
9/5/2016

Eng. Asma Abdelkarim 1

Networks and Internet
Programming

Java Revision – Part I

1 Eng. Asma Abdel Karim
Computer Engineering Department

• Interpreters read one statement from the source code,
translate it to machine code and execute it right away.

• Compilers translate the entire source code into a machine
code, and the machine file is then executed.

2 Eng. Asma Abdel Karim
Computer Engineering Department

Interpreters vs. Compilers

9/5/2016

Eng. Asma Abdelkarim 2

Java API, JDK, and IDE

• The Application Program Interface (API) contains
predefined classes and interfaces for developing
Java programs.

• The Java Development Kit (JDK) consists of a set
of separate programs, each invoked from
command line, for developing and testing Java
programs.

• The Integrated Development Kit (IDE) provides
graphical user interface to edit, compile, build,
and debug programs.

3 Eng. Asma Abdel Karim
Computer Engineering Department

4 Eng. Asma Abdel Karim
Computer Engineering Department

Creating, Compiling, and Executing a Java Program
Welcome.java

Welcome.class

9/5/2016

Eng. Asma Abdelkarim 3

Creating, Compiling, and Executing a Java Program
(Cont.)

• Java source code is compiled into Java bytecode.
• Your Java code may use the code in the Java library.
• The bytecode is similar to machine instructions, but is architecture

neutral and can run on any platform that has a Java Virtual Machine
(JVM).

• The JVM is an interpreter, which translates individual instructions in
the bytecode into the target machine language code and executes it
immediately.

5 Eng. Asma Abdel Karim
Computer Engineering Department

Programming Errors

• Syntax errors.
– Detected by the compiler.
– Result from errors in code construction.

• Runtime errors.
– Cause a program to terminate abnormally.
– Occur while the program is running if the environment

detects an operation that is impossible to carry out.
– Examples include input errors and division by zero.

• Logic errors.
– Occur when a program does not perform the way it is

intended to.

6 Eng. Asma Abdel Karim
Computer Engineering Department

9/5/2016

Eng. Asma Abdelkarim 4

Primitive Data Types

7 Eng. Asma Abdel Karim
Computer Engineering Department

Identifiers

• Identifiers are the names of things that appear in the
program.
– Names of variables, constants, methods, classes,

packages…

• All identifiers must obey the following rules:
– An identifier is a sequence of characters that consists of

letters, digits, underscores (_), and dollar sign ($).
– Cannot start with a digit.
– Cannot be a reserved word.
– Can be of any length.

• Examples of legal identifiers: $2, area, Area, S_3.
• Examples of illegal identifiers: 2A, d+4, S#6.

Eng. Asma Abdel Karim
Computer Engineering Department

8

9/5/2016

Eng. Asma Abdelkarim 5

Variables

• Variables are used to represent values that
may be changed in the program.

• The syntax for declaring a variable:
datatype variableName

• Examples of variable declarations:
– int count;

– double rate;

– char letter;

– boolean found;

Eng. Asma Abdel Karim
Computer Engineering Department

9

Assignment Statement

• An assignment statement designates a value
for a variable.

• The equal sign (=) is used as the assignment
operator.

• Examples:

– x = 1;

– x = x+1;

– area = radius * radius * 3.14159;

10 Eng. Asma Abdel Karim

Computer Engineering Department

9/5/2016

Eng. Asma Abdelkarim 6

Character Literals

• A character literal is a
single character
enclosed in single
quotation marks (‘ ‘).

• Escape characters are
used to represent
special characters.

11 Eng. Asma Abdel Karim
Computer Engineering Department

Constants

• A constant is an identifier that represents a
permanent value.

• The syntax for declaring a constant:

– final datatype CONSTANT_NAME = value;

• Example:

– final double PI = 3.14159;

12 Eng. Asma Abdel Karim
Computer Engineering Department

9/5/2016

Eng. Asma Abdelkarim 7

Casting

• Casting is an operation that converts a value of
one data type into a value of another data type.
– Widening a type is casting a type with a small range to

a type with a larger range.
• E.g. Integer to floating point: 3 * 4.5 is same as 3.0 * 4.5.

– Narrowing a type is casting a type with a large range
to a type with a smaller range.
• E.g. floating point to integer:

 System.out.println ((int)1.7);

• Java automatically widens a type, but you must
narrow a type explicitly.

Eng. Asma Abdel Karim
Computer Engineering Department

13

Casting (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

14

short byte int long

widening

narrowing

float double

9/5/2016

Eng. Asma Abdelkarim 8

The String Type

• A string is a sequence of characters.

• To represent a string of characters, use the
data type called String:

– E.g. String message = “Welcome to Java”;

• String is a predefined class in the Java library.

• The String type is not a primitive type.

• A string literal must be enclosed on quotation
marks (“ “).

Eng. Asma Abdel Karim
Computer Engineering Department

15

The String Type (Cont.)

• The plus sign (+) is the concatenation operator if at least
one of the operands is a string.
– If one of the operands is a non string (e.g. a number), the non

string value is converted into a string and concatenated with the
string.

– Examples:
• String message = “Welcome ” + “to “ + ”Java!”;
 message becomes: Welcome to Java!
• String s = “Chapter” + 2;
 s becomes: Chapter2
• String appendix = “Appendix” + ‘B’;
 appendix becomes: AppendixB

• If neither of the operands is a string, the plus sign (+) is the
addition operator.

16 Eng. Asma Abdel Karim

Computer Engineering Department

9/5/2016

Eng. Asma Abdelkarim 9

Selections: One-way If Statements

• A one-way if statement executes an action if
an only if the condition is true.
– If the condition is false, nothing

 is done.

• The syntax for a one-way

 if statement is:
if (boolean-expression){

 statement(s);

}

17 Eng. Asma Abdel Karim

Computer Engineering Department

Selections: Two-way If-else Statements

• A two-way if-else statement executes an
action if the condition is true and another
action if the condition is false.

• The syntax for a two-way if-else statement is:
 if (boolean-expression){

 statement(s)-for-the-true-case;

}

else{

 statement(s)-for-the-false-case;

}

18 Eng. Asma Abdel Karim

Computer Engineering Department

9/5/2016

Eng. Asma Abdelkarim 10

Selections: Nested If

• An if statement can be inside another if
statement to form a nested if statement.

• Example:
if (i > k){

 if (j > k)

 System.out.println(“i and j are greater than k”);

}

else

 System.out.println(“i is less than or equal to k”);

19 Eng. Asma Abdel Karim
Computer Engineering Department

Executed only
if i>k and j>k

Executed if i<=k

Constant
expressions
of the same
type as the
value of
switch-
expression

Selections: switch Statements

• The syntax for the switch statement is:
 switch (switch-expression){
 case value1: statement(s)1;
 break;
 case value2: statement(s)2;
 break;
 …..
 case valueN: statement(s)N;
 break;
 default: statement(s)-for-default;
 }

20 Eng. Asma Abdel Karim
Computer Engineering Department

Must yield a value of char,
byte, short, int, or string

When the value in a case
statement matches the value
of the switch-expression,
statements starting from this
case are executed until either
a break statement or the end
of the switch statement is
reached

Statements of the default case are
executed when none of the specified
cases matches the switch-expression.

9/5/2016

Eng. Asma Abdelkarim 11

Selections: Conditional Expressions

• A conditional expression evaluates an
expression based on a condition.

• The syntax is:
– boolean-expression ? expression1 : expression2;

– The result of the conditional expression is
expression1 if boolean-expression is true,
otherwise the result is expression2.

• Example:
max = (num1 > num2) ? num1 : num2;

21 Eng. Asma Abdel Karim
Computer Engineering Department

While Loops

• A while loop executes statements repeatedly
while the condition is true.

• The syntax for the while loop

 is:
 while (loop-continuation-condition){

 statement(s);

}

22 Eng. Asma Abdel Karim
Computer Engineering Department

Loop body

Evaluated each time to determine
whether to execute the loop body

9/5/2016

Eng. Asma Abdelkarim 12

Do-While Loops

• Same as the while loop except that it executes
the loop body first then checks the loop
continuation condition.

• The syntax for the do-while

 loop:

do {

 statement(s);

} while (loop-continuation-condition);

23 Eng. Asma Abdel Karim
Computer Engineering Department

For Loops

• A for loop has a concise syntax

 for writing loops.

• The syntax for the for loop is:

 for (initial-action;

 loop-continuation-condition;

 action-after-each-iteration){

 statement(s);

 }

24 Eng. Asma Abdel Karim
Computer Engineering Department

9/5/2016

Eng. Asma Abdelkarim 13

Keywords break and continue

• The break and continue keywords provide
additional controls in a loop.

• The break keyword is used in a loop to
immediately terminate the loop.

• Example of using the break keyword:

 for (int n=0, sum=0; n<20; n++){

 sum += n;

 if (sum >= 100) break;

 }

25 Eng. Asma Abdel Karim
Computer Engineering Department

Keywords break and continue (Cont.)

• The continue keyword is used in a loop to end
the current iteration and program control goes
to the end of the loop body.

• Example of using the continue keyword:

 for (int n=0, sum=0; n<20; n++){

 if (n == 10 || n == 11) continue;

 sum += n;

 }

26 Eng. Asma Abdel Karim

Computer Engineering Department

9/5/2016

Eng. Asma Abdelkarim 14

Method Definition: An Example

Eng. Asma Abdel Karim
Computer Engineering Department

• In a method definition, you define what the
method is to do.

27

Method Invocation: An Example

Eng. Asma Abdel Karim
Computer Engineering Department

• Calling a method executes the code in the method.

• The main method is just like any other method except
that it is invoked by the JVM to start the program.

28

9/5/2016

Eng. Asma Abdelkarim 15

What happens when a method is invoked?

Eng. Asma Abdel Karim
Computer Engineering Department

• Each time a method is invoked, the system creates an

activation record.
• Activation record stores parameters and variables for the

method .

• Activation record is placed in an area of memory known
as the call stack, or simply the stack.

• When a method invokes another method, the caller’s
activation record is kept intact, and a new activation
record is created.

