel applications can be classified depending on how 
problem partitioning is performed, as follows:
• Task-parallel applications

§ Partition various tasks carried out solving the problem 
among the processors 

• Data-parallel applications
§ Partition the data used in solving the problem among the 

processors
§ Each processor carries out similar operations on it’s part of 

the data
© All Right Reserved.



Example
Work Partitioning – Task Parallelism

for ( i = 0; i < n; i++) 
Sum [ i ] = A[ i ] + B[ i ]
Diff [ i ] = A[ i ] − B[ i ]

for ( i = 0; i < n; i++) 
Sum [ i ] = A[ i ] + B[ i ]

for ( i = 0; i < n; i++) 
Diff [ i ] = A[ i ] − B[ i ]

Processor 0

Processor 1

© All Right Reserved.

Example
Work Partitioning – Data Parallelism

for ( i = 0; i < n; i++) 
Sum [ i ] = A[ i ] + B[ i ]
Diff [ i ] = A[ i ] − B[ i ]

for ( i = 0; i < n/2; i++) 
Sum [ i ] = A[ i ] + B[ i ]
Diff [ i ] = A[ i ] − B[ i ]

for ( i = n/2; i < n; i++) 
Sum [ i ] = A[ i ] + B[ i ]
Diff [ i ] = A[ i ] − B[ i ]

Processor 0

Processor 1

© All Right Reserved.



Terminology
Concurrency vs Parallelism

• Concurrency: capability of a system to have two or more 
activates in progress at the same time
§ Activates can be independent
§ Do not necessarily demand parallel hardware but demands OS to 

support concurrency
• Parallelism: capability of a system to execute multiple 

activities simultaneously
§ Demands parallel hardware and concurrency support 
§ Any parallel program is a concurrent program

© All Right Reserved.

Terminology
Programming Model

• In this course, we will learn programming models for 
parallel machines

• A programming model abstractly describes how a program 
for a parallel machine should be written

• A programming model can be implemented by
§ Using a new programming language
§ Extending an existing sequential programming language
§ A library that is invoked from a sequential code

© All Right Reserved.



Summary

• The laws of physics have brought us to the doorstep of 
multicore technology

• Serial programs typically don’t benefit from multiple cores
• Writing parallel programs is needed to achieve high-

performance execution on parallel machines
• Parallel programs are usually very complex and therefore 

require advanced programming techniques and development 

© All Right Reserved.

Parallel Hardware

Instructor: Dr. Fahed Jubair
Computer Engineering Department

University of Jordan



An Abstract Parallel Machine

In general, parallel machines differ in their 
• Concurrency model, which affects how instruction stream 

and data stream are partitioned among processors
• Communication model, which affects how processors and 

memory units are connected by the interconnection network© All Rights Reserved.

Flynn’s Taxonomy

Processor architectures, in general, are classified based 
on instruction stream and data stream, as follows: 

SISD
Single instruction stream

Single data stream

(SIMD)
Single instruction stream

Multiple data stream

MISD
Multiple instruction stream

Single data stream

(MIMD)
Multiple instruction stream

Multiple data stream

serial parallel

parallel

mostly theoretical

© All Rights Reserved.



Serial Computing Platforms

• SISD processors
§ Von Neumann uniprocessor architecture

ECE565 Lecture Notes: Chapter 4 5© 2009 by  Vijaykumar

Types
Flynn Taxonomy

• 1966
• not all encompassing but simple
• based on # instruction streams and data streams
• SISD - uniprocessor
• SIMD - like vector
• MISD - few practical examples
• MIMD - multiprocessors - most common, very flexible

ECE565 Lecture Notes: Chapter 4 6© 2009 by  Vijaykumar

Single Instruction Single Data (SISD)

your basic uniprocessor

Operand
Instruction
Storage Storage

Execution
Unit

Instruction
Unit

instruction 
single

stream

single

stream
data

ECE565 Lecture Notes: Chapter 4 7© 2009 by  Vijaykumar

Single Instruction Multiple Data (SIMD)

. . .

. . .Data

registers
flag

ALU

registers
flag

ALU

registers
flag

ALU

Memory Memory Memory
Data Data

Control
Processor

Memory
Instruction

. . .
broadcast
instruction 

Interconnect/Alignment
Network

ECE565 Lecture Notes: Chapter 4 8© 2009 by  Vijaykumar

Single Instruction Multiple Data (SIMD)
Vectors are same as SIMD

• deeply pipelined FUs vs. multiple FUs in previous slide

intrs and data usually separated

leads to data parallel programming model

works best for very regular, loop-oriented problems
• many important classes- eg graphics

not for commercial databases, middleware (80% of server codes)

automatic parallelization can work

© All Rights Reserved.

Parallel Computing Platforms

• SIMD processors
§ All processors execute the same instruction simultaneously, but 

while operating on different pieces of data
§ Work best with data-parallel applications

• MIMD processors
§ All processors execute in parallel but on different instructions and 

different pieces of data
§ Can handle both data-parallel and task-parallel applications 

© All Rights Reserved.



SIMD and MIMD Processors

5

SIMD and MIMD Processors

SIMD architecture MIMD architecture

PE = Processing Element

...

Interconnection N
etw

ork

PE + 
control unit

PE + 
control unit

PE + 
control unit

...

Interconnection N
etw

ork

PE

PE

PE

PE

PE

Global 
Control 

Unit

© All Rights Reserved.

SIMD vs. MIMD

• SIMD platforms
§ Single control unit
§ Only one copy of program
§ Special purpose: not suited for all applications

• MIMD platforms
§ Multiple control units
§ Multiple programs
§ Suitable for broad range of applications

© All Rights Reserved.



SIMD Example

Conventional SISD loop that sums two arrays

for ( i=1; i<=N; i++ )
sum[ i ] = A[ i ] + B[ i ]   

SIMD code has a single instruction that 
executes simultaneously on N ALUs

sum[ 1 : N ] = A[ 1 : N ] + B[ 1 : N ]   

© All Rights Reserved.

SIMD Processor Example:
Vector Processor

• A vector processor executes vector instructions, which are 
instructions that operate on one-dimensional arrays of data 
called vectors
§ In contrast, conventional processors execute instructions that 

operate on individual data elements (called scalars)  

• Vector processors have
§ Vectorized and pipelined functional unit: the same operation is 

applied to each element in the vector (or pairs of elements)
§ Vector registers: capable of storing a vector of data elements

• The merit: fast 
• The problem: limited to data-parallel applications

© All Rights Reserved.



Vector Processors in 
Modern Architectures

• Today’s processors usually have SIMD units or vector 
processors as co-processors (aka accelerators)

• On-chip SIMD units: 
§ For example, modern Intel processors have on-chip graphical 

processing units (GPUs) for fast image processing 
o Intel instruction set architecture has special instructions for for multimedia 

support (e.g., referred to as multimedia extensions or MMX) 

• Off-chip co-processors:
§ Typically sold as PCIe cards
§ Architectures that have both conventional processors and co-

processors are referred to as heterogeneous architectures

© All Rights Reserved.

Heterogeneous Architecture

• Heterogeneous platform: Processor (on-chip) + Co-Processor (on-chip 
or off-chip)

• In contrast, a homogeneous platform has only on-chip processors

Processor

Main Memory Accelerator 
Memory

Co-processor

Interconnection Network
Abstract 
heterogeneous 
architecture

© All Rights Reserved.



Heterogeneous Architecture Example:
Off-Chip GPUs

© All Rights Reserved.

Accelerator Example:
NVIDIA Tesla K40 (July 2013)

• 2880 streaming cores
• 732 MHz
• 12GB memory
• Memory B/W 288 GB/s
• 4.29 TFLOP for single-

precision
• 1.43 TFLOPS for double-

precision
• 235 Watts
• Kepler GK110 architecture

© All Rights Reserved.



Achieving High-Performance 
Computing On Accelerators

• Programmers write an explicit parallel program that uses 
the conventional CPU for executing the sequential parts of 
the program and the accelerators for executing the parallel 
parts of the program (generally speaking)
§ The term heterogeneous computing refers to a parallel program 

being executed on a heterogeneous architecture

• OpenCL, OpenACC, and CUDA are widely-used 
programming frameworks for accelerators

© All Rights Reserved.

MIMD Processors

• Execute different programs on different processors
• MIMD processors are classified based on their 

communication model, as follows:
§ Shared-memory architectures

§ All processors can directly access a common memory 
§ Processors communicate implicitly by reading or writing shared data 

structures in memory (for example, via load and store instructions) 
§ Distributed-memory architectures: 

§ Each processor can only access local memory 
§ Processors communicate explicitly by exchanging messages (for 

example, through a LAN network) 

© All Rights Reserved.



Abstract View of
MIMD Architectures

Shared-memory 
architecture

Distributed-memory 
architecture

© All Rights Reserved.

Shared-Memory vs
Distributed-Memory

Shared-memory Distributed-memory
Execution units Threads Processes
Memory sharing All threads share the same 

data space
Each process has its own 
data space 

Operating system Typically, all threads run
within the same OS

Typically, each process 
runs within a separate OS

Communication method Threads communicate 
implicitly by accessing 
shared variables in memory 

Processes communicate 
explicitly by exchanging 
messages

Communication speed Communication between processors in shared-memory is 
typically faster than distributed-memory

Scalability Distributed-memory platforms are typically more 
scalable (have higher number of processors) than shared-
memory platforms 

© All Rights Reserved.



Shared-Memory Platforms

• Most widely available shared-memory architectures are 
multicores (aka chip multiprocessor or CMP)

• Multicores have multiple processing units (cores) that are 
packaged within the same chip and share the same 
physical memory

• Multicore architectures have two types:
§ UMA (Uniform Memory Access)

o Time taken by a core to access any memory word is the same
§ NUMA (Non-Uniform Memory Access) 

o Time taken by a core to access memory words vary  

© All Rights Reserved.

Abstract View of UMA

Core 0 Core 1 Core n

Socket 0

Core 0 Core 1 Core n

Socket m

Interconnect

Memory

© All Rights Reserved.



Abstract View of NUMA

Core 0 Core 1 Core n

Socket 0

Core 0 Core 1 Core n

Socket m

Memory 0

Interconnect

Memory m

© All Rights Reserved.

UMA vs NUMA

UMA

• Data placement is 
unimportant
⇒ simpler HW and SW

• Less scalable

NUMA

• Data placement affects 
performance
⇒ more complex HW 

and SW

• More scalable

© All Rights Reserved.



UMA Example

• Two dual-core sockets
• Each core has its own L1 

cache
• The two cores of each 

socket share L2 cache

UMA Example 

26 

Shared-Memory with UMA

� Two dual core chips (2 core/socket)
� P = Processor core
� L1D = Level 1 Cache – Data (fastest)
� L2 = Level 2 Cache (fast)
� Memory = main memory (slow)
� Chipset = enforces cache coherence and 

mediates connections to memory 

Lecture 1 – HPC and Big Data

� UMA systems use ‘flat memory model’: Latencies and bandwidth 
are the same for all processors and all memory locations.

� Also called Symmetric Multiprocessing (SMP)

[3] Introduction to High Performance Computing for Scientists and Engineers

13 / 37

© All Rights Reserved.

NUMA Example

• Two quad-core sockets
• Each core has its own L1 

and L2 caches
• The four cores of each 

socket share L3 cache

NUMA Example 

27 

Shared-Memory with ccNUMA

� Eight cores (4 cores/socket); L3 = Level 3 Cache
� Memory interface = establishes a coherent link to enable one

‘logical’ single address space of ‘physically distributed memory’

Lecture 1 – HPC and Big Data

� ccNUMA systems  share logically memory that is physically distributed (similar like 
distributed-memory systems)

� Network logic makes the aggregated memory appear as one single address space

[3] Introduction to High Performance Computing for Scientists and Engineers

14 / 37

© All Rights Reserved.



Interconnection Networks 
In Shared-Memory Platforms

• The interconnect plays a significant role in performance

• Even with fast processors and memory, slow interconnect 
will likely degrade the overall performance 

• Two widely used interconnect technologies in shared 
memory platforms:
§ Bus interconnect
§ Switched interconnect 

© All Rights Reserved.

Bus Interconnect

• A collection of parallel communication wires together 
with some hardware that controls access to the bus

• Communication wires are shared by the devices that 
are connected to it

• The merit: low cost
• The problem: limited scalability

§ As the number of devices connected to the bus increases, 
contention for use of the bus increases, and performance 
decreases

© All Rights Reserved.



Switched Interconnect

• Uses switches to control the routing 
of data among the connected devices

• Crossbar interconnect
§ Allows simultaneous communication 

among different devices
§ Faster than buses
§ But the cost of the switches and links is 

relatively high

© All Rights Reserved.

Example: 
Intel Interconnect Evolution

Quick Path Interconnect (QPI) 

■  Competing technology from Intel, since 2008 
■  Result of a continuous improvement in Intel processor 

interconnect technology 

42 

An Introduction to the Intel® QuickPath Interconnect 7

Figure 3. Shared Front-side Bus, up 
until 2004

To further increase the bandwidth of the front-
side bus based platforms, the single-shared bus 
approach evolved into dual independent buses 
(DIB), as depicted in Figure 4. DIB designs 
essentially doubled the available bandwidth. 
However, all snoop traffic had to be broadcast on 
both buses, and if left unchecked, would reduce 
effective bandwidth. To minimize this problem, 
snoop filters were employed in the chipset to 
cache snoop information, thereby significantly 
reducing bandwidth loading.

Figure 4. Dual Independent Buses, 
circa 2005 

The DIB approach was extended to its logical 
conclusion with the introduction of dedicated 
high-speed interconnects (DHSI), as shown in 
Figure 5. DHSI-based platforms use four FSBs, 
one for each processor in the platform. Again, 
snoop filters were employed to achieve bandwidth 
scaling.

Figure 5. Dedicated High-speed 
Interconnects, 2007

processor processor processor

chipset
Memory
Interface

I/O

processor

Up to 4.2GB/s 
Platform Bandwidth 

processor processor processor

chipset
Memory
Interface

I/O

processor

Up to 12.8GB/s 
Platform Bandwidth 

snoop filter

processor processor processor

chipset
Memory
Interface

I/O

processor

Up to 34GB/s 
Platform Bandwidth 

snoop filter

An Introduction to the Intel® QuickPath Interconnect 7

Figure 3. Shared Front-side Bus, up 
until 2004

To further increase the bandwidth of the front-
side bus based platforms, the single-shared bus 
approach evolved into dual independent buses 
(DIB), as depicted in Figure 4. DIB designs 
essentially doubled the available bandwidth. 
However, all snoop traffic had to be broadcast on 
both buses, and if left unchecked, would reduce 
effective bandwidth. To minimize this problem, 
snoop filters were employed in the chipset to 
cache snoop information, thereby significantly 
reducing bandwidth loading.

Figure 4. Dual Independent Buses, 
circa 2005 

The DIB approach was extended to its logical 
conclusion with the introduction of dedicated 
high-speed interconnects (DHSI), as shown in 
Figure 5. DHSI-based platforms use four FSBs, 
one for each processor in the platform. Again, 
snoop filters were employed to achieve bandwidth 
scaling.

Figure 5. Dedicated High-speed 
Interconnects, 2007

processor processor processor

chipset
Memory
Interface

I/O

processor

Up to 4.2GB/s 
Platform Bandwidth 

processor processor processor

chipset
Memory
Interface

I/O

processor

Up to 12.8GB/s 
Platform Bandwidth 

snoop filter

processor processor processor

chipset
Memory
Interface

I/O

processor

Up to 34GB/s 
Platform Bandwidth 

snoop filter

Traditional Shared Frontside Bus 
(until 2004) 

Dual Independent Buses 
(until 2005) 

[i
nt

el
.c

om
] 

Quick Path Interconnect (QPI) 

■  Competing technology from Intel, since 2008 
■  Result of a continuous improvement in Intel processor 

interconnect technology 

42 

An Introduction to the Intel® QuickPath Interconnect 7

Figure 3. Shared Front-side Bus, up 
until 2004

To further increase the bandwidth of the front-
side bus based platforms, the single-shared bus 
approach evolved into dual independent buses 
(DIB), as depicted in Figure 4. DIB designs 
essentially doubled the available bandwidth. 
However, all snoop traffic had to be broadcast on 
both buses, and if left unchecked, would reduce 
effective bandwidth. To minimize this problem, 
snoop filters were employed in the chipset to 
cache snoop information, thereby significantly 
reducing bandwidth loading.

Figure 4. Dual Independent Buses, 
circa 2005 

The DIB approach was extended to its logical 
conclusion with the introduction of dedicated 
high-speed interconnects (DHSI), as shown in 
Figure 5. DHSI-based platforms use four FSBs, 
one for each processor in the platform. Again, 
snoop filters were employed to achieve bandwidth 
scaling.

Figure 5. Dedicated High-speed 
Interconnects, 2007

processor processor processor

chipset
Memory
Interface

I/O

processor

Up to 4.2GB/s 
Platform Bandwidth 

processor processor processor

chipset
Memory
Interface

I/O

processor

Up to 12.8GB/s 
Platform Bandwidth 

snoop filter

processor processor processor

chipset
Memory
Interface

I/O

processor

Up to 34GB/s 
Platform Bandwidth 

snoop filter

An Introduction to the Intel® QuickPath Interconnect 7

Figure 3. Shared Front-side Bus, up 
until 2004

To further increase the bandwidth of the front-
side bus based platforms, the single-shared bus 
approach evolved into dual independent buses 
(DIB), as depicted in Figure 4. DIB designs 
essentially doubled the available bandwidth. 
However, all snoop traffic had to be broadcast on 
both buses, and if left unchecked, would reduce 
effective bandwidth. To minimize this problem, 
snoop filters were employed in the chipset to 
cache snoop information, thereby significantly 
reducing bandwidth loading.

Figure 4. Dual Independent Buses, 
circa 2005 

The DIB approach was extended to its logical 
conclusion with the introduction of dedicated 
high-speed interconnects (DHSI), as shown in 
Figure 5. DHSI-based platforms use four FSBs, 
one for each processor in the platform. Again, 
snoop filters were employed to achieve bandwidth 
scaling.

Figure 5. Dedicated High-speed 
Interconnects, 2007

processor processor processor

chipset
Memory
Interface

I/O

processor

Up to 4.2GB/s 
Platform Bandwidth 

processor processor processor

chipset
Memory
Interface

I/O

processor

Up to 12.8GB/s 
Platform Bandwidth 

snoop filter

processor processor processor

chipset
Memory
Interface

I/O

processor

Up to 34GB/s 
Platform Bandwidth 

snoop filter

Traditional Shared Frontside Bus 
(until 2004) 

Dual Independent Buses 
(until 2005) 

[i
nt

el
.c

om
] 

© All Rights Reserved.



Example: 
Intel Interconnect Evolution

Quick Path Interconnect (QPI) 

43 

Dedicated Interconnects 
(until 2007) 

Quick Path Interconnect 

8 An Introduction to the Intel® QuickPath Interconnect

With the production of processors based on next-
generation, 45-nm Hi-k Intel® Core™ 
microarchitecture, the Intel® Xeon® processor 
fabric will transition from a DHSI, with the 
memory controller in the chipset, to a distributed 
shared memory architecture using Intel® 
QuickPath Interconnects. This configuration is 
shown in Figure 6. With its narrow uni-directional 
links based on differential signaling, the Intel® 
QuickPath Interconnect is able to achieve 
substantially higher signaling rates, thereby 
delivering the processor interconnect bandwidth 
necessary to meet the demands of future 
processor generations. 

Figure 6. Intel® QuickPath 
Interconnect

Interconnect Overview

The Intel® QuickPath Interconnect is a high-
speed point-to-point interconnect. Though 
sometimes classified as a serial bus, it is more 
accurately considered a point-to-point link as data 
is sent in parallel across multiple lanes and 
packets are broken into multiple parallel 
transfers. It is a contemporary design that uses 

some techniques similar to other point-to-point 
interconnects, such as PCI Express* and Fully-
Buffered DIMMs. There are, of course, some 
notable differences between these approaches, 
which reflect the fact that these interconnects 
were designed for different applications. Some of 
these similarities and differences will be explored 
later in this paper.

Figure 7 shows a schematic of a processor with 
external Intel® QuickPath Interconnects. The 
processor may have one or more cores. When 
multiple cores are present, they may share 
caches or have separate caches. The processor 
also typically has one or more integrated memory 
controllers. Based on the level of scalability 
supported in the processor, it may include an 
integrated crossbar router and more than one 
Intel® QuickPath Interconnect port (a port 
contains a pair of uni-directional links).

Figure 7. Block Diagram of Processor 
with Intel® QuickPath 
Interconnects

Memory
Interface

I/O

Memory
Interface

Memory
Interface

Memory
Interface

chipset

I/O

chipset

processor

processor processor

processor

Legend:
Bi-directional bus
Uni-directional link

core core core

In
te

gr
at

ed
M

em
or

y
C

on
tro

lle
r(

s)

Crossbar Router /
Non-routing 

global links interface

Memory
Interface

Processor Cores

Intel®
QuickPath 

interconnects

An Introduction to the Intel® QuickPath Interconnect 7

Figure 3. Shared Front-side Bus, up 
until 2004

To further increase the bandwidth of the front-
side bus based platforms, the single-shared bus 
approach evolved into dual independent buses 
(DIB), as depicted in Figure 4. DIB designs 
essentially doubled the available bandwidth. 
However, all snoop traffic had to be broadcast on 
both buses, and if left unchecked, would reduce 
effective bandwidth. To minimize this problem, 
snoop filters were employed in the chipset to 
cache snoop information, thereby significantly 
reducing bandwidth loading.

Figure 4. Dual Independent Buses, 
circa 2005 

The DIB approach was extended to its logical 
conclusion with the introduction of dedicated 
high-speed interconnects (DHSI), as shown in 
Figure 5. DHSI-based platforms use four FSBs, 
one for each processor in the platform. Again, 
snoop filters were employed to achieve bandwidth 
scaling.

