DIGITAL

ELECTRONICS

Digital Electronics CPE

Dr.Mohammad Abdel-Majeed
Assistant Professor
University of Jordan

Outline

- Course Introduction
- Course Information
- Textbook
- Grading
- Course Outline

Course Information

- Instructor: Mohammad Abdel-Majeed
- Email: m.abdel-majeed@ju.edu.jo
- Homepage: www.piazza.com
- Office:

CPE 421

- Office Hours:
- Prerequisites:

Textbook

- CMOS Digital Integrated Circuits Analysis and Design.(Kang and Leblebici)
- CMOS VLSI Design, A Circuits And Systems Perspective.(Weste and Harris)

Grading Information

- Grading
- Midterm Exam 30\%
- Assignments and Quizzes 20\%
- Final Exam 50\%
- Policies
- Attendance is required
- Cheating will not be tolerated
- No Makeup Exams

Objective and Organization

- Provide in-depth understanding of the intricate issues in digital circuit design like:
- Performance
- Interconnect
- Reliability
- Low-power design
- Sequence of topics
- Design Flow
- MOS transistor (Overview)
- MOS Inverter
- MOS Inverter switching characteristics
- Combinational MOS circuits
- Sequential MOS Circuits
- MOS Fabrication, schematic and Layout.(LTSpice and Electric Tools)

Objective and Organization

Figure 1.4 The ordering of topics covered in a typical digital integrated circuits course.

Lecture1
 Design Flow
 Dr.Mohammad Abdel-Majeed
 Assistant Professor
 University of Jordan

Coping with Complexity

- How to design System-on-Chip?
- Many millions (even billions!) of transistors
- Tens to hundreds of engineers
- Structured Design
- Design Partitioning

Structured Design

\qquad : Divide and Conquer

- Recursively system into modules
- \qquad :
- Reuse modules wherever possible
- Ex: Standard cell library
\qquad : well-formed interfaces
- Allows modules to be treated as black boxes
\qquad
- Physical and temporal

Structural Decomposition of 4-b Adder

Structural Decomposition of 4-b Adder

- Easier to handle

Structural Hierarchy of 16-b Adder

Structural Hierarchy of 16-b Adder

Figure 1.25 Structural hierarchy of the 16-bit adder circuit.

Concepts of Regularity

- Regularity
- decomposition into similar blocks
- Example: parallel multiplication array

(a)

(b)

Figure 1.26 Regular design of (a) 2-1 MUX and (b) DFF, using inverters and tri-state buffers as basic building blocks.

Concepts of Modularity and Locality

- Modularity
- Functional blocks have well-defined functions and interfaces
- Each block can be designed independently and combined easily
- Design process parallelized
- Locality
- Ensures connections are mostly between neighboring modules
- Delay minimized by avoiding long interconnect

Design Partitioning

- Architecture: User's perspective, what does it do?
- Instruction set, registers
- MIPS, x86, Alpha, PIC, ARM, ...
- Microarchitecture
- Single cycle, multcycle, pipelined, superscalar?
- Logic: how are functional blocks constructed
- Ripple carry, carry lookahead, carry select adders
- Circuit: how are transistors used
- Complementary CMOS, pass transistors, domino
- Physical: chip layout
- Datapaths, memories, random logic

Flow of Circuit

More Simplified VLSI Design Flow

- Simplified design flow

- Verification plays an important role in every step
- Top-down and bottom-up approaches combined in

Behavioral
Behavioral
Representation

Fabrication and Testing

Example 1.1 (1)

- Problem: Design of 1-bit full-adder circuit using _ nm, twin-well CMOS technology
- Specifications:
- Propagation delay of sum and carry_out < \qquad
- Transition delay of sum and carry_out < \qquad
- Circuit area < $10 \mu \mathrm{~m}^{2}$
- Dynamic power dissipation ($@ V_{D D}=1.1 \mathrm{~V}$ and $f_{\max }=500 \mathrm{MHz}$) $<20 \mu \mathrm{~W}$

Example 1.1 (2)

- Boolean Description
- Boolean Functions:
- A , B = Two inputs
- $C=$ Carry in
- sum_out $=A B C+A B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C+A^{\prime} C^{\prime} B$
- carry_out $=A B+A C+B C$
- Alternatively, sum_out $=A B C+(A+B+C)(\text { carry_out })^{\prime}$

Example 1.1 (2)

- Boolean Description
- Boolean Functions:
- A , B = Two inputs
- $\mathrm{C}=$ Carry in
- sum_out $=A B C+A B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C+A^{\prime} C^{\prime} B$
- carry_out $=A B+A C+B C$
- Alternatively, sum_out = $A B C+(A+B+C)(\text { carry_out })^{\prime}$

A	B	C	sum_out	carry_out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Example 1.1 (3)

Figure 1.7 Gate-level schematic of the one-bit full-adder circuit.

Example 1.1 (4)

- Transistor-level circuit
- AND = Series-connected nMOS
- OR = Parallel- connected nMOS
- pMOS network = dual of nMOS network

Figure 1.8 Transistor-level schematic of the one-bit full-adder circuit.

Example 1.1 (6)

- Initial sizes

- $\mathrm{nMOS},(W / L)=90 \mathrm{~nm} / 50 \mathrm{~nm}$
- pMOS, (W/L) = 90nm/50nm
- May need to be changed depending on performance

Example 1.1 (7)

- Timing constraint violation
- sum_out and carry_out violate timing constraints
- Worst-case delay 250 ps (> 220 ps)
- Modification necessary

Worst-Case Delay, Minimum-Size Transistors

Figure 1.11. Simulated output waveforms of the full adder circuit with minimum transistor dimensions, showing the signal propagatio delay during one of the worst-case transitions.

Example 1.1 (8)

- Resizing transistors to improve design
- is an iterative process
- To meet timing specifications (W/L) of (n / p)MOS is increased

Figure 1.13. Simulated output waveforms of the full-adder circuit with optimized transistor dimensions, showing the signal propagation delay during the same worst-case transition.

Example 1.1 (8)

- Layout Design
- Design rule checker (DRC) tool used to check violation of design rules
- Parasitic capacitances and resistances extracted
- Design Verification
- Extracted parasitics used to create SPICE input file
- Simulation is run
- Simulation Results
- Not all specifications met

Example 1.1 (9)

- New and compact layout for 1-bit full adder (optimized)
- Now, all the design specifications are satisfied
- Propagation and transition (rise/fall) delay within 220 ps
- Dynamic power dissipation $=4.9$ $\mu \mathrm{W}(<20 \mu \mathrm{~W})$
- Area $=(2.04 \mu \mathrm{~m} \times 3.01 \mu \mathrm{~m})=6.14$ $\mu \mathrm{m}^{2}\left(<10 \mu \mathrm{~m}^{2}\right)$

Figure 1.12. Layout of the full-adder circuit, with optimized transistor dimensions.

8-bit Binary Adder (1)

- Obtained by cascading 8 full adders - called "carry ripple adder"
- Speed limited by the delay of carry bits

Figure 1.15 Block diagram of a carryripple adder chain consisting of full adders.

8-bit Binary Adder (2)

- Simulation results

- Sum bit of last adder stage is generated last
- Overall delay as long as 0.7 ns

Y-Chart

$\underset{\text { Geomain }}{\text { Geotrical }}$ / Physical
Domain

VLSI Design Styles

- Field Programmable Gate Array (FPGA)
- Consists of
- I/O buffers
- Array of configurable logic blocks (CLBs)
- Programmable interconnect structure
- Contains thousands of logic gates
- Routing between CLBs and I/O blocks done by setting the configurable switch matrices
- Proper choice of design style is essential to delivering the product in time with low cost
- Full-custom
- Semi-custom

Field Programmable Gate Array (1)

Figure 1.27 General architecture of Xilinx FPGAs.
https://www.youtube.com/watch?v=gUsHwi4M4xE

Verilog Example

```
module fulladder(input a, b, c,
    output s, cout);
```

sum

$$
\mathrm{s} 1(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~s})
$$

$$
\text { carry } c 1(a, b, c, c o u t) ;
$$

endmodule

module carry(input a, b, c, output cout)
assign cout $=(a \& b)|(a \& c)|(b \& c) ;$
endmodule

Gate-level Netlist(Synthesis)

```
module carry(input a, b, c,
                output cout)
```

 wire \(\mathrm{x}, \mathrm{y}, \mathrm{z}\);
 and \(\mathrm{g} 1(\mathrm{x}, \mathrm{a}, \mathrm{b})\);
 and \(\mathrm{g} 2(\mathrm{y}, \mathrm{a}, \mathrm{c})\);
 and \(\mathrm{g} 3(\mathrm{z}, \mathrm{b}, \mathrm{c})\);
 or g 4 (cout, \(\mathrm{x}, \mathrm{y}, \mathrm{z}\));
 endmodule

Place and route

Circuit Design

- How should logic be implemented?
- NANDs and NORs vs. ANDs and ORs?
- Fan-in and fan-out?
- How wide should transistors be?
- These choices affect speed, area, power
- Logic synthesis makes these choices for you
- Good enough for many applications
- Hand-crafted circuits are still better

Standard-Cell Based Design (1)

- One of the most prevalent full custom design styles
- Commonly used logic cells are optimized and developed
- Several versions are stored in a standard library cell
- Each cell is characterized by
- Delay time vs. load capacitance
- Circuit simulation model
- Timing simulation model
- Fault simulation model
- Cell data for place-and-route
- Mask data

Standard-Cell Based Design (2

- Each cell layout is designed with fixed height
- Cells can be placed side-by-side
- Routing of intercell connection is easy

Figure 1.37 A simplified floorplan of standard-cells based design.

Figure 1.36 A standard cell layout example.

- Floorplan for a standardcell based design contains
- I/O frame, cell rows
- Channels between rows
- channels may be reduced or removed if over-the-cell routing is done

Standard-Cell Based Design (3)

- Common bus may be incorporated if cells must share same input and/or output signals

Figure 1.38 Simplified floorplan of a standard-cells based design, consisting of two separate blocks and a common signal bus.

Structured ASIC (FPGA Vs. Standard Cell ASIC

- Easy to Design
- Short Development Time
- Low NRE Costs
- Design Size Limited
- Design Complexity Limited
- Performance Limited
- High Power Consumption
- High Per-Unit Cost
- Difficult to Design
- Long Development Time
- High NRE Costs
- Support Large Designs
- Support Complex Designs
- High Performance
- Low Power Consumption
- Low Per-Unit Cost (at high volume)

Structured ASIC's Combine the Best of Both Worlds

- Generally speaking

- 100:33:1 ratio between the number of gates in a given area for \qquad ,
- ___:______ ratio for performance (based on clock frequency)
- ___:_____ ratio for power

Full Custom Design (1)

- Design is done from scratch
- Geometry, orientation and placement of every transistor done by designer
- Development cost and time very high
- "Design Reuse" becoming popular to reduce cost and time
- Example of a true full custom design - design of memory cell (static or dynamic)

Full Custom Design (2)

- Full custom design rarely used due to high labor cost
- Rather combination of different design styles are used to develop a chip

Design Quality

- Important metrics for measuring the quality of design
- Testability
- Yield and manufacturability
- Reliability
- Technology updateability

Testability

- Fabricated chips should be fully testable which requires
- Generation of good test vectors
- Availability of reliable test fixture at speed
- Design of testable chip

Yield and Manufacturability

- Yield may be defined in two ways
- (1) No. of good tested chips divided by the total no. of tested chips
- (2) No. of good tested chips divided by the total no. of chip sites available at the start of wafer processing - strictest definition
- Chip yield can be further divided into
- Functional yield - obtained by testing the functionality of the chip at a speed lower than required
- Weeds out problems of short, open and leakage
- Can detect logic and circuit design faults
- Parametric yield - performed at the required speed on chips that passed functional test
- Delay testing done in this phase

Reliability

- Reliability depends on design and process conditions
- Major causes of chip reliability problem are
- Electrostatic discharge (ESD) and electrical overstress (EOS) and electromigration
- Latch-up in CMOS I/O internal circuits
- Hot carrier induced aging
- Oxide breakdown and single event upset
- Power and ground bouncing
- On-chip noise and crosstalk
- Measures taken to ensure reliability
- Metal wire widened to avoid over-etching
- Rise time of signals applied to nMOS gate reduced to avoid aging

