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Introduction

• Intelligence Ability to accomplish complex goals

• Artificial Intelligence (AI) Non-biological intelligence

• Narrow Intelligence Ability to accomplish a narrow set of goals, 

e.g., play chess or drive a car
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Introduction

• General Intelligence Ability to accomplish virtually any goal, 

including learning

• Many large companies and researchers are currently investigating 

developing General AI

• Artificial Super Intelligence (ASI)  General Intelligence far beyond 

human level
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• Machine Learning (ML)  

Algorithms whose 

performance improve as they 

are exposed to more data

• Deep Learning (DL)  

Subset of ML using multi-

layer neural networks that 

learn from huge data

Introduction
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Introduction

• Machine Learning Types

1. Supervised Learning

2. Unsupervised Learning

3. Reinforcement Learning
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Achievements of Contemporary AI

• Important AI Milestones
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1997: IBM Deep Blue Beets Kasparov
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2006: Hinton et al. Train a Deep 

Neural Network
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2006: Hinton et al. Train a Deep 

Neural Network



2011: IBM Watson Wins Jeopardy
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• Large scale visual 

recognition challenge

• 1000 classes

• 1.2 million images

2015: DL Beats Humans in ImageNet
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Human Level = 5%



2016: DeepMind AlphaGo Beats Sedol

15



2017: Google Waymo Reaches Full 

Self-Driving Capability
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Autonomous Vehicles are Saver
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Achievements of Contemporary AI

1. Recognizes our voices and photos

2. Recommends who to friend and what to watch and read

3. Helps us in searching and retrieving information

4. Translates natural languages

5. Drives vehicles

6. Secures our cities, systems and detects violations
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7. Provides cheaper solutions with 

acceptable qualities

8. Provides trained models we can 

download and use

9. Allows transfer learning where 

a model trained for one task 

can be retrained to solve a 

different similar task

Achievements of Contemporary AI
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Limitations of Contemporary AI

1. Contemporary AI is narrow AI

2. Deep learning requires huge datasets

3. Deep learning takes long training times

4. Deep learning needs powerful processors and computation 

accelerators
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Nvidia GA100 GPU: 826 mm2  chip, 54 billion transistors, 108 SM, 

6,912 FP32 CUDA cores, 40 GB memory
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Why AI is Succeeding Now?

1. Data Availability

2. Improved ML Algorithms

3. Fast Processors
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AI Will Continue to Succeed

1. More data will be available for machine learning

25



Digital Content Doubles Every Two 

Years
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AI Will Continue to Succeed

1. More data will be available for machine learning

2. Better algorithms and AI applications will continue to develop
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Global AI Software Market
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AI Will Continue to Succeed

1. More data will be available for machine learning

2. Better algorithms and AI applications will continue to develop

3. Computers will continue to get faster
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Perf. Improves 100x every 10 years
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To where we are heading?

• Continued AI development will lead to Singularity
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Summary

• Introduction to Artificial Intelligence and Machine Learning

• Achievements of Contemporary Artificial Intelligence 

• Limitations of Contemporary Artificial Intelligence 

• AI Future
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Thank You

• Email abandah@ju.edu.jo

• Facebook gheith.abandah

• Twitter @abandah

• LinkedIn gheith-abandah

• Website http://www.abandah.com/gheith

33
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Reference

• Chapter 1: Introduction to AI

• Prateek Joshi, Artificial Intelligence with Python, Packt, 2017
• Material: https://github.com/PacktPublishing/Artificial-

Intelligence-with-Python
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What is Artificial Intelligence?

• Artificial Intelligence (AI) is a way to make machines think and 
behave intelligently.

• Intelligent programs

• We want the machines to sense, reason, think, and act.

• We want our machines to be rational too.

• AI is closely related to the study of human brain. 

• By mimicking the way the human brain learns, thinks, and acts, we 
can build a machine that can do the same.
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Why do we need to study AI?

• AI can impact every aspect of our lives.

• AI is producing spectacular products such as self-driving cars and 
intelligent robots that can walk.

• We need AI systems that can:
• Handle large amounts of data in an efficient way.

• Ingest data simultaneously from multiple sources without any lag.

• Index and organize data in a way that allows us to derive insights.

• Learn from new data and update constantly using the right learning 
algorithms.

• Think and respond to situations based on the conditions in real time.
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Applications of AI

1. Computer Vision

2. Natural Language Processing

3. Speech Recognition

4. Expert Systems
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Applications of AI

5. Games

6. Robotics
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Branches of AI

1. Machine learning and pattern 
recognition

2. Logic-based AI

3. Search

4. Knowledge representation

5. Planning

6. Heuristics

7. Genetic programming
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Defining intelligence using Turing Test

• Alan Turing defined intelligent 
behavior as the ability to achieve 
human-level intelligence during 
a text conversation.

• Difficult test, need:
• Natural language processing

• Knowledge representation

• Reasoning

• Machine learning
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Making machines think like humans

• We need first to understand how humans think.

• Cognitive Modeling is a field of computer science that deals with 
simulating the human thinking process.

• Cognitive modeling is used in a variety of AI applications such as:
• Deep learning

• Expert systems

• Natural language processing

• Robotics
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Building rational agents

• Rationality refers to doing the right thing 
in a given circumstance.

• An agent is said to act rationally if, given a 
set of rules, it takes actions to achieve its 
goals.

• Example AI: to design robots that can 
navigate unknown terrains.

• The performance depends on what 
percentage of that task is complete.
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General Problem Solver
• The General Problem Solver (GPS) is an AI program intended to solve 

any general problem using the same base algorithm.

• Uses a language called Information Processing Language (IPL) to 
express any problem with a set of well-formed formulas.

• These formulas are part of a directed graph with multiple sources
and sinks.
• The sources refer to axioms
• The sinks refer to the conclusions

• Can solve well-defined problems, such as proving mathematical 
theorems in geometry and logic.

• Fails in the real world because of the number of possible paths you 
can take.
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Building an intelligent agent

• Ways to impart intelligence to 
an agent:
• Machine learning

• Stored knowledge

• Rules

• Types of Models
• Learned models

• Analytical models
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• Why do we need to study AI?
• Applications of AI
• Branches of AI
• Defining intelligence using Turing Test
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Reference

• Chapter 1: The Machine Learning Landscape

• Aurélien Géron, Hands-On Machine Learning with Scikit-
Learn, Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2
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The Machine Learning Tsunami

• YouTube Video: From Artificial Intelligence to Superintelligence: Nick 
Bostrom on AI & The Future of Humanity From Science Time

https://youtu.be/Kktn6BPg1sI
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The Machine Learning Tsunami

• In 2006, Geoffrey Hinton et al. published a paper showing how to 
train a deep neural network capable of recognizing handwritten 
digits with state-of-the-art precision (>98%). They branded this 
technique Deep Learning.

• Training a deep neural net was widely considered impossible at the 
time, and most researchers had abandoned the idea since the 1990s.

• Fast-forward 10 years and ML has conquered the industry: it is now 
at the heart of much of the magic in today’s high-tech products.
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What Is Machine Learning? 

• YouTube Video: What is Machine Learning? from Google Cloud 
Platform

https://youtu.be/HcqpanDadyQ
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What Is Machine Learning? 

• The science (and art) of programming computers so they can learn 
from data.

• The field of study that gives computers the ability to learn without 
being explicitly programmed. Arthur Samuel, 1959

• A computer program is said to learn from experience E with respect 
to some task T and some performance measure P, if its performance 
on T, as measured by P, improves with experience E. Tom Mitchell, 
1997
• E: Training set made of training instances (samples)
• T: Test set
• P: Such as accuracy
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Why Use Machine Learning?
Spam filter using traditional programming techniques
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Why Use Machine Learning?
Spam filter using machine learning techniques 1/2
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Why Use Machine Learning?
Automatically adapting to change 2/2
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Why Use Machine Learning?
ML can help humans learn (Data mining)
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Types of Machine Learning Systems

• Involves human supervision?
1. Supervised learning

2. Unsupervised learning

3. Semi-supervised learning

4. Reinforcement learning

• Learns incrementally?
1. Batch learning

2. Online learning

• Generalization approach
1. Instance-based learning

2. Model-based learning

15



1. Supervised Learning

16

The training data you feed to the algorithm includes the desired solutions, 

called labels

Classification: finds the class, e.g., email type (spam or ham)



1. Supervised Learning

17

Regression: finds the value, e.g., car price



1. Supervised learning algorithms

Algorithm Type

k-Nearest Neighbors Both

Linear Regression Regression

Logistic Regression Classification

Support Vector Machines (SVMs) Both

Decision Trees Both

Random Forests Both

Neural Networks Both
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2. Unsupervised Learning

19

The training data is unlabeled.



2. Unsupervised learning algorithms

• Clustering
• k-Means
• Hierarchical Cluster Analysis (HCA)
• Expectation Maximization

• Visualization and dimensionality reduction
• Principal Component Analysis (PCA)
• Kernel PCA
• Locally-Linear Embedding (LLE)
• t-distributed Stochastic Neighbor Embedding (t-SNE)

• Association rule learning
• Apriori
• Eclat
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2.a Clustering

21



2.b Visualization
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2.c Dimensionality Reduction

• The goal is to simplify the data without losing too much information.

• One way to do this is to merge several correlated features into one. 
For example, a car’s mileage may be very correlated with its age, so 
the dimensionality reduction algorithm will merge them into one 
feature that represents the car’s wear and tear.

• Also called feature extraction.
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2.d Anomaly Detection
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2.e Association Rule Learning

• The goal is to dig into large amounts of data and discover interesting 
relations between attributes.

• For example, suppose you own a supermarket. Running an 
association rule on your sales logs may reveal that people who 
purchase barbecue sauce and potato chips also tend to buy steak. 
Thus, you may want to place these items close to each other.
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3. Semi-supervised Learning

26

Partially labeled training data, usually a lot of unlabeled data and 
a little bit of labeled data.  E.g., Google Photos.



4. Reinforcement Learning
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Types of Machine Learning Systems

Involves human supervision?
1. Supervised learning

2. Unsupervised learning

3. Semi-supervised learning

4. Reinforcement learning

• Learns incrementally?
1. Batch learning

2. Online learning

• Generalization approach
1. Instance-based learning

2. Model-based learning

28



1. Batch (offline) Learning

• Must be trained using all the available data.

• This will generally take a lot of time and computing resources, so it is 
typically done offline.

• First the system is trained, and then it is launched into production 
and runs without learning anymore; it just applies what it has 
learned.

29



2. Online Learning
Examples: Stock prices, huge data
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Types of Machine Learning Systems

Involves human supervision?
1. Supervised learning

2. Unsupervised learning

3. Semi-supervised learning

4. Reinforcement learning

Learns incrementally?
1. Batch learning

2. Online learning

• Generalization approach
1. Instance-based learning

2. Model-based learning

31



1. Instance-based Learning

32



2. Model-based Learning
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Main Challenges of Machine Learning (due 
to bad data)
1. Insufficient quantity of training data

2. Non-representative training data
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Main Challenges of Machine Learning (due 
to bad data)
3. Poor-quality data that contains:

• Errors

• Outliers

• Noise

4. Irrelevant features: Need feature engineering:
• Feature selection: selecting the most useful features.

• Feature extraction: combining existing features to produce a more useful 
one.

• Creating new features by gathering new data.
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Main Challenges of Machine Learning (due 
to bad algorithm)
1. Overfitting the training data

• Regularization constrains the model’s hyperparameters to make it simpler 
and reduce the risk of overfitting.
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Main Challenges of Machine Learning (due 
to bad algorithm)
2. Under-fitting the training data
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Testing and Validating 

• Split your data into two sets (cross validation):
• The training set (80%)

• The test set (20%)

• Evaluate:
• The training error

• The generalization error

• If the training error is low but the generalization error is high, it 
means that your model is overfitting the training data.

• When the ML algorithm is iterative, often we use a third set: 
validation set.
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Cross Validation

• In k-fold cross-validation, the original sample is randomly partitioned 
into k equal size subsamples.
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Summary

• ML is about making machines get better at some task by learning from data, 
instead of having to explicitly code rules.

• Types of ML systems: supervised or not, batch or online, and instance-based or 
model-based.

• A model-based algorithm tunes some parameters to fit the model to the training 
set, and then hopefully it will be able to make good predictions on new cases.

• An instance-based algorithm learns the examples by heart and uses a similarity 
measure to generalize to new instances.

• The system will not perform well if your training set is too small, not 
representative, noisy, or polluted with irrelevant features.

• Your model needs to be neither too simple (under-fit) nor too complex (over-fit).

