Chapter 2

[Determinants]

- → Covered Topics :
- Determinants by Cofactor Expansion
- Evaluating Determinants by Row Reduction
- Properties of Determinants; Cramer's Rule

- \checkmark Determinants helps to determine whether the matrix is invertible or not.
- ✓ We have much more than one approach to find the determinant, we'll learn each one, and then we'll make a chart to view them all next to each other.

Finding Determinant by Cofactor Expansion :

To extend the determinant for all sizes use the expansion.

!!ATTENTION: it's often better and easier to you to use this approach (the expansion) to find the determinant for matrices of big sizes especially for those whose sizes are wider than 2×2 or 3×3 , it's so easy, and gives the determinant directly.

✓ Pay attention to symbols :

Determinant of matrix A = det(A) = |A|

→And when I give you matrix contained in these two orthogonal lines , you should know that I am solving the determinant or telling you to do that , like this one in here :

$$\begin{vmatrix} 2 & 4 \\ -1 & 5 \end{vmatrix}$$
 = 14, and this is the same as $det(A) = |A| = 14$

For the matrix
$$A = \begin{bmatrix} 2 & 4 \\ -1 & 5 \end{bmatrix}$$

And now , yeah! Let's go to find the determinant!

The Expansion Approach:

Find the determinant for the following matrix :

$$A = \begin{bmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \\ 4 & 2 & -1 \end{bmatrix}$$

$$|A| = +1 \begin{vmatrix} 4 & 2 \\ 2 & -1 \end{vmatrix} -3 \begin{vmatrix} -1 & 2 \\ 4 & -1 \end{vmatrix} +2 \begin{vmatrix} -1 & 4 \\ 4 & 2 \end{vmatrix}$$

$$|A| = +1 \begin{vmatrix} 4 & 2 \\ 2 & -1 \end{vmatrix} -3 \begin{vmatrix} -1 & 2 \\ 4 & -1 \end{vmatrix} +2 \begin{vmatrix} -1 & 4 \\ 4 & 2 \end{vmatrix}$$

$$|A| = +1 \begin{vmatrix} 4 & 2 \\ 2 & -1 \end{vmatrix} -3 \begin{vmatrix} -1 & 2 \\ 4 & -1 \end{vmatrix} +2 \begin{vmatrix} -1 & 4 \\ 4 & 2 \end{vmatrix}$$

$$|A| = +1 \begin{vmatrix} 4 & 2 \\ 4 & 2 \end{vmatrix}$$

$$|A| = +1 \begin{vmatrix} 4 & 2 \\ 2 & -1 \end{vmatrix} -3 \begin{vmatrix} -1 & 2 \\ 4 & -1 \end{vmatrix} +2 \begin{vmatrix} -1 & 4 \\ 4 & 2 \end{vmatrix}$$

$$|A| = +1 \begin{vmatrix} 4 & 2 \\ 4 & 2 \end{vmatrix}$$

$$|A| = +1 \begin{vmatrix} 4 & 2 \\ 2 & -1 \end{vmatrix} -3 \begin{vmatrix} -1 & 2 \\ 4 & -1 \end{vmatrix} +2 \begin{vmatrix} -1 & 4 \\ 4 & 2 \end{vmatrix}$$

$$|A| = +1 \begin{vmatrix} 4 & 2 \\ 4 & 2 \end{vmatrix}$$

$$|A| = +1 \begin{vmatrix} 4 & 2 \\ 2 & -1 \end{vmatrix} -3 \begin{vmatrix} 4 & 2 \\ 4 & 2 \end{vmatrix}$$

$$|A| = +1 \begin{vmatrix} 4 & 2 \\ 4 & 2 \end{vmatrix}$$

$$|A| = +1 \begin{vmatrix} 4 & 2 \\ 4 & 2 \end{vmatrix}$$

$$|A| = +1 \begin{vmatrix} 4 & 2 \\ 4 & 2 \end{vmatrix}$$

$$|A| = +1 \begin{vmatrix} 4 & 2 \\ 4 & 2 \end{vmatrix}$$

$$|A| = +1 \begin{vmatrix} 4 & 2 \\ 4 & 2 \end{vmatrix}$$

$$|A| = +1 \begin{vmatrix} 4 & 2 \\ 4 & 2 \end{vmatrix}$$

$$|A| = +1 \begin{vmatrix} 4 & 2 \\ 4 & 2 \end{vmatrix}$$

$$|A| = +1 \begin{vmatrix} 4 & 2 \\ 4 & 2 \end{vmatrix}$$

$$|A| = +1 \begin{vmatrix} 4 & 2 \\ 4 & 2 \end{vmatrix}$$

$$|A| = +1 \begin{vmatrix} 4 & 2 \\ 4 & 2 \end{vmatrix}$$

$$|A| = +1 \begin{vmatrix} 4 & 2 \\ 4 & 2 \end{vmatrix}$$

$$|A| = +1 \begin{vmatrix} 4 & 2 \\ 4 & 2 \end{vmatrix}$$

$$|A| = +1 \begin{vmatrix} 4 & 2 \\ 4 & 2 \end{vmatrix}$$

$$|A| = +1 \begin{vmatrix} 4 & 2 \\ 4 & 2 \end{vmatrix}$$

$$|A| = +1 \begin{vmatrix} 4 & 2 \\ 4 & 2 \end{vmatrix}$$

$$|A| = +1 \begin{vmatrix} 4 & 2 \\ 4 & 2 \end{vmatrix}$$

$$= +1(4\times -1 + -2\times 2) -3(-1\times -1 + -4\times 2) +2(-1\times 4 + -4\times 4) = -23$$

!! But the question is how we computed the determinant of 2×2 matrices ??

