
Jonathan Katz

Modified by: Dr. Ramzi Saifan

 Most of computer science is concerned with achieving desired
behavior

 Security is concerned with preventing undesired behavior

 Different way of thinking!

 An enemy/opponent/hacker/adversary who is actively and
maliciously trying to circumvent any protective measures you put in
place

 Software testing determines whether a given program
implements a desired functionality

 Test I/O characteristics

 Q/A

 How do you test whether a program does not allow for
undesired functionality?

 Penetration testing helps, but only up to a point

 Draws on all areas of CS

 Theory (especially cryptography)

 Networking

 Operating systems

 Databases

 AI/learning theory

 Computer architecture/hardware

 Programming languages/compilers

 HCI, psychology

 Strong cryptography

 Firewalls, intrusion detection, virus scanners

 Buffer overflow detection/prevention

 User education

Security incidents (reported)

source: https://www.cvedetails.com/top-50-products.php?year=2017

Source: Kaspersky Security Bulletin 2017

Browser

Android

Office

Java

 We are not going to be able to cover everything

 We are not going to be able to even mention everything

 Main goals

 A sampling of many different aspects of security

 The security “mindset”

 Become familiar with basic acronyms (RSA, SSL, PGP, etc.), and
“buzzwords” (phishing, …)

 Become an educated security consumer

 Try to keep it interesting with real-world examples and “hacking”
projects

You will not be a security expert after this class

(after this class, you should realize why it

would be dangerous to think you are)

You should have a better appreciation of security

issues after this class

Course Organization

 Computer security is about CIA:

 Confidentiality, integrity, and availability

 These are important, but security is about much more…

password

 Where does security end?

password

forgot password?

 Use public records to figure out someone’s password

 Or, e.g., their SSN, so can answer security question…

 The problem is not (necessarily) that SSNs are public

 The problem is that we “overload” SSNs, and use them for more
than they were intended

 Achieve “absolute” security

 Absolute security is easy to achieve!

 How…?

 Absolute security is impossible to achieve!

 Why…?

 Good security is about risk management

 The goal is not (usually) “to make the system as secure as
possible”…

 …but instead, “to make the system as secure as possible within
certain constraints” (cost, usability, convenience)

 Must understand the existing constraints

 E.g., passwords…

 Important to evaluate what level of security is
necessary/appropriate

 Cost of mounting a particular attack vs. value of attack to an
adversary

 Cost of damages from an attack vs. cost of defending against the
attack

 Likelihood of a particular attack

 Sometimes the best security is to make sure you are not the
easiest target for an attacker…

 “No point in putting a higher post in the ground when the
enemy can go around it”

 Need to identify the weakest link

 Security of a system is only as good as the security at its weakest
point…

 Security is not a “magic bullet”

 Security is a process, not a product

 Detection, response, audit

 How do you know when you are being attacked?

 How quickly can you stop the attack?

 Can you identify the attacker(s)?

 Can you prevent the attack from recurring?

 Recovery

 Can be much more important than prevention

 Economics, insurance, risk management…

 Offensive techniques

 What is “the system”?

 Physical security

 Social engineering

 Bribes for passwords

 Phishing

 “External” means of getting information

 Legal records

 Trash cans

 Learn to think with a “security mindset” in general

 What is “the system”?

 How could this system be attacked?

 What is the weakest point of attack?

 How could this system be defended?

 What threats am I trying to address?

 How effective will a given countermeasure be?

 What is the trade-off between security, cost, and usability?

 “The system” is not just a computer or a network

 Prevention is not the only goal

 Cost-benefit analysis

 Detection, response, recovery

 Nevertheless…in this course, we will focus on computer
security, and primarily on prevention

 If you want to be a security expert, you need to keep the rest in
mind

 …and can always be attacked

 Electronic banking, social networks, e-voting

 iPods, iPhones, PDAs, RFID transponders

 Automobiles

 Appliances, TVs

 (Implantable) medical devices

 Cameras, picture frames(!)

 See http://www.securityfocus.com/news/11499

 Consider a compiler that embeds a trapdoor into anything it
compiles

 How to catch?

 Read source code? (What if replaced?)

 Re-compile compiler?

 What if the compiler embeds the trojan code whenever it
compiles a compiler?

 (That’s nasty…)

 Whom do you trust?

 Does one really need to be this paranoid??

 Probably not

 Sometimes, yes

 Shows that security is complex…and essentially impossible

 Comes back to risk/benefit trade-off

Next time:

begin cryptography

Jonathan Katz

Modified By: Dr. Ramzi Saifan

A high-level survey of

cryptography

 Crypto deals primarily with three goals:

 Confidentiality

 Integrity (of data)

 Authentication (of resources, people, systems)

 Other goals also considered

 E.g., non-repudiation

 Accountability

 Anonymity

 …

 Characterized along three independent dimensions:

The type of
operations used for

transforming
plaintext to
ciphertext

Substitution

Transposition

The number of keys
used

Symmetric,
single-key,
secret-key,

conventional
encryption

Asymmetric,
two-key, or
public-key
encryption

The way in which
the plaintext is

processed

Block cipher

Stream cipher

 For the basic goals, there are two settings:

 Private-key / shared-key / symmetric-key / secret-key

 Public-key

 The private-key setting is the “classical” one (thousands of
years old)

 The public-key setting dates to the 1970s

 The communicating parties share some information that is
random and secret

 This shared information is called a key

 Key is not known to an attacker

 This key must be shared (somehow) in advance of their
communication

 Alice and Bob share a key K

 Must be shared securely

 Must be completely random

 Must be kept completely secret from attacker

 We don’t discuss (for now) how they do this

 You can imagine they meet on a dark street corner and Alice hands
a USB device (with a key on it) to Bob

 Two (or more) distinct parties communicating over an insecure
network

 E.g., secure communication

 A single party who is communicating “with itself” over time

 E.g., secure storage

Alice Bob

shared infoK K

Alice

K

Bob

K

Bob

K

Bob

K

 Always assume that the full details of crypto protocols and
algorithms are public

 Known as Kerckhoffs’ principle

 The only secret information is a key

 “Security through obscurity” is a bad idea…

 True in general; even more true in the case of cryptography

 Home-brewed solutions are BAD!

 Standardized, widely-accepted solutions are GOOD!

 Why not?

 Easier to maintain secrecy of a key than an algorithm

 Reverse engineering

 Insider attacks

 Easier to change the key than the algorithm

 In general setting, much easier to share an algorithm than for
everyone to use their own

Private-key encryption

Encryption: c EK(m) possibly randomized!

Decryption algorithm: m = DK(c)

Correctness: for all K, we have DK(EK(m)) = m

Functional definition

 Unconditionally secure

 No matter how much time an opponent has, it is impossible for
him or her to decrypt the ciphertext simply because the required
information is not there

 Computationally secure

 The cost of breaking the cipher exceeds the value of the
encrypted information

 The time required to break the cipher exceeds the useful
lifetime of the information

Cryptanalysis

• Attack relies on the nature of the
algorithm plus some knowledge
of the general characteristics of
the plaintext

• to attempt to deduce a specific
plaintext or to deduce the key
being used

Brute-force attack

• Attacker tries every possible
key on a piece of ciphertext
until an intelligible translation
into plaintext is obtained

• On average, half of all possible
keys must be tried to achieve
success.

• To supplement the brute-force
approach, some degree of
knowledge about the expected
plaintext is needed,

 Assume the English uppercase alphabet (no lowercase,
punctuation, etc.)

 View letters as numbers in {0, …, 25}

 The key is a random letter of the alphabet

 Encryption done by addition modulo 26

 Is this secure?

 Exhaustive key search

 Automated determination of the key

 The key is a random permutation of the alphabet

 Note: key space is huge!

 Encryption done in the natural way

 Is this secure?

 Frequency analysis

 A large key space is necessary, but not sufficient, for security

 Easy to break because they reflect the frequency data of the
original alphabet

 Countermeasure is to provide multiple substitutes
(homophones) for a single letter

 Digram

 Two-letter combination

 Most common is th

 Trigram

 Three-letter combination

 Most frequent is the

 More complicated version of shift cipher

 Believed to be secure for over 100 years

 Is it secure?

 Polyalphabetic substitution cipher

 Improves on the simple monoalphabetic technique by using
different monoalphabetic substitutions as one proceeds through
the plaintext message

All these techniques have the following
features in common:

• A set of related monoalphabetic
substitution rules is used

• A key determines which particular rule
is chosen for a given transformation

 Best known and one of the simplest polyalphabetic substitution
ciphers

 In this scheme the set of related monoalphabetic substitution
rules consists of the 26 Caesar ciphers with shifts of 0 through
25

 Each cipher is denoted by a key letter which is the ciphertext
letter that substitutes for the plaintext letter a

 To encrypt a message, a key is needed that is as long as the
message

 Usually, the key is a repeating keyword

 For example, if the keyword is deceptive, the message “we are
discovered save yourself” is encrypted as:

key:

deceptivedeceptivedeceptive

plaintext: wearediscoveredsaveyourself

ciphertext: ZICVTWQNGRZGVTWAVZHCQYGLMGJ

 A keyword is concatenated with the plaintext itself to
provide a running key

 Example:

key: deceptivewearediscoveredsav

plaintext: wearediscoveredsaveyourself

ciphertext: ZICVTWQNGKZEIIGASXSTSLVVWLA

 Even this scheme is vulnerable to cryptanalysis

 Because the key and the plaintext share the same frequency
distribution of letters, a statistical technique can be applied

 Let pi (for i=0, …, 25) denote the frequency of letter i in English-
language text

 Known that Σ pi
2 ≈ 0.065

 For each candidate period t, compute frequencies {qi} of letters
in the sequence c0, ct, c2t, …

 For the correct value of t, we expect Σ qi
2 ≈ 0.065

 For incorrect values of t, we expect Σ qi
2 ≈ 1/26

 Once we have the period, can use frequency analysis as in the
case of the shift cipher

 Don’t use “simple” schemes

 Don’t use schemes that you design yourself

 Use schemes that other people have already designed and
analyzed…

 A fundamental problem with “classical” cryptography is that no
definition of security was ever specified

 It was not even clear what it meant for a scheme to be “secure”

 As a consequence, proving security was not even an option

 So how can you know when something is secure?

