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The Computer Revolution
n Progress in computer technology

n Underpinned by Moore’s Law 
n Makes novel applications feasible

n Computers in automobiles
n Cell phones
n Human genome project
n World Wide Web
n Search Engines

n Computers are pervasive

§
1.1 

Introduction
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Classes of Computers
n Personal computers

n General purpose, variety of software
n Subject to cost/performance tradeoff

n Server computers
n Network based
n High capacity, performance, reliability
n Range from small servers to building sized



Classes of Computers
n Supercomputers

n High-end scientific and engineering 
calculations

n Highest capability but represent a small 
fraction of the overall computer market

n Embedded computers
n Hidden as components of systems
n Stringent power/performance/cost constraints
n Run one set of related applications that are 

normally integrated with the hardware
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The PostPC Era



The PostPC Era
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n Personal Mobile Device (PMD)
n Battery operated
n Connects to the Internet
n Hundreds of dollars
n Smart phones, tablets, electronic glasses

n Cloud computing
n Warehouse Scale Computers (WSC)
n Software as a Service (SaaS)
n Portion of software run on a PMD and a 

portion run in the Cloud
n Amazon and Google
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Understanding Performance
n Algorithm

n Determines number of operations executed
n Not included in the book

n Programming language, compiler, architecture
n Determine number of machine instructions executed per 

operation
n Chapters 2 and 3

n Processor and memory system
n Determine how fast instructions are executed
n Chapters 4, 5, and 6

n I/O system (including OS)
n Determines how fast I/O operations are executed
n Chapters 4, 5, and 6



Eight Great Ideas (1)
n Design for Moore’s Law

n Integrated circuits resources double every 18-24 months
n Computer design takes years, the resources can double or 

quadruple between the start and finish of the project

n Use abstraction to simplify design

n Represent the design at multiple levels such that low-level details 
are hidden to offer simpler model at high-level 

n Increase productivity for computer architects and programmers

n Make the common case fast

n Enhance the performance is better than optimizing the rare case
n Example?
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§
1.2 Eight G
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puter 
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Eight Great Ideas (2)
n Performance via parallelism

n Performance via pipelining
n Special pattern of parallelism
n Example: Human bridge to fight fires

n Performance via prediction
n Better ask for forgiveness than ask for permission

n Hierarchy of memories
n Speed, size, and cost
n Fastest, smallest, and most expensive at the top of the hierarchy

(Cache)
n Slowest, largest, and least expensive at the bottom of the hierarchy

(Hard Drives)

n Dependability via redundancy
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Eight Great Ideas (3)
n Why these ideas are considered great?

n Lasted long after the 1st computer that used 
them

n They have been around for the last 60 years
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Below Your Program
n Application software

n Written in high-level language (HLL)
n Allow the programmer to think in a more natural language 

(look much more like a text than tables of cryptic symbols)
n Improved productivity (conciseness)
n Programs become independent from hardware

n System software
n Compiler: translates HLL code to machine code
n Operating System: service code

n Handling input/output
n Managing memory and storage
n Scheduling tasks & sharing resources
n E.g. Windows, Linux, iOS

n Hardware
n Processor, memory, I/O controllers

§
1.3 Below

 Your Program
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Levels of Program Code
n High-level language

n Level of abstraction closer to 
problem domain

n Provides for productivity and 
portability

n E.g. A + B  
n Assembly language

n Textual representation of 
instructions

n E.g. Add A,B
n Hardware representation

n Binary digits (bits)
n Encoded instructions and data
n E.g. 11100011010
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Components of a Computer
n Same components for

all kinds of computer
n Desktop, server,

embedded
n Five components

n Input, output, memory, 
datapath and control

n Input/output includes
n User-interface devices

n Display, keyboard, mouse
n Storage devices

n Hard disk, CD/DVD, flash
n Network adapters

n For communicating with 
other computers

§
1.4 U

nder the C
overs

The BIG Picture
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Through the Looking Glass
n LCD (liquid crystal display) screen: picture elements (pixels)
n An image is composed of a matrix of pixels called a bit map

n Bit map size is based on screen size and resolution
n 1024x768 to 2048x1536

n Hardware support for graphics
n Frame buffer (raster refresh buffer) to store the bit map of the

image to be displayed
n Bit pattern for pixels is read out at the refresh rate
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Touchscreen
n PostPC device
n Supersedes keyboard 

and mouse
n Resistive and 

Capacitive types
n Most tablets, smart 

phones use capacitive
n Capacitive allows 

multiple touches 
simultaneously
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Opening the Box
Capacitive multitouch LCD screen

3.8 V, 25 Watt-hour battery

Computer board
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Inside the Processor (CPU)
n Datapath: performs operations on data
n Control: sequences datapath, memory, ...
n Cache memory

n Small fast SRAM memory for immediate 
access to data
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Inside the Processor
n Apple A5
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A Safe Place for Data (1)
n Volatile main (primary) memory

n DRAMs: Dynamic Random Access Memory
n Holds data and programs while running
n Loses instructions and data when power off

n Non-volatile secondary memory
n Magnetic disk
n Flash memory in PMDs
n Optical disk (CDROM, DVD)



A Safe Place for Data (2)

DRAM Magnetic Disk Flash
Price/GByte Expensive 

(5$)
Cheap 

(0.05 – 0.1)$
Moderate

(0.75 – 1)$
Speed Fast

(50-70)ns
Slow

(5-20)ms
Moderate
(5-50)µs

Volatility Volatile Non-volatile Non-volatile
Wearout N/A N/A 1,00,000-

1,000,000 writes
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Networks
n Communication, resource sharing, nonlocal 

access
n Local area network (LAN): Ethernet 

n 1 Km, 40 Gbit/sec
n Wide area network (WAN): the Internet 

n Optical fiber
n Wireless network: WiFi, Bluetooth

n 1-100 million bit/sec 
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Defining Performance
n Which airplane has the best performance?

0 100 200 300 400 500

Douglas
DC-8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Passenger Capacity

0 2000 4000 6000 8000 10000

Douglas DC-
8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Cruising Range (miles)

0 500 1000 1500

Douglas
DC-8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Cruising Speed (mph)

0 100000 200000 300000 400000

Douglas DC-
8-50

BAC/Sud
Concorde

Boeing 747

Boeing 777

Passengers x mph

§
1.6 Perform

ance
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Response Time and Throughput
n Response  or execution time

n How long it takes to do a task
n Individual users target reducing the response time

n Throughput
n Total work done per unit time

n e.g., tasks/transactions/… per hour
n Datacenter managers target increasing throughput

n How are response time and throughput affected 
by
n Replacing the processor with a faster version?
n Adding more processors?

n We’ll focus on response time for now…
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Relative Performance
n Define Performance = 1/Execution Time
n “X is n time faster than Y”

n== XY

YX

time Executiontime Execution
ePerformancePerformanc

n Example: time taken to run a program
n 10s on A, 15s on B
n Execution TimeB / Execution TimeA

= 15s / 10s = 1.5
n So A is 1.5 times faster than B
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Measuring Execution Time
n Elapsed time (response or wall clock time)

n Total response time, including all aspects
n Processing, I/O, OS overhead, idle time

n System performance = 1 / Elapsed time

n CPU time
n Time spent processing a given job

n Discounts I/O time, other jobs’ shares
n Comprises of:

n User CPU time: CPU time spent in the program
n System CPU time: CPU time spent in the OS performing tasks

on behalf of the program
n CPU performance = 1 / User CPU time

n Different programs are affected differently by CPU
and system performance
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CPU Clocking
n Operation of digital hardware governed by a 

constant-rate clock

Clock (cycles)

Data transfer
and computation

Update state

Clock period

n Clock period: duration of a clock cycle
n e.g., 250ps = 0.25ns = 250×10–12s

n Clock frequency (rate): cycles per second
n e.g., 4.0GHz = 4000MHz = 4.0×109Hz
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CPU Time

n Performance improved by
n Reducing number of clock cycles
n Increasing clock rate
n Hardware designer must often trade off clock 

rate against cycle count

Rate Clock
Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU

=

´=
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CPU Time Example
n Computer A: 2GHz clock, 10s CPU time
n Designing Computer B

n Aim for 6s CPU time
n Can do faster clock, but causes 1.2 × clock cycles

n How fast must Computer B clock be?

4GHz
6s

1024
6s

10201.2Rate Clock

10202GHz10s

Rate ClockTime CPUCycles Clock

6s
Cycles Clock1.2

Time CPU
Cycles ClockRate Clock

99

B

9

AAA

A

B

B
B

=
´

=
´´

=

´=´=

´=

´
==
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Instruction Count and CPI

n Instruction Count for a program
n Determined by program, ISA and compiler

n Average cycles per instruction
n Determined by CPU hardware
n If different instructions have different CPI

n Average CPI affected by instruction mix

Rate Clock
CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio per CyclesCount nInstructioCycles Clock

´
=

´´=

´=
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CPI Example
n Computer A: Cycle Time = 250ps, CPI = 2.0
n Computer B: Cycle Time = 500ps, CPI = 1.2
n Same ISA and Complier
n Which is faster, and by how much?

1.2
500psI
600psI

ATime CPU
BTime CPU

600psI500ps1.2I
BTime CycleBCPICount nInstructioBTime CPU

500psI250ps2.0I
ATime CycleACPICount nInstructioATime CPU

=
´
´

=

´=´´=

´´=

´=´´=

´´=

A is faster…

…by this much
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CPI in More Detail
n If different instruction classes take different 

numbers of cycles

å
=

´=
n

1i
ii )Count nInstructio(CPICycles Clock

n Weighted average CPI

å
=

÷
ø
ö

ç
è
æ ´==

n

1i

i
i Count nInstructio

Count nInstructioCPI
Count nInstructio

Cycles ClockCPI

Relative frequency
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CPI Example
n Alternative compiled code sequences using 

instructions in classes A, B, C

Class A B C
CPI for class 1 2 3
IC in sequence 1 2 1 2
IC in sequence 2 4 1 1

n Sequence 1: IC = 5
n Clock Cycles

= 2×1 + 1×2 + 2×3
= 10

n Avg. CPI = 10/5 = 2.0

n Sequence 2: IC = 6
n Clock Cycles

= 4×1 + 1×2 + 1×3
= 9

n Avg. CPI = 9/6 = 1.5



One More Example … 
n Two compiled sequences of the same program are given below. The

upper table gives the number of instructions from each type for
sequence-1 and sequence-2. The lower table gives the CPI for each
instruction type. Given that the two sequences are running on the
same computer, What is the number of instructions of type B in
sequence-2 that will make sequence-1 two times faster than
sequence-2?
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IC for each instruction class
A B C

Sequence-1 1 2 4
Sequence-2 2 ? 2

A B C
CPI 1 2 3
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Performance Summary

n Performance depends on
n Programming language, algorithm, compiler: 

affects IC and CPI
n ISA: affects IC, CPI, and clock period (Tc) 
n Microarchitecture design: affects CPI
n Hardware implementation and technology: affects 

clock period (Tc)

The BIG Picture

cycle Clock
Seconds

nInstructio
cycles Clock

Program
nsInstructioTime CPU ´´=
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Concluding Remarks
n Cost/performance is improving

n Due to underlying technology development
n Hierarchical layers of abstraction

n In both hardware and software
n Instruction set architecture

n The hardware/software interface
n Execution time: the best performance 

measure

§
1.11 C

oncluding R
em

arks
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Instruction Set
n The repertoire of instructions of a computer
n Instructions represent the computer language

n Every language has vocabulary à Instruction Set

n Different computers have different instruction sets
n But with many aspects in common (Why?)

n All computers are constructed from hardware technologies based on
similar underlying principles

n There are a few basic operations that all computers must provide

n Early computers had very simple instruction sets
n Many modern computers also have simple instruction sets
n RISC: Reduced Instruction Set Computer

n Fixed length, fast execution, and simple functionality

n CISC: Complex Instruction Set Computer
n Variable length, slow execution, and complex functionality

§2.1 Introduction



Famous Commercial ISA
n MIPS is an elegant example of the instruction sets

designed since the 1980s. (RISC)

n ARM instruction set from ARM Holdings plc introduced in
1985. (RISC)
n More than 14 billion chips with ARM processors were

manufactured in 2015, making them the most popular instruction
sets in the world.

n Intel x86, which powers both the PC and the Cloud of the
post-PC era. (CISC)
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The RISC-V Instruction Set
n Used as the example throughout the book
n Developed at UC Berkeley as open ISA
n Now managed by the RISC-V Foundation

(riscv.org)
n Typical of many modern ISAs

n See RISC-V Reference Data tear-out card
n Similar ISAs have a large share of embedded

core market
n Applications in consumer electronics, network/storage

equipment, cameras, printers, …
n RISC-V has three design principles
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Arithmetic Operations
n Each arithmetic instruction performs only one operation (Add,

subtract, etc.) and must always have exactly three operands
n Two sources and one destination
add a, b, c # a = b + c

n All arithmetic operations have this form
n Example: We want to add four numbers (b, c, d, and e) and

save the result in a.
add a, b, c
add a, a, d à Three instructions are needed
add a, a, e

n Design Principle 1: Simplicity favors regularity
n Regularity makes implementation simpler
n Simplicity enables higher performance at lower cost

