
CHAP T E R

1

Introdution

Pratie Exerises

1.1 This hapter has desribed several major advantages of a database system. What

are two disadvantages?

Answer:

Two disadvantages assoiated with database systems are listed below.

a. Setup of the database system requires more knowledge, money, skills, and

time.

b. The omplexity of the database may result in poor performane.

1.2 List �ve ways in whih the type delaration system of a language suh as Java

or C++ di�ers from the data de�nition language used in a database.

Answer:

a. Exeuting an ation in the DDL results in the reation of an objet in the

database; in ontrast, a programming language type delaration is simply

an abstration used in the program.

b. Database DDLs allow onsisteny onstraints to be spei�ed, whih pro-

gramming language type systems generally do not allow. These inlude

domain onstraints and referential integrity onstraints.

. Database DDLs support authorization, giving di�erent aess rights to

di�erent users. Programming language type systems do not provide suh

protetion (at best, they protet attributes in a lass from being aessed

by methods in another lass).

d. Programming language type systems are usually muh riher than the SQL

type system. Most databases support only basi types suh as di�erent

types of numbers and strings, although some databases do support some

omplex types suh as arrays and objets.

1

2 Chapter 1 Introdution

e. A database DDL is foused on speifying types of attributes of relations;

in ontrast, a programming language allows objets and olletions of ob-

jets to be reated.

1.3 List six major steps that you would take in setting up a database for a partiular

enterprise.

Answer:

Six major steps in setting up a database for a partiular enterprise are:

�

De�ne the high-level requirements of the enterprise (this step generates a

doument known as the system requirements spei�ation.)

�

De�ne a model ontaining all appropriate types of data and data relation-

ships.

�

De�ne the integrity onstraints on the data.

�

De�ne the physial level.

�

For eah known problem to be solved on a regular basis (e.g., tasks to be

arried out by lerks or web users), de�ne a user interfae to arry out the

task, and write the neessary appliation programs to implement the user

interfae.

�

Create/initialize the database.

1.4 Suppose you want to build a video site similar to YouTube. Consider eah of the

points listed in Setion 1.2 as disadvantages of keeping data in a �le-proessing

system. Disuss the relevane of eah of these points to the storage of atual

video data, and to metadata about the video, suh as title, the user who uploaded

it, tags, and whih users viewed it.

Answer:

�

Data redundany and inonsisteny. This would be relevant to metadata to

some extent, although not to the atual video data, whih are not updated.

There are very few relationships here, and none of them an lead to redun-

dany.

�

Di	ulty in aessing data. If video data are only aessed through a few

prede�ned interfaes, as is done in video sharing sites today, this will not

be a problem. However, if an organization needs to �nd video data based

on spei� searh onditions (beyond simple keyword queries), if metadata

were stored in �les it would be hard to �nd relevant data without writing

appliation programs. Using a database would be important for the task of

�nding data.

�

Data isolation. Sine data are not usually updated, but instead newly re-

ated, data isolation is not a major issue. Even the task of keeping trak of

Pratie Exerises 3

who has viewed what videos is (oneptually) append only, again making

isolation not a major issue. However, if authorization is added, there may

be some issues of onurrent updates to authorization information.

�

Integrity problems. It seems unlikely there are signi�ant integrity on-

straints in this appliation, exept for primary keys. If the data are dis-

tributed, there may be issues in enforing primary key onstraints. Integrity

problems are probably not a major issue.

�

Atomiity problems. When a video is uploaded, metadata about the video

and the video should be added atomially, otherwise there would be an

inonsisteny in the data. An underlying reovery mehanism would be

required to ensure atomiity in the event of failures.

�

Conurrent-aess anomalies. Sine data are not updated, onurrent aess

anomalies would be unlikely to our.

�

Seurity problems. These would be an issue if the system supported autho-

rization.

1.5 Keyword queries used in web searh are quite di�erent from database queries.

List key di�erenes between the two, in terms of the way the queries are spei�ed

and in terms of what is the result of a query.

Answer:

Queries used in the web are spei�ed by providing a list of keywords with no spe-

i� syntax. The result is typially an ordered list of URLs, along with snippets

of information about the ontent of the URLs. In ontrast, database queries

have a spei� syntax allowing omplex queries to be spei�ed. And in the rela-

tional world the result of a query is always a table.

CHAP T E R

2

Introdution to the Relational

Model

Pratie Exerises

2.1 Consider the employee database of Figure 2.17. What are the appropriate pri-

mary keys?

Answer:

The appropriate primary keys are shown below:

employee (person name, street, ity)

works (person name, ompany name, salary)

ompany (ompany name, ity)

2.2 Consider the foreign-key onstraint from the dept name attribute of instrutor to

the department relation. Give examples of inserts and deletes to these relations

that an ause a violation of the foreign-key onstraint.

Answer:

�

Inserting a tuple:

(10111, Ostrom, Eonomis, 110000)

employee (ID, person name, street, ity)

works (ID, ompany name, salary)

ompany (ompany name, ity)

Figure 2.17 Employee database.

5

6 Chapter 2 Introdution to the Relational Model

into the instrutor table, where the department table does not have the de-

partment Eonomis, would violate the foreign-key onstraint.

�

Deleting the tuple:

(Biology, Watson, 90000)

from the department table, where at least one student or instrutor tuple

has dept name as Biology, would violate the foreign-key onstraint.

2.3 Consider the time slot relation. Given that a partiular time slot an meet more

than one in a week, explain why day and start time are part of the primary key

of this relation, while end time is not.

Answer:

The attributes day and start time are part of the primary key sine a partiular

lass will most likely meet on several di�erent days and may even meet more

than one in a day. However, end time is not part of the primary key sine a

partiular lass that starts at a partiular time on a partiular day annot end at

more than one time.

2.4 In the instane of instrutor shown in Figure 2.1, no two instrutors have the

same name. From this, an we onlude that name an be used as a superkey

(or primary key) of instrutor?

Answer:

No. For this possible instane of the instrutor table the names are unique, but

in general this may not always be the ase (unless the university has a rule that

two instrutors annot have the same name, whih is a rather unlikey senario).

2.5 What is the result of �rst performing the Cartesian produt of student and advi-

sor, and then performing a seletion operation on the result with the prediate

s id = ID? (Using the symboli notation of relational algebra, this query an be

written as �

s id=ID

(student � advisor).)

Answer:

The result attributes inlude all attribute values of student followed by all at-

tributes of advisor. The tuples in the result are as follows: For eah student who

has an advisor, the result has a row ontaining that student's attributes, followed

by an s id attribute idential to the student's ID attribute, followed by the i id

attribute ontaining the ID of the students advisor.

Students who do not have an advisor will not appear in the result. A student

who has more than one advisor will appear a orresponding number of times

in the result.

2.6 Consider the employee database of Figure 2.17. Give an expression in the rela-

tional algebra to express eah of the following queries:

a. Find the name of eah employee who lives in ity �Miami�.

Pratie Exerises 7

branh(branh name, branh ity, assets)

ustomer (ID, ustomer name, ustomer street, ustomer ity)

loan (loan number, branh name, amount)

borrower (ID, loan number)

aount (aount number, branh name, balane)

depositor (ID, aount number)

Figure 2.18 Bank database.

b. Find the name of eah employee whose salary is greater than $100000.

. Find the name of eah employee who lives in �Miami� and whose salary

is greater than $100000.

Answer:

a. �

person name

(�

ity= �Miami�

(employee))

b. �

person name

(�

salary> 100000

(employee Æ works))

. �

person name

(�

ity= �Miami�á salary>100000

(employee Æ works))

2.7 Consider the bank database of Figure 2.18. Give an expression in the relational

algebra for eah of the following queries:

a. Find the name of eah branh loated in �Chiago�.

b. Find the ID of eah borrower who has a loan in branh �Downtown�.

Answer:

a. �

branh name

(�

branh ity= �Chiago�

(branh))

b. �

ID

(�

branh name= �Downtown�

(borrower Æ

borrower:loan number=loan:loan number

loan)).

2.8 Consider the employee database of Figure 2.17. Give an expression in the rela-

tional algebra to express eah of the following queries:

a. Find the ID and name of eah employee who does not work for �BigBank�.

b. Find the ID and name of eah employee who earns at least as muh as

every employee in the database.

Answer:

a. To �nd employees who do not work for BigBank, we �rst �nd all those

who do work for BigBank. Those are exatly the employees not part of the

8 Chapter 2 Introdution to the Relational Model

desired result. We then use set di�erene to �nd the set of all employees

minus those employees that should not be in the result.

�

ID,person name

(employee)*

�

ID,person name

(employee Æ

employee:ID=works:ID

(�

ompany name=``BigBank

¨¨

(works)))

b. We use the same approah as in part a by �rst �nding those employess

who do not earn the highest salary, or, said di�erently, for whom some

other employee earns more. Sine this involves omparing two employee

salary values, we need to referene the employee relation twie and there-

fore use renaming.

�

ID,person name

(employee)*

�

A:ID,A:person name

(�

A

(employee) Æ

A:salary<B:salary

�

B

(employee))

2.9 The division operator of relational algebra, ���, is de�ned as follows. Let r(R)

and s(S) be relations, and let S Ó R; that is, every attribute of shema S is

also in shema R. Given a tuple t, let t[S℄ denote the projetion of tuple t on

the attributes in S. Then r � s is a relation on shema R * S (that is, on the

shema ontaining all attributes of shema R that are not in shema S). A tuple

t is in r � s if and only if both of two onditions hold:

�

t is in �

R*S

(r)

�

For every tuple t

s

in s, there is a tuple t

r

in r satisfying both of the following:

a. t

r

[S℄ = t

s

[S℄

b. t

r

[R * S℄ = t

Given the above de�nition:

a. Write a relational algebra expression using the division operator to �nd

the IDs of all students who have taken all Comp. Si. ourses. (Hint:

projet takes to just ID and ourse id, and generate the set of all Comp.

