Neuron Model

and
Network Architectures




Biolegical iaspirations

Some AUmpers:

® [[he human; brain contains anout 10 billien
Renve: cellsi (lneurens)

s Each neuron: Is connected tor the others
through £0000rSynapses

Preperties of the brain:

s It can lear,, reerganize Itself fron experience
s |t adapts te the envirenment

= |t IS rebust and fault tolerant



Human Nerve Cell

Cell body or Soma

Axonal arbonzaiion

b




Biolegical neuron

" synapse

nucleus

A Neuren has
a A bBranching/input (dendrites)
s A branching| eutput (the axon)
The infermation circulates firom| the dendrites e the axen Via the cell body
AXOm connects; to dendrites via Symnapses
= Synapses vary In strength
m Synapses may e excitatory or inhibitory.



Connectionist Models

Consider humans

INeuren; switching time —.001. second

Number: ofi neurons —10°

Connections per meuron; —10¢>

Scene recognitien time —.1. second

100/ nference step dees not seem like enough

must use loits off parallel computation!
Properties of artificiall neural nets (ANNS)

Many: neureon-like threshold switching Units
Many welghted Interconnectiens; ameng Units
IHighly: parallel; distributed! precess

Emphasis on| tuning| weights' autematically




When to Consider Neural Networks

Input IS, high-dimensional discrete: or real-valuead
(e.g., liaw senser iInput)

Ouitpuit IS  discrete or real valued

Outpuitisi a Vector off values

PossIbIY neIsy. data

Eerm of target funcuien: IS UnknewWn
Human readanility: ot resuli IS, urnmporant

Examples

SPEECH pPhenEeme recognition
Image: classification
Einanciall prediction




ALVINN drives 70 mph on highways




Neural Networks

What 1s a Neural Network?

* Biologically motivated approach to
machine learning

1. Receives inputs from other source

2. Combines them in someway
3. Performs a generally nonlinear operation on the result

4. Outputs the final result



Similarity with Biological Network

g Faurt=s aof =
Twpic=d Fearve O =il

- Dendrites: Accept inputs

Soma: FProce=s= the input=

- dzan . Tuarn the processed input=s
into output=

- Synap=se=: The electrochermiczal
contact betwesen neuron=

« Fundamental processing element of a
neural network is a neuron

e A human brain has 100 billion neurons

« An ant brain has 250,000 neurons




Synapses, the basis of learning and memory.




What 1s an artificial neuron ?

Definition: Nonlinear, parameternzed fUnection
WIth! riestiicted eutput range




Basic Neural Network

b: Bias 5 Wp + b
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Inpuits — nermally a vector off measured parameters

Bias — may/may not be added
() — transfer e activation fiunction

Outputs = (Z W' p + b)






Activation Functions

Hard Limit

Symmetrical Hard Limit

Linear

Sataurating Linear

Symmetric Saturating Linear

Log-Sigmoid

Hyperbolic Tangent Sigmoid

iff met =0
if mer < 0

if net =0
if net <0

i omer = 1

i et < 0

i mer = |
if =1 < mer <1
il met < =1
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Activation functions

Linear

Logistic

Hyperbolic tangent




0 -biw:i |0
S L b o B G RV i e ik v
a = hardlim(n) a = hardlim(wp+ b)
Hard Limit Transfer Function Single-Input hardlim Neuron
a a

a= purelin(n) a= purelin(wp+ b)

Linear Transfer Function Single-Input purelin Neuron
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i A APyt e ey L3t T
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P : J_ o o ;
"""""""" i A ¥ e #
a= logsig(n) a = logsig(wp+ b)

Log-Sigmoid Transfer Function ~ Single-Input logsig Neuron



Log Sigmoeidall Function




Hard Limit Function

1.0




Neural Networks

A mathematical model terselve engineerng prokliems

= Group of highly connected neurens;to realize: compositions of
nen linear functions

Tasks
s Classification
s Discrimination
s Estimation

2 types off networks
s Feed forward NeuraliNetworks

o Recurrent Neural Networks



Learning

The procedure: that consists i estimating the paranmeters off Neurens se that
the whole network can PEIform a Specific task

Twergeneral types of learming
s [he supenvised learning
s [he unsupervised learning

The Leaning precess (supervised):
a Present the network a number of Inputs and thelr corresponding outputs
a See how: closely the actual eutputs match the desired ones
s Maodiify the parameters to better approximate: the desired eutpuis



Supervised learming

he desired response of the neural
Retwoerk In functen! of particular IPULSTIS
well knewn:.

A Professol may. provide: examples and
teach the neurall network how! te fulfill a
Certain task



Unsupervised learning

ldea: group typicallinput dabain ftlnction
off resemblance criteria UR-KRewWn: a prox

Data clusterng

NG need ofi 2 pPrefessor:
= [he network finds Itself the: correlations
petween the data

x Examples of suchi networks:
Kehoenen feature majps



What do we need to use NN ?

