
1

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10h Edition

Chapter 1: Introduction

1.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 1: Introduction

▪ What Operating Systems Do (1.1)

▪ Computer-System Organization (1.2)

▪ Computer-System Architecture (1.3)

▪ Operating-System Operations (1.4)

▪ Resource Management (1.5)

▪ Security and Protection (1.6)

▪ Virtualization (1.7)

▪ Kernel Data Structures (1.9)

▪ Computing Environments (1.10)

▪ Free/Libre and Open-Source Operating Systems (1.11)

1

2

2

1.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

▪ Describe the general organization of a computer system and the role

of interrupts

▪ Describe the components in a modern, multiprocessor computer

system

▪ Illustrate the transition from user mode to kernel mode

▪ Discuss how operating systems are used in various computing

environments

▪ Provide examples of free and open-source operating systems

1.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

What Operating Systems Do?

3

4

3

1.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

What is an Operating System?

▪ A program that acts as an intermediary between a user of a computer and

the computer hardware

▪ Operating system goals:

• Execute user programs and make solving user problems easier

• Make the computer system convenient to use

• Use the computer hardware in an efficient manner

1.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Computer System Structure

▪ Computer system can be divided into four components:

• Hardware – provides basic computing resources

 CPU, memory, I/O devices

• Operating system

 Controls and coordinates use of hardware among various

applications and users

• Application programs – define the ways in which the system

resources are used to solve the computing problems of the users

 Word processors, compilers, web browsers, database systems,

video games

• Users

 People, machines, other computers

5

6

4

1.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Abstract View of Components of Computer

1.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

What Operating Systems Do

▪ Depends on the point of view

▪ Users want convenience, ease of use and good performance

• Don’t care about resource utilization

▪ But shared computer such as mainframe or minicomputer must keep all

users happy

• Operating system is a resource allocator and control program

making efficient use of HW and managing execution of user programs

▪ Users of dedicate systems such as workstations have dedicated

resources but frequently use shared resources from servers

▪ Mobile devices like smartphones and tables are resource poor, optimized

for usability and battery life

• Mobile user interfaces such as touch screens, voice recognition

▪ Some computers have little or no user interface, such as embedded

computers in devices and automobiles

• Run primarily without user intervention

7

8

5

1.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Defining Operating Systems

▪ Term OS covers many roles

• Because of myriad designs and uses of OSes

• Present in toasters through ships, spacecraft, game machines, TVs

and industrial control systems

• Born when fixed use computers for military became more general

purpose and needed resource management and program control

1.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Operating System Definition

▪ No universally accepted definition

▪ “Everything a vendor ships when you order an operating system” is a good

approximation

• But varies wildly

▪ “The one program running at all times on the computer” is the kernel, part

of the operating system

▪ Everything else is either

• A system program (ships with the operating system, but not part of the

kernel) , or

• An application program, all programs not associated with the operating

system

▪ Today’s OSes for general purpose and mobile computing also include

middleware – a set of software frameworks that provide additional services

to application developers such as databases, multimedia, graphics

9

10

6

1.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Computer-System Organization

1.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Computer System Organization

▪ Computer-system operation

• One or more CPUs, device controllers connect through common bus

providing access to shared memory

• Concurrent execution of CPUs and devices competing for memory

cycles

11

12

7

1.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Computer-System Operation

▪ I/O devices and the CPU can execute concurrently

▪ Each device controller is in charge of a particular device type

▪ Each device controller has a local buffer

▪ Each device controller type has an operating system device driver to

manage it

▪ CPU moves data from/to main memory to/from local buffers

▪ I/O is from the device to local buffer of controller

▪ Device controller informs CPU that it has finished its operation by

causing an interrupt

1.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Interrupts

13

14

8

1.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Common Functions of Interrupts

▪ Interrupt transfers control to the interrupt service routine generally,

through the interrupt vector, which contains the addresses of all the

service routines

▪ Interrupt architecture must save the address of the interrupted instruction

▪ A trap or exception is a software-generated interrupt caused either by

an error or a user request

▪ An operating system is interrupt driven

▪ Interrupt Handling

• The operating system preserves the state of the CPU by storing the

registers and the program counter

• Determines which type of interrupt has occurred:

• Separate segments of code determine what action should be taken

for each type of interrupt

1.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Interrupt Timeline

15

16

9

1.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Interrupt-drive I/O Cycle

1.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Storage Structure

17

18

10

1.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Storage Structure

▪ Main memory – only large storage media that the CPU can access directly

• Random access

• Typically volatile

• Typically random-access memory in the form of Dynamic Random-

access Memory (DRAM)

▪ Secondary storage – extension of main memory that provides large

nonvolatile storage capacity

• Hard Disk Drives (HDD) – rigid metal or glass platters covered with

magnetic recording material

 Disk surface is logically divided into tracks, which are subdivided into

sectors

 The disk controller determines the logical interaction between the

device and the computer

• Non-volatile memory (NVM) devices– faster than hard disks,

nonvolatile

 Various technologies

 Becoming more popular as capacity and performance increases, price

drops

1.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Storage Hierarchy

▪ Storage systems organized in hierarchy

• Speed

• Cost

• Volatility

▪ Caching – copying information into faster storage system; main memory

can be viewed as a cache for secondary storage

▪ Device Driver for each device controller to manage I/O

• Provides uniform interface between controller and kernel

20

21

11

1.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Storage-Device Hierarchy

1.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

I/O Structure

22

23

12

1.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

I/O Structure

▪ Two methods for handling I/O

• After I/O starts, control returns to user program only upon I/O
completion

 Wait instruction idles the CPU until the next interrupt

 Wait loop (contention for memory access)

 At most one I/O request is outstanding at a time, no
simultaneous I/O processing

• After I/O starts, control returns to user program without waiting
for I/O completion

 System call – request to the OS to allow user to wait for I/O
completion

 Device-status table contains entry for each I/O device
indicating its type, address, and state

 OS indexes into I/O device table to determine device status
and to modify table entry to include interrupt

1.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

How a Modern Computer Works

A von Neumann architecture

24

25

13

1.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Direct Memory Access Structure

▪ Used for high-speed I/O devices able to transmit information at close to

memory speeds

▪ Device controller transfers blocks of data from buffer storage directly to

main memory without CPU intervention

▪ Only one interrupt is generated per block, rather than the one interrupt per

byte

1.27 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Computer-System Architecture

26

27

14

1.28 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Computer-System Architecture

▪ Most systems use a single general-purpose processor

• Most systems have special-purpose processors as well

▪ Multiprocessors systems growing in use and importance

• Also known as parallel systems, tightly-coupled systems

• Advantages include:

1. Increased throughput

2. Economy of scale

3. Increased reliability – graceful degradation or fault tolerance

• Two types:

1. Asymmetric Multiprocessing – each processor is assigned

a specie task.

2. Symmetric Multiprocessing – each processor performs all

tasks

1.29 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Symmetric Multiprocessing Architecture

28

29

15

1.30 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Dual-Core Design

▪ Multi-chip and multicore

▪ Systems containing all chips

• Chassis containing multiple separate systems

1.31 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Non-Uniform Memory Access System

30

31

16

1.32 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Clustered Systems

▪ Like multiprocessor systems, but multiple systems working together

• Usually sharing storage via a storage-area network (SAN)

• Provides a high-availability service which survives failures

 Asymmetric clustering has one machine in hot-standby mode

 Symmetric clustering has multiple nodes running applications,

monitoring each other

• Some clusters are for high-performance computing (HPC)

 Applications must be written to use parallelization

• Some have distributed lock manager (DLM) to avoid conflicting

operations

1.33 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Clustered Systems

32

33

17

1.34 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

PC Motherboard

1.35 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Operating-System Operations

34

35

18

1.36 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Operating-System Operations

▪ Bootstrap program – simple code to initialize the system, load the kernel

• It initializes all aspects of the system, from CPU registers to device

controllers to memory contents

• It must locate the operating-system kernel and load it into memory

▪ Starts system daemons: services provided outside of the kernel by
system programs and are loaded into memory at boot time

• On Linux, the first system program is “systemd,” and it starts many

other daemons

▪ Once this phase is complete, the system is fully booted, and the system

waits for some event to occur

▪ Kernel interrupt driven (hardware and software)

• Hardware interrupt by one of the devices

• Software interrupt (exception or trap):

 Software error (e.g., division by zero)

 Request for operating system service – system call

 Other process problems include infinite loop, processes modifying
each other or the operating system

1.37 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multiprogramming (Batch system)

▪ Single user cannot always keep CPU and I/O devices busy

▪ Multiprogramming organizes jobs (code and data) so CPU always has
one to execute

▪ A subset of total jobs in system is kept in memory

▪ One job selected and run via job scheduling

▪ When job has to wait (for I/O for example), OS switches to another job

▪ In a multiprogrammed system, a program in execution is termed a

process

36

37

19

1.38 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multitasking (Timesharing)

▪ A logical extension of Batch systems– the CPU switches jobs so
frequently that users can interact with each job while it is running,
creating interactive computing

• Response time should be < 1 second

• Each user has at least one program executing in memory  process

• If several jobs ready to run at the same time  CPU scheduling

• If processes don’t fit in memory, swapping moves them in and out to
run

• Virtual memory allows execution of processes not completely in
memory

1.39 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Memory Layout for Multiprogrammed System

38

39

20

1.40 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Dual-mode Operation

▪ Dual-mode operation allows OS to protect itself and other system
components

• User mode and kernel mode

▪ Mode bit provided by hardware

• Provides ability to distinguish when system is running user code or
kernel code.

• When a user is running  mode bit is “user”

• When kernel code is executing  mode bit is “kernel”

▪ How do we guarantee that user does not explicitly set the mode bit to
“kernel”?

• System call changes mode to kernel, return from call resets it to user

▪ Some instructions designated as privileged, only executable in kernel
mode

1.41 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Transition from User to Kernel Mode

40

41

21

1.42 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Timer

▪ We must ensure that the operating system maintains control over the

CPU.

• We cannot allow a user program to get stuck in an infinite loop or to fail

to call system services and never return control to the operating

system.

▪ Timer to prevent infinite loop (or process hogging resources)

• Timer is set to interrupt the computer after some time period

• Keep a counter that is decremented by the physical clock

• Operating system set the counter (privileged instruction)

• When counter zero generate an interrupt

• Set up before scheduling process to regain control or terminate

program that exceeds allotted time

1.43 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Resource Management

42

43

22

1.44 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Management

▪ A process is a program in execution. It is a unit of work within the
system. Program is a passive entity; process is an active entity.

▪ Process needs resources to accomplish its task

• CPU, memory, I/O, files

• Initialization data

▪ Process termination requires reclaim of any reusable resources

▪ Single-threaded process has one program counter specifying location
of next instruction to execute

• Process executes instructions sequentially, one at a time, until
completion

▪ Multi-threaded process has one program counter per thread

▪ Typically system has many processes, some user, some operating
system running concurrently on one or more CPUs

• Concurrency by multiplexing the CPUs among the processes /
threads

1.45 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Management Activities

▪ Creating and deleting both user and system processes

▪ Suspending and resuming processes

▪ Providing mechanisms for process synchronization

▪ Providing mechanisms for process communication

▪ Providing mechanisms for deadlock handling

The operating system is responsible for the following activities in connection

with process management:

44

45

23

1.46 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Memory Management

▪ To execute a program all (or part) of the instructions must be in memory

▪ All (or part) of the data that is needed by the program must be in memory

▪ Memory management determines what is in memory and when

• Optimizing CPU utilization and computer response to users

▪ Memory management activities

• Keeping track of which parts of memory are currently being used and

by whom

• Deciding which processes (or parts thereof) and data to move into and

out of memory

• Allocating and deallocating memory space as needed

1.47 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

File-system Management

▪ OS provides uniform, logical view of information storage

• Abstracts physical properties to logical storage unit - file

• Each medium is controlled by device (i.e., disk drive, tape drive)

 Varying properties include access speed, capacity, data-transfer
rate, access method (sequential or random)

▪ File-System management

• Files usually organized into directories

• Access control on most systems to determine who can access what

• OS activities include

 Creating and deleting files and directories

 Primitives to manipulate files and directories

 Mapping files onto secondary storage

 Backup files onto stable (non-volatile) storage media

46

47

24

1.48 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Mass-Storage Management

▪ Usually disks used to store data that does not fit in main memory or data

that must be kept for a “long” period of time

▪ Proper management is of central importance

▪ Entire speed of computer operation hinges on disk subsystem and its

algorithms

▪ OS activities

• Mounting and unmounting

• Free-space management

• Storage allocation

• Disk scheduling

• Partitioning

• Protection

1.49 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Caching

▪ Important principle, performed at many levels in a computer (in hardware,

operating system, software)

▪ Information in use copied from slower to faster storage temporarily

▪ Faster storage (cache) checked first to determine if information is there

• If it is, information used directly from the cache (fast)

• If not, data copied to cache and used there

▪ Cache smaller than storage being cached

• Cache management important design problem

• Cache size and replacement policy

48

49

25

1.50 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Characteristics of Various Types of Storage

Movement between levels of storage hierarchy can be explicit or implicit

1.51 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

I/O Subsystem

▪ One purpose of OS is to hide peculiarities of hardware devices from

the user

▪ I/O subsystem responsible for

• Memory management of I/O including buffering (storing data

temporarily while it is being transferred), caching (storing parts of

data in faster storage for performance), spooling (the overlapping

of output of one job with input of other jobs)

• General device-driver interface

• Drivers for specific hardware devices

50

51

26

1.52 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Security and Protection

1.53 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Protection and Security

▪ Protection – any mechanism for controlling access of processes or
users to resources defined by the OS

▪ Security – defense of the system against internal and external attacks

• Huge range, including denial-of-service, worms, viruses, identity
theft, theft of service

▪ Systems generally first distinguish among users, to determine who
can do what

• User identities (user IDs, security IDs) include name and
associated number, one per user

• User ID then associated with all files, processes of that user to
determine access control

• Group identifier (group ID) allows set of users to be defined and
controls managed, then also associated with each process, file

• Privilege escalation allows user to change to effective ID with
more rights

52

53

27

1.54 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtualization

1.55 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtualization

▪ Allows operating systems to run applications within other OSes

• Vast and growing industry

▪ Emulation used when source CPU type different from target type (i.e.

PowerPC to Intel x86)

• Generally slowest method

• When computer language not compiled to native code –

Interpretation

▪ Virtualization – OS natively compiled for CPU, running guest OSes

also natively compiled

• Consider VMware running WinXP guests, each running

applications, all on native WinXP host OS

• VMM (virtual machine Manager) provides virtualization services

54

55

28

1.56 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtualization (cont.)

▪ Use cases involve laptops and desktops running multiple OSes for

exploration or compatibility

• Apple laptop running Mac OS X host, Windows as a guest

• Developing apps for multiple OSes without having multiple

systems

• Quality assurance testing applications without having multiple

systems

• Executing and managing compute environments within data

centers

▪ VMM can run natively, in which case they are also the host

• There is no general-purpose host then (VMware ESX and Citrix

XenServer)

1.57 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Computing Environments - Virtualization

56

57

29

1.58 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Kernel Data Structure

1.59 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Kernel Data Structures

▪ Many similar to standard programming data structures

▪ Singly linked list

▪ Doubly linked list

▪ Circular linked list

58

59

30

1.60 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Kernel Data Structures

▪ Binary search tree

left <= right

• Search performance is O(n)

• Balanced binary search tree is O(lg n)

1.61 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Kernel Data Structures

▪ Hash function can create a hash map

▪ Bitmap – string of n binary digits representing the status of n items

▪ Linux data structures defined in include files <linux/list.h>,

<linux/kfifo.h>, <linux/rbtree.h>

60

61

31

1.62 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Computer System Environments

1.63 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Computing Environments

▪ Traditional

▪ Mobile

▪ Client Server

▪ Peer-to-Peer

▪ Cloud computing

▪ Real-time Embedded

62

63

32

1.64 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Traditional

▪ Stand-alone general-purpose machines

▪ But blurred as most systems interconnect with others (i.e.,

the Internet)

▪ Portals provide web access to internal systems

▪ Network computers (thin clients) are like Web terminals

▪ Mobile computers interconnect via wireless networks

▪ Networking becoming ubiquitous – even home systems

use firewalls to protect home computers from Internet

attacks

1.65 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Mobile

▪ Handheld smartphones, tablets, etc.

▪ What is the functional difference between them and a “traditional”

laptop?

▪ Extra feature – more OS features (GPS, gyroscope)

▪ Allows new types of apps like augmented reality

▪ Use IEEE 802.11 wireless, or cellular data networks for connectivity

▪ Leaders are Apple iOS and Google Android

64

65

33

1.66 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Client Server

▪ Client-Server Computing

• Dumb terminals supplanted by smart PCs

• Many systems now servers, responding to requests generated by
clients

 Compute-server system provides an interface to client to
request services (i.e., database)

 File-server system provides interface for clients to store and
retrieve files

1.67 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Peer-to-Peer

▪ Another model of distributed system

▪ P2P does not distinguish clients and servers

• Instead all nodes are considered peers

• May each act as client, server or both

• Node must join P2P network

 Registers its service with central

lookup service on network, or

 Broadcast request for service and

respond to requests for service via

discovery protocol

• Examples include Napster and Gnutella,

Voice over IP (VoIP) such as Skype

66

67

34

1.68 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Cloud Computing

▪ Delivers computing, storage, even apps as a service across a network

▪ Logical extension of virtualization because it uses virtualization as the

base for it functionality.

• Amazon EC2 has thousands of servers, millions of virtual machines,

petabytes of storage available across the Internet, pay based on

usage

▪ Many types

• Public cloud – available via Internet to anyone willing to pay

• Private cloud – run by a company for the company’s own use

• Hybrid cloud – includes both public and private cloud components

• Software as a Service (SaaS) – one or more applications available via

the Internet (i.e., word processor)

• Platform as a Service (PaaS) – software stack ready for application

use via the Internet (i.e., a database server)

• Infrastructure as a Service (IaaS) – servers or storage available over

Internet (i.e., storage available for backup use)

1.69 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

▪ Cloud computing environments composed of traditional OSes, plus

VMMs, plus cloud management tools

• Internet connectivity requires security like firewalls

• Load balancers spread traffic across multiple applications

Cloud Computing (cont.)

68

69

35

1.70 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Real-Time Embedded Systems

▪ Real-time embedded systems most prevalent form of computers

• Vary considerable, special purpose, limited purpose OS, real-

time OS

• Use expanding

▪ Many other special computing environments as well

• Some have OSes, some perform tasks without an OS

▪ Real-time OS has well-defined fixed time constraints

• Processing must be done within constraint

• Correct operation only if constraints met

1.71 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Free and Open Source Operating Systems

70

71

36

1.72 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Free and Open-Source Operating Systems

▪ Operating systems made available in source-code format rather than

just binary closed-source and proprietary

▪ Counter to the copy protection and Digital Rights Management

(DRM) movement

▪ Started by Free Software Foundation (FSF), which has “copyleft”
GNU Public License (GPL)

• Free software and open-source software are two different ideas

championed by different groups of people

 https://www.gnu.org/philosophy/open-source-misses-the-

point.en.html

▪ Examples include GNU/Linux and BSD UNIX (including core of Mac

OS X), and many more

▪ Can use VMM like VMware Player (Free on Windows), Virtualbox

(open source and free on many platforms - http://www.virtualbox.com)

• Use to run guest operating systems for exploration

1.73 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

The Study of Operating Systems

There has never been a more interesting time to study operating systems, and it has never been
easier. The open-source movement has overtaken operating systems, causing many of them to be
made available in both source and binary (executable) format. The list of operating
systems available in both formats includes Linux, BUSD UNIX, Solaris, and part of macOS.
The availability of source code allows us to study operating systems from the inside out.
Questions that we could once answer only by looking at documentation or the behavior of an
operating system we can now answer by examining the code itself.

Operating systems that are no longer commercially viable have been open-sourced as well, enabling
us to study how systems operated in a time of fewer CPU, memory, and storage resources.
An extensive but incomplete list of open-source operating-system projects is available
from https://curlie.org/Computers/Software/Operating_Systems/Open_Source/

In addition, the rise of virtualization as a mainstream (and frequently free) computer function
makes it possible to run many operating systems on top of one core system. For example, VMware
(http://www.vmware.com) provides a free “player” for Windows on which hundreds of free
“virtual appliances” can run. Virtualbox (http://www.virtualbox.com) provides a free, open-source
virtual machine manager on many operating systems. Using such tools, students can try out
hundreds of operating systems without dedicated hardware.