Si. ourse ids using a selet expression, before doing the division.)

b. Show how to write the above query in relational algebra, without using

division. (By doing so, you would have shown how to de�ne the division

operation using the other relational algebra operations.)

Answer:

a. �

ID

(�

ID,ourse id

(takes) � �

ourse id

(�

dept name='Comp. Si'

(ourse))

b. The required expression is as follows:

Pratie Exerises 9

r } �

ID,ourse id

(takes)

s } �

ourse id

(�

dept name='Comp. Si'

(ourse))

�

ID

(takes) * �

ID

((�

ID

(takes) � s) * r)

In general, let r(R) and s(S) be given, with S Ó R. Then we an express

the division operation using basi relational algebra operations as follows:

r � s = �

R*S

(r) * �

R*S

((�

R*S

(r) � s) * �

R*S,S

(r))

To see that this expression is true, we observe that �

R*S

(r) gives us all

tuples t that satisfy the �rst ondition of the de�nition of division. The

expression on the right side of the set di�erene operator

�

R*S

((�

R*S

(r) � s) * �

R*S,S

(r))

serves to eliminate those tuples that fail to satisfy the seond ondition of

the de�nition of division. Let us see how it does so. Consider�

R*S

(r) � s.

This relation is on shema R, and pairs every tuple in �

R*S

(r) with every

tuple in s. The expression �

R*S,S

(r) merely reorders the attributes of r.

Thus, (�

R*S

(r) � s) * �

R*S,S

(r) gives us those pairs of tuples from

�

R*S

(r) and s that do not appear in r. If a tuple t

j

is in

�

R*S

((�

R*S

(r) � s) * �

R*S,S

(r))

then there is some tuple t

s

in s that does not ombine with tuple t

j

to form

a tuple in r. Thus, t

j

holds a value for attributes R * S that does not appear

in r � s. It is these values that we eliminate from �

R*S

(r).

CHAP T E R

3

Introdution to SQL

Pratie Exerises

3.1 Write the following queries in SQL, using the university shema. (We suggest

you atually run these queries on a database, using the sample data that we

provide on the web site of the book, db-book.om. Instrutions for setting up

a database, and loading sample data, are provided on the above web site.)

a. Find the titles of ourses in the Comp. Si. department that have 3 redits.

b. Find the IDs of all students who were taught by an instrutor named Ein-

stein; make sure there are no dupliates in the result.

. Find the highest salary of any instrutor.

d. Find all instrutors earning the highest salary (there may be more than

one with the same salary).

e. Find the enrollment of eah setion that was o�ered in Fall 2017.

f. Find the maximum enrollment, aross all setions, in Fall 2017.

g. Find the setions that had the maximum enrollment in Fall 2017.

Answer:

a. Find the titles of ourses in the Comp. Si. department that have 3 redits.

selet title

from ourse

where dept name = 'Comp. Si.' and redits = 3

b. Find the IDs of all students who were taught by an instrutor named Ein-

stein; make sure there are no dupliates in the result.

This query an be answered in several di�erent ways. One way is as fol-

lows.

11

db-book.com

12 Chapter 3 Introdution to SQL

selet distint takes.ID

from takes, instrutor, teahes

where takes.ourse id = teahes.ourse id and

takes.se id = teahes.se id and

takes.semester = teahes.semester and

takes.year = teahes.year and

teahes.id = instrutor.id and

instrutor.name = 'Einstein'

. Find the highest salary of any instrutor.

selet max(salary)

from instrutor

d. Find all instrutors earning the highest salary (there may be more than

one with the same salary).

selet ID, name

from instrutor

where salary = (selet max(salary) from instrutor)

e. Find the enrollment of eah setion that was o�ered in Fall 2017.

selet ourse id, se id,

(selet ount(ID)

from takes

where takes.year = setion.year

and takes.semester = setion.semester

and takes.ourse id = setion.ourse id

and takes.se id = setion.se id)

as enrollment

from setion

where semester = 'Fall'

and year = 2017

Note that if the result of the subquery is empty, the aggregate funtion

ount returns a value of 0.

One way of writing the query might appear to be:

Pratie Exerises 13

selet takes.ourse id, takes.se id, ount(ID)

from setion, takes

where takes.ourse id = setion.ourse id

and takes.se id = setion.se id

and takes.semester = setion.semester

and takes.year = setion.year

and takes.semester = 'Fall'

and takes.year = 2017

group by takes.ourse id, takes.se id

But note that if a setion does not have any students taking it, it would

not appear in the result. One way of ensuring suh a setion appears with

a ount of 0 is to use the outer join operation, overed in Chapter 4.

f. Find the maximum enrollment, aross all setions, in Fall 2017.

One way of writing this query is as follows:

selet max(enrollment)

from (selet ount(ID) as enrollment

from setion, takes

where takes.year = setion.year

and takes.semester = setion.semester

and takes.ourse id = setion.ourse id

and takes.se id = setion.se id

and takes.semester = 'Fall'

and takes.year = 2017

group by takes.ourse id, takes.se id)

As an alternative to using a nested subquery in the from lause, it is pos-

sible to use a with lause, as illustrated in the answer to the next part of

this question.

A subtle issue in the above query is that if no setion had any enroll-

ment, the answer would be empty, not 0. We an use the alternative using

a subquery, from the previous part of this question, to ensure the ount is

0 in this ase.

g. Find the setions that had the maximum enrollment in Fall 2017.

The following answer uses a with lause, simplifying the query.

14 Chapter 3 Introdution to SQL

with se enrollment as (

selet takes.ourse id, takes.se id, ount(ID) as enrollment

from setion, takes

where takes.year = setion.year

and takes.semester = setion.semester

and takes.ourse id = setion.ourse id

and takes.se id = setion.se id

and takes.semester = 'Fall'

and takes.year = 2017

group by takes.ourse id, takes.se id)

selet ourse id, se id

from se enrollment

where enrollment = (selet max(enrollment) from se enrollment)

It is also possible to write the query without the with lause, but the sub-

query to �nd enrollment would get repeated twie in the query.

While not inorret to add distint in the ount, it is not neessary in light

of the primary key onstraint on takes.

3.2 Suppose you are given a relation grade points(grade, points) that provides a on-

version from letter grades in the takes relation to numeri sores; for example,

an �A� grade ould be spei�ed to orrespond to 4 points, an �A*� to 3.7 points,

a �B+� to 3.3 points, a �B� to 3 points, and so on. The grade points earned by a

student for a ourse o�ering (setion) is de�ned as the number of redits for the

ourse multiplied by the numeri points for the grade that the student reeived.

Given the preeding relation, and our university shema, write eah of the

following queries in SQL. You may assume for simpliity that no takes tuple has

the null value for grade.

a. Find the total grade points earned by the student with ID �12345�, aross

all ourses taken by the student.

b. Find the grade point average (GPA) for the above student, that is, the total

grade points divided by the total redits for the assoiated ourses.

. Find the ID and the grade-point average of eah student.

d. Now reonsider your answers to the earlier parts of this exerise under

the assumption that some grades might be null. Explain whether your

solutions still work and, if not, provide versions that handle nulls properly.

Answer:

a. Find the total grade-points earned by the student with ID �12345�, aross

all ourses taken by the student.

Pratie Exerises 15

selet sum(redits * points)

from takes, ourse, grade points

where takes.grade = grade points.grade

and takes.ourse id = ourse.ourse id

and ID = �12345�

In the above query, a student who has not taken any ourse would not

have any tuples, whereas we would expet to get 0 as the answer. One way

of �xing this problem is to use the outer join operation, whih we study

later in Chapter 4. Another way to ensure that we get 0 as the answer is

via the following query:

(selet sum(redits * points)

from takes, ourse, grade points

where takes.grade = grade points.grade

and takes.ourse id = ourse.ourse id

and ID= �12345�)

union

(selet 0

from student

where ID = �12345� and

not exists (selet * from takes where ID = �12345�))

b. Find the grade point average (GPA) for the above student, that is, the total

grade-points divided by the total redits for the assoiated ourses.

selet sum(redits * points)/sum(redits) as GPA

from takes, ourse, grade points

where takes.grade = grade points.grade

and takes.ourse id = ourse.ourse id

and ID= �12345�

As before, a student who has not taken any ourse would not appear in

the above result; we an ensure that suh a student appears in the result by

using themodi�ed query from the previous part of this question. However,

an additional issue in this ase is that the sum of redits would also be 0,

resulting in a divide-by-zero ondition. In fat, the only meaningful way

of de�ning the GPA in this ase is to de�ne it as null. We an ensure that

suh a student appears in the result with a nullGPA by adding the following

union lause to the above query.

union

(selet null as GPA

from student

where ID = �12345� and

not exists (selet * from takes where ID = �12345�))

16 Chapter 3 Introdution to SQL

. Find the ID and the grade-point average of eah student.

selet ID, sum(redits * points)/sum(redits) as GPA

from takes, ourse, grade points

where takes.grade = grade points.grade

and takes.ourse id = ourse.ourse id

group by ID

Again, to handle students who have not taken any ourse, we would have

to add the following union lause:

union

(selet ID, null as GPA

from student

where not exists (selet * from takes where takes.ID = student.ID))

d. Now reonsider your answers to the earlier parts of this exerise under

the assumption that some grades might be null. Explain whether your

solutions still work and, if not, provide versions that handle nulls properly.

The queries listed above all inlude a test of equality on grade between

grade points and takes. Thus, for any takes tuple with a null grade, that

student's ourse would be eliminated from the rest of the omputation

of the result. As a result, the redits of suh ourses would be eliminated

also, and thus the queries would return the orret answer even if some

grades are null.

3.3 Write the following inserts, deletes, or updates in SQL, using the university

shema.

a. Inrease the salary of eah instrutor in the Comp. Si. department by

10%.

b. Delete all ourses that have never been o�ered (i.e., do not our in the

setion relation).

