
CHAP T E R

1

Introdu
tion

Pra
ti
e Exer
ises

1.1 This
hapter has des
ribed several major advantages of a database system. What

are two disadvantages?

Answer:

Two disadvantages asso
iated with database systems are listed below.

a. Setup of the database system requires more knowledge, money, skills, and

time.

b. The
omplexity of the database may result in poor performan
e.

1.2 List �ve ways in whi
h the type de
laration system of a language su
h as Java

or C++ di�ers from the data de�nition language used in a database.

Answer:

a. Exe
uting an a
tion in the DDL results in the
reation of an obje
t in the

database; in
ontrast, a programming language type de
laration is simply

an abstra
tion used in the program.

b. Database DDLs allow
onsisten
y
onstraints to be spe
i�ed, whi
h pro-

gramming language type systems generally do not allow. These in
lude

domain
onstraints and referential integrity
onstraints.

. Database DDLs support authorization, giving di�erent a

ess rights to

di�erent users. Programming language type systems do not provide su
h

prote
tion (at best, they prote
t attributes in a
lass from being a

essed

by methods in another
lass).

d. Programming language type systems are usually mu
h ri
her than the SQL

type system. Most databases support only basi
 types su
h as di�erent

types of numbers and strings, although some databases do support some

omplex types su
h as arrays and obje
ts.

1

2 Chapter 1 Introdu
tion

e. A database DDL is fo
used on spe
ifying types of attributes of relations;

in
ontrast, a programming language allows obje
ts and
olle
tions of ob-

je
ts to be
reated.

1.3 List six major steps that you would take in setting up a database for a parti
ular

enterprise.

Answer:

Six major steps in setting up a database for a parti
ular enterprise are:

�

De�ne the high-level requirements of the enterprise (this step generates a

do
ument known as the system requirements spe
i�
ation.)

�

De�ne a model
ontaining all appropriate types of data and data relation-

ships.

�

De�ne the integrity
onstraints on the data.

�

De�ne the physi
al level.

�

For ea
h known problem to be solved on a regular basis (e.g., tasks to be

arried out by
lerks or web users), de�ne a user interfa
e to
arry out the

task, and write the ne
essary appli
ation programs to implement the user

interfa
e.

�

Create/initialize the database.

1.4 Suppose you want to build a video site similar to YouTube. Consider ea
h of the

points listed in Se
tion 1.2 as disadvantages of keeping data in a �le-pro
essing

system. Dis
uss the relevan
e of ea
h of these points to the storage of a
tual

video data, and to metadata about the video, su
h as title, the user who uploaded

it, tags, and whi
h users viewed it.

Answer:

�

Data redundan
y and in
onsisten
y. This would be relevant to metadata to

some extent, although not to the a
tual video data, whi
h are not updated.

There are very few relationships here, and none of them
an lead to redun-

dan
y.

�

Di	
ulty in a

essing data. If video data are only a

essed through a few

prede�ned interfa
es, as is done in video sharing sites today, this will not

be a problem. However, if an organization needs to �nd video data based

on spe
i�
 sear
h
onditions (beyond simple keyword queries), if metadata

were stored in �les it would be hard to �nd relevant data without writing

appli
ation programs. Using a database would be important for the task of

�nding data.

�

Data isolation. Sin
e data are not usually updated, but instead newly
re-

ated, data isolation is not a major issue. Even the task of keeping tra
k of

Pra
ti
e Exer
ises 3

who has viewed what videos is (
on
eptually) append only, again making

isolation not a major issue. However, if authorization is added, there may

be some issues of
on
urrent updates to authorization information.

�

Integrity problems. It seems unlikely there are signi�
ant integrity
on-

straints in this appli
ation, ex
ept for primary keys. If the data are dis-

tributed, there may be issues in enfor
ing primary key
onstraints. Integrity

problems are probably not a major issue.

�

Atomi
ity problems. When a video is uploaded, metadata about the video

and the video should be added atomi
ally, otherwise there would be an

in
onsisten
y in the data. An underlying re
overy me
hanism would be

required to ensure atomi
ity in the event of failures.

�

Con
urrent-a

ess anomalies. Sin
e data are not updated,
on
urrent a

ess

anomalies would be unlikely to o

ur.

�

Se
urity problems. These would be an issue if the system supported autho-

rization.

1.5 Keyword queries used in web sear
h are quite di�erent from database queries.

List key di�eren
es between the two, in terms of the way the queries are spe
i�ed

and in terms of what is the result of a query.

Answer:

Queries used in the web are spe
i�ed by providing a list of keywords with no spe-

i�
 syntax. The result is typi
ally an ordered list of URLs, along with snippets

of information about the
ontent of the URLs. In
ontrast, database queries

have a spe
i�
 syntax allowing
omplex queries to be spe
i�ed. And in the rela-

tional world the result of a query is always a table.

CHAP T E R

2

Introdu
tion to the Relational

Model

Pra
ti
e Exer
ises

2.1 Consider the employee database of Figure 2.17. What are the appropriate pri-

mary keys?

Answer:

The appropriate primary keys are shown below:

employee (person name, street,
ity)

works (person name,
ompany name, salary)

ompany (
ompany name,
ity)

2.2 Consider the foreign-key
onstraint from the dept name attribute of instru
tor to

the department relation. Give examples of inserts and deletes to these relations

that
an
ause a violation of the foreign-key
onstraint.

Answer:

�

Inserting a tuple:

(10111, Ostrom, E
onomi
s, 110000)

employee (ID, person name, street,
ity)

works (ID,
ompany name, salary)

ompany (
ompany name,
ity)

Figure 2.17 Employee database.

5

6 Chapter 2 Introdu
tion to the Relational Model

into the instru
tor table, where the department table does not have the de-

partment E
onomi
s, would violate the foreign-key
onstraint.

�

Deleting the tuple:

(Biology, Watson, 90000)

from the department table, where at least one student or instru
tor tuple

has dept name as Biology, would violate the foreign-key
onstraint.

2.3 Consider the time slot relation. Given that a parti
ular time slot
an meet more

than on
e in a week, explain why day and start time are part of the primary key

of this relation, while end time is not.

Answer:

The attributes day and start time are part of the primary key sin
e a parti
ular

lass will most likely meet on several di�erent days and may even meet more

than on
e in a day. However, end time is not part of the primary key sin
e a

parti
ular
lass that starts at a parti
ular time on a parti
ular day
annot end at

more than one time.

2.4 In the instan
e of instru
tor shown in Figure 2.1, no two instru
tors have the

same name. From this,
an we
on
lude that name
an be used as a superkey

(or primary key) of instru
tor?

Answer:

No. For this possible instan
e of the instru
tor table the names are unique, but

in general this may not always be the
ase (unless the university has a rule that

two instru
tors
annot have the same name, whi
h is a rather unlikey s
enario).

2.5 What is the result of �rst performing the Cartesian produ
t of student and advi-

sor, and then performing a sele
tion operation on the result with the predi
ate

s id = ID? (Using the symboli
 notation of relational algebra, this query
an be

written as �

s id=ID

(student � advisor).)

Answer:

The result attributes in
lude all attribute values of student followed by all at-

tributes of advisor. The tuples in the result are as follows: For ea
h student who

has an advisor, the result has a row
ontaining that student's attributes, followed

by an s id attribute identi
al to the student's ID attribute, followed by the i id

attribute
ontaining the ID of the students advisor.

Students who do not have an advisor will not appear in the result. A student

who has more than one advisor will appear a
orresponding number of times

in the result.

2.6 Consider the employee database of Figure 2.17. Give an expression in the rela-

tional algebra to express ea
h of the following queries:

a. Find the name of ea
h employee who lives in
ity �Miami�.

Pra
ti
e Exer
ises 7

bran
h(bran
h name, bran
h
ity, assets)

ustomer (ID,
ustomer name,
ustomer street,
ustomer
ity)

loan (loan number, bran
h name, amount)

borrower (ID, loan number)

a

ount (a

ount number, bran
h name, balan
e)

depositor (ID, a

ount number)

Figure 2.18 Bank database.

b. Find the name of ea
h employee whose salary is greater than $100000.

. Find the name of ea
h employee who lives in �Miami� and whose salary

is greater than $100000.

Answer:

a. �

person name

(�

ity= �Miami�

(employee))

b. �

person name

(�

salary> 100000

(employee Æ works))

. �

person name

(�

ity= �Miami�á salary>100000

(employee Æ works))

2.7 Consider the bank database of Figure 2.18. Give an expression in the relational

algebra for ea
h of the following queries:

a. Find the name of ea
h bran
h lo
ated in �Chi
ago�.

b. Find the ID of ea
h borrower who has a loan in bran
h �Downtown�.

Answer:

a. �

bran
h name

(�

bran
h
ity= �Chi
ago�

(bran
h))

b. �

ID

(�

bran
h name= �Downtown�

(borrower Æ

borrower:loan number=loan:loan number

loan)).

2.8 Consider the employee database of Figure 2.17. Give an expression in the rela-

tional algebra to express ea
h of the following queries:

a. Find the ID and name of ea
h employee who does not work for �BigBank�.

b. Find the ID and name of ea
h employee who earns at least as mu
h as

every employee in the database.

Answer:

a. To �nd employees who do not work for BigBank, we �rst �nd all those

who do work for BigBank. Those are exa
tly the employees not part of the

8 Chapter 2 Introdu
tion to the Relational Model

desired result. We then use set di�eren
e to �nd the set of all employees

minus those employees that should not be in the result.

�

ID,person name

(employee)*

�

ID,person name

(employee Æ

employee:ID=works:ID

(�

ompany name=``BigBank

¨¨

(works)))

b. We use the same approa
h as in part a by �rst �nding those employess

who do not earn the highest salary, or, said di�erently, for whom some

other employee earns more. Sin
e this involves
omparing two employee

salary values, we need to referen
e the employee relation twi
e and there-

fore use renaming.

�

ID,person name

(employee)*

�

A:ID,A:person name

(�

A

(employee) Æ

A:salary<B:salary

�

B

(employee))

2.9 The division operator of relational algebra, ���, is de�ned as follows. Let r(R)

and s(S) be relations, and let S Ó R; that is, every attribute of s
hema S is

also in s
hema R. Given a tuple t, let t[S℄ denote the proje
tion of tuple t on

the attributes in S. Then r � s is a relation on s
hema R * S (that is, on the

s
hema
ontaining all attributes of s
hema R that are not in s
hema S). A tuple

t is in r � s if and only if both of two
onditions hold:

�

t is in �

R*S

(r)

�

For every tuple t

s

in s, there is a tuple t

r

in r satisfying both of the following:

a. t

r

[S℄ = t

s

[S℄

b. t

r

[R * S℄ = t

Given the above de�nition:

a. Write a relational algebra expression using the division operator to �nd

the IDs of all students who have taken all Comp. S
i.
ourses. (Hint:

proje
t takes to just ID and
ourse id, and generate the set of all Comp.