ملاحظات:

- (1) اصغر حجم ممكن نوصله و احنا بنعمل expansion هو ال 2×2
- (2) احنا بنختار صف واحد او عمود واحد بنعمل عليه expansion و احنا بالحل هون اخترنا الصف الأول
- (3) ممكن نختار صفوف او أعمدة تسهل علينا الحل أكثر لانها بتحتوي اصفار زي ما راح نشوف بالامثلة قدام
 - (4) طيب كيف بنوجد ال determinant للمصفوفة اللي حجمها 2×2 ؟
 - ذاكرين هاد ؟

Inverse of 2×2 matrix is computed using this:

$$A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \rightarrow \text{Then the (ad -bc) is the determinant of the matrix A}$$

!!ATTENTION: we can solve it using the second row (you can take any row or column you want)

→ Solving it by the second row:

$$|A| = -3 \begin{vmatrix} -1 & 2 \\ 4 & -1 \end{vmatrix} + 4 \begin{vmatrix} 1 & 2 \\ 4 & -1 \end{vmatrix} - 2 \begin{vmatrix} 1 & 2 \\ -1 & 2 \end{vmatrix}$$

→ What about higher sizes ?!

Find the determinant of the following matrix :

$$A = \begin{bmatrix} 1 & -2 & -1 & 4 \\ 3 & -2 & 1 & 1 \\ 6 & -1 & 7 & 1 \\ 3 & 1 & 2 & -5 \end{bmatrix}$$

$$|A| = +1 \begin{vmatrix} 2 & 1 & 1 & 3 & 1 & 1 \\ -1 & 7 & 1 & 2 & -5 \end{vmatrix} + 2 \begin{vmatrix} 6 & 7 & 1 \\ 3 & 2 & -5 \end{vmatrix} +$$

$$\begin{bmatrix} 3 & -2 & 1 \\ 6 & -1 & 1 \\ 3 & 1 & -5 \end{bmatrix} \begin{bmatrix} 3 & -2 & 1 \\ 6 & -1 & 7 \\ 3 & 1 & 2 \end{bmatrix}$$

.... Then we complete the solution for each side as we did for the 3×3 matrix in the previous example.

Special Way of Finding the Determinant for the 3×3 Matrix:

$$egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \ \end{bmatrix}$$
 can be solved as follows:

→ Re-order the matrix as follows:

Such that:

O Example:

(1) Find the determinant of the following matrix :
$$\begin{bmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \\ 4 & 2 & -1 \end{bmatrix}$$

Use the special approach of the 3×3 matrix

$$\begin{bmatrix} 1 & 3 & 2 \\ -1 & 4 & 2 \\ 4 & 2 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 2 & 1 & 3 \\ -1 & 4 & 2 & -1 & 4 \\ -1 & 4 & -1 & -1 & 4 \end{bmatrix} \rightarrow$$

The det of the matrix = -(32 + 4 + 3) + (-4 + 24 + -4) = -23

(2) If A =
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 4 & 0 & 0 \\ 3 & 9 & 2 & 0 \\ -2 & 1 & -2 & -1 \end{bmatrix}$$
, then find det(A)

 \rightarrow It is bigger than 2×2 and 3×3, you are now supposed to use the expansion, but you can make a smart choice by choosing the first row for the expansion, because it is almost full of zeros, and this is going to help:

$$\det(A) = 1 \begin{vmatrix} 4 & 0 & 0 \\ 9 & 2 & 0 \\ 1 & -2 & -1 \end{vmatrix} = -8$$
You can use the special way of finding the (det) for 3×3 matrix in this level ...

(3) If
$$A = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 3 & 1 & 2 & 2 \\ 1 & 0 & -2 & 1 \\ 2 & 0 & 0 & 1 \end{bmatrix}$$
, then find $det(A)$

Use this column for the expansion it is almost full of zeros

$$\det(A) = 1 \begin{vmatrix} 1 & 0 & -1 \\ 1 & -2 & 1 \\ 2 & 0 & 1 \end{vmatrix}$$
 continue as you learned , this part is the real

piece of cake of this material ":)

LINEAR ALGEBRA

Minors and Cofactors:

(1) The Minor or M_{ii} :

The minor matrix of the entry a_{ij} is the determinant of the submatrix that remains after deleting the ith row and jth column.