 (Or is at least based on well-studied, widely-believed assumptions)

 Adversary unable to recover the key

 Necessary, but meaningless on its own…

 Adversary unable to recover entire plaintext

 Good, but is it enough?

 Adversary unable to determine any information at all about the
plaintext

 Formalize?

 Sounds great!

 Can we achieve it?

CMSC 414
Computer and Network Security

Lecture 3

Jonathan Katz

Modified by: Dr. Ramzi Saifan

Perfect secrecy

Defining secrecy (take 1)

• Even an adversary running for an unbounded
amount of time learns nothing about the
message from the ciphertext

– (Except the length)

• Perfect secrecy

• Formally, for all distributions over the
message space, all m, and all c:

Pr[M=m | C=c] = Pr[M=m]

Properties of the one-time pad?

• Achieves perfect secrecy
– No eavesdropper (no matter how powerful) can

determine any information whatsoever about the
plaintext

• was developed by Gilbert Vernam in 1918.
• Stream cipher: The message is represented as

a binary string.
• The key is a truly random sequence of 0’s and

1’s of the same length as the message.
• The encryption is done by XOR the key and

the message.

Why OTP is perfect secure?

• The security depends on the randomness of
the key.

• In cryptographic context, we seek two
fundamental properties in a binary random
key sequence:
–Unpredictability: the probability of a certain bit

being 1 or 0 is exactly equal to ½ even if you have
all previous bits.

–Balanced (Equal Distribution):
• The number of 1’s and 0’s should be equal.

Mathematical Proof

• the probability of a key bit being 1 or 0 is
exactly equal to ½.

• The plaintext bits are not balanced. Let the
probability of 0 be x and then the probability
of 1 turns out to be 1-x.

• Let us calculate the probability of ciphertext
bits.

Mathematical Proof

mi

prob.
ki prob. ci prob.

0 x 0 ½ 0 ½ x

0 x 1 ½ 1 ½ x

1 1-x 0 ½ 1 ½ (1-x)

1 1-x 1 ½ 0 ½ (1-x)

• We find out the probability of a ciphertext bit

being 1 or 0 is equal to (½)x + (½)(1-x) = ½.

Ciphertext looks like a random sequence.

Disadvantages

• (Essentially) useless in practice…
– Long key length

– Can only be used once (hence the name!)

– Insecure against known-plaintext attacks

– Key distribution & Management difficult.

• These are inherent limitations of perfect
secrecy

A computationally secure scheme

• A pseudorandom (number) generator (PRNG)
is a deterministic function that takes as input a
seed and outputs a string

• If seed chosen at random, output of the PRNG
should “look random” (i.e., be pseudorandom)

Notes

• Pseudo-randomness must be indistinguishable
from random for all efficient algorithms

– General-purpose PRNGs not sufficient for crypto

• Pseudorandomness of the PRNG depends on
the seed being chosen “at random”

– Note in particular that if a seed is re-used then the
output of the PRNG remains the same!

– In practice: from physical processes and/or user
behavior

Computational secrecy

Computational secrecy

• We can overcome the limitations of perfect
secrecy by (slightly) relaxing the definition

• Instead of requiring total secrecy against
unbounded adversaries, require secrecy
against time-bounded adversaries except with
some small probability

– E.g., secrecy for 100 years, except with probability
2-80

The take-home message

• Weakening the definition slightly allows us to
construct much more efficient schemes!

• Strictly speaking, no longer 100% absolutely
guaranteed to be secure

– Security of encryption now depends on security of
building blocks (which are analyzed extensively,
and are believed to be secure)

– Given enough time and/or resources, the scheme
can be broken

Block Ciphers and the Data

Encryption Standard (DES)

Modified by: Dr. Ramzi Saifan

Block ciphers

 Keyed, invertible

 Large key space, large block size

 A block of plaintext is treated as a whole and used

to produce a ciphertext block of equal length

 Typically a block size of 64 or 128 bits is used

 The majority of network-based symmetric
cryptographic applications make use of block
ciphers

Data Encryption Standard (DES)

 Developed in 1970s by IBM / NSA / NBS

– Non-public design process

 Block size = 64-bit input/output

 Key size = 56 bits out of a 64 bits

– One bit in each octet is a parity-check bit

 Was the most widely used encryption scheme until

the introduction of the Advanced Encryption

Standard (AES) in 2001

Feistel Cipher
 Proposed the use of a cipher that alternates

substitutions and permutations

– Is the structure used by many significant

symmetric block ciphers currently in use.

• Each plaintext element or group of elements
is uniquely replaced by a corresponding
ciphertext element or group of elements

Substitutions

• No elements are added or deleted or replaced
in the sequence, rather the order in which the
elements appear in the sequence is changed

Permutation

Feistel Cipher Structure

Feistel Cipher Design Features

 Block size
– Larger block sizes mean greater

security but reduced
encryption/decryption speed for a
given algorithm

 Key size
– Larger key size means greater

security but may decrease
encryption/decryption speeds

 Number of rounds
– The essence of the Feistel cipher

is that a single round offers
inadequate security but that
multiple rounds offer increasing
security

 Subkey generation algorithm
– Greater complexity in this

algorithm should lead to greater
difficulty of cryptanalysis

 Round function F
– Greater complexity generally

means greater resistance to
cryptanalysis

 Fast software
encryption/decryption
– In many cases, encrypting is

embedded in applications or
utility functions in such a way as
to preclude a hardware
implementation; accordingly, the
speed of execution of the
algorithm becomes a concern

 Ease of analysis
– If the algorithm can be concisely

and clearly explained, it is easier
to analyze that algorithm for
cryptanalytic vulnerabilities and
therefore develop a higher level of
assurance as to its strength

Feistel Example

DES

Encryption

Algorithm

Round Function

Average Time Required for Exhaustive Key

Search

Block Cipher Design Principles:
Design of Function F

 The heart of a Feistel
block cipher is the
function F

 The more nonlinear F,
the more difficult any
type of cryptanalysis
will be

 The SAC and BIC
criteria appear to
strengthen the
effectiveness of the
confusion function

Strict avalanche
criterion (SAC)

States that any output
bit j should change with
probability 1/2 when any

single input bit i is
inverted for all i , j

Bit
independence
criterion (BIC)

States that output bits
j and k should change

independently when
any single input bit i is

inverted for all i , j ,
and k

The algorithm should have good

avalanche properties

Concerns about DES

 Short key length

– DES “cracker”, can break DES in days

– Computation can be distributed to make it faster

– Does not mean “DES is insecure”; depends on desired
security

 Short block length

– Repeated blocks happen “too frequently”

 Some (theoretical) attacks have been found

– Claimed known to DES designers 15 years before
public discovery!

Double DES

Meet-in-the-Middle Attack

The use of double DES results
in a mapping that is not

equivalent to a single DES
encryption

The meet-in-the-middle attack
algorithm will attack this

scheme and does not depend
on any particular property of
DES but will work against

any block encryption cipher

Triple-DES with Two-Keys

• Obvious counter to the meet-in-the-middle attack is
to use three stages of encryption with three different
keys
• This raises the cost of the meet-in-the-middle attack to

2112, which is beyond what is practical

• Has the drawback of requiring a key length of
56 x 3 = 168 bits, which may be somewhat unwieldy

• As an alternative Tuchman proposed a triple encryption
method that uses only two keys

• 3DES with two keys is a relatively popular
alternative to DES and has been adopted for use in
the key management standards ANSI X9.17 and ISO
8732

Multiple Encryption

Triple DES with Three Keys

• Many researchers now feel that three-key 3DES is

the preferred alternative

• A number of Internet-based applications have

adopted three-key 3DES including PGP and

S/MIME

• C = E(K3, D(K2, E(K1, P)))

Three-key 3DES has
an effective key

length of 168 bits and
is defined as:

• K3 = K2 or K1 = K2

Backward
compatibility with
DES is provided by

putting:

Next is AES

Advanced Encryption

Standard

Modified by: Dr. Ramzi Saifan

Why AES?

 Symmetric block cipher, published in 2001

 Intended to replace DES and 3DES

DES is vulnerable to multiple attacks

3DES has slow performances

NIST Criteria to Evaluate

Potential Candidates

 Security: The effort to crypt analyze an algorithm.

 Cost: The algorithm should be practical in a wide

range of applications.

 Algorithm and Implementation Characteristics :

Flexibility, simplicity etc.

5 final candidates have been chosen out of 15

AES

Encryption

Process

AES Data Structures

Convert to State Array

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Input block:

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

=

Table 5.1

AES Parameters

AES

Encryption

and

Decryption

Detailed Structure
• The key that is provided as input is expanded into an array of forty-four 32-bit

words, w[i]

• Can view the cipher as alternating operations of XOR encryption

(AddRoundKey) of a block, followed by scrambling of the block (the other three

stages), followed by XOR encryption, and so on

• Each stage is easily reversible

• The decryption algorithm makes use of the expanded key in reverse order,

however the decryption algorithm is not identical to the encryption algorithm

• Final round of both encryption and decryption consists of only three stages

Four different stages are used:

• Substitute bytes – uses an S-box to perform a byte-by-byte substitution of the block

• ShiftRows – a simple permutation

• MixColumns – a substitution that makes use of arithmetic

• AddRoundKey – a simple bitwise XOR of the current block with a portion of the expanded key

AddRoundKey

 XOR each byte of the round key with its

corresponding byte in the state array

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S’0,0S’0,1S’0,2S’0,3

S’1,0S’1,1S’1,2S’1,3

S’2,0S’2,1S’2,2S’2,3

S’3,0S’3,1S’3,2S’3,3

S0,1

S1,1

S2,1

S3,1

S’0,1

S’1,1

S’2,1

S’3,1

R0,0 R0,1 R0,2 R0,3

R1,0 R1,1 R1,2 R1,3

R2,0 R2,1 R2,2 R2,3

R3,0 R3,1 R3,2 R3,3

R0,1

R1,1

R2,1

R3,1

XOR

SubBytes

 Replace each byte in the state array with its

corresponding value from the S-Box

00 44 88 CC

11 55 99 DD

22 66 AA EE

33 77 BB FF

55

(a) S-box

(b) Inverse S-box

S-Box Rationale

 The S-box is designed to be resistant to known

cryptanalytic attacks

 The Rijndael developers sought a design that has a

low correlation between input bits and output bits

and the property that the output is not a linear

mathematical function of the input

Shift Row Transformation

AES Row and Column Operations

ShiftRows

 Last three rows are cyclically shifted

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S1,0

S3,0 S3,1 S3,2

S2,0 S2,1

Shift Row Rationale

• On encryption, the first 4 bytes of the plaintext
are copied to the first column of State, and so
on

