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 Most of computer science is concerned with achieving desired 
behavior

 Security is concerned with preventing undesired behavior

 Different way of thinking!

 An enemy/opponent/hacker/adversary who is actively and 
maliciously trying to circumvent any protective measures you put in 
place



 Software testing determines whether a given program 
implements a desired functionality

 Test I/O characteristics

 Q/A

 How do you test whether a program does not allow for 
undesired functionality?

 Penetration testing helps, but only up to a point



 Draws on all areas of CS

 Theory (especially cryptography)

 Networking

 Operating systems

 Databases

 AI/learning theory

 Computer architecture/hardware

 Programming languages/compilers

 HCI, psychology



 Strong cryptography

 Firewalls, intrusion detection, virus scanners

 Buffer overflow detection/prevention

 User education



Security incidents (reported)



source:  https://www.cvedetails.com/top-50-products.php?year=2017



Source: Kaspersky Security Bulletin 2017

Browser

Android

Office

Java



 We are not going to be able to cover everything

 We are not going to be able to even mention everything

 Main goals

 A sampling of many different aspects of security

 The security “mindset”

 Become familiar with basic acronyms (RSA, SSL, PGP, etc.), and 
“buzzwords” (phishing, …)

 Become an educated security consumer

 Try to keep it interesting with real-world examples and “hacking” 
projects

You will not be a security expert after this class

(after this class, you should realize why it

would be dangerous to think you are)

You should have a better appreciation of security

issues after this class



Course Organization



 Computer security is about CIA:

 Confidentiality, integrity, and availability

 These are important, but security is about much more…



password



 Where does security end?

password

forgot password?



 Use public records to figure out someone’s password

 Or, e.g., their SSN, so can answer security question…

 The problem is not (necessarily) that SSNs are public

 The problem is that we “overload” SSNs, and use them for more 
than they were intended



 Achieve “absolute” security



 Absolute security is easy to achieve!

 How…?

 Absolute security is impossible to achieve!

 Why…?

 Good security is about risk management



 The goal is not (usually) “to make the system as secure as 
possible”…

 …but instead, “to make the system as secure as possible within 
certain constraints” (cost, usability, convenience)

 Must understand the existing constraints

 E.g., passwords…



 Important to evaluate what level of security is 
necessary/appropriate

 Cost of mounting a particular attack vs. value of attack to an 
adversary

 Cost of damages from an attack vs. cost of defending against the 
attack

 Likelihood of a particular attack

 Sometimes the best security is to make sure you are not the 
easiest target for an attacker…



 “No point in putting a higher post in the ground when the 
enemy can go around it”

 Need to identify the weakest link

 Security of a system is only as good as the security at its weakest 
point…

 Security is not a “magic bullet”

 Security is a process, not a product



 Detection, response, audit

 How do you know when you are being attacked?

 How quickly can you stop the attack?

 Can you identify the attacker(s)?

 Can you prevent the attack from recurring? 

 Recovery

 Can be much more important than prevention

 Economics, insurance, risk management…

 Offensive techniques



 What is “the system”?

 Physical security

 Social engineering

 Bribes for passwords

 Phishing

 “External” means of getting information

 Legal records

 Trash cans



 Learn to think with a “security mindset” in general

 What is “the system”?

 How could this system be attacked?

 What is the weakest point of attack?

 How could this system be defended?

 What threats am I trying to address?

 How effective will a given countermeasure be?

 What is the trade-off between security, cost, and usability?



 “The system” is not just a computer or a network

 Prevention is not the only goal

 Cost-benefit analysis

 Detection, response, recovery

 Nevertheless…in this course, we will focus on computer
security, and primarily on prevention

 If you want to be a security expert, you need to keep the rest in 
mind



 …and can always be attacked

 Electronic banking, social networks, e-voting

 iPods, iPhones, PDAs, RFID transponders

 Automobiles

 Appliances, TVs

 (Implantable) medical devices

 Cameras, picture frames(!)

 See http://www.securityfocus.com/news/11499



 Consider a compiler that embeds a trapdoor into anything it 
compiles

 How to catch?

 Read source code? (What if replaced?)

 Re-compile compiler?

 What if the compiler embeds the trojan code whenever it 
compiles a compiler?

 (That’s nasty…)



 Whom do you trust?

 Does one really need to be this paranoid??

 Probably not

 Sometimes, yes

 Shows that security is complex…and essentially impossible

 Comes back to risk/benefit trade-off



Next time:

begin cryptography
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A high-level survey of 

cryptography



 Crypto deals primarily with three goals:

 Confidentiality

 Integrity (of data)

 Authentication (of resources, people, systems)

 Other goals also considered

 E.g., non-repudiation

 Accountability 

 Anonymity

 …



 Characterized along three independent dimensions:

The type of 
operations used for 

transforming 
plaintext to 
ciphertext

Substitution

Transposition 

The number of keys 
used

Symmetric, 
single-key, 
secret-key, 

conventional 
encryption

Asymmetric, 
two-key, or 
public-key 
encryption

The way in which 
the plaintext is 

processed

Block cipher

Stream cipher



 For the basic goals, there are two settings:

 Private-key / shared-key / symmetric-key / secret-key

 Public-key

 The private-key setting is the “classical” one (thousands of 
years old)

 The public-key setting dates to the 1970s



 The communicating parties share some information that is 
random and secret

 This shared information is called a key

 Key is not known to an attacker

 This key must be shared (somehow) in advance of their 
communication



 Alice and Bob share a key K

 Must be shared securely

 Must be completely random

 Must be kept completely secret from attacker

 We don’t discuss (for now) how they do this 

 You can imagine they meet on a dark street corner and Alice hands 
a USB device (with a key on it) to Bob



 Two (or more) distinct parties communicating over an insecure 
network

 E.g., secure communication

 A single party who is communicating “with itself” over time

 E.g., secure storage



Alice Bob

shared infoK K

Alice

K

Bob

K



Bob

K

Bob

K



 Always assume that the full details of crypto protocols and 
algorithms are public

 Known as Kerckhoffs’ principle

 The only secret information is a key

 “Security through obscurity” is a bad idea…

 True in general; even more true in the case of cryptography

 Home-brewed solutions are BAD!

 Standardized, widely-accepted solutions are GOOD!



 Why not?

 Easier to maintain secrecy of a key than an algorithm

 Reverse engineering

 Insider attacks

 Easier to change the key than the algorithm

 In general setting, much easier to share an algorithm than for 
everyone to use their own



Private-key encryption



Encryption: c  EK(m)  possibly randomized!

Decryption algorithm: m = DK(c)

Correctness: for all K, we have DK(EK(m)) = m

Functional definition



 Unconditionally secure

 No matter how much time an opponent has, it is impossible for 
him or her to decrypt the ciphertext simply because the required 
information is not there

 Computationally secure

 The cost of breaking the cipher exceeds the value of the 
encrypted information

 The time required to break the cipher      exceeds the useful 
lifetime of the      information





Cryptanalysis

• Attack relies on the nature of the 
algorithm plus some knowledge 
of the general characteristics of 
the plaintext

• to attempt to deduce a specific 
plaintext or to deduce the key 
being used

Brute-force attack

• Attacker tries every possible 
key on a piece of ciphertext
until an intelligible translation 
into plaintext is obtained

• On average, half of all possible 
keys must be tried to achieve 
success.

• To supplement the brute-force 
approach, some degree of 
knowledge about the expected 
plaintext is needed, 





 Assume the English uppercase alphabet (no lowercase, 
punctuation, etc.)

 View letters as numbers in {0, …, 25}

 The key is a random letter of the alphabet

 Encryption done by addition modulo 26

 Is this secure?

 Exhaustive key search

 Automated determination of the key





 The key is a random permutation of the alphabet

 Note: key space is huge!

 Encryption done in the natural way

 Is this secure?

 Frequency analysis

 A large key space is necessary, but not sufficient, for security





 Easy to break because they reflect the frequency data of the 
original alphabet

 Countermeasure is to provide multiple substitutes 
(homophones) for a single letter

 Digram

 Two-letter combination

 Most common is th

 Trigram 

 Three-letter combination

 Most frequent is the 



 More complicated version of shift cipher

 Believed to be secure for over 100 years

 Is it secure?



 Polyalphabetic substitution cipher

 Improves on the simple monoalphabetic technique by using 
different monoalphabetic substitutions as one proceeds through 
the plaintext message

All these techniques have the following 
features in common:

• A set of related monoalphabetic 
substitution rules is used

• A key determines which particular rule 
is chosen for a given transformation



 Best known and one of the simplest polyalphabetic substitution 
ciphers

 In this scheme the set of related monoalphabetic substitution 
rules consists of the 26 Caesar ciphers with shifts of 0 through 
25

 Each cipher is denoted by a key letter which is the ciphertext 
letter that substitutes for the plaintext letter a



 To encrypt a message, a key is needed that is as long as the 
message

 Usually, the key is a repeating keyword 

 For example, if the keyword is deceptive, the message “we are 
discovered save yourself” is encrypted as:

key:            

deceptivedeceptivedeceptive

plaintext:   wearediscoveredsaveyourself

ciphertext:  ZICVTWQNGRZGVTWAVZHCQYGLMGJ



 A keyword is concatenated with the plaintext itself to 
provide a running key

 Example:

key: deceptivewearediscoveredsav

plaintext:      wearediscoveredsaveyourself

ciphertext:   ZICVTWQNGKZEIIGASXSTSLVVWLA

 Even this scheme is vulnerable to cryptanalysis

 Because the key and the plaintext share the same frequency 
distribution of letters, a statistical technique can be applied



 Let pi (for i=0, …, 25) denote the frequency of letter i in English-
language text

 Known that Σ pi
2 ≈ 0.065

 For each candidate period  t, compute frequencies {qi} of letters 
in the sequence c0, ct, c2t, …

 For the correct value of t, we expect Σ qi
2 ≈ 0.065

 For incorrect values of t, we expect Σ qi
2 ≈ 1/26

 Once we have the period, can use frequency analysis as in the 
case of the shift cipher



 Don’t use “simple” schemes

 Don’t use schemes that you design yourself

 Use schemes that other people have already designed and 
analyzed…



 A fundamental problem with “classical” cryptography is that no 
definition of security was ever specified

 It was not even clear what it meant for a scheme to be “secure”

 As a consequence, proving security was not even an option

 So how can you know when something is secure?

 (Or is at least based on well-studied, widely-believed assumptions)



 Adversary unable to recover the key

 Necessary, but meaningless on its own…

 Adversary unable to recover entire plaintext

 Good, but is it enough?

