

S	E	V	E	N	T	H	E	D	I	T	I	O	N

Database	System	Concepts

Abraham	Silberschatz

Henry	F.	Korth

S.	Sudarshan

silberschatz6e_fm_i-ii.indd	Page	i	12/3/09	2:51:50	PM	user

/Users/user/Desktop/Temp	Work/00November_2009/24:11:09/VYN/silberschatz	DATABASE

SYSTEM	CONCEPTS

S	S

E	IVX

E	T

N	H

T	E

H	D

E	I	T

D	I	I	O

T	I	N

O	N

Abraham	Silberschatz

Yale	University

Henry	F.	Korth

Lehigh	University

S.	Sudarshan

Indian	Institute	of	Technology,	Bombay

TM

DATABASE	SYSTEM	CONCEPTS,	SEVENTH	EDITION

Published	by	McGraw-Hill	Education,	2	Penn	Plaza,	New	York,	NY	10121.	Copyright	©	2020	by	McGraw-Hill	Education.	All	rights
reserved.	Printed	in	the	United	States	of	America.	Previous	editions	©	2011,	2006,	and	2002.	No	part	of	this	publication	may	be
reproduced	or	distributed	in	any	form	or	by	any	means,	or	stored	in	a	database	or	retrieval	system,	without	the	prior	written	consent	of
McGraw-Hill	Education,	including,	but	not	limited	to,	in	any	network	or	other	electronic	storage	or	transmission,	or	broadcast	for
distance	learning.

Some	ancillaries,	including	electronic	and	print	components,	may	not	be	available	to	customers	outside	the	United	States.

This	book	is	printed	on	acid-free	paper.

1	2	3	4	5	6	7	8	9	LCR	21	20	19

ISBN	978-0-07-802215-9	(bound	edition)

MHID	0-07-802215-0	(bound	edition)

ISBN	978-1-260-51504-6	(loose-leaf	edition)

MHID	1-260-51504-4	(loose-leaf	edition)

Portfolio	Manager:	Thomas	Scaife	Ph.D.

Product	Developers:	Tina	Bower	&	Megan	Platt

Marketing	Manager:	Shannon	O’Donnell

Content	Project	Managers:	Laura	Bies	&	Sandra	Schnee

Buyer:	Susan	K.	Culbertson

Design:	Egzon	Shaqiri

Content	Licensing	Specialists:	Shawntel	Schmitt	&	Lorraine	Buczek

Cover	Image:	©	Pavel	Nesvadba/Shutterstock

Compositor:	Aptara®,	Inc.

All	credits	appearing	on	page	or	at	the	end	of	the	book	are	considered	to	be	an	extension	of	the	copyright	page.

Library	of	Congress	Cataloging-in-Publication	Data

Names:	Silberschatz,	Abraham,	author.	|	Korth,	Henry	F.,	author.	|	Sudarshan,	S.,	author.

Title:	Database	system	concepts/Abraham	Silberschatz,	Yale	University,	Henry	F.	Korth,	Lehigh	University,	S.	Sudarshan,	Indian	Institute
of	Technology,	Bombay.

Description:	Seventh	edition.	|	New	York,	NY:	McGraw-Hill,	[2020]	|	Includes	bibliographical	references.

Identifiers:	LCCN	2018060474	|	ISBN	9780078022159	(alk.	paper)	|	ISBN	0078022150	(alk.	paper)	Subjects:	LCSH:	Database
management.

Classification:	LCC	QA76.9.D3	S5637	2020	|	DDC	005.74—dc23	LC	record	available	at	https://lccn.loc.gov/2018060474

The	Internet	addresses	listed	in	the	text	were	accurate	at	the	time	of	publication.	The	inclusion	of	a	website	does	not	indicate	an
endorsement	by	the	authors	or	McGraw-Hill	Education,	and	McGraw-Hill	Education	does	not	guarantee	the	accuracy	of	the	information
presented	at	these	sites.

mheducation.com/highered

To	meine	schatzi,	Valerie

her	parents	and	my	dear	friends,	Steve	and	Mary	Anne

and	in	memory	of	my	parents,	Joseph	and	Vera

Avi	Silberschatz

To	my	wife,	Joan

my	children,	Abigail	and	Joseph

my	mother,	Frances

and	in	memory	of	my	father,	Henry

Hank	Korth

To	my	wife,	Sita

my	children,	Madhur	and	Advaith

and	my	mother,	Indira

S.	Sudarshan

About	the	Authors

Abraham	(Avi)	Silberschatz	is	the	Sidney	J.	Weinberg	Professor	of	Computer	Science	at	Yale	University.	Prior	to	coming	to	Yale	in	2003,	he
was	the	vice	president	of	the	Information	Sciences	Research	Center	at	Bell	Labs.	He	previously	held	an	endowed	professorship	at	the
University	of	Texas	at	Austin,	where	he	taught	until	1993.	Silberschatz	is	a	fellow	of	the	ACM,	a	fellow	of	the	IEEE,	and	a	member	of	the
Connecticut	Academy	of	Science	and	Engineering.	He	received	the	2002	IEEE	Taylor	L.	Booth	Education	Award,	the	1998	ACM	Karl	V.
Karlstrom	Outstanding	Educator	Award,	and	the	1997	ACM	SIGMOD	Contribution	Award.	Silberschatz	was	awarded	the	Bell
Laboratories	President’s	Award	three	times,	in	1998,	1999	and	2004.	His	writings	have	appeared	in	numerous	journals,	conferences,
workshops,	and	book	chapters.	He	has	obtained	over	48	patents	and	over	24	grants.	He	is	an	author	of	the	textbook	Operating	System
Concepts.

Henry	F.	(Hank)	Korth	is	a	Professor	of	Computer	Science	and	Engineering	and	co-director	of	the	Computer	Science	and	Business
program	at	Lehigh	University.	Prior	to	joining	Lehigh,	he	was	director	of	Database	Principles	Research	at	Bell	Labs,	a	vice	president	of
Panasonic	Technologies,	an	associate	professor	at	the	University	of	Texas	at	Austin,	and	a	research	staff	member	at	IBM	Research.	Korth
is	a	fellow	of	the	ACM

and	of	the	IEEE	and	a	winner	of	the	10-Year	Award	at	the	VLDB	Conference.	His	numerous	research	publications	span	a	wide	range	of
aspects	of	database	systems,	including	transaction	management	in	parallel	and	distributed	systems,	real-time	systems,	query	processing,
and	the	influence	on	these	areas	from	modern	computing	architectures.

Most	recently,	his	research	has	addressed	issues	in	the	application	of	blockchains	in	enterprise	databases.

S.	Sudarshan	is	currently	the	Subrao	M.	Nilekani	Chair	Professor	at	the	Indian	Institute	of	Technology,	Bombay.	He	received	his	Ph.D.	at
the	University	of	Wisconsin	in	1992,	and	he	was	a	member	of	the	technical	staff	at	Bell	Labs	before	joining	IIT	Bombay.	Sudarshan	is	a
fellow	of	the	ACM.	His	research	spans	several	areas	of	database	systems,	with	a	focus	on	query	processing	and	query	optimization.	His
paper	on	keyword	search	in	databases	published	in	2002	won	the	IEEE	ICDE	Most	Influential	Paper	Award	in	2012,	and	his	work	on
main-memory	databases	received	the	Bell	Laboratories	President’s	Award	in	1999.	His	current	research	areas	include	testing	and
grading	of	SQL	queries,	optimization	of	database	applications	by	rewriting	of	imperative	code,	and	query	optimization	for	parallel
databases.	He	has	published	over	100	papers	and	obtained	15	patents.

Contents

Chapter	1

Introduction

1.1	Database-System	Applications

1

1.7	Database	and	Application	Architecture

21

1.2	Purpose	of	Database	Systems

5

1.8	Database	Users	and	Administrators

24

1.3	View	of	Data

8

1.9	History	of	Database	Systems

25

1.4	Database	Languages

13

1.10	Summary

29

1.5	Database	Design

17

Exercises

31

1.6	Database	Engine

18

Further	Reading

33

PART	ONE

RELATIONAL	LANGUAGES

Chapter	2

Introduction	to	the	Relational	Model

2.1	Structure	of	Relational	Databases

37

2.6	The	Relational	Algebra

48

2.2	Database	Schema

41

2.7	Summary

58

2.3	Keys

43

Exercises

60

2.4	Schema	Diagrams

46

Further	Reading

63

2.5	Relational	Query	Languages

47

Chapter	3

Introduction	to	SQL

3.1	Overview	of	the	SQL	Query	Language

65

3.7	Aggregate	Functions

91

3.2	SQL	Data	Definition

66

3.8	Nested	Subqueries

98

3.3	Basic	Structure	of	SQL	Queries

71

3.9	Modification	of	the	Database

108

3.4	Additional	Basic	Operations

79

3.10	Summary

114

3.5	Set	Operations

85

Exercises

115

3.6	Null	Values

89

Further	Reading

124

vii

viii

Contents

Chapter	4

Intermediate	SQL

4.1	Join	Expressions

125

4.6	Index	Definition	in	SQL

164

4.2	Views

137

4.7	Authorization

165

4.3	Transactions

143

4.8	Summary

173

4.4	Integrity	Constraints

145

Exercises

176

4.5	SQL	Data	Types	and	Schemas

153

Further	Reading

180

Chapter	5

Advanced	SQL

5.1	Accessing	SQL	from	a	Programming

5.5	Advanced	Aggregation	Features

219

Language

183

5.6	Summary

231

5.2	Functions	and	Procedures

198

Exercises

232

5.3	Triggers

206

Further	Reading

238

5.4	Recursive	Queries

213

PART	TWO

DATABASE	DESIGN

Chapter	6

Database	Design	Using	the	E-R	Model

6.1	Overview	of	the	Design	Process

241

6.8	Extended	E-R	Features

271

6.2	The	Entity-Relationship	Model

244

6.9	Entity-Relationship	Design	Issues

279

6.3	Complex	Attributes

249

6.10	Alternative	Notations	for	Modeling

6.4	Mapping	Cardinalities

252

Data

285

6.5	Primary	Key

256

6.11	Other	Aspects	of	Database	Design

291

6.6	Removing	Redundant	Attributes	in	Entity

6.12	Summary

292

Sets

261

Exercises

294

6.7	Reducing	E-R	Diagrams	to	Relational

Further	Reading

300

Schemas

264

Chapter	7

Relational	Database	Design

7.1	Features	of	Good	Relational	Designs

303

7.7	More	Normal	Forms

341

7.2	Decomposition	Using	Functional

7.8	Atomic	Domains	and	First	Normal

Dependencies

308

Form

342

7.3	Normal	Forms

313

7.9	Database-Design	Process

343

7.4	Functional-Dependency	Theory

320

7.10	Modeling	Temporal	Data

347

7.5	Algorithms	for	Decomposition	Using

7.11	Summary

351

Functional	Dependencies

330

Exercises

353

7.6	Decomposition	Using	Multivalued

Further	Reading

360

Dependencies

336

Contents

ix

PART	THREE

APPLICATION	DESIGN	AND

DEVELOPMENT

Chapter	8

Complex	Data	Types

8.1	Semi-structured	Data

365

8.5	Summary

394

8.2	Object	Orientation

376

Exercises

397

8.3	Textual	Data

382

Further	Reading

401

8.4	Spatial	Data

387

Chapter	9

Application	Development

9.1	Application	Programs	and	User

9.7	Application	Performance

434

Interfaces

403

9.8	Application	Security

437

9.2	Web	Fundamentals

405

9.9	Encryption	and	Its	Applications

447

9.3	Servlets

411

9.10	Summary

453

9.4	Alternative	Server-Side	Frameworks

416

Exercises

455

9.5	Client-Side	Code	and	Web	Services

421

Further	Reading

462

9.6	Application	Architectures

429

PART	FOUR

BIG	DATA	ANALYTICS

Chapter	10

Big	Data

10.1	Motivation

467

10.5	Streaming	Data

500

10.2	Big	Data	Storage	Systems

472

10.6	Graph	Databases

508

10.3	The	MapReduce	Paradigm

483

10.7	Summary

511

10.4	Beyond	MapReduce:	Algebraic

Exercises

513

Operations

494

Further	Reading

516

Chapter	11

Data	Analytics

11.1	Overview	of	Analytics

519

11.5	Summary

550

11.2	Data	Warehousing

521

Exercises

552

11.3	Online	Analytical	Processing

527

Further	Reading

555

11.4	Data	Mining

540

x

Contents

PART	FIVE

STORAGE	MANAGEMENT	AND

INDEXING

Chapter	12

Physical	Storage	Systems

12.1	Overview	of	Physical	Storage	Media

559

12.6	Disk-Block	Access

577

12.2	Storage	Interfaces

562

12.7	Summary

580

12.3	Magnetic	Disks

563

Exercises

582

12.4	Flash	Memory

567

Further	Reading

584

12.5	RAID

570

Chapter	13

Data	Storage	Structures

13.1	Database	Storage	Architecture

587

13.7	Storage	Organization	in	Main-Memory

13.2	File	Organization

588

Databases

615

13.3	Organization	of	Records	in	Files

595

13.8	Summary

617

13.4	Data-Dictionary	Storage

602

Exercises

619

13.5	Database	Buffer

604

Further	Reading

621

13.6	Column-Oriented	Storage

611

Chapter	14

Indexing

14.1	Basic	Concepts

623

14.8	Write-Optimized	Index	Structures

665

14.2	Ordered	Indices

625

14.9	Bitmap	Indices

670

14.3	B+-Tree	Index	Files

634

14.10	Indexing	of	Spatial	and	Temporal	Data

672

14.4	B+-Tree	Extensions

650

14.11	Summary

677

14.5	Hash	Indices

658

Exercises

679

14.6	Multiple-Key	Access

661

Further	Reading

683

14.7	Creation	of	Indices

664

PART	SIX

QUERY	PROCESSING	AND

OPTIMIZATION

Chapter	15

Query	Processing

15.1	Overview

689

15.7	Evaluation	of	Expressions

724

15.2	Measures	of	Query	Cost

692

15.8	Query	Processing	in	Memory

731

15.3	Selection	Operation

695

15.9	Summary

734

15.4	Sorting

701

Exercises

736

15.5	Join	Operation

704

Further	Reading

740

15.6	Other	Operations

719

Contents

xi

Chapter	16

Query	Optimization

16.1	Overview

743

16.5	Materialized	Views

778

16.2	Transformation	of	Relational

16.6	Advanced	Topics	in	Query

Expressions

747

Optimization

783

16.3	Estimating	Statistics	of	Expression

16.7	Summary

787

Results

757

Exercises

789

16.4	Choice	of	Evaluation	Plans

766

Further	Reading

794

PART	SEVEN

TRANSACTION	MANAGEMENT

Chapter	17

Transactions

17.1	Transaction	Concept

799

17.8	Transaction	Isolation	Levels

821

17.2	A	Simple	Transaction	Model

801

17.9	Implementation	of	Isolation	Levels

823

17.3	Storage	Structure

804

17.10	Transactions	as	SQL	Statements

826

17.4	Transaction	Atomicity	and	Durability

805

17.11	Summary

828

17.5	Transaction	Isolation

807

Exercises

831

17.6	Serializability

812

Further	Reading

834

17.7	Transaction	Isolation	and	Atomicity

819

Chapter	18

Concurrency	Control

18.1	Lock-Based	Protocols

835

18.8	Snapshot	Isolation

872

18.2	Deadlock	Handling

849

18.9	Weak	Levels	of	Consistency	in

18.3	Multiple	Granularity

853

Practice

880

18.4	Insert	Operations,	Delete	Operations,	and

18.10	Advanced	Topics	in	Concurrency

Predicate	Reads

857

Control

883

18.5	Timestamp-Based	Protocols

861

18.11	Summary

894

18.6	Validation-Based	Protocols

866

Exercises

899

18.7	Multiversion	Schemes

869

Further	Reading

904

Chapter	19

Recovery	System

19.1	Failure	Classification

907

19.8	Early	Lock	Release	and	Logical	Undo

19.2	Storage

908

Operations

935

19.3	Recovery	and	Atomicity

912

19.9	ARIES

941

19.4	Recovery	Algorithm

922

19.10	Recovery	in	Main-Memory	Databases

947

19.5	Buffer	Management

926

19.11	Summary

948

19.6	Failure	with	Loss	of	Non-Volatile

Exercises

952

Storage

930

Further	Reading

956

19.7	High	Availability	Using	Remote	Backup

Systems

931

xii

Contents

PART	EIGHT

PARALLEL	AND	DISTRIBUTED

DATABASES

Chapter	20

Database-System	Architectures

20.1	Overview

961

20.6	Transaction	Processing	in	Parallel	and

20.2	Centralized	Database	Systems

962

Distributed	Systems

989

20.3	Server	System	Architectures

963

20.7	Cloud-Based	Services

990

20.4	Parallel	Systems

970

20.8	Summary

995

20.5	Distributed	Systems

986

Exercises

998

Further	Reading

1001

Chapter	21

Parallel	and	Distributed	Storage

21.1	Overview

1003

21.6	Distributed	File	Systems

1019

21.2	Data	Partitioning

1004

21.7	Parallel	Key-Value	Stores

1023

21.3	Dealing	with	Skew	in	Partitioning

1007

21.8	Summary

1032

21.4	Replication

1013

Exercises

1033

21.5	Parallel	Indexing

1017

Further	Reading

1036

Chapter	22

Parallel	and	Distributed	Query	Processing

22.1	Overview

1039

22.7	Query	Optimization	for	Parallel

22.2	Parallel	Sort

1041

Execution

1064

22.3	Parallel	Join

1043

22.8	Parallel	Processing	of	Streaming	Data

1070

22.4	Other	Operations

1048

22.9	Distributed	Query	Processing

1076

22.5	Parallel	Evaluation	of	Query	Plans

1052

22.10	Summary

1086

22.6	Query	Processing	on	Shared-Memory

Exercises

1089

Architectures

1061

Further	Reading

1093

Chapter	23

Parallel	and	Distributed	Transaction	Processing

23.1	Distributed	Transactions

1098

23.6	Replication	with	Weak	Degrees	of

23.2	Commit	Protocols

1100

Consistency

1133

23.3	Concurrency	Control	in	Distributed

23.7	Coordinator	Selection

1146

Databases

1111

23.8	Consensus	in	Distributed	Systems

1150

23.4	Replication

1121

23.9	Summary

1162

23.5	Extended	Concurrency	Control

Exercises

1165

Protocols

1129

Further	Reading

1168

Contents

xiii

PART	NINE

ADVANCED	TOPICS

Chapter	24

Advanced	Indexing	Techniques

24.1	Bloom	Filter

1175

24.5	Hash	Indices

1190

24.2	Log-Structured	Merge	Tree	and

24.6	Summary

1203

Variants

1176

Exercises

1205

24.3	Bitmap	Indices

1182

Further	Reading

1206

24.4	Indexing	of	Spatial	Data

1186

Chapter	25

Advanced	Application	Development

25.1	Performance	Tuning

1210

25.5	Distributed	Directory	Systems

1240

25.2	Performance	Benchmarks

1230

25.6	Summary

1243

25.3	Other	Issues	in	Application

Exercises

1245

Development

1234

Further	Reading

1248

25.4	Standardization

1237

Chapter	26

Blockchain	Databases

26.1	Overview

1252

26.6	Smart	Contracts

1269

26.2	Blockchain	Properties

1254

26.7	Performance	Enhancement

1274

26.3	Achieving	Blockchain	Properties	via

26.8	Emerging	Applications

1276

Cryptographic	Hash	Functions

1259

26.9	Summary

1279

26.4	Consensus

1263

Exercises

1280

26.5	Data	Management	in	a	Blockchain

1267

Further	Reading

1282

PART	TEN

APPENDIX	A

Appendix	A

Detailed	University	Schema

1287

Index

1299

PART	ELEVEN

ONLINE	CHAPTERS

Chapter	27

Formal	Relational	Query	Languages

Chapter	28

Advanced	Relational	Database	Design

Chapter	29

Object-Based	Databases

Chapter	30

XML

Chapter	31

Information	Retrieval

Chapter	32

PostgreSQL

Preface

Database	management	has	evolved	from	a	specialized	computer	application	to	a	central	component	of	virtually	all	enterprises,	and,	as	a
result,	knowledge	about	database	systems	has	become	an	essential	part	of	an	education	in	computer	science.	In	this	text,	we	present	the
fundamental	concepts	of	database	management.	These	concepts	include	aspects	of	database	design,	database	languages,	and	database-
system	implementation.

This	text	is	intended	for	a	first	course	in	databases	at	the	junior	or	senior	undergraduate,	or	first-year	graduate,	level.	In	addition	to	basic
material	for	a	first	course,	the	text	contains	advanced	material	that	can	be	used	for	course	supplements,	or	as	introductory	material	for
an	advanced	course.

We	assume	only	a	familiarity	with	basic	data	structures,	computer	organization,	and	a	high-level	programming	language	such	as	Java,	C,
C++,	or	Python.	We	present	concepts	as	intuitive	descriptions,	many	of	which	are	based	on	our	running	example	of	a	university.
Important	theoretical	results	are	covered,	but	formal	proofs	are	omitted.

In	place	of	proofs,	figures	and	examples	are	used	to	suggest	why	a	result	is	true.	Formal	descriptions	and	proofs	of	theoretical	results
may	be	found	in	research	papers	and	advanced	texts	that	are	referenced	in	the	bibliographical	notes.

The	fundamental	concepts	and	algorithms	covered	in	the	book	are	often	based	on	those	used	in	existing	commercial	or	experimental
database	systems.	Our	aim	is	to	present	these	concepts	and	algorithms	in	a	general	setting	that	is	not	tied	to	one	particular	database
system,	though	we	do	provide	references	to	specific	systems	where	appropriate.

In	this,	the	seventh	edition	of	Database	System	Concepts,	we	have	retained	the	overall	style	of	the	prior	editions	while	evolving	the
content	and	organization	to	reflect	the	changes	that	are	occurring	in	the	way	databases	are	designed,	managed,	and	used.	One	such
major	change	is	the	extensive	use	of	“Big	Data”	systems.	We	have	also	taken	into	account	trends	in	the	teaching	of	database	concepts	and
made	adaptations	to	facilitate	these	trends	where	appropriate.

xv

xvi

Preface

Among	the	notable	changes	in	this	edition	are:

•	Extensive	coverage	of	Big	Data	systems,	from	the	user	perspective	(Chapter	10),	as	well	as	from	an	internal	perspective	(Chapter	20
through	Chapter	23),	with	extensive	additions	and	modifications	compared	to	the	sixth	edition.

•	A	new	chapter	entitled	“Blockchain	Databases”	(Chapter	26)	that	introduces	blockchain	technology	and	its	growing	role	in	enterprise
applications.	An	important	focus	in	this	chapter	is	the	interaction	between	blockchain	systems	and	database	systems.

•	Updates	to	all	chapters	covering	database	internals	(Chapter	12	through	Chapter	19)	to	reflect	current-generation	technology,	such	as
solid-state	disks,	main-memory	databases,	multi-core	systems,	and	column-stores.

•	Enhanced	coverage	of	semi-structured	data	management	using	JSON,	RDF,	and	SPARQL	(Section	8.1).

•	Updated	coverage	of	temporal	data	(in	Section	7.10),	data	analytics	(Chapter	11),	and	advanced	indexing	techniques	such	as	write-
optimized	indices	(Section	14.8

and	Section	24.2).

•	Reorganization	and	update	of	chapters	to	better	support	courses	with	a	significant	hands-on	component	(which	we	strongly	recommend
for	any	database	course),	including	use	of	current-generation	application	development	tools	and	Big	Data	systems	such	as	Apache
Hadoop	and	Spark.

These	and	other	updates	have	arisen	from	the	many	comments	and	suggestions	we	have	received	from	readers	of	the	sixth	edition,	our
students	at	Yale	University,	Lehigh	University,	and	IIT	Bombay,	and	our	own	observations	and	analyses	of	developments	in	database
technology.

Content	of	This	Book

The	text	is	organized	in	eleven	major	parts.

•	Overview	(Chapter	1).	Chapter	1	provides	a	general	overview	of	the	nature	and	purpose	of	database	systems.	We	explain	how	the
concept	of	a	database	system	has	developed,	what	the	common	features	of	database	systems	are,	what	a	database	system	does	for	the
user,	and	how	a	database	system	interfaces	with	operating	systems.	We	also	introduce	an	example	database	application:	a	university
organization	consisting	of	multiple	departments,	instructors,	students,	and	courses.	This	application	is	used	as	a	running	example
throughout	the	book.	This	chapter	is	motivational,	historical,	and	explanatory	in	nature.

Preface

xvii

•	Part	1:	Relational	Model	and	SQL	(Chapter	2	through	Chapter	5).	Chapter	2	introduces	the	relational	model	of	data,	covering	basic
concepts	such	as	the	structure	of	relational	databases,	database	schemas,	keys,	schema	diagrams,	relational	query	languages,	relational
operations,	and	the	relational	algebra.	Chapter	3,	Chapter	4,	and	Chapter	5	focus	on	the	most	influential	of	the	user-oriented	relational
languages:	SQL.	The	chapters	in	this	part	describe	data	manipulation:	queries,	updates,	insertions,	and	deletions,	assuming	a	schema
design	has	been	provided.

Although	data-definition	syntax	is	covered	in	detail	here,	schema	design	issues	are	deferred	to	Part	2.

•	Part	2:	Database	Design	(Chapter	6	and	Chapter	7).	Chapter	6	provides	an	overview	of	the	database-design	process	and	a	detailed
description	of	the	entity-relationship	data	model.	The	entity-relationship	data	model	provides	a	high-level	view	of	the	issues	in	database
design	and	of	the	problems	encountered	in	capturing	the	semantics	of	realistic	applications	within	the	constraints	of	a	data	model.	UML

class-diagram	notation	is	also	covered	in	this	chapter.	Chapter	7	introduces	relational	database	design.	The	theory	of	functional
dependencies	and	normalization	is	covered,	with	emphasis	on	the	motivation	and	intuitive	understanding	of	each	normal	form.	This
chapter	begins	with	an	overview	of	relational	design	and	relies	on	an	intuitive	understanding	of	logical	implication	of	functional
dependencies.

This	allows	the	concept	of	normalization	to	be	introduced	prior	to	full	coverage	of	functional-dependency	theory,	which	is	presented	later
in	the	chapter.	Instructors	may	choose	to	use	only	this	initial	coverage	without	loss	of	continuity.	Instructors	covering	the	entire	chapter
will	benefit	from	students	having	a	good	understanding	of	normalization	concepts	to	motivate	them	to	learn	some	of	the	challenging
concepts	of	functional-dependency	theory.	The	chapter	ends	with	a	section	on	modeling	of	temporal	data.

•	Part	3:	Application	Design	and	Development	(Chapter	8	and	Chapter	9).	Chapter	8	discusses	several	complex	data	types	that	are
particularly	important	for	application	design	and	development,	including	semi-structured	data,	object-based	data,	textual	data,	and
spatial	data.	Although	the	popularity	of	XML	in	a	database	context	has	been	diminishing,	we	retain	an	introduction	to	XML,	while	adding
coverage	of	JSON,	RDF,	and	SPARQL.	Chapter	9	discusses	tools	and	technologies	that	are	used	to	build	interactive	web-based	and	mobile
database	applications.	This	chapter	includes	detailed	coverage	on	both	the	server	side	and	the	client	side.	Among	the	topics	covered	are
servlets,	JSP,	Django,	JavaScript,	and	web	services.	Also	discussed	are	application	architecture,	object-relational	mapping	systems
including	Hibernate	and	Django,	performance	(including	caching	using	memcached	and	Redis),	and	the	unique	challenges	in	ensuring
web-application	security.

•	Part	4:	Big	Data	Analytics	(Chapter	10	and	Chapter	11).	Chapter	10	provides	an	overview	of	large-scale	data-analytic	applications,	with
a	focus	on	how	those	applications	place	distinct	demands	on	data	management	compared	with	the	de-

xviii

Preface

mands	of	traditional	database	applications.	The	chapter	then	discusses	how	those	demands	are	addressed.	Among	the	topics	covered	are
Big	Data	storage	systems	including	distributed	file	systems,	key-value	stores	and	NoSQL	systems,	MapReduce,	Apache	Spark,	streaming
data,	and	graph	databases.	The	connection	of	these	systems	and	concepts	with	database	concepts	introduced	earlier	is	emphasized.

Chapter	11	discusses	the	structure	and	use	of	systems	designed	for	large-scale	data	analysis.	After	first	explaining	the	concepts	of	data
analytics,	business	intelligence,	and	decision	support,	the	chapter	discusses	the	structure	of	a	data	warehouse	and	the	process	of
gathering	data	into	a	warehouse.	The	chapter	next	covers	usage	of	warehouse	data	in	OLAP	applications	followed	by	a	survey	of	data-
mining	algorithms	and	techniques.

•	Part	5:	Storage	Management	and	Indexing	(Chapter	12	through	Chapter	14).	Chapter	12	deals	with	storage	devices	and	how	the
properties	of	those	devices	influence	database	physical	organization	and	performance.	Chapter	13	deals	with	data-storage	structures,
including	file	organization	and	buffer	management.	A	variety	of	data-access	techniques	are	presented	in	Chapter	14.	Multilevel	index-
based	access	is	described,	culminating	in	detailed	coverage	of	B+-trees.	The	chapter	then	covers	index	structures	for	applications	where
the	B+-tree	structure	is	less	appropriate,	including	write-optimized	indices	such	as	LSM	trees	and	buffer	trees,	bitmap	indices,	and	the
indexing	of	spatial	data	using	k-d	trees,	quadtrees	and	R-trees.

•	Part	6:	Query	Processing	and	Optimization	(Chapter	15	and	Chapter	16).	Chapter	15	and	Chapter	16	address	query-evaluation
algorithms	and	query	optimization.	Chapter	15	focuses	on	algorithms	for	the	implementation	of	database	operations,	particularly	the
wide	range	of	join	algorithms,	which	are	designed	to	work	on	very	large	data	that	may	not	fit	in	main-memory.	Query	processing
techniques	for	main-memory	databases	are	also	covered	in	this	chapter.	Chapter	16	covers	query	optimization,	starting	by	showing	how
query	plans	can	be	transformed	to	other	equivalent	plans	by	using	transformation	rules.	The	chapter	then	describes	how	to	generate
estimates	of	query	execution	costs,	and	how	to	efficiently	find	query	execution	plans	with	the	lowest	cost.

•	Part	7:	Transaction	Management	(Chapter	17	through	Chapter	19).	Chapter	17

focuses	on	the	fundamentals	of	a	transaction-processing	system:	atomicity,	consistency,	isolation,	and	durability.	It	provides	an	overview
of	the	methods	used	to	ensure	these	properties,	including	log-based	recovery	and	concurrency	control	using	locking,	timestamp-based
techniques,	and	snapshot	isolation.	Courses	requiring	only	a	survey	of	the	transaction	concept	can	use	Chapter	17	on	its	own	without	the
other	chapters	in	this	part;	those	chapters	provide	significantly	greater	depth.	Chapter	18	focuses	on	concurrency	control	and	presents
several	techniques	for	ensuring	serializability,	including	locking,	timestamping,	and	optimistic	(validation)	techniques.	Multiversion
concurrency	control	techniques,	including	the	widely	used	snapshot	isolation	technique,	and	an	extension	of	the	technique	that

Preface

xix

guarantees	serializability,	are	also	covered.	This	chapter	also	includes	discussion	of	weak	levels	of	consistency,	concurrency	on	index
structures,	concurrency	in	main-memory	database	systems,	long-duration	transactions,	operation-level	concurrency,	and	real-time
transaction	processing.	Chapter	19	covers	the	primary	techniques	for	ensuring	correct	transaction	execution	despite	system	crashes	and
storage	failures.	These	techniques	include	logs,	checkpoints,	and	database	dumps,	as	well	as	high	availability	using	remote	backup
systems.	Recovery	with	early	lock	release,	and	the	widely	used	ARIES	algorithm	are	also	presented.	This	chapter	includes	discussion	of
recovery	in	main-memory	database	systems	and	the	use	of	NVRAM.

•	Part	8:	Parallel	and	Distributed	Databases	(Chapter	20	through	Chapter	23).

Chapter	20	covers	computer-system	architecture,	and	describes	the	influence	of	the	underlying	computer	system	on	the	database	system.
We	discuss	centralized	systems,	client–server	systems,	parallel	and	distributed	architectures,	and	cloud-based	systems	in	this	chapter.
The	remaining	three	chapters	in	this	part	address	distinct	aspects	of	parallel	and	distributed	databases,	with	Chapter	21	covering	storage
and	indexing,	Chapter	22	covering	query	processing,	and	Chapter	23	covering	transaction	management.	Chapter	21	includes	discussion
of	partitioning	and	data	skew,	replication,	parallel	indexing,	distributed	file	systems	(including	the	Hadoop	file	system),	and	parallel	key-
value	stores.	Chapter	22	includes	discussion	of	parallelism	both	among	multiple	queries	and	within	a	single	query.	It	covers	parallel	and
distributed	sort	and	join,	MapReduce,	pipelining,	the	Volcano	exchange-operator	model,	thread-level	parallelism,	streaming	data,	and	the
optimization	of	geographically	distributed	queries.	Chapter	23	includes	discussion	of	traditional	distributed	consensus	such	as	two-phase
commit	and	more	sophisticated	solutions	including	Paxos	and	Raft.	It	covers	a	variety	of	algorithms	for	distributed	concurrency	control,
including	replica	management	and	weaker	degrees	of	consistency.

The	trade-offs	implied	by	the	CAP	theorem	are	discussed	along	with	the	means	of	detecting	inconsistency	using	version	vectors	and
Merkle	trees.

•	Part	9:	Advanced	Topics	(Chapter	24	through	Chapter	26).	Chapter	24	expands	upon	the	coverage	of	indexing	in	Chapter	14	with
detailed	coverage	of	the	LSM

tree	and	its	variants,	bitmap	indices,	spatial	indexing,	and	dynamic	hashing	techniques.	Chapter	25	expands	upon	the	coverage	of
Chapter	9	with	a	discussion	of	performance	tuning,	benchmarking,	testing,	and	migration	from	legacy	systems,	standardization,	and
distributed	directory	systems.	Chapter	26	looks	at	blockchain	technology	from	a	database	perspective.	It	describes	blockchain	data
structures	and	the	use	of	cryptographic	hash	functions	and	public-key	encryption	to	ensure	the	blockchain	properties	of	anonymity,

irrefutability,	and	tamper	resistance.	It	describes	and	compares	the	distributed	consensus	algorithms	used	to	ensure	decentralization,
including	proof-of-work,	proof-of-stake,	and	Byzantine	consensus.

Much	of	the	chapter	focuses	on	the	features	that	make	blockchain	an	important	database	concept,	including	the	role	of	permisssioned
blockchains,	the	encoding

xx

Preface

of	business	logic	and	agreements	in	smart	contracts,	and	interoperability	across	blockchains.	Techniques	for	achieving	database-scale
transaction-processing	performance	are	discussed.	A	final	section	surveys	current	and	contemplated	enterprise	blockchain	applications.

•	Part	10:	Appendix.	Appendix	A	presents	details	of	our	university	schema,	including	the	full	schema,	DDL,	and	all	the	tables.

•	Part	11:	Online	Chapters	(Chapter	27	through	Chapter	32)	available	online	at	db-book.com.	We	provide	six	chapters	that	cover	material
that	is	of	historical	nature	or	is	advanced;	these	chapters	are	available	only	online.	Chapter	27	covers	“pure”	query	languages:	the	tuple
and	domain	relational	calculus	and	Datalog,	which	has	a	syntax	modeled	after	the	Prolog	language.	Chapter	28	covers	advanced	topics	in
relational	database	design,	including	the	theory	of	multivalued	dependencies	and	fourth	normal	form,	as	well	as	higher	normal	forms.
Chapter	29	covers	object-based	databases	and	more	complex	data	types	such	as	array,	and	multiset	types,	as	well	as	tables	that	are	not	in
1NF.	Chapter	30	expands	on	the	coverage	in	Chapter	8	of	XML.	Chapter	31	covers	information	retrieval,	which	deals	with	querying	of
unstructured	textual	data.	Chapter	32	provides	an	overview	of	the	PostgreSQL	database	system,	and	is	targeted	at	courses	focusing	on
database	internals.	The	chapter	is	likely	to	be	particularly	useful	for	supporting	student	projects	that	work	with	the	open-source	code
base	of	the	PostgreSQL	database.

At	the	end	of	each	chapter	we	provide	references	in	a	section	titled	Further	Reading.

This	section	is	intentionally	abbreviated	and	provides	references	that	allow	students	to	continue	their	study	of	the	material	covered	in	the
chapter	or	to	learn	about	new	developments	in	the	area	covered	by	the	chapter.	On	occasion,	the	further	reading	section	includes	original
source	papers	that	have	become	classics	of	which	everyone	should	be	aware.	Detailed	bibliographical	notes	for	each	chapter	are
available	online,	and	provide	references	for	readers	who	wish	to	go	into	further	depth	on	any	of	the	topics	covered	in	the	chapter.

The	Seventh	Edition

The	production	of	this	seventh	edition	has	been	guided	by	the	many	comments	and	suggestions	we	received	concerning	the	earlier
editions,	by	our	own	observations	while	teaching	at	Yale	University,	Lehigh	University,	and	IIT	Bombay,	and	by	our	analysis	of	the
directions	in	which	database	technology	is	evolving.

We	provided	a	list	of	the	major	new	features	of	this	edition	earlier	in	this	preface;	these	include	coverage	of	extensive	coverage	of	Big
Data,	updates	to	all	chapters	to	reflect	current	generation	hardware	technology,	semi-structured	data	management,	advanced	indexing
techniques,	and	a	new	chapter	on	blockchain	databases.	Beyond	these	major	changes,	we	revised	the	material	in	each	chapter,	bringing
the	older	material

Preface

xxi

up-to-date,	adding	discussions	on	recent	developments	in	database	technology,	and	improving	descriptions	of	topics	that	students	found
difficult	to	understand.	We	have	also	added	new	exercises	and	updated	references.

For	instructors	who	previously	used	the	sixth	edition,	we	list	the	more	significant	changes	below:

•	Relational	algebra	has	been	moved	into	Chapter	2,	to	help	students	better	understand	relational	operations	that	form	the	basis	of	query
languages	such	as	SQL.

Deeper	coverage	of	relational	algebra	also	aids	in	understanding	the	algebraic	operators	needed	for	discussion	later	of	query	processing
and	optimization.	The	two	variants	of	the	relational	calculus	are	now	in	an	online	chapter,	since	we	believe	they	are	now	of	value	only	to
more	theoretically	oriented	courses,	and	can	be	omitted	by	most	database	courses.

•	The	SQL	chapters	now	include	more	details	of	database-system	specific	SQL	variations,	to	aid	students	carrying	out	practical
assignments.	Connections	between	SQL	and	the	multiset	relational	algebra	are	also	covered	in	more	detail.	Chapter	4	now	covers	all	the
material	concerning	joins,	whereas	previously	natural	join	was	in	the	preceding	chapter.	Coverage	of	sequences	used	to	generate	unique
key	values,	and	coverage	of	row-level	security	have	also	been	added	to	this	chapter.

Recent	extensions	to	the	JDBC	API	that	are	particularly	useful	are	now	covered	in	Chapter	5;	coverage	of	OLAP	has	been	moved	from	this
chapter	to	Chapter	11.

•	Chapter	6	has	been	modified	to	cover	E-R	diagrams	along	with	E-R	concepts,	instead	of	first	covering	the	concepts	and	then
introducing	E-R	diagrams	as	was	done	in	earlier	editions.	We	believe	this	will	help	students	better	comprehend	the	E-R

model.

•	Chapter	7	now	has	improved	coverage	of	temporal	data	modeling,	including	SQL:2011	temporal	database	features.

•	Chapter	8	is	a	new	chapter	that	covers	complex	data	types,	including	semistructured	data,	such	as	XML,	JSON,	RDF,	and	SPARQL,
object-based	data,	textual	data,	and	spatial	data.	Object-based	databases,	XML,	and	information	retrieval	on	textual	data	were	covered	in
detail	in	the	sixth	edition;	these	topics	have	been	abbreviated	and	covered	in	Chapter	8,	while	the	original	chapters	from	the	sixth	edition
have	now	been	made	available	online.

•	Chapter	9	has	been	significantly	updated	to	reflect	modern	application	development	tools	and	techniques,	including	extended	coverage
of	JavaScript	and	JavaScript	libraries	for	building	dynamic	web	interfaces,	application	development	in	Python	using	the	Django
framework,	coverage	of	web	services,	and	disconnection	operations	using	HTML5.	Object-relation	mapping	using	Django	has	been	added,
as	also	discussion	of	techniques	for	developing	high-performance	applications	that	can	handle	large	transaction	loads.

xxii

Preface

•	Chapter	10	is	a	new	chapter	on	Big	Data,	covering	Big	Data	concepts	and	tools	from	a	user	perspective.	Big	Data	storage	systems,	the
MapReduce	paradigm,	Apache	Hadoop	and	Apache	Spark,	and	streaming	and	graph	databases	are	covered	in	this	chapter.	The	goal	is	to
enable	readers	to	use	Big	Data	systems,	with	only	a	summary	coverage	of	what	happens	behind	the	scenes.	Big	Data	internals	are
covered	in	detail	in	later	chapters.

•	The	chapter	on	storage	and	file	structure	has	been	split	into	two	chapters.	Chapter	12	which	covers	storage	has	been	updated	with	new
technology,	including	expanded	coverage	of	flash	memory,	column-oriented	storage,	and	storage	organization	in	main-memory	databases.
Chapter	13,	which	covers	data	storage	structures	has	been	expanded,	and	now	covers	details	such	as	free-space	maps,	partitioning,	and
most	importantly	column-oriented	storage.

•	Chapter	14	on	indexing	now	covers	write-optimized	index	structures	including	the	LSM	tree	and	its	variants,	and	the	buffer	tree,	which
are	seeing	increasing	usage.