. Insert every student whose tot red attribute is greater than 100 as an in-

strutor in the same department, with a salary of $10,000.

Answer:

a. Inrease the salary of eah instrutor in the Comp. Si. department by

10%.

update instrutor

set salary = salary * 1.10

where dept name = �Comp. Si.�

b. Delete all ourses that have never been o�ered (that is, do not our in

the setion relation).

Pratie Exerises 17

person (driver id, name, address)

ar (liense plate, model, year)

aident (report number, year, loation)

owns (driver id, liense plate)

partiipated (report number, liense plate, driver id, damage amount)

Figure 3.17 Insurane database

delete from ourse

where ourse id not in

(selet ourse id from setion)

. Insert every student whose tot red attribute is greater than 100 as an in-

strutor in the same department, with a salary of $10,000.

insert into instrutor

selet ID, name, dept name, 10000

from student

where tot red > 100

3.4 Consider the insurane database of Figure 3.17, where the primary keys are

underlined. Construt the following SQL queries for this relational database.

a. Find the total number of people who owned ars that were involved in

aidents in 2017.

b. Delete all year-2010 ars belonging to the person whose ID is �12345�.

Answer:

a. Find the total number of people who owned ars that were involved in

aidents in 2017.

Note: This is not the same as the total number of aidents in 2017. We

must ount people with several aidents only one. Furthermore, note

that the question asks for owners, and it might be that the owner of the

ar was not the driver atually involved in the aident.

selet ount (distint person.driver id)

from aident, partiipated, person, owns

where aident.report number = partiipated.report number

and owns.driver id = person.driver id

and owns.liense plate = partiipated.liense plate

and year = 2017

18 Chapter 3 Introdution to SQL

b. Delete all year-2010 ars belonging to the person whose ID is �12345�.

delete ar

where year = 2010 and liense plate in

(selet liense plate

from owns o

where o.driver id = �12345�)

Note: The owns, aident and partiipated reords assoiated with the

deleted ars still exist.

3.5 Suppose that we have a relation marks(ID, sore) and we wish to assign grades

to students based on the sore as follows: grade F if sore < 40, grade C if 40

f sore < 60, grade B if 60 f sore < 80, and grade A if 80 f sore. Write SQL

queries to do the following:

a. Display the grade for eah student, based on the marks relation.

b. Find the number of students with eah grade.

Answer:

a. Display the grade for eah student, based on the marks relation.

selet ID,

ase

when sore < 40 then 'F'

when sore < 60 then 'C'

when sore < 80 then 'B'

else 'A'

end

from marks

b. Find the number of students with eah grade.

Pratie Exerises 19

with grades as

(

selet ID,

ase

when sore < 40 then 'F'

when sore < 60 then 'C'

when sore < 80 then 'B'

else 'A'

end as grade

from marks

)

selet grade, ount(ID)

from grades

group by grade

As an alternative, the with lause an be removed, and instead the de�ni-

tion of grades an be made a subquery of the main query.

3.6 The SQL like operator is ase sensitive (in most systems), but the lower() fun-

tion on strings an be used to perform ase-insensitive mathing. To show how,

write a query that �nds departments whose names ontain the string �si� as a

substring, regardless of the ase.

Answer:

selet dept name

from department

where lower(dept name) like '%si%'

3.7 Consider the SQL query

selet p.a1

from p, r1, r2

where p.a1 = r1.a1 or p.a1 = r2.a1

Under what onditions does the preeding query selet values of p:a1 that are

either in r1 or in r2? Examine arefully the ases where either r1 or r2 may be

empty.

Answer:

The query selets those values of p.a1 that are equal to some value of r1.a1 or

r2.a1 if and only if both r1 and r2 are non-empty. If one or both of r1 and r2 are

empty, the Cartesian produt of p, r1 and r2 is empty, hene the result of the

query is empty. If p itself is empty, the result is empty.

3.8 Consider the bank database of Figure 3.18, where the primary keys are under-

lined. Construt the following SQL queries for this relational database.

20 Chapter 3 Introdution to SQL

branh(branh name, branh ity, assets)

ustomer (ID, ustomer name, ustomer street, ustomer ity)

loan (loan number, branh name, amount)

borrower (ID, loan number)

aount (aount number, branh name, balane)

depositor (ID, aount number)

Figure 3.18 Banking database.

a. Find the ID of eah ustomer of the bank who has an aount but not a

loan.

b. Find the ID of eah ustomer who lives on the same street and in the same

ity as ustomer �12345�.

. Find the name of eah branh that has at least one ustomer who has an

aount in the bank and who lives in �Harrison�.

Answer:

a. Find the ID of eah ustomer of the bank who has an aount but not a

loan.

(selet ID

from depositor)

exept

(selet ID

from borrower)

b. Find the ID of eah ustomer who lives on the same street and in the same

ity as ustomer �12345�.

selet F.ID

from ustomer as F, ustomer as S

where F.ustomer street = S.ustomer street

and F.ustomer ity = S.ustomer ity

and S.ustomer id = �12345�

. Find the name of eah branh that has at least one ustomer who has an

aount in the bank and who lives in �Harrison�.

Pratie Exerises 21

selet distint branh name

from aount, depositor, ustomer

where ustomer.id = depositor.id

and depositor.aount number = aount.aount number

and ustomer ity = 'Harrison'

3.9 Consider the relational database of Figure 3.19, where the primary keys are

underlined. Give an expression in SQL for eah of the following queries.

a. Find the ID, name, and ity of residene of eah employee who works for

�First Bank Corporation�.

b. Find the ID, name, and ity of residene of eah employee who works for

�First Bank Corporation� and earns more than $10000.

. Find the ID of eah employee who does not work for �First Bank Corpo-

ration�.

d. Find the ID of eah employee who earns more than every employee of

�Small Bank Corporation�.

e. Assume that ompanies may be loated in several ities. Find the name

of eah ompany that is loated in every ity in whih �Small Bank Cor-

poration� is loated.

f. Find the name of the ompany that has the most employees (or ompa-

nies, in the ase where there is a tie for the most).

g. Find the name of eah ompany whose employees earn a higher salary,

on average, than the average salary at �First Bank Corporation�.

Answer:

a. Find the ID, name, and ity of residene of eah employee who works for

�First Bank Corporation�.

employee (ID, person name, street, ity)

works (ID, ompany name, salary)

ompany (ompany name, ity)

manages (ID, manager id)

Figure 3.19 Employee database.

22 Chapter 3 Introdution to SQL

selet e.ID, e.person name, ity

from employee as e, works as w

where w.ompany name = �First Bank Corporation� and

w.ID = e.ID

b. Find the ID, name, and ity of residene of eah employee who works for

�First Bank Corporation� and earns more than $10000.

selet *

from employee

where ID in

(selet ID

from works

where ompany name = �First Bank Corporation� and salary > 10000)

This ould be written also in the style of the answer to part a.

. Find the ID of eah employee who does not work for �First Bank Corpo-

ration�.

selet ID

from works

where ompany name <> �First Bank Corporation�

If one allows people to appear in employee without appearing also in

works, the solution is slightly more ompliated. An outer join as dis-

ussed in Chapter 4 ould be used as well.

selet ID

from employee

where ID not in

(selet ID

from works

where ompany name = �First Bank Corporation�)

d. Find the ID of eah employee who earns more than every employee of

�Small Bank Corporation�.

selet ID

from works

where salary > all

(selet salary

from works

where ompany name = �Small Bank Corporation�)

If peoplemay work for several ompanies and wewish to onsider the total

earnings of eah person, the problem is more omplex. But note that the

Pratie Exerises 23

fat that ID is the primary key for works implies that this annot be the

ase.

e. Assume that ompanies may be loated in several ities. Find the name

of eah ompany that is loated in every ity in whih �Small Bank Cor-

poration� is loated.

selet S.ompany name

from ompany as S

where not exists ((selet ity

from ompany

where ompany name = �Small Bank Corporation�)

exept

(selet ity

from ompany as T

where S.ompany name = T.ompany name))

f. Find the name of the ompany that has the most employees (or ompa-

nies, in the ase where there is a tie for the most).

selet ompany name

from works

group by ompany name

having ount (distint ID) >= all

(selet ount (distint ID)

from works

group by ompany name)

g. Find the name of eah ompany whose employees earn a higher salary,

on average, than the average salary at �First Bank Corporation�.

selet ompany name

from works

group by ompany name

having avg (salary) > (selet avg (salary)

from works

where ompany name = �First Bank Corporation�)

3.10 Consider the relational database of Figure 3.19. Give an expression in SQL for

eah of the following:

a. Modify the database so that the employee whose ID is �12345� now lives

in �Newtown�.

b. Give eah manager of �First Bank Corporation� a 10 perent raise unless

the salary beomes greater than $100000; in suh ases, give only a 3

perent raise.

24 Chapter 3 Introdution to SQL

Answer:

a. Modify the database so that the employee whose ID is �12345� now lives

in �Newtown�.

update employee

set ity = �Newtown�

where ID = �12345�

b. Give eah manager of �First Bank Corporation� a 10 perent raise unless

the salary beomes greater than $100000; in suh ases, give only a 3

perent raise.

update works T

set T.salary = T.salary * 1.03

where T .ID in (selet manager id

from manages)

and T.salary * 1.1 > 100000

and T.ompany name = �First Bank Corporation�

update works T

set T.salary = T.salary * 1.1

where T .ID in (selet manager id

from manages)

and T.salary * 1.1 <= 100000

and T.ompany name = �First Bank Corporation�

The above updates would give di�erent results if exeuted in the opposite

order. We give below a safer solution using the ase statement.

update works T

set T.salary = T.salary <

(ase

when (T.salary < 1:1 > 100000) then 1.03

else 1.1

end)

where T.ID in (selet manager id

from manages) and

T.ompany name = �First Bank Corporation�

CHAP T E R

4

Intermediate SQL

Pratie Exerises

4.1 Consider the following SQL query that seeks to �nd a list of titles of all ourses

taught in Spring 2017 along with the name of the instrutor.

selet name, title

from instrutor natural join teahes natural join setion natural join ourse

where semester = �Spring� and year = 2017

What is wrong with this query?

