CHAPTER

Introduction

Practice Exercises

1.1 This chapter has described several major advantages of a database system. What
are two disadvantages?

Answer:
Two disadvantages associated with database systems are listed below.

a.

b.

Setup of the database system requires more knowledge, money, skills, and
time.

The complexity of the database may result in poor performance.

1.2 List five ways in which the type declaration system of a language such as Java
or C++ differs from the data definition language used in a database.

Answer:

Executing an action in the DDL results in the creation of an object in the
database; in contrast, a programming language type declaration is simply
an abstraction used in the program.

Database DDLs allow consistency constraints to be specified, which pro-
gramming language type systems generally do not allow. These include
domain constraints and referential integrity constraints.

Database DDLs support authorization, giving different access rights to
different users. Programming language type systems do not provide such
protection (at best, they protect attributes in a class from being accessed
by methods in another class).

Programming language type systems are usually much richer than the SQL
type system. Most databases support only basic types such as different
types of numbers and strings, although some databases do support some
complex types such as arrays and objects.

2

Chapter 1 Introduction

€.

A database DDL is focused on specifying types of attributes of relations;
in contrast, a programming language allows objects and collections of ob-
jects to be created.

1.3 List six major steps that you would take in setting up a database for a particular
enterprise.

1.4

Answer:
Six major steps in setting up a database for a particular enterprise are:

Define the high-level requirements of the enterprise (this step generates a
document known as the system requirements specification.)

Define a model containing all appropriate types of data and data relation-
ships.

Define the integrity constraints on the data.
Define the physical level.

For each known problem to be solved on a regular basis (e.g., tasks to be
carried out by clerks or web users), define a user interface to carry out the
task, and write the necessary application programs to implement the user
interface.

Create/initialize the database.

Suppose you want to build a video site similar to YouTube. Consider each of the
points listed in Section 1.2 as disadvantages of keeping data in a file-processing
system. Discuss the relevance of each of these points to the storage of actual
video data, and to metadata about the video, such as title, the user who uploaded
it, tags, and which users viewed it.

Answer:

Data redundancy and inconsistency. This would be relevant to metadata to
some extent, although not to the actual video data, which are not updated.
There are very few relationships here, and none of them can lead to redun-
dancy.

Difficulty in accessing data. If video data are only accessed through a few
predefined interfaces, as is done in video sharing sites today, this will not
be a problem. However, if an organization needs to find video data based
on specific search conditions (beyond simple keyword queries), if metadata
were stored in files it would be hard to find relevant data without writing
application programs. Using a database would be important for the task of
finding data.

Data isolation. Since data are not usually updated, but instead newly cre-
ated, data isolation is not a major issue. Even the task of keeping track of

Practice Exercises 3

who has viewed what videos is (conceptually) append only, again making
isolation not a major issue. However, if authorization is added, there may
be some issues of concurrent updates to authorization information.

* Integrity problems. It seems unlikely there are significant integrity con-
straints in this application, except for primary keys. If the data are dis-
tributed, there may be issues in enforcing primary key constraints. Integrity
problems are probably not a major issue.

° Atomicity problems. When a video is uploaded, metadata about the video
and the video should be added atomically, otherwise there would be an
inconsistency in the data. An underlying recovery mechanism would be
required to ensure atomicity in the event of failures.

* Concurrent-access anomalies. Since data are not updated, concurrent access
anomalies would be unlikely to occur.

° Security problems. These would be an issue if the system supported autho-
rization.

1.5 Keyword queries used in web search are quite different from database queries.
List key differences between the two, in terms of the way the queries are specified
and in terms of what is the result of a query.

Answer:

Queries used in the web are specified by providing a list of keywords with no spe-
cific syntax. The result is typically an ordered list of URLSs, along with snippets
of information about the content of the URLSs. In contrast, database queries
have a specific syntax allowing complex queries to be specified. And in the rela-
tional world the result of a query is always a table.

CHAPTER

Introduction to the Relational
Model

Practice Exercises

2.1 Consider the employee database of Figure 2.17. What are the appropriate pri-
mary keys?

Answer:
The appropriate primary keys are shown below:

employee (person_name, street, city)
works (person_name, company-name, salary)
company (company_name, city)

2.2 Consider the foreign-key constraint from the dept_name attribute of instructor to
the department relation. Give examples of inserts and deletes to these relations
that can cause a violation of the foreign-key constraint.

Answer:
* Inserting a tuple:

(10111, Ostrom, Economics, 110000)

employee (ID, person_name, street, city)
works (ID, company_name, salary)
company (company_name, city)

Figure 2.17 Employee database.

6

Chapter 2 Introduction to the Relational Model

2.3

2.4

2.5

2.6

into the instructor table, where the department table does not have the de-
partment Economics, would violate the foreign-key constraint.

* Deleting the tuple:
(Biology, Watson, 90000)

from the department table, where at least one student or instructor tuple
has dept_name as Biology, would violate the foreign-key constraint.

Consider the time_slot relation. Given that a particular time slot can meet more
than once in a week, explain why day and start_time are part of the primary key
of this relation, while end_time is not.

Answer:

The attributes day and start_time are part of the primary key since a particular
class will most likely meet on several different days and may even meet more
than once in a day. However, end_time is not part of the primary key since a
particular class that starts at a particular time on a particular day cannot end at
more than one time.

In the instance of instructor shown in Figure 2.1, no two instructors have the
same name. From this, can we conclude that name can be used as a superkey
(or primary key) of instructor?

Answer:

No. For this possible instance of the instructor table the names are unique, but
in general this may not always be the case (unless the university has a rule that
two instructors cannot have the same name, which is a rather unlikey scenario).

What is the result of first performing the Cartesian product of student and advi-
sor, and then performing a selection operation on the result with the predicate
s_id = ID? (Using the symbolic notation of relational algebra, this query can be
written as o ;,_;p(student X advisor).)

Answer:
The result attributes include all attribute values of student followed by all at-
tributes of advisor. The tuples in the result are as follows: For each student who
has an advisor, the result has a row containing that student’s attributes, followed
by an s_id attribute identical to the student’s ID attribute, followed by the i_id
attribute containing the ID of the students advisor.

Students who do not have an advisor will not appear in the result. A student
who has more than one advisor will appear a corresponding number of times
in the result.

Consider the employee database of Figure 2.17. Give an expression in the rela-
tional algebra to express each of the following queries:

a. Find the name of each employee who lives in city “Miami”.

Practice Exercises 7

branch(branch_name, branch_city, assets)

customer (ID, customer_name, customer_street, customer_ity)
loan (loan_number, branch_name, amount)

borrower (ID, loan_number)

account (account_number, branch_name, balance)

depositor (ID, account_number)

2.7

2.8

Figure 2.18 Bank database.

b. Find the name of each employee whose salary is greater than $100000.

c. Find the name of each employee who lives in “Miami” and whose salary
is greater than $100000.

Answer:

a. Hperson_name (Gcity=“Miami” (emp loy 66‘))
b. Hperson_name (Gsalary> 100000 (employee M WOI‘kS))

C. Hperson_name (Gcfty = “Miami” A salary>100000 (emp loy ee D4 wor kS))

Consider the bank database of Figure 2.18. Give an expression in the relational
algebra for each of the following queries:

a. Find the name of each branch located in “Chicago”.

b. Find the ID of each borrower who has a loan in branch “Downtown”.

Answer:

a. Hbranch_name (Gbranch_cil}:“Chicago” (b T anch))

b. H[D (Gbranch;name = “Downtown” (bOI‘ rower D4borrower.loarmumber:loan.loaruwmber

loan)).

Consider the employee database of Figure 2.17. Give an expression in the rela-
tional algebra to express each of the following queries:

a. Findthe ID and name of each employee who does not work for “BigBank”.

b. Find the ID and name of each employee who earns at least as much as
every employee in the database.

Answer:

a. To find employees who do not work for BigBank, we first find all those
who do work for BigBank. Those are exactly the employees not part of the

Chapter 2 Introduction to the Relational Model

desired result. We then use set difference to find the set of all employees
minus those employees that should not be in the result.

H[D,person_name (emp / oy ee) -
H[D,person,name
(emp ZOJ/ ee Nemployee.[D:works.]D (Gcompany_name: }}BigBank” (WOI’ ks)))

b. We use the same approach as in part a by first finding those employess
who do not earn the highest salary, or, said differently, for whom some
other employee earns more. Since this involves comparing two employee
salary values, we need to reference the employee relation twice and there-
fore use renaming.

HlD,person_name (emp loy €€) -
HA-IDA.persongalne(pA (employee) My salary<B.salary pg(employee))

2.9 The division operator of relational algebra, “+”, is defined as follows. Let r(R)
and s(S) be relations, and let S C R; that is, every attribute of schema S is

also in schema R. Given a tuple ¢, let z[S] denote the projection of tuple 7 on
the attributes in S. Then r + s is a relation on schema R — S (that is, on the
schema containing all attributes of schema R that are not in schema S). A tuple
tisin r + sif and only if both of two conditions hold:

° tisin I, (r)

* For every tuple 7, in s, there is a tuple ¢, in r satisfying both of the following:
a. 1.[S] = ¢S]
b.t,[R — S] =1

Given the above definition:

a. Write a relational algebra expression using the division operator to find
the IDs of all students who have taken all Comp. Sci. courses. (Hint:
project takes to just ID and course_id, and generate the set of all Comp.
Sci. course_ids using a select expression, before doing the division.)

b. Show how to write the above query in relational algebra, without using
division. (By doing so, you would have shown how to define the division
operation using the other relational algebra operations.)

