
 1 

Chapter 1 
 

1 Propositional Logic: 
 

• Propositional Logic (Calculus): It deals with propositions. 

• Proposition: A statement that is either true or false (but not both). 

• Examples of propositions: 

- Today is Sunday.  (True) since, today is Sunday.  

- Today it is raining.  (True) since, today is raining.  

- 1 + 1 = 4. (False), since  1 + 1 = 2 

- Water boils at 50C.   (False)  → Scientific Fact 

- Ali has a cat. (True) as example for a story. 

- Ali has a dog. (false) as example for a story. 

 

• Examples of non-propositions: 

- 1 + x = 4. Since x is a variable 

- Close the door. (order) 

- What is your name? (question) 
- Wow!!!!! (Exclamation) 

 

Propositions can be denoted by Letters. 

• True value can be denoted by T. 

• False value can be denoted by F. 

• Example: 

- P: Today is Friday.  : T  

- Q: 1 + 1 = 4.     : F 

 

• Propositions can be: 

1. Atomic: consists of single proposition. 

2. Compound: consists of one or more propositions connected by logical operators. 

 

• Example: 

- P: Today is Friday.  : T   Atomic 

- Q: 1 + 1 = 4.     : F   Atomic 

- R:  P  Q     : F   Compound  
 

Truth Table 

• A Truth Table is a complete list of the possible truth values of a logical statement.  

• Truth table can be used to show the effect of each logical operator, and it can be also used to show the result 

of a logical statement. 



 2 

• Logical Operators:  

 

Assume that P, Q, and R are propositions 

 

1- Negation: for P, Negation of P is denoted by ~P, and it is read as "NOT P" 

  Negation reverses the truth value of P. 

- P: Today is Friday.  : T   Atomic 

- Q: 1 + 1 = 4.     : F   Atomic 

- ~P: Today is not Friday.  : F   compound 

- ~Q: 1 + 1 ≠ 4.     : T   compound  

 

• Truth Tables of a single proposition P or its Negation P: 

P 

T 

F 

 

2- Conjunction: is denoted by P  Q, and it is read as "P AND Q" 

  Conjunction is True, if both P and Q are true. 

Let: 

 P: Ali has a cat. 

Q: Ali has a dog 

P  Q : Ali has a cat and a dog. It is True when Ali has 2 pets both are a cat and a dog 

 

P Q P Q 

T T T 

T F F 

F T F 

F F F 

 

P P 

T F 

F T 

 



 3 

3- Disjunction:  

 a. inclusive OR is denoted by P  Q, and it is read as "P OR Q" 

                   It is True, if any of P and Q is true. 

Let: 

 P: Ali has a cat. 

Q: Ali has a dog 

P  Q : Ali has a cat or a dog. It is True when Ali has a cat or a dog or both. 

 

P Q P Q 

T T T 

T F T 

F T T 

F F F 

 

 

 b. exclusive OR is denoted by P  Q, and it is read as "P XOR Q" 

                   It is True, if any of P and Q is true, but not both. i.e. if they are different. 

Let: 

 P: Ali has a cat. 

Q: Ali has a dog 

P  Q : Ali has one pet, Ali has a cat or a dog.  

It is True when Ali has a cat or a dog but not both. 

 

Let: 

R : Ahmad is tall. 

S : Ahmad is short. 

W: Ahmad is fat. 

R  S : Ahmad is tall or short. 

R  W : Ahmad is tall or fat. 

 

P Q P  Q 

T T F 

T F T 

F T T 

F F F 

 

 

 



 4 

4- Implication: is denoted by P→ Q, and it is read as "P implies Q" 

  It is false, only if P is T and Q is F 

    P → Q has many forms in English Language: 

" If P, then Q"  "If P, Q"   "P only if Q" 

"P implies Q"   "Q if P"   "Q unless P" 

“When P, then Q”  “Whenever P, Q” 

 

P Q P → Q 

T T T 

T F F 

F T T 

F F T 

 

 USING: 

- P: it rains. 

- Q: I wear my coat. 

- P → Q : has many forms: 
1- If it rains, then I will wear my coat. 

2- If it rains, I will wear my coat. 

3- It rains only if I wear my coat. 

4- Raining implies that I will wear my coat. 

5- I will wear my coat, if it rains. 
6- I will wear my coat unless it is not raining. 

7- Unless it is not raining, I will wear my coat. 
 



 5 

5- Biconditional: is denoted by PQ, and it is read as "P if and only if Q" 

  It is true, if P and Q both have the same truth value. 

    P  Q has many forms in English Language: 

"P if and only if Q"   

"If P, then Q, and conversely" 

"P is sufficient and necessary for Q"   

 USING: 

- P: it rains. 

- Q: I wear my coat. 

- P  Q : has many forms: 

1- If and only if it rains, I will wear my coat. 

2- If it rains, I will wear my coat, and conversely. 
3- If it rains, I will wear my coat and if I wear my coat, it will rain 

 

P Q P  Q  

T T T 

T F F 

F T F 

F F T 

 

P  Q is the same as: 

( p → Q)  (Q → P) 

 



 6 

Examples: 

 USING: 

- P: Samer has a car. 
- Q: Samer has a bicycle. 

- R: Today is sunny. 

- S: It rains. 

- W: I wear my umbrella. 

  

 WE CAN BUILD: 

- ~R: Today is not sunny. 

- P  Q: Samer has a car and a bicycle. 

- P  Q: Samer has a car or a bicycle. 

- P  Q: Samer has a divining machine; it is either a car or a bicycle. 

- S → W: If it rains, I will wear my umbrella. 

- S  W: If it rains, I will wear my umbrella, and conversely. 
 



 7 

•  The following truth table is used to represent the compound proposition:  

     (P  Q)  (~P) 

P Q P  Q ~P (P  Q)  (~P) 

T T T F T 

T F F F F 

F T F T T 

F F F T T 

Note: If a compound proposition has n distinct simple components, then it will have 2n rows in its truth 

table, as this is the number of possible combinations of n components, each with 2 possible truth values 

T or F.  

 

• P → Q has 3 components: Converse, contrapositive, Inverse 

 

Assume:          ( P → Q )       if it is raining, then it is cloudy. 

                 P                              Q   

 

 

• Logical operator Precedence 

 

 

Operator Precedence 

  1 

  

 

 

2 

3 

4 

→ 

 

5 

6 

 

 

1. Converse Q→P If it is cloudy, then it is raining 

2. Contrapositive Q → P If it is not cloudy, then it is not raining 

3. Inverse p→Q if it is not raining, then it is not  cloudy 

Ex:  Assume P: T      Q: F    R: F 

 

Find the value of: 

P  Q   R   P 

T  F   F   T 

T  F  T   T 

T  F   T 

T  T  

    T 



 8 

• Translation into English Sentences 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.  if you are a computer science  major or you are not a freshman, you can access the internet in the lab. 

                          P                                                          Q     R 

 

                       (P  Q)→   R      

 

2. If you watch television your mind will decay, and conversely. 

              P    Q  

           P    Q 

 

3. You got an A in this class, but you did not do every exercise in the book. 

                P       Q 

         

       P     Q 

 

4. if it is hot outside buy an ice cream, and if you buy an ice cream it is hot outside. 

                 P   Q    Q  P 

      ( P →Q )    ( Q→P )               P   Q 

 

5.  You got an A in this class, only if you do every exercise in the book. 

                P       Q 

         

       P  → Q 

 

6.  You got an A in this class, if you do every exercise in the book. 

                P       Q 

         

       Q → P 

7. You will not got an A in this class, unless you did do every exercise in the book. 

                P       Q 

         

        Q → P 

 



 9 

• Logical And Bit Operations 

 

- Bit has two values: 0, 1 

- True (1), False (0) 

- Boolean Variable: a variable that is either true or false. 

- Bit operation corresponds to logical connectives: 
 

Logical 

Operator 

Bit operator 

  NOT 

  

 

 

AND 

OR 

XOR 

 

- Bit string: it is a sequence of zero or more bits. 

- String Length: number of bits in the Bit string. 

 
Ex1:   101010011    is a bit string with length = 9 

Ex2:  

 

     01 1011 0110            01 1011 0110        01 1011 0110 

     11 0001 1101             11 0001 1101       11 0001 1101 
   

    11 1011 1111                       01 0001 0100                         10 1010 1011 

 

 

   NOT (01 1011 0110) = 10 0100 1001 

OR AND XOR 



 10 

2 Logical equivalence 

 
Def: 1. Tautology: compound proposition that is always true (Ex: P  P) 

        2. Contradiction: compound proposition that is always false (Ex: P  P) 

        3. Contingency: compound proposition that is either true or false (Ex: P → Q) 

 

 

• Logical Equivalence ( P  Q , P  Q) 

  Def: the two compound propositions P,Q are logically equivalent if P   Q is a tautology .  

   

A. Using truth table 

 

Ex1: show that P→ Q   P  Q 

 

P Q  P P→ Q  P  Q P→ Q   P  Q 

T T F T T T 

T F F F F T 

F T T T T T 

F F T T T T 

 

       It is a Tautology 

   They are equivalent 
 

 

Ex2: show that  (P  Q)   ( P   Q) using truth table 



 11 

B. Using Logical equivalence rules 

 

Table 1: Equivalence rules:                                        Table 2: Implications Logical Rules 

  

 

 

 

 

 

  

 

 

 

 

 

     Table 3: Bicondintional Rules  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ex1: show that (P  Q) → (P  Q) is a tautology 

1.             (P  Q)  (P  Q)               Implication rule 

2.                (P  Q)  (P  Q)         Demorgan’s Law 

3.                (P  P)  (Q  Q)          Associative and commutative     

4.                        T    T      Negation law 

5.                            T  

 

Ex2: show that  (P  (P  Q)) and (P  Q) are logically equivalent. 

 

1.  (P  (P  Q)   P   (P  Q)                Demorgan’s 

2.    P   ((P)  Q)                                      Demorgan’s 

3.    P   ( P   Q  )                                          Double negation         

      4.     ( P  P)  ( P  Q)                      Distributive  

      5.            F        ( P  Q)        Negation 

      6.    ( P  Q)                 Identity 
  

Equivalence rule  Name 

P  T   P 

P  F   P 

Identity  

P   T  T 

P   F  F 

Domination  

P   P  P 

P   P  P 

Idempotent  

 P   P   T 

 P   P   F 

Negation  

( P)  P Double 

Negation 

P  Q  Q  P 

P  Q  Q  P 

Commutative  

(P  Q)  R  P  ( Q  R) 

(P  Q)  R  P  ( Q R) 

Associative  

P  (Q  R)  (P  Q)  (P  

R) 

P  (Q  R)  (P  Q)  (P 

R) 

Distributive  

  (P  Q)    P   Q   

  (P  Q)    P   Q 

Demorgan’s  

P  (P  Q)  P 

P  (P  Q)  P 

Absorption 

1. P →Q   P  Q 

2. P →Q  Q → P 

3. P  Q  P → Q 

4. P  Q  (P → Q) 

5. (P → Q)  P   Q 

6. ( P→Q)  (P→ R)  P→( Q R) 

7. ( Q→R)  (P→ R)  ( Q P) → R 

8. ( P→Q)  (P→ R)  P→( Q  R) 

9. ( Q→R)  (P→ R)  ( Q P) → R 

P  Q  (P →Q)  (Q→ P) 

 P  Q  P  Q 

P  Q  (P  Q)  (P Q) 

(P  Q)  P  Q 



 12 

3. PREDICATES AND QUANTIFIERS 
   

 

PREDICATES 
 

• X > 3 

•  X = Y +3   

Both above statements are not propositions, they are called predicates 

 

Ex1:  

P(x): x > 3       

P(2): 2 >3   : F    

p(4): 4>3    : T 

It is called:  Propositional function 

           

Ex2: Q(x, y): x= y+3                   Q(3,0):   3 = 0 + 3   : T 

 

Ex3: X + Y = Z .           R( X,Y,Z): X+Y = Z R(2,3,4) : 2+3 = 4   :F 

 

 

QUANTIFIERS 

 

Quantifiers        Universal quantifier ( ), for all 

                                  Existential Quantifier (), for some 

 

 

1. Universal Quantifier 
 

* P(x) is true for all values of x in the universe of discourse (domain).   ➔   x p(x)  

* x p(x) is read as : “ for all x p(x) “   ,   “ for every x p(x)” 

 

x p(x)   p(e1)  p(e2)  p(e3)  …..  p(en) , where {e1,e2,…,en} are all elements of the domain 

x p(x)  : T  , if p(x) is true for all elements 

 

Ex1: p(x) : “x+1 > x” , what is the truth value of  x p(x), where the domain is all real numbers? 

 

Sol : x p(x) is true for all values of x   

 

Ex2: What is the truth value x p(x), where p(x) is (x*x < 10). The domain is all positive integers not 

exceeding 4? 

 

Sol :     P(1)   p(2)   p(3)     p(4) 

                T       T      T         F     =   F 

 



 13 

Ex3:  what is the truth value of x ( x*x  x)   , if the domain is all integer numbers 

 

Sol:      T 

 

Ex4: Translate the following statement into English language:  

x Q(x), where Q(x) is “x has two parents” and the domain is all people. 

 

Sol: every person has two parents 

 

2. Existential quantifier 
 

• There exists an element x in the domain such that p(x) is true      ➔ x p(x)  

• x p(x)  is read as: “there is a x such that p(x) “,“ there is at least one x such that p(x)” 

 

x p(x)   p(e1)  p(e2) p(e3) ….. p(en) , where {e1,e2,…,en} are all elements of the domain 

x p(x)  : T  , if p(x) is true for at least one element 

 

 

Ex1: what is the truth value of   x p(x), where p(x) is “ x*x > 10” and the domain is all  integers not 

exceeding 4? 

 

 x p(x) =  P(1)  p(2)  p(3)   p(4) = True,  since p(4) is True 

 

Ex2: p(x):  x> 1   what is the truth value of x p(x) , where the domain is all real numbers? 

 

Ans:  True 

 

 



 14 

Binding Variable 
 

A variable in a predicate might be: 

1- Free: 

Ex1:   p(x): x has a cat.  Domain: people x is a free variable. 

Ex2:   like(x, y): x likes y.  Domain: people x and y are free variables. 

 

2- Bound: 

a. To a value 

Ex1:  p(Ali): Ali has a cat.  x is a bound variable to value Ali. 

 

Ex2: like(Ali, Ahmad): Ali likes Ahmad. x and y are bound variables to values. 

like(Ali, y): Ali likes y. x is a bound variable to a value, y is free.==> it is a predicate. 

 

b. To a quantifier 

Ex:  xy  like(x,y)    x is bound to ,   y is bound to  

Ex:  x Q(x, y)     x is bound,    y is free 

Ex: x ( p(x)   Q(x))               x R(x)  

 - x is bound to x,                                 - x is bound to x   

- Scope of  x is ( p(x)   Q(x))             -  scope of x  is R(x) 

 

This statement can be written as : 

x ( p(x)   Q(x))    y R(y)      

But if it becomes : x ( p(x)   Q(x))    R(y)      

     since y is free, so this is a predicate (not a proposition) 

because a proposition might be a predicate with no free variables. 

so (      ) following the quantifier specified  the scope of it. if there is no (    ), the scope of the 

quantifier will be the first predicate only. Like: 

     x  p(x)   Q(x)    y R(y)      x  p(x)   Q(z)    y R(y)    

     Because Q is out of  scope. 

 

Negation 
 

1.   x P(x)  x  p(x)    

  ex: Every student in the class has taken calculus.   x P(x) 

       There is a student in the class who has not taken Calculus.  x P(x) x  p(x) 

 

2.  x P(x)  x  p(x) 

ex: There is a student in the class who has taken Calculus  x p(x) 

      Every student in the class has not taken calculus.   x P(x)  x  p(x) 

 

Ex: what are the negations of the following statements? 

A.  x (x*x >x)  

    Sol: x (x*x >x)  →   x  (x*x > x) →  x (x*x  x) 

       

B. x (x *x = 2) 

        Sol : x (x *x = 2) → x  (x *x = 2) →  x (x *x  2) 



 15 

4 NESTED QUANTIFIERS 
 

Ex1: xy ( x + y =  y + x )   is true,   for every values x and  y     x + y = y + x    Domain: Real Numbers. 