(1) Determinatien ofi pertinent Inputs

(2) Collection oii data for the learming anad
testing phase of the neurall netwerk

(8) Einding the eptimum nUmBEr eff hidden
Nodes

(4) Estimate the parameters (Learning)

(5) Evaluate the perfermances ofi the
network

(6) IE performances are not satisiactory
then review all the precedent points



Classical neural architectures

Perceptron

Mulu-Cayer Perception
Radial Basis Eunction (REE)
KeReRER! Eeatures majps

Other architectures
s Anlexample: Shared welghts neural netwerks







Layer of Neurons




Abbreviated Notation

b

a




Feedforward Neural Networks

The mnfermatien Is
propagated firom: the
INPULS te the eutpuits

Computations, ofi nenR
linear fneHens: fiem
INPUL Vamrables by
COMPOSItIoNS) of
algenraic functions

Tiime has no rele (NGO
cycle hetween outpuis
and nputs)




Multilayer Network




Abreviated Notation

Hidden Layers Output Layer

/\. \

(+) f1 (+) f2 (+) f3



Delays and Integrators




Recurrent Network

o f o
b




Brief History off ANN

designed the first neural network.

Who develeped the first learningl rule. Ifftwe neurens
Were active at the same time then the strength) between them
should e increased.

— Introduced the concept of a perceptren which
performed! pattern recognition.

Introduced the concept of the ADALINE
(ADAptive Linear Element). The training rule was based on the
idea off Least-Mean-Sguares learning rule which minimizing the
error between the computed output and the desired outpui.

stated that the perceptron was limited
IR its ability te recognize features that were separated by linear
boundaries. “Neural Net Winter”

— Independently developed neural
networks that acted! like memaories.

— developed the concept of back propagatien off an
error to train the weights of the neural network.

published the paper on back
propagation algorithm. “Rebirth of neural networks™.

- they are everywhere a decision can be made.




An

lllustrative
Example




Simple Neural Network

One neuron with a linear activation function => Straight Line
Recall the equation of a straight Line: y = mx +b

m is the slope (weight), b is the y-intercept (bias)

W < Bad

O B Good

Mpl+ b >=p2

- Decision Boundary

Mpl+b <p2




Apple/Banana Serter

Sensors
(o) (o) (o)

Apples i Bananas




Prototype VEectors

Measurement

Prototype Banana Prototype Apple
Vector

Shape: {1: round ; -1: eliptical}
Texture: {1: smooth ; -1: rough}
Weight: {1: >11b.;-1:<11b.}



Perceptron

Sym. Hard Limit Laye

a= hardlims(Wp+b)




Two-Input Case

Decision Boundary



Apple/Banana Example

The decision boundary should
separate the prototype vectors.

The weight vector should be
orthogonal to the decision
boundary, and should point in the
direction of the vector which
should produce an output of 1.

v The bias determines the position
’} of the boundary



Testing the Network

Banana:

Apple:

“Rough” Banana:




Hamming Network

Feedforward Laye

.0 /51D,
b1

al = purein(W1ip+ bt




EFeedfonwvarad Layer

For Banana/Apple Recognition

NS

al = purein(W1ip+ b



Recurrent Layer

IE




Hamming Operation

First Layer

Input (Rough Banana)




Hamming Operation

Second Layer




Hopfield Network

GIE




Apple/Banana Problem

Test: “Rough” Banana

(SEQEREY



Summary

Perceptron

s Feedforward Network

s Linear Decision Boundary

s One Neuren for Each Decision

Hamming Netwaork

s Competitive Netwaork

s EIrst Layer — Pattern Matching (Inner Product)
s Second Layer — Competition (Winner-Take-All)
n 7 Neurons = # Prototype Patterns

Hoepfield Network
s Dynamic Associative Memory Netwaork
s Netwoerk Output Converges to a Prototype Pattern
s # Neurons = # Elements in each Prototype Pattern



Perceptron Learning Rule



Perceptron

Roesenhlait (1962)
Cinear separation

Inputs: Vector ofi reallvalues

Outputs: 1 oK -1




Learning Rules

e Supervised Learning

Network is provided with a set of examples
of proper network behavior (inputs/targets)

- Reinforcement Learning

Network is only provided with a grade, or score,
which indicates network performance

« Unsupervised Learning

Only network inputs are available to the learning
algorithm. Network learns to categorize (cluster)
the Inputs.



Perceptron Architecture

9
b




Single-Neuron Perceptron




Decision Boundary

 All points on the decision boundary have the same inner
product with the weight vector.

» Therefore they have the same projection onto the weight
vector, and they must lie on a line orthogonal to the
weight vector.

a . P

\

~

6



Example - OR




OR Solution

>
\VidP . Nl
Weight vector should be orthogonal to the decision boundary

Pick a point on the decision boundary to find the bias



XOR Function

Z = (X and (not Y)) or ((not X) and Y)

R P O O X

o O

O P |0 <

1] o

o |0

No single decision boundary can separate the favorable
and unfavorable outcomes

> } Circuit Diagram
y

D_,;)-Z
NG
”

We will need a more complicated neural net to realize this function




XOR Function — Multilayer Perceptron

X
e :/i\ ()
W4 \TJ w3
W2 b1l
012 b2 ()

y W3 Hz\ J{ () P l

(Z) Z

Z =f (W5*F1(W1*x + W4*y+b11) + W6*f1(W2*x + W3*y+b12)+b2)




Multiple-Neuron Perceptron

Each neuron will have its own decision boundary

A single neuron can classify input vectors
Into two categories.

A multi-neuron perceptron can classify
Input vectors into 2° categories.




