Chapter 1

1 Propositional Logic:

e Propositional Logic (Calculus): It deals with propositions.
e Proposition: A statement that is either true or false (but not both).
e Examples of propositions:

- Today is Sunday. (True) since, today is Sunday.

- Today it is raining. (True) since, today is raining.

- 1+1=4. (False),since 1+1=2

- Water boils at 50°C. (False) -> Scientific Fact

- Ali has a cat. (True) as example for a story.

- Ali has a dog. (false) as example for a story.

e Examples of non-propositions:
- 1+ x=4.Since x is a variable
- Close the door. (order)
- What is your name? (question)
- Wow!!!! (Exclamation)

Propositions can be denoted by Letters.
e True value can be denoted by T.
o False value can be denoted by F.
e Example:
- P:Todayis Friday. : T
- Q:1+1=4, F

e Propositions can be:
1. Atomic: consists of single proposition.
2. Compound: consists of one or more propositions connected by logical operators.

e Example:

- P:Today is Friday. : T Atomic

- Q:1+1=4. 'F Atomic

- R:PAQ ' F Compound
Truth Table

e A Truth Table is a complete list of the possible truth values of a logical statement.
e Truth table can be used to show the effect of each logical operator, and it can be also used to show the result

of a logical statement.



e Logical Operators:
Assume that P, Q, and R are propositions

1- Negation: for P, Negation of P is denoted by ~P, and it is read as ""NOT P**
Negation reverses the truth value of P.

- P:Today is Friday. : T Atomic
- Q:1+1=4. 'F Atomic
- ~P: Today is not Friday. : F compound
- ~Q:1+1#4. T compound

e Truth Tables of a single proposition P or its Negation ~P:

P | ~P

T

2- Conjunction: is denoted by P A Q, and it is read as "'P AND Q"
Conjunction is True, if both P and Q are true.
Let:
P: Ali has a cat.
Q: Ali has a dog
P A Q : Ali has a cat and a dog. It is True when Ali has 2 pets both are a cat and a dog
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3- Disjunction:
a. inclusive OR is denoted by P v Q, and itis read as "'P OR Q"
Itis True, if any of P and Q is true.

Let:
P: Ali has a cat.
Q: Ali has a dog
P v Q : Ali has a cat or a dog. It is True when Ali has a cat or a dog or both.
Pl1Q | PVQ
T|T T
T|F T
FI| T T
F|F F

b. exclusive OR is denoted by P @ Q, and it is read as "'P XOR Q"
Itis True, if any of P and Q is true, but not both. i.e. if they are different.
Let:
P: Ali has a cat.
Q: Ali has a dog
P @ Q : Ali has one pet, Ali has a cat or a dog.
It is True when Ali has a cat or a dog but not both.

Let:

R : Ahmad is tall.

S : Ahmad is short.

W: Ahmad is fat.

R @ S : Ahmad is tall or short.
R v W : Ahmad is tall or fat.

P®Q
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4- Implication: is denoted by P— Q, and it is read as "'P implies Q"
Itis false,only if Pis Tand Qis F

P — Q has many forms in English Language:

" If P, then Q" "If P, Q" "P only if Q"
"P implies Q" "QifP" "Q unless ~P"
“When P, then Q” “Whenever P, Q”
P| Q| P>Q
T[T T
T|F F
FI T T
F|F T
USING:
- P:itrains.

- Q: I wear my coat.
- P > Q: has many forms:
1- If it rains, then I will wear my coat.
2- If it rains, I will wear my coat.
3- It rainsonly if I wear my coat.
4- Raining implies that I will wear my coat.
5- 1 will wear my coat, if it rains.
6- 1 will wear my coat unless it is not raining.
7- Unless it is not raining, | will wear my coat.



5- Biconditional: is denoted by P<>Q, and it is read as "'P if and only if Q"
It is true, if P and Q both have the same truth value.
P < Q has many forms in English Language:
"P if and only if Q"
"If P, then Q, and conversely"
"P is sufficient and necessary for Q"

USING:
- P:itrains.
- Q: I wear my coat.
- P & Q:has many forms:
1- If and only if it rains, I will wear my coat.
2- Ifitrains, I will wear my coat, and conversely.
3- Ifitrains, I will wear my coat and if | wear my coat, it will rain

Q
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P & Q is the same as:
(P>QAQ@>P)



Examples:
USING:
P: Samer has a car.
Q: Samer has a bicycle.
R: Today is sunny.
S: It rains.
- W: I wear my umbrella.

WE CAN BUILD:

- ~R: Today is not sunny.

- P A Q: Samer has a car and a bicycle.

- P v Q: Samer has a car or a bicycle.

- P & Q: Samer has a divining machine; it is either a car or a bicycle.
- S>> W:Ifitrains, | will wear my umbrella.

- S W: Ifitrains, I will wear my umbrella, and conversely.



e The following truth table is used to represent the compound proposition:

(PAQ) v (-P)
P Q| PAQ | -P | (PAQ)V(-P)
T T T F T
T F F F F
FT F T T
F|F F T T

Note: If a compound proposition has n distinct simple components, then it will have 2" rows in its truth
table, as this is the number of possible combinations of n components, each with 2 possible truth values

TorF.

e P - Q has 3 components: Converse, contrapositive, Inverse

Assume: (P2Q) if it is raining, then it is cloudy.
P Q
1. Converse Q->P If it is cloudy, then it is raining

2. Contrapositive —Q > P

If it is not cloudy, then it is not raining

3. Inverse —p=2>-Q

if it is not raining, then it is not cloudy

e Logical operator Precedence

Ex: AssumeP: T Q:F R:F

Operator | Precedence

Find the value of:

! 1 PvQA-=R &P
A 2 TVFA=F T
v 3 TVFAT T
® 4 TVF T

- 5 TeT

© 6 T




e Translation into English Sentences

1.Gj}mu are a computer science maio@vou ar(ﬁo& freshman, you can access the internet in the lab.

P -Q
(Pv=Q)2> R
2. If you watch television your mind will decay, and conversely.
P Q
Poe Q
3. You got an A in this class, but you did not do every exercise in the book.
P Q
P A Q
4. if it is hot outside buy an ice cream, and if you buy an ice cream it is hot outside.
P Q Q P
(P=2Q) A (Q2P) = Po Q
5. You got an A in this class, only if you do every exercise in the book.
P Q
P-2>Q
6. You got an A in this class, if you do every exercise in the book.
P Q
Q=>P
7. You will not got an A in this class, unless you did do every exercise in the book.
P Q

R




e Logical And Bit Operations

- Bit has two values: 0, 1

- True (1), False (0)

- Boolean Variable: a variable that is either true or false.
- Bit operation corresponds to logical connectives:

Logical Bit operator
Operator

- NOT

A AND

v OR

D XOR

- Bit string: it is a sequence of zero or more bits.
- String Length: number of bits in the Bit string.

Ex1: 101010011 is a bit string with length =9
Ex2:

0110110110 55 0110110110 ,,p 0110110110 yq
11 0001 1101 11 0001 1101 11 0001 1101

111011 1111 01 0001 0100 10 1010 1011

NOT (01 1011 0110) = 10 0100 1001



2 Logical equivalence

Def: 1. Tautology: compound proposition that is always true (Ex: P v —P)
2. Contradiction: compound proposition that is always false (Ex: P A =P)
3. Contingency: compound proposition that is either true or false (Ex: P 2> Q)

e Logical Equivalence (P=Q,P& Q)
Def: the two compound propositions P,Q are logically equivalent if P <> Q is a tautology .

A. Using truth table

Ex1: showthat P> Q=-Pv Q

.. They are equivalent

It is a Tautology

P|Q |-P [P>Q |-PVvOQ P>Qo—=PVvQ
TITI|F |T T /T
T|F |F |F F [T
FITI|T |T T | T ]
FIF [T |T T X T/

/ ~

Ex2: show that = (P v Q) = (—w P A =Q) using truth table
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B. Using Logical equivalence rules

Table 1: Equivalence rules: A v —

Ed 1.P>Q==PVvQ

Pj2.P>Q=-Q> P

PY3.PvQ=—-P>Q

P|l|4PAQ==(P>-0Q) bn

P|5-(P2>Q=PA=Q

p| 6. (P2Q)A (P> R)=P>(QAR) nt

=) 7.(Q2R)A(P> R)=(QvP)2 R
8.(P2QvVv(P>»R)=P2>(QVR)

1 9.(Q2R) V(P2 R)=(QAP)> R

Negation

PvQ=QvP Commutative

PIPoQ=(P>QAr@Q>P) -

(P PoQ=-Po-0Q oclative

Pl P> Q=(PAQ) v (=P A=Q)

PY P Q=Po-Q tributive

R)

P

AR

- PV = =F A=Y Demorgan’s

—|(P/\Q)E—|P V—|Q

Pv(PAQ)=P Absorption

PAPvQ)=P

Ex1: show that (P A Q) = (P v Q) is a tautology
Implication rule
Demorgan’s Law

Associative and commutative

1
2.
3.
4
5

~(PAQ)v(PvQ)
(=Pv-Q)v(PvQ)
(=PVvP)v(=QvQ)
Tv T
T

Negation law

Table 2: Implications Logical Rules

Table 3: Bicondintional Rules

Ex2: show that = (P v (=P A Q)) and (—P A—Q) are logically equivalent.

1
2. =P A (~(=P)v—Q)
3 E—|P/\(P V_IQ)
4.
5
6

. —|(PV(—|PAQ)E—|PA—|(—|PAQ)
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3. PREDICATES AND QUANTIFIERS

PREDICATES

e X>3
e X=Y+3
Both above statements are not propositions, they are called predicates

Ex1:

P(x): x>3

P(2):2>3 :F

p4):4>3 T

Itis called: Propositional function

Ex2: Q(X, y): x=y+3 Q(3,0): 3=0+3 : T

Ex3: X+Y=Z. R(X,Y,Z): X+Y =Z R(2,34): 2#3=4 :F

QUANTIFIERS

Quantifiers Universal quantifier ( V), for all
Existential Quantifier (3), for some

1. Universal Quantifier

* P(x) is true for all values of x in the universe of discourse (domain). = Vx p(x)
* VX p(x) is read as : “ for all x p(x) “ , “forevery x p(x)”

VX p(xX) = p(el) A p(e2) Ap(e3) A ..... Ap(en) , where {el,e2,...,en} are all elements of the domain
vxp(x) : T ,if p(x) is true for all elements

Ex1: p(x) : “x+1 > x”, what is the truth value of Vx p(x), where the domain is all real numbers?
Sol : Vx p(x) is true for all values of x

Ex2: What is the truth value Vx p(x), where p(x) is (x*x < 10). The domain is all positive integers not
exceeding 4?

Sol: P()A p@) A pB) A p(4)
TA T AT A F =F
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Ex3: what is the truth value of Vx ( x*x > x) , if the domain is all integer numbers
Sol: T

Ex4: Translate the following statement into English language:
Vx Q(x), where Q(x) is “x has two parents” and the domain is all people.

Sol: every person has two parents

2. Existential quantifier

e There exists an element x in the domain such that p(x) is true = ax p(x)
e dx p(x) is read as: “there is a x such that p(x) “,* there is at least one x such that p(x)”

Ax p(x) = p(el) v p(e2) vp(e3) v..... vp(en) , where {el,e2,...,en} are all elements of the domain
Ax p(x) : T ,if p(x) is true for at least one element

Ex1: what is the truth value of 3x p(x), where p(x) is “ x*x > 10” and the domain is all integers not
exceeding 4?

Ax p(x) = P(1) vp) v pB) v p@)=True, sincep(4)is True
Ex2: p(X): x>1 what is the truth value of 3x p(x) , where the domain is all real numbers?

Ans: True
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Binding Variable

A variable in a predicate might be:

1- Free:
Ex1: p(x): x has a cat. Domain: people x is a free variable.
Ex2: like(x, y): x likes y. Domain: people x and y are free variables.
2- Bound:
a. Toavalue
Ex1: p(Ali): Ali has a cat. X is a bound variable to value Ali.

Ex2: like(Ali, Ahmad): Ali likes Ahmad. x andy are bound variables to values.
like(Ali, y): Ali likes y. X is a bound variable to a value, y is free.==> it is a predicate.

b. To a quantifier

Ex: Vx3y like(x,y) X is bound to Vv, yisboundto3
Ex: Ix Q(X,y) x is bound, yis free

Ex: Ix (p(x) A Q(X)) v VXR(X)

- X is bound to 3x, - X is bound to Vx

- Scope of Axis (p(X) A Q(X)) - scope of Vx is R(X)

This statement can be written as :
X (p() A QX)) v VyR(y)
But if it becomes : Ix (p(X) A Q(X)) v R(y)
since y is free, so this is a predicate (not a proposition)
because a proposition might be a predicate with no free variables.
so () following the quantifier specified the scope of it. if there isno ( ), the scope of the
qguantifier will be the first predicate only. Like:
X px) A Q(X) v VYR(y) = Ix p(x) A Q(2) v VyR(y)
Because Q is out of 3 scope.

Negation

1. = VX P(X) =3x=p(x)
ex: Every student in the class has taken calculus. V¥x P(x)
There is a student in the class who has not taken Calculus. = VX P(x) =3x — p(X)

2. = AX P(X) = VX = p(X)
ex: There is a student in the class who has taken Calculus 3x p(x)
Every student in the class has not taken calculus. — 3x P(x) = Vx = p(X)

Ex: what are the negations of the following statements?
A. VX (X*X >X)
Sol: =X (x*x >x) =2 3Ix—= (X*X>Xx) 2 IX (X*X LX)

B.Ix (x *x=2)
Sol: —aX (X *X=2) 2 VX—= (X*Xx=2) 2 VX (X*X#2)

14



4 NESTED QUANTIFIERS

Ex1l: VXVy (x+y=y+Xx) istrue, foreveryvaluesxand y x+y=y+x Domain: Real Numbers.

Ex2: VxVy (x+y= 0) isfalse for every valuesxandy x+y=0 Domain: Real Numbers.

Ex3: C(x) is “x has a computer”
F(X, y) is “x and y are friends

Translate the statement:
VX (C(x) v 3y (C(Y) A F(X,¥)) )

Sol: For every student x in your school x has a computer or there is a student y such that y has a computer and
x and y are friends.