 Adversary unable to determine any information at all about the 
plaintext

 Formalize?

 Sounds great!

 Can we achieve it?
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Perfect secrecy



Defining secrecy (take 1)

• Even an adversary running for an unbounded
amount of time learns nothing about the 
message from the ciphertext

– (Except the length)

• Perfect secrecy

• Formally, for all distributions over the 
message space, all m, and all c:

Pr[M=m | C=c] = Pr[M=m]



Properties of the one-time pad?

• Achieves perfect secrecy
– No eavesdropper (no matter how powerful) can 

determine any information whatsoever about the 
plaintext

• was developed by Gilbert Vernam in 1918.
• Stream cipher: The message is represented as 

a binary string.
• The key is a truly random sequence of 0’s and 

1’s of the same length as the message.
• The encryption is done by XOR the key and 

the message. 



Why OTP is perfect secure?

• The security depends on the randomness of 
the key.

• In cryptographic context, we seek two 
fundamental properties in a binary random 
key sequence:
–Unpredictability: the probability of a certain bit 

being 1 or 0 is exactly equal to ½ even if you have 
all previous bits.

–Balanced (Equal Distribution): 
• The number of 1’s and 0’s should be equal.



Mathematical Proof

• the probability of a key bit being 1 or 0 is 
exactly equal to ½.

• The plaintext bits are not balanced. Let the 
probability of 0 be x and then the probability 
of 1 turns out to be 1-x. 

• Let us calculate the probability of ciphertext 
bits.



Mathematical Proof

mi             

prob.
ki          prob. ci            prob.

0           x 0        ½ 0         ½ x

0           x 1        ½ 1         ½ x

1         1-x 0        ½ 1    ½ (1-x)

1         1-x 1        ½ 0     ½ (1-x)

• We find out the probability of a ciphertext bit 

being 1 or 0 is equal to (½)x + (½)(1-x) = ½. 

Ciphertext looks like a random sequence.



Disadvantages 

• (Essentially) useless in practice…
– Long key length

– Can only be used once (hence the name!)

– Insecure against known-plaintext attacks

– Key distribution & Management difficult.

• These are inherent limitations of perfect 
secrecy



A computationally secure scheme

• A pseudorandom (number) generator (PRNG) 
is a deterministic function that takes as input a 
seed and outputs a string

• If seed chosen at random, output of the PRNG 
should “look random” (i.e., be pseudorandom)



Notes

• Pseudo-randomness must be indistinguishable 
from random for all efficient algorithms

– General-purpose PRNGs not sufficient for crypto

• Pseudorandomness of the PRNG depends on 
the seed being chosen “at random”

– Note in particular that if a seed is re-used then the 
output of the PRNG remains the same!

– In practice: from physical processes and/or user 
behavior



Computational secrecy



Computational secrecy

• We can overcome the limitations of perfect 
secrecy by (slightly) relaxing the definition

• Instead of requiring total secrecy against 
unbounded adversaries, require secrecy 
against time-bounded adversaries except with 
some small probability

– E.g., secrecy for 100 years, except with probability 
2-80



The take-home message

• Weakening the definition slightly allows us to 
construct much more efficient schemes!

• Strictly speaking, no longer 100% absolutely 
guaranteed to be secure

– Security of encryption now depends on security of 
building blocks (which are analyzed extensively, 
and are believed to be secure)

– Given enough time and/or resources, the scheme 
can be broken



Block Ciphers and the Data 

Encryption Standard (DES)
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Block ciphers

 Keyed, invertible

 Large key space, large block size

 A block of plaintext is treated as a whole and used 

to produce a ciphertext block of equal length

 Typically a block size of 64 or 128 bits is used

 The majority of network-based symmetric 
cryptographic applications make use of block 
ciphers



Data Encryption Standard (DES)

 Developed in 1970s by IBM / NSA / NBS

– Non-public design process

 Block size = 64-bit input/output

 Key size = 56 bits out of a 64 bits

– One bit in each octet is a parity-check bit

 Was the most widely used encryption scheme until 

the introduction of the Advanced Encryption 

Standard (AES) in 2001



Feistel Cipher
 Proposed the use of a cipher that alternates 

substitutions and permutations

– Is the structure used by many significant 

symmetric block ciphers currently in use.

• Each plaintext element or group of elements 
is uniquely replaced by a corresponding 
ciphertext element or group of elements

Substitutions

• No elements are added or deleted or replaced 
in the sequence, rather the order in which the 
elements appear in the sequence is changed

Permutation 



Feistel Cipher Structure



Feistel Cipher Design Features

 Block size
– Larger block sizes mean greater 

security but reduced 
encryption/decryption speed for a 
given algorithm

 Key size
– Larger key size means greater 

security but may decrease 
encryption/decryption speeds

 Number of rounds
– The essence of the Feistel cipher 

is that a single round offers 
inadequate security but that 
multiple rounds offer increasing 
security

 Subkey generation algorithm
– Greater complexity in this 

algorithm should lead to greater 
difficulty of cryptanalysis

 Round function F
– Greater complexity generally 

means greater resistance to 
cryptanalysis

 Fast software 
encryption/decryption
– In many cases, encrypting is 

embedded in applications or 
utility functions in such a way as 
to preclude a hardware 
implementation; accordingly, the 
speed of execution of the 
algorithm becomes a concern

 Ease of analysis
– If the algorithm can be concisely 

and clearly explained, it is easier 
to analyze that algorithm for 
cryptanalytic vulnerabilities and 
therefore develop a higher level of 
assurance as to its strength



Feistel Example



DES 

Encryption 

Algorithm



Round Function



Average Time Required for Exhaustive Key 

Search 



Block Cipher Design Principles:
Design of Function F

 The heart of a Feistel 
block cipher is the 
function F

 The more nonlinear F, 
the more difficult any 
type of cryptanalysis 
will be

 The SAC and BIC 
criteria appear to 
strengthen the 
effectiveness of the 
confusion function

Strict avalanche 
criterion (SAC)

States that any output 
bit j  should change with 
probability 1/2 when any 

single input bit i  is 
inverted for all i , j 

Bit 
independence 
criterion (BIC) 

States that output bits 
j and k  should change 

independently when 
any single input bit i  is 

inverted for all i , j , 
and k 

The algorithm should have good  

avalanche properties



Concerns about DES

 Short key length

– DES “cracker”, can break DES in days

– Computation can be distributed to make it faster

– Does not mean “DES is insecure”; depends on desired 
security

 Short block length

– Repeated blocks happen “too frequently”

 Some (theoretical) attacks have been found

– Claimed known to DES designers 15 years before 
public discovery!



Double DES



Meet-in-the-Middle Attack

The use of double DES results 
in a mapping that is not 

equivalent to a single DES 
encryption

The meet-in-the-middle attack 
algorithm will attack this 

scheme and does not depend 
on any particular property of 
DES but will work against 

any block encryption cipher



Triple-DES with Two-Keys

• Obvious counter to the meet-in-the-middle attack is 
to use three stages of encryption with three different 
keys
• This raises the cost of the meet-in-the-middle attack to 

2112, which is beyond what is practical

• Has the drawback of requiring a key length of                  
56 x 3 = 168 bits, which may be somewhat unwieldy

• As an alternative Tuchman proposed a triple encryption 
method that uses only two keys

• 3DES with two keys is a relatively popular 
alternative to DES and has been adopted for use in 
the key management standards ANSI X9.17 and ISO 
8732



Multiple Encryption



Triple DES with Three Keys

• Many researchers now feel that three-key 3DES is 

the preferred alternative

• A number of Internet-based applications have 

adopted three-key 3DES including PGP and 

S/MIME

• C = E( K3, D( K2, E( K1,  P)))

Three-key 3DES has 
an effective key 

length of 168 bits and 
is defined as:

• K3 = K2 or K1 = K2

Backward 
compatibility with 
DES is provided by 

putting:



Next is AES





Advanced Encryption 

Standard
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Why AES?

 Symmetric block cipher, published in 2001

 Intended to replace DES and 3DES

DES is vulnerable to multiple attacks

3DES has slow performances



NIST Criteria to Evaluate 

Potential Candidates

 Security: The effort to crypt analyze an algorithm.

 Cost: The algorithm should be practical in a wide 

range of applications.

 Algorithm and Implementation Characteristics : 

Flexibility, simplicity etc.

5 final candidates have been chosen out of 15



AES 

Encryption 

Process



AES Data Structures



Convert to State Array

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Input block:

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

=



Table 5.1

AES Parameters



AES 

Encryption

and

Decryption



Detailed Structure
• The key that is provided as input is expanded into an array of forty-four 32-bit 

words, w[i]

• Can view the cipher as alternating operations of XOR encryption 

(AddRoundKey) of a block, followed by scrambling of the block (the other three 

stages), followed by XOR encryption, and so on

• Each stage is easily reversible

• The decryption algorithm makes use of the expanded key in reverse order, 

however the decryption algorithm is not identical to the encryption algorithm

• Final round of both encryption and decryption consists of only three stages

Four different stages are used:

• Substitute bytes – uses an S-box to perform a byte-by-byte substitution of the block

• ShiftRows – a simple permutation

• MixColumns – a substitution that makes use of arithmetic

• AddRoundKey – a simple bitwise XOR of the current block with a portion of the expanded key





AddRoundKey

 XOR each byte of the round key with its 

corresponding byte in the state array

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S’0,0S’0,1S’0,2S’0,3

S’1,0S’1,1S’1,2S’1,3

S’2,0S’2,1S’2,2S’2,3

S’3,0S’3,1S’3,2S’3,3

S0,1

S1,1

S2,1

S3,1

S’0,1

S’1,1

S’2,1

S’3,1

R0,0 R0,1 R0,2 R0,3

R1,0 R1,1 R1,2 R1,3

R2,0 R2,1 R2,2 R2,3

R3,0 R3,1 R3,2 R3,3

R0,1

R1,1

R2,1

R3,1

XOR



SubBytes

 Replace each byte in the state array with its 

corresponding value from the S-Box

00 44 88 CC

11 55 99 DD

22 66 AA EE

33 77 BB FF

55



(a) S-box 



(b) Inverse S-box 



S-Box Rationale

 The S-box is designed to be resistant to known 

cryptanalytic attacks

 The Rijndael developers sought a design that has a 

low correlation between input bits and output bits 

and the property that the output is not a linear 

mathematical function of the input



Shift Row Transformation

AES Row and Column Operations



ShiftRows

 Last three rows are cyclically shifted

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S1,0

S3,0 S3,1 S3,2

S2,0 S2,1



Shift Row Rationale

• On encryption, the first 4 bytes of the plaintext 
are copied to the first column of State, and so 
on