 

Ex2: xy ( x + y =  0 )  is false for every values x and y    x + y = 0   Domain: Real Numbers. 

 

Ex3: C(x) is “x has a computer” 

         F(x, y) is “x and y are friends 

 

Translate the statement: 

 x (C(x)    y (C(y)   F(x, y) )  ) 

 

Sol:  For every student x in your school x has a computer or there is a student y such that y has a computer and 

x and y are friends.  

 

Or 

 

Every student in your school has a computer or has a friend ho has a computer 

 

NEGATING NESTED QUANTIFIER 
 

Ex:  xy (xy = 1) →  x y (xy = 1) →  xy (xy  1) 

Ex:  xy z (P(x,y) Q(y,z) ) → xy z (P(x,y) Q(y,z)) 

         → x y z (P(x,y) Q(y,z)) → x y z (P(x,y) Q(y,z)) 

         →  x y z (P(x,y) ˅Q(y,z)) 

 

 

ORDER OF QUANTIFIER 
 

Statement When true When false 

xy P(x, y) 

yx P(x, y) 

P(x, y) is true for every pair 

x, y. 

There is a pair x, y for 

which P(x, y) is false 

xy P(x, y) 

 

For every x, there is a y for 

which P(x, y) is true 

There is x, such that P(x, y) 

is false 

xy P(x, y) 

 

There is x for which P(x, y) 

is true for every y. 

For every x there is a y for 

which P(x, y) is false 

xy P(x, y) 

yx P(x, y) 

There is a pair x, y for 

which P(x, y) is true 

P(x, y) is false for every 

pair x, y. 

 

 



 16 

  

Using Domain: All integers 
 

Ex1:    Let Q(x, y) denote “ x + y = 0” what are the truth values of the quantifications  

             xy Q(x, y), and  xy Q(x, y)? 

            

      Sol:  xy Q (x, y)  false               xy Q(x, y)  true 

 

Ex2:    Let Q(x, y) denote “ x + y = x” what are the truth values of the quantifications  

             yx Q(x, y), and  xy Q(x, y)? 

            

      Sol:  yx Q (x, y)  true               xy Q(x, y)  true 

 

Ex3:    Let Q(x, y) denote “ x + y = y + x” what are the truth values of the quantifications  

             yx Q(x, y), and  xy Q(x, y)? 

            

      Sol:  yx Q (x, y)  true               xy Q(x, y)  true 

 

Ex4:    Let Q(x, y) denote “ x + y = 5” what are the truth values of the quantifications  

             yx Q(x, y), and  xy Q(x, y)? 

            

      Sol:  yx Q (x, y)  true               xy Q(x, y)  false 

 

 

Ex5:    Let Q(x, y) denote “ x + y = 0.5” what are the truth values of the quantifications  

             yx Q(x, y), and  xy Q(x, y)? 

            

      Sol:  yx Q (x, y)  false               xy Q(x, y)  false 



 17 

Translation From English Into Logical Expressions 
 

Examples: 

 

1. Express the statement : 

“For every person x, if person x is a student in this class then x has studied Calculus”.  

Domain: All people              S(x)                     C(x) 

  x ( S(x) → C(x) ) 

 

                 

2. Express the statement: 

 “Every student x, if x is a student in this class then x has studied Calculus”.  

Domain: All students in this class.       C(x) 

 

    x C(x)  

 

3. “No one is perfect” 

         x  P(x) 

 

4. “All your friends are perfect.” 

   F(x): your friend               P(x): perfect 

  x  ( F(x) → P(x)) 

 

5. Let P(x) be the statement “x can speak French” and Q(x) be the statement “x knows C++”. The domain 

is all students in the school. Express the following statement using quantifiers and logical operator: 

 

A. “No student at your school can speak French or knows C++.” 

 

x  (P(x)  Q(x)) 

 

 

B. There is a student at your school who can speak French but does not know C++. 

x (P(x)  Q(x))  

 

 

6.  Express the statement “if a person is a female and is a parent, then this person is someone’s mother” 

 

F(x): person is a female 

P(x): person is a parent 

M(x, y): x is the mother of y 

 

Sol: x ( (F(x)  P(x)) → y M(x, y) ) 

 

7.  Express the statement: “Everyone has one best friend” 

     Sol:  

           B(x, y) : x is the best friend of y   

           x y  B(x, y)  

 

 



 18 

Chapter 1 Exercise on Translation 

 
➢ Exercise 1:  

Domain: people 

Teacher(x): x is a teacher. 

Student(x): x is a student. 

Visit(x, y): x visited y. 

Translate the following into Logic: 

A. Ali visited Sami. 

B. Ali visited everyone. 

C. Ali visited someone. 

D. Ali visited some teachers. 

E. Ali visited all teachers. 

F. Someone visited someone. 

G. Everyone visited someone. 

H. Someone visited everyone. 

I. Everyone visited everyone. 

J. Everyone has been visited by someone. 

K. Ali did not visit anyone  Ali visited nobody.  

L. Ali did not visit everyone. 

M. All students visited Ali and some teacher too. 

N. All students visited Ali and some teacher did. 

O. Ali visited everyone but nobody visited him. 

 

 

➢ Exercise 2:  

Let: 

Domain: Animals 

 

Translate the following into Logic: 

Domain: Animals 

A. All animals have skin. 

B. All dogs have legs. 

C. Some cats are black. 

D. Some cats are black or white. 

E. No animal can speak English. 

F. If there is an animal, then it has a mother. 

 



 19 

➢ Exercise 3:  

Let: 

Domain1: people 

Domain2: fruits. 

L(x, y): x likes y. 

Friend (x, y): x is a friend of y. 

Student(x): x is a student. 

Teacher(x): x is a teacher. 

Teach(x, y): x teaches y. 

 

Translate the following into Logic: 

 

A. Everybody likes apples. 

B. Somebody likes apples but not oranges. 

C. Everybody likes apples or oranges. 

D. Everybody likes some fruits. 

E. Everybody likes somebody. 

F. Everyone likes Ali. 

G. Ahmad likes Ali. 

H. Someone likes every one. 

I. No one likes every one. 

J. Everyone likes himself/herself. 

K. There is someone whom everybody likes. 

L. Some students like some teachers. 

M. Ali and Ahmad are friends. 

N. Some students are friends. 

O. Every teacher has taught Ali. 

P. Some teachers have taught Ali and all his friends. 

Q. Ali has a friend who has been taught by all teachers. 

R. Some teachers have taught all students. 

S. Some students and some teachers are friends. 

T. If someone is a teacher, then Ali likes him. 

U. If a person is a teacher, then he taught some students. 

  



 20 

5 Rules of Inference 
 

Example: 

     P              : T (hypothesis, or premise) 

     P→ Q      : T (hypothesis, or premise) 

-------------- 

 Q           : T (Conclusion) 

 

 (Therefore) 

 

 

Rules of inference Tautology Name 

P 

------ 

PvQ 

P→  (p v Q) 

 

 

Addition 

PQ 

------ 

P 

(PQ) → P Simplification 

P 

Q 

------ 

 PQ 

((p) (Q)) → (PQ) 
Conjunction 

 

P 

P→Q 

------ 

 Q 

[P (P→Q)]→ Q 
Modus ponens 

 

Q 

P→Q 

------ 

 P 

[Q  (P→Q)]→ P 
Modus Tollens 

 

P→Q 

Q→R 

-------- 

P→R 

[(p→Q)  (Q→R)]→(P→R) Hypothetical Syllogism 

P Q 

P 

-------- 

 Q 

[(PQ)  P]→ Q Disjunctive syllogism 

PQ 

PR 

---------- 

Q R 

[(PQ)  (PR)]→ Q R Resolution 

 

 

 

 

 



 21 

Ex: state the rule of inference for: “It is below freezing now, therefore it is either below freezing or raining 

now” 

 

Sol:  

       It is below freezing: P 

       It is raining: Q 

 

It is called: Addition Inference Rule. 

 

Ex: State the rule of inference used in the argument 

“If it is rain today, then we will not barbecue today”.  “If we don’t barbecue today then we will have a barbecue 

tomorrow”. Therefore, “if it rains today, then we will have a barbecue tomorrow”. 

 

Sol: 

If it is rain today:  P   we will barbecue today: Q 

We will have barbecue tomorrow: R 

 

1. P→   Q 

2.   Q→R 

--------- 

P→R     using H. S. of step 1 and step 2 

 

 

Valid Argument 

 

• An Argument form is called valid if whenever the entire hypothesizes are true, the conclusion is also 

true. 

• Consequently Q logically follows from the hypothesis p1,p2, p3, ….., pn: 

 ( P1P2 P3……Pn) → Q 

 

 

P 

------ 

P v Q 

 



 22 

EX: Show that the hypothesis “It is not sunny this afternoon and it is colder than yesterday.” “we will go 

swimming only if it is sunny,” “ if we do not go swimming, then we will take a canoe trip,” and “ If we take a 

canoe trip, then  we will be home by sunset” leads to the conclusion “ we will be home by sunset” 

 

P: It is sunny this afternoon 

Q: it is colder than yesterday 

R: we will go swimming only if it is sunny 

S: we will take a canoe trip 

H: we will be home by sunset 

    

Hypothesis 

1. PQ 

2. R→P 

3. R→S 

4. S→H 

 

Solution: 

 

Step            Reason 

1. PQ        Hypothesis 

2. P                              Simplification using step 1 

3. R→P   Hypothesis 

4. R      Modus tollens step 2 + 3 

5. R→S   Hypothesis 

6.  S    modus ponens using step 4 and 5 

7. S→H   Hypothesis 

-------------------------------------- 

  H    Conclusion (modus ponense using step 6 and 7 

 

 

Fallacies 

 

There are two types of fallacies: 

A. Fallacy of affirming the conclusion  [(P→Q)   Q] → P 

 

This may be wrong you may get an A without solving every problem in the book. 

 

B. Fallacy of Denying the Hypothesis  [(P→Q)   P] → Q 

 



 23 

Rules Of Inference For Quantified Statements 
 

Rules Of Inference Name 

)(xxP  

--------- 

P(c)   for all elements c 

Universal Instantiation 

P(c)       for every element c 

--------- 
 )(xxP  

 

Universal Generalization 

)(xxP  

--------- 

P( c)    for some element c 

Existential Instantiation 

P( c)       for some element c 

---------- 
 )(xxP  

 

Existential Generalization 

 

 

EX1: show that the premises “ Everyone in this class has taken a course in computer science” and “ Marla is a 

student in this class” imply the conclusion “ Marla has taken a course in computer science”. 

 

D(x) : x in this class 

C(x) : x has taken a course in computer science. 

 

Sol: 

1. ))()(( xCxDx →     Premise #1 

2. D(Marla) → C(Marla)        Universal instantiation from 1 

3. D(Marla)      Premise #2 

--------------------------------------------------- 

 C(Marla)        Modus Ponens from 2 and 3 

 

EX2: show that the premises “Everyone in this class has taken a course in computer science” and “Someone is 

a student in this class” imply the conclusion “Someone has taken a course in computer science”. 

 

D(x) : x in this class 

C(x) : x has taken a course in computer science. 

 

Sol: 

1. ))()(( xCxDx →     Premise #1 

2. D(a) → C(a)        Universal instantiation from 1 

3. x D(x)      Premise #2 

4. D(a)    Existential  instantiation from 3 

5. C(a)         Modus Ponens from 2 and 4 

--------------------------------------------------- 

  x C(x)   Existential generalization from 5 

 



 24 

6.  Introduction to Proofs 
 

Methods Of proofs 
 

1. Direct Proof 

• The implication p→Q can be proved by showing that if P is true then Q must also be true. 

• Integer n  is even if there exists an integer K such that n=2K 

• Integer n  is Odd if there exists an integer K such that n=2K+1 

 

Ex: Give a direct proof of the theorem “if n is an odd integer, then n2 is an odd integer” 

 

Sol: 

1. Assume n is odd.       n = 2K+1 

2.  It follows that n2 = (2K+1)2 = 4K2+4K + 1  = 2(2K2+2K) + 1 is also odd  

5. therefore n2 is odd  

 

2. Indirect Proof 

• The implication p→ Q is equivalent to it’s contrapositive Q→P 

• To prove that p→ Q is true we should prove that Q→P is true 

 

Ex: Give indirect proof of the theorem “if 3n+ 2 is odd, then n is odd” 

First, you need to change the theorem to become: “if n is even, then 3n+2 is even” 

   1. Assume that n is even so n =2K 

   2. 3n+ 2 = 3(2K) + 2 = 6K + 2 = 2(3K + 1)  so it is even 

   3. If n is even then 3n + 2 is even,  

     So if 3n+2 is odd then n is odd 

 

 

3. Prove by Contradiction 

Ex: proof by contradiction that “ if n is an odd integer, then n2 is an odd integer” 

1. assume n is even but n2 is an odd integer 

2. n = 2K 

3. n2 = 4K2 = 2(2 K2 )   it’s even 

4. n2 can’t be odd and even in the same time.  

    So by contradiction if n is even then n2 is even.  

    So if n is odd then n2 is odd. 

 

4. Proof by cases 

 Ex1: Use proof by cases to show that: |xy|=|x||y|       

Case P1:   x>=0   x >=0 

Case P2:   x>=0   x <0 
Case P3:   x<0   x >=0 

Case P4:   x<0   x <0 

Case P: |x||y| 

We need to show that  

P1→P    P2→P     P3→P     P4→P 
   T            T             T              T     =T 

Ex2: Use proof by cases to show that: if n is even or odd integer then 2n+3 is odd. 



1 

 

Chapter 2 
 

1 Sets 
 

 Def 1: A set is an unordered collection of objects 

 Def 2: The object in a set are also called the elements or members 

 

 Def 3:   

N = { 1,2,3 ….}   the set of natural numbers 

Z= { ….. , -2 , -1 , 0 , 1 ,2 , ….}   the set of integers. 

Z+ = { 1, 2 ,3 …..}  the set of positive integers 

Q = {p/q    pZ, qZ , q  0} set of rational numbers 

R, the set of real numbers 

 

 Def 4: Two sets are equal if and only if they have the same elements. 

Ex:   { 1,3,5}  and { 5, 1,3}  are equal .  

          {5,1,3} and { 5,5,5,5,1,1,3,3} are equal 

 

 Def 5: Empty Set(Null set) is a set with no elements.   Ex: { } 

 Def 6: Singleton set is the set with one element. Ex: { } , {1} ,{A} 

 Def 7: Finite set is the set with limited number of elements 

                 Infinite set is the set with unlimited number of elements 

   

 Def 8: Set cardinality (  |S|  ) is the number of elements in a set. 

  Ex:  1.  S= { 1, 2, 3,-5 ,0}  .    |S| = 5 

         2. || = 0 

           

 Set can be described by: 
 

A. Listing all of it’s members 

Ex: describe the set of positive odd numbers less than 10. 

O = { 1, 3, 5, 7, 9} 

  

B. Set Builder Notation 

 

Ex: describe the set of odd numbers less that 10 using set builder notation. 

 

   O = { x | x is an odd positive number less than 10} 

 

 

C. Venn diagram 

 

Def: universal set U  is the set that contains all objects under consideration. 

 

Ex: V = describes the set of Vowels using Venn diagram. 

                                      U: English Letters 

           V  
a e 

  

o        u 

i  



2 

 

Subsets   ( A  B) 

 
 The set A is a subset of the set B if and only if every element of A is also an element of 

B.     ( A  B)  

 ( A  B)  is true, if and only if the quantification x( xA       xB) is true 

 

 Thm: for any set S 

              *  (  S)    : { } is a subset of any set. 

  *  ( S  S)    : any set is a subset of itself. 

 

 If  ( A  B)  is true and ( B  A)  is true  then A = B.  x( xA      xB) is true 

 

Proper subset   (A  B) 

 

 The set A is a proper subset of the set B if and only if every element of A is also an 

element of B, but A  B.     ( A  B) 

 ( A  B)  is true, if and only if the quantification x( (xA  xB) ˄ A  B) is true 

 

  Ex:  S= { , 1, 2, 3, 4, 5, {1} }  

 1S  6S  {1}  S  {1}  S 

 S  S  S  S    S     S 

 {}  S {1}  S {{1}}  S  {1,2,3}  S 

 

Power set P(S) 
 

 Given a set S, the power set of S is the set of all subsets of the set S. the power set is 

denoted by P(S) 

 

Ex: what is the power set of the set {0, 1, 2} 

P(S)= {  , { 0 , 1, 2} , {0} , {1 } , {2 } , {0,1} , {0,2} ,{1 ,2} } 

 

Ex: P({} ) =  {  , {}} 

      P() =  {} 

  

 If a set has n elements, then its power set has 2n elements. 