Or

Every student in your school has a computer or has a friend ho has a computer

NEGATING NESTED QUANTIFIER

Ex: =Vx3dy (xy =1) 2 Ix=Vy (xy =1) 2> IxVy (xy#1)

Ex: =VxVy 3z (P(x,y) AQ(Y,2) ) 2 Ix=Vy 3z (P(X,y) AQ(Y,2))
- Ax Ay =3z (P(X,y) AQ(Y,2)) 2 Ix Ay Vz— (P(X,y) AQ(Y,2))
-2 3IAx Ay Vz (=P(x,y) V=0Q(y,2))

ORDER OF QUANTIFIER

Statement When true When false

VxVy P(X,y) P(x, y) is true for every pair | There is a pair X, y for

VyVx P(X, y) X, Y. which P(x, y) is false

Vx3ay P(x,y) For every x, there isay for | There is X, such that P(x, y)
which P(x, y) is true is false

AxVy P(x, y) There is x for which P(x, y) | For every x there isay for
is true for every y. which P(x, y) is false

Ax3y P(x, y) There is a pair x, y for P(x, y) is false for every

Jy3ax P(x, y) which P(x, y) is true pair X, y.

15



Using Domain: All integers

Ex1l: Let Q(x,y) denote “ x +y = 0” what are the truth values of the quantifications
AxVy Q(x, y), and ¥>x3y Q(x, y)?

Sol: IxVy Q (x,y) false vx3dy Q(x, y) true

Ex2: Let Q(x,y) denote “ x +y = x” what are the truth values of the quantifications
FyVvx Q(x, y), and Vx3y Q(x, y)?

Sol: Ayvx Q (x,y) true vx3y Q(X, y) true

Ex3: Let Q(x, y) denote “ x +y =Y + X” what are the truth values of the quantifications
JyVx Q(x, y), and VxVy Q(X, y)?

Sol: Ayvx Q (x,y) true VXVy Q(X,y) true

Ex4: Let Q(x,y) denote “ x +y =5” what are the truth values of the quantifications
JyIx Q(x, y), and VxVy Q(X, y)?

Sol: yax Q (x,y) true VxVy Q(x, y) false
Ex5: Let Q(x, y) denote “ x +y = 0.5” what are the truth values of the quantifications
Jy3x Q(x, y), and VxVy Q(X, y)?

Sol: yax Q (x,y) false VXVy Q(x, y) false
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Translation From English Into Logical Expressions

Examples:

1. Express the statement :

“For every person X, if person x is a student in this class then x has studied Calculus”.
Domain: All people S(X) C(x)

VX (S(x) =2 C(x))

2. Express the statement:
“Every student_x, if X is a student in this class then x has studied Calculus”.
Domain: All students in this class. C(x)

Vx C(X)

3. “No one is perfect”
VX = P(X)

4. “All your friends are perfect.”
F(x): your friend P(x): perfect
vx (F(x) = P(x))

5. Let P(x) be the statement “x can speak French” and Q(x) be the statement “x knows C++”. The domain
is all students in the school. Express the following statement using quantifiers and logical operator:

A. “No student at your school can speak French or knows C++.”

Vx = (P(x) v Q(x))

B. There is a student at your school who can speak French but does not know C++.

Ax (P(x) A =Q(x))

6. Express the statement “if a person is a female and is a parent, then this person is someone’s mother”

F(x): person is a female
P(x): person is a parent
M(X, y): x is the mother of y

Sol: ¥x ((F(X) A P(x)) = 3y M(X,y))
7. Express the statement: “Everyone has one best friend”
Sol:

B(x, y) : x is the best friend of y
vx3y B(X,Y)

17



Chapter 1 Exercise on Translation

» Exercise 1:

Domain: people

Teacher(x): x is a teacher.
Student(x): x is a student.

Visit(x, y): x visited y.

Translate the following into Logic:
Ali visited Sami.

Ali visited everyone.

Ali visited someone.

Ali visited some teachers.

Ali visited all teachers.
Someone visited someone.
Everyone visited someone.
Someone visited everyone.
Everyone visited everyone.
Everyone has been visited by someone.

Ali did not visit everyone.

. All students visited Ali and some teacher too.
All students visited Ali and some teacher did.
Ali visited everyone but nobody visited him.

OZZrAC~IOMMUO®BY

> [Exercise 2:
Let:
Domain: Animals

Translate the following into Logic:
Domain: Animals

All animals have skin.

All dogs have legs.

Some cats are black.

Some cats are black or white.

No animal can speak English.

If there is an animal, then it has a mother.

TmMmoOOw>

Ali did not visit anyone < Ali visited nobody.
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Exercise 3:

Let:

Domainl: people

Domain2: fruits.

L(x, y): x likes y.

Friend (x, y): x is a friend of y.
Student(x): x is a student.
Teacher(x): x is a teacher.
Teach(x, y): x teaches y.

Translate the following into Logic:

CAVLDOTOZIrA=TIOIMMOO®D>

Everybody likes apples.

Somebody likes apples but not oranges.
Everybody likes apples or oranges.
Everybody likes some fruits.
Everybody likes somebody.

Everyone likes Ali.

Ahmad likes Ali.

Someone likes every one.

No one likes every one.

Everyone likes himself/herself.

There is someone whom everybody likes.
Some students like some teachers.

. Ali and Ahmad are friends.

Some students are friends.

Every teacher has taught Ali.

Some teachers have taught Ali and all his friends.
Ali has a friend who has been taught by all teachers.
Some teachers have taught all students.

Some students and some teachers are friends.

If someone is a teacher, then Ali likes him.

If a person is a teacher, then he taught some students.

19



5 Rules of Inference

Example:

P : T (hypothesis, or premise)
P> Q : T (hypothesis, or premise)

: T (Conclusion)

(Therefore)

Rules of inference Tautology Name

P P> (pvQ)
""" Addition
~PvQ
PAQ
""" PAQ)>P Simplification
~P
P - -
. ()7 (Q) > PAQ) Conjunction
S PAQ
P
P%Q PA(P>Q)] Q Modus ponens
- Q
-Q
P9Q [0 A(PQ)]> —P Modus Tollens
P=2>Q
Q2R . .
________ [(p2Q) A(Q2>R)]2>(P2R) Hypothetical Syllogism
.P=R
PvQ
ﬁP [PvQ) A=P]2 Q Disjunctive syllogism
- Q
PvQ
ﬁPVR [(PvQ) A(=PVR)]> Q VR Resolution

Q VvR
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EXx: state the rule of inference for: “It is below freezing now, therefore it is either below freezing or raining
now”

Sol: P
Itis below freezing: P | -
Itis raining: Q ~PvQ

It is called: Addition Inference Rule.

Ex: State the rule of inference used in the argument
“If it is rain today, then we will not barbecue today”. “If we don’t barbecue today then we will have a barbecue
tomorrow”. Therefore, “if it rains today, then we will have a barbecue tomorrow”.

Sol:
If it is rain today: P we will barbecue today: Q
We will have barbecue tomorrow: R

1.P>-0Q
2. - Q>R

~P>R using H. S. of step 1 and step 2

Valid Argument

e An Argument form is called valid if whenever the entire hypothesizes are true, the conclusion is also
true.

e Consequently Q logically follows from the hypothesis p1,p2, p3, ....., pn:

(PLAP2 AP3...... APN) 2> Q
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99 ¢

EX: Show that the hypothesis “It is not sunny this afternoon and it is colder than yesterday.” “we will go
swimming only if it is sunny,” “ if we do not go swimming, then we will take a canoe trip,” and “ If we take a
canoe trip, then we will be home by sunset” leads to the conclusion “ we will be home by sunset”

P: Itis sunny this afternoon

Q: it is colder than yesterday

R: we will go swimming only if it is sunny
S: we will take a canoe trip

H: we will be home by sunset

Hypothesis
1. -PAQ
2.R>P
3. =R=2S
4.S>H
Solution:
Step Reason
1. -PAQ Hypothesis
2. =P Simplification using step 1
3.R2>P Hypothesis
4. -R Modus tollens step 2 + 3
5. =R=S Hypothesis
6. S modus ponens using step 4 and 5
7.S2>H Hypothesis
H Conclusion (modus ponense using step 6 and 7
Fallacies

There are two types of fallacies:
A. Fallacy of affirming the conclusion [(P2>Q) A Q] 2> P

This may be wrong you may get an A without solving every problem in the book.

B. Fallacy of Denying the Hypothesis [(P=2Q) A —P] 2 —=Q
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Rules Of Inference For Quantified Statements

Rules Of Inference Name
VXP(x) Universal Instantiation

..P(c) for all elements c

P(c)  foreveryelementc Universal Generalization
VXP(x)
AxP(x) Existential Instantiation

-.P(c) for some element c
P(c)  for some elementc Existential Generalization

EX1: show that the premises ““ Everyone in this class has taken a course in computer science” and “ Marla is a
student in this class” imply the conclusion “ Marla has taken a course in computer science”.

D(x) : x in this class
C(x) : x has taken a course in computer science.

Sol:

1. Vx(D(x)—>C(x)) Premise #1

2. D(Marla) - C(Marla) Universal instantiation from 1
3. D(Marla) Premise #2

. C(Marla) Modus Ponens from 2 and 3

EX2: show that the premises “Everyone in this class has taken a course in computer science” and “Someone is
a student in this class” imply the conclusion “Someone has taken a course in computer science”.

D(x) : x in this class
C(x) : x has taken a course in computer science.

Sol:
1. VxX(D(x)—>C(x)) Premise #1
2.D(a) = C(a) Universal instantiation from 1
3. 3Ix D(x) Premise #2
4. D(a) Existential instantiation from 3
5.C(a) Modus Ponens from 2 and 4
3Ix C(x) Existential generalization from 5
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6. Introduction to Proofs

Methods Of proofs

1. Direct Proof

e The implication p—=>Q can be proved by showing that if P is true then Q must also be true.

e Integer n is even if there exists an integer K such that n=2K
e Integer n is Odd if there exists an integer K such that n=2K+1

Ex: Give a direct proof of the theorem “if n is an odd integer, then n? is an odd integer”

Sol:

1. Assume n is odd. n=2K+1

2. It follows that n? = (2K+1)? = 4K?+4K + 1 = 2(2K2+2K) + 1 is also odd
5. therefore n? is odd

2. Indirect Proof
e The implication p=> Q is equivalent to it’s contrapositive —Q—> —P
e To prove that p—=> Q is true we should prove that —Q-> —P is true

Ex: Give indirect proof of the theorem “if 3n+ 2 is odd, then n is odd”
First, you need to change the theorem to become: “if n is even, then 3n+2 is even”
1. Assume that n is even so n =2K
2.3n+2=3(2K)+2=6K +2=2(3K + 1) soitiseven
3. If nis even then 3n + 2 is even,
So if 3n+2 is odd then n is odd

3. Prove by Contradiction
Ex: proof by contradiction that “ if n is an odd integer, then n? is an odd integer”
1. assume n is even but n? is an odd integer
2.n=2K
3.n?2=4K?=2(2 K?) it’s even
4. n?can’t be odd and even in the same time.
So by contradiction if n is even then n?is even.
So if n is odd then n?is odd.

4. Proof by cases
Ex1: Use proof by cases to show that: [xy|=|X||y|
Case P1: x>=0 A x>=0
Case P2: x>=0 A x<0
Case P3: x<0 A x>=0
Case P4: x<0 A x<0
Case P: [X|ly]
We need to show that
P1>P A P2>P A P3P A P4-P
T A T AT A T =T
Ex2: Use proof by cases to show that: if n is even or odd integer then 2n+3 is odd.
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Chapter 2

1 Sets

e Def 1: A setis an unordered collection of objects
e Def 2: The object in a set are also called the elements or members

e Def 3:
N=1{1.2,3....} thesetofnatural numbers
Z={...,-2,-1,0,1,2,....} thesetofintegers.

Z*={1,2,3.....} the setofpositive integers
Q={p/q peZ geZ, q= 0} setof rational numbers
R, the set of real numbers

e Def 4: Two sets are equal if and only if they have the same elements.
Ex: {1,3,5} and {5, 1,3} areequal .
{5,1,3} and { 5,5,5,5,1,1,3,3} are equal

e Def 5: Empty Set(Null set) is a set with no elements. EXx: { }
e Def 6: Singleton set is the set with one element. Ex: { @}, {1} {A}
e Def 7: Finite set is the set with limited number of elements

Infinite set is the set with unlimited number of elements

e Def 8: Set cardinality ( |S| ) is the number of elements in a set.
Ex: 1. S={1,2,3,-5,0} . |S|=5
2.191=0

Set can be described by:

A. Listing all of it’s members
Ex: describe the set of positive odd numbers less than 10.
0={13,57,9}

B. Set Builder Notation

Ex: describe the set of odd numbers less that 10 using set builder notation.

O ={ x| xis an odd positive number less than 10}

C. Venn diagram

Def: universal set U is the set that contains all objects under consideration.

Ex: V = describes the set of Vowels using Venn diagram.