The advent of open-source operating systems has also made it easier to make the move from
student to operating-system developer. With some knowledge, some effort, and an Internet
connection, a student can even create a new operating-system distribution. Just a few years ago,
it was difficult or impossible to get access to source code. Now, such access is limited only by
how much interest, time, and disk space a student has.

72

73

37

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10h Edition

End of Chapter 1

74

1

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 2: Operating-System

Services

2.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Outline

▪ Operating-System Services (2.1)

▪ User and Operating-System Interface (2.2)

▪ System Calls (2.3)

▪ System Services (2.4)

▪ Linkers and Loaders (2.5)

▪ Why Applications are Operating System Specific (2.6)

▪ Operating-System Design and Implementation (2.7)

▪ Operating-System Structure (2.8)

▪ Building and Booting an Operating-System (2.9)

▪ Operating-System Debugging (2.10)

1

2

2

2.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

▪ Identify services provided by an operating system

▪ Illustrate how system calls are used to provide operating

system services

▪ Compare and contrast monolithic, layered, microkernel,

modular, and hybrid strategies for designing operating

systems

▪ Illustrate the process for booting an operating system

▪ Apply tools for monitoring operating system performance

▪ Design and implement kernel modules for interacting with a

Linux kernel

2.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Operating-System Services

3

4

3

2.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Operating System Services

▪ Operating systems provide an environment for execution of programs

and services to programs and users

▪ One set of operating-system services provides functions that are

helpful to the user:

• User interface - Almost all operating systems have a user

interface (UI).

 Varies between Command-Line (CLI), Graphics User

Interface (GUI), touch-screen, Batch

• Program execution - The system must be able to load a program

into memory and to run that program, end execution, either

normally or abnormally (indicating error)

• I/O operations - A running program may require I/O, which may

involve a file or an I/O device

• File-system manipulation - The file system is of particular

interest. Programs need to read and write files and directories,

create and delete them, search them, list file Information,

permission management.

2.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Operating System Services (Cont.)

▪ One set of operating-system services provides functions that are

helpful to the user (Cont.):

• Communications – Processes may exchange information, on the

same computer or between computers over a network

 Communications may be via shared memory or through

message passing (packets moved by the OS)

• Error detection – OS needs to be constantly aware of possible

errors

 May occur in the CPU and memory hardware, in I/O devices, in

user program

 For each type of error, OS should take the appropriate action

to ensure correct and consistent computing

 Debugging facilities can greatly enhance the user ’ s and

programmer’s abilities to efficiently use the system

5

6

4

2.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Operating System Services (Cont.)

▪ Another set of OS functions exists for ensuring the efficient operation
of the system itself via resource sharing

• Resource allocation - When multiple users or multiple jobs
running concurrently, resources must be allocated to each of them

 Many types of resources - CPU cycles, main memory, file
storage, I/O devices.

• Logging - To keep track of which users use how much and what
kinds of computer resources

• Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control use
of that information, concurrent processes should not interfere with
each other

 Protection involves ensuring that all access to system
resources is controlled

 Security of the system from outsiders requires user
authentication, extends to defending external I/O devices from
invalid access attempts

2.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

A View of Operating System Services

7

8

5

2.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

User and Operating-System Interface

2.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Command Line interpreter
▪ CLI allows direct command entry

▪ Sometimes implemented in kernel, sometimes by systems program

▪ Sometimes multiple flavors implemented – shells

• For example, on UNIX and Linux systems, a user may choose among

several different shells, including the C shell, Bourne-Again shell,

Korn shell, and others.

▪ Primarily fetches a command from user and executes it

▪ These commands can be implemented in two general ways:

▪ The command interpreter itself contains the code to execute the

command.

• For example, a command to delete a file may cause the command

interpreter to jump to a section of its code that sets up the parameters

and makes the appropriate system call.

▪ Implementing most commands through system programs.

• In this case, the command interpreter does not understand the

command in any way; it merely uses the command to identify a file to

be loaded into memory and executed.

9

10

6

2.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Bourne Shell Command Interpreter

2.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Graphical User Interface- GUI

▪ User-friendly desktop metaphor interface

• Usually mouse, keyboard, and monitor

• Icons represent files, programs, actions, etc

• Various mouse buttons over objects in the interface cause various

actions (provide information, options, execute function, open directory

(known as a folder)

• Invented at Xerox PARC

▪ Many systems now include both CLI and GUI interfaces

• Microsoft Windows is GUI with CLI “command” shell

• Apple Mac OS X is “ Aqua ” GUI interface with UNIX kernel

underneath and shells available

• Unix and Linux have CLI with optional GUI interfaces (CDE, KDE,

GNOME)

11

12

7

2.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Touchscreen Interfaces

▪ Touchscreen devices require new

interfaces

• Mouse not possible or not desired

• Actions and selection based on

gestures

• Virtual keyboard for text entry

▪ Voice commands

2.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

System Calls

13

14

8

2.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

System Calls

▪ System calls provide an interface to the services made available by an

operating system

• These calls are generally available as functions written in C and C++

• Certain low-level tasks (for example, tasks where hardware must be

accessed directly) may have to be written using assembly-language

instructions

▪ Example: writing a simple program to read data from one file and copy

them to another file.

• UNIX cp command copies the input file in.txt to the output file out.txt.

 cp in.txt out.txt

• In an interactive system, program asks the user for the names., this

approach will require a sequence of system calls, first to write a

prompting message on the screen and then to read from the keyboard

the characters that define the two files.

2.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Example of System Calls

▪ System call sequence to copy the contents of one file to another file

15

16

9

2.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Application Programming Interface

▪ Frequently, systems execute thousands of system calls per second.

▪ Most programmers never see this level of detail,

▪ Mostly accessed by programs via a high-level Application Programming

Interface (API) rather than direct system call use

▪ Three most common APIs are Win32 API for Windows, POSIX API for
POSIX-based systems (including virtually all versions of UNIX, Linux, and
Mac OS X), and Java API for the Java virtual machine (JVM)

▪ A programmer accesses an API via a library of code provided by the

operating system.

• In the case of UNIX and Linux for programs written in the C language,

the library is called libc.

▪ Note that the system-call names used throughout this text are generic

• Each operating system has its own name for each system call

2.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Example of Standard API

17

18

10

2.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

System Call Implementation

▪ Another important factor in handling system calls is the run-time

environment (RTE), the full suite of software needed to execute

applications written in a given programming language, including its

compilers or interpreters as well as other software, such as libraries and

loaders

• The RTE provides a System-call interface

▪ Typically, a number is associated with each system call

▪ System-call interface serves as the link to system calls made available

by the operating system

• Maintains a table indexed according to these numbers

• Invokes the intended system call in OS kernel and returns status of the

system call and any return values

▪ The caller need know nothing about how the system call is implemented

• Just needs to obey API and understand what OS will do as a result call

• Most details of OS interface hidden from programmer by API and are

managed by the RTE

2.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

API – System Call – OS Relationship

19

20

11

2.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

System Call Parameter Passing

▪ Often, more information is required than simply identity of desired system
call

• Exact type and amount of information vary according to OS and call

▪ Three general methods used to pass parameters to the OS

• Simplest: pass the parameters in registers

 In some cases, may be more parameters than registers

• Parameters stored in a block, or table, in memory, and address of
block passed as a parameter in a register

 This approach taken by Linux and Solaris

• Parameters placed, or pushed, onto the stack by the program and
popped off the stack by the operating system

• Block and stack methods do not limit the number or length of
parameters being passed

2.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Parameter Passing via Table

21

22

12

2.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Types of System Calls

▪ Process control

• create process, terminate process

• end, abort

• load, execute

• get process attributes, set process attributes

• wait for time

• wait event, signal event

• allocate and free memory

• Dump memory if error

• Debugger for determining bugs, single step execution

• Locks for managing access to shared data between processes

2.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

▪ File management

• create file, delete file

• open, close file

• read, write, reposition

• get and set file attributes

▪ Device management

• request device, release device

• read, write, reposition

• get device attributes, set device attributes

• logically attach or detach devices

Types of System Calls (Cont.)

23

24

13

2.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Types of System Calls (Cont.)

▪ Information maintenance

• get time or date, set time or date

• get system data, set system data

• get and set process, file, or device attributes

▪ Communications

• create, delete communication connection

• send, receive messages if message passing model to host name

or process name

 From client to server

• Shared-memory model create and gain access to memory regions

• transfer status information

• attach and detach remote devices

2.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Types of System Calls (Cont.)

▪ Protection

• Control access to resources

• Get and set permissions

• Allow and deny user access

25

26

14

2.27 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Examples of Windows and Unix System Calls

2.28 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Standard C Library Example

▪ C program invoking printf() library call, which calls write() system call

27

28

15

2.29 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Example: Arduino

▪ Single-tasking

▪ No operating system

▪ Programs (sketch) loaded via

USB into flash memory

▪ Single memory space

▪ Boot loader loads program

▪ Program exit -> shell

reloaded

At system startup running a program

2.30 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Example: FreeBSD

▪ Unix variant

▪ Multitasking

▪ User login -> invoke user’s choice of

shell

▪ Shell executes fork() system call to create

process

• Executes exec() to load program into

process

• Shell waits for process to terminate or

continues with user commands

▪ Process exits with:

• code = 0 – no error

• code > 0 – error code

29

30

16

2.31 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

System Services

2.32 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

System Services

▪ System programs provide a convenient environment for program

development and execution. They can be divided into:

• File manipulation

• Status information sometimes stored in a file

• Programming language support

• Program loading and execution

• Communications

• Background services

• Application programs

▪ Most users’ view of the operation system is defined by system programs,

not the actual system calls

31

32

17

2.33 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

System Services (Cont.)

▪ Provide a convenient environment for program development and
execution

• Some of them are simply user interfaces to system calls; others are
considerably more complex

▪ File management - Create, delete, copy, rename, print, dump, list, and
generally manipulate files and directories

▪ Status information

• Some ask the system for info - date, time, amount of available
memory, disk space, number of users

• Others provide detailed performance, logging, and debugging
information

• Typically, these programs format and print the output to the terminal or
other output devices

• Some systems implement a registry - used to store and retrieve
configuration information

2.34 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

System Services (Cont.)

▪ File modification

• Text editors to create and modify files

• Special commands to search contents of files or perform
transformations of the text

▪ Programming-language support - Compilers, assemblers, debuggers
and interpreters sometimes provided

▪ Program loading and execution- Absolute loaders, relocatable loaders,
linkage editors, and overlay-loaders, debugging systems for higher-level
and machine language

▪ Communications - Provide the mechanism for creating virtual
connections among processes, users, and computer systems

• Allow users to send messages to one another’s screens, browse web
pages, send electronic-mail messages, log in remotely, transfer files
from one machine to another

33

34

18

2.35 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

System Services (Cont.)

▪ Background Services

• Launch at boot time

 Some for system startup, then terminate

 Some from system boot to shutdown

• Provide facilities like disk checking, process scheduling, error logging,
printing

• Run in user context not kernel context

• Known as services, subsystems, daemons

▪ Application programs

• Don’t pertain to system

• Run by users

• Not typically considered part of OS

• Launched by command line, mouse click, finger poke

2.36 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Linkers and Loaders

35

36

19

2.37 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Linkers and Loaders

▪ Source code compiled into object files designed to be loaded into any

physical memory location – relocatable object file

▪ Linker combines these into single binary executable file

• Also brings in libraries

▪ Program resides on secondary storage as binary executable

▪ Must be brought into memory by loader to be executed

• Relocation assigns final addresses to program parts and adjusts

code and data in program to match those addresses

▪ Modern general purpose systems don’t link libraries into executables

• Rather, dynamically linked libraries (in Windows, DLLs) are

loaded as needed, shared by all that use the same version of that

same library (loaded once)

2.38 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Linkers and Loaders (Cont.)

▪ Object, executable files have standard formats, so operating system

knows how to load and start them

• Include the compiled machine code

• Include symbol table containing metadata about functions and

variables that are referenced in the program.

▪ For UNIX and Linux systems, this standard format is known as ELF (for

Executable and Linkable Format).

• There are separate ELF formats for relocatable and executable files.

• One piece of information in the ELF file for executable files is the

program’s entry point, which contains the address of the first

instruction to be executed when the program runs.

▪ Windows systems use the Portable Executable (PE) format, and macOS

uses the Mach-O format.

37

38

20

2.39 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

The Role of the Linker and Loader

2.40 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Why Applications are Operating System

Specific

39

40

21

2.41 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Why Applications are Operating System Specific

▪ Apps compiled on one system usually not executable on other operating

systems

▪ Each operating system provides its own unique system calls

• Own file formats, etc.

▪ Apps can be multi-operating system

• Written in interpreted language like Python, Ruby, and interpreter

available on multiple operating systems

• App written in language that includes a VM containing the running

app (like Java)

• Use standard language (like C), compile separately on each operating

system to run on each

▪ Application Binary Interface (ABI) is architecture equivalent of API,

defines how different components of binary code can interface for a given

operating system on a given architecture, CPU, etc.

2.42 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Operating-System Design and

Implementation

41

42

22

2.43 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Design and Implementation

▪ Design and Implementation of OS is not “solvable”, but some approaches

have proven successful

▪ Internal structure of different Operating Systems can vary widely

▪ Start the design by defining goals and specifications

▪ Affected by choice of hardware, type of system

▪ User goals and System goals

• User goals – operating system should be convenient to use, easy to

learn, reliable, safe, and fast

• System goals – operating system should be easy to design,

implement, and maintain, as well as flexible, reliable, error-free, and

efficient

▪ Specifying and designing an OS is highly creative task of software

engineering

2.44 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Policy and Mechanism

▪ Policy: What needs to be done?

• Example: Interrupt after every 100 seconds

▪ Mechanism: How to do something?

• Example: timer

▪ Important principle: separate policy from mechanism

▪ The separation of policy from mechanism is a very important principle, it

allows maximum flexibility if policy decisions are to be changed later.

• Example: change 100 to 200

43

44

23

2.45 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implementation

▪ Much variation

• Early OSes in assembly language

• Then system programming languages like Algol, PL/1

• Now C, C++

▪ Actually usually a mix of languages

• Lowest levels in assembly

• Main body in C

• Systems programs in C, C++, scripting languages like PERL, Python,

shell scripts

▪ More high-level language easier to port to other hardware

• But slower

▪ Emulation can allow an OS to run on non-native hardware

2.46 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Operating-System Structure

45

46

24

2.47 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Operating System Structure

▪ General-purpose OS is very large program

▪ Various ways to structure ones

• Simple structure – MS-DOS

• More complex – UNIX

• Layered – an abstraction

• Microkernel – Mach

2.48 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Monolithic Structure – Original UNIX

▪ UNIX – limited by hardware functionality, the original UNIX operating

system had limited structuring.

▪ The UNIX OS consists of two separable parts

• Systems programs

• The kernel

 Consists of everything below the system-call interface and above

the physical hardware

 Provides the file system, CPU scheduling, memory management,

and other operating-system functions; a large number of functions

for one level

47

48

25

2.49 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Traditional UNIX System Structure

Beyond simple but not fully layered

2.50 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Linux System Structure

Monolithic plus modular design

49

50

26

2.51 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Layered Approach

▪ The operating system is

divided into a number of layers

(levels), each built on top of

lower layers. The bottom layer

(layer 0), is the hardware; the

highest (layer N) is the user

interface.

▪ With modularity, layers are

selected such that each uses

functions (operations) and

services of only lower-level

layers

2.52 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Microkernels

▪ Moves as much from the kernel into user space

▪ Mach is an example of microkernel

• Mac OS X kernel (Darwin) partly based on Mach

▪ Communication takes place between user modules using message

passing

▪ Benefits:

• Easier to extend a microkernel

• Easier to port the operating system to new architectures

• More reliable (less code is running in kernel mode)

• More secure

▪ Detriments:

• Performance overhead of user space to kernel space communication

51

52

27

2.53 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Microkernel System Structure

2.54 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Modules

▪ Many modern operating systems implement loadable kernel modules

(LKMs)

• Uses object-oriented approach

• Each core component is separate

• Each talks to the others over known interfaces

• Each is loadable as needed within the kernel

▪ Overall, similar to layers but with more flexiblity

• Linux, Solaris, etc.

53

54

28

2.55 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Hybrid Systems

▪ Most modern operating systems are not one pure model

• Hybrid combines multiple approaches to address performance,

security, usability needs

• Linux and Solaris kernels in kernel address space, so monolithic, plus

modular for dynamic loading of functionality

• Windows mostly monolithic, but:

 It retains some behavior typical of microkernel systems, including

providing support for separate subsystems (known as operating-

system personalities) that run as user-mode processes

 It provides support for dynamically loadable kernel modules

▪ Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa programming

environment

• Below is kernel consisting of Mach microkernel and BSD Unix parts,

plus I/O kit and dynamically loadable modules (called kernel

extensions)

2.56 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

macOS and iOS Structure

55

56

29

2.57 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Darwin

2.59 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Android

▪ Developed by Open Handset Alliance (mostly Google)

• Open Source

▪ Similar stack to IOS

▪ Based on Linux kernel but modified

• Provides process, memory, device-driver management

• Adds power management

▪ Runtime environment includes core set of libraries and Dalvik virtual

machine

• Apps developed in Java plus Android API

 Java class files compiled to Java bytecode then translated to

executable than runs in Dalvik VM

▪ Libraries include frameworks for web browser (webkit), database (SQLite),

multimedia, smaller libc

57

59

30

2.60 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Android Architecture

2.61 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Building and Booting an Operating-System

60

61

31

2.62 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Building and Booting an Operating-System

▪ Operating systems generally designed to run on a class of systems with

variety of peripherals

▪ Commonly, operating system already installed on purchased computer

• But can build and install some other operating systems

• If generating an operating system from scratch

 Write the operating system source code

 Configure the operating system for the system on which it will

run

 Compile the operating system

 Install the operating system

 Boot the computer and its new operating system

2.63 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

System Boot

▪ When power initialized on system, execution starts at a fixed memory

location

▪ Operating system must be made available to hardware so hardware can

start it

▪ The process of starting a computer by loading the kernel is known as

booting the system

• Small piece of code – bootstrap loader, BIOS, stored in ROM or

EEPROM locates the kernel, loads it into memory, and starts it

• Sometimes two-step process where boot block at fixed location

loaded by ROM code, which loads bootstrap loader from disk

• Modern systems replace BIOS with Unified Extensible Firmware

Interface (UEFI)

▪ Common bootstrap loader, GRUB, allows selection of kernel from multiple

disks, versions, kernel options

▪ Kernel loads and system is then running

▪ Boot loaders frequently allow various boot states, such as single user

mode

62

63

32

2.64 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Operating-System Debugging

2.65 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Operating-System Debugging

▪ Debugging is finding and fixing errors, or bugs

▪ Also performance tuning

▪ OS generate log files containing error information

▪ Failure of an application can generate core dump file capturing memory of

the process

▪ Operating system failure can generate crash dump file containing kernel

memory

▪ Beyond crashes, performance tuning can optimize system performance

• Sometimes using trace listings of activities, recorded for analysis

• Profiling is periodic sampling of instruction pointer to look for

statistical trends

Kernighan’s Law: “Debugging is twice as hard as writing the code in the first

place. Therefore, if you write the code as cleverly as possible, you are, by

definition, not smart enough to debug it.”

64

65

33

2.66 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Performance Tuning

▪ Improve performance by removing bottlenecks

▪ OS must provide means of computing and displaying measures of

system behavior

▪ For example, “top” program or Windows Task Manager

2.67 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Tracing

▪ Collects data for a specific event, such as steps involved in a system call

invocation

▪ Tools include

• strace – trace system calls invoked by a process

• gdb – source-level debugger

• perf – collection of Linux performance tools

• tcpdump – collects network packets

66

67

34

2.68 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

BCC

▪ Debugging interactions between user-level and kernel code nearly

impossible without toolset that understands both and an instrument their

actions

▪ BCC (BPF Compiler Collection) is a rich toolkit providing tracing features

for Linux

• See also the original DTrace

▪ For example, disksnoop.py traces disk I/O activity

▪ Many other tools (next slide)

2.69 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Linux bcc/BPF Tracing Tools

68

69

35

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 2

70

1

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 3: Processes

3.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Outline

▪ Process Concept (3.1)

▪ Process Scheduling (3.2)

▪ Operations on Processes (3.3)

▪ Inter-process Communication (3.4)

▪ IPC in Shared-Memory Systems (3.5)

▪ IPC in Message-Passing Systems (3.6)

1

2

2

3.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

▪ Identify the separate components of a process and illustrate how they are

represented and scheduled in an operating system.