Ex: S = {0, 1, 2}    then number of subsets is 23 = 8 

 

Cartesian Products 

 A   B = { (a, b) | a  A  b  B} 

 

Ex: A = {1, 2}     B= {a, b, c} 

 A   B = { (1,a), (1,b) ,(1,c) , (2,a), (2,b) ,(2,c)} 

 B   A = { (a,1), (a,2), (b,1), (b,2), (c,1), (c,2)} 

 A   B     B   A 

 Relation from the set A to the set B is a subset from A   B 



3 

 

 

2 Set Operations 
 

1. Union   (A  B):             { x|     x A  xB} 

 

2. Intersection  ( A  B):   { x|     x A  xB} 

 

3. Difference ( A –B) :        { x|     x A  xB} 

 

4. Complement  A      :       { x|     x A } 

 

5. Symmetric Difference (A Δ B)     : { x |    x  A  B    x  A  B} 

 

Example: 

 

A = {3, 4, 5}   B={1, 2, 3}  U={1, 2, 3, … , 10} 

 

 
 

A  B = {1, 2, 3, 4, 5} 

 
 

A  B = {3} 

 

 
 

 

 



4 

 

A – B = {4, 5} 

 

 
 

B – A = {1, 2} 

 

 
__ 

A = { 1, 2, 6,7, 8, 9, 10} 

 

 
__ 

B = { 4, 5, 6, 7, 8, 9, 10} 

 

 
 

 

 

 

 

 

 

 



5 

 

 

A Δ B = {1, 2, 4, 5} 

 

 
 

 

Def:     a. A and B are disjoint if and only if   A  B =  

 Example : A={x |  x is an even number  Z} 

        B={ x | x is an odd number  Z} 

        A  B =  

 
           

 b. | A  B| = |A| + |B| - | A  B| 

Example: 

A = {3, 4, 5} B={1, 2, 3} A  B = { 1, 2, 3, 4, 5} A  B  = {3} 

| A  B | = 3 + 3 – 1 = 5 

 

             c. | A  B C| = |A| + |B| + |C| - | A  B|- | A  C|- | B  C|- | A  B C | 

 

 

 



6 

 

* Computer representation of sets 
 

Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 

What is the bit string that represents the set of odd integers in U? 

 

Sol:         

  U=      1    2    3    4    5    6    7    8     9     10 

  S=      1           3          5          7           9 

                    

1     0  1    0    1    0    1    0     1       0  

 

Meaning of bit string: 

1   x  S 

0   x S 

 

 

Set Operations: 

Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 

Let  A = 1  0 1 0   1 0 1 0   1  0      &     B = 1 1 1  0  1 01 0   1 1 

This means: A= {1,3,5,7,9} and B={1,2,3,5,7,9,10} 

 

1  0 1 0   1 0 1 0   1  0       1 1 1  0    1 01 0   1 1 =  1 1 1 0  1 0 1 0 1 1  = A  B 

 

1  0 1 0   1 0 1 0   1  0       1 1 1  0    1 01 0   1 1  = 1 0 1 0  1 0 1 0 1 0  = A  B 

 

1 1 1  0    1 01 0   1 1      (1  0 1 0   1 0 1 0   1  0)  = 0 1 0 0  0 0 0 0  0 1  =  B – A 

 

(1  0 1 0   1 0 1 0   1  0) =   0  1 0 1   0 1 0 1   0  1  =  A 

 

 

 

 

 



7 

 

* Proving techniques 

A. Set identities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      __________        __     __        __ 

Ex: prove that   A  (BC)     ( C   B  )   A   using set identities: 

 

    A  (B  C)      A  (B  C )     

 

                                ( B   C )    A    

 

                                 (C B)    A    

 

 

 

 

 

 

 

 

Equivalence rule    Name 

A   A 

 AU  A 

Identity  

A    

A  U  U 

Domination  

A  A   A 

A  A  A 

Idempotent  

(  A    ) = A Complementation law 

A B  B A 

A B  B A 

Commutative  

(A  B)  C  A  ( B  C) 

(A  B)  C  A  ( B  C) 

Associative  

A  (B  C)  (A   B)  (A   C) 

A  (B  C)  (A   B)  (A   C) 

Distributive  

BAB A   

BAB A  
 

Demorgan’s  

A  (A  B)  A 

A  (A  B)  A 

Absorption 

A  A    

A  A U 

Complement law 



8 

 

B. Set builder notation 

 

Ex: use set builder notation and logical equivalence to show that   

 

A B    A  B 

 

Sol: 

 

A B     { x| x A  B} 

 { x| (x A  B)} 

     =    { x| (x A  xB)} 

     =    { x|     x A  xB} 

     =    { x|     x A  xB} 

     =    { x|     x (A B)}      =    (A   B) 

 

Exercise: Prove the following using set builder notation :  

     

A  - B    A  B 

 

 

C. Membership table 

Ex: prove that A  (B  C)  (A   B)  (A   C) for all sets A, B, and C 

 

A B C B  C A  (B  C) A   B A   C (A   B)  (A   C) 

0 0 0 0 0 0 0 0 

0 0 1 1 0 0 0 0 

0 1 0 1 0 0 0 0 

0 1 1 1 0 0 0 0 

1 0 0 0 0 0 0 0 

1 0 1 1 1 0 1 1 

1 1 0 1 1 1 0 1 

1 1 1 1 1 1 1 1 

 

D. Venn Diagrams  

 

B  (A  C)  (B   A)  (B   C) 

      

 
 

 

 

 



9 

 

2. Functions 
 

Def 1: Let A and B be sets, a function from A to B  (f: A  B) is an assignment of 

exactly one elements of B to each element of A. where f(a) = b , and a  A, bB. 

 

Def 2: if f  is a function from A to B: 

 We say that A is the domain of  f  and B is the codomain of f. 

 If f(a) = b  then a is the pre-image of b, and b is image of a. 

 The range of f is the set of all images of elements of A. 

 if f  is a function from A to B, we say that A maps B. 

 

Ex: Let f: Z  Z such that f(x) = x2 .  the domain and the codomain is all integers. The range 

of f is the set positive integers Z+  

 

Ex: Let f: Z  Z such that f(x) = x1/2 .  the domain and the codomain is all integers. 

This is not a function since negative values have no images and non perfect square have no 

integer images. But if f becomes from f:Z+  R+, it becomes a function. 

 

A function can be specified in different ways: 

a. Formula       ex: f(x) = x +1 

b. Graph          ex1: function  f: A  B.  A = { a , b , c} and B = { 2 , 3, 4} 

                               f(a) = 2,    f(b) = 4    f(c) = 3 

 

 

      

  

 

 

 

 

 

 

 

Def 3: Let f1 and f2 be functions from A to R (i.e. real valued functions), then: 

 f1 +  f2, and    f1 f2 are also functions 

 (f1 +  f2)(x) = f1(x) +  f2(x) 

 (f1 f2)(x) = f1(x)  f2(x) 
 

Ex: Let   f1 and f2 be functions from R to R such that f1(x) = x2 and f2(x) = x –x2 what are 

the functions f1 +  f2  and  f1 f2 for x =100? 

 

(f1 +  f2)(x) = f1(x) +  f2(x) = x2 + (x –x2) = x  (f1 +  f2)(100)=100. 

          (f1 f2)(x) = f1(x)  f2(x) = x2 * (x –x2) = x3 – x4  (f1 f2)(100) = 1003-1004. 

 

Def 4: Identity function on A is the function  tA: A  A , where f(x) = x 

Ex: f: ZZ  , f(x)=x is an identity function 

   a   2 

 

 

  b   3

  

 

  c   4

  



10 

 

Functions Types 

 

A. One –To - One (injective) 

 

Def : A function f is One- to –One if and only if f(x) = f(y) implies that x =y for all x 

and y in the domain of f.  

 

xy ( f(x) = f(y)   x = y) or  xy  (x  y   f(x)  f(y) ) 

 

Ex: The function f from {a, b, c, d} to {1, 2, 3, 4, 5} with f(a) = 4,  f(b) =5 , f(c) = 1, and 

f(d)=3 is  one - to –one.  

 

 

a   1  

    

b  2 

 

c  3 

 

d  4 

 

    5 

 

 

Ex: Determine whether the function f:ZZ  such that   f(x) = x2  is one-to-one or not. 

 

Sol. : The function f(x) = x2  is not one-to-one .  Because f(1) = f(-1) = 1 but 1  -1 

 

 

Def: a function whose domain and codomain are subset of the set of real numbers is: (they 

are always one-to-one) 

 Strictly increasing if f(x) < f(y) whenever x < y and x, y are in the domain of 

f. example: f(x)= x + 2,  f: Z  Z 

 

                      xy  (x < y   f(x) < f(y) ) 

 

 

 Strictly Decreasing if f(x) > f(y) whenever x < y and x, y are in the domain 

of f. example: f(x)= 2 - x,  f: Z  Z 

 

xy  (x < y   f(x) > f(y) ) 

 

  



11 

 

B. Onto (Surjective) 

 

Def: A function from A to B is onto if and only if every element bB there is an 

elements a  A with f(a) = b. (codomain=range) 

yx ( f(x) = y)  

Ex: let the function f from {a, b, c, d} to { 1, 2 ,3} defined by f(a) = 3, f(b)= 2, f(c)=1, f(d) = 

3, is f onto?  

 

 

a   1  

    

b  2         Onto function 

 

c  3 

 

d   

 

Ex: is the function f(x) = x2 from Z  Z  Onto function. 

 

Sol.: It is not onto function, since there is no integer x such that  f(x) = -1 

 

 

C. One- to –one correspondence (bijective) 

 

A function is bijective if and only if it is both one-to-one and onto. 

 

Ex: identity function f(x) = x is bijective 

 

Ex: 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

a        1  

 

b        2          

 

c        3 

 

        4 

 

a        1  

 

b        2          

 

c        3 

 

d   

 

a         1  

 

b         2          

 

c        3 

 

d        4 

 

a        1  

 

b        2          

 

c        3 

 

d        4 

 

a        1  

 

b        2          

 

c        3 

 

        4 

 

One-to-one        Onto    One-to-one  Not Onto  Not a function 

Not Onto        Not One-to-one   Onto   Not one-to-one  

       Bijective  



12 

 

INVERSE AND COMPOSITE 

 

1. Inverse 

Def: let f: A  B be bijective from A to B. the inverse function of f is f –1: B  A, where 

f(a) = b and f –1(b) = a 

 Invertible function: bijective function is also called Invertible since we can 

define an inverse. 

 Not Invertible function: if it is not bijective since we can’t define an inverse. 

 (f  -1) –1 = f 

 

Ex: let f  be the function from {a, b, c} to {1, 2, 3} such that f(a)=2, f(b)=3, f(c)=1, is f 

invertible and what is its inverse if it is? 

 

Sol.: f  is invertible because it ‘s one-to-one correspondence 

 f -1(2)=a,   f -1(3)=b,      f -1(1)=c 

 

 

 

 

 

 

 

 

 

Ex: let f  be the function from {a, b, c} to {1, 2, 3} such that f(a)=2, f(b)=3, f(c)=2, is f 

invertible and what is its inverse if it is? 

 

Sol.: f  is not invertible because it ‘s not one-to-one correspondence, since it is not one-to-one 

nor onto. But, if f-1 is constructed, the result is not a function. 

 

 

 

 

 

 

 

 

 

 

Ex: Let f be the function from Z to Z with f(x) = x + 1, is f invertible? 

 

Sol.: It is invertible and the inverse is    f  -1( y ) = y  - 1 

 

 

2. Composition 

 

 The composition of the functions  f: A  B and g: B  C is denoted by : 

        (g  f)(a) = g(f(a)) 

 if A  C, then  (f  g)(a) cant be calculated  

 if f(a) =b     .   ( f -1  f)(a) = ( f -1 (f(a)) =  f -1 (b) = a        tA 

 if f(a) =b     .   ( f   f -1 )(b) =  f (f -1 (b)) =  f (a) = b          tB 
 

a        1  

 

b        2          

 

c       3 

 

f 

1        a  

 

2        b          

 

3       c 

 

 f -1 

a        1  

 

b        2          

 

c       3 

 

f 

1        a  

 

2        b          

 

3       c 

 

 f -1 



13 

 

 

Ex: Let f(x) = 2x + 3 and g(x) = 3x + 2 what is the composition of f and g if they both 

are from R to R? 

( f  g)(x) = f(g(x)) = f (3x + 2) = 6x + 7 

( g  f)(x) = g(f(x)) = g (2x + 3) = 6x + 11 

  ( f  g)(x)  ( g  f) (x)  
 

 

 



14 

 

Important Functions 

 

 Floor  function  x: the floor of real number x is the largest integer that is 

less than or equal  to x. 

 Ceiling function x: the ceiling of real number x is the smallest integer that 

is greater than or equal to x. 

 

Ex: what is the value of the following? 

 1/2 =  0  1/2 = 1 

  

 -1/2 = -1             -1/2 = 0 

 

 3.1 = 3             3.1 = 4 

 

  7  = 7                        7 =7  

 

Table: Properties of ceiling and flooring functions 

     x-1 <  x        x       x <   x + 1 

 

             - x =   - x 

             - x =   - x 

           x + n =    x + n    where n is an integer 

           x + n  =   x + n 

 

 

 



15 

 

3. Sequences and summation 
 

1. Sequence 
 

Def 1:  

 Sequence is a function from a subset of the set of integers to a set S.  

 we use the notation an to denote the image of the integers n.W 

 We call the term an a term of the sequence. 

 The list of terms is beginning with  a1:  a1,a2, ….., an 

 

Ex: Consider the sequence {an}, where  an = 1/n 

       a1 = 1/1,   a2 = 1/2,    a3 = 1/3 ……….  Etc 

 

Def 2: Sequences are two types 

a. Geometric progression: 

 

It is a sequence of form   a0  r
0,  a0  r

1, a0  r
2,  a0 r

3 ………,a0  r
n  , where n>=0 

                        where the initial term is a0 and the common ratio r are real numbers. 

Or 

It is a sequence of form   a1 r
0,  a1  r

1, a1  r
2,  a1 r

3 ………,a1 r
n-1  , where n>=1 

                        where the initial term is a1 and the common ratio r are real numbers. 

 

 

b. Arithmetic progression:  

 

It is a sequence of form a0 + 0d, a0 + 1d, a0 + 2d,………,  a0 + nd  , where n>=0 

                 where the initial term a0 and the common difference d are real numbers. 

 Or 

It is a sequence of form a1 + 0d, a1 + 1d, a1 + 2d,………,  a1 + n(d-1)  , where n>=1 

                 where the initial term a1 and the common difference d are real numbers. 

 

Ex: the sequences: {bn } with bn = (-1)n  ,  {Cn}with Cn = 2.5n   where n>=0  are geometric 

progression sequences. 

 

{bn} = {-1, 1, -1, 1,……..} initial term = -1,   common ratio= -1 

{Cn}= {10,50,250,1250,………. }   initial term = 10,   common ratio= 5 

 

 

 

Ex:       The sequence {Sn} with Sn = -1 + 4n  , where n>=0  is arithmetic sequence  

Where {Sn} = {-1, 3, 7, 11,………} 

Initial term = -1,   with common Difference= 4 

 

 

Strings 

Def:  

 The finite sequences are called strings  

 The length of the string is the number of terms in this string. 

 The empty string, denoted by  , and it’s the string with no terms. 

 The empty string is with length zero. 

 

Ex: the string “abcd” is with length 4. 



16 

 

Special, Integer Sequences 
 

Ex: Find a formula for the following sequences: 

A. A.   1, ½, ¼, 1/8 , 1/16  

Sol:  an = 1/ 2n-1  it a geometric progression with initial term = 1 and common ration= ½ 

 

B.  5, 11, 17, 23, 29 … 

Sol: an = 6n – 1   is arithmetic progression with a= 5, and d= 6 

 

 

Useful sequences 

 

Nth term First 5 terms 

n2 1, 4, 9, 16, 25,…….. 