U: English Letters
\J




Subsets (A cB)

e The set A is a subset of the set B if and only if every element of A is also an element of
B. (AcB)
e (AcB) istrue, if and only if the quantification VX(xeA = xeB)istrue

e Thm: for any set S
* (@<S) :{}isasubsetof any set.
* (ScS) :anysetisasubset of itself.

e If (AcB) istrueand (B c A) istrue then A=B. VX(xeA < xeB)istrue

Proper subset (A —B)

e The set A is a proper subset of the set B if and only if every element of A is also an
elementof B,butA=B. (AcB)
e (A cB) istrue, if and only if the quantification Vx( (xe A = xeB) A A # B) is true

Ex: S={Q, 1,2 34,5, {1} }

leS 6¢S {1} S {1} S
ScS S¢S DcS eSS
{GrcS {1} e S {{1}}cS {1.23}cS

Power set P(S)

e Given aset S, the power set of S is the set of all subsets of the set S. the power set is
denoted by P(S)

Ex: what is the power set of the set {0, 1, 2}
PO)={<.{0,1,2},{0} . {1}.{2}.{0.1},{0,2} {1.2}}

Ex:P({©}) = {<,{G}}
P(@) = {3}

e If aset has n elements, then its power set has 2" elements.
Ex: S={0,1,2} then number of subsets is 2° = 8

Cartesian Products
e AxB={(a,b)lae AAbeB}

Ex:A={1,2} B={a, b,c}

A xB={(1a),(1b),(,.), (2,a),(2b),2,c)}

B xA={(al), (a2),(bl),(b2),(cl),(c,2)}

e AXxB #B xA

e Relation from the set A to the set B is a subset from A x B



2 Set Operations

1. Union (A u B): {x| xe AvxeB}

2. Intersection (AN B): {X] xe AAxeB}

3. Difference (A-B) : {x] xeAAxgB}

4. Complement A : {x] xegA}

5. Symmetric Difference (AAB) :{x| xe AUB A x¢ AnB}

Example:
A={3,4,5} B={1, 2, 3} u={1,23,...,10}

6 A B

10

AUB={1,2 34,5}

6 A B

10

10




A—-B={4, 5}

6 A B

9
7

10
8

B—A={l,2}

6 A B

9
7

10
3

6 A B

9
!/

10
8

B={4,5,6,78,09, 10}

6 A B

9
7

10




AAB={1,2 4,5}

6 A B

10

Def: a.AandB aredisjointifandonlyif AnB=9
Example : A={x | x is an even number € Z}
B={ x| x is an odd number € Z}
ANnB=Y

A B

b.|AuB|=|A|+|B|]-|ANBj

Example:

A={3,4,5} B={1,2,3} AuUB={1,23, 4,5} ANB ={3}
|AUuB|=3+3-1=5

c.|AuBUC|=|A|+|B|+|C|-|ANnB|-|ANnC|-|BNC|-|AnBNC|



* Computer representation of sets

LetU={1,2,34,56,7,8,9,10}

What is the bit string that represents the set of odd integers in U?

= 1 2 3 456 78 9 10
1 3 5 7 9

1 01 01010 1 O

Meaning of bit string:
1 >xeS
0 >xgS

Set Operations:

LetU={1,23,4,5,6,7,38,9, 10}

Let A=1010 101010 & B=11101010 11
This means: A= {1,3,5,7,9} and B={1,2,3,5,7,9,10}

1010 1010 10 v 1110 1010 11=1110101011 =AUB
1010 1010 10 A 1110 1010 11=1010101010 =ANB
1110 1010 11 A~1010 1010 10)=0100000001=B-A

~1010 1010 10)= 0101 0101 01 =A



* Proving techniques

A. Set identities

Equivalence rule Name
Aud=A Identity
AnU=A
And=0 Domination
AvuU=U
AUA =A Idempotent
AnNnA=A
( A )=A Complementation law
Commutative
AUB=BUA
AnNB=BnNA
(ANnB)NnC=AN(BNC) Associative
(AuB)uC=AuU(BUCQ)
AnBulC=(An B)U(An C) Distributive
AuBnNnC)=(Au B)n(Au C)
Demorgan’s
AUB=ANB
ANnB=AUB

AU(AnB)=A
ANn(AuB)=A

Absorption

Complement law

Ex: prove that AU (BNC) = (E UE) N A using set identities:

An(BnNC)

E;m(Bug)

= (BuC)n A

(CUB) N A




B. Set builder notation

Ex: use set builder notation and logical equivalence to show that

ANB= AUB
Sol:
AnNB= {x/xg AnB}

= {X|—-(xe AnB)}
{X]| =(xe A A xeB)}

; {x| xeAvxeB}
= {x| xeAvxeB}
= {x xe(AuB)}

= (Au B)

Exercise: Prove the following using set builder notation :

A-B= A~B

C. Membership table

Ex: provethat AN (BuC)=(An B)U(An C)forall sets A, B,and C

A|B|C| BUC | AnBUC) | AnB | AnC | ( AnBUAN QO
0,070 0 0 0 0 0
001 1 0 0 0 0
0/1]0 1 0 0 0 0
0|11 1 0 0 0 0
11010 0 0 0 0 0
1101 1 1 0 1 1
1|1 0 1 1 1 0 1
11111 1 1 1 1 1

D. Venn Diagrams

BN(AuC)=Bn AAu(Bn C)




2. Functions

Def 1: Let A and B be sets, a function from A to B (f: A = B) is an assignment of
exactly one elements of B to each element of A. where f(a) =b,and a € A, beB.

Def 2: if f is a function from A to B:
e We say that A is the domain of f and B is the codomain of f.
e Iff(a) =b then ais the pre-image of b, and b is image of a.
e The range of fis the set of all images of elements of A.
e iff isafunction from A to B, we say that A maps B.

Ex: Let f: Z > Z such that f(x) = x? . the domain and the codomain is all integers. The range
of f is the set positive integers Z*

Ex: Let f: Z - Z such that f(x) = x}2 . the domain and the codomain is all integers.
This is not a function since negative values have no images and non perfect square have no
integer images. But if f becomes from f:Z* - R", it becomes a function.

A function can be specified in different ways:
a. Formula ex:f(x)=x+1
b. Graph ex1l: function : A>B. A={a,b,clandB={2, 3, 4}
f(a)=2, f(b)=4 f(c)=3

a .—'. 2

’ .><.3
c @ Q4

Def 3: Let f1 and f2 be functions from A to R (i.e. real valued functions), then:
e fl+ f2,and f1f2 are also functions
o (f1+ f2)(x)=f1(x)+ f2(x)
o (f1f2)(x) =f1(x) f2(x)

Ex: Let f1 and f2 be functions from R to R such that f1(x) = x? and f2(x) = x —x2 what are
the functions f1 + f2 and f1 f2 for x =100?

(f1 + f2)(x) = f1(x) + f2(x) = x? + (x —x%?) = x = (f1 + £2)(100)=100.
(f1 f2)(x) = f1(x) f2(x) = x? * (x —=x?) = x3 — x* = (f1 f2)(100) = 1003-100*.

Def 4: Identity function on A is the function ta: A > A, where f(x) = X
Ex: f: Z2>Z , f(x)=x is an identity function



Functions Types

A. One -To - One (injective)

Def : A function f is One- to —One if and only if f(x) = f(y) implies that x =y for all x
and y in the domain of f.

VxVy (f(x) =f(y) 2 x=y)or VxVy (xzy > f(X)#f(y))

Ex: The function f from {a, b, ¢, d} to {1, 2, 3, 4, 5} with f(a) = 4, f(b) =5, f(c) =1, and
f(d)=3 is one - to —one.

a 1
b 2
C 3
d 4

)

Ex: Determine whether the function f:Z=>Z such that f(x) = x? is one-to-one or not.

Sol. : The function f(x) = x? is not one-to-one . Because f(1) =f(-1) =1 but 1 = -1

Def: a function whose domain and codomain are subset of the set of real numbers is: (they
are always one-to-one)

e Strictly increasing if f(x) < f(y) whenever x <y and x, y are in the domain of
f.example: f(x)=x+2, . Z>Z

VXVy (x<y > f(x) <f(y))
e Strictly Decreasing if f(x) > f(y) whenever x <y and x, y are in the domain
of f. example: f(x)=2-x, . Z>Z

VxVy (x<y=> f(x)>f(y))

10



B. Onto (Surjective)

Def: A function from A to B is onto if and only if every element beB there is an
elements a € A with f(a) = b. (codomain=range)

Vyax (f(x) =)

Ex: let the function f from {a, b, ¢, d} to { 1, 2,3} defined by f(a) = 3, f(b)= 2, f(c)=1, f(d) =

3, is f onto?

a 1

b 2 Onto function
C / 3

d

Ex: is the function f(x) = x? from Z = Z Onto function.

Sol.: It is not onto function, since there is no integer x such that f(x) =-1

C. One- to —one correspondence (bijective)
A function is bijective if and only if it is both one-to-one and onto.
Ex: identity function f(x) = x is bijective

Ex:

4 d d 4 d 4 4
One-to-one Onto One-to-one Not Onto Not a function
Not One-to-one  Onto Not one-to-one
Bijective

11



INVERSE AND COMPOSITE

1. Inverse
Def: let f: A — B be bijective from A to B. the inverse function of f is f: B — A, where
f@)=band f-i(b)=a
e Invertible function: bijective function is also called Invertible since we can
define an inverse.
e Not Invertible function: if it is not bijective since we can’t define an inverse.
o (F)=f

Ex: letf be the function from {a, b, ¢} to {1, 2, 3} such that f(a)=2, f(b)=3, f(c)=1, is f
invertible and what is its inverse if it is?

Sol.: f is invertible because it ‘s one-to-one correspondence
f12)=a, f13)=b, f1(1)=c

a 1 1 a

b 2 2 b

c 3 3 c
f fl

Ex: let f be the function from {a, b, ¢} to {1, 2, 3} such that f(a)=2, f(b)=3, f(c)=2, is f
invertible and what is its inverse if it is?

Sol.: f is not invertible because it ‘s not one-to-one correspondence, since it is not one-to-one
nor onto. But, if f* is constructed, the result is not a function.

a 1 1 a

b 2 2 b

c 3 3 c
f fl

Ex: Let f be the function from Z to Z with f(x) = x + 1, is f invertible?

Sol.: It is invertible and the inverseis f (y)=y -1

2. Composition

e The composition of the functions f: A —» B and g: B — C is denoted by :
(9 o )(a) = g(f(a))

e if A#C, then (f o g)(a) cant be calculated

o iff@=b . (flof)@=(ft(f@)="Ff1(b)=a ta

o iff@)=b . (fofl)b)=f({Ff1(Mb)="Ff@=>b ts

12



Ex: Let f(x) = 2x + 3 and g(x) = 3x + 2 what is the composition of f and g if they both
are from R to R?

(fog)X)=fg(x))=f(Bx+2)=6x+7

(goHx)=9(f(x)) =g (2x +3)=6x +11

e ~(fog)¥)=(gof)(x)

13



Important Functions

e Floor function [ xJ: the floor of real number x is the largest integer that is
less than or equal to x.

e Ceiling function[x: the ceiling of real number x is the smallest integer that
Is greater than or equal to x.

Ex: what is the value of the following?

L1/2]= 0 [1/2]=1

L-1/2]=-1 [-1/2]=0
[3.1]=3 [3.11=4

L71=7 [71=7

Table: Properties of ceiling and flooring functions

x-1<|_xJ < X sl_x-|< X+1

-x]= -[x]
[-x]= -Lx]

[x+nl= [xl+n wherenisan integer

Ix+n] = [x]+n

14



3. Sequences and summation

1. Sequence
Def 1
e Sequence is a function from a subset of the set of integers to a set S.
e e use the notation an to denote the image of the integers n.W
e We call the term an a term of the sequence.
e The list of terms is beginning with ai:: a1,az, ....., an

Ex: Consider the sequence {an}, where a, =1/n
ar=1/1, a2=1/2, az=1/3.......... Etc

Def 2: Sequences are two types
a. Geometric progression:

It is a sequence of form ap r°, ao rt, a r%, aor®......... a0 ", where n>=0
where the initial term is ao and the common ratio r are real numbers.

Or

It is a sequence of form a1, a1 rt,ar r?, aird......... ,air™t | where n>=1

where the initial term is a1 and the common ratio r are real numbers.

b. Arithmetic progression:

It is a sequence of form ap + 0d, ao + 1d, ao + 2d.,......... , ao +nd , where n>=0
where the initial term ao and the common difference d are real numbers.

Or

Itis a sequence of form a; + 0d, a1 + 1d, a1 + 2d,......... , a1+ n(d-1) , where n>=1

where the initial term a1 and the common difference d are real numbers.

Ex: the sequences: {bn } with by = (-1)" , {Cn}with C,=2.5" where n>=0 are geometric
progression sequences.

{bn}=4{1,1,-1,1,........ } initial term = -1, common ratio= -1
{Cn}={10,50,250,1250,.......... } initial term =10, common ratio=5

Ex:  The sequence {Sn} with Sn = -1 + 4n , where n>=0 is arithmetic sequence
Where {Sn} ={-1,3,7, 11,......... }
Initial term = -1, with common Difference= 4

Strings
Def:

The finite sequences are called strings

The length of the string is the number of terms in this string.

The empty string, denoted by A, and it’s the string with no terms.
The empty string is with length zero.

Ex: the string “abcd” is with length 4.

15



Special, Integer Sequences

Ex: Find a formula for the following sequences:
A. A 1, %, Y, 1/8,1/16
Sol: a, =1/2"! it a geometric progression with initial term = 1 and common ration= %

B. 5,11,17,23,29...
Sol: an=6n—1 is arithmetic progression with a= 5, and d=6

Useful sequences

Nth term First 5 terms

n? 1,4,9,16,25,........
2" 2,4,8,16,32,.........
n! 1,2,6,24,120, .......




2. Summation

n
e The summation notationis: > a, or Y'a. tore resent am + am+1,...+an
j=m ) 4 ]
j=m

Variable j is called the index of summation. M is lower limit, and n is the upper limit

n n n
« D3, =28 =3,
j=m i=m K=m

Ex:
ZA:(iZ +1) =22 +1)+(3* +1) + (4° +))
_ =(4+)+(9+D)+(16+1)
=5+10+17
=32
Ex:

j i (Zl:j] iu (1+2+3)

i= i=1

:6Zi =6(1+2+3+4)
=1

5 . 4 6
Ex: 3, 0% = D (K+D?=D (L-)*==1+4+9+16+25=55

Useful summation formula

1 Yark =a(r™ —1)/(r -1),r #1
2 > k=n(n+1)/2
k=1

3 > k? =n(n+1)(2n+1)/6
k=1

4 st_n (n+1)°%/4
k=1

5 ©
D> x¢ =1/ (1x), xI<1
K=o
o0

6 Skt = 1/ (107, x <t
K=1

17



Ex: find the value of
100

2 K

k=50

Sol:

100 49 100
$ye :(zw} S
k=1 k=1 k=50
100 100 49
ZKZ Z(Zk2]_2k2
k=1 k=1

k=50
~100-101-201 49-50-99

6 6
=338,350-40,425
=297,925.

