(Expected Time: 10 minutes)

Given the following information about the delays of the CPU main structures and ProgramX instruction counts, answer the three questions below:

CPU Component	Register File	ALU	Memory
Delay (ns)	3	7	10

Ir	nstruction Type	Beq	Store	Load	R-Type
In	struction Count	5	15	30	50

Q1) What is the CPU time of Program when executed on the RISC-V Single-Cycle CPU discussed in class?

Q2) What is the CPU time of ProgramX when executed on the RISC-V 5-stage pipeline CPU discussed in class with forwarding unit and hazard detection unit? (Assume there are Zero control hazards and 6 load-use data hazards).

3600 ns \$

Q3) Considering the delays in the top table and assuming another RISC-V program that runs infinitely without any hazards, choose the correct statement regarding the speed up achieved by the 5-stage pipeline.

Maximum speed up of 5 is NOT possible because stages are not balanced

Determine whether each of the following statements is True or False: • An example of the "Good design demands good compromises" design rule in RISC-V ISA is that all R-format instructions have two source register operands and one destination register operand. True • Given that the value of (x5) = 0x 000 000 000 000 7777. False • The value of x6 after executing the code below is always equivalent to the value of x6 after executing the instruction "Ibu x6, 32(x0)". False • False • The value of x6 after executing the code below is always equivalent to the value of x6 after executing the instruction "Ibu x6, 32(x0)".

1d x6, 32(x0)

ANDi x6, x6, 0x0FF

B

xori x5, x5, 0xFFF " the value of (x5) will be 0x 0000 0000 0000 7777. False Time left 0:
The value of x6 after executing the code below is always equivalent to the value of x6 after executing the instruction "Ibu x6, 32(x0)". False The value of x6 after executing the code below is always equivalent to the value of x6 after executing the instruction below is always.
ld x6, 32(x0) ANDi x6, x6, 0x0FF
Assuming no saved registers are used, implementing the factorial procedure as a leaf- procedure using iterations requires less number of push and sap operations from the sta than implementing it as a recursive procedure.
The Single-Cycle CPU discussed in class does not suffer from data hazards because resources that are used multiple times are replicated. True True
Pipelining improves performance by reducing the execution time of every instruction.
False *

(Expected Time: 6 minutes)

Translate the below C-language statements to RISC-V assembly language. Assume the following:

- Array "A" is an array of long long integers and its base address is 0.
- The RISC-V code will be executed on the 5-stage pipeline CPU with FU and HDU as discussed in class.
- The assembly code should be scheduled (i.e. code scheduling) to eliminate all stalls.

C-language statements:

A[0] = A[3] - A[2];A[1] = A[2];

RISC-V code:

Id x6, 24 (x0) \$

Id x5, 16 (x0) \$

sub x7, x6, x5 \$

sd x5, 8 (x0) \$

sd x7, 0 (x0) \$

POWEROUNITE

Next page

0	12
0	10
0	13
0	n
•	9
W	then executing the entire code, which of the following statements is correct regarding the brwards from the Memory Stage:
(One forward to (rs1) and one forward to (rs2)
	O No forwards
	O One forward to (rs2)
	O Two forwards to (rs2)
	O Two forwards to (rs1)
	When executing the entire code, which of the following statements is correct regarding the forwards from the WB Stage:
	One forward to (rs1)

PC	Instruction	Clock Cycle							Time left 0:55:3		
0x00000000000000000		CC1	CC2	CC3	CC4	CCS	CC6	CC7	CC8	CC9	CC10
0x0000000000000000	ld x6, 24 (x2)	F	D	E	М	w					The same of
0x0000000000000004	add x13, x5, x6		F	D	D	E	м	w			
80000000000000000000000000000000000000	sub x30, x13, x10	HE	1255	F	F	D	E	м	w		
0x00000000000000	add x30, x5, x30	转压	200			F	D	E	м	w	
0x0000000000000000010	sd x30, 8 (x13)	Hit	1	Ser. T.	5		F	D	E	м	w
Value of EX/MEM.Me Value of PCWrite at	2(0)(0)		R		Ü	N	T				
	uring CC4 is:		R		U	NI				8	
Value of PCWrite de	uring CC4 is:		R		U	NI				B	
Value of PCWrite de	uring CC5 is:		R		Ú	NI				ß	
Value of PCWrite at Value of ForwardB d	during CC5 is: during CC6 is: during CC8 is:				U	N		N. Company		8	

Value of ALUOP Is:	00	•			
Value of ALU result i	16				
Value of MemWrite	s: 1				
Value of RegWrite is	0	•			
Q2) Assume that th	e CPU is cur	rently executing	" beq x5, x6, 8". V	Which of the fol	lowing CPU
components is NOT					
	705	117/5/2	ALL CONTRACTOR	115	27.0
Q3) Given that the	values of the	e control signals	for the new instr	uction are: Nev	vCtrl = 10, ALUO
= 01, RegWrite = 1, a	nd all rema	ining control sig	nals are 0. Which	of the followin	g statements
best describe the n					
O Memory[(rs1) -					
Memory[Sign-e					
(rd) = Memory[Sign-ext(in	nm)] - (rs2)			
(rd) = Sign-ext(imm) - (rs2	2)			
THE RESIDENCE OF THE PARTY OF T					
O None of the ons	wers				