§2.2 O
perations of the C

om
puter H

ardw
are
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Arithmetic Example
n C code:
f = (g + h) - (i + j);

n Compiled RISC-V code:
add t0, g, h   // temp t0 = g + h
add t1, i, j   // temp t1 = i + j
sub f, t0, t1  // f = t0 - t1
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Register Operands
n Arithmetic instructions use register operands

n RISC-V has a 32 × 64-bit register file
n Use for frequently accessed data
n 64-bit data is called a “doubleword”

n 32 x 64-bit general purpose registers x0 to x31
n 32-bit data is called a “word”

n Design Principle 2: Smaller is faster
n Variables in HLL are unlimited while there are only 32

registers in RISC-V
n Designers must balance the need for more registers by the

programmers and the desire to keep the clock rate fast (c.f.
main memory: millions of locations)

n Number of registers also affects the number of bits it would
take to represent a specific register in the instruction format

§2.3 O
perands of the C

om
puter H

ardw
are



RISC-V Registers
n x0: the constant value 0
n x1: return address
n x2: stack pointer
n x3: global pointer
n x4: thread pointer
n x5 – x7, x28 – x31: temporaries
n x8: frame pointer
n x9, x18 – x27: saved registers
n x10 – x11: function arguments/results
n x12 – x17: function arguments
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Register Operand Example
n C code:
f = (g + h) - (i + j);

n f, …, j in x19, x20, …, x23

n Compiled RISC-V code:
add x5, x20, x21
add x6, x22, x23
sub x19, x5, x6
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Memory Operands
n Main memory used for composite data

n Arrays, structures, dynamic data

n To apply arithmetic operations
n Load values from memory into registers
n Store result from register to memory

n RISC-V provides data transfer instructions
to transfer data from memory to registers
and vice-versa



Memory Organization
n Memory can be thought of as a single dimensional array

n Memory[0] = 1, Memory[1] = 101, …
n Index used with HLL

n To access a double word (8 bytes) in memory, the instruction
must provide the memory address for that doubleword

n Memory is byte addressed
n Each address identifies an 8-bit byte

n RISC-V is Little Endian
n Least-significant byte at least address of a word
n c.f. Big Endian: most-significant byte at least address

n RISC-V does not require words/doublewords to be aligned in
memory
n Unlike some other ISAs

Chapter 2 — Instructions: Language of the Computer — 11

index



Data Transfer Instructions
n Load: copies data from a memory location to a 

register
n ld ≡ load doubleword
n ld x28, 32 (x18) ≡ (x28) ß Memory [32 + (x18)]

n Store: copies data from a register to a memory 
location
n sd ≡ store doubleword
n sd x28, 32 (x18) ≡ Memory [32 + (x18)] ß (x28)

Chapter 2 — Instructions: Language of the Computer — 12

offset base register

offset base register
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Memory Operand Example 1
n C code:
g = h + A[8];

n g in x20, h in x21, base address of A in x22
n Compiled RISC-V code:

n Index 8 requires offset of 64
n 8 bytes per doubleword

ld x9, 64(x22)  # load doubleword
add x20, x21, x9

offset base register
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Memory Operand Example 2
n C code:
A[12] = h + A[8];

n h in x21, base address of A in x22
n Compiled RISC-V code:

n Index 8 requires offset of 64
n Index 12 requires offset of 96

n 8 bytes per doubleword
ld x9, 64(x22)
add x9, x21, x9
sd x9, 96(x22)
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Registers vs. Memory
n Registers are faster to access than memory and

consume less energy

n Operating on memory data requires loads and
stores
n More instructions to be executed

n Compiler must use registers for variables as
much as possible to get better performance and
conserve energy
n Only spill to memory for less frequently used variables

(i.e. register spilling)
n Register optimization is important!
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Immediate Operands
n Constant data specified in an instruction

addi x22, x22, 4

n No subtract immediate instruction
n Just use a negative constant
addi x22, x22, -1

n Example of the great idea “Make the common case fast”
n Small constants are common

n More than half of the RISC-V arithmetic instructions have constants
as variables

n Immediate operand avoids a load instruction
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The Constant Zero
n RISC-V dedicates register “x0” to be hard-

wired to the value zero
n Cannot be overwritten

n Useful for common operations
n E.g., negate the value in a register
sub x22, x0, x21



Binary Integers
n Humans use decimal system (Base = 10)

n Digits: 0, 1, 2, …, 9

n In computers, numbers are stored as series of high and
low electronic signals à Binary system (Base = 2)
n Digits: 0, 1
n Digit = bit

n In any number with base (r), the value of the ith digit (d)

n i starts from 0 and increases from right to left

Chapter 2 — Instructions: Language of the Computer — 18
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§2.4 Signed and U
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Unsigned Binary Integers
n Given an n-bit number

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx ++++= -

-
-

- !

n Range: 0 to +2n – 1
n Example

n 0000 0000 … 0000 10112
= 0 + … + 1×23 + 0×22 +1×21 +1×20
= 0 + … + 8 + 0 + 2 + 1 = 1110

n RISC-V uses 64 bits
n There are 264 combinations 
n 0 to (264 – 1) à 0 to +18,446,774,073,709,551,615 
n Bit 0 is the least significant bit
n Bit 63 is the most significant bit
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2s-Complement Signed Integers
n Given an n-bit number

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx ++++-= -

-
-

- !

n Range: (–2n – 1) to (+2n – 1 – 1)
n Example

n 1111 1111 … 1111 11002
= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

n Using 64 bits: −9,223,372,036,854,775,808
to 9,223,372,036,854,775,807
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2s-Complement Signed Integers
n Bit 63 is sign bit

n 1 for negative numbers
n 0 for non-negative numbers

n –(–2n – 1) can’t be represented
n Non-negative numbers have the same unsigned 

and 2s-complement representation
n Some specific numbers

n 0: 0000 0000 … 0000
n –1: 1111 1111 … 1111
n Most-negative: 1000 0000 … 0000
n Most-positive: 0111 1111 … 1111



2s-Complement Characteristics
n Simple hardware can be used for both signed and

unsigned numbers
n Why not always signed?

n Some computation deals with numbers as unsigned. For example, memory
addresses start at 0 and continue to the largest address. In other words,
negative addresses make no sense

n Leading 0 means positive number and leading 1 means
negative number
n So, hardware treats this bit as sign bit

n Single zero representation

n Imbalance between positive and negative numbers

n Overflow occurs when the sign bit is incorrect
Chapter 2 — Instructions: Language of the Computer — 22
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Signed Negation in 2s-Complement
n First approach: Complement and add 1

n Complement means 1 → 0, 0 → 1

n Second approach: 
n Start from the right
n Search for the first bit with value 1
n Complement all bits to the left of the rightmost bit with value 1 

x1x
11111...111xx 2

-=+

-==+

n Example: negate +2
n +2 = 0000 0000 … 00102
n –2 = 1111 1111 … 11012 + 1

= 1111 1111 … 11102
n Why 2s-Complement is called like this?

𝑥 + −𝑥 = 10000… .000 ! = 2"
−𝑥 = 2" − 𝑥
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Sign Extension
n Representing a number using more bits

n Preserve the numeric value
n Replicate the sign bit to the left

n c.f. unsigned values: extend with 0s
n Examples: 8-bit to 16-bit

n +2: 0000 0010 => 0000 0000 0000 0010
n –2: 1111 1110 => 1111 1111 1111 1110

n In RISC-V instruction set
n lb:  sign-extend loaded byte
n lbu: zero-extend loaded byte
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Representing Instructions
n Instructions are encoded in binary

n Called machine code

n RISC-V instructions
n Encoded as 32-bit instruction words
n Small number of formats encoding operation code 

(opcode), register numbers, …
n Regularity!

§2.5 R
epresenting Instructions in the C

om
puter
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Hexadecimal
n Base 16

n Compact representation of bit strings
n 4 bits per hex digit

0 0000 4 0100 8 1000 c 1100
1 0001 5 0101 9 1001 d 1101
2 0010 6 0110 a 1010 e 1110
3 0011 7 0111 b 1011 f 1111

n Example: eca8 6420
n 1110 1100 1010 1000 0110 0100 0010 0000
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RISC-V R-format Instructions

n Instruction fields
n opcode: operation code
n rd: destination register number
n funct3: 3-bit function code (additional opcode)
n rs1: the first source register number
n rs2: the second source register number
n funct7: 7-bit function code (additional opcode)

funct7 rs2 rs1 rdfunct3 opcode
7 bits 7 bits5 bits 5 bits 5 bits3 bits
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R-format Example

add x9,x20,x21

0000 0001 0101 1010 0000 0100 1011 0011two =
015A04B316

funct7 rs2 rs1 rdfunct3 opcode
7 bits 7 bits5 bits 5 bits 5 bits3 bits

0 21 20 90 51

0000000 10101 10100 01001000 0110011
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RISC-V I-format Instructions

n Immediate arithmetic and load instructions
n rs1: source or base address register number
n immediate: constant operand, or offset added to base address

n 2s-complement, sign extended, (–211) to (+211 – 1)
n The load doubleword instruction can refer to any doubleword

within a region of ±211 or 2048 bytes (±28 or 256 doublewords) of
the base address in the base register rs1

n Design Principle 3: Good design demands good compromises
n Different formats complicate decoding, but allow 32-bit

instructions uniformly
n Keep formats as similar as possible

immediate rs1 rdfunct3 opcode
12 bits 7 bits5 bits 5 bits3 bits
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RISC-V S-format Instructions

n Different immediate format for store instructions
n rs1: base address register number
n rs2: source operand register number
n immediate: offset added to base address

n Split so that rs1 and rs2 fields always in the same place

rs2 rs1 funct3 opcode
7 bits 7 bits5 bits 5 bits 5 bits3 bits

imm[11:5] imm[4:0]



Instructions Opcodes

n Opcode helps to distinguish which format
should be used
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Instruction Representation Example
n Translate the C-statement 

below to RISC-V machine 
code:
n A[30] = h + A[30] + 1;
n Assume that x10 contains the 

base address of A and h is 
mapped to x21

n Solution:
n First: translate to RISC-V 

assembly
ld x9, 240 (x10)
add x9, x21, x9
addi x9, x9, 1
sd x9, 240 (x10)

n Second: translate to RISC-V 
machine code
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Stored Program Computers
n Instructions represented in 

binary, just like data
n Instructions and data stored 

in memory
n Programs can operate on 

programs
n e.g., compilers, linkers, …

n Binary compatibility allows 
compiled programs to work 
on different computers
n Standardized ISAs

The BIG Picture
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Logical Operations
n Instructions for bitwise manipulation

Operation C Java RISC-V
Shift left << << sll, slli

Shift right >> >>> srl, srli

Bit-by-bit AND & & and, andi

Bit-by-bit OR | | or, ori

Bit-by-bit XOR ^ ^ xor, xori

Bit-by-bit NOT ~ ~ Xori

n Useful for extracting and inserting
groups of bits in a word

§2.6 Logical O
perations
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Shift Immediate Operations

n immed: how many positions to shift 
n Shift left logical

n Shift left and fill with 0 bits
n slli by i bits multiplies by 2i

n Shift right logical
n Shift right and fill with 0 bits
n srli by i bits divides by 2i (unsigned only)

rs1 rdfunct3 opcode
6 bits 7 bits5 bits 5 bits3 bits

funct6 immed
6 bits
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AND Operations
n Useful to mask bits in a word

n Select some bits, clear others to 0

and x9,x10,x11

n There is an AND Immediate instruction (andi)
n Sign-extension for the immediate value

andi x9, x10, 0xFFF

00000000 00000000 00000000 00000000 00000000 00000000 00001101 11000000x10

x11

x9

00000000 00000000 00000000 00000000 00000000 00000000 00111100 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00001100 00000000
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OR Operations
n Useful to include bits in a word

n Set some bits to 1, leave others unchanged

or x9,x10,x11

n There is an OR Immediate instruction (ori)
n Sign-extension for the immediate value

ori x9, x10, 0xFFF

00000000 00000000 00000000 00000000 00000000 00000000 00001101 11000000x10

x11

x9

00000000 00000000 00000000 00000000 00000000 00000000 00111100 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00111101 11000000
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XOR Operations
n Differencing operation

n Invert some bits, leave others unchanged

xor x9,x10,x11  // NOT operation

n There is an XOR Immediate instruction (xori)
n Sign-extension for the immediate value

xori x9, x10, 0xFFF

00000000 00000000 00000000 00000000 00000000 00000000 00001101  11000000x10

x11

x9

11111111    11111111  11111111   11111111   11111111   11111111   11111111   11111111

11111111    11111111  11111111   11111111   11111111   11111111   11110010  00111111
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Conditional Operations
n Branch to a labeled instruction if a condition is 

true
n Otherwise, continue sequentially

n beq rs1, rs2, L1
n if (rs1 == rs2) branch to instruction labeled L1

n bne rs1, rs2, L1
n if (rs1 != rs2) branch to instruction labeled L1

§2.7 Instructions for M
aking D

ecisions
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Compiling If Statements
n C code:
if (i==j) f = g+h;
else f = g-h;

n f, g, … in x19, x20, …
n Compiled RISC-V code:

bne x22, x23, Else
add x19, x20, x21
beq x0,x0,Exit // unconditional

Else: sub x19, x20, x21
Exit: …

Assembler calculates addresses
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Compiling Loop Statements
n C code:
while (save[i] == k) i += 1;

n i in x22, k in x24, address of save in x25
n Compiled RISC-V code:
Loop: slli x10, x22, 3

add  x10, x10, x25
ld   x9, 0(x10)
bne  x9, x24, Exit
addi x22, x22, 1
beq  x0, x0, Loop