2n 2, 4, 8, 16, 32,……… 

n! 1, 2, 6, 24, 120, ……. 

 

 



17 

 

2. Summation 
 

 The summation notation is:  

n

mj ja  or 


n

mj

ja   to represent am + am+1,…+an 

Variable j is called the index of summation. M is lower limit, and n is the upper limit 

 


n

mj

ja  = 


n

mi

ia  = 


n

mK

ka  

 

Ex: 

 

 

Ex: 

 

 

Ex:  

5

1

2

j
j  =   


6

2

24

0

2 )1()1(
Lk

LK  = 1 + 4+ 9 + 16 + 25 = 55 

 

 

Useful summation formula 

                   


oK

kx  = 1/ (1-x),  |x| <1 

                   






1

1

K

kkx  = 1/ (1-x)2,  |x| <1 

 

 

1 

 

 

2 

 

3 

 

 

4 

 

5 

 

 

6 

 

32

17105

)116()19()14(

)14()13()12()1( 222
4

2

2








i

i

 

60106

)4321(666

321

4

1

4

1

4

1

4

1

3

1

4

1

3

1

4

1

3

1




































  



   

ii

ii ji ji j

ii

ijiijij

4/)1(

6/)12)(1(

2/)1(

1),1/()1(

22

1

3

1

2

1

1

0



























nnk

nnnk

nnk

rrraar

n

k

n

k

n

k

n
n

k

k



18 

 

Ex: find the value of              

Sol: 

 

Ex: find the value of              

Sol: 

 

Ex: find the value of              

Sol: 

 

Ex: Given that 


100
2

1k

k = 338,350 find the value of :             

a.     b.  

 

Sol: 

 

a. 

 

 




100

50

2

k

k

.925,297

425,40350,338

6

995049

6

201101100

49

1

2
100

1

2
100

50

2

100

50

2
49

1

2
100

1

2







































kkk

kkk

kkk

kkk




100
2

2k

k

2
100

2
100

2 )1(

12










k

k

k

k




100
2

2k

k

222
100

2
100

2 )0()1()2(

12










k

k

k

k




99
2

1k

k

350,328000,10350,338)100(

11

2
100

2
99

2 








k

k

k

k




101
2

1k

k



19 

 

b. 

551,348201,10350,338)101(

11

2
100

2
101

2 








k

k

k

k



1/13/2021 1

Module #3:
The Theory of Sets

Rosen 5th ed., §§1.6-1.7
~43 slides, ~2 lectures



1/13/2021 2

Introduction to Set Theory (§1.6)

• A set is a new type of structure, representing an 
unordered collection (group, plurality) of zero or 
more distinct (different) objects.

• Set theory deals with operations between, relations 
among, and statements about sets.

• Sets are ubiquitous in computer software systems.
• All of mathematics can be defined in terms of 

some form of set theory (using predicate logic).



1/13/2021 3

Naïve set theory
• Basic premise: Any collection or class of objects 

(elements) that we can describe (by any means 
whatsoever) constitutes a set.

• But, the resulting theory turns out to be logically 
inconsistent! 
– This means, there exist naïve set theory propositions p such that 

you can prove that both p and ¬p follow logically from the axioms 
of the theory!

– ∴ The conjunction of the axioms is a contradiction!
– This theory is fundamentally uninteresting, because any possible 

statement in it can be (very trivially) “proved” by contradiction!
• More sophisticated set theories fix this problem.



1/13/2021 4

Basic notations for sets

• For sets, we’ll use variables S, T, U, … 
• We can denote a set S in writing by listing 

all of its elements in curly braces: 
– {a, b, c} is the set of whatever 3 objects are 

denoted by a, b, c.
• Set builder notation: For any proposition 

P(x) over any universe of discourse, 
{x|P(x)} is the set of all x such that P(x).



1/13/2021 5

Basic properties of sets

• Sets are inherently unordered:
– No matter what objects a, b, and c denote, 

{a, b, c} = {a, c, b} = {b, a, c} =
{b, c, a} = {c, a, b} = {c, b, a}.

• All elements are distinct (unequal);
multiple listings make no difference!
– If a=b, then {a, b, c} = {a, c} = {b, c} = 

{a, a, b, a, b, c, c, c, c}. 
– This set contains (at most) 2 elements!



1/13/2021 6

Definition of Set Equality

• Two sets are declared to be equal if and only if
they contain exactly the same elements.

• In particular, it does not matter how the set is 
defined or denoted.

• For example: The set {1, 2, 3, 4} = 
{x | x is an integer where x>0 and x<5 } = 
{x | x is a positive integer whose square

is  >0 and <25}



1/13/2021 7

Infinite Sets

• Conceptually, sets may be infinite (i.e., not finite, 
without end, unending).

• Symbols for some special infinite sets:
N = {0, 1, 2, …}    The Natural numbers.
Z = {…, -2, -1, 0, 1, 2, …}  The Zntegers.
R = The “Real” numbers, such as 
374.1828471929498181917281943125…

• “Blackboard Bold” or double-struck font (ℕ,ℤ,ℝ) 
is also often used for these special number sets.

• Infinite sets come in different sizes!
More on this after module #4 (functions).



1/13/2021 8

Venn Diagrams

John Venn
1834-1923



1/13/2021 9

Basic Set Relations: Member of

• x∈S (“x is in S”) is the proposition that 
object x is an ∈lement or member of set S.
– e.g. 3∈N, “a”∈{x | x is a letter of the alphabet}
– Can define set equality in terms of ∈ relation:
∀S,T: S=T ↔ (∀x: x∈S ↔ x∈T)
“Two sets are equal iff they have all the same 
members.”

• x∉S :≡ ¬(x∈S)      “x is not in S”



1/13/2021 10

The Empty Set

• ∅ (“null”, “the empty set”) is the unique set 
that contains no elements whatsoever.

• ∅ = {} = {x|False}
• No matter the domain of discourse,

we have the axiom ¬∃x: x∈∅.



1/13/2021 11

Subset and Superset Relations

• S⊆T (“S is a subset of T”) means that every 
element of S is also an element of T.

• S⊆T ⇔∀x (x∈S → x∈T)
• ∅⊆S, S⊆S.
• S⊇T (“S is a superset of T”) means T⊆S.
• Note S=T ⇔ S⊆T∧ S⊇T.
• means ¬(S⊆T), i.e. ∃x(x∈S ∧ x∉T)TS /⊆



1/13/2021 12

Proper (Strict) Subsets & Supersets

• S⊂T (“S is a proper subset of T”) means that 
S⊆T but .  Similar for S⊃T.ST /⊆

S
T

Venn Diagram equivalent of S⊂T

Example:
{1,2} ⊂
{1,2,3}



1/13/2021 13

Sets Are Objects, Too!

• The objects that are elements of a set may 
themselves be sets.

• E.g. let S={x | x ⊆ {1,2,3}}
then S={∅, 

{1}, {2}, {3},
{1,2}, {1,3}, {2,3},
{1,2,3}}

• Note that 1 ≠ {1} ≠ {{1}} !!!!



1/13/2021 14

Cardinality and Finiteness

• |S| (read “the cardinality of S”) is a measure 
of how many different elements S has.

• E.g., |∅|=0,    |{1,2,3}| = 3,   |{a,b}| = 2,
|{{1,2,3},{4,5}}| = ____

• If |S|∈N, then we say S is finite.
Otherwise, we say S is infinite.

• What are some infinite sets we’ve seen?



1/13/2021 15

The Power Set Operation

• The power set P(S) of a set S is the set of all 
subsets of S.  P(S) :≡ {x | x⊆S}.

• E.g. P({a,b}) = {∅, {a}, {b}, {a,b}}.
• Sometimes P(S) is written 2S.

Note that for finite S,   |P(S)| = 2|S|.
• It turns out ∀S:|P(S)|>|S|, e.g. |P(N)| > |N|.

There are different sizes of infinite sets!



1/13/2021 16

Review: Set Notations So Far

• Variable objects x, y, z; sets S, T, U.
• Literal set {a, b, c} and set-builder {x|P(x)}.
• ∈ relational operator, and the empty set ∅.
• Set relations =, ⊆, ⊇, ⊂, ⊃, ⊄, etc.
• Venn diagrams.
• Cardinality |S| and infinite sets N, Z, R.
• Power sets P(S).



1/13/2021 17

Naïve Set Theory is Inconsistent
• There are some naïve set descriptions that lead to 

pathological structures that are not well-defined.
– (That do not have self-consistent properties.)

• These “sets” mathematically cannot exist.
• E.g. let S = {x | x∉x }.  Is S∈S?
• Therefore, consistent set theories must restrict the 

language that can be used to describe sets.
• For purposes of this class, don’t worry about it!

Bertrand Russell
1872-1970



1/13/2021 18

Ordered n-tuples

• These are like sets, except that duplicates 
matter, and the order makes a difference.

• For n∈N, an ordered n-tuple or a sequence
or list of length n is written (a1, a2, …, an). 
Its first element is a1, etc.

• Note that (1, 2) ≠ (2, 1) ≠ (2, 1, 1).
• Empty sequence, singlets, pairs, triples, 

quadruples, quintuples, …,  n-tuples.

Contrast with
sets’ {} 



1/13/2021 19

Cartesian Products of Sets

• For sets A, B, their Cartesian product
A×B :≡ {(a, b) | a∈A ∧ b∈B }.

• E.g. {a,b}×{1,2} = {(a,1),(a,2),(b,1),(b,2)}
• Note that for finite A, B,   |A×B|=|A||B|.
• Note that the Cartesian product is not

commutative: i.e., ¬∀AB: A×B=B×A.
• Extends to A1 × A2 × … × An...

René Descartes 
(1596-1650) 



1/13/2021 20

Review of §1.6

• Sets S, T, U… Special sets N, Z, R.
• Set notations {a,b,...}, {x|P(x)}…
• Set relation operators x∈S, S⊆T, S⊇T, S=T, 

S⊂T, S⊃T.  (These form propositions.)
• Finite vs. infinite sets.
• Set operations |S|, P(S), S×T.
• Next up: §1.5: More set ops: ∪, ∩, −.



1/13/2021 21

Start §1.7: The Union Operator

• For sets A, B, their∪nion A∪B is the set 
containing all elements that are either in A, 
or (“∨”) in B (or, of course, in both).

• Formally, ∀A,B: A∪B = {x | x∈A ∨ x∈B}.
• Note that A∪B is a superset of both A and 

B (in fact, it is the smallest such superset):
∀A, B: (A∪B ⊇ A) ∧ (A∪B ⊇ B)



1/13/2021 22

• {a,b,c}∪{2,3} = {a,b,c,2,3}
• {2,3,5}∪{3,5,7} = {2,3,5,3,5,7} ={2,3,5,7} 

Union Examples

Think “The United 
States of America 
includes every 
person who worked 
in any U.S. state last 
year.” (This is how 
the IRS sees it...)



1/13/2021 23

The Intersection Operator

• For sets A, B, their intersection A∩B is the 
set containing all elements that are 
simultaneously in A and (“∧”) in B.

• Formally, ∀A,B: A∩B={x | x∈A ∧ x∈B}.
• Note that A∩B is a subset of both A and B 

(in fact it is the largest such subset):
∀A, B: (A∩B ⊆ A) ∧ (A∩B ⊆ B)



1/13/2021 24

• {a,b,c}∩{2,3} = ___
• {2,4,6}∩{3,4,5} = ______

Intersection Examples

Think “The 
intersection of 
University Ave. and 
W 13th St. is just 
that part of the road 
surface that lies on 
both streets.”

∅
{4}



1/13/2021 25

Disjointedness

• Two sets A, B are called
disjoint (i.e., unjoined)
iff their intersection is
empty.  (A∩B=∅)

• Example: the set of even
integers is disjoint with
the set of odd integers.

Help, I’ve
been

disjointed!



1/13/2021 26

Inclusion-Exclusion Principle

• How many elements are in A∪B?
|A∪B| = |A| + |B| − |A∩B|

• Example: How many students are on our 
class email list?  Consider set E = I ∪ M, 
I = {s | s turned in an information sheet}
M = {s | s sent the TAs their email address}

• Some students did both!
|E| = |I∪M| = |I| + |M| − |I∩M|



1/13/2021 27

Set Difference

• For sets A, B, the difference of A and B, 
written A−B, is the set of all elements that 
are in A but not B.   Formally:

A − B :≡ {x | x∈A ∧ x∉B}
= {x | ¬(x∈A → x∈B) }

• Also called: 
The complement of B with respect to A.



1/13/2021 28

Set Difference Examples

• {1,2,3,4,5,6} − {2,3,5,7,9,11} =
___________

• Z − N = {… , −1, 0, 1, 2, … } − {0, 1, … }
= {x | x is an integer but not a nat. #}
= {x | x is a negative integer}
= {… , −3, −2, −1}

{1,4,6}



1/13/2021 29

Set Difference - Venn Diagram

• A−B is what’s left after B
“takes a bite out of A”

Set A Set B

Set
A−B

Chomp!



1/13/2021 30

Set Complements

• The universe of discourse can itself be 
considered a set, call it U.

• When the context clearly defines U, we say 
that for any set A⊆U, the complement of A, 
written    , is the complement of A w.r.t. U, 
i.e., it is U−A.

• E.g., If U=N, 

A

,...}7,6,4,2,1,0{}5,3{ =



1/13/2021 31

More on Set Complements

• An equivalent definition, when U is clear:

}|{ AxxA ∉=

A
U

A



1/13/2021 32

Set Identities

• Identity:          A∪∅ = A = A∩U
• Domination:   A∪U = U  , A∩∅ = ∅
• Idempotent:      A∪A = A = A∩A
• Double complement: 
• Commutative:  A∪B = B∪A  , A∩B = B∩A
• Associative:    A∪(B∪C)=(A∪B)∪C ,

A∩(B∩C)=(A∩B)∩C
• Distributive:    A∪(B∩C)=(A∪B)∩(A∪C) ,

A∩(B∪C)=(A∩B)∪(A∩C) 

AA =)(



1/13/2021 33

DeMorgan’s Law for Sets

• Exactly analogous to (and provable from) 
DeMorgan’s Law for propositions.

BABA

BABA

∪=∩

∩=∪



1/13/2021 34

Proving Set Identities

To prove statements about sets, of the form 
E1 = E2 (where the Es are set expressions), here 
are three useful techniques:

1. Using Set Identities 
2. Prove E1 ⊆ E2 and E2 ⊆ E1 separately.
3. Use set builder notation & Logical equivalences.
4. Use a membership table.
5. Venn Diagram



1/13/2021 35

Method 1: Set Identities

Example: Show (A∪B)−B = A−B.
(A∪B) − B= A∪B∩B  Definition of –
(A∪B)∩B = A∪B ∩ B∪B     Distributive Law
A ∩ B ∪ B ∩ B = A ∩ B ∪ ∅  Domination Law
A ∩ B     Identity Law
A – B  Definition of –



1/13/2021 36

Method 2: Mutual subsets

Example: Show A∩(B∪C)=(A∩B)∪(A∩C).
• Part 1: Show A∩(B∪C)⊆(A∩B)∪(A∩C).

– Assume x∈A∩(B∪C), & show x∈(A∩B)∪(A∩C).
– We know that x∈A, and either x∈B or x∈C.

• Case 1: x∈B.  Then x∈A∩B, so x∈(A∩B)∪(A∩C).
• Case 2: x∈C. Then x∈A∩C , so x∈(A∩B)∪(A∩C).

– Therefore, x∈(A∩B)∪(A∩C).
– Therefore, A∩(B∪C)⊆(A∩B)∪(A∩C).

• Part 2: Show (A∩B)∪(A∩C) ⊆ A∩(B∪C). …



1/13/2021 37

Example: Show (A∪B)−B = A−B.
(A∪B)−B= {x| x∈ (A∪B)−B }
={x|x∈ (A∪B) ∧ x∉B}={x|x∈A ∨ x∈B ∧~x∈B}
={x|x∈A∨B∧~B}={x|x∈(A∧~B)∨(B∧~B)}
={x|x∈(A∧~B)∨F}= {x|x∈(A∧~B)}
={x|x∈(A∩~B)}={x|x∈(A-B)}= A-B

Method 3: Set Builder Notation



1/13/2021 38

Method 4: Membership Tables

• Just like truth tables for propositional logic.
• Columns for different set expressions.
• Rows for all combinations of memberships 

in constituent sets.
• Use “1” to indicate membership in the 

derived set, “0” for non-membership.
• Prove equivalence with identical columns.



