
Prof. Gheith Abandah

Computer Engineering, The University of Jordan

Dec 24, 2020

University of Bahrain, College of Engineering, Postgraduate Studies Forum

Artificial Intelligence and

Machine Learning Applications

Outline

• Introduction to Artificial Intelligence and Machine Learning

• Achievements of Contemporary Artificial Intelligence

• Limitations of Contemporary Artificial Intelligence

• AI Future

2

Introduction

• Intelligence Ability to accomplish complex goals

• Artificial Intelligence (AI) Non-biological intelligence

• Narrow Intelligence Ability to accomplish a narrow set of goals,

e.g., play chess or drive a car

3

Introduction

• General Intelligence Ability to accomplish virtually any goal,

including learning

• Many large companies and researchers are currently investigating

developing General AI

• Artificial Super Intelligence (ASI) General Intelligence far beyond

human level

4

• Machine Learning (ML)

Algorithms whose

performance improve as they

are exposed to more data

• Deep Learning (DL)

Subset of ML using multi-

layer neural networks that

learn from huge data

Introduction

5

Introduction

• Machine Learning Types

1. Supervised Learning

2. Unsupervised Learning

3. Reinforcement Learning

6

Outline

• Introduction to Artificial Intelligence and Machine Learning

• Achievements of Contemporary Artificial Intelligence

• Limitations of Contemporary Artificial Intelligence

• AI Future

7

Achievements of Contemporary AI

• Important AI Milestones

8

1997: IBM Deep Blue Beets Kasparov

9

2006: Hinton et al. Train a Deep

Neural Network

10

11

2006: Hinton et al. Train a Deep

Neural Network

2011: IBM Watson Wins Jeopardy

12

• Large scale visual

recognition challenge

• 1000 classes

• 1.2 million images

2015: DL Beats Humans in ImageNet

13

14

Human Level = 5%

2016: DeepMind AlphaGo Beats Sedol

15

2017: Google Waymo Reaches Full

Self-Driving Capability

16

Autonomous Vehicles are Saver

17

Achievements of Contemporary AI

1. Recognizes our voices and photos

2. Recommends who to friend and what to watch and read

3. Helps us in searching and retrieving information

4. Translates natural languages

5. Drives vehicles

6. Secures our cities, systems and detects violations

18

7. Provides cheaper solutions with

acceptable qualities

8. Provides trained models we can

download and use

9. Allows transfer learning where

a model trained for one task

can be retrained to solve a

different similar task

Achievements of Contemporary AI

19

Outline

• Introduction to Artificial Intelligence and Machine Learning

• Achievements of Contemporary Artificial Intelligence

• Limitations of Contemporary Artificial Intelligence

• AI Future

20

Limitations of Contemporary AI

1. Contemporary AI is narrow AI

2. Deep learning requires huge datasets

3. Deep learning takes long training times

4. Deep learning needs powerful processors and computation

accelerators

21

Nvidia GA100 GPU: 826 mm2 chip, 54 billion transistors, 108 SM,

6,912 FP32 CUDA cores, 40 GB memory

22

Outline

• Introduction to Artificial Intelligence and Machine Learning

• Achievements of Contemporary Artificial Intelligence

• Limitations of Contemporary Artificial Intelligence

• AI Future

23

Why AI is Succeeding Now?

1. Data Availability

2. Improved ML Algorithms

3. Fast Processors

24

AI Will Continue to Succeed

1. More data will be available for machine learning

25

Digital Content Doubles Every Two

Years

26

AI Will Continue to Succeed

1. More data will be available for machine learning

2. Better algorithms and AI applications will continue to develop

27

Global AI Software Market

28

AI Will Continue to Succeed

1. More data will be available for machine learning

2. Better algorithms and AI applications will continue to develop

3. Computers will continue to get faster

29

Perf. Improves 100x every 10 years

30

To where we are heading?

• Continued AI development will lead to Singularity

31

Summary

• Introduction to Artificial Intelligence and Machine Learning

• Achievements of Contemporary Artificial Intelligence

• Limitations of Contemporary Artificial Intelligence

• AI Future

32

Thank You

• Email abandah@ju.edu.jo

• Facebook gheith.abandah

• Twitter @abandah

• LinkedIn gheith-abandah

• Website http://www.abandah.com/gheith

33

mailto:abandah@ju.edu.jo
https://www.facebook.com/gheith.abandah
https://twitter.com/abandah
https://www.linkedin.com/in/gheith-abandah/
http://www.abandah.com/gheith

Introduction to Artificial
Intelligence (AI)

Prof. Gheith Abandah

1

Reference

• Chapter 1: Introduction to AI

• Prateek Joshi, Artificial Intelligence with Python, Packt, 2017
• Material: https://github.com/PacktPublishing/Artificial-

Intelligence-with-Python

2

https://github.com/PacktPublishing/Artificial-Intelligence-with-Python

Outline

• What is AI?
• Why do we need to study AI?
• Applications of AI
• Branches of AI
• Defining intelligence using Turing Test
• Making machines think like humans
• Building rational agents
• General problem solver
• Building an intelligent agent
• Summary

3

What is Artificial Intelligence?

• Artificial Intelligence (AI) is a way to make machines think and
behave intelligently.

• Intelligent programs

• We want the machines to sense, reason, think, and act.

• We want our machines to be rational too.

• AI is closely related to the study of human brain.

• By mimicking the way the human brain learns, thinks, and acts, we
can build a machine that can do the same.

4

Why do we need to study AI?

• AI can impact every aspect of our lives.

• AI is producing spectacular products such as self-driving cars and
intelligent robots that can walk.

• We need AI systems that can:
• Handle large amounts of data in an efficient way.

• Ingest data simultaneously from multiple sources without any lag.

• Index and organize data in a way that allows us to derive insights.

• Learn from new data and update constantly using the right learning
algorithms.

• Think and respond to situations based on the conditions in real time.

5

Applications of AI

1. Computer Vision

2. Natural Language Processing

3. Speech Recognition

4. Expert Systems

6

Applications of AI

5. Games

6. Robotics

7

Branches of AI

1. Machine learning and pattern
recognition

2. Logic-based AI

3. Search

4. Knowledge representation

5. Planning

6. Heuristics

7. Genetic programming

8

Outline

• What is AI?
• Why do we need to study AI?
• Applications of AI
• Branches of AI
• Defining intelligence using Turing Test
• Making machines think like humans
• Building rational agents
• General problem solver
• Building an intelligent agent
• Summary

9

Defining intelligence using Turing Test

• Alan Turing defined intelligent
behavior as the ability to achieve
human-level intelligence during
a text conversation.

• Difficult test, need:
• Natural language processing

• Knowledge representation

• Reasoning

• Machine learning

10

Making machines think like humans

• We need first to understand how humans think.

• Cognitive Modeling is a field of computer science that deals with
simulating the human thinking process.

• Cognitive modeling is used in a variety of AI applications such as:
• Deep learning

• Expert systems

• Natural language processing

• Robotics

11

Building rational agents

• Rationality refers to doing the right thing
in a given circumstance.

• An agent is said to act rationally if, given a
set of rules, it takes actions to achieve its
goals.

• Example AI: to design robots that can
navigate unknown terrains.

• The performance depends on what
percentage of that task is complete.

12

General Problem Solver
• The General Problem Solver (GPS) is an AI program intended to solve

any general problem using the same base algorithm.

• Uses a language called Information Processing Language (IPL) to
express any problem with a set of well-formed formulas.

• These formulas are part of a directed graph with multiple sources
and sinks.
• The sources refer to axioms
• The sinks refer to the conclusions

• Can solve well-defined problems, such as proving mathematical
theorems in geometry and logic.

• Fails in the real world because of the number of possible paths you
can take.

13

Building an intelligent agent

• Ways to impart intelligence to
an agent:
• Machine learning

• Stored knowledge

• Rules

• Types of Models
• Learned models

• Analytical models

14

Summary

• What is AI?
• Why do we need to study AI?
• Applications of AI
• Branches of AI
• Defining intelligence using Turing Test
• Making machines think like humans
• Building rational agents
• General problem solver
• Building an intelligent agent
• Summary

15

Machine Learning
Introduction

Prof. Gheith Abandah

1

Reference

• Chapter 1: The Machine Learning Landscape

• Aurélien Géron, Hands-On Machine Learning with Scikit-
Learn, Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2

2

https://github.com/ageron/handson-ml2

Outline

• The Machine Learning Tsunami

• What Is Machine Learning?

• Why Use Machine Learning?

• Types of Machine Learning Systems

• Main Challenges of Machine Learning

• Testing and Validating

• Summary

• Exercises

3

The Machine Learning Tsunami

• YouTube Video: From Artificial Intelligence to Superintelligence: Nick
Bostrom on AI & The Future of Humanity From Science Time

https://youtu.be/Kktn6BPg1sI

4

https://youtu.be/Kktn6BPg1sI

The Machine Learning Tsunami

• In 2006, Geoffrey Hinton et al. published a paper showing how to
train a deep neural network capable of recognizing handwritten
digits with state-of-the-art precision (>98%). They branded this
technique Deep Learning.

• Training a deep neural net was widely considered impossible at the
time, and most researchers had abandoned the idea since the 1990s.

• Fast-forward 10 years and ML has conquered the industry: it is now
at the heart of much of the magic in today’s high-tech products.

5

Outline

The Machine Learning Tsunami

• What Is Machine Learning?

• Why Use Machine Learning?

• Types of Machine Learning Systems

• Main Challenges of Machine Learning

• Testing and Validating

• Summary

• Exercises

6

What Is Machine Learning?

• YouTube Video: What is Machine Learning? from Google Cloud
Platform

https://youtu.be/HcqpanDadyQ

7

https://youtu.be/HcqpanDadyQ

What Is Machine Learning?

• The science (and art) of programming computers so they can learn
from data.

• The field of study that gives computers the ability to learn without
being explicitly programmed. Arthur Samuel, 1959

• A computer program is said to learn from experience E with respect
to some task T and some performance measure P, if its performance
on T, as measured by P, improves with experience E. Tom Mitchell,
1997
• E: Training set made of training instances (samples)
• T: Test set
• P: Such as accuracy

8

Outline

The Machine Learning Tsunami

What Is Machine Learning?

• Why Use Machine Learning?

• Types of Machine Learning Systems

• Main Challenges of Machine Learning

• Testing and Validating

• Summary

• Exercises

9

Why Use Machine Learning?
Spam filter using traditional programming techniques

10

Why Use Machine Learning?
Spam filter using machine learning techniques 1/2

11

Why Use Machine Learning?
Automatically adapting to change 2/2

12

Why Use Machine Learning?
ML can help humans learn (Data mining)

13

Outline

The Machine Learning Tsunami

What Is Machine Learning?

Why Use Machine Learning?

• Types of Machine Learning Systems

• Main Challenges of Machine Learning

• Testing and Validating

• Summary

• Exercises

14

Types of Machine Learning Systems

• Involves human supervision?
1. Supervised learning

2. Unsupervised learning

3. Semi-supervised learning

4. Reinforcement learning

• Learns incrementally?
1. Batch learning

2. Online learning

• Generalization approach
1. Instance-based learning

2. Model-based learning

15

1. Supervised Learning

16

The training data you feed to the algorithm includes the desired solutions,

called labels

Classification: finds the class, e.g., email type (spam or ham)

1. Supervised Learning

17

Regression: finds the value, e.g., car price

1. Supervised learning algorithms

Algorithm Type

k-Nearest Neighbors Both

Linear Regression Regression

Logistic Regression Classification

Support Vector Machines (SVMs) Both

Decision Trees Both

Random Forests Both

Neural Networks Both

18

2. Unsupervised Learning

19

The training data is unlabeled.

2. Unsupervised learning algorithms

• Clustering
• k-Means
• Hierarchical Cluster Analysis (HCA)
• Expectation Maximization

• Visualization and dimensionality reduction
• Principal Component Analysis (PCA)
• Kernel PCA
• Locally-Linear Embedding (LLE)
• t-distributed Stochastic Neighbor Embedding (t-SNE)

• Association rule learning
• Apriori
• Eclat

20

2.a Clustering

21

2.b Visualization

22

2.c Dimensionality Reduction

• The goal is to simplify the data without losing too much information.

• One way to do this is to merge several correlated features into one.
For example, a car’s mileage may be very correlated with its age, so
the dimensionality reduction algorithm will merge them into one
feature that represents the car’s wear and tear.

• Also called feature extraction.

23

2.d Anomaly Detection

24

2.e Association Rule Learning

• The goal is to dig into large amounts of data and discover interesting
relations between attributes.

• For example, suppose you own a supermarket. Running an
association rule on your sales logs may reveal that people who
purchase barbecue sauce and potato chips also tend to buy steak.
Thus, you may want to place these items close to each other.

25

3. Semi-supervised Learning

26

Partially labeled training data, usually a lot of unlabeled data and
a little bit of labeled data. E.g., Google Photos.

4. Reinforcement Learning

27

Types of Machine Learning Systems

Involves human supervision?
1. Supervised learning

2. Unsupervised learning

3. Semi-supervised learning

4. Reinforcement learning

• Learns incrementally?
1. Batch learning

2. Online learning

• Generalization approach
1. Instance-based learning

2. Model-based learning

28

1. Batch (offline) Learning

• Must be trained using all the available data.

• This will generally take a lot of time and computing resources, so it is
typically done offline.

• First the system is trained, and then it is launched into production
and runs without learning anymore; it just applies what it has
learned.

29

2. Online Learning
Examples: Stock prices, huge data

30

Types of Machine Learning Systems

Involves human supervision?
1. Supervised learning

2. Unsupervised learning

3. Semi-supervised learning

4. Reinforcement learning

Learns incrementally?
1. Batch learning

2. Online learning

• Generalization approach
1. Instance-based learning

2. Model-based learning

31

1. Instance-based Learning

32

2. Model-based Learning

33

Outline

The Machine Learning Tsunami

What Is Machine Learning?

Why Use Machine Learning?

Types of Machine Learning Systems

• Main Challenges of Machine Learning

• Testing and Validating

• Summary

• Exercises

34

Main Challenges of Machine Learning (due
to bad data)
1. Insufficient quantity of training data

2. Non-representative training data

35

Main Challenges of Machine Learning (due
to bad data)
3. Poor-quality data that contains:

• Errors

• Outliers

• Noise

4. Irrelevant features: Need feature engineering:
• Feature selection: selecting the most useful features.

• Feature extraction: combining existing features to produce a more useful
one.

• Creating new features by gathering new data.

36

Main Challenges of Machine Learning (due
to bad algorithm)
1. Overfitting the training data

• Regularization constrains the model’s hyperparameters to make it simpler
and reduce the risk of overfitting.

37

Main Challenges of Machine Learning (due
to bad algorithm)
2. Under-fitting the training data

38

Outline

The Machine Learning Tsunami

What Is Machine Learning?

Why Use Machine Learning?

Types of Machine Learning Systems

Main Challenges of Machine Learning

• Testing and Validating

• Summary

• Exercises

39

Testing and Validating

• Split your data into two sets (cross validation):
• The training set (80%)

• The test set (20%)

• Evaluate:
• The training error

• The generalization error

• If the training error is low but the generalization error is high, it
means that your model is overfitting the training data.

• When the ML algorithm is iterative, often we use a third set:
validation set.

40

Cross Validation

• In k-fold cross-validation, the original sample is randomly partitioned
into k equal size subsamples.

41

Summary

• ML is about making machines get better at some task by learning from data,
instead of having to explicitly code rules.

• Types of ML systems: supervised or not, batch or online, and instance-based or
model-based.

• A model-based algorithm tunes some parameters to fit the model to the training
set, and then hopefully it will be able to make good predictions on new cases.

• An instance-based algorithm learns the examples by heart and uses a similarity
measure to generalize to new instances.

• The system will not perform well if your training set is too small, not
representative, noisy, or polluted with irrelevant features.

