
Networks and Internet
Programming

Basic Network Concepts

1Eng. Asma Abdel Karim
Computer Engineering Department

Outline

 What is a Network?

 The Layers of a Network.

 IP, TCP and UDP.

 IP Addresses and Domain Names.

 Ports.

 The Internet.

 Firewalls.

 Proxy Servers.

2Eng. Asma Abdel Karim
Computer Engineering Department

What is a Network?

• A network is a collection of computers and other
devices that can send data to and receive data
from one another.

• Connectivity:
– Wires - electromagnetic waves.

– Wireless - radio waves.

– Fiber-optic cables - light waves.

• Such connections carry data between one point
in the network and another. This data is
represented as bits of information (ON/OFF, 0/1).

3Eng. Asma Abdel Karim
Computer Engineering Department

What is a Network? (Cont.)

• Each machine on a network is called a node.
– Nodes are computers, printers, routers, bridges,

gateways, etc…

– Nodes that are fully functional computers are also
called hosts.

• Every network node has an address, a
sequence of bytes that uniquely identifies it.
– Physical address.

– Logical address.

4Eng. Asma Abdel Karim
Computer Engineering Department

What is a Network? (Cont.)

• All modern computer networks are packet-
switched networks.
– Data traveling on the network is broken into chunks

called packets and each packet is handled separately.
– Each packet contains information about who sent it

and where it’s going.

• A protocol is a precise set of rules defining how
computers communicate.
– The format of addresses, how data is split into

packets, and so on.
– HTTP, IP, TCP, UDP, IEEE 802.3, etc…

5Eng. Asma Abdel Karim
Computer Engineering Department

The Layers of a Network

6Eng. Asma Abdel Karim
Computer Engineering Department

The Layers of a Network
OSI Model vs. TCP/IP Model

7Eng. Asma Abdel Karim
Computer Engineering Department

TCP/IP Protocol Suite Layers

8Eng. Asma Abdel Karim
Computer Engineering Department

TCP/IP Protocol Suite Layers
(Example)

9Eng. Asma Abdel Karim
Computer Engineering Department

The Layers of a Network (Cont.)

10Eng. Asma Abdel Karim
Computer Engineering Department

The Host-To-Network Layer

• The link layer, data link layer, or network interface layer.
– Defines how a particular network interface—such as an

Ethernet card or a WiFi antenna—sends IP datagrams over its
physical connection to the local network and the world.

• The part of the host-to-network layer made up of the
hardware that connects different computers (wires, fiber-
optic cables, radio waves, or smoke signals) is called the
physical layer of the network.

• The primary reason you’ll need to think about the host-to-
network layer and the physical layer, if you need to think
about them at all, is performance.
– However, whichever physical links you encounter, the APIs you

use to communicate across those networks are the same.

11Eng. Asma Abdel Karim
Computer Engineering Department

The Internet Layer

• A network layer protocol defines:
– how bits and bytes of data are organized into the larger groups

called packets, and
– the addressing scheme by which different machines find one

another.

• The Internet Protocol (IP) is the most widely used network
layer protocol in the world and the only network layer
protocol Java understands.

• In fact, it’s two protocols:
– IPv4, which uses 32-bit addresses, and
– IPv6, which uses 128-bit addresses and adds a few other

technical features to assist with routing.

• In both IPv4 and IPv6, data is sent across the internet layer
in packets called datagrams.

12Eng. Asma Abdel Karim
Computer Engineering Department

The Internet Layer
IPv4 Datagram Format

13Eng. Asma Abdel Karim
Computer Engineering Department

The Internet Layer
Data Transmission Using Packets

• Packets may take different routes to reach the
destination depending on the routing
approach and congestion level of the network.

• Mechanism to ensure that no packets are lost
is available depending on the protocol used to
send the data.

14Eng. Asma Abdel Karim
Computer Engineering Department

The Internet Layer (Cont.)
• The internet layer is responsible for

connecting heterogenous networks to each
other using homogeneous protocols.

15Eng. Asma Abdel Karim
Computer Engineering Department

The Transport Layer

• There are two primary protocols at this level:

• The Transmission Control Protocol (TCP):
– A reliable protocol.

– A high-overhead protocol that allows for
retransmission of lost or corrupted data and delivery
of bytes in the order they were sent.

• The User Datagram Protocol (UDP):
– An unreliable protocol.

– Does not guarantee that packets are delivered in the
correct order (or at all).

16Eng. Asma Abdel Karim
Computer Engineering Department

The Application Layer

• The layer that delivers data to the user.

• The three lower layers all work together to define
how data is transferred from one computer to
another.

• The application layer decides what to do with the
data after it’s transferred.
– For example, an application protocol like HTTP (for the

World Wide Web) makes sure that your web browser
displays a graphic image as a picture, not a long
stream of numbers.

17Eng. Asma Abdel Karim
Computer Engineering Department

The Application Layer
Protocols

Protocol Purpose

HTTP Web

SMTP, POP, IMAP Email

FTP, FSP, TFTP File Transfer

NFS File Access

Gnutella, BitTorrent File Sharing

SIP and Skype Voice Communication

18Eng. Asma Abdel Karim
Computer Engineering Department

IP, TCP, and UDP
• IP was designed:

– To allow multiple routes between any two points and to route
packets of data around damaged routers.

– To be open and platform-independent.

• Packets that make up a particular data stream may not all
take the same route.

• Furthermore, they may not arrive in the order they were
sent, if they even arrive at all.

• To improve on the basic scheme, TCP was layered on top of
IP to:
– Give each end of a connection the ability to acknowledge

receipt of IP packets and request retransmission of lost or
corrupted packets.

– Allow the packets to be put back together on the receiving end
in the same order they were sent.

19Eng. Asma Abdel Karim
Computer Engineering Department

IP, TCP, and UDP (Cont.)
• TCP, however, carries a fair amount of overhead.
• UDP is an unreliable protocol that does not guarantee that

packets will arrive at their destination or that they will
arrive in the same order they were sent.

• Although this would be a problem for uses such as file
transfer, it is perfectly acceptable for applications where
the loss of some data would go unnoticed by the end user.
– For example, losing a few bits from a video or audio signal won’t

cause much degradation; it would be a bigger problem if you
had to wait for a protocol like TCP to request a retransmission of
missing data.

– Furthermore, error-correcting codes can be built into UDP data
streams at the application level to account for missing data.

20Eng. Asma Abdel Karim
Computer Engineering Department

IP, TCP, and UDP (Cont.)
• A number of other protocols can run on top of IP.
• The most commonly requested is ICMP, the Internet

Control Message Protocol, which uses raw IP
datagrams to relay error messages between hosts.
– The best-known use of this protocol is in the ping program.
– Java does not support ICMP, nor does it allow the sending

of raw IP datagrams.

• The only protocols Java supports are TCP and UDP, and
application layer protocols built on top of these.

• All other transport layer, internet layer, and lower layer
protocols such as ICMP, IGMP, ARP, RARP, RSVP, and
others can only be implemented in Java programs by
linking to native code.

21Eng. Asma Abdel Karim
Computer Engineering Department

IP Addresses and Domain Names

• As a Java programmer, you don’t need to worry about
the inner workings of IP, but you do need to know
about addressing.

• Every computer on an IPv4 network is identified by a
unique four-byte address.
– This is normally written in a dotted quad format like
199.1.32.90, where each of the four numbers is one
unsigned byte ranging in value from 0 to 255.

• When data is transmitted across the network, the
packet’s header includes the address of the machine
for which the packet is intended (the destination
address) and the address of the machine that sent the
packet (the source address).

22Eng. Asma Abdel Karim
Computer Engineering Department

IP Addresses and Domain Names
(Cont.)

• Routers along the way choose the best route on
which to send the packet by inspecting the
destination address. The source address is
included so the recipient will know who to reply
to.

• A slow transition is under way to IPv6, which will
use 16-byte addresses.
– This provides enough IP addresses to identify every

person, every computer, and indeed every device on
the planet.

– IPv6 addresses are customarily written in eight blocks
of four hexadecimal digits separated by colons, such
as FEDC:BA98:7654:3210:FEDC:BA98:7654:3210

23Eng. Asma Abdel Karim
Computer Engineering Department

IP Addresses and Domain Names
(Cont.)

• Although computers are very comfortable with numbers,
human beings aren’t very good at remembering them.

• Therefore, the Domain Name System (DNS) was developed
to translate hostnames that humans can remember, such as
“www.oreilly.com,” into numeric Internet addresses such as
208.201.239.101.

• Some computers, especially servers, have fixed addresses.
• Others, especially clients on local area networks and

wireless connections, receive a different address every time
they boot up, often provided by a DHCP server.

• Mostly you just need to remember that IP addresses may
change over time, and not write any code that relies on a
system having the same IP address.

24Eng. Asma Abdel Karim
Computer Engineering Department

IP Addresses and Domain Names (Cont.)

• Some IPv4 addresses can be used on internal networks, but
no host using addresses in these blocks is allowed onto the
global Internet.
– Addresses that begin with 10., 172.16. through 172.31. and

192.168.
– These non-routable addresses are useful for building private

networks that can’t be seen on the Internet.

• IPv4 addresses beginning with 127 (most commonly
127.0.0.1) always mean the local loopback address.
– The hostname for this address is often localhost.
– In IPv6, 0:0:0:0:0:0:0:1 (a.k.a. ::1) is the loopback address.

• The IPv4 address that uses the same number for each of
the four bytes (i.e.,255.255.255.255), is a broadcast
address.
– Packets sent to this address are received by all nodes on the

local network, though they are not routed beyond the local
network.

25Eng. Asma Abdel Karim
Computer Engineering Department

Ports

26

• Different types of traffic on a computer are
sorted out using ports.

• Each port is identified by a number between 1
and 65535.

• Port numbers between 1 and 1023 are
reserved for well-known services like FTP,
HTTP, and IMAP.

Eng. Asma Abdel Karim
Computer Engineering Department

The Internet

27

• The world’s largest IP-based network.

– An amorphous group of computers in many
different countries on all seven continents
(Antarctica included) that talk to one another
using IP protocols.

• Each computer on the Internet has at least
one IP address by which it can be identified.

– Many of them also have at least one name that
maps to that IP address.

Eng. Asma Abdel Karim
Computer Engineering Department

Internet Address Blocks

28

• Blocks of IPv4 addresses are assigned to Internet service
providers (ISPs) by their regional Internet registry.

• When a company or an organization wants to set up an IP-
based network connected to the Internet, their ISP assigns
them a block of addresses.

• Each block has a fixed prefix.
– For instance if the prefix is 216.254.85, then the local network

can use addresses from 216.254.85.0 to 216.254.85.255.
– Because this block fixes the first 24 bits, it’s called a /24.

• Keep in mind that you have two fewer available addresses
than you might first expect:
– The lowest address in all block used to identify the network

itself, and
– The largest address is a broadcast address for the network.

Eng. Asma Abdel Karim
Computer Engineering Department

Network Address Translation

• In NAT-based networks most nodes only have
local, non-routable addresses selected from
either :
– 10.x.x.x,

– 172.16.x.x to 172.31.x.x, or

– 192.168.x.x.

• The routers that connect the local networks to
the ISP translate these local addresses to a
much smaller set of routable addresses.

29Eng. Asma Abdel Karim
Computer Engineering Department

Firewalls
• The hardware and software that sit between the Internet

and the local network, checking all the data that comes in
or out to make sure it’s safe.

• The firewall can be:
– part of the router that connects the local network to the

broader Internet and may perform other tasks, such as network
address translation.

– a separate machine.

• Modern operating systems like Mac OS X and Red Hat Linux
often have built-in personal firewalls that monitor just the
traffic sent to that one machine.

• Either way, the firewall is responsible for inspecting each
packet that passes into or out of its network interface and
accepting it or rejecting it according to a set of rules.

30Eng. Asma Abdel Karim
Computer Engineering Department

Firewalls (Cont.)
• Filtering is usually based on network addresses and

ports.
– All traffic coming from the Class C network 193.28.25.x

may be rejected because you had bad experiences with
hackers from that network in the past.

– Outgoing SSH connections may be allowed, but incoming
SSH connections may not.

• More intelligent firewalls look at the contents of the
packets to determine whether to accept or reject
them.

• The exact configuration of a firewall—which packets of
data are and to pass through and which are not—
depends on the security needs of an individual site.

31Eng. Asma Abdel Karim
Computer Engineering Department

Firewalls (Cont.)
• The firewall is an excellent tool for network

administrators but not for network
developers.

– Most corporate firewalls block direct UDP and TCP
access.

– Hence, developers must make a choice – either
use standard Internet protocols and ignore users
who work behind firewalls, or adapt software to
proxy requests using protocols such a HTTP.

32Eng. Asma Abdel Karim
Computer Engineering Department

Firewalls (Cont.)
• The firewall is an excellent tool for network

administrators but not for network
developers.

– Most corporate firewalls block direct UDP and TCP
access.

– Hence, developers must make a choice – either
use standard Internet protocols and ignore users
who work behind firewalls, or adapt software to
proxy requests using protocols such a HTTP.

33Eng. Asma Abdel Karim
Computer Engineering Department

Proxy Servers
• If a firewall prevents hosts on a network from making direct

connections to the outside world, a proxy server can act as
a go-between.
– Thus, a machine that is prevented from connecting to the

external network by a firewall would make a request for a web
page from the local proxy server instead of requesting the web
page directly from the remote web server.

– The proxy server would then request the page from the web
server and forward the response back to the original requester.

• One of the security advantages of using a proxy server is
that external hosts only find out about the proxy server.
– They do not learn the names and IP addresses of the internal

machines, making it more difficult to hack into internal systems.

34Eng. Asma Abdel Karim
Computer Engineering Department

Proxy Servers (Cont.)
• Whereas firewalls generally operate at the level

of the transport or internet layer, proxy servers
normally operate at the application layer.

• A proxy server has a detailed understanding of
some application-level protocols, such as HTTP
and FTP.

• Packets that pass through the proxy server can be
examined to ensure that they contain data
appropriate for their type.
– For instance, FTP packets that seem to contain Telnet

data can be rejected.

35Eng. Asma Abdel Karim
Computer Engineering Department

Proxy Servers (Cont.)

36Eng. Asma Abdel Karim
Computer Engineering Department

Proxy Servers (Cont.)
• Proxy servers can also be used to implement local

caching.

• When a file is requested from a web server, the
proxy server first checks to see if the file is in its
cache.

– If the file is in the cache, the proxy serves the file from
the cache rather than from the Internet.

– If the file is not in the cache, the proxy server retrieves
the file, forwards it to the requester, and stores it in
the cache for the next time it is requested

37Eng. Asma Abdel Karim
Computer Engineering Department

References

38

Chapter 1 of Java™ Network Programming and
Distributed Computing, David Reilly and Michael
Reilly.

Chapter 1 of Java Network Programming,
Elliotte Rusty Harold, O'Reilly, Fourth Edition,
2013.

Eng. Asma Abdel Karim
Computer Engineering Department

Networks and Internet
Programming

Internet Addressing

1 Eng. Asma Abdel Karim
Computer Engineering Department

Outline

 Local Area Network Addresses.

 Internet Protocol Addresses.

 The Domain Name System.

 Internet Addressing with Java.

2 Eng. Asma Abdel Karim
Computer Engineering Department

Local Area Network Addresses

• Devices connected to a LAN have their own
unique physical or hardware address.
– This address is useful only in the context of a LAN.

• Java network programmers do not need to be
concerned with the details of how data is routed
within a LAN.
– Java does not provide access to the lower-level data

link protocols used by LANs.

– No matter what type of LAN is used, software can be
written for it in Java providing it supports TCP/IP.

3 Eng. Asma Abdel Karim

Computer Engineering Department

Internet Protocol Addresses

• Devices having a direct internet connection are allocated a
unique IP address.
– This address is used by the internet protocol to route IP

datagrams to the correct location.

• IP addresses may be allocated:
– Statically: IP address is bounded permanently to certain

machine.
– Dynamically: IP address is leased to a particular machine for a

certain period.
• For example in the case of ISP that offers a pool of modems for dial-up

connections.
• Used when many devices require Internet access for limited periods of

time.
• The Dynamic Host Control Protocol (DHCP) provides addresses on

demand from a pool of addresses.

4 Eng. Asma Abdel Karim
Computer Engineering Department

Structure of the IP address

• Under IPv4, the IP address is a 32-bit number
made up of four octets (bytes).

• IP addresses are written in dotted decimal
notation (e.g. 127.0.0.1).
– Each byte is an unsigned integer between 0 and 255.

• Each IP address consists of two components:
– The network address: a unique identifier of a specific

network.

– The host address: a unique address of the host in the
network it belongs to.

5 Eng. Asma Abdel Karim
Computer Engineering Department

Structure of the IP address (Cont.)

6 Eng. Asma Abdel Karim
Computer Engineering Department

Special IP Addresses

• 127.0.0.1 is a special reserved address known
as the loopback or localhost address.

• The loopback address is very useful when
programming and debugging network
software.

– Programmers often want to connect to the local
machine for testing purposes regardless of
whether a connection to the internet exists or not.

7 Eng. Asma Abdel Karim
Computer Engineering Department

Special IP Addresses (Cont.)

• The Internet Assigned Number Authority
(IANA) has reserved three sets of addresses for
use within a local intranet environment.

• On the internet, routers will never forward
data using these addresses, so they can be
safely used locally.

8 Eng. Asma Abdel Karim
Computer Engineering Department

Type Address Range

Class A 10.0.0.0 – 10.255.255.255

Class B 172.16.0.0 – 172.31.255.255

Class C 192.168.0.0 – 192.168.255.255

The Domain Name System

• Memorizing IP addresses is an impossible task.

• The Domain Name System (DNS) makes the
internet user-friendly, by associating a textual
name with an IP address.

• An entity can apply for a domain name, which
can be used by people to locate that entity on
the internet.

9 Eng. Asma Abdel Karim
Computer Engineering Department

The Domain Name System (Cont.)

• Given the vast number of machines connected to
the internet, the number of domain-name-to-IP-
address mappings is too great for any one system
to handle.

• The DNS is a more sophisticated and robust
system.
– It can be thought of as a distributed database.

– Consists of a hierarchical structure which is broken up
by the type of address (.net, .com, .gov, .edu, ….) or by
the country (.au, .uk, …..).

10 Eng. Asma Abdel Karim
Computer Engineering Department

The Domain Name System (Cont.)

11 Eng. Asma Abdel Karim
Computer Engineering Department

Internet Addressing with Java

• A host on the internet can be represented by
either:
– A dotted decimal format as an IP address, or
– A hostname such as www.aol.com.

• Under Java, such addresses are represented
by the java.net.InetAddress class.
– There are no public constructors for this class.

Arbitrary addresses may not be created.
– Instead, there are static methods that return

InetAddress instances.

12 Eng. Asma Abdel Karim
Computer Engineering Department

Methods to Create InetAddress
Objects (1)

public static InetAddress getByName (String
host) throws UnknownHostException,
SecurityException

public static InetAddress[] getAllByName(String

host) throws UnknownHostException,
SecurityException

public static InetAddress getLocalHost() throws

UnknownHostException, SecurityException

13 Eng. Asma Abdel Karim
Computer Engineering Department

Methods to Create InetAddress
Objects (2)

Java 1.4 adds two more factory methods that do not check
their addresses with the local DNS server.

• The first creates an InetAddress object with an IP address

and no hostname.

 public static InetAddress getByAddress (byte[] address)

throws UnknownHostException

• The second creates an InetAddress object with an IP

address and a hostname.

 public static InetAddress getByAddress (String hostName,

byte[] address) throws UnknownHostException

14 Eng. Asma Abdel Karim
Computer Engineering Department

Getter Methods

• The following method returns the hotsname of the
InetAddress object:

 public String getHostName () throws SecurityManager
• The following method returns the IP address of the

InetAddress object in byte format. The bytes are
returned in network byte order, with the highest byte
as byteArray[0]:

 public byte [] getAddress ()
• The following method returns the IP address of the

InetAddress in dotted decimal format:
 public String getHostAddress ()

15 Eng. Asma Abdel Karim
Computer Engineering Department

Object Class Inherited Methods

• public boolean equals (Object o)

• public int hashCode ()

• public String toString ()

16 Eng. Asma Abdel Karim
Computer Engineering Department

Example1: Using InetAddress to
Determine Localhost Address

import java.net.*;

public class LocalHostDemo {

 public static void main(String[] args) {
 System.out.println("Looking up local host!");
 try {
 InetAddress localAddress = InetAddress.getLocalHost();
 System.out.println("IP address: "+localAddress.getHostAddress());
 }
 catch (UnknownHostException uhe){
 System.out.println("Error - unable to resolve localhost");
 }
 }
}

17 Eng. Asma Abdel Karim
Computer Engineering Department

Example2: Using InetAddress to Find Out About Other
Addresses

import java.net.*;

public class NetworkResolverDemo {

 public static void main(String[] args) {
 if (args.length!=1){
 System.err.println("Syntax - NetworkResolverDemo host");
 System.exit(0);
 }
 System.out.println("Resolving "+args[0]);

 try{
 InetAddress addr = InetAddress.getByName(args[0]);
 System.out.println(addr);
 }
 catch (UnknownHostException uhe){
 System.out.println("Error - unable to resolve host name");
 }
 }

}

18 Eng. Asma Abdel Karim
Computer Engineering Department

Address Types Methods

• public boolean isAnyLocalAddress()
• public boolean isLoopbackAddress()
• public boolean isLinkLocalAddress()
• public boolean isSiteLocalAddress()
• public boolean isMulticastAddress()
• public boolean isMCGlobal()
• public boolean isMCNodeLocal((
• public boolean isMCLinkLocal()
• public boolean isMCSiteLocal()
• public boolean isMCOrgLocal()

19 Eng. Asma Abdel Karim
Computer Engineering Department

Testing Reachability

• public boolean isReachable (int timeout)
throws IOException

• public boolean isReachable (NetworkInterface
interface, int ttl, int timeout) throws
IOException

20 Eng. Asma Abdel Karim
Computer Engineering Department

Inet4Address and Inet6Address

• Public final class Inet4Address extends
InetAddress

• Public final class Inet6Address extends
InetAddress

21 Eng. Asma Abdel Karim
Computer Engineering Department

The NetworkInterface Class

• The NetworkInterface class represents a local IP
address. This can be:
– A physical interface such as an additional Ethernet

card, or

– A virtual interface bound to the same physical
hardware.

• The NetworkInterface class provides methods to
enumerate all the local addresses, regardless of
interface, and to create InetAddress objects from
them.

22 Eng. Asma Abdel Karim
Computer Engineering Department

Methods to Create NetworkInterface
Objects

• By name:

public static NetworkInterface getByName (String
name) throws SocketException

• By IP address:

public static NetworkInterface getByInetAddress
(InetAddress address) throws SocketException

• By enumeration:

public static Enumeration getNetworkInterfaces()
throws SocketException

23 Eng. Asma Abdel Karim
Computer Engineering Department

Getter Methods

• The following method returns a java.util.Enumeration
containing an InetAddress object for each IP address
the interface is bound to:

 public Enumeration getInetAddresses()
• The following method returns the name of a particular

NetworkInterface object, such as eth0 or lo:
 public String getName()
• The following method returns a more human-friendly

name for the particular NetworkInterface — something
like “Ethernet Card 0.”:

 public String getDisplayName()

24 Eng. Asma Abdel Karim
Computer Engineering Department

References

Chapter 3 of Java™ Network Programming and
Distributed Computing, David Reilly and Michael
Reilly.

Chapter 4 of Java Network Programming, Elliotte
Rusty Harold, O'Reilly, Fourth Edition, 2013.

25 Eng. Asma Abdel Karim
Computer Engineering Department

Networks and Internet
Programming

Data Streams

Part-1

1 Eng. Asma Abdel Karim
Computer Engineering Department

Outline

 Overview.

 How Streams Work?

 Low-level Streams.

 Filter Streams.

2 Eng. Asma Abdel Karim
Computer Engineering Department

Overview

• Communication over networks, with files, and
even between applications, is represented in
Java by Streams.

• Stream-based communication is central to
almost any type of Java application.

• Almost all network communication (except
UDP communication) is conducted over
streams.

3 Eng. Asma Abdel Karim
Computer Engineering Department

What Exactly are Streams?

• Byte-level communication is represented in
Java by data streams.

• Data streams are conduits through which
information is sent and received.

4 Eng. Asma Abdel Karim
Computer Engineering Department

What Exactly are Streams? (Cont.)

• When designing a system, the correct stream must be
selected.
– The type of stream used is not important, as a consistent

interface is provided.

• Streams may be chained together, to provide an easier and
more manageable interface.
– If for example, data needed to be processed in a particular way,

a second stream could connect to an existing stream, to provide
for processing of the data.

5 Eng. Asma Abdel Karim
Computer Engineering Department

What Exactly are Streams? (Cont.)

• Streams are divided into two categories:

– Input streams that may be read from.

– Output streams that may be written to.

• Although streams are usually one-way,
multiple streams can be used together for
two-way communication.

6 Eng. Asma Abdel Karim
Computer Engineering Department

What Exactly are Streams? (Cont.)

• In Java, streams take a flexible, one-size-fits-all
approach.
– They are fairly interchangeable, and can be applied on

top of another stream, or even several other streams.

• You can attach any filter stream to any low level
stream (i.e. file or network stream).
– This can be safely done, as long as you don’t try to

write to an input stream or read from an output
stream.

– A filter stream is a stream that filters data in some
fashion.

7 Eng. Asma Abdel Karim
Computer Engineering Department

How Streams Work?

• Streams for reading inherit from a common
superclass, the java.io.InputStream class.

• Streams for writing inherit from a common
superclass, the java.io.OutputStream class.

• These are abstract classes; they cannot be
instantiated.

– Instead, an appropriate subclass for the task in
hand is instantiated.

8 Eng. Asma Abdel Karim

Computer Engineering Department

How Streams Work? (Cont.)

9 Eng. Asma Abdel Karim
Computer Engineering Department

How Streams Work? (Cont.)

10 Eng. Asma Abdel Karim
Computer Engineering Department

Reading from an Input Stream

• Choosing the right low-level input stream is a
fairly straightforward task.
– The name of the stream matches the data source it will

read from.

• There are six low-level input streams to choose
from, each of which performs an entirely different
task.

• There are other low-level streams that are not
directly instantiated by developers
– These are returned by invoking a method of a

networking object.

11 Eng. Asma Abdel Karim
Computer Engineering Department

Reading from an Input Streams
(Cont.)

12 Eng. Asma Abdel Karim
Computer Engineering Department

Low-level Input Stream Purpose of Stream

ByteArrayInputStream Reads bytes of data from an in-memory array.

FileInputStream Reads bytes of data from a file on the local
file system.