42



Exercises

• How would you define Machine Learning?
• What is a labeled training set?
• Can you name four common unsupervised tasks?
• What type of Machine Learning algorithm would you use to allow a robot to walk 

in various unknown terrains?
• What type of algorithm would you use to segment your customers into multiple 

groups?
• What is an online learning system?
• What is the difference between a model parameter and a learning algorithm’s 

hyperparameter?
• If your model performs great on the training data but generalizes poorly to new 

instances, what is happening? Can you name three possible solutions?
• What is the purpose of a validation set? 43
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Reference

• Chapter 2: End-to-End Machine Learning
Project

• Aurélien Géron, Hands-On Machine Learning with Scikit-
Learn, Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2
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The 7 Steps of Machine Learning

• YouTube Video: The 7 Steps of Machine Learning from Google Cloud 
Platform

https://youtu.be/nKW8Ndu7Mjw

Caution: Alcohol is forbidden in the Islamic religion and causes addiction and has 
negative effects on health. 

3
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Working with Real Data

• Popular open data repositories:
• Tensorflow Datasets (GitHub)
• UC Irvine Machine Learning 

Repository
• Kaggle datasets
• Amazon’s AWS datasets
• IEEE DataPort

• Meta portals (they list open data 
repositories):
• Google Dataset  Search
• http://dataportals.org/
• http://opendatamonitor.eu/
• http://quandl.com/

• Other pages listing many popular 
open data repositories:
• Wikipedia’s list of Machine Learning 

datasets
• Quora.com question
• Datasets subreddit
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1. Look at the Big Picture: CA Housing Data
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1.1. Frame the Problem

7

Is it supervised, unsupervised, or Reinforcement Learning?
Is it a classification task, a regression task, or something else? Should 
you use batch learning or online learning techniques?
Instance-based or Model-based learning?



1.1. Frame the Problem

8

Is it supervised, unsupervised, or Reinforcement Learning?
Is it a classification task, a regression task, or something else? Should 
you use batch learning or online learning techniques?
Instance-based or Model-based learning?



1.2. Select a Performance Measure

• Root Mean Square Error (RMSE)

• m is the number of samples

• x(i) is the feature vector of Sample i

• y(i) is the label or desired output

• X is a matrix containing all the feature 
values

9



1.2. Select a Performance Measure

• Mean Absolute Error

• MAE is better than RMSE when there are outlier samples.
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2. Get the Data

• If you didn’t do it before, it is time now to download the Jupyter
notebooks of the textbook from

https://github.com/ageron/handson-ml2

• Start Jupyter notebook and open Chapter 2 notebook.

• Hint: If you get kernel connection problem, try

C:\>jupyter notebook –port 8889

• The following slides summarize the code used in this notebook.
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2. Get the Data

1. Download the housing.tgz file from Github using 
urllib.request.urlretrieve() from the urllib package 

2. Extract the data from this compressed tar file using tarfile.open() 
and extractall(). The data will be in the CSV file housing.csv

3. Read the CSV file into a Pandas DataFrame called housing using 
pandas.read_csv()

13



2.1. Take a Quick Look at the Data Structure

• Display the top five rows using the DataFrame’s head() method

• The  info() method is useful to get a quick description of the data

• To find categories and repetitions of some column use  
housing.['key'].value_counts()

• The describe() method shows a summary of the numerical 
attributes.

• Show histogram using the  hist() method and 
matplotlib.pyplot.show()
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207 missing 
features



2.2. Create a Test Set

• Split the available data randomly to:
• Training set (80%)
• Test set (20%)

• The example defines a function called split_train_test() for 
illustration.

• Scikit-Learn has train_test_split().

• Scikit-Learn also has  StratifiedShuffleSplit() that does stratified 
sampling.

• Stratification ensures that the test samples are representative of the 
target categories.

16



2.2.1. Create a Test Set: User-defined 
function

17



2.2.2. Create a Test Set: Using Scikit-Learn 
functions

18

Stratification is usually 
done on the target class.
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3. Discover and Visualize the Data to Gain 
Insights

• Visualize geographical data using

alpha: Transparency, s: size, c: color, cmap: blue to red

20
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3.1. Looking for Correlations

• Compute the standard correlation coefficient (also called Pearson’s 
r) between every pair of attributes using  corr_matrix = 
housing.corr()

22



3.1. Looking for Correlations

• Zero linear correlation (r = 0) does not guarantee independence.
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3.2. Pandas Scatter Matrix

24



3.3. Experimenting with Attribute 
Combinations
• Rooms per household is better than total rooms:

• Similarly, BMI is better than weight or height for medical purposes.

25
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4. Prepare the Data for Machine Learning 
Algorithms

• Split to train and test (Done)

• Separate features from response

• Handle missing data

• Handle text and categorical features

• Scale (normalize) features

• Build preparation pipeline

27



4. Prepare the Data for Machine Learning 
Algorithms
• Separate the features from the response.

• Options of handling missing features:
1. Get rid of the corresponding districts

2. Get rid of the whole attribute

3. Set the values to some value (0, mean, median, etc.)

28



4.1. Handling Missing Features Using Scikit-
Learn
• Use SimpleImputer on the numerical features. Need to remove 

categorical variables before doing the fit. The attribute  statistics_
has the means.

29NumPy array



4.2. Handling Text and Categorical Attributes

• ocean_proximity is categorical feature.

30



4.2. Handling Text and Categorical Attributes

• Most machine learning algorithms prefer to work with numbers. 
Converting to numbers:

31

Numerical values 
imply distances



4.2. Handling Text and Categorical Attributes

• To ensure encoding neutrality, we can use the one-hot encoding.

32

Converts sparse matrix 
to dense matrix.



4.3. Custom Transformers

• Scikit-Learn allows you to create your own transformers.

• You can create a transformer to create derived features.

• Create a class and implement three methods: fit() (returning self), 
transform(), and fit_transform().  Include base classes:
• TransformerMixin to get fit_transform()

• BaseEstimator to get get_params() and set_params()

33



4.3. Custom Transformers

34



4.4. Feature Scaling

• ML algorithms generally don’t perform well when the input 
numerical attributes have very different scales.

• Scaling techniques:
• Min-max scaling 

• Standardization

35



4.5. Transformation Pipelines

imputer
attribs
adder

std
scaler

36



4.6. Full Pipeline

37

Dense array
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5. Select and Train a Model

39

• Linear regressor

• Using RMSE for evaluation

• Decision tree regressor

• k-fold cross validation

• Random forests regressor



5. Select and Train a Model

• Let us start by training a simple linear regressor.

• Try it out on five instances from the training set.

40

50% off



5.1. Evaluate the Model on the Entire 
Training Set
• Use RMSE

41

This is not a satisfactory result as the 
median_housing_values range 

between $120,000 and $265,000.



5.2. Try the Decision Tree Regressor 

42

Overfitting: It has memorized 
the entire training set!



5.3. Better Evaluation Using Cross-Validation

• Segment the training data into 10 sets and repeat training 
and evaluation 10 times.

43

Worse than Linear 
Regressor



5.4. Try the Random Forests Regressor

• Repeating training and evaluation:

44

Best Accuracy
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6. Fine-Tune Your Model

• Fine-tune your system by fiddling with:
• The hyperparameters

• Removing and adding features

• Changing feature preprocessing techniques

• Can experiment manually. But it is best to automate this process 
using Scikit-Learn:
• GridSearchCV

• or RandomizedSearchCV

46



6.1. Grid Search

• Can automate exploring a search space of  3 × 4 + 2 × 3 = 12 + 6 = 18

47



• Can examine the best hyperparameters using:

• Can examine all search results using:

6.2 Examine the Results of Your Grid Search

48Best Tuned Accuracy



6.2 Evaluate Your System on the Test Set

• The final model is the best estimator found by the grid search.

• To evaluate it on the test set, transform the test features, predict 
using transformed features, and evaluate accuracy.

49

Better than train set!



6.3 Save Your Best Model for the Production 
System

50
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7. Present your solution

8. Launch, monitor, and maintain your system

9. Exercises
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7. Present Your Solution

• Present your solution highlighting:
• What you have learned

• What worked and what did not

• What assumptions were made

• What your system’s limitations are

• Document everything, and create nice presentations with:
• Clear visualizations

• Easy-to-remember statements, e.g., “the median income is the number one 
predictor of housing prices”.
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8. Launch, Monitor, and Maintain Your 
System

• Prepare your production program that uses your best trained model 
and launch it.

• Monitor the accuracy of your system. Also monitor the input data.

• Retrain your system periodically using fresh data.
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Summary

1. Look at the big picture

2. Get the data

3. Discover and visualize the data to gain insights

4. Prepare the data for Machine Learning algorithms

5. Select a model and train it

6. Fine-tune your model

7. Present your solution

8. Launch, monitor, and maintain your system

9. Exercises
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Exercise

• Try a Support Vector Machine regressor (sklearn.svm.SVR), with 
various hyperparameters such as kernel="linear" (with various 
values for the C hyperparameter) or kernel="rbf" (with various 
values for the C and gamma hyperparameters). Don’t worry about 
what these hyperparameters mean for now. How does the best SVR 
predictor perform?
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Classification

Prof. Gheith Abandah

1



Reference

• Chapter 3: Classification

• Aurélien Géron, Hands-On Machine Learning with Scikit-
Learn, Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2

2
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Introduction

• YouTube Video: Machine Learning - Supervised Learning 
Classification from Cognitive Class

https://youtu.be/Lf2bCQIktTo

3
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1. MNIST Dataset

5

• MNIST is a set of 70,000 small 
images of handwritten digits.

• Available from mldata.org

• Scikit-Learn provides 
download functions.

http://mldata.org/


1.1. Get the Data

6



1.2. Extract Features and Labels

7

There are 70,000 images, and each image has 784 features.
This is because each image is 28×28 pixels, and each feature simply 
represents one pixel’s intensity, from 0 (white) to 255 (black).



1.3. Examine One Image

8



1.4. Split the Data

9

• The MNIST dataset is actually already split into a training set (the first 
60,000 images) and a test set (the last 10,000 images).

• The training set is already shuffled.
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5. Multilabel classification
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2. Training a Binary Classifier

• A binary classifier can classify two classes.

• For example, classifier for the number 5, capable of distinguishing 
between two classes, 5 and not-5.

11

True for all 5s, False for all 
other digits.

Stochastic Gradient 
Descent (SGD) classifier
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3. Performance Measures

• Accuracy: Ratio of correct predictions

• Confusion matrix

• Precision and recall

• F1 Score

• Precision/recall tradeoff

13



3.1. Accuracy

14

Example how to find the 
accuracy.

Using the cross_val_score() 
function to find the accuracy on 

three folds



3.1. Accuracy

• Use cross_val_predict() to predict the targets of the entire training 
set.

15



3.2. Confusion Matrix

16



3.2. Confusion Matrix

• Scikit Learn has a function for finding the confusion matrix.

• The first row is for the non-5s (the negative class):
• 53,057 correctly classified (true negatives)
• 1,522 wrongly classified (false positives)

• The second row is for the 5s (the positive class):
• 1,325 wrongly classified (false negatives)
• 4,096 correctly classified (true positives)
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3.3. Precision and Recall

Precision Recall

18

The precision and recall are smaller than the accuracy. 
Why?



3.4. F1 Score

• The F1 Score combines the precision and recall in one metric 
(harmonic mean).
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3.5. Precision/Recall Tradeoff

• Increase the decision threshold to improve the precision when it is 
bad to have FP.

• Decrease the decision threshold to improve the recall when it is 
important not to miss FN.
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3.5. Precision/Recall Tradeoff

• The function cross_val_predict() can return decision scores 
instead of predictions.

• These scores can be used to compute precision and recall for all 
possible thresholds using the precision_recall_curve() function.

21



3.5. Precision/Recall Tradeoff

22



3.5. Precision/Recall Tradeoff

• For larger precision, increase the threshold, and decrease it for 
larger recall.

• Example: To get 90% precision.

23

The first threshold with precision ≥ 90%

True when score 
≥ new threshold
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4. Multiclass Classification

• Multiclass classifiers can distinguish between more than two classes.

• Some algorithms (such as Random Forest classifiers or Naive Bayes 
classifiers) are capable of handling multiple classes directly.

• Others (such as Support Vector Machine classifiers or Linear 
classifiers) are strictly binary classifiers.

• There are two main strategies to perform multiclass classification 
using multiple binary classifiers.

25



4.1. One-versus-All (OvA) Strategy

• For example, classify the digit images into 10 classes (from 0 to 9) to 
train 10 binary classifiers, one for each digit (a 0-detector, a 1-
detector, a 2-detector, and so on).

• Then to classify an image, get the decision score from each classifier 
for that image and select the class whose classifier outputs the 
highest score.

26



4.2. One-versus-One (OvO) Strategy

• Train a binary classifier for every pair of digits.

• If there are N classes, need N × (N – 1) / 2 classifiers. For MNIST, need 
45 classifiers.

• To classify an image, run the image through all 45 classifiers and see 
which class wins the most duels.

• The main advantage of OvO is that each classifier only needs to be 
trained on a subset of the training set.