Figure 5. Dedicated High-speed 
Interconnects, 2007

processor processor processor

chipset
Memory
Interface

I/O

processor

Up to 4.2GB/s 
Platform Bandwidth 

processor processor processor

chipset
Memory
Interface

I/O

processor

Up to 12.8GB/s 
Platform Bandwidth 

snoop filter

processor processor processor

chipset
Memory
Interface

I/O

processor

Up to 34GB/s 
Platform Bandwidth 

snoop filter

[i
n
te

l.
co

m
] 

Quick Path Interconnect (QPI) 

43 

Dedicated Interconnects 
(until 2007) 

Quick Path Interconnect 

8 An Introduction to the Intel® QuickPath Interconnect

With the production of processors based on next-
generation, 45-nm Hi-k Intel® Core™ 
microarchitecture, the Intel® Xeon® processor 
fabric will transition from a DHSI, with the 
memory controller in the chipset, to a distributed 
shared memory architecture using Intel® 
QuickPath Interconnects. This configuration is 
shown in Figure 6. With its narrow uni-directional 
links based on differential signaling, the Intel® 
QuickPath Interconnect is able to achieve 
substantially higher signaling rates, thereby 
delivering the processor interconnect bandwidth 
necessary to meet the demands of future 
processor generations. 

Figure 6. Intel® QuickPath 
Interconnect

Interconnect Overview

The Intel® QuickPath Interconnect is a high-
speed point-to-point interconnect. Though 
sometimes classified as a serial bus, it is more 
accurately considered a point-to-point link as data 
is sent in parallel across multiple lanes and 
packets are broken into multiple parallel 
transfers. It is a contemporary design that uses 

some techniques similar to other point-to-point 
interconnects, such as PCI Express* and Fully-
Buffered DIMMs. There are, of course, some 
notable differences between these approaches, 
which reflect the fact that these interconnects 
were designed for different applications. Some of 
these similarities and differences will be explored 
later in this paper.

Figure 7 shows a schematic of a processor with 
external Intel® QuickPath Interconnects. The 
processor may have one or more cores. When 
multiple cores are present, they may share 
caches or have separate caches. The processor 
also typically has one or more integrated memory 
controllers. Based on the level of scalability 
supported in the processor, it may include an 
integrated crossbar router and more than one 
Intel® QuickPath Interconnect port (a port 
contains a pair of uni-directional links).

Figure 7. Block Diagram of Processor 
with Intel® QuickPath 
Interconnects

Memory
Interface

I/O

Memory
Interface

Memory
Interface

Memory
Interface

chipset

I/O

chipset

processor

processor processor

processor

Legend:
Bi-directional bus
Uni-directional link

core core core

In
te

gr
at

ed
M

em
or

y
C

on
tro

lle
r(s

)

Crossbar Router /
Non-routing 

global links interface

Memory
Interface

Processor Cores

Intel®
QuickPath 

interconnects

An Introduction to the Intel® QuickPath Interconnect 7

Figure 3. Shared Front-side Bus, up 
until 2004

To further increase the bandwidth of the front-
side bus based platforms, the single-shared bus 
approach evolved into dual independent buses 
(DIB), as depicted in Figure 4. DIB designs 
essentially doubled the available bandwidth. 
However, all snoop traffic had to be broadcast on 
both buses, and if left unchecked, would reduce 
effective bandwidth. To minimize this problem, 
snoop filters were employed in the chipset to 
cache snoop information, thereby significantly 
reducing bandwidth loading.

Figure 4. Dual Independent Buses, 
circa 2005 

The DIB approach was extended to its logical 
conclusion with the introduction of dedicated 
high-speed interconnects (DHSI), as shown in 
Figure 5. DHSI-based platforms use four FSBs, 
one for each processor in the platform. Again, 
snoop filters were employed to achieve bandwidth 
scaling.

Figure 5. Dedicated High-speed 
Interconnects, 2007

processor processor processor

chipset
Memory
Interface

I/O

processor

Up to 4.2GB/s 
Platform Bandwidth 

processor processor processor

chipset
Memory
Interface

I/O

processor

Up to 12.8GB/s 
Platform Bandwidth 

snoop filter

processor processor processor

chipset
Memory
Interface

I/O

processor

Up to 34GB/s 
Platform Bandwidth 

snoop filter

[i
nt

el
.c

om
] 

Quick Path Interconnect (QPI) 

43 

Dedicated Interconnects 
(until 2007) 

Quick Path Interconnect 

8 An Introduction to the Intel® QuickPath Interconnect

With the production of processors based on next-
generation, 45-nm Hi-k Intel® Core™ 
microarchitecture, the Intel® Xeon® processor 
fabric will transition from a DHSI, with the 
memory controller in the chipset, to a distributed 
shared memory architecture using Intel® 
QuickPath Interconnects. This configuration is 
shown in Figure 6. With its narrow uni-directional 
links based on differential signaling, the Intel® 
QuickPath Interconnect is able to achieve 
substantially higher signaling rates, thereby 
delivering the processor interconnect bandwidth 
necessary to meet the demands of future 
processor generations. 

Figure 6. Intel® QuickPath 
Interconnect

Interconnect Overview

The Intel® QuickPath Interconnect is a high-
speed point-to-point interconnect. Though 
sometimes classified as a serial bus, it is more 
accurately considered a point-to-point link as data 
is sent in parallel across multiple lanes and 
packets are broken into multiple parallel 
transfers. It is a contemporary design that uses 

some techniques similar to other point-to-point 
interconnects, such as PCI Express* and Fully-
Buffered DIMMs. There are, of course, some 
notable differences between these approaches, 
which reflect the fact that these interconnects 
were designed for different applications. Some of 
these similarities and differences will be explored 
later in this paper.

Figure 7 shows a schematic of a processor with 
external Intel® QuickPath Interconnects. The 
processor may have one or more cores. When 
multiple cores are present, they may share 
caches or have separate caches. The processor 
also typically has one or more integrated memory 
controllers. Based on the level of scalability 
supported in the processor, it may include an 
integrated crossbar router and more than one 
Intel® QuickPath Interconnect port (a port 
contains a pair of uni-directional links).

Figure 7. Block Diagram of Processor 
with Intel® QuickPath 
Interconnects

Memory
Interface

I/O

Memory
Interface

Memory
Interface

Memory
Interface

chipset

I/O

chipset

processor

processor processor

processor

Legend:
Bi-directional bus
Uni-directional link

core core core

In
te

gr
at

ed
M

em
or

y
C

on
tro

lle
r(s

)

Crossbar Router /
Non-routing 

global links interface

Memory
Interface

Processor Cores

Intel®
QuickPath 

interconnects

An Introduction to the Intel® QuickPath Interconnect 7

Figure 3. Shared Front-side Bus, up 
until 2004

To further increase the bandwidth of the front-
side bus based platforms, the single-shared bus 
approach evolved into dual independent buses 
(DIB), as depicted in Figure 4. DIB designs 
essentially doubled the available bandwidth. 
However, all snoop traffic had to be broadcast on 
both buses, and if left unchecked, would reduce 
effective bandwidth. To minimize this problem, 
snoop filters were employed in the chipset to 
cache snoop information, thereby significantly 
reducing bandwidth loading.

Figure 4. Dual Independent Buses, 
circa 2005 

The DIB approach was extended to its logical 
conclusion with the introduction of dedicated 
high-speed interconnects (DHSI), as shown in 
Figure 5. DHSI-based platforms use four FSBs, 
one for each processor in the platform. Again, 
snoop filters were employed to achieve bandwidth 
scaling.

Figure 5. Dedicated High-speed 
Interconnects, 2007

processor processor processor

chipset
Memory
Interface

I/O

processor

Up to 4.2GB/s 
Platform Bandwidth 

processor processor processor

chipset
Memory
Interface

I/O

processor

Up to 12.8GB/s 
Platform Bandwidth 

snoop filter

processor processor processor

chipset
Memory
Interface

I/O

processor

Up to 34GB/s 
Platform Bandwidth 

snoop filter

[i
nt

el
.c

om
] 

Quick Path Interconnect (QPI) 

43 

Dedicated Interconnects 
(until 2007) 

Quick Path Interconnect 

8 An Introduction to the Intel® QuickPath Interconnect

With the production of processors based on next-
generation, 45-nm Hi-k Intel® Core™ 
microarchitecture, the Intel® Xeon® processor 
fabric will transition from a DHSI, with the 
memory controller in the chipset, to a distributed 
shared memory architecture using Intel® 
QuickPath Interconnects. This configuration is 
shown in Figure 6. With its narrow uni-directional 
links based on differential signaling, the Intel® 
QuickPath Interconnect is able to achieve 
substantially higher signaling rates, thereby 
delivering the processor interconnect bandwidth 
necessary to meet the demands of future 
processor generations. 

Figure 6. Intel® QuickPath 
Interconnect

Interconnect Overview

The Intel® QuickPath Interconnect is a high-
speed point-to-point interconnect. Though 
sometimes classified as a serial bus, it is more 
accurately considered a point-to-point link as data 
is sent in parallel across multiple lanes and 
packets are broken into multiple parallel 
transfers. It is a contemporary design that uses 

some techniques similar to other point-to-point 
interconnects, such as PCI Express* and Fully-
Buffered DIMMs. There are, of course, some 
notable differences between these approaches, 
which reflect the fact that these interconnects 
were designed for different applications. Some of 
these similarities and differences will be explored 
later in this paper.

Figure 7 shows a schematic of a processor with 
external Intel® QuickPath Interconnects. The 
processor may have one or more cores. When 
multiple cores are present, they may share 
caches or have separate caches. The processor 
also typically has one or more integrated memory 
controllers. Based on the level of scalability 
supported in the processor, it may include an 
integrated crossbar router and more than one 
Intel® QuickPath Interconnect port (a port 
contains a pair of uni-directional links).

Figure 7. Block Diagram of Processor 
with Intel® QuickPath 
Interconnects

Memory
Interface

I/O

Memory
Interface

Memory
Interface

Memory
Interface

chipset

I/O

chipset

processor

processor processor

processor

Legend:
Bi-directional bus
Uni-directional link

core core core

In
te

gr
at

ed
M

em
or

y
C

on
tro

lle
r(s

)

Crossbar Router /
Non-routing 

global links interface

Memory
Interface

Processor Cores

Intel®
QuickPath 

interconnects

An Introduction to the Intel® QuickPath Interconnect 7

Figure 3. Shared Front-side Bus, up 
until 2004

To further increase the bandwidth of the front-
side bus based platforms, the single-shared bus 
approach evolved into dual independent buses 
(DIB), as depicted in Figure 4. DIB designs 
essentially doubled the available bandwidth. 
However, all snoop traffic had to be broadcast on 
both buses, and if left unchecked, would reduce 
effective bandwidth. To minimize this problem, 
snoop filters were employed in the chipset to 
cache snoop information, thereby significantly 
reducing bandwidth loading.

Figure 4. Dual Independent Buses, 
circa 2005 

The DIB approach was extended to its logical 
conclusion with the introduction of dedicated 
high-speed interconnects (DHSI), as shown in 
Figure 5. DHSI-based platforms use four FSBs, 
one for each processor in the platform. Again, 
snoop filters were employed to achieve bandwidth 
scaling.

Figure 5. Dedicated High-speed 
Interconnects, 2007

processor processor processor

chipset
Memory
Interface

I/O

processor

Up to 4.2GB/s 
Platform Bandwidth 

processor processor processor

chipset
Memory
Interface

I/O

processor

Up to 12.8GB/s 
Platform Bandwidth 

snoop filter

processor processor processor

chipset
Memory
Interface

I/O

processor

Up to 34GB/s 
Platform Bandwidth 

snoop filter

[i
nt

el
.c

om
] 

© All Rights Reserved.

Shared-Memory Processor Example:
Intel Nehalem (Nov 2008)NUMA Example: Intel Nehalem 

28 

Core Core

Core Core

Q
P
I

Core Core

Core Core

Q
P
I

Core Core

Core Core

Q
P
I

Core Core

Core Core

Q
P
I L3

 C
ac

he


L3
 C

ac
he



L3
 C

ac
he



M
em

or
y 

Co
nt

ro
lle

r

M
em

or
y 

Co
nt

ro
lle

r
M

em
or

y 
Co

nt
ro

lle
r

L3
 C

ac
he



M
em

or
y 

Co
nt

ro
lle

r

I/O I/O

I/OI/O

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

© All Rights Reserved.



Shared Memory Synchronization

• Synchronization is a special code that describes how to 
coordinate sharing among threads for correct execution

• Generally, there are three types of synchronizations:
§ Mutual exclusion: a code region that threads can only execute 

atomically, i.e., one thread at a time 
§ Barriers: a point in execution where all threads must wait for every 

thread to reach this point 
§ Signal-wait mechanism: a pairwise coordination between two threads 

where one thread stops its execution and waits for a signal from the 
other thread to continue its execution

© All Rights Reserved.

Synchronization Examples

T0
A = 1

flag = 1

T1
While (flag==0) { }

print A
Signal-wait mechanism

T1 repeatedly tests a 
condition till it becomes true

while (true){
if (LOCK(&t) == true)  break ;

}

…. // critical code 

UNLOCK(&t) ;

mutual exclusion

Each thread repeatedly tries 
to acquire the lock till its 
successful 

When finishing the critical 
section, release the lock

Only one thread enters the 
critical section

© All Rights Reserved.



Achieving High-Performance 
Computing On Multicores

• Programmers write a multithreading program, which is a parallel 
program that runs on multicores
§ Programmer partitions the computation among threads
§ Programmer insert synchronization operations to coordinate data 

sharing between threads
§ Communication between threads is done implicitly through the 

memory 

• Several programming models are available for shared-memory 
platforms, such as Pthreads, OpenMP, Cilk, and Intel TBB 

© All Rights Reserved.

Distributed-Memory Platforms

• A set of computers that are connected by a network
• Each computer runs a local program on a local memory
• Processors do not share a common memory, instead they 

communicate by exchanging send/receive messages through 
the network 

• Network Interfaces (NI) mediate the connections to the 
network

Shared Nothing Example 

Parallel Programming Concepts | 2013 / 1014 

31 

Distributed-Memory Computers

� Processors communicate via Network Interfaces (NI)
� NI mediates the connection to a Communication network
� This setup is rarely used Æ a programming model view today

Lecture 1 – HPC and Big Data

� A distributed-memory parallel computer establishes a ‘system view’ 
where no process can access another process’ memory directly

[3] Introduction to High Performance Computing for Scientists and Engineers

16 / 37

© All Rights Reserved.



Properties of 
Distributed-Memory Platforms 

Merits:
• Allows an easy scale-out: simply add new machines to the network
• Allows simpler hardware: the complications of sharing a physical 

memory (such as implementing synchronization operations) do not 
exist

• Inexpensive: you can connect simple uniprocessors using a cheap 
network to build a parallel machine

• Dependable: Operational nodes can replace faulting nodes because all 
nodes are independent

Problems:

• Messaging has longer latency than memory access
• Programmers need to insert communication messages in their codes

© All Rights Reserved.

Interconnection Networks 
In Distributed-Memory Platforms

• Divided into two groups
§ Direct interconnect 

• Each switch is directly connected to a processor memory 
pair, and the switches are connected to each other

§ Indirect interconnect
• Switches may not be directly connected to a processor

© All Rights Reserved.



Direct Interconnect

ring toroidal mesh
© All Rights Reserved.

Direct Interconnect (cont.)

(a) One-, (b) two-, and (c) three-dimensional hypercubes

© All Rights Reserved.



Indirect Interconnect

Crossbar

© All Rights Reserved.

Indirect Interconnect (cont.)

Omega

© All Rights Reserved.



Computer Cluster

• A set of computers (nodes) interconnected over a network that 
functions as a single large multiprocessor
§ Each node has its own private memory and OS
§ Usually connected using a LAN

o E.g., Ethernet, Infiniband

• Clusters are used for compute-intensive applications (such as 
simulations) or IO-intensive applications (such as database 
systems)

• Clusters are, by far, the most common type of distributed-
memory platforms

© All Rights Reserved.

Beowulf Cluster

• A simple, low-cost 
home-built cluster

• Commercial off-the-
shelf computers

• Ethernet network (or 
any other network type)

© All Rights Reserved.



Achieving High-Performance 
Computing On Clusters

• Programmers write a message-passing program, which is 
a parallel program that runs on a cluster
§ Programmer partitions the work among cluster nodes
§ Programmer inserts explicit send/receive messages to exchange 

shared data between cluster nodes 

• MPI is currently the dominant programming model for 
clusters

© All Rights Reserved.

Hybrid Clusters

• Each node consists of a multicore chip (in this case NUMA)
• The best of both worlds: scalability + faster performance per 

node
• Drawback: more costly nodes + might complicate 

programmability in come cases
• Today, most HPC clusters have multicore nodes

Hybrid Environments 

Parallel Programming Concepts | 2013 / 1014 

38 

Hierarchical Hybrid Computers

� Shared-memory nodes (here ccNUMA) with local NIs
� NI mediates connections to other remote ‘SMP nodes’

Lecture 1 – HPC and Big Data

� A hierarchical hybrid parallel computer is neither a purely shared-memory 
nor a purely distributed-memory type system but a mixture of both

� Large-scale ‘hybrid’ parallel computers have shared-memory building blocks 
interconnected with a fast network today 

[3] Introduction to High Performance Computing for Scientists and Engineers

18 / 37

© All Rights Reserved.



Clusters Are Ubiquitous

• The high scalability, immunity to failure, cost 
effectiveness and computational power made clusters the 
backbone of most (if not all) HPC platforms on the planet

• Nowadays, millions of clusters are scattered around the 
world to make the current internet era we live in possible

• Let us consider three examples where you can find 
clusters:
§ Supercomputers
§ Distributed systems
§ Cloud computing

© All Rights Reserved.

Supercomputers

• A supercomputer is basically a HPC cluster with a large number 
of nodes and a high-performance interconnection network

• A node in a supercomputer typically has a hierarchical SIMD / 
MIMD architecture with a lot of cores

• Performance is measured in floating-points operations per second
• Supercomputers are used for scientific computing: quantum 

mechanics, weather forecasting, climate research, oil and gas 
exploration, molecular modeling, …etc

• Supercomputer example:
§ BlueGene/L (2007), 106.496 nodes x 2 PowerPC (700MHz)
§ IBM Sequoia (2012), 16,3 PFlops, 1.6 PB memory, 98304 compute

nodes, 1.6 Million cores, 7890 kW power
© All Rights Reserved.



BlueGene/LBlueGene / L 

9 

2 Evolution of the IBM System Blue Gene Solution

1.1  View from the outside
The Blue Gene/P system has the familiar, slanted profile that was introduced with the Blue 
Gene/L system. However the increased compute power requires an increase in airflow, 
resulting in a larger footprint. Each of the air plenums on the Blue Gene/P system are just 
over ten inches wider than the plenums of the previous model. Additionally, each Blue Gene/P 
rack is approximately four inches wider. There are two additional Bulk Power Modules 
mounted in the Bulk Power enclosure on the top of the rack. Rather than a circuit breaker 
style switch, there is an on/off toggle switch to power on the machine. 

1.1.1  Packaging

Figure 1-1 illustrates the packaging of the Blue Gene/L system. 

Figure 1-1   Blue Gene/L packaging

Figure 1-2 on page 3 shows how the Blue Gene/P system is packaged. The changes start at 
the lowest point of the chain. Each chip is made up of four processors rather than just two 
processors like the Blue Gene/L system supports. 

At the next level, only one chip is on each of the compute (processor) cards. This design is 
easier to maintain with less waste. On the Blue Gene/L system, the replacement of a 
compute node because of a single failed processor requires the discard of one usable chip 
because the chips are packaged with two per card. The design of the Blue Gene/P system 
has only one chip per processor card, eliminating the disposal of a good chip when a 
compute card is replaced. 

Each node card still has 32 chips, but now the maximum number of I/O nodes per node card 
is two, so that only two Ethernet ports are on the front of each node card. Like the Blue 
Gene/L system, there are two midplanes per rack. The lower midplane is considered to be the 

2.8/5.6 GF/s
4 MB

2 processors

2 chips, 1x2x1

5.6/11.2 GF/s
1.0 GB 

(32 chips  4x4x2)
16 compute, 0-2 IO cards

90/180 GF/s
16 GB 

32 node cards

2.8/5.6 TF/s
512 GB 

64 Racks, 64x32x32

180/360 TF/s
32 TB 

Rack

System

Node card

Compute card

Chip

© All Rights Reserved.

Top500

• Annual ranking of the most powerful 500 supercomputers in 
the world (https://www.top500.org/)

• LINPACK benchmarks are used to measure performance
• Current #1 is Fugaku, a supercomputer located in RIKEN 

Center for Computational Science, Japan
§ A64FX 48C 2.2GHz 
§ 7,630,848 cores
§ 5,087,232 GB RAM
§ 442,010 TFlop/s (Linpack performance)
§ https://www.r-ccs.riken.jp/en/fugaku/project

© All Rights Reserved.



Distributed Systems

• [Tanenbaum] “A distributed system is a collection of 
independent computers that appear to the users of the 
system as a single computer”

• [Coulouris et al.] “system in which hardware or software 
components located at networked computers communicate 
and coordinate their actions only by passing messages”

• My definition: A distributed system is a collection of 
tightly-coupled or loosely-coupled clusters that cooperate 
together to make a particular functionality continuously 
available to the user

48

Why Distributed Systems?

• Scalability
Ø Many applications nowadays (e.g., web services, online games, 

peer-to-peer applications, social networks) have enormous number 
of users with dispersed geographical locations 

• Parallelism
Ø Users can access the resources simultaneously without interfering 

with each other (i.e., do independent tasks)
• Highly Reliability

Ø The failure of one machine will not affect other machines
• Transparency

Ø Users have little or no knowledge of where distributed systems’ 
resources are physically located

49



Distributed Systems Course

• Many universities dedicate a full course to teaching distributed 
systems (typically offered to graduate students)

• Discussed topics in this course include:
§ Design approaches for distributed systems
§ Networking and internet protocols
§ Distributed operating system 
§ Processes communication in distributed operating 

systems and remote procedure call protocols 
§ Distributed file systems
§ Secure Networks
§ Distributed system applications such as 

peer-to-peer systems and web services 
50

Suggested textbook

Cloud Computing

• A relatively new computing paradigm where users have 
on demand access to an “infinite” pool of virtual 
resources

• The main principle behind cloud computing model is to 
offer computing, storage, and software as a service or as a 
utility via the internet

• My personal view: cloud computing is a fancy term for a 
virtual distributed system that offers internet services on 
infrastructure level, platform level and software level   

51



Why Cloud Computing?