S
i.
ourse ids using a sele
t expression, before doing the division.)

b. Show how to write the above query in relational algebra, without using

division. (By doing so, you would have shown how to de�ne the division

operation using the other relational algebra operations.)

Answer:

a. �

ID

(�

ID,
ourse id

(takes) � �

ourse id

(�

dept name='Comp. S
i'

(
ourse))

b. The required expression is as follows:

Pra
ti
e Exer
ises 9

r } �

ID,
ourse id

(takes)

s } �

ourse id

(�

dept name='Comp. S
i'

(
ourse))

�

ID

(takes) * �

ID

((�

ID

(takes) � s) * r)

In general, let r(R) and s(S) be given, with S Ó R. Then we
an express

the division operation using basi
 relational algebra operations as follows:

r � s = �

R*S

(r) * �

R*S

((�

R*S

(r) � s) * �

R*S,S

(r))

To see that this expression is true, we observe that �

R*S

(r) gives us all

tuples t that satisfy the �rst
ondition of the de�nition of division. The

expression on the right side of the set di�eren
e operator

�

R*S

((�

R*S

(r) � s) * �

R*S,S

(r))

serves to eliminate those tuples that fail to satisfy the se
ond
ondition of

the de�nition of division. Let us see how it does so. Consider�

R*S

(r) � s.

This relation is on s
hema R, and pairs every tuple in �

R*S

(r) with every

tuple in s. The expression �

R*S,S

(r) merely reorders the attributes of r.

Thus, (�

R*S

(r) � s) * �

R*S,S

(r) gives us those pairs of tuples from

�

R*S

(r) and s that do not appear in r. If a tuple t

j

is in

�

R*S

((�

R*S

(r) � s) * �

R*S,S

(r))

then there is some tuple t

s

in s that does not
ombine with tuple t

j

to form

a tuple in r. Thus, t

j

holds a value for attributes R * S that does not appear

in r � s. It is these values that we eliminate from �

R*S

(r).

CHAP T E R

3

Introdu
tion to SQL

Pra
ti
e Exer
ises

3.1 Write the following queries in SQL, using the university s
hema. (We suggest

you a
tually run these queries on a database, using the sample data that we

provide on the web site of the book, db-book.
om. Instru
tions for setting up

a database, and loading sample data, are provided on the above web site.)

a. Find the titles of
ourses in the Comp. S
i. department that have 3
redits.

b. Find the IDs of all students who were taught by an instru
tor named Ein-

stein; make sure there are no dupli
ates in the result.

. Find the highest salary of any instru
tor.

d. Find all instru
tors earning the highest salary (there may be more than

one with the same salary).

e. Find the enrollment of ea
h se
tion that was o�ered in Fall 2017.

f. Find the maximum enrollment, a
ross all se
tions, in Fall 2017.

g. Find the se
tions that had the maximum enrollment in Fall 2017.

Answer:

a. Find the titles of
ourses in the Comp. S
i. department that have 3
redits.

sele
t title

from
ourse

where dept name = 'Comp. S
i.' and
redits = 3

b. Find the IDs of all students who were taught by an instru
tor named Ein-

stein; make sure there are no dupli
ates in the result.

This query
an be answered in several di�erent ways. One way is as fol-

lows.

11

db-book.com

12 Chapter 3 Introdu
tion to SQL

sele
t distin
t takes.ID

from takes, instru
tor, tea
hes

where takes.
ourse id = tea
hes.
ourse id and

takes.se
 id = tea
hes.se
 id and

takes.semester = tea
hes.semester and

takes.year = tea
hes.year and

tea
hes.id = instru
tor.id and

instru
tor.name = 'Einstein'

. Find the highest salary of any instru
tor.

sele
t max(salary)

from instru
tor

d. Find all instru
tors earning the highest salary (there may be more than

one with the same salary).

sele
t ID, name

from instru
tor

where salary = (sele
t max(salary) from instru
tor)

e. Find the enrollment of ea
h se
tion that was o�ered in Fall 2017.

sele
t
ourse id, se
 id,

(sele
t
ount(ID)

from takes

where takes.year = se
tion.year

and takes.semester = se
tion.semester

and takes.
ourse id = se
tion.
ourse id

and takes.se
 id = se
tion.se
 id)

as enrollment

from se
tion

where semester = 'Fall'

and year = 2017

Note that if the result of the subquery is empty, the aggregate fun
tion

ount returns a value of 0.

One way of writing the query might appear to be:

Pra
ti
e Exer
ises 13

sele
t takes.
ourse id, takes.se
 id,
ount(ID)

from se
tion, takes

where takes.
ourse id = se
tion.
ourse id

and takes.se
 id = se
tion.se
 id

and takes.semester = se
tion.semester

and takes.year = se
tion.year

and takes.semester = 'Fall'

and takes.year = 2017

group by takes.
ourse id, takes.se
 id

But note that if a se
tion does not have any students taking it, it would

not appear in the result. One way of ensuring su
h a se
tion appears with

a
ount of 0 is to use the outer join operation,
overed in Chapter 4.

f. Find the maximum enrollment, a
ross all se
tions, in Fall 2017.

One way of writing this query is as follows:

sele
t max(enrollment)

from (sele
t
ount(ID) as enrollment

from se
tion, takes

where takes.year = se
tion.year

and takes.semester = se
tion.semester

and takes.
ourse id = se
tion.
ourse id

and takes.se
 id = se
tion.se
 id

and takes.semester = 'Fall'

and takes.year = 2017

group by takes.
ourse id, takes.se
 id)

As an alternative to using a nested subquery in the from
lause, it is pos-

sible to use a with
lause, as illustrated in the answer to the next part of

this question.

A subtle issue in the above query is that if no se
tion had any enroll-

ment, the answer would be empty, not 0. We
an use the alternative using

a subquery, from the previous part of this question, to ensure the
ount is

0 in this
ase.

g. Find the se
tions that had the maximum enrollment in Fall 2017.

The following answer uses a with
lause, simplifying the query.

14 Chapter 3 Introdu
tion to SQL

with se
 enrollment as (

sele
t takes.
ourse id, takes.se
 id,
ount(ID) as enrollment

from se
tion, takes

where takes.year = se
tion.year

and takes.semester = se
tion.semester

and takes.
ourse id = se
tion.
ourse id

and takes.se
 id = se
tion.se
 id

and takes.semester = 'Fall'

and takes.year = 2017

group by takes.
ourse id, takes.se
 id)

sele
t
ourse id, se
 id

from se
 enrollment

where enrollment = (sele
t max(enrollment) from se
 enrollment)

It is also possible to write the query without the with
lause, but the sub-

query to �nd enrollment would get repeated twi
e in the query.

While not in
orre
t to add distin
t in the
ount, it is not ne
essary in light

of the primary key
onstraint on takes.

3.2 Suppose you are given a relation grade points(grade, points) that provides a
on-

version from letter grades in the takes relation to numeri
 s
ores; for example,

an �A� grade
ould be spe
i�ed to
orrespond to 4 points, an �A*� to 3.7 points,

a �B+� to 3.3 points, a �B� to 3 points, and so on. The grade points earned by a

student for a
ourse o�ering (se
tion) is de�ned as the number of
redits for the

ourse multiplied by the numeri
 points for the grade that the student re
eived.

Given the pre
eding relation, and our university s
hema, write ea
h of the

following queries in SQL. You may assume for simpli
ity that no takes tuple has

the null value for grade.

a. Find the total grade points earned by the student with ID �12345�, a
ross

all
ourses taken by the student.

b. Find the grade point average (GPA) for the above student, that is, the total

grade points divided by the total
redits for the asso
iated
ourses.

. Find the ID and the grade-point average of ea
h student.

d. Now re
onsider your answers to the earlier parts of this exer
ise under

the assumption that some grades might be null. Explain whether your

solutions still work and, if not, provide versions that handle nulls properly.

Answer:

a. Find the total grade-points earned by the student with ID �12345�, a
ross

all
ourses taken by the student.

Pra
ti
e Exer
ises 15

sele
t sum(
redits * points)

from takes,
ourse, grade points

where takes.grade = grade points.grade

and takes.
ourse id =
ourse.
ourse id

and ID = �12345�

In the above query, a student who has not taken any
ourse would not

have any tuples, whereas we would expe
t to get 0 as the answer. One way

of �xing this problem is to use the outer join operation, whi
h we study

later in Chapter 4. Another way to ensure that we get 0 as the answer is

via the following query:

(sele
t sum(
redits * points)

from takes,
ourse, grade points

where takes.grade = grade points.grade

and takes.
ourse id =
ourse.
ourse id

and ID= �12345�)

union

(sele
t 0

from student

where ID = �12345� and

not exists (sele
t * from takes where ID = �12345�))

b. Find the grade point average (GPA) for the above student, that is, the total

grade-points divided by the total
redits for the asso
iated
ourses.

sele
t sum(
redits * points)/sum(
redits) as GPA

from takes,
ourse, grade points

where takes.grade = grade points.grade

and takes.
ourse id =
ourse.
ourse id

and ID= �12345�

As before, a student who has not taken any
ourse would not appear in

the above result; we
an ensure that su
h a student appears in the result by

using themodi�ed query from the previous part of this question. However,

an additional issue in this
ase is that the sum of
redits would also be 0,

resulting in a divide-by-zero
ondition. In fa
t, the only meaningful way

of de�ning the GPA in this
ase is to de�ne it as null. We
an ensure that

su
h a student appears in the result with a nullGPA by adding the following

union
lause to the above query.

union

(sele
t null as GPA

from student

where ID = �12345� and

not exists (sele
t * from takes where ID = �12345�))

16 Chapter 3 Introdu
tion to SQL

. Find the ID and the grade-point average of ea
h student.

sele
t ID, sum(
redits * points)/sum(
redits) as GPA

from takes,
ourse, grade points

where takes.grade = grade points.grade

and takes.
ourse id =
ourse.
ourse id

group by ID

Again, to handle students who have not taken any
ourse, we would have

to add the following union
lause:

union

(sele
t ID, null as GPA

from student

where not exists (sele
t * from takes where takes.ID = student.ID))

d. Now re
onsider your answers to the earlier parts of this exer
ise under

the assumption that some grades might be null. Explain whether your

solutions still work and, if not, provide versions that handle nulls properly.

The queries listed above all in
lude a test of equality on grade between

grade points and takes. Thus, for any takes tuple with a null grade, that

student's
ourse would be eliminated from the rest of the
omputation

of the result. As a result, the
redits of su
h
ourses would be eliminated

also, and thus the queries would return the
orre
t answer even if some

grades are null.

3.3 Write the following inserts, deletes, or updates in SQL, using the university

s
hema.

a. In
rease the salary of ea
h instru
tor in the Comp. S
i. department by

10%.

b. Delete all
ourses that have never been o�ered (i.e., do not o

ur in the

se
tion relation).