Ex: find the value of
100
S
k=2
Sol:
100 100
ZkZ — ZKZ _(1)2
k=2 k=1
Ex: find the value of
100
NS
k=—
Sol:
100 100
Zkz = Zkz +(=2)* + (=D +(0)?
k=— k=1

100

Ex: Given that Zkz = 338,350 find the value of :

k=1
a. b.
99 101
2k 2k
Sol:
a.

100

99
Z k? = Z k* —(100)* = 338,350 —10,000 = 328,350
k=1 k=1



101 100

> k?=>"k?+(101)* = 338,350 +10,201 = 348,551
k=1 k=1

19
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Introduction to Set Theory (§1.6) &
e A set1s a new type of structure, representing an

unordered collection (group, plurality) of zero or
more distinct (different) objects.

Set theory deals with operations between, relations
among, and statements about sets.

Sets are ubiquitous in computer software systems.

All of mathematics can be defined in terms of
some form of set theory (using predicate logic).

-+ 1/13/2021
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Naive set theory

Basic premise: Any collection or class of objects
(elements) that we can describe (by any means
whatsoever) constitutes a set.

But, the resulting theory turns out to be logically
inconsistent!

— This means, there exist naive set theory propositions p such that
you can prove that both p and —p follow logically from the axioms
of the theory!

— .. The conjunction of the axioms 1s a contradiction!
— This theory 1s fundamentally uninteresting, because any possible
statement 1n 1t can be (very trivially) “proved” by contradiction!

More sophisticated set theories fix this problem.



Basic notations for sets '
M. For sets, we’ll use variables S, 7, U, ...

 We can denote a set S in writing by listing
all of 1ts elements 1n curly braces:

— {a, b, c} 1s the set of whatever 3 objects are
denoted by a, b, c.

» Set builder notation: For any proposition

P(x) over any universe of discourse,
{x|P(x)} 1s the set of all x such that P(x).

-+ 1/13/2021



Basic properties of sets '

» Sets are inherently unordered:
— No matter what objects a, b, and ¢ denote,
{a,b,c} ={a,c,b} ={b,a, c} =
{b,c,a} ={c,a, b} ={c, b, a}.

» All elements are distinct (unequal);
multiple listings make no difference!

— If a=b, then {a, b, c} = {a,c} = {b, c} =
{a,a,b,a,b,c,c,c,c}.

— Thais set contains (at most) 2 elements!

-+ 1/13/2021



Definition of Set Equality '

* Two sets are declared to be equal if and only if
they contain exactly the same elements.

 In particular, 1t does not matter how the set is

defined or denoted.

 For example: The set {1, 2, 3,4} =
{x | x 1s an integer where x>0 and x<5 } =

{x | x 1s a positive integer whose square
1s >0 and <25}

-+ 1/13/2021



Infinite Sets |

Conceptually, sets may be infinite (i.e., not finite,
without end, unending).

Symbols for some special infinite sets:
N={0,1,2,...} The Natural numbers.
Z=4...,-2,-1,0,1,2, ...} The Zntegers.
R = The “Real” numbers, such as
374.1828471929498181917281943125...

“Blackboard Bold” or double-struck font (N,Z,R)
1s also often used for these special number sets.

Infinite sets come 1n different sizes!

More on this after module #4 (functions). §

-+ 1/13/2021



o Venn Diagrams
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Basic Set Relations: Member of B

e xe§ (“x1s 1 .8”) 1s the proposition that
object x 1s an element or member of set S.

—e.g. 3eN, “a”e {x | x 1s a letter of the alphabet}

— Can define set equality in terms of € relation:
VS, T: =T & (Vx: xeS < xel)
“Two sets are equal iff they have all the same
members.”

e x¢S5S =—(xesl) “xisnotin§”

-+ 1/13/2021



The Empty Set '

o J (“null”, “the empty set”) is the unique set
that contains no elements whatsoever.

o J={} = {x|False}

 No matter the domain of discourse,
we have the axiom —3x: xed.

-+ 1/13/2021



Subset and Superset Relations &
o . ScT (“S 1s a subset of 77°) means that every
element of S 1s also an element of T.

ScT & Vx (xe§ > xeT)
IS, Sc8S.

SOT (“S 1s a superset of 77°) means TCS.
Note S=T < ScTA SOT.

S ¢ Tmeans —(ScT), i.e. Ix(xeS AxgT)

-+ 1/13/2021



Proper (Strict) Subsets & Supersets %

o ST (S 1s a proper subset of 7°°) means that
ScT but 7. Ssmilar for $OT.

Example:
{1,2}
{1,2,3}

Venn Diagram equivalent of ScT

1/13/2021



* The objects that are elements of a set may
themselves be sets.
e Eg letS={x|xc {1,2,3}}
then S={J,
U, 25 35,
L2}, 11,35, 12,35,
,2,3}}
 Notethat 1 # {1} = {{1}} !!!!

(
(
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Cardinality and Finiteness '
o . S| (read “the cardinality of §”°) 1s a measure
of how many different elements § has.

e Eg. D=0, [{1,2,3}|=3, |{ab}|=2,

{{1,2,3},{4.5}}|= 2
« If |S|eN, then we say S 1s finite.
Otherwise, we say S 1s infinite.

e What are some infinite sets we’ve seen?

-+ 1/13/2021



The Power Set Operation '
* The power set P(S) of a set S 1s the set of all

subsets of S. P(S) = {x | x&§}.
* E.g. P({a,b}) = {Q, {a}, {b}, {a,b}}.

« Sometimes P(S) is written 2.
Note that for finite S, [P(S)| = 2.

* It turns out V.S:|P(5)[>|S], e.g. |P(N)| > |N|.
There are different sizes of infinite sets'
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Review: Set Notations So Far &
. Variable objects x, y, z; sets S, T, U.
 Literal set {a, b, ¢} and set-builder {x|P(x)}. I

e relational operator, and the empty set .
e Set relations =, ¢, D, c, D, &, etc.
* Venn diagrams.
» Cardinality |S| and infinite sets N, Z, R.
* Power sets P(S).
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Naive Set Theory 1s Inconsistent

There are some naive set descriptions that lead to
pathological structures that are not well-defined.

— (That do not have self-consistent properties.)
These “sets” mathematically cannot exist.
EgletS={x|xex}. IsSe§?

Therefore, consistent set theories must restrict the
language that can be used to describe sets.

For purposes of this class, don’t worry about it!

Bertrand Russell [
' ' ' ' 1872-1970 |F
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Ordered n-tuples '
Bl- These are like sets, except that duplicates
matter, and the order makes a difference.

 For neN, an ordered n-tuple or a sequence

or [ist of length n 1s written (a,, a,, ..., a,).
Its first element 1s a,, efc.

Contrast with

* Note that (1,2)#(2,1) =2, 1, ). +gets’ {}

* Empty sequence, singlets, pairs, triples,
quadruples, quintuples, ..., n-tuples.
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Cartesian Products of Sets |

» For sets A, B, their Cartesian product

-+ 1/13/2021

AxB = {(a,b)| acA A beB }.

E.g 1abix{1,2} = {(a,1),(a,2),(b,1),(b,2)}
Note that for finite A, B, |4AxB|=|A||B.

Note that the Cartesian product 1s not
commutative: i.e., -VAB: AxB=BxA.

Extendsto 4, x 4, x ... X A4,...

René Descartes
(1596-1650)



Review of §1.6 '

e Sets §, 7T, U... Special sets N, Z, R.
* Set notations {a,b,...}, {x|P(x)}...

« Set relation operators xeS, ST, ST, $=T,
ScT, SOT. (These form propositions.)

* Finite vs. infinite sets.
» Set operations |S|, P(S), SxT.
* Nextup: §1.5: More set ops: U, N, —.
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Start §1.7: The Union Operator %
. For sets A, B, theirnion A\UB 1s the set

containing all elements that are either in A4,
or (““v”’) 1n B (or, of course, 1n both).

 Formally, VA,B: AUB = {x | x€A v xeB}.

* Note that 4B 1s a superset of both 4 and
B (in fact, 1t 1s the smallest such superset):

VA, B: (AUB D A) A (AUB D B)
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Union Examples :

e {a,b,c}ui{2,3} = {a,b,c,2,3}

¢ {29395}U{39597} - {2’3’5,3’5’7}

Think “The United
2 States of America
includes every
person who worked
in any U.S. state last

year.” (This 1s how
the IRS sees it...)
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The Intersection Operator '
. For sets A, B, their intersection ANB 1s the

set containing all elements that are
simultaneously in 4 and (“A”) 1n B.

 Formally, VA,B: AnB={x|x€A A xeB}.

* Note that ANB 1s a subset of both A and B
(in fact 1t 1s the largest such subset):
VA,B: (ANB c A) A(ANB C B)
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Intersection Examples '

* abceini23i= g
* 124,6§N0{3.450 =__{4}

Think “The
intersection of

University Ave. and
6 W 13th St. is just
that part of the road

surface that lies on
both streets.”
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Disjointedness '
. Help, I’ve .

 Two sets 4, B are called been
« o . . disjointed!
disjoint (i.e., unjoined) '

1ff their intersection 1s .\.®/

empty. (ANB=D) l

« Example: the set of even

integers 1s disjoint with
the set of odd integers.
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Inclusion-Exclusion Principle §
M. How many elements are in AUB?

l[AUB| = |4| + |B| — |ANB
« Example: How many students are on our

class email list? Consider set £ =7 M,
I = {s | s turned 1n an information sheet}
M = {s | s sent the TAs their email address}

 Some students did both!
E| = [IOM| = [I] + M| — |InM|
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Set Difference |

* For sets 4, B, the difference of A and B,
written A—B, 1s the set of all elements that
are in A but not B. Formally:

A—B:={x|x€d Ax¢B}
={x| —(x€d —> xeB) }
» Also called:
The complement of B with respect to A.

-+ 1/13/2021



Set Difference Examples

7 S

3,5,7,9,11} =

-1,0,1,2, ...} —{0,1, ...}

{ | X 1S an mteger but not a nat. #}

= {Xx | x 1s a negative integer}
Lo 73,72, 15
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Set Difference - Venn Diagram

e A—PB 1s what’s left after B
“takes a bite out of 4”

Set
A—B

Set 4 Set B

1/13/2021



Set Complements '
81« The universe of discourse can 1tself be
considered a set, call it U.

 When the context clearly defines U, we say

that for any set AcU, the complement of A,
written A, 1s the complement of A w.r.t. U,
i.e.,1t1s U-A.

« Eg, IfU=N, {3,5'=10,1,2,4,6,7,...}
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More on Set Complements

* An equivalent definition, when U 1s clear:

1/13/2021 ; : : I :
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Set Identities |
Ientity: - AV = =ANU - -

Domination: AVU=U , AnJ =
Idempotent: AuUAd=A4=A4ANA

Double complement: (4)=A4
Commutative: AUB=BUAd , AnB=BNA
Associative: AU(BUC)=(AUB)LC ,
AN(BNC)y=(ANB)NC
Distributive: AU(BNCO)=(AVUB)N(ALC) ,
AN(BUO)=(ANB)U(ANC)
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DeMorgan’s Law for Sets '

« Exactly analogous to (and provable from)
DeMorgan’s Law for propositions.

AUB=ANB
ANB=AUB
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Proving Set Identities '

To prove statements about sets, of the form
E, = E, (where the Es are set expressions), here
are three useful techniques:

. Using Set Identities

. Prove E, c E, and E, c E, separately.

. Use set builder notation & Logical equivalences.
. Use a membership table.

. Venn Diagram
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Method 1: Set Identities |
Example: Show (AUB)-B = A-B.

(AUB) — B= AUBNB =2 Definition of —
(AUB)NB=AUB N BUB - Distributive Law

ANBUBNB=ANBuUY =2 Domination Law
A NB -2 Identity Law
A — B = Definition of —
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Method 2: Mutual subsets |

Example: Show AN(BUC)=(ANB)u(ANC).
e Part 1: Show AN(BUC)c(ANB)u(ANC).
— Assume xe AN(BUC), & show xe(ANB)u(ANC).

— We know that xe A, and either xeB or xeC.
e Case l: xeB. Then xeAnB, so xe(ANB)J(ANC).
e Case 2: xeC. Then xeANC , so xe(ANB)U(ANC).

— Therefore, xe(ANB)U(ANC).
— Therefore, AN(BLC)c(ANB)J(ANC).

e Part 2: Show (ANB)u(ANC) < AN(BUC). ...
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Method 3: Set Builder Notation &
- Example: Show (AUB)-B = A-B. "
(AUB)-B= {x| xe (AUB)-B }

xe (AUB) A xgB}={x|xeA v xeB n~xeB}
xe AvBA~B}={x|xe(AAr~B)v(BA~B)}
xe(AA~B)VvF}= {x|xe(Ar~B)}
xe(AN~B)}={x|xe(A-B)}= A-B

-+ 1/13/2021 e, :



Method 4: Membersh1p Tables

Just like truth tables for pr0p031t10na1 loglc

Columns for different set expressions.

Rows for all combinations of memberships
in constituent sets.

Use “1” to indicate membership in the
derived set, “0” for non-membership.

Prove equivalence with 1dentical columns.
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Membership Table Example §
Prove (A4UB)-B = A-B. |

A B| AUB  (AUB)-B  A-
of o

0
0
1
1

1 1
0 1
1 1
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Membership Table Exercise B

Prove (AUB)-C = (4-C)u(B-C).

A B dAUB|(4UB)-C| A-C | B-C | (4-C)(B-C)
000

01
10
11
00
01
10
11
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lagram

-
-
-
O

>

Method 5
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Review of §1.6-1.7 '
e Sets §, 7T, U... Special sets N, Z, R.
* Set notations {a,b,...}, {x|P(x)}...

e Relations xe8§, ScT, SOT, S=T, ScT, SoT.
e Operations |S|, P(S), x, U, N, —, S

* Set equality proof techniques:

— Mutual subsets.