PipedInputStream Reads bytes of data from a thread pipe.

StringBufferInputStream Reads bytes of data from a string.

SequenceInputStream Reads bytes of data from two or more low-
level streams, switching from one stream to

the next when the end of the stream is
reached.

System.in Reads bytes of data from the user console.

Reading from an Input Stream (Cont.)

• When a low-level input stream is created, it will
read from a source of information that supplies it
with data.

• Inputs streams act as consumers of information.

– Bytes are read from the source sequentially.

– Once bytes have been read, you can’t go back and
read them again.

– Bytes haven’t been erased, the stream has simply
moved on to the next byte of information.

13 Eng. Asma Abdel Karim
Computer Engineering Department

Reading from an Input Stream (Cont.)

14 Eng. Asma Abdel Karim
Computer Engineering Department

Reading from an Input Stream (Cont.)

• Input streams use blocking I/O.

• Blocking I/O is a term applied to any form of
input or output that does not immediately
return from an operation.

• Blocking I/O may cause performance
problems.

– This can be alleviated by using data buffering.

15 Eng. Asma Abdel Karim
Computer Engineering Department

The java.io.InputStream Class
• The abstract InputStream class defines methods

common to all input streams and all of them are
public:
– int available () throws java.io.IOException

Returns the number of bytes currently available for reading.
More bytes may be available in the future, but reading more
than the number of available bytes will result in a read that
will block indefinitely.

– void close () throws java.io.IOException

Closes the input stream and frees any resources (such as file
handles or file locks) associated with the input stream.

16 Eng. Asma Abdel Karim
Computer Engineering Department

The java.io.InputStream Class (Cont.)

• The abstract InputStream class defines methods common to
all input streams and all of them are public:

– void mark (int readLimit)

1. Records the current position in the input stream, to allow
an input stream to revisit the same sequence of bytes at a
later point in the future, by invoking the
InputStream.reset() method.

2. Not every input stream will support this functionality.

– boolean markSupported ()

1. Returns "true" if an input stream supports the mark() and
reset() methods, "false" if it does not.

2. Unless over ridden by a subclass of InputStream, the
default value returned is false.

17 Eng. Asma Abdel Karim
Computer Engineering Department

The java.io.InputStream Class (Cont.)

• The abstract InputStream class defines methods common to
all input streams and all of them are public:

– int read() throws java.io.IOException

1. Returns the next byte of data from the stream.

2. Subclasses of InputStream usually override this method to
provide custom functionality (such as reading from a file
or a string).

3. As mentioned earlier, input streams use blocking I/O, and
will block indefinitely if no further bytes are yet available.

4. When the end of the stream is reached, a value of –1 is
returned.

18 Eng. Asma Abdel Karim
Computer Engineering Department

The java.io.InputStream Class (Cont.)

• The abstract InputStream class defines methods common to
all input streams and all of them are public:

– int read (byte[] byteArray) throws java.io.IOException

1. Reads a sequence of bytes and places them in the
specified byte array, by calling the read() method
repeatedly until the array is filled or no more data can be
obtained.

2. This method returns the number of bytes successfully
read, or –1 if the end of the stream has been reached.

19 Eng. Asma Abdel Karim
Computer Engineering Department

The java.io.InputStream Class (Cont.)

• The abstract InputStream class defines methods common to
all input streams and all of them are public:

– int read (byte [] byteArray, int offset, int length) throws
java.io.IOException, java.lang.IndexOutOfBoundsException

1. Reads a sequence of bytes, placing them in the specified
array.

2. Unlike the previous method, read(byte[] byteArray), this
method begins stuffing bytes into the array at the
specified offset, and for the specified length, if possible.
This allows developers to fill up only part of an array.

3. Developers should be mindful that at runtime, out-of-
bounds exceptions may be thrown if the array size, offset,
and length exceed array capacity.

20 Eng. Asma Abdel Karim
Computer Engineering Department

The java.io.InputStream Class (Cont.)

• The abstract InputStream class defines methods common to
all input streams and all of them are public:

– void reset() throws java.io.IOException

1. Moves the position of the input stream back to a preset
mark, determined by the point in time when the mark()
method was invoked.

2. Few input streams support this functionality, and may
cause an IOException to be thrown if called.

21 Eng. Asma Abdel Karim
Computer Engineering Department

The java.io.InputStream Class (Cont.)

• The abstract InputStream class defines methods common to
all input streams and all of them are public:

– long skip (long amount) throws java.io.IOException

1. Reads, but ignores, the specified amount of bytes.

2. These bytes are discarded, and the position of the input
stream is updated.

3. Though unlikely, it is entirely possible that the specified
number of bytes could not be skipped (for example, as
stated in the Java API, if the end of the stream is
reached).

4. The skip method returns the number of bytes skipped
over, which may be less than the requested amount.

22 Eng. Asma Abdel Karim
Computer Engineering Department

Example Using a Low-level Input Stream

import java.io.*;

public class FileInputStreamDemo {
 public static void main(String[] args) {
 if (args.length != 1){
 System.err.println ("Syntax - FileInputStreamDemofile");
 return;
 }
 try{
 InputStream fileInput = new FileInputStream(args[0]);
 int data = fileInput.read();
 while (data != -1){
 System.out.write (data);
 data = fileInput.read();
 }
 fileInput.close();
 }
 catch (IOException ioe){
 System.err.println ("I/O error - " + ioe);
 }
 }
}

23 Eng. Asma Abdel Karim
Computer Engineering Department

Writing to an Output Stream

• While an input stream is a data consumer, an output
stream is a data producer.
– It literally creates bytes of information and transmits them

to something else (such as a file or data structure or
network connection).

• Like input streams, data is communicated sequentially;
that is, the first byte in will be the first byte out.
– This approach is analogous to a FIFO queue.

• Unlike some specialized filter input streams, which
allow you to "go back n" bytes within a sequence, once
data is sent to an output stream it cannot be undone.

24 Eng. Asma Abdel Karim
Computer Engineering Department

Writing to an Output Stream (Cont.)

25 Eng. Asma Abdel Karim
Computer Engineering Department

Writing to an Output Stream (Cont.)

• A number of output streams are available in the
java.io package for a variety of tasks.
– Such as writing to data structures including strings

and arrays, or to files or communication pipes.

• There are six important low-level output streams
that may be written to.
– In addition to filter streams that may be connected to

these low-level streams

• As mentioned earlier, there are other streams
which may be written to that developers cannot
create and instantiate directly.

26 Eng. Asma Abdel Karim
Computer Engineering Department

Writing to an Output Stream (Cont.)

27 Eng. Asma Abdel Karim
Computer Engineering Department

Low-level Output Stream Purpose of Stream

ByteArrayOutputStream Writes bytes of data to an array of bytes.

FileOutputStream Writes bytes of data to a local file.

PipedOutputStream Writes bytes of data to a communications pipe,
which will be connected to a

java.io.PipedInputStream.

StringBufferOutputStream Writes bytes to a string buffer (a substitute data
structure for the fixed-length string).

System.err Writes bytes of data to the error stream of the
user console, also known as standard error. In
addition, this stream is cast to a PrintStream.

System.out Writes bytes of data to the user console, also
known as standard output. In addition, this

stream is cast to a PrintStream.

Writing to an Output Stream (Cont.)

• Bytes may be sent one at a time or as part of an
array.
– However, when bytes are read one at a time,

individual byte writes may affect system performance.

• Reading information can block indefinitely, but
writing information may also block for small
amounts of time.
– This is not normally as significant an issue as the case

of blocking read operations, as the bytes are ready to
send.

28 Eng. Asma Abdel Karim
Computer Engineering Department

The java.io.OutputStream Class

The abstract class java.io.OutputStream defines
the following public methods:

– void close() throws java.io.IOException

1. Closes the output stream, notifying the other
side that the stream has ended.

2. Pending data that has not yet been sent will be
sent, but no more data will be delivered.

29 Eng. Asma Abdel Karim
Computer Engineering Department

The java.io.OutputStream Class
(Cont.)

The abstract class java.io.OutputStream defines the
following public methods:

– void flush() throws java.io.IOException
1. Performs a "flush" of any unsent data and sends it to

the recipient of the output stream.
2. To improve performance, streams will often be

buffered, so data remains unsent. This is useful at
times, but obstructive at others.

3. The method is particularly important for
OutputStream subclasses that represent network
operations, as flushing should always occur after a
request or response is sent so that the remote side
isn't left waiting for data.

30 Eng. Asma Abdel Karim
Computer Engineering Department

The java.io.OutputStream Class
(Cont.)

The abstract class java.io.OutputStream defines the
following public methods:

– void write (int byte) throws java.io.IOException
1. Writes the specified byte.
2. This is an abstract method, overridden by

OutputStream subclasses.
– void write (byte[] byteArray) throws

java.io.IOException
1. Writes the contents of the byte array to the output

stream.
2. The entire contents of the array (barring any error)

will be written.

31 Eng. Asma Abdel Karim
Computer Engineering Department

The java.io.OutputStream Class
(Cont.)

The abstract class java.io.OutputStream defines
the following public methods:

– void write (byte[] byteArray, int offset, int length)
throws java.io.IOException

1. Writes the contents of a subset of the byte array
to the output stream.

2. This method allows developers to specify just
how much of an array is sent, and which part, as
opposed to the OutputStream.write(byte[]
byteArray) method, which sends the entire
contents of an array.

32 Eng. Asma Abdel Karim
Computer Engineering Department

Example Using a Low-level Output Stream
import java.io.*;

public class FileOutputStreamDemo{

 public static void main(String args[]){

 if (args.length != 2){

 System.err.println("Syntax - FileOutputStreamDemo src dest");

 return;

 }

 String source = args[0];

 String destination = args[1];

 try {

 InputStream input = new FileInputStream(source);

 System.out.println ("Opened " +source + " for reading.");

 OutputStream output = new FileOutputStream(destination);

 System.out.println ("Opened " +destination + " for writing.");

33 Eng. Asma Abdel Karim
Computer Engineering Department

Example Using a Low-level Output Stream
(Cont.)

 int data = input.read();

 while (data != -1){

 output.write (data);

 data=input.read();

 }

 input.close();

 output.close();

 System.out.println ("I/O streams closed");

 }

 catch (IOException ioe){

 System.err.println ("I/O error - " + ioe);

 }

 }

}

34 Eng. Asma Abdel Karim
Computer Engineering Department

Filter Streams

• While the basic low-level streams provide a simple
mechanism to read and write bytes of information,
their flexibility is limited.

• After all, reading bytes is complex.
– There's more to the world that just bytes of data.

– Text, for example, is a sequence of characters, and other
forms of data like numbers take up more than a single
byte.

• Byte-level communication can also be inefficient.
• Data buffering can improve performance.

• To overcome these limitations, filter streams are used.

35 Eng. Asma Abdel Karim
Computer Engineering Department

Filter Streams (Cont.)

• Filter streams add additional functionality to an existing
stream.
– By processing data in some form, such as buffering for

performance.
– By offering additional methods that allow data to be accessed in

a different manner. For example, reading a line of text rather
than a sequence of bytes.

• Filters make life easier for programmers.
– As they can work with familiar constructs such as strings, lines

of text, and numbers, rather than individual bytes.
– Instead of the programmer writing a string one character at a

time and converting each character to an int value for the
OutputStream.write(int) method, the filter stream does this for
them.

36 Eng. Asma Abdel Karim
Computer Engineering Department

Connecting a Filter Stream to an
Existing Stream

• Filter streams can be connected to any other stream.
– To a low-level stream or even another filter stream.

• Filter streams are extended from the java.io.
FilterInputStream and java.io.FilterOutputStream classes.

• Each filter stream supports one or more constructors That
accept:
• Either an InputStream, in the case of an input filter, or
• An OutputStream, in the case of an output filter.

• Connecting a filter stream is as simple as:
– Creating a new instance of a filter passing an instance of an

existing stream, and
– Using the filter from then on to read or write.

37 Eng. Asma Abdel Karim
Computer Engineering Department

Connecting a Filter Stream to an
Existing Stream (Cont.)

• The following code connects a PrintStream (used to
print text to an OutputStream subclass) to a stream
that wrote to a file and uses the filter stream to write
a message on the file.

FileOutputStream fout = new FileOutputStream (somefile);

PrintStream pout = new PrintStream (fout);

pout.println ("hello world");

38 Eng. Asma Abdel Karim
Computer Engineering Department

Connecting a Filter Stream to an
Existing Stream (Cont.)

• The process is fairly simple as long as the
programmer remembers two things:

1. Read and write operations must take place on the
new filter stream.

2. Read and write operations on the underlying stream
can still take place, but not at the same time as an
operation on the filter stream.

39 Eng. Asma Abdel Karim
Computer Engineering Department

Useful Filter Input Streams
BufferedInputStream Class

• The purpose of I/O buffering is to improve system
performance.

• Rather than reading a byte at a time, a large
number of bytes are read together the first time
the read() method is invoked.

• When an attempt is made to read subsequent
bytes, they are taken from the buffer, not the
underlying input stream.
– This improves data access time and can reduce the

number of times an application blocks for input.

40 Eng. Asma Abdel Karim
Computer Engineering Department

Useful Filter Input Streams
BufferedInputStream Class (Cont.)

• Constructors:
– BufferedInputStream (InputStream input)
Creates a buffered stream that will read from the specified
InputStream object.
– BufferedInputStream (InputStream input, int bufferSize)

throws java.lang.IllegalArgumentException
1. Creates a buffered stream, of the specified size, which

reads from the InputStream object passed as a
parameter.

2. This allows developers to specify a size, which can
improve efficiency if large amounts of data are going to
be read. The buffer size specified must be greater than or
equal to one.

41 Eng. Asma Abdel Karim
Computer Engineering Department

Useful Filter Input Streams
BufferedInputStream Class (Cont.)

• Methods:

– No additional methods are provided by the
BufferedInputStream class.

– However, it does override the markSupported()
method, indicating that it supports the mark(int)
and reset() methods.

42 Eng. Asma Abdel Karim
Computer Engineering Department

Useful Filter Input Streams
DataInputStream Class

• A frequent task in any programming language is
reading and writing primitive data types such as
numbers and characters.
– These information types are not easily represented as

bytes (for example, some data types take up more than
one byte of information).

• Developers should not be concerned with the way in
which representation occurs.
• Instead, the data types can be read simply, by invoking

methods of the DataInputStream class, which handles the
translation automatically.

• This class implements the java.io. DataInput interface.

43 Eng. Asma Abdel Karim
Computer Engineering Department

Useful Filter Input Streams
DataInputStream Class (Cont.)

• Constructors:

– DataInputStream (InputStream input)

Creates a data input stream, reading from the
specified input stream.

44 Eng. Asma Abdel Karim
Computer Engineering Department

Useful Filter Input Streams
DataInputStream Class (Cont.)

• Methods:
Many methods are added to the DataInputStream
class, in order to facilitate access to new data types.
• Boolean readBoolean() throws java.io.EOFException java.io

• Byte readByte() throws java.io.EOFException java.io.IOException

• char readChar() throws java.io.EOFException java.io.IOException

• double readDouble() throws java.io.EOFException java.io.IOException

• float readFloat() throws java.io.EOFException java.io.IOException

• void readFully(byte[] byteArray) throws java.io.EOFException
java.io.IOException

• void readFully(byte[] byteArray, int offset, int length) throws
java.io.EOFException java.io.IOException

45 Eng. Asma Abdel Karim
Computer Engineering Department

Useful Filter Input Streams
DataInputStream Class (Cont.)

• Methods:
• float readInt() throws java.io.EOFException java.io.IOException

• string readLine() throws java.io.IOException

• long readLong() throws java.io.EOFException java.io.IOException

• short readShort() throws java.io.EOFException java.io.IOException

• int readUnsignedByte() throws java.io.EOFException java.io.IOException

• int readUnsignedShort() throws java.io.EOFException java.io.IOException

• String readUTF() throws java.io.EOFException java.io.IOException

• Static String readUTF(DataInputStream input) throws java.io.EOFException
java.io.IOException

• int skipBytes(int number) throws java.io.IOException

46 Eng. Asma Abdel Karim
Computer Engineering Department

Useful Filter Input Streams
LineNumberInputStream Class

• This class provides helpful functionality by
tracking the number of lines read from an input
stream.

• It is deprecated as of JDK1.1, however, since the
preferred way to process text data is to use a
reader class.

• Also, line numbers are not very serviceable in
terms of a stream of bytes.

• Nonetheless, if writing for JDK1.02 systems, it
may be useful.

47 Eng. Asma Abdel Karim
Computer Engineering Department

Useful Filter Input Streams
LineNumberInputStream Class (Cont.)

• Constructors:
– LineNumberInputStream(InputStream input)

Creates a line number stream, reading from the
specified input stream.

• Methods:
– int getLineNumber()

Returns the number of lines that have been read by this
input stream.

– void setLineNumber(int number)

Modifies the line number counter to the specified value.

48 Eng. Asma Abdel Karim
Computer Engineering Department

Useful Filter Input Streams
PushBackInputStream Class

• The PushBackInputStream class allows a single byte to
be read and then "pushed back" into the stream for
later reading.

• An internal buffer is maintained that allows data to be
pushed back into the front of the input stream buffer,
or added if the data had never been read from it.

• This is useful when the programmer needs to take a
"sneak peek" at what's coming.
– For example in a text parser or to determine what the next

command in a communications protocol is going to be.

49 Eng. Asma Abdel Karim
Computer Engineering Department

Useful Filter Input Streams
PushBackInputStream Class (Cont.)

• Constructors:
– PushBackInputStream(InputStream input)

Creates a PushBackInputStream that will read from the
specified input stream.

– PushBackInputStream (InputStream input int
bufferSize) throws java.lang.IllegalArgumentException

1. Creates a PushBackInputStream that will read from
an input stream and use a buffer of the specified
size.

2. If a value of less than one is specified for the buffer
size, an exception will be thrown.

50 Eng. Asma Abdel Karim
Computer Engineering Department

Useful Filter Input Streams
PushBackInputStream Class (Cont.)

• Methods:
– void unread (byte[] byteArray) throws java.io.IOException

Pushes back the contents of the specified array. If a buffer
overrun occurs, an exception is thrown.

– void unread (byte[] byteArray, int offset, int length) throws
java.io.IOException

Pushes back a subset of the contents of the specified array,
starting at the specified offset and lasting for the specified
duration. If a buffer overrun occurs, an exception is thrown.

– void unread (int byte) throws java.io.IOException

Pushes back the specified byte into the front of the buffer. If
a buffer overrun occurs, an exception is thrown.

51 Eng. Asma Abdel Karim
Computer Engineering Department

Useful Filter Output Streams
BufferedOutputStream Class

• The BufferedOutputStream provides data
buffering similar to the BufferedInputStream.

• As suggested by the name of the class,
however, it buffers writes, not reads.

• An internal buffer is maintained, and when
the buffer is complete or if a request to flush
the buffer is made, the buffer contents are
dumped to the output stream to which the
buffered stream is connected.

52 Eng. Asma Abdel Karim
Computer Engineering Department

Useful Filter Output Streams
BufferedOutputStream Class (Cont.)

• Constructors:
– BufferedOutputStream (OutputStream output)
1. Creates a buffer for writing to the specified output

stream.
2. The default size of this buffer is 512 bytes in length.
– BufferedOutputStream (OutputStream output int

bufferSize) throws java.lang.IllegalArgumentException
1. Creates a buffer for writing to the specified output

stream, overriding the default buffer sizing.
2. The buffer is set to the specified buffer size, which

must be greater than zero or an exception is thrown.

53 Eng. Asma Abdel Karim
Computer Engineering Department

Useful Filter Output Streams
BufferedOutputStream Class (Cont.)

• Methods:

– No extra methods have been added to this class.

– However, the flush() method has been overridden.

• It will flush the contents of a buffer, sending it
immediately to the output stream it is connected to.

• This is particularly important in networking, as a
protocol request can't be sent if it is still stuck in the
buffer, and the remote program may be waiting for a
response.

54 Eng. Asma Abdel Karim
Computer Engineering Department

Useful Filter Output Streams
BufferedOutputStream Class (Cont.)

55 Eng. Asma Abdel Karim
Computer Engineering Department

Useful Filter Output Streams
DataOutputStream Class

• Like the DataInputStreamclass, the DataOutputStream class
is designed to deal with primitive datatypes, such as
numbers or bytes.

• Most of the read methods of DataInputStream have a
corresponding write method mirrored in
DataOutputStream.
– This allows developers to write datatypes to a file or other type

of stream, and to have them read back by another Java
application without any compatibility issues over how primitive
datatypes are represented by different hardware and software
platforms.

• It implements the java.io.DataOutput interface, which
provides additional methods for writing primitive
datatypes.

56 Eng. Asma Abdel Karim
Computer Engineering Department

Useful Filter Output Streams
DataOutputStream Class (Cont.)

• Constructors:

– DataOutputStream (OutputStream output)

Creates a data output stream, which will write to the
specified stream.

57 Eng. Asma Abdel Karim
Computer Engineering Department

Useful Filter Output Streams
DataOutputStream Class (Cont.)

• Methods:
– int size()
Returns the number of bytes written to the data output stream.
– void writeBoolean (boolean value) throws java.io.IOException
Writes the specified boolean value, represented as a one-byte
value.
– void writeByte (int byte) throws java.io.IOException
Writes the specified byte to the output stream.
– void writeBytes (String string) throws java.io.IOException
Writes the entire contents of a string to the output stream a byte at
a time.
– void writeChar (int char) throws java.io.IOException
Writes the character to the output stream as a two-byte value.
– void writeChars (String string) throws java.io.IOException
Writes the entire contents of a string to the output stream,
represented as two-byte valuesMethods

58 Eng. Asma Abdel Karim
Computer Engineering Department

Useful Filter Output Streams
DataOutputStream Class (Cont.)

• Methods:
– void writeDouble (double doubleValue) throws

java.io.IOException
Converts the specified double value to a long value and then
converts it to an eight-byte value.
– void writeFloat (float floatValue) throws java.io.IOException
Converts the specified float value to an int and then writes it as a
four-byte value.
– void writeInt (int intValue) throws java.io.IOException
Writes an int value as a four-byte value.
– void writeLong (int intValue) throws java.io.IOException
Writes a long value as eight bytes.
– void writeShort (int intValue) throws java.io.IOException
Writes a short value as two bytes.
– void writeUTF (String string) throws java.io.IOException
Writes a string using UTF-8 encoding.

59 Eng. Asma Abdel Karim
Computer Engineering Department

Useful Filter Output Streams
PrintStream Class

• The PrintStream is the most unusual of all filter output
streams.
– It is atypical in that it overrides methods inherited from

FilterOutputStream without throwing the expected java.io.IOException
class.

• The PrintStream adds additional methods as well.
– None of which may throw an IOException.
– No errors are overtly reported, and instead the presence of an error is

determined by invoking the checkError() method—although no further
details may be obtained as to the cause of the error.

• Despite its idiosyncrasies, the PrintStream is an extremely
useful class.
– It provides a convenient way to print primitive datatypes as text using

the print(..) method, and to print these with line separators using the
println(..) method.

60 Eng. Asma Abdel Karim
Computer Engineering Department

Useful Filter Output Streams
PrintStream Class (Cont.)

• Constructors:
– PrintStream (OutputStream output)

Creates a print stream for printing of datatypes as text.

– PrintStream (OutputStream output, boolean flush)

1. Creates a print stream for printing of datatypes as text.

2. If the specified boolean flag is set to "true," whenever a
byte array, println method, or newline character is sent,
the underlying buffer will be automatically flushed.

61 Eng. Asma Abdel Karim
Computer Engineering Department

Useful Filter Output Streams
PrintStream Class (Cont.)

• Methods:
– boolean checkError()
Automatically flushes the output stream and checks to see if an error has
occurred. Instead of throwing an IOException, an internal flag is maintained that
checks for errors.
– void print (boolean value)
Prints a boolean value.
– void print (char character)
Prints a character value.
– void print (char[] charArray)
Prints an array of characters.
– void print (double doubleValue)
Prints a double value.
– void print (float floatValue)
Prints a float value.

62 Eng. Asma Abdel Karim
Computer Engineering Department

Useful Filter Output Streams
PrintStream Class (Cont.)

• Methods:
– void print (int intValue)
Prints an int value.
– void print (long longValue)
Prints a long value.
– void print (Object obj)
Prints the value of the specified object's toString() method.
– void print (String string)
Prints a string's contents.
– void println()
Sends a line separator (such as '\n'). This value is system dependent and
determined by the value of the system property "line.separator."
– void println (char character)
Prints a character value, followed by a println().
– void println (char[] charArray)
Prints an array of characters, followed by a println().

63 Eng. Asma Abdel Karim
Computer Engineering Department

Useful Filter Output Streams
PrintStream Class (Cont.)

• Methods:
– void println (double doubleValue)
Prints a double value, followed by a println().
– void println (float floatValue)
Prints a float value, followed by a println().
– void println (int intValue)
Prints an int value, followed by a println().
– void println (long longValue)
Prints a long value, followed by a println().
– void println (Object obj)
Prints the specified object's toString() method, followed by a println().
– void println (String string)
Prints a string followed by a line separator.
– protected void setError()
Modifies the error flag to a value of "true."

64 Eng. Asma Abdel Karim
Computer Engineering Department

References

Chapter 4 of Java™ Network Programming
and Distributed Computing, David Reilly
and Michael Reilly.

65 Eng. Asma Abdel Karim
Computer Engineering Department

Networks and Internet
Programming

Data Streams

Part-II

1 Eng. Asma Abdel Karim
Computer Engineering Department

Outline

 Readers and Writers.

 Object Persistence and Object Serialization.

2 Eng. Asma Abdel Karim
Computer Engineering Department

Overview

• While input streams and output streams may
be used to read and write text as well as bytes
of information and primitive data types, a
better alternative is to use readers and
writers.

• Readers and writers were introduced in JDK1.1
to better support Unicode character streams.

3 Eng. Asma Abdel Karim
Computer Engineering Department

What Are Unicode Characters?

• Most people think of characters as being composed of
8 bits of data, offering a range of 256 possible
characters.
– Low ASCII (0–127) characters are followed by high ASCII

characters (128–255).
– The high ASCII characters represent characters and

symbols such as those used in foreign languages or
punctuation.

• However, people quickly realized that even 256
characters were not enough to handle the many
characters used in languages around the world. This is
where Unicode came in.

4 Eng. Asma Abdel Karim
Computer Engineering Department

What Are Unicode Characters? (Cont.)

• Unicode characters are represented by 16 bits.
– Allowing for a maximum of 65,536 possible

characters.

• Unicode characters are supported by Java.

• Java also supports a modified form called
UTF-8.
– This is a variable-width encoding format; some

characters are a single byte and others multiple
bytes.