• Your model needs to be neither too simple (under-fit) nor too complex (over-fit).

42

Exercises

• How would you define Machine Learning?
• What is a labeled training set?
• Can you name four common unsupervised tasks?
• What type of Machine Learning algorithm would you use to allow a robot to walk

in various unknown terrains?
• What type of algorithm would you use to segment your customers into multiple

groups?
• What is an online learning system?
• What is the difference between a model parameter and a learning algorithm’s

hyperparameter?
• If your model performs great on the training data but generalizes poorly to new

instances, what is happening? Can you name three possible solutions?
• What is the purpose of a validation set? 43

End-to-End Machine
Learning Project

Prof. Gheith Abandah

1

Reference

• Chapter 2: End-to-End Machine Learning
Project

• Aurélien Géron, Hands-On Machine Learning with Scikit-
Learn, Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2

2

https://github.com/ageron/handson-ml2

The 7 Steps of Machine Learning

• YouTube Video: The 7 Steps of Machine Learning from Google Cloud
Platform

https://youtu.be/nKW8Ndu7Mjw

Caution: Alcohol is forbidden in the Islamic religion and causes addiction and has
negative effects on health.

3

https://youtu.be/nKW8Ndu7Mjw

Outline

1. Look at the big picture

2. Get the data

3. Discover and visualize the data to gain insights

4. Prepare the data for Machine Learning algorithms

5. Select a model and train it

6. Fine-tune your model

7. Present your solution

8. Launch, monitor, and maintain your system

9. Exercises

4

Working with Real Data

• Popular open data repositories:
• Tensorflow Datasets (GitHub)
• UC Irvine Machine Learning

Repository
• Kaggle datasets
• Amazon’s AWS datasets
• IEEE DataPort

• Meta portals (they list open data
repositories):
• Google Dataset Search
• http://dataportals.org/
• http://opendatamonitor.eu/
• http://quandl.com/

• Other pages listing many popular
open data repositories:
• Wikipedia’s list of Machine Learning

datasets
• Quora.com question
• Datasets subreddit

5

https://www.tensorflow.org/datasets
https://github.com/tensorflow/datasets
http://archive.ics.uci.edu/ml/index.php
https://www.kaggle.com/datasets
https://aws.amazon.com/fr/datasets/
https://ieee-dataport.org/
https://datasetsearch.research.google.com/
http://dataportals.org/
http://opendatamonitor.eu/
http://quandl.com/
https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research
https://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public
https://www.reddit.com/r/datasets/

1. Look at the Big Picture: CA Housing Data

6

1.1. Frame the Problem

7

Is it supervised, unsupervised, or Reinforcement Learning?
Is it a classification task, a regression task, or something else? Should
you use batch learning or online learning techniques?
Instance-based or Model-based learning?

1.1. Frame the Problem

8

Is it supervised, unsupervised, or Reinforcement Learning?
Is it a classification task, a regression task, or something else? Should
you use batch learning or online learning techniques?
Instance-based or Model-based learning?

1.2. Select a Performance Measure

• Root Mean Square Error (RMSE)

• m is the number of samples

• x(i) is the feature vector of Sample i

• y(i) is the label or desired output

• X is a matrix containing all the feature
values

9

1.2. Select a Performance Measure

• Mean Absolute Error

• MAE is better than RMSE when there are outlier samples.

10

Outline

1. Look at the big picture

2. Get the data

3. Discover and visualize the data to gain insights

4. Prepare the data for Machine Learning algorithms

5. Select a model and train it

6. Fine-tune your model

7. Present your solution

8. Launch, monitor, and maintain your system

9. Exercises

11

2. Get the Data

• If you didn’t do it before, it is time now to download the Jupyter
notebooks of the textbook from

https://github.com/ageron/handson-ml2

• Start Jupyter notebook and open Chapter 2 notebook.

• Hint: If you get kernel connection problem, try

C:\>jupyter notebook –port 8889

• The following slides summarize the code used in this notebook.

12

https://github.com/ageron/handson-ml2
https://github.com/ageron/handson-ml2/blob/master/02_end_to_end_machine_learning_project.ipynb

2. Get the Data

1. Download the housing.tgz file from Github using
urllib.request.urlretrieve() from the urllib package

2. Extract the data from this compressed tar file using tarfile.open()
and extractall(). The data will be in the CSV file housing.csv

3. Read the CSV file into a Pandas DataFrame called housing using
pandas.read_csv()

13

2.1. Take a Quick Look at the Data Structure

• Display the top five rows using the DataFrame’s head() method

• The info() method is useful to get a quick description of the data

• To find categories and repetitions of some column use
housing.['key'].value_counts()

• The describe() method shows a summary of the numerical
attributes.

• Show histogram using the hist() method and
matplotlib.pyplot.show()

14

15

207 missing
features

2.2. Create a Test Set

• Split the available data randomly to:
• Training set (80%)
• Test set (20%)

• The example defines a function called split_train_test() for
illustration.

• Scikit-Learn has train_test_split().

• Scikit-Learn also has StratifiedShuffleSplit() that does stratified
sampling.

• Stratification ensures that the test samples are representative of the
target categories.

16

2.2.1. Create a Test Set: User-defined
function

17

2.2.2. Create a Test Set: Using Scikit-Learn
functions

18

Stratification is usually
done on the target class.

Outline

1. Look at the big picture

2. Get the data

3. Discover and visualize the data to gain insights

4. Prepare the data for Machine Learning algorithms

5. Select a model and train it

6. Fine-tune your model

7. Present your solution

8. Launch, monitor, and maintain your system

9. Exercises

19

3. Discover and Visualize the Data to Gain
Insights

• Visualize geographical data using

alpha: Transparency, s: size, c: color, cmap: blue to red

20

21

3.1. Looking for Correlations

• Compute the standard correlation coefficient (also called Pearson’s
r) between every pair of attributes using corr_matrix =
housing.corr()

22

3.1. Looking for Correlations

• Zero linear correlation (r = 0) does not guarantee independence.

23

3.2. Pandas Scatter Matrix

24

3.3. Experimenting with Attribute
Combinations
• Rooms per household is better than total rooms:

• Similarly, BMI is better than weight or height for medical purposes.

25

Outline

1. Look at the big picture

2. Get the data

3. Discover and visualize the data to gain insights

4. Prepare the data for Machine Learning algorithms

5. Select a model and train it

6. Fine-tune your model

7. Present your solution

8. Launch, monitor, and maintain your system

9. Exercises

26

4. Prepare the Data for Machine Learning
Algorithms

• Split to train and test (Done)

• Separate features from response

• Handle missing data

• Handle text and categorical features

• Scale (normalize) features

• Build preparation pipeline

27

4. Prepare the Data for Machine Learning
Algorithms
• Separate the features from the response.

• Options of handling missing features:
1. Get rid of the corresponding districts

2. Get rid of the whole attribute

3. Set the values to some value (0, mean, median, etc.)

28

4.1. Handling Missing Features Using Scikit-
Learn
• Use SimpleImputer on the numerical features. Need to remove

categorical variables before doing the fit. The attribute statistics_
has the means.

29NumPy array

4.2. Handling Text and Categorical Attributes

• ocean_proximity is categorical feature.

30

4.2. Handling Text and Categorical Attributes

• Most machine learning algorithms prefer to work with numbers.
Converting to numbers:

31

Numerical values
imply distances

4.2. Handling Text and Categorical Attributes

• To ensure encoding neutrality, we can use the one-hot encoding.

32

Converts sparse matrix
to dense matrix.

4.3. Custom Transformers

• Scikit-Learn allows you to create your own transformers.

• You can create a transformer to create derived features.

• Create a class and implement three methods: fit() (returning self),
transform(), and fit_transform(). Include base classes:
• TransformerMixin to get fit_transform()

• BaseEstimator to get get_params() and set_params()

33

4.3. Custom Transformers

34

4.4. Feature Scaling

• ML algorithms generally don’t perform well when the input
numerical attributes have very different scales.

• Scaling techniques:
• Min-max scaling

• Standardization

35

4.5. Transformation Pipelines

imputer
attribs
adder

std
scaler

36

4.6. Full Pipeline

37

Dense array

Outline

1. Look at the big picture

2. Get the data

3. Discover and visualize the data to gain insights

4. Prepare the data for Machine Learning algorithms

5. Select a model and train it

6. Fine-tune your model

7. Present your solution

8. Launch, monitor, and maintain your system

9. Exercises

38

5. Select and Train a Model

39

• Linear regressor

• Using RMSE for evaluation

• Decision tree regressor

• k-fold cross validation

• Random forests regressor

5. Select and Train a Model

• Let us start by training a simple linear regressor.

• Try it out on five instances from the training set.

40

50% off

5.1. Evaluate the Model on the Entire
Training Set
• Use RMSE

41

This is not a satisfactory result as the
median_housing_values range

between $120,000 and $265,000.

5.2. Try the Decision Tree Regressor

42

Overfitting: It has memorized
the entire training set!

5.3. Better Evaluation Using Cross-Validation

• Segment the training data into 10 sets and repeat training
and evaluation 10 times.

43

Worse than Linear
Regressor

5.4. Try the Random Forests Regressor

• Repeating training and evaluation:

44

Best Accuracy

Outline

1. Look at the big picture

2. Get the data

3. Discover and visualize the data to gain insights

4. Prepare the data for Machine Learning algorithms

5. Select a model and train it

6. Fine-tune your model

7. Present your solution

8. Launch, monitor, and maintain your system

9. Exercises

45

6. Fine-Tune Your Model

• Fine-tune your system by fiddling with:
• The hyperparameters

• Removing and adding features

• Changing feature preprocessing techniques

• Can experiment manually. But it is best to automate this process
using Scikit-Learn:
• GridSearchCV

• or RandomizedSearchCV

46

6.1. Grid Search

• Can automate exploring a search space of 3 × 4 + 2 × 3 = 12 + 6 = 18

47

• Can examine the best hyperparameters using:

• Can examine all search results using:

6.2 Examine the Results of Your Grid Search

48Best Tuned Accuracy

6.2 Evaluate Your System on the Test Set

• The final model is the best estimator found by the grid search.

• To evaluate it on the test set, transform the test features, predict
using transformed features, and evaluate accuracy.

49

Better than train set!

6.3 Save Your Best Model for the Production
System

50

Outline

1. Look at the big picture

2. Get the data

3. Discover and visualize the data to gain insights

4. Prepare the data for Machine Learning algorithms

5. Select a model and train it

6. Fine-tune your model

7. Present your solution

8. Launch, monitor, and maintain your system

9. Exercises

51

7. Present Your Solution

• Present your solution highlighting:
• What you have learned

• What worked and what did not

• What assumptions were made

• What your system’s limitations are

• Document everything, and create nice presentations with:
• Clear visualizations

• Easy-to-remember statements, e.g., “the median income is the number one
predictor of housing prices”.

52

8. Launch, Monitor, and Maintain Your
System

• Prepare your production program that uses your best trained model
and launch it.

• Monitor the accuracy of your system. Also monitor the input data.

• Retrain your system periodically using fresh data.

53

Summary

1. Look at the big picture

2. Get the data

3. Discover and visualize the data to gain insights

4. Prepare the data for Machine Learning algorithms

5. Select a model and train it

6. Fine-tune your model

7. Present your solution

8. Launch, monitor, and maintain your system

9. Exercises

54

Exercise

• Try a Support Vector Machine regressor (sklearn.svm.SVR), with
various hyperparameters such as kernel="linear" (with various
values for the C hyperparameter) or kernel="rbf" (with various
values for the C and gamma hyperparameters). Don’t worry about
what these hyperparameters mean for now. How does the best SVR
predictor perform?

55

Classification

Prof. Gheith Abandah

1

Reference

• Chapter 3: Classification

• Aurélien Géron, Hands-On Machine Learning with Scikit-
Learn, Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2

2

https://github.com/ageron/handson-ml2

Introduction

• YouTube Video: Machine Learning - Supervised Learning
Classification from Cognitive Class

https://youtu.be/Lf2bCQIktTo

3

https://youtu.be/Lf2bCQIktTo

Outline

1. MNIST dataset

2. Training a binary classifier

3. Performance measures

4. Multiclass classification

5. Multilabel classification

6. Exercise

4

1. MNIST Dataset

5

• MNIST is a set of 70,000 small
images of handwritten digits.

• Available from mldata.org

• Scikit-Learn provides
download functions.

http://mldata.org/

1.1. Get the Data

6

1.2. Extract Features and Labels

7

There are 70,000 images, and each image has 784 features.
This is because each image is 28×28 pixels, and each feature simply
represents one pixel’s intensity, from 0 (white) to 255 (black).

1.3. Examine One Image

8

1.4. Split the Data

9

• The MNIST dataset is actually already split into a training set (the first
60,000 images) and a test set (the last 10,000 images).

• The training set is already shuffled.

Outline

1. MNIST dataset

2. Training a binary classifier

3. Performance measures

4. Multiclass classification

5. Multilabel classification

6. Exercise

10

2. Training a Binary Classifier

• A binary classifier can classify two classes.

• For example, classifier for the number 5, capable of distinguishing
between two classes, 5 and not-5.

11

True for all 5s, False for all
other digits.

Stochastic Gradient
Descent (SGD) classifier

Outline

1. MNIST dataset

2. Training a binary classifier

3. Performance measures

4. Multiclass classification

5. Multilabel classification

6. Exercise

12

3. Performance Measures

• Accuracy: Ratio of correct predictions

• Confusion matrix

• Precision and recall

• F1 Score

• Precision/recall tradeoff

13

3.1. Accuracy

14

Example how to find the
accuracy.

Using the cross_val_score()
function to find the accuracy on

three folds

3.1. Accuracy

• Use cross_val_predict() to predict the targets of the entire training
set.

15

3.2. Confusion Matrix

16

3.2. Confusion Matrix

• Scikit Learn has a function for finding the confusion matrix.

• The first row is for the non-5s (the negative class):
• 53,057 correctly classified (true negatives)
• 1,522 wrongly classified (false positives)

• The second row is for the 5s (the positive class):
• 1,325 wrongly classified (false negatives)
• 4,096 correctly classified (true positives)

17

3.3. Precision and Recall

Precision Recall

18

The precision and recall are smaller than the accuracy.
Why?

3.4. F1 Score

• The F1 Score combines the precision and recall in one metric
(harmonic mean).

19

3.5. Precision/Recall Tradeoff

• Increase the decision threshold to improve the precision when it is
bad to have FP.

• Decrease the decision threshold to improve the recall when it is
important not to miss FN.

20

3.5. Precision/Recall Tradeoff

• The function cross_val_predict() can return decision scores
instead of predictions.

• These scores can be used to compute precision and recall for all
possible thresholds using the precision_recall_curve() function.

21

3.5. Precision/Recall Tradeoff

22

3.5. Precision/Recall Tradeoff

• For larger precision, increase the threshold, and decrease it for
larger recall.

• Example: To get 90% precision.

23

The first threshold with precision ≥ 90%

True when score
≥ new threshold

Outline

1. MNIST dataset

2. Training a binary classifier

3. Performance measures

4. Multiclass classification

5. Multilabel classification

6. Exercise

24

4. Multiclass Classification

• Multiclass classifiers can distinguish between more than two classes.

• Some algorithms (such as Random Forest classifiers or Naive Bayes
classifiers) are capable of handling multiple classes directly.

• Others (such as Support Vector Machine classifiers or Linear
classifiers) are strictly binary classifiers.

• There are two main strategies to perform multiclass classification
using multiple binary classifiers.

25

4.1. One-versus-All (OvA) Strategy

• For example, classify the digit images into 10 classes (from 0 to 9) to
train 10 binary classifiers, one for each digit (a 0-detector, a 1-
detector, a 2-detector, and so on).

• Then to classify an image, get the decision score from each classifier
for that image and select the class whose classifier outputs the
highest score.

26

4.2. One-versus-One (OvO) Strategy

• Train a binary classifier for every pair of digits.

