
Object-Oriented Problem Solving

Course Outline

1Eng. Asma Abdel Karim
Computer Engineering Department

Course Goals

Upon completion of this course, you should be
able to:

• Implement object-oriented programs and
understand underlying principles such as object
composition, encapsulation, abstraction, reuse…

• Perform required analysis to solve a problem
using an object-oriented approach and
implement the most appropriate design for the
problem.

• To do that we will use Java.

2Eng. Asma Abdel Karim
Computer Engineering Department

Textbook

• Y. Daniel Liang, “Introduction to Java
Programming”, 10th edition, Prentice Hall.

• Horstmann & Cornell, “Core Java, Volume 1 –
Fundamentals”,Sun Microsystems Press.

• B. Eckel, “Thinking in Java”
http://mindview.net/Books/TIJ/

3Eng. Asma Abdel Karim
Computer Engineering Department

http://mindview.net/Books/TIJ/
http://mindview.net/Books/TIJ/
http://mindview.net/Books/TIJ/
http://mindview.net/Books/TIJ/
http://mindview.net/Books/TIJ/

Personnel

• Instructor: Eng. Asma Abdel Karim.

• Email: a.abdelkarim@ju.edu.jo

• Website: www.asmaabdelkarim.com

• Office hours:
– Sun, Tue: 10:30 - 11:30

– Wed: 12:00 – 1:00

– By appointment.

• Lectures: Sun, Tue, Thu: 12:30 – 1:30

Mon, Wed: 8:30 - 10:00

4Eng. Asma Abdel Karim
Computer Engineering Department

mailto:a.abdelkarim@ju.edu.jo
http://www.asmaabdelkarim.com/

Grading

• Assignments 10%

• Quizzes 10%

• Midterm Exam 20%

• Final Exam 25%

• Lab 35%

– In-lab 10%

– Mid Practical Exam 10%

– Final Practical Exam 15%

5Eng. Asma Abdel Karim
Computer Engineering Department

Academic Honesty

• You are allowed to discuss assignments with
other students in the class.

– Getting verbal advice/help from people who have
already taken the course is also fine.

• However, any sharing of code is not
acceptable.

– Under no circumstances may you hand in work
done with or by someone else under your own
name.

6Eng. Asma Abdel Karim
Computer Engineering Department

Course Outline

• Introduction
• Programming Fundamentals
• Methods
• Arrays
• Objects and Classes
• Inheritance and Polymorphism
• Abstract Classes and Interfaces
• Generics
• Exception Handling and Text I/O
• Introduction to JavaFX

7Eng. Asma Abdel Karim
Computer Engineering Department

Object-Oriented Problem Solving

Introduction
Based on Chapter 1 of “Introduction to Java Programming”

by Y. Daniel Liang.

1Eng. Asma Abdel Karim
Computer Engineering Department

Outline

• What is Programming (1.1)

• Programming Languages (1.3)

• Operating Systems (1.4)

• Procedural vs. object oriented programming.

• What is Java? (1.5)

• The Java Language Specification, API, JDK, and IDE (1.6)

• A simple Java program (1.7)

• Creating, Compiling, and Executing a Java Program.
(1.8)

• Programming Errors (1.10)

2Eng. Asma Abdel Karim
Computer Engineering Department

What is Programming?

• Programming means to create software.

– Software contains the instructions that tell a
computer what to do.

• Software developers create software with the
help of powerful tools called programming
languages.

3Eng. Asma Abdel Karim
Computer Engineering Department

Evolution of Programming Languages
Machine Language

• Computer’s native language.

• Differs among different types of computers.

• Set of built-in primitive instructions in the
form of binary code.

• For example to add two numbers, you might
have to write something like this:

– 1110110001100110

• Difficult to read and modify.

4Eng. Asma Abdel Karim
Computer Engineering Department

• Were created as an alternative to machine
languages.

• Uses short descriptive words.

• One-to-one correspondence between each assembly
instruction and machine instruction.

• An assembler is used to translate assembly-language
programs into machine code.

5Eng. Asma Abdel Karim
Computer Engineering Department

Evolution of Programming Languages
Assembly Language

• Platform independent.
– You can write a program in a high-level language and

run it on different types of machines.

• Easy to learn and use.

• Examples of high level languages:
– BASIC, C/C++, C#, COBOL, FORTRAN, Java, Python.

• An interpreter or a compiler is used to translate
the source code into machine code.
– What is the difference between interpreters and

compilers?

6Eng. Asma Abdel Karim
Computer Engineering Department

Evolution of Programming Languages
High-Level Language

• Interpreters read one statement from the source code,
translate it to machine code and execute it right away.

• Compilers translate the entire source code into a machine
code, and the machine file is then executed.

7Eng. Asma Abdel Karim
Computer Engineering Department

Evolution of Programming Languages
High-Level Language (Cont.)

Operating Systems

• The operating system is the most important program that runs
on the computer.

• Popular operating systems for general-purpose computers
include:

– Microsoft Windows, Mac OS, and Linux.

• Major tasks of an operating system:

– Controlling and monitoring system activities.

– Allocating and assigning system resources.

– Scheduling operations.

8Eng. Asma Abdel Karim
Computer Engineering Department

Procedural vs. Object Oriented
Programming

• Procedural programming consists of designing a
set of modules (functions or methods) to solve a
problem.

– Focuses on how to manipulate the data, then on what
data structures to use to make the manipulation
easier.

• Object oriented programming puts data first,
then look at algorithms that operate on the data.

– Focuses on objects and operations on objects.

9Eng. Asma Abdel Karim
Computer Engineering Department

What is Java?

• Was developed by a team led by James
Gosling at Sun Microsystems.

• Powerful and versatile programming language
for developing software running on:

– Mobile devices.

– Desktop computers.

– Servers.

10Eng. Asma Abdel Karim
Computer Engineering Department

The Java Language Specification

• Programming languages have strict rules of
usage.

• The Java Language Specification is a technical
definition of the Java programming language
syntax and semantic.

– https://docs.oracle.com/javase/specs/

11Eng. Asma Abdel Karim
Computer Engineering Department

Java API, JDK, and IDE

• The Application Program Interface (API):
– Also known as library.
– Contains predefined classes and interfaces for

developing Java programs.

• The Java Development Kit (JDK) consists of a set
of separate programs, each invoked from
command line, for developing and testing Java
programs.

• The Integrated Development Environment (IDE)
provides graphical user interface to edit, compile,
build, and debug programs.

12Eng. Asma Abdel Karim
Computer Engineering Department

Java Editions

• Java Standard Edition (Java SE) to develop client-
side standalone applications or applets.
– The foundation upon which all other Java technology

is based.

– There are many versions of Java SE. The latest is Java
SE 8.

• Java Enterprise Edition (Java EE) to develop
server-side applications.

• Java Micro Edition (Java ME) to develop
applications for mobile devices.

13Eng. Asma Abdel Karim
Computer Engineering Department

A Simple Java Program

14

• A Java program is executed from the main method in
the class.

• We will begin with a simple Java program that
displays the message Welcome to Java! on the
console.

• The word console is an old computer term that refers
to the text entry and display device of a computer.

– Console input means to receive input from the keyboard.

– Console output means to display output on the monitor

Eng. Asma Abdel Karim
Computer Engineering Department

A Simple Java Program

15

Class definition

Main method
definition

• Java source programs are case sensitive.

• Every Java program must have at least one class.

• Each class has a name. By convention, class names start with an uppercase
letter.

• The main method is the entry point where the program begins execution.

• A class may contain several methods. A method is a construct that
contains statements.

Eng. Asma Abdel Karim
Computer Engineering Department

A Simple Java Program (Cont.)

16

• A pair of curly braces in a program forms a block that groups the program’s
component.

• Every class has a class block that groups the data and methods of the
class.

• Every method has a method block that groups the statements in the
method.

Eng. Asma Abdel Karim
Computer Engineering Department

C
la

ss
 b

lo
ck

M
et

h
o

d

b
lo

ck

A Simple Java Program (Cont.)

17

• The System.out.println statement displays the string Welcome to Java on
the console.

• A String is a sequence of characters. Strings should be enclosed in double
quotation marks.

• Every statement in Java ends with a semicolon (;).

• public, class, static, and void are reserved words : have a specific meaning
to the compiler and cannot be used for other purposes. In the program.

Eng. Asma Abdel Karim
Computer Engineering Department

A Simple Java Program (Cont.)

18

• Comments are ignored by the compiler.

• Two types of comments:
– Line comments: preceded by two slashes (//).

– Block (or paragraph) comments: enclosed between (/*) and (*/)

Eng. Asma Abdel Karim
Computer Engineering Department

Comment

Java Special Characters

19Eng. Asma Abdel Karim
Computer Engineering Department

Displaying More Messages to the
Console

20

Displaying the Result of a
Mathematical Computation

21

22Eng. Asma Abdel Karim
Computer Engineering Department

Creating, Compiling, and Executing a Java Program
Welcome.java

Welcome.class

Creating, Compiling, and Executing a Java Program
(Cont.)

• Java source code is compiled into Java bytecode.

• Your Java code may use the code in the Java library.

• The JVM is an interpreter, which translates individual
instructions in the bytecode into the target machine
language code and executes it immediately.

23Eng. Asma Abdel Karim
Computer Engineering Department

Creating, Compiling, and Executing a Java Program
(Cont.)

• The bytecode is similar to machine instructions, but
is architecture neutral and can run on any platform
that has a Java Virtual Machine (JVM).

24Eng. Asma Abdel Karim
Computer Engineering Department

Creating, Compiling, and Executing a
Java Program (Cont.)

• When executing a Java program, the JVM first loads the
bytecode of the class to memory using a program
called the class loader.
– If your program uses other classes, the class loader

dynamically loads them just before they are needed.

• After a class is loaded, the JVM uses a program called
the bytecode verifier to check the validity of the
bytecode and to ensure that the bytecode does not
violate Java’s security restrictions.
– Java enforces strict security to make sure that Java class

files are not tampered with and do not harm your
computer.

25Eng. Asma Abdel Karim
Computer Engineering Department

Programming Errors

• Syntax errors.
– Detected by the compiler.
– Result from errors in code construction.

• Runtime errors.
– Cause a program to terminate abnormally.
– Occur while the program is running if the environment

detects an operation that is impossible to carry out.
– Examples include input errors and division by zero.

• Logic errors.
– Occur when a program does not perform the way it is

intended to.

26Eng. Asma Abdel Karim
Computer Engineering Department

Object-Oriented Problem Solving

Programming Fundamentals (Part I)
Based on sections from chapters 2, 3 & 4 of

“Introduction to Java Programming” by Y. Daniel Liang.

Eng. Asma Abdel Karim
Computer Engineering Department

Outline

• Identifiers (2.4)
• Variables (2.5)
• Assignment statement (2.6)
• Named Constants (2.7)
• Naming Conventions (2.8)
• Numeric Data Types and Operations (2.9)
• Numeric Literals (2.10)
• Evaluating Expressions and Operator Precedence (2.11)
• Augmented Assignment Operators (2.13)
• Increment and Decrement Operator (2.14)
• Numeric Type Conversion (2.15)
• Boolean Data Type (3.2)
• Character Data Type and Operations (4.3)
• The String Type (4.4)

Eng. Asma Abdel Karim
Computer Engineering Department

2

Identifiers
• Identifiers are the names of things that appear in the

program.
– Names of variables, constants, methods, classes,

packages…

• All identifiers must obey the following rules:
– An identifier is a sequence of characters that consists of

letters, digits, underscores (_), and dollar sign ($).
– Cannot start with a digit.
– Cannot be a reserved word.
– Cannot be true, false, or null.
– Can be of any length.

• Examples of legal identifiers: $2, area, Area, S_3.
• Examples of illegal identifiers: 2A, d+4, S#6.

Eng. Asma Abdel Karim
Computer Engineering Department

3

Variables

• Variables are used to represent values that may be changed in the
program.
– They are used to store values to be used later in the program.

• To use a variable, you declare it by telling the compiler its name as
well as what type of data it can store.

• The variable declaration tells the compiler to allocate appropriate
memory space for the variable based on its data type.
– The syntax for declaring a variable:
datatype variableName

• Examples of variable declarations:
– int count;
– double rate;
– char letter;
– boolean found;

Eng. Asma Abdel Karim
Computer Engineering Department

4

Variables (Cont.)

• Several variables can be declared together:

– int count, limit, numberOfStudents;

• When a variable is declared, the compiler
allocates memory space for the variable based
on its data type.

Eng. Asma Abdel Karim
Computer Engineering Department

5

Assignment Statement

• An assignment statement designates a value
for a variable.

• The equal sign (=) is used as the assignment
operator.

• Examples:

– x = 1;

– x = x+1;

– area = radius * radius * 3.14159;

6 Eng. Asma Abdel Karim

Computer Engineering Department

Assignment Statement (Cont.)

• Variables can be declared and initialized in one
step:
– int count = 0;

– char letter = ‘a’;

– boolean found = false;

– int i = 1, j = 2;

• int count = 0; is equivalent to the following two
statements:
– int count;

– count = 0;

Eng. Asma Abdel Karim
Computer Engineering Department

7

Assignment Statement (Cont.)

• An assignment statement can be used as an
expression in Java:
– System.out.println(x=1);

• A value can be assigned to multiple variables:
– i = j = k = 1;

• In an assignment statement the data type of
the variable on the left must be compatible
with the data type of the value on the right.
– Except if type casting is used.

Eng. Asma Abdel Karim
Computer Engineering Department

8

Named Constants

• A named constant is an identifier that
represents a permanent value.

• A constant must be declared and initialized in
the same statement.

• The syntax for declaring a constant:

– final datatype CONSTANT_NAME = value;

• Example:

– final double PI = 3.14159;

9 Eng. Asma Abdel Karim
Computer Engineering Department

Named Constants (Cont.)

• There are three benefits of using constants:

(1) You don’t have to repeatedly type the same
value if it is used multiple times.

(2) If you have to change the constant value
(e.g., from 3.14 to 3.14159 for PI), you need
to change it only in a single location in the
source code; and

(3) A descriptive name for a constant makes the
program easy to read.

10 Eng. Asma Abdel Karim
Computer Engineering Department

Naming Conventions
• Sticking with the Java naming conventions makes your programs

easy to read and avoids errors.
• Make sure that you choose descriptive names with straightforward

meanings for the variables, constants, classes, and methods in your
program.

• Use lowercase for variables and methods.
– E.g. radius, count.
– If a name consists of several words, concatenate them, make the first

word lowercase and capitalize the first letter of each subsequent
word.
• E.g. numberOfStudents.

• Capitalize the first letter of each word in a class name.
– E.g. ComputeAread, String.

• Capitalize every letter in a constant, and use underscores between
words.
– PI, MAX_VALUE.

11 Eng. Asma Abdel Karim
Computer Engineering Department

Numeric Data Types

• Java has six built-in numeric data types.

Eng. Asma Abdel Karim
Computer Engineering Department

12

In
te

ge
rs

Fl

o
at

in
g

P
o

in
t

N
u

m
b

e
rs

Numeric Operators

13 Eng. Asma Abdel Karim
Computer Engineering Department

Numeric Literals: Integrals

• A literal is a constant value that appears directly
in a program.
– int numberOfYears = 34;
– double weight = 0.305;

• An integer literal can be assigned to an integer
variable as long as it can fit into the variable.
– Otherwise a compile error occurs.
– E.g. byte b = 128; will cause a compilation error.

• To denote an integer literal of the long type,
append letter L or l to it.
– E.g. 2147483648L

14 Eng. Asma Abdel Karim
Computer Engineering Department

Numeric Literals: Floating Points

• Floating point literals are written with a
decimal point.

• By default, a floating point literal is treated as
a double type value.

– 5.0 is considered a double value.

• You can make a number a float by appending
the letter f or F.

– E.g. 100.2F

15 Eng. Asma Abdel Karim
Computer Engineering Department

Numeric Literals: Floating Points (Cont.)

• Double type values are more accurate than
the float type values.

– System.out.println(“1.0 / 3.0 is “ + 1.0 / 3.0);

Displays 1.0 / 3.0 is 0.3333333333333333

– System.out.println(“1.0 / 3.0 is “ + 1.0F / 3.0F);

Displays 1.0 / 3.0 is 0.33333334

16 Eng. Asma Abdel Karim
Computer Engineering Department

Evaluating Expressions and Operator
Precedence

17 Eng. Asma Abdel Karim
Computer Engineering Department

Augmented Assignment Operators

Eng. Asma Abdel Karim
Computer Engineering Department

18

Increment and Decrement Operators

Eng. Asma Abdel Karim
Computer Engineering Department

19

Numeric Type Conversions
• You can always assign a value to a numeric variable whose

type supports a larger range of values.
– You can assign a long value to a float variable.

• You cannot, however, assign a value to a variable of a type
with a smaller range unless you use type casting.

• Casting is an operation that converts a value of one data
type into a value of another data type.
– Widening a type is casting a type with a small range to a type

with a larger range.
• E.g. Integer to floating point: 3 * 4.5 is same as 3.0 * 4.5.

– Narrowing a type is casting a type with a large range to a type
with a smaller range.
• E.g. floating point to integer:
 System.out.println ((int)1.7);

• Java automatically widens a type, but you must narrow a
type explicitly.