1/13/2021 39

Membership Table Example

Prove (A∪B)−B = A−B.

AA BB AA∪∪BB ((AA∪∪BB))−−BB AA−−BB
0 0 0 0 0
0 1 1 0 0
1 0 1 1 1
1 1 1 0 0



1/13/2021 40

Membership Table Exercise

Prove (A∪B)−C = (A−C)∪(B−C).
A B C AA∪∪BB ((AA∪∪BB))−−CC AA−−CC BB−−CC ((AA−−CC))∪∪((BB−−CC))
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1



1/13/2021 41

Method 5: Venn Diagram

A
B

A
B

(A∪B)−B = A−B



1/13/2021 42

Review of §1.6-1.7

• Sets S, T, U… Special sets N, Z, R.
• Set notations {a,b,...}, {x|P(x)}…
• Relations x∈S, S⊆T, S⊇T, S=T, S⊂T, S⊃T.  
• Operations |S|, P(S), ×, ∪, ∩, −, 
• Set equality proof techniques:

– Mutual subsets.
– Derivation using logical equivalences.

S



1/13/2021 43

Generalized Unions & Intersections

• Since union & intersection are commutative 
and associative, we can extend them from 
operating on ordered pairs of sets (A,B) to 
operating on sequences of sets (A1,…,An), or 
even on unordered sets of sets,
X={A | P(A)}.



1/13/2021 44

Generalized Union

• Binary union operator: A∪B
• n-ary union:

A∪A2∪…∪An :≡ ((…((A1∪ A2)∪…)∪ An)
(grouping & order is irrelevant)

• “Big U” notation:

• Or for infinite sets of sets:


n

i
iA

1=


XA

A
∈



1/13/2021 45

Generalized Intersection

• Binary intersection operator: A∩B
• n-ary intersection:

A1∩A2∩…∩An≡((…((A1∩A2)∩…)∩An)
(grouping & order is irrelevant)

• “Big Arch” notation:

• Or for infinite sets of sets:


n

i
iA

1=


XA

A
∈



1/13/2021 46

Representations

• A frequent theme of this course will be 
methods of representing one discrete 
structure using another discrete structure of 
a different type.  

• E.g., one can represent natural numbers as
– Sets: 0:≡∅, 1:≡{0}, 2:≡{0,1}, 3:≡{0,1,2}, …
– Bit strings: 

0:≡0, 1:≡1, 2:≡10, 3:≡11, 4:≡100, …



1/13/2021 47

Representing Sets with Bit Strings

For an enumerable u.d. U with ordering 
x1, x2, …, represent a finite set S⊆U as the 
finite bit string B=b1b2…bn where
∀i: xi∈S ↔ (i<n ∧ bi=1).

E.g. U=N, S={2,3,5,7,11}, B=001101010001.
In this representation, the set operators

“∪”, “∩”, “” are implemented directly by 
bitwise OR, AND, NOT!



1/13/2021 1

Inductive Proofs



1/13/2021 2

Mathematical Induction

• A powerful, rigorous technique for proving 

that a predicate P(n) is true for every natural 

number n, no matter how large.

• Essentially a “domino effect” principle.

• Based on a predicate-logic inference rule: 

P(0)

n0 (P(n)P(n+1))

n0 P(n)

“The First Principle

of Mathematical

Induction”



1/13/2021 3

Validity of Induction

Proof that k0 P(k) is a valid consequent:
Given any k0, n0 (P(n)P(n+1)) (antecedent 

2) trivially implies n0 (n<k)(P(n)P(n+1)), 

or (P(0)P(1))  (P(1)P(2))  … 

(P(k1)P(k)).  Repeatedly applying the 

hypothetical syllogism rule to adjacent 

implications k-1 times then gives P(0)P(k); 

which with P(0) (antecedent #1) and modus 
ponens gives P(k).  Thus k0 P(k).



1/13/2021 4

Outline of an Inductive Proof

• Want to prove n P(n)…

• Base case (or basis step): Prove P(0).

• Inductive step: Prove n P(n)P(n+1).

– E.g. use a direct proof:

– Let nN, assume P(n). (inductive hypothesis)

– Under this assumption, prove P(n+1).

• Inductive inference rule then gives n P(n).



1/13/2021 5

Induction Example

• Prove that the sum of the first n odd positive 

integers is n2.  That is, prove:

• Proof by induction.

– Base case: Let n=1.  The sum of the first 1 odd 

positive integer is 1 which equals 12.

(Cont…)

2

1

)12(:1 nin
n

i

 


P(n)



1/13/2021 6

Example cont.

• Inductive step: Prove n1: P(n)P(n+1).

– Let n1, assume P(n), and prove P(n+1).

2

2

1

1

1

)1(

12

)1)1(2()12()12(













 







n

nn

nii
n

i

n

i

By inductive

hypothesis P(n)



1/13/2021 7

Another Induction Example

• Prove that n>0, n<2n.  Let P(n)=(n<2n)

– Base case: P(1)=(1<21)=(1<2)=T.

– Inductive step: For n>0, prove P(n)P(n+1).

• Assuming n<2n, prove n+1 < 2n+1.

• Note n + 1 < 2n + 1  (by inductive hypothesis)

< 2n + 2n (because 1<2=22022n-1= 2n)

= 2n+1

• So n + 1 < 2n+1, and we’re done. i.e. P(n+1) is true



1/13/2021 8

Another Induction Example

Use mathematical Induction to prove that the sum of the first n 
odd positive integers is n2.

SOL:

A. Basic Step: p(1) , the sum of the first odd positive integer which 
is 1 is 12 and equal to 1. So, p(1) is true.

B. Inductive step: Suppose that p(k) is true. 

So,  1+ 3 + 5 + …. + (2K-1) = k2

We must show that p(K+1) is true, assuming that p(K) is true

P(K+1) = 1+3+5+…….+ (2K-1) + (2K+1)

=                K2 + (2K+1)    By assumption

=  (K+1)2 By Perfect Square Equation

So, p(K+1) is TRUE



1/13/2021 9

Another Induction Example

Use mathematical Induction to prove that N3 – N is divisible by 3 
whenever n is positive and n>=1 

Basic step: P(1) is divisible by 3 since 1-1 = 0   and  3 divides 0

Inductive step:

A. Assume P(k) is true  .    

P(k): K3 - K  is divisible by 3  K3-K= 3m, where m is an integer

B. Try to prove that p(k+1) is true as well

P(k+1):  (K+1)3 – (K+1) = (K3+3K2+3K+1) – K – 1

= ( K3 – K ) + 3(K2 + K) = 3m + 3(K2 + K) = 3(m + K2 + K) = 3 n

So, p(k+1) is divisible by 3

Conclusion: N3 – N is divisible by 3 whenever n is positive integer



Module #9 – Number Theory

1/13/2021 1

Module #9:

Basic Number Theory



Module #9 – Number Theory

1/13/2021 2

3.1 The Integers and Division

• Of course you already know what the 

integers are, and what division is…

• But: There are some specific notations, 

terminology, and theorems associated with 

these concepts which you may not know.

• These form the basics of number theory.

– Vital in many important algorithms today (hash 

functions, cryptography, digital signatures).



Module #9 – Number Theory

1/13/2021 3

Divides, Factor, Multiple

• Let a,bZ with a0.

• a|b  “a divides b” : “cZ: b=ac”
“There is an integer c such that c times a 
equals b.”

– Example: 312  True, but 37  False.

• Iff a divides b, then we say a is a factor or a 
divisor of b, and b is a multiple of a.

• “b is even” :≡ 2|b.  Is 0 even?  Is −4?



Module #9 – Number Theory

1/13/2021 4

Facts re: the Divides Relation

• a,b,c  Z:

1. a|0

2. (a|b  a|c)  a | (b + c)

3. a|b  a|bc

4. (a|b  b|c)  a|c

• Proof of (2):  a|b means there is an s such that 

b=as,  and a|c means that there is a t such that 

c=at,  so b+c = as+at = a(s+t), so a|(b+c) also.■



Module #9 – Number Theory

1/13/2021 5

More Detailed Version of Proof

• Show a,b,c  Z: (a|b  a|c)  a | (b + c).

• Let a, b, c be any integers such that a|b and 

a|c, and show that a | (b + c).

• By defn. of |, we know s: b=as, and 

t: c=at.  Let s, t, be such integers.

• Then b+c = as + at = a(s+t), so 

u: b+c=au, namely u=s+t.  Thus a|(b+c).



Module #9 – Number Theory

1/13/2021 6

Prime Numbers

• An integer p>1 is prime iff it is not the 

product of any two integers greater than 1:

p>1  a,bN: a>1, b>1, ab=p.

• The only positive factors of a prime p are 1 

and p itself.  Some primes: 2,3,5,7,11,13...

• Non-prime integers greater than 1 are called 

composite, because they can be composed

by multiplying two integers greater than 1.



Module #9 – Number Theory

1/13/2021 7

Review

• a|b  “a divides b”  cZ: b=ac

• “p is prime” 

p>1  aN: (1 < a < p  a|p)

• Terms factor, divisor, multiple, composite.



Module #9 – Number Theory

1/13/2021 8

Fundamental Theorem of Arithmetic

• Every positive integer has a unique 
representation as the product of a non-
decreasing series of zero or more primes.

– 1 = (product of empty series) = 1

– 2 = 2 (product of series with one element 2)

– 4 = 2·2 (product of series 2,2)

– 2000 = 2·2·2·2·5·5·5;   2001 = 3·23·29;

2002 = 2·7·11·13;  2003 = 2003



Module #9 – Number Theory

1/13/2021 9

Theorem: 

• Every positive integer greater than one can 

be uniquely written by one or more prime 

numbers.

• If n is composite integer, then n has prime 

divisor less than or equal to

• There are infinitely number of primes



Module #9 – Number Theory

1/13/2021 10

• To find the prime factor of an integer n:

1- find 

2- list all primes <=

2, 3, 5, 7,…root of n

3- find all prime factors that divides n.

n

n



Module #9 – Number Theory

1/13/2021 11



Module #9 – Number Theory

1/13/2021 12

Mersenne Primes

Any prime number that can be written as 

2P - 1 is called Mersenne prime.

• Ex:

The numbers 22-1 =3, 23-1=7, 24-1=31 

……… 211-1 = 2047 all are primes



Module #9 – Number Theory

1/13/2021 13

An Application of Primes

• When you visit a secure web site (https:… 
address, indicated by padlock icon in IE, key icon 
in Netscape), the browser and web site may be 
using a technology called RSA encryption.

• This public-key cryptography scheme involves 
exchanging public keys containing the product pq
of two random large primes p and q (a private key) 
which must be kept secret by a given party.

• So, the security of your day-to-day web 
transactions depends critically on the fact that all 
known factoring algorithms are intractable!
– Note: There is a tractable quantum algorithm for factoring; so if 

we can ever build big quantum computers, RSA will be insecure.



Module #9 – Number Theory

1/13/2021 14

The Division “Algorithm”

• Really just a theorem, not an algorithm… 

– The name is used here for historical reasons.

• For any integer dividend a and divisor d≠0, 

there is a unique integer quotient q and

remainder rN  a = dq + r and 0  r < |d|. 

• a,dZ, d>0: !q,rZ: 0r<|d|, a=dq+r.

• We can find q and r by: q=ad, r=aqd.

(such that)



Module #9 – Number Theory

1/13/2021 15

The mod operator

• An integer “division remainder” operator.

• Let a,dZ with d>1.  Then a mod d denotes 

the remainder r from the division 

“algorithm” with dividend a and divisor d; 

i.e. the remainder when a is divided by d.  

(Using e.g. long division.)

• We can compute (a mod d) by: a  d·a/d.

• In C programming language, “%” = mod.



Module #9 – Number Theory

1/13/2021 16

Modular Congruence

• Let Z+={nZ | n>0}, the positive integers.

• Let a,bZ, mZ+.

• Then a is congruent to b modulo m, written 

“ab (mod m)”, iff  m | ab  .

• Also equivalent to: (ab) mod m = 0.

• (Note: this is a different use of “” than the 

meaning “is defined as” I’ve used before.)



Module #9 – Number Theory

1/13/2021 17

Spiral Visualization of mod

≡ 3

(mod 5)

≡ 2

(mod 5)

≡ 1

(mod 5)

≡ 0

(mod 5)

≡ 4

(mod 5) 0
1

23

4

5

6

78

9

10

11

1213

14

15

16

1718

19

20

21

22

Example shown:

modulo-5

arithmetic



Module #9 – Number Theory

1/13/2021 18

Useful Congruence Theorems

• Let a,b,c,dZ, mZ+.  Then if 

ab (mod m) and cd (mod m), then:

▪ a+c  b+d (mod m), and

▪ ac  bd (mod m)



Module #9 – Number Theory

1/13/2021 19

Ex. :

a = 7 b = 2 c = 11

d = 1 m = 5

Since,   7 ≡ 2 (mod 5) where mod equals to 2

and

11 ≡ 1 (mod 5) where mod equals to 1

Then, 7 + 11 ≡ 2 + 1 (mod 5) 18 ≡ 3 (mod 5) 

where mod equals to 3

and, 7 × 11 ≡ 2 × 1 (mod 5)  77 ≡ 2 (mod 5) 

where mod equals to 2



Module #9 – Number Theory

1/13/2021 20

• Thm: Let m be a positive intger

Integers a, and b are congruent modulo m iff a = 

b + k m, where k is an integer

Ex. :

• a = 17 b = 5 m = 6

Since,   17 mod 6 = 5

and 5   mod 6 = 5

Then, 17 ≡ 5 (mod 6) and 6 | (17-5)  6 | 12 

where = 2

Also, 17 = 5 + 2 × 6



Module #9 – Number Theory

1/13/2021 21

Applications of Congruence

1. Hash Functions:

h(k) = k mod m k: Key m: number of 

available memory locations

Notes: 

Hash functions should be onto,

Since it is not one-to-one, this may cause 

Collisions.

Ex. : if m = 50 , then h(51) = h(101) = 1 



Module #9 – Number Theory

1/13/2021 22

2. Pseudorandom Numbers:

To generate a sequence of random numbers {Xn} with 0Xn<m

X0: seed 0X0<m

Xn+1 = (a Xn + c) mod m

Where, m: modulus

a: multiplier 2a<m

c: increment 0c<m

Ex. :

Given: m = 9 a = 7 c = 4 X0=3

Sequence:

X0 = 3

X1 = (7×X0+4) mod 9 = 7

X2 = (7×X1+4) mod 9 = 8

X3 = 6

X4 = 1

.

.

X9 = 3



Module #9 – Number Theory

1/13/2021 23

3. Cryptology

Encryption: making a message secrete

Decryption: determining the original message

Ex. Caesar's Encryption

f(x) = (x + shift) mod 26

If shift = 3, then

The message: "MEET YOU IN THE PARK"
Becomes the encrypted message: "PHHW BRX LG 

WKH SDUM"

Since: A=0 becomes D=3, B=1 becomes E=4, …, 
X=23 becomes A=0, Y=24 becomes B=1, and 
finally Z=25 becomes C=2



Module #9 – Number Theory

1/13/2021 24

3.2 Greatest Common Divisor

• The greatest common divisor gcd(a,b) of integers 

a,b (not both 0) is the largest (most positive) 

integer d that is a divisor both of a and of b.

d = gcd(a,b) = max(d: d|a  d|b) 

d|a  d|b  eZ, (e|a  e|b) → d ≥ e

• Example: gcd(24,36)=?

Positive common divisors: 1,2,3,4,6,12…

Greatest is 12.



Module #9 – Number Theory

1/13/2021 25

Way to find GCD:

1.find all positive common divisors of both 
a and b, then take the largest divisor 

Ex: find gcd (24, 36)?