. Insert every student whose tot
red attribute is greater than 100 as an in-

stru
tor in the same department, with a salary of $10,000.

Answer:

a. In
rease the salary of ea
h instru
tor in the Comp. S
i. department by

10%.

update instru
tor

set salary = salary * 1.10

where dept name = �Comp. S
i.�

b. Delete all
ourses that have never been o�ered (that is, do not o

ur in

the se
tion relation).

Pra
ti
e Exer
ises 17

person (driver id, name, address)

ar (li
ense plate, model, year)

a

ident (report number, year, lo
ation)

owns (driver id, li
ense plate)

parti
ipated (report number, li
ense plate, driver id, damage amount)

Figure 3.17 Insuran
e database

delete from
ourse

where
ourse id not in

(sele
t
ourse id from se
tion)

. Insert every student whose tot
red attribute is greater than 100 as an in-

stru
tor in the same department, with a salary of $10,000.

insert into instru
tor

sele
t ID, name, dept name, 10000

from student

where tot
red > 100

3.4 Consider the insuran
e database of Figure 3.17, where the primary keys are

underlined. Constru
t the following SQL queries for this relational database.

a. Find the total number of people who owned
ars that were involved in

a

idents in 2017.

b. Delete all year-2010
ars belonging to the person whose ID is �12345�.

Answer:

a. Find the total number of people who owned
ars that were involved in

a

idents in 2017.

Note: This is not the same as the total number of a

idents in 2017. We

must
ount people with several a

idents only on
e. Furthermore, note

that the question asks for owners, and it might be that the owner of the

ar was not the driver a
tually involved in the a

ident.

sele
t
ount (distin
t person.driver id)

from a

ident, parti
ipated, person, owns

where a

ident.report number = parti
ipated.report number

and owns.driver id = person.driver id

and owns.li
ense plate = parti
ipated.li
ense plate

and year = 2017

18 Chapter 3 Introdu
tion to SQL

b. Delete all year-2010
ars belonging to the person whose ID is �12345�.

delete
ar

where year = 2010 and li
ense plate in

(sele
t li
ense plate

from owns o

where o.driver id = �12345�)

Note: The owns, a

ident and parti
ipated re
ords asso
iated with the

deleted
ars still exist.

3.5 Suppose that we have a relation marks(ID, s
ore) and we wish to assign grades

to students based on the s
ore as follows: grade F if s
ore < 40, grade C if 40

f s
ore < 60, grade B if 60 f s
ore < 80, and grade A if 80 f s
ore. Write SQL

queries to do the following:

a. Display the grade for ea
h student, based on the marks relation.

b. Find the number of students with ea
h grade.

Answer:

a. Display the grade for ea
h student, based on the marks relation.

sele
t ID,

ase

when s
ore < 40 then 'F'

when s
ore < 60 then 'C'

when s
ore < 80 then 'B'

else 'A'

end

from marks

b. Find the number of students with ea
h grade.

Pra
ti
e Exer
ises 19

with grades as

(

sele
t ID,

ase

when s
ore < 40 then 'F'

when s
ore < 60 then 'C'

when s
ore < 80 then 'B'

else 'A'

end as grade

from marks

)

sele
t grade,
ount(ID)

from grades

group by grade

As an alternative, the with
lause
an be removed, and instead the de�ni-

tion of grades
an be made a subquery of the main query.

3.6 The SQL like operator is
ase sensitive (in most systems), but the lower() fun
-

tion on strings
an be used to perform
ase-insensitive mat
hing. To show how,

write a query that �nds departments whose names
ontain the string �s
i� as a

substring, regardless of the
ase.

Answer:

sele
t dept name

from department

where lower(dept name) like '%s
i%'

3.7 Consider the SQL query

sele
t p.a1

from p, r1, r2

where p.a1 = r1.a1 or p.a1 = r2.a1

Under what
onditions does the pre
eding query sele
t values of p:a1 that are

either in r1 or in r2? Examine
arefully the
ases where either r1 or r2 may be

empty.

Answer:

The query sele
ts those values of p.a1 that are equal to some value of r1.a1 or

r2.a1 if and only if both r1 and r2 are non-empty. If one or both of r1 and r2 are

empty, the Cartesian produ
t of p, r1 and r2 is empty, hen
e the result of the

query is empty. If p itself is empty, the result is empty.

3.8 Consider the bank database of Figure 3.18, where the primary keys are under-

lined. Constru
t the following SQL queries for this relational database.

20 Chapter 3 Introdu
tion to SQL

bran
h(bran
h name, bran
h
ity, assets)

ustomer (ID,
ustomer name,
ustomer street,
ustomer
ity)

loan (loan number, bran
h name, amount)

borrower (ID, loan number)

a

ount (a

ount number, bran
h name, balan
e)

depositor (ID, a

ount number)

Figure 3.18 Banking database.

a. Find the ID of ea
h
ustomer of the bank who has an a

ount but not a

loan.

b. Find the ID of ea
h
ustomer who lives on the same street and in the same

ity as
ustomer �12345�.

. Find the name of ea
h bran
h that has at least one
ustomer who has an

a

ount in the bank and who lives in �Harrison�.

Answer:

a. Find the ID of ea
h
ustomer of the bank who has an a

ount but not a

loan.

(sele
t ID

from depositor)

ex
ept

(sele
t ID

from borrower)

b. Find the ID of ea
h
ustomer who lives on the same street and in the same

ity as
ustomer �12345�.

sele
t F.ID

from
ustomer as F,
ustomer as S

where F.
ustomer street = S.
ustomer street

and F.
ustomer
ity = S.
ustomer
ity

and S.
ustomer id = �12345�

. Find the name of ea
h bran
h that has at least one
ustomer who has an

a

ount in the bank and who lives in �Harrison�.

Pra
ti
e Exer
ises 21

sele
t distin
t bran
h name

from a

ount, depositor,
ustomer

where
ustomer.id = depositor.id

and depositor.a

ount number = a

ount.a

ount number

and
ustomer
ity = 'Harrison'

3.9 Consider the relational database of Figure 3.19, where the primary keys are

underlined. Give an expression in SQL for ea
h of the following queries.

a. Find the ID, name, and
ity of residen
e of ea
h employee who works for

�First Bank Corporation�.

b. Find the ID, name, and
ity of residen
e of ea
h employee who works for

�First Bank Corporation� and earns more than $10000.

. Find the ID of ea
h employee who does not work for �First Bank Corpo-

ration�.

d. Find the ID of ea
h employee who earns more than every employee of

�Small Bank Corporation�.

e. Assume that
ompanies may be lo
ated in several
ities. Find the name

of ea
h
ompany that is lo
ated in every
ity in whi
h �Small Bank Cor-

poration� is lo
ated.

f. Find the name of the
ompany that has the most employees (or
ompa-

nies, in the
ase where there is a tie for the most).

g. Find the name of ea
h
ompany whose employees earn a higher salary,

on average, than the average salary at �First Bank Corporation�.

Answer:

a. Find the ID, name, and
ity of residen
e of ea
h employee who works for

�First Bank Corporation�.

employee (ID, person name, street,
ity)

works (ID,
ompany name, salary)

ompany (
ompany name,
ity)

manages (ID, manager id)

Figure 3.19 Employee database.

22 Chapter 3 Introdu
tion to SQL

sele
t e.ID, e.person name,
ity

from employee as e, works as w

where w.
ompany name = �First Bank Corporation� and

w.ID = e.ID

b. Find the ID, name, and
ity of residen
e of ea
h employee who works for

�First Bank Corporation� and earns more than $10000.

sele
t *

from employee

where ID in

(sele
t ID

from works

where
ompany name = �First Bank Corporation� and salary > 10000)

This
ould be written also in the style of the answer to part a.

. Find the ID of ea
h employee who does not work for �First Bank Corpo-

ration�.

sele
t ID

from works

where
ompany name <> �First Bank Corporation�

If one allows people to appear in employee without appearing also in

works, the solution is slightly more
ompli
ated. An outer join as dis-

ussed in Chapter 4
ould be used as well.

sele
t ID

from employee

where ID not in

(sele
t ID

from works

where
ompany name = �First Bank Corporation�)

d. Find the ID of ea
h employee who earns more than every employee of

�Small Bank Corporation�.

sele
t ID

from works

where salary > all

(sele
t salary

from works

where
ompany name = �Small Bank Corporation�)

If peoplemay work for several
ompanies and wewish to
onsider the total

earnings of ea
h person, the problem is more
omplex. But note that the

Pra
ti
e Exer
ises 23

fa
t that ID is the primary key for works implies that this
annot be the

ase.

e. Assume that
ompanies may be lo
ated in several
ities. Find the name

of ea
h
ompany that is lo
ated in every
ity in whi
h �Small Bank Cor-

poration� is lo
ated.

sele
t S.
ompany name

from
ompany as S

where not exists ((sele
t
ity

from
ompany

where
ompany name = �Small Bank Corporation�)

ex
ept

(sele
t
ity

from
ompany as T

where S.
ompany name = T.
ompany name))

f. Find the name of the
ompany that has the most employees (or
ompa-

nies, in the
ase where there is a tie for the most).

sele
t
ompany name

from works

group by
ompany name

having
ount (distin
t ID) >= all

(sele
t
ount (distin
t ID)

from works

group by
ompany name)

g. Find the name of ea
h
ompany whose employees earn a higher salary,

on average, than the average salary at �First Bank Corporation�.

sele
t
ompany name

from works

group by
ompany name

having avg (salary) > (sele
t avg (salary)

from works

where
ompany name = �First Bank Corporation�)

3.10 Consider the relational database of Figure 3.19. Give an expression in SQL for

ea
h of the following:

a. Modify the database so that the employee whose ID is �12345� now lives

in �Newtown�.

b. Give ea
h manager of �First Bank Corporation� a 10 per
ent raise unless

the salary be
omes greater than $100000; in su
h
ases, give only a 3

per
ent raise.

24 Chapter 3 Introdu
tion to SQL

Answer:

a. Modify the database so that the employee whose ID is �12345� now lives

in �Newtown�.

update employee

set
ity = �Newtown�

where ID = �12345�

b. Give ea
h manager of �First Bank Corporation� a 10 per
ent raise unless

the salary be
omes greater than $100000; in su
h
ases, give only a 3

per
ent raise.

update works T

set T.salary = T.salary * 1.03

where T .ID in (sele
t manager id

from manages)

and T.salary * 1.1 > 100000

and T.
ompany name = �First Bank Corporation�

update works T

set T.salary = T.salary * 1.1

where T .ID in (sele
t manager id

from manages)

and T.salary * 1.1 <= 100000

and T.
ompany name = �First Bank Corporation�

The above updates would give di�erent results if exe
uted in the opposite

order. We give below a safer solution using the
ase statement.

update works T

set T.salary = T.salary <

(
ase

when (T.salary < 1:1 > 100000) then 1.03

else 1.1

end)

where T.ID in (sele
t manager id

from manages) and

T.
ompany name = �First Bank Corporation�

CHAP T E R

4

Intermediate SQL

Pra
ti
e Exer
ises

4.1 Consider the following SQL query that seeks to �nd a list of titles of all
ourses

taught in Spring 2017 along with the name of the instru
tor.

sele
t name, title

from instru
tor natural join tea
hes natural join se
tion natural join
ourse

where semester = �Spring� and year = 2017

What is wrong with this query?