Eng. Asma Abdel Karim
Computer Engineering Department

20

Numeric Type Conversions

Eng. Asma Abdel Karim
Computer Engineering Department

21

short byte int long

widening

narrowing

float double

boolean Data Type

• A boolean data type declares a variable with
the value true or false.

• Boolean expressions represent conditions that
are used to make decisions in the program.

22 Eng. Asma Abdel Karim
Computer Engineering Department

Comparison Operators

Eng. Asma Abdel Karim
Computer Engineering Department

23

• The result of a comparison is a boolean value: true or false.
• Note that the equality comparison operator is two equal

signs (==), not a single equal sign (=); this is the assignment
operator

The Character Data Type

• The character data type represents a single
character.

• A character literal is enclosed in single quotation
marks.

• Examples:

– char letter = 'A';

– char numChar = '4';

• Java uses Unicode which is designed as a 16-bit
character encoding.

Eng. Asma Abdel Karim
Computer Engineering Department

24

Unicode for Commonly Used
Characters

Eng. Asma Abdel Karim
Computer Engineering Department

25

Character Literals

26 Eng. Asma Abdel Karim
Computer Engineering Department

Casting between char and Numeric
Types

• A char can be cast into any numeric type, and
vice versa.

• When an integer is cast into a char, only its lower
16 bits of data are used; the other part is ignored.
– char ch = (char)0XAB0041;
– System.out.println(ch); // ch is character A

• When a floating-point value is cast into a char,
the floating-point value is first cast into an int,
which is then cast into a char.
– char ch = (char)65.25;
– System.out.println(ch); // ch is character A

Eng. Asma Abdel Karim
Computer Engineering Department

27

Casting between char and Numeric
Types (Cont.)

• When a char is cast into a numeric type, the character’s
Unicode is cast into the specified numeric type.
– int i = (int)'A';
– System.out.println(i); // i is 65

• Implicit casting can be used if the result of a casting fits
into the target variable. Otherwise, explicit casting
must be used.
– byte b = 'a';
– int i = 'a';

• Any positive integer between 0 and FFFF in
hexadecimal can be cast into a character implicitly. Any
number not in this range must be cast into a char
explicitly.

Eng. Asma Abdel Karim
Computer Engineering Department

28

The String Type

• A string is a sequence of characters.

• To represent a string of characters, use the
data type called String:
– E.g. String message = “Welcome to Java”;

• String is a predefined class in the Java library.

• The String type is not a primitive type. It is
known as a reference type.

• A string literal must be enclosed on quotation
marks (“ ”).

Eng. Asma Abdel Karim
Computer Engineering Department

29

The String Type (Cont.)

• The plus sign (+) is the concatenation operator if at least
one of the operands is a string.
– If one of the operands is a non string (e.g. a number), the non

string value is converted into a string and concatenated with the
string.

– Examples:
• String message = “Welcome ” + “to “ + ”Java!”;
 message becomes: Welcome to Java!
• String s = “Chapter” + 2;
 s becomes: Chapter2
• String appendix = “Appendix” + ‘B’;
 appendix becomes: AppendixB

• If neither of the operands is a string, the plus sign (+) is the
addition operator.

30 Eng. Asma Abdel Karim

Computer Engineering Department

Object-Oriented Problem Solving

Programming Fundamentals (Part II)
Based on sections from chapters 3 & 5 of “Introduction

to Java Programming” by Y. Daniel Liang.

Eng. Asma Abdel Karim
Computer Engineering Department

Outline

• Selections
– One-way if statements (3.3)
– Two-way if-else statements (3.4)
– Nested If and Multi-Way if-else Statements (3.5)
– Logical Operators (3.10)
– Switch statements (3.13)
– Conditional expressions (3.14)

• Loops
– While loops (5.2)
– The do-while loops (5.3)
– For loops (5.4)
– Nested Loops (5.6)
– Keywords break and continue (5.9)

2 Eng. Asma Abdel Karim

Computer Engineering Department

Selections

• The program can decide which statements to
execute based on a condition.

• Selection statements use conditions that are
Boolean expressions.

– A Boolean expression is an expression that
evaluates to a Boolean value: true or false.

3 Eng. Asma Abdel Karim
Computer Engineering Department

One-way If Statements

• An if statement is a construct that enables a program
to specify alternative paths of execution.

• A one-way if statement executes an action if an only if
the condition is true.
– If the condition is false, nothing
 is done.

• The syntax for a one-way
 if statement is:

if (boolean-expression){
 statement(s);
}

4 Eng. Asma Abdel Karim
Computer Engineering Department

One-way If Statements (Example)

5 Eng. Asma Abdel Karim
Computer Engineering Department

One-way If Statements (Cont.)

• The boolean expression is enclosed in
parentheses.

• The block braces can be omitted if they
enclose a single statement.

6 Eng. Asma Abdel Karim
Computer Engineering Department

Two-way If-else Statements

• A two-way if-else statement executes an
action if the condition is true and another
action if the condition is false.

• The syntax for a two-way if-else statement is:
 if (boolean-expression){

 statement(s)-for-the-true-case;

}

else{

 statement(s)-for-the-false-case;

}

7 Eng. Asma Abdel Karim

Computer Engineering Department

Two-way If-else Statements (Cont.)

8 Eng. Asma Abdel Karim
Computer Engineering Department

Two-way If-else Statements (Example)

9 Eng. Asma Abdel Karim
Computer Engineering Department

Nested If and Multi-Way if-else
Statements

• An if statement can be inside another if
statement to form a nested if statement.

• Example:
if (i > k){

 if (j > k)

 System.out.println(“i and j are greater than k”);

}

else

 System.out.println(“i is less than or equal to k”);

10 Eng. Asma Abdel Karim
Computer Engineering Department

Executed only
if i>k and j>k

Executed if i<=k

Nested If and Multi-Way if-else
Statements (Example)

11 Eng. Asma Abdel Karim
Computer Engineering Department

Nested If and Multi-Way if-else
Statements (Example)

12 Eng. Asma Abdel Karim
Computer Engineering Department

Note

• Check section 3.6 (Common Errors and
Pitfalls).

13

Logical Operators

• Logical operators can be used to create a
compound Boolean expression.

14 Eng. Asma Abdel Karim
Computer Engineering Department

Logical Operators (Cont.)

15 Eng. Asma Abdel Karim
Computer Engineering Department

Logical Operators (Cont.)

16 Eng. Asma Abdel Karim
Computer Engineering Department

switch Statements

• Nested if can be used to write code for
multiple conditions.

– However, it makes the program difficult to read.

• A switch statement simplifies coding for
multiple conditions.

• A switch statement executes statements based
on the value of a variable or an expression.

17 Eng. Asma Abdel Karim
Computer Engineering Department

Constant
expressions
of the same
type as the
value of
switch-
expression

switch Statements (Cont.)

• The syntax for the switch statement is:
 switch (switch-expression){
 case value1: statement(s)1;
 break;
 case value2: statement(s)2;
 break;
 …..
 case valueN: statement(s)N;
 break;
 default: statement(s)-for-default;
 }

18 Eng. Asma Abdel Karim
Computer Engineering Department

Must yield a value of char,
byte, short, int, or string

When the value in a case
statement matches the value
of the switch-expression,
statements starting from this
case are executed until either
a break statement or the end
of the switch statement is
reached

Statements of the default case are
executed when none of the specified
cases matches the switch-expression.

Conditional Expressions

• A conditional expression evaluates an
expression based on a condition.

• The syntax is:
– boolean-expression ? expression1 : expression2;

– The result of the conditional expression is
expression1 if boolean-expression is true,
otherwise the result is expression2.

• Example:
max = (num1 > num2) ? num1 : num2;

19 Eng. Asma Abdel Karim
Computer Engineering Department

Operators Precedence Revisited

20 Eng. Asma Abdel Karim
Computer Engineering Department

Loops

• A loop can be used to tell a program to
execute statements repeatedly.

• Three types of loop statements:

– While loops.

– Do-while loops.

– For loops.

21 Eng. Asma Abdel Karim
Computer Engineering Department

While Loops

• A while loop executes statements repeatedly
while the condition is true.

• The syntax for the while loop

 is:
 while (loop-continuation-condition){

 statement(s);

}

22 Eng. Asma Abdel Karim
Computer Engineering Department

Loop body

Evaluated each time to determine
whether to execute the loop body

While Loops (Cont.)

• A while loop that displays “Welcome to Java!” a
hundred times:

• Two types of loops:
– Counter-controlled loops

• A control variable is used to count the number of iterations.

– Sentinel-controlled loops
• A special input value signifies the end of the iterations.

23 Eng. Asma Abdel Karim
Computer Engineering Department

While Loops (Examples)

• Wrong implementation of a loop:

24 Eng. Asma Abdel Karim
Computer Engineering Department

The do-While Loops

• Same as the while loop except that it executes
the loop body first then checks the loop
continuation condition.

• The syntax for the do-while

 loop:

do {

 statement(s);

} while (loop-continuation-condition);

25 Eng. Asma Abdel Karim
Computer Engineering Department

The for Loop

• A for loop has a concise syntax for writing
loops.

• The syntax for the for loop is:

 for (initial-action; loop-continuation-condition;

 action-after-each-iteration){

 statement(s);

 }

26 Eng. Asma Abdel Karim
Computer Engineering Department

The for Loop (Cont.)

27 Eng. Asma Abdel Karim
Computer Engineering Department

The for Loop (Cont.)

• A for loop that displays “Welcome to Java!” a hundred times:
for (int i = 0; i < 100; i++){
 System.out.println(“Welcome to Java!”);
}

• The initial-condition in a for loop can be a list of zero or more
comma-separated variable declaration/assignment
statements:

 for (int i = 0, j = 0; (i + j < 10); i++, j++) {
 //Do something
 }

• The action-after-each-iteration in a for loop can be a list of
zero or more comma-separated statements:

 for (int i = 1; i < 100; System.out.println(i), i++);

28 Eng. Asma Abdel Karim
Computer Engineering Department

Infinite Loops

• Examples of infinite loops

29 Eng. Asma Abdel Karim
Computer Engineering Department

Common Errors

30 Eng. Asma Abdel Karim
Computer Engineering Department

Nested Loops

• Nested loops consist of an outer loop and one
or more inner loops.

• Each time, the outer loop is repeated, the
inner loops are reentered.

31 Eng. Asma Abdel Karim
Computer Engineering Department

Nested Loops (Example)

32 Eng. Asma Abdel Karim
Computer Engineering Department

Nested Loops (Example)

33 Eng. Asma Abdel Karim
Computer Engineering Department

Keywords break and continue

• The break and continue keywords provide
additional controls in a loop.

• The break keyword is used in a loop to
immediately terminate the loop.

• Example of using the break keyword:

 for (int n=0, sum=0; n<20; n++){

 sum += n;

 if (sum >= 100) break;

 }

34 Eng. Asma Abdel Karim
Computer Engineering Department

Keywords break and continue (Cont.)

• The continue keyword is used in a loop to end
the current iteration and program control goes
to the end of the loop body.

• Example of using the continue keyword:

 for (int n=0, sum=0; n<20; n++){

 if (n == 10 || n == 11) continue;

 sum += n;

 }

35 Eng. Asma Abdel Karim

Computer Engineering Department

Object-Oriented Problem Solving

Methods
Based on Chapter 6 of “Introduction to Java

Programming” by Y. Daniel Liang.

Eng. Asma Abdel Karim
Computer Engineering Department

Outline

• Introduction (6.1)

• Defining a method (6.2)

• Calling a method (6.3)

• A void Method Example (6.4)

• Passing Arguments by Values (6.5)

• Modularizing Code (6.6)

• Overloading methods (6.8)

• The scope of variables (6.9)

Eng. Asma Abdel Karim
Computer Engineering Department

2

Introduction

• A method is a collection of statements
grouped together to perform an operation.

• Methods can be used to define reusable code
and organize and simplify code.

Eng. Asma Abdel Karim
Computer Engineering Department

3

Example of a Reusable Code
int sum = 0;

for (int i = 1; i <= 10; i++)

 sum += i;

System.out.println(“Sum from 1 to 10 is “+ sum);

Eng. Asma Abdel Karim
Computer Engineering Department

int sum = 0;

for (int i = 20; i <= 37; i++)

 sum += i;

System.out.println(“Sum from 20 to 37 is “+ sum);

 int sum = 0;

for (int i = 35; i <= 49; i++)

 sum += i;

System.out.println(“Sum from 35 to 49 is “+ sum);

Compute the
sum from 1

to 10

Compute the
sum from 20

to 37

Compute the
sum from 35

to 49

4

Example of a Reusable Code (Cont.)

public static int sum (int i1, int i2){

 int result= 0;

 for (int i = i1; i <= i2; i++)

 result += i;

 return result;

}

Eng. Asma Abdel Karim
Computer Engineering Department

• It would be nice to write the common code once and
reuse it.

• This is achieved by:

• Defining a method that contains the common code.

• Reuse it by invoking it with different values.

public static void main (String [] args){

 System.out.println(“Sum from 1 to 10
is” + sum (1, 10));

 System.out.println(“Sum from 20 to 37
is” + sum (20, 37));

 System.out.println(“Sum from 35 to 49
is” + sum (35, 49));

}

 5

Defining a Method

• A method definition consists of:
– Return value type.

– Method name.

– Parameters.

– Body.

• The syntax for defining a method is:

 modifier returnValueType methodName (list of parameters){

 //method body

 }

Eng. Asma Abdel Karim
Computer Engineering Department

6

Defining a Method (Cont.)

• The returnValueType is the data type of the
value the method returns.

• Some methods perform desired operations
without returning a value.
– In this case, the returnValueType is the keyword

void.

• If a method returns a value, it is called a value-
returning method; otherwise it is called a void
method.

Eng. Asma Abdel Karim
Computer Engineering Department

7

Method Definition: An Example

Eng. Asma Abdel Karim
Computer Engineering Department

• In a method definition, you define what the
method is to do.

8

Calling a method
• Calling a method executes the code in the method.
• There are two ways to call a method, depending on

whether the method returns a value or not.
• If a method returns a value, a call to the method is usually

treated as a value.
– int larger = max(3, 4);
//calls max(3, 4) and assigns the result of the method to the
variable larger.
– System.out.println(max(3, 4));
//prints the return value of the method call max(3, 4).

• If a method returns void, a call to the method must be a
statement.
– For example, the method println returns void. The following call

is a statement:
– System.out.println("Welcome to Java!");

Eng. Asma Abdel Karim
Computer Engineering Department

9

Method Invocation: An Example

Eng. Asma Abdel Karim
Computer Engineering Department

• When a program calls a method, program control is transferred to

the called method.

• A called method returns control to the caller when:

• Either its return statement is executed, or

• Its method-ending closing brace is reached.

10

TestMax.java

Eng. Asma Abdel Karim
Computer Engineering Department

11

What happens when a method is invoked?

Eng. Asma Abdel Karim
Computer Engineering Department

• Each time a method is invoked, the system creates an

activation record.
• Activation record stores parameters and variables for the

method .

• Activation record is placed in an area of memory known
as the call stack, or simply the stack.

• When a method invokes another method, the caller’s
activation record is kept intact, and a new activation
record is created.

• When a method finishes its work and returns to its
caller, its activation record is removed from the stack.

• A call stack stores methods in last-in, first-out fashion.

12

What happens when a method is invoked?
(Example)

Eng. Asma Abdel Karim
Computer Engineering Department

13

A void Method Example

• A void method does not return a value.
 public static void printGrade(double score){
 if (score >= 90.0)
 System.out.println (‘A’);
 else if (score >= 80.0)
 System.out.println (‘B’);
 else if (score >= 70.0)
 System.out.println (‘C’);
 else if (score >= 60.0)
 System.out.println (‘D’);
 else
 System.out.println (‘F’);
 }

Eng. Asma Abdel Karim
Computer Engineering Department

Example of calling this method:
System.out.print (“The grade is ”);
printGrade(78.5);

14

Passing Arguments by Values

• When calling a method, you need to provide arguments,
which must match the parameters defined in the method
signature in:

– Order

– Number.

– Compatible type.

Eng. Asma Abdel Karim
Computer Engineering Department

15

public static void nPrintln (String message, int n){
 for (int i =0; i < n; i++)
 System.out.println(message);
}

nPrintln (“Hello”, 3);

nPrintln (3, “Hello”);

Passing Arguments by Values (Cont.)

• When you invoke a method with an argument,
the value of the argument is passed to the
parameter.

– This is referred to as pass-by-value.

• If a value of a variable is passed as an
argument to a parameter, the variable is not
affected, regardless of the changes made to
the parameter inside the method.

Eng. Asma Abdel Karim
Computer Engineering Department

16

Passing Arguments by Values (Example)

public class Increment{

 public static void main (String [] args){

 int x = 1;

 System.out.println(“Before the call, x is ”+ x);

 increment (x);

 System.out.println(“After the call, x is ”+ x);

 }

 public static void increment (int n){

 n++;

 System.out.println(“n inside the method is ” + n);

 }

}

Eng. Asma Abdel Karim
Computer Engineering Department

17

Passing Arguments by Values (Example Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

18

Value of x does not change

Modularizing Code

• Modularizing makes the code:

– Clear and easy to read.

• Isolates parts used to perform specific computations
from the rest of the code.

– Easy to maintain and debug.

• Narrows the scope of debugging.

– Reusable.

• Code can be reused by other programs.

Eng. Asma Abdel Karim
Computer Engineering Department

19

Overloading Methods

• Overloading methods enables you to define the
methods with the same name as long as their
signatures are different.