▪ Describe how processes are created and terminated in an operating

system, including developing programs using the appropriate system calls

that perform these operations.

▪ Describe and contrast interprocess communication using shared memory

and message passing.

▪ Design programs that uses pipes and POSIX shared memory to perform

interprocess communication.

▪ Describe client-server communication using sockets and remote

procedure calls.

▪ Design kernel modules that interact with the Linux operating system.

3.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Concept

3

4

3

3.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Concept

▪ An operating system executes a variety of programs that run as a
process.

▪ Process – a program in execution; process execution must progress in
sequential fashion. No parallel execution of instructions of a single
process

▪ The status of the current activity of a process is represented by:

• The value of the program counter and,

• The contents of the processor’s registers

▪ The memory layout of a process is typically divided into multiple sections:

• The program code, also called text section

• Stack containing temporary data

 Function parameters, return addresses, local variables

• Data section containing global variables

• Heap containing memory dynamically allocated during run time

3.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process in Memory

5

6

4

3.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Concept (Cont.)

▪ Program is a passive entity stored on disk (executable file).

▪ A process is an active entity; with a program counter specifying the next

instruction to execute and a set of associated resources

▪ Program becomes process when an executable file is loaded into memory

▪ Execution of program started via GUI mouse clicks, command line entry of

its name, etc.

▪ One program can be several processes

• Consider multiple users executing the same program

▪ A process can itself be an execution environment for other code

• Example: Java programming environment

3.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Memory Layout of a C Program

7

8

5

3.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process State

▪ As a process executes, it changes state

• New: The process is being created

• Running: Instructions are being executed

• Waiting: The process is waiting for some event to occur

• Ready: The process is waiting to be assigned to a processor

• Terminated: The process has finished execution

3.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Diagram of Process State

9

10

6

3.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Control Block (PCB)

▪ Process state – running, waiting, etc.

▪ Program counter – location of instruction to next

execute

▪ CPU registers – contents of all process-centric registers

▪ CPU scheduling information- priorities, scheduling

queue pointers

▪ Memory-management information – memory allocated

to the process

▪ Accounting information – CPU used, clock time elapsed

since start, time limits

▪ I/O status information – I/O devices allocated to

process, list of open files

Information associated with each process(also called task control block)

3.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Threads

▪ So far, process has a single thread of execution

▪ Consider having multiple program counters per process

• Multiple locations can execute at once

 Multiple threads of control -> threads

▪ Must then have storage for thread details, multiple program counters in

PCB

▪ Will be explored in detail in Chapter 4

11

12

7

3.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Representation in Linux

Represented by the C structure task_struct

pid t_pid; /* process identifier */

long state; /* state of the process */

unsigned int time_slice /* scheduling information */

struct task_struct *parent;/* this process’s parent */
struct list_head children; /* this process’s children */
struct files_struct *files;/* list of open files */

struct mm_struct *mm; /* address space of this

process */

3.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Scheduling

13

14

8

3.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Scheduling

▪ Process scheduler selects among available processes for next execution

on CPU core

▪ Goal -- Maximize CPU use, quickly switch processes onto CPU core

▪ Each CPU core can run one process at a time

• For a system with a single CPU core, there will never be more than

one process running at a time

• A multicore system can run multiple processes at one time

• If there are more processes than cores, excess processes will have to

wait until a core is free and can be rescheduled

▪ The number of processes currently in memory is known as the degree of

multiprogramming

▪ In general, most processes can be described as either:

• I/O bound, which spends more of its time doing I/O than it spends

doing computations, or

• CPU bound which, in contrast, generates I/O requests infrequently,

using more of its time doing computations

3.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Scheduling Queues

▪ Maintains scheduling queues of processes

• Ready queue – set of all processes residing in main memory, ready

and waiting to execute

• Wait queues – set of processes waiting for an event (i.e., I/O)

• Processes migrate among the various queues

15

16

9

3.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Scheduling Queues (Cont.)

▪ A new process is initially put in the ready queue

▪ It waits there until it is selected for execution, or dispatched

▪ Once the process is allocated a CPU core and is executing, one of

several events could occur:

• The process could issue an I/O request and then be placed in an I/O

wait queue

• The process could create a new child process and then be placed in a

wait queue while it awaits the child’s termination

• The process could be removed forcibly from the core, as a result of an

interrupt or having its time slice expire, and be put back in the ready

queue

3.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Representation of Process Scheduling

17

18

10

3.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

CPU Scheduling

▪ A process migrates among the ready queue and various wait queues

throughout its lifetime.

▪ The role of the CPU scheduler is to select from among the processes

that are in the ready queue and allocate a CPU core to one of them.

▪ The CPU scheduler executes at least once every 100 milliseconds,

although typically much more frequently

▪ Some operating systems have an intermediate form of scheduling, known

as swapping

• Key idea is that sometimes it can be advantageous to remove a

process from memory (and from active contention for the CPU) and

thus reduce the degree of multiprogramming

• Later, the process can be reintroduced into memory, and its execution

can be continued where it left off

▪ Swapping is typically only necessary when memory has been

overcommitted and must be freed up

3.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Context Switch

▪ When CPU switches to another process, the system must save the state

of the old process and load the saved state for the new process via a

context switch

▪ Context of a process represented in the PCB

▪ Context-switch time is pure overhead; the system does no useful work

while switching

• The more complex the OS and the PCB ➔ the longer the context

switch

▪ Time varies from machine to machine

• Depending on the memory speed, the number of registers that must be

copied, and the existence of special instructions

• Some hardware provides multiple sets of registers per CPU ➔ multiple

contexts loaded at once

19

20

11

3.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

CPU Switch From Process to Process

3.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multitasking in Mobile Systems

▪ Some mobile systems (e.g., early versions of iOS) allow only one

process to run, others suspended

▪ Due to screen real estate, user interface limits iOS provides for a

• Single foreground process- controlled via user interface

• Multiple background processes– in memory, running, but not on the

display, and with limits

• Limits include single, short task, receiving notification of events,

specific long-running tasks like audio playback

• As hardware for mobile devices began to offer larger memory

capacities, multiple processing cores, and greater battery life,

subsequent versions of iOS began to support richer functionality for

multitasking with fewer restrictions.

▪ Android runs foreground and background, with fewer limits

• Background process uses a service to perform tasks

• Service can keep running even if background process is suspended

• Service has no user interface, small memory use

21

22

12

3.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Operations on Processes

3.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Operations on Processes

▪ System must provide mechanisms for:

• Process creation

• Process termination

23

24

13

3.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Creation

▪ Parent process create children processes, which, in turn create other

processes, forming a tree of processes

▪ Generally, process identified and managed via a process identifier (pid)

3.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Creation (Cont.)

▪ Resource sharing options

• Parent and children share all resources

• Children share subset of parent’s resources

• Parent and child share no resources

▪ Execution options

• Parent and children execute concurrently

• Parent waits until children terminate

▪ Address space

• Child duplicate of parent

• Child has a program loaded into it

25

26

14

3.27 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Creation – UNIX

3.28 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Creation – UNIX (Cont.)

▪ fork() system call creates new process

▪ exec() system call used after a fork() to replace the process’

memory space with a new program

▪ Parent process calls wait()waiting for the child to terminate

27

28

15

3.29 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Creation – Windows

3.30 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Creation – Windows (Cont.)

▪ Processes are created in the Windows API using the

CreateProcess()function.

• Similar to fork() in that a parent creates a new child process

• However,

fork() has the child process inheriting the address space of its

parent, CreateProcess() requires loading a specified program

into the address space of the child process at process creation

fork() is passed no parameters, CreateProcess()

expects no fewer than ten parameters

▪ The first two parameters passed to CreateProcess() are the

application name and command-line parameters

• If the application name is NULL (as it is in this example), the command-

line parameter specifies the application to load

▪ WaitForSingleObject(), which is passed a handle of the child

process—pi.hProcess—, waits for this process to complete

29

30

16

3.31 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Termination

▪ Process executes last statement and then asks the operating system to

delete it using the exit() system call.

• Returns status data from child to parent (via wait())

• Process’ resources are deallocated by operating system

▪ Parent may terminate the execution of children processes using the

abort() system call (TerminateProcess() in Windows). Some

reasons for doing so:

• Child has exceeded allocated resources

• Task assigned to child is no longer required

• The parent is exiting, and the operating system does not allow a child

to continue if its parent terminates

3.32 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Process Termination (Cont.)

▪ Some operating systems do not allow child to exist if its parent has

terminated. If a process terminates, then all its children must also be

terminated

• Cascading termination. All children, grandchildren, etc., are

terminated

• The termination is initiated by the operating system

▪ In Linux and UNIX systems, we can terminate a process by directly using

the exit()system call, providing an exit status as a parameter

exit(1);

▪ The C run-time library will include a call to exit() by default if it’s not called

directly

▪ The parent process may wait for termination of a child process by using the

wait()system call. The call returns status information and the pid of the

terminated process

pid = wait(&status);

▪ If no parent waiting (did not invoke wait()) process is a zombie

▪ If parent terminated without invoking wait(), process is an orphan

31

32

17

3.33 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Android Process Importance Hierarchy

▪ Because of resource constraints such as limited memory, mobile operating

systems often have to terminate processes to reclaim system resources

such as memory.

▪ Rather than terminating an arbitrary process, Android has identified an

importance hierarchy of processes

▪ From most to least important:

• Foreground process

• Visible process

• Service process

• Background process

• Empty process

▪ Android will begin terminating processes that are least important.

3.34 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multi-process Architecture – Chrome Browser

▪ Many web browsers ran as single process (some still do)

• If one web site causes trouble, entire browser can hang or crash

▪ Google Chrome Browser is multi-process with 3 different types of

processes:

• Browser process manages user interface, disk and network I/O

• Renderer process renders web pages, deals with HTML, Javascript. A

new renderer created for each website opened

 Runs in sandbox restricting disk and network I/O, minimizing effect

of security exploits

• Plug-in process for each type of plug-in

33

34

18

3.35 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Inter-process Communication

3.36 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Interprocess Communication

▪ Processes within a system may be independent or cooperating

▪ Cooperating process can affect or be affected by other processes,

including sharing data

▪ Reasons for cooperating processes:

• Information sharing

• Computation speedup

• Modularity

• Convenience

▪ Cooperating processes need interprocess communication (IPC)

▪ Two models of IPC

• Shared memory

 A region of memory that is shared by the cooperating processes

is established

• Message passing

 Communication takes place by means of messages exchanged

between the cooperating processes

35

36

19

3.37 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Communications Models

(a) Shared memory. (b) Message passing.

3.38 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

IPC in Shared-Memory Systems

37

38

20

3.39 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

IPC – Shared Memory

▪ An area of memory shared among the processes that wish to
communicate

▪ The communication is under the control of the users processes not the
operating system.

▪ Major issues is to provide mechanism that will allow the user processes to
synchronize their actions when they access shared memory.

▪ Synchronization is discussed in great details in Chapters 6 & 7.

3.40 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Producer-Consumer Problem

▪ Paradigm for cooperating processes:

• Producer process produces information that is consumed by a

consumer process

▪ One solution to the producer–consumer problem uses shared memory

• Have available a buffer of items that can be filled by the producer

and emptied by the consumer

▪ Two variations:

• unbounded-buffer places no practical limit on the size of the buffer:

 Producer never waits

 Consumer waits if there is no buffer to consume

• bounded-buffer assumes that there is a fixed buffer size

 Producer must wait if all buffers are full

 Consumer waits if there is no buffer to consume

39

40

21

3.41 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Bounded-Buffer – Shared-Memory Solution

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

▪ The shared buffer is implemented as a circular array with two logical

pointers: in and out

• in points to the next free position in the buffer

• out points to the first full position in the buffer.

• The buffer is empty when in == out

• The buffer is full when ((in + 1) % BUFFER SIZE) == out

▪ Solution is correct, but can only use BUFFER_SIZE-1 elements

3.42 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Producer Process – Shared Memory

item next_produced;

while (true) {

/* produce an item in next produced */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

}

41

42

22

3.43 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Consumer Process – Shared Memory

item next_consumed;

while (true) {

while (in == out)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */

}

3.44 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

What about Filling all the Buffers?

▪ Suppose that we wanted to provide a solution to the consumer-producer

problem that fills all the buffers.

▪ We can do so by having an integer counter that keeps track of the

number of full buffers.

▪ Initially, counter is set to 0.

▪ The integer counter is incremented by the producer after it produces

a new buffer.

▪ The integer counter is decremented by the consumer after it

consumes a buffer.

43

44

23

3.45 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Producer

while (true) {

/* produce an item in next produced */

while (counter == BUFFER_SIZE)

; /* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

3.46 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Consumer

while (true) {

while (counter == 0)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

/* consume the item in next consumed */

}

45

46

24

3.47 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Race Condition

▪ counter++ could be implemented as

register1 = counter

register1 = register1 + 1

counter = register1

▪ counter-- could be implemented as

register2 = counter

register2 = register2 - 1

counter = register2

▪ Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

3.48 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Race Condition (Cont.)

▪ Question – why was there no race condition in the first solution (where at
most N – 1) buffers can be filled?

▪ More in Chapter 6.

47

48

25

3.49 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

IPC – Message Passing

▪ Processes communicate with each other without resorting to shared
variables

▪ Message passing provides a mechanism to allow processes to

communicate and to synchronize their actions without sharing the same

address space

• It is particularly useful in a distributed environment, where the

communicating processes may reside on different computers

connected by a network

▪ IPC facility provides two operations:

• send(message)

• receive(message)

▪ The message size is either fixed or variable

• Fixed-sized messages: straightforward system-level implementation,

the task of programming is more difficult

• Variable-sized messages: complex system-level implementation, the

programming task is simpler.

3.50 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Message Passing (Cont.)

▪ If processes P and Q wish to communicate, they need to:

• Establish a communication link between them

• Exchange messages via send/receive

▪ Implementation issues:

• How are links established?

• Can a link be associated with more than two processes?

• How many links can there be between every pair of communicating

processes?

• What is the capacity of a link?

• Is the size of a message that the link can accommodate fixed or

variable?

• Is a link unidirectional or bi-directional?

49

50

26

3.51 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implementation of Communication Link

▪ Physical:

• Shared memory

• Hardware bus

• Network

▪ Logical:

• Direct or indirect

• Synchronous or asynchronous

• Automatic or explicit buffering

3.52 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Direct Communication

▪ Processes must name each other explicitly:

• Symmetry in addressing; both the sender process and the receiver

process must name the other to communicate

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

• Asymmetry in addressing; only the sender names the recipient; the

recipient is not required to name the sender

 send(P, message) – send a message to process P

 receive(id, message)—Receive a message from any process.

The variable id is set to the name of the process with which

communication has taken place.

▪ Properties of communication link

• Links are established automatically

• A link is associated with exactly one pair of communicating processes

• Between each pair there exists exactly one link

• The link may be unidirectional, but is usually bi-directional

51

52

27

3.53 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Indirect Communication

▪ Messages are directed and received from mailboxes (also referred to as

ports)

• A mailbox can be viewed abstractly as an object into which

messages can be placed by processes and from which messages

can be removed

• Each mailbox has a unique id

• Processes can communicate only if they share a mailbox

▪ Properties of communication link

• Link established only if processes share a common mailbox

• A link may be associated with many processes

• Each pair of processes may share several communication links

• Link may be unidirectional or bi-directional

3.54 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

▪ Operations

• Create a new mailbox (port)

• Send and receive messages through mailbox

• Delete a mailbox

▪ Primitives are defined as:

• send(A, message) – send a message to mailbox A

• receive(A, message) – receive a message from mailbox A

Indirect Communication (Cont.)

53

54

28

3.55 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

▪ Mailbox sharing

• P1, P2, and P3 share mailbox A

• P1, sends; P2 and P3 receive

• Who gets the message?

▪ Solutions

• Allow a link to be associated with at most two processes

• Allow only one process at a time to execute a receive operation

• Allow the system to select arbitrarily the receiver. Sender is notified

who the receiver was.

Indirect Communication (Cont.)

3.56 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Synchronization

▪ Blocking is considered synchronous

• Blocking send -- the sender is blocked until the message is received

• Blocking receive -- the receiver is blocked until a message is available

▪ Non-blocking is considered asynchronous

• Non-blocking send -- the sender sends the message and continue

• Non-blocking receive -- the receiver receives:

 A valid message, or

 Null message

▪ Different combinations possible

• If both send and receive are blocking, we have a rendezvous

Message passing may be either blocking or non-blocking

55

56

29

3.57 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

▪ Producer
message next_produced;

while (true) {

/* produce an item in next_produced */

send(next_produced);

}

▪ Consumer
message next_consumed;

while (true) {

receive(next_consumed)

/* consume the item in next_consumed */

}

Producer-Consumer: Message Passing

3.58 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Buffering

▪ Queue of messages attached to the link.

▪ Implemented in one of three ways

1. Zero capacity – no messages are queued on a link.

Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages

Sender must wait if link full

3. Unbounded capacity – infinite length

Sender never waits

57

58

30

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 3

59

1

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 4: Threads &

Concurrency

4.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Outline

▪ Overview (4.1)

▪ Multicore Programming (4.2)

▪ Multithreading Models (4.3)

▪ Thread Libraries (4.4)

▪ Implicit Threading (4.5)

▪ Threading Issues (4.6)

▪ Operating System Examples (4.7)

1

2

2

4.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

▪ Identify the basic components of a thread, and contrast threads and

processes

▪ Describe the benefits and challenges of designing multithreaded

applications

▪ Illustrate different approaches to implicit threading including thread pools,

fork-join, and Grand Central Dispatch

▪ Describe how the Windows and Linux operating systems represent

threads

▪ Design multithreaded applications using the Pthreads, Java, and

Windows threading APIs

4.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Overview

3

4

3

4.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Motivation

▪ Most modern applications are multithreaded

▪ Threads run within application

▪ Multiple tasks within the application can be implemented by separate

threads

• Update display

• Fetch data

• Spell checking

• Answer a network request

▪ Process creation is heavy-weight while thread creation is light-weight

▪ A thread is a basic unit of CPU utilization; it comprises a thread ID, a

program counter (PC), a register set, and a stack.

• It shares with other threads belonging to the same process its code

section, data section, and other operating-system resources, such as

open files and signals.

▪ Can simplify code, increase efficiency

▪ Kernels are generally multithreaded

4.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Single and Multithreaded Processes

5

6

4

4.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multithreaded Server Architecture

4.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Benefits

▪ Responsiveness – may allow continued execution if part of process is

blocked, especially important for user interfaces

▪ Resource Sharing – threads share resources of process, easier than

shared memory or message passing

▪ Economy – cheaper than process creation, thread switching lower

overhead than context switching

▪ Scalability – process can take advantage of multicore architectures

7

8

5

4.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multicore Programming

4.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multicore Programming

▪ Multicore or multiprocessor systems putting pressure on programmers,

challenges include:

• Dividing activities

• Balance

• Data splitting

• Data dependency

• Testing and debugging

▪ Parallelism implies a system can perform more than one task

simultaneously

▪ Concurrency supports more than one task making progress

• Single processor / core, scheduler providing concurrency

9

10

6

4.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Concurrency vs. Parallelism

▪ Concurrent execution on single-core system:

▪ Parallelism on a multi-core system:

4.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multicore Programming

▪ Types of parallelism

• Data parallelism – distributes subsets of the same data across

multiple cores, same operation on each

• Task parallelism – distributing threads across cores, each thread

performing unique operation

11

12

7

4.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Data and Task Parallelism

4.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Amdahl’s Law

▪ Identifies performance gains from adding additional cores to an application

that has both serial and parallel components

▪ S is serial portion

▪ N processing cores

▪ That is, if application is 75% parallel / 25% serial, moving from 1 to 2 cores

results in speedup of 1.6 times

▪ As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate effect on

performance gained by adding additional cores

▪ But does the law take into account contemporary multicore systems?