Answer:

Although the query is synta
ti
ally
orre
t, it does not
ompute the expe
ted

answer be
ause dept name is an attribute of both
ourse and instru
tor. As a

result of the natural join, results are shown only when an instru
tor tea
hes a

ourse in her or his own department.

4.2 Write the following queries in SQL:

a. Display a list of all instru
tors, showing ea
h instru
tor's ID and the num-

ber of se
tions taught. Make sure to show the number of se
tions as 0 for

instru
tors who have not taught any se
tion. Your query should use an

outer join, and should not use subqueries.

b. Write the same query as in part a, but using a s
alar subquery and not

using outer join.

. Display the list of all
ourse se
tions o�ered in Spring 2018, along with

the ID and name of ea
h instru
tor tea
hing the se
tion. If a se
tion has

more than one instru
tor, that se
tion should appear as many times in

the result as it has instru
tors. If a se
tion does not have any instru
tor,

it should still appear in the result with the instru
tor name set to ���.

25

26 Chapter 4 Intermediate SQL

d. Display the list of all departments, with the total number of instru
tors

in ea
h department, without using subqueries. Make sure to show depart-

ments that have no instru
tors, and list those departments with an instru
-

tor
ount of zero.

Answer:

a. Display a list of all instru
tors, showing ea
h instru
tor's ID and the num-

ber of se
tions taught. Make sure to show the number of se
tions as 0 for

instru
tors who have not taught any se
tion. Your query should use an

outer join, and should not use subqueries.

sele
t ID,
ount(se
 id) as Number of se
tions

from instru
tor natural left outer join tea
hes

group by ID

The above query should not be written using
ount(*) sin
e that would

ount null values also. It
ould be written using any attribute from tea
hes

whi
h does not o

ur in instru
tor, whi
h would be
orre
t although it

may be
onfusing to the reader. (Attributes that o

ur in instru
tor would

not be null even if the instru
tor has not taught any se
tion.)

b. Write the same query as above, but using a s
alar subquery, and not using

outerjoin.

sele
t ID,

(sele
t
ount(*) as Number of se
tions

from tea
hes T where T.id = I.id)

from instru
tor I

. Display the list of all
ourse se
tions o�ered in Spring 2018, along with

the ID and name of ea
h instru
tor tea
hing the se
tion. If a se
tion has

more than one instru
tor, that se
tion should appear as many times in

the result as it has instru
tors. If a se
tion does not have any instru
tor,

it should still appear in the result with the instru
tor name set to ���.

sele
t
ourse id, se
 id, ID,

de
ode(name, null, '*', name) as name

from (se
tion natural left outer join tea
hes)

natural left outer join instru
tor

where semester='Spring' and year= 2018

The query may also be written using the
oales
e operator, by repla
ing

de
ode(..) with
oales
e(name, '*'). A more
omplex version of the query

an be written using union of join result with another query that uses a

subquery to �nd
ourses that do not mat
h; refer to Exer
ise 4.3.

Exer
ises 27

d. Display the list of all departments, with the total number of instru
tors

in ea
h department, without using subqueries. Make sure to show depart-

ments that have no instru
tors, and list those departments with an instru
-

tor
ount of zero.

sele
t dept name,
ount(ID)

from department natural left outer join instru
tor

group by dept name

4.3 Outer join expressions
an be
omputed in SQL without using the SQL outer

join operation. To illustrate this fa
t, show how to rewrite ea
h of the following

SQL queries without using the outer join expression.

a. sele
t * from student natural left outer join takes

b. sele
t * from student natural full outer join takes

Answer:

a. sele
t * from student natural left outer join takes

an be rewritten as:

sele
t * from student natural join takes

union

sele
t ID, name, dept name, tot
red, null, null, null, null, null

from student S1 where not exists

(sele
t ID from takes T1 where T1.id = S1.id)

b. sele
t * from student natural full outer join takes

an be rewritten as:

(sele
t * from student natural join takes)

union

(sele
t ID, name, dept name, tot
red, null, null, null, null, null

from student S1

where not exists

(sele
t ID from takes T1 where T1.id = S1.id))

union

(sele
t ID, null, null, null,
ourse id, se
 id, semester, year, grade

from takes T1

where not exists

(sele
t ID from student S1 whereT1.id = S1.id))

4.4 Suppose we have three relations r(A, B), s(B, C), and t(B, D), with all attributes

de
lared as not null.

a. Give instan
es of relations r, s, and t su
h that in the result of

(r natural left outer join s) natural left outer join t

attribute C has a null value but attribute D has a non-null value.

28 Chapter 4 Intermediate SQL

b. Are there instan
es of r, s, and t su
h that the result of

r natural left outer join (s natural left outer join t)

has a null value for C but a non-null value for D? Explain why or why not.

Answer:

a. Consider r = (a, b), s = (b1,
1), t = (b, d). The se
ond expression would

give (a, b, null, d).

b. Sin
e s natural left outer join t is
omputed �rst, the absen
e of nulls is

both s and t implies that ea
h tuple of the result
an have D null, but C

an never be null.

4.5 Testing SQL queries: To test if a query spe
i�ed in English has been
orre
tly

written in SQL, the SQL query is typi
ally exe
uted on multiple test databases,

and a human
he
ks if the SQL query result on ea
h test database mat
hes the

intention of the spe
i�
ation in English.

a. In Se
tion 4.1.1 we saw an example of an erroneous SQL query whi
h was

intended to �nd whi
h
ourses had been taught by ea
h instru
tor; the

query
omputed the natural join of instru
tor, tea
hes, and
ourse, and as

a result it unintentionally equated the dept name attribute of instru
tor and

ourse. Give an example of a dataset that would help
at
h this parti
ular

error.

b. When
reating test databases, it is important to
reate tuples in referen
ed

relations that do not have any mat
hing tuple in the referen
ing relation

for ea
h foreign key. Explain why, using an example query on the univer-

sity database.

. When
reating test databases, it is important to
reate tuples with null

values for foreign-key attributes, provided the attribute is nullable (SQL

allows foreign-key attributes to take on null values, as long as they are not

part of the primary key and have not been de
lared as not null). Explain

why, using an example query on the university database.

Hint: Use the queries from Exer
ise 4.2.

Answer:

a. Consider the
ase where a professor in the Physi
s department tea
hes

an Ele
. Eng.
ourse. Even though there is a valid
orresponding entry in

tea
hes, it is lost in the natural join of instru
tor, tea
hes and
ourse, sin
e

the instru
tor's department name does not mat
h the department name

of the
ourse. A dataset
orresponding to the same is:

Exer
ises 29

instru
tor = {(�12345�,'Gauss', 'Physi
s', 10000)}

tea
hes = {(�12345�, 'EE321', 1, 'Spring', 2017)}

ourse = {('EE321', 'Magnetism', 'Ele
. Eng.', 6)}

b. The query in question 4.2(a) is a good example for this. Instru
tors who

have not taught a single
ourse should have number of se
tions as 0 in

the query result. (Many other similar examples are possible.)

. Consider the query

sele
t * from tea
hes natural join instru
tor;

In this query, we would lose some se
tions if tea
hes.ID is allowed to be

null and su
h tuples exist. If, just be
ause tea
hes.ID is a foreign key to

instru
tor, we did not
reate su
h a tuple, the error in the above query

would not be dete
ted.

4.6 Show how to de�ne the view student grades (ID, GPA) giving the grade-point

average of ea
h student, based on the query in Exer
ise 3.2; re
all that we used

a relation grade points(grade, points) to get the numeri
 points asso
iated with

a letter grade. Make sure your view de�nition
orre
tly handles the
ase of null

values for the grade attribute of the takes relation.

Answer:

We should not add
redits for
ourses with a null grade; further, to
orre
tly

handle the
ase where a student has not
ompleted any
ourse, we should make

sure we don't divide by zero, and should instead return a null value.

We break the query into a subquery that �nds sum of
redits and sum of

redit-grade-points, taking null grades into a

ount The outer query divides the

above to get the average, taking
are of divide by zero.

reate view student grades(ID, GPA) as

sele
t ID,
redit points / de
ode(
redit sum, 0, null,
redit sum)

from ((sele
t ID, sum(de
ode(grade, null, 0,
redits)) as
redit sum,

sum(de
ode(grade, null, 0,
redits*points)) as
redit points

from(takes natural join
ourse) natural left outer join grade points

group by ID)

union

sele
t ID, null, null

from student

where ID not in (sele
t ID from takes))

The view de�ned above takes
are of null grades by
onsidering the
redit points

to be 0 and not adding the
orresponding
redits in
redit sum.

30 Chapter 4 Intermediate SQL

employee (ID, person name, street,
ity)

works (ID,
ompany name, salary)

ompany (
ompany name,
ity)

manages (ID, manager id)

Figure 4.12 Employee database.

The query above ensures that a student who has not taken any
ourse with

non-null
redits, and has
redit sum = 0 gets a GPA of null. This avoids the

division by zero, whi
h would otherwise have resulted.

In systems that do note support de
ode, an alternative is the
ase
onstru
t.

Using
ase, the solution would be written as follows:

reate view student grades(ID, GPA) as

sele
t ID,
redit points / (
ase when
redit sum = 0 then null

else
redit sum end)

from ((sele
t ID, sum (
ase when grade is null then 0

else
redits end) as
redit sum,

sum (
ase when grade is null then 0

else
redits*points end) as
redit points

from(takes natural join
ourse) natural left outer join grade points

group by ID)

union

sele
t ID, null, null

from student

where ID not in (sele
t ID from takes))

An alternative way of writing the above query would be to use student natural

left outer join gpa, in order to
onsider students who have not taken any
ourse.

4.7 Consider the employee database of Figure 4.12. Give an SQL DDL de�nition

of this database. Identify referential-integrity
onstraints that should hold, and

in
lude them in the DDL de�nition.

Answer:

Plese see ??.

Note that alternative data types are possible. Other
hoi
es for not null at-

tributes may be a

eptable.

4.8 As dis
ussed in Se
tion 4.4.8, we expe
t the
onstraint �an instru
tor
annot

tea
h se
tions in two di�erent
lassrooms in a semester in the same time slot�

to hold.

