

Course:	Embedded Systems Lab – 0907334 (1 Cr. – Core Course)		
Catalog Data:	Introduction to embedded systems design tools and hardware programmers. Experiments using both simulation and practical implementation of the basic building blocks of a microcontroller including timers, counters, I/O techniques and requirements, A/D conversion, serial communication. Experiments to explore the system design process using hardware-software co-design process. Design project.		
Co-requisites by Course:	Embedded Systems (0907333)		
Prerequisites by Topic:	Good background in electronics, circuits, digital logic, and assembly programming.		
Textbook:	The lab manual which consists of a set of experiments is posted on the lab website.		
References:	 Designing Embedded Systems with PIC Microcontrollers (principles and applications), 2nd Ed. By: Tim Wilmshurst, Newnes, 2007. An Introduction to the Design of Small-Scale Embedded Systems, 2nd Ed. By: Tim Wilmshurst Palgrave, 2010. Microchip Website: www.microchip.com 		
Course Website:	www.driyad.ucoz.net		
Schedule & Duration:	8 Weeks, 8 labs, 3 hr. each (including exams)		
Student Material:	Textbook, lab handouts, some instructor keynotes, calculator and access to a personal computer and internet.		
College Facilities:	Lab with whiteboard, personal computers, PIC development boards, PIC programmers, oscilloscopes and server.		
Course Objectives:	 The objectives of this lab are: Introduce students to embedded systems design tools and hardware programmers. Develop students' skills in both simulation and practical implementation of the basic building blocks of a microcontroller including timers, counters, I/O techniques and requirements, A/D conversion, serial communication. Improve students' communication skills and ability to formulate and solve engineering problems through the complete designing of a medium embedded system with detailed documentation and oral presentation. 		

Course	Outcomes	Upoi
and Relat	tion to ABET	•
Program	Outcomes:	

Lab Schedule:

Upon successful completion of this course, a student should be able to:

- Use a set of tools for embedded systems simulation, programming, debugging, system integration, testing, validation and verification. [6]
- Implement several embedded systems with particular focus on the interaction between multiple devices. [1, 6]
- Take part of a multidisciplinary team to design products using microcontrollers and various analog and digital ICs. [5]
- Read the datasheet of any embedded system and understand how it
 - works. [7]
- Develop existing embedded systems by formulating the system design problem including the design constraints, creating a design that satisfies the constraints, implementing the design in hardware and software, and measuring performance against the design constraints.
 - [2]
- Communicate effectively with lab instructor and lab mates through clear documentation and presentation of the designed project. [3]

Week	Event	
11/7	Introduction	
11/7	Introduction to MPLAB + MPLAB and Instruction Set Analysis 1 Instruction Set Analysis 2 & Modular Programming Techniques	
25/7		
25/7	Basic Embedded System Analysis and Design + Hardware exercises	
Saturday 31/7	Quiz	
1/8	LCD Embedded C	
1/8		
8/8	Timers	
Thursday 12/8	hursday 12/8 Midterm Exam	
15/8	A/D	
15/8	USART	
29/8	Project Submission & Discussion	
ТВА	Final Exam	

Attendance:	Lab attendance will be tak in this regard.	en and the university's polices will be enforced	
Assessments:	Quizzes, exams, project and in-lab assessment		
Grading policy:	Labsheets Quiz Midterm Exam Project + Report Final Exam	5% 10% 25% 20% 40%	
Instructors:	Prof. Iyad Jafar Eng. Ola Aljaloudy	(<u>iyad.jafar@ju.edu.jo</u>) (<u>o.jaloudy@ju.edu.jo</u>)	
Sections:	(1) Sunday & Tuesday (2) Monday & Wednesday	13:30-16:30 / 13:30-16:30	

Lab Delivery:

- The lab for this semester will be taught fully online except for the midterm and final exams and the project discussion.
- **Microsoft Teams** will be used as platform to deliver the lab and communicate with students.
- <u>www.driyad.ucoz.net</u> website will be used to post experiments and lab sheets.
- On every week, recorded 30-minute videos for the experiments in that week will be posted on **Saturday 3:00 PM** on YouTube to explain the experiments and what are students are expected to deliver. Students are required to watch the video before their scheduled session.
- For every lab section, a live session will be held using MS Teams every week starting at the scheduled time for each section. This session is dedicated to answer students' questions.
- Students are expected to perform the experiment using the simulator adopted in the lab, fill the lab sheet, and submit their work Through MS. Teams to the lab engineer by **6:00 PM on the day the lab is scheduled**. No late submissions will be accepted.

Program Outcomes (PO)

1	an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2	an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3	an ability to communicate effectively with a range of audiences
4	an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5	an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6	an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7	an ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Last Updated:

July 9th, 2021