Trees

1. Which of these graphs are trees?
a)

b)

e)

f)

2. Which of these graphs are trees?
a)

b)

Answer these questions about the rooted tree illustrated.

Which vertex is the root?
Which vertices are internal?
Which vertices are leaves?
Which vertices are children of \boldsymbol{j} ?
Which vertex is the parent of h ?
Which vertices are siblings of o ?
Which vertices are descendants of b ?
Which vertices are ancestors of m ?
Is the rooted tree a full \boldsymbol{m}-ary tree for some positive integer m ?
What is the level of each vertex of the rooted tree?
10. Draw the subtree of the tree that is rooted

At a) a.b) c.
ii) Represent the expressions $(x+x y)+(x / y)$ and
$x+((x y+x) / y)$ using binary trees.
Write these expressions in
b) prefix notation.

> c) infix notation
d) postfix notation.
iii)What is the value of each of these prefix expressions?
i) $-* 2 / 843$
ii) $\uparrow-* 33 * 425$
iii) + - $\uparrow 32 \uparrow 23 / 6-42$

Graph

i)Draw these graphs.
a) C_{7}
b) $K_{1,8}$
c) $K_{4,4}$
ii)How many vertices and how many edges do these graphs
have?
I) W_{n}
II) Q_{n}
III) $\mathrm{K}(\mathrm{m}, \mathrm{n})$
iii)find the number of vertices, the number of edges, and the degree of each vertex in the given undirected graph. Identify all isolated and pendant vertices.

iv)Represent the graphs with an adjacency matrix.

v)determine whether the given graph is connected

vi)Does each of these lists of vertices form a path or

Simple path,or circuits?
What are the lengths of those that are paths?
i) a, e, b, c, b
ii) a, e, a, d, b, c, a

RELATIONS

I)Determine whether the relation R on the set of all integers is reflexive, symmetric, antisymmetric, and/or transitive, where ($\boldsymbol{x}, \boldsymbol{y}$) $\in \boldsymbol{R}$ if and only if
I) $x y \geq 1$..
II) x is a multiple of y.
III) x and y are both negative or both nonnegative.
IV) $x=y_{2}$

II)Let R be the relation $\{(1,2),(1,3),(2,3),(2,4),(3,1)\}$, and let S be the relation $\{(2,1),(3,1),(3,2),(4,2)\}$.

Find $\boldsymbol{S} \circ \boldsymbol{R}$.
III)Let $R 1=\{(1,2),(2,3),(3,4)\}$ and $R 2=\{(1,1),(1,2)$, $(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(3,4)\}$ be relations from $\{1,2,3\}$ to $\{1,2,3,4\}$. Find
a) $R 1 \cup R 2$.
b) $R 1 \cap R 2$.
c) $R 1-R 2$
.d) $R 2-R 1$.
correspond to the integers listed in increasing order).
a) $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$
b) $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0\end{array}\right]$
c) $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$
V)

Let R_{1} and R_{2} be relations on a set A represented by the matrices

$$
\mathbf{M}_{R_{1}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 1 \\
1 & 0 & 0
\end{array}\right] \quad \text { and } \quad \mathbf{M}_{R_{2}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Find the matrices that represent
a) $R_{1} \cup R_{2}$.
b) $R_{1} \cap R_{2}$.
c) $R_{2} \circ R_{1}$.
d) $R_{1} \circ R_{1}$.
e) $R_{1} \oplus R_{2}$.
VI)list the ordered pairs in the relations represented by the directed graphs.