• The round key is applied to State column by 
column

• Thus, a row shift moves an individual byte from 
one column to another, which is a linear distance of 
a multiple of 4 bytes

• Transformation ensures that the 4 bytes of one 
column are spread out to four different 
columns



MixColumn Transformation

(Figure can be found on page 144 in textbook)

Figure 5.7 AES Row and Column Operations



MixColumns

 Apply MixColumn transformation to each column

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S’0,0S’0,1S’0,2S’0,3

S’1,0S’1,1S’1,2S’1,3

S’2,0S’2,1S’2,2S’2,3

S’3,0S’3,1S’3,2S’3,3

S0,1

S1,1

S2,1

S3,1

S’0,1

S’1,1

S’2,1

S’3,1

MixColumns()

S’0,c = ({02}  S0,c)  ({03}  S1,c)  S2,c  S3,c

S’1,c = S0,c  ({02}  S1,c)  ({03}  S2,c) S3,c

S’2,c = S0,c  S1,c  ({02}  S2,c ) ({03}  S3,c)

S’3,c = ({03}  S0,c)  S1,c  S2,c  ({02}  S3,c



Mix Columns Rationale

 Coefficients of a matrix based on a linear code 

with maximal distance between code words 

ensures a good mixing among the bytes of each 

column

 The mix column transformation combined with 

the shift row transformation ensures that after a 

few rounds all output bits depend on all input bits



AddRoundKey Transformation

• The 128 bits of State are 
bitwise XORed with the 
128 bits of the round 
key

• Operation is viewed as a 
columnwise operation 
between the 4 bytes of a 
State column and one 
word of the round key

• Can also be viewed as a 
byte-level operation

Rationale:

Is as simple as possible and 
affects every bit of State

The complexity of the round 
key expansion plus the 

complexity of the other stages 
of AES ensure security



Inputs

for

Single

AES

Round



AES Key Expansion
• Takes as input a four-word (16 byte) key and produces a 

linear array of 44 words (176) bytes
• This is sufficient to provide a four-word round key for the initial 

AddRoundKey stage and each of the 10 rounds of the cipher

• Key is copied into the first four words of the expanded 
key
• The remainder of the expanded key is filled in four words at a 

time

• Each added word w[i] depends on the immediately 
preceding word, w[i – 1], and the word four positions 
back, w[i – 4]
• In three out of four cases a simple XOR is used

• For a word whose position in the w array is a multiple of 4, a 
more complex function is used



AES 

Key 

Expansion



Key Expansion Rationale

• The Rijndael developers designed the expansion 

key algorithm to be resistant to known 

cryptanalytic attacks

• Inclusion of a round-dependent round constant 

eliminates the symmetry between the ways in 

which round keys are generated in different 

rounds



AES 

Example 

Key 

Expansion



AES 

Example



Avalanche 

Effect 

in AES: Change 

in Plaintext



Avalanche 

Effect 

in AES: 

Change 

in Key



Implementation Aspects

• AddRoundKey is a bytewise XOR operation

• ShiftRows is a simple byte-shifting operation

• SubBytes operates at the byte level and only requires 

a table of 256 bytes

• MixColumns requires matrix multiplication 

• MixColumns only requires multiplication by {02} 

and {03}, which can be converted to shifts and 

XORs.

• Designers believe this very efficient implementation 

was a key factor in its selection as the AES cipher.



Modes of Operation

Modified by: Dr. Ramzi Saifan



Modes of Operation

• To apply a block cipher in a variety of 

applications, five modes of operation have been 

defined by NIST.

• The five modes are intended to cover a wide variety 

of applications of encryption for which a block cipher 

could be used

• These modes are intended for use with any symmetric 

block cipher, including triple DES and AES



Electronic 

Codebook 

Mode 

(ECB)

Ci = EK(Pi); the cipher text is (C1, …, Cn)



Security?

 ECB should not be used

– Why?



The effect of ECB mode

original encrypted using ECB mode

*Images from Wikipedia



Cipher Block Chaining (CBC)

IV; Ci = EK(mi  Ci-1); the ciphertext is (IV, C1, …, Cn)



Cipher Feedback Mode

 For AES, DES, or any 

block cipher, encryption 

is performed on a block 

of b bits

– In the case of DES b= 64

– In the case of AES b= 

128

There are three modes 
that make it possible to 
convert a block cipher 
into a stream cipher:

Cipher 
feedback 

(CFB) mode

Output 
feedback 

(OFB) mode

Counter 
(CTR) mode



s-bit Cipher Feedback (CFB) Mode



Output Feedback (OFB)Mode

Nonce; zi = EK(zi-1); Ci = zi  mi; the ciphertext is (Nonce, C1, …, Cn)



Counter (CTR) Mode

Counter1; zi = FK(IV+i); Ci = zi  mi; the ciphertext is 

(Counter1, C1, .., Cn)



Advantages 

of 

CTR

 Hardware efficiency

 Software efficiency

 Preprocessing

 Random access

 Provable security

 Simplicity 



Security

 CBC, OFB, and CTR modes are secure against 

chosen-plaintext attacks

*Images from Wikipedia





Data Integrity

Modified by: Dr. Ramzi Saifan



Encryption/Decryption

 Provides message confidentiality.

 Does it provide message authentication?

2



  Bob receives a message  from Alice, he wants to know

  (Data origin authentication) whether the message was

        really sent by Alic

    

  

e;

  (Data integrity) whether t  h

Message Authentication

m

message authentication code

e message has been modified.

  Solutions:

  Alice attaches a  (MAC)

        to the message.

  Or she attach digital signatures a  to the message.

   

    

  e  



3



Communication without authentication

Alice

M

Bob

Eve

M’

Very easy..

Eve can simply 
change the 

message



Integrity Protection with MAC

Shared key k to generate authenticate message

Alice

M

Bob

Eve

MAC (k,M)

M’

MAC??

k=??, 

MAC=??

Key : k Key : k

Eve can not 
forge MAC 
when k is 
unknown



MAC Authentication (I)

 MAC allows two or more mutually trusting parties to 
authenticate messages sent between members 

Alice

M

Bob

Eve

MAC (k,M)

Key : k Key : k

Only Alice and me know 

k, one of us sent M.

If I do not send M, 

then Alice must 

have sent it.



MAC Authentication (II)

 MAC allows two or more mutually trusting parties 
to authenticate messages sent between members 

Alice

M

Bob

Eve

MAC (k,M)

Key : k Key : k

Only Alice, Chris, Doug 

and me know k, one of 

us sent M.

Chris

Key : k

Doug

Key : k



Integrity with Hash

Can we simply send the hash with the message to serve message authentication ? 

Ans: No, Eve can change the message and recompute the hash.

Using hash needs more appropriate procedure to guarantee integrity

Alice

M

Bob

Eve

h (M)

M’

h (M)

Forge M’ and 

compute h(M’)

No shared 
key



Message Authentication Code

 A function of the message and a secret key that produces 
a fixed-length value that serves as the authenticator

 Generated by an algorithm : 

 generated from message + secret key : MAC = F(K,M)

 A small fixed-sized block of data

 appended to message as a signature when sent

 Receiver performs same computation on message and 
checks it matches the MAC



MAC and Encryption

 As shown the MAC provides authentication

 But encryption can also provides authentication!

 Why use a MAC?

 sometimes only authentication is needed

 sometimes need authentication to persist longer than 
the encryption (eg. archival use)



MAC Properties

 A MAC is a cryptographic hash

MAC = CK(M)

 condenses a variable-length message M

 using a secret key K

 to a fixed-sized authenticator

 A many-to-one function

 potentially many messages have same MAC

 but finding these needs to be very difficult





Keyed Hash Functions as MACs

 Want a MAC based on a hash function 

 because hash functions are generally faster

 crypto hash function code is widely available

 But hashing is internally has no key!

 Original proposal:
KeyedHash = Hash(Key|Message) 

 some weaknesses were found with this 

 Eventually led to development of HMAC 



  Pre-image: if ( ) ,   is a pre-image of .

  Each hash value typically has multiple pre-images.

  Collision: a pair of ( , ),  ,  s.t. ( ) ( ).

A hash function is said t

Security requirements

h m y m y

m m m m h m h m

 



    

o be:

if it is computationally infeasible to 

    find a pre-image of a hash value. 

if it is computationally in

  Pre-image resistant 

  C feasible to

    find a col

ollision re

lision

sistant 

 

.

A hash fu  n





 cryptographic hash functioction is a 

if it is collision resista

n

    nt. 

14



To be useful for message
authentication, a hash function H must have the 
following properties:

Can be applied to a block of data of any size

Produces a fixed-length output

H(x) is relatively easy to compute for any given x

One-way or pre-image resistant

• Computationally infeasible to find x such that H(x) = h

Computationally infeasible to find y ≠ x such that H(y) = H(x)

Collision resistant or strong collision resistance 

• Computationally infeasible to find any pair (x,y) such that H(x) = H(y)



   In a group of  people, what is the probability

    that at least two people have

  Having the same birthday is a

 the same bi

 collision?

Birthday problem:

Birthday 

rthday?  

   

    1 2  with paradox:

k

p



   as small as 23.

  Consider a hash function :{0,1} {0,1} .

  If we randomly generate  messages, the probability

    of having a collision depends on  .

  To resist birthday attack, we choose  to 

n

k

h

k

n

n

 



 be sufficiently large that

    it will take an infeasibly large  to have a non-negligible probability

    of collision.

k

Birthday Problem



Collision-resistant hash functions
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 Collision-resistant hash functions can be built 

from collision-resistant compression functions 

using Merkle-Damgard construction.



Merkle-Damgard Construction

Compression function  :{0,1} {0,1}n b nf  

m1 m2 m3                           mk

f f fIV
v0 v1 v2 vk… f h(m)



m  =  m1 m2 m3                          ms

f f fIV … f h(m)k X X hk(m)

fhk(m)                    hk(m||ms+1)

ms+1

1

   ( ) ( ) with IV .

