## The University of Jordan School of Engineering Department of Computer Engineering Fall Term – A.Y. 2020 - 2021



| Course:                                                      | Parallel Processing – 0907536 (3 Credit Hours)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Catalog Data:                                                | Basic Concepts. Introduction to Parallel Systems. Parallelism in<br>Hardware (Multithreading, Multicore, Multiprocessors, GPU<br>Accelerators, Vector Instruction Sets). Parallel Programming Platforms<br>and Models. Paradigms for Parallel Algorithms. Principles of Parallel<br>Algorithm Design. Parallel Algorithms and Applications. Data<br>Structures for Parallel Computing. Dense Matrix Algorithms. Array-<br>Based SIMD Architectures. Sorting Algorithms. Graph Algorithms.<br>Decision Trees and Diagrams. Fast Fourier Transform Algorithms.<br>Numerical Algorithms. Emerging Techniques in Parallel Computing. |  |  |
| Prerequisites by<br>Course:                                  | Computer Architecture and Organization (2) [CPE 0907432] & Data Structures and Algorithms [CPE 0907346].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Prerequisites by Topic:                                      | Students are assumed to have had sufficient knowledge pertaining to object-oriented programming and computer organization and architecture.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Textbook:                                                    | <ul> <li>A. Grama, A. Gupta, G. Karypis, and V. Kumar, <i>Introduction to Parallel Computing</i>, 2<sup>nd</sup> edition, Pearson, 2003.</li> <li>C. Xavier and S. S. Iyengar, <i>Introduction to Parallel Algorithms</i>, Wiley, 1998.</li> <li>C. Lin and L. Snyder, <i>Principles of Parallel Programming</i>, Addison-Wesley, 2008.</li> </ul>                                                                                                                                                                                                                                                                               |  |  |
| References:                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Website:                                                     | http://eacademic.ju.edu.jo/a.alrabadi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Schedule & Duration:                                         | 16 Weeks, 48 lectures, 60 minutes each (including exams).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Minimum Student<br>Material:                                 | Text book, class handouts, some instructor keynotes, calculator and access to a personal computer and internet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Minimum College<br>Facilities:                               | E-learning platform, classroom with whiteboard and projection display facilities, library and computational facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Course Objectives:                                           | <ol> <li>The objectives of this course are:</li> <li>Introducing students to modern parallel processing systems.</li> <li>Introducing students to parallel SIMD architectures.</li> <li>Introducing students to parallel FFT and numerical algorithms.</li> <li>Introducing students to parallel graph-based algorithms.</li> <li>Introducing students to parallel array manipulation algorithms.</li> </ol>                                                                                                                                                                                                                     |  |  |
|                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Course Outcomes and<br>Relation to ABET<br>Program Outcomes: | <ul> <li>Upon successful completion of the course, a student should be able to:</li> <li>1. Implement the various parallel – based problem solving techniques for specific applications.</li> <li>2. Recognize the continuous important updates of contemporary issues in parallel computing.</li> </ul>                                                                                                                                                                                                                                                                                                                         |  |  |
| Course Topics:                                               | <ol> <li>Introduction to Parallel Systems</li> <li>Parallelism in Current Hardware</li> <li>Parallel Programming Platforms and Models</li> <li>Paradigms for Parallel Algorithms</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |

|                             | <ol> <li>Principles of Parall</li> <li>Applications of Parall</li> <li>Data Structures for</li> <li>Dense Matrix Algor</li> <li>Array-Based Parall</li> <li>Parallel Sorting Alg</li> <li>Parallel Graph-Bas</li> <li>Parallel Decision T</li> <li>Parallel FFT and N</li> <li>Emerging Technique</li> </ol> | allel Algorithms<br>Parallel Computing<br>rithms<br>el SIMD Architectures<br>porithms<br>ed Algorithms<br>rees and Diagrams |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|
| Computer Usage:             | Practical aspects of this course are covered in Engineering Problem Solving with Matlab and OOP with Java.                                                                                                                                                                                                   |                                                                                                                             |  |
| Attendance:                 | Class attendance will be taken every class and the university's polices will be enforced in this regard.                                                                                                                                                                                                     |                                                                                                                             |  |
| Assessments:                | Exams and Course Work.                                                                                                                                                                                                                                                                                       |                                                                                                                             |  |
| Grading policy:             | Course Work<br>Midterm Exam<br>Final Exam                                                                                                                                                                                                                                                                    | 20%<br>30%<br>50%                                                                                                           |  |
| Instructors:                | Prof. Dr. Eng. Anas N. Al-Rabadi<br><u>a.alrabadi@ju.edu.jo</u><br>Office Hours: S. T. Th. 11:00 – 12:00<br>M. W. 10:00 – 11:00                                                                                                                                                                              |                                                                                                                             |  |
| Class Time and<br>Location: | S. T. Th. 9:30 – 10:30                                                                                                                                                                                                                                                                                       | CE 001                                                                                                                      |  |