Technology Updateability

- Process technology advancing at a high pace
- Design styles should be chosen such that chips are technology updateable
- "Silicon Compilation" - where physical layout is done automatically - is used

References

Backup

MIPS Architecture

- Example: subset of MIPS processor architecture
- Drawn from Patterson \& Hennessy
- MIPS is a 32-bit architecture with 32 registers
- Consider 8-bit subset using 8-bit datapath
- Only implement 8 registers (\$0 - \$7)
- \$0 hardwired to 00000000
- 8-bit program counter
- You'll build this processor in the labs
- Illustrate the key concepts in VLSI design

Instruction Set

Table 1.7 MIPS instruction set (subset supported)

Instruction	Function		Encoding	op	funct
add \$1, \$2, \$3	addition:	\$1 \rightarrow \$ + \$	R	000000	100000
sub \$1, \$2, \$3	subtraction:	\$1 \rightarrow \$ - \$ 3	R	000000	100010
and \$1, \$2, \$3	bitwise and:	\$1 \rightarrow \$2 and \$3	R	000000	100100
or \$1, \$2, \$3	bitwise or:	\$1 \rightarrow \$2 or \$3	R	000000	100101
slt \$1, \$2, \$3	set less than:	$\begin{aligned} & \$ 1 \rightarrow 1 \text { if } \$ 2<\$ 3 \\ & \$ 1 \rightarrow 0 \text { otherwise } \end{aligned}$	R	000000	101010
addi \$1, \$2,	add immediate:	\$1 \rightarrow \$ + imm	1	001000	n/a
beq \$1, \$2, imm	branch if equal:	$P C \rightarrow P C+i m m^{\text {a }}$	I	000100	n/a
j destination	jump:	PC_destination ${ }^{\text {a }}$	J	000010	n/a
lb \$1, imm(\$2)	load byte:	\$1 \rightarrow mem[\$2 + imm]	1	100000	n/a
sb \$1, imm(\$2)	store byte:	mem[\$2 + imm] \rightarrow \$1	I	110000	n/a

Instruction Encoding

- 32-bit instruction encoding

- Requires four cycles to fetch on 8-bit datapath

MIPS Microarchitecture

- Multicycle μ architecture ([Paterson04], [Harris07])

Multicycle Controller

Logic Design

- Start at top level
- Hierarchically decompose MIPS into units
- Top-level interface

Block Diagram

Hierarchical Design

CMOS Transistor

Dr.Mohammad Abdel-Majeed
Assistant Professor
University of Jordan

How Does a Transistor Work?

- http://www.youtube.com/watch?v=IcrBqCFLHIY

Terminal Voltages

- Mode of operation depends on $\mathrm{V}_{\mathrm{g}}, \mathrm{V}_{\mathrm{d}}, \mathrm{V}_{\mathrm{s}}$
- $\mathrm{V}_{\mathrm{gs}}=\mathrm{V}_{\mathrm{g}}-\mathrm{V}_{\mathrm{s}}$
- $\mathrm{V}_{\mathrm{gd}}=\mathrm{V}_{\mathrm{g}}-\mathrm{V}_{\mathrm{d}}$
- $\mathrm{V}_{\mathrm{ds}}=\mathrm{V}_{\mathrm{d}}-\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{gd}}$

- Source and drain are symmetric diffusion terminals
- By convention, source is terminal at lower voltage
- Hence $V_{d s} \geq 0$
- nMOS body is grounded. First assume source is 0 too.
- Three regions of operation
- Cutoff
- Linear
- Saturation

NMOS cross section

Cutoff

Linear

Saturation

nMOS Cutoff

- No channel
- $I_{\mathrm{ds}} \approx 0$

nMOS Linear

- Channel forms
- Current flows from d to s
- e^{-}from s to d
- $I_{d s}$ increases with $V_{d s}$
- Similar to linear resistor

nMOS Saturation

- Channel pinches off
- $I_{d s}$ independent of V_{ds}
- We say current saturates
- Similar to current source

I-V Characteristics

- In Linear region, I_{ds} depends on
- How much charge is in the channel?
- How fast is the charge moving?

Channel Charge

- MOS structure looks like parallel plate capacitor while operating in inversions
- Gate - oxide - channel
- $\mathrm{Q}_{\text {channel }}=$
- $\mathrm{C}=\mathrm{C}_{\mathrm{g}}=$
- $\mathrm{V}=$

Carrier velocity

- Charge is carried by e-
- Electrons are propelled by the lateral electric field between source and drain
- E =
- Carrier velocity v proportional to lateral E-field
- $v=$
- Time for carrier to cross channel:
- $t=$

nMOS Linear I-V

- Now we know
- How much charge $Q_{\text {channel }}$ is in the channel
- How much time t each carrier takes to cross

$$
\begin{aligned}
I_{d s} & =\frac{Q_{\text {channel }}}{t} \\
& =\mu C_{\mathrm{ox}} \frac{W}{L}\left(V_{g s}-V_{t}-V_{d s} / 2\right) V_{d s} \\
& =\beta\left(V_{g s}-V_{t}-V_{d s} / 2\right) V_{d s} \quad \beta=\mu C_{\mathrm{ox}} \frac{W}{L}
\end{aligned}
$$

nMOS Saturation I-V

- If $V_{g d}<V_{t}$, channel pinches off near drain

$$
\text { When } V_{d s}>V_{d s a t}=V_{g s}-V_{t}
$$

- Now drain voltage no longer increases current

$$
\begin{aligned}
I_{d s} & =\beta\left(V_{g s}-V_{t}-V_{d s a t} / 2\right) V_{d s a t} \\
& =\frac{\beta}{2}\left(V_{g s}-V_{t}\right)^{2}
\end{aligned}
$$

nMOS I-V Summary

- Shockley $1^{\text {st }}$ order transistor models

$$
I_{d s}=\left\{\begin{array}{ccc}
0 & V_{g s}<V_{t} & \text { cutoff } \\
\beta\left(V_{g s}-V_{t}-V_{d s} / 2\right) V_{d s} & V_{d s}<V_{d s a t} & \text { linear } \\
\frac{\beta}{2}\left(V_{g s}-V_{t}\right)^{2} & V_{d s}>V_{d s a t} & \text { saturation }
\end{array}\right.
$$

Example

- Plot I_{ds} vs. V_{ds} Given that
- $\mathrm{t}_{\mathrm{ox}}=100 \AA$
- $\mu=350 \mathrm{~cm}^{2} / \mathrm{V}^{*} \mathrm{~s}$
- $\mathrm{V}_{\mathrm{t}}=0.7 \mathrm{~V}$
- $\xi_{0}=8.85 * 10^{-12} \mathrm{~F} / \mathrm{m}$
- $\xi_{0 x}=3.9$
- $\mathrm{V}_{\mathrm{gs}}=0,1,2,3,4,5$
- Use $W / L=4 / 2 \lambda$
max
() Jorban

Example

$$
\beta=\mu C_{o x} \frac{W}{L}=(350)\left(\frac{3.9 \times 8.85 \cdot 10^{-14}}{100 \cdot 10^{-8}}\right)\left(\frac{W}{L}\right)=120 \frac{W}{L} \mu \mathrm{~A} / \mathrm{V}^{2}
$$

pMOS I-V

- All dopings and voltages are inverted for pMOS
- Source is the more positive terminal
- Mobility μ_{p} is determined by holes
- Typically 2-3x lower than that of electrons μ_{n}
- $120 \mathrm{~cm}^{2} / \mathrm{V} \bullet \mathrm{s}$ in AMI $0.6 \mu \mathrm{~m}$ process
- Thus pMOS must be wider to provide same current
- In this class, assume

$$
\mu_{\mathrm{n}} / \mu_{\mathrm{p}}=2
$$

Problem

- NMOS Transistor
- $\mathrm{V}_{\mathrm{th}}=.7 \quad \mathrm{~V}_{\mathrm{s}}=1 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{G}}=2.5 \quad \mathrm{~V}_{\mathrm{d}}=4 \mathrm{~V} \quad \mathrm{~B}=23 \mathrm{uA} / \mathrm{V}^{2}$
- Find W/L

The Threshold Voltage (1)(Optional)

- Physical components of the threshold voltage of a MOS structure
- The work function difference between the gate and the channel.
- The gate component to change the surface potential.
- The gate voltage component to offset the depletion region charge.
- The voltage component to offset the fixed charges in the gate oxide and in the silicon-oxide interface.

The Threshold Voltage (2) (Optional)

- The work function difference $\Phi_{G C}$ between the gate and the channel determines the built-in potential of the MOS system.
- For metal gate

$$
\Phi_{G C}=\phi_{F}(\text { substrate })-\phi_{M}
$$

- For polysilicon gate

$$
\Phi_{G C}=\phi_{F}(\text { substrate })-\phi_{F}(\text { gate })
$$

The Threshold Voltage (3) (Optional)

- Because of the fixed acceptor ions located in the depletion region near the surface, depletion charge exists.
- Depletion region charge

$$
Q_{B 0}=-\sqrt{2 q \cdot N_{A} \cdot \varepsilon_{S i} \cdot\left|-2 \phi_{F}\right|}
$$

- Consider the voltage bias of the body.

$$
Q_{B}=-\sqrt{2 q \cdot N_{A} \cdot \varepsilon_{S i} \cdot\left|-2 \phi_{F}+V_{S B}\right|}
$$

- The component that offsets the depletion region charge is equal to:

$$
\begin{gathered}
-Q_{B} / C_{O X} \\
C_{o X}=\frac{\varepsilon_{o x}}{t_{o x}}
\end{gathered}
$$

The Threshold Voltage (4) (Optional)

- There always exists a fixed positive charge density Q_{ox} at the interface between the gate oxide and the silicon substrate.
- The gate voltage component that is necessary to offset this positive charge at the interface is
- For zero substrate bias

$$
V_{T 0}=\Phi_{G C}-2 \phi_{F}(\text { substrate })-\frac{Q_{B 0}}{C_{o x}}
$$

The Threshold Voltage (optional)

- We can use the (3.23) for both n-channel device and p-channel device.
- However, some of the terms and coefficient in (3.23) have different polarities for the n-channel case and for the p-channel case.
- The substrate Fermi potential ϕ_{F} is negative in nMOS , positive in PMOS .
- The depletion region charge density $Q_{B 0}$ and Q_{B} are negative in nMOS, positive pMOS.
- The substrate bias coefficient γ is positive in nMOS, negative in pMOS.
- The substrate bias voltage $\mathrm{V}_{S B}$ is positive in nMOS , negative in pMOS .