• If there are N classes, need N × (N – 1) / 2 classifiers. For MNIST, need
45 classifiers.

• To classify an image, run the image through all 45 classifiers and see
which class wins the most duels.

• The main advantage of OvO is that each classifier only needs to be
trained on a subset of the training set.

• OvO is preferred for algorithms (such as Support Vector Machine)
that scale poorly with the size of the training set.

27

4.3. Scikit Learn Support of Multiclass
Classification
• Scikit-Learn detects when you try to use a binary classification

algorithm for a multiclass classification task, and it automatically runs
OvA (except for SVM classifiers for which it uses OvO).

28

Better
classifier than

SGD

4.3. Scikit Learn Support of Multiclass
Classification
• Note that the multiclass task is harder than the binary task.

• Binary task

• Multiclass task

29

4.4. Error Analysis

30

Many images are misclassified as 8s.

Outline

1. MNIST dataset

2. Training a binary classifier

3. Performance measures

4. Multiclass classification

5. Multilabel classification

6. Exercise

31

5. Multilabel Classification

• Classifiers that output multiple classes for each instance.

32

Popular algorithm

Summary

1. MNIST dataset

2. Training a binary classifier

3. Performance measures

4. Multiclass classification

5. Multilabel classification

6. Exercise

33

Exercise

• Try to build a classifier for the MNIST dataset that achieves over 97%
accuracy on the test set. Hint: the KNeighborsClassifier works quite
well for this task; you just need to find good hyperparameter values
(try a grid search on the weights and n_neighbors hyperparameters).

34

Machine Learning

Project

1

General

• To enable the students to get hands-on experience in the design,
implementation and evaluation of machine learning systems.

• Teams: One students each

• Solve a practical machine learning problem of your choice.

• Use Python.

• Good projects involve using alternative approaches and evaluating their
performance in solving the problem.

2

General

• Article: Project-Based Learning for Data Scientists: Becoming a
Data Scientist just became a whole lot easier

• Author: Kishen Sharma

• Link: https://towardsdatascience.com/project-based-learning-
for-data-scientists-df6a8f74e4a1

3

https://towardsdatascience.com/project-based-learning-for-data-scientists-df6a8f74e4a1

General

• Marks:

– Report 50%

– Presentation 50%

• Timing:

– Mon 3 May, 2021 Submit proposal

– Wed 26 May, 2021 Submit report &

present project

4

Project Proposal

• One to two-page proposal

• Specify problem

• Specify sample size and source

• Structure

– Title

– Student name

– Problem definition

– Data description

– Samples

5

Research Report

• Four to 8-page report
• Use IEEE A4 conference template at

http://www.ieee.org/conferences_events/conferences/publishing/templates.html
• In the introduction, include

– Motivation
– Problem definition
– Literature review

• Describe your data and development environment.
• Describe any preprocessing, feature extraction and selection, techniques used, and post-

processing.
• Give results and comments
• Give conclusions (work done, main results, future work)
• Include your source code in an appendix after the list of references.

6

http://www.ieee.org/conferences_events/conferences/publishing/templates.html

Research Presentation

• Prepare Power Point slides

• Ten minutes long

• Must be clear and useful presentation, must add knowledge to fellow
colleagues

7

Training Models and
Regression

Prof. Gheith Abandah

1

Reference

• Chapter 4: Training Models

• Aurélien Géron, Hands-On Machine Learning with Scikit-
Learn, Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2

2

https://github.com/ageron/handson-ml2

Outline

1. Linear Regression

2. Gradient Descent

3. Gradient Descent Variants
1. Batch Gradient Descent

2. Stochastic Gradient Descent

3. Mini-batch Gradient Descent

4. Learning Curves

5. Early Stopping

6. Exercises

3

Linear Regression

4

Analytical Solution

• The Root Mean Square Error (RMSE) is used as cost function.

• Minimizing this cost gives the following solution (normal function):

5

Complexity O(mn2)

Outline

1. Linear Regression

2. Gradient Descent

3. Gradient Descent Variants
1. Batch Gradient Descent

2. Stochastic Gradient Descent

3. Mini-batch Gradient Descent

4. Learning Curves

5. Early Stopping

6. Exercises

6

Gradient Descent

• Generic optimization algorithm capable of finding optimal solutions
to a wide range of problems.

• Tweaks parameters iteratively in order to minimize a cost function.

7

Learning Rate

Too Small Too Large

8

Gradient Descent Pitfalls

9

Feature Scaling

• Ensure that all features have a similar scale (e.g., using Scikit-Learn’s
StandardScaler class).

• Gradient Descent with and without feature scaling.

10

Outline

1. Linear Regression

2. Gradient Descent

3. Gradient Descent Variants
1. Batch Gradient Descent

2. Stochastic Gradient Descent

3. Mini-batch Gradient Descent

4. Learning Curves

5. Early Stopping

6. Exercises

11

Batch Gradient Descent

• Partial derivatives of the cost function in θj

• Gradient vector of the cost function

12

The entire training
Batch

• Gradient Descent step

• Gradient Descent with various learning rates

Batch Gradient Descent

13

Stochastic Gradient Descent

• SGD picks a random instance in
the training set at every step and
computes the gradients.

• SGD is faster when the training
set is large.

• Is bouncy

• Eventually gives good solution

• Can escape local minima

14

Mini-batch Gradient Descent

• Computes the gradients on small random sets of instances called mini
batches.

• Benefits from hardware accelerators (e.g., GPU).

• Less bouncy, better solution, escapes some local minima

15

Outline

1. Linear Regression

2. Gradient Descent

3. Gradient Descent Variants
1. Batch Gradient Descent

2. Stochastic Gradient Descent

3. Mini-batch Gradient Descent

4. Learning Curves

5. Early Stopping

6. Exercises

16

Learning Curves

• The accuracy on the validation set generally increases as the training
set size increases.

• Overfitting decreases with larger training set.

17

Outline

1. Linear Regression

2. Gradient Descent

3. Gradient Descent Variants
1. Batch Gradient Descent

2. Stochastic Gradient Descent

3. Mini-batch Gradient Descent

4. Learning Curves

5. Early Stopping

6. Exercises

18

Early Stopping

• Stop training when the validation error reaches a minimum.

• Need to save the best model.

19

Outline

1. Linear Regression

2. Gradient Descent

3. Gradient Descent Variants
1. Batch Gradient Descent

2. Stochastic Gradient Descent

3. Mini-batch Gradient Descent

4. Learning Curves

5. Early Stopping

6. Exercises

20

Exercises

1. What Linear Regression training algorithm can you use if you have a
training set with millions of features?

2. Suppose the features in your training set have very different scales.
What algorithms might suffer from this, and how? What can you do
about it?

3. Do all Gradient Descent algorithms lead to the same model
provided you let them run long enough?

21

Summary

1. Linear Regression

2. Gradient Descent

3. Gradient Descent Variants
1. Batch Gradient Descent

2. Stochastic Gradient Descent

3. Mini-batch Gradient Descent

4. Learning Curves

5. Early Stopping

6. Exercises

22

Classical Techniques

Prof. Gheith Abandah

1

Reference

• Chapter 5: Support Vector Machines

• Chapter 6: Decision Trees

• Chapter 7: Ensemble Learning and
Random Forests

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn,
Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2

2

https://github.com/ageron/handson-ml2

Outline

1. k-Nearest Neighbors

2. Support Vector Machines

3. Decision Trees

4. Ensemble Learning and Random Forests

5. Exercises

3

k-Nearest Neighbors

• Find a predefined number of training samples (k) closest in distance to
the new point and predict the label from them: regression or
classification.

• The number of samples can be a user-defined constant (k-nearest
neighbor learning), or vary based on the local density of points (radius-
based neighbor learning).

• The distance can be any metric measure: standard Euclidean distance
is the most common choice.

• Reference: https://scikit-learn.org/stable/modules/neighbors.html

4

https://scikit-learn.org/stable/modules/neighbors.html

Nearest Neighbors Classification

class sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,
weights='uniform', …)

• weights can be: uniform: All points in each neighborhood are
weighted equally, and distance: Weight points by the inverse of their
distance.

• Example:
from sklearn.neighbors import KNeighborsClassifier

knn_clf = KNeighborsClassifier()

knn_clf.fit(X_train, y_train)

5

Nearest Neighbors Regression

class sklearn.neighbors.KNeighborsRegressor(n_neighbors=5,
weights='uniform', …)

• The label assigned to a query point is computed based on the mean
of the labels of its nearest neighbors.

• Example:
from sklearn.neighbors import KNeighborsRegressor

model = KNeighborsRegressor(n_neighbors=3)

model.fit(X, y)

6

Outline

1. k-Nearest Neighbors

2. Support Vector Machines

3. Decision Trees

4. Ensemble Learning and Random Forests

5. Exercises

7

Support Vector Machine (SVM)

• Very powerful and versatile Machine Learning model, capable of
performing linear or nonlinear classification, regression, and outlier
detection.

• Well suited for classification of complex but small- or medium-sized
datasets.

• SVM gives large margin classification.

8

Linear SVM Classification

• The decision boundary is fully determined by the instances located
on the edge. These instances are called the support vectors.

• SVMs are sensitive to the feature scales.

9

Soft Margin Classification

• Hard margin classification cannot handle linearly inseparable classes
and is sensitive to outliers.

• Soft margin classification finds a balance between keeping the
margin as large as possible and limiting the margin violations.

10

Soft Margin Classification

• You can control the number of violations using the C hyperparameter.

• If your SVM model is overfitting, you can try regularizing it by
reducing C.

11

Iris Dataset

12

• A famous dataset that contains
the sepal and petal length and
width of 150 iris flowers of
three different species: Setosa,
Versicolor, and Virginica.

SVM Classification Example

import numpy as np
from sklearn import datasets
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC
iris = datasets.load_iris()
X = iris["data"][:, (2, 3)] # petal length, petal width
y = (iris["target"] == 2).astype(np.float64) # Iris-Virginica
svm_clf = Pipeline([

("scaler", StandardScaler()),
("linear_svc", LinearSVC(C=1, loss="hinge")),])

svm_clf.fit(X, y)

>>> svm_clf.predict([[5.5, 1.7]])
array([1.])

13

Used for maximum-margin
classification.

Nonlinear SVM Classification

• The SVM class supports nonlinear classification using the kernel
option.

14

Controls how much the model is
influenced by high-degree polynomials

versus low-degree

Gaussian Radial Basis Function

• The Gaussian RBF can be used to find similarity features (x2 and x3)
of the one-dimensional dataset with two landmarks to it at x1 = –2
and x1 = 1

15

Linearly separable

Gaussian RBF Kernel

• Is popular with SVM to solve nonlinear problems.

• Transforms a training set with m instances and n features to m
instances and m features.

• gamma and C are used for regularization with smaller values.

16

Gaussian RBF Kernel

17

Linear SVM Regression

• Fits as many instances as possible on the margin while limiting margin
violations. The width of the street is controlled by a hyperparameter
ϵ.

18

Nonlinear SVM Regression

19

SVM Conclusion

• The LinearSVC has complexity of O(m × n).

• The SVC time complexity is usually between O(m2 × n) and O(m3 × n).

• This algorithm is perfect for complex but small or medium training
sets. However, it scales well with the number of features.

20

Outline

1. k-Nearest Neighbors

2. Support Vector Machines

3. Decision Trees

4. Ensemble Learning and Random Forests

5. Exercises

21

Decision Trees

• Decision Trees are versatile Machine Learning algorithms that can
perform both classification and regression tasks, and even
multioutput tasks.

• They are very powerful algorithms, capable of fitting complex
datasets.

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
iris = load_iris()
X = iris.data[:, 2:] # petal length and width
y = iris.target
tree_clf = DecisionTreeClassifier(max_depth=2)
tree_clf.fit(X, y)

22

Visualizing a Decision Tree

23

Regularization Hyperparameters

• Increase min_* or decrease max_*: max_depth=None,
min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_features=None,
max_leaf_nodes=None

24

Decision Trees Regression

from sklearn.tree import DecisionTreeRegressor

tree_reg = DecisionTreeRegressor(max_depth=2)

tree_reg.fit(X, y)

25

Outline

1. k-Nearest Neighbors

2. Support Vector Machines

3. Decision Trees

4. Ensemble Learning and Random Forests

5. Exercises

26

Ensemble Learning and Random Forests

• A group of predictors is called an ensemble.

• You can train a group of Decision Tree classifiers, each on a different
random subset of the training set.

• To make predictions, obtain the predictions of all individual trees,
then predict the class that gets the most votes.

• Such an ensemble of Decision Trees is called a Random Forest.

27

Voting Classifiers

• If each classifier is a weak learner (meaning it does only slightly
better than random guessing), the ensemble can be a strong learner
(achieving high accuracy).

28

Scikit-Learn Voting Classifier 1/2

29

voting='soft' predict the class with the
highest class probability

Scikit-Learn Voting Classifier 2/2

30

Bagging and Pasting

• Use the same training algorithm for every predictor, but train them
on different random subsets of the training set.

• When sampling is performed with replacement, this method is called
bagging (short for bootstrap aggregating).

• When sampling is performed without replacement, it is called
pasting.

• The aggregation function is the most frequent prediction (hard
voting) for classification, or the average for regression.

31

Bagging and Pasting

32

with replacement and
use all available cores

Random Forests

• An ensemble of Decision Trees trained via the bagging with
max_samples set to the size of the training set, and choosing the best
random splits.

• Equivalent to:

33

Outline

1. k-Nearest Neighbors

2. Support Vector Machines

3. Decision Trees

4. Ensemble Learning and Random Forests

5. Exercises

34

Exercises

1. Train an SVM classifier on the MNIST dataset. Since SVM classifiers
are binary classifiers, you will need to use one-versus-all to classify
all 10 digits. You may want to tune the hyperparameters using small
validation sets to speed up the process. What accuracy can you
reach?

35

Exercises

2. Train and fine-tune a Decision Tree for the moons dataset.
a) Generate a moons dataset using make_moons(n_samples=10000,

noise=0.4).

b) Split it into a training set and a test set using train_test_split().

c) Use grid search with cross-validation (with the help of the GridSearchCV class)
to find good hyperparameter values for a DecisionTreeClassifier. Hint: try
various values for max_leaf_nodes.

d) Train it on the full training set using these hyperparameters, and measure your
model’s performance on the test set. You should get roughly 85% to 87%
accuracy.

36

Exercises

3. Load the MNIST data and split it into a training set, a validation set,
and a test set (e.g., use 50,000 instances for training, 10,000 for
validation, and 10,000 for testing). Then train various classifiers,
such as a Random Forest classifier, an Extra-Trees classifier, and an
SVM. Next, try to combine them into an ensemble that
outperforms them all on the validation set, using a soft or hard
voting classifier. Once you have found one, try it on the test set.
How much better does it perform compared to the individual
classifiers?

37

Summary

1. k-Nearest Neighbors

2. Support Vector Machines

3. Decision Trees

4. Ensemble Learning and Random Forests

5. Exercises

38

Unsupervised Learning and
Clustering

Prof. Gheith Abandah

1

Reference

• Chapter 8: Dimensionality Reduction

• Chapter 9: Unsupervised Learning Techniques

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn,
Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2

2

https://github.com/ageron/handson-ml2

Outline

• Dimensionality Reduction
• Projection and Manifold

• Principal Component Analysis (PCA)

• Unsupervised Learning

• Clustering
• K-Means

• DBSCAN

• Gaussian Mixtures and Anomaly Detection

• Exercises

3

Dimensionality Reduction

• Many Machine Learning problems involve thousands or even millions
of features for each training instance.

• All these features make training extremely slow and make it much
harder to find a good solution.

• This problem is often referred to as the curse of dimensionality.

• Dimensionality reduction approaches
• Drop not useful features

• Merge correlated features

• Projection and manifold

• Transform features

4

Projection and Manifold

5

Projection and Manifold

6

• Simply projecting onto a plane may not
give better solution.

