Question 1/18 (3 p.) Answer is mandatory

Consider the circuit shown in the Figure. The transistor parameters are:

$$\beta = 120, V_{BE}(on) = 0.7V$$
, and $V_A = \infty$.

Assume: $I_0 = 0.4mA$, and $V_T = 0.026V$

If you are given the voltage gain as:

$$A_{v}(s) = \frac{-g_{m}r_{\pi}R_{c}}{R_{i} + r_{\pi} + (1 + \beta)\left(\frac{1}{sC_{E}}\right)}$$

Determine C_E such that the corner frequency associated with is $f_E = 10Hz$.

Question 2/18 (2 p.) Answer is mandatory

For any voltage amplifier circuit, if the load resistance R_L happened to become open, then the ac output voltage will:

Remain the Same

Question 3/18 (3 p.) Answer is mandatory

Question 4/18 (4 p.) Answer is mandatory

The parameters of the transistor in the circuit shown in the Figure are: $V_{BE}(on)=0.7V$, $\beta=120$, and $V_A=\infty$. Use $V_T=0.026V$. $R_S=100\Omega$ Use $V_T=0.026V$. $R_C=0.026V$. $R_C=0.$

Question 5/18 (4 p.) Answer is mandatory

For the cascaded system shown in the Figure with **two identical stages** each has the same A_{ν} , determine:

Question 6/18 (3 p.) Answer is mandatory

Consider the source follower circuit in the Figure with transistor parameters:

$$V_{TN} = 0.8V, k'_n = 100\mu A/V^2,$$

 $\lambda = 0.02V^{-1}.$

Let $I_0 = 3mA$.

Find the small signal output resistance R_o in the Mid-band frequency.

Question 7/18 (2 p.) Answer is mandatory

In an amplifier circuit, the average power dissipated in the transistor <u>decreases</u> when:

- O V_{CC} is increased
- AC signal is applied
 - AC signal is not applied
 - R_C is decreased

Question 8/18 (2 p.) Answer is mandatory

For an op-amp circuit, if it has only a positive supply voltage V_{CC}, then its output cannot:

Saturate

Question 9/18 (3 p.) Answer is mandatory

An ideal non-inverting op-amp circuit is to be designed with a closed-loop voltage gain of $A_v \neq 55$. The largest resistor value to be used is $4 k\Omega$. If the simple two-resistor design shown in the Figure is used, what is the value of R_1 ?

Question 10/18 (3 p.) Answer is mandatory

The parameters of the circuit shown in the Figure are:

$$R_1 = 60 k\Omega$$
 and $R_2 = 28 k\Omega$.

The transistor parameters are:

$$V_{BE}(on) = 0.7V, \beta = 100, \text{ and } C_{\mu} = 0.45 pF.$$

Use $V_T = 0.026V$.

Determine the **Miller** capacitance C_M .

Question 11/18 (3 p.) Answer is mandatory

 $V^+ = 2.5 \text{ V}$ The transistor in the circuit shown in the Figure is biased by $I_{DO} = 2mA$, and has the following parameters: $V_{TN} = 0.4V$, $K_n = 50\mu A/V^2$, and $\lambda = 0.05V^{-1}$. Approximately, what is the bandwidth of the frequency response for the amplifier circuit $C_L = 0.5 \text{ pF}$ shown?

Question 12/18 (3 p.) Answer is mandatory

The small-signal parameters of the NMOS transistor in the ac equivalent common-gate circuit shown in the Figure are: $V_{TN} = 0.6 \text{ V}, K_n = 4mA/V^2, \text{ and } \lambda = 0.$ The quiescent drain current was found as: $I_{DQ} = 1 \text{ mA}$.

Determine the small-signal input resistance R_i .

Question 13/18 (3 p.) Answer is mandatory

The parameters of the transistor in the circuit shown in the Figure are:

new value of $|A_{mid}|_{dB}$:

circuit shown in the Figure are:
$$\beta = 100, V_{BE}(on) = 0.7 \text{ V}, V_A = \infty.$$
 Use $V_T = 0.026V$. *Hint: Neglect the capacitance effects of the circuit and the transistor. When $R_S = 0\Omega$, we calculated:
$$A_{mid} = -219.4.$$
 If we set $R_S = 1k\Omega$, now determine the

 $V^{+} = 12 \text{ V}$

Question 14/18 (4 p.) Answer is mandatory

Question 15/18 (2 p.) Answer is mandatory

For a voltage amplifier, if the voltage gain increases by a factor of 14 (e.g. A_{new} =14* A_{old}), the decibel (dB) voltage gain increases by:

30 dB

14 dB

Question 16/18 (2 p.) Answer is mandatory

The voltage gain of an amplifier decreases 60 dB per decade above the high cut-off frequency fH=30 kHz.

If the midband voltage gain was 110 dB, what will be the magnitude of the voltage gain A_v at 3MHz?

-) 10 02
- 30 dB

Question 18/18 (2 p.) Answer is mandatory

The output resistance of a MOSFET common gate amplifier equals to:

- Base resistor
- O Drain resistor
- Gate resistor

Source resistor