Learning Rule Test Problem




Starting Point

Random initial weight:

Present p, to the network:

Incorrect Classification



Tentative LLearing Rule

« Set wtop,
— Not stable

- Addp, to w /

Tentative Rule:




Second Inpuit VVector

(Incorrect Classification)

Modification to Rule:




Third Input Vector

(Incorrect Classification)

Patterns are now correctly classified



Unified Learning Rule

A bias Is a
weight with
an input of 1




Multiple-Neuron Perceptrons

To update the i ! row of the weight matrix:

Matrix form:




Apple/Banana Example

Training Set

Initial Weights

First Iteration




Second lteration




-

_h

(L

*/
K

a = hardlim(Wpy +b) = hardlim([_1_5 -1 —0.5]

a = hardlim(15) = 1=t

a = hardlim(Wp, +b) = hardlim([_1_5 -1 —0.5]

a = hardlim(-15) =0 = t,

+0.5)

+0.5)



Perceptron Rule Capability

The Perceptron rule will always
converge to weights which accomplish
the desired classification, assuming that

such weights exist




Perceptron Limitations

Linear Decision Boundary

Linearly Inseparable Problems




Supervised Hebbilan Learning



Hebb’s Postulate

“When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, Is increased.”

D. O. Hebb, 1949



| Inear Assoclator

Training Set:




Hebb Rule

I L— Presynaptic Signal

Postsynaptic Signal
Simplified Form:

Supervised Form:

Matrix Form:



Batch Operation

(Zero Initial Weights)

Matrix Form:



Performance Analysis

Case |, Input patterns are orthogonal.

Therefore the network output equals the target:

Case |, input patterns are normalized, but not orthogonal.

Error



1 —0.5774 0.5774
p,=| 1|  ipi=| osm7al ti=[4{ 1p2=| 05774
L \ 05774 A —0.5774]

W = TPT = [ 4 4]|-05774 05774 —05774| _ . ..,
L ][ 0.5774 05774 —0.5774 [1.1548 0 f

—0.5774
Wp, = [1.154800] 05774 = —0.6668]
|—0.5774

0.5774

Wp, = [o 1.1548 o] 05774 | = [0.6668]
—0.5774

2= (1]

VvV~




Pseudoinverse Rule - (1)

Performance Index:

Matrix Form:



Pseudoinverse Rule - (2)

Minimize:

If an inverse exists for P, F(W) can be made zero:

When an inverse does not exist F(W) can be minimized
using the pseudoinverse:




Relationship to the Hebb Rule

Hebb Rule

Pseudoinverse Rule

If the prototype patterns are orthonormal:




=EXample

, 1
pi=| afti=[d ¢ {po=]| 1| to=[a]; W =TP"= [—11][
1

-1
P = (P'P) s [3 1] [—1 1 —1] A [—0.5 0.25 —0.25]
13 11-1 0.5 0.25 —0.25

=

e = [ 1][_0.5 0.25 —0.25] - [1od]

0.5 0.25 —0.25
Kl B
Wp, = [100d]| 1| = [-] Wp,=[10dl| 1] =
-1 =1




Auteassociative Memory.




1
(T
(2

rr
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Variations off Hebblan Learningj

Basic Rule:

Learning Rate:

Smoothing:

Delta Rule:

Unsupervised:



Widrow-Hoff Learning
(LMS Algorithm)



ADALINE Network

o
o




Two-1Input ADALINE

‘q

.



Miean sguare Error

Training Set:

Input: Target:

Notation:

Mean Square Error:



Error Analysis

The mean square error for the ADALINE Network is a
quadratic function:



Stationary Peini

Hessian Matrix:

The correlation matrix R must be at least positive semidefinite. If

there are any zero eigenvalues, the performance index will either

have a weak minimum or else no stationary point, otherwise there
will be a unique global minimum x*.

If R Is positive definite:



Approximate Steepest Descent

Approximate mean square error (one sample):

Approximate (stochastic) gradient:




Approximate Gradient Calculation




LMS Algorithm




Multiple-Neuren Case

Matrix Form:




Analysis of Convergence

\< For stability, the eigenvalues of this

matrix must fall inside the unit circle.



Conditions for Stability

(where A, is an eigenvalue of R)
Since ,

Therefore the stability condition simplifies to:




Steady State Response

If the system is stable, then a steady state condition will be reached.

The solution to this equation is

This is also the strong minimum of the performance index.



P1=

N/ N ' r
=EXample

] il
1,'[1:[—]]> 1P2=1 1
L ; -1
R = E[pp'1= 5P1P1+ 5Paps
: A8, v
a1+ 5 flia-d =0 2
—L -1 0-1

"




| teration One

a(0)= W (0)p(0)= W (0)p,= [0 0 g]| 1|= 0

BE0F =F(0) & S(0r = {Tf- al0)= y=rii— .02

W(1) = W (0) + 2ae(0)p" (0)

sl

WEY L= [o 0 0] +202)-D)| q| = [0.4 —0.4 0.4]




| teration Two

—0.4

=
I

a(1)= W(DP(1)= W(1)P,= [04 —04 04

el ) S a il s~ =S —0a =1

T

W(2) = [0.4 —0.4 0.4 +202)24)| 1| = [0.96 0.16 —0.16]




| teration Three

a(2)= W(@)p(2= W(2)p:= [0.96 0.16 —0.16]

e2) = t(2)-a(2)= t, - a@)= —1—(-0.64)= -0.36
W (3) = W(2)+2ae2)p ' (2) = [1.1040 0.0160 -0.0160]