• When a method finishes its work and returns to its
caller, its activation record is removed from the stack.

• A call stack stores methods in last-in, first-out fashion.

29

What happens when a method is invoked?
(Example)

Eng. Asma Abdel Karim
Computer Engineering Department

30

9/5/2016

Eng. Asma Abdelkarim 16

Passing Parameters by Values (Cont.)

• When you invoke a method with an argument,
the value of the argument is passed to the
parameter.

– This is referred to as pass-by-value.

• If a value of a variable is passed as an
argument to a parameter, the variable is not
affected, regardless of the changes made to
the parameter inside the method.

Eng. Asma Abdel Karim
Computer Engineering Department

31

Overloading Methods

• Two methods that have the same name, but
different parameter lists within one class.

• The Java compiler determines which method
to use based on the method signature.

– It finds the most specific method for a method
invocation.

Eng. Asma Abdel Karim
Computer Engineering Department

32

9/5/2016

Eng. Asma Abdelkarim 17

Overloading Methods: An Example

public static int max (int num1, int num2){
 if (num1 > num2)
 return num1;
 else return num2;
}

public static double max (double num1, double num2){
 if (num1 > num2)
 return num1;
 else return num2;
}

public static double max (double num1, double num2,
double num3){
 return max (max(num1, num2), num3);
}

max(3.1,4.5,5.5)

max(3.0,4.5)

max(3,4)

max(2,2.5)

Eng. Asma Abdel Karim
Computer Engineering Department

33

The Scope of Variables

• The scope of a variable is the part of the
program where the variable can be
referenced.

• A variable defined inside a method is referred
to as a local variable.

• A parameter is actually a local variable.

– The scope of a method parameter covers the
entire method.

Eng. Asma Abdel Karim
Computer Engineering Department

34

9/5/2016

Eng. Asma Abdelkarim 18

The Scope of Variables (Cont.)
• You can declare a local variable with the same name in

different blocks in a method.

• But you cannot declare a local variable twice in the same
block or in nested blocks.

Eng. Asma Abdel Karim
Computer Engineering Department

35

Declaring Arrays

• To use an array in a program, you must declare
a variable to reference the array and specify
the array’s elements type.

– All elements in the array have the same data type.

• The syntax for declaring an array variable is:

 elementType [] arrayRefVar;

• Example:

 double [] myList;

Eng. Asma Abdel Karim
Computer Engineering Department

36

9/5/2016

Eng. Asma Abdelkarim 19

Declaring Arrays (Cont.)

• Unlike declarations for primitive data type
variables, the declaration of an array variable
does not allocate any space in memory for the
array.

– It creates only a storage location for the reference
to an array.

Eng. Asma Abdel Karim
Computer Engineering Department

37

Creating Arrays

• An array is created using the new operator with
the following syntax:

 arrayRefVar = new elementType [arraySize];
 This statement does two things:

 It creates an array using new elementType
[arraySize]

 It assigns the reference of the newly created array
to the variable arrayRefVar.

• Example:
 double [] myList; //array declaration
 mylist = new double [10]; //array creation

Eng. Asma Abdel Karim
Computer Engineering Department

38

9/5/2016

Eng. Asma Abdelkarim 20

Array Size and Default Values

• The size of an array cannot be changed after
the array is created.

• Array size can be obtained using:
arrayRefVar.length

• When an array is created, its elements are
assigned their default values:
– 0 for numeric primitive data types.

– \u0000 for char types.

– False for boolean types.

Eng. Asma Abdel Karim
Computer Engineering Department

39

Array Indexed variables

• The array elements are accessed through the index.
• Array indices are 0 based.
• Each element in the array is represented using the following syntax:
 arrayRefVar [index]

Eng. Asma Abdel Karim
Computer Engineering Department

40

9/5/2016

Eng. Asma Abdelkarim 21

Array Initializers

• Array initializer is a shorthand notation which
combines the declaration, creation, and
initialization of an array in one statement.

• The syntax for array initializer:

 elementType [] arrayRefVar = {value0, value1, …., valuek};

• Example:

 double [] myList = {1.9, 2.5, 3.4, 4.5};

Eng. Asma Abdel Karim
Computer Engineering Department

41

Copying Arrays

• The assignment operator does not copy the
contents of an array into another, it instead
merely copies the reference values.

Eng. Asma Abdel Karim
Computer Engineering Department

42

Garbage

9/5/2016

Eng. Asma Abdelkarim 22

Copying Arrays (Cont.)

• To copy the contents of one array into another,
you have to copy the array’s individual elements
into the other array.

• Use a loop to copy every element from the
source array to the corresponding element in the
target array.

• Example:
 int [] sourceArray = {2, 3, 1, 5, 10};
 int [] targetArray = new int [sourceArray.length];
 for (int i=0; i < sourceArray.length; i++)
 targetArray [i] = sourceArray [i];

43 Eng. Asma Abdel Karim
Computer Engineering Department

Passing Arrays to Methods

• When passing an array to a method, the
reference of the array is passed to a method.

• This differs from passing arguments of a primitive
type:
– For an argument of a primitive type, the argument’s

value is passed.
• The passed variable will not be affected by any change to the

value inside the method.

– For any argument of an array type, the value of the
argument is a reference to an array.
• The passed array will be affected by any change inside the

method.

44 Eng. Asma Abdel Karim
Computer Engineering Department

9/5/2016

Eng. Asma Abdelkarim 23

Passing Arrays to Methods: Example

public class Test {
 public static void main (String [] args){
 int x=1;
 int [] y = new int [10];
 m (x, y);
 System.out.println(“x is “+ x);
 System.out.println(“y*0] is “+ y[0]);
 }
 public static void m(int number, int [] numbers){
 number =1003;
 numbers[0]=5555;
 }
}

45

Output:
x is 1
y[0] is 5555

Eng. Asma Abdel Karim
Computer Engineering Department

Passing Arrays to Methods: Example
(Cont.)

46 Eng. Asma Abdel Karim
Computer Engineering Department

9/5/2016

Eng. Asma Abdelkarim 24

Returning an Array from a Method

• When a method returns an array, the reference of
the array is returned.

• Example:

 public static int[] copy(int [] list){

 int [] result = new int [list.length];

 for (int i=0; i < list.length; i++)

 result[i]=list[i];

 return result;

 }

47 Eng. Asma Abdel Karim
Computer Engineering Department

Example of this method invocation:
int [] list1 = {1, 2, 3, 4, 5};
int [] list2 = copy(list1);

9/7/2016

Eng. Asma Abdelkarim 1

Networks and Internet
Programming

Java Revision – Part II

1 Eng. Asma Abdel Karim
Computer Engineering Department

What is a Class? Example

Eng. Asma Abdel Karim
Computer Engineering Department

2

Class Name: Circle

Data Fields:
radius

Methods:
setRadius

A class template

Circle object 1

Data fields:
radius is 1

Circle object 2

Data fields:
radius is 25

Circle object 3

Data fields:
radius is 5

Circle object 4

Data fields:
radius is 44

4 objects of type Circle

9/7/2016

Eng. Asma Abdelkarim 2

Example: Circle Class

class Circle{

 double radius;

 void setRadius (double newRadius){

 radius = newRadius;

 }

}

3 Eng. Asma Abdel Karim
Computer Engineering Department

Class Circle has one variable of
type double called radius.

Class Circle has one void
method called setRadius
which takes one double
parameter and assign it to
the variable radius.

Declaring and Creating Objects
Reference Variables

• A class is essentially a programmer-defined type.
• The syntax to declare an object reference variable is:
 ClassName objectRefVar;

• Example:
 Circle myCircle;

• A class is a reference type: a variable of the class type can
reference an instance of the class.

• To create an object and assign its reference to a declared
object reference variable:

 objectRefVar = new ClassName ();

• Example:
 myCircle = new Circle();

4 Eng. Asma Abdel Karim
Computer Engineering Department

9/7/2016

Eng. Asma Abdelkarim 3

Declaring and Creating Objects
Reference Variables (Cont.)

• A single statement can be used to combine 1)
the declaration of an object reference
variable, 2) the creation of an object, and 3)
the assigning of an object reference to the
variable as follows:

 ClassName objectRefVar = new ClassName();

• Example:

 Circle myCircle = new Circle ();

5 Eng. Asma Abdel Karim
Computer Engineering Department

Accessing an Object’s Members

• In OOP, object’s members are its data fields and methods.
• An object’s data can be accessed and its methods invoked

using the dot operator (.).
• To reference a data field in an object:

– objectRefVar.dataField
• Example:

– myCircle.radius
• To invoke a method on an object:

– objectRefVar.method(arguments)
• Example:

– myCircle.setRadius(5);

6 Eng. Asma Abdel Karim
Computer Engineering Department

9/7/2016

Eng. Asma Abdelkarim 4

Example: TestCircle.java

public class TestCircle{
 public static void main (String [] args){
 Circle circle1 = new Circle ();
 circle1.setRadius(5);
 System.out.println(“The radius of this circle is

 “+circle1.radius);
 }
}
class Circle{
 double radius;
 void setRadius (double newRadius){
 radius = newRadius;
 }
}

Eng. Asma Abdel Karim
Computer Engineering Department

7

Only one
class in a file
can be a
public class.

The public class
must have the
same name as
the file name.

Constructing Objects Using
Constructors

• A constructor is invoked to create an object using
the new operator.

• Constructors are a special kind of method.
• They have three peculiarities:

– A constructor must have the same name as the class
itself.

– Constructors do not have a return type.
• Not even void.

– Constructors are invoked using the new operator
when an object is created.
• They play the role of initializing objects.

 Eng. Asma Abdel Karim
Computer Engineering Department

8

9/7/2016

Eng. Asma Abdelkarim 5

Constructing Objects Using
Constructors (Cont.)

• A class may be defined without constructors.

• In this case, a default constructor is provided
automatically:

– A default constructor is a public no-argument
constructor with an empty body which is implicitly
defined in the class.

– A default constructor is provided only if there are
no other constructors explicitly defined in the
class.

