The University of Jordan

School of Engineering
Mechanical Engineering Department
Engineering Drawing \& Descriptive Geometry (0904131) Spring 2020/2021

Practice to AutoCAD

2D Drawing, 3D Modeling

Eng. Salam Al-Majali

Introduction to 2D Drawing in AutoCAD ว ๑๐

1. Introduction to the software worksheet.
2. Drawing Limits: Metric and Imperial.
3. Zoom ${ }^{Q}$ and Pan $\sqrt{\text { Ify }}$.
4. Snap (F9) \because and Grid (F7)
5. Line Line, Polyline Pobline and Spline $\stackrel{-0}{-\infty}$ Commands: Ortho. (F8) Absolute, Relative, and Polar Coordinates.
6. Erase $-\mathbb{L}$ and Move ${ }^{+{ }^{+}+\boldsymbol{+}}$ Commands.

Absolute Coordinates

Ortho. Mode

Relative Coordinates

Polar Coordinates

Draw the following exercises. Dimensions are in inches.

Ex. 1

Ex. 2

Ex. 3

Draw the following exercises. Dimensions are in millimeters.

Ex. 4

Start

Ex. 5

Ex. 6

Circles

Circle, Radius

Circle, Diameter

3-Point

Tan,Tan, Radius

Tan,Tan, Tan

Object Snap

$\mathbf{F}(3), \square$
วคб

1. Using the absolute coordinates, draw a 4 " square with lower left corner at (1.5, 2.5).
2. Draw a 1 " radius circle with a center at $(3.5,4.5)$.
3. Draw four circles centered at $(2,3),(5,3),(5,6)$ and $(2,6)$ with 0.5 radius.
4. Draw a point at (@6,4.5).
5. Use Object Snap to draw line segments through 18 Points using the following modes:

1	Center	10	Tangent
2	Quadrant	11	Midpoint between Quadrant and Center
3	Midpoint	12	Intersection
4	End	13	Apparent Intersection of Lines (1-2) and (6-7)
5	End	14	Parallel to line $(9-10)$, distance $=2.5$
6	Midpoint	15	Node $(0.5,0.5)$
7	Tangent	16	From the upper right corner at $(0.25,-0.5)$
8	Center	17	Extension of arc by (0.25)
9	Perpendicular	18	Near any point on top line

Modify Commands

Basic Modify Commands: ${ }^{\circ}{ }^{7}$ Copy, $\|^{4}$ Mirror, ${ }^{\square}$ Scale, $\circlearrowright_{\text {Rotate, }} \Omega_{\Omega}$ Offset, ${ }^{-\cdots}$ Trim,
 Divide, 㬂Properties, and Match Properties.

Origin

Ex. 1

Ex. 2

Ex. 3

Ex. 4

Ex. 5

Ex. 6

Ex. 7

Ex. 8

Ex. 9

Ex. 10

Ex. 11

Ex. 12

Ex. 13

Ex. 14

Rectangle and Polygon Commands

วஓே

1. Rectangle

2. Polygons:

a. Center, Radius: Inscribed and circumscribed about the circle.
b. Edge.

Ex. 1

Ex. 2

Arc Commands

(a)

(b)
(d)

(c)

(e)

(f)

Ex. 1

Ex. 2: Clamp of Laundry Machine

Ellipse Commands

Ellipse (Center, Radius)

Ellipse (Axis, End)

Elliptical Arc

Ex. 1: Coffee Pot

Ellipse
Major R30 Minor 20

Ellipse Major R45, Minor R35

Ex. 2: Radar Station

Ex. 3: Toy Aeroplane

Ex. 5

Array

Associative and Explode

$\circ_{0} \circ$ Associative a
วคб

\square \square
\square

\square
\square

\square

Rectangular Array

Polar Array

Path Array

Draw the following patterns in exercise from (1) to (8) using Polar Array Command.


```
Ex. 1
```


Ex. 2

Join, Region, Boundary, Hatch, and Area
 วஓも

Case A:

1. Use the Polyline command to draw the outline of the given layout.
2. Use the Offset command to draw the inner wall. (Offset Distance = 3).
3. Hatch the area as shown in the Figure. (Type: ANSI31, Scale: 2).
4. Find the Area and the Perimeter of the hatched zone.