VII)draw the directed graph of the reflexive closure of the relations with the directed graph shown

VIII)Use Algorithm 1 to find the transitive closures of these relations on $\{a, b, c, d, e\}$.
a) $\{(a, c),(b, d),(c, a),(d, b),(e, d)\}$
b) $\{(b, c),(b, e),(c, e),(d, a),(e, b),(e, c)\}$
C) $\{(a, e),(b, a),(b, d),(c, d),(d, a),(d, c),(e, a),(e, b)$, $(e, c),(e, e)\}$
II)determine whether the relation with the directed graph shown is an equivalence relation.

a) $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
b) $\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$
c) $\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Divisibility and Modular Arithmetic

I)What are the quotient and remainder when
i) 44 is divided by 8 ?
ii) 777 is divided by 21 ?
iii)) 0 is divided by 17 ?
iv) -100 is divided by 101 ?
v) -2002 is divided by 87 ?
II)Evaluate these quantities.
a) $-1 \bmod 23$
b) $-97 \boldsymbol{\operatorname { m o d }} 11$
c) $155 \bmod 19$
d) $-221 \bmod 23$
III) Find value of .
$[(177 \bmod 31+270 \bmod 31) \bmod 31]$
IV) Find the integer a such that
i) $\mathrm{a} \equiv-15(\bmod 27)$ and $-26 \leq \mathrm{a} \leq 0$.
ii) $\mathrm{a} \equiv 24(\bmod 31)$ and $-15 \leq \mathrm{a} \leq 15$.
iii) $\mathrm{a} \equiv 99(\bmod 41)$ and $100 \leq \mathrm{a} \leq 140$.
IV)Find the prime factorization of each of these integers.
i) 39
ii) 81
iii) 101
iv) 289
V)Determine whether the integers in each of these sets are pairwise relatively prime.
i) $11,15,19$
ii) $14,15,21$
iii) $12,17,31,37$
iv) $7,8,9,11$
V)Find $\operatorname{gcd}(1000,625) * \operatorname{lcm}(1000,625)$
VI) What are the greatest common divisors of these pairs of integers?

$$
\begin{aligned}
& 3^{7} \cdot 5^{3} \cdot 7^{3}, 2^{11} \cdot 3^{5} \cdot 5^{9} \\
& 11 \cdot 13 \cdot 17,2^{9} \cdot 3^{7} \cdot 5^{5} \cdot 7^{3} \\
& 23^{31}, 23^{17} \\
& (41 \cdot 43 \cdot 53),(41 \cdot 43 \cdot 53) \\
& (1111), 0
\end{aligned}
$$

Functions

I)Determine whether each of these functions is a bijection from \mathbf{R} to \mathbf{R}.
a) $f(x)=-3 x+4$
b) $f(x)=-3 \times 2+7$
c) $f(x)=(x+1) /(x+2)$
d) $f(x)=x 5+1$
II)Find these values.(CEIL\& FLOOR)
a) $[1.1]$
b) $[1.1]$
c) $[-0.1]$
d) $[-0.1]$
e) [2.99]
f) $[-2.99]$
III)Determine whether the function $f: \mathbf{Z} \times \mathbf{Z} \rightarrow \mathbf{Z}$ is onto
if
a) $f(m, n)=m+n$.
b) $f(m, n)=m^{* *} 2+n * * 2$
c) $f(m, n)=m$.
d) $f(m, n)=|n|$.
e) $f(m, n)=m-n$.
IV)Determine whether each of these functions from
$\{a, b, c, d\}$ to itself is one-to-one.
a) $f(a)=b, f(b)=a, f(c)=c, f(d)=d$
b) $f(a)=b, f(b)=b, f(c)=d, f(d)=c$
c) $f(a)=d, f(b)=b, f(c)=c, f(d)=d$
V) Determine whether each of these functions from \mathbf{Z} to \mathbf{Z} is one-to-one.
a) $f(n)=n-1$
b) $f(n)=\left(n^{* *} 2\right)+1$
c) $f(n)=n^{* *} 3$
d) $f(n)=[n / 2]$

Sequences

I)

What is the term a_{8} of the sequence $\left\{a_{n}\right\}$ if a_{n} equals
a) 2^{n-1} ?
b) 7 ?
c) $1+(-1)^{n}$?
d) $-(-2)^{n}$?