5 Eng. Asma Abdel Karim
Computer Engineering Department

The Importance of Readers and
Writers

• For those dealing solely with primitive data
types, use of input streams and output
streams may by all means be continued.

• However, if applications are processing text
information only, use of a reader and/or a
writer, to better support Unicode characters,
should be considered.

6 Eng. Asma Abdel Karim
Computer Engineering Department

From Input Streams to Readers

• The java.io.InputStream class has a character-based
equivalent in the form of the java.io.Reader class.

• The reader class has similar method signatures to that
of the InputStream class.
– Existing code may be quickly converted to use it.

• However:
– Some slight changes are made to the method signatures,

to support character, and not byte, reading.

– The available() method has been removed, and replaced
by the ready() method.

7 Eng. Asma Abdel Karim
Computer Engineering Department

The java.io.Reader Class

• Constructors:

No public constructors are available for this
class. Instead, a reader subclass should be
instantiated.

8 Eng. Asma Abdel Karim
Computer Engineering Department

The java.io.Reader Class (Cont.)

• Methods:
The class includes the following methods, all of which are public:

– void close() throws java.io.IOException
Closes the reader.
– void mark(int amount) throws java.io.IOException
1. Marks the current position within the reader, and

uses the specified amount of characters as a buffer.
2. Not every reader will support the mark(int) and

reset() methods.
– boolean markSupported()
Returns "true" if the reader supports mark and reset
operations.

9 Eng. Asma Abdel Karim
Computer Engineering Department

The java.io.Reader Class (Cont.)
• Methods:
The class includes the following methods, all of which are public:

– int read() throws java.io.IOException
Reads and returns a character, blocking if no character is yet available. If
the end of the reader's stream has been reached, a value of –1 is
returned.
– int read(char[] characterArray) throws java.io.IOException
Populates an array of characters with data. This method returns an int
value, representing the number of bytes that were read. If the end of the
reader's stream is reached, a value of –1 is returned and the array is not
modified.
– int read(char[] characterArray, int offset, int length) throws

java.io.IOException
Populates a subset of the array with data, starting at the specified offset
and lasting for the specified duration. This method returns an int value,
representing the number of bytes read, or –1 if no bytes could be
obtained.

10 Eng. Asma Abdel Karim
Computer Engineering Department

The java.io.Reader Class (Cont.)
• Methods:
The class includes the following methods, all of which are
public:

– boolean ready() throws java.io.IOException
Returns "true" if there is data available, or "false" if not. This is
similar to the InputStream.available() method, except that the
number of bytes/characters is not available.
– void reset() throws java.io.IOException
Attempts to reset the reader's stream, by moving back to an earlier
position. Not every reader supports either mark or reset, and an
exception could be thrown or the request ignored.
– long skip(long amount) throws java.io.IOException
Reads and discards the specified number of characters, unless the
end of the input stream is reached or another error occurs. The skip
method returns the number of characters successfully skipped.

11 Eng. Asma Abdel Karim
Computer Engineering Department

The java.io.Reader Class (Cont.)

• Like input streams:

– There are a variety of low-level readers (which
connect to a data source, such as a file or a data
structure), and

– There are filter readers for high-level
communication tasks.

12 Eng. Asma Abdel Karim
Computer Engineering Department

Low-Level Readers
CharArrayReader Class

• The CharArrayReader class is a reader that obtains data
by reading characters from an array.

• Constructors:
– CharArrayReader(char[] charArray)
Creates a character array reader that will operate on the
specified array.
– CharArrayReader(char[] charArray, int offset, int length)
Creates a character array reader that will operate only on a
subset of the specified array, starting at the specified offset
and lasting for the specified length.

• Methods:
The CharArrayReader adds no new methods.

13 Eng. Asma Abdel Karim
Computer Engineering Department

Low-Level Readers
FileReader Class

• This reader obtains its data directly from a local file, similar to
the FileInputStream class.

• Care must be taken, as with the FileInputStream class, when
creating an instance of it, as an exception will be thrown:

– If the file could not be located, or

– If security access permissions restrict it from being read.

14 Eng. Asma Abdel Karim
Computer Engineering Department

Low-Level Readers
FileReader Class (Cont.)

• Constructors:

– FileReader(File file) throws java.io.FileNotFoundException

Creates a reader that will access the contents of the specified file
object, if the file it represents exists.

– FileReader(String filename) throws
java.io.FileNotFoundException

Creates a reader that will access the contents of the specified
filename, if it exists.

– FileReader(FileDescriptor descriptor)

Creates a reader that will access the contents of the specified
descriptor handle.

• Methods: The FileReader class adds no new methods.

 15 Eng. Asma Abdel Karim
Computer Engineering Department

Low-Level Readers
PipedReader Class

• Constructors:

– PipedReader()

Creates an unconnected pipe reader.

– PipedReader(PipedWriter writer)

Creates a connected pipe that will read the output of the specified
writer.

• Methods:

A single (public) method is added by this class.

– void connect(PipedWriter writer) throws java.io.IOException

Connects the reader to the specified writer. Any output that is sent
by the piped writer may then be read by the piped reader.

16 Eng. Asma Abdel Karim
Computer Engineering Department

Low-Level Readers
StringReader Class

• While it is sometimes useful to work with a character
array, most programmers prefer to deal with strings.

• The StringReader class offers a substitute to the
CharArrayReader, accepting a string as an input
source.

17 Eng. Asma Abdel Karim
Computer Engineering Department

Low-Level Readers
StringReader Class (Cont.)

• Constructors:

– StringReader(String stringToBeRead)

Reads from the beginning of the specified string until the
end.

• Methods:

No additional methods are added.

18 Eng. Asma Abdel Karim
Computer Engineering Department

Low-Level Readers
InputStreamReader Class

• While readers are quite common, there is still a need for
backward compatibility with older input streams.

– Particularly those written by third parties for which there is
no equivalent reader class.

– For example, the System.in member variable is an
InputStream instance that can read input from a user.
There is no comparable reader class for this.

– The solution is to connect an InputStreamReader to an
InputStream instance, which will perform the necessary
translation.

19 Eng. Asma Abdel Karim
Computer Engineering Department

Low-Level Readers
InputStreamReader Class (Cont.)

• Constructors:

– InputStreamReader(InputStream input)

Connects an input stream to the reader.

– InputStreamReader(InputStream input, String encoding) throws
java.io.UnsupportedEncodingException

Connects an input stream to the reader using the specified
encoding form. If the encoding form isn't supported, an exception is
thrown.

• Methods:

The InputStreamReader class adds the following public method:

– String getEncoding()

Returns the name of the character encoding used by this stream.

20 Eng. Asma Abdel Karim
Computer Engineering Department

InputStreamToReader Demo
import java.io.*;

public class InputStreamToReaderDemo {

 public static void main(String args[]){

 try{

 System.out.print ("Please enter your name : ");

 InputStream input = System.in;

 InputStreamReader reader = new InputStreamReader (input);

 BufferedReader bufReader = new BufferedReader (reader);

 String name = bufReader.readLine();

 System.out.println ("Pleased to meet you, " + name);

 }

 catch (IOException ioe){

 System.err.println ("I/O error : " + ioe);

 }

 }

}

21 Eng. Asma Abdel Karim

Computer Engineering Department

Filter Readers

• Filter readers, just like filter input streams,
provide additional functionality in the form of
new methods, or process data in a different
way (such as buffering).

• Always connect to another reader.

22 Eng. Asma Abdel Karim
Computer Engineering Department

Filter Readers
BufferedReader Class

• One of the most frustrating problems with reading data
from a reader, as with an input stream, is that blocking I/O
is used.

• When this happens frequently, the performance and
responsiveness of software suffers.

• An alternative is to buffer data so that reads are grouped
together for better performance.

• Just as the BufferedInputStream buffers bytes of data, the
BufferedReader buffers characters.

• Also, although one would not guess it from the name, the
BufferedReader is a partial substitute for the
DataInputStream class.
– It provides a readLine() method that is not deprecated.

23 Eng. Asma Abdel Karim
Computer Engineering Department

Filter Readers
BufferedReader Class (Cont.)

• Constructors:

– BufferedReader (Reader reader)

Reads data from the specified reader into a buffer.

– BufferedReader (Reader reader, int bufferSize)
throws java.lang.IllegalArgumentException

Reads data from the specified reader into a buffer,
which is allocated to the specified size. The buffer
size must be greater than zero.

24 Eng. Asma Abdel Karim
Computer Engineering Department

Filter Readers
BufferedReader Class (Cont.)

• Methods:
– The following public method is added by

BufferedReader, as a replacement for the deprecated
DataInputStream.readLine() method.

• String readLine() throws java.io.IOException

 Reads a line of text from the underlying stream. The l
 line is terminated by a line separator sequence, such
 as a carriage return/linefeed.

– In addition, the reader overrides the markSupported()
method, to indicate that it supports the mark and
reset operations.

25 Eng. Asma Abdel Karim
Computer Engineering Department

FilterReaders
FilterReader Class

• Rather than perform a practical action, this class acts
as a template on which other filters can be
constructed.
– If a custom filter needs to be written, the class should be

extended, and methods overridden or new ones added.

• The FilterReader class has been designed so that it
cannot be instantiated by making its constructor
protected; the class should instead be extended.

• The FilterReader class defines no new methods, but
subclasses are free to add additional methods or
override existing ones.

26 Eng. Asma Abdel Karim
Computer Engineering Department

Filter Readers
PushBackReader Class

• This class allows characters to be "pushed back" into
the head of a reader's input queue, so that it may be
read again.

• This allows programs to peek ahead at the next
character and then push it back into the queue.

• Constructors:
– PushBackReader(Reader reader)
Creates a push-back reader with a single character buffer.
– PushBackReader(Reader reader, int bufferSize) throws

java.lang.IllegalArgumentException
Creates a push-back reader with a larger buffer, of the
specified size. The buffer size must be greater than zero, or
an exception is thrown.

27 Eng. Asma Abdel Karim
Computer Engineering Department

Filter Readers
PushBackReader Class (Cont.)

• Methods:
– void unread(int character) throws java.io.IOException

Pushes the character back to the beginning of the queue. If
the queue is full, an exception is thrown.

– void unread(char[] charArray) throws java.io.IOException

Pushes every character in the specified array into the queue.
If full, an exception is thrown.

– void unread(char[] charArray, int offset, int length) throws
java.io.IOException

Pushes a subset of the characters in the specified array into
the queue, starting at the specified offset and lasting for the
specified length. If full, an exception is thrown.

28 Eng. Asma Abdel Karim
Computer Engineering Department

Filter Readers
LineNumberReader Class

• The LineNumberReader class provides a useful
line counter, which measures how many lines
have been read.

• It is the reader equivalent of the
LineNumberInputStream.

• As it extends the BufferedReader class, it also
supports the mark/reset operations.

29 Eng. Asma Abdel Karim
Computer Engineering Department

Filter Readers
LineNumberReader Class (Cont.)

• Constructors:
– LineNumberReader (Reader reader)
Creates a new line-number reader.
– LineNumberReader (Reader reader, int size)
Creates a new line-number reader and allocates a buffer of the
specified size.

• Methods:
Two new methods, to determine and to modify the line
number counter, are offered.

– int getLineNumber()
Returns the current line number.
– void setLineNumber(int lineNumber)
Modifies the line-number counter.

30 Eng. Asma Abdel Karim
Computer Engineering Department

Filter Readers
LineNumberReader Class (Cont.)

• Constructors:
– LineNumberReader (Reader reader)
Creates a new line-number reader.
– LineNumberReader (Reader reader int size)
Creates a new line-number reader and allocates a buffer of the
specified size.

• Methods:
Two new methods, to determine and to modify the line
number counter, are offered.

– int getLineNumber()
Returns the current line number.
– void setLineNumber(int lineNumber)
Modifies the line-number counter.

31 Eng. Asma Abdel Karim
Computer Engineering Department

The java.io.Writer Class

• Constructors:
– There are no public constructors for this class. Instead,

a writer subclass should be instantiated.

• Methods:
– void close() throws java.io.IOException
Invokes the flush() method to send any buffered data,
and then closes the writer.
– void flush() throws java.io.IOException
Flushes any unsent data, sending it immediately. A
buffered writer might not yet have enough data to send,
and may be storing it for later.

32 Eng. Asma Abdel Karim
Computer Engineering Department

The java.io.Writer Class

• Methods:
– void write(int character) throws java.io.IOException
Writes the specified character.
– void write(char[] charArray) throws java.io.IOException
Reads the entire contents of the specified character array and writes it.
– void write(char[] charArray ,int offset, int length) throws

java.io.IOException
Reads a subset of the character array, starting at the specified offset and
lasting for the specified length, and writes it.
– void write(String string) throws java.io.IOException
Writes the specified string.
– void write(String string, int offset, int length) throws

java.io.IOException
Writes a subset of the string, starting from the specified offset and lasting
for the specified length.

33 Eng. Asma Abdel Karim
Computer Engineering Department

Low-Level Writers
The CharArrayWriter Class

• The CharArrayWriter maintains an internal buffer that is added to each
time a write request is made, and may be converted to a character array.

• Constructors:
– CharArrayWriter()
Creates a character array writer that can be converted to a character array.
– CharArrayWriter(int bufferSize) throws java.lang.IllegalArgumentException
Creates a character array writer using the specified initial buffer size (which must
not be negative).

• Methods:
– char[] toCharArray
Returns a character array, containing all characters written thus far.
– String toString()
Returns a string containing all characters written thus far.

34 Eng. Asma Abdel Karim
Computer Engineering Department

Low-Level Writers
The FileWriter Class

• The FileWriter class extends the OutputStreamWriter class, and provides a
convenient way to write characters to a local file.

• This class is equivalent to the FileOutputStream class discussed earlier.
• Constructors:

– FileWriter (File file) throws java.io.IOException
Creates a writer connected to the resource represented by the specified file object,
if not prevented by security permissions.
– FileWriter (FileDescriptor descriptor) throws java.io.IOException
Creates a writer connected to the specified descriptor handle, if allowable.
– FileWriter(String filename) throws java.io.IOException
Writes to the specified file location, creating a file if one does not already exist
and overwriting an existing one. If not permitted by security access restrictions, an
exception will be thrown.
– FileWriter(String filename, boolean appendFlag) throws java.io.IOException
Writes to the specified file location. If the appendFlag is set to "true," the file will
be opened in append mode and data will be written to the end of the file.

35 Eng. Asma Abdel Karim
Computer Engineering Department

Low-Level Writers
The PipedWriter Class

• The purpose of the PipedWriter class is to write data that will be read by a
PipedReader.

• These two classes are reader/writer equivalents of the PipedInputStream
and PipedOutputStream classes, but may not be interchanged.

• Constrcutors:
– PipedWriter()
Creates an unconnected pipe writer.
– PipedWriter(PipedReader reader) throws java.io.IOException
Creates a piped writer connected to the specified reader. The reader may later
read any data written to this writer.

• Methods:
– void connect (PipedReader reader) throws java.io.IOException
Attempts to connect to the specified pipe, so that any data written may be read
by the reader. If the pipe is already connected to another pipe, an IOException will
be thrown.

36 Eng. Asma Abdel Karim
Computer Engineering Department

Low-Level Writers
The StringWriter Class

• Judging by its name, you might expect that this class
allowed for writing to a string.

• A string is of fixed length and is immutable (the
contents of a string may not be modified).

• Writing to a string is accomplished by using a
StringBuffer.
– The StringBuffer class is similar to a string, but may be

modified. When the modifications are complete, the
StringBuffer can be converted back to a string.

• This is how the StringWriter class works.
– It maintains a string buffer, and provides a method to

access the buffer contents or to convert to a string.

37 Eng. Asma Abdel Karim
Computer Engineering Department

Low-Level Writers
The StringWriter Class

• Constructors:
– StringWriter()

Creates a new string writer, using the default-sized buffer.

– StringWriter(int startingSize)

Creates a new string writer and allocates a StringBuffer of
the specified size.

• Methods:
– StringBuffer getBuffer()

Returns the buffer used to store data sent to the writer.

– String toString()

Converts the internal buffer into a string.

38 Eng. Asma Abdel Karim

Computer Engineering Department

Low-Level Writers
The OutputStreamWriter Class

• While there are many writer classes equivalent to
output stream classes in the Java API, there is still
a need to maintain compatibility with older
output stream classes.
– As most of the networking API and some third-party

libraries provide only stream interfaces.

• The OutputStreamWriter class handles the
translation between a Writer and an
OuputStream, allowing new writer classes to
interact with older output streams.

39 Eng. Asma Abdel Karim
Computer Engineering Department

Low-Level Writers
The OutputStreamWriter Class

• Constructors:
– OutputStreamWriter(OutputStream output)
Creates a writer that will translate between characters and
bytes, using the default character encoding.
– OutputStreamWriter(OutputStream output, String

encoding) throws java.io.UnsupportedEncodingException
Creates a writer that translates between characters and
bytes, using the specified character encoding. If the specified
encoding form is not supported, an exception is thrown.

• Methods:
– String getEncoding()
Returns the character encoding used by the writer.

40 Eng. Asma Abdel Karim
Computer Engineering Department

OutputStreamToWriter Demo
import java.io.*;
public class OutputStreamToWriterDemo
{
 public static void main(String args[])
 {
 try
 {
 //Get the output stream representing standard output
 OutputStream output = System.out;
 // Create an OutputStreamWriter
 OutputStreamWriter writer = new OutputStreamWriter (output);
 // Write to standard output using a writer
 writer.write ("Hello world");
 // Flush and writer, to ensure it is written
 writer.flush(); writer.close();
 }
 catch (IOException ioe)
 {
 System.err.println ("I/O error : " + ioe);
 }
 }
}

41 Eng. Asma Abdel Karim
Computer Engineering Department

Filter Writers
The BufferedWriter Class

• Used to improve system performance by
buffering write request together.

• Constructors:
– BufferedWriter(Writer writer)
Creates a buffered writer, connected to the specified
writer. Write requests will be buffered, to improve
efficiency. To send all queued data, the flush() method
should be invoked.
– BufferedWriter(Writer writer, int bufferSize) throws

java.lang.IllegalArgumentException
Creates a buffered writer, with a buffer of the specified
size. The size must be greater than or equal to 1.

42 Eng. Asma Abdel Karim

Computer Engineering Department

Filter Writers
The FilterWriter Class

• Developers creating custom filter classes should extend
this class, rather than extending the java.io.Writer
class.

• It provides no additional functionality, but may be used
as a template on which filters can be constructed.

• Constructors
– protected FilterWriter(Writer writer)

• Methods:
– The FilterWriter class defines no new methods, but

subclasses are free to add additional methods or override
existing ones.

43 Eng. Asma Abdel Karim
Computer Engineering Department

Filter Writers
The PrintWriter Class

• PrintWriter is the sister class of PrintStream, and provides the same
methods for writing datatypes as text.

• Like PrintStream, none of the methods may throw an IOException—
rather, the error state is determined by invoking the checkError() method,
which returns a boolean value.

• Constructors:
– PrintWriter(Writer writer)
Creates a print writer, writing to the specified writer.
– PrintWriter(Writer writer, boolean flushFlag)
Creates a print writer, the output of which may or may not be automatically
flushed whenever a println() method or a line separator is sent, based on the state
of the specified boolean flag. A value of "true" will flush when a println method is
executed.

• Methods:
– The PrintWriter class implements new methods to match the signatures of the

PrintStream class.

44 Eng. Asma Abdel Karim
Computer Engineering Department

Object Persistence & Object
Serialization

• Data that can be read or written ranges from individual
bytes to primitive datatypes and strings.

• But what if you wanted to read and write an entire
object, composed of a series of member variables?

• To do this would require that each field of the object
be written individually; then at a later time, each field
would be read back and assigned to an object.
– This is a complicated process.

– The solution is to use object persistence.

45 Eng. Asma Abdel Karim
Computer Engineering Department

What is Object Persistence

• Object persistence is the ability of an object to persist over
time (and, if moved to a different computer or JVM, over
space).

• Most objects in a Java Virtual Machine are fairly short-lived.
– When there are no references to an object, the memory space

allocated to it is reclaimed by the automatic garbage collector
thread.

– If an object is frequently used, and does not lose references to
it, it will still die at some point in time the JVM will terminate
eventually and the object will be destroyed.

• Object persistence allows an object to outlive the JVM that
hosts it.

46 Eng. Asma Abdel Karim
Computer Engineering Department

What is Object Serialization

• Object serialization controls how the data that
comprises an object's state information (the
individual member variables, whether public,
private, or protected) is written as a sequence of
bytes.

• The serialized object might be sent over the
network or saved to a disk so that it can be
accessed at some point in the future.

• This allows objects to move from one JVM to
another, whether located on the same machine
or a remote one.

47 Eng. Asma Abdel Karim
Computer Engineering Department

What is Object Serialization (Cont.)

• Serialization works by examining the variables of an
object and writing primitive datatypes like numbers
and characters to a byte stream.

• If an object contains an object as a member variable
(as opposed to a primitive datatype), the object
member variable must be serialized as well.

• This must be done recursively, so that if an object has a
reference to an object, which has a reference to
another object (and so on), they are all saved together.

• The set of all objects referenced is called a graph of
objects, and object serialization converts entire graphs
to byte form.

48 Eng. Asma Abdel Karim
Computer Engineering Department

Graphs of Objects

49 Eng. Asma Abdel Karim
Computer Engineering Department

How Serialization Works?

• Support for serialization was introduced in JDK1.1.
• Any object that implements the java.io.Serializable interface may

be serialized with only a few lines of code (along with any other
object referenced by a serialized object).

• The interface serves only as an indication that the developer
endorses serialization—no methods need to be implemented to
support serialization.

• Implementing the java.io.Serializable interface requires no
additional effort on the part of developers, other than:
– Adding the appropriate "implements" statement during the class

declaration and,
– Declaring a no-argument constructor (also referred to as the default

constructor).
• The constructor is required so that the class maybe instantiated later by the

JVM, and then deserialized by assigning new values to member variables.

50 Eng. Asma Abdel Karim
Computer Engineering Department

Example

Public class SomeClass extends SomeOtherClass
implements java.io.Serializable {

 public SomeClass()

 {

 }

 ………

}

51 Eng. Asma Abdel Karim
Computer Engineering Department

Serialization Issues

• There are some legitimate reasons, too, for
not supporting serialization.
– For example, if an object contained very sensitive

information, it might be unwise to serialize it and
save it to disk or send it over a network.

– Developers should be aware that no special care is
taken to protect the contents of a serialized object
from scrutiny or modification, and that any class
in any JVM may choose to deserialize an object at
a later time.

52 Eng. Asma Abdel Karim

Computer Engineering Department

Serialization Issues (Cont.)

• To prevent individual member variables being
serialized, they can be marked with the
transient keyword, which indicates that the
object or primitive datatype must not be
serialized.

• Other uses for the transient keyword are for
fields that are being continuously updated by
some means, such as a timer, and hence do
not make sense to serialize.

53 Eng. Asma Abdel Karim
Computer Engineering Department

Example

Public class UserAccount implements
java.io.Serializable {

 protected String username;
 protected transient String password;

 public UserAccount()
 {
 ….
 }
}

54 Eng. Asma Abdel Karim
Computer Engineering Department

Reading and Writing Objects to
Streams

• The main point of serialization is to write an
object out to a stream and to read it back.

• This is accomplished by using the
java.io.ObjectOutputStream and
java.io.ObjectInputStream classes, which can
write serializable objects out to an output
stream and read them back from an input
stream.

55 Eng. Asma Abdel Karim
Computer Engineering Department

The ObjectInputStream Class

• The ObjectInputStream class is used to read a
serialized object from a byte stream, to allow an object
to be reconstituted back to its original form, providing
the object's class can be loaded by the JVM's class
loader.

• The ObjectInputStream class implements the
ObjectInput interface, which extends the DataInput
interface.

• This means that the ObjectInputStream class provides
many methods with the same signature as
DataInputStream, in addition to extra methods
responsible for reading objects.

56 Eng. Asma Abdel Karim
Computer Engineering Department

The ObjectInputStream Class (Cont.)

• Constructors:
– protected ObjectInputStream() throws

java.io.IOException java.lang.SecurityException

Provides a default constructor for
ObjectInputStream subclasses.

– ObjectInputStream(InputStream input) throws
java.io.IOException

Creates an object input stream connected to the
specified input stream, which is capable of restoring
serialized objects.

57 Eng. Asma Abdel Karim
Computer Engineering Department

The ObjectInputStream Class (Cont.)

• Methods:
Many of the methods of ObjectInputStream were covered in
the discussion of the DataInputStream class.
ObjectInputStream can read primitive datatypes just like the
DataInputStream class.

– public final Object readObject() throws
java.io.OptionalDataException, java.io.IOException,
java.lang.ClassNotFoundException

Reads a serialized object from the stream and reconstructs it to its
original state. If the object contains references to other objects,
these objects are also reconstructed. If an object cannot be read,
the application will be notified by the method throwing an
exception. An Object instance is returned. If required, this object
can be cast to a specific class type before it is used.

58 Eng. Asma Abdel Karim
Computer Engineering Department

The ObjectOutputStream Class

• The ObjectOutputStream class serializes an object to a byte stream,
for the purpose of object persistence.

• It may be connected to any existing output stream, such as a file or
a networking stream, for transmission over the Internet.

• Objects written to an ObjectOutputStream have all their member
variables (such as primitive data types and objects) written.

• If the object contains references to other objects, they too will be
written, so an ObjectOutputStream can write entire object graphs.

• A sequence of objects can be written or wrapped in a collection
(such as an array or a vector) whose entire contents could be
serialized with one call to the ObjectOutputStream.writeObject
method.

59 Eng. Asma Abdel Karim
Computer Engineering Department

The ObjectOutputStream Class (Cont.)

• Constructors:

– protected ObjectOutputStream () throws
java.io.IOException java.lang.SecurityException

Default constructor, provided for the benefit of subclasses of the
ObjectOutputStream.

– ObjectOutputStream (OutputStream output) throws
java.io.IOException

Creates an object output stream capable of serializing objects to
the specified output stream.

60 Eng. Asma Abdel Karim
Computer Engineering Department

The ObjectOutputStream Class (Cont.)

• Methods:

• The ObjectOutputStream class also provides method
implementations for the DataOutput interface.

– void writeObject (Object object) throws java.io.IOException,
java.io.InvalidClassException,java.io.NotSerializableException

Writes the specified object to the output stream, through
object serialization. All variables that are not marked as
transient or static will be written, providing the specified
class is an instance of the java.io.Serializable interface.

61 Eng. Asma Abdel Karim
Computer Engineering Department

References

Chapter 4 of Java™ Network Programming
and Distributed Computing, David Reilly
and Michael Reilly.

