DIGITAL ELECTRONICS

Digital Electronics CPE

Dr.Mohammad Abdel-Majeed

Assistant Professor

University of Jordan

Outline

- Course Introduction
 - Course Information
 - Textbook
 - Grading
 - Course Outline

Course Information

- Instructor: Mohammad Abdel-Majeed
- Email: m.abdel-majeed@ju.edu.jo
- Homepage: <u>www.piazza.com</u>
- Office: **CPE 421**
- Office Hours:
- Prerequisites:

Textbook

- CMOS Digital Integrated Circuits Analysis and Design.(Kang and Leblebici)
- CMOS VLSI Design, A Circuits And Systems Perspective.(Weste and Harris)

Grading Information

• Grading

- Midterm Exam 30%
- Assignments and Quizzes 20%
- Final Exam 50%
- Policies
 - Attendance is required
 - Cheating will not be tolerated
 - No Makeup Exams

C/ C++	Apps					
Assembly/ Machine code	Processor/Mem/ I/O					
Processor/Mem/ I/O						
Functional units						
Logic Gates						
Transistors						
Voltage/Current						

Objective and Organization

- Provide in-depth understanding of the intricate issues in digital circuit design like:
 - Performance
 - Interconnect
 - Reliability
 - Low-power design
- Sequence of topics
 - Design Flow
 - MOS transistor (Overview)
 - MOS Inverter
 - MOS Inverter switching characteristics
 - Combinational MOS circuits
 - Sequential MOS Circuits
 - MOS Fabrication, schematic and Layout.(LTSpice and Electric Tools)

Objective and Organization

Lecture1 Design Flow

Dr.Mohammad Abdel-Majeed

Assistant Professor

University of Jordan

Coping with Complexity

- How to design System-on-Chip?
 - Many millions (even billions!) of transistors
 - Tens to hundreds of engineers
- Structured Design
- Design Partitioning

Structured Design

- ____: Divide and Conquer
 - Recursively system into modules
 - Reuse modules wherever possible
 - Ex: Standard cell library
- _____: well-formed interfaces
 - Allows modules to be treated as black boxes
 - Physical and temporal

4

Structural Decomposition of 4-b Adder

Structural Decomposition of 4-b Adder

Structural Hierarchy of 16-b Adder

Structural Hierarchy of 16-b Adder

Figure 1.25 Structural hierarchy of the 16-bit adder circuit.

Concepts of Regularity

- Regularity
 - decomposition into similar blocks
 - Example: parallel multiplication array

(b)

Figure 1.26 Regular design of (a) 2-1 MUX and (b) DFF, using inverters and tri-state buffers as basic building blocks.

9

Concepts of Modularity and Locality

- Modularity
 - Functional blocks have well-defined functions and interfaces
 - Each block can be designed independently and combined easily
 - Design process parallelized
- Locality
 - Ensures connections are mostly between neighboring modules
 - Delay minimized by avoiding long interconnect

Design Partitioning

- Architecture: User's perspective, what does it do?
 - Instruction set, registers
 - MIPS, x86, Alpha, PIC, ARM, ...
- Microarchitecture
 - Single cycle, multcycle, pipelined, superscalar?
- Logic: how are functional blocks constructed
 - Ripple carry, carry lookahead, carry select adders
- Circuit: how are transistors used
 - Complementary CMOS, pass transistors, domino
- Physical: chip layout
 - Datapaths, memories, random logic

Flow of Circuit

THE UNIVERSITY OF System Specification More Simplified VLSI Design Flow Functional (Architecture) Design **Behavioral Functional Verification** Representation Simplified design flow • Verification plays an important role in every step Logic Design • Top-down and bottom-up approaches combined in the design process Logic Verification Representation **Circuit Design** Circuit **Circuit Verification** Representation **Physical Design** Layout Layout Verification Representation

Example 1.1 (1)

- <u>Problem</u>: Design of 1-bit full-adder circuit using ____ nm, twin-well CMOS technology
 - Specifications:
 - Propagation delay of sum and carry_out < _____
 - Transition delay of sum and carry_out < ____
 - Circuit area < 10 μ m²
 - Dynamic power dissipation (@ V_{DD} = 1.1V and f_{max} = 500MHz) < 20 μ W

Example 1.1 (2)

- Boolean Description
 - Boolean Functions:
 - A , B = Two inputs
 - C = Carry in
 - sum_out =ABC +AB'C' + A'B'C + A'C'B
 - carry_out = AB +AC+BC
 - Alternatively, sum_out = ABC+(A+B+C)(carry_out)'

Example 1.1 (2)

- Boolean Description
 - Boolean Functions:
 - A , B = Two inputs
 - C = Carry in
 - sum_out =ABC +AB'C' + A'B'C + A'C'B
 - carry_out = AB +AC+BC
 - Alternatively, sum_out = ABC+(A+B+C)(carry_out)'

			A	B	С	sum_out	carry_out
			0	0	0	0	0
	SCHOS des		0	0	1	1.0	0
Α	A B Full Adder C	sum_out	0	1	0	1	0
B			0	1	1	0	1
for testabl		carry_out	1	0	0	yiel 1 esth	0
C —			1	0	1	0	onten of la
			1	1	0	0	1
			1	1	1	1	1

Example 1.1 (3)

Figure 1.7 Gate-level schematic of the one-bit full-adder circuit.

Example 1.1 (4)

- Transistor-level circuit
 - AND = Series-connected nMOS
 - OR = Parallel- connected nMOS
 - pMOS network = dual of nMOS network

Figure 1.8 Transistor-level schematic of the one-bit full-adder circuit.

Example 1.1 (6)

- Initial sizes
 - nMOS, (*W/L*) = 90nm/50nm
 - pMOS, (W/L) = 90nm/50nm
 - May need to be changed depending on performance

Example 1.1 (7)

- Timing constraint violation
 - sum_out and carry_out violate timing constraints
 - Worst-case delay 250 ps (> 220 ps)
 - Modification necessary

Figure 1.11. Simulated output waveforms of the full adder circuit with minimum transistor dimensions, showing the signal propagation delay during one of the worst-case transitions.

Example 1.1 (8)

- Resizing transistors to improve design
 - is an iterative process
 - To meet timing specifications (W/L) of (n/p)MOS is increased

Figure 1.13. Simulated output waveforms of the full-adder circuit with optimized transistor dimensions, showing the signal propagation delay during the same worst-case transition.

Example 1.1 (8)

- Layout Design
 - Design rule checker (DRC) tool used to check violation of design rules
 - Parasitic capacitances and resistances extracted
- Design Verification
 - Extracted parasitics used to create SPICE input file
 - Simulation is run
- Simulation Results
 - Not all specifications met

Example 1.1 (9)

- New and compact layout for 1-bit full adder (optimized)
- Now, all the design specifications are satisfied
 - Propagation and transition (rise/fall) delay within 220 ps
 - Dynamic power dissipation = 4.9 μ W (<20 μ W)
 - Area = (2.04 μ m x 3.01 μ m) = 6.14 μ m² (<10 μ m²)

Figure 1.12. Layout of the full-adder circuit, with optimized transistor dimensions.

8-bit Binary Adder (1)

- Obtained by cascading 8 full adders – called "carry ripple adder"
 - Speed limited by the delay of carry bits

Figure 1.15 Block diagram of a carry ripple adder chain consisting of full adders.

8-bit Binary Adder (2)

- Simulation results
 - Sum bit of last adder stage is generated in sum(1) in sum(1)
 - Overall delay as long as 0.7 ns

Y-Chart

VLSI Design Styles

- Field Programmable Gate Array (FPGA)
 - Consists of
 - I/O buffers
 - Array of configurable logic blocks (CLBs)
 - Programmable interconnect structure
 - Contains thousands of logic gates
 - Routing between CLBs and I/O blocks done by setting the configurable switch matrices
- Proper choice of design style is essential to delivering the product in time with low cost
 - Full-custom
 - Semi-custom

Field Programmable Gate Array (1)

Figure 1.27 General architecture of Xilinx FPGAs.

https://www.youtube.com/watch?v=gUsHwi4M4xE

Verilog Example

sum s1(a, b, c, s); carry c1(a, b, c, cout);

endmodule

assign cout = (a&b) | (a&c) | (b&c);
endmodule

Gate-level Netlist(Synthesis)

Place and route

Circuit Design

- How should logic be implemented?
 - NANDs and NORs vs. ANDs and ORs?
 - Fan-in and fan-out?
 - How wide should transistors be?
- These choices affect speed, area, power
- Logic synthesis makes these choices for you
 - Good enough for many applications
 - Hand-crafted circuits are still better

Standard-Cell Based Design (1)

- One of the most prevalent full custom design styles
 - Commonly used logic cells are optimized and developed
 - Several versions are stored in a standard library cell
- Each cell is characterized by
 - Delay time vs. load capacitance
 - Circuit simulation model
 - Timing simulation model
 - Fault simulation model
 - Cell data for place-and-route
 - Mask data

Standard-Cell Based Design (2

- Each cell layout is designed with fixed height
 - Cells can be placed side-by-side
 - Routing of intercell connection is easy

Figure 1.36 A standard cell layout example.

Figure 1.37 A simplified floorplan of standard-cells based design.

- Floorplan for a standardcell based design contains
 - I/O frame, cell rows
 - Channels between rows
 - channels may be reduced or removed if over-the-cell routing is done

Standard-Cell Based Design (3)

 Common bus may be incorporated if cells must share same input and/or output signals

Figure 1.38 Simplified floorplan of a standard-cells based design, consisting of two separate blocks and a common signal bus.

Structured ASIC (FPGA

Vs.