Example 3.2 (1) (optional)

- Calculate the threshold voltage $V_{T O}\left(@ V_{S B}=0\right)$.
- $N_{A}=4 \times 10^{18} \mathrm{~cm}^{-3}$
- $N_{D}=2 \times 10^{20} \mathrm{~cm}^{-3}$
- $t_{o x}=26.3 \AA$
- $\mathrm{N}_{\mathrm{i}=} 1.45^{*} 10^{18}$
- Sol.
- Calculate the Fermi potentials

$$
\phi_{F}(\text { substrate })=\frac{k T}{q} \ln \left(\frac{n_{i}}{N_{A}}\right)=0.026 \mathrm{~V} \cdot \ln \left(\frac{1.45 \cdot 10^{10}}{4 \times 10^{18}}\right)=-0.51 \mathrm{~V}
$$

- Calculate the work function difference

$$
\Phi_{G C}=\phi_{F}(\text { substrate })-\phi_{F}(\text { gate })=-0.51 \mathrm{~V}-0.55 \mathrm{~V}=-1.06 \mathrm{~V}
$$

Example 3.2 (2) (optional)

- Sol.(Cont'd)

- The depletion region charge density at $V_{S B}=0$

$$
\begin{aligned}
Q_{B 0} & =-\sqrt{2 \cdot q \cdot N_{A} \cdot \varepsilon_{S i} \cdot \mid-2 \phi_{F}(\text { substrate }) \mid} \\
& =-\sqrt{2 \cdot 1.6 \cdot 10^{-19} \cdot\left(4 \times 10^{18}\right) \cdot 11.7 \cdot 8.85 \cdot 10^{-14} \cdot|-2 \cdot 0.51|} \\
& =-1.16 \cdot 10^{-6} \mathrm{C} / \mathrm{cm}^{2}
\end{aligned}
$$

- The gate oxide capacitance per unit area

$$
C_{o x}=\frac{\varepsilon_{o x}}{t_{o x}}=\frac{3.97 \cdot 8.85 \cdot 10^{-14} \mathrm{~F} / \mathrm{cm}}{1.6 \cdot 10^{-7} \mathrm{~cm}}=2.2 \cdot 10^{-6} \mathrm{~F} / \mathrm{cm}^{2}
$$

- Combine all components

$$
\begin{aligned}
V_{T 0} & =\Phi_{G C}-2 \phi_{F}(\text { substrate })-\frac{Q_{B 0}}{C_{o x}} \\
& =-1.06-(-1.02)-(-0.53)
\end{aligned}
$$

Body effect

$$
V_{T}=V_{T 0}+\gamma\left(\sqrt{\left|-2 \phi_{F}+V_{S B}\right|}-\sqrt{\left|2 \phi_{F}\right|}\right)
$$

Outline

- Nonideal Transistor Behavior
- High Field Effects
- Mobility Degradation
- Velocity Saturation
- Channel Length Modulation
- Threshold Voltage Effects
- Body Effect
- Drain-Induced Barrier Lowering
- Short Channel Effect
- Leakage
- Subthreshold Leakage
- Gate Leakage
- Junction Leakage
- Process and Environmental Variations

Ideal Transistor I-V

- Shockley long-channel transistor models

Ideal vs. Simulated nMOS I-V Plot

- 65 nm IBM process, $\mathrm{V}_{\mathrm{DD}}=1.0 \mathrm{~V}$
$I_{d s}(\mu A)$

4: Nonideal Transistor Theory CMOS VLSI Design ${ }^{4 t h}$ Ed.

ON and OFF Current

- $\mathrm{I}_{\mathrm{on}}=\mathrm{I}_{\mathrm{ds}} @ \mathrm{~V}_{\mathrm{gs}}=\mathrm{V}_{\mathrm{ds}}=\mathrm{V}_{\mathrm{DD}}$
- Saturation

- $\mathrm{I}_{\text {off }}=\mathrm{I}_{\mathrm{ds}} @ \mathrm{~V}_{\mathrm{gs}}=0, \mathrm{~V}_{\mathrm{ds}}=\mathrm{V}_{\mathrm{DD}}$
- Cutoff

Electric Fields Effects

- Vertical electric field: $\mathrm{E}_{\text {vert }}=$ \qquad
- Attracts carriers into channel
- Long channel: $\mathrm{Q}_{\text {channel }} \propto \mathrm{E}_{\text {vert }}$
- Lateral electric field: $\mathrm{E}_{\text {lat }}=$ \qquad
- Accelerates carriers from drain to source
- Long channel: $\mathrm{v}=\mu \mathrm{E}_{\text {lat }}$

Coffee Cart Analogy

- Tired student runs from VLSI lab to coffee cart
- Freshmen are pouring out of the physics lecture hall
- V_{ds} is how long you have been up
- Your velocity $=$ fatigue \times mobility
- V_{gs} is a wind blowing you against the glass $\left(\mathrm{SiO}_{2}\right)$ wall
- At high V_{gs}, you are buffeted against the wall - Mobility degradation

I At high V_{ds}, you scatter off freshmen, fall down, get up - Velocity saturation

- Don't confuse this with the saturation region

Mobility Degradation

- High $E_{\text {vert }}$ effectively reduces mobility
- Collisions with oxide interface

$$
\mu_{\mathrm{eff}-n}=\frac{540 \frac{\mathrm{~cm}^{2}}{\mathrm{~V} \cdot \mathrm{~s}}}{1+\left(\frac{V_{g s}+V_{t}}{0.54 \frac{\mathrm{~V}}{\mathrm{~nm}} t_{\mathrm{ox}}}\right)^{1.85}} \quad \mu_{\mathrm{eff}-p}=\frac{185 \frac{\mathrm{~cm}^{2}}{\mathrm{~V} \cdot \mathrm{~s}}}{1+\frac{\left|V_{g s}+1.5 V_{t}\right|}{0.338 \frac{\mathrm{~V}}{\mathrm{~nm}} t_{\mathrm{ox}}}}
$$

Velocity Saturation

\square At high $\mathrm{E}_{\text {lat }}$, carrier velocity rolls off

- Carriers scatter off atoms in silicon lattice
- Velocity reaches $v_{\text {sat }}$
- Electrons: $10^{7} \mathrm{~cm} / \mathrm{s}$
- Holes: $8 \times 10^{6} \mathrm{~cm} / \mathrm{s}$
- Better model

$$
v=\left\{\begin{array}{ccc}
\frac{\mu_{\mathrm{eff}} E}{1+\frac{E}{E_{c}}} & E<E_{c} & E_{c}=\frac{2 v_{\text {sat }}}{\mu_{\mathrm{eff}}} \\
v_{\text {sat }} & E \geq E_{c} &
\end{array}\right.
$$

Vel Sat I-V Effects

- Ideal transistor ON current increases with $\mathrm{V}_{\mathrm{DD}}{ }^{2}$

$$
I_{d s}=\mu C_{\mathrm{ox}} \frac{W}{L} \frac{\left(V_{g s}-V_{t}\right)^{2}}{2}=\frac{\beta}{2}\left(V_{g s}-V_{t}\right)^{2}
$$

- Velocity-saturated $O N$ current increases with V_{DD}

$$
I_{d s}=C_{\mathrm{ox}} W\left(V_{g s}-V_{t}\right) v_{\max }
$$

- Real transistors are partially velocity saturated
- Approximate with α-power law model
$-I_{d s} \propto V_{D D}{ }^{\alpha}$
$-1<\alpha<2$ determined empirically (≈ 1.3 for 65 nm)

α-Power Model

$$
I_{d s}=\left\{\begin{array}{cccc}
0 & V_{g s}<V_{t} & \text { cutoff } & I_{d s a t}=P_{c} \frac{\beta}{2}\left(V_{g s}-V_{t}\right)^{\alpha} \\
I_{d s a t} \frac{V_{d s}}{V_{d s a t}} & V_{d s}<V_{d s a t} & \text { linear } & V_{d s a t}=P_{v}\left(V_{g s}-V_{t}\right)^{\alpha / 2} \\
I_{d s a t} & V_{d s}>V_{d s a t} & \text { saturation } &
\end{array}\right.
$$

Channel Length Modulation

- Reverse-biased $p-n$ junctions form a depletion region
- Region between n and p with no carriers
- Width of depletion L_{d} region grows with reverse bias
$-L_{\text {eff }}=L-L_{d}$
\square Shorter $\mathrm{L}_{\text {eff }}$ gives \qquad current
$-I_{d s}$ __ with $V_{d s}$
- Even in saturation

Chan Length Mod I-V

$$
I_{d s}=\frac{\beta}{2}\left(V_{g s}-V_{t}\right)^{2}\left(1+\lambda V_{d s}\right)
$$

- $\lambda=$ channel length modulation coefficient
- not feature size
- Empirically fit to I-V characteristics

Threshold Voltage Effects

- V_{t} is $V_{g s}$ for which the channel starts to invert

Ideal models assumed V_{t} is constant
Really depends (weakly) on almost everything else:

- Body voltage: Body Effect
- Drain voltage: Drain-Induced Barrier Lowering
- Channel length: Short Channel Effect

Body Effect

- Body is a fourth transistor terminal
$\square \quad V_{\text {sb }}$ affects the charge required to invert the channel
- Increasing V_{s} or decreasing V_{b} increases V_{t}

$$
V_{t}=V_{t 0}+\gamma\left(\sqrt{\phi_{s}+V_{s b}}-\sqrt{\phi_{s}}\right)
$$

] $\phi_{\mathrm{s}}=$ surface potential at threshold

$$
\phi_{s}=2 v_{T} \ln \frac{N_{A}}{n_{i}}
$$

- Depends on doping level N_{A}
- And intrinsic carrier concentration n_{i}
- $\gamma=$ body effect coefficient

$$
\gamma=\frac{t_{\mathrm{ox}}}{\varepsilon_{\mathrm{ox}}} \sqrt{2 \mathrm{q} \varepsilon_{\mathrm{si}} N_{A}}=\frac{\sqrt{2 \mathrm{q} \varepsilon_{\mathrm{si}} N_{A}}}{C_{\mathrm{ox}}}
$$

Body Effect Cont.

- For small source-to-body voltage, treat as linear

$$
\begin{aligned}
V_{t} & =V_{t 0}+k_{\gamma} V_{s b} \\
k_{\gamma} & =\frac{\gamma}{2 \sqrt{\phi_{s}}}
\end{aligned}=\frac{\sqrt{\frac{\mathrm{q} \varepsilon_{\mathrm{si}} N_{A}}{v_{T} \ln \frac{N_{A}}{n_{i}}}}}{2 C_{\mathrm{ox}}}, ~ ? ~ \$
$$

DIBL

- Electric field from drain affects channel
- More pronounced in small transistors where the drain is closer to the channel
- Drain-Induced Barrier Lowering
- Drain voltage also affect V_{t}

$$
V_{t}^{\prime}=V_{t}-\eta V_{d s}
$$

- High drain voltage causes current to \qquad

Short Channel Effect

- In small transistors, source/drain depletion regions extend into the channel
- Impacts the amount of charge required to invert the channel
- And thus makes V_{t} a function of channel length
\square Short channel effect: V_{t} increases with L
- Some processes exhibit a reverse short channel effect in which V_{t} decreases with L

Leakage

What about current in cutoff?

- Simulated results
\square What differs?

4: Nonideal Transistor Theory CMOS VLSI Design 4th Ed.

Leakage Sources

- Subthreshold conduction
- Transistors can't abruptly turn ON or OFF
- Dominant source in contemporary transistors
- Gate leakage
- Tunneling through ultrathin gate dielectric
- Junction leakage
- Reverse-biased PN junction diode current

Subthreshold Leakage

- Subthreshold leakage exponential with $\mathrm{V}_{\text {gs }}$

$$
I_{d s}=I_{d s 0} \mathrm{e}^{\frac{V_{s s}-V_{0}++V_{V_{d s}}-V_{V} V_{d s}}{n v_{T}}}\left(1-\mathrm{e}^{\frac{-V_{d s}}{V_{T}}}\right)
$$

- n is process dependent
- typically 1.3-1.7
- Rewrite relative to $I_{\text {off }}$ on log scale

$$
I_{d s}=I_{\text {off }} 10^{\frac{V_{g s}+\eta\left(V_{d s}-V_{d d}\right)-k \gamma V_{s b}}{S}}\left(1-\mathrm{e}^{\frac{-V_{d s}}{v_{t}}}\right)
$$

$$
S=\left[\frac{d\left(\log _{10} I_{d s}\right)}{d V_{g s}}\right]^{-1}=n v_{T} \ln 10
$$

- $\mathrm{S} \approx 100 \mathrm{mV} /$ decade @ room temperature

Gate Leakage

- Carriers tunnel thorough very thin gate oxides
- Exponentially sensitive to $t_{0 x}$ and $V_{D D}$ $I_{\text {gate }}=W A\left(\frac{V_{D D}}{t_{\text {ox }}}\right)^{2} \mathrm{e}^{-B \frac{t_{\text {ox }}}{V_{D D}}}$
- A and B are tech constants
- Greater for electrons
- So nMOS gates leak more

- Negligible for older processes ($\mathrm{t}_{\mathrm{ox}}>20 \AA$)
- Critically important at 65 nm and below ($\mathrm{t}_{\mathrm{ox}} \approx 10.5 \AA$)

Junction Leakage

- Reverse-biased p-n junctions have some leakage
- Ordinary diode leakage
- Band-to-band tunneling (BTBT)
- Gate-induced drain leakage (GIDL)

Diode Leakage

- Reverse-biased p-n junctions have some leakage

$$
I_{D}=I_{S}\left(\mathrm{e}^{\frac{V_{D}}{v_{T}}}-1\right)
$$

- At any significant negative diode voltage, $I_{D}=-I_{S}$
$\square I_{s}$ depends on doping levels
- And area and perimeter of diffusion regions
- Typically $<1 \mathrm{fA} / \mu \mathrm{m}^{2}$ (negligible)

Band-to-Band Tunneling

\square Tunneling across heavily doped $p-n$ junctions

- Especially sidewall between drain \& channel when halo doping is used to increase V_{t}
- Increases junction leakage to significant levels
$-X_{\mathrm{j}}$: sidewall junction depth
- E_{g} : bandgap voltage
- A, B: tech constants

Gate-Induced Drain Leakage

- Occurs at overlap between gate and drain
- Most pronounced when drain is at $V_{D D}$, gate is at a negative voltage
- Thwarts efforts to reduce subthreshold leakage using a negative gate voltage

Temperature Sensitivity

\square Increasing temperature

- Reduces mobility
- Reduces V_{t}
- I_{ON} \qquad with temperature
- I $\mathrm{I}_{\text {OFF }}$ \qquad with temperature

So What?