Eng. Asma Abdel Karim
Computer Engineering Department

9

Example TestCircle.java Revisited

Eng. Asma Abdel Karim
Computer Engineering Department

10

public class TestCircle{

 public static void main (String [] args){

 Circle circle1 = new Circle (5);

 System.out.println(“The radius of this circle is “+circle1.radius);

 }

}

class Circle{

 double radius;

 Circle (double initialRadius){

 radius = initialRadius;

 }

 void setRadius (double newRadius){

 radius = newRadius;

 }

}

9/7/2016

Eng. Asma Abdelkarim 6

Constructors Overloading

• Like regular methods, constructors can be overloaded.
• Example:
class Circle{
 double radius;
 Circle(){
 radius = 1;
 }
 Circle (double initialRadius){
 radius = initial Radius;
 }
 void setRadius (double newRadius){
 radius = newRadius;
 }
}

 Eng. Asma Abdel Karim
Computer Engineering Department

11

Circle myFirstCircle = new Circle ();

Circle mySecondCircle = new Circle(5);

Reference Data Fields and the null
Value

• Java assigns default values to data fields when
an object is created.
– 0 for numeric type.

– false for a boolean type.

– \u0000 for a char type.

– Null for a reference type.
• Null is a special literal used for reference types.

• However, Java assigns no default value to a
local variable inside a method.

Eng. Asma Abdel Karim
Computer Engineering Department

12

9/7/2016

Eng. Asma Abdelkarim 7

Difference between Variables of
Primitive Types and Reference Types

• Every variable represents a memory location that holds a
value.

• A variable of a primitive type holds a value of the primitive
type, and a variable of a reference type holds a reference to
where an object is stored in memory.

Eng. Asma Abdel Karim
Computer Engineering Department

13

Difference between Variables of
Primitive Types and Reference Types

(Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

14

9/7/2016

Eng. Asma Abdelkarim 8

Difference between Variables of
Primitive Types and Reference Types

(Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

15

Static Variables, Constants, and
Methods

• All variables declared in the data fields of the
previous examples are called instance variables.

• An instance variable is tied to a specific instance
of the class.
– It is not shared among objects of the same class.
– It has independent memory storage for each instance.

• In the following example, the radius of the first
object “circle1” is independent of the radius of
the second object “circle2”:
Circle circle1 = new Circle();
Circle circle2 = new Circle(5);

16 Eng. Asma Abdel Karim
Computer Engineering Department

9/7/2016

Eng. Asma Abdelkarim 9

Static Variables, Constants, and
Methods (Cont.)

• Static variables, also known as class variables,
store values for the variables in a common
memory location.
– A static variable is used when it is wanted that all

instances of the class to share data.

– If one instance of the class changes the value of a
static variables, all instances of the same class are
affected.

• Static methods can be called without creating an
instance of the class.

17 Eng. Asma Abdel Karim
Computer Engineering Department

Static Variables, Constants, and
Methods (Cont.)

• To declare a static variable or define a static
method, put the modifier static in the variable or
method declaration.

• Since constants in a class are shared by all objects
of the class, they should be declared static.

– final static double PI = 3.14159265358979323846;

• Static variables and methods can be accessed
from a reference variable or from their class
name.

18 Eng. Asma Abdel Karim
Computer Engineering Department

9/7/2016

Eng. Asma Abdelkarim 10

Example:
CircleWithStaticMembers.java

19 Eng. Asma Abdel Karim
Computer Engineering Department

public class CircleWithStaticMembers{

 double radius;

 static int numberOfObjects = 0;

 final static double PI = 3.14159265358979323846;

 CircleWithStaticMembers(){

 radius = 1;

 numberOfObjects++;

 }

 CircleWithStaticMembers(double initialRadius){

 radius = initialRadius;

 numberOfObjects++;

 }

A static variable is shared
by all objects of the class.

Example:
CircleWithStaticMembers.java (Cont.)

20 Eng. Asma Abdel Karim
Computer Engineering Department

 static int getNumberOfObjects(){

 return numberOfObjects;

 }

 double getArea (){

 return radius * radius * PI;

 }

}

A static method does not
belong to a specific object.

9/7/2016

Eng. Asma Abdelkarim 11

Example:
TestCircleWithStaticMembers.java

21 Eng. Asma Abdel Karim
Computer Engineering Department

public class TestCircleWithStaticMembers{

 public static void main (String [] args){

 System.out.println(“Before creating objects”);

 System.out.println(“The number of circle objects is “ +
 CircleWithStaticMembers.numberOfObjects);

 CircleWithStaticMembers c1 = new CircleWithStaticMembers();

 System.out.println(“After creating c1”);

 System.out.println(“c1 radius (“ + c1.radius + ”) and number of circle
 objects (“ + c1.numberOfObjects + “)”);

Static
variable
accessed
from its class
name

Static
variable
accessed
from a
reference
variable.

Example:
TestCircleWithStaticMembers.java (Cont.)

22 Eng. Asma Abdel Karim
Computer Engineering Department

 CircleWithStaticMembers c2 = new CircleWithStaticMembers(5);

 c1.radius = 9;

 System.out.println(“After creating c2 and modifying c1”);

 System.out.println(“c1 radius (“ + c1.radius + ”) and number of circle
 objects (“ + c1.numberOfObjects + “)”);

 System.out.println(“c2 radius (“ + c2.radius + ”) and number of circle
 objects (“ + c2.numberOfObjects + “)”);

 }

}

9/7/2016

Eng. Asma Abdelkarim 12

Example:
TestCircleWithStaticMembers.java (Output)

23 Eng. Asma Abdel Karim
Computer Engineering Department

Relationship between Static and
Instance Members

24 Eng. Asma Abdel Karim
Computer Engineering Department

9/7/2016

Eng. Asma Abdelkarim 13

Visibility Modifiers

• Visibility modifiers can be used to specify the
visibility of a class and its members.

• A visibility modifier specifies how data fields
and methods in a class can be accessed from
outside the class.

– There is no restriction on accessing data fields and
methods from inside the class.

25 Eng. Asma Abdel Karim
Computer Engineering Department

Visibility Modifiers: The Default

• If no visibility modifier is used, then by default
the classes, methods, and data fields are
accessible by any class in the same package.
– This is known as package-private or package-access.

• Packages are used to organize classes. To do so,
you need to add the following statement as the
first statement in the program.
– package packageName;

• If a class is defined without the package
statement, it is said to be placed in the default
package.

26 Eng. Asma Abdel Karim
Computer Engineering Department

9/7/2016

Eng. Asma Abdelkarim 14

Visibility Modifiers: Public and Private

• The public modifier can be used for classes,
methods and data fields to denote that they
can be accessed from any other classes.

• The private modifier makes methods and data
fields accessible only from within its own
class.

27 Eng. Asma Abdel Karim
Computer Engineering Department

Visibility Modifiers: Methods and Data
Fields Example

28 Eng. Asma Abdel Karim
Computer Engineering Department

9/7/2016

Eng. Asma Abdelkarim 15

Visibility Modifiers: Classes Example

29 Eng. Asma Abdel Karim
Computer Engineering Department

Visibility Modifiers: Another Example

30 Eng. Asma Abdel Karim
Computer Engineering Department

9/7/2016

Eng. Asma Abdelkarim 16

Data Field Encapsulation (Cont.)

• A private data field cannot be accessed by an
object from outside the class that defines the
private field.

• However, a client often needs to retrieve and
modify a data field.

• To make a private data field accessible:

– Provide a get method to return its value.

– Provide a set method set a new value to it.

31 Eng. Asma Abdel Karim
Computer Engineering Department

Data Field Encapsulation (Cont.)

• A get method has the following signature:

 public returnType getPropertyName()

– If the returnType is boolean, the get method is
defined as follows by convention:

Public boolean isProperyName()

• A set method has the following signature:

 public void setPropertyName(dataType propertyValue)

32 Eng. Asma Abdel Karim
Computer Engineering Department

9/7/2016

Eng. Asma Abdelkarim 17

Example:
CircleWithPrivateDataFields.java

public class CircleWithPrivateDataFields{

 private double radius = 1;

 private static int numberOfObjects = 0;

 final static double PI = 3.14159265358979323846;

 public CircleWithPrivateDataFields(){

 numberOfObjects++;

 }

 public CircleWithPrivateDataFields(double initialRadius){

 radius = initialRadius;

 numberOfObjects++;

 }

33 Eng. Asma Abdel Karim

Computer Engineering Department

Example: CircleWithPrivateDataFields.java
(Cont.)

 public double getRadius(){
 return radius;
 }
 public void setRadius (double newRadius){
 radius = (newRadius>=0) ? newRadius : 0;
 }
 public static int getNumberOfObjects(){
 return numberOfObjects;
 }
 public double getArea(){
 return radius * radius * PI;
 }
}

34 Eng. Asma Abdel Karim
Computer Engineering Department

These two methods
are the only way to
access the radius.

This method is the only way to read
the numberOfObjects.
numberOfObjects is only modified
when a new object is created,
there is no other way to modify it.

9/7/2016

Eng. Asma Abdelkarim 18

Example: TestCircleWithPrivateDataFields.java
(Cont.)

public class TestCircleWithPrivateDataFields{
 public static void main (String [] args){
 CircleWithPrivateDataFields c1 = new

 CircleWithPrivateDataFields(5);
 System.out.println(“The area of the circle of radius “ +

 c1.getRadius() + “is “ + c1.getArea());

 c1.setRadius(c1.getRadius()*1.1);
 System.out.println(“The area of the circle of radius “ +

 c1.getRadius() + “is “ + c1.getArea());

 System.out.println(“Number of circles created is “ +

 CircleWithPrivateDataFields.getNumberOfObjects());
 }
}

35 Eng. Asma Abdel Karim
Computer Engineering Department

The Scope of Variables

• The scope of a class’s variables or data fields is
the entire class, regardless of where the
variables are declared.

• A class’s variables and methods can appear in
any order in the class.

– The exception is when a data field is initialized
based on a reference to another data field.