Exit: …



Chapter 2 — Instructions: Language of the Computer — 46

More Conditional Operations
n blt rs1, rs2, L1

n if (rs1 < rs2) branch to instruction labeled L1
n bge rs1, rs2, L1

n if (rs1 >= rs2) branch to instruction labeled L1
n Example

n if (a > b) a += 1;
n a in x22, b in x23

bge x23, x22, Exit       // branch if b >= a
addi x22, x22, 1

Exit:
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Signed vs. Unsigned
n Signed comparison: blt, bge
n Unsigned comparison: bltu, bgeu
n Example

n x22 = 1111 1111 1111 1111 1111 1111 1111 1111
n x23 = 0000 0000 0000 0000 0000 0000 0000 0001
n x22 < x23 // signed

n –1 < +1
n x22 > x23 // unsigned

n +4,294,967,295 > +1



Bounds Check Shortcut
n Treating signed numbers as if they were

unsigned gives us a low cost way of checking if 0
≤x<y, which matches the index out-of-bounds
check for arrays.
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Compiling Loop Statements
n For Loop (C code):

for (i = 0; i < 10; i++)
save[i] = save[i] * 2

n Case/Switch:
n Simplest way is via sequence of conditional tests à

chain of if-else statements
n Or use branch address table (branch table)

n Array of double words containing addresses that corresponds to
labels in the code

n The program loads the appropriate entry from the branch table into a
register.

n Then use jump-and-link register (jalr) instruction (Unconditional)
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Basic Blocks
n A basic block is a sequence of instructions 

with
n No embedded branches (except at end)
n No branch targets (except at beginning)

n A compiler identifies basic 
blocks for optimization

n An advanced processor 
can accelerate execution 
of basic blocks
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Procedure Calling
n Steps required

1. Place parameters in registers x10 to x17
2. Transfer control to procedure
3. Acquire storage for procedure
4. Perform procedure’s operations
5. Place result in register for caller
6. Return to place of call (address in x1)

§2.8 Supporting Procedures in C
om

puter H
ardw

are
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Procedure Call Instructions
n Procedure call: jump and link
jal x1, ProcedureLabel

n Address of following instruction (PC+4) put in x1
n Jumps to target address
n Can also be used for unconditional branch

n e.g., jal x0, Label (x0 cannot be changed) 

n Procedure return: jump and link register
jalr x0, 0(x1)

n Like jal, but jumps to 0 + address in x1
n Use x0 as rd (x0 cannot be changed)
n Can also be used for computed jumps

n e.g., for case/switch statements



Using More Registers: Stack
n Stack is needed to:

n Spill registers during procedure execution
n More registers are needed for execution other than the eight argument

registers
n Saving return address or arguments (Non-leaf procedures)

n Define local arrays or structures inside the procedure
n Stack is part of the program memory space and it grows in the

direction of decreasing addresses (i.e. from higher to lower
addresses
n Last-In First-Out (LIFO)
n Access using stack pointer (SP)                                                         

which is register x2
n SP always points to the top of                                                                     

the stack
n Push à Store in Stack (Subtract from SP)
n Pop à Load from Stack (Add to SP)
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Stack

SP

Stack
SP $s0

Stack

SP

Empty Push Pop
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Leaf Procedure Example
n C code:
long long int leaf_example (

long long int g, long long int h,
long long int i, long long int j) {

long long int f;
f = (g + h) - (i + j);
return f;

}

n Arguments g, …, j in x10, …, x13
n f in x20
n temporaries x5, x6
n Result in x10



n RISC-V code:
leaf_example:

addi sp,sp,-24

sd x5,16(sp)

sd x6,8(sp)

sd x20,0(sp)

add  x5,x10,x11

add  x6,x12,x13

sub  x20,x5,x6

addi x10,x20,0

ld x20,0(sp)

ld x6,8(sp)

ld x5,16(sp)

addi sp,sp,24

jalr x0,0(x1)
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Leaf Procedure Example

Save x5, x6, x20 on stack

x5 = g + h
x6 = i + j
f = x5 – x6
copy f to return register
Restore x5, x6, x20 from stack

Return to caller



Local Data on the Stack
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Before During After the procedure call



Register Usage
n x5 – x7, x28 – x31:  temporary registers

n Not preserved by the callee

n x8 – x9, x18 – x27:  saved registers
n If used, the callee saves and restores them

n In the previous example, the caller does not
expect x5 and x6 to be preserved. Hence, we
can drop two stores and two loads.

n We still must save and restore x20
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Non-Leaf Procedures
n Procedures that call other procedures
n For nested call, caller needs to save on the 

stack:
n Its return address
n Any arguments and temporaries needed after 

the call
n Restore from the stack after the call
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Non-Leaf Procedure Example
n C code:
long long int fact (long long int n)
{ 
if (n < 1) return 1;
else return n * fact(n - 1);

}

n Argument n in x10
n Result in x10



n RISC-V code:
fact:

addi sp,sp,-16

sd   x1,8(sp)

sd   x10,0(sp)

addi x5,x10,-1

bge  x5,x0,L1

addi x10,x0,1

addi sp,sp,16

jalr x0,0(x1)

L1: addi x10,x10,-1

jal  x1,fact

addi x6,x10,0

ld   x10,0(sp)

ld   x1,8(sp)

addi sp,sp,16

mul  x10,x10,x6

jalr x0,0(x1)
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Non-Leaf Procedure Example

Save return address and n on stack

x5 = n - 1

Else, set return value to 1

n = n - 1

if n >= 1, go to L1

call fact(n-1)

Pop stack, don’t bother restoring values
Return

Restore caller’s n
Restore caller’s return address
Pop stack
return n * fact(n-1)
return

move result of fact(n - 1) to x6
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Local Data on the Stack

n Local data allocated by callee
n Local to the procedure but don’t fit in the registers (e.g. local arrays and structures) 
n Similar to C automatic variables

n Procedure frame (activation record)
n The part of the stack containing the procedure saved registers and local variables
n The Frame Pointer (FP), which is register x8, points to the 1st double word of the

procedure frame and offers a stable base within a procedure for local memory
references
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Memory Layout
n Text: program code
n Static data: global variables

n e.g., static variables in C, 
constant arrays and strings

n x3 (global pointer) initialized to 
address allowing ±offsets into 
this segment

n Dynamic data: heap
n E.g., malloc in C, new in Java
n De-allocation in C using free(); 

otherwise, there will be memory 
leak or dangling pointers

n Java uses automatic garbage 
collection

n Stack: automatic storage



Iteration Vs. Recursion
n Some recursive procedures

can be implemented
iteratively without recursion

n Example: C code:
long long int sum (long 

long int n, long long int
acc)

{ 

if (n > 0) 

return sum(n – 1, acc + 
n);

else 

return acc;

}

n n is x10, acc is x11, and 
result in x12
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Iteration Recursion

Sum:
bge x0, x10, Exit
add x11, x11, x10
addi x10, x10, -1
jal x0, Sum

Exit:
add x12, x11, x0
jalr x0, 0(x1)

Sum:
addi sp, sp, -8
sd x1, 0(sp)
bge x0, x10, Else
add x11, x11, x10
addi x10, x10, -1
jal x1, Sum
beq x0, x0, Exit

Else:
addi x12, x11, 0

Exit:
ld x1, 0(sp)
addi sp, sp, 8
jalr x0, 0(x1)



RISC-V Register Conventions

n Example of “Make the Common Case Fast”: 12 saved, 7 
temporary, and 8 argument is sufficient most of the time

Chapter 2 — Instructions: Language of the Computer — 64



Chapter 2 — Instructions: Language of the Computer — 65

Character Data
n Byte-encoded character sets

n ASCII: 128 characters
n ASCII: American Standard Code for Information Interchange
n 95 graphic, 33 control
n Size of (1000000000) in ASCII = 10 char * 8 bits = 80 bits
n Size of (1000000000) in Binary = 32 bits 

n Latin-1: 256 characters
n ASCII, +96 more graphic characters

n Unicode: 32-bit character set
n Used in Java, C++ wide characters, …
n Most of the world’s alphabets, plus symbols
n UTF-8, UTF-16: variable-length encodings

§2.9 C
om

m
unicating w

ith People



Chapter 2 — Instructions: Language of the Computer — 66

Byte/Halfword/Word Operations
n RISC-V byte/halfword/word load/store

n Load byte/halfword/word: Sign extend to 64 bits in rd
n lb rd, offset(rs1)

n lh rd, offset(rs1)

n lw rd, offset(rs1)

n Load byte/halfword/word unsigned: Zero extend to 64 bits in rd
n lbu rd, offset(rs1)

n lhu rd, offset(rs1)

n lwu rd, offset(rs1)

n Store byte/halfword/word: Store rightmost 8/16/32 bits
n sb rs2, offset(rs1)

n sh rs2, offset(rs1)

n sw rs2, offset(rs1)
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String Copy Example
n C code:

n Null-terminated string
void strcpy (char x[], char y[])
{ size_t i;
i = 0;
while ((x[i]=y[i])!='\0')
i += 1;

}

n Base addresses of arrays x, y are in x10, x11
n i is in x19



n RISC-V code:
strcpy:

addi sp,sp,-8 // adjust stack for 1 doubleword
sd x19,0(sp)      // push x19
add  x19,x0,x0 // i=0

L1: add  x5,x19,x11 // x5 = addr of y[i]
lbu x6,0(x5) // x6 = y[i]
add  x7,x19,x10 // x7 = addr of x[i]
sb x6,0(x7) // x[i] = y[i]
beq x6,x0,L2 // if y[i] == 0 then exit
addi x19,x19,1 // i = i + 1
jal x0,L1 // next iteration of loop

L2: ld x19,0(sp) // restore saved x19
addi sp,sp,8 // pop 1 doubleword from stack
jalr x0,0(x1) // and return
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String Copy Example



n Most constants are small
n 12-bit immediate is sufficient

n For the occasional 32-bit constant: lui rd, constant
n Copies 20-bit constant to bits [31:12] of rd
n Extends bit 31 to bits [63:32]
n Clears bits [11:0] of rd to 0

n Example: Write RISC-V instructions to load 0x003D0500 
in x19.
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0000 0000 0011 1101 00000000 0000 0000 0000

32-bit Constants (1)

lui x19, 976  // 0x003D0

§2.10 R
ISC

-V Addressing for W
ide Im

m
ediates and Addressesaddi x19,x19,128  // 0x500

0000 0000 0000 0000 0000 0000 0000

0000 0000 0011 1101 00000000 0000 0000 0000 0000 0000 0000 0000 0101 0000 0000



n Example: Write RISC-V instructions to load 0x003D0800 
in x19.
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0000 0000 0011 1101 00010000 0000 0000 0000

32-bit Constants (2)

lui x19, 977  // 0x003D1

§2.10 R
ISC

-V Addressing for W
ide Im

m
ediates and Addresses

addi x19,x19,-2048  // 0x800

0000 0000 0000 0000 0000 0000 0000

0000 0000 0011 1101 00000000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000
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Branch Addressing
n Branch instructions specify

n Opcode, two registers, target address
n Most branch targets are near branch

n Forward or backward
n SB format:

n PC-relative addressing
n Target address = PC + immediate × 2

n The immediate represents the offset in halfwords

rs2 rs1 funct3 opcodeimm
[10:5]

imm
[4:1]

imm[12] imm[11]
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Unconditional Jump-and-Link Addressing
n Jump and link (jal) target uses 20-bit immediate for larger

range
n UJ format: Only (jal) uses this format

n PC-relative addressing
n Target address = PC + immediate × 2

n The immediate represents the offset in halfwords
n The unusual encoding in SB and UJ formats simplifies

datapath design but complicates assembly

rd opcode
7 bits5 bits

imm[11]imm[20]

imm[10:1] imm[19:12]



PC-relative Addressing
n If absolute addresses were to fit in the 20-bit immediate field, then no

program could be bigger than 220 bytes, which is far too small to be a
realistic option today

n An alternative is to specify a register that would always be added to
the branch/jal offset:
n Allows the program to be as large as 264 bytes
n PC contains the address of the current instruction
n PC is the ideal choice

n The RISC-V architects wanted to support the possibility of
instructions that are only 2 bytes long (i.e. the offset is in halfwords)
n Maximum offset for branch is ±𝟐𝑲 𝒉𝒂𝒍𝒇𝒘𝒐𝒓𝒅𝒔 = ±𝟒𝑲 𝑩𝒚𝒕𝒆𝒔
n Maximum offset for jal is ±𝟓𝟏𝟐𝑲 𝒉𝒂𝒍𝒇𝒘𝒐𝒓𝒅𝒔 = ±𝟏𝑴𝑩𝒚𝒕𝒆𝒔
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Branch Offset in Machine Language
n Loop code from earlier example

n Assume Loop at location 80000



Long Jumps and Branching Far Away
n For long jumps, e.g., to 32-bit absolute address of a

procedure
n lui: load address[31:12] to temp register
n jalr: add address[11:0] and jump to target

n If branch target is too far to encode with 12-bit offset,
assembler rewrites the code
n Example

beq x10,x0, L1

↓
bne x10,x0, L2
jal x0, L1

L2: …
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RISC-V Addressing Summary
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RISC-V Encoding Summary
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Arithmetic for Computers 
n  Operations on integers 

n  Addition and subtraction 
n  Multiplication and division 
n  Dealing with overflow 

n  Floating-point real numbers 
n  Representation and operations  

§3.1 Introduction 
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Multiplication 
n  Start with long-multiplication approach 