Answer:

Although the query is syntatially orret, it does not ompute the expeted

answer beause dept name is an attribute of both ourse and instrutor. As a

result of the natural join, results are shown only when an instrutor teahes a

ourse in her or his own department.

4.2 Write the following queries in SQL:

a. Display a list of all instrutors, showing eah instrutor's ID and the num-

ber of setions taught. Make sure to show the number of setions as 0 for

instrutors who have not taught any setion. Your query should use an

outer join, and should not use subqueries.

b. Write the same query as in part a, but using a salar subquery and not

using outer join.

. Display the list of all ourse setions o�ered in Spring 2018, along with

the ID and name of eah instrutor teahing the setion. If a setion has

more than one instrutor, that setion should appear as many times in

the result as it has instrutors. If a setion does not have any instrutor,

it should still appear in the result with the instrutor name set to ���.

25

26 Chapter 4 Intermediate SQL

d. Display the list of all departments, with the total number of instrutors

in eah department, without using subqueries. Make sure to show depart-

ments that have no instrutors, and list those departments with an instru-

tor ount of zero.

Answer:

a. Display a list of all instrutors, showing eah instrutor's ID and the num-

ber of setions taught. Make sure to show the number of setions as 0 for

instrutors who have not taught any setion. Your query should use an

outer join, and should not use subqueries.

selet ID, ount(se id) as Number of setions

from instrutor natural left outer join teahes

group by ID

The above query should not be written using ount(*) sine that would

ount null values also. It ould be written using any attribute from teahes

whih does not our in instrutor, whih would be orret although it

may be onfusing to the reader. (Attributes that our in instrutor would

not be null even if the instrutor has not taught any setion.)

b. Write the same query as above, but using a salar subquery, and not using

outerjoin.

selet ID,

(selet ount(*) as Number of setions

from teahes T where T.id = I.id)

from instrutor I

. Display the list of all ourse setions o�ered in Spring 2018, along with

the ID and name of eah instrutor teahing the setion. If a setion has

more than one instrutor, that setion should appear as many times in

the result as it has instrutors. If a setion does not have any instrutor,

it should still appear in the result with the instrutor name set to ���.

selet ourse id, se id, ID,

deode(name, null, '*', name) as name

from (setion natural left outer join teahes)

natural left outer join instrutor

where semester='Spring' and year= 2018

The query may also be written using the oalese operator, by replaing

deode(..) with oalese(name, '*'). A more omplex version of the query

an be written using union of join result with another query that uses a

subquery to �nd ourses that do not math; refer to Exerise 4.3.

Exerises 27

d. Display the list of all departments, with the total number of instrutors

in eah department, without using subqueries. Make sure to show depart-

ments that have no instrutors, and list those departments with an instru-

tor ount of zero.

selet dept name, ount(ID)

from department natural left outer join instrutor

group by dept name

4.3 Outer join expressions an be omputed in SQL without using the SQL outer

join operation. To illustrate this fat, show how to rewrite eah of the following

SQL queries without using the outer join expression.

a. selet * from student natural left outer join takes

b. selet * from student natural full outer join takes

Answer:

a. selet * from student natural left outer join takes

an be rewritten as:

selet * from student natural join takes

union

selet ID, name, dept name, tot red, null, null, null, null, null

from student S1 where not exists

(selet ID from takes T1 where T1.id = S1.id)

b. selet * from student natural full outer join takes

an be rewritten as:

(selet * from student natural join takes)

union

(selet ID, name, dept name, tot red, null, null, null, null, null

from student S1

where not exists

(selet ID from takes T1 where T1.id = S1.id))

union

(selet ID, null, null, null, ourse id, se id, semester, year, grade

from takes T1

where not exists

(selet ID from student S1 whereT1.id = S1.id))

4.4 Suppose we have three relations r(A, B), s(B, C), and t(B, D), with all attributes

delared as not null.

a. Give instanes of relations r, s, and t suh that in the result of

(r natural left outer join s) natural left outer join t

attribute C has a null value but attribute D has a non-null value.

28 Chapter 4 Intermediate SQL

b. Are there instanes of r, s, and t suh that the result of

r natural left outer join (s natural left outer join t)

has a null value for C but a non-null value for D? Explain why or why not.

Answer:

a. Consider r = (a, b), s = (b1, 1), t = (b, d). The seond expression would

give (a, b, null, d).

b. Sine s natural left outer join t is omputed �rst, the absene of nulls is

both s and t implies that eah tuple of the result an have D null, but C

an never be null.

4.5 Testing SQL queries: To test if a query spei�ed in English has been orretly

written in SQL, the SQL query is typially exeuted on multiple test databases,

and a human heks if the SQL query result on eah test database mathes the

intention of the spei�ation in English.

a. In Setion 4.1.1 we saw an example of an erroneous SQL query whih was

intended to �nd whih ourses had been taught by eah instrutor; the

query omputed the natural join of instrutor, teahes, and ourse, and as

a result it unintentionally equated the dept name attribute of instrutor and

ourse. Give an example of a dataset that would help ath this partiular

error.

b. When reating test databases, it is important to reate tuples in referened

relations that do not have any mathing tuple in the referening relation

for eah foreign key. Explain why, using an example query on the univer-

sity database.

. When reating test databases, it is important to reate tuples with null

values for foreign-key attributes, provided the attribute is nullable (SQL

allows foreign-key attributes to take on null values, as long as they are not

part of the primary key and have not been delared as not null). Explain

why, using an example query on the university database.

Hint: Use the queries from Exerise 4.2.

Answer:

a. Consider the ase where a professor in the Physis department teahes

an Ele. Eng. ourse. Even though there is a valid orresponding entry in

teahes, it is lost in the natural join of instrutor, teahes and ourse, sine

the instrutor's department name does not math the department name

of the ourse. A dataset orresponding to the same is:

Exerises 29

instrutor = {(�12345�,'Gauss', 'Physis', 10000)}

teahes = {(�12345�, 'EE321', 1, 'Spring', 2017)}

ourse = {('EE321', 'Magnetism', 'Ele. Eng.', 6)}

b. The query in question 4.2(a) is a good example for this. Instrutors who

have not taught a single ourse should have number of setions as 0 in

the query result. (Many other similar examples are possible.)

. Consider the query

selet * from teahes natural join instrutor;

In this query, we would lose some setions if teahes.ID is allowed to be

null and suh tuples exist. If, just beause teahes.ID is a foreign key to

instrutor, we did not reate suh a tuple, the error in the above query

would not be deteted.

4.6 Show how to de�ne the view student grades (ID, GPA) giving the grade-point

average of eah student, based on the query in Exerise 3.2; reall that we used

a relation grade points(grade, points) to get the numeri points assoiated with

a letter grade. Make sure your view de�nition orretly handles the ase of null

values for the grade attribute of the takes relation.

Answer:

We should not add redits for ourses with a null grade; further, to orretly

handle the ase where a student has not ompleted any ourse, we should make

sure we don't divide by zero, and should instead return a null value.

We break the query into a subquery that �nds sum of redits and sum of

redit-grade-points, taking null grades into aount The outer query divides the

above to get the average, taking are of divide by zero.

reate view student grades(ID, GPA) as

selet ID, redit points / deode(redit sum, 0, null, redit sum)

from ((selet ID, sum(deode(grade, null, 0, redits)) as redit sum,

sum(deode(grade, null, 0, redits*points)) as redit points

from(takes natural join ourse) natural left outer join grade points

group by ID)

union

selet ID, null, null

from student

where ID not in (selet ID from takes))

The view de�ned above takes are of null grades by onsidering the redit points

to be 0 and not adding the orresponding redits in redit sum.

30 Chapter 4 Intermediate SQL

employee (ID, person name, street, ity)

works (ID, ompany name, salary)

ompany (ompany name, ity)

manages (ID, manager id)

Figure 4.12 Employee database.

The query above ensures that a student who has not taken any ourse with

non-null redits, and has redit sum = 0 gets a GPA of null. This avoids the

division by zero, whih would otherwise have resulted.

In systems that do note support deode, an alternative is the ase onstrut.

Using ase, the solution would be written as follows:

reate view student grades(ID, GPA) as

selet ID, redit points / (ase when redit sum = 0 then null

else redit sum end)

from ((selet ID, sum (ase when grade is null then 0

else redits end) as redit sum,

sum (ase when grade is null then 0

else redits*points end) as redit points

from(takes natural join ourse) natural left outer join grade points

group by ID)

union

selet ID, null, null

from student

where ID not in (selet ID from takes))

An alternative way of writing the above query would be to use student natural

left outer join gpa, in order to onsider students who have not taken any ourse.

4.7 Consider the employee database of Figure 4.12. Give an SQL DDL de�nition

of this database. Identify referential-integrity onstraints that should hold, and

inlude them in the DDL de�nition.

Answer:

Plese see ??.

Note that alternative data types are possible. Other hoies for not null at-

tributes may be aeptable.

4.8 As disussed in Setion 4.4.8, we expet the onstraint �an instrutor annot

teah setions in two di�erent lassrooms in a semester in the same time slot�

to hold.

Exerises 31

reate table employee

(ID numeri(6,0),

person name har(20),

street har(30),

ity har(30),

primary key (ID))

reate table works

(ID numeri(6,0),

ompany name har(15),

salary integer,

primary key (ID),

foreign key (ID) referenes employee,

foreign key (ompany name) referenes ompany)

reate table ompany

(ompany name har(15),

ity har(30),

primary key (ompany name))

reate table manages

(ID numeri(6,0),

manager iid numeri(6,0),

primary key (ID),

foreign key (ID) referenes employee,

foreign key (manager iid) referenes employee(ID))

Figure 4.101 Figure for Exerise 4.7.

a. Write an SQL query that returns all (instrutor, setion) ombinations that

violate this onstraint.

b. Write an SQL assertion to enfore this onstraint (as disussed in Se-

tion 4.4.8, urrent generation database systems do not support suh as-

sertions, although they are part of the SQL standard).