    (For simplicity, without

 Insecure:

  Easy to forge:

    ( ,  ( )),  

  

 p

 

add

 where 

ing)

k

s

k

m

M

h m

AC m h

m m

m k

m 





 











CMAC (Cipher-based MAC)

 “Hashless” MAC

– Uses an encryption algorithm (DES, AES, etc.) to 

generate MAC

– Based on same idea as cipher block chaining

 Compresses result to size of single block (unlike 

encryption



CBC CMAC Overview
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CMAC Facts

 Advantages:

– Can use existing encryption functions

– Encryption functions have properties that resist 

preimage and collision attacks

– Most exhibit strong avalanche effect – minor change in 

message gives great change in resulting MAC

 Disadvantage:

– Encryption algorithms (particularly when chained) can 

be much slower than hash algorithms



HMAC

• Interest in developing a MAC derived from a 
cryptographic hash code
• Cryptographic hash functions generally execute faster

• Library code is widely available

• SHA-1 was not deigned for use as a MAC because it does not 

rely on a secret key

• Issued as RFC2014

• Has been chosen as the mandatory-to-
implement MAC for IP security
• Used in other Internet protocols such as Transport Layer 

Security (TLS) and Secure Electronic Transaction (SET)



HMAC
 HMAC(K,m) = H(   (K’ ⊕ opad)   || H((K’ ⊕ ipad) || m )     ), where

– H : is a cryptographic hash function, composed of multiple rounds 

with operations AND, OR, XOR, NOT, and SHIFT. Very efficient 

to compute.

– K: is the secret key,

– M: is the message to be authenticated,

– K' : is another secret key, derived from the original 

key K (by padding K to the right with extra zeroes to the input 

block size of the hash function, or by hashing K if it is longer than 

that block size,

– || denotes concatenation,

– opad is the outer padding (0x5c5c5c…5c5c, one-block 

long constant),and

– ipad is the inner padding (0x363636…3636, one-block long 

constant).



HMAC



Hash functions in practice

 MD5

– 128-bit output

– Introduced in 1991…collision attacks found in 2004…several 

extensions and improvements since then

– Still widely deployed(!)

 SHA-1

– 160-bit output

– No collisions known, but theoretical attacks exist

 SHA-2

– 256-/512-bit outputs



Secure Hash Algorithm

(SHA)

• SHA was originally developed by NIST

• Published as FIPS 180 in 1993

• Was revised in 1995 as SHA-1
• Produces 160-bit hash values 

• NIST issued revised FIPS 180-2 in 2002
• Adds 3 additional versions of SHA 

• SHA-256, SHA-384, SHA-512

• With 256/384/512-bit hash values

• Same basic structure as SHA-1 but greater security

• The most recent version is FIPS 180-4 which 
added two variants of SHA-512 with 224-bit and 
256-bit hash sizes



Notes: 1.  All sizes are measured in bits.

2.  Security refers to the fact that a birthday attack on a message digest of 

size n produces a collision with a work factor of approximately 2n/2.

Comparison of SHA Parameters







SHA-3

SHA-2 shares same structure and mathematical operations 
as its predecessors and causes concern

Due to time required to replace SHA-2 should it 
become vulnerable, NIST announced in 2007 a 
competition to produce SHA-3

Requirements:

• Must support hash value lengths of 224, 256,384, and 512 
bits

• Algorithm must process small blocks at a time instead of 
requiring the entire message to be buffered in memory 
before processing it



Hash Function 

 The ideal cryptographic hash function has four main 

properties:

1) it is quick to compute the hash value for any given message

2) it is infeasible to generate a message from its hash value except 

by trying all possible messages

3) a small change to a message should change the hash value so 

extensively

4) it is infeasible to find two different messages with the same hash 

value



Encryption + integrity

 simultaneously protect confidentiality and 

authenticity of communications

 often required but usually separate

 approaches

Hash-then-encrypt: EK(M || H(M))

MAC-then-encrypt: EK2(M || MACK1(M)) 

 Encrypt-then-MAC: (C=EK2(M), T=MACK1(C) 

 Encrypt-and-MAC: (C=EK2(M), T=MACK1(M)

 decryption /verification straightforward

 but security vulnerabilities with all these



Replay attacks

 A MAC inherently cannot prevent replay attacks

 Replay attacks must be prevented at a higher level 

of the protocol! 

– (Note that whether a replay is ok is application-

dependent.)

 Replay attacks can be prevented using nonces, 

timestamps, etc.



Public Key Encryption 

Modified by: Dr. Ramzi Saifan



Prime Numbers

• Prime numbers only have divisors of 1 and itself 

• They cannot be written as a product of other numbers 

• Any integer a > 1 can be factored in a unique 

way as

a = p1
a1 * p2

a2 * . . . * pp1
a1

where p1 < p2 < . . .  < pt are prime numbers and 

where each ai is a positive integer

• This is known as the fundamental theorem of 

arithmetic



Table 8.1  

Primes Under 2000 



Miller-Rabin Algorithm

• Typically used to test a large number for primality

• Algorithm is: TEST (n) 

– Find integers k, q, with k > 0, q odd, so that (n – 1)=2kq ;

– Select a random integer a, 1 < a < n – 1 ;

– if aq mod n = 1 then

• return (“inconclusive") ;

– for j = 0 to k – 1 do

• if (a2jq mod n = n – 1) then

• return (“inconclusive") ;

– return (“composite") ;



Miller Rabin Usage
 It can be shown that given an odd number n that is not prime and 

a randomly chosen integer, a with 1 < a < n - 1, the probability 

that TEST will return inconclusive (i.e., fail to detect that n is 

not prime) is less than 1/4.

 Thus, if t different values of a are chosen, the probability that all 

of them will pass TEST (return inconclusive) for n is less than 

(1/4)t . For example, for t =  10, the probability that a nonprime 

number will pass all ten tests is less than 10-6 . 

 Thus, for a sufficiently large value of t, we can be confident that n 

is prime if Miller’s test always returns inconclusive .

 invoke TEST (n) using randomly chosen values for a . If, at any 

point, TEST returns composite , then n is determined to be 

nonprime. If TEST continues to return inconclusive for t tests, 

then for a sufficiently large value of t , assume that n is prime.



Deterministic Primality Algorithm

• Prior to 2002 there was no known method of 
efficiently proving the primality of very large 
numbers

• All of the algorithms in use produced a probabilistic 
result

• In 2002 Agrawal, Kayal, and Saxena developed an 
algorithm that efficiently determines whether a given 
large number is prime

• Known as the AKS algorithm

• Does not appear to be as efficient as                         the 

Miller-Rabin algorithm



Public-Key 

Cryptography



Public-Key Cryptosystem:  Confidentiality



Public-Key Cryptosystem:  Authentication



Public-Key Cryptosystem:  

Authentication and Confidentiality



Public-Key Requirements

 Conditions that these algorithms must fulfill:
– It is computationally easy for a party B to generate a pair 

(public-key PUb, private key PRb)

– It is computationally easy for a sender A, knowing the 
public key and the message to be encrypted, to generate 
the corresponding ciphertext 

– It is computationally easy for the receiver B to decrypt the 
resulting ciphertext using the private key to recover the 
original message

– It is computationally infeasible for an adversary, knowing 
the public key, to determine the private key

– It is computationally infeasible for an adversary, knowing 
the public key and a ciphertext, to recover the original 
message

– The two keys can be applied in either order



Public-Key Requirements

 Need a trap-door one-way function
– A one-way function is one that maps a domain into a range such 

that every function value has a unique inverse, with the condition 
that the calculation of the function is easy, whereas the 
calculation of the inverse is infeasible

• Y = f(X) easy  

• X = f–1(Y) infeasible

 A trap-door one-way function is a family of invertible 
functions fk, such that
– Y = fk(X) easy, if k and X are known

– X = fk
–1(Y) easy, if k and Y are known

– X = fk
–1(Y) infeasible, if Y known but k not known

 A practical public-key scheme depends on a suitable 
trap-door one-way function



Rivest-Shamir-Adleman (RSA) Scheme

 Developed in 1977 at MIT by Ron Rivest, Adi 

Shamir & Len Adleman

 Most widely used general-purpose approach to 

public-key encryption

 Is a cipher in which the plaintext and ciphertext 

are integers between 0 and n – 1 for some n

– A typical size for n is 1024 bits, or 309 decimal digits



Table 8.2
Some Values of Euler’s Totient Function ø(n)



RSA Algorithm

 RSA makes use of an expression with exponentials

 Plaintext is encrypted in blocks with each block having a 
binary value less than some number n 

 Encryption and decryption are of the following form, for 
some plaintext block M and ciphertextblock C

C = Memod n

M = Cd mod n = (Me)d mod n = Med mod n 

 Both sender and receiver must know the value of n

 The sender knows the value of e, and only the receiver 
knows the value of d

 This is a public-key encryption algorithm with a public 
key of PU={e,n} and a private key of PR={d,n} 



Algorithm Requirements

 For this algorithm to be satisfactory for public-
key encryption, the following requirements must 
be met:

1.  It is possible to find values of e, d, n  

such that Med mod n = M for all M<n

2.  It is relatively easy to calculate Me mod 

n and Cd mod n for all values of M < n 

3.  It is infeasible to determine d given e

and n





Example of RSA Algorithm





Fermat's Theorem

• States the following:

• If p is prime and a is a positive integer not divisible by p 

then

ap-1 = 1 (mod p)

• Sometimes referred to as Fermat’s Little Theorem

• An alternate form is:

• If p is prime and a is a positive integer then

ap = a (mod p)

• Plays an important role in public-key cryptography



Euler's Theorem

 States that for every a and n that are relatively 

prime:

aø(n) =  1(mod n)

 An alternative form is:

aø(n)+1 =  a(mod n)



Chinese Remainder Thm

– If p and q are prime, then for all x and a:

– x = a(mod p) and x = a(mod q) iff x=a mod(pq)

– Example: 

– Suppose that n = 2501 = 61 * 41

– To calculate V mod 2501:

• V mod 61

• V mod 41



Correctness of RSA

 To show RSA is correct, we must show that 
encryption and decryption are inverse functions: 

– En(De(M)) = De(En(M)) = M = Med (mod n)

– Since d and e are multiplicative inverses mod ɸ(n), 
there is a k such that:

• ed=1+ k *ɸ(n), = 1 + k(p-1)(q-1)

• Med = M1+k(p-1)(q-1) = M*(Mp-1)k(q-1)

• By Fermat: Mp-1=1(mod p)

• Med = M(1)k(q-1)(mod p) = M(mod p)



Correctness of RSA

 Med = M(1)k(q-1)(mod p) = M(mod p)

 Med = M(1)k(q-1)(mod q) = M(mod q)

 By Chinese Remainder Thm, we get:

 M^{ed} = M (mod p)=M (mod q) = 

M (mod pq) = M (mod n)

 Therefore, RSA reproduces the original message 
and is correct.