Answer:

a. HID(HID,course_id (takes) - Hcourse_id (Gdept_name=’C0mp. Sci’ (COLII' S e))

b. The required expression is as follows:

Practice Exercises 9

r < H[D,course_id (takes)

s« II s(course))

course_id (Ga'ept_name=’Comp. Sci

I,y (takes) — II;, (11, (takes) X s) — r)

In general, let 7(R) and s(S) be given, with § C R. Then we can express
the division operation using basic relational algebra operations as follows:

r+s=1Ig o) — Hp_g ((Tg_g (r) X s) — Mg_g5(r))

To see that this expression is true, we observe that I1,_g (r) gives us all
tuples ¢ that satisfy the first condition of the definition of division. The
expression on the right side of the set difference operator

Iy g ((IMy_g (r) X 5) — HR—S,S(r))

serves to eliminate those tuples that fail to satisfy the second condition of
the definition of division. Let us see how it does so. Consider Il,_g (7) X s.
This relation is on schema R, and pairs every tuple in I1,_g () with every
tuple in 5. The expression I1;_g ¢(r) merely reorders the attributes of r.

Thus, (Iz_g (r) X s) — Ilz_g c(r) gives us those pairs of tuples from
IIz_g (r) and s that do not appear in r. If a tuple 7, is in

s (Te_g (1) X 8) — Mp_g5(r)

then there is some tuple 7 in s that does not combine with tuple 7 to form
atuple in r. Thus, 7, holds a value for attributes R — S that does not appear
inr + s. Itis these values that we eliminate from I,_g (7).

CHAPTER

Introduction to SQL

Practice Exercises

3.1 Write the following queries in SQL, using the university schema. (We suggest
you actually run these queries on a database, using the sample data that we
provide on the web site of the book, db-book.com. Instructions for setting up
a database, and loading sample data, are provided on the above web site.)

a. Find the titles of courses in the Comp. Sci. department that have 3 credits.

b. Find the IDs of all students who were taught by an instructor named Ein-
stein; make sure there are no duplicates in the result.

c. Find the highest salary of any instructor.

d. Find all instructors earning the highest salary (there may be more than
one with the same salary).

e. Find the enrollment of each section that was offered in Fall 2017.
f. Find the maximum enrollment, across all sections, in Fall 2017.

g. Find the sections that had the maximum enrollment in Fall 2017.

Answer:
a. Findthe titles of courses in the Comp. Sci. department that have 3 credits.

select ritle
from course
where dept_name =’Comp. Sci.’ and credits = 3

b. Find the IDs of all students who were taught by an instructor named Ein-
stein; make sure there are no duplicates in the result.
This query can be answered in several different ways. One way is as fol-
lows.

11

db-book.com

12

Chapter 3 Introduction to SQL

select distinct rakes.ID

from takes, instructor, teaches

where takes.course_id = teaches.course_id and
takes.sec_id = teaches.sec_id and
takes.semester = teaches.semester and
takes.year = teaches.year and
teaches.id = instructor.id and
instructor.name = Einstein’

Find the highest salary of any instructor.

select max(salary)
from instructor

Find all instructors earning the highest salary (there may be more than
one with the same salary).

select ID, name
from instructor
where salary = (select max(salary) from instructor)

Find the enrollment of each section that was offered in Fall 2017.

select course_id, sec_id,
(select count(/D)
from takes
where rakes.year = section.year
and fakes.semester = section.semester
and fakes.course_id = section.course_id
and rakes.sec_id = section.sec_id)
as enrollment
from section
where semester = Fall’
and year=2017

Note that if the result of the subquery is empty, the aggregate function
count returns a value of 0.
One way of writing the query might appear to be:

Practice Exercises 13

select rtakes.course_id, takes.sec_id, count(/D)
from section, takes
where takes.course_id = section.course_id
and rakes.sec_id = section.sec_id
and fakes.semester = section.semester
and fakes.year = section.year
and takes.semester = "Fall’
and rakes.year = 2017
group by takes.course_id, takes.sec_id

But note that if a section does not have any students taking it, it would
not appear in the result. One way of ensuring such a section appears with
a count of 0 is to use the outer join operation, covered in Chapter 4.

Find the maximum enrollment, across all sections, in Fall 2017.
One way of writing this query is as follows:

select max(enrollment)
from (select count(/D) as enrollment
from section, takes
where takes.year = section.year
and rakes.semester = section.semester
and takes.course_id = section.course_id
and rakes.sec_id = section.sec_id
and takes.semester = "Fall’
and takes.year = 2017
group by takes.course_id, takes.sec_id)

As an alternative to using a nested subquery in the from clause, it is pos-
sible to use a with clause, as illustrated in the answer to the next part of
this question.

A subtle issue in the above query is that if no section had any enroll-
ment, the answer would be empty, not 0. We can use the alternative using
a subquery, from the previous part of this question, to ensure the count is
0 in this case.

Find the sections that had the maximum enrollment in Fall 2017.
The following answer uses a with clause, simplifying the query.

14

Chapter 3 Introduction to SQL

with sec_enrollment as (
select takes.course_id, takes.sec_id, count(/D) as enrollment
from section, takes
where takes.year = section.year
and fakes.semester = section.semester
and fakes.course_id = section.course_id
and rakes.sec_id = section.sec_id
and takes.semester = "Fall’
and rakes.year = 2017
group by takes.course_id, takes.sec_id)
select course_id, sec_id
from sec_enrollment
where enrollment = (select max(enrollment) from sec_enrollment)

It is also possible to write the query without the with clause, but the sub-
query to find enrollment would get repeated twice in the query.

While not incorrect to add distinct in the count, it is not necessary in light
of the primary key constraint on takes.

3.2 Suppose you are given a relation grade_points(grade, points) that provides a con-
version from letter grades in the fakes relation to numeric scores; for example,
an “A” grade could be specified to correspond to 4 points, an “A—"to 3.7 points,
a “B+” to 3.3 points, a “B” to 3 points, and so on. The grade points earned by a
student for a course offering (section) is defined as the number of credits for the
course multiplied by the numeric points for the grade that the student received.

Given the preceding relation, and our university schema, write each of the

following queries in SQL. You may assume for simplicity that no takes tuple has
the null value for grade.

a. Find the total grade points earned by the student with ID '12345', across
all courses taken by the student.

b. Find the grade point average (GPA) for the above student, that is, the total
grade points divided by the total credits for the associated courses.

c. Find the ID and the grade-point average of each student.

d. Now reconsider your answers to the earlier parts of this exercise under
the assumption that some grades might be null. Explain whether your
solutions still work and, if not, provide versions that handle nulls properly.

Answer:
a. Find the total grade-points earned by the student with ID '12345', across

all courses taken by the student.

Practice Exercises 15

select sum(credits * points)

from takes, course, grade_points

where takes.grade = grade_points.grade
and fakes.course_id = course.course_id
and /D = '12345'

In the above query, a student who has not taken any course would not
have any tuples, whereas we would expect to get 0 as the answer. One way
of fixing this problem is to use the outer join operation, which we study
later in Chapter 4. Another way to ensure that we get O as the answer is
via the following query:

(select sum(credits * points)
from takes, course, grade_points
where takes.grade = grade_points.grade
and fakes.course_id = course.course_id
and /D="12345")
union
(select 0O
from student
where ID="'12345" and
not exists (select * from zakes where ID = '12345"))

Find the grade point average (GPA) for the above student, that is, the total
grade-points divided by the total credits for the associated courses.

select sum(credits * points)/sum(credits) as GPA
from takes, course, grade_points
where takes.grade = grade_points.grade
and fakes.course_id = course.course_id
and /D= "'12345'

As before, a student who has not taken any course would not appear in
the above result; we can ensure that such a student appears in the result by
using the modified query from the previous part of this question. However,
an additional issue in this case is that the sum of credits would also be 0,
resulting in a divide-by-zero condition. In fact, the only meaningful way
of defining the GPA in this case is to define it as #u//. We can ensure that
such a student appears in the result with a null GP4 by adding the following
union clause to the above query.

union
(select null as GPA
from student
where ID ="'12345" and
not exists (select * from fakes where ID = '12345"))

16 Chapter 3 Introduction to SQL

c. Find the ID and the grade-point average of each student.

select 1D, sum(credits * points)/sum(credits) as GPA
from takes, course, grade_points
where takes.grade = grade_points.grade
and fakes.course_id = course.course_id
group by /D

Again, to handle students who have not taken any course, we would have
to add the following union clause:

union

(select ID, null as GPA

from student

where not exists (select * from takes where takes.ID = student.ID))

d. Now reconsider your answers to the earlier parts of this exercise under
the assumption that some grades might be null. Explain whether your
solutions still work and, if not, provide versions that handle nulls properly.
The queries listed above all include a test of equality on grade between
grade_points and takes. Thus, for any takes tuple with a null grade, that
student’s course would be eliminated from the rest of the computation
of the result. As a result, the credits of such courses would be eliminated
also, and thus the queries would return the correct answer even if some
grades are null.