Answer:

32 Chapter 4 Intermediate SQL

a. Query:

selet ID, name, se id, semester, year, time slot id,

ount(distint building, room number)

from instrutor natural join teahes natural join setion

group by (ID, name, se id, semester, year, time slot id)

having ount(building, room number) > 1

Note that the distint keyword is required above. This is to allow two dif-

ferent setions to run onurrently in the same time slot and are taught

by the same instrutor without being reported as a onstraint violation.

b. Query:

reate assertion hek not exists

(selet ID, name, se id, semester, year, time slot id,

ount(distint building, room number)

from instrutor natural join teahes natural join setion

group by (ID, name, se id, semester, year, time slot id)

having ount(building, room number) > 1)

4.9 SQL allows a foreign-key dependeny to refer to the same relation, as in the

following example:

reate table manager

(employee ID har(20),

manager ID har(20),

primary key employee ID,

foreign key (manager ID) referenes manager(employee ID)

on delete asade)

Here, employee ID is a key to the table manager, meaning that eah employee

has at most one manager. The foreign-key lause requires that every manager

also be an employee. Explain exatly what happens when a tuple in the relation

manager is deleted.

Answer:

The tuples of all employees of the manager, at all levels, get deleted as well! This

happens in a series of steps. The initial deletion will trigger deletion of all the

tuples orresponding to diret employees of the manager. These deletions will

in turn ause deletions of seond-level employee tuples, and so on, till all diret

and indiret employee tuples are deleted.

4.10 Given the relations a(name, address, title) and b(name, address, salary), show

how to express a natural full outer join b using the full outer-join operation with

an on ondition rather than using the natural join syntax. This an be done using

the oalese operation. Make sure that the result relation does not ontain two

Exerises 33

opies of the attributes name and address and that the solution is orret even

if some tuples in a and b have null values for attributes name or address.

Answer:

selet oalese(a.name, b.name) as name,

oalese(a.address, b.address) as address,

a.title,

b.salary

from a full outer join b on a.name = b.name and

a.address = b.address

4.11 Operating systems usually o�er only two types of authorization ontrol for data

�les: read aess and write aess.Why do database systems o�er somany kinds

of authorization?

Answer: There are many reasons�we list a few here. One might wish to allow

a user only to append new information without altering old information. One

might wish to allow a user to aess a relation but not hange its shema. One

might wish to limit aess to aspets of the database that are not tehnially

data aess but instead impat resoure utilization, suh as reating an index.

4.12 Suppose a user wants to grant selet aess on a relation to another user. Why

should the user inlude (or not inlude) the lause granted by urrent role in the

grant statement?

Answer: Both ases give the same authorization at the time the statement

is exeuted, but the long-term e�ets di�er. If the grant is done based on the

role, then the grant remains in e�et even if the user who performed the grant

leaves and that user's aount is terminated. Whether that is a good or bad idea

depends on the spei� situation, but usually granting through a role is more

onsistent with a well-run enterprise.

4.13 Consider a view v whose de�nition referenes only relation r.

�

If a user is granted selet authorization on v, does that user need to have

selet authorization on r as well? Why or why not?

�

If a user is granted update authorization on v, does that user need to have

update authorization on r as well? Why or why not?

�

Give an example of an insert operation on a view v to add a tuple t that is

not visible in the result of selet * from v. Explain your answer.

Answer:

�

No. This allows a user to be granted aess to only part of relation r.

34 Chapter 4 Intermediate SQL

�

Yes. A valid update issued using view v must update r for the update to be

stored in the database.

�

Any tuple t ompatible with the shema for v but not satisfying the where

lause in the de�nition of view v is a valid example. One suh example

appears in Setion 4.2.4.

CHAP T E R

6

Database Design using the E-R

Model

Pratie Exerises

6.1 Construt an E-R diagram for a ar insurane ompany whose ustomers own

one or more ars eah. Eah ar has assoiated with it zero to any number of

reorded aidents. Eah insurane poliy overs one or more ars and has one

or more premium payments assoiated with it. Eah payment is for a partiular

period of time, and has an assoiated due date, and the date when the payment

was reeived.

Answer:

One possible E-R diagram is shown in Figure 6.101. Payments are modeled as

weak entities sine they are related to a spei� poliy.

Note that the partiipation of aident in the relationship partiipated is not

total, sine it is possible that there is an aident report where the partiipating

ar is unknown.

6.2 Consider a database that inludes the entity sets student, ourse, and setion

from the university shema and that additionally reords themarks that students

reeive in di�erent exams of di�erent setions.

a. Construt an E-R diagram that models exams as entities and uses a ternary

relationship as part of the design.

b. Construt an alternative E-R diagram that uses only a binary relationship

between student and setion. Make sure that only one relationship exists

between a partiular student and setion pair, yet you an represent the

marks that a student gets in di�erent exams.

Answer:

43

44 Chapter 6 Database Design using the E-R Model

customer

customer_id

name

address

owns

participated

 car

license_no

model

accident

report_id

date

place

payment

policy

policy_idcovers
1 . . 11 . . *

premium_ payment

payment_no

due_date

amount

received_on

Figure 6.101 E-R diagram for a ar insurane ompany.

a. The E-R diagram is shown in Figure 6.102. Note that an alternative is to

model examinations as weak entities related to a setion, rather than as

strong entities. The marks relationship would then be a binary relation-

ship between student and exam, without diretly involving setion.

b. The E-R diagram is shown in Figure 6.103. Note that here we have not

modeled the name, plae, and time of the exam as part of the relationship

attributes. Doing so would result in dupliation of the information, one

per student, and we would not be able to reord this information without

an assoiated student. If we wish to represent this information, we need

to retain a separate entity orresponding to eah exam.

6.3 Design an E-R diagram for keeping trak of the soring statistis of your favorite

sports team. You should store the mathes played, the sores in eah math, the

players in eah math, and individual player soring statistis for eah math.

student

student_id

name

dept_name

tot_cred

course

course_id

title

credits

section

sec_id

semester

year

exam_marks sec_course

exam

exam_id

name

place

time

marks

Figure 6.102 E-R diagram for marks database.

Pratie Exerise 45

student

student_id

name

dept_name

tot_cred

course

course_id

title

credits

section

sec_id

semester

year

exam_marks sec_course

{exam_marks

 exam_id

 marks

}

Figure 6.103 Another E-R diagram for marks database.

Summary statistis should be modeled as derived attributes with an explanation

as to how they are omputed.

Answer:

The diagram is shown in Figure 6.104. The derived attribute season sore is

omputed by summing the sore values assoiated with the player entity set via

the played relationship set.

6.4 Consider an E-R diagram in whih the same entity set appears several times,

with its attributes repeated in more than one ourrene. Why is allowing this

redundany a bad pratie that one should avoid?

Answer:

The reason an entity set would appear more than one is if one is drawing a

diagram that spans multiple pages.

The di�erent ourrenes of an entity set may have di�erent sets of at-

tributes, leading to an inonsistent diagram. Instead, the attributes of an entity

set should be spei�ed only one. All other ourrenes of the entity should

omit attributes. Sine it is not possible to have an entity set without any at-

tributes, an ourrene of an entity set without attributes learly indiates that

the attributes are spei�ed elsewhere.

played

player

player_id

name
age

season_score()

score

match

match_id

date

stadium

opponent

own_score

opp_score

Figure 6.104 E-R diagram for favorite team statistis.

46 Chapter 6 Database Design using the E-R Model

B C

A

CB E

A

RA

RB
RC

(a) (b)

(c)

A

B C

R

RBC

RAB
RAC

Figure 6.29 Representation of a ternary relationship using binary relationships.

6.5 An E-R diagram an be viewed as a graph. What do the following mean in terms

of the struture of an enterprise shema?

a. The graph is disonneted.

b. The graph has a yle.

Answer:

a. If a pair of entity sets are onneted by a path in an E-R diagram, the

entity sets are related, though perhaps indiretly. A disonneted graph

implies that there are pairs of entity sets that are unrelated to eah other.

In an enterprise, we an say that the two parts of the enterprise are om-

pletely independent of eah other. If we split the graph into onneted

omponents, we have, in e�et, a separate database orresponding to eah

independent part of the enterprise.

b. As indiated in the answer to the previous part, a path in the graph be-

tween a pair of entity sets indiates a (possibly indiret) relationship be-

tween the two entity sets. If there is a yle in the graph, then every pair

of entity sets on the yle are related to eah other in at least two distint

ways. If the E-R diagram is ayli, then there is a unique path between

every pair of entity sets and thus a unique relationship between every pair

of entity sets.

Pratie Exerise 47

A

EB C
R

B
R

A
R

C

Figure 6.105 E-R diagram for Exerise Exerise 6.6b.

6.6 Consider the representation of the ternary relationship of Figure 6.29a using

the binary relationships illustrated in Figure 6.29b (attributes not shown).

a. Show a simple instane of E,A,B,C, R

A

,R

B

, and R

C

that annot orre-

spond to any instane of A,B,C, and R.

b. Modify the E-R diagram of Figure 6.29b to introdue onstraints that will

guarantee that any instane of E,A,B,C, R

A

,R

B

, and R

C

that satis�es the

onstraints will orrespond to an instane of A,B,C, and R.

. Modify the preeding translation to handle total partiipation onstraints

on the ternary relationship.