Exponentiation in Modular Arithmetic

 Both encryption and decryption in RSA involve 

raising an integer to an integer power, mod n

 Can make use of a property of modular 

arithmetic:

[(a mod n) x (b mod n)] mod n =(a x b) mod n

 With RSA you are dealing with potentially large 

exponents so efficiency of exponentiation is a 

consideration



Algorithm for computing ab mod n, b is expressed as a binary 

bk bk-1 … b0

f = 1

for (i=k ; i>0 ; i--)

f = (f * f)    mod  n;

if (b i == 1)

f = (f * a) mod n;

return f;

Fast Exponentiation Algorithm



Euclidean Algorithm

INPUT: Two non-
negative 
integers a and b with a 

≥ b.
OUTPUT: gcd(a, b).

1.While b > 0, do
1.Set r = a mod b,
2.a = b,
3.b = r

2.Return a.

The last non-zero remainder is 1 and 
therefore gcd(421, 111) = 1.

421 = 111 x 3 + 88

111 = 88 x 1 + 23

88 = 23 x 3 + 19

23 = 19 x 1 + 4

19 = 4 x 4 + 3

4 = 3 x 1 + 1

3 = 1 x 3 + 0

Ex: Find gcd(421, 111). use the Euclidean 
algorithm as follows:



Extended Euclidean Algorithm



Example



Efficient Operation Using the 

Public Key

 To speed up the operation of the RSA 

algorithm using the public key, a specific 

choice of e is usually made

 The most common choice is 65537 (216 + 1)

– Two other popular choices are e=3 and e=17

– Each of these choices has only two 1 bits, so the 

number of multiplications required to perform 

exponentiation is minimized

– With a very small public key, such as e = 3, RSA 

becomes vulnerable to a simple attack



Key Generation

 Before the application 

of the public-key 

cryptosystem each 

participant must 

generate a pair of keys:

– Determine two prime 

numbers p and q

– Select either e or d and 

calculate the other

 Because the value of 

n = pq will be known 

to any potential 

adversary, primes 

must be chosen from 

a sufficiently large set

– The method used for 

finding large primes 

must be reasonably 

efficient



Public-Key Cryptanalysis

 A public-key encryption scheme is vulnerable to a brute-force 
attack
– Countermeasure:  use large keys

– Key size must be small enough for practical encryption and 
decryption

– Key sizes that have been proposed result in encryption/decryption 
speeds that are too slow for general-purpose use

– Public-key encryption is currently confined to key management and 
signature applications

– Another form of attack is to find some way to compute the 
private key given the public key
– To date it has not been mathematically proven that this form of 

attack is infeasible for a particular public-key algorithm

– Finally, there is a probable-message attack
– This attack can be thwarted by appending some random                    

bits to simple messages



Factoring Problem

 We can identify three approaches to attacking 

RSA mathematically:

– Factor n into its two prime factors. This enables 

calculation of ø(n) = (p – 1) x (q – 1), which in turn 

enables determination of d = e-1 (mod ø(n))

– Determine ø(n) directly without first determining p 

and q. Again this enables determination of d = e-1

(mod ø(n))

– Determine d directly without first determining ø(n)



Table 9.5  Progress in RSA Factorization



MIPS-

Years 

Needed 

to 

Factor



Timing Attacks

 Paul Kocher, a cryptographic consultant, 

demonstrated that a snooper can determine a 

private key by keeping track of how long a 

computer takes to decipher messages

 Are applicable not just to RSA but to other 

public-key cryptography systems

 Are alarming for two reasons:

– It comes from a completely unexpected direction

– It is a ciphertext-only attack



Countermeasures

Constant 
exponentiation time

• Ensure that all 
exponentiations take the 
same amount of time 
before returning a result; 
this is a simple fix but does 
degrade performance

Random delay

• Better performance could 
be achieved by adding a 
random delay to the 
exponentiation algorithm 
to confuse the timing 
attack

Blinding

• Multiply the ciphertext by 
a random number before 
performing 
exponentiation; this 
process prevents the 
attacker from knowing 
what ciphertext bits are 
being processed inside the 
computer and therefore 
prevents the bit-by-bit 
analysis essential to the 
timing attack



Misconceptions Concerning 
Public-Key Encryption

 Public-key encryption is more secure from 

cryptanalysis than symmetric encryption

 Public-key encryption is a general-purpose 

technique that has made symmetric encryption 

obsolete

 There is a feeling that key distribution is trivial 

when using public-key encryption, compared to 

the cumbersome handshaking involved with key 

distribution centers for symmetric encryption



Terminology Related to Asymmetric Encryption

Source: Glossary of Key Information Security Terms, NIST IR 7298 [KISS06]



 The concept of public-key cryptography evolved 
from an attempt to attack two of the most difficult 
problems associated with symmetric encryption:

 Whitfield Diffie and Martin Hellman from Stanford 
University achieved a breakthrough in 1976 by 
coming up with a method that addressed both 
problems and was radically different from all 
previous approaches to cryptography

Principles of Public-Key 
Cryptosystems

• How to have secure communications in general without having to 
trust a KDC with your key

Key distribution

• How to verify that a message comes intact from the claimed sender

Digital signatures



End

Questions



The Diffie-Hellman 

Algorithm

Modified by: Dr. Ramzi Saifan



Introduction

 Discovered by Whitfield Diffie and Martin Hellman

– “New Directions in Cryptography”

 The point is to agree on a key that two parties can 

use for a symmetric encryption, in such a way that 

an eavesdropper cannot obtain the key.

 Diffie-Hellman key agreement protocol

– Exponential key agreement

– Allows two users to exchange a secret key

– Requires no prior secrets

– Real-time over an un-trusted network



Introduction

 Based on the difficulty of computing discrete 

logarithms of large numbers.

 Requires two large numbers, one prime (P), and 

(G), a primitive root of P



Implementation

 p and g are both publicly available numbers

– P is at least 512 bits

 Alice picks a private value “a” and send to Bob 

– A = ga mod p

 Bob picks a private value “b” and sends to Alice:

– B = gb mod p



Implementation

 Compute shared, private key:

– Alice received B and knows a, p and g, so she 

calculates: 

• Ka = Ba mod p

– Bob received A and knows b, p and g, so he calculates: 

• Kb = Ab mod p

 Algebraically it can be shown that Ka = Kb = K

– Users now have a symmetric secret key to encrypt





Example

 Bob and Alice are unable to talk on the untrusted 

network.

–Who knows who’s listening? 



Example

 Alice and Bob get public numbers

– P = 23,  G = 9

 Alice and Bob compute public values

– A  =  94 mod 23 =  6561 mod 23  =  6

– B  =  93 mod 23 =  729 mod 23    =  16

 Alice and Bob exchange public numbers



Example

 Alice and Bob compute symmetric keys

– ka = Ba mod p = 164 mod 23 = 9

– kb = Ab mod p =  63 mod 23 = 9

 Alice and Bob now can talk securely!



Security of DH

 Suppose p is a prime of around 300 digits, 

 and a and b at least 100 digits each. 

 Discovering the shared secret given g, p, ga mod 

p, and gb mod p would take longer than the 

lifetime of the universe, using the best known 

algorithm. 

 This is called the discrete logarithm problem.



Man in the middle attack



Applications

 Diffie-Hellman is currently used in many 

protocols, namely:

– Secure Sockets Layer (SSL)/Transport Layer Security 

(TLS)

– Secure Shell (SSH)

– Internet Protocol Security (IPSec)

– Public Key Infrastructure (PKI)



User Authentication

Modified By: Dr. Ramzi Saifan



Authentication

 Verifying the identity of another entity

– Computer authenticating to another computer

– Person authenticating to a local/remote computer

 Important to be clear about what is being 
authenticated

– The user?

– The machine? A specific application on the machine?

– The data?

Mutual authentication vs. unidirectional 
authentication



Remote User-Authentication Principles

 An authentication process consists of two steps:

• Presenting an 
identifier to the 
security system

Identification 
step

• Presenting or generating 
authentication information 
that corroborates the binding 
between the entity and the 
identifier

Verification 
step



Authentication

 Authentication may be based on

1. What you know

2. What you have

3. What you are

4. What you do

– Examples? Tradeoffs?

– Others?



Address-based authentication

 Is sometimes used

 Generally not very secure

– Relatively easy to forge source addresses of network 

packets

 But can be useful if the adversary does not know 

what IP address to forge

– E.g., IP address of a user’s home computer



Multi-factor Authentication



Password-based protocols

 Basic idea

– User has a secret password

– System checks password to authenticate user

 Issues

– How is password stored?

– How does system check password?

– How easy is it to guess a password?

• Difficult to keep password file secret, so best if it is hard to 

guess password even if you have the password file

 Distinguish on-line attacks vs. off-line attacks



Basic password scheme

Password fileUser

exrygbzyf
kgnosfix
ggjoklbsz

…
…

kiwifruit

hash function



Basic password scheme

 Hash function  h : strings  strings

– Given h(password), hard to find password

– No known algorithm better than trial and error

 User password stored as h(password)

 When user enters password

– System computes h(password)

– Compares with entry in password file

 No passwords stored on disk



Unix password system

 In past UNIX systems, password used modified 
DES (encryption algorithm) as if it were a hash 
function
– Encrypts NULL string using password as the key (truncates 

passwords to 8 characters!)

– Caused artificial slowdown: ran DES 25 times

Also stored password file in directory: 
/etc/passwd/ 
– World-readable (anyone who accessed the machine would be able 

to copy the password file to crack at their leisure)

– Contained userIDs/groupIDs used by many system programs

– Can instruct modern UNIXes to use MD5 hash function





Improved Implementations

Much stronger hash/salt 
schemes available for 

Unix

Recommended hash 
function is based on MD5

•Salt of up to 48-bits

•Password length is unlimited

•Produces 128-bit hash

•Uses an inner loop with 1000 
iterations to achieve slowdown

OpenBSD uses Blowfish 
block cipher based hash 
algorithm called Bcrypt

•Most secure version of Unix 
hash/salt scheme

•Uses 128-bit salt to create    192-
bit hash value
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Windows NT/2k/XP/Vista Password

 Uses 2 functions for “hashing” passwords:

1. LAN Manager hash (LM hash)

– Password is padded with zeros until there are 14 characters.