• The round key is applied to State column by
column

• Thus, a row shift moves an individual byte from
one column to another, which is a linear distance of
a multiple of 4 bytes

• Transformation ensures that the 4 bytes of one
column are spread out to four different
columns

MixColumn Transformation

(Figure can be found on page 144 in textbook)

Figure 5.7 AES Row and Column Operations

MixColumns

 Apply MixColumn transformation to each column

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S’0,0S’0,1S’0,2S’0,3

S’1,0S’1,1S’1,2S’1,3

S’2,0S’2,1S’2,2S’2,3

S’3,0S’3,1S’3,2S’3,3

S0,1

S1,1

S2,1

S3,1

S’0,1

S’1,1

S’2,1

S’3,1

MixColumns()

S’0,c = ({02} S0,c) ({03} S1,c) S2,c S3,c

S’1,c = S0,c ({02} S1,c) ({03} S2,c) S3,c

S’2,c = S0,c S1,c ({02} S2,c) ({03} S3,c)

S’3,c = ({03} S0,c) S1,c S2,c ({02} S3,c

Mix Columns Rationale

 Coefficients of a matrix based on a linear code

with maximal distance between code words

ensures a good mixing among the bytes of each

column

 The mix column transformation combined with

the shift row transformation ensures that after a

few rounds all output bits depend on all input bits

AddRoundKey Transformation

• The 128 bits of State are
bitwise XORed with the
128 bits of the round
key

• Operation is viewed as a
columnwise operation
between the 4 bytes of a
State column and one
word of the round key

• Can also be viewed as a
byte-level operation

Rationale:

Is as simple as possible and
affects every bit of State

The complexity of the round
key expansion plus the

complexity of the other stages
of AES ensure security

Inputs

for

Single

AES

Round

AES Key Expansion
• Takes as input a four-word (16 byte) key and produces a

linear array of 44 words (176) bytes
• This is sufficient to provide a four-word round key for the initial

AddRoundKey stage and each of the 10 rounds of the cipher

• Key is copied into the first four words of the expanded
key
• The remainder of the expanded key is filled in four words at a

time

• Each added word w[i] depends on the immediately
preceding word, w[i – 1], and the word four positions
back, w[i – 4]
• In three out of four cases a simple XOR is used

• For a word whose position in the w array is a multiple of 4, a
more complex function is used

AES

Key

Expansion

Key Expansion Rationale

• The Rijndael developers designed the expansion

key algorithm to be resistant to known

cryptanalytic attacks

• Inclusion of a round-dependent round constant

eliminates the symmetry between the ways in

which round keys are generated in different

rounds

AES

Example

Key

Expansion

AES

Example

Avalanche

Effect

in AES: Change

in Plaintext

Avalanche

Effect

in AES:

Change

in Key

Implementation Aspects

• AddRoundKey is a bytewise XOR operation

• ShiftRows is a simple byte-shifting operation

• SubBytes operates at the byte level and only requires

a table of 256 bytes

• MixColumns requires matrix multiplication

• MixColumns only requires multiplication by {02}

and {03}, which can be converted to shifts and

XORs.

• Designers believe this very efficient implementation

was a key factor in its selection as the AES cipher.

Modes of Operation

Modified by: Dr. Ramzi Saifan

Modes of Operation

• To apply a block cipher in a variety of

applications, five modes of operation have been

defined by NIST.

• The five modes are intended to cover a wide variety

of applications of encryption for which a block cipher

could be used

• These modes are intended for use with any symmetric

block cipher, including triple DES and AES

Electronic

Codebook

Mode

(ECB)

Ci = EK(Pi); the cipher text is (C1, …, Cn)

Security?

 ECB should not be used

– Why?

The effect of ECB mode

original encrypted using ECB mode

*Images from Wikipedia

Cipher Block Chaining (CBC)

IV; Ci = EK(mi Ci-1); the ciphertext is (IV, C1, …, Cn)

Cipher Feedback Mode

 For AES, DES, or any

block cipher, encryption

is performed on a block

of b bits

– In the case of DES b= 64

– In the case of AES b=

128

There are three modes
that make it possible to
convert a block cipher
into a stream cipher:

Cipher
feedback

(CFB) mode

Output
feedback

(OFB) mode

Counter
(CTR) mode

s-bit Cipher Feedback (CFB) Mode

Output Feedback (OFB)Mode

Nonce; zi = EK(zi-1); Ci = zi mi; the ciphertext is (Nonce, C1, …, Cn)

Counter (CTR) Mode

Counter1; zi = FK(IV+i); Ci = zi mi; the ciphertext is

(Counter1, C1, .., Cn)

Advantages

of

CTR

 Hardware efficiency

 Software efficiency

 Preprocessing

 Random access

 Provable security

 Simplicity

Security

 CBC, OFB, and CTR modes are secure against

chosen-plaintext attacks

*Images from Wikipedia

Data Integrity

Modified by: Dr. Ramzi Saifan

Encryption/Decryption

 Provides message confidentiality.

 Does it provide message authentication?

2

 Bob receives a message from Alice, he wants to know

 (Data origin authentication) whether the message was

 really sent by Alic

e;

 (Data integrity) whether t h

Message Authentication

m

message authentication code

e message has been modified.

 Solutions:

 Alice attaches a (MAC)

 to the message.

 Or she attach digital signatures a to the message.

 e

3

Communication without authentication

Alice

M

Bob

Eve

M’

Very easy..

Eve can simply
change the

message

Integrity Protection with MAC

Shared key k to generate authenticate message

Alice

M

Bob

Eve

MAC (k,M)

M’

MAC??

k=??,

MAC=??

Key : k Key : k

Eve can not
forge MAC
when k is
unknown

MAC Authentication (I)

 MAC allows two or more mutually trusting parties to
authenticate messages sent between members

Alice

M

Bob

Eve

MAC (k,M)

Key : k Key : k

Only Alice and me know

k, one of us sent M.

If I do not send M,

then Alice must

have sent it.

MAC Authentication (II)

 MAC allows two or more mutually trusting parties
to authenticate messages sent between members

Alice

M

Bob

Eve

MAC (k,M)

Key : k Key : k

Only Alice, Chris, Doug

and me know k, one of

us sent M.

Chris

Key : k

Doug

Key : k

Integrity with Hash

Can we simply send the hash with the message to serve message authentication ?

Ans: No, Eve can change the message and recompute the hash.

Using hash needs more appropriate procedure to guarantee integrity

Alice

M

Bob

Eve

h (M)

M’

h (M)

Forge M’ and

compute h(M’)

No shared
key

Message Authentication Code

 A function of the message and a secret key that produces
a fixed-length value that serves as the authenticator

 Generated by an algorithm :

 generated from message + secret key : MAC = F(K,M)

 A small fixed-sized block of data

 appended to message as a signature when sent

 Receiver performs same computation on message and
checks it matches the MAC

MAC and Encryption

 As shown the MAC provides authentication

 But encryption can also provides authentication!

 Why use a MAC?

 sometimes only authentication is needed

 sometimes need authentication to persist longer than
the encryption (eg. archival use)

MAC Properties

 A MAC is a cryptographic hash

MAC = CK(M)

 condenses a variable-length message M

 using a secret key K

 to a fixed-sized authenticator

 A many-to-one function

 potentially many messages have same MAC

 but finding these needs to be very difficult

Keyed Hash Functions as MACs

 Want a MAC based on a hash function

 because hash functions are generally faster

 crypto hash function code is widely available

 But hashing is internally has no key!

 Original proposal:
KeyedHash = Hash(Key|Message)

 some weaknesses were found with this

 Eventually led to development of HMAC

 Pre-image: if () , is a pre-image of .

 Each hash value typically has multiple pre-images.

 Collision: a pair of (,), , s.t. () ().

A hash function is said t

Security requirements

h m y m y

m m m m h m h m

o be:

if it is computationally infeasible to

 find a pre-image of a hash value.

if it is computationally in

 Pre-image resistant

 C feasible to

 find a col

ollision re

lision

sistant

.

A hash fu n

 cryptographic hash functioction is a

if it is collision resista

n

 nt.

14

To be useful for message
authentication, a hash function H must have the
following properties:

Can be applied to a block of data of any size

Produces a fixed-length output

H(x) is relatively easy to compute for any given x

One-way or pre-image resistant

• Computationally infeasible to find x such that H(x) = h

Computationally infeasible to find y ≠ x such that H(y) = H(x)

Collision resistant or strong collision resistance

• Computationally infeasible to find any pair (x,y) such that H(x) = H(y)

 In a group of people, what is the probability

 that at least two people have

 Having the same birthday is a

 the same bi

 collision?

Birthday problem:

Birthday

rthday?

 1 2 with paradox:

k

p

 as small as 23.

 Consider a hash function :{0,1} {0,1} .

 If we randomly generate messages, the probability

 of having a collision depends on .

 To resist birthday attack, we choose to

n

k

h

k

n

n

 be sufficiently large that

 it will take an infeasibly large to have a non-negligible probability

 of collision.

k

Birthday Problem

Collision-resistant hash functions

17

 Collision-resistant hash functions can be built

from collision-resistant compression functions

using Merkle-Damgard construction.

Merkle-Damgard Construction

Compression function :{0,1} {0,1}n b nf

m1 m2 m3 mk

f f fIV
v0 v1 v2 vk… f h(m)

m = m1 m2 m3 ms

f f fIV … f h(m)k X X hk(m)

fhk(m) hk(m||ms+1)

ms+1

1

 () () with IV .