W) = [1 0q]



Adaptive Eiltering

Tapped Delay Line Adaptive Filter
D
D
D
D
D
D

a(k) = purelin(Wp(Kk) + b)



Example: Noise Cancellation

Noise Path
Filter

Adaptive
Filter




Noise Cancellation Adaptive Filter

D

a(k) = Wi V(K) +w;,v(k- 1)




Correlation Matrix




SIgnals

m(k) = 1.2 sm(gzc—lf—?’——n)

v(k) = 1.2 sm( 3 2

27 k)
3

E[VA(K)] = (12) %% ( (Z’TKD = (1.2)°05 = 0.72

Elvi(k —1)] = E[V'(k)] = 0.72

E[v(k)v(k—1)] % Zi: (12 sun.z.“__k)(l.z sinZn(k3— 1))

= (1.2) 05cos(23“) = ~0.36

R = |072 -0.36
~0.36 0.72



tationary P

E[(s(k) + m(k))v(k)] = E[s(k)v(k)] + E[m(K)v(k)]

E[m(k)v(k)] = % Zi: (1 2 sm(-z-’l'-‘— 374—“)(1 2si ng) —0.51

E[(s(k) + m(k))v(k—-1)] = E[s(k)v(k—1)] + E[m(K)v(k—-1)]

3
E[m(kv(k—1)] = %Z_: (12 sn(@(—%"))@.z sn%) - 0.70
i [EE[<s(k>+m<k>>v<k)] ] o/ [—0-51]
[(S(K)+ m(k))v(k—1)] 0.70

=
w* = R = [0.72 —0.36] [—0.51] 2 [-0.30]
-0.36 0.72] [0.70 0.82



FOGF= c-2X"h+ X' RX
c = E[f(K)]= E[(s(k) +m(k))’]

¢ = E[s°(K)] + 2E[s(k)m(k)] + E[m*(K)]

0.2

E[s°(k)] = 04 [ s °ds =
-0.2

%{12 sn(z-’l—?’f)}z = 0.72

c = 0.0133 +0.72 = 0.7333

1 3IO 2

T07;° loz = 00133

[m°(K)]

OOII—‘

F(x*) = 07333 —2(0.72) + 0.72 = 0.0133



LMS Response

Original and Restored EEG Signals



Echo Cancellation

e Transmission
Line
) Adaptivel] Adaptivel]
Transmission
©



Backpropagation



Multi-LLayer Percepitron

J\ J\ One or moere

Output layer Ridden layers

f;y‘lrhidde” R Sigmoid! activations
’ FUNCLIONS

1st hidden

layer

Input data



Multilayer Perceptron

R - S!—-S2_-S3 Network




Example




Elementary Decision Boundaries

First Boundary:

([ ()

@
. Second Boundary:
D iy T

First Subnetwork




Elementary Decision Boundaries

Third Boundary:

@ o
o
Fourth Boundary:

Second Subnetwork




Total Network




Function Approximation Example

Nominal Parameter VValues




Nominal Response




arameter Variations

P

mm %




Multilayer Network

o § ~o & _o [
b2 b3



Performance Index

Training Set

Mean Square Error

Vector Case

Approximate Mean Square Error (Single Sample)

Approximate Steepest Descent




Chain Rule

Example

Application to Gradient Calculation



Gradient Calculation

Sensitivity

Gradient




steepest Descent

Next Step: Compute the Sensitivities (Backpropagation)



Jacobian Matri»

m+1 m+1 m+1 S
m+1 m m+1
anl 6n2 an?m i o =1 = = wimj+ 1—#
m+2 . m+1 m+1 6”] ani an
. m+1 on, ony ony
n 4 = s = =
anm 8”1 5“2 6nsm 6nim+1 2 Wm+1 81‘ m(n;n) m+1f ( m)
AT T
J J
Pt i O e el
S e S fm(nm)_afm(n{“)
X anl an2 ansm _ j4ol - an;n
o b -
f"(ny) 0 0
on™t . : 0 f™ny) -- 0
a . :Wm+1Fm(nm) Fm(nm): . ( 2) 4 .
n . . . :
e mf,,m
0 0 fm(nn ).




Backpropagation (Sensitivities)

The sensitivities are computed by starting at the last layer, and
then propagating backwards through the network to the first layer.