3.3 Write the following inserts, deletes, or updates in SQL, using the university
schema.

a. Increase the salary of each instructor in the Comp. Sci. department by
10%.

b. Delete all courses that have never been offered (i.e., do not occur in the
section relation).

c. Insert every student whose fot_cred attribute is greater than 100 as an in-
structor in the same department, with a salary of $10,000.

Answer:

a. Increase the salary of each instructor in the Comp. Sci. department by
10%.

update instructor
set salary = salary * 1.10
where dept_name ='Comp. Sci.'

b. Delete all courses that have never been offered (that is, do not occur in
the section relation).

Practice Exercises 17

person (driver_id, name, address)

car (license_plate, model, year)

accident (report_-number, year, location)

owns (driver_id, license_plate)

participated (report_number, license_plate, driver_id, damage_amount)

Figure 3.17 Insurance database

delete from course
where course_id not in
(select course_id from section)

c. Insert every student whose fof_cred attribute is greater than 100 as an in-
structor in the same department, with a salary of $10,000.

insert into instructor

select /D, name, dept_name, 10000
from student

where fot_cred > 100

3.4 Consider the insurance database of Figure 3.17, where the primary keys are
underlined. Construct the following SQL queries for this relational database.

a. Find the total number of people who owned cars that were involved in
accidents in 2017.

b. Delete all year-2010 cars belonging to the person whose ID is '12345".

Answer:

a. Find the total number of people who owned cars that were involved in
accidents in 2017.
Note: This is not the same as the total number of accidents in 2017. We
must count people with several accidents only once. Furthermore, note
that the question asks for owners, and it might be that the owner of the
car was not the driver actually involved in the accident.

select count (distinct person.driver_id)
from accident, participated, person, owns
where accident.report_number = participated.report_-number

and owns.driver_id = person.driver_id
and owns.license_plate = participated.license_plate
and year = 2017

18 Chapter 3 Introduction to SQL

b. Delete all year-2010 cars belonging to the person whose ID is '12345".

delete car

where year = 2010 and /icense_plate in
(select license_plate
from owns o
where o.driver_id = '12345")

Note: The owns, accident and participated records associated with the
deleted cars still exist.

3.5 Suppose that we have a relation marks(ID, score) and we wish to assign grades
to students based on the score as follows: grade F if score < 40, grade C if 40
< score < 60, grade B if 60 < score < 80, and grade A4 if 80 < score. Write SQL
queries to do the following:

a. Display the grade for each student, based on the marks relation.

b. Find the number of students with each grade.

Answer:

a. Display the grade for each student, based on the marks relation.

select /D,
case
when score < 40 then 'F’
when score < 60 then 'C’
when score < 80 then 'B’
else 'A’
end
from marks

b. Find the number of students with each grade.

3.6

3.7

3.8

Practice Exercises 19

with grades as
(
select /D,
case
when score < 40 then 'F’
when score < 60 then 'C’
when score < 80 then ‘B’
else ‘A’
end as grade
from marks
)
select grade, count(ID)
from grades
group by grade

As an alternative, the with clause can be removed, and instead the defini-
tion of grades can be made a subquery of the main query.

The SQL like operator is case sensitive (in most systems), but the lower() func-
tion on strings can be used to perform case-insensitive matching. To show how,
write a query that finds departments whose names contain the string “sci” as a
substring, regardless of the case.

Answer:

select dept_name
from department
where lower(dept_name) like *%sci%’

Consider the SQL query

select p.al
from p, 1, r2
where p.al = rl.al or p.al = r2.al

Under what conditions does the preceding query select values of p.al that are
either in r1 or in r2? Examine carefully the cases where either 71 or 72 may be
empty.

Answer:

The query selects those values of p.a/ that are equal to some value of r/.al or
r2.al if and only if both r/ and r2 are non-empty. If one or both of r/ and r2 are
empty, the Cartesian product of p, r/ and r2 is empty, hence the result of the
query is empty. If p itself is empty, the result is empty.

Consider the bank database of Figure 3.18, where the primary keys are under-
lined. Construct the following SQL queries for this relational database.

20 Chapter 3 Introduction to SQL

branch(branch_name, branch_city, assets)

customer (ID, customer_name, customer-street, customer-city)
loan (loan_number, branch_name, amount)

borrower (ID, loan_number)

account (account_number, branch_name, balance)

depositor (ID, account_number)

Figure 3.18 Banking database.

a. Find the ID of each customer of the bank who has an account but not a
loan.

b. Find the ID of each customer who lives on the same street and in the same
city as customer '12345".

c. Find the name of each branch that has at least one customer who has an
account in the bank and who lives in “Harrison”.

Answer:

a. Find the ID of each customer of the bank who has an account but not a
loan.

(select ID

from depositor)
except

(select ID

from borrower)

b. Find the ID of each customer who lives on the same street and in the same
city as customer '12345".

select FID

from customer as F, customer as S

where F.customer_street = S.customer_street
and F.customer_city = S.customer_city
and S.customer_id ="12345'

c. Find the name of each branch that has at least one customer who has an
account in the bank and who lives in “Harrison”.

Practice Exercises 21

select distinct branch_name

from account, depositor, customer

where customer.id = depositor.id
and depositor.account_number = account.account_number
and customer_city = "Harrison’

3.9 Consider the relational database of Figure 3.19, where the primary keys are
underlined. Give an expression in SQL for each of the following queries.

a. Find the ID, name, and city of residence of each employee who works for
“First Bank Corporation”.

b. Find the ID, name, and city of residence of each employee who works for
“First Bank Corporation” and earns more than $10000.

c. Find the ID of each employee who does not work for “First Bank Corpo-
ration”.

d. Find the ID of each employee who earns more than every employee of
“Small Bank Corporation”.

e. Assume that companies may be located in several cities. Find the name
of each company that is located in every city in which “Small Bank Cor-
poration” is located.

f. Find the name of the company that has the most employees (or compa-
nies, in the case where there is a tie for the most).

g. Find the name of each company whose employees earn a higher salary,
on average, than the average salary at “First Bank Corporation”.

Answer:
a. Find the ID, name, and city of residence of each employee who works for

“First Bank Corporation”.

employee (ID, person_name, street, city)
works (ID, company_name, salary)
company (company_name, city)
manages (ID, manager-id)

Figure 3.19 Employee database.

22 Chapter 3 Introduction to SQL

select e.ID, e.person_name, city

from employee as e, works as w

where w.company_name = 'First Bank Corporation' and
w.iD =e.lD

b. Find the ID, name, and city of residence of each employee who works for
“First Bank Corporation” and earns more than $10000.

select *
from employee
where D in
(select /D
from works
where company_name = 'First Bank Corporation' and salary > 10000)

This could be written also in the style of the answer to part a.

c. Find the ID of each employee who does not work for “First Bank Corpo-
ration”.

select 7D
from works
where company_name <> 'First Bank Corporation'

If one allows people to appear in employee without appearing also in
works, the solution is slightly more complicated. An outer join as dis-
cussed in Chapter 4 could be used as well.

select /D
from employee
where /D not in
(select ID
from works
where company_name = "First Bank Corporation")

d. Find the ID of each employee who earns more than every employee of
“Small Bank Corporation”.

select /D
from works
where salary > all
(select salary
from works
where company_name = 'Small Bank Corporation')

If people may work for several companies and we wish to consider the rotal
earnings of each person, the problem is more complex. But note that the

Practice Exercises 23

fact that ID is the primary key for works implies that this cannot be the
case.

e. Assume that companies may be located in several cities. Find the name
of each company that is located in every city in which “Small Bank Cor-
poration” is located.

select S.company_name
from company as S
where not exists ((select city
from company
where company_name = 'Small Bank Corporation")
except
(select city
from company as T
where S.company_name = T.company_name))

f. Find the name of the company that has the most employees (or compa-
nies, in the case where there is a tie for the most).

select company_name

from works

group by company_name

having count (distinct /D) >= all
(select count (distinct /D)
from works
group by company_name)

g. Find the name of each company whose employees earn a higher salary,
on average, than the average salary at “First Bank Corporation”.

select company_name
from works
group by company_name
having avg (salary) > (select avg (salary)
from works
where company_name = "First Bank Corporation")

3.10 Consider the relational database of Figure 3.19. Give an expression in SQL for
each of the following:

a. Modify the database so that the employee whose ID is '12345' now lives
in “Newtown”.

b. Give each manager of “First Bank Corporation” a 10 percent raise unless
the salary becomes greater than $100000; in such cases, give only a 3
percent raise.

24 Chapter 3 Introduction to SQL

Answer:

a. Modify the database so that the employee whose ID is '12345' now lives
in “Newtown”.

update employee
set city = 'Newtown'
where ID = '12345'

b. Give each manager of “First Bank Corporation” a 10 percent raise unless
the salary becomes greater than $100000; in such cases, give only a 3
percent raise.

update works T
set T'salary = T'salary * 1.03
where 7.ID in (select manager_id
from manages)
and T'salary * 1.1 > 100000
and T.company_name = 'First Bank Corporation'

update works T
set T'salary = T'salary * 1.1
where 7'.ID in (select manager_id
from manages)
and T'salary * 1.1 <= 100000
and T.company_name = 'First Bank Corporation'

The above updates would give different results if executed in the opposite
order. We give below a safer solution using the case statement.

update works T
set T.salary = T.salary =
(case
when (Zsalary + 1.1 > 100000) then 1.03
else 1.1
end)
where 7./D in (select manager_id
from manages) and
T.company_name = "First Bank Corporation'

CHAPTER

Intermediate SQL

Practice Exercises

4.1 Consider the following SQL query that seeks to find a list of titles of all courses
taught in Spring 2017 along with the name of the instructor.

select name, title
from instructor natural join teaches natural join section natural join course
where semester = 'Spring' and year = 2017

What is wrong with this query?