• On-demand pay-as-you-go services 
Ø You pay for what you use

• Ubiquitous internet access
Ø You can access the cloud from anywhere as long as you have 

internet
• Cut capital and operational cost of buying hardware

Ø Skip the pain of maintaining on-premises clusters
• Rapid elasticity

Ø E.g., go from 10 machines to 100 or from 100 machines to 10 
• Location-independent resource pooling

Ø You work with virtual machines that could be hosted anywhere
52

Cloud Computing Services

• Software as a service (SaaS)
Ø Users access applications that are hosted on the cloud

• Platform as a service (PaaS)
Ø Users build and deploy their own software applications on the 

cloud

• Infrastructure as a service (IaaS)
Ø Users remotely control a collection of “virtual” machines in 

terms of operating system, storage, network connectivity and 
applications

53



IaaS, PaaS and SaaS

54

Cloud Platform Vendors

• Amazon Web Services (AWS)

• Windows Azure

• Google App Engine

• Rackspace

55



Last Remarks

• Parallel machines can be classified based on their 
concurrency and communication models

• Writing efficient parallel programs require exposing the 
programmer to the architectural details of parallel machines

• There is no standard parallel machine, and therefore there is 
no standard parallel programming environment

• In this course, we will learn how to write parallel programs 
for shared-memory and distributed-memory platforms 

© All Rights Reserved.

Parallel Software

Instructor: Dr. Fahed Jubair
Computer Engineering Department

University of Jordan



Parallel Computing
Quick Recap

• Parallel computing achieved by running a parallel program
on a parallel machine

• Different parallel machines have different architectural 
organizations and therefore they require different types of 
parallel programs   

© All Rights Reserved.

SPMD

• The programmer only needs to write a single program 
that is parameterized by the thread/process number 

• At runtime, each thread/process executes the pieces of 
code that correspond to their thread/process number
§ E.g., using conditional branches

• SPMD is the most common style for parallel programing 
with MIMD architectures
§ The programmer writes a single program that gets replicated on 

all processors

© All Rights Reserved.



SPMD (cont.)

• Assume the number of threads/processes is n
• Below is a high-level picture of SPMD-style coding 

// multithreading code
if (thread_id == 0)

do task 0
else if (thread_id == 1)

do task 1
else if (thread_id == 2)

do task 2
…
else // thread_id = n − 1

do task n − 1

// message-passing code
if (process_id == 0)

do task 0
else if (process_id == 1)

do task 1
else if (process_id == 2)

do task 2
…
else // process_id = n − 1

do task n − 1
© All Rights Reserved.

General Steps For Writing 
A Parallel Program

• [Culler et al.] described four general steps to parallelize a 
given sequential program:

 

The Parallelization Process

 

9/10/97 DRAFT: Parallel Computer Architecture

 

97

 

Given these concepts, the job of creating a parallel program from a sequential one consists of
four steps, illustrated in Figure 2-3: 

1.

 

Decomposition

 

 of the computation into tasks, 
2.

 

Assignment

 

 of tasks to processes, 
3.

 

Orchestration

 

 of the necessary data access, communication and synchronization among pro-
cesses, and 

4.

 

Mapping

 

 or binding of processes to processors. 

Together, decomposition and assignment are called partitioning, since they divide the work done
by the program among the cooperating processes. Let us examine the steps and their individual
goals a little further.

 

Decomposition

 

Decomposition means breaking up the computation into a collection of tasks. For example, trac-
ing a single ray in Raytrace may be a task, or performing a particular computation on an individ-
ual grid point in Ocean. In general, tasks may become available dynamically as the program
executes, and the number of tasks available at a time may vary over the execution of the program.
The maximum number of tasks available at a time provides an upper bound on the number of
processes (and hence processors) that can be used effectively at that time. Hence, the major goal
in decomposition is to 

 

expose enough concurrency

 

 to keep the processes busy at all times, yet not
so much that the overhead of managing the tasks becomes substantial compared to the useful
work done. 

P0

Tasks Processes Processors

M
A
P
P
I
N
G

A
S
S
I
G
N
M
E
N
T

D
E
C
O
M
P
O
S
I
T
I
O
N

Sequential
Computation

Figure  2-3  Step in parallelization, and the relationships among tasks, processes and processors. 

The decomposition and assignment phases are together called partitioning. The orchestration phase coordinates data access, com-
munication and synchronization among processes, and the mapping phase maps them to physical processors. 

P1

P2 P3

Parallel

p0 p1

p2 p3

p0 p1

p2 p3

O
R
C
H
E
S
T
R
A
T
I
O
N

Program 

Partitioning

(or threads)

© All Rights Reserved.



1st Step: Decomposition

• Break up computation into tasks with as much concurrency as 
possible

• Tasks can be created statically or dynamically
• The challenge is how to identify enough concurrency to keep 

the processors busy all the time, yet not so much that the 
overhead of managing the tasks becomes substantial compared 
to the useful work done 

• In some cases, programmers need to perform algorithmic 
changes to increase parallelism

© All Rights Reserved.

2nd Step: Assignment

• Specify the mechanism by which tasks will be distributed 
among threads/processes

• This assignment of tasks to threads/processes can be done 
statically or dynamically

• Challenges:
1. How balance the work among processes/threads
2. How to minimize inter-process (or inter-thread) communication
3. How to reduce the runtime overheads of managing the assignment

© All Rights Reserved.



Putting The Two Together

• The two steps together (decomposition and assignment) 
are called work partitioning

• Logically, work partitioning is algorithm-dependent and 
machine-independent

• However, the architectural details of parallel machines 
often impacts the programmer decisions on how to 
perform work partitioning 

© All Rights Reserved.

3rd Step: Orchestration

• Specify mechanisms of synchronization and 
communication between threads/processes

• This step is largely dependent on the architecture and the 
programming model

• Goal: 
§ Use efficient synchronization and communication mechanisms to 

reduce their cost
§ Reduce serialization of shared resources

© All Rights Reserved.



4th Step: Mapping

• Determine which threads/processes run on which 
processors

• Most programming models have runtime support to 
perform this step automatically to the programmer

• Mapping can have significant performance impact
§ For example, in NUMA architecture, mapping threads that 

access overlapped shared data regions to the same socket reduces 
remote memory accesses 

§ Network topology can play a role in reducing communication 
latency for NUMA and distributed-memory architectures

© All Rights Reserved.

Example − Histogram

• Given an array of float numbers chosen from 0.0 − 5.0, 
consider a program that builds a histogram by distributing 
all float numbers into five “bins” where:
§ Bin[0] has the count of all floats in 0 <= num < 1 
§ Bin[1] has the count of all floats in 1 <= num < 2 
§ Bin[2] has the count of all floats in 2 <= num < 3 
§ Bin[3] has the count of all floats in 3 <= num < 4 
§ Bin[4] has the count of all floats in 4 <= num <= 5 

© All Rights Reserved.



Histogram (cont.) 

For example, if we have the following 20 floats:Example - histogram 
• 1.3,2.9,0.4,0.3,1.3,4.4,1.7,0.4,3.2,0.3,4.9,

2.4,3.1,4.4,3.9,0.4,4.2,4.5,4.9,0.9 

Copyright © 2010, Elsevier Inc. 
All rights Reserved 

Then the histogram is determined as follows:

Example - histogram 
• 1.3,2.9,0.4,0.3,1.3,4.4,1.7,0.4,3.2,0.3,4.9,

2.4,3.1,4.4,3.9,0.4,4.2,4.5,4.9,0.9 

Copyright © 2010, Elsevier Inc. 
All rights Reserved 

Bin[0] = 6
Bin[1] = 3
Bin[2] = 2
Bin[3] = 3
Bin[4] = 6

© All Rights Reserved.

Histogram − Sequential Code

• Let D [ N ] be the array of floats, where N is the number 
of floats 

• Let Bin[5] be the array of bins
• Let find_bin( float d ) be a function that determines which 

Bin float d belongs to

for ( i = 0; i < N ; i++) {
j = find_bin ( D [ i ] ) ;
Bin [ j ]++ ;

}

© All Rights Reserved.



Histogram − Partitioning

• Let p be the total number of threads/processes and id be the 
thread/process number 

• Decomposition
§ Each iteration in the loop represents a single task
§ We have N tasks

• Assignment
§ N tasks and p threads/processes ⇒ assign N/p tasks to each process/thread 

chunk_size = Ceiling (N / p )

lb = id * chunk_size

ub = min ( lb + chunk_size – 1, N ) 
for (i = lb ; i <= ub ; i++) {

j = find_bin ( D [ i ] ) ;
Bin_local [ j ]++ ;

}

Is this partitioning really even?
What if N=124 and p=16?
Can you create a better math for 
more balanced partitioning?

© All Rights Reserved.

Histogram – Orchestration 
with Multithreading

• Each threads computes a local Bin array 
• All threads update the global Bin array
• Use mutual exclusion to avoid race conditions

for (i = lb ; i <= ub ; i++)

j = find_bin ( D [ i ] ) ;
Bin_local [ j ]++ ;

}

critical section {
for ( i = 0 ; i < 5 ; i++) 

Bin [ i ] = Bin [ i ] + Bin_local [ i ] ;
}

© All Rights Reserved.



Histogram – Orchestration 
with Message–Passing

• Each process computes a local Bin array 
• All processes send their local Bin arrays to process 0
• Process 0 combines all local Bin arrays to compute overall Bin array 

for (i = lb ; i <= ub ; i++)
j = find_bin ( D [ i ] ) ;
Bin [ j ]++ ;

}
if ( process_id != 0 ) 

send_msg ( receiver = 0 , data = Bin ) ;
else

for (i = 1 ; i < T ; i++) {
recv_msg ( sender = i , & data ) ;
for ( j = 0 ; j < 5 ; j++) 

Bin [ j ] = Bin [ j ] + data [ j ] ;
} © All Rights Reserved.

Input and Output

• How do you think threads/processes in parallel programs 
should
§ Read inputs from user?
§ Print errors?
§ Dump text to output files?

• Input/output functionalities can potentially complicate 
parallel programming

• For simplicity, in this course, we will let only a single 
thread or process responsible for input/output operations

© All Rights Reserved.



Measuring Performance

• Recall the standard definition of performance

• For a program x, performance is measured as follows:
Performancex = 1 / Execution timex

• Program x is n times faster than program y if: 
Performancex / Performancey = Execution timey / Execution timex = n

© All Rights Reserved.

Speedup

• Number of the threads/processes = p
• Execution time of the serial version = Tserial
• Execution time of the parallel version = Tparallel

• It is called “linear speedup” when speedup = p
• Achieving linear speedups is difficult due to

§ Some parts of the algorithm are purely sequential
§ Runtime overhead of parallelism 

Speedup = !!"#$%&
!'%#%&&"&

© All Rights Reserved.



Execution Time Breakdown

Tserial = Tparallelizable + Tnon-parallelizable

Tparallel = 𝑻𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒊𝒛𝒂𝒃𝒍𝒆
𝑷

+ Tnon-parallelizable + Toverhead

The sequential part of the 
code that can be parallelized

The sequential part of the code that 
is “purely” sequential

Parallelism overhead
Assuming linear 
speedup

© All Rights Reserved.

ExampleExample

Processor 1

time

100

time

1   2   3   4

25  25  25 25 time

1   2   3   4

35  35  35 35 

,0.4
25

100
  pS

 balancing loadperfect 

,85.2
35

100
  pS

Perfect parallelization!
Does it ever occur?

synch cost

© All Rights Reserved.



Example (cont.)
Example (cont.)

time

1   2   3   4

30  20 40 10 
time

1   2   3   4

50  50 50 50 

imbalance load

,5.2
40

100
  pS

cost sync and
imbalance load

,0.2
50

100
  pS

closest to 
real life 

parallel programs

Processor 1

time

100

© All Rights Reserved.

Sources of Overhead

• Sources of runtime overhead in parallel programs:
§ Synchronization overhead (e.g., contention on shared resources)
§ Communication overhead (e.g., overhead of preparing messages)
§ Threads/processes creation and termination
§ Extra computation to perform partitioning
§ Dynamic tasks creation
§ Load imbalance 

© All Rights Reserved.



Amdahl’s Law

• Let f be the fraction that is “parallelizable” of the program

• Amdahl's law tell us that, even if p=∞, the serial part of a parallel 
program limits the performance to an upper bound of 1/(1-f ) 

• For example, if f = 95%, then the maximum theoretical speedup 
we can get is 20! 

Speedup = #)*+,-.
#/-+-..*.

= $

$%&'!"

Speedup ≤  $
$%&

© All Rights Reserved.

No Need To Despair

1. Amdahl’s law does not take the problem size into account
§ For many problems, as we increase the problem size, the 

“inherently serial” fraction of the program decreases in size
2. Thousands of scientific applications have shown huge 

speedups on large distributed-memory systems 
3. Many applications benefit from “small” speedups   

© All Rights Reserved.



Scalability

• A parallel program is scalable if it can handle ever increasing 
problem sizes

• Let us define efficiency as follows:

• A parallel program is strongly scalable if the efficiency, for a 
fixed problem size, remains fixed while increasing the number 
of threads/processes 

• A parallel program is weakly scalable if the efficiency, for a 
fixed number of threads/processes, remains fixed while 
increasing the problem size

Efficiency = #)*+,-.
( ∗ #(*+*,,-,

© All Rights Reserved.

Benchmarks

• A set of standard programs that measure performance
• Reasonable representation of real-world applications
• Role of benchmarks:

§ Compare different machines
§ Help exploring architectural designs
§ Identify bottlenecks

• Parallel benchmarks are benchmarks that are designed for 
measuring the performance of parallel machines

• Examples of parallel benchmark suites: NPB, PARSEC, 
Rodinia and SPLASH-2 

© All Rights Reserved.



PARSEC

• Princeton Application Repository for Shared-Memory 
Computers

• Benchmark Suite for multicores
• Available at http://parsec.cs.princeton.edu/
• Objectives:

§ Multithreaded Applications: Future programs must run on 
multicores

§ Emerging Workloads: Increasing CPU performance enables new 
applications

§ Diverse: Multicores are being used for more and more tasks 
§ State-of-Art Techniques: Algorithms and programming 

techniques evolve rapidly

© All Rights Reserved.

PARSEC (cont.)
Example: PARSEC

Program Application Domain Parallelization
Blackscholes Financial Analysis Data-parallel
Bodytrack Computer Vision Data-parallel
Canneal Engineering Unstructured
Dedup Enterprise Storage Pipeline
Facesim Animation Data-parallel
Ferret Similarity Search Pipeline
Fluidanimate Animation Data-parallel
Freqmine Data Mining Data-parallel
Streamcluster Data Mining Data-parallel
Swaptions Financial Analysis Data-parallel
Vips Media Processing Data-parallel
X264 Media Processing Pipeline

© All Rights Reserved.



Concluding Remarks

• In this course, we will focus on writing programs for 
homogeneous MIMD systems using the SPMD-style

• Parallel program design
§ Decompose computation into tasks
§ Assign tasks to threads/processes
§ Coordinate data sharing between threads/processes
§ Map threads/processes to processors

• Performance evaluation is very important to assess 
programming quality as well as the underlying architecture 
and how they interact

• Scalability and efficiency measure the quality of parallel 
programs

© All Rights Reserved.

Introduction to OpenMP

Instructor: Dr. Fahed Jubair
Computer Engineering Department

University of Jordan



Definition

• [Wikipedia] OpenMP (Open Multi-Processing) is an 
application programming interface (API) that supports 
multi-platform shared memory multiprocessing 
programming in C, C++, and Fortran

• In other words, OpenMP is a programming model that 
specifies how to extend a sequential programming 
language in order to support multithreading programming

• Major compiler vendors for OpenMP: PGI, Cray, Intel, 
Oracle, HP, Fujitsu, Microsoft, AMD, IBM, NEC, ... Etc

• Current standard: version 5.1, Available at 
https://www.openmp.org/spec-html/5.1/openmp.html

2© All Rights Reserved.

OpenMP Components 

• Compiler directives and clauses 
§ Interpreted when OpenMP compiler option is turned on
§ Each directive applies to the succeeding structured block

• Runtime function calls
§ Supported functionalities by an OpenMP runtime library

• Environment variables
§ User-controlled variables that affect the execution

3© All Rights Reserved.



Fork−Join−Parallelism

• OpenMP uses the fork-join model for its parallel execution
§ Only master thread executes serial regions
§ Master thread forks new threads at the beginning of parallel regions 
§ Multiple threads share work in parallel
§ Threads join at the end of the parallel regions 

• Each thread works on global shared and its own private variables
• Threads communicate implicitly by reading and writing shared variables
• OpenMP uses a relaxed memory model  

4

{serial region}

© All Rights Reserved.

A Starting Example

5

// sequential code
void main ( )
{

double x[512] ;
int i ;

for ( i = 0; i < 512; i++) {
do_some_work( x[ i ] ) ;

}
}

© All Rights Reserved.



A Starting Example

6

// OpenMP code
#include <omp.h>
void main ( )
{

double x[512] ;
int i ;

#pragma omp parallel   num_thread( 8 )
{

#pragma omp for
for ( i = 0; i < 512; i++) {

do_some_work( x[ i ] ) ;
}

}
}

OpenMP runtime library

This directive means a parallel region is started

This clause means to fork eight threads 

• This directive means the for loop 
is a work-sharing construct

• By default, the iteration space is 
evenly partitioned between the 
eight threads  

© All Rights Reserved.

Why OpenMP?

• It is simple!
§ Programmers incrementally add compiler directives to sequential 

programs
§ Compiler takes care of the ugly details: threads creation and 

termination, synchronization, data partitioning, … etc

• Widely applicable 
§ Work with both data-parallel and task-parallel applications
§ OpenMP has compiler directives/clauses for almost everything

• The same source code can be used for both sequential and 
OpenMP codes
§ Simply ignore directives when compiling as a sequential program 

7© All Rights Reserved.



Compiler Directives

• Assuming C/C++, all directives must start with #pragma omp
• Directives types:

§ #pragma omp parallel
§ #pragma omp for
§ #pragma omp section
§ #pragma omp single
§ #pragma omp critical
§ #pragma omp atomic
§ #pragma omp barrier
§ #pragma omp master
§ #pragma omp threadprivate

• Each directive has a set of clauses that define additional 
attributes (see next slides)

8

Parallel region directive

Work-sharing constructs directives

Synchronization directives

THREADPRIVATE directive

© All Rights Reserved.

Clauses

• Data attribute clauses
§ shared
§ private, lastprivate, firstprivate
§ copyin, copyprivate

• Synchronization clauses
§ nowait

• Work-sharing clauses
§ schedule
§ reduction
§ collapse

9© All Rights Reserved.



Runtime Library Routines

• Number of threads: omp_{set,get}_num_threads
• Thread ID: omp_get_thread_num
• Wall clock time: omp_get_wtime
• Acquire/release lock: omp_{set,unset}_lock
• And more …

10© All Rights Reserved.

Environment Variables

• OMP_NUM_THREADS
• OMP_THREAD_LIMIT
• OMP_SCHEDULE
• OMP_PROC_BIND
• And more …

11© All Rights Reserved.



The Parallel Region Directive

• Programmers use the “#pragma omp parallel” directive to mark 
a block of code as a parallel region

• At runtime, when the master thread reaches a parallel region, it 
creates a team of threads that execute this region in parallel
§ i.e., the code of the parallel region is duplicated and all threads will 

execute this code simultaneously 

• The master thread will also be a part of this team (as thread 
number 0)

• The clauses “shared” and “private” are used to determine if each 
variable is private or shared inside a parallel region 
§ Variables declared inside a parallel region are always private
§ Variables that are not specified a “private” or a “shared” clause are, by 

default, shared
12© All Rights Reserved.

How Many Threads?

• The number of threads in a parallel region can be specified 
using any of the following:
§ “num_threads” clause
§ “omp_set_num_threads” library function
§ “OMP_NUM_THREADS” variable
§ Implementation default, which is usually the same number as the 

number of cores in the system

13© All Rights Reserved.



The Traditional Hello World Example

14© All Rights Reserved.

Compiling and Running 
Hello World Example

• Assuming we have GNU GCC compiler, we can compile 
the Hello World OpenMP program on a linux machine 
using the following command

gcc –fopenmp hello_world.c –o hello.out
• To run the program, we use the command

./hello.out

• You can set the number of threads using the 
OMP_NUM_THREADS environment variable, as follows:

bash shell: export OMP_NUM_THREADS=8  
csh/tsch shell: setenv OMP_NUM_THREADS “8”

15© All Rights Reserved.



Work-Sharing Constructs

• Sub-regions where the work is partitioned among the 
participating threads inside a parallel region 

• OpenMP has three types of directives for work sharing constructs:
1. #pragma omp for

§ Used for paralell for loops
§ Work-sharing happens by partitioning the iteration space of the for loop
§ Loop-level parallelism works well with data parallelism

2. #pragma omp section
§ Work-sharing happens by breaking work into separate, discrete sections
§ Each section is executed by a thread
§ OpenMP sections work well with function parallelism

3. #pragma omp single
§ Only one thread (can be any thread in the team) will execute the code

16© All Rights Reserved.

Parallel for Loops

17

• By default, arrays A, B, and C are shared
• By default, there is an implicit barrier at the end 

of each parallel for loop

This means use static scheduling 
when dividing iterations among 
threads (see next slide)

© All Rights Reserved.



The Schedule Clause

• Specify how iterations of a parallel for loop is partitioned
• schedule (static, [chunk])

§ Loop iterations are divided into pieces of size chunk and then statically
assigned to threads in round robin fashion

§ If chunk size is not specified, the iterations are evenly (if possible) 
divided contiguously among the threads (called block partitioning)

§ Special case: if chunk size is 1, then the partitioning is called cyclic

• schedule (dynamic, [chunk])
§ Loop iterations are divided into pieces of size chunk, and dynamically 

scheduled among the threads
§ When a thread finishes one chunk, it grabs another
§ If chunk size is not specified, then by default, it is equal to 1

18© All Rights Reserved.

Static vs Dynamic Scheduling

• Static scheduling has lower overhead but is more prone to 
load imbalance

• Dynamic scheduling has higher overhead but less prone to 
load imbalance

• So how do we decide which scheduling scheme is better?