. So what if transistors are not ideal?

- They still behave like switches.
\square But these effects matter for...
- Supply voltage choice
- Logical effort
- Quiescent power consumption
- Pass transistors
- Temperature of operation

Parameter Variation

- Transistors have uncertainty in parameters
- Process: $\mathrm{L}_{\text {eff }}, \mathrm{V}_{\mathrm{t}}, \mathrm{t}_{\mathrm{ox}}$ of nMOS and pMOS
- Vary around typical (T) values
- Fast (F)
- $\mathrm{L}_{\text {eff }}$: \qquad
$-V_{t}$:
$-\mathrm{t}_{\mathrm{ox}}$: \qquad
- Slow (S): opposite

[Not all parameters are independent for nMOS and pMOS

Environmental Variation

- $V_{D D}$ and T also vary in time and space
- Fast:

$$
\begin{aligned}
& \text { - } V_{D D}: \\
& -T:
\end{aligned}
$$

Corner	Voltage	Temperature
F		
T	1.8	70 C
S		

Process Corners

- Process corners describe worst case variations
- If a design works in all corners, it will probably work for any variation.
- Describe corner with four letters (T, F, S)
- nMOS speed
- pMOS speed
- Voltage
- Temperature

Important Corners

- Some critical simulation corners include

Purpose	nMOS	pMOS	V DD	Temp
Cycle time				
Power				
Subthreshold leakage				

Inverter Static Characteristics

Dr.Mohammad Abdel-Majeed
Assistant Professor
University of Jordan

Combinational Logic

- A combinational logic cell, logic circuit or gate is generally a multiple input, single output system that performs a Boolean function - In the positive logic convention, logic 1 is shown by high voltage VDD and logic 0 by low voltage of zero

Ideal Inverter and Inverter Threshold Voltage

- Logic symbol \& truth table

VTC of an NMOs inverter

- Vin is \qquad
- Vout is \qquad
- VSB = \qquad
- The circuit connected to the output node can be represented using the capacitance $\mathrm{C}_{\text {out }}$
- $I_{D}=I_{L}(\ldots \quad$). By solving this equation we can derive the VTC

VTC

nMOS Inverter: Schematic \& VTC

- $\mathrm{V}_{\mathrm{OH}}: \mathrm{V}_{\text {OUT,MAX }}$ when the output level is logic "1"
- $\mathrm{V}_{\mathrm{OL}}: \mathrm{V}_{\text {Out,Min }}$ when the output level is logic "0"
- $\mathrm{V}_{\mathrm{IL}}: \mathrm{V}_{\text {IN,MAX }}$ which can be interpreted as logic "0"
- $\mathrm{V}_{\mathrm{IH}}: \mathrm{V}_{\mathrm{IN}, \mathrm{MIN}}$ which can be interpreted as logic "1"
- Inverter threshold Voltage V_{M} is defined as the point where $\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {out }}$

- \qquad $<=$ Vin $<=$ \qquad
- Vin is interpreted as " 0 "
- This means that V_{IL} is low enough to ensure a logic 1 output
- ____ $<=$ Vin <= \qquad
- Vin is interpreted as "1"
- This means that V_{IH} is low enough to ensure a logic 0 output

Tolerance

- Ability to interpret range of values as logic 0 or logic 1 allows the circuits to operate with certain \qquad
- Noise sources
- Unwanted capacitive coupling
- Radiations
- ...

Noise Margin

Input Noise Margin

Maxımum
allowable
Mınımum allowable voltage:

- By definition the output of the first inverter is V_{OL}
- The output signal of the $1^{\text {st }}$ inverter will be perturbed during transmission because of onchip interconnect
- If the input voltage of the $2^{\text {nd }}$ inverter is smaller than V_{01}, then this signal will be interpreted correctly as a logic " 0 " input by $2^{\text {nd }}$ inverter
- But if the input voltage becomes larger than V_{IL}, then it may not be interpreted correctly by the inverter
- Thus, V_{IL} is the maximum allowable voltage at the input of the $2^{\text {nd }}$ inverter

Output Noise Margin

Input Noise Margin

- Assume the output of the $2^{\text {nd }}$ inverter is V_{OH}
- Input of the $3^{\text {rd }}$ inverter will be different from V_{OH} due to noise interference
- If the input voltage of the $3^{\text {rd }}$ inverter is larger than V_{OH} this signal is interpreted correctly as a logic " 1 "
- If the voltage level drops below V_{IH}, the input may not be interpreted as a logic "1"
- Therefore, V_{IH} is the minimum allowable voltage at the input of the $3^{\text {rd }}$ inverter

Noise Margin

- $\mathrm{NM}_{\mathrm{L}}=$
- $\mathrm{NM}_{\mathrm{H}}=$

Power

- Lower consumption extends battery-based operation time for portable systems
- DC power dissipation: $\mathrm{P}_{\mathrm{DC}}=\mathrm{V}_{\mathrm{DD}} \cdot \mathrm{I}_{\mathrm{DC}}$
- DC power is input and output voltage dependent
- To calculate avg DC power assume 50% of the time input is at $\mathrm{V}_{\text {in }}=$ low and 50% at $\mathrm{V}_{\text {in }}=$ high
- $\mathrm{P}_{\mathrm{DC}}=0.5 \mathrm{VDD}\left\{\mathrm{I}_{\mathrm{DC}}\left(\mathrm{V}_{\text {in }}=\right.\right.$ low $\left.)+\mathrm{I}_{\mathrm{DC}}\left(\mathrm{V}_{\text {in }}=h i g h\right)\right\}$
- Inverter type and its design affects the power dissipation significantly

Inverter

- Resistive Load Inverter
- NMOS depletion load inverter
- CMOS inverter

Resistive-Load Inverter

- Resistive-load inverter circuit \& its VTC

Resistive-Load Inverter

- Resistive-load inverter circuit \& its VTC
- $V_{i n}<V_{T 0}$, nMOS off
- $\mathrm{I}_{\mathrm{D}}=$
- $\mathrm{V}_{\text {out }}=$ \qquad
- $V_{i n}>V_{T 0}$, nMOS in sat.
- $V_{d s}=$ \qquad $>V_{\text {in }}-V_{T 0}$
- $I_{R}=$
- $V_{\text {in }}>V_{T O} \& V_{\text {out }}<V_{D S A T}$, nMOS in lin.
- $I_{R=}$

Calculation of V_{OH}

- $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{dd}}-\mathrm{R}_{\mathrm{L}} . \mathrm{I}_{\mathrm{R}}$
- When $\mathrm{V}_{\text {in }}<\mathrm{V}_{\text {To }}$
- Transistor is in
- $I_{R}=I_{D}=0$
- $\mathrm{V}_{\mathrm{OH}}=$ \qquad

Calculation of V_{OL}

- V_{OL} is obtained when $\mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{OH}}=$ \qquad
- $V_{\text {in }}$
- NMOS is in \qquad

- Using KCL $I_{R}=I_{D}$

Calculation of V_{OL}

- V_{OL} is obtained when $\mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{OH}}=$ \qquad
- $\mathrm{V}_{\text {in }}$
- NMOS is in \qquad

- Using KCL $I_{R}=I_{D}$
$\cdot(V d d-V O L) / \mathrm{RL}=\mathrm{B} / 2 \cdot\left(2 .\left(\mathrm{V}_{\mathrm{dd}}-\mathrm{VT}_{0}\right) \cdot \mathrm{VOL}-\mathrm{V}^{2}{ }_{\mathrm{C}}\right.$

- Use the KCL and V_{OL} definition to to find the value of V_{OL}

Calculation of $\mathrm{V}_{\text {IL }}$

- At $V_{\text {in }}=V_{\text {IL }} d V_{\text {out }} / d V_{\text {in }}=-1$
- NMOS is in \qquad
- Using KCL $I_{R}=I_{D}$

Calculation of $\mathrm{V}_{\text {IL }}$

- At $\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IL }} \mathrm{dV}_{\text {out }} / \mathrm{dV} \mathrm{V}_{\text {in }}=-1$
- NMOS is in \qquad
- Using KCL $I_{R}=I_{D}$
- $($ Vdd $-V o u t) / \mathrm{RL}=\mathrm{B} / 2\left(\operatorname{Vin}-\mathrm{VT}_{0}\right)^{2}$
- Differentiate both side
- $-1 / R_{\mathrm{L}} \cdot\left(\mathrm{dV} \mathrm{V}_{\text {out }} / \mathrm{dV} \mathrm{V}_{\text {in }}\right)=\mathrm{B}\left(\mathrm{V}_{\mathrm{IL}}-\mathrm{V}_{\mathrm{TO}}\right)$
- substitute $\mathrm{dV}_{\text {out }} / \mathrm{dV}_{\text {in }}=-1$
- $-1 / R_{L} \cdot(-1)=B\left(V_{\mathrm{IL}}-\mathrm{V}_{\mathrm{TO}}\right)$
- $V_{I L}=V_{T 0}+1 /\left(B \cdot R_{L}\right) \ldots$...eq2)

Calculation of V_{IH}

- At $V_{\text {in }}=V_{\text {IH }} d V_{\text {out }} / d V_{\text {in }}=-1$
- $\mathrm{V}_{\text {in }}$ is slightly larger than V_{OL}
- NMOS is in \qquad

Calculation of V_{IH}

- At $V_{\text {in }}=V_{\text {IH }} d V_{\text {out }} / d V_{\text {in }}=-1$
- $\mathrm{V}_{\text {in }}$ is slightly larger than V_{OL}
- NMOS is in \qquad

- Using KCL $I_{R}=I_{D}$

Input Voltage (V)

- $($ Vdd $-V o u t) / \mathrm{RL}=\mathrm{B} / 2 .\left(2 .\left(\mathrm{V}_{\text {in }}-\mathrm{VT}_{0}\right)\right.$. VOUT $\left.-\mathrm{V}^{2}{ }_{\text {out }}\right)$....eq(1)
- Differentiate both side

- Solve eq1 and eq2 and substitute $d V_{\text {out }} / \mathrm{dV}_{\text {in }}=-1$ and $\mathrm{V}_{\text {in }}$ with V_{IH}

$$
V_{I H}=V_{T 0}+\sqrt{\frac{8}{3} \cdot \frac{V_{D D}}{k_{n} R_{L}}}-\frac{1}{k_{n} R_{L}}
$$

VTC, Power \& Chip Area

- VTC of the resistive-load inverter for different $\left(\mathrm{k}_{\mathrm{n}} \cdot \mathrm{R}_{\mathrm{L}}\right)$

$$
\begin{aligned}
& V_{I H}=V_{T 0}+\sqrt{\frac{8}{3} \cdot \frac{V_{D D}}{k_{n} R_{L}}}-\frac{1}{k_{n} R_{L}} \\
& V_{I L}=V_{T 0}+\frac{1}{k_{n} R_{L}}
\end{aligned}
$$

Power

- $\mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{OH}}$
- NMOS is in Linear
- $I_{D}=I_{R}=\left(V_{d d}-V_{O L}\right) / R_{L}$
- $\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{OL}}$
- NMOS is cutoff
- ID = 0
- $\mathrm{P}_{\mathrm{DC}}($ Average $)=\left(\mathrm{V}_{\mathrm{dd}} / 2\right) .\left(\mathrm{V}_{\mathrm{dd}}-\mathrm{V}_{\mathrm{OL}}\right) / \mathrm{R}_{\mathrm{L}}$

Resistor

- Two possibilities for fabricating resistors:
- Diffused resistor: an isolated n or p -type diffusion region.
- 20-100 ohm/square: needs large area not practical for VLSI
- Metal Resistor
- Undoped polysilicon resistor:
- mask off during poly doping to create about 10 M ohm/square.