Spatial	indices	are	now	covered	briefly	in	this	chapter.	More	detailed	coverage	of	LSM	trees	and	spatial	indices	is	provided	in	Chapter	24,
which	covers	advanced	indexing	techniques.	Bitmap	indices	are	now	covered	in	brief	in	Chapter	14,	while	more	detailed	coverage	has
been	moved	to	Chapter	24.	Dynamic	hashing	techniques	have	been	moved	into	Chapter	24,	since	they	are	of	limited	practical	importance
today.

•	Chapter	15	on	query	processing	has	significantly	expanded	coverage	of	pipelining	in	query	processing,	new	material	on	query
processing	in	main-memory,	including	query	compilation,	as	well	as	brief	coverage	of	spatial	joins.	Chapter	16	on	query	optimization	has
more	examples	of	equivalence	rules	for	operators	such	as	outer	joins	and	aggregates,	has	updated	material	on	statistics	for	cost
estimation,	an	improved	presentation	of	the	join-order	optimization	algorithm.	Techniques	for	decorrelating	nested	subqueries	using
semijoin	and	antijoin	operations	have	also	been	added.

•	Chapter	18	on	concurrency	control	has	new	material	on	concurrency	control	in	main-memory.	Chapter	19	on	recovery	now	gives	more
importance	to	high	availability	using	remote	backup	systems.

•	Our	coverage	of	parallel	and	distributed	databases	has	been	completely	revamped.

Because	of	the	evolution	of	these	two	areas	into	a	continuum	from	low-level	parallelism	to	geographically	distributed	systems,	we	now
present	these	topics	together.

°	Chapter	20	on	database	architectures	has	been	significantly	updated	from	the	earlier	edition,	including	new	material	on	practical
interconnection	networks	like	the	tree-like	(or	fat-tree)	architecture,	and	significantly	expanded	and	updated	material	on	shared-memory
architectures	and	cache	coherency.	There	is	an	entirely	new	section	on	cloud-based	services,	covering	virtual	machines	and	containers,
platform-as-a-service,	software-as-a-service,	and	elasticity.

Preface

xxiii

°	Chapter	21	covers	parallel	and	distributed	storage;	while	a	few	parts	of	this	chapter	were	present	in	the	sixth	edition,	such	as
partitioning	techniques,	everything	else	in	this	chapter	is	new.

°	Chapter	22	covers	parallel	and	distributed	query	processing.	Again	only	a	few	sections	of	this	chapter,	such	as	parallel	algorithms	for
sorting,	join,	and	a	few	other	relational	operations,	were	present	in	the	sixth	edition,	almost	everything	else	in	this	chapter	is	new.

°	Chapter	23	covers	parallel	and	distributed	transaction	processing.	A	few	parts	of	this	chapter,	such	as	the	sections	on	2PC,	persistent
messaging,	and	concurrency	control	in	distributed	databases,	are	new	but	almost	everything	else	in	this	chapter	is	new.

As	in	the	sixth	edition,	we	facilitate	the	following	of	our	running	example	by	listing	the	database	schema	and	the	sample	relation
instances	for	our	university	database	together	in	Appendix	A	as	well	as	where	they	are	used	in	the	various	regular	chapters.	In	addition,
we	provide,	on	our	web	site	db-book.com,	SQL	data-definition	statements	for	the	entire	example,	along	with	SQL	statements	to	create	our
example	relation	instances.

This	encourages	students	to	run	example	queries	directly	on	a	database	system	and	to	experiment	with	modifying	those	queries.	All
topics	not	listed	above	are	updated	from	the	sixth	edition,	though	their	overall	organization	is	relatively	unchanged.

End	of	Chapter	Material

Each	chapter	has	a	list	of	review	terms,	in	addition	to	a	summary,	which	can	help	readers	review	key	topics	covered	in	the	chapter.

As	in	the	sixth	edition,	the	exercises	are	divided	into	two	sets:	practice	exercises	and	exercises.	The	solutions	for	the	practice	exercises
are	publicly	available	on	the	web	site	of	the	book.	Students	are	encouraged	to	solve	the	practice	exercises	on	their	own	and	later	use	the
solutions	on	the	web	site	to	check	their	own	solutions.	Solutions	to	the	other	exercises	are	available	only	to	instructors	(see	“Instructor’s
Note,”	below,	for	information	on	how	to	get	the	solutions).

Many	chapters	have	a	tools	section	at	the	end	of	the	chapter	that	provides	information	on	software	tools	related	to	the	topic	of	the
chapter;	some	of	these	tools	can	be	used	for	laboratory	exercises.	SQL	DDL	and	sample	data	for	the	university	database	and	other
relations	used	in	the	exercises	are	available	on	the	web	site	of	the	book	and	can	be	used	for	laboratory	exercises.

Instructor’s	Note

It	is	possible	to	design	courses	by	using	various	subsets	of	the	chapters.	Some	of	the	chapters	can	also	be	covered	in	an	order	different
from	their	order	in	the	book.	We	outline	some	of	the	possibilities	here:

xxiv

Preface

•	Chapter	5	(Advanced	SQL).	This	chapter	can	be	skipped	or	deferred	to	later	without	loss	of	continuity.	We	expect	most	courses	will
cover	at	least	Section	5.1.1	early,	as	JDBC	is	likely	to	be	a	useful	tool	in	student	projects.

•	Chapter	6	(E-R	Model).	This	chapter	can	be	covered	ahead	of	Chapter	3,	Chapter	4,	and	Chapter	5	if	you	so	desire,	since	Chapter	6
does	not	have	any	dependency	on	SQL.	However,	for	courses	with	a	programming	emphasis,	a	richer	variety	of	laboratory	exercises	is
possible	after	studying	SQL,	and	we	recommend	that	SQL

be	covered	before	database	design	for	such	courses.

•	Chapter	15	(Query	Processing)	and	Chapter	16	(Query	Optimization).	These	chapters	can	be	omitted	from	an	introductory	course
without	affecting	coverage	of	any	other	chapter.

•	Part	7	(Transaction	Management).	Our	coverage	consists	of	an	overview	(Chapter	17)	followed	by	chapters	with	details.	You	might
choose	to	use	Chapter	17	while	omitting	Chapter	18	and	Chapter	19,	if	you	defer	these	latter	chapters	to	an	advanced	course.

•	Part	8	(Parallel	and	Distributed	Databases).	Our	coverage	consists	of	an	overview	(Chapter	20),	followed	by	chapters	on	the	topics	of
storage,	query	processing,	and	transactions.	You	might	choose	to	use	Chapter	20	while	omitting	Chapter	21

through	Chapter	23	if	you	defer	these	latter	chapters	to	an	advanced	course.

•	Part	11	(Online	chapters).	Chapter	27	(Formal-Relational	Query	Languages).	This	chapter	can	be	covered	immediately	after	Chapter	2,
ahead	of	SQL.	Alternatively,	this	chapter	may	be	omitted	from	an	introductory	course.	The	five	other	online	chapters	(Advanced
Relational	Database	Design,	Object-Based	Databases,	XML,	Information	Retrieval,	and	PostgreSQL)	can	be	used	as	self-study	material	or
omitted	from	an	introductory	course.

Model	course	syllabi,	based	on	the	text,	can	be	found	on	the	web	site	of	the	book.

Web	Site	and	Teaching	Supplements

A	web	site	for	the	book	is	available	at	the	URL:	db-book.com.	The	web	site	contains:

•	Slides	covering	all	the	chapters	of	the	book.

•	Answers	to	the	practice	exercises.

•	The	six	online	chapters.

•	Laboratory	material,	including	SQL	DDL	and	sample	data	for	the	university	schema	and	other	relations	used	in	exercises,	and
instructions	for	setting	up	and	using	various	database	systems	and	tools.

•	An	up-to-date	errata	list.

Preface

xxv

The	following	additional	material	is	available	only	to	faculty:

•	An	instructor’s	manual	containing	solutions	to	all	exercises	in	the	book.

•	A	question	bank	containing	extra	exercises.

For	more	information	about	how	to	get	a	copy	of	the	instructor’s	manual	and	the	question	bank,	please	send	an	email	message	to
sem@mheducation.com.	In	the	United	States,	you	may	call	800-338-3987.	The	McGraw-Hill	web	site	for	this	book	is
www.mhhe.com/silberschatz.

Contacting	Us

We	have	endeavored	to	eliminate	typos,	bugs,	and	the	like	from	the	text.	But,	as	in	new	releases	of	software,	bugs	almost	surely	remain;
an	up-to-date	errata	list	is	accessible	from	the	book’s	web	site.	We	would	appreciate	it	if	you	would	notify	us	of	any	errors	or	omissions	in
the	book	that	are	not	on	the	current	list	of	errata.

We	would	be	glad	to	receive	suggestions	on	improvements	to	the	book.	We	also	welcome	any	contributions	to	the	book	web	site	that	could
be	of	use	to	other	readers,	such	as	programming	exercises,	project	suggestions,	online	labs	and	tutorials,	and	teaching	tips.

Email	should	be	addressed	to	db-book-authors@cs.yale.edu.	Any	other	correspondence	should	be	sent	to	Avi	Silberschatz,	Department	of
Computer	Science,	Yale	University,	51	Prospect	Street,	P.O.	Box	208285,	New	Haven,	CT	06520-8285	USA.

Acknowledgments

Many	people	have	helped	us	with	this	seventh	edition,	as	well	as	with	the	previous	six	editions	from	which	it	is	derived,	and	we	are
indebted	to	all	of	them.

Seventh	Edition

•	Ioannis	Alagiannis	and	Renata	Borovica-Gajic	for	writing	Chapter	32	on	the	PostgreSQL	database,	which	is	available	online.	The
chapter	is	a	complete	rewrite	of	the	PostgreSQL	chapter	in	the	6th	edition,	which	was	authored	by	Anastasia	Ailamaki,	Sailesh
Krishnamurthy,	Spiros	Papadimitriou,	Bianca	Schroeder,	Karl	Schnaitter,	and	Gavin	Sherry.

•	Judi	Paige	for	her	help	in	generating	figures,	presentation	slides,	and	with	handling	the	copy-editing	material.

•	Mark	Wogahn	for	making	sure	that	the	software	to	produce	the	book,	including	LaTeX	macros	and	fonts,	worked	properly.

xxvi

Preface

•	Sriram	Srinivasan	for	discussions	and	feedback	that	have	immensely	benefited	the	chapters	on	parallel	and	distributed	databases.

•	N.	L.	Sarda	for	his	insightful	feedback	on	the	sixth	edition,	and	on	some	sections	of	the	seventh	edition.

•	Bikash	Chandra	and	Venkatesh	Emani	for	their	help	with	updates	to	the	application	development	chapter,	including	creation	of	sample
code.

•	Students	at	IIT	Bombay,	particularly	Ashish	Mithole,	for	their	feedback	on	draft	versions	of	the	chapters	on	parallel	and	distributed
databases.

•	Students	at	Yale,	Lehigh,	and	IIT	Bombay,	for	their	comments	on	the	sixth	edition.

•	Jeffrey	Anthony,	partner	and	CTO,	Synaptic;	and	Lehigh	students	Corey	Ca-plan	(now	co-founder,	Leavitt	Innovations);	Gregory	Cheng;
Timothy	LaRowe;	and	Aaron	Rotem	for	comments	and	suggestions	that	have	benefited	the	new	blockchain	chapter.

Previous	Editions

•	Hakan	Jakobsson	(Oracle),	for	writing	the	chapter	on	the	Oracle	database	system	in	the	sixth	edition;	Sriram	Padmanabhan	(IBM),	for
writing	the	chapter	describing	the	IBM	DB2	database	system	in	the	sixth	edition;	and	Sameet	Agarwal,	José	A.	Blakeley,	Thierry	D’Hers,
Gerald	Hinson,	Dirk	Myers,	Vaqar	Pirzada,	Bill	Ramos,	Balaji	Rathakrishnan,	Michael	Rys,	Florian	Waas,	and	Michael	Zwilling	for	writing
the	chapter	describing	the	Microsoft	SQL	Server	database	system	in	the	sixth	edition;	and	in	particular	José	Blakeley,	who	sadly	is	no
longer	amongst	us,	for	coordinating	and	editing	the	chapter;	and	César	Galindo-Legaria,	Goetz	Graefe,	Kalen	Delaney,	and	Thomas	Casey
for	their	contributions	to	the	previous	edition	of	the	Microsoft	SQL	Server	chapter.	These	chapters,	however,	are	not	part	of	the	seventh
edition.

•	Anastasia	Ailamaki,	Sailesh	Krishnamurthy,	Spiros	Papadimitriou,	Bianca	Schroeder,	Karl	Schnaitter,	and	Gavin	Sherry	for	writing	the
chapter	on	PostgreSQL	in	the	sixth	edition.

•	Daniel	Abadi	for	reviewing	the	table	of	contents	of	the	fifth	edition	and	helping	with	the	new	organization.

•	Steve	Dolins,	University	of	Florida;	Rolando	Fernanez,	George	Washington	University;	Frantisek	Franek,	McMaster	University;	Latifur
Khan,	University	of	Texas	at	Dallas;	Sanjay	Madria,	Missouri	University	of	Science	and	Technology;	Aris	Ouksel,	University	of	Illinois;	and
Richard	Snodgrass,	University	of	Waterloo;	who	served	as	reviewers	of	the	book	and	whose	comments	helped	us	greatly	in	formulating
the	sixth	edition.

Preface

xxvii

•	Judi	Paige	for	her	help	in	generating	figures	and	presentation	slides.

•	Mark	Wogahn	for	making	sure	that	the	software	to	produce	the	book,	including	LaTeX	macros	and	fonts,	worked	properly.

•	N.	L.	Sarda	for	feedback	that	helped	us	improve	several	chapters.	Vikram	Pudi	for	motivating	us	to	replace	the	earlier	bank	schema;
and	Shetal	Shah	for	feedback	on	several	chapters.

•	Students	at	Yale,	Lehigh,	and	IIT	Bombay,	for	their	comments	on	the	fifth	edition,	as	well	as	on	preprints	of	the	sixth	edition.

•	Chen	Li	and	Sharad	Mehrotra	for	providing	material	on	JDBC	and	security	for	the	fifth	edition.

•	Marilyn	Turnamian	and	Nandprasad	Joshi	provided	secretarial	assistance	for	the	fifth	edition,	and	Marilyn	also	prepared	an	early	draft
of	the	cover	design	for	the	fifth	edition.

•	Lyn	Dupré	copyedited	the	third	edition	and	Sara	Strandtman	edited	the	text	of	the	third	edition.

•	Nilesh	Dalvi,	Sumit	Sanghai,	Gaurav	Bhalotia,	Arvind	Hulgeri	K.	V.	Raghavan,	Prateek	Kapadia,	Sara	Strandtman,	Greg	Speegle,	and
Dawn	Bezviner	helped	to	prepare	the	instructor’s	manual	for	earlier	editions.

•	The	idea	of	using	ships	as	part	of	the	cover	concept	was	originally	suggested	to	us	by	Bruce	Stephan.

•	The	following	people	offered	suggestions	and	comments	for	the	fifth	and	earlier	editions	of	the	book.	R.	B.	Abhyankar,	Hani	Abu-Salem,
Jamel	R.	Alsabbagh,	Raj	Ashar,	Don	Batory,	Phil	Bernhard,	Christian	Breimann,	Gavin	M.	Bierman,	Janek	Bogucki,	Haran	Boral,	Paul
Bourgeois,	Phil	Bohannon,	Robert	Brazile,	Yuri	Breitbart,	Ramzi	Bualuan,	Michael	Carey,	Soumen	Chakrabarti,	Tom	Chappell,	Zhengxin
Chen,	Y.	C.	Chin,	Jan	Chomicki,	Laurens	Damen,	Prasanna	Dhan-dapani,	Qin	Ding,	Valentin	Dinu,	J.	Edwards,	Christos	Faloutsos,	Homma
Far-ian,	Alan	Fekete,	Frantisek	Franek,	Shashi	Gadia,	Hector	Garcia-Molina,	Goetz	Graefe,	Jim	Gray,	Le	Gruenwald,	Eitan	M.	Gurari,
William	Hankley,	Bruce	Hillyer,	Ron	Hitchens,	Chad	Hogg,	Arvind	Hulgeri,	Yannis	Ioannidis,	Zheng	Ji-aping,	Randy	M.	Kaplan,	Graham	J.
L.	Kemp,	Rami	Khouri,	Hyoung-Joo	Kim,	Won	Kim,	Henry	Korth	(father	of	Henry	F.),	Carol	Kroll,	Hae	Choon	Lee,	Sang-Won	Lee,	Irwin
Levinstein,	Mark	Llewellyn,	Gary	Lindstrom,	Ling	Liu,	Dave	Maier,	Keith	Marzullo,	Marty	Maskarinec,	Fletcher	Mattox,	Sharad	Mehrotra,
Jim	Melton,	Alberto	Mendelzon,	Ami	Motro,	Bhagirath	Narahari,	Yiu-Kai	Dennis	Ng,	Thanh-Duy	Nguyen,	Anil	Nigam,	Cyril	Orji,	Meral
Ozsoyoglu,	D.	B.	Phatak,	Juan	Altmayer	Pizzorno,	Bruce	Porter,	Sunil	Prabhakar,	Jim	Peterson,	K.	V.	Raghavan,	Nahid	Rahman,	Rajarshi
Rakshit,	Krithi	Ramamritham,	Mike	Reiter,	Greg	Ric-

xxviii

Preface

cardi,	Odinaldo	Rodriguez,	Mark	Roth,	Marek	Rusinkiewicz,	Michael	Rys,	Sunita	Sarawagi,	N.	L.	Sarda,	Patrick	Schmid,	Nikhil	Sethi,	S.
Seshadri,	Stewart	Shen,	Shashi	Shekhar,	Amit	Sheth,	Max	Smolens,	Nandit	Soparkar,	Greg	Speegle,	Jeff	Storey,	Dilys	Thomas,	Prem
Thomas,	Tim	Wahls,	Anita	Whitehall,	Christopher	Wilson,	Marianne	Winslett,	Weining	Zhang,	and	Liu	Zhenming.

Personal	Notes

Sudarshan	would	like	to	acknowledge	his	wife,	Sita,	for	her	love,	patience,	and	support,	and	children	Madhur	and	Advaith	for	their	love
and	joie	de	vivre.	Hank	would	like	to	acknowledge	his	wife,	Joan,	and	his	children,	Abby	and	Joe,	for	their	love	and	understanding.	Avi
would	like	to	acknowledge	Valerie	for	her	love,	patience,	and	support	during	the	revision	of	this	book.

A.	S.

H.	F.	K.

S.	S.

C	H	A	P	T	E	R	1

Introduction

A	database-management	system	(DBMS)	is	a	collection	of	interrelated	data	and	a	set	of	programs	to	access	those	data.	The	collection	of
data,	usually	referred	to	as	the	database,	contains	information	relevant	to	an	enterprise.	The	primary	goal	of	a	DBMS

is	to	provide	a	way	to	store	and	retrieve	database	information	that	is	both	convenient	and	efficient.

Database	systems	are	designed	to	manage	large	bodies	of	information.	Management	of	data	involves	both	defining	structures	for	storage
of	information	and	providing	mechanisms	for	the	manipulation	of	information.	In	addition,	the	database	system	must	ensure	the	safety	of
the	information	stored,	despite	system	crashes	or	attempts	at	unauthorized	access.	If	data	are	to	be	shared	among	several	users,	the
system	must	avoid	possible	anomalous	results.

Because	information	is	so	important	in	most	organizations,	computer	scientists	have	developed	a	large	body	of	concepts	and	techniques
for	managing	data.	These	concepts	and	techniques	form	the	focus	of	this	book.	This	chapter	briefly	introduces	the	principles	of	database
systems.

1.1

Database-System	Applications

The	earliest	database	systems	arose	in	the	1960s	in	response	to	the	computerized	management	of	commercial	data.	Those	earlier
applications	were	relatively	simple	compared	to	modern	database	applications.	Modern	applications	include	highly	sophisticated,
worldwide	enterprises.

All	database	applications,	old	and	new,	share	important	common	elements.	The	central	aspect	of	the	application	is	not	a	program
performing	some	calculation,	but	rather	the	data	themselves.	Today,	some	of	the	most	valuable	corporations	are	valuable	not	because	of
their	physical	assets,	but	rather	because	of	the	information	they	own.

Imagine	a	bank	without	its	data	on	accounts	and	customers	or	a	social-network	site	that	loses	the	connections	among	its	users.	Such
companies’	value	would	be	almost	totally	lost	under	such	circumstances.

1

2

Chapter	1

Introduction

Database	systems	are	used	to	manage	collections	of	data	that:

•	are	highly	valuable,

•	are	relatively	large,	and

•	are	accessed	by	multiple	users	and	applications,	often	at	the	same	time.

The	first	database	applications	had	only	simple,	precisely	formatted,	structured	data.	Today,	database	applications	may	include	data	with
complex	relationships	and	a	more	variable	structure.	As	an	example	of	an	application	with	structured	data,	consider	a	university’s
records	regarding	courses,	students,	and	course	registration.	The	university	keeps	the	same	type	of	information	about	each	course:
course-identifier,	title,	department,	course	number,	etc.,	and	similarly	for	students:	student-identifier,	name,	address,	phone,	etc.	Course
registration	is	a	collection	of	pairs:	one	course	identifier	and	one	student	identifier.	Information	of	this	sort	has	a	standard,	repeating
structure	and	is	representative	of	the	type	of	database	applications	that	go	back	to	the	1960s.	Contrast	this	simple	university	database
application	with	a	social-networking	site.	Users	of	the	site	post	varying	types	of	information	about	themselves	ranging	from	simple	items
such	as	name	or	date	of	birth,	to	complex	posts	consisting	of	text,	images,	videos,	and	links	to	other	users.	There	is	only	a	limited	amount
of	common	structure	among	these	data.	Both	of	these	applications,	however,	share	the	basic	features	of	a	database.

Modern	database	systems	exploit	commonalities	in	the	structure	of	data	to	gain	efficiency	but	also	allow	for	weakly	structured	data	and
for	data	whose	formats	are	highly	variable.	As	a	result,	a	database	system	is	a	large,	complex	software	system	whose	task	is	to	manage	a
large,	complex	collection	of	data.

Managing	complexity	is	challenging,	not	only	in	the	management	of	data	but	in	any	domain.	Key	to	the	management	of	complexity	is	the
concept	of	abstraction.	Abstraction	allows	a	person	to	use	a	complex	device	or	system	without	having	to	know	the	details	of	how	that
device	or	system	is	constructed.	A	person	is	able,	for	example,	to	drive	a	car	by	knowing	how	to	operate	its	controls.	However,	the	driver
does	not	need	to	know	how	the	motor	was	built	nor	how	it	operates.	All	the	driver	needs	to	know	is	an	abstraction	of	what	the	motor
does.	Similarly,	for	a	large,	complex	collection	of	data,	a	database	system	provides	a	simpler,	abstract	view	of	the	information	so	that
users	and	application	programmers	do	not	need	to	be	aware	of	the	underlying	details	of	how	data	are	stored	and	organized.	By	providing
a	high	level	of	abstraction,	a	database	system	makes	it	possible	for	an	enterprise	to	combine	data	of	various	types	into	a	unified
repository	of	the	information	needed	to	run	the	enterprise.

Here	are	some	representative	applications:

•	Enterprise	Information

°	Sales:	For	customer,	product,	and	purchase	information.

1.1

Database-System	Applications

3

°	Accounting:	For	payments,	receipts,	account	balances,	assets,	and	other	accounting	information.

°	Human	resources:	For	information	about	employees,	salaries,	payroll	taxes,	and	benefits,	and	for	generation	of	paychecks.

•	Manufacturing:	For	management	of	the	supply	chain	and	for	tracking	production	of	items	in	factories,	inventories	of	items	in
warehouses	and	stores,	and	orders	for	items.

•	Banking	and	Finance

°	Banking:	For	customer	information,	accounts,	loans,	and	banking	transactions.

°	Credit	card	transactions:	For	purchases	on	credit	cards	and	generation	of	monthly	statements.

°	Finance:	For	storing	information	about	holdings,	sales,	and	purchases	of	financial	instruments	such	as	stocks	and	bonds;	also	for	storing
real-time	market	data	to	enable	online	trading	by	customers	and	automated	trading	by	the	firm.

•	Universities:	For	student	information,	course	registrations,	and	grades	(in	addition	to	standard	enterprise	information	such	as	human
resources	and	accounting).

•	Airlines:	For	reservations	and	schedule	information.	Airlines	were	among	the	first	to	use	databases	in	a	geographically	distributed
manner.

•	Telecommunication:	For	keeping	records	of	calls,	texts,	and	data	usage,	generating	monthly	bills,	maintaining	balances	on	prepaid
calling	cards,	and	storing	information	about	the	communication	networks.

•	Web-based	services

°	Social-media:	For	keeping	records	of	users,	connections	between	users	(such	as	friend/follows	information),	posts	made	by	users,
rating/like	information	about	posts,	etc.

°	Online	retailers:	For	keeping	records	of	sales	data	and	orders	as	for	any	retailer,	but	also	for	tracking	a	user’s	product	views,	search
terms,	etc.,	for	the	purpose	of	identifying	the	best	items	to	recommend	to	that	user.

°	Online	advertisements:	For	keeping	records	of	click	history	to	enable	targeted	advertisements,	product	suggestions,	news	articles,	etc.
People	access	such	databases	every	time	they	do	a	web	search,	make	an	online	purchase,	or	access	a	social-networking	site.

•	Document	databases:	For	maintaining	collections	of	new	articles,	patents,	published	research	papers,	etc.

•	Navigation	systems:	For	maintaining	the	locations	of	varies	places	of	interest	along	with	the	exact	routes	of	roads,	train	systems,	buses,
etc.

4

Chapter	1

Introduction

As	this	list	illustrates,	databases	form	an	essential	part	not	only	of	every	enterprise	but	also	of	a	large	part	of	a	person’s	daily	activities.

The	ways	in	which	people	interact	with	databases	has	changed	over	time.	Early	databases	were	maintained	as	back-office	systems	with
which	users	interacted	via	printed	reports	and	paper	forms	for	input.	As	database	systems	became	more	sophisticated,	better	languages
were	developed	for	programmers	to	use	in	interacting	with	the	data,	along	with	user	interfaces	that	allowed	end	users	within	the
enterprise	to	query	and	update	data.

As	the	support	for	programmer	interaction	with	databases	improved,	and	computer	hardware	performance	increased	even	as	hardware
costs	decreased,	more	sophisticated	applications	emerged	that	brought	database	data	into	more	direct	contact	not	only	with	end	users
within	an	enterprise	but	also	with	the	general	public.	Whereas	once	bank	customers	had	to	interact	with	a	teller	for	every	transaction,
automated-teller	machines	(ATMs)	allowed	direct	customer	interaction.	Today,	virtually	every	enterprise	employs	web	applications	or
mobile	applications	to	allow	its	customers	to	interact	directly	with	the	enterprise’s	database,	and,	thus,	with	the	enterprise	itself.

The	user,	or	customer,	can	focus	on	the	product	or	service	without	being	aware	of	the	details	of	the	large	database	that	makes	the
interaction	possible.	For	instance,	when	you	read	a	social-media	post,	or	access	an	online	bookstore	and	browse	a	book	or	music
collection,	you	are	accessing	data	stored	in	a	database.	When	you	enter	an	order	online,	your	order	is	stored	in	a	database.	When	you
access	a	bank	web	site	and	retrieve	your	bank	balance	and	transaction	information,	the	information	is	retrieved	from	the	bank’s	database
system.	When	you	access	a	web	site,	information	about	you	may	be	retrieved	from	a	database	to	select	which	advertisements	you	should
see.	Almost	every	interaction	with	a	smartphone	results	in	some	sort	of	database	access.	Furthermore,	data	about	your	web	accesses	may
be	stored	in	a	database.

Thus,	although	user	interfaces	hide	details	of	access	to	a	database,	and	most	people	are	not	even	aware	they	are	dealing	with	a	database,
accessing	databases	forms	an	essential	part	of	almost	everyone’s	life	today.

Broadly	speaking,	there	are	two	modes	in	which	databases	are	used.

•	The	first	mode	is	to	support	online	transaction	processing,	where	a	large	number	of	users	use	the	database,	with	each	user	retrieving
relatively	small	amounts	of	data,	and	performing	small	updates.	This	is	the	primary	mode	of	use	for	the	vast	majority	of	users	of	database
applications	such	as	those	that	we	outlined	earlier.

•	The	second	mode	is	to	support	data	analytics,	that	is,	the	processing	of	data	to	draw	conclusions,	and	infer	rules	or	decision
procedures,	which	are	then	used	to	drive	business	decisions.

For	example,	banks	need	to	decide	whether	to	give	a	loan	to	a	loan	applicant,	online	advertisers	need	to	decide	which	advertisement	to
show	to	a	particular	user.

These	tasks	are	addressed	in	two	steps.	First,	data-analysis	techniques	attempt	to	automatically	discover	rules	and	patterns	from	data
and	create	predictive	models.

These	models	take	as	input	attributes	(“features”)	of	individuals,	and	output	pre-

1.2

Purpose	of	Database	Systems

5

dictions	such	as	likelihood	of	paying	back	a	loan,	or	clicking	on	an	advertisement,	which	are	then	used	to	make	the	business	decision.

As	another	example,	manufacturers	and	retailers	need	to	make	decisions	on	what	items	to	manufacture	or	order	in	what	quantities;	these
decisions	are	driven	significantly	by	techniques	for	analyzing	past	data,	and	predicting	trends.	The	cost	of	making	wrong	decisions	can	be
very	high,	and	organizations	are	therefore	willing	to	invest	a	lot	of	money	to	gather	or	purchase	required	data,	and	build	systems	that	can
use	the	data	to	make	accurate	predictions.

The	field	of	data	mining	combines	knowledge-discovery	techniques	invented	by	artificial	intelligence	researchers	and	statistical	analysts
with	efficient	implementation	techniques	that	enable	them	to	be	used	on	extremely	large	databases.

1.2

Purpose	of	Database	Systems

To	understand	the	purpose	of	database	systems,	consider	part	of	a	university	organization	that,	among	other	data,	keeps	information
about	all	instructors,	students,	departments,	and	course	offerings.	One	way	to	keep	the	information	on	a	computer	is	to	store	it	in
operating-system	files.	To	allow	users	to	manipulate	the	information,	the	system	has	a	number	of	application	programs	that	manipulate
the	files,	including	programs	to:

•	Add	new	students,	instructors,	and	courses.

•	Register	students	for	courses	and	generate	class	rosters.

•	Assign	grades	to	students,	compute	grade	point	averages	(GPA),	and	generate	transcripts.

Programmers	develop	these	application	programs	to	meet	the	needs	of	the	university.

New	application	programs	are	added	to	the	system	as	the	need	arises.	For	example,	suppose	that	a	university	decides	to	create	a	new
major.	As	a	result,	the	university	creates	a	new	department	and	creates	new	permanent	files	(or	adds	information	to	existing	files)	to
record	information	about	all	the	instructors	in	the	department,	students	in	that	major,	course	offerings,	degree	requirements,	and	so	on.
The	university	may	have	to	write	new	application	programs	to	deal	with	rules	specific	to	the	new	major.	New	application	programs	may
also	have	to	be	written	to	handle	new	rules	in	the	university.	Thus,	as	time	goes	by,	the	system	acquires	more	files	and	more	application
programs.

This	typical	file-processing	system	is	supported	by	a	conventional	operating	system.

The	system	stores	permanent	records	in	various	files,	and	it	needs	different	application	programs	to	extract	records	from,	and	add
records	to,	the	appropriate	files.

Keeping	organizational	information	in	a	file-processing	system	has	a	number	of	major	disadvantages:

6

Chapter	1

Introduction

•	Data	redundancy	and	inconsistency.	Since	different	programmers	create	the	files	and	application	programs	over	a	long	period,	the
various	files	are	likely	to	have	different	structures,	and	the	programs	may	be	written	in	several	programming	languages.	Moreover,	the
same	information	may	be	duplicated	in	several	places	(files).

For	example,	if	a	student	has	a	double	major	(say,	music	and	mathematics),	the	address	and	telephone	number	of	that	student	may
appear	in	a	file	that	consists	of	student	records	of	students	in	the	Music	department	and	in	a	file	that	consists	of	student	records	of
students	in	the	Mathematics	department.	This	redundancy	leads	to	higher	storage	and	access	cost.	In	addition,	it	may	lead	to	data
inconsistency;	that	is,	the	various	copies	of	the	same	data	may	no	longer	agree.	For	example,	a	changed	student	address	may	be	reflected
in	the	Music	department	records	but	not	elsewhere	in	the	system.

•	Difficulty	in	accessing	data.	Suppose	that	one	of	the	university	clerks	needs	to	find	out	the	names	of	all	students	who	live	within	a
particular	postal-code	area.

The	clerk	asks	the	data-processing	department	to	generate	such	a	list.	Because	the	designers	of	the	original	system	did	not	anticipate
this	request,	there	is	no	application	program	on	hand	to	meet	it.	There	is,	however,	an	application	program	to	generate	the	list	of	all
students.	The	university	clerk	now	has	two	choices:	either	obtain	the	list	of	all	students	and	extract	the	needed	information	manually	or
ask	a	programmer	to	write	the	necessary	application	program.	Both	alternatives	are	obviously	unsatisfactory.	Suppose	that	such	a
program	is	written	and	that,	several	days	later,	the	same	clerk	needs	to	trim	that	list	to	include	only	those	students	who	have	taken	at
least	60	credit	hours.	As	expected,	a	program	to	generate	such	a	list	does	not	exist.	Again,	the	clerk	has	the	preceding	two	options,
neither	of	which	is	satisfactory.

The	point	here	is	that	conventional	file-processing	environments	do	not	allow	needed	data	to	be	retrieved	in	a	convenient	and	efficient
manner.	More	responsive	data-retrieval	systems	are	required	for	general	use.

•	Data	isolation.	Because	data	are	scattered	in	various	files,	and	files	may	be	in	different	formats,	writing	new	application	programs	to
retrieve	the	appropriate	data	is	difficult.

•	Integrity	problems.	The	data	values	stored	in	the	database	must	satisfy	certain	types	of	consistency	constraints.	Suppose	the	university
maintains	an	account	for	each	department,	and	records	the	balance	amount	in	each	account.	Suppose	also	that	the	university	requires
that	the	account	balance	of	a	department	may	never	fall	below	zero.	Developers	enforce	these	constraints	in	the	system	by	adding
appropriate	code	in	the	various	application	programs.	However,	when	new	constraints	are	added,	it	is	difficult	to	change	the	programs	to
enforce	them.	The	problem	is	compounded	when	constraints	involve	several	data	items	from	different	files.

•	Atomicity	problems.	A	computer	system,	like	any	other	device,	is	subject	to	failure.

In	many	applications,	it	is	crucial	that,	if	a	failure	occurs,	the	data	be	restored	to	the

1.2

Purpose	of	Database	Systems

7

consistent	state	that	existed	prior	to	the	failure.	Consider	a	banking	system	with	a	program	to	transfer	$500	from	account	A	to	account	B.
If	a	system	failure	occurs	during	the	execution	of	the	program,	it	is	possible	that	the	$500	was	removed	from	the	balance	of	account	A
but	was	not	credited	to	the	balance	of	account	B,	resulting	in	an	inconsistent	database	state.	Clearly,	it	is	essential	to	database
consistency	that	either	both	the	credit	and	debit	occur,	or	that	neither	occur.	That	is,	the	funds	transfer	must	be	atomic	—	it	must	happen
in	its	entirety	or	not	at	all.	It	is	difficult	to	ensure	atomicity	in	a	conventional	file-processing	system.

•	Concurrent-access	anomalies.	For	the	sake	of	overall	performance	of	the	system	and	faster	response,	many	systems	allow	multiple
users	to	update	the	data	simultaneously.	Indeed,	today,	the	largest	internet	retailers	may	have	millions	of	accesses	per	day	to	their	data
by	shoppers.	In	such	an	environment,	interaction	of	concurrent	updates	is	possible	and	may	result	in	inconsistent	data.	Consider	account
A,	with	a	balance	of	$10,000.	If	two	bank	clerks	debit	the	account	balance	(by	say	$500	and	$100,	respectively)	of	account	A	at	almost
exactly	the	same	time,	the	result	of	the	concurrent	executions	may	leave	the	account	balance	in	an	incorrect	(or	inconsistent)	state.
Suppose	that	the	programs	executing	on	behalf	of	each	withdrawal	read	the	old	balance,	reduce	that	value	by	the	amount	being
withdrawn,	and	write	the	result	back.	If	the	two	programs	run	concurrently,	they	may	both	read	the	value	$10,000,	and	write	back	$9500
and	$9900,	respectively.	Depending	on	which	one	writes	the	value	last,	the	balance	of	account	A	may	contain	either	$9500

or	$9900,	rather	than	the	correct	value	of	$9400.	To	guard	against	this	possibility,	the	system	must	maintain	some	form	of	supervision.
But	supervision	is	difficult	to	provide	because	data	may	be	accessed	by	many	different	application	programs	that	have	not	been
coordinated	previously.

As	another	example,	suppose	a	registration	program	maintains	a	count	of	students	registered	for	a	course	in	order	to	enforce	limits	on
the	number	of	students	registered.	When	a	student	registers,	the	program	reads	the	current	count	for	the	courses,	verifies	that	the	count
is	not	already	at	the	limit,	adds	one	to	the	count,	and	stores	the	count	back	in	the	database.	Suppose	two	students	register	concurrently,
with	the	count	at	39.	The	two	program	executions	may	both	read	the	value	39,	and	both	would	then	write	back	40,	leading	to	an	incorrect
increase	of	only	1,	even	though	two	students	successfully	registered	for	the	course	and	the	count	should	be	41.	Furthermore,	suppose	the
course	registration	limit	was	40;	in	the	above	case	both	students	would	be	able	to	register,	leading	to	a	violation	of	the	limit	of	40
students.

•	Security	problems.	Not	every	user	of	the	database	system	should	be	able	to	access	all	the	data.	For	example,	in	a	university,	payroll
personnel	need	to	see	only	that	part	of	the	database	that	has	financial	information.	They	do	not	need	access	to	information	about
academic	records.	But	since	application	programs	are	added	to	the	file-processing	system	in	an	ad	hoc	manner,	enforcing	such	security
constraints	is	difficult.

8

Chapter	1

Introduction

These	difficulties,	among	others,	prompted	both	the	initial	development	of	database	systems	and	the	transition	of	file-based	applications
to	database	systems,	back	in	the	1960s	and	1970s.

In	what	follows,	we	shall	see	the	concepts	and	algorithms	that	enable	database	systems	to	solve	the	problems	with	file-processing
systems.	In	most	of	this	book,	we	use	a	university	organization	as	a	running	example	of	a	typical	data-processing	application.

1.3

View	of	Data

A	database	system	is	a	collection	of	interrelated	data	and	a	set	of	programs	that	allow	users	to	access	and	modify	these	data.	A	major
purpose	of	a	database	system	is	to	provide	users	with	an	abstract	view	of	the	data.	That	is,	the	system	hides	certain	details	of	how	the
data	are	stored	and	maintained.

1.3.1

Data	Models

Underlying	the	structure	of	a	database	is	the	data	model:	a	collection	of	conceptual	tools	for	describing	data,	data	relationships,	data
semantics,	and	consistency	constraints.

There	are	a	number	of	different	data	models	that	we	shall	cover	in	the	text.	The	data	models	can	be	classified	into	four	different
categories:

•	Relational	Model.	The	relational	model	uses	a	collection	of	tables	to	represent	both	data	and	the	relationships	among	those	data.	Each
table	has	multiple	columns,	and	each	column	has	a	unique	name.	Tables	are	also	known	as	relations.	The	relational	model	is	an	example
of	a	record-based	model.	Record-based	models	are	so	named	because	the	database	is	structured	in	fixed-format	records	of	several	types.
Each	table	contains	records	of	a	particular	type.	Each	record	type	defines	a	fixed	number	of	fields,	or	attributes.	The	columns	of	the	table
correspond	to	the	attributes	of	the	record	type.	The	relational	data	model	is	the	most	widely	used	data	model,	and	a	vast	majority	of
current	database	systems	are	based	on	the	relational	model.

Chapter	2	and	Chapter	7	cover	the	relational	model	in	detail.

•	Entity-Relationship	Model.	The	entity-relationship	(E-R)	data	model	uses	a	collection	of	basic	objects,	called	entities,	and	relationships
among	these	objects.	An	entity	is	a	“thing”	or	“object”	in	the	real	world	that	is	distinguishable	from	other	objects.	The	entity-relationship
model	is	widely	used	in	database	design.	Chapter	6	explores	it	in	detail.

•	Semi-structured	Data	Model.	The	semi-structured	data	model	permits	the	specification	of	data	where	individual	data	items	of	the	same
type	may	have	different	sets	of	attributes.	This	is	in	contrast	to	the	data	models	mentioned	earlier,	where	every	data	item	of	a	particular
type	must	have	the	same	set	of	attributes.	JSON	and	Extensible	Markup	Language	(XML)	are	widely	used	semi-structured	data
representations.	Semi-structured	data	models	are	explored	in	detail	in	Chapter	8.

1.3

View	of	Data

9

•	Object-Based	Data	Model.	Object-oriented	programming	(especially	in	Java,	C++,	or	C#)	has	become	the	dominant	software-
development	methodology.	This	led	initially	to	the	development	of	a	distinct	object-oriented	data	model,	but	today	the	concept	of	objects
is	well	integrated	into	relational	databases.	Standards	exist	to	store	objects	in	relational	tables.	Database	systems	allow	procedures	to	be
stored	in	the	database	system	and	executed	by	the	database	system.	This	can	be	seen	as	extending	the	relational	model	with	notions	of
encapsulation,	methods,	and	object	identity.	Object-based	data	models	are	summarized	in	Chapter	8.

A	large	portion	of	this	text	is	focused	on	the	relational	model	because	it	serves	as	the	foundation	for	most	database	applications.