- Easy to Design
- Short Development Time
- Low NRE Costs
- Design Size Limited
- Design Complexity Limited
- Performance Limited
- High Power Consumption
- High Per-Unit Cost

Standard Cell ASIC

- Difficult to Design
- Long Development Time
- High NRE Costs
- Support Large Designs
- Support Complex Designs
- High Performance
- Low Power Consumption
- Low Per-Unit Cost (at high volume)

Structured ASIC's Combine the Best of Both Worlds

- Generally speaking
 - 100:33:1 ratio between the number of gates in a given area for _____,
 - ____: ____ ratio for performance (based on clock frequency)
 - ____: ____ ratio for power

Full Custom Design (1)

- Design is done from scratch
 - Geometry, orientation and placement of every transistor done by designer
 - Development cost and time very high
 - "Design Reuse" becoming popular to reduce cost and time
 - Example of a true full custom design design of memory cell (static or dynamic)

Full Custom Design (2)

- Full custom design rarely used due to high labor cost
 - Rather combination of different design styles are used to develop a chip

Design Quality

- Important metrics for measuring the quality of design
 - Testability
 - Yield and manufacturability
 - Reliability
 - Technology updateability

Testability

- Fabricated chips should be fully testable which requires
 - Generation of good test vectors
 - Availability of reliable test fixture at speed
 - Design of testable chip

Yield and Manufacturability

- Yield may be defined in two ways
 - (1) No. of good tested chips divided by the total no. of tested chips
 - (2) No. of good tested chips divided by the total no. of chip sites available at the start of wafer processing strictest definition
- Chip yield can be further divided into
 - Functional yield obtained by testing the functionality of the chip at a speed lower than required
 - Weeds out problems of short, open and leakage
 - Can detect logic and circuit design faults
 - Parametric yield performed at the required speed on chips that passed functional test
 - Delay testing done in this phase

Reliability

- Reliability depends on design and process conditions
 - Major causes of chip reliability problem are
 - Electrostatic discharge (ESD) and electrical overstress (EOS) and electromigration
 - Latch-up in CMOS I/O internal circuits
 - Hot carrier induced aging
 - Oxide breakdown and single event upset
 - Power and ground bouncing
 - On-chip noise and crosstalk
- Measures taken to ensure reliability
 - Metal wire widened to avoid over-etching
 - Rise time of signals applied to nMOS gate reduced to avoid aging

Technology Updateability

- Process technology advancing at a high pace
 - Design styles should be chosen such that chips are technology updateable
 - "Silicon Compilation" where physical layout is done automatically is used

References

Backup

MIPS Architecture

- Example: subset of MIPS processor architecture
 - Drawn from Patterson & Hennessy
- MIPS is a 32-bit architecture with 32 registers
 - Consider 8-bit subset using 8-bit datapath
 - Only implement 8 registers (\$0 \$7)
 - \$0 hardwired to 0000000
 - 8-bit program counter
- You'll build this processor in the labs
 - Illustrate the key concepts in VLSI design

Instruction Set

Table 1.7 MIPS instruction set (subset supported)					
Instruction	Function		Encoding	ор	funct
add \$1, \$2, \$3	addition:	\$1 → \$2 + \$3	R	000000	100000
sub \$1, \$2, \$3	subtraction:	\$1 → \$2 – \$3	R	000000	100010
and \$1, \$2, \$3	bitwise and:	\$1 → \$2 and \$3	R	000000	100100
or \$1, \$2, \$3	bitwise or:	\$1 → \$2 or \$3	R	000000	100101
slt \$1, \$2, \$3	set less than:	\$1 → 1 if \$2 < \$3 \$1 → 0 otherwise	R	000000	101010
addi \$1, \$2,	add immediate:	\$1 → \$2 + imm	I	001000	n/a
beq \$1, \$2, imm	branch if equal:	PC → PC + imm ^a	I	000100	n/a
j destination	jump:	PC_destination ^a	J	000010	n/a
lb \$1, imm(\$2)	load byte:	\$1 → mem[\$2 + imm]	I	100000	n/a
sb \$1, imm(\$2)	store byte:	mem[\$2 + imm] → \$1	I	110000	n/a

Instruction Encoding

- 32-bit instruction encoding
 - Requires four cycles to fetch on 8-bit datapath

MIPS Microarchitecture

• Multicycle µarchitecture ([Paterson04], [Harris07])

Multicycle Controller

Logic Design

- Start at top level
 - Hierarchically decompose MIPS into units
- Top-level interface

Block Diagram

Hierarchical Design

CMOS Transistor

Dr.Mohammad Abdel-Majeed

Assistant Professor

University of Jordan

How Does a Transistor Work?

http://www.youtube.com/watch?v=lcrBqCFLHIY

Terminal Voltages

- Mode of operation depends on V_g , V_d , V_s
 - $V_{gs} = V_g V_s$
 - $V_{gd} = V_g V_d$
 - $V_{ds} = V_d V_s = V_{gs} V_{gd}$
- Source and drain are symmetric diffusion terminals
 - By convention, source is terminal at lower voltage
 - Hence $V_{ds} \ge 0$
- nMOS body is grounded. First assume source is 0 too.
- Three regions of operation
 - Cutoff
 - Linear
 - Saturation

NMOS cross section

Cutoff

Linear

Saturation

nMOS Cutoff

- No channel
- I_{ds} ≈ 0

nMOS Linear

- Channel forms
- Current flows from d to s
 - e⁻ from s to d
- I_{ds} increases with V_{ds}
- Similar to linear resistor

nMOS Saturation

- Channel pinches off
- I_{ds} independent of V_{ds}
- We say current *saturates*
- Similar to current source

I-V Characteristics

- In Linear region, I_{ds} depends on
 - How much charge is in the channel?
 - How fast is the charge moving?

Channel Charge

- MOS structure looks like parallel plate capacitor while operating in inversions
 - Gate oxide channel
- Q_{channel} =
- $C = C_g =$

Carrier velocity

- Charge is carried by e-
- Electrons are propelled by the lateral electric field between source and drain
 - E =
- Carrier velocity v proportional to lateral E-field
 - *v* =
- Time for carrier to cross channel:
 - *t* =

nMOS Linear I-V

- Now we know
 - How much charge Q_{channel} is in the channel
 - How much time *t* each carrier takes to cross

$$I_{ds} = \frac{Q_{\text{channel}}}{t}$$
$$= \mu C_{\text{ox}} \frac{W}{L} \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds}$$
$$= \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} \qquad \beta = \mu C_{\text{ox}} \frac{W}{L}$$

nMOS Saturation I-V

- If $V_{gd} < V_t$, channel pinches off near drain When $V_{ds} > V_{dsat} = V_{gs} - V_t$
- Now drain voltage no longer increases current

$$I_{ds} = \beta \left(V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}$$

$$=\frac{\beta}{2}\left(V_{gs}-V_{t}\right)^{2}$$

nMOS I-V Summary

• Shockley 1st order transistor models

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_t & \text{cutoff} \\ \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} & V_{ds} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_t \right)^2 & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

Example

- Plot I_{ds} vs. V_{ds} Given that
 - t_{ox} = 100 Å
 - $\mu = 350 \text{ cm}^2/\text{V*s}$
 - V_t = 0.7 V
 - $\xi_0 = 8.85 \times 10^{-12}$ F/m
 - ξ_{0x}=3.9
 - V_{gs} = 0, 1, 2, 3, 4, 5
 - Use W/L = 4/2 λ

Example

pMOS I-V

- All dopings and voltages are inverted for pMOS
 - Source is the more positive terminal
- Mobility μ_{p} is determined by holes
 - Typically 2-3x lower than that of electrons μ_{n}
 - 120 cm²/V•s in AMI 0.6 μ m process
- Thus pMOS must be wider to provide same current
 - In this class, assume

$$\mu_n$$
 / μ_p = 2

Problem

- NMOS Transistor
- $V_{th} = .7$ $V_s = 1V$ $V_G = 2.5$ $V_d = 4V$ $B = 23uA/V^2$
- Find W/L

The Threshold Voltage (1)(Optional)

- Physical components of the threshold voltage of a MOS structure
 - The work function difference between the gate and the channel.
 - The gate component to change the surface potential.
 - The gate voltage component to offset the depletion region charge.
 - The voltage component to offset the fixed charges in the gate oxide and in the silicon-oxide interface.

The Threshold Voltage (2) (Optional)

• The work function difference Φ_{GC} between the gate and the channel determines the built-in potential of the MOS system.

• For metal gate

$$\Phi_{GC} = \phi_F(substrate) - \phi_M$$

• For polysilicon gate

 $\Phi_{GC} = \phi_F(substrate) - \phi_F(gate)$

The Threshold Voltage (3) (Optional)

- Because of the fixed acceptor ions located in the depletion region near the surface, depletion charge exists.
 - Depletion region charge

$$Q_{B0} = -\sqrt{2q \cdot N_A \cdot \varepsilon_{Si} \cdot |-2\phi_F|}$$

• Consider the voltage bias of the body.

$$Q_{B} = -\sqrt{2q \cdot N_{A} \cdot \varepsilon_{Si} \cdot |-2\phi_{F} + V_{SB}|}$$

• The component that offsets the depletion region charge is equal to:

$$-Q_B / C_{OX}$$
$$C_{OX} = \frac{\varepsilon_{OX}}{t_{OX}}$$

The Threshold Voltage (4) (Optional)

- There always exists a fixed positive charge density Q_{ox} at the interface between the gate oxide and the silicon substrate.
- The gate voltage component that is necessary to offset this positive charge at the interface is .
 - For zero substrate bias

$$V_{T0} = \Phi_{GC} - 2\phi_F(substrate) - \frac{Q_{B0}}{C_{ox}}$$

The Threshold Voltage (optional)

- We can use the (3.23) for both n-channel device and p-channel device.
- However, some of the terms and coefficient in (3.23) have different polarities for the n-channel case and for the p-channel case.
 - The substrate Fermi potential ϕ_F is negative in nMOS, positive in pMOS.
 - The depletion region charge density Q_{B0} and Q_{B} are negative in nMOS, positive pMOS.
 - The substrate bias coefficient γ is positive in nMOS, negative in pMOS.
 - The substrate bias voltage V_{SB} is positive in nMOS, negative in pMOS.