Answer:

a. Let E = ^e

1

, e

2

`, A = ^a

1

, a

2

`, B = ^b

1

`, C = ^

1

`, R

A

=

^(e

1

, a

1

), (e

2

, a

2

)`, R

B

= ^(e

1

, b

1

)`, and R

C

= ^(e

1

,

1

)`. We see that

beause of the tuple (e

2

, a

2

), no instane of A,B,C, and R exists that or-

responds to E, R

A

, R

B

and R

C

.

b. See Figure 6.105. The idea is to introdue total partiipation onstraints

between E and the relationships R

A

, R

B

, R

C

so that every tuple in E has a

relationship with A, B, and C.

. Suppose A totally partiipates in the relationhip R, then introdue a total

partiipation onstraint between A and R

A

, and similarly for B and C.

6.7 A weak entity set an always be made into a strong entity set by adding to its

attributes the primary-key attributes of its identifying entity set. Outline what

sort of redundany will result if we do so.

Answer:

The primary key of a weak entity set an be inferred from its relationship with

the strong entity set. If we add primary-key attributes to the weak entity set, they

will be present in both the entity set, and the relationship set and they have to

be the same. Hene there will be redundany.

48 Chapter 6 Database Design using the E-R Model

6.8 Consider a relation suh as se ourse, generated from a many-to-one relation-

ship set se ourse. Do the primary and foreign key onstraints reated on the

relation enfore the many-to-one ardinality onstraint? Explain why.

Answer:

In this example, the primary key of setion onsists of the attributes (ourse id,

se id, semester, year), whih would also be the primary key of se ourse, while

ourse id is a foreign key from se ourse referening ourse. These onstraints

ensure that a partiular setion an only orrespond to one ourse, and thus the

many-to-one ardinality onstraint is enfored.

However, these onstraints annot enfore a total partiipation onstraint, sine

a ourse or a setion may not partiipate in the se ourse relationship.

6.9 Suppose the advisor relationship set were one-to-one. What extra onstraints

are required on the relation advisor to ensure that the one-to-one ardinality

onstraint is enfored?

Answer:

In addition to delaring s ID as primary key for advisor, we delare i ID as a

superkey for advisor (this an be done in SQL using the unique onstraint on

i ID).

6.10 Consider a many-to-one relationship R between entity sets A and B. Suppose

the relation reated from R is ombined with the relation reated from A. In

SQL, attributes partiipating in a foreign key onstraint an be null. Explain

how a onstraint on total partiipation of A in R an be enfored using not null

onstraints in SQL.

Answer:

The foreign-key attribute in R orresponding to the primary key of B should be

made not null. This ensures that no tuple of A whih is not related to any entry

in B under R an ome in R. For example, say a is a tuple in A whih has no

orresponding entry in R. This means when R is ombined with A, it would have

a foreign-key attribute orresponding to B as null, whih is not allowed.

6.11 In SQL, foreign key onstraints an referene only the primary key attributes of

the referened relation or other attributes delared to be a superkey using the

unique onstraint. As a result, total partiipation onstraints on a many-to-many

relationship set (or on the �one� side of a one-to-many relationship set) annot

be enfored on the relations reated from the relationship set, using primary

key, foreign key, and not null onstraints on the relations.

a. Explain why.

b. Explain how to enfore total partiipation onstraints using omplex

hek onstraints or assertions (see Setion 4.4.8). (Unfortunately, these

features are not supported on any widely used database urrently.)

Pratie Exerise 49

Answer:

a. For the many-to-many ase, the relationship set must be represented as a

separate relation that annot be ombined with either partiipating entity.

Now, there is no way in SQL to ensure that a primary-key value ourring

in an entity E1 also ours in a many-to-many relationship R, sine the

orresponding attribute in R is not unique; SQL foreign keys an only

refer to the primary key or some other unique key.

Similarly, for the one-to-many ase, there is no way to ensure that an at-

tribute on the one side appears in the relation orresponding to the many

side, for the same reason.

b. Let the relation R be many-to-one from entity A to entity B with a and b as

their respetive primary keys. We an put the following hek onstraints

on the "one" side relation B:

onstraint total part hek (b in (selet b from A));

set onstraints total part deferred;

Note that the onstraint should be set to deferred so that it is only heked

at the end of the transation; otherwise if we insert a b value in B before

it is inserted in A, the onstraint would be violated, and if we insert it in

A before we insert it in B, a foreign-key violation would our.

6.12 Consider the following lattie struture of generalization and speialization (at-

tributes not shown).

X Y

A B C

For entity sets A, B, and C, explain how attributes are inherited from the higher-

level entity sets X and Y . Disuss how to handle a ase where an attribute of X

has the same name as some attribute of Y .

Answer:

A inherits all the attributes of X, plus it may de�ne its own attributes. Similarly,

C inherits all the attributes of Y plus its own attributes. B inherits the attributes

of both X and Y. If there is some attribute name whih belongs to both X and Y,

it may be referred to in B by the quali�ed name X.name or Y.name.

6.13 An E-R diagram usually models the state of an enterprise at a point in time.

Suppose we wish to trak temporal hanges, that is, hanges to data over time.

For example, Zhang may have been a student between September 2015 and

50 Chapter 6 Database Design using the E-R Model

May 2019, while Shankar may have had instrutor Einstein as advisor fromMay

2018 to Deember 2018, and again from June 2019 to January 2020. Similarly,

attribute values of an entity or relationship, suh as title and redits of ourse,

salary, or even name of instrutor, and tot red of student, an hange over time.

One way to model temporal hanges is as follows: We de�ne a new data type

alled valid time, whih is a time interval, or a set of time intervals. We then

assoiate a valid time attribute with eah entity and relationship, reording the

time periods during whih the entity or relationship is valid. The end time of an

interval an be in�nity; for example, if Shankar beame a student in September

2018, and is still a student, we an represent the end time of the valid time in-

terval as in�nity for the Shankar entity. Similarly, we model attributes that an

hange over time as a set of values, eah with its own valid time.

a. Draw an E-R diagram with the student and instrutor entities, and the ad-

visor relationship, with the above extensions to trak temporal hanges.

b. Convert the E-R diagram disussed above into a set of relations.

It should be lear that the set of relations generated is rather omplex, leading

to di	ulties in tasks suh as writing queries in SQL. An alternative approah,

whih is used more widely, is to ignore temporal hanges when designing the

E-R model (in partiular, temporal hanges to attribute values), and to modify

the relations generated from the E-R model to trak temporal hanges.

Answer:

.

a. The E-R diagram is shown in Figure 6.106.

The primary key attributes student id and instrutor id are assumed to be

immutable, that is, they are not allowed to hange with time. All other

attributes are assumed to potentially hange with time.

Note that the diagram uses multivalued omposite attributes suh as

valid times or name, with subattributes suh as start time or value. The

value attribute is a subattribute of several attributes suh as name, tot red

and salary, and refers to the name, total redits or salary during a parti-

ular interval of time.

b. The generated relations are as shown below. Eah multivalued attribute

has turned into a relation, with the relation name onsisting of the orig-

inal relation name onatenated with the name of the multivalued at-

tribute. The relation orresponding to the entity has only the primary-key

attribute, and this is needed to ensure uniqueness.

Pratie Exerise 51

student(student id)

student valid times(student id, start time, end time)

student name(student id, value, start time, end time

student dept name(student id, value, start time, end time

student tot red(student id, value, start time, end time

instrutor(instrutor id)

instrutor valid times(instrutor id, start time, end time)

instrutor name(instrutor id, value, start time, end time

instrutor dept name(instrutor id, value, start time, end time

instrutor salary(instrutor id, value, start time, end time

advisor(student id, instrutor id, start time, end time)

The primary keys shown are derived diretly from the E-R diagram. If we

add the additional onstraint that time intervals annot overlap (or even

the weaker ondition that one start time annot have two end times), we

an remove the end time from all the above primary keys.

student

student_id

{valid_times

 start_time

 end_time

}

{name

 value

 start_time

 end_time

}

{dept_name

 value

 start_time

 end_time

}

{tot_cred

 value

 start_time

 end_time

}

instructor

instructor_id

{valid_times

 start_time

 end_time

}

{name

 value

 start_time

 end_time

}

{dept_name

 value

 start_time

 end_time

}

{salary

 value

 start_time

 end_time

}

advisor

{valid_time

 start_time

 end_time

}

Figure 6.106 E-R diagram for Exerise 6.13

CHAP T E R

7

Relational Database Design

Pratie Exerises

7.1 Suppose that we deompose the shema R = (A, B, C, D, E) into

(A, B, C)

(A, D, E).

Show that this deomposition is a lossless deomposition if the following set F

of funtional dependenies holds:

A� BC

CD� E

B � D

E � A

Answer:

A deomposition ^R

1

, R

2

` is a lossless deomposition if R

1

ã R

2

� R

1

or

R

1

ã R

2

� R

2

. Let R

1

= (A, B, C), R

2

= (A, D, E), and R

1

ã R

2

= A.

Sine A is a andidate key (see Pratie Exerise 7.6), R

1

ã R

2

� R

1

.

7.2 List all nontrivial funtional dependenies satis�ed by the relation of Figure

7.18.

A B C

a

1

b

1

1

a

1

b

1

2

a

2

b

1

1

a

2

b

1

3

Figure 7.17 Relation of Exerise 7.2.

53

54 Chapter 7 Relational Database Design

Answer:

The nontrivial funtional dependenies are: A � B and C � B, and a

dependeny they logially imply: AC � B. C does not funtionally determine

A beause the �rst and third tuples have the same C but di�erent A values. The

same tuples also show B does not funtionally determine A. Likewise, A does not

funtionally determine C beause the �rst two tuples have the same A value and

di�erent C values. The same tuples also show B does not funtionally determine

C. There are 19 trivial funtional dependenies of the form � � �, where

� Ó �.

7.3 Explain how funtional dependenies an be used to indiate the following:

�

A one-to-one relationship set exists between entity sets student and instru-

tor.

�

Amany-to-one relationship set exists between entity sets student and instru-

tor.

