
Chapter 1- Introduction

Chapter 1 Introduction30/10/2014 1

Topics covered

 Professional software development

 What is meant by software engineering.

 Software engineering ethics

 A brief introduction to ethical issues that affect software

engineering.

 Case studies

 An introduction to three examples that are used in later chapters

in the book.

Chapter 1 Introduction30/10/2014 2

Software engineering

 The economies of ALL developed nations are

dependent on software.

 More and more systems are software controlled

 Software engineering is concerned with theories,

methods and tools for professional software

development.

 Expenditure on software represents a

significant fraction of GNP in all developed countries.

Chapter 1 Introduction30/10/2014 3

Software costs

 Software costs often dominate computer system costs.

The costs of software on a PC are often greater than the

hardware cost.

 Software costs more to maintain than it does to develop.

For systems with a long life, maintenance costs may be

several times development costs.

 Software engineering is concerned with cost-effective

software development.

Chapter 1 Introduction30/10/2014 4

Software project failure

 Increasing system complexity

 As new software engineering techniques help us to build larger,

more complex systems, the demands change. Systems have to

be built and delivered more quickly; larger, even more complex

systems are required; systems have to have new capabilities

that were previously thought to be impossible.

 Failure to use software engineering methods

 It is fairly easy to write computer programs without using

software engineering methods and techniques. Many companies

have drifted into software development as their products and

services have evolved. They do not use software engineering

methods in their everyday work. Consequently, their software is

often more expensive and less reliable than it should be.

Chapter 1 Introduction30/10/2014 5

Professional software development

Chapter 1 Introduction30/10/2014 6

Frequently asked questions about software

engineering

Question Answer

What is software? Computer programs and associated documentation.

Software products may be developed for a particular

customer or may be developed for a general market.

What are the attributes of good software? Good software should deliver the required functionality

and performance to the user and should be

maintainable, dependable and usable.

What is software engineering? Software engineering is an engineering discipline that is

concerned with all aspects of software production.

What are the fundamental software

engineering activities?

Software specification, software development, software

validation and software evolution.

What is the difference between software

engineering and computer science?

Computer science focuses on theory and fundamentals;

software engineering is concerned with the practicalities

of developing and delivering useful software.

What is the difference between software

engineering and system engineering?

System engineering is concerned with all aspects of

computer-based systems development including

hardware, software and process engineering. Software

engineering is part of this more general process.

Chapter 1 Introduction30/10/2014 7

Frequently asked questions about software

engineering

Question Answer

What are the key challenges facing

software engineering?

Coping with increasing diversity, demands for reduced

delivery times and developing trustworthy software.

What are the costs of software

engineering?

Roughly 60% of software costs are development costs,

40% are testing costs. For custom software, evolution

costs often exceed development costs.

What are the best software engineering

techniques and methods?

While all software projects have to be professionally

managed and developed, different techniques are

appropriate for different types of system. For example,

games should always be developed using a series of

prototypes whereas safety critical control systems require

a complete and analyzable specification to be developed.

You can’t, therefore, say that one method is better than

another.

What differences has the web made to

software engineering?

The web has led to the availability of software services

and the possibility of developing highly distributed service-

based systems. Web-based systems development has led

to important advances in programming languages and

software reuse.

Chapter 1 Introduction30/10/2014 8

Software products

 Generic products

 Stand-alone systems that are marketed and sold to any

customer who wishes to buy them.

 Examples – PC software such as graphics programs, project

management tools; CAD software; software for specific markets

such as appointments systems for dentists.

 Customized products

 Software that is commissioned by a specific customer to meet

their own needs.

 Examples – embedded control systems, air traffic control

software, traffic monitoring systems.

Chapter 1 Introduction30/10/2014 9

Product specification

 Generic products

 The specification of what the software should do is owned by the

software developer and decisions on software change are made

by the developer.

 Customized products

 The specification of what the software should do is owned by the

customer for the software and they make decisions on software

changes that are required.

Chapter 1 Introduction30/10/2014 10

Essential attributes of good software

Product characteristic Description

Maintainability Software should be written in such a way so that it can evolve to

meet the changing needs of customers. This is a critical attribute

because software change is an inevitable requirement of a

changing business environment.

Dependability and

security

Software dependability includes a range of characteristics

including reliability, security and safety. Dependable software

should not cause physical or economic damage in the event of

system failure. Malicious users should not be able to access or

damage the system.

Efficiency Software should not make wasteful use of system resources such

as memory and processor cycles. Efficiency therefore includes

responsiveness, processing time, memory utilisation, etc.

Acceptability Software must be acceptable to the type of users for which it is

designed. This means that it must be understandable, usable and

compatible with other systems that they use.

Chapter 1 Introduction30/10/2014 11

Software engineering

 Software engineering is an engineering discipline that is

concerned with all aspects of software production from

the early stages of system specification through to

maintaining the system after it has gone into use.

 Engineering discipline

 Using appropriate theories and methods to solve problems

bearing in mind organizational and financial constraints.

 All aspects of software production

 Not just technical process of development. Also project

management and the development of tools, methods etc. to

support software production.

Chapter 1 Introduction30/10/2014 12

Importance of software engineering

 More and more, individuals and society rely on advanced

software systems. We need to be able to produce

reliable and trustworthy systems economically and

quickly.

 It is usually cheaper, in the long run, to use software

engineering methods and techniques for software

systems rather than just write the programs as if it was a

personal programming project. For most types of

system, the majority of costs are the costs of changing

the software after it has gone into use.

Chapter 1 Introduction30/10/2014 13

Software process activities

 Software specification, where customers and engineers

define the software that is to be produced and the

constraints on its operation.

 Software development, where the software is designed

and programmed.

 Software validation, where the software is checked to

ensure that it is what the customer requires.

 Software evolution, where the software is modified to

reflect changing customer and market requirements.

Chapter 1 Introduction30/10/2014 14

General issues that affect software

 Heterogeneity

 Increasingly, systems are required to operate as distributed

systems across networks that include different types of computer

and mobile devices.

 Business and social change

 Business and society are changing incredibly quickly as

emerging economies develop and new technologies become

available. They need to be able to change their existing software

and to rapidly develop new software.

Chapter 1 Introduction30/10/2014 15

General issues that affect software

 Security and trust

 As software is intertwined with all aspects of our lives, it is

essential that we can trust that software.

 Scale

 Software has to be developed across a very wide range of

scales, from very small embedded systems in portable or

wearable devices through to Internet-scale, cloud-based

systems that serve a global community.

Chapter 1 Introduction30/10/2014 16

Software engineering diversity

 There are many different types of software system and

there is no universal set of software techniques that is

applicable to all of these.

 The software engineering methods and tools used

depend on the type of application being developed, the

requirements of the customer and the background of the

development team.

Chapter 1 Introduction30/10/2014 17

Application types

 Stand-alone applications

 These are application systems that run on a local computer,

such as a PC. They include all necessary functionality and do

not need to be connected to a network.

 Interactive transaction-based applications

 Applications that execute on a remote computer and are

accessed by users from their own PCs or terminals. These

include web applications such as e-commerce applications.

 Embedded control systems

 These are software control systems that control and manage

hardware devices. Numerically, there are probably more

embedded systems than any other type of system.

Chapter 1 Introduction30/10/2014 18

Application types

 Batch processing systems

 These are business systems that are designed to process data

in large batches. They process large numbers of individual

inputs to create corresponding outputs.

 Entertainment systems

 These are systems that are primarily for personal use and which

are intended to entertain the user.

 Systems for modeling and simulation

 These are systems that are developed by scientists and

engineers to model physical processes or situations, which

include many, separate, interacting objects.

Chapter 1 Introduction30/10/2014 19

Application types

 Data collection systems

 These are systems that collect data from their environment using

a set of sensors and send that data to other systems for

processing.

 Systems of systems

 These are systems that are composed of a number of other

software systems.

Chapter 1 Introduction30/10/2014 20

Software engineering fundamentals

 Some fundamental principles apply to all types of

software system, irrespective of the development

techniques used:

 Systems should be developed using a managed and understood

development process. Of course, different processes are used

for different types of software.

 Dependability and performance are important for all types of

system.

 Understanding and managing the software specification and

requirements (what the software should do) are important.

 Where appropriate, you should reuse software that has already

been developed rather than write new software.

Chapter 1 Introduction30/10/2014 21

Internet software engineering

 The Web is now a platform for running application and

organizations are increasingly developing web-based

systems rather than local systems.

 Web services (discussed in Chapter 19) allow

application functionality to be accessed over the web.

 Cloud computing is an approach to the provision of

computer services where applications run remotely on

the ‘cloud’.

 Users do not buy software buy pay according to use.

Chapter 1 Introduction30/10/2014 22

Web-based software engineering

 Web-based systems are complex distributed systems

but the fundamental principles of software engineering

discussed previously are as applicable to them as they

are to any other types of system.

 The fundamental ideas of software engineering apply to

web-based software in the same way that they apply to

other types of software system.

Chapter 1 Introduction30/10/2014 23

Web software engineering

 Software reuse

 Software reuse is the dominant approach for constructing web-

based systems. When building these systems, you think about how

you can assemble them from pre-existing software components and

systems.

 Incremental and agile development

 Web-based systems should be developed and delivered

incrementally. It is now generally recognized that it is impractical to

specify all the requirements for such systems in advance.

Chapter 1 Introduction30/10/2014 24

Web software engineering

 Service-oriented systems

 Software may be implemented using service-oriented software

engineering, where the software components are stand-alone

web services.

 Rich interfaces

 Interface development technologies such as AJAX and HTML5

have emerged that support the creation of rich interfaces within a

web browser.

Chapter 1 Introduction30/10/2014 25

Software engineering ethics

Chapter 1 Introduction30/10/2014 26

Software engineering ethics

 Software engineering involves wider responsibilities than

simply the application of technical skills.

 Software engineers must behave in an honest and

ethically responsible way if they are to be respected as

professionals.

 Ethical behaviour is more than simply upholding the law

but involves following a set of principles that are morally

correct.

Chapter 1 Introduction30/10/2014 27

Issues of professional responsibility

 Confidentiality

 Engineers should normally respect the confidentiality of their
employers or clients irrespective of whether or not a formal
confidentiality agreement has been signed.

 Competence

 Engineers should not misrepresent their level of competence.
They should not knowingly accept work which is outwith their
competence.

Chapter 1 Introduction30/10/2014 28

Issues of professional responsibility

 Intellectual property rights

 Engineers should be aware of local laws governing the use of

intellectual property such as patents, copyright, etc. They should

be careful to ensure that the intellectual property of employers

and clients is protected.

 Computer misuse

 Software engineers should not use their technical skills to

misuse other people’s computers. Computer misuse ranges from

relatively trivial (game playing on an employer’s machine, say) to

extremely serious (dissemination of viruses).

Chapter 1 Introduction30/10/2014 29

ACM/IEEE Code of Ethics

 The professional societies in the US have cooperated to
produce a code of ethical practice.

 Members of these organisations sign up to the code of
practice when they join.

 The Code contains eight Principles related to the
behaviour of and decisions made by professional
software engineers, including practitioners, educators,
managers, supervisors and policy makers, as well as
trainees and students of the profession.

Chapter 1 Introduction30/10/2014 30

Rationale for the code of ethics

 Computers have a central and growing role in commerce,

industry, government, medicine, education, entertainment and

society at large. Software engineers are those who contribute by

direct participation or by teaching, to the analysis, specification,

design, development, certification, maintenance and testing of

software systems.

 Because of their roles in developing software systems, software

engineers have significant opportunities to do good or cause

harm, to enable others to do good or cause harm, or to influence

others to do good or cause harm. To ensure, as much as

possible, that their efforts will be used for good, software

engineers must commit themselves to making software

engineering a beneficial and respected profession.

Chapter 1 Introduction30/10/2014 31

The ACM/IEEE Code of Ethics

Software Engineering Code of Ethics and Professional Practice

ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional Practices

PREAMBLE

The short version of the code summarizes aspirations at a high level of the abstraction; the

clauses that are included in the full version give examples and details of how these

aspirations change the way we act as software engineering professionals. Without the

aspirations, the details can become legalistic and tedious; without the details, the

aspirations can become high sounding but empty; together, the aspirations and the details

form a cohesive code.

Software engineers shall commit themselves to making the analysis, specification, design,

development, testing and maintenance of software a beneficial and respected profession. In

accordance with their commitment to the health, safety and welfare of the public, software

engineers shall adhere to the following Eight Principles:

Chapter 1 Introduction30/10/2014 32

Ethical principles

1. PUBLIC - Software engineers shall act consistently with the public interest.

2. CLIENT AND EMPLOYER - Software engineers shall act in a manner that is in the best

interests of their client and employer consistent with the public interest.

3. PRODUCT - Software engineers shall ensure that their products and related

modifications meet the highest professional standards possible.

4. JUDGMENT - Software engineers shall maintain integrity and independence in their

professional judgment.

5. MANAGEMENT - Software engineering managers and leaders shall subscribe to and

promote an ethical approach to the management of software development and

maintenance.

6. PROFESSION - Software engineers shall advance the integrity and reputation of the

profession consistent with the public interest.

7. COLLEAGUES - Software engineers shall be fair to and supportive of their colleagues.

8. SELF - Software engineers shall participate in lifelong learning regarding the practice of

their profession and shall promote an ethical approach to the practice of the profession.

Chapter 1 Introduction30/10/2014 33

Case studies

Chapter 1 Introduction30/10/2014 34

Ethical dilemmas

 Disagreement in principle with the policies of senior

management.

 Your employer acts in an unethical way and releases a

safety-critical system without finishing the testing of the

system.

 Participation in the development of military weapons

systems or nuclear systems.

Chapter 1 Introduction30/10/2014 35

Case studies

 A personal insulin pump

 An embedded system in an insulin pump used by diabetics to

maintain blood glucose control.

 A mental health case patient management system

 Mentcare. A system used to maintain records of people receiving

care for mental health problems.

 A wilderness weather station

 A data collection system that collects data about weather

conditions in remote areas.

 iLearn: a digital learning environment

 A system to support learning in schools

Chapter 1 Introduction30/10/2014 36

Insulin pump control system

 Collects data from a blood sugar sensor and calculates

the amount of insulin required to be injected.

 Calculation based on the rate of change of blood sugar

levels.

 Sends signals to a micro-pump to deliver the correct

dose of insulin.

 Safety-critical system as low blood sugars can lead to

brain malfunctioning, coma and death; high-blood sugar

levels have long-term consequences such as eye and

kidney damage.

Chapter 1 Introduction30/10/2014 37

Insulin pump hardware architecture

Chapter 1 Introduction30/10/2014 38

Activity model of the insulin pump

Chapter 1 Introduction30/10/2014 39

Essential high-level requirements

 The system shall be available to deliver insulin when

required.

 The system shall perform reliably and deliver the correct

amount of insulin to counteract the current level of blood

sugar.

 The system must therefore be designed and

implemented to ensure that the system always meets

these requirements.

Chapter 1 Introduction30/10/2014 40

Mentcare: A patient information system for

mental health care

 A patient information system to support mental health

care is a medical information system that maintains

information about patients suffering from mental health

problems and the treatments that they have received.

 Most mental health patients do not require dedicated

hospital treatment but need to attend specialist clinics

regularly where they can meet a doctor who has detailed

knowledge of their problems.

 To make it easier for patients to attend, these clinics are

not just run in hospitals. They may also be held in local

medical practices or community centres.

Chapter 1 Introduction30/10/2014 41

Mentcare

 Mentcare is an information system that is intended for

use in clinics.

 It makes use of a centralized database of patient

information but has also been designed to run on a PC,

so that it may be accessed and used from sites that do

not have secure network connectivity.

 When the local systems have secure network access,

they use patient information in the database but they can

download and use local copies of patient records when

they are disconnected.

Chapter 1 Introduction30/10/2014 42

Mentcare goals

 To generate management information that allows health

service managers to assess performance against local

and government targets.

 To provide medical staff with timely information to

support the treatment of patients.

Chapter 1 Introduction30/10/2014 43

The organization of the Mentcare system

Chapter 1 Introduction30/10/2014 44

Key features of the Mentcare system

 Individual care management

 Clinicians can create records for patients, edit the information in

the system, view patient history, etc. The system supports data

summaries so that doctors can quickly learn about the key

problems and treatments that have been prescribed.

 Patient monitoring

 The system monitors the records of patients that are involved in

treatment and issues warnings if possible problems are detected.

 Administrative reporting

 The system generates monthly management reports showing the

number of patients treated at each clinic, the number of patients

who have entered and left the care system, number of patients

sectioned, the drugs prescribed and their costs, etc.
Chapter 1 Introduction30/10/2014 45

Mentcare system concerns

 Privacy

 It is essential that patient information is confidential and is never

disclosed to anyone apart from authorised medical staff and the

patient themselves.

 Safety

 Some mental illnesses cause patients to become suicidal or a

danger to other people. Wherever possible, the system should

warn medical staff about potentially suicidal or dangerous

patients.

 The system must be available when needed otherwise safety

may be compromised and it may be impossible to prescribe the

correct medication to patients.

Chapter 1 Introduction30/10/2014 46

Wilderness weather station

 The government of a country with large areas of

wilderness decides to deploy several hundred weather

stations in remote areas.

 Weather stations collect data from a set of instruments

that measure temperature and pressure, sunshine,

rainfall, wind speed and wind direction.

 The weather station includes a number of instruments that

measure weather parameters such as the wind speed and

direction, the ground and air temperatures, the barometric

pressure and the rainfall over a 24-hour period. Each of these

instruments is controlled by a software system that takes

parameter readings periodically and manages the data collected

from the instruments.

 Chapter 1 Introduction30/10/2014 47

The weather station’s environment

Chapter 1 Introduction30/10/2014 48

Weather information system

 The weather station system

 This is responsible for collecting weather data, carrying out some

initial data processing and transmitting it to the data management

system.

 The data management and archiving system

 This system collects the data from all of the wilderness weather

stations, carries out data processing and analysis and archives the

data.

 The station maintenance system

 This system can communicate by satellite with all wilderness

weather stations to monitor the health of these systems and provide

reports of problems.

Chapter 1 Introduction30/10/2014 49

Additional software functionality

 Monitor the instruments, power and communication

hardware and report faults to the management system.

 Manage the system power, ensuring that batteries are

charged whenever the environmental conditions permit

but also that generators are shut down in potentially

damaging weather conditions, such as high wind.

 Support dynamic reconfiguration where parts of the

software are replaced with new versions and where

backup instruments are switched into the system in the

event of system failure.

Chapter 1 Introduction30/10/2014 50

iLearn: A digital learning environment

 A digital learning environment is a framework in which a

set of general-purpose and specially designed tools for

learning may be embedded plus a set of applications

that are geared to the needs of the learners using the

system.

 The tools included in each version of the environment

are chosen by teachers and learners to suit their specific

needs.

 These can be general applications such as spreadsheets,

learning management applications such as a Virtual Learning

Environment (VLE) to manage homework submission and

assessment, games and simulations.

Chapter 1 Introduction30/10/2014 51

Service-oriented systems

 The system is a service-oriented system with all system

components considered to be a replaceable service.

 This allows the system to be updated incrementally as

new services become available.

 It also makes it possible to rapidly configure the system

to create versions of the environment for different groups

such as very young children who cannot read, senior

students, etc.

Chapter 1 Introduction30/10/2014 52

iLearn services

 Utility services that provide basic application-

independent functionality and which may be used by

other services in the system.

 Application services that provide specific applications

such as email, conferencing, photo sharing etc. and

access to specific educational content such as scientific

films or historical resources.

 Configuration services that are used to adapt the

environment with a specific set of application services

and do define how services are shared between

students, teachers and their parents.

Chapter 1 Introduction30/10/2014 53

iLearn architecture

Chapter 1 Introduction30/10/2014 54

iLearn service integration

 Integrated services are services which offer an API

(application programming interface) and which can be

accessed by other services through that API. Direct

service-to-service communication is therefore possible.

 Independent services are services which are simply

accessed through a browser interface and which operate

independently of other services. Information can only be

shared with other services through explicit user actions

such as copy and paste; re-authentication may be

required for each independent service.

Chapter 1 Introduction30/10/2014 55

Key points

 Software engineering is an engineering discipline that is

concerned with all aspects of software production.

 Essential software product attributes are maintainability,

dependability and security, efficiency and acceptability.

 The high-level activities of specification, development,

validation and evolution are part of all software

processes.

 The fundamental notions of software engineering are

universally applicable to all types of system

development.

Chapter 1 Introduction30/10/2014 56

Key points

 There are many different types of system and each

requires appropriate software engineering tools and

techniques for their development.

 The fundamental ideas of software engineering are

applicable to all types of software system.

 Software engineers have responsibilities to the

engineering profession and society. They should not

simply be concerned with technical issues.

 Professional societies publish codes of conduct which

set out the standards of behaviour expected of their

members.

Chapter 1 Introduction30/10/2014 57

Chapter 2 – Software Processes

Chapter 2 Software Processes 130/10/2014

Topics covered

 Software process models

 Process activities

 Coping with change

 Process improvement

Chapter 2 Software Processes 230/10/2014

The software process

 A structured set of activities required to develop a

software system.

 Many different software processes but all involve:

 Specification – defining what the system should do;

 Design and implementation – defining the organization of the

system and implementing the system;

 Validation – checking that it does what the customer wants;

 Evolution – changing the system in response to changing

customer needs.

 A software process model is an abstract representation

of a process. It presents a description of a process from

some particular perspective.

Chapter 2 Software Processes 330/10/2014

Software process descriptions

 When we describe and discuss processes, we usually

talk about the activities in these processes such as

specifying a data model, designing a user interface, etc.

and the ordering of these activities.

 Process descriptions may also include:

 Products, which are the outcomes of a process activity;

 Roles, which reflect the responsibilities of the people involved in

the process;

 Pre- and post-conditions, which are statements that are true

before and after a process activity has been enacted or a

product produced.

Chapter 2 Software Processes 430/10/2014

Plan-driven and agile processes

 Plan-driven processes are processes where all of the

process activities are planned in advance and progress

is measured against this plan.

 In agile processes, planning is incremental and it is

easier to change the process to reflect changing

customer requirements.

 In practice, most practical processes include elements of

both plan-driven and agile approaches.

 There are no right or wrong software processes.

Chapter 2 Software Processes 530/10/2014

Software process models

Chapter 2 Software Processes 630/10/2014

Software process models

 The waterfall model

 Plan-driven model. Separate and distinct phases of specification

and development.

 Incremental development

 Specification, development and validation are interleaved. May

be plan-driven or agile.

 Integration and configuration

 The system is assembled from existing configurable

components. May be plan-driven or agile.

 In practice, most large systems are developed using a

process that incorporates elements from all of these

models.
Chapter 2 Software Processes 730/10/2014

The waterfall model

Chapter 2 Software Processes 830/10/2014

Waterfall model phases

 There are separate identified phases in the waterfall

model:

 Requirements analysis and definition

 System and software design

 Implementation and unit testing

 Integration and system testing

 Operation and maintenance

 The main drawback of the waterfall model is the difficulty

of accommodating change after the process is

underway. In principle, a phase has to be complete

before moving onto the next phase.

Chapter 2 Software Processes 930/10/2014

Waterfall model problems

 Inflexible partitioning of the project into distinct stages

makes it difficult to respond to changing customer

requirements.

 Therefore, this model is only appropriate when the requirements

are well-understood and changes will be fairly limited during the

design process.

 Few business systems have stable requirements.

 The waterfall model is mostly used for large systems

engineering projects where a system is developed at

several sites.

 In those circumstances, the plan-driven nature of the waterfall

model helps coordinate the work.

Chapter 2 Software Processes 1030/10/2014

Incremental development

Chapter 2 Software Processes 1130/10/2014

Incremental development benefits

 The cost of accommodating changing customer

requirements is reduced.

 The amount of analysis and documentation that has to be

redone is much less than is required with the waterfall model.

 It is easier to get customer feedback on the development

work that has been done.

 Customers can comment on demonstrations of the software and

see how much has been implemented.

 More rapid delivery and deployment of useful software to

the customer is possible.

 Customers are able to use and gain value from the software

earlier than is possible with a waterfall process.

Chapter 2 Software Processes 1230/10/2014

Incremental development problems

 The process is not visible.

 Managers need regular deliverables to measure progress. If

systems are developed quickly, it is not cost-effective to produce

documents that reflect every version of the system.

 System structure tends to degrade as new increments

are added.

 Unless time and money is spent on refactoring to improve the

software, regular change tends to corrupt its structure.

Incorporating further software changes becomes increasingly

difficult and costly.

Chapter 2 Software Processes 1330/10/2014

Integration and configuration

 Based on software reuse where systems are integrated

from existing components or COTS (Commercial-off-the-

shelf) systems.

 Reused elements may be configured to adapt their

behaviour and functionality to a user’s requirements

 Reuse is now the standard approach for building many

types of business system

 Reuse covered in more depth in Chapter 15.

Chapter 2 Software Processes 1430/10/2014

Types of reusable software

 Stand-alone application systems (sometimes called

COTS) that are configured for use in a particular

environment.

 Collections of objects that are developed as a package

to be integrated with a component framework such as

.NET or J2EE.

 Web services that are developed according to service

standards and which are available for remote invocation.

Chapter 2 Software Processes 1530/10/2014

Reuse-oriented software engineering

Chapter 2 Software Processes 1630/10/2014

Key process stages

 Requirements specification

 Software discovery and evaluation

 Requirements refinement

 Application system configuration

 Component adaptation and integration

Chapter 2 Software Processes 1730/10/2014

Advantages and disadvantages

 Reduced costs and risks as less software is developed

from scratch

 Faster delivery and deployment of system

 But requirements compromises are inevitable so system

may not meet real needs of users

 Loss of control over evolution of reused system elements

Chapter 2 Software Processes 1830/10/2014

Process activities

Chapter 2 Software Processes 1930/10/2014

Process activities

 Real software processes are inter-leaved sequences of

technical, collaborative and managerial activities with the

overall goal of specifying, designing, implementing and

testing a software system.

 The four basic process activities of specification,

development, validation and evolution are organized

differently in different development processes.

 For example, in the waterfall model, they are organized

in sequence, whereas in incremental development they

are interleaved.

Chapter 2 Software Processes 2030/10/2014

The requirements engineering process

Chapter 2 Software Processes 2130/10/2014

Software specification

 The process of establishing what services are required

and the constraints on the system’s operation and

development.

 Requirements engineering process

 Requirements elicitation and analysis

• What do the system stakeholders require or expect from the system?

 Requirements specification

• Defining the requirements in detail

 Requirements validation

• Checking the validity of the requirements

Chapter 2 Software Processes 2230/10/2014

Software design and implementation

 The process of converting the system specification into

an executable system.

 Software design

 Design a software structure that realises the specification;

 Implementation

 Translate this structure into an executable program;

 The activities of design and implementation are closely

related and may be inter-leaved.

Chapter 2 Software Processes 2330/10/2014

A general model of the design process

Chapter 2 Software Processes 2430/10/2014

Design activities

 Architectural design, where you identify the overall

structure of the system, the principal components

(subsystems or modules), their relationships and how

they are distributed.

 Database design, where you design the system data

structures and how these are to be represented in a

database.

 Interface design, where you define the interfaces

between system components.

 Component selection and design, where you search for

reusable components. If unavailable, you design how it

will operate.
Chapter 2 Software Processes 2530/10/2014

System implementation

 The software is implemented either by developing a

program or programs or by configuring an application

system.

 Design and implementation are interleaved activities for

most types of software system.

 Programming is an individual activity with no standard

process.

 Debugging is the activity of finding program faults and

correcting these faults.

Chapter 2 Software Processes 2630/10/2014

Software validation

 Verification and validation (V & V) is intended to show

that a system conforms to its specification and meets the

requirements of the system customer.

 Involves checking and review processes and system

testing.

 System testing involves executing the system with test

cases that are derived from the specification of the real

data to be processed by the system.

 Testing is the most commonly used V & V activity.

Chapter 2 Software Processes 2730/10/2014

Stages of testing

Chapter 2 Software Processes 2830/10/2014

Testing stages

 Component testing

 Individual components are tested independently;

 Components may be functions or objects or coherent groupings

of these entities.

 System testing

 Testing of the system as a whole. Testing of emergent properties

is particularly important.

 Customer testing

 Testing with customer data to check that the system meets the

customer’s needs.

Chapter 2 Software Processes 2930/10/2014

Testing phases in a plan-driven software

process (V-model)

Chapter 2 Software Processes 3030/10/2014

Software evolution

 Software is inherently flexible and can change.

 As requirements change through changing business

circumstances, the software that supports the business

must also evolve and change.

 Although there has been a demarcation between

development and evolution (maintenance) this is

increasingly irrelevant as fewer and fewer systems are

completely new.

Chapter 2 Software Processes 3130/10/2014

System evolution

Chapter 2 Software Processes 3230/10/2014

Coping with change

Chapter 2 Software Processes 3330/10/2014

Coping with change

 Change is inevitable in all large software projects.

 Business changes lead to new and changed system

requirements

 New technologies open up new possibilities for improving

implementations

 Changing platforms require application changes

 Change leads to rework so the costs of change include

both rework (e.g. re-analysing requirements) as well as

the costs of implementing new functionality

Chapter 2 Software Processes 3430/10/2014

Reducing the costs of rework

 Change anticipation, where the software process

includes activities that can anticipate possible changes

before significant rework is required.

 For example, a prototype system may be developed to show

some key features of the system to customers.

 Change tolerance, where the process is designed so that

changes can be accommodated at relatively low cost.

 This normally involves some form of incremental development.

Proposed changes may be implemented in increments that have

not yet been developed. If this is impossible, then only a single

increment (a small part of the system) may have be altered to

incorporate the change.

Chapter 2 Software Processes 3530/10/2014

Coping with changing requirements

 System prototyping, where a version of the system or

part of the system is developed quickly to check the

customer’s requirements and the feasibility of design

decisions. This approach supports change anticipation.

 Incremental delivery, where system increments are

delivered to the customer for comment and

experimentation. This supports both change avoidance

and change tolerance.

Chapter 2 Software Processes 3630/10/2014

Software prototyping

 A prototype is an initial version of a system used to

demonstrate concepts and try out design options.

 A prototype can be used in:

 The requirements engineering process to help with requirements

elicitation and validation;

 In design processes to explore options and develop a UI design;

 In the testing process to run back-to-back tests.

Chapter 2 Software Processes 3730/10/2014

Benefits of prototyping

 Improved system usability.

 A closer match to users’ real needs.

 Improved design quality.

 Improved maintainability.

 Reduced development effort.

Chapter 2 Software Processes 3830/10/2014

The process of prototype development

Chapter 2 Software Processes 3930/10/2014

Prototype development

 May be based on rapid prototyping languages or tools

 May involve leaving out functionality

 Prototype should focus on areas of the product that are not well-

understood;

 Error checking and recovery may not be included in the

prototype;

 Focus on functional rather than non-functional requirements

such as reliability and security

Chapter 2 Software Processes 4030/10/2014

Throw-away prototypes

 Prototypes should be discarded after development as

they are not a good basis for a production system:

 It may be impossible to tune the system to meet non-functional

requirements;

 Prototypes are normally undocumented;

 The prototype structure is usually degraded through rapid

change;

 The prototype probably will not meet normal organisational

quality standards.

Chapter 2 Software Processes 4130/10/2014

Incremental delivery

 Rather than deliver the system as a single delivery, the

development and delivery is broken down into

increments with each increment delivering part of the

required functionality.

 User requirements are prioritised and the highest priority

requirements are included in early increments.

 Once the development of an increment is started, the

requirements are frozen though requirements for later

increments can continue to evolve.

Chapter 2 Software Processes 4230/10/2014

Incremental development and delivery

 Incremental development

 Develop the system in increments and evaluate each increment

before proceeding to the development of the next increment;

 Normal approach used in agile methods;

 Evaluation done by user/customer proxy.

 Incremental delivery

 Deploy an increment for use by end-users;

 More realistic evaluation about practical use of software;

 Difficult to implement for replacement systems as increments

have less functionality than the system being replaced.

Chapter 2 Software Processes 4330/10/2014

Incremental delivery

Chapter 2 Software Processes 4430/10/2014

Incremental delivery advantages

 Customer value can be delivered with each increment so

system functionality is available earlier.

 Early increments act as a prototype to help elicit

requirements for later increments.

 Lower risk of overall project failure.

 The highest priority system services tend to receive the

most testing.

Chapter 2 Software Processes 4530/10/2014

Incremental delivery problems

 Most systems require a set of basic facilities that are

used by different parts of the system.

 As requirements are not defined in detail until an increment is to

be implemented, it can be hard to identify common facilities that

are needed by all increments.

 The essence of iterative processes is that the

specification is developed in conjunction with the

software.

 However, this conflicts with the procurement model of many

organizations, where the complete system specification is part of

the system development contract.

Chapter 2 Software Processes 4630/10/2014

Process improvement

Chapter 2 Software Processes 4730/10/2014

Process improvement

 Many software companies have turned to software

process improvement as a way of enhancing the quality

of their software, reducing costs or accelerating their

development processes.

 Process improvement means understanding existing

processes and changing these processes to increase

product quality and/or reduce costs and development

time.

Chapter 2 Software Processes 4830/10/2014

Approaches to improvement

 The process maturity approach, which focuses on

improving process and project management and

introducing good software engineering practice.

 The level of process maturity reflects the extent to which good

technical and management practice has been adopted in

organizational software development processes.

 The agile approach, which focuses on iterative

development and the reduction of overheads in the

software process.

 The primary characteristics of agile methods are rapid delivery of

functionality and responsiveness to changing customer

requirements.

Chapter 2 Software Processes 4930/10/2014

The process improvement cycle

Chapter 2 Software Processes 5030/10/2014

Process improvement activities

 Process measurement

 You measure one or more attributes of the software process or

product. These measurements forms a baseline that helps you

decide if process improvements have been effective.

 Process analysis

 The current process is assessed, and process weaknesses and

bottlenecks are identified. Process models (sometimes called

process maps) that describe the process may be developed.

 Process change

 Process changes are proposed to address some of the identified

process weaknesses. These are introduced and the cycle

resumes to collect data about the effectiveness of the changes.

Chapter 2 Software Processes 5130/10/2014

Process measurement

 Wherever possible, quantitative process data

should be collected

 However, where organisations do not have clearly defined

process standards this is very difficult as you don’t know what to

measure. A process may have to be defined before any

measurement is possible.

 Process measurements should be used to

assess process improvements

 But this does not mean that measurements should drive the

improvements. The improvement driver should be the

organizational objectives.

Chapter 2 Software Processes 5230/10/2014

Process metrics

 Time taken for process activities to be

completed

 E.g. Calendar time or effort to complete an activity or process.

 Resources required for processes or activities

 E.g. Total effort in person-days.

 Number of occurrences of a particular event

 E.g. Number of defects discovered.

Chapter 2 Software Processes 5330/10/2014

Capability maturity levels

Chapter 2 Software Processes 5430/10/2014

The SEI capability maturity model

 Initial

 Essentially uncontrolled

 Repeatable

 Product management procedures defined and used

 Defined

 Process management procedures and strategies defined

and used

 Managed

 Quality management strategies defined and used

 Optimising

 Process improvement strategies defined and used

Chapter 2 Software Processes 5530/10/2014

Key points

 Software processes are the activities involved in

producing a software system. Software process models

are abstract representations of these processes.

 General process models describe the organization of

software processes.

 Examples of these general models include the ‘waterfall’ model,

incremental development, and reuse-oriented development.

 Requirements engineering is the process of developing a

software specification.

Chapter 2 Software Processes 5630/10/2014

Key points

 Design and implementation processes are concerned

with transforming a requirements specification into an

executable software system.

 Software validation is the process of checking that the

system conforms to its specification and that it meets the

real needs of the users of the system.

 Software evolution takes place when you change

existing software systems to meet new requirements.

The software must evolve to remain useful.

 Processes should include activities such as prototyping

and incremental delivery to cope with change.

Chapter 2 Software Processes 5730/10/2014

Key points

 Processes may be structured for iterative development

and delivery so that changes may be made without

disrupting the system as a whole.

 The principal approaches to process improvement are

agile approaches, geared to reducing process

overheads, and maturity-based approaches based on

better process management and the use of good

software engineering practice.

 The SEI process maturity framework identifies maturity

levels that essentially correspond to the use of good

software engineering practice.