19© All Rights Reserved.



Iteration Scheduling Affects
Thread-Data Distribution

20

• Assuming the number of threads is 4, let us derive the 
distribution of shared array A on these four threads

0, 1, …, 24 25, …, 49 50, …, 74 75, …, 99

Thread 0 Thread 1 Thread 2 Thread 3

0, 4, …, 96 1, 5, …, 97 2, 6, …, 98 3, 7, …, 99

Thread 0 Thread 1 Thread 2 Thread 3

In general, data-thread distribution for a particular array is a 
function of iteration scheduling type + the array subscript function

© All Rights Reserved.

Exercise

• Assuming the number of threads is 4, describe the thread-data 
distribution of arrays A and B in the following parallel loops

21© All Rights Reserved.



The Nowait Clause

• Remove implicit barrier that is present at the end of parallel for
loops

• Improve performance because it removes unnecessary 
synchronization

• Can cause race conditions when used incorrectly

22

We can eliminate implicit barrier here 
because the same threads in both parallel 
loops produce and consume the same data 
(i.e., there is no cross-thread dependencies)

© All Rights Reserved.

Which Nowait Can Cause Race 
Conditions?

23

No race conditions

A race condition 
might occur

A race condition 
might occur

© All Rights Reserved.



The Reduction Clause

• The REDUCTION clause performs a reduction on the variables 
that appear in its list
§ A private copy for each list variable is created for each thread
§ At the end of the reduction, the reduction variable is applied to all private 

copies of the shared variable
§ The final result is written to the global shared variable

• Reduction operations include +, -, *, /, &, |, ^
• For example, the below parallel loop computes the summation in 

parallel and puts the final result in the shared variable “sum” 

24© All Rights Reserved.

The Reduction Clause (cont.)

• Reduction clause only supports scalar reduction
§ Variables in the reduction list cannot be arrays or structure data 

types
• Reduction clause works for both integer and real numbers

§ However, reduction operations may not be associative for real 
numbers

• Naturally, reduction clauses are only legal for shared 
variables

• A reduction variable must be used only in the statement 
where the reduction is applied

25© All Rights Reserved.



The SINGLE Directive

• The SINGLE directive specifies that the enclosed code is to 
be executed by only one thread in the team

• Any thread in the team can execute the code enclosed by 
the SINGLE directive  

• By default, there is an implicit barrier at the end of the 
enclosed code by the SINGLE directive
• The programmer may remove this barrier using the NOWAIT 

clause
• Single directives are useful when initializing global 

variables or dealing with I/O operations

26© All Rights Reserved.

Synchronization Directives

• OpenMP provides a set of directives to perform 
synchronization operations

• Examples:
§ #pragma omp master

o Specifies a region that is to be executed only by the master thread
o All other threads on the team skip this section of code
o There is no implied barrier associated with this directive

§ #pragma omp critical
o Specifies a region of code that must be executed by only one thread at a time
o There is no implied barrier associated with this directive

§ #pragma omp atomic
§ Similar to CRITICAL directive but can only applies to one-statement regions 

§ #pragma omp barrier
§ All threads must wait till all other threads reach this barrier
§ All threads then resume executing in parallel the code that follows the barrier27© All Rights Reserved.



28

Example:
Parallel Sum in OpenMP

Exercise: Can a nowait clause be added here?

© All Rights Reserved.

29

Example:
Dot Product in OpenMP

© All Rights Reserved.



30

Example:
Histogram in OpenMP

Exercise: Can we use atomic directive 
instead of critical directive?

© All Rights Reserved.

31

Example:
Matrix-Vector Product 
in OpenMP

© All Rights Reserved.



A Nice Shortcut

• The special directive “#pragma omp parallel loop” can be used 
to start a parallel region that consists only of a parallel loop

32

Can be rewritten

© All Rights Reserved.

The SECTIONS Directive

• A non-iterative work-sharing construct
• It specifies that the enclosed section(s) of code are to be 

divided among the threads in the team
• Each SECTION is executed once by a thread in the team
• Different sections may be executed by different threads
• It is possible for a thread to execute more than one section 

if it is quick enough and the implementation permits such
• There is an implied barrier at the end of a SECTIONS 

directive, unless the nowait clause is used

33© All Rights Reserved.



The SECTION Directive (cont.)

• Consider the following example

34© All Rights Reserved.

Summary

• OpenMP is a directive-based, easy-to-use programming 
model for shared-memory architectures (including both 
UMA and NUMA)

• OpenMP relies on both a compiler (to interpret directives 
and clauses) and a runtime library (to invoke special 
routines)

• OpenMP uses the fork-join model of parallel execution
• OpenMP is implemented in Fortran, C and C++
• Using work-sharing constructs, OpenMP can exploit both types: 

data-level and task-level parallelism in parallel regions 

35© All Rights Reserved.



Exercises

1. Write a parallel OpenMP program that counts how many 
times a negative number is found in a list of 512 randomly 
generated floating numbers picked from the range [-1:+1]

2. Write a parallel OpenMP program that computes 
𝐶 = 𝐴 𝑥 𝐵, where 𝐴, 𝐵, 𝐶 are 2D matrices of size 
100𝑥100.You may initialize arrays A and B to random 
floating-point numbers in the range [1:100]  

3. Write a parallel OpenMP program that computes the XOR 
between two n-bit binary numbers 𝐴 and 𝐵, where n, A, 
and B are read from an input text file.

36© All Rights Reserved.

Loop-Level Parallelism in 
OpenMP

Instructor: Dr. Fahed Jubair
Computer Engineering Department

University of Jordan



Loop-Level Parallelism

• Tremendous computational algorithms nowadays spend 
most of their computation in loops  

• Therefore, when parallelizing a sequential algorithm, 
programmers often find themselves need to parallelize 
loops

• Fundamental questions:
§ How to determine if a loop is serial or parallel?
§ How to convert a serial loop into a parallel loop without affecting 

correctness?
• In this lecture, we will learn how to utilizes loop-level 

parallelism using OpenMP when parallelizing a sequential 
program

© All Rights Reserved

Motivating Question

• Can the loops on the right be 
run in parallel?
§ i.e., can different threads run 

different iterations in parallel?

• What needs to be true for a 
loop to be parallelizable?
§ Iterations cannot interfere with 

each other
§ i.e., there is no dependences

between iterations

Motivating question
• Can the loops on the right 

be run in parallel?

• i.e., can different 
processors run 
different iterations in 
parallel?

• What needs to be true for 
a loop to be parallelizable?

• Iterations cannot 
interfere with each 
other

• No dependence 
between iterations

for (i = 1; i < N; i++) {
a[i] = b[i];
c[i] = a[i - 1];

}

for (i = 1; i < N; i++) {
  a[i] = b[i];
  c[i] = a[i] + b[i - 1];
}

Monday, November 4, 13

© All Rights Reserved



Flow Dependences

• Definition: A flow dependence occurs when one iteration 
writes a memory location that a later iteration reads

Dependences
• A flow dependence occurs when one iteration writes a 

location that a later iteration reads

for (i = 1; i < N; i++) {
a[i] = b[i];
c[i] = a[i - 1];

}

i = 1

W(a[1])
R(b[1])
W(c[1])
R(a[0])

i = 2

W(a[2])
R(b[2])
W(c[2])
R(a[1])

i = 3

W(a[3])
R(b[3])
W(c[3])
R(a[2])

i = 4

W(a[4])
R(b[4])
W(c[4])
R(a[3])

i = 5

W(a[5])
R(b[5])
W(c[5])
R(a[4])

Monday, November 4, 13

© All Rights Reserved

Other Kind of DependencesOther kinds of dependence
• Anti dependence – When an iteration reads a location that a 

later iteration writes (why is this a problem?)

• Output dependence – When an iteration writes a location 
that a later iteration writes (why is this a problem?)

for (i = 1; i < N; i++) {
a[i - 1] = b[i];
c[i] = a[i];

}

for (i = 1; i < N; i++) {
a[i] = b[i];
a[i + 1] = c[i];

}

Monday, November 4, 13

Other kinds of dependence
• Anti dependence – When an iteration reads a location that a 

later iteration writes (why is this a problem?)

• Output dependence – When an iteration writes a location 
that a later iteration writes (why is this a problem?)

for (i = 1; i < N; i++) {
a[i - 1] = b[i];
c[i] = a[i];

}

for (i = 1; i < N; i++) {
a[i] = b[i];
a[i + 1] = c[i];

}

Monday, November 4, 13

© All Rights Reserved



Loop-Carried Dependence

• We can run a loop in parallel if and only if there is no loop-
carried dependences inside the loop

• Definition: A loop has a loop-carried dependence if a 
dependency (whether it is flow, anti- or output dependence) 
across two iterations is present 

• Definition: A loop is parallel if it has no loop-carried 
dependence (otherwise, the loop is serial)

• To determine if a loop is parallel or serial, we will learn:
§ How to find and represent loop-carried dependences in loops
§ How to use this representation to determine if a loop is parallel or 

serial

© All Rights Reserved

Terminology

Data dependence concepts
• Dependence source is the earlier statement (the statement 

at the tail of the dependence arrow)

• Dependence sink is the later statement (the statement at 
the head of the dependence arrow)

• Dependences can only go forward in time: always from an 
earlier iteration to a later iteration.

i = 1

W(a[1])
R(b[1])
W(c[1])
R(a[0])

i = 2

W(a[2])
R(b[2])
W(c[2])
R(a[1])

i = 3

W(a[3])
R(b[3])
W(c[3])
R(a[2])

i = 4

W(a[4])
R(b[4])
W(c[4])
R(a[3])

i = 5

W(a[5])
R(b[5])
W(c[5])
R(a[4])

Monday, November 4, 13

Data dependence concepts
• Dependence source is the earlier statement (the statement 

at the tail of the dependence arrow)

• Dependence sink is the later statement (the statement at 
the head of the dependence arrow)

• Dependences can only go forward in time: always from an 
earlier iteration to a later iteration.

i = 1

W(a[1])
R(b[1])
W(c[1])
R(a[0])

i = 2

W(a[2])
R(b[2])
W(c[2])
R(a[1])

i = 3

W(a[3])
R(b[3])
W(c[3])
R(a[2])

i = 4

W(a[4])
R(b[4])
W(c[4])
R(a[3])

i = 5

W(a[5])
R(b[5])
W(c[5])
R(a[4])

Monday, November 4, 13 Dependences
• A flow dependence occurs when one iteration writes a 

location that a later iteration reads

for (i = 1; i < N; i++) {
a[i] = b[i];
c[i] = a[i - 1];

}

i = 1

W(a[1])
R(b[1])
W(c[1])
R(a[0])

i = 2

W(a[2])
R(b[2])
W(c[2])
R(a[1])

i = 3

W(a[3])
R(b[3])
W(c[3])
R(a[2])

i = 4

W(a[4])
R(b[4])
W(c[4])
R(a[3])

i = 5

W(a[5])
R(b[5])
W(c[5])
R(a[4])

Monday, November 4, 13

Dependences
• A flow dependence occurs when one iteration writes a 

location that a later iteration reads

for (i = 1; i < N; i++) {
a[i] = b[i];
c[i] = a[i - 1];

}

i = 1

W(a[1])
R(b[1])
W(c[1])
R(a[0])

i = 2

W(a[2])
R(b[2])
W(c[2])
R(a[1])

i = 3

W(a[3])
R(b[3])
W(c[3])
R(a[2])

i = 4

W(a[4])
R(b[4])
W(c[4])
R(a[3])

i = 5

W(a[5])
R(b[5])
W(c[5])
R(a[4])

Monday, November 4, 13

source

sink

© All Rights Reserved



Representing Dependences

• We use Loop-carried Dependence Graph to abstractly 
represent dependencies inside loops
§ Represent iterations as nodes in the graph
§ Draw arrows from sources to sinks to represent loop-carried 

dependencies

Flow dependence

Output dependence

Anti dependence

© All Rights Reserved

1D Loop-Carried Dependence Graph
Example 1

• Represent each dynamic instance of a loop as a point in a 
graph

• Draw arrows from one point to another to represent 
dependences

• Step 3: Draw arrows to represent dependences

0 1 2 3 4 5

R: a[0]

W: a[2]

R: a[1]

W: a[3]

R: a[2]

W: a[4]

R: a[3]

W: a[5]

R: a[4]

W: a[6]

R: a[5]

W: a[7]

Iteration space graphs

for (i = 0; i < N; i++) {
a[i + 2] = a[i]

}

Monday, November 4, 13

i=0

W(a[2])
R (a[0])

i=1

W(a[3])
R (a[1])

i=2

W(a[4])
R (a[2])

i=3

W(a[5])
R (a[3])

i=4

W(a[6])
R (a[4])

i=5

W(a[7])
R (a[5])

© All Rights Reserved



1D Loop-Carried Dependence Graph
Example 2

i=1

W(a[0])
R (a[1])

i=2

W(a[1])
R (a[2])

i=3

W(a[2])
R (a[3])

i=4

W(a[3])
R (a[4])

i=5

W(a[4])
R (a[5])

i=6

W(a[5])
R (a[6])

Other kinds of dependence
• Anti dependence – When an iteration reads a location that a 

later iteration writes (why is this a problem?)

• Output dependence – When an iteration writes a location 
that a later iteration writes (why is this a problem?)

for (i = 1; i < N; i++) {
a[i - 1] = b[i];
c[i] = a[i];

}

for (i = 1; i < N; i++) {
a[i] = b[i];
a[i + 1] = c[i];

}

Monday, November 4, 13
© All Rights Reserved

2D Loop-Carried Dependence Graph
Example 1

for (i=0; i<N; i++)
for(j=1; j<N; j++)

a [i + 1][j – 1] = a [ i ][ j ] + 1 

i=0, j=1

W(a[1][0])
R(a[0][1])

i=0, j=2

W(a[1][1])
R(a[0][2])

i=0, j=3

W(a[1][2])
R(a[0][3])

i=0, j=4

W(a[1][3])
R(a[0][4])

i=1, j=1

W(a[2][0])
R(a[1][1])

i=1, j=2

W(a[2][1])
R(a[1][2])

i=1, j=3

W(a[2][2])
R(a[1][3])

i=1, j=4

W(a[2][3])
R(a[1][4])

i=2, j=1

W(a[3][0])
R(a[2][1])

i=2, j=2

W(a[3][1])
R(a[2][2])

i=2, j=3

W(a[3][2])
R(a[2][3])

i=2, j=4

W(a[3][3])
R(a[2][4])© All Rights Reserved



2D Loop-Carried Dependence Graph
Example 2

for (i=0; i<N; i++)
for(j=0; j<N; j++)

a [i + 1][j + 1] = a [ i ][ j ] + 1 

i=0, j=0

W(a[1][1])
R(a[0][0])

i=0, j=1

W(a[1][2])
R(a[0][1])

i=0, j=2

W(a[1][3])
R(a[0][2])

i=0, j=3

W(a[1][4])
R(a[0][3])

i=1, j=0

W(a[2][1])
R(a[1][0])

i=1, j=1

W(a[2][2])
R(a[1][1])

i=1, j=2

W(a[2][3])
R(a[1][2])

i=1, j=3

W(a[2][4])
R(a[1][3])

i=2, j=0

W(a[3][1])
R(a[2][0])

i=2, j=1

W(a[3][2])
R(a[2][1])

i=2, j=2

W(a[3][3])
R(a[2][2])

i=2, j=3

W(a[3][4])
R(a[2][3])© All Rights Reserved

Distance and Direction Vectors

• We can use a more compact from to capture the dependence 
information in loop-carried dependence graphs using the 
following two vectors:
§ Distance vector: captures the “shape” of the dependence by 

representing the distance between the source and the sink
§ Direction vector: captures the “direction” of the dependence

• Each distance in the distance vector is computed by the 
subtraction {sink iteration – source iteration}
§ Therefore, the distance can be a positive or a negative integer (or zero)

• Direction vector can only take three values (=, <, >) which 
are determined by looking at the sign of the distance vector
§ Use “=” if zero, “<” if positive distance, “>” if negative distance

© All Rights Reserved



1D Distance and Direction Vectors

• Distance vector is ( +2 )
• Direction vector is ( < )

• Represent each dynamic instance of a loop as a point in a 
graph

• Draw arrows from one point to another to represent 
dependences

• Step 3: Draw arrows to represent dependences

0 1 2 3 4 5

R: a[0]

W: a[2]

R: a[1]

W: a[3]

R: a[2]

W: a[4]

R: a[3]

W: a[5]

R: a[4]

W: a[6]

R: a[5]

W: a[7]

Iteration space graphs

for (i = 0; i < N; i++) {
a[i + 2] = a[i]

}

Monday, November 4, 13

source sinkDistance is 2 – 0 = 0

Note that “<” is used to indicate that i1<i2, 
where i1 is the source iteration and i2 is the 
sink iteration

i=0 i=1 i=2 i=3 i=4 i=5

© All Rights Reserved

2D Distance and Direction Vectors

for (i=0; i<N; i++)
for(j=1; j<N; j++)

a [i + 1][j – 1] = a [ i ][ j ] + 1 

i=0, j=1 i=0, j=2 i=0, j=3 i=0, j=4

i=1, j=1 i=1, j=2 i=1, j=3 i=1, j=4

• Distance vector is ( +1 , ⎼1 )
• Direction vector is ( < , > )

© All Rights Reserved



Important Property

• First entry in any distance vector will always be positive (or 
zero)
§ Which also means that first entry in any direction vector can be 

either “=” or “<”
§ If your distance vector has a negative first entry, then you made a 

mistake in computing the vector
§ Question: why do you think this property always hold?

© All Rights Reserved

Multiple Dependencies
Represented Separately

fibo[ 0 ]  =  fibo[ 1 ]  =  1;
for (i =  2;  i <  n;  i++)

fibo[ i ]  =  fibo[ i – 1 ] + fibo[ i – 2 ]; 

i=2 i=3 i=4 i=5 i=6 i=7

• Distance vector1 is ( +1 ) , Distance vector2 is ( +2 )
• Direction vector1 is ( < ) , Direction vector2 is ( < )

Dependence 1

Dependence 2

© All Rights Reserved



Finding Loop-Carried Dependences

• Loop-Carried dependence graphs provide 
convenient visualization to all loop-carried 
dependence in graphs

• Help analyze and determine which loops are 
parallel. 

© All Rights Reserved

Example 1

• Distance vector is ( 0 , +1)
• Direction vector is ( = , < )
• Can parallelize i loop, but 

not j loop 

for (i=0; i<N; i++)
for(j=0; j<N; j++)

a [ i ][j + 1] = a [ i ][ j ] + 1 

#pragma omp parallel for private (i,j)
for (i=0; i<N; i++)

for(j=0; j<N; j++)
a [ i ][j + 1] = a [ i ][ j ] + 1 

i=0, j=0 i=0, j=1 i=0, j=2

i=1, j=0 i=1, j=1 i=1, j=2

i=2, j=0 i=2, j=1 i=2, j=2

i=2, j=0 i=2, j=1 i=2, j=2

© All Rights Reserved



Example 2

• Distance vector is ( +1 , 0 )
• Direction vector is ( < , = )
• Can parallelize j loop, but 

not i loop 

for (i=0; i<N; i++)
for(j=0; j<N; j++)

a [i + 1 ][ j ] = a [ i ][ j ] + 1 

for (i=0; i<N; i++)
#pragma omp parallel for private (j)
for(j=0; j<N; j++)

a [ i + 1][ j ] = a [ i ][ j ] + 1 

i=0, j=0 i=0, j=1 i=0, j=2

i=1, j=0 i=1, j=1 i=1, j=2

i=2, j=0 i=2, j=1 i=2, j=2

i=2, j=0 i=2, j=1 i=2, j=2

© All Rights Reserved

Exercise

for ( i=1; i < n; i++) {
x = x + 1;
b [ i ] =  a [ i ] * x ;

}

• Draw the iteration 
space graph for each 
of the following loops 
and determine distance 
and direction vectors 

• Determine if they are 
serial or parallel

• If serial, determine the 
type of loop-carried 
dependencies

for ( i=1; i < n; i++) 
for ( j=1; j < n; j++) 

a [ i ][ j ]  =  a [ i + 1 ][ j ] ;

for ( i=1; i < n; i++) 
for ( j=1; j < n; j++) 

a [ i ][ j +1 ]  =  a [ i ][ j – 1 ]       
* a [ i ][ j ] ;

© All Rights Reserved



Let us Make Things 
More Interesting

• Determine if the following loop is parallel or serial:

• More complex array subscripts make using the loop-carried 
dependence graph method to find dependencies more 
difficult!

for ( i=0; i <= n; i++) 

A [ 2 * i ] =  A [ 3 * i + 1 ] ;

© All Rights Reserved

Problem Formulation

for ( i=0; i <= 𝑛; i++) 
A [ 𝑓( 𝑖 ) ] = …
… = A [ 𝑔( 𝑖 ) ] 

• A loop-carried dependence exists if and only if there are 
two iterations 𝑖1 and 𝑖2 such that:

• If  𝑖1 < 𝑖2 , then it is a flow dependence

• If  𝑖2 < 𝑖1 , then it is an anti dependence

𝑓 𝑖1 = 𝑔 𝑖2

0 ≤ 𝑖1 , 𝑖2 ≤ 𝑛

© All Rights Reserved



The Data Dependence Test

• The previous slide show that we can find loop-carried 
dependencies by solving the below system of equations and 
inequalities

• Hence, to show that the below loop is parallel, we need to 
show that this system of equations and inequalities has no 
integer solutions 
§ i.e., there is no 𝑖1 and 𝑖2 within [0: 𝑛] such that 𝑓 𝑖1 = 𝑔 𝑖2

𝑓 𝑖1 = 𝑔 𝑖2

0 ≤ 𝑖1 , 𝑖2 ≤ 𝑛

for ( i=0; i <= 𝑛; i++) 
A [ 𝑓( 𝑖 ) ] = …
… = A [ 𝑔( 𝑖 ) ] 

Data dependence test

© All Rights Reserved

Example

• The loop is parallel if there is no solution for the following 
system of equations and inequalities:

for ( i=0; i <= n; i++) 

A [ 2 * i ] =  A [ 3 * i + 1 ] ;

2 ∗ 𝑖1 = 3 ∗ 𝑖2 + 1

0 ≤ 𝑖1 , 𝑖2 ≤ 𝑛

© All Rights Reserved



Loop Normalization

• Loop normalization allows us to generalize the 
aforementioned data dependence test for any loop

Loop normalization
• Loops that skip iterations can always be normalized to loops 

that don’t, so we only need to consider loops that have unit 
strides

• Note: this is essentially of the reverse of linear test 
replacement

for (i = L; i < U; i += S)
... a[i] ...

for (i = 0; i < (U - L)/S; i += 1)
... a[S*i + L] ...