36 Eng. Asma Abdel Karim
Computer Engineering Department

9/7/2016

Eng. Asma Abdelkarim 19

The Scope of Variables (Cont.)

37 Eng. Asma Abdel Karim
Computer Engineering Department

The variable radius
and method findArea
can be declared in
any order.

i has to be declared
before j, because j’s
initial value is
dependent on i.

The Scope of Variables (Cont.)

• A class’s variable can be declared only once.

• If a local variable has the same name as a
class’s variable, the local variable takes
precedence and the class’s variable with the
same name is hidden.

38 Eng. Asma Abdel Karim
Computer Engineering Department

9/7/2016

Eng. Asma Abdelkarim 20

The Scope of Variables (Cont.)

public class F {
 private int x = 0;
 private int y = 0;

 public F(){
 }
 public void print(){
 int x = 1;
 System.out.println(“x= “ + x);
 System.out.println(“y= “ + y);
 }
}

39 Eng. Asma Abdel Karim
Computer Engineering Department

Instance variable

Local variable

If the following statements are
created in the main method,
what is the output?
F fObject = new F();
fObject.print();

Object Composition

• An object can contain another object. The
relationship between the two is called
composition.

40 Eng. Asma Abdel Karim
Computer Engineering Department

9/7/2016

Eng. Asma Abdelkarim 21

Object Composition (Cont.)

41 Eng. Asma Abdel Karim
Computer Engineering Department

Passing Objects to Methods: Example
public class TestPassObject{

 public static void main(String args[]){

 CircleWithPrivateDataFields myCircle = new CircleWithPrivateDataFields(1);

 int n = 5;

 printAreas (myCircle , n);

 System.out.println(“Radius is “ + myCircle.getRadius());

 System.out.println(“n is ” + n);

 }

 public static void printAreas (CircleWithPrivateDataFields c, int times){

 System.out.println(“Radius \t\tArea”);

 while (times>=1){

 System.out.println(c.getRadius()+” \t\t”+c.getArea());

 c.setRadius(c.getRadius()+1);

 time--;

 }

 }

}

Eng. Asma Abdel Karim
Computer Engineering Department

42

Passing an object to a
method is to pass the
reference of the object.

9/7/2016

Eng. Asma Abdelkarim 22

Passing Objects to Methods: Example
(Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

43

Passing Objects to Methods: Example
(Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

44

9/7/2016

Eng. Asma Abdelkarim 23

Array of Objects

• An array can hold objects as well as primitive
type values.

• Example:
– In order to declare an array of ten Circle Objects:

 Circle [] circleArray = new Circle [10];

– In order to initialize objects of this array;

 for (int i=0; i < circleArray.length; i++){

 circleArray[i] = new Circle();

 }

45 Eng. Asma Abdel Karim
Computer Engineering Department

Array of Objects (Cont.)

• An array of objects is actually an array of
reference variables.

• Example:

 CircleArray[1].getArea() involves two levels of
referencing.

46 Eng. Asma Abdel Karim
Computer Engineering Department

9/7/2016

Eng. Asma Abdelkarim 24

Array of Objects: Example
public class CircleArrayArea{

 public static void main (String [] args){

 CircleWithPrivateDataFields [] circleArray;

 circleArray = createCircleArray();

 printCircleArray (circleArray);

 }

 public static CircleWithPrivateDataFields [] createCircleArray(){

 CircleWithPrivateDataFields [] circleArray = new
 CircleWithPrivateDataFields [5];

 for (int i=0; i < circleArray.length; i++){

 circleArray[i] = new CircleWithPrivateDataFields (i+1);

 }

 return circleArray;

}
47 Eng. Asma Abdel Karim

Computer Engineering Department

Array of Objects: Example (Cont.)

Public static void printCircleArea (CircleWithPrivateDataFields []
circleArray){

 System.out.println(“Radius \t\tArea”);

 for (int i=0; i < circleArray.length; i++){

 System.out.println (circleArray[i].getRadius()+”
 \t\t”+circleArray[i].getArea());

 }

}

}

48 Eng. Asma Abdel Karim
Computer Engineering Department

9/7/2016

Eng. Asma Abdelkarim 25

Immutable Objects and Classes

• Normally, you create an object and allow its
contents to be changed later.

• However, occasionally it is desirable to create
an object whose contents cannot be changed
once the object has been created.

– Such an object is called immutable object and its
class is called immutable class.

Eng. Asma Abdel Karim
Computer Engineering Department

49

Immutable Objects and Classes (Cont.)

• For a class to be immutable, it must meet the
following requirements:

– All data fields must be private.

– There can’t be any mutator methods for data
fields.

– No accessor methods can return a reference to a
data field that is mutable.

Eng. Asma Abdel Karim
Computer Engineering Department

50

9/7/2016

Eng. Asma Abdelkarim 26

Immutable Objects and Classes:
Example

public class Student{

 private int id;

 private String name;

 private double [] grades;

 public Student (int ssn, String newName){

 id = ssn;

 name = newName;

 grades = new double [3];

 }

 public int getId(){

 return id;

 }

 public String getName(){

 return name;

 }

 public double [] getGrades(){

 return grades;

 }

}

Eng. Asma Abdel Karim
Computer Engineering Department

This method actually returns a
reference to the array grades,
which means it can be changed
once returned.

51

Immutable Objects and Classes:
Example (Cont.)

public class test {

 public static void main(String [] args){

 Student student = new Student (112233, “John”);

 double [] G = student.getGrades();

 G[0] = 90.0;

 G[1] = 95.5;

 G[2] = 92.9;

 }

}

Eng. Asma Abdel Karim
Computer Engineering Department

52

9/7/2016

Eng. Asma Abdelkarim 27

The this Reference

• The keyword this refers to the object itself.

Eng. Asma Abdel Karim
Computer Engineering Department

public class Circle{
 private double radius;
 ……
 public double getRadius(){
 return this.radius;
 …..
}

public class Circle{
 private double radius;
 ……
 public double getRadius(){
 return radius;
 …..
}

Equivalent

53

Using this to Reference Hidden Data
Fields

• The this keyword can be used to reference a
class’s hidden data fields.

• A hidden static variable can be accessed
simply by using the ClassName.staticVariable.

• A hidden instance variable can be accessed by
using the keyword this.

Eng. Asma Abdel Karim
Computer Engineering Department

54

9/7/2016

Eng. Asma Abdelkarim 28

Using this to Reference Hidden Data
Fields: Example

Eng. Asma Abdel Karim
Computer Engineering Department

55

Using this to Invoke a Constructor

• The this keyword can be used to invoke
another constructor of the same class.

Eng. Asma Abdel Karim
Computer Engineering Department

56

9/25/2016

Eng. Asma Abdelkarim 1

Networks and Internet
Programming

Java Revision – Part III

1 Eng. Asma Abdel Karim
Computer Engineering Department

Inheritance
Superclasses and Subclasses

Eng. Asma Abdel Karim
Computer Engineering Department

2

• A class (A) that is extended from another class
(B) is called a subclass. (B) is called a
superclass.

• A subclass:

– Inherits accessible data fields and methods from
its superclass.

– May also add new data fields and methods.

9/25/2016

Eng. Asma Abdelkarim 2

Superclasses and Subclasses: Example

Eng. Asma Abdel Karim
Computer Engineering Department

3

GeometricObject

-color: String
-filled: boolean

+getColor(): String
+setColor(color: String): void
+isFilled(): boolean
+setFilled(filled: boolean): void
+printObjectDetails():void

Circle

-radius: double

+getRadius(): double
+setRadius(radius: double): void
+getArea(): double
+getPerimeter(): double
+printCircleDetails():void

Rectangle

-width: double
-height: double

+getWidth(): double
+setWidth(width: double): void
+getHeight(): double
+setHeight(height:double): void
+getArea(): double
+getPerimeter(): double
+printRectangleDetails():void

Superclass

Subclasses

GeometricObject.java

public class GeometricObject{

 private String color = "White";

 private boolean filled;

 public String getColor(){

 return color;

 }

 public void setColor(String color){

 this.color = color;

 }

Eng. Asma Abdel Karim
Computer Engineering Department

4

9/25/2016

Eng. Asma Abdelkarim 3

GeometricObject.java (Cont.)

 public boolean isFilled(){

 return filled;

 }

 public void setFilled(boolean filled){

 this.filled = filled;

 }

 public void printObjectDetails(){

 System.out.println("Color is "+color + "Is filled? "+filled);

 }

}

Eng. Asma Abdel Karim
Computer Engineering Department

5

Circle.java

public class Circle extends GeometricObject{
 private double radius = 1;

 public double getRadius(){
 return radius;
 }
 public void setRadius(double radius){
 this.radius = radius;
 }
 public double getArea(){
 return radius * radius * Math.PI;
 }

Eng. Asma Abdel Karim
Computer Engineering Department

6

9/25/2016

Eng. Asma Abdelkarim 4

 public double getPerimeter(){

 return 2 * radius * Math.PI;

 }

 public void printCircleDetails(){

 System.out.println("Circle color is "+ getColor() + " , circle
 filled? "+ isFilled()+ " , circle radius is "+ radius);

 }

}

Eng. Asma Abdel Karim
Computer Engineering Department

7

Circle.java (Cont.)

Rectangle.java

public class Rectangle extends GeometricObject{

 private double width = 1;

 private double height = 1;

 public double getWidth(){

 return width;

 }

 public void setWidth(double width){

 this.width = width;

 }

 public double getHeight(){

 return height;

 }

Eng. Asma Abdel Karim
Computer Engineering Department

8

9/25/2016

Eng. Asma Abdelkarim 5

Rectangle.java (Cont.)
 public void setHeight(double height){

 this.height = height;

 }

 public double getArea(){

 return width * height;

 }

 public double getPerimeter(){

 return 2 * (width + height);

 }

 public void printRectangleDetails(){

 System.out.println("Rectangle color is "+ getColor() + " , rectangle filled?
 "+ isFilled()+ " , rectangle width is "+ width + " , rectangle height is " +
 height);

 }

}

Eng. Asma Abdel Karim
Computer Engineering Department

9

TestCircleRectangle.java
public class TestCircleRectangle {

 public static void main(String[] args) {

 Circle c = new Circle ();

 c.printObjectDetails();

 c.setColor("Black");

 c.setFilled(true);

 c.setRadius(5);

 c.printCircleDetails();

 Rectangle r = new Rectangle ();

 r.setColor("Red");

 r.setFilled(true);

 r.setWidth(3);

 r.setHeight(5);

 r.printRectangleDetails();

 }

}

Eng. Asma Abdel Karim
Computer Engineering Department

10

These methods are
inherited from the
GeometricObject class.