Chapter 2 Software Processes 5830/10/2014

Chapter 3 – Agile Software Development

Chapter 3 Agile Software Development 130/10/2014

Topics covered

 Agile methods

 Agile development techniques

 Agile project management

 Scaling agile methods

Chapter 3 Agile Software Development 230/10/2014

Rapid software development

 Rapid development and delivery is now often the most

important requirement for software systems

 Businesses operate in a fast –changing requirement and it is

practically impossible to produce a set of stable software

requirements

 Software has to evolve quickly to reflect changing business needs.

 Plan-driven development is essential for some types of

system but does not meet these business needs.

 Agile development methods emerged in the late 1990s

whose aim was to radically reduce the delivery time for

working software systems

Chapter 3 Agile Software Development 330/10/2014

Agile development

 Program specification, design and implementation are

inter-leaved

 The system is developed as a series of versions or

increments with stakeholders involved in version

specification and evaluation

 Frequent delivery of new versions for evaluation

 Extensive tool support (e.g. automated testing tools)

used to support development.

 Minimal documentation – focus on working code

Chapter 3 Agile Software Development 430/10/2014

Plan-driven and agile development

Chapter 3 Agile Software Development 530/10/2014

Plan-driven and agile development

 Plan-driven development

 A plan-driven approach to software engineering is based around

separate development stages with the outputs to be produced at

each of these stages planned in advance.

 Not necessarily waterfall model – plan-driven, incremental

development is possible

 Iteration occurs within activities.

 Agile development

 Specification, design, implementation and testing are inter-

leaved and the outputs from the development process are

decided through a process of negotiation during the software

development process.

Chapter 3 Agile Software Development 630/10/2014

Agile methods

Chapter 3 Agile Software Development 730/10/2014

Agile methods

 Dissatisfaction with the overheads involved in software

design methods of the 1980s and 1990s led to the

creation of agile methods. These methods:

 Focus on the code rather than the design

 Are based on an iterative approach to software development

 Are intended to deliver working software quickly and evolve this

quickly to meet changing requirements.

 The aim of agile methods is to reduce overheads in the

software process (e.g. by limiting documentation) and to

be able to respond quickly to changing requirements

without excessive rework.

Chapter 3 Agile Software Development 830/10/2014

Agile manifesto

 We are uncovering better ways of developing software

by doing it and helping others do it. Through this work

we have come to value:

 Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

 That is, while there is value in the items on the right, we

value the items on the left more.

Chapter 3 Agile Software Development 930/10/2014

The principles of agile methods

Chapter 3 Agile Software Development 10

Principle Description

Customer involvement Customers should be closely involved throughout the

development process. Their role is provide and prioritize new

system requirements and to evaluate the iterations of the

system.

Incremental delivery The software is developed in increments with the customer

specifying the requirements to be included in each increment.

People not process The skills of the development team should be recognized and

exploited. Team members should be left to develop their own

ways of working without prescriptive processes.

Embrace change Expect the system requirements to change and so design the

system to accommodate these changes.

Maintain simplicity Focus on simplicity in both the software being developed and

in the development process. Wherever possible, actively work

to eliminate complexity from the system.

30/10/2014

Agile method applicability

 Product development where a software company is

developing a small or medium-sized product for sale.

 Virtually all software products and apps are now developed

using an agile approach

 Custom system development within an organization,

where there is a clear commitment from the customer to

become involved in the development process and where

there are few external rules and regulations that affect

the software.

Chapter 3 Agile Software Development 1130/10/2014

Agile development techniques

Chapter 3 Agile Software Development 1230/10/2014

Extreme programming

 A very influential agile method, developed in the late
1990s, that introduced a range of agile development
techniques.

 Extreme Programming (XP) takes an ‘extreme’ approach
to iterative development.

 New versions may be built several times per day;

 Increments are delivered to customers every 2 weeks;

 All tests must be run for every build and the build is only
accepted if tests run successfully.

Chapter 3 Agile Software Development 1330/10/2014

The extreme programming release cycle

Chapter 3 Agile Software Development 1430/10/2014

Extreme programming practices (a)

Chapter 3 Agile Software Development 15

Principle or practice Description

Incremental planning Requirements are recorded on story cards and the stories to be

included in a release are determined by the time available and

their relative priority. The developers break these stories into

development ‘Tasks’. See Figures 3.5 and 3.6.

Small releases The minimal useful set of functionality that provides business

value is developed first. Releases of the system are frequent

and incrementally add functionality to the first release.

Simple design Enough design is carried out to meet the current requirements

and no more.

Test-first development An automated unit test framework is used to write tests for a

new piece of functionality before that functionality itself is

implemented.

Refactoring All developers are expected to refactor the code continuously as

soon as possible code improvements are found. This keeps the

code simple and maintainable.

30/10/2014

Extreme programming practices (b)

Chapter 3 Agile Software Development 16

Pair programming Developers work in pairs, checking each other’s work and

providing the support to always do a good job.

Collective ownership The pairs of developers work on all areas of the system, so that

no islands of expertise develop and all the developers take

responsibility for all of the code. Anyone can change anything.

Continuous integration As soon as the work on a task is complete, it is integrated into

the whole system. After any such integration, all the unit tests in

the system must pass.

Sustainable pace Large amounts of overtime are not considered acceptable as

the net effect is often to reduce code quality and medium term

productivity

On-site customer A representative of the end-user of the system (the customer)

should be available full time for the use of the XP team. In an

extreme programming process, the customer is a member of

the development team and is responsible for bringing system

requirements to the team for implementation.

30/10/2014

XP and agile principles

 Incremental development is supported through small,

frequent system releases.

 Customer involvement means full-time customer

engagement with the team.

 People not process through pair programming, collective

ownership and a process that avoids long working hours.

 Change supported through regular system releases.

 Maintaining simplicity through constant refactoring of

code.

Chapter 3 Agile Software Development 1730/10/2014

Influential XP practices

 Extreme programming has a technical focus and is not

easy to integrate with management practice in most

organizations.

 Consequently, while agile development uses practices

from XP, the method as originally defined is not widely

used.

 Key practices

 User stories for specification

 Refactoring

 Test-first development

 Pair programming

Chapter 3 Agile Software Development 1830/10/2014

User stories for requirements

 In XP, a customer or user is part of the XP team and is

responsible for making decisions on requirements.

 User requirements are expressed as user stories or

scenarios.

 These are written on cards and the development team

break them down into implementation tasks. These tasks

are the basis of schedule and cost estimates.

 The customer chooses the stories for inclusion in the

next release based on their priorities and the schedule

estimates.

Chapter 3 Agile Software Development 1930/10/2014

A ‘prescribing medication’ story

Chapter 3 Agile Software Development 2030/10/2014

Examples of task cards for prescribing

medication

Chapter 3 Agile Software Development 2130/10/2014

Refactoring

 Conventional wisdom in software engineering is to
design for change. It is worth spending time and effort
anticipating changes as this reduces costs later in the life
cycle.

 XP, however, maintains that this is not worthwhile as
changes cannot be reliably anticipated.

 Rather, it proposes constant code improvement
(refactoring) to make changes easier when they have to
be implemented.

Chapter 3 Agile Software Development 2230/10/2014

Refactoring

 Programming team look for possible software

improvements and make these improvements even

where there is no immediate need for them.

 This improves the understandability of the software and

so reduces the need for documentation.

 Changes are easier to make because the code is well-

structured and clear.

 However, some changes requires architecture

refactoring and this is much more expensive.

Chapter 3 Agile Software Development 2330/10/2014

Examples of refactoring

 Re-organization of a class hierarchy to remove duplicate

code.

 Tidying up and renaming attributes and methods to make

them easier to understand.

 The replacement of inline code with calls to methods that

have been included in a program library.

Chapter 3 Agile Software Development 2430/10/2014

Test-first development

 Testing is central to XP and XP has developed an

approach where the program is tested after every

change has been made.

 XP testing features:

 Test-first development.

 Incremental test development from scenarios.

 User involvement in test development and validation.

 Automated test harnesses are used to run all component tests

each time that a new release is built.

Chapter 3 Agile Software Development 2530/10/2014

Test-driven development

 Writing tests before code clarifies the requirements to be
implemented.

 Tests are written as programs rather than data so that
they can be executed automatically. The test includes a
check that it has executed correctly.

 Usually relies on a testing framework such as Junit.

 All previous and new tests are run automatically when
new functionality is added, thus checking that the new
functionality has not introduced errors.

Chapter 3 Agile Software Development 2630/10/2014

Customer involvement

 The role of the customer in the testing process is to help

develop acceptance tests for the stories that are to be

implemented in the next release of the system.

 The customer who is part of the team writes tests as

development proceeds. All new code is therefore

validated to ensure that it is what the customer needs.

 However, people adopting the customer role have limited

time available and so cannot work full-time with the

development team. They may feel that providing the

requirements was enough of a contribution and so may

be reluctant to get involved in the testing process.

Chapter 3 Agile Software Development 2730/10/2014

Test case description for dose checking

Chapter 3 Agile Software Development 2830/10/2014

Test automation

 Test automation means that tests are written as

executable components before the task is implemented

 These testing components should be stand-alone, should

simulate the submission of input to be tested and should check

that the result meets the output specification. An automated test

framework (e.g. Junit) is a system that makes it easy to write

executable tests and submit a set of tests for execution.

 As testing is automated, there is always a set of tests

that can be quickly and easily executed

 Whenever any functionality is added to the system, the tests can

be run and problems that the new code has introduced can be

caught immediately.

Chapter 3 Agile Software Development 2930/10/2014

Problems with test-first development

 Programmers prefer programming to testing and

sometimes they take short cuts when writing tests. For

example, they may write incomplete tests that do not

check for all possible exceptions that may occur.

 Some tests can be very difficult to write incrementally.

For example, in a complex user interface, it is often

difficult to write unit tests for the code that implements

the ‘display logic’ and workflow between screens.

 It difficult to judge the completeness of a set of tests.

Although you may have a lot of system tests, your test

set may not provide complete coverage.

Chapter 3 Agile Software Development 3030/10/2014

Pair programming

 Pair programming involves programmers working in
pairs, developing code together.

 This helps develop common ownership of code and
spreads knowledge across the team.

 It serves as an informal review process as each line of
code is looked at by more than 1 person.

 It encourages refactoring as the whole team can benefit
from improving the system code.

Chapter 3 Agile Software Development 3130/10/2014

Pair programming

 In pair programming, programmers sit together at the

same computer to develop the software.

 Pairs are created dynamically so that all team members

work with each other during the development process.

 The sharing of knowledge that happens during pair

programming is very important as it reduces the overall

risks to a project when team members leave.

 Pair programming is not necessarily inefficient and there

is some evidence that suggests that a pair working

together is more efficient than 2 programmers working

separately.

Chapter 3 Agile Software Development 3230/10/2014

Agile project management

Chapter 3 Agile Software Development 3330/10/2014

Agile project management

 The principal responsibility of software project managers

is to manage the project so that the software is delivered

on time and within the planned budget for the project.

 The standard approach to project management is plan-

driven. Managers draw up a plan for the project showing

what should be delivered, when it should be delivered

and who will work on the development of the project

deliverables.

 Agile project management requires a different approach,

which is adapted to incremental development and the

practices used in agile methods.

Chapter 3 Agile Software Development 3430/10/2014

Scrum

 Scrum is an agile method that focuses on managing

iterative development rather than specific agile practices.

 There are three phases in Scrum.

 The initial phase is an outline planning phase where you

establish the general objectives for the project and design the

software architecture.

 This is followed by a series of sprint cycles, where each cycle

develops an increment of the system.

 The project closure phase wraps up the project, completes

required documentation such as system help frames and user

manuals and assesses the lessons learned from the project.

Chapter 3 Agile Software Development 3530/10/2014

Scrum terminology (a)

Scrum term Definition

Development team A self-organizing group of software developers, which should be no more than

7 people. They are responsible for developing the software and other

essential project documents.

Potentially shippable

product increment

The software increment that is delivered from a sprint. The idea is that this

should be ‘potentially shippable’ which means that it is in a finished state and

no further work, such as testing, is needed to incorporate it into the final

product. In practice, this is not always achievable.

Product backlog This is a list of ‘to do’ items which the Scrum team must tackle. They may be

feature definitions for the software, software requirements, user stories or

descriptions of supplementary tasks that are needed, such as architecture

definition or user documentation.

Product owner An individual (or possibly a small group) whose job is to identify product

features or requirements, prioritize these for development and continuously

review the product backlog to ensure that the project continues to meet critical

business needs. The Product Owner can be a customer but might also be a

product manager in a software company or other stakeholder representative.

Chapter 3 Agile Software Development 3630/10/2014

Scrum terminology (b)

Scrum term Definition
Scrum A daily meeting of the Scrum team that reviews progress and prioritizes

work to be done that day. Ideally, this should be a short face-to-face

meeting that includes the whole team.

ScrumMaster The ScrumMaster is responsible for ensuring that the Scrum process is

followed and guides the team in the effective use of Scrum. He or she is

responsible for interfacing with the rest of the company and for ensuring

that the Scrum team is not diverted by outside interference. The Scrum

developers are adamant that the ScrumMaster should not be thought of

as a project manager. Others, however, may not always find it easy to

see the difference.

Sprint A development iteration. Sprints are usually 2-4 weeks long.

Velocity An estimate of how much product backlog effort that a team can cover in

a single sprint. Understanding a team’s velocity helps them estimate

what can be covered in a sprint and provides a basis for measuring

improving performance.

Chapter 3 Agile Software Development 3730/10/2014

Scrum sprint cycle

Chapter 3 Agile Software Development 3830/10/2014

The Scrum sprint cycle

 Sprints are fixed length, normally 2–4 weeks.

 The starting point for planning is the product backlog,

which is the list of work to be done on the project.

 The selection phase involves all of the project team who

work with the customer to select the features and

functionality from the product backlog to be developed

during the sprint.

Chapter 3 Agile Software Development 3930/10/2014

The Sprint cycle

 Once these are agreed, the team organize themselves to

develop the software.

 During this stage the team is isolated from the customer

and the organization, with all communications

channelled through the so-called ‘Scrum master’.

 The role of the Scrum master is to protect the

development team from external distractions.

 At the end of the sprint, the work done is reviewed and

presented to stakeholders. The next sprint cycle then

begins.

Chapter 3 Agile Software Development 4030/10/2014

Teamwork in Scrum

 The ‘Scrum master’ is a facilitator who arranges daily

meetings, tracks the backlog of work to be done, records

decisions, measures progress against the backlog and

communicates with customers and management outside

of the team.

 The whole team attends short daily meetings (Scrums)

where all team members share information, describe

their progress since the last meeting, problems that have

arisen and what is planned for the following day.

 This means that everyone on the team knows what is going on

and, if problems arise, can re-plan short-term work to cope with

them.

Chapter 3 Agile Software Development 4130/10/2014

Scrum benefits

 The product is broken down into a set of manageable

and understandable chunks.

 Unstable requirements do not hold up progress.

 The whole team have visibility of everything and

consequently team communication is improved.

 Customers see on-time delivery of increments and gain

feedback on how the product works.

 Trust between customers and developers is established

and a positive culture is created in which everyone

expects the project to succeed.

Chapter 3 Agile Software Development 4230/10/2014

Distributed Scrum

Chapter 3 Agile Software Development 4330/10/2014

Scaling agile methods

Chapter 3 Agile Software Development 4430/10/2014

Scaling agile methods

 Agile methods have proved to be successful for small

and medium sized projects that can be developed by a

small co-located team.

 It is sometimes argued that the success of these

methods comes because of improved communications

which is possible when everyone is working together.

 Scaling up agile methods involves changing these to

cope with larger, longer projects where there are multiple

development teams, perhaps working in different

locations.

Chapter 3 Agile Software Development 4530/10/2014

Scaling out and scaling up

 ‘Scaling up’ is concerned with using agile methods for

developing large software systems that cannot be

developed by a small team.

 ‘Scaling out’ is concerned with how agile methods can

be introduced across a large organization with many

years of software development experience.

 When scaling agile methods it is importaant to maintain

agile fundamentals:

 Flexible planning, frequent system releases, continuous

integration, test-driven development and good team

communications.

Chapter 3 Agile Software Development 4630/10/2014

Practical problems with agile methods

 The informality of agile development is incompatible with

the legal approach to contract definition that is commonly

used in large companies.

 Agile methods are most appropriate for new software

development rather than software maintenance. Yet the

majority of software costs in large companies come from

maintaining their existing software systems.

 Agile methods are designed for small co-located teams

yet much software development now involves worldwide

distributed teams.

Chapter 3 Agile Software Development 4730/10/2014

Contractual issues

 Most software contracts for custom systems are based

around a specification, which sets out what has to be

implemented by the system developer for the system

customer.

 However, this precludes interleaving specification and

development as is the norm in agile development.

 A contract that pays for developer time rather than

functionality is required.

 However, this is seen as a high risk my many legal departments

because what has to be delivered cannot be guaranteed.

Chapter 3 Agile Software Development 4830/10/2014

Agile methods and software maintenance

 Most organizations spend more on maintaining existing

software than they do on new software development. So,

if agile methods are to be successful, they have to

support maintenance as well as original development.

 Two key issues:

 Are systems that are developed using an agile approach

maintainable, given the emphasis in the development process of

minimizing formal documentation?

 Can agile methods be used effectively for evolving a system in

response to customer change requests?

 Problems may arise if original development team cannot

be maintained.

Chapter 3 Agile Software Development 4930/10/2014

Agile maintenance

 Key problems are:

 Lack of product documentation

 Keeping customers involved in the development process

 Maintaining the continuity of the development team

 Agile development relies on the development team

knowing and understanding what has to be done.

 For long-lifetime systems, this is a real problem as the

original developers will not always work on the system.

Chapter 3 Agile Software Development 5030/10/2014

Agile and plan-driven methods

 Most projects include elements of plan-driven and agile

processes. Deciding on the balance depends on:

 Is it important to have a very detailed specification and design

before moving to implementation? If so, you probably need to use

a plan-driven approach.

 Is an incremental delivery strategy, where you deliver the software

to customers and get rapid feedback from them, realistic? If so,

consider using agile methods.

 How large is the system that is being developed? Agile methods

are most effective when the system can be developed with a small

co-located team who can communicate informally. This may not be

possible for large systems that require larger development teams

so a plan-driven approach may have to be used.

Chapter 3 Agile Software Development 5130/10/2014

Agile principles and organizational practice

Principle Practice
Customer involvement This depends on having a customer who is willing and able to

spend time with the development team and who can represent all

system stakeholders. Often, customer representatives have other

demands on their time and cannot play a full part in the software

development.

Where there are external stakeholders, such as regulators, it is

difficult to represent their views to the agile team.

Embrace change Prioritizing changes can be extremely difficult, especially in

systems for which there are many stakeholders. Typically, each

stakeholder gives different priorities to different changes.

Incremental delivery Rapid iterations and short-term planning for development does

not always fit in with the longer-term planning cycles of business

planning and marketing. Marketing managers may need to know

what product features several months in advance to prepare an

effective marketing campaign.

Chapter 3 Agile Software Development 5230/10/2014

Agile principles and organizational practice

Principle Practice
Maintain simplicity Under pressure from delivery schedules, team members may not have

time to carry out desirable system simplifications.

People not process Individual team members may not have suitable personalities for the

intense involvement that is typical of agile methods, and therefore may

not interact well with other team members.

Chapter 3 Agile Software Development 5330/10/2014

Agile and plan-based factors

Chapter 3 Agile Software Development 5430/10/2014

System issues

 How large is the system being developed?

 Agile methods are most effective a relatively small co-located team

who can communicate informally.

 What type of system is being developed?

 Systems that require a lot of analysis before implementation need

a fairly detailed design to carry out this analysis.

 What is the expected system lifetime?

 Long-lifetime systems require documentation to communicate the

intentions of the system developers to the support team.

 Is the system subject to external regulation?

 If a system is regulated you will probably be required to produce

detailed documentation as part of the system safety case.

Chapter 3 Agile Software Development 5530/10/2014

People and teams

 How good are the designers and programmers in the

development team?

 It is sometimes argued that agile methods require higher skill

levels than plan-based approaches in which programmers simply

translate a detailed design into code.

 How is the development team organized?

 Design documents may be required if the team is dsitributed.

 What support technologies are available?

 IDE support for visualisation and program analysis is essential if

design documentation is not available.

Chapter 3 Agile Software Development 5630/10/2014

Organizational issues

 Traditional engineering organizations have a culture of

plan-based development, as this is the norm in

engineering.

 Is it standard organizational practice to develop a

detailed system specification?

 Will customer representatives be available to provide

feedback of system increments?

 Can informal agile development fit into the organizational

culture of detailed documentation?

Chapter 3 Agile Software Development 5730/10/2014

Agile methods for large systems

 Large systems are usually collections of separate,

communicating systems, where separate teams develop each

system. Frequently, these teams are working in different

places, sometimes in different time zones.

 Large systems are ‘brownfield systems’, that is they include

and interact with a number of existing systems. Many of the

system requirements are concerned with this interaction and

so don’t really lend themselves to flexibility and incremental

development.

 Where several systems are integrated to create a system, a

significant fraction of the development is concerned with

system configuration rather than original code development.

Chapter 3 Agile Software Development 5830/10/2014

Large system development

 Large systems and their development processes are

often constrained by external rules and regulations

limiting the way that they can be developed.

 Large systems have a long procurement and

development time. It is difficult to maintain coherent

teams who know about the system over that period as,

inevitably, people move on to other jobs and projects.

 Large systems usually have a diverse set of

stakeholders. It is practically impossible to involve all of

these different stakeholders in the development process.

Chapter 3 Agile Software Development 5930/10/2014

Factors in large systems

Chapter 3 Agile Software Development 6030/10/2014

IBM’s agility at scale model

Chapter 3 Agile Software Development 6130/10/2014

Scaling up to large systems

 A completely incremental approach to requirements

engineering is impossible.

 There cannot be a single product owner or customer

representative.

 For large systems development, it is not possible to focus only

on the code of the system.

 Cross-team communication mechanisms have to be designed

and used.

 Continuous integration is practically impossible. However, it is

essential to maintain frequent system builds and regular

releases of the system.

Chapter 3 Agile Software Development 6230/10/2014

Multi-team Scrum

 Role replication

 Each team has a Product Owner for their work component and

ScrumMaster.

 Product architects

 Each team chooses a product architect and these architects

collaborate to design and evolve the overall system architecture.

 Release alignment

 The dates of product releases from each team are aligned so

that a demonstrable and complete system is produced.

 Scrum of Scrums

 There is a daily Scrum of Scrums where representatives from

each team meet to discuss progressand plan work to be done.

Chapter 3 Agile Software Development 6330/10/2014

Agile methods across organizations

 Project managers who do not have experience of agile

methods may be reluctant to accept the risk of a new approach.

 Large organizations often have quality procedures and

standards that all projects are expected to follow and, because

of their bureaucratic nature, these are likely to be incompatible

with agile methods.

 Agile methods seem to work best when team members have a

relatively high skill level. However, within large organizations,

there are likely to be a wide range of skills and abilities.

 There may be cultural resistance to agile methods, especially in

those organizations that have a long history of using

conventional systems engineering processes.

Chapter 3 Agile Software Development 6430/10/2014

Key points

 Agile methods are incremental development methods that focus on

rapid software development, frequent releases of the software,

reducing process overheads by minimizing documentation and

producing high-quality code.

 Agile development practices include

 User stories for system specification

 Frequent releases of the software,

 Continuous software improvement

 Test-first development

 Customer participation in the development team.

Chapter 3 Agile Software Development 6530/10/2014

Key points

 Scrum is an agile method that provides a project

management framework.

 It is centred round a set of sprints, which are fixed time periods

when a system increment is developed.

 Many practical development methods are a mixture of

plan-based and agile development.

 Scaling agile methods for large systems is difficult.

 Large systems need up-front design and some documentation

and organizational practice may conflict with the informality of

agile approaches.

Chapter 3 Agile Software Development 6630/10/2014

Chapter 4 – Requirements Engineering

Chapter 4 Requirements Engineering 130/10/2014

Topics covered

 Functional and non-functional requirements

 Requirements engineering processes

 Requirements elicitation

 Requirements specification

 Requirements validation

 Requirements change

Chapter 4 Requirements Engineering 230/10/2014

Requirements engineering

 The process of establishing the services that acustomer

requires from a system and the constraints under which

it operates and is developed.

 The system requirements are the descriptions of the

system services and constraints that are generated

during the requirements engineering process.

Chapter 4 Requirements Engineering 330/10/2014

What is a requirement?

 It may range from a high-level abstract statement of a
service or of a system constraint to a detailed
mathematical functional specification.

 This is inevitable as requirements may serve a dual
function

 May be the basis for a bid for a contract - therefore must be open
to interpretation;

 May be the basis for the contract itself - therefore must be
defined in detail;

 Both these statements may be called requirements.

Chapter 4 Requirements Engineering 430/10/2014

Requirements abstraction (Davis)

Chapter 4 Requirements Engineering 5

“If a company wishes to let a contract for a large software development

project, it must define its needs in a sufficiently abstract way that a

solution is not pre-defined. The requirements must be written so that

several contractors can bid for the contract, offering, perhaps, different

ways of meeting the client organization’s needs. Once a contract has

been awarded, the contractor must write a system definition for the

client in more detail so that the client understands and can validate what

the software will do. Both of these documents may be called the

requirements document for the system.”

30/10/2014

Types of requirement

 User requirements

 Statements in natural language plus diagrams of the services the

system provides and its operational constraints. Written for

customers.

 System requirements

 A structured document setting out detailed descriptions of the

system’s functions, services and operational constraints. Defines

what should be implemented so may be part of a contract

between client and contractor.

Chapter 4 Requirements Engineering 630/10/2014

User and system requirements

Chapter 4 Requirements Engineering 730/10/2014

Readers of different types of requirements

specification

Chapter 4 Requirements Engineering 830/10/2014

System stakeholders

 Any person or organization who is affected by the

system in some way and so who has a legitimate interest

 Stakeholder types

 End users

 System managers

 System owners

 External stakeholders

Chapter 4 Requirements Engineering 930/10/2014

Stakeholders in the Mentcare system

 Patients whose information is recorded in the system.

 Doctors who are responsible for assessing and treating

patients.

 Nurses who coordinate the consultations with doctors

and administer some treatments.

 Medical receptionists who manage patients’

appointments.

 IT staff who are responsible for installing and maintaining

the system.

Chapter 4 Requirements Engineering 1030/10/2014

Stakeholders in the Mentcare system

 A medical ethics manager who must ensure that the

system meets current ethical guidelines for patient care.

 Health care managers who obtain management

information from the system.

 Medical records staff who are responsible for ensuring

that system information can be maintained and

preserved, and that record keeping procedures have

been properly implemented.

Chapter 4 Requirements Engineering 1130/10/2014

Agile methods and requirements

 Many agile methods argue that producing detailed

system requirements is a waste of time as requirements

change so quickly.

 The requirements document is therefore always out of

date.

 Agile methods usually use incremental requirements

engineering and may express requirements as ‘user

stories’ (discussed in Chapter 3).

 This is practical for business systems but problematic for

systems that require pre-delivery analysis (e.g. critical

systems) or systems developed by several teams.

Chapter 4 Requirements Engineering 1230/10/2014

Functional and non-functional requirements

Chapter 4 Requirements Engineering 1330/10/2014

Functional and non-functional requirements

 Functional requirements

 Statements of services the system should provide, how the
system should react to particular inputs and how the system
should behave in particular situations.

 May state what the system should not do.

 Non-functional requirements

 Constraints on the services or functions offered by the system
such as timing constraints, constraints on the development
process, standards, etc.

 Often apply to the system as a whole rather than individual
features or services.

 Domain requirements

 Constraints on the system from the domain of operation

Chapter 4 Requirements Engineering 1430/10/2014

Functional requirements

 Describe functionality or system services.

 Depend on the type of software, expected users and the

type of system where the software is used.

 Functional user requirements may be high-level

statements of what the system should do.

 Functional system requirements should describe the

system services in detail.

Chapter 4 Requirements Engineering 1530/10/2014

Mentcare system: functional requirements

 A user shall be able to search the appointments lists for

all clinics.

 The system shall generate each day, for each clinic, a

list of patients who are expected to attend appointments

that day.

 Each staff member using the system shall be uniquely

identified by his or her 8-digit employee number.

Chapter 4 Requirements Engineering 1630/10/2014

Requirements imprecision

 Problems arise when functional requirements are not

precisely stated.

 Ambiguous requirements may be interpreted in different

ways by developers and users.

 Consider the term ‘search’ in requirement 1

 User intention – search for a patient name across all

appointments in all clinics;

 Developer interpretation – search for a patient name in an

individual clinic. User chooses clinic then search.

Chapter 4 Requirements Engineering 1730/10/2014

Requirements completeness and consistency

 In principle, requirements should be both complete and

consistent.

 Complete

 They should include descriptions of all facilities required.

 Consistent

 There should be no conflicts or contradictions in the descriptions

of the system facilities.

 In practice, because of system and environmental

complexity, it is impossible to produce a complete and

consistent requirements document.

Chapter 4 Requirements Engineering 1830/10/2014

Non-functional requirements

 These define system properties and constraints e.g.
reliability, response time and storage requirements.
Constraints are I/O device capability, system
representations, etc.

 Process requirements may also be specified mandating
a particular IDE, programming language or development
method.

 Non-functional requirements may be more critical than
functional requirements. If these are not met, the system
may be useless.

Chapter 4 Requirements Engineering 1930/10/2014

Types of nonfunctional requirement

Chapter 4 Requirements Engineering 2030/10/2014

Non-functional requirements implementation

 Non-functional requirements may affect the overall

architecture of a system rather than the individual

components.

 For example, to ensure that performance requirements are met,

you may have to organize the system to minimize

communications between components.

 A single non-functional requirement, such as a security

requirement, may generate a number of related

functional requirements that define system services that

are required.

 It may also generate requirements that restrict existing

requirements.

Chapter 4 Requirements Engineering 2130/10/2014

Non-functional classifications

 Product requirements

 Requirements which specify that the delivered product must

behave in a particular way e.g. execution speed, reliability, etc.

 Organisational requirements

 Requirements which are a consequence of organisational

policies and procedures e.g. process standards used,

implementation requirements, etc.

 External requirements

 Requirements which arise from factors which are external to the

system and its development process e.g. interoperability

requirements, legislative requirements, etc.

Chapter 4 Requirements Engineering 2230/10/2014

Examples of nonfunctional requirements in the

Mentcare system

Chapter 4 Requirements Engineering 23

Product requirement
The Mentcare system shall be available to all clinics during normal
working hours (Mon–Fri, 0830–17.30). Downtime within normal
working hours shall not exceed five seconds in any one day.

Organizational requirement
Users of the Mentcare system shall authenticate themselves using
their health authority identity card.

External requirement
The system shall implement patient privacy provisions as set out in
HStan-03-2006-priv.

30/10/2014

Goals and requirements

 Non-functional requirements may be very difficult to state

precisely and imprecise requirements may be difficult to

verify.

 Goal

 A general intention of the user such as ease of use.

 Verifiable non-functional requirement

 A statement using some measure that can be objectively tested.

 Goals are helpful to developers as they convey the

intentions of the system users.

Chapter 4 Requirements Engineering 2430/10/2014

Usability requirements

 The system should be easy to use by medical staff and

should be organized in such a way that user errors are

minimized. (Goal)

 Medical staff shall be able to use all the system functions

after four hours of training. After this training, the

average number of errors made by experienced users

shall not exceed two per hour of system use. (Testable

non-functional requirement)

Chapter 4 Requirements Engineering 2530/10/2014

Metrics for specifying nonfunctional

requirements

Chapter 4 Requirements Engineering 26

Property Measure

Speed Processed transactions/second

User/event response time

Screen refresh time

Size Mbytes

Number of ROM chips

Ease of use Training time

Number of help frames

Reliability Mean time to failure

Probability of unavailability

Rate of failure occurrence

Availability

Robustness Time to restart after failure

Percentage of events causing failure

Probability of data corruption on failure

Portability Percentage of target dependent statements

Number of target systems

30/10/2014

Requirements engineering processes

Chapter 4 Requirements Engineering 2730/10/2014

Requirements engineering processes

 The processes used for RE vary widely depending on
the application domain, the people involved and the
organisation developing the requirements.

 However, there are a number of generic activities
common to all processes

 Requirements elicitation;

 Requirements analysis;

 Requirements validation;

 Requirements management.

 In practice, RE is an iterative activity in which these
processes are interleaved.

Chapter 4 Requirements Engineering 2830/10/2014

A spiral view of the requirements engineering

process

Chapter 4 Requirements Engineering 2930/10/2014

Requirements elicitation

Chapter 4 Requirements Engineering 3030/10/2014

Requirements elicitation and analysis

 Sometimes called requirements elicitation or

requirements discovery.

 Involves technical staff working with customers to find

out about the application domain, the services that the

system should provide and the system’s operational

constraints.

 May involve end-users, managers, engineers involved in

maintenance, domain experts, trade unions, etc. These

are called stakeholders.

Chapter 4 Requirements Engineering 3130/10/2014

Requirements elicitation

Chapter 4 Requirements Engineering 3230/10/2014

Requirements elicitation

 Software engineers work with a range of system

stakeholders to find out about the application domain,

the services that the system should provide, the required

system performance, hardware constraints, other

systems, etc.

 Stages include:

 Requirements discovery,

 Requirements classification and organization,

 Requirements prioritization and negotiation,

 Requirements specification.

Chapter 4 Requirements Engineering 3330/10/2014

Problems of requirements elicitation

 Stakeholders don’t know what they really want.

 Stakeholders express requirements in their own terms.

 Different stakeholders may have conflicting

requirements.

 Organisational and political factors may influence the

system requirements.

 The requirements change during the analysis process.

New stakeholders may emerge and the business

environment may change.

Chapter 4 Requirements Engineering 3430/10/2014

The requirements elicitation and analysis

process

Chapter 4 Requirements Engineering 3530/10/2014

Process activities

 Requirements discovery

 Interacting with stakeholders to discover their requirements.
Domain requirements are also discovered at this stage.

 Requirements classification and organisation

 Groups related requirements and organises them into coherent
clusters.

 Prioritisation and negotiation

 Prioritising requirements and resolving requirements conflicts.

 Requirements specification

 Requirements are documented and input into the next round of
the spiral.

30/10/2014 Chapter 4 Requirements Engineering 36

Requirements discovery

 The process of gathering information about the required

and existing systems and distilling the user and system

requirements from this information.

 Interaction is with system stakeholders from managers to

external regulators.

 Systems normally have a range of stakeholders.

Chapter 4 Requirements Engineering 3730/10/2014

Interviewing

 Formal or informal interviews with stakeholders are part

of most RE processes.

 Types of interview

 Closed interviews based on pre-determined list of questions

 Open interviews where various issues are explored with

stakeholders.

 Effective interviewing

 Be open-minded, avoid pre-conceived ideas about the

requirements and are willing to listen to stakeholders.

 Prompt the interviewee to get discussions going using a

springboard question, a requirements proposal, or by working

together on a prototype system.

Chapter 4 Requirements Engineering 3830/10/2014

Interviews in practice

 Normally a mix of closed and open-ended interviewing.

 Interviews are good for getting an overall understanding
of what stakeholders do and how they might interact with
the system.

 Interviewers need to be open-minded without pre-
conceived ideas of what the system should do

 You need to prompt the use to talk about the system by
suggesting requirements rather than simply asking them
what they want.

30/10/2014 Chapter 4 Requirements Engineering 39

Problems with interviews

 Application specialists may use language to describe
their work that isn’t easy for the requirements engineer to
understand.

 Interviews are not good for understanding domain
requirements

 Requirements engineers cannot understand specific domain
terminology;

 Some domain knowledge is so familiar that people find it hard to
articulate or think that it isn’t worth articulating.

Chapter 4 Requirements Engineering 4030/10/2014

Ethnography

 A social scientist spends a considerable time observing

and analysing how people actually work.

 People do not have to explain or articulate their work.

 Social and organisational factors of importance may be

observed.

 Ethnographic studies have shown that work is usually

richer and more complex than suggested by simple

system models.

Chapter 4 Requirements Engineering 4130/10/2014

Scope of ethnography

 Requirements that are derived from the way that people

actually work rather than the way I which process

definitions suggest that they ought to work.

 Requirements that are derived from cooperation and

awareness of other people’s activities.

 Awareness of what other people are doing leads to changes in

the ways in which we do things.

 Ethnography is effective for understanding existing

processes but cannot identify new features that should

be added to a system.

Chapter 4 Requirements Engineering 4230/10/2014

Focused ethnography

 Developed in a project studying the air traffic control
process

 Combines ethnography with prototyping

 Prototype development results in unanswered questions
which focus the ethnographic analysis.

