Getting Started with Embedded

Systems

Chapter 1
Sections 1-6

Dr. lyad Jafar

Outline

* What is an Embedded System?

* The Essence of Embedded Systems

* Embedded Systems Examples

* Some Computer Essentials

* Microprocessors vs. Microcontrollers
* The PIC Microcontroller

* The PIC 12 Series as an Example

What is an Embedded System?

* An embedded system is a computer system that
IS

e designed to perform one or a few dedicated functions
often with real-time computing constraints

e embedded as part of a complete device often including
hardware and mechanical parts.

e By contrast, a general-purpose computer, such as
a personal computer, is designed to be flexible and
to meet a wide range of end-user needs.

The Essence of Embedded Systems

e |
| User Interaction ;“[@

A Em 2 Em 7 EE B f s Ee Em o =m

G 3

| Input ! | Output |
: npu : utpu

| .p : NH Embedded Computer NH ' . P :
- Variables ! - Variables !
| ; Hardware |)

~

-
The Essence of Embedded Systems

e Characteristics

e Software driven

e Reliable

e Real-time control system

e Microcontroller or DSP based

e Autonomous / human interactive / network interactive

e Operate on diverse input variables and in diverse
environments

L

Examples
e Automotive

* Avionics/Aerospace/Defence
e Industrial Automation
e Telecommunications

e Consumer Electronics & Intelligent Homes &
Retail (Thin Clients/POS)

» Scientific & Medical Equipment

e Computer peripherals

St idect D

1

Mgl

ok

Ha
e

Examples

Compressor control

T

Alarm
The interaction
embedded AN
computer VAAATARTATATATATATATATATATAT i

Networked
h interaction
Actual temperature (maybe!)

Required temperature

* The refrigerator is required to maintain low
temperature by reading the current value and
controlling the compressor accordingly

Examples

Climate control

Parking aid
(behind dashboard)

(in boot)

Alarm & immaobiliser
(behind glovebox)

Engine management system
(under bonnet)

R, Automatic wiper control

""ﬁ._ (under bonnet)

4

Airbag control unit
(behind central console)

Electric window & central locking
(in footwell)

Anti-lock braking system
(under cover)

Automatic transmission
(under cover)

° * Different sensors in the car door produce signals that are of great
\ importance when integrated with the rest of the car functionality

On/off

Examples

The embedded computer,
a Microchip 16LF84A

switch |

Player 1 paddle

‘Score’ LED

Ball flight LEDs

e The Electronic ‘ping-pong’

o

‘Out-of-play’ LED

Player 2
paddle

e The Derbot Autonomous Guided Vehicle

@ * More sensors and powerful microcontroller

Examples

Ultrasound
ranging
module
Pulse A \/ Echo
Bump sensor \ y Bump sensor
left = ™ right
Light sensor P) -.-"'l Light sensor
loft +: Analog-to-digital Ir—% right
——— converter !
p U
Light sensor \ Ultrasound
rear 7 801VO
Serial data
PIC c
microcontroller ompass
—_,—7 Power 5V Serial
regulation & clock
—_ management
T)V— | Serial extension bus
Alkaline N\ \V Pulse width modulation
stream x 2
9V Motor drive
interface
Motor Motor
left right

® The Derbot Autonomous Guided Vehicle

Embedded Systems Market

Global Embedded System Market Revenue, 2015- 2021 (USD Billion)

22534

700
n I I I I_I

2015 2016 2017 2018 2021

g 8

Revenue (USD Billion)
s 2 8

3

(=)

B Revenue

Source: Zion Research Analysis 2016

Some Computer Essentials

* Elements of a Computer

The outside

o

world

Input /
! Output

A

o= n mm a mma Emmn Em a oEmomy,

.' |
! i
! i
i Data |
Central : !
Processing : :
Unit | |
|
<:l> Program :
R |
. 5
4 . Memory

S - Information path (BUS)

.............

Some Computer Essentials

Memory Organization
The Von Neumann Architecture

e One address bus and one data
bus

* |/O may be also connected to
these busses

e Simple and logical
architecture, however

e Same memory width
for instruction and data ?!
e Shared busses ?!

o

Central
Processm

Some Computer Essentials

Memory Organization
The Harvard Architecture

» Separate address and data bus for program
memory and data memory

* More flexibility;
¢ Different memory width
e Simultaneous access of

data and program memories [{Rrocessing
Unit/(CPU)

e Complex ?!

o y

o

Some Computer Essentials
Instruction Sets

* Every CPU has a set of instructions that it can recognize and
execute

* There are different approaches in designing instructions for the
CPU in attempt to speed up program execution

e CISC (Complex Instruction Set Computers)

Many instructions and addressing modes

Instructions have different levels of complexity (different size and
execution time)

Relatively slow
Shorter programs
e RISC (Reduced Instruction Set Computers)
Few instructions and addressing modes
Simple instructions of fixed size
Relatively fast
Longer programs

Some Computer Essentials

* Memory Types

e Volatile
Holds its contents as long as power is ON
Used as temporary storage to hold data

Easy to write
RAM

e Non-volatile
Retains its values on power out
More difficult to write in terms of time and power

In embedded systemes, it is usually used to store
programs

ROM

/
Microprocessors and Microcontrollers

* First microprocessors in the 1970s
e The computer CPU on a single chip
e |nitially, memory and I/O interfacing outside the CPU

e As technology evolved, the microprocessor became
more self-contained, powerful, and faster

* A special category of microprocessors emerged
e Microcontrollers
* Intended for control purposes

e No high computational power, huge memories, or high
speed is required

e Has excellent I/O capabilities

@ e Small, low cost, and self contained
N

-

Microprocessors and Microcontrollers

* A generic microcontroller

Power

Reset,

Interrupt(s)|

Clock

Program
memory

Data
memory

1l

T (R A

- N| Microprocessor
—V core

i

Internal data &
address buses

Further

peripheral |

Further |~
peripheral |

-

Digital
1/O

Analog
1/O

Counters |~

.
.........

& timers

.....

~

/
Microprocessors and Microcontrollers

e Microcontroller Families

e Different families with each family built around the same core

e Family members differ in memory size and peripheral capabilities

Family 1 Family 2 Family 3

3

I’

/
Microprocessors and Microcontrollers

e Microcontroller Packaging
e Plastic packaging
e Pins for 1/0, clock, communication, and Power.

e The number of pins usually determines the size of the
chip

ARSI

Motorola
68000

e pIC
 12F508

o

-
Microchip and the PIC Microcontrollers

- Peripheral Interface Controller (PIC) was originally a
design by General Instruments (Gl) intended for
simple control applications

* In the late 1970s, Gl introduced PIC® 1650 and 1655
 Standalone design
« RISC with 30 instructions
 Single working register (accumulator)
« Many attractive features

- PIC was sold to Microchip

o

Microchip and the PIC Microcontrollers

—..
PIC32
| ..
dsPIC33
...
dsPIC30
.

PIC24H
—

+~ PIC24F

X\ 2Y PIC18 paaie
V

-
Lol
%
c
O
e
)
-
i |
L

PIC16 1
 PIC12 v
PIC10

Performance

/
Microchip and the PIC Microcontrollers
128 PIC18 Architecture
Mid-Range & OtRDeta
Py Enhanced 16-bit Instructi
o Mid-Range
R | PIC18F
> 16 |
2 ¢
= 4 PIC16F
‘ PIC1ZF | Baseline
1 ' &-bit Data
12-bit Instruction
6 8 14 18 28 40 64 84 100
Pins

~

-

Microchip and the PIC Microcontrollers

- PIC Families

PIC Family Stack Size Instruction No. o.f Interrupt
(words) Word Size Instructions Vectors
12CX/12FX 2 12- or 14-bit 33 None
16C5X/16F5X 2 12-bit 33 None
16CX/16FX 8 14-bit 35 1
17CX 16 16-bit 58 4
18CX/18FX 32 16-bit 75 2

- Example: the 16C84 was the first of its kind built using
CMOQOS technology. It was later reissued as 16F84A
incorporating flash memory and other technological
features

~

-

L

Microchip and the PIC Microcontrollers

- PIC 16 Series Characteristics

» Low-cost

- Self-contained

8-bit

- Harvard architecture
 RISC

e Pipelined

Single accumulator (the working or W register)
 Fixed reset and interrupt vectors

~

The PIC 12 Series

- PIC 12F508/509
- The smallest and simplest PIC

VDD ——m{ |1 @ 8| |— Vss
GP5/0OSC1/CLKIN <—m[]2 § 7 [J<a—a= GPO/ICSPDAT
GP4/OSC2-a—»{]3 E 6| J=—» GP1/ICSPCLK
GP3MCLRVPP —{]4 § 5[}« GP2/TOCKI
(418

Key
Vpp: Power supply Vgg: Ground
Vpp: Programming voltage input MCLR: Master clear
0OSC1, OSC2: Oscillator pins CLKIN: External clock input

GPO to GP5: General-Purpose input/output pins (bidirectional except GP3)

CSPDAT: In-Circuit Serial Programming™ data pin.
@ CSPCLK: In-Circuit Serial Programming™ clock pin.

The PIC 12 Series Architecture A

Program memory —
' Address bus for Data
program memory memaory
Data bus for 12 / Input/
program - = . DataBus 4 GPIO output
Py - o i GPO/ISCPDAT
carrying GP1/ISCPCLK
instruction GP2/TOCKI
word GP3/MCLR/VeP
GP4/0OSC2
""""" GP5/0OSC1/CLKIN
F'mnram 1
Address Address bus for
extracted data memory
from
instruction .
word Data bus for data
memory and
Literal data peripherals
extracted from
lr__lstructlun word
I'“?Bm""f:“" The CPU
Timi
GERSCLAN Generation|<={ | WaiEhdog
Vpo, Vss

Summary

- An embedded system has one or more computers
embedded within it that perform control
operations

- A microcontroller is at the heart of embedded
systems. It is basically a microprocessor with
extended 1/O capabilities

- Microchip is one of the popular vendors for a large
variety of microcontrollers with different features

©

Introducing the PIC 16 Series and the

16F84A

Chapter 2
Sections 1-8

Dr. lyad Jafar

Outline

* Overview of the PIC 16 Series

* An Architecture Overview of the 16F84A
* The 16F84A Memory Organization

* Memory Addressing

e Some Issues of Timing

e Power-up and Reset

* The 16F84A On-chip Reset Circuit

Overview of the PIC 16 Series

e The PIC 16 series is classified as a midrange
microcontroller

* The series has different members all built around
the same core and instruction set, but with
different memory, 1/0O features, and package size

-

Some members of the PIC 16 Series family

~

Device No. of pins* . Clock speed Memory Peripherals/special features
number (K = Kbytes, i.e. 1024 bytes)
16F84A 18 DC to 20 MHz IK program memory, 1 8-bit timer
68 bytes RAM, 1 5-bit parallel port
64 bytes EEPROM 1 8-bit parallel port
16LF84A As above As above As above As above, with extended
supply voltage range
16FB4A-04 As above DC to <4 MHz As above As above
I6F873A 28 DC 1o 20 MHz 4K program memory 3 parallel ports,
192 bytes RAM, 3 counter/timers,
128 bytes EEPROM 2 capture/compare/PWM
modules,
2 serial communication
modules,
5 10-bit ADC channels,
2 analog comparators
16F874A 40 DC 1o 20 MHz 4K program mcmory S parallel ports,
192 bytes RAM, 3 counter/timers,
128 bytes EEPROM 2 capture/comparc/PWM
modules,
2 serial communication
modules,
8 10-bit ADC channels,
2 analog comparators
I16F876A 28 DC to 20 MHz 8K program memory 3 parallel ports,
368 bytes RAM, 3 counter/timers,
256 bytes EEPROM 2 capture/comparc/PWM
modules,
2 serial communication
modules,
5 10-bit ADC channels,
2 analog comparators
16F877A 40 DC to 20 MHz 8K program memory 5 parallel ports,
368 bytes RAM, 3 counter/timers,
256 bytes EEPROM 2 capture/comparc/PWM
modules,
2 serial communication
modules,
8 10-bit ADC channels,
2 analog comparators

\ r DIP package only.

-

L

An Architecture Overview of the
16F84A

Port A, bit 2 RA2 g 1 o 18 @ RA1 Port A, bit 1

Port A, bit 3 RA3 RAOD Port A, bit 0
*Port A, bit 4 RA4/TOCKI OSC1/CLKIN Osaillator eorifbatians

Reset MCLR C OSC2/CLKOUT
Ground Ve B Vpp Supply voltage

**Port B, bit0 RBO/INT C 1 RB7 Port B, bit 7

Port B,bit1 RB1 O 10 RB6 Port B, bit 6

Port B, bit 2 RB2 [1 RBS Port B, bit 5

Port B, bit 3 RB3 O9 10D RB4 Port B, bit 4

"also counter/timer clock input

“*also external interrupt input

e 18 Pins / DC to 20MHz / 1K program Memory/ 68 Bytes of RAM / 64

Bytes of EEPROM / 1 8-bit Timer / 1 5-bit Parallel Port / 1 8-bit Parallel
Port

An Architecture Overview of the 16F84A

DataBus g,
EEPROM Data Memory
EEPROM
—1 EEDATA &4 Data Memory
64x8
i
+| EEADR
g asiect hiili Counter/Timer
4-——"“—'_'—__ Timer0'
FSRmeg K=
+X] Rasmocki)
STATUS reg < >
8,
s {! F .
Port A
— MUX >A/
;} 3‘_, s /O Poris

3 :‘:-E RA3:RAD

‘:DE RET7:RB1
| Port B

12 o

Py

Timin
(‘ﬂnarﬁ on ':qtgh

%

0SC/CLKOUT VDD, VSS
6 OSC1/CLKIN

=
@
o

7

-

L

The PIC 16F84A ALU and Working

Register

* Arithmetic & Logic Unit

8-bit ALU
Supports 35 simple instructions
Input operands are

The working register
Content of some file register or a literal

The result is stored in Working register or
in a File register

* The Working Register

Inside the CPU
For many instructions, it can be chosen to

.~.
= o

hold the result of the last instruction
executed by the CPU

~

-

The PIC 16F84A Memory Organization

e Program Memory and Related Units

CALL, RETURN
instructions which | —+¥ sersiz, rerLw

invoke the Stack RN SIGCT Cav LV R
5

[Program Counter

PC<12:0
16 Series I {E . 3 i"\\

The program
— must start here

The Interrupt
Service Routine
must start here

Program Counter
points to locations in

— program memory

Usear Memory
Space

- LFF" Unimplemented

memory space, still
— | addressable by the
16F84A program

1FFFh

~

-
The PIC 16F84A Memory Organization

e Program Memory
e 1K x 14 Bits
e Address range O000H — O3FFH
e Flash (nonvolatile)
e 10000 erase/write cycles
e [ocation O000H is reserved for the reset vector
e [ocation 0004H is reserved for the Interrupt Vector

e Program Counter
e Holds the address of the instruction to be executed (next instruction)

e Stack
e 8levels (each is 13 bits)
* SRAM (volatile)

e Used to store/load the return address with instruction like CALL,
RETURN,RETFIE, and RETLW (interrupts and subroutines)

e [nstruction Register
\ e Holds the instruction being executed

-

The PIC 16F84A Memory Organization
* The Configuration Word

e A special part of the program memory

e Allows the user to configure different features of the microcontroller at
the time of program download and is not accessible within the program
or while it is running

RP-u RPu RPu RPu RPu RP-u RPu RPu RPu RPuyu RPu RPu RPu RP-u
CcP CcP CcP CP CP cP CcP CcP CcP CP |PWRTE| WDTE | FOSC1 | FOSCOD

bit13 bit0

bit 13-4 CP: Code Protection bit

1 = Code protection disabled

0 = All program memory is code protected
bit 3 PWRTE: Power-up Timer Enable bit

1 = Power-up Timer is disabled

0 = Power-up Timer is enabled

bit 2 WDTE: Watchdog Timer Enable bit
1 =WDT enabled
0 = WDT disabled

bit 1-0 FOSC1:FOSCO: Oscillator Selection bits
11 = RC oscillator
10 = HS oscillator
01 = XT oscillator
00 = LP oscillator

-

o

The PIC 16F84A Memory Organization

Data Memory and Special Function

Registers (SFRs)
* SRAM (volatile)
e Banked addressing

e Special Function Registers SFRs

Locations 01H-0BH in bank 0 and 81H-
8BH in bank 1

Used to communicate with 1/O and
control the microcontroller operation

Some of them hold 1/0 data
e General Purpose Registers

Addresses OCH — 4FH (68 Bytes)
Used for storing general data

Fie Address File Address
ooh | Indirect addr." | Indicect agar(" | | 8oh |
oh TMRO OPTION_REG | | 81n |
o2h PCL PCL . 82n |
03n STATUS STATUS ' a3n |
04h FSA FSR - 8an |
osh PORTA TRISA - asn |
06h PORTB TAISB . 86h |
o7h - 87h |
08h EEDATA EECON1 . 88h |
09h EEADR EECON2M || goh |
oAnh PCLATH PCLATH | BAN |
oBh INTCON INTCON | | 8Bn |

68
Geoneral Mapped
(]
4Fh CFh
g
- I ..

Banik O

Bank 1

B Unimpiemented data memaory location, read as ‘0.
Note 1: Nota physical register.

4 N
The PIC 16F84A Memory Organization

Special Function Registers (SFRs)

Address Bank 0 Bank | Address
0t it INDF : Data memory contents by indirect addressing
0th a1 TMRO : Timer counter
0t ot PCL : Low order 8 bits of program counter
0 o STATUS : Flag of calculation result
i o FSR : Indirect data memory address pointer
PORTA : PORTA DATA 1/O

Ut boh PORTB : PORTB DATA 1/0
Vih A EEDATA : Dtata for EEPROM
i W EEADR : Address for EEPROM
i o PCLATH : Write buffer for upper 5 bits of the program counter
Uk boh INTCON : Interruption control
U b OPTIN_REG : Mode set
U8k B8h TRISA : Mode set for PORTA

0Ch - 4Fh oCh - CFh TRISB : Mode set for PORTB

EECON1 : Control Register for EEPROM

EECONZ : Write protection Register for EEPROM

/

-

The PIC 16F84A Memory Organization

» Special Function Registers (SFRs) interacting with
peripherals

'Outside
world

Microcontroller
core

-

The PIC 16F84A Memory Organization
* Data Memory Addressing
e For PIC 16F84A, the address of any memory location (File
Register is 8 bits
One bit is used to select the bank

Seven bits to select a location in the bank
e Bank selection is done through using bits 5 and 6 of the STATUS

registers (RPO and RP1)
e For the 16F84A, only RPO is needed since we have two banks

e In general, two forms to address the RAM (File Registers)
Direct addressing — the 7-bit address is part of the instruction
Indirect addressing

o the 7-bit address is loaded in lower 7 bits of the File Select
Register (FSR , 04H)

» Bank selection is done using the most significant bit of FSR and
the IRP bit in the STATUS register

o

~

-

The PIC 16F84A Memory Organization

* Data Memory Addressing

Program
Memory

} £
a

<A l’;;
File Registers.
68 x 8

-

The PIC 16F84A Memory Organization
» The STATUS Register (03H, 83H)

R/W-0
IRP

R-1
TO

R-1
PD Z

R/W-x R/W-x
DC C

R/W-0
RP1

R/W-0
RPO

bit 7

bit O

-

bit 1

bit O

~~.

(-

Unimplemented: Maintain as ‘0’

__

RPO: Register Bank Select bits (used for direct addressing)
01 = Bank 1 (80h - FFh)]

TO: Time-out bit

1 = After power-up, CLRWDT instruction, or SLEEP instruction
0 = A WDT time-out occurred

PD: Power-down bit

1 = After power-up or by the CLRWDT instruction

0 = By execution of the sLEEP instruction

1 = The result of an arithmetic or logic operation is zero

0 = The result of an arithmetic or logic operation is not zero

DC: Digit camry/borrow bit (ADDWF, ADDLW , SUBLW, SUBWF instructions) (for borrow, the polarity
is reversed)

1 = A carmry-out from the 4th low order bit of the result occurred

0 = No carry-out from the 4th low order bit of the result

C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow, the polarity is
reversed)

1 = A carmrry-out from the Most Significant bit of the result occurmred

0 = No carry-out from the Most Significant bit of the result occurred

Note: A subtraction is executed by adding the two’s complement of the second operand.

For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order ,

U

bit of the source register. %

s
P

~

e e e e e e e e e e e e e o o

~

4 N
The PIC 16F84A Memory Organization

EEPROM Data Memory

e Data Related
e EEPROM Data Memory P EcoATA Jooy aig memon
64 bytes Non-volatile
10 000 000 erase/write cycles @

Used to store data that is likely to be needed for long term

Operation is controlled through EEDATA (08H), EEADR (09H), EECON1
(88H), and EECONZ2 (89H) SFRs

To read a location

o store the address in EEADR and set the RD bit in EECON1

* data is copied to EEDATA register

To write to a location

* data and address are placed in EEDATA and EEADR, respectively

* enable writing by setting the WREN bit in EECON1 SFR

o store 55H then AAH in EECONZ2

e commit writing by enabling the WR bit

@ * Once the write is done, the EEIF flag is set in EECON1. /

-

The PIC 16F84A Memory Organization
o The EECON1 Register (88H)

bit 7-5
bit 4

bit 3

bit 2

bit 1

bit 0

U-0 U-0 U-0 R/W-0 R/W-x R/W-0 R/S-0 R/S-0
— — — EEIF WRERR | WREN WR RD
bit 7 bit0

Unimplemented: Read as '0'

EEIF: EEPROM Write Operation Interrupt Flag bit
1 = The write operation completed (must be cleared in software)

Ppp—— g — p— P — A

0 = The write operation is not compieie or has not been siaried
WRERR: EEPROM Error Flag bit
1 = A write operation is prematurely terminated
(any MCLR Reset or any WDT Reset during normal operation)
0 = The write operation completed
WREN: EEPROM Write Enable bit
1 = Allows write cycles
0 = Inhibits write to the EEPROM
WR: Write Control bit

1 = Initiates a write cycle. The bit is cleared by hardware once write is complete. The WR bit

can only be set (not cleared) in software.
0 = Write cycle to the EEPROM is complete

RD: Read Control bit

1 = Initiates an EEPROM read RD is cleared in hardware. The RD bit can only be set (not

cleared) in software.
0 = Does not initiate an EEPROM read

Some Issues of Timing
* The Clock

e The microcontroller is made up of combinational and sequential logic.
Thus, it requires a clock !

e Clock — a continuously running fixed frequency logic square wave

e Timers, counters, serial communication functions are also dependent
on the clock

e Operating frequency has direct impact on power consumption
e Every microcontroller has a range for its clock

Inputs ——» o » Outputs
Combinational

circuit
—'. L

Flip-flops

Clock pulses

(a) Block diagram

(b) Timing diagram of clock pulses

Some Issues of Timing

* Instruction Cycle

e The main clock is divided by a fixed value (4 in the 16
series) into a lower-frequency signal
e The cycle time of this signal is called the instruction cycle

e The primary unit of time in the action of processor

Clock frequency Instruction cycle
Frequency Period

20 MHz 5 MHz 200 ns

4 MHz 1 MHz 1 us

1 MHz 250 kHz 4 us

32.768 kHz 8.192kHz | 122.07 us

Some Issues of Timing

* Pipelining
e Every instruction in the computer has to be fetched from memory and
then executed. These steps are usually performed one after another

e The CPU can be designed to fetch the next instruction while executing
the current instruction. This improves performance significantly!

e This is called Pipelining

e All PIC microcontrollers implement pipelining (RISC+Harvard make it
easy)

I, Fetch

I, Fetch

I;: Call Fetch .

Iy Fetch | Flush
IT Fetch

Time

o

Power-up and Reset

e On power-up, the microcontroller must start to execute the
program stored in the program memory from its beginning (address
OOOOH)

* A specialized circuit inside the microcontroller detects this and is
responsible for putting the microcontroller in the reset state:
e the program counter is set to zero
e the SFRs are set such that the peripherals are safe and disabled

e Another way to put the microcontroller in the reset state is to apply
logic zero to the Master Clear input (MCLR)

* Some reset circuit configurations

% . o 1 i |
Rs

- Reset - Reset - - Reset

Q l | 1 | |

&

(a) (b) (c)

4 N
The 16F84A on-Chip Reset Circuit

’ \ External Reset
- X

- R / Logic ‘1" on
\ . enm— . .
<. .7 SLEEP, this activates
B WDT | wWDT the Reset
Module | Time-out Signal
- Reset \
/- >7
l. \ vgo th'e
: ete ¢ S
. ! Power-on Reset
. Voo x

= "[OST/PWRT | T\ N ..
- OST | \ L2 .

.
"

"

1

— - Chip_Reset |
= A
> 10-bit Ripple Counter j > : ::ID_ R \ Q - ;
' 1| N -,

v ™ e
— PWRT N/
RC Oscl—> 10-bit Ripple Counter
Logic ‘1’ on this input
deactivates the Reset
Enable PWRT Signal and causes the
microcontroller to exit
Enable OST the reset state

4 N
The 16F84A on-Chip Reset Circuit

Example on reset timing when MCLR is connected to VDD

4

INTERNAL POR n

Summary

e The PIC 16F84A series is a diverse and cost effective
family of microcontrollers

* The PIC 16F84A is pipelined RISC processor with
Harvard architecture

e The PIC 16F84A has three different memory types

* An important memory area is the Special Function
Register area which act as link between the CPU and
peripherals

e Reset operation must be understood for proper
operation of the microcontroller
@

Starting to Program

Chapter 4
Sections 1-4, 10

Dr. lyad Jafar

Outline

* Introduction

* Program Development Process

* The PIC 16F84A Instruction Set

* Examples

* The PIC 16F84A Instruction Encoding
* Assembler Details

e Sample Programs

L

Introduction

Every computer can recognize and execute a group of
instructions called the Instruction Set

These instructions are represented in binary (machine
code)

A program is a sequence of instructions drawn from the
instruction set and combined to perform specific operation

To run the program:
e |tis loaded in binary format in the system memory
e The computer steps through every instruction and execute it

e Execution continues unless something stops it like the end of
program or an interrupt

How to Write Programs

* Machine code
e The binary representation of instructions
e Slow, tedious, and error-prone

00 0111 0001 0101

e Assembly
e Each instruction is given a mnemonic
e A program called Assembler converts to machine code
e Rather slow and inefficient for large and complex programs

addw NUM, w

* High-level language
e Use English-like commands to program
e A program called Compiler converts to machine code
e Easy !l The program could be inefficient !