These methods are
inherited from the
GeometricObject class.

9/25/2016

Eng. Asma Abdelkarim 6

The Super Keyword

Eng. Asma Abdel Karim
Computer Engineering Department

11

• The keyword super refers to the superclass
and can be used to:

– Call a superclass constructor.

– Call a superclass method.

Using the Super Keyword to Call a
Superclass Constructor

Eng. Asma Abdel Karim
Computer Engineering Department

12

• The syntax to call a superclass’s constructor is:
– super(); // to invoke the no-arg constructor
– super(parameters); //to invoke a constructor with

parameters

• The statement super() or super(parameters) must appear
in the first line of the subclass’s constructor.

• The following constructor can be added to the Circle class
of the previous example:

 public Circle (double radius){
 super();
 this.radius = radius;
 }

Invokes the no-arg constructor,
which is the default constructor
of the GeometricObject class.

9/25/2016

Eng. Asma Abdelkarim 7

Constructor Chaining

Eng. Asma Abdel Karim
Computer Engineering Department

13

• A constructor may invoke an overloaded constructor
(using this) or its superclass constructor (using super).

• If neither is invoked explicitly, the compiler automatically
puts super() as the first statement in the constructor.

Caution!!

• If a class is designed to be extended, it is better to
provide a no-arg constructor to avoid programming
errors.

• Example: this code cannot be compiled:
public class Apple extends Fruit{

}
class Fruit{
 public Fruit(String name){
 System.out.println("Fruit's constructor is invoked");
 }
}

14 Eng. Asma Abdel Karim

Computer Engineering Department

The default no-arg constructor of Apple
will try to invoke a no-arg constructor of
Fruit, which does not exist!

9/25/2016

Eng. Asma Abdelkarim 8

Eng. Asma Abdel Karim
Computer Engineering Department

15

Using the Super Keyword to Call a
Superclass Method

• The keyword super can be used to reference a method other
than the constructor in the superclass. The syntax is:
– super.method(parameters);

• The printCircleDetails method in the Circle class could be
rewritten as follows:

 public void printCircleDetails(){

 System.out.println("Circle color is "+ super.getColor() + " , circle
 filled? "+ super.isFilled()+ " , circle radius is "+ radius);

 }

• It is not necessary to put the super keyword before the
methods getcolor and isFilled in the previous example.
– These methods are inherited by the Circle class.
– Cases were the super keyword is needed to invoke the superclass

methods will be showed when methods overriding is introduced.

Eng. Asma Abdel Karim
Computer Engineering Department

16

Overriding Methods

• A subclass inherits methods from a superclass.

• Sometimes, it is necessary for the subclass to modify the
implementation of a method defined in the superclass.

• In the previous example, the method printObjectDetails
of the GeometricObject class can be overridden in the
Circle class as follows:

 public void printObjectDetails(){

 super.printObjectDetails();

 System.out.println("Circle radius = "+radius);

 }

9/25/2016

Eng. Asma Abdelkarim 9

Eng. Asma Abdel Karim
Computer Engineering Department

17

Overriding Methods (Cont.)

• An instance method can be overridden only if it is
accessible.
– Thus, a private method cannot be overridden, because it is not

accessible outside its own class.
– If a method defined in a subclass is private in its superclass, the

two methods are completely unrelated.

• Like an instance method, a static method can be
inherited. However a static method cannot be
overridden.
– If a static method defined in the superclass is redefined in a

subclass, the method defined in the superclass is hidden.
– The hidden static methods can be invoked using the syntax

SuperClassName.staticMethodName.

Eng. Asma Abdel Karim
Computer Engineering Department

18

Overriding vs. Overloading

• Overloading means to define multiple methods with
the same name but different signatures.

• Overriding means to provide a new implementation
for a method in the subclass.

– The method should be defined in the subclass using the
same signature and the same return type.

9/25/2016

Eng. Asma Abdelkarim 10

Eng. Asma Abdel Karim
Computer Engineering Department

19

Overriding vs. Overloading: Example

Eng. Asma Abdel Karim
Computer Engineering Department

20

Overriding vs. Overloading: Notes

• Overridden methods are in different classes related
by inheritance; overloaded methods can be either in
the same class or different classes related by
inheritance.

• Overridden methods have the same signature and
return type; overloaded methods have the same
name but a different parameter list.

9/25/2016

Eng. Asma Abdelkarim 11

Eng. Asma Abdel Karim
Computer Engineering Department

21

Override Annotation

• To avoid mistakes, you can use a special Java syntax, called override
annotation:
– Place @Override before the method in the subclass.

• This annotation denotes that the annotated method is required to
override a method in the superclass.
– If a method with this annotation does not override its superclass’s

method, the compiler will report an error.

• For example, in order to denote that the printObjectDetails is
overridden in the Circle class:

 @Override

 public void printObjectDetails(){
 super.printObjectDetails();
 System.out.println("Circle radius = "+radius);
 }

Eng. Asma Abdel Karim
Computer Engineering Department

22

The Object Class and Its toString() Method

• If no inheritance is defined when a class is defined,
the superclass of the class is Object by default.

– Every class in Java is descended from the java.lang.Object
class.

• For example the following two class definitions are
the same:

9/25/2016

Eng. Asma Abdelkarim 12

Eng. Asma Abdel Karim
Computer Engineering Department

23

The Object Class and Its toString() Method
(Cont.)

• One of the most important methods provided by the
Object class is the method toString.

• The signature of the toString method is:
– public String toString()

• Invoking toString() on an object returns a string that
describes the object.
– By default, it returns a string consisting of a class name of which

the object is an instance, an at sign (@), and the object’s
memory address in hexadecimal.

– For example, the output of the following code is something like:
Circle@780324ff

 Circle c = new Circle();
 System.out.println(c.toString());

Eng. Asma Abdel Karim
Computer Engineering Department

24

The Object Class and Its toString() Method
(Cont.)

• Usually, we override the toString method so that it returns a
descriptive string representation of the object.

• For example, the toString method in the Object class can be
overridden for the Circle class as follows:

 public String toString(){
 return "Color is " + getColor() + ". Is filled? " + isFilled() +
 ". Radius is " + radius + ".";
 }

• You can also pass an object to invoke
System.out.println(object) and System.out.print(object).
– This is equivalent to invoking

System.out.println(object.toString()) and
System.out.print(object.toString()).

9/25/2016

Eng. Asma Abdelkarim 13

Polymorphism

• Inheritance enables a subclass to inherit
features from its superclass with additional
new features.

• A subclass is a specialization of its superclass.
– Every instance of a subclass is also an instance of

its superclass, but not vice versa.
• Therefore, an instance of a subclass can be used

wherever its superclass instance is used.

– For example, every circle is a geometric object,
but not every geometric object is a circle.

Eng. Asma Abdel Karim
Computer Engineering Department

25

Polymorphism (Cont.)

• Polymorphism means that a variable of a supertype
can refer to a subtype object.

• Example:
public static void main(String [] args){

 displayObjectColor(new Circle ());

 displayObjectColor(new Rectangle());

}

public static void displayObjectColor(GeometricObject object){

 System.out.println(“Color is ” + object.getColor());

}

Eng. Asma Abdel Karim
Computer Engineering Department

26

Objects of subclasses are
passed to a parameter of

its superclass type.

9/25/2016

Eng. Asma Abdelkarim 14

Dynamic Binding

• A method can be implemented in several
classes along the inheritance chain.

• The JVM decides which method is invoked at
runtime.

– This is known as dynamic binding.

Eng. Asma Abdel Karim
Computer Engineering Department

27

Dynamic Binding (Cont.)

• Dynamic binding works as follows:

– Suppose o is an instance of C1, C2, C3,...., Cn. As
follows:

– If o invokes a method p:

• The JVM searches for the implementation of the method p
in C1, C2, C3,...., Cn, in this order, until it is found.

• Once an implementation is found, the search stops and the
first-found implementation is invoked.

Eng. Asma Abdel Karim
Computer Engineering Department

28

9/25/2016

Eng. Asma Abdelkarim 15

Dynamic Binding (Cont.)

• Consider the following code:
Object o = new GeometricObject();
System.out.println(o.toString());

• There are two important terms in order to identify which
toString method will be invoked by o:
– Declared type: the type that declares a variable.

• In the previous code example, o’s declared type is Object.

– Actual type: The actual class for the object referenced by the
variable.
• In the previous code example, o’s actual type is GeometricObject.

• Which method is invoked is determined by the object actual
type.
– In other words, the JVM starts the search with the class that

defines the actual type.

Eng. Asma Abdel Karim
Computer Engineering Department

29

Dynamic Binding: Example
public class DynamicBinding {

 public static void main(String[] args) {

 m(new GraduateStudent());

 m(new Student());

 m(new Person());

 m(new Object());

 }

 public static void m(Object x){

 System.out.println(x.toString());

 }

}

class GraduateStudent extends Student{

}

Eng. Asma Abdel Karim
Computer Engineering Department

30

class Student extends Person{

 @Override

 public String toString(){

 return "Student";

 }

}

class Person{

 @Override

 public String toString(){

 return "Person";

 }

}

Student
Student
Person
java.lang.object@9fa8988

9/25/2016

Eng. Asma Abdelkarim 16

Dynamic Binding (Cont.)

• Matching a method signature and binding a
method implementation are two separate
issues:
– The declared type of the reference variable decides

which method to match at compile time.
• The compiler finds a matching method according to the

parameter type, number of parameters, and order of
parameters.