 (For simplicity, without

 Insecure:

 Easy to forge:

 (, ()),

 p

add

 where

ing)

k

s

k

m

M

h m

AC m h

m m

m k

m

CMAC (Cipher-based MAC)

 “Hashless” MAC

– Uses an encryption algorithm (DES, AES, etc.) to

generate MAC

– Based on same idea as cipher block chaining

 Compresses result to size of single block (unlike

encryption

CBC CMAC Overview

22

CMAC Facts

 Advantages:

– Can use existing encryption functions

– Encryption functions have properties that resist

preimage and collision attacks

– Most exhibit strong avalanche effect – minor change in

message gives great change in resulting MAC

 Disadvantage:

– Encryption algorithms (particularly when chained) can

be much slower than hash algorithms

HMAC

• Interest in developing a MAC derived from a
cryptographic hash code
• Cryptographic hash functions generally execute faster

• Library code is widely available

• SHA-1 was not deigned for use as a MAC because it does not

rely on a secret key

• Issued as RFC2014

• Has been chosen as the mandatory-to-
implement MAC for IP security
• Used in other Internet protocols such as Transport Layer

Security (TLS) and Secure Electronic Transaction (SET)

HMAC
 HMAC(K,m) = H((K’ ⊕ opad) || H((K’ ⊕ ipad) || m)), where

– H : is a cryptographic hash function, composed of multiple rounds

with operations AND, OR, XOR, NOT, and SHIFT. Very efficient

to compute.

– K: is the secret key,

– M: is the message to be authenticated,

– K' : is another secret key, derived from the original

key K (by padding K to the right with extra zeroes to the input

block size of the hash function, or by hashing K if it is longer than

that block size,

– || denotes concatenation,

– opad is the outer padding (0x5c5c5c…5c5c, one-block

long constant),and

– ipad is the inner padding (0x363636…3636, one-block long

constant).

HMAC

Hash functions in practice

 MD5

– 128-bit output

– Introduced in 1991…collision attacks found in 2004…several

extensions and improvements since then

– Still widely deployed(!)

 SHA-1

– 160-bit output

– No collisions known, but theoretical attacks exist

 SHA-2

– 256-/512-bit outputs

Secure Hash Algorithm

(SHA)

• SHA was originally developed by NIST

• Published as FIPS 180 in 1993

• Was revised in 1995 as SHA-1
• Produces 160-bit hash values

• NIST issued revised FIPS 180-2 in 2002
• Adds 3 additional versions of SHA

• SHA-256, SHA-384, SHA-512

• With 256/384/512-bit hash values

• Same basic structure as SHA-1 but greater security

• The most recent version is FIPS 180-4 which
added two variants of SHA-512 with 224-bit and
256-bit hash sizes

Notes: 1. All sizes are measured in bits.

2. Security refers to the fact that a birthday attack on a message digest of

size n produces a collision with a work factor of approximately 2n/2.

Comparison of SHA Parameters

SHA-3

SHA-2 shares same structure and mathematical operations
as its predecessors and causes concern

Due to time required to replace SHA-2 should it
become vulnerable, NIST announced in 2007 a
competition to produce SHA-3

Requirements:

• Must support hash value lengths of 224, 256,384, and 512
bits

• Algorithm must process small blocks at a time instead of
requiring the entire message to be buffered in memory
before processing it

Hash Function

 The ideal cryptographic hash function has four main

properties:

1) it is quick to compute the hash value for any given message

2) it is infeasible to generate a message from its hash value except

by trying all possible messages

3) a small change to a message should change the hash value so

extensively

4) it is infeasible to find two different messages with the same hash

value

Encryption + integrity

 simultaneously protect confidentiality and

authenticity of communications

 often required but usually separate

 approaches

Hash-then-encrypt: EK(M || H(M))

MAC-then-encrypt: EK2(M || MACK1(M))

 Encrypt-then-MAC: (C=EK2(M), T=MACK1(C)

 Encrypt-and-MAC: (C=EK2(M), T=MACK1(M)

 decryption /verification straightforward

 but security vulnerabilities with all these

Replay attacks

 A MAC inherently cannot prevent replay attacks

 Replay attacks must be prevented at a higher level

of the protocol!

– (Note that whether a replay is ok is application-

dependent.)

 Replay attacks can be prevented using nonces,

timestamps, etc.

Public Key Encryption

Modified by: Dr. Ramzi Saifan

Prime Numbers

• Prime numbers only have divisors of 1 and itself

• They cannot be written as a product of other numbers

• Any integer a > 1 can be factored in a unique

way as

a = p1
a1 * p2

a2 * . . . * pp1
a1

where p1 < p2 < . . . < pt are prime numbers and

where each ai is a positive integer

• This is known as the fundamental theorem of

arithmetic

Table 8.1

Primes Under 2000

Miller-Rabin Algorithm

• Typically used to test a large number for primality

• Algorithm is: TEST (n)

– Find integers k, q, with k > 0, q odd, so that (n – 1)=2kq ;

– Select a random integer a, 1 < a < n – 1 ;

– if aq mod n = 1 then

• return (“inconclusive") ;

– for j = 0 to k – 1 do

• if (a2jq mod n = n – 1) then

• return (“inconclusive") ;

– return (“composite") ;

Miller Rabin Usage
 It can be shown that given an odd number n that is not prime and

a randomly chosen integer, a with 1 < a < n - 1, the probability

that TEST will return inconclusive (i.e., fail to detect that n is

not prime) is less than 1/4.

 Thus, if t different values of a are chosen, the probability that all

of them will pass TEST (return inconclusive) for n is less than

(1/4)t . For example, for t = 10, the probability that a nonprime

number will pass all ten tests is less than 10-6 .

 Thus, for a sufficiently large value of t, we can be confident that n

is prime if Miller’s test always returns inconclusive .

 invoke TEST (n) using randomly chosen values for a . If, at any

point, TEST returns composite , then n is determined to be

nonprime. If TEST continues to return inconclusive for t tests,

then for a sufficiently large value of t , assume that n is prime.

Deterministic Primality Algorithm

• Prior to 2002 there was no known method of
efficiently proving the primality of very large
numbers

• All of the algorithms in use produced a probabilistic
result

• In 2002 Agrawal, Kayal, and Saxena developed an
algorithm that efficiently determines whether a given
large number is prime

• Known as the AKS algorithm

• Does not appear to be as efficient as the

Miller-Rabin algorithm

Public-Key

Cryptography

Public-Key Cryptosystem: Confidentiality

Public-Key Cryptosystem: Authentication

Public-Key Cryptosystem:

Authentication and Confidentiality

Public-Key Requirements

 Conditions that these algorithms must fulfill:
– It is computationally easy for a party B to generate a pair

(public-key PUb, private key PRb)

– It is computationally easy for a sender A, knowing the
public key and the message to be encrypted, to generate
the corresponding ciphertext

– It is computationally easy for the receiver B to decrypt the
resulting ciphertext using the private key to recover the
original message

– It is computationally infeasible for an adversary, knowing
the public key, to determine the private key

– It is computationally infeasible for an adversary, knowing
the public key and a ciphertext, to recover the original
message

– The two keys can be applied in either order

Public-Key Requirements

 Need a trap-door one-way function
– A one-way function is one that maps a domain into a range such

that every function value has a unique inverse, with the condition
that the calculation of the function is easy, whereas the
calculation of the inverse is infeasible

• Y = f(X) easy

• X = f–1(Y) infeasible

 A trap-door one-way function is a family of invertible
functions fk, such that
– Y = fk(X) easy, if k and X are known

– X = fk
–1(Y) easy, if k and Y are known

– X = fk
–1(Y) infeasible, if Y known but k not known

 A practical public-key scheme depends on a suitable
trap-door one-way function

Rivest-Shamir-Adleman (RSA) Scheme

 Developed in 1977 at MIT by Ron Rivest, Adi

Shamir & Len Adleman

 Most widely used general-purpose approach to

public-key encryption

 Is a cipher in which the plaintext and ciphertext

are integers between 0 and n – 1 for some n

– A typical size for n is 1024 bits, or 309 decimal digits

Table 8.2
Some Values of Euler’s Totient Function ø(n)

RSA Algorithm

 RSA makes use of an expression with exponentials

 Plaintext is encrypted in blocks with each block having a
binary value less than some number n

 Encryption and decryption are of the following form, for
some plaintext block M and ciphertextblock C

C = Memod n

M = Cd mod n = (Me)d mod n = Med mod n

 Both sender and receiver must know the value of n

 The sender knows the value of e, and only the receiver
knows the value of d

 This is a public-key encryption algorithm with a public
key of PU={e,n} and a private key of PR={d,n}

Algorithm Requirements

 For this algorithm to be satisfactory for public-
key encryption, the following requirements must
be met:

1. It is possible to find values of e, d, n

such that Med mod n = M for all M<n

2. It is relatively easy to calculate Me mod

n and Cd mod n for all values of M < n

3. It is infeasible to determine d given e

and n

Example of RSA Algorithm

Fermat's Theorem

• States the following:

• If p is prime and a is a positive integer not divisible by p

then

ap-1 = 1 (mod p)

• Sometimes referred to as Fermat’s Little Theorem

• An alternate form is:

• If p is prime and a is a positive integer then

ap = a (mod p)

• Plays an important role in public-key cryptography

Euler's Theorem

 States that for every a and n that are relatively

prime:

aø(n) = 1(mod n)

 An alternative form is:

aø(n)+1 = a(mod n)

Chinese Remainder Thm

– If p and q are prime, then for all x and a:

– x = a(mod p) and x = a(mod q) iff x=a mod(pq)

– Example:

– Suppose that n = 2501 = 61 * 41

– To calculate V mod 2501:

• V mod 61

• V mod 41

Correctness of RSA

 To show RSA is correct, we must show that
encryption and decryption are inverse functions:

– En(De(M)) = De(En(M)) = M = Med (mod n)

– Since d and e are multiplicative inverses mod ɸ(n),
there is a k such that:

• ed=1+ k *ɸ(n), = 1 + k(p-1)(q-1)

• Med = M1+k(p-1)(q-1) = M*(Mp-1)k(q-1)

• By Fermat: Mp-1=1(mod p)

• Med = M(1)k(q-1)(mod p) = M(mod p)

Correctness of RSA

 Med = M(1)k(q-1)(mod p) = M(mod p)

 Med = M(1)k(q-1)(mod q) = M(mod q)

 By Chinese Remainder Thm, we get:

 M^{ed} = M (mod p)=M (mod q) =

M (mod pq) = M (mod n)

 Therefore, RSA reproduces the original message
and is correct.