62 Eng. Asma Abdel Karim
Computer Engineering Department

11/27/2015

Eng. Asma Abdelkarim 1

Networks and Internet
Programming

User Datagram Protocol

1 Eng. Asma Abdel Karim
Computer Engineering Department

Outline

 Overview.

 DatagramPacket Class.

 DatagramSocket Class.

 Listening for UDP Packets.

 Sending UDP Packets.

 Additional Information on UDP.

2 Eng. Asma Abdel Karim
Computer Engineering Department

11/27/2015

Eng. Asma Abdelkarim 2

Overview

• The User Datagram Protocol (UDP) is a commonly
used transport protocol employed by many types
of applications.

• UDP is a connectionless transport protocol,
meaning that it doesn't guarantee either packet
delivery or that packets arrive in sequential order.

• Rather than reading from, and writing to, an
ordered sequence of bytes using I/O streams,
bytes of data are grouped together in discrete
packets, which are sent over the network.

3 Eng. Asma Abdel Karim
Computer Engineering Department

Overview

• The packets may travel along different paths, as selected by the
various network routers that distribute traffic flow, depending on
factors such as network congestion, priority of routes, and cost of
transmission.
– This means that a packet can arrive out of sequence, if it encounters a

faster route than the previous packet (or if the previous packet
encounters some other form of delay).

– No two packets are guaranteed the same route, and if a particular
route is heavily congested, the packet may be discarded entirely. Each
packet has a time-to-live (TTL) counter, which is updated when the
packet is routed along to the next point in the network. When the
timer expires, it will be discarded, and the recipient of the packet will
not be notified.

– If a packet does arrive, however, it will always arrive intact. Packets
that are corrupt or only partially delivered are discarded.

4 Eng. Asma Abdel Karim
Computer Engineering Department

11/27/2015

Eng. Asma Abdelkarim 3

Advantages of UDP

• UDP communication can be more efficient than guaranteed-delivery data
streams. If the amount of data is small and the data is sent frequently.

• Unlike TCP streams, which establish a connection, UDP causes fewer
overheads.
– If the amount of data being sent is small and the data is sent infrequently, the

overhead of establishing a connection might not be worth it.
– If data is being sent from a large number of machines to one central one, in

which case the sum total of all these connections might cause significant
overload.

• Real-time applications that demand up-to-the-second or better
performance may be candidates for UDP, as there are fewer delays due to
the error checking and flow control of TCP.

• UDP sockets can receive data from more than one host machine. If several
machines must be communicated with, then UDP may be more
convenient than other mechanisms such as TCP.

• Some network protocols specify UDP as the transport mechanism,
requiring its use.

5 Eng. Asma Abdel Karim
Computer Engineering Department

java.net.DatagramPacket Class

• The DatagramPacket class represents a data
packet intended for transmission using the
User Datagram Protocol.

• Packets are containers for a small sequence of
bytes, and include addressing information
such as an IP address and a port.

6 Eng. Asma Abdel Karim
Computer Engineering Department

11/27/2015

Eng. Asma Abdelkarim 4

java.net.DatagramPacket Class

7 Eng. Asma Abdel Karim
Computer Engineering Department

java.net.DatagramPacket Class

• The meaning of the data stored in a
DatagramPacket is determined by its context.

• When a DatagramPacket has been read from a
UDP socket, the IP address of the packet
represents the address of the sender (likewise
with the port number).

• However, when a DatagramPacket is used to
send a UDP packet, the IP address stored in
DatagramPacket represents the address of the
recipient (likewise with the port number).

8 Eng. Asma Abdel Karim
Computer Engineering Department

11/27/2015

Eng. Asma Abdelkarim 5

Creating a DatagramPacket

There are two reasons to create a new
DatagramPacket:

1. To send data to a remote machine using UDP.

2. To receive data sent by a remote machine
using UDP.

9 Eng. Asma Abdel Karim
Computer Engineering Department

Creating a DatagramPacket

• Constructors:
– The choice of which DatagramPacket constructor to use is determined by its

intended purpose.
– Either constructor requires the specification of a byte array, which will be used

to store the UDP packet contents, and the length of the data packet.
– To create a DatagramPacket for receiving incoming UDP packets, the following

constructor should be used:
DatagramPacket(byte[] buffer, int length).
For example:
DatagramPacket packet = new DatagramPacket(new byte[256], 256);
– To send a DatagramPacket to a remote machine, it is preferable to use the

following constructor:
DatagramPacket(byte[] buffer, int length, InetAddress dest_addr, int dest_port).
For example:
InetAddress addr = InetAddress.getByName("192.168.0.1");
DatagramPacket packet = new DatagramPacket (new byte[128],128, addr,
2000);

10 Eng. Asma Abdel Karim
Computer Engineering Department

11/27/2015

Eng. Asma Abdelkarim 6

Creating a DatagramPacket

• Methods:
– The DatagramPacket class provides some important

methods that allow the remote address, remote port,
data (as a byte array), and length of the packet to be
retrieved.

– As of JDK1.1, there are also methods to modify these,
via a corresponding set method. This means that a
received packet can be reused.

• For example, a packet's contents can be replaced and then
sent back to the sender. This saves having to reset
addressing information—the address and port of the packet
are already set to those of the sender.

11 Eng. Asma Abdel Karim
Computer Engineering Department

Creating a DatagramPacket

• Methods:
– InetAddress getAddress()
Returns the IP address from which a DatagramPacket was sent, or (if the
packet is going to be sent to a remote machine), the destination IP
address.
– byte[] getData()
Returns the contents of the DatagramPacket, represented as an array of
bytes.
– int getLength()
Returns the length of the data stored in a DatagramPacket. This can be
less than the actual size of the data buffer.
– int getPort()
Returns the port number from which a DatagramPacket was sent, or (if
the packet is going to be sent to a remote machine), the destination port
number.

12 Eng. Asma Abdel Karim
Computer Engineering Department

11/27/2015

Eng. Asma Abdelkarim 7

Creating a DatagramPacket

• Methods:
– void setAddress(InetAddress addr)
Assigns a new destination address to a DatagramPacket.
– void setData(byte[] buffer)
Assigns a new data buffer to the DatagramPacket. Remember to
make the buffer long enough, to prevent data loss.
– void setLength(int length)
Assigns a new length to the DatagramPacket. Remember that the
length must be less than or equal to the maximum size of the data
buffer, or an IllegalArgumentException will be thrown. When
sending a smaller amount of data, you can adjust the length to
fit—you do not need to resize the data buffer.
– void setPort(int port)
Assigns a new destination port to a DatagramPacket.

13 Eng. Asma Abdel Karim
Computer Engineering Department

java.net.DatagramSocket Class

• The DatagramSocket class provides access to a UDP socket,
which allows UDP packets to be sent and received.

• A DatagramPacket is used to represent a UDP packet, and
must be created prior to receiving any packets.

• The same DatagramSocket can be used to receive packets
as well as to send them.

• Read operations are blocking, meaning that the application
will continue to wait until a packet arrives.
– Since UDP packets do not guarantee delivery, this can cause an

application to stall if the sender does not resubmit packets.
– You can use multiple threads of execution, or as of JDK1.1, you

can use nonblocking I/O to avoid this problem.

14 Eng. Asma Abdel Karim
Computer Engineering Department

11/27/2015

Eng. Asma Abdelkarim 8

Creating a DatagramSocket

• A DatagramSocket can be used to both send and
receive packets.

• Each DatagramSocket binds to a port on the local
machine, which is used for addressing packets.

• The port number need not match the port
number of the remote machine, but if the
application is a UDP server, it will usually choose
a specific port number.

• If the DatagramSocket is intended to be a client,
and doesn't need to bind to a specific port
number, a blank constructor can be specified.

15 Eng. Asma Abdel Karim
Computer Engineering Department

Creating a DatagramSocket (Cont.)

• To create a client DatagramSocket, the
following constructor is used:

DatagramSocket() throws java.net.SocketException

• To create a server Datagram Socket, the
following constructor is used, which takes as a
parameter the port to which the UDP service
will be bound:

DatagramSocket(int port) throws java.net.SocketException

16 Eng. Asma Abdel Karim
Computer Engineering Department

11/27/2015

Eng. Asma Abdelkarim 9

Creating a DatagramSocket (Cont.)

• Although rarely used, there is a third constructor
for DatagramSocket, introduced in JDK1.1.

• If a machine is known by several IP addresses, you
can specify the IP address and port to which a UDP
service should be bound.

• It takes as parameters the port to which the UDP
service will be bound, as well as the InetAddress of
the service.

• This constructor is:
DatagramSocket (int port, InetAddress addr) throws java.net.SocketException

17 Eng. Asma Abdel Karim
Computer Engineering Department

Using a DatagramSocket

• DatagramSocket is used to receive incoming UDP
packets and to send outgoing UDP packets.

• It provides methods to:

– Send and receive packets,

– Specify a timeout value when nonblocking I/O is being
used,

– Inspect and modify maximum UDP packet sizes, and

– Close the socket.

18 Eng. Asma Abdel Karim
Computer Engineering Department

11/27/2015

Eng. Asma Abdelkarim 10

Using a DatagramSocket (Cont.)

• void close()
Closes a socket, and unbinds it from the local port.
• void connect(InetAddress remote_addr, int remote_port)
Restricts access to the specified remote address and port. The
designation is a misnomer, as UDP doesn't actually create a
"connection" between one machine and another. However, if
this method is used, it causes exceptions to be thrown if an
attempt is made to send packets to, or read packets from, any
other host and port than those specified.
• void disconnect()
Disconnects the DatagramSocket and removes any restrictions
imposed on it by an earlier connect operation.

19 Eng. Asma Abdel Karim
Computer Engineering Department

Using a DatagramSocket (Cont.)

• InetAddress getInetAddress()
Returns the remote address to which the socket is connected, or null if no such
connection exists.
• int getPort()
Returns the remote port to which the socket is connected, or –1 if no such
connection exists.
• InetAddress getLocalAddress()
Returns the local address to which the socket is bound.
• int getLocalPort()
Returns the local port to which the socket is bound.
• int getReceiveBufferSize() throws java.net.SocketException
Returns the maximum buffer size used for incoming UDP packets.
• int getSendBufferSize() throws java.net.SocketException
Returns the maximum buffer size used for outgoing UDP packets.

20 Eng. Asma Abdel Karim
Computer Engineering Department

11/27/2015

Eng. Asma Abdelkarim 11

Using a DatagramSocket (Cont.)

• int getSoTimeout() throws java.net.SocketException
Returns the value of the timeout socket option. This value is used to
determine the number of milliseconds a read operation will block before
throwing a java.io.InterruptedIOException. By default, this value will be
zero, indicating that blocking I/O will be used.
• void receive(DatagramPacket packet) throws java.io.IOException
Reads a UDP packet and stores the contents in the specified packet. The
address and port fields of the packet will be overwritten with the sender
address and port fields, and the length field of the packet will contain
the length of the original packet, which can be less than the size of the
packet's byte-array. If a timeout value hasn't been specified by using
DatagramSocket.setSoTimeout(int duration), this method will block
indefinitely. If a timeout value has been specified, a
java.io.InterruptedIOException will be thrown if the time is exceeded.

21 Eng. Asma Abdel Karim
Computer Engineering Department

Using a DatagramSocket (Cont.)

• void send(DatagramPacket packet) throws java.io.IOException

Sends a UDP packet, represented by the specified packet parameter.

• void setReceiveBufferSize(int length) throws java.net. SocketException

Sets the maximum buffer size used for incoming UDP packets. Whether the
specified length will be adhered to is dependent on the operating system.

• void setSendBufferSize(int length) throws java.net.SocketException

Sets the maximum buffer size used for outgoing UDP packets. Whether the
specified length will be adhered to is dependent on the operating system.

• void setSoTimeout(int duration) throws java.net.SocketException

Sets the value of the timeout socket option. This value is the number of
milliseconds a read operation will block before throwing a
java.io.InterruptedIOException.

22 Eng. Asma Abdel Karim
Computer Engineering Department

11/27/2015

Eng. Asma Abdelkarim 12

Listening for UDP Packets

• Before an application can read UDP packets sent to it by
remote machines, it must:
– Bind a socket to a local UDP port using DatagramSocket, and

– Create a DatagramPacket that will act as a container for the UDP
packet's data.

23 Eng. Asma Abdel Karim
Computer Engineering Department

Listening for UDP Packets (Cont.)
• When an application wishes to read UDP packets, it calls the

DatagramSocket.receive method, which copies a UDP packet into
the specified DatagramPacket. The contents of the DatagramPacket
are processed, and the process is repeated as needed.

DatagramPacket packet = new DatagramPacket (new byte[256], 256);

DatagramSocket socket = new DatagramSocket(2000);

boolean finished = false;

while (! finished)

{

 socket.receive (packet);

 // process the packet

}

socket.close();

24 Eng. Asma Abdel Karim
Computer Engineering Department

11/27/2015

Eng. Asma Abdelkarim 13

Listening for UDP Packets (Cont.)

• When processing the packet, the application must work
directly with an array of bytes.

• If, however, your application is better suited to reading text,
you can use classes from the Java I/O package to convert
between a byte array and another type of stream or reader.
– By hooking a ByteArrayInputStream to the contents of a datagram and

then to another type of InputStream or an InputStreamReader, you can
access the contents of UDP packets relatively easily.

ByteArrayInputStream bin = new ByteArrayInputStream(

packet.getData());

DataInputStream din = new DataInputStream (bin);

// Read the contents of the UDP packet

25 Eng. Asma Abdel Karim
Computer Engineering Department

Listening for UDP Packets (Cont.)

26 Eng. Asma Abdel Karim
Computer Engineering Department

11/27/2015

Eng. Asma Abdelkarim 14

Sending UDP Packets

• The same interface (DatagramSocket) employed to receive
UDP packets is also used to send them.

• When sending a packet, the application must create a
DatagramPacket, set the address and port information, and
write the data intended for transmission to its byte array.

• If replying to a received packet, the address and port
information will already be stored, and only the data need be
overwritten.

• Once the packet is ready for transmission, the send method of
DatagramSocket is invoked, and a UDP packet is sent.

27 Eng. Asma Abdel Karim
Computer Engineering Department

Sending UDP Packets (Cont.)

28 Eng. Asma Abdel Karim
Computer Engineering Department

11/27/2015

Eng. Asma Abdelkarim 15

Sending UDP Packets (Cont.)
DatagramSocket socket = new DatagramSocket(2000);

DatagramPacket packet = new DatagramPacket (new byte[256], 256);

packet.setAddress (InetAddress.getByName (somehost));

packet.setPort (2000);

boolean finished = false;

while !finished)

{

 // Write data to packet buffer

 socket.send (packet);

 // Do something else, like read other packets, or check to

 // see if no more packets to send

}

socket.close();

29 Eng. Asma Abdel Karim
Computer Engineering Department

Additional Information on UDP

• While the UDP is sometimes the best alternative for certain
classes of applications, because of its unique properties, it does
present some challenges to developers.

– Lack of guaranteed delivery.

– Lack of guaranteed packet sequencing.

– Lack of flow control.

30 Eng. Asma Abdel Karim
Computer Engineering Department

11/27/2015

Eng. Asma Abdelkarim 16

References

Chapter 5 of Java™ Network Programming
and Distributed Computing, David Reilly
and Michael Reilly.

31 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 1

Networks and Internet
Programming

Transmission Control Protocol

1 Eng. Asma Abdel Karim
Computer Engineering Department

Outline

 Overview.
 Advantages of TCP Over UDP.
 Communication between Applications Using Ports.
 Socket Operations.
 TCP and the Client/Server Paradigm.
 TCP Sockets and Java.
 Socket Class.
 Creating a TCP Client.
 ServerSocket Class.
 Creating a TCP Server.
 Exception Handling: Socket-Specific Exceptions.

2 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 2

Overview

• The properties of TCP make it highly attractive to
network programmers.
– As it simplifies network communication by removing

many of the obstacles of UDP, such as ordering of
packets and packet loss.

• UDP is concerned with the transmission of
packets of data.
– TCP focuses instead on establishing a network

connection, through which a stream of bytes may be
sent and received.

3 Eng. Asma Abdel Karim
Computer Engineering Department

Overview (Cont.)

• Packets may be sent through a network using various paths
and may arrive at different times.

• This benefits performance and robustness, as the loss of a
single packet doesn't necessarily disrupt the transmission
of other packets.

• Nonetheless, such a system creates extra work for
programmers who need to guarantee delivery of data.

• TCP eliminates this extra work by guaranteeing delivery and
order, providing for a reliable byte communication stream
between client and server that supports two-way
communication.

• TCP establishes a "virtual connection" between two
machines, through which streams of data may be sent.

4 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 3

Overview (Cont.)

5 Eng. Asma Abdel Karim
Computer Engineering Department

Overview (Cont.)

• TCP uses a lower-level communications protocol, the
Internet Protocol (IP), to establish the connection
between machines.
– This connection provides an interface that allows streams

of bytes to be sent and received, and transparently
converts the data into IP datagram packets.

• TCP provides guaranteed delivery of bytes of data.
– Of course, it's always possible that network errors will

prevent delivery, but TCP handles the implementation
issues such as resending packets, and alerts the
programmer only in serious cases such as if there is no
route to a network host or if a connection is lost.

6 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 4

Overview (Cont.)

• The virtual connection between two machines is
represented by a socket.

• There are substantial differences between a UDP
socket and a TCP socket.
– First, TCP sockets are connected to a single machine,

whereas UDP sockets may transmit or receive data from
multiple machines.

– Second, UDP sockets only send and receive packets of
data, whereas TCP allows transmission of data through
byte streams (represented as an InputStream and
OutputStream). They are converted into datagram packets
for transmission over the network, without requiring the
programmer to intervene.

7 Eng. Asma Abdel Karim
Computer Engineering Department

Advantages of TCP over UDP

• Automatic Error Control.

• Reliability.

• Ease of Use.

8 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 5

Communication between Applications
Using Ports

• It is clear that there are significant differences between
TCP and UDP, but there is also an important similarity
between these two protocols. Both share the concept
of a communications port, which distinguishes one
application from another.

• When a TCP socket establishes a connection to another
machine, it requires two very important pieces of
information to connect to the remote end—the IP
address of the machine and the port number.

• In addition, a local IP address and port number will be
bound to it, so that the remote machine can identify
which application established the connection.

9 Eng. Asma Abdel Karim
Computer Engineering Department

Communication between Applications
Using Ports (Cont.)

10 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 6

Communication between Applications
Using Ports (Cont.)

• Ports in TCP are just like ports in UDP—they are
represented by a number in the range 1–65535.

• Ports below 1024 are restricted to use by well-
known services such as HTTP, FTP, SMTP, POP3,
and telnet.

11 Eng. Asma Abdel Karim
Computer Engineering Department

Well-Known Services Service Port

Telnet 23

Simple Mail Transfer Protocol 25

HyperTexr Transfer Protocol 80

Post Office Protocol 3 110

Socket Operations

• TCP sockets can perform a variety of operations. They can:
– Establish a connection to a remote host.
– Send data to a remote host.
– Receive data from a remote host.
– Close a connection.

• In addition, there is a special type of socket that provides a service that
will bind to a specific port number. This type of socket is normally used
only in servers, and can perform the following operations:
– Bind to a local port.
– Accept incoming connections from remote hosts.
– Unbind from a local port.

• These two sockets are grouped into different categories, and are used by
either a client or a server (since some clients may also be acting as
servers, and some servers as clients). However, it is normal practice for the
role of client and server to be separate.

12 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 7

TCP and the Client/Server Paradigm

• The client/server paradigm divides software into two
categories, clients and servers.
– A client is software that initiates a connection and sends

requests, whereas
– A server is software that listens for connections and

processes requests.

• In the context of UDP programming, no actual
connection is established, and UDP applications may
both initiate and receive requests on the same socket.

• In the context of TCP, where connections are
established between machines, the client/server
paradigm is much more relevant.

13 Eng. Asma Abdel Karim
Computer Engineering Department

TCP and the Client/Server Paradigm
(Cont.)

• When software acts as a client, or as a server, it
has a rigidly defined role that fits easily into a
familiar mental model.
– Either the software is initiating requests, or it is

processing them.

• Switching between these roles makes for a more
complex system.
– Even if switching is permitted, at any given time one

software program must be the client and one
software program must be the server. If they both try
to be clients at the same time, no server exists to
process the requests!

14 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 8

Network Clients

• Network clients initiate connections and usually take charge of network
transactions.

• The server is there to fulfill the requests of the client—a client does not
fulfill the requests of a server.

• Although the client is in control, some power still resides in the server, of
course. A client can tell a server to delete all files on the local file system,
but the server isn't necessarily compelled to carry out that action.

• The network client speaks to the server using an agreed-upon standard for
communication, the network protocol.
– For example, an HTTP client uses a set of commands different from a mail

client, and has a completely different purpose.
– Connecting an HTTP client to a mail server, or a mail client to an HTTP server,

will result not only in an error message but in an error message that the client
will not understand.

– For this reason, as part of the protocol specification, a port number is used so
that the client can locate the server.

15 Eng. Asma Abdel Karim
Computer Engineering Department

Network Servers

• The role of the network server is to bind to a specific
port (which is used by the client to locate the server),
and to listen for new connections.

• While the client is temporary, and runs only when the
user chooses, the server must run continually (even if
no clients are actually connected) in the hope that
someone, at some time, will want its services.

• Some servers can handle only a single connection at a
time, while others can handle many connections
concurrently, through the use of threads.

16 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 9

TCP Sockets and Java

• Java offers good support for TCP sockets, in the form of two
socket classes, java.net.Socket and java.net.ServerSocket.

• When writing client software that connects to an existing
service, the Socket class should be used.

• When writing server software that binds to a local port in
order to provide a service, the ServerSocket class should be
employed.

• This is different from the way a DatagramSocket works
with UDP.
– The function of connecting to servers, and the function of

accepting data from clients, is split into a separate class under
TCP.

17 Eng. Asma Abdel Karim
Computer Engineering Department

Socket Class

• The Socket class represents client sockets, and is a
communication channel between two TCP
communications ports belonging to one or two
machines.

• A socket may connect to a port on the local system,
avoiding the need for a second machine, but most
network software will usually involve two machines.

• TCP sockets can't communicate with more than two
machines, however.
– If this functionality is required, a client application should

establish multiple socket connections, one for each
machine.

18 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 10

Socket Class - Constructors

• The easiest way to create a socket is to specify the
hostname of the machine and the port of the
service. For example, to connect to a Web server
on port 80, the following code might be used:

try{
 // Connect to the specified host and port
 Socket mySocket = new Socket ("www.awl.com", 80);
 //
}
catch (Exception e){
 System.err.println ("Err – " + e);
}

19 Eng. Asma Abdel Karim
Computer Engineering Department

Socket Class – Constructors (Cont.)

• protected Socket ()
– Creates an unconnected socket using the default implementation provided by

the current socket factory. Developers should not normally use this constructor ,
as it does not allow a hostname or port to be specified.

• Socket (InetAddress address, int port) throws java.io.IOException,
java.lang.SecurityException
– Creates a socket connected to the specified IP address and port. If a connection

cannot be established, or if connecting to that host violates a security restriction
(such as when an applet tries to connect to a machine other than the machine
from which it was loaded), an exception is thrown.

• Socket (InetAddress address, int port, InetAddress localAddress, int
localPort) throws java.io.IOException, java.lang.SecurityException
– Creates a socket connected to the specified address and port, and is bound to

the specified local address and local port. By default, a free port is used, but this
method allows you to specify a specific port number, as well as a specific
address, in the case of multihomed hosts (i.e., a machine where the localhost is
known by two or more IP addresses).

20 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 11

Socket Class – Constructors (Cont.)

• protected Socket (SocketImpl implementation)
– Creates an unconnected socket using the specified socket implementation.

Developers should not normally use this constructor, as it does not allow a
hostname or port to be specified.

• Socket (String host, int port) throws java.net.UnknownHostException,
java.io.IOException, java.lang.SecurityException
– Creates a socket connected to the specified host and port. This method allows a

string to be specified, rather than an InetAddress. If the hostname could not be
resolved, a connection could not be established, or a security restriction is
violated, an exception is thrown.

• Socket (String host, int port, InetAddress localAddress, int localPort) throws
java.net.UnknownHostException, java.io. IOException, java.lang.SecurityException
– Creates a socket connected to the specified host and port, and bound to the specified

local port and address. This allows a hostname to be specified as a string, and not an
InetAddress instance, as well as allowing a specific local address and port to be bound to.
These local parameters are useful for multihomed hosts (i.e., a machine where the
localhost is known by two or more IP addresses). If the hostname can't be resolved, a
connection cannot be established, or a security restriction is violated, an exception is
thrown.

21 Eng. Asma Abdel Karim
Computer Engineering Department

Creating a Socket

• Under normal circumstances, a socket is connected to a machine and
port when it is created.
– Although there is a blank constructor that does not require a hostname

or port, it is protected and can't be called from normal applications.
– Furthermore, there isn't a connect() method that allows you to specify

these details at a later point in time, so under normal circumstances the
socket will be connected when created.

• If the network is fine, the call to a socket constructor will return as
soon as a connection is established, but if the remote machine is not
responding, the constructor method may block for an indefinite
amount of time.
– This varies from system to system, depending on a variety of factors

such as the operating system being used and the default network
timeout.

– In mission-critical systems it may be appropriate to place such calls in a
second thread, to prevent an application from stalling.

22 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 12

Using a Socket

• void close() throws java.io.IOException
– Closes the socket connection. Closing a connect may or may not

allow remaining data to be sent, depending on the streams before
closing a socket connection.

• InetAddress getInetAddress()
– Returns the address of the remote machine that is connected to

the socket.

• InputStream getInputStream() throws java.io.IOException
– Returns an input stream, which reads from the application this

socket is connected to.

• OutputStream getOutputStream() throws java.io.IOException
– Returns an output stream, which writes to the application that

this socket is connected to.

23 Eng. Asma Abdel Karim
Computer Engineering Department

Using a Socket (Cont.)

• boolean getKeepAlive() throws java.net.SocketException
– Returns the state of the SO_KEEPALIVE socket option.

• InetAddress getLocalAddress()
– Returns the local address associated with the socket (useful in the case of

multihomed machines).

• int getLocalPort()
– Returns the port number that the socket is bound to on the local machine.

• int getPort()
– Returns the port number of the remote service to which the socket is connected.

• int getReceiveBufferSize() throws java.net.SocketException
– Returns the receive buffer size used by the socket, determined by the value of

the SO_RCVBUF socket option.

• int getSendBufferSize() throws java.net.SocketException
– Returns the send buffer size used by the socket, determined by the value of the

SO_SNDBUF socket option.

24 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 13

Using a Socket (Cont.)