Example 3.2 (1) (optional)

- Calculate the threshold voltage V_{TO} (@ V_{SB}=0).
 - $N_A = 4 \times 10^{18} \text{ cm}^{-3}$
 - $N_D = 2 \times 10^{20} \text{ cm}^{-3}$
 - *t_{ox}* = 26.3 Å
 - $N_{i=}1.45*10^{18}$

- Sol.
 - Calculate the Fermi potentials

$$\phi_F(substrate) = \frac{kT}{q} \ln\left(\frac{n_i}{N_A}\right) = 0.026 \text{V} \cdot \ln\left(\frac{1.45 \cdot 10^{10}}{4 \times 10^{18}}\right) = -0.51 \text{V}$$

• Calculate the work function difference

 $\Phi_{GC} = \phi_F(substrate) - \phi_F(gate) = -0.51 \text{V} - 0.55 \text{V} = -1.06 \text{V}$

Example 3.2 (2) (optional)

- Sol.(Cont'd)
 - The depletion region charge density at $V_{SB} = 0$

$$Q_{B0} = -\sqrt{2 \cdot q \cdot N_A \cdot \varepsilon_{Si} \cdot \left| -2\phi_F(substrate) \right|}$$

= $-\sqrt{2 \cdot 1.6 \cdot 10^{-19} \cdot (4 \times 10^{18}) \cdot 11.7 \cdot 8.85 \cdot 10^{-14} \cdot \left| -2 \cdot 0.51 \right|}$
= $-1.16 \cdot 10^{-6} \,\text{C/cm}^2$

• The gate oxide capacitance per unit area

$$C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} = \frac{3.97 \cdot 8.85 \cdot 10^{-14} \,\mathrm{F/cm}}{1.6 \cdot 10^{-7} \,\mathrm{cm}} = 2.2 \cdot 10^{-6} \,\mathrm{F/cm}^2$$

• Combine all components

$$V_{T0} = \Phi_{GC} - 2\phi_F(substrate) - \frac{Q_{B0}}{C_{ox}}$$

= -1.06 - (-1.02) - (-0.53)

Body effect

$$V_T = V_{T0} + \gamma \left(\sqrt{\left| -2\phi_F + V_{SB} \right|} - \sqrt{\left| 2\phi_F \right|} \right)$$

CMOS Digital Integrated Circuits – 4th Ecition

Lecture 4: Nonideal Transistor Theory

NEIL H. E. WESTE DAVID MONEY HARRIS

FOURTH EDITION

Outline

- Nonideal Transistor Behavior
 - High Field Effects
 - Mobility Degradation
 - Velocity Saturation
 - Channel Length Modulation
 - Threshold Voltage Effects
 - Body Effect
 - Drain-Induced Barrier Lowering
 - Short Channel Effect
 - Leakage
 - Subthreshold Leakage
 - Gate Leakage
 - Junction Leakage

Process and Environmental Variations

Ideal vs. Simulated nMOS I-V Plot

4: Nonideal Transistor Theory

CMOS VLSI Design ^{4th Ed.}

ON and OFF Current

$$\Box \quad I_{on} = I_{ds} @ V_{gs} = V_{ds} = V_{DD}$$
- Saturation

$$\Box \quad I_{off} = I_{ds} @ V_{gs} = 0, V_{ds} = V_{DD}$$

- Cutoff

4: Nonideal Transistor Theory

CMOS VLSI Design ^{4th Ed.}

Electric Fields Effects

- □ Vertical electric field: $E_{vert} =$
 - Attracts carriers into channel
 - Long channel: $\mathrm{Q}_{\mathrm{channel}} \propto \mathrm{E}_{\mathrm{vert}}$
- □ Lateral electric field: $E_{lat} =$
 - Accelerates carriers from drain to source
 - Long channel: v = μE_{lat}

Coffee Cart Analogy

- Tired student runs from VLSI lab to coffee cart
- Freshmen are pouring out of the physics lecture hall
- \Box V_{ds} is how long you have been up
 - Your velocity = fatigue × mobility
- \Box V_{gs} is a wind blowing you against the glass (SiO₂) wall
- $\hfill\square$ At high $V_{gs},$ you are buffeted against the wall
 - Mobility degradation
- \Box At high V_{ds}, you scatter off freshmen, fall down, get up
 - Velocity saturation
 - Don't confuse this with the saturation region

Mobility Degradation

High E_{vert} effectively reduces mobility Collisions with oxide interface

Velocity Saturation

- □ At high E_{lat}, carrier velocity rolls off
 - Carriers scatter off atoms in silicon lattice
 - Velocity reaches v_{sat}
 - Electrons: 10⁷ cm/s
 - Holes: 8 x 10⁶ cm/s

 $\frac{\mu_{\text{eff}}E}{1+\frac{E}{E_c}} \qquad E < E_c$

 $E \ge E_c$

Better model

4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed.

Vel Sat I-V Effects

Ideal transistor ON current increases with V_{DD}²

$$I_{ds} = \mu C_{ox} \frac{W}{L} \frac{\left(V_{gs} - V_{t}\right)^{2}}{2} = \frac{\beta}{2} \left(V_{gs} - V_{t}\right)^{2}$$

Velocity-saturated ON current increases with V_{DD}

$$I_{ds} = C_{\rm ox} W \left(V_{gs} - V_t \right) v_{\rm max}$$

Real transistors are partially velocity saturated

- Approximate with α -power law model
- $I_{ds} \propto V_{DD}{}^{\alpha}$
- $-1 < \alpha < 2$ determined empirically (≈ 1.3 for 65 nm)

α -Power Model

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_t & \text{cutoff} \\ I_{dsat} \frac{V_{ds}}{V_{dsat}} & V_{ds} < V_{dsat} & \text{linear} \\ I_{dsat} & V_{ds} > V_{dsat} & \text{saturation} \\ & & & & \\ &$$

$$I_{dsat} = P_c \frac{\beta}{2} \left(V_{gs} - V_t \right)^{\alpha}$$
$$V_{dsat} = P_v \left(V_{gs} - V_t \right)^{\alpha/2}$$

4: Nonideal Transistor Theory

CMOS VLSI Design ^{4th Ed.}

1.0

Channel Length Modulation

□ Reverse-biased p-n junctions form a *depletion region*

- Region between n and p with no carriers
- Width of depletion L_d region grows with reverse bias

Even in saturation

Chan Length Mod I-V

$$I_{ds} = \frac{\beta}{2} \left(V_{gs} - V_t \right)^2 \left(1 + \lambda V_{ds} \right)$$

- \Box λ = channel length modulation coefficient
 - not feature size
 - Empirically fit to I-V characteristics

Threshold Voltage Effects

- \Box V_t is V_{gs} for which the channel starts to invert
- Ideal models assumed V_t is constant
- Really depends (weakly) on almost everything else:
 - Body voltage: Body Effect
 - Drain voltage: Drain-Induced Barrier Lowering
 - Channel length: Short Channel Effect

Body Effect

Body is a fourth transistor terminal

- V_{sb} affects the charge required to invert the channel
 - Increasing V_s or decreasing V_b increases V_t

$$V_t = V_{t0} + \gamma \left(\sqrt{\phi_s + V_{sb}} - \sqrt{\phi_s} \right)$$

$$\phi_s = 2v_T \ln \frac{N_A}{n_i}$$

- Depends on doping level N_A

- And intrinsic carrier concentration n_i

 γ = body effect coefficient

$$\gamma = \frac{t_{\rm ox}}{\varepsilon_{\rm ox}} \sqrt{2q\varepsilon_{\rm si}N_A} = \frac{\sqrt{2q\varepsilon_{\rm si}N_A}}{C_{\rm ox}}$$

Body Effect Cont.

□ For small source-to-body voltage, treat as linear

$$V_t = V_{t0} + k_\gamma V_{sb}$$

$$k_{\gamma} = \frac{\gamma}{2\sqrt{\phi_s}} = \frac{\sqrt{\frac{q\varepsilon_{si}N_{\mathcal{A}}}{v_T \ln \frac{N_{\mathcal{A}}}{n_i}}}}{2C_{ox}}$$
DIBL

- Electric field from drain affects channel
- More pronounced in small transistors where the drain is closer to the channel
- Drain-Induced Barrier Lowering
 - Drain voltage also affect V_t

$$V_t' = V_t - \eta V_{ds}$$

High drain voltage causes current to

Short Channel Effect

- In small transistors, source/drain depletion regions extend into the channel
 - Impacts the amount of charge required to invert the channel
 - And thus makes V_t a function of channel length
- □ Short channel effect: V_t increases with L
 - Some processes exhibit a reverse short channel effect in which V_t decreases with L

Leakage

- What about current in cutoff?
- Simulated results
- What differs?