@ for (i=0; i<10; i++) sum += al[i];

4 N

Program Development Process
___{ Wite Source Code. |
: , [Assemble/Compile }
! !
. -[(simulate) }
l
[Download }
l
- - -[Test in Hardwar J

4 ~

The PIC 16 Series Instruction Set
* The PIC 16 Series ALU
8-bit literal Re‘_g_ilster
(from instruction word) e
T8 8-bit register value Special
,{/ g (from direct or indirect Function
Qeqis address of instruction) Registers
' (SFR's)
and
° . General
Purpose
RAM
ALU (GPR)
8
d bit, or from instruction
d = '0' or | I d = '1 '
Literal Instructions g

-
The PIC 16 Series Instruction Set

* 35 instructions represented using 14 bits
* The binary code of the instruction itself is called the
Opcode

* Most of these instruction operate/use on values called
Operands (ranging from no operands to two)

* Three categories of instructions
1. Byte-oriented file register operations
2. Bit-oriented file register operations
3. Literal and control operations

e Type of operations
e Arithmetic, logical, data movement, control and

a miscellaneous

4 N
The PIC 16 Series Instruction Set

* Introduction to PIC 16 ISA
e Types of operands

A 7-bit address for a memory location in RAM
(Register File) denoted by f

A 3-bit to specify a bit location within an the 8-bit data
denoted by b

A 1-bit to determine the destination of the result
denoted by d

A 8-bit number for literal data or 11-bit number for
literal address denoted by k

4 N
The PIC 16 Series Instruction Set

* Examples

clrw
* Clears the working register W

cirf f

* Clears the memory location specified by the 7-bit
address f

addwf f, d

* Adds the contents of the working register W to the
memory location with 7-bit address in f. the result is
savedin Wifd=0,orinfifd=1

bef f,b

* Clears the bit in position specified by b in memory
location specified by 7-bit address f

addlw k

° * Adds the content of W to the 8-bit value specified by k.
N, The result is stored back in W -

The PIC 16 Series Instruction Set

Byte-oriented File Register Operations

°* Format: op £, d
® op: operation
e £: address of file or register
e d: destination (0: working register, 1: file register)

e Example:
addwf PORTA, O

Adds the contents of the working register and register
PORTA then puts the result in the working register.

4 N
The PIC 16 Series Instruction Set

Bit-oriented File Register Operations

* Format: op £, b
® Oop: operation
e £: address of file or register
e b: bit number, 0 through 7

e Example:
bstf STATUS, 5

Sets to 1 Bit 5 of register STATUS.

o y

4 N
The PIC 16 Series Instruction Set

Literal and Control Operations

* Format: op k
® op: operation
e k: literal, an 8-bit if data or 11-bit if address

e Examples:
addlw 5

Adds to the working register the value 5.

call 9
@ Calls the subroutine at address 9.
\

-

The PIC 16 Series Instruction Set

Arithmetic Instructions

ADDWEF Add W and f C,DC,Z
COMF f, d Complement f 1 /
DECF f d Decrement f 1 /
INCF f d Increment f 1 /
SUBWEF f d Subtract W from f 1 C,DC,Z
ADDLW K Add literal and W 1 C,DC,Z
SUBLW k Subtract W from literal 1 C,DC,Z
[4= 1 resultis stored in F

~

-

The PIC 16 Series Instruction Set

Logic Instructions

ANDWEF AND W with f Z

|IORWEF f, d Inclusive OR W with f 1 /

XORWF f d Exclusive OR W with f 1 VA

ANDLW k AND literal with W 1 Z

IORLW k Inclusive OR literal withW 1 Z

XORLW k Exclusive OR literal withW 1 Z
o e

~

a N
The PIC 16 Series Instruction Set

Data Movement Instructions

MOVF f, Move f
MOVWF f Move W to f 1
SWAPF f d Swap nibbles in f 1
MOVLW K Move literal to W 1

d =0, resultis stored in W
d=1,resultis stored in F

o y

-

o

The PIC 16 Series Instruction Set

Control Instructions

DECFSZ
INCFSZ
BTFSC
BTFSS

CALL
GOTO

RETFIE

RETLW
RETURN

Decrement f, Skip if O 1(2)

f, d Increment f, Skip if O 1(2)
f,b Bit Test f, Skip if Clear 1 (2)
f,b Bit Test f, Skip if Set 1(2)
K Call subroutine 2
K Go to address 2
- Return from interrupt 2
K Return with literal in W 2

- Return from Subroutine 2

d=0, resultis storedin W,d=1, resultis stored in F

~

-

The PIC 16 Series Instruction Set

Miscellaneous Instructions

CLRF Clear f
CLRW - Clear W 1 /
NOP - No Operation 1
RLF f,d Rotate Left f through Carry 1 C
RRE £ d Rotate Right f through 1 C
Carry
BCF fb Bit Clear f 1
BSF f,b Bit Set f 1
CLRWDT - Clear Watchdog Timer 1 TO',PD'
SLEEP : Go into standby mode 1 TO',PD'

@ d=0, resultis storedin W, d=1, resultis stored in F

~

/

-

The PIC 16 Series Instruction Set

Examples
Operation Flags
Affected
bcf 0x31, 3 clear bit 3 in location 0x31 None
bsf 0x04,0 set bit O location 0x04 None
bsf STATUS, 5 set bit 5 in STATUS register to select bank 1 in None
memory
bcf STATUS, C clear the carry bit in the status register None
addlw 4 Adds 4 to working register W and store the result C, DC 2
in backin W

addwf O0x0C,1 Add the content of location OxOC to W and store C,DC,Z
the result in OCH (d =1)

sublw 10 Subtract W from 10 and put the result in W C,DC, 2
subwf 0x3C,0 Subtract W from contents of location 0x3C and C,DC,Z

@ store the resultin W

-

The PIC 16 Series Instruction Set

Examples

Operation Flags
Affected

incf 0x06, 0 Increment location 0x06 by 1 and store result in W

decf TEMP, 1 Decrement location TEMP by 1 and store in TEMP

compf 0x10, 1 Complement the value in location 10H and store in
0x10

andlw B’11110110° AND literal value 11110110 with W and store
result in W

andwf 0x33,1 AND location 0x33 with W and store result in 0x33

iorlw B’00001111" Inclusive-or W with 00001111

iorwf X1,0 Inclusive-or W with location X1 and store result in
W

xorlw B’01010101" Exclusive-or W with 01010101

xorwf Ox2A,0 Exclusive-or W with location Ox2A and store result

@ in W

V4
Z
V4

~

-

The PIC 16 Series Instruction Set

Examples
I R >
Affected
clrw Clear W y4
cirf 0x01 Clear location 0x01 /4
moviw 18 Move literal value 18 into W NONE
movwf 0x40 Move contents of W to location 0x40 NONE
movf 0x21,0 Move contents of location 0x21 to W Z
movf 0x21, 0x33 Incorrect syntax --
movwf O0x1B, 1 Incorrect syntax --
swapf T1,1 Swap 4-bit nibbles of location T1 NONE
swapf DATA, O Move DATA to W, swap nibbles, no change on DATA NONE
rif TEMP, 1 Rotate contents of location TEMP to left by one bit C
position through the C flag
rif 0x25,0 Copy contents of 0x25 to W and rotate to left by C

@ one bit position through the C flag

-

The PIC 16 Series Instruction Set

Encoding

Byte-oriented file register operations
13 8 7 6 0

OPCODE d f (FILE #)

d = 0 for destination W
d = 1 for destination f
f = 7-bit file register address

Bit-oriented file register operations
13 10 9 7 6 0

OPCODE b (BIT #) f (FILE #)

b = 3-bit bit address
f = 7-bit file register address

Literal and control operations

General

13 8 7 0
OPCODE K {literal)

K = 8-bitimmediate value

CALL and GOTO instructions only
13 11 10 0
OPCODE Kk (literal)

k = 11-bit immediate value

Check Appendix A for opcode

binary codes

/

Assembler Details

* Any assembler line may have up to four different elements

label mnemonic operand comment
start bsft status, 5 ;select memory bank 1

movlw B'00011000';config pattern for port A
movwf trisa
movlw 53

* We can specify values in different bases in assembler

S x| bampe

Decimal D’255’
Hexadecimal H’8d’ or 0x8d
Octal O’574

Binary B’01011100’

@ ASCII ‘G’ or A'G’

Assembler Details

o Assembler directives

e These are assembler-specific commands to aid the processing
of assembly programs

m Command to Assembler

org Set program origin

Define an assembly constant; this allows us to assign a

equ
9 value to a label

end End program block

H#include Include additional source file

Program Structure

-

Heading

Hardware allocation > REFERENCE INFORMATION

Software summary

Memory allocation INFORMATION FOR ASSEMBLER

Initialisation

Main program

ACTUAL PROGRAM

Subroutines

Interrupt routines

a Look-up tables

DATA CALLED FROM PROGRAM

Sample Program 1

e Write a program to add the numbers stored in
locations 31H, 45H, and 47H and store the
result in location 22H

Sample Program 1

 Rkkkkkkkkkkkkkkkkkkkkkkkk EQUATES kkkkkkkkkkkkkhkkkkkrhkkkkkrhrkkkkkkx

STATUS equ 0x03 ; define SFRs
RPO equ 5
;************************** VECTORS kkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkk
org 0x0000 , reset vector
goto START
org 0x0004
INVEC goto INVEC ; interrupt vector
rrkprkrsrkess (AN PROGRANM *Hsssssssssestrrsnss
START bef STATUS,RPO ; selectbank 0
movf 0x31,0 ; put first number in W
addwf 0x45,0 ; add second number
addwf 0x47, 0 ; add third number
movwf (0x22 ; save result in 0x22
DONE goto DONE ; endless loop
end

Sample Program 2

* Write a program to swap the contents of location
0x33 with location Ox11

~

Sample Program 2

 kkkkkkkkkkkkkkkkkkkkhkkkk EQUATES kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

STATUS equ 0x03 - define SFRs
RPO equ 5
;************************** VECTORS kkhkkkkkkkhkhkkkkkkhkkhkkkhkkkkkkkkkkkkk
org 0x0000 reset vector
goto START
org 0x0004
INVEC goto INVEC interrupt vector
srrsesessereeesaeeses |IAIN PROGRANM *Hsrstssssesrrsts
START bcf STATUS , RPO * select bank 0
movf 0x33,0 : put first number in W
movwf 0x22 ; store the 15t number temporarily
movf Ox11, O . get 2" number
movwf 0x33 ; store 2" in place of 18t
movf 0x22 , 0 ; get 18t number from 0x22
movwf 0x11 ; store 18t in place of 2d
DONE goto DONE ; endless loop
end

Summary

e The PIC 16F84A has 35 instructions to perform
different computational and control operations

* Programs can be written using different levels of
abstraction

e Using assemblers simplifies the program
development process

* There exist many IDE to aid writing programs and
simulate their behavior before putting them into
hardware

o

Building Assembler Programs

Chapter 5
Sections 1-6

Dr. lyad Jafar

Outline

* Building Structured Programs
* Conditional Branching

* Subroutines

* Generating Time Delays

e Dealing with Data

* Example Programs

Building Structured Programs

e Writing programs is not an easy task; especially
with large and complex programs

° It is essential to put down a design for the
program before writing the first line of code

e This involves documenting the programs flow
charts and state diagrams

s

Building Structured Programs

>

Read actual

® FIOWChartS temperature T,
e Rectangle for process Y

Read demand

e Diamond for decision temperature Ty

Yes No
A

Activate Switch off
compressor compressor

<

|
|

No

A

Activate
alarm

&

Building Structured Programs

e State Diagrams
e Circle for state

e Arrow for state
transition labeled
with condition(s)
that causes the
transition

Start!

\h User initiates
Door closed
Ready
Function Full level

complete Fault Tim67 detected

cleared
Time-out

Qut of
balance

Motor
failure

Qut of
balance

Required
temperature
reached

Function Motor
complete failure

Function
- complete —

Conditional Branching

* Microprocessors and microcontroller should be
able to make decisions

e This enables them to behave according to the
state of logical variables

* The PIC 16 series is not an exception | They have
four conditional skip instructions

e These instructions test for a certain condition and
skip the following instruction if the tested
condition is true !

(-

Conditional Branching

Instruction | ______Operation __| __Example ___

btfsc f,b Test bit at position b in register f. skip btfsc STATUS, 5
next instruction if the bit is clear ‘0’

btfss f, b Test bit at position b in register f. skip btfss 0x21,1
next instruction if the bit is set ‘1’

Instruction | ______Operation __| __Example ___

decfsz f, d Decrement the contents of registerf decfsz 0x44, 0
by 1 and place the resultin Wifd=0
orin fif d = 1. Skip next instruction if
the decremented result is zero

incfsz f,d Increment the contents of register f incfsz Oxdl,1
by 1 and place the resultin Wifd=0
orin fif d = 1. Skip next instruction if
the incremented result is zero

@

Conditional Branching

* Examplel: a program to add two numbers that
are stored in locations Ox11 and 0x22. If the
addition results in no carry, the result is stored in
location 0x33. otherwise, the result is stored in

location 0x44

e The STATUS Register

R/AW-0 R/AW-0 RAW-0 R-1 R-1 RAW-X RAN-X R/AW-X
IRP RP1 RPO TO PD Z DC C
bit 7

bit O

(-

Conditional Branching

Example 1

STATUS equ 0x03 . define SFRs
org 0x0000 reset vector
goto START
org 0x0006

START movf Ox11 ,0 ; get first number to W
addwf 0x22,0 > add second number
btfsc STATUS,0 ; checkif carry is clear
goto C _SET . go to label C_Set if C==1
movwf 0x33 ; store result in 0x33
goto DONE

C SET movwf 0x44

DONE goto DONE ; endless loop

@ end

Conditional Branching

* Example 2: Write a program that multiplies the content
of location 0x30 by 10.

Conditional Branching

* Example 3: The upper and lower bytes of a 16-bit
counter are stored in locations COUNTH and
COUNTL, respectively. Write a program to
decrement the counter wuntil it is zero.
Decrementing the counter is allowed if the
counter is initially non zero.

COUNTL
COUNTH

START

DEC_COUNTL

DONE

(-

Conditional Branching

Example 2
equ 0x10 ; lower byte of counter in 0x10
equ 0x11 ; upper byte of counter in 0x11
#include "P16F84A.INC"
org 0x0000
movf ~ COUNTL , F ; check if the both locations are zeros
btfss STATUS [Z ; If 50, then finish
goto DEC_COUNTL ;if COUNTL is not zero, decrement it
movf COUNTH , F ;if it is zero check COUNTH
btfsc STATUS ,Z
goto DONE ;, If both are zeros, then DONE

decf COUNTH, F
decf COUNTL,F

goto START
goto DONE , program gets here if both are zeros
end

Subroutines

* In many cases, we need to use a block of code in a
program in different places

* Instead of writing the code wherever it is needed,
we can use subroutines/functions/procedures

e Block of code saved in memory and can be called/used
from anywhere in the program

e When a subroutine is called, execution moves to place
where the subroutine is stored

e Once the subroutine is executed, execution resumes
from where it was before calling the subroutine

Subroutines

Subroutine 1

Do this SR1 |

Do that /

Dosomethingelse }/ /|-

Call SR1 Y /0 |
Return

Do that L= /I/

Call SR2 / -]

SR2

Subroutine 2

aaaaaaa

iiiiiii

iiiiiii

|||||||

Return

Subroutines

* The program counter holds the address of the instruction
to be executed

* In order to call a subroutine, the program counter has to
be loaded with the address of the subroutine

e Before that, the current value of the PC is saved in stack to
assure that the main program can continue execution from
the following instruction once the execution of the
subroutine is over

13
=24 Program Counter K

FLASH H
Program
Memory

(13-bit)

Program |
"é’i.’:’"ﬁ 14
e Instruction Registar

\ 1 Il

Subroutines

* In PIC, to invoke a subroutine we use the CALL
instruction followed by the address of the
subroutine

e The address is usually specified by a symbolic label
in the program

e To exit a subroutine and return to the main
program, we use the RETURN or RETLW

instructions

o

Subroutines

* Example 4: Write a program that uses a subroutine to
multiply the contents of locations 0x30 and 0x31 and
then return the result in the working register.

STATUS

START

DONE

Subroutines - Example

equ
org
goto
org

0x03

0x0000
START
0x0005

0x15
0x30
0x09
0x31
multiply

0x05
0x30
0x04
0x31
multiply

DONE

- define SFRs
' reset vector

; pass the first number

; pass the second number
; call the subroutine

; pass the first number

; pass the second number
; call the subroutine

; endless loop

Example - Continued

multiply clrw

Repeat addwf 0x30, 0 ;repeated addition
decfsz 0x31,1 ; counter
goto repeat
return

end

@

Generating Time Delays

In many applications, it is required to delay the execution
of some block of code; i.e. a time delay!

In most microcontrollers this can be done by
e Software

e Hardware (Timers)

To generate time delay using software, /et the
microcontroller execute non useful instructions for certain
number of times!

If we know the clock frequency and the cycles to execute
each instruction we can generate different delays

Delay = #cycles x clock cycle time
= #cyclesx 4/ F

Generating Time Delays
T

(Disable all interrupts)

e Structure of Delay Loops |

Load counter 2

'

Load counter 1

(Disable all interrupts)

Load counter (Padding, e.g. “No Ops.”)

|

A Decrement counterl

(Padding, e.qg. “No Ops.”) J/\
No

Is counter 1 zero?

/

A Decrement counter

A Decrement counter 2

Is counter zero?

T~

Is counter 2 zerg?

Yes

e One loop for small delays Yes
\ Nested loops for large delays

Generating Time Delays

e Example 5: Determine the time required to
execute the following code. Assume the clock
frequency is 800KHz.

moviw D200’ ; initialize counter
movwf COUNTER

del nop . main loop for delay
nop
decfsz COUNTER, F
goto del

- What If this code to be used as a subroutine??!!

Generating Time Delays

* Example 6: Analyze the following subroutine and show how
it can be used to generate a delay of 10 ms exactly including
the call instruction. Assume 4 MHz clock frequency

TenMs nop
movlw
movwf
movlw
movwf

Tenl decfsz
goto
decfsz
goto
return

: beginning of subroutine

D'13

COUNTH

D250’

COUNTL

COUNTL,F ;inner loop

Tenl

COUNTH,F ; outer loop

Tenl

Executed once when
the subroutine is called

v v v

DECFSZ COUNTL . F DECFSZ COUNTH . F GOTO

1 1

1 1

] 1

i y Ty : - 7 Cycles
1

oA MOV]

! 2) COUNTL 250 >249 >248 > ..>1 |

: 249 x ({17 + {231y ————w 747 Cycles !

H > . ! Executed once when

' ! COUNTH 13 > 12

! DECFSZ COUNTL ., F GOTO !

E ; - 752 Cycles

1 3)COUNTL 1 >0 i

! 25 + A + {2y ————— 5 Cycles i

: !

:]

4) COUNTL 0 > 255 > 254> ... > 1

({17 + 23) x255 ——— = 765 Cycles
v v
DECFSZ COUNTL , F GOTO

Executed 11 times when

COUNTH 12 2> 11 > ... > 1
5) COUNTL 1> 0

, :
i i
1 1
: :
i H
1 1
i !
i H
1 1
, :
i 23 — = 2Cycles i
: :
i H
1 1
1 1
1 1
i !
i H
1 1
, :
i i

- 8470 Cycles
v

DECFSZ COUNTL , F
6) COUNTH 12 = 11

< + (25
DECFSZ COUNTH . F GOTO — = 3 Cycles

7) COUNTL 0 > 255 > 254 > ... > 1

(1 + {23) x255 — = 765 Cycles
DECFSZ COUNTL , F GOTO

Executed once when

8) COUNTL 1 >0 COUNTH1 > 0

+ - 771 Cycles

DECFSZ COUNTL . F

9) COUNTH 1 >0

v v

DECFSZ COUNTH , F RETURN 4 Cycles

10000 Cycles

)
1
]
:
1
1
]
1
:
]
:
:
i 25 — = 2Cycles
i
1
1
1
1
i
1
i
]

Working with Data
Indirect Addressing

Direct addressing is capable of accessing
single bytes of data

Working with list of values using direct
addressing is inconvenient since the address is
part of the instruction

Instead, we can use indirect addressing where

e The File Select Register FSR register acts as a
pointer to data location.

e The FSR can be incremented or decremented to
change the address

-

RAM
File Registers
68 x8

8 RAM Addr
Addr Mux

Fi

The value stored in FSR is used to address the
memory whenever the INDF (0x00) register is
accessed in an instruction

This forces the CPU to use the FSR register to
address memory

] /

f

‘”
/ : Indirect
DrectAdsr | S% Addr

FSA reg

=

STATUS reg

K=

Working with Data

Direct/ Indlrect Addressing i

Direct Addressing ™

/4
] 1
i RP1 RPO 6 From Opcode 0 i
1 1
@ i
: ——a Lo : __\’r_ - :
| Bank Select Location Select |
1 1
‘\\~___}‘ _______________________________ ’/,'
. *= 00 01 -
00h 80h
L -
0Bh
0Ch Kf
/
Data // Addrissis
Memow(-n S map back to
-, Bank 0
4Fh \\
50h)
7Fh| G () | Frn
Bank 0 Bank 1
Kata 1. FErar mmomans mean datol] can Ciasiea 7.7
TIRrLC e T W NN Tgpr Uolall, o 1 IYul [
2: Maintain as clear for upward compatibility with future products.
4: Not implemented.

In 16F84A

,' Indirect Addressing

| IRP 7 (FSR) 0
L@

i | ’ - ~ B
i Bank Select Locabon Select

\

———————— -

-

Working with Data

* Example 7: A program to add the values found locations 0x10 through
Ox1F and stores the result in 0x20

STATUS equ 0x03 ; define SFRs
FSR equ 0x04
INDF equ 0x00
RESULT equ 0x20
N equ D'15’
COUNTER equ 0x21
org 0x0000 ; reset vector
goto START
org 0x0005
START moviw N ; initialize counter
movwf COUNTER
moviw Ox11 ; initialize FSR as a pointer
movwf FSR
movf 0x10, W ; get 1t number in W
LOOP addwf INDF , W ; add using indirect addressing
incf FSR, F ; point to next location
decfsz COUNTER, F ; decrement counter
goto LOOP
movwf RESULT
DONE goto DONE
end

Working with Data
Look-up Tables

A look-up table is a block of data held in the program memory that
the program accesses and uses

The movlw instruction allows us to embed one byte within the
instruction and use | How about a look-up table ?

In PIC, look-up tables are defined as a subroutine inside which is a
group of retlw instructions

The retlw instruction is similar to the return instruction; however, it
has one operand which is an 8-bit literal that is placed in W after the
subroutine returns

In order to choose one of the retlw instructions in the look-up table,
the program counter is modified to point to the desired instruction
by changing the value in the PCL register (0x02)

The PCL register holds the lower 8 bits of the program counter

@

Working with Data

* Example 8: A subroutine to implement a look-up table for the squares
of numbers 0 through 5. To compute the square, place the number is

stored in W before calling the subroutine SQR_TABLE.

SQR TABLE addwf

retlw
retlw
retlw
retlw
retlw
retlw

; Remember that the PC always points to the instruction to be
executed

PCL, 1 ; modify the PCL to point the
; required instruction
, square value of 0
, square value of 1
, square value of 2
, square value of 3
, square value of 4
, square value of 5

D'’
D1’
D4’
D9’
D'16
D25

Summary

e Building complex programs requires putting down it
requirements and design

* Programs tends to execute instructions sequentially
unless branching or subroutines are used

» A subroutine is piece of code that can be called from
anywhere inside the program

* A simple way to generate time delays is to use delay
loops

(-

Working with Time:

Interrupts, Counters, and Timers

Chapter 6

Dr. lyad Jafar

e Introduction
* [Interrupts

» Timer/Counter

Outline

* Watchdog Timer

* Sleep Mode

* Summary

Introduction

e Microcontroller should be able to deal with time
e Respond in a timely manner to external events
e Measure time between events

e Generate time-based activity

e For this purpose, microcontrollers are usually
provided with timers and support interrupts

(-,

Interrupts

* An interrupt is an event that causes the microcontroller to
halt the normal flow of the program and execute another
program called the interrupt service routine (ISR)

normal
/O — 1 brogram
R e e e e e >
interrupt “fetch” interrupt
service
routine
B T T TTT I I LT
normal return from interrupt
program (RETFIE)

* Interrupts can be thought of as hardware-initiated
subroutine calls

o Usually, interrupts are generated by |/O devices such as
@ timers or external devices

Interrupts vs. Polling

e Advantages
= Immediate response to |/O service request

= Normal execution continues until it is known
that I/O service is needed

e Disadvantages
= Coding complexity for interrupt service routines

= Extra hardware needed

= Processor’s interrupt system |/O device must
generate an interrupt request

4 N
General Hardware Structure for Interrupts

* Interrupts sources can be external and internal

e Two types of interrupts : maskable and non-maskable
e Maskable can be enabled/disabled by setting/clearing some bits
e Non-maskable interrupts can not be disabled and they always interrupt the
CPU

e Usually, each interrupt has a flag (a bit) that is set whenever the
interrupt occurs

Other

Replicated for all other maskable interrupts maskable Global Interrupt Enable*

/ interrupts
o Interrupt X Enable* i -
E | ~ |
I |
 Interrupt X | s Q o Interrupt
. i inputs to
: ‘ ; (" CPU
1(Reset by CPU| R Interrupt !
101 program) flag* i

Non-maskable
interrﬁpt /

° * bits in a Special Function Register

s

The 16F84A Interrupt Structure

» Sources of interrupts

e External interrupt
The only external interrupt input
The input is multiplexed with RBO pin of port B
It is edge triggered

e Timer overflow interrupt

It is an internal interrupt that occurs when the 8-bit timer
overflows

e Port B on change interrupt

An interrupt occurs when a change is detected on any of the
upper 4 bits of port B

e EEPROM write complete interrupt

-

The 16F84A Interrupt Structure

* Interrupt Hardware Structure

Timer Overflow Flag

T
Timer Overflow TOIF
Interrupt Enable | > TOIE

INTF

External Int t
xternal Interrup {INTE

RBIF
Port B Change { RBIE

EEPROM Write | | EEIF
Complete EEIE

Global Interrupt ;GlE
Enable

Wake-up

[‘——‘ (if in Sleep mode)
—
j-/ Interrupt to CPU

111

No non-maskable interrupts in 16F84A

™

bit 7

)
==
e

)
=
N

bit 2

bit 1

bit O

The 16F84A Interrupt Structure
* The INTCON Register

INTCON REGISTER (ADDRESS 0Bh, 8Bh)

™

RMW-0 R/W-0O RAW-0 R/AW-0 R"W-0 RAW-0O R/W-0O RAW-x
GIE EEIE | TOIEE INTE | RBIE | TOIF | INTF RBIF
bit 7 bit O
GIE: Gilobal Intermupt Enable bit
1 = Enables all unmasked interrupts
0 = [hsables all interrupis
EEIE- EE Wrile Complete Intermunt Enable bit
1 = Enables the EE Wnite Complete intermmupis
A — Meo b loao $hho CE WAl e it i enrrs s b
U/ LA Sdalriis s IS L VYL wsan IIPIE: n ILIZIII_.IPI_
TOIE: TMRO Overflow Interrunt Enable bt
1 = Enables the TMRO intermupt
g = Disables the TMRO intamupt
INTE: RBUOAMINT External interrupt Enable bit
1 = Enables the RBOVINT external interrunt
0 = Disables the RBIVINT external interrunt
ROic: RB FPort Change intermupi Enabie bil
1 = Enables the RB port change interrupt
0 = Diizables the RB port change interrupt
TOIF: TMRO Overflow Interrupt Flag bit
1 = TMRO reqgister has overflowed {must be cleared In software)
0 = TMRO register did not overflow
INTF: RBO/INT External Interrupt Flag bit
1 = The RBUMINT exiermal intermupt occurmred (must be deared in software)
0 = The RBO/INT external intermupt did not occur
REIF: REB Port Change Interrupt Flag bit
1 = At least one of the REB7-REBE4 pins changed state {(must be cleared in software)

0 = Nane of the RB/7-RB4 nins have changed state

* The Option Register (81H) —

The 16F84A Interrupt Structure

interrupt related bit

Bit Value TMRO Rate WDT Rate

000 1:2 1:1
001 1-4 1:2
010 1-8 1-4
011 1-18 1:8
100 1:32 1:16
101 1-64 1:32
110 1-128 1:64
111 1 - 256 1:128

R/AW-A RAN-1 R/ RAW-1 RAW-1 RAN-A1 RAN-1 RAN-1
| RBPU | INTEDG | TOCS | TOoSE | Psa Pps2 | ps1 | pPso |
bit 7 bit 0
bit 7 RBPU: PORTB Pull-up Enable bit
1 = PORTB pull-ups are disabled
0 = PORTE pull-ups are enabled by individual port latch values
{)b.f! o] INTEDG: interrupt Edge Select bit }
| 1 = inierrupt on nsing edge of RBU/INT pin !
L 0 = Interrupi on faiiing edge of RBO/INT pin |
bit5 TOCS: TMRO Clock Source Select bit
1 = Transition on RA4/TOCKI pin
0 = Intemal instruction cyde clock (CLKOUT)
bit 4 TOSE: TMRO Source Cdge Seilect bit
1 = Increment on high-to-low transthon on RAL/TOCKI
0 = Increment on Inur tr| hlnh tranciion on RAAMTOCK!]
bit 3 PSA: Prescaler Assignment bit
1 = Prescaler s assigned to the WDT
¢ = Prescaler is assigned o the Timer0 medule s
_ it Select the transition type on
bit 2-0 PS2:PS0: Prescaler Rate Select bits

input RBO/INT that will cause
an interrupt

-

The 16F84A Interrupt Structure

* Interrupt Operation

Interrupt detected Main program is running
!
Complete current instruction

v

Save Program Counter on Stack

v
Clear GIE

v
Reload PC with 0004,
v

Continue program execution ISR execution starts

v

T~

No /11/stru clion\\

is RETFIE?

b

Yes

SetGIE to 1
v

Load PC from Stack

v

Continue program execution Main program continues

™

/

The 16F84A Interrupt Structure

* How to use interrupts ?