• OvO is preferred for algorithms (such as Support Vector Machine) 
that scale poorly with the size of the training set.
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4.3. Scikit Learn Support of Multiclass 
Classification
• Scikit-Learn detects when you try to use a binary classification 

algorithm for a multiclass classification task, and it automatically runs 
OvA (except for SVM classifiers for which it uses OvO). 

28

Better 
classifier than 

SGD



4.3. Scikit Learn Support of Multiclass 
Classification
• Note that the multiclass task is harder than the binary task.

• Binary task

• Multiclass task

29



4.4. Error Analysis

30

Many images are misclassified as 8s.
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5. Multilabel Classification

• Classifiers that output multiple classes for each instance.

32

Popular algorithm



Summary

1. MNIST dataset

2. Training a binary classifier

3. Performance measures

4. Multiclass classification

5. Multilabel classification

6. Exercise
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Exercise

• Try to build a classifier for the MNIST dataset that achieves over 97% 
accuracy on the test set. Hint: the KNeighborsClassifier works quite 
well for this task; you just need to find good hyperparameter values 
(try a grid search on the weights and n_neighbors hyperparameters).

34



Machine Learning

Project

1



General

• To enable the students to get hands-on experience in the design, 
implementation and evaluation of machine learning systems.

• Teams: One students each

• Solve a practical machine learning problem of your choice.

• Use Python.

• Good projects involve using alternative approaches and evaluating their 
performance in solving the problem.

2



General

• Article: Project-Based Learning for Data Scientists: Becoming a 
Data Scientist just became a whole lot easier

• Author: Kishen Sharma

• Link: https://towardsdatascience.com/project-based-learning-
for-data-scientists-df6a8f74e4a1

3

https://towardsdatascience.com/project-based-learning-for-data-scientists-df6a8f74e4a1


General

• Marks: 

– Report 50%

– Presentation 50%

• Timing:

– Mon 3 May, 2021 Submit proposal

– Wed 26 May, 2021 Submit report &

present project

4



Project Proposal

• One to two-page proposal

• Specify problem

• Specify sample size and source

• Structure

– Title

– Student name

– Problem definition

– Data description

– Samples

5



Research Report

• Four to 8-page report
• Use IEEE A4 conference template at

http://www.ieee.org/conferences_events/conferences/publishing/templates.html
• In the introduction, include

– Motivation
– Problem definition
– Literature review

• Describe your data and development environment.
• Describe any preprocessing, feature extraction and selection, techniques used, and post-

processing.
• Give results and comments
• Give conclusions (work done, main results, future work)
• Include your source code in an appendix after the list of references.

6

http://www.ieee.org/conferences_events/conferences/publishing/templates.html


Research Presentation

• Prepare Power Point slides

• Ten minutes long

• Must be clear and useful presentation, must add knowledge to fellow 
colleagues

7



Training Models and 
Regression
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Reference

• Chapter 4: Training Models

• Aurélien Géron, Hands-On Machine Learning with Scikit-
Learn, Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2

2
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Linear Regression

4



Analytical Solution

• The Root Mean Square Error (RMSE) is used as cost function.

• Minimizing this cost gives the following solution (normal function):

5

Complexity O(mn2)
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Gradient Descent

• Generic optimization algorithm capable of finding optimal solutions 
to a wide range of problems.

• Tweaks parameters iteratively in order to minimize a cost function.

7



Learning Rate

Too Small Too Large

8



Gradient Descent Pitfalls

9



Feature Scaling

• Ensure that all features have a similar scale (e.g., using Scikit-Learn’s
StandardScaler class).

• Gradient Descent with and without feature scaling.

10
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Batch Gradient Descent

• Partial derivatives of the cost function in θj

• Gradient vector of the cost function

12

The entire training 
Batch



• Gradient Descent step

• Gradient Descent with various learning rates

Batch Gradient Descent

13



Stochastic Gradient Descent

• SGD picks a random instance in 
the training set at every step and 
computes the gradients.

• SGD is faster when the training 
set is large.

• Is bouncy

• Eventually gives good solution

• Can escape local minima

14



Mini-batch Gradient Descent

• Computes the gradients on small random sets of instances called mini
batches.

• Benefits from hardware accelerators (e.g., GPU).

• Less bouncy, better solution, escapes some local minima

15
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Learning Curves

• The accuracy on the validation set generally increases as the training
set size increases.

• Overfitting decreases with larger training set.
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Early Stopping

• Stop training when the validation error reaches a minimum.

• Need to save the best model.

19
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Exercises

1. What Linear Regression training algorithm can you use if you have a 
training set with millions of features?

2. Suppose the features in your training set have very different scales. 
What algorithms might suffer from this, and how? What can you do 
about it?

3. Do all Gradient Descent algorithms lead to the same model 
provided you let them run long enough?

21



Summary

1. Linear Regression

2. Gradient Descent

3. Gradient Descent Variants
1. Batch Gradient Descent

2. Stochastic Gradient Descent

3. Mini-batch Gradient Descent

4. Learning Curves
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Reference

• Chapter 5: Support Vector Machines

• Chapter 6: Decision Trees

• Chapter 7: Ensemble Learning and
Random Forests

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, 
Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2
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k-Nearest Neighbors

• Find a predefined number of training samples (k) closest in distance to 
the new point and predict the label from them: regression or 
classification.

• The number of samples can be a user-defined constant (k-nearest 
neighbor learning), or vary based on the local density of points (radius-
based neighbor learning).

• The distance can be any metric measure: standard Euclidean distance
is the most common choice.

• Reference: https://scikit-learn.org/stable/modules/neighbors.html

4

https://scikit-learn.org/stable/modules/neighbors.html


Nearest Neighbors Classification

class sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, 
weights='uniform', … )

• weights can be: uniform: All points in each neighborhood are 
weighted equally, and distance: Weight points by the inverse of their 
distance.

• Example:
from sklearn.neighbors import KNeighborsClassifier

knn_clf = KNeighborsClassifier()

knn_clf.fit(X_train, y_train)

5



Nearest Neighbors Regression

class sklearn.neighbors.KNeighborsRegressor(n_neighbors=5, 
weights='uniform', … )

• The label assigned to a query point is computed based on the mean 
of the labels of its nearest neighbors.

• Example:
from sklearn.neighbors import KNeighborsRegressor

model = KNeighborsRegressor(n_neighbors=3)

model.fit(X, y)

6
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Support Vector Machine (SVM)

• Very powerful and versatile Machine Learning model, capable of 
performing linear or nonlinear classification, regression, and outlier 
detection.

• Well suited for classification of complex but small- or medium-sized
datasets.

• SVM gives large margin classification.
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Linear SVM Classification

• The decision boundary is fully determined by the instances located 
on the edge. These instances are called the support vectors.

• SVMs are sensitive to the feature scales.

9



Soft Margin Classification

• Hard margin classification cannot handle linearly inseparable classes 
and is sensitive to outliers.

• Soft margin classification finds a balance between keeping the 
margin as large as possible and limiting the margin violations.

10



Soft Margin Classification

• You can control the number of violations using the C hyperparameter.

• If your SVM model is overfitting, you can try regularizing it by 
reducing C.
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Iris Dataset

12

• A famous dataset that contains 
the sepal and petal length and 
width of 150 iris flowers of 
three different species: Setosa, 
Versicolor, and Virginica.



SVM Classification Example

import numpy as np
from sklearn import datasets
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC
iris = datasets.load_iris()
X = iris["data"][:, (2, 3)] # petal length, petal width
y = (iris["target"] == 2).astype(np.float64) # Iris-Virginica
svm_clf = Pipeline([

("scaler", StandardScaler()),
("linear_svc", LinearSVC(C=1, loss="hinge")), ])

svm_clf.fit(X, y)

>>> svm_clf.predict([[5.5, 1.7]])
array([1.])

13

Used for maximum-margin 
classification.



Nonlinear SVM Classification

• The SVM class supports nonlinear classification using the kernel
option.

14

Controls how much the model is 
influenced by high-degree polynomials 

versus low-degree



Gaussian Radial Basis Function 

• The Gaussian RBF can be used to find similarity features (x2 and x3 ) 
of the one-dimensional dataset with two landmarks to it at x1 = –2 
and x1 = 1

15

Linearly separable



Gaussian RBF Kernel

• Is popular with SVM to solve nonlinear problems.

• Transforms a training set with m instances and n features to m
instances and m features.

• gamma and C are used for regularization with smaller values.

16



Gaussian RBF Kernel

17



Linear SVM Regression

• Fits as many instances as possible on the margin while limiting margin 
violations. The width of the street is controlled by a hyperparameter 
ϵ.

18



Nonlinear SVM Regression

19



SVM Conclusion

• The LinearSVC has complexity of O(m × n).

• The SVC time complexity is usually between O(m2 × n) and O(m3 × n).

• This algorithm is perfect for complex but small or medium training 
sets. However, it scales well with the number of features.

20



Outline

1. k-Nearest Neighbors

2. Support Vector Machines

3. Decision Trees

4. Ensemble Learning and Random Forests

5. Exercises

21



Decision Trees

• Decision Trees are versatile Machine Learning algorithms that can 
perform both classification and regression tasks, and even 
multioutput tasks.

• They are very powerful algorithms, capable of fitting complex 
datasets.

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
iris = load_iris()
X = iris.data[:, 2:] # petal length and width
y = iris.target
tree_clf = DecisionTreeClassifier(max_depth=2)
tree_clf.fit(X, y)
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Visualizing a Decision Tree

23



Regularization Hyperparameters

• Increase min_* or decrease max_*: max_depth=None, 
min_samples_split=2, min_samples_leaf=1, 
min_weight_fraction_leaf=0.0, max_features=None, 
max_leaf_nodes=None

24



Decision Trees Regression

from sklearn.tree import DecisionTreeRegressor

tree_reg = DecisionTreeRegressor(max_depth=2)

tree_reg.fit(X, y)

25
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Ensemble Learning and Random Forests

• A group of predictors is called an ensemble.

• You can train a group of Decision Tree classifiers, each on a different 
random subset of the training set.

• To make predictions, obtain the predictions of all individual trees, 
then predict the class that gets the most votes.

• Such an ensemble of Decision Trees is called a Random Forest.
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Voting Classifiers

• If each classifier is a weak learner (meaning it does only slightly 
better than random guessing), the ensemble can be a strong learner 
(achieving high accuracy).
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Scikit-Learn Voting Classifier 1/2

29

voting='soft' predict the class with the
highest class probability



Scikit-Learn Voting Classifier 2/2
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Bagging and Pasting

• Use the same training algorithm for every predictor, but train them 
on different random subsets of the training set.

• When sampling is performed with replacement, this method is called 
bagging (short for bootstrap aggregating).

• When sampling is performed without replacement, it is called 
pasting.

• The aggregation function is the most frequent prediction (hard 
voting) for classification, or the average for regression.
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Bagging and Pasting

32

with replacement and 
use all available cores



Random Forests

• An ensemble of Decision Trees trained via the bagging with 
max_samples set to the size of the training set, and choosing the best 
random splits.

• Equivalent to:

33
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Exercises

1. Train an SVM classifier on the MNIST dataset. Since SVM classifiers 
are binary classifiers, you will need to use one-versus-all to classify 
all 10 digits. You may want to tune the hyperparameters using small 
validation sets to speed up the process. What accuracy can you 
reach?
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Exercises

2. Train and fine-tune a Decision Tree for the moons dataset.
a) Generate a moons dataset using make_moons(n_samples=10000, 

noise=0.4).

b) Split it into a training set and a test set using train_test_split().

c) Use grid search with cross-validation (with the help of the GridSearchCV class) 
to find good hyperparameter values for a DecisionTreeClassifier. Hint: try 
various values for max_leaf_nodes.

d) Train it on the full training set using these hyperparameters, and measure your 
model’s performance on the test set. You should get roughly 85% to 87% 
accuracy.
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Exercises

3. Load the MNIST data and split it into a training set, a validation set, 
and a test set (e.g., use 50,000 instances for training, 10,000 for 
validation, and 10,000 for testing). Then train various classifiers, 
such as a Random Forest classifier, an Extra-Trees classifier, and an 
SVM. Next, try to combine them into an ensemble that 
outperforms them all on the validation set, using a soft or hard
voting classifier. Once you have found one, try it on the test set. 
How much better does it perform compared to the individual 
classifiers?
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Reference

• Chapter 8: Dimensionality Reduction

• Chapter 9: Unsupervised Learning Techniques

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, 
Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2
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Dimensionality Reduction

• Many Machine Learning problems involve thousands or even millions
of features for each training instance.

• All these features make training extremely slow and make it much 
harder to find a good solution.

• This problem is often referred to as the curse of dimensionality.

• Dimensionality reduction approaches
• Drop not useful features

• Merge correlated features

• Projection and manifold

• Transform features

4



Projection and Manifold

5



Projection and Manifold

6

• Simply projecting onto a plane may not 
give better solution.

• Projecting to a proper manifold is better.



Projection and Manifold

• The decision boundary may not 
always be simpler with lower 
dimensions.
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Principal Component Analysis (PCA)

• Is the most popular
dimensionality reduction 
algorithm.