– The JVM dynamically binds the implementation of
the method at runtime, decided by the actual type
of the variable.

Eng. Asma Abdel Karim
Computer Engineering Department

31

Casting Objects

Eng. Asma Abdel Karim
Computer Engineering Department

32

• The compiler implicitly casts an instance of a
subclass to a variable of a superclass.

– Because an instance of a subclass is always an
instance of its superclass.

– Known as upcasting.

– Example:

Object o = new Student();

9/25/2016

Eng. Asma Abdelkarim 17

Casting Objects (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

33

• When casting an instance of a superclass to a
variable of its subclass, explicit casting must be
used:
– To confirm your intention to the compiler; otherwise

a compile error will occur.

– Known as downcasting.

– Example:

Object o = new Student();

Student b = o; // causes compile error

Student b = (Student)o; //does not cause compile error

Casting Objects (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

34

• In order for casting to be successful, you must
make sure that the object to be cast is an
instance of the subclass.
– If the superclass object is not an instance of the

subclass, a runtime ClassCastException occurs.

• It is a good practice, to ensure that the object is
an instance of another object before attempting a
casting.
– This can be accomplished using the instanceof

operator.

9/25/2016

Eng. Asma Abdelkarim 18

The instanceof Operator

Eng. Asma Abdel Karim
Computer Engineering Department

35

Object myObject = new Circle;

If (myObject instanceof Circle){

 System.out.println(“The circle area is “ +
((Circle)myObject).getArea());

}

The object member access operator (.)
precedes the casting operator.

Parentheses are used to ensure that
casting is done before the (.) operator.

Why Casting is Necessary?

Eng. Asma Abdel Karim
Computer Engineering Department

36

• In the previous example:
– The variable myObject is declared Object.

– The declared type decides which method to match at
compile time.
• Using myObject.getArea() would cause a compile error, because

the Object class does not have the getArea method.

• Therefore it is necessary to cast myObject into the Circle type to
tell the compiler that myObject is also an instance of Circle.

– Why not define, myObject as a Circle type in the first
place?
• To enable generic programming: it is a good practice to define a

variable with a supertype, which can accept a value of any
subtype.

9/25/2016

Eng. Asma Abdelkarim 19

Casting & Polymorphism: Example

Eng. Asma Abdel Karim
Computer Engineering Department

37

public class Casting {
 public static void main(String[] args) {
 Object object1 = new Circle();
 Object object2 = new Rectangle();

 displayObject(object1);
 displayObject(object2);
 }
 public static void displayObject(Object object){
 if (object instanceof Circle){
 System.out.println("The circle radius is "+((Circle)object).getRadius());
 }
 if (object instanceof Rectangle){
 System.out.println("The rectangle width is "+((Rectangle)object).getWidth());
 System.out.println("The rectangle height is "+((Rectangle)object).getHeight());
 }
 }
}

The Object’s equals Method

Eng. Asma Abdel Karim
Computer Engineering Department

38

• The equals method is defined in the Object class.

• The equals method signature is:

 public boolean equals (Object o)

• The syntax for invoking the equals method is:

 object1.equals(object2)

9/25/2016

Eng. Asma Abdelkarim 20

The Object’s equals Method (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

39

• The default implementation of the equals method in the
Object class is:

 public boolean equals(Object o){

 return (this==o);

 }

• This implementation checks whether two reference
variables point to the same object using the == operator.

• You should override this method in your custom class to
test whether two distinct objects have the same content.

The Object’s equals Method: Example

Eng. Asma Abdel Karim
Computer Engineering Department

40

• The equals method can be overridden in the Circle class
to compare whether two circles are equal based on their
radius as follows:

 public boolean equals(Object o){
 if (o instanceof Circle)
 return radius == ((Circle)o).radius;
 else return false;
 }
• Note that when overriding the equals method, you

should use the signature equals(Object obj) not
equals(someClassName o) (e.g. equals (Circle c)).

9/25/2016

Eng. Asma Abdelkarim 21

Eng. Asma Abdel Karim
Computer Engineering Department

41

Protected Class Members

• Remember that:
– Private members can be accessed only from inside the

class.

– Public members can be accessed from any other classes.

• Often it is desirable:
– To allow subclasses to access data fields or methods

defined in the superclass.

– But not to allow non-subclasses to access these data fields
and methods.

• To accomplish this you can use the protected
keyword (access modifier).

Eng. Asma Abdel Karim
Computer Engineering Department

42

Protected Class Members (Cont.)

9/25/2016

Eng. Asma Abdelkarim 22

Eng. Asma Abdel Karim
Computer Engineering Department

43

Protected Class Members (Cont.)

• A subclass may override a method defined in its
superclass and increase its accessibility.

– For example, change its accessibility from protected (as
defined in the superclass) to public.

• However, a subclass cannot weaken the accessibility
of a method defined in the superclass.

– For example, a method defined as public in the superclass
should be defined as public in the subclass.

Eng. Asma Abdel Karim
Computer Engineering Department

44

Preventing Extending and Overriding

• You can prevent a class from being extended using
the final modifier.

• For example, the following class cannot be extended:

 public final class A{

 }

9/25/2016

Eng. Asma Abdelkarim 23

Eng. Asma Abdel Karim
Computer Engineering Department

45

Preventing Extending and Overriding
(Cont.)

• You can prevent a method from being overridden, by
its subclasses, using the final modifier.

• For example the following method cannot be
overridden:

 public class Test{

 public final void m{

 //Do something

 }

 }

What are Abstract Methods?

Eng. Asma Abdel Karim
Computer Engineering Department

46

• In the example of the previous section,
GeometricObject was defined as the superclass for
Circle and Rectangle.

• Bot Circle and Rectangle contain getArea() and
getPerimeter() methods.

• It is better to define the getArea() and getPerimeter()
methods in the GeometricObject class.

• However, these methods cannot be implemented in
the GeometricObject class, because their
implementation depends on the specific type of a
geometric object.

9/25/2016

Eng. Asma Abdelkarim 24

What are Abstract Methods? (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

47

• Such methods can be defined in the
superclass as abstract methods.

– An abstract method is defined without an
implementation in the superclass.

• Its implementation is provided by the subclasses.

– Abstract methods are denoted using the abstract
modifier in the method header.

What are Abstract Classes?

Eng. Asma Abdel Karim
Computer Engineering Department

48

• A class that contains at least one abstract
method must be defined as an abstract class.
– Abstract classes are denoted using the abstract

modifier in the class header.

• Abstract classes are like regular classes, but
you cannot create instances of abstract classes
using the new operator.
– Constructors of an abstract class are defined as

protected, because they are used only by
subclasses.

9/25/2016

Eng. Asma Abdelkarim 25

Abstract Classes & Methods: Example

Eng. Asma Abdel Karim
Computer Engineering Department

49

public abstract class GeometricObject{

 private String color = "White";

 private boolean filled;

 protected GeometricObject(String color, boolean filled){

 this.color=color;

 this.filled=filled;

 }

 public String getColor(){

 return color;

 }

 public void setColor(String color){

 this.color = color;

 }

Abstract Classes & Methods: Example (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

50

 public boolean isFilled(){

 return filled;

 }

 public void setFilled(boolean filled){

 this.filled = filled;

 }

 public void printObjectDetails(){

 System.out.println("Color is "+color + "Is filled? "+filled);

 }

 public abstract double getArea();

 public abstract double getPerimeter;

}

9/25/2016

Eng. Asma Abdelkarim 26

Why Abstract Methods? Example

Eng. Asma Abdel Karim
Computer Engineering Department

51

public class testGeometricObject{
 public static void main(String args[]){
 GeometricObject g1 = new Circle(5);
 GeometricObject g2 = new Rectangle(5, 3);
 System.out.println(“The two geometric objects have
 the same area?” + equalArea(g1, g2));
 displayGeometricObject(g1);
 displayGeometricObject(g2);
 }
 public static boolean equalArea(GeometricObject object1,
 GeometricObject object2){
 return object1.getArea() == object2.getArea();
 }

Why Abstract Methods? Example

Eng. Asma Abdel Karim
Computer Engineering Department

52

 public static void displayGeometricObject(GeometricObject

 object){

 System.out.println();

 System.out.println(“The area is “+object.getArea());

 System.out.println(“The perimeter is “+
 object.getPerimeter());

 }

}

9/25/2016

Eng. Asma Abdelkarim 27

Important Notes Regarding Abstract
Classes and Methods

Eng. Asma Abdel Karim
Computer Engineering Department

53

• An abstract method cannot be contained in a non-abstract
class.
– If a subclass of an abstract superclass does not implement all

abstract methods, the subclass must be defined as abstract.
– Abstract methods are non-static.

• An abstract class cannot be instantiated using the new
operator, but:
– You still can define its constructors which are invoked in the

constructors of its subclasses.
– An abstract class can be used as a data type.

• Therefore, the following statement, which creates an array whose
elements are of the GeometricObject type is correct:

GeometricObject [] Objects = new GeometricObject[10];

What is an Interface?

• An interface is a class-like construct that contains only
constants and abstract methods.

• The intent of interfaces is to define common behavior
for related or unrelated classes.

• An interface is treated like a special class in Java.
– Each interface is compiled into a separate bytecode file.

– You can use an interface more or less the same way you
use an abstract class.
• An interface can be used as a data type for a reference variable.

• You cannot create an instance from an interface with the new
operator.

Eng. Asma Abdel Karim
Computer Engineering Department

54

9/25/2016

Eng. Asma Abdelkarim 28

How to Define an Interface?

Eng. Asma Abdel Karim
Computer Engineering Department

55

• To distinguish an interface from a class, Java uses the
following syntax to define an interface:

 modifier interface InterfaceName {

 //Constant declarations

 //Abstract method signatures

 }

• Example:

 public interface Edible{

 public abstract String howToEat();

 }

Implementing an Interface

Eng. Asma Abdel Karim
Computer Engineering Department

56

• You can use an interface to specify the behavior of an
object, by letting the class for the object implement
this interface using the implements keyword.
– When a class implements an interface, it implements all

the methods defined in the interface with the exact
signature and return type.