1. Start the interrupt service routine at 0x0004

2. Clear the flag of the used interrupt in the INTCON
register (if it is not cleared on reset, e.g. RBIF)

3. Enable the corresponding interrupt by setting its bit in
INTCON register

4. Enable global interrupts by setting the GIE bit

5. End the interrupt subroutine with RETFIE instruction to
resume program execution

™

-

The 16F84A Interrupt Structure

* Example 1

Write a PIC16F84 program that continuously adds the
content of memory location OxOA until an external
interrupt is observed on RBO. In this case the result is
stored in location 0x10 and the working register s
cleared. The interrupt should be configured on the arrival
of rising edge.

™

/

The 16F84A Interrupt Structure

#include pl6F84A.inc ; include the definition file for 16F84A
org 0x0000 , reset vector
goto START
org 0x0004 ; define the ISR
goto ISR
org 0x0006 ; Program starts here

START bsf STATUS , RPO ; select bank 1
bsf OPTION_REG , INTEDG ; select to interrupt on rising edge
bsf INTCON, INTE ; enable external interrupt on RBO/INT
bsf INTCON , GIE ; enable global interrupts
bef STATUS , RPO ; select bank 0
molw 0x00 ; Clear W

ADD addwf Ox0A, W ; add the contents of OXOAto W
goto ADD ; keep adding until an interrupt occurs
org 0x00BC ; location of ISR

ISR movwf 0x10 ; on interrupt store the accumulated result
clrw ; Clear working register
bcf INTCON , INTF ; Clear the interrupt flag
retfie ; return from the ISR

end

Context Saving

* What if the main program is to preserve the W register
and the interrupt service routine uses it?
e Save it temporarily in memory at the beginning of the ISR
MOVWEF TEMP ; push
e Restore the value at the end of ISR
MOVEF TEMP, W ; pop

* What if we want to preserve some memory location such
as the STATUS register on interrupt?
e Save it temporarily in memory at the beginning of the ISR
SWAPF STATUS,0 ; push
MOVWF TEMP
e Restore the value at the end of ISR
SWAP TEMP, 0 ; pop

@ MOVWF STATUS

/
The 16F84A Interrupt Structure

* Multiple Interrupts

e Note that there is only one interrupt vector for all types of
interrupts

e In other words, regardless of the interrupt type, the microcontroller
will start executing from location 0x0004 on any interrupt

e How to determine the source of interrupt ?

e Check the interrupt flag bits in the INTCON register at the beginning
of the interrupt service routine to determine what is the source of
the interrupt !

Interrupt_ SR btfsc intcon,0 ;test RBIF

goto portb int ;Port B Change routine

btfsc intcon,l ;test INTF

goto ext int ;external interrupt routine

btfsc intcon,?2 ;test TOIF

goto timer_int ;timer overflow routine
;test EEPROM write complete flag
;EEPROM write complete routine

R/W-0O R/AW-0O R/AW-0O RAW-0 RAN-O R/AW-0O RAW-O R/AW-x

| GIE EEIE TOIE INTE | RBIE | TOIF | INTF | RBIF
\ pit 7 bit ©

/

Counters and Timers

e Digital counters can be built with flip-flops. They can count up or
down, reset, or loaded with initial value

* When the most significant bit changes from 1 to 0, this indicates an
overflow. This signal can be used to interrupt the microcontroller

o |f the counter operates using a clock with known frequency we can use
it as a timer

o
(=]
=

o
o

o
<>

o
=

mD
o
o
o
-

! —
l —
l —_—

J Q¢ A+ Q¢ —J Q
) b

| —
=

(a)

Counters and Timers

* Timer applications

Measure the time
between two events

(b) Measure the time

between two pulses

Measure a pulse
duration

Use polling or interrupts

Event 1

Event 2

(a)

(b)

Start counter here

time —s

Stop counter here

T

The 16F84A Timer 0 Module

Multiplexer selecting Multiplexer
|I"Ipllt edge select Q_Qunling source selecting pI'ESGBJEI'
AN 7 7 |
‘/ { Data Bus
Fosc/4 0 SouT 8-bit counter
8
1 i /
Sync with
D— 1 Internal TMRO
RA4/TOCKI Programmable |_| o e -
pin Prescalar
TOSE 1' (2 Cycle Delay)
3
Set Interrupt
PS2, PSt, PSO PSA Flag bit TOIF
ToCs on Overflow
Note 1: TOCS, TOSE, PSA, PS2:PSO (OPTION_REG<5:05).
2: The prescaler is shared with Watchdog Timer (refer io Figure 5-2 for detailed block diagram).

8-bit counter , memory address 0x01

Configurable counter using the OPTION register (0x81)

Two sources for the timer clock : instruction cycle clock (Fosc/4) or RA4/TOCKI

The programmable prescaler is shared with the Watchdog Timer WDT

The value of frequency division is determined by PS2, PS1, and PSO bits in the

OPTION register

/

. The 16F84A Timer 0 Module

* The Option Register — Timer related bits

R/W-1 R/W-1 R/WV-1 R/W-1 R/W-1 R/W-1 RAW-1 R/W-1
| rRBPU | INTEDG [NIEEs] TOSE PSA PS2 PS1 PSO
bit 7 bit 0
bit 7 RBPU: PORTB Pull-up Enable bit

1 = PORTB pull-ups are disabled
0 = PORTB pull-ups are enabled by individual port latch values

bit 6 INTEDG: Interrupt Edge Select bit

1 = Interrupt on rising edge of RBO/INT pin
0 = Interrupt on falling edge of RBO/INT pin
(bit 5 TOCS: TMRD Clock Source Select bit
1 = Transition on RA4/TOCKI pin
L 0 = Internal instruction cycle clock (CLKOUT)
"bit 4 TOSE: TMRO Source Edge Select bit
1 = Increment on high-to-low transition on RA4/TOCKI pin
X 0 = Increment on low-to-high transition on BEA4TOCKI] pin

bit 3 PSA: Prescaler Assignment bit

1 = Prescaler is assigned to the WDT
0 = Prescaler is assianed to the TimerD module

bit 2-0 PS2:P50: Prescaler Rate Select bits
Bit Value TMRO Rate WDT Rate
000 1-2 1:1
001 1-4 1:2
010 1-8 1:4
011 1-16 1:8
100 1-32 1:16
101 1- R4 132
110 1-128 1: 64
\ 111 1- 256 1:128

-

The 16F84A Timer 0 Module
* Timer Timing
‘a1 a2| 03| @4; a1 2| 03| o4 01| 2| 3| @4 a1| @2| @3] @4 @1 @2) @3] Q4 ;
OSC1 1 I] 1 1 1
chourdy,__ /N [
Timer0 - FEh X " FFh X ' DOh X ' Dih ¥ ' 02h Y
. 1 +@ I *@] 1 1 1
TCI'IF blt . & Tlmer 0 f 1 1 1
: : overflow ! : : :
. ' ' interrupt ' ' '
GIE bt . : . \ ' ' .
|NSTRUCT|C|'N: : : Flush in : Start exeCUtihg :
FLOW ! :) response to '/ ISR ! !
: : ' / interrupt : :
PC { PC) PC +1 I PC +1) 0004h A 0005h .
I sh-um 1 I] 1 1 1
ot L ngt (PC) ' inst(PC+1) ' Inst{00D4h) ' Inst{DDDSH) |
Lr::;uﬂm ! Inst (PC-1) ‘ Inst (PC) ' Dummy cycle ! Dummy cycle) Inst {DD04h))
Hole 1: Intemupt fiag bit TOIF is sampled here (every Q1)
Z: interrupt latency = 4TCY where TCY = instruction cycie time
3:CLKOUT is availabie only in RC oscillator mode.

The 16F84A Timer 0 Module

* Example 2: Write a program that generates a 5 ms delay using
the TMRO module without using interrupts. Assume the clock
frequency is 800 KHz.

e Fosc = 800 KHz = the timer internal clock = Fosc/4 = 200
KHz = instruction cycle = 5 us = timer increment every 5
us

e For these settings, the timer generates an interrupt after
256 * 5us =1280 us only ?!

e How about changing the prescale factor ?

256 x prescale x 5us =5 ms = prescale =3.9~=4
This will generate a delay of 4 x 256 x 5 us =5.12 ms

e What if we need more accurate delay !! We can play

around with the count value (we don’t have to start from

0 always)

N x prescale x 5 us =5 ms --> N x prescale = 1000 - we can select
the prescale 8 and the count N to be 125

We have to load TMRO with 256 — 125 = 131 as initial value

The 16F84A Timer 0 Module

* Example - cont’d
#include pl6Tf84A.iInc

start

delay5

dell

org
goto
org

call

mov lw

movwT
bst
mov Iw
movwT
bcT
btfss
goto
bcT
return

0x0000

start

0x0010

delay5

D"131" ; preload TO, it overflows after 125 counts
TMRO

STATUS, RPO ;select memory bank 1

B*00000010” ;set up TO for internal input, prescale by 8
OPTION_REG

STATUS, RPO ;select bank O

intcon,TOIF ;test for Timer Overflow flag

dell ;loop 1T not set (no timer overflow)
intcon,TOIF ;clear Timer Overflow flag

(-

Watchdog Timer

Special timer internal to the microcontroller that is
continually counting up.

If enabled and it overflows, the microcontroller is reset

Can be used to reset the Microcontroller if a program fails
or gets stuck

Properties

e The WDT timer is enabled/disabled by the WDTE bit in the
configuration word

e |t has its own internal RC oscillator
* The nominal time-out period is 18 ms

e |t can be extended through the prescaler bits in the OPTION register
(up to 128x18 ms= 2.3 sec)

e The WDT timer can be cleared by software using the CLRWDT
instruction

How does the watchdog timer know if the program is stuck
2?2?11 It does not!

Sleep Mode

* An important way to save power!

* The microcontroller can be put in sleep mode by using the SLEEP
instruction

* Once in sleep mode, the microcontroller operation is almost
suspended
e The oscillator is switched off
e The WDT is cleared. If the WDT is enabled, it continues running
e Program execution is suspended
e All ports retain their current settings
e PD and TO bits are cleared and set respectively
e Power consumption falls to a negligible amount

* To exit the sleep mode
e Interrupt occurs (even if GIE = 0) Program continues
e WDT wake-up execution from PC+1

e External reset the MCLR pin } MC is reset |

@

Summary

e Microcontrollers can deal with time by using timers
and interrupts

* Interrupts saves the microcontrollers computational
power as they require its attention when they occur
only

* Most interrupts are configurable

e Hardware timer can be used as a counter or a timer
and it is very useful in measuring time

@

Parallel Ports, Power Supply, and the

Clock Oscillator

Chapter 3

Dr. lyad Jafar

Outline

* Why Do We Need Parallel Ports?

* Hardware Realization of Parallel Ports
* Interfacing to Parallel Ports

* The PIC 16F84A Parallel Ports

* The Power Supply

* The Clock Oscillator

.

Why Do We Need Parallel Ports?

* Almost any microcontroller needs to transfer

digital data from/to external devices and for
different purposes

e Direct user interface — switches, LEDs, keypads, displays

¢ Input measurement - from sensors, possibly through
ADC

e OQutput control information — control motors and
actuators

e Bulk data transfer — to other systems/subsystems

e Transfer could be serial or parallel ! Analog or

digital !
@ ™

™

The PIC 16F84 Parallel Ports

PortAbit2 RA2@ 1
PotAbit3 RAIm
‘Port A, bit 4 RA4/TOCKI &
Reset MCLR C

Ground ~ Vgg®

“Port B, bit0 RBO/INT C
PortB,bit1 RB1 [
PortB,bit2 RB2C
PortB,bit3 RB3 Q9

v

18

10

BRA1 PortA bit1

B RAD PortA bit0

| OSC1/CLKIN Oscillator connections
m 0SC2/CLKOUT

BVpp Supply voltage
01 RB7 Port B, bit7
0 RB6 Port B, bit6
1 RBS Port B, bit 5
0 RB4 Port B, bit4

"also counter/timer clock input
""also external interrupt input

The PIC 16F84 Parallel Ports

PORT A
e 5-bit general-purpose bidirectional digital port

* Related registers
e Data from/to this port is stored in PORTA register (0x05)

e Pins can be configured for input or output by setting or
clearing corresponding bits in the TRISA register (0x85)

* Pin RA4 is multiplexed and can be used as the
clock for the TIMERO module

@

The PIC 16F84 Parallel Ports

PORT B
e 8-bit general-purpose bidirectional digital port
* Related registers
e Data from/to this port is stored in PORTB register (0x06)

e Pins can be configured for input or output by setting or
clearing, corresponding bits in the TRISB register (0x86),
respectively

e Other features

* Pin RBO is multiplexed with the external interrupt INT
and has Schmitt trigger interface

e Pins RB4 — RB7 have a useful ‘interrupt on change’

@ facility D

The PIC 16F84 Parallel Ports

e Example 1 - configuring port B such that pins O to
2 are inputs, pins 3 to 4 outputs, and pins 5 to 7
are inputs

bsf STATUS, RPO : select bank1
movlw OxE7

movwf TRISB : PORTB<7:5> input,
; PORTB<4:3> output

; PORTB<2:0> input

The PIC 16F84 Parallel Ports

e Example 2 — configuring PORTB as output and output value OxAA

bsf STATUS, RPO : select bankl
clrf TRISB ; PORTB is output
movlw OxAA

bcf STATUS, RPO : select bankO
movwf PORTB ; output data

o Example 3 — configuring PORTA as input, read it and store the value

in 0x0D

bsf STATUS, RPO : select bankl
moviw OxFF

movwf TRISA ; PORTA is input
bcf STATUS, RPO : select bankO
movf PORTA, W : read data
movwf Ox0D : save data

Interfacing to Parallel Ports

Switches
L 2 VS 1"‘5 US
R 1
® Vi W v
L] ”E@ R

Interfacing to SPST
switch. To reduce
wasted current, the
pull-up resistor R
should be high (10-
100KOhms)

(-, Y

Interfacing to SPST
switch using a pull-
down resistor

Interfacing to SPDT
switch. A current
limiting resistor
might be needed

Interfacing to Parallel Ports
Light Emitting Diodes (LEDs)

e LEDs can be driven from a logic output as long as the current
requirements are met. Interfacing of LEDs depending on the logic type
and their capability to source and sink current

Vs
Vou for I Current flows out of the gate
_~ | and lights LED when output
I Is at Logic 1 A
o
”’ET w’

AN

o

Current flows into gate
Vo for Ip and lights LED when
output is at Logic 0

i VoL Logic gate output low voltage
Von Logic gate output high voltage oL Logicg p qQ

For current source: Vou = RiIp + Vb For current sink: Vs = VoL + RIp + Vp

p— You~ Yo p_Vs—Vo-Vo
\\ B Ip Ip

_/

(-

Interfacing to Parallel Ports
Light Emitting Diodes (LEDs)

* A special type of diodes made of semiconductor material that can emit
light when forward biased

Forward current (mA)

h
o

B
L]

(A
-

™
-

o

0

f

s

1.5 1.7 1.9 21 2.3 25

Forward Voltage (V)

FORWARD CURRENT Vs,
FORWARD VOLTAGE

Type number: L-441D
Wavelength = 627 nm
15med typ.@ 10 mA

50

B
o
~

i
Q

)4

o

Forward current (mA)
o]
o
B

O

1.7 1.9 21 23 2.5 2.7

Forward Voltoge (V)
FORWARD CURRENT Vs,
FORWARD VOLTAGE

Type number: L-44GD
Wavelength = 565 nm
12med typ. @ 10 mA

Interfacing to Parallel Ports
7-Segment Display

Common Cathode

)
3

f Gnd a b

Common Anode

] I Vec a i
[1 [1 n_n
__| :]
a
Hf b
&
1 ¥
—4
.

|
= !31 G%d H l.'||_lI1 g|_ Li Ve
Digit IHuminated Segment (1 = illumination)
Shown a b o d e if g
o 1 1 1 1 1 1 u]
1 o 1 o o 0 0]
2 1 1 0 1 1 0 1
3 1 1 1 1 0 0 1
4 0 1 1 0 0 1 1
5 1 0 1 1 0 1 1
B 1 0 1 1 1 1 1
T 1 1 1 o 0 0 a
8 1 1 1 1 1 1 1
8 1 1 1 1 0 1 1

Interfacing to Parallel Ports

Port Electrical Characteristics

* Logic gates are designed to interface easily with each other, especially
when connecting gates from the same family

* The concern arises when connecting logic gates to non-logic devices
such as switches and LEDs

Internal Logic 1 voltage
is the supply voltage

Switch is in this
position when
output is at Logic 1

: As(high) l&t v 0
Rs(ow)
L
Switch is in this
position when —

Internal Logic O

output is at Lﬂgi:: 0
veltage is ground

@ Generalized model CMOS model

Interfacing to Parallel Ports
Light Emitting Diodes (LED)

ROH 9
1 — I
R

R
I VDT
’ /N - y fﬂ
2 ROL
77
Vo for Ip
Vou Logic gate output high voltage Voo Logic gate output low voltage

Computation of limiting resistors when internal resistance of the port pin
is considered

The PIC 16F84 Parallel Ports

Port Output Characteristics

VCH (V)

3.0
|
I
|

2.5

|

\\\“""“'Max
o \\ T
]

. NN T

1.0 \Min\ \ \\

NI N ~

Typlcal: statistical mean @ 25°C

Maximum: mean + 3¢ (—40°C to +125°C)

Minlmum: mean - 3o (—40°C to +125°C)
0.0 !

0 5 10 15 20
IOH (mA)

25

Roy = 130 Q

The PIC 16F84 Parallel Ports

Port Output Characteristics

1.8

VOL (V)

Typlcal: stalistical mean @ 25°C
Maximum: mean + 3g (-40°C to +125°C)

1.6 | Minlmum: mean — 3a (-40°C to +125°C) /*’

1.4 -
Max ~
1.2 _ /
1.0 /,/
o8 Typ —
0.6 f/ f/
0.4 7] L
02 //ﬁﬁf"""
N e N R R—
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22,5 25.0
IOL (mA)

Ro, =36 0

Example 3.1

e Example — Write a program that continuously reads an
input value from 4 switches connected to PORTA (RA3-
RAO) and display the value on 4 LEDs connected to PORTB
(RB7-RB4). Make sure to draw the circuit and configure the
ports properly.

®* Requirements:

1) Connect four switches to RA3-RAO. Configure these pins
as input.

2) Connect four LEDs to RB7-RB4. Configure these pins as
outputs.

TEMP

MAIN

REPEAT

H#include
EQU

MOVF
ANDLW
MOVWEF
SWAPF
MOVWEF

GOTO
END

Example 3.1

“P16F84A.INC”

0X20

0X0000

----------- MAIN PROGRAM -----mmmmm e
STATUS,RPO ; SELECT BANK 1

B'00001111"

TRISA ; CONFIGURE RA3-RAO AS INPUT
B‘00000000°

TRISB ; CONFIGURE RB7-RB4 AS OUTPUT
STATUS, RPO

PORTA, W ; READ FROM PORT A

OXOF ; MASK THE LOWER 4 BITS IN PORTA
TEMP

TEMP, F ; MOVE BITS TO RB7-RB4

PORTB

REPEAT

Example 3.2

* Example — Modify the program and the circuit in Example
3.1 such that the switches are read and displayed when an
external interrupt occurs (falling edge) only.

®* Requirements:

1) Connect four switches to RA3-RAO. Configure these pins
as input.

2) Connect four LEDs to RB7-RB4. Configure these pins as
outputs.

3) Connect a switch to RBO and configure it as input

TEMP

MAIN

WAIT

ISR

RETFIE
END

Example 3.2

“P16F84A.INC”
0X20

0X0000

MAIN

0X0004

ISR

---------- MAIN PROGRAM =--nmmemmmmemmmcemeee

STATUS,RPO ; SELECT BANK 1

B'00001111"

TRISA ; CONFIGURE RA3-RAO AS INPUT
B‘00000001* ; CONFIGURE RBO AS INPUT

TRISB ; CONFIGURE RB7-RB4 AS OUTPUT

OPTION_REG, INTEDG ; INTERRUPT ON FALLING EDGE
STATUS, RPO

INTCON, INTE ; ENABLE INTERRUPT
INTCON, GIE
WAIT ; WAIT FOR INTERRUPT
----------- L
PORTA, W ; READ FROM PORT A
OXOF ; MASK THE LOWER 4 BITS IN PORTA
TEMP
TEMP, F ; MOVE BITS TO RB7-RB4
PORTB
INTCON, INTF

1)
2)

3)
4)

Example 3.3

Example — Write a program to control the flashing of a LED
that is connected to RB1 using a pushbutton that is
connected to RBO. The LED starts flashing upon the arrival
of the first rising edge on RBO. Afterwards, successive
edges toggle the state of flashing (On, off, on, ...). When
the LED is flashing, this implies that it is 0.5 second ON and
0.5 second OFF. Assume 4MHz clock.

Requirements:
Configure RBO as input and RB1 as output

Enable external interrupt (INTE) and global interrupts
(GIE)

Write a 0.5 second delay routine
Keep track of the current status of flashing (on/off)

FLASH
COUNT1
COUNT2

WAIT

#include
EQU
EQU
EQU
ORG
GOTO
ORG
GOTO

Example 3.3

“P16F84A.INC”
0X20

0X21

0X22

0X0000

START

0X0004

ISR

; STORE THE STATE OF FLASHING
; COUNTER FOR DELAY LOOP
; COUNTER FOR DELAY LOOP

---------------------------------- MAIN PROGRAM —-nmmmmmmmmmmeeme

FLASH ; CLEAR FLASHING STATUS

STATUS,RPO ; SELECT BANK 1

B'00000001" ; CONFIGURE RBO AS INPUT AND RB1 AS OUPUT
TRISB

OPTION_REG, INTEDG ; SELECT RISING EDGE FOR EXTERNAL INTERRUPT

INTCON, INTE ; ENABLE EXTERNAL INTERRUPT

INTCON, GIE ; ENABLE GLOBAL INTERRUPT

STATUS,RPO ; SELECT BANK O

PORTB ; CLEAR PORTB; TURN OFF LED

FLASH, O ; IF BIT O OF FLASH IS CLEAR THEN NO FLASHING
WAIT ; WAIT UNTIL BIT O IS SET

B'00000010'

PORTB, 1 ; COMPLEMENT RB1 TO FLASH

DEL p5sec

WAIT

DEL_p5sec

LOOP

Example 3.3

- INTERRUPT SERVICE ROUTINE ---------------

MOVLW 0x01

XORWF FLASH, F ; COMPLEMENT THE STATUS
BCF INTCON , INTF ; CLEAR THE INTF FLAG
RETFIE

MOVLW
MOVWEF
MOVLW
MOVWEF
NOP
NOP
NOP
NOP
NOP
DECFSZ
GOTO
DECFSZ
GOTO
RETURN

END

D'0’
COUNT1
D244’
COUNT2

COUNT1, F

LOOP

COUNT2, F

LOOP ; delay 0.500207 seconds

Hardware Realization of Parallel Ports

ReadMWrite

Output Parallel Port

Two lines of
data bus
*—D Q
External pin
>

~
_

Port Select

High whenever
port address is
selected

Flip-flop latches data bus value onto
external pin, when memory location
is selected, AND Write is active

\/

Q

Extemal pin

™

4 N
Hardware Realization of Parallel Ports

Input Parallel Port

Two lines of
data bus

. <

Read/Write External pin

_.7

_/

Buffer transfers logic value on external pin
Port Select onto data bus line, when memory location
is selected, AND Read is active

® /I 0
7\1 External pin

./

@ Y

/

Bidirectional Parallel Port

Hardware Realization of Parallel Ports

Read"Write
- j Read port
Data bus . %I_
(bit r7) Input buffer
v ‘Data’ o——{l] vo pin
- Bit mof an
wn:tﬂ I - 2 Output buffer [™—_ & 1{3_;:“ Riak
Fort SBIE_{:i ;}Dk\ ~+-|Holds bit I/(\
tj > output value =
] "N‘.
ﬁ,gfﬂ?m SO Butfer, enabled
_ & the ‘Data’ SFR when pin is output
< ‘Direction’
Wirite J
poR D @
1" |[Determines whether

Direction Seisct || ———b

‘Data’” SFR

bit is input or cutput

‘Direction” SFR

[Alternate Input |
L Fumnction

/
Hardware Realization of Parallel Ports

PO RT B Configurable pull-

PINS RB3:RB0 up resistors using
R RBPU bit in the
REBUM o OPTION register
! =
Data Latch === -
Data Bus - [D Q M~
WR Port CK 1
TRIS Latch

— D Q

WR TRIS ! CK™y_
1

® Latches input data
whenever the port
RO TRIS A / is read
1 Ha D : /
| I/
Multiplexed input \ RD Port : S ;E I
———————— I
-~ -~ I
RBO/INT |
I]
\ Q | \‘\ -—m = oy
Schmitt Tnigger RD Port
| Buffer '
—— = — - — /

Note 1: TRISE ="1" enables weak pull-up
{if RBPU = '0' in the OPTION_REG reqgister).

a 2: /O pins have diode protection to VDD and Vss.