13

14

8

4.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Amdahl’s Law

4.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multithreading Models

15

16

9

4.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

User Threads and Kernel Threads

▪ User threads - management done by user-level threads library

▪ Three primary thread libraries:

• POSIX Pthreads

• Windows threads

• Java threads

▪ Kernel threads - Supported by the Kernel

▪ Examples – virtually all general -purpose operating systems, including:

• Windows

• Linux

• Mac OS X

• iOS

• Android

4.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

User and Kernel Threads

17

18

10

4.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multithreading Models

▪ Many-to-One

▪ One-to-One

▪ Many-to-Many

4.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Many-to-One

▪ Many user-level threads mapped to single kernel thread

▪ One thread blocking causes all to block

▪ Multiple threads may not run in parallel on multicore system because only

one may be in kernel at a time

▪ Few systems currently use this model

▪ Examples:

• Solaris Green Threads

• GNU Portable Threads

19

20

11

4.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

One-to-One

▪ Each user-level thread maps to kernel thread

▪ Creating a user-level thread creates a kernel thread

▪ More concurrency than many-to-one

▪ Number of threads per process sometimes restricted due to overhead

▪ Examples

• Windows

• Linux

4.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Many-to-Many Model

▪ Allows many user level threads to be mapped to many kernel threads

▪ Allows the operating system to create a sufficient number of kernel

threads

▪ Windows with the ThreadFiber package

▪ Otherwise not very common

21

22

12

4.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Two-level Model

▪ Similar to M:M, except that it allows a user thread to be bound to kernel

thread

4.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thread Libraries

23

24

13

4.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thread Libraries

▪ Thread library provides programmer with API for creating and managing

threads

▪ Two primary ways of implementing

• Library entirely in user space

 Invoking a function in the library results in a local function call in

user space and not a system call

• Kernel-level library supported by the OS

 Code and data structures for the library exist in kernel space

 Invoking a function in the API for the library typically results in a

system call to the kernel

▪ Three main thread libraries are in use today: POSIX Pthreads, Windows,

and Java

4.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Pthreads

▪ May be provided either as user-level or kernel-level

▪ A POSIX standard (IEEE 1003.1c) API for thread creation and

synchronization

▪ Specification, not implementation

▪ API specifies behavior of the thread library, implementation is up to

development of the library

▪ Common in UNIX operating systems (Linux & Mac OS X)

25

26

14

4.27 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Pthreads Example

4.28 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Pthreads Example (Cont.)

27

28

15

4.29 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Pthreads Code for Joining 10 Threads

4.30 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Windows Multithreaded C Program

29

30

16

4.31 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Windows Multithreaded C Program (Cont.)

4.32 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implicit Threading

31

32

17

4.33 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implicit Threading

▪ Growing in popularity as numbers of threads increase, program

correctness more difficult with explicit threads

▪ Creation and management of threads done by compilers and run-time

libraries rather than programmers

▪ Five methods explored

• Thread Pools

• Fork-Join

• OpenMP

• Grand Central Dispatch

• Intel Threading Building Blocks

4.34 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thread Pools

▪ Create a number of threads in a pool where they await work

▪ Advantages:

• Usually slightly faster to service a request with an existing thread than

create a new thread

• Allows the number of threads in the application(s) to be bound to the

size of the pool

• Separating task to be performed from mechanics of creating task

allows different strategies for running task

 i.e.Tasks could be scheduled to run periodically

▪ Windows API supports thread pools:

33

34

18

4.35 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Fork-Join Parallelism

▪ Multiple threads (tasks) are forked, and then joined.

4.36 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Fork-Join Parallelism

35

36

19

4.37 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

OpenMP

▪ Set of compiler directives and

an API for C, C++,

FORTRAN

▪ Provides support for parallel

programming in shared-

memory environments

▪ Identifies parallel regions –

blocks of code that can run in

parallel

#pragma omp parallel

Create as many threads as there

are cores

4.38 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

OpenMP (Cont.)

▪ Run the for loop in parallel

37

38

20

4.39 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Grand Central Dispatch

▪ Apple technology for macOS and iOS operating systems

▪ Extensions to C, C++ and Objective-C languages, API, and run-time library

▪ Allows identification of parallel sections

▪ Manages most of the details of threading

▪ Block is in “^{ }” :

ˆ{ printf("I am a block"); }

▪ Blocks placed in dispatch queue

• Assigned to available thread in thread pool when removed from queue

4.40 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Grand Central Dispatch

▪ Two types of dispatch queues:

• serial – blocks removed in FIFO order, queue is per process, called

main queue

 Programmers can create additional serial queues within program

• concurrent – removed in FIFO order but several may be removed at

a time

 Four system wide queues divided by quality of service:

o QOS_CLASS_USER_INTERACTIVE

o QOS_CLASS_USER_INITIATED

o QOS_CLASS_USER_UTILITY

o QOS_CLASS_USER_BACKGROUND

39

40

21

4.41 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Grand Central Dispatch

▪ For the Swift language a task is defined as a closure – similar to a block,

minus the caret

▪ Closures are submitted to the queue using the dispatch_async()

function:

4.42 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Intel Threading Building Blocks (TBB)

▪ Template library for designing parallel C++ programs

▪ A serial version of a simple for loop

▪ The same for loop written using TBB with parallel_for statement:

41

42

22

4.43 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Threading Issues

4.44 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Threading Issues

▪ Semantics of fork() and exec() system calls

▪ Signal handling

• Synchronous and asynchronous

▪ Thread cancellation of target thread

• Asynchronous or deferred

▪ Thread-local storage

▪ Scheduler Activations

43

44

23

4.45 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Semantics of fork() and exec()

▪ Does fork()duplicate only the calling thread or all threads?

• Some UNIXes have two versions of fork

▪ exec() usually works as normal – replace the running process

including all threads

4.46 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Signal Handling

▪ Signals are used in UNIX systems to notify a process that a particular

event has occurred.

▪ A signal handler is used to process signals

1. Signal is generated by particular event

2. Signal is delivered to a process

3. Signal is handled by one of two signal handlers:

1. default

2. user-defined

▪ Every signal has default handler that kernel runs when handling

signal

• User-defined signal handler can override default

• For single-threaded, signal delivered to process

45

46

24

4.47 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Signal Handling (Cont.)

▪ Where should a signal be delivered for multi-threaded?

• Deliver the signal to the thread to which the signal applies

• Deliver the signal to every thread in the process

• Deliver the signal to certain threads in the process

• Assign a specific thread to receive all signals for the process

4.48 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thread Cancellation

▪ Terminating a thread before it has finished

▪ Thread to be canceled is target thread

▪ Two general approaches:

• Asynchronous cancellation terminates the target thread

immediately

• Deferred cancellation allows the target thread to periodically

check if it should be cancelled

▪ Pthread code to create and cancel a thread:

47

48

25

4.49 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thread Cancellation (Cont.)

▪ Invoking thread cancellation requests cancellation, but actual

cancellation depends on thread state

▪ If thread has cancellation disabled, cancellation remains pending until

thread enables it

▪ Default type is deferred

• Cancellation only occurs when thread reaches cancellation point

 i.e., pthread_testcancel()

 Then cleanup handler is invoked

▪ On Linux systems, thread cancellation is handled through signals

4.50 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thread-Local Storage

▪ Thread-local storage (TLS) allows each thread to have its own copy

of data

▪ Useful when you do not have control over the thread creation process

(i.e., when using a thread pool)

▪ Different from local variables

• Local variables visible only during single function invocation

• TLS visible across function invocations

▪ Similar to static data

• TLS is unique to each thread

49

50

26

4.51 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Scheduler Activations

▪ Both M:M and Two-level models require

communication to maintain the appropriate

number of kernel threads allocated to the

application

▪ Typically use an intermediate data structure

between user and kernel threads – lightweight

process (LWP)

• Appears to be a virtual processor on which

process can schedule user thread to run

• Each LWP attached to kernel thread

• How many LWPs to create?

▪ Scheduler activations provide upcalls - a

communication mechanism from the kernel to

the upcall handler in the thread library

▪ This communication allows an application to

maintain the correct number kernel threads

4.52 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Operating System Examples

51

52

27

4.53 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Operating System Examples

▪ Windows Threads

▪ Linux Threads

4.54 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Windows Threads

▪ Windows API – primary API for Windows applications

▪ Implements the one-to-one mapping, kernel-level

▪ Each thread contains

• A thread id

• Register set representing state of processor

• Separate user and kernel stacks for when thread runs in user mode or

kernel mode

• Private data storage area used by run-time libraries and dynamic link

libraries (DLLs)

▪ The register set, stacks, and private storage area are known as the

context of the thread

53

54

28

4.55 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Windows Threads (Cont.)

▪ The primary data structures of a thread include:

• ETHREAD (executive thread block) – includes:

 Pointer to process to which thread belongs

 Address of the routine in which the thread starts control

 pointer to the corresponding KTHREAD

• KTHREAD (kernel thread block) – includes:

 Scheduling and synchronization info

 Kernel-mode stack

 Pointer to TEB

• TEB (thread environment block) – includes:

 Thread id

 User-mode stack

 Thread-local storage

4.56 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Windows Threads Data Structures

55

56

29

4.57 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Linux Threads

▪ Linux refers to them as tasks rather than threads

▪ Thread creation is done through clone() system call

▪ clone() allows a child task to share the address space of the parent

task (process)

• Flags control behavior

▪ struct task_struct points to process data structures (shared or

unique)

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 4

57

58

1

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 5: CPU Scheduling

5.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Outline

▪ Basic Concepts (5.1)

▪ Scheduling Criteria (5.2)

▪ Scheduling Algorithms (5.3)

▪ Thread Scheduling (5.4)

▪ Multi-Processor Scheduling (5.5)

▪ Real-Time CPU Scheduling (5.6)

▪ Operating Systems Examples (5.7)

▪ Algorithm Evaluation (5.8)

1

2

2

5.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

▪ Describe various CPU scheduling algorithms

▪ Assess CPU scheduling algorithms based on scheduling criteria

▪ Explain the issues related to multiprocessor and multicore scheduling

▪ Describe various real-time scheduling algorithms

▪ Describe the scheduling algorithms used in the Windows, Linux, and

Solaris operating systems

▪ Apply modeling and simulations to evaluate CPU scheduling

algorithms

5.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Basic Concepts

3

4

3

5.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Basic Concepts

▪ Maximum CPU utilization obtained with

multiprogramming

▪ Process execution consists of a cycle of

CPU execution and I/O wait.

▪ Processes alternate between these two

states.

▪ Process execution begins with a CPU

burst. That is followed by an I/O burst,

which is followed by another CPU burst,

then another I/O burst, and so on.

▪ Eventually, the final CPU burst ends

with a system request to terminate

execution.

5.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Histogram of CPU-burst Times

▪ The durations of CPU bursts have been measured extensively

▪ Although they vary greatly from process to process and from computer to

computer, they tend to have a frequency curve similar to that below

▪ Exponential or hyper-exponential

▪ Large number of short CPU bursts and a small number of long CPU

bursts

5

6

4

5.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

CPU Scheduler

▪ The CPU scheduler selects from among the processes in ready queue,

and allocates a CPU core to one of them

• Queue may be ordered in various ways

• Conceptually, however, all the processes in the ready queue are lined

up waiting for a chance to run on the CPU

• The records in the queues are generally process control blocks

(PCBs) of the processes

▪ CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

▪ For situations 1 and 4, there is no choice in terms of scheduling. A new

process (if one exists in the ready queue) must be selected for execution.

▪ For situations 2 and 3, however, there is a choice.

5.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Preemptive and Nonpreemptive Scheduling

▪ When scheduling takes place only under circumstances 1 and 4, the

scheduling scheme is nonpreemptive or cooperative.

▪ Otherwise, it is preemptive.

▪ Under Nonpreemptive scheduling, once the CPU has been allocated to a

process, the process keeps the CPU until it releases it either by

terminating or by switching to the waiting state.

▪ Virtually all modern operating systems including Windows, MacOS, Linux,

and UNIX use preemptive scheduling algorithms.

7

8

5

5.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Preemptive Scheduling and Race Conditions

▪ Preemptive scheduling can result in race conditions when data are shared

among several processes.

▪ Consider the case of two processes that share data. While one process is

updating the data, it is preempted so that the second process can run. The

second process then tries to read the data, which are in an inconsistent

state.

▪ This issue will be explored in detail in Chapter 6.

▪ Preemption also affects the design of the operating-system kernel

▪ During the processing of a system call, the kernel may be busy with an

activity on behalf of a process.

• Such activities may involve changing important kernel data (for

instance, I/O queues)

• Operating-system kernels can be designed as either nonpreemptive or

preemptive.

5.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Dispatcher

▪ Dispatcher module gives control of the CPU

to the process selected by the CPU

scheduler; this involves:

• Switching context

• Switching to user mode

• Jumping to the proper location in the user

program to restart that program

▪ The dispatcher should be as fast as possible,

since it is invoked during every context

switch.

▪ Dispatch latency – time it takes for the

dispatcher to stop one process and start

another running

9

10

6

5.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Scheduling Criteria

5.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Scheduling Criteria

Many criteria have been suggested for comparing CPU-scheduling

algorithms.

▪ CPU utilization – keep the CPU as busy as possible

▪ Throughput – # of processes that complete their execution per time

unit

▪ Turnaround time – amount of time to execute a particular process

• Turnaround time is the sum of the periods spent waiting in the

ready queue, executing on the CPU, and doing I/O.

▪ Waiting time – amount of time a process has been waiting in the

ready queue

▪ Response time – amount of time it takes from when a request was

submitted until the first response is produced.

11

12

7

5.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Scheduling Algorithm Optimization Criteria

▪ Max CPU utilization

▪ Max throughput

▪ Min turnaround time

▪ Min waiting time

▪ Min response time

5.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Scheduling Algorithms

13

14

8

5.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

First- Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24

P2 3

P3 3

▪ Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

▪ Waiting time for P1 = 0; P2 = 24; P3 = 27

▪ Average waiting time: (0 + 24 + 27)/3 = 17

P P P
1 2 3

0 24 3027

5.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

P2 , P3 , P1

▪ The Gantt chart for the schedule is:

▪ Waiting time for P1 = 6; P2 = 0; P3 = 3

▪ Average waiting time: (6 + 0 + 3)/3 = 3

▪ Much better than previous case

▪ Convoy effect - short process behind long process

• Consider one CPU-bound and many I/O-bound processes

P
1

0 3 6 30

P
2

P
3

15

16

9

5.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Shortest-Job-First (SJF) Scheduling

▪ Associate with each process the length of its next CPU burst

• Use these lengths to schedule the process with the shortest time

▪ SJF is optimal – gives minimum average waiting time for a given set of

processes

• The difficulty is knowing the length of the next CPU request

• Could ask the user

5.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Shortest-Job-First (SJF) Scheduling

▪ Associate with each process the length of its next CPU burst

• Use these lengths to schedule the process with the shortest time

▪ SJF is optimal – gives minimum average waiting time for a given set of

processes

▪ Preemptive version called shortest-remaining-time-first

▪ How do we determine the length of the next CPU burst?

• Could ask the user

• Estimate

17

18

10

5.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Example of SJF

ProcessArrival Time Burst Time

P1 0.0 6

P2 2.0 8

P3 4.0 7

P4 5.0 3

▪ SJF scheduling chart

▪ Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P
3

0 3 24

P
4

P
1

169

P
2

5.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Determining Length of Next CPU Burst

▪ Can only estimate the length – should be similar to the previous one

• Then pick process with shortest predicted next CPU burst

▪ Can be done by using the length of previous CPU bursts, using

exponential averaging

▪ Commonly, α set to ½

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of length actual 1.



=

=

+



 1n

th
n nt

19

20

11

5.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Prediction of the Length of the Next CPU Burst

5.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Examples of Exponential Averaging

▪  =0

• n+1 = n

• Recent history does not count

▪  =1

• n+1 =  tn

• Only the actual last CPU burst counts

▪ If we expand the formula, we get:

n+1 =  tn+(1 - ) tn -1 + …

+(1 - )j  tn -j + …

+(1 - )n +1 0

▪ Since both  and (1 - ) are less than or equal to 1, each successive
term has less weight than its predecessor

21

22

12

5.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Example of Shortest-remaining-time-first

▪ Now we add the concepts of varying arrival times and preemption to

the analysis

ProcessAarri Arrival TimeT Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

▪ Preemptive SJF Gantt Chart

▪ Average waiting time = [(10-1)+(1-1)+(17-2)+(5-3)]/4 = 26/4 = 6.5

P
4

0 1 26

P
1

P
2

10

P
3

P
1

5 17

5.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Round Robin (RR)

▪ Each process gets a small unit of CPU time (time quantum q), usually 10-

100 milliseconds. After this time has elapsed, the process is preempted

and added to the end of the ready queue.

▪ If there are n processes in the ready queue and the time quantum is q,

then each process gets 1/n of the CPU time in chunks of at most q time

units at once. No process waits more than (n-1)q time units.

▪ Timer interrupts every quantum to schedule next process

▪ Performance

• q large  FIFO

• q small  q must be large with respect to context switch, otherwise

overhead is too high

23

24

13

5.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Example of RR with Time Quantum = 4

Process Burst Time

P1 24

P2 3

P3 3

▪ The Gantt chart is:

▪ Typically, higher average turnaround than SJF, but better response

▪ q should be large compared to context switch time

• q usually 10 milliseconds to 100 milliseconds,

• Context switch < 10 microseconds

P P P
1 1 1

0 18 3026144 7 10 22

P
2

P
3

P
1

P
1

P
1

5.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Time Quantum and Context Switch Time

25

26

14

5.27 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Turnaround Time Varies With The Time Quantum

80% of CPU bursts
should be shorter than q

5.28 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Priority Scheduling

▪ A priority number (integer) is associated with each process

▪ The CPU is allocated to the process with the highest priority (smallest

integer  highest priority)

• Preemptive

• Nonpreemptive

▪ SJF is priority scheduling where priority is the inverse of predicted next

CPU burst time

▪ Problem  Starvation – low priority processes may never execute

▪ Solution  Aging – as time progresses increase the priority of the

process

27

28

15

5.29 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Example of Priority Scheduling

ProcessA arri Burst TimeT Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

▪ Priority scheduling Gantt Chart

▪ Average waiting time = 8.2

5.30 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Priority Scheduling w/ Round-Robin

ProcessA arri Burst TimeT Priority

P1 4 3

P2 5 2

P3 8 2

P4 7 1

P5 3 3

▪ Run the process with the highest priority. Processes with the same

priority run round-robin

▪ Gantt Chart with time quantum = 2

29

30

16

5.31 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multilevel Queue

▪ With priority scheduling, have separate queues for each priority.

▪ Schedule the process in the highest-priority queue!

5.32 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multilevel Queue

▪ Prioritization based upon process type

31

32

17

5.33 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multilevel Feedback Queue

▪ A process can move between the various queues.

▪ Multilevel-feedback-queue scheduler defined by the following

parameters:

• Number of queues

• Scheduling algorithms for each queue

• Method used to determine when to upgrade a process

• Method used to determine when to demote a process

• Method used to determine which queue a process will enter

when that process needs service

▪ Aging can be implemented using multilevel feedback queue

5.34 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Example of Multilevel Feedback Queue

▪ Three queues:

• Q0 – RR with time quantum 8 milliseconds

• Q1 – RR time quantum 16 milliseconds

• Q2 – FCFS

▪ Scheduling

• A new process enters queue Q0 which is

served in RR

 When it gains CPU, the process receives 8

milliseconds

 If it does not finish in 8 milliseconds, the

process is moved to queue Q1

• At Q1 job is again served in RR and

receives 16 additional milliseconds

 If it still does not complete, it is preempted

and moved to queue Q2

33

34

18

5.35 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thread Scheduling

5.36 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thread Scheduling

▪ Distinction between user-level and kernel-level threads

▪ When threads supported, threads scheduled, not processes

▪ Many-to-one and many-to-many models, thread library schedules user-

level threads to run on LWP

• Known as process-contention scope (PCS) since scheduling

competition is within the process

• Typically done via priority set by programmer

▪ Kernel thread scheduled onto available CPU is system-contention

scope (SCS) – competition among all threads in system

35

36

19

5.37 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Pthread Scheduling

▪ API allows specifying either PCS or SCS during thread creation

• PTHREAD_SCOPE_PROCESS schedules threads using PCS

scheduling

• PTHREAD_SCOPE_SYSTEM schedules threads using SCS

scheduling

▪ Can be limited by OS – Linux and macOS only allow

PTHREAD_SCOPE_SYSTEM

5.38 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Pthread Scheduling API

#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

int main(int argc, char *argv[]) {

int i, scope;

pthread_t tid[NUM THREADS];

pthread_attr_t attr;

/* get the default attributes */

pthread_attr_init(&attr);

/* first inquire on the current scope */

if (pthread_attr_getscope(&attr, &scope) != 0)

fprintf(stderr, "Unable to get scheduling scope\n");

else {

if (scope == PTHREAD_SCOPE_PROCESS)

printf("PTHREAD_SCOPE_PROCESS");

else if (scope == PTHREAD_SCOPE_SYSTEM)

printf("PTHREAD_SCOPE_SYSTEM");

else

fprintf(stderr, "Illegal scope value.\n");

}

37

38

20

5.39 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Pthread Scheduling API

/* set the scheduling algorithm to PCS or SCS */

pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

/* create the threads */

for (i = 0; i < NUM_THREADS; i++)

pthread_create(&tid[i],&attr,runner,NULL);

/* now join on each thread */

for (i = 0; i < NUM_THREADS; i++)

pthread_join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)

{

/* do some work ... */

pthread_exit(0);

}

5.40 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multi-Processor Scheduling

39

40

21

5.41 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multiple-Processor Scheduling

▪ CPU scheduling more complex when multiple CPUs are available

▪ Multi-process may be any one of the following architectures:

• Multicore CPUs

• Multithreaded cores

• NUMA systems

• Heterogeneous multiprocessing

5.42 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multiple-Processor Scheduling

▪ Symmetric multiprocessing (SMP) is where each processor is self

scheduling.