• int getSoLinger() throws java.net.SocketException
– Returns the value of the SO_LINGER socket option, which controls how

long unsent data will be queued when a connection is terminated.

• int getSoTimeout() throws java.net.SocketException
– Returns the value of the SO_TIMEOUT socket option, which controls how

many milliseconds a read operation will block for. If a value of 0 is
returned, the timer is disabled and a thread will block indefinitely (until
data is available or the stream is terminated).

• boolean getTcpNoDelay() throws java.net.SocketException
– Returns "true" if the TCP_NODELAY socket option is set, which controls

whether Nagle's algorithm is enabled.

25 Eng. Asma Abdel Karim
Computer Engineering Department

Using a Socket (Cont.)

• void setKeepAlive(boolean onFlag) throws java.net.SocketException

– Enables or disables the SO_KEEPALIVE socket option.

• void setReceiveBufferSize(int size) throws java.net.SocketException
– Modifies the value of the SO_RCVBUF socket option, which recommends a buffer

size for the operating system's network code to use for receiving incoming data.
Not every system will support this functionality or allows absolute control over
this feature. If you want to buffer incoming data, you're advised to instead use a
BufferedInputStream or a BufferedReader.

• void setSendBufferSize(int size) throws java.net.SocketException
– Modifies the value of the SO_SNDBUF socket option, which recommends a

buffer size for the operating system's network code to use for sending incoming
data. Not every system will support this functionality or allows absolute control
over this feature. If you want to buffer incoming data, you're advised to instead
use a BufferedOutputStream or a BufferedWriter.

26 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 14

Using a Socket (Cont.)
• static void setSocketImplFactory (SocketImplFactory factory)

throws java.net.SocketException, java.io.IOException
java.lang.SecurityException

– Assigns a socket implementation factory for the JVM, which may already
exist, or may violate security restrictions, either of which causes an
exception to be thrown. Only one factory can be specified, and this
factory will be used whenever a socket is created.

• void setSoLinger(boolean onFlag, int duration) throws
java.net.SocketException java.lang.IllegalArgumentException

– Enables or disables the SO_LINGER socket option (according to the value
of the onFlag boolean parameter), and specifies a duration in seconds. If
a negative value is specified, an exception is thrown.

27 Eng. Asma Abdel Karim
Computer Engineering Department

Using a Socket (Cont.)
• void setSoTimeout(int duration) throws java.net.SocketException

– Modifies the value of the SO_TIMEOUT socket option, which controls
how long (in milliseconds) a read operation will block. A value of zero
disables timeouts, and blocks indefinitely. If a timeout does occur, a
java.io.IOInterruptedException is thrown whenever a read operation
occurs on the socket's input stream. This is distinct from the internal TCP
timer, which triggers a resend of unacknowledged datagram packets.

• void setTcpNoDelay(boolean onFlag) throws
java.net.SocketException

– Enables or disables the TCP_NODELAY socket option, which determines
whether Nagle's algorithm is used.

28 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 15

Using a Socket (Cont.)

• void shutdownInput() throws java.io.IOException
– Closes the input stream associated with this socket and discards any

further information that is sent. Further reads to the input stream will
encounter the end of the stream marker.

• void shutdownOutput() throws java.io.IOException
– Closes the output stream associated with this socket. Any data

previously written, but not yet sent, will be flushed, followed by a TCP
connection-termination sequence, which notifies the application that no
more data will be available (and in the case of a Java application, that
the end of the stream has been reached). Further writes to the socket
will cause an IOException to be thrown.

29 Eng. Asma Abdel Karim
Computer Engineering Department

Reading from and Writing to TCP
Sockets

• Once a socket is created, it is connected and ready to
read/write by using the socket's input and output streams.

• These streams don't need to be created; they are provided by
the Socket.getInputStream() and Socket.getOutputStream()
methods.

• A filter can easily be connected to a socket stream, to make for
simpler programming.

30 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 16

Reading from and Writing to TCP
Sockets (Example)

try{

 // Connect a socket to some host machine and port

 Socket socket = new Socket (somehost, someport);

 // Connect a buffered reader

 BufferedReader reader = new BufferedReader (new
 InputStreamReader (socket.getInputStream()));

 // Connect a print stream

 PrintStream pstream = new PrintStream(
 socket.getOutputStream());

}

catch (Exception e){

 System.err.println ("Error – " + e);

}

31 Eng. Asma Abdel Karim
Computer Engineering Department

Socket Options

• Socket options are settings that modify how sockets work, and
they can affect (both positively and negatively) the
performance of applications.

• Generally, socket options should not be changed unless there is
a good reason for doing so, as changes may negatively affect
application and network performance.

• The one exception to this caveat is the SO_TIMEOUT option.
– Virtually every TCP application should handle timeouts gracefully rather

than stalling if the application the socket is connected to fails to
transmit data when required.

32 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 17

SO_KEEPALIVE Socket Option

• By default, no data is sent between two connected sockets
unless an application has data to send.
– This means that an idle socket may not have data submitted for

minutes, hours, or even days in the case of long-lived processes.

• Suppose, however, that a client crashes, and the end-of-
connection sequence is not sent to a TCP server.
– Valuable resources (CPU time and memory) might be wasted on a client

that will never respond.

• When the keepalive socket option is enabled, the other end of
the socket is probed to verify it is still active.
– However, the application doesn't have any control over how often

keepalive probes are sent.

33 Eng. Asma Abdel Karim
Computer Engineering Department

SO_KEEPALIVE Socket Option (Cont.)

• To enable keepalive, the Socket.setSoKeepAlive(boolean)
method is called with a value of "true" (a value of "false" will
disable it).

• For example, to enable keepalive on a socket, the following
code would be used.

 // Enable SO_KEEPALIVE

 someSocket.setSoKeepAlive(true);

• It should also be kept in mind that keepalive doesn't allow you
to specify a value for probing socket endpoints.
– A better solution than keepalive, and one that developers are advised to

use, is to instead modify the timeout socket option.

34 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 18

SO_RCVBUF Socket Option

• The receive buffer socket option controls the buffer used for
receiving data.

• Changes can be made to the size by calling the
Socket.setReceiveBufferSize(int) method.

• For example, to increase the receive buffer size to 4,096 bytes,
the following code would be used.

 // Modify receive buffer size

 someSocket.setReceiveBufferSize(4096);

35 Eng. Asma Abdel Karim
Computer Engineering Department

SO_RCVBUF Socket Option (Cont.)

• Note that a request to modify the size of the receive buffer
does not guarantee that it will change.

• For example, some operating systems may not allow this socket
option to be modified, and will ignore any changes to the
value.

• The current buffer size can be determined by invoking the
Socket.getReceiveBufferSize() method.

• A better choice for buffering is to use a BufferedInput
Stream/BufferedReader.

36 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 19

SO_SNDBUF Socket Option

• The send buffer socket option controls the size of the buffer
used for sending data.

• By calling the Socket.setSendBufferSize(int) method, you can
attempt to change the buffer size, but requests to change the
size may be rejected by the operating system.

 //Set the send buffer size to 4096 bytes

 someSocket.setSendBufferSize(4096);

• To determine the size of the current send buffer, you can call
the Socket.getSendBufferSize() method, which returns an int
value.

 // Get the default size

 int size = someSocket.getSendBufferSize();

37 Eng. Asma Abdel Karim
Computer Engineering Department

SO_LINGER Socket Option

• When a TCP socket connection is closed, it is possible that data
may be queued for delivery and not yet sent (particularly if an
IP datagram becomes lost in transit and must be resent).

• The linger socket option controls the amount of time during
which unsent data may be sent, after which it is discarded
completely.

• It is possible to enable/disable the linger option entirely, or to
modify the duration of a linger, by using the
Socket.setSoLinger(boolean onFlag, int duration) method:

 // Enable linger, for fifty seconds

 someSocket.setSoLinger(true, 50);

38 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 20

TCP_NODELAY Socket Option

• This socket option is a flag, the state of which controls whether
Nagle's algorithm (RFC 896) is enabled or not.

• Because TCP data is sent over the network using IP datagrams,
a fair bit of overhead exists for each packet, such as IP and TCP
header information.

• If only a few bytes at a time are sent in each packet, the size of
the header information will far exceed that of the data.

• On a local area network, the extra amount of data sent
probably won't amount to much, but on the Internet, where
hundreds, thousands, or even millions of clients may be
sending such packets through individual routers, this adds up
to a significant amount of bandwidth consumption.

39 Eng. Asma Abdel Karim
Computer Engineering Department

TCP_NODELAY Socket Option (Cont.)

• The solution is Nagle's algorithm, which states that TCP may send
only one datagram at a time.

• When an acknowledgment comes back for each IP datagram, a new
packet is sent containing any data that has been queued up.

• This limits the amount of bandwidth being consumed by packet
header information, but at a not insignificant cost—network latency.

• Since data is being queued, it isn't dispatched immediately, so
systems that require quick response times such as X-Windows or
telnet are slowed.

• Disabling Nagle's algorithm may improve performance, but if used by
too many clients, network performance is reduced.

40 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 21

TCP_NODELAY Socket Option (Cont.)

• Nagle's algorithm is enabled or disabled by invoking the
Socket.setTcpNoDelay (boolean state) method.

• For example, to deactivate the algorithm, the following code
would be used:

 // Disable Nagle's algorithm for faster response times
 someSocket.setTcpNoDelay(false);

• To determine the state of Nagle's algorithm and the
TCP_NODELAY flag, the Socket.getTcpNoDelay() method is
used:

 // Get the state of the TCP_NODELAY flag

 boolean state = someSocket.getTcpNoDelay();

41 Eng. Asma Abdel Karim
Computer Engineering Department

SO_TIMEOUT Socket Option

• This timeout option is the most useful socket option.

• By default, I/O operations (be the file- or network-based) are
blocking.

• An attempt to read data from an InputStream will wait
indefinitely until input arrives.

• If the input never arrives, the application stalls and in most
cases becomes unusable (unless multithreading is used).

• A more robust application will anticipate such problems and
take corrective action.

42 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 22

SO_TIMEOUT Socket Option (Cont.)

• When the SO_TIMEOUT option is enabled, any read request to the
InputStream of a socket starts a timer.

• When no data arrives in time and the timer expires, a
java.io.InterruptedIOException is thrown, which can be caught to
check for a timeout.

• What happens then is up to the application developer— a retry
attempt might be made, the user might be notified, or the
connection aborted.

• The duration of the timer is controlled by calling the
Socket.setSoTimeout(int) method, which accepts as a parameter the
number of milliseconds to wait for data.

43 Eng. Asma Abdel Karim
Computer Engineering Department

SO_TIMEOUT Socket Option (Cont.)

• For example, to set a five-second timeout, the following code would
be used:

 // Set a five second timeout

 someSocket.setSoTimeout (5 * 1000);

• Once enabled, any attempt to read could potentially throw an
InterruptedIOException, which is extended from the
java.io.IOException class.

• Since read attempts can already throw an IOException, no
further code is required to handle the exception
– However, some applications may want to specifically trap timeout-

related exceptions, in which case an additional exception handler may
be added.

44 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 23

SO_TIMEOUT Socket Option (Cont.)

try{

 Socket s = new Socket (...);

 s.setSoTimeout (2000);

 // do some read operation

}

catch (InterruptedIOException iioe){

 timeoutFlag = true; // do something special like set a flag

}

catch (IOException ioe){

 System.err.println ("IO error " + ioe);

 System.exit(0);

}

45 Eng. Asma Abdel Karim
Computer Engineering Department

SO_TIMEOUT Socket Option (Cont.)

• To determine the length of the TCP timer, the
Socket.getSoTimeout() method, which returns an int, can be
used.

• A value of zero indicates that timeouts are disabled, and read
operations will block indefinitely.

 // Check to see if timeout is not zero

 if (someSocket.getSoTimeout() == 0)

 someSocket.setSoTimeout (500);

46 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 24

Creating a TCP Client
import java.net.*

import java.io.*;

public class DaytimeClient{

 public static final int SERVICE_PORT = 13;

 public static void main(String args[]){

 // Check for hostname parameter

 if (args.length != 1){

 System.out.println ("Syntax - DaytimeClient host");

 return;

 }

 // Get the hostname of server

 String hostname = args[0];

 try{

 // Get a socket to the daytime service

 Socket daytime = new Socket (hostname, SERVICE_PORT);

 47 Eng. Asma Abdel Karim
Computer Engineering Department

Creating a TCP Client
 System.out.println ("Connection established");

 // Set the socket option just in case server stalls

 daytime.setSoTimeout (2000);

 // Read from the server

 BufferedReader reader = new BufferedReader (
 new InputStreamReader(daytime.getInputStream()));

 System.out.println ("Results : " +reader.readLine());

 // Close the connection

 daytime.close();

 }

 catch (IOException ioe){

 System.err.println ("Error " + ioe);

 }

 }

}

48 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 25

ServerSocket Class

• A special type of socket, the server socket, is used to provide
TCP services.

• Client sockets bind to any free port on the local machine, and
connect to a specific server port and host.

• The difference with server sockets is that they bind to a specific
port on the local machine, so that remote clients may locate a
service.

• Client socket connections will connect to only one machine,
whereas server sockets are capable of fulfilling the requests of
multiple clients.

49 Eng. Asma Abdel Karim
Computer Engineering Department

ServerSocket Class (Cont.)

• Clients are aware of a service running on a particular port.

• Clients establish a connection, and within the server, the
connection is accepted.
– Multiple connections can be accepted at the same time, or a server may

choose to accept only one connection at any given moment.

• Once accepted, the connection is represented as a normal
socket, in the form of a Socket object.

• This ServerSocket object acts as a factory for client
connections, you don't need to create instances of the Socket
class yourself.
– These connections are modeled as a normal socket, so you can connect

input and output filter streams (or even a reader and writer) to the
connection.

50 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 26

Creating a ServerSocket
• Once a server socket is created, it will be bound to a local port and ready to

accept incoming connections.

• When clients attempt to connect, they are placed into a queue. Once all
free space in the queue is exhausted, further clients will be refused.

• The simplest way to create a server socket is to bind to a local address,
which is specified as the only parameter, using a constructor.

try{

 // Bind to port 80, to provide a TCP service (like HTTP)

 ServerSocket myServer = new ServerSocket (80);

 //

}

catch (IOException ioe){

 System.err.println ("I/O error – " + ioe);

}

51 Eng. Asma Abdel Karim
Computer Engineering Department

Creating a ServerSocket - Constructors

• ServerSocket(int port) throws java.io.IOException, java.lang.SecurityException

– Binds the server socket to the specified port number, so that remote clients may
locate the TCP service.

– If a value of zero is passed, any free port will be used. However, clients will be
unable to access the service unless notified somehow of the port number.

– By default, the queue size is set to 50, but an alternate constructor is provided
that allows modification of this setting.

– If the port is already bound, or security restrictions (such as security polices or
operating system restrictions on well-known ports) prevent access, an exception
is thrown.

• ServerSocket(int port, int numberOfClients) throws java.io.IOException,
java.lang.SecurityException

– Binds the server socket to the specified port number and allocates sufficient
space to the queue to support the specified number of client sockets.

– If the port is already bound or security restrictions prevent access, an exception
is thrown.

52 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 27

Creating a ServerSocket – Constructors (Cont.)

• ServerSocket(int port, int numberOfClients, InetAddress address)
throws java.io.IOException, java.lang.SecurityException

– Binds the server socket to the specified port number, and allocates
sufficient space to the queue to support the specified number of client
sockets.

– This is an overloaded version of the ServerSocket(int port, int
numberOfClients) constructor that allows a server socket to bind to a
specific IP address, in the case of a multihomed machine.

– For example, a machine may have two network cards, or may be
configured to represent itself as several machines by using virtual IP
addresses.

– Specifying a null value for the address will cause the server socket to
accept requests on all local addresses.

– If the port is already bound or security restrictions prevent access, an
exception is thrown.

53 Eng. Asma Abdel Karim
Computer Engineering Department

Using a ServerSocket
• While the Socket class is fairly versatile, and has many

methods, the Server Socket class doesn't really do that much,
other than accept connections and act as a factory for Socket
objects that model the connection between client and server.

• The most important method is the accept() method, which
accepts client connection requests, but there are several others
that developers may find useful.

54 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 28

Using a ServerSocket – Methods
• Socket accept() throws java.io.IOException,

java.lang.SecurityException
– Waits for a client to request a connection to the server socket, and accepts it.

– This is a blocking I/O operation, and will not return until a connection is made
(unless the timeout socket option is set).

– When a connection is established, it will be returned as a Socket object. When
accepting connections, each client request will be verified by the default
security manager, which makes it possible to accept certain IP addresses and
block others, causing an exception to be thrown.

– However, servers do not need to rely on the security manager to block or
terminate connections—the identity of a client can be determined by calling the
getInetAddress() method of the client socket.

• void close() throws java.io.IOException
– Closes the server socket, which unbinds the TCP port and allows other

services to use it.

55 Eng. Asma Abdel Karim
Computer Engineering Department

Using a ServerSocket – Methods (Cont.)

• InetAddress getInetAddress()
– Returns the address of the server socket, which may be different from

the local address in the case of a multihomed machine (i.e., a machine
whose localhost is known by two or more IP addresses).

• int getLocalPort()
– Returns the port number to which the server socket is bound.

• int getSoTimeout() throws java.io.IOException
– Returns the value of the timeout socket option, which determines how

many milliseconds an accept() operation can block for. If a value of zero
is returned, the accept operation blocks indefinitely.

56 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 29

Using a ServerSocket – Methods (Cont.)

• void implAccept(Socket socket) throws java.io.IOException

– This method allows ServerSocket subclasses to pass an unconnected
socket subclass, and to have that socket object accept an incoming
request.

– Using the implAccept method to accept the connection, an overridden
ServerSocket.accept() method can return a connected socket. Few
developers will want to subclass the ServerSocket, and using this should
be avoided unless required.

• static void setSocketFactory (SocketImplFactory factory) throws
java.io.IOException, java.net.SocketException, java.lang.Security
Exception

– Assigns a server socket factory for the JVM. This is a static method, and
should be called only once during the lifetime of a JVM. If assigning a
new socket factory is prohibited, or one has already been assigned, an
exception is thrown.

57 Eng. Asma Abdel Karim
Computer Engineering Department

Using a ServerSocket – Methods (Cont.)

• void setSoTimeout(int timeout) throws java.net.SocketException

– Assigns a timeout value (specified in milliseconds) for the blocking
accept() operation.

– If a value of zero is specified, timeouts are disabled and the operation
will block indefinitely.

– Providing timeouts are enabled, however, whenever the accept()
method is called a timer starts. When the timer expires, a
java.io.InterruptedIOException is thrown, which allows a server to then
take further actions.

58 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 30

Accepting and Processing Requests from TCP
Clients

• The most important function of a server socket is to accept
client sockets.

• Once a client socket is obtained, the server can perform all the
"real work" of server programming, which involves reading
from and writing to the socket to implement a network
protocol.

// Perform a blocking read operation, to read the next socket connection

Socket nextSocket = someServerSocket.accept();

// Connect a filter reader and writer to the stream

BufferedReader reader = new BufferedReader (new
 InputStreamReader (nextSocket.getInputStream()));

PrintWriter writer = new PrintWriter(new OutputStreamWriter
 (nextSocket.getOutputStream()));

59 Eng. Asma Abdel Karim
Computer Engineering Department

Creating a TCP Server
import java.net.*;

import java.io.*;

public class DaytimeServer{

 public static final int SERVICE_PORT = 13;

 public static void main(String args[]){

 try{

 // Bind to the service port, to grant clients access to the TCP daytime

 //service

 ServerSocket server = new ServerSocket (SERVICE_PORT);

 System.out.println ("Daytime service started");

 // Loop indefinitely, accepting clients

 for (;;) {

 // Get the next TCP client

 Socket nextClient = server.accept();

60 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 31

Creating a TCP Server
 // Display connection details

 System.out.println ("Received request from " +
 nextClient.getInetAddress() + ":" +nextClient.getPort());

 // Don't read, just write the message

 OutputStream out = nextClient.getOutputStream();

 PrintStream pout = new PrintStream (out);

 // Write the current date out to the user

 pout.print(new java.util.Date());

 // Flush unsent bytes

 out.flush();

 // Close stream

 out.close();

 // Close the connection

 nextClient.close();

 }

 }

61 Eng. Asma Abdel Karim
Computer Engineering Department

Creating a TCP Server
 catch (BindException be){

 System.err.println ("Service already running on port “ + SERVICE_PORT);

 }

 catch (IOException ioe){

 System.err.println ("I/O error - " + ioe);

 }

 }

}

62 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 32

Exception Handling: Socket-Specific Exceptions

• All socket-specific exceptions extend from SocketException, so
by simply catching that exception, you catch all of the socket-
specific ones and write a single generic handler.

• In addition, SocketException extends from java.io.IOException
if you want to provide a catchall for any I/O exception.

• SocketException
– The java.net.SocketException represents a generic socket error, which

can represent a range of specific error conditions. For finer-grained
control, applications should catch its subclasses.

63 Eng. Asma Abdel Karim
Computer Engineering Department

Exception Handling: Socket-Specific Exceptions
(Cont.)

• BindException
– The java.net.BindException represents an inability to bind a socket to a

local port. The most common reason for this will be that the local port is
already in use.

• ConnectException
– The java.net.ConnectException occurs when a socket can't connect to a

specific remote host and port. There can be several reasons for this,
such as that the remote server does not have a service bound to that
port, or that it is so swamped by queued connections, it cannot accept
any further ones.

64 Eng. Asma Abdel Karim
Computer Engineering Department

12/5/2015

Eng. Asma Abdelkarim 33

Exception Handling: Socket-Specific Exceptions
(Cont.)

• NoRouteToHostException
– The java.net.NoRouteToHostException is thrown when, due to a

network error, it is impossible to find a route to the remote host.

– The cause of this may be local (i.e., the network on which the software
application is running), may be a temporary gateway or router problem,
or may be the fault of the remote network to which the socket is trying
to connect. Another common cause of this is that firewalls and routers
are blocking the client software, which is usually a permenant
condition.

• InterruptedIOException
– The java.net.InterruptedIOException occurs when a read operation is

blocked for sufficient time to cause a network timeout, as discussed
earlier in the chapter. Handling timeouts is a good way to make your
code more robust and reliable.

65 Eng. Asma Abdel Karim
Computer Engineering Department

References

Chapter 6 of Java™ Network Programming
and Distributed Computing, David Reilly
and Michael Reilly.

66 Eng. Asma Abdel Karim
Computer Engineering Department

12/21/2021

Eng. Asma Abdelkarim 1

Networks and Internet
Programming

Multi-threading and Parallel
Programming

1Eng. Asma Abdel Karim
Computer Engineering Department

Outline

▪ Overview.

▪ Multi-threading in Java.

▪ Controlling Threads.

▪ Threads Priorities.

▪ Thread Synchronization.

▪ Inter-thread Communication.

2Eng. Asma Abdel Karim
Computer Engineering Department

1

2

12/21/2021

Eng. Asma Abdelkarim 2

Overview

• Multi-threaded programming is an important
concept in Java networking, as networking clients
and servers must often perform several different
tasks at a time.
– For example, listening for incoming requests and

responses, processing data, and updating the text or
graphical user interface for the user.

• It is important for the developer to understand
the differences between single-threaded
programming, multi-process programming, and
multi-threaded programming.

3Eng. Asma Abdel Karim
Computer Engineering Department

Single-Threaded Programming

• Traditional software written in procedural languages is compiled
into a machine-readable format, which is called machine code.

• This code is read by a central processing unit (CPU), which executes
programming statements one after another, in a sequential manner.

• The time taken to execute each statement may vary (due to the
nature of the operation, such as comparing two bytes for equality
or adding two numbers together), but until a statement is
completed, no further statements will run. This is single-threaded
execution.

• The chief advantage of this type of programming is its simplicity.
– Developers can easily predict the state of a machine at any given

moment in time.
– It is guaranteed that a variable being accessed in a single-threaded

environment will not be accessed or modified by another copy of the
program, as only one copy of the program is running.

4Eng. Asma Abdel Karim
Computer Engineering Department

3

4

12/21/2021

Eng. Asma Abdelkarim 3

Multi-process Programming

• Each application runs as a process, with memory allocated for program
code and data storage.

• Multiple processes would run on the same machine.

– The operating system would allocate CPU time to each process, suspending a
process when its time was up and allowing another to take its place.

– Sometimes, a process will become blocked (waiting on I/O), or may voluntarily
choose to yield its CPU time.

– The operating system creates the illusion that these processes are running
concurrently, by frequently switching from one process to another and sharing
time between them (though not always equally).

• This type of multitasking is extremely important, as it means that one
machine can share its CPU time across many users.

5Eng. Asma Abdel Karim
Computer Engineering Department

Multi-process Programming (Cont.)

• Programs themselves could create new processes, having one part of the
program performing a task while another part does something else.

6Eng. Asma Abdel Karim
Computer Engineering Department

5

6

12/21/2021

Eng. Asma Abdelkarim 4

Multi-process Programming (Cont.)

• Although multi-process programming works well, there are
disadvantages to its use.

• First, when a process branches into two, there is overlap between
the data storage of one process and another.

– Because two copies of data are being kept, more memory than is
needed is consumed.

• Second, there isn't an easy way for one process to access and
modify the data of another.

– In Unix, Inter-Process Communication (IPC) is used, creating data pipes
that allow a process to communicate with another.

– Nonetheless, it is not as easy to design software that shares data in a
multi-process environment as it is in a multi-threaded one.

7Eng. Asma Abdel Karim
Computer Engineering Department

Multi-threaded Programming

• Multi-threaded programming requires a different way of looking at
software.

• Rather than executing a series of steps sequentially, tasks are
executed concurrently—that is, many tasks are performed at the
same time, rather than one task having to finish before another can
start.

• Multithreading, also known as multiple threads of execution, allows
a program to have multiple instances of itself running, while using
the same shared memory space and code.
– Unlike multi-process programming, which uses separate memory

address spaces, making communication between processes difficult.
– An application can be performing many different tasks concurrently,

and threads may access shared data variables to work collaboratively.

8Eng. Asma Abdel Karim
Computer Engineering Department

7

8

12/21/2021

Eng. Asma Abdelkarim 5

Multi-threaded Programming (Cont.)

• Unless you have more than one CPU, only a single thread
can be running at any given moment in time.

• The operating system maintains a queue of threads and
allocates CPU time to them.

• The process of determining which thread to run is called
scheduling.

• Not all operating systems allocate thread time fairly, but to
give the operating system a guide, threads are allocated a
priority level.

• Since the choice of which thread is executed is up to the
operating system and not the application, it becomes
impossible to predict the order of execution, or how much
CPU time will be given.