Exponentiation in Modular Arithmetic

 Both encryption and decryption in RSA involve

raising an integer to an integer power, mod n

 Can make use of a property of modular

arithmetic:

[(a mod n) x (b mod n)] mod n =(a x b) mod n

 With RSA you are dealing with potentially large

exponents so efficiency of exponentiation is a

consideration

Algorithm for computing ab mod n, b is expressed as a binary

bk bk-1 … b0

f = 1

for (i=k ; i>0 ; i--)

f = (f * f) mod n;

if (b i == 1)

f = (f * a) mod n;

return f;

Fast Exponentiation Algorithm

Euclidean Algorithm

INPUT: Two non-
negative
integers a and b with a

≥ b.
OUTPUT: gcd(a, b).

1.While b > 0, do
1.Set r = a mod b,
2.a = b,
3.b = r

2.Return a.

The last non-zero remainder is 1 and
therefore gcd(421, 111) = 1.

421 = 111 x 3 + 88

111 = 88 x 1 + 23

88 = 23 x 3 + 19

23 = 19 x 1 + 4

19 = 4 x 4 + 3

4 = 3 x 1 + 1

3 = 1 x 3 + 0

Ex: Find gcd(421, 111). use the Euclidean
algorithm as follows:

Extended Euclidean Algorithm

Example

Efficient Operation Using the

Public Key

 To speed up the operation of the RSA

algorithm using the public key, a specific

choice of e is usually made

 The most common choice is 65537 (216 + 1)

– Two other popular choices are e=3 and e=17

– Each of these choices has only two 1 bits, so the

number of multiplications required to perform

exponentiation is minimized

– With a very small public key, such as e = 3, RSA

becomes vulnerable to a simple attack

Key Generation

 Before the application

of the public-key

cryptosystem each

participant must

generate a pair of keys:

– Determine two prime

numbers p and q

– Select either e or d and

calculate the other

 Because the value of

n = pq will be known

to any potential

adversary, primes

must be chosen from

a sufficiently large set

– The method used for

finding large primes

must be reasonably

efficient

Public-Key Cryptanalysis

 A public-key encryption scheme is vulnerable to a brute-force
attack
– Countermeasure: use large keys

– Key size must be small enough for practical encryption and
decryption

– Key sizes that have been proposed result in encryption/decryption
speeds that are too slow for general-purpose use

– Public-key encryption is currently confined to key management and
signature applications

– Another form of attack is to find some way to compute the
private key given the public key
– To date it has not been mathematically proven that this form of

attack is infeasible for a particular public-key algorithm

– Finally, there is a probable-message attack
– This attack can be thwarted by appending some random

bits to simple messages

Factoring Problem

 We can identify three approaches to attacking

RSA mathematically:

– Factor n into its two prime factors. This enables

calculation of ø(n) = (p – 1) x (q – 1), which in turn

enables determination of d = e-1 (mod ø(n))

– Determine ø(n) directly without first determining p

and q. Again this enables determination of d = e-1

(mod ø(n))

– Determine d directly without first determining ø(n)

Table 9.5 Progress in RSA Factorization

MIPS-

Years

Needed

to

Factor

Timing Attacks

 Paul Kocher, a cryptographic consultant,

demonstrated that a snooper can determine a

private key by keeping track of how long a

computer takes to decipher messages

 Are applicable not just to RSA but to other

public-key cryptography systems

 Are alarming for two reasons:

– It comes from a completely unexpected direction

– It is a ciphertext-only attack

Countermeasures

Constant
exponentiation time

• Ensure that all
exponentiations take the
same amount of time
before returning a result;
this is a simple fix but does
degrade performance

Random delay

• Better performance could
be achieved by adding a
random delay to the
exponentiation algorithm
to confuse the timing
attack

Blinding

• Multiply the ciphertext by
a random number before
performing
exponentiation; this
process prevents the
attacker from knowing
what ciphertext bits are
being processed inside the
computer and therefore
prevents the bit-by-bit
analysis essential to the
timing attack

Misconceptions Concerning
Public-Key Encryption

 Public-key encryption is more secure from

cryptanalysis than symmetric encryption

 Public-key encryption is a general-purpose

technique that has made symmetric encryption

obsolete

 There is a feeling that key distribution is trivial

when using public-key encryption, compared to

the cumbersome handshaking involved with key

distribution centers for symmetric encryption

Terminology Related to Asymmetric Encryption

Source: Glossary of Key Information Security Terms, NIST IR 7298 [KISS06]

 The concept of public-key cryptography evolved
from an attempt to attack two of the most difficult
problems associated with symmetric encryption:

 Whitfield Diffie and Martin Hellman from Stanford
University achieved a breakthrough in 1976 by
coming up with a method that addressed both
problems and was radically different from all
previous approaches to cryptography

Principles of Public-Key
Cryptosystems

• How to have secure communications in general without having to
trust a KDC with your key

Key distribution

• How to verify that a message comes intact from the claimed sender

Digital signatures

End

Questions

The Diffie-Hellman

Algorithm

Modified by: Dr. Ramzi Saifan

Introduction

 Discovered by Whitfield Diffie and Martin Hellman

– “New Directions in Cryptography”

 The point is to agree on a key that two parties can

use for a symmetric encryption, in such a way that

an eavesdropper cannot obtain the key.

 Diffie-Hellman key agreement protocol

– Exponential key agreement

– Allows two users to exchange a secret key

– Requires no prior secrets

– Real-time over an un-trusted network

Introduction

 Based on the difficulty of computing discrete

logarithms of large numbers.

 Requires two large numbers, one prime (P), and

(G), a primitive root of P

Implementation

 p and g are both publicly available numbers

– P is at least 512 bits

 Alice picks a private value “a” and send to Bob

– A = ga mod p

 Bob picks a private value “b” and sends to Alice:

– B = gb mod p

Implementation

 Compute shared, private key:

– Alice received B and knows a, p and g, so she

calculates:

• Ka = Ba mod p

– Bob received A and knows b, p and g, so he calculates:

• Kb = Ab mod p

 Algebraically it can be shown that Ka = Kb = K

– Users now have a symmetric secret key to encrypt

Example

 Bob and Alice are unable to talk on the untrusted

network.

–Who knows who’s listening?

Example

 Alice and Bob get public numbers

– P = 23, G = 9

 Alice and Bob compute public values

– A = 94 mod 23 = 6561 mod 23 = 6

– B = 93 mod 23 = 729 mod 23 = 16

 Alice and Bob exchange public numbers

Example

 Alice and Bob compute symmetric keys

– ka = Ba mod p = 164 mod 23 = 9

– kb = Ab mod p = 63 mod 23 = 9

 Alice and Bob now can talk securely!

Security of DH

 Suppose p is a prime of around 300 digits,

 and a and b at least 100 digits each.

 Discovering the shared secret given g, p, ga mod

p, and gb mod p would take longer than the

lifetime of the universe, using the best known

algorithm.

 This is called the discrete logarithm problem.

Man in the middle attack

Applications

 Diffie-Hellman is currently used in many

protocols, namely:

– Secure Sockets Layer (SSL)/Transport Layer Security

(TLS)

– Secure Shell (SSH)

– Internet Protocol Security (IPSec)

– Public Key Infrastructure (PKI)

User Authentication

Modified By: Dr. Ramzi Saifan

Authentication

 Verifying the identity of another entity

– Computer authenticating to another computer

– Person authenticating to a local/remote computer

 Important to be clear about what is being
authenticated

– The user?

– The machine? A specific application on the machine?

– The data?

Mutual authentication vs. unidirectional
authentication

Remote User-Authentication Principles

 An authentication process consists of two steps:

• Presenting an
identifier to the
security system

Identification
step

• Presenting or generating
authentication information
that corroborates the binding
between the entity and the
identifier

Verification
step

Authentication

 Authentication may be based on

1. What you know

2. What you have

3. What you are

4. What you do

– Examples? Tradeoffs?

– Others?

Address-based authentication

 Is sometimes used

 Generally not very secure

– Relatively easy to forge source addresses of network

packets

 But can be useful if the adversary does not know

what IP address to forge

– E.g., IP address of a user’s home computer

Multi-factor Authentication

Password-based protocols

 Basic idea

– User has a secret password

– System checks password to authenticate user

 Issues

– How is password stored?

– How does system check password?

– How easy is it to guess a password?

• Difficult to keep password file secret, so best if it is hard to

guess password even if you have the password file

 Distinguish on-line attacks vs. off-line attacks

Basic password scheme

Password fileUser

exrygbzyf
kgnosfix
ggjoklbsz

…
…

kiwifruit

hash function

Basic password scheme

 Hash function h : strings strings

– Given h(password), hard to find password

– No known algorithm better than trial and error

 User password stored as h(password)

 When user enters password

– System computes h(password)

– Compares with entry in password file

 No passwords stored on disk

Unix password system

 In past UNIX systems, password used modified
DES (encryption algorithm) as if it were a hash
function
– Encrypts NULL string using password as the key (truncates

passwords to 8 characters!)

– Caused artificial slowdown: ran DES 25 times

Also stored password file in directory:
/etc/passwd/
– World-readable (anyone who accessed the machine would be able

to copy the password file to crack at their leisure)

– Contained userIDs/groupIDs used by many system programs

– Can instruct modern UNIXes to use MD5 hash function

Improved Implementations

Much stronger hash/salt
schemes available for

Unix

Recommended hash
function is based on MD5

•Salt of up to 48-bits

•Password length is unlimited

•Produces 128-bit hash

•Uses an inner loop with 1000
iterations to achieve slowdown

OpenBSD uses Blowfish
block cipher based hash
algorithm called Bcrypt

•Most secure version of Unix
hash/salt scheme

•Uses 128-bit salt to create 192-
bit hash value

13

Windows NT/2k/XP/Vista Password

 Uses 2 functions for “hashing” passwords:

1. LAN Manager hash (LM hash)

– Password is padded with zeros until there are 14 characters.