— Derivation using logical equivalences.
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Generalized Unions & Intersections =
e Since union & intersection are commutative

and associative, we can extend them from
operating on ordered pairs of sets (4,B) to

operating on sequences of sets (4,,...,4,,), or
even on unordered sets of sets,

X={A4 | P(A)}.
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Generalized Union '
* Binary union operator: AUB

* p-ary union:
AVA, V... VA, = ((...(4,0 A4y V.. )V A4)
(grouping & order 1s 1rrelevant)

* “Big U” notation: U A

i=l1

* Or for infinite sets of sets: U A

AeX
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Generalized Intersection '
» Binary intersection operator: ANB

* n-ary intersection:
ANA,N...0A4,=((...((4,"4,)N...)NA,)
(grouping & order 1s irrelevant)

* “Big Arch” notation: ﬂ 4

i=1
e Or for infinite sets of sets: m A
AeX
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Representations '
M. A frequent theme of this course will be

methods of representing one discrete
structure using another discrete structure of

a different type.

« E.g., one can represent natural numbers as
— Sets: 0:=7, 1:={0}, 2:={0,1}, 3:={0,1,2}, ...

— Bit strings:
0:=0,1:=1,2:=10,3:=11,4:=100, ...

-+ 1/13/2021



Representing Sets with Bit Strings &
Bl For an enumerable u.d. U with ordering

X1, Xy, ..., T€present a finite set ScU as the

finite bit string B=b,b,...b, where

Vi:x,e§ < (i<n A b=1).
E.g. U=N, §={2,3,5,7,11}, B=001101010001.

In this representation, the set operators

(44 2%  ¢¢ 2% ¢¢ 9

U7, “N”, are implemented directly by
bitwise OR, AND, NOT!
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Mathematical Induction

A powerful, rigorous technique for proving

that a predicate A ) is true for every natural
number 7, no matter how large.

« Essentially a “domino effect” principle.
« Based on a predicate-logic inference rule:

P(O) “The First Principle
v >0 (An)—>Ant+l)) of Mathematical

VYV />0 /D( /7) Induction”
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Validity of Induction

Proof that VA>0 A 4) Is a valid consequent:
Given any &0, V220 (An)— A n+l)) (antecedent
2) trivially implies V720 (<)—(An)—An+l)),

or (A0)->AL) A(AL->A2)) A ... A

(A k-1)—>HA k). Repeatedly applying the
hypothetical syllogism rule to adjacent
Implications A=1 times then gives A0)— A K);
which with A0) (antecedent #1) and moaus
ponens gives A k). Thus VA>0 AK).
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Outline of an Inductive Proof

« \WWant to prove Vn An)...
» Base case (or basis step). Prove A0).

 [nductive step. Prove Y n An)— A ml).
— E.g. use a direct proof:
— Let neN, assume A n). (1naductive hypothesis)
— Under this assumption, prove A +1).

Inductive inference rule then gives V1 An).
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Induction Example

 Prove that the sum of the first 7 odd positive
integers is /7. That is, prove:

vn>1:>» (2i-1)=n’
i=1 ~ /
 Proof by induction. A(n)

— Base case: Let 7=1. The sum of the first 1 odd
positive integer is 1 which equals 12.
(Cont...)
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Example cont.

* Inductive step: Prove V2>21: An)— A ml).
— Let 7221, assume A'n), and prove A 1l).

j+ (2(n+1)-1)

By inductive
hypothesis P(n)
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Another Induction Example

* Prove that V>0, n<2”. Let An)=(n<2")
— Base case: A1)=(1<21)=(1<2)=T.
— Inductive step: For /70, prove An—>An+l).

« Assuming n<2”, prove m1 < 2m1L,

* Note n+1 <27+ 1 (by inductive hypothesis)

<27+ 2" (because 1<2=2-29<2.2H1= 2"
= on+l

« So n+1<2™! and we’re done. i.e. P(n+1) is true
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Another Induction Example

Use mathematical Induction to prove that the sum of the first n
odd positive integers is n?.

SOL.:

A. Basic Step: p(1) , the sum of the first odd positive integer which
IS 1 is 12 and equal to 1. So, p(1) is true.

B. Inductive step: Suppose that p(k) is true.
S0, 1+ 3 +5+.... + (2K-1) = k2
We must snow that p(K+1) Is true, assuming that p(K) is true
P(K+1) = (1\=$ + (2K-1) + (2K+1)
= + (2K+1) By assumption
= (K+1)?> By Perfect Square Equation
So, p(K+1) is TRUE
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Another Induction Example

Use mathematical Induction to prove that N3 — N is divisible by 3
whenever n Is positive and n>=1

Basic step: P(1) is divisible by 3 since 1-1 =0 and 3 divides 0
Inductive step:

A. Assume P(K) Is true .

P(k): K3 - K is divisible by 3 = K3-K= 3m, where m is an integer
B. Try to prove that p(k+1) |

P(k+1): (K+1)3 = (K3+3K?+3K+1) - K -1

= (K3 + 3(K?+ K)=3m + 3(K?+ K) =3(m + K2+ K) =3n
So, p(k+1) is divisible by 3

Conclusion: N3 — N is divisible by 3 whenever n is positive integer
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Module #9 — Number Theory

3.1 The Integers and Division

« Of course you already know what the
Integers are, and what division is...

« But: There are some specific notations,

terminology, and theorems associated with
these concepts which you may not know.
* These form the basics of number theory.

— Vital in many important algorithms today (hash
functions, cryptography, digital signatures).
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Module #9 — Number Theory

1/13/2021

Diviaes, Factor, Multiple

Let g,6eZ with a=0.

ab =“adivides b’ =“deceZ. b=ac”
“There Is an integer ¢such that ctimes 4
equals b.”

— Example: 3|-12 < True, but 3|7 < False.

Iff adivides b, then we say 4is a factoror a
aivisorof b, and b1s a multiple of a.

“bi1s even” :=2|b. Is0even? Is—4?




Module #9 — Number Theory

Facts re: the Divides Relation

« Yab,.ce Z.
1. 40
2.(dbA dc)— al(b+ 0

3. db— dbe
4. (dbA Hc) — 4ac
* Proof of (2): 46 means there is an ssuch that

b=as, and gc¢ means that there is a #such that
c=at, so btc= astat= a(sti), so a(b+c) also.m
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Module #9 — Number Theory

More Detalled Version of Proof

« Show Vabce Z. (dbA dc) — a| (b+ o).

« Let g, b, cbe any integers such that 46 and
dc, and show that a| (6 + ©).

« By defn. of |, we know 3s. b=as, and

At c=at. Let s, £, be such integers.
 Then b+c =as+ at= a(sti), so

Ju. b+c=au, namely u=st+t. Thus a(b+0).
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Module #9 — Number Theory

« An integer g>1 Is prime iff it is not the
product of any two integers greater than 1:
>1 A —34,0eN: &1, b>1, ab=p.

« The only positive factors of a prime pare 1
and p itself. Some primes: 2,3,5,7,11,13...

« Non-prime integers greater than 1 are called
composite, because they can be composed
by multiplying two integers greater than 1.
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Module #9 — Number Theory

Review

b= “adivides b’ < AceZ: b=ac
o “DIS prime’ <
P>l A—33eN: (1<a<pna ap)

« Terms factor, divisor, multiple, composite.
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Module #9 — Number Theory

Fundamental Theorem of Arithmetic

« Every positivélinteger has a unique
representation fas the product of a non-
decreasing series of zero or more primes.
— 1 = (product of empty series) = 1
— 2 = 2 (product of series with one element 2)
— 4 =2-2 (product of series 2,2)
—2000=2-2-2-2:-5-5'5; 2001 =3-23-29;

2002 =2-7-11-13; 2003 = 2003
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Module #9 — Number Theory

Theorem:

« Every positive integer greater than one can
be uniquely written by one or more prime
numbers.

* |f n IS composite integer, then n has prime
divisor less than or equal to

* There are infinitely number of primes
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Module #9 — Number Theory

"Prime Faclorization Technique”

 To find the prime factor of an integer /.

1- find /n

2- list all primes <= /n
2,3,5,7,...rootof n

3- find all prime factors that divides 7.

1/13/2021
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Module #9 — Number Theory

Ex: Show that 100 15 composite?
5 ol
1y +100 = 10
21 8o the number may be divided by: 2, 3,5, 7 only (all primes less than 107
3y 2100 since 100/2 = 50
~ The number 10012 not prime, So 1t1s cotnposte,

Ex: Show that 101 1z prime?
5 ol.

1y 1018 10

21 Bothenumber may be divided by: 2, 3,5, 7 only (all primes less than 10)
3 2 k01 3101 54101 74101

101 1z not dimded by 2, 3, 4, 5, 01 7

. The number 101 1z prime

Ex: find the prime factors of 70077

1) /7007 & 83
21 Sothe number tay be divided by 2, 3,5, 7, 11, 13, 17,19 . < 83 (all primes less than 33

i 1001 143 13
31 ——=1001 — =143 — =13 —=1
7 7 11 13

FIO7=T=xTx11x 13=T" %1113
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Module #9 — Number Theory

Mersenne Primes

Any prime number that can be written as
2" - 1 is called Mersenne prime.

e EX:

The numbers 22-1 =3, 23-1=7, 24-1=31
211-1 = 2047 all are primes

1/13/2021



Module #9 — Number Theory

1/13/2021

An Application of Primes

When you visit a secure web site (https:...
address, indicated by padlock icon in IE, key icon
In Netscape), the browser and web site may be
using a technology called RSA encryption.

This public-key cryptography scheme involves
exchanging public keys containing the product pg
of two random large primes pand g (a private key)
which must be kept secret by a given party.

So, the security of your day-to-day web
transactions depends critically on the fact that all
known factoring algorithms are intractable!

— Note: There is a tractable guantum algorithm for factoring; so if
we can ever build big quantum computers, RSA will be insecure.




Module #9 — Number Theory

The Division “Algorithm”

 Really just a theorem, not an algorithm...
— The name 1s used here for historical reasons.

For any integer aividend aand divisor a0,

there IS a unique integer guotient g and
remainder reN > a= adg+ rand 0 < r<|d/

(such that)

» VadeZ, d>0: 31g reZ: 0<K|d), a=ag+r.
- We can find gand rby: o=l @d], =a-gd
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Module #9 — Number Theory

The mod operator

« An Integer “division remainder” operator.

e Let gdeZ with @>1. Then amod d denotes
the remainder rfrom the division

“algorithm” with dividend g and divisor &,
/.€. the remainder when ais divided by 4.
(Using e.g. long division.)
« We can compute (amod @) by: a— didd).
 In C programming language, “%” = mod.

1/13/2021



Module #9 — Number Theory

Modular Congruence

o Let Z*={neZ | >0}, the positive integers.
Let abeZ, meZ*.

Then a Is congruent to b moadulo m, written
“a=b(mod m)”, Iff m| ab .
Also equivalent to: (&56) mod m= 0.

 (Note: this is a different use of “= than the
meaning “is defined as” I’ve used before.)
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Module #9 — Number Theory

Spiral Visualization of mod

Example shown:
modulo-5
arithmetic
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Module #9 — Number Theory

Useful Congruence Theorems

e LetgbcdeZ, meZ*. Then if
ab (mod m) and c=d (mod m), then:
*= 3+c= b+d(mod m), and

* 3c= bd (mod m)
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Module #9 — Number Theory

EX.:

1/13/2021

a=17 b=2 c=11

d=1 m=5

Since, 7=2 (mod 5) where mod equals to 2
and

11 =1 (mod 5) where mod equals to 1
Then,7+11=2+ 1 (mod 5) <18 =3 (mod 5)
where mod equals to 3

and, 7 x11=2 x1 (mod 5) <> 77 =2 (mod 5)
where mod equals to 2




Module #9 — Number Theory
« Thm: Let m be a positive intger

Integers a, and b are congruent modulo m iff a =
b + k m, where K is an integer

EX.:

. a=17
Since, 17mod6=5

and 5 mod6=5

Then, 17=5(mod 6) and 6 | (17-5) <> 6| 12
where = 2

Also,17=5+2x6
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Module #9 — Number Theory

Applications of Congruence

1. Hash Functions:

h(k) = k mod m k: Key m: number of
available memory locations

Notes:
Hash functions should be onto,

Since It is not one-to-one, this may cause
Collisions.

Ex. : if m =50, then h(51) = h(101) = 1
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Module #9 — Number Theory

2. Pseudorandom Numbers:
To generate a sequence of random numbers {Xn} with 0<Xn<m
X0: seed 0<X0<m
Xn+1 =(a Xn+c¢) mod m
Where, m: modulus
a: multiplier 2<a<m
C: increment 0<c<m

EX.:

Given: m=9 a=7
Sequence:

X0=3

X1 =(7xX0+4) mod 9 =7

X2 = (7xX1+4) mod 9 =8

X3=6

X4=1
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Module #9 — Number Theory

3. Cryptology
Encryption: making a message secrete
Decryption: determining the original message
Ex. Caesar's Encryption
f(x) = (X + shift) mod 26
If shift = 3, then

The message: "MEET YOU IN THE PARK"

Becomes the encrypted message: "PHHW BRX LG
WKH SDUM'"

Since: A=0 becomes D=3, B=1 becomes E=4, ...,
X=23 becomes A=0, Y=24 becomes B=1, and
finally Z=25 becomes C=2
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Module #9 — Number Theory

3.2 Greatest Common Divisor

« The greatest common divisorgcd(a,b) of integers
a,b (not both 0) is the largest (most positive)
Integer d'that Is a divisor both of g2and of 0.

ad=gcd(ab) = max(d dan db) <
danadbavecZ, (dandb) — d>e
« Example: gcd(24,36)="
Positive common divisors: 1,2,3,4,6,12. ..
Greatest I1s 12.
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Module #9 — Number Theory

Way to find GCD:

1.find all positive common divisors of both
a and b, then take the largest divisor

Ex: find gcd (24, 36)7?