   1000 
×  1001 
   1000 
  0000  
 0000   
1000    
1001000 

Length of product is 
the sum of operand 
lengths 

multiplicand 

multiplier 

product 

§3.3 M
ultiplication 
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Sequential Multiplication Hardware 

Initially 0 

64th  



Sequential Multiplication Example 
n  2ten X 3ten 

n  4-bit multiplication à Product Size = 8-bit 
n  Multiplicand = 2ten= 0000 0010two  
n  Multiplier = 3ten= 0011two  

n  Worst Case Delay = 4 iteration X 3 steps = 12 cycles 
n  For 64-bit multiplication ! worst case delay = 64 X 3 = 192 cycles 
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Iteration Step Multiplier Multiplicand Product 

0 Initialization 0011 0000 0010 0000 0000 

1 
1a. Prod = Prod + Multiplicand 

2.SLL Multiplicand 
3.SRL Multiplier  

0011 
0011 
0001 

0000 0010 
0000 0100 
0000 0100 

0000 0010 
0000 0010 
0000 0010 

2 
1a. Prod = Prod + Multiplicand 

2.SLL Multiplicand 
3.SRL Multiplier  

0001 
0001 
0000 

0000 0100 
0000 1000 
0000 1000 

0000 0110 
0000 0110 
0000 0110 

3 2.SLL Multiplicand 
3.SRL Multiplier  

0000 
0000 

0001 0000 
0001 0000 

0000 0110 
0000 0110 

4 2.SLL Multiplicand 
3.SRL Multiplier  

0000 
0000 

0010 0000 
0010 0000 

0000 0110 
0000 0110 
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Optimized Multiplier 
n  Perform steps in parallel: add/shift 

n  One cycle per partial-product addition 
n  That’s ok, if frequency of multiplications is low 

129 bits 



Optimized Multiplication Example 
n  2ten X 3ten 

n  4-bit multiplication à Product Size = 9-bit 
n  Multiplicand = 2ten= 0010two  
n  No dedicated Multiplier register 

 

n  Delay = 4 iteration = 4 cycles 
n  For 64-bit multiplication ! delay = 64 cycles 
n  That’s ok, if frequency of multiplications is low 
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Iteration Step Multiplicand Product 

0 Initialization 0010 0 0000 0011 

1 Prod (MS half) = Prod (MS half)+ Multiplicand 
Then  SRL Product  0010 0 0010 0011 

0 0001 0001 

2 Prod (MS half) = Prod (MS half)+ Multiplicand 
Then  SRL Product  0010 0 0011 0001 

0 0001 1000 

3 SRL Product  0010 0 0000 1100 

4 SRL Product  0010 0 0000 0110 



Signed Multiplication (1) 
n  Unsigned numbers are different from signed numbers 

   (11)ten   (-5)ten 

   (13)ten   (-3)ten 

   _____   _____ 
   (143)ten   (15)ten 

        ü     û 
 
n  Approach1: Convert multiplicand and multiplier to 

positive numbers  
n  Negate the product if original signs are different 
n  Only 63 iterations are needed 
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   1011 
×  1101 
   1011 
  0000  
 1011   
1011    
10001111   



Signed Multiplication (2) 
n  Approach2: 

n  Sign-Extend the partial products 
n  Subtract the last partial product when multiplier is negative  

n  Examples:  
n  -7 X 3 = -21ten = (11101011)two 

n  7 X -3 = -21ten = (11101011)two 

n  -7 X -3 = 21ten = (00010101)two 
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       1001 
   ×   1101 
   11111001 
   0000000  
   111001     
 1(11011101) 
- 
   11001 
 

 1(00010101) 

Ignore carry 

Ignore carry 

       1001 
   ×   0011 
   11111001 
   1111001  
   000000   
   00000    
 1(11101011) 

Ignore carry 

       0111 
   ×   1101 
   00000111 
   0000000  
   000111      
   00100011 
 - 

   00111 
   11101011 
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RISC-V Multiplication 
n  Four multiply instructions: 

n  mul:  multiply 
n  Gives the lower 64 bits of the product 

n  mulh:  multiply high 
n  Gives the upper 64 bits of the product, assuming the 

operands are signed 

n  mulhu:  multiply high unsigned 
n  Gives the upper 64 bits of the product, assuming the 

operands are unsigned 
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Division 
n  Check for 0 divisor 

n  Dividend = (Divisor x Quotient) + Remainder 

n  Long division approach 
n  If divisor ≤ dividend bits 

n  1 bit in quotient, subtract 
n  Otherwise 

n  0 bit in quotient, bring down next dividend bit 

n  Restoring division 
n  Do the subtract, and if remainder goes < 0, add 

divisor back 

n  Signed division 
n  Divide using absolute values 
n  Adjust sign of quotient and remainder as 

required 

        1001 
1000 1001010 
    -1000 
        10 
        101  
        1010 
       -1000 
          10 

n-bit operands yield n-bit 
quotient and remainder 

quotient 

dividend 

remainder 

divisor 

§3.4 D
ivision 



Chapter 3 — Arithmetic for Computers — 12 

Division Hardware 

Initially dividend 

Initially divisor 
in left half 



Division Example 
n  7ten / 2ten 
n  4-bit division 

n  Quotient = 4-bit 
n  Remainder = 4-bit  

n  No dedicated                                                                                                                                             
Dividend                                                                                                                                                     
register 

n  Delay = 5 iteration X 3 steps = 15 cycles 
n  For 64-bit division ! delay = 65 X 3 = 195 cycles 
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Iteration Step Quotient 
(Q) Divisor Remainder 

(R) 

0 Initialization 0000 0010 0000 0000 0111 

1 
1. R = R - Divisor 

2b. R = R + Divisor, SLL Q using 0 
3.SRL Divisor using 0  

0000 
0000 
0000 

0010 0000 
0010 0000 
0001 0000 

1110 0111 
0000 0111 
0000 0111 

2 
1. R = R - Divisor 

2b. R = R + Divisor, SLL Q using 0 
3.SRL Divisor using 0  

0000 
0000 
0000 

0001 0000 
0001 0000 
0000 1000 

1111 0111 
0000 0111 
0000 0111 

3 
1. R = R - Divisor 

2b. R = R + Divisor, SLL Q using 0 
3.SRL Divisor using 0  

0000 
0000 
0000 

0000 1000 
0000 1000 
0000 0100 

1111 1111 
0000 0111 
0000 0111 

4 
1. R = R - Divisor 
2a. SLL Q using 1 

3.SRL Divisor using 0  

0000 
0001 
0001 

0000 0100 
0000 0100 
0000 0010 

0000 0011 
0000 0011 
0000 0011 

5 
1. R = R - Divisor 
2a. SLL Q using 1 

3.SRL Divisor using 0  

0001 
0011 
0011 

0000 0010 
0000 0010 
0000 0001 

0000 0001 
0000 0001 
0000 0001 
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Optimized Divider 

n  One cycle per partial-remainder subtraction 
n  Looks a lot like a multiplier! 

n  Same hardware can be used for both 

129 bits 



Optimized Divider Flow Chart 
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START 

1 .	 Shift	Remainder	to	the	left		setting	the	new	least	significant	bit	to	 0 

Test	Remainder ? 

2 .	 Subtract	Divisor	from	the	left	half	of	the	Remainder	and	place	 
the	result	in	the	left	half	of	the	Remainder 

3 b .	 Restore :	 Add	Divisor	to	the	left	half	of	the	Remainder	and	 
place	the	result	in	the	left	half	of	the	Remainder .	 Also	shift	the	 
Remainder	to	the	left	setting	the	new	least	significant	bit	to	 0	 

3 a .	 Shift	the	Remainder	to	the	 
left	setting	the	new	least	 

significant	bit	to	 1	 

Remainder	 <	 0 
Remainder	 > =	 0 

64 th 	 Repetition ? 

4 .	 Shift		the	left	half	of	the	Remainder	to	the	right	setting	the	 
new	most	significant	bit	of	the	left	half	of	the	Remainder	to	 0 

YES 

DONE 

NO 



Optimized Divider Example 
n  7ten / 2ten 

n  4-bit division à Quotient and Remainder are 4-bit each 
n  Divisor = 2ten= 0010two  
n  No dedicated Dividend or Quotient register 

 
n  Quotient is in the least significant 4-bit of the Remainder register and the 

remainder is in bits 4, 5, 6, and 7 of the Remainder register 
n  Delay = 4 iteration = 4 cycles ! For 64-bit division: delay = 64 cycles 
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Iteration Step Divisor Remainder 

0 Initialization Then 
1. SLL Remainder using 0 0010 0 0000 0111 

0 0000 1110 

1 2. Left_Half _Remainder = Left_Half _Remainder - Divisor 
3b. Restore Left_Half_Remainder Then  SLL Remainder using 0  0010 0 0001 1100 

2 2. Left_Half _Remainder = Left_Half _Remainder - Divisor 
3b. Restore Left_Half_Remainder Then  SLL Remainder using 0  0010 0 0011 1000 

3 2. Left_Half _Remainder = Left_Half _Remainder - Divisor 
3a.  SLL Remainder using 1  0010 0 0011 0001 

4 
2. Left_Half _Remainder = Left_Half _Remainder - Divisor 

3a.  SLL Remainder using 1  
4. SRL Left_Half_Remainder using 0 

0010 0 0001 0011 



Signed Division 
n  Convert Dividend and Divisor to positive, divide and then negate 

the Quotient if the original signs disagree 

n  What about the Remainder sign? 
n  Use the general equation: Dividend = (Divisor X Quotient) + Remainder  
n  Ex1: 7/2 à Q = 3 

n  (2 X 3) + R = 7 à R = 1 
n  Ex2: -7/2 à Q = -3 

n  (2 X -3) + R = -7 à R = -1 
n  Ex3: 7/-2 à Q = -3 

n  (-2 X -3) + R = 7 à R = 1 
n  Ex4: -7/-2 à Q = 3 

n  (-2 X 3) + R = -7 à R = -1 

n  Observation: Remainder always have the same sign as the 
Dividend 

n      
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RISC-V Division 
n  Four instructions: 

n  div, rem: signed divide, remainder 
n  divu, remu: unsigned divide, remainder 
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Floating Point 
n  Floating-point numbers = numbers with fractions 

n  Called Real numbers in math 
n  Representation for non-integral numbers 

n  Including very small and very large numbers 
n  Scientific notation:  (…xxxx.yyyy….* r exponent) 

n  Normalized: Single non-zero digit to the left of the radix point 
n  Like scientific notation 

n  –2.34 × 1056 
n  +0.002 × 10–4 
n  +987.02 × 109 

n  In binary 
n  ±1.xxxxxxx2 × 2yyyy 

n  For simplicity, we show the exponent (“yyyy”) in decimal 
n  Types float and double in C 

normalized 

not normalized 

§3.5 Floating P
oint 
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Floating Point Standard 
n  Defined by IEEE Std 754-1985 
n  Developed in response to divergence of 

representations 
n  Portability issues for scientific code 

n  Now almost universally adopted 
n  Two representations 

n  Single precision (32-bit) 
n  Double precision (64-bit)  
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IEEE Floating-Point Format 

If we number the bits of the fraction from left to right: f1, f2, f3, … then 

n S: sign bit (0 ⇒ non-negative, 1 ⇒ negative) 
n Normalize significand: 1.0 ≤ |significand| < 2.0 

n  Always has a leading pre-binary-point 1 bit, so no need to represent it 
explicitly (hidden bit) 

n  Significand is Fraction with the “1.” restored 
n Exponent: excess representation: actual exponent + Bias 

n  Ensures exponent is unsigned 
n  Single: Bias = 127; Double: Bias = 1203 

S Exponent Fraction (Mantissa) 

single: 8 bits 
double: 11 bits 

single: 23 bits 
double: 52 bits 

Bias)(ExponentS 2Fraction)(11)(x −×+×−=

Bias)(Exponent3
3

2
2

1
 1

S 2...))2f2f2(f(11)(x −−−− ×+×+×+×+×−=



Chapter 3 — Arithmetic for Computers — 22 

Single-Precision Range 
n  Exponents 00000000 and 11111111 reserved 
n  Smallest value 

n  Exponent: 00000001 
⇒ actual exponent = 1 – 127 = –126 

n  Fraction: 000…00 ⇒ significand = 1.0 
n  ±1.0 × 2–126 ≈ ±1.2 × 10–38 

n  Largest value 
n  exponent: 11111110 
⇒ actual exponent = 254 – 127 = +127 

n  Fraction: 111…11 ⇒ significand ≈ 2.0 
n  ±2.0 × 2+127 ≈ ±3.4 × 10+38 
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Double-Precision Range 
n  Exponents 0000…00 and 1111…11 reserved 
n  Smallest value 

n  Exponent: 00000000001 
⇒ actual exponent = 1 – 1023 = –1022 

n  Fraction: 000…00 ⇒ significand = 1.0 
n  ±1.0 × 2–1022 ≈ ±2.2 × 10–308 

n  Largest value 
n  Exponent: 11111111110 
⇒ actual exponent = 2046 – 1023 = +1023 

n  Fraction: 111…11 ⇒ significand ≈ 2.0 
n  ±2.0 × 2+1023 ≈ ±1.8 × 10+308 
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Floating-Point Example 
n  Represent –0.75 

n  –0.75 = (–1)1 × 1.12 × 2–1 

n  S = 1 
n  Fraction = 1000…002 
n  Exponent = –1 + Bias 

n  Single: –1 + 127 = 126 = 011111102 
n  Double: –1 + 1023 = 1022 = 011111111102 

n  Single: 1011111101000…00 
n  Double: 1011111111101000…00 
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Floating-Point Example 
n  What number is represented by the single-

precision float 
 11000000101000…00 

n  S = 1 
n  Fraction = 01000…002 
n  Fxponent = 100000012 = 129 

n  x = (–1)1 × (1 + 012) × 2(129 – 127) 
 = (–1) × 1.25 × 22 
 = –5.0 



IEEE 754 Features 
n  Overflow in FP means that exponent is too large to fit in its field 

n  Single-precision: actual exponent > 127 
n  Double-precision: actual exponent > 1023 

n  Underflow in FP means that exponent is too small to fit in its field 
n  Single-precision: actual exponent < -126 
n  Double-precision: actual exponent < -1022 

n  IEEE 754 standard simplifies FP comparison: 
n  First, compare the sign-bit  
n  Second, compare the biased exponent à unsigned comparison 
n  Finally, compare the fraction 
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Single-Precision Double-Precision 
Object Represented 