Initialization (lLast Layer)




Summary

Forward Propagation

Backpropagation

Weight Update




Example: Function Approximation

1-2-1 a
Network




Network

&)

e

1-2-1

Network




Initial Conditions

— Network Response
— Sine Wave




—orwarad Propagation

a =p=1
—0.41 —0.13 —0.54
= : !
o= |1+ 2 [0.321]
1 0.368
gl eo.szt

a® = f°(W?a"+b%) = purelin ([0,09 _0.17] [8'222] +[0.48) = [0.446]

e=t-a-= {1+sin(gp)}—a2 = {1+ sin(gl)}—o.ﬂm = 1.261



Transfer Function Derivatives




)

Backpropagation

& = 2 (n*)(t-a) = —z[f\?(nz)](l.zal) = —2[1](1.261) = 2522

st = PEnYw?)'s? = (1-ap)(ay) 0 [0.09] [L2.507]
0 (1-ay)(ay)|01L

1 _ |(1-0.321)(0.321) 0 0.09
. [ 0 (¥ 0.368)(0.368)] [—o 17] [F2527)

i [0.218 0 ][—0.227] p [—0.0495]
0 0233)|0429] |o.0997



W31) = W0)-asia) = [0.09 —0.17] - 0.1[~2:522] [0.321 0.368]
W2(1) = l0.471 —0.0772]

b?(1) = b%0)-as” = [0.4g] - 0.1[-2522] = [0.737]

Wl(l) r Wl(O)—asl(aO)T N [—0.27] _0_1[—0.0495] [1] = [—0.265]
—0.41 0.0997 —0.420

b*(1) = b'0)-as' = [—0.48] _O_l[—0.0495] - [—0.475]
—0.13 0.0997 —0.140



Choice of Architecture

1-3-1 Network




Choice of Network Architecture




Convergence




Generalization




Euzzy Legie



Introduction

Example’ o Application; areas ofi EUzzy/
LegIC:

s Euzzy Control

Subway/. trains
Cement kilns
Washing Machines
Eridges



Euzzy Sets

Extension of Classicall Sets

NOt JUust a membership value: of In the
set andl outr the'set, 1 and 0

u OUL partial meninersip vale, vetween. i
arna o



Example: Helght

Tall people: say taller than: or eguallto; 1.8m
m 1.8m , 2m, 3m etc member of this set
m 1.0'm, 1.5mior even 1.79999%m net a memnper

Real systems have measurement UnRcertainity

5 SO near the border lines, many
misclassifications



Member Functions

Membership function
s petter than listing membership values

e.qg. Tall®x) =41 ifx >=1.9m ,
Oif x<=1.7m
else (x-1.7 ) /0.2 }




Example: Fuzzy Short

Short(x) = {0 1If x == 1.9m ,
1ifx<=1.7m
else (1.9-x)/0.2}




Fuzzy Set Operators

EUZZY Set:

s Unien

a lntersecuion
x Complement

Many: poessiblerdefinitiens
= We Intreduce one possibility,




Fuzzy Set Union

Unien ( fACKH and B(X) ) =
max ( fTA(x) , TB(X) )
Unien ( Fali(x) and Shoert(x) )




Fuzzy Set Intersection

Intersection (( FAC) and B(%) ) =
min ( FACK), 1B(X) )
Intersection (C Iall(x) and Shoert(x)))




Fuzzy Set Complement

Complement( fACx) ) =1 - TA(X)
Not (C Tall(x)")




Fuzzy Logic Operators

Elzzy Logic:

= NOT (A)=1-A
= AAND B = min (A, B)
= AOR B = max (A, B)




Euzzy LLegic NOT

NOT A

1
0.75

05
(.25
0




Fuzzy Logic AND

0.25

0.5

0.75

1.0

0.25

0.25

0.25

0.25

0.5

05

05

0.25

0.5

0.75

0.75

ol ica) e S e

0.25

0.5

0.75




Fuzzy Logic OR

0.25

0.5

0.75

1.0

0.25

05

075

10

GES

0.25

05

0.75

10

05

0.5

05

0.75

10

0.75

0.75

U'?ﬂ

0. 75

10

10

10

10




iz sets



Fuzzy Sets

Intreduction
Basic definrtions and terminelogy.
Set-theoretic operations
VIE fermulation and parameterization
s VIES off ene and twe dimensiens
s Derivatives of parameterized MES

Viere en fituzzy, URien, Intersection, and
complement

s ElUzzy complement:
s EUzzy Intersection and union
s Parameterized T-norm and T-conorm



1.0

v/

Fuzzy: Sets

Sets withi fitizzy houndares

A = Set of tall people

Crisp set A

5'10” Heights

Fuzzy set A

~__, Membership

function

>'10" 672" Heights



Membership Functions (MES)

Characteristics of MES:
m SUjective measures
s Not proekability fUnCHeRS

MFs /{'

.8
=L o v MW A" [ “tall” In the US
1 “tall” in NBA

510" Heights




FUzzy Sets

Eormal definition:

n A filizzy set A Il XIS expressed as) a set of
erdered pairs:

A={(x, 1, (X)X X}

J \
Membershi '
Hie sat ; : P | Unlversg or
unction universe of discourse

(MF)




Elzzy set C = “desirable city te live in*

a X = {SE, Beston, LA} (discrete and
nonordered)

= C = {(SF, 0.9), (Boston, 0.8), (LA, 0.6)}

Euzzy set A = “sensible number of

children®

= X =40, 1, 2, 3, 4, 5, 6} (discrete universe)

= A ={(0, .1), (1, .3), (2,.7), (3, 1), (4, .6),
(5, .2), (6, .1)}
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u FlUzzy set Br= “apoeut 50ryears olar

5 X = SEL o1 positive: real NUMRErS
(conunuoeus)

= B = 1(x, mB(X)) | X In X}

Membership Grades

1
0.8
0.6
0.4
0.2

0




Alternative Notation

A fUzzy: set A canl be: altermatively.
denoetedias follews:

X is discrete :' =
X is continuous > [a%s jﬂA(X) / X
X

A= Z Ha (X)X

Note that ¥ and integral signs stand for the union of
membership grades; “/” stands for a marker and does
not imply division.
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vViore Definitions

Support Convexity
Core EUZZy RUMIBENS
Normaliity. Bandwidth

CrossoeVver peints
EUzzy singleton

a-Cuit, strong a-
cut

SymmetricIty

Openileft or rght,
closed



MF

ME Terminology

<suCole 5= /

Crossover points

A

Y

o - cut

A

Support

Y
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Convexity of Fuzzy Sets
s A fuzzy set A Is convex If tor any | in [0, 1]

Ha (AXy +(T=A) X)) 2min(p, (X), 41, (X,))

(a) Twio Convex Fuzzy Sets (b1 A Nonconvex Fuzzy Set

—_—

Membership Grades
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|ntersection:

C=AnB< p (x)=min(, (X), tg (X)) = 1y (X)A pg (X)
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(a) Fuzzy Sets A and B (b) Fuzzy Set "not A"

Als Containedin B
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MF Formulation

Trrranguilar MIE:

Trapezoidal MF:

Gaussian MF:



hip Grades

Membear:

rades

hip G

Member:

= |

MF Formulation

(a) Trianguler MF

2040

&0

(c) Gaussian MF

40

&0

100

100

des

A

hip 5

MMember:

rades

hip 5

MMember:

(b Trapezoidal MF

20 40 BOD O 20 100
(d} Generalized Bell MF

A0 B0 30 100
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Formulatio

sigmf (x;a,b,c) =

fll

1

1+ e

—a(x-rc)
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MF Formulation

(@) (k)
C=65 | ¢ 1| = c=25
& &
a=60 |2 = a=10
% 05t % 05t
b=10 |<¢ £ b=40
= g . = g .
0 A0 100 0 a0 100
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(a) Base Fuzzy Set A (b)Y Cylindrical Extension of A
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2D MIF Projection

=/

/UR(X’y) Ha(X) = te(y) =



(a) z = min(trap(x), trap(y)) (b) z = max(trap(>), trap(y))
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Fuzzy Complemenit

General reguirements:

s Boundan: N(O)=1 and N(1) =0

s Moenetonicity: N(@) = N(b) iffa < b
s lnvoelutien: N(N(a)) = a

WO types; of fiuzzy complements:

= SUQENO's complement:
1-a
1+sa
= Yager's complement:

N, (a) = (L-a")"

N (a) =




—Uzzy Complement

N.(a)= N, (a) = (1—a" )"

(b) Yager's Complements




zzy Int lon: T-norm

Basic reguirements:

= Boundary: T(0,0) =0, T(a, 1) =T(1,a) = a

s Moenotenicity: T(a, b) < T(c, d) Ifa<cand b < d
s Commutativity: Ti(@, b) = T(l, a)

a Assoeciativity: T(a, T(b; c)) = T(T(a, ), c)

EeUI examples:

a Minimume: Tmi(a;, 1)

s Algebraic preduct: Ta(a, o)
s Beunded product: Th(a, 1)
s Drastic product: Td(a, b)
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zzy Union: T-conorm orr S-norm

Basic reguirements:

= Boundary: S(1, 1) = 1, S(a, 0) = S(0, a) = a

a Moenoetonicity: S(a, b) < S(c, d) ifa<candb <d
s Commutativity: S(a, b) = S(9, a)

m Associativity: S(a, S(b, ¢)) = S(S(a, b), c)

Eeur examples:

x Maximum: Sm(a, b)

s Algebraic sum: Sa(a, )
s Beunded sum: Sb(a, 1)
s Drastic sum: Sd(a, 1)




ONOrm or S-norm

=
-C

5




Generalized DeMorgan's Law.

-noerms and Ii-conemms:aie: auals
WhICHh Suppert the generalization: of
[DelViorgan:s: Iaw:

(2, B) = N(S(N(2a), N(13)))
x S(a;, ) = NCTF(N(2), N(13)))




Parameterized T-norm and S-norm

Parameterized T-norms and duall =
CONGIIMS Nave BEen Preposed by,
several researchers:

u Yager

a Schwelzer and Skiar
s DubeIs andl Prade

s [Hamacher

s Frank

s SUgeno

a Demo]




Euzzy Rules

.
/ : |

EFlzzy Reasoning




Outline

EXtension: prnRciple

Elzzy/ relations

EUzzy /= trenrules
Compesitional rule oeff Inference
EUzzy/ reasening



e

Extension Principl

A is afuzzy set on X:
A= pa (X)X + A (X)) I X+ p, (X)X,

The image of A under f( ) Is a fuzzy set B:

B=pug(X)/y, +pug(X,)/ y,++ug(x,)/y,

where yi = f(xi), | = 1 to n.