– It is then converted to uppercase and split into two 7-character 
pieces

– Each half is encrypted using an 8-byte DES (data encryption 
standard) key 

– Result is combined into a 16-byte, one way hash value

2. NT hash (NT hash)

– Converts password to Unicode and uses MD4 hash algorithm to 
obtain a 16-byte value

 Hashes stored in Security Accounts Manager (SAM)
– Locked within system kernel when system is running.

– Location - C:\WINNT\SYSTEM32\CONFIG

 SYSKEY 
– Utility which moves the encryption key for the SAM database off of the 

computer



Password Vulnerabilities

Offline 
dictionary 

attack

Specific 
account 
attack

Popular 
password 

attack

Password 
guessing 
against 

single user

Workstation 
hijacking

Exploiting 
user 

mistakes

Exploiting 
multiple 

password 
use

Electronic 
monitoring



Password selection

 User selection of passwords is typically very poor

– Lower entropy password makes dictionary attacks 
easier

 Typical passwords:

– Derived from account names or usernames

– Dictionary words, reversed dictionary words, or small 
modifications of dictionary words

 Users typically use the same password for 
multiple accounts

– Weakest account determines the security!



Better password selection

 Non-alphanumeric characters

 Longer phrases

 Can try to enforce good password selection…

 …but these types of passwords are difficult for 

people to memorize and type!



Dictionary Attack – some numbers

 Typical password dictionary 

– 1,000,000 entries of common passwords

• people's names, common pet names, and ordinary words. 

– Suppose you generate and analyze 10 guesses per second

• This may be reasonable for a web site; offline is much faster

– Dictionary attack in at most 100,000 seconds = 28 hours, or 14 hours 

on average

 If passwords were random

– Assume six-character password 

• Upper- and lowercase letters, digits, 32 punctuation characters

• 689,869,781,056 password combinations.

• Exhaustive search requires 1,093 years on average



Password-based protocols

 Any password-based protocol is potentially 

vulnerable to an “on-line” dictionary attack

– On-line attacks can be detected and limited

 How?

– “Three strikes”

– Ratio of successful to failed logins

– Gradually slow login response time

 Potential DoS

– Cache IP address of last successful login



From passwords to keys?

 Can potentially use passwords to derive symmetric 

or public keys

 What is the entropy of the resulting key?



Password-based protocols

 Off-line attacks can never be ‘prevented’, but 

protocols can be made secure against such attacks

 Any password-based protocol is vulnerable to off-

line attack if the server is compromised

– Once the server is compromised, why do we care?



Password storage

 “Salt”-ed hash of password

– Makes dictionary attacks harder, 

– Prevents using ‘rainbow tables’



Advantages of salt

 Without salt

– Same hash functions on all machines

• Compute hash of all common strings once

• Compare hash file with all known password files

 With 12 bits salt

– One password hashed 212 different ways

• Precompute hash file?

– Need much larger file to cover all common strings

• Dictionary attack on known password file

– For each salt found in file, try all common strings



One-time password

 New password obtained by passing user-password 
through one-way function n times which keeps 
incrementing

 Protects against replay as well as eavesdropping



Password Cracking

Dictionary attacks

• Develop a large dictionary 
of possible passwords and 
try each against the 
password file

• Each password must be 
hashed using each salt 
value and then compared 
to stored hash values

Rainbow table attacks

• Pre-compute tables of hash 
values for all salts

• A mammoth table of hash 
values 

• Can be countered by using 
a sufficiently large salt 
value and a sufficiently 
large hash length

Password crackers 
exploit the fact that 
people choose easily 
guessable passwords

• Shorter password lengths 
are also easier to crack

John the Ripper

• Open-source password 
cracker first developed in 
in 1996

• Uses a combination of 
brute-force and dictionary 
techniques





26

Passwords
Improving Security

• Password complexity
– Case-sensitivity
– Use of special characters, numbers, and both 

upper and lower-case letters
– Minimum length requirements

• Security questions
– Ask personal questions which need to be 

verified
– Some questions are very easy to discover 

answers

• Virtual keyboard
– Person clicks on-screen keyboard to enter 
– password (prevents keylogging)



Challenge-response Authentication

Goal: Bob wants Alice to “prove” her identity to him

Protocol ap1.0: Alice says “I am Alice”

Failure scenario??
“I am Alice”



Authentication

Goal: Bob wants Alice to “prove” her identity to him

Protocol ap1.0: Alice says “I am Alice”

in a network,
Bob can not “see” 

Alice, so Trudy simply 
declares

herself to be Alice
“I am Alice”



Authentication: another try

Protocol ap2.0: Alice says “I am Alice” in an IP 
packet

containing her source IP address 

Failure 
scenario??

“I am Alice”Alice’s 
IP address



Authentication: another try

Protocol ap2.0: Alice says “I am Alice” in an IP 
packet

containing her source IP address 

Trudy can create
a packet 

“spoofing”
Alice’s address

“I am Alice”Alice’s 
IP address



Authentication: another try

Protocol ap3.0: Alice says “I am Alice” and sends 
her

secret password to “prove” it.

Failure 
scenario??

“I’m Alice”
Alice’s 
IP addr

Alice’s 
password

OKAlice’s 
IP addr



Authentication: another try

Protocol ap3.0: Alice says “I am Alice” and sends 
her

secret password to “prove” it.

playback attack:
Trudy records Alice’s 

packet
and later

plays it back to Bob 

“I’m 
Alice”

Alice’s 
IP 

addr

Alice’s 
passwor

d

OK
Alice’s 
IP addr

“I’m Alice”
Alice’s 
IP addr

Alice’s 
password



Authentication: yet another try

Protocol ap3.1: Alice says “I am Alice” and sends her
encrypted secret password to “prove” it.

Failure scenario??

“I’m Alice”
Alice’s 
IP addr

encrypted 
password

OK
Alice’s 
IP addr



Authentication: another try

Protocol ap3.1: Alice says “I am Alice” and sends her
encrypted secret password to “prove” it.

record
and

playback
still works!

“I’m Alice”
Alice’s 
IP addr

encryppted
password

OK
Alice’s 
IP addr

“I’m Alice”
Alice’s 
IP addr

encrypted
password



Authentication: yet another try

Goal: avoid playback attack

Failures, drawbacks?

Nonce: number (R) used only once –in-a-lifetime

ap4.0: to prove Alice “live”, Bob sends Alice nonce, R.  Alice
must return R, encrypted with shared secret key

“I am Alice”

R

E    (KA-B, R) Alice is live, and 
only Alice knows 
key to encrypt 

nonce, so it must 
be Alice!



Authentication: ap5.0

ap4.0 doesn’t protect against server database reading 

 can we authenticate using public key techniques?

ap5.0: use nonce, public key cryptography

“I am Alice”

R
Bob computes

E (PRA, R) and knows only Alice 
could have the private 
key, that encrypted R 

such that

D(PUA , E(PRA, R)) = R



Biometrics

 Use a person’s physical characteristics

– fingerprint, voice, face, …

 Advantages

– Cannot be disclosed, lost, forgotten

 Disadvantages

– Cost, installation, maintenance

– Reliability of comparison algorithms

• False positive: Allow access to unauthorized person

• False negative: Disallow access to authorized person

– Privacy?

– If forged, how do you revoke?



Biometric Authentication

 Attempts to authenticate an individual based 

on unique physical characteristics

 Based on pattern recognition

 Is technically complex and expensive when 

compared to passwords and tokens

 Physical characteristics used include:
o Facial characteristics

o Fingerprints

o Hand geometry

o Retinal pattern 

o Iris 

o Signature 

o Voice







Biometrics

 Common uses

– Specialized situations, physical security

– Combine 

• Multiple biometrics

• Biometric and PIN

• Biometric and token

http://images.google.com/imgres?imgurl=www.thinkgeek.com/images/products/zoom/fingerprint-mouse.jpg&imgrefurl=http://www.thinkgeek.com/gadgets/security/5f11/zoom/&h=228&w=400&sz=8&tbnid=vXp2LqdOKTwJ:&tbnh=68&tbnw=119&start=1&prev=/images?q%3Dfingerprint%2Bmouse%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8%26safe%3Doff%26sa%3DN
http://images.google.com/imgres?imgurl=www.thinkgeek.com/images/products/zoom/fingerprint-mouse.jpg&imgrefurl=http://www.thinkgeek.com/gadgets/security/5f11/zoom/&h=228&w=400&sz=8&tbnid=vXp2LqdOKTwJ:&tbnh=68&tbnw=119&start=1&prev=/images?q%3Dfingerprint%2Bmouse%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8%26safe%3Doff%26sa%3DN


Token-based Authentication

Smart Card
 With embedded CPU and memory

– Carries conversation w/ a small card reader

 Various forms

– PIN protected memory card

• Enter PIN to get the password

– Cryptographic challenge/response cards

• Computer create a random challenge

• Enter PIN to encrypt/decrypt the challenge w/ the card



Key Distribution

 given parties A and B have various key 

distribution alternatives:

1. A can select key and physically deliver to B

2. third party can select & deliver key to A & B

3. if A & B have communicated previously can use 

previous key to encrypt a new key

4. if A & B have secure communications with a third 

party C, C can relay key between A & B

5. Using public key encryption 



Trusted Intermediaries

Symmetric key problem:

 How do two entities establish 

shared secret key over 

network?

Solution:

 trusted key distribution center 

(KDC) acting as intermediary 

between entities

Public key problem:

 When Alice obtains Bob’s 

public key (from web site, 

e-mail, diskette), how does 

she know it is Bob’s public 

key, not Trudy’s?