Monday, November 4, 13
© All Rights Reserved

Multi-Dimensional Arrays

• The loop is parallel if there is no solution for the following 
system of equations and inequalities:

for ( i=0; i <= 𝑛; i++) 
for ( j=0; j <= 𝑚; j++) 

A [ 𝑓!( 𝑖 ) ] [ 𝑓"( 𝑗 ) ] = …
… = A [ 𝑔!( 𝑖 ) ] [ 𝑔"( 𝑗 ) ] 

𝑓! 𝑖1 = 𝑔!( 𝑖2 )

𝑓" 𝑗1 = 𝑔"( 𝑗2 )

0 ≤ 𝑖1 , 𝑖2 ≤ 𝑛

0 ≤ 𝑗1 , 𝑗2 ≤ 𝑚
© All Rights Reserved



Exact Solution is NP-Complete

• It has been shown that providing an exact solution, in 
general, to the data dependence test is NP-complete

• Therefore, we rely on approximate solutions that are 
accurate for the common case but may have false positives

• If a test concludes that a dependence exists, while in fact it 
does not, then we call this result is a false positive
§ It does not affect correctness to claim a loop is serial while it is 

actually parallel 
• However, a data dependence test should never produce a 

false negative
§ Claiming a loop is parallel while it is in fact serial is incorrect   

© All Rights Reserved

The GCD Test

• One simple way to perform a data dependence test is to 
rewrite the it as Diophantine equations and perform the 
GCD test

• Our question: 𝑓 (𝑖) = 𝑎 ∗ 𝑖 + 𝑏, 𝑔(𝑖) = 𝑐 ∗ 𝑖 + 𝑑
Does 𝑓(𝑖1) = 𝑔(𝑖2) ?

• Rewrite 𝑓(𝑖1) = 𝑔(𝑖2) ⇒ 𝑎 ∗ 𝑖1 + 𝑏 = 𝑐 ∗ 𝑖2 + 𝑑 ⇒
𝑎 ∗ 𝑖1 – 𝑐 ∗ 𝑖2 = 𝑑 − 𝑏 ⇒ 𝑎1 ∗ 𝑖1 + 𝑎2 ∗ 𝑖2 = 𝑎3

• The GCD test: 
A Diophantine equation 𝑎1 ∗ 𝑖1 + 𝑎2 ∗ 𝑖2 = 𝑎3has a 
solution if and only if gcd(𝑎1 , 𝑎2 ) evenly divides 𝑎3

© All Rights Reserved



Generalizing The GCD Test

• The Diophantine equation 
𝑎1 ∗ 𝑖1 + 𝑎2 ∗ 𝑖2 +⋯+ 𝑎𝑛 ∗ 𝑖𝑛 = 𝑐 has a solution iff
gcd(𝑎1, 𝑎2, … , 𝑎𝑛) evenly divides 𝑐

EE663, Spring 2004 Slide 48 

Euklid Algorithm: find gcd(a,b) 
   Repeat 
       a ← a mod b 
       swap a,b 
   Until b=0               

Performing the GCD Test 

•  The diophantine equation 

          a1*i1 + a2*i2 +...+ an*in  = c 

has a solution iff gcd(a1,a2,...,an) evenly divides c 

Examples: 
   15*i +6*j -9*k = 12   has a solution    gcd=3 
   2*i + 7*j = 3              has a solution    gcd=1 
   9*i + 3*j + 6*k = 5     has no solution  gcd=3 

→The resulting a is the gcd 

for more than two numbers: 
gcd(a,b,c) = (gcd(a,gcd(b,c)) 

© All Rights Reserved

Exercise

• Use the GCD test to decide whether each loop in the 
following is parallel or serial:

for ( i=0; i < 20; i++) 
A [ 2 * i ] =  A [ 4 * i + 1 ] ;

for ( i=0; i < 20; i++) 
A [ 2 * i + 3] =  A [ 2 * i ] ;

for ( i=0; i < 20; i++) 
A [ 3 * i ] =  A [ 7 * i ] ;

© All Rights Reserved



Other Data Dependence Tests

1. GCD test: simple but often inaccurate because it does not 
account for loop bounds information

2. Banerjee test (Utpal Banerjee): more accurate test that takes 
loop bounds into consideration

3. Omega test (William Pugh): most accurate test for linear 
subscripts (uses the “fancy” idea of integer programming)

4. Range test (Blume and Eigenmann): unlike the above tests, 
this test works with non-linear subscripts 

© All Rights Reserved

Quick Recap

• As stated at the beginning of this lecture, there are two 
fundamental issues programmers deal with when 
parallelizing a serial program:

§ How to determine if a loop is serial or parallel? (we already 
covered this question)

§ How to convert a serial loop into a parallel loop without affecting 
correctness? (our next topic)

© All Rights Reserved



Eliminating Loop-Carried 
Dependencies

• The best way is to rewrite the algorithm!

§ There are multiple ways to achieve the same outcome

§ Programmers try to rewrite the computation code in the loop 
so that the outcome is the same but without loop-carried 
dependencies

© All Rights Reserved

Parallelism Enabling Techniques

• Many techniques have been proposed in the literature that 
help programmers to perform appropriate algorithmic 
changes to eliminate loop-carried dependencies

• We cannot cover all techniques, but we will study the 
following five popular techniques:
1. Scalar Privatization
2. Array Privatization  
3. Scalar Reduction
4. Array Reduction
5. Induction Variable Substitution
6. Loop Fission

© All Rights Reserved



Private Scalar Variables

• Definition: a scalar variable inside a loop is private if it is 
written before it is read in every iteration

• For example, 𝑥 and 𝑦 are private in the below loop but 𝑤 and 𝑧
are not  

for ( 𝑖 = 1; 𝑖 < 𝑛; 𝑖 + +) { 
𝑥 = 𝑖 ∗ 2 ;
y= 𝑤 ∗ 𝑥 ;
𝑧 = 𝑧 + 𝑤 ;

}

© All Rights Reserved

Applying Scalar Privatization

• The idea is simple: take advantage of private clause in 
OpenMP to declare private scalars as private

• By doing so, each thread has a private copy of these variables
• Loop-carried anti- and output dependences will be broken
• The penalty is that more storage is needed

for ( 𝑖 = 1; 𝑖 < 𝑛; 𝑖 + +){
𝑥 = 𝑖 ∗ 2 ;
𝐴 [ 𝑥 ] = 𝐴 [ 𝑥 ] ∗ 3 ;

}

#pragma omp parallel for private(x)
for ( 𝑖 = 1; 𝑖 < 𝑛; 𝑖 + +){

𝑥 = 𝑖 ∗ 2 ;
𝐴 [ 𝑥 ] = 𝐴 [ 𝑥 ] ∗ 3 ;

}

privatization

© All Rights Reserved



Complications

#pragma omp parallel for private(x)
for ( 𝑖 = 1; 𝑖 < 𝑛; 𝑖 + +){

𝑥 = 𝑓(𝑖) ;
𝐴 [ 𝑥 ] = 𝐴 [ 𝑥 ] ∗ 3 ;

}

𝑦 = 𝑥 ∗ 𝑥 ;

• Consider the correctness of applying privatization to 
the below loop

This 𝑥 is equal to the 𝑥 computed by the last iteration

• Privatizing scalar 𝑥 will cause an error because the last value 
of 𝑥 will not be seen by the code following the parallel loop

• To solve this problem, OpenMP provides LASTPRIVATE clause
© All Rights Reserved

LASTPRIVATE Clause

• Behaves exactly like PRIVATE clause, except that the copy 
computed by the last iteration is copied to the original variable 
upon exiting the loop  

#pragma omp parallel for lastprivate(x)
for ( 𝑖 = 1; 𝑖 < 𝑛; 𝑖 + +){

𝑥 = 𝑓(𝑖) ;
𝐴 [ 𝑥 ] = 𝐴 [ 𝑥 ] ∗ 3 ;

}

𝑦 = 𝑥 ∗ 𝑥 ;

Exercise: there is also FIRSTPRIVATE clause by 
OpenMP. Google it and find out what it does.

© All Rights Reserved



Privatization Exercises

• Parallelize the following loops using proper OpenMP
pragmas

for ( i=0; i < n; i++) {
x = i + 2 ;
y = x * 2;
A [ y ] =  A [ y ] / 2 ;

}

for ( i=0; i < n; i++) 
for ( j=0; j < n; j++) {

x = A[ i ][ j ] + y ;
B[ i ][ j ] =  y + x;

}
© All Rights Reserved

Array Privatization

• The idea of privatization can be extended to array storages
• The merit: Enables parallelization
• The problem: Increases memory footprint + Not always feasible

for ( i=1; i < n; i++) {
for ( j=0; j < 5; j++) {  

a [ j ] = b [ i ][ j ] * 2 ;
}
for ( j=0; j < 5; j++) {  

c [ i ][ j ] = a [ j ] * 2 ;
}

}

#pragma omp for private(a, i, j)
for ( i=1; i < n; i++) {

for ( j=0; j < 5; j++) {  
a [ j ] = b [ i ][ j ] * 2 ;

}
for ( j=0; j < 5; j++) {  

c [ i ][ j ] = a [ j ] * 2 ;
}

}

privatization

Exercise: write a proper definition for a private array
© All Rights Reserved



Scalar Reduction

• A reduction operation inside a loop refers to a variable being 
iteratively updated by the iterations of the loop

• For example, the loop below has a scalar reduction operation 
because the scalar “𝑠𝑢𝑚” is being iteratively updated by the 
reduction statement “𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝐴[ 𝑖 ]”

• The bad news: reduction operations cause loop-carried 
dependencies 

• The good news: OpenMP provides the REDUCTION clause to 
enable parallelism (we already studied this clause in lecture 4)

for ( 𝑖 = 1; 𝑖 < 𝑛; 𝑖 + +){
𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝐴[ 𝑖 ] ;

© All Rights Reserved

Reduction Eligibility

• A variable is eligible for reduction inside a loop if and only 
if it is read and written by the statement where the 
reduction is performed

for ( i=1; i < n; i++){
A[ i ] = A[ i ] * A[ i ] ;
x = x * A[ i ] ;

}

for ( i=1; i < n; i++){
y= y / A[ i ] ;
B[ i ] = y ;

}

𝑥 is eligible for reduction 
because it is read and written 
by a single statement (we call 
it the reduction statement)

𝑦 is NOT eligible for 
reduction because it is being 
used by two statements 

© All Rights Reserved



Array Reduction

• Similar to scalars, reduction 
can also target arrays

• OpenMP does not allow using 
arrays with the REDUCTION 
clause

• Therefore, programmers are 
responsible for writing 
appropriate code to perform 
array reductions

• Recall the histogram example 
from lecture 4  

© All Rights Reserved

Induction Variables

• Definition: a variable inside a loop is called an induction 
variable if it is incremented or decremented by a fixed amount 
in each iteration of the loop

• For example, 𝑥 and 𝑦 are induction variables in the below loop 
but 𝑤 and 𝑧 are not  

for ( 𝑖 = 1; 𝑖 < 𝑛; 𝑖 + +) { 
𝑥 = 𝑥 + 1 ;
𝑦 = 𝑦 – 5 ;
𝑤 = 𝑤 ∗ 2 ;
𝑧 = 𝑧 + 𝑖 ;

}

Induction variables 
cause loop-carried 
dependencies

© All Rights Reserved



Induction Variable Substitution

• A techniques that rewrites induction variables inside a loop 
so that they are a recurrence function of the loop index

• By doing so, loop-carried dependencies will be eliminated

𝑥 = 𝑥0 ;
for ( 𝑖 = 1; 𝑖 < 𝑛; 𝑖 + +) { 

𝑥 = 𝑥 + 𝑎 ;
…

}

for ( 𝑖 = 1; 𝑖 < 𝑛; 𝑖 + +) { 
𝑥 = 𝑎 ∗ 𝑖 + 𝑥0 ;
…

}

Has a loop-carried dependency Has no loop-carried dependency

Induction loop substitution also 
results in making variable x private 

© All Rights Reserved

Example

𝑥 = 0 ;
for ( 𝑖 = 1; 𝑖 < 100; 𝑖 + +) { 

𝑥 = 𝑥 + 1 ;
𝐴 𝑥 = 𝐴 𝑥 ∗ 𝐴 𝑥 ;

}

for ( 𝑖 = 1; 𝑖 < 100; 𝑖 + +) { 
𝑥 = 𝑖 ;
𝐴 𝑥 = 𝐴 𝑥 ∗ 𝐴 𝑥 ;

}

#pragma omp parallel for private (x)
for ( 𝑖 = 1; 𝑖 < 100; 𝑖 + +) { 

𝑥 = 𝑖 ;
𝐴 𝑥 = 𝐴 𝑥 ∗ 𝐴 𝑥 ;

}

Induction variable 
substitution

Privatization

• Parallelize the following loop

© All Rights Reserved



Induction Variable Substitution 
Exercises

• Parallelize the following loops using proper OpenMP
pragmas

x = -1 ;
for ( i=1; i < n; i++) {

x = x + 2 ;
y = y + x * 2 ;

}

z = 1 ;
for ( i=0; i < n; i++) { 

x = A[ z ] ;
z = z + 1 ;

}
© All Rights Reserved

Loop Fission

• Splits a loop into two or more loops (see the below 
example)

• Also called loop distribution

for ( i=1; i < n; i++) { 
a [ i ] = b [ i ] + 1;
c [ i ] = a [ i ] ;

}

for ( i=1; i < n; i++) 
a [ i ] = b [ i ] + 1;

for ( i=1; i < n; i++) 
c [ i ] = a [ i ] ;

But how loop fission can be useful for parallelizing loops?

© All Rights Reserved



Splitting Sequential Loops 
Into Parallel Loops

for ( i=1; i < n; i++){ 
a [ i - 1 ] = b [ i ] ;
c [ i ] = a [ i ] ;

}

#pragma omp for
for ( i=1; i < n; i++) 

c [ i ] = a [ i ] ;

#pragma omp for
for ( i=1; i < n; i++) 

a [ i - 1 ] = b [ i ] ;

Loop fission

Cannot be parallelized due to 
loop-carried dependence

After applying loop fission, we 
get two parallel loops

Question: can you see any drawbacks of loop fission 
in the above example?

© All Rights Reserved

Legality of Loop Fission

• Loop fission is legal only when dependencies do NOT form 
a cycle inside the loop body

for ( i=1; i < n; i++){ 

a [ i ] = b [ i ] ;

a [ i + 1] = a [ i ] + c [ i ];

}

for ( i=1; i < n; i++){ 

b [ i ] = a [ i - 1] ;

a [ i ] = c [ i ] ;

}
Cycle exits
⇒ Loop fission is illegal

Cycle does not exit
⇒ Loop fission is legal

© All Rights Reserved



Loop Fission Exercises

• Parallelize the following loops using proper OpenMP
pragmas

for ( i=1; i < n; i++) 
for ( j=1; j < n; j++) {

B[ i ][ j ] = A[ i+1 ][ j+1 ] + y ;
A[ i ][ j ] =  C[ i ][ j ];

}

for ( i=1; i < n; i++) {
c [ i - 1 ] = b [ i ] ;
c [ i ] = a [ i ] ;

}

© All Rights Reserved

Using Temporaries With 
Loop Fission

for ( i=0; i < n; i++) {
tmp [ i ] = b [ i + 1 ] ;
b [ i ] = tmp [ i ] ;

}

for ( i=0; i < n; i++) 
b [ i ] = b [ i + 1] ;

#pragma omp parallel for
for ( i=0; i < n; i++) 

tmp [ i ] = b [ i + 1 ] ;
#pragma omp parallel for
for ( i=0; i < n; i++) 

b [ i ] = tmp [ i ] ;

Has loop-carried anti-dependence

Introduce 
temporary array

Apply
loop fission

© All Rights Reserved



Bubble Sort

• Sorts 𝑁 integers in ascending order
• The outer loop first finds the largest element in the list and 

stores it in 𝑎[𝑁 − 1]; it then finds the next-to-the-largest 
element and stores it in 𝑎[𝑁 − 2], and so on

Both outer and inner 
loops have loop-carried 
dependencies

© All Rights Reserved

Odd-Even Transportation Sort
• Similar to bubble sort but with 

more opportunities for parallelism
• During “even” phases, each odd-

subscripted element, 𝑎[𝑖], is 
compared to the element to its left, 
𝑎[𝑖 − 1], and if they’re out of 
order, they’re swapped

• During “odd” phases, each odd-
subscripted element , 𝑎[𝑖], is 
compared to the element to its 
right, 𝑎[𝑖 + 1], and if they’re out of 
order, they’re swapped

• A theorem guarantees that after 𝑁
phases, the list will be sorted

© All Rights Reserved



Odd-Even Transportation Sort

• Suppose a = {9, 7, 8, 6}
• The algorithm phases is shown in below

© All Rights Reserved

Odd-Even Transportation Sort 
OpenMP Code (Version 1)

• Outer loop is serial
• Inner loops are parallel
• The problem with this 

version is that the overhead 
of creating and terminating 
threads is proportional to 𝑁

© All Rights Reserved



Odd-Even Transportation Sort 
OpenMP Code (Version 2)

• Another OpenMP version 
will less parallelism 
overhead

© All Rights Reserved

Odd-Even Transportation Sort 
Performance Comparison

Odd-even sort with two parallel for directives and two for directives. 
(Times are in seconds.)

© All Rights Reserved



Summary

• We determine if a loop is serial or parallel by analyzing 
loop-carried dependencies in the loop 

• To convert a serial loop into a parallel loop, programmers 
need to rewrite the algorithm 

• We studied six techniques that help programmers in 
parallelizing sequential loops

© All Rights Reserved

Exercise 1

for ( i=0; i < n; i++) 
for ( j=0; j < m; j++) 

A[ i ][ j + 2] = A[ i + 2][ j + 1] ;

• Draw the iteration space graph for the above loop
• Determine the distance and direction vectors

© All Rights Reserved



Exercise 2

• Normalize the following loops
• Write the dependency tests for the normalized loops
• Use the gcd test to determine if normalized loops are parallel 

or serial 

for ( 𝑖 = 1; 𝑖 < 𝑛; 𝑖 += 2) {
𝐴 𝑖 = 𝐴[𝑖 + 1] ;

}

for ( 𝑖 = 0; 𝑖 < 𝑛; 𝑖 += 2) {
𝐴 2 ∗ 𝑖 = 𝐴[ 3 ∗ 𝑖 ] ;

}
© All Rights Reserved

Exercise 3

• Parallelize the following loops using OpenMP

𝑏 = 0 ;
𝑐 = 0 ;
for ( 𝑖 = 1; 𝑖 < 𝑛; 𝑖 + +) 
{

𝑏 = 𝑏 + (𝑖 % 2) ;
𝑐 = 𝑐 + 𝑏 ;

}

𝑗 = 1 ;
for ( 𝑖 = 1; 𝑖 < 𝑛; 𝑖 + +) 
{

𝑗 = 2 + 𝑗 ;
𝐴[ 𝑗 ] = 𝐴[𝑗 + 1] / 2 ;

}

© All Rights Reserved



Exercise 4

Question 5.8 in textbook
Consider the following loop:

There’s clearly a loop-carried dependence, as the value of a[i] 
can’t be computed without the value of a[i - 1]. Can you see a 
way to eliminate this dependence and parallelize the loop?

𝑎 [ 0 ] = 0 ;

for ( 𝑖 = 1; 𝑖 < 𝑛; 𝑖 + +) 

𝑎 𝑖 = 𝑎 𝑖 − 1 + 𝑖 ;

© All Rights Reserved

Function-Level Parallelism in 
OpenMP

Instructor: Dr. Fahed Jubair
Computer Engineering Department

University of Jordan



Function-Level Parallelism

• Programs with function-level (aka task-level) parallelism
focuses on distributing parallel functions (i.e., tasks) on 
threads

• OpenMP provides two directives that are commonly used 
for writing task-parallel programs:
1. The SECTIONS directive
2. The TASK directive

We will focus on this directive

Beyond the scope of this class

© All Rights Reserved.

Quick Review
The SECTIONS Directive

• A SECTIONS directive specifies that all enclosed 
section(s) of code are to be divided between threads such 
that each section is executed once by a thread

© All Rights Reserved.



Challenges

• There are two primarily challenges that programmers need 
to tackle when converting a sequential algorithm into a 
task-parallel algorithm:
§ How to maximize the number of tasks that can run in 

parallel?
§ How to assign these parallel tasks to threads such that 

parallelism overhead is minimized? 

© All Rights Reserved.

Algorithms With 
Function-Level Parallelism

We will study two sorting algorithms that take 
advantage of function-level parallelism:
• Merge Sort 
• Quick Sort

© All Rights Reserved.



Merge Sort

• Split the unsorted list into n sublists, each containing one element
• Repeatedly merge sublists to produce new sorted sublists until 

there is only 1 sublist remaining, which will be the sorted list

// A is the input unsorted list and B is the output sorted list
void merge_sort (int A[ ], int begin, int end, int B[ ])
{

if ( begin == end )     // if A has only one integer
return A[begin] ;

middle = (begin + end) / 2 ;
merge_sort ( A, begin, middle – 1, left) ;  // sort left half [begin : middle - 1]
merge_sort ( A, middle, end, right); // sort right half [middle : end]
merge (left, right, B); // merge left and right sublists into B

}
© All Rights Reserved.

Merge Sort Example
Split Phase

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

86 1599 6 58 35 86 4 0

99 6 86 15 58 35 86 4 0

4 0
© All Rights Reserved.



Merge Sort Example
Merge Phase

4 0

99 6 86 15 58 35 86 0 4

15 866 99 35 58 0 4 86

6 15 86 99 0 4 35 58 86

0 4 6 15 35 58 86 86 99

© All Rights Reserved.