• Methods overloading is having two or more
methods that have the same name, but different
parameter lists within one class.

• The Java compiler determines which method to
use based on the method signature.
– It finds the most specific method for a method

invocation.

Eng. Asma Abdel Karim
Computer Engineering Department

20

Overloading Methods: An Example

public static int max (int num1, int num2){
 if (num1 > num2)
 return num1;
 else return num2;
}

public static double max (double num1, double num2){
 if (num1 > num2)
 return num1;
 else return num2;
}

public static double max (double num1, double num2,
double num3){
 return max (max(num1, num2), num3);
}

max(3.1,4.5,5.5)

max(3.0,4.5)

max(3,4)

max(2,2.5)

Eng. Asma Abdel Karim
Computer Engineering Department

21

The Scope of Variables

• The scope of a variable is the part of the program
where the variable can be referenced.

• A variable defined inside a method is referred to as a
local variable.
– The scope of a local variable starts from its declaration and

continues to the end of the block that contains the
variable.

– A local variable must be declared and assigned a value
before it can be used.

• A parameter is actually a local variable.
– The scope of a method parameter covers the entire

method.

Eng. Asma Abdel Karim
Computer Engineering Department

22

The Scope of Variables (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

A variable declared in the
initial-action part of a for-
loop header has its scope
in the entire loop.

A variable declared
inside a for-loop
body has its scope
limited in the loop
body from its
declaration to the
end of the block.

23

The Scope of Variables (Cont.)
• You can declare a local variable with the same name in

different blocks in a method.

• But you cannot declare a local variable twice in the same
block or in nested blocks.

Eng. Asma Abdel Karim
Computer Engineering Department

24

Object-Oriented Problem Solving

Arrays
Based on Chapters 7 & 8 of “Introduction to Java

Programming” by Y. Daniel Liang.

Eng. Asma Abdel Karim
Computer Engineering Department

Outline
• Introduction (7.1)
• Array Basics - Declaring Arrays (7.2.1)
• Array Basics - Creating Arrays (7.2.2)
• Array Basics - Array Size and Default Values (7.2.3)
• Array Basics – Accessing Array Elements (7.2.4)
• Array Basics - Array Initializers (7.2.5)
• Array Bascis - Processing Arrays (7.2.6)
• Array Basics - Foreach Loops (7.2.7)
• Copying Arrays (7.5)
• Passing Arrays to Methods (7.6)
• Returning an Array from a Method (7.7)
• Variable-Length Argument Lists (7.9)
• Command-Line Arguments (7.13)
• Two-Dimensional Arrays Basics (8.2)
• Processing Two-Dimensional Arrays (8.3)

 Eng. Asma Abdel Karim

Computer Engineering Department
2

Introduction

• An array is a data structure which stores a
fixed-size sequential collection of elements of
the same type.

• A single array variable can reference a large
collection of data.

Eng. Asma Abdel Karim
Computer Engineering Department

3

Array Basics
Declaring Arrays

• To use an array in a program, you must declare a
variable to reference the array and specify the
array’s elements type.

• The syntax for declaring an array variable is:

 elementType [] arrayRefVar;

• The elementType can be any data type.
– All elements in the array will have the same data type.

• Example:

 double [] myList;

Eng. Asma Abdel Karim
Computer Engineering Department

4

Array Basics
Declaring Arrays (Cont.)

• Unlike declarations for primitive data type
variables, the declaration of an array variable
does not allocate any space in memory for the
array.

– It creates only a storage location for the reference
to an array.

– If a variable does not contain a reference to an
array, the value of the variable is null.

Eng. Asma Abdel Karim
Computer Engineering Department

5

Array Basics
Creating Arrays

• An array is created using the new operator with
the following syntax:

 arrayRefVar = new elementType [arraySize];
 This statement does two things:

 It creates an array using new elementType
[arraySize]

 It assigns the reference of the newly created array
to the variable arrayRefVar.

• Example:
 double [] myList; //array declaration
 mylist = new double [10]; //array creation

Eng. Asma Abdel Karim
Computer Engineering Department

6

Array Basics
Creating Arrays (Cont.)

• Declaring an array variable, creating an array,
and assigning the reference of the array to the
variable can be combined in one statement as:

 elementType [] arrayRefVar = new elementType [arraySize];

• Example:
 double [] myList = new double [10];

– This statement declares an array variable, myList,
creates an array of ten elements of double type,
and assigns its reference to myList.

Eng. Asma Abdel Karim
Computer Engineering Department

7

Array Basics
Creating Arrays (Cont.)

• The syntax to assign values to array elements:
 arrayRefVar [index] = value;

• Example:
 double [] myList = new double [10];
 myList[0] = 5.6;
 myList[1] = 4.5;
 myList[2] = 3.3;
 .
 .
 myList[9] = 11123;

Eng. Asma Abdel Karim
Computer Engineering Department

8

Array Basics
Creating Arrays (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

9

• An array variable that appears to hold an array actually
contains a reference to that array.

• Strictly speaking, an array variable and an array are different,
but most of the time the distinction can be ignored.

Array Basics
Array Size and Default Values

• When space for an array is allocated, the array size
must be given, specifying the number of elements that
can be stored in it.

• The size of an array cannot be changed after the array
is created.

• Array size can be obtained using: arrayRefVar.length

• When an array is created, its elements are assigned
their default values:
– 0 for numeric primitive data types.

– \u0000 for char types.

– False for boolean types.

Eng. Asma Abdel Karim
Computer Engineering Department

10

Array Basics
Accessing Array Elements

• The array elements are accessed through the
index.

• Array indices are 0 based.

– They range from 0 to arrayRefVar.length-1.

• Each element in the array is represented using
the following syntax:

 arrayRefVar [index]

Eng. Asma Abdel Karim
Computer Engineering Department

11

Array Basics
Accessing Array Elements (Cont.)

• An indexed variable can be used in the same
way as a regular variable.

• Examples:

 myList[2] = myList[0] + myList[1];

 for (int i=0; i < myList.length; i++){

 myList[i] = i;

 }

Eng. Asma Abdel Karim
Computer Engineering Department

12

Array Basics
Array Initializers

• Array initializer is a shorthand notation which combines the
declaration, creation, and initialization of an array in one
statement.

• The syntax for array initializer:
 elementType [] arrayRefVar = {value0, value1, …., valuek};

• Example:
 double [] myList = {1.9, 2.5, 3.4, 4.5};

• Using an array initializer, you have to declare, create, and
initialize the array all in one statement.
– Splitting it would cause a syntax error.
double[] myList;
myList = {1.9, 2.9, 3.4, 3.5}; // causes a syntax error

Eng. Asma Abdel Karim
Computer Engineering Department

13

Array Basics
Processing Arrays

• When processing array elements, you will
often use a for loop.

– All elements in an array are of the same type and
they are evenly processed in the same fashion
repeatedly using a loop.

– Since the size of the array is known, it is natural to
use a for loop.

Eng. Asma Abdel Karim
Computer Engineering Department

14

Array Basics
Processing Arrays (Examples)

• Displaying arrays: to print an array, you have to print each
element in the array using a loop like the following:
For (int i = 0; i < myList.length; i++)
 System.out.print (myList[i] + “ ”);

- Note: For an array of the char[] type, it can be printed using
one print statement

char[] city = {‘A', ‘m', ‘m', ‘a', ‘n'};
System.out.println(city);

• Summing all elements: Use a variable named total to store the
sum. Initially total is 0. Add each element in the array to total
using a loop like this:
double total = 0;
for (int i = 0; i < myList.length; i++) {
 total += myList[i];
}

Eng. Asma Abdel Karim
Computer Engineering Department

15

Array Basics
Foreach loops

• Java supports a convenient for loop, known as a foreach loop, which
enables you to traverse the array sequentially without using an index
variable.

• For example, the following code displays all the elements in the array
myList:
for (double e: myList) {
 System.out.println(e);
}
– You can read the code as “for each element e in myList, do the following.”
– Note that the variable, e, must be declared as the same type as the

elements in myList.

• In general, the syntax for a foreach loop is:
for (elementType element: arrayRefVar) {
 // Process the element
}

• You still have to use an index variable if you wish to traverse the array in
a different order or change the elements in the array.

Eng. Asma Abdel Karim
Computer Engineering Department

16

Note
• Accessing an array out of bounds is a common

programming error that throws a runtime
ArrayIndexOutOfBoundsException.

• To avoid it, make sure that you do not use an index
beyond arrayRefVar.length – 1.

• Programmers often mistakenly reference the first element
in an array with index 1, but it should be 0.
– This is called the off-by-one error.

• Another common off-by-one error in a loop is using <=
where < should be used.

• For example, the following loop is wrong.
for (int i = 0; i <= list.length; i++)
 System.out.print(list[i] + " ");
– The <= should be replaced by <.

Eng. Asma Abdel Karim
Computer Engineering Department

17

Copying Arrays

• The assignment operator does not copy the
contents of an array into another, it instead
merely copies the reference values.

Eng. Asma Abdel Karim
Computer Engineering Department

18

Garbage

Copying Arrays (Cont.)

• To copy the contents of one array into another,
you have to copy the array’s individual elements
into the other array.

• Use a loop to copy every element from the
source array to the corresponding element in the
target array.

• Example:
 int [] sourceArray = {2, 3, 1, 5, 10};
 int [] targetArray = new int [sourceArray.length];
 for (int i=0; i < sourceArray.length; i++)
 targetArray [i] = sourceArray [i];

19 Eng. Asma Abdel Karim
Computer Engineering Department

Copying Arrays (Cont.)

• Often, in a program, you need to duplicate an
array or a part of an array. In such cases you
could attempt to use the assignment
statement (=), as follows:

– list2 = list1;

20 Eng. Asma Abdel Karim
Computer Engineering Department

Passing Arrays to Methods

• When passing an array to a method, the
reference of the array is passed to a method.

• This differs from passing arguments of a primitive
type:
– For an argument of a primitive type, the argument’s

value is passed.
• The passed variable will not be affected by any change to the

value inside the method.

– For any argument of an array type, the value of the
argument is a reference to an array.
• The passed array will be affected by any change inside the

method.

21 Eng. Asma Abdel Karim
Computer Engineering Department

Passing Arrays to Methods: Example

22 Eng. Asma Abdel Karim
Computer Engineering Department

Passing Arrays to Methods: Example
(Cont.)

23 Eng. Asma Abdel Karim
Computer Engineering Department

Returning an Array from a Method

• When a method returns an array, the reference of
the array is returned.

• Example:

 public static int[] copy(int [] list){

 int [] result = new int [list.length];

 for (int i=0; i < list.length; i++)

 result[i]=list[i];

 return result;

 }

24 Eng. Asma Abdel Karim
Computer Engineering Department

Example of this method invocation:
int [] list1 = {1, 2, 3, 4, 5};
int [] list2 = copy(list1);

Variable Length Argument List

• A variable number of arguments of the same type can
be passed to a method and treated as an array.

• The parameter in the method is declared as follows:
typeName... parameterName

• In the method declaration, you specify the type
followed by an ellipsis (...).

• Only one variable-length parameter may be specified in
a method, and this parameter must be the last
parameter.
– Any regular parameters must precede it.

25 Eng. Asma Abdel Karim
Computer Engineering Department

Variable Length Argument List (Cont.)

• Java treats a variable-length parameter as an
array.

• You can pass an array or a variable number of
arguments to a variable-length parameter.

• When invoking a method with a variable
number of arguments, Java creates an array
and passes the arguments to it.

26 Eng. Asma Abdel Karim
Computer Engineering Department

VarArgsDemo.java

27 Eng. Asma Abdel Karim
Computer Engineering Department

Command-Line Arguments
• The main method has the parameter args of String[] type.

– It is clear that args is an array of strings.

• You can pass strings to a main method from the command
line when you run the program.

• The following command line, for example, starts a program
named TestMain with three strings: arg0, arg1, and arg2:
– java TestMain arg0 arg1 arg2
– They don’t have to appear in double quotes on the command

line.
– The strings are separated by a space.

• A string that contains a space must be enclosed in double
quotes.
– java TestMain "First num" alpha 53
– Note that 53 is actually treated as a string.

28 Eng. Asma Abdel Karim
Computer Engineering Department

Command-Line Arguments (Cont.)

• When the main method is invoked, the Java
interpreter creates an array to hold the
command-line arguments and pass the array
reference to args.

• For example, if you invoke a program with n
arguments, the Java interpreter creates an array
like this one:

– args = new String[n];

29 Eng. Asma Abdel Karim
Computer Engineering Department

Two-Dimensional Arrays

• Two dimensional arrays are used to represent
data in a matrix or a table.

• The syntax for declaring and creating two
dimensional arrays is:

 elementType [] [] arrayRefVar;

 arrayRefVar = new elementType [numRows][numCols];

• An element in a two-dimensional array is
accessed through a row and column index:

 arrayRefVar [rowIndex][colIndex];

30 Eng. Asma Abdel Karim

Computer Engineering Department

Two-Dimensional Arrays: Examples

31 Eng. Asma Abdel Karim
Computer Engineering Department

int [][] matrix;

Two-Dimensional Arrays (Cont.)

• A two-dimensional array is actually an array in
which each element is a one-dimensional
array.

32 Eng. Asma Abdel Karim
Computer Engineering Department

Ragged Arrays

• Each row in a two-dimensional array is itself
an array.

• Thus, the rows can have different lengths.

– An array of this kind is known as a ragged array.

33 Eng. Asma Abdel Karim
Computer Engineering Department

Ragged Arrays (Cont.)

• You can also create a two-dimensional array if
you know the sizes of its rows but do not
know the values, using the following format:

34 Eng. Asma Abdel Karim
Computer Engineering Department

Processing Two-Dimensional Arrays
• Nested for loops are often used to process a two-

dimensional array
• Suppose an array matrix is created as follows:

– int[][] matrix = new int[10][10];

• To print the elements of the array matrix each
row on a line:

35 Eng. Asma Abdel Karim
Computer Engineering Department

Object-Oriented Problem Solving

Objects & Classes (Part I)
Based on Chapter 9 of “Introduction to Java

Programming” by Y. Daniel Liang.

Eng. Asma Abdel Karim
Computer Engineering Department

Outline
• Defining Classes for Objects (9.2)
• Declaring and Creating Objects Reference

Variables(9.5.1)
• Accessing an object’s members (9.5.2)
• Example: TestCircle.java.
• Constructing objects using constructors (9.4)
• Reference data fields and the null value (9.5.3)
• Difference between variables of primitive types

and reference types. (9.5.4)
• UML class diagrams.

Eng. Asma Abdel Karim
Computer Engineering Department

2

Defining Classes for Objects
What is an Object?

• Object-oriented programming (OOP) involves
programming using objects.

• An object represents an entity that can be distinctly
identified.

• An object has a unique:
– Identity
– State

• Also known as its properties or attributes.
• Represented by data fields with their current values.

– Behavior
• Also known as its actions.
• Defined by methods: to invoke a method on an object is to ask the

object to perform an action.

Eng. Asma Abdel Karim
Computer Engineering Department

3

Defining Classes for Objects
What is a Class?

• A class is a template, blue-print, or contract that
defines what an objects data fields and methods will
be.

• An object is an instance of a class.
– You can create many instances of a class.
– Creating an instance is referred to as instantiation.
– The terms object and instance are often interchangeable.

• Objects of the same type are defined using a common
class.

• A Java class uses:
– Variables to define data fields, and
– Methods to define actions.

Eng. Asma Abdel Karim
Computer Engineering Department

4

Defining Classes for Objects

Eng. Asma Abdel Karim
Computer Engineering Department

5

Defining Classes for Objects
Example: Circle Class

class Circle{
 double radius;
 void setRadius (double newRadius){
 radius = newRadius;
 }
}

• The Circle class is different from all of the other classes you

have seen thus far.
– It does not have a main method and therefore cannot be run; it

is merely a definition for circle objects.

6 Eng. Asma Abdel Karim
Computer Engineering Department

Class Circle has one variable of
type double called radius.

Class Circle has one void method
called setRadius which takes one
double parameter and assigns it
to the variable radius.

Declaring and Creating Objects
Reference Variables

• A class is essentially a programmer-defined type.

• Objects are accessed via the object’s reference
variables, which contain references to the objects.

• The syntax to declare an object reference variable is:

 ClassName objectRefVar;

• Example:

 Circle myCircle;

• A class is a reference type: a variable of the class type
can reference an instance of the class.

7 Eng. Asma Abdel Karim
Computer Engineering Department

Declaring and Creating Objects
Reference Variables (Cont.)

• To create an object and assign its reference to a
declared object reference variable:

 objectRefVar = new ClassName ();

• Example:

 myCircle = new Circle();

• The variable myCircle holds a reference to a Circle
object.

– An object reference variable that appears to hold an
object actually contains a reference to that object.

8 Eng. Asma Abdel Karim
Computer Engineering Department

Declaring and Creating Objects
Reference Variables (Cont.)