Solution:

 trusted certification 

authority (CA)



X.509 

Certificate 

Use



X.509 Certificates

 issued by a Certification Authority (CA), containing: 

– version V (1, 2, or 3) 

– serial number SN (unique within CA) identifying certificate 

– signature algorithm identifier AI

– issuer (X.500 name CA)

– period of validity TA (from - to dates) 

– subject X.500 name A (name of owner) 

– subject public-key info Ap (algorithm, parameters, key) 

– issuer unique identifier (v2+) 

– subject unique identifier (v2+) 

– extension fields (v3) 

– signature (of hash of all fields in certificate) 

 notation CA<<A>> denotes certificate for A signed by CA



X.509 Certificates



Obtaining a Certificate 

 any user with access to CA can get any certificate 

from it 

 only the CA can modify a certificate 

 because cannot be forged, certificates can be 

placed in a public directory 



CA Hierarchy 

 if both users share a common CA then they are 
assumed to know its public key 

 otherwise CA's must form a hierarchy 

 use certificates linking members of hierarchy to 
validate other CA's 

 each CA has certificates for clients (forward) and 
parent (backward) 

 each client trusts parents certificates 

 enable verification of any certificate from one CA 
by users of all other CAs in hierarchy 



CA Hierarchy Use



Certificate Revocation

 certificates have a period of validity

 may need to revoke before expiry, eg:

1. user's private key is compromised

2. user is no longer certified by this CA

3. CA's certificate is compromised

 CA’s maintain list of revoked certificates

– the Certificate Revocation List (CRL)

 users should check certificates with CA’s CRL



Kerberos

 trusted key server system from MIT 

 provides centralised private-key third-party 

authentication in a distributed network

 allows users access to services distributed through 

network

without needing to trust all workstations

 rather all trust a central authentication server

 two versions in use: 4 & 5



Kerberos v4 Overview

 a basic third-party authentication scheme

 have an Authentication Server (AS) 

 users initially negotiate with AS to identify self 

AS provides a non-corruptible authentication 

credential (ticket granting ticket TGT) 

 have a Ticket Granting server (TGS)

 users subsequently request access to other services 

from TGS on basis of users TGT

 using DES



Kerberos 4 Overview



Kerberos v4 Dialogue



Kerberos Realms

 a Kerberos environment consists of:

– a Kerberos server

– a number of clients, all registered with server

– application servers, sharing keys with server

 this is termed a realm

– typically a single administrative domain

 if have multiple realms, their Kerberos servers 

must share keys and trust 



LAN Security

Modified By: Dr. Ramzi Saifan



LAN
 Many data traffic is available to every node in the 

LAN zone

 NIC provides physical and logical conversions. 

 Every NIC has an address. 

 When messages are inserted in the network, the 
address of the destination NIC is part of the message 
header. 

 As messages flow through an NIC, the destination 
address is examined. 

 If the destination address matches the NIC doing the 
examining, the message is transmitted to upper layers. 

 It is also easy to provide broadcast communication to 
all NICs by using a special address such as the binary 
value of all ones.



LAN simplicity-security tradeoff

 There are many reasons why LANs have become 
popular, 

– the most important is flexibility and cost. 

– New NICs may be added to the net or activated, 

– or NICs may be removed or deactivated without making 
a significant change. 

– This dynamic flexibility happens without notification 
and coordination with a central authority. 

 A PC can record all the communications traffic. 
Address filtering can be turned off. 

– The NIC can operate in “promiscuous” or “snooper” 
mode, passing all traffic to the PC, which in turn can 
record it for some future use.



Wiretapping 

 Wiretapping is conventionally subdivided into passive and 
active categories. 

 In passive, the message traffic is observed but not modified. 
– The most obvious objective of passive wiretapping is to learn the 

contents of messages; 

– traffic analysis may provide the adversary with information when 
message content is not available. 

– E.g., sudden change in traffic volume between national central banks, 
might signal a change in the rate of exchange or some other financial 
activity that could be turned into a profit by someone.

 In active wiretapping: Messages can be completely deleted, they 
can be inserted, or their contents can be modified. 
– Delay, reordering, duplication, and retransmission are also possible. 
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Packet Sniffing

 This works for wireless too!

 In fact, it works for any broadcast-based medium
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Packet Sniffing Countermeasures

 How can we protect ourselves?

 SSH, not Telnet
– Many people are still using Telnet and send their password in the clear 

(use PuTTY instead!)

– Now that I have told you this, please do not exploit this information

– Packet sniffing is, by the way, prohibited by Computing Services

 HTTP over SSL
– Especially when making purchases with credit cards!

 SFTP, not FTP
– Unless you really don’t care about the password or data

– Can also use KerbFTP (download from MyAndrew)

 IPSec
– Provides network-layer confidentiality



Switch Learning Attacks 

 Switch learning is what makes Ethernet scale 

 Two key attacks: MAC flooding and spoofing 

– Extremely simple to carry out, yet very potent 

– Can help attacker collects usernames/passwords, 

prevent proper operation of LAN, etc

– Can turn a $50,000 switch into a $12 hub



Limitations on switch memory

 High end switches can store hundreds of 

thousands of learning table entries 

 What happens if learning table fills up? 

 Depends on vendor –

– Most Cisco switches do not replace older entries with 

new ones. 

• Need to “age out” entries (wait for them to time out) 

– Other switches circular buffer 

• Existing entries get overwritten



MAC Flooding Attack

 Problem: attacker can cause learning table to fill –
Generate many packets to varied (perhaps 
nonexistant) MAC addresses 

 This harms efficiency 

– Effectively transforms switch into hub 

– Wastes bandwidth, and end-host CPU 

 This harms privacy 

– Attacker can eavesdrop by preventing switch from 
learning destination of a flow 

– Causes flow’s packet to be flooded throughout LAN



MAC Spoofing Attack

 Host pretends to own the MAC address of another 

host 

– Easy to do: most Ethernet adapters allow their address 

to be modified 

– Powerful: can immediately cause complete DoS to 

spoofed host 

• All learning table entries point to the attacker  

• All traffic redirected to attacker 

• Can enable attacker to evade ACLs set based on MAC 

information



Switch Learning Attacks: 

Countermeasures

 Detecting MAC activity 

– Many switches can be config’d to warn administrator 

about many sudden MAC address moves 

 Port Security 

– Ties a given MAC address to a port 

– On violation, can drop frames, disable port for specified 

duration, signal alarm, increment violation counter



Switch Learning Attacks: 

Countermeasures

 Unicast Flooding Protection 

– Send alert when user-defined rate limit is exceeded 

– Can also filter traffic or shut down port generating 

excessive floods



DHCP



Attacks on DHCP

 Unfortunately, DHCP was designed without 

security in mind 

– Whoever requests an address is free to receive one 

– No authentication fields or any other security-inclined 

information in protocol



Attacks against DHCP

 DHCP Scope Exhaustion 

– Malicious client attempts to seize entire range of IP 

addresses 

• When legitimate client tries, it is abandoned with no IP 

connectivity



Attack: Rogue DHCP Server

 Installation of a Rogue DHCP Server
– Client uses offer or of previously-used IP address, if none 

then uses first-received response: 
• Rogue can compromise all clients “near” itself



Countermeasures to DHCP

Attacks

 Limit number or set of MAC addresses per port

– This is called Port Security

– Limit can be set manually or switch can be instructed to 

lock down on first dynamically learned address

 Limitations

– DHCP lets you request multiple IP addresses for a 

single MAC address



Countermeasures to DHCP

Attacks
 Prevent hosts from generating certain DHCP 

messages (DHCP Snooping)

– Like a stateful firewall for DHCP

– Runs on router’s central management processor, to do 
deep packet inspection

– Learns IP-to-MAC bindings by snooping on DHCP 
packets

– Rules:

• If port is connected to host, don’t allow DHCPOFFER and 
DHCPACK packets 

• Don’t allow DHCP packets that don’t match learned bindings

• Can also rate-limit DHCP messages per port, etc



Address Resolution Protocol

(ARP)

 Networked applications are programmed to deal 

with IP addresses

 But Ethernet forwards to MAC address

 How can OS know the MAC address 

corresponding to a given IP address?

 Solution: Address Resolution Protocol

– Broadcasts ARP request for MAC address owning a 

given IP address





Risk Analysis for ARP

 No authentication
– Hosts do not sign ARP replies

 Information leak
– All hosts in same VLAN learn the advertised <IP,MAC> 

mapping

– All hosts discover querying host wishes to communicate 
with replying host

 Availability
– All hosts on same LAN receive ARP request, must process it 

in software

– Attacker could send high rate of spurious ARP requests, 
overloading other hosts



ARP Spoofing Attack

 Attacker sends fake unsolicited ARP replies
– Attacker can intercept forward-path traffic

– Can intercept reverse-path traffic by repeating attack for source

– Gratuitious ARPs make this easy

– Only works within same subnet/VLAN



Countermeasures to

ARP Spoofing

 Ignore Gratuitious ARP

– Problems: gratuitious ARP is useful, doesn’t 

completely solve the problem

 Dynamic ARP Inspection (DAI)

– Switches record <IP,MAC> mappings learned from 

DHCP messages, drop all mismatching ARP replies

 Intrusion detection systems (IDS)

– Monitor all <IP,MAC> mappings, signal alarms



SSL and IPSec

Modified by: Dr. Ramzi Saifan



Network layers

 Application

 Transport

 Network

 Data link

 Physical



Example security protocols

 Application layer: PGP

 Transport layer: SSL/TLS

 Network layer: IPsec

 Data link layer: IEEE 802.11

 Security at the physical layer?



Security in what layer?

 Depends on the purpose…

– What information needs to be protected?

– Who shares keys in advance?

– Should the user be involved?

 E.g., a network-layer protocol cannot authenticate 
two end-users to each other

 An application-layer protocol cannot protect IP 
header information

 Also affects efficiency, ease of deployment, etc.



Generally…

 When security is placed at lower levels, it can 

provide automatic, “blanket” coverage…

– …but it can take a long time before it is widely adopted

 When security is placed at higher levels, 

individual users can choose when to use it…

– …but users who are not security-conscious may not 

take advantage of it



Note…

 The “best” solution is not necessarily to use PGP 

over IPsec!

– Would have been better to design the Internet with 

security in mind from the beginning…



Example: PGP vs. SSL vs. IPsec

 PGP is an application-level protocol for “secure 
email”

– Can provide security on “insecure” systems

– Users choose when to use PGP; user must be involved

– Alice’s signature on an email proves that Alice actually 
generated the message, and it was received unaltered; 
also non-repudiation

 In contrast, SSL would secure “the connection” 
from Alice’s computer; 

– would need an additional mechanism to authenticate the 
user

 IPsec is between every two hops in the network



PGP



Example: PGP vs. SSL vs. IPsec

 SSL sits at the transport layer, “above” TCP

– Packet stream authenticated/encrypted

– End-to-end security, best for connection-oriented 

sessions (e.g., http traffic)

– User does not need to be involved

– The OS does not have to change, but applications do if 

they want to communicate securely



Example: PGP vs. SSL vs. IPsec

 IPsec sits at the network layer

– Individual packets authenticated/encrypted

– End-to-end or hop-by-hop security

• Best for connectionless channels

– Need to modify OS

– All applications are “protected” by default, without 

requiring any change to applications or actions on 

behalf of users

– Only authenticates hosts, not users

– User completely unaware that IPsec is running



SSL/TLS



Brief history…

 SSLv2 deployed in Netscape 1.1 (1995)

 Modified version of SSLv3 standardized at TLS



Broad overview

 SSL runs on top of TCP

– Provides an API similar to that of TCP

 Technically, SSL runs in the application layer

– Advantage: does not require changes to TCP

 From the programmer’s point of view, it is in the 

transport layer

– Same API as for TCP

– Runs only with TCP, not UDP

 Primarily used for HTTP traffic



SSL overview

 Three phases

– Handshake

– Key derivation

– Data transfer



Handshake phase

 Client:

– Establishes TCP connection with server;

– Verifies server’s identity

• Obtains server’s public key and certificate; verifies certificate

– Sends server a master secret key K

• Encrypted using server’s public key



Key derivation

 Client and server use K to establish four keys: 

encryption and authentication, for each direction



Data transfer

 SSL breaks data stream into records; appends a 

MAC to each record; and then encrypts the result

– Mac-then-encrypt…

 The MAC is computed over the record plus a 

sequence number

– Prevents replay, re-ordering, or dropping packets



Note…

 As described, SSL only provides one-way 

authentication (server-to-client)

– Not generally common for clients to have public keys

 Can do mutual authentication over SSL using, 

e.g., a password

– SSL also allows for clients to have public keys



HTTPS and the Lock Icon



Certificates

 How does Alice (browser)  obtain   PKBob ?