Area =
Perimeter $=$
5. Use the Text command to insert the Area and the Perimeter values on the screen.
6. Put all Dimensions on the Figure.

Case B:

1. Use the Line command to draw the outlines of the given layout.
2. Use Join or Boundary commands to turn the outlines into one.
3. Use the Offset command for the inner wall. (Offset Distance $=3$).
4. Use (Add and Subtract Area) command to find the Area of the inner wall.

> Add Area =
> Subtract Area =
5. Use the Text command to insert the Area and the Perimeter values on the screen.
6. Put all dimensions on the Figure.

Ex. 1

Ex. 2

Block

1. Draw the following "Door", create a block, and name it "Door".

2. Insert the "Door" block in the proper places as shown in the given layout. Scale: 10:1

Texts, Dimensions and Leaders

-

Dimensions

Leaders

Dimensioning Rules

- วつб

A. Dimension Placement

- Place dimensions on the most descriptive views.
- Take dimensions from visible lines not from hidden lines.
- Organize and align dimensions for ease of reading.
- The dimensions are normally positioned to maintain a minimum of $3 / 8$ " $(9.52 \mathrm{~mm})$ open space around the object.
- Do not repeat dimensions.
- Dimensions should not cross other lines (unless necessary).
- Extension lines may cross other extension lines or object lines if necessary.
- Arrowheads are long and narrow (3 to 1 ratio).
- Do not place dimensions within views (unless necessary).
- Give an overall dimension and omit one of the chain dimensions.
- Shorter dimensions are placed inside longer ones.
- Angles may be dimensioned either by coordinates or angular measurements in degrees.
- Place angular dimensions outside the angle.
- Dimension cylinders in their rectangualr views with diameter.

B. Dimensioning for Holes

- Dimension holes in the circular view.

C. Dimensioning for Fillets, Rounds, and Arcs

- Rounds are dimensioned either by a leader pointing toward the center of the arc or the arrow may be placed inside (if space permits).

- A very slightly rounded corners may be denoted by: Break Corner.
- Fillets (inside rounded corners) are dimensioned by the same rules as rounds.
- If all fillets and rounds haveequal radii, the note "All Fillets and Rounds 1.0R" may be used instead of dimensioning each sperately.
- Arcs are dimensioned with a radius. Small arcs are dimensioned as they were fillets and rounds.

Layers

ว6

1. Create six layers as indicated in the table below with different colors.
2. Put all dimensions.
3. Find the area of the hatched zone and insert its value as a text on the screen.

Layer	Name	Line Type	Line Weight
1	Outlines	Continuous	0.50
2	Centerline	Center 2	0.35
3	Hatch Line	Continuous	0.30
4	Dimensions	Continuous	0.30
5	Text	Continuous	0.50
Note: You can give any name for the layers.			

Ex. 1: Hook

Ex. 2

Layout Plot and Publish

วっб

In reference to the previous exercise (Ex. 1); Hook,

1. Create a new Page Setup and name it "Hook".
2. Change the following settings:
a. Printer: Your current Windows system printer or choose DWF to PDF.pc3.
b. Paper Size: ISO A3 $(420 \times 297 \mathrm{~mm})$.
c. Plot area: Window or Layout.
d. \quad Plot scale $=1: 1$.
e. Orientation: Portrait.
3. Use the Plot command.
4. If the Plot command is not used, tab to "Layout" and repeat the above steps.
5. Use Viewport command and choose ($\mathbf{1}$ viewport) to draw the required view.
6. Use Publish command to create the layout as a Pdf file.

Engineering Applications

Past Exam (1)

1. Draw the following Figure using the appropriate layers.
2. Hatch the zone as shown in the Figure.
3. Find the area of the hatched zone.
4. Copy the Figure and make it as a block.
5. Put all dimensions on the original drawing.
6. Insert the block with a scale (2) and a rotational angle $\left(30^{\circ}\right)$.

Past Exam (2)

——つっб

1. Draw the following Figure using the appropriate layers.
2. Hatch the zone as shown in the Figure.
3. Find the area of the hatched zone.
4. Copy the Figure and make it as a block.
5. Put all dimensions on the original drawing.
6. Insert the block with a scale (0.5) and a rotational angle $\left(75^{\circ}\right)$.