If f( ) Is @ many-to-one mapping, then

pe(y) = [T]]_al.X Ha(X)
x=1"(y)



Fuzzy Relations

A fuzzy relation AIs a 2D ME:

R =1((X,y), £ (X, ¥))(X,y) € X xY}

Examples:
X IS close 10y (< andly’ are numiers)
= X depends on Y. (Ox anad'y are events)

a X and V leok alike (O, anadl . are pPersens ol
OJEects)

n [T IS large, then y is small (x Is an ehserved
reading and Y IS a cenrespenading action)



\

ax-Min Composition

he max-min cempesition off twe fuzzy: relations A1
(defined o X‘and ) and A2 (defined onl Yand 2)is

,URloRZ(X’ Z) = \;[ﬂRl(X’ y) A ﬂRz(y’ z)]

Properties:

PASTeetnvIa | Ro(SoT)=(RoS)oT

n Distributivity over Union:

Re(SUT)=(ReS)U(R-T)

s Week distributivity: over Intersection:

Re(SMNT)c (ReS)N(R-T)

x Moenoetonicity:

ScT=(RoS)c (RoT)



Max-Star Comjposition

Vax=preduct cemposition:

:URloRZ(X’ Z) = \){[:URl(X’ y):uRz(y’ Z)]

I generall; Wernave max== composition:

zuRloRz(X1 Z) = \;[ﬂRl(X’ Y)*:URZ(y’ Z)]

Where =~ IS a T-norm eperator.



Linguistic Variables

A numerncal varanles takes numerical values:
Agel = 695
Allinguistic vanahles takes linguistic values:
Age s o/d.
Allinguistic values|Is a fiuzzy/ set.
All-linguistic values: fierm! a term Set:
T(age) = {young, net young, VEry young, ...
middle aged, not midale aged, ...
0ld, net old, very old, moere or less old, ...
not very yeund and net very old, ...}
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Operations on Linguistic Values

Concentration: T [SeLTCVENY
Dilation: :’ DIL(A) = A5

Contrast 2%, 0<u,(x)<05
intensification: —2(-A), 05<u,(x)<1

INT(A) ={

Effects of Contrast Intensifier

/
[ s

2 4 6 8 10

—
T

o
o1

Membership Grades
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Fuzzy If-Then Rules

General feormat:
n [T XIS A then y Is B

Examples:
a [l pressure Is high, then velumeris small.

[ the readl s slippeny; then drving IS
dangeerous.

s |2 tomato IS red, theni it IS, ripe.

I the speed! s high, then apply: the brake
a little.



Fuzzy If-Then Rules

Two ways to interpret “If x is Atheny is B”:

A coupled with B A entails B

1 o4




Fuzzy 1f-Then Rules

TwWoe waysi te interpret "It x Is A then .
IS B”:
s A coupled withr B: (A ana b5)

R=A— B=AxB=[u,00%u(y)(x,y)

s A entails B (77or A or B)
Materal implication
Propositional calculus
Extended propositional calculus
Generalization off medus, penens
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He(X,y) = T(un(X), ug(y)) = T(a,b)

d) Drastic Product
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Bounded Product
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(b) Zadeh's Max-Min Rule

(a) Zadeh's Arithmetic Rule




Compositional Rule of Inference

Derivation of )y = 0oifrom x = a and .= 1(x):

y y

a and b: points .
P a and b: intervals

—i gk
y =1(x) - acurve y = f(x) : an interval-valued

function
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zzy Reasoning

Single rule:withrsingle antecedent
x Rule: I x Is A then y Is B

s Fact: X Is A’

x Conclusien: y'Is Bf

Graphic Representation:

A A B
e 5 7aL

bl \ Y . AN 7
A 3

Xis A’ yis B’



zzy Reasoning

Single rule with multiple antecedent

s Rule: 1f x 1s A and y Is B then z is C
s Fact: x Is A" and y IS B’

= Conclusion: z is C’

Graphic Representation:

A" A RSB #7240 Co
DG I ey e
) U 5

A’ B’

Xis A’ X yisB Y zis C



Fuzzy Reasoning

Multiple: rules with multiple antecedent
= Rule 1: 1 x 1s Al and y Is B1 then z Is C1.
= Rule 2: 1fi x Is A2 and y Is B2 then z Is C2
s Fact: x Is A*andiy Is B’

= Conclusion: z is C’

Graphic Representation: (next slide)



zzy Reasoning

Graphics; representation:

A" Ai B’ B1 Ci
i W.1 Z

X i

A’ A2 B' B2 C
{ W
L TN
X X
T-norm

A’ B

Xis A’ X yisB Y



File Edit ¥iew OCptions

Input: [-0.6186 -0.8247] Help | Close |

Opened system mam?Z1. 4 rules




Other Variants

Seme: terminelegy:

s Degrees ofi compatibiity (imatch)
= EiRg strength

= Qualified (Induced) MESs

s Overall eutput ME



Euzzy Applications



Euzzy Centrellers

Used te contrel a physical system




Structure of a Fuzzy Controller

.I.II:IIJ. t':::' II

|:1 OtfvE I—l- Bt

Fuzmfier

Inference

Engine

Defuzntier

]:I t ':::' .L'II'I'J.
_otnwerter
Controller
Chutputs




EFuzzification

Conversion of real Input te fiuzzy: set
Vallies

e.g. Medium (x ) =1
Oifx>=1.90or x < 1.70,
(1.90 - x)/0.1 if x >= 1.80 and x < 1.90,

(x- 1.70)/0.1 if x >= 1.70 and x < 1.80 }

1./m 1.8m 1.9m



Inference Engine

EUZZy FUles

x [hased on fiuzzy premises: and: ftzzy,
CONsSequences

e.g.
a lifi height Is' Short andiweight 1s' Light, then feet
are Small

= Short( height) ANDILight(Welght) ==
Small(teet)



Fuzzification & Inference Example

I height I1s 1.7 miand weight Is 55 kg
s What IS the value' of Size (feet)

| I |
e e oL
S0kg alkg Tlkg




Defuzzification

Rulehase: hasyniany. rules

= SO SOME of the eutpul fuzzy setsiwill have
membership value = 0

a Deftizziiy 1oy get a real valtie firon the fuzzy,
euUtpULs

One approaciils (o) Use) a Cerntre) o
qgravity.metioan.