4: Nonideal Transistor Theory

CMOS VLSI Design ^{4th Ed.}

Leakage Sources

- □ Subthreshold conduction
 - Transistors can't abruptly turn ON or OFF
 - Dominant source in contemporary transistors
- Gate leakage
 - Tunneling through ultrathin gate dielectric
- Junction leakage
 - Reverse-biased PN junction diode current

Subthreshold Leakage

Subthreshold leakage exponential with V_{gs}

$$I_{ds} = I_{ds0} e^{\frac{V_{gs} - V_{t0} + \eta V_{ds} - k_{\gamma} V_{sb}}{n v_T}} \left(1 - e^{\frac{-V_{ds}}{v_T}} \right)$$

- **n** is process dependent
 - typically 1.3-1.7
- Rewrite relative to I_{off} on log scale

$$I_{ds} = I_{\text{off}} 10^{\frac{V_{gs} + \eta \left[V_{ds} - V_{dd}\right] - k\gamma V_{sb}}{S}} \left(1 - e^{\frac{-V_{ds}}{v_t}}\right) \qquad S = \left[\frac{d \left(\log_{10} I_{ds}\right)}{dV_{gs}}\right]^{-1} = nv_T \ln 10$$

S ≈ 100 mV/decade @ room temperature

4: Nonideal Transistor Theory CMOS VLSI Design ^{4th Ed.}

Gate Leakage

10⁹

10⁶

10³

100

10-3

10-6

 10^{-9}

0

 J_{G} (A/cm²)

V_{nn} trend

0.3

0.6

0.9

 V_{DD}

1.2

1.5

1.8

From [Sona01]

Carriers tunnel thorough very thin gate oxides
 Exponentially sensitive to t_{ox} and V_{DD}

$$I_{\text{gate}} = W\!A \! \left(\frac{V_{DD}}{t_{\text{ox}}} \right)^2 \mathrm{e}^{-B \frac{t_{\text{ox}}}{V_{DD}}}$$

- A and B are tech constants
- Greater for electrons
 - So nMOS gates leak more
- Negligible for older processes (t_{ox} > 20 Å)
 - I Critically important at 65 nm and below ($t_{ox} \approx 10.5 \text{ Å}$)

10 Å

12 Å

15 Å 19 Å

Junction Leakage

- Reverse-biased p-n junctions have some leakage
 - Ordinary diode leakage
 - Band-to-band tunneling (BTBT)
 - Gate-induced drain leakage (GIDL)

4: Nonideal Transistor Theory

CMOS VLSI Design 4th Ed.

Diode Leakage

Reverse-biased p-n junctions have some leakage

$$I_D = I_S \left(e^{\frac{V_D}{v_T}} - 1 \right)$$

- □ At any significant negative diode voltage, $I_D = -I_s$
- I_s depends on doping levels
 - And area and perimeter of diffusion regions
 - Typically < 1 fA/ μ m² (negligible)

Band-to-Band Tunneling

Tunneling across heavily doped p-n junctions

- Especially sidewall between drain & channel when *halo doping* is used to increase V_t
- Increases junction leakage to significant levels

$$I_{BTBT} = WX_j A \frac{E_j}{E_g^{0.5}} V_{dd} e^{-B \frac{E_g^{1.5}}{E_j}} \qquad \qquad E_j = \sqrt{\frac{2qN_{balo}N_{sd}}{\varepsilon \left(N_{balo} + N_{sd}\right)}} \left(V_{DD} + v_T \ln \frac{N_{balo}N_{sd}}{n_i^2}\right)$$

- X_j: sidewall junction depth
- E_g: bandgap voltage
- A, B: tech constants

Gate-Induced Drain Leakage

Occurs at overlap between gate and drain

- Most pronounced when drain is at $V_{\text{DD}},$ gate is at a negative voltage
- Thwarts efforts to reduce subthreshold leakage using a negative gate voltage

4: Nonideal Transistor Theory

Temperature Sensitivity

- □ Increasing temperature
 - Reduces mobility
 - Reduces V_t

I_{ON}

I_{OFF}

with temperature with temperature

4: Nonideal Transistor Theory

CMOS VLSI Design ^{4th Ed.}

So What?

- □ So what if transistors are not ideal?
 - They still behave like switches.
- But these effects matter for...
 - Supply voltage choice
 - Logical effort
 - Quiescent power consumption
 - Pass transistors
 - Temperature of operation

Parameter Variation

□ Transistors have uncertainty in parameters

- Process: L_{eff} , V_t , t_{ox} of nMOS and pMOS
- Vary around typical (T) values

□ Slow (S): opposite

 $-t_{ox}$:

Not all parameters are independent

for nMOS and pMOS

Environmental Variation

 $\hfill\square$ V_{DD} and T also vary in time and space

□ Fast:

Corner	Voltage	Temperature	
F			
Т	1.8	70 C	
S			

Process Corners

- Process corners describe worst case variations
 - If a design works in all corners, it will probably work for any variation.
- Describe corner with four letters (T, F, S)
 - nMOS speed
 - pMOS speed
 - Voltage
 - Temperature

Important Corners

□ Some critical simulation corners include

Purpose	nMOS	pMOS	V _{DD}	Temp
Cycle time				
Power				
Subthreshold				
leakage				

Inverter Static Characteristics

Dr.Mohammad Abdel-Majeed

Assistant Professor

University of Jordan

Combinational Logic

- A combinational logic cell, logic circuit or gate is generally a multiple input, single output system that performs a Boolean function
 In the positive logic convention, logic 1 is shown by high voltage
 - VDD and logic 0 by low voltage of zero

Ideal Inverter and Inverter Threshold Voltage

• Logic symbol & truth table

VTC of an NMOs inverter

- Vin is _____
- Vout is _
- VSB = ____
- The circuit connected to the output node can be represented using the capacitance C_{out}
- I_D = I_L (_____). By solving this equation we can derive the VTC

VTC

5

nMOS Inverter: Schematic & VTC

- $V_{\text{OH}}:V_{\text{OUT,MAX}}$ when the output level is logic "1"
- V_{OL} : $V_{OUT,MIN}$ when the output level is logic "0"
- V_{IL} : $V_{IN,MAX}$ which can be *interpreted* as logic "0"
- V_{IH} : $V_{IN,MIN}$ which can be *interpreted* as logic "1"
- Inverter threshold Voltage V_M is defined as the point where $V_{in} = V_{out}$

_<= Vin <=__

- Vin is interpreted as "0"
- This means that V_{IL} is low enough to ensure a logic 1 output

• ____<= Vin <=___

- Vin is interpreted as "1"
- This means that $V_{\rm IH}$ is low enough to ensure a logic 0 output

Tolerance

• Ability to interpret range of values as logic 0 or logic 1 allows the circuits to operate with certain _____

• Noise sources

- Unwanted capacitive coupling
- Radiations
- ...

Noise Margin

- By definition the output of the first inverter is V_{OL}
- The output signal of the 1st inverter will be perturbed during transmission because of onchip interconnect
- If the input voltage of the 2nd inverter is smaller than V_{OL}, then this signal will be interpreted correctly as a logic "0" input by 2nd inverter
- But if the input voltage becomes larger than $V_{\mbox{\tiny IL}}$, then it may not be interpreted correctly by the inverter
- Thus, V_{IL} is the maximum allowable voltage at the input of the 2nd inverter

Output Noise Margin

- Input of the 3rd inverter will be different from V_{OH} due to noise interference
- If the input voltage of the 3rd inverter is larger than V_{OH} this signal is interpreted correctly as a logic "1"
- If the voltage level drops below $V_{\rm IH}$, the input may not be interpreted as a logic "1"
- Therefore, V_{IH} is the minimum allowable voltage at the input of the 3rd inverter

Noise Margin

- NM_L =
 NM_H =

Power

- Lower consumption extends battery-based operation time for portable systems
- DC power dissipation: $P_{DC} = V_{DD} I_{DC}$
- DC power is input and output voltage dependent
- To calculate avg DC power assume 50% of the time input is at $V_{\rm in}$ = low and 50% at $V_{\rm in}$ = high
 - $P_{DC} = 0.5 \text{ VDD} \{I_{DC} (V_{in}=low) + I_{DC} (V_{in}=high)\}$
- Inverter type and its design affects the power dissipation significantly

Inverter

- Resistive Load Inverter
- NMOS depletion load inverter
- CMOS inverter

Resistive-Load Inverter

• Resistive-load inverter circuit & its VTC

Resistive-Load Inverter

- Resistive-load inverter circuit & its VTC
- *V_{in}*<*V_{T0}*, nMOS off
 I_D=_____
 V_{out} = _____
- $V_{in} > V_{T0}$, nMOS in sat.

•
$$V_{ds} = ___> V_{in} - V_{T0}$$

• $I_R =$

• $V_{in} > V_{T0}$ & $V_{out} < V_{DSAT}$, nMOS in lin. • $I_{R=}$

Calculation of V_{OH}

- $V_{out} = V_{dd} R_L I_R$
- When $V_{in} < V_{T0}$
 - Transistor is in _
 - $I_{R} = I_{D} = 0$
 - V_{OH} = _____

Calculation of $V_{\rm OL}$

- V_{OL} is obtained when $V_{in} = V_{OH} =$ ____
 - V_{in}
 - NMOS is in _____
 - Using KCL $I_R = I_D$

• Use the KCL and V_{01} definition to to find the value of V_{01}
Calculation of
$$V_{IL}$$

- At $V_{in} = V_{IL} dV_{out}/dV_{in} = -1$
- NMOS is in
 - Using KCL $I_R = I_D$

Calculation of V_{IL}

- At $V_{in} = V_{IL} dV_{out}/dV_{in} = -1$
- NMOS is in
 - Using KCL $I_R = I_D$
 - $(Vdd Vout) / RL = B/2 (Vin VT_0)^2$ (eq1)
 - Differentiate both side
 - $-1/R_L$. $(dV_{out}/dV_{in}) = B(V_{IL} V_{TO})$
 - substitute $dV_{out}/dV_{in} = -1$
 - $-1/R_L$. $(-1) = B(V_{IL} V_{TO})$
 - V_{IL =} V_{T0} + 1/(B.R_L)(eq2)

Calculation of $V_{\rm IH}$

- At $V_{in} = V_{IH} dV_{out}/dV_{in} = -1$
- V_{in} is slightly larger than V_{OL}
- NMOS is in _

Calculation of $V_{\rm IH}$

- At $V_{in} = V_{IH} dV_{out}/dV_{in} = -1$
- V_{in} is slightly larger than V_{OL}
- NMOS is in
 - Using KCL $I_R = I_D$