• First it identifies the hyperplane
that lies closest to the data, and 
then it projects the data onto it.

• PCA identifies the axis that 
accounts for the largest amount 
of variance in the training set. 
Then it finds the next 
orthogonal axes that accounts 
for the largest amount of 
remaining variance.

8



Principal Component Analysis (PCA)

• Use PCA to reduce the 
dimensionality of the dataset 
down to two dimensions.

• Instead of specifying the number 
of principal components you 
want to preserve, you can set 
n_components to be a float 
between 0.0 and 1.0, indicating 
the ratio of variance you wish to 
preserve.

from sklearn.decomposition import PCA

pca = PCA(n_components = 2)

X2D = pca.fit_transform(X)

pca = PCA(n_components=0.95)

X_reduced = pca.fit_transform(X_train)

9

3-D

MNIST
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Unsupervised Learning

If intelligence was a cake, unsupervised learning would be the cake, 
supervised learning would be the icing on the cake, and reinforcement 

learning would be the cherry on the cake.

Yann LeCun

• Example: System that takes a few pictures of each item on a 
manufacturing production line and detects which items are defective.
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Clustering

• The task of identifying similar instances and assigning them to 
clusters, i.e., groups of similar instances.

• Classification (left) versus clustering (right)
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Clustering Applications

• Customer segmentation: useful for recommender systems.

• Data analysis: discover clusters of similar instances as it is often 
easier to analyze clusters separately.

• Dimensionality reduction: find affinity features to the found clusters

• Anomaly detection: any instance that has a low affinity to all the 
clusters is likely to be an anomaly.

• Semi-supervised learning: perform clustering and propagate the 
labels to all the instances in the same cluster.

• Search engines for images

• Image segmentation

14



K-Means

• Quick and efficient
algorithm

• Scale before 
clustering

• Need to specify the 
number of clusters

15



K-Means

• Cluster to 5 clusters

from sklearn.cluster import KMeans

k = 5

kmeans = KMeans(n_clusters=k)

y_pred = kmeans.fit_predict(X)

y_pred

array([4, 0, 1, ..., 2, 1, 0],

dtype=int32)

# Hard clustering:

X_new = np.array([[0, 2], [-3, 3]])

kmeans.predict(X_new)

array([1, 2], dtype=int32)
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K-Means

kmeans.cluster_centers_

array([[-2.80389616, 1.80117999],

[ 0.20876306, 2.25551336],

[-2.79290307, 2.79641063],

[-1.46679593, 2.28585348],

[-2.80037642, 1.30082566]])

# Soft clustering, a score per
# cluster:

kmeans.transform(X_new)

array([[2.81093633, 0.32995317,

2.9042344 , 1.49439034,

2.88633901],

[1.21475352, 3.29399768,

0.29040966, 1.69136631,

1.71086031])

17
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K-Means

• It is important to specify the 
right number of clusters k.

• Find k that gives highest mean 
silhouette coefficient.

from sklearn.metrics import

silhouette_score

silhouette_score(X, kmeans.labels_)

0.655517642572828
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DBSCAN

• Defines clusters as continuous 
regions of high density.

• Works well if all the clusters are 
dense enough, and they are well 
separated by low-density 
regions.

• Behaves well when the clusters 
have varying sizes or non-
spherical shapes.

• Algorithm
• For each instance, counts how many 

instances are located within a small 
distance ε-neighborhood.

• If an instance has at least min_samples
instances in its ε-neighborhood, then it is 
considered a core instance.

• All instances in the neighborhood of a core 
instance belong to the same cluster. This 
may include other core instances; 
therefore, a long sequence of neighboring 
core instances forms a single cluster.

• Any instance that is not a core instance and 
does not have one in its neighborhood is 
considered an anomaly (-1).

19
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DBSCAN

• Cluster the moons dataset

from sklearn.cluster import DBSCAN

from sklearn.datasets import

make_moons

X, y = make_moons(n_samples=1000,

noise=0.05)

dbscan = DBSCAN(eps=0.2,

min_samples=5)

dbscan.fit(X)
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DBSCAN

• DBSCAN class does not have a predict() method.

• Can use other classifiers.

from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier()

knn.fit(dbscan.components_, dbscan.labels_[dbscan.core_sample_indices_])

X_new = np.array([[-0.5, 0], [0, 0.5], [1, -0.1], [2, 1]])

knn.predict(X_new)

array([1, 0, 1, 0])
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Outline

• Dimensionality Reduction
• Projection and Manifold
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• Gaussian Mixtures and Anomaly Detection

• Exercises
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Gaussian Mixtures

• A Gaussian mixture model (GMM) is a probabilistic model that 
assumes that the instances were generated from a mixture of several 
Gaussian distributions whose parameters are unknown.

• Scikit-Learn’s GaussianMixture class, given the dataset X, can 
estimate the weights ϕ and all the distribution parameters μ(1) to μ(k)

and Σ(1) to Σ(k). 

from sklearn.mixture import GaussianMixture

gm = GaussianMixture(n_components=3, n_init=10)

gm.fit(X)
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Gaussian Mixtures

gm.converged_

True

gm.n_iter_

3

gm.weights_

array([0.20965228, 0.4000662,

0.39028152])

gm.means_

array([[ 3.39909717, 1.05933727],

[-1.40763984, 1.42710194],

[ 0.05135313, 0.07524095]])

gm.covariances_

array([[[ 1.14807234, -0.03270354],

[-0.03270354, 0.95496237]],

[[ 0.63478101, 0.72969804],

[ 0.72969804, 1.1609872 ]],

[[ 0.68809572, 0.79608475],

[ 0.79608475, 1.21234145]]])
24



Anomaly Detection using Gaussian Mixtures

• Any instance located in a low-
density region can be 
considered an anomaly.

• Identify the outliers using the 
4th percentile lowest density as 
the threshold.

densities = gm.score_samples(X)

density_threshold = np.percentile(

densities, 4)

anomalies = X[densities <

density_threshold]
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Selecting the Number of Components

• Minimize the Bayesian 
information criterion (BIC) or 
the Akaike information 
criterion (AIC).

gm.bic(X)

8189.74345832983

gm.aic(X)

8102.518178214792
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Outline

• Dimensionality Reduction
• Projection and Manifold
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• Unsupervised Learning
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• Gaussian Mixtures and Anomaly Detection

• Exercises
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Exercises

8.9. Load the MNIST dataset (introduced in Chapter 3) and split it into 
a training set and a test set (take the first 60,000 instances for 
training, and the remaining 10,000 for testing). Train a Random 
Forest classifier on the dataset and time how long it takes, then 
evaluate the resulting model on the test set. Next, use PCA to 
reduce the dataset’s dimensionality, with an explained variance 
ratio of 95%. Train a new Random Forest classifier on the reduced 
dataset and see how long it takes. Was training much faster? Next 
evaluate the classifier on the test set: how does it compare to the 
previous classifier?

28



Exercises

9.3. Describe two techniques to select the right number of clusters 
when using K-Means.
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Exercises

9.10. The classic Olivetti faces dataset contains 400 grayscale 64 × 64–pixel 
images of faces. Each image is flattened to a 1D vector of size 4,096. 40 
different people were photographed (10 times each), and the usual task 
is to train a model that can predict which person is represented in each 
picture. Load the dataset using the 
sklearn.datasets.fetch_olivetti_faces() function, then split it 
into a training set, a validation set, and a test set (note that the dataset 
is already scaled between 0 and 1). Since the dataset is quite small, you 
probably want to use stratified sampling to ensure that there are the 
same number of images per person in each set. Next, cluster the images 
using KMeans, and ensure that you have a good number of clusters 
(using one of the techniques discussed in this chapter). Visualize the 
clusters: do you see similar faces in each cluster?
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Summary

• Dimensionality Reduction
• Projection and Manifold

• Principal Component Analysis (PCA)

• Unsupervised Learning

• Clustering
• K-Means

• DBSCAN

• Gaussian Mixtures and Anomaly Detection
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Reference

• Chapter 10: Introduction to Artificial Neural
Networks with Keras

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, 
Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2
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Introduction

• YouTube Video: But what *is* a Neural Network? from 3Blue1Brown

https://youtu.be/aircAruvnKk
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Outline

1. Introduction

2. The perceptron

3. Multi-layer perceptron (MLP)

4. Regression MLPs

5. Classification MLPs
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1. Introduction

• Artificial neural networks 
(ANNs) are inspired by the 
brain’s architecture.

• First suggested in 1943. Is now 
flourishing due to the availability 
of:
• Data

• Computing power

• Better algorithms

5



2. The Perceptron

• The Perceptron is a simple ANN, 
invented in 1957 and can perform 
linear binary classification or 
regression.

• Common step function:

6

Linear threshold unit (LTU)



2. The Perceptron

• The Perceptron has an input
layer with bias and output layer.

• With multiple output nodes, it 
can perform multiclass 
classification.

• Hebbian learning “Cells that fire 
together, wire together.”
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2. The Perceptron

• Scikit-Learn provides a Perceptron class.
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2. The Perceptron

• The perceptron cannot solve non-linear problems such as the XOR 
problem.

• The Multi-Layer Perceptron (MLP) can.
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Outline

1. Introduction

2. The perceptron

3. Multi-layer perceptron (MLP)

4. Regression MLPs

5. Classification MLPs
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3. Multi-Layer Perceptron (MLP)

• An MLP is composed of a (pass-
through) input layer, one or 
more layers of LTUs, called 
hidden layers, and a final layer 
of LTUs called the output layer.

• When an ANN has two or more 
hidden layers, it is called a deep
neural network (DNN).
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3. Multi-Layer Perceptron (MLP)

• Trained using the 
backpropagation training 
algorithm.
• For each training instance the 

algorithm first makes a prediction 
(forward pass), measures the 
error,

• then goes through each layer in 
reverse to measure the error 
contribution from each connection 
(reverse pass),

• and finally slightly tweaks the 
connection weights to reduce the 
error (Gradient Descent step).
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3. Multi-Layer Perceptron (MLP)

• Common activation functions: logistic, 
hyperbolic tangent, and rectified linear 
unit.
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Outline

1. Introduction

2. The perceptron

3. Multi-layer perceptron (MLP)

4. Regression MLPs

5. Classification MLPs
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4. Regression MLPs

• Typical MLP architecture for regression:

15



5. Classification MLPs

• For classification, the output 
layer uses the softmax function.

• The output of each neuron 
corresponds to the estimated 
probability of the corresponding 
class.
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5. Classification MLPs

• Typical MLP architecture for classification:
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Summary

1. Introduction

2. The perceptron

3. Multi-layer perceptron (MLP)

4. Regression MLPs

5. Classification MLPs
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Reference

• Chapter 10: Introduction to Artificial Neural
Networks with Keras

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, 
Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2
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2018
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Introduction

• YouTube Video: Keras Explained from Siraj Raval

https://youtu.be/j_pJmXJwMLA
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1. Introduction

• Keras is a high-level API to build and train deep learning models.
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1. Introduction – Advantages 

• User friendly: Keras has a simple, consistent interface optimized for 
common use cases. It provides clear and actionable feedback for user 
errors.

• Modular and composable: Keras models are made by connecting 
configurable building blocks together, with few restrictions.

• Easy to extend: Write custom building blocks to express new ideas 
for research. Create new layers, loss functions, and develop state-of-
the-art models.
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2. Keras API Styles

1. The Sequential Model
• Dead simple
• Only for single-input, single-output, sequential layer stacks
• Good for 70+% of use cases

2. The functional API
• Like playing with Lego bricks
• Multi-input, multi-output, arbitrary static graph topologies
• Good for 95% of use cases

3. Model subclassing
• Maximum flexibility
• Larger potential error surface
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3. TensorFlow Keras

• Keras is the official high-level API 
of TensorFlow

• tensorflow.keras (tf.keras) 
module

• Part of core TensorFlow since 
v1.4

• Full Keras API

• With useful extra features such 
as tf.data

11



3. TensorFlow Keras

• To install TensorFlow
$ pip install --upgrade tensorflow

• To import Keras from TensorFlow
>>> import tensorflow as tf

>>> from tensorflow.keras import Layers
>>> from tensorflow import keras

>>> tf.__version__

'2.1.0'

>>> keras.__version__

'2.2.4-tf'

• Dense

• Activations

• Dropout

• Conv1D, 2D, 3D

• Polling

• RNN, LSTM, GRU

• …
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4. Image Classifier Using the Sequential 
Model
• Fashion MNIST is similar to MNIST (70,000 grayscale images of 28×28 

pixels each, with 10 classes).

14



4. Fashion MNIST

1. Get and prepare the dataset.

2. Build sequential model of layers that maps your inputs to your 
targets.

3. Compile the model and configure the learning process by choosing 
a loss function, an optimizer, and some metrics to monitor.

