

4

The cost of the resistor depends on * (2 Points)

- O A. Ohmic value.

 O Both A and C
- None of these.
- C. Power ratings.
- B. Break down voltage.

According to the figure shown below, which statements is true: * (2 Points)

Assume Vs is DC power supply

POWERURS 2RT=4R2

- D. I1 is one fourth of I2
- B. The current I1 is double of I2
- A. The current I1 is half I2
- Both B and C are correct
- Both A and C are correct
- O C. 13 = 0

You are asked to connect the following circuit in the lab, to connect it correctly: * (2 Points)

- B. Device 2 and4 are ammeters., 1 and 3 are voltmeters
- None of these.
- B. Device 2 and 3 are ammeters., 1 and 4 are voltmeters
- B. Device 1 and4 are ammeters., 2 and 3 are voltmeters
- O Both A and C are correct

- O None of these
- A The voltage across 4 ohm is higher than the voltage of 5 ohm across R1
- 8. The current through 4 ohm is higher than the current through 3 ohm
- Both A and C

C. The current through 4 ohm is equal to the current through 3 ohm

generate a square wave with 300 Hz, which bottoms you have to press *
(2 Points)

- C with 4
- B with 4
- C, with 2
- A, with 1
- A with 4

For RLC parallel circuit with phasor diagram as shown in the figure, which of the following statements is correct?

(2 Points)

• E

(A

O C

For the series RLC circuit shown, what is the magnitude value of the current * [1], (2 Points)

A series RLC circuit has R = $_{100}~\Omega,$ L = 1.25 H, C = 3.50 $\mu F.$ It is connected to an AC source

- None of above
- O.49 A
- O 4.9 A
- O 0.15 A
- O 1.5 A

For series R-L-C circuit at resonant frequency: *
(2 Points)

- C and D are correct
- A. The impedance Z is totally real
 - B. I is minmum and the voltage is maximum
- C. Z is imaginary, the power factor iequal one
- A and D are correct
 - D. I is maximum, and the Power is maximum

14

For parallel R-L circuit: * (2 Points)

- As the frequency increases, XL decreases
- OVIGOWEROUNIT
- As the frequency increases, the current decreases
 - As the frequency increases, R decreases
- O None of these

In the Figure shown, if i = cos 100t and v = sin 100t, the element is: * (2 Points)

- a diode
- a capacitor
- an inductor
- a resistor
- None of these

As frequency increases, what of the following statements is true? *
(2 Points)

- O both series and parallel RC impedance decrease
- None of these
- series RC impedance decreases and parallel RC impedance increases
- series RC impedance increases and parallel RC impedance decreases
- both series and parallel RC impedance increase

The voltage v(t) expression is: *
(2 Points)

- O 2 cos & WEROURIT
- $\bigcirc 2\sin\left(\frac{\pi}{2i}\right)V$
 - $\bigcirc \cos(500\pi t) V$
 - $\bigcirc \cos(\pi t \frac{\pi}{4}) V$

The impedance Z * (2 Points)

- \bigcirc 0.04 j0.72 Ω
- \bigcirc 0.353 + j0.353 Ω

O POWEROUNIT

- \bigcirc 0.353 + j0.64 Ω
- None of these
- (41.45 Ω
- \bigcirc 1.41 + j1.41 Ω
- \bigcirc 1.41 j1.41 Ω