/
Hardware Realization of Parallel Ports

PORT B

PINS RB7:RB4

Voo
REPOM ; EI— oak
)D | P Pull-up
Data Latch
Data B
4 us D o h
{
WR Part CK
L Lathes data on port
TRIS Latch

read

— []
C

WR TRIS K T
E Input

Buff

’—'T/\]—" - Holds previous
RD TRIS " laeh | / latched data
Q@ D

|
-~ , !I_L:,
\Fl [! EM I
RD Port
. Set RBIF
Clearing the (== l~ — /%
RBIF bit ? ny \
From other l‘~'—|_ Q D
RB7:RB — I
EN [
QS
Compares RD Port
previous and / Mote 1: TRISB ="1"enables weak pull-up

present port input (if RBPU ="0"in the OPTION_REG register).
\\ values 2: /0 pins have diode protection to VDD and VEs.

/

Hardware Realization of Parallel Ports

PORT A

PINS RA3:RAD RA4
Data Data
Bus D a Bus 5 a
VDD WR
WR
Port =
Port ck LT CK\-T N RA4 pin
Data Latch DstaLateh
D a Vss
WR
-, TRIS KT |4
."’F""Fﬁs Vss L
Ltz ck ™0 TRIS Latch Schmitt
Trigger W
TRIS Latch Input
TTL “—@ﬂ‘ Buffer
Input W
Buffer RD TRIS
RD TRIS Q D
-g'
bt EN
RD Port —‘
RD Port EC L TMRO Clock Input |
Lt 1
Note: /O pins have protection diodes to VDD and Vss. Note: I/O pins have protection diodes to VDD and VSS.

™

4 N
Hardware Realization of Parallel Ports

Electrical Characteristics

e Schmitt Trigger Input
e A special type of gate with two thresholds
e Remove fluctuations and corruptions in the input signal

Positive-going
threshold

Y
V V, e . =
| O Negative-going /
threshold

Vo

/
Hardware Realization of Parallel Ports

Electrical Characteristics

* Open Drain Output

e Flexible style of output that can be adapted as a standard logic
output or a direct drive for small loads

Vs Vs Veo
. . ——
Extemal
load
I]
W
- g h
\\-\ K- i

e
\“x
//7f Vs ﬂ7/ o
Open Drain Output Driving A

@ Open Drain Output Small Load

Hardware Realization of Parallel Ports

Electrical Characteristics

* Open Drain Output
e Can be used as a wired-OR

|
Ihrw output driven Iﬂw‘ 'I" Rey
pulis this line low
/ I Common output line
o * v ' = Vg=AtB4C

Vs S77 S77 S77

The Oscillator

e The choice of clock determines the operating
characteristics for the microcontroller

e Faster clock gives faster execution, but more power
consumption

e Accurate and stable operation of the microcontroller
requires accurate and stable clock

The Oscillator
Oscillator types

Supply voltage
Oscillator ‘sighal’
R | | Optional power-
| _I limiting resistor
Oscillator ‘signal’ -
L & L J d | | .
| |
__C —— Crystalor ==
:l | ceramic
®
4 e & & 77

Crystal or ceramic
o expensive
e nNot p/’ec/:ge o stable and Pri eclse
@ » mechanically fragile

Resistor—capacitor (RC).
o Jow cost

The PIC 16F84A Oscillator

* The 16F84A can be configured to operate in four
different oscillator modes using the FOSC1 and FOSCO
in the configuration word

RP-u R/P-u RPu RP-u RPu RPu RPu RPu RPu RPu RPu RPu RP-u RP-u

CP cP CP CP CP CP CP CP CP CP |PWRTE | WDTE | FOSC1 | FOSCO

bit13 bit0

0 0 LP oscillator — intended for low frequency (
<200 KHz) crystal application to reduce power
consumption

0 1 XT oscillator — standard crystal configuration
(1-4 MHz)

1 0 HS oscillator — high speed (>= 4MHz)

1 1 RC oscillator - requires external resistor an

@ capacitor

c1M

_{
1

coll)

The PIC 16F84A Oscillator

* The 16F84A has two oscillator pins ; OSC1 and OSC2.

OSC1

=

= XTAL

Rs!?

—

e
osc2| 1

-

W

XT configuration

VDD

0801 ha Internal
A% Clock
J}‘ PIC18FXX

0S8C2/CLKOUT

RC configuration

To REXT
Internal
Logic
SLEEP Skl
PIC16FXX W e |
Fosc/4
Clock from ~P@—- 0SCt1
Ext. System PIC16FXX

Open -——

OSsC2

External Clock

The PIC 16F84A Oscillator

e RC oscillator frequency dependence on power supply

AVERAGE Fosc vs. VDD FOR R (RC MODE, C =100 pF, 25°C)

Freq (KHz)

2000

1800

1600

1400

1200

1000

800

600

400

200

/ __--"""'--.__
P N —
—]
-‘_-'_-____-_—--__
— 10 ki
--—_...___________
20 25 3.0 3.5 4.0 4.5 5.0 5.5
VoD (V)

The Power Supply

PIC16F84A-04
(Commercial, Industnal, Extended)
PIC16F84A-20
(Commercial, Industrial, Extended)

Standard Operating Conditions (unless otherwise stated)
Operating temperature

0=C = Ta = +70°C (commercial)
-40°C = Ta = +85°C (industrnal)
-40°C = TAa = +125°C (extended)

P:;:m Symbol Characteristic Min | Typt | Max [Units Conditions
VDD Supply Voltage
Do01 16LFE4A| 2.0 — 55 Vo |XT, RC, and LF osc configuration
DO01 16F84A 4.0 — 55 Vo |XT, RC and LP osc configuration
DO0O1A 4.5 — 5.5 Vo |HS osc configuration
Doo2 |VDR RAM Data Retention 1.5 — — Vo |Device in SLEEF mode
Voltage (Note 1)
D003 |VPOR VDD Start Voltage to ensure — | Vss | — Vo | See section on Power-on Reset for details
internal Power-on Reset
signal
Do04 |SvDD VDD Rise Rate to ensure 005 | — — |[Vims
internal Power-on RHeset
signal
DD Supply Current (Note 2)
D010 16LFE4A| — 1 4 mA |RC and XT osc configuration (Note 4)
Fosc =20 MHz, VoD = 5.5V
D010 16F84A — 1.8 | 45 [mA |RC and XT osc configuration (Note 4)
Fosc =4.0 MHz, VDD = 5.5V
DO10A — 3 10 mA |RC and XT osc configuration (Note 4)
Fosc =4.0 MHz, VDD = 5.5V
{During FLASH programming)
D013 — 10 20 mA |HS osc configuration (PIC16F84A-20)
Fosc = 20 MHz, VDD = 5.5V
D014 16LF84A| — 15 45 wA |LP osc configuration

Fosc =32 kHz, VoD = 2.0V, WDT disabled

| 2xAAA

100 nF
decoupling
capacitor

Left
Right

1ixm 2 x 10k
T (800 kHz nom.)
100p
. —
‘Out of play’ 560R
1/
*—-—H@ RA2 — R
k.. RA3 RAOQ
RA4 0S1
CLR 0s2 |
& VSS VDD
RBO RB7
L RB1 RB6 |

The Power Supply

=l

RB2

RBS
RB4

RB3
r 16LF84A

Summary

e Parallel ports allow the exchange of data between
the outside world and the CPU

|t is essential to wunderstand the electrical
characteristics and internal circuitry of ports

e All microcontrollers need a clock. The clock speed
determine the power consumption

e Active elements of the oscillator are usually built
inside the microcontroller and the designer selects
the type and configure it

* |t is a must to understand the power requirements of
the microcontroller

(-

Starting with Serial

Chapter 10
Sections 1,2,9,10

Dr. lyad Jafar

Outline

* Introduction

» Synchronous Serial Communication
* Asynchronous Serial Communication
* Physical Limitations

* Overview of PIC 16 Series

* The 16F87xA USART

e Summary

Introduction

e Microcontrollers need to move data to and from
external devices

* |n general, two approaches

e Parallel
Data word bits are transferred at the same time

A wire is dedicated for each bit
Simple and fast but expensive
Short distances

e Serial
Bits are transferred one after another over the same link/wire

Requires complex hardware to transmit and receive
Slow but cheap
Short and long distances

Introduction

» Two memories of the same size. However, one
uses parallel transfer while the other uses serial

NC g 1 ~ 28 phVCC

A12 d 1 WE

A7 O 0 CS2

A6 O 1 A8
A5 d 5 A9 Sog1 ~8p vce
Ad O 3!’-‘&_11 g1 C 0 WP
A3 O 1 OE 52 4 b SCL
A2 O 0 A10 VSS O 0 SDA
A1 O 0 CS1

AO O 0 D7

DO O 0 D&

D1 O N D5

D2 O 0 D4

GND d 14 150 D3

Serial Communication

e Bits are transferred one after another on the same
wire 111

e Challenges
e How to distinguish the start and end of the bit ?
e How to determine the start and end of a word ?

* Two approaches

e Synchronous serial communication
A separate clock signal is sent in parallel with the data
Each clock cycle represents one bit duration

e Asynchronous serial communication
No clock signal !

@ Timing is derived from the data itself

(-

Serial Communication

Synchronous

Asynchronous

Data

Clock

Transmitter

Receliver

Formated
Data

Transmitter

3

Receiver

/
Serial Communication

e Data inside the memory and microprocessor is formatted in
parallel. How to transmit it serially?

e Shift registers
Q Q Q

A B c D
O[5 Q—LD QLD Q—LD QL Dour
I> T> T> |

Parallel data out
Serial data in ﬁ Serial data out

Clock

Parallel data in

/

Synchronous Serial Communication

SERIAL NODE 1 SERIAL NODE 2
. Parallel data out =~~~ 1 lr “““““““ Parallel dataout
|

|
: Serial ﬁ Serial | I serial ﬁ |
, datain data out | | data in Serial data,
| Clock : : Clock out,
' % | ‘ % '
| | | :
: Parallel Data In [| Parallel Data In |
e] e .

[
General Serial Link
Master Slave

Parallel load/read

. MsB I LSB

Shift register

)

SDO SDI
Parallel load/read
SOl soo | MsB I LSB
Shift register -
x
SCLK SCLK

Synchronous link implemented using a microcontroller

\

-
Synchronous Serial Communication

el dl 2 iy | b bit§s§ h | 7 |

C'O*__f_rr\f_f'_\f\f_ﬂ ﬂ

Advantages

» Simple hardware
* Efficient

* High speed

blLO bit'1

Disadvantages

 Extra line for the clock

* The bandwidth needed for the clock is twice the data bandwidth
a » Data and clock may lose synchronization over long distance
N

/

Asynchronous Serial Communication

* No clock signal |

* The transmitter and receiver should operate a
clock at the same rate

* To synchronize the clocks of the transmitter and
receiver, data is framed with a start and stop bits

s

Asynchronous Serial Communication

* Framing
Start
bit
|dle state

v

T\v/XXXXXXXX

data bit

Last
data bit

v

|dle state

Start

synchronisation

T

Extra ‘parity’
bit could be
inserted here

[

Earliest possible
new Start bit

4

Asynchronous Serial Communication
* Synchronization

Midpoint of

Midpoint first data bit
of Stop bit
First
Idle state Start l data bit
¢ bit l v
Incoming \ l /
data \ /

Receiver clock,
running at multiple of
expected bit rate

B A

Start bit BitD

baud CLK

TTTTTTooTTooTTttTr Tt = Baud CLK for all but start bit Ii

7 8 9 10 11 12 13 14 15 16 1 2 3

R

Samples

\

Physical Limitations

e Time Constant effect

Logic 1 Vs
Rshigh)
Vi
N . D_
S O]
Rs(tow)
Logic 0)

Transmitter Receiver

Physical Limitations

e Transmission Line Effects
e Characteristic impedance and reflections

e Lines should be terminated properly

Physical Limitations

 Electromagnetic Interference

« Generated due to high voltage rates of
change.

« How to minimize:

— At source:
+ reduce voltage rate of change.
— In communicationlink:

+ |large separation from source of interference.
* Increase data voltage.

« Screening

+ Use optical links

— At recelver:
+ Usefiltering techniques
o

Physical Limitations

e Ground Differentials

« With longer wires, ground potential at one
point might not be the same at another
point.

+ Solutions:

— Differentialtransmission.

— Electrical isolation
— Use optical communication links

Transmiter Receiver

fath N = fth?

w UL
W=

|
N/
\

http://upload.wikimedia.org/wikipedia/en/1/1c/Differential_Signaling.png

/

z .
223232 vovPppde DRUORRRR DOUDRUDD DODODDPD EREEEERE geugapde

3

1 PIOZ SO0 0T
T oy T
= | —
|II.=..|III# IIIIIIIIII =| ||||| |h_._w I =
|
_n. &
“Aauuvm mﬁu
|
| :
|28 8 ae
|
5 I |
L e el INL i
P (G - ;
I i
84 | E e 8
|
)
o <
Q + n
N .me p ©
> o =
9 T< 25 2§, 2
) CF D O £ & %
= fo 2 =S5t w 35
= = L = P o
V ©v g>. 8239 cF
(7] Q S 2w oI st @< o
= O C O 5 0o 00 x £ 2
Vo) O T & v 5 5 = < 2 €
< a eeudomwSWo.
L QU ST /=< IO A O
W..lmO%r_n_lpoooooooo
[[

Overview of the PIC

/ Fie Fle \

File File
° Address Address Address
Overview of the PIC = = = =
TMRO |01k OPTION_REG [&1h TMRD 0th | OPTION REG
° PCL 0Zh PCL £ PCL 1ih PCL
16 Serles STATUS | 03h STATUS |6 STATUS | 103 STATUS
FSR |04k FSR |84h FSR | 104n FSR
PORTA |05h TRISA E5h 105h
PORTB |06h TRISE | 96h PORTE | 106n TRISE
PORTC__|07h TRISC |6 PORTE__|10m TRIGF
PORTD | 08h TRISD _ |88h PORTG | 108h TRISG
PORTE | 0oh TRISE | &0h 100k
Peci2> | PCci2g> | POL | PCLATH | 0An PCLATH |ath PCLATH | 104h PCLATH
CALL, RETURN 4 " INTCON |08n INTCON |g8n INTCON | 108h INTCON
RETFIR, RETLN PRI |0Ch PE1__ |6Ch 10Ch
PF2 |00k PE2 |e0h 100h
Stack Level 1 TMRIL |0En PCON |oEn 10En 18En
” TMRIH | 0Fh OSCCAL | 6Fh 10Fh 18Fh
; TICON |10k o0h 1108 100
™2 |11h oth 1h 181
TCON |12h PRz |02h 1128 102
SSPELF | 13h SSPADD | 113 183
SSPCON | 14h SSPATAT | 04h 114n 104h
CCPRIL | 15h 5h 1% 185
CCPRIH_ | 16k o6 1168 106
CCPICON |17h o 117h 187
RCSTA |18h TXSTA _ |08h 118n 168k
TXREG | 18h SPBRG _ |Ggh 118 188
RCREG | 1Ah o 114h 194h
CCPRZL | 18h 8Bh 118h 198h
CCPRIH |1Ch 8Ch 11Ch 18Ch
CCP2CON_|1Dh 2h 11Dh 180h
ADRES |1En 9En 11En 19€h
ADCOND | 1Fh ADCONT | GFh 11Fh 16Fh
20 ADh 120h 1ADR

Overview of the PIC 16 Series
Interrupt Logic for 16F874A/16F877A

EEIF

EEIE
PsPIFil
pspig!!
ADIF
ADIE
RCIF TMROIF Wake-up (If in Sleep mode)
|
RC'E:D TMROIE
INTF
E:E INTE
Interrupt to CPU
RBIF :]D_
SSPIF | el
SSPIE
CCP1IF PEIE
CCP1IE
GIE
TMR2I
TMR1IF
TMR1I
CCPIIFﬂ
CCP2IE
BCLIF
BCLI
CMIF
CMIE

Overview of the PIC 16 Series

16F873A 28 3 parallel ports,
16F876A 3 counter/timers,
2 capture/compare/PWM,
2 serial,
5 10-bit ADC,
2 comparators

16F874A 40 5 parallel ports,
16F877A 3 counter/timers,
2 capture/compare/PWM,
2 serial,
8 10-bit ADC,
2 comparators

(-

The 16F87xA USART

* The 16F87XA family has a Universal Synchronous
Asynchronous Receiver Transmitter (USART)
e Configurable
e Half duplex synchronous master or slave
e Full-duplex asynchronous transmitter and receiver

* The USART shares pins with PORTC
e pin 7 being the receive line
* pin 6 being the transmit line

e Operation involves the following registers
TXSTA (0x98) TXREG (0x19) RCSTA (0x18)
RCREG (Ox1A) SPBRG (0x99) PIE1 (0x8C)
PIR1 (0xOC) INTCON (0x0B, 0x8B,0x10B,0x18B)
TRISC (0x87)

The 16F87xA USART

e Asynchronous USART Transmitter Block Diagram

) Data Bus
TXREG Register

TXIF
TXIE “—

Pin BUffel'] 3 '..::::::-'-5:..
and Control L\\

‘ RC6/TX/CK pin

Interrupt

-

The 16F87xA USART

e Asynchronous USART Transmitter Operation Notes
e Datais transmitted LSB first on RC6 pin

The shift register TSR is buffered by the TXREG (19H) and is not
accessible as a memory location

e Transmission is controlled by the TXEN bit which enables the
clock to start the transmission

e To enable serial transmission on RC6, bit SPEN in RCSTA register
has to be set

e To transmit data, it must be loaded in the TXREG. It is transferred
to TSR immediately if no transmission or after the stop bit from
previous transmission is sent out

» Transmission status is provided by two bits:

TXIF flag in PIR1 register indicates the status of TXREG. It is set
when data is transferred to TSR. It is cleared on writing to TXREG.
(TXIF is cleared by hardware and it is read-only).

TRMT flag in TXSTA it is set when the shift register is empty
 Parity bit can be sent out by using TXD9 bit and TX9 in TXSTA

/

RAN-0

The 16F87xA USART

TXSTA (98H)

RAW-0 RW-0 RAN-0 U-0 RAW-0 R-1 RAW-0

CSRC

TX9 TXEN | synec | — | BRGH | TRMT TXSD

bit 7

bit 7

4)
B
N

g
="
i

o

—
N W

bt 1

bt O

bit O

CSRC: Clock Source Seaelect bt

Aocynchronous mode:

Don't care.

Swvnchronous mode:

1 = Master mode {(clock generated intermalhy Trom BRS)
0 — Slave mode (clock from extermal source)

TXHS:- O bit Transrmat Enable bhit
1 = Se-leu::ts S-_bit transMmission

0O = Seiects 8-bit transmission
TXER- Tramncrmat Erovabhilas bhat

1 = Transmit enabled
0 — Transmit disabled

MNote: SREN/CREN overtides TXERM in Sync maode.

R g N S I T N o T ol N G

- USsSART Mode Seilect it
= Synchronous mode
= Asynchronous mode
Lirmsrmym syl - m‘-:-s-rl s ‘Q'

= mmama= P o BN E & e e - Lt LI e

(om mu B o W W} [U R rw__m

SBRiGH. High Baud Ra
Aswvnchronous mode:-
1 = High speaed

O = Low spaead
Synchronous moade:
Unused in this mode.
TRMT. Transmit Shift Register Status bit
1 = TSR emphty

o = TSR full

TX9D: 9th bt of Transmut Data, can be Pary et

The 16F87xA USART

o Steps for Using the asynchronous transmitter

1. Clear TRISC<6> bit to configure RC6 as output

2. Set the SPBRG (0x99) register and BRGH (TXSTA<2>) bit to choose
the appropriate baud rate (more on this later)

3. Enable asynchronous serial port by clearing the SYNC (TXSTA<4>)
bit and setting the SPEN bit (RCTSA<7>)

4. If interrupts are desired, set the TXIE (PIE1<4>), GIE (INTCON<7>),
and PEIE (INTCON<6>) bits

5. If 9-bit transmission is desired, set the TX9 (TXSTA<6>) bit

6. Enable transmission by setting the TXEN (TXSTA<5>), which will
set the TXIF (PIR1<4>) bit

7. If 9-bit transmission is selected, then the ninth bit should be
loaded in TX9D (TXSTA<0>)

8. Load data in TXREG (0x19) to start the transmission

Write to TXREG I (¢
Word 1 JJ
BRG output :
(shift clock) 1 1 . {] | J L J 55 | L lI L {_l_,
TXICK pin - | . , - - '
N StartBit £ Bit0 X Bt1 X \\ X Bit7/:8 //Stop Bit
TXIF bit N L : "
(Transmit buffer ' cc '
reg. empty flag) U J) -
g WORD { — '
m - Transmit Shift Reg ;
reg. empty flag) —————— (C J
))

The 16F87xA USART

* Timing of asynchronous transmission

* Registers involved in asynchronous transmission

Viabiss o Value on
Address | Name Bit7 Bit 6 Bit 5 Bit4 | Bit3 Bit 2 Bit 1 Bit 0 : all other

POR, BOR

Resets

0Bh, 8Bh, |INTCON GIE PEIE |TMROIE| INTE | RBIE | TMROIF | INTF ROIF 0000 000x | 0000 000u
10Bh,18Bh
0Ch PIR1 PSPIF(Y | ADIF | RCIF TXIF | SSPIF | CCP1IF | TMR2IF | TMR1IF | 0000 0000 | 0000 0000
18h RCSTA SPEN RX9 SREN | CREN — FERR OERR RX9D | o000 -00x | 0000 -00x
19h TXREG |USART Transmit Register 0000 0000 | 0000 0000
8Ch PIE1 PSPIE!" | ADIE RCIE TXIE | SSPIE | CCP1IE | TMR2IE | TMR1IE | o000 0000 | 0000 0000
98h TXSTA CSRC TX9 [TXEN | SYNC — BRGH | TRMT TX9D | oooo -010 | 0000 -010
99h SPBRG |Baud Rate Generator Register 0000 0000 | 000C 0000

The 16F87xA USART

e Asynchronous Receiver

x64 Baud Rate CLK

RCIF

S CREN |
FOS6 SPBRG '
: : +64
_________________ or
Baud Rate Generator +16
RC7/RX/DT {
Pin Buffer | Data
and Control Recovery
:
SPEN
~Interrupt ~——
B e

'RCIE

RX9D

RCREG Register

8

Data Bus

FIFO

-

The 16F87xA USART

e Asynchronous USART Receiver Operation Notes

Data is received LSB first on RC7 pin
Reception is enabled by the CREN bit

At the heart of the block is the RSR register. Once a stop bit is
detected, data is transferred to RCREG register, if it is empty, and
the RCIF flag is set. (RCIF is cleared by hardware and it is read-only).
On-receive interrupt can be enabled by RCIE bit

The RCREG is FIFO double buffered register
Can be used to receive bytes while reception continues in RSR
It can be read twice to read the received two bytes

If a stop bit is detected in RSR and the RCREG is still full, an overrun error
occurs and it is indicated in OERR bit (The word is RSR is lost)

If OERR bit is set, shifting stops in RSR and transfers to the RCREG is inhibited !

To clear the overrun error, clear the CREN bit.
If the stop bit is received as clear in RSR a framing error occurs and
it is indicated by the FERR bit.
The 9t bit of data RX9D and FERR are also double buffered. It is
essential to read the RCSTA register before the RCREG to avoid
losing the corresponding values of RX9D and FERR

The 16F87xA USART

RCSTA (18H)

R/W-0 RAW-O RAN-O RO R-0 RO
| sPEN | Rxs | SREN | CREN | — | FERR | OERR | RXSD
bit 7 bit D

bit 7 SPEN: Senal Port Enable bit
1 = Senal port enabled {Configures RX/DT and TXJ/CK pins as senal port pins)
0 = Serial port disabled

bit 6 RX9: 9-bit Receive Enable bit

1 = Selects 9-bit reception
0 = Selects 8-bit reception

bit & SREN: Single Receive Enable bit
Asynchronous mode

Don’t care

Synchronous mode - master
1 = Enables single receive

0 = Disables single receive
This bit 15 cleared after rec

D
0
=]
7
g
3
i)
T
i1}

Synchronous mode - slave
Unused in this mode

h;‘l .l' FDE“' I'H'nnl;nl [IFo T8 [a] Dnnn;lln :“nl‘hlﬂ L'l;‘l'
IR =T e TR EYN. " T TR WP TAN S LTI Y Bl =R AP
Asvnchronous mode
1 = Epmmllmm mmomdigns prmpnm womm o o
I = LIRS AP TL LGS I LV e
M — Mmool m o o el s s mam w—o o an o
L/ LISl LA TN TS T LIV E
Synchronous mode
1 I IELrIT O CUF LMWl o LTIV TS WL T EaimT AL Tl Y B WiT T |._\.n LN LAY AT IR ‘.l'
0 = Disables continuous receive
bit 3 Unimplemented: Read as 'l
bit 2 FERR: Framing Error bit

1 = Framing error {Can be updated by reading RCREG register and receive next valid byte)
0 = No framing emor
bit 1 OERR: Overrun Error bit
1 = Overmun error (Can be cleared by cleanng bit CREN)
0 = No overrun ermor

DWOn. O, Lot —F ot o A A
ML, Ul WL O TeCeEivea O

&
=
£

The 16F87xA USART

» Steps for Using the asynchronous receiver

1. Set the SPBRG (0x99) register and BRGH (TXSTA<2>) bit to choose
the appropriate baud rate

2. Enable asynchronous serial port by clearing the SYNC (TXSTA<4>)
bit and setting the SPEN bit (RCTSA<7>)

3. Ifinterrupts are desired, set the RCIE (PIE1<5>), GIE (INTCON<7>),
and PEIE (INTCON<6>) bits

4. If 9-bit reception is desired, set the RX9 (RCSTA<6>) bit
5. Enable the reception by setting bit CREN (RCSTA<4>)

6. The RCIF (PIR1<5>) will be set when reception of one word is
complete and an interrupt will be generated if RCIE is set

7. Read the RCSTA (0x18) to get the 9t bit and determine if any
error occurred (OERR, FERR)

8. Read the 8-bit received data by reading RCREG (0x1A)
9. Ifany error occurred, clear the error by clearing the CREN

The 16F87xA USART

* Timing of asynchronous reception

RX (pin) —Stat____, - ~— — Start . — Start -
bit (bitd Y bit1 N St bit { bitd ¥ N Xbit7/8 / Stop \ bit L '~ Ybit7/8/ Stop
NLVED EIVESS CZE AW ETD SS9 CZE AN WSS VAT
R ift " = . '
2 el 4 M <d M €< L
Rcv buffer reg . : WORD 1 /S \RNE)RREDG?T S B :
Read Rcv CC . RCREG e C(i mn
buffer reg) v ‘3 5) T
RCREG 2 ’ ')
RCIF 4d } 5S SS L
(interrupt flag) P - !
OERR bit (S CS o ' l
C CQ CQ
CREN () . !)
- L & A]

Note: This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,

causing the OERR (overrun) bit to be set.