• Projecting to a proper manifold is better.

Projection and Manifold

• The decision boundary may not
always be simpler with lower
dimensions.

7

Principal Component Analysis (PCA)

• Is the most popular
dimensionality reduction
algorithm.

• First it identifies the hyperplane
that lies closest to the data, and
then it projects the data onto it.

• PCA identifies the axis that
accounts for the largest amount
of variance in the training set.
Then it finds the next
orthogonal axes that accounts
for the largest amount of
remaining variance.

8

Principal Component Analysis (PCA)

• Use PCA to reduce the
dimensionality of the dataset
down to two dimensions.

• Instead of specifying the number
of principal components you
want to preserve, you can set
n_components to be a float
between 0.0 and 1.0, indicating
the ratio of variance you wish to
preserve.

from sklearn.decomposition import PCA

pca = PCA(n_components = 2)

X2D = pca.fit_transform(X)

pca = PCA(n_components=0.95)

X_reduced = pca.fit_transform(X_train)

9

3-D

MNIST

Outline

• Dimensionality Reduction
• Projection and Manifold

• Principal Component Analysis (PCA)

• Unsupervised Learning

• Clustering
• K-Means

• DBSCAN

• Gaussian Mixtures and Anomaly Detection

• Exercises

10

Unsupervised Learning

If intelligence was a cake, unsupervised learning would be the cake,
supervised learning would be the icing on the cake, and reinforcement

learning would be the cherry on the cake.

Yann LeCun

• Example: System that takes a few pictures of each item on a
manufacturing production line and detects which items are defective.

11

Outline

• Dimensionality Reduction
• Projection and Manifold

• Principal Component Analysis (PCA)

• Unsupervised Learning

• Clustering
• K-Means

• DBSCAN

• Gaussian Mixtures and Anomaly Detection

• Exercises

12

Clustering

• The task of identifying similar instances and assigning them to
clusters, i.e., groups of similar instances.

• Classification (left) versus clustering (right)

13

Clustering Applications

• Customer segmentation: useful for recommender systems.

• Data analysis: discover clusters of similar instances as it is often
easier to analyze clusters separately.

• Dimensionality reduction: find affinity features to the found clusters

• Anomaly detection: any instance that has a low affinity to all the
clusters is likely to be an anomaly.

• Semi-supervised learning: perform clustering and propagate the
labels to all the instances in the same cluster.

• Search engines for images

• Image segmentation

14

K-Means

• Quick and efficient
algorithm

• Scale before
clustering

• Need to specify the
number of clusters

15

K-Means

• Cluster to 5 clusters

from sklearn.cluster import KMeans

k = 5

kmeans = KMeans(n_clusters=k)

y_pred = kmeans.fit_predict(X)

y_pred

array([4, 0, 1, ..., 2, 1, 0],

dtype=int32)

Hard clustering:

X_new = np.array([[0, 2], [-3, 3]])

kmeans.predict(X_new)

array([1, 2], dtype=int32)

16

K-Means

kmeans.cluster_centers_

array([[-2.80389616, 1.80117999],

[0.20876306, 2.25551336],

[-2.79290307, 2.79641063],

[-1.46679593, 2.28585348],

[-2.80037642, 1.30082566]])

Soft clustering, a score per
cluster:

kmeans.transform(X_new)

array([[2.81093633, 0.32995317,

2.9042344 , 1.49439034,

2.88633901],

[1.21475352, 3.29399768,

0.29040966, 1.69136631,

1.71086031])

17

Can be a dimensionality reduction
technique.

K-Means

• It is important to specify the
right number of clusters k.

• Find k that gives highest mean
silhouette coefficient.

from sklearn.metrics import

silhouette_score

silhouette_score(X, kmeans.labels_)

0.655517642572828

18

https://en.wikipedia.org/wiki/Silhouette_(clustering)

DBSCAN

• Defines clusters as continuous
regions of high density.

• Works well if all the clusters are
dense enough, and they are well
separated by low-density
regions.

• Behaves well when the clusters
have varying sizes or non-
spherical shapes.

• Algorithm
• For each instance, counts how many

instances are located within a small
distance ε-neighborhood.

• If an instance has at least min_samples
instances in its ε-neighborhood, then it is
considered a core instance.

• All instances in the neighborhood of a core
instance belong to the same cluster. This
may include other core instances;
therefore, a long sequence of neighboring
core instances forms a single cluster.

• Any instance that is not a core instance and
does not have one in its neighborhood is
considered an anomaly (-1).

19

Can detect anomalies

DBSCAN

• Cluster the moons dataset

from sklearn.cluster import DBSCAN

from sklearn.datasets import

make_moons

X, y = make_moons(n_samples=1000,

noise=0.05)

dbscan = DBSCAN(eps=0.2,

min_samples=5)

dbscan.fit(X)

20

DBSCAN

• DBSCAN class does not have a predict() method.

• Can use other classifiers.

from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier()

knn.fit(dbscan.components_, dbscan.labels_[dbscan.core_sample_indices_])

X_new = np.array([[-0.5, 0], [0, 0.5], [1, -0.1], [2, 1]])

knn.predict(X_new)

array([1, 0, 1, 0])

21

Outline

• Dimensionality Reduction
• Projection and Manifold

• Principal Component Analysis (PCA)

• Unsupervised Learning

• Clustering
• K-Means

• DBSCAN

• Gaussian Mixtures and Anomaly Detection

• Exercises

22

Gaussian Mixtures

• A Gaussian mixture model (GMM) is a probabilistic model that
assumes that the instances were generated from a mixture of several
Gaussian distributions whose parameters are unknown.

• Scikit-Learn’s GaussianMixture class, given the dataset X, can
estimate the weights ϕ and all the distribution parameters μ(1) to μ(k)

and Σ(1) to Σ(k).

from sklearn.mixture import GaussianMixture

gm = GaussianMixture(n_components=3, n_init=10)

gm.fit(X)

23

Gaussian Mixtures

gm.converged_

True

gm.n_iter_

3

gm.weights_

array([0.20965228, 0.4000662,

0.39028152])

gm.means_

array([[3.39909717, 1.05933727],

[-1.40763984, 1.42710194],

[0.05135313, 0.07524095]])

gm.covariances_

array([[[1.14807234, -0.03270354],

[-0.03270354, 0.95496237]],

[[0.63478101, 0.72969804],

[0.72969804, 1.1609872]],

[[0.68809572, 0.79608475],

[0.79608475, 1.21234145]]])
24

Anomaly Detection using Gaussian Mixtures

• Any instance located in a low-
density region can be
considered an anomaly.

• Identify the outliers using the
4th percentile lowest density as
the threshold.

densities = gm.score_samples(X)

density_threshold = np.percentile(

densities, 4)

anomalies = X[densities <

density_threshold]

25

Selecting the Number of Components

• Minimize the Bayesian
information criterion (BIC) or
the Akaike information
criterion (AIC).

gm.bic(X)

8189.74345832983

gm.aic(X)

8102.518178214792

26

Outline

• Dimensionality Reduction
• Projection and Manifold

• Principal Component Analysis (PCA)

• Unsupervised Learning

• Clustering
• K-Means

• DBSCAN

• Gaussian Mixtures and Anomaly Detection

• Exercises

27

Exercises

8.9. Load the MNIST dataset (introduced in Chapter 3) and split it into
a training set and a test set (take the first 60,000 instances for
training, and the remaining 10,000 for testing). Train a Random
Forest classifier on the dataset and time how long it takes, then
evaluate the resulting model on the test set. Next, use PCA to
reduce the dataset’s dimensionality, with an explained variance
ratio of 95%. Train a new Random Forest classifier on the reduced
dataset and see how long it takes. Was training much faster? Next
evaluate the classifier on the test set: how does it compare to the
previous classifier?

28

Exercises

9.3. Describe two techniques to select the right number of clusters
when using K-Means.

29

Exercises

9.10. The classic Olivetti faces dataset contains 400 grayscale 64 × 64–pixel
images of faces. Each image is flattened to a 1D vector of size 4,096. 40
different people were photographed (10 times each), and the usual task
is to train a model that can predict which person is represented in each
picture. Load the dataset using the
sklearn.datasets.fetch_olivetti_faces() function, then split it
into a training set, a validation set, and a test set (note that the dataset
is already scaled between 0 and 1). Since the dataset is quite small, you
probably want to use stratified sampling to ensure that there are the
same number of images per person in each set. Next, cluster the images
using KMeans, and ensure that you have a good number of clusters
(using one of the techniques discussed in this chapter). Visualize the
clusters: do you see similar faces in each cluster?

30

Summary

• Dimensionality Reduction
• Projection and Manifold

• Principal Component Analysis (PCA)

• Unsupervised Learning

• Clustering
• K-Means

• DBSCAN

• Gaussian Mixtures and Anomaly Detection

• Exercises

31

Neural Networks

Prof. Gheith Abandah

1

Reference

• Chapter 10: Introduction to Artificial Neural
Networks with Keras

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn,
Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2

2

https://github.com/ageron/handson-ml2

Introduction

• YouTube Video: But what *is* a Neural Network? from 3Blue1Brown

https://youtu.be/aircAruvnKk

3

https://youtu.be/aircAruvnKk

Outline

1. Introduction

2. The perceptron

3. Multi-layer perceptron (MLP)

4. Regression MLPs

5. Classification MLPs

4

1. Introduction

• Artificial neural networks
(ANNs) are inspired by the
brain’s architecture.

• First suggested in 1943. Is now
flourishing due to the availability
of:
• Data

• Computing power

• Better algorithms

5

2. The Perceptron

• The Perceptron is a simple ANN,
invented in 1957 and can perform
linear binary classification or
regression.

• Common step function:

6

Linear threshold unit (LTU)

2. The Perceptron

• The Perceptron has an input
layer with bias and output layer.

• With multiple output nodes, it
can perform multiclass
classification.

• Hebbian learning “Cells that fire
together, wire together.”

7

2. The Perceptron

• Scikit-Learn provides a Perceptron class.

8

2. The Perceptron

• The perceptron cannot solve non-linear problems such as the XOR
problem.

• The Multi-Layer Perceptron (MLP) can.

9

Outline

1. Introduction

2. The perceptron

3. Multi-layer perceptron (MLP)

4. Regression MLPs

5. Classification MLPs

10

3. Multi-Layer Perceptron (MLP)

• An MLP is composed of a (pass-
through) input layer, one or
more layers of LTUs, called
hidden layers, and a final layer
of LTUs called the output layer.

• When an ANN has two or more
hidden layers, it is called a deep
neural network (DNN).

11

3. Multi-Layer Perceptron (MLP)

• Trained using the
backpropagation training
algorithm.
• For each training instance the

algorithm first makes a prediction
(forward pass), measures the
error,

• then goes through each layer in
reverse to measure the error
contribution from each connection
(reverse pass),

• and finally slightly tweaks the
connection weights to reduce the
error (Gradient Descent step).

12

3. Multi-Layer Perceptron (MLP)

• Common activation functions: logistic,
hyperbolic tangent, and rectified linear
unit.

13

Outline

1. Introduction

2. The perceptron

3. Multi-layer perceptron (MLP)

4. Regression MLPs

5. Classification MLPs

14

4. Regression MLPs

• Typical MLP architecture for regression:

15

5. Classification MLPs

• For classification, the output
layer uses the softmax function.

• The output of each neuron
corresponds to the estimated
probability of the corresponding
class.

16

5. Classification MLPs

• Typical MLP architecture for classification:

17

Summary

1. Introduction

2. The perceptron

3. Multi-layer perceptron (MLP)

4. Regression MLPs

5. Classification MLPs

18

Artificial Neural Networks
with Keras

Prof. Gheith Abandah

1

Reference

• Chapter 10: Introduction to Artificial Neural
Networks with Keras

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn,
Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2

2

https://github.com/ageron/handson-ml2

Reference

• Deep Learning with Python, by François Chollet, Manning Pub.

2018

• Introduction to Keras by Francois Chollet, March 9th, 2018

(slides)

3

https://web.stanford.edu/class/cs20si/lectures/march9guestlecture.pdf

Outline
1. Introduction
2. Keras API Styles
3. TensorFlow Keras
4. Image Classifier Using the Sequential Model
5. Example - MNIST
6. Regression Using the Sequential Model
7. Using the Functional API
8. Using Callbacks
9. Visualization Using TensorBoard
10. Fine-Tuning Neural Network Hyperparameters
11. Tutorials
12. Exercise

4

Introduction

• YouTube Video: Keras Explained from Siraj Raval

https://youtu.be/j_pJmXJwMLA

5

https://youtu.be/j_pJmXJwMLA

1. Introduction

• Keras is a high-level API to build and train deep learning models.

6

1. Introduction – Advantages

• User friendly: Keras has a simple, consistent interface optimized for
common use cases. It provides clear and actionable feedback for user
errors.

• Modular and composable: Keras models are made by connecting
configurable building blocks together, with few restrictions.

• Easy to extend: Write custom building blocks to express new ideas
for research. Create new layers, loss functions, and develop state-of-
the-art models.

7

Outline
1. Introduction
2. Keras API Styles
3. TensorFlow Keras
4. Image Classifier Using the Sequential Model
5. Example - MNIST
6. Regression Using the Sequential Model
7. Using the Functional API
8. Using Callbacks
9. Visualization Using TensorBoard
10. Fine-Tuning Neural Network Hyperparameters
11. Tutorials
12. Exercise

8

2. Keras API Styles

1. The Sequential Model
• Dead simple
• Only for single-input, single-output, sequential layer stacks
• Good for 70+% of use cases

2. The functional API
• Like playing with Lego bricks
• Multi-input, multi-output, arbitrary static graph topologies
• Good for 95% of use cases

3. Model subclassing
• Maximum flexibility
• Larger potential error surface

9

Outline
1. Introduction
2. Keras API Styles
3. TensorFlow Keras
4. Image Classifier Using the Sequential Model
5. Example - MNIST
6. Regression Using the Sequential Model
7. Using the Functional API
8. Using Callbacks
9. Visualization Using TensorBoard
10. Fine-Tuning Neural Network Hyperparameters
11. Tutorials
12. Exercise

10

3. TensorFlow Keras

• Keras is the official high-level API
of TensorFlow

• tensorflow.keras (tf.keras)
module

• Part of core TensorFlow since
v1.4

• Full Keras API

• With useful extra features such
as tf.data

11

3. TensorFlow Keras

• To install TensorFlow
$ pip install --upgrade tensorflow

• To import Keras from TensorFlow
>>> import tensorflow as tf

>>> from tensorflow.keras import Layers
>>> from tensorflow import keras

>>> tf.__version__

'2.1.0'

>>> keras.__version__

'2.2.4-tf'

• Dense

• Activations

• Dropout

• Conv1D, 2D, 3D

• Polling

• RNN, LSTM, GRU

• …

12

Outline
1. Introduction
2. Keras API Styles
3. TensorFlow Keras
4. Image Classifier Using the Sequential Model
5. Example - MNIST
6. Regression Using the Sequential Model
7. Using the Functional API
8. Using Callbacks
9. Visualization Using TensorBoard
10. Fine-Tuning Neural Network Hyperparameters
11. Tutorials
12. Exercise

13

4. Image Classifier Using the Sequential
Model
• Fashion MNIST is similar to MNIST (70,000 grayscale images of 28×28

pixels each, with 10 classes).

14

4. Fashion MNIST

1. Get and prepare the dataset.

2. Build sequential model of layers that maps your inputs to your
targets.

3. Compile the model and configure the learning process by choosing
a loss function, an optimizer, and some metrics to monitor.

4. Train the model by calling the fit() method of your model.

5. Evaluate and use the model.

15

4.1 Get and Prepare the Dataset

import tensorflow as tf

from tensorflow import keras

Get the Fashion MNIST

fashion_mnist = keras.datasets.fashion_mnist

(X_train_full, y_train_full), (X_test, y_test) =

fashion_mnist.load_data()

Prepare the data train (55000), val (5000), test (10000)

X_valid = X_train_full[:5000] / 255.