▪ All threads may be in a common ready queue (a)

▪ Each processor may have its own private queue of threads (b)

41

42

22

5.43 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multicore Processors

▪ Recent trend to place multiple processor cores on same physical chip

▪ Faster and consumes less power

▪ Multiple threads per core also growing

• Takes advantage of memory stall to make progress on another thread

while memory retrieve happens

5.44 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multithreaded Multicore System

▪ Each core has > 1 hardware threads.

▪ If one thread has a memory stall, switch to another thread!

▪ Figure

43

44

23

5.45 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

▪ Chip-multithreading (CMT)

assigns each core multiple

hardware threads. (Intel refers

to this as hyperthreading.)

▪ On a quad-core system with 2

hardware threads per core, the

operating system sees 8 logical

processors.

Multithreaded Multicore System

5.46 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multithreaded Multicore System

▪ Two levels of scheduling:

1. The operating system

deciding which software

thread to run on a logical

CPU

2. How each core decides

which hardware thread to

run on the physical core.

45

46

24

5.47 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multiple-Processor Scheduling – Load Balancing

▪ If SMP, need to keep all CPUs loaded for efficiency

▪ Load balancing attempts to keep workload evenly distributed

▪ Push migration – periodic task checks load on each processor, and if

found pushes task from overloaded CPU to other CPUs

▪ Pull migration – idle processors pulls waiting task from busy processor

5.48 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multiple-Processor Scheduling – Processor Affinity

▪ When a thread has been running on one processor, the cache contents of

that processor stores the memory accesses by that thread.

▪ We refer to this as a thread having affinity for a processor (i.e., “processor

affinity”)

▪ Load balancing may affect processor affinity as a thread may be moved

from one processor to another to balance loads, yet that thread loses the

contents of what it had in the cache of the processor it was moved off of.

▪ Soft affinity – the operating system attempts to keep a thread running on

the same processor, but no guarantees.

▪ Hard affinity – allows a process to specify a set of processors it may run

on.

47

48

25

5.49 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

NUMA and CPU Scheduling

If the operating system is NUMA-aware, it will assign memory closes to the

CPU the thread is running on.

5.50 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Real-Time CPU Scheduling

49

50

26

5.51 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Real-Time CPU Scheduling

▪ Can present obvious challenges

▪ Soft real-time systems – Critical real-time tasks have the highest priority,

but no guarantee as to when tasks will be scheduled

▪ Hard real-time systems – task must be serviced by its deadline

5.52 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Real-Time CPU Scheduling

▪ Event latency – the amount of time

that elapses from when an event

occurs to when it is serviced.

▪ Two types of latencies affect

performance

1. Interrupt latency – time from

arrival of interrupt to start of

routine that services interrupt

2. Dispatch latency – time for

schedule to take current

process off CPU and switch to

another

51

52

27

5.53 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Interrupt Latency

5.54 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Dispatch Latency

▪ Conflict phase of dispatch

latency:

1. Preemption of any

process running in

kernel mode

2. Release by low-priority

process of resources

needed by high-priority

processes

53

54

28

5.55 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Priority-based Scheduling

▪ For real-time scheduling, scheduler must support preemptive, priority-

based scheduling

• But only guarantees soft real-time

▪ For hard real-time must also provide ability to meet deadlines

▪ Processes have new characteristics: periodic ones require CPU at

constant intervals

• Has processing time t, deadline d, period p

• 0 ≤ t ≤ d ≤ p

• Rate of periodic task is 1/p

5.56 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Rate Monotonic Scheduling

▪ A priority is assigned based on the inverse of its period

▪ Shorter periods = higher priority;

▪ Longer periods = lower priority

▪ P1 is assigned a higher priority than P2.

55

56

29

5.57 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Missed Deadlines with Rate Monotonic Scheduling

▪ Process P2 misses finishing its deadline at time 80

5.58 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Earliest Deadline First Scheduling (EDF)

▪ Priorities are assigned according to deadlines:

• The earlier the deadline, the higher the priority

• The later the deadline, the lower the priority

57

58

30

5.59 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Proportional Share Scheduling

▪ T shares are allocated among all processes in the system

▪ An application receives N shares where N < T

▪ This ensures each application will receive N / T of the total processor time

5.60 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

POSIX Real-Time Scheduling

▪ The POSIX.1b standard

▪ API provides functions for managing real-time threads

▪ Defines two scheduling classes for real-time threads:

1. SCHED_FIFO - threads are scheduled using a FCFS strategy with a

FIFO queue. There is no time-slicing for threads of equal priority

2. SCHED_RR - similar to SCHED_FIFO except time-slicing occurs for

threads of equal priority

▪ Defines two functions for getting and setting scheduling policy:

1. pthread_attr_getsched_policy(pthread_attr_t *attr,

int *policy)

2. pthread_attr_setsched_policy(pthread_attr_t *attr,

int policy)

59

60

31

5.61 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

POSIX Real-Time Scheduling API

#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

int main(int argc, char *argv[])

{

int i, policy;

pthread_t_tid[NUM_THREADS];

pthread_attr_t attr;

/* get the default attributes */

pthread_attr_init(&attr);

/* get the current scheduling policy */

if (pthread_attr_getschedpolicy(&attr, &policy) != 0)

fprintf(stderr, "Unable to get policy.\n");

else {

if (policy == SCHED_OTHER) printf("SCHED_OTHER\n");

else if (policy == SCHED_RR) printf("SCHED_RR\n");

else if (policy == SCHED_FIFO) printf("SCHED_FIFO\n");

}

5.62 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

/* set the scheduling policy - FIFO, RR, or OTHER */

if (pthread_attr_setschedpolicy(&attr, SCHED_FIFO) != 0)

fprintf(stderr, "Unable to set policy.\n");

/* create the threads */

for (i = 0; i < NUM_THREADS; i++)

pthread_create(&tid[i],&attr,runner,NULL);

/* now join on each thread */

for (i = 0; i < NUM_THREADS; i++)

pthread_join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)

{

/* do some work ... */

pthread_exit(0);

}

POSIX Real-Time Scheduling API (Cont.)

61

62

32

5.63 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Operating System Examples

5.64 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Operating System Examples

▪ Linux scheduling

▪ Windows scheduling

▪ Solaris scheduling

63

64

33

5.65 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Linux Scheduling Through Version 2.5

▪ Prior to kernel version 2.5, ran variation of standard UNIX scheduling algorithm

▪ Version 2.5 moved to constant order O(1) scheduling time

• Preemptive, priority based

• Two priority ranges: time-sharing and real-time

• Real-time range from 0 to 99 and nice value from 100 to 140

• Map into global priority with numerically lower values indicating higher
priority

• Higher priority gets larger q

• Task run-able as long as time left in time slice (active)

• If no time left (expired), not run-able until all other tasks use their slices

• All run-able tasks tracked in per-CPU runqueue data structure

 Two priority arrays (active, expired)

 Tasks indexed by priority

 When no more active, arrays are exchanged

• Worked well, but poor response times for interactive processes

5.66 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Linux Scheduling in Version 2.6.23 +

▪ Completely Fair Scheduler (CFS)

▪ Scheduling classes

• Each has specific priority

• Scheduler picks highest priority task in highest scheduling class

• Rather than quantum based on fixed time allotments, based on
proportion of CPU time

• Two scheduling classes included, others can be added

1. default

2. real-time

65

66

34

5.67 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Linux Scheduling in Version 2.6.23 + (Cont.)

▪ Quantum calculated based on nice value from -20 to +19

• Lower value is higher priority

• Calculates target latency – interval of time during which task should
run at least once

• Target latency can increase if say number of active tasks increases

▪ CFS scheduler maintains per task virtual run time in variable vruntime

• Associated with decay factor based on priority of task – lower priority is
higher decay rate

• Normal default priority yields virtual run time = actual run time

▪ To decide next task to run, scheduler picks task with lowest virtual run time

5.68 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

CFS Performance

67

68

35

5.69 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Linux Scheduling (Cont.)

▪ Real-time scheduling according to POSIX.1b

• Real-time tasks have static priorities

▪ Real-time plus normal map into global priority scheme

▪ Nice value of -20 maps to global priority 100

▪ Nice value of +19 maps to priority 139

5.70 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Linux Scheduling (Cont.)

▪ Linux supports load balancing, but is also NUMA-aware.

▪ Scheduling domain is a set of CPU cores that can be balanced against

one another.

▪ Domains are organized by what they share (i.e., cache memory.) Goal is to

keep threads from migrating between domains.

69

70

36

5.71 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Windows Scheduling

▪ Windows uses priority-based preemptive scheduling

▪ Highest-priority thread runs next

▪ Dispatcher is scheduler

▪ Thread runs until (1) blocks, (2) uses time slice, (3) preempted by higher-

priority thread

▪ Real-time threads can preempt non-real-time

▪ 32-level priority scheme

▪ Variable class is 1-15, real-time class is 16-31

▪ Priority 0 is memory-management thread

▪ Queue for each priority

▪ If no run-able thread, runs idle thread

5.72 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Windows Priority Classes

▪ Win32 API identifies several priority classes to which a process can

belong

• REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS,

ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CL

ASS, BELOW_NORMAL_PRIORITY_CLASS,

IDLE_PRIORITY_CLASS

• All are variable except REALTIME

▪ A thread within a given priority class has a relative priority

• TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL,

BELOW_NORMAL, LOWEST, IDLE

▪ Priority class and relative priority combine to give numeric priority

▪ Base priority is NORMAL within the class

▪ If quantum expires, priority lowered, but never below base

71

72

37

5.73 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Windows Priority Classes (Cont.)

▪ If wait occurs, priority boosted depending on what was waited for

▪ Foreground window given 3x priority boost

▪ Windows 7 added user-mode scheduling (UMS)

• Applications create and manage threads independent of kernel

• For large number of threads, much more efficient

• UMS schedulers come from programming language libraries like

C++ Concurrent Runtime (ConcRT) framework

5.74 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Windows Priorities

73

74

38

5.75 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Algorithm Evaluation

5.76 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Algorithm Evaluation

▪ How to select CPU-scheduling algorithm for an OS?

▪ Determine criteria, then evaluate algorithms

▪ Deterministic modeling

• Type of analytic evaluation

• Takes a particular predetermined workload and defines the

performance of each algorithm for that workload

▪ Consider 5 processes arriving at time 0:

75

76

39

5.77 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Deterministic Evaluation

▪ For each algorithm, calculate minimum average waiting time

▪ Simple and fast, but requires exact numbers for input, applies

only to those inputs

• FCS is 28ms:

• Non-preemptive SFJ is 13ms:

• RR is 23ms:

5.78 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Queueing Models

▪ Describes the arrival of processes, and CPU and I/O bursts

probabilistically

• Commonly exponential, and described by mean

• Computes average throughput, utilization, waiting time, etc.

▪ Computer system described as network of servers, each with queue of

waiting processes

• Knowing arrival rates and service rates

• Computes utilization, average queue length, average wait time, etc.

77

78

40

5.79 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Little’s Formula

▪ n = average queue length

▪ W = average waiting time in queue

▪ λ = average arrival rate into queue

▪ Little’s law – in steady state, processes leaving queue must equal

processes arriving, thus:

n = λ x W

• Valid for any scheduling algorithm and arrival distribution

▪ For example, if on average 7 processes arrive per second, and normally

14 processes in queue, then average wait time per process = 2 seconds

5.80 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Simulations

▪ Queueing models limited

▪ Simulations more accurate

• Programmed model of computer system

• Clock is a variable

• Gather statistics indicating algorithm performance

• Data to drive simulation gathered via

 Random number generator according to probabilities

 Distributions defined mathematically or empirically

 Trace tapes record sequences of real events in real systems

79

80

41

5.81 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Evaluation of CPU Schedulers by Simulation

5.82 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implementation

▪ Even simulations have limited accuracy

▪ Just implement new scheduler and test in real systems

• High cost, high risk

• Environments vary

▪ Most flexible schedulers can be modified per-site or per-system

▪ Or APIs to modify priorities

▪ But again environments vary

81

82

42

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 5

83

1

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 6: Synchronization

Tools

6.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Outline

▪ Background (6.1)

▪ The Critical-Section Problem (6.2)

▪ Peterson’s Solution (6.3)

▪ Hardware Support for Synchronization (6.4)

▪ Mutex Locks (6.5)

▪ Semaphores (6.6)

▪ Monitors (6.7)

▪ Liveness (6.8)

1

2

2

6.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

▪ Describe the critical-section problem and illustrate a

race condition

▪ Illustrate hardware solutions to the critical-section

problem using memory barriers, compare-and-swap

operations, and atomic variables

▪ Demonstrate how mutex locks, semaphores,

monitors, and condition variables can be used to

solve the critical section problem

▪ Evaluate tools that solve the critical-section problem

in low-, Moderate-, and high-contention scenarios

6.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Background

3

4

3

6.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Background

▪ Processes can execute concurrently

• May be interrupted at any time, partially completing execution

▪ Concurrent access to shared data may result in data inconsistency

▪ Maintaining data consistency requires mechanisms to ensure the orderly

execution of cooperating processes

▪ We illustrated in chapter 4 the problem when we considered the Bounded

Buffer problem with use of a counter that is updated concurrently by the

producer and consumer,. Which lead to race condition.

6.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Race Condition

▪ Processes P0 and P1 are creating child processes using the fork()

system call

▪ Race condition on kernel variable next_available_pid which

represents the next available process identifier (pid)

▪ Unless there is a mechanism to prevent P0 and P1 from accessing the
variable next_available_pid the same pid could be assigned to two

different processes!

5

6

4

6.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

The Critical Section Problem

6.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Critical Section Problem

▪ Consider system of n processes {p0, p1, … pn-1}

▪ Each process has critical section segment of code

• Process may be changing common variables, updating table, writing

file, etc.

• When one process in critical section, no other may be in its critical

section

▪ Critical section problem is to design protocol to solve this

▪ Each process must ask permission to enter critical section in entry

section, may follow critical section with exit section, then remainder

section

7

8

5

6.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Critical Section

▪ General structure of process Pi

6.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Critical-Section Problem (Cont.)

1. Mutual Exclusion - If process Pi is executing in its critical section, then no

other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and there exist

some processes that wish to enter their critical section, then the selection of

the process that will enter the critical section next cannot be postponed

indefinitely

3. Bounded Waiting - A bound must exist on the number of times that other

processes are allowed to enter their critical sections after a process has

made a request to enter its critical section and before that request is granted

• Assume that each process executes at a nonzero speed

• No assumption concerning relative speed of the n processes

Requirements for solution to critical-section problem

9

10

6

6.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Interrupt-based Solution

▪ Entry section: disable interrupts

▪ Exit section: enable interrupts

▪ Will this solve the problem?

• What if the critical section is code that runs for an hour?

• Can some processes starve – never enter their critical section.

• What if there are two CPUs?

6.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Software Solution 1

▪ Two process solution

▪ Assume that the load and store machine-language instructions are

atomic; that is, cannot be interrupted

▪ The two processes share one variable:

• int turn;

▪ The variable turn indicates whose turn it is to enter the critical section

▪ initially, the value of turn is set to i

11

12

7

6.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Algorithm for Process Pi

while (true){

while (turn = = j);

/* critical section */

turn = j;

/* remainder section */

}

6.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Correctness of the Software Solution

▪ Mutual exclusion is preserved

Pi enters critical section only if:

turn = i

and turn cannot be both 0 and 1 at the same time

▪ What about the Progress requirement?

▪ What about the Bounded-waiting requirement?

13

14

8

6.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Peterson’s Solution

6.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Peterson’s Solution

▪ Two process solution

▪ Assume that the load and store machine-language instructions are

atomic; that is, cannot be interrupted

▪ The two processes share two variables:

• int turn;

• boolean flag[2]

▪ The variable turn indicates whose turn it is to enter the critical section

▪ The flag array is used to indicate if a process is ready to enter the
critical section.

• flag[i] = true implies that process Pi is ready!

15

16

9

6.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Algorithm for Process Pi

while (true){

flag[i] = true;

turn = j;

while (flag[j] && turn = = j)

;

/* critical section */

flag[i] = false;

/* remainder section */

}

6.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Correctness of Peterson’s Solution

▪ Provable that the three CS requirement are met:

1. Mutual exclusion is preserved

Pi enters CS only if:

either flag[j] = false or turn = i

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

17

18

10

6.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Peterson’s Solution and Modern Architecture

▪ Although useful for demonstrating an algorithm, Peterson’s Solution is not

guaranteed to work on modern architectures.

• To improve performance, processors and/or compilers may reorder

operations that have no dependencies

▪ Understanding why it will not work is useful for better understanding race

conditions.

▪ For single-threaded this is ok as the result will always be the same.

▪ For multithreaded the reordering may produce inconsistent or unexpected

results!

6.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Modern Architecture Example

▪ Two threads share the data:
boolean flag = false;

int x = 0;

▪ Thread 1 performs
while (!flag)

;

print x

▪ Thread 2 performs
x = 100;

flag = true

▪ What is the expected output?

100

19

20

11

6.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Modern Architecture Example (Cont.)

▪ However, since the variables flag and x are independent

of each other, the instructions:

flag = true;

x = 100;

for Thread 2 may be reordered

▪ If this occurs, the output may be 0!

6.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Peterson’s Solution Revisited

▪ The effects of instruction reordering in Peterson’s Solution

▪ This allows both processes to be in their critical section at the same

time!

▪ To ensure that Peterson’s solution will work correctly on modern

computer architecture we must use Memory Barrier.

21

22

12

6.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Hardware Support for Synchronization

6.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Memory Barrier

▪ Memory model are the memory guarantees a computer architecture

makes to application programs.

▪ Memory models may be either:

• Strongly ordered – where a memory modification of one processor is

immediately visible to all other processors.

• Weakly ordered – where a memory modification of one processor

may not be immediately visible to all other processors.

▪ A memory barrier is an instruction that forces any change in memory to

be propagated (made visible) to all other processors.

23

24

13

6.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Memory Barrier Instructions

▪ When a memory barrier instruction is performed, the system ensures

that all loads and stores are completed before any subsequent load or

store operations are performed.

▪ Therefore, even if instructions were reordered, the memory barrier

ensures that the store operations are completed in memory and visible to

other processors before future load or store operations are performed.

6.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Memory Barrier Example

▪ Returning to the example of slides 6.17 - 6.18

▪ We could add a memory barrier to the following instructions to ensure

Thread 1 outputs 100:

▪ Thread 1 now performs
while (!flag)

memory_barrier();

print x

▪ Thread 2 now performs
x = 100;

memory_barrier();

flag = true

▪ For Thread 1 we are guaranteed that that the value of flag is loaded

before the value of x.

▪ For Thread 2 we ensure that the assignment to x occurs before the

assignment flag.

25

26

14

6.27 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Synchronization Hardware

▪ Many systems provide hardware support for implementing the critical
section code.

▪ Uniprocessors – could disable interrupts

• Currently running code would execute without preemption

• Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable

▪ We will look at three forms of hardware support:

1. Hardware instructions

2. Atomic variables

6.28 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Hardware Instructions

▪ Special hardware instructions that allow us to either test-and-modify the

content of a word, or to swap the contents of two words atomically

(uninterruptedly.)