Exer
ises 31

reate table employee

(ID numeri
(6,0),

person name
har(20),

street
har(30),

ity
har(30),

primary key (ID))

reate table works

(ID numeri
(6,0),

ompany name
har(15),

salary integer,

primary key (ID),

foreign key (ID) referen
es employee,

foreign key (
ompany name) referen
es
ompany)

reate table
ompany

(
ompany name
har(15),

ity
har(30),

primary key (
ompany name))

reate table manages

(ID numeri
(6,0),

manager iid numeri
(6,0),

primary key (ID),

foreign key (ID) referen
es employee,

foreign key (manager iid) referen
es employee(ID))

Figure 4.101 Figure for Exer
ise 4.7.

a. Write an SQL query that returns all (instru
tor, se
tion)
ombinations that

violate this
onstraint.

b. Write an SQL assertion to enfor
e this
onstraint (as dis
ussed in Se
-

tion 4.4.8,
urrent generation database systems do not support su
h as-

sertions, although they are part of the SQL standard).

Answer:

32 Chapter 4 Intermediate SQL

a. Query:

sele
t ID, name, se
 id, semester, year, time slot id,

ount(distin
t building, room number)

from instru
tor natural join tea
hes natural join se
tion

group by (ID, name, se
 id, semester, year, time slot id)

having
ount(building, room number) > 1

Note that the distin
t keyword is required above. This is to allow two dif-

ferent se
tions to run
on
urrently in the same time slot and are taught

by the same instru
tor without being reported as a
onstraint violation.

b. Query:

reate assertion
he
k not exists

(sele
t ID, name, se
 id, semester, year, time slot id,

ount(distin
t building, room number)

from instru
tor natural join tea
hes natural join se
tion

group by (ID, name, se
 id, semester, year, time slot id)

having
ount(building, room number) > 1)

4.9 SQL allows a foreign-key dependen
y to refer to the same relation, as in the

following example:

reate table manager

(employee ID
har(20),

manager ID
har(20),

primary key employee ID,

foreign key (manager ID) referen
es manager(employee ID)

on delete
as
ade)

Here, employee ID is a key to the table manager, meaning that ea
h employee

has at most one manager. The foreign-key
lause requires that every manager

also be an employee. Explain exa
tly what happens when a tuple in the relation

manager is deleted.

Answer:

The tuples of all employees of the manager, at all levels, get deleted as well! This

happens in a series of steps. The initial deletion will trigger deletion of all the

tuples
orresponding to dire
t employees of the manager. These deletions will

in turn
ause deletions of se
ond-level employee tuples, and so on, till all dire
t

and indire
t employee tuples are deleted.

4.10 Given the relations a(name, address, title) and b(name, address, salary), show

how to express a natural full outer join b using the full outer-join operation with

an on
ondition rather than using the natural join syntax. This
an be done using

the
oales
e operation. Make sure that the result relation does not
ontain two

Exer
ises 33

opies of the attributes name and address and that the solution is
orre
t even

if some tuples in a and b have null values for attributes name or address.

Answer:

sele
t
oales
e(a.name, b.name) as name,

oales
e(a.address, b.address) as address,

a.title,

b.salary

from a full outer join b on a.name = b.name and

a.address = b.address

4.11 Operating systems usually o�er only two types of authorization
ontrol for data

�les: read a

ess and write a

ess.Why do database systems o�er somany kinds

of authorization?

Answer: There are many reasons�we list a few here. One might wish to allow

a user only to append new information without altering old information. One

might wish to allow a user to a

ess a relation but not
hange its s
hema. One

might wish to limit a

ess to aspe
ts of the database that are not te
hni
ally

data a

ess but instead impa
t resour
e utilization, su
h as
reating an index.

4.12 Suppose a user wants to grant sele
t a

ess on a relation to another user. Why

should the user in
lude (or not in
lude) the
lause granted by
urrent role in the

grant statement?

Answer: Both
ases give the same authorization at the time the statement

is exe
uted, but the long-term e�e
ts di�er. If the grant is done based on the

role, then the grant remains in e�e
t even if the user who performed the grant

leaves and that user's a

ount is terminated. Whether that is a good or bad idea

depends on the spe
i�
 situation, but usually granting through a role is more

onsistent with a well-run enterprise.

4.13 Consider a view v whose de�nition referen
es only relation r.

�

If a user is granted sele
t authorization on v, does that user need to have

sele
t authorization on r as well? Why or why not?

�

If a user is granted update authorization on v, does that user need to have

update authorization on r as well? Why or why not?

�

Give an example of an insert operation on a view v to add a tuple t that is

not visible in the result of sele
t * from v. Explain your answer.

Answer:

�

No. This allows a user to be granted a

ess to only part of relation r.

34 Chapter 4 Intermediate SQL

�

Yes. A valid update issued using view v must update r for the update to be

stored in the database.

�

Any tuple t
ompatible with the s
hema for v but not satisfying the where

lause in the de�nition of view v is a valid example. One su
h example

appears in Se
tion 4.2.4.

CHAP T E R

6

Database Design using the E-R

Model

Pra
ti
e Exer
ises

6.1 Constru
t an E-R diagram for a
ar insuran
e
ompany whose
ustomers own

one or more
ars ea
h. Ea
h
ar has asso
iated with it zero to any number of

re
orded a

idents. Ea
h insuran
e poli
y
overs one or more
ars and has one

or more premium payments asso
iated with it. Ea
h payment is for a parti
ular

period of time, and has an asso
iated due date, and the date when the payment

was re
eived.

Answer:

One possible E-R diagram is shown in Figure 6.101. Payments are modeled as

weak entities sin
e they are related to a spe
i�
 poli
y.

Note that the parti
ipation of a

ident in the relationship parti
ipated is not

total, sin
e it is possible that there is an a

ident report where the parti
ipating

ar is unknown.

6.2 Consider a database that in
ludes the entity sets student,
ourse, and se
tion

from the university s
hema and that additionally re
ords themarks that students

re
eive in di�erent exams of di�erent se
tions.

a. Constru
t an E-R diagram that models exams as entities and uses a ternary

relationship as part of the design.

b. Constru
t an alternative E-R diagram that uses only a binary relationship

between student and se
tion. Make sure that only one relationship exists

between a parti
ular student and se
tion pair, yet you
an represent the

marks that a student gets in di�erent exams.

Answer:

43

44 Chapter 6 Database Design using the E-R Model

customer

customer_id

name

address

owns

participated

 car

license_no

model

accident

report_id

date

place

payment

policy

policy_idcovers
1 . . 11 . . *

premium_ payment

payment_no

due_date

amount

received_on

Figure 6.101 E-R diagram for a
ar insuran
e
ompany.

a. The E-R diagram is shown in Figure 6.102. Note that an alternative is to

model examinations as weak entities related to a se
tion, rather than as

strong entities. The marks relationship would then be a binary relation-

ship between student and exam, without dire
tly involving se
tion.

b. The E-R diagram is shown in Figure 6.103. Note that here we have not

modeled the name, pla
e, and time of the exam as part of the relationship

attributes. Doing so would result in dupli
ation of the information, on
e

per student, and we would not be able to re
ord this information without

an asso
iated student. If we wish to represent this information, we need

to retain a separate entity
orresponding to ea
h exam.

6.3 Design an E-R diagram for keeping tra
k of the s
oring statisti
s of your favorite

sports team. You should store the mat
hes played, the s
ores in ea
h mat
h, the

players in ea
h mat
h, and individual player s
oring statisti
s for ea
h mat
h.

student

student_id

name

dept_name

tot_cred

course

course_id

title

credits

section

sec_id

semester

year

exam_marks sec_course

exam

exam_id

name

place

time

marks

Figure 6.102 E-R diagram for marks database.

Pra
ti
e Exer
ise 45

student

student_id

name

dept_name

tot_cred

course

course_id

title

credits

section

sec_id

semester

year

exam_marks sec_course

{exam_marks

 exam_id

 marks

}

Figure 6.103 Another E-R diagram for marks database.

Summary statisti
s should be modeled as derived attributes with an explanation

as to how they are
omputed.

Answer:

The diagram is shown in Figure 6.104. The derived attribute season s
ore is

omputed by summing the s
ore values asso
iated with the player entity set via

the played relationship set.

6.4 Consider an E-R diagram in whi
h the same entity set appears several times,

with its attributes repeated in more than one o

urren
e. Why is allowing this

redundan
y a bad pra
ti
e that one should avoid?

Answer:

The reason an entity set would appear more than on
e is if one is drawing a

diagram that spans multiple pages.

The di�erent o

urren
es of an entity set may have di�erent sets of at-

tributes, leading to an in
onsistent diagram. Instead, the attributes of an entity

set should be spe
i�ed only on
e. All other o

urren
es of the entity should

omit attributes. Sin
e it is not possible to have an entity set without any at-

tributes, an o

urren
e of an entity set without attributes
learly indi
ates that

the attributes are spe
i�ed elsewhere.

played

player

player_id

name
age

season_score()

score

match

match_id

date

stadium

opponent

own_score

opp_score

Figure 6.104 E-R diagram for favorite team statisti
s.

46 Chapter 6 Database Design using the E-R Model

B C

A

CB E

A

RA

RB
RC

(a) (b)

(c)

A

B C

R

RBC

RAB
RAC

Figure 6.29 Representation of a ternary relationship using binary relationships.

6.5 An E-R diagram
an be viewed as a graph. What do the following mean in terms

of the stru
ture of an enterprise s
hema?

a. The graph is dis
onne
ted.

b. The graph has a
y
le.

Answer:

a. If a pair of entity sets are
onne
ted by a path in an E-R diagram, the

entity sets are related, though perhaps indire
tly. A dis
onne
ted graph

implies that there are pairs of entity sets that are unrelated to ea
h other.

In an enterprise, we
an say that the two parts of the enterprise are
om-

pletely independent of ea
h other. If we split the graph into
onne
ted

omponents, we have, in e�e
t, a separate database
orresponding to ea
h

independent part of the enterprise.

b. As indi
ated in the answer to the previous part, a path in the graph be-

tween a pair of entity sets indi
ates a (possibly indire
t) relationship be-

tween the two entity sets. If there is a
y
le in the graph, then every pair

of entity sets on the
y
le are related to ea
h other in at least two distin
t

ways. If the E-R diagram is a
y
li
, then there is a unique path between

every pair of entity sets and thus a unique relationship between every pair

of entity sets.

Pra
ti
e Exer
ise 47

A

EB C
R

B
R

A
R

C

Figure 6.105 E-R diagram for Exer
ise Exer
ise 6.6b.

6.6 Consider the representation of the ternary relationship of Figure 6.29a using

the binary relationships illustrated in Figure 6.29b (attributes not shown).

a. Show a simple instan
e of E,A,B,C, R

A

,R

B

, and R

C

that
annot
orre-

spond to any instan
e of A,B,C, and R.

b. Modify the E-R diagram of Figure 6.29b to introdu
e
onstraints that will

guarantee that any instan
e of E,A,B,C, R

A

,R

B

, and R

C

that satis�es the

onstraints will
orrespond to an instan
e of A,B,C, and R.