Example 5.1 - Inverter Design

- Resistive-load inverter circuit
- $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mu^{*} \mathrm{C}_{\mathrm{ox}}=30 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{TO}}=1 \mathrm{~V}$
- $\mathrm{V}_{\mathrm{OL}}=200 \mathrm{mV}$

- Determine (W/L) ratio of the driver Tr. And R_{L} to obtaın the $\overline{\bar{r}}$ equired VoL
- $\mathrm{V}_{\text {out }}=$ \qquad ,$V_{\text {in }}=$ \qquad . NMOS is in \qquad

$(\mathrm{W} / \mathrm{L})$-Ratio	Load resistor $\left(R_{L}[k \Omega]\right)$	DC power consumption $\left(P_{D C, a v g .}[\mu \mathrm{W}]\right)$
1		
2		
3		
4		
5		
6		

Inverters with MOSFET Load

- Enhancement-Load Inverter

(a)

(b)

Inverters with MOSFET Load

- Enhancement-Load Inverter

Load NMOS operates in \qquad

(a)

Inverters with MOSFET Load

- Enhancement-Load Inverter

Load NMOS operates in \qquad

$\mathrm{V}_{\mathrm{OH}}=$ \qquad
Power
(b)

CMOS Inverter

- Has NMOS and PMOS Transistors
- Cons
- Complexity
- Pros
- Power
- VTC is sharp

(a)

Operation

- $V_{G S, n}$
- $V_{G S, p}$
- $V_{D S, n}$
- $V_{D S, p}$

(a)

Operation

- $\mathrm{V}_{\mathrm{GS}, \mathrm{n}}<\mathrm{V}_{\mathrm{th}, \mathrm{n}}$
- NMOS is OFF
- PMOS operates in \qquad

(a)

Operation

- $\mathrm{V}_{\mathrm{GS}, \mathrm{p}}>\mathrm{V}_{\mathrm{th}, \mathrm{p}}$
- PMOS is OFF
- NMOS operates in \qquad

(a)

Operation

- $\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IL }}$
- NMOS is in \qquad
- PMOS is in \qquad

(a)

Operation

- $\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{M}}=\mathrm{Vdd} / 2$
- NMOS is in \qquad
- PMOS is in \qquad

(a)

Operation

- $\mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{IH}}$
- NMOS is in \qquad
- PMOS is in \qquad

(a)

Region	$\mathrm{V}_{\text {in }}$ in the region	$\mathrm{V}_{\text {out }}$	NMOS	PMOS
A	$<\mathrm{V}_{\mathrm{th}, \mathrm{n}}$	V_{OH}	Cut-off	Linear
B	V_{IL}	$\sim \mathrm{V}_{\mathrm{OH}}$	Sat.	Linear
C	V_{M}	V_{M}	Sat.	Sat.
D	V_{IH}	$\sim \mathrm{V}_{\mathrm{OL}}$	Linear	Sat.
E	$>\mathrm{V}_{\mathrm{tdd}}+\mathrm{V}_{\mathrm{th}, \mathrm{p}}$	V_{OL}	Linear	Cut-off

$\mathrm{V}_{\mathrm{OH}} \& \mathrm{~V}_{\mathrm{OL}}$

- $\mathrm{V}_{\mathrm{OH}}=$
- $\mathrm{V}_{\mathrm{OL}}=$ \qquad
$V_{\text {IL }}$
- $\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}} \rightarrow \mathrm{dV}_{\text {out }} / \mathrm{d}_{\mathrm{in}}=-1$
- NMOS is in \qquad
- PMOS is in \qquad
$V_{\text {IL }}$
- $\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IL }} \rightarrow \mathrm{dV}_{\text {out }} / \mathrm{d} \mathrm{V}_{\text {in }}=-1$
- NMOS is in \qquad
- PMOS is in \qquad
- $B_{n} / 2\left(V_{G S, n}-V_{t h, n}\right)^{2}=B_{p} / 2\left(2 \cdot\left(V_{G S, p}-V_{t h, p}\right) \cdot V_{D S, p}-V_{D S, p}{ }^{2}\right)$

$$
V_{I L}=\frac{2 V_{o u t}+V_{T 0, p}-V_{D D}+k_{R} V_{T 0, n}}{1+k_{R}}
$$

- $\mathrm{K}_{\mathrm{R}}=\mathrm{K}_{\mathrm{n}} / \mathrm{K}_{\mathrm{p}}$
$V_{I H}$
- $\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IH }} \rightarrow \mathrm{dV}_{\text {out }} / \mathrm{d} \mathrm{V}_{\text {in }}=-1$
- NMOS is in \qquad
- PMOS is in \qquad

$V^{I H}$

- $\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{HH}} \rightarrow \mathrm{dV}_{\text {out }} / \mathrm{d} \mathrm{V}_{\text {in }}=-1$
- NMOS is in \qquad
- PMOS is in \qquad
- $B_{p} / 2\left(V_{G S, p}-V_{t h, p}\right)^{2}=B_{n} / 2\left(2\left(V_{G S, n}-V_{t h, n}\right) \cdot V_{D S, n}-V_{D S, n}{ }^{2}\right)$

$$
V_{H H}=\frac{V_{D D}+V_{T 0, p}+k_{R} \cdot\left(2 V_{\text {out }}+V_{T 0, n}\right)}{1+k_{R}}
$$

- $\mathrm{K}_{\mathrm{R}}=\mathrm{K}_{\mathrm{n}} / \mathrm{K}_{\mathrm{p}}$

Inverter threshold voltage

- $V_{\text {in }}=V_{\text {out }}$
- NMOS and PMOS are in Saturation

Inverter threshold voltage

- $\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {out }}$
- NMOS and PMOS are in Saturation

$$
V_{t h}=\frac{V_{T 0, n}+\sqrt{\frac{1}{k_{R}}} \cdot\left(V_{D D}-\left|V_{T 0, p}\right|\right)}{\left(1+\sqrt{\frac{1}{k_{R}}}\right)}
$$

Design of CMOS Inverter

Design of CMOS Inverters (2)

- If symmetric CMOS inverter with $\mathrm{V}_{\mathrm{TO}, \mathrm{n}}=\left|\mathrm{V}_{\mathrm{T} 0, \mathrm{p}}\right|$ and $\mathrm{k}_{\mathrm{R}}=1$,

$$
\begin{aligned}
& V_{I L}=\frac{1}{8} \cdot\left(3 V_{D D}+2 V_{T 0, n}\right)^{\prime \prime} \\
& V_{I H}=\frac{1}{8} \cdot\left(5 V_{D D}-2 V_{T 0, n}\right)
\end{aligned}
$$

$\longrightarrow V_{I L}+V_{I H}=V_{D D}$
in a symmetric inverter
$\begin{array}{ll}\longrightarrow & N M_{L}=V_{I L}-V_{O L}=V_{I L} \\ N M_{H}=V_{O H}-V_{I H}=V_{D D}-V_{I H} \\ & N M_{L}=N M_{H}=V_{I L}\end{array}$

Kickerin

Inverter Transient Characteristics

Dr.Mohammad Abdel-Majeed
Assistant Professor
University of Jordan

Timing Analysis

- Delay models are required for \qquad and the \qquad

Example

Inverter delay

- Cload =

- Cload $=C_{\text {load }}=C_{g d, n}+C_{g d, p}+C_{d b, n}+C_{d b, p}+C_{i n t}+C_{g}$

Delay-Time Definitions: Propagation Delays

Delay-Time Definitions: Rise \& Fall Times

Calculation of Propagation Delay (AVG current method)

- Simplest method : estimating the average capacitance current

Calculation of Propagation Delay (AVG current method)

- Simplest method : estimating the average capacitance current

$$
\begin{aligned}
& \tau_{P H L}=\frac{C_{\text {load }} \cdot \Delta V_{H L}}{I_{\text {avg }, H L}}=\frac{C_{\text {load }} \cdot\left(V_{O H}-V_{50 \%}\right)}{I_{\text {avg }, H L}} \\
& \tau_{P L H}=\frac{C_{\text {load }} \cdot \Delta V_{L H}}{I_{\text {avg }, L H}}=\frac{C_{\text {load }} \cdot\left(V_{50 \%}-V_{O L}\right)}{I_{\text {avg }, L H}}
\end{aligned}
$$

Calculation of Propagation Delay (AVG current method)

- Simplest method : estimating the average capacitance current

$$
\begin{aligned}
& \tau_{P H L}=\frac{C_{\text {load }} \cdot \Delta V_{H L}}{I_{\text {avg }, H L}}=\frac{C_{\text {load }} \cdot\left(V_{O H}-V_{50 \%}\right)}{I_{\text {avg }, H L}} \\
& \tau_{P L H}=\frac{C_{\text {load }} \cdot \Delta V_{L H}}{I_{\text {avg }, L H}}=\frac{C_{\text {load }} \cdot\left(V_{50 \%}-V_{O L}\right)}{I_{\text {avg }, L H}}
\end{aligned}
$$

- The average current

$$
\begin{aligned}
& I_{\text {avg }, H L}=\frac{1}{2}\left[i_{C}\left(V_{\text {in }}=V_{O H}, V_{\text {out }}=V_{O H}\right)+i_{C}\left(V_{\text {in }}=V_{O H}, V_{o u t}=V_{50 \%}\right)\right] \\
& I_{\text {avg }, L H}=\frac{1}{2}\left[i_{C}\left(V_{\text {in }}=V_{O L}, V_{\text {out }}=V_{50 \%}\right)+i_{C}\left(V_{\text {in }}=V_{O L}, V_{\text {out }}=V_{O L}\right)\right]
\end{aligned}
$$

Calculation of Rise and fall time (AVG current method)

- $T_{\text {rise }}=t_{D}-t C=\frac{C_{\text {load }}\left(V_{90 \%}-V_{10 \%}\right)}{I_{\text {avg rise }}}$
- $I_{\text {avg, rise }}=\frac{I_{C}+I D}{2}$
- $I_{\text {avg }, \text { rise }}=\frac{I_{s d p}\left(V i n=V O L, V o u t=V_{10 \%}\right)+I s d p\left(\text { Vin }=V O L, \text { Vout }=V_{10 \%}\right)}{2}$

Example

- CMOS inverter with NMOS $\mu \mathrm{C}_{\mathrm{ox}}=20 \mathrm{uA} / \mathrm{V}^{2},(\mathrm{~W} / \mathrm{L})_{\mathrm{n}}=10, \mathrm{~V}_{\mathrm{t}, \mathrm{n}}=1 \mathrm{~V}$, $\mathrm{C}_{\text {load }} 1_{\mathrm{pF}}$ and $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
- Calculate output fall time

Example 6.4 (2)

- The falling-output propagation delay

Example 6.4 (3)

- The (Area x Delay) product

Ring oscillator

CMOS Ring Oscillator Circuit

MOSFET Capacitor

- The on-chip capacitance found in MOS circuit are in general complicated functions of the layout geometries and the manufacturing processes.
- We will develop simple approximations for the on-chip MOSFET capacitances.

