	hich of the following statements is correct about the 64-bit ALU designed in Appendix A.5?
WI	the state of the s
0 0	The "Cin" input of the full adder in the most significant slice is connected to Bnegate None of the answers
0	The "Op[1:0]" input of one slice might be different from another slice
0	The "Less" input of the most significant slice is connected to logic Zero

Given that a [7:0] = 00 | 110 and b [7:0] = 110 0001 answer the fallowing questions:

Q1: Choose the correct equation and value for c4:

- \bigcirc c4 = g3 + p3.c3 = 0
- O c4 = G1 + P1.G0 + P1.P0.c0, No enough information to compute the value of c4
- O c4 = G1 + P1.G0 + P1.P0.c0 = 1
- c4 = G0 + P0.c0, No enough information to compute the value of c4
- \bigcirc c4 = g3 + p3.c3 = 1
- \bigcirc c4 = G0 + P0.c0 = 0

0	2-	Chaosa	tha	corroct	aguation	and	value fo	or of
ч	Z.	CHOOSE	une	COLLECT	equation	ana	value ic	or co.

Time left 0:08

- c6 = g5 + p5.g4 + p5.p4.c4 = 1
- 0 c6 = g6 + p6 = 0
- O c6 = g5 + p5.g4 + p5.p4.c4, No enough information to compute the value of c6
- 0 c6 = g6 + p6 = 1
- O c6 = g5 + p5.c5, No enough information to compute the value of c6
- \bigcirc c6 = g5 + p5.c5 = 0

Q3: Which of the following statements is correct regarding the signals in the 8-bit Carry-Lookahead adder given above?

- O s4, c4, c5, c6, and c7 are computed after 6 gate delays
- O s7 and c8 are computed after 5 gate delays
- O s4, s5, s6, and s7 are computed after the same delay
- O G0 and P0 are computed after 3 gate delays
- s0 and c4 are computed after 4 gate delays

Q4: Which of the following statements is correct regarding the delay of the 8-bit Carry-Lookahead adder given above?

 s4, c4, c5, c6, and c7 are computed after 6 gate delays 	Time left 0:06:1
O s7 and c8 are computed after 5 gate delays	
O s4, s5, s6, and s7 are computed after the same delay	
O G0 and P0 are computed after 3 gate delays	
s0 and c4 are computed after 4 gate delays	
Q4: Which of the following statements is correct regarding the delay of the 8-b Lookahead adder given above?	it Carry-
O The delay of the 8-bit Carry-Lookahead agaler is 1/4 (i.e. one fourth) the de	lay of the 8-bit
O The delay of the 8-bit Carry-Lookahead adder is 1/3 (i.e. one third) the dela Ripple-Carry adder	ry of the 8-bit
O None of the answers	
The delay of the 8-bit Carry-Lookahead adder is 1/2 (i.e. half) the delay of the Ripple-Carry adder	ne 8-bit
O The delay of the 8-bit Carry-Lookahead adder = 5 gate delays	

Assume that the 64-bit ALU described in Appendix A.5 is reduced to a 3-bit ALU while still performing the same operations in the same order: AND, OR, ADD/SUB, and SLT. Given that A2, A1, A0 = 110 and B2, B1, B0 = 011, what are the values of R2, R1, R0 in the following scenarios:

When Ainvert = 0, Bnegate = 0, Op[1:0] = 00:

- 0 R2, R1, R0 = 110
- O R2, R1, R0 = 011
- OWEROUNIT O R2, R1, R0 = 000
- R2, R1, R0 = 010
- O R2, R1, R0 = 001

When Ainvert = 0, Bnegate = 1, Op[1:0] = 11:

- R2, R1, R0 = 010
- R2, R1, R0 = 000
- R2, R1, R0 = 110

Time le

Assume that the 64-bit ALU described in Appendix A.5 is reduced to a 3-bit ALU while still performing the operations in the same order: AND, OR, ADD/SUB, and SLT. Given that A2, A1, A0 = 110 and B2, B1, B0 = 01 are the values of R2, R1, R0 in the following scenarios:

When Ainvert = 0, Bnegate = 0, Op[1:0] = 00:

- O R2, R1, R0 = 110
- O R2, R1, R0 = 011
- O R2, R1, R0 = 111
- O R2, R1, R0 = 000
- O R2, R1, R0 = 010

When Ainvert = 0, Bnegate = 1, Op[1:0] = 11:

- O R2, R1, R0 = 010
- O R2, R1, R0 = 000
- O R2, R1, R0 = 110
- O R2, R1, R0 = 001
- O R2, R1, R0 = 111
- O R2, R1, R0 = 011
- O R2, R1, R0 = 101.

We want to design a 3-bit ALU that performs the operations given in the table below. The design partially completed for you. Accordingly answer the following questions:

Op[1:0]	Operation
00	R = B Shifted Right by one bit
01	R = (not A) XOR B
10	R = B + A
11	R = B - A

What should signal "C;" in the least significant slice be connected to?

- 0 0
- Op[1]
- 01 .
- O Bi
- 0 K
- Op[0]

What should signal "H" be connected to?

- 0 Bi
- O op[1]

O K
op[0]
What should signal "H" be connected to?
O Bi
O op[1]
O op[0]
00'
● K
0 1
What should signal is in the middle slice be connected to?
00
O B2
O B0
■ B ₁
Op[0]
O op[1]