. Modify the pre
eding translation to handle total parti
ipation
onstraints

on the ternary relationship.

Answer:

a. Let E = ^e

1

, e

2

`, A = ^a

1

, a

2

`, B = ^b

1

`, C = ^

1

`, R

A

=

^(e

1

, a

1

), (e

2

, a

2

)`, R

B

= ^(e

1

, b

1

)`, and R

C

= ^(e

1

,

1

)`. We see that

be
ause of the tuple (e

2

, a

2

), no instan
e of A,B,C, and R exists that
or-

responds to E, R

A

, R

B

and R

C

.

b. See Figure 6.105. The idea is to introdu
e total parti
ipation
onstraints

between E and the relationships R

A

, R

B

, R

C

so that every tuple in E has a

relationship with A, B, and C.

. Suppose A totally parti
ipates in the relationhip R, then introdu
e a total

parti
ipation
onstraint between A and R

A

, and similarly for B and C.

6.7 A weak entity set
an always be made into a strong entity set by adding to its

attributes the primary-key attributes of its identifying entity set. Outline what

sort of redundan
y will result if we do so.

Answer:

The primary key of a weak entity set
an be inferred from its relationship with

the strong entity set. If we add primary-key attributes to the weak entity set, they

will be present in both the entity set, and the relationship set and they have to

be the same. Hen
e there will be redundan
y.

48 Chapter 6 Database Design using the E-R Model

6.8 Consider a relation su
h as se

ourse, generated from a many-to-one relation-

ship set se

ourse. Do the primary and foreign key
onstraints
reated on the

relation enfor
e the many-to-one
ardinality
onstraint? Explain why.

Answer:

In this example, the primary key of se
tion
onsists of the attributes (
ourse id,

se
 id, semester, year), whi
h would also be the primary key of se

ourse, while

ourse id is a foreign key from se

ourse referen
ing
ourse. These
onstraints

ensure that a parti
ular se
tion
an only
orrespond to one
ourse, and thus the

many-to-one
ardinality
onstraint is enfor
ed.

However, these
onstraints
annot enfor
e a total parti
ipation
onstraint, sin
e

a
ourse or a se
tion may not parti
ipate in the se

ourse relationship.

6.9 Suppose the advisor relationship set were one-to-one. What extra
onstraints

are required on the relation advisor to ensure that the one-to-one
ardinality

onstraint is enfor
ed?

Answer:

In addition to de
laring s ID as primary key for advisor, we de
lare i ID as a

superkey for advisor (this
an be done in SQL using the unique
onstraint on

i ID).

6.10 Consider a many-to-one relationship R between entity sets A and B. Suppose

the relation
reated from R is
ombined with the relation
reated from A. In

SQL, attributes parti
ipating in a foreign key
onstraint
an be null. Explain

how a
onstraint on total parti
ipation of A in R
an be enfor
ed using not null

onstraints in SQL.

Answer:

The foreign-key attribute in R
orresponding to the primary key of B should be

made not null. This ensures that no tuple of A whi
h is not related to any entry

in B under R
an
ome in R. For example, say a is a tuple in A whi
h has no

orresponding entry in R. This means when R is
ombined with A, it would have

a foreign-key attribute
orresponding to B as null, whi
h is not allowed.

6.11 In SQL, foreign key
onstraints
an referen
e only the primary key attributes of

the referen
ed relation or other attributes de
lared to be a superkey using the

unique
onstraint. As a result, total parti
ipation
onstraints on a many-to-many

relationship set (or on the �one� side of a one-to-many relationship set)
annot

be enfor
ed on the relations
reated from the relationship set, using primary

key, foreign key, and not null
onstraints on the relations.

a. Explain why.

b. Explain how to enfor
e total parti
ipation
onstraints using
omplex

he
k
onstraints or assertions (see Se
tion 4.4.8). (Unfortunately, these

features are not supported on any widely used database
urrently.)

Pra
ti
e Exer
ise 49

Answer:

a. For the many-to-many
ase, the relationship set must be represented as a

separate relation that
annot be
ombined with either parti
ipating entity.

Now, there is no way in SQL to ensure that a primary-key value o

urring

in an entity E1 also o

urs in a many-to-many relationship R, sin
e the

orresponding attribute in R is not unique; SQL foreign keys
an only

refer to the primary key or some other unique key.

Similarly, for the one-to-many
ase, there is no way to ensure that an at-

tribute on the one side appears in the relation
orresponding to the many

side, for the same reason.

b. Let the relation R be many-to-one from entity A to entity B with a and b as

their respe
tive primary keys. We
an put the following
he
k
onstraints

on the "one" side relation B:

onstraint total part
he
k (b in (sele
t b from A));

set
onstraints total part deferred;

Note that the
onstraint should be set to deferred so that it is only
he
ked

at the end of the transa
tion; otherwise if we insert a b value in B before

it is inserted in A, the
onstraint would be violated, and if we insert it in

A before we insert it in B, a foreign-key violation would o

ur.

6.12 Consider the following latti
e stru
ture of generalization and spe
ialization (at-

tributes not shown).

X Y

A B C

For entity sets A, B, and C, explain how attributes are inherited from the higher-

level entity sets X and Y . Dis
uss how to handle a
ase where an attribute of X

has the same name as some attribute of Y .

Answer:

A inherits all the attributes of X, plus it may de�ne its own attributes. Similarly,

C inherits all the attributes of Y plus its own attributes. B inherits the attributes

of both X and Y. If there is some attribute name whi
h belongs to both X and Y,

it may be referred to in B by the quali�ed name X.name or Y.name.

6.13 An E-R diagram usually models the state of an enterprise at a point in time.

Suppose we wish to tra
k temporal
hanges, that is,
hanges to data over time.

For example, Zhang may have been a student between September 2015 and

50 Chapter 6 Database Design using the E-R Model

May 2019, while Shankar may have had instru
tor Einstein as advisor fromMay

2018 to De
ember 2018, and again from June 2019 to January 2020. Similarly,

attribute values of an entity or relationship, su
h as title and
redits of
ourse,

salary, or even name of instru
tor, and tot
red of student,
an
hange over time.

One way to model temporal
hanges is as follows: We de�ne a new data type

alled valid time, whi
h is a time interval, or a set of time intervals. We then

asso
iate a valid time attribute with ea
h entity and relationship, re
ording the

time periods during whi
h the entity or relationship is valid. The end time of an

interval
an be in�nity; for example, if Shankar be
ame a student in September

2018, and is still a student, we
an represent the end time of the valid time in-

terval as in�nity for the Shankar entity. Similarly, we model attributes that
an

hange over time as a set of values, ea
h with its own valid time.

a. Draw an E-R diagram with the student and instru
tor entities, and the ad-

visor relationship, with the above extensions to tra
k temporal
hanges.

b. Convert the E-R diagram dis
ussed above into a set of relations.

It should be
lear that the set of relations generated is rather
omplex, leading

to di	
ulties in tasks su
h as writing queries in SQL. An alternative approa
h,

whi
h is used more widely, is to ignore temporal
hanges when designing the

E-R model (in parti
ular, temporal
hanges to attribute values), and to modify

the relations generated from the E-R model to tra
k temporal
hanges.

Answer:

.

a. The E-R diagram is shown in Figure 6.106.

The primary key attributes student id and instru
tor id are assumed to be

immutable, that is, they are not allowed to
hange with time. All other

attributes are assumed to potentially
hange with time.

Note that the diagram uses multivalued
omposite attributes su
h as

valid times or name, with subattributes su
h as start time or value. The

value attribute is a subattribute of several attributes su
h as name, tot
red

and salary, and refers to the name, total
redits or salary during a parti
-

ular interval of time.

b. The generated relations are as shown below. Ea
h multivalued attribute

has turned into a relation, with the relation name
onsisting of the orig-

inal relation name
on
atenated with the name of the multivalued at-

tribute. The relation
orresponding to the entity has only the primary-key

attribute, and this is needed to ensure uniqueness.

Pra
ti
e Exer
ise 51

student(student id)

student valid times(student id, start time, end time)

student name(student id, value, start time, end time

student dept name(student id, value, start time, end time

student tot
red(student id, value, start time, end time

instru
tor(instru
tor id)

instru
tor valid times(instru
tor id, start time, end time)

instru
tor name(instru
tor id, value, start time, end time

instru
tor dept name(instru
tor id, value, start time, end time

instru
tor salary(instru
tor id, value, start time, end time

advisor(student id, instru
tor id, start time, end time)

The primary keys shown are derived dire
tly from the E-R diagram. If we

add the additional
onstraint that time intervals
annot overlap (or even

the weaker
ondition that one start time
annot have two end times), we

an remove the end time from all the above primary keys.

student

student_id

{valid_times

 start_time

 end_time

}

{name

 value

 start_time

 end_time

}

{dept_name

 value

 start_time

 end_time

}

{tot_cred

 value

 start_time

 end_time

}

instructor

instructor_id

{valid_times

 start_time

 end_time

}

{name

 value

 start_time

 end_time

}

{dept_name

 value

 start_time

 end_time

}

{salary

 value

 start_time

 end_time

}

advisor

{valid_time

 start_time

 end_time

}

Figure 6.106 E-R diagram for Exer
ise 6.13

CHAP T E R

7

Relational Database Design

Pra
ti
e Exer
ises

7.1 Suppose that we de
ompose the s
hema R = (A, B, C, D, E) into

(A, B, C)

(A, D, E).

Show that this de
omposition is a lossless de
omposition if the following set F

of fun
tional dependen
ies holds:

A� BC

CD� E

B � D

E � A

Answer:

A de
omposition ^R

1

, R

2

` is a lossless de
omposition if R

1

ã R

2

� R

1

or

R

1

ã R

2

� R

2

. Let R

1

= (A, B, C), R

2

= (A, D, E), and R

1

ã R

2

= A.

Sin
e A is a
andidate key (see Pra
ti
e Exer
ise 7.6), R

1

ã R

2

� R

1

.

7.2 List all nontrivial fun
tional dependen
ies satis�ed by the relation of Figure

7.18.

A B C

a

1

b

1

1

a

1

b

1

2

a

2

b

1

1

a

2

b

1

3

Figure 7.17 Relation of Exer
ise 7.2.

53

54 Chapter 7 Relational Database Design

Answer:

The nontrivial fun
tional dependen
ies are: A � B and C � B, and a

dependen
y they logi
ally imply: AC � B. C does not fun
tionally determine

A be
ause the �rst and third tuples have the same C but di�erent A values. The

same tuples also show B does not fun
tionally determine A. Likewise, A does not

fun
tionally determine C be
ause the �rst two tuples have the same A value and

di�erent C values. The same tuples also show B does not fun
tionally determine

C. There are 19 trivial fun
tional dependen
ies of the form � � �, where

� Ó �.