- $(Vdd Vout) / RL = B/2 . (2. (V_{in} VT_0). VOUT V^2_{OUT})eq(1)$
- Differentiate both side
 - $-1/R_L$. $(dV_{out}/dV_{in}) = B/2 . (2. (V_{in} VT_0). dV_{OUT}/dVin 2V_{OUT} . dV_{OUT}/dVineq(2)$
- Solve eq1 and eq2 and substitute $dV_{out}/dV_{in} = -1$ and V_{in} with V_{IH}

$$V_{IH} = V_{T0} + \sqrt{\frac{8}{3} \cdot \frac{V_{DD}}{k_n R_L}} - \frac{1}{k_n R_L}$$

VTC, Power & Chip Area

• VTC of the resistive-load inverter for different $(k_n \cdot R_L)$

Power

- $V_{in} = V_{OH}$
 - NMOS is in Linear
 - $I_{D} = I_{R} = (V_{dd} V_{OL})/R_{L}$
- $V_{in} = V_{OL}$
 - NMOS is cutoff
 - ID = 0
- $P_{DC}(Average) = (V_{dd} / 2). (V_{dd} V_{OL})/R_{L}$

Resistor

- Two possibilities for fabricating resistors:
 - Diffused resistor: an isolated n or p-type diffusion region.
 - 20-100 ohm/square: needs large area not practical for VLSI
 - Metal Resistor
 - Undoped polysilicon resistor:
 - mask off during poly doping to create about 10M ohm/square.

V_{DD}

 $V_{in} = V_{GS}$

 $V_{out} = V_{DS}$

Example 5.1 - Inverter Design

- Resistive-load inverter circuit
 - $V_{DD}=5V$, $\mu^*C_{ox}=30\mu A/V^2$, $V_{T0}=1V$
 - V_{OL}=200mV

(W/L)-Ratio	Load resistor $(R_L[k\Omega])$	DC power consumption (P _{DC,avg.} [µW])
1		
2		
3		
4		
5		
6		

Inverters with MOSFET Load

• Enhancement-Load Inverter

Inverters with MOSFET Load

• Enhancement-Load Inverter

Load NMOS operates in _____

V_{OH} = _____

Power

Inverters with MOSFET Load

• Enhancement-Load Inverter

Load NMOS operates in _____

V_{OH} = _____

Power

CMOS Inverter

- Has NMOS and PMOS Transistors
- Cons
 - Complexity
- Pros
 - Power
 - VTC is sharp

(a)

- $V_{GS,n} < V_{th,n}$
- NMOS is OFF
- PMOS operates in _

- $V_{GS,p} > V_{th,p}$
- PMOS is OFF
- NMOS operates in _

- $V_{in} = V_{IL}$
- NMOS is in
- PMOS is in ____

- $V_{in} = V_M = Vdd/2$
- NMOS is in ____
- PMOS is in ____

- $V_{in} = V_{IH}$
- NMOS is in
- PMOS is in ____

Region	V _{in} in the region	V _{out}	NMOS	PMOS
А	< V _{th,n}	V _{OH}	Cut-off	Linear
В	V _{IL}	~V _{OH}	Sat.	Linear
С	V _M	V _M	Sat.	Sat.
D	V _{IH}	~V _{OL}	Linear	Sat.
E	$>V_{tdd} + V_{th,p}$	V _{OL}	Linear	Cut-off

V_{OH} & V_{OL}

• V_{OH} = _____

• V_{OL} = _____

V_{IL}

- $V_{in} = V_{IL} \rightarrow dV_{out}/dV_{in} = -1$
- NMOS is in _____
- PMOS is in _____

$$V_{\mathsf{IL}}$$

•
$$V_{in} = V_{IL} \rightarrow dV_{out}/dV_{in} = -1$$

- NMOS is in _____
- PMOS is in _____

•
$$B_n/2(V_{GS,n} - V_{th,n})^2 = B_p/2 (2.(V_{GS,p} - V_{th,p}) \cdot V_{DS,p} - V_{DS,p}^2)$$

$$V_{IL} = \frac{2V_{out} + V_{T0,p} - V_{DD} + k_R V_{T0,n}}{1 + k_R}$$

• $K_R = K_n / K_p$

$V_{\rm IH}$

- $V_{in} = V_{IH} \rightarrow dV_{out}/dV_{in} = -1$
- NMOS is in _____
- PMOS is in _____

V_{IH}

- $V_{in} = V_{IH} \rightarrow dV_{out}/dV_{in} = -1$
- NMOS is in _____
- PMOS is in _____

•
$$B_p/2(V_{GS,p} - V_{th,p})^2 = B_n/2 (2.(V_{GS,n} - V_{th,n}) \cdot V_{DS,n} - V_{DS,n}^2)$$

$$V_{IH} = \frac{V_{DD} + V_{T0,p} + k_R \cdot (2V_{out} + V_{T0,n})}{1 + k_R}$$

• $K_R = K_n / K_p$

Inverter threshold voltage

- $V_{in} = V_{out}$
- NMOS and PMOS are in Saturation

Inverter threshold voltage

- $V_{in} = V_{out}$
- NMOS and PMOS are in Saturation

Design of CMOS Inverter

Design of CMOS Inverters (2)

• If symmetric CMOS inverter with $V_{T0,n} = |V_{T0,p}|$ and $k_R = 1$, $V_{IL} = \frac{1}{8} \cdot (3V_{DD} + 2V_{T0,n})$

$$\longrightarrow NM_{L} = V_{IL} - V_{OL} = V_{IL} \circ$$
$$NM_{H} = V_{OH} - V_{IH} = V_{DD} - V_{IH}$$

$$\rightarrow NM_L = NM_H = V_{IL}$$

1.2
1.0

$$V_{DD} = 1.2V$$

 $V_{T0,n} = 0.51V$
 $V_{T0,p} = -0.51V$
 $V_{T0,p} = -0.51V$
 $K_R = 1.0$
 $K_R = 4.0$
 0.4
 0.2
 0.0
 0.2
 0.4
 0.6
 0.4
 0.2
 0.0
 0.2
 0.4
 0.6
 0.8
 0.1
 0.8
 0.1
 1.2
 1.4
Input Voltage (V)

Inverter Transient Characteristics

Dr.Mohammad Abdel-Majeed

Assistant Professor

University of Jordan

Timing Analysis

Delay models are required for _____ and the _____

Example

Inverter delay

Delay-Time Definitions: Propagation Delays

Delay-Time Definitions: Rise & Fall Times

Calculation of Propagation Delay (AVG current method)

• Simplest method : estimating the average capacitance current

Calculation of Propagation Delay (AVG current method)

• Simplest method : estimating the average capacitance current

$$\tau_{PHL} = \frac{C_{load} \cdot \Delta V_{HL}}{I_{avg,HL}} = \frac{C_{load} \cdot (V_{OH} - V_{50\%})}{I_{avg,HL}}$$
$$\tau_{PLH} = \frac{C_{load} \cdot \Delta V_{LH}}{I_{avg,LH}} = \frac{C_{load} \cdot (V_{50\%} - V_{OL})}{I_{avg,LH}}$$

Calculation of Propagation Delay (AVG current method)

• Simplest method : estimating the average capacitance current

$$\tau_{PHL} = \frac{C_{load} \cdot \Delta V_{HL}}{I_{avg,HL}} = \frac{C_{load} \cdot (V_{OH} - V_{50\%})}{I_{avg,HL}}$$
$$\tau_{PLH} = \frac{C_{load} \cdot \Delta V_{LH}}{I_{avg,LH}} = \frac{C_{load} \cdot (V_{50\%} - V_{OL})}{I_{avg,LH}}$$

• The average current

$$I_{avg,HL} = \frac{1}{2} \Big[i_C \left(V_{in} = V_{OH}, V_{out} = V_{OH} \right) + i_C \left(V_{in} = V_{OH}, V_{out} = V_{50\%} \right) \Big]$$
$$I_{avg,LH} = \frac{1}{2} \Big[i_C \left(V_{in} = V_{OL}, V_{out} = V_{50\%} \right) + i_C \left(V_{in} = V_{OL}, V_{out} = V_{OL} \right) \Big]$$

Calculation of Rise and fall time (AVG current method)

•
$$T_{rise} = t_D - tC = \frac{C_{load}(V_{90\%} - V_{10\%})}{I_{avg,rise}}$$

•
$$I_{avg,rise} = \frac{I_c + ID}{2}$$

•
$$I_{avg,rise} = \frac{I_{sdp}(Vin=VOL,Vout=V_{10\%}) + Isdp(Vin=VOL,Vout=V_{10\%})}{2}$$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example

- CMOS inverter with NMOS μC_{ox} = 20uA/V² $\,$, (W/L)_n =10, V_{t,n} \, =1V, $C_{load} \, \, 1_{pF}$ and V_{DD} =5V
 - Calculate output fall time

Example 6.4 (2)

• The falling-output propagation delay

Example 6.4 (3)

• The (Area x Delay) product

Ring oscillator

CMOS Ring Oscillator Circuit

MOSFET Capacitor

- The on-chip capacitance found in MOS circuit are in general complicated functions of the layout geometries and the manufacturing processes.
- We will develop simple approximations for the on-chip MOSFET capacitances.