Parallelism In Merge Sort

• Upon careful examine of the merge sort code, we can observe 
that the two recursive calls of merge sort can run in parallel
void merge_sort (int A[ ], int begin, int end, int B[ ])
{

if ( begin == end )     
return A[begin] ;

middle = (begin + end) / 2 ;
#pragma omp parallel sections num_threads(2)
{ /* start of parallel region */ 

#pragma omp section
merge_sort ( A, begin, middle – 1, left) ;  
#pragma omp section
merge_sort ( A, middle, end, right);

} /* end of parallel region */ 
merge (left, right, B); 

}

Run in parallel

© All Rights Reserved.



Hold On!

• The recursive call of merge_sort in 
the previous slide will cause 
parallel regions to be created within 
each other!

• Does OpenMP even allow this? If 
so, then how does the parallel 
execution occur? 

© All Rights Reserved.

Nested Parallelism

• OpenMP parallel regions can be nested inside each other
• A thread within a team of threads may spawn a team of threads

Nested Parallelism

 Some OpenMP implementations support nested parallelism

– A thread within a team of threads may fork spawning a child team of 
threads

3

Image Source:  John Mellor-Crummey’s Lecture Notes

The encountering thread creates a team composed of 
itself and some additional (possibly zero) number of 
threads (the encountering thread becomes the master 
thread)© All Rights Reserved.



More about Nested Parallelism

• It is possible to enable/disable nested parallelism in 
OpenMP using the environment variable OMP_NESTED or 
the library routine omp_set_nested( )

• If nested parallelism is enabled, when a thread on a team 
within a parallel region encounters a new parallel construct, 
an additional team of threads is forked off of it, and it 
becomes their master

• If nested parallelism is disabled, when a thread on a team 
within a parallel region encounters a new parallel construct, 
execution continues on this additional single thread only

© All Rights Reserved.

Example on 
Nested Parallel Regions

© All Rights Reserved.



Example on 
Nested Parallel Regions (cont.)

$ gcc –fopenmp nested.c –o a.out
$ export OMP_NESTED = TRUE
$ ./a.out

© All Rights Reserved.

Remarks on Nested Parallelism 

• Nesting parallel regions provides an immediate way to 
allow more threads to participate in the computation

• However, nesting parallel regions can easily create too 
many threads and oversubscribe the system

• In addition, creating nested parallel regions adds overhead
• To avoid the above problems, programmers usually try to 

impose some discipline on the execution using appropriate 
OpenMP environment variables 
§ For example, “OMP_MAX_ACTIVE_LEVELS” environment 

variable controls the maximum allowed number of active nested 
parallel regions

© All Rights Reserved.



Quick Sort

Sorts an array of integers as follows:
• Pick an element, called a pivot, from the array
• Reorder the array so that all elements with values less than 

the pivot come before the pivot, while all elements with 
values greater than the pivot come after it (equal values can 
go either way)

• Recursively apply the above steps to the sub-array of 
elements with smaller values and separately to the sub-
array of elements with greater values

Source:
Wikipedia

© All Rights Reserved.

Quick Sort (cont.)
void quick_sort (int A[ ], int begin, int end) {

if ( begin < end ) {     
p = partition (A, begin, end ) ;
quick_sort ( A, begin, p – 1 ) ; 
quick_sort ( A, p + 1, end ) ; 

}
}
int partition (int A[ ], int begin, int end) {

pivot = A[end] ; // let us pick the last element as our pivot
i = begin ;
for ( j = begin; j < end; j++ ) {

if ( A[ j ] <= pivot ) {
swap ( A[ j ] , A[ i ] );   // swap the content of A[ j ] and A[ i ]
i++ ;

}
}
swap ( A[ end ] , A[ i ] );
return i ;

}
© All Rights Reserved.



Quick Sort Example

99 6 86 15 58 0 86 4 35

6 15 0 4

6 15 86 86 99

6 15

86 86 99 5835

0 4 58

86 86 99

© All Rights Reserved.

Parallelism In Quick Sort

• Upon careful examine of the quick sort code, we can observe 
that the two recursive calls of quick sort can run in parallel

void quick_sort (int A[ ], int begin, int end) {
if ( begin < end ) {     

p = partition (A, begin, end ) ;
#pragma omp parallel sections num_threads(2)
{

#pragma omp section
quick_sort ( A, begin, p – 1 ) ; 
#pragma omp section
quick_sort ( A, p + 1, end ) ; 

}
}

}

Run in parallel

© All Rights Reserved.



Exercise

• Write a C function that returns the occurrences count of an 
integer 𝑥 inside A, an array of randomly generated integers 
between [0: 99]. The algorithm should work as follows:
1. Split the array A into two halves: left and right
2. Count 𝑥 occurences in the left sub-array
3. Count 𝑥 occurences in the right sub-array
4. The total count is the summation of the left and right counts
5. Do the above steps recursively 

• Now, parallelize your code using OpenMP

© All Rights Reserved.

Introduction to MPI

Instructor: Dr. Fahed Jubair
Computer Engineering Department

University of Jordan



Distributed-Memory Architectures

2

• A set of processors that are connected by a network
• Each processor runs a local program on a local memory
• Processors do not share a common memory, instead they 

communicate by passing messages through the network 
• Message passing programming models are introduced to 

enable writing parallel programs that target distributed 
memory architectures

Shared Nothing Example 

Parallel Programming Concepts | 2013 / 1014 

31 

Distributed-Memory Computers

� Processors communicate via Network Interfaces (NI)
� NI mediates the connection to a Communication network
� This setup is rarely used Æ a programming model view today

Lecture 1 – HPC and Big Data

� A distributed-memory parallel computer establishes a ‘system view’ 
where no process can access another process’ memory directly

[3] Introduction to High Performance Computing for Scientists and Engineers

16 / 37

© All Rights Reserved.

MPI

• Message Passing Interface (MPI) is the most commonly-used 
standard for message passing programs

• MPI is a standard developed by MPI Forum (http://www.mpi-
forum.org) that specifies how to implement a library that can be 
used with conventional sequential languages such as Fortran, C 
and C++ for writing SPMD-style parallel programs for 
distributed-memory architectures

• MPI standard versions: 1.0 (1994), 2.0 (1997), 3.0 (2012)
• Several implementations for MPI are available

§ E.g., MPICH, OpenMPI, Intel, Microsoft 

3
free commercial

© All Rights Reserved.



Execution Model of MPI

• Fixed number of processes (determined on startup) that starts the 
execution together and lasts till the execution terminates

• Each process is given a unique rank between 0 and 
(number_of_processes – 1)

• Each process has its instruction and data address spaces
§ No physical sharing between processes
§ All data must be explicitly partitioned and placed
§ No data races due to hardware artifacts 

• To exchange data, processes use library routines to communicate 
with each other

• Essentially, each process runs like a sequential process except 
that it makes calls to the MPI library  

4© All Rights Reserved.

A Generic MPI Program Structure

5

Source:
https://computing.llnl.gov/tutorials/mpi

© All Rights Reserved.



MPI Library Routines

• Environment management routines: used for setting and 
interrogating the MPI execution environment
§ E.g., initializing and terminating the MPI environment
§ E.g., querying the number of processes
§ E.g., querying a process rank 

• Communication routines: generally, divided into two types 
of routines:
§ Point-to-Point: a message is sent from a specific sending process to 

a specific receiving process
§ Collective: all processes participate in the communication 

6© All Rights Reserved.

MPI Communicator

• MPI uses objects called communicators, which are a 
collection of processes that can send messages to each other

• MPI execution, as startup, defines a default communicator 
that encapsulates all the processes in the system, called 
MPI_COMM_WORLD 

• Most MPI routines require you to specify a communicator 
as an argument

7© All Rights Reserved.



Environment Routines 
• MPI_Init (&arg1, &arg2)

§ Initializes the MPI execution environment
§ This function must be called in every MPI program, must be called before 

any other MPI functions and must be called only once in an MPI program

• MPI_Comm_size (comm, &size)
§ Returns the total number of MPI processes in the specified communicator, 

such as MPI_COMM_WORLD

• MPI_Comm_rank (comm, &rank)
§ Returns the rank of the calling MPI process within the specified 

communicator

• MPI_Finilize ( )
§ Terminates the MPI execution environment
§ This function should be the last MPI routine called in every MPI program 

- no other MPI routines may be called after it 8© All Rights Reserved.

The Traditional Hello World Example

9© All Rights Reserved.



Compiling Hello World Example

• We can compile the Hello World OpenMP program on a 
linux machine using the following command

10

mpicc mpi_hello.c -o mpi_hello

wrapper script to compile
source file

create this executable file name
(as opposed to default a.out)

© All Rights Reserved.

Running Hello World Example

11

mpiexec -n  <number of processes>   <executable>

mpiexec -n  4  ./mpi_hello

run with 4 processes

Hello from process 2
Hello from process 0
number of processes is 4
Hello from process 1
Hello from process 3

One possible output

© All Rights Reserved.



MPI Point-to-Point Communication

• Basic point-to-point communication in MPI is two-sided
§ Process a must make a call to a send routine and specify process b

as the receiver in the send message arguments
§ Process b must make a call to a receive routine and specify process 
a as the sender in the receive message arguments

§ Both, send and receive routines must have matching communicator 
object and similar description (size and type) of the data being 
sent/received 

12

Process a Process b

Send(data)

Receive(data)
Consume data

Produce data

© All Rights Reserved.

Point to Point Communication 
Routines

• Generally, most of the MPI point-to-point routines can be 
used in either blocking or non-blocking mode

• Let us first consider the basic type: blocking communication
• Blocking send/receive routines have the following properties:

§ A blocking send routine will only "return" after it is safe to modify 
the application buffer (your send data) for reuse

§ Safe means that modifications will not affect the data intended for 
the receive task 

§ Safe does not imply that the data was actually received - it may 
very well be sitting in a system buffer

§ A blocking receive only "returns" after the data has arrived and is 
ready for use by the program

13© All Rights Reserved.



Blocking Send/Receive Routines

• Buffer: the variable name that is being sent/received 
• Count: number of data elements to be sent
• Type: type of data to be sent
• Source: rank of the sender process (needed for receive messages)
• Dest: rank of the receiver process (needed for send messages)
• Tag: arbitrary non-negative integer assigned by the programmer to 

uniquely identify a message (send and receive operations should 
match message tags)

• Comm: communicator object
• Status: contains further information about received messages 14

MPI_Send(buffer, count, type, dest, tag, comm)

MPI_Recv(buffer, count, type, source, tag, comm, status)

© All Rights Reserved.

MPI Elementary Data Types

For reasons of portability, MPI predefines its elementary data types

15

• Programmers may also 
create their own data 
types (called Derived 
Data Types)

© All Rights Reserved.



Error Handling

• Most MPI routines include a return/error code parameter 
that can be tested to check if a routine call succeeds/fails

• However, the default behavior of failed routines is to 
abort the execution

• Users can override this behavior (if necessary) to capture 
this error

• The code MPI_SUCCESS (zero) is returned when a 
routine succeeds 

16© All Rights Reserved.

17

MPI Program Example 1

© All Rights Reserved.



Compiling and Running Example 1

18

$ mpicc example1.c –o a.out
$ mpiexec –n 2 ./a.out

data=100 is received

© All Rights Reserved.

19

MPI Program Example 2

© All Rights Reserved.



Compiling and Running Example 2

20

$ mpicc example2.c –o a.out
$ mpiexec –n 8 ./a.out

© All Rights Reserved.

21

Process 0 
distributes 
data

Each process 
computes 
local sum

Process 0 collects 
local sums to 
compute global 
sum

MPI Program Example 3
Parallel Sum

© All Rights Reserved.



Non-Blocking Communication

• The other type of point-to-point communication in MPI
• Non-blocking send/receive routines have the following 

properties:
§ Non-blocking send and receive routines return almost immediately, i.e., 

they do not wait for any communication events to complete, such as 
message copying from user memory to system buffer space or the actual 
arrival of message

§ Non-blocking operations simply "request" the MPI library to perform the 
operation when it is able (the user can not predict when that will happen)

§ It is unsafe to the user to modify data until you know for a fact that the 
requested non-blocking operation was actually performed by the library 
(which can be done using "wait" routines)

§ Non-blocking communications are primarily used to overlap computation 
with communication and exploit possible performance gains

22© All Rights Reserved.

Non-Blocking Send/Receive Routines

• The only new argument we did not see before is “request”
• Since non-blocking operations may return before the requested 

system buffer space is obtained, the system issues a unique 
"request number”

• The programmer uses this system assigned "handle" later (in a 
WAIT type routine) to determine completion of the non-blocking 
operation

• In C, the “request” argument is a pointer to a predefined structure 
MPI_Request

23

MPI_Isend(buffer, count, type, dest, tag, comm, request)

MPI_Irecv(buffer, count, type, source, tag, comm, request)

© All Rights Reserved.



Wait Routines

• MPI_Wait blocks the calling process until a specified non-
blocking send or receive operation has completed

• For multiple non-blocking operations, the programmer can 
specify any, all or some completions

24

MPI_Wait (request, status)

MPI_Waitall (count, array_of_requests, array_of_statuses)

© All Rights Reserved.

25

MPI Program Example 4

© All Rights Reserved.



Compiling and Running Example 4

26

$ mpicc example4.c –o a.out
$ mpiexec –n 16 ./a.out

process 1 rbuff = 0
process 2 rbuff = 10
process 3 rbuff = 20
process 4 rbuff = 30
process 5 rbuff = 40
process 8 rbuff = 70
process 9 rbuff = 80
process 10 rbuff = 90
process 11 rbuff = 100
process 12 rbuff = 110
process 14 rbuff = 130
process 15 rbuff = 140
process 0 rbuff = 150
process 13 rbuff = 120
process 6 rbuff = 50
process 7 rbuff = 60

© All Rights Reserved.

Example 5

• Let us try to parallelize the above loop using MPI as follows:
§ Process 0 initializes arrays a and b, partitions them into equal chunks 

and distributes these chunks onto all processes
§ Each process locally multiplies its chunks to obtain array c
§ Process 0 collects array c from all processes 

27

for ( 𝑖 = 0; 𝑖 < 𝑁; 𝑖 + +)  

c 𝑖 = 𝑎 𝑖 ∗ 𝑏 𝑖 ;

© All Rights Reserved.



28

MPI Program Example 5

Using non-blocking sends 
allows the waiting times of 
send messages to be 
overlapped

© All Rights Reserved.

29

MPI Program Example 5
(cont.)

the waiting times of the two receive messages 
are overlapped

Each process sends its result back to process 0

© All Rights Reserved.



30

MPI Program Example 5
(cont.)

the waiting times of receive messages are 
overlapped

© All Rights Reserved.

Collective Communication Routines

• Unlike point-to-point communication, collective communication 
involves all processes within the scope of a communicator

• We will consider the following collective communication types:

31© All Rights Reserved.



MPI Scatter Routine

32

MPI_Scatter (sendbuf, sendcnt, sendtype, 
recvbuf, recvcnt, recvtype, root, comm)

• Sendbuf: address of send buffer
• Sendcount: number of sent data elements for a single message
• Sendtype: type of data being sent
• Recvbuf: address of receive buffer
• Recvcount: number of received data elements 
• Recvtype: type of data being received
• Root: rank of the sender process
• Comm: communicator object

© All Rights Reserved.

MPI Gather Routine

33

MPI_Gather (sendbuf, sendcnt, sendtype, 
recvbuf, recvcnt, recvtype, root, comm)

• Sendbuf: address of send buffer
• Sendcount: number of sent data elements
• Sendtype: type of data being sent
• Recvbuf: address of receive buffer
• Recvcount: number of received data elements of a single message 
• Recvtype: type of data being received
• Root: rank of the receiver process
• Comm: communicator object

© All Rights Reserved.



34

MPI Program Example 6

© All Rights Reserved.

Compiling and Running Example 6

35

$ mpicc example6.c –o a.out
$ mpiexec –n 8 ./a.out

© All Rights Reserved.



MPI Reduce Routine

36

MPI_Reduce ( sendbuf, recvbuf, count, datatype, 
op, root, comm)

• Sendbuf: address of send buffer
• Recvbuf: address of receive buffer
• Count: number of sent data elements
• Datatype: type of data being sent
• Op: reduce operation 
• Root: rank of the process where the final reduced value will be 

available
• Comm: communicator object

© All Rights Reserved.

Reduction Operation in MPI

37

Predefined Reduction Operators 

49 
Operation  Meaning  Datatypes 
MPI_MAX  Maximum  C integers and floating point  
MPI_MIN  Minimum  C integers and floating point  
MPI_SUM  Sum  C integers and floating point  
MPI_PROD  Product  C integers and floating point  
MPI_LAND  Logical AND  C integers  
MPI_BAND  Bit-wise AND  C integers and byte  
MPI_LOR  Logical OR  C integers  
MPI_BOR  Bit-wise OR  C integers and byte  
MPI_LXOR  Logical XOR  C integers  
MPI_BXOR  Bit-wise XOR  C integers and byte  
MPI_MAXLOC  max-min value-location  Data-pairs  
MPI_MINLOC  min-min value-location  Data-pairs  

© All Rights Reserved.



38

MPI Program Example 7
Parallel Sum

© All Rights Reserved.

MPI Broadcast Routine

39

MPI_Bcast ( buffer, count, datatype, root, comm)

• Buffer: address of send/receive buffer
• Count: number of sent data elements
• Datatype: type of data being sent
• Root: rank of the process doing the broadcasting
• Comm: communicator object

© All Rights Reserved.



40

MPI Program Example 8

Global sum is broadcasted 
to every process

© All Rights Reserved.

Wait A Minute!

• Do we really need collective communication routines? Can’t we 
use send and receive routines for everything?

• Collective operations are introduced to give the MPI runtime 
environment opportunities to optimize common 
communication patterns

• For example, MPI runtime environments use advanced 
algorithms (such as tree-structured communication algorithms) 
to perform collective communication routines faster

• MPI runtime environments also often try to utilize the 
underlying network topology in reducing communication latency

41© All Rights Reserved.



Tree-Structured MPI_Reduce

42

Local sums

Global sum

© All Rights Reserved.

Tree-Structured MPI_Bcast

43

P0 broadcasts 6 to P0-P7

© All Rights Reserved.



More Collective Communication
Routines

• So far, we have focused on collective routines that 
perform one-to-all or all-to-one communication patterns

• We will consider the following three collective routines, 
which perform all-to-all communication patterns:
§ Allgather: gathers all data elements from all processes and 

broadcasts to all processes
§ Alltoall: all processes send data to all processes (including 

itself) 
§ Allreduce: combines values from all processes and 

broadcasts the final result to all processes

44© All Rights Reserved.

MPI Allgather Operation

• Each process gathers data from all processes
• OR equivalently, we can say that all processes will perform 

the same exact MPI gather routine  

45

P0

P1

P2

P0

P1

P2

Allgather

© All Rights Reserved.



MPI Allgather Routine

• Sendbuf: address of send buffer
• Sendcount: number of sent data elements
• Sendtype: type of data being sent
• Recvbuf: address of receive buffer
• Recvcount: number of received data elements of a 

single message 
• Recvtype: type of data being received
• Comm: communicator object

46

MPI_Allgather (sendbuf, sendcnt, sendtype, 
recvbuf, recvcnt, recvtype, comm)

© All Rights Reserved.

MPI Allgather Example

47

MPI_Allgather (sbuff, 1, MPI_INT, rbuff, 1, MPI_INT, MPI_COMM_WORLD)

Assume number of processes is 4

© All Rights Reserved.



MPI Alltoall Operation

• Each process sends a chunk of data to every other process 
(including itself)

• Basically, alltoall operation means every process will perform a 
scatter operation

48

P0

P1

P2

P0

P1

P2

Alltoall

© All Rights Reserved.

MPI Alltoall Routine

49

MPI_Alltoall (sendbuf, sendcnt, sendtype, 
recvbuf, recvcnt, recvtype, comm)

• Sendbuf: address of send buffer
• Sendcount: number of sent data elements
• Sendtype: type of data being sent
• Recvbuf: address of receive buffer
• Recvcount: number of received data elements
• Recvtype: type of data being received
• Comm: communicator object

© All Rights Reserved.



MPI Alltoall Example

50

2 3 41

12 13 1411

22 23 2421

32 33 3431

P0

P1

P2

P3

sbuff (before 
the call)

MPI_Alltoall (sbuff, 1, MPI_INT, rbuff, 1, MPI_INT, MPI_COMM_WORLD)

Assume number of processes is 4

© All Rights Reserved.

MPI Alltoall Example (cont.)

51

11 21 311

12 22 322

13 23 333

14 24 344

P0

P1

P2

P3

rbuff (after 
the call)

MPI_Alltoall (sbuff, 1, MPI_INT, rbuff, 1, MPI_INT, MPI_COMM_WORLD)

Assume number of processes is 4

© All Rights Reserved.



MPI Allreduce Operation

• All processes will perform the same exact MPI reduction 
routine  

52

10

30

20

P0

P1

P2

Allreduce
60

60

60

P0

P1

P2

© All Rights Reserved.

MPI Allreduce Routine

• Sendbuf: address of send buffer
• Recvbuf: address of receive buffer
• Count: number of sent data elements
• Datatype: type of data being sent
• Op: reduce operation 
• Comm: communicator object

53

MPI_Allreduce ( sendbuf, recvbuf, count, datatype, op, comm)

© All Rights Reserved.



MPI Allreduce Example

54

MPI_Allreduce (sbuff, rbuff, 2, MPI_INT, MPI_SUM, MPI_COMM_WORLD)

© All Rights Reserved.

Conclusions

• MPI is the dominant API for writing message-passing 
programs

• Programmers need to explicitly partition data and generate 
communication messages

• The main strategies for obtaining good performance with 
MPI: minimizing communication, maximizing 
concurrency, and ensuring load-balance

• When applicable, collective routines can generally obtain 
better performance than basic send/receive routines

55© All Rights Reserved.



Parallel Sort in MPI

Instructor: Dr. Fahed Jubair
Computer Engineering Department

University of Jordan

Sort Algorithms

• Sort algorithms are typical targets for parallelization due to 
their common use in numerical applications 

• We have already studied how to write the following three 
parallel sort algorithms in OpenMP
§ Odd-even transportation sort 
§ Merge sort
§ Quick sort

• In this lecture, we will pick two of the above algorithms 
(odd-even transportation sort and merge sort) and study 
how to write MPI programs for them

© All Rights Reserved.