CA

PUB and

proof “I am Bob”

Browser

Alice

PRCA

check

proof

issue Cert with PRCA :

Bob’s 

key is PUB
Bob’s 

key is PUB

choose

(PUB,PRB) 

Server Bob

PUCA

verify

Cert

Bob uses Cert for an extended period  (e.g. one year) 

PUCA



Certificates: example

 Important fields:



Certificate Authorities

Browsers accept

certificates from a

large number of 

CAs



Brief overview of SSL/TLS
browser server

SK

client-hello

server-hello   +   server-cert (PK)

key exchange (several options)

Finished

cert

client-key-exchange:   E(PK, k)

rand. k

k

HTTP data encrypted with (k)

Most common:    server authentication only



Why is HTTPS not used for all 

web traffic?
• Slows down web servers

• Breaks Internet caching

• ISPs cannot cache HTTPS traffic

• Results in increased traffic at web site



The lock icon:    SSL indicator

 Intended goal:

• Provide user with identity of page origin

• Indicate to user that page contents were not 

viewed or modified by a network attacker



When is the (basic) lock icon 

displayed

• All elements on the page fetched using HTTPS

• For all elements:

• HTTPS cert issued by a CA trusted by browser

• HTTPS cert is valid   (e.g. not expired)

• CommonName in cert matches domain in URL



The lock UI:    help users 

authenticate site
 Firefox 3:

(SSL)

(no SSL)



The lock UI:    help users 

authenticate site
 Firefox 3:   clicking on bottom lock icon gives



The lock UI:   Extended 

Validation (EV) Certs
• Harder to obtain than regular certs

• requires human lawyer at CA to approve cert request

• Designed for banks and large e-commerce sites



HTTPS and login pages:   

incorrect version

Users often land on 

login page over HTTP:

• Type site’s HTTP URL 

into address bar, or

• Google links to the 

HTTP page



 Examples of invalid certificates:

• expired:        current-date > date-in-cert

• CommonName in cert does not match domain in URL

• unknown CA        (e.g.   self signed certs)

• Small sites may not want to pay for cert

 Users often ignore warning:

• Is it a miss-configuration or an attack?      User can’t tell.

 Accepting invalid cert enables man-in-middle 

attacks
(see   http://crypto.stanford.edu/ssl-mitm )

Invalid certs



Man in the middle attack using 

invalid certs

 Attacker proxies data between user and bank.   

Sees all traffic and can modify data as will.

bankattacker
ClientHello ClientHello

BankCertBadguyCert

ServerCert (Bank)ServerCert (Badguy)

GET https://bank.com

bad cert

warning!

SSL key exchange SSL key exchange

k1 k1 k2 k2

HTTP data enc with k1 HTTP data enc with k2



Firefox:  Invalid cert dialog



IE:   invalid cert URL bar



IPsec



Overview

 IPsec can provide security between any two 

network-layer entities

– host-host, host-router, router-router

 Used widely to establish VPNs

 IPsec encrypts and/or authenticates network-layer 

traffic, and encapsulates it within a standard IP 

packet for routing over the Internet



Overview

 IPsec consists of two components

– IKE --- Can be used to establish a key

– AH/ESP --- Used to send data once a key is established 

(whether using IKE or out-of-band)

 AH

– Data integrity, but no confidentiality

 ESP

– Data integrity + confidentiality

– (Other differences as well)



Security policy database

 Nodes maintain a table specifying what is required 

for each incoming packet

– Drop

– Forward/accept without IPsec protection

– Require IPsec protection

• Auth only

• Enc only

• Both

 As with firewalls, decisions can be based on any 

information in the packet



Security associations (SAs)

 When a node receives a packet, needs to know 

who it is from

– May be receiving IPsec traffic from multiple senders at 

the same time -- possibly even with the same IP address

 An SA defines a network-layer unidirectional

logical connection

– For bidirectional communication, need two SAs

 The IPsec header indicates which security 

association to use



Security associations (SAs)

 A tremendous amount of information is kept in the 

SADB, and we can only touch on a few of them:
– AH: authentication algorithm

– AH: authentication secret

– ESP: encryption algorithm

– ESP: encryption secret key

– ESP: authentication enabled yes/no

– Many key-exchange parameters

– Routing restrictions

– IP filtering policy



Firewalls…

 Potential problem if upper-layer header data is 

used for decision-making; this information will be 

encrypted when using IPsec

 Arguments pro and con as to whether this data 

should be encrypted or not:

– Pro: This data shouldn’t be divulged; get rid of 

firewalls

– Con: administrators will likely keep firewalls and turn 

off encryption…



AH vs. ESP

 Two header types…

 Authentication header (AH)

– Provides integrity only

 Encapsulating security payload (ESP)

– Provides encryption + integrity

 Both provide cryptographic protection of 

everything beyond the IP headers 

– AH additionally provides integrity protection of some 

fields of the IP header



Transport vs. tunnel mode

 Transport mode: original IP header not touched; 

IPsec information added between IP header and 

packet body

– IP header | IPsec | [ packet ]

– Most logical when IPsec used end-to-end

protected



Transport vs. tunnel mode

 Tunnel mode: keep original IP packet intact but 

protect it; add new header information outside

– New IP header | IPsec | [ old IP header | packet ] 

– Can be used when IPSec is applied at intermediate 

point along path (e.g., for firewall-to-firewall traffic)

• Treat the link as a secure tunnel

– Results in slightly longer packet

encrypted

authenticated



More on AH

 AH provides integrity protection on header

– But some fields change en route!

 Immutable fields included in the integrity check

 Mutable but predictable fields are also included in 

the integrity check

– The final value of the field is used



More on AH vs. ESP

 ESP can already provide encryption and/or 

authentication

 So why do we need AH?

– AH also protects the IP header

– Export restrictions

– Firewalls need some high-level data to be unencrypted



AH Header







ESP Header







The future of AH?

 In the long run, it seems that AH will become 

obsolete

– Better to encrypt everything anyway

– No real need for AH

– Certain performance disadvantages

– AH is complex…



IPsec: IKE



Overview of IKE

 IKE provides mutual authentication, establishes 

shared key, and creates SA

 Assumes a long-term shared key, and uses this to 

establish a session key (as well as to provide 

authentication)

 Supported key types

– Public signature keys

– Public encryption keys

– Symmetric keys



IKE phases

 Phase 1: long-term keys used to derive a session 

key (and provide authentication)

 Phase 2: session key used to derive SAs

 Why…?

– In theory, can run phase 1 once, followed by multiple 

executions of phase 2

• E.g., different flows between same endpoints

• Why not used same key for each? Is there any secure way to 

do this?

– In practice, this anyway rarely happens



Key types

 Why are there two PK options?

– Signature-based option

• Efficiency (can start protocol knowing only your own public 

key, then get other side’s key from their certificate)

• Legal reasons/export control

– Encryption-based option

• Can be used to provide anonymity in both directions

 Adds tremendously to the complexity of 

implementation



Anonymity

 Protocols can be designed so that identities of the 
parties are hidden from eavesdroppers

– Even while providing authentication!

 Can also protect anonymity of one side against 
active attacks

– Whom to protect?

• Initiator: since responder’s identity is generally known…

• Responder: since otherwise it is easy to get anyone’s identity



Phase 1 session keys

 Two session keys are defined in phase 1

– One each for encryption/authentication

 These keys are used to protect the final phase 1 

messages as well as all phase 2 messages

 These keys are derived from the DH key using 

hashing

– Details in the book…



IKE phase 1

 Aggressive mode

– 3 messages

 Main mode

– 6 messages

– Additional features:

• Anonymity

• Negotiation of crypto parameters



Aggressive mode

 Alice sends ga, “Alice”, crypto algorithms

– Note that choices are restricted by this message

 Bob sends gb, choice of crypto algorithm, “proof” 
that he is really Bob

– If Bob does not support any of the suggested 
algorithms, he simply does not reply

– Note that there is no way to authenticate a refusal, since 
no session key yet established

 Alice sends “proof” that she is Alice



Main mode

 Negotiate crypto algorithms (2 rounds)

 Alice and Bob do regular Diffie-Hellman key 

exchange (2 rounds)

 Alice sends encryption of “Alice” plus a proof that 

she is Alice, using long-term secret keys plus 

[keys derived from] gab

 Bob does similarly…



Crypto parameters…

 Choice of: 

– Encryption method (DES, 3DES, …)

– Hash function (MD5, SHA-1, …)

– Authentication method (e.g., key type, etc.)

– Diffie-Hellman group (e.g., (g, p), etc.)

 A complete set of protocols (a security suite) must 

be specified



Negotiating parameters

 Many protocols allow parties to negotiate 

cryptographic algorithms and parameters

– Allows users to migrate to stronger crypto; increases 

inter-operability (somewhat)

 But, opens up a potential attack if not 

authenticated somehow…

 Also makes for more complicated 

implementations



“Proofs of identity”

 Depend on which type of long-term shared key is 

being used

 Similar (in spirit) to the authentication protocols 

discussed in class

– Details in book… 



Course wrap-up



What should you take away from 

this course (after the final)?

 Security mind-set

– Not limited to computers/networks!

 Security is complex

– Draws on many different disciplines

– Need to know what you are doing

 Security is hard, still evolving

– We did not cover some of the most important present-

day attacks: spam, phishing, DDos, viruses, …

 Security is challenging…but fun!



Thank you!