Divisorsof 24: 1, 2, 3,4, 6, 8, 12, 24
Divisors of 36: 1, 2, 3, 4, 6, 8, 12, 18, 24
Common divisors: 1, 2, 3, 4, 6, 8, 12
MAXIMUM =12

. gcd (24, 36) =12
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Module #9 — Number Theory

2. use prime factorization:

» |f the prime factorizations are written as

a=pEpe..pd and  b=ptpk.. p"
then the GCD is given by:

ng(a b): min(ay,b;) min(a,,b,) min(a,,b;,)

1 2 o o o n

« Example:
— a=84=2-2-3-7  =22.3.7%
— b=96=2-2-2-2-2:3 =25-31.70
— gcd(84,96) =22.31.70=2.2-3 =12,

1/13/2021
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Ex: find gcd (24, 36)7?
24 =23 x 3!
36 = 2% x 3°
s ged (24,36) =22 x 31 =12

Ex: find gcd (120, 500)?
120=23x3 x5
36 =22x53=22x30x53
. ged (120, 500) =22 x5=20

1/13/2021
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Relatively Prime

 Integers @and b are called refatively prime or
coprime iff their gcd = 1.
— Example: Neither 21 and 10 are prime, but they

are relatively prime. 21=3-7 and 10=2-5, so they
have no common factors > 1, so their gcd = 1.

« A setof integers {a,,a,...} IS (palrwise)
relatively prime if all pairs a; a; #/, are
relatively prime.

1/13/2021
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east Common Multiple

« lcm(a,0) of positive integers 4, b, is the smallest
positive integer that is a multiple both of gand of
b. E.g. lcm(6,10)=30

m=lcm(a,0) = min(m. dm A {m) <
ama bma~NneZ: (dn Bn — (m<n)

« |f the prime factorizations are written as
a=pip;...p;rand b=p’py..p;
then the LCM is given by

max(ay,b;) ., max(a,,b,) pmax(an,bn)
.+« Mp :

Ilcm(a,b) = p, )

1/13/2021
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Ex: find Lcm (24, 36)7?
24 = 23 x 31
36 =2%x 3?
;. Lem (24, 36) =23 x 32=72

Ex: find Lecm (120, 500)?
120=23x3 x5
36 =22 x 53
- Lem (120, 500) = 23 x 3 x 53 =3000

1/13/2021
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1/13/2021

3.3 Matrices

A matrix is a rectangular array of

objects (usually numbers).

An mxn (“mby 17°) matrix has exactly m
horizontal rows, and 7 vertical columns.

Plural of matrix = matrices
(say MAY-trih-sees)

5 g
5> -1

7 0

a 3x2
matrix

An nxnmatrix is called a sguare matrix,

whose orderis n.
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Applications of Matrices

Tons of applications, including:
 Solving systems of linear equations

Computer Graphics, Image Processing

Models within many areas of
Computational Science & Engineering

Quantum Mechanics, Quantum Computing
Many, many more...

1/13/2021
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Matrix Equality

« Two matrices A and B are equal iff they
have the same number of rows, the same
number of columns, and all corresponding

elements are equal.

'3 2] [3 20
-16| |-1 6 0

1/13/2021
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Row and Column Order

« The rows In a matrix are usually indexed 1
to m from top to bottom. The columns are
usually indexed 1 to 7 from left to right.

Elements are indexed by row, then column.

d; Q, v A
a2,1 az,z az,n

A:[ai,j]:

1/13/2021
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* The sum A+B of two matrices A, B (which
must have the same number of rows, and
the same number of columns) Is the matrix

(also with the same shape) given by adding
corresponding elements.

« A+B = [4;7+b,]

o S

1/13/2021
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Matrix Products

 For an mxk matrix A and a Axn matrix B, the
product AB 1s the mxn matrix:

- _
AB=C= [Ci,j] = Zai,fbf,j
/=1 |

« /e, element (7)) of AB is given by the vector dot
proaguctof the sth row of A and the sth column of
B (considered as vectors).

« Note: Matrix multiplication is not commutative!

1/13/2021
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Matrix Product Example

« An example matrix multiplication to
practice In class:

_ fo -1 1 o] . _
0 1 -1 1 0 -5 -1
12 0 -2 0|=
2 0 3 3 -2 11 3
- ‘11 0 3 1] *- .
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|dentity Matrices

» The /dentity matrix of order n, 1., s the
order-n7 matrix with 1’s along the upper-left
to lower-right diagonal and 0’s everywhere

else. 1 0
lifi=j| [0 1

0ifi=j

1/13/2021
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Matrix sums and products:
A+B = [a,+0; ]

AB=C=]c ]=

|dentity matrix of order /.
|,,=1[06,], where 5,=1 If /=7and 5,~0 If £/.

1/13/2021
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Matrix Inverses

« For some (but not all) square matrices A,
there exists a unigue multiplicative /nverse
Al of A, a matrix such that A*A =1,

* |f the inverse exists, It Is unique, and
AlA = AAL

« \We won’t go into the algorithms for matrix
Inversion...

1/13/2021
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Matrix Multiplication Algorithm

procedure matmulmatrices A: mxk;, B: kxn)

for/:=1tom }@(m)- What’s the ® of its
time complexity?

forj:=1to nbegin}@(n).(
C;ii= 0 }®(1)+ Answer:

O(mnk)

for g:=1to k ek
Cji=Citagh,; oW
end {C=[¢;] Is the product of A and B}

1/13/2021
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Powers of Matrices

If A Is an /7xnsquare matrix and £>0, then:
« A’=AAA---A (A’=1)
N J

~

ptimes 2 1T 112 1][2 1
-1 0| |-1 0/|-10/|-10

3 2

« Example:

1/13/2021
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Matrix Transposition

* If A=[4,] Is an mxn matrix, the franspose of
A (often written Ator AT) is the /7x/m matrix
given by A'=B = [0,] = [a;] (1<£n1</<m)

1
3

Flip
across
diagonal

1/13/2021
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Symmetric Matrices

« Asquare matrix A is symmetric iff A=Al
le,VI/n. a; = a;.
« Which iIs symmetric?

1/13/2021
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Zero-One Matrices

Useful for representing other structures.
— E.g., relations, directed graphs (later in course)

All elements of a zero-one matrix are 0 or 1
— Representing False & True respectively.

The joinof A, B (both mxn zero-one matrices):
The meet of A, B:

1/13/2021
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We find the join between A v B =
Meet A

We find the join between AAB =

1/13/2021
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Boolean Products

* Let A=[a;] be an mxk zero-one matrix,
& let B=[0;] be a kxnzero-one matrix,

» The boolean product of A and B is like

normal matrix x, but using v instead + In
the row-column “vector dot product.”

K
AcB =C :[cij] =\ & /\bgj
| ¢=1 _

1/13/2021
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Boolean Powers

» For a square zero-one matrix A, and any
k>0, the kth Boolean power of A i1s simply
the Boolean product of 4 copies of A.

e AlAl=
A _@QAO...OAJ

e
ktimes

1/13/2021
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§3.2: Sequences, Strings, &
Summations

« A sequence or seriesis just like an ordered -
tuple, except:
— Each element in the series has an associated /ndex

number.

— A sequence or series may be infinite.

« A string is a sequence of symbols from some
finite alphabet

« A summation is a compact notation for the sum
of all terms In a (possibly infinite) series.

1/13/2021
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Sequences

« A sequenceor series {4} is identified with a generating function
. S— A for some subset SN and for some set A.

— Often we have S=N or S=N+{0}.
— Sequences may also be generalized to /ndexed sets, in which the set Sdoes

not have to be a subset of N.
» For general indexed sets, Smay not even be a set of numbers at all.

If 7is a generating function for a series {a,}, then for ne S, the
symbol a, denotes A1), also called ferm n of the sequence.

— The indexof a,is n. (Or, often 7is used.)
A series Is sometimes denoted by listing its first and/or last few

elements, and using ellipsis (...) notation.
- Eg.,“{a}=0,1,4,09, 16,25, ...” is taken to mean VneN, a,= r?.

1/13/2021
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Sequence Examples

Some authors write “the sequence &, &, ...”
Instead of {a,}, to ensure that the set of indices Is

clear.

— Be careful: Our book often leaves the Iindices
ambiguous.

An example of an infinite series:

— Consider the series {a .} = &, &, ..., where (V/2>1)
a=fn =1ln.

— Then, we have {g } =1, 1/2,1/3, ...

1/13/2021
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Example with Repetitions

 Like tuples, but unlike sets, a sequence may
contain repeated instances of an element.

 Consider the sequence {6,} = b,, 0y, ... (note that

0 is an index) where b,= (—1)".
—Thus, {6}=1,-1,1, -1, ...
 Note repetitions!

— This {6} denotes an infinite sequence of 1’s and —1°s,
notthe 2-element set {1, —1}.

1/13/2021
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Sequences are two types:

« Geometric progression: it is a sequence of form
a, ar, ars, ar

where the /nitial term s a and the common ratior are
real numbers.

Arithmetic progression: it is a sequence of form
a, a+d, a+2d,

where the /nitial term a and the common difference d are
real numbers

1/13/2021
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Examples of Geometric

« {b_ Y} with b_= (-1)" n>=1

— Initial term = -1, common ratio= -1,
—a,=(-1)" ,n=1,23,...

- C,=10,50,250,1250,
— Initial term = 10, common ratio=5
—a,=10x (5)" ,n=0,1,2,3,...
-a=5Xa,, ,n=0,123,...

1/13/2021
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Examples of Arithmetic

e« {Sn} withSn=-1+4n,n>0
IS arithmetic sequence where
S,=-1,3,7,11,... OR S, =a,,+4, S;=-1,n >0

— initial term = -1, common Difference= 4
* The sequence : 5, 11, 17, 23, 29 ...

a,=obn—-1 ,n=>1
IS arithmetic progression with a=5, and d=6

1/13/2021
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Recognizing Sequences

« Sometimes, you’re given the first few terms of a
sequence,

— and you are asked to find the sequence’s generating

function,
— or a procedure to enumerate the sequence.

« Examples: What’s the next number?
-1,234,... 5 (the 5th smallest number >0)

-1,3,5,7,9,... 11 (the 6th smallest odd number >0)

-2,3,5,7,11,... 13 (the 6th smallest prime number)

1/13/2021
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The Trouble with Sequence
Recognition

As you know, these problems are popular on 1Q tests, but...
The problem of finding “the” generating function given just an

Initial subsequence is not a mathematically well defined problem.

— This is because there are /infinitely many computable functions that will
generate any given initial subsequence.

We implicitly are supposed to find the simplestsuch function
(because this one is assumed to be most likely), but,
— how are we to objectively define the simplicity of a function?

We might define simplicity as the reciprocal of complexity, but...

— There are many different plausible, competing definitions of complexity,
and this is an active research area.

So, these questions really have no objective right answer!
— Still, we will ask you to answer them anyway... (Because others will too.)

1/13/2021
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Strings, more formally

« Let X be a finite set of symbols, i.e. an alphabet.

— A string s over alphabet X Is any sequence {s;} of
symbols, s,€Z, indexed by N or N—{0}.

« If g b, ¢ ... are symbols, the string s=4, 6, ¢, ...
can also be written gbc ...(/.e., without commas).

 |If sis a finite string and £is any string, then the
concatenation of s with t, written just sz,

— 1s simply the string consisting of the symbols in s, in
sequence, followed by the symbols in ¢ in sequence.

1/13/2021
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More Common String Notations

* The length |4 of a finite string sis its number of
positions (1.e., 1ts number of index values /).

 |If sis a finite string and neN,

— Then $” denotes the concatenation of 77 copies of s.
¢ denotes the empty string, the string of length 0.

1/13/2021
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Summation Notation

« Given a series {a,}, an integer fower bound
(or /imit) /20, and an integer upper bound
k>J, then the summation of{a,} fromj to k

IS written and defined as follows:
k
Y a =a,+a;, +..+3
i= |
e Here, /1S called the /ndex of summation.

1/13/2021
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Generalized Summations

 For an infinite series, we may write:

Zai =a,+a;, +..

e Tosum a fd:n’ction over all members of a set
X={x, %, .30 > F(x)=f(x)+f(x)+...

xe X

o Or, iIf X={XAX)}, we may just write:

> F(x)=F(x)+ fF(x)+..

P(x)

1/13/2021
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Simple Summation Example

Y (¢ +1)=(2°+1) + (3" +1) + (4 +1)
|1=2

=(4+1)+(9+1) +(16+1)
=5+10+17
=32
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More Summation Examples

« An Infinite series with a finite sum:

Y27 =242 4 =141+ 14 =2
1=0

« Using a predicate to define a set of elements
to sum over:

sz =22 4+3°+5*°+7°=4+9+25+49=87

(xis prime) A
x<10
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Summation Manipulations

« Some handy identities for summations:

Y ef(x)=c) f(x) (Distributive law.)

(Application

Z F(x)+9(x) = (Z f (x)j + > g(x) Ofai?vr?t?;ﬂ

Z f@i)=> f(i—n) (Index shifting.)

i=j+n

1/13/2021
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More Summation Manipulations

e Other i1dentities that are sometimes useful:

ZM*

m k (Series splitting.)
[Zf(l)j S @) if j<m<k

I=m+1

—
1
h

X (i) = i f (2i)+ f(2i +1) (Grouping.)
1=0

MI\J

|l
o

1/13/2021
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Nested Summations

» These have the meaning you’d expect.

iiiﬁi[ZJ Z(ZJ] Yit+2+3

i=1 j=1 i=1 \ j=1 =1\ j=1 i=1

=6(1+2+3+4)

_ 61060
 Note issues of free vs. bound variables, just
like in quantified expressions, integrals, etc.

1/13/2021
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Some Shortcut Expressions(1)

n
Z ar’ = 61(rn+1 -1 /(r-1),r#1  Geometric series.
k=0

Z K=n(n+1)/2 Euler’s trick.
k=1

> k*=n(n+1)(2n+1)/6 Quadratic series.
k=1

> k*=n*(n+1)*/4 Cubic series.
k=1

1/13/2021
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Some Shortcut Expressions(2)

1/13/2021
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Using the Shortcuts

100

- Example: Evaluate > K’

k=50

— Use series splitting. ., 100
— Solve for desired Zk —(Zk2j+ > k?
summation. k=50
] 100 100
— Apply quadratic ZkZ (Z ij Zkz
series rule. k=50 kel

— Evaluate. B 100-101-201 49-50-99

6 6
—338.350— 40,425
1/13/2021 = 297,925.
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Example

100
find > k= 2
k=50
100 > 49 > 100 >
> k=] > k? |+ >k
k=1 k=1

k=50

100 100 49 >
>k — (37 ) - Sk
k=1 k=1

k=50

. 100-101-201 49-50-99
- 6 6

— 338,350 — 40,425

— 297,925

1/13/2021
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Summations: Conclusion

* You need to know:

— How to read, write & evaluate summation
expressions like:

iai iai D) D (%)

Xe X P(x)
— Summation manipulation laws we covered.