Answer:

Let Pk(r) denote the primary key attribute of relation r.

�

The funtional dependenies Pk(student) � Pk (instrutor) and

Pk(instrutor) � Pk(student) indiate a one-to-one relationship be-

ause any two tuples with the same value for student must have the same

value for instrutor, and any two tuples agreeing on instrutor must have

the same value for student.

�

The funtional dependeny Pk(student)� Pk(instrutor) indiates a many-

to-one relationship sine any student value whih is repeated will have the

same instrutor value, but many student values may have the same instru-

tor value.

7.4 UseArmstrong's axioms to prove the soundness of the union rule. (Hint: Use the

augmentation rule to show that, if �� �, then �� ��. Apply the augmentation

rule again, using �� , and then apply the transitivity rule.)

Answer:

To prove that:

if � � � and � � then � � �

Following the hint, we derive:

Pratie Exerises 55

� � � given

�� � �� augmentation rule

� � �� union of idential sets

� � given

�� � � augmentation rule

� � � transitivity rule and set union ommutativity

7.5 Use Armstrong's axioms to prove the soundness of the pseudotransitivity rule.

Answer:

Proof using Armstrong's axioms of the pseudotransitivity rule:

if � � � and � � Æ, then � � Æ.

� � � given

� � � augmentation rule and set union ommutativity

 � � Æ given

� � Æ transitivity rule

7.6 Compute the losure of the following set F of funtional dependenies for rela-

tion shema R = (A, B, C, D, E).

A� BC

CD� E

B� D

E � A

List the andidate keys for R.

Answer:

Note: It is not reasonable to expet students to enumerate all of F

+

. Some short-

hand representation of the result should be aeptable as long as the nontrivial

members of F

+

are found.

Starting with A � BC, we an onlude: A � B and A � C.

Sine A � B and B � D, A � D (deomposition,

transitive)

Sine A � CD and CD � E, A � E (union, deom-

position, transi-

tive)

Sine A � A, we have (re�exive)

A � ABCDE from the above steps (union)

Sine E � A, E � ABCDE (transitive)

Sine CD � E, CD � ABCDE (transitive)

Sine B � D and BC � CD, BC �

ABCDE

(augmentative,

transitive)

Also, C � C, D � D, BD � D, et.

56 Chapter 7 Relational Database Design

Therefore, any funtional dependeny with A, E, BC, or CD on the left-hand

side of the arrow is in F

+

, no matter whih other attributes appear in the FD.

Allow * to represent any set of attributes in R, then F

+

is BD � B, BD � D,

C � C, D � D, BD � BD, B � D, B � B, B � BD, and all FDs of the

form A <� �, BC <� �, CD <� �, E <� � where � is any subset of

^A, B, C, D, E`. The andidate keys are A, BC, CD, and E.

7.7 Using the funtional dependenies of Exerise 7.6, ompute the anonial

over F

.

Answer:

The given set of FDs F is:-

A� BC

CD� E

B� D

E� A

The left side of eah FD in F is unique. Also, none of the attributes in the left

side or right side of any of the FDs is extraneous. Therefore the anonial over

F

is equal to F .

7.8 Consider the algorithm in Figure 7.19 to ompute �

+

. Show that this algorithm

is more e	ient than the one presented in Figure 7.8 (Setion 7.4.2) and that it

omputes �

+

orretly.

Answer:

The algorithm is orret beause:

�

If A is added to result then there is a proof that � � A. To see this, observe

that � � � trivially, so � is orretly part of result. If A Ì � is added to

result, there must be some FD � � suh that A Ë and � is already a

subset of result. (Otherwise fdount would be nonzero and the if ondition

would be false.) A full proof an be given by indution on the depth of

reursion for an exeution of addin, but suh a proof an be expeted only

from students with a good mathematial bakground.

�

If A Ë �

+

, then A is eventually added to result. We prove this by indution

on the length of the proof of � � A using Armstrong's axioms. First observe

that if proedure addin is alled with some argument �, all the attributes in

� will be added to result. Also if a partiular FD's fdount beomes 0, all

the attributes in its tail will de�nitely be added to result. The base ase of

the proof, A Ë � Ù A Ë �

+

, is obviously true beause the �rst all to

addin has the argument �. The indutive hypothesis is that if � � A an

be proved in n steps or less, then A Ë result: If there is a proof in n + 1

Pratie Exerises 57

result := ç;

/* fdount is an array whose ith element ontains the number

of attributes on the left side of the ith FD that are

not yet known to be in �

+

*/

for i := 1 to ðF ð do

begin

let � � denote the ith FD;

fdount [i℄ := ð�ð;

end

/* appears is an array with one entry for eah attribute. The

entry for attribute A is a list of integers. Eah integer

i on the list indiates that A appears on the left side

of the ith FD */

for eah attribute A do

begin

appears [A℄ := NIL;

for i := 1 to ðF ð do

begin

let � � denote the ith FD;

if A Ë � then add i to appears [A℄;

end

end

addin (�);

return (result);

proedure addin (�);

for eah attribute A in � do

begin

if A Ì result then

begin

result := result ä ^A`;

for eah element i of appears[A℄ do

begin

fdount [i℄ := fdount [i℄ * 1;

if fdount [i℄ := 0 then

begin

let � � denote the ith FD;

addin ();

end

end

end

end

Figure 7.18 An algorithm to ompute �

+

.

58 Chapter 7 Relational Database Design

steps that � � A, then the last step was an appliation of either re�exivity,

augmentation, or transitivity on a fat � � � proved in n or fewer steps.

If re�exivity or augmentation was used in the (n + 1)

st

step, A must have

been in result by the end of the n

th

step itself. Otherwise, by the indutive

hypothesis, � Ó result. Therefore, the dependeny used in proving � � ,

A Ë , will have fdount set to 0 by the end of the n

th

step. Hene A will

be added to result.

To see that this algorithm is more e	ient than the one presented in the hap-

ter, note that we san eah FD one in the main program. The resulting array

appears has size proportional to the size of the given FDs. The reursive alls

to addin result in proessing linear in the size of appears. Hene the algorithm

has time omplexity whih is linear in the size of the given FDs. On the other

hand, the algorithm given in the text has quadrati time omplexity, as it may

perform the loop as many times as the number of FDs, in eah loop sanning

all of them one.

7.9 Given the database shema R(A,B,C), and a relation r on the shema R, write

an SQL query to test whether the funtional dependeny B � C holds on re-

lation r. Also write an SQL assertion that enfores the funtional dependeny.

Assume that no null values are present. (Although part of the SQL standard,

suh assertions are not supported by any database implementation urrently.)

Answer:

a. The query is given below. Its result is non-empty if and only if B � C

does not hold on r.

selet B

from r

group by B

having ount(distint C) > 1

b.

reate assertion b to hek

(not exists

(selet B

from r

group by B

having ount(distint C) > 1

)

)

Pratie Exerises 59

7.10 Our disussion of lossless deomposition impliitly assumed that attributes on

the left-hand side of a funtional dependeny annot take on null values. What

ould go wrong on deomposition, if this property is violated?

Answer:

The natural join operator is de�ned in terms of the Cartesian produt and the

seletion operator. The seletion operator gives unknown for any query on a null

value. Thus, the natural join exludes all tuples with null values on the ommon

attributes from the �nal result. Thus, the deomposition would be lossy (in a

manner di�erent from the usual ase of lossy deomposition), if null values

our in the left-hand side of the funtional dependeny used to deompose the

relation. (Null values in attributes that our only in the right-hand side of the

funtional dependeny do not ause any problems.)

7.11 In the BCNF deomposition algorithm, suppose you use a funtional depen-

deny � � � to deompose a relation shema r(�, �,) into r

1

(�, �) and r

2

(�,).

a. What primary and foreign-key onstraint do you expet to hold on the

deomposed relations?

b. Give an example of an inonsisteny that an arise due to an erroneous

update, if the foreign-key onstraint were not enfored on the deomposed

relations above.

. When a relation shema is deomposed into 3NF using the algorithm in

Setion 7.5.2, what primary and foreign-key dependenies would you ex-

pet to hold on the deomposed shema?

Answer:

a. � should be a primary key for r

1

, and � should be the foreign key from r

2

,

referening r

1

.

b. If the foreign key onstraint is not enfored, then a deletion of a tuple from

r

1

would not have a orresponding deletion from the referening tuples in

r

2

. Instead of deleting a tuple from r, this would amount to simply setting

the value of � to null in some tuples.

. For every shema r

i

(��) added to the deomposition beause of a fun-

tional dependeny � � �, � should be made the primary key. Also, a

andidate key for the original relation is loated in some newly reated

relation r

k

and is a primary key for that relation.

Foreign-key onstraints are reated as follows: for eah relation r

i

reated

above, if the primary key attributes of r

i

also our in any other relation

r

j

, then a foreign-key onstraint is reated from those attributes in r

j

, ref-

erening (the primary key of) r

i

.

60 Chapter 7 Relational Database Design

7.12 Let R

1

, R

2

,§ ,R

n

be a deomposition of shema U. Let u(U) be a relation, and

let r

i

= �

R

I

(u). Show that

u Ó r

1

Æ r

2

Æ 5 Æ r

n

Answer:

Consider some tuple t in u.

Note that r

i

= �

R

i

(u) implies that t[R

i

℄ Ë r

i

, 1 f i f n. Thus,

t[R

1

℄ Æ t[R

2

℄ Æ § Æ t[R

n

℄ Ë r

1

Æ r

2

Æ § Æ r

n

By the de�nition of natural join,

t[R

1

℄ Æ t[R

2

℄ Æ § Æ t[R

n

℄ = �

�

(�

�

(t[R

1

℄ � t[R

2

℄ � § � t[R

n

℄))

where the ondition � is satis�ed if values of attributes with the same name

in a tuple are equal and where � = U . The Cartesian produt of single tuples

generates one tuple. The seletion proess is satis�ed beause all attributes with

the same name must have the same value sine they are projetions from the

same tuple. Finally, the projetion lause removes dupliate attribute names.