• Test-and-Set instruction

• Compare-and-Swap instruction

27

28

15

6.29 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

The test_and_set Instruction

▪ Definition

boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = true;

return rv:

}

▪ Properties

• Executed atomically

• Returns the original value of passed parameter

• Set the new value of passed parameter to true

6.30 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Solution Using test_and_set()

▪ Shared boolean variable lock, initialized to false

▪ Solution:

do {

while (test_and_set(&lock))

; /* do nothing */

/* critical section */

lock = false;

/* remainder section */

} while (true);

▪ Does it solve the critical-section problem?

29

30

16

6.31 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

The compare_and_swap Instruction

▪ Definition

int compare_and_swap(int *value, int expected, int new_value)

{

int temp = *value;

if (*value == expected)

*value = new_value;

return temp;

}

▪ Properties

• Executed atomically

• Returns the original value of passed parameter value

• Set the variable value the value of the passed parameter

new_value but only if *value == expected is true. That is, the

swap takes place only under this condition.

6.32 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Solution using compare_and_swap

▪ Shared integer lock initialized to 0;

▪ Solution:

while (true){

while (compare_and_swap(&lock, 0, 1) != 0)

; /* do nothing */

/* critical section */

lock = 0;

/* remainder section */

}

▪ Does it solve the critical-section problem?

31

32

17

6.33 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Bounded-waiting with compare-and-swap

while (true) {

waiting[i] = true;

key = 1;

while (waiting[i] && key == 1)

key = compare_and_swap(&lock,0,1);

waiting[i] = false;

/* critical section */

j = (i + 1) % n;

while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)

lock = 0;

else

waiting[j] = false;

/* remainder section */

}

6.34 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Atomic Variables

▪ Typically, instructions such as compare-and-swap are used as building

blocks for other synchronization tools.

▪ One tool is an atomic variable that provides atomic (uninterruptible)

updates on basic data types such as integers and booleans.

▪ For example:

• Let sequence be an atomic variable

• Let increment() be operation on the atomic variable sequence

• The Command:

increment(&sequence);

ensures sequence is incremented without interruption:

33

34

18

6.35 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Atomic Variables

▪ The increment() function can be implemented as follows:

void increment(atomic_int *v)

{

int temp;

do {

temp = *v;

}

while (temp != (compare_and_swap(v,temp,temp+1));

}

6.36 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Mutex Locks

35

36

19

6.37 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Mutex Locks

▪ Previous solutions are complicated and generally inaccessible to
application programmers

▪ OS designers build software tools to solve critical section problem

▪ Simplest is mutex lock

• Boolean variable indicating if lock is available or not

▪ Protect a critical section by

• First acquire() a lock

• Then release() the lock

▪ Calls to acquire() and release() must be atomic

• Usually implemented via hardware atomic instructions such as
compare-and-swap.

▪ But this solution requires busy waiting

• This lock therefore called a spinlock

6.38 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Solution to CS Problem Using Mutex Locks

while (true) {

acquire lock

critical section

release lock

remainder section

}

37

38

20

6.39 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Semaphores

6.40 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Semaphores

▪ Synchronization tool that provides more sophisticated ways
(than Mutex locks) for processes to synchronize their activities.

▪ Semaphore S – integer variable

▪ Can only be accessed via two indivisible (atomic) operations

• wait() and signal()

 Originally called P() and V()

▪ Definition of the wait() operation

wait(S) {

while (S <= 0)

; // busy wait

S--;

}

▪ Definition of the signal() operation

signal(S) {

S++;

}

39

40

21

6.41 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Semaphores (Cont.)

▪ Counting semaphore – integer value can range over an unrestricted

domain

▪ Binary semaphore – integer value can range only between 0 and 1

• Same as a mutex lock

▪ Can implement a counting semaphore S as a binary semaphore

▪ With semaphores we can solve various synchronization problems

6.42 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Semaphore Usage Example

▪ Solution to the CS Problem

• Create a semaphore “mutex” initialized to 1

wait(mutex);

CS

signal(mutex);

▪ Consider P1 and P2 that with two statements S1 and S2 and

the requirement that S1 to happen before S2

• Create a semaphore “synch” initialized to 0

P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

41

42

22

6.43 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Semaphore Implementation

▪ Must guarantee that no two processes can execute the wait() and

signal() on the same semaphore at the same time

▪ Thus, the implementation becomes the critical section problem where the

wait and signal code are placed in the critical section

▪ Could now have busy waiting in critical section implementation

• But implementation code is short

• Little busy waiting if critical section rarely occupied

▪ Note that applications may spend lots of time in critical sections and

therefore this is not a good solution

6.44 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Semaphore Implementation with no Busy waiting

▪ With each semaphore there is an associated waiting queue

▪ Each entry in a waiting queue has two data items:

• Value (of type integer)

• Pointer to next record in the list

▪ Two operations:

• block – place the process invoking the operation on the appropriate

waiting queue

• wakeup – remove one of processes in the waiting queue and place it

in the ready queue

43

44

23

6.45 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implementation with no Busy waiting (Cont.)

▪ Waiting queue

typedef struct {

int value;

struct process *list;

} semaphore;

6.46 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implementation with no Busy waiting (Cont.)

wait(semaphore *S) {

S->value--;

if (S->value < 0) {

add this process to S->list;

block();

}

}

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {

remove a process P from S->list;

wakeup(P);

}

}

45

46

24

6.47 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Problems with Semaphores

▪ Incorrect use of semaphore operations:

• signal(mutex) …. wait(mutex)

• wait(mutex) … wait(mutex)

• Omitting of wait (mutex) and/or signal (mutex)

▪ These – and others – are examples of what can occur when

semaphores and other synchronization tools are used

incorrectly.

6.48 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Monitors

47

48

25

6.49 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Monitors

▪ A high-level abstraction that provides a convenient and effective
mechanism for process synchronization

▪ Abstract data type, internal variables only accessible by code within
the procedure

▪ Only one process may be active within the monitor at a time

▪ Pseudocode syntax of a monitor:

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

procedure P2 (…) { …. }

procedure Pn (…) {……}

initialization code (…) { … }

}

6.50 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Schematic view of a Monitor

49

50

26

6.51 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Monitor Implementation Using Semaphores

▪ Variables

semaphore mutex

mutex = 1

▪ Each procedure P is replaced by

wait(mutex);

…

body of P;

…

signal(mutex);

▪ Mutual exclusion within a monitor is ensured

6.52 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Condition Variables

▪ condition x, y;

▪ Two operations are allowed on a condition variable:

• x.wait() – a process that invokes the operation is suspended

until x.signal()

• x.signal() – resumes one of processes (if any) that invoked

x.wait()

 If no x.wait() on the variable, then it has no effect on the

variable

51

52

27

6.53 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Monitor with Condition Variables

6.54 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Usage of Condition Variable Example

▪ Consider P1 and P2 that that need to execute two statements S1 and

S2 and the requirement that S1 to happen before S2

• Create a monitor with two procedures F1 and F2 that are

invoked by P1 and P2 respectively

• One condition variable “x” initialized to 0

• One Boolean variable “done”

• F1:

S1;

done = true;

x.signal();

• F2:

if done = false

x.wait()

S2;

53

54

28

6.55 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Monitor Implementation Using Semaphores

▪ Variables

semaphore mutex; // (initially = 1)

semaphore next; // (initially = 0)

int next_count = 0; // number of processes waiting

inside the monitor

▪ Each function P will be replaced by

wait(mutex);

…

body of P;

…

if (next_count > 0)

signal(next)

else

signal(mutex);

▪ Mutual exclusion within a monitor is ensured

6.56 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implementation – Condition Variables

▪ For each condition variable x, we have:

semaphore x_sem; // (initially = 0)

int x_count = 0;

▪ The operation x.wait() can be implemented as:

x_count++;

if (next_count > 0)

signal(next);

else

signal(mutex);

wait(x_sem);

x_count--;

55

56

29

6.57 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implementation (Cont.)

▪ The operation x.signal() can be implemented as:

if (x_count > 0) {

next_count++;

signal(x_sem);

wait(next);

next_count--;

}

6.58 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Resuming Processes within a Monitor

▪ If several processes queued on condition variable x,

and x.signal() is executed, which process should

be resumed?

▪ FCFS frequently not adequate

▪ Use the conditional-wait construct of the form

x.wait(c)

where:

• c is an integer (called the priority number)

• The process with lowest number (highest priority) is

scheduled next

57

58

30

6.59 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

▪ Allocate a single resource among competing processes using priority
numbers that specifies the maximum time a process plans to use the
resource

R.acquire(t);

...

access the resurce;

...

R.release;

▪ Where R is an instance of type ResourceAllocator

Single Resource allocation

6.60 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

▪ Allocate a single resource among competing processes using priority
numbers that specifies the maximum time a process plans to use the
resource

▪ The process with the shortest time is allocated the resource first

▪ Let R is an instance of type ResourceAllocator (next slide)

▪ Access to ResourceAllocator is done via:

R.acquire(t);

...

access the resurce;

...

R.release;

▪ Where t is the maximum time a process plans to use the resource

Single Resource allocation

59

60

31

6.61 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

A Monitor to Allocate Single Resource

monitor ResourceAllocator

{

boolean busy;

condition x;

void acquire(int time) {

if (busy)

x.wait(time);

busy = true;

}

void release() {

busy = false;

x.signal();

}

initialization code() {

busy = false;

}

}

6.62 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Single Resource Monitor (Cont.)

▪ Usage:

acquire

...

release

▪ Incorrect use of monitor operations

• release() … acquire()

• acquire() … acquire())

• Omitting of acquire() and/or release()

61

62

32

6.63 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Liveness

6.64 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Liveness

▪ Processes may have to wait indefinitely while trying to acquire a

synchronization tool such as a mutex lock or semaphore.

▪ Waiting indefinitely violates the progress and bounded-waiting criteria

discussed at the beginning of this chapter.

▪ Liveness refers to a set of properties that a system must satisfy to ensure

processes make progress.

▪ Indefinite waiting is an example of a liveness failure.

63

64

33

6.65 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

▪ Deadlock – two or more processes are waiting indefinitely for an
event that can be caused by only one of the waiting processes

▪ Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S); signal(Q);

signal(Q); signal(S);

▪ Consider if P0 executes wait(S) and P1 wait(Q). When P0 executes
wait(Q), it must wait until P1 executes signal(Q)

▪ However, P1 is waiting until P0 execute signal(S).

▪ Since these signal() operations will never be executed, P0 and P1 are
deadlocked.

Liveness

6.66 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

▪ Other forms of deadlock:

▪ Starvation – indefinite blocking

• A process may never be removed from the semaphore queue in
which it is suspended

▪ Priority Inversion – Scheduling problem when lower-priority process
holds a lock needed by higher-priority process

• Solved via priority-inheritance protocol

Liveness

65

66

34

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 6

67

1

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 7: Synchronization

Examples

7.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Outline

▪ Classical Problems of Synchronization (7.1)

▪ Synchronization within the Kernel (7.2)

▪ POSIX Synchronization (7.3)

1

2

2

7.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Classical Problems of Synchronization

7.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Classical Problems of Synchronization

▪ Classical problems used to test newly-proposed synchronization schemes

• Bounded-Buffer Problem

• Readers and Writers Problem

• Dining-Philosophers Problem

3

4

3

7.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Bounded-Buffer Problem

▪ n buffers, each can hold one item

▪ Semaphore mutex initialized to the value 1

▪ Semaphore full initialized to the value 0

▪ Semaphore empty initialized to the value n

7.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Bounded Buffer Problem (Cont.)

▪ The structure of the producer process

while (true) {

...

/* produce an item in next_produced */

...

wait(empty);

wait(mutex);

...

/* add next produced to the buffer */

...

signal(mutex);

signal(full);

}

5

6

4

7.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Bounded Buffer Problem (Cont.)

▪ The structure of the consumer process

while (true) {

wait(full);

wait(mutex);

...

/* remove an item from buffer to next_consumed */

...

signal(mutex);

signal(empty);

...

/* consume the item in next consumed */

...

}

7.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Readers-Writers Problem

▪ A data set is shared among a number of concurrent processes

• Readers – only read the data set; they do not perform any

updates

• Writers – can both read and write

▪ Problem – allow multiple readers to read at the same time

• Only one single writer can access the shared data at the same

time

▪ Several variations of how readers and writers are considered – all

involve some form of priorities

7

8

5

7.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Readers-Writers Problem (Cont.)

▪ Shared Data

• Data set

• Semaphore rw_mutex initialized to 1

• Semaphore mutex initialized to 1

• Integer read_count initialized to 0

7.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Readers-Writers Problem (Cont.)

▪ The structure of a writer process

while (true) {

wait(rw_mutex);

...

/* writing is performed */

...

signal(rw_mutex);

}

9

10

6

7.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Readers-Writers Problem (Cont.)

▪ The structure of a reader process

while (true){

wait(mutex);

read_count++;

if (read_count == 1) /* first reader */

wait(rw_mutex);

signal(mutex);

...

/* reading is performed */

...

wait(mutex);

read count--;

if (read_count == 0) /* last reader */

signal(rw_mutex);

signal(mutex);

}

7.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Readers-Writers Problem Variations

▪ The solution in previous slide can result in a situation where

a writer process never writes. It is referred to as the “First

reader-writer” problem.

▪ The “Second reader-writer” problem is a variation the first

reader-writer problem that state:

• Once a writer is ready to write, no “newly arrived

reader” is allowed to read.

▪ Both the first and second may result in starvation. leading to

even more variations

▪ Problem is solved on some systems by kernel providing

reader-writer locks

11

12

7

7.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Dining-Philosophers Problem

▪ N philosophers’ sit at a round table with a bowel of rice in the middle.

▪ They spend their lives alternating thinking and eating.

▪ They do not interact with their neighbors.

▪ Occasionally try to pick up 2 chopsticks (one at a time) to eat from bowl

• Need both to eat, then release both when done

▪ In the case of 5 philosophers, the shared data

 Bowl of rice (data set)

 Semaphore chopstick [5] initialized to 1

7.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Dining-Philosophers Problem Algorithm

▪ Semaphore Solution

▪ The structure of Philosopher i :

while (true){

wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

/* eat for awhile */

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

/* think for awhile */

}

▪ What is the problem with this algorithm?

13

14

8

7.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Monitor Solution to Dining Philosophers

monitor DiningPhilosophers

{

enum { THINKING; HUNGRY, EATING) state [5] ;

condition self [5];

void pickup (int i) {

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self[i].wait;

}

void putdown (int i) {

state[i] = THINKING;

// test left and right neighbors

test((i + 4) % 5);

test((i + 1) % 5);

}

7.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Solution to Dining Philosophers (Cont.)

void test (int i) {

if ((state[(i + 4) % 5] != EATING) &&

(state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;

self[i].signal () ;

}

}

initialization_code() {

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}

15

16

9

7.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

▪ Each philosopher “i” invokes the operations pickup() and
putdown() in the following sequence:

DiningPhilosophers.pickup(i);

/** EAT **/

DiningPhilosophers.putdown(i);

▪ No deadlock, but starvation is possible

Solution to Dining Philosophers (Cont.)

7.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Synchronization within the Kernel

17

18

10

7.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Kernel Synchronization - Windows

▪ Uses interrupt masks to protect access to global resources on

uniprocessor systems

▪ Uses spinlocks on multiprocessor systems

• Spinlocking-thread will never be preempted

▪ Also provides dispatcher objects user-land which may act mutexes,

semaphores, events, and timers

• Events

 An event acts much like a condition variable

• Timers notify one or more thread when time expired

• Dispatcher objects either signaled-state (object available) or non-

signaled state (thread will block)

7.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Kernel Synchronization - Windows

▪ Mutex dispatcher object

19

20

11

7.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Linux Synchronization

▪ Linux:

• Prior to kernel Version 2.6, disables interrupts to implement

short critical sections

• Version 2.6 and later, fully preemptive

▪ Linux provides:

• Semaphores

• Atomic integers

• Spinlocks

• Reader-writer versions of both

▪ On single-CPU system, spinlocks replaced by enabling and

disabling kernel preemption

7.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Linux Synchronization

▪ Atomic variables

atomic_t is the type for atomic integer

▪ Consider the variables

atomic_t counter;

int value;

21

22

12

7.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

POSIX Synchronization

7.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

POSIX Synchronization

▪ POSIX API provides

• mutex locks

• semaphores

• condition variable

▪ Widely used on UNIX, Linux, and macOS

23

24

13

7.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

POSIX Mutex Locks

▪ Creating and initializing the lock

▪ Acquiring and releasing the lock

7.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

POSIX Semaphores

▪ POSIX provides two versions – named and unnamed.

▪ Named semaphores can be used by unrelated processes, unnamed

cannot.

25

26

14

7.27 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

POSIX Named Semaphores

▪ Creating an initializing the semaphore:

▪ Another process can access the semaphore by referring to its name SEM.

▪ Acquiring and releasing the semaphore:

7.28 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

POSIX Unnamed Semaphores

▪ Creating an initializing the semaphore:

▪ Acquiring and releasing the semaphore:

27

28

15

7.29 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

POSIX Condition Variables

▪ Since POSIX is typically used in C/C++ and these languages do not

provide a monitor, POSIX condition variables are associated with a

POSIX mutex lock to provide mutual exclusion: Creating and initializing

the condition variable:

7.30 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

POSIX Condition Variables

▪ Thread waiting for the condition a == b to become true:

▪ Thread signaling another thread waiting on the condition variable:

29

30

16

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 7

31

1

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 8: Deadlocks

8.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Outline

▪ System Model (8.1)

▪ Deadlock in Multithreaded Applications (8.2)

▪ Deadlock Characterization (8.3)

▪ Methods for Handling Deadlocks (8.4)

1

2

2

8.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter Objectives

▪ Illustrate how deadlock can occur when mutex locks are used

▪ Define the four necessary conditions that characterize deadlock

▪ Identify a deadlock situation in a resource allocation graph

8.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

System Model

3

4

3

8.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

System Model

▪ System consists of resources

▪ Resource types R1, R2, . . ., Rm

• CPU cycles, memory space, I/O devices

▪ Each resource type Ri has Wi instances.

▪ Each process utilizes a resource as follows:

• request : The thread requests the resource. If the request

cannot be granted then the requesting thread must wait until it

can acquire the resource.

• use : The thread can operate on the resource.

• Release: The thread releases the resource.

8.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Deadlock with Semaphores

▪ Data:

• A semaphore S1 initialized to 1

• A semaphore S2 initialized to 1

▪ Two processes P1 and P2

▪ P1:

wait(s1)

wait(s2)

▪ P2:

wait(s2)

wait(s1)

5

6

4

8.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Deadlock in Multithreaded Applications

8.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Deadlock in Pthread Program

▪ The pthread_mutex_init() function initializes an unlocked mutex.

▪ Mutex locks are acquired and released using pthread_mutex_lock() and

pthread_mutex_unlock(), respectively.

▪ If a thread attempts to acquire a locked mutex, the call to

pthread_mutex_lock() blocks the thread until the owner of the mutex lock

invokes pthread_mutex_unlock().

▪ Two mutex locks are created and initialized in the following code example:

7

8

5

8.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Deadlock in Pthread Program (Cont.)

▪ Next, two threads: thread_one

and thread_two are created.

▪ Both these threads have

access to both mutex locks.

▪ thread_one and thread_two

run in the functions

do_work_one() and

do_work_two(), respectively.

▪ thread_one attempts to

acquire the mutex locks in the

order (1) first mutex, (2)

second mutex.

▪ At the same time, thread_two

attempts to acquire the mutex

locks in the order (1) second

mutex, (2) first mutex.

8.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Deadlock in Pthread Program (Cont.)

▪ Deadlock is possible if thread one acquires first mutex while thread two

acquires second mutex.

▪ Note that, even though deadlock is possible, it will not occur if thread one

can acquire and release the mutex locks for first mutex and second mutex

before thread two attempts to acquire the locks.

▪ The order in which the threads run depends on how they are scheduled by

the CPU scheduler.

9

10

6

8.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Livelock

▪ Livelock is another form of liveness failure.

▪ Livelock occurs when a thread continuously attempts an action that fails.

▪ Livelock typically occurs when threads retry failing operations at the same

time.

• It thus can generally be avoided by having each thread retry the failing

operation at random times.

▪ Livelock can be illustrated with the Pthreads pthread_mutex_trylock()

function, which attempts to acquire a mutex lock without blocking.