X_train = X_train_full[5000:] / 255.

y_valid, y_train = y_train_full[:5000], y_train_full[5000:]

X_test = X_test / 255.

16

4.2 Build the Model

model = keras.models.Sequential()
model.add(keras.layers.Flatten(input_shape=[28, 28]))
model.add(keras.layers.Dense(300, activation="relu"))
model.add(keras.layers.Dense(100, activation="relu"))
model.add(keras.layers.Dense(10, activation="softmax"))

17

The default is no activation
function, i.e., linear layer.

4.2 Build the Model

Plot the model

keras.utils.plot_model(

model,

"my_model.png",

show_shapes=True)

18

4.3 Compile the Model

model.compile(loss="sparse_categorical_crossentropy",
optimizer="sgd",
metrics=["accuracy"])

For sparse labels (0-9):
loss = "sparse_categorical_crossentropy"
For one-hot labels:
loss = "categorical_crossentropy"
For binary labels:
loss = "binary_crossentropy"
For regression:
loss = "mean_squared_error"

19

Stochastic Gradient
Descent

4.4 Train the Model
Train the model

history = model.fit(X_train, y_train, epochs=30,

validation_data=(X_valid, y_valid))

Train on 55000 samples, validate on 5000 samples

Epoch 1/30

55000/55000 [==============================] - 2s 44us/sample - loss: 0.7226 - accuracy: 0.7641 - val_loss:

0.5073 - val_accuracy: 0.8320

Epoch 2/30

55000/55000 [==============================] - 2s 39us/sample - loss: 0.4844 - accuracy: 0.8321 - val_loss:

0.4541 - val_accuracy: 0.8478

…

Epoch 30/30

55000/55000 [==============================] - 2s 39us/sample - loss: 0.2256 - accuracy: 0.9195 - val_loss:

0.3049 - val_accuracy: 0.8882 20

4.4 Train the Model
import pandas as pd
pd.DataFrame(history.history).plot(figsize=(8, 5))
plt.grid(True)
plt.gca().set_ylim(0, 1)
save_fig("keras_learning_curves_plot")
plt.show()

21

4.5 Evaluate and Use the Model

model.evaluate(X_test, y_test)
10000/10000 [==============================] - 0s 21us/sample - loss: 0.3378 -
accuracy: 0.8781
[0.33780701770782473, 0.8781]

X_new = X_test[:3]
y_proba = model.predict(X_new)
y_proba.round(2)
array([[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.01, 0. , 0.99],

[0. , 0. , 0.99, 0. , 0.01, 0. , 0. , 0. , 0. , 0.],
[0. , 1. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.]],
dtype=float32)

model.predict_classes(X_new)
array([9, 2, 1])

22

Outline
1. Introduction
2. Keras API Styles
3. TensorFlow Keras
4. Image Classifier Using the Sequential Model
5. Example - MNIST
6. Regression Using the Sequential Model
7. Using the Functional API
8. Using Callbacks
9. Visualization Using TensorBoard
10. Fine-Tuning Neural Network Hyperparameters
11. Tutorials
12. Exercise

23

5. Example - MNIST

1. Define your training data: input tensors and target tensors.

2. Define a network of layers (or model) that maps your inputs to
your targets.

3. Configure the learning process by choosing a loss function, an
optimizer, and some metrics to monitor.

4. Iterate on your training data by calling the fit() method of your
model.

24

5. Example – Prepare the data

from keras.datasets import mnist

(train_images, train_labels), (test_images, test_labels) =
mnist.load_data()

#(60000, 28, 28), (60000), #(10000, 28, 28), (10000)

train_images = train_images.reshape((60000, 28 * 28))

train_images = train_images.astype('float32') / 255

test_images = test_images.reshape((10000, 28 * 28))

test_images = test_images.astype('float32') / 255

from keras.utils import to_categorical #one hot

train_labels = to_categorical(train_labels)

test_labels = to_categorical(test_labels)

25

5. Example – Define and configure the
network
from keras import models

from keras import layers

network = models.Sequential()

network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))

network.add(layers.Dense(10, activation='softmax'))

network.compile(optimizer='rmsprop',

loss='categorical_crossentropy',

metrics=['accuracy'])

26

5. Example – Training and evaluation

network.fit(train_images, train_labels, epochs=5, batch_size=128)

test_loss, test_acc = network.evaluate(test_images, test_labels)

27

Outline
1. Introduction
2. Keras API Styles
3. TensorFlow Keras
4. Image Classifier Using the Sequential Model
5. Example - MNIST
6. Regression Using the Sequential Model
7. Using the Functional API
8. Using Callbacks
9. Visualization Using TensorBoard
10. Fine-Tuning Neural Network Hyperparameters
11. Tutorials
12. Exercise

28

6. Regression Using the Sequential Model

• Solve the California housing problem using a regression neural
network.

• Scikit-Learn has fetch_california_housing() function to load the
data

• This dataset contains only numerical features and there are no
missing values.

29

6.1 Get and Prepare the Dataset

from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

housing = fetch_california_housing()

X_train_full, X_test, y_train_full, y_test =
train_test_split(housing.data, housing.target, random_state=42)

X_train, X_valid, y_train, y_valid = train_test_split(X_train_full,
y_train_full, random_state=42)

scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_valid = scaler.transform(X_valid)
X_test = scaler.transform(X_test)

30

The default is 75% : 25%

6.2 Build and Compile the Model

Building by passing a list of layers when creating

the Sequential model

model = keras.models.Sequential([

keras.layers.Dense(30, activation="relu",

input_shape=X_train.shape[1:]),

keras.layers.Dense(1)

])

Compile with creating an optimizer object

model.compile(loss="mean_squared_error",

optimizer=keras.optimizers.SGD(lr=1e-3))

31

The default is 0.01

6.3 Train and Evaluate the Model

history = model.fit(X_train, y_train, epochs=20,

validation_data=(X_valid, y_valid))

mse_test = model.evaluate(X_test, y_test)

5160/5160 [==============================] - 0s

15us/sample - loss: 0.421

32

6.4 Save and Restore the Model

• After training a model save it to a file.

model.save("my_keras_model.h5")

• In the production program, load the trained model.

model = keras.models.load_model("my_keras_model.h5")

33

Outline
1. Introduction
2. Keras API Styles
3. TensorFlow Keras
4. Image Classifier Using the Sequential Model
5. Example - MNIST
6. Regression Using the Sequential Model
7. Using the Functional API
8. Using Callbacks
9. Visualization Using TensorBoard
10. Fine-Tuning Neural Network Hyperparameters
11. Tutorials
12. Exercise

34

7. Using the Functional API

• Keras functional API can be used
to build arbitrary static graph
topologies.

• Create a layer and as soon as it is
created, call it like a function,
passing it the input.

• Example 1: the wide and deep
network that learns both deep
patterns (using the deep path)
and simple rules (through the
short path).

35

7. Using the Functional API

2. Multi-input: You can send a
subset of the features through
the wide path, and a different
subset (possibly overlapping)
through the deep path.

36

7. Using the Functional API

3. Multiple Outputs
• To locate and classify the main

object in a picture.

• Multiple independent tasks to
perform based on the same data.

• Regularization technique (to
ensure that the deep network
learns something useful on its
own).

37

7.1 Auxiliary Output for Regularization

Build the model
input_A = keras.layers.Input(shape=[5], name="wide_input")
input_B = keras.layers.Input(shape=[6], name="deep_input")

hidden1 = keras.layers.Dense(30, activation="relu")(input_B)
hidden2 = keras.layers.Dense(30, activation="relu")(hidden1)

concat = keras.layers.concatenate([input_A, hidden2])

output = keras.layers.Dense(1, name="main_output")(concat)

aux_output = keras.layers.Dense(1, name="aux_output")(hidden2)

model = keras.models.Model(inputs=[input_A, input_B],
outputs=[output, aux_output])

38

7.1 Auxiliary Output for Regularization

Split the input

X_train_A, X_train_B = X_train[:, :5], X_train[:, 2:]

X_valid_A, X_valid_B = X_valid[:, :5], X_valid[:, 2:]

X_test_A, X_test_B = X_test[:, :5], X_test[:, 2:]

Take some test samples

X_new_A, X_new_B = X_test_A[:3], X_test_B[:3]

39

7.1 Auxiliary Output for Regularization

Compile, train, evaluate, and predict

model.compile(loss=["mse", "mse"], loss_weights=[0.9, 0.1],

optimizer=keras.optimizers.SGD(lr=1e-3))

history = model.fit([X_train_A, X_train_B], [y_train, y_train], epochs=20,

validation_data=([X_valid_A, X_valid_B], [y_valid, y_valid]))

total_loss, main_loss, aux_loss = model.evaluate([X_test_A, X_test_B],

[y_test, y_test])

y_pred_main, y_pred_aux = model.predict([X_new_A, X_new_B])

40

Outline
1. Introduction
2. Keras API Styles
3. TensorFlow Keras
4. Image Classifier Using the Sequential Model
5. Example - MNIST
6. Regression Using the Sequential Model
7. Using the Functional API
8. Using Callbacks
9. Visualization Using TensorBoard
10. Fine-Tuning Neural Network Hyperparameters
11. Tutorials
12. Exercise

41

8. Using Callbacks

• The fit() method accepts a callbacks argument that lets you
specify a list of objects that Keras will call during training
• at the start and end of training

• at the start and end of each epoch

• before and after processing each batch

• There are many callbacks available in the keras.callbacks package.
See

https://keras.io/callbacks/

42

https://keras.io/callbacks/

8.1 Saving Best Model

• Save your best model when its performance on the validation set is
the best so far.

checkpoint_cb = keras.callbacks.ModelCheckpoint(
"my_keras_model.h5", save_best_only=True)

history = model.fit(X_train, y_train, epochs=10,
validation_data=(X_valid, y_valid),
callbacks=[checkpoint_cb])

rollback to best model
model = keras.models.load_model("my_keras_model.h5")
mse_test = model.evaluate(X_test, y_test)

43

8.2 Early Stopping

• Interrupt training when there is no progress on the validation set for a
number of epochs (defined by the patience argument)

• Optionally roll back to the best model.

early_stopping_cb = keras.callbacks.EarlyStopping(
patience=10, restore_best_weights=True)

history = model.fit(X_train, y_train, epochs=100,
validation_data=(X_valid, y_valid),
callbacks=[checkpoint_cb, early_stopping_cb])

44

Outline
1. Introduction
2. Keras API Styles
3. TensorFlow Keras
4. Image Classifier Using the Sequential Model
5. Example - MNIST
6. Regression Using the Sequential Model
7. Using the Functional API
8. Using Callbacks
9. Visualization Using TensorBoard
10. Fine-Tuning Neural Network Hyperparameters
11. Tutorials
12. Exercise

45

9. Visualization Using TensorBoard

• TensorBoard is a great interactive visualization tool that comes with
TensorFlow.

• Use it using its callback
tensorboard_cb =

keras.callbacks.TensorBoard(run_logdir)

history = model.fit(X_train, y_train, epochs=30,

validation_data=(X_valid, y_valid),

callbacks=[tensorboard_cb])

• Start TensorBoard server
$ tensorboard --logdir=./my_logs --port=6006

46

9. Open http://localhost:6006

47

http://localhost:6006/

Outline
1. Introduction
2. Keras API Styles
3. TensorFlow Keras
4. Image Classifier Using the Sequential Model
5. Example - MNIST
6. Regression Using the Sequential Model
7. Using the Functional API
8. Using Callbacks
9. Visualization Using TensorBoard
10. Fine-Tuning Neural Network Hyperparameters
11. Tutorials
12. Exercise

48

10. Fine-Tuning Neural Network
Hyperparameters

• Number of Hidden Layers
• One hidden layer can theoretically model even the most complex functions, provided

it has enough neurons.
• But for complex problems, deep networks have a much higher parameter efficiency

than shallow ones.

• Number of Neurons per Hidden Layer
• Pyramid across layers or same size
• Stretch pants: pick a model with more layers and neurons than you actually need,

then use early stopping and other regularization techniques to prevent it from
overfitting.

• Better to increase the number of layers instead of the number of neurons
per layer.

49

10. Fine-Tuning Neural Network
Hyperparameters

• Learning Rate: the optimal LR is about half of the maximum LR.

• Optimizer: There are other than the Mini-batch Gradient Descent
optimizer.

• Batch Size
• Larger gives better speed up with hardware accelerators.

• Smaller makes the models more general.

• Activation Functions

50

11. Tutorials

• https://keras.io/

• https://www.tensorflow.org/guide/keras

• Keras Tutorial: Deep Learning in Python from DataCamp,
https://www.datacamp.com/community/tutorials/deep-learning-
python

• Keras Tutorial: The Ultimate Beginner’s Guide to Deep Learning in
Python, from EliteDataScience, https://elitedatascience.com/keras-
tutorial-deep-learning-in-python

51

https://keras.io/
https://www.tensorflow.org/guide/keras
https://www.datacamp.com/community/tutorials/deep-learning-python
https://elitedatascience.com/keras-tutorial-deep-learning-in-python

12. Exercise

From Chapter 10, solve exercise:
• 10. Train a deep MLP on the MNIST dataset (you can load it using
keras.datasets.mnist.load_data(). See if you can get over 98%
precision. Try searching for the optimal learning rate by using the
approach presented in this chapter (i.e., by growing the learning rate
exponentially, plotting the error, and finding the point where the
error shoots up). Try adding all the bells and whistles—save
checkpoints, use early stopping, and plot learning curves using
TensorBoard.

52

Summary
1. Introduction
2. Keras API Styles
3. TensorFlow Keras
4. Image Classifier Using the Sequential Model
5. Example - MNIST
6. Regression Using the Sequential Model
7. Using the Functional API
8. Using Callbacks
9. Visualization Using TensorBoard
10. Fine-Tuning Neural Network Hyperparameters
11. Tutorials
12. Exercise

53

Deep Neural Networks

Prof. Gheith Abandah

1

Reference

• Chapter 11: Training Deep Neural Networks

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn,
Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2

2

https://github.com/ageron/handson-ml2

Outline
1. Introduction

2. Vanishing/Exploding Gradients Problems
• Glorot and He Initialization
• Nonsaturating Activation Functions
• Batch Normalization
• Gradient Clipping

3. Reusing Pretrained Layers

4. Faster Optimizers

5. Avoiding Overfitting
• ℓ1 and ℓ2 Regularization
• Dropout

6. Summary

7. Exercise
3

1. Introduction

• Deep neural networks can solve complex problems and provide end-
to-end solutions.

• When you train a deep network, you may face the following
problems:
• Vanishing or exploding gradients: The gradients grow smaller and smaller, or

larger and larger.

• Not enough data

• Long training time

• Overfitting

4

Outline
1. Introduction

2. Vanishing/Exploding Gradients Problems
• Glorot and He Initialization
• Nonsaturating Activation Functions
• Batch Normalization
• Gradient Clipping

3. Reusing Pretrained Layers

4. Faster Optimizers

5. Avoiding Overfitting
• ℓ1 and ℓ2 Regularization
• Dropout

6. Summary

7. Exercise
5

2. Vanishing/Exploding Gradients Problems

• Vanishing Problem: In the backpropagation algorithm, gradients
often get smaller and smaller as the algorithm progresses down
to the lower layers.
• Lower layers’ connection are left unchanged.

• Exploding Problem: the gradients can grow bigger and bigger.
• Layers get very large weight updates and the algorithm diverges.

• Main Reasons: Using activation functions
(logistic sigmoid) and weight initialization
(normal distribution with 0-mean and
1-standard deviation).

6

2.1 Glorot and He Initialization

• Glorot and Bengio: In order for the signal not to die out, nor to
explode and saturate, the variance of the outputs of each layer
should be equal to the variance of its inputs.