– It is then converted to uppercase and split into two 7-character
pieces

– Each half is encrypted using an 8-byte DES (data encryption
standard) key

– Result is combined into a 16-byte, one way hash value

2. NT hash (NT hash)

– Converts password to Unicode and uses MD4 hash algorithm to
obtain a 16-byte value

 Hashes stored in Security Accounts Manager (SAM)
– Locked within system kernel when system is running.

– Location - C:\WINNT\SYSTEM32\CONFIG

 SYSKEY
– Utility which moves the encryption key for the SAM database off of the

computer

Password Vulnerabilities

Offline
dictionary

attack

Specific
account
attack

Popular
password

attack

Password
guessing
against

single user

Workstation
hijacking

Exploiting
user

mistakes

Exploiting
multiple

password
use

Electronic
monitoring

Password selection

 User selection of passwords is typically very poor

– Lower entropy password makes dictionary attacks
easier

 Typical passwords:

– Derived from account names or usernames

– Dictionary words, reversed dictionary words, or small
modifications of dictionary words

 Users typically use the same password for
multiple accounts

– Weakest account determines the security!

Better password selection

 Non-alphanumeric characters

 Longer phrases

 Can try to enforce good password selection…

 …but these types of passwords are difficult for

people to memorize and type!

Dictionary Attack – some numbers

 Typical password dictionary

– 1,000,000 entries of common passwords

• people's names, common pet names, and ordinary words.

– Suppose you generate and analyze 10 guesses per second

• This may be reasonable for a web site; offline is much faster

– Dictionary attack in at most 100,000 seconds = 28 hours, or 14 hours

on average

 If passwords were random

– Assume six-character password

• Upper- and lowercase letters, digits, 32 punctuation characters

• 689,869,781,056 password combinations.

• Exhaustive search requires 1,093 years on average

Password-based protocols

 Any password-based protocol is potentially

vulnerable to an “on-line” dictionary attack

– On-line attacks can be detected and limited

 How?

– “Three strikes”

– Ratio of successful to failed logins

– Gradually slow login response time

 Potential DoS

– Cache IP address of last successful login

From passwords to keys?

 Can potentially use passwords to derive symmetric

or public keys

 What is the entropy of the resulting key?

Password-based protocols

 Off-line attacks can never be ‘prevented’, but

protocols can be made secure against such attacks

 Any password-based protocol is vulnerable to off-

line attack if the server is compromised

– Once the server is compromised, why do we care?

Password storage

 “Salt”-ed hash of password

– Makes dictionary attacks harder,

– Prevents using ‘rainbow tables’

Advantages of salt

 Without salt

– Same hash functions on all machines

• Compute hash of all common strings once

• Compare hash file with all known password files

 With 12 bits salt

– One password hashed 212 different ways

• Precompute hash file?

– Need much larger file to cover all common strings

• Dictionary attack on known password file

– For each salt found in file, try all common strings

One-time password

 New password obtained by passing user-password
through one-way function n times which keeps
incrementing

 Protects against replay as well as eavesdropping

Password Cracking

Dictionary attacks

• Develop a large dictionary
of possible passwords and
try each against the
password file

• Each password must be
hashed using each salt
value and then compared
to stored hash values

Rainbow table attacks

• Pre-compute tables of hash
values for all salts

• A mammoth table of hash
values

• Can be countered by using
a sufficiently large salt
value and a sufficiently
large hash length

Password crackers
exploit the fact that
people choose easily
guessable passwords

• Shorter password lengths
are also easier to crack

John the Ripper

• Open-source password
cracker first developed in
in 1996

• Uses a combination of
brute-force and dictionary
techniques

26

Passwords
Improving Security

• Password complexity
– Case-sensitivity
– Use of special characters, numbers, and both

upper and lower-case letters
– Minimum length requirements

• Security questions
– Ask personal questions which need to be

verified
– Some questions are very easy to discover

answers

• Virtual keyboard
– Person clicks on-screen keyboard to enter
– password (prevents keylogging)

Challenge-response Authentication

Goal: Bob wants Alice to “prove” her identity to him

Protocol ap1.0: Alice says “I am Alice”

Failure scenario??
“I am Alice”

Authentication

Goal: Bob wants Alice to “prove” her identity to him

Protocol ap1.0: Alice says “I am Alice”

in a network,
Bob can not “see”

Alice, so Trudy simply
declares

herself to be Alice
“I am Alice”

Authentication: another try

Protocol ap2.0: Alice says “I am Alice” in an IP
packet

containing her source IP address

Failure
scenario??

“I am Alice”Alice’s
IP address

Authentication: another try

Protocol ap2.0: Alice says “I am Alice” in an IP
packet

containing her source IP address

Trudy can create
a packet

“spoofing”
Alice’s address

“I am Alice”Alice’s
IP address

Authentication: another try

Protocol ap3.0: Alice says “I am Alice” and sends
her

secret password to “prove” it.

Failure
scenario??

“I’m Alice”
Alice’s
IP addr

Alice’s
password

OKAlice’s
IP addr

Authentication: another try

Protocol ap3.0: Alice says “I am Alice” and sends
her

secret password to “prove” it.

playback attack:
Trudy records Alice’s

packet
and later

plays it back to Bob

“I’m
Alice”

Alice’s
IP

addr

Alice’s
passwor

d

OK
Alice’s
IP addr

“I’m Alice”
Alice’s
IP addr

Alice’s
password

Authentication: yet another try

Protocol ap3.1: Alice says “I am Alice” and sends her
encrypted secret password to “prove” it.

Failure scenario??

“I’m Alice”
Alice’s
IP addr

encrypted
password

OK
Alice’s
IP addr

Authentication: another try

Protocol ap3.1: Alice says “I am Alice” and sends her
encrypted secret password to “prove” it.

record
and

playback
still works!

“I’m Alice”
Alice’s
IP addr

encryppted
password

OK
Alice’s
IP addr

“I’m Alice”
Alice’s
IP addr

encrypted
password

Authentication: yet another try

Goal: avoid playback attack

Failures, drawbacks?

Nonce: number (R) used only once –in-a-lifetime

ap4.0: to prove Alice “live”, Bob sends Alice nonce, R. Alice
must return R, encrypted with shared secret key

“I am Alice”

R

E (KA-B, R) Alice is live, and
only Alice knows
key to encrypt

nonce, so it must
be Alice!

Authentication: ap5.0

ap4.0 doesn’t protect against server database reading

 can we authenticate using public key techniques?

ap5.0: use nonce, public key cryptography

“I am Alice”

R
Bob computes

E (PRA, R) and knows only Alice
could have the private
key, that encrypted R

such that

D(PUA , E(PRA, R)) = R

Biometrics

 Use a person’s physical characteristics

– fingerprint, voice, face, …

 Advantages

– Cannot be disclosed, lost, forgotten

 Disadvantages

– Cost, installation, maintenance

– Reliability of comparison algorithms

• False positive: Allow access to unauthorized person

• False negative: Disallow access to authorized person

– Privacy?

– If forged, how do you revoke?

Biometric Authentication

 Attempts to authenticate an individual based

on unique physical characteristics

 Based on pattern recognition

 Is technically complex and expensive when

compared to passwords and tokens

 Physical characteristics used include:
o Facial characteristics

o Fingerprints

o Hand geometry

o Retinal pattern

o Iris

o Signature

o Voice

Biometrics

 Common uses

– Specialized situations, physical security

– Combine

• Multiple biometrics

• Biometric and PIN

• Biometric and token

http://images.google.com/imgres?imgurl=www.thinkgeek.com/images/products/zoom/fingerprint-mouse.jpg&imgrefurl=http://www.thinkgeek.com/gadgets/security/5f11/zoom/&h=228&w=400&sz=8&tbnid=vXp2LqdOKTwJ:&tbnh=68&tbnw=119&start=1&prev=/images?q%3Dfingerprint%2Bmouse%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8%26safe%3Doff%26sa%3DN
http://images.google.com/imgres?imgurl=www.thinkgeek.com/images/products/zoom/fingerprint-mouse.jpg&imgrefurl=http://www.thinkgeek.com/gadgets/security/5f11/zoom/&h=228&w=400&sz=8&tbnid=vXp2LqdOKTwJ:&tbnh=68&tbnw=119&start=1&prev=/images?q%3Dfingerprint%2Bmouse%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8%26safe%3Doff%26sa%3DN

Token-based Authentication

Smart Card
 With embedded CPU and memory

– Carries conversation w/ a small card reader

 Various forms

– PIN protected memory card

• Enter PIN to get the password

– Cryptographic challenge/response cards

• Computer create a random challenge

• Enter PIN to encrypt/decrypt the challenge w/ the card

Key Distribution

 given parties A and B have various key

distribution alternatives:

1. A can select key and physically deliver to B

2. third party can select & deliver key to A & B

3. if A & B have communicated previously can use

previous key to encrypt a new key

4. if A & B have secure communications with a third

party C, C can relay key between A & B

5. Using public key encryption

Trusted Intermediaries

Symmetric key problem:

 How do two entities establish

shared secret key over

network?

Solution:

 trusted key distribution center

(KDC) acting as intermediary

between entities

Public key problem:

 When Alice obtains Bob’s

public key (from web site,

e-mail, diskette), how does

she know it is Bob’s public

key, not Trudy’s?