 The problem with ethnography is that it studies existing
practices which may have some historical basis which is
no longer relevant.

Chapter 4 Requirements Engineering 4330/10/2014

Ethnography and prototyping for requirements

analysis

Chapter 4 Requirements Engineering 4430/10/2014

Stories and scenarios

 Scenarios and user stories are real-life examples of how

a system can be used.

 Stories and scenarios are a description of how a system

may be used for a particular task.

 Because they are based on a practical situation,

stakeholders can relate to them and can comment on

their situation with respect to the story.

30/10/2014 Chapter 4 Requirements Engineering 45

Photo sharing in the classroom (iLearn)

 Jack is a primary school teacher in Ullapool (a village in northern Scotland). He has

decided that a class project should be focused around the fishing industry in the area,

looking at the history, development and economic impact of fishing. As part of this,

pupils are asked to gather and share reminiscences from relatives, use newspaper

archives and collect old photographs related to fishing and fishing communities in the

area. Pupils use an iLearn wiki to gather together fishing stories and SCRAN (a

history resources site) to access newspaper archives and photographs. However,

Jack also needs a photo sharing site as he wants pupils to take and comment on

each others’ photos and to upload scans of old photographs that they may have in

their families.

Jack sends an email to a primary school teachers group, which he is a member of to

see if anyone can recommend an appropriate system. Two teachers reply and both

suggest that he uses KidsTakePics, a photo sharing site that allows teachers to check

and moderate content. As KidsTakePics is not integrated with the iLearn

authentication service, he sets up a teacher and a class account. He uses the iLearn

setup service to add KidsTakePics to the services seen by the pupils in his class so

that when they log in, they can immediately use the system to upload photos from

their mobile devices and class computers.

Chapter 4 Requirements Engineering 4630/10/2014

Scenarios

 A structured form of user story

 Scenarios should include

 A description of the starting situation;

 A description of the normal flow of events;

 A description of what can go wrong;

 Information about other concurrent activities;

 A description of the state when the scenario finishes.

Chapter 4 Requirements Engineering 4730/10/2014

Uploading photos iLearn)

 Initial assumption: A user or a group of users have one or more digital photographs

to be uploaded to the picture sharing site. These are saved on either a tablet or

laptop computer. They have successfully logged on to KidsTakePics.

 Normal: The user chooses upload photos and they are prompted to select the

photos to be uploaded on their computer and to select the project name under which

the photos will be stored. They should also be given the option of inputting keywords

that should be associated with each uploaded photo. Uploaded photos are named by

creating a conjunction of the user name with the filename of the photo on the local

computer.

 On completion of the upload, the system automatically sends an email to the project

moderator asking them to check new content and generates an on-screen message

to the user that this has been done.

Chapter 4 Requirements Engineering 4830/10/2014

Uploading photos

 What can go wrong:

 No moderator is associated with the selected project. An email is automatically

generated to the school administrator asking them to nominate a project moderator.

Users should be informed that there could be a delay in making their photos visible.

 Photos with the same name have already been uploaded by the same user. The user

should be asked if they wish to re-upload the photos with the same name, rename

the photos or cancel the upload. If they chose to re-upload the photos, the originals

are overwritten. If they chose to rename the photos, a new name is automatically

generated by adding a number to the existing file name.

 Other activities: The moderator may be logged on to the system and may approve

photos as they are uploaded.

 System state on completion: User is logged on. The selected photos have been

uploaded and assigned a status ‘awaiting moderation’. Photos are visible to the

moderator and to the user who uploaded them.

Chapter 4 Requirements Engineering 4930/10/2014

Requirements specification

Chapter 4 Requirements Engineering 5030/10/2014

Requirements specification

 The process of writing donw the user and system

requirements in a requirements document.

 User requirements have to be understandable by end-

users and customers who do not have a technical

background.

 System requirements are more detailed requirements

and may include more technical information.

 The requirements may be part of a contract for the

system development

 It is therefore important that these are as complete as possible.

Chapter 4 Requirements Engineering 5130/10/2014

Ways of writing a system requirements

specification

Chapter 4 Requirements Engineering 52

Notation Description

Natural language The requirements are written using numbered sentences in natural language.

Each sentence should express one requirement.

Structured natural

language

The requirements are written in natural language on a standard form or

template. Each field provides information about an aspect of the

requirement.

Design description

languages

This approach uses a language like a programming language, but with more

abstract features to specify the requirements by defining an operational

model of the system. This approach is now rarely used although it can be

useful for interface specifications.

Graphical notations Graphical models, supplemented by text annotations, are used to define the

functional requirements for the system; UML use case and sequence

diagrams are commonly used.

Mathematical

specifications

These notations are based on mathematical concepts such as finite-state

machines or sets. Although these unambiguous specifications can reduce

the ambiguity in a requirements document, most customers don’t understand

a formal specification. They cannot check that it represents what they want

and are reluctant to accept it as a system contract

30/10/2014

Requirements and design

 In principle, requirements should state what the system
should do and the design should describe how it does
this.

 In practice, requirements and design are inseparable

 A system architecture may be designed to structure the
requirements;

 The system may inter-operate with other systems that generate
design requirements;

 The use of a specific architecture to satisfy non-functional
requirements may be a domain requirement.

 This may be the consequence of a regulatory requirement.

30/10/2014 Chapter 4 Requirements Engineering 53

Natural language specification

 Requirements are written as natural language sentences

supplemented by diagrams and tables.

 Used for writing requirements because it is expressive,

intuitive and universal. This means that the requirements

can be understood by users and customers.

Chapter 4 Requirements Engineering 5430/10/2014

Guidelines for writing requirements

 Invent a standard format and use it for all requirements.

 Use language in a consistent way. Use shall for

mandatory requirements, should for desirable

requirements.

 Use text highlighting to identify key parts of the

requirement.

 Avoid the use of computer jargon.

 Include an explanation (rationale) of why a requirement

is necessary.

30/10/2014 Chapter 4 Requirements Engineering 55

Problems with natural language

 Lack of clarity

 Precision is difficult without making the document difficult to

read.

 Requirements confusion

 Functional and non-functional requirements tend to be mixed-up.

 Requirements amalgamation

 Several different requirements may be expressed together.

30/10/2014 Chapter 4 Requirements Engineering 56

Example requirements for the insulin pump

software system

Chapter 4 Requirements Engineering 57

3.2 The system shall measure the blood sugar and deliver
insulin, if required, every 10 minutes. (Changes in blood sugar
are relatively slow so more frequent measurement is
unnecessary; less frequent measurement could lead to
unnecessarily high sugar levels.)

3.6 The system shall run a self-test routine every minute with
the conditions to be tested and the associated actions defined
in Table 1. (A self-test routine can discover hardware and
software problems and alert the user to the fact the normal
operation may be impossible.)

30/10/2014

Structured specifications

 An approach to writing requirements where the freedom

of the requirements writer is limited and requirements

are written in a standard way.

 This works well for some types of requirements e.g.

requirements for embedded control system but is

sometimes too rigid for writing business system

requirements.

Chapter 4 Requirements Engineering 5830/10/2014

Form-based specifications

 Definition of the function or entity.

 Description of inputs and where they come from.

 Description of outputs and where they go to.

 Information about the information needed for the

computation and other entities used.

 Description of the action to be taken.

 Pre and post conditions (if appropriate).

 The side effects (if any) of the function.

30/10/2014 Chapter 4 Requirements Engineering 59

A structured specification of a requirement for

an insulin pump

Chapter 4 Requirements Engineering 6030/10/2014

A structured specification of a requirement for

an insulin pump

Chapter 4 Requirements Engineering 6130/10/2014

Tabular specification

 Used to supplement natural language.

 Particularly useful when you have to define a number of

possible alternative courses of action.

 For example, the insulin pump systems bases its

computations on the rate of change of blood sugar level

and the tabular specification explains how to calculate

the insulin requirement for different scenarios.

30/10/2014 Chapter 4 Requirements Engineering 62

Tabular specification of computation for an

insulin pump

Chapter 4 Requirements Engineering 63

Condition Action

Sugar level falling (r2 < r1) CompDose = 0

Sugar level stable (r2 = r1) CompDose = 0

Sugar level increasing and rate of

increase decreasing

((r2 – r1) < (r1 – r0))

CompDose = 0

Sugar level increasing and rate of

increase stable or increasing

((r2 – r1) ≥ (r1 – r0))

CompDose =

round ((r2 – r1)/4)

If rounded result = 0 then

CompDose =

MinimumDose

30/10/2014

Use cases

 Use-cases are a kind of scenario that are included in the

UML.

 Use cases identify the actors in an interaction and which

describe the interaction itself.

 A set of use cases should describe all possible

interactions with the system.

 High-level graphical model supplemented by more

detailed tabular description (see Chapter 5).

 UML sequence diagrams may be used to add detail to

use-cases by showing the sequence of event processing

in the system.

Chapter 4 Requirements Engineering 6430/10/2014

Use cases for the Mentcare system

Chapter 4 Requirements Engineering 6530/10/2014

The software requirements document

 The software requirements document is the official

statement of what is required of the system developers.

 Should include both a definition of user requirements

and a specification of the system requirements.

 It is NOT a design document. As far as possible, it

should set of WHAT the system should do rather than

HOW it should do it.

Chapter 4 Requirements Engineering 6630/10/2014

Users of a requirements document

Chapter 4 Requirements Engineering 6730/10/2014

Requirements document variability

 Information in requirements document depends on type

of system and the approach to development used.

 Systems developed incrementally will, typically, have

less detail in the requirements document.

 Requirements documents standards have been

designed e.g. IEEE standard. These are mostly

applicable to the requirements for large systems

engineering projects.

Chapter 4 Requirements Engineering 6830/10/2014

The structure of a requirements document

Chapter 4 Requirements Engineering 69

Chapter Description

Preface This should define the expected readership of the document and describe

its version history, including a rationale for the creation of a new version

and a summary of the changes made in each version.

Introduction This should describe the need for the system. It should briefly describe the

system’s functions and explain how it will work with other systems. It

should also describe how the system fits into the overall business or

strategic objectives of the organization commissioning the software.

Glossary This should define the technical terms used in the document. You should

not make assumptions about the experience or expertise of the reader.

User requirements

definition

Here, you describe the services provided for the user. The nonfunctional

system requirements should also be described in this section. This

description may use natural language, diagrams, or other notations that are

understandable to customers. Product and process standards that must be

followed should be specified.

System architecture This chapter should present a high-level overview of the anticipated system

architecture, showing the distribution of functions across system modules.

Architectural components that are reused should be highlighted.

30/10/2014

The structure of a requirements document

Chapter Description

System

requirements

specification

This should describe the functional and nonfunctional requirements in more detail.

If necessary, further detail may also be added to the nonfunctional requirements.

Interfaces to other systems may be defined.

System models This might include graphical system models showing the relationships between

the system components and the system and its environment. Examples of

possible models are object models, data-flow models, or semantic data models.

System evolution This should describe the fundamental assumptions on which the system is based,

and any anticipated changes due to hardware evolution, changing user needs,

and so on. This section is useful for system designers as it may help them avoid

design decisions that would constrain likely future changes to the system.

Appendices These should provide detailed, specific information that is related to the

application being developed; for example, hardware and database descriptions.

Hardware requirements define the minimal and optimal configurations for the

system. Database requirements define the logical organization of the data used

by the system and the relationships between data.

Index Several indexes to the document may be included. As well as a normal alphabetic

index, there may be an index of diagrams, an index of functions, and so on.

Chapter 4 Requirements Engineering 7030/10/2014

Requirements validation

Chapter 4 Requirements Engineering 7130/10/2014

Requirements validation

 Concerned with demonstrating that the requirements

define the system that the customer really wants.

 Requirements error costs are high so validation is very

important

 Fixing a requirements error after delivery may cost up to 100

times the cost of fixing an implementation error.

Chapter 4 Requirements Engineering 7230/10/2014

Requirements checking

 Validity. Does the system provide the functions which

best support the customer’s needs?

 Consistency. Are there any requirements conflicts?

 Completeness. Are all functions required by the

customer included?

 Realism. Can the requirements be implemented given

available budget and technology

 Verifiability. Can the requirements be checked?

Chapter 4 Requirements Engineering 7330/10/2014

Requirements validation techniques

 Requirements reviews

 Systematic manual analysis of the requirements.

 Prototyping

 Using an executable model of the system to check requirements.
Covered in Chapter 2.

 Test-case generation

 Developing tests for requirements to check testability.

Chapter 4 Requirements Engineering 7430/10/2014

Requirements reviews

 Regular reviews should be held while the requirements

definition is being formulated.

 Both client and contractor staff should be involved in

reviews.

 Reviews may be formal (with completed documents) or

informal. Good communications between developers,

customers and users can resolve problems at an early

stage.

Chapter 4 Requirements Engineering 7530/10/2014

Review checks

 Verifiability

 Is the requirement realistically testable?

 Comprehensibility

 Is the requirement properly understood?

 Traceability

 Is the origin of the requirement clearly stated?

 Adaptability

 Can the requirement be changed without a large impact on other
requirements?

Chapter 4 Requirements Engineering 7630/10/2014

Requirements change

Chapter 4 Requirements Engineering 7730/10/2014

Changing requirements

 The business and technical environment of the system

always changes after installation.

 New hardware may be introduced, it may be necessary to

interface the system with other systems, business priorities may

change (with consequent changes in the system support

required), and new legislation and regulations may be introduced

that the system must necessarily abide by.

 The people who pay for a system and the users of that

system are rarely the same people.

 System customers impose requirements because of

organizational and budgetary constraints. These may conflict

with end-user requirements and, after delivery, new features may

have to be added for user support if the system is to meet its

goals.
Chapter 4 Requirements Engineering 7830/10/2014

Changing requirements

 Large systems usually have a diverse user community,

with many users having different requirements and

priorities that may be conflicting or contradictory.

 The final system requirements are inevitably a compromise

between them and, with experience, it is often discovered that

the balance of support given to different users has to be

changed.

Chapter 4 Requirements Engineering 7930/10/2014

Requirements evolution

Chapter 4 Requirements Engineering 8030/10/2014

Requirements management

 Requirements management is the process of managing

changing requirements during the requirements

engineering process and system development.

 New requirements emerge as a system is being

developed and after it has gone into use.

 You need to keep track of individual requirements and

maintain links between dependent requirements so that

you can assess the impact of requirements changes.

You need to establish a formal process for making

change proposals and linking these to system

requirements.

Chapter 4 Requirements Engineering 8130/10/2014

Requirements management planning

 Establishes the level of requirements management detail

that is required.

 Requirements management decisions:

 Requirements identification Each requirement must be uniquely

identified so that it can be cross-referenced with other requirements.

 A change management process This is the set of activities that

assess the impact and cost of changes. I discuss this process in

more detail in the following section.

 Traceability policies These policies define the relationships between

each requirement and between the requirements and the system

design that should be recorded.

 Tool support Tools that may be used range from specialist

requirements management systems to spreadsheets and simple

database systems.
Chapter 4 Requirements Engineering 8230/10/2014

Requirements change management

 Deciding if a requirements change should be accepted

 Problem analysis and change specification

• During this stage, the problem or the change proposal is analyzed

to check that it is valid. This analysis is fed back to the change

requestor who may respond with a more specific requirements

change proposal, or decide to withdraw the request.

 Change analysis and costing

• The effect of the proposed change is assessed using traceability

information and general knowledge of the system requirements.

Once this analysis is completed, a decision is made whether or not

to proceed with the requirements change.

 Change implementation

• The requirements document and, where necessary, the system

design and implementation, are modified. Ideally, the document

should be organized so that changes can be easily implemented.
Chapter 4 Requirements Engineering 8330/10/2014

Requirements change management

Chapter 4 Requirements Engineering 8430/10/2014

Key points

 Requirements for a software system set out what the

system should do and define constraints on its operation

and implementation.

 Functional requirements are statements of the services

that the system must provide or are descriptions of how

some computations must be carried out.

 Non-functional requirements often constrain the system

being developed and the development process being

used.

 They often relate to the emergent properties of the

system and therefore apply to the system as a whole.

Chapter 4 Requirements Engineering 8530/10/2014

Key points

 The requirements engineering process is an iterative

process that includes requirements elicitation,

specification and validation.

 Requirements elicitation is an iterative process that can

be represented as a spiral of activities – requirements

discovery, requirements classification and organization,

requirements negotiation and requirements

documentation.

 You can use a range of techniques for requirements

elicitation including interviews and ethnography. User

stories and scenarios may be used to facilitate

discussions.
Chapter 4 Requirements Engineering 8630/10/2014

Key points

 Requirements specification is the process of formally

documenting the user and system requirements and

creating a software requirements document.

 The software requirements document is an agreed

statement of the system requirements. It should be

organized so that both system customers and software

developers can use it.

Chapter 4 Requirements Engineering 8730/10/2014

Key points

 Requirements validation is the process of checking the

requirements for validity, consistency, completeness,

realism and verifiability.

 Business, organizational and technical changes

inevitably lead to changes to the requirements for a

software system. Requirements management is the

process of managing and controlling these changes.

Chapter 4 Requirements Engineering 8830/10/2014

Chapter 5 – System Modeling

Chapter 5 System Modeling 130/10/2014

Topics covered

 Context models

 Interaction models

 Structural models

 Behavioral models

 Model-driven engineering

Chapter 5 System Modeling 230/10/2014

System modeling

 System modeling is the process of developing abstract

models of a system, with each model presenting a

different view or perspective of that system.

 System modeling has now come to mean representing a

system using some kind of graphical notation, which is

now almost always based on notations in the Unified

Modeling Language (UML).

 System modelling helps the analyst to understand the

functionality of the system and models are used to

communicate with customers.

Chapter 5 System Modeling 330/10/2014

Existing and planned system models

 Models of the existing system are used during requirements

engineering. They help clarify what the existing system does

and can be used as a basis for discussing its strengths and

weaknesses. These then lead to requirements for the new

system.

 Models of the new system are used during requirements

engineering to help explain the proposed requirements to

other system stakeholders. Engineers use these models to

discuss design proposals and to document the system for

implementation.

 In a model-driven engineering process, it is possible to

generate a complete or partial system implementation from

the system model.
Chapter 5 System Modeling 430/10/2014

System perspectives

 An external perspective, where you model the context or

environment of the system.

 An interaction perspective, where you model the

interactions between a system and its environment, or

between the components of a system.

 A structural perspective, where you model the

organization of a system or the structure of the data that

is processed by the system.

 A behavioral perspective, where you model the dynamic

behavior of the system and how it responds to events.

Chapter 5 System Modeling 530/10/2014

UML diagram types

 Activity diagrams, which show the activities involved in a

process or in data processing .

 Use case diagrams, which show the interactions

between a system and its environment.

 Sequence diagrams, which show interactions between

actors and the system and between system components.

 Class diagrams, which show the object classes in the

system and the associations between these classes.

 State diagrams, which show how the system reacts to

internal and external events.

Chapter 5 System Modeling 630/10/2014

Use of graphical models

 As a means of facilitating discussion about an existing or

proposed system

 Incomplete and incorrect models are OK as their role is to

support discussion.

 As a way of documenting an existing system

 Models should be an accurate representation of the system but

need not be complete.

 As a detailed system description that can be used to

generate a system implementation

 Models have to be both correct and complete.

Chapter 5 System Modeling 730/10/2014

Context models

Chapter 5 System Modeling 830/10/2014

Context models

 Context models are used to illustrate the operational

context of a system - they show what lies outside the

system boundaries.

 Social and organisational concerns may affect the

decision on where to position system boundaries.

 Architectural models show the system and its

relationship with other systems.

Chapter 5 System Modeling 930/10/2014

System boundaries

 System boundaries are established to define what is

inside and what is outside the system.

 They show other systems that are used or depend on the system

being developed.

 The position of the system boundary has a profound

effect on the system requirements.

 Defining a system boundary is a political judgment

 There may be pressures to develop system boundaries that

increase / decrease the influence or workload of different parts of

an organization.

Chapter 5 System Modeling 1030/10/2014

The context of the Mentcare system

Chapter 5 System Modeling 1130/10/2014

Process perspective

 Context models simply show the other systems in the

environment, not how the system being developed is

used in that environment.

 Process models reveal how the system being developed

is used in broader business processes.

 UML activity diagrams may be used to define business

process models.

Chapter 5 System Modeling 1230/10/2014

Process model of involuntary detention

Chapter 5 System Modeling 1330/10/2014

Interaction models

Chapter 5 System Modeling 1430/10/2014

Interaction models

 Modeling user interaction is important as it helps to

identify user requirements.

 Modeling system-to-system interaction highlights the

communication problems that may arise.

 Modeling component interaction helps us understand if a

proposed system structure is likely to deliver the required

system performance and dependability.

 Use case diagrams and sequence diagrams may be

used for interaction modeling.

Chapter 5 System Modeling 1530/10/2014

Use case modeling

 Use cases were developed originally to support

requirements elicitation and now incorporated into the

UML.

 Each use case represents a discrete task that involves

external interaction with a system.

 Actors in a use case may be people or other systems.

 Represented diagramatically to provide an overview of

the use case and in a more detailed textual form.

Chapter 5 System Modeling 1630/10/2014

Transfer-data use case

 A use case in the Mentcare system

Chapter 5 System Modeling 1730/10/2014

Tabular description of the ‘Transfer data’ use-

case

Chapter 5 System Modeling 18

MHC-PMS: Transfer data

Actors Medical receptionist, patient records system (PRS)

Description A receptionist may transfer data from the Mentcase

system to a general patient record database that is

maintained by a health authority. The information

transferred may either be updated personal information

(address, phone number, etc.) or a summary of the

patient’s diagnosis and treatment.

Data Patient’s personal information, treatment summary

Stimulus User command issued by medical receptionist

Response Confirmation that PRS has been updated

Comments The receptionist must have appropriate security

permissions to access the patient information and the

PRS.

30/10/2014

Use cases in the Mentcare system involving the

role ‘Medical Receptionist’

Chapter 5 System Modeling 1930/10/2014

Sequence diagrams

 Sequence diagrams are part of the UML and are used to

model the interactions between the actors and the

objects within a system.

 A sequence diagram shows the sequence of interactions

that take place during a particular use case or use case

instance.

 The objects and actors involved are listed along the top

of the diagram, with a dotted line drawn vertically from

these.

 Interactions between objects are indicated by annotated

arrows.

Chapter 5 System Modeling 2030/10/2014

Sequence diagram for View patient information

Chapter 5 System Modeling 2130/10/2014

Sequence

diagram for

Transfer Data
Chapter 5 System Modeling 2230/10/2014

Structural models

Chapter 5 System Modeling 2330/10/2014

Structural models

 Structural models of software display the organization of

a system in terms of the components that make up that

system and their relationships.

 Structural models may be static models, which show the

structure of the system design, or dynamic models,

which show the organization of the system when it is

executing.

 You create structural models of a system when you are

discussing and designing the system architecture.

Chapter 5 System Modeling 2430/10/2014

Class diagrams

 Class diagrams are used when developing an object-

oriented system model to show the classes in a system

and the associations between these classes.

 An object class can be thought of as a general definition

of one kind of system object.

 An association is a link between classes that indicates

that there is some relationship between these classes.

 When you are developing models during the early stages

of the software engineering process, objects represent

something in the real world, such as a patient, a

prescription, doctor, etc.

Chapter 5 System Modeling 2530/10/2014

UML classes and association

Chapter 5 System Modeling 2630/10/2014

Classes and associations in the MHC-PMS

Chapter 5 System Modeling 2730/10/2014

The Consultation class

Chapter 5 System Modeling 2830/10/2014

Generalization

 Generalization is an everyday technique that we use to

manage complexity.

 Rather than learn the detailed characteristics of every

entity that we experience, we place these entities in

more general classes (animals, cars, houses, etc.) and

learn the characteristics of these classes.

 This allows us to infer that different members of these

classes have some common characteristics e.g.

squirrels and rats are rodents.

Chapter 5 System Modeling 2930/10/2014

Generalization

 In modeling systems, it is often useful to examine the classes in

a system to see if there is scope for generalization. If changes

are proposed, then you do not have to look at all classes in the

system to see if they are affected by the change.

 In object-oriented languages, such as Java, generalization is

implemented using the class inheritance mechanisms built into

the language.

 In a generalization, the attributes and operations associated with

higher-level classes are also associated with the lower-level

classes.

 The lower-level classes are subclasses inherit the attributes and

operations from their superclasses. These lower-level classes

then add more specific attributes and operations.

Chapter 5 System Modeling 3030/10/2014

A generalization hierarchy

Chapter 5 System Modeling 3130/10/2014

A generalization hierarchy with added detail

Chapter 5 System Modeling 3230/10/2014

Object class aggregation models

 An aggregation model shows how classes that are

collections are composed of other classes.

 Aggregation models are similar to the part-of relationship

in semantic data models.

Chapter 5 System Modeling 3330/10/2014

The aggregation association

Chapter 5 System Modeling 3430/10/2014

Behavioral models

Chapter 5 System Modeling 3530/10/2014

Behavioral models

 Behavioral models are models of the dynamic behavior

of a system as it is executing. They show what happens

or what is supposed to happen when a system responds

to a stimulus from its environment.

 You can think of these stimuli as being of two types:

 Data Some data arrives that has to be processed by the system.

 Events Some event happens that triggers system processing.

Events may have associated data, although this is not always

the case.

Chapter 5 System Modeling 3630/10/2014

Data-driven modeling

 Many business systems are data-processing systems

that are primarily driven by data. They are controlled by

the data input to the system, with relatively little external

event processing.

 Data-driven models show the sequence of actions

involved in processing input data and generating an

associated output.

 They are particularly useful during the analysis of

requirements as they can be used to show end-to-end

processing in a system.

Chapter 5 System Modeling 3730/10/2014

An activity model of the insulin pump’s

operation

Chapter 5 System Modeling 3830/10/2014

Order processing

Chapter 5 System Modeling 3930/10/2014

Event-driven modeling

 Real-time systems are often event-driven, with minimal

data processing. For example, a landline phone

switching system responds to events such as ‘receiver

off hook’ by generating a dial tone.

 Event-driven modeling shows how a system responds to

external and internal events.

 It is based on the assumption that a system has a finite

number of states and that events (stimuli) may cause a

transition from one state to another.

Chapter 5 System Modeling 4030/10/2014

State machine models

 These model the behaviour of the system in response to

external and internal events.

 They show the system’s responses to stimuli so are

often used for modelling real-time systems.

 State machine models show system states as nodes and

events as arcs between these nodes. When an event

occurs, the system moves from one state to another.

 Statecharts are an integral part of the UML and are used

to represent state machine models.

Chapter 5 System Modeling 4130/10/2014

State diagram of a microwave oven

Chapter 5 System Modeling 4230/10/2014

Microwave oven operation

Chapter 5 System Modeling 4330/10/2014

States and stimuli for the microwave oven (a)

Chapter 5 System Modeling 44

State Description

Waiting The oven is waiting for input. The display shows the current time.

Half power The oven power is set to 300 watts. The display shows ‘Half power’.

Full power The oven power is set to 600 watts. The display shows ‘Full power’.

Set time The cooking time is set to the user’s input value. The display shows

the cooking time selected and is updated as the time is set.

Disabled Oven operation is disabled for safety. Interior oven light is on.

Display shows ‘Not ready’.

Enabled Oven operation is enabled. Interior oven light is off. Display shows

‘Ready to cook’.

Operation Oven in operation. Interior oven light is on. Display shows the timer

countdown. On completion of cooking, the buzzer is sounded for five

seconds. Oven light is on. Display shows ‘Cooking complete’ while

buzzer is sounding.

30/10/2014

States and stimuli for the microwave oven (b)

Chapter 5 System Modeling 45

Stimulus Description

Half power The user has pressed the half-power button.

Full power The user has pressed the full-power button.

Timer The user has pressed one of the timer buttons.

Number The user has pressed a numeric key.

Door open The oven door switch is not closed.

Door closed The oven door switch is closed.

Start The user has pressed the Start button.

Cancel The user has pressed the Cancel button.

30/10/2014

Model-driven engineering

Chapter 5 System Modeling 4630/10/2014

Model-driven engineering

 Model-driven engineering (MDE) is an approach to

software development where models rather than

programs are the principal outputs of the development

process.

 The programs that execute on a hardware/software

platform are then generated automatically from the

models.

 Proponents of MDE argue that this raises the level of

abstraction in software engineering so that engineers no

longer have to be concerned with programming

language details or the specifics of execution platforms.

Chapter 5 System Modeling 4730/10/2014

Usage of model-driven engineering

 Model-driven engineering is still at an early stage of

development, and it is unclear whether or not it will have

a significant effect on software engineering practice.

 Pros

 Allows systems to be considered at higher levels of abstraction

 Generating code automatically means that it is cheaper to adapt

systems to new platforms.

 Cons

 Models for abstraction and not necessarily right for

implementation.

 Savings from generating code may be outweighed by the costs

of developing translators for new platforms.

Chapter 5 System Modeling 4830/10/2014

Model driven architecture

 Model-driven architecture (MDA) was the precursor of

more general model-driven engineering

 MDA is a model-focused approach to software design

and implementation that uses a subset of UML models to

describe a system.

 Models at different levels of abstraction are created.

From a high-level, platform independent model, it is

possible, in principle, to generate a working program

without manual intervention.

Chapter 5 System Modeling 4930/10/2014

Types of model

 A computation independent model (CIM)

 These model the important domain abstractions used in a

system. CIMs are sometimes called domain models.

 A platform independent model (PIM)

 These model the operation of the system without reference to its

implementation. The PIM is usually described using UML models

that show the static system structure and how it responds to

external and internal events.

 Platform specific models (PSM)

 These are transformations of the platform-independent model

with a separate PSM for each application platform. In principle,

there may be layers of PSM, with each layer adding some

platform-specific detail.

Chapter 5 System Modeling 5030/10/2014

MDA transformations

Chapter 5 System Modeling 5130/10/2014

Multiple platform-specific models

Chapter 5 System Modeling 5230/10/2014

Agile methods and MDA

 The developers of MDA claim that it is intended to

support an iterative approach to development and so can

be used within agile methods.

 The notion of extensive up-front modeling contradicts the

fundamental ideas in the agile manifesto and I suspect

that few agile developers feel comfortable with model-

driven engineering.

 If transformations can be completely automated and a

complete program generated from a PIM, then, in

principle, MDA could be used in an agile development

process as no separate coding would be required.

Chapter 5 System Modeling 5330/10/2014

Adoption of MDA

 A range of factors has limited the adoption of MDE/MDA

 Specialized tool support is required to convert models

from one level to another

 There is limited tool availability and organizations may

require tool adaptation and customisation to their

environment

 For the long-lifetime systems developed using MDA,

companies are reluctant to develop their own tools or

rely on small companies that may go out of business

Chapter 5 System Modeling 5430/10/2014

Adoption of MDA

 Models are a good way of facilitating discussions about a

software design. Howeverthe abstractions that are useful

for discussions may not be the right abstractions for

implementation.

 For most complex systems, implementation is not the

major problem – requirements engineering, security and

dependability, integration with legacy systems and

testing are all more significant.

Chapter 5 System Modeling 5530/10/2014

Adoption of MDA

 The arguments for platform-independence are only valid

for large, long-lifetime systems. For software products

and information systems, the savings from the use of

MDA are likely to be outweighed by the costs of its

introduction and tooling.

 The widespread adoption of agile methods over the

same period that MDA was evolving has diverted

attention away from model-driven approaches.

Chapter 5 System Modeling 5630/10/2014

Key points

 A model is an abstract view of a system that ignores system details.

Complementary system models can be developed to show the

system’s context, interactions, structure and behavior.

 Context models show how a system that is being modeled is

positioned in an environment with other systems and processes.

 Use case diagrams and sequence diagrams are used to describe

the interactions between users and systems in the system being

designed. Use cases describe interactions between a system and

external actors; sequence diagrams add more information to these

by showing interactions between system objects.

 Structural models show the organization and architecture of a

system. Class diagrams are used to define the static structure of

classes in a system and their associations.

Chapter 5 System Modeling 5730/10/2014

Key points

 Behavioral models are used to describe the dynamic behavior

of an executing system. This behavior can be modeled from

the perspective of the data processed by the system, or by

the events that stimulate responses from a system.

 Activity diagrams may be used to model the processing of

data, where each activity represents one process step.

 State diagrams are used to model a system’s behavior in

response to internal or external events.

 Model-driven engineering is an approach to software

development in which a system is represented as a set of

models that can be automatically transformed to executable

code.

Chapter 5 System Modeling 5830/10/2014

Chapter 6 – Architectural Design

Chapter 6 Architectural Design 102/01/2015

Topics covered

 Architectural design decisions

 Architectural views

 Architectural patterns

 Application architectures

Chapter 6 Architectural Design 202/01/2015

Architectural design

 Architectural design is concerned with understanding

how a software system should be organized and

designing the overall structure of that system.

 Architectural design is the critical link between design

and requirements engineering, as it identifies the main

structural components in a system and the relationships

between them.

 The output of the architectural design process is an

architectural model that describes how the system is

organized as a set of communicating components.

Chapter 6 Architectural Design 302/01/2015

Agility and architecture

 It is generally accepted that an early stage of agile

processes is to design an overall systems architecture.

 Refactoring the system architecture is usually expensive

because it affects so many components in the system

Chapter 6 Architectural Design 402/01/2015

The architecture of a packing robot control

system

Chapter 6 Architectural Design 502/01/2015

Architectural abstraction

 Architecture in the small is concerned with the

architecture of individual programs. At this level, we are

concerned with the way that an individual program is

decomposed into components.

 Architecture in the large is concerned with the

architecture of complex enterprise systems that include

other systems, programs, and program components.

These enterprise systems are distributed over different

computers, which may be owned and managed by

different companies.

Chapter 6 Architectural Design 602/01/2015

Advantages of explicit architecture

 Stakeholder communication

 Architecture may be used as a focus of discussion by system
stakeholders.

 System analysis

 Means that analysis of whether the system can meet its non-
functional requirements is possible.

 Large-scale reuse

 The architecture may be reusable across a range of systems

 Product-line architectures may be developed.

Chapter 6 Architectural Design 702/01/2015

Architectural representations

 Simple, informal block diagrams showing entities and

relationships are the most frequently used method for

documenting software architectures.

 But these have been criticised because they lack

semantics, do not show the types of relationships

between entities nor the visible properties of entities in

the architecture.

 Depends on the use of architectural models.The

requirements for model semantics depends on how the

models are used.

Chapter 6 Architectural Design 802/01/2015

Box and line diagrams

 Very abstract - they do not show the nature of

component relationships nor the externally visible

properties of the sub-systems.

 However, useful for communication with stakeholders

and for project planning.

Chapter 6 Architectural Design 902/01/2015

Use of architectural models

 As a way of facilitating discussion about the system

design

 A high-level architectural view of a system is useful for

communication with system stakeholders and project planning

because it is not cluttered with detail. Stakeholders can relate to

it and understand an abstract view of the system. They can then

discuss the system as a whole without being confused by detail.

 As a way of documenting an architecture that has been

designed

 The aim here is to produce a complete system model that shows

the different components in a system, their interfaces and their

connections.

Chapter 6 Architectural Design 1002/01/2015

Architectural design decisions

Chapter 6 Architectural Design 1102/01/2015

Architectural design decisions

 Architectural design is a creative process so the process

differs depending on the type of system being

developed.

 However, a number of common decisions span all

design processes and these decisions affect the non-

functional characteristics of the system.

Chapter 6 Architectural Design 1202/01/2015

Architectural design decisions

Chapter 6 Architectural Design 1302/01/2015

Architecture reuse

 Systems in the same domain often have similar

architectures that reflect domain concepts.

 Application product lines are built around a core

architecture with variants that satisfy particular customer

requirements.

 The architecture of a system may be designed around

one of more architectural patterns or ‘styles’.

 These capture the essence of an architecture and can be

instantiated in different ways.

Chapter 6 Architectural Design 1402/01/2015

Architecture and system characteristics

 Performance

 Localise critical operations and minimise communications. Use
large rather than fine-grain components.

 Security

 Use a layered architecture with critical assets in the inner layers.

 Safety

 Localise safety-critical features in a small number of sub-
systems.

 Availability

 Include redundant components and mechanisms for fault
tolerance.

 Maintainability

 Use fine-grain, replaceable components.
Chapter 6 Architectural Design 1502/01/2015

Architectural views

Chapter 6 Architectural Design 1602/01/2015

Architectural views

 What views or perspectives are useful when designing

and documenting a system’s architecture?