MOSFET Capacitor (2)

MOSFET Capacitor (3)

- MOSFET parasitic capacitances are observed bet terminals.
- Most of the capacitances are distributed and the complex.
- Capacitances can be models as
 - Lumped
 - distributed
- Parasitic device capacitances can be classified into two major group
 - Oxide-related capacitance
 - Junction capacitance

Oxide-related Capacitances (1)

- The gate electrode overlaps both the source region and the drain region at the edges.
 - The two overlap capacitances that arise as a result of this structural arrangement.
 - C_{GD}(overlap)
 - C_{GS}(overlap)
 - The overlap capacitances can be found as

 $C_{GS}(overlap) = C_{ox} \cdot W \cdot L_{D}$ $C_{GD}(overlap) = C_{ox} \cdot W \cdot L_{D}$

with
$$C_{ox} = \frac{\mathcal{E}_{ox}}{t_{ox}}$$

Oxide-related Capacitances (2)

- Capacitances which result from the interaction between the gate voltage and the channel charge.
 - C_{gs} , C_{gd} , C_{gb}

Oxide-related Capacitances (2)

- Cut-off mode
 - The surface is not inverted.
 - No conducting channel between source and drain
 - $C_{gs} = C_{gd} = 0$
 - The gate-to-substrate capacitance can be approximated by

$$C_{gb} = C_{ox} \cdot W \cdot L$$

Oxide-related Capacitances (2)

- Linear mode
 - The inverted channel extends across the MOSFET.
 - Conducting inversion layer shields the substrate from the gate electric field : $C_{gb} = 0$
 - The distributed gate-to-channel capacitance (equal S,D)

$$C_{gs} \square C_{gd} \cong \frac{1}{2} \cdot C_{ox} \cdot W \cdot L$$

Oxide-related Capacitances (3)

Saturation mode

- The inversion region is pinched off.
- The gate-to-drain capacitance component is equal to zero
 - C_{gd} = 0
- Source still linked to the conducting channel.
 - Shielding effect still remain : C_{gb} = 0
- The distributed gate-to-channel capacitance as seen between the gate and the source can be approximated by

$$C_{gs} \cong \frac{2}{3} \cdot C_{ox} \cdot W \cdot L$$

(c)

Oxide-related Capacitances (4)

Capacitance	Cut-off	Linear	Saturation
C _{gb} (total)	C _{ox} WL	0	0
C _{gd} (total)	$C_{ox}WL_{D}$	$1/2C_{ox}WL + C_{ox}WL_{D}$	$C_{ox}WL_{D}$
C _{gs} (total)	$C_{ox}WL_{D}$	$1/2C_{ox}WL + C_{ox}WL_{D}$	$2/3C_{ox}WL + C_{ox}WL_{D}$

 We have to combine the distributed C_{gs} and C_{gd} values found here with the relevant overlap capacitance values, in order to calculate the total capacitance between the external device terminals.

Oxide-related Capacitances (5)

• Variation of the distributed (gate-to-channel) oxide capacitances as function of gate-to-source voltage.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Junction Capacitances (1)

• Consider the voltage-dependent source-substrate and drain-substrate junction capacitances : C_{sb} , C_{db}

Junction Capacitances (2)

- C_{sb} and C_{db} are due to the depletion charge surrounding the respective source or drain diffusion regions embedded in the substrate.
 - both of these junctions are reverse-biased under normal operating conditions.
 - The amount of junction capacitance is a function of the applied terminal voltages.
 - Junction capacitances associated with sidewalls (2,3,4) will be different from the other junction capacitance.

Estimation of Interconnect Parasitics

Interconnect Delay

- Dealing with the implications and optimizing a system for speed
 - Estimating the interconnect parasitics in a large chip
 - Simulating the transient effects.

Statistical distribution

• Statistical distribution of interconnection length on a typical chip

Interconnect Capacitance Estimation (1)

• A simplified view of six interconnections on three different levels

Interconnect Capacitance Estimation (2)

• The section of a single interconnect

Interconnect Capacitance Estimation (3)

• The total parasitic capacitance

Thickness value of different layers

Field oxide thickness	3µm
Gate oxide thickness	2.6nm
Polysilicon thickness	1μm (minimum width 0.06μm)
Poly-metal oxide thickness	1.1µm
Metal 1 thickness	1.8μm (minimum width 0.09μm)
Metal 2~7 thickness	2.2 μ m (minimum width 0.1 μ m)
Metal 8~9 thickness	9μm (minimum width 0.4μm)
Via oxide thickness (PO-M1)	1.75µm
Via oxide thickness (M1-M6)	2.2µm
Via oxide thickness (M6-M9)	9μm
n+ junction depth	23nm
p+ junction depth	28nm
n-well junction depth	3μm

Interconnect Resistance Estimation

• Total resistance in indicated current direction

$$R_{wire} = \rho \cdot \frac{l}{w \cdot t} = R_{sheet} \left(\frac{l}{w}\right)$$

• The sheet resistivity of the line

$$R_{sheet} = \left(\frac{\rho}{t}\right)$$

RC Delay Models

• Simple lumped RC model & T-model

- $\tau_{\scriptscriptstyle PLH}\approx 0.69 RC$
- Distributed RC ladder network model

Various RC Models

The Elmore Delay (1)

- The general topology of the RC tree network
 - Let *Pi* denote the unique path from the input node to node *i*, *i* = 1, 2, 3, ..., N.
 - Let *Pij* = *Pi* « *Pj* denote the portion of the path between the input and the node *i*, which is *common* to the path between the input and node *j*.

Example 6.5 (optional)

- 1) Examine the propagation delay across a long polysilicon interconnect line (length=1000µm, width=1µm)
 - R_{sheet} = 15 Ω /square
- 1) Sol. $R_{lumped} = R_{sheet} \times (\# \text{ of squares})$ $= 15(\Omega/\text{square}) \times \left(\frac{1000\,\mu\text{m}}{1\,\mu\text{m}}\right) = 15\text{k}\Omega$ $C_{parallel-plate} = (\text{unit area capacitance}) \times (\text{area})$ $= 0.106\text{fF}/\mu\text{m}^{2} \times (1000\,\mu\text{m} \times 1\,\mu\text{m}) = 106\text{fF}$ $C_{fringe} = (\text{unit length capacitance}) \times (\text{perimeter})$ $= 0.043\text{fF}/\mu\text{m} \times (1000\,\mu\text{m} + 1000\,\mu\text{m} + 1\,\mu\text{m}) = 86\text{fF}$ $C_{lumped-total} = C_{parallel-plate} + C_{fringe} = 192\text{fF}$

Example 6.5 (2)

• The simulated output voltage waveforms .

polysilicon interconnect line

 2) Consider a polysilicon line consisting of two segments (W=1.5 μm & W=0.5 μm, each 500 μm)

Example 6.5(4)

• 2)

$$R_{lumped-1} = 15(\Omega/square) \times \left(\frac{500\,\mu\text{m}}{0.5\,\mu\text{m}}\right) = 15\text{k}\Omega, \ R_{lumped-2} = 15(\Omega/square) \times \left(\frac{500\,\mu\text{m}}{1.5\,\mu\text{m}}\right) = 5\text{k}\Omega$$

$$R_{lumped-total} = R_{lumped-1} + R_{lumped-2} = 20\text{k}\Omega$$

$$C_{parallel-plate-1} = 0.106\text{f}\text{F}/\mu\text{m}^{2} \times (500\,\mu\text{m} \times 0.5\,\mu\text{m}) = 26.5\text{f}\text{F}$$

$$C_{parallel-plate-2} = 0.106\text{f}\text{F}/\mu\text{m}^{2} \times (500\,\mu\text{m} \times 1.5\,\mu\text{m}) = 79.5\text{f}\text{F}$$

$$C_{fringe-1} \approx C_{fringe-2} = 46\text{f}\text{F}$$

$$C_{lumped-total} = C_{parallel-plate-1} + C_{parallel-plate-2} + C_{fringe-1} + C_{fringe-2} = 192\text{f}\text{F}$$

Layout, Fabrication, and Elementary Logic Design

Dr.Mohammad Abdel-Majeed

Assistant Professor

University of Jordan

Introduction

- Integrated circuits: many transistors on one chip.
 - Very Large Scale Integration (VLSI): very many
- Metal Oxide Semiconductor (MOS) transistor
 - Fast, cheap, low-power transistors
 - Complementary: mixture of n- and p-type leads to less power
- Today: How to build your own simple CMOS chip
 - CMOS transistors
 - Building logic gates from transistors
 - Transistor layout and fabrication
- Rest of the course: How to build a good CMOS chip

Silicon Lattice

- Transistors are built on a silicon substrate
- Silicon is a Group IV material
- Forms crystal lattice with bonds to four neighbors

Dopants

- Silicon is a semiconductor
- Pure silicon has no free carriers and conducts poorly
- Adding dopants increases the conductivity
- Group V: extra electron (n-type)
- Group III: missing electron, called hole (p-type)

p-n Junctions

- A junction between p-type and n-type semiconductor forms a diode.
- Current flows only in one direction

nMOS Transistor

- Four terminals: gate, source, drain, body
- Gate oxide body stack looks like a capacitor
 - Gate and body are conductors
 - SiO₂ (oxide) is a very good insulator
 - Called metal oxide semiconductor (MOS) capacitor Gate Dra
 - Even though gate is no longer made of metal

nMOS Operation

- Body is commonly tied to ground (0 V)
- When the gate is at a low voltage:
 - P-type body is at low voltage
 - Source-body and drain-body diodes are OFF
 - No current flows, transistor is OFF

nMOS Operation

- When the gate is at a high voltage:
 - Positive charge on gate of MOS capacitor
 - Negative charge attracted to body
 - Inverts a channel under gate to n-type
 - Now current can flow through n-type silicon from source through channel to drain, transistor is ON

pMOS Transistor

- Similar, but doping and voltages reversed
 - Body tied to high voltage (V_{DD})
 - Gate low: transistor ON
 - Gate high: transistor OFF
 - Bubble indicates inverted behavior

Power Supply Voltage

- GND = 0 V
- In 1980's, V_{DD} = 5V
- V_{DD} has decreased in modern processes
 - High V_{DD} would damage modern tiny transistors
 - Lower V_{DD} saves power
- $V_{DD} = 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, ...$

CMOS Fabrication

- CMOS transistors are fabricated on silicon wafer
- Lithography process similar to printing press
- On each step, different materials are deposited or etched
- Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process

Inverter Cross-section

- Typically use p-type substrate for nMOS transistor
 - Requires n-well for body of pMOS transistors
 - Several alternatives: SOI, twin-tub, etc.