• A single statement can be used to combine

1) the declaration of an object reference variable,

2) the creation of an object, and

3) the assigning of an object reference to the
variable as follows:

 ClassName objectRefVar = new ClassName();

• Example:

 Circle myCircle = new Circle ();

9 Eng. Asma Abdel Karim
Computer Engineering Department

Accessing an Object’s Members
• In OOP, object’s members are its data fields and methods.
• An object’s data can be accessed and its methods invoked

using the dot operator (.).
– Also known as the object member access operator:

• To reference a data field in an object:
– objectRefVar.dataField

• Example:
– myCircle.radius

• To invoke a method on an object:
– objectRefVar.method(arguments)

• Example:
– myCircle.setRadius(5);

10 Eng. Asma Abdel Karim
Computer Engineering Department

Example: TestCircle.java
public class TestCircle{

 public static void main (String [] args){

 Circle circle1 = new Circle ();

 circle1.setRadius(5);

 System.out.println(“The radius of circle-1 is ”+circle1.radius);

 Circle circle2 = new Circle();

 circle2.radius = 1;

 System.out.println(“The area of circle-2 is ”+circle2.getArea());

 }

}

class Circle{

 double radius;

 void setRadius (double newRadius){

 radius = newRadius;

 }

 double getArea(){

 return radius*radius*22.0/7.0;

 }

}

Eng. Asma Abdel Karim
Computer Engineering Department

11

Only one class
in a file can be
a public class.

The public class must
have the same name
as the file name.

Example: TestCircle.java (Cont.)
public class TestCircle{

 public static void main (String [] args){

 Circle circle1 = new Circle ();

 circle1.setRadius(5);

 System.out.println(“The radius of circle-1 is ”+circle1.radius);

 Circle circle2 = new Circle();

 circle2.radius = 1;

 System.out.println(“The area of circle-2 is ”+circle2.getArea());

 }

}

class Circle{

 double radius;

 void setRadius (double newRadius){

 radius = newRadius;

 }

 double getArea(){

 return radius*radius*22.0/7.0;

 }

}

Eng. Asma Abdel Karim
Computer Engineering Department

12

Remember: this is where the
program starts execution.

Example: TestCircle.java (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

13

//File TestCircle.java
public class TestCircle{
 …….
}
class Circle{
 ……..
}

Java Compiler

Compiled
by

TestCircle.class

Circle.class

Constructing Objects Using
Constructors

• A constructor is invoked to create an object using
the new operator.

• Constructors are a special kind of method.
• They have three peculiarities:

– A constructor must have the same name as the class
itself.

– Constructors do not have a return type.
• Not even void.

– Constructors are invoked using the new operator
when an object is created.
• They play the role of initializing objects.

 Eng. Asma Abdel Karim
Computer Engineering Department

14

Constructing Objects Using
Constructors (Cont.)

• A class may be defined without constructors.

• In this case, a default constructor is provided
automatically:

– A default constructor is a public no-argument
constructor with an empty body which is implicitly
defined in the class.

– A default constructor is provided only if there are
no other constructors explicitly defined in the
class.

Eng. Asma Abdel Karim
Computer Engineering Department

15

Constructing Objects Using
Constructors (Cont.)

• The constructor has exactly the same name as its
defining class.

• To construct an object from a class, invoke a
constructor of the class using the new operator, as
follows:
– new ClassName(arguments);

• Like regular methods, constructors can be overloaded.
– Multiple constructors can have the same name but

different signatures.

– Makes it easy to construct objects with different initial
data values.

Eng. Asma Abdel Karim
Computer Engineering Department

16

Example TestCircle.java Revisited

Eng. Asma Abdel Karim
Computer Engineering Department

17

public class TestCircle{

 public static void main (String [] args){

 Circle circle1 = new Circle (5);

 System.out.println(“The radius of this circle is “+circle1.radius);

 }

}

class Circle{

 double radius;

 Circle (double initialRadius){

 radius = initialRadius;

 }

 void setRadius (double newRadius){

 radius = newRadius;

 }

}

Constructors Overloading

class Circle{
 double radius;
 Circle(){
 radius = 1;
 }
 Circle (double initialRadius){
 radius = initial Radius;
 }
 void setRadius (double newRadius){
 radius = newRadius;
 }
}

Eng. Asma Abdel Karim
Computer Engineering Department

18

Circle myFirstCircle = new Circle ();

Circle mySecondCircle = new Circle(5);

Reference Data Fields and the null
Value

• Java assigns default values to data fields when an
object is created.
– 0 for numeric type.
– false for a boolean type.
– \u0000 for a char type.
– Null for a reference type.

• Null is a special literal used for reference types.

• NullPointerException is a common runtime error.
It occurs when you invoke a method on a
reference variable with a null value.

• However, Java assigns no default value to a local
variable inside a method.

Eng. Asma Abdel Karim
Computer Engineering Department

19

Reference Data Fields and the null
Value (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

20

Reference Data Fields and the null
Value

Eng. Asma Abdel Karim
Computer Engineering Department

21

• The following code has a compile error,
because the local variables x and y are not
initialized:

Difference between Variables of
Primitive Types and Reference Types

• Every variable represents a memory location that holds a
value.

• A variable of a primitive type holds a value of the primitive
type, and a variable of a reference type holds a reference to
where an array or object is stored in memory.

Eng. Asma Abdel Karim
Computer Engineering Department

22

Difference between Variables of Primitive
Types and Reference Types (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

23

Difference between Variables of Primitive
Types and Reference Types (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

24

• After assignment:
– c1 points to the same object referenced by c2.

– The object previously referenced by c1 is no longer useful and therefore is now
known as garbage.

– Garbage occupies memory space, so the Java runtime system detects garbage and
automatically reclaims the space it occupies. This process is called garbage
collection.

UML Class Diagrams

• A standardized notation to illustrate classes
and objects is the Unified Modeling Language
(UML) class diagram.

Eng. Asma Abdel Karim
Computer Engineering Department

25

dataFieldName: dataFieldType

ClassName(parameterName:
parameterType)

methodName(parameterName:
parameterType) : returnType

Object-Oriented Problem Solving

Objects & Classes (Part II)
Based on Chapter 9 of “Introduction to Java

Programming” by Y. Daniel Liang.

Eng. Asma Abdel Karim
Computer Engineering Department

Outline

• Static Variables, Constants, and Methods (9.7)

• Visibility Modifiers (9.8)

• Data Field Encapsulation (9.9)

• Passing Objects to Methods (9.10)

• The Scope of Variables (9.13)

Eng. Asma Abdel Karim
Computer Engineering Department

2

Static Variables, Constants, and
Methods

• All variables declared in the data fields of the
previous examples are called instance variables.

• An instance variable is tied to a specific instance
of the class.
– It is not shared among objects of the same class.
– It has independent memory storage for each instance.

• In the following example, the radius of the first
object “circle1” is independent of the radius of
the second object “circle2”:
Circle circle1 = new Circle();
Circle circle2 = new Circle(5);

3 Eng. Asma Abdel Karim
Computer Engineering Department

Static Variables, Constants, and
Methods (Cont.)

• Static variables, also known as class variables,
store values for the variables in a common
memory location.
– A static variable is used when it is wanted that all

instances of the class to share data.

– If one instance of the class changes the value of a
static variables, all instances of the same class are
affected.

• Static methods can be called without creating an
instance of the class.

4 Eng. Asma Abdel Karim
Computer Engineering Department

Static Variables, Constants, and
Methods (Cont.)

• To declare a static variable or define a static
method, put the modifier static in the variable or
method declaration.

• Since constants in a class are shared by all objects
of the class, they should be declared static.

– final static double PI = 3.14159265358979323846;

• Static variables and methods can be accessed
from a reference variable or from their class
name.

5 Eng. Asma Abdel Karim
Computer Engineering Department

Example

6 Eng. Asma Abdel Karim
Computer Engineering Department

static variable

static method

7 Eng. Asma Abdel Karim
Computer Engineering Department

A static variable can be
accessed via its class

name.

A static variable can also be
accessed via objects of the

class.

Example (Output)

8 Eng. Asma Abdel Karim
Computer Engineering Department

UML Class Diagram: Circle with Static
Members

9 Eng. Asma Abdel Karim
Computer Engineering Department

Static members are underlined in UML class
diagrams.

Relationship between Static and
Instance Members

10 Eng. Asma Abdel Karim
Computer Engineering Department

Relationship between Static and
Instance Members (Example 1)

11 Eng. Asma Abdel Karim
Computer Engineering Department

Relationship between Static and
Instance Members (Example 2)

12 Eng. Asma Abdel Karim
Computer Engineering Department

Instance or Static?

• How to decide whether a variable or method
should be an instance one or static one?
– A variable or method that is dependent on a specific

instance of the class should be an instance variable or
method.
• Example: radius and getArea of the Circle class; each circle

has its own radius and area.

– A variable or method that is not dependent on a
specific instance of the class should be a static
variable or method.
• Example: numberOfObjects of the Circle class; all circles

should share this value.

13 Eng. Asma Abdel Karim

Computer Engineering Department

Visibility Modifiers

• Visibility modifiers can be used to specify the
visibility of a class and its members.

• A visibility modifier specifies how data fields
and methods in a class can be accessed from
outside the class.

– There is no restriction on accessing data fields and
methods from inside the class.

14 Eng. Asma Abdel Karim
Computer Engineering Department

Visibility Modifiers: The Default

• If no visibility modifier is used, then by default
the classes, methods, and data fields are
accessible by any class in the same package.
– This is known as package-private or package-access.

• Packages are used to organize classes. To do so,
you need to add the following statement as the
first statement in the program.
– package packageName;

• If a class is defined without the package
statement, it is said to be placed in the default
package.

15 Eng. Asma Abdel Karim
Computer Engineering Department

Visibility Modifiers: Public and Private

• The public modifier can be used for classes,
methods and data fields to denote that they
can be accessed from any other classes.

• The private modifier makes methods and data
fields accessible only from within its own
class.

16 Eng. Asma Abdel Karim
Computer Engineering Department

Visibility Modifiers: Methods and Data
Fields Example

17 Eng. Asma Abdel Karim
Computer Engineering Department

• The private modifier restricts access to its defining class.
• The default modifier restricts access to a package.
• The public modifier enables unrestricted access.

Visibility Modifiers: Classes Example

18 Eng. Asma Abdel Karim
Computer Engineering Department

Visibility Modifiers: Another Example

19 Eng. Asma Abdel Karim
Computer Engineering Department

Visibility Modifiers: Comments

• The private modifier applies only to the
members of a class.

• The public modifier can apply to a class or
members of a class.

• Using the modifiers public and private on local
variables would cause a compile error.

20 Eng. Asma Abdel Karim
Computer Engineering Department

Data Field Encapsulation

• It is not a good practice to allow data fields to
be directly modified.

– Data may be tampered with.

– The class becomes difficult to maintain and
vulnerable to bugs.

• To prevent direct modifications of data fields,
you should declare the data fields private.

– This is known as data field encapsulation.

21 Eng. Asma Abdel Karim
Computer Engineering Department

Data Field Encapsulation (Cont.)

• A private data field cannot be accessed by an
object from outside the class that defines the
private field.

• However, a client often needs to retrieve and
modify a data field.

• To make a private data field accessible:

– Provide a getter (accessor) method to return its value.

– Provide a setter (mutator) method set a new value to
it.

22 Eng. Asma Abdel Karim
Computer Engineering Department

Data Field Encapsulation (Cont.)

• A getter method has the following signature:

 public returnType getPropertyName()

– If the returnType is boolean, the get method is
defined as follows by convention:

public boolean isProperyName()

• A set method has the following signature:

 public void setPropertyName(dataType propertyValue)

23 Eng. Asma Abdel Karim
Computer Engineering Department

Example

24 Eng. Asma Abdel Karim
Computer Engineering Department

radius is encapsulated

numberOfObjects is
encapsulated

Example (Cont.)

25 Eng. Asma Abdel Karim
Computer Engineering Department

Accessor method

Accessor method

Mutator method

Example (Cont.)

26 Eng. Asma Abdel Karim
Computer Engineering Department

• The (-) sign indicates a private modifier.

• The (+) sign indicates a public modifier.

27 Eng. Asma Abdel Karim
Computer Engineering Department

UML Class Diagram: Circle with Private
Data Fields

• Passing an object to a method is to pass the reference of the
object.

• The following code passes the myCircle object as an argument
to the printCircle method:

28 Eng. Asma Abdel Karim
Computer Engineering Department

Passing Objects to Methods

29

Passing Objects to Methods (Example)

Eng. Asma Abdel Karim
Computer Engineering Department

30

Passing Objects to Methods
Example Output

Eng. Asma Abdel Karim
Computer Engineering Department

31

Passing Objects to Methods
Example Explanation

Eng. Asma Abdel Karim
Computer Engineering Department

The Scope of Variables

• The scope of a class’s variables or data fields is
the entire class, regardless of where the
variables are declared.

• A class’s variables and methods can appear in
any order in the class.

– The exception is when a data field is initialized
based on a reference to another data field.

32 Eng. Asma Abdel Karim
Computer Engineering Department

The Scope of Variables (Cont.)

33 Eng. Asma Abdel Karim
Computer Engineering Department

The Scope of Variables (Cont.)

• You can declare a class’s variable only once.

– But you can declare the same variable name in a
method many times in different nonnesting
blocks.

• If a local variable has the same name as a
class’s variable, the local variable takes
precedence and the class’s variable with the
same name is hidden.

34 Eng. Asma Abdel Karim
Computer Engineering Department

The Scope of Variables (Cont.)

35 Eng. Asma Abdel Karim
Computer Engineering Department

If the following statements are
created in the main method,
what is the output?
F fObject = new F();
fObject.print();

Object-Oriented Problem Solving

Objects & Classes (Part III)
Based on Chapters 9 & 10 of “Introduction to

Java Programming” by Y. Daniel Liang.

Eng. Asma Abdel Karim
Computer Engineering Department

Outline

• Array of Objects (9.11)

• Immutable Objects and Classes (9.12)

• The this reference (9.14)

• Method Abstraction and Stepwise Refinement (6.11)

• Class Abstraction and Encapsulation (10.2)

• Thinking in Objects (10.3)

• Class Relationships (10.4)

• Processing Primitive Data Type Values as Objects. (10.7
& 10.8)

• The BigInteger and BigDecimal Classes (10.9)

Eng. Asma Abdel Karim
Computer Engineering Department

2

Array of Objects

• An array can hold objects as well as primitive type
values.

• The following statement declares and creates an
array of ten Circle objects:
Circle[] circleArray = new Circle[10];

• To initialize circleArray, you can use a for loop like
this one:
for (int i = 0; i < circleArray.length; i++) {

 circleArray[i] = new Circle();

}

3 Eng. Asma Abdel Karim

Computer Engineering Department

Array of Objects (Cont.)
• An array of objects is actually an array of reference variables.

So, invoking circleArray[1].getArea() involves two levels of
referencing.
– circleArray references the entire array;
– circleArray[1] references a Circle object.

• When an array of objects is created using the new operator,
each element in the array is a reference variable with a default
value of null.

4 Eng. Asma Abdel Karim
Computer Engineering Department

Array of Objects (Example)

5 Eng. Asma Abdel Karim
Computer Engineering Department

Array of Objects (Example Cont.)

6 Eng. Asma Abdel Karim
Computer Engineering Department

Array of Objects (Example Cont.)

7 Eng. Asma Abdel Karim
Computer Engineering Department

Array of Objects (Example Output)

8 Eng. Asma Abdel Karim
Computer Engineering Department

Immutable Objects and Classes

• Normally, you create an object and allow its
contents to be changed later.

• However, occasionally it is desirable to create
an object whose contents cannot be changed
once the object has been created.

– Such an object is called immutable object and its
class is called immutable class.

Eng. Asma Abdel Karim
Computer Engineering Department

9

Immutable Objects and Classes (Cont.)

• For a class to be immutable, it must meet the
following requirements:

– All data fields must be private.

– There can’t be any mutator methods for data
fields.

– No accessor methods can return a reference to a
data field that is mutable.

Eng. Asma Abdel Karim
Computer Engineering Department

10

Immutable Objects and Classes (Example)
public class Student{

 private int id;

 private String name;

 private double [] grades = new double[3];

 public Student (int ssn, String newName){

 id = ssn;

 name = newName;

 }

 public int getId(){ return id; }

 public String getName(){ return name; }

 public double [] getGrades(){

 return grades;

 }

}

Eng. Asma Abdel Karim
Computer Engineering Department

This method actually returns a
reference to the array grades,
which means it can be changed
once returned.

11

Immutable Objects and Classes:
Example (Cont.)

public class test {

 public static void main(String [] args){

 Student student = new Student (112233, “John”);

 double [] G = student.getGrades();

 G[0] = 90.0;

 G[1] = 95.5;

 G[2] = 92.9;

 }

}

Eng. Asma Abdel Karim
Computer Engineering Department

12

The this Reference

• The keyword this refers to the object itself.

• The this keyword is the name of a reference
that an object can use to refer to itself

Eng. Asma Abdel Karim
Computer Engineering Department

13

Using this to Reference Hidden Data
Fields

• The this keyword can be used to reference a
class’s hidden data fields.

• A hidden static variable can be accessed
simply by using the ClassName.staticVariable.

• A hidden instance variable can be accessed by
using the keyword this.

Eng. Asma Abdel Karim
Computer Engineering Department

14

Using this to Reference Hidden Data
Fields: Example

Eng. Asma Abdel Karim
Computer Engineering Department

15

Using this to Invoke a Constructor

• The this keyword can be used to invoke
another constructor of the same class.

Eng. Asma Abdel Karim
Computer Engineering Department

16

Using this to Invoke a Constructor
Notes

• Java requires that the this(arg-list) statement
appear first in the constructor before any other
executable statements.