Past Exam (3)

—.つるб

1. Draw the following Figure using the appropriate layers.
2. Hatch the zone as shown in the Figure.
3. Find the area of the hatched zone.
4. Copy the Figure and make it as a block.
5. Put all dimensions on the original drawing.
6. Insert the block with a scale (0.75) and a rotational angle $\left(30^{\circ}\right)$.

Past Exam (4)

1. Draw the following Figure using the appropriate layers.
2. Hatch the zone as shown in the Figure.
3. Find the area of the hatched zone.
4. Copy the Figure and make it as a block.
5. Put all dimensions on the original drawing.
6. Insert the block with a scale (0.5) and a rotational angle $\left(60^{\circ}\right)$.

Past Exam (5)

1. Draw the following sectional and frontal views using the appropriate layers. Start from point C and create the array items first.
2. Find the area of the hatched zone.
3. Copy the Figure and make it as a block.
4. Put all dimensions on the original drawing.
5. Insert the block with a scale (0.6) and a rotational angle $\left(80^{\circ}\right)$.

Note: Start by drawing the array pattern.

Past Exam (6)

1. Draw the following sectional and frontal views using the appropriate layers.
2. Hatch the zone as shown in the Figure.
3. Find the area of the hatched zone.
4. Copy the Figure and make it as a block.
5. Put all dimensions on the original drawing.
6. Insert the block with a scale (0.35) and a rotational angle (60°).

Solids and Universal Coordinates System

Using the solids in 3D Modeling worksheet to draw the following.

Basic Drawing of 3D Solids

Ex. 1

Ex. 3

$$
\text { Ex. } 4
$$

Ex. 5

Ex. 3

Ex. 4

Ex. 6

Ex. 7

Ex. 8

Solids with 3D Mirror $\%$, Fillet \triangle, Chamfer \triangle, and Slice is

Ex. 1

Ex. 2

Ex. 3

Ex. 4

Revolve, Sweep, and Loft Commands

Revolve

Sweep

Loft

Ex. 1

Ex. 2

Draw the following 3D solid, make a copy of the object then make a full sectional front view using the cutting plane $\mathbf{A - B}$.

Ex. 1

Ex. 2

Isometric Drawing

For the given front and side views, construct a 3D-Solid for each of the following exercises.

Ex. 1

Left Side

Front View

Ex. 2

Front View

Right Side

Ex. 3

Top View

Front View

Ex. 4

Front View

Right Side View

Past Exam (1)

Problem (1): Draw the following 3D solid

Use one layer for each of the following: (3D solid, Hatch line, Text, and Dimension lines).
a. Write your Name, Reg. No, and Department.
b. Make a slice to obtain the full front sectional view (on a copy of the Figure), keep and hatch the back.
c. Add all dimensions as shown in the Figure.

Past Exam (2)

Problem (1): Draw the following 3D solid

Use one layer for each of the following: (3D solid, Hatch line, Text, and Dimension lines).
a. Write your Name, Reg. No, and Department.
b. Make a slice to obtain the full front sectional view at $\mathbf{P Q}$ (on a copy of the Figure), keep and hatch the back.
c. Add all dimensions as shown in the Figure.

Past Exam (3)

Problem (1): Draw the following 3D solid

Use one layer for each of the following: (3D solid, Hatch line, Text, and Dimension lines).
a. Write your Name, Reg. No, and Department.
b. Make a slice to obtain the full front sectional view at $\mathbf{P Q}$ (on a copy of the Figure), keep and hatch the back.
c. Add all dimensions as shown in the Figure.

Past Exam (4)

Problem (1): Draw the following 3D solid

Use one layer for each of the following: (3D solid, Hatch line, Text, and Dimension lines).
a. Write your Name, Reg. No, and Department.
b. Make a slice to obtain the full front sectional view (on a copy of the Figure), keep and hatch the back.
c. Add all dimensions as shown in the Figure.

Past Exam (5)

Problem (1): Draw the following 3D solid

Use one layer for each of the following: (3D solid, Hatch line, Text, and Dimension lines).
a. Write your Name, Reg. No, and Department.
b. Make a slice to obtain the full front sectional view (on a copy of the Figure), keep and hatch the back.
c. Add all dimensions as shown in the Figure.

Past Exam (6)

For the given front and right views, construct a 3D-Solid.