— Shortcut closed-form formulas,
& how to use them.

1/13/2021
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Section 2.3... Functions

* From calculus, you are familiar with the
concept of a real-valued function 7,
which assigns to each number xeR a

particular value y=Ax), where yeR.

 But, the notion of a function can also be
naturally generalized to the concept of
assigning elements of any set to elements
of any set. (Also known as a map.)

1/13/2021 » » (¢)2001-2003, Michael P. Frank
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Function: Formal Definition

« For any sets A, B, we say that a function f
from (or “mapping) A to B(f.A—>B) is a
particular assignment of exactly one

element A x)e Bto each element xe A.

« Some further generalizations of this idea:

— A partial (non-fotal) function fassigns zero or
one elements of Bto each element xe A.

— Functions of narguments; relations (ch. 6).

1/13/2021 ()2001-2003; Michael P. Frank



Module #4 -.Functions

Graphical Representations

 Functions can be represented graphically in
several ways:

A B 2-part Graph
Like Venn diagrams

1/13/2021 ()2001-2003; Michael P. Frank
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Some Function Terminology

 |fitis written that ZA— B, and fa)=0
(Where ac A & be B), then we say:

— A Is the domain of f.

— Bis the codomain of f.
— bis the /image of gaunder 1.

— 418 a pre-image of b under f.
* In general, & may have more than 1 pre-image.

— The range R=Bof fis R={b6|3a a)=b}.

1/13/2021 ()2001-2003; Michael P. Frank
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Range versus Codomain

» The range of a function might not be its
whole codomain.

 The codomain is the set that the function iIs

aeclared'to map all domain values into.

* The range Is the particul/ar set of values In
the codomain that the function actually
maps elements of the domain to.

1/13/2021 » » (¢)2001-2003, Michael P. Frank
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Range vs. Codomain - Example

» Suppose | declare to you that: “fis a
function mapping students in this class to
the set of grades {A,B,C,D,E}.”

At this point, you know £s codomain Is:
{A.B.C.D.E} and its range Is ynknown?
« Suppose the grades turn out all As and Bs.

« Then the range of fis _ {A,B} |, butits
codomain is _still {A.B.C.D.E}!

1/13/2021 » » (¢)2001-2003, Michael P. Frank
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Constructing Function Operators

 |f o (“dot™) IS any operator over B, then we
can extend e to also denote an operator over
functions £ A—B.

« E.g.: Given any binary operator ¢: Bx5— B,
and functions 7,g.A— B, we define
(fe 9): A— Bto be the function defined by:

VacA, (fe g)(a) = [a)*9(a).

1/13/2021 ()2001-2003; Michael P. Frank
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Function Operator Example

o +,% (“plus”,“times™) are binary operators
over R. (Normal addition & multiplication.)

» Therefore, we can also add and multiply

functions f,gR—R:

— (f+ 9):R—>R, where (f+ g)(X) = ) + g(%)
= (7x 9)R—-R, where (7x g)(x) = £X) * g(X)

1/13/2021 ()2001-2003; Michael P. Frank
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Function Composition Operator

Note match here.

» For functions ggA—Band £.B—C, there is a
special operator called compose (“o).

— |t composes (creates) a new function out of £

and g by applying fto the result of applying g.
— We say (709):A—C, where (f09)(a) = £g(a)).
— Note g(a) e B, so Ag(a)) is defined and € C.

— Note that o (like Cartesian x, but unlike +,A,0)
IS non-commuting. (Generally, fog# gof)

1/13/2021 ()2001-2003; Michael P. Frank
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Images of Sets under Functions

 Given fA—B, and ScA,

« The /mage of Sunder fis simply the set of
all images (under /) of the elements of S.

5) ={A9) | s 5}
={b| 3 seS. 5=b}.

 Note the range of fcan be defined as simply
the image (under 7 of £s domain!

1/13/2021 ()2001-2003; Michael P. Frank
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1/13/2021

One-to-One Functions

A function is one-to-one (1-1), or injective, or an injection,
Iff every element of its range has on/y'1 pre-image.
— Formally: given £A— B,
“xis injective” = (—3x ). x2y A £X)=01))).
Only one element of the domain is mapped to any given
one element of the range. w -

— Domain & range have same cardinality. What about codomain? g8 l‘ger'

Each element of the domain is injected into a different
element of the range.

— Compare “each dose of vaccine is injected into a different patient.”

(c)2001-2003, Michael P. Frank
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One-to-One llustration

* (2-part) graph representations of functions
that are (or not) one-to-one:

=
~.

Not one-to-one Not even a
One-to-one function!

1/13/2021 ()2001-2003; Michael P. Frank
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e 1227 f(x)=x°
f(X)=f(y) = X% = y2 = X=+Yy or X=-y

f(-2)=f(2)=4 = -2#2 = it is not 1-to-1
e Z3Z  f(X)=x+5

f(x)=1(y) = x+5=y+5 = x=y

= It Is 1-to-1

1/13/2021 ()2001-2003; Michael P. Frank



Module #4 -.Functions

Sufficient Conditions for 1-1ness

 For functions fover numbers, we say:

— fis strictly (or monotonically) increasing iff
x>y — (x)>A)) for all x,)in domain;

— fis strictly (or monotonically) decreasing iff
x>y — f(x) <Ay for all x,)in domain;

 |f fis either strictly increasing or strictly
decreasing, then fis one-to-one. £.g. X°

— Converse is not necessarily true. E.g. 1/ x

1/13/2021 ()2001-2003; Michael P. Frank
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Onto (Surjective) Functions

« A function ZA— B s ontoor surjectiveor &
surjection iff Its range 1s equal to Its
codomain (V be B, Jac A: la)=Db).

« Think: An onto function maps the set A

onto (over, covering) the entirety of the set
B, not just over a piece of it.

« E.g., for domain & codomain R, X°is onto,
whereas x2isn’t. (Why not?)

1/13/2021 ()2001-2003; Michael P. Frank
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Illustration of Onto

« Some functions that are, or are not, onto
thelr codomains:

Onto Not Onto Both 1-1 1-1 but
(but not 1-1) (or 1-1) and onto not onto

1/13/2021 ()2001-2003; Michael P. Frank
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« A function fis said to be g one-to-one
corresponadence, or a bijection, or
reversible, or invertible, Iff it 1S

both one-to-one and onto.

 For bijections 7.A— B, there exists an
Inverse of f, written f~1: B— A, which is the
unique function such that f "o f =1,

— (where /, is the identity function on A)

1/13/2021 ()2001-2003; Michael P. Frank



Module #4 -.Functions

The ldentity Function

« For any domain A, the /dentity function
[:A— A (variously written, /,, 1, 1) is the
unique function such that Vac A: /[a)=a.

« Some identity functions you’ve seen:
— +ing 0, -ing by 1, Aing with T, ving with F,
wing with &, ning with U.
 Note that the identity function is always
both one-to-one and onto (bij

1/13/2021 ()2001-2003; Michael P. Frank



Module #4 -.Functions

ldentity Function lllustrations

« The identity function:

Domain and range

1/13/2021 » » (¢)2001-2003, Michael P. Frank



Module #4 -.Functions

Graphs of Functions

« \We can represent a function £.A— B as a set of

ordered pairs {(4,/4a)) | ac A}. | The function’s graph

» Note that Vg, there is only 1 pair (4,0).

— Later (ch.6): relationsloosen this restriction.

 For functions over numbers, we can represent
an ordered pair (x;)) as a point on a plane.

— A function is then drawn as a curve (set of points),
with only one y for each x.

1/13/2021 ()2001-2003; Michael P. Frank



Module #4 -.Functions

A Couple of Key Functions

* |n discrete math, we will frequently use the
following two functions over real numbers:

— The floorfunction | - :R—Z, where | x| (“floor

of X’) means the largest (most positive) integer
<x. le,|lx]=max({icZ|kx}).

— The ceilingfunction| - | :R—Z, where | x|
(“ceiling of X’) means the smallest (most
negative) integer > x. | x| = min({ieZ|2x})

1/13/2021 ()2001-2003; Michael P. Frank



Module #4 -.Functions

Visualizing Floor & Celling

e Real numbers “fall to their floor” or rise to

their ceiling.” 3 1

[1.61=2
\
L—XJ %= — LXJ & [1.6]=1
|__X—‘ * = I_X—‘ [1.4]=1

e Note that If xeZ,

LXJ — rX—‘ = X. 3,V
| UlsiskE-3

e Note that If xg¢Z,

1/13/2021 ()2001-2003; Michael P. Frank



Module #4 -.Functions

Plots with floor/celling

Note that for {x)=LxJ, the graph of fincludes the point §
(4, 0) for all values of asuch that &0 and a<1, but not for

the value &=1.
We say that the set of points (g,0) that is in fdoes not

Include its /imitor bounaary point (4,1).
— Sets that do not include all of their limit points are generally
called gpen sets.
 |n a plot, we draw a limit point of a curve using an open
dot (circle) if the limit point is not on the curve, and with

a closed (solid) dot if it is on the curve.
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Module #4 -.Functions

Plots with floor/celling: Example

« Plot of graph of function fx) = x/3.:
t %)

Set of points (x, fx))

1/13/2021 ()2001-2003; Michael P. Frank



Module #4 -.Functions

Review of §2.3 (Functions)

Function variables 7, g, 5, ...
Notations: £A—B, fa), {A).
Terms: image, preimage, domain, codomain,

range, one-to-one, onto, strictly (in/de)creasing,
pijective, inverse, composition.

~unction unary operator 1,
pinary operators +, —, éefc., and o.

The R—Z functions | x| and [ x|

1/13/2021 ()2001-2003; Michael P. Frank
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Binary Relations

Let A, Bbe any two sets.
A binary relation R from Ato B, written (with signature)
R.A< B, i1s a subset of AxB.

— E.g,let<:NoN={(nm)| n< m}
The notation 4 R bor aRbmeans (a,0)eR.

— E.g.,a< bmeans (g b)e <

If aRbwe may say “ais related to 6 (by relation A)”, or
“arelates to 6 (under relation /).

A binary relation R corresponds to a predicate function
P Ax B—{T,F} defined over the 2 sets A,5, e.g.,
“eats” := {(ag,0)| organism 4 eats food b}



Complementary Relations

» Let ”.A< B be any binary relation.

» Then, XA« B, the complement of R, is the
binary relation defined by

K={ab)|(abeFR}=(A<B)— R
Note this is just R if the universe of

discourse IS U = AxB: thus the name
complement.

» Note the complement of A'is R

Example: < ={(ab) | (ab)g<}={(ab) | ~a<b}=>

1/13/2021



Inverse Relations

« Any binary relation #.A«< B has an /nverse
relation R*:B— A, defined by

Rt ={(ba | (ab)eR}.

Eg,<*={(b4a)|ab}={(ba) | ra} =>

 E.g.,If R.People—Foods is defined by
aRb < a eats b, then:

b R'a< biseaten by a. (Passive voice.)
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Relations on a Set

« A (binary) relation from a set A to itself is
called a relation on the set A.

« E.g., the “<” relation from earlier was

defined as a relation onthe set N of natural
numbers.

» The identity relation | , on a set A is the set
{(aa)lac A}.

1/13/2021



Reflexivity

 Arelation Ron Ais reflexiveif Y ae A, aRa.

— E.g., the relation > = {(a,0) | &0} is reflexive.

« Arelation is /rreflexiveiff its complementary

1/13/2021

relation Is reflexive.
— Note “irreflexive’ + “not reflexive’!
— Example: < is irreflexive.

— Note: “likes between people is not reflexive, but not
irreflexive either. (Not everyone likes themselves, but
not everyone dislikes themselves either.)



Symmetry & Antisymmetry

« Abinary relation Ron A is symmetric iff R
= R thatis, if (ab)eR— (ba)eR
— E.g., = (equality) is symmetric. <Is not.

— “Is married to” i1s symmetric, “likes” Is not.

« Abinary relation R is antisymmetric if
(ab)eR— (ba)eR.
— < Is antisymmetric, “likes” is not.
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Transitivity

« Arelation Ris transitive ift (for all 4,0,¢)
(aD)eR A (b0)eR— (40)€eR.

A relation 1s /ntransitive if it 1s not

transitive.

Examples: “is an ancestor of™ Is transitive.
“likes™ Is Intransitive.

“Is within 1 mile of” Is... ?
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Composite Relations

« Let R-A—B, and S.B—C. Then the composite
SoRof Rand Sis defined as:

SoR={(ac)|3b. aRb A bSc}

 Note function composition %#gis an example.

« The 7" power /A" of a relation £ on a set A can be
defined recursively by:
R=1,, R"':=R.R forall 0.

— Negative powers of /A can also be defined if desired, by
R"=(RYHY"
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n-ary Relations

An p-ary relation Ron sets A,,...,A,,
written R.A,,...,A,, IS a subset
RCcAXx...xXA.

The sets A, are called the domains of R.

The degree of Ris n.

R 1s functional in domain A; If it contains at
most one r-tuple (..., &;,...) for any value 4,
within domain A,

1/13/2021



Representing Relations

« Some ways to represent s-ary relations:
— With an explicit list or table of its tuples.
— With a function from the domain to {T,F}.

 Or with an algorithm for computing this function.
« Some special ways to represent binary
relations:

— With a zero-one matrix.
— With a directed graph.
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Using Zero-One Matrices

» To represent a relation /by a matrix
Mg =[my], let m;=11f (a;6)eR, else 0.
« E.g., Joe likes Susan and Mary, Fred likes

Mary, and Mark likes Sally.

* The 0-1 matrix Susan Mary Sally
representation Je | 1 1 0
of that “Likes” Fred | 0 1 0
relation: Mark | O 0 1

1/13/2021



Zero-One Reflexive, Symmetric

« Terms: Reflexive, non-Reflexive,
Irreflexive,
Symmetric, asymmetric, and antisymmetric.