Well and Substrate Taps

- Substrate must be tied to GND and n-well to $V_{\mbox{\scriptsize DD}}$
- Metal to lightly-doped semiconductor forms poor connection called Shottky Diode
- Use heavily doped well and substrate contacts / taps

Inverter Mask Set

- Transistors and wires are defined by masks
- Cross-section taken along dashed line

Detailed Mask Views

- Six masks
 - n-well
 - Polysilicon
 - n+ diffusion
 - p+ diffusion
 - Contact
 - Metal

Fabrication Steps

- Start with blank wafer
- Build inverter from the bottom up
- First step will be to form the n-well
 - Cover wafer with protective layer of SiO₂ (oxide)
 - Remove layer where n-well should be built
 - Implant or diffuse n dopants into exposed wafer
 - Strip off SiO₂

Oxidation

- Grow SiO₂ on top of Si wafer
 - 900 1200 C with H_2O or O_2 in oxidation furnace

	SiO ₂
	2
p substrate	

Photoresist

- Spin on photoresist
 - Photoresist is a light-sensitive organic polymer
 - Softens where exposed to light

Lithography

- Expose photoresist through n-well mask
- Strip off exposed photoresist

Etch

- Etch oxide with hydrofluoric acid (HF)
 - Seeps through skin and eats bone; nasty stuff!!!
- Only attacks oxide where resist has been exposed

Strip Photoresist

- Strip off remaining photoresist
 - Use mixture of acids called piranah etch
- Necessary so resist doesn't melt in next step

n-well

- n-well is formed with diffusion or ion implantation
- Diffusion
 - Place wafer in furnace with arsenic gas
 - Heat until As atoms diffuse into exposed Si
- Ion Implanatation
 - Blast wafer with beam of As ions
 - Ions blocked by SiO₂, only enter exposed Si

Strip Oxide

- Strip off the remaining oxide using HF
- Back to bare wafer with n-well
- Subsequent steps involve similar series of steps

	n well
p substrate	

Polysilicon

- Deposit very thin layer of gate oxide
 - < 20 Å (6-7 atomic layers)
- Chemical Vapor Deposition (CVD) of silicon layer
 - Place wafer in furnace with Silane gas (SiH₄)
 - Forms many small crystals called polysilicon
 - Heavily doped to be good conductor

		Polysilicon
		i nin gate oxide
	n well	
p substrate		

Polysilicon Patterning

• Use same lithography process to pattern polysilicon

Self-Aligned Process

- Use oxide and masking to expose where n+ dopants should be diffused or implanted
- N-diffusion forms nMOS source, drain, and n-well contact

N-diffusion

- Pattern oxide and form n+ regions
- Self-aligned process where gate blocks diffusion
- Polysilicon is better than metal for self-aligned gates because it doesn't melt doe

n+ Diffusion

N-diffusion

- Historically dopants were diffused
- Usually ion implantation today
- But regions are still called diffusion

N-diffusion

• Strip off oxide to complete patterning step

P-Diffusion

 Similar set of steps form p+ diffusion regions for pMOS source and drain and substrate contact

Contacts

- Now we need to wire together the devices
- Cover chip with thick field oxide
- Etch oxide where contact cuts are needed

Metallization

• Sputter on aluminum over whole wafer

Layout

- Chips are specified with set of masks
- Minimum dimensions of masks determine transistor size (and hence speed, cost, and power)
- Feature size *f* = distance between source and drain
 - Set by minimum width of polysilicon
- Feature size improves 30% every 3 years or so
- Normalize for feature size when describing design rules
- Express rules in terms of $\lambda = f/2$
 - E.g. λ = 0.3 μm in 0.6 μm process

Simplified Design Rules

Inverter Layout

- Transistor dimensions specified as Width / Length
 - Minimum size is $4\lambda / 2\lambda$, sometimes called 1 unit
 - For 0.6 μ_{VDD} , W=1.2 μm, L=0.6 μm

Summary

- MOS Transistors are stack of gate, oxide, silicon
- Can be viewed as electrically controlled switches
- Build logic gates out of switches
- Draw masks to specify layout of transistors
- Now you know everything necessary to start designing schematics and layout for a simple chip!

Combinational Logic

Dr.Mohammad Abdel-Majeed

Assistant Professor

University of Jordan

Transistors as Switches

- We can view MOS transistors as electrically controlled switches
- Voltage at gate controls path from source to drain

CMOS Circuits

- For the gate to output a '1'
 - Some path of PMOS transistors from VDD to outpon
 - We call the PMOS transistors the Pull-Up Netwo
- For the gate to output a '0
 - Some path of NMOS transistors from GND to our on
 - We call the NMOS transistors the Pull-Down Net

CMOS Inverter

CMOS Inverter

CMOS Inverter

-Y=1

CMOS NOR Gate

3-input NAND Gate

- Y pulls low if ALL inputs are 1
- Y pulls high if ANY input is 0

3-input NAND Gate

- Y pulls low if ALL inputs are 1
- Y pulls high if ANY input is 0

Sizing

Sizing

- Delay is dependent on the pattern of inputs
- The ratio of the {W/L}PUN/ {W/L}PDN should be two (or higher) to make up for slow PMOS

Sizing

- Delay is dependent on the pattern of inputs
- Low to high transition
 - both inputs go low
 - delay is $(R_p/2)*C_L$
- one input goes low
 - delay is $(R_p)^*C_L$ \rightarrow Worst case: $R_p^*C_L$
- High to Low transition
 - both inputs go high
 - delay is (2*R_n)*C_L

NAND Sizing

Inverter Sizing

NOR Sizing

NAND capacitance

Complex Gates

• $A = \overline{D + A.(B + C)}$

Complex Gates Sizing

• $A = \overline{D + A.(B + C)}$

Stick Diagrams

- VLSI design aims to translate circuit concepts onto silicon.
- stick diagrams are a means of capturing topography and layer information using simple diagrams.
- Stick diagrams convey layer information through colour codes (or monochrome encoding).
- Acts as an interface between symbolic circuit and the actual layout.

Stick Diagrams

- Does show all components/vias.
- It shows relative placement of components.
- Goes one step closer to the layout
- Helps plan the layout and routing

Stick Diagrams

- Does *not* show
 - Exact placement of components
 - Transistor sizes
 - Wire lengths, wire widths, tub boundaries.
 - Any other low level details such as parasitics..

Stick Diagram

Stick Diagram

• F = $\overline{A+B}$

• F = $\overline{A.B}$

• F = $\overline{A + BC}$

• F = $\overline{A(D+E) + BC}$

- The number of diffusion breaks can be minimized by changing the ordering of the polysilicon columns
- A simple method for finding the optimum gate ordering is the **Euler-path** approach
- Find a common Euler path for both pull-down and pull-up graphs
- The polysilicon columns can be arranged according to the sequence (in Euler-path)
- Diffusion will be unbroken if identically labeled Euler paths can be found for the p and n trees

- construct one Euler path for both the Pull up and Pull down network
 - Path the traverses each node in the path, such that each edge is visited only once.
 - If the path traverses transistor A then B then C. Then the path name is {A, B, C}
 - The Euler path of the Pull up network must be the same as the path of the Pull down network.
 - Euler paths are not necessarily unique.
 - It may be necessary to redefine the function to find a Euler path.

 The advantages of this new layout are more compact layout area, simple routing of signals, and consequently, lower parasitic capacitance

• $A = \overline{D + AB + CE}$

• $A = \overline{D + AB + CE}$

• f= $\overline{A(D+E)+BC}$

CMOS Transmission Gates (Pass Gates)

• Representations of the CMOS transmission gate (TG)

- One nMOS + one pMOS
- Bidirectional switch
- If C=V_{DD}, TG is turned on (low-resistance path)
- If C=GND, TG is turned off (high-impedance state)

DC Analysis of Transmission Gate (1)

CMOS TG Implementations (1)

• Two-input multiplexor

- 6-TRs XOR function

CMOS TG Implementations (2)

• Boolean function realization

Transitors scaling

48

Outline

- Scaling
 - Transistors
 - Interconnect
 - Future Challenges

Moore's Law

• Recall that Moore's Law has been driving CMOS

Moore's Law

• Recall that Moore's Law has been driving CMOS

Moore's Law today

Moore's Law

Recall that Moore's Law has been driving CMOS

Corollary: clock speeds have improved

Why?