MOSFET Capacitor (2)

MOSFET Capacitor (3)

- MOSFET parasitic capacitances are observed bet terminals.
- Most of the capacitances are distributed and the complex.
- Capacitances can be models as
- Lumped
- distributed

- Parasitic device capacitances can be classified into two major group
- Oxide-related capacitance
- Junction capacitance

Oxide-related Capacitances (1)

- The gate electrode overlaps both the source region and the drain region at the edges.
- The two overlap capacitances that arise as a result of this structural arrangement.
- C_{GD} (overlap)
- C_{GS} (overlap)
- The overlap capacitances can be found as

$$
\begin{aligned}
& C_{G S}(\text { overlap })=C_{o x} \cdot W \cdot L_{D} \\
& C_{G D}(\text { overlap })=C_{o x} \cdot W \cdot L_{D}
\end{aligned}
$$

$$
C_{o x}=\frac{\varepsilon_{o x}}{t_{o x}}
$$

Oxide-related Capacitances (2)

- Capacitances which result from the interaction between the gate voltage and the channel charge.
- $\mathrm{C}_{\mathrm{gs}}, \mathrm{C}_{\mathrm{gd}}, \mathrm{C}_{\mathrm{gb}}$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display
(a)

(b)

(c)

Oxide-related Capacitances (2)

- Cut-off mode
- The surface is not inverted.
- No conducting channel between source and drain
- $\mathrm{C}_{\mathrm{gs}}=\mathrm{C}_{\mathrm{gd}}=0$
- The gate-to-substrate capacitance can be approximated by

$$
C_{g b}=C_{o x} \cdot W \cdot L
$$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
(a)

Oxide-related Capacitances (2)

- Linear mode
- The inverted channel extends across the MOSFET.
- Conducting inversion layer shields the substrate from the gate electric field :

$$
C_{g b}=0
$$

- The distributed gate-to-channel capacitance (equal S,D)

$$
C_{g s} \square C_{g d} \cong \frac{1}{2} \cdot C_{o x} \cdot W \cdot L
$$

(b)

Oxide-related Capacitances (3)

- Saturation mode
- The inversion region is pinched off.
- The gate-to-drain capacitance component is equal to zero
- $\mathrm{C}_{\mathrm{gd}}=0$
- Source still linked to the conducting channel.
- Shielding effect still remain : $\mathrm{C}_{\mathrm{gb}}=0$
- The distributed gate-to-channel capacitance as seen between the gate and the source can be approximated by

$$
C_{g s} \cong \frac{2}{3} \cdot C_{o x} \cdot W \cdot L
$$

Oxide-related Capacitances (4)

Capacitance	Cut-off	Linear	Saturation
C_{gb} (total)	$\mathrm{C}_{\text {ox }} \mathrm{WL}$	0	0
$\mathrm{C}_{\text {gd }}$ (total)	$\mathrm{C}_{\text {ox }} \mathrm{WL}_{\text {D }}$	$1 / 2 C_{0 \times} W \mathrm{WL}+\mathrm{C}_{0 \times} W L_{\text {D }}$	$\mathrm{C}_{0 \times} \mathrm{WL}_{\mathrm{D}}$
C_{gs} (total)	$\mathrm{C}_{0 \times} \mathrm{WL}_{\text {D }}$	$1 / 2 C_{0 x} W L+C_{0 x} W L_{D}$	$2 / 3 \mathrm{C}_{0 \times} \mathrm{WL}+\mathrm{C}_{\text {ox }} W L_{\text {D }}$

- We have to combine the distributed C_{gs} and C_{gd} values found here with the relevant overlap capacitance values, in order to calculate the total capacitance between the external device terminals.

Oxide-related Capacitances (5)

- Variation of the distributed (gate-to-channel) oxide capacitances as function of gate-to-source voltage.

Junction Capacitances (1)

- Consider the voltage-dependent source-substrate and drain-substrate junction capacitances: $\mathrm{C}_{\mathrm{sb}}, \mathrm{C}_{\mathrm{db}}$

Junction	Area	Type
1	$\mathrm{~W} \cdot \mathrm{x}_{\mathrm{j}}$	$\mathrm{n}+/ \mathrm{p}$
2	$\mathrm{Y} \cdot \mathrm{x}_{\mathrm{j}}$	$\mathrm{n}+/ \mathrm{p}+$
3	$\mathrm{~W} \cdot \mathrm{x}_{\mathrm{j}}$	$\mathrm{n}+/ \mathrm{p}+$
4	$\mathrm{Y} \cdot \mathrm{x}_{\mathrm{j}}$	$\mathrm{n}+/ \mathrm{p}+$
5	$\mathrm{~W} \cdot \mathrm{Y}$	$\mathrm{n}+/ \mathrm{p}$

Junction Capacitances (2)

- C_{sb} and C_{db} are due to the depletion charge surrounding the respective source or drain diffusion regions embedded in the substrate.
- both of these junctions are reverse-biased under normal operating conditions.
- The amount of junction capacitance is a function of the applied terminal voltages.
- Junction capacitances associated with sidewalls $(2,3,4)$ will be different from the other junction capacitance.

Estimation of Interconnect Parasitics

- Main components of the output Ic
- Internal parasitic capacitances of tr
- Interconnect capacitances
- Input capacitances of the fan-out g

Interconnect Delay

- Dealing with the implications and optimizing a system for speed
- Estimating the interconnect parasitics in a large chip
- Simulating the transient effects.

Statistical distribution

- Statistical distribution of interconnection length on a typical chip

Interconnect Capacitance Estimation (1)

- A simplified view of six interconnections on three different levels

Interconnect Capacitance Estimation (2)

- The section of a single interconnect

Interconnect Capacitance Estimation (3)

- The total parasitic capacitance

Thickness value of different layers

Field oxide thickness	$3 \mu \mathrm{~m}$
Gate oxide thickness	2.6 mm
Polysilicon thickness	$1 \mu \mathrm{~m}$ (minimum width $0.06 \mu \mathrm{~m}$)
Poly-metal oxide thickness	$1.1 \mu \mathrm{~m}$
Metal 1 thickness	$1.8 \mu \mathrm{~m}$ (minimum width $0.09 \mu \mathrm{~m})$
Metal 2~7 thickness	$2.2 \mu \mathrm{~m}$ (minimum width $0.1 \mu \mathrm{~m})$
Metal 8~9 thickness	$9 \mu \mathrm{~m}$ (minimum width $0.4 \mu \mathrm{~m})$
Via oxide thickness (PO-M1)	$1.75 \mu \mathrm{~m}$
Via oxide thickness (M1-M6)	$2.2 \mu \mathrm{~m}$
Via oxide thickness (M6-M9)	$9 \mu \mathrm{~m}$
n+ junction depth	23 nm
\mathbf{p}^{+}junction depth	28 nm
n-well junction depth	$3 \mu \mathrm{~m}$

Interconnect Resistance Estimation

- Total resistance in indicated current direction

$$
R_{\text {wire }}=\rho \cdot \frac{l}{w \cdot t}=R_{\text {sheet }}\left(\frac{l}{w}\right)
$$

- The sheet resistivity of the line

$$
R_{\text {sheet }}=\left(\frac{\rho}{t}\right)
$$

RC Delay Models

- Simple lumped RC model \& T-model

$$
\begin{aligned}
& V_{\text {out }}(t)=V_{D D}\left(1-\exp \left(-\frac{t}{R C}\right)\right) \\
& V_{S O \sigma_{0}}=V_{D D}\left(1-\exp \left(-\frac{\tau_{P L H}}{R C}\right)\right) \\
& \tau_{P L H} \approx 0.69 R C
\end{aligned}
$$

- Distributed RC ladder network model

Various RC Models

(a) lumped RC model
(c) T2-model

(e) $\pi 2$-model

(b) T-model

(f) $\pi 3$-model

The Elmore Delay (1)

- The general topology of the RC tree network
- Let $P i$ denote the unique path from the input node to node $i, i=1,2,3, \ldots, N$.
- Let $P i j=P i « P j$ denote the portion of the path between the input and the node i, which is common to the path between the input and node j.

The Elmore Delay (2)

$$
\begin{aligned}
\tau_{D 7}= & R_{1} C_{1}+R_{1} C_{2}+R_{1} C_{3}+R_{1} C_{4}+R_{1} C_{5}+\left(R_{1}+R_{6}\right) C_{6} \bar{I}_{\sigma_{1}}^{(} \\
& +\left(R_{1}+R_{6}+R_{7}\right) C_{7}+\left(R_{1}+R_{6}+R_{7}\right) C_{8} \\
\tau_{D 5}= & R_{1} C_{1}+\left(R_{1}+R_{2}\right) C_{2}+\left(R_{1}+R_{2}\right) C_{3}+\left(R_{1}+R_{2}+R_{4}\right) C_{4} \\
& +\left(R_{1}+R_{2}+R_{4}+R_{5}\right) C_{5}+R_{1} C_{6}+R_{1} C_{7}+R_{1} C_{8}
\end{aligned}
$$

$$
\begin{aligned}
\tau_{D N}=\sum_{j=1}^{N} C_{j} \sum_{k=1}^{j} R_{k} \quad \tau_{D N} & =\sum_{j=1}^{N}\left(\frac{C}{N}\right) \sum_{k=1}^{j}\left(\frac{R}{N}\right) \quad \tau_{D N}=\frac{R C}{2} \quad \text { for } N \rightarrow \infty \\
& =\left(\frac{C}{N}\right)\left(\frac{R}{N}\right)\left(\frac{N(N+1)}{2}\right)=R C\left(\frac{N+1}{2 N}\right)
\end{aligned}
$$

Example 6.5 (optional)

-1) Examine the propagation delay across a long polysilicon interconnect line (length $=1000 \mu \mathrm{~m}$, width $=1 \mu \mathrm{~m}$)

- $R_{\text {sheet }}=15 \Omega /$ square
-1) Sol.

$$
\begin{aligned}
& \mathrm{R}_{\text {lumped }}=\mathrm{R}_{\text {sheet }} \times(\# \text { of squares }) \\
&=15(\Omega / \text { square }) \times\left(\frac{1000 \mu \mathrm{~m}}{1 \mu \mathrm{~m}}\right)=15 \mathrm{k} \Omega \\
& \begin{aligned}
\mathrm{C}_{\text {paralle- } \text { plate }} & =(\text { unit area capacitance }) \times(\text { area })
\end{aligned} \\
& \quad=0.106 \mathrm{fF} / \mu \mathrm{m}^{2} \times(1000 \mu \mathrm{~m} \times 1 \mu \mathrm{~m})=106 \mathrm{fF} \\
& \mathrm{C}_{\text {fringe }}=\text { (unit length capacitance }) \times(\text { perimeter }) \\
&=0.043 \mathrm{fF} / \mu \mathrm{m} \times(1000 \mu \mathrm{~m}+1000 \mu \mathrm{~m}+1 \mu \mathrm{~m}+1 \mu \mathrm{~m})=86 \mathrm{fF} \\
& \mathrm{C}_{\text {lumped-total }}=\mathrm{C}_{\text {paralle }- \text { plate }}+\mathrm{C}_{\text {fringe }}=192 \mathrm{fF}
\end{aligned}
$$

Example 6.5 (2)

- The simulated output voltage waveforms

Example 6.5 (4)

- 2) Consider a polysilicon line consisting of two segments ($\mathrm{W}=1.5 \mu \mathrm{~m}$ \& $\mathrm{W}=0.5 \mu \mathrm{~m}$, each $500 \mu \mathrm{~m}$)

$$
\begin{aligned}
& \mathrm{R}_{\text {lumped }-1}=15(\Omega / \text { square }) \times\left(\frac{500 \mu \mathrm{~m}}{0.5 \mu \mathrm{~m}}\right)=15 \mathrm{k} \Omega, \mathrm{R}_{\text {lumped }-2}=15(\Omega / \text { square }) \times\left(\frac{500 \mu \mathrm{~m}}{1.5 \mu \mathrm{~m}}\right)=5 \mathrm{k} \Omega \\
& \mathrm{R}_{\text {lumped-total }}=\mathrm{R}_{\text {lumped }-1}+\mathrm{R}_{\text {lumped }-2}=20 \mathrm{k} \Omega
\end{aligned}
$$

- 2) Sol.