Odd-Even Transportation Sort
Serial Algorithm

• As we previously learned in 
lecture 5, odd-even transportation 
sort works in phases, as follows: 
§ During “even” phases, each odd-

subscripted element, 𝑎[𝑖], is compared 
to the element to its left, 𝑎[𝑖 − 1], and 
if they’re out of order, they’re 
swapped

§ During “odd” phases, each odd-
subscripted element , 𝑎[𝑖], is 
compared to the element to its right, 
𝑎[𝑖 + 1], and if they’re out of order, 
they’re swapped

§ A theorem guarantees that after 𝑁
phases, the list will be sorted

© All Rights Reserved.

Odd-Even Sort Example 

40 28 33 17 16 10 55 20

40 28 33 17 16 10 55 20

28 40 17 33 10 16 20 55

28 17 40 10 33 16 20 55

17 28 10 40 16 33 20 55

17 10 28 16 40 20 33 55

10 17 16 28 20 40 33 55

10 16 17 20 28 33 40 55

Phase 0

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 6

10 16 17 20 28 33 40 55Phase 7

Initial list

© All Rights Reserved.



Task Communication 
in Odd-Even Sort

The task that’s determining the value of a[i] needs to 
communicate with either the task determining the value 
of a[i-1] or a[i+1]

In each phase, assuming each compare-swap represents a task

© All Rights Reserved.

Parallelizing Odd-Even Sort

• Assume n is the number of unsorted integers
• Assume p is the number of process
• If n=p, then the parallel algorithm is fairly straightforward

§ Depending on the phase, process i sends its current value, a[i], to 
either process 𝑖 − 1 or process 𝑖 + 1

§ At the same time, process i should receive the value stored on 
process 𝑖 − 1 or process 𝑖 + 1, respectively, and then decide which 
of the two values it should store as a[i] for the next phase

• However, the more likely scenario is that 𝑛 >> 𝑝
§ We need to modify the parallel odd-even sort algorithm 

© All Rights Reserved.



Distributed-Memory Odd-Even Sort
Assumptions

• Let us assume our algorithm will start and finish with n/p
keys assigned to each process
§ Also, for simplicity, let us assume n is evenly divisible by p

• At the start, there are no restrictions on which keys are 
assigned to which processes

• When the algorithm terminates, the keys should be sorted 
in (say) increasing order such that if q and r are processes 
such that q < r, then every key in q is either less or equal to 
every key in r

© All Rights Reserved.

Distributed-Memory Odd-Even Sort
Pseudo Code

Theorm: If the above parallel odd-even transposition sort is run 
with p processes, then after p phases, the input list will be sorted

© All Rights Reserved.



Parallel Odd-Even Sort Example

© All Rights Reserved.

C Implementation

© All Rights Reserved.



Compute_partner Function

© All Rights Reserved.

Merge_low Function

© All Rights Reserved.



Merge_high Function

© All Rights Reserved.

Run-times of 
Parallel Odd-Even Sort

(times are in milliseconds)

© All Rights Reserved.



Parallel Merge Sort

• Several algorithms have been proposed to perform merge 
sort on distributed-memory platforms

• We will consider the following algorithm:
§ Initially, process 0 has all keys, which it distributes evenly to all 

processes
§ Each process locally sorts its list of keys
§ Processes communicate their lists of keys using a tree-structured 

communication pattern and merge them 
§ Process 0 will have the final sorted list of keys

© All Rights Reserved.

Tree-Structured Merge Operations

1 5 8 04 6 1 9 7 8 3 02 7 4 1

5 61 4 0 2 7 8

2 40 1 5 6 7 8

1 7 8 9 0 1 3 4

0 1 1 3 4 7 8 9

1 10 0 1 2 3 4 4 5 6 7 7 8 8 9

P0 P1 P2 P3 P4 P5 P6 P7

P0

P0

P0

P2 P4 P6

P4

© All Rights Reserved.



Distributed-Memory Odd-Even Sort
Pseudo Code

Process 0 distributes keys evenly among processors ;
Sort local keys ;
steps = log2 (p) ;
for ( i = 1 ; i <= steps ; i++) {

determine partner ;
if (I’m not idle) {

if ( I’am the receiver ) {
receive partner keys ;
merge partner keys with my keys ;

}
else {   // I’am the sender

send my keys to partner ;
}

}
}

© All Rights Reserved.

C Implementation

© All Rights Reserved.



Merge Function

© All Rights Reserved.

Summary

• Shared-memory odd-even transportation and merge sort 
algorithms differ from their distributed-memory counterparts 
because their architectures emphasize different priorities

• Distributed-Memory sort algorithms employ “smart” 
communication patterns that reduce communication latency
§ In distributed-memory, minimizing communication is a priority

• The execution time of an MPI program is usually determined by 
measuring the execution times of all processes and then taking 
the longest time

© All Rights Reserved.



GPU Programming using CUDA

Instructor: Dr. Fahed Jubair
Computer Engineering Department

University of Jordan

Review:
Parallel Computing Platforms

• SIMD processors
§ All processors execute the same instruction simultaneously, but 

while operating on different pieces of data
§ Work best with data-parallel applications

• MIMD processors
§ All processors execute in parallel but on different instructions and 

different pieces of data
§ Can handle both data-parallel and task-parallel applications 

© All Rights Reserved.



GPUs

• In late 1990s, Graphical Processor Units (GPUs) have been 
developed to respond to the high demand of accelerating 
computer graphics applications

• However, many programmers have used GPUs for other 
applications, introducing what is known as General Purpose 
Computing on GPUs, or GPGPUs

• This lead to developing of several libraries and APIs that 
target GPGPUs, such as OpenCL and CUDA

• In this lesson, we will study CUDA C/C++ programming

© All Rights Reserved.

Why GPU Computing?

While GPUs have less programming flexibility, GPUs simply 
offer much higher computation throughput than CPUs 

© All Rights Reserved.



What is CUDA?

• Introduced by Nvidia in 2006 for general purpose 
programming on Nvidia GPUs

• Supported by multiple programming languages, including 
C/C++

• CUDA Toolkit is available for download here:
https://developer.nvidia.com/cuda-toolkit

• CUDA C/C++ programming guide is available here:
https://docs.nvidia.com/cuda/cuda-c-programming-guide/

© All Rights Reserved.

Terminology

• Nvidia GPUs are composed of multiple streaming 
multiprocessors, or SMs

• Each SM is composed of multiple streaming processors, or 
SPs

• An SP is analogous to a “core” in CPUs
• Each SP runs a “thread”
• Unlike conventional SIMD architectures, Nvidia SPs run 

asynchronously, i.e., threads on different SPs may execute 
in different speeds

• SIMT (single-instruction-multiple-thread) is a term used by 
Nvidia to describe their execution model   

© All Rights Reserved.



Nvidia GPU Architecture

© All Rights Reserved.

Heterogeneous Architecture

© All Rights Reserved.

§ Terminology:
§ Host The CPU and its memory (host memory)
§ Device The GPU and its memory (device memory)



Example:
NVIDIA GeForce RTX 2060 SUPER 

• It is the GPU that we have the lab in University of Jordan
• Released in July 2019
• Has around ten million transistors
• 34 SMs, each of which has 64 SPs (i.e., total is 2176 SPs)
• Base Clock 1470 MHz, Boost clock 1650 MHz
• 4MB L2 cache
• 8 GB memory with a bandwidth of 448 GB/s
• Note: as of spring 2021, one of the most powerful Nvidia 

processors has 128 SMs with a total of 10,496 SPs

© All Rights Reserved.

© All Rights Reserved.

CUDA 
Hello Program



Compilation and Execution

• Compilation and execution commands
nvcc cuda_hello.cu –o cuda_hello
./cuda_hello 6

• Output:
Hello from thread 0!
Hello from thread 1!
Hello from thread 2!
Hello from thread 3!
Hello from thread 4!
Hello from thread 5!

© All Rights Reserved.

A Closer Look 
at the Hello Program

• Execution begins in the main by the host
• The below call to Hello starts the kernel from the device:

Hello <<< 1 , thread_count>>>();
• threadIdx is initialized by the system, and threadIdx.x returns 

the thread rank
• The call to the kernel from the host is asynchronous, i.e., the 

call returns immediately and the host resumes its execution
• CudaDeviceSynchronize() forces the host to wait until all 

threads in the device finish their execution 

© All Rights Reserved.



Threads and Blocks 

• CUDA organizes threads into blocks
• A thread block (or a block) is a collection of threads that 

run on a single SM
• Remember that each thread runs on a single SP
• When the kernel starts, each block is assigned to an SM, 

and threads inside this block run on that SM 
• A grid is a collection of blocks

© All Rights Reserved.

CUDA Hello Example 
Version 2

© All Rights Reserved.

CUDA 
Hello Program
Version 2



Compilation and Execution

• Compilation and execution commands
nvcc cuda_hello.cu –o cuda_hello
./cuda_hello 2 3

• Output:
Hello from thread 0 in block 0
Hello from thread 1 in block 0
Hello from thread 2 in block 0
Hello from thread 0 in block 1
Hello from thread 1 in block 1
Hello from thread 2 in block 1

© All Rights Reserved.

Grids

• In addition to threads and blocks, CUDA also allows grids
• A grid is a collection of blocks, and a block is a collection 

of threads
• Built-in variables:

§ threadIdx: the rank of a thread
§ blockDim: the dimensions of a thread block
§ blockIdx: the rank of a block
§ gridDim: the dimensions of a grid

© All Rights Reserved.

All of these 
variables are structs 
with three integer 
fields: x, y, z 



Initializing Grids

© All Rights Reserved.

This kernel will have 2 x 3 x 1 = 6 blocks, each of which has 
4 x 4 x 4 = 64 threads

Vector Addition 

• GPUs are designed to be effective with data-parallel 
applications

• Let us consider the CUDA version of performing simple 
addition of two n-integer vectors

• Below is the serial version of the code

© All Rights Reserved.

for ( 𝑖 = 0 ; 𝑖 < 𝑛 ; 𝑖 + +)

𝑐 [ 𝑖 ] = 𝑎 [ 𝑖 ] + 𝑏 [ 𝑖 ] ;



Vector Addition Kernel

• Each thread will perform the addition on exactly one 
element

• The index of the element is the same as the global rank of 
the thread (see next slide)

© All Rights Reserved.

__global__ void vec_add(const int x[], const int y[], int sum[], int n)
{

int my_element = blockDim.x * blockIdx.x + threadIdx.x ;

if (my_element < n)
sum[my_element] = x[my_element] + y[my_element] ;

}

Element Index

• blockdim.x returns the number of threads

© All Rights Reserved.



© All Rights Reserved.

Allocate a, b & c on
“unified memory” (see next slide)

The Main Function

Unified Memory

• Host and Device have separate physical memories
• Unified memory is a new addition to CUDA that allows 

programmers to develop programs as if the host and the 
device share a physical memory

• Underneath, the system takes care of data transfer between 
the host memory and the decide memory

• Programmers may choose to allocate memory specifically 
on the host or the device and to do the data transfer 
between memories by hand
§ Useful for performing optimization 

© All Rights Reserved.



Rewriting Vector Addition
with Explicit Memory Transfer

• No changes on the kernel

© All Rights Reserved.

__global__ void vec_add(const int x[], const int y[], int sum[], int n)
{

int my_element = blockDim.x * blockIdx.x + threadIdx.x ;

if (my_element < n)
sum[my_element] = x[my_element] + y[my_element] ;

}

© All Rights Reserved.

The Main Function



Summary

• CUDA is designed to deliver high performance computing 
on Nvidia GPUs for data-parallel applications

• We covered basics concepts of CUDA

• We will learn more about CUDA in the lab

© All Rights Reserved.

Multithreading Programming in Java
Instructor: Dr. Fahed Jubair

Computer Engineering Department
University of Jordan



Motivation
• Multithreading enables multiple tasks in a program to be executed concurrently
• A thread is the flow of execution, from beginning to end, of a specific task
• The operating system is responsible for scheduling and allocating resources to 

threads

© All rights reserved.

1098 Chapter 30  Multithreading and Parallel Programming

30.1 Introduction
Multithreading enables multiple tasks in a program to be executed concurrently.

One of the powerful features of Java is its built-in support for multithreading—the concurrent 
running of multiple tasks within a program. In many programming languages, you have to 
invoke system-dependent procedures and functions to implement multithreading. This chapter 
introduces the concepts of threads and how multithreading programs can be developed in Java.

30.2 Thread Concepts
A program may consist of many tasks that can run concurrently. A thread is the flow 
of execution, from beginning to end, of a task.

A thread provides the mechanism for running a task. With Java, you can launch multiple 
threads from a program concurrently. These threads can be executed simultaneously in multi-
processor systems, as shown in Figure 30.1a. 

Key
Pointmultithreading

Key
Point

thread
task

FIGURE 30.1 (a) Here multiple threads are running on multiple CPUs. (b) Here multiple 
threads share a single CPU.

Thread 1

Thread 3

Thread 2

(a)

Thread 1

Thread 3

Thread 2

(b)

In single-processor systems, as shown in Figure 30.1b, the multiple threads share CPU 
time, known as time sharing, and the operating system is responsible for scheduling and allo-
cating resources to them. This arrangement is practical because most of the time the CPU is 
idle. It does nothing, for example, while waiting for the user to enter data.

Multithreading can make your program more responsive and interactive, as well as enhance 
performance. For example, a good word processor lets you print or save a file while you are 
typing. In some cases, multithreaded programs run faster than single-threaded programs even 
on single-processor systems. Java provides exceptionally good support for creating and run-
ning threads and for locking resources to prevent conflicts.

You can create additional threads to run concurrent tasks in the program. In Java, each task 
is an instance of the Runnable interface, also called a runnable object. A thread is essentially 
an object that facilitates the execution of a task.

30.1 Why is multithreading needed? How can multiple threads run simultaneously in a 
single-processor system?

30.2 What is a runnable object? What is a thread?

30.3 Creating Tasks and Threads
A task class must implement the Runnable interface. A task must be run from a 
thread.

Tasks are objects. To create tasks, you have to first define a class for tasks, which imple-
ments the Runnable interface. The Runnable interface is rather simple. All it contains is the 
run method. You need to implement this method to tell the system how your thread is going 
to run. A template for developing a task class is shown in Figure 30.2a.

time sharing

task
runnable object
thread

✓Point✓Check

Key
Point

Runnable interface
run() method

Multiple threads running 
on multiple CPUs

Multiple threads share a single 
CPU (aka. time sharing)

Source for this lecture: Introduction to Java Programming, 10th edition 

Multithreading in Java

© All rights reserved.

30.3 Creating Tasks and Threads  1099

FIGURE 30.2 Define a task class by implementing the Runnable interface.

// Client class
public class Client {
  ...

public void someMethod() {
    ...

// Create an instance of TaskClass
    TaskClass task = new TaskClass(...);

// Create a thread
    Thread thread = new Thread(task);

// Start a thread
    thread.start();
    ...

}
  ...
}

// Custom task class
public class TaskClass implements Runnable {
  ...

public TaskClass(...) {
    ...

}

// Implement the run method in Runnable
public void run() {

// Tell system how to run custom thread
    ...

}
  ...
}

TaskClassjava.lang.Runnable

(a) (b)

Once you have defined a TaskClass, you can create a task using its constructor. For 
example,

TaskClass task = new TaskClass(...);

A task must be executed in a thread. The Thread class contains the constructors for cre-
ating threads and many useful methods for controlling threads. To create a thread for a 
task, use

Thread thread = new Thread(task);

You can then invoke the start() method to tell the JVM that the thread is ready to run, as 
follows:

thread.start();

The JVM will execute the task by invoking the task’s run() method. Figure 30.2b outlines 
the major steps for creating a task, a thread, and starting the thread.

Listing 30.1 gives a program that creates three tasks and three threads to run them.

 ■ The first task prints the letter a 100 times.

 ■ The second task prints the letter b 100 times.

 ■ The third task prints the integers 1 through 100.

When you run this program, the three threads will share the CPU and take turns printing letters 
and numbers on the console. Figure 30.3 shows a sample run of the program.

Thread class
create a task

create a thread

start a thread

FIGURE 30.3 Tasks printA, printB, and print100 are executed simultaneously to 
display the letter a 100 times, the letter b 100 times, and the numbers from 1 to 100.



Startup Example

© All rights reserved.

public class TaskThreadDemo {
public static void main(String[] args) {

// Create tasks
Runnable printA = new PrintChar('a', 100);
Runnable printB = new PrintChar('b', 100);
Runnable print100 = new PrintNum(100);

// Create threads
Thread thread1 = new Thread(printA);
Thread thread2 = new Thread(printB);
Thread thread3 = new Thread(print100);

// Start threads
thread1.start();
thread2.start();
thread3.start();

}
}

class PrintChar implements Runnable {
private char charToPrint; // The character to print
private int times; // The times to repeat
public PrintChar(char c, int t) {

charToPrint = c;
times = t;

}

@Override
public void run() {

for (int i = 0; i < times; i++) {
System.out.print(charToPrint);

}
}

}

class PrintNum implements Runnable {
private int lastNum;
public PrintNum(int n) {

lastNum = n;
}

@Override
public void run() {

for (int i = 1; i <= lastNum; i++) {
System.out.print(" " + i);

}
}

}

The Thread Class
• The Thread class contains the constructors for creating threads for tasks 

and methods for controlling threads.

© All rights reserved.

1102 Chapter 30  Multithreading and Parallel Programming

30.4 The Thread Class
The Thread class contains the constructors for creating threads for tasks and the 
methods for controlling threads.

Figure 30.4 shows the class diagram for the Thread class.

Key
Point

FIGURE 30.4 The Thread class contains the methods for controlling threads.

java.lang.Thread

«interface»
java.lang.Runnable

+Thread(task: Runnable)

+Thread()

+start(): void

+interrupt(): void

+isAlive(): boolean

+setPriority(p: int): void

+join(): void

Creates a thread for a specified task.

Creates an empty thread.

Starts the thread that causes the run() method to be invoked by the JVM.

Interrupts this thread.

Sets priority p (ranging from 1 to 10) for this thread.

Waits for this thread to finish.

Puts a thread to sleep for a specified time in milliseconds.

Causes a thread to pause temporarily and allow other threads to execute.

Tests whether the thread is currently running.

+sleep(millis: long): void

+yield(): void

FIGURE 30.5 Define a thread class by extending the Thread class.

// Client class
public class Client {
  ...

public void someMethod() {
    ...

// Create a thread
    CustomThread thread1 = new CustomThread(...);

// Start a thread
    thread1.start();

// Create another thread
    CustomThread thread2 = new CustomThread(...);

// Start a thread
    thread2.start();

}
  ...
}

// Custom thread class
public class CustomThread extends Thread {
  ...
  public CustomThread(...) {
    ...

}

// Override the run method in Runnable
  public void run() {

// Tell system how to perform this task
    ...

}
  ...
}

CustomThreadjava.lang.Thread

(a) (b)

...

Note
Since the Thread class implements Runnable, you could define a class that extends 
Thread and implements the run method, as shown in Figure 30.5a, and then create 
an object from the class and invoke its start method in a client program to start the 
thread, as shown in Figure 30.5b. separating task from thread



Alternative Method For Running Threads

© All rights reserved.

1102 Chapter 30  Multithreading and Parallel Programming

30.4 The Thread Class
The Thread class contains the constructors for creating threads for tasks and the 
methods for controlling threads.

Figure 30.4 shows the class diagram for the Thread class.

Key
Point

FIGURE 30.4 The Thread class contains the methods for controlling threads.

java.lang.Thread

«interface»
java.lang.Runnable

+Thread(task: Runnable)

+Thread()

+start(): void

+interrupt(): void

+isAlive(): boolean

+setPriority(p: int): void

+join(): void

Creates a thread for a specified task.

Creates an empty thread.

Starts the thread that causes the run() method to be invoked by the JVM.

Interrupts this thread.

Sets priority p (ranging from 1 to 10) for this thread.

Waits for this thread to finish.

Puts a thread to sleep for a specified time in milliseconds.

Causes a thread to pause temporarily and allow other threads to execute.

Tests whether the thread is currently running.

+sleep(millis: long): void

+yield(): void

FIGURE 30.5 Define a thread class by extending the Thread class.

// Client class
public class Client {
  ...

public void someMethod() {
    ...

// Create a thread
    CustomThread thread1 = new CustomThread(...);

// Start a thread
    thread1.start();

// Create another thread
    CustomThread thread2 = new CustomThread(...);

// Start a thread
    thread2.start();

}
  ...
}

// Custom thread class
public class CustomThread extends Thread {
  ...
  public CustomThread(...) {
    ...

}

// Override the run method in Runnable
  public void run() {

// Tell system how to perform this task
    ...

}
  ...
}

CustomThreadjava.lang.Thread

(a) (b)

...

Note
Since the Thread class implements Runnable, you could define a class that extends 
Thread and implements the run method, as shown in Figure 30.5a, and then create 
an object from the class and invoke its start method in a client program to start the 
thread, as shown in Figure 30.5b. separating task from thread

Example
Thread Test

© All rights reserved.

// output
Creating Thread-1
Creating Thread-2
Running Thread-1
Thread: Thread-1, 4
Running Thread-2
Thread: Thread-2, 4
Thread: Thread-1, 3
Thread: Thread-2, 3
Thread: Thread-1, 2
Thread: Thread-2, 2
Thread: Thread-1, 1
Thread: Thread-2, 1
Thread Thread-1 exiting.
Thread Thread-2 exiting.



Thread Pool
• In many programs, many tasks need to be expected in parallel
• Creating a thread for each task if not efficient for a large number of tasks 

because the large number of threads will oversubscribe the system
• Java provides a mechanism for creating a pool of specific number of 

threads for executing large number of tasks
• Each thread starts by executing a task, when done, it grabs a task from 

the Task Queue, and so on    

© All rights reserved.

The Executor and ExecutorService Interfaces
• Java provides the Executor interface for executing tasks in a thread pool 

and the ExecutorService interface for managing and controlling tasks
• ExecutorService is a subinterface of Executor

© All rights reserved.