7.3 Explain how fun
tional dependen
ies
an be used to indi
ate the following:

�

A one-to-one relationship set exists between entity sets student and instru
-

tor.

�

Amany-to-one relationship set exists between entity sets student and instru
-

tor.

Answer:

Let Pk(r) denote the primary key attribute of relation r.

�

The fun
tional dependen
ies Pk(student) � Pk (instru
tor) and

Pk(instru
tor) � Pk(student) indi
ate a one-to-one relationship be-

ause any two tuples with the same value for student must have the same

value for instru
tor, and any two tuples agreeing on instru
tor must have

the same value for student.

�

The fun
tional dependen
y Pk(student)� Pk(instru
tor) indi
ates a many-

to-one relationship sin
e any student value whi
h is repeated will have the

same instru
tor value, but many student values may have the same instru
-

tor value.

7.4 UseArmstrong's axioms to prove the soundness of the union rule. (Hint: Use the

augmentation rule to show that, if �� �, then �� ��. Apply the augmentation

rule again, using ��
, and then apply the transitivity rule.)

Answer:

To prove that:

if � � � and � �
 then � � �

Following the hint, we derive:

Pra
ti
e Exer
ises 55

� � � given

�� � �� augmentation rule

� � �� union of identi
al sets

� �
 given

�� �
 � augmentation rule

� � �
 transitivity rule and set union
ommutativity

7.5 Use Armstrong's axioms to prove the soundness of the pseudotransitivity rule.

Answer:

Proof using Armstrong's axioms of the pseudotransitivity rule:

if � � � and
 � � Æ, then �
 � Æ.

� � � given

�
 �
 � augmentation rule and set union
ommutativity

 � � Æ given

�
 � Æ transitivity rule

7.6 Compute the
losure of the following set F of fun
tional dependen
ies for rela-

tion s
hema R = (A, B, C, D, E).

A� BC

CD� E

B� D

E � A

List the
andidate keys for R.

Answer:

Note: It is not reasonable to expe
t students to enumerate all of F

+

. Some short-

hand representation of the result should be a

eptable as long as the nontrivial

members of F

+

are found.

Starting with A � BC, we
an
on
lude: A � B and A � C.

Sin
e A � B and B � D, A � D (de
omposition,

transitive)

Sin
e A � CD and CD � E, A � E (union, de
om-

position, transi-

tive)

Sin
e A � A, we have (re�exive)

A � ABCDE from the above steps (union)

Sin
e E � A, E � ABCDE (transitive)

Sin
e CD � E, CD � ABCDE (transitive)

Sin
e B � D and BC � CD, BC �

ABCDE

(augmentative,

transitive)

Also, C � C, D � D, BD � D, et
.

56 Chapter 7 Relational Database Design

Therefore, any fun
tional dependen
y with A, E, BC, or CD on the left-hand

side of the arrow is in F

+

, no matter whi
h other attributes appear in the FD.

Allow * to represent any set of attributes in R, then F

+

is BD � B, BD � D,

C � C, D � D, BD � BD, B � D, B � B, B � BD, and all FDs of the

form A <� �, BC <� �, CD <� �, E <� � where � is any subset of

^A, B, C, D, E`. The
andidate keys are A, BC, CD, and E.

7.7 Using the fun
tional dependen
ies of Exer
ise 7.6,
ompute the
anoni
al

over F

.

Answer:

The given set of FDs F is:-

A� BC

CD� E

B� D

E� A

The left side of ea
h FD in F is unique. Also, none of the attributes in the left

side or right side of any of the FDs is extraneous. Therefore the
anoni
al
over

F

is equal to F .

7.8 Consider the algorithm in Figure 7.19 to
ompute �

+

. Show that this algorithm

is more e	
ient than the one presented in Figure 7.8 (Se
tion 7.4.2) and that it

omputes �

+

orre
tly.

Answer:

The algorithm is
orre
t be
ause:

�

If A is added to result then there is a proof that � � A. To see this, observe

that � � � trivially, so � is
orre
tly part of result. If A Ì � is added to

result, there must be some FD � �
 su
h that A Ë
 and � is already a

subset of result. (Otherwise fd
ount would be nonzero and the if
ondition

would be false.) A full proof
an be given by indu
tion on the depth of

re
ursion for an exe
ution of addin, but su
h a proof
an be expe
ted only

from students with a good mathemati
al ba
kground.

�

If A Ë �

+

, then A is eventually added to result. We prove this by indu
tion

on the length of the proof of � � A using Armstrong's axioms. First observe

that if pro
edure addin is
alled with some argument �, all the attributes in

� will be added to result. Also if a parti
ular FD's fd
ount be
omes 0, all

the attributes in its tail will de�nitely be added to result. The base
ase of

the proof, A Ë � Ù A Ë �

+

, is obviously true be
ause the �rst
all to

addin has the argument �. The indu
tive hypothesis is that if � � A
an

be proved in n steps or less, then A Ë result: If there is a proof in n + 1

Pra
ti
e Exer
ises 57

result := ç;

/* fd
ount is an array whose ith element
ontains the number

of attributes on the left side of the ith FD that are

not yet known to be in �

+

*/

for i := 1 to ðF ð do

begin

let � �
 denote the ith FD;

fd
ount [i℄ := ð�ð;

end

/* appears is an array with one entry for ea
h attribute. The

entry for attribute A is a list of integers. Ea
h integer

i on the list indi
ates that A appears on the left side

of the ith FD */

for ea
h attribute A do

begin

appears [A℄ := NIL;

for i := 1 to ðF ð do

begin

let � �
 denote the ith FD;

if A Ë � then add i to appears [A℄;

end

end

addin (�);

return (result);

pro
edure addin (�);

for ea
h attribute A in � do

begin

if A Ì result then

begin

result := result ä ^A`;

for ea
h element i of appears[A℄ do

begin

fd
ount [i℄ := fd
ount [i℄ * 1;

if fd
ount [i℄ := 0 then

begin

let � �
 denote the ith FD;

addin (
);

end

end

end

end

Figure 7.18 An algorithm to
ompute �

+

.

58 Chapter 7 Relational Database Design

steps that � � A, then the last step was an appli
ation of either re�exivity,

augmentation, or transitivity on a fa
t � � � proved in n or fewer steps.

If re�exivity or augmentation was used in the (n + 1)

st

step, A must have

been in result by the end of the n

th

step itself. Otherwise, by the indu
tive

hypothesis, � Ó result. Therefore, the dependen
y used in proving � �
,

A Ë
, will have fd
ount set to 0 by the end of the n

th

step. Hen
e A will

be added to result.

To see that this algorithm is more e	
ient than the one presented in the
hap-

ter, note that we s
an ea
h FD on
e in the main program. The resulting array

appears has size proportional to the size of the given FDs. The re
ursive
alls

to addin result in pro
essing linear in the size of appears. Hen
e the algorithm

has time
omplexity whi
h is linear in the size of the given FDs. On the other

hand, the algorithm given in the text has quadrati
 time
omplexity, as it may

perform the loop as many times as the number of FDs, in ea
h loop s
anning

all of them on
e.

7.9 Given the database s
hema R(A,B,C), and a relation r on the s
hema R, write

an SQL query to test whether the fun
tional dependen
y B � C holds on re-

lation r. Also write an SQL assertion that enfor
es the fun
tional dependen
y.

Assume that no null values are present. (Although part of the SQL standard,

su
h assertions are not supported by any database implementation
urrently.)

Answer:

a. The query is given below. Its result is non-empty if and only if B � C

does not hold on r.

sele
t B

from r

group by B

having
ount(distin
t C) > 1

b.

reate assertion b to

he
k

(not exists

(sele
t B

from r

group by B

having
ount(distin
t C) > 1

)

)

Pra
ti
e Exer
ises 59

7.10 Our dis
ussion of lossless de
omposition impli
itly assumed that attributes on

the left-hand side of a fun
tional dependen
y
annot take on null values. What

ould go wrong on de
omposition, if this property is violated?

Answer:

The natural join operator is de�ned in terms of the Cartesian produ
t and the

sele
tion operator. The sele
tion operator gives unknown for any query on a null

value. Thus, the natural join ex
ludes all tuples with null values on the
ommon

attributes from the �nal result. Thus, the de
omposition would be lossy (in a

manner di�erent from the usual
ase of lossy de
omposition), if null values

o

ur in the left-hand side of the fun
tional dependen
y used to de
ompose the

relation. (Null values in attributes that o

ur only in the right-hand side of the

fun
tional dependen
y do not
ause any problems.)

7.11 In the BCNF de
omposition algorithm, suppose you use a fun
tional depen-

den
y � � � to de
ompose a relation s
hema r(�, �,
) into r

1

(�, �) and r

2

(�,
).

a. What primary and foreign-key
onstraint do you expe
t to hold on the

de
omposed relations?

b. Give an example of an in
onsisten
y that
an arise due to an erroneous

update, if the foreign-key
onstraint were not enfor
ed on the de
omposed

relations above.

. When a relation s
hema is de
omposed into 3NF using the algorithm in

Se
tion 7.5.2, what primary and foreign-key dependen
ies would you ex-

pe
t to hold on the de
omposed s
hema?

Answer:

a. � should be a primary key for r

1

, and � should be the foreign key from r

2

,

referen
ing r

1

.

b. If the foreign key
onstraint is not enfor
ed, then a deletion of a tuple from

r

1

would not have a
orresponding deletion from the referen
ing tuples in

r

2

. Instead of deleting a tuple from r, this would amount to simply setting

the value of � to null in some tuples.

. For every s
hema r

i

(��) added to the de
omposition be
ause of a fun
-

tional dependen
y � � �, � should be made the primary key. Also, a

andidate key
 for the original relation is lo
ated in some newly
reated

relation r

k

and is a primary key for that relation.

Foreign-key
onstraints are
reated as follows: for ea
h relation r

i

reated

above, if the primary key attributes of r

i

also o

ur in any other relation

r

j

, then a foreign-key
onstraint is
reated from those attributes in r

j

, ref-

eren
ing (the primary key of) r

i

.

60 Chapter 7 Relational Database Design

7.12 Let R

1

, R

2

,§ ,R

n

be a de
omposition of s
hema U. Let u(U) be a relation, and

let r

i

= �

R

I

(u). Show that

u Ó r

1

Æ r

2

Æ 5 Æ r

n

Answer:

Consider some tuple t in u.

Note that r

i

= �

R

i

(u) implies that t[R

i

℄ Ë r

i

, 1 f i f n. Thus,

t[R

1

℄ Æ t[R

2

℄ Æ § Æ t[R

n

℄ Ë r

1

Æ r

2

Æ § Æ r

n

By the de�nition of natural join,

t[R

1

℄ Æ t[R

2

℄ Æ § Æ t[R

n

℄ = �

�

(�

�

(t[R

1

℄ � t[R

2

℄ � § � t[R

n

℄))

where the
ondition � is satis�ed if values of attributes with the same name

in a tuple are equal and where � = U . The Cartesian produ
t of single tuples

generates one tuple. The sele
tion pro
ess is satis�ed be
ause all attributes with

the same name must have the same value sin
e they are proje
tions from the

same tuple. Finally, the proje
tion
lause removes dupli
ate attribute names.