 What notations should be used for describing

architectural models?

 Each architectural model only shows one view or

perspective of the system.

 It might show how a system is decomposed into modules, how

the run-time processes interact or the different ways in which

system components are distributed across a network. For both

design and documentation, you usually need to present multiple

views of the software architecture.

Chapter 6 Architectural Design 1702/01/2015

Architectural views

Chapter 6 Architectural Design 1802/01/2015

4 + 1 view model of software architecture

 A logical view, which shows the key abstractions in the

system as objects or object classes.

 A process view, which shows how, at run-time, the

system is composed of interacting processes.

 A development view, which shows how the software is

decomposed for development.

 A physical view, which shows the system hardware and

how software components are distributed across the

processors in the system.

 Related using use cases or scenarios (+1)

Chapter 6 Architectural Design 1902/01/2015

Representing architectural views

 Some people argue that the Unified Modeling Language

(UML) is an appropriate notation for describing and

documenting system architectures

 I disagree with this as I do not think that the UML

includes abstractions appropriate for high-level system

description.

 Architectural description languages (ADLs) have been

developed but are not widely used

Chapter 6 Architectural Design 2002/01/2015

Architectural patterns

Chapter 6 Architectural Design 2102/01/2015

Architectural patterns

 Patterns are a means of representing, sharing and

reusing knowledge.

 An architectural pattern is a stylized description of good

design practice, which has been tried and tested in

different environments.

 Patterns should include information about when they are

and when the are not useful.

 Patterns may be represented using tabular and graphical

descriptions.

Chapter 6 Architectural Design 2202/01/2015

The Model-View-Controller (MVC) pattern

Name MVC (Model-View-Controller)

Description Separates presentation and interaction from the system data. The system is

structured into three logical components that interact with each other. The

Model component manages the system data and associated operations on

that data. The View component defines and manages how the data is

presented to the user. The Controller component manages user interaction

(e.g., key presses, mouse clicks, etc.) and passes these interactions to the

View and the Model. See Figure 6.3.

Example Figure 6.4 shows the architecture of a web-based application system

organized using the MVC pattern.

When used Used when there are multiple ways to view and interact with data. Also used

when the future requirements for interaction and presentation of data are

unknown.

Advantages Allows the data to change independently of its representation and vice versa.

Supports presentation of the same data in different ways with changes made

in one representation shown in all of them.

Disadvantages Can involve additional code and code complexity when the data model and

interactions are simple.

Chapter 6 Architectural Design 2302/01/2015

The organization of the Model-View-Controller

Chapter 6 Architectural Design 2402/01/2015

Web application architecture using the MVC

pattern

Chapter 6 Architectural Design 2502/01/2015

Layered architecture

 Used to model the interfacing of sub-systems.

 Organises the system into a set of layers (or abstract

machines) each of which provide a set of services.

 Supports the incremental development of sub-systems in

different layers. When a layer interface changes, only the

adjacent layer is affected.

 However, often artificial to structure systems in this way.

Chapter 6 Architectural Design 2602/01/2015

The Layered architecture pattern

Name Layered architecture

Description Organizes the system into layers with related functionality

associated with each layer. A layer provides services to the layer

above it so the lowest-level layers represent core services that

are likely to be used throughout the system. See Figure 6.6.

Example A layered model of a system for sharing copyright documents

held in different libraries, as shown in Figure 6.7.

When used Used when building new facilities on top of existing systems;

when the development is spread across several teams with each

team responsibility for a layer of functionality; when there is a

requirement for multi-level security.

Advantages Allows replacement of entire layers so long as the interface is

maintained. Redundant facilities (e.g., authentication) can be

provided in each layer to increase the dependability of the

system.

Disadvantages In practice, providing a clean separation between layers is often

difficult and a high-level layer may have to interact directly with

lower-level layers rather than through the layer immediately

below it. Performance can be a problem because of multiple

levels of interpretation of a service request as it is processed at

each layer.

Chapter 6 Architectural Design 2702/01/2015

A generic layered architecture

Chapter 6 Architectural Design 2802/01/2015

The architecture of the iLearn system

Chapter 6 Architectural Design 2902/01/2015

Repository architecture

 Sub-systems must exchange data. This may be done in
two ways:

 Shared data is held in a central database or repository and may
be accessed by all sub-systems;

 Each sub-system maintains its own database and passes data
explicitly to other sub-systems.

 When large amounts of data are to be shared, the
repository model of sharing is most commonly used a
this is an efficient data sharing mechanism.

Chapter 6 Architectural Design 3002/01/2015

The Repository pattern

Name Repository

Description All data in a system is managed in a central repository that is

accessible to all system components. Components do not

interact directly, only through the repository.

Example Figure 6.9 is an example of an IDE where the components use

a repository of system design information. Each software tool

generates information which is then available for use by other

tools.

When used You should use this pattern when you have a system in which

large volumes of information are generated that has to be

stored for a long time. You may also use it in data-driven

systems where the inclusion of data in the repository triggers

an action or tool.

Advantages Components can be independent—they do not need to know

of the existence of other components. Changes made by one

component can be propagated to all components. All data can

be managed consistently (e.g., backups done at the same

time) as it is all in one place.

Disadvantages The repository is a single point of failure so problems in the

repository affect the whole system. May be inefficiencies in

organizing all communication through the repository.

Distributing the repository across several computers may be

difficult.
Chapter 6 Architectural Design 3102/01/2015

A repository architecture for an IDE

Chapter 6 Architectural Design 3202/01/2015

Client-server architecture

 Distributed system model which shows how data and
processing is distributed across a range of components.

 Can be implemented on a single computer.

 Set of stand-alone servers which provide specific
services such as printing, data management, etc.

 Set of clients which call on these services.

 Network which allows clients to access servers.

Chapter 6 Architectural Design 3302/01/2015

The Client–server pattern

Name Client-server

Description In a client–server architecture, the functionality of the system is

organized into services, with each service delivered from a

separate server. Clients are users of these services and access

servers to make use of them.

Example Figure 6.11 is an example of a film and video/DVD library organized

as a client–server system.

When used Used when data in a shared database has to be accessed from a

range of locations. Because servers can be replicated, may also be

used when the load on a system is variable.

Advantages The principal advantage of this model is that servers can be

distributed across a network. General functionality (e.g., a printing

service) can be available to all clients and does not need to be

implemented by all services.

Disadvantages Each service is a single point of failure so susceptible to denial of

service attacks or server failure. Performance may be unpredictable

because it depends on the network as well as the system. May be

management problems if servers are owned by different

organizations.

Chapter 6 Architectural Design 3402/01/2015

A client–server architecture for a film library

Chapter 6 Architectural Design 3502/01/2015

Pipe and filter architecture

 Functional transformations process their inputs to
produce outputs.

 May be referred to as a pipe and filter model (as in UNIX
shell).

 Variants of this approach are very common. When
transformations are sequential, this is a batch sequential
model which is extensively used in data processing
systems.

 Not really suitable for interactive systems.

Chapter 6 Architectural Design 3602/01/2015

The pipe and filter pattern

Name Pipe and filter

Description The processing of the data in a system is organized so that each

processing component (filter) is discrete and carries out one type of

data transformation. The data flows (as in a pipe) from one component

to another for processing.

Example Figure 6.13 is an example of a pipe and filter system used for

processing invoices.

When used Commonly used in data processing applications (both batch- and

transaction-based) where inputs are processed in separate stages to

generate related outputs.

Advantages Easy to understand and supports transformation reuse. Workflow style

matches the structure of many business processes. Evolution by

adding transformations is straightforward. Can be implemented as

either a sequential or concurrent system.

Disadvantages The format for data transfer has to be agreed upon between

communicating transformations. Each transformation must parse its

input and unparse its output to the agreed form. This increases system

overhead and may mean that it is impossible to reuse functional

transformations that use incompatible data structures.

Chapter 6 Architectural Design 3702/01/2015

An example of the pipe and filter architecture

used in a payments system

Chapter 6 Architectural Design 3802/01/2015

Application architectures

Chapter 6 Architectural Design 3902/01/2015

Application architectures

 Application systems are designed to meet an

organisational need.

 As businesses have much in common, their application

systems also tend to have a common architecture that

reflects the application requirements.

 A generic application architecture is an architecture for a

type of software system that may be configured and

adapted to create a system that meets specific

requirements.

Chapter 6 Architectural Design 4002/01/2015

Use of application architectures

 As a starting point for architectural design.

 As a design checklist.

 As a way of organising the work of the development
team.

 As a means of assessing components for reuse.

 As a vocabulary for talking about application types.

Chapter 6 Architectural Design 4102/01/2015

Examples of application types

 Data processing applications

 Data driven applications that process data in batches without

explicit user intervention during the processing.

 Transaction processing applications

 Data-centred applications that process user requests and update

information in a system database.

 Event processing systems

 Applications where system actions depend on interpreting

events from the system’s environment.

 Language processing systems

 Applications where the users’ intentions are specified in a formal

language that is processed and interpreted by the system.

Chapter 6 Architectural Design 4202/01/2015

Application type examples

 Two very widely used generic application architectures are
transaction processing systems and language processing
systems.

 Transaction processing systems

 E-commerce systems;

 Reservation systems.

 Language processing systems

 Compilers;

 Command interpreters.

Chapter 6 Architectural Design 4302/01/2015

Transaction processing systems

 Process user requests for information from a database
or requests to update the database.

 From a user perspective a transaction is:

 Any coherent sequence of operations that satisfies a goal;

 For example - find the times of flights from London to Paris.

 Users make asynchronous requests for service which
are then processed by a transaction manager.

Chapter 6 Architectural Design 4402/01/2015

The structure of transaction processing

applications

Chapter 6 Architectural Design 4502/01/2015

The software architecture of an ATM system

Chapter 6 Architectural Design 4602/01/2015

Information systems architecture

 Information systems have a generic architecture that can

be organised as a layered architecture.

 These are transaction-based systems as interaction with

these systems generally involves database transactions.

 Layers include:

 The user interface

 User communications

 Information retrieval

 System database

Chapter 6 Architectural Design 4702/01/2015

Layered information system architecture

Chapter 6 Architectural Design 4802/01/2015

The architecture of the Mentcare system

Chapter 6 Architectural Design 4902/01/2015

Web-based information systems

 Information and resource management systems are now

usually web-based systems where the user interfaces

are implemented using a web browser.

 For example, e-commerce systems are Internet-based

resource management systems that accept electronic

orders for goods or services and then arrange delivery of

these goods or services to the customer.

 In an e-commerce system, the application-specific layer

includes additional functionality supporting a ‘shopping

cart’ in which users can place a number of items in

separate transactions, then pay for them all together in a

single transaction.
Chapter 6 Architectural Design 5002/01/2015

Server implementation

 These systems are often implemented as multi-tier client

server/architectures (discussed in Chapter 17)

 The web server is responsible for all user communications, with

the user interface implemented using a web browser;

 The application server is responsible for implementing

application-specific logic as well as information storage and

retrieval requests;

 The database server moves information to and from the

database and handles transaction management.

Chapter 6 Architectural Design 5102/01/2015

Language processing systems

 Accept a natural or artificial language as input and generate

some other representation of that language.

 May include an interpreter to act on the instructions in the

language that is being processed.

 Used in situations where the easiest way to solve a

problem is to describe an algorithm or describe the system

data

 Meta-case tools process tool descriptions, method rules, etc

and generate tools.

Chapter 6 Architectural Design 5202/01/2015

The architecture of a language processing

system

Chapter 6 Architectural Design 5302/01/2015

Compiler components

 A lexical analyzer, which takes input language tokens

and converts them to an internal form.

 A symbol table, which holds information about the names

of entities (variables, class names, object names, etc.)

used in the text that is being translated.

 A syntax analyzer, which checks the syntax of the

language being translated.

 A syntax tree, which is an internal structure representing

the program being compiled.

Chapter 6 Architectural Design 5402/01/2015

Compiler components

 A semantic analyzer that uses information from the

syntax tree and the symbol table to check the semantic

correctness of the input language text.

 A code generator that ‘walks’ the syntax tree and

generates abstract machine code.

Chapter 6 Architectural Design 5502/01/2015

A repository architecture for a language

processing system

Chapter 6 Architectural Design 5602/01/2015

A pipe and filter compiler architecture

Chapter 6 Architectural Design 5702/01/2015

Key points

 A software architecture is a description of how a software

system is organized.

 Architectural design decisions include decisions on the

type of application, the distribution of the system, the

architectural styles to be used.

 Architectures may be documented from several different

perspectives or views such as a conceptual view, a

logical view, a process view, and a development view.

 Architectural patterns are a means of reusing knowledge

about generic system architectures. They describe the

architecture, explain when it may be used and describe

its advantages and disadvantages.
Chapter 6 Architectural Design 5802/01/2015

Key points

 Models of application systems architectures help us

understand and compare applications, validate

application system designs and assess large-scale

components for reuse.

 Transaction processing systems are interactive systems

that allow information in a database to be remotely

accessed and modified by a number of users.

 Language processing systems are used to translate

texts from one language into another and to carry out the

instructions specified in the input language. They include

a translator and an abstract machine that executes the

generated language.
Chapter 6 Architectural Design 5902/01/2015

Chapter 7 – Design and Implementation

Chapter 7 Design and Implementation 130/10/2014

Topics covered

 Object-oriented design using the UML

 Design patterns

 Implementation issues

 Open source development

Chapter 7 Design and Implementation 230/10/2014

Design and implementation

 Software design and implementation is the stage in the

software engineering process at which an executable

software system is developed.

 Software design and implementation activities are

invariably inter-leaved.

 Software design is a creative activity in which you identify

software components and their relationships, based on a

customer’s requirements.

 Implementation is the process of realizing the design as a

program.

Chapter 7 Design and Implementation 330/10/2014

Build or buy

 In a wide range of domains, it is now possible to buy off-

the-shelf systems (COTS) that can be adapted and

tailored to the users’ requirements.

 For example, if you want to implement a medical records system,

you can buy a package that is already used in hospitals. It can

be cheaper and faster to use this approach rather than

developing a system in a conventional programming language.

 When you develop an application in this way, the design

process becomes concerned with how to use the

configuration features of that system to deliver the

system requirements.

Chapter 7 Design and Implementation 430/10/2014

Object-oriented design using the UML

Chapter 7 Design and Implementation 530/10/2014

An object-oriented design process

 Structured object-oriented design processes involve
developing a number of different system models.

 They require a lot of effort for development and
maintenance of these models and, for small systems,
this may not be cost-effective.

 However, for large systems developed by different
groups design models are an important communication
mechanism.

Chapter 7 Design and Implementation 630/10/2014

Process stages

 There are a variety of different object-oriented design

processes that depend on the organization using the

process.

 Common activities in these processes include:

 Define the context and modes of use of the system;

 Design the system architecture;

 Identify the principal system objects;

 Develop design models;

 Specify object interfaces.

 Process illustrated here using a design for a wilderness

weather station.

Chapter 7 Design and Implementation 730/10/2014

System context and interactions

 Understanding the relationships between the software

that is being designed and its external environment is

essential for deciding how to provide the required system

functionality and how to structure the system to

communicate with its environment.

 Understanding of the context also lets you establish the

boundaries of the system. Setting the system boundaries

helps you decide what features are implemented in the

system being designed and what features are in other

associated systems.

Chapter 7 Design and Implementation 830/10/2014

Context and interaction models

 A system context model is a structural model that

demonstrates the other systems in the environment of

the system being developed.

 An interaction model is a dynamic model that shows how

the system interacts with its environment as it is used.

Chapter 7 Design and Implementation 930/10/2014

System context for the weather station

Chapter 7 Design and Implementation 1030/10/2014

Weather station use cases

Chapter 7 Design and Implementation 1130/10/2014

Use case description—Report weather

System Weather station

Use case Report weather

Actors Weather information system, Weather station

Description The weather station sends a summary of the weather data that has been
collected from the instruments in the collection period to the weather
information system. The data sent are the maximum, minimum, and average
ground and air temperatures; the maximum, minimum, and average air
pressures; the maximum, minimum, and average wind speeds; the total
rainfall; and the wind direction as sampled at five-minute intervals.

Stimulus The weather information system establishes a satellite communication link
with the weather station and requests transmission of the data.

Response The summarized data is sent to the weather information system.

Comments Weather stations are usually asked to report once per hour but this frequency
may differ from one station to another and may be modified in the future.

Chapter 7 Design and Implementation 1230/10/2014

Architectural design

 Once interactions between the system and its

environment have been understood, you use this

information for designing the system architecture.

 You identify the major components that make up the

system and their interactions, and then may organize the

components using an architectural pattern such as a

layered or client-server model.

 The weather station is composed of independent

subsystems that communicate by broadcasting

messages on a common infrastructure.

Chapter 7 Design and Implementation 1330/10/2014

High-level architecture of the weather station

Chapter 7 Design and Implementation 1430/10/2014

Architecture of data collection system

Chapter 7 Design and Implementation 1530/10/2014

Object class identification

 Identifying object classes is often a difficult part of object

oriented design.

 There is no 'magic formula' for object identification. It

relies on the skill, experience

and domain knowledge of system designers.

 Object identification is an iterative process. You are

unlikely to get it right first time.

Chapter 7 Design and Implementation 1630/10/2014

Approaches to identification

 Use a grammatical approach based on a natural

language description of the system.

 Base the identification on tangible things in the

application domain.

 Use a behavioural approach and identify objects based

on what participates in what behaviour.

 Use a scenario-based analysis. The objects, attributes

and methods in each scenario are identified.

Chapter 7 Design and Implementation 1730/10/2014

Weather station object classes

 Object class identification in the weather station system

may be based on the tangible hardware and data in the

system:

 Ground thermometer, Anemometer, Barometer

• Application domain objects that are ‘hardware’ objects related to the

instruments in the system.

 Weather station

• The basic interface of the weather station to its environment. It

therefore reflects the interactions identified in the use-case model.

 Weather data

• Encapsulates the summarized data from the instruments.

Chapter 7 Design and Implementation 1830/10/2014

Weather station object classes

Chapter 7 Design and Implementation 1930/10/2014

Design models

 Design models show the objects and object classes and

relationships between these entities.

 There are two kinds of design model:

 Structural models describe the static structure of the system in

terms of object classes and relationships.

 Dynamic models describe the dynamic interactions between

objects.

Chapter 7 Design and Implementation 2030/10/2014

Examples of design models

 Subsystem models that show logical groupings of

objects into coherent subsystems.

 Sequence models that show the sequence of object

interactions.

 State machine models that show how individual objects

change their state in response to events.

 Other models include use-case models, aggregation

models, generalisation models, etc.

Chapter 7 Design and Implementation 2130/10/2014

Subsystem models

 Shows how the design is organised into logically related

groups of objects.

 In the UML, these are shown using packages - an

encapsulation construct. This is a logical model. The

actual organisation of objects in the system may be

different.

Chapter 7 Design and Implementation 2230/10/2014

Sequence models

 Sequence models show the sequence of object
interactions that take place

 Objects are arranged horizontally across the top;

 Time is represented vertically so models are read top to bottom;

 Interactions are represented by labelled arrows, Different styles
of arrow represent different types of interaction;

 A thin rectangle in an object lifeline represents the time when the
object is the controlling object in the system.

Chapter 7 Design and Implementation 2330/10/2014

Sequence diagram describing data collection

Chapter 7 Design and Implementation 2430/10/2014

State diagrams

 State diagrams are used to show how objects respond to
different service requests and the state transitions
triggered by these requests.

 State diagrams are useful high-level models of a system
or an object’s run-time behavior.

 You don’t usually need a state diagram for all of the
objects in the system. Many of the objects in a system
are relatively simple and a state model adds
unnecessary detail to the design.

Chapter 7 Design and Implementation 2530/10/2014

Weather station state diagram

Chapter 7 Design and Implementation 2630/10/2014

Interface specification

 Object interfaces have to be specified so that the objects

and other components can be designed in parallel.

 Designers should avoid designing the interface

representation but should hide this in the object itself.

 Objects may have several interfaces which are

viewpoints on the methods provided.

 The UML uses class diagrams for interface specification

but Java may also be used.

Chapter 7 Design and Implementation 2730/10/2014

Weather station interfaces

Chapter 7 Design and Implementation 2830/10/2014

Design patterns

Chapter 7 Design and Implementation 2930/10/2014

Design patterns

 A design pattern is a way of reusing abstract knowledge

about a problem and its solution.

 A pattern is a description of the problem and the essence

of its solution.

 It should be sufficiently abstract to be reused in different

settings.

 Pattern descriptions usually make use of object-oriented

characteristics such as inheritance and polymorphism.

Chapter 7 Design and Implementation 3030/10/2014

Patterns

 Patterns and Pattern Languages are ways to describe

best practices, good designs, and capture experience in

a way that it is possible for others to reuse this

experience.

Chapter 7 Design and Implementation 3130/10/2014

Pattern elements

 Name

 A meaningful pattern identifier.

 Problem description.

 Solution description.

 Not a concrete design but a template for a design solution that

can be instantiated in different ways.

 Consequences

 The results and trade-offs of applying the pattern.

Chapter 7 Design and Implementation 3230/10/2014

The Observer pattern

 Name

 Observer.

 Description

 Separates the display of object state from the object itself.

 Problem description

 Used when multiple displays of state are needed.

 Solution description

 See slide with UML description.

 Consequences

 Optimisations to enhance display performance are impractical.

Chapter 7 Design and Implementation 3330/10/2014

The Observer pattern (1)

Pattern

name

Observer

Description Separates the display of the state of an object from the object itself and

allows alternative displays to be provided. When the object state

changes, all displays are automatically notified and updated to reflect the

change.

Problem

description

In many situations, you have to provide multiple displays of state

information, such as a graphical display and a tabular display. Not all of

these may be known when the information is specified. All alternative

presentations should support interaction and, when the state is changed,

all displays must be updated.

This pattern may be used in all situations where more than one

display format for state information is required and where it is not

necessary for the object that maintains the state information to know

about the specific display formats used.

Chapter 7 Design and Implementation 3430/10/2014

The Observer pattern (2)

Pattern name Observer

Solution

description

This involves two abstract objects, Subject and Observer, and two concrete

objects, ConcreteSubject and ConcreteObject, which inherit the attributes of the

related abstract objects. The abstract objects include general operations that are

applicable in all situations. The state to be displayed is maintained in

ConcreteSubject, which inherits operations from Subject allowing it to add and

remove Observers (each observer corresponds to a display) and to issue a

notification when the state has changed.

The ConcreteObserver maintains a copy of the state of ConcreteSubject and

implements the Update() interface of Observer that allows these copies to be kept

in step. The ConcreteObserver automatically displays the state and reflects

changes whenever the state is updated.

Consequences The subject only knows the abstract Observer and does not know details of the

concrete class. Therefore there is minimal coupling between these objects.

Because of this lack of knowledge, optimizations that enhance display

performance are impractical. Changes to the subject may cause a set of linked

updates to observers to be generated, some of which may not be necessary.

Chapter 7 Design and Implementation 3530/10/2014

Multiple displays using the Observer pattern

Chapter 7 Design and Implementation 3630/10/2014

A UML model of the Observer pattern

Chapter 7 Design and Implementation 3730/10/2014

Design problems

 To use patterns in your design, you need to recognize

that any design problem you are facing may have an

associated pattern that can be applied.

 Tell several objects that the state of some other object has

changed (Observer pattern).

 Tidy up the interfaces to a number of related objects that have

often been developed incrementally (Façade pattern).

 Provide a standard way of accessing the elements in a

collection, irrespective of how that collection is implemented

(Iterator pattern).

 Allow for the possibility of extending the functionality of an

existing class at run-time (Decorator pattern).

Chapter 7 Design and Implementation 3830/10/2014

Implementation issues

Chapter 7 Design and Implementation 3930/10/2014

Implementation issues

 Focus here is not on programming, although this is

obviously important, but on other implementation issues

that are often not covered in programming texts:

 Reuse Most modern software is constructed by reusing existing

components or systems. When you are developing software, you

should make as much use as possible of existing code.

 Configuration management During the development process,

you have to keep track of the many different versions of each

software component in a configuration management system.

 Host-target development Production software does not usually

execute on the same computer as the software development

environment. Rather, you develop it on one computer (the host

system) and execute it on a separate computer (the target

system).
Chapter 7 Design and Implementation 4030/10/2014

Reuse

 From the 1960s to the 1990s, most new software was

developed from scratch, by writing all code in a high-

level programming language.

 The only significant reuse or software was the reuse of functions

and objects in programming language libraries.

 Costs and schedule pressure mean that this approach

became increasingly unviable, especially for commercial

and Internet-based systems.

 An approach to development based around the reuse of

existing software emerged and is now generally used for

business and scientific software.

Chapter 7 Design and Implementation 4130/10/2014

Reuse levels

 The abstraction level

 At this level, you don’t reuse software directly but use knowledge

of successful abstractions in the design of your software.

 The object level

 At this level, you directly reuse objects from a library rather than

writing the code yourself.

 The component level

 Components are collections of objects and object classes that

you reuse in application systems.

 The system level

 At this level, you reuse entire application systems.

Chapter 7 Design and Implementation 4230/10/2014

Software reuse

Chapter 7 Design and Implementation 4330/10/2014

Reuse costs

 The costs of the time spent in looking for software to

reuse and assessing whether or not it meets your needs.

 Where applicable, the costs of buying the reusable

software. For large off-the-shelf systems, these costs

can be very high.

 The costs of adapting and configuring the reusable

software components or systems to reflect the

requirements of the system that you are developing.

 The costs of integrating reusable software elements with

each other (if you are using software from different

sources) and with the new code that you have

developed.
Chapter 7 Design and Implementation 4430/10/2014

Configuration management

 Configuration management is the name given to the

general process of managing a changing software

system.

 The aim of configuration management is to support the

system integration process so that all developers can

access the project code and documents in a controlled

way, find out what changes have been made, and

compile and link components to create a system.

 See also Chapter 25.

Chapter 7 Design and Implementation 4530/10/2014

Configuration management activities

 Version management, where support is provided to keep track

of the different versions of software components. Version

management systems include facilities to coordinate

development by several programmers.

 System integration, where support is provided to help

developers define what versions of components are used to

create each version of a system. This description is then used

to build a system automatically by compiling and linking the

required components.

 Problem tracking, where support is provided to allow users to

report bugs and other problems, and to allow all developers to

see who is working on these problems and when they are

fixed.

Chapter 7 Design and Implementation 4630/10/2014

Configuration management tool interaction

Chapter 7 Design and Implementation 4730/10/2014

Host-target development

 Most software is developed on one computer (the host),

but runs on a separate machine (the target).

 More generally, we can talk about a development

platform and an execution platform.

 A platform is more than just hardware.

 It includes the installed operating system plus other supporting

software such as a database management system or, for

development platforms, an interactive development environment.

 Development platform usually has different installed

software than execution platform; these platforms may

have different architectures.

Chapter 7 Design and Implementation 4830/10/2014

Host-target development

Chapter 7 Design and Implementation 4930/10/2014

Development platform tools

 An integrated compiler and syntax-directed editing

system that allows you to create, edit and compile code.

 A language debugging system.

 Graphical editing tools, such as tools to edit UML

models.

 Testing tools, such as Junit that can automatically run a

set of tests on a new version of a program.

 Project support tools that help you organize the code for

different development projects.

Chapter 7 Design and Implementation 5030/10/2014

Integrated development environments (IDEs)

 Software development tools are often grouped to create

an integrated development environment (IDE).

 An IDE is a set of software tools that supports different

aspects of software development, within some common

framework and user interface.

 IDEs are created to support development in a specific

programming language such as Java. The language IDE

may be developed specially, or may be an instantiation

of a general-purpose IDE, with specific language-support

tools.

Chapter 7 Design and Implementation 5130/10/2014

Component/system deployment factors

 If a component is designed for a specific hardware architecture, or

relies on some other software system, it must obviously be deployed

on a platform that provides the required hardware and software

support.

 High availability systems may require components to be deployed

on more than one platform. This means that, in the event of platform

failure, an alternative implementation of the component is available.

 If there is a high level of communications traffic between

components, it usually makes sense to deploy them on the same

platform or on platforms that are physically close to one other. This

reduces the delay between the time a message is sent by one

component and received by another.

Chapter 7 Design and Implementation 5230/10/2014

Open source development

Chapter 7 Design and Implementation 5330/10/2014

Open source development

 Open source development is an approach to software

development in which the source code of a software

system is published and volunteers are invited to

participate in the development process

 Its roots are in the Free Software Foundation

(www.fsf.org), which advocates that source code should

not be proprietary but rather should always be available

for users to examine and modify as they wish.

 Open source software extended this idea by using the

Internet to recruit a much larger population of volunteer

developers. Many of them are also users of the code.

Chapter 7 Design and Implementation 5430/10/2014

Open source systems

 The best-known open source product is, of course, the

Linux operating system which is widely used as a server

system and, increasingly, as a desktop environment.

 Other important open source products are Java, the

Apache web server and the mySQL database

management system.

Chapter 7 Design and Implementation 5530/10/2014

Open source issues

 Should the product that is being developed make use of

open source components?

 Should an open source approach be used for the

software’s development?

Chapter 7 Design and Implementation 5630/10/2014

Open source business

 More and more product companies are using an open

source approach to development.

 Their business model is not reliant on selling a software

product but on selling support for that product.

 They believe that involving the open source community

will allow software to be developed more cheaply, more

quickly and will create a community of users for the

software.

Chapter 7 Design and Implementation 5730/10/2014

Open source licensing

 A fundamental principle of open-source development is

that source code should be freely available, this does not

mean that anyone can do as they wish with that code.

 Legally, the developer of the code (either a company or an

individual) still owns the code. They can place restrictions on

how it is used by including legally binding conditions in an open

source software license.

 Some open source developers believe that if an open source

component is used to develop a new system, then that system

should also be open source.

 Others are willing to allow their code to be used without this

restriction. The developed systems may be proprietary and sold

as closed source systems.

Chapter 7 Design and Implementation 5830/10/2014

License models

 The GNU General Public License (GPL). This is a so-called

‘reciprocal’ license that means that if you use open source

software that is licensed under the GPL license, then you

must make that software open source.

 The GNU Lesser General Public License (LGPL) is a variant

of the GPL license where you can write components that link

to open source code without having to publish the source of

these components.

 The Berkley Standard Distribution (BSD) License. This is a

non-reciprocal license, which means you are not obliged to re-

publish any changes or modifications made to open source

code. You can include the code in proprietary systems that

are sold.

Chapter 7 Design and Implementation 5930/10/2014

License management

 Establish a system for maintaining information about

open-source components that are downloaded and

used.

 Be aware of the different types of licenses and

understand how a component is licensed before it is

used.

 Be aware of evolution pathways for components.

 Educate people about open source.

 Have auditing systems in place.

 Participate in the open source community.

Chapter 7 Design and Implementation 6030/10/2014

Key points

 Software design and implementation are inter-leaved activities. The

level of detail in the design depends on the type of system and

whether you are using a plan-driven or agile approach.

 The process of object-oriented design includes activities to design

the system architecture, identify objects in the system, describe the

design using different object models and document the component

interfaces.

 A range of different models may be produced during an object-

oriented design process. These include static models (class models,

generalization models, association models) and dynamic models

(sequence models, state machine models).

 Component interfaces must be defined precisely so that other

objects can use them. A UML interface stereotype may be used to

define interfaces.
Chapter 7 Design and Implementation 6130/10/2014

Key points

 When developing software, you should always consider the

possibility of reusing existing software, either as components,

services or complete systems.

 Configuration management is the process of managing changes to

an evolving software system. It is essential when a team of people

are cooperating to develop software.

 Most software development is host-target development. You use an

IDE on a host machine to develop the software, which is transferred

to a target machine for execution.

 Open source development involves making the source code of a

system publicly available. This means that many people can

propose changes and improvements to the software.

Chapter 7 Design and Implementation 6230/10/2014

Chapter 8 – Software Testing

Chapter 8 Software Testing 130/10/2014

Topics covered

 Development testing

 Test-driven development

 Release testing

 User testing

Chapter 8 Software Testing 230/10/2014

Program testing

 Testing is intended to show that a program does what it is

intended to do and to discover program defects before it is put

into use.

 When you test software, you execute a program using

artificial data.

 You check the results of the test run for errors, anomalies or

information about the program’s non-functional attributes.

 Can reveal the presence of errors NOT their

absence.

 Testing is part of a more general verification and validation

process, which also includes static validation techniques.

Chapter 8 Software Testing 330/10/2014

Program testing goals

 To demonstrate to the developer and the customer that

the software meets its requirements.

 For custom software, this means that there should be at least

one test for every requirement in the requirements document.

For generic software products, it means that there should be

tests for all of the system features, plus combinations of these

features, that will be incorporated in the product release.

 To discover situations in which the behavior of the

software is incorrect, undesirable or does not conform to

its specification.

 Defect testing is concerned with rooting out undesirable system

behavior such as system crashes, unwanted interactions with

other systems, incorrect computations and data corruption.

Chapter 8 Software Testing 430/10/2014

Validation and defect testing

 The first goal leads to validation testing

 You expect the system to perform correctly using a given set of

test cases that reflect the system’s expected use.

 The second goal leads to defect testing

 The test cases are designed to expose defects. The test cases in

defect testing can be deliberately obscure and need not reflect

how the system is normally used.

Chapter 8 Software Testing 530/10/2014

Testing process goals

 Validation testing

 To demonstrate to the developer and the system customer that

the software meets its requirements

 A successful test shows that the system operates as intended.

 Defect testing

 To discover faults or defects in the software where its behaviour

is incorrect or not in conformance with its specification

 A successful test is a test that makes the system perform

incorrectly and so exposes a defect in the system.

Chapter 8 Software Testing 630/10/2014

An input-output model of program testing

Chapter 8 Software Testing 730/10/2014

Verification vs validation

 Verification:

"Are we building the product right”.

 The software should conform to its specification.

 Validation:

"Are we building the right product”.

 The software should do what the user really requires.

Chapter 8 Software Testing 830/10/2014

V & V confidence

 Aim of V & V is to establish confidence that the system is
‘fit for purpose’.

 Depends on system’s purpose, user expectations and
marketing environment

 Software purpose

• The level of confidence depends on how critical the software is to
an organisation.

 User expectations

• Users may have low expectations of certain kinds of software.

 Marketing environment

• Getting a product to market early may be more important than
finding defects in the program.

Chapter 8 Software Testing 930/10/2014

Inspections and testing

 Software inspections Concerned with analysis of

the static system representation to discover problems

(static verification)

 May be supplement by tool-based document and code

analysis.

 Discussed in Chapter 15.

 Software testing Concerned with exercising and

observing product behaviour (dynamic verification)

 The system is executed with test data and its operational

behaviour is observed.

Chapter 8 Software Testing 1030/10/2014

Inspections and testing

Chapter 8 Software Testing 1130/10/2014

Software inspections

 These involve people examining the source

representation with the aim of discovering anomalies and

defects.

 Inspections not require execution of a system so may be

used before implementation.

 They may be applied to any representation of the system

(requirements, design,configuration data, test data, etc.).

 They have been shown to be an effective technique for

discovering program errors.

Chapter 8 Software Testing 1230/10/2014

Advantages of inspections

 During testing, errors can mask (hide) other errors.

Because inspection is a static process, you don’t have to

be concerned with interactions between errors.

 Incomplete versions of a system can be inspected

without additional costs. If a program is incomplete, then

you need to develop specialized test harnesses to test

the parts that are available.

 As well as searching for program defects, an inspection

can also consider broader quality attributes of a

program, such as compliance with standards, portability

and maintainability.

Chapter 8 Software Testing 1330/10/2014

Inspections and testing

 Inspections and testing are complementary and not

opposing verification techniques.

 Both should be used during the V & V process.

 Inspections can check conformance with a specification

but not conformance with the customer’s real

requirements.

 Inspections cannot check non-functional characteristics

such as performance, usability, etc.

Chapter 8 Software Testing 1430/10/2014

A model of the software testing process

Chapter 8 Software Testing 1530/10/2014

Stages of testing

 Development testing, where the system is tested during

development to discover bugs and defects.

 Release testing, where a separate testing team test a

complete version of the system before it is released to

users.

 User testing, where users or potential users of a system

test the system in their own environment.

Chapter 8 Software Testing 1630/10/2014

Development testing

Chapter 8 Software Testing 1730/10/2014

Development testing

 Development testing includes all testing activities that

are carried out by the team developing the system.

 Unit testing, where individual program units or object classes are

tested. Unit testing should focus on testing the functionality of

objects or methods.

