The University of Jordan

King Abdullah II School for Information Technology
Department of Computer Information Systems
1902321：Database Management Systems．

Duration 2hrs
Spring， 2011
Final Exam

Instructors：Dr．Raja Alomari（coordinator），Dr．Omar Adwan，and Ms Walaa Qutechat．

ニニ
Name（Print CLEARLY）： StID：

Q1：（15 pts）Study the following form for a trading company that sells wholesale grocery items． Based on this form，create a database in the $3^{\text {rd }}$ normal form by following the normalization rules step－by－step．［Hint，consider the SaleID as your primary key］．

Step 0：Plain Table with primary key

SaleID，PurchaseDate，BuyerID，BuyerName，clerkID，clearkName，ItemID，ItemDescription，UnitPrice，NoBoxes
$(5 \mathrm{pts})$ Step1： $1^{\text {st }}$ Normal Form：Show all tables（Hint：Remove repeating groups if exist）
Table 1：SaleID，PurchaseDate，BuyerID，BuyerName，clerkID，clearkName，

Table 2：SaleID，ItemID，ItemDescription，UnitPrice，NoBoxes

(5 pts) Step 2: $2^{\text {nd }}$ Normal Form: Show all tables (Hint: Remove partial dependencies if exist).
Table 1: SaleID, PurchaseDate, BuyerID, BuyerName, clerkID, clearkName,
Table 2: SaleID, ItemID, UnitPrice, NoBoxes
FK(ItemID)
Table 3: ItemID, ItemDescription

(5 pts) Step 3: $3^{\text {rd }}$ Normal Form: Show all tables (Hint: Remove transitive dependencies if exist).

Table 1: SaleID, PurchaseDate, BuyerID, clerkID,
Table 2: SaleID, ItemID, UnitPrice, NoBoxes
Table 3: ItemID, ItemDescription
Table 4: BuyerID, BuyerName
Table 5: clerkID, clerkName,
FK(BuyerID), FK(clerkID)
FK(ItemID)

Q2: (5 pts) Draw the ERM that represents the database of Q2.

Q3: (10 pts) Study the following ERM and answer questions below (2pnts each)

1. The SQL statement that retrieves all customer names (without duplication) who had a loan is:
a. select distinct custName from customer, borrow;
b. select distinct custName from customer where LID in (select LID from loan);
c. select distinct custName from customer where CID in (select CID from borrow);
d. $a+c$
2. The SQL statement that retrieves all customer names with accounts having an amount over JD50000 (without duplication) is:
a. select distinct custName from customer, account where AAmount > 50000;
(b) select distinct custName from customer where CID in (select CID from has, account where has.AID = account.AID and AAmount > 50000);
c. select distinct custName from customer, has where AAmount > 50000;
d. $b+c$
3. The SQL statement that retrieves the summation of all borrowed loans is:
a. select LAmount from loan where LID in (select LID from borrow);
b. select sum, LAmount from loan, borrow where loan.LID = borrow.LID;
c. select sum, LAmount from loan where LID in (select LID from borrow);
(d.) None of the above.
4. The SQL statement that retrieves all loan transactions occurred on April 1 ${ }^{\text {st }}, 2009$:
a. select * from loan where date1 = '01-April-2009';
b. select L.LID, L.LAmount, B.date1 from loan L, borrow B where L.LID = B.LID and B.date1 = '01-April-2009';
c. select L.LID, L.LAmount from loan as L where LID in (select LID from borrow where date1 = '01-April-2009');
(d. $\mathrm{b}+\mathrm{c}$
5. The SQL statement that retrieves customer IDs, average loan amounts grouped by the CIDs:
a. select CID, CName from customer C, loan L, borrow B where C.CID = B.CID and B.LID $=$ L.LID and L.LAmount $=\operatorname{avg}($ L.LAmount $)$; (b. select B.CID, avg(L.LAmount) from loan L, borrow B where B.LID=L.LID group by B.CID;
c. select CID, CName from customer C where CID in (select CID, avg(L.LAmount) from
borrow B, loan L where B.LID = L.LID group by B.CID;
d. None of the above

Q4: (10 pnts) Given this ERM, Answer the following (1 pnt each):