By the de�nition of de
omposition, U = R

1

ä R

2

ä § ä R

n

, whi
h means

that all attributes of t are in t[R

1

℄ Æ t[R

2

℄ Æ § Æ t[R

n

℄. That is, t is equal to

the result of this join.

Sin
e t is any arbitrary tuple in u,

u Ó r

1

Æ r

2

Æ § Æ r

n

7.13 Show that the de
omposition in Exer
ise 7.1 is not a dependen
y-preserving

de
omposition.

Answer:

Therer are several fun
tional dependen
ies that are not preserved. We dis
uss

one example here. The dependen
y B � D is not preserved. F

1

, the restri
tion

of F to (A, B, C) is A � ABC, A � AB, A � AC, A � BC, A � B,

A � C, A � A, B � B, C � C, AB � AC, AB � ABC, AB � BC,

AB � AB, AB � A, AB � B, AB � C, AC (same as AB), BC (same as AB),

ABC (same as AB). F

2

, the restri
tion of F to (C, D, E) is A � ADE, A � AD,

A � AE, A � DE, A � A, A � D, A � E, D � D, E (same as A), AD,

AE, DE, ADE (same as A). (F

1

ä F

2

)

+

is easily seen not to
ontain B � D

sin
e the only FD in F

1

ä F

2

with B as the left side is B � B, a trivial FD.

Thus B � D is not preserved.

A simpler argument is as follows: F

1

ontains no dependen
ies with D on

the right side of the arrow. F

2

ontains no dependen
ies with B on the left side

of the arrow. Therefore for B � D to be preserved there must be a fun
tional

dependen
y B � � in F

+

1

and � � D in F

+

2

(so B � D would follow by

Pra
ti
e Exer
ises 61

transitivity). Sin
e the interse
tion of the two s
hemes is A, � = A. Observe that

B � A is not in F

+

1

sin
e B

+

= BD.

7.14 Show that there
an be more than one
anoni
al
over for a given set of fun
-

tional dependen
ies, using the following set of dependen
ies:

X � YZ, Y � XZ, and Z � XY .

Answer: Consider the �rst fun
tional dependen
y. We
an verify that Z is

extraneous in X � YZ and delete it. Subsequently, we
an similarly
he
k that

X is extraneous in Y � XZ and delete it, and that Y is extraneous in Z � XY

and delete it, resulting in a
anoni
al
over X � Y , Y � Z,Z � X .

However, we
an also verify that Y is extraneous in X � YZ and delete it.

Subsequently, we
an similarly
he
k that Z is extraneous in Y � XZ and delete

it, and that X is extraneous in Z � XY and delete it, resulting in a
anoni
al

over X � Z, Y � X ,Z � Y .

7.15 The algorithm to generate a
anoni
al
over only removes one extraneous at-

tribute at a time. Use the fun
tional dependen
ies from Exer
ise 7.14 to show

what
an go wrong if two attributes inferred to be extraneous are deleted at

on
e.

Answer: In X � YZ, one
an infer that Y is extraneous, and so is Z. But

deleting both will result in a set of dependen
ies from whi
h X � YZ
an no

longer be inferred. Deleting Y results in Z no longer being extraneous, and delet-

ing Z results in Y no longer being extraneous. The
anoni
al
over algorithm

only deletes one attribute at a time, avoiding the problem that
ould o

ur if

two attributes are deleted at the same time.

7.16 Show that it is possible to ensure that a dependen
y-preserving de
omposition

into 3NF is a lossless de
omposition by guaranteeing that at least one s
hema

ontains a
andidate key for the s
hema being de
omposed. (Hint: Show that

the join of all the proje
tions onto the s
hemas of the de
omposition
annot

have more tuples than the original relation.)

Answer:

Let F be a set of fun
tional dependen
ies that hold on a s
hema R. Let � =

^R

1

,R

2

,§ ,R

n

` be a dependen
y-preserving 3NF de
omposition of R. Let X be

a
andidate key for R.

Consider a legal instan
e r ofR. Let j = �

X

(r) Æ �

R

1

(r) Æ �

R

2

(r)§ Æ �

R

n

(r).

We want to prove that r = j.

We
laim that if t

1

and t

2

are two tuples in j su
h that t

1

[X ℄ = t

2

[X ℄, then

t

1

= t

2

. To prove this
laim, we use the following indu
tive argument:

Let F

¨

= F

1

ä F

2

ä§ ä F

n

, where ea
h F

i

is the restri
tion of F to the s
hema

R

i

in �. Consider the use of the algorithm given in Figure 7.8 to
ompute the

62 Chapter 7 Relational Database Design

losure of X under F

¨

. We use indu
tion on the number of times that the for

loop in this algorithm is exe
uted.

�

Basis: In the �rst step of the algorithm, result is assigned to X , and hen
e

given that t

1

[X ℄ = t

2

[X ℄, we know that t

1

[result℄ = t

2

[result℄ is true.

�

Indu
tion Step: Let t

1

[result℄ = t

2

[result℄ be true at the end of the k th

exe
ution of the for loop.

Suppose the fun
tional dependen
y
onsidered in the k+1 th exe
ution

of the for loop is � �
, and that � Ó result. � Ó result implies that

t

1

[�℄ = t

2

[�℄ is true. The fa
ts that � �
 holds for some attribute set

R

i

in � and that t

1

[R

i

℄ and t

2

[R

i

℄ are in �

R

i

(r) imply that t

1

[
℄ = t

2

[
℄ is

also true. Sin
e
 is now added to result by the algorithm, we know that

t

1

[result℄ = t

2

[result℄ is true at the end of the k + 1 th exe
ution of the for

loop.

Sin
e � is dependen
y-preserving and X is a key for R, all attributes in R are in

result when the algorithm terminates. Thus, t

1

[R℄ = t

2

[R℄ is true, that is, t

1

= t

2

� as
laimed earlier.

Our
laim implies that the size of �

X

(j) is equal to the size of j. Note also

that �

X

(j) = �

X

(r) = r (sin
e X is a key for R). Thus we have proved that the

size of j equals that of r. Using the result of Exer
ise 7.12, we know that r Ó j.

Hen
e we
on
lude that r = j.

Note that sin
e X is trivially in 3NF, � ä ^X` is a dependen
y-preserving

lossless de
omposition into 3NF.

7.17 Give an example of a relation s
hema R

¨

and set F

¨

of fun
tional dependen-

ies su
h that there are at least three distin
t lossless de
ompositions of R

¨

into

BCNF.

Answer:

Given the relation R

¨

= (A, B, C, D) the set of fun
tional dependen
ies F

¨

=

A � B, C � D, B � C allows three distin
t BCNF de
ompositions.

R

1

= ^(A, B), (C, D), (B, C)`

is in BCNF as is

R

2

= ^(A, B), (C, D), (A, C)`

R

3

= ^(B, C), (A, D), (A, B)`

7.18 Let a prime attribute be one that appears in at least one
andidate key. Let � and

� be sets of attributes su
h that � � � holds, but �� � does not hold. Let A be

Pra
ti
e Exer
ises 63

an attribute that is not in �, is not in �, and for whi
h � � A holds. We say that

A is transitively dependent on �. We
an restate the de�nition of 3NF as follows:

A relation s
hema R is in 3NF with respe
t to a set F of fun
tional dependen
ies

if there are no nonprime attributes A in R for whi
h A is transitively dependent

on a key for R. Show that this new de�nition is equivalent to the original one.

Answer:

Suppose R is in 3NF a

ording to the textbook de�nition. We show that it is in

3NF a

ording to the de�nition in the exer
ise. Let A be a nonprime attribute

in R that is transitively dependent on a key � for R. Then there exists � Ó R

su
h that � � A, � � �, A Ì �, A Ì �, and � � � does not hold. But

then � � A violates the textbook de�nition of 3NF sin
e

�

A Ì � implies � � A is nontrivial

�

Sin
e � � � does not hold, � is not a superkey

�

A is not any
andidate key, sin
e A is nonprime

Now we show that if R is in 3NF a

ording to the exer
ise de�nition, it is in

3NF a

ording to the textbook de�nition. Suppose R is not in 3NF a

ording

to the the textbook de�nition. Then there is an FD � � � that fails all three

onditions. Thus

�

� � � is nontrivial.

�

� is not a superkey for R.

�

Some A in � * � is not in any
andidate key.

This implies that A is nonprime and � � A. Let
 be a
andidate key for R.

Then
 � �, � �
 does not hold (sin
e � is not a superkey), A Ì �, and

A Ì
 (sin
e A is nonprime). Thus A is transitively dependent on
, violating

the exer
ise de�nition.

7.19 A fun
tional dependen
y � � � is
alled a partial dependen
y if there is a

proper subset
 of � su
h that
� �; we say that � is partially dependent on �. A

relation s
hema R is in se
ond normal form (2NF) if ea
h attribute A in Rmeets

one of the following
riteria:

�

It appears in a
andidate key.

�

It is not partially dependent on a
andidate key.

Show that every 3NF s
hema is in 2NF. (Hint: Show that every partial depen-

den
y is a transitive dependen
y.)

Answer:

Referring to the de�nitions in Exer
ise 7.18, a relation s
hema R is said to be in

3NF if there is no nonprime attribute A in R for whi
h A is transitively dependent

on a key for R.

64 Chapter 7 Relational Database Design

We
an also rewrite the de�nition of 2NF given here as:

�A relation s
hema R is in 2NF if no nonprime attribute A is partially dependent

on any
andidate key for R.�

To prove that every 3NF s
hema is in 2NF, it su	
es to show that if a non-

prime attribute A is partially dependent on a
andidate key �, then A is also

transitively dependent on the key �.

Let A be a nonprime attribute in R. Let � be a
andidate key for R. Suppose

A is partially dependent on �.

�

From the de�nition of a partial dependen
y, we know that for some proper

subset � of �, �� A.

�

Sin
e � Ï �, � � �. Also, �� � does not hold, sin
e � is a
andidate key.

�

Finally, sin
e A is nonprime, it
annot be in either � or �.

Thus we
on
lude that � � A is a transitive dependen
y. Hen
e we have proved

that every 3NF s
hema is also in 2NF.

7.20 Give an example of a relation s
hema R and a set of dependen
ies su
h that R

is in BCNF but is not in 4NF.

Answer:

There are, of
ourse, an in�nite number of su
h examples. We show the simplest

one here.

Let R be the s
hema (A, B, C) with the only nontrivial dependen
y being A��

B

	Database Design using the E-R Model
	Exercises