Exponent Fraction Exponent Fraction 

0 0 0 0 Zero 

0 Non-Zero 0 Non-Zero ± Denormalized Number 

255 0 2047 0 ± ∞ 

255 Non-Zero 2047 Non-Zero Not a Number (NAN) 

1-254 Anything 1-2046 Anything ± Normalized Number 
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Floating-Point Addition 
n  Now consider a 4-digit binary example 

n  1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375) 
n  1. Align binary points 

n  Shift number with smaller exponent 
n  1.0002 × 2–1 + –0.1112 × 2–1 

n  2. Add significands 
n  1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1 

n  3. Normalize result & check for over/underflow 
n  1.0002 × 2–4, with no over/underflow 

n  4. Round and renormalize if necessary 
n  1.0002 × 2–4 (no change)  = 0.0625 
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FP Adder Hardware 
n  Much more complex than integer adder 
n  Doing it in one clock cycle would take too 

long 
n  Much longer than integer operations 
n  Slower clock would penalize all instructions 

n  FP adder usually takes several cycles 
n  Can be pipelined 
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FP Adder Hardware 

Step 1 

Step 2 

Step 3 

Step 4 
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Floating-Point Multiplication 
n  Now consider a 4-digit binary example 

n  1.0002 × 2–1 × –1.1102 × 2–2 (0.5 × –0.4375) 
n  1. Add exponents 

n  Unbiased: –1 + –2 = –3 
n  Biased: (–1 + 127) + (–2 + 127) = –3 + 254 – 127 = –3 + 127 

n  2. Multiply significands 
n  1.0002 × 1.1102 = 1.1102  ⇒  1.1102 × 2–3 

n  3. Normalize result & check for over/underflow 
n  1.1102 × 2–3 (no change) with no over/underflow 

n  4. Round and renormalize if necessary 
n  1.1102 × 2–3 (no change) 

n  5. Determine sign: +ve × –ve ⇒ –ve 
n  –1.1102 × 2–3  = –0.21875 
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FP Arithmetic Hardware 
n  FP multiplier is of similar complexity to FP 

adder 
n  But uses a multiplier for significands instead of 

an adder 
n  FP arithmetic hardware usually does 

n  Addition, subtraction, multiplication, division, 
reciprocal, square-root 

n  FP ↔ integer conversion 
n  Operations usually takes several cycles 

n  Can be pipelined 
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FP Instructions in RISC-V 
n  Separate FP registers: f0, …, f31 

n  double-precision 
n  single-precision values stored in the lower 32 bits 

n  FP instructions operate only on FP registers 
n  Programs generally don’t do integer ops on FP data, 

or vice versa 
n  More registers with minimal code-size impact 

n  FP load and store instructions 
n  flw, fld 
n  fsw, fsd 
n  The base registers for floating-point 
data transfers which are used for 
addresses remain integer registers 
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FP Instructions in RISC-V 
n  Single-precision arithmetic 

n  fadd.s, fsub.s, fmul.s, fdiv.s, fsqrt.s 
n  e.g., fadds.s f2, f4, f6 

n  Double-precision arithmetic 
n  fadd.d, fsub.d, fmul.d, fdiv.d, fsqrt.d 

n  e.g., fadd.d f2, f4, f6 

n  Single- and double-precision comparison 
n  feq.s, flt.s, fle.s 
n  feq.d, flt.d, fle.d 
n  Result is 0 (comparison is false) or 1 (comparison is 

true) in integer destination register 
n  Use beq, bne to branch on comparison result 
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FP Example: °F to °C 
n  C code: 
 float f2c (float fahr) { 
  return ((5.0/9.0)*(fahr - 32.0)); 
} 
n  fahr in f10, result in f10, literals in global memory 

space 
n  Compiled RISC-V code: 
 f2c: 

    flw    f0,const5(x3)  // f0 = 5.0f 
    flw    f1,const9(x3)  // f1 = 9.0f 
    fdiv.s f0, f0, f1  // f0 = 5.0f / 9.0f 
    flw    f1,const32(x3) // f1 = 32.0f 
    fsub.s f10,f10,f1  // f10 = fahr – 32.0 
    fmul.s f10,f0,f10  // f10 = (5.0f/9.0f) * (fahr–32.0f) 
    jalr   x0,0(x1)    // return 
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Accurate Arithmetic 
n  IEEE Std 754 specifies additional rounding control 

n  Extra bits of precision (guard, round, sticky) 
n  Choice of rounding modes (4 modes): 

n  Always round-up (towards +∞)  
n  Always round-down (towards -∞)  
n  Truncate 
n  Round to the nearest 

n  What to do when the number is exactly halfway in between? 
n  Round to the nearest, ties to even: If the least significant bit retained is 

odd then add one, otherwise truncate (Default Mode) 
n  Round to the nearest, ties away from zero: It is rounded to the nearest 

value above (for positive numbers) or below (for negative numbers) 

n  Allows programmer to fine-tune numerical behavior of a 
computation 

n  Not all FP units implement all options 

n  Trade-off between hardware complexity, performance, 
and market requirements 



Rounding Example with Guard and Round bits 
n  Consider a 3-digit binary example using round to the nearest 

n  2.56 × 101 + 2.34 × 103 
 

n  Solution with guard and round (two extra bits on the right during 
intermediate additions): 

n  0.0256 × 103 + 2.34 × 103 = 2.3656 × 103 

n  0-49: round-down, 51-99: round-up 
n  So, answer is 2.37 × 103 

n  Solution without guard and round (truncate during intermediate 
additions): 

n  0.02 × 103 + 2.34 × 103 = 2.36 × 103 
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Guard Round 



Sticky Bit 
n  Set whenever there are nonzero bits to the right of the 

round bit 
n  Allows the computer to see the difference between 

0.50…00ten and 0.50..01ten 

n  Example: Consider 4-digit binary example with guard, 
round and sticky bits using round to the nearest even 
n  5.001 × 10-2 + 2.340 × 102 

n  0.0005001 × 102 + 2.340 × 102 

n  50 is exactly halfway  
n  Sticky bit is 1 à round-up, so Answer = 2.341 × 102 

n  Without sticky bit à truncate, so Answer = 2.340 × 102 
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Guard Round 
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Concluding Remarks 
n  Bits have no inherent meaning 

n  Interpretation depends on the instructions 
applied 

n  Computer representations of numbers 
n  Finite range and precision 
n  Need to account for this in programs 

§3.10 C
oncluding R

em
arks 
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Concluding Remarks 
n  ISAs support arithmetic 

n  Signed and unsigned integers 
n  Floating-point approximation to reals 

n  Bounded range and precision 
n  Operations can overflow and underflow 



COMPUTERORGANIZATION ANDDESIGN
The Hardware/Software Interface

RISC-V
Edition

Chapter 4
The Processor



Chapter 4 — The Processor — 2

Introduction
n CPU performance factors

n Instruction count
n Determined by ISA and compiler

n CPI and Cycle time
n Determined by CPU hardware

n We will examine two RISC-V implementations
n A simplified version (i.e. Single-Cycle implementation)
n Multi-Cycle implementation
n A more realistic pipelined version

n Simple subset, shows most aspects
n Memory reference: ld, sd
n Arithmetic/logical: add, sub, and, or
n Control transfer: beq

§4.1 Introduction
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Instruction Execution
n PC ® instruction memory, fetch instruction
n Register numbers ® register file, read registers
n Depending on instruction class

n Use ALU to calculate
n Arithmetic result
n Memory address for load/store
n Branch comparison

n Access data memory for load/store
n PC ¬ target address or PC + 4
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CPU Overview
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Multiplexers
n Can’t just join 

wires together
n Use multiplexers
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Control
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Logic Design Basics
§4.2 Logic D

esign C
onventions

n Information encoded in binary
n Low voltage = 0, High voltage = 1
n One wire per bit
n Multi-bit data encoded on multi-wire buses

n Combinational element
n Operate on data
n Output is a function of input

n State (sequential) elements
n Store information
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Combinational Elements

n AND-gate
n Y = A & B
A
B Y

I0
I1 Y

M
u
x

S

n Multiplexer
n Y = S ? I1 : I0

A

B
Y+

A

B

YALU

F

n Adder
n Y = A + B

n Arithmetic/Logic Unit
n Y = F(A, B)
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Sequential Elements
n Register: stores data in a circuit

n Uses a clock signal to determine when to 
update the stored value

n Edge-triggered: update when Clk changes 
from 0 to 1

D

Clk

Q
Clk

D

Q
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Sequential Elements
n Register with write control

n Only updates on clock edge when write 
control input is 1

n Used when stored value is required later

D

Clk

Q
Write

Write

D

Q

Clk



Chapter 4 — The Processor — 11

Clocking Methodology
n Clocking methodology defines when signals can be 

read or written
n This is important because if a signal is to be read and written 

simultaneously, then the value read could correspond to the old 
value, new value, or a mix

n Most CPUs use edge-triggered clocking methodology
n This methodology allows us to read the contents of a state 

element at the beginning of the clock cycle, send the value 
through Combinational logic during the clock cycle, then write the 
output to the same state element or another state element at the 
end of the clock cycle

n Longest Combinational logic delay determines clock period
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Building Datapath for Single-Cycle CPU

n Every instruction is executed in one cycle
n No datapath resource can be used more than once 

per instruction à any element needed more than 
once must be duplicated

n Datapath
n Elements that process data and addresses

in the CPU
n Registers, ALUs, mux’s, memories, …

n We will build a RISC-V datapath incrementally
n Refining the overview design

§4.3 Building a D
atapath
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Instruction Fetch

64-bit 
register

Increment by 
4 for next 
instruction
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R-Format Instructions
n Read two register operands
n Perform arithmetic/logical operation
n Write register result



Register File
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Register File – Read Ports
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! Use two 64-bit 32-to-1 multiplexers whose control lines are 
the register numbers.



Register File – Write Port 
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! We need 5-to-32 decoder in addition to the Write signal to 
generate actual write signal 

! The register data is common to all registers



Chapter 4 — The Processor — 18

Load/Store Instructions
n Read register operands
n Calculate address using 12-bit offset

n Use ALU, but sign-extend offset
n Load: Read memory and update register
n Store: Write register value to memory
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Branch Instructions
n Read register operands
n Compare operands

n Use ALU, subtract and check Zero output
n Taken Branch: Condition is true à Jump to branch 

target
n Not-Taken Branch: Condition is false à Execute 

instruction next to branch
n Calculate target address

n Sign-extend displacement
n Shift left 1 place (halfword displacement)
n Add to PC value
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Branch Instructions

Just
re-routes 

wires

Sign-bit wire 
replicated
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Composing the Elements
n First-cut data path does an instruction in 

one clock cycle
n Each datapath element can only do one 

function at a time
n Hence, we need separate instruction and data 

memories. Also we need separate Adders for 
(PC + 4) and BTA calculation beside the main 
ALU

n Use multiplexers where alternate data 
sources are used for different instructions
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R-Type/Load/Store Datapath
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Full Datapath
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ALU Control
n ALU used for

n Load/Store: F = add
n Branch: F = subtract
n R-type: F depends on opcode

§4.4 A Sim
ple Im

plem
entation Schem

eALU control Function
0000 AND
0001 OR
0010 add
0110 subtract
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ALU Control
n Assume 2-bit ALUOp derived from opcode

n Combinational logic derives ALU control
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The Main Control Unit
n Control signals derived from instruction’s opcode
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Datapath With Control
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R-Type Instruction
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Load Instruction
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BEQ Instruction



Control Signals
n 6 single-bit control signals plus 2-bit ALUop signal

n Total of 8 control signals
n Asserted means that signal is logically high
n Deasserted means that signal is logically low
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Control Unit
n The input is the Opcode field (7 bits) from the instruction register
n The output is 8 control signals

n Control signals can be set solely based on the opcode field, except 
PCSrc (i.e. PCSrc = Branch AND Zero)
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Control Unit Design
I[6]