By the de�nition of deomposition, U = R

1

ä R

2

ä § ä R

n

, whih means

that all attributes of t are in t[R

1

℄ Æ t[R

2

℄ Æ § Æ t[R

n

℄. That is, t is equal to

the result of this join.

Sine t is any arbitrary tuple in u,

u Ó r

1

Æ r

2

Æ § Æ r

n

7.13 Show that the deomposition in Exerise 7.1 is not a dependeny-preserving

deomposition.

Answer:

Therer are several funtional dependenies that are not preserved. We disuss

one example here. The dependeny B � D is not preserved. F

1

, the restrition

of F to (A, B, C) is A � ABC, A � AB, A � AC, A � BC, A � B,

A � C, A � A, B � B, C � C, AB � AC, AB � ABC, AB � BC,

AB � AB, AB � A, AB � B, AB � C, AC (same as AB), BC (same as AB),

ABC (same as AB). F

2

, the restrition of F to (C, D, E) is A � ADE, A � AD,

A � AE, A � DE, A � A, A � D, A � E, D � D, E (same as A), AD,

AE, DE, ADE (same as A). (F

1

ä F

2

)

+

is easily seen not to ontain B � D

sine the only FD in F

1

ä F

2

with B as the left side is B � B, a trivial FD.

Thus B � D is not preserved.

A simpler argument is as follows: F

1

ontains no dependenies with D on

the right side of the arrow. F

2

ontains no dependenies with B on the left side

of the arrow. Therefore for B � D to be preserved there must be a funtional

dependeny B � � in F

+

1

and � � D in F

+

2

(so B � D would follow by

Pratie Exerises 61

transitivity). Sine the intersetion of the two shemes is A, � = A. Observe that

B � A is not in F

+

1

sine B

+

= BD.

7.14 Show that there an be more than one anonial over for a given set of fun-

tional dependenies, using the following set of dependenies:

X � YZ, Y � XZ, and Z � XY .

Answer: Consider the �rst funtional dependeny. We an verify that Z is

extraneous in X � YZ and delete it. Subsequently, we an similarly hek that

X is extraneous in Y � XZ and delete it, and that Y is extraneous in Z � XY

and delete it, resulting in a anonial over X � Y , Y � Z,Z � X .

However, we an also verify that Y is extraneous in X � YZ and delete it.

Subsequently, we an similarly hek that Z is extraneous in Y � XZ and delete

it, and that X is extraneous in Z � XY and delete it, resulting in a anonial

over X � Z, Y � X ,Z � Y .

7.15 The algorithm to generate a anonial over only removes one extraneous at-

tribute at a time. Use the funtional dependenies from Exerise 7.14 to show

what an go wrong if two attributes inferred to be extraneous are deleted at

one.

Answer: In X � YZ, one an infer that Y is extraneous, and so is Z. But

deleting both will result in a set of dependenies from whih X � YZ an no

longer be inferred. Deleting Y results in Z no longer being extraneous, and delet-

ing Z results in Y no longer being extraneous. The anonial over algorithm

only deletes one attribute at a time, avoiding the problem that ould our if

two attributes are deleted at the same time.

7.16 Show that it is possible to ensure that a dependeny-preserving deomposition

into 3NF is a lossless deomposition by guaranteeing that at least one shema

ontains a andidate key for the shema being deomposed. (Hint: Show that

the join of all the projetions onto the shemas of the deomposition annot

have more tuples than the original relation.)

Answer:

Let F be a set of funtional dependenies that hold on a shema R. Let � =

^R

1

,R

2

,§ ,R

n

` be a dependeny-preserving 3NF deomposition of R. Let X be

a andidate key for R.

Consider a legal instane r ofR. Let j = �

X

(r) Æ �

R

1

(r) Æ �

R

2

(r)§ Æ �

R

n

(r).

We want to prove that r = j.

We laim that if t

1

and t

2

are two tuples in j suh that t

1

[X ℄ = t

2

[X ℄, then

t

1

= t

2

. To prove this laim, we use the following indutive argument:

Let F

¨

= F

1

ä F

2

ä§ ä F

n

, where eah F

i

is the restrition of F to the shema

R

i

in �. Consider the use of the algorithm given in Figure 7.8 to ompute the

62 Chapter 7 Relational Database Design

losure of X under F

¨

. We use indution on the number of times that the for

loop in this algorithm is exeuted.

�

Basis: In the �rst step of the algorithm, result is assigned to X , and hene

given that t

1

[X ℄ = t

2

[X ℄, we know that t

1

[result℄ = t

2

[result℄ is true.

�

Indution Step: Let t

1

[result℄ = t

2

[result℄ be true at the end of the k th

exeution of the for loop.

Suppose the funtional dependeny onsidered in the k+1 th exeution

of the for loop is � � , and that � Ó result. � Ó result implies that

t

1

[�℄ = t

2

[�℄ is true. The fats that � � holds for some attribute set

R

i

in � and that t

1

[R

i

℄ and t

2

[R

i

℄ are in �

R

i

(r) imply that t

1

[℄ = t

2

[℄ is

also true. Sine is now added to result by the algorithm, we know that

t

1

[result℄ = t

2

[result℄ is true at the end of the k + 1 th exeution of the for

loop.

Sine � is dependeny-preserving and X is a key for R, all attributes in R are in

result when the algorithm terminates. Thus, t

1

[R℄ = t

2

[R℄ is true, that is, t

1

= t

2

� as laimed earlier.

Our laim implies that the size of �

X

(j) is equal to the size of j. Note also

that �

X

(j) = �

X

(r) = r (sine X is a key for R). Thus we have proved that the

size of j equals that of r. Using the result of Exerise 7.12, we know that r Ó j.

Hene we onlude that r = j.

Note that sine X is trivially in 3NF, � ä ^X` is a dependeny-preserving

lossless deomposition into 3NF.

7.17 Give an example of a relation shema R

¨

and set F

¨

of funtional dependen-

ies suh that there are at least three distint lossless deompositions of R

¨

into

BCNF.

Answer:

Given the relation R

¨

= (A, B, C, D) the set of funtional dependenies F

¨

=

A � B, C � D, B � C allows three distint BCNF deompositions.

R

1

= ^(A, B), (C, D), (B, C)`

is in BCNF as is

R

2

= ^(A, B), (C, D), (A, C)`

R

3

= ^(B, C), (A, D), (A, B)`

7.18 Let a prime attribute be one that appears in at least one andidate key. Let � and

� be sets of attributes suh that � � � holds, but �� � does not hold. Let A be

Pratie Exerises 63

an attribute that is not in �, is not in �, and for whih � � A holds. We say that

A is transitively dependent on �. We an restate the de�nition of 3NF as follows:

A relation shema R is in 3NF with respet to a set F of funtional dependenies

if there are no nonprime attributes A in R for whih A is transitively dependent

on a key for R. Show that this new de�nition is equivalent to the original one.

Answer:

Suppose R is in 3NF aording to the textbook de�nition. We show that it is in

3NF aording to the de�nition in the exerise. Let A be a nonprime attribute

in R that is transitively dependent on a key � for R. Then there exists � Ó R

suh that � � A, � � �, A Ì �, A Ì �, and � � � does not hold. But

then � � A violates the textbook de�nition of 3NF sine

�

A Ì � implies � � A is nontrivial

�

Sine � � � does not hold, � is not a superkey

�

A is not any andidate key, sine A is nonprime

Now we show that if R is in 3NF aording to the exerise de�nition, it is in

3NF aording to the textbook de�nition. Suppose R is not in 3NF aording

to the the textbook de�nition. Then there is an FD � � � that fails all three

onditions. Thus

�

� � � is nontrivial.

�

� is not a superkey for R.

�

Some A in � * � is not in any andidate key.

This implies that A is nonprime and � � A. Let be a andidate key for R.

Then � �, � � does not hold (sine � is not a superkey), A Ì �, and

A Ì (sine A is nonprime). Thus A is transitively dependent on , violating

the exerise de�nition.

7.19 A funtional dependeny � � � is alled a partial dependeny if there is a

proper subset of � suh that � �; we say that � is partially dependent on �. A

relation shema R is in seond normal form (2NF) if eah attribute A in Rmeets

one of the following riteria:

�

It appears in a andidate key.

�

It is not partially dependent on a andidate key.

Show that every 3NF shema is in 2NF. (Hint: Show that every partial depen-

deny is a transitive dependeny.)

Answer:

Referring to the de�nitions in Exerise 7.18, a relation shema R is said to be in

3NF if there is no nonprime attribute A in R for whih A is transitively dependent

on a key for R.

64 Chapter 7 Relational Database Design

We an also rewrite the de�nition of 2NF given here as:

�A relation shema R is in 2NF if no nonprime attribute A is partially dependent

on any andidate key for R.�

To prove that every 3NF shema is in 2NF, it su	es to show that if a non-

prime attribute A is partially dependent on a andidate key �, then A is also

transitively dependent on the key �.

Let A be a nonprime attribute in R. Let � be a andidate key for R. Suppose

A is partially dependent on �.

�

From the de�nition of a partial dependeny, we know that for some proper

subset � of �, �� A.

�

Sine � Ï �, � � �. Also, �� � does not hold, sine � is a andidate key.

�

Finally, sine A is nonprime, it annot be in either � or �.

Thus we onlude that � � A is a transitive dependeny. Hene we have proved

that every 3NF shema is also in 2NF.

7.20 Give an example of a relation shema R and a set of dependenies suh that R

is in BCNF but is not in 4NF.

Answer:

There are, of ourse, an in�nite number of suh examples. We show the simplest

one here.

Let R be the shema (A, B, C) with the only nontrivial dependeny being A��

B

	Database Design using the E-R Model
	Exercises

