Question 1/14 (3 p.)

Find an expression for the Euler–Cauchy equation whose general solution is given by $y = C_1 x^4 + C_2 \cdot \ln{(x)} x^4 + x \cdot \ln{(x)} + \frac{2x}{2}$

O
$$x^2y'' - 7xy' + 16y = 9x\ln(x) + \frac{3x}{2}$$

O $x^2y'' - 7xy' + 16y = \frac{3x}{2} + x\ln(x)$

O
$$x^2y'' - 7xy' + 16y = 9x\ln(x)$$

O
$$x^2y'' - 7xy' + 16y = xln(x)$$

Question 2/14 (3 p.)

The solution to the ODE $y'' = \sin(x) + \cos(x)$

$$O y = -\sin(x) - \cos(x) + C_1 x + C_2$$

$$y = \sin(x) + \cos(x) + C_1x + C_2$$

$$y = -\sin(x) + \cos(x) + C_1x + C_2$$

$$O y = -\sin(x) + \cos(x) + C_1 x$$

$$O y = -\sin(x) - \cos(x) + C_1$$

Question 4/14 (3 p.)

Let
$$F(s) = -\frac{s}{(s+2)(s+3)}$$
, find the inverse Laplace transform $f(t)$.

O
$$f(t) = -2e^{-2t} + 3e^{-3 \cdot t}$$

O
$$f(t) = 2e^{-2t} - 3e^{-3 \cdot t}$$

O
$$f(t) = (2e^{-3t} - 3e^{-2 \cdot t})u(t)$$

Question 5/14 (3 p.)

Which of the following are solutions to $2y^{(4)} + 11y^{(3)} + 18y'' + 4y' - 8y = 0$? Hint: Select all that apply.

Question 6/14 (3 p.)

Let
$$f(t) = \frac{\cos(\sqrt{2}\,t) - \cos(\sqrt{3}\,t)}{t\mathrm{e}^t}$$
 , then Laplace transform F(s) is given by

O
$$F(s) = \ln \left(\sqrt{1 + \frac{1}{s^2 + 3}} \right)$$

$$F(s) = \ln \left(\sqrt{4 + \frac{1}{s^2 + 2s + 3}} \right)$$

O
$$F(s) = \ln \sqrt{1 + \frac{1}{s^2 + 2s + 4}}$$

O
$$F(s) = \ln \left(\sqrt{3 + \frac{1}{s^2 + 2s + 4}} \right)$$

O
$$F(s) = \ln \left(\sqrt{1 + \frac{1}{s^2 + 2s + 3}} \right)$$

Question 8/14 (3 p.)

Which of the following are Eigenvectors of the Matrix A below?

$$\mathbf{A} = egin{pmatrix} 5 & 0 & 0 \ 1 & 2 & 1 \ 1 & 1 & 2 \end{pmatrix}$$

Hint: Select all that apply

$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

Question 9/14 (3 p.)

Find an expression for $\,v_{_{O}}(t)\,$ when $\,v_{_{S}}(t)=\delta(t-\pi)$, where $\,v_{_{O}}(0)=v_{_{O}}'(0)=0.$

$$\begin{array}{l} O \quad v_o(t) = \frac{1}{\sqrt{LC}} \sin \frac{t}{\sqrt{LC}} u(t-\pi) \\ O \quad v_o(t) = \frac{1}{\sqrt{LC}} \sin \frac{t-\pi}{\sqrt{LC}} u(t-\pi) \end{array}$$

$$\label{eq:volume} O \quad v_o(t) = \frac{1}{\sqrt{\pi L C}} \sin{(\frac{t-\pi}{\sqrt{L C}})} u(t-\pi)$$

$$O \quad v_o(t) = \frac{1}{\sqrt{LC}} \sin(\frac{t - \pi}{\sqrt{LC}}) u(t)$$

$$O v_o(t) = \frac{\pi}{\sqrt{LC}} \sin\left(\frac{t-\pi}{\sqrt{LC}}\right) u(t-\pi)$$

Activate Go to Setting

Question 12/14 (3 p.)

Find the solution to the ODE $ty' + 2y = t^2 - t + 1$

O
$$y = \frac{t^2}{4} - \frac{t}{3} + \frac{1}{2} + \frac{Ct^2}{2}$$

O
$$y = \frac{t^2}{4} - \frac{t}{3} + \frac{1}{2} + \frac{C}{t^2}$$

$$O_{y} = \frac{1}{4} O_{\frac{t}{3}} O_{\frac{t}{2}} O_{\frac{t}{2}}$$

O
$$y = \frac{t^2}{4} - \frac{t}{3} + \frac{1}{2} + \frac{C}{t^3}$$

O
$$y = \frac{t^2}{4} - \frac{t}{3} + \frac{1}{2} + Ct^2$$

Question 13/14 (2 p.)

Which of the following are NOT true about any nonsingular matrix? Hint: select all that apply.

- ☐ It is a square matrix
- Its determinant is non-zero
- Its inverse can be only evaluated using Gauss-Jordan method
- It has an inverse
- ☐ It is a rectangular matrix

Question 14/14 (3 p.)

Let

$$M = \left[\begin{array}{ccc} a & r & 0 \\ b & c & 0 \\ d & e & k \end{array} \right]$$

Then [M] is given by
$$(a \cdot r - b \cdot c)$$

$$a \cdot k \cdot r$$