I[5]

I[4]

I[3]

I[2]
I[1]

I[0]

R-format ld sd beq
ALUSrc

MemtoReg

RegWrite

MemRead
MemWrite
Branch
ALUOp1
ALUOp0



ALU Control
n The ALU control has two inputs:

1. ALUOp (2 bits)  from the control unit
2. Funct3 and Funct7 fields from the instruction register

n The ALU control has a 4-bit output

Function
Ainvert

Operation 
[3]

Bnegate

Operation 
[2]

Operation 
[1:0]

and 0 0 00
or 0 0 01

add 0 0 10
sub 0 1 10
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ALU Control
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I[30]
ALUOp1
ALUOp0

I[14]

I[13]
I[12]

0 Operation[3]

Operation[2]

Operation[1]

Operation[0]

0
0
0
0

0
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Performance Issues
n Longest delay determines clock period

n Critical path: load instruction
n Instruction memory ® register file ® ALU ®

data memory ® register file
n Not feasible to vary period for different 

instructions
n Violates design principle

n Making the common case fast
n We will improve performance by pipelining



Pipelining
n An implementation technique in which

multiple instructions are overlapped in
execution
n C.f. Single-Cycle and Multi-Cycle

implementations in which only a single
instruction is executing at any time

n Today, pipelining is nearly universal
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Pipelining Analogy
n Pipelined laundry: overlapping execution

n Parallelism improves performance

§4.5 An O
verview

 of Pipeliningn Four loads:
n Speedup

= 8/3.5 = 2.3
n Non-stop:

n Speedup
= 2n/0.5n + 1.5 ≈ 4
= number of stages
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RISC-V Pipeline
n Five stages, one step per stage

1. IF: Instruction fetch from memory
2. ID: Instruction decode & register read
3. EX: Execute operation or calculate address
4. MEM: Access memory operand
5. WB: Write result back to register

n Stages can operate concurrently as long as
separate resources are available for each stage
n Pipeline design is based on Single-Cycle CPU design
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Pipeline Performance
n Assume time for stages is

n 100ps for register read or write
n 200ps for other stages

n Compare pipelined datapath with single-cycle 
datapath

Instr Instr fetch Register 
read

ALU op Memory 
access

Register 
write

Total time

ld 200ps 100 ps 200ps 200ps 100 ps 800ps

sd 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps
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Pipeline Performance
Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)
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Pipeline Speedup
n If all stages are balanced

n i.e., all take the same time
n Time between instructionspipelined

= Time between instructionsnonpipelined
Number of stages

n If not balanced, speedup is less
n Speedup due to increased throughput

n Latency (time for each instruction) does not 
decrease
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Pipelining and ISA Design
n RISC-V ISA designed for pipelining

n All instructions are 32-bits
n Easier to fetch and decode in one cycle
n c.f. x86: 1- to 17-byte instructions

n Few and regular instruction formats
n Can decode and read registers in one step

n Load/store addressing
n Can calculate address in 3rd stage, access memory 

in 4th stage
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Hazards
n Situations that prevent starting the next 

instruction in the next cycle
n Structure hazards

n A required resource is busy
n Data hazard

n Need to wait for previous instruction to 
complete its data read/write

n Control hazard
n Deciding on control action depends on 

previous instruction
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Structure Hazards
n Conflict for use of a resource

n In RISC-V pipeline with a single memory
n Load/store requires data access
n Instruction fetch would have to stall for that cycle

n Would cause a pipeline “bubble”

n Hence, pipelined datapaths require separate 
instruction/data memories
n Or separate instruction/data caches

n RISC-V pipeline is designed carefully such 
that there are no structure hazards
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Data Hazards
n An instruction depends on completion of data access by 

a previous instruction
n add x19, x0, x1
sub x2, x19, x3

n Pipeline must be stalled (i.e. stopped)
n Pipeline stall ≡ bubble 
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Forwarding (aka Bypassing)
n Use result when it is computed

n Don’t wait for it to be stored in a register
n Requires extra connections in the datapath

n Forwarding paths are valid only if the destination stage is later in 
time than the source stage
n Ex: There can’t be a path from the output of the memory stage to the 

input of the execution stage
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Load-Use Data Hazard
n Can’t always avoid stalls by forwarding

n If value not computed when needed
n Can’t forward backward in time!
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Code Scheduling to Avoid Stalls
n Reorder code to avoid use of load result in the next 

instruction
n C code for a = b + e; c = b + f;
n Assume that a, b, c, e, f are in memory 
with offsets (24, 0, 32, 8, 16) from x0

ld x1, 0(x0)

ld x2, 8(x0)

add x3, x1, x2

sd x3, 24(x0)

ld x4, 16(x0)

add x5, x1, x4

sd x5, 32(x0)

stall

stall

ld x1, 0(x0)

ld x2, 8(x0)

ld x4, 16(x0)

add x3, x1, x2

sd x3, 24(x0)

add x5, x1, x4

sd x5, 32(x0)

11 cycles13 cycles
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Control Hazards
n Branch determines flow of control

n Fetching next instruction depends on branch 
outcome

n Pipeline can’t always fetch correct instruction
n Still working on ID stage of branch

n In RISC-V pipeline
n Need to compare registers and compute 

target early in the pipeline
n Add hardware to do it in ID stage
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Stall on Branch
n Wait until branch outcome determined 

before fetching next instruction
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Branch Prediction
n Longer pipelines can’t readily determine 

branch outcome early
n Stall penalty becomes unacceptable

n Predict outcome of branch
n Only stall if prediction is wrong

n In RISC-V pipeline
n Can predict branches not taken
n Fetch instruction after branch, with no delay
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More-Realistic Branch Prediction
n Static branch prediction

n Based on typical branch behavior
n Example: loop and if-statement branches

n Predict backward branches taken
n Predict forward branches not taken

n Dynamic branch prediction
n Hardware measures actual branch behavior

n e.g., record recent history of each branch
n Assume future behavior will continue the trend

n When wrong, stall while re-fetching, and update history
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Pipeline Summary

n Pipelining improves performance by 
increasing instruction throughput
n Executes multiple instructions in parallel
n Each instruction has the same latency

n Subject to hazards
n Structure, data, control

n Instruction set design affects complexity of 
pipeline implementation

The BIG Picture
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RISC-V Pipelined Datapath
§4.6 Pipelined D

atapath and C
ontrol

WB

MEM

Right-to-left 
flow leads to 
hazards
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Pipeline registers
n Need registers between stages

n To hold information produced in previous cycle
n Stage registers must be wide enough to store all the data corresponding to

the lines that go through them
n IF/ID is 96-bit : 32-bit instruction and 64-bit for PC
n ID/EX is 256-bit: (rs1), (rs2), Sign-Extended value, and PC
n EX/MEM is 193-bit and MEM/WB is 128-bit
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Pipeline Operation
n Cycle-by-cycle flow of instructions through 

the pipelined datapath
n “Single-clock-cycle” pipeline diagram

n Shows pipeline usage in a single cycle
n Highlight resources used

n c.f. “multi-clock-cycle” diagram
n Graph of operation over time

n We’ll look at “single-clock-cycle” diagrams 
for load & store
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IF for Load, Store, …
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ID for Load, Store, …
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EX for Load
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MEM for Load
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WB for Load

Wrong
register
number
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Corrected Datapath for Load
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EX for Store
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MEM for Store
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WB for Store
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Multi-Cycle Pipeline Diagram
n Form showing resource usage
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Multi-Cycle Pipeline Diagram
n Traditional form
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Single-Cycle Pipeline Diagram
n State of pipeline in a given cycle
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Pipelined Control (Simplified)
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Pipelined Control
n Control signals derived from instruction

n As in single-cycle implementation
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Pipelined Control



Chapter 4 — The Processor — 73

Data Hazards in ALU Instructions
n Consider this sequence:

sub  x2, x1,x3
and  x12,x2,x5
or   x13,x6,x2
add  x14,x2,x2
sd   x15,100(x2)

n We can resolve hazards with forwarding
n How do we detect when to forward?

§4.7 D
ata H

azards: Forw
arding vs. Stalling
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Dependencies & Forwarding
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Detecting the Need to Forward

n Pass register numbers along pipeline
n e.g., ID/EX.RegisterRs1 = register number for Rs1 

sitting in ID/EX pipeline register
n ALU operand register numbers in EX stage 

are given by
n ID/EX.RegisterRs1, ID/EX.RegisterRs2

n Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs1
1b. EX/MEM.RegisterRd = ID/EX.RegisterRs2
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs1
2b. MEM/WB.RegisterRd = ID/EX.RegisterRs2

Fwd from
EX/MEM
pipeline reg

Fwd from
MEM/WB
pipeline reg
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Detecting the Need to Forward
n But only if forwarding instruction will write 

to a register!
n EX/MEM.RegWrite, MEM/WB.RegWrite

n And only if Rd for that instruction is not x0
n EX/MEM.RegisterRd ≠ 0,

MEM/WB.RegisterRd ≠ 0
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Forwarding Paths
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Forwarding Conditions
Mux control Source Explanation
ForwardA = 00 ID/EX The first ALU operand comes from the register file.
ForwardA = 10 EX/MEM The first ALU operand is forwarded from the prior 

ALU result.
ForwardA = 01 MEM/WB The first ALU operand is forwarded from data 

memory or an earlier ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the register 
file.

ForwardB = 10 EX/MEM The second ALU operand is forwarded from the prior 
ALU result.

ForwardB = 01 MEM/WB The second ALU operand is forwarded from data 
memory or an earlier ALU result.
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Forwarding Conditions
n EX hazard

n if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs1))

ForwardA = 10
n if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs2))
ForwardB = 10

n MEM hazard
n if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs1))
ForwardA = 01

n if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs2))

ForwardB = 01
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Double Data Hazard
n Consider the sequence:

add x1,x1,x2
add x1,x1,x3
add x1,x1,x4

n Both hazards occur
n Want to use the most recent

n Revise MEM hazard condition
n Only fwd if EX hazard condition isn’t true
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Revised Forwarding Condition
n MEM hazard

n if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd ≠ 0)
and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs1))
and (MEM/WB.RegisterRd = ID/EX.RegisterRs1)) ForwardA = 01

n if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd ≠ 0)
and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs2))
and (MEM/WB.RegisterRd = ID/EX.RegisterRs2)) ForwardB = 01
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Datapath with Forwarding
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Load-Use Hazard Detection
n Check when using instruction is decoded 

in ID stage
n ALU operand register numbers in ID stage 

are given by
n IF/ID.RegisterRs1, IF/ID.RegisterRs2

n Load-use hazard when
n ID/EX.MemRead and (ID/EX.RegisterRd ≠ 0)
and ((ID/EX.RegisterRd = IF/ID.RegisterRs1) or

(ID/EX.RegisterRd = IF/ID.RegisterRs2))
n If detected, stall and insert bubble
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How to Stall the Pipeline
n Force control values in ID/EX register

to 0
n EX, MEM and WB do nop (no-operation)

n Prevent update of PC and IF/ID register
n Using instruction is decoded again
n Following instruction is fetched again
n 1-cycle stall allows MEM to read data for ld

n Can subsequently forward to EX stage
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Load-Use Data Hazard

Stall inserted 
here
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Datapath with Hazard Detection
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Stalls and Performance

n Stalls reduce performance
n But are required to get correct results

n Compiler can arrange code to avoid 
hazards and stalls
n Requires knowledge of the pipeline structure

The BIG Picture
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Appendix A.5:

Constructing a Basic Arithmetic Logic
Unit (ALU)

Dr. Gheith Abandah

[Adapted from the slides of Professor Mary Irwin 
(www.cse.psu.edu/~mji) which in turn Adapted from Computer 

Organization and Design,  
Patterson & Hennessy]

http://www.cse.psu.edu/~mji
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q 64-bit signed numbers (2’s complement):
0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
...

0111 1111 1111 1111 1111 1111 1111 1110two = + 9,223,372,036,854,775,806ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 9,223,372,036,854,775,807ten
1000 0000 0000 0000 0000 0000 0000 0000two = – 9,223,372,036,854,775,808ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 9,223,372,036,854,775,807ten
...

1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

MIPS Number Representations

maxint

minint

q Converting <64-bit values into 64-bit values
! copy the most significant bit (the sign bit) into the “empty” bits

0010  -> 0000 0010
1010  -> 1111 1010

! sign extend versus     zero extend   (lb vs.  lbu) 

MSB
LSB
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RISC-V Arithmetic Logic Unit (ALU)
q Must support the Arithmetic/Logic                                                  

operations of the ISA
add, addi

sub

and, andi, or, ori, xor, xori

beq, bne, slt, slti, sltiu, sltu

64

64

64

m (operation)

result

A

B

ALU

4

zero ov

1
1

q With special handling for
! sign extend – addi, andi, ori, xori

! zero extend – lbu

q RISC-V world is 64-bit wide à 64-bit wide ALU
q First, generate 1-bit ALU slice then replicate 64 times
q ALU is constructed from: AND, OR, inverters, MUXes
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Review: 2’s Complement Binary Representation
2’sc binary decimal

1000 -8
1001 -7
1010 -6
1011 -5
1100 -4
1101 -3
1110 -2
1111 -1
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 723 - 1 =

-(23 - 1) =
-23 =

1010

complement all the bits

1011

and add a 1

q Note: negate and 
invert are different!

q Negate
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Binary Addition
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Review:  Half (2,2) Adder and Full (3,2) Adder

1-bit Full 
Adder

A

B
S

Cin

Cout

S = A Å B Å Cin (odd parity function)

Cout = A&B  |  A&Cin |  B&Cin
(majority function)

q How can we use it to build a 64-bit adder?

q How can we modify it easily to build an adder/subtractor?