1.3.2

Relational	Data	Model

In	the	relational	model,	data	are	represented	in	the	form	of	tables.	Each	table	has	multiple	columns,	and	each	column	has	a	unique	name.
Each	row	of	the	table	represents	one	piece	of	information.	Figure	1.1	presents	a	sample	relational	database	comprising	two	tables:	one
shows	details	of	university	instructors	and	the	other	shows	details	of	the	various	university	departments.

The	first	table,	the	instructor	table,	shows,	for	example,	that	an	instructor	named	Einstein	with	ID	22222	is	a	member	of	the	Physics
department	and	has	an	annual	salary	of	$95,000.	The	second	table,	department,	shows,	for	example,	that	the	Biology	department	is
located	in	the	Watson	building	and	has	a	budget	of	$90,000.	Of	course,	a	real-world	university	would	have	many	more	departments	and
instructors.	We	use	small	tables	in	the	text	to	illustrate	concepts.	A	larger	example	for	the	same	schema	is	available	online.

1.3.3

Data	Abstraction

For	the	system	to	be	usable,	it	must	retrieve	data	efficiently.	The	need	for	efficiency	has	led	database	system	developers	to	use	complex
data	structures	to	represent	data	in	the	database.	Since	many	database-system	users	are	not	computer	trained,	developers	hide	the
complexity	from	users	through	several	levels	of	data	abstraction,	to	simplify	users’

interactions	with	the	system:

•	Physical	level.	The	lowest	level	of	abstraction	describes	how	the	data	are	actually	stored.	The	physical	level	describes	complex	low-level
data	structures	in	detail.

•	Logical	level.	The	next-higher	level	of	abstraction	describes	what	data	are	stored	in	the	database,	and	what	relationships	exist	among
those	data.	The	logical	level	thus	describes	the	entire	database	in	terms	of	a	small	number	of	relatively	simple	structures.	Although
implementation	of	the	simple	structures	at	the	logical	level	may	involve	complex	physical-level	structures,	the	user	of	the	logical	level
does	not	need	to	be	aware	of	this	complexity.	This	is	referred	to	as	physical	data	indepen-

10

Chapter	1

Introduction

ID

name

dept	name

salary

22222

Einstein

Physics

95000

12121

Wu

Finance

90000

32343

El	Said

History

60000

45565

Katz

Comp.	Sci.

75000

98345

Kim

Elec.	Eng.

80000

76766

Crick

Biology

72000

10101

Srinivasan

Comp.	Sci.

65000

58583

Califieri

History

62000

83821

Brandt

Comp.	Sci.

92000

15151

Mozart

Music

40000

33456

Gold

Physics

87000

76543

Singh

Finance

80000

(a)	The	instructor	table

dept	name

building

budget

Comp.	Sci.

Taylor

100000

Biology

Watson

90000

Elec.	Eng.

Taylor

85000

Music

Packard

80000

Finance

Painter

120000

History

Painter

50000

Physics

Watson

70000

(b)	The	department	table

Figure	1.1	A	sample	relational	database.

dence.	Database	administrators,	who	must	decide	what	information	to	keep	in	the	database,	use	the	logical	level	of	abstraction.

•	View	level.	The	highest	level	of	abstraction	describes	only	part	of	the	entire	database.	Even	though	the	logical	level	uses	simpler
structures,	complexity	remains	because	of	the	variety	of	information	stored	in	a	large	database.	Many	users	of	the	database	system	do
not	need	all	this	information;	instead,	they	need	to	access	only	a	part	of	the	database.	The	view	level	of	abstraction	exists	to	simplify	their
interaction	with	the	system.	The	system	may	provide	many	views	for	the	same	database.

Figure	1.2	shows	the	relationship	among	the	three	levels	of	abstraction.

An	important	feature	of	data	models,	such	as	the	relational	model,	is	that	they	hide	such	low-level	implementation	details	from	not	just
database	users,	but	even	from

1.3

View	of	Data

11

view	level

view	1

view	2

…

view	n

logical

level

physical

level

Figure	1.2	The	three	levels	of	data	abstraction.

database-application	developers.	The	database	system	allows	application	developers	to	store	and	retrieve	data	using	the	abstractions	of
the	data	model,	and	converts	the	abstract	operations	into	operations	on	the	low-level	implementation.

An	analogy	to	the	concept	of	data	types	in	programming	languages	may	clarify	the	distinction	among	levels	of	abstraction.	Many	high-
level	programming	languages	support	the	notion	of	a	structured	type.	We	may	describe	the	type	of	a	record	abstractly	as	follows:1

type	instructor	=	record

ID	:	char	(5);

name	:	char	(20);

dept	name	:	char	(20);

salary	:	numeric	(8,2);

end;

This	code	defines	a	new	record	type	called	instructor	with	four	fields.	Each	field	has	a	name	and	a	type	associated	with	it.	For	example,
char(20)	specifies	a	string	with	20

characters,	while	numeric(8,2)	specifies	a	number	with	8	digits,	two	of	which	are	to	the	right	of	the	decimal	point.	A	university
organization	may	have	several	such	record	types,	including:

•	department,	with	fields	dept	name,	building,	and	budget.

•	course,	with	fields	course	id,	title,	dept	name,	and	credits.

•	student,	with	fields	ID,	name,	dept	name,	and	tot	cred.

1The	actual	type	declaration	depends	on	the	language	being	used.	C	and	C++	use	struct	declarations.	Java	does	not	have	such	a
declaration,	but	a	simple	class	can	be	defined	to	the	same	effect.

12

Chapter	1

Introduction

At	the	physical	level,	an	instructor,	department,	or	student	record	can	be	described	as	a	block	of	consecutive	bytes.	The	compiler	hides
this	level	of	detail	from	programmers.	Similarly,	the	database	system	hides	many	of	the	lowest-level	storage	details	from	database
programmers.	Database	administrators,	on	the	other	hand,	may	be	aware	of	certain	details	of	the	physical	organization	of	the	data.	For
example,	there	are	many	possible	ways	to	store	tables	in	files.	One	way	is	to	store	a	table	as	a	sequence	of	records	in	a	file,	with	a	special
character	(such	as	a	comma)	used	to	delimit	the	different	attributes	of	a	record,	and	another	special	character	(such	as	a	new-line
character)	may	be	used	to	delimit	records.	If	all	attributes	have	fixed	length,	the	lengths	of	attributes	may	be	stored	separately,	and
delimiters	may	be	omitted	from	the	file.	Variable	length	attributes	could	be	handled	by	storing	the	length,	followed	by	the	data.
Databases	use	a	type	of	data	structure	called	an	index	to	support	efficient	retrieval	of	records;	these	too	form	part	of	the	physical	level.

At	the	logical	level,	each	such	record	is	described	by	a	type	definition,	as	in	the	previous	code	segment.	The	interrelationship	of	these
record	types	is	also	defined	at	the	logical	level;	a	requirement	that	the	dept	name	value	of	an	instructor	record	must	appear	in	the
department	table	is	an	example	of	such	an	interrelationship.	Programmers	using	a	programming	language	work	at	this	level	of
abstraction.	Similarly,	database	administrators	usually	work	at	this	level	of	abstraction.

Finally,	at	the	view	level,	computer	users	see	a	set	of	application	programs	that	hide	details	of	the	data	types.	At	the	view	level,	several
views	of	the	database	are	defined,	and	a	database	user	sees	some	or	all	of	these	views.	In	addition	to	hiding	details	of	the	logical	level	of
the	database,	the	views	also	provide	a	security	mechanism	to	prevent	users	from	accessing	certain	parts	of	the	database.	For	example,
clerks	in	the	university	registrar	office	can	see	only	that	part	of	the	database	that	has	information	about	students;	they	cannot	access
information	about	salaries	of	instructors.

1.3.4

Instances	and	Schemas

Databases	change	over	time	as	information	is	inserted	and	deleted.	The	collection	of	information	stored	in	the	database	at	a	particular
moment	is	called	an	instance	of	the	database.	The	overall	design	of	the	database	is	called	the	database	schema.	The	concept	of	database
schemas	and	instances	can	be	understood	by	analogy	to	a	program	written	in	a	programming	language.	A	database	schema	corresponds
to	the	variable	declarations	(along	with	associated	type	definitions)	in	a	program.	Each	variable	has	a	particular	value	at	a	given	instant.
The	values	of	the	variables	in	a	program	at	a	point	in	time	correspond	to	an	instance	of	a	database	schema.

Database	systems	have	several	schemas,	partitioned	according	to	the	levels	of	abstraction.	The	physical	schema	describes	the	database
design	at	the	physical	level,	while	the	logical	schema	describes	the	database	design	at	the	logical	level.	A	database	may	also	have	several
schemas	at	the	view	level,	sometimes	called	subschemas,	that	describe	different	views	of	the	database.

Of	these,	the	logical	schema	is	by	far	the	most	important	in	terms	of	its	effect	on	application	programs,	since	programmers	construct
applications	by	using	the	logical

1.4

Database	Languages

13

schema.	The	physical	schema	is	hidden	beneath	the	logical	schema	and	can	usually	be	changed	easily	without	affecting	application
programs.	Application	programs	are	said	to	exhibit	physical	data	independence	if	they	do	not	depend	on	the	physical	schema	and	thus
need	not	be	rewritten	if	the	physical	schema	changes.

We	also	note	that	it	is	possible	to	create	schemas	that	have	problems,	such	as	unnecessarily	duplicated	information.	For	example,
suppose	we	store	the	department	budget	as	an	attribute	of	the	instructor	record.	Then,	whenever	the	value	of	the	budget	for	a
department	(say	the	Physics	department)	changes,	that	change	must	be	reflected	in	the	records	of	all	instructors	associated	with	the
department.	In	Chapter	7,	we	shall	study	how	to	distinguish	good	schema	designs	from	bad	schema	designs.

Traditionally,	logical	schemas	were	changed	infrequently,	if	at	all.	Many	newer	database	applications,	however,	require	more	flexible
logical	schemas	where,	for	example,	different	records	in	a	single	relation	may	have	different	attributes.

1.4

Database	Languages

A	database	system	provides	a	data-definition	language	(DDL)	to	specify	the	database	schema	and	a	data-manipulation	language	(DML)	to
express	database	queries	and	updates.	In	practice,	the	data-definition	and	data-manipulation	languages	are	not	two	separate	languages;
instead	they	simply	form	parts	of	a	single	database	language,	such	as	the	SQL	language.	Almost	all	relational	database	systems	employ
the	SQL	language,	which	we	cover	in	great	detail	in	Chapter	3,	Chapter	4,	and	Chapter	5.

1.4.1

Data-Definition	Language

We	specify	a	database	schema	by	a	set	of	definitions	expressed	by	a	special	language	called	a	data-definition	language	(DDL).	The	DDL	is
also	used	to	specify	additional	properties	of	the	data.

We	specify	the	storage	structure	and	access	methods	used	by	the	database	system	by	a	set	of	statements	in	a	special	type	of	DDL	called	a
data	storage	and	definition	language.	These	statements	define	the	implementation	details	of	the	database	schemas,	which	are	usually
hidden	from	the	users.

The	data	values	stored	in	the	database	must	satisfy	certain	consistency	constraints.

For	example,	suppose	the	university	requires	that	the	account	balance	of	a	department	must	never	be	negative.	The	DDL	provides
facilities	to	specify	such	constraints.	The	database	system	checks	these	constraints	every	time	the	database	is	updated.	In	general,	a
constraint	can	be	an	arbitrary	predicate	pertaining	to	the	database.	However,	arbitrary	predicates	may	be	costly	to	test.	Thus,	database
systems	implement	only	those	integrity	constraints	that	can	be	tested	with	minimal	overhead:

•	Domain	Constraints.	A	domain	of	possible	values	must	be	associated	with	every	attribute	(for	example,	integer	types,	character	types,
date/time	types).	Declaring	an	attribute	to	be	of	a	particular	domain	acts	as	a	constraint	on	the	values	that	it

14

Chapter	1

Introduction

can	take.	Domain	constraints	are	the	most	elementary	form	of	integrity	constraint.

They	are	tested	easily	by	the	system	whenever	a	new	data	item	is	entered	into	the	database.

•	Referential	Integrity.	There	are	cases	where	we	wish	to	ensure	that	a	value	that	appears	in	one	relation	for	a	given	set	of	attributes	also
appears	in	a	certain	set	of	attributes	in	another	relation	(referential	integrity).	For	example,	the	department	listed	for	each	course	must
be	one	that	actually	exists	in	the	university.	More	precisely,	the	dept	name	value	in	a	course	record	must	appear	in	the	dept	name
attribute	of	some	record	of	the	department	relation.	Database	modifications	can	cause	violations	of	referential	integrity.	When	a
referential-integrity	constraint	is	violated,	the	normal	procedure	is	to	reject	the	action	that	caused	the	violation.

•	Authorization.	We	may	want	to	differentiate	among	the	users	as	far	as	the	type	of	access	they	are	permitted	on	various	data	values	in
the	database.	These	differentia-tions	are	expressed	in	terms	of	authorization,	the	most	common	being:	read	authorization,	which	allows
reading,	but	not	modification,	of	data;	insert	authorization,	which	allows	insertion	of	new	data,	but	not	modification	of	existing	data;
update	authorization,	which	allows	modification,	but	not	deletion,	of	data;	and	delete	authorization,	which	allows	deletion	of	data.	We
may	assign	the	user	all,	none,	or	a	combination	of	these	types	of	authorization.

The	processing	of	DDL	statements,	just	like	those	of	any	other	programming	language,	generates	some	output.	The	output	of	the	DDL	is
placed	in	the	data	dictionary,	which	contains	metadata	—	that	is,	data	about	data.	The	data	dictionary	is	considered	to	be	a	special	type	of
table	that	can	be	accessed	and	updated	only	by	the	database	system	itself	(not	a	regular	user).	The	database	system	consults	the	data
dictionary	before	reading	or	modifying	actual	data.

1.4.2

The	SQL	Data-Definition	Language

SQL	provides	a	rich	DDL	that	allows	one	to	define	tables	with	data	types	and	integrity	constraints.

For	instance,	the	following	SQL	DDL	statement	defines	the	department	table:	create	table	department

(dept	name

char	(20),

building

char	(15),

budget

numeric	(12,2));

Execution	of	the	preceding	DDL	statement	creates	the	department	table	with	three	columns:	dept	name,	building,	and	budget,	each	of
which	has	a	specific	data	type	associated	with	it.	We	discuss	data	types	in	more	detail	in	Chapter	3.

The	SQL	DDL	also	supports	a	number	of	types	of	integrity	constraints.	For	example,	one	can	specify	that	the	dept	name	attribute	value	is
a	primary	key,	ensuring	that	no

1.4

Database	Languages

15

two	departments	can	have	the	same	department	name.	As	another	example,	one	can	specify	that	the	dept	name	attribute	value	appearing
in	any	instructor	record	must	also	appear	in	the	dept	name	attribute	of	some	record	of	the	department	table.	We	discuss	SQL	support	for
integrity	constraints	and	authorizations	in	Chapter	3	and	Chapter	4.

1.4.3

Data-Manipulation	Language

A	data-manipulation	language	(DML)	is	a	language	that	enables	users	to	access	or	manipulate	data	as	organized	by	the	appropriate	data
model.	The	types	of	access	are:

•	Retrieval	of	information	stored	in	the	database.

•	Insertion	of	new	information	into	the	database.

•	Deletion	of	information	from	the	database.

•	Modification	of	information	stored	in	the	database.

There	are	basically	two	types	of	data-manipulation	language:

•	Procedural	DMLs	require	a	user	to	specify	what	data	are	needed	and	how	to	get	those	data.

•	Declarative	DMLs	(also	referred	to	as	nonprocedural	DMLs)	require	a	user	to	specify	what	data	are	needed	without	specifying	how	to
get	those	data.

Declarative	DMLs	are	usually	easier	to	learn	and	use	than	are	procedural	DMLs.

However,	since	a	user	does	not	have	to	specify	how	to	get	the	data,	the	database	system	has	to	figure	out	an	efficient	means	of	accessing
data.

A	query	is	a	statement	requesting	the	retrieval	of	information.	The	portion	of	a	DML	that	involves	information	retrieval	is	called	a	query
language.	Although	technically	incorrect,	it	is	common	practice	to	use	the	terms	query	language	and	data-manipulation	language
synonymously.

There	are	a	number	of	database	query	languages	in	use,	either	commercially	or	experimentally.	We	study	the	most	widely	used	query
language,	SQL,	in	Chapter	3

through	Chapter	5.

The	levels	of	abstraction	that	we	discussed	in	Section	1.3	apply	not	only	to	defining	or	structuring	data,	but	also	to	manipulating	data.	At
the	physical	level,	we	must	define	algorithms	that	allow	efficient	access	to	data.	At	higher	levels	of	abstraction,	we	emphasize	ease	of	use.
The	goal	is	to	allow	humans	to	interact	efficiently	with	the	system.

The	query	processor	component	of	the	database	system	(which	we	study	in	Chapter	15	and	Chapter	16)	translates	DML	queries	into
sequences	of	actions	at	the	physical	level	of	the	database	system.	In	Chapter	22,	we	study	the	processing	of	queries	in	the	increasingly
common	parallel	and	distributed	settings.

16

Chapter	1

Introduction

1.4.4

The	SQL	Data-Manipulation	Language

The	SQL	query	language	is	nonprocedural.	A	query	takes	as	input	several	tables	(possibly	only	one)	and	always	returns	a	single	table.
Here	is	an	example	of	an	SQL	query	that	finds	the	names	of	all	instructors	in	the	History	department:

select	instructor.	name

from	instructor

where	instructor.	dept	name	=	'History';

The	query	specifies	that	those	rows	from	the	table	instructor	where	the	dept	name	is	History	must	be	retrieved,	and	the	name	attribute	of
these	rows	must	be	displayed.	The	result	of	executing	this	query	is	a	table	with	a	single	column	labeled	name	and	a	set	of	rows,	each	of
which	contains	the	name	of	an	instructor	whose	dept	name	is	History.	If	the	query	is	run	on	the	table	in	Figure	1.1,	the	result	consists	of
two	rows,	one	with	the	name	El	Said	and	the	other	with	the	name	Califieri.

Queries	may	involve	information	from	more	than	one	table.	For	instance,	the	following	query	finds	the	instructor	ID	and	department
name	of	all	instructors	associated	with	a	department	with	a	budget	of	more	than	$95,000.

select	instructor.	ID,	department.	dept	name	from	instructor,	department

where	instructor.	dept	name=	department.	dept	name	and	department.	budget	>	95000;

If	the	preceding	query	were	run	on	the	tables	in	Figure	1.1,	the	system	would	find	that	there	are	two	departments	with	a	budget	of
greater	than	$95,000	—	Computer	Science	and	Finance;	there	are	five	instructors	in	these	departments.	Thus,	the	result	consists	of	a
table	with	two	columns	(ID,	dept	name)	and	five	rows:	(12121,	Finance),	(45565,	Computer	Science),	(10101,	Computer	Science),
(83821,	Computer	Science),	and	(76543,	Finance).

1.4.5

Database	Access	from	Application	Programs

Non-procedural	query	languages	such	as	SQL	are	not	as	powerful	as	a	universal	Turing	machine;	that	is,	there	are	some	computations
that	are	possible	using	a	general-purpose	programming	language	but	are	not	possible	using	SQL.	SQL	also	does	not	support	actions	such
as	input	from	users,	output	to	displays,	or	communication	over	the	network.

Such	computations	and	actions	must	be	written	in	a	host	language,	such	as	C/C++,	Java,	or	Python,	with	embedded	SQL	queries	that
access	the	data	in	the	database.

Application	programs	are	programs	that	are	used	to	interact	with	the	database	in	this	fashion.	Examples	in	a	university	system	are
programs	that	allow	students	to	register	for	courses,	generate	class	rosters,	calculate	student	GPA,	generate	payroll	checks,	and	perform
other	tasks.

1.5

Database	Design

17

To	access	the	database,	DML	statements	need	to	be	sent	from	the	host	to	the	database	where	they	will	be	executed.	This	is	most
commonly	done	by	using	an	application-program	interface	(set	of	procedures)	that	can	be	used	to	send	DML	and	DDL	statements	to	the
database	and	retrieve	the	results.	The	Open	Database	Connectivity	(ODBC)	standard	defines	application	program	interfaces	for	use	with
C	and	several	other	languages.	The	Java	Database	Connectivity	(JDBC)	standard	defines	a	corresponding	interface	for	the	Java	language.

1.5

Database	Design

Database	systems	are	designed	to	manage	large	bodies	of	information.	These	large	bodies	of	information	do	not	exist	in	isolation.	They
are	part	of	the	operation	of	some	enterprise	whose	end	product	may	be	information	from	the	database	or	may	be	some	device	or	service
for	which	the	database	plays	only	a	supporting	role.

Database	design	mainly	involves	the	design	of	the	database	schema.	The	design	of	a	complete	database	application	environment	that
meets	the	needs	of	the	enterprise	being	modeled	requires	attention	to	a	broader	set	of	issues.	In	this	text,	we	focus	on	the	writing	of
database	queries	and	the	design	of	database	schemas,	but	discuss	application	design	later,	in	Chapter	9.

A	high-level	data	model	provides	the	database	designer	with	a	conceptual	framework	in	which	to	specify	the	data	requirements	of	the
database	users	and	how	the	database	will	be	structured	to	fulfill	these	requirements.	The	initial	phase	of	database	design,	then,	is	to
characterize	fully	the	data	needs	of	the	prospective	database	users.

The	database	designer	needs	to	interact	extensively	with	domain	experts	and	users	to	carry	out	this	task.	The	outcome	of	this	phase	is	a
specification	of	user	requirements.

Next,	the	designer	chooses	a	data	model,	and	by	applying	the	concepts	of	the	chosen	data	model,	translates	these	requirements	into	a
conceptual	schema	of	the	database.

The	schema	developed	at	this	conceptual-design	phase	provides	a	detailed	overview	of	the	enterprise.	The	designer	reviews	the	schema
to	confirm	that	all	data	requirements	are	indeed	satisfied	and	are	not	in	conflict	with	one	another.	The	designer	can	also	examine	the
design	to	remove	any	redundant	features.	The	focus	at	this	point	is	on	describing	the	data	and	their	relationships,	rather	than	on
specifying	physical	storage	details.

In	terms	of	the	relational	model,	the	conceptual-design	process	involves	decisions	on	what	attributes	we	want	to	capture	in	the	database
and	how	to	group	these	attributes	to	form	the	various	tables.	The	“what”	part	is	basically	a	business	decision,	and	we	shall	not	discuss	it
further	in	this	text.	The	“how”	part	is	mainly	a	computer-science	problem.	There	are	principally	two	ways	to	tackle	the	problem.	The	first
one	is	to	use	the	entity-relationship	model	(Chapter	6);	the	other	is	to	employ	a	set	of	algorithms	(collectively	known	as	normalization	that
takes	as	input	the	set	of	all	attributes	and	generates	a	set	of	tables	(Chapter	7).

A	fully	developed	conceptual	schema	indicates	the	functional	requirements	of	the	enterprise.	In	a	specification	of	functional
requirements,	users	describe	the	kinds	of	oper-

18

Chapter	1

Introduction

ations	(or	transactions)	that	will	be	performed	on	the	data.	Example	operations	include	modifying	or	updating	data,	searching	for	and
retrieving	specific	data,	and	deleting	data.	At	this	stage	of	conceptual	design,	the	designer	can	review	the	schema	to	ensure	it	meets
functional	requirements.

The	process	of	moving	from	an	abstract	data	model	to	the	implementation	of	the	database	proceeds	in	two	final	design	phases.	In	the
logical-design	phase,	the	designer	maps	the	high-level	conceptual	schema	onto	the	implementation	data	model	of	the	database	system
that	will	be	used.	The	designer	uses	the	resulting	system-specific	database	schema	in	the	subsequent	physical-design	phase,	in	which	the
physical	features	of	the	database	are	specified.	These	features	include	the	form	of	file	organization	and	the	internal	storage	structures;
they	are	discussed	in	Chapter	13.

1.6

Database	Engine

A	database	system	is	partitioned	into	modules	that	deal	with	each	of	the	responsibilities	of	the	overall	system.	The	functional	components
of	a	database	system	can	be	broadly	divided	into	the	storage	manager,	the	query	processor	components,	and	the	transaction	management

component.

The	storage	manager	is	important	because	databases	typically	require	a	large	amount	of	storage	space.	Corporate	databases	commonly
range	in	size	from	hundreds	of	gigabytes	to	terabytes	of	data.	A	gigabyte	is	approximately	1	billion	bytes,	or	1000

megabytes	(more	precisely,	1024	megabytes),	while	a	terabyte	is	approximately	1	trillion	bytes	or	1	million	megabytes	(more	precisely,
1024	gigabytes).	The	largest	enterprises	have	databases	that	reach	into	the	multi-petabyte	range	(a	petabyte	is	1024	terabytes).	Since
the	main	memory	of	computers	cannot	store	this	much	information,	and	since	the	contents	of	main	memory	are	lost	in	a	system	crash,	the
information	is	stored	on	disks.	Data	are	moved	between	disk	storage	and	main	memory	as	needed.	Since	the	movement	of	data	to	and
from	disk	is	slow	relative	to	the	speed	of	the	central	processing	unit,	it	is	imperative	that	the	database	system	structure	the	data	so	as	to
minimize	the	need	to	move	data	between	disk	and	main	memory.	Increasingly,	solid-state	disks	(SSDs)	are	being	used	for	database
storage.	SSDs	are	faster	than	traditional	disks	but	also	more	costly.

The	query	processor	is	important	because	it	helps	the	database	system	to	simplify	and	facilitate	access	to	data.	The	query	processor
allows	database	users	to	obtain	good	performance	while	being	able	to	work	at	the	view	level	and	not	be	burdened	with	understanding	the
physical-level	details	of	the	implementation	of	the	system.	It	is	the	job	of	the	database	system	to	translate	updates	and	queries	written	in
a	nonprocedural	language,	at	the	logical	level,	into	an	efficient	sequence	of	operations	at	the	physical	level.

The	transaction	manager	is	important	because	it	allows	application	developers	to	treat	a	sequence	of	database	accesses	as	if	they	were	a
single	unit	that	either	happens	in	its	entirety	or	not	at	all.	This	permits	application	developers	to	think	at	a	higher	level	of

1.6

Database	Engine

19

abstraction	about	the	application	without	needing	to	be	concerned	with	the	lower-level	details	of	managing	the	effects	of	concurrent
access	to	the	data	and	of	system	failures.

While	database	engines	were	traditionally	centralized	computer	systems,	today	parallel	processing	is	key	for	handling	very	large	amounts
of	data	efficiently.	Modern	database	engines	pay	a	lot	of	attention	to	parallel	data	storage	and	parallel	query	processing.

1.6.1

Storage	Manager

The	storage	manager	is	the	component	of	a	database	system	that	provides	the	interface	between	the	low-level	data	stored	in	the	database
and	the	application	programs	and	queries	submitted	to	the	system.	The	storage	manager	is	responsible	for	the	interaction	with	the	file
manager.	The	raw	data	are	stored	on	the	disk	using	the	file	system	provided	by	the	operating	system.	The	storage	manager	translates	the
various	DML	statements	into	low-level	file-system	commands.	Thus,	the	storage	manager	is	responsible	for	storing,	retrieving,	and
updating	data	in	the	database.

The	storage	manager	components	include:

•	Authorization	and	integrity	manager,	which	tests	for	the	satisfaction	of	integrity	constraints	and	checks	the	authority	of	users	to	access
data.

•	Transaction	manager,	which	ensures	that	the	database	remains	in	a	consistent	(correct)	state	despite	system	failures,	and	that
concurrent	transaction	executions	proceed	without	conflicts.

•	File	manager,	which	manages	the	allocation	of	space	on	disk	storage	and	the	data	structures	used	to	represent	information	stored	on
disk.

•	Buffer	manager,	which	is	responsible	for	fetching	data	from	disk	storage	into	main	memory,	and	deciding	what	data	to	cache	in	main
memory.	The	buffer	manager	is	a	critical	part	of	the	database	system,	since	it	enables	the	database	to	handle	data	sizes	that	are	much
larger	than	the	size	of	main	memory.

The	storage	manager	implements	several	data	structures	as	part	of	the	physical	system	implementation:

•	Data	files,	which	store	the	database	itself.

•	Data	dictionary,	which	stores	metadata	about	the	structure	of	the	database,	in	particular	the	schema	of	the	database.

•	Indices,	which	can	provide	fast	access	to	data	items.	Like	the	index	in	this	textbook,	a	database	index	provides	pointers	to	those	data
items	that	hold	a	particular	value.

For	example,	we	could	use	an	index	to	find	the	instructor	record	with	a	particular	ID,	or	all	instructor	records	with	a	particular	name.

20

Chapter	1

Introduction

We	discuss	storage	media,	file	structures,	and	buffer	management	in	Chapter	12	and	Chapter	13.	Methods	of	accessing	data	efficiently
are	discussed	in	Chapter	14.

1.6.2

The	Query	Processor

The	query	processor	components	include:

•	DDL	interpreter,	which	interprets	DDL	statements	and	records	the	definitions	in	the	data	dictionary.

•	DML	compiler,	which	translates	DML	statements	in	a	query	language	into	an	evaluation	plan	consisting	of	low-level	instructions	that
the	query-evaluation	engine	understands.

A	query	can	usually	be	translated	into	any	of	a	number	of	alternative	evaluation	plans	that	all	give	the	same	result.	The	DML	compiler
also	performs	query	optimization;	that	is,	it	picks	the	lowest	cost	evaluation	plan	from	among	the	alternatives.

•	Query	evaluation	engine,	which	executes	low-level	instructions	generated	by	the	DML	compiler.

Query	evaluation	is	covered	in	Chapter	15,	while	the	methods	by	which	the	query	optimizer	chooses	from	among	the	possible	evaluation
strategies	are	discussed	in	Chapter	16.

1.6.3

Transaction	Management

Often,	several	operations	on	the	database	form	a	single	logical	unit	of	work.	An	example	is	a	funds	transfer,	as	in	Section	1.2,	in	which
one	account	A	is	debited	and	another	account	B	is	credited.	Clearly,	it	is	essential	that	either	both	the	credit	and	debit	occur,	or	that
neither	occur.	That	is,	the	funds	transfer	must	happen	in	its	entirety	or	not	at	all.	This	all-or-none	requirement	is	called	atomicity.	In
addition,	it	is	essential	that	the	execution	of	the	funds	transfer	preserves	the	consistency	of	the	database.	That	is,	the	value	of	the	sum	of
the	balances	of	A	and	B	must	be	preserved.	This	correctness	requirement	is	called	consistency.	Finally,	after	the	successful	execution	of	a
funds	transfer,	the	new	values	of	the	balances	of	accounts	A	and	B	must	persist,	despite	the	possibility	of	system	failure.	This	persistence
requirement	is	called	durability.

A	transaction	is	a	collection	of	operations	that	performs	a	single	logical	function	in	a	database	application.	Each	transaction	is	a	unit	of
both	atomicity	and	consistency.

Thus,	we	require	that	transactions	do	not	violate	any	database-consistency	constraints.

That	is,	if	the	database	was	consistent	when	a	transaction	started,	the	database	must	be	consistent	when	the	transaction	successfully
terminates.	However,	during	the	execution	of	a	transaction,	it	may	be	necessary	temporarily	to	allow	inconsistency,	since

1.7

Database	and	Application	Architecture

21

either	the	debit	of	A	or	the	credit	of	B	must	be	done	before	the	other.	This	temporary	inconsistency,	although	necessary,	may	lead	to
difficulty	if	a	failure	occurs.

It	is	the	programmer’s	responsibility	to	properly	define	the	various	transactions	so	that	each	preserves	the	consistency	of	the	database.
For	example,	the	transaction	to	transfer	funds	from	account	A	to	account	B	could	be	defined	to	be	composed	of	two	separate	programs:
one	that	debits	account	A	and	another	that	credits	account	B.	The	execution	of	these	two	programs	one	after	the	other	will	indeed
preserve	consistency.

However,	each	program	by	itself	does	not	transform	the	database	from	a	consistent	state	to	a	new	consistent	state.	Thus,	those	programs
are	not	transactions.

Ensuring	the	atomicity	and	durability	properties	is	the	responsibility	of	the	database	system	itself	—	specifically,	of	the	recovery	manager.
In	the	absence	of	failures,	all	transactions	complete	successfully,	and	atomicity	is	achieved	easily.	However,	because	of	various	types	of
failure,	a	transaction	may	not	always	complete	its	execution	successfully.	If	we	are	to	ensure	the	atomicity	property,	a	failed	transaction
must	have	no	effect	on	the	state	of	the	database.	Thus,	the	database	must	be	restored	to	the	state	in	which	it	was	before	the	transaction
in	question	started	executing.	The	database	system	must	therefore	perform	failure	recovery,	that	is,	it	must	detect	system	failures	and
restore	the	database	to	the	state	that	existed	prior	to	the	occurrence	of	the	failure.

Finally,	when	several	transactions	update	the	database	concurrently,	the	consistency	of	data	may	no	longer	be	preserved,	even	though
each	individual	transaction	is	correct.	It	is	the	responsibility	of	the	concurrency-control	manager	to	control	the	interaction	among	the
concurrent	transactions,	to	ensure	the	consistency	of	the	database.

The	transaction	manager	consists	of	the	concurrency-control	manager	and	the	recovery	manager.

The	basic	concepts	of	transaction	processing	are	covered	in	Chapter	17.	The	management	of	concurrent	transactions	is	covered	in
Chapter	18.	Chapter	19	covers	failure	recovery	in	detail.

The	concept	of	a	transaction	has	been	applied	broadly	in	database	systems	and	applications.	While	the	initial	use	of	transactions	was	in
financial	applications,	the	concept	is	now	used	in	real-time	applications	in	telecommunication,	as	well	as	in	the	management	of	long-
duration	activities	such	as	product	design	or	administrative	workflows.

1.7

Database	and	Application	Architecture

We	are	now	in	a	position	to	provide	a	single	picture	of	the	various	components	of	a	database	system	and	the	connections	among	them.
Figure	1.3	shows	the	architecture	of	a	database	system	that	runs	on	a	centralized	server	machine.	The	figure	summarizes	how	different
types	of	users	interact	with	a	database,	and	how	the	different	components	of	a	database	engine	are	connected	to	each	other.

The	centralized	architecture	shown	in	Figure	1.3	is	applicable	to	shared-memory	server	architectures,	which	have	multiple	CPUs	and
exploit	parallel	processing,	but	all

22

Chapter	1

Introduction

naive	users

sophisticated

application

database

(tellers,	agents,

users

programmers

administrators

web	users)

(analysts)

use

write

use

use

application

application

query

administration

interfaces

programs

tools

tools

compiler	and

DML	queries

DDL	interpreter

linker

application

program

DML	compiler

object	code

and	organizer

query	evaluation

engine

query	processor

buffer	manager

file	manager

authorization

transaction

and	integrity

manager

manager

storage	manager

disk	storage

indices

data	dictionary

data

statistical	data

Figure	1.3	System	structure.

the	CPUs	access	a	common	shared	memory.	To	scale	up	to	even	larger	data	volumes	and	even	higher	processing	speeds,	parallel
databases	are	designed	to	run	on	a	cluster	consisting	of	multiple	machines.	Further,	distributed	databases	allow	data	storage	and	query
processing	across	multiple	geographically	separated	machines.

1.7

Database	and	Application	Architecture

23

In	Chapter	20,	we	cover	the	general	structure	of	modern	computer	systems,	with	a	focus	on	parallel	system	architectures.	Chapter	21
and	Chapter	22	describe	how	query	processing	can	be	implemented	to	exploit	parallel	and	distributed	processing.	Chapter	23	presents	a
number	of	issues	that	arise	in	processing	transactions	in	a	parallel	or	a	distributed	database	and	describes	how	to	deal	with	each	issue.
The	issues	include	how	to	store	data,	how	to	ensure	atomicity	of	transactions	that	execute	at	multiple	sites,	how	to	perform	concurrency
control,	and	how	to	provide	high	availability	in	the	presence	of	failures.

We	now	consider	the	architecture	of	applications	that	use	databases	as	their	backend.	Database	applications	can	be	partitioned	into	two
or	three	parts,	as	shown	in	Figure	1.4.	Earlier-generation	database	applications	used	a	two-tier	architecture,	where	the	application

resides	at	the	client	machine,	and	invokes	database	system	functionality	at	the	server	machine	through	query	language	statements.

In	contrast,	modern	database	applications	use	a	three-tier	architecture,	where	the	client	machine	acts	as	merely	a	front	end	and	does	not
contain	any	direct	database	calls;	web	browsers	and	mobile	applications	are	the	most	commonly	used	application	clients	today.	The	front
end	communicates	with	an	application	server.	The	application	server,	in	turn,	communicates	with	a	database	system	to	access	data.	The
business	logic	of	the	application,	which	says	what	actions	to	carry	out	under	what	conditions,	is	embedded	in	the	application	server,
instead	of	being	distributed	across	multiple	clients.	Three-tier	applications	provide	better	security	as	well	as	better	performance	than
two-tier	applications.

user

user

client

application

application	client

network

network

application	server

database	system

server

database	system

(a)	Two-tier	architecture

(b)	Three-tier	architecture

Figure	1.4	Two-tier	and	three-tier	architectures.

24

Chapter	1

Introduction

1.8

Database	Users	and	Administrators

A	primary	goal	of	a	database	system	is	to	retrieve	information	from	and	store	new	information	in	the	database.	People	who	work	with	a
database	can	be	categorized	as	database	users	or	database	administrators.

1.8.1

Database	Users	and	User	Interfaces

There	are	four	different	types	of	database-system	users,	differentiated	by	the	way	they	expect	to	interact	with	the	system.	Different	types
of	user	interfaces	have	been	designed	for	the	different	types	of	users.

•	Na¨ıve	users	are	unsophisticated	users	who	interact	with	the	system	by	using	predefined	user	interfaces,	such	as	web	or	mobile
applications.	The	typical	user	interface	for	na¨ıve	users	is	a	forms	interface,	where	the	user	can	fill	in	appropriate	fields	of	the	form.
Na¨ıve	users	may	also	view	read	reports	generated	from	the	database.

As	an	example,	consider	a	student,	who	during	class	registration	period,	wishes	to	register	for	a	class	by	using	a	web	interface.	Such	a
user	connects	to	a	web	application	program	that	runs	at	a	web	server.	The	application	first	verifies	the	identity	of	the	user	and	then
allows	her	to	access	a	form	where	she	enters	the	desired	information.	The	form	information	is	sent	back	to	the	web	application	at	the
server,	which	then	determines	if	there	is	room	in	the	class	(by	retrieving	information	from	the	database)	and	if	so	adds	the	student
information	to	the	class	roster	in	the	database.

•	Application	programmers	are	computer	professionals	who	write	application	programs.	Application	programmers	can	choose	from	many
tools	to	develop	user	interfaces.

•	Sophisticated	users	interact	with	the	system	without	writing	programs.	Instead,	they	form	their	requests	either	using	a	database	query
language	or	by	using	tools	such	as	data	analysis	software.	Analysts	who	submit	queries	to	explore	data	in	the	database	fall	in	this
category.

1.8.2

Database	Administrator

One	of	the	main	reasons	for	using	DBMSs	is	to	have	central	control	of	both	the	data	and	the	programs	that	access	those	data.	A	person
who	has	such	central	control	over	the	system	is	called	a	database	administrator	(DBA).	The	functions	of	a	DBA	include:

•	Schema	definition.	The	DBA	creates	the	original	database	schema	by	executing	a	set	of	data	definition	statements	in	the	DDL.

•	Storage	structure	and	access-method	definition.	The	DBA	may	specify	some	parameters	pertaining	to	the	physical	organization	of	the
data	and	the	indices	to	be	created.

1.9

History	of	Database	Systems

25

•	Schema	and	physical-organization	modification.	The	DBA	carries	out	changes	to	the	schema	and	physical	organization	to	reflect	the
changing	needs	of	the	organization,	or	to	alter	the	physical	organization	to	improve	performance.

•	Granting	of	authorization	for	data	access.	By	granting	different	types	of	authorization,	the	database	administrator	can	regulate	which
parts	of	the	database	various	users	can	access.	The	authorization	information	is	kept	in	a	special	system	structure	that	the	database
system	consults	whenever	a	user	tries	to	access	the	data	in	the	system.

•	Routine	maintenance.	Examples	of	the	database	administrator’s	routine	maintenance	activities	are:

°	Periodically	backing	up	the	database	onto	remote	servers,	to	prevent	loss	of	data	in	case	of	disasters	such	as	flooding.

°	Ensuring	that	enough	free	disk	space	is	available	for	normal	operations,	and	upgrading	disk	space	as	required.

°	Monitoring	jobs	running	on	the	database	and	ensuring	that	performance	is	not	degraded	by	very	expensive	tasks	submitted	by	some
users.

1.9

History	of	Database	Systems

Information	processing	drives	the	growth	of	computers,	as	it	has	from	the	earliest	days	of	commercial	computers.	In	fact,	automation	of
data	processing	tasks	predates	computers.	Punched	cards,	invented	by	Herman	Hollerith,	were	used	at	the	very	beginning	of	the
twentieth	century	to	record	U.S.	census	data,	and	mechanical	systems	were	used	to	process	the	cards	and	tabulate	results.	Punched
cards	were	later	widely	used	as	a	means	of	entering	data	into	computers.

Techniques	for	data	storage	and	processing	have	evolved	over	the	years:

•	1950s	and	early	1960s:	Magnetic	tapes	were	developed	for	data	storage.	Data-processing	tasks	such	as	payroll	were	automated,	with
data	stored	on	tapes.	Processing	of	data	consisted	of	reading	data	from	one	or	more	tapes	and	writing	data	to	a	new	tape.	Data	could	also
be	input	from	punched	card	decks	and	output	to	printers.	For	example,	salary	raises	were	processed	by	entering	the	raises	on	punched
cards	and	reading	the	punched	card	deck	in	synchronization	with	a	tape	containing	the	master	salary	details.	The	records	had	to	be	in
the	same	sorted	order.	The	salary	raises	would	be	added	to	the	salary	read	from	the	master	tape	and	written	to	a	new	tape;	the	new	tape
would	become	the	new	master	tape.