Answer:

Although the query is syntactically correct, it does not compute the expected
answer because dept_name is an attribute of both course and instructor. As a
result of the natural join, results are shown only when an instructor teaches a
course in her or his own department.

4.2 Write the following queries in SQL:

a. Display a list of all instructors, showing each instructor’s ID and the num-
ber of sections taught. Make sure to show the number of sections as 0 for
instructors who have not taught any section. Your query should use an
outer join, and should not use subqueries.

b. Write the same query as in part a, but using a scalar subquery and not
using outer join.

c. Display the list of all course sections offered in Spring 2018, along with
the ID and name of each instructor teaching the section. If a section has
more than one instructor, that section should appear as many times in
the result as it has instructors. If a section does not have any instructor,
it should still appear in the result with the instructor name set to “—".

25

26

Chapter 4 Intermediate SQL

Display the list of all departments, with the total number of instructors
in each department, without using subqueries. Make sure to show depart-
ments that have no instructors, and list those departments with an instruc-
tor count of zero.

Answer:

a.

Display a list of all instructors, showing each instructor’s ID and the num-
ber of sections taught. Make sure to show the number of sections as 0 for
instructors who have not taught any section. Your query should use an
outer join, and should not use subqueries.

select /D, count(sec_id) as Number_of_sections
from instructor natural left outer join reaches
group by /D

The above query should not be written using count(*) since that would
count null values also. It could be written using any attribute from reaches
which does not occur in instructor, which would be correct although it
may be confusing to the reader. (Attributes that occur in instructor would
not be null even if the instructor has not taught any section.)

Write the same query as above, but using a scalar subquery, and not using
outerjoin.

select 1D,
(select count(*) as Number_of_sections
from teaches T where Tid = 1.id)

from instructor I

Display the list of all course sections offered in Spring 2018, along with
the ID and name of each instructor teaching the section. If a section has
more than one instructor, that section should appear as many times in
the result as it has instructors. If a section does not have any instructor,
it should still appear in the result with the instructor name set to “—".

select course_id, sec_id, ID,
decode(name, null,’—’, name) as name
from (section natural left outer join reaches)
natural left outer join instructor
where semester="Spring’ and year= 2018

The query may also be written using the coalesce operator, by replacing
decode(..) with coalesce(name, ’—’). A more complex version of the query
can be written using union of join result with another query that uses a
subquery to find courses that do not match; refer to Exercise 4.3.

Exercises 27

d. Display the list of all departments, with the total number of instructors
in each department, without using subqueries. Make sure to show depart-
ments that have no instructors, and list those departments with an instruc-
tor count of zero.

select dept name, count(ID)
from department natural left outer join instructor
group by dept_name

4.3 Outer join expressions can be computed in SQL without using the SQL outer
join operation. To illustrate this fact, show how to rewrite each of the following
SQL queries without using the outer join expression.

a. select * from student natural left outer join takes

b. select * from student natural full outer join rakes

Answer:

a. select * from student natural left outer join rakes
can be rewritten as:

select * from student natural join rakes
union
select ID, name, dept_name, tot_cred, null, null, null, null, null
from student S1 where not exists
(select ID from takes T1 where T'l.id = S1.id)

b. select * from student natural full outer join zakes
can be rewritten as:

(select * from student natural join fakes)
union
(select ID, name, dept_name, tot_cred, null, null, null, null, null
from student S1
where not exists
(select ID from takes T1 where T'Lid = S1.id))
union
(select ID, null, null, null, course_id, sec_id, semester, year, grade
from rakes T1
where not exists
(select ID from student S1 whereT'Lid = S1.id))

4.4 Suppose we have three relations r(4, B), s(B, C), and #(B, D), with all attributes
declared as not null.

a. Give instances of relations r, s, and ¢ such that in the result of
(r natural left outer join s) natural left outer join ¢
attribute C has a null value but attribute D has a non-null value.

28

Chapter 4 Intermediate SQL

4.5

b. Are there instances of , 5, and 7 such that the result of
r natural left outer join (s natural left outer join 7)
has a null value for C but a non-null value for D? Explain why or why not.

Answer:

a. Consider r = (a, b), s = (bl,cl), t = (b,d). The second expression would
give (a, b, null, d).

b. Since s natural left outer join 7 is computed first, the absence of nulls is
both s and ¢ implies that each tuple of the result can have D null, but C
can never be null.

Testing SQL queries: To test if a query specified in English has been correctly
written in SQL, the SQL query is typically executed on multiple test databases,
and a human checks if the SQL query result on each test database matches the
intention of the specification in English.

a. In Section 4.1.1 we saw an example of an erroneous SQL query which was
intended to find which courses had been taught by each instructor; the
query computed the natural join of instructor, teaches, and course, and as
a result it unintentionally equated the dept_name attribute of instructor and
course. Give an example of a dataset that would help catch this particular
error.

b. When creating test databases, it is important to create tuples in referenced
relations that do not have any matching tuple in the referencing relation
for each foreign key. Explain why, using an example query on the univer-
sity database.

c. When creating test databases, it is important to create tuples with null
values for foreign-key attributes, provided the attribute is nullable (SQL
allows foreign-key attributes to take on null values, as long as they are not
part of the primary key and have not been declared as not null). Explain
why, using an example query on the university database.

Hint: Use the queries from Exercise 4.2.

Answer:

a. Consider the case where a professor in the Physics department teaches
an Elec. Eng. course. Even though there is a valid corresponding entry in
teaches, it is lost in the natural join of instructor, teaches and course, since
the instructor’s department name does not match the department name
of the course. A dataset corresponding to the same is:

Exercises 29

instructor = {('12345',Gauss’, "Physics’, 10000)}
teaches = {('12345', "EE321’, 1, Spring’, 2017)}
course = {CEE321’, "Magnetism’, 'Elec. Eng.’, 6)}

b. The query in question 4.2(a) is a good example for this. Instructors who
have not taught a single course should have number of sections as 0 in
the query result. (Many other similar examples are possible.)

c. Consider the query
select * from reaches natural join instructor,

In this query, we would lose some sections if feaches.ID is allowed to be
null and such tuples exist. If, just because reaches.ID is a foreign key to
instructor, we did not create such a tuple, the error in the above query
would not be detected.

4.6 Show how to define the view student_grades (ID, GPA) giving the grade-point
average of each student, based on the query in Exercise 3.2; recall that we used
a relation grade_points(grade, points) to get the numeric points associated with
a letter grade. Make sure your view definition correctly handles the case of null
values for the grade attribute of the fakes relation.

Answer:
We should not add credits for courses with a null grade; further, to correctly
handle the case where a student has not completed any course, we should make
sure we don’t divide by zero, and should instead return a null value.

We break the query into a subquery that finds sum of credits and sum of
credit-grade-points, taking null grades into account The outer query divides the
above to get the average, taking care of divide by zero.

create view student_grades(ID, GPA) as

select ID, credit_points | decode(credit_sum, 0, null, credit_sum)

from ((select /D, sum(decode(grade, null, 0, credits)) as credit_sum,
sum(decode(grade, null, 0, credits*points)) as credit_points
from(takes natural join course) natural left outer join grade_points
group by /D)

union

select ID, null, null

from student

where D not in (select /D from takes))

The view defined above takes care of null grades by considering the credit points
to be 0 and not adding the corresponding credits in credit_sum.

30 Chapter 4 Intermediate SQL

employee (ID, person_name, street, city)
works (ID, company_name, salary)
company (company_name, city)
manages (ID, manager_id)

Figure 4.12 Employee database.

The query above ensures that a student who has not taken any course with
non-null credits, and has credit_sum = 0 gets a GPA of null. This avoids the
division by zero, which would otherwise have resulted.

In systems that do note support decode, an alternative is the case construct.
Using case, the solution would be written as follows:

create view student grades(ID, GPA) as
select /D, credit_points | (case when credit_sum = 0 then null
else credit_sum end)
from ((select /D, sum (case when grade is null then 0
else credits end) as credit_sum,
sum (case when grade is null then 0
else credits*points end) as credit_points
from(takes natural join course) natural left outer join grade_points
group by /D)
union
select 1D, null, null
from student
where D not in (select /D from rakes))

An alternative way of writing the above query would be to use student natural
left outer join gpa, in order to consider students who have not taken any course.

4.7 Consider the employee database of Figure 4.12. Give an SQL DDL definition
of this database. Identify referential-integrity constraints that should hold, and
include them in the DDL definition.

Answer:
Plese see ??.

Note that alternative data types are possible. Other choices for not null at-
tributes may be acceptable.

4.8 As discussed in Section 4.4.8, we expect the constraint “an instructor cannot
teach sections in two different classrooms in a semester in the same time slot”
to hold.

