Not yet answered

Marked out of 3.00

The domain of the function
$$f(x,y) = \sqrt{x-4} + \frac{1}{\sqrt{y-2}}$$
 is

- A)All the points in the xy-plane that lie to the right of (or on) the line x = 4 and below the line y = 2.
- B) All the points in the xy-plane that lie to the left of (or on) the line x = 4 and below the line y = 2.
- C) All the points in the xy-plane except the point (4,2)
- D) All the points in the xy-plane that lie to the right of (or on) the line x = 4 and above the line y = 2.
- E) All the points in the xy-plane that lie to the right of (or on) the line x = 4 and above (or on) the line y = 2.

Not yet answered

Marked out of 3.00

 Let the directional derivative of f(x, y, z) at the point (2, -1, 2) in the direction of $\vec{v} = \langle 2, 3, 6 \rangle$ be $-\mathbf{6}$ and that $\|\nabla f(2, -1, 2)\| = \mathbf{6}$. Then $\nabla f(2, -1, 2)$ equals

A)
$$\langle \frac{12}{3}, -\frac{6}{3}, \frac{12}{3} \rangle$$
.

B)
$$(-\frac{12}{3}, \frac{6}{3}, -\frac{12}{3})$$
.

C)
$$\langle -\frac{12}{7}, -\frac{18}{7}, -\frac{36}{7} \rangle$$
.

D)
$$\langle -24, 18, -72 \rangle$$
.

E)
$$\langle \frac{12}{7}, \frac{18}{7}, \frac{36}{7} \rangle$$
.

Not yet answered

Marked out of 3.00

Flag question

The arc length function s(t), for the curve $\vec{r}(t) = \langle \cos e^t, \sin e^t, \sqrt{8} e^t \rangle$, measured from the point Q where t=0, in the direction of increasing t is:

- (A) 3e^{2t} 3W ERUN T
- (C) $\sqrt{8} e^t 1$
- (D) $3e^t 1$
- (E) $e^t 1$

Not yet answered

Marked out of 3.00

 The parametric equations of the normal line to the surface $y^4 + z^2 = 16 - x^3$ at the point (-1, 2, -1) are

A)
$$x = -1 + 3t$$
, $y = 2 + 4t$, $z = -1 + 2t$ where $t \in \mathbb{R}$.

B)
$$x = -1 + 3t$$
, $y = 2 + 32t$, $z = -1 + 2t$ where $t \in \mathbb{R}$.

C)
$$x = 1 + 3t$$
, $y = 14 + 4t$, $z = 1 + 2t$ where $t \in \mathbb{I}$

D)
$$x = -1 + 3t, y = 2 + 4t, z = -1 - t$$
 where $t \in \mathbb{R}$.

E)
$$x = -1 + 3t$$
, $y = 2 + 32t$, $z = -1 - 2t$ where $t \in \mathbb{R}$.

Not yet answered

Marked out of 3.00

Flag question

A vector function that represents the curve of intersection of the cylinder $y^2 + z^2 = 16$ and the surface x = yz is

(A)
$$\vec{r}(t) = < 4 \cos t$$
, $4 \sin t$, $8 \sin 2t >$

(C)
$$\vec{r}(t) = < 8 \sin 2t$$
, $4 \cos 2t$, $4 \sin 2t >$

(D)
$$\vec{r}(t) = < 8 \sin 2t$$
, $4 \cos t$, $4 \sin t >$

(E)
$$\vec{r}(t) = < 8 \cos 2t$$
, $4 \cos 2t$, $4 \sin t >$

Question $\bf 6$

Not yet answered

Marked out of 3.00

 Suppose f is a differentiable function of x and y, and g(t,s) = f(x,y) where $x = 4t - s^2$ and $y = \frac{1}{2}se^{t-1}$. Use the table of values to calculate $g_s(1,2)$.

	J	g	J_X	Jу
(0,1)	3	10	5	4
(1,2)		2	1	3

- A) 4
- B) 8
- C) 14
- D) 24
- E) -18

answered

Not yet

Marked out of 3.00

Flag
question

Parametric equations for the tangent line to the curve of the vector function:

$$\vec{r}(t) = \langle 2\sqrt{t}, t^2, -3t \rangle$$
 at the point (2, 1, -3) is:

(A)
$$x = 2 + 2t$$
, $y = 1 + 2t$, $z = -3 - 3t$

(B)
$$x = 2 + t$$
, $y = 1 - 2t$, $z = -3 - 3t$

(C)
$$x = 2 + t$$
, $y = 1 + 2t$, $z = -3 - 3t$

(D)
$$x = 2 + t$$
, $y = 1 + 2t$, $z = -3 + 3t$

(E)
$$x = -2 - t$$
, $y = -1 - 2t$, $z = 3 + 3t$

Not yet answered

Marked out of 3.00

Flag
question

If $\|\vec{r}(t)\| = 4$, then

(A)
$$\vec{r}(t) \times \frac{d}{dt} \vec{r}(t) = \vec{0}$$

(B)
$$\vec{r}(t) \cdot \frac{d}{dt} \vec{r}(t) = 16$$

(C)
$$\vec{r}(t) \cdot \frac{d}{dt} \vec{r}(t) = 0$$

(D)
$$\left\| \frac{d}{dt} \vec{r}(t) \right\| = 4$$

(E)
$$\vec{r}(t) \times \frac{d}{dt} \vec{r}(t) = 4\vec{r}(t)$$

Not yet answered

Marked out of 3.00

$$\lim_{(x,y)\to(0,0)}\frac{xy^3}{x^2+y^6}$$

- (A) does not exist, since along the x-axis the limit is 0, and along $x = y^3$ the limit is $\frac{1}{2}$
- (B) does not exist, since along the y-axis the limit is 1, and along

$$x = y^3$$
 the limit is $\frac{1}{2}$

- (C) does not exist, since along the x-axis the limit is 0, and along $y = x^3$ the limit is $\frac{1}{2}$
- (D) does not exist, since along the $x = my^3$, the limit is $\frac{m}{m+1}$
- (E) The limit exists and equals to $\frac{1}{2}$, since along $x = y^3$ the limit is $\frac{1}{2}$

Not yet answered

Marked out of 3.00

Flag
question

At the point (0,0), the linearization of the function

$$f(x,y) = \frac{2x+3}{1-4y}$$
 is

(A)
$$L(x,y) = -3 + 2x - 12y$$

(B)
$$\Box (x,y) = -3 = 2x - 12$$

(C)
$$L(x, y) = -3 + 2x + 12y$$

(D)
$$L(x, y) = 3 - 2x + 12y$$

(E)
$$L(x, y) = 3 + 2x + 12y$$