(2) The Cofactor or C_{ij} :

the cofactor of the entry a_{ij} = $(-1)^{i+j}$ \times M_{ij}

● ال minor و ال cofactor لازم يتساووا بالعدد ، و لكن بختلفوا بالإشارة، واحد بطلع سالب و واحد بطلع موجب.

O Example:

$$M_{11}: \begin{vmatrix} -1 & 2 & 1 \\ 0 & -2 & 1 \\ 0 & 1 & 2 \end{vmatrix} = -1 \begin{vmatrix} -2 & 1 \\ 1 & 2 \end{vmatrix} = 5$$

expansion

عشان كله اصفار و راح يسهل علي الحل

$$C_{11} : (-1)^2 M_{11} = 5$$

$$M_{21} : \begin{vmatrix} 4 & 2 & 5 \\ 0 & -2 & 1 \\ 0 & 1 & 2 \end{vmatrix} = 4 \begin{vmatrix} -2 & 1 \\ 1 & 2 \end{vmatrix} = -20$$

$$C_{21}: (-1)^3 M_{21} = 20$$

نصيحة أخيرة قبل ما نبلش بالسكشن الجديد!! باغلب الأوقات استخدموا ال expansion عشان تحلوا ال det ما لم يلطب عكس ذلك، لقدام لما نبلش نحل على طرق جديدة.

• Evaluating Determinants by Row Reduction:

✓ Elementary operations are used here.

- في هذا السكشن راح نتعلم كيف نحسب ال det عن طريق تحويل الماتركس لـ echelon form ، و هاد الاشي يباخد عدد حسابات اقل من ال expansion ، و طريقة الحل هاي هي خيار ممتاز للمصفوفات ذات الحجم الكبير.

Rule 1:

A- Let A be a square matrix. If A has a row of zeros or a column of zeros, then det(A) = 0.

B- If A is a square matrix and have two proportional rows or columns, then det(A) = 0.

Carample:

Find the determinant of the next matrix : $\begin{bmatrix} 1 & 3 & -2 & 4 \\ 2 & 6 & -4 & 8 \\ 3 & 9 & 1 & 5 \\ 1 & 1 & 4 & 8 \end{bmatrix}$

Solution:

Before evaluating the determinant, we notice that if we implement this : $(-2R_1 + R_2 \rightarrow R_2)$

 $\text{That R_2 is going to be full of zeros in this form} : \begin{bmatrix} 1 & 3 & -2 & 4 \\ 0 & 0 & 0 & 0 \\ 3 & 9 & 1 & 5 \\ 1 & 1 & 4 & 8 \end{bmatrix}$

- So referring to $\underline{\text{rule 1 / A}}$, we'll find that determinant = 0.

Rule 2:

- Let A be a square matrix. Then $det(A) = det(A^T)$./ transpose of A, revise chapter 1 if you don't remember.

Rule 3:

 In this rule I will show you the effect of row operations that are done on some matrix on its determinant.

Rules

If B is the matrix that results when a single row or single column of A is multiplied by a scalar k, then det(B) = k det(A)

If B is the matrix that results when two rows or two columns of A are interchanged, then det(B) = - det(A).

If B is the matrix that results when a multiple of one row of A is added to another or when a multiple of one column is added to another, then det(B) = det(A).

○ Example :

If
$$\begin{vmatrix} a & b & c \\ d & e & g \\ h & i & j \end{vmatrix} = 4$$
, then what is $\begin{vmatrix} h & i & j \\ d & e & g \\ a & b & c \end{vmatrix}$?

Answer is : -4.

Rule 4: (Dealing with Elementary Matrices)

الفكرة هون ، إنه راح نعتبر هاي القاعدة حالة خاصة من قاعدة رقم 3 ، كيف يعني ؟!

راح نتبع الخطوات التالية:

- واementary matrices ناتج منها عدة identity matrix واح تكون معطى المصفوفة A على إنها
 - خلينا نضل متذكرين انه ال elementary matrices ينتجوا من تنفيذ عملية وحدة عال I
- راح يكون عنا مجموعة elementary matrices بدنا نشوف كل وحدة فيهم شو العملية اللي نتجت منها عشان نحدد شو هو ال determinant من خلال تحديد هاي العملية.
 - · و لنحدد شو هو ال determinant من خلال العملية نتبع جدول القواعد التالي :

Rules

If E results from multiplying a row of In by a nonzero number k, then det(E) = k

If E results from interchanging two rows of In, then det(E) = -1.

If E results from adding a multiple of one row of In to another, then det(E) = 1.

O Example:

1)
$$E = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Operation:

The second row of I_4 was multiplied by

Then answer is : det(E) = 3

LINEAR ALGEBRA

2)
$$E = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Operation:

The first and last rows of I_4 were interchanged.

Then answer is : det(E) = -1

3)
$$E = \begin{bmatrix} 1 & 0 & 0 & 7 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Operation:

7 times the last row of I4 was added to the first row

Then answer is : det(E) = 1