$$
\begin{aligned}
& \mathrm{C}_{\text {paralletplate-1 }}=0.106 \mathrm{fF} / \mu \mathrm{m}^{2} \times(500 \mu \mathrm{~m} \times 0.5 \mu \mathrm{~m})=26.5 \mathrm{fF} \\
& \mathrm{C}_{\text {parallet-plate-2 }}=0.106 \mathrm{fF} / \mu \mathrm{m}^{2} \times(500 \mu \mathrm{~m} \times 1.5 \mu \mathrm{~m})=79.5 \mathrm{fF} \\
& \mathrm{C}_{\text {fringe-1 }} \approx \mathrm{C}_{\text {fringe-2 }}=46 \mathrm{fF} \\
& \mathrm{C}_{\text {lumped-total }}=\mathrm{C}_{\text {paralletplate-1 }}+\mathrm{C}_{\text {paralletplate-2 }}+\mathrm{C}_{\text {fringe-1 }}+\mathrm{C}_{\text {fringe-2 }}=192 \mathrm{fF}
\end{aligned}
$$

Layout, Fabrication, and Elementary Logic Design

Dr.Mohammad Abdel-Majeed
Assistant Professor
University of Jordan

Introduction

- Integrated circuits: many transistors on one chip.
- Very Large Scale Integration (VLSI): very many
- Metal Oxide Semiconductor (MOS) transistor
- Fast, cheap, low-power transistors
- Complementary: mixture of n - and p-type leads to less power
- Today: How to build your own simple CMOS chip
- CMOS transistors
- Building logic gates from transistors
- Transistor layout and fabrication
- Rest of the course: How to build a good CMOS chip

Silicon Lattice

- Transistors are built on a silicon substrate
- Silicon is a Group IV material
- Forms crystal lattice with bHnds 忡 fout|neighbors

Dopants

- Silicon is a semiconductor
- Pure silicon has no free carriers and conducts poorly
- Adding dopants increases the conductivity
- Group V: extra electron (n-type)
- Group III: missing electron, called hole (p-type)

p-n Junctions

- A junction between p-type and n-type semiconductor forms a diode.
- Current flows only in one direction

anode cathode

nMOS Transistor

- Four terminals: gate, source, drain, body
- Gate - oxide - body stack looks like a capacitor
- Gate and body are conductors
- SiO_{2} (oxide) is a very good insulator
- Called metal - oxide - semiconductor (MOS) campacitor
- Even though gate is no longer made of metal

nMOS Operation

- Body is commonly tied to ground (0 V)
- When the gate is at a low voltage:
- P-type body is at low voltage
- Source-body and drain-body diodes are OFF
- No current flows, transjistortice is GFF Drain

nMOS Operation

- When the gate is at a high voltage:
- Positive charge on gate of MOS capacitor
- Negative charge attracted to body
- Inverts a channel under gate to n-type
- Now current can flow through n-type silicon from source through channel to drain, transistor is ON

pMOS Transistor

- Similar, but doping and voltages reversed
- Body tied to high voltage (V_{DD})
- Gate low: transistor ON
- Gate high: transistor OFF
- Bubble indicates inverted behavior

Power Supply Voltage

- GND $=0 \mathrm{~V}$
- In 1980's, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
- $V_{D D}$ has decreased in modern processes
- High $V_{D D}$ would damage modern tiny transistors
- Lower V_{DD} saves power
- $V_{D D}=3.3,2.5,1.8,1.5,1.2,1.0, \ldots$

CMOS Fabrication

- CMOS transistors are fabricated on silicon wafer
- Lithography process similar to printing press
- On each step, different materials are deposited or etched
- Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process

Inverter Cross-section

- Typically use p-type substrate for nMOS transistor
- Requires n-well for body of pMOS transistors
- Several alternatives: SOI, twin-tub, etc.

Well and Substrate Taps

- Substrate must be tied to GND and n-well to V_{DD}
- Metal to lightly-doped semiconductor forms poor connection called Shottky Diode
- Use heavily doped well and substrate contacts / taps

Inverter Mask Set

- Transistors and wires are defined by masks
- Cross-section taken along dashed line

Detailed Mask Views

- Six masks
- n-well
- Polysilicon
- n+ diffusion
- p+ diffusion
- Contact
- Metal

Fabrication Steps

- Start with blank wafer
- Build inverter from the bottom up
- First step will be to form the n-well
- Cover wafer with protective layer of SiO_{2} (oxide)
- Remove layer where n-well should be built
- Implant or diffuse n dopants into exposed wafer
- Strip off SiO_{2}

Oxidation

- Grow SiO_{2} on top of Si wafer
- 900-1200 C with $\mathrm{H}_{2} \mathrm{O}$ or O_{2} in oxidation furnace

SiO_{2}

Photoresist

- Spin on photoresist
- Photoresist is a light-sensitive organic polymer
- Softens where exposed to light

Photoresist
SiO_{2}

Lithography

- Expose photoresist through n-well mask
- Strip off exposed photoresist

Etch

- Etch oxide with hydrofluoric acid (HF)
- Seeps through skin and eats bone; nasty stuff!!!
- Only attacks oxide where resist has been exposed

Strip Photoresist

- Strip off remaining photoresist
- Use mixture of acids called piranah etch
- Necessary so resist doesn't melt in next step

n-well

- n-well is formed with diffusion or ion implantation
- Diffusion
- Place wafer in furnace with arsenic gas
- Heat until As atoms diffuse into exposed Si
- Ion Implanatation
- Blast wafer with beam of As ions
- Ions blocked by SiO_{2}, only enter exposed Si

Strip Oxide

- Strip off the remaining oxide using HF
- Back to bare wafer with n-well
- Subsequent steps involve similar series of steps

Polysilicon

- Deposit very thin layer of gate oxide
- < 20 Å (6-7 atomic layers)
- Chemical Vapor Deposition (CVD) of silicon layer
- Place wafer in furnace with Silane gas $\left(\mathrm{SiH}_{4}\right)$
- Forms many small crystals called polysilicon
- Heavily doped to be good conductor

Polysilicon Patterning

- Use same lithography process to pattern polysilicon

Self-Aligned Process

- Use oxide and masking to expose where $n+$ dopants should be diffused or implanted
- N-diffusion forms nMOS source, drain, and n-well contact

N-diffusion

- Pattern oxide and form $\mathrm{n}+$ regions
- Self-aligned process where gate blocks diffusion
- Polysilicon is better than metal for self-aligned gates because it

N-diffusion

- Historically dopants were diffused
- Usually ion implantation today
- But regions are still called diffusion

N-diffusion

- Strip off oxide to complete patterning step

P-Diffusion

- Similar set of steps form p+ diffusion regions for pMOS source and drain and substrate contact

Contacts

- Now we need to wire together the devices
- Cover chip with thick field oxide
- Etch oxide where contact cuts are needed

Metallization

- Sputter on aluminum over whole wafer

Layout

- Chips are specified with set of masks
- Minimum dimensions of masks determine transistor size (and hence speed, cost, and power)
- Feature size $f=$ distance between source and drain
- Set by minimum width of polysilicon
- Feature size improves 30% every 3 years or so
- Normalize for feature size when describing design rules
- Express rules in terms of $\lambda=f / 2$
- E.g. $\lambda=0.3 \mu \mathrm{~m}$ in $0.6 \mu \mathrm{~m}$ process

Simplified Design Rules

- Conser

Inverter Layout

- Transistor dimensions specified as Width / Length
- Minimum size is $4 \lambda / 2 \lambda$, sometimes called 1 unit
- For $0.6 \mid V_{D D} \star, \quad W=1.2 \mu \mathrm{~m}, \mathrm{~L}=0.6 \mu \mathrm{~m}$

Summary

- MOS Transistors are stack of gate, oxide, silicon
- Can be viewed as electrically controlled switches
- Build logic gates out of switches
- Draw masks to specify layout of transistors
- Now you know everything necessary to start designing schematics and layout for a simple chip!

Combinational Logic

Dr.Mohammad Abdel-Majeed
Assistant Professor
University of Jordan

Transistors as Switches

- We can view MOS transistors as electrically controlled switches
- Voltage at gate controls path from source to drain

CMOS Circuits

- For the gate to output a ' 1 '
- Some path of PMOS transistors from VDD to outp on
- We call the PMOS transistors the Pull-Up Netwo
- For the gate to output a '0
- Some path of NMOS transistors from GND to ou on
- We call the NMOS transistors the Pull-Down Net

CMOS Inverter

A	Y
0	
1	

$A-\underbrace{\mathrm{V}_{\mathrm{DD}}}_{\text {GND }}$

CMOS Inverter

A	Y
0	
1	0

CMOS Inverter

A	Y
0	1
1	0

CMOS NAND Gate

A	B	Y
0	0	
0	1	
1	0	
1	1	

CMOS NAND Gate

A	B	Y
0	0	1
0	1	
1	0	
1	1	

CMOS NAND Gate

A	B	Y
0	0	1
0	1	1
1	0	
1	1	

CMOS NAND Gate

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	

CMOS NAND Gate

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	0

CMOS NOR Gate

A	B	Y
0	0	1
0	1	0
1	0	0
1	1	0

3-input NAND Gate

- Y pulls low if ALL inputs are 1
- Y pulls high if ANY input is 0

3-input NAND Gate

- Y pulls low if ALL inputs are 1
- Y pulls high if ANY input is 0

Sizing

Sizing

- Delay is dependent on the pattern of inputs
- The ratio of the $\{W / L\} P U N /\{W / L\} P D N$ should be two (or higher) to make up for slow PMOS

Sizing

- Delay is dependent on the pattern of inputs
- Low to high transition
- both inputs go low
- delay is $\left(R_{p} / 2\right)^{*} C_{L}$
- one input goes low
- delay is $\left(R_{p}\right) * C_{L}$
\rightarrow Worst case: $R_{p}{ }^{*} C_{L}$
- High to Low transition

- both inputs go high
- delay is $\left(2 * R_{n}\right) * C_{L}$

NAND Sizing

Inverter Sizing

NOR Sizing

NAND capacitance

Complex Gates

- $A=\overline{D+A \cdot(B+C)}$

Complex Gates Sizing

- $A=\overline{D+A \cdot(B+C)}$

Stick Diagrams

- VLSI design aims to translate circuit concepts onto silicon.
- stick diagrams are a means of capturing topography and layer information using simple diagrams.
- Stick diagrams convey layer information through colour codes (or monochrome encoding).
- Acts as an interface between symbolic circuit and the actual layout.

Stick Diagrams

- Does show all components/vias.
- It shows relative placement of components.
- Goes one step closer to the layout
- Helps plan the layout and routing

Stick Diagrams

- Does not show
- Exact placement of components
- Transistor sizes
- Wire lengths, wire widths, tub boundaries.
- Any other low level details such as parasitics..

Stick Diagram

EULER PATH $=\{A, B, E, D, C\}$

- ACTIVE

Stick Diagram

Example

- $\mathrm{F}=\overline{A+B}$

Example

- $\mathrm{F}=\overline{A . B}$

Example

- $\mathrm{F}=\overline{A+B C}$

Example

- $\mathrm{F}=\overline{A(D+E)+B C}$

Euler Path

- The number of diffusion breaks can be minimized by changing the ordering of the polysilicon columns
- A simple method for finding the optimum gate ordering is the Euler-path approach
- Find a common Euler path for both pull-down and pull-up graphs
- The polysilicon columns can be arranged according to the sequence (in Euler-path)
- Diffusion will be unbroken if identically labeled Euler paths can be found for the p and n trees

Euler Path

- construct one Euler path for both the Pull up and Pull down network
- Path the traverses each node in the path, such that each edge is visited only once.
- If the path traverses transistor A then B then C. Then the path name is $\{A, B$, C $\}$
- The Euler path of the Pull up network must be the same as the path of the Pull down network.
- Euler paths are not necessarily unique.
- It may be necessary to redefine the function to find a Euler path.

Euler Path

- The advantages of this new layout are more compact layout area, simple routing of signals, and consequently, lower parasitic capacitance

Euler Path

- $A=\overline{D+A B+C E}$

Example

- $A=\overline{D+A B+C E}$

Example

- $\mathrm{f}=\overline{A(D+E)+B C}$

CMOS Transmission Gates (Pass Gates)

- Representations of the CMOS transmission gate (TG)

- One nMOS + one pMOS
- Bidirectional switch
- If $\mathrm{C}=\mathrm{V}_{\mathrm{DD}}, \mathrm{TG}$ is turned on (low-resistance path)
- If $\mathrm{C}=\mathrm{GND}, \mathrm{TG}$ is turned off (high-impedance state)

DC Analysis of Transmission Gate (1)

CMOS TG Implementations (1)

- Two-input multiplexor

- 8-TRs XOR function

- 6-TRs XOR function

CMOS TG Implementations (2)

- Boolean function realization

Transitors scaling

Outline

- Scaling
- Transistors
- Interconnect
- Future Challenges

Moore's Law

- Recall that Moore's Law has been driving CMOS

Moore's Law

- Recall that Moore's Law has been driving CMOS

Moore's Law today

Moore's Law

- Recall that Moore's Law has been driving CMOS

Why?