Tapes	(and	card	decks)	could	be	read	only	sequentially,	and	data	sizes	were	much	larger	than	main	memory;	thus,	data-processing
programs	were	forced	to

26

Chapter	1

Introduction

process	data	in	a	particular	order	by	reading	and	merging	data	from	tapes	and	card	decks.

•	Late	1960s	and	early	1970s:	Widespread	use	of	hard	disks	in	the	late	1960s	changed	the	scenario	for	data	processing	greatly,	since
hard	disks	allowed	direct	access	to	data.	The	position	of	data	on	disk	was	immaterial,	since	any	location	on	disk	could	be	accessed	in	just
tens	of	milliseconds.	Data	were	thus	freed	from	the	tyranny	of	sequentiality.	With	the	advent	of	disks,	the	network	and	hierarchical	data
models	were	developed,	which	allowed	data	structures	such	as	lists	and	trees	to	be	stored	on	disk.	Programmers	could	construct	and
manipulate	these	data	structures.

A	landmark	paper	by	Edgar	Codd	in	1970	defined	the	relational	model	and	nonprocedural	ways	of	querying	data	in	the	relational	model,
and	relational	databases	were	born.	The	simplicity	of	the	relational	model	and	the	possibility	of	hiding	implementation	details	completely
from	the	programmer	were	enticing	indeed.	Codd	later	won	the	prestigious	Association	of	Computing	Machinery	Turing	Award	for	his
work.

•	Late	1970s	and	1980s:	Although	academically	interesting,	the	relational	model	was	not	used	in	practice	initially	because	of	its
perceived	performance	disadvantages;	relational	databases	could	not	match	the	performance	of	existing	network	and	hierarchical
databases.	That	changed	with	System	R,	a	groundbreaking	project	at	IBM	Research	that	developed	techniques	for	the	construction	of	an
efficient	relational	database	system.	The	fully	functional	System	R	prototype	led	to	IBM’s	first	relational	database	product,	SQL/DS.	At
the	same	time,	the	Ingres	system	was	being	developed	at	the	University	of	California	at	Berkeley.	It	led	to	a	commercial	product	of	the
same	name.	Also	around	this	time,	the	first	version	of	Oracle	was	released.	Initial	commercial	relational	database	systems,	such	as	IBM
DB2,	Oracle,	Ingres,	and	DEC	Rdb,	played	a	major	role	in	advancing	techniques	for	efficient	processing	of	declarative	queries.

By	the	early	1980s,	relational	databases	had	become	competitive	with	network	and	hierarchical	database	systems	even	in	the	area	of
performance.	Relational	databases	were	so	easy	to	use	that	they	eventually	replaced	network	and	hierarchical	databases.	Programmers
using	those	older	models	were	forced	to	deal	with	many	low-level	implementation	details,	and	they	had	to	code	their	queries	in	a
procedural	fashion.	Most	importantly,	they	had	to	keep	efficiency	in	mind	when	designing	their	programs,	which	involved	a	lot	of	effort.
In	contrast,	in	a	relational	database,	almost	all	these	low-level	tasks	are	carried	out	automatically	by	the	database	system,	leaving	the
programmer	free	to	work	at	a	logical	level.	Since	attaining	dominance	in	the	1980s,	the	relational	model	has	reigned	supreme	among
data	models.

The	1980s	also	saw	much	research	on	parallel	and	distributed	databases,	as	well	as	initial	work	on	object-oriented	databases.

1.9

History	of	Database	Systems

27

•	1990s:	The	SQL	language	was	designed	primarily	for	decision	support	applications,	which	are	query-intensive,	yet	the	mainstay	of
databases	in	the	1980s	was	transaction-processing	applications,	which	are	update-intensive.

In	the	early	1990s,	decision	support	and	querying	re-emerged	as	a	major	application	area	for	databases.	Tools	for	analyzing	large
amounts	of	data	saw	a	large	growth	in	usage.	Many	database	vendors	introduced	parallel	database	products	in	this	period.	Database
vendors	also	began	to	add	object-relational	support	to	their	databases.

The	major	event	of	the	1990s	was	the	explosive	growth	of	the	World	Wide	Web.	Databases	were	deployed	much	more	extensively	than
ever	before.	Database	systems	now	had	to	support	very	high	transaction-processing	rates,	as	well	as	very	high	reliability	and	24	×	7
availability	(availability	24	hours	a	day,	7	days	a	week,	meaning	no	downtime	for	scheduled	maintenance	activities).	Database	systems
also	had	to	support	web	interfaces	to	data.

•	2000s:	The	types	of	data	stored	in	database	systems	evolved	rapidly	during	this	period.	Semi-structured	data	became	increasingly
important.	XML	emerged	as	a	data-exchange	standard.	JSON,	a	more	compact	data-exchange	format	well	suited	for	storing	objects	from
JavaScript	or	other	programming	languages	subsequently	grew	increasingly	important.	Increasingly,	such	data	were	stored	in	relational
database	systems	as	support	for	the	XML	and	JSON	formats	was	added	to	the	major	commercial	systems.	Spatial	data	(that	is,	data	that

include	geographic	information)	saw	widespread	use	in	navigation	systems	and	advanced	applications.

Database	systems	added	support	for	such	data.

Open-source	database	systems,	notably	PostgreSQL	and	MySQL	saw	increased	use.	“Auto-admin”	features	were	added	to	database
systems	in	order	to	allow	automatic	reconfiguration	to	adapt	to	changing	workloads.	This	helped	reduce	the	human	workload	in
administering	a	database.

Social	network	platforms	grew	at	a	rapid	pace,	creating	a	need	to	manage	data	about	connections	between	people	and	their	posted	data,
that	did	not	fit	well	into	a	tabular	row-and-column	format.	This	led	to	the	development	of	graph	databases.

In	the	latter	part	of	the	decade,	the	use	of	data	analytics	and	data	mining	in	enterprises	became	ubiquitous.	Database	systems	were
developed	specifically	to	serve	this	market.	These	systems	featured	physical	data	organizations	suitable	for	analytic	processing,	such	as
“column-stores,”	in	which	tables	are	stored	by	column	rather	than	the	traditional	row-oriented	storage	of	the	major	commercial	database
systems.

The	huge	volumes	of	data,	as	well	as	the	fact	that	much	of	the	data	used	for	analytics	was	textual	or	semi-structured,	led	to	the
development	of	programming	frameworks,	such	as	map-reduce,	to	facilitate	application	programmers’	use	of	parallelism	in	analyzing
data.	In	time,	support	for	these	features	migrated	into	traditional	database	systems.	Even	in	the	late	2010s,	debate	continued	in	the
database

28

Chapter	1

Introduction

research	community	over	the	relative	merits	of	a	single	database	system	serving	both	traditional	transaction	processing	applications	and
the	newer	data-analysis	applications	versus	maintaining	separate	systems	for	these	roles.

The	variety	of	new	data-intensive	applications	and	the	need	for	rapid	development,	particularly	by	startup	firms,	led	to	“NoSQL”	systems
that	provide	a	lightweight	form	of	data	management.	The	name	was	derived	from	those	systems’

lack	of	support	for	the	ubiquitous	database	query	language	SQL,	though	the	name	is	now	often	viewed	as	meaning	“not	only	SQL.”	The
lack	of	a	high-level	query	language	based	on	the	relational	model	gave	programmers	greater	flexibility	to	work	with	new	types	of	data.
The	lack	of	traditional	database	systems’	support	for	strict	data	consistency	provided	more	flexibility	in	an	application’s	use	of	distributed
data	stores.	The	NoSQL	model	of	“eventual	consistency”	allowed	for	distributed	copies	of	data	to	be	inconsistent	as	long	they	would
eventually	converge	in	the	absence	of	further	updates.

•	2010s:	The	limitations	of	NoSQL	systems,	such	as	lack	of	support	for	consistency,	and	lack	of	support	for	declarative	querying,	were
found	acceptable	by	many	applications	(e.g.,	social	networks),	in	return	for	the	benefits	they	provided	such	as	scalability	and	availability.
However,	by	the	early	2010s	it	was	clear	that	the	limitations	made	life	significantly	more	complicated	for	programmers	and	database
administrators.	As	a	result,	these	systems	evolved	to	provide	features	to	support	stricter	notions	of	consistency,	while	continuing	to
support	high	scalability	and	availability.	Additionally,	these	systems	increasingly	support	higher	levels	of	abstraction	to	avoid	the	need	for
programmers	to	have	to	reimplement	features	that	are	standard	in	a	traditional	database	system.

Enterprises	are	increasingly	outsourcing	the	storage	and	management	of	their	data.	Rather	than	maintaining	in-house	systems	and
expertise,	enterprises	may	store	their	data	in	“cloud”	services	that	host	data	for	various	clients	in	multiple,	widely	distributed	server
farms.	Data	are	delivered	to	users	via	web-based	services.

Other	enterprises	are	outsourcing	not	only	the	storage	of	their	data	but	also	whole	applications.	In	such	cases,	termed	“software	as	a
service,”	the	vendor	not	only	stores	the	data	for	an	enterprise	but	also	runs	(and	maintains)	the	application	software.	These	trends	result
in	significant	savings	in	costs,	but	they	create	new	issues	not	only	in	responsibility	for	security	breaches,	but	also	in	data	ownership,
particularly	in	cases	where	a	government	requests	access	to	data.

The	huge	influence	of	data	and	data	analytics	in	daily	life	has	made	the	management	of	data	a	frequent	aspect	of	the	news.	There	is	an
unresolved	tradeoff	between	an	individual’s	right	of	privacy	and	society’s	need	to	know.	Various	national	governments	have	put
regulations	on	privacy	in	place.	High-profile	security	breaches	have	created	a	public	awareness	of	the	challenges	in	cybersecurity	and	the
risks	of	storing	data.

1.10

Summary

29

1.10

Summary

•	A	database-management	system	(DBMS)	consists	of	a	collection	of	interrelated	data	and	a	collection	of	programs	to	access	those	data.
The	data	describe	one	particular	enterprise.

•	The	primary	goal	of	a	DBMS	is	to	provide	an	environment	that	is	both	convenient	and	efficient	for	people	to	use	in	retrieving	and
storing	information.

•	Database	systems	are	ubiquitous	today,	and	most	people	interact,	either	directly	or	indirectly,	with	databases	many	times	every	day.

•	Database	systems	are	designed	to	store	large	bodies	of	information.	The	management	of	data	involves	both	the	definition	of	structures
for	the	storage	of	information	and	the	provision	of	mechanisms	for	the	manipulation	of	information.	In	addition,	the	database	system	must
provide	for	the	safety	of	the	information	stored	in	the	face	of	system	crashes	or	attempts	at	unauthorized	access.	If	data	are	to	be	shared
among	several	users,	the	system	must	avoid	possible	anomalous	results.

•	A	major	purpose	of	a	database	system	is	to	provide	users	with	an	abstract	view	of	the	data.	That	is,	the	system	hides	certain	details	of
how	the	data	are	stored	and	maintained.

•	Underlying	the	structure	of	a	database	is	the	data	model:	a	collection	of	conceptual	tools	for	describing	data,	data	relationships,	data
semantics,	and	data	constraints.

•	The	relational	data	model	is	the	most	widely	deployed	model	for	storing	data	in	databases.	Other	data	models	are	the	object-oriented
model,	the	object-relational	model,	and	semi-structured	data	models.

•	A	data-manipulation	language	(DML)	is	a	language	that	enables	users	to	access	or	manipulate	data.	Nonprocedural	DMLs,	which

require	a	user	to	specify	only	what	data	are	needed,	without	specifying	exactly	how	to	get	those	data,	are	widely	used	today.

•	A	data-definition	language	(DDL)	is	a	language	for	specifying	the	database	schema	and	other	properties	of	the	data.

•	Database	design	mainly	involves	the	design	of	the	database	schema.	The	entity-relationship	(E-R)	data	model	is	a	widely	used	model	for
database	design.	It	provides	a	convenient	graphical	representation	to	view	data,	relationships,	and	constraints.

•	A	database	system	has	several	subsystems.

°	The	storage	manager	subsystem	provides	the	interface	between	the	low-level	data	stored	in	the	database	and	the	application	programs
and	queries	submitted	to	the	system.

30

Chapter	1

Introduction

°	The	query	processor	subsystem	compiles	and	executes	DDL	and	DML	statements.

•	Transaction	management	ensures	that	the	database	remains	in	a	consistent	(correct)	state	despite	system	failures.	The	transaction
manager	ensures	that	concurrent	transaction	executions	proceed	without	conflicts.

•	The	architecture	of	a	database	system	is	greatly	influenced	by	the	underlying	computer	system	on	which	the	database	system	runs.
Database	systems	can	be	centralized,	or	parallel,	involving	multiple	machines.	Distributed	databases	span	multiple	geographically
separated	machines.

•	Database	applications	are	typically	broken	up	into	a	front-end	part	that	runs	at	client	machines	and	a	part	that	runs	at	the	backend.	In
two-tier	architectures,	the	front	end	directly	communicates	with	a	database	running	at	the	back	end.	In	three-tier	architectures,	the	back
end	part	is	itself	broken	up	into	an	application	server	and	a	database	server.

•	There	are	four	different	types	of	database-system	users,	differentiated	by	the	way	they	expect	to	interact	with	the	system.	Different
types	of	user	interfaces	have	been	designed	for	the	different	types	of	users.

•	Data-analysis	techniques	attempt	to	automatically	discover	rules	and	patterns	from	data.	The	field	of	data	mining	combines	knowledge-
discovery	techniques	invented	by	artificial	intelligence	researchers	and	statistical	analysts	with	efficient	implementation	techniques	that
enable	them	to	be	used	on	extremely	large	databases.

Review	Terms

•	Database-management	system

•	Instance

(DBMS)

•	Schema

•	Database-system	applications

•

°	Physical	schema

Online	transaction	processing

•	Data	analytics

°	Logical	schema

•	File-processing	systems

°	Subschema

•	Data	inconsistency

•	Physical	data	independence

•	Consistency	constraints

•	Data	models

•	Data	abstraction

°	Entity-relationship	model

°	Physical	level

°	Relational	data	model

°	Logical	level

°	Semi-structured	data	model

°	View	level

°	Object-based	data	model

Practice	Exercises

31

•	Database	languages

⋄	Transaction	manager

⋄

°	Data-definition	language

File	manager

⋄	Buffer	manager

°	Data-manipulation	language

⋄

⋄	Data	files

Procedural	DML

⋄

⋄	Data	dictionary

Declarative	DML

⋄

⋄	Indices

nonprocedural	DML

°	Query	language

°	Query	processor

⋄	DDL	interpreter

•	Data-definition	language

⋄	DML	compiler

°	Domain	Constraints

⋄	Query	optimization

°	Referential	Integrity

⋄	Query	evaluation	engine

°	Authorization

°	Transactions

⋄	Read	authorization

⋄	Atomicity

⋄	Insert	authorization

⋄	Consistency

⋄	Update	authorization

⋄	Durability

⋄	Delete	authorization

⋄	Recovery	manager

•	Metadata

⋄	Failure	recovery

•	Application	program

⋄	Concurrency-control	manager

•	Database	design

•	Database	Architecture

°	Conceptual	design

°	Centralized

°	Normalization

°	Parallel

°	Specification	of	functional	re-

°	Distributed

quirements

•	Database	Application	Architecture

°	Physical-design	phase

°	Two-tier

•	Database	Engine

°	Three-tier

°	Storage	manager

⋄	Authorization	and	integrity

°	Application	server

manager

•	Database	administrator	(DBA)

Practice	Exercises

1.1

This	chapter	has	described	several	major	advantages	of	a	database	system.	What	are	two	disadvantages?

1.2

List	five	ways	in	which	the	type	declaration	system	of	a	language	such	as	Java	or	C++	differs	from	the	data	definition	language	used	in	a
database.

32

Chapter	1

Introduction

1.3

List	six	major	steps	that	you	would	take	in	setting	up	a	database	for	a	particular	enterprise.

1.4

Suppose	you	want	to	build	a	video	site	similar	to	YouTube.	Consider	each	of	the	points	listed	in	Section	1.2	as	disadvantages	of	keeping
data	in	a	file-processing	system.	Discuss	the	relevance	of	each	of	these	points	to	the	storage	of	actual	video	data,	and	to	metadata	about
the	video,	such	as	title,	the	user	who	uploaded	it,	tags,	and	which	users	viewed	it.

1.5

Keyword	queries	used	in	web	search	are	quite	different	from	database	queries.

List	key	differences	between	the	two,	in	terms	of	the	way	the	queries	are	specified	and	in	terms	of	what	is	the	result	of	a	query.

Exercises

1.6

List	four	applications	you	have	used	that	most	likely	employed	a	database	system	to	store	persistent	data.

1.7

List	four	significant	differences	between	a	file-processing	system	and	a	DBMS.

1.8

Explain	the	concept	of	physical	data	independence	and	its	importance	in	database	systems.

1.9

List	five	responsibilities	of	a	database-management	system.	For	each	responsibility,	explain	the	problems	that	would	arise	if	the
responsibility	were	not	dis-charged.

1.10

List	at	least	two	reasons	why	database	systems	support	data	manipulation	using	a	declarative	query	language	such	as	SQL,	instead	of
just	providing	a	library	of	C	or	C++	functions	to	carry	out	data	manipulation.

1.11

Assume	that	two	students	are	trying	to	register	for	a	course	in	which	there	is	only	one	open	seat.	What	component	of	a	database	system
prevents	both	students	from	being	given	that	last	seat?

1.12

Explain	the	difference	between	two-tier	and	three-tier	application	architectures.

Which	is	better	suited	for	web	applications?	Why?

1.13

List	two	features	developed	in	the	2000s	and	that	help	database	systems	handle	data-analytics	workloads.

1.14

Explain	why	NoSQL	systems	emerged	in	the	2000s,	and	briefly	contrast	their	features	with	traditional	database	systems.

1.15

Describe	at	least	three	tables	that	might	be	used	to	store	information	in	a	social-networking	system	such	as	Facebook.

Further	Reading

33

Tools

There	are	a	large	number	of	commercial	database	systems	in	use	today.

The	major	ones	include:	IBM	DB2	(www.ibm.com/software/data/db2),	Ora-

cle	(www.oracle.com),	Microsoft	SQL	Server	(www.microsoft.com/sql),	IBM	Informix	(www.ibm.com/software/data/informix),	SAP
Adaptive	Server	Enterprise	(formerly	Sybase)	(www.sap.com/products/sybase-ase.html),	and	SAP	HANA
(www.sap.com/products/hana.html).	Some	of	these	systems	are	available	free	for	personal	or	non-commercial	use,	or	for	development,
but	are	not	free	for	actual	deployment.

There	are	also	a	number	of	free/public	domain	database	systems;	widely	used	ones	include	MySQL	(www.mysql.com),	PostgreSQL
(www.postgresql.org),	and	the	embedded	database	SQLite	(www.sqlite.org).

A	more	complete	list	of	links	to	vendor	web	sites	and	other	information	is	available	from	the	home	page	of	this	book,	at	db-book.com.

Further	Reading

[Codd	(1970)]	is	the	landmark	paper	that	introduced	the	relational	model.	Textbook	coverage	of	database	systems	is	provided	by	[O’Neil
and	O’Neil	(2000)],	[Ramakrishnan	and	Gehrke	(2002)],	[Date	(2003)],	[Kifer	et	al.	(2005)],	[Garcia-Molina	et	al.

(2008)],	and	[Elmasri	and	Navathe	(2016)],	in	addition	to	this	textbook,	A	review	of	accomplishments	in	database	management	and	an
assessment	of	future	research	challenges	appears	in	[Abadi	et	al.	(2016)].	The	home	page	of	the	ACM	Special	Interest	Group	on
Management	of	Data	(www.acm.org/sigmod)	provides	a	wealth	of	information	about	database	research.	Database	vendor	web	sites	(see
the	Tools	section	above)	provide	details	about	their	respective	products.

Bibliography

[Abadi	et	al.	(2016)]

D.	Abadi,	R.	Agrawal,	A.	Ailamaki,	M.	Balazinska,	P.	A.	Bernstein,

M.	J.	Carey,	S.	Chaudhuri,	J.	Dean,	A.	Doan,	M.	J.	Franklin,	J.	Gehrke,	L.	M.	Haas,	A.	Y.

Halevy,	J.	M.	Hellerstein,	Y.	E.	Ioannidis,	H.	Jagadish,	D.	Kossmann,	S.	Madden,	S.	Mehrotra,	T.	Milo,	J.	F.	Naughton,	R.	Ramakrishnan,	V.
Markl,	C.	Olston,	B.	C.	Ooi,	C.	RÂé,	D.	Suciu,	M.	Stonebraker,	T.	Walter,	and	J.	Widom,	“The	Beckman	Report	on	Database	Research”,
Communications	of	the	ACM,	Volume	59,	Number	2	(2016),	pages	92–99.

[Codd	(1970)]

E.	F.	Codd,	“A	Relational	Model	for	Large	Shared	Data	Banks”,	Communications	of	the	ACM,	Volume	13,	Number	6	(1970),	pages	377–
387.

[Date	(2003)]

C.	J.	Date,	An	Introduction	to	Database	Systems,	8th	edition,	Addison	Wesley	(2003).

34

Chapter	1

Introduction

[Elmasri	and	Navathe	(2016)]

R.	Elmasri	and	S.	B.	Navathe,	Fundamentals	of	Database	Sys-

tems,	7th	edition,	Addison	Wesley	(2016).

[Garcia-Molina	et	al.	(2008)]

H.	Garcia-Molina,	J.	D.	Ullman,	and	J.	D.	Widom,	Database

Systems:	The	Complete	Book,	2nd	edition,	Prentice	Hall	(2008).

[Kifer	et	al.	(2005)]

M.	Kifer,	A.	Bernstein,	and	P.	Lewis,	Database	Systems:	An	Application	Oriented	Approach,	Complete	Version,	2nd	edition,	Addison
Wesley	(2005).

[O’Neil	and	O’Neil	(2000)]

P.	O’Neil	and	E.	O’Neil,	Database:	Principles,	Programming,	Per-

formance,	2nd	edition,	Morgan	Kaufmann	(2000).

[Ramakrishnan	and	Gehrke	(2002)]

R.	Ramakrishnan	and	J.	Gehrke,	Database	Management

Systems,	3rd	edition,	McGraw	Hill	(2002).

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

PART	1

RELATIONAL	LANGUAGES

A	data	model	is	a	collection	of	conceptual	tools	for	describing	data,	data	relationships,	data	semantics,	and	consistency	constraints.	The
relational	model	uses	a	collection	of	tables	to	represent	both	data	and	the	relationships	among	those	data.	Its	conceptual	simplicity	has
led	to	its	widespread	adoption;	today	a	vast	majority	of	database	products	are	based	on	the	relational	model.	The	relational	model
describes	data	at	the	logical	and	view	levels,	abstracting	away	low-level	details	of	data	storage.

To	make	data	from	a	relational	database	available	to	users,	we	have	to	address	how	users	specify	requests	for	retrieving	and	updating
data.	Several	query	languages	have	been	developed	for	this	task,	which	are	covered	in	this	part.

Chapter	2	introduces	the	basic	concepts	underlying	relational	databases,	including	the	coverage	of	relational	algebra	—	a	formal	query
language	that	forms	the	basis	for	SQL.	The	language	SQL	is	the	most	widely	used	relational	query	language	today	and	is	covered	in	great
detail	in	this	part.

Chapter	3	provides	an	overview	of	the	SQL	query	language,	including	the	SQL

data	definition,	the	basic	structure	of	SQL	queries,	set	operations,	aggregate	functions,	nested	subqueries,	and	modification	of	the
database.

Chapter	4	provides	further	details	of	SQL,	including	join	expressions,	views,	transactions,	integrity	constraints	that	are	enforced	by	the
database,	and	authorization	mechanisms	that	control	what	access	and	update	actions	can	be	carried	out	by	a	user.

Chapter	5	covers	advanced	topics	related	to	SQL	including	access	to	SQL	from	programming	languages,	functions,	procedures,	triggers,
recursive	queries,	and	advanced	aggregation	features.

35

C	H	A	P	T	E	R	2

Introduction	to	the	Relational

Model

The	relational	model	remains	the	primary	data	model	for	commercial	data-processing	applications.	It	attained	its	primary	position
because	of	its	simplicity,	which	eases	the	job	of	the	programmer,	compared	to	earlier	data	models	such	as	the	network	model	or	the
hierarchical	model.	It	has	retained	this	position	by	incorporating	various	new	features	and	capabilities	over	its	half-century	of	existence.
Among	those	additions	are	object-relational	features	such	as	complex	data	types	and	stored	procedures,	support	for	XML	data,	and
various	tools	to	support	semi-structured	data.	The	relational	model’s	independence	from	any	specific	underlying	low-level	data	structures
has	allowed	it	to	persist	despite	the	advent	of	new	approaches	to	data	storage,	including	modern	column-stores	that	are	designed	for
large-scale	data	mining.

In	this	chapter,	we	first	study	the	fundamentals	of	the	relational	model.	A	substantial	theory	exists	for	relational	databases.	In	Chapter	6
and	Chapter	7,	we	shall	examine	aspects	of	database	theory	that	help	in	the	design	of	relational	database	schemas,	while	in	Chapter	15
and	Chapter	16	we	discuss	aspects	of	the	theory	dealing	with	efficient	processing	of	queries.	In	Chapter	27,	we	study	aspects	of	formal
relational	languages	beyond	our	basic	coverage	in	this	chapter.

2.1

Structure	of	Relational	Databases

A	relational	database	consists	of	a	collection	of	tables,	each	of	which	is	assigned	a	unique	name.	For	example,	consider	the	instructor
table	of	Figure	2.1,	which	stores	information	about	instructors.	The	table	has	four	column	headers:	ID,	name,	dept	name,	and	salary.
Each	row	of	this	table	records	information	about	an	instructor,	consisting	of	the	instructor’s	ID,	name,	dept	name,	and	salary.	Similarly,
the	course	table	of	Figure	2.2

stores	information	about	courses,	consisting	of	a	course	id,	title,	dept	name,	and	credits,	for	each	course.	Note	that	each	instructor	is
identified	by	the	value	of	the	column	ID,	while	each	course	is	identified	by	the	value	of	the	column	course	id.

37

38

Chapter	2

Introduction	to	the	Relational	Model

ID

name

dept	name

salary

10101

Srinivasan

Comp.	Sci.

65000

12121

Wu

Finance

90000

15151

Mozart

Music

40000

22222

Einstein

Physics

95000

32343

El	Said

History

60000

33456

Gold

Physics

87000

45565

Katz

Comp.	Sci.

75000

58583

Califieri

History

62000

76543

Singh

Finance

80000

76766

Crick

Biology

72000

83821

Brandt

Comp.	Sci.

92000

98345

Kim

Elec.	Eng.

80000

Figure	2.1	The	instructor	relation.

Figure	2.3	shows	a	third	table,	prereq,	which	stores	the	prerequisite	courses	for	each	course.	The	table	has	two	columns,	course	id	and
prereq	id.	Each	row	consists	of	a	pair	of	course	identifiers	such	that	the	second	course	is	a	prerequisite	for	the	first	course.

Thus,	a	row	in	the	prereq	table	indicates	that	two	courses	are	related	in	the	sense	that	one	course	is	a	prerequisite	for	the	other.	As
another	example,	when	we	consider	the	table	instructor,	a	row	in	the	table	can	be	thought	of	as	representing	the	relationship	course	id

title

dept	name

credits

BIO-101

Intro.	to	Biology

Biology

4

BIO-301

Genetics

Biology

4

BIO-399

Computational	Biology

Biology

3

CS-101

Intro.	to	Computer	Science

Comp.	Sci.

4

CS-190

Game	Design

Comp.	Sci.

4

CS-315

Robotics

Comp.	Sci.

3

CS-319

Image	Processing

Comp.	Sci.

3

CS-347

Database	System	Concepts

Comp.	Sci.

3

EE-181

Intro.	to	Digital	Systems

Elec.	Eng.

3

FIN-201

Investment	Banking

Finance

3

HIS-351

World	History

History

3

MU-199

Music	Video	Production

Music

3

PHY-101

Physical	Principles

Physics

4

Figure	2.2	The	course	relation.

2.1

Structure	of	Relational	Databases

39

course	id

prereq	id

BIO-301

BIO-101

BIO-399

BIO-101

CS-190

CS-101

CS-315

CS-101

CS-319

CS-101

CS-347

CS-101

EE-181

PHY-101

Figure	2.3	The	prereq	relation.

between	a	specified	ID	and	the	corresponding	values	for	name,	dept	name,	and	salary	values.

In	general,	a	row	in	a	table	represents	a	relationship	among	a	set	of	values.	Since	a	table	is	a	collection	of	such	relationships,	there	is	a
close	correspondence	between	the	concept	of	table	and	the	mathematical	concept	of	relation,	from	which	the	relational	data	model	takes
its	name.	In	mathematical	terminology,	a	tuple	is	simply	a	sequence	(or	list)	of	values.	A	relationship	between	n	values	is	represented
mathematically	by	an	n-tuple	of	values,	that	is,	a	tuple	with	n	values,	which	corresponds	to	a	row	in	a	table.

Thus,	in	the	relational	model	the	term	relation	is	used	to	refer	to	a	table,	while	the	term	tuple	is	used	to	refer	to	a	row.	Similarly,	the	term
attribute	refers	to	a	column	of	a	table.

Examining	Figure	2.1,	we	can	see	that	the	relation	instructor	has	four	attributes:	ID,	name,	dept	name,	and	salary.

We	use	the	term	relation	instance	to	refer	to	a	specific	instance	of	a	relation,	that	is,	containing	a	specific	set	of	rows.	The	instance	of
instructor	shown	in	Figure	2.1	has	12	tuples,	corresponding	to	12	instructors.

In	this	chapter,	we	shall	be	using	a	number	of	different	relations	to	illustrate	the	various	concepts	underlying	the	relational	data	model.

These	relations	represent	part	of	a	university.	To	simplify	our	presentation,	we	exclude	much	of	the	data	an	actual	university	database
would	contain.	We	shall	discuss	criteria	for	the	appropriateness	of	relational	structures	in	great	detail	in	Chapter	6	and	Chapter	7.

The	order	in	which	tuples	appear	in	a	relation	is	irrelevant,	since	a	relation	is	a	set	of	tuples.	Thus,	whether	the	tuples	of	a	relation	are
listed	in	sorted	order,	as	in	Figure	2.1,	or	are	unsorted,	as	in	Figure	2.4,	does	not	matter;	the	relations	in	the	two	figures	are	the	same,
since	both	contain	the	same	set	of	tuples.	For	ease	of	exposition,	we	generally	show	the	relations	sorted	by	their	first	attribute.

For	each	attribute	of	a	relation,	there	is	a	set	of	permitted	values,	called	the	domain	of	that	attribute.	Thus,	the	domain	of	the	salary
attribute	of	the	instructor	relation	is	the	set	of	all	possible	salary	values,	while	the	domain	of	the	name	attribute	is	the	set	of	all	possible
instructor	names.

40

Chapter	2

Introduction	to	the	Relational	Model

ID

name

dept	name

salary

22222

Einstein

Physics

95000

12121

Wu

Finance

90000

32343

El	Said

History

60000

45565

Katz

Comp.	Sci.

75000

98345

Kim

Elec.	Eng.

80000

76766

Crick

Biology

72000

10101

Srinivasan

Comp.	Sci.

65000

58583

Califieri

History

62000

83821

Brandt

Comp.	Sci.

92000

15151

Mozart

Music

40000

33456

Gold

Physics

87000

76543

Singh

Finance

80000

Figure	2.4	Unsorted	display	of	the	instructor	relation.

We	require	that,	for	all	relations	r,	the	domains	of	all	attributes	of	r	be	atomic.

A	domain	is	atomic	if	elements	of	the	domain	are	considered	to	be	indivisible	units.

For	example,	suppose	the	table	instructor	had	an	attribute	phone	number,	which	can	store	a	set	of	phone	numbers	corresponding	to	the
instructor.	Then	the	domain	of	phone	number	would	not	be	atomic,	since	an	element	of	the	domain	is	a	set	of	phone	numbers,	and	it	has
subparts,	namely,	the	individual	phone	numbers	in	the	set.

The	important	issue	is	not	what	the	domain	itself	is,	but	rather	how	we	use	domain	elements	in	our	database.	Suppose	now	that	the
phone	number	attribute	stores	a	single	phone	number.	Even	then,	if	we	split	the	value	from	the	phone	number	attribute	into	a	country
code,	an	area	code,	and	a	local	number,	we	would	be	treating	it	as	a	non-atomic	value.	If	we	treat	each	phone	number	as	a	single
indivisible	unit,	then	the	attribute	phone	number	would	have	an	atomic	domain.

The	null	value	is	a	special	value	that	signifies	that	the	value	is	unknown	or	does	not	exist.	For	example,	suppose	as	before	that	we	include
the	attribute	phone	number	in	the	instructor	relation.	It	may	be	that	an	instructor	does	not	have	a	phone	number	at	all,	or	that	the
telephone	number	is	unlisted.	We	would	then	have	to	use	the	null	value	to	signify	that	the	value	is	unknown	or	does	not	exist.	We	shall
see	later	that	null	values	cause	a	number	of	difficulties	when	we	access	or	update	the	database,	and	thus	they	should	be	eliminated	if	at
all	possible.	We	shall	assume	null	values	are	absent	initially,	and	in	Section	3.6	we	describe	the	effect	of	nulls	on	different	operations.

The	relatively	strict	structure	of	relations	results	in	several	important	practical	advantages	in	the	storage	and	processing	of	data,	as	we
shall	see.	That	strict	structure	is	suitable	for	well-defined	and	relatively	static	applications,	but	it	is	less	suitable	for	applications	where
not	only	data	but	also	the	types	and	structure	of	those	data	change	over	time.	A	modern	enterprise	needs	to	find	a	good	balance	between
the	efficiencies	of	structured	data	and	those	situations	where	a	predetermined	structure	is	limiting.

2.2

Database	Schema

41

2.2

Database	Schema

When	we	talk	about	a	database,	we	must	differentiate	between	the	database	schema,	which	is	the	logical	design	of	the	database,	and	the
database	instance,	which	is	a	snapshot	of	the	data	in	the	database	at	a	given	instant	in	time.

The	concept	of	a	relation	corresponds	to	the	programming-language	notion	of	a	variable,	while	the	concept	of	a	relation	schema
corresponds	to	the	programming-language	notion	of	type	definition.

In	general,	a	relation	schema	consists	of	a	list	of	attributes	and	their	corresponding	domains.	We	shall	not	be	concerned	about	the	precise
definition	of	the	domain	of	each	attribute	until	we	discuss	the	SQL	language	in	Chapter	3.

The	concept	of	a	relation	instance	corresponds	to	the	programming-language	notion	of	a	value	of	a	variable.	The	value	of	a	given	variable
may	change	with	time;	similarly	the	contents	of	a	relation	instance	may	change	with	time	as	the	relation	is	updated.

In	contrast,	the	schema	of	a	relation	does	not	generally	change.

Although	it	is	important	to	know	the	difference	between	a	relation	schema	and	a	relation	instance,	we	often	use	the	same	name,	such	as
instructor,	to	refer	to	both	the	schema	and	the	instance.	Where	required,	we	explicitly	refer	to	the	schema	or	to	the	instance,	for	example
“the	instructor	schema,”	or	“an	instance	of	the	instructor	relation.”

However,	where	it	is	clear	whether	we	mean	the	schema	or	the	instance,	we	simply	use	the	relation	name.

Consider	the	department	relation	of	Figure	2.5.	The	schema	for	that	relation	is:	department	(dept	name,	building,	budget)	Note	that	the
attribute	dept	name	appears	in	both	the	instructor	schema	and	the	department	schema.	This	duplication	is	not	a	coincidence.	Rather,
using	common	attributes	in	relation	schemas	is	one	way	of	relating	tuples	of	distinct	relations.	For	example,	suppose	we	wish	to	find	the
information	about	all	the	instructors	who	work	in	the	Watson	building.	We	look	first	at	the	department	relation	to	find	the	dept	name	of
all	the	departments	housed	in	Watson.	Then,	for	each	such	department,	we	look	in	dept	name

building

budget

Biology

Watson

90000

Comp.	Sci.

Taylor

100000

Elec.	Eng.

Taylor

85000

Finance

Painter

120000

History

Painter

50000

Music

Packard

80000

Physics

Watson

70000

Figure	2.5	The	department	relation.

42

Chapter	2

Introduction	to	the	Relational	Model

course	id

sec	id

semester

year

building

room	number

time	slot	id

BIO-101

1

Summer

2017

Painter

514

B

BIO-301

1

Summer

2018

Painter

514

A

CS-101

1

Fall

2017

Packard

101

H

CS-101

1

Spring

2018

Packard

101

F

CS-190

1

Spring

2017

Taylor

3128

E

CS-190

2

Spring

2017

Taylor

3128

A

CS-315

1

Spring

2018

Watson

120

D

CS-319

1

Spring

2018

Watson

100

B

CS-319

2

Spring

2018

Taylor

3128

C

CS-347

1

Fall

2017

Taylor

3128

A

EE-181

1

Spring

2017

Taylor

3128

C

FIN-201

1

Spring

2018

Packard

101

B

HIS-351

1

Spring

2018

Painter

514

C

MU-199

1

Spring

2018

Packard

101

D

PHY-101

1

Fall

2017

Watson

100

A

Figure	2.6	The	section	relation.

the	instructor	relation	to	find	the	information	about	the	instructor	associated	with	the	corresponding	dept
name.

Each	course	in	a	university	may	be	offered	multiple	times,	across	different	semesters,	or	even	within	a
semester.	We	need	a	relation	to	describe	each	individual	offering,	or	section,	of	the	class.	The	schema	is:

section	(course	id,	sec	id,	semester,	year,	building,	room	number,	time	slot	id)	Figure	2.6	shows	a	sample
instance	of	the	section	relation.

We	need	a	relation	to	describe	the	association	between	instructors	and	the	class	sections	that	they	teach.
The	relation	schema	to	describe	this	association	is:	teaches	(ID,	course	id,	sec	id,	semester,	year)	Figure
2.7	shows	a	sample	instance	of	the	teaches	relation.

As	you	can	imagine,	there	are	many	more	relations	maintained	in	a	real	university	database.	In	addition	to
those	relations	we	have	listed	already,	instructor,	department,	course,	section,	prereq,	and	teaches,	we
use	the	following	relations	in	this	text:

•	student	(ID,	name,	dept	name,	tot	cred)

•	advisor	(s	id,	i	id)

•	takes	(ID,	course	id,	sec	id,	semester,	year,	grade)

2.3

Keys

43

ID

course	id

sec	id

semester

year

10101

CS-101

1

Fall

2017

10101

CS-315

1

Spring

2018

10101

CS-347

1

Fall

2017

12121

FIN-201

1

Spring

2018

15151

MU-199

1

Spring

2018

22222

PHY-101

1

Fall

2017

32343

HIS-351

1

Spring

2018

45565

CS-101

1

Spring

2018

45565

CS-319

1

Spring

2018

76766

BIO-101

1

Summer

2017

76766

BIO-301

1

Summer

2018

83821

CS-190

1

Spring

2017

83821

CS-190

2

Spring

2017

83821

CS-319

2

Spring

2018

98345

EE-181

1

Spring

2017

Figure	2.7	The	teaches	relation.

•	classroom	(building,	room	number,	capacity)

•	time	slot	(time	slot	id,	day,	start	time,	end	time)	2.3

Keys

We	must	have	a	way	to	specify	how	tuples	within	a	given	relation	are	distinguished.

This	is	expressed	in	terms	of	their	attributes.	That	is,	the	values	of	the	attribute	values	of	a	tuple	must	be
such	that	they	can	uniquely	identify	the	tuple.	In	other	words,	no	two	tuples	in	a	relation	are	allowed	to
have	exactly	the	same	value	for	all	attributes.1

A	superkey	is	a	set	of	one	or	more	attributes	that,	taken	collectively,	allow	us	to	identify	uniquely	a	tuple
in	the	relation.	For	example,	the	ID	attribute	of	the	relation	instructor	is	sufficient	to	distinguish	one
instructor	tuple	from	another.	Thus,	ID	is	a	superkey.	The	name	attribute	of	instructor,	on	the	other	hand,
is	not	a	superkey,	because	several	instructors	might	have	the	same	name.

Formally,	let	R	denote	the	set	of	attributes	in	the	schema	of	relation	r.	If	we	say	that	a	subset	K	of	R	is	a
superkey	for	r,	we	are	restricting	consideration	to	instances	of	relations	r	in	which	no	two	distinct	tuples
have	the	same	values	on	all	attributes	in	K.

That	is,	if	t	and	t	are	in	r	and	t	≠	t	,	then	t	.K	≠	t	.K.

1

2

1

2

1

2

1Commercial	database	systems	relax	the	requirement	that	a	relation	is	a	set	and	instead	allow	duplicate
tuples.	This	is	discussed	further	in	Chapter	3.

44

Chapter	2

Introduction	to	the	Relational	Model

A	superkey	may	contain	extraneous	attributes.	For	example,	the	combination	of	ID	and	name	is	a
superkey	for	the	relation	instructor.	If	K	is	a	superkey,	then	so	is	any	superset	of	K.	We	are	often
interested	in	superkeys	for	which	no	proper	subset	is	a	superkey.	Such	minimal	superkeys	are	called
candidate	keys.

It	is	possible	that	several	distinct	sets	of	attributes	could	serve	as	a	candidate	key.

Suppose	that	a	combination	of	name	and	dept	name	is	sufficient	to	distinguish	among	members	of	the
instructor	relation.	Then,	both	{	ID}	and	{	name,	dept	name}	are	candidate	keys.	Although	the	attributes
ID	and	name	together	can	distinguish	instructor	tuples,	their	combination,	{	ID,	name},	does	not	form	a
candidate	key,	since	the	attribute	ID

alone	is	a	candidate	key.