8.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Livelock (Example)

11

12

7

8.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Deadlock Characterization

8.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Deadlock Characterization

▪ Mutual exclusion: only one process at a time can use a resource

▪ Hold and wait: a process holding at least one resource is waiting to

acquire additional resources held by other processes

▪ No preemption: a resource can be released only voluntarily by the

process holding it, after that process has completed its task

▪ Circular wait: there exists a set {P0, P1, …, Pn} of waiting processes

such that P0 is waiting for a resource that is held by P1, P1 is waiting for a

resource that is held by P2, …, Pn–1 is waiting for a resource that is held

by Pn, and Pn is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously.

13

14

8

8.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Resource-Allocation Graph

▪ V is partitioned into two types:

• P = {P1, P2, …, Pn}, the set consisting of all the

processes in the system

• R = {R1, R2, …, Rm}, the set consisting of all resource

types in the system

▪ request edge – directed edge Pi → Rj

▪ assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E.

8.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Resource Allocation Graph Example

▪ One instance of R1

▪ Two instances of R2

▪ One instance of R3

▪ Three instance of R4

▪ T1 holds one instance of R2 and is

waiting for an instance of R1

▪ T2 holds one instance of R1, one

instance of R2, and is waiting for an

instance of R3

▪ T3 holds one instance of R3

15

16

9

8.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Resource Allocation Graph with a Deadlock

8.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Graph with a Cycle But no Deadlock

17

18

10

8.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Basic Facts

▪ If graph contains no cycles  no deadlock

▪ If graph contains a cycle 

• if only one instance per resource type, then deadlock

• if several instances per resource type, possibility of deadlock

8.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Methods for Handling Deadlocks

19

20

11

8.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Methods for Handling Deadlocks

▪ Ensure that the system will never enter a deadlock state:

• Deadlock prevention

 Provides a set of methods to ensure that at least one of the

necessary conditions cannot hold.

• Deadlock avoidance

 Requires that the operating system be given additional

information in advance concerning which resources a thread

will request and use during its lifetime.

▪ Allow the system to enter a deadlock state and then recover

▪ Ignore the problem and pretend that deadlocks never occur in the

system.

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 8

21

22

1

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 9: Main Memory

9.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 9: Memory Management

▪ Background (9.1)

▪ Contiguous Memory Allocation (9.2)

▪ Paging (9.3)

▪ Structure of the Page Table (9.4)

▪ Swapping (9.5)

▪ Example: The Intel 32 and 64-bit Architectures (9.6)

1

2

2

9.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

▪ To provide a detailed description of various ways of organizing memory

hardware

▪ To discuss various memory-management techniques,

▪ To provide a detailed description of the Intel Pentium, which supports

both pure segmentation and segmentation with paging

9.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Background

3

4

3

9.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Background

▪ Program must be brought (from disk) into memory and placed within a

process for it to be run

▪ Main memory and registers are only storage CPU can access directly

▪ Memory unit only sees a stream of:

• addresses + read requests, or

• address + data and write requests

▪ Register access is done in one CPU clock (or less)

▪ Main memory can take many cycles, causing a stall

▪ Cache sits between main memory and CPU registers

▪ Protection of memory required to ensure correct operation

9.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Protection

▪ Need to censure that a process can access only access those addresses

in its address space.

▪ We can provide this protection by using a pair of base and limit registers

define the logical address space of a process

5

6

4

9.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Hardware Address Protection

▪ CPU must check every memory access generated in user mode to be

sure it is between base and limit for that user

▪ The instructions to loading the base and limit registers are privileged

9.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Address Binding

▪ Programs on disk, ready to be brought into memory to execute form an

input queue

• Without support, must be loaded into address 0000

▪ Inconvenient to have first user process physical address always at 0000

• How can it not be?

▪ Addresses represented in different ways at different stages of a program’s

life

• Source code addresses usually symbolic

• Compiled code addresses bind to relocatable addresses

 i.e., “14 bytes from beginning of this module”

• Linker or loader will bind relocatable addresses to absolute addresses

 i.e., 74014

• Each binding maps one address space to another

7

8

5

9.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Binding of Instructions and Data to Memory

▪ Address binding of instructions and data to memory addresses can happen

at three different stages

• Compile time: If memory location known a priori, absolute code can

be generated; must recompile code if starting location changes

• Load time: Must generate relocatable code if memory location is not

known at compile time

• Execution time: Binding delayed until run time if the process can be

moved during its execution from one memory segment to another

 Need hardware support for address maps (e.g., base and limit

registers)

9.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multistep Processing of a User Program

9

10

6

9.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Logical vs. Physical Address Space

▪ The concept of a logical address space that is bound to a separate

physical address space is central to proper memory management

• Logical address – generated by the CPU; also referred to as virtual

address

• Physical address – address seen by the memory unit

▪ Logical and physical addresses are the same in compile-time and load-

time address-binding schemes; logical (virtual) and physical addresses

differ in execution-time address-binding scheme

▪ Logical address space is the set of all logical addresses generated by a

program

▪ Physical address space is the set of all physical addresses generated by

a program

9.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Memory-Management Unit (MMU)

▪ Hardware device that at run time maps virtual to physical address

▪ Many methods possible, covered in the rest of this chapter

11

12

7

9.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Memory-Management Unit (Cont.)

▪ Consider simple scheme. which is a generalization of the base-register

scheme.

▪ The base register now called relocation register

▪ The value in the relocation register is added to every address generated

by a user process at the time it is sent to memory

▪ The user program deals with logical addresses; it never sees the real

physical addresses

• Execution-time binding occurs when reference is made to location in

memory

• Logical address bound to physical addresses

9.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Memory-Management Unit (Cont.)

▪ Consider simple scheme. which is a generalization of the base-register

scheme.

▪ The base register now called relocation register

▪ The value in the relocation register is added to every address generated by a

user process at the time it is sent to memory

13

14

8

9.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Dynamic Loading

▪ The entire program does need to be in memory to execute

▪ Routine is not loaded until it is called

▪ Better memory-space utilization; unused routine is never loaded

▪ All routines kept on disk in relocatable load format

▪ Useful when large amounts of code are needed to handle infrequently

occurring cases

▪ No special support from the operating system is required

• Implemented through program design

• OS can help by providing libraries to implement dynamic loading

9.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Dynamic Linking

▪ Static linking – system libraries and program code combined by the

loader into the binary program image

▪ Dynamic linking –linking postponed until execution time

▪ Small piece of code, stub, used to locate the appropriate memory-resident

library routine

▪ Stub replaces itself with the address of the routine, and executes the

routine

▪ Operating system checks if routine is in processes’ memory address

• If not in address space, add to address space

▪ Dynamic linking is particularly useful for libraries

▪ System also known as shared libraries

▪ Consider applicability to patching system libraries

• Versioning may be needed

15

16

9

9.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Contiguous Memory Allocation

9.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Contiguous Allocation

▪ Main memory must support both OS and user processes

▪ Limited resource, must allocate efficiently

▪ Contiguous allocation is one early method

▪ Main memory usually into two partitions:

• Resident operating system, usually held in low memory with interrupt

vector

• User processes then held in high memory

• Each process contained in single contiguous section of memory

17

18

10

9.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Contiguous Allocation (Cont.)

▪ Relocation registers used to protect user processes from each other, and

from changing operating-system code and data

• Base register contains value of smallest physical address

• Limit register contains range of logical addresses – each logical

address must be less than the limit register

• MMU maps logical address dynamically

• Can then allow actions such as kernel code being transient and

kernel changing size

9.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Hardware Support for Relocation and Limit Registers

19

20

11

9.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Variable Partition

▪ Multiple-partition allocation

• Degree of multiprogramming limited by number of partitions

• Variable-partition sizes for efficiency (sized to a given process’ needs)

• Hole – block of available memory; holes of various size are scattered

throughout memory

• When a process arrives, it is allocated memory from a hole large enough to

accommodate it

• Process exiting frees its partition, adjacent free partitions combined

• Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

9.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Dynamic Storage-Allocation Problem

▪ First-fit: Allocate the first hole that is big enough

▪ Best-fit: Allocate the smallest hole that is big enough; must search
entire list, unless ordered by size

• Produces the smallest leftover hole

▪ Worst-fit: Allocate the largest hole; must also search entire list

• Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

First-fit and best-fit better than worst-fit in terms of speed and storage

utilization

21

22

12

9.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Fragmentation

▪ External Fragmentation – total memory space exists to satisfy a request,

but it is not contiguous

▪ Internal Fragmentation – allocated memory may be slightly larger than

requested memory; this size difference is memory internal to a partition,

but not being used

▪ First fit analysis reveals that given N blocks allocated, 0.5 N blocks lost to

fragmentation

• 1/3 may be unusable -> 50-percent rule

9.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Fragmentation (Cont.)

▪ Reduce external fragmentation by compaction

• Shuffle memory contents to place all free memory together in one

large block

• Compaction is possible only if relocation is dynamic, and is done at

execution time

• I/O problem

 Latch job in memory while it is involved in I/O

 Do I/O only into OS buffers

▪ Now consider that backing store has same fragmentation problems

23

24

13

9.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Paging

9.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Paging

▪ Physical address space of a process can be noncontiguous; process is

allocated physical memory whenever the latter is available

• Avoids external fragmentation

• Avoids problem of varying sized memory chunks

▪ Divide physical memory into fixed-sized blocks called frames

• Size is power of 2, between 512 bytes and 16 Mbytes

▪ Divide logical memory into blocks of same size called pages

▪ Keep track of all free frames

▪ To run a program of size N pages, need to find N free frames and load

program

▪ Set up a page table to translate logical to physical addresses

▪ Backing store likewise split into pages

▪ Still have Internal fragmentation

25

26

14

9.27 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Address Translation Scheme

▪ Address generated by CPU is divided into:

• Page number (p) – used as an index into a page table which

contains base address of each page in physical memory

• Page offset (d) – combined with base address to define the physical

memory address that is sent to the memory unit

• For given logical address space 2m and page size 2n

page number page offset

p d

m -n n

9.28 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Paging Hardware

27

28

15

9.29 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Paging Model of Logical and Physical Memory

9.30 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Paging Example

▪ Logical address: n = 2 and m = 4. Using a page size of 4 bytes and a

physical memory of 32 bytes (8 pages)

29

30

16

9.31 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Paging -- Calculating internal fragmentation

▪ Page size = 2,048 bytes

▪ Process size = 72,766 bytes

▪ 35 pages + 1,086 bytes

▪ Internal fragmentation of 2,048 - 1,086 = 962 bytes

▪ Worst case fragmentation = 1 frame – 1 byte

▪ On average fragmentation = 1 / 2 frame size

▪ So small frame sizes desirable?

▪ But each page table entry takes memory to track

▪ Page sizes growing over time

• Solaris supports two page sizes – 8 KB and 4 MB

9.32 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Free Frames

Before allocation After allocation

31

32

17

9.33 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implementation of Page Table

▪ Page table is kept in main memory

• Page-table base register (PTBR) points to the page table

• Page-table length register (PTLR) indicates size of the page table

▪ In this scheme every data/instruction access requires two memory accesses

• One for the page table and one for the data / instruction

▪ The two-memory access problem can be solved by the use of a special fast-

lookup hardware cache called translation look-aside buffers (TLBs) (also

called associative memory).

9.34 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Translation Look-Aside Buffer

▪ Some TLBs store address-space identifiers (ASIDs) in each TLB entry

– uniquely identifies each process to provide address-space protection for

that process

• Otherwise need to flush at every context switch

▪ TLBs typically small (64 to 1,024 entries)

▪ On a TLB miss, value is loaded into the TLB for faster access next time

• Replacement policies must be considered

• Some entries can be wired down for permanent fast access

33

34

18

9.35 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Hardware

▪ Associative memory – parallel search

▪ Address translation (p, d)

• If p is in associative register, get frame # out

• Otherwise get frame # from page table in memory

Page # Frame #

9.36 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Paging Hardware With TLB

35

36

19

9.37 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Effective Access Time

▪ Hit ratio – percentage of times that a page number is found in the TLB

▪ An 80% hit ratio means that we find the desired page number in the TLB
80% of the time.

▪ Suppose that 10 nanoseconds to access memory.

• If we find the desired page in TLB then a mapped-memory access take
10 ns

• Otherwise we need two memory access so it is 20 ns

▪ Effective Access Time (EAT)

EAT = 0.80 x 10 + 0.20 x 20 = 12 nanoseconds

implying 20% slowdown in access time

▪ Consider amore realistic hit ratio of 99%,

EAT = 0.99 x 10 + 0.01 x 20 = 10.1ns

implying only 1% slowdown in access time.

9.38 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Memory Protection

▪ Memory protection implemented by associating protection bit with each

frame to indicate if read-only or read-write access is allowed

• Can also add more bits to indicate page execute-only, and so on

▪ Valid-invalid bit attached to each entry in the page table:

• “valid” indicates that the associated page is in the process’ logical

address space, and is thus a legal page

• “invalid” indicates that the page is not in the process’ logical address

space

• Or use page-table length register (PTLR)

▪ Any violations result in a trap to the kernel

37

38

20

9.39 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Valid (v) or Invalid (i) Bit In A Page Table

9.40 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Shared Pages

▪ Shared code

• One copy of read-only (reentrant) code shared among processes (i.e.,

text editors, compilers, window systems)

• Similar to multiple threads sharing the same process space

• Also useful for interprocess communication if sharing of read-write

pages is allowed

▪ Private code and data

• Each process keeps a separate copy of the code and data

• The pages for the private code and data can appear anywhere in the

logical address space

39

40

21

9.41 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Shared Pages Example

9.42 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Structure of the Page Table

41

42

22

9.43 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Structure of the Page Table

▪ Memory structures for paging can get huge using straight-forward

methods

• Consider a 32-bit logical address space as on modern computers

• Page size of 4 KB (212)

• Page table would have 1 million entries (232 / 212)

• If each entry is 4 bytes ➔ each process 4 MB of physical address

space for the page table alone

 Don’t want to allocate that contiguously in main memory

• One simple solution is to divide the page table into smaller units

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables

9.44 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Hierarchical Page Tables

▪ Break up the logical address space into multiple page tables

▪ A simple technique is a two-level page table

▪ We then page the page table

43

44

23

9.45 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Two-Level Paging Example

▪ A logical address (on 32-bit machine with 4K page size) is divided into:

• a page number consisting of 20 bits

• a page offset consisting of 12 bits

▪ Since the page table is paged, the page number is further divided into:

• a 10-bit page number

• a 10-bit page offset

▪ Thus, a logical address is as follows:

▪ where p1 is an index into the outer page table, and p2 is the displacement
within the page of the inner page table

▪ Known as forward-mapped page table

9.46 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Address-Translation Scheme

45

46

24

9.47 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

64-bit Logical Address Space

▪ Even two-level paging scheme not sufficient

▪ If page size is 4 KB (212)

• Then page table has 252 entries

• If two level scheme, inner page tables could be 210 4-byte entries

• Address would look like

• Outer page table has 242 entries or 244 bytes

• One solution is to add a 2nd outer page table

• But in the following example the 2nd outer page table is still 234 bytes

in size

 And possibly 4 memory access to get to one physical memory

location

9.48 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Three-level Paging Scheme

47

48

25

9.49 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Hashed Page Tables

▪ Common in address spaces > 32 bits

▪ The virtual page number is hashed into a page table

• This page table contains a chain of elements hashing to the same

location

▪ Each element contains (1) the virtual page number (2) the value of the

mapped page frame (3) a pointer to the next element

▪ Virtual page numbers are compared in this chain searching for a match

• If a match is found, the corresponding physical frame is extracted

▪ Variation for 64-bit addresses is clustered page tables

• Similar to hashed but each entry refers to several pages (such as 16)

rather than 1

• Especially useful for sparse address spaces (where memory

references are non-contiguous and scattered)

9.50 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Hashed Page Table

49

50

26

9.51 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Inverted Page Table

▪ Rather than each process having a page table and keeping track of all

possible logical pages, track all physical pages

▪ One entry for each real page of memory

▪ Entry consists of the virtual address of the page stored in that real memory

location, with information about the process that owns that page

▪ Decreases memory needed to store each page table, but increases time

needed to search the table when a page reference occurs

▪ Use hash table to limit the search to one — or at most a few — page-table

entries

• TLB can accelerate access

▪ But how to implement shared memory?

• One mapping of a virtual address to the shared physical address

9.52 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Inverted Page Table Architecture

51

52

27

9.53 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Oracle SPARC Solaris

▪ Consider modern, 64-bit operating system example with tightly

integrated HW

• Goals are efficiency, low overhead

▪ Based on hashing, but more complex

▪ Two hash tables

• One kernel and one for all user processes

• Each maps memory addresses from virtual to physical memory

• Each entry represents a contiguous area of mapped virtual

memory,

 More efficient than having a separate hash-table entry for each

page

• Each entry has base address and span (indicating the number of

pages the entry represents)

9.54 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Oracle SPARC Solaris (Cont.)

▪ TLB holds translation table entries (TTEs) for fast hardware lookups

• A cache of TTEs reside in a translation storage buffer (TSB)

 Includes an entry per recently accessed page

▪ Virtual address reference causes TLB search

• If miss, hardware walks the in-memory TSB looking for the TTE

corresponding to the address

 If match found, the CPU copies the TSB entry into the TLB and

translation completes

 If no match found, kernel interrupted to search the hash table

– The kernel then creates a TTE from the appropriate hash table

and stores it in the TSB, Interrupt handler returns control to the

MMU, which completes the address translation.

53

54

28

9.55 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Swapping

9.56 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Swapping

▪ A process can be swapped temporarily out of memory to a backing store,

and then brought back into memory for continued execution

• Total physical memory space of processes can exceed physical

memory

▪ Backing store – fast disk large enough to accommodate copies of all

memory images for all users; must provide direct access to these memory

images

▪ Roll out, roll in – swapping variant used for priority-based scheduling

algorithms; lower-priority process is swapped out so higher-priority

process can be loaded and executed

▪ Major part of swap time is transfer time; total transfer time is directly

proportional to the amount of memory swapped

▪ System maintains a ready queue of ready-to-run processes which have

memory images on disk

55

56

29

9.57 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Swapping (Cont.)

▪ Does the swapped out process need to swap back in to same physical

addresses?

▪ Depends on address binding method

• Plus consider pending I/O to / from process memory space

▪ Modified versions of swapping are found on many systems (i.e., UNIX,

Linux, and Windows)

• Swapping normally disabled

• Started if more than threshold amount of memory allocated

• Disabled again once memory demand reduced below threshold

9.58 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Schematic View of Swapping

57

58

30

9.59 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Context Switch Time including Swapping

▪ If next processes to be put on CPU is not in memory, need to swap out a

process and swap in target process

▪ Context switch time can then be very high

▪ 100MB process swapping to hard disk with transfer rate of 50MB/sec

• Swap out time of 2000 ms

• Plus swap in of same sized process

• Total context switch swapping component time of 4000ms (4

seconds)

▪ Can reduce if reduce size of memory swapped – by knowing how much

memory really being used

• System calls to inform OS of memory use via request_memory()

and release_memory()

9.60 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Context Switch Time and Swapping (Cont.)

▪ Other constraints as well on swapping

• Pending I/O – can’t swap out as I/O would occur to wrong process

• Or always transfer I/O to kernel space, then to I/O device

 Known as double buffering, adds overhead

▪ Standard swapping not used in modern operating systems

• But modified version common

 Swap only when free memory extremely low

59

60

31

9.61 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Swapping on Mobile Systems

▪ Not typically supported

• Flash memory based

 Small amount of space

 Limited number of write cycles

 Poor throughput between flash memory and CPU on mobile

platform

▪ Instead use other methods to free memory if low

• iOS asks apps to voluntarily relinquish allocated memory

 Read-only data thrown out and reloaded from flash if needed

 Failure to free can result in termination

• Android terminates apps if low free memory, but first writes

application state to flash for fast restart

• Both OSes support paging as discussed below

9.62 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Swapping with Paging

61

62

32

9.63 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Example: The Intel 32 and 64-bit Architectures

▪ Dominant industry chips

▪ Pentium CPUs are 32-bit and called IA-32 architecture

▪ Current Intel CPUs are 64-bit and called IA-64 architecture

▪ Many variations in the chips, cover the main ideas here

9.64 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Example: The Intel IA-32 Architecture

▪ Supports both segmentation and segmentation with paging

• Each segment can be 4 GB

• Up to 16 K segments per process

• Divided into two partitions

 First partition of up to 8 K segments are private to process (kept in

local descriptor table (LDT))

 Second partition of up to 8K segments shared among all processes

(kept in global descriptor table (GDT))

63

64

33

9.65 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Example: The Intel IA-32 Architecture (Cont.)