- Why more transistors per IC?
 - Smaller transistors
 - Larger dice
- Why faster computers?
 - Smaller, faster transistors
 - Better microarchitecture (more IPC)
 - Fewer gate delays per cycle

Scaling

- The only constant in VLSI is constant change
- Feature size shrinks by 30% every 2-3 years
 - Transistors become cheaper
 - Transistors become faster and lower power
 - Wires do not improve (and may get worse)
- Scale factor S

$$S = \sqrt{2}$$

- Typically
- Technology nodes

Dennard Scaling

- Proposed by Dennard in 1974
- Also known as constant field scaling
 - Electric fields remain the same as features scale
- Scaling assumptions
 - All dimensions (x, y, z => W, L, t_{ox})
 - Voltage (V_{DD})
 - Doping levels

Device Scaling

Parameter	Sensitivity	Dennard Scaling	
L: Length		1/S	
W: Width		1/S	
t _{ox} : gate oxide thickness		1/S	
V _{DD} : supply voltage		1/S	
V _t : threshold voltage		1/S	
NA: substrate doping		S	
β	W/(Lt _{ox})	S	
I _{on} : ON current	$\beta(V_{DD}-V_t)^2$	1/S	
R: effective resistance	V _{DD} /I _{on}	1	
C: gate capacitance	WL/t _{ox}	1/S	
τ: gate delay	RC	1/S	
f: clock frequency	1/τ	S	
E: switching energy / gate	CV _{DD} ²	1/S ³	
P: switching power / gate	Ef	1/S ²	
A: area per gate	WL	1/S ²	
Switching power density	P/A	1	
Switching current density	I _{on} /A	S	

Observations

- Gate capacitance per micron is nearly independent of process
- Gates get faster with scaling (good)
- Dynamic power goes down with scaling (good)
- Current density goes up with scaling (bad)

Real Scaling

- t_{ox} scaling has slowed since 65 nm
 - Limited by gate tunneling current
 - Gates are only about 4 atomic layers thick!
 - High-k dielectrics have helped continued scaling of effective oxide thickness
- V_{DD} scaling has slowed since 65 nm
 - SRAM cell stability at low voltage is challenging
- Dennard scaling predicts cost, speed, power all improve
 - Below 65 nm, some designers find they must choose just two of the three

Interconnect Scaling

Parameter	Sensitivity	Scale Factor	
w: width		1/S	
s: spacing		1/S	
t: thickness		1/S	
h: height		1/S	
D _c : die size		D _c	
R _w : wire resistance/unit length	1/wt	S ²	
C _{wf} : fringing capacitance / unit length	t/s	1	
C _{wp} : parallel plate capacitance / unit length	w/h	1	
C _w : total wire capacitance / unit length	$C_{wf} + C_{wp}$	1	
t _{wu} : unrepeated RC delay / unit length	R _w C _w	S ²	
t _{wr} : repeated RC delay / unit length	sqrt(RCR _w C _w)	sqrt(S)	
Crosstalk noise	w/h	1	
E _w : energy per bit / unit length	$C_w V_{DD}^2$	1/S ²	

Reachable Radius

- We can't send a signal across a large fast chip in one cycle anymore
- But the microarchitect can plan around this
 - Just as off-chip memory latencies were tolerated

Observations

- Local wires are getting faster
 - Not quite tracking transistor improvement
 - But not a major problem
- Global wires are getting slower
 - No longer possible to cross chip in one cycle

ITRS

- Semiconductor Industry Association forecast
 - Intl. Technology Roadmap for Semiconductors

Year	2009	2012	2015	2018	2021
Feature size (nm)	34	24	17	12	8.4
L _{gate} (nm)	20	14	10	7	5
$V_{DD}(\mathbf{V})$	1.0	0.9	0.8	0.7	0.65
Billions of transistors/die	1.5	3.1	6.2	12.4	24.7
Wiring levels	12	12	13	14	15
Maximum power (W)	198	198	198	198	198
DRAM capacity (Gb)	2	4	8	16	32
Flash capacity (Gb)	16	32	64	128	256

Dynamic Power

- Intel VP Patrick Gelsinger (ISSCC 2001)
 - If scaling continues at present pace, by 2005, high speed processors would have power density of nuclear reactor, by 2010, a rocket nozzle, and by 2015, surface of sun.
 - "Business as usual will not work in the future."
- Attention to power is
 - increasing

Static Power

- V_{DD} decreases
 - Save dynamic power
 - Protect thin gate oxides and short channels
 - No point in high value because of velocity sat.
- V_t must decrease to maintain device performance
- But this causes exponential increase in OFF leakage
- Major future challenge

Productivity

- Transistor count is increasing faster than designer productivity (gates / week)
 - Bigger design teams
 - Up to 500 for a high-end microprocessor
 - More expensive design cost
 - Pressure to raise productivity
 - Rely on synthesis, IP blocks
 - Need for good engineering managers

Physical Limits

- Will Moore's Law run out of steam?
 - Can't build transistors smaller than an atom...
- Many reasons have been predicted for end of scaling
 - Dynamic power
 - Subthreshold leakage, tunneling
 - Short channel effects
 - Fabrication costs
 - Electromigration
 - Interconnect delay

Sequential Logic

Dr.Mohammad Abdel-Majeed

Assistant Professor

University of Jordan

Introduction

• Sequential Circuit

Combinational block +memory block

SR Latch Circuit

• SR latch circuit based on NOR2 gates

 Gate level schematic and block diagram

Truth Table and Operation Mode

• Truth table of the NOR based SR latch circuit

5	R	Q _{n+1}	$\overline{\mathcal{Q}_{n+1}}$	Operation
0	0	Qn	$\overline{Q_n}$	hold
1	0	1	0	set
0	1	0	1	reset
1	1	0	0	not allowed

• Operation mode of the NOR based SR latch circuit

5	R	Q_{n+1}	$\overline{\mathcal{Q}_{n+1}}$	Operation
V_{OH}	V_{OL}	V_{OH}	V_{OL}	M1 and M2 on, M3 and M4 off
V_{OL}	V _{OH}	V_{OL}	V _{OH}	M1 and M2 off, M3 and M4 on
V_{OL}	V_{OL}	V_{OH}	V_{OL}	M1 and M4 off, M2 on, or
VOL	V_{OL}	V_{OL}	V _{OH}	M1 and M4 off, M3 on

NAND Based SR Latch

• Gate level schematic & Block diagram

S	R	Q_{n+1}	$\overline{Q_{n+1}}$	Operation
0	0	1	1	not allowed
0	1	1	0	set
1	0	0	1	reset
1	1	Q_n	$\overline{Q_n}$	hold

CMOS SR Latch : Another Type

• SR latch based on NAND2 gates

Clocked SR Latch

• Input and output waveform

Level sensitive circuit

Clocked NOR Based SR Latch : AOI

• AOI-based implementation of the clocked NOR-based SR-latch Circuit

Clocked JK Latch

• Gate level schematic

- SR-latch : indeterminate when both inputs S and R are activated
- JK latch : adding two feedback lines from the outputs to the inputs

Clocked NOR-based JK latch

Clocked JK Latch : Truth Table

J	K	Q_n	$\overline{\mathcal{Q}_n}$	5	R	Q_{n+1}	$\overline{Q_{n+1}}$	Operation
0	0	0	1	1	1	0	1	hold
		1	0	1	1	1	0	
0	1	0	1	1	1	0	1	reset
		1	0	1	0	0	1	
1	0	0	1	0	1	1	0	set
		1	0	1	1	1	0	
1	1	0	1	0	1	1	0	toggle
		1	0	1	0	0	1	

Master-Slave Flip-Flop

Master Slave FF

- The master latch is activated when CK="1," during this period, the primary inputs, J and K, allow data to be entered into the flip-flop, and the first stage outputs are set according to the primary inputs
- When CK="0," the master latch becomes inactive, and the slave latch becomes active
- Note that, the output levels of the flip-flop are determined during this phase (CK="0,") based on the master-stage outputs set in the previous phase(CK="1")

NOR based JK master slave FF

CMOS D-Latch

• Gate-level schematic

- CK : 1 \rightarrow Q assumes the value of the input D
- CK : $0 \rightarrow Q$ preserve its state

CMOS D-Latch Using Transmission gates

- Constructed by Two inverter loop + Two CMOS TG
- CK:1 \rightarrow TG at input is activated
- CK:0 \rightarrow TG at inverter loop is activated

Master-Slave Flip-Flop : Operation

CK 1 1 0 0 0 0 0 0 0 1 • Clock pulse $\rightarrow 0$ • Master latch inactive (slave becomes _____0 1 0 0 0 0 1 0 / 0 • Clock pulse \rightarrow 1 0 0 0 0 0 0 0 0 0 0 к -• Slave latch inactive (master become: 0 0 0 • No uncontrolled oscillation : $J=K=1_{\overline{Q_m}}^{Q_m}$ 0 0 0 1 1 0 0 0 0 0 Ones catching problem Unwanted o/p transition due to glitc Q_s _ 0 0 0 1 1 1 0 0 0 0 1 1 0 0 • Sol. : edge-triggered \overline{Q}_{S} 0 0 0 0 0 0 0 0

Master-Slave Flip-Flop Problem

• S and/or R are permitted to change while C = 1 • Chances of <u>Os or 1s datching</u> S R Y Master out Q Slave out Slave Master 1s catching active active

Flip-Flop Solution

- Use *edge-triggering* instead of master-slave
- An *edge-triggered* flip-flop ignores the pulse while it is at a constant level and triggers only during a *transition* of the clock signal
- Edge-triggered flip-flops can be built directly at the electronic circuit level, or
- A *master-slave D flip-flop* which also exhibits *edge-triggered behavior* can be used

Edge-Triggered D Flip-Flop

- The edge-triggered D flip-flop is the same as the master-slave D flip-flop
- It can be formed by:
 - Replacing the first clocked SR latch with a clocked D latch or
 - Adding a D input and inverter to a master-slave SR flip-flop
- The 1s and 0s catching behaviors are not present with D replacing S and R inputs
- The change of the D flip-flop output is associated with the negative edge at the end of the pulse
- It is called a negative-edge triggered flip-flop

No 1s catching in the edge-triggered D Flip-Flops

Setup and Hold time

Timing Diagrams

Contamination and Propagation Delays

			A t _{pd}
t _{pd}	Logic Prop. Delay		Y t _{cd}
t _{cd}	Logic Cont. Delay		
t _{pcq}	Latch/Flop Clk->Q Prop. Delay	clk	clk t _{setup} t _{hold}
t _{ccq}	Latch/Flop Clk->Q Cont. Delay		
t _{pdq}	Latch D->Q Prop. Delay		
t _{cdq}	Latch D->Q Cont. Delay	clk	clk
t _{setup}	Latch/Flop Setup Time	Q gtch D	
t _{hold}	Latch/Flop Hold Time		

Max-Delay: Flip-Flops

Min-Delay: Flip-Flops

25