We	shall	use	the	term	primary	key	to	denote	a	candidate	key	that	is	chosen	by	the	database	designer	as
the	principal	means	of	identifying	tuples	within	a	relation.	A	key	(whether	primary,	candidate,	or	super)	is
a	property	of	the	entire	relation,	rather	than	of	the	individual	tuples.	Any	two	individual	tuples	in	the
relation	are	prohibited	from	having	the	same	value	on	the	key	attributes	at	the	same	time.	The
designation	of	a	key	represents	a	constraint	in	the	real-world	enterprise	being	modeled.	Thus,	primary
keys	are	also	referred	to	as	primary	key	constraints.

It	is	customary	to	list	the	primary	key	attributes	of	a	relation	schema	before	the	other	attributes;	for
example,	the	dept	name	attribute	of	department	is	listed	first,	since	it	is	the	primary	key.	Primary	key
attributes	are	also	underlined.

Consider	the	classroom	relation:

classroom	(building,	room	number,	capacity)	Here	the	primary	key	consists	of	two	attributes,	building
and	room	number,	which	are	underlined	to	indicate	they	are	part	of	the	primary	key.	Neither	attribute	by
itself	can	uniquely	identify	a	classroom,	although	together	they	uniquely	identify	a	classroom.

Also	consider	the	time	slot	relation:

time	slot	(time	slot	id,	day,	start	time,	end	time)	Each	section	has	an	associated	time	slot	id.	The	time	slot
relation	provides	information	on	which	days	of	the	week,	and	at	what	times,	a	particular	time	slot	id
meets.	For	example,	time	slot	id	'A'	may	meet	from	8.00	AM	to	8.50	AM	on	Mondays,	Wednesdays,	and
Fridays.	It	is	possible	for	a	time	slot	to	have	multiple	sessions	within	a	single	day,	at	different	times,	so	the
time	slot	id	and	day	together	do	not	uniquely	identify	the	tuple.

The	primary	key	of	the	time	slot	relation	thus	consists	of	the	attributes	time	slot	id,	day,	and	start	time,
since	these	three	attributes	together	uniquely	identify	a	time	slot	for	a	course.

Primary	keys	must	be	chosen	with	care.	As	we	noted,	the	name	of	a	person	is	insufficient,	because	there
may	be	many	people	with	the	same	name.	In	the	United	States,	the	social	security	number	attribute	of	a
person	would	be	a	candidate	key.	Since	non-U.S.

residents	usually	do	not	have	social	security	numbers,	international	enterprises	must

2.3

Keys

45

generate	their	own	unique	identifiers.	An	alternative	is	to	use	some	unique	combination	of	other
attributes	as	a	key.

The	primary	key	should	be	chosen	such	that	its	attribute	values	are	never,	or	are	very	rarely,	changed.	For
instance,	the	address	field	of	a	person	should	not	be	part	of	the	primary	key,	since	it	is	likely	to	change.
Social	security	numbers,	on	the	other	hand,	are	guaranteed	never	to	change.	Unique	identifiers	generated
by	enterprises	generally	do	not	change,	except	if	two	enterprises	merge;	in	such	a	case	the	same
identifier	may	have	been	issued	by	both	enterprises,	and	a	reallocation	of	identifiers	may	be	required	to
make	sure	they	are	unique.

Figure	2.8	shows	the	complete	set	of	relations	that	we	use	in	our	sample	university	schema,	with	primary-
key	attributes	underlined.

Next,	we	consider	another	type	of	constraint	on	the	contents	of	relations,	called	foreign-key	constraints.
Consider	the	attribute	dept	name	of	the	instructor	relation.	It	would	not	make	sense	for	a	tuple	in
instructor	to	have	a	value	for	dept	name	that	does	not	correspond	to	a	department	in	the	department
relation.	Thus,	in	any	database	instance,	given	any	tuple,	say	t	,	from	the	instructor	relation,	there	must
be	some	tuple,	say	t	,	in	a

b

the	department	relation	such	that	the	value	of	the	dept	name	attribute	of	t	is	the	same	a

as	the	value	of	the	primary	key,	dept	name,	of	t	.

b

A	foreign-key	constraint	from	attribute(s)	A	of	relation	r	to	the	primary-key	B	of	1

relation	r	states	that	on	any	database	instance,	the	value	of	A	for	each	tuple	in	r	must	2

1

also	be	the	value	of	B	for	some	tuple	in	r	.	Attribute	set	A	is	called	a	foreign	key	from	r	,	2

1

referencing	r	.	The	relation	r	is	also	called	the	referencing	relation	of	the	foreign-key	2

1

constraint,	and	r	is	called	the	referenced	relation.

2

For	example,	the	attribute	dept	name	in	instructor	is	a	foreign	key	from	instructor,	referencing
department;	note	that	dept	name	is	the	primary	key	of	department.	Similarly,	classroom(building,	room
number,	capacity)	department(dept	name,	building,	budget)	course(course	id,	title,	dept	name,	credits)
instructor(ID,	name,	dept	name,	salary)	section(course	id,	sec	id,	semester,	year,	building,	room	number,
time	slot	id)	teaches(ID,	course	id,	sec	id,	semester,	year)	student(ID,	name,	dept	name,	tot	cred)	takes(
ID,	course	id,	sec	id,	semester,	year,	grade)	advisor(s	ID,	i	ID)

time	slot(time	slot	id,	day,	start	time,	end	time)	prereq(course	id,	prereq	id)

Figure	2.8	Schema	of	the	university	database.

46

Chapter	2

Introduction	to	the	Relational	Model

the	attributes	building	and	room	number	of	the	section	relation	together	form	a	foreign	key	referencing
the	classroom	relation.

Note	that	in	a	foreign-key	constraint,	the	referenced	attribute(s)	must	be	the	primary	key	of	the
referenced	relation.	The	more	general	case,	a	referential-integrity	constraint,	relaxes	the	requirement
that	the	referenced	attributes	form	the	primary	key	of	the	referenced	relation.

As	an	example,	consider	the	values	in	the	time	slot	id	attribute	of	the	section	relation.	We	require	that
these	values	must	exist	in	the	time	slot	id	attribute	of	the	time	slot	relation.	Such	a	requirement	is	an
example	of	a	referential	integrity	constraint.	In	general,	a	referential	integrity	constraint	requires	that	the
values	appearing	in	specified	attributes	of	any	tuple	in	the	referencing	relation	also	appear	in	specified
attributes	of	at	least	one	tuple	in	the	referenced	relation.

Note	that	time	slot	does	not	form	a	primary	key	of	the	time	slot	relation,	although	it	is	a	part	of	the
primary	key;	thus,	we	cannot	use	a	foreign-key	constraint	to	enforce	the	above	constraint.	In	fact,	foreign-
key	constraints	are	a	special	case	of	referential	integrity	constraints,	where	the	referenced	attributes
form	the	primary	key	of	the	referenced	relation.	Database	systems	today	typically	support	foreign-key
constraints,	but	they	do	not	support	referential	integrity	constraints	where	the	referenced	attribute	is	not
a	primary	key.

2.4

Schema	Diagrams

A	database	schema,	along	with	primary	key	and	foreign-key	constraints,	can	be	depicted	by	schema
diagrams.	Figure	2.9	shows	the	schema	diagram	for	our	university	organization.	Each	relation	appears	as
a	box,	with	the	relation	name	at	the	top	in	blue	and	the	attributes	listed	inside	the	box.

Primary-key	attributes	are	shown	underlined.	Foreign-key	constraints	appear	as	arrows	from	the	foreign-
key	attributes	of	the	referencing	relation	to	the	primary	key	of	the	referenced	relation.	We	use	a	two-
headed	arrow,	instead	of	a	single-headed	arrow,	to	indicate	a	referential	integrity	constraint	that	is	not	a
foreign-key	constraints.	In	Figure	2.9,	the	line	with	a	two-headed	arrow	from	time	slot	id	in	the	section
relation	to	time	slot	id	in	the	time	slot	relation	represents	the	referential	integrity	constraint	from	section.
time	slot	id	to	time	slot.	time	slot	id.

Many	database	systems	provide	design	tools	with	a	graphical	user	interface	for	creating	schema
diagrams.2	We	shall	discuss	a	different	diagrammatic	representation	of	schemas,	called	the	entity-
relationship	diagram,	at	length	in	Chapter	6;	although	there	are	some	similarities	in	appearance,	these
two	notations	are	quite	different,	and	should	not	be	confused	for	one	another.

2The	two-headed	arrow	notation	to	represent	referential	integrity	constraints	has	been	introduced	by	us
and	is	not	supported	by	any	tool	as	far	as	we	know;	the	notations	for	primary	and	foreign	keys,	however,
are	widely	used.

2.5

Relational	Query	Languages

47

student

takes

ID

ID

name

course_id

dept_name

sec_id

tot_cred

semester

year

grade

section

course

course_id

course_id

department

advisor

sec_id

title

dept_name

s_id

semester

dept_name

i_id

building

year

credits

time_slot

building

budget

room_number

time_slot_id

time_slot_id

day

start_time

end_time

prereq

instructor

classroom

course_id

ID

building

prereq_id

name

room_number

dept_name

capacity

teaches

salary

ID

course_id

sec_id

semester

year

Figure	2.9	Schema	diagram	for	the	university	database.

2.5

Relational	Query	Languages

A	query	language	is	a	language	in	which	a	user	requests	information	from	the	database.

These	languages	are	usually	on	a	level	higher	than	that	of	a	standard	programming	language.	Query
languages	can	be	categorized	as	imperative,	functional,	or	declarative.

In	an	imperative	query	language,	the	user	instructs	the	system	to	perform	a	specific	sequence	of
operations	on	the	database	to	compute	the	desired	result;	such	languages	usually	have	a	notion	of	state
variables,	which	are	updated	in	the	course	of	the	computation.

In	a	functional	query	language,	the	computation	is	expressed	as	the	evaluation	of	functions	that	may
operate	on	data	in	the	database	or	on	the	results	of	other	functions;	functions	are	side-effect	free,	and
they	do	not	update	the	program	state.3	In	a	declarative	query	language,	the	user	describes	the	desired
information	without	giving	a	specific	sequence	of	steps	or	function	calls	for	obtaining	that	information;
the	desired	information	is	typically	described	using	some	form	of	mathematical	logic.	It	is	the	job	of	the
database	system	to	figure	out	how	to	obtain	the	desired	information.

3The	term	procedural	language	has	been	used	in	earlier	editions	of	the	book	to	refer	to	languages	based
on	procedure	invocations,	which	include	functional	languages;	however,	the	term	is	also	widely	used	to
refer	to	imperative	languages.

To	avoid	confusion	we	no	longer	use	the	term.

48

Chapter	2

Introduction	to	the	Relational	Model

There	are	a	number	of	“pure”	query	languages.

•	The	relational	algebra,	which	we	describe	in	Section	2.6,	is	a	functional	query	language.4	The	relational
algebra	forms	the	theoretical	basis	of	the	SQL	query	language.

•	The	tuple	relational	calculus	and	domain	relational	calculus,	which	we	describe	in	Chapter	27	(available
online)	are	declarative.

These	query	languages	are	terse	and	formal,	lacking	the	“syntactic	sugar”	of	commercial	languages,	but
they	illustrate	the	fundamental	techniques	for	extracting	data	from	the	database.

Query	languages	used	in	practice,	such	as	the	SQL	query	language,	include	elements	of	the	imperative,
functional,	and	declarative	approaches.	We	study	the	very	widely	used	query	language	SQL	in	Chapter	3
through	Chapter	5.

2.6

The	Relational	Algebra

The	relational	algebra	consists	of	a	set	of	operations	that	take	one	or	two	relations	as	input	and	produce	a

new	relation	as	their	result.

Some	of	these	operations,	such	as	the	select,	project,	and	rename	operations,	are	called	unary	operations
because	they	operate	on	one	relation.	The	other	operations,	such	as	union,	Cartesian	product,	and	set
difference,	operate	on	pairs	of	relations	and	are,	therefore,	called	binary	operations.

Although	the	relational	algebra	operations	form	the	basis	for	the	widely	used	SQL

query	language,	database	systems	do	not	allow	users	to	write	queries	in	relational	algebra.	However,
there	are	implementations	of	relational	algebra	that	have	been	built	for	students	to	practice	relational
algebra	queries.	The	website	of	our	book,	db-book.com,	under	the	link	titled	Laboratory	Material,	provides
pointers	to	a	few	such	implementations.

It	is	worth	recalling	at	this	point	that	since	a	relation	is	a	set	of	tuples,	relations	cannot	contain	duplicate
tuples.	In	practice,	however,	tables	in	database	systems	are	permitted	to	contain	duplicates	unless	a
specific	constraint	prohibits	it.	But,	in	discussing	the	formal	relational	algebra,	we	require	that	duplicates
be	eliminated,	as	is	required	by	the	mathematical	definition	of	a	set.	In	Chapter	3	we	discuss	how
relational	algebra	can	be	extended	to	work	on	multisets,	which	are	sets	that	can	contain	duplicates.

4Unlike	modern	functional	languages,	relational	algebra	supports	only	a	small	number	of	predefined
functions,	which	define	an	algebra	on	relations.

2.6

The	Relational	Algebra

49

ID

name

dept	name

salary

22222

Einstein

Physics

95000

33456

Gold

Physics

87000

Figure	2.10	Result	of	σ	dept	name	=“Physics”	(instructor).

2.6.1

The	Select	Operation

The	select	operation	selects	tuples	that	satisfy	a	given	predicate.	We	use	the	lowercase	Greek	letter	sigma
(σ)	to	denote	selection.	The	predicate	appears	as	a	subscript	to	σ.

The	argument	relation	is	in	parentheses	after	the	σ.	Thus,	to	select	those	tuples	of	the	instructor	relation
where	the	instructor	is	in	the	“Physics”	department,	we	write:	σ

(instructor)

dept	name	=	“Physics”

If	the	instructor	relation	is	as	shown	in	Figure	2.1,	then	the	relation	that	results	from	the	preceding	query
is	as	shown	in	Figure	2.10.

We	can	find	all	instructors	with	salary	greater	than	$90,000	by	writing:	σ

(instructor)

salary>	90000

In	general,	we	allow	comparisons	using	=,	≠,	<,	≤,	>,	and	≥	in	the	selection	predicate.	Furthermore,	we
can	combine	several	predicates	into	a	larger	predicate	by	using	the	connectives	and	(∧),	or	(∨),	and	not
(¬).	Thus,	to	find	the	instructors	in	Physics	with	a	salary	greater	than	$90,000,	we	write:

σ

(instructor)

dept	name	=	“Physics”	∧	salary>	90000

The	selection	predicate	may	include	comparisons	between	two	attributes.	To	illustrate,	consider	the
relation	department.	To	find	all	departments	whose	name	is	the	same	as	their	building	name,	we	can
write:

σ

(department)

dept	name	=	building

2.6.2

The	Project	Operation

Suppose	we	want	to	list	all	instructors’	ID,	name,	and	salary,	but	we	do	not	care	about	the	dept	name.	The
project	operation	allows	us	to	produce	this	relation.	The	project	operation	is	a	unary	operation	that
returns	its	argument	relation,	with	certain	attributes	left	out.	Since	a	relation	is	a	set,	any	duplicate	rows
are	eliminated.	Projection	is	denoted	by	the	uppercase	Greek	letter	pi	(Π).	We	list	those	attributes	that	we
wish	to	appear	in	the	result	as	a	subscript	to	Π.	The	argument	relation	follows	in	parentheses.	We	write
the	query	to	produce	such	a	list	as:

Π

(instructor)

ID,	name,	salary

Figure	2.11	shows	the	relation	that	results	from	this	query.

50

Chapter	2

Introduction	to	the	Relational	Model

ID

name

salary

10101

Srinivasan

65000

12121

Wu

90000

15151

Mozart

40000

22222

Einstein

95000

32343

El	Said

60000

33456

Gold

87000

45565

Katz

75000

58583

Califieri

62000

76543

Singh

80000

76766

Crick

72000

83821

Brandt

92000

98345

Kim

80000

Figure	2.11	Result	of	Π	ID,	name,	salary(instructor).

The	basic	version	of	the	project	operator	Π	(E)	allows	only	attribute	names	to	be	L

present	in	the	list	L.	A	generalized	version	of	the	operator	allows	expressions	involving	attributes	to
appear	in	the	list	L.	For	example,	we	could	use:	Π

(instructor)

ID,	name,	salary∕12

to	get	the	monthly	salary	of	each	instructor.

2.6.3

Composition	of	Relational	Operations

The	fact	that	the	result	of	a	relational	operation	is	itself	a	relation	is	important.	Consider	the	more
complicated	query	“Find	the	names	of	all	instructors	in	the	Physics	department.”	We	write:

Π

(σ

(instructor))

name

dept	name	=	“Physics”

Notice	that,	instead	of	giving	the	name	of	a	relation	as	the	argument	of	the	projection	operation,	we	give
an	expression	that	evaluates	to	a	relation.

In	general,	since	the	result	of	a	relational-algebra	operation	is	of	the	same	type	(relation)	as	its	inputs,
relational-algebra	operations	can	be	composed	together	into	a	relational-algebra	expression.	Composing
relational-algebra	operations	into	relational-algebra	expressions	is	just	like	composing	arithmetic
operations	(such	as	+,	−,	∗,	and

÷)	into	arithmetic	expressions.

2.6.4

The	Cartesian-Product	Operation

The	Cartesian-product	operation,	denoted	by	a	cross	(×),	allows	us	to	combine	information	from	any	two
relations.	We	write	the	Cartesian	product	of	relations	r	and	r	1

2

as	r	×	r	.

1

2

2.6

The	Relational	Algebra

51

instructor.ID	name

dept	name

salary	teaches.	ID	course	id

sec	id	semester	year

10101

Srinivasan	Comp.	Sci.	65000

10101

CS-101

1

Fall

2017

10101

Srinivasan	Comp.	Sci.	65000

10101

CS-315

1

Spring

2018

10101

Srinivasan	Comp.	Sci.	65000

10101

CS-347

1

Fall

2017

10101

Srinivasan	Comp.	Sci.	65000

12121

FIN-201

1

Spring

2018

10101

Srinivasan	Comp.	Sci.	65000

15151

MU-199

1

Spring

2018

10101

Srinivasan	Comp.	Sci.	65000

22222

PHY-101

1

Fall

2017

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

12121

Wu

Finance

90000

10101

CS-101

1

Fall

2017

12121

Wu

Finance

90000

10101

CS-315

1

Spring

2018

12121

Wu

Finance

90000

10101

CS-347

1

Fall

2017

12121

Wu

Finance

90000

12121

FIN-201

1

Spring

2018

12121

Wu

Finance

90000

15151

MU-199

1

Spring

2018

12121

Wu

Finance

90000

22222

PHY-101

1

Fall

2017

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

15151

Mozart

Music

40000

10101

CS-101

1

Fall

2017

15151

Mozart

Music

40000

10101

CS-315

1

Spring

2018

15151

Mozart

Music

40000

10101

CS-347

1

Fall

2017

15151

Mozart

Music

40000

12121

FIN-201

1

Spring

2018

15151

Mozart

Music

40000

15151

MU-199

1

Spring

2018

15151

Mozart

Music

40000

22222

PHY-101

1

Fall

2017

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

22222

Einstein

Physics

95000

10101

CS-101

1

Fall

2017

22222

Einstein

Physics

95000

10101

CS-315

1

Spring

2018

22222

Einstein

Physics

95000

10101

CS-347

1

Fall

2017

22222

Einstein

Physics

95000

12121

FIN-201

1

Spring

2018

22222

Einstein

Physics

95000

15151

MU-199

1

Spring

2018

22222

Einstein

Physics

95000

22222

PHY-101

1

Fall

2017

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Figure	2.12	Result	of	the	Cartesian	product	instructor	×	teaches.

A	Cartesian	product	of	database	relations	differs	in	its	definition	slightly	from	the	mathematical	definition
of	a	Cartesian	product	of	sets.	Instead	of	r	×	r	producing	1

2

pairs	(t	,	t)	of	tuples	from	r	and	r	,	the	relational	algebra	concatenates	t	and	t	into	1

2

1

2

1

2

a	single	tuple,	as	shown	in	Figure	2.12.

Since	the	same	attribute	name	may	appear	in	the	schemas	of	both	r	and	r	,	we	1

2

need	to	devise	a	naming	schema	to	distinguish	between	these	attributes.	We	do	so	here	by	attaching	to	an
attribute	the	name	of	the	relation	from	which	the	attribute	originally	came.	For	example,	the	relation
schema	for	r	=	instructor	×	teaches	is:	(instructor.	ID,	instructor.	name,	instructor.	dept	name,
instructor.	salary,	teaches.	ID,	teaches.	course	id,	teaches.	sec	id,	teaches.	semester,	teaches.	year)

52

Chapter	2

Introduction	to	the	Relational	Model

With	this	schema,	we	can	distinguish	instructor.	ID	from	teaches.	ID.	For	those	attributes	that	appear	in
only	one	of	the	two	schemas,	we	shall	usually	drop	the	relation-name	prefix.	This	simplification	does	not
lead	to	any	ambiguity.	We	can	then	write	the	relation	schema	for	r	as:

(instructor.	ID,	name,	dept	name,	salary,	teaches.	ID,	course	id,	sec	id,	semester,	year)	This	naming
convention	requires	that	the	relations	that	are	the	arguments	of	the	Cartesian-product	operation	have
distinct	names.	This	requirement	causes	problems	in	some	cases,	such	as	when	the	Cartesian	product	of	a
relation	with	itself	is	desired.	A	similar	problem	arises	if	we	use	the	result	of	a	relational-algebra
expression	in	a	Cartesian	product,	since	we	shall	need	a	name	for	the	relation	so	that	we	can	refer	to	the
relation’s	attributes.	In	Section	2.6.8,	we	see	how	to	avoid	these	problems	by	using	the	rename	operation.

Now	that	we	know	the	relation	schema	for	r	=	instructor	×	teaches,	what	tuples	appear	in	r?	As	you	may
suspect,	we	construct	a	tuple	of	r	out	of	each	possible	pair	of	tuples:	one	from	the	instructor	relation
(Figure	2.1)	and	one	from	the	teaches	relation	(Figure	2.7).	Thus,	r	is	a	large	relation,	as	you	can	see	from
Figure	2.12,	which	includes	only	a	portion	of	the	tuples	that	make	up	r.

Assume	that	we	have	n	tuples	in	instructor	and	n	tuples	in	teaches.	Then,	there	1

2

are	n	∗	n	ways	of	choosing	a	pair	of	tuples—one	tuple	from	each	relation;	so	there	1

2

are	n	∗	n	tuples	in	r.	In	particular	for	our	example,	for	some	tuples	t	in	r,	it	may	be	1

2

that	the	two	ID	values,	instructor.	ID	and	teaches.	ID,	are	different.

In	general,	if	we	have	relations	r	(R)	and	r	(R),	then	r

×	r	is	a	relation	r(R)

1

1

2

2

1

2

whose	schema	R	is	the	concatenation	of	the	schemas	R	and	R	.	Relation	r	contains	all	1

2

tuples	t	for	which	there	is	a	tuple	t	in	r	and	a	tuple	t	in	r	for	which	t	and	t	have	the	1

1

2

2

1

same	value	on	the	attributes	in	R	and	t	and	t	have	the	same	value	on	the	attributes	in	1

2

R	.

2

2.6.5

The	Join	Operation

Suppose	we	want	to	find	the	information	about	all	instructors	together	with	the	course	id	of	all	courses
they	have	taught.	We	need	the	information	in	both	the	instructor	relation	and	the	teaches	relation	to
compute	the	required	result.	The	Cartesian	product	of	instructor	and	teaches	does	bring	together
information	from	both	these	relations,	but	unfortunately	the	Cartesian	product	associates	every	instructor
with	every	course	that	was	taught,	regardless	of	whether	that	instructor	taught	that	course.

Since	the	Cartesian-product	operation	associates	every	tuple	of	instructor	with	every	tuple	of	teaches,	we
know	that	if	an	instructor	has	taught	a	course	(as	recorded	in	the	teaches	relation),	then	there	is	some
tuple	in	instructor	×	teaches	that	contains	her	name	and	satisfies	instructor.	ID	=	teaches.	ID.	So,	if	we
write:	σ

(instructor	×	teaches)

instructor.ID	=	teaches.ID

we	get	only	those	tuples	of	instructor	×	teaches	that	pertain	to	instructors	and	the	courses	that	they
taught.

2.6

The	Relational	Algebra

53

instructor.ID	name

dept	name

salary	teaches.	ID	course	id

sec	id	semester	year

10101

Srinivasan	Comp.	Sci.	65000

10101

CS-101

1

Fall

2017

10101

Srinivasan	Comp.	Sci.	65000

10101

CS-315

1

Spring

2018

10101

Srinivasan	Comp.	Sci.	65000

10101

CS-347

1

Fall

2017

12121

Wu

Finance

90000

12121

FIN-201

1

Spring

2018

15151

Mozart

Music

40000

15151

MU-199

1

Spring

2018

22222

Einstein

Physics

95000

22222

PHY-101

1

Fall

2017

32343

El	Said

History

60000

32343

HIS-351

1

Spring

2018

45565

Katz

Comp.	Sci.	75000

45565

CS-101

1

Spring

2018

45565

Katz

Comp.	Sci.	75000

45565

CS-319

1

Spring

2018

76766

Crick

Biology

72000

76766

BIO-101

1

Summer	2017

76766

Crick

Biology

72000

76766

BIO-301

1

Summer	2018

83821

Brandt

Comp.	Sci.	92000

83821

CS-190

1

Spring

2017

83821

Brandt

Comp.	Sci.	92000

83821

CS-190

2

Spring

2017

83821

Brandt

Comp.	Sci.	92000

83821

CS-319

2

Spring

2018

98345

Kim

Elec.	Eng.

80000

98345

EE-181

1

Spring

2017

Figure	2.13	Result	of	σ	instructor.ID	=	teaches.ID(instructor	×	teaches).

The	result	of	this	expression	is	shown	in	Figure	2.13.	Observe	that	instructors	Gold,	Califieri,	and	Singh
do	not	teach	any	course	(as	recorded	in	the	teaches	relation),	and	therefore	do	not	appear	in	the	result.

Note	that	this	expression	results	in	the	duplication	of	the	instructor’s	ID.	This	can	be	easily	handled	by
adding	a	projection	to	eliminate	the	column	teaches.ID.

The	join	operation	allows	us	to	combine	a	selection	and	a	Cartesian	product	into	a	single	operation.

Consider	relations	r(R)	and	s(S),	and	let	θ	be	a	predicate	on	attributes	in	the	schema	R	∪	S.	The	join
operation	r	⋈θ	s	is	defined	as	follows:	r	⋈θ	s	=	σθ(r	×	s)

Thus,	σ

(instructor	×	teaches)	can	equivalently	be	written	as

instructor.ID	=	teaches.ID

instructor	⋈

teaches.

instructor.ID	=	teaches.ID

2.6.6

Set	Operations

Consider	a	query	to	find	the	set	of	all	courses	taught	in	the	Fall	2017	semester,	the	Spring	2018	semester,
or	both.	The	information	is	contained	in	the	section	relation	(Figure	2.6).	To	find	the	set	of	all	courses
taught	in	the	Fall	2017	semester,	we	write:	Π

(σ

(section))

course	id

semester	=	“Fall”	∧	year=2017

To	find	the	set	of	all	courses	taught	in	the	Spring	2018	semester,	we	write:	Π

(σ

(section))

course	id

semester	=	“Spring”	∧	year=2018

54

Chapter	2

Introduction	to	the	Relational	Model

To	answer	the	query,	we	need	the	union	of	these	two	sets;	that	is,	we	need	all	course	id	s	that	appear	in
either	or	both	of	the	two	relations.	We	find	these	data	by	the	binary	operation	union,	denoted,	as	in	set
theory,	by	∪.	So	the	expression	needed	is:	Π

(σ

(section))	∪

course	id

semester	=	“Fall”	∧	year=2017

Π

(σ

(section))

course	id

semester	=	“Spring”	∧	year=2018

The	result	relation	for	this	query	appears	in	Figure	2.14.	Notice	that	there	are	eight	tuples	in	the	result,
even	though	there	are	three	distinct	courses	offered	in	the	Fall	2017	semester	and	six	distinct	courses
offered	in	the	Spring	2018	semester.	Since	relations	are	sets,	duplicate	values	such	as	CS-101,	which	is
offered	in	both	semesters,	are	replaced	by	a	single	occurrence.

Observe	that,	in	our	example,	we	took	the	union	of	two	sets,	both	of	which	consisted	of	course	id	values.
In	general,	for	a	union	operation	to	make	sense:	1.	We	must	ensure	that	the	input	relations	to	the	union
operation	have	the	same	number	of	attributes;	the	number	of	attributes	of	a	relation	is	referred	to	as	its
arity.

2.	When	the	attributes	have	associated	types,	the	types	of	the	i	th	attributes	of	both	input	relations	must
be	the	same,	for	each	i.

Such	relations	are	referred	to	as	compatible	relations.

For	example,	it	would	not	make	sense	to	take	the	union	of	the	instructor	and	section	relations,	since	they
have	different	numbers	of	attributes.	And	even	though	the	instructor	and	the	student	relations	both	have
arity	4,	their	4th	attributes,	namely,	salary	and	tot	cred,	are	of	two	different	types.	The	union	of	these	two
attributes	would	not	make	sense	in	most	situations.

The	intersection	operation,	denoted	by	∩,	allows	us	to	find	tuples	that	are	in	both	the	input	relations.	The
expression	r	∩	s	produces	a	relation	containing	those	tuples	in	course	id

CS-101

CS-315

CS-319

CS-347

FIN-201

HIS-351

MU-199

PHY-101

Figure	2.14	Courses	offered	in	either	Fall	2017,	Spring	2018,	or	both	semesters.

2.6

The	Relational	Algebra

55

course	id

CS-101

Figure	2.15	Courses	offered	in	both	the	Fall	2017	and	Spring	2018	semesters.

r	as	well	as	in	s.	As	with	the	union	operation,	we	must	ensure	that	intersection	is	done	between
compatible	relations.

Suppose	that	we	wish	to	find	the	set	of	all	courses	taught	in	both	the	Fall	2017	and	the	Spring	2018
semesters.	Using	set	intersection,	we	can	write

Π

(σ

(section))	∩

course	id

semester	=	“Fall”	∧	year=2017

Π

(σ

(section))

course	id

semester	=	“Spring”	∧	year=2018

The	result	relation	for	this	query	appears	in	Figure	2.15.

The	set-difference	operation,	denoted	by	−,	allows	us	to	find	tuples	that	are	in	one	relation	but	are	not	in
another.	The	expression	r	−	s	produces	a	relation	containing	those	tuples	in	r	but	not	in	s.

We	can	find	all	the	courses	taught	in	the	Fall	2017	semester	but	not	in	Spring	2018

semester	by	writing:

Π

(σ

(section))	−

course	id

semester	=	“Fall”	∧	year=2017

Π

(σ

(section))

course	id

semester	=	“Spring”	∧	year=2018

The	result	relation	for	this	query	appears	in	Figure	2.16.

As	with	the	union	operation,	we	must	ensure	that	set	differences	are	taken	between	compatible	relations.

2.6.7

The	Assignment	Operation

It	is	convenient	at	times	to	write	a	relational-algebra	expression	by	assigning	parts	of	it	to	temporary
relation	variables.	The	assignment	operation,	denoted	by	←,	works	like	assignment	in	a	programming
language.	To	illustrate	this	operation,	consider	the	query	to	find	courses	that	run	in	Fall	2017	as	well	as
Spring	2018,	which	we	saw	earlier.	We	could	write	it	as:

course	id

CS-347

PHY-101

Figure	2.16	Courses	offered	in	the	Fall	2017	semester	but	not	in	Spring	2018

semester.

56

Chapter	2

Introduction	to	the	Relational	Model

courses	fall	2017	←	Π

(σ

(section))

course	id

semester	=	“Fall”	∧	year=2017

courses	spring	2018	←	Π

(σ

(section))

course	id

semester	=	“Spring”	∧	year=2018

courses	fall	2017	∩	courses	spring	2018

The	final	line	above	displays	the	query	result.	The	preceding	two	lines	assign	the	query	result	to	a
temporary	relation.	The	evaluation	of	an	assignment	does	not	result	in	any	relation	being	displayed	to	the
user.	Rather,	the	result	of	the	expression	to	the	right	of	the	←	is	assigned	to	the	relation	variable	on	the
left	of	the	←.	This	relation	variable	may	be	used	in	subsequent	expressions.

With	the	assignment	operation,	a	query	can	be	written	as	a	sequential	program	consisting	of	a	series	of
assignments	followed	by	an	expression	whose	value	is	displayed	as	the	result	of	the	query.	For	relational-
algebra	queries,	assignment	must	always	be	made	to	a	temporary	relation	variable.	Assignments	to
permanent	relations	constitute	a	database	modification.	Note	that	the	assignment	operation	does	not
provide	any	additional	power	to	the	algebra.	It	is,	however,	a	convenient	way	to	express	complex	queries.

2.6.8

The	Rename	Operation

Unlike	relations	in	the	database,	the	results	of	relational-algebra	expressions	do	not	have	a	name	that	we
can	use	to	refer	to	them.	It	is	useful	in	some	cases	to	give	them	names;	the	rename	operator,	denoted	by
the	lowercase	Greek	letter	rho	(ρ),	lets	us	do	this.	Given	a	relational-algebra	expression	E,	the	expression

ρ	(E)

x

returns	the	result	of	expression	E	under	the	name	x.

A	relation	r	by	itself	is	considered	a	(trivial)	relational-algebra	expression.	Thus,	we	can	also	apply	the
rename	operation	to	a	relation	r	to	get	the	same	relation	under	a	new	name.	Some	queries	require	the
same	relation	to	be	used	more	than	once	in	the	query;	in	such	cases,	the	rename	operation	can	be	used	to
give	unique	names	to	the	different	occurrences	of	the	same	relation.

A	second	form	of	the	rename	operation	is	as	follows:	Assume	that	a	relational-algebra	expression	E	has
arity	n.	Then,	the	expression	ρ

(E)

x(A	,	A	,…,	A)

1

2

n

returns	the	result	of	expression	E	under	the	name	x,	and	with	the	attributes	renamed	to	A	,	A	,	…	,	A	.	This
form	of	the	rename	operation	can	be	used	to	give	names	to	1

2

n

attributes	in	the	results	of	relational	algebra	operations	that	involve	expressions	on	attributes.

To	illustrate	renaming	a	relation,	we	consider	the	query	“Find	the	ID	and	name	of	those	instructors	who
earn	more	than	the	instructor	whose	ID	is	12121.”	(That’s	the	instructor	Wu	in	the	example	table	in
Figure	2.1.)

There	are	several	strategies	for	writing	this	query,	but	to	illustrate	the	rename	operation,	our	strategy	is
to	compare	the	salary	of	each	instructor	with	the	salary	of	the

2.6

The	Relational	Algebra

57

Note	2.1	OTHER	RELATIONAL	OPERATIONS

In	addition	to	the	relational	algebra	operations	we	have	seen	so	far,	there	are	a	number	of	other
operations	that	are	commonly	used.	We	summarize	them	below	and	describe	them	in	detail	later,	along
with	equivalent	SQL	constructs.

The	aggregation	operation	allows	a	function	to	be	computed	over	the	set	of	values	returned	by	a	query.
These	functions	include	average,	sum,	min,	and	max,	among	others.	The	operation	allows	also	for	these
aggregations	to	be	performed	after	splitting	the	set	of	values	into	groups,	for	example,	by	computing	the
average	salary	in	each	department.	We	study	the	aggregation	operation	in	more	detail	in	Section	3.7
(Note	3.2	on	page	97).

The	natural	join	operation	replaces	the	predicate	θ	in	⋈θ	with	an	implicit	predicate	that	requires	equality
over	those	attributes	that	appear	in	the	schemas	of	both	the	left	and	right	relations.	This	is	notationally
convenient	but	poses	risks	for	queries	that	are	reused	and	thus	might	be	used	after	a	relation’s	schema	is
changed.

It	is	covered	in	Section	4.1.1.

Recall	that	when	we	computed	the	join	of	instructor	and	teaches,	instructors	who	have	not	taught	any
course	do	not	appear	in	the	join	result.	The	outer	join	operation	allows	for	the	retention	of	such	tuples	in
the	result	by	inserting	nulls	for	the	missing	values.	It	is	covered	in	Section	4.1.3	(Note	4.1	on	page	136).

instructor	with	ID	12121.	The	difficulty	here	is	that	we	need	to	reference	the	instructor	relation	once	to
get	the	salary	of	each	instructor	and	then	a	second	time	to	get	the	salary	of	instructor	12121;	and	we
want	to	do	all	this	in	one	expression.	The	rename	operator	allows	us	to	do	this	using	different	names	for
each	referencing	of	the	instructor	relation.	In	this	example,	we	shall	use	the	name	i	to	refer	to	our	scan	of
the	instructor	relation	in	which	we	are	seeking	those	that	will	be	part	of	the	answer,	and	w	to	refer	to	the
scan	of	the	instructor	relation	to	obtain	the	salary	of	instructor	12121:	Π

((σ

(ρ	(instructor)	×	σ

(ρ	(instructor)))))

i.ID,	i.name

i.salary	>	w.salary

i

w.id=12121

w

The	rename	operation	is	not	strictly	required,	since	it	is	possible	to	use	a	positional	notation	for
attributes.	We	can	name	attributes	of	a	relation	implicitly	by	using	a	positional	notation,	where	$1,	$2,	…
refer	to	the	first	attribute,	the	second	attribute,	and	so	on.	The	positional	notation	can	also	be	used	to
refer	to	attributes	of	the	results	of	relational-algebra	operations.	However,	the	positional	notation	is
inconvenient	for	humans,	since	the	position	of	the	attribute	is	a	number,	rather	than	an	easy-to-remember
attribute	name.	Hence,	we	do	not	use	the	positional	notation	in	this	textbook.

58

Chapter	2

Introduction	to	the	Relational	Model

2.6.9

Equivalent	Queries

Note	that	there	is	often	more	than	one	way	to	write	a	query	in	relational	algebra.	Consider	the	following
query,	which	finds	information	about	courses	taught	by	instructors	in	the	Physics	department:

σ

(instructor	⋈

teaches)

dept	name	=	“Physics”

instructor.ID	=	teaches.ID

Now	consider	an	alternative	query:

(σ

(instructor))	⋈

teaches

dept	name	=	“Physics”

instructor.ID	=	teaches.ID

Note	the	subtle	difference	between	the	two	queries:	in	the	first	query,	the	selection	that	restricts	dept
name	to	Physics	is	applied	after	the	join	of	instructor	and	teaches	has	been	computed,	whereas	in	the
second	query,	the	selection	that	restricts	dept	name	to	Physics	is	applied	to	instructor,	and	the	join
operation	is	applied	subsequently.

Although	the	two	queries	are	not	identical,	they	are	in	fact	equivalent;	that	is,	they	give	the	same	result
on	any	database.

Query	optimizers	in	database	systems	typically	look	at	what	result	an	expression	computes	and	find	an
efficient	way	of	computing	that	result,	rather	than	following	the	exact	sequence	of	steps	specified	in	the
query.	The	algebraic	structure	of	relational	algebra	makes	it	easy	to	find	efficient	but	equivalent
alternative	expressions,	as	we	will	see	in	Chapter	16.

2.7

Summary

•	The	relational	data	model	is	based	on	a	collection	of	tables.	The	user	of	the	database	system	may	query
these	tables,	insert	new	tuples,	delete	tuples,	and	update	(modify)	tuples.	There	are	several	languages	for
expressing	these	operations.

•	The	schema	of	a	relation	refers	to	its	logical	design,	while	an	instance	of	the	relation	refers	to	its
contents	at	a	point	in	time.	The	schema	of	a	database	and	an	instance	of	a	database	are	similarly	defined.
The	schema	of	a	relation	includes	its	attributes,	and	optionally	the	types	of	the	attributes	and	constraints
on	the	relation	such	as	primary	and	foreign-key	constraints.

•	A	superkey	of	a	relation	is	a	set	of	one	or	more	attributes	whose	values	are	guaranteed	to	identify	tuples
in	the	relation	uniquely.	A	candidate	key	is	a	minimal	superkey,	that	is,	a	set	of	attributes	that	forms	a
superkey,	but	none	of	whose	subsets	is	a	superkey.	One	of	the	candidate	keys	of	a	relation	is	chosen	as	its
primary	key.

•	A	foreign-key	constraint	from	attribute(s)	A	of	relation	r	to	the	primary-key	B	of	1

relation	r	states	that	the	value	of	A	for	each	tuple	in	r	must	also	be	the	value	of	2

1

B	for	some	tuple	in	r	.	The	relation	r	is	called	the	referencing	relation,	and	r	is	2

1

2

called	the	referenced	relation.

Practice	Exercises

59

•	A	schema	diagram	is	a	pictorial	depiction	of	the	schema	of	a	database	that	shows	the	relations	in	the
database,	their	attributes,	and	primary	keys	and	foreign	keys.

•	The	relational	query	languages	define	a	set	of	operations	that	operate	on	tables	and	output	tables	as
their	results.	These	operations	can	be	combined	to	get	expressions	that	express	desired	queries.

•	The	relational	algebra	provides	a	set	of	operations	that	take	one	or	more	relations	as	input	and	return	a

relation	as	an	output.	Practical	query	languages	such	as	SQL

are	based	on	the	relational	algebra,	but	they	add	a	number	of	useful	syntactic	features.

•	The	relational	algebra	defines	a	set	of	algebraic	operations	that	operate	on	tables,	and	output	tables	as
their	results.	These	operations	can	be	combined	to	get	expressions	that	express	desired	queries.	The
algebra	defines	the	basic	operations	used	within	relational	query	languages	like	SQL.