* Registers involved in asynchronous reception

Value on: Value on
Address | Name Bit7 Bit 6 Bit 5 Bitd | Bit3 Bit 2 Bit 1 Bit0 : all other
POR, BOR
Resets
0Bh, 8Bh, [INTCOM| GIE PEIE |TMROIE| INTE | RBIE | TMROIF | INTF ROIF | oooo o0Ox | OOOO OO0
10Bh,18Bh
0Ch PIR1 PSPIF!"| ADIF RCIF | TXIF | SSPIF [CCP1IF | TMR2IF | TMR1IF | cooo oooo | 0000 0000
18h RCSTA | SPEN RX9 SREN | CREN — FERR | OERR | RX9D | oooo -00x | 0000 -00x
1Ah RCREG |USART Receive Register 0000 0000 | 0000 0000
8Ch PIE1 PSPIE'"| ADIE RCIE | TXIE | SSPIE [CCP1IE | TMR2IE | TMRIIE | oooo oooo0 | 0000 Q00O
98h TXSTA | CSRC TX9 TXEN | S¥YNC — BRGH | TRMT | TX9D | oooo -010 | 0000 -010
@ 99h SPBRG |Baud Rate Generator Register 0000 0000 | 0000 0000

The 16F87xA USART

e The BAUD Rate Generator

e The BAUD rate for USART is controlled by the value in
the SPREG (99H), the SYNC and the BRGH bits in the

TXSTA (19H)
0 Fosc |:osc
(asynchronous) 64(SPBRG +1) 16(SPBRG +1)
1 |:os,c
(synchronous) 4(SPBRG 4]_)

(-

Example 1

A program to transmit 3 bytes stored in locations
0x40, 0x41, and 0x42 serially with no parity at a
rate of 9.6 Kbps. Assume PIC 16F877A with
oscillator frequency of 20 MHz

Requirements
1. setup the serial port for transmission

2. choose the appropriate value of SPBRG and
BRGH to produce the required rate

ISR

START

Example

#include pl6F877A.inc

org
goto
org
goto
org
bsf
bcf
bef
moviw
movwf
bsf
bcf
bsf
moviw
mowf

0x0000
START
0x0004

ISR

0x0006
STATUS , RPO
STATUS , RP1
TRISC, 6
D31’

SPBRG
TXSTA, TXEN
STATUS, RPO
RCSTA, SPEN
0x40

FSR

- Include the definition file for 16F77A
' reset vector

- define the ISR
; Program starts here

; select bank 1
; set RC6 as output

- set the SPBRG value

* select bankO
: enable serial transmission

' FSR has the address of the first element

/

X

WAIT

DONE

movf
movwf
incf
btfss
goto
movf
sublw
btfss
goto

goto
end

Example

INDF, W ; read byte to transmit

TXREG ; store in the transmission register

FSR, F ; Increment FSR to point to next address
PIR1, TXIF ; check if the TXREG Is empty

WAIT

FSR,W

0x43

STATUS, Z : check if all values were transmitted

X

DONE

Summary

e Serial communication transmits bits one after another
in two modes: synchronous and asynchronous

e Stable and accurate clocking plays an important role in
serial communication

* It is cheaper to use serial communication over long
distances

* Some members of the 16 series are equipped with
synchronous and asynchronous communication ports

* These ports can be configured to operated in different
modes and rates

(-

Data Acquisition and Manipulation

Chapter 11
Sections1-3

Dr. lyad Jafar

Outline

* Analog and Digital Quantities

* The Analog to Digital Converter

* Features of Analog to Digital Converter

* The Data Acquisition System

* The 16F873 ADC

* Summary

/
Analog and Digital Quantities

* Most signals that are produced by transducers are
analog; continuously variable in time and can take
infinite range of values

* Digital signals are discrete representation for the
analog signals in time and value

* Digital signals perform better and are easier to work
with

* Analog signals have to be converted into digital form
in order to be processed by the microcontroller

* The device that performs this conversion is called
Analog to Digital Converter (ADC)

(-,

s
Analog and Digital Quantities

Representation Continuous voltage or current Binary Number

Only fixed number of digits

Precision Infinite range of values o :
combination are available

Tolerant to most forms of
signal degradation. Error
checking can be included for
complete recovery

Suffers from drift, attenuation,
distortion, interference.
Recovery is hard

Resistance to
Degradation

Processing using op amps and

. other sophisticated circuits. Powerful computer-based
Processing . :
Limited, complex, and suffers techniques
from distortion
Analog storage for any length All semiconductor memor
Storage g 8 ylens Y

of time is almost impossible techniques are digital

-

-

The Analog to Digital Converter

e Conversion to digital form requires two steps

Time

e Sampling
e Quantization
V
(N [
.- ‘\\ ;; :
: \/ ?
/ Samples \)/

™

-
Features of Analog to Digital Converter

e Conversion Characteristics

e The ADC accepts a voltage that is infinitely variable and
converts it to one of a fixed number of output values

oo Ve (V)

Q Q 0V<000<1V

We001<2V

Anal —[1 2V<010<3V
Inng} [ND | V<011 <4V
4V <100 < 5V

Converter ! sv<10r<év

BV<110< 7V

ﬁ Velll<8V

GND

s

Features of Analog to Digital Converter

e Conversion Characteristics
Quantization Error

111717 —— 11171 A
110 T — 110 T —
— =1 L5B - = | L5B
101 T —— 101 T —
E g
S 00T — E 100 T ——
= = 4
- (]
= 00T — 0107 —
] r*'f , LSB
001 T = 0017 =
| | | | | | | |
 — | | | | | | = |] | | | | |
000 0 VRIM I VRIHF ! 3VIR|_:F. ! VI 000 0 Ve Vppp IVegr Ve
Ve 4 3V 2 S‘b.r'm;T? Ve R V ke 4 WVew 2 Ve 4 TV g
L 2L : o] g 8 8
Input (V) Input (V)

1 LSB —— —— +/,LSB ——
ANAAANAN !
0 - 1, LSB ——

The Magnitude of the Error Ranges from Zero to 1 LSB

Features of Analog to Digital Converter

* Reference voltages [V, ;.,V
e Determine the acceptable range of input analog voltage

max]

e Out of range input values are clipped

e Unipolar or bipolar

e Should be stable and accurate for proper operation
* Input range V.=V, - V..

e Resolution

e The amount by which the input voltage has to change to
go from one output value to another

e The more the output bits the more the output steps and
finer is the conversion

* Resolution=V, /2"
@ e Quantization error Q = resolution / 2

s

Features of Analog to Digital Converter

e Conversion Characteristic

Quantization error as a function of ADC bits

No. of quantisation

Max. quantisation

Quantisation error for

levels error as % of range range of 5V

3 8 6.25 312.50 mV
4 16 3.13 156.25 mV
5 32 1.56 78.13 mV
6 64 0.781 39.06 mV
8 256 0.195 9.77 mV

10 1024 0.0488 2.44 mV

12 4096 0.0122 0.61 mV

16 65 536 0.00076 38.1 uV

(-

Features of Analog to Digital Converter

e Conversion Speed

e Time for the ADC to do the conversion

e Slow ADCs are used with low frequency signals

e High accuracy ADCs take longer to complete conversion

* Digital Interface

e Made up of control signals and data outputs

e Data outputs — serial or parallel

Voltage reference

hd

+ Analogue
to digital
- converter

Analogue
input

=

YA

SC EOC Ot

Digital
output
(n bits)

(Start (Endof (Qutput Enable)

Convert) Conversion)

sc |

FOC i

Ot

Data

f
The Analog to Digital Converter

 ADC Types

e Dual Ramp ADC

Slow but with high accuracy

e Flash Converter ADC

Fast but less accuracy

Used with high speed signals such as video and radar
e Successive Approximation ADC

Medium speed and accuracy

Used in general-purpose industrial applications
Commonly found in embedded systems

f
The Data Acquisition Syste

Elements of data acquisition system
Filter Multiplexer

Removes unwanted Selects which ADC
signal components, INPut channel is Converts its
Transducer usually for anti connected to its analog input to a

. e output
Generates signal aliasing purposes tp Samples its input

m

sSample andhold igita) output

signal and holds
that voltage as a
steady value at its
output

TeTT

Amplify and offset

Voltage
reference

Amplifies signal and I Start Output \I
adds DC offset to | Input select conversion resut | CPU !

match ADC input range : Corwersion control |
| complete !

The Data Acquisition System

Elements of data acquisition system

* Amplification

e Most sensors produce low voltages

e Need to amplify to exploit the input range of the ADC

e \/oltage level shifting might be needed for bipolar signals
* Filtering

e Pick the actual signal and restrict its frequency content

to the sampling rate of the ADC to avoid aliasing
e Remove unwanted signals

* Analog multiplexer

e Used when working with multiple inputs instead of using
multiple ADCs

@ e Semiconductor switches

The Data Acquisition System

Elements of data acquisition system

e Sample and Hold
e ADCs are unable to convert accurately a changing signal

e We need to capture the sample value and hold it for the
duration of the conversion process

e Acquisition time |

Sigﬂ&' source Input/ T ;; Acquisition time :
output : }' —

voltage
Input
/ 0—¢ Output

J l |

Control C B
- - o
VCT

Control [Hold | Track | Hold

The Data Acquisition System

Elements of data acquisition system
e Sample and Hold

Ve

0.9995 Vg

0.9000 Vg

2.3RC 6.2RC 7.6RC t

@ Acquisition time increase as we increase the resolution of the ADC

The Data Acquisition System

Typical Timing Requirements for Analog to Digital Conversion

Configure and enable ADC

A

Select multiplexer input

Y

‘Sample’ input signal

Y

Delay for signal acquisition

Y

‘Hold’ input signal

Y

Start conversion

Y

Delay for conversion
to complete

Y

Read data

These stages merge
if multiplexer forms
part of S&H

Data Acquisition in Microcontroller

Environment

e Embedded systems need ADCs ; usually they are
integrated within the MC as 8 or 10 bit ADCs

* Integration is not easy !

e Proper operation of ADCs demands clean power supply
and ground and freedom of interference

e This is not easily available in digital devices

* Compromise accuracy of integrated ADCs !

(-

The PIC 16F87xA ADC Module
___ Device | Pins | Features

16F873A 28
16F876A
16F874A 40
16F877A

3 parallel ports,

3 counter/timers,

2 capture/compare/PWM,
2 serial,

5 10-bit ADC,

2 comparators

5 parallel ports,

3 counter/timers,

2 capture/compare/PWM,
2 serial,

8 10-bit ADC,

2 comparators

The PIC 16F87xA ADC Module

CHS2:CHS0

i]
| REZ/ANT)
: 10 ——
. O \:, = . (| rRE1/ANGY
: 141 : =
. —0 \\: . | REQ/ANSY
. \C 100 .
Vam ! .
{Input Voltage) . . | rRAZANZVREF+
: 010 . —
. o o ; | rAZANZIVREF
von ; '\C a0l

T ‘ ' ooo
VREF+ . ' ' 9\:

(Reference
Voltage)

il

PCFGI.PCFGO

YREF-
Reference
[Voltage) . |

FCFG3I:PCFGO

The PIC 16F87xA ADC Module

Related Registers

e Operation is controlled by two SFRs
ADCONO Ox1F
ADCON1 Ox9F

e Conversion result (10-bit) is placed in two SFRs
ADRESL Ox9E
ADRESH Ox1E

e ADC interrupt enable and flag are available in
PIE1 Ox8C
PIR1 0xOC

e Related registers
TRISA 0x85
TRISE 0x89 (in 40-pin devices)

@

The PIC 16F87xA ADC Module
Controlling the ADC
(1) Switching on
The ADC is switched on/off by setting/clearing ADON bit
(ADCONO<0>)

It is preferred to turn the ADC off when it is not needed as it
offers some power saving

(2) Setting Conversion Speed
Operation of the ADC is governed by a clock with period T,
For correct conversions, T, must be 1.6 us at least

The ADC clock can be selected by software (2T, 4 Toser 8 Tose
16 Toser 32 Toge, 64 Tose, OF internal RC 2-4 us)

Selection of ADC clock source is through ADCS2 (ADCON1<6>),
ADCS1:ADCSO (ADCONO0<7:6>)

If the system clock is fast (>500KHz), use it to derive the ADC
clock. Otherwise, use the internal RC.

The PIC 16F87xA ADC Module

Controlling the ADC

Setting Conversion Speed
A full 10-bit conversion requires 12 T,,

Tcyto TAD, Tap1 | Tap2 | Tap3 |, Tand | Taph | TaDb | Tapn7 | TapB | Tap9 Tan10 Tani
A T b9 b8 b7 b5 b5 b4 b3 b2 bl bO

Conversion starts

Holding capacitor is disconnected from analog input (typically 100 ns)

Set GO bit ADRES is loaded

GO bit is cleared
ADIF bit is set
Holding capacitor is connected to analog input

The PIC 16F87xA ADC Module
Controlling the ADC

(3) Configuring Inputs and Voltage Reference

The ADCON1 and TRIS registers control the operation of the
A/D port pins

Inputs AN7 to ANO can be configured as analog inputs or digital
inputs.

AN3 (RA3) and AN2 (RA2) can be used as the inputs for the
external reference voltages separately

Configuration is made through PCFG3:PCFGO (ADCON1<3:0>)

(4) Channel Selection

We can select one out of five (or eight channels) as the analog
input using the bits CHS2:CHSO (ADCONO0<5:3>)

Selection of the input channel closes the sampling switch.

The PIC 16F87xA ADC Module

Controlling the ADC

(5) Starting Conversion and Flagging its End

Conversion can be started by setting the GO/DONE’
(ADCONO0<2>) bit. This opens the sampling switch.

Once the conversion is complete, this bit is cleared to indicate
the end of conversion

The GO/DONE’ bit should not be set using the same instruction
that turns on the A/D.

The PIC 16F87xA ADC Module

Controlling the ADC
(6) Formatting the result

The ADC result is 10-bit data that is placed in ADRESH and
ADCRESL (Ox 1E and Ox9E respectively)

The result can be left justified or right justified
Selection of desired format is through the ADFM (ADCON1<7>)

bit
| 10-bit Result
ADFM=1| | ADFM = 0
g Al “ - ‘A'- ~
7 2107 0 i 07 6.5 0
0000 00 0000 00
Y : Y 2 X Y 2 Y
ADRESH ADRESL ADRESH ADRESL
10-bit Result 10-bit Result

Right Justified Left Justified

The PIC 16F87xA ADC Module

ADCONO Register Ox1F

R/W-0 R/AW-0 RW-0 RW-0 RMW-0 R/W-0 u-0 RW-0
ADCS1 ADCS0 CHS2 CHS1 CHS0 | GO/DONE — ADON
bit 7 bit 0

/b'rt 7-6 ADCS1:ADCS0: A/D Conversion Clock Select bits (ADCONO bits in bold) \ /

ADCON1 ADCONO , bit 5-3 CHS$2:CHSO0: Analog Channel Select bits
<ADCS2Z> | <ADCS1:ADCS0> Clock Conversion 000 = Channel 0 {ﬁm

0 00 Fosci2 001 = Channel 1 (ANT1)

0 01 Fosci/s 010 = Channel 2 (AN2)

0 10 Fosc32 _ , 011 = Channel 3 (AN3)

;;. ;: :izgéﬂock derived from the internal A/D RC oscillator) 100 = Channel 4 (AN4)

- - FD;C”E 101 = Channel 5 (AN5)

I 0 Fosciad 110 = Channel 6 (ANG)

k 1 11 FRC (clock derived from the internal A/D RC oscillator) / K 111 = Channel 7 (ANT) /

/ bit 2 GO/DONE: A/D Conversion Status bit \

When ADON = 1:

1 = AJ/D conversion in progress (setting this bit starts the A/D conversion which is automatically
cleared by hardware when the A/D conversion is complete)

0 = A/D conversion not in progress

bit 1 Unimplemented: Read as "0’
bit 0 ADON: A/D On bit
1 = A/D converter module s powered up

a k 0 = A/D converter module is shut-off and consumes no operating current /

The PIC 16F87xA ADC Module

ADCON1 Register 0x9F

R/AW-0 R/W-0 uU-0 uU-0 RW-0 R/W-0 RW-0 R/W-0
ADFM ADCS2 — — FPCFG3 PCFG2 FCFGT FPCFGO
bit 7 bit O

bit 7 ADFM: AD Result Format Select bit

1 = Right justified. Six (6) Maost Significant bits of ADRESH are read as '0'".
0 = Left justified. Six (6) Least Significant bits of ADRESL are read as "0".

bit 6 ADCS2: A/D Conversion Clock Select bit (ADCON1 bits in shaded area and in bold)
bit 54 Unimplemented: Read as "0’
bit 3-0 PCFG3:PCFGO0: AD Port Configuration Control bits

Eg";f ANT | ANBG | ANS | AN4 AN3 AN2 AN1 | ANO | VREF+ | VREF- | C/R
aooa A A A A A A A A WDD Vss a/0
aool A A A A WREF+ A A A AN Wes 71
0010]] D A A A A A WDD Vss 50
o011] D] D A WREF+ A A A ANMNG Wss 4/1
o100 D D D D A] A A WDD Wes 3/0
o101]] D D VREF+] A A AN Vss 21
011 D D D D D] D D — — 0/0
1000 A A A A WREF+ | VREF- A A AMN3Z ANZ2 6/2
1001]] A A A A A A WDD Vss 6/0
1010 D D A A WREF+ A A A AN Wes &1
1011]] A A VREF+ | VREF- A A AN AMNZ 4/2
1100] D] D A WREF+ | VREF- A A ANG AMNZ 32
1101 D D D D WREF+ | VREF- A A AMN3Z ANZ2 2/2
1110]] D D D]] A WDD Vss 150
1111 D D D D WREF+ WREF- D A AN3 ANZ 1/2

\6 A= Analog input D = Digital YO

C/R = # of analog input channels/# of A/D voltage references

The PIC 16F87xA ADC Module

Related Registers

Address | Name | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 P“:;‘L‘:EB‘:;‘H ﬁf’;’[‘”
0Bh,8Bh, |INTCON GIE PEIE |TMROIE| INTE RBIE | TMROIF | INTF RBIF | 0000 000x| 0000 000U
10Bh,18Bh
0Ch PIR1 PsPIFY| ADIF | RCIF TXIF SSPIF | CCP1IF | TMR2IF | TMR1IF | 0000 0000 | 0000 0000
8Ch PIE1 psPIE™| ADIE RCIE TXIE SSPIE | CCP1IE | TMR2ZIE | TMR1IE | 0000 0000 | 0000 0000
1Eh ADRESH | A/D Result Register High Byte XXXX XXXX | uuuu uuuu
9Eh ADRESL |A/D Result Register Low Byte XXXX XXXX [uuuu uuuu
1Fh ADCONO | ADCS1 | ADCS0 | CHS2 CHS1 CHSO |GODONE| — ADON | 0000 00-0| 0000 00-0
9Fh ADCON1 | ADFM |ADCS2 | — — PCFG3| PCFG2 |PCFG1 | PCFGO | 00-- 0000 | 00-- 0000
8bh TRISA — — | PORTA Data Direction Register --11 1111 --11 1111
05h PORTA — — | PORTA Data Latch when written: PORTA pins when read --0x 0000 |--0u 0000
8gn(! TRISE IBF OBF | IBOV [PSPMODE| — |PORTE Data Direction bits 0000 -111 0000 -111
ogn(" PORTE — — — — — RE2 RE1T | REO |---- -xxx|---- -uuu

@

The PIC 16F87xA ADC Module

 Steps for using the A/D module

1. Configure the A/D module
Select analog pins/voltage reference and digital I/0 (ADCON1)
Select the A/D channel (ADCONO)
Select the conversion clock (ADCONO)
Turn the A/D module on (ADCONO)
2. Configure interrupts (if desired)
Clear ADIF (PIR1<6>) and set ADIE (PIE1<6>)
Set PEIE (INTCON<6>) then set GIE (INTCON<7>)
Wait the required acquisition time
Start conversion by setting the GO/DONE’ bit
Wait for conversion complete

Read the A/D result register pair ADRESH:ADRESL

o U o~ W

The PIC 16F87xA ADC Module

e The analog input model

‘{D_D ngp|c|hng
wit
= V=06V DL,
Rs 1 ANx Ric < 1K SS Rssi
’ + ANt e
cen L | L emeee Cﬁnﬁg Capacita
PIN _L L = dpaciance
spF T & Vr=08V(}) 06 A = 120 pF
e _T_Vss
Legend: Cein = input capacitance \as
Vr = threshold voltage 5\
lLeakace = leakage current at the pin due to Voo 4\t
various junctions K\VAR
Ric = interconnect resistance pA'AR
SS = sampling switch
CHoo = sample/hold capacitance (from DAC) s (kQ2)
56 7 B 9 10 11
Sampling Switch

The PIC 16F87xA ADC Module

o Calculating conversion speed (Qerror is %2 LSB)

A/D Total Time = Acquisition Time + A/D Conversion time
=Taca t 12 Typ
TACQ = Amplifier settling time
+ Hold capacitor charging time
+ Temperature coefficient
TACQ = Tamp * Thowo t+ Teorr

THOLD =-(R,c+Rss+Rs) * Ciop * In(1/27(n+1))
= -(Ric+Rss+Rs) * 120 pF * In(1/2048)

=7.6*R*C us

A/D Total Time =2 pus+ 7.6RC + (Temperature - 25°C)(0.05 ps/°C) + 12 T,,

/

The PIC 16F87xA ADC Module

» Calculating conversion speed example

Res = 7kQ (Vpp = 9V), Rc = 1kQ, R, =0,
Temp =35°C, T, = 1.6 ps
t.. =2 Us
+ 7.6(7kQ + 1kQ + 0)(120pF)
+ (35 - 25)(0.05 ps/°C)
=2+7.3+0.5=9.8us

Total time =t + 12T,; =9.8 + 19.2 us =29 ps
Maximum sampling rate ~= 34.5 KHz

The PIC 16F87xA ADC Module

* Repeated Conversions

e When a conversion is complete, the converter waits a

period of 2*TAD before it is available to start a new
conversion

e This time has to be added to the conversion time |

* Trading off conversion speed and resolution

e |f resolution is not an issue, then we can start the
conversion with correct clock then we switch it to higher
clock

e Consider only bits produced before switching the clock

(-

The PIC 16F87xA ADC Module

* Example: use the ADC in PIC 16F877A to obtain one
sample of an analog signal that is connected RAO.
Assume the ADC clock to be Fosc/8 and reference
voltage to be internal. The PIC is operating with Fosc
=4 MHz, VDD =5 v, and temperature 25 C. The result
should be right justified.

Setup:
1) set RAO as analog input
2) select the clock

3) generate appropriate delays (T,.,=2+7.6 * (1K +

7K) * 120 pF =9.3 us ~¥=10 us)

cq

ISR

START

Example

#include pl6F877A.inc

org
goto
org
goto
org
bsf
moviw
movwf
moviw

movwi
bcf

moviw

movwf

0x0000
START
0x0004

ISR

0x0006
STATUS, RPO
B'00000001’
TRISA
B'10001110°

ADCON1
STATUS, RPO
B'01000001’

ADCONO

- Include the definition file for 16F77A
' reset vector

- define the ISR

; Program starts here
- select bank 1

; set RAQ as input
; select RAO as analog input, result right
, Justified, and internal reference voltage

- select bank 0
- turn on ADC, clock Fosc/8, select
* channel 0

DONE
delay10us

more

(-

Example

: start the conversion

call
bsf
btfsc
goto

goto

moviw
movwi
nop
decfsz
goto
return

end

delay10us ; acquisition time delay

ADCONO, GO , start conversion

ADCONO, GO_DONE ; wait for conversion to complete
$-1

DONE

D2’
0x20 ; counter for delay loop

0x20,1
more

Summary

Most signals produced by transducers are analog in nature,
while all processing done by a microcontroller is digital.

Analog signals can be converted to digital form using an
analog-to-digital converter (ADC).

The 16F873A has a 10-bit configurable ADC module

Data values, once acquired, are likely to need further
processing, including offsetting, scaling and code
conversion.

The Human and Physical Interface

Chapter 8
Sections1-9

Dr. lyad Jafar

e Introduction

Outline

* From Switches to Keypads

o LED Displays
* Simple Sensors
e Actuators

e Summary

Introduction
* Humans need to - _
interface with | Jserinteraction |
embedded systems ; @
input data and see N
response Kf ------- -.
P . : R
* Input devices: switches, ! mu .y SR = | output '
I Variables | Embedded I Variables |
pushbuttons, keypads, - -. - computer | -- -
sensors \ Hardware /
e Qutput devices: LEDs, @
seven-segment displays, . _. /. _._.
. . . . Link to other L
liquid crystal displays, L systems

motors, actuators

* Examples

Introduction

FRENDGX

Photocopier Control Panel

* Examples

Introduction

Car Dashboard

-
Moving From Switches to Keypads

» Switches are good for conveying information of digital nature

* They can be used in multiples; each connected to one port pin

* In complex systems, it might not be feasible to keep adding
switches ?!

e Use keypads !

e Can be used to convey alphanumeric values
e A group of switches arranged in matrix form

SUARARASDC o

@

Moving From Switches to Keypads

Internal Structure of Keypad

Vs
Pull-up Keypad
resistors [(B T SN [(B B - T S
* 1 * 2 3
Port bit
4 4—9 5—® —6—9
Row 6 r r
connections © _
4 r?—. rg—. — g—9®
T Belh Mply
Column 3
connections

s

Set column bits as outputs

r

Moving From Switches to Keypads
How to Determine the Pressed Key

Set row bits as inputs

Key

Value Read

r

0111 011X

Set column bits to O

0111 101X

.

