Select the correct answers from the choices below to convert the following C-language statement to RISC-V assembly. Assume that the data types of array "A" and array "B" are long long int. Also, assume that the starting address of array "A" is 0 and the starting address of array "B" is mapped to "x20". $$B[6] = -3 - A[4];$$ RISC-V Assembly Code; addi x6, x0 , 3 \$ Given the information of CPU_A and CPU_B when executing Program_X in the tables below, answer the following questions: | CPU _A Information | | | | | |------------------------------|---|---|---|---| | Instruction Type | Α | В | С | D | | IC _i | 3 | 2 | 4 | 1 | | CPIi | 3 | 3 | 1 | 3 | What is the number of CPU clock cycles for Program_X on CPU_A? | Wh | at is the number of CPU clock cycles for Program _X on CPUA? | |------------|--| | 0 | 10 | | \bigcirc | 7 | | \bigcirc | 20 | | \bigcirc | 25 | | O | 22 | | Pro | en that clock rate of CPUs is 2 GHz and the total instruction count of gram _X on CPU _B is 300, what is clock rate of CPU _A that will make CPU _A 21 times ter than CPUs when executing Program _X ? | | \circ | 30 GHz | | \circ | 1.27 GHz | | Ø | 1.1 GHz | | \bigcirc | No sufficient information | | 0 | 4.2 GHz |