▪ CPU generates logical address

• Selector given to segmentation unit

 Which produces linear addresses

• Linear address given to paging unit

 Which generates physical address in main memory

 Paging units form equivalent of MMU

 Pages sizes can be 4 KB or 4 MB

9.66 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Logical to Physical Address Translation in IA-32

65

66

34

9.67 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Intel IA-32 Segmentation

9.68 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Intel IA-32 Paging Architecture

67

68

35

9.69 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Intel IA-32 Page Address Extensions

▪ 32-bit address limits led Intel to create page address extension (PAE),

allowing 32-bit apps access to more than 4GB of memory space

• Paging went to a 3-level scheme

• Top two bits refer to a page directory pointer table

• Page-directory and page-table entries moved to 64-bits in size

• Net effect is increasing address space to 36 bits – 64GB of

physical memory

9.70 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Intel x86-64

▪ Current generation Intel x86 architecture

▪ 64 bits is ginormous (> 16 exabytes)

▪ In practice only implement 48 bit addressing

• Page sizes of 4 KB, 2 MB, 1 GB

• Four levels of paging hierarchy

▪ Can also use PAE so virtual addresses are 48 bits and physical

addresses are 52 bits

69

70

36

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 9

71

1

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 10: Virtual Memory

10.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 10: Virtual Memory

▪ Background (10.1)

▪ Demand Paging (10.2)

▪ Copy-on-Write (10.3)

▪ Page Replacement (10.4)

▪ Allocation of Frames (10.5)

▪ Thrashing (10.6)

1

2

2

10.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

▪ Define virtual memory and describe its benefits.

▪ Illustrate how pages are loaded into memory using demand paging.

▪ Apply the FIFO, optimal, and LRU page-replacement algorithms.

▪ Describe the working set of a process, and explain how it is related to

program locality.

10.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Background

3

4

3

10.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Background

▪ Code needs to be in memory to execute, but entire program rarely used

• Error code, unusual routines, large data structures

▪ Entire program code not needed at same time

▪ Consider ability to execute partially-loaded program

• Program no longer constrained by limits of physical memory

• Each program takes less memory while running -> more programs run

at the same time

 Increased CPU utilization and throughput with no increase in

response time or turnaround time

• Less I/O needed to load or swap programs into memory -> each user

program runs faster

10.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtual memory

▪ Virtual memory – separation of user logical memory from physical

memory

• Only part of the program needs to be in memory for execution

• Logical address space can therefore be much larger than physical

address space

• Allows address spaces to be shared by several processes

• Allows for more efficient process creation

• More programs running concurrently

• Less I/O needed to load or swap processes

5

6

4

10.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtual memory (Cont.)

▪ Virtual address space – logical view of how process is stored in memory

• Usually start at address 0, contiguous addresses until end of space

• Meanwhile, physical memory organized in page frames

• MMU must map logical to physical

▪ Virtual memory can be implemented via:

• Demand paging

• Demand segmentation

10.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtual Memory That is Larger Than Physical Memory

7

8

5

10.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtual-address Space

▪ Usually design logical address space for stack

to start at Max logical address and grow “down”

while heap grows “up”

• Maximizes address space use

• Unused address space between the two

is hole

 No physical memory needed until

heap or stack grows to a given new

page

▪ Enables sparse address spaces with holes left

for growth, dynamically linked libraries, etc.

▪ System libraries shared via mapping into virtual

address space

▪ Shared memory by mapping pages read-write

into virtual address space

▪ Pages can be shared during fork(), speeding

process creation

10.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Shared Library Using Virtual Memory

9

10

6

10.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Demand Paging

10.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Demand Paging

▪ Could bring entire process into memory at load time

▪ Or bring a page into memory only when it is needed

• Less I/O needed, no unnecessary I/O

• Less memory needed

• Faster response

• More users

▪ Similar to paging system with swapping (diagram on right)

▪ Page is needed  reference to it

• invalid reference  abort

• not-in-memory  bring to memory

▪ Lazy swapper – never swaps a page into memory unless page will be
needed

• Swapper that deals with pages is a pager

11

12

7

10.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Demand Paging

▪ Could bring entire process into
memory at load time

▪ Or bring a page into memory only
when it is needed

• Less I/O needed, no
unnecessary I/O

• Less memory needed

• Faster response

• More users

▪ Similar to paging system with
swapping (diagram on right)

10.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Basic Concepts

▪ With swapping, pager guesses which pages will be used before swapping

out again

▪ Instead, pager brings in only those pages into memory

▪ How to determine that set of pages?

• Need new MMU functionality to implement demand paging

▪ If pages needed are already memory resident

• No difference from non demand-paging

▪ If page needed and not memory resident

• Need to detect and load the page into memory from storage

 Without changing program behavior

 Without programmer needing to change code

13

14

8

10.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Valid-Invalid Bit

▪ With each page table entry a valid–invalid bit is associated

(v  in-memory – memory resident, i  not-in-memory)

▪ Initially valid–invalid bit is set to i on all entries

▪ Example of a page table snapshot:

▪ During MMU address translation, if valid–invalid bit in page table entry is i

 page fault

10.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Page Table When Some Pages Are Not

in Main Memory

15

16

9

10.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Steps in Handling Page Fault

1. If there is a reference to a page, first reference to that page will trap to
operating system

• Page fault

2. Operating system looks at another table to decide:

• Invalid reference  abort

• Just not in memory

3. Find free frame

4. Swap page into frame via scheduled disk operation

5. Reset tables to indicate page now in memory
Set validation bit = v

6. Restart the instruction that caused the page fault

10.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Steps in Handling a Page Fault (Cont.)

17

18

10

10.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Aspects of Demand Paging

▪ Extreme case – start process with no pages in memory

• OS sets instruction pointer to first instruction of process, non-memory-

resident -> page fault

• And for every other process pages on first access

• Pure demand paging

▪ Actually, a given instruction could access multiple pages -> multiple page

faults

• Consider fetch and decode of instruction which adds 2 numbers from

memory and stores result back to memory

• Pain decreased because of locality of reference

▪ Hardware support needed for demand paging

• Page table with valid / invalid bit

• Secondary memory (swap device with swap space)

• Instruction restart

10.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Instruction Restart

▪ Consider an instruction that could access several different locations

• Block move

• Auto increment/decrement location

• Restart the whole operation?

 What if source and destination overlap?

19

20

11

10.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Free-Frame List

▪ When a page fault occurs, the operating system must bring the desired

page from secondary storage into main memory.

▪ Most operating systems maintain a free-frame list -- a pool of free

frames for satisfying such requests.

▪ Operating system typically allocate free frames using a technique known

as zero-fill-on-demand -- the content of the frames zeroed-out before

being allocated.

▪ When a system starts up, all available memory is placed on the free-frame

list.

10.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Stages in Demand Paging – Worse Case

1. Trap to the operating system

2. Save the user registers and process state

3. Determine that the interrupt was a page fault

4. Check that the page reference was legal and determine the location of

the page on the disk

5. Issue a read from the disk to a free frame:

a) Wait in a queue for this device until the read request is serviced

b) Wait for the device seek and/or latency time

c) Begin the transfer of the page to a free frame

21

22

12

10.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Stages in Demand Paging (Cont.)

6. While waiting, allocate the CPU to some other user

7. Receive an interrupt from the disk I/O subsystem (I/O completed)

8. Save the registers and process state for the other user

9. Determine that the interrupt was from the disk

10. Correct the page table and other tables to show page is now in memory

11. Wait for the CPU to be allocated to this process again

12. Restore the user registers, process state, and new page table, and then

resume the interrupted instruction

10.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Performance of Demand Paging

▪ Three major activities

• Service the interrupt – careful coding means just several hundred

instructions needed

• Read the page – lots of time

• Restart the process – again just a small amount of time

▪ Page Fault Rate 0  p  1

• if p = 0 no page faults

• if p = 1, every reference is a fault

▪ Effective Access Time (EAT)

EAT = (1 – p) x memory access

+ p (page fault overhead

+ swap page out

+ swap page in)

23

24

13

10.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Demand Paging Example

▪ Memory access time = 200 nanoseconds

▪ Average page-fault service time = 8 milliseconds

▪ EAT = (1 – p) x 200 + p (8 milliseconds)

= (1 – p x 200 + p x 8,000,000

= 200 + p x 7,999,800

▪ If one access out of 1,000 causes a page fault, then

EAT = 8.2 microseconds.

This is a slowdown by a factor of 40!!

▪ If want performance degradation < 10 percent

• 220 > 200 + 7,999,800 x p

20 > 7,999,800 x p

• p < .0000025

• < one page fault in every 400,000 memory accesses

10.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Demand Paging Optimizations

▪ Swap space I/O faster than file system I/O even if on the same device

• Swap allocated in larger chunks, less management needed than file system

▪ Copy entire process image to swap space at process load time

• Then page in and out of swap space

• Used in older BSD Unix

▪ Demand page in from program binary on disk, but discard rather than paging out

when freeing frame

• Used in Solaris and current BSD

• Still need to write to swap space

 Pages not associated with a file (like stack and heap) – anonymous

memory

 Pages modified in memory but not yet written back to the file system

▪ Mobile systems

• Typically don’t support swapping

• Instead, demand page from file system and reclaim read-only pages (such as

code)

25

26

14

10.27 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Copy-on-Write

10.28 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Copy-on-Write

▪ Copy-on-Write (COW) allows both parent and child processes to initially

share the same pages in memory

• If either process modifies a shared page, only then is the page copied

▪ COW allows more efficient process creation as only modified pages are

copied

▪ In general, free pages are allocated from a pool of zero-fill-on-demand

pages

• Pool should always have free frames for fast demand page execution

 Don’t want to have to free a frame as well as other processing on

page fault

• Why zero-out a page before allocating it?

▪ vfork() variation on fork() system call has parent suspend and child

using copy-on-write address space of parent

• Designed to have child call exec()

• Very efficient

27

28

15

10.29 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Before Process 1 Modifies Page C

10.30 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

After Process 1 Modifies Page C

29

30

16

10.31 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

What Happens if There is no Free Frame?

▪ Used up by process pages

▪ Also in demand from the kernel, I/O buffers, etc

▪ How much to allocate to each?

▪ Page replacement – find some page in memory, but not really in use,

page it out

• Algorithm – terminate? swap out? replace the page?

• Performance – want an algorithm which will result in minimum number

of page faults

▪ Same page may be brought into memory several times

10.32 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Page Replacement

31

32

17

10.33 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Page Replacement

▪ Prevent over-allocation of memory by modifying page-fault service

routine to include page replacement

▪ Use modify (dirty) bit to reduce overhead of page transfers – only

modified pages are written to disk

▪ Page replacement completes separation between logical memory and

physical memory – large virtual memory can be provided on a smaller

physical memory

10.34 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Need For Page Replacement

33

34

18

10.35 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Basic Page Replacement

1. Find the location of the desired page on disk

2. Find a free frame:

- If there is a free frame, use it

- If there is no free frame, use a page replacement algorithm to

select a victim frame

- Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame; update the page

and frame tables

4. Continue the process by restarting the instruction that caused the

trap

Note now potentially 2 page transfers for page fault – increasing EAT

10.36 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Page Replacement

35

36

19

10.37 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Page and Frame Replacement Algorithms

▪ Frame-allocation algorithm determines

• How many frames to give each process

• Which frames to replace

▪ Page-replacement algorithm

• Want lowest page-fault rate on both first access and re-access

▪ Evaluate algorithm by running it on a particular string of memory

references (reference string) and computing the number of page faults on

that string

• String is just page numbers, not full addresses

• Repeated access to the same page does not cause a page fault

• Results depend on number of frames available

▪ In all our examples, the reference string of referenced page numbers is

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

10.38 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Graph of Page Faults Versus the Number of Frames

37

38

20

10.39 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

First-In-First-Out (FIFO) Algorithm

▪ Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

▪ 3 frames (3 pages can be in memory at a time per process)

▪ Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5

• Adding more frames can cause more page faults!

 Belady’s Anomaly

▪ How to track ages of pages?

• Just use a FIFO queue

15 page faults

10.40 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

FIFO Illustrating Belady’s Anomaly

39

40

21

10.41 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Optimal Algorithm

▪ Replace page that will not be used for longest period of time

• 9 is optimal for the example

▪ How do you know this?

• Can’t read the future

▪ Used for measuring how well your algorithm performs

10.42 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Least Recently Used (LRU) Algorithm

▪ Use past knowledge rather than future

▪ Replace page that has not been used in the most amount of time

▪ Associate time of last use with each page

▪ 12 faults – better than FIFO but worse than OPT

▪ Generally good algorithm and frequently used

▪ But how to implement?

41

42

22

10.43 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

LRU Algorithm (Cont.)

▪ Counter implementation

• Every page entry has a counter; every time page is referenced through

this entry, copy the clock into the counter

• When a page needs to be changed, look at the counters to find

smallest value

 Search through table needed

▪ Stack implementation

• Keep a stack of page numbers in a double link form:

• Page referenced:

 move it to the top

 requires 6 pointers to be changed

• But each update more expensive

• No search for replacement

10.44 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

LRU Algorithm (Cont.)

▪ LRU and OPT are cases of stack algorithms that don’t have Belady’s

Anomaly

▪ Use Of A Stack to Record Most Recent Page References

43

44

23

10.45 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

LRU Approximation Algorithms

▪ LRU needs special hardware and still slow

▪ Reference bit

• With each page associate a bit, initially = 0

• When page is referenced bit set to 1

• Replace any with reference bit = 0 (if one exists)

 We do not know the order, however

10.46 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

LRU Approximation Algorithms (cont.)

▪ Second-chance algorithm

• Generally FIFO, plus hardware-provided reference bit

• Clock replacement

• If page to be replaced has

 Reference bit = 0 -> replace it

 reference bit = 1 then:

– set reference bit 0, leave page in memory

– replace next page, subject to same rules

45

46

24

10.47 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Second-chance Algorithm

10.48 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Enhanced Second-Chance Algorithm

▪ Improve algorithm by using reference bit and modify bit (if available) in

concert

▪ Take ordered pair (reference, modify):

• (0, 0) neither recently used not modified – best page to replace

• (0, 1) not recently used but modified – not quite as good, must write

out before replacement

• (1, 0) recently used but clean – probably will be used again soon

• (1, 1) recently used and modified – probably will be used again soon

and need to write out before replacement

▪ When page replacement called for, use the clock scheme but use the

four classes replace page in lowest non-empty class

• Might need to search circular queue several times

47

48

25

10.49 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Counting Algorithms

▪ Keep a counter of the number of references that have been made to

each page

• Not common

▪ Lease Frequently Used (LFU) Algorithm:

• Replaces page with smallest count

▪ Most Frequently Used (MFU) Algorithm:

• Based on the argument that the page with the smallest count was

probably just brought in and has yet to be used

10.50 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Page-Buffering Algorithms

▪ Keep a pool of free frames, always

• Then frame available when needed, not found at fault time

• Read page into free frame and select victim to evict and add to free

pool

• When convenient, evict victim

▪ Possibly, keep list of modified pages

• When backing store otherwise idle, write pages there and set to non-

dirty

▪ Possibly, keep free frame contents intact and note what is in them

• If referenced again before reused, no need to load contents again

from disk

• Generally useful to reduce penalty if wrong victim frame selected

49

50

26

10.51 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Applications and Page Replacement

▪ All of these algorithms have OS guessing about future page access

▪ Some applications have better knowledge – i.e. databases

▪ Memory intensive applications can cause double buffering

• OS keeps copy of page in memory as I/O buffer

• Application keeps page in memory for its own work

▪ Operating system can given direct access to the disk, getting out of the

way of the applications

• Raw disk mode

▪ Bypasses buffering, locking, etc.

10.52 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Allocation of Frames

51

52

27

10.53 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Allocation of Frames

▪ Each process needs minimum number of frames

▪ Example: IBM 370 – 6 pages to handle SS MOVE instruction:

• instruction is 6 bytes, might span 2 pages

• 2 pages to handle from

• 2 pages to handle to

▪ Maximum of course is total frames in the system

▪ Two major allocation schemes

• fixed allocation

• priority allocation

▪ Many variations

10.54 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Fixed Allocation

▪ Equal allocation – For example, if there are 100 frames (after allocating

frames for the OS) and 5 processes, give each process 20 frames

• Keep some as free frame buffer pool

▪ Proportional allocation – Allocate according to the size of process

• Dynamic as degree of multiprogramming, process sizes change

m
S

s
pa

m

sS

ps

i
ii

i

ii

==

=

=

=

 for allocation

frames of number total

 process of size
m = 64

s1 =10

s2 =127

a1 =
10

137
´ 62 » 4

a2 =
127

137
´ 62 » 57

53

54

28

10.55 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Global vs. Local Allocation

▪ Global replacement – process selects a replacement frame from the set

of all frames; one process can take a frame from another

• But then process execution time can vary greatly

• But greater throughput so more common

▪ Local replacement – each process selects from only its own set of

allocated frames

• More consistent per-process performance

• But possibly underutilized memory

10.56 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

▪ A strategy to implement global page-replacement policy

▪ All memory requests are satisfied from the free-frame list, rather than

waiting for the list to drop to zero before we begin selecting pages for

replacement,

▪ Page replacement is triggered when the list falls below a certain

threshold.

▪ This strategy attempts to ensure there is always sufficient free memory to

satisfy new requests.

Reclaiming Pages

55

56

29

10.57 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Reclaiming Pages Example

10.58 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Non-Uniform Memory Access

▪ So far, we assumed that all memory accessed equally

▪ Many systems are NUMA – speed of access to memory varies

• Consider system boards containing CPUs and memory,

interconnected over a system bus

▪ NUMA multiprocessing architecture

57

58

30

10.59 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Non-Uniform Memory Access (Cont.)

▪ Optimal performance comes from allocating memory “close to” the CPU

on which the thread is scheduled

• And modifying the scheduler to schedule the thread on the same

system board when possible

• Solved by Solaris by creating lgroups

 Structure to track CPU / Memory low latency groups

 Used my schedule and pager

 When possible schedule all threads of a process and allocate all

memory for that process within the lgroup

10.60 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thrashing

59

60

31

10.61 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thrashing

▪ If a process does not have “enough” pages, the page-fault rate is very

high

• Page fault to get page

• Replace existing frame

• But quickly need replaced frame back

• This leads to:

 Low CPU utilization

 Operating system thinking that it needs to increase the degree of

multiprogramming

 Another process added to the system

10.62 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thrashing (Cont.)

▪ Thrashing. A process is busy swapping pages in and out

61

62

32

10.63 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Demand Paging and Thrashing

▪ Why does demand paging work?

Locality model

• Process migrates from one locality to another

• Localities may overlap

▪ Why does thrashing occur?

 size of locality > total memory size

▪ Limit effects by using local or priority page replacement

10.64 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Locality In A Memory-Reference Pattern

63

64

33

10.65 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Working-Set Model

▪   working-set window  a fixed number of page references

Example: 10,000 instructions

▪ WSSi (working set of Process Pi) = total number of pages referenced in

the most recent  (varies in time)

• if  too small will not encompass entire locality

• if  too large will encompass several localities

• if  =   will encompass entire program

▪ D =  WSSi  total demand frames

• Approximation of locality

10.66 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Working-Set Model (Cont.)

▪ if D > m  Thrashing

▪ Policy if D > m, then suspend or swap out one of the processes

65

66

34

10.67 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Keeping Track of the Working Set

▪ Approximate with interval timer + a reference bit

▪ Example:  = 10,000

• Timer interrupts after every 5000 time units

• Keep in memory 2 bits for each page

• Whenever a timer interrupts copy and sets the values of all reference

bits to 0

• If one of the bits in memory = 1  page in working set

▪ Why is this not completely accurate?

▪ Improvement = 10 bits and interrupt every 1000 time units

10.68 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Page-Fault Frequency

▪ More direct approach than WSS

▪ Establish “acceptable” page-fault frequency (PFF) rate and use local

replacement policy

• If actual rate too low, process loses frame

• If actual rate too high, process gains frame

67

68

35

10.69 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Working Sets and Page Fault Rates

▪ Direct relationship between working set of a process and its page-

fault rate

▪ Working set changes over time

▪ Peaks and valleys over time

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 10

69

70