• The relationship between an interface and a class that
implements it is known as interface inheritance.
– Since interface inheritance and class inheritance are

essentially the same, both are referred to as inheritance.

9/25/2016

Eng. Asma Abdelkarim 29

Implementing an Interface: An Example

(UML Diagram)

Eng. Asma Abdel Karim
Computer Engineering Department

57

Implementing an Interface: An Example

(Edible.java)

Eng. Asma Abdel Karim
Computer Engineering Department

58

public interface Edible {

 public abstract String howToEat();

}

9/25/2016

Eng. Asma Abdelkarim 30

Implementing an Interface: An Example

(Animal.java)

Eng. Asma Abdel Karim
Computer Engineering Department

59

public abstract class Animal {

 public abstract String sound();

}

class Chicken extends Animal implements Edible{

 @Override

 public String howToEat(){

 return "Chicken: fry it";

 }

 @Override

 public String sound(){

 return "Chicken: Cluck";

 }

}

class Tiger extends Animal{

 @Override

 public String sound(){

 return "Tiger: RROAAAAAR";

 }

}

The Animal class is declared
abstract since it has the
abstract method sound.

Implementing an Interface: An Example

(Fruit.java)

Eng. Asma Abdel Karim
Computer Engineering Department

60

public abstract class Fruit implements Edible{

}

class Apple extends Fruit{

 @Override

 public String howToEat(){

 return "Apple: make apple pie";

 }

}

class Orange extends Fruit{

 @Override

 public String howToEat(){

 return "Orange: make orange juice";

 }

}

The Fruit class does not
implement the howToEat
method. Hence it must be
declared abstract.

9/25/2016

Eng. Asma Abdelkarim 31

Implementing an Interface: An Example

(TestEdible.java)

Eng. Asma Abdel Karim
Computer Engineering Department

61

public class TestEdible {

 public static void main(String[] args) {

 Object [] objects = {new Tiger(), new Chicken(), new Apple()};

 for (int i=0; i< objects.length; i++){

 if (objects[i] instanceof Edible)

 System.out.println(((Edible)objects[i]).howToEat());

 if (objects[i] instanceof Animal)

 System.out.println(((Animal)objects[i]).sound());

 }

 }

}

A Note Regarding Interfaces

Eng. Asma Abdel Karim
Computer Engineering Department

62

• All data fields of an interface are public static
final.

• All methods of an interface are public abstract.

• Therefore, Java allows these modifiers to be
omitted as follows:

9/25/2016

Eng. Asma Abdelkarim 32

Interfaces vs. Abstract Classes

Eng. Asma Abdel Karim
Computer Engineering Department

63

Variables Constructors Methods

Abstract Class No restrictions. Constructors are invoked by
subclasses through

constructor chaining. An
abstract class cannot be

instantiated using the new
operator

No restrictions.

Interface All variables must
be public static

final.

No constructors. An interface
cannot be instantiated using

the new operator.

All methods must be
public abstract

instance methods.

More on Interfaces

Eng. Asma Abdel Karim
Computer Engineering Department

64

• Java allows only single inheritance for class
extension, but allow multiple inheritance for
interface extension.

• For example:

 public class NewClass extends BaseClass implements

Interface1, …., InterfaceN {

 }

9/25/2016

Eng. Asma Abdelkarim 33

More on Interfaces (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

65

• An interface can inherit other interfaces using the extends
keyword.
– Such an interface is called a sub-interface.
– An interface can extend other interfaces but not classes.

• For example, NewInterface in the following code is a sub-
interface of interface1, …., and interfaceN:
public interface NewInterface extends Interface1, …, InterfaceN{

}
– A class implementing NewInterface must implement the

abstract methods defined in NewInterface, Interface1, …., and
InterfaceN.

More on Interfaces (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

66

• All classes share a single root, the object class,
but there is no single root for interfaces.

• A variable of an interface type can reference
any instance of the class that implements the
interface.

– If a class implements an interface, the interface is
like a superclass for the class.

9/25/2016

Eng. Asma Abdelkarim 34

More on Interfaces (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

67

• Suppose c is an instance of class2. c is also an instance
of Object, Class1, Interface1, Interface1_1,
Interface1_2, Interface2_1, and Interface2_2.

Object-Oriented Problem Solving

Exception Handling
Based on Chapter 12 of “Introduction to Java

Programming” by Y. Daniel Liang.

Eng. Asma Abdel Karim
Computer Engineering Department

Outline
• Introduction (12.1)
• Exception Handling Overview (12.2)
• Exception Types (12.3)
• More on Exception Handling (12.4)

– Declaring Exceptions (12.4.1)
– Throwing Exceptions (12.4.2)
– Catching Exceptions (12.4.3)
– Getting Information from Exceptions (12.4.4)
– Example: Declaring, Throwing, and Catching Exceptions (12.4.5)

• The finally Clause (12.5)
• When to use Exceptions? (12.6)
• Rethrowing Exceptions (12.7)
• Chained Exceptions (12.8)
• Defining Custom Exception Classes (12.9)

Eng. Asma Abdel Karim
Computer Engineering Department

2

Introduction

• Runtime errors occur while a program is running if the JVM
detects an operation that is impossible to carry out.
– If you access an array using an index that is out of bounds, you

will get a runtime error with an
ArrayIndexOutOfBoundsException.

– If you enter a double value when your program expects an
integer, you will get a runtime error with an
InputMismatchException.

• In Java, runtime errors are thrown as exceptions.
• An exception is an object that represents an error or a

condition that prevents execution from proceeding
normally.

• If the exception is not handled, the program will terminate
abnormally.
– Exception handling enables a program to deal with exceptional

situations and continue its normal execution.
Eng. Asma Abdel Karim
Computer Engineering Department

3

Exception Handling Overview
Quotient.java

Eng. Asma Abdel Karim
Computer Engineering Department

4

Exception Handling Overview (Cont.)
QuotientWithIf.java

Eng. Asma Abdel Karim
Computer Engineering Department

5

Exception Handling Overview (Cont.)
QuotientWithMethod.java

Eng. Asma Abdel Karim
Computer Engineering Department

6

Exception Handling Overview (Cont.)
QuotientWithMethod.java (Output)

Eng. Asma Abdel Karim
Computer Engineering Department

7

Program is terminated if
number2 equals 0.

Problem: what if the caller
should decide whether to
terminate the program!

Exception Handling Overview
QuotientWithException.java

Eng. Asma Abdel Karim
Computer Engineering Department

8

Exception Handling Overview
QuotientWithException.java (Output)

Eng. Asma Abdel Karim
Computer Engineering Department

9

Exception Handling Overview

Eng. Asma Abdel Karim
Computer Engineering Department

10

Exception Handling Overview
Benefit of Exception Handling

• The key benefit of exception handling is
separating the detection of an error (done in a
called method) from the handling of an error
(done in the calling method).
– Often the called method does not know what to

do in case of error.

– This is typically the case for the library methods.
• The library method can detect the error, but only the

caller knows what needs to be done when an error
occurs.

Eng. Asma Abdel Karim
Computer Engineering Department

11

Exception Handling Overview
InputMismatchExceptionDemo.java

12 Eng. Asma Abdel Karim
Computer Engineering Department

Exception Handling Overview
InputMismatchExceptionDemo.java (Output)

13 Eng. Asma Abdel Karim
Computer Engineering Department

Exception Types

• Exceptions are objects, and objects are
defined using classes.

• The root class for all exceptions is
java.lang.Throwable.

• There are many predefined exception classes
in the Java API.

• You can also define your own exception
classes.

Eng. Asma Abdel Karim
Computer Engineering Department

14

Exception Types (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

15

Exception Types (Cont.)

• The Throwable class is the root of all exception
classes.
– All Java exception classes inherit directly or indirectly

from Throwable.
– You can create your own exception classes by

extending Exception or a subclass of Exception.

• The exception classes can be classified into three
major types:
– System Errors.
– Runtime Exceptions.
– Other exceptions.

Eng. Asma Abdel Karim
Computer Engineering Department

16

Exception Types: System Errors

• System errors are thrown by the JVM and are
represented in the Error class.

• The Error class describes internal system errors,
though such errors rarely occur.
– If one occurs, there is little you can do beyond

notifying the user and trying to terminate the
program gracefully.

Eng. Asma Abdel Karim
Computer Engineering Department

17

Exception Types: Runtime Exceptions

• Runtime exceptions are represented in the
RunTimeException class.
– Describes programming errors, such as bad casting, accessing

an out-of-bounds array, and numeric errors.

Eng. Asma Abdel Karim
Computer Engineering Department

18

Exception Types: Other Exceptions

Eng. Asma Abdel Karim
Computer Engineering Department

19

• Other exceptions are represented in the
Exception class.

– Describes errors caused by your program and by
external circumstances.

Exception Types: Checked and Unchecked
Exceptions

Eng. Asma Abdel Karim
Computer Engineering Department

20

• RunTimeException, Error and their subclasses are
known as unchecked exceptions.
– In most cases, unchecked exceptions reflect

programming logic errors that are unrecoverable.
– To avoid cumbersome overuse of try-catch blocks,

Java does not mandate that you write code to catch or
declare unchecked exceptions.

• All other exceptions are known as checked
exceptions.
– The compiler forces the programmer to check and

deal with them in a try-catch block or declare it in the
method header.

More On Exception Handling

Eng. Asma Abdel Karim
Computer Engineering Department

21

• Java exception handling model is based on three
operations:
– Declaring an exception.
– Throwing an exception.
– Catching an exception.

More On Exception Handling
Declaring Exceptions

Eng. Asma Abdel Karim
Computer Engineering Department

22

• Every method must state the types of checked
exceptions it might throw.
– This is known as declaring exceptions.

– Java does not require that you declare unchecked
exceptions explicitly in the method.

• To declare an exception in a method, use the
throws keyword in the method header.

