Not yet answered

Marked out of 2.50

∇ Flag
question

If the direction cosines of a vector \vec{v} satisfy

 $\cos \alpha = \frac{\sqrt{5}}{4}$, $\cos \beta = \frac{\sqrt{2}}{2}$, $\cos \gamma < 0$, then the vector \vec{w} that has the length 4 and the same direction of \vec{v} is

- (A)
 - (B) $(\frac{5}{2}, 2, \frac{3}{2})$
- (C) $\langle -\frac{1}{4}, \frac{13}{16}, 2 \rangle$
- (D) $\langle -\sqrt{5}, -2\sqrt{2}, 2\sqrt{3} \rangle$
- (E) $\langle \sqrt{5}, 2\sqrt{2}, -\sqrt{3} \rangle$

Not yet answered

Marked out of 2.50

Flag
question

The distance between the line L: $\frac{x+1}{2} = y + 2 = z - 3$ and the plane x - y - z = 4

(A)
$$\frac{6}{\sqrt{3}}$$

$$\frac{(B)}{(C)} \frac{\frac{2}{\sqrt{3}}}{\sqrt{3}} OWEROUNT$$

(D)
$$\frac{8}{\sqrt{3}}$$

(E)
$$\frac{3}{\sqrt{3}}$$

Not yet answered

Marked out of 2.50

$$2x^2 + y^2 + 3z^2 - 2y = 4$$
, represents

- (A) cone
- (B) hyperboloid of one sheet
- (C) hyperboloid of two sheets
- (D) ellipsoid
- (E) paraboloid

Not yet answered

Marked out of 2.50

Flag
question

The set of all points that lie between the xz -plane and the vertical plane y = 4 and inside the sphere with center (0,0,-1) and radius 6 can be represented by the inequalities

- (A) xz < y < 4 and and $x^2 + y^2 + z^2 + 2z \le 36$. (B) 0 < y < 4 and $x^2 + y^2 + z^2 - 2z \le 36$.
- (C) 0 < y < 4 and $x^2 + y^2 + z^2 + 2z = 35$.
- (D) 0 < y < 4 and $x^2 + y^2 + z^2 + 2z < 35$.
- (E) $0 \le y \le 4$ and $x^2 + y^2 + z^2 2z \le 35$.

Not yet answered

Marked out of 2.50

If the volume of the parallelepiped, determined by the vectors \vec{a} , \vec{b} and \vec{c} is 8, then $|\vec{a} \cdot (\vec{b} \times -4\vec{c})|$ is

- (C) 32
- (D) -32
- (E)

Marked out of 2.50

 Find the projection of \overrightarrow{BC} onto \overrightarrow{AB} , $proj_{\overrightarrow{AB}}$ \overrightarrow{BC} where A(1,2), B(4,6), C(5,5)

(A)
$$\langle \frac{21}{25}, \frac{28}{25} \rangle$$

(B)
$$\langle -\frac{1}{2}, \frac{1}{2} \rangle$$

(C)
$$-\frac{3}{25}i + \frac{4}{25}j$$

(D)
$$-\frac{1}{5}$$

(E)
$$\langle -\frac{3}{5}, -\frac{4}{5} \rangle$$

Not yet answered

Marked out of 2.50

An equation of the plane through the point (-2, 2, 1) and parallel to the plane 5x + z = 4 + 2y, is

(A)
$$5(x-2)-2(y+2)+(z+1)=0$$

(B)
$$5(x+2)+(y=2)-2(z+1)=0$$

(C)
$$5(x-2)+2(y+2)+(z+1)=0$$

(D)
$$5(x+2)-2(y-2)+(z-1)=0$$

(E)
$$5(x+2)-2(y-2)-(z-1)=0$$

Not yet answered

Marked out of 2.50

Flag question

Parametric equations of the line passing through the point (2,-1,-3), and perpendicular to the two lines

L1:
$$x = 1 + t$$
, $y = -2$, $z = -t$

L2:
$$x = 3$$
, $y = 2 - 2s$, $z = 2 + s$ are

(A)
$$x = 2 + 2t$$
, $y = -1$, $z = -3 + 2t$

(B)
$$x = 2 - 2t$$
, $y = -1 + t$, $z = -3 + 2t$

(C)
$$x = 2 - 2t$$
, $y = -1 + t$, $z = -3 - 2t$

(D)
$$x = -2 - 2t$$
, $y = -1 - t$, $z = -3 + 2t$

(E)
$$x = 2 - 2t$$
, $y = -1 - t$, $z = -3 - 2t$