Review	Terms

•	Table

•	Referential	integrity	constraint

•	Relation

•	Schema	diagram

•	Tuple

•	Query	language	types

•	Attribute

°	Imperative

•	Relation	instance

°	Functional

•	Domain

•	Atomic	domain

°	Declarative

•

•

Null	value

Relational	algebra

•

•

Database	schema

Relational-algebra	expression

•

•

Database	instance

Relational-algebra	operations

•	Relation	schema

°	Select	σ

•	Keys

°	Project	Π

°	Superkey

°	Cartesian	product	×

°	Candidate	key

°	Join	⋈

°	Primary	key

Ůnion	∪

°	Primary	key	constraints

°	Set	difference	−

•	Foreign-key	constraint

°	Set	intersection	∩

°	Referencing	relation

°	Assignment←

°	Referenced	relation

°	Rename	ρ

60

Chapter	2

Introduction	to	the	Relational	Model

employee	(person	name,	street,	city)

works	(person	name,	company	name,	salary)	company	(company	name,	city)

Figure	2.17	Employee	database.

Practice	Exercises

2.1

Consider	the	employee	database	of	Figure	2.17.	What	are	the	appropriate	primary	keys?

2.2

Consider	the	foreign-key	constraint	from	the	dept	name	attribute	of	instructor	to	the	department	relation.
Give	examples	of	inserts	and	deletes	to	these	relations	that	can	cause	a	violation	of	the	foreign-key
constraint.

2.3

Consider	the	time	slot	relation.	Given	that	a	particular	time	slot	can	meet	more	than	once	in	a	week,
explain	why	day	and	start	time	are	part	of	the	primary	key	of	this	relation,	while	end	time	is	not.

2.4

In	the	instance	of	instructor	shown	in	Figure	2.1,	no	two	instructors	have	the	same	name.	From	this,	can
we	conclude	that	name	can	be	used	as	a	superkey	(or	primary	key)	of	instructor?

2.5

What	is	the	result	of	first	performing	the	Cartesian	product	of	student	and	advisor,	and	then	performing	a
selection	operation	on	the	result	with	the	predicate	s	id	=	ID?	(Using	the	symbolic	notation	of	relational
algebra,	this	query	can	be	written	as	σ

(student	×	advisor).)

s	id=	ID

2.6

Consider	the	employee	database	of	Figure	2.17.	Give	an	expression	in	the	relational	algebra	to	express
each	of	the	following	queries:

a.

Find	the	name	of	each	employee	who	lives	in	city	“Miami”.

b.

Find	the	name	of	each	employee	whose	salary	is	greater	than	$100000.

c.

Find	the	name	of	each	employee	who	lives	in	“Miami”	and	whose	salary

is	greater	than	$100000.

2.7

Consider	the	bank	database	of	Figure	2.18.	Give	an	expression	in	the	relational	algebra	for	each	of	the
following	queries:

a.

Find	the	name	of	each	branch	located	in	“Chicago”.

b.

Find	the	ID	of	each	borrower	who	has	a	loan	in	branch	“Downtown”.

Practice	Exercises

61

branch(branch	name,	branch	city,	assets)

customer	(ID,	customer	name,	customer	street,	customer	city)	loan	(loan	number,	branch	name,	amount)

borrower	(ID,	loan	number)

account	(account	number,	branch	name,	balance)	depositor	(ID,	account	number)

Figure	2.18	Bank	database.

2.8

Consider	the	employee	database	of	Figure	2.17.	Give	an	expression	in	the	relational	algebra	to	express
each	of	the	following	queries:

a.

Find	the	ID	and	name	of	each	employee	who	does	not	work	for	“BigBank”.

b.

Find	the	ID	and	name	of	each	employee	who	earns	at	least	as	much	as

every	employee	in	the	database.

2.9

The	division	operator	of	relational	algebra,	“÷”,	is	defined	as	follows.	Let	r(R)	and	s(S)	be	relations,	and
let	S	⊆	R;	that	is,	every	attribute	of	schema	S	is	also	in	schema	R.	Given	a	tuple	t,	let	t[S]	denote	the
projection	of	tuple	t	on	the	attributes	in	S.	Then	r	÷	s	is	a	relation	on	schema	R	−	S	(that	is,	on	the
schema	containing	all	attributes	of	schema	R	that	are	not	in	schema	S).	A	tuple	t	is	in	r	÷	s	if	and	only	if
both	of	two	conditions	hold:

•	t	is	in	Π

(r)

R−	S

•	For	every	tuple	t	in	s,	there	is	a	tuple	t	in	r	satisfying	both	of	the	following:	s

r

a.	t	[S]	=	t	[S]

r

s

b.	t	[R	−	S]	=	t

r

Given	the	above	definition:

a.

Write	a	relational	algebra	expression	using	the	division	operator	to	find	the	IDs	of	all	students	who	have
taken	all	Comp.	Sci.	courses.	(Hint:

project	takes	to	just	ID	and	course	id,	and	generate	the	set	of	all	Comp.

Sci.	course	id	s	using	a	select	expression,	before	doing	the	division.)	b.

Show	how	to	write	the	above	query	in	relational	algebra,	without	using	division.	(By	doing	so,	you	would
have	shown	how	to	define	the	division	operation	using	the	other	relational	algebra	operations.)

62

Chapter	2

Introduction	to	the	Relational	Model

Exercises

2.10

Describe	the	differences	in	meaning	between	the	terms	relation	and	relation	schema.

2.11

Consider	the	advisor	relation	shown	in	the	schema	diagram	in	Figure	2.9,	with	s	id	as	the	primary	key	of
advisor.	Suppose	a	student	can	have	more	than	one	advisor.	Then,	would	s	id	still	be	a	primary	key	of	the
advisor	relation?	If	not,	what	should	the	primary	key	of	advisor	be?

2.12

Consider	the	bank	database	of	Figure	2.18.	Assume	that	branch	names	and	customer	names	uniquely
identify	branches	and	customers,	but	loans	and	accounts	can	be	associated	with	more	than	one	customer.

a.

What	are	the	appropriate	primary	keys?

b.

Given	your	choice	of	primary	keys,	identify	appropriate	foreign	keys.

2.13

Construct	a	schema	diagram	for	the	bank	database	of	Figure	2.18.

2.14

Consider	the	employee	database	of	Figure	2.17.	Give	an	expression	in	the	relational	algebra	to	express
each	of	the	following	queries:

a.

Find	the	ID	and	name	of	each	employee	who	works	for	“BigBank”.

b.

Find	the	ID,	name,	and	city	of	residence	of	each	employee	who	works	for

“BigBank”.

c.

Find	the	ID,	name,	street	address,	and	city	of	residence	of	each	employee	who	works	for	“BigBank”	and
earns	more	than	$10000.

d.

Find	the	ID	and	name	of	each	employee	in	this	database	who	lives	in	the	same	city	as	the	company	for
which	she	or	he	works.

2.15

Consider	the	bank	database	of	Figure	2.18.	Give	an	expression	in	the	relational	algebra	for	each	of	the
following	queries:

a.

Find	each	loan	number	with	a	loan	amount	greater	than	$10000.

b.

Find	the	ID	of	each	depositor	who	has	an	account	with	a	balance	greater	than	$6000.

c.

Find	the	ID	of	each	depositor	who	has	an	account	with	a	balance	greater	than	$6000	at	the	“Uptown”
branch.

2.16

List	two	reasons	why	null	values	might	be	introduced	into	a	database.

2.17

Discuss	the	relative	merits	of	imperative,	functional,	and	declarative	languages.

2.18

Write	the	following	queries	in	relational	algebra,	using	the	university	schema.

a.

Find	the	ID	and	name	of	each	instructor	in	the	Physics	department.

Further	Reading

63

b.

Find	the	ID	and	name	of	each	instructor	in	a	department	located	in	the	building	“Watson”.

c.

Find	the	ID	and	name	of	each	student	who	has	taken	at	least	one	course	in	the	“Comp.	Sci.”	department.

d.

Find	the	ID	and	name	of	each	student	who	has	taken	at	least	one	course	section	in	the	year	2018.

e.

Find	the	ID	and	name	of	each	student	who	has	not	taken	any	course

section	in	the	year	2018.

Further	Reading

E.	F.	Codd	of	the	IBM	San	Jose	Research	Laboratory	proposed	the	relational	model	in	the	late	1960s
([Codd	(1970)]).	In	that	paper,	Codd	also	introduced	the	original	definition	of	relational	algebra.	This	work
led	to	the	prestigious	ACM	Turing	Award	to	Codd	in	1981	([Codd	(1982)]).

After	E.	F.	Codd	introduced	the	relational	model,	an	expansive	theory	developed	around	the	relational
model	pertaining	to	schema	design	and	the	expressive	power	of	various	relational	languages.	Several
classic	texts	cover	relational	database	theory,	including	[Maier	(1983)]	(which	is	available	free,	online),
and	[Abiteboul	et	al.	(1995)].

Codd’s	original	paper	inspired	several	research	projects	that	were	formed	in	the	mid	to	late	1970s	with
the	goal	of	constructing	practical	relational	database	systems,	including	System	R	at	the	IBM	San	Jose
Research	Laboratory,	Ingres	at	the	University	of	California	at	Berkeley,	and	Query-by-Example	at	the	IBM
T.	J.	Watson	Research	Center.	The	Oracle	database	was	developed	commercially	at	the	same	time.

Many	relational	database	products	are	now	commercially	available.	These	include	IBM’s	DB2	and
Informix,	Oracle,	Microsoft	SQL	Server,	and	Sybase	and	HANA	from	SAP.	Popular	open-source	relational
database	systems	include	MySQL	and	PostgreSQL.

Hive	and	Spark	are	widely	used	systems	that	support	parallel	execution	of	queries	across	large	numbers
of	computers.

Bibliography

[Abiteboul	et	al.	(1995)]

S.	Abiteboul,	R.	Hull,	and	V.	Vianu,	Foundations	of	Databases,	Addison	Wesley	(1995).

[Codd	(1970)]

E.	F.	Codd,	“A	Relational	Model	for	Large	Shared	Data	Banks”,	Communications	of	the	ACM,	Volume	13,
Number	6	(1970),	pages	377–387.

[Codd	(1982)]

E.	F.	Codd,	“The	1981	ACM	Turing	Award	Lecture:	Relational	Database:	A	Practical	Foundation	for
Productivity”,	Communications	of	the	ACM,	Volume	25,	Number	2

(1982),	pages	109–117.

64

Chapter	2

Introduction	to	the	Relational	Model

[Maier	(1983)]

D.	Maier,	The	Theory	of	Relational	Databases,	Computer	Science	Press	(1983).

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

C	H	A	P	T	E	R	3

Introduction	to	SQL

In	this	chapter,	as	well	as	in	Chapter	4	and	Chapter	5,	we	study	the	most	widely	used	database	query
language,	SQL.

Although	we	refer	to	the	SQL	language	as	a	“query	language,”	it	can	do	much	more	than	just	query	a
database.	It	can	define	the	structure	of	the	data,	modify	data	in	the	database,	and	specify	security
constraints.

It	is	not	our	intention	to	provide	a	complete	users’	guide	for	SQL.	Rather,	we	present	SQL’s	fundamental
constructs	and	concepts.	Individual	implementations	of	SQL	may	differ	in	details	or	may	support	only	a
subset	of	the	full	language.

We	strongly	encourage	you	to	try	out	the	SQL	queries	that	we	describe	here	on	an	actual	database.	See
the	Tools	section	at	the	end	of	this	chapter	for	tips	on	what	database	systems	you	could	use,	and	how	to
create	the	schema,	populate	sample	data,	and	execute	your	queries.

3.1

Overview	of	the	SQL	Query	Language

IBM	developed	the	original	version	of	SQL,	originally	called	Sequel,	as	part	of	the	System	R	project	in	the
early	1970s.	The	Sequel	language	has	evolved	since	then,	and	its	name	has	changed	to	SQL	(Structured
Query	Language).	Many	products	now	support	the	SQL	language.	SQL	has	clearly	established	itself	as	the
standard	relational	database	language.

In	1986,	the	American	National	Standards	Institute	(ANSI)	and	the	International	Organization	for
Standardization	(ISO)	published	an	SQL	standard,	called	SQL-86.

ANSI	published	an	extended	standard	for	SQL,	SQL-89,	in	1989.	The	next	version	of	the	standard	was
SQL-92	standard,	followed	by	SQL:1999,	SQL:2003,	SQL:2006,	SQL:2008,	SQL:2011,	and	most	recently
SQL:2016.

The	SQL	language	has	several	parts:

•	Data-definition	language	(DDL).	The	SQL	DDL	provides	commands	for	defining	relation	schemas,
deleting	relations,	and	modifying	relation	schemas.

65

66

Chapter	3

Introduction	to	SQL

•	Data-manipulation	language	(DML).	The	SQL	DML	provides	the	ability	to	query	information	from	the
database	and	to	insert	tuples	into,	delete	tuples	from,	and	modify	tuples	in	the	database.

•	Integrity.	The	SQL	DDL	includes	commands	for	specifying	integrity	constraints	that	the	data	stored	in
the	database	must	satisfy.	Updates	that	violate	integrity	constraints	are	disallowed.

•	View	definition.	The	SQL	DDL	includes	commands	for	defining	views.

•	Transaction	control.	SQL	includes	commands	for	specifying	the	beginning	and	end	points	of
transactions.

•	Embedded	SQL	and	dynamic	SQL.	Embedded	and	dynamic	SQL	define	how	SQL

statements	can	be	embedded	within	general-purpose	programming	languages,	such	as	C,	C++,	and	Java.

•	Authorization.	The	SQL	DDL	includes	commands	for	specifying	access	rights	to	relations	and	views.

In	this	chapter,	we	present	a	survey	of	basic	DML	and	the	DDL	features	of	SQL.

Features	described	here	have	been	part	of	the	SQL	standard	since	SQL-92.

In	Chapter	4,	we	provide	a	more	detailed	coverage	of	the	SQL	query	language,	including	(a)	various	join
expressions,	(b)	views,	(c)	transactions,	(d)	integrity	constraints,	(e)	type	system,	and	(f)	authorization.

In	Chapter	5,	we	cover	more	advanced	features	of	the	SQL	language,	including	(a)	mechanisms	to	allow
accessing	SQL	from	a	programming	language,	(b)	SQL	functions	and	procedures,	(c)	triggers,	(d)
recursive	queries,	(e)	advanced	aggregation	features,	and	(f)	several	features	designed	for	data	analysis.

Although	most	SQL	implementations	support	the	standard	features	we	describe	here,	there	are
differences	between	implementations.	Most	implementations	support	some	nonstandard	features	while
omitting	support	for	some	of	the	more	advanced	and	more	recent	features.	In	case	you	find	that	some
language	features	described	here	do	not	work	on	the	database	system	that	you	use,	consult	the	user
manuals	for	your	database	system	to	find	exactly	what	features	it	supports.

3.2

SQL	Data	Definition

The	set	of	relations	in	a	database	are	specified	using	a	data-definition	language	(DDL).

The	SQL	DDL	allows	specification	of	not	only	a	set	of	relations,	but	also	information	about	each	relation,
including:

•	The	schema	for	each	relation.

•	The	types	of	values	associated	with	each	attribute.

3.2

SQL	Data	Definition

67

•	The	integrity	constraints.

•	The	set	of	indices	to	be	maintained	for	each	relation.

•	The	security	and	authorization	information	for	each	relation.

•	The	physical	storage	structure	of	each	relation	on	disk.

We	discuss	here	basic	schema	definition	and	basic	types;	we	defer	discussion	of	the	other	SQL	DDL

features	to	Chapter	4	and	Chapter	5.

3.2.1

Basic	Types

The	SQL	standard	supports	a	variety	of	built-in	types,	including:

•	char(n):	A	fixed-length	character	string	with	user-specified	length	n.	The	full	form,	character,	can	be
used	instead.

•	varchar(n):	A	variable-length	character	string	with	user-specified	maximum	length	n.	The	full	form,
character	varying,	is	equivalent.

•	int:	An	integer	(a	finite	subset	of	the	integers	that	is	machine	dependent).	The	full	form,	integer,	is
equivalent.

•	smallint:	A	small	integer	(a	machine-dependent	subset	of	the	integer	type).

•	numeric(p,	d):	A	fixed-point	number	with	user-specified	precision.	The	number	consists	of	p	digits	(plus
a	sign),	and	d	of	the	p	digits	are	to	the	right	of	the	decimal	point.	Thus,	numeric(3,1)	allows	44	.	5	to	be
stored	exactly,	but	neither	444	.	5	nor	0	.	32	can	be	stored	exactly	in	a	field	of	this	type.

•	real,	double	precision:	Floating-point	and	double-precision	floating-point	numbers	with	machine-
dependent	precision.

•	float(n):	A	floating-point	number	with	precision	of	at	least	n	digits.

Additional	types	are	covered	in	Section	4.5.

Each	type	may	include	a	special	value	called	the	null	value.	A	null	value	indicates	an	absent	value	that
may	exist	but	be	unknown	or	that	may	not	exist	at	all.	In	certain	cases,	we	may	wish	to	prohibit	null
values	from	being	entered,	as	we	shall	see	shortly.

The	char	data	type	stores	fixed-length	strings.	Consider,	for	example,	an	attribute	A	of	type	char(10).	If	we
stored	a	string	“Avi”	in	this	attribute,	seven	spaces	are	appended	to	the	string	to	make	it	10	characters
long.	In	contrast,	if	attribute	B	were	of	type	varchar(10),	and	we	stored	“Avi”	in	attribute	B,	no	spaces
would	be	added.	When	comparing	two	values	of	type	char,	if	they	are	of	different	lengths,	extra	spaces	are
automatically	attached	to	the	shorter	one	to	make	them	the	same	size	before	comparison.

When	comparing	a	char	type	with	a	varchar	type,	one	may	expect	extra	spaces	to	be	added	to	the	varchar
type	to	make	the	lengths	equal,	before	comparison;	however,	this	may	or	may	not	be	done,	depending	on
the	database	system.	As	a	result,	even	if

68

Chapter	3

Introduction	to	SQL

the	same	value	“Avi”	is	stored	in	the	attributes	A	and	B	above,	a	comparison	A=	B	may	return	false.	We
recommend	you	always	use	the	varchar	type	instead	of	the	char	type	to	avoid	these	problems.

SQL	also	provides	the	nvarchar	type	to	store	multilingual	data	using	the	Unicode	representation.
However,	many	databases	allow	Unicode	(in	the	UTF-8	representation)	to	be	stored	even	in	varchar	types.

3.2.2

Basic	Schema	Definition

We	define	an	SQL	relation	by	using	the	create	table	command.	The	following	command	creates	a	relation
department	in	the	database:

create	table	department

(dept	name	varchar	(20),

building

varchar	(15),

budget

numeric	(12,2),

primary	key	(dept	name));

The	relation	created	above	has	three	attributes,	dept	name,	which	is	a	character	string	of	maximum
length	20,	building,	which	is	a	character	string	of	maximum	length	15,	and	budget,	which	is	a	number
with	12	digits	in	total,	two	of	which	are	after	the	decimal	point.	The	create	table	command	also	specifies
that	the	dept	name	attribute	is	the	primary	key	of	the	department	relation.

The	general	form	of	the	create	table	command	is:

create	table	r

(A

D	,

1

1

A

D	,

2

2

.	.	.	,

A

D	,

n

n

⟨integrity-constraint	⟩,

1

…	,

⟨integrity-constraint	⟩);

k

where	r	is	the	name	of	the	relation,	each	A	is	the	name	of	an	attribute	in	the	schema	of	i

relation	r,	and	D	is	the	domain	of	attribute	A	;	that	is,	D	specifies	the	type	of	attribute	i

i

i

A	along	with	optional	constraints	that	restrict	the	set	of	allowed	values	for	A	.

i

i

The	semicolon	shown	at	the	end	of	the	create	table	statements,	as	well	as	at	the	end	of	other	SQL
statements	later	in	this	chapter,	is	optional	in	many	SQL	implementations.

SQL	supports	a	number	of	different	integrity	constraints.	In	this	section,	we	discuss	only	a	few	of	them:

•	primary	key	(A	,	A	,	…	,	A):	The	primary-key	specification	says	that	attributes	j

j

j

1

2

m

A	,	A	,	…	,	A	form	the	primary	key	for	the	relation.	The	primary-key	attributes	j

j

j

1

2

m

3.2

SQL	Data	Definition

69

are	required	to	be	nonnull	and	unique;	that	is,	no	tuple	can	have	a	null	value	for	a	primary-key	attribute,
and	no	two	tuples	in	the	relation	can	be	equal	on	all	the	primary-key	attributes.	Although	the	primary-key
specification	is	optional,	it	is	generally	a	good	idea	to	specify	a	primary	key	for	each	relation.

•	foreign	key	(A	,	A	,	…	,	A)	references	s:	The	foreign	key	specification	says	that	k

k

k

1

2

n

the	values	of	attributes	(A	,	A	,	…	,	A)	for	any	tuple	in	the	relation	must	corre-k

k

k

1

2

n

spond	to	values	of	the	primary	key	attributes	of	some	tuple	in	relation	s.

Figure	3.1	presents	a	partial	SQL	DDL	definition	of	the	university	database	we	use	in	the	text.	The
definition	of	the	course	table	has	a	declaration	“foreign	key	(dept	name)	references	department”.	This
foreign-key	declaration	specifies	that	for	each	course	tuple,	the	department	name	specified	in	the	tuple
must	exist	in	the	primary	key	attribute	(dept	name)	of	the	department	relation.	Without	this	constraint,	it
is	possible	for	a	course	to	specify	a	nonexistent	department	name.	Figure	3.1

also	shows	foreign-key	constraints	on	tables	section,	instructor	and	teaches.	Some	database	systems,
including	MySQL,	require	an	alternative	syntax,	“foreign	key	(dept	name)	references	department(dept
name)”,	where	the	referenced	attributes	in	the	referenced	table	are	listed	explicitly.

•	not	null:	The	not	null	constraint	on	an	attribute	specifies	that	the	null	value	is	not	allowed	for	that

attribute;	in	other	words,	the	constraint	excludes	the	null	value	from	the	domain	of	that	attribute.	For
example,	in	Figure	3.1,	the	not	null	constraint	on	the	name	attribute	of	the	instructor	relation	ensures
that	the	name	of	an	instructor	cannot	be	null.

More	details	on	the	foreign-key	constraint,	as	well	as	on	other	integrity	constraints	that	the	create	table
command	may	include,	are	provided	later,	in	Section	4.4.

SQL	prevents	any	update	to	the	database	that	violates	an	integrity	constraint.	For	example,	if	a	newly
inserted	or	modified	tuple	in	a	relation	has	null	values	for	any	primary-key	attribute,	or	if	the	tuple	has	the
same	value	on	the	primary-key	attributes	as	does	another	tuple	in	the	relation,	SQL	flags	an	error	and
prevents	the	update.	Similarly,	an	insertion	of	a	course	tuple	with	a	dept	name	value	that	does	not	appear
in	the	department	relation	would	violate	the	foreign-key	constraint	on	course,	and	SQL

prevents	such	an	insertion	from	taking	place.

A	newly	created	relation	is	empty	initially.	Inserting	tuples	into	a	relation,	updating	them,	and	deleting
them	are	done	by	data	manipulation	statements	insert,	update,	and	delete,	which	are	covered	in	Section
3.9.

To	remove	a	relation	from	an	SQL	database,	we	use	the	drop	table	command.

The	drop	table	command	deletes	all	information	about	the	dropped	relation	from	the	database.	The
command

drop	table	r;

is	a	more	drastic	action	than

70

Chapter	3

Introduction	to	SQL

create	table	department

(dept	name

varchar	(20),

building

varchar	(15),

budget

numeric	(12,2),

primary	key	(dept	name));

create	table	course

(course	id

varchar	(7),

title

varchar	(50),

dept	name

varchar	(20),

credits

numeric	(2,0),

primary	key	(course	id),

foreign	key	(dept	name)	references	department);

create	table	instructor

(ID

varchar	(5),

name

varchar	(20)	not	null,

dept	name

varchar	(20),

salary

numeric	(8,2),

primary	key	(ID),

foreign	key	(dept	name)	references	department);

create	table	section

(course	id

varchar	(8),

sec	id

varchar	(8),

semester

varchar	(6),

year

numeric	(4,0),

building

varchar	(15),

room	number	varchar	(7),

time	slot	id

varchar	(4),

primary	key	(course	id,	sec	id,	semester,	year),	foreign	key	(course	id)	references	course);

create	table	teaches

(ID

varchar	(5),

course	id

varchar	(8),

sec	id

varchar	(8),

semester

varchar	(6),

year

numeric	(4,0),

primary	key	(ID,	course	id,	sec	id,	semester,	year),	foreign	key	(course	id,	sec	id,	semester,	year)
references	section,	foreign	key	(ID)	references	instructor);

Figure	3.1	SQL	data	definition	for	part	of	the	university	database.

3.3

Basic	Structure	of	SQL	Queries

71

delete	from	r;

The	latter	retains	relation	r,	but	deletes	all	tuples	in	r.	The	former	deletes	not	only	all	tuples	of	r,	but	also
the	schema	for	r.	After	r	is	dropped,	no	tuples	can	be	inserted	into	r	unless	it	is	re-created	with	the	create
table	command.

We	use	the	alter	table	command	to	add	attributes	to	an	existing	relation.	All	tuples	in	the	relation	are
assigned	null	as	the	value	for	the	new	attribute.	The	form	of	the	alter	table	command	is

alter	table	r	add	A	D;

where	r	is	the	name	of	an	existing	relation,	A	is	the	name	of	the	attribute	to	be	added,	and	D	is	the	type	of
the	added	attribute.	We	can	drop	attributes	from	a	relation	by	the	command

alter	table	r	drop	A;

where	r	is	the	name	of	an	existing	relation,	and	A	is	the	name	of	an	attribute	of	the	relation.	Many
database	systems	do	not	support	dropping	of	attributes,	although	they	will	allow	an	entire	table	to	be
dropped.

3.3

Basic	Structure	of	SQL	Queries

The	basic	structure	of	an	SQL	query	consists	of	three	clauses:	select,	from,	and	where.

A	query	takes	as	its	input	the	relations	listed	in	the	from	clause,	operates	on	them	as	specified	in	the
where	and	select	clauses,	and	then	produces	a	relation	as	the	result.	We	introduce	the	SQL	syntax
through	examples,	and	we	describe	the	general	structure	of	SQL	queries	later.

3.3.1

Queries	on	a	Single	Relation

Let	us	consider	a	simple	query	using	our	university	example,	“Find	the	names	of	all	instructors.”
Instructor	names	are	found	in	the	instructor	relation,	so	we	put	that	relation	in	the	from	clause.	The
instructor’s	name	appears	in	the	name	attribute,	so	we	put	that	in	the	select	clause.

select	name

from	instructor;

The	result	is	a	relation	consisting	of	a	single	attribute	with	the	heading	name.	If	the	instructor	relation	is
as	shown	in	Figure	2.1,	then	the	relation	that	results	from	the	preceding	query	is	shown	in	Figure	3.2.

72

Chapter	3

Introduction	to	SQL

name

Srinivasan

Wu

Mozart

Einstein

El	Said

Gold

Katz

Califieri

Singh

Crick

Brandt

Kim

Figure	3.2	Result	of	“select	name	from	instructor”.

Now	consider	another	query,	“Find	the	department	names	of	all	instructors,”

which	can	be	written	as:

select	dept	name

from	instructor;

Since	more	than	one	instructor	can	belong	to	a	department,	a	department	name	could	appear	more	than
once	in	the	instructor	relation.	The	result	of	the	above	query	is	a	relation	containing	the	department
names,	shown	in	Figure	3.3.

In	the	formal,	mathematical	definition	of	the	relational	model,	a	relation	is	a	set.

Thus,	duplicate	tuples	would	never	appear	in	relations.	In	practice,	duplicate	elimination	is	time-
consuming.	Therefore,	SQL	allows	duplicates	in	database	relations	as	well	as	in	the	results	of	SQL
expressions.1	Thus,	the	preceding	SQL	query	lists	each	department	name	once	for	every	tuple	in	which	it
appears	in	the	instructor	relation.

In	those	cases	where	we	want	to	force	the	elimination	of	duplicates,	we	insert	the	keyword	distinct	after
select.	We	can	rewrite	the	preceding	query	as:

select	distinct	dept	name

from	instructor;

if	we	want	duplicates	removed.	The	result	of	the	above	query	would	contain	each	department	name	at
most	once.

1Any	database	relation	whose	schema	includes	a	primary-key	declaration	cannot	contain	duplicate	tuples,
since	they	would	violate	the	primary-key	constraint.

3.3

Basic	Structure	of	SQL	Queries

73

dept	name

Comp.	Sci.

Finance

Music

Physics

History

Physics

Comp.	Sci.

History

Finance

Biology

Comp.	Sci.

Elec.	Eng.

Figure	3.3	Result	of	“select	dept	name	from	instructor”.

SQL	allows	us	to	use	the	keyword	all	to	specify	explicitly	that	duplicates	are	not	removed:

select	all	dept	name

from	instructor;

Since	duplicate	retention	is	the	default,	we	shall	not	use	all	in	our	examples.	To	ensure	the	elimination	of
duplicates	in	the	results	of	our	example	queries,	we	shall	use	distinct	whenever	it	is	necessary.

The	select	clause	may	also	contain	arithmetic	expressions	involving	the	operators

+,	−,	∗,	and	/	operating	on	constants	or	attributes	of	tuples.	For	example,	the	query:	select	ID,	name,	dept
name,	salary	*	1.1

from	instructor;

returns	a	relation	that	is	the	same	as	the	instructor	relation,	except	that	the	attribute	salary	is	multiplied
by	1.1.	This	shows	what	would	result	if	we	gave	a	10%	raise	to	each	instructor;	note,	however,	that	it	does
not	result	in	any	change	to	the	instructor	relation.

SQL	also	provides	special	data	types,	such	as	various	forms	of	the	date	type,	and	allows	several	arithmetic
functions	to	operate	on	these	types.	We	discuss	this	further	in	Section	4.5.1.

The	where	clause	allows	us	to	select	only	those	rows	in	the	result	relation	of	the	from	clause	that	satisfy	a
specified	predicate.	Consider	the	query	“Find	the	names	of	all	instructors	in	the	Computer	Science
department	who	have	salary	greater	than	$70,000.”

This	query	can	be	written	in	SQL	as:

74

Chapter	3

Introduction	to	SQL

name

Katz

Brandt

Figure	3.4	Result	of	“Find	the	names	of	all	instructors	in	the	Computer	Science	department	who	have
salary	greater	than	$70,000.”

select	name

from	instructor

where	dept	name	=	'Comp.	Sci.'	and	salary	>	70000;

If	the	instructor	relation	is	as	shown	in	Figure	2.1,	then	the	relation	that	results	from	the	preceding	query
is	shown	in	Figure	3.4.

SQL	allows	the	use	of	the	logical	connectives	and,	or,	and	not	in	the	where	clause.

The	operands	of	the	logical	connectives	can	be	expressions	involving	the	comparison	operators	<,	<=,	>,
>=,	=,	and	<>.	SQL	allows	us	to	use	the	comparison	operators	to	compare	strings	and	arithmetic
expressions,	as	well	as	special	types,	such	as	date	types.

We	shall	explore	other	features	of	where	clause	predicates	later	in	this	chapter.

3.3.2

Queries	on	Multiple	Relations

So	far	our	example	queries	were	on	a	single	relation.	Queries	often	need	to	access	information	from
multiple	relations.	We	now	study	how	to	write	such	queries.

As	an	example,	suppose	we	want	to	answer	the	query	“Retrieve	the	names	of	all	instructors,	along	with
their	department	names	and	department	building	name.”

Looking	at	the	schema	of	the	relation	instructor,	we	realize	that	we	can	get	the	department	name	from
the	attribute	dept	name,	but	the	department	building	name	is	present	in	the	attribute	building	of	the
relation	department.	To	answer	the	query,	each	tuple	in	the	instructor	relation	must	be	matched	with	the
tuple	in	the	department	relation	whose	dept	name	value	matches	the	dept	name	value	of	the	instructor
tuple.

In	SQL,	to	answer	the	above	query,	we	list	the	relations	that	need	to	be	accessed	in	the	from	clause	and
specify	the	matching	condition	in	the	where	clause.	The	above	query	can	be	written	in	SQL	as

select	name,	instructor.	dept	name,	building	from	instructor,	department

where	instructor.	dept	name=	department.	dept	name;	If	the	instructor	and	department	relations	are	as
shown	in	Figure	2.1	and	Figure	2.5

respectively,	then	the	result	of	this	query	is	shown	in	Figure	3.5.

Note	that	the	attribute	dept	name	occurs	in	both	the	relations	instructor	and	department,	and	the	relation
name	is	used	as	a	prefix	(in	instructor.	dept	name,	and	de-

3.3

Basic	Structure	of	SQL	Queries

75

name

dept	name

building

Srinivasan

Comp.	Sci.

Taylor

Wu

Finance

Painter

Mozart

Music

Packard

Einstein

Physics

Watson

El	Said

History

Painter

Gold

Physics

Watson

Katz

Comp.	Sci.

Taylor

Califieri

History

Painter

Singh

Finance

Painter

Crick

Biology

Watson

Brandt

Comp.	Sci.

Taylor

Kim

Elec.	Eng.

Taylor

Figure	3.5	The	result	of	“Retrieve	the	names	of	all	instructors,	along	with	their	department	names	and
department	building	name.”

partment.	dept	name)	to	make	clear	to	which	attribute	we	are	referring.	In	contrast,	the	attributes	name
and	building	appear	in	only	one	of	the	relations	and	therefore	do	not	need	to	be	prefixed	by	the	relation
name.

This	naming	convention	requires	that	the	relations	that	are	present	in	the	from	clause	have	distinct
names.	This	requirement	causes	problems	in	some	cases,	such	as	when	information	from	two	different
tuples	in	the	same	relation	needs	to	be	combined.

In	Section	3.4.1,	we	see	how	to	avoid	these	problems	by	using	the	rename	operation.

We	now	consider	the	general	case	of	SQL	queries	involving	multiple	relations.	As	we	have	seen	earlier,	an
SQL	query	can	contain	three	types	of	clauses,	the	select	clause,	the	from	clause,	and	the	where	clause.
The	role	of	each	clause	is	as	follows:

•	The	select	clause	is	used	to	list	the	attributes	desired	in	the	result	of	a	query.

•	The	from	clause	is	a	list	of	the	relations	to	be	accessed	in	the	evaluation	of	the	query.

•	The	where	clause	is	a	predicate	involving	attributes	of	the	relation	in	the	from	clause.

A	typical	SQL	query	has	the	form:

select	A	,	A	,	…	,	A

1

2

n

from	r	,	r	,	…	,	r

1

2

m

where	P;

76

Chapter	3

Introduction	to	SQL

Each	A	represents	an	attribute,	and	each	r	a	relation.	P	is	a	predicate.	If	the	where	i

i

clause	is	omitted,	the	predicate	P	is	true.

Although	the	clauses	must	be	written	in	the	order	select,	from,	where,	the	easiest	way	to	understand	the
operations	specified	by	the	query	is	to	consider	the	clauses	in	operational	order:	first	from,	then	where,
and	then	select.2

The	from	clause	by	itself	defines	a	Cartesian	product	of	the	relations	listed	in	the	clause.	It	is	defined
formally	in	terms	of	relational	algebra,	but	it	can	also	be	understood	as	an	iterative	process	that
generates	tuples	for	the	result	relation	of	the	from	clause.

for	each	tuple	t	in	relation	r

1

1

for	each	tuple	t	in	relation	r

2

2

…

for	each	tuple	t	in	relation	r

m

m

Concatenate	t	,	t	,	…	,	t	into	a	single	tuple	t	1

2

m

Add	t	into	the	result	relation

The	result	relation	has	all	attributes	from	all	the	relations	in	the	from	clause.	Since	the	same	attribute
name	may	appear	in	both	r	and	r	,	as	we	saw	earlier,	we	prefix	the	name	i

j

of	the	relation	from	which	the	attribute	originally	came,	before	the	attribute	name.

For	example,	the	relation	schema	for	the	Cartesian	product	of	relations	instructor	and	teaches	is:

(instructor.	ID,	instructor.	name,	instructor.	dept	name,	instructor.	salary,	teaches.	ID,	teaches.	course	id,
teaches.	sec	id,	teaches.	semester,	teaches.	year)	With	this	schema,	we	can	distinguish	instructor.	ID	from
teaches.	ID.	For	those	attributes	that	appear	in	only	one	of	the	two	schemas,	we	shall	usually	drop	the
relation-name	prefix.	This	simplification	does	not	lead	to	any	ambiguity.	We	can	then	write	the	relation
schema	as:

(instructor.	ID,	name,	dept	name,	salary,	teaches.	ID,	course	id,	sec	id,	semester,	year)	To	illustrate,
consider	the	instructor	relation	in	Figure	2.1	and	the	teaches	relation	in	Figure	2.7.	Their	Cartesian
product	is	shown	in	Figure	3.6,	which	includes	only	a	portion	of	the	tuples	that	make	up	the	Cartesian
product	result.

The	Cartesian	product	by	itself	combines	tuples	from	instructor	and	teaches	that	are	unrelated	to	each
other.	Each	tuple	in	instructor	is	combined	with	every	tuple	in	teaches,	even	those	that	refer	to	a	different
instructor.	The	result	can	be	an	extremely	large	relation,	and	it	rarely	makes	sense	to	create	such	a
Cartesian	product.

2In	practice,	SQL	may	convert	the	expression	into	an	equivalent	form	that	can	be	processed	more
efficiently.	However,	we	shall	defer	concerns	about	efficiency	to	Chapter	15	and	Chapter	16.

3.3

Basic	Structure	of	SQL	Queries

77

instructor.	ID

name

dept	name

salary

teaches.	ID

course	id

sec	id

semester

year

10101

Srinivasan

Comp.	Sci.

65000

10101

CS-101

1

Fall

2017

10101

Srinivasan

Comp.	Sci.

65000

10101

CS-315

1

Spring

2018

10101

Srinivasan

Comp.	Sci.

65000

10101

CS-347

1

Fall

2017

10101

Srinivasan

Comp.	Sci.

65000

12121

FIN-201

1

Spring

2018

10101

Srinivasan

Comp.	Sci.

65000

15151

MU-199

1

Spring

2018

10101

Srinivasan

Comp.	Sci.

65000

22222

PHY-101

1

Fall

2017

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

12121

Wu

Finance

90000

10101

CS-101

1

Fall

2017

12121

Wu

Finance

90000

10101

CS-315

1

Spring

2018

12121

Wu

Finance

90000

10101

CS-347

1

Fall

2017

12121

Wu

Finance

90000

12121

FIN-201

1

Spring

2018

12121

Wu

Finance

90000

15151

MU-199

1

Spring

2018

12121

Wu

Finance

90000

22222

PHY-101

1

Fall

2017

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

15151

Mozart

Music

40000

10101

CS-101

1

Fall

2017

15151

Mozart

Music

40000

10101

CS-315

1

Spring

2018

15151

Mozart

Music

40000

10101

CS-347

1

Fall

2017

15151

Mozart

Music

40000

12121

FIN-201

1

Spring

2018

15151

Mozart

Music

40000

15151

MU-199

1

Spring

2018

15151

Mozart

Music

40000

22222

PHY-101

1

Fall

2017

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

22222

Einstein

Physics

95000

10101

CS-101

1

Fall

2017

22222

Einstein

Physics

95000

10101

CS-315

1

Spring

2018

22222

Einstein

Physics

95000

10101

CS-347

1

Fall

2017

22222

Einstein

Physics

95000

12121

FIN-201

1

Spring

2018

22222

Einstein

Physics

95000

15151

MU-199

1

Spring

2018

22222

Einstein

Physics

95000

22222

PHY-101

1

Fall

2017

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Figure	3.6	The	Cartesian	product	of	the	instructor	relation	with	the	teaches	relation.

Instead,	the	predicate	in	the	where	clause	is	used	to	restrict	the	combinations	created	by	the	Cartesian
product	to	those	that	are	meaningful	for	the	desired	answer.	We	would	likely	want	a	query	involving
instructor	and	teaches	to	combine	a	particular	tuple	t	in	instructor	with	only	those	tuples	in	teaches	that
refer	to	the	same	instructor	to	which	t	refers.	That	is,	we	wish	only	to	match	teaches	tuples	with
instructor	tuples	that	have	the	same	ID	value.	The	following	SQL	query	ensures	this	condition	and	outputs
the	instructor	name	and	course	identifiers	from	such	matching	tuples.

select	name,	course	id

from	instructor,	teaches

where	instructor.	ID=	teaches.	ID;

78

Chapter	3

Introduction	to	SQL

name

course	id

Srinivasan

CS-101

Srinivasan

CS-315

Srinivasan

CS-347

Wu

FIN-201

Mozart

MU-199

Einstein

PHY-101

El	Said

HIS-351

Katz

CS-101

Katz

CS-319

Crick

BIO-101

Crick

BIO-301

Brandt

CS-190

Brandt

CS-190

Brandt

CS-319

Kim

EE-181

Figure	3.7	Result	of	“For	all	instructors	in	the	university	who	have	taught	some	course,	find	their	names
and	the	course	ID	of	all	courses	they	taught.”

Note	that	the	preceding	query	outputs	only	instructors	who	have	taught	some	course.

Instructors	who	have	not	taught	any	course	are	not	output;	if	we	wish	to	output	such	tuples,	we	could	use
an	operation	called	the	outer	join,	which	is	described	in	Section	4.1.3.

If	the	instructor	relation	is	as	shown	in	Figure	2.1	and	the	teaches	relation	is	as	shown	in	Figure	2.7,	then
the	relation	that	results	from	the	preceding	query	is	shown	in	Figure	3.7.	Observe	that	instructors	Gold,
Califieri,	and	Singh,	who	have	not	taught	any	course,	do	not	appear	in	Figure	3.7.