Solution:

 trusted certification

authority (CA)

X.509

Certificate

Use

X.509 Certificates

 issued by a Certification Authority (CA), containing:

– version V (1, 2, or 3)

– serial number SN (unique within CA) identifying certificate

– signature algorithm identifier AI

– issuer (X.500 name CA)

– period of validity TA (from - to dates)

– subject X.500 name A (name of owner)

– subject public-key info Ap (algorithm, parameters, key)

– issuer unique identifier (v2+)

– subject unique identifier (v2+)

– extension fields (v3)

– signature (of hash of all fields in certificate)

 notation CA<<A>> denotes certificate for A signed by CA

X.509 Certificates

Obtaining a Certificate

 any user with access to CA can get any certificate

from it

 only the CA can modify a certificate

 because cannot be forged, certificates can be

placed in a public directory

CA Hierarchy

 if both users share a common CA then they are
assumed to know its public key

 otherwise CA's must form a hierarchy

 use certificates linking members of hierarchy to
validate other CA's

 each CA has certificates for clients (forward) and
parent (backward)

 each client trusts parents certificates

 enable verification of any certificate from one CA
by users of all other CAs in hierarchy

CA Hierarchy Use

Certificate Revocation

 certificates have a period of validity

 may need to revoke before expiry, eg:

1. user's private key is compromised

2. user is no longer certified by this CA

3. CA's certificate is compromised

 CA’s maintain list of revoked certificates

– the Certificate Revocation List (CRL)

 users should check certificates with CA’s CRL

Kerberos

 trusted key server system from MIT

 provides centralised private-key third-party

authentication in a distributed network

 allows users access to services distributed through

network

without needing to trust all workstations

 rather all trust a central authentication server

 two versions in use: 4 & 5

Kerberos v4 Overview

 a basic third-party authentication scheme

 have an Authentication Server (AS)

 users initially negotiate with AS to identify self

AS provides a non-corruptible authentication

credential (ticket granting ticket TGT)

 have a Ticket Granting server (TGS)

 users subsequently request access to other services

from TGS on basis of users TGT

 using DES

Kerberos 4 Overview

Kerberos v4 Dialogue

Kerberos Realms

 a Kerberos environment consists of:

– a Kerberos server

– a number of clients, all registered with server

– application servers, sharing keys with server

 this is termed a realm

– typically a single administrative domain

 if have multiple realms, their Kerberos servers

must share keys and trust

LAN Security

Modified By: Dr. Ramzi Saifan

LAN
 Many data traffic is available to every node in the

LAN zone

 NIC provides physical and logical conversions.

 Every NIC has an address.

 When messages are inserted in the network, the
address of the destination NIC is part of the message
header.

 As messages flow through an NIC, the destination
address is examined.

 If the destination address matches the NIC doing the
examining, the message is transmitted to upper layers.

 It is also easy to provide broadcast communication to
all NICs by using a special address such as the binary
value of all ones.

LAN simplicity-security tradeoff

 There are many reasons why LANs have become
popular,

– the most important is flexibility and cost.

– New NICs may be added to the net or activated,

– or NICs may be removed or deactivated without making
a significant change.

– This dynamic flexibility happens without notification
and coordination with a central authority.

 A PC can record all the communications traffic.
Address filtering can be turned off.

– The NIC can operate in “promiscuous” or “snooper”
mode, passing all traffic to the PC, which in turn can
record it for some future use.

Wiretapping

 Wiretapping is conventionally subdivided into passive and
active categories.

 In passive, the message traffic is observed but not modified.
– The most obvious objective of passive wiretapping is to learn the

contents of messages;

– traffic analysis may provide the adversary with information when
message content is not available.

– E.g., sudden change in traffic volume between national central banks,
might signal a change in the rate of exchange or some other financial
activity that could be turned into a profit by someone.

 In active wiretapping: Messages can be completely deleted, they
can be inserted, or their contents can be modified.
– Delay, reordering, duplication, and retransmission are also possible.

5

Packet Sniffing

 This works for wireless too!

 In fact, it works for any broadcast-based medium

6

Packet Sniffing Countermeasures

 How can we protect ourselves?

 SSH, not Telnet
– Many people are still using Telnet and send their password in the clear

(use PuTTY instead!)

– Now that I have told you this, please do not exploit this information

– Packet sniffing is, by the way, prohibited by Computing Services

 HTTP over SSL
– Especially when making purchases with credit cards!

 SFTP, not FTP
– Unless you really don’t care about the password or data

– Can also use KerbFTP (download from MyAndrew)

 IPSec
– Provides network-layer confidentiality

Switch Learning Attacks

 Switch learning is what makes Ethernet scale

 Two key attacks: MAC flooding and spoofing

– Extremely simple to carry out, yet very potent

– Can help attacker collects usernames/passwords,

prevent proper operation of LAN, etc

– Can turn a $50,000 switch into a $12 hub

Limitations on switch memory

 High end switches can store hundreds of

thousands of learning table entries

 What happens if learning table fills up?

 Depends on vendor –

– Most Cisco switches do not replace older entries with

new ones.

• Need to “age out” entries (wait for them to time out)

– Other switches circular buffer

• Existing entries get overwritten

MAC Flooding Attack

 Problem: attacker can cause learning table to fill –
Generate many packets to varied (perhaps
nonexistant) MAC addresses

 This harms efficiency

– Effectively transforms switch into hub

– Wastes bandwidth, and end-host CPU

 This harms privacy

– Attacker can eavesdrop by preventing switch from
learning destination of a flow

– Causes flow’s packet to be flooded throughout LAN

MAC Spoofing Attack

 Host pretends to own the MAC address of another

host

– Easy to do: most Ethernet adapters allow their address

to be modified

– Powerful: can immediately cause complete DoS to

spoofed host

• All learning table entries point to the attacker

• All traffic redirected to attacker

• Can enable attacker to evade ACLs set based on MAC

information

Switch Learning Attacks:

Countermeasures

 Detecting MAC activity

– Many switches can be config’d to warn administrator

about many sudden MAC address moves

 Port Security

– Ties a given MAC address to a port

– On violation, can drop frames, disable port for specified

duration, signal alarm, increment violation counter

Switch Learning Attacks:

Countermeasures

 Unicast Flooding Protection

– Send alert when user-defined rate limit is exceeded

– Can also filter traffic or shut down port generating

excessive floods

DHCP

Attacks on DHCP

 Unfortunately, DHCP was designed without

security in mind

– Whoever requests an address is free to receive one

– No authentication fields or any other security-inclined

information in protocol

Attacks against DHCP

 DHCP Scope Exhaustion

– Malicious client attempts to seize entire range of IP

addresses

• When legitimate client tries, it is abandoned with no IP

connectivity

Attack: Rogue DHCP Server

 Installation of a Rogue DHCP Server
– Client uses offer or of previously-used IP address, if none

then uses first-received response:
• Rogue can compromise all clients “near” itself

Countermeasures to DHCP

Attacks

 Limit number or set of MAC addresses per port

– This is called Port Security

– Limit can be set manually or switch can be instructed to

lock down on first dynamically learned address

 Limitations

– DHCP lets you request multiple IP addresses for a

single MAC address

Countermeasures to DHCP

Attacks
 Prevent hosts from generating certain DHCP

messages (DHCP Snooping)

– Like a stateful firewall for DHCP

– Runs on router’s central management processor, to do
deep packet inspection

– Learns IP-to-MAC bindings by snooping on DHCP
packets

– Rules:

• If port is connected to host, don’t allow DHCPOFFER and
DHCPACK packets

• Don’t allow DHCP packets that don’t match learned bindings

• Can also rate-limit DHCP messages per port, etc

Address Resolution Protocol

(ARP)

 Networked applications are programmed to deal

with IP addresses

 But Ethernet forwards to MAC address

 How can OS know the MAC address

corresponding to a given IP address?

 Solution: Address Resolution Protocol

– Broadcasts ARP request for MAC address owning a

given IP address

Risk Analysis for ARP

 No authentication
– Hosts do not sign ARP replies

 Information leak
– All hosts in same VLAN learn the advertised <IP,MAC>

mapping

– All hosts discover querying host wishes to communicate
with replying host

 Availability
– All hosts on same LAN receive ARP request, must process it

in software

– Attacker could send high rate of spurious ARP requests,
overloading other hosts

ARP Spoofing Attack

 Attacker sends fake unsolicited ARP replies
– Attacker can intercept forward-path traffic

– Can intercept reverse-path traffic by repeating attack for source

– Gratuitious ARPs make this easy

– Only works within same subnet/VLAN

Countermeasures to

ARP Spoofing

 Ignore Gratuitious ARP

– Problems: gratuitious ARP is useful, doesn’t

completely solve the problem

 Dynamic ARP Inspection (DAI)

– Switches record <IP,MAC> mappings learned from

DHCP messages, drop all mismatching ARP replies

 Intrusion detection systems (IDS)

– Monitor all <IP,MAC> mappings, signal alarms

SSL and IPSec

Modified by: Dr. Ramzi Saifan

Network layers

 Application

 Transport

 Network

 Data link

 Physical

Example security protocols

 Application layer: PGP

 Transport layer: SSL/TLS

 Network layer: IPsec

 Data link layer: IEEE 802.11

 Security at the physical layer?

Security in what layer?

 Depends on the purpose…

– What information needs to be protected?

– Who shares keys in advance?

– Should the user be involved?

 E.g., a network-layer protocol cannot authenticate
two end-users to each other

 An application-layer protocol cannot protect IP
header information

 Also affects efficiency, ease of deployment, etc.

Generally…

 When security is placed at lower levels, it can

provide automatic, “blanket” coverage…

– …but it can take a long time before it is widely adopted

 When security is placed at higher levels,

individual users can choose when to use it…

– …but users who are not security-conscious may not

take advantage of it

Note…

 The “best” solution is not necessarily to use PGP

over IPsec!

– Would have been better to design the Internet with

security in mind from the beginning…

Example: PGP vs. SSL vs. IPsec

 PGP is an application-level protocol for “secure
email”

– Can provide security on “insecure” systems

– Users choose when to use PGP; user must be involved

– Alice’s signature on an email proves that Alice actually
generated the message, and it was received unaltered;
also non-repudiation

 In contrast, SSL would secure “the connection”
from Alice’s computer;

– would need an additional mechanism to authenticate the
user

 IPsec is between every two hops in the network

PGP

Example: PGP vs. SSL vs. IPsec

 SSL sits at the transport layer, “above” TCP

– Packet stream authenticated/encrypted

– End-to-end security, best for connection-oriented

sessions (e.g., http traffic)

– User does not need to be involved

– The OS does not have to change, but applications do if

they want to communicate securely

Example: PGP vs. SSL vs. IPsec

 IPsec sits at the network layer

– Individual packets authenticated/encrypted

– End-to-end or hop-by-hop security

• Best for connectionless channels

– Need to modify OS

– All applications are “protected” by default, without

requiring any change to applications or actions on

behalf of users

– Only authenticates hosts, not users

– User completely unaware that IPsec is running

SSL/TLS

Brief history…

 SSLv2 deployed in Netscape 1.1 (1995)

 Modified version of SSLv3 standardized at TLS

Broad overview

 SSL runs on top of TCP

– Provides an API similar to that of TCP

 Technically, SSL runs in the application layer

– Advantage: does not require changes to TCP

 From the programmer’s point of view, it is in the

transport layer

– Same API as for TCP

– Runs only with TCP, not UDP

 Primarily used for HTTP traffic

SSL overview

 Three phases

– Handshake

– Key derivation

– Data transfer

Handshake phase

 Client:

– Establishes TCP connection with server;

– Verifies server’s identity

• Obtains server’s public key and certificate; verifies certificate

– Sends server a master secret key K

• Encrypted using server’s public key

Key derivation

 Client and server use K to establish four keys:

encryption and authentication, for each direction

Data transfer

 SSL breaks data stream into records; appends a

MAC to each record; and then encrypts the result

– Mac-then-encrypt…

 The MAC is computed over the record plus a

sequence number

– Prevents replay, re-ordering, or dropping packets

Note…

 As described, SSL only provides one-way

authentication (server-to-client)

– Not generally common for clients to have public keys

 Can do mutual authentication over SSL using,

e.g., a password

– SSL also allows for clients to have public keys

HTTPS and the Lock Icon

Certificates

 How does Alice (browser) obtain PKBob ?