9Eng. Asma Abdel Karim
Computer Engineering Department

Multi-threaded Programming (Cont.)

10Eng. Asma Abdel Karim
Computer Engineering Department

(a) Threads running on multiple CPUs.

(b) Threads running on a single CPU.

9

10

12/21/2021

Eng. Asma Abdelkarim 6

Multi-threaded Programming (Cont.)

• Careful attention must be paid to concurrent access and
modification of data, to prevent data from becoming out of sync.
– With careful design, however, data can be locked, which will prevent

read access while write access occurs.

• Multi-threaded programming can be difficult to master, but the
rewards that it offers are great.
– Networking clients do not need to lock up the GUI if a network

connection stalls, and servers can process multiple clients
concurrently.

• Additionally, threads may use variables independently, and are not
forced to share the same data.
– A thread could, for example, declare its own set of variables that it

does not make available to other threads (by marking them as private
or protected), thus ensuring that an access conflict does not occur.

11Eng. Asma Abdel Karim
Computer Engineering Department

Multi-threading in Java

• Java provides exceptionally good support for
creating and running threads and for locking
resources to prevent conflicts.

• You can create additional threads to run
concurrent tasks in the program.

• In Java, each task is an instance of the
Runnable interface, also called a runnable
object.

• A thread is essentially an object that facilitates
the execution of a task.

12Eng. Asma Abdel Karim
Computer Engineering Department

11

12

12/21/2021

Eng. Asma Abdelkarim 7

Multi-threading in Java (Cont.)

13Eng. Asma Abdel Karim
Computer Engineering Department

Creating Multi-threaded Applications
with the Thread Class

• The java.lang.Thread class provides methods to start,
suspend, resume, and stop a thread, as well as to
control other aspects such as the priority of a thread or
the name associated with it.

• The simplest way to use the Thread class is to extend it
and override the run() method, which is invoked when
the thread is first started.

• By overriding the run() method, a thread can be made
to perform useful tasks in the background.

• Keep in mind that threads do not start running automatically
at creation time. Instead, the Thread.start() method must be
invoked. If it is not, the thread will not run.

14Eng. Asma Abdel Karim
Computer Engineering Department

13

14

12/21/2021

Eng. Asma Abdelkarim 8

Creating Multi-threaded Applications
with the Thread Class (Cont.)

15Eng. Asma Abdel Karim
Computer Engineering Department

Creating Multi-threaded Applications
with the Thread Class (Example)

public class ExtendThreadDemo extends java.lang.Thread{
int threadNumber;
public ExtendThreadDemo (int num){

// Assign to member variable
threadNumber = num;

}
// Run method is executed when thread first started
public void run(){

System.out.println ("I am thread number " + threadNumber);
try{

// Sleep for five thousand milliseconds (5 secs), to simulate work being done
Thread.sleep(5000);

}
catch (InterruptedException ie) {}
System.out.println (threadNumber + " is finished!");

}

16Eng. Asma Abdel Karim
Computer Engineering Department

15

16

12/21/2021

Eng. Asma Abdelkarim 9

Creating Multi-threaded Applications
with the Thread Class (Example)

// Main method to create and start threads
public static void main(String args[]){

System.out.println ("Creating thread 1");
// Create first thread instance
Thread t1 = new ExtendThreadDemo(1);
System.out.println ("Creating thread 2");
// Create second thread instance
Thread t2 = new ExtendThreadDemo(2);
// Start both threads
t1.start(); t2.start();

}
}

17Eng. Asma Abdel Karim
Computer Engineering Department

Creating Multi-threaded Applications
with the Thread Class (Notes)

• The run() method is not invoked when the thread was
created, only when the thread is started by invoking the
start() method.
– You can create threads in advance, and start them only when

needed.

• Remember that the thread object only represents a thread—
threads are in fact provided by the operating system itself.
– When the start() method of a thread is called, it sends a request

to launch a separate thread, which will call the run() method.
– The main application does not call the run() method directly.

Instead, it calls start() to perform this operation. If your
application calls run() directly, it won't be running as a separate
thread.

18Eng. Asma Abdel Karim
Computer Engineering Department

17

18

12/21/2021

Eng. Asma Abdelkarim 10

Creating Multi-threaded Applications
with the Thread Class (Notes)

• The main method terminates once the two threads are started.
• There is no pause or sleep command issued in the main thread—yet the

application doesn't terminate. It keeps on going until the two threads have
finished their work and leave their run() method.

• When a normal thread (also referred to as a user thread) is created, it is
expected that it will complete its work and not shut down prematurely.

• The Java Virtual Machine (JVM) will not terminate until all user threads have
finished, or until a call is made to the System.exit() method, which
terminates the JVM abruptly.

• Sometimes, however, threads are only useful when other threads are
running (such as the actual application, which will eventually terminate
when the user is finished with it).

• We call these types of threads daemon threads, as opposed to user threads.
If only daemon threads are running, the JVM will automatically terminate.

19Eng. Asma Abdel Karim
Computer Engineering Department

Daemon Threads
• The following is a modification to the previous main method

such that t1 and t2 are specified as daemon methods.
public static void main(String args[]){

System.out.println ("Creating thread 1");
// Create first thread instance
Thread t1 = new ExtendThreadDemo(1);
System.out.println ("Creating thread 2");
// Create second thread instance
Thread t2 = new ExtendThreadDemo(2);
// Make both threads daemon threads
t1.setDaemon(true); t2.setDaemon(true);
// Start both threads
t1.start(); t2.start();
try{

// Sleep for one second, to allow threads time to display first message
Thread.sleep(1000);

}
catch (InterruptedException ie) {}

}

20Eng. Asma Abdel Karim
Computer Engineering Department

19

20

12/21/2021

Eng. Asma Abdelkarim 11

Daemon Threads (Notes)

• The first change makes both t1 and t2 daemon threads,
by calling the setDaemon(boolean) method.

• If you need to change the state of a thread to either a
daemon or a user thread, this must be done before the
thread is started—its state cannot be changed once the
thread is running.

• The second change introduces a slight pause, to allow
the daemon threads time to display their first message.
– When you recompile and run this example, you'll notice

that the threads do not complete their work and display
their final message. This is because there are no more user
threads active once the main method finishes.

• The primary thread is always a user thread, never a
daemon thread.

21Eng. Asma Abdel Karim
Computer Engineering Department

Creating Multi-threaded Applications
with the Runnable Interface

• While extending the Thread class is one way to
create a multi-threaded application, it isn't
always the best way.

• Remember, Java supports only single inheritance,
unlike languages such as C++, which supports
multiple inheritance.

• This means that if a class extends the
java.lang.Thread class, it cannot extend any
other class.

• A better way is often to implement the
java.lang.Runnable interface.

22Eng. Asma Abdel Karim
Computer Engineering Department

21

22

12/21/2021

Eng. Asma Abdelkarim 12

Creating Multi-threaded Applications
with the Runnable Interface (Cont.)

• The Runnable interface defines a single
method, run(), that must be implemented.

• Classes implement this interface to show that
they are capable of being run as a separate
thread of execution.

• The precise signature for the run method is as
follows:

public void run ()

23Eng. Asma Abdel Karim
Computer Engineering Department

Creating Multi-threaded Applications
with the Runnable Interface (Cont.)

24Eng. Asma Abdel Karim
Computer Engineering Department

23

24

12/21/2021

Eng. Asma Abdelkarim 13

Creating Multi-threaded Applications
with the Runnable Interface (Cont.)

• The Runnable interface doesn't define any other
methods, or provide any thread-specific functionality.

• Its sole purpose is to identify classes capable of running
as threads.

• When an object implementing the Runnable interface
is passed to the constructor of a thread, and the
thread's start() method is invoked, the run() method
will be called by the newly created thread.

• When the run() method terminates, the thread stops
executing.

25Eng. Asma Abdel Karim
Computer Engineering Department

Creating Multi-threaded Applications with
the Runnable Interface (Example)

public class RunnableThreadDemo implements java.lang.Runnable{

public void run(){

System.out.println ("I am an instance of the java.lang.Runnable interface");

}

public static void main(String args[]){

System.out.println ("Creating runnable object");

// Create runnable object

Runnable run = new RunnableThreadDemo();

// Create a thread, and pass the runnable object

System.out.println ("Creating first thread");

Thread t1 = new Thread (run);

// Create a second thread, and pass the runnable object

System.out.println ("Creating second thread");

Thread t2 = new Thread (run);

// Start both threads

System.out.println ("Starting both threads");

t1.start(); t2.start();

}

}

26Eng. Asma Abdel Karim
Computer Engineering Department

25

26

12/21/2021

Eng. Asma Abdelkarim 14

Creating Multi-threaded Applications with
the Runnable Interface (Example-Notes)

• When the example is compiled and run, two
threads can be seen printing a message to the
console.

• What is very different about this program, and the
previous one, is that only one Runnable object
was created, but two different threads ran it.

• Although there was no shared data in this
example, in more complex systems, threads must
share access to resources, to prevent modification
while a resource is being accessed. This is achieved
by synchronizing access to resources

27Eng. Asma Abdel Karim
Computer Engineering Department

Advantages of Using the Runnable
Interface over Extending the Thread Class

1. As mentioned previously, an object is free to inherit from a
different class.

2. The same Runnable object can be passed to more than one
thread, so several concurrent threads can be using the same
code and acting on the same data.
– Though this use is not always advised, it can make sense in certain

circumstances, providing that due care is taken to prevent conflicts
over data access.

3. Carefully designed applications can minimize overhead, as
creating a new Thread instance requires valuable memory
and CPU time.
– A Runnable instance, on the other hand, doesn't incur the same

burden of a thread, and can still be passed to a thread at a later point
in time to be reused and run again if necessary.

28Eng. Asma Abdel Karim
Computer Engineering Department

27

28

12/21/2021

Eng. Asma Abdelkarim 15

Controlling Threads
Interrupting a Thread

• Observant readers may have noticed that whenever a call to
the Thread. sleep (int) method was made in earlier examples,
an exception handler was used.

• This is because the sleep method puts a thread to sleep for a
long period of time, during which it is generally unable to rouse
itself.

• However, if a thread must be awakened earlier, interrupting a
thread will awaken it; this is achieved by invoking the
interrupt() method.

• Of course, this requires another thread to maintain a reference
to the sleeping thread.

29Eng. Asma Abdel Karim
Computer Engineering Department

Controlling Threads
Interrupting a Thread (Example)

public class SleepyHead extends Thread{

// Run method is executed when thread first started

public void run(){

System.out.println ("I feel sleepy. Wake me in eight hours");

try{

// Sleep for eight hours

Thread.sleep(1000 * 60 * 60 * 8);

System.out.println ("That was a nice nap");

}

catch (InterruptedException ie){

System.err.println ("Just five more minutes....");

}

}

30Eng. Asma Abdel Karim
Computer Engineering Department

29

30

12/21/2021

Eng. Asma Abdelkarim 16

Controlling Threads
Interrupting a Thread (Example-Cont.)

// Main method to create and start threads

public static void main(String args[]) throws java.io.IOException{

// Create a 'sleepy' thread

Thread sleepy = new SleepyHead();

// Start thread sleeping

sleepy.start();

// Prompt user and wait for input

System.out.println ("Press enter to interrupt the thread");

System.in.read();

// Interrupt the thread

sleepy.interrupt();

}

}

31Eng. Asma Abdel Karim
Computer Engineering Department

Controlling Threads
Stopping, Suspending and Resuming a

Thread
• The Thread class also contains the stop(), suspend(), and

resume() methods.

• As of Java 2, these methods were deprecated (or outdated)
because they are known to be inherently unsafe.

32Eng. Asma Abdel Karim
Computer Engineering Department

31

32

12/21/2021

Eng. Asma Abdelkarim 17

Controlling Threads
Yielding CPU Time

• Sometimes a thread might be waiting for an event to occur, or
may be entering a section of code where releasing CPU time to
another thread will improve either system performance or the
user experience.

• For example:
– After performing a calculation that should be displayed to the user and

before starting another one.

– While waiting for data to become available from an InputStream, a thread
might yield CPU time instead of going to sleep.

• In this situation, the static yield() method can be used instead of
the sleep() method.

33Eng. Asma Abdel Karim
Computer Engineering Department

Controlling Threads
Yielding CPU Time (Cont.)

• For example, for the currently running thread to yield CPU
time, the following method could be invoked:

Thread.yield();

• This is a static method that affects the currently running
thread only—an application cannot yield the time of a specific
thread.

34Eng. Asma Abdel Karim
Computer Engineering Department

33

34

12/21/2021

Eng. Asma Abdelkarim 18

Controlling Threads
Waiting Until a Thread is Dead

• Sometimes it is necessary to wait until a thread has finished its
task.
– For example, to retrieve the results of the task by invoking a method, or

reading a member variable.

• To determine if a thread has died (i.e., if the run() method has
finished), the isAlive() method, which returns a boolean value,
can be invoked.

• But continually checking the value returned by this method
(known as polling), and then sleeping or yielding, is a very
inefficient use of CPU time.

35Eng. Asma Abdel Karim
Computer Engineering Department

Controlling Threads
Waiting Until a Thread is Dead (Cont.)

• A much better way is to use the join() method, which waits for a
thread to die.

• There is also an overloaded version of this method, which takes
as a parameter a long value. This version waits for a thread
death or the specified number of milliseconds, whichever comes
first.

36Eng. Asma Abdel Karim
Computer Engineering Department

35

36

12/21/2021

Eng. Asma Abdelkarim 19

Controlling Threads
Waiting Until a Thread is Dead (Example)

public class WaitForDeath extends Thread{

// Run method is executed when thread first started

public void run(){

System.out.println ("This thread feels a little ill....");

// Sleep for five seconds

try{

Thread.sleep(5000);

}

catch (InterruptedException ie) {}

}

37Eng. Asma Abdel Karim
Computer Engineering Department

Controlling Threads
Waiting Until a Thread is Dead (Example-Cont.)

// Main method to create and start threads

public static void main(String args[]) throws java.lang.InterruptedException{

// Create and start dying thread

Thread dying = new WaitForDeath();

dying.start();

// Prompt user and wait for input

System.out.println ("Waiting for thread death");

// Wait till death

try{

dying.join();

}

catch(InterruptedException ex){}

System.out.println ("Thread has died");

}

}

38Eng. Asma Abdel Karim
Computer Engineering Department

37

38

12/21/2021

Eng. Asma Abdelkarim 20

Threads Priorities

• Java assigns every thread a priority.

• By default, a thread inherits the priority of the thread that
spawned it.

• You can increase or decrease the priority of any thread by using
the setPriority method, and you can get the thread’s priority by
using the getPriority method.

• Priorities are numbers ranging from 1 to 10.

• The Thread class has the int constants MIN_PRIORITY,
NORM_PRIORITY, and MAX_PRIORITY, representing 1, 5, and
10, respectively.

• The priority of the main thread is Thread.NORM_PRIORITY.

39Eng. Asma Abdel Karim
Computer Engineering Department

Threads Priorities (Cont.)

• The JVM always picks the currently runnable thread with the
highest priority.

• A lower-priority thread can run only when no higher-priority
threads are running.

• If all runnable threads have equal priorities, each is assigned an
equal portion of the CPU time in a circular queue.
– This is called round-robin scheduling.

40Eng. Asma Abdel Karim
Computer Engineering Department

39

40

12/21/2021

Eng. Asma Abdelkarim 21

Thread Synchronization

• An important consideration when designing
multi-threaded applications is conflict over access
to data.

• If two threads are fighting for the same resource,
and a mechanism to resolve access conflicts is
not put into place, the integrity of the application
is at stake.

• Built into the Java language are two mechanisms
for preventing concurrent access to resources:
– Method-level synchronization and,
– Block-level synchronization.

41Eng. Asma Abdel Karim
Computer Engineering Department

Method-Level Synchronization

• Method-level synchronization prevents two threads from executing
methods on an object at the same time.

• Methods that must be "thread-safe" are marked as synchronized.
• When a synchronized method of an object is invoked, a thread takes out

an object lock, or monitor.
– If another thread attempts to execute any synchronized method, it finds that it

is locked, and enters a state of suspension until the lock on the object monitor
is released.

• If several threads attempt to execute a method on a locked object, a
queue of suspended threads will form.
– When the thread that instituted the lock returns from the method, only one of

the queued threads may access the object—the release of a monitor does not
allow more than one object to take out a new monitor.

• One should note, however, that if a method is not synchronized and is
executed while the object is locked, the thread will not block and the
method can be run.

42Eng. Asma Abdel Karim
Computer Engineering Department

41

42

12/21/2021

Eng. Asma Abdelkarim 22

Method-Level Synchronization (Cont.)

• The synchronized keyword is used to indicate that a method should be
protected by a monitor.

• Every method that could possibly be affected by concurrent access should
be marked as synchronized. This keyword should be used sparingly,
however, as it has a performance drawback.

public class SomeClass{

public synchronized void changeData(...){

........

}

public synchronized Object getData (...){

...........

}

}

43Eng. Asma Abdel Karim
Computer Engineering Department

Method-Level Synchronization (Cont.)

44Eng. Asma Abdel Karim
Computer Engineering Department

• Suppose we have a counter that can both be incremented and display a
value.

• If the methods that provides access to the counter isn't thread-safe, and
takes some time to complete, then two or more threads could access it at
the same time.

43

44

12/21/2021

Eng. Asma Abdelkarim 23

Method-Level Synchronization (Cont.)

• The solution is to make the counter thread-safe, by
synchronizing each method that performs a read or write
operation.

• If a synchronized method is used, only one thread can update
the value at any given moment.
– The thread that first invokes a synchronized method locks the object's

monitor, which is released only when that method terminates.

– No other thread can access any synchronized method of the counter
object.

• This restriction applies only to individual counter instances,
and not the Counter class itself.

45Eng. Asma Abdel Karim
Computer Engineering Department

Method-Level Synchronization (Cont.)

46Eng. Asma Abdel Karim
Computer Engineering Department

45

46

12/21/2021

Eng. Asma Abdelkarim 24

Method-Level Synchronization (Example)

47Eng. Asma Abdel Karim
Computer Engineering Department

public class Counter{
private int countValue;
public Counter(){

countValue = 0;
}
public Counter(int start){

countValue = start;
}

// Synchronized method to increase counter
public synchronized void increaseCount(){

int count = countValue;
try{

Thread.sleep(5);
}
catch (InterruptedException ie) {}
count = count + 1;
countValue = count;

}
// Synchronized method to return counter value
public synchronized int getCount(){

return countValue;
}

}

Method-Level Synchronization (Example-Cont.)
public class CountingThread implements Runnable{

Counter myCounter;
int countAmount;
// Construct a counting thread to use the specified counter
public CountingThread (Counter counter, int amount){

myCounter = counter;
countAmount = amount;

}
public void run()
{
// Increase the counter the specified number of times

for (int i = 1; i <= countAmount; i++){
// Increase the counter
myCounter.increaseCount();

}
}

48Eng. Asma Abdel Karim
Computer Engineering Department

47

48

12/21/2021

Eng. Asma Abdelkarim 25

Method-Level Synchronization (Example-Cont.)
public static void main(String args[]) throws Exception{

// Create a new, thread-safe counter
Counter c = new Counter();
// Our runnable instance will increase the counter
// ten times, for each thread that runs it
Runnable runner = new CountingThread(c, 10);
System.out.println ("Starting counting threads");
Thread t1 = new Thread(runner);
Thread t2 = new Thread(runner);
Thread t3 = new Thread(runner);
t1.start(); t2.start(); t3.start();
// Wait for all three threads to finish
t1.join(); t2.join(); t3.join();
System.out.println ("Counter value is " + c.getCount());

}
}

49Eng. Asma Abdel Karim
Computer Engineering Department

Block-Level Synchronization

• Method-level synchronization is an effective means
of preventing concurrent access to resources.

• But what if the resource has not been designed as
thread-safe, and is a preexisting class that the
developer cannot modify?

– Such as a class in the Java API, or a third-party library.

• Block-level synchronization, in this case, is the best
option.

50Eng. Asma Abdel Karim
Computer Engineering Department

49

50

12/21/2021

Eng. Asma Abdelkarim 26

Block-Level Synchronization (Cont.)

• Block-level synchronization uses the synchronized keyword,
but instead of placing a lock around particular methods, a lock
is placed around blocks of code.

• A block of code is synchronized against a particular object,
and any thread attempting to enter that block of code is
locked out, until the monitor for the specified object is
released.

• The following code snippet shows the syntax for a
synchronized block:

synchronized (Object o){

......

}

51Eng. Asma Abdel Karim
Computer Engineering Department

Block-Level Synchronization (Cont.)

• Block-level synchronization locks against a particular
object.

• This means that multiple blocks can protect access to
the same object, so block-level synchronization can
be applied in thread code wherever an object is
accessed or modified.

52Eng. Asma Abdel Karim
Computer Engineering Department

51

52

12/21/2021

Eng. Asma Abdelkarim 27

Block-Level Synchronization (Example)

public class SynchBlock implements Runnable{

StringBuffer buffer;

int counter;

public SynchBlock(){

buffer = new StringBuffer();

counter= 1;

}

53Eng. Asma Abdel Karim
Computer Engineering Department

Block-Level Synchronization (Example)
public void run(){

synchronized (buffer){

System.out.print ("Starting synchronized block ");

int tempVariable = counter++;

// Create message to add to buffer, including linefeed

String message = "Count value is : " + tempVariable +

System.getProperty("line.separator");

try{

Thread.sleep(100);

}

catch (InterruptedException ie) {}

buffer.append (message);

System.out.println ("... ending synchronized block");

}

}

54Eng. Asma Abdel Karim
Computer Engineering Department

53

54

12/21/2021

Eng. Asma Abdelkarim 28

Block-Level Synchronization (Example)

public static void main(String args[]) throws Exception{

// Create a new runnable instance

SynchBlock block = new SynchBlock();

Thread t1 = new Thread (block);

Thread t2 = new Thread (block);

Thread t3 = new Thread (block);

Thread t4 = new Thread (block);

t1.start(); t2.start(); t3.start(); t4.start();

// Wait for all these threads to finish

t1.join(); t2.join(); t3.join(); t4.join();

System.out.println (block.buffer);

}

}

55Eng. Asma Abdel Karim
Computer Engineering Department

Inter-Thread Communication

• A design that requires no communication between
threads lends itself to a far simpler implementation.

• However, sometimes it is necessary for threads to
communicate with each other.

• Often, the type of communication will be fairly
simple, such as reading or modifying a public
member variable, or invoking an object method.

• Two good options for communication are:

– Communication pipes and,

– The wait()/notify() methods, which allow one thread to
notify a waiting thread of an event.

56Eng. Asma Abdel Karim
Computer Engineering Department

55

56

12/21/2021

Eng. Asma Abdelkarim 29

Communication Pipes between Threads

• Like multi-process communication, which uses pipes
to send data from one process to another, threads
can also send data directly from one thread to
another.

• This is achieved by using special types of input and
output streams, which are linked together.

– By passing either end of the pipe to another thread, that
thread may listen to, or speak to, another thread.

– In fact, there's no restriction preventing two pipes from
being used—a thread could even have two-way
communication with another.

57Eng. Asma Abdel Karim
Computer Engineering Department

Communication Pipes between Threads (Cont.)

58Eng. Asma Abdel Karim
Computer Engineering Department

57

58

12/21/2021

Eng. Asma Abdelkarim 30

Communication Pipes between Threads
(Example)

import java.io.*;

public class PipeDemo extends Thread{

PipedOutputStream output;

// Create an instance of the PipeDemo class

public PipeDemo(PipedOutputStream out){

// Copy to local member variable

output = out;

}

59Eng. Asma Abdel Karim
Computer Engineering Department

Communication Pipes between Threads
(Example-Cont.)

public static void main (String args[]){

try{

// Create a pipe for writing

PipedOutputStream pout = new PipedOutputStream();

// Create a pipe for reading, and connect it to output pipe

PipedInputStream pin = new PipedInputStream(pout);

// Create a new pipe demo thread, to write to our pipe

PipeDemo pipedemo = new PipeDemo(pout);

// Start the thread

pipedemo.start();

// Read thread data,

int input = pin.read();

60Eng. Asma Abdel Karim
Computer Engineering Department

59

60

12/21/2021

Eng. Asma Abdelkarim 31

Communication Pipes between Threads
(Example-Cont.)

// Terminate when end of stream reached

while (input != -1){

// Print message

System.out.print ((char) input);

// Read next byte

input = pin.read();

}

}

catch (Exception e){

System.err.println ("Pipe error " + e);

}

}

61Eng. Asma Abdel Karim
Computer Engineering Department

Communication Pipes between Threads
(Example-Cont.)

public void run(){

try{

// Create a printstream for convenient writing

PrintStream p = new PrintStream(output);

// Print message

p.println ("Hello from another thread, via pipes!");

// Close the stream

p.close();

}

catch (Exception e){

// no code req'd

}

}

}

62Eng. Asma Abdel Karim
Computer Engineering Department

61

62

12/21/2021

Eng. Asma Abdelkarim 32

Notifying a Waiting Thread of an Event

• A common requirement in multi-threaded
programming is that one thread cannot proceed until
the completion of a task by another thread.

– Sometimes a thread will be producing information or using
resources. Other times, the order of execution is
important, and a task cannot take place before another
has completed.

• While it is possible for one thread to wait until
another has died (thus indicating that the work was
completed) by using the Thread.join() method, what
if a thread performs an ongoing task and never
terminates?

63Eng. Asma Abdel Karim
Computer Engineering Department

Notifying a Waiting Thread of an Event (Cont.)

• The solution is to notify other threads that a task has
been completed.

– Threads wait until they are notified, and notification can
be a repeated process (with several cycles of waiting and
notifying).

• This allows threads to synchronize their actions and
communicate that a critical event has occurred, with-
out requiring the extra complexity of pipe-based
communication or invoking methods.

– Sometimes a thread may not even know exactly which
threads are waiting for it to complete, so a special type of
notification is used.

64Eng. Asma Abdel Karim
Computer Engineering Department

63

64

12/21/2021

Eng. Asma Abdelkarim 33

Notifying a Waiting Thread of an Event (Cont.)

• Every Java object inherits from the java.lang.Object
class:

– The ability to maintain a queue of threads waiting for an
object lock to be released, and

– To notify one or more waiting threads that the object is
freed.

• This provides a great way to notify a thread that an
event has occurred, and for threads to wait
indefinitely (or for a limited amount of time) until
notification is sent.

65Eng. Asma Abdel Karim
Computer Engineering Department

Notifying a Waiting Thread of an Event (Cont.)

• To have threads wait for an indefinite amount of
time, the Object.wait() method is used.

– An overloaded version of this method also exists, which
waits for a limited amount of time (specified in
milliseconds).

• Before the wait() method may be invoked, however,
the thread must hold a lock on the object's monitor.