 Component testing, where several individual units are integrated

to create composite components. Component testing should

focus on testing component interfaces.

 System testing, where some or all of the components in a

system are integrated and the system is tested as a whole.

System testing should focus on testing component interactions.

Chapter 8 Software Testing 1830/10/2014

Unit testing

 Unit testing is the process of testing individual

components in isolation.

 It is a defect testing process.

 Units may be:

 Individual functions or methods within an object

 Object classes with several attributes and methods

 Composite components with defined interfaces used to access

their functionality.

Chapter 8 Software Testing 1930/10/2014

Object class testing

 Complete test coverage of a class involves

 Testing all operations associated with an object

 Setting and interrogating all object attributes

 Exercising the object in all possible states.

 Inheritance makes it more difficult to design object class

tests as the information to be tested is not localised.

Chapter 8 Software Testing 2030/10/2014

The weather station object interface

Chapter 8 Software Testing 2130/10/2014

Weather station testing

 Need to define test cases for reportWeather, calibrate,

test, startup and shutdown.

 Using a state model, identify sequences of state

transitions to be tested and the event sequences to

cause these transitions

 For example:

 Shutdown -> Running-> Shutdown

 Configuring-> Running-> Testing -> Transmitting -> Running

 Running-> Collecting-> Running-> Summarizing -> Transmitting

-> Running

Chapter 8 Software Testing 2230/10/2014

Automated testing

 Whenever possible, unit testing should be automated so

that tests are run and checked without manual

intervention.

 In automated unit testing, you make use of a test

automation framework (such as JUnit) to write and run

your program tests.

 Unit testing frameworks provide generic test classes that

you extend to create specific test cases. They can then

run all of the tests that you have implemented and

report, often through some GUI, on the success of

otherwise of the tests.

Chapter 8 Software Testing 2330/10/2014

Automated test components

 A setup part, where you initialize the system with the test

case, namely the inputs and expected outputs.

 A call part, where you call the object or method to be

tested.

 An assertion part where you compare the result of the

call with the expected result. If the assertion evaluates to

true, the test has been successful if false, then it has

failed.

Chapter 8 Software Testing 2430/10/2014

Choosing unit test cases

 The test cases should show that, when used as

expected, the component that you are testing does what

it is supposed to do.

 If there are defects in the component, these should be

revealed by test cases.

 This leads to 2 types of unit test case:

 The first of these should reflect normal operation of a program

and should show that the component works as expected.

 The other kind of test case should be based on testing

experience of where common problems arise. It should use

abnormal inputs to check that these are properly processed and

do not crash the component.

Chapter 8 Software Testing 2530/10/2014

Testing strategies

 Partition testing, where you identify groups of inputs that

have common characteristics and should be processed

in the same way.

 You should choose tests from within each of these groups.

 Guideline-based testing, where you use testing

guidelines to choose test cases.

 These guidelines reflect previous experience of the kinds of

errors that programmers often make when developing

components.

Chapter 8 Software Testing 2630/10/2014

Partition testing

 Input data and output results often fall into different

classes where all members of a class are related.

 Each of these classes is an equivalence partition or

domain where the program behaves in an equivalent

way for each class member.

 Test cases should be chosen from each partition.

Chapter 8 Software Testing 2730/10/2014

Equivalence partitioning

Chapter 8 Software Testing 2830/10/2014

Equivalence partitions

Chapter 8 Software Testing 2930/10/2014

Testing guidelines (sequences)

 Test software with sequences which have only a single

value.

 Use sequences of different sizes in different tests.

 Derive tests so that the first, middle and last elements of

the sequence are accessed.

 Test with sequences of zero length.

Chapter 8 Software Testing 3030/10/2014

General testing guidelines

 Choose inputs that force the system to generate all error

messages

 Design inputs that cause input buffers to overflow

 Repeat the same input or series of inputs numerous

times

 Force invalid outputs to be generated

 Force computation results to be too large or too small.

Chapter 8 Software Testing 3130/10/2014

Component testing

 Software components are often composite components

that are made up of several interacting objects.

 For example, in the weather station system, the reconfiguration

component includes objects that deal with each aspect of the

reconfiguration.

 You access the functionality of these objects through the

defined component interface.

 Testing composite components should therefore focus

on showing that the component interface behaves

according to its specification.

 You can assume that unit tests on the individual objects within

the component have been completed.

Chapter 8 Software Testing 3230/10/2014

Interface testing

 Objectives are to detect faults due to interface errors or

invalid assumptions about interfaces.

 Interface types

 Parameter interfaces Data passed from one method or

procedure to another.

 Shared memory interfaces Block of memory is shared between

procedures or functions.

 Procedural interfaces Sub-system encapsulates a set of

procedures to be called by other sub-systems.

 Message passing interfaces Sub-systems request services from

other sub-systems

Chapter 8 Software Testing 3330/10/2014

Interface testing

Chapter 8 Software Testing 3430/10/2014

Interface errors

 Interface misuse

 A calling component calls another component and makes an

error in its use of its interface e.g. parameters in the wrong order.

 Interface misunderstanding

 A calling component embeds assumptions about the behaviour

of the called component which are incorrect.

 Timing errors

 The called and the calling component operate at different speeds

and out-of-date information is accessed.

Chapter 8 Software Testing 3530/10/2014

Interface testing guidelines

 Design tests so that parameters to a called procedure

are at the extreme ends of their ranges.

 Always test pointer parameters with null pointers.

 Design tests which cause the component to fail.

 Use stress testing in message passing systems.

 In shared memory systems, vary the order in which

components are activated.

Chapter 8 Software Testing 3630/10/2014

System testing

 System testing during development involves integrating

components to create a version of the system and then

testing the integrated system.

 The focus in system testing is testing the interactions

between components.

 System testing checks that components are compatible,

interact correctly and transfer the right data at the right

time across their interfaces.

 System testing tests the emergent behaviour of a

system.

Chapter 8 Software Testing 3730/10/2014

System and component testing

 During system testing, reusable components that have

been separately developed and off-the-shelf systems

may be integrated with newly developed components.

The complete system is then tested.

 Components developed by different team members or

sub-teams may be integrated at this stage. System

testing is a collective rather than an individual process.

 In some companies, system testing may involve a separate

testing team with no involvement from designers and

programmers.

Chapter 8 Software Testing 3830/10/2014

Use-case testing

 The use-cases developed to identify system interactions

can be used as a basis for system testing.

 Each use case usually involves several system

components so testing the use case forces these

interactions to occur.

 The sequence diagrams associated with the use case

documents the components and interactions that are

being tested.

Chapter 8 Software Testing 3930/10/2014

Collect weather data sequence chart

Chapter 8 Software Testing 4030/10/2014

Test cases derived from sequence diagram

 An input of a request for a report should have an

associated acknowledgement. A report should ultimately

be returned from the request.

 You should create summarized data that can be used to check

that the report is correctly organized.

 An input request for a report to WeatherStation results in

a summarized report being generated.

 Can be tested by creating raw data corresponding to the

summary that you have prepared for the test of SatComms and

checking that the WeatherStation object correctly produces this

summary. This raw data is also used to test the WeatherData

object.

Chapter 8 Software Testing 4130/10/2014

Testing policies

 Exhaustive system testing is impossible so testing

policies which define the required system test coverage

may be developed.

 Examples of testing policies:

 All system functions that are accessed through menus should be

tested.

 Combinations of functions (e.g. text formatting) that are

accessed through the same menu must be tested.

 Where user input is provided, all functions must be tested with

both correct and incorrect input.

Chapter 8 Software Testing 4230/10/2014

Test-driven development

Chapter 8 Software Testing 4330/10/2014

Test-driven development

 Test-driven development (TDD) is an approach to

program development in which you inter-leave testing

and code development.

 Tests are written before code and ‘passing’ the tests is

the critical driver of development.

 You develop code incrementally, along with a test for that

increment. You don’t move on to the next increment until

the code that you have developed passes its test.

 TDD was introduced as part of agile methods such as

Extreme Programming. However, it can also be used in

plan-driven development processes.

Chapter 8 Software Testing 4430/10/2014

Test-driven development

Chapter 8 Software Testing 4530/10/2014

TDD process activities

 Start by identifying the increment of functionality that is

required. This should normally be small and

implementable in a few lines of code.

 Write a test for this functionality and implement this as

an automated test.

 Run the test, along with all other tests that have been

implemented. Initially, you have not implemented the

functionality so the new test will fail.

 Implement the functionality and re-run the test.

 Once all tests run successfully, you move on to

implementing the next chunk of functionality.

Chapter 8 Software Testing 4630/10/2014

Benefits of test-driven development

 Code coverage

 Every code segment that you write has at least one associated

test so all code written has at least one test.

 Regression testing

 A regression test suite is developed incrementally as a program

is developed.

 Simplified debugging

 When a test fails, it should be obvious where the problem lies.

The newly written code needs to be checked and modified.

 System documentation

 The tests themselves are a form of documentation that describe

what the code should be doing.

Chapter 8 Software Testing 4730/10/2014

Regression testing

 Regression testing is testing the system to check that

changes have not ‘broken’ previously working code.

 In a manual testing process, regression testing is

expensive but, with automated testing, it is simple and

straightforward. All tests are rerun every time a change is

made to the program.

 Tests must run ‘successfully’ before the change is

committed.

Chapter 8 Software Testing 4830/10/2014

Release testing

Chapter 8 Software Testing 4930/10/2014

Release testing

 Release testing is the process of testing a particular release

of a system that is intended for use outside of the

development team.

 The primary goal of the release testing process is to

convince the supplier of the system that it is good enough

for use.

 Release testing, therefore, has to show that the system delivers its

specified functionality, performance and dependability, and that it

does not fail during normal use.

 Release testing is usually a black-box testing process

where tests are only derived from the system specification.

Chapter 8 Software Testing 5030/10/2014

Release testing and system testing

 Release testing is a form of system testing.

 Important differences:

 A separate team that has not been involved in the system

development, should be responsible for release testing.

 System testing by the development team should focus on

discovering bugs in the system (defect testing). The objective of

release testing is to check that the system meets its

requirements and is good enough for external use (validation

testing).

Chapter 8 Software Testing 5130/10/2014

Requirements based testing

 Requirements-based testing involves examining each

requirement and developing a test or tests for it.

 Mentcare system requirements:

 If a patient is known to be allergic to any particular medication,

then prescription of that medication shall result in a warning

message being issued to the system user.

 If a prescriber chooses to ignore an allergy warning, they shall

provide a reason why this has been ignored.

Chapter 8 Software Testing 5230/10/2014

Requirements tests

 Set up a patient record with no known allergies. Prescribe medication for

allergies that are known to exist. Check that a warning message is not

issued by the system.

 Set up a patient record with a known allergy. Prescribe the medication to

that the patient is allergic to, and check that the warning is issued by the

system.

 Set up a patient record in which allergies to two or more drugs are recorded.

Prescribe both of these drugs separately and check that the correct warning

for each drug is issued.

 Prescribe two drugs that the patient is allergic to. Check that two warnings

are correctly issued.

 Prescribe a drug that issues a warning and overrule that warning. Check

that the system requires the user to provide information explaining why the

warning was overruled.

Chapter 8 Software Testing 5330/10/2014

A usage scenario for the Mentcare system

Chapter 8 Software Testing 54

George is a nurse who specializes in mental healthcare. One of his responsibilities is to visit patients
at home to check that their treatment is effective and that they are not suffering from medication
side effects.

On a day for home visits, George logs into the Mentcare system and uses it to print his schedule of
home visits for that day, along with summary information about the patients to be visited. He
requests that the records for these patients be downloaded to his laptop. He is prompted for his key
phrase to encrypt the records on the laptop.

One of the patients that he visits is Jim, who is being treated with medication for depression. Jim
feels that the medication is helping him but believes that it has the side effect of keeping him awake
at night. George looks up Jim’s record and is prompted for his key phrase to decrypt the record. He
checks the drug prescribed and queries its side effects. Sleeplessness is a known side effect so he
notes the problem in Jim’s record and suggests that he visits the clinic to have his medication
changed. Jim agrees so George enters a prompt to call him when he gets back to the clinic to make
an appointment with a physician. George ends the consultation and the system re-encrypts Jim’s
record.

After, finishing his consultations, George returns to the clinic and uploads the records of patients
visited to the database. The system generates a call list for George of those patients who He has to
contact for follow-up information and make clinic appointments.

30/10/2014

Features tested by scenario

 Authentication by logging on to the system.

 Downloading and uploading of specified patient records

to a laptop.

 Home visit scheduling.

 Encryption and decryption of patient records on a mobile

device.

 Record retrieval and modification.

 Links with the drugs database that maintains side-effect

information.

 The system for call prompting.

Chapter 8 Software Testing 5530/10/2014

Performance testing

 Part of release testing may involve testing the emergent

properties of a system, such as performance and

reliability.

 Tests should reflect the profile of use of the system.

 Performance tests usually involve planning a series of

tests where the load is steadily increased until the

system performance becomes unacceptable.

 Stress testing is a form of performance testing where the

system is deliberately overloaded to test its failure

behaviour.

Chapter 8 Software Testing 5630/10/2014

User testing

Chapter 8 Software Testing 5730/10/2014

User testing

 User or customer testing is a stage in the testing process

in which users or customers provide input and advice on

system testing.

 User testing is essential, even when comprehensive

system and release testing have been carried out.

 The reason for this is that influences from the user’s working

environment have a major effect on the reliability, performance,

usability and robustness of a system. These cannot be replicated

in a testing environment.

Chapter 8 Software Testing 5830/10/2014

Types of user testing

 Alpha testing

 Users of the software work with the development team to test the

software at the developer’s site.

 Beta testing

 A release of the software is made available to users to allow

them to experiment and to raise problems that they discover with

the system developers.

 Acceptance testing

 Customers test a system to decide whether or not it is ready to

be accepted from the system developers and deployed in the

customer environment. Primarily for custom systems.

Chapter 8 Software Testing 5930/10/2014

The acceptance testing process

Chapter 8 Software Testing 6030/10/2014

Stages in the acceptance testing process

 Define acceptance criteria

 Plan acceptance testing

 Derive acceptance tests

 Run acceptance tests

 Negotiate test results

 Reject/accept system

Chapter 8 Software Testing 6130/10/2014

Agile methods and acceptance testing

 In agile methods, the user/customer is part of the

development team and is responsible for making

decisions on the acceptability of the system.

 Tests are defined by the user/customer and are

integrated with other tests in that they are run

automatically when changes are made.

 There is no separate acceptance testing process.

 Main problem here is whether or not the embedded user

is ‘typical’ and can represent the interests of all system

stakeholders.

Chapter 8 Software Testing 6230/10/2014

Key points

 Testing can only show the presence of errors in a

program. It cannot demonstrate that there are no

remaining faults.

 Development testing is the responsibility of the software

development team. A separate team should be

responsible for testing a system before it is released to

customers.

 Development testing includes unit testing, in which you

test individual objects and methods component testing

in which you test related groups of objects and system

testing, in which you test partial or complete systems.

Chapter 8 Software Testing 6330/10/2014

Key points

 When testing software, you should try to ‘break’ the software by

using experience and guidelines to choose types of test case that

have been effective in discovering defects in other systems.

 Wherever possible, you should write automated tests. The tests are

embedded in a program that can be run every time a change is

made to a system.

 Test-first development is an approach to development where tests

are written before the code to be tested.

 Scenario testing involves inventing a typical usage scenario and

using this to derive test cases.

 Acceptance testing is a user testing process where the aim is to

decide if the software is good enough to be deployed and used in its

operational environment.

Chapter 8 Software Testing 6430/10/2014

Chapter 9 – Software Evolution

Chapter 9 Software Evolution 130/10/2014

Topics covered

 Evolution processes

 Legacy systems

 Software maintenance

Chapter 9 Software Evolution 230/10/2014

Software change

 Software change is inevitable

 New requirements emerge when the software is used;

 The business environment changes;

 Errors must be repaired;

 New computers and equipment is added to the system;

 The performance or reliability of the system may have to be

improved.

 A key problem for all organizations is implementing and

managing change to their existing software systems.

Chapter 9 Software Evolution 330/10/2014

Importance of evolution

 Organisations have huge investments in their software
systems - they are critical business assets.

 To maintain the value of these assets to the business,
they must be changed and updated.

 The majority of the software budget in large companies
is devoted to changing and evolving existing software
rather than developing new software.

Chapter 9 Software Evolution 430/10/2014

A spiral model of development and evolution

Chapter 9 Software Evolution 530/10/2014

Evolution and servicing

Chapter 9 Software Evolution 630/10/2014

Evolution and servicing

 Evolution

 The stage in a software system’s life cycle where it is in

operational use and is evolving as new requirements are

proposed and implemented in the system.

 Servicing

 At this stage, the software remains useful but the only changes

made are those required to keep it operational i.e. bug fixes and

changes to reflect changes in the software’s environment. No

new functionality is added.

 Phase-out

 The software may still be used but no further changes are made

to it.

Chapter 9 Software Evolution 730/10/2014

Evolution processes

Chapter 9 Software Evolution 830/10/2014

Evolution processes

 Software evolution processes depend on

 The type of software being maintained;

 The development processes used;

 The skills and experience of the people involved.

 Proposals for change are the driver for system evolution.

 Should be linked with components that are affected by the

change, thus allowing the cost and impact of the change to be

estimated.

 Change identification and evolution continues throughout

the system lifetime.

Chapter 9 Software Evolution 930/10/2014

Change identification and evolution processes

Chapter 9 Software Evolution 1030/10/2014

The software evolution process

Chapter 9 Software Evolution 1130/10/2014

Change implementation

Chapter 9 Software Evolution 1230/10/2014

Change implementation

 Iteration of the development process where the revisions

to the system are designed, implemented and tested.

 A critical difference is that the first stage of change

implementation may involve program understanding,

especially if the original system developers are not

responsible for the change implementation.

 During the program understanding phase, you have to

understand how the program is structured, how it

delivers functionality and how the proposed change

might affect the program.

Chapter 9 Software Evolution 1330/10/2014

Urgent change requests

 Urgent changes may have to be implemented without

going through all stages of the software engineering

process

 If a serious system fault has to be repaired to allow normal

operation to continue;

 If changes to the system’s environment (e.g. an OS upgrade)

have unexpected effects;

 If there are business changes that require a very rapid response

(e.g. the release of a competing product).

Chapter 9 Software Evolution 1430/10/2014

The emergency repair process

Chapter 9 Software Evolution 1530/10/2014

Agile methods and evolution

 Agile methods are based on incremental development so

the transition from development to evolution is a

seamless one.

 Evolution is simply a continuation of the development process

based on frequent system releases.

 Automated regression testing is particularly valuable

when changes are made to a system.

 Changes may be expressed as additional user stories.

Chapter 9 Software Evolution 1630/10/2014

Handover problems

 Where the development team have used an agile

approach but the evolution team is unfamiliar with agile

methods and prefer a plan-based approach.

 The evolution team may expect detailed documentation to

support evolution and this is not produced in agile processes.

 Where a plan-based approach has been used for

development but the evolution team prefer to use agile

methods.

 The evolution team may have to start from scratch developing

automated tests and the code in the system may not have been

refactored and simplified as is expected in agile development.

Chapter 9 Software Evolution 1730/10/2014

Legacy systems

Chapter 9 Software Evolution 1830/10/2014

Legacy systems

 Legacy systems are older systems that rely on

languages and technology that are no longer used for

new systems development.

 Legacy software may be dependent on older hardware,

such as mainframe computers and may have associated

legacy processes and procedures.

 Legacy systems are not just software systems but are

broader socio-technical systems that include hardware,

software, libraries and other supporting software and

business processes.

Chapter 9 Software Evolution 1930/10/2014

The elements of a legacy system

Chapter 9 Software Evolution 2030/10/2014

Legacy system components

 System hardware Legacy systems may have been

written for hardware that is no longer available.

 Support software The legacy system may rely on a

range of support software, which may be obsolete or

unsupported.

 Application software The application system that

provides the business services is usually made up of a

number of application programs.

 Application data These are data that are processed by

the application system. They may be inconsistent,

duplicated or held in different databases.

Chapter 9 Software Evolution 2130/10/2014

Legacy system components

 Business processes These are processes that are used

in the business to achieve some business objective.

 Business processes may be designed around a legacy

system and constrained by the functionality that it

provides.

 Business policies and rules These are definitions of how

the business should be carried out and constraints on

the business. Use of the legacy application system may

be embedded in these policies and rules.

Chapter 9 Software Evolution 2230/10/2014

Legacy system layers

Chapter 9 Software Evolution 2330/10/2014

Legacy system replacement

 Legacy system replacement is risky and expensive so

businesses continue to use these systems

 System replacement is risky for a number of reasons

 Lack of complete system specification

 Tight integration of system and business processes

 Undocumented business rules embedded in the legacy system

 New software development may be late and/or over budget

Chapter 9 Software Evolution 2430/10/2014

Legacy system change

 Legacy systems are expensive to change for a number

of reasons:

 No consistent programming style

 Use of obsolete programming languages with few people

available with these language skills

 Inadequate system documentation

 System structure degradation

 Program optimizations may make them hard to understand

 Data errors, duplication and inconsistency

Chapter 9 Software Evolution 2530/10/2014

Legacy system management

 Organisations that rely on legacy systems must choose

a strategy for evolving these systems

 Scrap the system completely and modify business processes so

that it is no longer required;

 Continue maintaining the system;

 Transform the system by re-engineering to improve its

maintainability;

 Replace the system with a new system.

 The strategy chosen should depend on the system

quality and its business value.

Chapter 9 Software Evolution 2630/10/2014

Figure 9.13 An example of a legacy system

assessment

Chapter 9 Software Evolution 2730/10/2014

Legacy system categories

 Low quality, low business value

 These systems should be scrapped.

 Low-quality, high-business value

 These make an important business contribution but are

expensive to maintain. Should be re-engineered or replaced if a

suitable system is available.

 High-quality, low-business value

 Replace with COTS, scrap completely or maintain.

 High-quality, high business value

 Continue in operation using normal system maintenance.

Chapter 9 Software Evolution 2830/10/2014

Business value assessment

 Assessment should take different viewpoints into

account

 System end-users;

 Business customers;

 Line managers;

 IT managers;

 Senior managers.

 Interview different stakeholders and collate results.

Chapter 9 Software Evolution 2930/10/2014

Issues in business value assessment

 The use of the system

 If systems are only used occasionally or by a small number of

people, they may have a low business value.

 The business processes that are supported

 A system may have a low business value if it forces the use of

inefficient business processes.

 System dependability

 If a system is not dependable and the problems directly affect

business customers, the system has a low business value.

 The system outputs

 If the business depends on system outputs, then the system has

a high business value.

Chapter 9 Software Evolution 3030/10/2014

System quality assessment

 Business process assessment

 How well does the business process support the current goals of

the business?

 Environment assessment

 How effective is the system’s environment and how expensive is

it to maintain?

 Application assessment

 What is the quality of the application software system?

Chapter 9 Software Evolution 3130/10/2014

Business process assessment

 Use a viewpoint-oriented approach and seek answers
from system stakeholders

 Is there a defined process model and is it followed?

 Do different parts of the organisation use different processes for
the same function?

 How has the process been adapted?

 What are the relationships with other business processes and
are these necessary?

 Is the process effectively supported by the legacy application
software?

 Example - a travel ordering system may have a low
business value because of the widespread use of web-
based ordering.

Chapter 9 Software Evolution 3230/10/2014

Factors used in environment assessment

Factor Questions

Supplier stability Is the supplier still in existence? Is the supplier financially stable and

likely to continue in existence? If the supplier is no longer in business,

does someone else maintain the systems?

Failure rate Does the hardware have a high rate of reported failures? Does the

support software crash and force system restarts?

Age How old is the hardware and software? The older the hardware and

support software, the more obsolete it will be. It may still function

correctly but there could be significant economic and business

benefits to moving to a more modern system.

Performance Is the performance of the system adequate? Do performance

problems have a significant effect on system users?

Chapter 9 Software Evolution 3330/10/2014

Factors used in environment assessment

Factor Questions

Support requirements What local support is required by the hardware and

software? If there are high costs associated with this

support, it may be worth considering system replacement.

Maintenance costs What are the costs of hardware maintenance and support

software licences? Older hardware may have higher

maintenance costs than modern systems. Support software

may have high annual licensing costs.

Interoperability Are there problems interfacing the system to other systems?

Can compilers, for example, be used with current versions

of the operating system? Is hardware emulation required?

Chapter 9 Software Evolution 3430/10/2014

Factors used in application assessment

Factor Questions

Understandability How difficult is it to understand the source code of the current

system? How complex are the control structures that are used?

Do variables have meaningful names that reflect their function?

Documentation What system documentation is available? Is the documentation

complete, consistent, and current?

Data Is there an explicit data model for the system? To what extent is

data duplicated across files? Is the data used by the system up to

date and consistent?

Performance Is the performance of the application adequate? Do performance

problems have a significant effect on system users?

Chapter 9 Software Evolution 3530/10/2014

Factors used in application assessment

Factor Questions

Programming language Are modern compilers available for the programming

language used to develop the system? Is the programming

language still used for new system development?

Configuration

management

Are all versions of all parts of the system managed by a

configuration management system? Is there an explicit

description of the versions of components that are used in

the current system?

Test data Does test data for the system exist? Is there a record of

regression tests carried out when new features have been

added to the system?

Personnel skills Are there people available who have the skills to maintain the

application? Are there people available who have experience

with the system?

Chapter 9 Software Evolution 3630/10/2014

System measurement

 You may collect quantitative data to make an

assessment of the quality of the application system

 The number of system change requests; The higher this

accumulated value, the lower the quality of the system.

 The number of different user interfaces used by the system; The

more interfaces, the more likely it is that there will be

inconsistencies and redundancies in these interfaces.

 The volume of data used by the system. As the volume of data

(number of files, size of database, etc.) processed by the system

increases, so too do the inconsistencies and errors in that data.

 Cleaning up old data is a very expensive and time-consuming

process

Chapter 9 Software Evolution 3730/10/2014

Software maintenance

Chapter 9 Software Evolution 3830/10/2014

Software maintenance

 Modifying a program after it has been put into use.

 The term is mostly used for changing custom software.

Generic software products are said to evolve to create

new versions.

 Maintenance does not normally involve major changes to

the system’s architecture.

 Changes are implemented by modifying existing

components and adding new components to the system.

Chapter 9 Software Evolution 3930/10/2014

Types of maintenance

 Fault repairs

 Changing a system to fix bugs/vulnerabilities and correct

deficiencies in the way meets its requirements.

 Environmental adaptation

 Maintenance to adapt software to a different operating

environment

 Changing a system so that it operates in a different environment

(computer, OS, etc.) from its initial implementation.

 Functionality addition and modification

 Modifying the system to satisfy new requirements.

Chapter 9 Software Evolution 4030/10/2014

Maintenance effort distribution

Chapter 9 Software Evolution 4130/10/2014

Maintenance costs

 Usually greater than development costs (2* to

100* depending on the application).

 Affected by both technical and non-technical

factors.

 Increases as software is maintained.

Maintenance corrupts the software structure so

makes further maintenance more difficult.

 Ageing software can have high support costs

(e.g. old languages, compilers etc.).

Chapter 9 Software Evolution 4230/10/2014

Maintenance costs

 It is usually more expensive to add new features to a

system during maintenance than it is to add the same

features during development

 A new team has to understand the programs being maintained

 Separating maintenance and development means there is no

incentive for the development team to write maintainable

software

 Program maintenance work is unpopular

• Maintenance staff are often inexperienced and have limited domain

knowledge.

 As programs age, their structure degrades and they become

harder to change

Chapter 9 Software Evolution 4330/10/2014

Maintenance prediction

 Maintenance prediction is concerned with assessing

which parts of the system may cause problems and have

high maintenance costs

 Change acceptance depends on the maintainability of the

components affected by the change;

 Implementing changes degrades the system and reduces its

maintainability;

 Maintenance costs depend on the number of changes and costs

of change depend on maintainability.

Chapter 9 Software Evolution 4430/10/2014

Maintenance prediction

Chapter 9 Software Evolution 4530/10/2014

Change prediction

 Predicting the number of changes requires and

understanding of the relationships between a system

and its environment.

 Tightly coupled systems require changes whenever the

environment is changed.

 Factors influencing this relationship are

 Number and complexity of system interfaces;

 Number of inherently volatile system requirements;

 The business processes where the system is used.

Chapter 9 Software Evolution 4630/10/2014

Complexity metrics

 Predictions of maintainability can be made by assessing

the complexity of system components.

 Studies have shown that most maintenance effort is

spent on a relatively small number of system

components.

 Complexity depends on

 Complexity of control structures;

 Complexity of data structures;

 Object, method (procedure) and module size.

Chapter 9 Software Evolution 4730/10/2014

Process metrics

 Process metrics may be used to assess maintainability

 Number of requests for corrective maintenance;

 Average time required for impact analysis;

 Average time taken to implement a change request;

 Number of outstanding change requests.

 If any or all of these is increasing, this may indicate a

decline in maintainability.

Chapter 9 Software Evolution 4830/10/2014

Software reengineering

 Restructuring or rewriting part or all of a

legacy system without changing its

functionality.

 Applicable where some but not all sub-systems

of a larger system require frequent

maintenance.

 Reengineering involves adding effort to make

them easier to maintain. The system may be re-

structured and re-documented.

Chapter 9 Software Evolution 4930/10/2014

Advantages of reengineering

 Reduced risk

 There is a high risk in new software development. There may be

development problems, staffing problems and specification

problems.

 Reduced cost

 The cost of re-engineering is often significantly less than the

costs of developing new software.

Chapter 9 Software Evolution 5030/10/2014

The reengineering process

Chapter 9 Software Evolution 5130/10/2014

Reengineering process activities

 Source code translation

 Convert code to a new language.

 Reverse engineering

 Analyse the program to understand it;

 Program structure improvement

 Restructure automatically for understandability;

 Program modularisation

 Reorganise the program structure;

 Data reengineering

 Clean-up and restructure system data.

Chapter 9 Software Evolution 5230/10/2014

Reengineering approaches

Chapter 9 Software Evolution 5330/10/2014

Reengineering cost factors

 The quality of the software to be reengineered.

 The tool support available for reengineering.

 The extent of the data conversion which is required.

 The availability of expert staff for reengineering.

 This can be a problem with old systems based on technology
that is no longer widely used.

Chapter 9 Software Evolution 5430/10/2014

Refactoring

 Refactoring is the process of making improvements to a

program to slow down degradation through change.

 You can think of refactoring as ‘preventative

maintenance’ that reduces the problems of future

change.

 Refactoring involves modifying a program to improve its

structure, reduce its complexity or make it easier to

understand.

 When you refactor a program, you should not add

functionality but rather concentrate on program

improvement.

Chapter 9 Software Evolution 5530/10/2014

Refactoring and reengineering

 Re-engineering takes place after a system has been

maintained for some time and maintenance costs are

increasing. You use automated tools to process and re-

engineer a legacy system to create a new system that is

more maintainable.

 Refactoring is a continuous process of improvement

throughout the development and evolution process. It is

intended to avoid the structure and code degradation

that increases the costs and difficulties of maintaining a

system.

Chapter 9 Software Evolution 5630/10/2014

‘Bad smells’ in program code

 Duplicate code

 The same or very similar code may be included at different

places in a program. This can be removed and implemented as a

single method or function that is called as required.

 Long methods

 If a method is too long, it should be redesigned as a number of

shorter methods.

 Switch (case) statements

 These often involve duplication, where the switch depends on

the type of a value. The switch statements may be scattered

around a program. In object-oriented languages, you can often

use polymorphism to achieve the same thing.

Chapter 9 Software Evolution 5730/10/2014

‘Bad smells’ in program code

 Data clumping

 Data clumps occur when the same group of data items (fields in

classes, parameters in methods) re-occur in several places in a

program. These can often be replaced with an object that

encapsulates all of the data.

 Speculative generality

 This occurs when developers include generality in a program in

case it is required in the future. This can often simply be

removed.

Chapter 9 Software Evolution 5830/10/2014

Key points

 Software development and evolution can be thought of

as an integrated, iterative process that can be

represented using a spiral model.

 For custom systems, the costs of software maintenance

usually exceed the software development costs.

 The process of software evolution is driven by requests

for changes and includes change impact analysis,

release planning and change implementation.

 Legacy systems are older software systems, developed

using obsolete software and hardware technologies, that

remain useful for a business.

Chapter 9 Software Evolution 5930/10/2014

Key points

 It is often cheaper and less risky to maintain a legacy

system than to develop a replacement system using

modern technology.

 The business value of a legacy system and the quality of

the application should be assessed to help decide if a

system should be replaced, transformed or maintained.

 There are 3 types of software maintenance, namely bug

fixing, modifying software to work in a new environment,

and implementing new or changed requirements.

Chapter 9 Software Evolution 6030/10/2014

Key points

 Software re-engineering is concerned with re-structuring

and re-documenting software to make it easier to

understand and change.

 Refactoring, making program changes that preserve

functionality, is a form of preventative maintenance.

Chapter 9 Software Evolution 6130/10/2014

Chapter 10 – Dependable systems

30/10/2014 Chapter 10 Dependable Systems 1

Topics covered

 Dependability properties

 Sociotechnical systems

 Redundancy and diversity

 Dependable processes

 Formal methods and dependability

30/10/2014 Chapter 10 Dependable Systems 2

System dependability

 For many computer-based systems, the most important

system property is the dependability of the system.

 The dependability of a system reflects the user’s degree

of trust in that system. It reflects the extent of the user’s

confidence that it will operate as users expect and that it

will not ‘fail’ in normal use.

 Dependability covers the related systems attributes of

reliability, availability and security. These are all inter-

dependent.

3Chapter 10 Dependable Systems30/10/2014

Importance of dependability

 System failures may have widespread effects with large

numbers of people affected by the failure.

 Systems that are not dependable and are unreliable,

unsafe or insecure may be rejected by their users.

 The costs of system failure may be very high if the failure

leads to economic losses or physical damage.

 Undependable systems may cause information loss with

a high consequent recovery cost.

4Chapter 10 Dependable Systems30/10/2014

Causes of failure

 Hardware failure

 Hardware fails because of design and manufacturing errors or
because components have reached the end of their natural life.

 Software failure

 Software fails due to errors in its specification, design or
implementation.

 Operational failure

 Human operators make mistakes. Now perhaps the largest
single cause of system failures in socio-technical systems.

5Chapter 10 Dependable Systems30/10/2014

Dependability properties

30/10/2014 Chapter 10 Dependable Systems 6

The principal dependability properties

30/10/2014 Chapter 10 Dependable Systems 7

Principal properties

 Availability

 The probability that the system will be up and running and able

to deliver useful services to users.

 Reliability

 The probability that the system will correctly deliver services as

expected by users.

 Safety

 A judgment of how likely it is that the system will cause damage

to people or its environment.

8Chapter 10 Dependable Systems30/10/2014

Principal properties

 Security

 A judgment of how likely it is that the system can resist

accidental or deliberate intrusions.

 Resilience

 A judgment of how well a system can maintain the continuity of

its critical services in the presence of disruptive events such as

equipment failure and cyberattacks.

30/10/2014 Chapter 10 Dependable Systems 9

Other dependability properties

 Repairability

 Reflects the extent to which the system can be repaired in the
event of a failure

 Maintainability

 Reflects the extent to which the system can be adapted to new
requirements;

 Error tolerance

 Reflects the extent to which user input errors can be avoided
and tolerated.

10Chapter 10 Dependable Systems30/10/2014

Dependability attribute dependencies

 Safe system operation depends on the system being

available and operating reliably.

 A system may be unreliable because its data has been

corrupted by an external attack.

 Denial of service attacks on a system are intended to

make it unavailable.

 If a system is infected with a virus, you cannot be

confident in its reliability or safety.

Chapter 10 Dependable Systems 1130/10/2014

Dependability achievement

 Avoid the introduction of accidental errors when

developing the system.

 Design V & V processes that are effective in discovering

residual errors in the system.

 Design systems to be fault tolerant so that they can

continue in operation when faults occur

 Design protection mechanisms that guard against

external attacks.

Chapter 10 Dependable Systems 1230/10/2014

Dependability achievement

 Configure the system correctly for its operating

environment.

 Include system capabilities to recognise and resist

cyberattacks.

 Include recovery mechanisms to help restore normal

system service after a failure.

30/10/2014 Chapter 10 Dependable Systems 13

Dependability costs

 Dependability costs tend to increase exponentially as

increasing levels of dependability are required.

 There are two reasons for this

 The use of more expensive development techniques and

hardware that are required to achieve the higher levels of

dependability.