• If a class has multiple constructors, it is better to
implement them using this(arg-list) as much as
possible.
– In general, a constructor with no or fewer arguments

can invoke a constructor with more arguments using
this(arg-list).

– This syntax often simplifies coding and makes the class
easier to read and to maintain.

Eng. Asma Abdel Karim
Computer Engineering Department

17

Method Abstraction and Stepwise
Refinement

• The key to developing software is to apply the concept
of abstraction.

• Method abstraction is achieved by separating the use
of a method from its implementation.
– The client can use a method without knowing how it is

implemented.

– The details of the implementation are encapsulated in the
method and hidden from the client who invokes the
method.

– This is also known as information hiding or encapsulation.

• If you decide to change the implementation, the client
program will not be affected, provided that you do not
change the method signature.

Eng. Asma Abdel Karim
Computer Engineering Department

18

Method Abstraction and Stepwise
Refinement (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

19

• You have already used the System.out.print method to
display a string and the max method to find the
maximum number.

• You know how to write the code to invoke these
methods in your program, but as a user of these
methods, you are not required to know how they are
implemented.

Method Abstraction and Stepwise
Refinement (Cont.)

• The concept of method abstraction can be
applied to the process of developing
programs.

• When writing a large program, you can use
the divide-and-conquer strategy, also known
as stepwise refinement, to decompose it into
subproblems.

– The subproblems can be further decomposed into
smaller, more manageable problems.

Eng. Asma Abdel Karim
Computer Engineering Department

20

Class Abstraction and Encapsulation

• Class abstraction separates class
implementation from how the class is used.

– The creator of a class describes the functions of
the class and lets the user know how the class can
be used.

– The collection of methods and fields that are
accessible from outside the class, together with
the description of how these members are
expected to behave, serves as the class’s contract.

Eng. Asma Abdel Karim
Computer Engineering Department

21

Class Abstraction and Encapsulation
(Cont.)

• The user of the class does not need to know
how the class is implemented.

– The details of implementation are encapsulated
and hidden from the user.

– This is called class encapsulation.

– For this reason, a class is also known as an
abstract data type (ADT).

Eng. Asma Abdel Karim
Computer Engineering Department

22

Thinking in Objects

• The procedural paradigm focuses on designing
methods.

• The object-oriented paradigm couples data and
methods together into objects.
– Software design using the object-oriented paradigm

focuses on objects and operations on objects.
– The object-oriented approach combines the power of the

procedural paradigm with an added dimension that
integrates data with operations into objects.

• In procedural programming, data and operations on
the data are separate, and this methodology requires
passing data to methods.

• Object-oriented programming places data and the
operations that pertain to them in an object.

Eng. Asma Abdel Karim
Computer Engineering Department

23

Eng. Asma Abdel Karim
Computer Engineering Department

24

P
r
o
c
e
d
u
r
a
l

Thinking in Objects (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

25

• The code cannot be reused in other programs, because the
code is in the main method.

• To make it reusable, define a static method to compute
body mass index as follows:
public static double getBMI(double weight, double height)

• This method is useful for computing body mass index for a
specified weight and height.

• However, it has limitations:
– Suppose you need to associate the weight and height with a

person’s name and birth date.
– You could declare separate variables to store these values, but

these values would not be tightly coupled.

• The ideal way to couple them is to create an object that
contains them all.

• Since these values are tied to individual objects, they
should be stored in instance data fields.

Thinking in Objects (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

26

Class Relationships

• To design classes, you need to explore the
relationships among classes.

• The common relationships among classes are:

– Association,

– Aggregation and Composition, and

– Inheritance.

Eng. Asma Abdel Karim
Computer Engineering Department

27

Class Relationships
Association

• Association is a general binary relationship that
describes an activity between two classes.

• For example:

– A student taking a course is an association between
the Student class and the Course class.

– A faculty member teaching a course is an association
between the Faculty class and the Course class.

Eng. Asma Abdel Karim
Computer Engineering Department

28

Class Relationships
Association (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

29

Class Relationships
Aggregation and Composition

• Aggregation is a special form of association that represents an
ownership relationship between two objects.

• Aggregation models has-a relationships.
• An object can be owned by several other aggregating objects.
• If an object is exclusively owned by an aggregating object, the

relationship between the object and its aggregating object is
referred to as a composition.

• For example, “a student has a name” is a composition relationship
between the Student class and the Name class, whereas “a student
has an address” is an aggregation relationship between the Student
class and the Address class, since an address can be shared by
several students.

Eng. Asma Abdel Karim
Computer Engineering Department

30

Class Relationships
Aggregation and Composition (Cont.)

• An aggregation relationship is usually
represented as a data field in the aggregating
class.

• Since aggregation and composition relationships
are represented using classes in the same way,
we will not differentiate them and call both
compositions for simplicity.

Eng. Asma Abdel Karim
Computer Engineering Department

31

Class Relationships
Aggregation and Composition (Cont.)

• Aggregation may exist between objects of the
same class.

• In the relationship “a person has a supervisor,”
a supervisor can be represented as a data field
in the Person class.

Eng. Asma Abdel Karim
Computer Engineering Department

32

Class Relationships
Aggregation and Composition (Cont.)

• If a person can have several supervisors, you
may use an array to store supervisors.

Eng. Asma Abdel Karim
Computer Engineering Department

33

Processing Primitive Data Type Values
as Objects

• Owing to performance considerations, primitive data type
values are not objects in Java.
– Because of the overhead of processing objects, the language’s

performance would be adversely affected if primitive data type
values were treated as objects.

• However, many Java methods require the use of objects as
arguments. Java offers a convenient way to incorporate, or
wrap, a primitive data type into an object

• Wrapping int into the Integer class, wrapping double into
the Double class, and wrapping char into the Character
class.

• By using a wrapper class, you can process primitive data
type values as objects.
– Java provides Boolean, Character, Double, Float, Byte, Short,

Integer, and Long wrapper classes in the java.lang package for
primitive data types.

Eng. Asma Abdel Karim
Computer Engineering Department

34

Processing Primitive Data Type Values
as Objects (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

35

Processing Primitive Data Type Values
as Objects (Cont.)

• You can construct a wrapper object either from a primitive data
type value or from a string representing the numeric value.
– For example, new Double(5.0), new Double("5.0"), new Integer(5), and

new Integer("5").

• The wrapper classes do not have no-arg constructors.
• The instances of all wrapper classes are immutable; this means

that, once the objects are created, their internal values cannot be
changed.

• Each numeric wrapper class has the constants MAX_VALUE and
MIN_VALUE.

• Each numeric wrapper class contains the methods doubleValue(),
floatValue(), intValue(), longValue(), and shortValue() for returning a
double, float, int, long, or short value for the wrapper object.
– new Double(12.4).intValue() returns 12;
– new Integer(12).doubleValue() returns 12.0;

Eng. Asma Abdel Karim
Computer Engineering Department

36

Processing Primitive Data Type Values
as Objects (Cont.)

• The numeric wrapper classes have the static method, valueOf
(String s).
– This method creates a new object initialized to the value represented

by the specified string.
– Double doubleObject = Double.valueOf("12.4");
– Integer integerObject = Integer.valueOf("12");

• The static method parseInt is used to parse a numeric string into an
int value and the parseDouble method in the Double class to parse a
numeric string into a double value.

• Each numeric wrapper class has two overloaded parsing methods to
parse a numeric string into an appropriate numeric value based on
10 (decimal) or any specified radix (e.g., 2 for binary, 8 for octal, and
16 for hexadecimal).
– Integer.parseInt("11", 2) returns 3;
– Integer.parseInt("12", 8) returns 10;
– Integer.parseInt("13", 10) returns 13;
– Integer.parseInt("1A", 16) returns 26;

Eng. Asma Abdel Karim
Computer Engineering Department

37

Processing Primitive Data Type Values
as Objects (Cont.)

• Converting a primitive value to a wrapper object is
called boxing.

• The reverse conversion is called unboxing.
• Java allows primitive types and wrapper classes to be

converted automatically.
– The compiler will automatically box a primitive value that

appears in a context requiring an object, and will unbox an
object that appears in a context requiring a primitive value.

– This is called autoboxing and autounboxing.

Eng. Asma Abdel Karim
Computer Engineering Department

38

The BigInteger and BigDecimal Classes

• The BigInteger and BigDecimal classes can be used to represent integers
or decimal numbers of any size and precision.
– If you need to compute with very large integers or high-precision floating-

point values, you can use the BigInteger and BigDecimal classes in the
java.math package.

– Both are immutable.

• You can use new BigInteger(String) and new BigDecimal(String) to create
an instance of BigInteger and BigDecimal.

• You can use the add, subtract, multiply, divide, and remainder methods to
perform arithmetic operations.

• The largest integer of the long type is Long.MAX_VALUE (i.e.,
9223372036854775807). An instance of BigInteger can represent an
integer of any size.

Eng. Asma Abdel Karim
Computer Engineering Department

39

The BigInteger and BigDecimal Classes
(Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

40

• There is no limit to the precision of a BigDecimal object.
• The divide method may throw an ArithmeticException if the result

cannot be terminated.
• However, you can use the overloaded divide(BigDecimal d, int scale,

int roundingMode) method to specify a scale and a rounding mode
to avoid this exception, where scale is the maximum number of
digits after the decimal point.

• For example, the following code creates two BigDecimal objects
and performs division with scale 20 and rounding mode
BigDecimal.ROUND_UP.
– The output is 0.33333333333333333334.

The BigInteger and BigDecimal Classes
(Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

41

Object-Oriented Problem Solving

Inheritance & Polymorphism
Based on Chapter 11 of “Introduction to Java

Programming” by Y. Daniel Liang.

Eng. Asma Abdel Karim
Computer Engineering Department

Outline

• Superclasses and Subclasses (11.2)
• Using the Super keyword (11.3)
• Overriding Methods (11.4)
• Overriding vs. Overloading (11.5)
• The Object Class and its toString() (11.6)
• Polymorphism (11.7)
• Dynamic Binding (11.8)
• Casting Objects (11.9)
• The Object’s equals Method (11.10)
• The Protected Data and Methods (11.14)
• Preventing Extending and Overriding (11.15)

Eng. Asma Abdel Karim
Computer Engineering Department

2

Superclasses and Subclasses
• Classes are used to model objects of the same

type.

• Different classes may have some common
properties and behaviors.

• Inheritance allows you to:
– Define a generalized class that includes the common

properties and behavior.

– Define specialized classes that extend the generalized
class.
• Inherit the properties and methods from the general class.

• Add new properties and methods.

Eng. Asma Abdel Karim
Computer Engineering Department

3

Superclasses and Subclasses (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

4

• In Java terminology, a class C1 extended from
another class C2 is called a subclass, and C2 is
called a superclass.
– A superclass is also referred to as a parent class or a

base class, and a subclass as a child class, an extended
class, or a derived class.

• A subclass:
– inherits accessible data fields and methods from its

superclass and,

– may also add new data fields and methods.

Eng. Asma Abdel Karim
Computer Engineering Department

5

6

GeometricObject Class

Eng. Asma Abdel Karim
Computer Engineering Department

7

GeometricObject Class (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

Circle Class

Eng. Asma Abdel Karim
Computer Engineering Department

8

Eng. Asma Abdel Karim
Computer Engineering Department

9

Circle Class (Cont.)

Rectangle Class

Eng. Asma Abdel Karim
Computer Engineering Department

10

Rectangle Class (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

11

Comments

Eng. Asma Abdel Karim
Computer Engineering Department

12

• The Circle class extends the GeometricObject using the following
syntax:

• The keyword extends tells the compiler that the Circle class extends

the GeometricObject class, thus inheriting the methods getColor,
setColor, isFilled, setFilled, and toString.

• The overloaded constructor Circle(double radius, String color,
boolean filled) is implemented by invoking the setColor and setFilled
methods to set the color and filled properties.
– These two public methods are defined in the superclass

GeometricObject and are inherited in Circle, so they can be used in the
Circle class.

Comments (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

13

• You might attempt to use the data fields color and filled
directly in the constructor as follows:

• This is wrong, because the private data fields color and
filled in the GeometricObject class cannot be accessed
in any class other than in the GeometricObject class
itself.
– The only way to read and modify color and filled is through

their getter and setter methods.

TestCircleRectangle.java

Eng. Asma Abdel Karim
Computer Engineering Department

14

Important Notes Regarding Inheritance (1)

Eng. Asma Abdel Karim
Computer Engineering Department

15

• Contrary to conventional interpretation, a
subclass is not a subset of its superclass.
– In fact, a subclass usually contains more

information and methods than its superclass.

• Private data fields in a superclass are not
accessible outside the class.
– They cannot be used directly in a subclass.

– They can only be accessed/mutated through
public accessors/mutators if defined in the
superclass.

Important Notes Regarding Inheritance (2)

Eng. Asma Abdel Karim
Computer Engineering Department

16

• Inheritance is used to model the is-a relationship.
– Do not blindly extend a class just for the sake of reusing

methods.
– For example, it makes no sense for a Tree class to extend a

Person class, even though they share common properties
such as height and weight.

• Some programming languages allow you to derive a
subclass from several classes.
– This capability is called multiple inheritance.
– Java does not allow multiple inheritance.

• A Java class may inherit directly from only one class.

– Multiple inheritance can be achieved through interfaces in
Java.

The Super Keyword

Eng. Asma Abdel Karim
Computer Engineering Department

17

• The keyword super refers to the superclass
and can be used to:

– Call a superclass constructor.

– Call a superclass method.

Using the Super Keyword to Call a
Superclass Constructor

Eng. Asma Abdel Karim
Computer Engineering Department

18

• Remember that a constructor is used to construct an
instance of a class.

• Unlike properties and methods, the constructors of a
superclass are not inherited by a subclass.
• They can only be invoked from the constructors of the

subclasses using the keyword super.

• The syntax to call a superclass’s constructor is:
– super(), or super(arguments);
– The statement super() invokes the no-arg constructor of its

superclass.
– The statement super(arguments) invokes the superclass

constructor that matches the arguments.

Using the Super Keyword to Call a
Superclass Constructor: Example

Eng. Asma Abdel Karim
Computer Engineering Department

19

• The statement super() or super(parameters)
must appear in the first line of the subclass’s
constructor.

• The following constructor can be added to the
Circle class of the previous example:

 public Circle (double radius){

 super();

 this.radius = radius;

 }

Invokes the no-arg constructor,
which is the default constructor
of the GeometricObject class.

Constructor Chaining

Eng. Asma Abdel Karim
Computer Engineering Department

20

• A constructor may invoke an overloaded constructor
(using this) or its superclass constructor (using super).

• If neither is invoked explicitly, the compiler automatically
puts super() as the first statement in the constructor.

Constructor Chaining (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

21

• In any case, constructing an instance of a class
invokes the constructors of all the superclasses along
the inheritance hierarchy.

– When constructing an object of a subclass, the subclass
constructor first invokes its superclass constructor before
performing its own tasks.

– If the superclass is derived from another class, the
superclass constructor invokes its parent-class constructor
before performing its tasks.

– This process continues until the last constructor along the
inheritance hierarchy is called.

C
o

n
st

ru
ct

o
r

C
h

ai
n

in
g

Constructor Chaining: Example

Eng. Asma Abdel Karim
Computer Engineering Department

22

Constructor Chaining: Example (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

23

Caution!!

• If a class is designed to be extended, it is better
to provide a no-arg constructor to avoid
programming errors.

• Example: this code cannot be compiled:

24 Eng. Asma Abdel Karim
Computer Engineering Department

The default no-arg constructor of Apple
will try to invoke a no-arg constructor of
Fruit, which does not exist!

Eng. Asma Abdel Karim
Computer Engineering Department

25

Using the Super Keyword to Call a
Superclass Method

• The keyword super can be used to reference a method other
than the constructor in the superclass. The syntax is:
– super.method(parameters);

• You could rewrite the printCircle() method in the Circle class
as follows:

• It is not necessary to put super before getDateCreated() in
this case, however, because getDateCreated is a method in
the GeometricObject class and is inherited by the Circle class.
– Cases were the super keyword is needed to invoke the superclass

methods will be showed when methods overriding is introduced.

Eng. Asma Abdel Karim
Computer Engineering Department

26

Overriding Methods

• A subclass inherits methods from a superclass.
• Sometimes, it is necessary for the subclass to modify the

implementation of a method defined in the superclass.
– This is referred to as method overriding.

• The toString method in the GeometricObject class returns the
string representation of a geometric object.

• This method can be overridden to return the string
representation of a circle:

Should use the super keyword to invoke
the toSrting method of the superclass
GeometricObject.

Eng. Asma Abdel Karim
Computer Engineering Department

27

Overriding Methods (Cont.)

• An instance method can be overridden only if it is
accessible.
– Thus, a private method cannot be overridden, because it is not

accessible outside its own class.
– If a method defined in a subclass is private in its superclass, the

two methods are completely unrelated.

• Like an instance method, a static method can be
inherited. However a static method cannot be
overridden.
– If a static method defined in the superclass is redefined in a

subclass, the method defined in the superclass is hidden.
– The hidden static methods can be invoked using the syntax

SuperClassName.staticMethodName.

Eng. Asma Abdel Karim
Computer Engineering Department

28

Overriding vs. Overloading

• Overloading means to define multiple methods with
the same name but different signatures.

• Overriding means to provide a new implementation
for a method in the subclass.