Exercises 31

create table employee

(ID numeric(6,0),
person_name char(20),
Street char(30),
city char(30),
primary key (/D))

create table works
(ID numeric(6,0),
company_name char(15),
salary integer,
primary key (/D),
foreign key (/D) references employee,
foreign key (company_name) references company)

create table company
(company_name char(15),
city char(30),
primary key (company_name))

create table manages

(ID numeric(6,0),
manager_iid numeric(6,0),
primary key (/D),

foreign key (/D) references employee,
foreign key (manager.iid) references employee(ID))

Figure 4.101 Figure for Exercise 4.7.

a. Write an SQL query that returns all (instructor, section) combinations that
violate this constraint.

b. Write an SQL assertion to enforce this constraint (as discussed in Sec-
tion 4.4.8, current generation database systems do not support such as-
sertions, although they are part of the SQL standard).

Answer:

32

Chapter 4 Intermediate SQL

4.9

4.10

a. Query:

select D, name, sec_id, semester, year, time_slot_id,
count(distinct building, room_number)

from instructor natural join feaches natural join section

group by (ID, name, sec_id, semester, year, time_slot_id)

having count(building, room_number) > 1

Note that the distinct keyword is required above. This is to allow two dif-
ferent sections to run concurrently in the same time slot and are taught
by the same instructor without being reported as a constraint violation.

b. Query:

create assertion check not exists
(select ID, name, sec_id, semester, year, time_slot_id,
count(distinct building, room_number)
from instructor natural join teaches natural join section
group by (ID, name, sec_id, semester, year, time_slot_id)
having count(building, room_number) > 1)

SQL allows a foreign-key dependency to refer to the same relation, as in the
following example:

create table manager
(employee_ID char(20),
manager_ID char(20),
primary key employee_ID,
foreign key (imanager_ID) references manager(employee_ID)
on delete cascade)

Here, employee_ID is a key to the table manager, meaning that each employee
has at most one manager. The foreign-key clause requires that every manager
also be an employee. Explain exactly what happens when a tuple in the relation
manager is deleted.

Answer:

The tuples of all employees of the manager, at all levels, get deleted as well! This
happens in a series of steps. The initial deletion will trigger deletion of all the
tuples corresponding to direct employees of the manager. These deletions will
in turn cause deletions of second-level employee tuples, and so on, till all direct
and indirect employee tuples are deleted.

Given the relations a(name, address, title) and b(name, address, salary), show
how to express « natural full outer join b using the full outer-join operation with
an on condition rather than using the natural join syntax. This can be done using
the coalesce operation. Make sure that the result relation does not contain two

4.11

4.12

4.13

Exercises 33

copies of the attributes name and address and that the solution is correct even
if some tuples in ¢ and b have null values for attributes name or address.

Answer:

select coalesce(a.name, b.name) as name,
coalesce(a.address, b.address) as address,
a.title,
b.salary
from ¢ full outer join b on a.name = b.name and
a.address = b.address

Operating systems usually offer only two types of authorization control for data
files: read access and write access. Why do database systems offer so many kinds
of authorization?

Answer: There are many reasons—we list a few here. One might wish to allow
a user only to append new information without altering old information. One
might wish to allow a user to access a relation but not change its schema. One
might wish to limit access to aspects of the database that are not technically
data access but instead impact resource utilization, such as creating an index.

Suppose a user wants to grant select access on a relation to another user. Why
should the user include (or not include) the clause granted by current role in the
grant statement?

Answer: Both cases give the same authorization at the time the statement
is executed, but the long-term effects differ. If the grant is done based on the
role, then the grant remains in effect even if the user who performed the grant
leaves and that user’s account is terminated. Whether that is a good or bad idea
depends on the specific situation, but usually granting through a role is more
consistent with a well-run enterprise.

Consider a view v whose definition references only relation r.

° If a user is granted select authorization on v, does that user need to have
select authorization on r as well? Why or why not?

* If a user is granted update authorization on v, does that user need to have
update authorization on r as well? Why or why not?

* Give an example of an insert operation on a view v to add a tuple ¢ that is
not visible in the result of select * from v. Explain your answer.

Answer:

* No. This allows a user to be granted access to only part of relation r.

34 Chapter 4 Intermediate SQL

Yes. A valid update issued using view v must update r for the update to be
stored in the database.

Any tuple ¢ compatible with the schema for v but not satisfying the where

clause in the definition of view v is a valid example. One such example
appears in Section 4.2.4.

CHAPTER

Database Design using the E-R

Model

Practice Exercises

6.1

6.2

Construct an E-R diagram for a car insurance company whose customers own
one or more cars each. Each car has associated with it zero to any number of
recorded accidents. Each insurance policy covers one or more cars and has one
or more premium payments associated with it. Each payment is for a particular
period of time, and has an associated due date, and the date when the payment
was received.

Answer:

One possible E-R diagram is shown in Figure 6.101. Payments are modeled as
weak entities since they are related to a specific policy.

Note that the participation of accident in the relationship participated is not
total, since it is possible that there is an accident report where the participating
car is unknown.

Consider a database that includes the entity sets student, course, and section
from the university schema and that additionally records the marks that students
receive in different exams of different sections.

a. Construct an E-R diagram that models exams as entities and uses a ternary
relationship as part of the design.

b. Construct an alternative E-R diagram that uses only a binary relationship
between student and section. Make sure that only one relationship exists
between a particular student and section pair, yet you can represent the
marks that a student gets in different exams.

Answer:

43

44

Chapter 6 Database Design using the E-R Model

customer car policy
customer_id license_no M
name model
address
participated
accident premium_ payment
report_id payment_no
date due_date
place amount
received_on

Figure 6.101 E-R diagram for a car insurance company.

a. The E-R diagram is shown in Figure 6.102. Note that an alternative is to
model examinations as weak entities related to a section, rather than as
strong entities. The marks relationship would then be a binary relation-
ship between student and exam, without directly involving section.

b. The E-R diagram is shown in Figure 6.103. Note that here we have not
modeled the name, place, and time of the exam as part of the relationship
attributes. Doing so would result in duplication of the information, once
per student, and we would not be able to record this information without
an associated student. If we wish to represent this information, we need
to retain a separate entity corresponding to each exam.

6.3 Design an E-R diagram for keeping track of the scoring statistics of your favorite
sports team. You should store the matches played, the scores in each match, the
players in each match, and individual player scoring statistics for each match.

marks

student ; -

. ! section course
student_id - -
name sec_id course_id
dept_name exam_marks >——{ semester sec_course title
tot_cred year_ credits

exam

exam_id
name
place
time

Figure 6.102 E-R diagram for marks database.

6.4

Practice Exercise 45

{exam_marks
exam_id
marks
/
student ; -

! section course
student_id - :
name secid course_id
dept_name semester. title
tot_cred year credits

Figure 6.103 Another E-R diagram for marks database.

Summary statistics should be modeled as derived attributes with an explanation
as to how they are computed.

Answer:

The diagram is shown in Figure 6.104. The derived attribute season_score is
computed by summing the score values associated with the player entity set via
the played relationship set.

Consider an E-R diagram in which the same entity set appears several times,
with its attributes repeated in more than one occurrence. Why is allowing this
redundancy a bad practice that one should avoid?

Answer:
The reason an entity set would appear more than once is if one is drawing a
diagram that spans multiple pages.

The different occurrences of an entity set may have different sets of at-
tributes, leading to an inconsistent diagram. Instead, the attributes of an entity
set should be specified only once. All other occurrences of the entity should
omit attributes. Since it is not possible to have an entity set without any at-
tributes, an occurrence of an entity set without attributes clearly indicates that
the attributes are specified elsewhere.

score
match i
1
match_id ' player
date /\ p i
; layed prayer
stadium play name
opponent age
own_score season_score()
opp_score

Figure 6.104 E-R diagram for favorite team statistics.

46

Chapter 6 Database Design using the E-R Model

Figure 6.29 Representation of a ternary relationship using binary relationships.

6.5 AnE-R diagram can be viewed as a graph. What do the following mean in terms
of the structure of an enterprise schema?

a. The graph is disconnected.
b. The graph has a cycle.
Answer:

a. If a pair of entity sets are connected by a path in an E-R diagram, the
entity sets are related, though perhaps indirectly. A disconnected graph
implies that there are pairs of entity sets that are unrelated to each other.
In an enterprise, we can say that the two parts of the enterprise are com-
pletely independent of each other. If we split the graph into connected
components, we have, in effect, a separate database corresponding to each
independent part of the enterprise.

b. As indicated in the answer to the previous part, a path in the graph be-

tween a pair of entity sets indicates a (possibly indirect) relationship be-
tween the two entity sets. If there is a cycle in the graph, then every pair
of entity sets on the cycle are related to each other in at least two distinct
ways. If the E-R diagram is acyclic, then there is a unique path between
every pair of entity sets and thus a unique relationship between every pair
of entity sets.

Practice Exercise 47

B |« Rp E Re > C

Figure 6.105 E-R diagram for Exercise Exercise 6.6b.

6.6 Consider the representation of the ternary relationship of Figure 6.29a using
the binary relationships illustrated in Figure 6.29b (attributes not shown).

a. Show a simple instance of E,4, B, C, R,, R, and R that cannot corre-
spond to any instance of 4, B, C, and R.

b. Modify the E-R diagram of Figure 6.29b to introduce constraints that will
guarantee that any instance of £,4, B, C, R, R, and R that satisfies the
constraints will correspond to an instance of 4, B, C, and R.

c. Modify the preceding translation to handle total participation constraints
on the ternary relationship.