4. Train the model by calling the fit() method of your model.

5. Evaluate and use the model.
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4.1 Get and Prepare the Dataset

import tensorflow as tf

from tensorflow import keras

# Get the Fashion MNIST

fashion_mnist = keras.datasets.fashion_mnist

(X_train_full, y_train_full), (X_test, y_test) =

fashion_mnist.load_data()

# Prepare the data train (55000), val (5000), test (10000)

X_valid = X_train_full[:5000] / 255.

X_train = X_train_full[5000:] / 255.

y_valid, y_train = y_train_full[:5000], y_train_full[5000:]

X_test = X_test / 255.
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4.2 Build the Model

model = keras.models.Sequential()
model.add(keras.layers.Flatten(input_shape=[28, 28]))
model.add(keras.layers.Dense(300, activation="relu"))
model.add(keras.layers.Dense(100, activation="relu"))
model.add(keras.layers.Dense(10, activation="softmax"))

17

The default is no activation 
function, i.e., linear layer.



4.2 Build the Model

# Plot the model

keras.utils.plot_model(

model,

"my_model.png",

show_shapes=True)

18



4.3 Compile the Model

model.compile(loss="sparse_categorical_crossentropy",
optimizer="sgd",
metrics=["accuracy"])

# For sparse labels (0-9):
loss = "sparse_categorical_crossentropy" 
# For one-hot labels:
loss = "categorical_crossentropy" 
# For binary labels:
loss = "binary_crossentropy" 
# For regression:
loss = "mean_squared_error" 

19
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4.4 Train the Model
# Train the model

history = model.fit(X_train, y_train, epochs=30,

validation_data=(X_valid, y_valid))

Train on 55000 samples, validate on 5000 samples

Epoch 1/30

55000/55000 [==============================] - 2s 44us/sample - loss: 0.7226 - accuracy: 0.7641 - val_loss: 

0.5073 - val_accuracy: 0.8320

Epoch 2/30

55000/55000 [==============================] - 2s 39us/sample - loss: 0.4844 - accuracy: 0.8321 - val_loss: 

0.4541 - val_accuracy: 0.8478

…

Epoch 30/30

55000/55000 [==============================] - 2s 39us/sample - loss: 0.2256 - accuracy: 0.9195 - val_loss: 

0.3049 - val_accuracy: 0.8882 20



4.4 Train the Model
import pandas as pd
pd.DataFrame(history.history).plot(figsize=(8, 5))
plt.grid(True)
plt.gca().set_ylim(0, 1)
save_fig("keras_learning_curves_plot")
plt.show()
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4.5 Evaluate and Use the Model

model.evaluate(X_test, y_test)
10000/10000 [==============================] - 0s 21us/sample - loss: 0.3378 -
accuracy: 0.8781
[0.33780701770782473, 0.8781]

X_new = X_test[:3]
y_proba = model.predict(X_new)
y_proba.round(2)
array([[0.  , 0.  , 0.  , 0.  , 0.  , 0.  , 0.  , 0.01, 0.  , 0.99],

[0.  , 0.  , 0.99, 0.  , 0.01, 0.  , 0.  , 0.  , 0.  , 0.  ],
[0.  , 1.  , 0.  , 0.  , 0.  , 0.  , 0.  , 0.  , 0.  , 0.  ]],
dtype=float32)

model.predict_classes(X_new)
array([9, 2, 1])
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5. Example - MNIST

1. Define your training data: input tensors and target tensors.

2. Define a network of layers (or model ) that maps your inputs to 
your targets.

3. Configure the learning process by choosing a loss function, an 
optimizer, and some metrics to monitor.

4. Iterate on your training data by calling the fit() method of your 
model.
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5. Example – Prepare the data

from keras.datasets import mnist

(train_images, train_labels), (test_images, test_labels) = 
mnist.load_data()

#(60000, 28, 28), (60000), #(10000, 28, 28), (10000)

train_images = train_images.reshape((60000, 28 * 28))

train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28 * 28))

test_images = test_images.astype('float32') / 255

from keras.utils import to_categorical   #one hot

train_labels = to_categorical(train_labels)

test_labels = to_categorical(test_labels)
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5. Example – Define and configure the 
network
from keras import models

from keras import layers

network = models.Sequential()

network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))

network.add(layers.Dense(10, activation='softmax'))

network.compile(optimizer='rmsprop',

loss='categorical_crossentropy',

metrics=['accuracy'])
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5. Example – Training and evaluation

network.fit(train_images, train_labels, epochs=5, batch_size=128)

test_loss, test_acc = network.evaluate(test_images, test_labels)
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6. Regression Using the Sequential Model

• Solve the California housing problem using a regression neural 
network.

• Scikit-Learn has fetch_california_housing() function to load the 
data

• This dataset contains only numerical features and there are no 
missing values.
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6.1 Get  and Prepare the Dataset

from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

housing = fetch_california_housing()

X_train_full, X_test, y_train_full, y_test =
train_test_split(housing.data, housing.target, random_state=42)

X_train, X_valid, y_train, y_valid = train_test_split(X_train_full,
y_train_full, random_state=42)

scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_valid = scaler.transform(X_valid)
X_test = scaler.transform(X_test)

30

The default is 75% : 25%



6.2 Build and Compile the Model

# Building by passing a list of layers when creating

#  the Sequential model

model = keras.models.Sequential([

keras.layers.Dense(30, activation="relu",

input_shape=X_train.shape[1:]),

keras.layers.Dense(1)

])

# Compile with creating an optimizer object

model.compile(loss="mean_squared_error",

optimizer=keras.optimizers.SGD(lr=1e-3))
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6.3 Train and Evaluate the Model

history = model.fit(X_train, y_train, epochs=20,

validation_data=(X_valid, y_valid))

mse_test = model.evaluate(X_test, y_test)

5160/5160 [==============================] - 0s 

15us/sample - loss: 0.421
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6.4 Save and Restore the Model

• After training a model save it to a file.

model.save("my_keras_model.h5")

• In the production program, load the trained model.

model = keras.models.load_model("my_keras_model.h5")
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7. Using the Functional API

• Keras functional API can be used 
to build arbitrary static graph 
topologies.

• Create a layer and as soon as it is 
created, call it like a function, 
passing it the input.

• Example 1: the wide and deep
network that learns both deep 
patterns (using the deep path) 
and simple rules (through the 
short path).
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7. Using the Functional API

2. Multi-input: You can send a 
subset of the features through 
the wide path, and a different 
subset (possibly overlapping) 
through the deep path.
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7. Using the Functional API

3. Multiple Outputs
• To locate and classify the main 

object in a picture.

• Multiple independent tasks to 
perform based on the same data.

• Regularization technique (to 
ensure that the deep network 
learns something useful on its 
own).
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7.1 Auxiliary Output for Regularization

# Build the model
input_A = keras.layers.Input(shape=[5], name="wide_input")
input_B = keras.layers.Input(shape=[6], name="deep_input")

hidden1 = keras.layers.Dense(30, activation="relu")(input_B)
hidden2 = keras.layers.Dense(30, activation="relu")(hidden1)

concat = keras.layers.concatenate([input_A, hidden2])

output = keras.layers.Dense(1, name="main_output")(concat)

aux_output = keras.layers.Dense(1, name="aux_output")(hidden2)

model = keras.models.Model(inputs=[input_A, input_B],
outputs=[output, aux_output])
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7.1 Auxiliary Output for Regularization

# Split the input

X_train_A, X_train_B = X_train[:, :5], X_train[:, 2:]

X_valid_A, X_valid_B = X_valid[:, :5], X_valid[:, 2:]

X_test_A,  X_test_B  = X_test[:, :5],  X_test[:, 2:]

# Take some test samples

X_new_A, X_new_B = X_test_A[:3], X_test_B[:3]
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7.1 Auxiliary Output for Regularization

# Compile, train, evaluate, and predict

model.compile(loss=["mse", "mse"], loss_weights=[0.9, 0.1],

optimizer=keras.optimizers.SGD(lr=1e-3))

history = model.fit([X_train_A, X_train_B], [y_train, y_train], epochs=20,

validation_data=([X_valid_A, X_valid_B], [y_valid, y_valid]))

total_loss, main_loss, aux_loss = model.evaluate([X_test_A, X_test_B],

[y_test, y_test])

y_pred_main, y_pred_aux = model.predict([X_new_A, X_new_B])
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8. Using Callbacks

• The fit() method accepts a callbacks argument that lets you 
specify a list of objects that Keras will call during training
• at the start and end of training

• at the start and end of each epoch

• before and after processing each batch

• There are many callbacks available in the keras.callbacks package. 
See

https://keras.io/callbacks/
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8.1 Saving Best Model

• Save your best model when its performance on the validation set is 
the best so far.

checkpoint_cb = keras.callbacks.ModelCheckpoint(
"my_keras_model.h5", save_best_only=True)

history = model.fit(X_train, y_train, epochs=10,
validation_data=(X_valid, y_valid),
callbacks=[checkpoint_cb])

# rollback to best model
model = keras.models.load_model("my_keras_model.h5")
mse_test = model.evaluate(X_test, y_test)

43



8.2 Early Stopping

• Interrupt training when there is no progress on the validation set for a 
number of epochs (defined by the patience argument)

• Optionally roll back to the best model.

early_stopping_cb = keras.callbacks.EarlyStopping(
patience=10, restore_best_weights=True)

history = model.fit(X_train, y_train, epochs=100,
validation_data=(X_valid, y_valid),
callbacks=[checkpoint_cb, early_stopping_cb])
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9. Visualization Using TensorBoard

• TensorBoard is a great interactive visualization tool that comes with 
TensorFlow. 

• Use it using its callback
tensorboard_cb = 

keras.callbacks.TensorBoard(run_logdir)

history = model.fit(X_train, y_train, epochs=30,

validation_data=(X_valid, y_valid),

callbacks=[tensorboard_cb])

• Start TensorBoard server
$ tensorboard --logdir=./my_logs --port=6006

46



9. Open http://localhost:6006

47
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10. Fine-Tuning Neural Network 
Hyperparameters

• Number of Hidden Layers
• One hidden layer can theoretically model even the most complex functions, provided 

it has enough neurons.
• But for complex problems, deep networks have a much higher parameter efficiency 

than shallow ones.

• Number of Neurons per Hidden Layer
• Pyramid across layers or same size
• Stretch pants: pick a model with more layers and neurons than you actually need, 

then use early stopping and other regularization techniques to prevent it from 
overfitting.

• Better to increase the number of layers instead of the number of neurons 
per layer.
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10. Fine-Tuning Neural Network 
Hyperparameters

• Learning Rate: the optimal LR is about half of the maximum LR.

• Optimizer: There are other than the Mini-batch Gradient Descent 
optimizer.

• Batch Size
• Larger gives better speed up with hardware accelerators.

• Smaller makes the models more general.

• Activation Functions

50



11. Tutorials

• https://keras.io/

• https://www.tensorflow.org/guide/keras

• Keras Tutorial: Deep Learning in Python from DataCamp, 
https://www.datacamp.com/community/tutorials/deep-learning-
python

• Keras Tutorial: The Ultimate Beginner’s Guide to Deep Learning in 
Python, from EliteDataScience, https://elitedatascience.com/keras-
tutorial-deep-learning-in-python

51
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12. Exercise

From Chapter 10, solve exercise:
• 10. Train a deep MLP on the MNIST dataset (you can load it using 
keras.datasets.mnist.load_data(). See if you can get over 98%
precision. Try searching for the optimal learning rate by using the 
approach presented in this chapter (i.e., by growing the learning rate 
exponentially, plotting the error, and finding the point where the 
error shoots up). Try adding all the bells and whistles—save 
checkpoints, use early stopping, and plot learning curves using 
TensorBoard.
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1. Introduction

• Deep neural networks can solve complex problems and provide end-
to-end solutions.

• When you train a deep network, you may face the following 
problems:
• Vanishing or exploding gradients: The gradients grow smaller and smaller, or 

larger and larger.

• Not enough data

• Long training time

• Overfitting

4
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2. Vanishing/Exploding Gradients Problems

• Vanishing Problem: In the backpropagation algorithm, gradients 
often get smaller and smaller as the algorithm progresses down 
to the lower layers.
• Lower layers’ connection are left unchanged.

• Exploding Problem: the gradients can grow bigger and bigger.
• Layers get very large weight updates and the algorithm diverges.

• Main Reasons: Using activation functions 
(logistic sigmoid) and weight initialization 
(normal distribution with 0-mean and 
1-standard deviation).

6



2.1 Glorot and He Initialization

• Glorot and Bengio: In order for the signal not to die out, nor to 
explode and saturate, the variance of the outputs of each layer 
should be equal to the variance of its inputs.

• Solution: the connection weights of each layer must be initialized 
randomly as follows:

7



2.1 Glorot and He Initialization

• Recommended initialization parameters for each type of activation 
function.

• For the uniform distribution, use

• Keras uses Glorot initialization with a uniform distribution. 