• Solution: the connection weights of each layer must be initialized
randomly as follows:

7

2.1 Glorot and He Initialization

• Recommended initialization parameters for each type of activation
function.

• For the uniform distribution, use

• Keras uses Glorot initialization with a uniform distribution.

8

2.1 Glorot and He Initialization

• To change it to He initialization:
keras.layers.Dense(10, activation="relu",

kernel_initializer="he_normal") # Or "he_uniform"

• He initialization with a uniform distribution but based on fanavg:
he_avg_init = keras.initializers.VarianceScaling(scale=2.,

mode='fan_avg', distribution='uniform')

keras.layers.Dense(10, activation="sigmoid",

kernel_initializer=he_avg_init)

9

2.2 Nonsaturating Activation Functions

• Step does not work with the
back propagation algorithm.

• ReLU is better than sigmoid
because it does not saturate for
positive values and is fast.

• Dying ReLUs: A neuron dies
when its input is negative for all
training instances.

10

2.2 Nonsaturating Activation Functions

• Leaky ReLU performs better
than ReLU.

• α between 0.01 and 0.3

11

model = keras.models.Sequential([
…
keras.layers.Dense(10, kernel_initializer="he_normal"),
keras.layers.LeakyReLU(alpha=0.2), # added as a layer
…

])

2.2 Nonsaturating Activation Functions

• Exponential linear unit (ELU)
also performs better than ReLU
but is slower.

• Scaled ELU (SELU) performs best
with dense and CNN, but must
scale inputs and use
lecun_normal.

12

layer = keras.layers.Dense(10, activation="selu",
kernel_initializer="lecun_normal")

2.2 Nonsaturating Activation Functions

• Summary:
• SELU > ELU > leaky ReLU > ReLU > tanh > logistic

• If you cannot use SELU, use ELU.

• For fast response, use leaky ReLU or ReLU.

13

2.3 Batch Normalization

• The techniques in §2.1 and §2.2 can significantly reduce the
vanishing/exploding gradients problems at the beginning of training,
but don’t guarantee that they won’t come back during training.

• Batch Normalization (BN) zero-centers and normalizes each layer
input using statistics from the mini batch (> 30).

• Other benefits: Works even without §2.1 and §2.2, allows using
larger LR, and have regularization effect.

14

2.3 Batch Normalization

• Implementing batch normalization with Keras is easy.

model = keras.models.Sequential([
keras.layers.Flatten(input_shape=[28, 28]),
keras.layers.BatchNormalization(),
keras.layers.Dense(300, activation="elu",
kernel_initializer="he_normal"),
keras.layers.BatchNormalization(),
keras.layers.Dense(100, activation="elu",
kernel_initializer="he_normal"),
keras.layers.BatchNormalization(),
keras.layers.Dense(10, activation="softmax")

])

15

2.4 Gradient Clipping

• Mitigates the exploding gradients problem by clipping the gradients
during backpropagation so that they never exceed some threshold.

• Use it when you observe that the gradients are exploding during
training. You can track the size of the gradients using TensorBoard.

optimizer = keras.optimizers.SGD(clipvalue=1.0)

model.compile(loss="mse", optimizer=optimizer)

16

Outline
1. Introduction

2. Vanishing/Exploding Gradients Problems
• Glorot and He Initialization
• Nonsaturating Activation Functions
• Batch Normalization
• Gradient Clipping

3. Reusing Pretrained Layers

4. Faster Optimizers

5. Avoiding Overfitting
• ℓ1 and ℓ2 Regularization
• Dropout

6. Summary

7. Exercise
17

3. Reusing Pretrained Layers

• Transfer Learning: Using
one NN developed for a
certain task to solve
another task.

• Useful to shorten training
time or with small
datasets.

18

Transfer Learning with Keras

Load the ready model

model_A = keras.models.load_model("my_model_A.h5")

Create a new model using all but the last layer

model_B_on_A = keras.models.Sequential(model_A.layers[:-1])

model_B_on_A.add(keras.layers.Dense(1, activation="sigmoid"))

Freeze loaded layers then compile

for layer in model_B_on_A.layers[:-1]:

layer.trainable = False

model_B_on_A.compile(loss="binary_crossentropy",

optimizer="sgd", metrics=["accuracy"])

19

Transfer Learning with Keras

Train the model for a few epochs

history = model_B_on_A.fit(X_train_B, y_train_B, epochs=4,

validation_data=(X_valid_B, y_valid_B))

Unreeze loaded layers

for layer in model_B_on_A.layers[:-1]:

layer.trainable = True

Compile with small learning rate (defalut = 1e-2)

optimizer = keras.optimizers.SGD(lr=1e-4)

model_B_on_A.compile(loss="binary_crossentropy",

optimizer=optimizer, metrics=["accuracy"])

20

Transfer Learning with Keras

Train the model for more epochs

history = model_B_on_A.fit(X_train_B, y_train_B, epochs=16,

validation_data=(X_valid_B, y_valid_B))

21

Outline
1. Introduction

2. Vanishing/Exploding Gradients Problems
• Glorot and He Initialization
• Nonsaturating Activation Functions
• Batch Normalization
• Gradient Clipping

3. Reusing Pretrained Layers

4. Faster Optimizers

5. Avoiding Overfitting
• ℓ1 and ℓ2 Regularization
• Dropout

6. Summary

7. Exercise
22

4. Faster Optimizers

• The SGD optimizer can be made faster using momentum
optimization

23

optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9)

β

4. Faster Optimizers

• Nesterov momentum optimization measures the gradient of the cost
function not at the local position θ but slightly ahead in the direction
of the momentum, at θ + βm

24

optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9,
nesterov=True)

4. Faster Optimizers

• The adaptive optimizers such as AdaGrad, RMSProp, Adam, and
Nadam scale down the gradient vector along the steepest
dimensions.

25

optimizer = keras.optimizers.RMSprop()
optimizer = keras.optimizers.Adam()

4. Faster Optimizers

• RMSProp, Adam and Nadam often converge fast. But they can give
poor generalization.

• Solution: Use Nesterov accelerated gradient.

26

Class Speed Quality

SGD * ***

SGD with momentum, Nestrov ** ***

Adagrad *** *

RMSProp, Adam, Nadam, AdaMax *** ** or ***

Outline
1. Introduction

2. Vanishing/Exploding Gradients Problems
• Glorot and He Initialization
• Nonsaturating Activation Functions
• Batch Normalization
• Gradient Clipping

3. Reusing Pretrained Layers

4. Faster Optimizers

5. Avoiding Overfitting
• ℓ1 and ℓ2 Regularization
• Dropout

6. Summary

7. Exercise
27

5. Avoiding Overfitting

• Deep neural networks typically have many parameters, giving them
ability to fit a huge variety of complex datasets.

• Useful regularization techniques:
• Early stopping

• Batch normalization

• ℓ1 and ℓ2 regularization

• Dropout

28

5.1 ℓ1 and ℓ2 Regularization

• Constrain a neural network’s connection weights.

• ℓ1:

• ℓ2:

layer = keras.layers.Dense(100, activation="elu",

kernel_initializer="he_normal",

kernel_regularizer=keras.regularizers.l1(0.01))

The other regularization functions:

keras.regularizers.l2(0.01)

keras.regularizers.l1_l2(l1=0.01, l2=0.01)

29

5.2 Dropout

• Popular technique to improve accuracy.

• At every training step, every neuron (excluding the output neurons)
has a probability p of being temporarily dropped out.

30

5.2 Dropout

model = keras.models.Sequential([

keras.layers.Flatten(input_shape=[28, 28]),

keras.layers.Dropout(rate=0.2),

keras.layers.Dense(300, activation="elu",

kernel_initializer="he_normal"),

keras.layers.Dropout(rate=0.2),

keras.layers.Dense(100, activation="elu",

kernel_initializer="he_normal"),

keras.layers.Dropout(rate=0.2),

keras.layers.Dense(10, activation="softmax")

])

31

Outline
1. Introduction

2. Vanishing/Exploding Gradients Problems
• Glorot and He Initialization
• Nonsaturating Activation Functions
• Batch Normalization
• Gradient Clipping

3. Reusing Pretrained Layers

4. Faster Optimizers

5. Avoiding Overfitting
• ℓ1 and ℓ2 Regularization
• Dropout

6. Summary

7. Exercise
32

6. Summary

• Recommended default DNN configuration

33

Hyperparameter Default value

Kernel initializer He initialization

Activation function ELU

Normalization None if shallow; Batch Norm if
deep

Regularization Early stopping (+ℓ2 reg. if needed)

Optimizer Momentum optimization (or
RMSProp or Nadam)

Learning rate schedule 1 cycle

6. Summary

• For a simple stack of dense or CNN layers.

34

Hyperparameter Default value

Kernel initializer LeCun initialization

Activation function SELU

Normalization None (self-normalization)

Regularization Alpha dropout if needed

Optimizer Momentum optimization (or
RMSProp or Nadam)

Learning rate schedule 1 cycle

7. Exercise
11.8. Practice training a deep neural network on the CIFAR10 image dataset:
a) Build a DNN with 20 hidden layers of 100 neurons each (that’s too many, but it’s the point of

this exercise). Use He initialization and the ELU activation function.
b) Using Nadam optimization and early stopping, train the network on the CIFAR10 dataset. You

can load it with keras.datasets.cifar10.load_ data(). The dataset is composed of 60,000 32 ×
32–pixel color images (50,000 for training, 10,000 for testing) with 10 classes, so you’ll need
a softmax output layer with 10 neurons. Remember to search for the right learning rate each
time you change the model’s architecture or hyperparameters.

c) Now try adding Batch Normalization and compare the learning curves: Is it converging faster
than before? Does it produce a better model? How does it affect training speed?

d) Try replacing Batch Normalization with SELU, and make the necessary adjustments to ensure
the network self-normalizes (i.e., standardize the input features, use LeCun normal
initialization, make sure the DNN contains only a sequence of dense layers, etc.).

e) Try regularizing the model with alpha dropout. Then, without retraining your model, see if
you can achieve better accuracy using MC Dropout.

f) Retrain your model using 1cycle scheduling and see if it improves training speed and model
accuracy.

35

Deep Computer Vision Using
Convolutional Neural Networks

Prof. Gheith Abandah

1

Reference

• Chapter 14: Deep Computer Vision Using
Convolutional Neural Networks

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn,
Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2

2

https://github.com/ageron/handson-ml2

Reference

• Deep Learning with Python, by François Chollet, Manning Pub.

2018

3

Outline

1. Introduction

2. Convolutional layer
1. Filters
2. Stacking feature maps
3. Mathematical summary
4. Memory requirements

3. Pooling layer

4. CNN architectures
1. Example – Fashion MNIST
2. ResNet

5. Using pretrained models

6. Pretrained models for transfer
learning

7. Classification and localization

8. Object detection

9. Semantic segmentation

10. Exercises

4

Introduction

• YouTube Video: Convolutional Neural Networks (CNNs) explained
from Deeplizard

https://youtu.be/YRhxdVk_sIs

5

https://youtu.be/YRhxdVk_sIs

1. Introduction

• Convolutional neural networks (CNNs) emerged from the study of
the brain’s visual cortex.

• Many neurons in the visual cortex have a small local receptive field.

6

Outline

1. Introduction

2. Convolutional layer
1. Filters
2. Stacking feature maps
3. Mathematical summary
4. Memory requirements

3. Pooling layer

4. CNN architectures
1. Example – Fashion MNIST
2. ResNet

5. Using pretrained models

6. Pretrained models for transfer
learning

7. Classification and localization

8. Object detection

9. Semantic segmentation

10. Exercises

7

2. Convolutional Layer

• Neurons in one layer are not
connected to every single
pixel/neuron in the previous
layer, but only to pixels/neurons
in their receptive fields.

• This architecture allows the
network to concentrate on low-
level features in one layer, then
assemble them into higher-level
features in the next layer.

• Each layer is represented in 2D.

8

2. Convolutional Layer

• fh and fw are the height and
width of the receptive field.

• Zero padding: In order for a
layer to have the same height
and width as the previous layer,
it is common to add zeros
around the inputs.

9

2. Convolutional Layer

• It is also possible to connect a large
input layer to a smaller layer by
spacing out the receptive fields.

• The distance between two
consecutive receptive fields is
called the stride.

• A neuron located in row i, column j
is connected to the neurons in the
previous layer located in:
• Rows: i × sh to i × sh + fh – 1

• Cols: j × sw to j × sw + fw – 1

10

2. Convolutional Layer

• Keras supports
• No padding (default)

padding="VALID"

• Zero padding
padding="SAME"

• Example:
• Input width: 13

• Filter width: 6

• Stride: 5

11

13 / 5 = 3

2. Convolutional Layer

12

2.1 Filters

• A neuron’s weights can be
represented as a small image the
size of the receptive field, called
filters.

• When all neurons in a layer use
the same line filters, we get the
feature maps on the top.

13

2.2 Stacking Feature Maps

• In reality, each layer is 3D
composed of several feature maps
of equal sizes.

• Within one feature map, all
neurons share the same
parameters, but different feature
maps may have different
parameters.

• Once the CNN has learned to
recognize a pattern in one
location, it can recognize it in any
other location.

14

2.3 Mathematical Summary

• zi, j, k is the output of the neuron located in row i, column j in feature
map k

• fn′ is the number of feature maps in the previous layer

15

2.4 Memory Requirements

• Convolutional layers require a huge amount of RAM.

• Example: Convolutional layer with 5 × 5 filters, 200 feature maps of
size 150 × 100, with stride 1 and "same" padding. Input is RGB image
(three channels).
• Parameters = (5 × 5 × 3 + 1) × 200 = 15,200

• Size of feature maps (single precision) = 200 × 150 × 100 × 4 = 12 MB of RAM

• 1.2 GB of RAM for a mini batch of 100 instances

16

Outline

1. Introduction

2. Convolutional layer
1. Filters
2. Stacking feature maps
3. Mathematical summary
4. Memory requirements

3. Pooling layer

4. CNN architectures
1. Example – Fashion MNIST
2. ResNet

5. Using pretrained models

6. Pretrained models for transfer
learning

7. Classification and localization

8. Object detection

9. Semantic segmentation

10. Exercises

17

3. Pooling Layer

• Its goal is to subsample (i.e., shrink) the input image in order to
reduce the computational load, the memory usage, and the number
of parameters.

• It aggregates the inputs using max or mean.

18

Outline

1. Introduction

2. Convolutional layer
1. Filters
2. Stacking feature maps
3. Mathematical summary
4. Memory requirements

3. Pooling layer

4. CNN architectures
1. Example – Fashion MNIST
2. ResNet

5. Using pretrained models

6. Pretrained models for transfer
learning

7. Classification and localization

8. Object detection

9. Semantic segmentation

10. Exercises

19

4. CNN Architectures

• Stack few convolutional layers (each one generally followed by a
ReLU layer), then a pooling layer, then another few convolutional
layers, then another pooling layer, and so on. The image gets smaller
and smaller, but it also gets deeper and deeper. At the end, a dense
NN is added.