 The increased testing and system validation that is required to

convince the system client and regulators that the required levels

of dependability have been achieved.

14Chapter 10 Dependable Systems30/10/2014

Cost/dependability curve

30/10/2014 Chapter 10 Dependable Systems 15

Dependability economics

 Because of very high costs of dependability
achievement, it may be more cost effective to accept
untrustworthy systems and pay for failure costs

 However, this depends on social and political factors. A
reputation for products that can’t be trusted may lose
future business

 Depends on system type - for business systems in
particular, modest levels of dependability may be
adequate

16Chapter 10 Dependable Systems30/10/2014

Sociotechnical systems

30/10/2014 Chapter 10 Dependable Systems 17

Systems and software

 Software engineering is not an isolated activity but is part

of a broader systems engineering process.

 Software systems are therefore not isolated systems but

are essential components of broader systems that have

a human, social or organizational purpose.

 Example

 The wilderness weather system is part of broader weather

recording and forecasting systems

 These include hardware and software, forecasting processes,

system users, the organizations that depend on weather

forecasts, etc.

Chapter 10 Dependable Systems 1830/10/2014

The sociotechnical systems stack

30/10/2014 Chapter 10 Dependable Systems 19

Layers in the STS stack

 Equipment

 Hardware devices, some of which may be computers. Most

devices will include an embedded system of some kind.

 Operating system

 Provides a set of common facilities for higher levels in the

system.

 Communications and data management

 Middleware that provides access to remote systems and

databases.

 Application systems

 Specific functionality to meet some organization requirements.

Chapter 10 Dependable Systems 2030/10/2014

Layers in the STS stack

 Business processes

 A set of processes involving people and computer systems that

support the activities of the business.

 Organizations

 Higher level strategic business activities that affect the operation

of the system.

 Society

 Laws, regulation and culture that affect the operation of the

system.

Chapter 10 Dependable Systems 2130/10/2014

Holistic system design

 There are interactions and dependencies between the

layers in a system and changes at one level ripple

through the other levels

 Example: Change in regulations (society) leads to changes in

business processes and application software.

 For dependability, a systems perspective is essential

 Contain software failures within the enclosing layers of the STS

stack.

 Understand how faults and failures in adjacent layers may affect

the software in a system.

Chapter 10 Dependable Systems 2230/10/2014

Regulation and compliance

 The general model of economic organization that is now

almost universal in the world is that privately owned

companies offer goods and services and make a profit

on these.

 To ensure the safety of their citizens, most governments

regulate (limit the freedom of) privately owned

companies so that they must follow certain standards to

ensure that their products are safe and secure.

30/10/2014 Chapter 10 Dependable Systems 23

Regulated systems

 Many critical systems are regulated systems, which

means that their use must be approved by an external

regulator before the systems go into service.

 Nuclear systems

 Air traffic control systems

 Medical devices

 A safety and dependability case has to be approved by

the regulator. Therefore, critical systems development

has to create the evidence to convince a regulator that

the system is dependable, safe and secure.

Chapter 10 Dependable Systems 2430/10/2014

Safety regulation

 Regulation and compliance (following the rules) applies

to the sociotechnical system as a whole and not simply

the software element of that system.

 Safety-related systems may have to be certified as safe

by the regulator.

 To achieve certification, companies that are developing

safety-critical systems have to produce an extensive

safety case that shows that rules and regulations have

been followed.

 It can be as expensive develop the documentation for

certification as it is to develop the system itself.

30/10/2014 Chapter 10 Dependable Systems 25

Redundancy and diversity

30/10/2014 Chapter 10 Dependable Systems 26

Redundancy and diversity

 Redundancy

 Keep more than a single version of critical components so that if
one fails then a backup is available.

 Diversity

 Provide the same functionality in different ways in different
components so that they will not fail in the same way.

 Redundant and diverse components should be
independent so that they will not suffer from ‘common-
mode’ failures

 For example, components implemented in different programming
languages means that a compiler fault will not affect all of them.

27Chapter 10 Dependable Systems30/10/2014

Diversity and redundancy examples

 Redundancy. Where availability is critical (e.g. in e-

commerce systems), companies normally keep backup

servers and switch to these automatically if failure

occurs.

 Diversity. To provide resilience against external attacks,

different servers may be implemented using different

operating systems (e.g. Windows and Linux)

28Chapter 10 Dependable Systems30/10/2014

Process diversity and redundancy

 Process activities, such as validation, should not depend

on a single approach, such as testing, to validate the

system.

 Redundant and diverse process activities are important

especially for verification and validation.

 Multiple, different process activities the complement

each other and allow for cross-checking help to avoid

process errors, which may lead to errors in the software.

Chapter 10 Dependable Systems 2930/10/2014

Problems with redundancy and diversity

 Adding diversity and redundancy to a system increases
the system complexity.

 This can increase the chances of error because of
unanticipated interactions and dependencies between
the redundant system components.

 Some engineers therefore advocate simplicity and
extensive V & V as a more effective route to software
dependability.

 Airbus FCS architecture is redundant/diverse; Boeing
777 FCS architecture has no software diversity

30/10/2014 Chapter 10 Dependable Systems 30

Dependable processes

30/10/2014 Chapter 10 Dependable Systems 31

Dependable processes

 To ensure a minimal number of software faults, it is

important to have a well-defined, repeatable software

process.

 A well-defined repeatable process is one that does not

depend entirely on individual skills; rather can be

enacted by different people.

 Regulators use information about the process to check if

good software engineering practice has been used.

 For fault detection, it is clear that the process activities

should include significant effort devoted to verification

and validation.

32Chapter 10 Dependable Systems30/10/2014

Dependable process characteristics

 Explicitly defined

 A process that has a defined process model that is used to drive

the software production process. Data must be collected during

the process that proves that the development team has followed

the process as defined in the process model.

 Repeatable

 A process that does not rely on individual interpretation and

judgment. The process can be repeated across projects and with

different team members, irrespective of who is involved in the

development.

30/10/2014 Chapter 10 Dependable Systems 33

Attributes of dependable processes

Process characteristic Description

Auditable The process should be understandable by people apart

from process participants, who can check that process

standards are being followed and make suggestions for

process improvement.

Diverse The process should include redundant and diverse

verification and validation activities.

Documentable The process should have a defined process model that

sets out the activities in the process and the

documentation that is to be produced during these

activities.

Robust The process should be able to recover from failures of

individual process activities.

Standardized A comprehensive set of software development

standards covering software production and

documentation should be available.

34Chapter 10 Dependable Systems30/10/2014

Dependable process activities

 Requirements reviews to check that the requirements

are, as far as possible, complete and consistent.

 Requirements management to ensure that changes to

the requirements are controlled and that the impact of

proposed requirements changes is understood.

 Formal specification, where a mathematical model of the

software is created and analyzed.

 System modeling, where the software design is explicitly

documented as a set of graphical models, and the links

between the requirements and these models are

documented.

30/10/2014 Chapter 10 Dependable Systems 35

Dependable process activities

 Design and program inspections, where the different

descriptions of the system are inspected and checked by

different people.

 Static analysis, where automated checks are carried out

on the source code of the program.

 Test planning and management, where a comprehensive

set of system tests is designed.

 The testing process has to be carefully managed to demonstrate

that these tests provide coverage of the system requirements

and have been correctly applied in the testing process.

30/10/2014 Chapter 10 Dependable Systems 36

Dependable processes and agility

 Dependable software often requires certification so both

process and product documentation has to be produced.

 Up-front requirements analysis is also essential to

discover requirements and requirements conflicts that

may compromise the safety and security of the system.

 These conflict with the general approach in agile

development of co-development of the requirements and

the system and minimizing documentation.

30/10/2014 Chapter 10 Dependable Systems 37

Dependable processes and agility

 An agile process may be defined that incorporates

techniques such as iterative development, test-first

development and user involvement in the development

team.

 So long as the team follows that process and documents

their actions, agile methods can be used.

 However, additional documentation and planning is

essential so ‘pure agile’ is impractical for dependable

systems engineering.

30/10/2014 Chapter 10 Dependable Systems 38

Formal methods and dependability

30/10/2014 Chapter 10 Dependable Systems 39

Formal specification

 Formal methods are approaches to software

development that are based on mathematical

representation and analysis of software.

 Formal methods include

 Formal specification;

 Specification analysis and proof;

 Transformational development;

 Program verification.

 Formal methods significantly reduce some types of

programming errors and can be cost-effective for

dependable systems engineering.

40Chapter 10 Dependable Systems30/10/2014

Formal approaches

 Verification-based approaches

 Different representations of a software system such as a

specification and a program implementing that specification are

proved to be equivalent.

 This demonstrates the absence of implementation errors.

 Refinement-based approaches

 A representation of a system is systematically transformed into

another, lower-level represention e.g. a specification is

transformed automatically into an implementation.

 This means that, if the transformation is correct, the

representations are equivalent.

30/10/2014 Chapter 10 Dependable Systems 41

Use of formal methods

 The principal benefits of formal methods are in reducing

the number of faults in systems.

 Consequently, their main area of applicability is in

dependable systems engineering. There have been

several successful projects where formal methods have

been used in this area.

 In this area, the use of formal methods is most likely to

be cost-effective because high system failure costs must

be avoided.

42Chapter 10 Dependable Systems30/10/2014

Classes of error

 Specification and design errors and omissions.

 Developing and analysing a formal model of the software may

reveal errors and omissions in the software requirements. If the

model is generated automatically or systematically from source

code, analysis using model checking can find undesirable states

that may occur such as deadlock in a concurrent system.

 Inconsistences between a specification and a program.

 If a refinement method is used, mistakes made by developers

that make the software inconsistent with the specification are

avoided. Program proving discovers inconsistencies between a

program and its specification.

30/10/2014 Chapter 10 Dependable Systems 43

Benefits of formal specification

 Developing a formal specification requires the system

requirements to be analyzed in detail. This helps to detect

problems, inconsistencies and incompleteness in the

requirements.

 As the specification is expressed in a formal language, it can

be automatically analyzed to discover inconsistencies and

incompleteness.

 If you use a formal method such as the B method, you can

transform the formal specification into a ‘correct’ program.

 Program testing costs may be reduced if the program is

formally verified against its specification.

44Chapter 10 Dependable Systems30/10/2014

Acceptance of formal methods

 Formal methods have had limited impact on practical
software development:

 Problem owners cannot understand a formal specification and so
cannot assess if it is an accurate representation of their
requirements.

 It is easy to assess the costs of developing a formal specification
but harder to assess the benefits. Managers may therefore be
unwilling to invest in formal methods.

 Software engineers are unfamiliar with this approach and are
therefore reluctant to propose the use of FM.

 Formal methods are still hard to scale up to large systems.

 Formal specification is not really compatible with agile
development methods.

45Chapter 10 Dependable Systems30/10/2014

Key points

 System dependability is important because failure of

critical systems can lead to economic losses, information

loss, physical damage or threats to human life.

 The dependability of a computer system is a system

property that reflects the user’s degree of trust in the

system. The most important dimensions of dependability

are availability, reliability, safety, security and resilience.

 Sociotechnical systems include computer hardware,

software and people, and are situated within an

organization. They are designed to support

organizational or business goals and objectives.

30/10/2014 Chapter 10 Dependable Systems 46

Key points

 The use of a dependable, repeatable process is

essential if faults in a system are to be minimized. The

process should include verification and validation

activities at all stages, from requirements definition

through to system implementation.

 The use of redundancy and diversity in hardware,

software processes and software systems is essential to

the development of dependable systems.

 Formal methods, where a formal model of a system is

used as a basis for development help reduce the number

of specification and implementation errors in a system.

30/10/2014 Chapter 10 Dependable Systems 47

Chapter 11 – Reliability Engineering

1Chapter 11 Reliability Engineering30/10/2014

Topics covered

 Availability and reliability

 Reliability requirements

 Fault-tolerant architectures

 Programming for reliability

 Reliability measurement

2Chapter 11 Reliability Engineering30/10/2014

Software reliability

 In general, software customers expect all software to be

dependable. However, for non-critical applications, they

may be willing to accept some system failures.

 Some applications (critical systems) have very high

reliability requirements and special software engineering

techniques may be used to achieve this.

 Medical systems

 Telecommunications and power systems

 Aerospace systems

3Chapter 11 Reliability Engineering30/10/2014

Faults, errors and failures

Term Description

Human error or

mistake

Human behavior that results in the introduction of faults into a system. For

example, in the wilderness weather system, a programmer might decide that the

way to compute the time for the next transmission is to add 1 hour to the current

time. This works except when the transmission time is between 23.00 and

midnight (midnight is 00.00 in the 24-hour clock).

System fault A characteristic of a software system that can lead to a system error. The fault is

the inclusion of the code to add 1 hour to the time of the last transmission,

without a check if the time is greater than or equal to 23.00.

System error An erroneous system state that can lead to system behavior that is unexpected

by system users. The value of transmission time is set incorrectly (to 24.XX

rather than 00.XX) when the faulty code is executed.

System failure An event that occurs at some point in time when the system does not deliver a

service as expected by its users. No weather data is transmitted because the

time is invalid.

4Chapter 11 Reliability Engineering30/10/2014

Faults and failures

 Failures are a usually a result of system errors that are
derived from faults in the system

 However, faults do not necessarily result in system
errors

 The erroneous system state resulting from the fault may be
transient and ‘corrected’ before an error arises.

 The faulty code may never be executed.

 Errors do not necessarily lead to system failures

 The error can be corrected by built-in error detection and
recovery

 The failure can be protected against by built-in protection
facilities. These may, for example, protect system resources from
system errors

5Chapter 11 Reliability Engineering30/10/2014

Fault management

 Fault avoidance

 The system is developed in such a way that human error is
avoided and thus system faults are minimised.

 The development process is organised so that faults in the
system are detected and repaired before delivery to the
customer.

 Fault detection

 Verification and validation techniques are used to discover and
remove faults in a system before it is deployed.

 Fault tolerance

 The system is designed so that faults in the delivered software
do not result in system failure.

6Chapter 11 Reliability Engineering30/10/2014

Reliability achievement

 Fault avoidance

 Development technique are used that either minimise the
possibility of mistakes or trap mistakes before they result in the
introduction of system faults.

 Fault detection and removal

 Verification and validation techniques are used that increase the
probability of detecting and correcting errors before the system
goes into service are used.

 Fault tolerance

 Run-time techniques are used to ensure that system faults do
not result in system errors and/or that system errors do not lead
to system failures.

7Chapter 11 Reliability Engineering30/10/2014

The increasing costs of residual fault removal

8Chapter 11 Reliability Engineering30/10/2014

Availability and reliability

9Chapter 11 Reliability Engineering30/10/2014

Availability and reliability

 Reliability

 The probability of failure-free system operation over a specified
time in a given environment for a given purpose

 Availability

 The probability that a system, at a point in time, will be
operational and able to deliver the requested services

 Both of these attributes can be expressed quantitatively
e.g. availability of 0.999 means that the system is up and
running for 99.9% of the time.

10Chapter 11 Reliability Engineering30/10/2014

Reliability and specifications

 Reliability can only be defined formally with respect to a

system specification i.e. a failure is a deviation from a

specification.

 However, many specifications are incomplete or

incorrect – hence, a system that conforms to its

specification may ‘fail’ from the perspective of system

users.

 Furthermore, users don’t read specifications so don’t

know how the system is supposed to behave.

 Therefore perceived reliability is more important in

practice.

11Chapter 11 Reliability Engineering30/10/2014

Perceptions of reliability

 The formal definition of reliability does not always reflect
the user’s perception of a system’s reliability

 The assumptions that are made about the environment where a
system will be used may be incorrect

• Usage of a system in an office environment is likely to be quite
different from usage of the same system in a university environment

 The consequences of system failures affects the perception of
reliability

• Unreliable windscreen wipers in a car may be irrelevant in a dry
climate

• Failures that have serious consequences (such as an engine
breakdown in a car) are given greater weight by users than failures
that are inconvenient

12Chapter 11 Reliability Engineering30/10/2014

A system as an input/output mapping

13Chapter 11 Reliability Engineering30/10/2014

Availability perception

 Availability is usually expressed as a percentage of the

time that the system is available to deliver services e.g.

99.95%.

 However, this does not take into account two factors:

 The number of users affected by the service outage. Loss of

service in the middle of the night is less important for many

systems than loss of service during peak usage periods.

 The length of the outage. The longer the outage, the more the

disruption. Several short outages are less likely to be disruptive

than 1 long outage. Long repair times are a particular problem.

14Chapter 11 Reliability Engineering30/10/2014

Software usage patterns

15Chapter 11 Reliability Engineering30/10/2014

Reliability in use

 Removing X% of the faults in a system will not

necessarily improve the reliability by X%.

 Program defects may be in rarely executed sections of

the code so may never be encountered by users.

Removing these does not affect the perceived reliability.

 Users adapt their behaviour to avoid system features

that may fail for them.

 A program with known faults may therefore still be

perceived as reliable by its users.

16Chapter 11 Reliability Engineering30/10/2014

Reliability requirements

Chapter 11 Reliability Engineering 1730/10/2014

System reliability requirements

 Functional reliability requirements define system and

software functions that avoid, detect or tolerate faults in

the software and so ensure that these faults do not lead

to system failure.

 Software reliability requirements may also be included to

cope with hardware failure or operator error.

 Reliability is a measurable system attribute so non-

functional reliability requirements may be specified

quantitatively. These define the number of failures that

are acceptable during normal use of the system or the

time in which the system must be available.

18Chapter 11 Reliability Engineering30/10/2014

Reliability metrics

 Reliability metrics are units of measurement of system
reliability.

 System reliability is measured by counting the number of
operational failures and, where appropriate, relating
these to the demands made on the system and the time
that the system has been operational.

 A long-term measurement programme is required to
assess the reliability of critical systems.

 Metrics

 Probability of failure on demand

 Rate of occurrence of failures/Mean time to failure

 Availability

19Chapter 11 Reliability Engineering30/10/2014

Probability of failure on demand (POFOD)

 This is the probability that the system will fail when a

service request is made. Useful when demands for

service are intermittent and relatively infrequent.

 Appropriate for protection systems where services are

demanded occasionally and where there are serious

consequence if the service is not delivered.

 Relevant for many safety-critical systems with exception

management components

 Emergency shutdown system in a chemical plant.

20Chapter 11 Reliability Engineering30/10/2014

Rate of fault occurrence (ROCOF)

 Reflects the rate of occurrence of failure in the system.

 ROCOF of 0.002 means 2 failures are likely in each

1000 operational time units e.g. 2 failures per 1000

hours of operation.

 Relevant for systems where the system has to process a

large number of similar requests in a short time

 Credit card processing system, airline booking system.

 Reciprocal of ROCOF is Mean time to Failure (MTTF)

 Relevant for systems with long transactions i.e. where system

processing takes a long time (e.g. CAD systems). MTTF should be

longer than expected transaction length.

21Chapter 11 Reliability Engineering30/10/2014

Availability

 Measure of the fraction of the time that the system is
available for use.

 Takes repair and restart time into account

 Availability of 0.998 means software is available for 998
out of 1000 time units.

 Relevant for non-stop, continuously running systems

 telephone switching systems, railway signalling systems.

22Chapter 11 Reliability Engineering30/10/2014

Availability specification

Availability Explanation

0.9 The system is available for 90% of the time. This means that, in a

24-hour period (1,440 minutes), the system will be unavailable for

144 minutes.

0.99 In a 24-hour period, the system is unavailable for 14.4 minutes.

0.999 The system is unavailable for 84 seconds in a 24-hour period.

0.9999 The system is unavailable for 8.4 seconds in a 24-hour period.

Roughly, one minute per week.

23Chapter 11 Reliability Engineering30/10/2014

Non-functional reliability requirements

 Non-functional reliability requirements are specifications

of the required reliability and availability of a system

using one of the reliability metrics (POFOD, ROCOF or

AVAIL).

 Quantitative reliability and availability specification has

been used for many years in safety-critical systems but

is uncommon for business critical systems.

 However, as more and more companies demand 24/7

service from their systems, it makes sense for them to

be precise about their reliability and availability

expectations.

Chapter 11 Reliability Engineering 2430/10/2014

Benefits of reliability specification

 The process of deciding the required level of the

reliability helps to clarify what stakeholders really need.

 It provides a basis for assessing when to stop testing a

system. You stop when the system has reached its

required reliability level.

 It is a means of assessing different design strategies

intended to improve the reliability of a system.

 If a regulator has to approve a system (e.g. all systems

that are critical to flight safety on an aircraft are

regulated), then evidence that a required reliability target

has been met is important for system certification.

Chapter 11 Reliability Engineering 2530/10/2014

Specifying reliability requirements

 Specify the availability and reliability requirements for

different types of failure. There should be a lower

probability of high-cost failures than failures that don’t

have serious consequences.

 Specify the availability and reliability requirements for

different types of system service. Critical system services

should have the highest reliability but you may be willing

to tolerate more failures in less critical services.

 Think about whether a high level of reliability is really

required. Other mechanisms can be used to provide

reliable system service.

Chapter 11 Reliability Engineering 2630/10/2014

ATM reliability specification

 Key concerns

 To ensure that their ATMs carry out customer services as

requested and that they properly record customer transactions in

the account database.

 To ensure that these ATM systems are available for use when

required.

 Database transaction mechanisms may be used to

correct transaction problems so a low-level of ATM

reliability is all that is required

 Availability, in this case, is more important than reliability

Chapter 11 Reliability Engineering 2730/10/2014

ATM availability specification

 System services

 The customer account database service;

 The individual services provided by an ATM such as ‘withdraw

cash’, ‘provide account information’, etc.

 The database service is critical as failure of this service

means that all of the ATMs in the network are out of

action.

 You should specify this to have a high level of availability.

 Database availability should be around 0.9999, between 7 am

and 11pm.

 This corresponds to a downtime of less than 1 minute per week.

Chapter 11 Reliability Engineering 2830/10/2014

ATM availability specification

 For an individual ATM, the key reliability issues depends

on mechanical reliability and the fact that it can run out of

cash.

 A lower level of software availability for the ATM software

is acceptable.

 The overall availability of the ATM software might

therefore be specified as 0.999, which means that a

machine might be unavailable for between 1 and 2

minutes each day.

Chapter 11 Reliability Engineering 2930/10/2014

Insulin pump reliability specification

 Probability of failure (POFOD) is the most appropriate

metric.

 Transient failures that can be repaired by user actions

such as recalibration of the machine. A relatively low

value of POFOD is acceptable (say 0.002) – one failure

may occur in every 500 demands.

 Permanent failures require the software to be re-installed

by the manufacturer. This should occur no more than

once per year. POFOD for this situation should be less

than 0.00002.

30Chapter 11 Reliability Engineering30/10/2014

Functional reliability requirements

 Checking requirements that identify checks to ensure

that incorrect data is detected before it leads to a failure.

 Recovery requirements that are geared to help the

system recover after a failure has occurred.

 Redundancy requirements that specify redundant

features of the system to be included.

 Process requirements for reliability which specify the

development process to be used may also be included.

31Chapter 11 Reliability Engineering30/10/2014

Examples of functional reliability requirements

RR1: A pre-defined range for all operator inputs shall be defined and

the system shall check that all operator inputs fall within this pre-defined

range. (Checking)

RR2: Copies of the patient database shall be maintained on two

separate servers that are not housed in the same building. (Recovery,

redundancy)

RR3: N-version programming shall be used to implement the braking

control system. (Redundancy)

RR4: The system must be implemented in a safe subset of Ada and

checked using static analysis. (Process)

32Chapter 11 Reliability Engineering30/10/2014

Fault-tolerant architectures

Chapter 11 Reliability Engineering 3330/10/2014

Fault tolerance

 In critical situations, software systems must be
fault tolerant.

 Fault tolerance is required where there are high
availability requirements or where system failure costs
are very high.

 Fault tolerance means that the system can continue in
operation in spite of software failure.

 Even if the system has been proved to conform to its
specification, it must also be fault tolerant as there may
be specification errors or the validation may be incorrect.

Chapter 11 Reliability Engineering 3430/10/2014

Fault-tolerant system architectures

 Fault-tolerant systems architectures are used in

situations where fault tolerance is essential. These

architectures are generally all based on redundancy and

diversity.

 Examples of situations where dependable architectures

are used:

 Flight control systems, where system failure could threaten the

safety of passengers

 Reactor systems where failure of a control system could lead to

a chemical or nuclear emergency

 Telecommunication systems, where there is a need for 24/7

availability.

Chapter 11 Reliability Engineering 3530/10/2014

Protection systems

 A specialized system that is associated with some other

control system, which can take emergency action if a

failure occurs.

 System to stop a train if it passes a red light

 System to shut down a reactor if temperature/pressure are too

high

 Protection systems independently monitor the controlled

system and the environment.

 If a problem is detected, it issues commands to take

emergency action to shut down the system and avoid a

catastrophe.

Chapter 11 Reliability Engineering 3630/10/2014

Protection system architecture

Chapter 11 Reliability Engineering 3730/10/2014

Protection system functionality

 Protection systems are redundant because they include

monitoring and control capabilities that replicate those in

the control software.

 Protection systems should be diverse and use different

technology from the control software.

 They are simpler than the control system so more effort

can be expended in validation and dependability

assurance.

 Aim is to ensure that there is a low probability of failure

on demand for the protection system.

Chapter 11 Reliability Engineering 3830/10/2014

Self-monitoring architectures

 Multi-channel architectures where the system monitors

its own operations and takes action if inconsistencies are

detected.

 The same computation is carried out on each channel

and the results are compared. If the results are identical

and are produced at the same time, then it is assumed

that the system is operating correctly.

 If the results are different, then a failure is assumed and

a failure exception is raised.

Chapter 11 Reliability Engineering 3930/10/2014

Self-monitoring architecture

Chapter 11 Reliability Engineering 4030/10/2014

Self-monitoring systems

 Hardware in each channel has to be diverse so that

common mode hardware failure will not lead to each

channel producing the same results.

 Software in each channel must also be diverse,

otherwise the same software error would affect each

channel.

 If high-availability is required, you may use several self-

checking systems in parallel.

 This is the approach used in the Airbus family of aircraft for their

flight control systems.

Chapter 11 Reliability Engineering 4130/10/2014

Airbus flight control system architecture

Chapter 11 Reliability Engineering 4230/10/2014

Airbus architecture discussion

 The Airbus FCS has 5 separate computers, any one of

which can run the control software.

 Extensive use has been made of diversity

 Primary systems use a different processor from the secondary

systems.

 Primary and secondary systems use chipsets from different

manufacturers.

 Software in secondary systems is less complex than in primary

system – provides only critical functionality.

 Software in each channel is developed in different programming

languages by different teams.

 Different programming languages used in primary and

secondary systems.
Chapter 11 Reliability Engineering 4330/10/2014

N-version programming

 Multiple versions of a software system carry out

computations at the same time. There should be an odd

number of computers involved, typically 3.

 The results are compared using a voting system and the

majority result is taken to be the correct result.

 Approach derived from the notion of triple-modular

redundancy, as used in hardware systems.

Chapter 11 Reliability Engineering 4430/10/2014

Hardware fault tolerance

 Depends on triple-modular redundancy (TMR).

 There are three replicated identical components that

receive the same input and whose outputs are

compared.

 If one output is different, it is ignored and component

failure is assumed.

 Based on most faults resulting from component failures

rather than design faults and a low probability of

simultaneous component failure.

Chapter 11 Reliability Engineering 4530/10/2014

Triple modular redundancy

Chapter 11 Reliability Engineering 4630/10/2014

N-version programming

Chapter 11 Reliability Engineering 4730/10/2014

N-version programming

 The different system versions are designed and
implemented by different teams. It is assumed that there
is a low probability that they will make the same
mistakes. The algorithms used should but may not be
different.

 There is some empirical evidence that teams commonly
misinterpret specifications in the same way and chose
the same algorithms in their systems.

Chapter 11 Reliability Engineering 4830/10/2014

Software diversity

 Approaches to software fault tolerance depend on

software diversity where it is assumed that different

implementations of the same software specification will

fail in different ways.

 It is assumed that implementations are (a) independent

and (b) do not include common errors.

 Strategies to achieve diversity

 Different programming languages

 Different design methods and tools

 Explicit specification of different algorithms

Chapter 11 Reliability Engineering 4930/10/2014

Problems with design diversity

 Teams are not culturally diverse so they tend to tackle

problems in the same way.

 Characteristic errors

 Different teams make the same mistakes. Some parts of an

implementation are more difficult than others so all teams tend to

make mistakes in the same place;

 Specification errors;

 If there is an error in the specification then this is reflected in all

implementations;

 This can be addressed to some extent by using multiple

specification representations.

Chapter 11 Reliability Engineering 5030/10/2014

Specification dependency

 Both approaches to software redundancy are susceptible

to specification errors. If the specification is incorrect, the

system could fail

 This is also a problem with hardware but software

specifications are usually more complex than hardware

specifications and harder to validate.

 This has been addressed in some cases by developing

separate software specifications from the same user

specification.

Chapter 11 Reliability Engineering 5130/10/2014

Improvements in practice

 In principle, if diversity and independence can be

achieved, multi-version programming leads to very

significant improvements in reliability and availability.

 In practice, observed improvements are much less

significant but the approach seems leads to reliability

improvements of between 5 and 9 times.

 The key question is whether or not such improvements

are worth the considerable extra development costs for

multi-version programming.

Chapter 11 Reliability Engineering 5230/10/2014

Programming for reliability

Chapter 11 Reliability Engineering 5330/10/2014

Dependable programming

 Good programming practices can be adopted that help

reduce the incidence of program faults.

 These programming practices support

 Fault avoidance

 Fault detection

 Fault tolerance

Chapter 11 Reliability Engineering 5430/10/2014

Good practice guidelines for dependable

programming

Chapter 11 Reliability Engineering 55

Dependable programming guidelines

1. Limit the visibility of information in a program
2. Check all inputs for validity
3. Provide a handler for all exceptions
4. Minimize the use of error-prone constructs
5. Provide restart capabilities
6. Check array bounds
7. Include timeouts when calling external components
8. Name all constants that represent real-world values

30/10/2014

(1) Limit the visibility of information in a program

 Program components should only be allowed access to

data that they need for their implementation.

 This means that accidental corruption of parts of the

program state by these components is impossible.

 You can control visibility by using abstract data types

where the data representation is private and you only

allow access to the data through predefined operations

such as get () and put ().

Chapter 11 Reliability Engineering 5630/10/2014

(2) Check all inputs for validity

 All program take inputs from their environment and make

assumptions about these inputs.

 However, program specifications rarely define what to do

if an input is not consistent with these assumptions.

 Consequently, many programs behave unpredictably

when presented with unusual inputs and, sometimes,

these are threats to the security of the system.

 Consequently, you should always check inputs before

processing against the assumptions made about these

inputs.

Chapter 11 Reliability Engineering 5730/10/2014

Validity checks

 Range checks

 Check that the input falls within a known range.

 Size checks

 Check that the input does not exceed some maximum size e.g.

40 characters for a name.

 Representation checks

 Check that the input does not include characters that should not

be part of its representation e.g. names do not include numerals.

 Reasonableness checks

 Use information about the input to check if it is reasonable rather

than an extreme value.

Chapter 11 Reliability Engineering 5830/10/2014

(3) Provide a handler for all exceptions

 A program exception is an error or some

unexpected event such as a power failure.

 Exception handling constructs allow for such

events to be handled without the need for

continual status checking to detect exceptions.

 Using normal control constructs to detect

exceptions needs many additional statements to be

added to the program. This adds a significant

overhead and is potentially error-prone.

Chapter 11 Reliability Engineering 5930/10/2014

Exception handling

Chapter 11 Reliability Engineering 6030/10/2014

Exception handling

 Three possible exception handling strategies

 Signal to a calling component that an exception has occurred

and provide information about the type of exception.

 Carry out some alternative processing to the processing where

the exception occurred. This is only possible where the

exception handler has enough information to recover from the

problem that has arisen.

 Pass control to a run-time support system to handle the

exception.

 Exception handling is a mechanism to provide some fault

tolerance

Chapter 11 Reliability Engineering 6130/10/2014

(4) Minimize the use of error-prone constructs

 Program faults are usually a consequence of human

error because programmers lose track of the

relationships between the different parts of the system

 This is exacerbated by error-prone constructs in

programming languages that are inherently complex or

that don’t check for mistakes when they could do so.

 Therefore, when programming, you should try to avoid or

at least minimize the use of these error-prone constructs.

Chapter 11 Reliability Engineering 6230/10/2014

Error-prone constructs

 Unconditional branch (goto) statements

 Floating-point numbers

 Inherently imprecise. The imprecision may lead to invalid
comparisons.

 Pointers

 Pointers referring to the wrong memory areas can corrupt
data. Aliasing can make programs difficult to understand
and change.

 Dynamic memory allocation

 Run-time allocation can cause memory overflow.

Chapter 11 Reliability Engineering 6330/10/2014

Error-prone constructs

 Parallelism

 Can result in subtle timing errors because of unforeseen
interaction between parallel processes.

 Recursion

 Errors in recursion can cause memory overflow as the
program stack fills up.

 Interrupts

 Interrupts can cause a critical operation to be terminated
and make a program difficult to understand.

 Inheritance

 Code is not localised. This can result in unexpected
behaviour when changes are made and problems of
understanding the code.

Chapter 11 Reliability Engineering 6430/10/2014

Error-prone constructs

 Aliasing

 Using more than 1 name to refer to the same state variable.

 Unbounded arrays

 Buffer overflow failures can occur if no bound checking on
arrays.

 Default input processing

 An input action that occurs irrespective of the input.

 This can cause problems if the default action is to transfer
control elsewhere in the program. In incorrect or deliberately
malicious input can then trigger a program failure.

Chapter 11 Reliability Engineering 6530/10/2014

(5) Provide restart capabilities

 For systems that involve long transactions or user

interactions, you should always provide a restart

capability that allows the system to restart after failure

without users having to redo everything that they have

done.

 Restart depends on the type of system

 Keep copies of forms so that users don’t have to fill them in

again if there is a problem

 Save state periodically and restart from the saved state

Chapter 11 Reliability Engineering 6630/10/2014

(6) Check array bounds

 In some programming languages, such as C, it is

possible to address a memory location outside of the

range allowed for in an array declaration.

 This leads to the well-known ‘bounded buffer’

vulnerability where attackers write executable code into

memory by deliberately writing beyond the top element

in an array.

 If your language does not include bound checking, you

should therefore always check that an array access is

within the bounds of the array.

Chapter 11 Reliability Engineering 6730/10/2014

(7) Include timeouts when calling external

components

 In a distributed system, failure of a remote computer can

be ‘silent’ so that programs expecting a service from that

computer may never receive that service or any

indication that there has been a failure.

 To avoid this, you should always include timeouts on all

calls to external components.

 After a defined time period has elapsed without a

response, your system should then assume failure and

take whatever actions are required to recover from this.

Chapter 11 Reliability Engineering 6830/10/2014

(8) Name all constants that represent real-world

values

 Always give constants that reflect real-world values

(such as tax rates) names rather than using their

numeric values and always refer to them by name

 You are less likely to make mistakes and type the wrong

value when you are using a name rather than a value.

 This means that when these ‘constants’ change (for

sure, they are not really constant), then you only have to

make the change in one place in your program.

Chapter 11 Reliability Engineering 6930/10/2014

Reliability measurement

Chapter 11 Reliability Engineering 7030/10/2014

Reliability measurement

 To assess the reliability of a system, you have to collect

data about its operation. The data required may include:

 The number of system failures given a number of requests for

system services. This is used to measure the POFOD. This

applies irrespective of the time over which the demands are

made.

 The time or the number of transactions between system failures

plus the total elapsed time or total number of transactions. This

is used to measure ROCOF and MTTF.

 The repair or restart time after a system failure that leads to loss

of service. This is used in the measurement of availability.

Availability does not just depend on the time between failures but

also on the time required to get the system back into operation.

Chapter 11 Reliability Engineering 7130/10/2014

Reliability testing

 Reliability testing (Statistical testing) involves running the

program to assess whether or not it has reached the

required level of reliability.

 This cannot normally be included as part of a normal

defect testing process because data for defect testing is

(usually) atypical of actual usage data.

 Reliability measurement therefore requires a specially

designed data set that replicates the pattern of inputs to

be processed by the system.

Chapter 11 Reliability Engineering 7230/10/2014

Statistical testing

 Testing software for reliability rather than fault detection.

 Measuring the number of errors allows the reliability of

the software to be predicted. Note that, for statistical

reasons, more errors than are allowed for in the reliability

specification must be induced.