Answer:

because of the tuple (e,, a,), no instance of 4, B, C, and R exists that cor-
responds to E, R, Rp and R.

b. See Figure 6.105. The idea is to introduce total participation constraints
between E and the relationships R, Ry, R, so that every tuple in £ has a
relationship with 4, B, and C.

c. Suppose 4 totally participates in the relationhip R, then introduce a total
participation constraint between 4 and R, and similarly for B and C.

6.7 A weak entity set can always be made into a strong entity set by adding to its
attributes the primary-key attributes of its identifying entity set. Outline what
sort of redundancy will result if we do so.

Answer:

The primary key of a weak entity set can be inferred from its relationship with
the strong entity set. If we add primary-key attributes to the weak entity set, they
will be present in both the entity set, and the relationship set and they have to
be the same. Hence there will be redundancy.

48

Chapter 6

6.8

6.9

6.10

6.11

Database Design using the E-R Model

Consider a relation such as sec_course, generated from a many-to-one relation-
ship set sec_course. Do the primary and foreign key constraints created on the
relation enforce the many-to-one cardinality constraint? Explain why.

Answer:

In this example, the primary key of section consists of the attributes (course_id,
sec_id, semester, year), which would also be the primary key of sec_course, while
course_id is a foreign key from sec_course referencing course. These constraints
ensure that a particular section can only correspond to one course, and thus the
many-to-one cardinality constraint is enforced.

However, these constraints cannot enforce a total participation constraint, since
a course or a section may not participate in the sec_course relationship.

Suppose the advisor relationship set were one-to-one. What extra constraints
are required on the relation advisor to ensure that the one-to-one cardinality
constraint is enforced?

Answer:

In addition to declaring s_ID as primary key for advisor, we declare i_ID as a
superkey for advisor (this can be done in SQL using the unique constraint on
i_ID).

Consider a many-to-one relationship R between entity sets 4 and B. Suppose
the relation created from R is combined with the relation created from 4. In
SQL, attributes participating in a foreign key constraint can be null. Explain
how a constraint on total participation of 4 in R can be enforced using not null
constraints in SQL.

Answer:

The foreign-key attribute in R corresponding to the primary key of B should be
made not null. This ensures that no tuple of 4 which is not related to any entry
in B under R can come in R. For example, say a is a tuple in A which has no
corresponding entry in R. This means when R is combined with A4, it would have
a foreign-key attribute corresponding to B as null, which is not allowed.

In SQL, foreign key constraints can reference only the primary key attributes of
the referenced relation or other attributes declared to be a superkey using the
unique constraint. As a result, total participation constraints on a many-to-many
relationship set (or on the “one” side of a one-to-many relationship set) cannot
be enforced on the relations created from the relationship set, using primary
key, foreign key, and not null constraints on the relations.

a. Explain why.

b. Explain how to enforce total participation constraints using complex
check constraints or assertions (see Section 4.4.8). (Unfortunately, these
features are not supported on any widely used database currently.)

6.12

6.13

Practice Exercise 49

Answer:

a. For the many-to-many case, the relationship set must be represented as a
separate relation that cannot be combined with either participating entity.
Now, there is no way in SQL to ensure that a primary-key value occurring
in an entity £1 also occurs in a many-to-many relationship R, since the
corresponding attribute in R is not unique; SQL foreign keys can only
refer to the primary key or some other unique key.

Similarly, for the one-to-many case, there is no way to ensure that an at-
tribute on the one side appears in the relation corresponding to the many
side, for the same reason.

b. Letthe relation R be many-to-one from entity 4 to entity B with ¢ and b as
their respective primary keys. We can put the following check constraints
on the "one" side relation B:

constraint total_part check (b in (select b from A));
set constraints fotal_part deferred;

Note that the constraint should be set to deferred so that it is only checked
at the end of the transaction; otherwise if we insert a b value in B before
it is inserted in A, the constraint would be violated, and if we insert it in
A before we insert it in B, a foreign-key violation would occur.

Consider the following lattice structure of generalization and specialization (at-
tributes not shown).

Y

N

PaN

B

For entity sets 4, B, and C, explain how attributes are inherited from the higher-
level entity sets X and Y. Discuss how to handle a case where an attribute of X
has the same name as some attribute of Y.

Answer:

A inherits all the attributes of X, plus it may define its own attributes. Similarly,
C inherits all the attributes of Y plus its own attributes. B inherits the attributes
of both X and Y. If there is some attribute name which belongs to both X and Y,
it may be referred to in B by the qualified name X.name or Y.name.

An E-R diagram usually models the state of an enterprise at a point in time.
Suppose we wish to track temporal changes, that is, changes to data over time.
For example, Zhang may have been a student between September 2015 and

50

Chapter 6 Database Design using the E-R Model

May 2019, while Shankar may have had instructor Einstein as advisor from May
2018 to December 2018, and again from June 2019 to January 2020. Similarly,
attribute values of an entity or relationship, such as title and credits of course,
salary, or even name of instructor, and tot_cred of student, can change over time.

One way to model temporal changes is as follows: We define a new data type
called valid_time, which is a time interval, or a set of time intervals. We then
associate a valid_time attribute with each entity and relationship, recording the
time periods during which the entity or relationship is valid. The end time of an
interval can be infinity; for example, if Shankar became a student in September
2018, and is still a student, we can represent the end time of the valid_time in-
terval as infinity for the Shankar entity. Similarly, we model attributes that can
change over time as a set of values, each with its own valid_time.

a. Draw an E-R diagram with the student and instructor entities, and the ad-
visor relationship, with the above extensions to track temporal changes.

b. Convert the E-R diagram discussed above into a set of relations.

It should be clear that the set of relations generated is rather complex, leading
to difficulties in tasks such as writing queries in SQL. An alternative approach,
which is used more widely, is to ignore temporal changes when designing the
E-R model (in particular, temporal changes to attribute values), and to modify
the relations generated from the E-R model to track temporal changes.

Answer:

a. The E-R diagram is shown in Figure 6.106.
The primary key attributes student_id and instructor_id are assumed to be
immutable, that is, they are not allowed to change with time. All other
attributes are assumed to potentially change with time.

Note that the diagram uses multivalued composite attributes such as
valid_times or name, with subattributes such as start_time or value. The
value attribute is a subattribute of several attributes such as name, tot_cred
and salary, and refers to the name, total credits or salary during a partic-
ular interval of time.

b. The generated relations are as shown below. Each multivalued attribute
has turned into a relation, with the relation name consisting of the orig-
inal relation name concatenated with the name of the multivalued at-
tribute. The relation corresponding to the entity has only the primary-key
attribute, and this is needed to ensure uniqueness.

Practice Exercise 51

student(student_id)

student valid_times(student_id, start_time, end_time)
student_name(student_id, value, start_time, end_time
student_dept_name(student_id, value, start_time, end_time
student_tot_cred(student_id, value, start_time, end_time
instructor(instructor_id)
instructor_valid_times(instructor_id, start_time, end_time)

instructor_name(instructor_id, value, start_time, end_time

instructor_dept_name(instructor_id, value, start_time, end_time

instructor_salary(instructor_id, value, start_time, end_time
advisor(student_id, instructor_id, start_time, end_time)

The primary keys shown are derived directly from the E-R diagram. If we
add the additional constraint that time intervals cannot overlap (or even
the weaker condition that one start time cannot have two end times), we
can remove the end_time from all the above primary keys.

Student instructor
student _id instructor_id
[valid_times [valid_times

start_time [valid_tir-ne start_time

end_time star t_{lme end_time

) end_time]

[name / : [name
value i value
start_time start_time
end_time end_time

/ /

[dept_name [dept_name
value value
start_time start_time
end_time end_time

]]

[tot_cred [salary
value value
start_time start_time
end_time end_time

/ /

Figure 6.106 E-R diagram for Exercise 6.13

CHAPTER

Relational Database Design

Practice Exercises

7.1

7.2

Suppose that we decompose the schema R = (4, B, C, D, E) into

(4, B, C)
(4, D, E).

Show that this decomposition is a lossless decomposition if the following set F
of functional dependencies holds:

A - BC
CD - E
B—-D
E—- A4

Answer:

A decomposition {R, R,} is a lossless decomposition if R, N R, — R, or
R, NR, - Ry LetR| = (4, B,C), R, = (A4, D, E), andR;, N R, = A.
Since 4 is a candidate key (see Practice Exercise 7.6), R, N R, — R;.

List all nontrivial functional dependencies satisfied by the relation of Figure
7.18.

|48 c]

Figure 7.17 Relation of Exercise 7.2.

53

54

Chapter 7 Relational Database Design

7.3

7.4

Answer:

The nontrivial functional dependencies are: 4 — Band C — B, and a
dependency they logically imply: AC — B. C does not functionally determine
A because the first and third tuples have the same C but different 4 values. The
same tuples also show B does not functionally determine A. Likewise, 4 does not
functionally determine C because the first two tuples have the same A value and
different C values. The same tuples also show B does not functionally determine
C. There are 19 trivial functional dependencies of the form aa — f3, where
B C a.

Explain how functional dependencies can be used to indicate the following:

° A one-to-one relationship set exists between entity sets student and instruc-
tor.