What are the terms a_{0}, a_{1}, a_{2}, and a_{3} of the sequence $\left\{a_{n}\right\}$, where a_{n} equals
a) $2^{n}+1$?
b) $(n+1)^{n+1}$?
c) $\lfloor n / 2\rfloor$?
d) $\lfloor n / 2\rfloor+\lceil n / 2\rceil$?

II)

Find the value of each of these sums.
a) $\sum_{j=0}^{8}\left(1+(-1)^{j}\right)$
b) $\sum_{j=0}^{8}\left(3^{j}-2^{j}\right)$
c) $\sum_{j=0}^{8}\left(2 \cdot 3^{j}+3 \cdot 2^{j}\right)$
d) $\sum_{j=0}^{8}\left(2^{j+1}-2^{j}\right)$

Compute each of these double sums.
a) $\sum_{i=1}^{2} \sum_{j=1}^{3}(i+j)$
b) $\sum_{i=0}^{2} \sum_{j=0}^{3}(2 i+3 j)$
c) $\sum_{i=1}^{3} \sum_{j=0}^{2} i$
d) $\sum_{i=0}^{2} \sum_{j=1}^{3} i j$

SETS

I)List the members of these sets.
a) $\left\{x \mid x\right.$ is a real number such that $\left.\left(x^{* *} 2\right)=1\right\}$
b) $\{x \mid x$ is a positive integer less than 12$\}$
c) $\{x \mid x$ is the square of an integer and $x<100\}$
d) $\{x \mid x$ is an integer such that $(x * * 2)=2\}$
II)Use set builder notation to give a description of each of these sets.
a) $\{0,3,6,9,12\}$
b) $\{-3,-2,-1,0,1,2,3\}$
c) $\{\mathrm{m}, \mathrm{n}, \mathrm{o}, \mathrm{p}\}$
III)Suppose that $A=\{2,4,6\}, B=\{2,6\}, C=\{4,6\}$, and $D=\{4,6,8\}$. Determine which of these sets are subsets of which other of these sets.
III)Determine whether each of these statements is true or false.
i) $0 \in \varnothing$
ii) $\varnothing \in\{0\}$
iii) $\{0\} \subset \varnothing$
iv) $\{0\} \in\{0$
v) $\{\varnothing\} \subseteq\{\varnothing\}$
IV)What is the cardinality of each of these sets?
a) $\{a\}$
b) $\{\{a\}\}$
c) $\{a,\{a\}\}$
d) $\{a,\{a\},\{a,\{a\}\}\}$
V) Determine whether each of these sets is the power set of a set, where a and b are distinct elements.
i) \varnothing
ii) $\{\varnothing,\{a\},\{\varnothing, a\}\}$
iii) $\{\varnothing,\{a\},\{b\},\{a, b\}\}$
IV) Let $A=\{a, b, c, d\}$ and $B=\{y, z\}$. Find
\&) $A \times B$.
\&) $B \times A$.

POMEROUNOT

V)Let $A=\{a, b, c\}, B=\{x, y\}$, and $C=\{0,1\}$. Find
O) $A \times B \times C$.
O) $C \times B \times A$.
O) $C \times A \times B$.
O) $B \times B \times B$.
VI)Let $A=\{a, b, c, d, e\}$ and $B=\{a, b, c, d, e, f, g, h\}$.

Find
a) $A \cup B$.
b) $A \cap B$.
c) $\mathrm{A}-\mathrm{B}$.
d) $\mathrm{B}-\mathrm{A}$.

VII)

Let $A_{i}=\{1,2,3, \ldots, i\}$ for $i=1,2,3, \ldots$. Find
a) $\bigcup_{i=1}^{n} A_{i}$.
b) $\bigcap_{i=1}^{n} A_{i}$.
VIII)

What can you say about the sets A and B if we know that
0) $\mathrm{A} \cup \mathrm{B}=\mathrm{A}$?
0) $A \cap B=A$?
0) $\mathrm{A}-\mathrm{B}=\mathrm{A}$?
0) $A \cap B=B \cap A$?

Best Wishes!

SONDOS IDAQ
POUEROUNOT