Defuzzification Example

Imagine wWe: have outpul fuzzy: set valles:
x Smalllmembership value = 0.5

s Medium membership value = 0.25

s Large membership value = 0.0

What I1s the defiiuzzified value: ?




Fuzzy Control Example

10 Distance




Input Fuzzy Sets

Angle: -30 to 30 degrees




Output Fuzzy Sets

Car velocity: -2.0 to 2.0 meters per second




EFuzzy Rules

[ff Angle is Zeror then output 2

[T Angle’is SP then eutpui 7

[T Angle isi SN then: eutpuit 2

[T Angleris; LP then| outpuit 7

If- Angle is| LN then output 2



Fuzzy Rule Table




Extended System

Make: use: off additional infermation

x angular velocity: -5.0 10 5.0l degrees/.
second

GIves hetter control




New Euzzy Rules

Maker use: off eld Etizzy/ rules for angular velocity,
ZEro

IfTAngle Is Zero and Angular vel Is, Zeroe
then eutput Zeroe, VElocity.

IfTAngle'is SP and Angular vells Zero
then eutput SNFvelocity:

If- Angle i1s SN and Angular vel Is Zeroe
then output SP velecity



Table format

oD




Digital Fuzzy Processor

Omyren Was; the first to launch a contreller
employing fuzzy' 16gI¢ for Improved contro)
and tuning
Production ofi the ' werd's fastest digital fitizzy.
proecessor (DER) i 1990.
Reasening speed o1 10 (@ Villien

Uzzy: "egIc Nferences ‘er -ecend)




Applications ofi Euzzy LLogic te Traffic
Signal Control

Input Variables for Fuzzy Logic Traffic Signal Controller:

Maximum Queue Length (in metres): the distance Iin
metres from the stop-line over which vehicles have queued

Average Occupancy Rate (%): percentage of time that the detection
area was occupied by one or more vehicles.

Output Variable for the Controller:
Weight [0, 100]: the degree of green traffic signal requirement

Improvement

(up to) 25% In average travel time




150

0
0 16.67 33.33

(c) Output Fuzzy Variable: Weight

# of rules : 16



Rule Table/Matrix for Traffic Signal Control

Maximum Queue Length

- | M |H VH
$

uff WL L M |H
s

q0]

S 2l AL H VH
O

2 [H | M |H VVH
ZlvH M H VH  |VH

L: Low, VL: Very Low, VVL: Very Very Low,

M: Medium, H: High, VH: Very High, VVH: Very
Very High



More fuzzy logic applications

use fuzdemos MATLAB function

» Ball Juggler
» Water Tank (Water Level Control)
» Controlling cart and pole
» Controlling ball and beam
» Backing truck

Live Demo

5)




Viore Tuzzy 10gIic applications

Fuzzy Washing Machine
Camera Autofocus

Servo Motor Force Control

Glass Melting Furnace Control
Air Conditioner Control

Reactor Control
CAR Automatic Transmissions

Disc Drive Spindle Servos
Fuzzy Automated Manufacturing
Two-Stage Inverted Pendulum



http://www.aptronix.com/fuzzynet/applnote/wash.htm#(none)
http://www.aptronix.com/fuzzynet/applnote/focusing.htm
http://www.aptronix.com/fuzzynet/applnote/servo.htm
http://www.aptronix.com/fuzzynet/applnote/glass.htm
http://www.aptronix.com/fuzzynet/applnote/air.htm
http://www.aptronix.com/fuzzynet/applnote/reactor.htm
http://www.aptronix.com/fuzzynet/applnote/transmis.htm
http://www.aptronix.com/fuzzynet/applnote/disc.htm
http://www.aptronix.com/fuzzynet/applnote/manufact.htm
http://www.aptronix.com/fuzzynet/applnote/twostage.htm

Euzzy \Washing Machine

grade[of membership]

dirtiness
[degree] grade [of membership]

Medium

VeryShort
Fuzzy

Controller Short

e of dirf
wash_time

grade [of membership) [minute]

I type_of_dirt
[degree]



EFuzzy Logic applications in Bio-Health Informatics

» Intelligent Detection of abnormal neonatal
cerebral heomodynamics
» Bad cell prognosis

» Gene identification and gene network modelling




Intelligent Detection of abnormal neonatal cerebral heomodynamics

Normal baby

DOPPLER ULTRASOUND UNIT

SIGNAL PROCESSING UNIT

Baby with severe birth asphyxia

FEATURE EXTRACTION UNIT

Neuro - Fuzzy System for Detection



Bad Cells prognosis

Neuro - Fuzzy Rule
Based System

|

Decision on
Prognosis




Gene Identification and gene network moedelling

List of genes
Fuzzy | |  associated with
System diseases/condition

O

Gene networks
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