– The method should be defined in the subclass using the
same signature and the same return type.

Eng. Asma Abdel Karim
Computer Engineering Department

29

Overriding vs. Overloading: Example

Eng. Asma Abdel Karim
Computer Engineering Department

30

Overriding vs. Overloading: Notes

• Overridden methods are in different classes related
by inheritance; overloaded methods can be either in
the same class or different classes related by
inheritance.

• Overridden methods have the same signature and
return type; overloaded methods have the same
name but a different parameter list.

Eng. Asma Abdel Karim
Computer Engineering Department

31

Override Annotation
• To avoid mistakes, you can use a special Java syntax, called override

annotation:
– Place @Override before the method in the subclass.

• This annotation denotes that the annotated method is required to
override a method in the superclass.
– If a method with this annotation does not override its superclass’s

method, the compiler will report an error.

• For example, if toString is mistyped as tostring, a compile error is
reported. If the override annotation isn’t used, the compile won’t
report an error. Using annotation avoids mistakes.:

Eng. Asma Abdel Karim
Computer Engineering Department

32

The Object Class and Its toString() Method

• Every class in Java is descended from the
java.lang.Object class.

• If no inheritance is defined when a class is defined,
the superclass of the class is Object by default.

• For example the following two class definitions are
the same:

Eng. Asma Abdel Karim
Computer Engineering Department

33

The Object Class and Its toString() Method
(Cont.)

• One of the most important methods provided by the Object class is the
method toString.

• The signature of the toString method is:
– public String toString()

• Invoking toString() on an object returns a string that describes the
object.
– By default, it returns a string consisting of a class name of which the object

is an instance, an at sign (@), and the object’s memory address in
hexadecimal.

 Circle c = new Circle();
 System.out.println(c.toString());
– For example, the output of the following code is something like:

Circle@780324ff
– This message is not very helpful or informative.
– Usually you should override the toString method so that it returns a

descriptive string representation of the object.

Eng. Asma Abdel Karim
Computer Engineering Department

34

The Object Class and Its toString() Method
(Cont.)

• Usually, we override the toString method so that it returns a
descriptive string representation of the object.

• For example, the toString method in the Object class was
overridden in the GeometricObject class as follows:

• You can also pass an object to invoke
System.out.println(object) and System.out.print(object).
– This is equivalent to invoking

System.out.println(object.toString()) and
System.out.print(object.toString()).

Eng. Asma Abdel Karim
Computer Engineering Department

35

Polymorphism
• The three pillars of object-oriented programming are:

– Encapsulation
– Inheritance, and
– Polymorphism.

• The inheritance relationship enables a subclass to inherit
features from its superclass with additional new features.

• A class defines a type.
• A type defined by a subclass is called a subtype, and a type

defined by its superclass is called a supertype.
– Therefore, you can say that Circle is a subtype of GeometricObject

and GeometricObject is a supertype for Circle.

• A subclass is a specialization of its superclass; every
instance of a subclass is also an instance of its superclass,
but not vice versa.
– For example, every circle is a geometric object, but not every

geometric object is a circle.

Eng. Asma Abdel Karim
Computer Engineering Department

36

Polymorphism (Cont.)

• Polymorphism means that a variable of a supertype can
refer to a subtype object.
– You can always pass an instance of a subclass to a parameter of its

superclass type.
– An object of a subclass can be used wherever its superclass object

is used.

Eng. Asma Abdel Karim
Computer Engineering Department

37

Dynamic Binding

• A method can be implemented in several classes along
the inheritance chain.

– The JVM decides which method is invoked at runtime.

• A method can be defined in a superclass and
overridden in its subclass.

• For example, the toString() method is defined in the
Object class and overridden in GeometricObject.

Object o = new GeometricObject();

System.out.println(o.toString());

• Which toString() method is invoked by o?

Eng. Asma Abdel Karim
Computer Engineering Department

38

Dynamic Binding (Cont.)

• The type that declares a variable is called the variable’s
declared type.
– In the previous example, o’s declared type is Object.

– A variable of a reference type can hold a null value or a reference
to an instance of the declared type.

– The instance may be created using the constructor of the
declared type or its subtype.

• The actual type of the variable is the actual class for the
object referenced by the variable.
• Here o’s actual type is GeometricObject, because o references an

object created using new GeometricObject().

• Which toString() method is invoked by o is determined by
o’s actual type. This is known as dynamic binding.

Eng. Asma Abdel Karim
Computer Engineering Department

39

Dynamic Binding (Cont.)

• Suppose an object o is an instance of classes C1, C2, . . . , Cn-
1, and Cn, where C1 is a subclass of C2, C2 is a subclass of C3,
. . . , and Cn-1 is a subclass of Cn, as shown in the figure.

• That is, Cn is the most general class, and C1 is the most
specific class.

• In Java, Cn is the Object class.
• If o invokes a method p, the JVM searches for the

implementation of the method p in C1, C2, . . . , Cn-1, and Cn,
in this order, until it is found.

• Once an implementation is found, the search stops and the
first-found implementation is invoked.

40 Eng. Asma Abdel Karim
Computer Engineering Department

Eng. Asma Abdel Karim
Computer Engineering Department

41

Dynamic Binding (Cont.)

• Matching a method signature and binding a
method implementation are two separate issues.

• The declared type of the reference variable
decides which method to match at compile time.

• The compiler finds a matching method according
to the parameter type, number of parameters, and
order of the parameters at compile time.

• A method may be implemented in several classes
along the inheritance chain. The JVM dynamically
binds the implementation of the method at
runtime, decided by the actual type of the
variable.

Eng. Asma Abdel Karim
Computer Engineering Department

42

Casting Objects
• One object reference can be typecast into another object

reference.
– This is called casting object.

• In the preceding section, the statement
m(new Student());
assigns the object new Student() to a parameter of the Object type.

• This statement is equivalent to
Object o = new Student(); // Implicit casting
m(o);

• The statement Object o = new Student(), known as implicit
casting, is legal because an instance of Student is an instance
of Object.

• Suppose you want to assign the object reference o to a
variable of the Student type using the following statement:
Student b = o;
In this case a compile error would occur.

Eng. Asma Abdel Karim
Computer Engineering Department

43

Casting Objects (Cont.)

• The reason is that a Student object is always an
instance of Object, but an Object is not necessarily
an instance of Student.

• Even though you can see that o is really a Student
object, the compiler is not clever enough to know
it.

• To tell the compiler that o is a Student object, use
explicit casting.
– The syntax is similar to the one used for casting among

primitive data types.
– Enclose the target object type in parentheses and place

it before the object to be cast, as follows:
Student b = (Student)o; // Explicit casting

Eng. Asma Abdel Karim
Computer Engineering Department

44

Casting Objects (Cont.)

• It is always possible to cast an instance of a
subclass to a variable of a superclass (known as
upcasting).
– Because an instance of a subclass is always an

instance of its superclass.

• When casting an instance of a superclass to a
variable of its subclass (known as downcasting),
explicit casting must be used.
– To confirm your intention to the compiler with the

(SubclassName) cast notation.

Eng. Asma Abdel Karim
Computer Engineering Department

45

Casting Objects (Cont.)

• For the casting to be successful, you must make sure that the
object to be cast is an instance of the subclass.

• If the superclass object is not an instance of the subclass, a
runtime ClassCastException occurs.
– For example, if an object is not an instance of Student, it cannot

be cast into a variable of Student.

• It is a good practice, therefore, to ensure that the object is an
instance of another object before attempting a casting.
– This can be accomplished by using the instanceof operator.

Eng. Asma Abdel Karim
Computer Engineering Department

46

Why Casting is Necessary?

• You may be wondering why casting is necessary. The variable
myObject is declared Object.

• The declared type decides which method to match at
compile time.
– Using myObject.getDiameter() would cause a compile error,

because the Object class does not have the getDiameter method.
– The compiler cannot find a match for myObject.getDiameter().

• Therefore, it is necessary to cast myObject into the Circle
type to tell the compiler that myObject is also an instance of
Circle.

• Why not define myObject as a Circle type in the first place?
– To enable generic programming, it is a good practice to define a

variable with a supertype, which can accept an object of any
subtype.

47

Casting and Polymorphism

Eng. Asma Abdel Karim
Computer Engineering Department

Eng. Asma Abdel Karim
Computer Engineering Department

48

Comments

• The object member access operator (.) precedes the casting
operator.
– Use parentheses to ensure that casting is done before the .

operator, as in
((Circle)object).getArea();

• Casting a primitive type value is different from casting an
object reference.
– Casting a primitive type value returns a new value. For example:

– However, casting an object reference does not create a new
object. For example:

Eng. Asma Abdel Karim
Computer Engineering Department

49

The Object’s equals Method

• Another method defined in the Object class that is often
used is the equals method. Its signature is
public boolean equals(Object o)

• This method tests whether two objects are equal. The syntax
for invoking it is:
object1.equals(object2);

• The default implementation of the equals method in the
Object class is:
public boolean equals(Object obj) {
 return (this == obj);
}

• This implementation checks whether two reference variables
point to the same object using the == operator.

• You should override this method in your custom class to test
whether two distinct objects have the same content.

Eng. Asma Abdel Karim
Computer Engineering Department

50

The Object’s equals Method (Cont.)

• The equals method is overridden in many classes in the Java
API, such as java.lang.String and java.util.Date, to compare
whether the contents of two objects are equal.

• You can override the equals method in the Circle class to
compare whether two circles are equal based on their radius
as follows:
public boolean equals(Object o) {
 if (o instanceof Circle)
 return radius == ((Circle)o).radius;
 else
 return this == o;
}

• Using the signature equals(SomeClassName obj) (e.g.,
equals(Circle c)) to override the equals method in a subclass
is a common mistake. You should use equals(Object obj).

Eng. Asma Abdel Karim
Computer Engineering Department

51

The Protected Data and Methods

• So far you have used the private and public keywords to
specify whether data fields and methods can be
accessed from outside of the class.

• Private members can be accessed only from inside of
the class, and public members can be accessed from any
other classes.

• Often it is desirable to allow subclasses to access data
fields or methods defined in the superclass, but not to
allow non-subclasses to access these data fields and
methods.

• To accomplish this, you can use the protected keyword.
– This way you can access protected data fields or methods in

a superclass from its subclasses.

Eng. Asma Abdel Karim
Computer Engineering Department

52

The Protected Data and Methods (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

53

The Protected Data and Methods (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

54

Visibility Modifiers (Comments)

• Your class can be used in two ways:
(1) for creating instances of the class and
(2) for defining subclasses by extending the class.

• Make the members private if they are not intended for
use from outside the class.

• Make the members public if they are intended for the
users of the class.

• Make the fields or methods protected if they are
intended for the extenders of the class but not for the
users of the class.

• A subclass cannot weaken the accessibility of a method
defined in the superclass when overriding it.
– For example, if a method is defined as public in the

superclass, it must be defined as public in the subclass.

Eng. Asma Abdel Karim
Computer Engineering Department

55

Preventing Extending and Overriding

• You may occasionally want to prevent classes from
being extended.

• In such cases, use the final modifier to indicate
that a class is final and cannot be a parent class.

• The Math class is a final class. The String,
StringBuilder, and StringBuffer classes are also final
classes.

Eng. Asma Abdel Karim
Computer Engineering Department

56

Preventing Extending and Overriding
(Cont.)

• You also can define a method to be final; a final
method cannot be overridden by its subclasses.

• For example, the following method m is final
and cannot be overridden:

Object-Oriented Problem Solving

Strings
Based on Chapters 4 & 10 of “Introduction to

Java Programming” by Y. Daniel Liang.

Eng. Asma Abdel Karim
Computer Engineering Department

Outline

• The String Class (4.4)(10.10)

• The StringBuilder and StringBuffer Classes
(10.11)

Eng. Asma Abdel Karim
Computer Engineering Department

2

The String Class

• A string is a sequence of characters.

• String is a predefined class in the Java library,
just like the classes System and Scanner.

• The String class has 13 constructors and more
than 40 methods for manipulating strings.

• A string literal is a sequence of characters
enclosed inside double quotes.

– Example: “Welcome to Java!”

Eng. Asma Abdel Karim
Computer Engineering Department

3

Constructing a String

• You can create a string object from a string literal or
from an array of characters.

• The String type is not a primitive type. It is a reference
type.

• In the example below, message is a reference variable
that references a string object with contents Welcome
to Java.

• Examples:
– String message = new String (“Welcome to Java!”);
– String message = “Welcome to Java!”;
– char[] charArray = {'G', 'o', 'o', 'd', ' ', 'D', 'a', 'y'};
– String message = new String(charArray);

Eng. Asma Abdel Karim
Computer Engineering Department

Java treats a string literal
as a String object.

4

Immutable Strings
• A String object is immutable: its contents cannot be

changed.

• Example:

 String s = “Java”;

 s = “HTML”;

Eng. Asma Abdel Karim
Computer Engineering Department

5

Interned Strings

• The JVM uses a unique instance for string
literals with the same character sequence.

– In order to achieve efficiency and save memory.

– Such an instance is called an interned string.

Eng. Asma Abdel Karim
Computer Engineering Department

6

Interned Strings: Example

Eng. Asma Abdel Karim
Computer Engineering Department

7

Output:
s1==s2 is false
s1==s3 is true

Simple Methods for String Class

Eng. Asma Abdel Karim
Computer Engineering Department

8

Getting String Length

Eng. Asma Abdel Karim
Computer Engineering Department

9

• You can use the length() method to return the number
of characters in a string. For example, the following
code
String message = "Welcome to Java";

System.out.println("The length of " + message + " is "+
message.length());

• For convenience, Java allows you to use the string
literal to refer directly to strings without creating new
variables.
– Thus, "Welcome to Java".length() is correct and returns 15.

– Note that "" denotes an empty string and "".length() is 0.

Getting Characters from a String

Eng. Asma Abdel Karim
Computer Engineering Department

10

• The s.charAt(index) method can be used to retrieve a
specific character in a string s, where the index is between
0 and s.length()–1.

• Attempting to access characters in a string s out of bounds
is a common programming error. To avoid it, make sure that
you do not use an index beyond s.length() – 1.

• For example, s.charAt(s.length()) would cause a
StringIndexOutOfBoundsException.

Concatenating Strings

Eng. Asma Abdel Karim
Computer Engineering Department

11

• You can use the concat method to concatenate two strings.
• The statement shown below, for example, concatenates

strings s1 and s2 into s3:
String s3 = s1.concat(s2);

• Because string concatenation is heavily used in
programming, Java provides a convenient way to
accomplish it.
– You can use the plus (+) operator to concatenate two strings, so

the previous statement is equivalent to
String s3 = s1 + s2;

• The following code combines the strings message, " and ",
and "HTML" into one string:
String myString = message + " and " + "HTML";

Converting Strings

Eng. Asma Abdel Karim
Computer Engineering Department

12

• The toLowerCase() method returns a new string with
all lowercase letters and the toUpperCase() method
returns a new string with all uppercase letters.
– For example:

"Welcome".toLowerCase() returns a new string welcome.
"Welcome".toUpperCase() returns a new string WELCOME.

• The trim() method returns a new string by eliminating
whitespace characters from both ends of the string.
– The characters ' ', \t, \f, \r, or \n are known as whitespace

characters.

– For example,

"\t Good Night \n".trim() returns a new string Good Night.

Comparing Strings

Eng. Asma Abdel Karim
Computer Engineering Department

13

Comparing Strings (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

14

• How do you compare the contents of two strings?
• You might attempt to use the == operator.
• However, the == operator checks only whether two strings

refer to the same object; it does not tell you whether they
have the same contents.

• Therefore, you cannot use the == operator to find out
whether two string variables have the same contents.

• Instead, you should use the equals method. The following
code, for instance, can be used to compare two strings:

 if (string1.equals(string2))
 System.out.println("string1 and string2 have the same contents");

 else
System.out.println("string1 and string2 are not equal");

Comparing Strings (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

15

Comparing Strings (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

16

• The compareTo method can also be used to compare two strings.
• For example, consider the following code:

s1.compareTo(s2)

• The method returns:
– the value 0 if s1 is equal to s2,
– a value less than 0 if s1 is lexicographically (i.e., in terms of Unicode

ordering) less than s2, and
– a value greater than 0 if s1 is lexicographically greater than s2.

• The actual value returned from the compareTo method depends on
the offset of the first two distinct characters in s1 and s2 from left
to right.

• For example, suppose s1 is abc and s2 is abg, and s1.compareTo(s2)
returns -4.
– The first two characters (a vs. a) from s1 and s2 are compared.

Because they are equal, the second two characters (b vs. b) are
compared. Because they are also equal, the third two characters (c vs.
g) are compared. Since the character c is 4 less than g, the comparison
returns -4.

Comparing Strings (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

17

• The String class also provides the equalsIgnoreCase and
compareToIgnoreCase methods for comparing strings.
– The equalsIgnoreCase and compareToIgnoreCase methods

ignore the case of the letters when comparing two strings.

• You can also use:
– str.startsWith(prefix) to check whether string str starts with a

specified prefix,
– str.endsWith(suffix) to check whether string str ends with a

specified suffix, and
– str.contains(s1) to check whether string str contains string s1 .

"Welcome to Java".startsWith("We") returns true.
"Welcome to Java".startsWith("we") returns false.
"Welcome to Java".endsWith("va") returns true.
"Welcome to Java".endsWith("v") returns false.
"Welcome to Java".contains("to") returns true.
"Welcome to Java".contains("To") returns false.