30.6 Thread Pools  1107

This approach is convenient for a single task execution, but it is not efficient for a large 
number of tasks because you have to create a thread for each task. Starting a new thread for 
each task could limit throughput and cause poor performance. Using a thread pool is an ideal 
way to manage the number of tasks executing concurrently. Java provides the Executor
interface for executing tasks in a thread pool and the ExecutorService interface for man-
aging and controlling tasks. ExecutorService is a subinterface of Executor, as shown in 
Figure 30.7.

FIGURE 30.7 The Executor interface executes threads, and the ExecutorService subinterface manages threads.

+shutdown(): void

+shutdownNow(): List<Runnable>

+isShutdown(): boolean
+isTerminated(): boolean

«interface»
java.util.concurrent.ExecutorService

+execute(Runnable object): void

«interface»
java.util.concurrent.Executor

Executes the runnable task.

Shuts down the executor, but allows the tasks in the executor
     to complete. Once shut down, it cannot accept new tasks.
Shuts down the executor immediately even though there are

unfinished threads in the pool. Returns a list of unfinished tasks.
Returns true if the executor has been shut down.
Returns true if all tasks in the pool are terminated.

FIGURE 30.8 The Executors class provides static methods for creating Executor objects.

Creates a thread pool with a fixed number of threads executing
    concurrently. A thread may be reused to execute another task
    after its current task is finished.

Creates a thread pool that creates new threads as needed, but
    will reuse previously constructed threads when they are
    available.

java.util.concurrent.Executors

+newFixedThreadPool(numberOfThreads:
  int): ExecutorService

+newCachedThreadPool():
  ExecutorService

To create an Executor object, use the static methods in the Executors class, as shown 
in Figure 30.8. The newFixedThreadPool(int) method creates a fixed number of threads 
in a pool. If a thread completes executing a task, it can be reused to execute another task. If 
a thread terminates due to a failure prior to shutdown, a new thread will be created to replace 
it if all the threads in the pool are not idle and there are tasks waiting for execution. The 
newCachedThreadPool() method creates a new thread if all the threads in the pool are not 
idle and there are tasks waiting for execution. A thread in a cached pool will be terminated if 
it has not been used for 60 seconds. A cached pool is efficient for many short tasks.

Listing 30.3 shows how to rewrite Listing 30.1 using a thread pool.

LISTING 30.3 ExecutorDemo.java
 1 import java.util.concurrent.*;
 2
 3 public class ExecutorDemo {



The Executers Class
• The Executers class has static methods useful for creating an Executor object 
• There are two static methods for creating two different types of thread pools:

• newFixedThreadPool(int)
• Creates a fixed number of threads in a pool
• If a thread completes executing a task, it can be reused to execute another task 
• If a thread terminates due to a failure prior to shutdown, a new thread will be created to 

replace it if all the threads in the pool are not idle and there are tasks waiting for execution 
• newCachedThreadPool()

• Creates a new thread if all the threads in the pool are not idle and there are tasks waiting for 
execution

• A thread in a cached pool will be terminated if it has not been used for 60 seconds
• Efficient for many short tasks

© All rights reserved.

Example
Executor Demo

© All rights reserved.



Race Condition
• During concurrent execution, multiple threads may share data
• Reading and writing to shared data by multiple threads simultaneously 

may lead to inconsistent update of data (i.e., threads may incorrectly 
override each other)
• Such a situation when data is corrupted due to concurrent thread 

execution is called a race condition
• Race conditions cause incorrectness in concurrent execution

© All rights reserved.

Example: Race Condition Demo

© All rights reserved.

import java.util.concurrent.*;

public class AccountWithoutSync {
private static Account account = new Account();

public static void main(String[] args) {
ExecutorService executor = Executors.newCachedThreadPool();

// Create and launch 100 threads
for (int i = 0; i < 100; i++) {

executor.execute(new AddAPennyTask());
}

executor.shutdown();

// Wait until all tasks are finished
while (!executor.isTerminated()) { }

System.out.println("What is balance? " + account.getBalance());
}

// A thread for adding a penny to the account
private static class AddAPennyTask implements Runnable {

public void run() {
account.deposit(1);

}
}

// An inner class for account
private static class Account {

private int balance = 0;

public int getBalance() {
return balance;

}

public void deposit(int amount) {
int newBalance = balance + amount;

// This delay is deliberately added to magnify the
// race condition problem and make it easy to see.
try {

Thread.sleep(5);
}
catch (InterruptedException ex) {
}

balance = newBalance;
}

}
}



Thread Synchronization and Critical Regions
• Thread synchronization is a mechanism for controlling access to shared data 

between multiple threads so that race conditions are avoided
• Example of a thread synchronization mechanism is a critical region, which is a 

region of code that allows one thread to execute this region at a time
• Critical regions are typically used whenever a specific region in the code needs 

to be executed serially

© All rights reserved.

The Synchronized Keyword
• In Java, the synchronized keyword is provided to specify a critical regions
• Using the synchronized keyword with a method will make this entire 

method executed as a critical region
• Example: in the previous example, use “public synchronized void deposit(int amount)” to 

declare the deposit method as a critical region

• Using the synchronized keyword with statements make them executed 
inside a critical region
• Example, in the previous example, write the below code to make a critical region  

© All rights reserved.

synchronized (account) { 
account.deposit(1); 

} 



Synchronization Using Locks
• Locks are mechanisms for implementing critical regions
• Only a thread that has the lock is allowed to enter and 

execute the critical region
• The synchronized keyword uses the lock/unlock 

mechanism for implementing a critical region
• However, Java also enables acquiring and releasing 

locks explicitly to allow users more thread control     

© All rights reserved.

Acquire a lock

Execute the critical region

Release the lock

The Lock Interface and The ReentrantLock Class
• ReentrantLock is a concrete implementation of Lock for creating 

mutually exclusive locks

© All rights reserved.

30.8 Synchronization Using Locks  1113

ReentrantLock is a concrete implementation of Lock for creating mutually exclusive 
locks. You can create a lock with the specified fairness policy. True fairness policies guar-
antee that the longest-waiting thread will obtain the lock first. False fairness policies grant a 
lock to a waiting thread arbitrarily. Programs using fair locks accessed by many threads may 
have poorer overall performance than those using the default setting, but they have smaller 
variances in times to obtain locks and prevent starvation.

Listing 30.5 revises the program in Listing 30.7 to synchronize the account modification 
using explicit locks.

LISTING 30.5 AccountWithSyncUsingLock.java
 1 import java.util.concurrent.*;
 2 import java.util.concurrent.locks.*;
 3
 4 public class AccountWithSyncUsingLock {
 5 private static Account account = new Account();
 6
 7 public static void main(String[] args) {
 8      ExecutorService executor = Executors.newCachedThreadPool();
 9
10 // Create and launch 100 threads
11 for (int i = 0; i < 100; i++) {
12        executor.execute(new AddAPennyTask());
13      }
14
15      executor.shutdown();
16
17 // Wait until all tasks are finished
18 while (!executor.isTerminated()) {
19      }
20
21      System.out.println("What is balance? " + account.getBalance());
22    }
23
24 // A thread for adding a penny to the account
25 public static class AddAPennyTask implements Runnable {
26 public void run() {
27        account.deposit(1);
28      }
29    }
30

fairness policy

package for locks

FIGURE 30.13 The ReentrantLock class implements the Lock interface to represent a lock.

«interface»
java.util.concurrent.locks.Lock

+lock(): void
+unlock(): void
+newCondition(): Condition

Acquires the lock.
Releases the lock.
Returns a new Condition instance that is bound to this
Lock instance.

java.util.concurrent.locks.ReentrantLock

+ReentrantLock()
+ReentrantLock(fair: boolean)

Same as ReentrantLock(false).
Creates a lock with the given fairness policy. When the

fairness is true, the longest-waiting thread will get the
lock. Otherwise, there is no particular access order.



Example: Lock/Unlock Demo

© All rights reserved.

import java.util.concurrent.*;
import java.util.concurrent.locks.*;

public class AccountWithSyncUsingLock {
private static Account account = new Account();

public static void main(String[] args) {
ExecutorService executor = Executors.newCachedThreadPool();

// Create and launch 100 threads
for (int i = 0; i < 100; i++) {

executor.execute(new AddAPennyTask());
}

executor.shutdown();

// Wait until all tasks are finished
while (!executor.isTerminated()) { }

System.out.println("What is balance ? " + account.getBalance());
}

// A thread for adding a penny to the account
public static class AddAPennyTask implements Runnable {

public void run() {
account.deposit(1);

}
}

// An inner class for account
public static class Account {

private static Lock lock = new ReentrantLock(); // Create a lock
private int balance = 0;

public int getBalance() {
return balance;

}

public void deposit(int amount) {
lock.lock(); // Acquire the lock

try {
int newBalance = balance + amount;
Thread.sleep(5);
balance = newBalance;

}
catch (InterruptedException ex) {
}
finally {

lock.unlock(); // Release the lock
}

}
}

}

Semaphores
• Semaphores are mechanisms that can control the number of threads 

that can enter a critical region
• Before entering a critical region, a thread must acquire a permit from a 

semaphore
• After finishing the critical region, a thread returns the permit to the 

semaphore object   

© All rights reserved.

32-28  Chapter 32  Multithreading and Parallel Programming

38            System.out.println("\t\t\tConsumer reads " + buffer.take());

FIGURE 32.22 A limited number of threads can access a shared resource controlled by a 
semaphore.

Acquire a permit from a semaphore.
Wait if the permit is not available.

Release the permit to the semaphore.

A thread accessing a shared resource.

Access the resource

semaphore.acquire();

semaphore.release();

39            // Put the thread into sleep 
40            Thread.sleep((int)(Math.random() * 10000));
41          }
42        } 
43        catch (InterruptedException ex) {
44          ex.printStackTrace();
45        }
46      }
47    }
48  }

In Listing 32.7, you used locks and conditions to synchronize the Producer and Consumer 
threads. This program does not use locks and conditions because synchronization is already 
implemented in ArrayBlockingQueue.

 32.11.1 What is a blocking queue? What blocking queues are supported in Java?

 32.11.2 What method do you use to add an element to an ArrayBlockingQueue? What 
happens if the queue is full?

 32.11.3 What method do you use to retrieve an element from an ArrayBlockingQueue? 
What happens if the queue is empty?

32.12 Semaphores
Semaphores can be used to restrict the number of threads that access a shared resource.

In computer science, a semaphore is an object that controls the access to a common resource. Before 
accessing the resource, a thread must acquire a permit from the semaphore. After finishing with the 
resource, the thread must return the permit back to the semaphore, as shown in Figure 32.22.

take

Consumer task

Point
Check

Point
Key

semaphore

24            Thread.sleep((int)(Math.random() * 10000));
25          }
26        } 
27        catch (InterruptedException ex) {
28          ex.printStackTrace();
29        }
30      }
31    }
32 
33    // A task for reading and deleting an int from the buffer 
34    private static class ConsumerTask implements Runnable { 
35      public void run() {
36        try {
37          while (true) {

M32_LIAN1878_11_GE_C32.indd   28 12/29/17   5:46 PM



The Semaphore Class

© All rights reserved.

32.12 Semaphores  32-29

A semaphore with just one permit can be used to simulate a mutually exclusive lock. 
 Listing 32.9 revises the Account inner class in Listing 32.9 using a semaphore to ensure that 
only one thread at a time can access the deposit method.

LISTING 32.9 New Account Inner Class

 1  // An inner class for Account 
 2  private static class Account {
 3    // Create a semaphore 
 4    private static Semaphore semaphore = new Semaphore(1); 
 5    private int balance = 0;
 6 
 7    public int getBalance() {
 8      return balance;
 9    }
10 
11    public void deposit(int amount) {
12      try {
13        semaphore.acquire(); // Acquire a permit 
14        int newBalance = balance + amount;
15 
16        // This delay is deliberately added to magnify the 
17        // data-corruption problem and make it easy to see 
18        Thread.sleep(5);
19 
20        balance = newBalance;
21      }
22      catch (InterruptedException ex) {
23      }
24      finally {
25        semaphore.release(); // Release a permit 
26      }
27    }
28  }

A semaphore with one permit is created in line 4. A thread first acquires a permit when execut-
ing the deposit method in line 13. After the balance is updated, the thread releases the permit 
in line 25. It is a good practice to always place the release() method in the finally clause 
to ensure that the permit is finally released even in the case of exceptions.

create a semaphore

acquire a permit

release a permit

FIGURE 32.23 The Semaphore class contains the methods for accessing a semaphore.

java.util.concurrent.Semaphore

+Semaphore(numberOfPermits: int)

+Semaphore(numberOfPermits: int, fair:
boolean)

+acquire(): void

+release(): void

Creates a semaphore with the specified number of permits. The
fairness policy is false.

Creates a semaphore with the specified number of permits and
the fairness policy.

Acquires a permit from this semaphore. If no permit is
available, the thread is blocked until one is available.

Releases a permit back to the semaphore.

To create a semaphore, you have to specify the number of permits with an optional fair-
ness policy, as shown in Figure 32.23. A task acquires a permit by invoking the semaphore’s 
acquire() method and releases the permit by invoking the semaphore’s release() 
method. Once a permit is acquired, the total number of available permits in a semaphore is 
reduced by 1. Once a permit is released, the total number of available permits in a semaphore 
is increased by 1.

M32_LIAN1878_11_GE_C32.indd   29 12/29/17   5:46 PM

© All rights reserved.

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;

public class AccountWithSyncUsingSemaphores {
private static Account account = new Account();

public static void main(String[] args) {
ExecutorService executor = Executors.newCachedThreadPool();

// Create and launch 100 threads
for (int i = 0; i < 100; i++) {

executor.execute(new AddAPennyTask());
}

executor.shutdown();

// Wait until all tasks are finished
while (!executor.isTerminated()) { }

System.out.println("What is balance ? " + account.getBalance());
}

// A thread for adding a penny to the account
public static class AddAPennyTask implements Runnable {

public void run() {
account.deposit(1);

}
}

Example: Semaphore Demo
// An inner class for account

public static class Account {
private static Semaphore semaphore = new Semaphore(1);
private int balance = 0;

public int getBalance() {
return balance;

}
public void deposit(int amount) {

try {
semaphore.acquire();
int newBalance = balance + amount;
Thread.sleep(5);
balance = newBalance;

}
catch (InterruptedException ex) {
}
finally {

semaphore.release();
}

}
}

}



The Fork/Join Model
• In Java, the fork/join model is used for parallel programming
• This is achieved by defining the ForkJoinTask and ForkJoinPool classes

© All rights reserved.

30.16 Parallel Programming  1129

The framework defines a task using the ForkJoinTask class, as shown in Figure 30.28 
and executes a task in an instance of ForkJoinPool, as shown in Figure 30.29.

ForkJoinTask

ForkJoinPool

FIGURE 30.27 The nonoverlapping subproblems are solved in parallel.

Subproblem

Subproblem

Subproblem

Subproblem

Problem

Fork

Solution

Join

FIGURE 30.28 The ForkJoinTask class defines a task for asynchronous execution.

«interface»
java.util.concurrent.Future<V>

+cancel(interrupt: boolean): boolean
+get(): V

+isDone(): boolean

Attempts to cancel this task.
Waits if needed for the computation to complete and
    returns the result.
Returns true if this task is completed.

java.util.concurrent.ForkJoinTask<V>

+adapt(Runnable task): ForkJoinTask<V>
+fork(): ForkJoinTask<V>
+join(): V
+invoke(): V

+invokeAll(tasks ForkJoinTask<?>…): void

Returns a ForkJoinTask from a runnable task.
Arranges asynchronous execution of the task.
Returns the result of computations when it is done.
Performs the task and awaits for its completion, and returns its
    result.
Forks the given tasks and returns when all tasks are completed.

java.util.concurrent.RecursiveAction<V>

#compute(): void Defines how task is performed.

java.util.concurrent.RecursiveTask<V>

#compute(): V Defines how task is performed. Return the
    value after the task is completed.

FIGURE 30.29 The ForkJoinPool executes Fork/Join tasks.

«interface»
java.util.concurrent.ExecutorService

java.util.concurrent.ForkJoinPool

+ForkJoinPool()
+ForkJoinPool(parallelism: int)
+invoke(ForkJoinTask<T>): T

Creates a ForkJoinPool with all available processors.
Creates a ForkJoinPool with the specified number of processors.
Performs the task and returns its result upon completion.

See Figure 30.7

The ForkJoinTask Class

© All rights reserved.

32.16 Parallel Programming  32-33

The framework defines a task using the ForkJoinTask class, as shown in Figure 32.28 
and executes a task in an instance of ForkJoinPool, as shown in Figure 32.29.

ForkJoinTask

ForkJoinPool

FIGURE 32.27 The nonoverlapping subproblems are solved in parallel.

Subproblem

Subproblem

Subproblem

Subproblem

Problem

Fork

Solution

Join

FIGURE 32.28 The ForkJoinTask class defines a task for asynchronous execution.

«interface»
java.util.concurrent.Future<V>

+cancel(interrupt: boolean): boolean
+get(): V

+isDone(): boolean

Attempts to cancel this task.
Waits if needed for the computation to complete and
    returns the result.
Returns true if this task is completed.

java.util.concurrent.ForkJoinTask<V>

+adapt(Runnable task): ForkJoinTask<V>
+fork(): ForkJoinTask<V>
+join(): V
+invoke(): V

+invokeAll(tasks ForkJoinTask<?>…): void

Returns a ForkJoinTask from a runnable task.
Arranges asynchronous execution of the task.
Returns the result of computations when it is done.
Performs the task and awaits for its completion, and returns its
    result.
Forks the given tasks and returns when all tasks are completed.

java.util.concurrent.RecursiveAction<V>

#compute(): void Defines how task is performed.

java.util.concurrent.RecursiveTask<V>

#compute(): V Defines how task is performed. Returns the
    value after the task is completed.

FIGURE 32.29 The ForkJoinPool executes Fork/Join tasks.

«interface»
java.util.concurrent.ExecutorService

java.util.concurrent.ForkJoinPool

+ForkJoinPool()
+ForkJoinPool(parallelism: int)
+invoke(ForkJoinTask<T>): T

Creates a ForkJoinPool with all available processors.
Creates a ForkJoinPool with the specified number of processors.
Performs the task and returns its result upon completion.

See Figure 32.8

M32_LIAN1878_11_GE_C32.indd   33 12/29/17   5:46 PM



The ForkJoinPool Class

© All rights reserved.

32.16 Parallel Programming  32-33

The framework defines a task using the ForkJoinTask class, as shown in Figure 32.28 
and executes a task in an instance of ForkJoinPool, as shown in Figure 32.29.

ForkJoinTask

ForkJoinPool

FIGURE 32.27 The nonoverlapping subproblems are solved in parallel.

Subproblem

Subproblem

Subproblem

Subproblem

Problem

Fork

Solution

Join

FIGURE 32.28 The ForkJoinTask class defines a task for asynchronous execution.

«interface»
java.util.concurrent.Future<V>

+cancel(interrupt: boolean): boolean
+get(): V

+isDone(): boolean

Attempts to cancel this task.
Waits if needed for the computation to complete and
    returns the result.
Returns true if this task is completed.

java.util.concurrent.ForkJoinTask<V>

+adapt(Runnable task): ForkJoinTask<V>
+fork(): ForkJoinTask<V>
+join(): V
+invoke(): V

+invokeAll(tasks ForkJoinTask<?>…): void

Returns a ForkJoinTask from a runnable task.
Arranges asynchronous execution of the task.
Returns the result of computations when it is done.
Performs the task and awaits for its completion, and returns its
    result.
Forks the given tasks and returns when all tasks are completed.

java.util.concurrent.RecursiveAction<V>

#compute(): void Defines how task is performed.

java.util.concurrent.RecursiveTask<V>

#compute(): V Defines how task is performed. Returns the
    value after the task is completed.

FIGURE 32.29 The ForkJoinPool executes Fork/Join tasks.

«interface»
java.util.concurrent.ExecutorService

java.util.concurrent.ForkJoinPool

+ForkJoinPool()
+ForkJoinPool(parallelism: int)
+invoke(ForkJoinTask<T>): T

Creates a ForkJoinPool with all available processors.
Creates a ForkJoinPool with the specified number of processors.
Performs the task and returns its result upon completion.

See Figure 32.8

M32_LIAN1878_11_GE_C32.indd   33 12/29/17   5:46 PM

Example 
Parallel Max

import java.util.concurrent.*;

public class ParallelMax {
public static void main(String[] args) {

// Create a list
final int N = 9000000;
int[] list = new int[N];
for (int i = 0; i < list.length; i++)

list[i] = i;

long startTime = System.currentTimeMillis();
System.out.println("\nThe maximal number is " + max(list));
long endTime = System.currentTimeMillis();
System.out.println("Number of processors is " +

Runtime.getRuntime().availableProcessors());
System.out.println("Time with " + (endTime - startTime)

+ " milliseconds");
}

public static int max(int[] list) {
RecursiveTask<Integer> task = new MaxTask(list, 0, list.length);
ForkJoinPool pool = new ForkJoinPool();
return pool.invoke(task);

}

private static class MaxTask extends RecursiveTask<Integer> {
private final static int THRESHOLD = 1000;
private int[] list;
private int low,high;
public MaxTask(int[] list, int low, int high) {

this.list = list;
this.low = low;
this.high = high;

}

@Override
public Integer compute() {

if (high - low < THRESHOLD) {
int max = list[0];
for (int i = low; i < high; i++)

if (list[i] > max)
max = list[i];

return new Integer(max);
}
else {

int mid = (low + high) / 2;
RecursiveTask<Integer> left = new MaxTask(list, low, mid);
RecursiveTask<Integer> right = new MaxTask(list, mid, high);

right.fork();
left.fork();
return new Integer(Math.max(left.join().intValue(),

right.join().intValue()));
}

}}}



Exercise
Parallel Sum

• Write a parallel program in Java that computes the sum of all integers 
between 1 and N
• Parallelize by dividing the list of integers into two chunks, and then 

recursively compute the sum of each chunk, then merge the summation 
of all chunks
• Compare the execution time of serial and parallel execution when 

• N=8000
• N=800000
• N=8000000

© All rights reserved.