• Example:

 public void myMethod() throws IOException

More On Exception Handling
Declaring Exceptions (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

23

• If the method might throw multiple
exceptions, add a list of the exceptions,
separated by commas after throws:

 public void myMethod() throws Exception1,
Exception2, …, ExceptionN

• If a method does not declare exceptions in the
superclass, you cannot override it to declare
exceptions in the subclass.

More On Exception Handling
Throwing Exceptions

Eng. Asma Abdel Karim
Computer Engineering Department

24

• A program that detects an error can create an instance of
an appropriate exception type and throw it.
– This is known as throwing an exception.

• Example:
 Suppose the program detects that a negative argument is

passed when it should be nonnegative, the program can
create an instance of IllegalArgumentException and throw
it as follows:

 IllegalArgumentException ex = new
IllegalArgumentException (“Wrong Argument”);

 throw ex;
 OR
 throw new IllegalArgumentException (“Wrong Argument”);

More On Exception Handling
Throwing Exceptions (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

25

• In general, each exception class in the Java API
has at least two constructors:
– A no-arg constructor, and

– A constructor with a String argument that
describes the exception.
• The argument is called the exception message, which

can be obtained using getMessage();

• Note that:
– The keyword to declare an exception is throws.

– The keyword to throw an exception is throw.

More On Exception Handling
Catching Exceptions

Eng. Asma Abdel Karim
Computer Engineering Department

26

• When an exception is thrown, it can be caught and handled in
a try-catch block, as follows:

 try{
 statements; //statements that may throw exception
 }
 catch (Exception1 exVar1){
 handler for exception1;
 }
 catch (Exception2 exVar2){
 handler for exception2;
 }
 …
 catch (ExceptionN exVarN){
 handler for exceptionN;
 }

More On Exception Handling
Catching Exceptions (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

27

• If no exceptions arise during the execution of the
try block, the catch blocks are skipped.

• If one of the statements inside the try block
throws an exception:

– Java skips the remaining statements in the try block,
and

– Starts the process of finding the code to handle the
exception, which is called catching an exception.

• The code that handles the exception is called the exception
handler.

More On Exception Handling
Catching Exceptions (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

28

• An exception handler is found by propagating the exception
backward through a chain of method calls, starting from
the current method.

• Each catch block is examined in turn, from first to last, to
see whether the type of the exception object is an instance
of the exception class in the catch block
– If so, the exception object is assigned to the variable declared,

and the code in the catch block is executed.
– If no handler is found, Java exits this method, passes the

exception to the method that invoked the method, and
continues the same process to find a handler.

– If no handler is found in the chain of methods being invoked,
the program terminates and prints an error message to the
console.

Catching Exceptions: An Example

Eng. Asma Abdel Karim
Computer Engineering Department

29

Catching Exceptions: An Example (Case 1)

Eng. Asma Abdel Karim
Computer Engineering Department

30

• If the exception type is Exception3:

– It is caught by the catch block for handling exception
ex3 in method2.

– Statement 5 is skipped, and statement6 is executed.

Catching Exceptions: An Example (Case 2)

Eng. Asma Abdel Karim
Computer Engineering Department

31

• If the exception type is Exception2:
– Method2 is aborted, the control is returned to method1.

– The exception is caught by the catch block for handling
exception ex2 in method1.

– Statement3 is skipped, and statement4 is executed.

Catching Exceptions: An Example (Case 3)

Eng. Asma Abdel Karim
Computer Engineering Department

32

• If the exception type is Exception1:
– Method2 and method1 are aborted, the control is returned to

the main method.
– The exception is caught by the catch block for handling

exception ex1 in the main method.
– Statement1 is skipped, and statement2 is executed.

Catching Exceptions: An Example (Case 4)

Eng. Asma Abdel Karim
Computer Engineering Department

33

• If the exception type is not caught in
method2, method1, or the main method:

– Program terminates, and statement1 and
statement2 are not executed.

Eng. Asma Abdel Karim
Computer Engineering Department

34

More on Catching Exceptions

• Various exception classes can be derived from a common
superclass.
– If a catch block catches exception objects of a superclass, it can catch

all the exception objects of the subclasses of the superclass.

• The order in which exceptions are specified in catch blocks is
important.
– A compile error will result if a catch block for a superclass type

appears before a catch block for a subclass type.

Eng. Asma Abdel Karim
Computer Engineering Department

35

More on Catching Exceptions (Cont.)

• Java forces you to deal with checked exceptions.

• If a method declares a checked exception (i.e., an exception other
than Error or RuntimeException), you must invoke it in a try-catch
block or declare to throw the exception in the calling method.

– For example, suppose that method p1 invokes method p2, and p2 may
throw a checked exception (e.g., IOException); you have to write the code
as shown in (a) or (b) below.

Eng. Asma Abdel Karim
Computer Engineering Department

36

More on Catching Exceptions (Cont.)

• You can use the new JDK 7 multi-catch feature to simplify
coding for the exceptions with the same handling code.

• The syntax is:

Eng. Asma Abdel Karim
Computer Engineering Department

37

Getting Information from Exceptions

• An exception object contains valuable information
about the exception.

Eng. Asma Abdel Karim
Computer Engineering Department

38

TestException.java

Eng. Asma Abdel Karim
Computer Engineering Department

39

TestException.java (Output)

Eng. Asma Abdel Karim
Computer Engineering Department

40

Example: Declaring, Throwing, and Catching
Exceptions (CircleWithException.java)

public class CircleWithException{
 private double radius;
 private static int numberOfObjects=0;

 public CircleWithException(double newRadius){
 setRadius(newRadius);
 numberOfObjects++;
 }

 public void setRadius(double newRadius) throws IllegalArgumentException{
 if (newRadius>=0) radius = newRadius;
 else throw new IllegalArgumentException("Radius cannot be negative!");
 }

 public static int getNumberOfObjects(){
 return numberOfObjects;
 }
}

Eng. Asma Abdel Karim
Computer Engineering Department

41

Example: Declaring, Throwing, and Catching
Exceptions (TestCircleWithException.java)

public class TestCircleWithException{
 public static void main (String [] args){
 try{
 CircleWithException C1 = new CircleWithException(5);
 CircleWithException C2 = new CircleWithException(-5);
 CircleWithException C3 = new CircleWithException(0);
 }
 catch (IllegalArgumentException ex){
 System.out.println(ex);
 }
 System.out.println("Number of circle objects created: "+

 CircleWithException.getNumberOfObjects());
 }
}

Output:
java.lang.IllegalArgumentException: Radius cannot be negative!
Number of circle objects created: 1

Eng. Asma Abdel Karim
Computer Engineering Department

42

The finally Clause

• The finally clause is executed under all circumstances,
regardless of whether an exception occurs in the try
block or is caught.

• The syntax for the finally clause is as follows:
 try {

 Statements
 }
 catch (TheException ex){
 handling ex;
 }
 finally{
 finalStatements;
 }

Eng. Asma Abdel Karim
Computer Engineering Department

43

The finally Clause (Cont.)

• If no exception arises in the try block:
– The finally clause is executed, and
– The next statement after the try statement is executed.

• If a statement causes an exception in the try block that is caught in
the catch block:
– The rest of the statements in the try block are skipped,
– The catch block is executed,
– The finally clause is executed, and
– The next statement after the try statement is executed.

• If a statement causes an exception that is not caught in any catch
block:
– The other statements in the try block are skipped,
– The finally clause is executed, and
– The exception is passed to the caller of this method.

• Note: the finally block executes even if there is a return statement
prior to reaching the finally block.

Eng. Asma Abdel Karim
Computer Engineering Department

44

When to Use Exceptions?

• The try block contains the code that is executed in normal
circumstances.

• The catch block contains the code that is executed in
exceptional circumstances.

• Exception handling separates error-handling code from
normal programming tasks, thus making programs easier to
read and to modify.

• Be aware, however, that exception handling usually requires
more time and resources.
– Requires instantiating a new exception object,

– Rolling back the call stack, and

– Propagating the exception through the chain of methods invoked to
search for the handler.

Eng. Asma Abdel Karim
Computer Engineering Department

45

When to Use Exceptions? (Cont.)

• An exception occurs in a method:

– If you want the exception to be processed by the method’s
caller, you should create an exception object and throw it.

– If you can handle the exception in the method where it
occurs, there is no need to throw or use exception objects.
• Simple errors that may occur in individual methods are best

handled without throwing exceptions.

• This can be done by using if statements to check for errors.

Eng. Asma Abdel Karim
Computer Engineering Department

46

Rethrowing Exceptions

• Java allows an exception handler to rethrow the
exception if 1) the handler cannot fully process the
exception or 2) simply wants to let its caller be notified of
the exception.

• The syntax for re-throwing an exception is as follows:
 try{
 statements;
 }
 catch (TheException ex){
 perform operations;
 throw ex;
 }

Eng. Asma Abdel Karim
Computer Engineering Department

47

Chained Exceptions

• Throwing an exception along with another exception
forms a chained exception.

• Sometimes, you may need to throw a new exception
(with additional information) along with the original
exception.

• This is called chained exceptions.

Eng. Asma Abdel Karim
Computer Engineering Department

48

Chained Exceptions
ChainedExceptionDemo.java

Eng. Asma Abdel Karim
Computer Engineering Department

49

Chained Exceptions
ChainedExceptionDemo.java (Output)

Eng. Asma Abdel Karim
Computer Engineering Department

50

Defining Custom Exception Classes

• Java provides quite a few exception classes.

• Use them whenever possible instead of defining your
own exception classes.

• However, if you run into a problem that cannot be
adequately described by the predefined exception
classes, you can create your own exception class,
derived from Exception or from a subclass of
Exception, such as IOException.

Eng. Asma Abdel Karim
Computer Engineering Department

51

Defining Custom Exception Classes
InvalidRadiusException.java

Eng. Asma Abdel Karim
Computer Engineering Department

52

Defining Custom Exception Classes
TestCircleWithCustomException.java

Eng. Asma Abdel Karim
Computer Engineering Department

53

Defining Custom Exception Classes
TestCircleWithCustomException.java (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

54

Defining Custom Exception Classes
TestCircleWithCustomException.java (Cont.)