 An acceptable level of reliability should be

specified and the software tested and amended until that

level of reliability is reached.

Chapter 11 Reliability Engineering 7330/10/2014

Reliability measurement

Chapter 11 Reliability Engineering 7430/10/2014

Reliability measurement problems

 Operational profile uncertainty

 The operational profile may not be an accurate reflection of the
real use of the system.

 High costs of test data generation

 Costs can be very high if the test data for the system cannot be
generated automatically.

 Statistical uncertainty

 You need a statistically significant number of failures to compute
the reliability but highly reliable systems will rarely fail.

 Recognizing failure

 It is not always obvious when a failure has occurred as there
may be conflicting interpretations of a specification.

Chapter 11 Reliability Engineering 7530/10/2014

Operational profiles

 An operational profile is a set of test data whose

frequency matches the actual frequency of these inputs

from ‘normal’ usage of the system. A close match with

actual usage is necessary otherwise the measured

reliability will not be reflected in the actual usage of the

system.

 It can be generated from real data collected from an

existing system or (more often) depends on assumptions

made about the pattern of usage of a system.

Chapter 11 Reliability Engineering 7630/10/2014

An operational profile

Chapter 11 Reliability Engineering 7730/10/2014

Operational profile generation

 Should be generated automatically whenever possible.

 Automatic profile generation is difficult for interactive

systems.

 May be straightforward for ‘normal’ inputs but it is difficult

to predict ‘unlikely’ inputs and to create test data for

them.

 Pattern of usage of new systems is unknown.

 Operational profiles are not static but change as users

learn about a new system and change the way that they

use it.

Chapter 11 Reliability Engineering 7830/10/2014

Key points

 Software reliability can be achieved by avoiding the

introduction of faults, by detecting and removing faults

before system deployment and by including fault

tolerance facilities that allow the system to remain

operational after a fault has caused a system failure.

 Reliability requirements can be defined quantitatively in

the system requirements specification.

 Reliability metrics include probability of failure on

demand (POFOD), rate of occurrence of failure

(ROCOF) and availability (AVAIL).

79Chapter 11 Reliability Engineering30/10/2014

Key points

 Functional reliability requirements are requirements for

system functionality, such as checking and redundancy

requirements, which help the system meet its non-

functional reliability requirements.

 Dependable system architectures are system

architectures that are designed for fault tolerance.

 There are a number of architectural styles that support

fault tolerance including protection systems, self-

monitoring architectures and N-version programming.

Chapter 11 Reliability Engineering 8030/10/2014

Key points

 Software diversity is difficult to achieve because it is

practically impossible to ensure that each version of the

software is truly independent.

 Dependable programming relies on including

redundancy in a program as checks on the validity of

inputs and the values of program variables.

 Statistical testing is used to estimate software reliability.

It relies on testing the system with test data that matches

an operational profile, which reflects the distribution of

inputs to the software when it is in use.

Chapter 11 Reliability Engineering 8130/10/2014

Chapter 13 – Security Engineering

Chapter 13 Security Engineering 112/11/2014

Topics covered

 Security and dependability

 Security and organizations

 Security requirements

 Secure systems design

 Security testing and assurance

Chapter 13 Security Engineering 212/11/2014

Security engineering

 Tools, techniques and methods to support the

development and maintenance of systems that can resist

malicious attacks that are intended to damage a

computer-based system or its data.

 A sub-field of the broader field of computer security.

Chapter 13 Security Engineering 312/11/2014

Security dimensions

 Confidentiality

 Information in a system may be disclosed or made accessible to

people or programs that are not authorized to have access to

that information.

 Integrity

 Information in a system may be damaged or corrupted making it

unusual or unreliable.

 Availability

 Access to a system or its data that is normally available may not

be possible.

12/11/2014 Chapter 13 Security Engineering 4

Security levels

 Infrastructure security, which is concerned with

maintaining the security of all systems and networks that

provide an infrastructure and a set of shared services to

the organization.

 Application security, which is concerned with the security

of individual application systems or related groups of

systems.

 Operational security, which is concerned with the secure

operation and use of the organization’s systems.

12/11/2014 Chapter 13 Security Engineering 5

System layers where security may be

compromised

Chapter 13 Security Engineering 612/11/2014

Application/infrastructure security

 Application security is a software engineering problem

where the system is designed to resist attacks.

 Infrastructure security is a systems management

problem where the infrastructure is configured to resist

attacks.

 The focus of this chapter is application security rather

than infrastructure security.

Chapter 13 Security Engineering 712/11/2014

System security management

 User and permission management

 Adding and removing users from the system and setting up

appropriate permissions for users

 Software deployment and maintenance

 Installing application software and middleware and configuring

these systems so that vulnerabilities are avoided.

 Attack monitoring, detection and recovery

 Monitoring the system for unauthorized access, design

strategies for resisting attacks and develop backup and recovery

strategies.

Chapter 13 Security Engineering 812/11/2014

Operational security

 Primarily a human and social issue

 Concerned with ensuring the people do not take actions

that may compromise system security

 E.g. Tell others passwords, leave computers logged on

 Users sometimes take insecure actions to make it easier

for them to do their jobs

 There is therefore a trade-off between system security

and system effectiveness.

12/11/2014 Chapter 13 Security Engineering 9

Security and dependability

12/11/2014 Chapter 13 Security Engineering 10

Security

 The security of a system is a system property that
reflects the system’s ability to protect itself from
accidental or deliberate external attack.

 Security is essential as most systems are networked so
that external access to the system through the Internet is
possible.

 Security is an essential pre-requisite for availability,
reliability and safety.

11Chapter 13 Security Engineering12/11/2014

Fundamental security

 If a system is a networked system and is insecure then

statements about its reliability and its safety are

unreliable.

 These statements depend on the executing system and

the developed system being the same. However,

intrusion can change the executing system and/or its

data.

 Therefore, the reliability and safety assurance is no

longer valid.

12Chapter 13 Security Engineering12/11/2014

Security terminology

Term Definition

Asset Something of value which has to be protected. The asset may be the software

system itself or data used by that system.

Attack An exploitation of a system’s vulnerability. Generally, this is from outside the

system and is a deliberate attempt to cause some damage.

Control A protective measure that reduces a system’s vulnerability. Encryption is an

example of a control that reduces a vulnerability of a weak access control

system

Exposure Possible loss or harm to a computing system. This can be loss or damage to

data, or can be a loss of time and effort if recovery is necessary after a security

breach.

Threat Circumstances that have potential to cause loss or harm. You can think of these

as a system vulnerability that is subjected to an attack.

Vulnerability A weakness in a computer-based system that may be exploited to cause loss or

harm.

13Chapter 13 Security Engineering12/11/2014

Examples of security terminology (Mentcare)

Term Example

Asset The records of each patient that is receiving or has received treatment.

Exposure Potential financial loss from future patients who do not seek treatment

because they do not trust the clinic to maintain their data. Financial loss

from legal action by the sports star. Loss of reputation.

Vulnerability A weak password system which makes it easy for users to set

guessable passwords. User ids that are the same as names.

Attack An impersonation of an authorized user.

Threat An unauthorized user will gain access to the system by guessing the

credentials (login name and password) of an authorized user.

Control A password checking system that disallows user passwords that are

proper names or words that are normally included in a dictionary.

14Chapter 13 Security Engineering12/11/2014

Threat types

 Interception threats that allow an attacker to gain access

to an asset.

 A possible threat to the Mentcare system might be a situation

where an attacker gains access to the records of an individual

patient.

 Interruption threats that allow an attacker to make part of

the system unavailable.

 A possible threat might be a denial of service attack on a system

database server so that database connections become

impossible.

Chapter 13 Security Engineering 1512/11/2014

Threat types

 Modification threats that allow an attacker to tamper with

a system asset.

 In the Mentcare system, a modification threat would be where an

attacker alters or destroys a patient record.

 Fabrication threats that allow an attacker to insert false

information into a system.

 This is perhaps not a credible threat in the Mentcare system but

would be a threat in a banking system, where false transactions

might be added to the system that transfer money to the

perpetrator’s bank account.

12/11/2014 Chapter 13 Security Engineering 16

Security assurance

 Vulnerability avoidance

 The system is designed so that vulnerabilities do not occur. For
example, if there is no external network connection then external
attack is impossible

 Attack detection and elimination

 The system is designed so that attacks on vulnerabilities are
detected and neutralised before they result in an exposure. For
example, virus checkers find and remove viruses before they
infect a system

 Exposure limitation and recovery

 The system is designed so that the adverse consequences of a
successful attack are minimised. For example, a backup policy
allows damaged information to be restored

17Chapter 13 Security Engineering12/11/2014

Security and dependability

 Security and reliability

 If a system is attacked and the system or its data are corrupted

as a consequence of that attack, then this may induce system

failures that compromise the reliability of the system.

 Security and availability

 A common attack on a web-based system is a denial of service

attack, where a web server is flooded with service requests from

a range of different sources. The aim of this attack is to make the

system unavailable.

12/11/2014 Chapter 13 Security Engineering 18

Security and dependability

 Security and safety

 An attack that corrupts the system or its data means that

assumptions about safety may not hold. Safety checks rely on

analysing the source code of safety critical software and assume

the executing code is a completely accurate translation of that

source code. If this is not the case, safety-related failures may be

induced and the safety case made for the software is invalid.

 Security and resilience

 Resilience is a system characteristic that reflects its ability to

resist and recover from damaging events. The most probable

damaging event on networked software systems is a cyberattack

of some kind so most of the work now done in resilience is

aimed at deterring, detecting and recovering from such attacks.

12/11/2014 Chapter 13 Security Engineering 19

Security and organizations

12/11/2014 Chapter 13 Security Engineering 20

Security is a business issue

 Security is expensive and it is important that security

decisions are made in a cost-effective way

 There is no point in spending more than the value of an asset to

keep that asset secure.

 Organizations use a risk-based approach to support

security decision making and should have a defined

security policy based on security risk analysis

 Security risk analysis is a business rather than a

technical process

12/11/2014 Chapter 13 Security Engineering 21

Organizational security policies

 Security policies should set out general information

access strategies that should apply across the

organization.

 The point of security policies is to inform everyone in an

organization about security so these should not be long

and detailed technical documents.

 From a security engineering perspective, the security

policy defines, in broad terms, the security goals of the

organization.

 The security engineering process is concerned with

implementing these goals.

12/11/2014 Chapter 13 Security Engineering 22

Security policies

 The assets that must be protected

 It is not cost-effective to apply stringent security procedures to all

organizational assets. Many assets are not confidential and can

be made freely available.

 The level of protection that is required for different types

of asset

 For sensitive personal information, a high level of security is

required; for other information, the consequences of loss may be

minor so a lower level of security is adequate.

12/11/2014 Chapter 13 Security Engineering 23

Security policies

 The responsibilities of individual users, managers and

the organization

 The security policy should set out what is expected of users e.g.

strong passwords, log out of computers, office security, etc.

 Existing security procedures and technologies that

should be maintained

 For reasons of practicality and cost, it may be essential to

continue to use existing approaches to security even where

these have known limitations.

12/11/2014 Chapter 13 Security Engineering 24

Security risk assessment and management

 Risk assessment and management is concerned with

assessing the possible losses that might ensue from

attacks on the system and balancing these losses

against the costs of security procedures that may reduce

these losses.

 Risk management should be driven by an organisational

security policy.

 Risk management involves

 Preliminary risk assessment

 Life cycle risk assessment

 Operational risk assessment

Chapter 13 Security Engineering 2512/11/2014

Preliminary risk assessment

 The aim of this initial risk assessment is to identify

generic risks that are applicable to the system and to

decide if an adequate level of security can be achieved

at a reasonable cost.

 The risk assessment should focus on the identification

and analysis of high-level risks to the system.

 The outcomes of the risk assessment process are used

to help identify security requirements.

12/11/2014 Chapter 13 Security Engineering 26

Design risk assessment

 This risk assessment takes place during the system

development life cycle and is informed by the technical

system design and implementation decisions.

 The results of the assessment may lead to changes to

the security requirements and the addition of new

requirements.

 Known and potential vulnerabilities are identified, and

this knowledge is used to inform decision making about

the system functionality and how it is to be implemented,

tested, and deployed.

12/11/2014 Chapter 13 Security Engineering 27

Operational risk assessment

 This risk assessment process focuses on the use of the

system and the possible risks that can arise from human

behavior.

 Operational risk assessment should continue after a

system has been installed to take account of how the

system is used.

 Organizational changes may mean that the system is

used in different ways from those originally planned.

These changes lead to new security requirements that

have to be implemented as the system evolves.

12/11/2014 Chapter 13 Security Engineering 28

Security requirements

12/11/2014 Chapter 13 Security Engineering 29

Security specification

 Security specification has something in common with safety

requirements specification – in both cases, your concern is to avoid

something bad happening.

 Four major differences

 Safety problems are accidental – the software is not operating in a

hostile environment. In security, you must assume that attackers have

knowledge of system weaknesses

 When safety failures occur, you can look for the root cause or weakness

that led to the failure. When failure results from a deliberate attack, the

attacker may conceal the cause of the failure.

 Shutting down a system can avoid a safety-related failure. Causing a

shut down may be the aim of an attack.

 Safety-related events are not generated from an intelligent adversary.

An attacker can probe defenses over time to discover weaknesses.

30Chapter 13 Security Engineering12/11/2014

Types of security requirement

 Identification requirements.

 Authentication requirements.

 Authorisation requirements.

 Immunity requirements.

 Integrity requirements.

 Intrusion detection requirements.

 Non-repudiation requirements.

 Privacy requirements.

 Security auditing requirements.

 System maintenance security requirements.
31Chapter 13 Security Engineering12/11/2014

Security requirement classification

 Risk avoidance requirements set out the risks that

should be avoided by designing the system so that these

risks simply cannot arise.

 Risk detection requirements define mechanisms that

identify the risk if it arises and neutralise the risk before

losses occur.

 Risk mitigation requirements set out how the system

should be designed so that it can recover from and

restore system assets after some loss has occurred.

12/11/2014 Chapter 13 Security Engineering 32

The preliminary risk assessment process for

security requirements

33Chapter 13 Security Engineering12/11/2014

Security risk assessment

 Asset identification

 Identify the key system assets (or services) that have to be

protected.

 Asset value assessment

 Estimate the value of the identified assets.

 Exposure assessment

 Assess the potential losses associated with each asset.

 Threat identification

 Identify the most probable threats to the system assets

34Chapter 13 Security Engineering12/11/2014

Security risk assessment

 Attack assessment

 Decompose threats into possible attacks on the system and the

ways that these may occur.

 Control identification

 Propose the controls that may be put in place to protect an

asset.

 Feasibility assessment

 Assess the technical feasibility and cost of the controls.

 Security requirements definition

 Define system security requirements. These can be

infrastructure or application system requirements.

35Chapter 13 Security Engineering12/11/2014

Asset analysis in a preliminary risk assessment

report for the Mentcare system

Asset Value Exposure

The information system High. Required to support all

clinical consultations. Potentially

safety-critical.

High. Financial loss as clinics

may have to be canceled. Costs

of restoring system. Possible

patient harm if treatment cannot

be prescribed.

The patient database High. Required to support all

clinical consultations. Potentially

safety-critical.

High. Financial loss as clinics

may have to be canceled. Costs

of restoring system. Possible

patient harm if treatment cannot

be prescribed.

An individual patient record Normally low although may be

high for specific high-profile

patients.

Low direct losses but possible

loss of reputation.

36Chapter 13 Security Engineering12/11/2014

Threat and control analysis in a preliminary risk

assessment report

Threat Probability Control Feasibility

An unauthorized user

gains access as

system manager and

makes system

unavailable

Low Only allow system

management from

specific locations that are

physically secure.

Low cost of implementation but

care must be taken with key

distribution and to ensure that

keys are available in the event

of an emergency.

An unauthorized user

gains access as

system user and

accesses confidential

information

High Require all users to

authenticate themselves

using a biometric

mechanism.

Log all changes to

patient information to

track system usage.

Technically feasible but high-

cost solution. Possible user

resistance.

Simple and transparent to

implement and also supports

recovery.

37Chapter 13 Security Engineering12/11/2014

Security requirements for the Mentcare system

 Patient information shall be downloaded at the start of a

clinic session to a secure area on the system client that

is used by clinical staff.

 All patient information on the system client shall be

encrypted.

 Patient information shall be uploaded to the database

after a clinic session has finished and deleted from the

client computer.

 A log on a separate computer from the database server

must be maintained of all changes made to the system

database.

38Chapter 13 Security Engineering12/11/2014

Misuse cases

 Misuse cases are instances of threats to a system

 Interception threats

 Attacker gains access to an asset

 Interruption threats

 Attacker makes part of a system unavailable

 Modification threats

 A system asset if tampered with

 Fabrication threats

 False information is added to a system

Chapter 13 Security Engineering 3912/11/2014

Misuse cases

12/11/2014 Chapter 13 Security Engineering 40

Mentcare use case – Transfer data

12/11/2014 Chapter 13 Security Engineering 41

Mentcare system: Transfer data

Actors Medical receptionist, Patient records system (PRS)

Description A receptionist may transfer data from the Mentcare system to a

general patient record database that is maintained by a health

authority. The information transferred may either be updated

personal information (address, phone number, etc.) or a

summary of the patient’s diagnosis and treatment.

Data Patient’s personal information, treatment summary.

Stimulus User command issued by medical receptionist.

Response Confirmation that PRS has been updated.

Comments The receptionist must have appropriate security permissions to

access the patient information and the PRS.

Mentcare misuse case: Intercept transfer

Mentcare system: Intercept transfer (Misuse case)

Actors Medical receptionist, Patient records system (PRS), Attacker

Description A receptionist transfers data from his or her PC to the Mentcare

system on the server. An attacker intercepts the data transfer and

takes a copy of that data.

Data

(assets)

Patient’s personal information, treatment summary

Attacks A network monitor is added to the system and packets from the

receptionist to the server are intercepted.

A spoof server is set up between the receptionist and the

database server so that receptionist believes they are interacting

with the real system.

12/11/2014 Chapter 13 Security Engineering 42

Misuse case: Intercept transfer

12/11/2014 Chapter 13 Security Engineering 43

Mentcare system: Intercept transfer (Misuse case)

Mitigations All networking equipment must be maintained in a locked

room. Engineers accessing the equipment must be

accredited.

All data transfers between the client and server must be

encrypted.

Certificate-based client-server communication must be

used

Requirements All communications between the client and the server

must use the Secure Socket Layer (SSL). The https

protocol uses certificate based authentication and

encryption.

Secure systems design

12/11/2014 Chapter 13 Security Engineering 44

Secure systems design

 Security should be designed into a system – it is very

difficult to make an insecure system secure after it has

been designed or implemented

 Architectural design

 how do architectural design decisions affect the security of a

system?

 Good practice

 what is accepted good practice when designing secure systems?

Chapter 13 Security Engineering 4512/11/2014

Design compromises

 Adding security features to a system to enhance its

security affects other attributes of the system

 Performance

 Additional security checks slow down a system so its response

time or throughput may be affected

 Usability

 Security measures may require users to remember information

or require additional interactions to complete a transaction. This

makes the system less usable and can frustrate system users.

12/11/2014 Chapter 13 Security Engineering 46

Design risk assessment

 Risk assessment while the system is being developed

and after it has been deployed

 More information is available - system platform,

middleware and the system architecture and data

organisation.

 Vulnerabilities that arise from design choices may

therefore be identified.

Chapter 13 Security Engineering 4712/11/2014

Design and risk assessment

Chapter 13 Security Engineering 4812/11/2014

Protection requirements

 Protection requirements may be generated when

knowledge of information representation and system

distribution

 Separating patient and treatment information limits the

amount of information (personal patient data) that needs

to be protected

 Maintaining copies of records on a local client protects

against denial of service attacks on the server

 But these may need to be encrypted

12/11/2014 Chapter 13 Security Engineering 49

Design risk assessment

12/11/2014 Chapter 13 Security Engineering 50

Design decisions from use of COTS

 System users authenticated using a name/password

combination.

 The system architecture is client-server with clients

accessing the system through a standard web browser.

 Information is presented as an editable web form.

Chapter 13 Security Engineering 5112/11/2014

Vulnerabilities associated with technology

choices

Chapter 13 Security Engineering 5212/11/2014

Security requirements

 A password checker shall be made available and shall

be run daily. Weak passwords shall be reported to

system administrators.

 Access to the system shall only be allowed by approved

client computers.

 All client computers shall have a single, approved web

browser installed by system administrators.

Chapter 13 Security Engineering 5312/11/2014

Architectural design

 Two fundamental issues have to be considered when

designing an architecture for security.

 Protection

• How should the system be organised so that critical assets can be

protected against external attack?

 Distribution

• How should system assets be distributed so that the effects of a

successful attack are minimized?

 These are potentially conflicting

 If assets are distributed, then they are more expensive to protect.

If assets are protected, then usability and performance

requirements may be compromised.

Chapter 13 Security Engineering 5412/11/2014

Protection

 Platform-level protection

 Top-level controls on the platform on which a system runs.

 Application-level protection

 Specific protection mechanisms built into the application itself

e.g. additional password protection.

 Record-level protection

 Protection that is invoked when access to specific information is

requested

 These lead to a layered protection architecture

Chapter 13 Security Engineering 5512/11/2014

A layered protection architecture

Chapter 13 Security Engineering 5612/11/2014

Distribution

 Distributing assets means that attacks on one system do

not necessarily lead to complete loss of system service

 Each platform has separate protection features and may

be different from other platforms so that they do not

share a common vulnerability

 Distribution is particularly important if the risk of denial of

service attacks is high

Chapter 13 Security Engineering 5712/11/2014

Distributed

assets in an

equity

trading

system
Chapter 13 Security Engineering 5812/11/2014

Design guidelines for security engineering

 Design guidelines encapsulate good practice in secure

systems design

 Design guidelines serve two purposes:

 They raise awareness of security issues in a software

engineering team. Security is considered when design decisions

are made.

 They can be used as the basis of a review checklist that is

applied during the system validation process.

 Design guidelines here are applicable during software

specification and design

Chapter 13 Security Engineering 5912/11/2014

Design guidelines for secure systems

engineering

Security guidelines

Base security decisions on an explicit security policy

Avoid a single point of failure

Fail securely

Balance security and usability

Log user actions

Use redundancy and diversity to reduce risk

Specify the format of all system inputs

Compartmentalize your assets

Design for deployment

Design for recoverability

Chapter 13 Security Engineering 6012/11/2014

Design guidelines 1-3

 Base decisions on an explicit security policy

 Define a security policy for the organization that sets out the

fundamental security requirements that should apply to all

organizational systems.

 Avoid a single point of failure

 Ensure that a security failure can only result when there is more

than one failure in security procedures. For example, have

password and question-based authentication.

 Fail securely

 When systems fail, for whatever reason, ensure that sensitive

information cannot be accessed by unauthorized users even

although normal security procedures are unavailable.

Chapter 13 Security Engineering 6112/11/2014

Design guidelines 4-6

 Balance security and usability

 Try to avoid security procedures that make the system difficult to

use. Sometimes you have to accept weaker security to make the

system more usable.

 Log user actions

 Maintain a log of user actions that can be analyzed to discover

who did what. If users know about such a log, they are less likely

to behave in an irresponsible way.

 Use redundancy and diversity to reduce risk

 Keep multiple copies of data and use diverse infrastructure so

that an infrastructure vulnerability cannot be the single point of

failure.

Chapter 13 Security Engineering 6212/11/2014

Design guidelines 7-10

 Specify the format of all system inputs

 If input formats are known then you can check that all inputs are

within range so that unexpected inputs don’t cause problems.

 Compartmentalize your assets

 Organize the system so that assets are in separate areas and

users only have access to the information that they need rather

than all system information.

 Design for deployment

 Design the system to avoid deployment problems

 Design for recoverability

 Design the system to simplify recoverability after a successful

attack.

Chapter 13 Security Engineering 6312/11/2014

Secure systems programming

12/11/2014 Chapter 13 Security Engineering 64

Aspects of secure systems programming

 Vulnerabilities are often language-specific.

 Array bound checking is automatic in languages like Java so this

is not a vulnerability that can be exploited in Java programs.

 However, millions of programs are written in C and C++ as these

allow for the development of more efficient software so simply

avoiding the use of these languages is not a realistic option.

 Security vulnerabilities are closely related to program

reliability.

 Programs without array bound checking can crash so actions

taken to improve program reliability can also improve system

security.

12/11/2014 Chapter 13 Security Engineering 65

Dependable programming guidelines

12/11/2014 Chapter 13 Security Engineering 66

Dependable programming guidelines

1. Limit the visibility of information in a program
2. Check all inputs for validity
3. Provide a handler for all exceptions
4. Minimize the use of error-prone constructs
5. Provide restart capabilities
6. Check array bounds
7. Include timeouts when calling external components
8. Name all constants that represent real-world values

Security testing and assurance

12/11/2014 Chapter 13 Security Engineering 67

Security testing

 Testing the extent to which the system can protect itself
from external attacks.

 Problems with security testing

 Security requirements are ‘shall not’ requirements i.e. they
specify what should not happen. It is not usually possible to
define security requirements as simple constraints that can be
checked by the system.

 The people attacking a system are intelligent and look for
vulnerabilities. They can experiment to discover weaknesses
and loopholes in the system.

68Chapter 13 Security Engineering12/11/2014

Security validation

 Experience-based testing

 The system is reviewed and analysed against the types of attack
that are known to the validation team.

 Penetration testing

 A team is established whose goal is to breach the security of the
system by simulating attacks on the system.

 Tool-based analysis

 Various security tools such as password checkers are used to
analyse the system in operation.

 Formal verification

 The system is verified against a formal security specification.

69Chapter 13 Security Engineering12/11/2014

Examples of entries in a security checklist

Security checklist

1. Do all files that are created in the application have appropriate access permissions?

The wrong access permissions may lead to these files being accessed by unauthorized

users.

2. Does the system automatically terminate user sessions after a period of inactivity?

Sessions that are left active may allow unauthorized access through an unattended

computer.

3. If the system is written in a programming language without array bound checking, are

there situations where buffer overflow may be exploited? Buffer overflow may allow

attackers to send code strings to the system and then execute them.

4. If passwords are set, does the system check that passwords are ‘strong’? Strong

passwords consist of mixed letters, numbers, and punctuation, and are not normal

dictionary entries. They are more difficult to break than simple passwords.

5. Are inputs from the system’s environment always checked against an input

specification? Incorrect processing of badly formed inputs is a common cause of

security vulnerabilities.

70Chapter 13 Security Engineering12/11/2014

Key points

 Security engineering is concerned with how to develop

systems that can resist malicious attacks

 Security threats can be threats to confidentiality, integrity

or availability of a system or its data

 Security risk management is concerned with assessing

possible losses from attacks and deriving security

requirements to minimise losses

 To specify security requirements, you should identify the

assets that are to be protected and define how security

techniques and technology should be used to protect

these assets.

Chapter 13 Security Engineering 7112/11/2014

Key points

 Key issues when designing a secure systems

architecture include organizing the system structure to

protect key assets and distributing the system assets to

minimize the losses from a successful attack.

 Security design guidelines sensitize system designers to

security issues that they may not have considered. They

provide a basis for creating security review checklists.

 Security validation is difficult because security

requirements state what should not happen in a system,

rather than what should. Furthermore, system attackers

are intelligent and may have more time to probe for

weaknesses than is available for security testing.
Chapter 13 Security Engineering 7212/11/2014

Chapter 22 – Project Management

04/12/2014 Chapter 22 Project management 1

Topics covered

 Risk management

 Managing people

 Teamwork

04/12/2014 Chapter 22 Project management 2

Software project management

 Concerned with activities involved in ensuring

that software is delivered on time and on

schedule and in accordance with the

requirements of the organisations developing

and procuring the software.

 Project management is needed because software

development is always subject to budget and schedule

constraints that are set by the organisation developing

the software.

04/12/2014 Chapter 22 Project management 3

Success criteria

 Deliver the software to the customer at the agreed time.

 Keep overall costs within budget.

 Deliver software that meets the customer’s expectations.

 Maintain a coherent and well-functioning development

team.

04/12/2014 Chapter 22 Project management 4

Software management distinctions

 The product is intangible.

▪ Software cannot be seen or touched. Software project managers

cannot see progress by simply looking at the artefact that is

being constructed.

 Many software projects are 'one-off' projects.

▪ Large software projects are usually different in some ways from

previous projects. Even managers who have lots of previous

experience may find it difficult to anticipate problems.

 Software processes are variable and organization

specific.

▪ We still cannot reliably predict when a particular software

process is likely to lead to development problems.

04/12/2014 Chapter 22 Project management 5

Factors influencing project management

 Company size

 Software customers

 Software size

 Software type

 Organizational culture

 Software development processes

 These factors mean that project managers in different

organizations may work in quite different ways.

04/12/2014 Chapter 22 Project management 6

Universal management activities

 Project planning

▪ Project managers are responsible for planning. estimating and

scheduling project development and assigning people to tasks.

▪ Covered in Chapter 23.

 Risk management

▪ Project managers assess the risks that may affect a project,

monitor these risks and take action when problems arise.

 People management

▪ Project managers have to choose people for their team and

establish ways of working that leads to effective team

performance.

04/12/2014 Chapter 22 Project management 7

Management activities

 Reporting

▪ Project managers are usually responsible for reporting on the

progress of a project to customers and to the managers of the

company developing the software.

 Proposal writing

▪ The first stage in a software project may involve writing a

proposal to win a contract to carry out an item of work. The

proposal describes the objectives of the project and how it will be

carried out.

04/12/2014 Chapter 22 Project management 8

Risk management

04/12/2014 Chapter 22 Project management 9

Risk management

 Risk management is concerned with identifying risks and
drawing up plans to minimise their effect on a project.

 Software risk management is important because of the
inherent uncertainties in software development.

▪ These uncertainties stem from loosely defined requirements,
requirements changes due to changes in customer needs,
difficulties in estimating the time and resources required for
software development, and differences in individual skills.

 You have to anticipate risks, understand the impact of
these risks on the project, the product and the business,
and take steps to avoid these risks.

04/12/2014 Chapter 22 Project management 10

Risk classification

 There are two dimensions of risk classification

▪ The type of risk (technical, organizational, ..)

▪ what is affected by the risk:

 Project risks affect schedule or resources;

 Product risks affect the quality or performance of the
software being developed;

 Business risks affect the organisation developing or
procuring the software.

04/12/2014 Chapter 22 Project management 11

Examples of project, product, and business risks

Risk Affects Description

Staff turnover Project Experienced staff will leave the project before it is

finished.

Management change Project There will be a change of organizational

management with different priorities.

Hardware unavailability Project Hardware that is essential for the project will not

be delivered on schedule.

Requirements change Project and product There will be a larger number of changes to the

requirements than anticipated.

Specification delays Project and product Specifications of essential interfaces are not

available on schedule.

Size underestimate Project and product The size of the system has been underestimated.

CASE tool

underperformance

Product CASE tools, which support the project, do not

perform as anticipated.

Technology change Business The underlying technology on which the system

is built is superseded by new technology.

Product competition Business A competitive product is marketed before the

system is completed.

04/12/2014 Chapter 22 Project management 12

The risk management process

 Risk identification

▪ Identify project, product and business risks;

 Risk analysis

▪ Assess the likelihood and consequences of these risks;

 Risk planning

▪ Draw up plans to avoid or minimise the effects of the risk;

 Risk monitoring

▪ Monitor the risks throughout the project;

04/12/2014 Chapter 22 Project management 13

The risk management process

04/12/2014 Chapter 22 Project management 14

Risk identification

 May be a team activities or based on the individual

project manager’s experience.

 A checklist of common risks may be used to identify risks

in a project

▪ Technology risks.

▪ Organizational risks.

▪ People risks.

▪ Requirements risks.

▪ Estimation risks.

04/12/2014 Chapter 22 Project management 15

Examples of different risk types

Risk type Possible risks

Estimation The time required to develop the software is underestimated. (12)

The rate of defect repair is underestimated. (13)

The size of the software is underestimated. (14)

Organizational The organization is restructured so that different management are responsible for

the project. (6)

Organizational financial problems force reductions in the project budget. (7)

People It is impossible to recruit staff with the skills required. (3)

Key staff are ill and unavailable at critical times. (4)

Required training for staff is not available. (5)

Requirements Changes to requirements that require major design rework are proposed. (10)

Customers fail to understand the impact of requirements changes. (11)

Technology The database used in the system cannot process as many transactions per

second as expected. (1)

Reusable software components contain defects that mean they cannot be reused

as planned. (2)

Tools The code generated by software code generation tools is inefficient. (8)

Software tools cannot work together in an integrated way. (9)

04/12/2014 Chapter 22 Project management 16

Risk analysis

 Assess probability and seriousness of each risk.

 Probability may be very low, low, moderate, high or very

high.

 Risk consequences might be catastrophic, serious,

tolerable or insignificant.

04/12/2014 Chapter 22 Project management 17

Risk types and examples

Risk Probability Effects

Organizational financial problems force reductions in the

project budget (7).

Low Catastrophic

It is impossible to recruit staff with the skills required for the

project (3).

High Catastrophic

Key staff are ill at critical times in the project (4). Moderate Serious

Faults in reusable software components have to be repaired

before these components are reused. (2).

Moderate Serious

Changes to requirements that require major design rework

are proposed (10).

Moderate Serious

The organization is restructured so that different

management are responsible for the project (6).

High Serious

The database used in the system cannot process as many

transactions per second as expected (1).

Moderate Serious

04/12/2014 Chapter 22 Project management 18

Risk types and examples

Risk Probability Effects

The time required to develop the software is

underestimated (12).

High Serious

Software tools cannot be integrated (9). High Tolerable

Customers fail to understand the impact of requirements

changes (11).

Moderate Tolerable

Required training for staff is not available (5). Moderate Tolerable

The rate of defect repair is underestimated (13). Moderate Tolerable

The size of the software is underestimated (14). High Tolerable

Code generated by code generation tools is inefficient (8). Moderate Insignificant

04/12/2014 Chapter 22 Project management 19

Risk planning

 Consider each risk and develop a strategy to manage
that risk.

 Avoidance strategies

▪ The probability that the risk will arise is reduced;

 Minimization strategies

▪ The impact of the risk on the project or product will be reduced;

 Contingency plans

▪ If the risk arises, contingency plans are plans to deal with that
risk;

04/12/2014 Chapter 22 Project management 20

What-if questions

 What if several engineers are ill at the same time?

 What if an economic downturn leads to budget cuts of

20% for the project?

 What if the performance of open-source software is

inadequate and the only expert on that open source

software leaves?

 What if the company that supplies and maintains

software components goes out of business?

 What if the customer fails to deliver the revised

requirements as predicted?

04/12/2014 Chapter 22 Project management 21

Strategies to help manage risk

Risk Strategy

Organizational financial

problems

Prepare a briefing document for senior management

showing how the project is making a very important

contribution to the goals of the business and presenting

reasons why cuts to the project budget would not be cost-

effective.

Recruitment problems Alert customer to potential difficulties and the possibility of

delays; investigate buying-in components.

Staff illness Reorganize team so that there is more overlap of work and

people therefore understand each other’s jobs.

Defective components Replace potentially defective components with bought-in

components of known reliability.

Requirements changes Derive traceability information to assess requirements

change impact; maximize information hiding in the design.

04/12/2014 Chapter 22 Project management 22

Strategies to help manage risk

Risk Strategy

Organizational

restructuring

Prepare a briefing document for senior management

showing how the project is making a very important

contribution to the goals of the business.

Database

performance

Investigate the possibility of buying a higher-performance

database.

Underestimated

development time

Investigate buying-in components; investigate use of a

program generator.

04/12/2014 Chapter 22 Project management 23

Risk monitoring

 Assess each identified risks regularly to decide whether

or not it is becoming less or more probable.

 Also assess whether the effects of the risk have

changed.

 Each key risk should be discussed at management

progress meetings.

04/12/2014 Chapter 22 Project management 24

Risk indicators

Risk type Potential indicators

Estimation Failure to meet agreed schedule; failure to clear reported defects.

Organizational Organizational gossip; lack of action by senior management.

People Poor staff morale; poor relationships amongst team members; high staff

turnover.

Requirements Many requirements change requests; customer complaints.

Technology Late delivery of hardware or support software; many reported

technology problems.

Tools Reluctance by team members to use tools; complaints about CASE

tools; demands for higher-powered workstations.

04/12/2014 Chapter 22 Project management 25

Managing people

04/12/2014 Chapter 22 Project management 26

Managing people

 People are an organisation’s most important assets.