20

4.1 Example – Fashion MNIST
model = keras.models.Sequential([

keras.layers.Conv2D(64, 7, activation="relu", padding="same",
input_shape=[28, 28, 1]),

keras.layers.MaxPooling2D(2),
keras.layers.Conv2D(128, 3, activation="relu", padding="same"),
keras.layers.Conv2D(128, 3, activation="relu", padding="same"),
keras.layers.MaxPooling2D(2),
keras.layers.Conv2D(256, 3, activation="relu", padding="same"),
keras.layers.Conv2D(256, 3, activation="relu", padding="same"),
keras.layers.MaxPooling2D(2),
keras.layers.Flatten(),
keras.layers.Dense(128, activation="relu"),
keras.layers.Dropout(0.5),
keras.layers.Dense(64, activation="relu"),
keras.layers.Dropout(0.5),
keras.layers.Dense(10, activation="softmax")

])

21

Feature maps

Filter size

2×2 window and stride 2

4.1 Example – Fashion MNIST

model.compile(loss="sparse_categorical_crossentropy",

optimizer="nadam", metrics=["accuracy"])

history = model.fit(X_train, y_train, epochs=10,

validation_data=(X_valid, y_valid))

Train on 55000 samples, validate on 5000 samples

Epoch 1/10 55000/55000 [==============================] - 51s 923us/sample - loss:

0.7183 - accuracy: 0.7529 - val_loss: 0.4029 - val_accuracy: 0.8510

…

Epoch 10/10

55000/55000 [==============================] - 50s 911us/sample - loss: 0.2561 -

accuracy: 0.9145 - val_loss: 0.2891 - val_accuracy: 0.9036

22

4.1 Example – Fashion MNIST

score = model.evaluate(X_test, y_test)

X_new = X_test[:10] # pretend we have new images

y_pred = model.predict(X_new)

10000/10000 [==============================] - 2s 239us/sample - loss:

0.2972 - accuracy: 0.8983

23

Can reach 92% with
more epochs

4.2 ResNet

• Residual Network (or ResNet) won the ILSVRC 2015 challenge.

• Top-5 error rate under 3.6%, using an extremely deep CNN composed
of 152 layers.

• To train such a deep network, it uses skip connections.

24

Residual Learning

4.2 ResNet

• The network can start making progress even if several layers have not
started learning yet.

25

4.2 ResNet

• ResNet is a stack of residual units.

26

Outline

1. Introduction

2. Convolutional layer
1. Filters
2. Stacking feature maps
3. Mathematical summary
4. Memory requirements

3. Pooling layer

4. CNN architectures
1. Example – Fashion MNIST
2. ResNet

5. Using pretrained models

6. Pretrained models for transfer
learning

7. Classification and localization

8. Object detection

9. Semantic segmentation

10. Exercises

27

5. Using Pretrained Models

• Pretrained networks are readily available from the
keras.applications package.

• Check https://github.com/keras-team/keras-applications

• You can load the ResNet-50 model, pretrained on ImageNet, with the
following line of code:
model = keras.applications.resnet50.ResNet50(weights="imagenet")

28

https://github.com/keras-team/keras-applications

5. Using Pretrained Models

Input: 224 × 224-pixel images
images_resized = tf.image.resize(images, [224, 224])

Preprocess images, should be scaled 0-255
inputs = keras.applications.resnet50.preprocess_input(

images_resized * 255)

Y_proba = model.predict(inputs)

Get top predictions out of the 1000-class probs.
top_K = keras.applications.resnet50.decode_predictions(Y_proba, top=3)

29

5. Using Pretrained Models

Print results
for image_index in range(len(images)):

print("Image #{}".format(image_index))
for class_id, name, y_proba in top_K[image_index]:

print(" {} - {:12s} {:.2f}%".format(class_id, name, y_proba * 100))
print()

Image #0
n03877845 - palace 42.87%
n02825657 - bell_cote 40.57%
n03781244 - monastery 14.56%

Image #1
n04522168 - vase 46.83%
n07930864 - cup 7.78%
n11939491 - daisy 4.87%

30

Correct Class

Outline

1. Introduction

2. Convolutional layer
1. Filters
2. Stacking feature maps
3. Mathematical summary
4. Memory requirements

3. Pooling layer

4. CNN architectures
1. Example – Fashion MNIST
2. ResNet

5. Using pretrained models

6. Pretrained models for transfer
learning

7. Classification and localization

8. Object detection

9. Semantic segmentation

10. Exercises

31

6. Pretrained Models for Transfer Learning

• Training a pretrained network (Xception) for a dataset from TFDS
(https://www.tensorflow.org/datasets).

• tf_flowers: 3670 images, 5 classes
Load the dataset

import tensorflow_datasets as tfds

dataset, info = tfds.load("tf_flowers",

as_supervised=True, with_info=True)

dataset_size = info.splits["train"].num_examples # 3670

n_classes = info.features["label"].num_classes # 5

class_names = info.features["label"].names

32

https://www.tensorflow.org/datasets

6. Pretrained Models for Transfer Learning

Relooad the dataset with three splits tf.data.Dataset

test_set_raw, valid_set_raw, train_set_raw = tfds.load(

"tf_flowers", split=["train[:10%]",

"train[10%:25%]", "train[25%:]"],

as_supervised=True)

Define the preprocessing function

def preprocess(image, label):

resized_image = tf.image.resize(image, [224, 224])

final_image = keras.applications.xception.preprocess_input(
resized_image)

return final_image, label
33

6. Pretrained Models for Transfer Learning

Apply this preprocessing function to the 3 datasets
Shuffle the training set
Add batching and prefetching to all the datasets

batch_size = 32

train_set = train_set_raw.shuffle(3000).repeat()

train_set = train_set.map(preprocess).batch(

batch_size).prefetch(1)

valid_set = valid_set_raw.map(preprocess).batch(

batch_size).prefetch(1)

test_set = test_set_raw.map(preprocess).batch(

batch_size).prefetch(1)

34

6. Pretrained Models for Transfer Learning

Load an Xception model, pretrained on ImageNet
excluding the global avg pool. and dense o/p layers

base_model = keras.applications.xception.Xception(

weights="imagenet", include_top=False)

Add global avg pool. layer based on model output

avg = keras.layers.GlobalAveragePooling2D()(base_model.output)

output = keras.layers.Dense(n_classes, # Add desnse o/p

activation="softmax")(avg)

model = keras.models.Model(inputs=base_model.input,

outputs=output) # Create the Keras Model

35

6. Pretrained Models for Transfer Learning

Freeze the weights of the pretrained layers

for layer in base_model.layers:

layer.trainable = False

Compile the model and start training

optimizer = keras.optimizers.SGD(lr=0.2, momentum=0.9,

decay=0.01) # LR=0.2 with scheudle, k=1/0.01

model.compile(loss="sparse_categorical_crossentropy",

optimizer=optimizer, metrics=["accuracy"])

history = model.fit(train_set, epochs=5,

validation_data=valid_set) # Tops at 75–80% acc.

36

6. Pretrained Models for Transfer Learning

Unfreeze the weights of the pretrained layers

for layer in base_model.layers:

layer.trainable = True

Recompile with lower LR and decay

optimizer = keras.optimizers.SGD(lr=0.01, momentum=0.9,

nesterov=True, decay=0.001)

model.compile(loss="sparse_categorical_crossentropy",

optimizer=optimizer, metrics=["accuracy"])

history = model.fit(train_set, epochs=40,

validation_data=valid_set) # Result: 95% acc.

37

Outline

1. Introduction

2. Convolutional layer
1. Filters
2. Stacking feature maps
3. Mathematical summary
4. Memory requirements

3. Pooling layer

4. CNN architectures
1. Example – Fashion MNIST
2. ResNet

5. Using pretrained models

6. Pretrained models for transfer
learning

7. Classification and localization

8. Object detection

9. Semantic segmentation

10. Exercises

38

7. Classification and Localization

• Localizing an object in a picture can be expressed as a regression task.

• Predict the horizontal and vertical coordinates of the object’s center and
its height and width.

39

Common metric:
the Intersection
over Union (IoU)

7. Classification and Localization

base_model = keras.applications.xception.Xception(

weights="imagenet", include_top=False)

avg = keras.layers.GlobalAveragePooling2D()(base_model.output)

class_output = keras.layers.Dense(n_classes, activation="softmax")(avg)

loc_output = keras.layers.Dense(4)(avg)

model = keras.Model(inputs=base_model.input,

outputs=[class_output, loc_output])

model.compile(loss=["sparse_categorical_crossentropy "mse"],

loss_weights=[0.8, 0.2],

optimizer=optimizer, metrics=["accuracy"])

40

Outline

1. Introduction

2. Convolutional layer
1. Filters
2. Stacking feature maps
3. Mathematical summary
4. Memory requirements

3. Pooling layer

4. CNN architectures
1. Example – Fashion MNIST
2. ResNet

5. Using pretrained models

6. Pretrained models for transfer
learning

7. Classification and localization

8. Object detection

9. Semantic segmentation

10. Exercises

41

8. Object detection

• The task of classifying and localizing multiple objects in an image.

• A slow approach is use a CNN trained to classify and locate a single
object, then slide it across the image.

42

8.1 Fully Convolutional Networks

• FCN has also a convolution
layer at the output with valid
padding.

• FCN can process images of any
size.

• Example:
• Train the CNN for classification

and localization on small images,
10 outputs.

• For larger image, it output 8 × 8
grid where each cell contains 10
numbers.

43

8.2 You Only Look Once (YOLO)

• YOLO is an extremely fast and accurate object detection architecture.
1. Resizes the input image to 448 × 448

2. Runs a single convolutional network on the image

3. Thresholds the resulting detections by the model’s confidence.

44

8.2 You Only Look Once (YOLO)

• Models detection as a regression problem. It divides the image into
an S × S grid.

45

• For each grid cell
predicts B bounding
boxes, confidence for
those boxes, and C
class probabilities.

Outline

1. Introduction

2. Convolutional layer
1. Filters
2. Stacking feature maps
3. Mathematical summary
4. Memory requirements

3. Pooling layer

4. CNN architectures
1. Example – Fashion MNIST
2. ResNet

5. Using pretrained models

6. Pretrained models for transfer
learning

7. Classification and localization

8. Object detection

9. Semantic segmentation

10. Exercises

46

9. Semantic Segmentation

• Each pixel is classified according to the class of the object it belongs
to.

• Can use FCN followed by up sampling layers.

47

Exercises

14.9. Build your own CNN from scratch and try to achieve the highest
possible accuracy on MNIST.

14.10. Use transfer learning for large image classification, going
through these steps:
a) Create a training set containing at least 100 images per class. For example,

you could classify your own pictures based on the location (beach,
mountain, city, etc.), or alternatively you can use an existing dataset (e.g.,
from TensorFlow Datasets).

b) Split it into a training set, a validation set, and a test set.
c) Build the input pipeline, including the appropriate preprocessing

operations, and optionally add data augmentation.
d) Fine-tune a pretrained model on this dataset.

48

Summary

1. Introduction

2. Convolutional layer
1. Filters
2. Stacking feature maps
3. Mathematical summary
4. Memory requirements

3. Pooling layer

4. CNN architectures
1. Example – Fashion MNIST
2. ResNet

5. Using pretrained models

6. Pretrained models for transfer
learning

7. Classification and localization

8. Object detection

9. Semantic segmentation

10. Exercises

49

Recurrent Neural Networks

Prof. Gheith Abandah

1

Reference

• Chapter 15: Processing Sequences Using
RNNs and CNNs

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn,
Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2

2

https://github.com/ageron/handson-ml2

Reference

• Deep Learning with Python, by François Chollet, Manning Pub.

2018

3

Outline

1. Introduction

2. Recurrent neurons and layers

3. Training RNNs

4. Forecasting a time series
1. Implementing a simple RNN
2. Deep RNNs
3. Forecasting Several Time Steps Ahead

5. Handling long sequences
1. LSTM cell
2. GRU cell

6. Exercises

4

Introduction

• YouTube Video: Deep Learning with Tensorflow - The Recurrent
Neural Network Model from Cognitive Class

https://youtu.be/C0xoB8L8ms0

5

https://youtu.be/C0xoB8L8ms0

1. Introduction

• Recurrent neural networks (RNNs) are used to handle time series
data or sequences.

• Applications:
• Predicting the future (stock prices)

• Autonomous driving systems (predicting trajectories)

• Natural language processing (automatic translation, speech-to-text, or
sentiment analysis)

• Creativity (music composition, handwriting, drawing)

• Image analysis (image captions)

6

Outline

1. Introduction

2. Recurrent neurons and layers

3. Training RNNs

4. Forecasting a time series
1. Implementing a simple RNN
2. Deep RNNs
3. Forecasting Several Time Steps Ahead

5. Handling long sequences
1. LSTM cell
2. GRU cell

6. Exercises

7

2. Recurrent Neurons and Layers

• The figure below shows a recurrent neuron (left), unrolled through
time (right).

8

2. Recurrent Neurons and Layers

• Multiple recurrent neurons can be used in a layer.

• The output of the layer is:

9

2. Recurrent Neurons and Layers

• Recurrent neurons have memory (hold state) and are called memory
cells.

• The state h(t) = f(h(t–1), x(t)), not always ≡ y(t)

10

2. Recurrent Neurons and Layers:
Input and Output Sequences

1. Seq to seq net.: For predicting
the future.

2. Seq to vector: For analysis,
e.g., sentiment score.

3. Vector to seq: For image
captioning.

4. Encoder-decoder: For
sequence transcription.

11

1. 2.

3. 4.

Outline

1. Introduction

2. Recurrent neurons and layers

3. Training RNNs

4. Forecasting a time series
1. Implementing a simple RNN
2. Deep RNNs
3. Forecasting Several Time Steps Ahead

5. Handling long sequences
1. LSTM cell
2. GRU cell

6. Exercises

12

3. Training RNNs

• Training using strategy called
backpropagation through time
(BPTT).

• Forward pass (dashed)

• Cost function of the not-ignored
outputs.

• Cost gradients are propagated
backward through the unrolled
network.

13

Outline

1. Introduction

2. Recurrent neurons and layers

3. Training RNNs

4. Forecasting a time series
1. Implementing a simple RNN
2. Deep RNNs
3. Forecasting Several Time Steps Ahead

5. Handling long sequences
1. LSTM cell
2. GRU cell

6. Exercises

14

4. Forecasting a Time Series

• The data is a sequence of one or
more values per time step.
• Univariate time series

• Multivariate time series

• Forecasting: predicting future
values
• Forecast the next value

• Forecast N next values

15

4.1 Implementing a Simple RNN

Generate 10,000 time series

n_steps = 50

series = generate_time_series(10000, n_steps + 1)

Split them 7,000 : 2,000 : 1,000

X_train, y_train = series[:7000, :n_steps], series[:7000, -1]

(7000, 50, 1), (7000, 1)

X_valid, y_valid = series[7000:9000, :n_steps], series[7000:9000, -1]

X_test, y_test = series[9000:, :n_steps], series[9000:, -1]

16

4.1 Implementing a Simple RNN

Sequential model of one neuron

model = keras.models.Sequential([

keras.layers.SimpleRNN(1, input_shape=[None, 1])

])

optimizer = keras.optimizers.Adam(lr=0.005)

model.compile(loss="mse", optimizer=optimizer)

history = model.fit(X_train, y_train, epochs=20,

validation_data=(X_valid, y_valid))

model.evaluate(X_valid, y_valid) # MSE = 0.011, Dense achieves 0.004

17

Uses tanh
activation ht = yt

4.2 Deep RNNs

18

4.2 Deep RNNs

Sequential model of two hidden RNN layers

model = keras.models.Sequential([

keras.layers.SimpleRNN(20,

return_sequences=True, # output all steps

input_shape=[None, 1]),

keras.layers.SimpleRNN(20),

keras.layers.Dense(1)

])

MSE = 0.0026

19

4.3 Forecasting Several Time Steps Ahead

• Can train an RNN to predict all N next values at once (sequence-to-
vector model).

• The output layer should have N neurons.