- Why more transistors per IC?
- Smaller transistors
- Larger dice
-Why faster computers?
- Smaller, faster transistors
- Better microarchitecture (more IPC)
- Fewer gate delays per cycle

Scaling

- The only constant in VLSI is constant change
- Feature size shrinks by 30% every 2-3 years
- Transistors become cheaper
- Transistors become faster and lower power
- Wires do not improve
(and may get worse)
- Scale factor S

$$
S=\sqrt{2}
$$

- Typically
- Technology nodes

Dennard Scaling

- Proposed by Dennard in 1974
- Also known as constant field scaling
- Electric fields remain the same as features scale
- Scaling assumptions
- All dimensions ($\mathrm{x}, \mathrm{y}, \mathrm{z}=>\mathrm{W}, \mathrm{L}, \mathrm{t}_{\mathrm{ox}}$)
- Voltage (V_{DD})
- Doping levels

Device Scaling

Parameter	Sensitivity	Dennard Scaling
L: Length		$1 / \mathrm{S}$
W: Width		$1 / \mathrm{S}$
$\mathrm{t}_{0 \mathrm{ox}}:$ gate oxide thickness		$1 / \mathrm{S}$
$\mathrm{V}_{\mathrm{DD}}:$ supply voltage		$1 / \mathrm{S}$
$\mathrm{V}_{\mathrm{t}}:$ threshold voltage		$1 / \mathrm{S}$
$\mathrm{NA}:$ substrate doping		S
β	$\mathrm{W} /\left(\mathrm{Lt}_{\mathrm{ox}}\right)$	S
$\mathrm{I}_{\mathrm{on}}:$ ON current	$\beta\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{t}}\right)^{2}$	$1 / \mathrm{S}$
$\mathrm{R}:$ effective resistance	$\mathrm{V}_{\mathrm{DD}} / \mathrm{I}_{\mathrm{on}}$	1
$\mathrm{C}:$ gate capacitance	$\mathrm{WL} / \mathrm{t}_{0 x}$	$1 / \mathrm{S}$
$\tau:$ gate delay	RC	$1 / \mathrm{S}$
f: clock frequency	$1 / \tau$	S
$\mathrm{E}:$ switching energy / gate	CV	
$\mathrm{P}:$ switching power / gate	Ef	$1 / \mathrm{S}^{3}$
A: area per gate	WL	$1 / \mathrm{S}^{2}$
Switching power density	P / A	$1 / \mathrm{S}^{2}$
Switching current density	$\mathrm{I}_{\mathrm{on}} / \mathrm{A}$	1

Observations

- Gate capacitance per micron is nearly independent of process
- Gates get faster with scaling (good)
- Dynamic power goes down with scaling (good)
- Current density goes up with scaling (bad)

Real Scaling

- t_{ox} scaling has slowed since 65 nm
- Limited by gate tunneling current
- Gates are only about 4 atomic layers thick!
- High-k dielectrics have helped continued scaling of effective oxide thickness
- V_{DD} scaling has slowed since 65 nm
- SRAM cell stability at low voltage is challenging
- Dennard scaling predicts cost, speed, power all improve
- Below 65 nm , some designers find they must choose just two of the three

Interconnect Scaling

Parameter	Sensitivity	Scale Factor
w: width		1/S
s: spacing		1/S
t: thickness		1/S
h : height		1/S
D_{c} : die size		D_{c}
R_{w} : wire resistance/unit length	1/wt	S^{2}
$\mathrm{C}_{\text {wf }}$: fringing capacitance / unit length	t/s	1
$\mathrm{C}_{\text {wp }}$: parallel plate capacitance / unit length	w/h	1
C_{w} : total wire capacitance / unit length	$\mathrm{C}_{\mathrm{wf}}+\mathrm{C}_{\mathrm{wp}}$	1
$\mathrm{t}_{\text {wu }}$: unrepeated RC delay / unit length	$\mathrm{R}_{\mathrm{w}} \mathrm{C}_{\mathrm{w}}$	S^{2}
t_{wr} : repeated RC delay / unit length	sqrt($\mathrm{RCR}_{\mathrm{w}} \mathrm{C}_{\mathrm{w}}$)	sqrt(S)
Crosstalk noise	w/h	1
E_{w} : energy per bit / unit length	$\mathrm{C}_{\mathrm{w}} \mathrm{V}_{\mathrm{DD}}{ }^{2}$	1/S ${ }^{2}$

Reachable Radius

- We can't send a signal across a large fast chip in one cycle anymore
- But the microarchitect can plan around this
- Just as off-chip memory latencies were tolerated

Reachable Radius

Observations

- Local wires are getting faster
- Not quite tracking transistor improvement
- But not a major problem
- Global wires are getting slower
- No longer possible to cross chip in one cycle

ITRS

- Semiconductor Industry Association forecast
- Intl. Technology Roadmap for Semiconductors

Year	2009	2012	2015	2018	2021
Feature size (nm)	34	24	17	12	8.4
$L_{\text {gate }}(\mathrm{nm})$	20	14	10	7	5
$V_{D D}(\mathrm{~V})$	1.0	0.9	0.8	0.7	0.65
Billions of transistors/die	1.5	3.1	6.2	12.4	24.7
Wiring levels	12	12	13	14	15
Maximum power (W)	198	198	198	198	198
DRAM capacity (Gb)	2	4	8	16	32
Flash capacity (Gb)	16	32	64	128	256

Dynamic Power

- Intel VP Patrick Gelsinger (ISSCC 2001)
- If scaling continues at present pace, by 2005 , high speed processors would have power density of nuclear reactor, by 2010, a rocket nozzle, and by 2015, surface of sun.
- "Business as usual will not work in the future."
- Attention to power is increasing

Static Power

- $V_{D D}$ decreases
- Save dynamic power
- Protect thin gate oxides and short channels
- No point in high value because of velocity sat.
- V_{t} must decrease to maintain device performance
- But this causes exponential increase in OFF leakage
- Major future challenge

Productivity

- Transistor count is increasing faster than designer productivity (gates / week)
- Bigger design teams
- Up to 500 for a high-end microprocessor
- More expensive design cost
- Pressure to raise productivity
- Rely on synthesis, IP blocks
- Need for good engineering managers

Physical Limits

- Will Moore's Law run out of steam?
- Can't build transistors smaller than an atom...
- Many reasons have been predicted for end of scaling
- Dynamic power
- Subthreshold leakage, tunneling
- Short channel effects
- Fabrication costs
- Electromigration
- Interconnect delay

Sequential Logic

Dr.Mohammad Abdel-Majeed
Assistant Professor
University of Jordan

Introduction

- Sequential Circuit

Combinational block
+memory block

SR Latch Circuit

- Gate level schematic
- SR latch circuit based on NOR2 gates and block diagram

Truth Table and Operation Mode

- Truth table of the NOR based SR latch circuit

\boldsymbol{S}	\boldsymbol{R}	\boldsymbol{Q}_{n+1}	$\overline{\boldsymbol{Q}_{n+1}}$	Operation
0	0	Q_{n}	$\overline{Q_{n}}$	hold
1	0	1	0	set
0	1	0	1	reset
1	1	0	0	not allowed

- Operation mode of the NOR based SR latch circuit

\boldsymbol{S}	\boldsymbol{R}	\boldsymbol{Q}_{n+1}	$\overline{\boldsymbol{Q}_{n+1}}$	Operation
$V_{O H}$	$V_{O L}$	$V_{O H}$	$V_{O L}$	M 1 and M2 on, M3 and M4 off
$V_{O L}$	$V_{O H}$	$V_{O L}$	$V_{O H}$	M 1 and M2 off, M3 and M4 on
$V_{O L}$	$V_{O L}$	$V_{O H}$	$V_{O L}$	M1 and M4 off, M2 on, or
$V_{O L}$	$V_{O L}$	$V_{O L}$	$V_{O H}$	M1 and M4 off, M3 on

NAND Based SR Latch

- Gate level schematic \& Block diagram

S	R	Q_{n+1}	$\overline{Q_{n+1}}$	Operation
0	0	1	1	not allowed
0	1	1	0	set
1	0	0	1	reset
1	1	Q_{n}	$\overline{Q_{n}}$	hold

CMOS SR Latch : Another Type

- SR latch based on NAND2 gates

Clocked SR Latch

- Input and output waveform
- Gate level schematic

Level sensitive circuit

Clocked NOR Based SR Latch : AOI

- AOI-based implementation of the clocked NOR-based SR-latch Circuit

Clocked JK Latch

- Gate level schematic

- SR-latch : indeterminate when both inputs S and R are activated
- JK latch : adding two feedback lines from the outputs to the inputs

Clocked NOR-based JK latch

Clocked JK Latch : Truth Table

\boldsymbol{J}	\boldsymbol{K}	\boldsymbol{Q}_{n}	$\overline{\boldsymbol{Q}_{n}}$	\boldsymbol{S}	\boldsymbol{R}	\boldsymbol{Q}_{n+1}	$\overline{\boldsymbol{Q}_{n+1}}$	Operation
0	0	0	1	1	1	0	1	hold
		1	0	1	1	1	0	
0	1	0	1	1	1	0	1	reset
		1	0	1	0	0	1	
1	0	0	1	0	1	1	0	set
		1	0	1	1	1	0	
1	1	0	1	0	1	1	0	toggle
		1	0	1	0	0	1	

Master-Slave Flip-Flop

- Master-Slave Flip-Flop

Master Slave FF

- The master latch is activated when $\mathrm{CK}=$ " 1, " during this period, the primary inputs, J and K , allow data to be entered into the flip-flop, and the first stage outputs are set according to the primary inputs
- When $\mathrm{CK}=$ " 0 ," the master latch becomes inactive, and the slave latch becomes active
- Note that, the output levels of the flip-flop are determined during this phase (CK=" 0 ,") based on the master-stage outputs set in the previous
phase(CK="1")

NOR based JK master slave FF

CMOS D-Latch

- Gate-level schematic

- CK : $1 \rightarrow \mathrm{Q}$ assumes the value of the input D
- CK : $0 \rightarrow$ Q preserve its state

CMOS D-Latch Using Transmission gates

- Constructed by Two inverter loop + Two CMOS TG
- CK:1 \rightarrow TG at input is activated
- CK:0 \rightarrow TG at inverter loop is activated

Master-Slave Flip-Flop : Operation

- Clock pulse $\rightarrow 0$
- Master latch inactive (slave becomes
- Clock pulse $\rightarrow 1$
- Slave latch inactive (master becomes

Master-Slave Flip-Flop Problem

- S and/or R are permitted to change while $\mathrm{C}=1$

Flip-Flop Solution

- Use edge-triggering instead of master-slave
- An edge-triggered flip-flop ignores the pulse while it is at a constant level and triggers only during a transition of the clock signal
- Edge-triggered flip-flops can be built directly at the electronic circuit level, or
- A master-slave D flip-flop which also exhibits edge-triggered behavior can be used

Edge-Triggered D Flip-Flop

- The edge-triggered D flip-flop is the same as the master-slave D flip-flop
- It can be formed by:
- Replacing the first clocked SR latch with a clocked D latch or
- Adding a D input and inverter to a master-slave SR flip-flop
- The 1 s and 0 s catching behaviors are not present with D replacing S and R inputs
- The change of the D flip-flop output is associated with the negative edge at the end of the pulse
- It is called a negative-edge triggered flip-flop

No 1s catching in the edge-triggered D Flip-Flops

Setup and Hold time

Timing Diagrams

Contamination and
Propagation Delays

Max-Delay: Flip-Flops

$t_{p d} \leq T_{c}-\underbrace{(}_{\text {sequencing overhead }})$

Min-Delay: Flip-Flops