1. The SQL statement " select P.PName, Ph.PhNo from Patient P, PatientPhones Ph where P.PID = Ph.PID;" retrieves:
a. All patient information and their phone numbers;
b. Patient names and and only one phone number.
c. All Patient names and all phone numbers.
d. This statement is wrong.
2. The SQL statement " (select P.PID from Patient P) union (select T.PID from treats T);" retrieves:
(a.) All patient IDs regardless of receiving a treatment or not.
b. All patients who have been treated by a doctor.
c. Some of the patients who have been treated by a doctor.
d. None of the above.
3. The SQL statement " select P.PName from Patient \mathbf{P} where P.PID in (select U.PID from Uses U) intersect (select T.PID from treats T);" retrieves:
(a.) All patient names who received treatment and used a bed.
b. All patient names who used a bed but did not receive a treatment.
c. All patient names who received a treatment but did not use a bed.
d. None of the above.
4. To create the table uses:
a. Create table uses (PID varchar2(20), BID varchar2(20), primary key(BID, PID));
b. Create table uses (PName varchar2(20), BID varchar2(20), primary key(BID));
c. Create table uses (PID varchar2(20), BID varchar2(20), primary key(PID,BID), foreign key(PID) references (PID), foreign key(BID) references (BID));
(d.) None is correct.
5. To create the table doctor:
a. Create table doctor (DID varchar2(20), Dname varchar2(50), primary key(DID));
b. Create table doctor (DID varchar2(20), Dname varchar2(50) not null, primary key(DID), foreign key (DID) references treats(DID));
c. Create table doctor (DID varchar2(20), Dname varchar2(50) not null, primary key(DID)); (d.) $\mathrm{a}+\mathrm{c}$ are both correct.
6. The statement "update bed set size = 'queen' " will
a. Add an attribute size to the table bed and set the default value to 'queen'.
b. Set the default value for any new inserted bed record to 'queen'
c. Set all the size values for each record in the table bed to 'queen'
d. b + c are both correct
7. The statement "insert into patient(PID, Address, PName) values ('0001','Amman', 'Ahmad') " will
a. Add three attributes to the table patient.
b. Add one record to the table patient with an ID = '0001' but leaves both the address and PName empty because they are not in order.
C. Add one record to the table patient with an ID = '0001', address = 'Amman', Name = 'Ahmad'
d. Either b or c might happen depending on the SQL version you are using.
8. The statement "drop table bed where BID = '0001' " will:
a. Drop all the record with $\mathrm{ID}={ }^{\prime} 0001{ }^{\prime}$
b. Drop all the database
c. Drop the tables bed and uses because they depend on each other.
(d.) This statement is wrong in syntax.
9. The statement " update bed set BCount = case when size='queen' then BCount $+\mathbf{2 0}$ when

Both a and c are correct because the word 'end was not there.'
size='king' then BCount+5 else BCount + 17 end; " will:
a. Nothing will happen because this statement is wrong in syntax.
b. The BCount value will change by adding 17 to each record because of the else clause.
C. The BCount value will add 20 for all queen bed size, 5 for all king size and 17 for the other sizes.
d. The BCount value will add 20 for all queen bed size, $(20+5)$ for all king size and $(20+5+17)$ for the other sizes.
10. Given that this databases is created correctly in the database with all foreign keys and primary keys, which of the following will execute correctly:
a. Delete table patient;
(b) Drop table treats;
c. Remove table doctor;
d. All of the above will execute and the tables will no longer be in the database.
$* *$
Q5: (10 pnts) Study this ERM and answer the following based on your relational algebra knowledge:

Question (2pnts each)	Your Answer
Write a relational algebra statement to find the loan numbers (loan_number) for the loan having an amount less than 500 . [Hint: use both projection (ח) and selection (σ) operators].	
Write a relational algebra statement to find the sum of loan amounts in the loan relation. [Hint: use the aggregate function (g) operator].	$g_{\text {sum(amount) }}($ loan
Write the outcome of this expression Customer_city g count(customer_id) (Customer)	Number of customers grouped by their cities.
Write a relational algebra statement to find all customer names, their loan IDs, and the amounts. [Hint: use projection (II) and product (x) operators].	Пcustomer_name,loan_number,amount((customer x borrower) x loan)
Write a relational algebra statement to find the intersection between Customer IDs in both Customer and borrow relations. [Hint: use projection (II) and intersection (\cap) operators].	Пcustomer_id(borrower) \cap Пcustomer_id(customer) Пcustomer_id(borrower \cap customer)

End of Exam
Good Luck!

Or any acceptable form: 2 pnts, 1 pnts, and 0 pnt.