Read row bits

b 4

0111 110X

1011 011X

1011 101X

Set column bits as inputs

1011 110X

h 4

1101 011X

Set row bits as outputs

1101 101X

1101 110X

A 4

Set row bits to O

h 4

Read column bits

* OO NO O s WD -

1110 011X

1110 101X

* (O

1110 110X

™

s

Moving From Switches to Keypads
Using Keypad in a Microcontroller

Initialise

l

Enable interrupt

l

Wait |~

Interrupt /f
~
-

-
-

Read keypad pattern

|

Convert pattern to ASCII

I

Output to LCD

v

Is key released?

l Yes

Clear interrupt flag
return from interrupt
(RETFIE)

s

(-

Moving From Switches to Keypads

Example 1

A program to read an input from a 4x3 keypad and display the
equivalent decimal number on 4 LEDs. If the pressed key is not
a number, then all LEDs are turned on.

« The keypad will be connected to MC as follows

« Rows 0 to 3 connected to RB7 to RB4, respectively.

e Columns 0to 2 connected to RB3 to RB1, respectively.
« Use PORTB on-change interrupt
e Connect the LEDs to RAO-RA3

« Based on the pressed key, convert the row and column values to
binary using a lookup table

#include
ROW _INDEX EQU
COL_INDEX EQU
ORG
GOTO
ORG
GOTO
START BSF
MOVLW
MOVWEF

MOVLW
MOVWEF
BCF
CLRF
MOVF
BCF

BSF

BSF
@ LOOP GOTO

Keypad Interfacing Example

P16F84A.INC

0X20

0X21

0X0000

START

0X0004

ISR

STATUS, RPO

B’11110000’

TRISB ; SET RB1-RB3 AS OUTPUT AND
; RB4-RB7 AS INPUT

B’00000000’

TRISA ; SET RAO-RA3 AS OUTPUT

STATUS, RPO

PORTB ; INITIALIZE PORTB TO ZERO

PORTB,W ; CLEAR RBIF FLAG

INTCON, RBIF

INTCON, RBIE

INTCON, GIE ; ENABLE PORT b CHANGE INTERRUPT

LOOP ; WAIT FOR PRESSED KEY

/

Keypad Interfacing Example

ISR

RST_PB_DIRC

MOVF
MOVWF
BSF
MOVLW
MOVWEF
BCF
CLRF
MOVF
MOVWEF
CALL
BSF
MOVLW
MOVWF
MOVLW
MOVWEF
BCF
CLRF
MOVF
BCF
RETFIE

PORTB,W ; READ ROW NUMBER
ROW_INDEX

STATUS, RPO ; READ COLUMN NUMBER

B’00001110’

TRISB

STATUS, RPO

PORTB

PORTB, W

COL_INDEX

CONVERT ; CONVER THE ROW AND COLUMN
STATUS, RPO ; PUT THE PORT BACK TO INITIAL SETTINGS
B’11110000’

TRISB ; SET RB1-RB3 AS OUTPUT AND
B’00000000° ; RB4-RB7 AS INPUT

TRISA ; SET RAO-RA3 AS OUTPUT
STATUS, RPO

PORTB

PORTB, W ; REQUIRED TO CLEAR RBIF FLAG
INTCON, RBIF

Keypad Interfacing Example

CONVERT

FIND_ROW

BTFSS
MOVLW
BTFSS
MOVLW
BTFSS
MOVLW
MOVWF

BTFSS
MOVLW
BTFSS
MOVLW
BTFSS
MOVLW
BTFSS
MOVLW
MOVWEF

COL_INDEX,3; IF 15T COLUMN, COL_INDEX=0
0

COL_INDEX,2 ; IF 2NP COLUMN, COL_INDEX=1
1

COL_INDEX,1; IF 3Rb COLUMN, COL_INDEX=2
2

COL_INDEX ; STORE THE COLUMN INDEX

ROW_INDEX,7 ; IF 15T ROW, ROW_INDEX=0
0

ROW_INDEX,6; IF 2N ROW, ROW_INDEX=1
1

ROW_INDEX,5 ; IF 3R ROW, ROW_INDEX=2
2

ROW_INDEX,4 ; IF 4™ ROW, ROW_INDEX=3
3

ROW_INDEX

; CONTINUED ON NEXT PAGE

Keypad Interfacing Example

COMPUTE_VALUE MOVF
ADDWF
ADDWF
ADDWEF

ROW_INDEX, W ; KEY # = ROW_INDEX*3 + COL_INDEX
ROW_INDEX, W

ROW_INDEX, W

COL_INDEX, W ; THE VALUE ISIN W

; CHECK IF VALUE IS GREATER THAN 11. THIS HAPPENS WHEN THE BUTTON IS RELEASED
; LATER, AN INTERRUPT OCCURS WITH ALL SWITCHES OPEN, SO THE MAPPED VALUE IS ;

; ABOVE 11

MOVWEF
MOVLW

SUBWF
BTFSC
GOTO
MOVF
CALL
MOVWEF
LL RETURN

0X30 ; COPY THE BUTTON NUMBER
0X0C

0X30,W

STATUS, C ; WILL NOT WORK CORRECTLY, OVERFLOW OCCURS
LL

0X30, W

TABLE

PORTA ; DISPLAY THE NUMBER ON PORTA

TABLE

Keypad Interfacing Example

ADDWF
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW

END

PCL, F
0X01
0X02
0X03
0Xx04
0X05
0X06
0Xx07
0X08
0X09
OXOF ; ERROR CODE
0X00
OXOF ; ERROR CODE

/ [
LED Displays

e Light emitting diodes are simple and effective in conveying
information

* However, in complex systems it becomes hard to deal with
individual LEDs

. e
e Alternatives Ly
, 1%
e Seven segment displays fol
e Bargraph)~
|

e Dot matrix
e Star-burst

AR R OOV R

Seven Segment Display

Common Cathode Common Anode
i f Gnd a i i f VYee a s
1 _II'I [] I'II_I [1 1 [1 I'IL [1

¥ — Ir"_'_H ! Kj
5 | a

Segment
drives

Digit
drives

o

<

Seven Segment Display

Multiplexing of seven segment digits

Segment a

(on

Segment

(@]

Segment

o

Segment

Segment

Segment f

Segment g

Segment dp

Digit 1 drive

Digit 2 drive

il]]] Digit 3 drive

ZVN4206A ZVN4206A ZVN4206A ZVN4206A Digit 4 drive

ik . .

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RBO
RAO
RA1
RA2
RA3

Seven Segment Display
Multiplexing of seven segment digits

segment pattern segment pattern
for Digit 1 for Digit 3

segment pattern segment pattern segment pattern
MrD@n4 for Digit 2 for Digit 4

Segment X

drives

Digit 1 /—\ /—\
Digit Digit 2 / \ /

drives

Seven Segment Display

Example 2

A program to count continuously the numbers 0 through 99
and display them on two seven segment displays. The count
should be incremented every 1 sec. Oscillator frequency is 3
MHz.

e Connect the seven segment inputs a through g to RBO
through RB6, respectively

e Connect the gates of the controlling transistors to RAO (LSD)
and RA1 (MSD)

eThe main program will be responsible for display and
multiplexing every 5 ms

@

/

Seven Segment Display Example

LOW_DIGIT
HIGH_DIGIT
COUNT

ISR
START

#INCLUDE

EQU
EQU
EQU
ORG
GOTO
ORG
GOTO
BSF
MOVLW
MOVWEF
MOVWEF
BCF
CLRF
CLRF
CLRF
CLRF
CLRF

PICF84A.INC

0X20

0X21

0X22

0X0000

START

0X0004

ISR

STATUS, RPO

B’00000000’ ; set port B as output
TRISB

TRISA ; SET RAO-RA1 AS OUTPUT
STATUS, RPO

PORTB

PORTA

LOW_DIGIT ; CLEAR THE COUNT VALUE
HIGH_DIGIT

COUNT

/

Seven Segment Display Example

DISPLAY

BSF

BCF
MOVF
CALL
MOVWEF
CALL
BCF

BSF
MOVF
CALL
MOVWEF
CALL

PORTA, O

PORTA, 1

LOW_DIGIT, W ; DISPLAY LOWER DIGIT

TABLE ; GET THE SEVEN SEGMENT CODE
PORTB

DELAY_5MS ; KEEP IT ON FOR 5 MS

PORTA, O

PORTA, 1

HIGH_DIGIT, W ; DISPLAY HIGH DIGIT

TABLE ; GET THE SEVEN SEGMENT CODE\
PORTB

DELAY_5MS ; KEEP IT ON FOR 5 MS

; CHECK IF 1 SEC ELAPSED

INCF
MOVF
SUBLW
BTFSS
GOTO

COUNT,F ; INCREMENT THE COUNT VALUE IF TRUE
COUNT, W

D’100’

STATUS, Z

DISPLAY ; DISPLAY THE SAME COUNT

/

Seven Segment Display Example

; TIME TO INCREMENT THE COUNT

CLRF
INCF
MOVF
SUBLW
BTFSS
GOTO
CLRF

INCF
MOVF
SUBLW
BTFSS
GOTO
CLRF
GOTO

COUNT

LOW_DIGIT, F ; INCREMENT LOW DIGIT AND CHECK IF >9
LOW_DIGIT, W

O0XO0A

STATUS, 7

DISPLAY

LOW_DIGIT

HIGH_DIGIT, F ; INCREMENT HIGH DIGIT AND CHECK IF > 9
HIGH_DIGIT, W

O0X0A

STATUS, Z

DISPLAY

HIGH_DIGIT

DISPLAY

/

Seven Segment Display Example

DELAY_5MS MOVLW D’250’
MOVWEF 0X40
REPEAT NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
DECFSZ 0X40,1
GOTO REPEAT
RETURN

™

-

Seven Segment Display Example

TABLE ADDWEF PCL, 1
RETLW B'00111111°
RETLW B'00000110'
RETLW B'01011011'
RETLW B'01001111°
RETLW B'01100110'
RETLW B'01101101°
RETLW B'01111101'
RETLW B'00000111'
RETLW B'01111111°
RETLW B'01101111°
END

™

Sensors

* Embedded systems need to interface with the
physical world and must be able to detect the
state of the physical variables and control them

* Input transducers or sensors are used to convert
physical variables into electrical variables.
Examples are the light, temperature and pressure
Sensors

e Qutput transducers convert electrical variables to
physical variables.

@

Sensors
Light-dependent Resistors

e A light-dependent resistor (LDR) is
made from a piece of exposed
semiconductor material

* When light falls on it, it creates

hole—electron pairs in the
. . . 5V
material, which improves the
conductivity. 10k
mm— .
N
Dark R or
10 9000 2.36
1000 400 0.19 Y

(-

Sensors
Optical Object Sensing

e Useful in sensing the presence or closeness of objects

* The presence of object can be detected
e If it breaks the light beam
e If it reflects the light beam

REFLECTIVE SURFACE Opaque object

I~ N rez=m b

N | Plasti ' . |

i i Plastic ' .

v ,-f ;L i housing ! ' ; \

E E 1 I I

i | ;- 3 Lo\d Lee,
i S S :., - - [P — - - - - -:

Anode Cathode Collector Emitter Flth Of transrnitted “g'ht

Sensors
Opto-sensor as a Shaft Encoder

e Useful in measuring distance and speed

-4 Agilent Technologies

Sensors
Ultrasonic Object Sensor

* Based on reflective principle of ultrasonic waves

e An ultrasonic transmitter sends out a burst of
ultrasonic pulses and then the receiver detects the
echo

e |f the time-to-echo is measured, distance can be
measured

Trigger |
input

Ultrasound |||||| ||||||||
burst from

module

Echo pulse

s

Echo
\ received

s

Actuators: motors and servos

* Embedded systems need to cause physical movement
e Linear or rotary motion

e Most actuators are electrical in nature

e Solenoids (linear motion)
e DC Motors
e Stepper motors

e Servo motors

DC Motors

e Range from the extremely powerful to the very small
* Wide speed range

e Controllable speed

* Good efficiency

* Can provide accurate angular positioning with angular
shafts

* Only the armature winding needs to be driven

CONTINUOQUS ROTATION

DC MOTOR

http://en.wikipedia.org/wiki/File:Electric_motor_cycle_1.png

Stepper Motors

* A stepper motor (or step motor) is a synchronous electric
motor that can divide a full rotation into a large number of

steps.

DISCRETE ROTATION
£ =

STEPPERMOTOR ¥ _—— %, - SIGNAL B
/* \\ \ '|
o/ | |
o}' ' /
= : CURRENT w 1 |
" ! . |
\ / I:::%__- 1 |l fata atal!
N | e
e |
4
q4—+p
T N
SIGNALA 2)V ROTOR SHAFT
4 "\ COMING OUT OF
'd l-—1 —
E— | P col / PAGE
| |2 wiNDING " PERMANENT MAGNET
1 DISK WITH TWO POLES
| _DIRECTION OF
MAGNETIC FIELD

\
\

\
METAL CORE USED
TO HELP CHANNEL
THE MAGNETIC FIELD

Stepper Motors

* Features
e Simple interface with digital systems
e Can control speed and position
e More complex to drive
e Awkward start-up characteristics
e Lose torque at high speed
e Limited top speed
e Less efficient

(-

Servo Motors

* Allows precise angular

|

|

motion ﬁ
T

* The output is a shaft that
can take an angular

%20ms %

position over a range of
180°

125ms

* The input to the servo is
a pulse stream whose

1.5ms

width determines the
angular position of the ;

1.75ms

)

0 degrees

0

90 degrees

€

180 degrees

shaft

Interfacing to Actuators

e Microcontrollers can drive loads with small
electrical requirements

* Some devices, like actuators, require high currents
or supply voltages

» Use switching devices
e Simple DC switching using BJTs or MOSFETs
e Reversible DC switching using H-bridge

(-

Interfacing to Actuators
Simple DC interfacing

Base current controls
load current

Logic gate,
or port bit
output

Interfacing to Actuators
Simple DC interfacing

'Freewheeling' diode \
R

Decaying current flows
Gate voltage controls in this direction, when ||

load current switched off.

I
@Jate, Logic gate,

or port bit 77 or port bit P4
output output

@ Resistive load

T

Inductive load

Interfacing to Actuators
Simple DC interfacing

Characteristics of two popular logic-compatible

MOSFETs
Characteristic ZVN4206A | ZVN4306A
Maximum drain-to-source voltage, Vpg (V) 60 60
Maximum gate-to-source threshold, Vgsn) (V) 3 3
Maximum drain-to-source resistance when “on’, Rpgony (£2) | 1.5 0.33
Maximum continuous drain current, /p 600 mA 1.TA
Maximum power dissipation (W) 0.7 1.1
Input capacitance (pF) 100 350

(-

Interfacing to Actuators
Driving Piezo Sounder and Opto-sensors

5V

Piczo
sounder

Kingstate electronics
KPE-204A

Port B bit 1 |[PortBbitZH:

ZNVN4206 7ZVN4206

oV

e Piezo sounder ratings: 9mA, 3-20V

e The opto-sensor found to operate well with 91 Ohm resistor. The diode
@ forward voltage is 1.7V. The required current is about 17.6 mA

Interfacing to Actuators
Reversible DC Switching

e DC switching allows driving loads with current flowing in one
direction

* Some loads requires the applied voltage to be reversible; DC
motors rotation depends on direction of current

e Use H-bridge !

‘High side’ A AN

Load

‘Low side’

1.2EN |

1A]
1Y |
HEAT SINK AND { |

GROUND

2 |
2A [
Veea L

(-

|)
o =] Lo T ol iy [S L T

Interfacing to Actuators
Reversible DC Switching

| Veer
]4A
14y

| 3y
] 3A
| 3 4EN

HEAT SINK AND
GROUND

Out 1

RO R e S o

.8 3 o _g'® 6

|

B .
IN1 ﬁz E> * ¢ <ﬂ wE]IN:!

| |

| ~ ~ |

| |
Enable1[;|1_. 7 . 77 . ,_gﬁ] Enable 2

SN

| |
N2 lD7 D\— ’ . /ﬂ e

-V N

| ~ 7~ |

: 776 I

i O---0------- [----

ouz Ould ov

L293D Dual H-bridge
Peak output current 1.2 A per channel

Out3

Interfacing to Actuators

Reversible DC Switching
Driving three motors using L293D

¢ < il
AR

—

Ve
1__F— - |
D_|-|1 16 | ﬁ'
I L 15 | . (
uJ'L| iy
|
E 14
|
4 13|
|5 12 |
i =E 11 i
|
! 1
il 0l 5 | ¢
9 1 :
d=l— ¢ '

?

More on Digital Input

* When acquiring digital inputs into the microcontroller,
it is essential that the input voltage is within the
permissible and recognizable range of the MC

* Voltage range depends on the logic family; TTL, CMOS,

* Interfacing within the same family is safe

* What for the case
e Interfacing to digital sensors
e Signal corruption

@ e |nterference

More on Digital Input
PIC16F873A Port Characteristics

Irreversible
device damage
53V

50V
Logic 1
20V
Undefined logic level
0.8V
Logic O
oV

-0.3V .
Irreversible
device damage

(-

More on Digital Input

Forms of Signal Corruption

Slow edge DC Offset in the signal

—

/

More on Digital Input
Clamping Voltage Spikes

° 5V
« All ports are usually
protected by a pair of
Rprot diodes

—] ? « An optional current
limiting resistor can be
AN added if high spikes are

® oV expected

* Question? Let R,

suppressed?

Q V4 = 0.3y, then what is the maximum positive voltage spike that can be

= 1KQ and the maximum diode current is 20 mA when

/

More on Digital Input

Analog Input Filtering

e Can use Schmitt trigger for speeding up slow logic edges.

e Schmitt trigger with RC filter can be used to filter voltage
spikes.

(-

More on Digital Input

Switch Debouncing
» Mechanical switches exhibit bouncing behavior
« The switch contact bounces between open and closed
- A serious problem for digital devices ?!

sourcea of error

Vs

R * 0/1 (Digital output)

&Y .
High (Logic 1)

- Vc: unknown
av L?H (Logic 0)
- "t‘n'jf;b -ﬁﬁtﬁ-ﬁ
Simple switch interface % fﬁm‘}

- Switch debouncing!! hardware and/or software

@ techniques

More on Digital Input

Switch Debouncing

Volt Souwrce of amor aad

{Digital output) 0/1
sV

as1
sV High {Logic 1)

unknown

o' {LQQ-C 0) ov

(-

More on Digital Input

Switch Debouncing

Vs Switch
bounce
Switch A e
output W m
Input
polling T T T
Perceived 1
input
0

Summary

Microcontrollers must be able to interface with the
physical world and possibly the human world

Switches, keypads and displays represent typical examples
for interfacing embedded systems with the humans

Microcontrollers must be able to interface with a range of
input and output transducers.

Interfacing with sensors requires a reasonable knowledge
of signal conditioning techniques

Interfacing with actuators requires a reasonable
knowledge of power switching techniques

Taking Timing Further

Chapter 9

Dr. lyad Jafar

e Introduction

Outline

e Review of Timer 0 Module

e Timer 1 Module
e Timer 2 Module

» Capture/Compare/PWM (CCP)
* Digital-to-Analog Conversion

* Frequency Measurement

e Summary

Introduction

* Why do we need timers ?
e Maintaining continuous counting functions

e Recording (‘capturing’) in timer hardware
the time an event occurs

e Triggering events at particular times
e Generating repetitive time-based events

e Measuring frequency, e.g., motor speed

(-,

Review of Timer 0 Module

Multiplexer
selecting prescaler

Multiplexer selecting
counting source

Input edge select

(Data Bus
Sout
1 s

: {7

Sync with
I(r;tlemal TMRO
ocks
Programmable
P%escalm 0 PSout
(2 Cycle Delay)

RA4/TOCKI
pin
TOSE

3
Set Interrupt
P82, PS1, PSO PSA Flag bit TOIF

Tocs on Overflow

Note 1: TOCS, TOSE, PSA, PS2:PS0 (OPTION_REG<5:0>).
2: The prescaler is shared with Watchdog Timer (refer to Figure 5-2 for detailed block diagram).

RAW-1 RAW-1 RAW-1

8-bit counter

RAW-1

RBFU INTEDG

PSA

PS2

S0

bit 7

bit 7 RBPU: PORTEB Full-up Enable bit

File Address

00h
01h
02h
03h
04h
05h
06h

. 1 = PORTB pull-ups are disabled
File Address

Indirect addr.("

Indirect addr.("

B0Oh bit & INTEDG: Interrupt Edge Select bit

TMRO

OPTION_REG

1 = Interrupt on rising edge of RBOJINT pin
81h 0 = Interrupt on falling edge of RBO/INT pin

PCL
STATUS

PCL
STATUS

82h r)it 5 TOoCS: TMRO Clock Source Select bit
&3h

o = Internal instruction cycle clock (CLKOUT)

FSR

FSR

84h

PORTA
PORTE

TRISA
TRISB

1 = Transition on RAL/TOCKI pin
[bit 4 TOSE: TMRO Source Edge Select bit

85h bit 3 PSA: Prescaler Assignment bit

86h 1 = Prescaler is assigned to the WDT

0 = Prescaler is assianed to the Timer0 module
bit 2-0 PS2:PS0: Prescaler Rate Select bits
Bit Value TMRO Rate WDT Rate

000
ool
010
o131
100
101
110
111

W

M
A Y
EW—‘W&M—‘

1]

S 128

N W N N S Y
=

1 = Increment on high-to-low transition on RA4TOCKI pin
0 = Increment on low-to-high transition on RA4/TOCKI pin

o = PORTB pull-ups are enabled by individual port latch values

bit O

More Timer Modules

16F84A

16F873A
16F876A

16F874A
16F877A

18 1 8-bit timer
1 5-bit port
1 8-bit port

28 3 parallel ports,
3 counter/timers,

2 capture/compare/PWM,
2 serial, 5 10-bit ADC, 2 comparators

40 5 parallel ports,
3 counter/timers,

2 capture/compare/PWM,
2 serial, 8 10-bit ADC, 2 comparators

-
Timer 1 Module

* Features
e 16-bit timer/counter (00O00H — FFFFH)
e Count value in TMR1H (0OxOF) and TMR1L (OxOE)
e TMR1 operation controlled by TICON (0x10)

e Three clock sources
Internal clock Fosc/4

External input (RCO/T10SO/T1CKI) for counting purposes
» Count on rising edge (after the first falling edge)
External oscillator (RC1/T10SI/CCP2)

* Removes the dependency on the main oscillator

* Intended for low frequency oscillation up to 200KHz (typically
32.768 KHz)

e * Counting continue in sleep mode

Timer 1 Module
The 16-bit counter
Set Flag bit
TMR1IF on /
Overflow f g ole Synchronized
5 il Clock Input
TMRIL {
Extemal input | { e]
TMR1ON
\ OOt T7sVNG
' T10SC
RCoT10s0rmickl | X - - > 1 |
‘ - Synchronize
* | Prescaler i
.1 ' En&P'E 1) Internal — 0]
RC1/T108lCCP2® E . + Oscillator”) Cjock J,) g
Connectionsfor | = b T1CKPS1:T1CKPS0
external oscillator Internal clock source TMR1CS
Note 1: When the TIOSCEN bit is cleared, the inverter is turned off. This eliminates power drain.

@ .