20

4.3 Forecasting Several Time Steps Ahead

Generate 10,000 time series with 10 steps ahead

series = generate_time_series(10000, n_steps + 10)

Split them 7,000 : 2,000 : 1,000

X_train, y_train = series[:7000, :n_steps],

series[:7000, -10:, 0] #(7000, 50, 1), (7000,10)

X_valid, y_valid = series[7000:9000, :n_steps],

series[7000:9000, -10:, 0]

X_test, y_test = series[9000:, :n_steps],

series[9000:, -10:, 0]

21

4.3 Forecasting Several Time Steps Ahead

Sequential model of two hidden RNN layers

model = keras.models.Sequential([

keras.layers.SimpleRNN(20, return_sequences=True,

input_shape=[None, 1]),

keras.layers.SimpleRNN(20),

keras.layers.Dense(10)

])

MSE = 0.008

22

Outline

1. Introduction

2. Recurrent neurons and layers

3. Training RNNs

4. Forecasting a time series
1. Implementing a simple RNN
2. Deep RNNs
3. Forecasting Several Time Steps Ahead

5. Handling long sequences
1. LSTM cell
2. GRU cell

6. Exercises

23

5. Handling Long Sequences

• Training long sequences has two major challenges:
• Unstable gradients
• Forgetting the first inputs in the sequence

• For the unstable gradients:
• Does not help: ReLU activation, batch normalization
• Helps: good parameter initialization, faster optimizers, dropout

model = Sequential()

model.add(layers.SimpleRNN(20, dropout=0.2, recurrent_dropout=0.2,
input_shape=[None, 1]))

model.add(layers.Dense(1))

24

To fight overfitting and
unstable gradients

5. Handling Long Sequences

• To solve the short-term memory problem, use
• LSTM cell

• GRU cell

• These cells can be used in place of SimpleRNN

25

5.1 LSTM Cell

• The Long Short-Term Memory
(LSTM) cell was proposed in
1997.

• Training converges faster and it
detects long-term dependencies
in the data.

• h(t) as the short-term state and
c(t) as the long-term state.

26

model.add(LSTM(20))

5.2 GRU Cell

• The Gated Recurrent Unit (GRU)
cell was proposed in 2014.

• Simplified version of the LSTM
cell, performs just as well.

• A single gate controls the forget
gate and the input gate.

27

model.add(GRU(20))

6. Exercises

15.1. Can you think of a few applications for a sequence-to-sequence RNN? What
about a sequence-to-vector RNN, and a vector-to-sequence RNN?

15.2. How many dimensions must the inputs of an RNN layer have? What does
each dimension represent? What about its outputs?

15.3. If you want to build a deep sequence-to-sequence RNN, which RNN layers
should have return_sequences=True? What about a sequence-to-vector RNN?

15.4. Suppose you have a daily univariate time series, and you want to forecast the
next seven days. Which RNN architecture should you use?

15.5. What are the main difficulties when training RNNs? How can you handle
them?

15.6. Can you sketch the LSTM cell’s architecture?

28

Summary

1. Introduction

2. Recurrent neurons and layers

3. Training RNNs

4. Forecasting a time series
1. Implementing a simple RNN
2. Deep RNNs
3. Forecasting Several Time Steps Ahead

5. Handling long sequences
1. LSTM cell
2. GRU cell

6. Exercises

29

Reinforcement Learning

Prof. Gheith Abandah

1

Reference

• Chapter 18: Reinforcement Learning

• Aurélien Géron, Hands-On Machine Learning with Scikit-Learn,
Keras and TensorFlow, O’Reilly, 2nd Edition, 2019
• Material: https://github.com/ageron/handson-ml2

2

https://github.com/ageron/handson-ml2

Outline

1. Introduction

2. Policy Search

3. OpenAI Gym

4. Neural Network Policies

5. The Credit Assignment Problem

6. Q-Learning

7. Exercises

3

Introduction

• YouTube Video: An introduction to Reinforcement Learning from
Arxiv Insights

https://youtu.be/JgvyzIkgxF0

4

https://youtu.be/JgvyzIkgxF0

1. Introduction – History

• RL started in 1950s

• 1992: IBM’s TD-Gammon, a Backgammon
playing program.

• 2013: DeepMind demonstrated a system that
learns to play Atari games from scratch.

• Use deep learning with raw pixels as inputs
and without any prior knowledge of the rules
of the games.

• 2014: Google bought DeepMind for $500M.

• 2016: AlphaGo beats Lee Sedol.

5

1. Introduction – Definition

• In Reinforcement Learning, a software agent makes observations and
takes actions within an environment, and in return it receives
rewards.

• Its objective is to learn to act in a way that will maximize its expected
long-term rewards.

• In short, the agent acts in the environment and learns by trial and
error to maximize its pleasure and minimize its pain.

6

1. Introduction – Examples

7

(a) robotics
(b) Ms. Pac-Man
(c) Go player
(d) thermostat
(e) automatic
trader

Outline

1. Introduction

2. Policy Search

3. OpenAI Gym

4. Neural Network Policies

5. The Credit Assignment Problem

6. Q-Learning

7. Exercises

8

2. Policy Search
• The algorithm used by the software agent to determine its actions is

called its policy.

• The policy can be deterministic or stochastic.

• Policy search techniques: Brute force, Genetic algorithm, Policy
Gradient (PG), Q-Learning.

9

Outline

1. Introduction

2. Policy Search

3. OpenAI Gym

4. Neural Network Policies

5. The Credit Assignment Problem

6. Q-Learning

7. Exercises

10

3. OpenAI Gym
• OpenAI Gym is a toolkit that provides simulated environments (Atari

games, board games, 2D and 3D physical simulations, …).

• OpenAI is a nonprofit AI research company funded in part by Elon
Musk. Got $1 billion investment from Microsoft.

>>> import gym

>>> env = gym.make("CartPole-v1")

>>> obs = env.reset()

>>> obs

array([-0.012586, -0.001566, 0.042077, -0.001805])

11

Cart position, cart speed,
pole angle, pole velocity

3. OpenAI Gym

• render() can also return the rendered image as a NumPy array.

>>> img = env.render(mode="rgb_array")

>>> img.shape # height, width, channels (3 = RGB)

(800, 1200, 3)

12

3. Balancing the pole

>>> action = 1 # accelerate right

>>> obs, reward, done, info = env.step(action)

>>> obs

array([-0.012617, 0.192928, 0.042041, -0.280921])

>>> reward

1.0

>>> done

False

>>> info

{} 13

The possible actions are integers 0
and 1, which represent accelerating

left (0) or right (1).

3. Balancing the pole

def basic_policy(obs):
angle = obs[2]
return 0 if angle < 0 else 1

totals = []
for episode in range(500):

episode_rewards = 0
obs = env.reset()
for step in range(200):

action = basic_policy(obs)
obs, reward, done, info = env.step(action)
episode_rewards += reward
if done:

break
totals.append(episode_rewards)

14

Accelerates left when
the pole is leaning left
and accelerates right

when the pole is
leaning right.

3. Balancing the pole

• Even with 500 tries, this policy never managed to keep the pole upright
for more than 68 consecutive steps.

>>> import numpy as np

>>> np.mean(totals), np.std(totals), np.min(totals),

np.max(totals)

(41.718, 8.858356280936096, 24.0, 68.0)

15

Outline

1. Introduction

2. Policy Search

3. OpenAI Gym

4. Neural Network Policies

5. The Credit Assignment Problem

6. Q-Learning

7. Exercises

16

4. Neural Network Policies

• Takes an observation as input,
and outputs the probability for
each action

• We select an action randomly,
according to the estimated
probabilities.

• Explore and exploit

17

4. Neural Network Policy in Keras

Building a polity network is easy

import tensorflow as tf

from tensorflow import keras

n_inputs = 4 # == env.observation_space.shape[0]

model = keras.models.Sequential([

keras.layers.Dense(5, activation="elu",

input_shape=[n_inputs]),

keras.layers.Dense(1, activation="sigmoid"),

])

Training it is something else

18

Outline

1. Introduction

2. Policy Search

3. OpenAI Gym

4. Neural Network Policies

5. The Credit Assignment Problem

6. Q-Learning

7. Exercises

19

5. The Credit Assignment Problem

• Rewards are typically sparse and
delayed.

• Credit assignment problem:
when the agent gets a reward, it
is hard for it to know which
actions should get credited (or
blamed) for it.

• Evaluate an action based on the
sum of all the rewards that come
after it, usually applying a
discount rate at each step.

20

Outline

1. Introduction

2. Policy Search

3. OpenAI Gym

4. Neural Network Policies

5. The Credit Assignment Problem

6. Q-Learning

7. Exercises

21

6. Q-Learning

• Reference: Keon Kim, Deep Q-Learning with Keras and Gym,
https://keon.io/deep-q-learning/

• Deep reinforcement learning (deep Q-learning) example to play a CartPole
game using Keras and Gym.

• Google’s DeepMind published Playing Atari with Deep Reinforcement
Learning where they introduced the algorithm Deep Q Network (DQN) in
2013.

• In DQN, the quality function Q is used to approximate the reward based on
a state. Q(s,a) calculates the expected future value from state s and
action a.

• A neural network is used to approximate the reward based on the state.

22

https://keon.io/deep-q-learning/
https://arxiv.org/abs/1312.5602

6. Q-Learning

• Carry out an action a, and observe the reward r and resulting new state s’.

• Calculate the maximum target Q and then discount it so that the future reward is
worth less than immediate reward by .

• Add the current reward to the discounted future reward to get the target value.

• Subtracting our current prediction from the target gives the loss.

• Squaring this value allows us to punish the large loss value more and treat the
negative values same as the positive values.

23

6. DQN – Imports and Definitions

import random

import gym

import numpy as np

from collections import deque

from keras.models import Sequential

from keras.layers import Dense

from keras.optimizers import Adam

EPISODES = 5000

24

6. DQN – Agent Class (1/4)

class DQNAgent:

def __init__(self, state_size, action_size):

self.state_size = state_size

self.action_size = action_size

self.memory = deque(maxlen=2000)

self.gamma = 0.95 # discount rate

self.epsilon = 1.0 # exploration rate

self.epsilon_min = 0.01 # min exploration rate

self.epsilon_decay = 0.995

self.learning_rate = 0.001

self.model = self._build_model()

25

6. DQN – Agent Class (2/4)

def _build_model(self):

model = Sequential()

model.add(Dense(24, input_dim=self.state_size,
activation='relu'))

model.add(Dense(24, activation='relu'))

model.add(Dense(self.action_size, activation='linear'))

model.compile(loss='mse',
optimizer=Adam(lr=self.learning_rate))

return model

26

4

2

6. DQN – Agent Class (3/4)

def remember(self, state, action, reward, next_state, done):

Queue of previous experiences to re-train the model

self.memory.append((state, action, reward, next_state, done))

def act(self, state):

Returns an action randomly or from the model

if np.random.rand() <= self.epsilon:

return random.randrange(self.action_size)

act_values = self.model.predict(state)

return np.argmax(act_values[0])

27

6. DQN – Agent Class (4/4)

def replay(self, batch_size):

minibatch = random.sample(self.memory, batch_size)

for state, action, reward, next_state, done in
minibatch:

target = reward

if not done:

target = (reward + self.gamma * np.max(
self.model.predict(next_state)[0]))

target_f = self.model.predict(state)

target_f[0][action] = target

self.model.fit(state, target_f, epochs=1,
verbose=0)

if self.epsilon > self.epsilon_min:

self.epsilon *= self.epsilon_decay
28

Learn to predict
the reward

Replay()

trains the neural
net with
experiences in
the memory

6. DQN – Setup

if __name__ == "__main__":

env = gym.make('CartPole-v1')

state_size = env.observation_space.shape[0] # 4

action_size = env.action_space.n # 2

agent = DQNAgent(state_size, action_size)

done = False

batch_size = 32

29

6. DQN – Training
for e in range(EPISODES):

state = env.reset()
state = np.reshape(state, [1, state_size])
for time in range(5000):

action = agent.act(state)
next_state, reward, done, _ = env.step(action)
reward = reward if not done else -10
next_state = np.reshape(next_state, [1, state_size])
agent.remember(state, action, reward, next_state, done)
state = next_state
if done:

print("episode: {}/{}, score: {}"
.format(e, EPISODES, time))

break
if len(agent.memory) > batch_size:

agent.replay(batch_size)

30

6. DQN – Results

31

Exercises

18.1. How would you define Reinforcement Learning? How is it different from
regular supervised or unsupervised learning?

18.2. Can you think of three possible applications of RL that were not mentioned in
this chapter?

18.For each of them, what is the environment? What is the agent? What are some
possible actions? What are the rewards?

18.3. What is the discount factor? Can the optimal policy change if you modify the
discount factor?

18.4. How do you measure the performance of a Reinforcement Learning agent?
18.5. What is the credit assignment problem? When does it occur? How can you

alleviate it?
18.6. What is the point of using a replay buffer?

32

Summary

1. Introduction

2. Policy Search

3. OpenAI Gym

4. Neural Network Policies

5. The Credit Assignment Problem

6. Q-Learning

7. Exercises

33

Recommender Systems

Prof. Gheith Abandah

Reference: Artificial Intelligence with Python, by Prateek Joshi, Packt Publishing, 2017.

1

Outline

1. Introduction

2. The MovieLens dataset

3. Similarity scores

4. Building a collaborative recommendation system

5. Open source Python packages

6. Summary

2

1. Introduction

• YouTube Video: Recommendation Systems - Learn Python for Data
Science #3 by Siraj Raval

https://youtu.be/9gBC9R-msAk

3

https://youtu.be/9gBC9R-msAk

1. Introduction

• A Recommender System predicts the likelihood that a user would
prefer an item and it recommends items to the user.

• Examples
• Facebook — “People You May Know”

• Netflix — “Other Movies You May Enjoy”

• LinkedIn — “Jobs You May Be Interested In”

• Amazon — “Customer who bought this item also bought …”

• Google — “Visually Similar Images”

• YouTube — “Recommended Videos”

4

1. Introduction

• Recommender System Types
1. A collaborative filtering algorithm works by finding a set of people with

preferences or tastes similar to the target user. Using this smaller set of
“similar” people, it constructs a ranked list of suggestions.

2. Content-based filtering is based on a description of the item and a profile
of the user’s preferences to recommend items that are similar to those that
a user liked.

3. Hybrid

5

2. The MovieLens DataSet

• 100,000 ratings (1-5) from 943 users on 1682 movies.

• Includes users data and ratings data

6

Users Ratings

3. Similarity Scores

1. Euclidean score (Euclidean distance, lower is better)

𝑑 𝒙, 𝒚 =

𝑖=1

𝑛

𝑥𝑖 − 𝑦𝑖
2

2. Pearson score (1 is best)

7

4. Building a Collaborative Recommendation
System

1. Function to recommend movies for a user

2. For each other user:
1. Find the Pearson score of commonly rated movies, ignoring dissimilar

users.

2. Extract a list of movies that have been rated by this user but haven't been
rated by the input user.

3. For each item in this list, keep a track of the weighted rating based on the
similarity score.

3. Finally, sort the scores and extract the movie recommendations.

8

4. Building a Collaborative Recommendation
System

Get movie recommendations for the input user
Assume the input user is in the dataset
and there is at lease one recommendation
def get_recommendations(dataset, input_user): # 1

overall_scores = {}
similarity_scores = {}
for user in [x for x in dataset if x != input_user]:

similarity_score = pearson_score(dataset, input_user,
user) # 2.1

if similarity_score <= 0:
continue # 2.1

filtered_list = [x for x in dataset[user] if x not in
dataset[input_user] or dataset[input_user][x] == 0]

for item in filtered_list:
overall_scores.update({item: dataset[user][item]

* similarity_score}) 9

2.2

2.3

4. Building a Collaborative Recommendation
System

Generate movie ranks
movie_scores = np.array([[score, item] for item, score in

overall_scores.items()])

Sort in decreasing order
movie_scores = movie_scores[

np.argsort(movie_scores[:, 0])[::-1]]

Extract the movie recommendations
movie_recommendations = [movie for _, movie in

movie_scores]

return movie_recommendations

10

3

5. Open Source Python Packages

• LightFM

• GraphLab

• Crab

• Surprise

• Python Recsys

• MRec

11

https://github.com/lyst/lightfm
https://www.analyticsvidhya.com/blog/2015/12/started-graphlab-python/
http://muricoca.github.io/crab/
https://github.com/NicolasHug/Surprise
https://github.com/ocelma/python-recsys
https://github.com/Mendeley/mrec

Summary

1. Introduction

2. The MovieLens dataset

3. Similarity scores

4. Building a collaborative recommendation system

5. Open source Python packages

6. Summary

12