If	we	wished	to	find	only	instructor	names	and	course	identifiers	for	instructors	in	the	Computer	Science
department,	we	could	add	an	extra	predicate	to	the	where	clause,	as	shown	below.

select	name,	course	id

from	instructor,	teaches

where	instructor.	ID=	teaches.	ID	and	instructor.	dept	name	=	'Comp.	Sci.';	Note	that	since	the	dept
name	attribute	occurs	only	in	the	instructor	relation,	we	could	have	used	just	dept	name,	instead	of
instructor.	dept	name	in	the	above	query.

In	general,	the	meaning	of	an	SQL	query	can	be	understood	as	follows:

1.	Generate	a	Cartesian	product	of	the	relations	listed	in	the	from	clause.

2.	Apply	the	predicates	specified	in	the	where	clause	on	the	result	of	Step	1.

3.4

Additional	Basic	Operations

79

3.	For	each	tuple	in	the	result	of	Step	2,	output	the	attributes	(or	results	of	expressions)	specified	in	the
select	clause.

This	sequence	of	steps	helps	make	clear	what	the	result	of	an	SQL	query	should	be,	not	how	it	should	be
executed.	A	real	implementation	of	SQL	would	not	execute	the	query	in	this	fashion;	it	would	instead
optimize	evaluation	by	generating	(as	far	as	possible)	only	elements	of	the	Cartesian	product	that	satisfy
the	where	clause	predicates.	We	study	such	implementation	techniques	in	Chapter	15	and	Chapter	16.

When	writing	queries,	you	should	be	careful	to	include	appropriate	where	clause	conditions.	If	you	omit
the	where	clause	condition	in	the	preceding	SQL	query,	it	will	output	the	Cartesian	product,	which	could
be	a	huge	relation.	For	the	example	instructor	relation	in	Figure	2.1	and	the	example	teaches	relation	in
Figure	2.7,	their	Cartesian	product	has	12	∗	13	=	156	tuples—more	than	we	can	show	in	the	text!	To
make	matters	worse,	suppose	we	have	a	more	realistic	number	of	instructors	than	we	show	in	our	sample
relations	in	the	figures,	say	200	instructors.	Let’s	assume	each	instructor	teaches	three	courses,	so	we
have	600	tuples	in	the	teaches	relation.	Then	the	preceding	iterative	process	generates	200	∗	600	=
120,000	tuples	in	the	result.

3.4

Additional	Basic	Operations

A	number	of	additional	basic	operations	are	supported	in	SQL.

3.4.1

The	Rename	Operation

Consider	again	the	query	that	we	used	earlier:

select	name,	course	id

from	instructor,	teaches

where	instructor.	ID=	teaches.	ID;

The	result	of	this	query	is	a	relation	with	the	following	attributes:

name,	course	id

The	names	of	the	attributes	in	the	result	are	derived	from	the	names	of	the	attributes	in	the	relations	in
the	from	clause.

We	cannot,	however,	always	derive	names	in	this	way,	for	several	reasons:	First,	two	relations	in	the	from
clause	may	have	attributes	with	the	same	name,	in	which	case	an	attribute	name	is	duplicated	in	the
result.	Second,	if	we	use	an	arithmetic	expression	in	the	select	clause,	the	resultant	attribute	does	not
have	a	name.	Third,	even	if	an	attribute	name	can	be	derived	from	the	base	relations	as	in	the	preceding
example,	we	may	want	to	change	the	attribute	name	in	the	result.	Hence,	SQL	provides	a	way	of	renaming
the	attributes	of	a	result	relation.	It	uses	the	as	clause,	taking	the	form:

80

Chapter	3

Introduction	to	SQL

Note	3.1	SQL	AND	MULTISET	RELATIONAL	ALGEBRA	-	PART	1

There	is	a	close	connection	between	relational	algebra	operations	and	SQL	operations.	One	key	difference
is	that,	unlike	the	relational	algebra,	SQL	allows	duplicates.	The	SQL	standard	defines	how	many	copies	of
each	tuple	are	there	in	the	output	of	a	query,	which	depends,	in	turn,	on	how	many	copies	of	tuples	are
present	in	the	input	relations.

To	model	this	behavior	of	SQL,	a	version	of	relational	algebra,	called	the	multiset	relational	algebra,	is
defined	to	work	on	multisets:	sets	that	may	contain	duplicates.	The	basic	operations	in	the	multiset
relational	algebra	are	defined	as	follows:	1.	If	there	are	c	copies	of	tuple	t	in	r	,	and	t	satisfies	selection	σ

1

1

1

1

θ,	then

there	are	c	copies	of	t	in	σ

).

1

1

θ(r	1

2.	For	each	copy	of	tuple	t	in	r	,	there	is	a	copy	of	tuple	Π	(t)	in	Π	(r),	1

1

A

1

A

1

where	Π	(t)	denotes	the	projection	of	the	single	tuple	t	.

A

1

1

3.	If	there	are	c	copies	of	tuple	t	in	r	and	c	copies	of	tuple	t	in	r	,	there	1

1

1

2

2

2

are	c	∗	c	copies	of	the	tuple	t	.t	in	r	×	r	.

1

2

1	2

1

2

For	example,	suppose	that	relations	r	with	schema	(A,	B)	and	r	with	schema	1

2

(C)	are	the	following	multisets:	r	=	{(1,	a),	(2,	a)}	and	r	=	{(2),	(3),	(3)}.	Then	1

2

Π	(r)	would	be	{(a),	(a)},	whereas	Π	(r)	×	r	would	be:	B

1

B

1

2

{(a,	2),	(a,	2),	(a,	3),	(a,	3),	(a,	3),	(a,	3)}

Now	consider	a	basic	SQL	query	of	the	form:

select	A	,	A	,	…	,	A

1

2

n

from	r	,	r	,	…	,	r

1

2

m

where	P

Each	A	represents	an	attribute,	and	each	r	a	relation.	P	is	a	predicate.	If	the	where	i

i

clause	is	omitted,	the	predicate	P	is	true.	The	query	is	equivalent	to	the	multiset	relational-algebra
expression:

Π

(σ	(r	×	r	×	⋯	×	r))

A	,	A	,…,	A

P

1

2

m

1

2

n

The	relational	algebra	select	operation	corresponds	to	the	SQL	where	clause,	not	to	the	SQL	select
clause;	the	difference	in	meaning	is	an	unfortunate	historical	fact.	We	discuss	the	representation	of	more
complex	SQL	queries	in	Note	3.2	on	page	97.

The	relational-algebra	representation	of	SQL	queries	helps	to	formally	define	the	meaning	of	the	SQL
program.	Further,	database	systems	typically	translate	SQL	queries	into	a	lower-level	representation
based	on	relational	algebra,	and	they	perform	query	optimization	and	query	evaluation	using	this
representation.

3.4

Additional	Basic	Operations

81

old-name	as	new-name

The	as	clause	can	appear	in	both	the	select	and	from	clauses.3

For	example,	if	we	want	the	attribute	name	name	to	be	replaced	with	the	name	instructor	name,	we	can
rewrite	the	preceding	query	as:

select	name	as	instructor	name,	course	id

from	instructor,	teaches

where	instructor.	ID=	teaches.	ID;

The	as	clause	is	particularly	useful	in	renaming	relations.	One	reason	to	rename	a	relation	is	to	replace	a
long	relation	name	with	a	shortened	version	that	is	more	convenient	to	use	elsewhere	in	the	query.	To
illustrate,	we	rewrite	the	query	“For	all	instructors	in	the	university	who	have	taught	some	course,	find
their	names	and	the	course	ID	of	all	courses	they	taught.”

select	T	.	name,	S.	course	id

from	instructor	as	T	,	teaches	as	S

where	T	.	ID=	S.	ID;

Another	reason	to	rename	a	relation	is	a	case	where	we	wish	to	compare	tuples	in	the	same	relation.	We
then	need	to	take	the	Cartesian	product	of	a	relation	with	itself	and,	without	renaming,	it	becomes
impossible	to	distinguish	one	tuple	from	the	other.	Suppose	that	we	want	to	write	the	query	“Find	the
names	of	all	instructors	whose	salary	is	greater	than	at	least	one	instructor	in	the	Biology	department.”
We	can	write	the	SQL	expression:

select	distinct	T	.	name

from	instructor	as	T	,	instructor	as	S

where	T.salary	>	S.salary	and	S.dept	name	=	'Biology';	Observe	that	we	could	not	use	the	notation
instructor.salary,	since	it	would	not	be	clear	which	reference	to	instructor	is	intended.

In	the	above	query,	T	and	S	can	be	thought	of	as	copies	of	the	relation	instructor,	but	more	precisely,	they
are	declared	as	aliases,	that	is,	as	alternative	names,	for	the	relation	instructor.	An	identifier,	such	as	T
and	S,	that	is	used	to	rename	a	relation	is	referred	to	as	a	correlation	name	in	the	SQL	standard,	but	it	is
also	commonly	referred	to	as	a	table	alias,	or	a	correlation	variable,	or	a	tuple	variable.

3Early	versions	of	SQL	did	not	include	the	keyword	as.	As	a	result,	some	implementations	of	SQL,	notably
Oracle,	do	not	permit	the	keyword	as	in	the	from	clause.	In	Oracle,	“old-name	as	new-name”	is	written
instead	as	“old-name	new-name”	in	the	from	clause.	The	keyword	as	is	permitted	for	renaming	attributes
in	the	select	clause,	but	it	is	optional	and	may	be	omitted	in	Oracle.

82

Chapter	3

Introduction	to	SQL

Note	that	a	better	way	to	phrase	the	previous	query	in	English	would	be	“Find	the	names	of	all	instructors
who	earn	more	than	the	lowest	paid	instructor	in	the	Biology	department.”	Our	original	wording	fits	more
closely	with	the	SQL	that	we	wrote,	but	the	latter	wording	is	more	intuitive,	and	it	can	in	fact	be
expressed	directly	in	SQL	as	we	shall	see	in	Section	3.8.2.

3.4.2

String	Operations

SQL	specifies	strings	by	enclosing	them	in	single	quotes,	for	example,	'Computer'.	A	single	quote
character	that	is	part	of	a	string	can	be	specified	by	using	two	single	quote	characters;	for	example,	the
string	“It’s	right”	can	be	specified	by	'It''s	right'.

The	SQL	standard	specifies	that	the	equality	operation	on	strings	is	case	sensitive;	as	a	result,	the
expression	“'comp.	sci.'	=	'Comp.	Sci.'”	evaluates	to	false.	However,	some	database	systems,	such	as
MySQL	and	SQL	Server,	do	not	distinguish	uppercase	from	lowercase	when	matching	strings;	as	a	result,
“'comp.	sci.'	=	'Comp.	Sci.'”	would	evaluate	to	true	on	these	systems.	This	default	behavior	can,	however,
be	changed,	either	at	the	database	level	or	at	the	level	of	specific	attributes.

SQL	also	permits	a	variety	of	functions	on	character	strings,	such	as	concatenating	(using	“∥”),	extracting
substrings,	finding	the	length	of	strings,	converting	strings	to	uppercase	(using	the	function	upper(s)
where	s	is	a	string)	and	lowercase	(using	the	function	lower(s)),	removing	spaces	at	the	end	of	the	string
(using	trim(s)),	and	so	on.	There	are	variations	on	the	exact	set	of	string	functions	supported	by	different
database	systems.	See	your	database	system’s	manual	for	more	details	on	exactly	what	string	functions	it
supports.

Pattern	matching	can	be	performed	on	strings	using	the	operator	like.	We	describe	patterns	by	using	two
special	characters:

•	Percent	(%):	The	%	character	matches	any	substring.

•	Underscore	():	The	character	matches	any	character.

Patterns	are	case	sensitive;	4	that	is,	uppercase	characters	do	not	match	lowercase	characters,	or	vice
versa.	To	illustrate	pattern	matching,	we	consider	the	following	examples:

•	'Intro%'	matches	any	string	beginning	with	“Intro”.

•	'%Comp%'	matches	any	string	containing	“Comp”	as	a	substring,	for	example,

'Intro.	to	Computer	Science',	and	'Computational	Biology'.

•	'

'	matches	any	string	of	exactly	three	characters.

•	'

%'	matches	any	string	of	at	least	three	characters.

4Except	for	MySQL,	or	with	the	ilike	operator	in	PostgreSQL,	where	patterns	are	case	insensitive.

3.4

Additional	Basic	Operations

83

SQL	expresses	patterns	by	using	the	like	comparison	operator.	Consider	the	query

“Find	the	names	of	all	departments	whose	building	name	includes	the	substring	'Watson'.”	This	query	can
be	written	as:

select	dept	name

from	department

where	building	like	'%Watson%';

For	patterns	to	include	the	special	pattern	characters	(that	is,	%	and),	SQL	allows	the	specification	of	an
escape	character.	The	escape	character	is	used	immediately	before	a	special	pattern	character	to	indicate
that	the	special	pattern	character	is	to	be	treated	like	a	normal	character.	We	define	the	escape	character
for	a	like	comparison	using	the	escape	keyword.	To	illustrate,	consider	the	following	patterns,	which	use	a
backslash	(∖)	as	the	escape	character:

•	like	'ab∖%cd%'	escape	'∖'	matches	all	strings	beginning	with	“ab%cd”.

•	like	'ab∖∖cd%'	escape	'∖'	matches	all	strings	beginning	with	“ab∖cd”.

SQL	allows	us	to	search	for	mismatches	instead	of	matches	by	using	the	not	like	comparison	operator.
Some	implementations	provide	variants	of	the	like	operation	that	do	not	distinguish	lower-	and	uppercase.

Some	SQL	implementations,	notably	PostgreSQL,	offer	a	similar	to	operation	that	provides	more	powerful
pattern	matching	than	the	like	operation;	the	syntax	for	specifying	patterns	is	similar	to	that	used	in	Unix
regular	expressions.

3.4.3

Attribute	Specification	in	the	Select	Clause

The	asterisk	symbol	“	*	”	can	be	used	in	the	select	clause	to	denote	“all	attributes.”

Thus,	the	use	of	instructor.*	in	the	select	clause	of	the	query:	select	instructor.*

from	instructor,	teaches

where	instructor.	ID=	teaches.	ID;

indicates	that	all	attributes	of	instructor	are	to	be	selected.	A	select	clause	of	the	form	select	*	indicates
that	all	attributes	of	the	result	relation	of	the	from	clause	are	selected.

3.4.4

Ordering	the	Display	of	Tuples

SQL	offers	the	user	some	control	over	the	order	in	which	tuples	in	a	relation	are	displayed.	The	order	by
clause	causes	the	tuples	in	the	result	of	a	query	to	appear	in	sorted	order.	To	list	in	alphabetic	order	all
instructors	in	the	Physics	department,	we	write:

84

Chapter	3

Introduction	to	SQL

select	name

from	instructor

where	dept	name	=	'Physics'

order	by	name;

By	default,	the	order	by	clause	lists	items	in	ascending	order.	To	specify	the	sort	order,	we	may	specify
desc	for	descending	order	or	asc	for	ascending	order.	Furthermore,	ordering	can	be	performed	on
multiple	attributes.	Suppose	that	we	wish	to	list	the	entire	instructor	relation	in	descending	order	of
salary.	If	several	instructors	have	the	same	salary,	we	order	them	in	ascending	order	by	name.	We	express
this	query	in	SQL

as	follows:

select	*

from	instructor

order	by	salary	desc,	name	asc;

3.4.5

Where-Clause	Predicates

SQL	includes	a	between	comparison	operator	to	simplify	where	clauses	that	specify	that	a	value	be	less
than	or	equal	to	some	value	and	greater	than	or	equal	to	some	other	value.	If	we	wish	to	find	the	names	of
instructors	with	salary	amounts	between	$90,000

and	$100,000,	we	can	use	the	between	comparison	to	write:

select	name

from	instructor

where	salary	between	90000	and	100000;

instead	of:

select	name

from	instructor

where	salary	<=	100000	and	salary	>=	90000;

Similarly,	we	can	use	the	not	between	comparison	operator.

SQL	permits	us	to	use	the	notation	(v	,	v	,	…	,	v)	to	denote	a	tuple	of	arity	n	con-1

2

n

taining	values	v	,	v	,	…	,	v	;	the	notation	is	called	a	row	constructor.	The	comparison	1

2

n

operators	can	be	used	on	tuples,	and	the	ordering	is	defined	lexicographically.	For	example,	(a	,	a)	<=	(b

,	b)	is	true	if	a	<=	b	and	a	<=	b	;	similarly,	the	two	tuples	1

2

1

2

1

1

2

2

are	equal	if	all	their	attributes	are	equal.	Thus,	the	SQL	query:

select	name,	course	id

from	instructor,	teaches

where	instructor.	ID=	teaches.	ID	and	dept	name	=	'Biology';

3.5

Set	Operations

85

course	id

CS-101

CS-347

PHY-101

Figure	3.8	The	c1	relation,	listing	courses	taught	in	Fall	2017.

can	be	rewritten	as	follows:5

select	name,	course	id

from	instructor,	teaches

where	(instructor.	ID,	dept	name)	=	(teaches.	ID,	'Biology');	3.5

Set	Operations

The	SQL	operations	union,	intersect,	and	except	operate	on	relations	and	correspond	to	the	mathematical
set	operations	∪,	∩,	and	−.	We	shall	now	construct	queries	involving	the	union,	intersect,	and	except
operations	over	two	sets.

•	The	set	of	all	courses	taught	in	the	Fall	2017	semester:

select	course	id

from	section

where	semester	=	'Fall'	and	year=	2017;

•	The	set	of	all	courses	taught	in	the	Spring	2018	semester:

select	course	id

from	section

where	semester	=	'Spring'	and	year=	2018;

In	our	discussion	that	follows,	we	shall	refer	to	the	relations	obtained	as	the	result	of	the	preceding
queries	as	c1	and	c2,	respectively,	and	show	the	results	when	these	queries	are	run	on	the	section	relation
of	Figure	2.6	in	Figure	3.8	and	Figure	3.9.	Observe	that	c2	contains	two	tuples	corresponding	to	course	id
CS-319,	since	two	sections	of	the	course	were	offered	in	Spring	2018.

5Although	it	is	part	of	the	SQL-92	standard,	some	SQL	implementations,	notably	Oracle,	do	not	support
this	syntax.

86

Chapter	3

Introduction	to	SQL

course	id

CS-101

CS-315

CS-319

CS-319

FIN-201

HIS-351

MU-199

Figure	3.9	The	c2	relation,	listing	courses	taught	in	Spring	2018.

3.5.1

The	Union	Operation

To	find	the	set	of	all	courses	taught	either	in	Fall	2017	or	in	Spring	2018,	or	both,	we	write	the	following
query.	Note	that	the	parentheses	we	include	around	each	select-from-where	statement	below	are	optional
but	useful	for	ease	of	reading;	some	databases	do	not	allow	the	use	of	the	parentheses,	in	which	case	they
may	be	dropped.

(select	course	id

from	section

where	semester	=	'Fall'	and	year=	2017)

union

(select	course	id

from	section

where	semester	=	'Spring'	and	year=	2018);

The	union	operation	automatically	eliminates	duplicates,	unlike	the	select	clause.	Thus,	using	the	section
relation	of	Figure	2.6,	where	two	sections	of	CS-319	are	offered	in	Spring	2018,	and	a	section	of	CS-101	is
offered	in	the	Fall	2017	as	well	as	in	the	Spring	2018	semesters,	CS-101	and	CS-319	appear	only	once	in
the	result,	shown	in	Figure	3.10.

If	we	want	to	retain	all	duplicates,	we	must	write	union	all	in	place	of	union:	(select	course	id

from	section

where	semester	=	'Fall'	and	year=	2017)

union	all

(select	course	id

from	section

where	semester	=	'Spring'	and	year=	2018);

The	number	of	duplicate	tuples	in	the	result	is	equal	to	the	total	number	of	duplicates	that	appear	in	both
c1	and	c2.	So,	in	the	above	query,	each	of	CS-319	and	CS-101	would

3.5

Set	Operations

87

course	id

CS-101

CS-315

CS-319

CS-347

FIN-201

HIS-351

MU-199

PHY-101

Figure	3.10	The	result	relation	for	c1	union	c2.

be	listed	twice.	As	a	further	example,	if	it	were	the	case	that	four	sections	of	ECE-101

were	taught	in	the	Fall	2017	semester	and	two	sections	of	ECE-101	were	taught	in	the	Spring	2018
semester,	then	there	would	be	six	tuples	with	ECE-101	in	the	result.

3.5.2

The	Intersect	Operation

To	find	the	set	of	all	courses	taught	in	both	the	Fall	2017	and	Spring	2018,	we	write:	(select	course	id

from	section

where	semester	=	'Fall'	and	year=	2017)

intersect

(select	course	id

from	section

where	semester	=	'Spring'	and	year=	2018);

The	result	relation,	shown	in	Figure	3.11,	contains	only	one	tuple	with	CS-101.	The	intersect	operation
automatically	eliminates	duplicates.	6	For	example,	if	it	were	the	case	that	four	sections	of	ECE-101	were
taught	in	the	Fall	2017	semester	and	two	sections	of	ECE-101	were	taught	in	the	Spring	2018	semester,
then	there	would	be	only	one	tuple	with	ECE-101	in	the	result.

course	id

CS-101

Figure	3.11	The	result	relation	for	c1	intersect	c2.

6MySQL	does	not	implement	the	intersect	operation;	a	work-around	is	to	use	subqueries	as	discussed	in
Section	3.8.1.

88

Chapter	3

Introduction	to	SQL

course	id

CS-347

PHY-101

Figure	3.12	The	result	relation	for	c1	except	c2.

If	we	want	to	retain	all	duplicates,	we	must	write	intersect	all	in	place	of	intersect:	(select	course	id

from	section

where	semester	=	'Fall'	and	year=	2017)

intersect	all

(select	course	id

from	section

where	semester	=	'Spring'	and	year=	2018);

The	number	of	duplicate	tuples	that	appear	in	the	result	is	equal	to	the	minimum	number	of	duplicates	in
both	c1	and	c2.	For	example,	if	four	sections	of	ECE-101	were	taught	in	the	Fall	2017	semester	and	two
sections	of	ECE-101	were	taught	in	the	Spring	2018

semester,	then	there	would	be	two	tuples	with	ECE-101	in	the	result.

3.5.3

The	Except	Operation

To	find	all	courses	taught	in	the	Fall	2017	semester	but	not	in	the	Spring	2018	semester,	we	write:

(select	course	id

from	section

where	semester	=	'Fall'	and	year=	2017)

except

(select	course	id

from	section

where	semester	=	'Spring'	and	year=	2018);

The	result	of	this	query	is	shown	in	Figure	3.12.	Note	that	this	is	exactly	relation	c1

of	Figure	3.8	except	that	the	tuple	for	CS-101	does	not	appear.	The	except	operation	7

outputs	all	tuples	from	its	first	input	that	do	not	occur	in	the	second	input;	that	is,	it	7Some	SQL
implementations,	notably	Oracle,	use	the	keyword	minus	in	place	of	except,	while	Oracle	12c	uses	the
keywords	multiset	except	in	place	of	except	all.	MySQL	does	not	implement	it	at	all;	a	work-around	is	to
use	subqueries	as	discussed	in	Section	3.8.1.

3.6

Null	Values

89

performs	set	difference.	The	operation	automatically	eliminates	duplicates	in	the	inputs	before	performing
set	difference.	For	example,	if	four	sections	of	ECE-101	were	taught	in	the	Fall	2017	semester	and	two
sections	of	ECE-101	were	taught	in	the	Spring	2018

semester,	the	result	of	the	except	operation	would	not	have	any	copy	of	ECE-101.

If	we	want	to	retain	duplicates,	we	must	write	except	all	in	place	of	except:	(select	course	id

from	section

where	semester	=	'Fall'	and	year=	2017)

except	all

(select	course	id

from	section

where	semester	=	'Spring'	and	year=	2018);

The	number	of	duplicate	copies	of	a	tuple	in	the	result	is	equal	to	the	number	of	duplicate	copies	in	c1
minus	the	number	of	duplicate	copies	in	c2,	provided	that	the	difference	is	positive.	Thus,	if	four	sections
of	ECE-101	were	taught	in	the	Fall	2017	semester	and	two	sections	of	ECE-101	were	taught	in	Spring
2018,	then	there	are	two	tuples	with	ECE-101	in	the	result.	If,	however,	there	were	two	or	fewer	sections
of	ECE-101	in	the	Fall	2017	semester	and	two	sections	of	ECE-101	in	the	Spring	2018	semester,	there	is
no	tuple	with	ECE-101	in	the	result.

3.6

Null	Values

Null	values	present	special	problems	in	relational	operations,	including	arithmetic	operations,	comparison
operations,	and	set	operations.

The	result	of	an	arithmetic	expression	(involving,	for	example,	+,	−,	∗,	or	∕)	is	null	if	any	of	the	input
values	is	null.	For	example,	if	a	query	has	an	expression	r.A	+	5,	and	r.A	is	null	for	a	particular	tuple,	then
the	expression	result	must	also	be	null	for	that	tuple.

Comparisons	involving	nulls	are	more	of	a	problem.	For	example,	consider	the	comparison	“1	<	null”.	It
would	be	wrong	to	say	this	is	true	since	we	do	not	know	what	the	null	value	represents.	But	it	would
likewise	be	wrong	to	claim	this	expression	is	false;	if	we	did,	“not	(1	<	null)”	would	evaluate	to	true,	which
does	not	make	sense.

SQL	therefore	treats	as	unknown	the	result	of	any	comparison	involving	a	null	value	(other	than
predicates	is	null	and	is	not	null,	which	are	described	later	in	this	section).

This	creates	a	third	logical	value	in	addition	to	true	and	false.

Since	the	predicate	in	a	where	clause	can	involve	Boolean	operations	such	as	and,	or,	and	not	on	the
results	of	comparisons,	the	definitions	of	the	Boolean	operations	are	extended	to	deal	with	the	value
unknown.

90

Chapter	3

Introduction	to	SQL

•	and:	The	result	of	true	and	unknown	is	unknown,	false	and	unknown	is	false,	while	unknown	and
unknown	is	unknown.

•	or:	The	result	of	true	or	unknown	is	true,	false	or	unknown	is	unknown,	while	unknown	or	unknown	is
unknown.

•	not:	The	result	of	not	unknown	is	unknown.

You	can	verify	that	if	r.A	is	null,	then	“1	<	r.A”	as	well	as	“not	(1	<	r.A)”	evaluate	to	unknown.

If	the	where	clause	predicate	evaluates	to	either	false	or	unknown	for	a	tuple,	that	tuple	is	not	added	to
the	result.

SQL	uses	the	special	keyword	null	in	a	predicate	to	test	for	a	null	value.	Thus,	to	find	all	instructors	who
appear	in	the	instructor	relation	with	null	values	for	salary,	we	write:

select	name

from	instructor

where	salary	is	null;

The	predicate	is	not	null	succeeds	if	the	value	on	which	it	is	applied	is	not	null.

SQL	allows	us	to	test	whether	the	result	of	a	comparison	is	unknown,	rather	than	true	or	false,	by	using
the	clauses	is	unknown	and	is	not	unknown.8	For	example,	select	name

from	instructor

where	salary	>	10000	is	unknown;

When	a	query	uses	the	select	distinct	clause,	duplicate	tuples	must	be	eliminated.

For	this	purpose,	when	comparing	values	of	corresponding	attributes	from	two	tuples,	the	values	are
treated	as	identical	if	either	both	are	non-null	and	equal	in	value,	or	both	are	null.	Thus,	two	copies	of	a
tuple,	such	as	{('A',null),	('A',null)},	are	treated	as	being	identical,	even	if	some	of	the	attributes	have	a
null	value.	Using	the	distinct	clause	then	retains	only	one	copy	of	such	identical	tuples.	Note	that	the
treatment	of	null	above	is	different	from	the	way	nulls	are	treated	in	predicates,	where	a	comparison
“null=null”

would	return	unknown,	rather	than	true.

The	approach	of	treating	tuples	as	identical	if	they	have	the	same	values	for	all	attributes,	even	if	some	of
the	values	are	null,	is	also	used	for	the	set	operations	union,	intersection,	and	except.

8The	is	unknown	and	is	not	unknown	constructs	are	not	supported	by	several	databases.

3.7

Aggregate	Functions

91

3.7

Aggregate	Functions

Aggregate	functions	are	functions	that	take	a	collection	(a	set	or	multiset)	of	values	as	input	and	return	a

single	value.	SQL	offers	five	standard	built-in	aggregate	functions:9

•	Average:	avg

•	Minimum:	min

•	Maximum:	max

•	Total:	sum

•	Count:	count

The	input	to	sum	and	avg	must	be	a	collection	of	numbers,	but	the	other	operators	can	operate	on
collections	of	nonnumeric	data	types,	such	as	strings,	as	well.

3.7.1

Basic	Aggregation

Consider	the	query	“Find	the	average	salary	of	instructors	in	the	Computer	Science	department.”	We
write	this	query	as	follows:

select	avg	(salary)

from	instructor

where	dept	name	=	'Comp.	Sci.';

The	result	of	this	query	is	a	relation	with	a	single	attribute	containing	a	single	tuple	with	a	numerical
value	corresponding	to	the	average	salary	of	instructors	in	the	Computer	Science	department.	The
database	system	may	give	an	awkward	name	to	the	result	relation	attribute	that	is	generated	by
aggregation,	consisting	of	the	text	of	the	expression;	however,	we	can	give	a	meaningful	name	to	the
attribute	by	using	the	as	clause	as	follows:

select	avg	(salary)	as	avg	salary

from	instructor

where	dept	name	=	'Comp.	Sci.';

In	the	instructor	relation	of	Figure	2.1,	the	salaries	in	the	Computer	Science	department	are	$75,000,
$65,000,	and	$92,000.	The	average	salary	is	$232,000∕3	=

$77,333.33.

Retaining	duplicates	is	important	in	computing	an	average.	Suppose	the	Computer	Science	department
adds	a	fourth	instructor	whose	salary	happens	to	be	$75,000.	If	du-9Most	implementations	of	SQL	offer	a
number	of	additional	aggregate	functions.

92

Chapter	3

Introduction	to	SQL

plicates	were	eliminated,	we	would	obtain	the	wrong	answer	($232,000∕4	=	$58,000)	rather	than	the
correct	answer	of	$76,750.

There	are	cases	where	we	must	eliminate	duplicates	before	computing	an	aggregate	function.	If	we	do
want	to	eliminate	duplicates,	we	use	the	keyword	distinct	in	the	aggregate	expression.	An	example	arises
in	the	query	“Find	the	total	number	of	instructors	who	teach	a	course	in	the	Spring	2018	semester.”	In
this	case,	an	instructor	counts	only	once,	regardless	of	the	number	of	course	sections	that	the	instructor
teaches.	The	required	information	is	contained	in	the	relation	teaches,	and	we	write	this	query	as	follows:

select	count	(distinct	ID)

from	teaches

where	semester	=	'Spring'	and	year	=	2018;

Because	of	the	keyword	distinct	preceding	ID,	even	if	an	instructor	teaches	more	than	one	course,	she	is
counted	only	once	in	the	result.

We	use	the	aggregate	function	count	frequently	to	count	the	number	of	tuples	in	a	relation.	The	notation
for	this	function	in	SQL	is	count	(*).	Thus,	to	find	the	number	of	tuples	in	the	course	relation,	we	write

select	count	(*)

from	course;

SQL	does	not	allow	the	use	of	distinct	with	count	(*).	It	is	legal	to	use	distinct	with	max	and	min,	even
though	the	result	does	not	change.	We	can	use	the	keyword	all	in	place	of	distinct	to	specify	duplicate
retention,	but	since	all	is	the	default,	there	is	no	need	to	do	so.

3.7.2

Aggregation	with	Grouping

There	are	circumstances	where	we	would	like	to	apply	the	aggregate	function	not	only	to	a	single	set	of
tuples,	but	also	to	a	group	of	sets	of	tuples;	we	specify	this	in	SQL

using	the	group	by	clause.	The	attribute	or	attributes	given	in	the	group	by	clause	are	used	to	form
groups.	Tuples	with	the	same	value	on	all	attributes	in	the	group	by	clause	are	placed	in	one	group.

As	an	illustration,	consider	the	query	“Find	the	average	salary	in	each	department.”

We	write	this	query	as	follows:

select	dept	name,	avg	(salary)	as	avg	salary

from	instructor

group	by	dept	name;

3.7

Aggregate	Functions

93

ID

name

dept	name

salary

76766

Crick

Biology

72000

45565

Katz

Comp.	Sci.

75000

10101

Srinivasan

Comp.	Sci.

65000

83821

Brandt

Comp.	Sci.

92000

98345

Kim

Elec.	Eng.

80000

12121

Wu

Finance

90000

76543

Singh

Finance

80000

32343

El	Said

History

60000

58583

Califieri

History

62000

15151

Mozart

Music

40000

33456

Gold

Physics

87000

22222

Einstein

Physics

95000

Figure	3.13	Tuples	of	the	instructor	relation,	grouped	by	the	dept	name	attribute.

Figure	3.13	shows	the	tuples	in	the	instructor	relation	grouped	by	the	dept	name	attribute,	which	is	the
first	step	in	computing	the	query	result.	The	specified	aggregate	is	computed	for	each	group,	and	the
result	of	the	query	is	shown	in	Figure	3.14.

In	contrast,	consider	the	query	“Find	the	average	salary	of	all	instructors.”	We	write	this	query	as	follows:

select	avg	(salary)

from	instructor;

In	this	case	the	group	by	clause	has	been	omitted,	so	the	entire	relation	is	treated	as	a	single	group.

dept	name

avg	salary

Biology

72000

Comp.	Sci.

77333

Elec.	Eng.

80000

Finance

85000

History

61000

Music

40000

Physics

91000

Figure	3.14	The	result	relation	for	the	query	“Find	the	average	salary	in	each	department”.

94

Chapter	3

Introduction	to	SQL

As	another	example	of	aggregation	on	groups	of	tuples,	consider	the	query	“Find	the	number	of
instructors	in	each	department	who	teach	a	course	in	the	Spring	2018

semester.”	Information	about	which	instructors	teach	which	course	sections	in	which	semester	is	available
in	the	teaches	relation.	However,	this	information	has	to	be	joined	with	information	from	the	instructor
relation	to	get	the	department	name	of	each	instructor.	Thus,	we	write	this	query	as	follows:

select	dept	name,	count	(distinct	ID)	as	instr	count	from	instructor,	teaches

where	instructor.	ID=	teaches.	ID	and	semester	=	'Spring'	and	year	=	2018

group	by	dept	name;

The	result	is	shown	in	Figure	3.15.

When	an	SQL	query	uses	grouping,	it	is	important	to	ensure	that	the	only	attributes	that	appear	in	the
select	statement	without	being	aggregated	are	those	that	are	present	in	the	group	by	clause.	In	other
words,	any	attribute	that	is	not	present	in	the	group	by	clause	may	appear	in	the	select	clause	only	as	an
argument	to	an	aggregate	function,	otherwise	the	query	is	treated	as	erroneous.	For	example,	the
following	query	is	erroneous	since	ID	does	not	appear	in	the	group	by	clause,	and	yet	it	appears	in	the
select	clause	without	being	aggregated:

/*	erroneous	query	*/

select	dept	name,	ID,	avg	(salary)

from	instructor

group	by	dept	name;

In	the	preceding	query,	each	instructor	in	a	particular	group	(defined	by	dept	name)	can	have	a	different
ID,	and	since	only	one	tuple	is	output	for	each	group,	there	is	no	unique	way	of	choosing	which	ID	value	to
output.	As	a	result,	such	cases	are	disallowed	by	SQL.

The	preceding	query	also	illustrates	a	comment	written	in	SQL	by	enclosing	text	in	“/*	*/”;	the	same
comment	could	have	also	been	written	as	“––	erroneous	query”.

dept	name

instr	count

Comp.	Sci.

3

Finance

1

History

1

Music

1

Figure	3.15	The	result	relation	for	the	query	“Find	the	number	of	instructors	in	each	department	who
teach	a	course	in	the	Spring	2018	semester.”

3.7

Aggregate	Functions

95

dept	name

avg	salary

Physics

91000

Elec.	Eng.

80000

Finance

85000

Comp.	Sci.

77333

Biology

72000

History

61000

Figure	3.16	The	result	relation	for	the	query	“Find	the	average	salary	of	instructors	in	those
departments	where	the	average	salary	is	more	than	$42,000.”

3.7.3

The	Having	Clause

At	times,	it	is	useful	to	state	a	condition	that	applies	to	groups	rather	than	to	tuples.	For	example,	we
might	be	interested	in	only	those	departments	where	the	average	salary	of	the	instructors	is	more	than
$42,000.	This	condition	does	not	apply	to	a	single	tuple;	rather,	it	applies	to	each	group	constructed	by
the	group	by	clause.	To	express	such	a	query,	we	use	the	having	clause	of	SQL.	SQL	applies	predicates	in
the	having	clause	after	groups	have	been	formed,	so	aggregate	functions	may	be	used	in	the	having
clause.

We	express	this	query	in	SQL	as	follows:

select	dept	name,	avg	(salary)	as	avg	salary

from	instructor

group	by	dept	name

having	avg	(salary)	>	42000;

The	result	is	shown	in	Figure	3.16.

As	was	the	case	for	the	select	clause,	any	attribute	that	is	present	in	the	having	clause	without	being
aggregated	must	appear	in	the	group	by	clause,	otherwise	the	query	is	erroneous.

The	meaning	of	a	query	containing	aggregation,	group	by,	or	having	clauses	is	defined	by	the	following
sequence	of	operations:

1.	As	was	the	case	for	queries	without	aggregation,	the	from	clause	is	first	evaluated	to	get	a	relation.

2.	If	a	where	clause	is	present,	the	predicate	in	the	where	clause	is	applied	on	the	result	relation	of	the
from	clause.

3.	Tuples	satisfying	the	where	predicate	are	then	placed	into	groups	by	the	group	by	clause	if	it	is
present.	If	the	group	by	clause	is	absent,	the	entire	set	of	tuples	satisfying	the	where	predicate	is	treated
as	being	in	one	group.

96

Chapter	3

Introduction	to	SQL

4.	The	having	clause,	if	it	is	present,	is	applied	to	each	group;	the	groups	that	do	not	satisfy	the	having
clause	predicate	are	removed.

5.	The	select	clause	uses	the	remaining	groups	to	generate	tuples	of	the	result	of	the	query,	applying	the
aggregate	functions	to	get	a	single	result	tuple	for	each	group.

To	illustrate	the	use	of	both	a	having	clause	and	a	where	clause	in	the	same	query,	we	consider	the	query
“For	each	course	section	offered	in	2017,	find	the	average	total	credits	(tot	cred)	of	all	students	enrolled
in	the	section,	if	the	section	has	at	least	2

students.”

select	course	id,	semester,	year,	sec	id,	avg	(tot	cred)	from	student,	takes

where	student.	ID=	takes.	ID	and	year	=	2017

group	by	course	id,	semester,	year,	sec	id	having	count	(ID)	>=	2;

Note	that	all	the	required	information	for	the	preceding	query	is	available	from	the	relations	takes	and
student,	and	that	although	the	query	pertains	to	sections,	a	join	with	section	is	not	needed.

3.7.4

Aggregation	with	Null	and	Boolean	Values

Null	values,	when	they	exist,	complicate	the	processing	of	aggregate	operators.	For	example,	assume	that
some	tuples	in	the	instructor	relation	have	a	null	value	for	salary.

Consider	the	following	query	to	total	all	salary	amounts:

select	sum	(salary)

from	instructor;

The	values	to	be	summed	in	the	preceding	query	include	null	values,	since	we	assumed	that	some	tuples
have	a	null	value	for	salary.	Rather	than	say	that	the	overall	sum	is	itself	null,	the	SQL	standard	says	that
the	sum	operator	should	ignore	null	values	in	its	input.

In	general,	aggregate	functions	treat	nulls	according	to	the	following	rule:	All	aggregate	functions	except
count	(*)	ignore	null	values	in	their	input	collection.	As	a	result	of	null	values	being	ignored,	the	collection
of	values	may	be	empty.	The	count	of	an	empty	collection	is	defined	to	be	0,	and	all	other	aggregate
operations	return	a	value	of	null	when	applied	on	an	empty	collection.	The	effect	of	null	values	on	some	of

the	more	complicated	SQL	constructs	can	be	subtle.

A	Boolean	data	type	that	can	take	values	true,	false,	and	unknown	was	introduced	in	SQL:1999.	The
aggregate	functions	some	and	every	can	be	applied	on	a	collection	of	Boolean	values,	and	compute	the
disjunction	(or)	and	conjunction	(and),	respectively,	of	the	values.

3.7

Aggregate	Functions

97

Note	3.2	SQL	AND	MULTISET	RELATIONAL	ALGEBRA	-	PART	2

As	we	saw	earlier	in	Note	3.1	on	page	80,	the	SQL	select,	from,	and	where	clauses	can	be	represented	in
the	multiset	relational	algebra,	using	the	multiset	versions	of	the	select,	project,	and	Cartesian	product
operations.

The	relational	algebra	union,	intersection,	and	set	difference	(∪,	∩,	and	−)	operations	can	also	be
extended	to	the	multiset	relational	algebra	in	a	similar	way,	following	the	corresponding	definitions	of
union	all,	intersect	all,	and	except	all	in	SQL,	which	we	saw	in	Section	3.5;	the	SQL	union,	intersect,	and
except	correspond	to	the	set	version	of	∪,	∩,	and	−.