– To gain a lock on an object's monitor, it must be executing
a synchronized method or using a synchronized block.

– When the lock is released, another thread can obtain it—
without this, the thread will wait indefinitely.

66Eng. Asma Abdel Karim
Computer Engineering Department

65

66

12/21/2021

Eng. Asma Abdelkarim 34

Notifying a Waiting Thread of an Event (Cont.)

• Once the wait() method is executed, the monitor is released
and the thread is suspended until a call is made to the
Object.notify() or Object.notifyAll() method.

• To awaken waiting threads, another thread may call either
method.
– However, the notify() method will only notify a single thread, even if

multiple threads are waiting.

– There is no choice over which thread is awakened, either (this is
determined by the JVM implementation, so you cannot rely on, for
example, a FIFO queue).

– It is advised that the notifyAll() method is used if you want to notify a
specific thread.

67Eng. Asma Abdel Karim
Computer Engineering Department

Notifying a Waiting Thread of an Event
(Example)

public class WaitNotify extends Thread{

public static void main(String args[]) throws Exception{

Thread notificationThread = new WaitNotify();

notificationThread.start();

// Wait for the notification thread to trigger event

synchronized (notificationThread){

notificationThread.wait();

}

// Notify user that the wait() method has returned

System.out.println ("The wait is over");

}

68Eng. Asma Abdel Karim
Computer Engineering Department

67

68

12/21/2021

Eng. Asma Abdelkarim 35

Notifying a Waiting Thread of an Event
(Example)

public void run(){

System.out.println ("Hit enter to stop waiting thread");

try{

System.in.read();

}

catch (java.io.IOException ioe){}

// Notify any threads waiting on this thread

synchronized (this){

this.notifyAll();

}

}

}

69Eng. Asma Abdel Karim
Computer Engineering Department

References

Chapter 7 of Java™ Network Programming
and Distributed Computing, David Reilly
and Michael Reilly.

Chapter 30 of Introduction to Java
Programming by Y. Daniel Liang, 10th

edition.

70Eng. Asma Abdel Karim
Computer Engineering Department

69

70

1/9/2022

Eng. Asma Abdelkarim 1

Networks and Internet
Programming

HyperText Transfer Protocol

1Eng. Asma Abdel Karim
Computer Engineering Department

Outline

▪ What is HTTP?

▪ How Does HTTP Work?

▪ Web Clients

▪ Web Servers

▪ HTTP and Java.

▪ Common Gateway Interface (CGI).

2Eng. Asma Abdel Karim
Computer Engineering Department

1

2

1/9/2022

Eng. Asma Abdelkarim 2

What is HTTP?

• HTTP is an application-level protocol that uses the Transmission
Control Protocol (TCP) as a transport mechanism.

• HTTP provides access to documents and files stored on a Web
server.

• Web browsers use HTTP to request files or dynamically generated
content produced by CGI scripts, and other server-side applications.

• Hypertext documents contain hyperlinks, which are links to other
hypertext documents and files.

• The World Wide Web is a collection of hypertext documents, stored
on a wide variety of Web servers and accessed by an even larger
number of Web browsers and HTTP clients.

3Eng. Asma Abdel Karim
Computer Engineering Department

How Does HTTP Work?

• When an HTTP client, such as a Web browser or a search engine,
needs to access a file, it establishes a TCP connection to the Web
server (which, by default, uses TCP port 80 for communication).

• The client sends a request for a particular file, and receives an HTTP
response, which will often include the contents of the file.

• The response includes:

– A status code: indicating the success or failure of a request.

– Some HTTP header information such as:

• The length of the content and its type, and

• If appropriate, the file contents.

4Eng. Asma Abdel Karim
Computer Engineering Department

3

4

1/9/2022

Eng. Asma Abdelkarim 3

How Does HTTP Work? (Cont.)

5Eng. Asma Abdel Karim
Computer Engineering Department

How Does HTTP Work? (Cont.)

6Eng. Asma Abdel Karim
Computer Engineering Department

5

6

1/9/2022

Eng. Asma Abdelkarim 4

Web Clients
• A Web client, connecting to the Web server via a TCP socket, will

send an HTTP request and then read back a server response.

• Under HTTP/1.0, there are three types of requests that a client
application can issue to a Web server:

1. GET

2. HEAD

3. POST

• The most common HTTP request is a GET request, which fetches a
resource from the Web server.

• Each request can also include header fields, which give the server
more information about the client.

7Eng. Asma Abdel Karim
Computer Engineering Department

Web Clients
GET Request Method

• When a client needs to retrieve a resource from a Web server, it
uses the GET request.

• The GET request takes two parameters: the pathname of the
resource and the version of HTTP being used.

• CGI parameters can also be passed using the GET method.
– While often only files are requested, it is possible to invoke a CGI script or

server-side application.

• For example:
– GET /index.html HTTP/1.0

– GET /images/banner.gif HTTP/1.0

– GET /links.html HTTP/1.0

8Eng. Asma Abdel Karim
Computer Engineering Department

7

8

1/9/2022

Eng. Asma Abdelkarim 5

Web Clients
HEAD Request Method

• Sometimes a client will be interested in information about a
resource but not the resource itself.
– For example, if a large file is already cached, the client may want to

know if it has been modified recently. If so, a new copy would be
downloaded, and if not, the cached version would be used.

– Some clients may be unable to process certain types of content, so
they may want to know the MIME content type of the resource.

• In these situations, a HEAD request can be made.
– The HEAD request takes the same parameters as a GET request, and

will return a normal HTTP response with information about the
resource stored in header fields.

– However, no actual content will be returned, conserving network
bandwidth.

• An example of a HEAD request is as follows:
HEAD /files/averybigfile.zip HTTP/1.0

9Eng. Asma Abdel Karim
Computer Engineering Department

Web Clients
POST Request Method

• One of the great advantages of the Web is that Web sites can be
interactive.

• The earliest form of interactivity came in the form of CGI scripts,
written in languages such as Perl.

– CGI is an acronym for the Common Gateway Interface, which defines a
standard mechanism for communicating data from browser to server.

– CGI scripts, and later, server-side applications such as Java servlets, make
it possible for users to interact with server-side applications.

• There must be a way for the browser to pass information from the
user to the Web server.

– This is where the Common Gateway Interface comes in. CGI parameters
are used for this purpose.

10Eng. Asma Abdel Karim
Computer Engineering Department

9

10

1/9/2022

Eng. Asma Abdelkarim 6

Web Clients
POST Request Method (Cont.)

• While it is possible to use the GET request to encode such parameters,
limitations on the length of a URL are restrictive.

• A better way is to use the POST method, which allows clients to send
much more information (including large files) to server-side scripts and
applications.

• The POST request method has a format similar to a GET request.

• After header fields have been sent, however, the client sends an entity
body, which contains CGI parameters and other information.

• When the entity body is complete, the server will process the information
and output an HTTP response.

11Eng. Asma Abdel Karim
Computer Engineering Department

Web Clients
POST Request Method (Cont.)

12Eng. Asma Abdel Karim
Computer Engineering Department

11

12

1/9/2022

Eng. Asma Abdelkarim 7

Web Clients
Client Request Header Fields

13Eng. Asma Abdel Karim
Computer Engineering Department

• Attached to any request may be header information and a number of
optional fields.

• Header fields are sent after the request line, and are terminated with a
carriage return/linefeed.

• If no headers are specified, the carriage return/linefeed must still be sent.

• The HTTP specification defines several header fields that can be used, and
clients are free to add their own.

• However, not every server will honor such fields. If a field is not
supported, it will be ignored—no error condition should be generated.

Web Clients
“Cookie” Field

14Eng. Asma Abdel Karim
Computer Engineering Department

• Persistent client-side objects (cookies) are small pieces of data sent by a
Web server and echoed back on every subsequent request.

• Cookies are used for tracking client requests and customizing server
output for individual users.

• Not every client supports cookies, and cookie support can be disabled for
privacy and security in most clients.

• An example of this field is:

Cookie: secret_id=553235996

13

14

1/9/2022

Eng. Asma Abdelkarim 8

Web Clients
“From” Field

15Eng. Asma Abdel Karim
Computer Engineering Department

• The "From" field specifies the e-mail address of the user in control of the
client.

• Most Web browsers do not divulge this information (much to the dismay
of direct-mail marketers); however, specialized or experimental HTTP
clients may.

• For example, a search engine that sends out requests to remote Web sites
may include a contact e-mail address, to help establish contact if the
search engine runs wild and requests too many pages in a given period.

• An example of this field is:

From: myemail@mydomain.com

Web Clients
“If-Modified-Since” Field

16Eng. Asma Abdel Karim
Computer Engineering Department

• A client that has already requested a resource can use this header field to
check whether the resource has been updated.

• For example, a Web browser that caches pages may send the "If-Modified-
Since" field, specifying the date when the resource was last requested.

• If the resource has been updated, the server will output a normal
response and a normal entity body.

• If, however, it has not been updated, the server will issue a response with
a status code of 304 and no entity body. The client then knows to use the
cached version.

• An example of this field is:

If-Modified-Since: Tue, 27 Oct 1998, 09:00:00 GMT

15

16

1/9/2022

Eng. Asma Abdelkarim 9

Web Clients
“Referer” Field

• This is an extremely important field for the server and is often stored for
statistical purposes.

• The "Referer" field specifies the URL that linked to the request URL.

• If an HTTP client follows a link to a new page, the "Referer" field will
specify the page that linked to it.

• This information is useful for Web masters, as it shows which pages are
linking to a site and which search engine queries delivered specific users.

• Most Web browsers send this field automatically, without the ability to
disable it.

• An example is:

• Referer: http://www.davidreilly.com/links.html

17Eng. Asma Abdel Karim
Computer Engineering Department

Web Clients
“User-Agent” Field

• The "User-Agent" field identifies the type of HTTP client that is making the
request.

• This information can be collected for statistical purposes or used to customize the
response issued by the server.

• For example, an opportunistic Web master might output many random keywords
to search engines in an effort to boost the traffic on his or her site. "Real" users
would see the original page, since the server would read a browser identification
string and not a search engine identification string.
– Such behavior on the part of a Web master is frowned upon, however, and would

eventually result in penalization, or blacklisting of the site.

• Developers of HTTP clients should always include this field, to identify the software
that is making the request (by default, Java sends a field that identifies HTTP
requests as being made by a Java application).

• Some sites, strange as it may seem, use this information to blacklist certain HTTP
clients such as search engines, so it is important that a legitimate "User-Agent"
field is sent.

• By convention, browser applications begin their identification string with the
keyword Mozilla, which was the identification string of the Netscape browser.

• An example of this field is:
User-Agent: Mozilla (MyNewBrowser/1.0)

18Eng. Asma Abdel Karim
Computer Engineering Department

17

18

1/9/2022

Eng. Asma Abdelkarim 10

Web Servers
• When a client connects to a Web server, it will send an HTTP request that

the server will read and process. The server returns a response.

• That response is made up of the following components:

– A status line, with a numerical status code and human-readable text
message.

– A response header, with one or more header fields followed by a blank
line.

– An entity body (optional), which contains the contents of a file or
server-side output.

19Eng. Asma Abdel Karim
Computer Engineering Department

Web Servers
Status Line

• The status line indicates whether a request could be performed successfully.

• If a request could not be completed, it also gives an indication of the
reason.

• It does so by using a three-digit numerical code.

– The first digit corresponds to an error group.

– The two remaining digits indicate a precise error condition.

• Each group represents a generic error state.

• Clients can respond to the first digit (knowing only that an error occurred or
that a request was accepted), or they can act based on the type of error
that occurred.

20Eng. Asma Abdel Karim
Computer Engineering Department

19

20

1/9/2022

Eng. Asma Abdelkarim 11

Web Servers
Status Line (Cont.)

21Eng. Asma Abdel Karim
Computer Engineering Department

Status Group Error Group Name

1xx Informational

2xx Successful

3xx Redirection

4xx Client Error

5xx Server Error

Web Servers
Status Line (Cont.)

• Informational (1xx)
– The informational set of status codes is rarely used.

– These status codes are not a valid response for any HTTP/1.0 request and so
should be used only in experimental systems, not for production systems.

• Successful (2xx)
– This is, under ideal circumstances, the most common set of status codes

returned.

– This indicates that a request was processed and completed without any errors.

– Although there are several status codes in this group, the most common will be
the 200 status code

22Eng. Asma Abdel Karim
Computer Engineering Department

21

22

1/9/2022

Eng. Asma Abdelkarim 12

Web Servers
Status Line (Cont.)

• Redirection (3xx)
– When a resource moves to a new location or a new server, redirection is

occasionally used.

– When a status code from the redirection group is issued, the client should look
for a "Location" header field giving the new location of the resource.

– The entity body of the response may also include a hyperlink to the new
resource, in the event that the HTTP client is unable to automatically follow
redirect requests.

– There is also one circumstance in which a redirection status code will be sent,
but where no redirection location is specified.

• If a client issues a conditional request, by specifying an "If-Modified-Since" field in the
request header, a 304 status code will be returned, indicating that the resource has
not been modified and that the previous cached version should be used. No entity
body is returned in this situation.

23Eng. Asma Abdel Karim
Computer Engineering Department

Web Servers
Status Line (Cont.)

• Client Error (4xx)
– When an HTTP client sends an incorrect request, a status code from the client

error group will be sent.

– Reasons for the error can vary, from a bad request, to an invalid URL, to a URL
that is forbidden for that client's IP address.

– The most common of all client error status codes is 404, indicating that the
resource was not found.

– Though this is classed as a client error, sometimes a resource is deleted from
the server, making invalid a URL that clients have previously accessed.

• Server Error (5xx)
– Servers themselves are not impervious to error conditions.

– When a server is overloaded, for example, it can issue a 503 status code.

– A server-side CGI script or servlet could malfunction, causing a 501 status code
to be issued.

– Generally, however, servers are reasonably stable—there are more likely to be
client errors than server errors.

24Eng. Asma Abdel Karim
Computer Engineering Department

23

24

1/9/2022

Eng. Asma Abdelkarim 13

Web Servers
Server Response Header Fields

• The response header is composed of two groups of header fields:

– Response-Header field,

– or Entity-Header field.

• In actual practice, the header group names are irrelevant, as the headers are
sent together and only the field name is of interest to a client.

• Each header field is optional and will not be present in every request.

• However, some fields will be present in almost all situations, such as the
"Content-Type" and "Last-Modified" fields.

• Covering every possible field would be impossible, as servers can add
custom fields. However, the most frequently encountered fields described in
the HTTP specification are worth being aware of when writing HTTP clients.

25Eng. Asma Abdel Karim
Computer Engineering Department

Web Servers
Server Response Header Fields

"Location" Field
• The location field specifies a URL to a resource.

• In the case where a redirection status code is specified, the client should fetch the
content specified in this header field. For example, in response to a URL request to
http://davidreilly.com/, a redirection to http://www.davidreilly.com/ is made using:

Location: http://www.davidreilly.com/

"Server" Field
• The "Server" field gives information about the server vendor and server version

number.

• This information often isn't that useful to the client and, as the HTTP specification
warns, could represent a security risk.

• If a server returns this field, and a known security flaw in that vendor/version
combination exists, it may open the server to hostile attack.

• An example of this field is:

Server: MyServer v1.05

26Eng. Asma Abdel Karim
Computer Engineering Department

25

26

1/9/2022

Eng. Asma Abdelkarim 14

Web Servers
Server Response Header Fields

"Content-Length" Field

• This field indicates the number of bytes of the entity body.

• Although not strictly necessary, since the client will stop reading when the
entity body terminates, this information can be useful when dealing with
large file downloads. At the beginning of the transaction, the client can give
the user an estimate of how much content needs to be downloaded, and the
time remaining.

• If a connection terminates prematurely, the client can detect that the file
was not completely downloaded, and attempt the request again.

• An example of this field is:

Content-Length: 5934

27Eng. Asma Abdel Karim
Computer Engineering Department

Web Servers
Server Response Header Fields

"Content-Type" Field

• This field specifies the MIME content type of the entity body.

• The MIME content type is divided into two sections, separated by a "/"
character. The first section indicates the general type of the content (e.g.,
text, image, application file); the second section indicates the specific type.

• For example:
– The content type of a Web page is text/html, whereas a plain text document is

text/plain.

– An image in GIF format is of type "image/gif," whereas a JPEG is of type
"image/jpeg."

• The Internet Assigned Number Authority defines MIME content types, and it
is best not to assign arbitrary types in production systems.

• An example is:
Content-Type: image/png

28Eng. Asma Abdel Karim
Computer Engineering Department

27

28

1/9/2022

Eng. Asma Abdelkarim 15

Web Servers
Server Response Header Fields

"Expires" Field

• When a server wishes to prevent caching of a resource for too long a period, it can specify
a "use by“ date for a resource.

• For example, the front page of a news site could specify one hour into the future, to
prevent proxy servers and HTTP clients from caching the content longer than an hour.

• Some content may also be marked as not cacheable, using the "Pragma" header field.
However, the "Expires" field allows caching for a specified period of time.

• An example of this field is:

Expires: Thu, 12-Jan-2001 10:00:00 GMT

"Last-Modified" Field

• The "Last-Modified" field indicates when a resource was last changed or last updated.

• This information may be useful to proxy servers and clients, to prevent the downloading of
large files that are already cached and have not changed since the last request.

• An example of this field is:

Last-Modified: Fri, 22-Feb-1998 15:23:11 GMT

29Eng. Asma Abdel Karim
Computer Engineering Department

Web Servers
Server Response Header Fields

"Pragma" Field

• Sometimes a server may wish to prevent caching of a resource entirely.

• For example, a page that changes every few minutes (such as a stock-price
information page) or that contains sensitive information that would best not
be cached by an intermediary proxy server may be marked with the
"Pragma" field.

• The "Pragma" field can also be used to indicate other restrictions and
information on the behavior of clients, though clients are not guaranteed to
support such restrictions.

• An example is:

Pragma: nocache

30Eng. Asma Abdel Karim
Computer Engineering Department

29

30

1/9/2022

Eng. Asma Abdelkarim 16

Web Servers
Server Response Header Fields

"Set-Cookie" Field

• Although not defined in the original HTTP specification, cookies have been
quickly adopted by Web browser manufacturers and the Web developer
community.

• When a server-side application wants to send a cookie to the browser, it
adds a "Set-Cookie" field to the HTTP response.

• Subsequent requests by that browser will include the cookie, so that the
client can be tracked.

• Not all browsers have cookies enabled, and server-side applications should
be aware that there is no error message sent if a browser does not accept
cookies.

• An example of this field is:

Set-Cookie: secret_id=553235996; domain=mysite.com; path=/

31Eng. Asma Abdel Karim
Computer Engineering Department

Web Servers
Entity Body

• The entity body is the stream of bytes that form the actual
content of the requested resource.

• This content may be:
– Static (a file whose content changes infrequently or not at all) or

– Dynamic (a custom server-side response to the client request).

• Meta-information about the entity body is contained in entity
header fields such as "Content-Type" and "Content-Length."

32Eng. Asma Abdel Karim
Computer Engineering Department

31

32

1/9/2022

Eng. Asma Abdelkarim 17

HTTP and Java

• Java provides extremely good support for the Hyper Text
Transfer Protocol.

• While developers are free to write their own HTTP
implementations using TCP sockets, the java.net package
provides several classes that offer HTTP functionality:
– java.net.URL

– java.net.URLConnection

– java.net.HttpURLConnection

33Eng. Asma Abdel Karim
Computer Engineering Department

URL Class

• The URL class represents one of the most frequently used address types of
the Internet, the Uniform Resource Locator (URL).

• URLs can point to files, Web sites, ftp sites, newsgroups, email addresses,
and other resources.

• Some fictitious examples of non-Web URLs are:

– ftp://records.area51.mil/roswell/subjects/autopsy/

– telnet://localhost:8000/

– mailto:president@whitehouse.gov?subject=My%20Opinion

• In the context of HTTP, we'll be dealing with URLs that point to a Web site,
but it is important to remember that other network protocols also use
URLs.

34Eng. Asma Abdel Karim
Computer Engineering Department

33

34

1/9/2022

Eng. Asma Abdelkarim 18

URL Class (Cont.)

35Eng. Asma Abdel Karim
Computer Engineering Department

• The URL is composed of several components, each of which can be parsed by the
URL class and returned separately.

• Some components (namely the port and the reference fields) are optional, and will
not be present in many URLs.

• As mentioned earlier, CGI parameters can also be included as part of the path
field.

Creating a URL

• The URL class can be used to parse URLs, or as an identifier of
a remote resource that can be employed (in conjunction with
the other Java HTTP classes) to retrieve that resource.

• There are six constructors for the URL class; the choice of
which to use depends largely on how much control you
require over the URL.

• For most situations, the following constructor will be used:

URL(String url_str) throws java.net.MalformedURLException
– creates a URL object based on the string parameter. If the URL cannot

be correctly parsed, a MalformedURLException will be thrown.

36Eng. Asma Abdel Karim
Computer Engineering Department

35

36

1/9/2022

Eng. Asma Abdelkarim 19

Using a URL
• The URL class provides the following methods to parse a URL and extract

individual components (such as the protocol or the hostname of the URL),
as well as to open an HTTP connection to the resource that it specifies.

• boolean equals(Object object): compares two URLs for equality. If the object is not

an instance of the URL class, or if the object does not point to an identical
resource, a value of "false" is returned.

• Object getContent() throws java.io.IOException:

– Retrieves the contents of the resource located at the URL.

– The type of object returned will vary, depending on the MIME content type of the
remote resource and the available content handlers (classes responsible for processing

and retrieving objects from a URLConnection).

– This method is shorthand for calling the openConnection() method, which returns a

URLConnection, and then invoking the getContent() method upon the

URLConnection that was returned.

– As a network connection will be established, an IOException may be thrown.

37Eng. Asma Abdel Karim
Computer Engineering Department

Using a URL (Cont.)
• String getProtocol(): returns the protocol component of a URL.

• String getHost(): returns the hostname component of a URL.

• String getPort(): returns the port component of a URL. This is an optional
component, and if not present a value of –1 will be returned.

• String getFile(): returns the pathname component of a URL.

• String getRef(): returns the reference component of a URL. This is an
optional component, and a reference may not be present. A null value will
be returned if no reference was specified.

• public int hashCode(): returns an identifier for a URL object, for the
purpose of hash table indexing.

• URLConnection openConnection(): returns a URLConnection object,
which can be used to establish a connection to the remote resource. The
name of this method can be deceiving, though, as no connection will be
established until further methods of the URLConnection object are
invoked.

38Eng. Asma Abdel Karim
Computer Engineering Department

37

38

1/9/2022

Eng. Asma Abdelkarim 20

Using a URL (Cont.)
• InputStream openStream() throws java.io.IOException: establishes a connection

to the remote server where the resource is located, and provides an InputStream
that can be used to read the resource's contents. This method provides a quick
and easy way to retrieve the contents of a URL, without the added complexity of

dealing with a URLConnection object.

• boolean sameFile (URL url): compares two URLs for equality, similar to that of the

equals(Object) method. However, only the protocol, hostname, port, and
pathname fields are compared—the reference field of the URL is excluded. While

the equals(Object) method checks that a URL points to the same place in the

same file, the sameFile(URL) method does not test where in the file the URL
points to.

• String toString(): returns a String representation of a URL. There is no difference

between this method and the toExternalForm() method.

• String toExternalForm(): returns a String representation of a URL. There is no

difference between this method and the toString() method.

39Eng. Asma Abdel Karim
Computer Engineering Department

Parsing with the URL Class
import java.net.*;

public class URLParser{

public static void main(String args[]){

int argc = args.length;

// Check for valid number of parameters

if (argc != 1){

System.out.println ("Syntax : Java URLParser url");

return;

}

try{

// Create an instance of java.net.URL

URL myURL = new URL (args[0]);

System.out.println ("Protocol : " +

myURL.getProtocol());

System.out.println ("Hostname : " + myURL.getHost());

System.out.println ("Port : " + myURL.getPort());

System.out.println ("Filename : " + myURL.getFile());

System.out.println ("Reference: " + myURL.getRef());

}

// MalformedURLException indicates parsing error

catch (MalformedURLException mue){

System.err.println ("Unable to parse URL!");

return;

}

}

}

40Eng. Asma Abdel Karim
Computer Engineering Department

39

40

1/9/2022

Eng. Asma Abdelkarim 21

Retrieving a Resource with the URL Class

• There are two URL methods that can assist in retrieving the contents of a
remote resource:

1. InputStream URL.openStream()

2. URLConnection URL.openConnection();

• For greater control over how the request is made, a URLConnection object
created by invoking the URL.openConnection() method would be used.

• In many situations, however, a simpler way to retrieve the contents of a
resource is called for. The openStream() method returns an InputStream,
which makes reading a resource simple.

41Eng. Asma Abdel Karim
Computer Engineering Department

import java.net.*;

import java.io.*;

public class FetchURL {

public static void main(String args[]) throws Exception {

int argc = args.length;

if (argc != 1) {

System.out.println("Syntax : java FetchURLConnection url");

return;

}

try {

// Create an instance of java.net.URL

URL myURL = new URL(args[0]);

// Fetch the content, and read from an InputStream

InputStream in = myURL.openStream();

// Buffer the stream, for better performance

BufferedInputStream bufIn = new BufferedInputStream(in);

// Repeat until end of file

for (;;) {

int data = bufIn.read();

// Check for EOF

if (data == -1) {

break;

} else {

System.out.print((char) data);

}

}

Retrieving a Resource with the URL Class

42

// Pause for user

System.out.println();

System.out.println("Hit enter to continue");

System.in.read();

} // MalformedURLException indicates parsing error

catch (MalformedURLException mue) {

System.err.println("Unable to parse URL!");

return;

} // IOException indicates network or I/O error

catch (IOException ioe) {

System.err.println("I/O Error : " + ioe);

return;

}

}

}

Eng. Asma Abdel Karim
Computer Engineering Department

41

42

1/9/2022

Eng. Asma Abdelkarim 22

URLConnection Class
• The URLConnection class is used to send HTTP requests and read HTTP

responses.

• URLConnection has methods that allow you to:

– Connect to a Web server

– Set request header fields

– Read response header fields

– Read the contents of the resource.

• There are no public constructors for the URLConnection class.

• Instead, you should call the URL.openConnection() method, which will
return a URLConnection instance.

URL url = new URL (some_url);

URLConnection connection = url.openConnection();

43Eng. Asma Abdel Karim
Computer Engineering Department

Retrieving a Resource with the
URLConnection Class

• While the URL class does allow you to retrieve a resource by using the
URL.openStream() method, information about the resource is lost, as is the
ability to prevent caching of requests and to specify additional header
fields, since only a stream object is returned.