 The tasks of a manager are essentially people-oriented.

Unless there is some understanding of people,

management will be unsuccessful.

 Poor people management is an important contributor to

project failure.

04/12/2014 Chapter 22 Project management 27

People management factors

 Consistency

▪ Team members should all be treated in a comparable way
without favourites or discrimination.

 Respect

▪ Different team members have different skills and these
differences should be respected.

 Inclusion

▪ Involve all team members and make sure that people’s views are
considered.

 Honesty

▪ You should always be honest about what is going well and what
is going badly in a project.

04/12/2014 Chapter 22 Project management 28

Motivating people

 An important role of a manager is to motivate the people
working on a project.

 Motivation means organizing the work and the working
environment to encourage people to work effectively.

▪ If people are not motivated, they will not be interested in the work
they are doing. They will work slowly, be more likely to make
mistakes and will not contribute to the broader goals of the team
or the organization.

 Motivation is a complex issue but it appears that their are
different types of motivation based on:

▪ Basic needs (e.g. food, sleep, etc.);

▪ Personal needs (e.g. respect, self-esteem);

▪ Social needs (e.g. to be accepted as part of a group).

04/12/2014 Chapter 22 Project management 29

Human needs hierarchy

04/12/2014 Chapter 22 Project management 30

Need satisfaction

 In software development groups, basic physiological and
safety needs are not an issue.

 Social

▪ Provide communal facilities;

▪ Allow informal communications e.g. via social networking

 Esteem

▪ Recognition of achievements;

▪ Appropriate rewards.

 Self-realization

▪ Training - people want to learn more;

▪ Responsibility.

04/12/2014 Chapter 22 Project management 31

Case study: Individual motivation

04/12/2014 Chapter 22 Project management 32

Alice is a software project manager working in a company that develops alarm systems.

This company wishes to enter the growing market of assistive technology to help elderly and

disabled people live independently. Alice has been asked to lead a team of 6 developers

than can develop new products based around the company’s alarm technology.

Alice’s assistive technology project starts well. Good working relationships develop within

the team and creative new ideas are developed. The team decides to develop a peer-to-

peer messaging system using digital televisions linked to the alarm network for

communications. However, some months into the project, Alice notices that Dorothy, a

hardware design expert, starts coming into work late, the quality of her work deteriorates

and, increasingly, that she does not appear to be communicating with other members of the

team.

Alice talks about the problem informally with other team members to try to find out if

Dorothy’s personal circumstances have changed, and if this might be affecting her work.

They don’t know of anything, so Alice decides to talk with Dorothy to try to understand the

problem.

Case study: Individual motivation

04/12/2014 Chapter 22 Project management 33

After some initial denials that there is a problem, Dorothy admits that she has lost

interest in the job. She expected that she would be able to develop and use her

hardware interfacing skills. However, because of the product direction that has been

chosen, she has little opportunity for this. Basically, she is working as a C programmer

with other team members.

Although she admits that the work is challenging, she is concerned that she is not

developing her interfacing skills. She is worried that finding a job that involves

hardware interfacing will be difficult after this project. Because she does not want to

upset the team by revealing that she is thinking about the next project, she has

decided that it is best to minimize conversation with them.

Comments on case study

 If you don’t sort out the problem of unacceptable work,

the other group members will become dissatisfied and

feel that they are doing an unfair share of the work.

 Personal difficulties affect motivation because people

can’t concentrate on their work. They need time and

support to resolve these issues, although you have to

make clear that they still have a responsibility to their

employer.

 Alice gives Dorothy more design autonomy and

organizes training courses in software engineering that

will give her more opportunities after her current project

has finished.
04/12/2014 Chapter 22 Project management 34

Personality types

 The needs hierarchy is almost certainly an over-

simplification of motivation in practice.

 Motivation should also take into account different

personality types:

▪ Task-oriented people, who are motivated by the work they do. In

software engineering.

▪ Interaction-oriented people, who are motivated by the presence

and actions of co-workers.

▪ Self-oriented people, who are principally motivated by personal

success and recognition.

04/12/2014 Chapter 22 Project management 35

Personality types

 Task-oriented.

▪ The motivation for doing the work is the work itself;

 Self-oriented.

▪ The work is a means to an end which is the achievement of

individual goals - e.g. to get rich, to play tennis, to travel etc.;

 Interaction-oriented

▪ The principal motivation is the presence and actions of

co-workers. People go to work because they like to go to

work.

04/12/2014 Chapter 22 Project management 36

Motivation balance

 Individual motivations are made up of elements

of each class.

 The balance can change depending on personal

circumstances and external events.

 However, people are not just motivated by personal

factors but also by being part of a group and culture.

 People go to work because they are motivated by the

people that they work with.

04/12/2014 Chapter 22 Project management 37

Teamwork

04/12/2014 Chapter 22 Project management 38

Teamwork

 Most software engineering is a group activity

▪ The development schedule for most non-trivial software projects
is such that they cannot be completed by one person working
alone.

 A good group is cohesive and has a team spirit. The
people involved are motivated by the success of the
group as well as by their own personal goals.

 Group interaction is a key determinant of group
performance.

 Flexibility in group composition is limited

▪ Managers must do the best they can with available people.

04/12/2014 Chapter 22 Project management 39

Group cohesiveness

 In a cohesive group, members consider the group to be
more important than any individual in it.

 The advantages of a cohesive group are:

▪ Group quality standards can be developed by the group
members.

▪ Team members learn from each other and get to know each
other’s work; Inhibitions caused by ignorance are reduced.

▪ Knowledge is shared. Continuity can be maintained if a group
member leaves.

▪ Refactoring and continual improvement is encouraged. Group
members work collectively to deliver high quality results and fix
problems, irrespective of the individuals who originally created
the design or program.

04/12/2014 Chapter 22 Project management 40

Team spirit

04/12/2014 Chapter 22 Project management 41

Alice, an experienced project manager, understands the importance of creating a

cohesive group. As they are developing a new product, she takes the opportunity of

involving all group members in the product specification and design by getting them to

discuss possible technology with elderly members of their families. She also encourages

them to bring these family members to meet other members of the development group.

Alice also arranges monthly lunches for everyone in the group. These lunches are an

opportunity for all team members to meet informally, talk around issues of concern, and

get to know each other. At the lunch, Alice tells the group what she knows about

organizational news, policies, strategies, and so forth. Each team member then briefly

summarizes what they have been doing and the group discusses a general topic, such as

new product ideas from elderly relatives.

Every few months, Alice organizes an ‘away day’ for the group where the team spends

two days on ‘technology updating’. Each team member prepares an update on a relevant

technology and presents it to the group. This is an off-site meeting in a good hotel and

plenty of time is scheduled for discussion and social interaction.

The effectiveness of a team

 The people in the group

▪ You need a mix of people in a project group as software

development involves diverse activities such as negotiating with

clients, programming, testing and documentation.

 The group organization

▪ A group should be organized so that individuals can contribute to

the best of their abilities and tasks can be completed as

expected.

 Technical and managerial communications

▪ Good communications between group members, and between

the software engineering team and other project stakeholders, is

essential.

04/12/2014 Chapter 22 Project management 42

Selecting group members

 A manager or team leader’s job is to create a cohesive

group and organize their group so that they can work

together effectively.

 This involves creating a group with the right balance of

technical skills and personalities, and organizing that

group so that the members work together effectively.

04/12/2014 Chapter 22 Project management 43

Assembling a team

 May not be possible to appoint the ideal people to work on

a project

▪ Project budget may not allow for the use of highly-paid staff;

▪ Staff with the appropriate experience may not be available;

▪ An organisation may wish to develop employee skills on a

software project.

 Managers have to work within these constraints especially

when there are shortages of trained staff.

04/12/2014 Chapter 22 Project management 44

Group composition

 Group composed of members who share the

same motivation can be problematic

▪ Task-oriented - everyone wants to do their own thing;

▪ Self-oriented - everyone wants to be the boss;

▪ Interaction-oriented - too much chatting, not enough work.

 An effective group has a balance of all types.

 This can be difficult to achieve software engineers are

often task-oriented.

 Interaction-oriented people are very important as they

can detect and defuse tensions that arise.

04/12/2014 Chapter 22 Project management 45

Group composition

04/12/2014 Chapter 22 Project management 46

In creating a group for assistive technology development, Alice is aware of the

importance of selecting members with complementary personalities. When interviewing

potential group members, she tried to assess whether they were task-oriented, self-

oriented, or interaction-oriented. She felt that she was primarily a self-oriented type

because she considered the project to be a way of getting noticed by senior

management and possibly promoted. She therefore looked for one or perhaps two

interaction-oriented personalities, with task-oriented individuals to complete the team.

The final assessment that she arrived at was:

Alice—self-oriented

Brian—task-oriented

Bob—task-oriented

Carol—interaction-oriented

Dorothy—self-oriented

Ed—interaction-oriented

Fred—task-oriented

Group organization

 The way that a group is organized affects the decisions

that are made by that group, the ways that information is

exchanged and the interactions between the

development group and external project stakeholders.

▪ Key questions include:

• Should the project manager be the technical leader of the group?

• Who will be involved in making critical technical decisions, and how

will these be made?

• How will interactions with external stakeholders and senior company

management be handled?

• How can groups integrate people who are not co-located?

• How can knowledge be shared across the group?

04/12/2014 Chapter 22 Project management 47

Group organization

 Small software engineering groups are usually organised

informally without a rigid structure.

 For large projects, there may be a hierarchical structure

where different groups are responsible for different sub-

projects.

 Agile development is always based around an informal

group on the principle that formal structure inhibits

information exchange

04/12/2014 Chapter 22 Project management 48

Informal groups

 The group acts as a whole and comes to a consensus

on decisions affecting the system.

 The group leader serves as the external interface of the

group but does not allocate specific work items.

 Rather, work is discussed by the group as a whole and

tasks are allocated according to ability and experience.

 This approach is successful for groups where all

members are experienced and competent.

04/12/2014 Chapter 22 Project management 49

Group communications

 Good communications are essential for effective group

working.

 Information must be exchanged on the status of work,

design decisions and changes to previous decisions.

 Good communications also strengthens group cohesion

as it promotes understanding.

04/12/2014 Chapter 22 Project management 50

Group communications

 Group size

▪ The larger the group, the harder it is for people to communicate
with other group members.

 Group structure

▪ Communication is better in informally structured groups than in
hierarchically structured groups.

 Group composition

▪ Communication is better when there are different personality
types in a group and when groups are mixed rather than single
sex.

 The physical work environment

▪ Good workplace organisation can help encourage
communications.

04/12/2014 Chapter 22 Project management 51

Key points

 Good project management is essential if software engineering

projects are to be developed on schedule and within budget.

 Software management is distinct from other engineering

management. Software is intangible. Projects may be novel or

innovative with no body of experience to guide their management.

Software processes are not as mature as traditional engineering

processes.

 Risk management involves identifying and assessing project risks to

establish the probability that they will occur and the consequences

for the project if that risk does arise. You should make plans to

avoid, manage or deal with likely risks if or when they arise.

04/12/2014 Chapter 22 Project management 52

Key points

 People management involves choosing the right people to work on a

project and organizing the team and its working environment.

 People are motivated by interaction with other people, the

recognition of management and their peers, and by being given

opportunities for personal development.

 Software development groups should be fairly small and cohesive.

The key factors that influence the effectiveness of a group are the

people in that group, the way that it is organized and the

communication between group members.

 Communications within a group are influenced by factors such as

the status of group members, the size of the group, the gender

composition of the group, personalities and available communication

channels.

04/12/2014 Chapter 22 Project management 53

Chapter 23 – Project planning

10/12/2014 Chapter 23 Project Planning 1

Topics covered

 Software pricing

 Plan-driven development

 Project scheduling

 Agile planning

 Estimation techniques

 COCOMO cost modeling

10/12/2014 Chapter 23 Project Planning 2

Project planning

 Project planning involves breaking down the work into

parts and assign these to project team members,

anticipate problems that might arise and prepare

tentative solutions to those problems.

 The project plan, which is created at the start of a

project, is used to communicate how the work will be

done to the project team and customers, and to help

assess progress on the project.

10/12/2014 Chapter 23 Project Planning 3

Planning stages

 At the proposal stage, when you are bidding for a

contract to develop or provide a software system.

 During the project startup phase, when you have to plan

who will work on the project, how the project will be

broken down into increments, how resources will be

allocated across your company, etc.

 Periodically throughout the project, when you modify

your plan in the light of experience gained and

information from monitoring the progress of the work.

10/12/2014 Chapter 23 Project Planning 4

Proposal planning

 Planning may be necessary with only outline software

requirements.

 The aim of planning at this stage is to provide

information that will be used in setting a price for the

system to customers.

 Project pricing involves estimating how much the

software will cost to develop, taking factors such as staff

costs, hardware costs, software costs, etc. into account

10/12/2014 Chapter 23 Project Planning 5

Project startup planning

 At this stage, you know more about the system

requirements but do not have design or implementation

information

 Create a plan with enough detail to make decisions

about the project budget and staffing.

▪ This plan is the basis for project resource allocation

 The startup plan should also define project monitoring

mechanisms

 A startup plan is still needed for agile development to

allow resources to be allocated to the project

10/12/2014 Chapter 23 Project Planning 6

Development planning

 The project plan should be regularly amended as the

project progresses and you know more about the

software and its development

 The project schedule, cost-estimate and risks have to be

regularly revised

10/12/2014 Chapter 23 Project Planning 7

Software pricing

10/12/2014 Chapter 23 Project Planning 8

Software pricing

 Estimates are made to discover the cost, to the

developer, of producing a software system.

▪ You take into account, hardware, software, travel, training and

effort costs.

 There is not a simple relationship between the

development cost and the price charged to the customer.

 Broader organisational, economic, political and business

considerations influence the price charged.

10/12/2014 Chapter 23 Project Planning 9

Factors affecting software pricing

Factor Description

Contractual terms A customer may be willing to allow the developer to retain

ownership of the source code and reuse it in other projects.

The price charged may then be less than if the software

source code is handed over to the customer.

Cost estimate

uncertainty

If an organization is unsure of its cost estimate, it may

increase its price by a contingency over and above its

normal profit.

Financial health Developers in financial difficulty may lower their price to

gain a contract. It is better to make a smaller than normal

profit or break even than to go out of business. Cash flow is

more important than profit in difficult economic times.

10/12/2014 Chapter 23 Project Planning 10

Factors affecting software pricing

Factor Description

Market opportunity A development organization may quote a low price

because it wishes to move into a new segment of the

software market. Accepting a low profit on one project may

give the organization the opportunity to make a greater

profit later. The experience gained may also help it develop

new products.

Requirements volatility If the requirements are likely to change, an organization

may lower its price to win a contract. After the contract is

awarded, high prices can be charged for changes to the

requirements.

10/12/2014 Chapter 23 Project Planning 11

Pricing strategies

 Under pricing

▪ A company may underprice a system in order to gain a contract

that allows them to retain staff for future opportunities

▪ A company may underprice a system to gain access to a new

market area

 Increased pricing

▪ The price may be increased when a buyer wishes a fixed-price

contract and so the seller increases the price to allow for

unexpected risks

10/12/2014 Chapter 23 Project Planning 12

Pricing to win

 The software is priced according to what the software

developer believes the buyer is willing to pay

 If this is less that the development costs, the software

functionality may be reduced accordingly with a view to

extra functionality being added in a later release

 Additional costs may be added as the requirements

change and these may be priced at a higher level to

make up the shortfall in the original price

10/12/2014 Chapter 23 Project Planning 13

Plan-driven development

10/12/2014 Chapter 23 Project Planning 14

Plan-driven development

 Plan-driven or plan-based development is an approach

to software engineering where the development process

is planned in detail.

▪ Plan-driven development is based on engineering project

management techniques and is the ‘traditional’ way of managing

large software development projects.

 A project plan is created that records the work to be

done, who will do it, the development schedule and the

work products.

 Managers use the plan to support project decision

making and as a way of measuring progress.

10/12/2014 Chapter 23 Project Planning 15

Plan-driven development – pros and cons

 The arguments in favor of a plan-driven approach are

that early planning allows organizational issues

(availability of staff, other projects, etc.) to be closely

taken into account, and that potential problems and

dependencies are discovered before the project starts,

rather than once the project is underway.

 The principal argument against plan-driven development

is that many early decisions have to be revised because

of changes to the environment in which the software is to

be developed and used.

10/12/2014 Chapter 23 Project Planning 16

Project plans

 In a plan-driven development project, a project plan sets

out the resources available to the project, the work

breakdown and a schedule for carrying out the work.

 Plan sections

▪ Introduction

▪ Project organization

▪ Risk analysis

▪ Hardware and software resource requirements

▪ Work breakdown

▪ Project schedule

▪ Monitoring and reporting mechanisms

10/12/2014 Chapter 23 Project Planning 17

Project plan supplements

Plan Description

Configuration management plan Describes the configuration management procedures

and structures to be used.

Deployment plan Describes how the software and associated hardware

(if required) will be deployed in the customer’s

environment. This should include a plan for migrating

data from existing systems.

Maintenance plan Predicts the maintenance requirements, costs, and

effort.

Quality plan Describes the quality procedures and standards that

will be used in a project.

Validation plan Describes the approach, resources, and schedule used

for system validation.

10/12/2014 Chapter 23 Project Planning 18

The planning process

 Project planning is an iterative process that starts when

you create an initial project plan during the project

startup phase.

 Plan changes are inevitable.

▪ As more information about the system and the project team

becomes available during the project, you should regularly revise

the plan to reflect requirements, schedule and risk changes.

▪ Changing business goals also leads to changes in project plans.

As business goals change, this could affect all projects, which

may then have to be re-planned.

10/12/2014 Chapter 23 Project Planning 19

The project planning process

10/12/2014 Chapter 23 Project Planning 20

Planning assumptions

 You should make realistic rather than optimistic

assumptions when you are defining a project plan.

 Problems of some description always arise during a

project, and these lead to project delays.

 Your initial assumptions and scheduling should therefore

take unexpected problems into account.

 You should include contingency in your plan so that if

things go wrong, then your delivery schedule is not

seriously disrupted.

10/12/2014 Chapter 23 Project Planning 21

Risk mitigation

 If there are serious problems with the development work

that are likely to lead to significant delays, you need to

initiate risk mitigation actions to reduce the risks of

project failure.

 In conjunction with these actions, you also have to re-

plan the project.

 This may involve renegotiating the project constraints

and deliverables with the customer. A new schedule of

when work should be completed also has to be

established and agreed with the customer.

10/12/2014 Chapter 23 Project Planning 22

Project scheduling

10/12/2014 Chapter 23 Project Planning 23

Project scheduling

 Project scheduling is the process of deciding how the

work in a project will be organized as separate tasks,

and when and how these tasks will be executed.

 You estimate the calendar time needed to complete each

task, the effort required and who will work on the tasks

that have been identified.

 You also have to estimate the resources needed to

complete each task, such as the disk space required on

a server, the time required on specialized hardware,

such as a simulator, and what the travel budget will be.

10/12/2014 Chapter 23 Project Planning 24

Project scheduling activities

 Split project into tasks and estimate time and resources

required to complete each task.

 Organize tasks concurrently to make optimal

use of workforce.

 Minimize task dependencies to avoid delays

caused by one task waiting for another to complete.

 Dependent on project managers intuition and

experience.

10/12/2014 Chapter 23 Project Planning 25

The project scheduling process

10/12/2014 Chapter 23 Project Planning 26

Scheduling problems

 Estimating the difficulty of problems and hence the cost

of developing a solution is hard.

 Productivity is not proportional to the number of people

working on a task.

 Adding people to a late project makes it later because of

communication overheads.

 The unexpected always happens. Always allow

contingency in planning.

10/12/2014 Chapter 23 Project Planning 27

Schedule presentation

 Graphical notations are normally used to illustrate the

project schedule.

 These show the project breakdown into tasks. Tasks

should not be too small. They should take about a week

or two.

 Calendar-based

▪ Bar charts are the most commonly used representation for

project schedules. They show the schedule as activities or

resources against time.

 Activity networks

▪ Show task dependencies

10/12/2014 Chapter 23 Project Planning 28

Project activites

 Project activities (tasks) are the basic planning element.

Each activity has:

▪ a duration in calendar days or months,

▪ an effort estimate, which shows the number of person-days or

person-months to complete the work,

▪ a deadline by which the activity should be complete,

▪ a defined end-point, which might be a document, the holding of a

review meeting, the successful execution of all tests, etc.

10/12/2014 Chapter 23 Project Planning 29

Milestones and deliverables

 Milestones are points in the schedule against which you

can assess progress, for example, the handover of the

system for testing.

 Deliverables are work products that are delivered to the

customer, e.g. a requirements document for the system.

10/12/2014 Chapter 23 Project Planning 30

Tasks, durations, and dependencies

Task Effort (person-

days)

Duration (days) Dependencies

T1 15 10

T2 8 15

T3 20 15 T1 (M1)

T4 5 10

T5 5 10 T2, T4 (M3)

T6 10 5 T1, T2 (M4)

T7 25 20 T1 (M1)

T8 75 25 T4 (M2)

T9 10 15 T3, T6 (M5)

T10 20 15 T7, T8 (M6)

T11 10 10 T9 (M7)

T12 20 10 T10, T11 (M8)
10/12/2014 Chapter 23 Project Planning 31

Activity bar chart

10/12/2014 Chapter 23 Project Planning 32

Staff allocation chart

10/12/2014 Chapter 23 Project Planning 33

Agile planning

10/12/2014 Chapter 23 Project Planning 34

Agile planning

 Agile methods of software development are iterative

approaches where the software is developed and

delivered to customers in increments.

 Unlike plan-driven approaches, the functionality of these

increments is not planned in advance but is decided

during the development.

▪ The decision on what to include in an increment depends on

progress and on the customer’s priorities.

 The customer’s priorities and requirements change so it

makes sense to have a flexible plan that can

accommodate these changes.

10/12/2014 Chapter 23 Project Planning 35

Agile planning stages

 Release planning, which looks ahead for several months

and decides on the features that should be included in a

release of a system.

 Iteration planning, which has a shorter term outlook, and

focuses on planning the next increment of a system. This

is typically 2-4 weeks of work for the team.

10/12/2014 Chapter 23 Project Planning 36

Approaches to agile planning

 Planning in Scrum

▪ Covered in Chapter 3

 Based on managing a project backlog (things to be

done) with daily reviews of progress and problems

 The planning game

▪ Developed originally as part of Extreme Programming (XP)

▪ Dependent on user stories as a measure of progress in the

project

10/12/2014 Chapter 23 Project Planning 37

Story-based planning

 The planning game is based on user stories that reflect the features

that should be included in the system.

 The project team read and discuss the stories and rank them in

order of the amount of time they think it will take to implement the

story.

 Stories are assigned ‘effort points’ reflecting their size and difficulty

of implementation

 The number of effort points implemented per day is measured giving

an estimate of the team’s ‘velocity’

 This allows the total effort required to implement the system to be

estimated

10/12/2014 Chapter 23 Project Planning 38

The planning game

10/12/2014 Chapter 23 Project Planning 39

Release and iteration planning

 Release planning involves selecting and refining the

stories that will reflect the features to be implemented in

a release of a system and the order in which the stories

should be implemented.

 Stories to be implemented in each iteration are chosen,

with the number of stories reflecting the time to deliver

an iteration (usually 2 or 3 weeks).

 The team’s velocity is used to guide the choice of stories

so that they can be delivered within an iteration.

10/12/2014 Chapter 23 Project Planning 40

Task allocation

 During the task planning stage, the developers break

down stories into development tasks.

▪ A development task should take 4–16 hours.

▪ All of the tasks that must be completed to implement all of the

stories in that iteration are listed.

▪ The individual developers then sign up for the specific tasks that

they will implement.

 Benefits of this approach:

▪ The whole team gets an overview of the tasks to be completed in

an iteration.

▪ Developers have a sense of ownership in these tasks and this is

likely to motivate them to complete the task.

10/12/2014 Chapter 23 Project Planning 41

Software delivery

 A software increment is always delivered at the end of

each project iteration.

 If the features to be included in the increment cannot be

completed in the time allowed, the scope of the work is

reduced.

 The delivery schedule is never extended.

10/12/2014 Chapter 23 Project Planning 42

Agile planning difficulties

 Agile planning is reliant on customer involvement and

availability.

 This can be difficult to arrange, as customer

representatives sometimes have to prioritize other work

and are not available for the planning game.

 Furthermore, some customers may be more familiar with

traditional project plans and may find it difficult to engage

in an agile planning process.

10/12/2014 Chapter 23 Project Planning 43

Agile planning applicability

 Agile planning works well with small, stable development

teams that can get together and discuss the stories to be

implemented.

 However, where teams are large and/or geographically

distributed, or when team membership changes

frequently, it is practically impossible for everyone to be

involved in the collaborative planning that is essential for

agile project management.

10/12/2014 Chapter 23 Project Planning 44

Estimation techniques

10/12/2014 Chapter 23 Project Planning 45

Estimation techniques

 Organizations need to make software effort and cost

estimates. There are two types of technique that can be

used to do this:

▪ Experience-based techniques The estimate of future effort

requirements is based on the manager’s experience of past

projects and the application domain. Essentially, the manager

makes an informed judgment of what the effort requirements are

likely to be.

▪ Algorithmic cost modeling In this approach, a formulaic approach

is used to compute the project effort based on estimates of

product attributes, such as size, and process characteristics,

such as experience of staff involved.

10/12/2014 Chapter 23 Project Planning 46

Estimate uncertainty

10/12/2014 Chapter 23 Project Planning 47

Experience-based approaches

 Experience-based techniques rely on judgments based

on experience of past projects and the effort expended in

these projects on software development activities.

 Typically, you identify the deliverables to be produced in

a project and the different software components or

systems that are to be developed.

 You document these in a spreadsheet, estimate them

individually and compute the total effort required.

 It usually helps to get a group of people involved in the

effort estimation and to ask each member of the group to

explain their estimate.

10/12/2014 Chapter 23 Project Planning 48

Problem with experience-based approaches

 The difficulty with experience-based techniques is that a

new software project may not have much in common

with previous projects.

 Software development changes very quickly and a

project will often use unfamiliar techniques such as web

services, application system configuration or HTML5.

 If you have not worked with these techniques, your

previous experience may not help you to estimate the

effort required, making it more difficult to produce

accurate costs and schedule estimates.

10/12/2014 Chapter 23 Project Planning 49

Algorithmic cost modelling

 Cost is estimated as a mathematical function of
product, project and process attributes whose
values are estimated by project managers:

▪ Effort = A ´ SizeB ´ M

▪ A is an organisation-dependent constant, B reflects the
disproportionate effort for large projects and M is a multiplier
reflecting product, process and people attributes.

 The most commonly used product attribute for cost
estimation is code size.

 Most models are similar but they use different values for
A, B and M.

10/12/2014 Chapter 23 Project Planning 50

Estimation accuracy

 The size of a software system can only be known
accurately when it is finished.

 Several factors influence the final size

▪ Use of reused systems and components;

▪ Programming language;

▪ Distribution of system.

 As the development process progresses then the size
estimate becomes more accurate.

 The estimates of the factors contributing to B and M are
subjective and vary according to the judgment of the
estimator.

10/12/2014 Chapter 23 Project Planning 51

Effectiveness of algorithmic models

 Algorithmic cost models are a systematic way to

estimate the effort required to develop a system.

However, these models are complex and difficult to use.

 There are many attributes and considerable scope for

uncertainty in estimating their values.

 This complexity means that the practical application of

algorithmic cost modeling has been limited to a relatively

small number of large companies, mostly working in

defense and aerospace systems engineering.

10/12/2014 Chapter 23 Project Planning 52

COCOMO cost modeling

10/12/2014 Chapter 23 Project Planning 53

COCOMO cost modeling

 An empirical model based on project experience.

 Well-documented, ‘independent’ model which is not tied

to a specific software vendor.

 Long history from initial version published in 1981

(COCOMO-81) through various instantiations to

COCOMO 2.

 COCOMO 2 takes into account different approaches to

software development, reuse, etc.

10/12/2014 Chapter 23 Project Planning 54

COCOMO 2 models

 COCOMO 2 incorporates a range of sub-models that
produce increasingly detailed software estimates.

 The sub-models in COCOMO 2 are:

▪ Application composition model. Used when software is
composed from existing parts.

▪ Early design model. Used when requirements are available but
design has not yet started.

▪ Reuse model. Used to compute the effort of integrating reusable
components.

▪ Post-architecture model. Used once the system architecture has
been designed and more information about the system is
available.

10/12/2014 Chapter 23 Project Planning 55

COCOMO estimation models

10/12/2014 Chapter 23 Project Planning 56

Application composition model

 Supports prototyping projects and projects where there

is extensive reuse.

 Based on standard estimates of developer productivity in

application (object) points/month.

 Takes software tool use into account.

 Formula is

▪ PM = (NAP ´ (1 - %reuse/100)) / PROD

▪ PM is the effort in person-months, NAP is the number of

application points and PROD is the productivity.

10/12/2014 Chapter 23 Project Planning 57

Application-point productivity

Developer’s

experience

and capability

Very low Low Nominal High Very high

ICASE maturity

and capability

Very low Low Nominal High Very high

PROD

(NAP/month)

4 7 13 25 50

10/12/2014 Chapter 23 Project Planning 58

Early design model

 Estimates can be made after the requirements have
been agreed.

 Based on a standard formula for algorithmic models

 PM = A ´ SizeB ´ M where

▪ M = PERS ´ RCPX ´ RUSE ´ PDIF ´ PREX ´ FCIL ´ SCED;

▪ A = 2.94 in initial calibration,

▪ Size in KLOC,

▪ B varies from 1.1 to 1.24 depending on novelty of the project,
development flexibility, risk management approaches and the
process maturity.

10/12/2014 Chapter 23 Project Planning 59

Multipliers

 Multipliers reflect the capability of the developers, the
non-functional requirements, the familiarity with the
development platform, etc.

▪ RCPX - product reliability and complexity;

▪ RUSE - the reuse required;

▪ PDIF - platform difficulty;

▪ PREX - personnel experience;

▪ PERS - personnel capability;

▪ SCED - required schedule;

▪ FCIL - the team support facilities.

10/12/2014 Chapter 23 Project Planning 60

The reuse model

 Takes into account black-box code that is reused without
change and code that has to be adapted to integrate it
with new code.

 There are two versions:

▪ Black-box reuse where code is not modified. An effort estimate
(PM) is computed.

▪ White-box reuse where code is modified. A size estimate
equivalent to the number of lines of new source code is
computed. This then adjusts the size estimate for new code.

10/12/2014 Chapter 23 Project Planning 61

Reuse model estimates 1

 For generated code:

 PM = (ASLOC * AT/100)/ATPROD

▪ ASLOC is the number of lines of generated code

▪ AT is the percentage of code automatically generated.

▪ ATPROD is the productivity of engineers in integrating this code.

10/12/2014 Chapter 23 Project Planning 62

Reuse model estimates 2

 When code has to be understood and integrated:

 ESLOC = ASLOC * (1-AT/100) * AAM.

▪ ASLOC and AT as before.

▪ AAM is the adaptation adjustment multiplier computed from the

costs of changing the reused code, the costs of understanding

how to integrate the code and the costs of reuse decision

making.

10/12/2014 Chapter 23 Project Planning 63

Post-architecture level

 Uses the same formula as the early design model but

with 17 rather than 7 associated multipliers.

 The code size is estimated as:

▪ Number of lines of new code to be developed;

▪ Estimate of equivalent number of lines of new code computed

using the reuse model;

▪ An estimate of the number of lines of code that have to be

modified according to requirements changes.

10/12/2014 Chapter 23 Project Planning 64

The exponent term

 This depends on 5 scale factors (see next slide). Their
sum/100 is added to 1.01

 A company takes on a project in a new domain. The
client has not defined the process to be used and has
not allowed time for risk analysis. The company has a
CMM level 2 rating.

▪ Precedenteness - new project (4)

▪ Development flexibility - no client involvement - Very high (1)

▪ Architecture/risk resolution - No risk analysis - V. Low .(5)

▪ Team cohesion - new team - nominal (3)

▪ Process maturity - some control - nominal (3)

 Scale factor is therefore 1.17.

10/12/2014 Chapter 23 Project Planning 65

Scale factors used in the exponent computation

in the post-architecture model

Scale factor Explanation

Architecture/risk resolution Reflects the extent of risk analysis carried out. Very low means little

analysis; extra-high means a complete and thorough risk analysis.

Development flexibility Reflects the degree of flexibility in the development process. Very low

means a prescribed process is used; extra-high means that the client

sets only general goals.

Precedentedness Reflects the previous experience of the organization with this type of

project. Very low means no previous experience; extra-high means that

the organization is completely familiar with this application domain.

Process maturity Reflects the process maturity of the organization. The computation of

this value depends on the CMM Maturity Questionnaire, but an

estimate can be achieved by subtracting the CMM process maturity

level from 5.

Team cohesion Reflects how well the development team knows each other and work

together. Very low means very difficult interactions; extra-high means

an integrated and effective team with no communication problems.

10/12/2014 Chapter 23 Project Planning 66

Multipliers

 Product attributes

▪ Concerned with required characteristics of the software product
being developed.

 Computer attributes

▪ Constraints imposed on the software by the hardware platform.

 Personnel attributes

▪ Multipliers that take the experience and capabilities of the people
working on the project into account.

 Project attributes

▪ Concerned with the particular characteristics of the software
development project.

10/12/2014 Chapter 23 Project Planning 67

The effect of cost drivers on effort estimates

Exponent value 1.17

System size (including

factors for reuse and

requirements volatility)

128,000 DSI

Initial COCOMO estimate

without cost drivers

730 person-months

Reliability Very high, multiplier = 1.39

Complexity Very high, multiplier = 1.3

Memory constraint High, multiplier = 1.21

Tool use Low, multiplier = 1.12

Schedule Accelerated, multiplier = 1.29

Adjusted COCOMO

estimate

2,306 person-months

10/12/2014 Chapter 23 Project Planning 68

The effect of cost drivers on effort estimates

Exponent value 1.17

Reliability Very low, multiplier = 0.75

Complexity Very low, multiplier = 0.75

Memory constraint None, multiplier = 1

Tool use Very high, multiplier = 0.72

Schedule Normal, multiplier = 1

Adjusted COCOMO

estimate

295 person-months

10/12/2014 Chapter 23 Project Planning 69

Project duration and staffing

 As well as effort estimation, managers must estimate the
calendar time required to complete a project and when
staff will be required.

 Calendar time can be estimated using a COCOMO 2
formula

▪ TDEV = 3 ´ (PM)(0.33+0.2*(B-1.01))

▪ PM is the effort computation and B is the exponent computed as
discussed above (B is 1 for the early prototyping model). This
computation predicts the nominal schedule for the project.

 The time required is independent of the number of
people working on the project.

10/12/2014 Chapter 23 Project Planning 70

Staffing requirements

 Staff required can’t be computed by diving the
development time by the required schedule.

 The number of people working on a project varies
depending on the phase of the project.

 The more people who work on the project, the more total
effort is usually required.

 A very rapid build-up of people often correlates with
schedule slippage.

10/12/2014 Chapter 23 Project Planning 71

Key points

 The price charged for a system does not just depend on its

estimated development costs and the profit required by the

development company. Organizational factors may mean that the

price is increased to compensate for increased risk or decreased to

gain competitive advantage.

 Software is often priced to gain a contract and the functionality of the

system is then adjusted to meet the estimated price.

 Plan-driven development is organized around a complete project

plan that defines the project activities, the planned effort, the activity

schedule and who is responsible for each activity.

10/12/2014 Chapter 23 Project Planning 72

Key points

 Project scheduling involves the creation of various graphical

representations of part of the project plan. Bar charts, which show

the activity duration and staffing timelines, are the most commonly

used schedule representations.

 A project milestone is a predictable outcome of an activity or set of

activities. At each milestone, a formal report of progress should be

presented to management. A deliverable is a work product that is

delivered to the project customer.

 The agile planning game involves the whole team in project

planning. The plan is developed incrementally and, if problems

arise, it is adjusted so that software functionality is reduced instead

of delaying the delivery of an increment.

10/12/2014 Chapter 23 Project Planning 73

Key points

 Estimation techniques for software may be experience-based, where

managers judge the effort required, or algorithmic, where the effort

required is computed from other estimated project parameters.

 The COCOMO II costing model is a mature algorithmic cost model

that takes project, product, hardware and personnel attributes into

account when formulating a cost estimate.

10/12/2014 Chapter 23 Project Planning 74