8



2.1 Glorot and He Initialization

• To change it to He initialization: 
keras.layers.Dense(10, activation="relu",

kernel_initializer="he_normal") # Or "he_uniform"

• He initialization with a uniform distribution but based on fanavg:
he_avg_init = keras.initializers.VarianceScaling(scale=2.,

mode='fan_avg', distribution='uniform')

keras.layers.Dense(10, activation="sigmoid",

kernel_initializer=he_avg_init)

9



2.2 Nonsaturating Activation Functions

• Step does not work with the 
back propagation algorithm.

• ReLU is better than sigmoid
because it does not saturate for 
positive values and is fast.

• Dying ReLUs: A neuron dies 
when its input is negative for all 
training instances.

10



2.2 Nonsaturating Activation Functions

• Leaky ReLU performs better 
than ReLU.

• α between 0.01 and 0.3

11

model = keras.models.Sequential([
…
keras.layers.Dense(10, kernel_initializer="he_normal"),
keras.layers.LeakyReLU(alpha=0.2), # added as a layer
…

])



2.2 Nonsaturating Activation Functions

• Exponential linear unit (ELU) 
also performs better than ReLU
but is slower.

• Scaled ELU (SELU) performs best 
with dense and CNN, but must 
scale inputs and use 
lecun_normal.

12

layer = keras.layers.Dense(10, activation="selu",
kernel_initializer="lecun_normal")



2.2 Nonsaturating Activation Functions

• Summary:
• SELU > ELU > leaky ReLU > ReLU > tanh > logistic

• If you cannot use SELU, use ELU.

• For fast response, use leaky ReLU or ReLU.

13



2.3 Batch Normalization

• The techniques in §2.1 and §2.2 can significantly reduce the 
vanishing/exploding gradients problems at the beginning of training, 
but don’t guarantee that they won’t come back during training.

• Batch Normalization (BN) zero-centers and normalizes each layer 
input using statistics from the mini batch (> 30).

• Other benefits: Works even without §2.1 and §2.2, allows using 
larger LR, and have regularization effect.

14



2.3 Batch Normalization

• Implementing batch normalization with Keras is easy.

model = keras.models.Sequential([
keras.layers.Flatten(input_shape=[28, 28]),
keras.layers.BatchNormalization(),
keras.layers.Dense(300, activation="elu", 
kernel_initializer="he_normal"),
keras.layers.BatchNormalization(),
keras.layers.Dense(100, activation="elu", 
kernel_initializer="he_normal"),
keras.layers.BatchNormalization(),
keras.layers.Dense(10, activation="softmax")

])

15



2.4 Gradient Clipping

• Mitigates the exploding gradients problem by clipping the gradients 
during backpropagation so that they never exceed some threshold.

• Use it when you observe that the gradients are exploding during 
training. You can track the size of the gradients using TensorBoard.

optimizer = keras.optimizers.SGD(clipvalue=1.0)

model.compile(loss="mse", optimizer=optimizer)

16
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3. Reusing Pretrained Layers

• Transfer Learning: Using 
one NN developed for a 
certain task to solve 
another task.

• Useful to shorten training 
time or with small 
datasets.

18



Transfer Learning with Keras

# Load the ready model

model_A = keras.models.load_model("my_model_A.h5")

# Create a new model using all but the last layer

model_B_on_A = keras.models.Sequential(model_A.layers[:-1])

model_B_on_A.add(keras.layers.Dense(1, activation="sigmoid"))

# Freeze loaded layers then compile

for layer in model_B_on_A.layers[:-1]:

layer.trainable = False

model_B_on_A.compile(loss="binary_crossentropy",

optimizer="sgd", metrics=["accuracy"])

19



Transfer Learning with Keras

# Train the model for a few epochs

history = model_B_on_A.fit(X_train_B, y_train_B, epochs=4,

validation_data=(X_valid_B, y_valid_B))

# Unreeze loaded layers

for layer in model_B_on_A.layers[:-1]:

layer.trainable = True

# Compile with small learning rate (defalut = 1e-2)

optimizer = keras.optimizers.SGD(lr=1e-4)

model_B_on_A.compile(loss="binary_crossentropy",

optimizer=optimizer, metrics=["accuracy"])

20



Transfer Learning with Keras

# Train the model for more epochs

history = model_B_on_A.fit(X_train_B, y_train_B, epochs=16, 

validation_data=(X_valid_B, y_valid_B))

21
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4. Faster Optimizers

• The SGD optimizer can be made faster using momentum 
optimization

23

optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9)

β



4. Faster Optimizers

• Nesterov momentum optimization measures the gradient of the cost 
function not at the local position θ but slightly ahead in the direction 
of the momentum, at θ + βm

24

optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9,
nesterov=True)



4. Faster Optimizers

• The adaptive optimizers such as AdaGrad, RMSProp, Adam, and 
Nadam scale down the gradient vector along the steepest 
dimensions.

25

optimizer = keras.optimizers.RMSprop()
optimizer = keras.optimizers.Adam()



4. Faster Optimizers

• RMSProp, Adam and Nadam often converge fast. But they can give 
poor generalization.

• Solution: Use Nesterov accelerated gradient. 

26

Class Speed Quality

SGD * ***

SGD with momentum, Nestrov ** ***

Adagrad *** *

RMSProp, Adam, Nadam, AdaMax *** ** or ***
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5. Avoiding Overfitting

• Deep neural networks typically have many parameters, giving them 
ability to fit a huge variety of complex datasets.

• Useful regularization techniques:
• Early stopping

• Batch normalization

• ℓ1 and ℓ2 regularization 

• Dropout 

28



5.1  ℓ1 and ℓ2 Regularization 

• Constrain a neural network’s connection weights.

• ℓ1:

• ℓ2:

layer = keras.layers.Dense(100, activation="elu",

kernel_initializer="he_normal",

kernel_regularizer=keras.regularizers.l1(0.01))

# The other regularization functions:

keras.regularizers.l2(0.01)

keras.regularizers.l1_l2(l1=0.01, l2=0.01)

29



5.2 Dropout

• Popular technique to improve accuracy.

• At every training step, every neuron (excluding the output neurons) 
has a probability p of being temporarily dropped out.

30



5.2 Dropout

model = keras.models.Sequential([

keras.layers.Flatten(input_shape=[28, 28]),

keras.layers.Dropout(rate=0.2),

keras.layers.Dense(300, activation="elu",

kernel_initializer="he_normal"),

keras.layers.Dropout(rate=0.2),

keras.layers.Dense(100, activation="elu",

kernel_initializer="he_normal"),

keras.layers.Dropout(rate=0.2),

keras.layers.Dense(10, activation="softmax")

])

31
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6. Summary

• Recommended default DNN configuration

33

Hyperparameter Default value

Kernel initializer He initialization

Activation function ELU

Normalization None if shallow; Batch Norm if 
deep

Regularization Early stopping (+ℓ2 reg. if needed)

Optimizer Momentum optimization (or 
RMSProp or Nadam)

Learning rate schedule 1 cycle



6. Summary

• For a simple stack of dense or CNN layers.

34

Hyperparameter Default value

Kernel initializer LeCun initialization

Activation function SELU

Normalization None (self-normalization)

Regularization Alpha dropout if needed

Optimizer Momentum optimization (or 
RMSProp or Nadam)

Learning rate schedule 1 cycle



7. Exercise
11.8. Practice training a deep neural network on the CIFAR10 image dataset:
a) Build a DNN with 20 hidden layers of 100 neurons each (that’s too many, but it’s the point of 

this exercise). Use He initialization and the ELU activation function.
b) Using Nadam optimization and early stopping, train the network on the CIFAR10 dataset. You 

can load it with keras.datasets.cifar10.load_ data(). The dataset is composed of 60,000 32 ×
32–pixel color images (50,000 for training, 10,000 for testing) with 10 classes, so you’ll need 
a softmax output layer with 10 neurons. Remember to search for the right learning rate each 
time you change the model’s architecture or hyperparameters.

c) Now try adding Batch Normalization and compare the learning curves: Is it converging faster 
than before? Does it produce a better model? How does it affect training speed?

d) Try replacing Batch Normalization with SELU, and make the necessary adjustments to ensure 
the network self-normalizes (i.e., standardize the input features, use LeCun normal 
initialization, make sure the DNN contains only a sequence of dense layers, etc.).

e) Try regularizing the model with alpha dropout. Then, without retraining your model, see if 
you can achieve better accuracy using MC Dropout.

f) Retrain your model using 1cycle scheduling and see if it improves training speed and model 
accuracy.

35
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Introduction

• YouTube Video: Convolutional Neural Networks (CNNs) explained 
from Deeplizard

https://youtu.be/YRhxdVk_sIs

5

https://youtu.be/YRhxdVk_sIs


1. Introduction

• Convolutional neural networks (CNNs) emerged from the study of 
the brain’s visual cortex.

• Many neurons in the visual cortex have a small local receptive field.

6
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2. Convolutional Layer

• Neurons in one layer are not 
connected to every single 
pixel/neuron in the previous 
layer, but only to pixels/neurons 
in their receptive fields.

• This architecture allows the 
network to concentrate on low-
level features in one layer, then 
assemble them into higher-level
features in the next layer.

• Each layer is represented in 2D.

8



2. Convolutional Layer

• fh and fw are the height and 
width of the receptive field.

• Zero padding: In order for a 
layer to have the same height 
and width as the previous layer, 
it is common to add zeros 
around the inputs.

9



2. Convolutional Layer

• It is also possible to connect a large 
input layer to a smaller layer by 
spacing out the receptive fields.

• The distance between two 
consecutive receptive fields is 
called the stride.

• A neuron located in row i, column j
is connected to the neurons in the 
previous layer located in:
• Rows: i × sh to i × sh + fh – 1

• Cols:   j × sw to j × sw + fw – 1

10



2. Convolutional Layer

• Keras supports
• No padding (default)

padding="VALID"

• Zero padding 
padding="SAME"

• Example:
• Input width: 13

• Filter width: 6

• Stride: 5

11

13 / 5 = 3



2. Convolutional Layer

12



2.1 Filters

• A neuron’s weights can be 
represented as a small image the 
size of the receptive field, called 
filters.

• When all neurons in a layer use 
the same line filters, we get the 
feature maps on the top.

13



2.2 Stacking Feature Maps

• In reality, each layer is 3D
composed of several feature maps 
of equal sizes.

• Within one feature map, all 
neurons share the same 
parameters, but different feature 
maps may have different
parameters.

• Once the CNN has learned to 
recognize a pattern in one 
location, it can recognize it in any 
other location.

14



2.3 Mathematical Summary

• zi, j, k is the output of the neuron located in row i, column j in feature 
map k 

• fn′ is the number of feature maps in the previous layer

15



2.4 Memory Requirements

• Convolutional layers require a huge amount of RAM.

• Example: Convolutional layer with 5 × 5 filters, 200 feature maps of 
size 150 × 100, with stride 1 and "same" padding. Input is RGB image 
(three channels).
• Parameters = (5 × 5 × 3 + 1) × 200 = 15,200

• Size of feature maps (single precision) = 200 × 150 × 100 × 4 = 12 MB of RAM

• 1.2 GB of RAM for a mini batch of 100 instances

16
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3. Pooling Layer

• Its goal is to subsample (i.e., shrink) the input image in order to 
reduce the computational load, the memory usage, and the number 
of parameters.

• It aggregates the inputs using max or mean.

18
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4. CNN Architectures

• Stack few convolutional layers (each one generally followed by a 
ReLU layer), then a pooling layer, then another few convolutional 
layers, then another pooling layer, and so on. The image gets smaller 
and smaller, but it also gets deeper and deeper. At the end, a dense
NN is added.

20



4.1 Example – Fashion MNIST
model = keras.models.Sequential([

keras.layers.Conv2D(64, 7, activation="relu", padding="same",
input_shape=[28, 28, 1]),

keras.layers.MaxPooling2D(2),
keras.layers.Conv2D(128, 3, activation="relu", padding="same"),
keras.layers.Conv2D(128, 3, activation="relu", padding="same"),
keras.layers.MaxPooling2D(2),
keras.layers.Conv2D(256, 3, activation="relu", padding="same"),
keras.layers.Conv2D(256, 3, activation="relu", padding="same"),
keras.layers.MaxPooling2D(2),
keras.layers.Flatten(),
keras.layers.Dense(128, activation="relu"),
keras.layers.Dropout(0.5),
keras.layers.Dense(64, activation="relu"),
keras.layers.Dropout(0.5),
keras.layers.Dense(10, activation="softmax")

])

21

Feature maps

Filter size

2×2 window and stride 2



4.1 Example – Fashion MNIST

model.compile(loss="sparse_categorical_crossentropy",

optimizer="nadam", metrics=["accuracy"])

history = model.fit(X_train, y_train, epochs=10,

validation_data=(X_valid, y_valid))

Train on 55000 samples, validate on 5000 samples

Epoch 1/10 55000/55000 [==============================] - 51s 923us/sample - loss: 

0.7183 - accuracy: 0.7529 - val_loss: 0.4029 - val_accuracy: 0.8510 

…

Epoch 10/10

55000/55000 [==============================] - 50s 911us/sample - loss: 0.2561 -

accuracy: 0.9145 - val_loss: 0.2891 - val_accuracy: 0.9036

22



4.1 Example – Fashion MNIST

score = model.evaluate(X_test, y_test)

X_new = X_test[:10] # pretend we have new images

y_pred = model.predict(X_new)

10000/10000 [==============================] - 2s 239us/sample - loss: 

0.2972 - accuracy: 0.8983

23

Can reach 92% with 
more epochs



4.2 ResNet

• Residual Network (or ResNet) won the ILSVRC 2015 challenge.