A B Cin Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

1-bit Half 
Adder

A

B
S

Cout

A B Cout S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

S = A Å B (odd parity function)

Cout = A&B  (majority function)
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A 64-bit Ripple Carry Adder/Subtractor

q Remember 2’s 
complement is just

l complement all the bits

l add a 1 in the least 
significant bit

A   0111  ® 0111                                   
B - 0110 ® +

1-bit 
FA S0

c0=Cin

c1
1-bit 
FA S1

c2
1-bit 
FA S2

c3

c64=Cout

1-bit 
FA S63

c63

. .
 .

A0

A1

A2

A63

B0

B1

B2

B63

add/sub

B0

control
(0=add,1=sub) B0 if control = 0, 

!B0 if control = 1

0001

1001
1

1 0001
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q Need to support the logic operations (and,or,xor)
! Bit wise operations (no carry operation involved)
! Need a logic gate for each function, mux to choose the output

q Need to support the set-on-less-than instruction (slt)
! Use subtraction to determine if (a – b) < 0 (implies a < b)
! Copy the sign bit into the low order bit of the result, set 

remaining result bits to 0

q Need to support test for equality (bne, beq)
! Again use subtraction:  (a - b) = 0 implies a = b
! Additional logic to “nor” all result bits together

q Immediates are sign extended outside the ALU with 
wiring (i.e., no logic needed)

Tailoring the ALU to the RISC-V ISA
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RISC-V ALU
q Least-significant bits

Function Binvert Operation
and 0 00
or 0 01

add 0 10
sub 1 10
slt 1 11
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Set if less than (slt)
q slt rd, rs1, rs2

! If rs1 < rs2 à rd = (0000000…………….0001)two
! If rs1 >= rs2 à rd = (0000000…………….0000)two

q For ALU1 to ALU63, connect the Less input to ground or
zero

q Use subtraction to determine if rs1 is less than rs2
! rs1 –rs2 is negative à adder/subtractor output in ALU63 is 1
! The adder/subtractor output of ALU63 is called Set and is

connected to the Less input of ALU0

q Since we need a special ALU slice for the most
significant digit to generate the Set output, we add the
functionality needed to generate the overflow detection
logic since it is associated with that bit too
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RISC-V ALU
q Most-significant bit

Function Binvert Operation
and 0 00
or 0 01

add 0 10
sub 1 10
slt 1 11
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Overflow Detection
q Overflow:  the result is too large to represent in 64 bits

q Overflow occurs when
! adding two positives yields a negative 
! or, adding two negatives gives a positive
! or, subtract a negative from a positive gives a negative
! or, subtract a positive from a negative gives a positive

q On your own: Prove you can detect overflow by:
! Carry into MSB XOR Carry out of MSB, ex for 4 bit signed numbers

1

1

1 10

1

0

1

1

0

0 1 1 1

0 0 1 1+

7

3

0

1

– 6

1 1 0 0

1 0 1 1+

–4

– 5

71

0
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Overflow Detection

A63 B63 C63 (Cin) C64 (Cout) S63 Overflow (OV)
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 1 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 1 1 0 0
1 1 0 1 0 1
1 1 1 1 1 0

C63

C64
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RISC-V ALU
q For sub, slt, and branch: Binvert = 1 and C0 = 1

q For add: Binvert = 0 and C0 = 0

q For logical except NOR: Binvert = 0 and C0 = X

q For NOR: Binvert = 1 and C0 = X

q Based on above: Binvert and C0 are merged together into
once signal called Bnegate

Ainvert Bnegate Operation
0 0 00 AND
0 0 01 OR
0 0 10 ADD
0 1 10 SUB/Branch
0 1 11 SLT
1 1 00 NOR
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RISC-V ALU

64

64

64

“Ainvert, Bnegate, Operation “

result

A

B

ALU

4

zero ov

1
1
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Set if less than correction
q Previously we connected Less0 to Set which is only correct if there

is no overflow

q From the truth table below, we deduce that:

Less0 = Set Å OV

Set OV Less0

0 0 0
0 1 1
1 0 1
1 1 0

Set OV
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Appendix A.6:

Faster Addition: Carry Lookahead
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Improving Addition Performance
q The ripple-carry adder is slow

++++
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Carry-Lookahead Adder
q Need fast way to find the carry

++++

Carry-Lookahead Circuit
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Carry-Lookahead Adder
q Carry generate and carry 

propagate

q gi = ai . bi

q pi = ai + bi

ai bi gi pi
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

+
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Carry-Lookahead Adder
Carry Equations:
c1 = g0 + p0c0

c2 = g1 + p1c1

= g1 + p1g0 + p1p0c0

c3 = g2 + p2c2

= g2 + p2g1 + p2p1g0 + p2p1p0c0

c4 = g3 + p3c3

= g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0c0
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4-bit Carry-Lookahead Adder

++++

c0
c4

c1c2c3 b0a0

s0

p0g0
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Larger Carry-Lookahead Adders

P = p0p1p2p3

G = g3 + g2p3 + g1p2p3

+ g0p1p2p3



Dr. Iyad F. Jafar*

Adapted from Dr. Gheith Abandah slides
http://www.abandah.com/gheith/Courses/CPE

335_S08/index.html

*Slightly updated by Dr. Waleed Dweik

Appendix C:
Multi-Cycle Datapath and Control

http://www.abandah.com/gheith/Courses/CPE335_S08/index.html
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� Introduction
� Multi-cycle Datapath
� Multi-cycle Control
� Performance Evaluation 
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Introduction

3

� The single-cycle datapath is straightforward, 
but...
� Hardware duplication

� It has to use one ALU and two 64-bit adders
� It has separate Instruction and Data memories

� Cycle time is determined by worst-case path! Time 
is wasted for instructions that finish earlier!!

� Can we do any better? 
� Break the instruction execution into steps
� Each step finishes in one shorter cycle
� Since instructions differ in number of steps, so will 

the number of cycles! Thus, time is different!
� Multi-Cycle implementation!



Multi-Cycle Datapath
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� Instruction execution is done over multiple steps 
such that 
� Each step takes one cycle
� The amount of work done per cycle is balanced 
� Restrict each cycle to use one major functional unit

� Expected benefits 
� Time to execute different instructions will be 

different (Better Performance!)
� The cycle time is smaller (faster clock rate!)
� Allows functional units to be used more than once 

per instruction as long as they are used in different 
cycles 
� One memory is needed!
� One ALU is needed!



Multi-Cycle Datapath
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� Requirements 

� Keep in mind that we have one ALU, Memory, and 
PC

� Thus, 
� Add/expand multiplexors at the inputs of major 

units that are used differently across instructions

� Add intermediate registers to hold values 
between cycles !!

� Define additional control signals  and redesign 
the control unit
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� Requirements - ALU
� Operations

� Compute PC+4 
� Compute the Branch Address 
� Compare two registers
� Perform ALU operations 
� Compute memory address

� Thus, the first ALU input could be
� R[rs]   (R-type)
� PC       (PC = PC + 4) 
è Add a MUX and define the ALUScrA signal  

� The second ALU input could be  
� R[rt] (R-type)
� A constant value of 4 (to compute PC + 4) 
� Sign-extended immediate (to compute address of LW and SW) 
� Sign-extended immediate x 2 (compute branch address for BEQ) 
è Expand the MUX at the second ALU input and make the ALUSrcB signal two bits

� The values read from register file will be used in the next cycle
è Add the A and B registers 

� The ALU result (R-type result or memory address) will be used in the 
following cycle
è Add the ALUOut register
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� Requirements - PC 
� PC input could be 

� PC + 4 (sequential execution) 
� Branch address

� The PC is not written on every cycle 
è Define the PCWrite singal



Multi-Cycle Datapath
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� Requirements – Memory  
� Memory input could be

� Memory address from PC 
� Memory address from ALU 
è Add MUX at the address port of the memory and define 

the IorD signal 
� Memory output could be 

� Instruction 
� Data 
è Add the IR register to hold the instruction 
è Add the MDR register to hold the data loaded from 

memory (Load)

� The IR is not written on every cycle 
è Define the IRWrite signal 



Address

Read Data

Memory

PC

Write Data

Read Addr 1

Read Addr 2

Write Addr
Register

File

Read
Data 1

Read
Data 2

ALU

Write Data

IR
M

D
R

A
B A

LU
O

ut

Imm
Gen

Shift
left 1 ALU

control

ALUOp
Control

IRWrite
MemtoReg

MemWrite
MemRead

IorD

PCWrite Branch

RegWrite
ALUSrcA

ALUSrcB

zero1

1 1

1

1

0

0

0

0

0

2
3

4

IR[30], IR[14-12]

opcode

64

Multi-Cycle Datapath

rs1

rs2

rd

64

0

1 0



Signal Name Effect when Deasserted (0) Effect when Asserted (1)

RegWrite None Write is enabled to selected destination 
register 

ALUSrcA The first ALU operand is the PC The first ALU operand is register A

MemRead None Content of memory address is placed 
on Memory data out 

MemWrtite None
Memory location specified by the 

address is replaced by the value on 
Write data input

MemtoReg The value fed to register file is 
from ALUOut

The value fed to register file is from 
memory

IorD PC is used as an address to 
memory unit

ALUOut is used to supply the address 
to the memory unit

IRWrite None The output of memory is written into 
IR

PCWrite None PC is written

Branch Output of ALU (PC +4) is sent to the 
PC for writing

if Zero output from ALU is also active, 
The content of ALUOut are sent to the PC 

for writing

Multi-Cycle Control Signals

10



Signal Value Effect

ALUOp

00 ALU performs add operation

01 ALU performs subtract operation

10 The funct field of the instruction determines the ALU 
operation

ALUSrcB

00 The second input to the ALU comes from register B

01 The second input to the ALU is 4  (to increment PC)

10 The second input to the ALU is the sign extended immediate

11 The second input to the ALU is the sign extended immediate 
shifted left by one bit

Multi-Cycle Control Signals

11



Instruction Execution
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� The execution of instructions is broken into multiple 
cycles

� In each cycle, only one major unit is allowed to be 
used 

� The major units are 
� The ALU 
� The Memory 
� The Register File 

� Keep in mind that not all instructions use all the 
major functional units

� In general we may need up to five cycles 
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Fetch Decode Execute Memory WB



Instruction Execution
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� Cycle 1 – Fetch
� Same for all instructions
� Operations 

� Send the PC to fetch instruction from memory and store in 
IR  

IR ç Mem[PC]
� Control Signals 

� IorD = 0 (Select the PC as an address)
� MemRead = 1 (Reading from memory)
� IRWrite = 1 (Update IR)



Instruction Execution
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� Cycle 2 – Decode
� Operations 

� Read two registers based on the rs1 and rs2 fields and store 
them in the A and B registers

A ç Reg[IR[19:15]]
B ç Reg[IR[24:20]]

� Use the ALU to compute the branch address 

ALUOut ç PC + (sign-extend(Imm) << 1)
� Is it always a branch instruction???