CA

PUB and

proof “I am Bob”

Browser

Alice

PRCA

check

proof

issue Cert with PRCA :

Bob’s

key is PUB
Bob’s

key is PUB

choose

(PUB,PRB)

Server Bob

PUCA

verify

Cert

Bob uses Cert for an extended period (e.g. one year)

PUCA

Certificates: example

 Important fields:

Certificate Authorities

Browsers accept

certificates from a

large number of

CAs

Brief overview of SSL/TLS
browser server

SK

client-hello

server-hello + server-cert (PK)

key exchange (several options)

Finished

cert

client-key-exchange: E(PK, k)

rand. k

k

HTTP data encrypted with (k)

Most common: server authentication only

Why is HTTPS not used for all

web traffic?
• Slows down web servers

• Breaks Internet caching

• ISPs cannot cache HTTPS traffic

• Results in increased traffic at web site

The lock icon: SSL indicator

 Intended goal:

• Provide user with identity of page origin

• Indicate to user that page contents were not

viewed or modified by a network attacker

When is the (basic) lock icon

displayed

• All elements on the page fetched using HTTPS

• For all elements:

• HTTPS cert issued by a CA trusted by browser

• HTTPS cert is valid (e.g. not expired)

• CommonName in cert matches domain in URL

The lock UI: help users

authenticate site
 Firefox 3:

(SSL)

(no SSL)

The lock UI: help users

authenticate site
 Firefox 3: clicking on bottom lock icon gives

The lock UI: Extended

Validation (EV) Certs
• Harder to obtain than regular certs

• requires human lawyer at CA to approve cert request

• Designed for banks and large e-commerce sites

HTTPS and login pages:

incorrect version

Users often land on

login page over HTTP:

• Type site’s HTTP URL

into address bar, or

• Google links to the

HTTP page

 Examples of invalid certificates:

• expired: current-date > date-in-cert

• CommonName in cert does not match domain in URL

• unknown CA (e.g. self signed certs)

• Small sites may not want to pay for cert

 Users often ignore warning:

• Is it a miss-configuration or an attack? User can’t tell.

 Accepting invalid cert enables man-in-middle

attacks
(see http://crypto.stanford.edu/ssl-mitm)

Invalid certs

Man in the middle attack using

invalid certs

 Attacker proxies data between user and bank.

Sees all traffic and can modify data as will.

bankattacker
ClientHello ClientHello

BankCertBadguyCert

ServerCert (Bank)ServerCert (Badguy)

GET https://bank.com

bad cert

warning!

SSL key exchange SSL key exchange

k1 k1 k2 k2

HTTP data enc with k1 HTTP data enc with k2

Firefox: Invalid cert dialog

IE: invalid cert URL bar

IPsec

Overview

 IPsec can provide security between any two

network-layer entities

– host-host, host-router, router-router

 Used widely to establish VPNs

 IPsec encrypts and/or authenticates network-layer

traffic, and encapsulates it within a standard IP

packet for routing over the Internet

Overview

 IPsec consists of two components

– IKE --- Can be used to establish a key

– AH/ESP --- Used to send data once a key is established

(whether using IKE or out-of-band)

 AH

– Data integrity, but no confidentiality

 ESP

– Data integrity + confidentiality

– (Other differences as well)

Security policy database

 Nodes maintain a table specifying what is required

for each incoming packet

– Drop

– Forward/accept without IPsec protection

– Require IPsec protection

• Auth only

• Enc only

• Both

 As with firewalls, decisions can be based on any

information in the packet

Security associations (SAs)

 When a node receives a packet, needs to know

who it is from

– May be receiving IPsec traffic from multiple senders at

the same time -- possibly even with the same IP address

 An SA defines a network-layer unidirectional

logical connection

– For bidirectional communication, need two SAs

 The IPsec header indicates which security

association to use

Security associations (SAs)

 A tremendous amount of information is kept in the

SADB, and we can only touch on a few of them:
– AH: authentication algorithm

– AH: authentication secret

– ESP: encryption algorithm

– ESP: encryption secret key

– ESP: authentication enabled yes/no

– Many key-exchange parameters

– Routing restrictions

– IP filtering policy

Firewalls…

 Potential problem if upper-layer header data is

used for decision-making; this information will be

encrypted when using IPsec

 Arguments pro and con as to whether this data

should be encrypted or not:

– Pro: This data shouldn’t be divulged; get rid of

firewalls

– Con: administrators will likely keep firewalls and turn

off encryption…

AH vs. ESP

 Two header types…

 Authentication header (AH)

– Provides integrity only

 Encapsulating security payload (ESP)

– Provides encryption + integrity

 Both provide cryptographic protection of

everything beyond the IP headers

– AH additionally provides integrity protection of some

fields of the IP header

Transport vs. tunnel mode

 Transport mode: original IP header not touched;

IPsec information added between IP header and

packet body

– IP header | IPsec | [packet]

– Most logical when IPsec used end-to-end

protected

Transport vs. tunnel mode

 Tunnel mode: keep original IP packet intact but

protect it; add new header information outside

– New IP header | IPsec | [old IP header | packet]

– Can be used when IPSec is applied at intermediate

point along path (e.g., for firewall-to-firewall traffic)

• Treat the link as a secure tunnel

– Results in slightly longer packet

encrypted

authenticated

More on AH

 AH provides integrity protection on header

– But some fields change en route!

 Immutable fields included in the integrity check

 Mutable but predictable fields are also included in

the integrity check

– The final value of the field is used

More on AH vs. ESP

 ESP can already provide encryption and/or

authentication

 So why do we need AH?

– AH also protects the IP header

– Export restrictions

– Firewalls need some high-level data to be unencrypted

AH Header

ESP Header

The future of AH?

 In the long run, it seems that AH will become

obsolete

– Better to encrypt everything anyway

– No real need for AH

– Certain performance disadvantages

– AH is complex…

IPsec: IKE

Overview of IKE

 IKE provides mutual authentication, establishes

shared key, and creates SA

 Assumes a long-term shared key, and uses this to

establish a session key (as well as to provide

authentication)

 Supported key types

– Public signature keys

– Public encryption keys

– Symmetric keys

IKE phases

 Phase 1: long-term keys used to derive a session

key (and provide authentication)

 Phase 2: session key used to derive SAs

 Why…?

– In theory, can run phase 1 once, followed by multiple

executions of phase 2

• E.g., different flows between same endpoints

• Why not used same key for each? Is there any secure way to

do this?

– In practice, this anyway rarely happens

Key types

 Why are there two PK options?

– Signature-based option

• Efficiency (can start protocol knowing only your own public

key, then get other side’s key from their certificate)

• Legal reasons/export control

– Encryption-based option

• Can be used to provide anonymity in both directions

 Adds tremendously to the complexity of

implementation

Anonymity

 Protocols can be designed so that identities of the
parties are hidden from eavesdroppers

– Even while providing authentication!

 Can also protect anonymity of one side against
active attacks

– Whom to protect?

• Initiator: since responder’s identity is generally known…

• Responder: since otherwise it is easy to get anyone’s identity

Phase 1 session keys

 Two session keys are defined in phase 1

– One each for encryption/authentication

 These keys are used to protect the final phase 1

messages as well as all phase 2 messages

 These keys are derived from the DH key using

hashing

– Details in the book…

IKE phase 1

 Aggressive mode

– 3 messages

 Main mode

– 6 messages

– Additional features:

• Anonymity

• Negotiation of crypto parameters

Aggressive mode

 Alice sends ga, “Alice”, crypto algorithms

– Note that choices are restricted by this message

 Bob sends gb, choice of crypto algorithm, “proof”
that he is really Bob

– If Bob does not support any of the suggested
algorithms, he simply does not reply

– Note that there is no way to authenticate a refusal, since
no session key yet established

 Alice sends “proof” that she is Alice

Main mode

 Negotiate crypto algorithms (2 rounds)

 Alice and Bob do regular Diffie-Hellman key

exchange (2 rounds)

 Alice sends encryption of “Alice” plus a proof that

she is Alice, using long-term secret keys plus

[keys derived from] gab

 Bob does similarly…

Crypto parameters…

 Choice of:

– Encryption method (DES, 3DES, …)

– Hash function (MD5, SHA-1, …)

– Authentication method (e.g., key type, etc.)

– Diffie-Hellman group (e.g., (g, p), etc.)

 A complete set of protocols (a security suite) must

be specified

Negotiating parameters

 Many protocols allow parties to negotiate

cryptographic algorithms and parameters

– Allows users to migrate to stronger crypto; increases

inter-operability (somewhat)

 But, opens up a potential attack if not

authenticated somehow…

 Also makes for more complicated

implementations

“Proofs of identity”

 Depend on which type of long-term shared key is

being used

 Similar (in spirit) to the authentication protocols

discussed in class

– Details in book…

Course wrap-up

What should you take away from

this course (after the final)?

 Security mind-set

– Not limited to computers/networks!

 Security is complex

– Draws on many different disciplines

– Need to know what you are doing

 Security is hard, still evolving

– We did not cover some of the most important present-

day attacks: spam, phishing, DDos, viruses, …

 Security is challenging…but fun!

Thank you!