Obtaining Substrings

Eng. Asma Abdel Karim
Computer Engineering Department

18

Finding a Character or a Substring in a
String

Eng. Asma Abdel Karim
Computer Engineering Department

19

Replacing and Splitting Strings

Eng. Asma Abdel Karim
Computer Engineering Department

20

Matching, Replacing and Splitting by Patterns

Eng. Asma Abdel Karim
Computer Engineering Department

21

• A regular expression (abbreviated regex) is a
string that describes a pattern for matching a set
of strings.

• You can match, replace, or split a string by
specifying a pattern.

• At first glance, the matches method is very similar
to the equals method. For example, the following
two statements both evaluate to true:
"Java".matches("Java");
"Java".equals("Java");

• However, the matches method is more powerful.
It can match not only a fixed string, but also a set
of strings that follow a pattern.

Matching, Replacing and Splitting by Patterns
(Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

22

• For example, the following statements all evaluate to
true:
"Java is fun".matches("Java.*")
"Java is cool".matches("Java.*")
"Java is powerful".matches("Java.*")

• Java.* in the preceding statements is a regular
expression. It describes a string pattern that begins
with Java followed by any zero or more characters.
Here, the substring matches any zero or more
characters.

• The following statement evaluates to true.
"440-02-4534".matches("\\d{3}-\\d{2}-\\d{4}")
Here \\d represents a single digit, and \\d{3} represents
three digits.

Matching, Replacing and Splitting by Patterns
(Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

23

• The replaceAll, replaceFirst, and split methods
can be used with a regular expression.

• For example, the following statement returns
a new string that replaces $, +, or # in a+b$#c
with the string NNN.
String s = "a+b$#c".replaceAll("[$+#]", "NNN");

System.out.println(s);

– Here the regular expression [$+#] specifies a
pattern that matches $, +, or #. So, the output is
aNNNbNNNNNNc.

Matching, Replacing and Splitting by Patterns
(Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

24

• The following statement splits the string into
an array of strings delimited by punctuation
marks.
String[] tokens = "Java,C?C#,C++".split("[.,:;?]");

for (int i = 0; i < tokens.length; i++)

 System.out.println(tokens[i]);

– In this example, the regular expression [.,:;?]
specifies a pattern that matches ., ,, :, ;, or ?.

– Each of these characters is a delimiter for splitting
the string. Thus, the string is split into Java, C, C#,
and C++, which are stored in array tokens.

Formatting Strings

Eng. Asma Abdel Karim
Computer Engineering Department

25

• The String class contains the static format
method to return a formatted string.

• The syntax to invoke this method is:
String.format(format, item1, item2, ..., itemk)

• This method is similar to the printf method
except that the format method returns a
formatted string, whereas the printf method
displays a formatted string.

• Example:
String s = String.format("%7.2f%6d%-4s", 45.556, 14,
"AB");

System.out.println(s);

The StringBuilder and StringBuffer Classes

Eng. Asma Abdel Karim
Computer Engineering Department

26

• In general, the StringBuilder and StringBuffer
classes can be used wherever a string is used.

• StringBuilder and StringBuffer are more flexible
than String.
– You can add, insert, or append new contents into

StringBuilder and StringBuffer objects, whereas the
value of a String object is fixed once the string is
created.

• The StringBuilder class is similar to StringBuffer
except that the methods for modifying the buffer
in StringBuffer are synchronized.
– This means that only one task is allowed to execute

the methods.

The StringBuilder and StringBuffer Classes
(Constructors)

Eng. Asma Abdel Karim
Computer Engineering Department

27

The StringBuilder and StringBuffer Classes
(Modifying Strings)

Eng. Asma Abdel Karim
Computer Engineering Department

28

The StringBuilder and StringBuffer Classes
(Other Methods)

Eng. Asma Abdel Karim
Computer Engineering Department

29

Object-Oriented Problem Solving

Generics
Based on chapter 19 of “Introduction to Java

Programming” by Y. Daniel Liang.

Eng. Asma Abdel Karim
Computer Engineering Department

Outline

• Motivation and Benefits (19.2)

• java.util.ArrayList

• Defining Generic Classes (19.3)

• Generic Methods (19.4)

Eng. Asma Abdel Karim
Computer Engineering Department

2

Motivation and Benefits

• Generics let you parameterize types.

• With this capability, you can define a class or a
method with generic types that the compiler
can replace with concrete types.

• The motivation for using Java generics is to
detect errors at compile time.

• Java has allowed defining generic classes,
interfaces, and methods since JDK 1.5.

Eng. Asma Abdel Karim
Computer Engineering Department

3

java.util.ArrayList

Eng. Asma Abdel Karim
Computer Engineering Department

4

• An example of a generic class is the ArrayList class of
the java.util package.

• An ArrayList object can be used to store a list of
objects.

• So far, we used arrays to store objects.

– Once the array is created, its size is fixed.

– The ArrayList class can be used to store an unlimited
number of objects.

java.util.ArrayList (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

5

java.util.ArrayList (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

6

java.util.ArrayList (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

7

• The ArrayList class is a generic class with a
generic type E.
– By convention, a single capital letter such as E or T is

used to denote a formal generic type.

• You can specify a concrete type to replace E when
creating an ArrayList.
– Replacing a generic type is called a generic

instantiation.

• Examples:
 ArrayList<String> cities = new ArrayList<String>();
 ArrayList<Date> dates = new ArrayList<Date>();

java.util.ArrayList (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

8

• For example, if an ArrayList of Strings is created
using the following statement:

 ArrayList <String> list = new ArrayList<String>();

• Only Strings can now be added to the list as
follows:

 list.add(“Red”);

• If you attempt to add a non-string, a compilation
error will occur. For example, the following
statement is not legal:

 list.add(new Date());

java.util.ArrayList (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

9

• Generic types must be reference types.

• You cannot replace a generic type with a
primitive type such as int, double, or char.

• For example, the following statement is
wrong:

 ArrayList <int> intList = new ArrayLisy<int> ();

Defining Generic Classes
(Example: The GenericStack Class)

Eng. Asma Abdel Karim
Computer Engineering Department

10

 Example: GenericStack.java (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

11

Generic Methods

Eng. Asma Abdel Karim
Computer Engineering Department

12

Generic Methods (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

13

• To invoke a generic method, prefix the method
name with the actual type in angle brackets.

• For example,
GenericMethodDemo.<Integer>print(integers);

GenericMethodDemo.<String>print(strings);

• or simply invoke it as follows:
print(integers);

print(strings);

Generic Methods (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

14

• A generic type can be specified as a subtype of
another type. Such a generic type is called
bounded.

Object-Oriented Problem Solving

Abstract Classes & Interfaces
Based on Chapter 13 of “Introduction to Java

Programming” by Y. Daniel Liang.

Eng. Asma Abdel Karim
Computer Engineering Department

Outline

• Abstract Classes (13.2)

• Case Study: The Abstract Number Class (13.3)

• Interfaces (13.5)

• The Comparable Interface (13.6)

• Interfaces vs. Abstract Classes (13.8)

• Class Design Guidelines (13.10)

Eng. Asma Abdel Karim
Computer Engineering Department

2

Introduction

• In the inheritance hierarchy, classes become
more specific and concrete with each new
subclass.

• If you move from a subclass back up to a
superclass, the classes become more general
and less specific.

• Class design should ensure that a superclass
contains common features of its subclasses.

Eng. Asma Abdel Karim
Computer Engineering Department

3

What are Abstract Methods?

Eng. Asma Abdel Karim
Computer Engineering Department

4

• In the example of the previous section,
GeometricObject was defined as the superclass for
Circle and Rectangle.

• Bot Circle and Rectangle contain getArea() and
getPerimeter() methods.

• It is better to define the getArea() and getPerimeter()
methods in the GeometricObject class.

• However, these methods cannot be implemented in
the GeometricObject class, because their
implementation depends on the specific type of a
geometric object.

What are Abstract Methods? (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

5

• Such methods can be defined in the
superclass as abstract methods.

– An abstract method is defined without an
implementation in the superclass.

• Its implementation is provided by the subclasses.

– Abstract methods are denoted using the abstract
modifier in the method header.

What are Abstract Classes?

Eng. Asma Abdel Karim
Computer Engineering Department

6

• A class that contains at least one abstract
method must be defined as an abstract class.
– Abstract classes are denoted using the abstract

modifier in the class header.

• Abstract classes are like regular classes, but
you cannot create instances of abstract classes
using the new operator.
– Constructors of an abstract class are defined as

protected, because they are used only by
subclasses.

Abstract Classes & Methods: Example

Eng. Asma Abdel Karim
Computer Engineering Department

7

Abstract Classes & Methods: Example (Cont.)

8 Eng. Asma Abdel Karim
Computer Engineering Department

Abstract Classes and Methods: UML Diagram

9
Eng. Asma Abdel Karim
Computer Engineering Department

Why Abstract Methods? Example

Eng. Asma Abdel Karim
Computer Engineering Department

10

Why Abstract Methods? Example

Eng. Asma Abdel Karim
Computer Engineering Department

11

Important Notes Regarding Abstract
Classes and Methods (1)

Eng. Asma Abdel Karim
Computer Engineering Department

12

• An abstract method cannot be contained in a non-
abstract class.
– If a subclass of an abstract superclass does not implement

all abstract methods, the subclass must be defined as
abstract.

– Abstract methods are non-static.

• An abstract class cannot be instantiated using the new
operator, but:
– You still can define its constructors which are invoked in

the constructors of its subclasses.
– An abstract class can be used as a data type.

• Therefore, the following statement, which creates an array whose
elements are of the GeometricObject type is correct:

GeometricObject [] Objects = new GeometricObject[10];

Important Notes Regarding Abstract
Classes and Methods (2)

Eng. Asma Abdel Karim
Computer Engineering Department

13

• A class that contains abstract methods must be
abstract.
– However, it is possible to define an abstract class that

does not contain any abstract methods.
– In this case, you cannot create instances of the class

using the new operator.
• This class is used as a base class for defining subclasses.

• A subclass can be abstract even if it’s superclass is
concrete.
– For example, the Object class is concrete, but its

subclasses may be abstract, such as GeometricObject
in the previous example.

Important Notes Regarding Abstract
Classes and Methods (3)

Eng. Asma Abdel Karim
Computer Engineering Department

14

• A subclass can override a method from its
superclass to define it as abstract.

– This is very unusual, but it is useful when the
implementation of the method in the superclass
becomes invalid in the subclass.

– In this case, the subclass must be defined as
abstract.

Case Study: The Abstract Number Class

Eng. Asma Abdel Karim
Computer Engineering Department

15

Case Study: The Abstract Number Class

16 Eng. Asma Abdel Karim
Computer Engineering Department

Interfaces

Eng. Asma Abdel Karim
Computer Engineering Department

17

• An interface is a class-like construct that contains only
constants and abstract methods.

• The intent of interfaces is to define common behavior
for related or unrelated classes.

• An interface is treated like a special class in Java.
– Each interface is compiled into a separate bytecode file.

– You can use an interface more or less the same way you
use an abstract class.
• An interface can be used as a data type for a reference variable.

• You cannot create an instance from an interface with the new
operator.

Interfaces (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

18

• To distinguish an interface from a class, Java
uses the following syntax to define an
interface:

• Example:

Implementing an Interface

Eng. Asma Abdel Karim
Computer Engineering Department

19

• You can use an interface to specify the behavior
of an object, by letting the class for the object
implement this interface using the implements
keyword.
– When a class implements an interface, it implements

all the methods defined in the interface with the exact
signature and return type.

• The relationship between an interface and a class
that implements it is known as interface
inheritance.
– Since interface inheritance and class inheritance are

essentially the same, both are referred to as
inheritance.

Implementing an Interface (Example)

Eng. Asma Abdel Karim
Computer Engineering Department

20

Implementing an Interface (Example)

Eng. Asma Abdel Karim
Computer Engineering Department

21

Implementing an Interface (Example)

Eng. Asma Abdel Karim
Computer Engineering Department

22

Implementing an Interface (Example)

Eng. Asma Abdel Karim
Computer Engineering Department

23

A Note Regarding Interfaces

• All data fields of an interface are public static
final.

• All methods of an interface are public
abstract.

• Therefore, Java allows these modifiers to be
omitted as follows:

24 Eng. Asma Abdel Karim
Computer Engineering Department

The Comparable Interface

• Suppose you want to design a generic method to find the
larger of two objects of the same type, such as two
students, two dates, two circles, two rectangles, or two
squares.

• In order to accomplish this, the two objects must be
comparable, so the common behavior for the objects must
be comparable.

• Java provides the Comparable interface for this purpose.
• The interface is defined as follows:

25 Eng. Asma Abdel Karim
Computer Engineering Department

The Comparable Interface (Cont.)

• The compareTo method determines the order of
this object with the specified object o and returns
a negative integer, zero, or a positive integer if
this object is less than, equal to, or greater than
o.

• The Comparable interface is a generic interface.
– The generic type E is replaced by a concrete type

when implementing this interface.

• Many classes in the Java library implement
Comparable to define a natural order for objects.
– The classes Byte, Short, Integer, Long, Float, Double,

Character, BigInteger, BigDecimal, Calendar, String,
and Date all implement the Comparable interface.

26 Eng. Asma Abdel Karim
Computer Engineering Department

The Comparable Interface (Example)

27 Eng. Asma Abdel Karim
Computer Engineering Department

The Comparable Interface (Cont.)

• Thus, numbers are comparable, strings are
comparable, and so are dates.

• You can use the compareTo method to compare
two numbers, two strings, and two dates.

• Example:
System.out.println(new Integer(3).compareTo(new
Integer(5)));

System.out.println("ABC".compareTo("ABE"));

java.util.Date date1 = new java.util.Date(2013, 1, 1);

java.util.Date date2 = new java.util.Date(2012, 1, 1);

System.out.println(date1.compareTo(date2));

 28 Eng. Asma Abdel Karim
Computer Engineering Department

The Comparable Interface (Cont.)

• Let n be an Integer object:

• Let s be a String object:

• Let d be a Date object:

29 Eng. Asma Abdel Karim
Computer Engineering Department

The Comparable Interface (Cont.)

• Since all Comparable objects have the
compareTo method:

– The java.util.Arrays.sort(Object[]) method in the
Java API uses the compareTo method to compare
and sorts the objects in an array.

– Provided that the objects are instances of the
Comparable interface.

30 Eng. Asma Abdel Karim
Computer Engineering Department

The Comparable Interface (Example)

31 Eng. Asma Abdel Karim
Computer Engineering Department

The Comparable Interface
Comparable Rectangle (UML Diagram)

32 Eng. Asma Abdel Karim
Computer Engineering Department

The Comparable Interface
Comparable Rectangle (Code)

33 Eng. Asma Abdel Karim
Computer Engineering Department

The Comparable Interface
SortRectangles.java

34 Eng. Asma Abdel Karim
Computer Engineering Department

Interfaces vs. Abstract Classes

35 Eng. Asma Abdel Karim
Computer Engineering Department

Variables Constructors Methods

Abstract Class No restrictions. Constructors are invoked by
subclasses through

constructor chaining. An
abstract class cannot be

instantiated using the new
operator

No restrictions.

Interface All variables must
be public static

final.

No constructors. An interface
cannot be instantiated using

the new operator.

All methods must be
public abstract

instance methods.

More on Interfaces

• Java allows only single inheritance for class
extension, but allow multiple inheritance for
interface extension.

• For example:

36 Eng. Asma Abdel Karim
Computer Engineering Department

More on Interfaces (Cont.)

• An interface can inherit other interfaces using the
extends keyword.
– Such an interface is called a sub-interface.
– An interface can extend other interfaces but not classes.

• For example, NewInterface in the following code is a
sub-interface of interface1, …., and interfaceN:

– A class implementing NewInterface must implement the
abstract methods defined in NewInterface, Interface1, ….,
and InterfaceN.

37 Eng. Asma Abdel Karim
Computer Engineering Department

More on Interfaces (Cont.)

• All classes share a single root, the object class,
but there is no single root for interfaces.

• A variable of an interface type can reference
any instance of the class that implements the
interface.

– If a class implements an interface, the interface is
like a superclass for the class.

38 Eng. Asma Abdel Karim
Computer Engineering Department

More on Interfaces (Cont.)

• Suppose c is an instance of class2. c is also an instance
of Object, Class1, Interface1, Interface1_1,
Interface1_2, Interface2_1, and Interface2_2.

39 Eng. Asma Abdel Karim

Computer Engineering Department

Design Guide: Interface or Abstract
Class

• Abstract classes and interfaces can both be used to specify
common behavior of objects.

• How to decide whether to use an interface or an abstract
class?
– In general, a strong is-a relationship that clearly describes a

parent-child relationship should be modeled using classes.
• For example, since an orange is a fruit, their relationship should be

modeled using class inheritance.

• A weak is-a relationship, also known as an is-kind-of
relationship, indicates that an object possesses a certain
property.
– A weak is-a relationship can be modeled using interfaces.
– When it is desired to define a common supertype for unrelated

classes, an interface should be used.

40 Eng. Asma Abdel Karim
Computer Engineering Department

Class Design Guidelines
Cohesion

• A class should describe a single entity, and all the class
operations should logically fit together to support a
coherent purpose.