• Top-5 error rate under 3.6%, using an extremely deep CNN composed 
of 152 layers.

• To train such a deep network, it uses skip connections.

24

Residual Learning



4.2 ResNet

• The network can start making progress even if several layers have not 
started learning yet.

25



4.2 ResNet

• ResNet is a stack of residual units.

26
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5. Using Pretrained Models

• Pretrained networks are readily available from the 
keras.applications package.

• Check https://github.com/keras-team/keras-applications

• You can load the ResNet-50 model, pretrained on ImageNet, with the 
following line of code:
model = keras.applications.resnet50.ResNet50(weights="imagenet")

28
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5. Using Pretrained Models

# Input: 224 × 224-pixel images
images_resized = tf.image.resize(images, [224, 224])

# Preprocess images, should be scaled 0-255
inputs = keras.applications.resnet50.preprocess_input(

images_resized * 255)

Y_proba = model.predict(inputs)

# Get top predictions out of the 1000-class probs.
top_K = keras.applications.resnet50.decode_predictions(Y_proba, top=3)

29



5. Using Pretrained Models

# Print results
for image_index in range(len(images)):

print("Image #{}".format(image_index))
for class_id, name, y_proba in top_K[image_index]:

print(" {} - {:12s} {:.2f}%".format(class_id, name, y_proba * 100))
print()

Image #0
n03877845 - palace 42.87%
n02825657 - bell_cote 40.57%
n03781244 - monastery 14.56%

Image #1
n04522168 - vase 46.83%
n07930864 - cup 7.78%
n11939491 - daisy 4.87%

30

Correct Class
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6. Pretrained Models for Transfer Learning 

• Training a pretrained network (Xception) for a dataset from TFDS 
(https://www.tensorflow.org/datasets).

• tf_flowers: 3670 images, 5 classes
# Load the dataset

import tensorflow_datasets as tfds

dataset, info = tfds.load("tf_flowers",

as_supervised=True, with_info=True)

dataset_size = info.splits["train"].num_examples # 3670

n_classes = info.features["label"].num_classes   # 5

class_names = info.features["label"].names
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6. Pretrained Models for Transfer Learning 

# Relooad the dataset with three splits tf.data.Dataset

test_set_raw, valid_set_raw, train_set_raw = tfds.load(

"tf_flowers", split=["train[:10%]",

"train[10%:25%]", "train[25%:]"],

as_supervised=True)

# Define the preprocessing function

def preprocess(image, label):

resized_image = tf.image.resize(image, [224, 224])

final_image = keras.applications.xception.preprocess_input( 
resized_image)

return final_image, label
33



6. Pretrained Models for Transfer Learning 

# Apply this preprocessing function to the 3 datasets
# Shuffle the training set
# Add batching and prefetching to all the datasets

batch_size = 32

train_set = train_set_raw.shuffle(3000).repeat()

train_set = train_set.map(preprocess).batch(

batch_size).prefetch(1)

valid_set = valid_set_raw.map(preprocess).batch(

batch_size).prefetch(1)

test_set = test_set_raw.map(preprocess).batch(

batch_size).prefetch(1)
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6. Pretrained Models for Transfer Learning 

# Load an Xception model, pretrained on ImageNet
#  excluding the global avg pool. and dense o/p layers

base_model = keras.applications.xception.Xception(

weights="imagenet", include_top=False)

# Add global avg pool. layer based on model output

avg = keras.layers.GlobalAveragePooling2D()(base_model.output)

output = keras.layers.Dense(n_classes, # Add desnse o/p

activation="softmax")(avg)

model = keras.models.Model(inputs=base_model.input,

outputs=output) # Create the Keras Model
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6. Pretrained Models for Transfer Learning 

# Freeze the weights of the pretrained layers

for layer in base_model.layers:

layer.trainable = False

# Compile the model and start training

optimizer = keras.optimizers.SGD(lr=0.2, momentum=0.9,

decay=0.01) # LR=0.2 with scheudle, k=1/0.01

model.compile(loss="sparse_categorical_crossentropy",

optimizer=optimizer, metrics=["accuracy"])

history = model.fit(train_set, epochs=5,

validation_data=valid_set) # Tops at 75–80% acc. 
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6. Pretrained Models for Transfer Learning 

# Unfreeze the weights of the pretrained layers

for layer in base_model.layers:

layer.trainable = True

# Recompile with lower LR and decay

optimizer = keras.optimizers.SGD(lr=0.01, momentum=0.9,

nesterov=True, decay=0.001)

model.compile(loss="sparse_categorical_crossentropy",

optimizer=optimizer, metrics=["accuracy"])

history = model.fit(train_set, epochs=40,

validation_data=valid_set) # Result: 95% acc.
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7. Classification and Localization 

• Localizing an object in a picture can be expressed as a regression task. 

• Predict the horizontal and vertical coordinates of the object’s center and 
its height and width.

39

Common metric: 
the Intersection 
over Union (IoU)



7. Classification and Localization

base_model = keras.applications.xception.Xception(

weights="imagenet", include_top=False)

avg = keras.layers.GlobalAveragePooling2D()(base_model.output)

class_output = keras.layers.Dense(n_classes, activation="softmax")(avg)

loc_output = keras.layers.Dense(4)(avg)

model = keras.Model(inputs=base_model.input,

outputs=[class_output, loc_output])

model.compile(loss=["sparse_categorical_crossentropy "mse"],

loss_weights=[0.8, 0.2], 

optimizer=optimizer, metrics=["accuracy"])
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8. Object detection 

• The task of classifying and localizing multiple objects in an image.

• A slow approach is use a CNN trained to classify and locate a single 
object, then slide it across the image.
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8.1 Fully Convolutional Networks

• FCN has also a convolution 
layer at the output with valid
padding.

• FCN can process images of any
size.

• Example:
• Train the CNN for classification 

and localization on small images, 
10 outputs.

• For larger image, it output 8 × 8 
grid where each cell contains 10 
numbers.
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8.2 You Only Look Once (YOLO)

• YOLO is an extremely fast and accurate object detection architecture.
1. Resizes the input image to 448 × 448

2. Runs a single convolutional network on the image

3. Thresholds the resulting detections by the model’s confidence.
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8.2 You Only Look Once (YOLO)

• Models detection as a regression problem. It divides the image into 
an S × S grid.

45

• For each grid cell 
predicts B bounding 
boxes, confidence for 
those boxes, and C
class probabilities. 
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9. Semantic Segmentation

• Each pixel is classified according to the class of the object it belongs 
to.

• Can use FCN followed by up sampling layers.
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Exercises

14.9. Build your own CNN from scratch and try to achieve the highest 
possible accuracy on MNIST.

14.10. Use transfer learning for large image classification, going 
through these steps:
a) Create a training set containing at least 100 images per class. For example, 

you could classify your own pictures based on the location (beach, 
mountain, city, etc.), or alternatively you can use an existing dataset (e.g., 
from TensorFlow Datasets).

b) Split it into a training set, a validation set, and a test set.
c) Build the input pipeline, including the appropriate preprocessing 

operations, and optionally add data augmentation.
d) Fine-tune a pretrained model on this dataset.
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Reference

• Chapter 15: Processing Sequences Using
RNNs and CNNs

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, 
Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2
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Reference

• Deep Learning with Python, by François Chollet, Manning Pub. 

2018
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Introduction

• YouTube Video: Deep Learning with Tensorflow - The Recurrent 
Neural Network Model from Cognitive Class

https://youtu.be/C0xoB8L8ms0

5
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1. Introduction

• Recurrent neural networks (RNNs) are used to handle time series 
data or sequences.

• Applications:
• Predicting the future (stock prices)

• Autonomous driving systems (predicting trajectories)

• Natural language processing (automatic translation, speech-to-text, or 
sentiment analysis)

• Creativity (music composition, handwriting, drawing)

• Image analysis (image captions)
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2. Recurrent Neurons and Layers

• The figure below shows a recurrent neuron (left), unrolled through 
time (right).
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2. Recurrent Neurons and Layers

• Multiple recurrent neurons can be used in a layer.

• The output of the layer is:
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2. Recurrent Neurons and Layers

• Recurrent neurons have memory (hold state) and are called memory 
cells.

• The state h(t) = f(h(t–1), x(t)), not always ≡ y(t)

10



2. Recurrent Neurons and Layers:
Input and Output Sequences

1. Seq to seq net.: For predicting 
the future.

2. Seq to vector: For analysis, 
e.g., sentiment score.

3. Vector to seq: For image 
captioning.

4. Encoder-decoder:  For 
sequence transcription.

11
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3. Training RNNs

• Training using strategy called 
backpropagation through time
(BPTT).

• Forward pass (dashed)

• Cost function of the not-ignored 
outputs.

• Cost gradients are propagated
backward through the unrolled 
network.
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4. Forecasting a Time Series

• The data is a sequence of one or 
more values per time step.
• Univariate time series

• Multivariate time series

• Forecasting: predicting future 
values
• Forecast the next value

• Forecast N next values
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4.1 Implementing a Simple RNN

# Generate 10,000 time series

n_steps = 50

series = generate_time_series(10000, n_steps + 1)

# Split them 7,000 : 2,000 : 1,000

X_train, y_train = series[:7000, :n_steps], series[:7000, -1]

# (7000, 50, 1), (7000, 1)

X_valid, y_valid = series[7000:9000, :n_steps], series[7000:9000, -1]

X_test, y_test = series[9000:, :n_steps], series[9000:, -1]
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4.1 Implementing a Simple RNN

# Sequential model of one neuron

model = keras.models.Sequential([

keras.layers.SimpleRNN(1, input_shape=[None, 1])

])

optimizer = keras.optimizers.Adam(lr=0.005)

model.compile(loss="mse", optimizer=optimizer)

history = model.fit(X_train, y_train, epochs=20,

validation_data=(X_valid, y_valid))

model.evaluate(X_valid, y_valid) # MSE = 0.011, Dense achieves 0.004

17

Uses tanh
activation ht = yt



4.2 Deep RNNs
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4.2 Deep RNNs

# Sequential model of two hidden RNN layers

model = keras.models.Sequential([

keras.layers.SimpleRNN(20,

return_sequences=True, # output all steps

input_shape=[None, 1]),

keras.layers.SimpleRNN(20),

keras.layers.Dense(1)

])

# MSE = 0.0026
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4.3 Forecasting Several Time Steps Ahead

• Can train an RNN to predict all N next values at once (sequence-to-
vector model).

• The output layer should have N neurons.
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4.3 Forecasting Several Time Steps Ahead

# Generate 10,000 time series with 10 steps ahead

series = generate_time_series(10000, n_steps + 10)

# Split them 7,000 : 2,000 : 1,000

X_train, y_train = series[:7000, :n_steps],

series[:7000, -10:, 0] #(7000, 50, 1), (7000,10)

X_valid, y_valid = series[7000:9000, :n_steps],

series[7000:9000, -10:, 0]

X_test, y_test = series[9000:, :n_steps],

series[9000:, -10:, 0]
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4.3 Forecasting Several Time Steps Ahead

# Sequential model of two hidden RNN layers

model = keras.models.Sequential([

keras.layers.SimpleRNN(20, return_sequences=True,

input_shape=[None, 1]),

keras.layers.SimpleRNN(20),

keras.layers.Dense(10)

])

# MSE = 0.008
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5. Handling Long Sequences

• Training long sequences has two major challenges:
• Unstable gradients
• Forgetting the first inputs in the sequence

• For the unstable gradients:
• Does not help: ReLU activation, batch normalization
• Helps: good parameter initialization, faster optimizers, dropout

model = Sequential()

model.add(layers.SimpleRNN(20, dropout=0.2, recurrent_dropout=0.2, 
input_shape=[None, 1]))

model.add(layers.Dense(1))

24

To fight overfitting and 
unstable gradients



5. Handling Long Sequences

• To solve the short-term memory problem, use
• LSTM cell

• GRU cell

• These cells can be used in place of SimpleRNN

25



5.1 LSTM Cell

• The Long Short-Term Memory 
(LSTM) cell was proposed in 
1997.

• Training converges faster and it 
detects long-term dependencies 
in the data.

• h(t) as the short-term state and 
c(t) as the long-term state.