* A many-to-one relationship set exists between entity sets student and instruc-
tor.

Answer:
Let Pk(r) denote the primary key attribute of relation r.

* The functional dependencies Pk(student) — Pk (instructor) and
Pk(instructor) — Pk(student) indicate a one-to-one relationship be-
cause any two tuples with the same value for student must have the same
value for instructor, and any two tuples agreeing on instructor must have
the same value for student.

* The functional dependency Pk(student) — Pk(instructor) indicates a many-
to-one relationship since any student value which is repeated will have the
same instructor value, but many student values may have the same instruc-
tor value.

Use Armstrong’s axioms to prove the soundness of the union rule. (Hint: Use the
augmentation rule to show that, if @ — f§, then a — aff. Apply the augmentation
rule again, using « — Y, and then apply the transitivity rule.)

Answer:
To prove that:

ifo - panda — ythena — Py

Following the hint, we derive:

o —
o — of
o — of
o - v
oaf - yP
a — Py

Practice Exercises 55

given

augmentation rule

union of identical sets

given

augmentation rule

transitivity rule and set union commutativity

7.5 Use Armstrong’s axioms to prove the soundness of the pseudotransitivity rule.

7.6

Answer:

Proof using Armstrong’s axioms of the pseudotransitivity rule:
ifa - Pandyp — O, thenay — d.

oa — B
ay = yp
Yp — o
oy — O

given

augmentation rule and set union commutativity
given

transitivity rule

Compute the closure of the following set F' of functional dependencies for rela-
tion schema R = (4, B, C, D, E).

A— BC
CD—E
B—-D
E—A4

List the candidate keys for R.

Answer:

Note: It is not reasonable to expect students to enumerate all of 7. Some short-
hand representation of the result should be acceptable as long as the nontrivial

members of F+ are found.

Starting with A — BC, we can conclude:4 — BandA4 — C.

SinceA — BandB — D,A — D (decomposition,
transitive)

SinceA —» CDand CD — E,A — E (union, decom-
position, transi-
tive)

Since A — A, we have (reflexive)

A — ABCDE from the above steps (union)

Since E - A,E — ABCDE (transitive)

Since CD — E,CD — ABCDE (transitive)

Since B - Dand BC — CD,BC — (augmentative,

ABCDE transitive)

Also,C - C,D — D,BD — D, etc.

56

Chapter 7 Relational Database Design

1.7

7.8

Therefore, any functional dependency with 4, E, BC, or CD on the left-hand
side of the arrow is in F*, no matter which other attributes appear in the FD.
Allow * to represent any set of attributes in R, then F*is BD — B, BD — D,
C - C,D - D,BD - BD,B — D,B — B,B — BD, and all FDs of the
formA * - o BC % —> o, CD % — o, E % — o where « is any subset of
{4, B, C, D, E}. The candidate keys are 4, BC, CD, and E.

Using the functional dependencies of Exercise 7.6, compute the canonical
cover F,.

Answer:

The given set of FDs F is:-
A - BC
CD—E
B—-D
E—-4

The left side of each FD in F is unique. Also, none of the attributes in the left
side or right side of any of the FDs is extraneous. Therefore the canonical cover
F,is equal to F.

Consider the algorithm in Figure 7.19 to compute at. Show that this algorithm
is more efficient than the one presented in Figure 7.8 (Section 7.4.2) and that it
computes o™ correctly.

Answer:
The algorithm is correct because:

* IfAisadded to result then there is a proof that « — A. To see this, observe
that o — « trivially, so o is correctly part of result. If A ¢ o is added to
result, there must be some FD f — vy suchthat4 € y and B is already a
subset of result. (Otherwise fdcount would be nonzero and the if condition
would be false.) A full proof can be given by induction on the depth of
recursion for an execution of addin, but such a proof can be expected only
from students with a good mathematical background.

* IfA € o', then A4 is eventually added to result. We prove this by induction
on the length of the proof of @« — A4 using Armstrong’s axioms. First observe
that if procedure addin is called with some argument {, all the attributes in
p will be added to result. Also if a particular FD’s fdcount becomes 0, all
the attributes in its tail will definitely be added to result. The base case of
the proof, A € « = A € at, is obviously true because the first call to
addin has the argument . The inductive hypothesis is that if x — 4 can
be proved in # steps or less, then A € result. If there is a proof in n + 1

Practice Exercises

result = @,

[* fdcount is an array whose ith element contains the number
of attributes on the left side of the ith FD that are
not yet known to be in ot */

fori := 1to|F|do
begin

let B — vy denote the ith FD;
Sfdcount [i] = |P|;
end

[* appears is an array with one entry for each attribute. The
entry for attribute A4 is a list of integers. Each integer
i on the list indicates that A appears on the left side
of the ith FD */

for each attribute 4 do
begin

appears [A] := NIL;
fori := 1to|F|do
begin
let p — vy denote the ith FD;
if A € P then add i to appears [A];
end
end
addin (a);
return (result);

procedure addin (o);
for each attribute 4 in o do
begin
if A & result then
begin
result ;= result U {A};
for each element / of appears|A] do
begin
fdcount [i] :=fdcount [i] — 1;
if fdcount |i] := 0 then
begin
let B — v denote the ith FD;
addin (y);
end
end
end
end

Figure 7.18 An algorithm to compute a™.

57

58

Chapter 7 Relational Database Design

7.9

steps that « — A, then the last step was an application of either reflexivity,
augmentation, or transitivity on a fact x — 3 proved in n or fewer steps.
If reflexivity or augmentation was used in the (n + 1)% step, 4 must have
been in result by the end of the n” step itself. Otherwise, by the inductive
hypothesis, p C result. Therefore, the dependency used in proving f — v,
A € v, will have fdcount set to 0 by the end of the n” step. Hence A will
be added to result.

To see that this algorithm is more efficient than the one presented in the chap-
ter, note that we scan each FD once in the main program. The resulting array
appears has size proportional to the size of the given FDs. The recursive calls
to addin result in processing linear in the size of appears. Hence the algorithm
has time complexity which is linear in the size of the given FDs. On the other
hand, the algorithm given in the text has quadratic time complexity, as it may
perform the loop as many times as the number of FDs, in each loop scanning
all of them once.

Given the database schema R(4, B, C), and a relation 7 on the schema R, write
an SQL query to test whether the functional dependency B — C holds on re-
lation r. Also write an SQL assertion that enforces the functional dependency.
Assume that no null values are present. (Although part of the SQL standard,
such assertions are not supported by any database implementation currently.)

Answer:

a. The query is given below. Its result is non-empty if and only if B — C
does not hold on r.

select B

from r

group by B

having count(distinct C) > 1

create assertion b_fo_c check
(not exists
(select B
from r
group by B
having count(distinct C) > 1
)

Practice Exercises 59

7.10 Our discussion of lossless decomposition implicitly assumed that attributes on

7.11

the left-hand side of a functional dependency cannot take on null values. What
could go wrong on decomposition, if this property is violated?

Answer:

The natural join operator is defined in terms of the Cartesian product and the
selection operator. The selection operator gives unknown for any query on a null
value. Thus, the natural join excludes all tuples with null values on the common
attributes from the final result. Thus, the decomposition would be lossy (in a
manner different from the usual case of lossy decomposition), if null values
occur in the left-hand side of the functional dependency used to decompose the
relation. (Null values in attributes that occur only in the right-hand side of the
functional dependency do not cause any problems.)

In the BCNF decomposition algorithm, suppose you use a functional depen-
dency o — fto decompose a relation schema r(«w, 3, y) into r, (o, f) and r, (, y).

a. What primary and foreign-key constraint do you expect to hold on the
decomposed relations?

b. Give an example of an inconsistency that can arise due to an erroneous
update, if the foreign-key constraint were not enforced on the decomposed
relations above.

c. When a relation schema is decomposed into 3NF using the algorithm in
Section 7.5.2, what primary and foreign-key dependencies would you ex-
pect to hold on the decomposed schema?

Answer:

a. o should be a primary key for r;, and « should be the foreign key from r,,
referencing r,.

b. Ifthe foreign key constraint is not enforced, then a deletion of a tuple from
r; would not have a corresponding deletion from the referencing tuples in
r,. Instead of deleting a tuple from r, this would amount to simply setting
the value of o to null in some tuples.

c. For every schema r,(af) added to the decomposition because of a func-

tional dependency a« — f, o should be made the primary key. Also, a
candidate key y for the original relation is located in some newly created
relation r, and is a primary key for that relation.
Foreign-key constraints are created as follows: for each relation r; created
above, if the primary key attributes of r; also occur in any other relation
s then a foreign-key constraint is created from those attributes in I, ref-
erencing (the primary key of) r;.

60

Chapter 7 Relational Database Design

712 LetR,, R,, ..., R, be adecomposition of schema U. Let u(U) be a relation, and

7.13

let r; = Il (u). Show that
ungNrZN'"Nrn

Answer:
Consider some tuple 7 in u.
Note that r, = HRl_(u) implies that ¢/[R;] € r;, 1 <i < n. Thus,

(Ry] ™ f[R,] X ... M f[R,] € r; M r, X ... X 7,
By the definition of natural join,
(Ry] ™ 1[Ry] M ... X 1[R,] = TI (o (Z[Ry] X t[Ry] X ... X f[R,]))

where the condition B is satisfied if values of attributes with the same name
in a tuple are equal and where « = U. The Cartesian product of single tuples
generates one tuple. The selection process is satisfied because all attributes with
the same name must have the same value since they are projections from the
same tuple. Finally, the projection clause removes duplicate attribute names.