� Control Signals 
� ALUSrcA = 0 (Select PC)
� ALUSrcB = 11 (Select the sign-extended offsetx2)
� ALUOp = 00 (Add operation)



Instruction Execution
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� Cycle 3 – Execute & Taken Branch Completion
� The instruction is known! 
� Different operations depending on the instruction
� Operations 

� Memory Access Instructions (Load or Store)
� Use the ALU to compute the memory address

ALUOut ç A + sign-extend(Imm)

� Control Signals 
• ALUSrcA = 1 (Select A register)
• ALUSrcB = 10 (Select the sign-extended offset)
• ALUOp = 00 (Addition operation)



Instruction Execution
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� Cycle 3 – Execute & Taken Branch Completion
� Operations 

� ALU instructions
� Perform the ALU operation according to the ALUop and 

Func fields between registers A and B

ALUOut ç A op B

� Control Signals 
• ALUSrcA = 1 (Select A register)
• ALUSrcB = 00 (Select B register)
• ALUOp = 10 (ALUoperation)
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� Cycle 3 – Execute & Taken Branch Completion
� Operations 

� Branch Equal Instruction 
� Compare the two registers

if (A == B) then PC ç ALUOut

� Control Signals 
• ALUSrcA = 1 (Select A register)
• ALUSrcB = 00 (Select B register)
• ALUOp = 01 (Subtract)
• Branch = 1 (Branch instruction)
• PCWrite = 1 (Write the PC)
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� Cycle 4 – Memory Read or (R-type, Store, Not Taken Branch) 
Completion

� Different operations depending on the instruction
� Operations 

� Load instruction 
� Use the computed address (found in ALUOut) , read  from memory and store value 

in MDR 
MDR ç Memory[ALUOut]

� Control Signals 
• IorD = 1 (Address is for data)
• MemRead = 1 (Read from memory)

• Store instruction 
• Use the computed address to store the value in register B into memory 

Memory[ALUOut] ç B
• Update the PC 

PC ç PC + 4
• Control Signals
• IorD = 1 (Address is for data)
• MemWrite = 1 (Write to memory)
• ALUSrcA = 0 (Select PC as first input to ALU)
• ALUSrcB = 01 (Select 4 as second input to ALU)
• ALUOp = 00 (Addition)
• PCWrite = 1 (Update PC)
• Branch = 0 (Select PC+4)
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� Cycle 4 – Memory Read or (R-type, Store, Not 
Taken Branch) Completion
� Operations 
• ALU instructions 
• Write the results (ALUOut) into the register filer 

Reg[IR[11:7]] ç ALUOut
• Update the PC 

PC ç PC + 4
• Control Signals
• MemToReg = 0 (Data is from ALUOut)
• RegWrite = 1 (Write to register)
• ALUSrcA = 0 (Select PC as first input to ALU)
• ALUSrcB = 01 (Select 4 as second input to ALU)
• ALUOp = 00 (Addition)
• PCWrite = 1 (Update PC)
• Branch = 0 (Select PC+4)
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� Cycle 4 – Memory Read or (R-type, Store, Not 
Taken Branch) Completion
� Operations 
• Not Taken Branch Equal instruction 
• Update the PC 

PC ç PC + 4
• Control Signals
• ALUSrcA = 0 (Select PC as first input to ALU)
• ALUSrcB = 01 (Select 4 as second input to ALU)
• ALUOp = 00 (Addition)
• PCWrite = 1 (Update PC)
• Branch = 0 (Select PC+4)
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� Cycle 5 – Memory Read Completion
� Needed for Load instructions only
� Operations 
• Load instruction 
• Store the value loaded from memory and found in the MDR

register in the register file based on the rd field of the
instruction

Reg[IR[11:7]] ç MDR
• Update the PC 

PC ç PC + 4
• Control Signals
• MemToReg = 1 (Data is from MDR)
• RegWrite = 1 (Write to register)
• ALUSrcA = 0 (Select PC as first input to ALU)
• ALUSrcB = 01 (Select 4 as second input to ALU)
• ALUOp = 00 (Addition)
• PCWrite = 1 (Update PC)
• Branch = 0 (Select PC+4)
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� In the proposed multi-cycle implementation, we
may need up to five cycles to execute the
supported instructions

Instruction Class Clock Cycles Required
Load 5
Store 4

Branch 3 or 4
Arithmetic-logical 4
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(1) FSM Implementation
� The control of single-cycle is simple! All control signals are 

generated in the same cycle! 
� However, this is not true for the multi-cycle approach:

� The instruction execution is broken to multiple cycles 
� Generating control signals is not determined by the opcode only! It 

depends on the current cycle as well!
� In order to determine what to do in the next cycle, we need to know 

what was done in the previous cycle! 
� Memorize ! Finite state machine (Sequential circuit)! 

Combinational
control logic

State Reg
Inst

Opcode

Datapath
control
points

Next State
. . . . . .

. . .

FSM 
• A set of states (current state stored in 
State Register)
• Next state function  (determined by 
current state and the input)
• Output function (determined by current 
state and the input)

Zero
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� Need to build the state diagram
� Add a state whenever different operations are to be 

performed
� For the supported instructions, we need 10 different 

states (next slide)
� The first two states are the same for all instructions

� Once the state diagram is obtained, build the 
state table, derive combinational logic 
responsible for computing next state and 
outputs
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(0) Fetch

START

(1) Decode

ALUSrcA = 0 
ALUSrcB = 11 
ALUOp = 00

MemRead = 1
IorD = 0 

IRWrite = 1 

ALUSrcA = 0 
ALUSrcB = 01 
ALUOp = 00
PCWrite = 1
Branch = 0

ALUSrcA = 1 
ALUSrcB = 00 
ALUOp = 01
PCWrite = 1
Branch = 1

ALUSrcA = 1 
ALUSrcB = 00 
ALUOp = 10

RegWrite = 1
MemtoReg = 0
ALUSrcA = 0 
ALUSrcB = 01 
ALUOp = 00
PCWrite = 1
Branch = 0

Op = BEQ

Op = R-type

Op 
= 

LD
Op 

= 
SD

ALUSrcA = 1 
ALUSrcB = 10 
ALUOp = 00

MemWrite = 1
IorD = 1

ALUSrcA = 0 
ALUSrcB = 01 
ALUOp = 00
PCWrite = 1
Branch = 0

Op = SD

MemRead = 1
IorD = 1

RegWrite = 1
MemtoReg = 1
ALUSrcA = 0 
ALUSrcB = 01 
ALUOp = 00
PCWrite = 1
Branch = 0

Op = LD

(8) Taken Branch
Completion

(9) Not Taken Branch
Completion

(7) R-Type
Completion

(5) SD
Completion

(4) LD
Completion

(2) Memory
Address

Computation

(6) Execute

Multi-cycle
State 

Diagram

(3) Memory 
Access

Zero Flag = 1Zero Flag = 0
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� Control Unit Design as Moore Machine 
� State memory (SM): 4 bits that represent the current state (S3S2S1S0)

� Next State Logic (NSL): Combinational logic responsible for
determining the next state as function of current state and input
(NS3NS2NS1NS0)

� Output Function Logic (OFL): Combinational logic responsible for
determining the control signals as function of current state

� The values for the signals that are not mentioned in a state are either:
§ Don’t Care for MUX select signals and ALUOp OR
§ Deasserted (0) for all other control signals
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� 𝑁𝑆! = 𝑆𝑡𝑎𝑡𝑒0 + 𝑆𝑡𝑎𝑡𝑒2. 𝑂𝑝 = 𝐿𝐷 + 𝑂𝑝 = 𝑆𝐷 + 𝑆𝑡𝑎𝑡𝑒6 + 𝑆𝑡𝑎𝑡𝑒8. (𝑍𝑒𝑟𝑜_𝐹𝑙𝑎𝑔 = 0)

� 𝑁𝑆! = :𝑆" :𝑆# :𝑆$ :𝑆! + :𝑆" :𝑆#𝑆$ :𝑆!. 𝑂𝑝% 𝑂𝑝& 𝑂𝑝' 𝑂𝑝" 𝑂𝑝#𝑂𝑝$𝑂𝑝! + 𝑂𝑝%𝑂𝑝&𝑂𝑝' 𝑂𝑝" 𝑂𝑝#𝑂𝑝$𝑂𝑝!
+ :𝑆" 𝑆#𝑆$ :𝑆! + 𝑆" :𝑆# :𝑆$ :𝑆!�̅�

� Using the same approach write the equations for 𝑁𝑆!, 𝑁𝑆", 𝑎𝑛𝑑 𝑁𝑆#.

Next State (NS3NS2NS1NS0)Input (Opcode + Zero Flag)Current State (S3S2S1S0)
0001Op[6:0] = xxxxxxx0000 (State0)

0010Op[6:0] = 0000011 (LD)0001 (State1)

0010Op[6:0] = 0100011 (SD)0001 (State1)

0110Op[6:0] = 0110011 (R-format)0001 (State1)

1000Op[6:0] = 1100011 (BEQ)0001 (State1)

0011Op[6:0] = 0000011 (LD)0010 (State2)

0101Op[6:0] = 0100011 (SD)0010 (State2)

0100Op[6:0] = xxxxxxx0011 (State3)

0000Op[6:0] = xxxxxxx0100 (State4)

0000Op[6:0] = xxxxxxx0101 (State5)

0111Op[6:0] = xxxxxxx0110 (State6)

0000Op[6:0] = xxxxxxx0111 (State7)

0000(Op[6:0] = xxxxxxx) && (Zero Flag = 1)1000 (State8)

1001(Op[6:0] = xxxxxxx) && (Zero Flag = 0)1000 (State8)

0000Op[6:0] = xxxxxxx1001 (State9)
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� 𝑃𝐶𝑊𝑟𝑖𝑡𝑒 = 𝑆𝑡𝑎𝑡𝑒$ + 𝑆𝑡𝑎𝑡𝑒% + 𝑆𝑡𝑎𝑡𝑒& + 𝑆𝑡𝑎𝑡𝑒' + 𝑆𝑡𝑎𝑡𝑒( = 𝑆)𝑆# 0𝑆"𝑆! + 𝑆)𝑆# 0𝑆"𝑆!
+ 𝑆)𝑆#𝑆"𝑆! + 𝑆)𝑆# 0𝑆"𝑆! + 𝑆)𝑆# 0𝑆"𝑆!

� 𝐼𝑜𝑟𝐷 = 𝑆𝑡𝑎𝑡𝑒) + 𝑆𝑡𝑎𝑡𝑒% = 𝑆) 𝑆#𝑆"𝑆! + 𝑆)𝑆# 0𝑆"𝑆!

� Using the same approach write the equations for the remaining control signals.
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Current 
State

(S3S2S1S0)

0XXXXXX1010X00000 (State0)

001100X000XX00001 (State1)

010100X000XX00010 (State2)

0XXXXXX0011X00011 (State3)

1010001000X010100 (State4)

001000X0101010101 (State5)

010001X000XX00110 (State6)

1010000000X010111 (State7)

010010X000X111000 (State8)

001000X000X011001 (State9)
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(2) ROM Implementation
� FSM design 

� 12 inputs 
� 17 outputs 
� TT size = 212x17 

� ROM 
� Can be used to implement the

truth table above
� ROM Size = 69632 bits
� Each location stores the control

signals values and the next state
� Each location is addressable by

the opcode and current state
value

� For which ROM addresses will
the RegWrite be 1?
� xxxxxxxx0111
� xxxxxxxx0100
� Total of 512 addresses

� For our design, Only 15
locations are needed à Huge
waste of space

212x17
ROM

Control Logic D
at

a

Address

State 
Register

Opcode

PCWrite
Branch

IorD
MemRead
MemWrite

IRWrite
MemToReg

ALUOp
ALUSrcB
ALUSrcA
RegWrite

O
p5

 

O
p4

 

O
p3

 

O
p2

 
O

p1
O

p0 S3
 

S2
 

S1 S0

NS0
NS1
NS2
NS3

O
p6
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� ROM implementation is vulnerable to bugs and
expensive especially for complex CPU

� Size increase as the number and complexity of
instructions (states) increases

� If we use two ROMs, one for NSL and one for OFL:
� NSL ROM is addressable by the opcode, zero flag and current

state value:
� NSL ROM Size = 212 x 4

� OFL ROM is addressable by the current state value:
� OFL ROM Size = 24 x 13

� Total Size = 16592 bits (much lower than a single ROM)
� NSL consumes approximately 99% of the ROM area

� Solution: Implement the Next State Function with a
Sequencer
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� Implementing the Next State Function with a 
Sequencer Inside the address select logic

State

1

Opcode

AddCtrl

Dispatch ROM 2 Dispatch ROM 1

MUX
3            2           1          0

0

To ROM

Zero
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� Implementing the Next State Function with a 
Sequencer

16x15
ROM

Control Logic D
at

a

Address

PCWrite
Branch
IorD

MemRead
MemWrite

IRWrite
MemToReg

ALUOp
ALUSrcB
ALUSrcA
RegWrite

State

Address Select Logic

1

Opcode

AddCtrl

Zero
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� Implementing the Next State Function with a Sequencer

2

Dispatch ROM1

Opcode Field Opcode Name Value

0110011 R-Format 0110

1100011 beq 1000

0000011 ld 0010

0100011 sd 0010

Dispatch ROM2

Zero Opcode Field Opcode Name Value

0 1100011 beq 1001

1 1100011 beq 0000

0 0000011 ld 0011

1 0000011 ld 0011

0 0100011 sd 0101

1 0100011 sd 0101

Use dispatch ROM 2
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� Same as Single-Cycle ALU Control 
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� Example 1. Compare the performance of the multi-cycle and single-
cycle implementations for the SPECINT2000 program which has the 
following instruction mix: 25% loads, 10% stores, 11% Taken 
branches, 2% Not Taken branches, 52% ALU. 

� TimeSC =  IC x CPISC x CCSC

=  IC x 1 x CCSC  = ICSC x CCSC 

� TimeMC =  IC x CPIMC x CCMC 

CPIMC    =  0.25x5 + 0.1x4 + 0.11x3 + 0.02 x 4 + 0.52 x 4 = 4.14 
CCMC     =  1/5 * CCSC (Is that true!!)  

� Speedup = TimeSC / TimeMC = 5 / 4.14 = 1.21 ! 

� Multi-cycle is cost effective as well, as long as the time for different 
processing units are balanced!   
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� Single-Cycle

� Multi-Cycle

� This is true as long as the delay of all functional units is balanced!

LW SW

Cycle 1 Cycle 2

waste

LW SW Instr
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� Example 2. Redo example 1 without assuming that the cycle time for 
multi-cycle is 1/5 that of single cycle. Assume the delay times of 
different units as given in the table. 

� TimeSC =  IC x CPISC x CCSC

=  IC x 1 x 600 = 600 IC

� TimeMC =  IC x CPIMC x CCMC 

CPIMC    =  0.25x5 + 0.1x4 + 0.11x3 + 0.02 x 4 + 0.52 x 4 = 4.14 
CCMC     =  200  (should match the time of the slowest functional unit)

TimeMC =  IC x 4.14x 200 =  828 IC 

� Speedup = TimeSC / TimeMC = 600 / 828=  0.725 ! 

Unit Time (ps)
Memory 200

ALU and adders 100
Register File 50