• The example that will be studied next shows how to use the URL
Connection class to retrieve a resource and to determine its MIME content
type and the length of the resource.

• Since we still use the URL class, some of the code is similar to previous
examples.

44Eng. Asma Abdel Karim
Computer Engineering Department

43

44

1/9/2022

Eng. Asma Abdelkarim 23

import java.net.*;

import java.io.*;

public class FetchURLConnection {

public static void main(String args[]) throws Exception {

int argc = args.length;

// Check for valid number of parameters

if (argc != 1) {

System.out.println("Syntax :");

System.out.println("java FetchURLConnection url");

return;

}

try {

// Create an instance of java.net.URL

URL myURL = new URL(args[0]);

// Create a URLConnection object, for this URL

// NOTE : no connection has yet been established

URLConnection connection = myURL.openConnection();

// Now open a connection

connection.connect();

// Display the MIME content-type of the resource (e.g. text/html)

String MIME = connection.getContentType();

System.out.println("Content-type: " + MIME);

// Display, if available, the content length

int contentLength = connection.getContentLength();

if (contentLength != -1) {

System.out.println("Content-length: " + contentLength);

}

Retrieving a Resource with the URLConnection Class

45

// Pause for user
System.out.println("Hit enter to continue");
System.in.read();
// Read the contents of the resource from the

connection
InputStream in = connection.getInputStream();
// Buffer the stream, for better performance
BufferedInputStream bufIn = new

BufferedInputStream(in);
// Repeat until end of file
for (;;) {

int data = bufIn.read();
// Check for EOF
if (data == -1) {

break;
} else {

System.out.print((char) data);
}

}
} // MalformedURLException indicates parsing error
catch (MalformedURLException mue) {

System.err.println("Unable to parse URL!");
return;

} // IOException indicates network or I/O error
catch (IOException ioe) {

System.err.println("I/O Error : " + ioe);
return;

}
}

}

Eng. Asma Abdel Karim
Computer Engineering Department

How FetchURLConnection Works

• Rather than calling URL.openStream() once we have a URL object, however, the
openConnection() method is called instead, returning a URLConnection instance.

• The name of the openConnection() method is somewhat misleading.

– Although it creates an instance of the URLConnection object, it does not
establish an HTTP session with the Web server.

– This can be advantageous, as it allows us to set any request header fields we need.

• Once the connection is established and the request sent, a response will be issued
by the Web server.

• This response will include a variety of header fields.

• One of the most important fields is the "Content-Type," which tells an application
whether the resource is text, an image, a data file, or some other resource.

• The application could read this data by calling the
URLConnection.getHeaderField(String) method and passing a value of "Content-
Type."

• However, a shortcut method (used in this example) exists that makes for more
readable source code.

46Eng. Asma Abdel Karim
Computer Engineering Department

45

46

1/9/2022

Eng. Asma Abdelkarim 24

How FetchURLConnection Works

• Another important piece of information is the length of the resource.

– Large files can take minutes or even hours to download, and the user benefits
from knowing the length of the resource at the beginning of the transaction.

– This information is provided in the "Content-Length" header field, and a
shortcut method exists for this data that converts it to an int value.

• After displaying the length, the application pauses, to allow the user time to
read it before displaying the requested resource.

• The next step is to get an InputStream to the contents of the resource.

– Just like a URL object, URLConnection provides a method to create an
InputStream for reading a resource. For this purpose, the
URLConnection.getInputStream() method is used.

• Once an InputStream has been obtained, the resource is read in the same way
as the previous example.

47Eng. Asma Abdel Karim
Computer Engineering Department

import java.net.*;

import java.io.*;

public class HTTPHeaders {

public static void main(String args[]) throws Exception {

int argc = args.length;

// Check for valid number of parameters

if (argc != 1) {

System.out.println("Syntax :");

System.out.println("java HTTPHeaders url");

return;

}

try {

URL myURL = new URL(args[0]);

URLConnection connection = myURL.openConnection();

// Set some basic request fields

// Set user agent, to identify the application as Netscape compatible

connection.setRequestProperty("User-Agent","Mozilla/4.0 (compatible; JavaApp)");

// Set our referer field - set to any URL you'd like

connection.setRequestProperty("Referer","http://www.davidreilly.com/");

// Set use-caches field, to prevent caching

connection.setUseCaches(false);

// Now open a connection

connection.connect();

// Examine request properties, to verify their settings

System.out.println("Request properties....");

System.out.println();

System.out.println("User-Agent: "+ connection.getRequestProperty("User-Agent"));

System.out.println("Referer: "connection.getRequestProperty("Referer"));

System.out.println();

Modifying and Examining Header Fields with URLConnection

48Eng. Asma Abdel Karim
Computer Engineering Department

47

48

1/9/2022

Eng. Asma Abdelkarim 25

// Examine response properties, to see their settings

System.out.println("Response properties....");

System.out.println();

int i = 1;

// Search through each header field, until no more exist

while (connection.getHeaderField(i) != null) {

// Get the name of this header field

String headerName= connection.getHeaderFieldKey(i);

// Get the value of this header field

String headerValue= connection.getHeaderField(i);

// Output header field key, and header field value

System.out.println(headerName + ": "+ headerValue);

// Goto the next element in the set of header fields

i++;

}

// Pause for user

System.out.println("Hit enter to continue");

System.in.read();

} // MalformedURLException indicates parsing error

catch (MalformedURLException mue) {

System.err.println("Unable to parse URL!");

return;

} // IOException indicates network or I/O error

catch (IOException ioe) {

System.err.println("I/O Error : " + ioe);

return;

}

}

}

Modifying and Examining Header Fields with URLConnection

49Eng. Asma Abdel Karim
Computer Engineering Department

How HTTPHeaders Works

• Like previous examples, this example uses an instance of the URLConnection class to
issue HTTP requests.

• The chief difference here is that, before any request is sent, custom HTTP request
fields are added.

• These header fields provide additional information to server-side applications, which
can then be used to customize the HTTP response.

• When a Web browser sends a request, it identifies itself by sending a "User-Agent"
field in the request.
– Well-behaved HTTP clients do the same, and it is often advantageous to pose as a Web

browser by including the Mozilla keyword in the identification string and then appending a
legitimate-sounding application name.

– CGI scripts and servlets sometimes offer different output depending on whether it's an
HTTP agent like a search engine or an actual browser.

• Other request fields can also be set, such as the referring URL and the cache flag,
which determines whether or not a unique request will be sent each time to the
server.

• Once the request settings are made, the URLConnection object can send the request.
If a call to the connect() method is made before assigning request properties, then the
server will not receive them and they will not take effect

50Eng. Asma Abdel Karim
Computer Engineering Department

49

50

1/9/2022

Eng. Asma Abdelkarim 26

How HTTPHeaders Works (Cont.)

• The next set of header fields displayed by the application is from the server
response.

• It would be impossible, however, to know the name of every field that might
be sent back by a server.

• Not all servers support the same fields, and some server-side applications
may send back custom fields that a client has never before encountered.

• The URLConnection offers several methods that provide access to request
fields, two of which support a numerical index value rather than a key name.

• This allows us to read the nth key, and to iterate through every element in
the set of header fields. The program prints out both the name of the field
and its contents.

51Eng. Asma Abdel Karim
Computer Engineering Department

HttpURLConnection Class

• One of the problems of reading resources using URL.openStream() or the

class is that access to HTTP-specific functionality is not available.

• Any URLConnection protocol for which a registered protocol handler exists
can be fetched in this manner, including the File Transfer Protocol (FTP).

• But there is no notion of a request method, or a response status code, in
these other protocols. How does an application know whether a resource
was found, or a 404 "Not Found" error message was sent?

• The solution is to read the response status code, as it is the only appropriate
way to determine the success or failure of requests.

• Though support for HTTP-specific functionality did not exist in earlier
versions of Java, as of JDK1.1 there is a solution in the form of the
HttpURLConnection class.

• HttpURLConnection extends the URLConnection class, and provides
additional methods and fields that encapsulate HTTP functionality.

52Eng. Asma Abdel Karim
Computer Engineering Department

51

52

1/9/2022

Eng. Asma Abdelkarim 27

Creating a HttpURLConnection

• There are no public constructors for the HttpURLConnection class, just as in the

case of URLConnection.

• You should call the URL.openConnection() method, which will return a

URLConnection instance.

• The URLConnection class is the superclass of HttpURLConnection, and if the
protocol field of the URL is set to HTTP, this method will actually return an

HttpURLConnection instance.

• To gain access to HTTP-specific functionality, you should test to see whether or not

the object is an instance of HttpURLConnection; if so, the object must be cast as
such.

URL url = new URL (some_url);

URLConnection connection = url.openConnection();

if (connection instanceof java.net.HttpURLConnection)

{

HttpURLConnection httpConnection = (HttpURLConnection) connection;

// do something with httpConnection

}

53Eng. Asma Abdel Karim
Computer Engineering Department

Using an HttpURLConnection

• The HttpURLConnection class inherits all of the functionality (including fields and

methods) of its parent class, URLConnection.

• It also adds additional functionality, in the form of methods that allow greater access
to HTTP features, and static fields that represent common HTTP states.

• The HttpURLConnection class defines many static fields, which represent HTTP
status codes.

• While an application can refer to a status code by a numerical value, these fields may
make for more readable code.

• The following fields are all public static final int fields.

int HTTP_OK— HTTP status code (200) indicating that the request was successful.

int HTTP_CREATED— HTTP status code (201) indicating that a resource was created.

int HTTP_ACCEPTED— HTTP status code (202) indicating that the request was accepted
but has not yet been acted upon.

54Eng. Asma Abdel Karim
Computer Engineering Department

53

54

1/9/2022

Eng. Asma Abdelkarim 28

Using an HttpURLConnection (Cont.)

int HTTP_MULT_CHOICE— HTTP status code (300) indicating that the resource can be
found at multiple locations, from which the client can choose. When a resource is located
elsewhere, a "Location" entity field will be sent, along with a 3xx redirection status code,
but in the case of multiple choices of location, this status code will be issued.

int HTTP_MOVED_PERM— HTTP status code (301) indicating that the location of a
resource has moved permanently and the client should look for a "Location" field in the
HTTP response. The new location of the resource should be used in future.

int HTTP_MOVED_TEMP— HTTP status code (302) indicating that a temporary change
has been made to the location of the resource, indicated by a "Location" field in the HTTP
response.

int HTTP_SEE_OTHER— HTTP status code (303) indicating that a GET request should be
used to fetch the resource, at a location specified by the "Location" field. This is often
issued in response to a POST request, which processes the information and redirects to a
standard page.

int HTTP_NOT_MODIFIED— HTTP status code (304) used to inform the client that a
resource has not been modified and that no entity body was sent. This is used in
conjunction with the "If-Modified-Since" request field, which performs a conditional GET
request.

55Eng. Asma Abdel Karim
Computer Engineering Department

Using an HttpURLConnection (Cont.)

int HTTP_BAD_REQUEST— HTTP status code (400) that is issued in response to an invalid
HTTP request, which fails to follow the correct syntax.

int HTTP_UNAUTHORIZED— HTTP status code (401) indicating that access to the resource
requires user authentication.

int HTTP_PAYMENT_REQUIRED— HTTP status code (402) used to indicate that payment is
required for access to this resource. This status code is reserved for the future, and is not in
common use.

int HTTP_FORBIDDEN— HTTP status code (403) indicating that access to a resource is
strictly forbidden.

int HTTP_NOT_FOUND— HTTP status code (404) used to notify a client that the resource
could not be found or has been permanently removed.

int HTTP_SERVER_ERROR— HTTP status code (500) indicating that a server error occurred
and the request could not be processed.

int HTTP_INTERNAL_ERROR— HTTP status code (501) indicating that a server did not know
how to perform the request.

int HTTP_BAD_GATEWAY— HTTP status code (502) indicating that an error occurred while
acting as a gateway or proxy server.

int HTTP_UNAVAILABLE— HTTP status code (503) indicating that the server could not
process the request due to a temporary condition such a server overload.

56Eng. Asma Abdel Karim
Computer Engineering Department

55

56

1/9/2022

Eng. Asma Abdelkarim 29

Using an HttpURLConnection (Cont.)

void disconnect()— if a connection to the Web server is still active, the connection is closed.

InputStream getErrorStream()— returns an InputStream instance that can be used to read
error messages sent by the server. If a connection has not yet been established, or no errors
have yet occurred, this method returns null.

static boolean getFollowRedirects()— indicates whether HTTP redirects will be automatically
followed. Returns "true" if redirection will occur automatically, and "false" if not.

String getRequestMethod()— returns the request method (e.g., GET) being used.

int getResponseCode()— returns the response status code. Applications can hardwire the
numerical value of codes, or use the HttpURL Connection fields that define state conditions.

String getResponseMessage()— returns the message from the response status line, such as
"OK," or "Not Found."

static void setFollowRedirects(boolean flag) throws java.lang.SecurityException— determines
whether the resource specified in a redirection response will be automatically followed. This
must be invoked prior to the connect() method for the setting to take effect. If this violates the
settings of the security manager, a SecurityException will be thrown.

void setRequestMethod(String method) throws java.net.ProtocolException— sets the request
method for this connection. This must be invoked prior to the connect() method for the setting
to take effect. If the method is not supported, a ProtocolException will be thrown. The method
name must be capitalized, as the protocol names are case sensitive.

boolean usingProxy()— shows whether a proxy server is being used for this connection.
Returns "true" if using a proxy server, "false" if not.

57Eng. Asma Abdel Karim
Computer Engineering Department

Accessing HTTP-Specific Functionality Using HttpURLConnection

58

import java.net.*;
import java.io.*;

public class UsingHttpURLConnection {

public static void main(String args[]) throws Exception {
int argc = args.length;
if (argc != 1) {

System.out.println("Syntax :");
System.out.println("java UsingHttpURLConnection url");
return;

}
try {

URL myURL = new URL(args[0]);
URLConnection connection = myURL.openConnection();
// Check to see if connection is a HttpURLConnection instance
if (connection instanceof java.net.HttpURLConnection) {

// Yes... cast to a HttpURLConnection instance
HttpURLConnection hConnection = (HttpURLConnection) connection;
// Disable automatic redirection, to see the status header
hConnection.setFollowRedirects(false);
// Connect to server
hConnection.connect();
// Check to see if a proxy server is being used
if (hConnection.usingProxy()) {

System.out.println("Proxy server used to access resource");
} else {

System.out.println("No proxy server used to access resource");
}
// Get the status code
int code = hConnection.getResponseCode();
// Get the status message
String msg = hConnection.getResponseMessage();

Eng. Asma Abdel Karim
Computer Engineering Department

57

58

1/9/2022

Eng. Asma Abdelkarim 30

Accessing HTTP-Specific Functionality Using HttpURLConnection

59

// If a 'normal' response

if (code == HttpURLConnection.HTTP_OK) {

// Notify user

System.out.println("Normal response returned: " + code + " " + msg);

} else {

// Output status code and message

System.out.println("Abnormal response returned: " + code + " " + msg);

}

// Pause for user

System.out.println("Hit enter to continue");

System.in.read();

} else {

System.err.println("Invalid transport protocol -not http !");

return;

}

} // MalformedURLException indicates parsing error

catch (MalformedURLException mue) {

System.err.println("Unable to parse URL!");

return;

} // IOException indicates network or I/O error

catch (IOException ioe) {

System.err.println("I/O Error : " + ioe);

return;

}

}

}

Eng. Asma Abdel Karim
Computer Engineering Department

How UsingHttpURLConnection Works

• The program starts by creating a URL object, and from this, a URLConnection
object.

• If the protocol being used to request the resource is HTTP, then the

URLConnection will also be an instance of the HttpURLConnection class.

• A guard statement checks to see if it is an HttpURLConnection object and
performs a casting operation.

– If not, an error message is displayed and the program terminates.

• If all proceeds according to plan, the application now has an

HttpURLConnection, and the extra HTTP-specific functionality it gives.

• Before a connection is established, it is possible to modify the properties of the
request.

• For example, a different request method could be used, or the "follow
redirection" flag could be modified. So that users can see the redirection status
code, automatic redirection is disabled by the application, and then the
connection is established.

60Eng. Asma Abdel Karim
Computer Engineering Department

59

60

1/9/2022

Eng. Asma Abdelkarim 31

How UsingHttpURLConnection Works (Cont.)

• Once a connection has been established, all sorts of useful information
becomes available, such as the status code and message and whether or not
a proxy server is being used.

• The application checks for the presence of a proxy server, and displays it to
the user, by using the boolean HttpURLConnection.usingProxy() method.

• Next, the status code and message are retrieved.

– This is the most useful information of all, as it tells a client whether or not a
request was successful and, if it was not successful, gives an indication of why.

• The human-readable shortcut for the 200 status code
(HttpURLConnection.HTTP_OK) is used to check whether the request was
successful. If not, the status code and message are displayed to the user, and
an application could take further steps, such as resending a request or
following a redirection notice.

61Eng. Asma Abdel Karim
Computer Engineering Department

Common Gateway Interface (CGI)

• The Common Gateway Interface (CGI) is an interface that allows
HTTP clients, such as Web browsers and other user agents, to
pass information back to a server for processing.

• CGI took the Web from static pages written by a Web master to
interactive sites generated on the fly, in response to interactions
with a user.

• When you use a search engine, buy a book at an online store, or
read a customized newspaper tailored to your interests, your
browser is using CGI to communicate with a server-side
application.

• Earlier, we briefly discussed the POST method, which is used by
HTTP clients to send information.

• The GET method may also be used to transmit information,
although there are limitations on the length of data that may be
passed.

62Eng. Asma Abdel Karim
Computer Engineering Department

61

62

1/9/2022

Eng. Asma Abdelkarim 32

Sending Data with the GET Method

• The GET method is used to request documents, images, and other files, and may
also be used to call up server-side applications.

• Normally, when called, data will be passed to the CGI application using a query
string.

• A query string is a string that is appended to the end of a URL in order to pass
additional information such as the results of an HTTP form.

http://www.someserver.org/cgibin/form_submit?name=First%20Last&answer=no

• Because we know the format of a URL, we see nothing unexpected in the example
before the "?“ character in the middle.

• But what does the question mark signify, and what comes after it?

• That’s the query string.

63Eng. Asma Abdel Karim
Computer Engineering Department

Sending Data with the GET Method (Cont.)

http://www.someserver.org/cgibin/form_submit?name=First%20Last&answer=no

• Everything that follows the question mark is a CGI parameter.

• These parameters are separated by an ampersand ("&") character.

• You'll notice too that instead of the expected space between one’s first and last names,
there is a percentage sign and a number.

• This has been encoded, as Web browsers and CGI scripts don't easily handle certain ASCII
characters (such as spaces, punctuation, and line separators).

• URL encoding substitutes problematic characters when sent through a query string.

• At the other end in the CGI script, URL decoding restores the characters to their original
state.

• Since query strings are passed as a URL, they may be viewed by looking at the URL
location string within a browser.

• In addition, the length of query strings is limited; long forms should be passed using the
POST method.

64Eng. Asma Abdel Karim
Computer Engineering Department

63

64

1/9/2022

Eng. Asma Abdelkarim 33

Sending Data with the POST Method

• Sending data with the POST method removes the length
limitations of GET and allows more complex data to be sent.

• While a query string may still be sent, data such as entire files and
serialized objects may also be included.

• Query strings should still be URL encoded, and are sentby writing

to the output stream of a URLConnection object.

65Eng. Asma Abdel Karim
Computer Engineering Department

import java.net.*;
import java.io.*;

public class SendGET {

public static void main(String args[]) throws IOException {
// Check command line parameters
if (args.length < 1) {

System.out.println("Syntax- SendGET baseurl");
System.in.read();
return;

}
// Get the base URL of the cgi-script/servlet
String baseURL = args[0];
// Start with a ? for the query string
String arguments = "?";
// Create a buffered reader, for reading CGI
// parameters from the user
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
// Loop until no parameters left
for (;;) {

System.out.println("Enter field (. terminates)");
String field = reader.readLine();
// If a . char entered, terminate loop
if (field.equals(".")) {

break;
}
System.out.println("Enter value");
String value = reader.readLine();
// Encode the URL value
arguments += URLEncoder.encode(field)+ "=" + URLEncoder.encode(value) + "&";

}

Sending a GET Request in Java

66Eng. Asma Abdel Karim
Computer Engineering Department

65

66

1/9/2022

Eng. Asma Abdelkarim 34

// Construct the full GET request
String finalURL = baseURL + arguments;
System.out.println("Sending GET request - " + finalURL);
// Send the GET request, and display output
try {

// Construct the url object
URL url = new URL(finalURL);
// Open a connection
InputStream input = url.openStream();
// Buffer the stream, for better performance
BufferedInputStream bufIn = new BufferedInputStream(input);
// Repeat until end of file
for (;;) {

int data = bufIn.read();
// Check for EOF
if (data == -1) {

break;
} else {

System.out.print((char) data);
}

}
// Pause for user
System.out.println();
System.out.println("Hit enter to continue");
System.in.read();

} catch (MalformedURLException mue) {
System.err.println("Bad URL - " + finalURL);

} catch (IOException ioe) {
System.err.println("I/O error " + ioe);

}
}

}

Sending a GET Request in Java

67Eng. Asma Abdel Karim
Computer Engineering Department

Running SendGET

• To run the application, you must specify the URL of a CGI script or Java servlet, and then
enter one or more CGI parameters when prompted.

• To finish entering parameters, simply enter a "." character as the field name.

• A good start would be the AltaVista search engine (or your preferred search engine if
you want to try something different).

• At the time of writing, a query could be sent by invoking the
http://www.altavista.com/cgi-bin/query cgi-script, with a parameter "q" that represents
the search query.

• For example, to search for "java networking" you might type the following command
line and responses to questions:

java SendGET http://www.altavista.com/cgi-bin/query

Enter field (. terminates)

q

Enter value

"java networking"

Enter field (. terminates)

68Eng. Asma Abdel Karim
Computer Engineering Department

67

68

1/9/2022

Eng. Asma Abdelkarim 35

Sending a POST Request in Java

• A POST request is a bit more complex than a simple GET
request.

• With a GET request, parameters are appended to a URL,
but a POST request requires you to write parameters to
the output stream of an HTTP connection.

• This means you can't use the URL.openStream()
method, and must instead use a URLConnection object.

69Eng. Asma Abdel Karim
Computer Engineering Department

import java.net.*;
import java.io.*;

public class SendPOST {
public static void main(String args[]) throws IOException {

if (args.length < 1) {
System.out.println("Syntax- SendPOST baseurl");
System.in.read();
return;

}
// Get the base URL of the cgi-script/servlet
String baseURL = args[0];
// No query string question mark required, so use a blank string
String arguments = "";
// Create a buffered reader, for reading CGI parameters from the user
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
boolean firstParameter = true;
// Loop until no parameters left
for (;;) {

System.out.println("Enter field (. terminates)");
String field = reader.readLine();
// If a . char entered, terminate loop
if (field.equals(".")) {

break;
}
System.out.println("Enter value");
String value = reader.readLine();
if (!firstParameter) {

arguments += "&";
} else {

firstParameter = false;
}
// Encode the URL value
arguments += URLEncoder.encode(field)+ "=" + URLEncoder.encode(value);

}

Sending a POST Request in Java

70Eng. Asma Abdel Karim
Computer Engineering Department

69

70

1/9/2022

Eng. Asma Abdelkarim 36

String query = arguments;

System.out.println("Sending POST request - " + query);

// Send the POST request, and display output

try {

// Construct the url object representing cgi script

URL url = new URL(baseURL);

// Get a URLConnection object, to write to POST method

URLConnection connect = url.openConnection();

// Specify connection settings

connect.setDoInput(true);

connect.setDoOutput(true);

// Get an output stream for writing

OutputStream output = connect.getOutputStream();

// Create a print stream, for easy writing

PrintStream pout = new PrintStream(output);

pout.print(query);

pout.close();

// Open a connection

InputStream input = connect.getInputStream();

// Buffer the stream, for better performance

BufferedInputStream bufIn = new BufferedInputStream(input);

Sending a POST Request in Java

71Eng. Asma Abdel Karim
Computer Engineering Department

// Repeat until end of file

for (;;) {

int data = bufIn.read();

// Check for EOF

if (data == -1) {

break;

} else {

System.out.print((char) data);

}

}

// Pause for user

System.out.println();

System.out.println("Hit enter to continue");

System.in.read();

} catch (MalformedURLException mue) {

System.err.println("Bad URL - " + baseURL);

} catch (IOException ioe) {

System.err.println("I/O error " + ioe);

}

}

}

Sending a POST Request in Java

72Eng. Asma Abdel Karim
Computer Engineering Department

71

72

1/9/2022

Eng. Asma Abdelkarim 37

How SendPOST Works

• Writing to the POST method of a CGI script or servlet is
accomplished by using a URLConnection object.

• Before the connection can be established, however, some
initialization work needs to be done.

• By default, a URLConnection allows read access but no write
access.

• You can override these defaults, by calling the
setDoInput(boolean) and setDoOutput(boolean) methods, to
allow data to be written as part of the POST HTTP request.

73Eng. Asma Abdel Karim
Computer Engineering Department

How SendPOST Works (Cont.)

• Now, the POST data must be sent to the CGI application by obtaining an

OutputStream instance connected to the remote service.

• You can then connect any output stream or writer to it, so that the CGI
parameters may be sent.

// Get an output stream for writing

OutputStream output = connect.getOutputStream();

// Create a print stream, for easy writing

PrintStream pout = new PrintStream (output);

pout.print (query);

pout.close();

• Once sending the data for the request is complete, the results may be
displayed by obtaining an InputStream to the URLConnection.

• The request is sent, and the results returned just as if a GET request had been
made.

74Eng. Asma Abdel Karim
Computer Engineering Department

73

74

1/9/2022

Eng. Asma Abdelkarim 38

Running SendPOST
• To run the application, you must specify the URL of a CGI script or Java servlet that

supports the POST method.
• Not every script will, so you may need to search on your local intranet, or the

Internet, for a suitable script.
• Once one is selected and passed as a command-line parameter, the application will

prompt you for one or more CGI parameters. To finish entering parameters, simply
enter a "." character as the field name.

• A good example is the Altavista search engine, which allows you to execute
queries.

• You can perform searches on your own, by passing a query string to the search
engine.

• For example, to search for "Java networking" as a term, you could pass the
following data to Altavista:

java SendPOST http://www.altavista.com/sites/search/web
Enter field (. terminates)
q
Enter value
java networking
Enter field (. terminates)

75Eng. Asma Abdel Karim
Computer Engineering Department

References

Chapter 9 of Java™ Network Programming
and Distributed Computing, David Reilly
and Michael Reilly.

76Eng. Asma Abdel Karim
Computer Engineering Department

75

76