Timer 1 Module
T1CON Register (0x10)

U-0 U0 R/W-0 R/W-0 RAW-0 R/W-0
| — | — | T‘ICI{F"S‘I | TiICKPSO | T1OSCEN | T1S‘1"MC | TMR1CS | TMR1ON
bit 7 bit 0

bit 7:6 Unimplemented: Read as '
bit 5:4 TAICKPS1:T1CKPS0: Timerl Input Clock Prescale Select bits

11 = 1:8 Prescale valus
10 = 1:4 Prescale valus
01l = 1:2 Prescale value
00 = 1:1 Prescale valus

kit 3 TAOSCEM: Timerl Oscillator Enable bit

1 = Oscillator 1s enabled
0 = Oscillator 1s shut off. The oscillator inverter and feedback resistor are turned off to
eliminate power drain

bit 2 MSYNC: Timer1 External Clock Input Synchronization Select bit
When TMRI1CS = 1:

1 = Do not synchronize external clock input
0 = Synchronize external clock input

When TMR1CS = 0:
This bit is ignored. Timer1 uses the intermal clock when TMR1CS = 0.
bit 1 TMR1CS: Timerl1 Clock Source Select bit

1 = External clock from pin T1OSOWT 1CKI {on the rising edge)
0 = Internal clock (Fosc/d)

bit O TMR1ON: Timer1 On bit

1 = Enables Timer1
@ 0 = Stops Timer1

Timer 2 Module

* Features
e 8-bit counter/timer
e Count value in TMR2 register (0x11)
* TMR2 operation controlled by T2CON (0x12)
e No external clock input

e Has Capture and Compare register PR2 (0x92) and
pulse width modulation capability

(-

Timer 2 Module

Sets flag
bit TMR2IF

Prescaler TMR2 reg Reset

Fosc/4 —14:4 14 1:16

Postscaler
1:1 to 1:16

b

TOUTPS3:TOUTPSO

bit 7
bit 6:3

bit 2

bit 1:0

Timer 2 Module
T2CON Register (0x12)

U0 RW-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 RIW-0
— | TOUTPS3 | TOUTPS2 | TOUTPST | TOUTPSO | TMR20ON | T2CKPS1 | T2CKPSO

bit bit 0

2

Unimplemented: Read as '0’
TOUTPS3:TOUTPSO: Timer2 Output Postscale Select bits

o000 = 1:1 Postscale
0001 = 1:2 Postscale

L d

L d

E d

1111 = 1:16 Postscale

TMR20ON: Timer2 On bit

1=Timer2 is on

0 =Timer2 is off

T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits

00 = Prescaler is 1
01 = Prescaleris 4
1x = Prescaler i1s 16

(-

Timer 2 Module
The PR2 register, comparator and prescaler

Timer2 has a period register PR2 (0x92) that can be preset by the
programmer

The content of this register is continuously compared with the Timer2
when it is running

When TMR2 equals PR2,
e TMR2 is cleared

e The comparator output (same as TMR2IF in PIR) is high which can be used as
interrupt if TMR2IE (PIE) is set

e The comparator output can be post-scaled by T20UTPS3:T20UTPSO bits
(T2CON)

PR? value P Timer 2 value, if no comparator action
)J

Timer 2 value—""

Comparator output K A ~ .
(= 'TMR2 output’)

Interrupt TMR2IF
(postscale set to /4)

s

(-

Capture/Compare/PWM Modules

Embedded systems need to deal with time events such as setting an alarm
or recording the time of an event

This can be easily achieved by adding one or more registers to the
timer/counter registers

e Aregister that records the time. It is called the Capture register

e A register that triggers an alarm. It is called the Compare register

The PIC 16 series combine these functionalities in the
Capture/Compare/PWM (CCP) modules which interact with Timerl and

Timer2 modules CCP Mode Timer Resource
W—T
Compare Timer1
The PIC16F873A has two such modules PWM Timer2

e Each has two 8-bit registers CCP1H (0x16) and CCP1L (0x15) for module CCP1
and CCP2H (0x1C) and CCP2L (0x1B) for module CCP2

e These registers can be used to capture a value from the timer, store the value to
compare with, or store the duty cycle of PWM stream

e Mode of operation is controlled by CCP1CON (0x17) and CCP2CON (0x1D)
registers

™

s
Capture/Compare/PWM Modules

Capture Mode
* The compare register operates like a stopwatch!
e Can record the value of the timer when an event occurs

Set Flag bit CCP1IF
(PIR1<2>)

Prescaler
+1,4,16 4

I

RC2/CCP1
pin

+ and_+_ | Capture

Edge Detect Enable
} SRRV RIS EVIRGIE
CCP1CON<3:0>
Qs

@ Block diagram of CCP1 module in capture mode

-

e The value stored in CCPR1H and CCPR1L is continuously

Capture/Compare/PWM Modules

Compare Mode

compared to Timerl registers

* The associated output pin can be set or cleared

o

RC2/CCP1
pin

Special Event Trigger
A

(PIR1<2>)

R

SH Qutput

Logic Match

TRISC<2>
Output Enable

f

CCP1CON<3:0>

Mode Select

Set Flag bit CCP1IF

Comparator

TMRTHT TMR1L

Block diagram of CCP1 module in compare mode

™

s

Capture/Compare/PWM Modules

CCP Control Registers: CCP1CON and CCP2CON

U-0 -0 RAW-0 RAW-0 RAW-0 RAW-0 RAW-0 R/W-0
| — | — | DcxB1 | DCxBo | ccPxm3 [coPxmz | ccPxMm1 | cCPxMO
bit 7 bit 0

bit 76 Unimplemented: Read as "0
bit 5:4 DCxB1:DCxB0: PWM Duty Cycle bit1 and bitD

Capture Mode:
Lnused

Compare Mode:
Unused

PWMM Mode:

These bits are the two LSbs (bit1 and bitd) of the 10-bit PWM duty cycle. The upper eight
bits (DCx9:DCx2) of the duty cycle are found in CCPRExL.

kit 3:0 CCPxM3:CCPxM0: CCPx Mode Select bits

ooo0 = Capture/Compare/PWM off (resets CCPx module)
0100 = Capture mode, every falling edge
0101 = Capture mode, every rising edge
0110 = Capture mode, every dth nsing edge
0111 = Capture mode, every 16th rising edge
1000 = Compare mode,
Initialize CCP pin Low, on compare match force CCF pin High (CCPIF bit is set)
1001 = Compare mode,

Initialize CCP pin High, on compare match force CCP pin Low [CCPIF bit is set)
1010 = Compare mode,

Generate software interrupt on compare match

(CCPIF bit is set, CCP pin is unaffected)
1011 = Compare mode,

Trigger special event (CCPIF bit is set)
1lxzx = PWM mode

-

* In many applications, it is required to have a stream of

* In embedded systems this can be done in software or

(-

Capture/Compare/PWM Modules

Pulse Width Modulation

pulses with controllable width/duration

[, [

hardware

™

s

Capture/Compare/PWM Modules

Pulse Width Modulation (software)

N P

L Set PWM_Width |

Ser PVYWiv_Prd l

f Set PWh1 Qutput

Clear PWHhA coutput

™

4 N
Capture/Compare/PWM Modules

Pulse Width Modulation (using CCP module)

Duty Cycle Registers —— CCP1CON<5:4>
CCPRIL
CCPR1H (Slave]é
T
Cumpa cator R Q N
TMR2 (Note 1)
; S e Note 1: The 8-bit timer
l is concatenated with 2-
Comparator . TRISC<2> bit internal Q clock, or 2
Clear Timer,

4 CCP1 pin and bits of the prescaler, to
PR2 latch D.C. create 10-bit time base.

(- Y

-

Capture/Compare/PWM Modules

Pulse Width Modulation (using CCP module)

Timer 2 and PR2 values
equal, timer is reset and

PWM goes high

CCPRIL value
changed in program

PR2 value -.._
CCPR1L/H value __

Timer 2 value

Flip-flop/
PWM output

@

CCPRIL value transferred to
CCPRIH as timer clears

/ I

S

—

CCPR1L

™

Capture/Compare/PWM Modules

Pulse Width Modulation (using CCP module)
Calculations
T =(PR2 + 1) x(Timer2 input clock period)
=(PR2 + 1) x{T . x4 x(Timer2 prescale value)}

t_, = (pulse width register) x (PWM timer input clock period)

= (pulse width register) x{T_.. % (Timer2 prescale value)}

SC

pulse width register = CCPR1L :: CCP1CON<5:4>

-
PWM and Digital To Analog Conversion

e PWM is perhaps primarily used for load control
* Can be used for simple and effective digital-to-analog
conversion

e Space-ratio is fixed
Low pass filter the PWM stream to obtain a DC signal with some

ripple
T T Place modulation
| U u ‘ . B r_ L ,,- «.5 r’ t_% G ireque:cy inpass-band | [~ i off fre quency
. [N S S S /
Place PWM
c frequency deep
1 1 in stop-band

v

e Space-ratio is modulated
Q Varying output voltage is produced

4 N
PWM and Digital To Analog Conversion

e Generating a Sine Wave - change the on-time for the
PWM signal so the output of the LPF will be different

clrf pointer

sin_loop
movf pointer,w
call sin_table ;get most significant byte
movwf ccprll ;move 1t to the PWM output
inct pointer,f ;increment the pointer
movf pointer,w
call sin_table ;get the MS byte
andlw B"11000000" ;we onlly use ms 2 bits

-
PWM and Digital To Analog Conversion

e (Generating a Sine Wave

movwt temp

bcf status,c ;adjust for CCP1CON
rrf temp,fT

rrf temp,w

iorlw B"00001100" ;set some CCP1CON bits
movwf ccplcon

inct pointer,T

movf pointer,w

call delayl
goto sin_loop

-

Sin_Table

addwf
retlw
retlw
retlw
retlw
retlw
retlw

pcl,1

00
00
03
SA
06

0OB2

degrees,

degrees,
degrees,

A~ AN DN O O

degrees,

degrees,
degrees,

PWM and Digital To Analog Conversion

e (Generating a Sine Wave

higher byte
lower byte
higher byte
lower byte
higher byte
lower byte

Frequency Measurement

* Frequency measurement is a very important
application of both counting and timing
e Both a counter and a timer are needed
e The timer to measure the reference period of time

e The counter to count the number of events within that
time.

Measurand | _|||||||||||
frequency

Fixed, known i B
time period

v

All incoming cycles in this
time period to be measured

@

Example 1

delay and assume Fosc = 4MHz.

Write a program to flash a LED that is connected to RAO
continuously such that it is ON for 3 seconds and OFF
for 3 seconds. Use TIMER1 module to generate the

@

TABLE 6-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER
Value on: Value on
Address | Name | Bit7 | Bite [Bit Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 _ | all other
POR, BOR
Resets
0Bh,g8Bh, |[INTCON| GIE | PEIE | TMROIE | INTE RBIE | TMROIF | INTF REIF 0000 000x[0000 000U
10Bh, 18Bh
0Ch PIR1 |PSPIFU| ADIF | RCIF TXIF SSPIF | CCPIIF | TMR2ZIF | TMR1IF |oooo cooo|oooo 0000
B8Ch PIE1 |PSPIE""| ADIE | RCIE TXIE SSPIE | CCP1IE | TMRZIE | TMRI1IE [coo0 0000|0000 0000
0Eh TMRIL |Holding Register for the Least Significant Byte of the 16-bit TMR1 Register 30000 00K [uuul. uuuu
OFh TMR1TH [Holding Register for the Most Significant Byte of the 16-bit TMR1 Reqgister A0 3000 [UuUl. uuun
10h TICON | — — [TICKPS1| T1CKPSO|T1OSCEN | TISYNC |TMR1CS |[TMRTON| --00 0000|--uu uuuu
Legend: x =unknown, u = unchanged, - = unimplemented, read as "0'. Shaded cells are not used by the Timer! madule.

@

Example 1

e Maximum time that can be measured by TMR1 is
Time = 2716 * 4/Fosc * Prescaler

= 65536*1usec*8 =0.5243 s

* How about we configure TMR1 to measure 0.5 sec and
use a software counter (post-scaler) to count six times

0.5=N*1usec* P> N=62500, P=8
TMR1H:TMR1L = 65536 — 62500 = 3036 = OxOBDC
- TMR1H =0x0B, TMR1L =0xDC
e T1CON =0x30

T1CKPS1 | T1CKPSO | T1OSCEN | T1SYNC | TMR1CS | T1ON

0 0 1 1 0 0 0 0

Example 1

COUNTER EQU 0x20
#include “PIC16F877.INC”
org 0x0000

goto START
org 0x0004
ISR goto ISR
START bcf STATUS, RP1 : select bank 1
bsf STATUS, RPO
clrf TRISA ; set RAO as output
{ movlw B’00000110° : configure RAO as digital }
movwf ADCON1

FLASH movliw 0x06 : initialize counter to 6
movwf COUNTER

@WAIT_?;sec moviw 0xOB
N, movwf TMR1H ; initialize TMR1H

WAIT _p5sec

movlw
movwf
movlw
movwf
bsf
btfss
goto
bcf

bcf
decfsz
goto
moviw
xorwf
goto
end

Example 1
OxDC
TMR1L ;initialize TMR1L
0x30
T1CON s initialize TICON

T1CON, TMR1ON ; enable timer 1

PIR1, TMR1IF : wait for overflow
WAIT _p5sec

T1CON, TMR1ON ; stop timer

PIR1, TMR1IF ; clear interrupt flag
COUNTER, F

WAIT 3sec

OxFF ; change the state of RAO
PORTA, F

FLASH

Example 2

Consider the contents of the following
registers

TMR2 =D’44’
PR2 = D100’
T2CON =0x39

If the instruction bsf T2CON, T2ZON is executed,
then how long does it take to set the TMR2IF
in the PIR1 register ? Assume Fosc = 8 MHz.

(-

(-

Example 2

T2CON

TOUTPS3

TOUTPS2

TOUTPS1

TOUTPSO

T20N

T2CKPS1

T2CKPSO

0

0

1

1

1

0

1

e Initially, the timer is off

* Executing the instruction enables the timer
* The time required to set the TMR2IF is
Time = (PR2+1) * prescaler * postscaler * 4 /Fosc
if TMR2 is initialized to zero.

* However, TMR2 = 44. So the time is

Time = (PR2-TMR2+1) * 4 * 4/8MHz + (PR2+1) * 4 *
4/8MHz * 7 = 1528 usec

Example 3

Write a program that configures and uses the CCP1
module in PIC16F873A to generate a periodic square wave
of frequency 50 Hz and 25% duty cycle. Assume that Fosc
= 800 KHz.

Requirements
1) Configure RC2 as output

2) Configure TIMER2 module and compute the values to
be placed in CCPR1L and PR2 registers which determine
the duty cycle and the cycle time, respectively

3) Turn on the timer

(-

/

Example 3

™

(-

TABLE 8-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2
. . . , . : , . Value on: Value on
Address Name Bit 7 Bit & Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 POR, BOR all other
Resets
0Bh,6Bh, |INTCON GIE FEIE | TMROIE | INTE RBIE | TMROIF | INTF REIF |0000 000x|0000 000u
10Bh, 16Bh
0Ch PIR1 PSPIF ADIF RCIF TXIF SSPIF | CCP1IF | TMRZIF | TMR1IF |o000 0000|0000 0000
0Dh PIR2 — — — — — — — CCP2IF |---- --- 0---- --- 0
8Ch PIE1 PSPIEM")| ADIE RCIE TXIE SSPIE | CCP1IE | TMRZIE | TMRITIE |0000 0000[{0000 0000
8Dh PIE2 — — — — — — — CCP2IE |---- --- 0---- --- 0
&7h TRISC PORTC Data Direction Register 1111 1111|1111 1111
11h TMR2 Timer2 Module's Register Q000 0000|0000 0000
92h PR2 Timer2 Module's Period Register 1111 1111{1111 1111
12h T2CON — | TOUTPS3|TOUTPSZ (TOUTPST|TOUTPSD| TMRZON | T2ZCKPS1 | T2CKPS0|-000 0000(-000 0000
15h CCPRIL |Capture/Compare/PWM Register 1 (LSE) WO HOOCK WU i
16h CCPR1H |Capture/Compare/P\WM Register 1 (MSB) MO HOOCK |UUIULL i
17h CCPICON| — — CCP1X | CCP1Y | CCPIM3 | CCP1MZ | CCPIMT | CCPIMO |--00 0000|--00 0000
1Bh CCPRZL |Capture/Compare/P\WM Register 2 (LSE) OO JI0CK | WU T
1Ch CCPRZH |Capture/Compare/PWM Register 2 (MSB) J00E HO0CK | WU uiu
1Dh CCP2CON| — — CCPZX | CCPZY | CCP2M3 | CCP2M2 | CCPZM1 | CCP2MO |--00 0000|--00 0000
Legend: = =unknown, u=unchanged, - = unimplemented, read as '0". Shaded cells are not used by PWM and Timer2.

Example 3

e PWM signal specs
e T=1/50=0.02sec
e Ton=0.25* T =0.005 sec

* Need to configure the CCP1 and TIMER?2

e PR2 register
T=(PR2+1) * 4 * Tosc * prescaler
if we assume prescaler = 16, then PR2 = 249

e Pulse-width register CCPR1L:CCP1CON<5:4>
Ton = PWR * Tosc * prescaler
already the prescaler is chosen to be 16 - PWR = 250 =0xFA
- CCPR1L=B’00111110" and CCP1CON<5:4> = B’10’

e T2CON =0x06

e CCP1CON =B’00101100’

(-

Example 3

#include “PIC16F877.INC”
org 0x0000

goto START
org 0x0004
ISR goto ISR
START bcf STATUS, RP1 : select bank 1
bsf STATUS, RPO
bcf TRISC, 2 ; set RC2 as output
moviw D’249’
movwf PR2 ; set the cycle time in PR2

bcf STATUS, RPO

movilw Ox3E

movwf CCPR1L : set the ON time in CCPR1L
bcf CCP1CON, 4 ; specify the LSBs of the ON time

@ bsf CCP1CON, 5

Example 3

bsf CCP1CON, 3
bsf CCP1CON, 2 ; configure CCP1in PWM and
movilw 0x06

movwf T2CON ; configure timer 2 and enable it

DONE goto DONE

end

Summary

* Timing is essential element of embedded systems
design

e Wide range of timers is available in PIC
microcontrollers with clever add-on features such
as capture, compare, and pulse width modulation

* |t is very occasional to have several timers running
simultaneously in an embedded system

(-

Smarter systems and

the PIC® 18FXX2

Chapter 12
Sections 1-5

Dr. lyad Jafar

Outline

Introduction of 18 Series

18 Series Architecture
e Pin Out

e Block Diagram

e Status Register

18 Series Instruction Set

18 Series Memory Organization

e Data Memory

e Stack

e Program Memory

e Configuration Words

Summary

PIC Families

PIC Family Instruction No of Interrupt
Word Size Instructions Vectors

12CX/12FX 12- or 14-bit None

16C5X/16F5X 2 12-bit 33 None
16CX/16FX 8 14-bit 35 1
17CX 16 16-bit 58 4

18CX/18FX 32 16-bit 75 2

The PIC 18 Series

Similarities with the PIC 16 Series

» RISC, pipelined, 8-bit CPU, with single Working (W) and
Status registers

* Many peripherals identical or very similar
e Similar packages and pinouts

* Many Special Function Register (SFR) and bit names
unchanged

e All but one of the 16 Series instructions are part of the 18
Series instruction set

* Instruction cycle made up of four oscillator cycles

o

The PIC 18 Series

Differences from PIC 16 Series
The number of instructions more than doubled
16-bit instruction word
Enhanced Status register (overflow and negative bits)
Hardware 8 x 8 multiply
More external interrupts

Two prioritized interrupt vectors

Radically different approach to memory structures, with increased
memory size

Enhanced address generation for program and data memory
Bigger Stack, with some user access and control
Phase-locked loop (PLL) clock generator.

The PIC 18 Series

All 18FXX2 Sub-family Devices

Features PIC18F242 PIC18F252 PIC18F442 PIC18F452
Operating Frequency DC -40 MHz DC - 40 MHz DC - 40 MHz DC - 40 MHz
Program Memory (Bytes) 16K 32K 16K 32K
Program Memory (Instructions) 8192 16384 8192 16384
Data Memory (Bytes) 768 1536 768 1536
Data EEPROM Memory (Bytes) 256 256 256 256
Interrupt Sources 17 17 18 18
IO Ports Ports A, B, C Ports A, B, C Ports A,B,C,D, E |Ports A, B,C,D, E
Timers 4 4 4 4
Capture/Compare/PWM Modules 2 2 2 2
MSSP, MSSP, MSSP, MSSP,
Serial Communications Addressable Addressable Addressable Addressable
USART USART USART USART
Parallel Communications — — PSP PSP
10-bit Analog-to-Digital Module 5 input channels 5 input channels 8 input channels 8 input channels
POR, BOR, POR, BOR, POR, BOR, POR, BOR,
RESET Instruction, | RESET Instruction, | REsSET Instruction, | RESET Instruction,
RESETS (and Delays) Stack Full, Stack Full, Stack Full, Stack Full,
Stack Underflow Stack Underflow Stack Underflow Stack Underflow
(PWRT, OST) (PWRT, OST) (PWRT, OST) (PWRT, OST)
Programmable Low Voltage Yes Yes Yes Yes
Detect
Programmable Brown-out Reset Yes Yes Yes Yes
Instruction Set 75 Instructions 75 Instructions 75 Instructions 75 Instructions
.) 40-pin DIP 40-pin DIP
28-pin DIP 28-pin DIP o .
Packages 28-pin SOIC 28-pin SOIC 44-pin PLCC 44-pin PLCC

44-pin TQFP

44-pin TQFP

18FXX2 Sub-Family

Pinout
MCLR\VPP —[]
- v, RADIAND «—» [
MCLRWpp —[°1 28| | < RBTIPGD RATIANT <—»[
RAO/ANO 4—»[2 27] <« RBGIPGC RA2/AN2/VREF- «—[]
RAT/ANT +* [3 26] <« RB5/PGM RA3/AN3/VREF+ 4—.-[
RAZIANZVREF- <[] 4 %5+ RB4 RAMTOCK] «—]
. RAS/AN4/SSILVDIN <—» [
RayNaNRers <L 5 o oy 4[]+ RBICCR2 REDRDIANG =—» [
ragmockl <> 6 & 0[] +>RBINT RE1WRIANS <—»]
RASIANA/SSILVDIN «—= [] 7 % L 22[] +>RBI/INTY RE2/CSIAN7 <—»[]
vs—[]8 = 2 2] > RB0NTO VoD —
osciick —[] 9 O O]+ oscrio
osc2CLORM «—L10 & & 1] +—Vss 0SCICLKORES o
+—[
RCOT10SOM1CK! <[] 11 18]] +—> RCTRXIDT RCOTIOSOMICK] = [
RCHT108ICCR2" +>[]12 7] «*> RCBITXICK RC1TIOSICCP2" «—a []
RC2/CCP1 <[13 16|] +>RC5/900 RC2/CCP1 «—»[]
RC3/SCK/SCL <+ [14 15| «—> RC4/SDI/SDA RC3/SCKISCL +—[]

RDOPSPO «—s [

RDI/PSP1 «—[]

0o —1 O O B~ W D —

N I i " N W W e S =
0o —~ O O B W P — O

o —
o w

PIC18F442
PIC18F452

40
39
38
37
36
36

33
32
31
30
29
28
21
26
25
24
23
2
21

'] «—» RB7/PGD
] «— RB6/PGC
'] «—» RB5/PGM
'] «—» RB4

7] «—» RBI/CCP2’
] «—s RB2INT2
'] «—» RB1/INT1
] «—» RBO/INTO
] <—Voo

] «—Vss

] «<— RD7/PSP7

] +— RDGIPSPS
] +—» RD5/PSP

"] «— RD4/PSP4
] «— RCTRX/DT
] «— RCBITX/CK
] «— RC5/SDO

[] «—» RC4/SDI/SDA
] «—» RD3/PSP3

| «—» RD2/PSP2

18FXX2 Sub-family

Internal Organization 1/3

Data Bus<8>

@/\[\/\

[Table Pointer |

'

21

| inc/dec logic |

fVT -V?
,21 | |PCLATU|PCLATH|

Address Latch 7
Program Memory \/
(up to 2 Mbytes) | PCU |PCH | PCL |
Program Counter
Data Latch 4}
\/
| 31 Level Stack |
/16 lL
| Table Latch I
/\
lke
{ Instruction

“7 Register

— — b —

rvTryYyvyev

— — e —

RAO/ANO
RA1/AN1
RA2/AN2/VREF-
RA3/AN3NREF+
RA4/TOCKI
RAS/AN4/SS/LVDIN
RAB

RBO/INTO
RB1/INT1
RB2/INT2
rRB3/ccp2(l
RB4

18FXX2 Sub-family

Internal Organization 2/3

KU Laicn

Instruction
|! Register
I 58 :
Instruction = f V i
Decode & y v
Control [PRODH [PRODL |
OSC2/CLKO "
OSC1/CLKI + * ‘ ‘ * 3 [8x8Multiply |
Power-up l 8
X=> Timer ' (A
Timing || Oscillator WREG
Ti0SCl =>| Generation [|startup Tmer| | (BTOP] [WREG ==
X=> {; Power-on L Y
Reset 78 F
Y
=> Watchdo
4XPLL Timer S \ ALl){<8> /
w - 4
Precision Br;egect:ut 18
Voltage ——> >
- Reference Low Voltage
MCLR& Programming
In-Circuit
VDD‘P'%S Debugger

yYyYyevyy

Y

Ty

PORTC

Yy

Yy ¥

Yy

— - ——F—

RBO/INTO
RB1/INT1
RB2/INT2
rRB3/cCcP2()
RB4
RB5/PGM
RB6/PCG
RB7/PGD

RCO/T10SO/TICKI
Rc1/T108IIccp2(M
RC2/CCP1

RC3/SCK/SCL
RC4/SDI/SDA
RC5/SDO
RC6/TX/CK
RC7/RX/DT

i e e e e e e

18FXX2 Sub-family

Internal Organization 3/3

rcTioslicep2 |
RC2/CCP1

RC3/SCK/SCL |
RC4/SDI/SDA |
RC5/SDO

RCE/TX/CK |
RC7/RX/DT |

— Brown-out 8 | -
Precision Reset
Voltage —= > -
- Reference Low Voltage Y >
MCLR[E Programming T >
VDD, Vss In-Circuit | -
g Debugger | .
Lo— — — —
e el e e e e i i T
| Timer0 Timer1 Timer2 Timer3 — > A/D Converter
|][\ Il I il
| Master Addressable
CCP1 CCP2 Synchronous USART Data EEPROM
| Serial Port
L o e e e
Note 1: Optional multiplexing of CCP2 input/output with RB3 is enabled by selection of configuration bit.
2: The high order bits of the Direct Address for the RAM are from the BSR register (except for the MOVFF instruction).
3: Many of the general purpose I/O pins are multiplexed with one or more peripheral module functions. The multiplexing combinations

are device dependent.