• You can use a class for students, for example, but you
should not combine students and staff in the same class,
because students and staff are different entities.

• A single entity with many responsibilities can be broken
into several classes to separate the responsibilities.

• The classes String, StringBuilder, and StringBuffer all deal
with strings, for example, but have different
responsibilities.
– The String class deals with immutable strings.
– The StringBuilder class is for creating mutable strings.
– The StringBuffer class is similar to StringBuilder except that

StringBuffer contains synchronized methods for updating
strings.

41 Eng. Asma Abdel Karim
Computer Engineering Department

Class Design Guidelines
Consistency

• Follow standard Java programming style and naming conventions.
• Choose informative names for classes, data fields, and methods.
• A popular style is to place the data declaration before the

constructor and place constructors before methods.
• Make the names consistent.

– It is not a good practice to choose different names for similar
operations. For example, the length() method returns the size of a
String, a StringBuilder, and a StringBuffer. It would be inconsistent if
different names were used for this method in these classes.

• In general, you should consistently provide a public no-arg
constructor for constructing a default instance.
– If a class does not support a no-arg constructor, document the reason.
– If no constructors are defined explicitly, a public default no-arg

constructor with an empty body is assumed.

• If you want to prevent users from creating an object for a class, you
can declare a private constructor in the class, as is the case for the
Math class.

42 Eng. Asma Abdel Karim
Computer Engineering Department

Class Design Guidelines
Encapsulation

• A class should use the private modifier to hide
its data from direct access by clients.

• This makes the class easy to maintain.

• Provide a getter method only if you want the
data field to be readable.

• Provide a setter method only if you want the
data field to be updateable.

43 Eng. Asma Abdel Karim
Computer Engineering Department

Object-Oriented Problem Solving

Exception Handling
Based on Chapter 12 of “Introduction to Java

Programming” by Y. Daniel Liang.

Eng. Asma Abdel Karim
Computer Engineering Department

Outline
• Introduction (12.1)
• Exception Handling Overview (12.2)
• Exception Types (12.3)
• More on Exception Handling (12.4)

– Declaring Exceptions (12.4.1)
– Throwing Exceptions (12.4.2)
– Catching Exceptions (12.4.3)
– Getting Information from Exceptions (12.4.4)
– Example: Declaring, Throwing, and Catching Exceptions (12.4.5)

• The finally Clause (12.5)
• When to use Exceptions? (12.6)
• Rethrowing Exceptions (12.7)
• Chained Exceptions (12.8)
• Defining Custom Exception Classes (12.9)

Eng. Asma Abdel Karim
Computer Engineering Department

2

Introduction

• Runtime errors occur while a program is running if the JVM
detects an operation that is impossible to carry out.
– If you access an array using an index that is out of bounds, you

will get a runtime error with an
ArrayIndexOutOfBoundsException.

– If you enter a double value when your program expects an
integer, you will get a runtime error with an
InputMismatchException.

• In Java, runtime errors are thrown as exceptions.
• An exception is an object that represents an error or a

condition that prevents execution from proceeding
normally.

• If the exception is not handled, the program will terminate
abnormally.
– Exception handling enables a program to deal with exceptional

situations and continue its normal execution.
Eng. Asma Abdel Karim
Computer Engineering Department

3

Exception Handling Overview
Quotient.java

Eng. Asma Abdel Karim
Computer Engineering Department

4

Exception Handling Overview (Cont.)
QuotientWithIf.java

Eng. Asma Abdel Karim
Computer Engineering Department

5

Exception Handling Overview (Cont.)
QuotientWithMethod.java

Eng. Asma Abdel Karim
Computer Engineering Department

6

Exception Handling Overview (Cont.)
QuotientWithMethod.java (Output)

Eng. Asma Abdel Karim
Computer Engineering Department

7

Program is terminated if
number2 equals 0.

Problem: what if the caller
should decide whether to
terminate the program!

Exception Handling Overview
QuotientWithException.java

Eng. Asma Abdel Karim
Computer Engineering Department

8

Exception Handling Overview
QuotientWithException.java (Output)

Eng. Asma Abdel Karim
Computer Engineering Department

9

Exception Handling Overview

Eng. Asma Abdel Karim
Computer Engineering Department

10

Exception Handling Overview
Benefit of Exception Handling

• The key benefit of exception handling is
separating the detection of an error (done in a
called method) from the handling of an error
(done in the calling method).
– Often the called method does not know what to

do in case of error.

– This is typically the case for the library methods.
• The library method can detect the error, but only the

caller knows what needs to be done when an error
occurs.

Eng. Asma Abdel Karim
Computer Engineering Department

11

Exception Handling Overview
InputMismatchExceptionDemo.java

12 Eng. Asma Abdel Karim
Computer Engineering Department

Exception Handling Overview
InputMismatchExceptionDemo.java (Output)

13 Eng. Asma Abdel Karim
Computer Engineering Department

Exception Types

• Exceptions are objects, and objects are
defined using classes.

• The root class for all exceptions is
java.lang.Throwable.

• There are many predefined exception classes
in the Java API.

• You can also define your own exception
classes.

Eng. Asma Abdel Karim
Computer Engineering Department

14

Exception Types (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

15

Exception Types (Cont.)

• The Throwable class is the root of all exception
classes.
– All Java exception classes inherit directly or indirectly

from Throwable.
– You can create your own exception classes by

extending Exception or a subclass of Exception.

• The exception classes can be classified into three
major types:
– System Errors.
– Runtime Exceptions.
– Other exceptions.

Eng. Asma Abdel Karim
Computer Engineering Department

16

Exception Types: System Errors

• System errors are thrown by the JVM and are
represented in the Error class.

• The Error class describes internal system errors,
though such errors rarely occur.
– If one occurs, there is little you can do beyond

notifying the user and trying to terminate the
program gracefully.

Eng. Asma Abdel Karim
Computer Engineering Department

17

Exception Types: Runtime Exceptions

• Runtime exceptions are represented in the
RunTimeException class.
– Describes programming errors, such as bad casting, accessing

an out-of-bounds array, and numeric errors.

Eng. Asma Abdel Karim
Computer Engineering Department

18

Exception Types: Other Exceptions

Eng. Asma Abdel Karim
Computer Engineering Department

19

• Other exceptions are represented in the
Exception class.

– Describes errors caused by your program and by
external circumstances.

Exception Types: Checked and Unchecked
Exceptions

Eng. Asma Abdel Karim
Computer Engineering Department

20

• RunTimeException, Error and their subclasses are
known as unchecked exceptions.
– In most cases, unchecked exceptions reflect

programming logic errors that are unrecoverable.
– To avoid cumbersome overuse of try-catch blocks,

Java does not mandate that you write code to catch or
declare unchecked exceptions.

• All other exceptions are known as checked
exceptions.
– The compiler forces the programmer to check and

deal with them in a try-catch block or declare it in the
method header.

More On Exception Handling

Eng. Asma Abdel Karim
Computer Engineering Department

21

• Java exception handling model is based on three
operations:
– Declaring an exception.
– Throwing an exception.
– Catching an exception.

More On Exception Handling
Declaring Exceptions

Eng. Asma Abdel Karim
Computer Engineering Department

22

• Every method must state the types of checked
exceptions it might throw.
– This is known as declaring exceptions.

– Java does not require that you declare unchecked
exceptions explicitly in the method.

• To declare an exception in a method, use the
throws keyword in the method header.

• Example:

 public void myMethod() throws IOException

More On Exception Handling
Declaring Exceptions (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

23

• If the method might throw multiple
exceptions, add a list of the exceptions,
separated by commas after throws:

 public void myMethod() throws Exception1,
Exception2, …, ExceptionN

• If a method does not declare exceptions in the
superclass, you cannot override it to declare
exceptions in the subclass.

More On Exception Handling
Throwing Exceptions

Eng. Asma Abdel Karim
Computer Engineering Department

24

• A program that detects an error can create an instance of
an appropriate exception type and throw it.
– This is known as throwing an exception.

• Example:
 Suppose the program detects that a negative argument is

passed when it should be nonnegative, the program can
create an instance of IllegalArgumentException and throw
it as follows:

 IllegalArgumentException ex = new
IllegalArgumentException (“Wrong Argument”);

 throw ex;
 OR
 throw new IllegalArgumentException (“Wrong Argument”);

More On Exception Handling
Throwing Exceptions (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

25

• In general, each exception class in the Java API
has at least two constructors:
– A no-arg constructor, and

– A constructor with a String argument that
describes the exception.
• The argument is called the exception message, which

can be obtained using getMessage();

• Note that:
– The keyword to declare an exception is throws.

– The keyword to throw an exception is throw.

More On Exception Handling
Catching Exceptions

Eng. Asma Abdel Karim
Computer Engineering Department

26

• When an exception is thrown, it can be caught and handled in
a try-catch block, as follows:

 try{
 statements; //statements that may throw exception
 }
 catch (Exception1 exVar1){
 handler for exception1;
 }
 catch (Exception2 exVar2){
 handler for exception2;
 }
 …
 catch (ExceptionN exVarN){
 handler for exceptionN;
 }

More On Exception Handling
Catching Exceptions (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

27

• If no exceptions arise during the execution of the
try block, the catch blocks are skipped.

• If one of the statements inside the try block
throws an exception:

– Java skips the remaining statements in the try block,
and

– Starts the process of finding the code to handle the
exception, which is called catching an exception.

• The code that handles the exception is called the exception
handler.

More On Exception Handling
Catching Exceptions (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

28

• An exception handler is found by propagating the exception
backward through a chain of method calls, starting from
the current method.

• Each catch block is examined in turn, from first to last, to
see whether the type of the exception object is an instance
of the exception class in the catch block
– If so, the exception object is assigned to the variable declared,

and the code in the catch block is executed.
– If no handler is found, Java exits this method, passes the

exception to the method that invoked the method, and
continues the same process to find a handler.

– If no handler is found in the chain of methods being invoked,
the program terminates and prints an error message to the
console.

Catching Exceptions: An Example

Eng. Asma Abdel Karim
Computer Engineering Department

29

Catching Exceptions: An Example (Case 1)

Eng. Asma Abdel Karim
Computer Engineering Department

30

• If the exception type is Exception3:

– It is caught by the catch block for handling exception
ex3 in method2.

– Statement 5 is skipped, and statement6 is executed.

Catching Exceptions: An Example (Case 2)

Eng. Asma Abdel Karim
Computer Engineering Department

31

• If the exception type is Exception2:
– Method2 is aborted, the control is returned to method1.

– The exception is caught by the catch block for handling
exception ex2 in method1.

– Statement3 is skipped, and statement4 is executed.

Catching Exceptions: An Example (Case 3)

Eng. Asma Abdel Karim
Computer Engineering Department

32

• If the exception type is Exception1:
– Method2 and method1 are aborted, the control is returned to

the main method.
– The exception is caught by the catch block for handling

exception ex1 in the main method.
– Statement1 is skipped, and statement2 is executed.

Catching Exceptions: An Example (Case 4)

Eng. Asma Abdel Karim
Computer Engineering Department

33

• If the exception type is not caught in
method2, method1, or the main method:

– Program terminates, and statement1 and
statement2 are not executed.

Eng. Asma Abdel Karim
Computer Engineering Department

34

More on Catching Exceptions

• Various exception classes can be derived from a common
superclass.
– If a catch block catches exception objects of a superclass, it can catch

all the exception objects of the subclasses of the superclass.

• The order in which exceptions are specified in catch blocks is
important.
– A compile error will result if a catch block for a superclass type

appears before a catch block for a subclass type.

Eng. Asma Abdel Karim
Computer Engineering Department

35

More on Catching Exceptions (Cont.)

• Java forces you to deal with checked exceptions.

• If a method declares a checked exception (i.e., an exception other
than Error or RuntimeException), you must invoke it in a try-catch
block or declare to throw the exception in the calling method.

– For example, suppose that method p1 invokes method p2, and p2 may
throw a checked exception (e.g., IOException); you have to write the code
as shown in (a) or (b) below.

Eng. Asma Abdel Karim
Computer Engineering Department

36

More on Catching Exceptions (Cont.)

• You can use the new JDK 7 multi-catch feature to simplify
coding for the exceptions with the same handling code.

• The syntax is:

Eng. Asma Abdel Karim
Computer Engineering Department

37

Getting Information from Exceptions

• An exception object contains valuable information
about the exception.

Eng. Asma Abdel Karim
Computer Engineering Department

38

TestException.java

Eng. Asma Abdel Karim
Computer Engineering Department

39

TestException.java (Output)

Eng. Asma Abdel Karim
Computer Engineering Department

40

Example: Declaring, Throwing, and Catching
Exceptions (CircleWithException.java)

public class CircleWithException{
 private double radius;
 private static int numberOfObjects=0;

 public CircleWithException(double newRadius){
 setRadius(newRadius);
 numberOfObjects++;
 }

 public void setRadius(double newRadius) throws IllegalArgumentException{
 if (newRadius>=0) radius = newRadius;
 else throw new IllegalArgumentException("Radius cannot be negative!");
 }

 public static int getNumberOfObjects(){
 return numberOfObjects;
 }
}

Eng. Asma Abdel Karim
Computer Engineering Department

41

Example: Declaring, Throwing, and Catching
Exceptions (TestCircleWithException.java)

public class TestCircleWithException{
 public static void main (String [] args){
 try{
 CircleWithException C1 = new CircleWithException(5);
 CircleWithException C2 = new CircleWithException(-5);
 CircleWithException C3 = new CircleWithException(0);
 }
 catch (IllegalArgumentException ex){
 System.out.println(ex);
 }
 System.out.println("Number of circle objects created: "+

 CircleWithException.getNumberOfObjects());
 }
}

Output:
java.lang.IllegalArgumentException: Radius cannot be negative!
Number of circle objects created: 1

Eng. Asma Abdel Karim
Computer Engineering Department

42

The finally Clause

• The finally clause is executed under all circumstances,
regardless of whether an exception occurs in the try
block or is caught.

• The syntax for the finally clause is as follows:
 try {

 Statements
 }
 catch (TheException ex){
 handling ex;
 }
 finally{
 finalStatements;
 }

Eng. Asma Abdel Karim
Computer Engineering Department

43

The finally Clause (Cont.)

• If no exception arises in the try block:
– The finally clause is executed, and
– The next statement after the try statement is executed.

• If a statement causes an exception in the try block that is caught in
the catch block:
– The rest of the statements in the try block are skipped,
– The catch block is executed,
– The finally clause is executed, and
– The next statement after the try statement is executed.

• If a statement causes an exception that is not caught in any catch
block:
– The other statements in the try block are skipped,
– The finally clause is executed, and
– The exception is passed to the caller of this method.

• Note: the finally block executes even if there is a return statement
prior to reaching the finally block.

Eng. Asma Abdel Karim
Computer Engineering Department

44

When to Use Exceptions?

• The try block contains the code that is executed in normal
circumstances.

• The catch block contains the code that is executed in
exceptional circumstances.

• Exception handling separates error-handling code from
normal programming tasks, thus making programs easier to
read and to modify.

• Be aware, however, that exception handling usually requires
more time and resources.
– Requires instantiating a new exception object,

– Rolling back the call stack, and

– Propagating the exception through the chain of methods invoked to
search for the handler.

Eng. Asma Abdel Karim
Computer Engineering Department

45

When to Use Exceptions? (Cont.)

• An exception occurs in a method:

– If you want the exception to be processed by the method’s
caller, you should create an exception object and throw it.

– If you can handle the exception in the method where it
occurs, there is no need to throw or use exception objects.
• Simple errors that may occur in individual methods are best

handled without throwing exceptions.

• This can be done by using if statements to check for errors.

Eng. Asma Abdel Karim
Computer Engineering Department

46

Rethrowing Exceptions

• Java allows an exception handler to rethrow the
exception if 1) the handler cannot fully process the
exception or 2) simply wants to let its caller be notified of
the exception.

• The syntax for re-throwing an exception is as follows:
 try{
 statements;
 }
 catch (TheException ex){
 perform operations;
 throw ex;
 }

Eng. Asma Abdel Karim
Computer Engineering Department

47

Chained Exceptions

• Throwing an exception along with another exception
forms a chained exception.

• Sometimes, you may need to throw a new exception
(with additional information) along with the original
exception.

• This is called chained exceptions.

Eng. Asma Abdel Karim
Computer Engineering Department

48

Chained Exceptions
ChainedExceptionDemo.java

Eng. Asma Abdel Karim
Computer Engineering Department

49

Chained Exceptions
ChainedExceptionDemo.java (Output)

Eng. Asma Abdel Karim
Computer Engineering Department

50

Defining Custom Exception Classes

• Java provides quite a few exception classes.

• Use them whenever possible instead of defining your
own exception classes.

• However, if you run into a problem that cannot be
adequately described by the predefined exception
classes, you can create your own exception class,
derived from Exception or from a subclass of
Exception, such as IOException.

Eng. Asma Abdel Karim
Computer Engineering Department

51

Defining Custom Exception Classes
InvalidRadiusException.java

Eng. Asma Abdel Karim
Computer Engineering Department

52

Defining Custom Exception Classes
TestCircleWithCustomException.java

Eng. Asma Abdel Karim
Computer Engineering Department

53

Defining Custom Exception Classes
TestCircleWithCustomException.java (Cont.)

Eng. Asma Abdel Karim
Computer Engineering Department

54

Defining Custom Exception Classes
TestCircleWithCustomException.java (Cont.)