— These relation characteristics are very easy to

1

any-
thing

recagn

thing

1
1

1

any-
thing

iZeoby

0

Inspect
thing

0
0

0

2
%

10N Qﬁthe zeltof
1 ™

0

-O

Reflexive:

1/13/2021

Irreflexive.
all 1’s on diagonal | all 0’s on diagonal

Symmetric:

all identical

across diagonal

Antisymmetric.
all 1’s are across
from 0’s




Using Directed Graphs

« A directed graph or digraph G=(VE) Is a set V of

1/13/2021

vertices (nodes) with a set £.c V< V, of edges

(arcs, links). Visually represented using dots for nodes, and
arrows for edges. Notice that a relation /. A< B can be
represented as a graph G—~(V—~AUB, E;=R).

Edge set £,
Gr (blue arrows)

Joe o Susan
Fred Mary

Mz susan Mary Sally
Joe | 1 1 0 |

Fred 0 1 0
Mark 0 0 1 | Mark\o—»jSaI ly

Node\get V,
(black dots)




Digraph Reflexive, Symmetric

It Is extremely easy to recognize the reflexive/irreflexive/
symmetric/antisymmetric properties by graph inspection.

® ® o
7

5 O

Reflexive: Irreflexive: Symmetric:  Antisymmetric:
Every node No node Every link is No link is
has a self-loop  links to itself bidirectional  bidirectional

Asymmetric, non-antisymmetric Non-reflexive, non-irreflexive
1/13/2021
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Closures of Relations

For any property X the “X closure” of a set A is defined as
the “smallest™ superset of A that has the given property.

The reflexive closure of a relation £on Ais obtained by
adding (g,4) to Rforeach acA. /e, it is|Pu I

The symmetric closure of R s obtained by adding (6,4) to
Rforeach (gb)in R. le,itis|Ru R?

The transitive closure or connectivity relation of Ris
obtained by repeatedly adding (4,¢) to R for each (a,0),(b,¢)
In R.

— le,itis R* _ URn

neZ*




Paths In Digraphs/Binary Relations

A pathof length nfrom node ato £in the directed

graph G (or the binary relation /) is a sequence
ga,x}q),), (X1, %), ..., (X,.1,0) of nordered pairs in £,
or R).

— An empty sequence of edges is considered a path of
length O from ato a.

— If any path from ato bexists, then we say that ais
connected to b. (“You can get there from here.”)

« A path of length /72~1 from ato ais called a circuit
or a cycle.

« Note that there exists a path of length »from ato 6
In Rif and only if (g,0)e A"
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Equivalence Relations

* An equivalence relation (e.r.) onaset Als
simply any binary relation on A that is
reflexive, symmetric, and transitive.

— E.g., = itself is an equivalence relation.

— For any function £.A— 2B, the relation “have the
same fvalue”, or =,:={(a,,a) | (a,)=A4,)}
IS an equivalence relation, e.g., let m=‘mother
of” then =, = “have the same mother is an e.r.
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Equivalence Relation Examples

“Strings aand b are the same length.”

“Integers @ and b have the same absolute
value.”

“Real numbers g and 6 have the same
fractional part (r.e., a— be 2).”

“Integers gand 6 have the same residue
modulo m.” (for a given nz>1)

1/13/2021
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9.1: What are Graphs?

« General meaning in everyday math:
A plot or chart of numerical qata using a
coordinate system.

« Technical meaning in discrete mathematics:
A particular class of discrete structures (to
be defined) that is useful for representing
relations and has a convenient webby -
looking graphical representation.

1/13/2021



Applications of Graphs

 Potentially anything (graphs can represent
relations, relations can describe the
extension of any predicate).

« Apps in networking, scheduling, flow
optimization, circuit design, path planning.

« Geneology analysis, computer game-
playing, program compilation, object-
oriented design, ...

1/13/2021



Types of Graphs:
1. Simple Graphs

« Correspond to symmetric
binary relations A.
« A simple graph G=(V,E)

_ . Visual Representation
consists of: of a Simple Graph

— a set Vof verticesor nodes (V/ corresponds to
the universe of the relation A),

—aset £of edges| arcs| links. unordered pairs of
[distinct?] elements ¢, v € V, such that uRV.

1/13/2021



Example of a Simple Graph

 Let Vbe the set of states In the far-
southeastern U.S.:

“V={FL, GA, AL, MS, LA, SC, TN, NC}

o Let E={{u, v} uadjoins v}

={{FL,GA}{FL,AL}{FL,MS},
{FL,LA}{GA AL}{AL MS},
{MS,LA} {GA,SC}{GA TN},
£SC,NC},{NC, TN}, {MS, TN},

1/13/2021



2. Multigraphs £ 27‘\_

 Like simple graphs, but there may be more
than one edge connecting two given nodes.

« A multigraph G=(V;, E, ) consists of a set
V of vertices, a set £ of edges (as primitive
objects), and a function ™ Parallel
fE->{{u v} uve VA v} edges

« E.g., nodes are cities, edges
are segments of major highways.
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3. Pseudographs 9/ \_3

 Like a multigraph, but edges connecting a
node to 1tself are allowed.

A pseudograph G=(V;, E, f) where
f.E->{{u v} uve V}. Edge ecElsa loopif
Re)={u,up={u}.

« E.g., nodes are campsites
In a state park, edges are
hiking trails through the wood
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Directed Graphs

« Correspond to arbitrary binary relations R,
which need not be symmetric.

» A directed graph (V, E) consists of a set of
vertices Vand a binary relation £on V.

« E.g.. V=people,
E={(x.y) | xloves y}

1/13/2021



Directed Multigraphs

 Like directed graphs, but there may be more
than one arc from a node to another.

* A directed multigraph G=(V, E, f) consists
of a set VVof vertices, a set £of edges, and a
function £E— Vx V.

« E.g.,, V=web pages,
E=hyperlinks. 7he WWW is
a directed multigraph...
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Types of Graphs: Summary

« Summary of the book’s definitions.

« Keep in mind this terminology is not fully
standardized...

Edge Multiple Self-
Term type edges ok? loops ok?
Simple graph undir. No No
Multigraph Undir. Yes No
Pseudograph undir. Yes Yes
Directed graph Directed No Yes
Directed multigraph  Directed Yes Yes

1/13/2021



9.2: Graph Terminology

» Adjacent, connects, enapoints, degree,
Initial, terminal, in-degree, out-degree,
complete, cycles, wheels, n-cubes, bipartite,

subgraph, union.

1/13/2021



Adjacency

Let G be an undirected graph with edge set £.
et ec £ be (or map to) the pair {¢,v}. Then
we say:

* U, vare aajacent| neighbors| connected.
» Edge els /nciadent with vertices v and V.
« Edge e connects uand V.

* Vertices vand vare enapoints of edge e.

1/13/2021



Degree of a Vertex

« Let Gbe an undirected graph, ve Va vertex.

* The adegree of v, deg(V), Is its number of
Incident edges. (Except that any self-loops

are counted twice.)
« A vertex with degree O Is /solated.
« Avertex of degree 1 Is pendant.
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Handshaking Theorem

« Let GDbe an undirected (simple, multi-, or
pseudo-) graph with vertex set VVand edge
set £. Then

> deg(v) =2|E

veV

« Corollary: Any undirected graph has an
even number of vertices of odd degree.

1/13/2021



eg(a) =6
eg(b) =4

eg(c)=1 pendant

eg(d) =0 Isolated

eg(e) =3

eg(f) =4

eg(g) =2

>deg(v) =20 =2>edges=2 x 10
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Directed Adjacency

« Let Gbe a directed (possibly multi-) graph,
and let e be an edge of Gthat is (or maps to)
(4,V). Then we say:

— U1s adjacent to v, vis adjacent from u
— e comes fromu, e goes tov.

— e connects u to v, e goes from u to v
— the /nitial vertex of eis u

— the terminal vertexof eis v

1/13/2021



Directed Degree

» Let Gbe a directed graph, va vertex of G.

— The in-degree of v, deg=(V), Is the number of
edges going to V.

— The out-degree of v, deg*(V), Is the number of
edges coming from v.

— The degree of v, deg(V)=deg-(V)+deg* (), Is the
sum of V’s in-degree and out-degree.
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Directed Handshaking Theorem

» Let Gbe adirected (possibly multi-) graph
with vertex set Vand edge set £. Then:

> deg™(v) =) deg’(v) == Zdeg(v)_\E\

veV veV VeV

* Note that the degree of a node iIs unchanged
by whether we consider its edges to be
directed or undirected.

1/13/2021
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0
0
0
C
C
O
C

eg+(a) =3
eg+(b) =3
eg+(c)=0
eg+(d) =0
eg+(e) =1

eg+(f) =2

eg+(g)=1

deg -(a) = 3
deg-(b)=1
deg -(c) =1
deg -(d) =0

C
C

C

eg-(e) =2
eg-(f) =2
eg-(9) =1

%Odeg"'(V) = Y'deg-(v) =1/2 Y deg(v)= Y edges =




Special Graph Structures

Special cases of undirected graph structures:
« Complete graphs K,

« Cycles C,
Wheels W,
n-Cubes Q,
Bipartite graphs
Complete bipartite graphs K,, ,
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Complete Graphs

« Forany neN, a complete graphon n
vertices, K., Is a simple graph with /7 nodes
In which every node is adjacent to every

other node: Yu,ve Vi urve>{u,v}eE.
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« For any /223, a ¢ycle on nvertices, C,, IS a
simple graph where V={v;,v,,... ,V,} and

E={{Vi, o} AVa, Vet AV Vi AV Vi 31

gegeiaiele

How many edges are there in C,?
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« For any />3, a wheel W, i1s a simple graph

1/13/2021

obtained by taking the cycle C,and adding
one extra vertex 1, and /7 extra edges

{{ Vhub Vl} {thb’ VZ} seo {thb’ Vn}}-

How many edges are there in W,?




n-cubes (hypercubes)

« For any neN, the hypercube @, is a simple
graph consisting of two copies of Q. ,
connected together at corresponding nodes.

Q, has 1 node.

Im@@

Number of vertices: 2”. Number of edges.Exercise to try!
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n-cubes (hypercubes)

« For any neN, the hypercube @, can be
defined recursively as follows:

— O={{v,},J} (one node and no edges)

— For any neN, if Q,=(V,E), where V={v,
épt, then Q,.,.=(Vu{w’
&y Yol{n v v, %'}
{v., v, }}) where v;’,...,v," are new vertices,
and where If e={v; v} then &¢/={v/,v,'}.
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Subgraphs

« Asubgraph of a graph G=(V,E) iIs a graph
H=(W,F) where Wz Vand FcE.

e
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Graph Unions

* The union G, G, of two simple graphs
G,=(V,, £) and G,=(V,,E,) Is the simple
graph (V1o V,, £VE,).
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9.3: Graph Representations

« Graph representations:
— Adjacency lists.
— Adjacency matrices.

— Incidence matrices.
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Adjacency Lists

« Atable with 1 row per vertex, listing its
adjacent vertices.

Adjacent
Vertex |Vertices

b, C

a, c,ef

a, b, f

c,b
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Directed Adjacency LIsts

1 row per node, listing the terminal nodes of
each edge incident from that node.
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Adjacency Matrices

 Matrix A=[g;], where a;1s 1 If {v; v;} Isan
edge of G, 0 otherwise.
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Adjacency Matrices

 Matrix A=[g;], where a;1s 1 If {v; v;} Isan
edge of G, 0 otherwise.
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§8.4: Connectivity

 |In an undirected graph, a path of length n
from u to vis a sequence of adjacent edges
going from vertex «to vertex Vv.

path 1s a crreurt it u=v.
path fraverses the vertices along It.

path 1s simple if it contains no edge more
than once.
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Paths In Directed Graphs

« Same as In undirected graphs, but the path
must go in the direction of the arrows.
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§9.1: Introduction to Trees

A freeis a connected undirected graph with
no simple circuits.

— Theorem: There iIs a unique simple path

between any two of its nodes.

« An undirected graph without simple circuits
Is called a forest.

— You can think of it as a set of trees having
disjoint sets of nodes.
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Rooted Trees

» A rooted tree s a tree in which one node has
been designated the root.

— Every edge is (implicitly or explicitly) directed

away from the root.

 You should know the following terms about
rooted trees:

— Parent, child, siblings, ancestors, descendents,
leaf, internal node, subtree.
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r-ary trees

« Arooted tree is called r-ary if every internal
vertex has no more than » children.

|t is fullif every internal vertex has exactly

n children.
« A2-ary tree is called a binary tree.
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Ordered Rooted Tree

e A rooted tree where the children of each
Internal node are ordered.

 |n ordered binary trees, we can define:

— left child, right child
— left subtree, right subtree

« For p-ary trees with /7>2, can use terms like
“leftmost”, “rightmost,” etc.
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Trees as Models

« Can use trees to model the following:
— Saturated hydrocarbons
— Organizational structures

— Computer file systems

 |n each case, would you use a rooted or a
non-rooted tree?
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Some Tree Theorems

« Atree with nnodes has /71 edges.

« Afull mary tree with 7internal nodes has
m=mH1 nodes, and /=(m-1)A+1 leaves.

— Proof: There are m/ children of internal nodes,
plus the root. And, ¢/ = n—/= (m-1)H+1. o

— Thus, given /m, we can compute any of /, n, and
¢ from any of the others.
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More Theorems

« Definition: The /eve/of a node is the length of the
simple path from the root to the node.
— The height of a tree is maximum node level.
— Arooted m-ary tree with height /#1s balanced if all
leaves are at levels A2or /1.
« Theorem: There are at most /77" leaves in an 77+
ary tree of height A.

— Corollary: An nrary tree with ¢ leaves has height
/2log, ¢ 1. If mis full and balanced then /= log, ¢ |
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§9.2: Applications of Trees

 Binary search trees
e Decision trees

— Minimum comparisons in sorting algorithms

Prefix codes
— Huffman coding

e Game trees
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§9.3: Tree Traversal

« Universal address systems

 Traversal algorithms

— Depth-first traversal:
 Preorder traversal
* |Inorder traversal
 Postorder traversal

— Breadth-first traversal
* Infix/prefix/postfix notation
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