26
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5.2 GRU Cell

• The Gated Recurrent Unit (GRU) 
cell was proposed in 2014.

• Simplified version of the LSTM 
cell, performs just as well.

• A single gate controls the forget 
gate and the input gate.

27

model.add(GRU(20))



6. Exercises

15.1. Can you think of a few applications for a sequence-to-sequence RNN? What 
about a sequence-to-vector RNN, and a vector-to-sequence RNN?

15.2. How many dimensions must the inputs of an RNN layer have? What does 
each dimension represent? What about its outputs?

15.3. If you want to build a deep sequence-to-sequence RNN, which RNN layers 
should have return_sequences=True? What about a sequence-to-vector RNN?

15.4. Suppose you have a daily univariate time series, and you want to forecast the 
next seven days. Which RNN architecture should you use?

15.5. What are the main difficulties when training RNNs? How can you handle 
them?

15.6. Can you sketch the LSTM cell’s architecture?

28



Summary

1. Introduction

2. Recurrent neurons and layers

3. Training RNNs

4. Forecasting a time series
1. Implementing a simple RNN
2. Deep RNNs
3. Forecasting Several Time Steps Ahead

5. Handling long sequences
1. LSTM cell
2. GRU cell

6. Exercises

29



Reinforcement Learning

Prof. Gheith Abandah

1



Reference

• Chapter 18: Reinforcement Learning

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn, 
Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2
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Introduction

• YouTube Video: An introduction to Reinforcement Learning from 
Arxiv Insights

https://youtu.be/JgvyzIkgxF0

4
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1. Introduction – History

• RL started in 1950s

• 1992: IBM’s TD-Gammon, a Backgammon 
playing program.

• 2013: DeepMind demonstrated a system that 
learns to play Atari games from scratch.

• Use deep learning with raw pixels as inputs 
and without any prior knowledge of the rules 
of the games.

• 2014: Google bought DeepMind for $500M.

• 2016: AlphaGo beats Lee Sedol.
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1. Introduction – Definition 

• In Reinforcement Learning, a software agent makes observations and 
takes actions within an environment, and in return it receives 
rewards.

• Its objective is to learn to act in a way that will maximize its expected 
long-term rewards.

• In short, the agent acts in the environment and learns by trial and 
error to maximize its pleasure and minimize its pain.

6



1. Introduction – Examples

7

(a) robotics
(b) Ms. Pac-Man 
(c) Go player
(d) thermostat 
(e) automatic
trader
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2. Policy Search
• The algorithm used by the software agent to determine its actions is 

called its policy.

• The policy can be deterministic or stochastic.

• Policy search techniques: Brute force, Genetic algorithm, Policy 
Gradient (PG), Q-Learning.
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3. OpenAI Gym
• OpenAI Gym is a toolkit that provides simulated environments (Atari 

games, board games, 2D and 3D physical simulations, …).

• OpenAI is a nonprofit AI research company funded in part by Elon 
Musk. Got $1 billion investment from Microsoft.

>>> import gym

>>> env = gym.make("CartPole-v1")

>>> obs = env.reset()

>>> obs

array([-0.012586, -0.001566, 0.042077, -0.001805])

11

Cart position, cart speed, 
pole angle, pole velocity



3. OpenAI Gym

• render() can also return the rendered image as a NumPy array.

>>> img = env.render(mode="rgb_array")

>>> img.shape # height, width, channels (3 = RGB)

(800, 1200, 3)

12



3. Balancing the pole

>>> action = 1 # accelerate right

>>> obs, reward, done, info = env.step(action)

>>> obs

array([-0.012617, 0.192928, 0.042041, -0.280921])

>>> reward

1.0

>>> done

False

>>> info

{} 13

The possible actions are integers 0 
and 1, which represent accelerating 

left (0) or right (1).



3. Balancing the pole

def basic_policy(obs):
angle = obs[2]
return 0 if angle < 0 else 1

totals = []
for episode in range(500):

episode_rewards = 0
obs = env.reset()
for step in range(200):

action = basic_policy(obs)
obs, reward, done, info = env.step(action)
episode_rewards += reward
if done:

break
totals.append(episode_rewards)

14

Accelerates left when 
the pole is leaning left 
and accelerates right 

when the pole is 
leaning right.



3. Balancing the pole

• Even with 500 tries, this policy never managed to keep the pole upright 
for more than 68 consecutive steps.

>>> import numpy as np

>>> np.mean(totals), np.std(totals), np.min(totals),

np.max(totals)

(41.718, 8.858356280936096, 24.0, 68.0)
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4. Neural Network Policies

• Takes an observation as input, 
and outputs the probability for 
each action

• We select an action randomly, 
according to the estimated 
probabilities.

• Explore and exploit

17



4. Neural Network Policy in Keras

# Building a polity network is easy

import tensorflow as tf

from tensorflow import keras

n_inputs = 4 # == env.observation_space.shape[0]

model = keras.models.Sequential([

keras.layers.Dense(5, activation="elu", 

input_shape=[n_inputs]),

keras.layers.Dense(1, activation="sigmoid"),

])

# Training it is something else

18
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5. The Credit Assignment Problem

• Rewards are typically sparse and 
delayed.

• Credit assignment problem: 
when the agent gets a reward, it 
is hard for it to know which 
actions should get credited (or 
blamed) for it.

• Evaluate an action based on the 
sum of all the rewards that come 
after it, usually applying a 
discount rate  at each step.
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6. Q-Learning

• Reference: Keon Kim, Deep Q-Learning with Keras and Gym, 
https://keon.io/deep-q-learning/

• Deep reinforcement learning (deep Q-learning) example to play a CartPole
game using Keras and Gym.

• Google’s DeepMind published Playing Atari with Deep Reinforcement 
Learning where they introduced the algorithm Deep Q Network (DQN) in 
2013.

• In DQN, the quality function Q is used to approximate the reward based on 
a state. Q(s,a) calculates the expected future value from state s and 
action a.

• A neural network is used to approximate the reward based on the state.

22

https://keon.io/deep-q-learning/
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6. Q-Learning

• Carry out an action a, and observe the reward r and resulting new state s’.

• Calculate the maximum target Q and then discount it so that the future reward is 
worth less than immediate reward by .

• Add the current reward to the discounted future reward to get the target value.

• Subtracting our current prediction from the target gives the loss.

• Squaring this value allows us to punish the large loss value more and treat the 
negative values same as the positive values.
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6. DQN – Imports and Definitions

import random

import gym

import numpy as np

from collections import deque

from keras.models import Sequential

from keras.layers import Dense

from keras.optimizers import Adam

EPISODES = 5000

24



6. DQN – Agent Class  (1/4)

class DQNAgent:

def __init__(self, state_size, action_size):

self.state_size = state_size

self.action_size = action_size

self.memory = deque(maxlen=2000)

self.gamma = 0.95    # discount rate

self.epsilon = 1.0  # exploration rate

self.epsilon_min = 0.01 # min exploration rate

self.epsilon_decay = 0.995

self.learning_rate = 0.001

self.model = self._build_model()

25



6. DQN – Agent Class (2/4)

def _build_model(self):

model = Sequential()

model.add(Dense(24, input_dim=self.state_size, 
activation='relu'))

model.add(Dense(24, activation='relu'))

model.add(Dense(self.action_size, activation='linear'))

model.compile(loss='mse',                      
optimizer=Adam(lr=self.learning_rate))

return model

26
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6. DQN – Agent Class (3/4)

def remember(self, state, action, reward, next_state, done):

# Queue of previous experiences to re-train the model

self.memory.append((state, action, reward, next_state, done))

def act(self, state):

# Returns an action randomly or from the model

if np.random.rand() <= self.epsilon:

return random.randrange(self.action_size)

act_values = self.model.predict(state)

return np.argmax(act_values[0])
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6. DQN – Agent Class (4/4)

def replay(self, batch_size):

minibatch = random.sample(self.memory, batch_size)

for state, action, reward, next_state, done in
minibatch:

target = reward

if not done:

target = (reward + self.gamma * np.max( 
self.model.predict(next_state)[0]))

target_f = self.model.predict(state)

target_f[0][action] = target

self.model.fit(state, target_f, epochs=1, 
verbose=0)

if self.epsilon > self.epsilon_min:

self.epsilon *= self.epsilon_decay
28

Learn to predict 
the reward

Replay() 

trains the neural 
net with 
experiences in 
the memory



6. DQN – Setup

if __name__ == "__main__":

env = gym.make('CartPole-v1')

state_size = env.observation_space.shape[0] # 4

action_size = env.action_space.n            # 2

agent = DQNAgent(state_size, action_size)

done = False

batch_size = 32
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6. DQN – Training
for e in range(EPISODES):

state = env.reset()
state = np.reshape(state, [1, state_size])
for time in range(5000):

action = agent.act(state)
next_state, reward, done, _ = env.step(action)
reward = reward if not done else -10
next_state = np.reshape(next_state, [1, state_size])
agent.remember(state, action, reward, next_state, done)
state = next_state
if done:

print("episode: {}/{}, score: {}"
.format(e, EPISODES, time))

break
if len(agent.memory) > batch_size:

agent.replay(batch_size)
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6. DQN – Results
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Exercises

18.1. How would you define Reinforcement Learning? How is it different from 
regular supervised or unsupervised learning?

18.2. Can you think of three possible applications of RL that were not mentioned in 
this chapter?

18.For each of them, what is the environment? What is the agent? What are some 
possible actions? What are the rewards?

18.3. What is the discount factor? Can the optimal policy change if you modify the 
discount factor?

18.4. How do you measure the performance of a Reinforcement Learning agent?
18.5. What is the credit assignment problem? When does it occur? How can you 

alleviate it?
18.6. What is the point of using a replay buffer?
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Summary

1. Introduction

2. Policy Search

3. OpenAI Gym
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6. Q-Learning

7. Exercises
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1. Introduction

• YouTube Video: Recommendation Systems - Learn Python for Data 
Science #3 by Siraj Raval

https://youtu.be/9gBC9R-msAk

3
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1. Introduction

• A Recommender System predicts the likelihood that a user would 
prefer an item and it recommends items to the user.

• Examples
• Facebook — “People You May Know”

• Netflix — “Other Movies You May Enjoy”

• LinkedIn — “Jobs You May Be Interested In”

• Amazon — “Customer who bought this item also bought …”

• Google — “Visually Similar Images”

• YouTube — “Recommended Videos”
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1. Introduction

• Recommender System Types
1. A collaborative filtering algorithm works by finding a set of people with 

preferences or tastes similar to the target user. Using this smaller set of 
“similar” people, it constructs a ranked list of suggestions.

2. Content-based filtering is based on a description of the item and a profile 
of the user’s preferences to recommend items that are similar to those that 
a user liked.

3. Hybrid

5



2. The MovieLens DataSet

• 100,000 ratings (1-5) from 943 users on 1682 movies.

• Includes users data and ratings data

6
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3. Similarity Scores

1. Euclidean score (Euclidean distance, lower is better)

𝑑 𝒙, 𝒚 = 

𝑖=1

𝑛

𝑥𝑖 − 𝑦𝑖
2

2. Pearson score (1 is best)
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4. Building a Collaborative Recommendation 
System

1. Function to recommend movies for a user

2. For each other user:
1. Find the Pearson score of commonly rated movies, ignoring dissimilar 

users.

2. Extract a list of movies that have been rated by this user but haven't been
rated by the input user.

3. For each item in this list, keep a track of the weighted rating based on the 
similarity score.

3. Finally, sort the scores and extract the movie recommendations.
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4. Building a Collaborative Recommendation 
System

# Get movie recommendations for the input user
# Assume the input user is in the dataset
#  and there is at lease one recommendation
def get_recommendations(dataset, input_user): # 1

overall_scores = {}
similarity_scores = {}
for user in [x for x in dataset if x != input_user]:

similarity_score = pearson_score(dataset, input_user,
user) # 2.1

if similarity_score <= 0:
continue # 2.1

filtered_list = [x for x in dataset[user] if x not in
dataset[input_user] or dataset[input_user][x] == 0]

for item in filtered_list:
overall_scores.update({item: dataset[user][item]

* similarity_score}) 9

2.2

2.3



4. Building a Collaborative Recommendation 
System

# Generate movie ranks
movie_scores = np.array([[score, item] for item, score in

overall_scores.items()])

# Sort in decreasing order
movie_scores = movie_scores[

np.argsort(movie_scores[:, 0])[::-1]]

# Extract the movie recommendations
movie_recommendations = [movie for _, movie in

movie_scores]

return movie_recommendations

10
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5. Open Source Python Packages

• LightFM

• GraphLab

• Crab

• Surprise

• Python Recsys

• MRec

11

https://github.com/lyst/lightfm
https://www.analyticsvidhya.com/blog/2015/12/started-graphlab-python/
http://muricoca.github.io/crab/
https://github.com/NicolasHug/Surprise
https://github.com/ocelma/python-recsys
https://github.com/Mendeley/mrec
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