By the definition of decomposition, U = R; UR, U ... U R, which means
that all attributes of 7 are in 7[R;] X t[R,] X ... X #[R,]. That is, 7 is equal to
the result of this join.

Since ¢ is any arbitrary tuple in u,

uCr XrX..NXr,

Show that the decomposition in Exercise 7.1 is not a dependency-preserving
decomposition.

Answer:

Therer are several functional dependencies that are not preserved. We discuss
one example here. The dependency B — D is not preserved. F, the restriction
of Fto(4,B, C)isA — ABC,A — AB,A — AC,A — BC,A — B,
A - CA - A, B - B,C - C,AB — AC,AB — ABC,AB — BC,
AB — AB,AB — A,AB — B,AB — C, AC (same as AB), BC (same as AB),
ABC (same as AB). F,, the restriction of F' to (C, D, E)isA — ADE,A — AD,
A - AE,A - DE,A - AA - D,A - E,D — D, E (same as A), AD,
AE, DE, ADE (same as A). (F; U F,)* is easily seen not to contain B — D
since the only FD in F; U F, with B as the left side is B — B, a trivial FD.
Thus B — D is not preserved.

A simpler argument is as follows: /| contains no dependencies with D on
the right side of the arrow. F, contains no dependencies with B on the left side
of the arrow. Therefore for B — D to be preserved there must be a functional
dependency B — « in F1+ anda — Din F2+ (so B = D would follow by

7.14

7.15

7.16

Practice Exercises 61

transitivity). Since the intersection of the two schemes is A, & = 4. Observe that
B — Aisnotin F1+ since Bt = BD.

Show that there can be more than one canonical cover for a given set of func-
tional dependencies, using the following set of dependencies:

X—=>YZ Y > XZ and Z — XY.

Answer: Consider the first functional dependency. We can verify that Z is
extraneous in X — YZ and delete it. Subsequently, we can similarly check that
X is extraneous in ¥ — XZ and delete it, and that Y is extraneous in Z — XY
and delete it, resulting in a canonical cover X — Y,Y — Z,Z — X.

However, we can also verify that Y is extraneous in X — YZ and delete it.
Subsequently, we can similarly check that Z is extraneous in Y — XZ and delete
it, and that X is extraneous in Z — XY and delete it, resulting in a canonical
cover X - Z, Y - X,Z—>Y.

The algorithm to generate a canonical cover only removes one extraneous at-
tribute at a time. Use the functional dependencies from Exercise 7.14 to show
what can go wrong if two attributes inferred to be extraneous are deleted at
once.

Answer: In X — YZ, one can infer that Y is extraneous, and so is Z. But
deleting both will result in a set of dependencies from which X — YZ can no
longer be inferred. Deleting Y results in Z no longer being extraneous, and delet-
ing Z results in Y no longer being extraneous. The canonical cover algorithm
only deletes one attribute at a time, avoiding the problem that could occur if
two attributes are deleted at the same time.

Show that it is possible to ensure that a dependency-preserving decomposition
into 3NF is a lossless decomposition by guaranteeing that at least one schema
contains a candidate key for the schema being decomposed. (Hint: Show that
the join of all the projections onto the schemas of the decomposition cannot
have more tuples than the original relation.)

Answer:
Let F be a set of functional dependencies that hold on a schema R. Let 6 =
{R.R,,...,R,} be adependency-preserving 3NF decomposition of R. Let X be
a candidate key for R.
Consider a legal instance r of R. Letj = I1,(r) X HRl(r) X HRz(r) .o X HR”(r).
We want to prove that r = /.

We claim that if 7, and 7, are two tuples in j such that 7,[X] = 7,[X], then
t; = t,. To prove this claim, we use the following inductive argument:
Let F/ = F{ UF, U ... UF,, where each F; is the restriction of F to the schema

n’

R, in . Consider the use of the algorithm given in Figure 7.8 to compute the

62 Chapter 7 Relational Database Design

7.17

7.18

closure of X under F’. We use induction on the number of times that the for
loop in this algorithm is executed.

® Basis: In the first step of the algorithm, resul/t is assigned to X, and hence
given that 7, [X]| = #,[X], we know that ¢, [result] = t,[result] is true.

® Induction Step: Let t|[result] = t,[result] be true at the end of the k th
execution of the for loop.

Suppose the functional dependency considered in the £+ 1 th execution
of the for loop is — 7y, and that § C result. B C result implies that
t,[B] = #,[P] is true. The facts that § — vy holds for some attribute set
R; in ¢ and that ¢,[R;] and £,[R;] are in I, (r) imply that 7,[y] = t,[y] is
also true. Since y is now added to result bgl the algorithm, we know that
t,[result] = t,[result] is true at the end of the k£ + 1 th execution of the for
loop.

Since o is dependency-preserving and X is a key for R, all attributes in R are in
result when the algorithm terminates. Thus, #,[R] = 1,[R] is true, thatis, t, = 1,
- as claimed earlier.

Our claim implies that the size of I1, () is equal to the size of j. Note also
that IT, () = I1y(r) = r (since X is a key for R). Thus we have proved that the
size of j equals that of r. Using the result of Exercise 7.12, we know that r C ;.
Hence we conclude that » = ;.

Note that since X is trivially in 3NF, 6 U {X} is a dependency-preserving
lossless decomposition into 3NF.

Give an example of a relation schema R’ and set F’ of functional dependen-
cies such that there are at least three distinct lossless decompositions of R’ into
BCNF.

Answer:
Given the relation R = (4, B, C, D) the set of functional dependencies F/ =
A —- B,C — D,B — C(allows three distinct BCNF decompositions.

Rl = {(A’ B)’ (C’ D)’ (B’ C)}

is in BCNF as is

R, = {4, B), (C, D), (4, O)}

R3 {(B: C)’ (As D)s (As B)}

Let a prime attribute be one that appears in at least one candidate key. Let a and
f be sets of attributes such that @ — f holds, but § — o does not hold. Let 4 be

7.19

Practice Exercises 63

an attribute that is not in «, is not in §, and for which § — 4 holds. We say that
A is transitively dependent on a. We can restate the definition of 3NF as follows:
A relation schema R is in 3NF with respect to a set F of functional dependencies
if there are no nonprime attributes 4 in R for which 4 is transitively dependent
on a key for R. Show that this new definition is equivalent to the original one.

Answer:

Suppose R is in 3NF according to the textbook definition. We show that it is in
3NF according to the definition in the exercise. Let 4 be a nonprime attribute
in R that is transitively dependent on a key o for R. Then there exists p C R
suchthatp — 4, 0 — B, 4 & a, 4 ¢ P, and B — a does not hold. But
then B — A violates the textbook definition of 3NF since

° A & Pimplies p — A is nontrivial
* Since p — o does not hold, B is not a superkey

* A is not any candidate key, since 4 is nonprime

Now we show that if R is in 3NF according to the exercise definition, it is in
3NF according to the textbook definition. Suppose R is not in 3NF according
to the the textbook definition. Then there is an FD o« — J that fails all three
conditions. Thus

° o — [is nontrivial.
® «is not a superkey for R.

® Some 4 in — « is not in any candidate key.

This implies that 4 is nonprime and « — A. Let y be a candidate key for R.
Theny — a, « — 7y does not hold (since a is not a superkey), 4 ¢ «, and
A & v (since 4 is nonprime). Thus 4 is transitively dependent on vy, violating
the exercise definition.

A functional dependency « — f is called a partial dependency if there is a
proper subset y of a such that y — B; we say that 3 is partially dependent on a.. A
relation schema R is in second normal form (2NF) if each attribute 4 in R meets
one of the following criteria:

* It appears in a candidate key.

¢ It is not partially dependent on a candidate key.

Show that every 3NF schema is in 2NF. (Hint: Show that every partial depen-
dency is a transitive dependency.)

Answer:

Referring to the definitions in Exercise 7.18, a relation schema R is said to be in
3NF if there is no nonprime attribute 4 in R for which 4 is transitively dependent
on a key for R.

64

Chapter 7 Relational Database Design

7.20

We can also rewrite the definition of 2NF given here as:

“A relation schema R is in 2NF if no nonprime attribute 4 is partially dependent
on any candidate key for R.”

To prove that every 3NF schema is in 2NF, it suffices to show that if a non-
prime attribute A is partially dependent on a candidate key a, then A is also
transitively dependent on the key o.

Let A be a nonprime attribute in R. Let o be a candidate key for R. Suppose
A is partially dependent on a.

* From the definition of a partial dependency, we know that for some proper
subset p of o, p — A.

° Since f C o, & — P. Also, p — a does not hold, since a is a candidate key.
° Finally, since 4 is nonprime, it cannot be in either p or o.

Thus we conclude that o — A4 is a transitive dependency. Hence we have proved
that every 3NF schema is also in 2NF.

Give an example of a relation schema R and a set of dependencies such that R
is in BCNF but is not in 4NF.

Answer:

There are, of course, an infinite number of such examples. We show the simplest
one here.

Let R be the schema (4, B, C) with the only nontrivial dependency being 4 —
B

	Database Design using the E-R Model
	Exercises