Divisors of 24: 1, 2, 3, 4, 6, 8, 12, 24

Divisors of 36: 1, 2, 3, 4, 6, 8, 12, 18, 24

Common divisors: 1, 2, 3, 4, 6, 8, 12

MAXIMUM = 12

 gcd (24, 36) = 12



Module #9 – Number Theory

1/13/2021 26

2. use prime factorization:

• If the prime factorizations are written as

and                                 ,

then the GCD is given by:

• Example:

– a=84=2·2·3·7         = 22·31·71

– b=96=2·2·2·2·2·3   = 25·31·70

– gcd(84,96)             = 22·31·70 = 2·2·3 = 12.

na

n

aa
pppa 21

21 nb

n

bb
pppb 21

21

.),gcd(
),min(),min(

2

),min(

1
2211 nn ba

n

baba
pppba 



Module #9 – Number Theory

1/13/2021 27

Ex: find gcd (24, 36)?

24 = 23 × 31

36 = 22 × 32

 gcd (24, 36) = 22 × 31 = 12

Ex: find gcd (120, 500)?

120 = 23 × 3 × 5

36 = 22 × 53 = 22 × 30 × 53

 gcd (120, 500) = 22 × 5 = 20



Module #9 – Number Theory

1/13/2021 28

Relatively Prime

• Integers a and b are called relatively prime or 

coprime iff their gcd = 1.

– Example: Neither 21 and 10 are prime, but they 

are relatively prime.  21=3·7 and 10=2·5, so they 

have no common factors > 1, so their gcd = 1.

• A set of integers {a1,a2,…} is (pairwise) 

relatively prime if all pairs ai, aj, ij, are 

relatively prime.



Module #9 – Number Theory

1/13/2021 29

Least Common Multiple

• lcm(a,b) of positive integers a, b, is the smallest 

positive integer that is a multiple both of a and of 

b.  E.g. lcm(6,10)=30

m = lcm(a,b) = min(m: a|m  b|m) 

a|m  b|m  nZ: (a|n  b|n) → (m ≤ n)

• If the prime factorizations are written as

and                                 , 

then the LCM is given by

na

n

aa
pppa 21

21 nb

n

bb
pppb 21

21

.),(lcm
),max(),max(

2

),max(

1
2211 nn ba

n

baba
pppba 



Module #9 – Number Theory

1/13/2021 30

Ex: find Lcm (24, 36)?

24 = 23 × 31

36 = 22 × 32

 Lcm (24, 36) = 23 × 32 = 72

Ex: find Lcm (120, 500)?

120 = 23 × 3 × 5

36 = 22 × 53

 Lcm (120, 500) = 23 × 3 × 53 = 3000



Module #9 – Number Theory

1/13/2021 31

3.3 Matrices

• A matrix is a rectangular array of 

objects (usually numbers).

• An mn (“m by n”) matrix has exactly m

horizontal rows, and n vertical columns.

• Plural of matrix = matrices

(say MAY-trih-sees)

• An nn matrix is called a square matrix,

whose order is n.



















07

15

32
a 32

matrix



Module #9 – Number Theory

1/13/2021 32

Applications of Matrices

Tons of applications, including:

• Solving systems of linear equations

• Computer Graphics, Image Processing

• Models within many areas of 

Computational Science & Engineering

• Quantum Mechanics, Quantum Computing

• Many, many more…



Module #9 – Number Theory

1/13/2021 33

Matrix Equality

• Two matrices A and B are equal iff they 

have the same number of rows, the same 

number of columns, and all corresponding 

elements are equal.





















 061

023

61

23



Module #9 – Number Theory

1/13/2021 34

Row and Column Order

• The rows in a matrix are usually indexed 1 

to m from top to bottom.  The columns are 

usually indexed 1 to n from left to right.  

Elements are indexed by row, then column.





















nmmm

n

n

ji

aaa

aaa

aaa

a

,2,1,

,22,21,2

,12,11,1

, ][









A



Module #9 – Number Theory

1/13/2021 35

Matrix Sums

• The sum A+B of two matrices A, B (which 

must have the same number of rows, and 

the same number of columns) is the matrix 

(also with the same shape) given by adding 

corresponding elements.

• A+B = [ai,j+bi,j]
































 511

911

311

39

80

62



Module #9 – Number Theory

1/13/2021 36

Matrix Products

• For an mk matrix A and a kn matrix B, the 

product AB is the mn matrix:

• I.e., element (i,j) of AB is given by the vector dot 
product of the ith row of A and the jth column of 

B (considered as vectors).

• Note: Matrix multiplication is not commutative!









 



k

jiji bac
1

,,, ][


CAB



Module #9 – Number Theory

1/13/2021 37

Matrix Product Example

• An example matrix multiplication to 

practice in class:










































 

31123

1501

1301

0202

0110

302

110



Module #9 – Number Theory

1/13/2021 38

Identity Matrices

• The identity matrix of order n, In, is the 

order-n matrix with 1’s along the upper-left 

to lower-right diagonal and 0’s everywhere 

else.  





































100

010

001

 if 0

 if 1









ji

ji
nI



Module #9 – Number Theory

1/13/2021 39

Review

Matrix sums and products:

A+B = [ai,j+bi,j]

Identity matrix of order n:

In = [ij], where ij=1 if i=j and ij=0 if ij.









 



k

jiji bac
1

,,, ][


CAB



Module #9 – Number Theory

1/13/2021 40

Matrix Inverses

• For some (but not all) square matrices A, 

there exists a unique multiplicative inverse

A-1 of A, a matrix such that A-1A = In.

• If the inverse exists, it is unique, and 

A-1A = AA-1.

• We won’t go into the algorithms for matrix 

inversion...



Module #9 – Number Theory

1/13/2021 41

Matrix Multiplication Algorithm

procedure matmul(matrices A: mk, B: kn)

for i := 1 to m

for j := 1 to n begin

cij := 0

for q := 1 to k

cij := cij + aiqbqj

end {C=[cij] is the product of A and B}

What’s the  of its

time complexity?
(m)·

(n)·(

(1)+

(k) ·

(1))

Answer:

(mnk)



Module #9 – Number Theory

1/13/2021 42

Powers of Matrices

If A is an nn square matrix and p0, then:

• Ap  AAA···A    (A0  In)

• Example:

p times













































































23

34

12

23

01

12

01

12

01

12

01

12

01

12
3



Module #9 – Number Theory

1/13/2021 43

• If A=[aij] is an mn matrix, the transpose of 

A (often written At or AT) is the nm matrix 

given by At = B = [bij] = [aji] (1in,1jm)

Matrix Transposition

Flip

across

diagonal





























23

11

02

210

312
t



Module #9 – Number Theory

1/13/2021 44

Symmetric Matrices

• A square matrix A is symmetric iff A=At. 

I.e., i,jn: aij = aji .

• Which is symmetric?





















211

120

103























213

101

312

















11

11

11



Module #9 – Number Theory

1/13/2021 45

Zero-One Matrices

• Useful for representing other structures.

– E.g., relations, directed graphs (later in course)

• All elements of a zero-one matrix are 0 or 1

– Representing False & True respectively.

• The join of A, B (both mn zero-one matrices):

– AB : [aijbij] = [aij bij]

• The meet of A, B:

– AB : [aijbij]



Module #9 – Number Theory

1/13/2021 46

Join ()

A =       B= 

We find the join between   A  B = 

Meet 

We find the join between   A  B = 










010

101









010

101



Module #9 – Number Theory

1/13/2021 47

Boolean Products

• Let A=[aij] be an mk zero-one matrix,

& let B=[bij] be a kn zero-one matrix,

• The boolean product of A and B is like 

normal matrix , but using  instead + in 

the row-column “vector dot product.”









 


ji

k

ij bac 
 1

][CA⊙B



Module #9 – Number Theory

1/13/2021 48

Boolean Powers

• For a square zero-one matrix A, and any 

k0, the kth Boolean power of A is simply 

the Boolean product of k copies of A.

• A[k]  A⊙A⊙…⊙A

k times



Module #12 - Sequences

1/13/2021 1

Module #12:

Sequences



Module #12 - Sequences

1/13/2021 2

§3.2: Sequences, Strings, & 

Summations

• A sequence or series is just like an ordered n-
tuple, except:

– Each element in the series has an associated index
number.

– A sequence or series may be infinite.

• A string is a sequence of symbols from some 
finite alphabet.

• A summation is a compact notation for the sum 
of all terms in a (possibly infinite) series.



Module #12 - Sequences

1/13/2021 3

Sequences

• A sequence or series {an} is identified with a generating function
f:SA for some subset SN and for some set A.
– Often we have S=N or S=N+{0}.

– Sequences may also be generalized to indexed sets, in which the set S does 
not have to be a subset of N.  

• For general indexed sets, S may not even be a set of numbers at all.

• If f is a generating function for a series {an}, then for nS, the 
symbol an denotes f(n), also called term n of the sequence.
– The index of an is n.  (Or, often i is used.)

• A series is sometimes denoted by listing its first and/or last few 
elements, and using ellipsis (…) notation.

– E.g., “{an} = 0, 1, 4, 9, 16, 25, …” is taken to mean nN, an = n2.



Module #12 - Sequences

1/13/2021 4

Sequence Examples

• Some authors write “the sequence a1, a2, …” 
instead of {an}, to ensure that the set of indices is 
clear.  

– Be careful:  Our book often leaves the indices 
ambiguous.

• An example of an infinite series:

– Consider the series {an} = a1, a2, …, where (n1) 
an= f(n) = 1/n.

– Then, we have {an} = 1, 1/2, 1/3, …



Module #12 - Sequences

1/13/2021 5

Example with Repetitions

• Like tuples, but unlike sets, a sequence may 

contain repeated instances of an element.

• Consider the sequence {bn} = b0, b1, … (note that 

0 is an index) where bn = (1)n.

– Thus, {bn} = 1, 1, 1, 1, …

• Note repetitions! 

– This {bn} denotes an infinite sequence of 1’s and 1’s, 

not the 2-element set {1, 1}.



Module #12 - Sequences

1/13/2021 6

Sequences are two types:

• Geometric progression: it is a sequence of form 

a,  ar, ar2,  ar3 ………,arn

where the initial term is a and the common ratio r are 

real numbers.

• Arithmetic progression: it is a sequence of form 

a, a+d, a+2d,………,  a + nd

where the initial term a and the common difference d are 

real numbers



Module #12 - Sequences

1/13/2021 7

Examples of Geometric

• {bn } with bn = (-1)n n>=1

• An = -1, 1, -1, 1,…….. 

– initial term = -1,   common ratio= -1,   

– an=(-1)n , n=1,2,3,…

• Cn = 10,50,250,1250,……….  

– initial term = 10,   common ratio= 5

– an=10 (5)n , n=0,1,2,3,…

– an=5 x an-1 , n=0,1,2,3,…



Module #12 - Sequences

1/13/2021 8

Examples of Arithmetic

• {Sn} with Sn = -1 + 4n, n ≥0   

is arithmetic sequence where

Sn = -1, 3, 7, 11,… OR  Sn = an-1+4, S0=-1, n ≥0 

– initial term = -1,   common Difference= 4

• The sequence : 5, 11, 17, 23, 29 …

an = 6n – 1   , n ≥1

is arithmetic progression with a= 5, and d= 6



Module #12 - Sequences

1/13/2021 9

Recognizing Sequences

• Sometimes, you’re given the first few terms of a 
sequence, 

– and you are asked to find the sequence’s generating 
function, 

– or a procedure to enumerate the sequence.

• Examples: What’s the next number?

– 1,2,3,4,…

– 1,3,5,7,9,…

– 2,3,5,7,11,... 

5 (the 5th smallest number >0)

11 (the 6th smallest odd number >0)

13 (the 6th smallest prime number)



Module #12 - Sequences

1/13/2021 10

The Trouble with Sequence 

Recognition
• As you know, these problems are popular on IQ tests, but…

• The problem of finding “the” generating function given just an 
initial subsequence is not a mathematically well defined problem.
– This is because there are infinitely many computable functions that will 

generate any given initial subsequence.

• We implicitly are supposed to find the simplest such function 
(because this one is assumed to be most likely), but, 
– how are we to objectively define the simplicity of a function?

• We might define simplicity as the reciprocal of complexity, but…
– There are many different plausible, competing definitions of complexity, 

and this is an active research area.

• So, these questions really have no objective right answer!
– Still, we will ask you to answer them anyway… (Because others will too.)



Module #12 - Sequences

1/13/2021 11

Strings, more formally

• Let  be a finite set of symbols, i.e. an alphabet.
– A string s over alphabet  is any sequence {si} of 

symbols, si, indexed by N or N{0}.

• If a, b, c, … are symbols, the string s = a, b, c, … 
can also be written abc …(i.e., without commas).

• If s is a finite string and t is any string, then the 
concatenation of s with t, written just st,
– is simply the string consisting of the symbols in s, in 

sequence, followed by the symbols in t, in sequence.



Module #12 - Sequences

1/13/2021 12

More Common String Notations

• The length |s| of a finite string s is its number of

positions (i.e., its number of index values i).

• If s is a finite string and nN,

– Then sn denotes the concatenation of n copies of s.

•  denotes the empty string, the string of length 0.



Module #13 - Summations

1/13/2021 1

Module #13:

Summations



Module #13 - Summations

1/13/2021 2

Summation Notation

• Given a series {an}, an integer lower bound 

(or limit) j0, and an integer upper bound 

kj, then the summation of {an} from j to k

is written and defined as follows:

• Here, i is called the index of summation.

kjj

k

ji

i aaaa  



 ...: 1



Module #13 - Summations

1/13/2021 3

Generalized Summations

• For an infinite series, we may write:

• To sum a function over all members of a set 

X={x1, x2, …}:

• Or, if X={x|P(x)}, we may just write:

...)()(:)( 21 


xfxfxf
Xx

...)()(:)( 21

)(

 xfxfxf
xP

...: 1  





 jj

ji

i aaa



Module #13 - Summations

1/13/2021 4

Simple Summation Example

32

17105

)116()19()14(

)14()13()12()1( 222
4

2

2








i

i



Module #13 - Summations

1/13/2021 5

More Summation Examples

• An infinite series with a finite sum:

• Using a predicate to define a set of elements 

to sum over:

874925947532 2222

10
 prime) is (

2 



x

x

x

2...1...222
4
1

2
110

0

 





i

i



Module #13 - Summations

1/13/2021 6

Summation Manipulations

• Some handy identities for summations:



 





















nk

nji

k

ji

x xx

xx

nifif

xgxfxgxf

xfcxcf

)()(

)()()()(

)()( (Distributive law.)

(Application

of commut-

ativity.)

(Index shifting.)



Module #13 - Summations

1/13/2021 7

More Summation Manipulations

• Other identities that are sometimes useful:



























k

i

k

i

k

mi

m

ji

k

ji

ififif

kmjififif

0

2

0

1

)12()2()(

 if    )()()(

(Grouping.)

(Series splitting.)



Module #13 - Summations

1/13/2021 8

Nested Summations

• These have the meaning you’d expect.

• Note issues of free vs. bound variables, just 

like in quantified expressions, integrals, etc.

 

60106

)4321(666

321

4

1

4

1

4

1

4

1

3

1

4

1

3

1

4

1

3

1




































  



   

ii

ii ji ji j

ii

ijiijij



Module #13 - Summations

1/13/2021 9

Some Shortcut Expressions(1)

4/)1(

6/)12)(1(

2/)1(

1),1/()1(

22

1

3

1

2

1

1

0



























nnk

nnnk

nnk

rrraar

n

k

n

k

n

k

n
n

k

k
Geometric series.

Euler’s trick.

Quadratic series.

Cubic series.



Module #13 - Summations

1/13/2021 10

Some Shortcut Expressions(2)

1 |x|  ,x)-(11/  

1 |x|  x),-(11/  

2

1

1

0



















k

k

k

k

kx

x



Module #13 - Summations

1/13/2021 11

Using the Shortcuts

• Example: Evaluate            .

– Use series splitting.

– Solve for desired

summation.

– Apply quadratic

series rule.

– Evaluate.




100

50

2

k

k

.925,297

425,40350,338

6

995049

6

201101100

49

1

2
100

1

2
100

50

2

100

50

2
49

1

2
100

1

2







































kkk

kkk

kkk

kkk



Module #13 - Summations

1/13/2021 12

Example

925,297

425,40350,338

6

995049

6

201101100

?   