18FXX2 Sub-family

STATUS Register
U-0 U-0 U-0 R/W-x RIW-x RMW-x R/MW-X R/W-x
— — — N oV Z DC C
bit 7 bit 0

o C: Carry/Borrow’

o DC: Digit Carry/Borrow’
o Z: Lero

e OV: Overflow

* N: Negative

18FXX2 Sub-family

Instruction Set 1/5

incfsnz f.d,a

16 Series 18 Series Description
instruction equivalents
Byte-oriented file register operations
addwf f,d addwf f,d,a Add W and f
addwfc f,d.a Add W and t with Carry
andwf f,d andwf f.d,a And Wand f
chef £ clrf f,a Clear f
clrw — Clear W
comf f,d comf f,d.a Complement f
— cpfseq f,a Compare f with W, skip if equal
— cpfsgt f,a Compare f with W, skip it greater than
— cpfslt fa Compare f with W, skip if less than
dect f.d dect f,d,a Decrement f
decfsz f,d decfsz f.d,a Decrement f, skip if zero
— decfsnz f.d,a Decrement f, skip if not zero
incf f,d incf f,d,a Increment f
incfsz f,d incfsz f,d.a Increment f, skip it zero

Increment f, skip if not zero

@

18FXX2 Sub-family

Instruction Set 2/5

@

iorwf fd iorwf f,d,a Inclusive OR f with W
movf f,d movf f,d,a Move f
— movit f5.fy Move source file f5 to destination file fy
movwf f movwf f,a Move W to f
nop nop No operation — an intentional instruction
nop The second word of a two-word instruction, which is encoded to
execute as a nop if it 1s accidentally interpreted as an instruction
— mulwf f,a Multipy W and f
— negf f,a Negate f
rlf f,d rifc f.d,a Rotate left through Carry
rinfc f,d,a Rotate left, no Carry
rrf f,d rrcf f,d,a Rotate right through Carry
rrncf f,d,a Rotate right, no Carry
— set f Set f
subwf f,d subwf f.d,a Subtract W from f
subwtb f,d,a Subtract W from t with borrow
- subfwb f,d,a Subtract f from W with borrow
swapf f,d swapf f,d,a Swap nibbles in
- tstfsz f.a Test f, skip if zero

18FXX2 Sub-family

Instruction Set 3/5

xorwf f.d

xorwf f.d,a

Exclusive OR W with

Bit-oriented file register operations

bef £,b bef f,b,a Clear bit b in register f
bst f,b bsf f,b,a Set bit b in register f

— btg f,d,a Toggle bit b in register f
btfsc f,b btfsc f,b,a Test bit b in 1, skip if clear
btfss f,b btfss f,b,a Test bit b in {1, skip if set

Literal operations

addlw k addlw k Add literal to W

andlw k andlw k And literal with W

iorlw k iorlw k Inclusive OR literal with W
movlw k movlw k Move literal to W

— movlb Move literal to BSR

— Ifsr £,k Load FSR f with 12-bit literal k
- mullw Multiply literal with W

sublw k sublw k Subtract W from literal

xorlw k xorlw k Exclusive OR literal with W

(-

Control operations

18FXX2 Sub-family

Instruction Set 4/5

call k call n,s Call subroutine, with (s = 1) or without (s = () saving context to Stack
rcall n Relative call to subroutine
clrwdt clrwdt Clear Watchdog Timer
— daw Decimal adjust W
goto k goto n Go to absolute address, where k/n address anywhere in program memory
space
— pop Pop top of return stack (TOS)
— push Push top of return stack (TOS)
— reset Software reset
retfie retfie s Return from interrupt, with (s = 1) or without (s = 0) retrieving context
from Stack
retlw k retlw k Return with literal in W
return return s Return from subroutine, with (s = 1) or without (s = 0) retrieving context
from Stack
sleep sleep Go into standby mode
— be, bn, bne, bnn, Eight conditional branch instructions, one for each state of Status register
bnov, bnz, bov, bits N, OV, Z, C, all with 8-bit twos complement relative address n
bz
— bra n Branch unconditionally 8-bit twos complement relative address n

@

/

18FXX2 Sub-family

Instruction Set 5/5

Program memory Table Read/Write operations

tblrd®*, thlrd*+4, Four Table Read instructions, with pointer change respectively
tblrd*—, thlrd4* | no change, post-increment, post-decrement, pre-increment

thlwt®, thlwt¥4, Four Table Write instructions, with pointer change respectively:
thlwt*—_ thlwt4+* | no change, post-increment, post-decrement, pre-increment

18FXX2 Sub-family

Instruction encoding 1/4

16-Bit Instruction Word

Mnemonic, Description Cycles Status Motes

Operands MSh Lsh Affected
BYTE-ORIENTED FILE REGISTER OPERATIONS
ADDWF f.d, a |Add WREG and f 1 0010 0ldan EEEE fE££f |, DC, £, OV, N (1,2
ADDWFC f, d, a [Add WREG and Carry bit to f 1 0010 oda fEEE ffff |C,DC, 2, OV N (1,2
AMDWF f,d,a [AND WREG with f 1 0001 0lda EELE ffff |2, N 1.2
CLRF f, a Clear f 1 0110 10la Efff ffff |2 2
COMF f,d,a |Complement f 1 o001 1ilda fFEFE fEFEE [£, N 1,2
CPFSEQ f,a Compare f with WREG, skip = 1T(2or3) | 0110 o0la EEEE f££f |Mone 4
CPFSGT f,a Compare f with WREG, skip = 1(2or3) | 0110 o0l0a& EEff fEfff [Mane 4
CPFSLT f,a Compare f with WREG, skip < 1(2or3) | 0110 o000a& EEff ffff |Mone 1, 2
DECF f, d,a |Decrement f 1 ooooD olda EEEE f££f (C,DC, Z, OV N (1,2, 3,4
DECFSZ f,d,a |Decrement f, Skip if 0 1{(2or3) | 0010 1lda fEFE fEff |Mone 1,2, 3, 4
DCFSMZ f, d, a [Decrement f, Skip if Not D T(2or3) | 0loo 1ilda EEEE ffff |(Mone 1. 2
INCF f, d,a |Increment f 1 0o0lo 1loda EEEE f££f (C,DC, Z, OV N (1,2, 3,4
INCFSZ f, d, a [Increment f, Skip if 0 T(2or3) | 0011 1ilda EEEE ffff |(Mone 4
INFSMNZ f, d, a [Increment f, Skip if Mot 0 T(2or3) | 0loo 1o0da EEEE ffff |(Mone 1. 2
IORWF f, d, a [Inclusive OR WREG with f 1 0001 ooda Efff £ffff |2, N 1,2
MOYWF f,d,a |Move f 1 [ooda £EfE ffff [Z, N 1
MOWVFEF fe. fg [Move fg (source) to 1st word 2 1100 f£fff EEEE ffff |(Mone

fg (destination) 2nd word 1111 ffff EEff fEff
MOWWIF f a Move WREG to 1 0110 11la fFEFE fEFEf |Mone
MULWF f,a Multiply WREG with f 1 aoo0 00la EEEE f££f |Mone
NEGF f, a Megate f 1 0110 1loa fEEE ffff (G, DC, 2 OV N (1,2
RLCF f, d, a |Rotate Left f through Carry 1 0011 olda fEEE fEEE (S, 2, N
RLMCF f, d, a |Rotate Left f (Mo Carry) 1 0100 0lda EEEE £FEEE |2, N 1.2
RRCF f, d, a |Rotate Right f through Carry 1 0011 ooda fEEE fEfE |[C, 5 N
RRMCF f, d, a |Rotate Right f (Mo Carry) 1 0100 oo0da EEEE ffff [Z, M
SETF f,a Setf 1 0110 1lo0a fEEE fEfEf |Mone
SUBFWEG f, d. a |Subtract f from WREG with 1 0101 0lda EELE ffff |G, DC, Z, OV, N |1, 2
borrow
SUBWF f, d, a |Subtract WREG from f 1 0101 1lda fEEE ffff (C,DC, 2, OV N
SUBWFG f, d. a |Subtract WREG from f with 1 0101 1oda EELE ffff |G, DC, Z, OV, N |1, 2
borrow

SWaAPF f,d,a |Swap nibbles in f 1 0011 1oda EEff fEfff [Mane 4
TSTFSZ f,a Testf, skip if O 1T(2or3) | 0110 o0lla EEEE f££f |Mone 1.2
XOBRWF f, d, a |Exclusive OR WREG with f 1 o001l 1oda fEEE fEEfE £ N

18FXX2 Sub-family

Instruction encoding 2/4

BIT-ORIENTED FILE REGISTER OPERATIONS

BCF f,b,a |Bit Clearf 1 1001 kkba ffff f£fff [None 1,2
BSF f,b,a |BitSetf 1 1000 hbba ffff f£fff [None 1,2
BTFSC f, b, a |Bit Testf, Skip if Clear 1(2or3) | 1011 bbba ffff ffff [None 3,4
BTFSS f, b, a |Bit Testf, Skip if Set 1(2o0r3) | 1010 bbba ffff ffff [None 3,4
BTG f.d, a [Bit Toggle f 1 0111 bbba ffff f££f |Mone 1,2

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTE, 1, 0), the value used will be that value

present on the pins themselves. For example, if the data latch is "1 for a pin configured as input and is driven low by an
external device, the data will be wnitten back with 2 0"

2: [If this instruction is executed on the TMRO register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is
executed as a NOE

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a WoE unless the
first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memary
locations have a valid instruction.

5: If the Table Write starts the write cycle to internal memory, the write will continue until terminated.

18FXX2 Sub-family

Instruction encoding 3/4

16-Bit Instruction Word

Mnemonic, Description Cycles Status MNotes
Operands MSh LSh Affected
CONTROL OPERATIONS
BC n Branch if Carry 1(2) 1110 0010 nnnn nnnn |[Mone
BM n Branch if Negative 1{2) 1110 0110 nnnn nnnn [None
BNC n Branch if Not Carry 1(2) 1110 0011 nnnn nnnn |[Mone
BMNM n Branch if Not Megative 1{2) 1110 0111 nnnon nonnn [None
BNOY n Branch if Mot Overflow 1(2) 1110 0101 nnnn @ nnonn [None
BNZ n Branch if Not Zero 2 1110 0001 nnnn nnnn |[Mone
BOV n Branch if Overflow 1(2) 1110 0100 nnnn nnon |None
BRA n Branch Unconditionally 1{2) 1101 (nnn nnnn nonnn |(None
BZ y Branch if Zero 1(2) 1110 0000 nnnn noon |[Mone
CALL n, Call subroutine1st word 2 1110 11lo= kkkk kkkk |MNone
2nd word 1111 kkkk kkkk kkkk |
CLRWDT — Clear Watchdog Timer 1 o000 0000 oooo o100 |TO, P
DAW — Decimal ,E'ldjust WREG 1 ooo0o 0000 oooon 0111 |C
GOTO n (50 to address1st word 2 1110 1111 kkkk kkkk |Mone
2nd word 1111 kkkk kkkk kkkk
NOP — No Cperation 1 pooo 0000 0000 0000 |None
NOP — Mo Cperation 1 1111 oooc xxxx xoooc |None
FPOP — Pop top of return stack (TOS) 1 o000 0000 0000 0110 |Mone
PUSH — Push top of return stack (TOS) 1 pooo Qo000 0000 0101 |MNone
RCALL n Relative Call 2 1101 1nmn nnnn o nnnn |[Mone
RESET Software device RESET 1 oooo 0000 1111 1111 |All
RETFIE 5 Return from interrupt enable 2 o000 0000 000l ooos |GIENGIEH,
PEIE/GIEL
RETLW k Return with literal in WREG 2 0000 1100 kkkk kkkk [None
RETURN = Return from Subroutine 2 pooo 0000 0001 00la |None
SLEEP — Go into Standby mode 1 oooo 0000 oooo ooll |[TO, PD

18FXX2 Sub-family

Instruction encoding 4/4

Mnemonic, o 16-Bit Instruction Word Status
0 ds Description Affected Notes
peran MShb LSh
LITERAL OPERATIONS
ADDLW k Add literal and WREG 1 o000 1111 kkkk kkkk |C,DC.Z OV, N
AMNDLW k AND literal with WREG 1 o000 1011 kkkk kkkk |Z, N
I[ORLW k Inclusive OR literal with WREG 1 oooo 1001 kkkk kkkk |Z, N
LFSR fk Move literal (12-bit) 2nd word 2 1110 1110 OQO0ff kkkk |Mone
to FSRx 1st word 1111 0000 kkkk kkkk
MOVLEB k Move literal to BSR<3:0> 1 0000 0001 0000 kkkk |Mone
MOVLW k Move literal to WREG 1 0000 1110 kkkk kkkk |Mone
MULLW k Multiply literal with WREG 1 o000 1101 kkkk kkkk |Mone
RETLW k Return with literal in WREG 2 0000 1100 kkkk kkkk |Mone
SUBLW k Subtract WREG from literal 1 o000 1000 kkkk kkkk |C,DC . Z OV N
XORLW k Exclusive OR literal with WREG 1 o000 1010 kkkk kkkk |Z N
DATA MEMORY «— PROGRAM MEMORY OPERATIONS
TELRD* Table Read 2 0o00 0000 0000 1000 |Mone
TBELRD™+ Table Read with post-increment 0000 0000 0000 1001 [Mone
TBLRD*- Table Read with post-decrement 0000 0000 0000 1010 [Mone
TBELRD+" Table Read with pre-increment 0000 0000 0000 1011 [(Mone
TBLWT* Table Write 2(5) 0000 0000 0000 1100 |Mone
TBLWT*+ Table Write with post-increment 0o00 0000 0000 1101 |[MNone
TBLWT™- Table Write with post-decrement 0000 0000 0000 1110 [(Mone
TBLWT+* Table Write with pre-increment 0000 0000 0000 1111 (Mone

@ Dr. Gheith Abandah

[]
18FXX2 Sub-family
BESR=3:0> Data Memaory Map
Q0N
= 0O oh Access RAK T ER
- Eank O T — EF‘H_ — | osan
FFkh OFFh
I Ooh 100h
L = Eank 1 =R
FFh 1FFh
—_ oh 200
oolo Bank 2 SPR
FFh 2FFh
Z0h
Acocess Bank
0O
Scocess RA low
ool e EARA b | h
= U RAR high | 30
Bank 3 b=, Unused by, S[EFE.E:I 'g
=1110 to e Read ‘00 FFh
- Bamnk 14
Whem a= 04,
the BSR is ignored and the
Aocess Bank is used.
The first 128 bytes are Ganaral
Furpose FLAM (from Bank O}
The second 125 byltes ars
Special Fumction FRegist=rs
EFFh (from Bank 15).
FO0k
=1111 namn Unused F7Fh
— Bank 15 T — —_= — 7| e=on
FFh SR FFFh
Wrhe=na =1,
the BSR is used to specify the
RAM location that the

K imstruction uses. /

18FXX2 Sub-family

Data Memory Map
e 12-bit address, up to 4096 bytes

* Banking
e Up to 16 banks with each bank having 256 locations

e Bank selection is done using BSR<3:0>. BSR can be loaded
directly using MOVLB instruction

e SFRs are stored in the upper 128 bytes of Bank15

e Access RAM

e Defined by virtually merging the lower 128 bytes of BankO with
the upper 128 bytes (SFR) of Bank15

e Memory access is directed to this bank if the a operand in the
instruction is setto O

e This arrangement saves software overheads (mapped access of
SFRs in Bank15 and GPRs in BankO)

18FXX2 Sub-family

Data Memory Map

Address MName Address MName Address Name Address Name
FFFh TOSU FDFh INDFE2E) FBFh CCPR1H FoFh IPRA
FFEh TOSH FDEh POSTINCG2E3) FBEh CCPR1L FoOEh PIRA
FFDh TOSL FODOh | POSTDEC2 FEDHh CCP1COM FoDh PIE1
FFCh STKPTR FOCh PREINC2{3) FECh CCPR2H FoCh —
FFBh PCLATL FDBh PLUSW22] FBEh CCPR2L FoBh —
FFAah PCLATH FDAR FSR2H FBAR CCPZ2COM Fosh —
FFSh PCL FDSh FSRZL FESh — Fooh —
FF&h TELPTRU FDah STATUS FESh — Fosh —
FF7h TELPTRH FD7h TMROH FBETh — Fovh —
FFEh TEBLPTRL FD&h THMROL FBESh — Fosh TRISER
FF5h TABLAT FD5Sh TOCOM FESh — Fo5h TRISDWM
FF4h PRODH FD4h — FB4h — Fodh TRISC
FF2h PRODL FD2h OSCCOM FBE3h TMR2H Fo3h TRISE
FF2h INTCOM FD2Zh LvDCOM FEZh TMR3L FozZh TRISA
FF1h INTCOMNZ FD1h WDOTCOM FE1h TICOM Fo1h —
FFOh INTCOMNS3 FDOh RCOM FBEOh — Fooh —
FEFh INDFEO FCFh TMR1H FAFh SPBRG FaFh —
FEEhH POSTINCDOE! FCER TMR1L FAER RCREG FEEh —
FEDh | PosTDECOE! FCDh T1COM FAaDh THXREG FE0h LAaTE
FEChH PREIMCOE) FCCh TMRZ FACH THSTA FaCh LaTDi2)
FEBh PLUSW O FCBh PRZ2 FABR RCSTA FaBh LATC
FEAR FSROH FCAh TZCOMN FaAah — FaAh LATE
FESh FSROL FCoh SSPBUF FASh EEADR Faoh LATA
FE&2h WREG FCah SsSPADD FAagh EEDATA Fash —
FETh INDF 113 FCTh SSPSTAT FATH EECONZ Favh —
FEG&h POSTING 1] FCEh SSPCONA FAGH EECON Fash —
FESh | POosSTDECH3) FCSh SSPCONZ FASh — F&5h —
FE4h PREIMC112) FC4h ADRESH FAdh — Fa4h PORTER)
FE2h PLUSW 120 FC3h ADRESL FA3h — F&3h PORTD®
FEZh FSR1H FC2h ADCOND FAZh IPRZ F&2h PORTC
FE1h FSR1L FC1h ADCONA FAa1h PIRZ FS1h PORTE

K FEORn BSR FCOn — FAldn PIEZ Fa0mn PORTA

18FXX2 Sub-family

Direct Addressing
BSR<3:0> 7 From Opcodel) 0
. y AN y J
Bank Select(?) L Location Select?®)
=
00h 01h
. |000h 100h
Data
Memory(!)
OFFh 1FFh
Bank 0 Bank 1

0Eh OFh
EOOh | FOOh
EFFh | FFFh

Bank 14 Bank 15

18FXX2 Sub-family

Virtual Registers Used in Indirect Addressing
* Registers
® FSRnH::FSRnL (12 bits)
e FSRs can be loaded directly using LFSR instruction
e Accessed by INDFn, POSTINCn, POSTDECnh, PREINCn and PLUSWn
e All these are not physical registers

‘Virtual’ register addressed | Action following instruction invoking FSR

n=0,1o0r2

INDFn No change to FSRn

POSTINCn The FSR is automatically incremented following access

POSTDECn The FSR is automatically decremented following access

PREINCn The FSR is automatically incremented preceding access

PLUSWn The value in WREG is added to FSRn, to form indirect
address. Neither FSR nor WREG are changed

18FXX2 Sub-family

Virtual Registers Used in Indirect Addressing

Indirect Addressing

Oh
{ll FSR Register 0 RAM
\ y / Instruction
Location Select Executed
Opcode Address
| \ FFFh

BSR<3.0>{ /12 12

Instruction
Fetched

Opcode File FSR

@

18FXX2 Sub-family

| PC<20:0> [
Program Memory R =
Stack Level 1
21-bit address bus. Up to 2 MB i
Byte-addressable, little endian RESET Veclor ___10000h T
High Priority Interrupt Vector | 0D08hH
Reset VeCtOr OXOOOO Low Prority Interrupt Yector |0018h
Priority interrupts 0x0008 and P rogram Memory
0x0018 1000
Program counter g
e 21 bits 5
.. .. g
e PCU::PCH::PCL . 4
e Address the bytes
e |SBis fixed to zero and it increments
by two
1FFFFFh
2000000 —

o Stack
e 31-level stack

18FXX2 Sub-family

Program Memory

e Stack pointer is implemented and it is readable and writable
(STKPTR register)

e Top of stack is readable and writeable TOSU::TOSH::TOSL
e Allows the implementation of software stack

e Fast Register Stack
Used to store the WREG, STATUS, BSR registers on interrupts

Pushed values are reloaded back if the Fast RETURN instruction
(RETFIE s) is used at the end of the interrupt routine

This feature is available for subroutines if the Fast Call and Return
instructions are used (CALL n,s, Return s)

@

Hardware Multiplier

An 8 x 8 hardware multiplier is included in the ALU of the PIC18FXX2

devices

By making the multiply a hardware operation, it completes in a single
instruction cycle.

This is an unsigned multiply that gives a 16-bit result stored into the 16-bit

product register pair PRODH:PRODL

Signed and 16-bit multiplication can be programmed in software

L]
71 I
v
’— ! MOVF ARGl, W
PRODH | PRODL HULEE ARGZ ; ARiio;Hﬁifmf
5 i '
8 x 8 Multiply
R
WREG r-'::jz?f:m
J

e
Interrupts

* The PIC18FXX2 devices have multiple interrupt sources

* 10 registers are used to control interrupts
RCON, INTCON, INTCON2, INTCON3, PIR1, PIR2, PIE], PIE2,
IPR1, IPR2

* Interrupt priority feature using the IPEN bit RCON<7>

e |[PEN =0 - Priority disabled and enabling interrupts is done
using GIE and PEIE bits

e |PEN = 1 - Priority enabled
High priority interrupts can interrupt low priority interrupts
GIEH bit enable high priority interrupts (interrupt vector 0x0008)
GIEL bit enable low priority interrupts (interrupt vector 0x0018)

o All interrupt sources except INTO have priority bit (IPR1 and IPR2)

@

Interrupts

TMROIF 3
TMROIE —
TMROIP —
RBIF
RBIE
RBIP
INTOIF —
INTOIE
INT1IF —
INT1IE —_)—
Peripheral Interrupt Flag bit INT1IP —
Peripheral Interrupt Enable bit — INT2IF —
Perpheral Intemmupt Prionity bit — :H%:g -
TMRI1IF —F\
TMR1IE —
T™RIP L/ = Pe—d
B). l
OOXIP — GIEL/PEIE
O IPEN j
Additional Perpheral Interrupts
THigh Priority Interrupt Generation O
lLow Priority Interrupt Generation
Peripheral Interrupt Flag bit —
Peripheral Interrupt Enable bit 3N
Peripheral Interrupt Prionty bit ——d___/ = g
I
TMROIF
| TMROIE
TMROIP
TMR1IF —0—
TMRIIE) I REBIF
TMRIIP —O__/ REIE —
I RBIP—
)OOO(IE ._D_)
XXXXIE —— - — = INT1IF —
HAAX| P e INT1IE —
INT1IP—
O - . INT2IF —
Additional Peripheral Interrupts INTIE]
O NT2P—

Wake-up f in SLEEP mode

GIEH/GIE

Interrupt to CPU
Vector to Location
0018h

. GIEL/PEIE F}

GIE/GIEH

Summary

The 18 Series microcontrollers represent a very clear step
forward in the PIC design strategy. The CPU and memory
structure are radically redeveloped, while many peripherals
are retained.

The instruction set is increased to 75 distinct instructions, with
big new capability in arithmetic, program branching, table
access and memory usage.

Data memory is structured to give a much greater RAM
capacity and a separate grouping of Special Function Registers.

Program memory has greatly increased capacity, with larger
address bus, and the 16-bit instructions are now split into 2
bytes for storage. The Stack is deeper and more flexible.

	Building Assembler Programs
	Outline
	Building Structured Programs
	Building Structured Programs
	Building Structured Programs
	Conditional Branching
	Conditional Branching
	Conditional Branching
	Conditional Branching�Example 1
	Conditional Branching
	Conditional Branching
	Conditional Branching�Example 2
	Subroutines
	Subroutines
	Subroutines
	Subroutines
	Subroutines
	Subroutines - Example
	Example - Continued
	Generating Time Delays
	Generating Time Delays
	Generating Time Delays
	Generating Time Delays
	Slide Number 24
	Working with Data
	Working with Data
	Working with Data
	Working with Data
	Working with Data
	Summary
	Working with Time:�Interrupts, Counters, and Timers
	Outline
	Introduction
	Interrupts
	Interrupts vs. Polling
	General Hardware Structure for Interrupts
	The 16F84A Interrupt Structure
	The 16F84A Interrupt Structure
	The 16F84A Interrupt Structure
	The 16F84A Interrupt Structure
	The 16F84A Interrupt Structure
	The 16F84A Interrupt Structure
	The 16F84A Interrupt Structure
	The 16F84A Interrupt Structure
	Context Saving
	The 16F84A Interrupt Structure
	Counters and Timers
	Counters and Timers
	The 16F84A Timer 0 Module
	The 16F84A Timer 0 Module
	The 16F84A Timer 0 Module
	The 16F84A Timer 0 Module
	The 16F84A Timer 0 Module
	Watchdog Timer
	Sleep Mode
	Summary
	Starting with Serial
	Outline
	Introduction
	Introduction
	Serial Communication
	Serial Communication
	Serial Communication
	Synchronous Serial Communication
	Synchronous Serial Communication
	Asynchronous Serial Communication
	Asynchronous Serial Communication
	Asynchronous Serial Communication
	Physical Limitations
	Physical Limitations
	Physical Limitations
	Physical Limitations
	Overview of the PIC 16 Series
	Slide Number 18
	Slide Number 19
	Slide Number 20
	The 16F87xA USART
	The 16F87xA USART
	The 16F87xA USART
	The 16F87xA USART
	The 16F87xA USART
	The 16F87xA USART
	The 16F87xA USART
	The 16F87xA USART
	The 16F87xA USART
	The 16F87xA USART
	The 16F87xA USART
	The 16F87xA USART
	Example 1
	Example
	Example
	Summary
	Data Acquisition and Manipulation
	Outline
	Analog and Digital Quantities
	Analog and Digital Quantities
	The Analog to Digital Converter
	Features of Analog to Digital Converter
	Features of Analog to Digital Converter
	Features of Analog to Digital Converter
	Features of Analog to Digital Converter
	Features of Analog to Digital Converter
	The Analog to Digital Converter
	The Data Acquisition System
	The Data Acquisition System
	The Data Acquisition System
	The Data Acquisition System
	The Data Acquisition System
	Data Acquisition in Microcontroller Environment
	The PIC 16F87xA ADC Module
	The PIC 16F87xA ADC Module
	The PIC 16F87xA ADC Module
	The PIC 16F87xA ADC Module
	The PIC 16F87xA ADC Module
	The PIC 16F87xA ADC Module
	The PIC 16F87xA ADC Module
	The PIC 16F87xA ADC Module
	The PIC 16F87xA ADC Module
	The PIC 16F87xA ADC Module
	The PIC 16F87xA ADC Module
	The PIC 16F87xA ADC Module
	The PIC 16F87xA ADC Module
	The PIC 16F87xA ADC Module
	The PIC 16F87xA ADC Module
	The PIC 16F87xA ADC Module
	The PIC 16F87xA ADC Module
	Example
	Example
	Summary
	The Human and Physical Interface
	Outline
	Introduction
	Introduction
	Introduction
	Moving From Switches to Keypads
	Moving From Switches to Keypads
	Moving From Switches to Keypads
	Moving From Switches to Keypads
	Moving From Switches to Keypads
	Keypad Interfacing Example
	Keypad Interfacing Example
	Keypad Interfacing Example
	Keypad Interfacing Example
	Keypad Interfacing Example
	LED Displays
	Seven Segment Display
	Seven Segment Display
	Seven Segment Display
	Seven Segment Display
	Seven Segment Display Example
	Seven Segment Display Example
	Seven Segment Display Example
	Seven Segment Display Example
	Seven Segment Display Example
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Summary
	Taking Timing Further
	Outline
	Introduction
	Review of Timer 0 Module
	More Timer Modules
	Timer 1 Module
	Timer 1 Module
	Timer 1 Module
	Timer 2 Module
	Timer 2 Module
	Timer 2 Module
	Timer 2 Module
	Capture/Compare/PWM Modules
	Capture/Compare/PWM Modules
	Capture/Compare/PWM Modules
	Capture/Compare/PWM Modules
	Capture/Compare/PWM Modules
	Capture/Compare/PWM Modules
	Capture/Compare/PWM Modules
	Capture/Compare/PWM Modules
	Capture/Compare/PWM Modules
	PWM and Digital To Analog Conversion
	PWM and Digital To Analog Conversion
	PWM and Digital To Analog Conversion
	PWM and Digital To Analog Conversion
	Frequency Measurement
	Example 1
	Example 1
	Example 1
	Example 1
	Example 2
	Example 2
	Example 3
	Example 3
	Example 3
	Example 3
	Example 3
	Summary
	Smarter systems and �the PIC® 18FXX2
	Outline
	PIC Families
	The PIC 18 Series
	The PIC 18 Series
	The PIC 18 Series
	18FXX2 Sub-Family�Pinout
	18FXX2 Sub-family
	18FXX2 Sub-family
	18FXX2 Sub-family
	18FXX2 Sub-family
	18FXX2 Sub-family
	18FXX2 Sub-family
	18FXX2 Sub-family
	18FXX2 Sub-family
	18FXX2 Sub-family
	Instruction encoding 1/4
	Instruction encoding 2/4
	Instruction encoding 3/4
	Instruction encoding 4/4
	18FXX2 Sub-family
	18FXX2 Sub-family
	18FXX2 Sub-family
	18FXX2 Sub-family
	18FXX2 Sub-family
	18FXX2 Sub-family
	18FXX2 Sub-family
	18FXX2 Sub-family
	Hardware Multiplier
	Interrupts
	Interrupts
	Summary