49

1

2
100

1

2
100

50

2

100

50

2
49

1

2
100

1

2

100

50

2











































kkk

kkk

k

kkk

kkk

kfind



Module #13 - Summations

1/13/2021 13

Summations: Conclusion

• You need to know:

– How to read, write & evaluate summation 

expressions like:

– Summation manipulation laws we covered.

– Shortcut closed-form formulas, 

& how to use them.


Xx

xf )( 
)(

)(
xP

xf


k

ji

ia 


 ji

ia



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 1

Module #4:

Functions



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 2

Section 2.3… Functions

• From calculus, you are familiar with the 

concept of a real-valued function f, 

which assigns to each number xR a 

particular value y=f(x), where yR.

• But, the notion of a function can also be 

naturally generalized to the concept of 

assigning elements of any set to elements

of any set.  (Also known as a map.)



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 3

Function: Formal Definition

• For any sets A, B, we say that a function f 

from (or “mapping”) A to B (f:AB) is a 

particular assignment of exactly one

element f(x)B to each element xA.

• Some further generalizations of this idea:

– A partial (non-total) function f assigns zero or 
one elements of B to each element xA.

– Functions of n arguments; relations (ch. 6).



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 4

Graphical Representations

• Functions can be represented graphically in 

several ways:

• •

A
B

a b

f

f

•

•
•
•

•

•

•

•

•
x

y

Plot
2-part Graph

Like Venn diagrams

A B



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 5

Some Function Terminology

• If it is written that f:AB, and f(a)=b 
(where aA & bB), then we say:

– A is the domain of f.  

– B is the codomain of f.

– b is the image of a under f.

– a is a pre-image of b under f.
• In general, b may have more than 1 pre-image.

– The range RB of f is R={b | a f(a)=b }.



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 6

Range versus Codomain

• The range of a function might not be its 

whole codomain.

• The codomain is the set that the function is 

declared to map all domain values into.

• The range is the particular set of values in 

the codomain that the function actually

maps elements of the domain to.



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 7

Range vs. Codomain - Example

• Suppose I declare to you that: “f is a 

function mapping students in this class to 

the set of grades {A,B,C,D,E}.”

• At this point, you know f’s codomain is: 

__________, and its range is ________.

• Suppose the grades turn out all As and Bs.

• Then the range of f is _________, but its 

codomain is __________________.

{A,B,C,D,E} unknown!

{A,B}

still {A,B,C,D,E}!



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 8

Constructing Function Operators

• If  (“dot”) is any operator over B, then we 

can extend  to also denote an operator over 

functions f:AB.

• E.g.: Given any binary operator :BBB, 

and functions f,g:AB, we define

(f  g):AB to be the function defined by:

aA, (f  g)(a) = f(a)g(a).



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 9

Function Operator Example

• ,× (“plus”,“times”) are binary operators 

over R. (Normal addition & multiplication.)

• Therefore, we can also add and multiply 

functions f,g:RR:

– (f  g):RR, where (f  g)(x) = f(x)  g(x)

– (f × g):RR, where (f × g)(x) = f(x) × g(x)



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 10

Function Composition Operator

• For functions g:AB and f:BC, there is a 

special operator called compose (“○”).

– It composes (creates) a new function out of f
and g by applying f to the result of applying g.

– We say (f○g):AC, where (f○g)(a) :≡ f(g(a)).

– Note g(a)B, so f(g(a)) is defined and C.

– Note that ○ (like Cartesian , but unlike +,,) 

is non-commuting. (Generally, f○g  g○f.)

Note match here.



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 11

Images of Sets under Functions

• Given f:AB, and SA,

• The image of S under f is simply the set of 

all images (under f) of the elements of S.

f(S) : {f(s) | sS}

: {b |  sS: f(s)=b}.

• Note the range of f can be defined as simply 

the image (under f) of f’s domain!



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 12

One-to-One Functions

• A function is one-to-one (1-1), or injective, or an injection, 

iff every element of its range has only 1 pre-image. 

– Formally: given f:AB,

“x is injective” : (x,y: xy  f(x)f(y)).

• Only one element of the domain is mapped to any given 

one element of the range.

– Domain & range have same cardinality. What about codomain?

• Each element of the domain is injected into a different 

element of the range.

– Compare “each dose of vaccine is injected into a different patient.”



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 13

One-to-One Illustration

• (2-part) graph representations of functions 

that are (or not) one-to-one:

•

•
•
•

•

•

•

•

•

One-to-one

•
•
•
•

•
•

•

•

•

Not one-to-one

•
•
•
•

•
•

•

•

•
Not even a 

function!



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 14

Examples

• f: Z  Z f(x)=x2

f(x)=f(y)  x2 = y2  x=+y or x=-y

f(-2)=f(2)=4  -22  it is not 1-to-1

• f: Z  Z f(x)=x+5

f(x)=f(y)  x+5=y+5  x=y

 it is 1-to-1



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 15

Sufficient Conditions for 1-1ness

• For functions f over numbers, we say:

– f is strictly (or monotonically) increasing iff 

x>y  f(x)>f(y) for all x,y in domain;

– f is strictly (or monotonically) decreasing iff 

x>y  f(x)<f(y) for all x,y in domain;

• If f is either strictly increasing or strictly 

decreasing, then f is one-to-one. E.g. x3

– Converse is not necessarily true. E.g. 1/x



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 16

Onto (Surjective) Functions

• A function f:AB is onto or surjective or a 

surjection iff its range is equal to its 

codomain (bB, aA: f(a)=b).

• Think: An onto function maps the set A

onto (over, covering) the entirety of the set 

B, not just over a piece of it.

• E.g., for domain & codomain R, x3 is onto, 

whereas x2 isn’t.  (Why not?)



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 17

Illustration of Onto

• Some functions that are, or are not, onto

their codomains:

Onto

(but not 1-1)

•

•
•
•

•

•

•

•

•

Not Onto

(or 1-1)

•

•
•
•

•

•

•

•

•

Both 1-1

and onto

•

•
•
•

•

•

•

•

1-1 but

not onto

•

•
•
•

•

•

•

•

•



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 18

Bijections

• A function f is said to be a one-to-one 

correspondence, or a bijection, or 

reversible, or invertible, iff it is 

both one-to-one and onto.

• For bijections f:AB, there exists an  

inverse of f, written f 1:BA, which is the 

unique function such that                   

– (where IA is the identity function on A)
AIff  1



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 19

The Identity Function

• For any domain A, the identity function 

I:AA (variously written, IA, 1, 1A) is the 

unique function such that aA: I(a)=a.

• Some identity functions you’ve seen:

– ing 0, ·ing by 1, ing with T, ing with F, 

ing with , ing with U.

• Note that the identity function is always 

both one-to-one and onto (bijective).



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 20

• The identity function:

Identity Function Illustrations

•
•

•

•

•

•

•
•

•

Domain and range x

y y = I(x) = x



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 21

Graphs of Functions

• We can represent a function f:AB as a set of 

ordered pairs {(a,f(a)) | aA}.

• Note that a, there is only 1 pair (a,b).

– Later (ch.6): relations loosen this restriction.

• For functions over numbers, we can represent 

an ordered pair (x,y) as a point on a plane.  

– A function is then drawn as a curve (set of points), 

with only one y for each x. 

← The function’s graph.



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 22

A Couple of Key Functions

• In discrete math, we will frequently use the 

following two functions over real numbers:

– The floor function ·:R→Z, where x (“floor 

of x”) means the largest (most positive) integer 

 x.  I.e., x :≡ max({iZ|i≤x}).

– The ceiling function · :R→Z, where x
(“ceiling of x”) means the smallest (most 

negative) integer  x. x :≡ min({iZ|i≥x})



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 23

Visualizing Floor & Ceiling

• Real numbers “fall to their floor” or “rise to 

their ceiling.”

• Note that if xZ,

x   x &

x   x

• Note that if xZ,

x = x = x.

0

1

1

2

3

2

3

.
.

.

.
.

.

. . .

1.6

1.6=2

1.4= 2

1.4

1.4= 1

1.6=1

3

3=3= 3



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 24

Plots with floor/ceiling
• Note that for f(x)=x, the graph of f includes the point 

(a, 0) for all values of a such that a0 and a<1, but not for 

the value a=1.  

• We say that the set of points (a,0) that is in f does not 

include its limit or boundary point (a,1).  

– Sets that do not include all of their limit points are generally 

called open sets.  

• In a plot, we draw a limit point of a curve using an open 

dot (circle) if the limit point is not on the curve, and with 

a closed (solid) dot if it is on the curve.



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 25

Plots with floor/ceiling: Example

• Plot of graph of function f(x) = x/3:

x

f(x)

Set of points (x, f(x))

+3

2

+2

3



Module #4 - Functions

1/13/2021 (c)2001-2003, Michael P. Frank 26

Review of §2.3 (Functions)

• Function variables f, g, h, … 

• Notations: f:AB, f(a), f(A).

• Terms: image, preimage, domain, codomain, 

range, one-to-one, onto, strictly (in/de)creasing, 

bijective, inverse, composition.

• Function unary operator f 1, 

binary operators , , etc., and ○.

• The RZ functions x and x.



1/13/2021 1

Relations



1/13/2021 2

Binary Relations

• Let A, B be any two sets.

• A binary relation R from A to B, written (with signature) 
R:A↔B, is a subset of A×B.  

– E.g., let < : N↔N :≡ {(n,m) | n < m}

• The notation a R b or aRb means (a,b)R.
– E.g., a < b means (a,b) <

• If aRb we may say “a is related to b (by relation R)”, or 
“a relates to b (under relation R)”.

• A binary relation R corresponds to a predicate function 
PR:A×B→{T,F} defined over the 2 sets A,B; e.g., 
“eats” :≡ {(a,b)| organism a eats food b}



1/13/2021 3

Complementary Relations

• Let R:A↔B be any binary relation.

• Then, R:A↔B, the complement of R, is the 
binary relation defined by

R :≡ {(a,b) | (a,b)R} = (A×B) − R

Note this is just R if the universe of 
discourse is U = A×B; thus the name 
complement.

• Note the complement of R is R.

Example:  < = {(a,b) | (a,b)<} = {(a,b) | ¬a<b} = ≥



1/13/2021 4

Inverse Relations

• Any binary relation R:A↔B has an inverse

relation R−1:B↔A, defined by

R−1 :≡ {(b,a) | (a,b)R}.

E.g., <−1 = {(b,a) | a<b} = {(b,a) | b>a} = >.

• E.g., if  R:People→Foods is defined by      

aRb  a eats b,  then:  

b R−1 a  b is eaten by a. (Passive voice.)



1/13/2021 5

Relations on a Set

• A (binary) relation from a set A to itself is 

called a relation on the set A.

• E.g., the “<” relation from earlier was 

defined as a relation on the set N of natural 

numbers.

• The identity relation IA on a set A is the set 

{(a,a)|aA}.



1/13/2021 6

Reflexivity

• A relation R on A is reflexive if aA, aRa.

– E.g., the relation ≥ :≡ {(a,b) | a≥b} is reflexive.

• A relation is irreflexive iff its complementary 

relation is reflexive.

– Note “irreflexive” ≠ “not reflexive”!

– Example: < is irreflexive.

– Note: “likes” between people is not reflexive, but not 

irreflexive either.  (Not everyone likes themselves, but 

not everyone dislikes themselves either.) 



1/13/2021 7

Symmetry & Antisymmetry

• A binary relation R on A is symmetric iff R

= R−1, that is, if (a,b)R ↔ (b,a)R.

– E.g., = (equality) is symmetric.  < is not.

– “is married to” is symmetric, “likes” is not.

• A binary relation R is antisymmetric if 

(a,b)R → (b,a)R.

– < is antisymmetric, “likes” is not.



1/13/2021 8

Transitivity

• A relation R is transitive iff (for all a,b,c)

(a,b)R  (b,c)R → (a,c)R.

• A relation is intransitive if it is not 

transitive.

• Examples: “is an ancestor of” is transitive.

• “likes” is intransitive.

• “is within 1 mile of” is… ? 



1/13/2021 9

Composite Relations

• Let R:A↔B, and S:B↔C.  Then the composite
SR of R and S is defined as:

SR = {(a,c) | b: aRb  bSc}

• Note function composition fg is an example.

• The nth power Rn of a relation R on a set A can be 
defined recursively by:

R0 :≡ IA ; Rn+1 :≡ RnR for all n≥0.

– Negative powers of R can also be defined if desired, by 
R−n :≡ (R−1)n.



1/13/2021 10

n-ary Relations

• An n-ary relation R on sets A1,…,An, 
written R:A1,…,An, is a subset
R  A1× … × An.

• The sets Ai are called the domains of R.

• The degree of R is n.

• R is functional in domain Ai if it contains at 
most one n-tuple (…, ai ,…) for any value ai

within domain Ai.



1/13/2021 11

Representing Relations

• Some ways to represent n-ary relations:

– With an explicit list or table of its tuples.

– With a function from the domain to {T,F}.

• Or with an algorithm for computing this function.

• Some special ways to represent binary
relations:

– With a zero-one matrix.

– With a directed graph.



1/13/2021 12

Using Zero-One Matrices

• To represent a relation R by a matrix 
MR = [mij], let mij = 1 if (ai,bj)R, else 0.

• E.g., Joe likes Susan and Mary, Fred likes 
Mary, and Mark likes Sally.

• The 0-1 matrix 
representation
of that “Likes”
relation: 
















   1   00

010

0   1      1   

Mark

Fred

Joe

SallyMarySusan



1/13/2021 13

Zero-One Reflexive, Symmetric

• Terms: Reflexive, non-Reflexive, 

irreflexive,

symmetric, asymmetric, and antisymmetric.

– These relation characteristics are very easy to 

recognize by inspection of the zero-one matrix.









































































0

0

101

0

   

0

01

1

   

0

0

0

0

   

1

1

1

1

Reflexive:

all 1’s on diagonal

Irreflexive:

all 0’s on diagonal

Symmetric:

all identical

across diagonal

Antisymmetric:

all 1’s are across

from 0’s

any-

thing

any-

thing

any-

thing

any-

thing



1/13/2021 14

Using Directed Graphs

• A directed graph or digraph G=(VG,EG) is a set VG of 

vertices (nodes) with a set EGVG×VG of edges 

(arcs,links).  Visually represented using dots for nodes, and 

arrows for edges.  Notice that a relation R:A↔B can be 

represented as a graph GR=(VG=AB, EG=R).

















   1   00

010

0   1      1   

Mark

Fred

Joe

SallyMarySusanMR
GR

Joe

Fred

Mark

Susan

Mary

Sally

Node set VG

(black dots)

Edge set EG

(blue arrows)



1/13/2021 15

Digraph Reflexive, Symmetric

It is extremely easy to recognize the reflexive/irreflexive/ 

symmetric/antisymmetric properties by graph inspection.











Reflexive:

Every node

has a self-loop

Irreflexive:

No node

links to itself

Symmetric:

Every link is

bidirectional

 

Antisymmetric:

No link is

bidirectional

 



Asymmetric, non-antisymmetric Non-reflexive, non-irreflexive



1/13/2021 16

Closures of Relations

• For any property X, the “X closure” of a set A is defined as 
the “smallest” superset of A that has the given property.

• The reflexive closure of a relation R on A is obtained by 
adding (a,a) to R for each aA.   I.e., it is R  IA

• The symmetric closure of R is obtained by adding (b,a) to 
R for each (a,b) in R.  I.e., it is R  R−1

• The transitive closure or connectivity relation of R is 
obtained by repeatedly adding (a,c) to R for each (a,b),(b,c) 
in R.
– I.e., it is





Zn

nRR*



1/13/2021 17

Paths in Digraphs/Binary Relations

• A path of length n from node a to b in the directed 
graph G (or the binary relation R) is a sequence 
(a,x1), (x1,x2), …, (xn−1,b) of n ordered pairs in EG
(or R).
– An empty sequence of edges is considered a path of 

length 0 from a to a.

– If any path from a to b exists, then we say that a is 
connected to b.  (“You can get there from here.”)

• A path of length n≥1 from a to a is called a circuit
or a cycle.

• Note that there exists a path of length n from a to b
in R if and only if (a,b)Rn.



1/13/2021 18

Equivalence Relations

• An equivalence relation (e.r.) on a set A is 

simply any binary relation on A that is 

reflexive, symmetric, and transitive.

– E.g., = itself is an equivalence relation.

– For any function f:A→B, the relation “have the 

same f value”, or =f :≡ {(a1,a2) | f(a1)=f(a2)} 

is an equivalence relation, e.g., let m=“mother 

of” then =m = “have the same mother” is an e.r.



1/13/2021 19

Equivalence Relation Examples

• “Strings a and b are the same length.”

• “Integers a and b have the same absolute 

value.”

• “Real numbers a and b have the same 

fractional part (i.e., a − b  Z).”

• “Integers a and b have the same residue 

modulo m.”  (for a given m>1)



1/13/2021 1

Graph Theory



1/13/2021 2

9.1: What are Graphs?

• General meaning in everyday math: 

A plot or chart of numerical data using a 

coordinate system.

• Technical meaning in discrete mathematics:

A particular class of discrete structures (to 

be defined) that is useful for representing 

relations and has a convenient webby-

looking graphical representation.

Not



1/13/2021 3

Applications of Graphs

• Potentially anything (graphs can represent  

relations, relations can describe the 

extension of any predicate).

• Apps in networking, scheduling, flow 

optimization, circuit design, path planning.

• Geneology analysis, computer game-

playing, program compilation, object-

oriented design, …



1/13/2021 4

Types of Graphs:

1. Simple Graphs

• Correspond to symmetric

binary relations R.

• A simple graph G=(V,E)

consists of:

– a set V of vertices or nodes (V corresponds to 

the universe of the relation R),

– a set E of edges / arcs / links: unordered pairs of 

[distinct?] elements u,v  V, such that uRv.

Visual Representation

of a Simple Graph

2 3

1



1/13/2021 5

• Let V be the set of states in the far-

southeastern U.S.:

–V={FL, GA, AL, MS, LA, SC, TN, NC}

• Let E={{u,v}|u adjoins v}

={{FL,GA},{FL,AL},{FL,MS},

{FL,LA},{GA,AL},{AL,MS},

{MS,LA},{GA,SC},{GA,TN},

{SC,NC},{NC,TN},{MS,TN},

{MS,AL}}

Example of a Simple Graph

TN

ALMS

LA

SC

GA

FL

NC



1/13/2021 6

2. Multigraphs

• Like simple graphs, but there may be more 

than one edge connecting two given nodes.

• A multigraph G=(V, E, f ) consists of a set 

V of vertices, a set E of edges (as primitive 

objects), and a function

f:E{{u,v}|u,vV  uv}.

• E.g., nodes are cities, edges

are segments of major highways.

Parallel

edges



1/13/2021 7

3. Pseudographs

• Like a multigraph, but edges connecting a 
node to itself are allowed.

• A pseudograph G=(V, E, f ) where
f:E{{u,v}|u,vV}.  Edge eE is a loop if 
f(e)={u,u}={u}.

• E.g., nodes are campsites
in a state park, edges are
hiking trails through the woods.



1/13/2021 8

Directed Graphs

• Correspond to arbitrary binary relations R, 

which need not be symmetric.

• A directed graph (V,E) consists of a set of 

vertices V and a binary relation E on V.

• E.g.: V = people,

E={(x,y) | x loves y}



1/13/2021 9

Directed Multigraphs

• Like directed graphs, but there may be more 
than one arc from a node to another.

• A directed multigraph G=(V, E, f ) consists 
of a set V of vertices, a set E of edges, and a 
function f:EVV.

• E.g., V=web pages,
E=hyperlinks.  The WWW is
a directed multigraph...



1/13/2021 10

Types of Graphs: Summary

• Summary of the book’s definitions.

• Keep in mind this terminology is not fully 

standardized...

Term

Edge

type

Multiple

edges ok?

Self-

loops ok?

Simple graph Undir. No No

Multigraph Undir. Yes No

Pseudograph Undir. Yes Yes

Directed graph Directed No Yes

Directed multigraph Directed Yes Yes



1/13/2021 11

9.2: Graph Terminology

• Adjacent, connects, endpoints, degree, 

initial, terminal, in-degree, out-degree, 

complete, cycles, wheels, n-cubes, bipartite, 

subgraph, union.



1/13/2021 12

Adjacency

Let G be an undirected graph with edge set E.  

Let eE be (or map to) the pair {u,v}.  Then 

we say:

• u, v are adjacent / neighbors / connected.

• Edge e is incident with vertices u and v.

• Edge e connects u and v.

• Vertices u and v are endpoints of edge e.



1/13/2021 13

Degree of a Vertex

• Let G be an undirected graph, vV a vertex.

• The degree of v, deg(v), is its number of 

incident edges. (Except that any self-loops 

are counted twice.)

• A vertex with degree 0 is isolated.

• A vertex of degree 1 is pendant.



1/13/2021 14

Handshaking Theorem

• Let G be an undirected (simple, multi-, or 

pseudo-) graph with vertex set V and edge 

set E.  Then

• Corollary: Any undirected graph has an 

even number of vertices of odd degree.

Ev
Vv

2)deg( 




1/13/2021 15

• deg(a) = 6

• deg(b) = 4

• deg( c) = 1      pendant

• deg(d) = 0      isolated

• deg(e) = 3

• deg(f) = 4

• deg(g) = 2

• ∑deg(v) = 20 = 2∑edges=2 x 10 



1/13/2021 16

Directed Adjacency

• Let G be a directed (possibly multi-) graph, 

and let e be an edge of G that is (or maps to) 

(u,v).  Then we say:

– u is adjacent to v, v is adjacent from u

– e comes from u, e goes to v.

– e connects u to v, e goes from u to v

– the initial vertex of e is u

– the terminal vertex of e is v



1/13/2021 17

Directed Degree

• Let G be a directed graph, v a vertex of G.

– The in-degree of v, deg(v), is the number of 

edges going to v.

– The out-degree of v, deg(v), is the number of 

edges coming from v.

– The degree of v, deg(v)deg(v)+deg(v), is the 

sum of v’s in-degree and out-degree.



1/13/2021 18

Directed Handshaking Theorem

• Let G be a directed (possibly multi-) graph 

with vertex set V and edge set E.  Then:

• Note that the degree of a node is unchanged 

by whether we consider its edges to be 

directed or undirected.

Evvv
VvVvVv

 






 )deg(
2

1
)(deg)(deg



1/13/2021 19

• deg+(a) = 3 deg -(a) = 3

• deg+(b) = 3               deg -(b) = 1

• deg+( c) = 0               deg -(c) = 1

• deg+(d) = 0               deg -(d) = 0

• deg+(e) = 1 deg-(e) = 2

• deg+(f) = 2 deg-(f) = 2

• deg+(g) = 1 deg-(g) = 1

• ∑deg+(v) = ∑deg-(v) =1/2 ∑deg(v)= ∑edges = 
10 



1/13/2021 20

Special Graph Structures

Special cases of undirected graph structures:

• Complete graphs Kn

• Cycles Cn

• Wheels Wn

• n-Cubes Qn

• Bipartite graphs

• Complete bipartite graphs Km,n



1/13/2021 21

Complete Graphs

• For any nN, a complete graph on n

vertices, Kn, is a simple graph with n nodes 

in which every node is adjacent to every 

other node: u,vV: uv{u,v}E.

K1 K2
K3

K4 K5 K6

Note that Kn has                edges.
2

)1(`

1








nn
i

n

i



1/13/2021 22

Cycles

• For any n3, a cycle on n vertices, Cn, is a 

simple graph where V={v1,v2,… ,vn} and 

E={{v1,v2},{v2,v3},…,{vn1,vn},{vn,v1}}.

C3 C4 C5 C6 C7
C8

How many edges are there in Cn?



1/13/2021 23

Wheels

• For any n3, a wheel Wn, is a simple graph 

obtained by taking the cycle Cn and adding 

one extra vertex vhub and n extra edges 

{{vhub,v1}, {vhub,v2},…,{vhub,vn}}.

W3 W4 W5 W6 W7
W8

How many edges are there in Wn?



1/13/2021 24

n-cubes (hypercubes)

• For any nN, the hypercube Qn is a simple 

graph consisting of two copies of Qn-1

connected together at corresponding nodes.  

Q0 has 1 node.

Q0
Q1 Q2 Q3

Q4

Number of vertices: 2n.  Number of edges:Exercise to try! 



1/13/2021 25

n-cubes (hypercubes)

• For any nN, the hypercube Qn can be 

defined recursively as follows:

– Q0={{v0},} (one node and no edges)

– For any nN, if Qn=(V,E), where V={v1,…,va} 

and E={e1,…,eb}, then Qn+1=(V{v1´,…,va´}, 

E{e1´,…,eb´}{{v1,v1´},{v2,v2´},…,

{va,va´}}) where v1´,…,va´ are new vertices, 

and where if ei={vj,vk} then ei´={vj´,vk´}. 



1/13/2021 26

Subgraphs

• A subgraph of a graph G=(V,E) is a graph 

H=(W,F) where WV and FE.

G H



1/13/2021 27

Graph Unions

• The union G1G2 of two simple graphs 

G1=(V1, E1) and G2=(V2,E2) is the simple 

graph (V1V2, E1E2).



1/13/2021 28

9.3: Graph Representations

• Graph representations:

– Adjacency lists.

– Adjacency matrices.

– Incidence matrices.



1/13/2021 29

Adjacency Lists

• A table with 1 row per vertex, listing its 

adjacent vertices.

a b

dc

f
e

Vertex

Adjacent

Vertices

a

b

b, c

a, c, e, f

c a, b, f

d

e b

f c, b



1/13/2021 30

Directed Adjacency Lists

• 1 row per node, listing the terminal nodes of 

each edge incident from that node.



1/13/2021 31

Adjacency Matrices

• Matrix A=[aij], where aij is 1 if {vi, vj} is an 

edge of G, 0 otherwise.

a b

d
c e



















00010
00000
00011
10101
00110

e
d
c
b
a

a b c d e



1/13/2021 32

Adjacency Matrices

• Matrix A=[aij], where aij is 1 if {vi, vj} is an 

edge of G, 0 otherwise.

a b

d
c e



















00010
00000
00010
00000
00110

e
d
c
b
a

a b c d e



1/13/2021 33

§8.4: Connectivity

• In an undirected graph, a path of length n 

from u to v is a sequence of adjacent edges 

going from vertex u to vertex v.

• A path is a circuit if u=v.

• A path traverses the vertices along it.

• A path is simple if it contains no edge more 

than once.



1/13/2021 34

Paths in Directed Graphs

• Same as in undirected graphs, but the path 

must go in the direction of the arrows.



1/13/2021 35

§9.1: Introduction to Trees

• A tree is a connected undirected graph with 

no simple circuits.

– Theorem: There is a unique simple path 

between any two of its nodes.

• An undirected graph without simple circuits 

is called a forest.

– You can think of it as a set of trees having 

disjoint sets of nodes.



1/13/2021 36

Rooted Trees

• A rooted tree is a tree in which one node has 

been designated the root.

– Every edge is (implicitly or explicitly) directed 

away from the root.

• You should know the following terms about 

rooted trees:

– Parent, child, siblings, ancestors, descendents, 

leaf, internal node, subtree.



1/13/2021 37

n-ary trees

• A rooted tree is called n-ary if every internal 

vertex has no more than n children.

• It is full if every internal vertex has exactly

n children.

• A 2-ary tree is called a binary tree.



1/13/2021 38

Ordered Rooted Tree

• A rooted tree where the children of each 

internal node are ordered.

• In ordered binary trees, we can define:

– left child, right child

– left subtree, right subtree

• For n-ary trees with n>2, can use terms like 

“leftmost”, “rightmost,” etc. 



1/13/2021 39

Trees as Models

• Can use trees to model the following:

– Saturated hydrocarbons

– Organizational structures

– Computer file systems

• In each case, would you use a rooted or a 

non-rooted tree?



1/13/2021 40

Some Tree Theorems

• A tree with n nodes has n−1 edges.

• A full m-ary tree with i internal nodes has 

n=mi+1 nodes, and =(m−1)i+1 leaves.

– Proof: There are mi children of internal nodes, 

plus the root. And,  = n−i = (m−1)i+1. □

– Thus, given m, we can compute any of i, n, and 

 from any of the others.



1/13/2021 41

More Theorems

• Definition: The level of a node is the length of the 

simple path from the root to the node.

– The height of a tree is maximum node level.

– A rooted m-ary tree with height h is balanced if all 

leaves are at levels h or h−1.

• Theorem: There are at most mh leaves in an m-

ary tree of height h.

– Corollary: An m-ary tree with  leaves has height 

h≥logm .  If m is full and balanced then h=logm



1/13/2021 42

§9.2: Applications of Trees

• Binary search trees

• Decision trees

– Minimum comparisons in sorting algorithms

• Prefix codes

– Huffman coding

• Game trees



1/13/2021 43

§9.3: Tree Traversal

• Universal address systems

• Traversal algorithms

– Depth-first traversal:

• Preorder traversal

• Inorder traversal

• Postorder traversal

– Breadth-first traversal

• Infix/prefix/postfix notation


	P                              Q
	A. Using truth table
	It is a Tautology
	( They are equivalent
	B. Using Logical equivalence rules

	P    Q
	Table 1: Equivalence rules:   ( ( (                                   Table 2: Implications Logical Rules
	3. PREDICATES AND QUANTIFIERS
	PREDICATES

	P ( Q ( (P (Q) ( (Q( P)
	P ( Q ( (P ( (Q
	It is called:  Propositional function
	QUANTIFIERS
	1. Universal Quantifier
	2. Existential quantifier

	 There exists an element x in the domain such that p(x) is true      ( (x p(x)
	Binding Variable
	Negation

	There is a student in the class who has not taken Calculus. ( (x P(x) ((x ( p(x)
	4 NESTED QUANTIFIERS

	Or
	NEGATING NESTED QUANTIFIER
	ORDER OF QUANTIFIER

	Ex1:    Let Q(x, y) denote “ x + y = 0” what are the truth values of the quantifications
	Ex2:    Let Q(x, y) denote “ x + y = x” what are the truth values of the quantifications
	Ex3:    Let Q(x, y) denote “ x + y = y + x” what are the truth values of the quantifications
	Ex4:    Let Q(x, y) denote “ x + y = 5” what are the truth values of the quantifications
	Ex5:    Let Q(x, y) denote “ x + y = 0.5” what are the truth values of the quantifications
	Translation From English Into Logical Expressions

	6.  Express the statement “if a person is a female and is a parent, then this person is someone’s mother”
	 Exercise 1:
	Domain: people
	 Exercise 2:
	Let:
	Domain: Animals
	  Exercise 3:
	Let:
	Domain1: people
	5 Rules of Inference
	Valid Argument
	Fallacies

	A. Fallacy of affirming the conclusion  [(P(Q)  Q] ( P
	B. Fallacy of Denying the Hypothesis  [(P(Q)  P] ( Q
	Rules Of Inference For Quantified Statements
	6.  Introduction to Proofs
	Methods Of proofs

	Module #3:�The Theory of Sets
	Introduction to Set Theory (§1.6)
	Naïve set theory
	Basic notations for sets
	Basic properties of sets
	Definition of Set Equality
	Infinite Sets
	Venn Diagrams
	Basic Set Relations: Member of
	The Empty Set
	Subset and Superset Relations
	Proper (Strict) Subsets & Supersets
	Sets Are Objects, Too!
	Cardinality and Finiteness
	The Power Set Operation
	Review: Set Notations So Far
	Naïve Set Theory is Inconsistent
	Ordered n-tuples
	Cartesian Products of Sets
	Review of §1.6
	Start §1.7: The Union Operator
	Union Examples
	The Intersection Operator
	Intersection Examples
	Disjointedness
	Inclusion-Exclusion Principle
	Set Difference
	Set Difference Examples
	Set Difference - Venn Diagram
	Set Complements
	More on Set Complements
	Set Identities
	DeMorgan’s Law for Sets
	Proving Set Identities
	Method 1: Set Identities
	Method 2: Mutual subsets
	Method 3: Set Builder Notation
	Method 4: Membership Tables
	Membership Table Example
	Membership Table Exercise
	Method 5: Venn Diagram
	Review of §1.6-1.7
	Generalized Unions & Intersections
	Generalized Union
	Generalized Intersection
	Representations
	Representing Sets with Bit Strings