The	extended	relational	algebra	aggregate	operation	γ	permits	the	use	of	aggregate	functions	on	relation
attributes.	(The	symbol		is	also	used	to	represent	the	aggregate	operation	and	was	used	in	earlier
editions	of	the	book.)	The	operation	γ

(instructor)	groups	the	instructor	relation	on	the	dept	name	at-dept	name	average(salary)

tribute	and	computes	the	average	salary	for	each	group,	as	we	saw	earlier	in	Section	3.7.2.	The	subscript
on	the	left	side	may	be	omitted,	resulting	in	the	entire	input	relation	being	in	a	single	group.	Thus,	γ

(instructor)	computes	the	aver-

average(salary)

age	salary	of	all	instructors.	The	aggregated	values	do	not	have	an	attribute	name;	they	can	be	given	a
name	either	by	using	the	rename	operator	ρ	or	for	convenience	using	the	following	syntax:

γ

(instructor)

dept	name	average(salary)	as	avg	salary

More	complex	SQL	queries	can	also	be	rewritten	in	relational	algebra.	For	example,	the	query:

select	A	,	A	,	sum(A)

1

2

3

from	r	,	r	,	…	,	r

1

2

m

where	P

group	by	A	,	A	having	count(A)	>	2

1

2

4

is	equivalent	to:

t	1	←	σ	(r	×	r	×	⋯	×	r)

P

1

2

m

Π

(σ

(

γ

(t	1))

A	,	A	,	SumA3

countA4	>	2	A	,	A

sum(A)	as	SumA3,	count(A)	as	countA4

1

2

1

2

3

4

Join	expressions	in	the	from	clause	can	be	written	using	equivalent	join	expressions	in	relational	algebra;
we	leave	the	details	as	an	exercise	for	the	reader.	However,	subqueries	in	the	where	or	select	clause
cannot	be	rewritten	into	relational	algebra	in	such	a	straightforward	manner,	since	there	is	no	relational
algebra	operation	equivalent	to	the	subquery	construct.	Extensions	of	relational	algebra	have	been
proposed	for	this	task,	but	they	are	beyond	the	scope	of	this	book.

98

Chapter	3

Introduction	to	SQL

3.8

Nested	Subqueries

SQL	provides	a	mechanism	for	nesting	subqueries.	A	subquery	is	a	select-from-where	expression	that	is
nested	within	another	query.	A	common	use	of	subqueries	is	to	perform	tests	for	set	membership,	make
set	comparisons,	and	determine	set	cardinality	by	nesting	subqueries	in	the	where	clause.	We	study	such
uses	of	nested	subqueries	in	the	where	clause	in	Section	3.8.1	through	Section	3.8.4.	In	Section	3.8.5,	we
study	nesting	of	subqueries	in	the	from	clause.	In	Section	3.8.7,	we	see	how	a	class	of	subqueries	called
scalar	subqueries	can	appear	wherever	an	expression	returning	a	value	can	occur.

3.8.1

Set	Membership

SQL	allows	testing	tuples	for	membership	in	a	relation.	The	in	connective	tests	for	set	membership,	where
the	set	is	a	collection	of	values	produced	by	a	select	clause.	The	not	in	connective	tests	for	the	absence	of
set	membership.

As	an	illustration,	reconsider	the	query	“Find	all	the	courses	taught	in	the	both	the	Fall	2017	and	Spring
2018	semesters.”	Earlier,	we	wrote	such	a	query	by	intersecting	two	sets:	the	set	of	courses	taught	in	Fall
2017	and	the	set	of	courses	taught	in	Spring	2018.	We	can	take	the	alternative	approach	of	finding	all
courses	that	were	taught	in	Fall	2017	and	that	are	also	members	of	the	set	of	courses	taught	in	Spring
2018.	This	formulation	generates	the	same	results	as	the	previous	one	did,	but	it	leads	us	to	write	our
query	using	the	in	connective	of	SQL.	We	begin	by	finding	all	courses	taught	in	Spring	2018,	and	we	write
the	subquery:

(select	course	id

from	section

where	semester	=	'Spring'	and	year=	2018)

We	then	need	to	find	those	courses	that	were	taught	in	the	Fall	2017	and	that	appear	in	the	set	of	courses
obtained	in	the	subquery.	We	do	so	by	nesting	the	subquery	in	the	where	clause	of	an	outer	query.	The
resulting	query	is:

select	distinct	course	id

from	section

where	semester	=	'Fall'	and	year=	2017	and

course	id	in	(select	course	id

from	section

where	semester	=	'Spring'	and	year=	2018);

Note	that	we	need	to	use	distinct	here	because	the	intersect	operation	removes	duplicates	by	default.

This	example	shows	that	it	is	possible	to	write	the	same	query	several	ways	in	SQL.

This	flexibility	is	beneficial,	since	it	allows	a	user	to	think	about	the	query	in	the	way

3.8

Nested	Subqueries

99

that	seems	most	natural.	We	shall	see	that	there	is	a	substantial	amount	of	redundancy	in	SQL.

We	use	the	not	in	construct	in	a	way	similar	to	the	in	construct.	For	example,	to	find	all	the	courses	taught
in	the	Fall	2017	semester	but	not	in	the	Spring	2018	semester,	which	we	expressed	earlier	using	the
except	operation,	we	can	write:

select	distinct	course	id

from	section

where	semester	=	'Fall'	and	year=	2017	and

course	id	not	in	(select	course	id

from	section

where	semester	=	'Spring'	and	year=	2018);

The	in	and	not	in	operators	can	also	be	used	on	enumerated	sets.	The	following	query	selects	the	names

of	instructors	whose	names	are	neither	“Mozart”	nor	“Einstein”.

select	distinct	name

from	instructor

where	name	not	in	('Mozart',	'Einstein');

In	the	preceding	examples,	we	tested	membership	in	a	one-attribute	relation.	It	is	also	possible	to	test	for
membership	in	an	arbitrary	relation	in	SQL.	For	example,	we	can	write	the	query	“find	the	total	number	of
(distinct)	students	who	have	taken	course	sections	taught	by	the	instructor	with	ID	110011”	as	follows:
select	count	(distinct	ID)

from	takes

where	(course	id,	sec	id,	semester,	year)	in	(select	course	id,	sec	id,	semester,	year	from	teaches

where	teaches.	ID=	'10101');

Note,	however,	that	some	SQL	implementations	do	not	support	the	row	construction	syntax	“(course	id,
sec	id,	semester,	year)”	used	above.	We	will	see	alternative	ways	of	writing	this	query	in	Section	3.8.3.

3.8.2

Set	Comparison

As	an	example	of	the	ability	of	a	nested	subquery	to	compare	sets,	consider	the	query

“Find	the	names	of	all	instructors	whose	salary	is	greater	than	at	least	one	instructor	in	the	Biology
department.”	In	Section	3.4.1,	we	wrote	this	query	as	follows:

100

Chapter	3

Introduction	to	SQL

select	distinct	T	.	name

from	instructor	as	T	,	instructor	as	S

where	T.salary	>	S.salary	and	S.dept	name	=	'Biology';	SQL	does,	however,	offer	an	alternative	style	for
writing	the	preceding	query.	The	phrase

“greater	than	at	least	one”	is	represented	in	SQL	by	>	some.	This	construct	allows	us	to	rewrite	the	query
in	a	form	that	resembles	closely	our	formulation	of	the	query	in	English.

select	name

from	instructor

where	salary	>	some	(select	salary

from	instructor

where	dept	name	=	'Biology');

The	subquery:

(select	salary

from	instructor

where	dept	name	=	'Biology')

generates	the	set	of	all	salary	values	of	all	instructors	in	the	Biology	department.	The	>

some	comparison	in	the	where	clause	of	the	outer	select	is	true	if	the	salary	value	of	the	tuple	is	greater
than	at	least	one	member	of	the	set	of	all	salary	values	for	instructors	in	Biology.

SQL	also	allows	<	some,	<=	some,	>=	some,	=	some,	and	<>	some	comparisons.

As	an	exercise,	verify	that	=	some	is	identical	to	in,	whereas	<>	some	is	not	the	same	as	not	in.10

Now	we	modify	our	query	slightly.	Let	us	find	the	names	of	all	instructors	that	have	a	salary	value	greater
than	that	of	each	instructor	in	the	Biology	department.	The	construct	>	all	corresponds	to	the	phrase
“greater	than	all.”	Using	this	construct,	we	write	the	query	as	follows:

select	name

from	instructor

where	salary	>	all	(select	salary

from	instructor

where	dept	name	=	'Biology');

As	it	does	for	some,	SQL	also	allows	<	all,	<=	all,	>=	all,	=	all,	and	<>	all	comparisons.

As	an	exercise,	verify	that	<>	all	is	identical	to	not	in,	whereas	=	all	is	not	the	same	as	in.

10The	keyword	any	is	synonymous	to	some	in	SQL.	Early	versions	of	SQL	allowed	only	any.	Later	versions
added	the	alternative	some	to	avoid	the	linguistic	ambiguity	of	the	word	any	in	English.

3.8

Nested	Subqueries

101

As	another	example	of	set	comparisons,	consider	the	query	“Find	the	departments	that	have	the	highest
average	salary.”	We	begin	by	writing	a	query	to	find	all	average	salaries,	and	then	nest	it	as	a	subquery	of
a	larger	query	that	finds	those	departments	for	which	the	average	salary	is	greater	than	or	equal	to	all
average	salaries:	select	dept	name

from	instructor

group	by	dept	name

having	avg	(salary)	>=	all	(select	avg	(salary)	from	instructor

group	by	dept	name);

3.8.3

Test	for	Empty	Relations

SQL	includes	a	feature	for	testing	whether	a	subquery	has	any	tuples	in	its	result.	The	exists	construct
returns	the	value	true	if	the	argument	subquery	is	nonempty.	Using	the	exists	construct,	we	can	write	the
query	“Find	all	courses	taught	in	both	the	Fall	2017

semester	and	in	the	Spring	2018	semester”	in	still	another	way:

select	course	id

from	section	as	S

where	semester	=	'Fall'	and	year=	2017	and

exists	(select	*

from	section	as	T

where	semester	=	'Spring'	and	year=	2018	and

S.	course	id=	T	.	course	id);

The	above	query	also	illustrates	a	feature	of	SQL	where	a	correlation	name	from	an	outer	query	(S	in	the
above	query),	can	be	used	in	a	subquery	in	the	where	clause.

A	subquery	that	uses	a	correlation	name	from	an	outer	query	is	called	a	correlated	subquery.

In	queries	that	contain	subqueries,	a	scoping	rule	applies	for	correlation	names.

In	a	subquery,	according	to	the	rule,	it	is	legal	to	use	only	correlation	names	defined	in	the	subquery	itself
or	in	any	query	that	contains	the	subquery.	If	a	correlation	name	is	defined	both	locally	in	a	subquery	and
globally	in	a	containing	query,	the	local	definition	applies.	This	rule	is	analogous	to	the	usual	scoping	rules
used	for	variables	in	programming	languages.

We	can	test	for	the	nonexistence	of	tuples	in	a	subquery	by	using	the	not	exists	construct.	We	can	use	the
not	exists	construct	to	simulate	the	set	containment	(that	is,	superset)	operation:	We	can	write	“relation	A
contains	relation	B”	as	“not	exists	(B

except	A).”	(Although	it	is	not	part	of	the	current	SQL	standards,	the	contains	operator	was	present	in
some	early	relational	systems.)	To	illustrate	the	not	exists	operator,

102

Chapter	3

Introduction	to	SQL

consider	the	query	“Find	all	students	who	have	taken	all	courses	offered	in	the	Biology	department.”
Using	the	except	construct,	we	can	write	the	query	as	follows:	select	S.	ID,	S.	name

from	student	as	S

where	not	exists	((select	course	id

from	course

where	dept	name	=	'Biology')

except

(select	T	.	course	id

from	takes	as	T

where	S.	ID	=	T	.	ID));

Here,	the	subquery:

(select	course	id

from	course

where	dept	name	=	'Biology')

finds	the	set	of	all	courses	offered	in	the	Biology	department.	The	subquery:	(select	T	.	course	id

from	takes	as	T

where	S.	ID	=	T	.	ID)

finds	all	the	courses	that	student	S.	ID	has	taken.	Thus,	the	outer	select	takes	each	student	and	tests
whether	the	set	of	all	courses	that	the	student	has	taken	contains	the	set	of	all	courses	offered	in	the
Biology	department.

We	saw	in	Section	3.8.1,	an	SQL	query	to	“find	the	total	number	of	(distinct)	students	who	have	taken
course	sections	taught	by	the	instructor	with	ID	110011”.	That	query	used	a	tuple	constructor	syntax	that
is	not	supported	by	some	databases.	An	alternative	way	to	write	the	query,	using	the	exists	construct,	is	as
follows:	select	count	(distinct	ID)

from	takes

where	exists	(select	course	id,	sec	id,	semester,	year	from	teaches

where	teaches.	ID=	'10101'

and	takes.	course	id	=	teaches.	course	id

and	takes.	sec	id	=	teaches.	sec	id

and	takes.	semester	=	teaches.	semester

and	takes.	year	=	teaches.	year

);

3.8

Nested	Subqueries

103

3.8.4

Test	for	the	Absence	of	Duplicate	Tuples

SQL	includes	a	Boolean	function	for	testing	whether	a	subquery	has	duplicate	tuples	in	its	result.	The
unique	construct11	returns	the	value	true	if	the	argument	subquery	contains	no	duplicate	tuples.	Using
the	unique	construct,	we	can	write	the	query	“Find	all	courses	that	were	offered	at	most	once	in	2017”	as
follows:

select	T	.	course	id

from	course	as	T

where	unique	(select	R.	course	id

from	section	as	R

where	T	.	course	id=	R.	course	id	and	R.	year	=	2017);

Note	that	if	a	course	were	not	offered	in	2017,	the	subquery	would	return	an	empty	result,	and	the	unique
predicate	would	evaluate	to	true	on	the	empty	set.

An	equivalent	version	of	this	query	not	using	the	unique	construct	is:	select	T	.	course	id

from	course	as	T

where	1	>=	(select	count(R.	course	id)

from	section	as	R

where	T	.	course	id=	R.	course	id	and	R.	year	=	2017);

We	can	test	for	the	existence	of	duplicate	tuples	in	a	subquery	by	using	the	not	unique	construct.	To
illustrate	this	construct,	consider	the	query	“Find	all	courses	that	were	offered	at	least	twice	in	2017”	as

follows:

select	T	.	course	id

from	course	as	T

where	not	unique	(select	R.	course	id

from	section	as	R

where	T	.	course	id=	R.	course	id	and	R.	year	=	2017);

Formally,	the	unique	test	on	a	relation	is	defined	to	fail	if	and	only	if	the	relation	contains	two	distinct
tuples	t	and	t	such	that	t	=	t	.	Since	the	test	t	=	t	fails	if	1

2

1

2

1

2

any	of	the	fields	of	t	or	t	are	null,	it	is	possible	for	unique	to	be	true	even	if	there	are	1

2

multiple	copies	of	a	tuple,	as	long	as	at	least	one	of	the	attributes	of	the	tuple	is	null.

11This	construct	is	not	yet	widely	implemented.

104

Chapter	3

Introduction	to	SQL

3.8.5

Subqueries	in	the	From	Clause

SQL	allows	a	subquery	expression	to	be	used	in	the	from	clause.	The	key	concept	applied	here	is	that	any
select-from-where	expression	returns	a	relation	as	a	result	and,	therefore,	can	be	inserted	into	another
select-from-where	anywhere	that	a	relation	can	appear.

Consider	the	query	“Find	the	average	instructors’	salaries	of	those	departments	where	the	average	salary
is	greater	than	$42,000.”	We	wrote	this	query	in	Section	3.7

by	using	the	having	clause.	We	can	now	rewrite	this	query,	without	using	the	having	clause,	by	using	a
subquery	in	the	from	clause,	as	follows:

select	dept	name,	avg	salary

from	(select	dept	name,	avg	(salary)	as	avg	salary	from	instructor

group	by	dept	name)

where	avg	salary	>	42000;

The	subquery	generates	a	relation	consisting	of	the	names	of	all	departments	and	their	corresponding
average	instructors’	salaries.	The	attributes	of	the	subquery	result	can	be	used	in	the	outer	query,	as	can
be	seen	in	the	above	example.

Note	that	we	do	not	need	to	use	the	having	clause,	since	the	subquery	in	the	from	clause	computes	the
average	salary,	and	the	predicate	that	was	in	the	having	clause	earlier	is	now	in	the	where	clause	of	the
outer	query.

We	can	give	the	subquery	result	relation	a	name,	and	rename	the	attributes,	using	the	as	clause,	as
illustrated	below.

select	dept	name,	avg	salary

from	(select	dept	name,	avg	(salary)

from	instructor

group	by	dept	name)

as	dept	avg	(dept	name,	avg	salary)

where	avg	salary	>	42000;

The	subquery	result	relation	is	named	dept	avg,	with	the	attributes	dept	name	and	avg	salary.

Nested	subqueries	in	the	from	clause	are	supported	by	most	but	not	all	SQL	implementations.	Note	that
some	SQL	implementations,	notably	MySQL	and	PostgreSQL,	require	that	each	subquery	relation	in	the
from	clause	must	be	given	a	name,	even	if	the	name	is	never	referenced;	Oracle	allows	a	subquery	result
relation	to	be	given	a	name	(with	the	keyword	as	omitted)	but	does	not	allow	renaming	of	attributes	of	the
relation.

An	easy	workaround	for	that	is	to	do	the	attribute	renaming	in	the	select	clause	of	the	subquery;	in	the
above	query,	the	select	clause	of	the	subquery	would	be	replaced	by	select	dept	name,	avg(salary)	as	avg
salary

3.8

Nested	Subqueries

105

and

“as	dept	avg	(dept	name,	avg	salary)”

would	be	replaced	by

“as	dept	avg”.

As	another	example,	suppose	we	wish	to	find	the	maximum	across	all	departments	of	the	total	of	all
instructors’	salaries	in	each	department.	The	having	clause	does	not	help	us	in	this	task,	but	we	can	write

this	query	easily	by	using	a	subquery	in	the	from	clause,	as	follows:

select	max	(tot	salary)

from	(select	dept	name,	sum(salary)

from	instructor

group	by	dept	name)	as	dept	total	(dept	name,	tot	salary);	We	note	that	nested	subqueries	in	the	from
clause	cannot	use	correlation	variables	from	other	relations	in	the	same	from	clause.	However,	the	SQL
standard,	starting	with	SQL:2003,	allows	a	subquery	in	the	from	clause	that	is	prefixed	by	the	lateral
keyword	to	access	attributes	of	preceding	tables	or	subqueries	in	the	same	from	clause.	For	example,	if
we	wish	to	print	the	names	of	each	instructor,	along	with	their	salary	and	the	average	salary	in	their
department,	we	could	write	the	query	as	follows:	select	name,	salary,	avg	salary

from	instructor	I1,	lateral	(select	avg(salary)	as	avg	salary	from	instructor	I2

where	I2.	dept	name=	I1.	dept	name);

Without	the	lateral	clause,	the	subquery	cannot	access	the	correlation	variable	I1	from	the	outer	query.
Only	the	more	recent	implementations	of	SQL	support	the	lateral	clause.

3.8.6

The	With	Clause

The	with	clause	provides	a	way	of	defining	a	temporary	relation	whose	definition	is	available	only	to	the
query	in	which	the	with	clause	occurs.	Consider	the	following	query,	which	finds	those	departments	with
the	maximum	budget.

with	max	budget	(value)	as

(select	max(budget)

from	department)

select	budget

from	department,	max	budget

where	department.	budget	=	max	budget.value;

106

Chapter	3

Introduction	to	SQL

The	with	clause	in	the	query	defines	the	temporary	relation	max	budget	containing	the	results	of	the
subquery	defining	the	relation.	The	relation	is	available	for	use	only	within	later	parts	of	the	same	query.
12	The	with	clause,	introduced	in	SQL:1999,	is	supported	by	many,	but	not	all,	database	systems.

We	could	have	written	the	preceding	query	by	using	a	nested	subquery	in	either	the	from	clause	or	the
where	clause.	However,	using	nested	subqueries	would	have	made	the	query	harder	to	read	and

understand.	The	with	clause	makes	the	query	logic	clearer;	it	also	permits	this	temporary	relation	to	be
used	in	multiple	places	within	a	query.

For	example,	suppose	we	want	to	find	all	departments	where	the	total	salary	is	greater	than	the	average
of	the	total	salary	at	all	departments.	We	can	write	the	query	using	the	with	clause	as	follows.

with	dept	total	(dept	name,	value)	as

(select	dept	name,	sum(salary)

from	instructor

group	by	dept	name),

dept	total	avg(value)	as

(select	avg(value)

from	dept	total)

select	dept	name

from	dept	total,	dept	total	avg

where	dept	total.value	>	dept	total	avg.value;

We	can	create	an	equivalent	query	without	the	with	clause,	but	it	would	be	more	complicated	and	harder
to	understand.	You	can	write	the	equivalent	query	as	an	exercise.

3.8.7

Scalar	Subqueries

SQL	allows	subqueries	to	occur	wherever	an	expression	returning	a	value	is	permitted,	provided	the
subquery	returns	only	one	tuple	containing	a	single	attribute;	such	subqueries	are	called	scalar
subqueries.	For	example,	a	subquery	can	be	used	in	the	select	clause	as	illustrated	in	the	following
example	that	lists	all	departments	along	with	the	number	of	instructors	in	each	department:

select	dept	name,

(select	count(*)

from	instructor

where	department.	dept	name	=	instructor.	dept	name)	as	num	instructors

from	department;

12The	SQL	evaluation	engine	may	not	physically	create	the	relation	and	is	free	to	compute	the	overall
query	result	in	alternative	ways,	as	long	as	the	result	of	the	query	is	the	same	as	if	the	relation	had	been
created.

3.8

Nested	Subqueries

107

The	subquery	in	this	example	is	guaranteed	to	return	only	a	single	value	since	it	has	a	count(*)	aggregate
without	a	group	by.	The	example	also	illustrates	the	usage	of	correlation	variables,	that	is,	attributes	of
relations	in	the	from	clause	of	the	outer	query,	such	as	department.	dept	name	in	the	above	example.

Scalar	subqueries	can	occur	in	select,	where,	and	having	clauses.	Scalar	subqueries	may	also	be	defined
without	aggregates.	It	is	not	always	possible	to	figure	out	at	compile	time	if	a	subquery	can	return	more
than	one	tuple	in	its	result;	if	the	result	has	more	than	one	tuple	when	the	subquery	is	executed,	a	run-
time	error	occurs.

Note	that	technically	the	type	of	a	scalar	subquery	result	is	still	a	relation,	even	if	it	contains	a	single
tuple.	However,	when	a	scalar	subquery	is	used	in	an	expression	where	a	value	is	expected,	SQL	implicitly
extracts	the	value	from	the	single	attribute	of	the	single	tuple	in	the	relation	and	returns	that	value.

3.8.8

Scalar	Without	a	From	Clause

Certain	queries	require	a	calculation	but	no	reference	to	any	relation.	Similarly,	certain	queries	may	have
subqueries	that	contain	a	from	clause	without	the	top-level	query	needing	a	from	clause.

As	an	example,	suppose	we	wish	to	find	the	average	number	of	sections	taught	(regardless	of	year	or
semester)	per	instructor,	with	sections	taught	by	multiple	instructors	counted	once	per	instructor.	We
need	to	count	the	number	of	tuples	in	teaches	to	find	the	total	number	of	sections	taught	and	count	the
number	of	tuples	in	instructor	to	find	the	number	of	instructors.	Then	a	simple	division	gives	us	the
desired	result.	One	might	write	this	as:

(select	count	(*)	from	teaches)	/	(select	count	(*)	from	instructor);	While	this	is	legal	in	some	systems,
others	will	report	an	error	due	to	the	lack	of	a	from	clause.13	In	the	latter	case,	a	special	dummy	relation
called,	for	example,	dual	can	be	created,	containing	a	single	tuple.	This	allows	the	preceding	query	to	be
written	as:	select	(select	count	(*)	from	teaches)	/	(select	count	(*)	from	instructor)	from	dual;

Oracle	provides	a	predefined	relation	called	dual,	containing	a	single	tuple,	for	uses	such	as	the	above
(the	relation	has	a	single	attribute,	which	is	not	relevant	for	our	purposes);	you	can	create	an	equivalent
relation	if	you	use	any	other	database.

Since	the	above	queries	divide	one	integer	by	another,	the	result	would,	on	most	databases,	be	an	integer,
which	would	result	in	loss	of	precision.	If	you	wish	to	get	the	result	as	a	floating	point	number,	you	could
multiply	one	of	the	two	subquery	results	by	1	.	0	to	convert	it	to	a	floating	point	number,	before	the
division	operation	is	performed.

13This	construct	is	legal,	for	example,	in	SQL	Server,	but	not	legal,	for	example,	in	Oracle.

108

Chapter	3

Introduction	to	SQL

Note	3.3	SQL	AND	MULTISET	RELATIONAL	ALGEBRA	-	PART	3

Unlike	the	SQL	set	and	aggregation	operations	that	we	studied	earlier	in	this	chapter,	SQL	subqueries	do
not	have	directly	equivalent	operations	in	the	relational	algebra.	Most	SQL	queries	involving	subqueries
can	be	rewritten	in	a	way	that	does	not	require	the	use	of	subqueries,	and	thus	they	have	equivalent
relational	algebra	expressions.

Rewriting	to	relational	algebra	can	benefit	from	two	extended	relational	algebra	operations	called
semijoin,	denoted	⋉,	and	antijoin,	denoted	⋉,	which	are	supported	internally	by	many	database
implementations	(the	symbol	⊳	is	sometimes	used	in	place	of	⋉	to	denote	antijoin).	For	example,	given
relations	r	and	s,	r	⋉

s	outputs	all	tuples	in	r	that	have	at	least	one	tuple	in	s	whose	s.B	attribute	r.A=	s.B

value	matches	that	tuples	r.A	attribute	value.	Conversely,	r	⋉

s	outputs	all	tu-

r.A=	s.B

ples	in	r	that	have	do	not	have	any	such	matching	tuple	in	s.	These	operators	can	be	used	to	rewrite	many
subqueries	that	use	the	exists	and	not	exists	connectives.

Semijoin	and	antijoin	can	be	expressed	using	other	relational	algebra	operations,	so	they	do	not	add	any
expressive	power,	but	they	are	nevertheless	quite	useful	in	practice	since	they	can	be	implemented	very
efficiently.

However,	the	process	of	rewriting	SQL	queries	that	contain	subqueries	is	in	general	not	straightforward.
Database	system	implementations	therefore	extend	the	relational	algebra	by	allowing	σ	and	Π	operators
to	invoke	subqueries	in	their	predicates	and	projection	lists.

3.9

Modification	of	the	Database

We	have	restricted	our	attention	until	now	to	the	extraction	of	information	from	the	database.	Now,	we
show	how	to	add,	remove,	or	change	information	with	SQL.

3.9.1

Deletion

A	delete	request	is	expressed	in	much	the	same	way	as	a	query.	We	can	delete	only	whole	tuples;	we
cannot	delete	values	on	only	particular	attributes.	SQL	expresses	a	deletion	by:

delete	from	r

where	P;

where	P	represents	a	predicate	and	r	represents	a	relation.	The	delete	statement	first	finds	all	tuples	t	in	r
for	which	P(t)	is	true,	and	then	deletes	them	from	r.	The	where	clause	can	be	omitted,	in	which	case	all
tuples	in	r	are	deleted.

3.9

Modification	of	the	Database

109

Note	that	a	delete	command	operates	on	only	one	relation.	If	we	want	to	delete	tuples	from	several
relations,	we	must	use	one	delete	command	for	each	relation.	The	predicate	in	the	where	clause	may	be
as	complex	as	a	select	command’s	where	clause.

At	the	other	extreme,	the	where	clause	may	be	empty.	The	request:

delete	from	instructor;

deletes	all	tuples	from	the	instructor	relation.	The	instructor	relation	itself	still	exists,	but	it	is	empty.

Here	are	examples	of	SQL	delete	requests:

•	Delete	all	tuples	in	the	instructor	relation	pertaining	to	instructors	in	the	Finance	department.

delete	from	instructor

where	dept	name	=	'Finance';

•	Delete	all	instructors	with	a	salary	between	$13,000	and	$15,000.

delete	from	instructor

where	salary	between	13000	and	15000;

•	Delete	all	tuples	in	the	instructor	relation	for	those	instructors	associated	with	a	department	located	in
the	Watson	building.

delete	from	instructor

where	dept	name	in	(select	dept	name

from	department

where	building	=	'Watson');

This	delete	request	first	finds	all	departments	located	in	Watson	and	then	deletes	all	instructor	tuples
pertaining	to	those	departments.

Note	that,	although	we	may	delete	tuples	from	only	one	relation	at	a	time,	we	may	reference	any	number
of	relations	in	a	select-from-where	nested	in	the	where	clause	of	a	delete.	The	delete	request	can	contain
a	nested	select	that	references	the	relation	from	which	tuples	are	to	be	deleted.	For	example,	suppose
that	we	want	to	delete	the	records	of	all	instructors	with	salary	below	the	average	at	the	university.	We
could	write:	delete	from	instructor

where	salary	<	(select	avg	(salary)

from	instructor);

110

Chapter	3

Introduction	to	SQL

The	delete	statement	first	tests	each	tuple	in	the	relation	instructor	to	check	whether	the	salary	is	less
than	the	average	salary	of	instructors	in	the	university.	Then,	all	tuples	that	pass	the	test	—	that	is,
represent	an	instructor	with	a	lower-than-average	salary	—	are	deleted.	Performing	all	the	tests	before
performing	any	deletion	is	important	—	if	some	tuples	are	deleted	before	other	tuples	have	been	tested,
the	average	salary	may	change,	and	the	final	result	of	the	delete	would	depend	on	the	order	in	which	the
tuples	were	processed!

3.9.2

Insertion

To	insert	data	into	a	relation,	we	either	specify	a	tuple	to	be	inserted	or	write	a	query	whose	result	is	a	set
of	tuples	to	be	inserted.	The	attribute	values	for	inserted	tuples	must	be	members	of	the	corresponding
attribute’s	domain.	Similarly,	tuples	inserted	must	have	the	correct	number	of	attributes.

The	simplest	insert	statement	is	a	request	to	insert	one	tuple.	Suppose	that	we	wish	to	insert	the	fact	that
there	is	a	course	CS-437	in	the	Computer	Science	department	with	title	“Database	Systems”	and	four
credit	hours.	We	write:

insert	into	course

values	('CS-437',	'Database	Systems',	'Comp.	Sci.',	4);

In	this	example,	the	values	are	specified	in	the	order	in	which	the	corresponding	attributes	are	listed	in
the	relation	schema.	For	the	benefit	of	users	who	may	not	remember	the	order	of	the	attributes,	SQL
allows	the	attributes	to	be	specified	as	part	of	the	insert	statement.	For	example,	the	following	SQL	insert
statements	are	identical	in	function	to	the	preceding	one:

insert	into	course	(course	id,	title,	dept	name,	credits)	values	('CS-437',	'Database	Systems',	'Comp.	Sci.',
4);

insert	into	course	(title,	course	id,	credits,	dept	name)	values	('Database	Systems',	'CS-437',	4,	'Comp.
Sci.');

More	generally,	we	might	want	to	insert	tuples	on	the	basis	of	the	result	of	a	query.

Suppose	that	we	want	to	make	each	student	in	the	Music	department	who	has	earned	more	than	144
credit	hours	an	instructor	in	the	Music	department	with	a	salary	of	$18,000.	We	write:

insert	into	instructor

select	ID,	name,	dept	name,	18000

from	student

where	dept	name	=	'Music'	and	tot	cred	>	144;

3.9

Modification	of	the	Database

111

Instead	of	specifying	a	tuple	as	we	did	earlier	in	this	section,	we	use	a	select	to	specify	a	set	of	tuples.
SQL	evaluates	the	select	statement	first,	giving	a	set	of	tuples	that	is	then	inserted	into	the	instructor
relation.	Each	tuple	has	an	ID,	a	name,	a	dept	name	(Music),	and	a	salary	of	$18,000.

It	is	important	that	the	system	evaluate	the	select	statement	fully	before	it	performs	any	insertions.	If	it
were	to	carry	out	some	insertions	while	the	select	statement	was	being	evaluated,	a	request	such	as:

insert	into	student

select	*

from	student;

might	insert	an	infinite	number	of	tuples,	if	the	primary	key	constraint	on	student	were	absent.	Without
the	primary	key	constraint,	the	request	would	insert	the	first	tuple	in	student	again,	creating	a	second
copy	of	the	tuple.	Since	this	second	copy	is	part	of	student	now,	the	select	statement	may	find	it,	and	a
third	copy	would	be	inserted	into	student.	The	select	statement	may	then	find	this	third	copy	and	insert	a
fourth	copy,	and	so	on,	forever.	Evaluating	the	select	statement	completely	before	performing	insertions
avoids	such	problems.	Thus,	the	above	insert	statement	would	simply	duplicate	every	tuple	in	the	student
relation	if	the	relation	did	not	have	a	primary	key	constraint.

Our	discussion	of	the	insert	statement	considered	only	examples	in	which	a	value	is	given	for	every
attribute	in	inserted	tuples.	It	is	possible	for	inserted	tuples	to	be	given	values	on	only	some	attributes	of
the	schema.	The	remaining	attributes	are	assigned	a	null	value	denoted	by	null.	Consider	the	request:

insert	into	student

values	('3003',	'Green',	'Finance',	null);

The	tuple	inserted	by	this	request	specified	that	a	student	with	ID	“3003”	is	in	the	Finance	department,
but	the	tot	cred	value	for	this	student	is	not	known.

Most	relational	database	products	have	special	“bulk	loader”	utilities	to	insert	a	large	set	of	tuples	into	a
relation.	These	utilities	allow	data	to	be	read	from	formatted	text	files,	and	they	can	execute	much	faster
than	an	equivalent	sequence	of	insert	statements.

3.9.3

Updates

In	certain	situations,	we	may	wish	to	change	a	value	in	a	tuple	without	changing	all	values	in	the	tuple.
For	this	purpose,	the	update	statement	can	be	used.	As	we	could	for	insert	and	delete,	we	can	choose	the
tuples	to	be	updated	by	using	a	query.

Suppose	that	annual	salary	increases	are	being	made,	and	salaries	of	all	instructors	are	to	be	increased	by
5	percent.	We	write:

112

Chapter	3

Introduction	to	SQL

update	instructor

set	salary=	salary	*	1.05;

The	preceding	update	statement	is	applied	once	to	each	of	the	tuples	in	the	instructor	relation.

If	a	salary	increase	is	to	be	paid	only	to	instructors	with	a	salary	of	less	than	$70,000,	we	can	write:

update	instructor

set	salary	=	salary	*	1.05

where	salary	<	70000;

In	general,	the	where	clause	of	the	update	statement	may	contain	any	construct	legal	in	the	where	clause
of	the	select	statement	(including	nested	selects).	As	with	insert	and	delete,	a	nested	select	within	an
update	statement	may	reference	the	relation	that	is	being	updated.	As	before,	SQL	first	tests	all	tuples	in
the	relation	to	see	whether	they	should	be	updated,	and	it	carries	out	the	updates	afterward.	For	example,
we	can	write	the	request	“Give	a	5	percent	salary	raise	to	instructors	whose	salary	is	less	than	average”
as	follows:

update	instructor

set	salary	=	salary	*	1.05

where	salary	<	(select	avg	(salary)

from	instructor);

Let	us	now	suppose	that	all	instructors	with	salary	over	$100,000	receive	a	3	percent	raise,	whereas	all
others	receive	a	5	percent	raise.	We	could	write	two	update	statements:

update	instructor

set	salary	=	salary	*	1.03

where	salary	>	100000;

update	instructor

set	salary	=	salary	*	1.05

where	salary	<=	100000;

Note	that	the	order	of	the	two	update	statements	is	important.	If	we	changed	the	order	of	the	two

statements,	an	instructor	with	a	salary	just	under	$100,000	would	receive	a	raise	of	over	8	percent.

SQL	provides	a	case	construct	that	we	can	use	to	perform	both	updates	with	a	single	update	statement,
avoiding	the	problem	with	the	order	of	updates.

3.9

Modification	of	the	Database

113

update	instructor

set	salary	=	case

when	salary	<=	100000	then	salary	*	1.05

else	salary	*	1.03

end

The	general	form	of	the	case	statement	is	as	follows:

case

when	pred	then	result

1

1

when	pred	then	result

2

2

…

when	pred	then	result

n

n

else	result	0

end

The	operation	returns	result	,	where	i	is	the	first	of	pred	,	pred	,	.	.	.	,	pred	that	is	satis-i

1

2

n

fied;	if	none	of	the	predicates	is	satisfied,	the	operation	returns	result	.	Case	statements	0

can	be	used	in	any	place	where	a	value	is	expected.

Scalar	subqueries	are	useful	in	SQL	update	statements,	where	they	can	be	used	in	the	set	clause.	We
illustrate	this	using	the	student	and	takes	relations	that	we	introduced	in	Chapter	2.	Consider	an	update
where	we	set	the	tot	cred	attribute	of	each	student	tuple	to	the	sum	of	the	credits	of	courses	successfully
completed	by	the	student.	We	assume	that	a	course	is	successfully	completed	if	the	student	has	a	grade
that	is	neither

'F'	nor	null.	To	specify	this	update,	we	need	to	use	a	subquery	in	the	set	clause,	as	shown	below:

update	student

set	tot	cred	=	(

select	sum(credits)

from	takes,	course

where	student.	ID=	takes.	ID	and

takes.	course	id	=	course.	course	id	and	takes.	grade	<>	'F'	and

takes.	grade	is	not	null);

In	case	a	student	has	not	successfully	completed	any	course,	the	preceding	statement	would	set	the	tot
cred	attribute	value	to	null.	To	set	the	value	to	0	instead,	we	could	use	another	update	statement	to
replace	null	values	with	0;	a	better	alternative	is	to	replace	the	clause	“select	sum(credits)”	in	the
preceding	subquery	with	the	following	select	clause	using	a	case	expression:

select	case

when	sum(credits)	is	not	null	then	sum(credits)

else	0

end

114

Chapter	3

Introduction	to	SQL

Many	systems	support	a	coalesce	function,	which	we	describe	in	more	detail	later,	in	Section	4.5.2,	which
provides	a	concise	way	of	replacing	nulls	by	other	values.	In	the	above	example,	we	could	have	used
coalesce(sum(credits),	0)	instead	of	the	case	expression;	this	expression	would	return	the	aggregate
result	sum(credits)	if	it	is	not	null,	and	0	otherwise.

3.10

Summary

•	SQL	is	the	most	influential	commercially	marketed	relational	query	language.	The	SQL	language	has
several	parts:

°	Data-definition	language	(DDL),	which	provides	commands	for	defining	relation	schemas,	deleting
relations,	and	modifying	relation	schemas.

°	Data-manipulation	language	(DML),	which	includes	a	query	language	and	commands	to	insert	tuples
into,	delete	tuples	from,	and	modify	tuples	in	the	database.

•	The	SQL	data-definition	language	is	used	to	create	relations	with	specified	schemas.	In	addition	to
specifying	the	names	and	types	of	relation	attributes,	SQL	also	allows	the	specification	of	integrity
constraints	such	as	primary-key	constraints	and	foreign-key	constraints.

•	SQL	includes	a	variety	of	language	constructs	for	queries	on	the	database.	These	include	the	select,
from,	and	where	clauses.

•	SQL	also	provides	mechanisms	to	rename	both	attributes	and	relations,	and	to	order	query	results	by
sorting	on	specified	attributes.

•	SQL	supports	basic	set	operations	on	relations,	including	union,	intersect,	and	except,	which	correspond
to	the	mathematical	set	operations	∪,	∩,	and	−.

•	SQL	handles	queries	on	relations	containing	null	values	by	adding	the	truth	value

“unknown”	to	the	usual	truth	values	of	true	and	false.

•	SQL	supports	aggregation,	including	the	ability	to	divide	a	relation	into	groups,	applying	aggregation
separately	on	each	group.	SQL	also	supports	set	operations	on	groups.

•	SQL	supports	nested	subqueries	in	the	where	and	from	clauses	of	an	outer	query.

It	also	supports	scalar	subqueries	wherever	an	expression	returning	a	value	is	permitted.

•	SQL	provides	constructs	for	updating,	inserting,	and	deleting	information.

Practice	Exercises

115

Review	Terms

•	Data-definition	language

•	Set	operations

•	Data-manipulation	language

ůnion

•	Database	schema

°	intersect

•	Database	instance

•	Relation	schema

°	except

•	Relation	instance

•	Aggregate	functions

•	Primary	key

°	avg,	min,	max,	sum,	count

•	Foreign	key

°	group	by

°	Referencing	relation

°	having

°	Referenced	relation

•	Nested	subqueries

•	Null	value

•	Set	comparisons

•	Query	language

°	{	<,	<=,	>,	>=}	{	some,	all	}

•	SQL	query	structure

°	exists

°	select	clause

ůnique

°	from	clause

•	lateral	clause

°	where	clause

•	with	clause

•	Multiset	relational	algebra

•	Scalar	subquery

•	as	clause

•	Database	modification

•	order	by	clause

°	Delete

•	Table	alias

°	Insert

•	Correlation	name	(correlation	vari-

able,	tuple	variable)

Ůpdate

Practice	Exercises

3.1

Write	the	following	queries	in	SQL,	using	the	university	schema.	(We	suggest	you	actually	run	these
queries	on	a	database,	using	the	sample	data	that	we	provide	on	the	web	site	of	the	book,	db-book.com.
Instructions	for	setting	up	a	database,	and	loading	sample	data,	are	provided	on	the	above	web	site.)	a.

Find	the	titles	of	courses	in	the	Comp.	Sci.	department	that	have	3	credits.

b.

Find	the	IDs	of	all	students	who	were	taught	by	an	instructor	named	Einstein;	make	sure	there	are	no
duplicates	in	the	result.

116

Chapter	3

Introduction	to	SQL

c.

Find	the	highest	salary	of	any	instructor.

d.

Find	all	instructors	earning	the	highest	salary	(there	may	be	more	than	one	with	the	same	salary).

e.

Find	the	enrollment	of	each	section	that	was	offered	in	Fall	2017.

f.

Find	the	maximum	enrollment,	across	all	sections,	in	Fall	2017.

g.

Find	the	sections	that	had	the	maximum	enrollment	in	Fall	2017.

3.2

Suppose	you	are	given	a	relation	grade	points(grade,	points)	that	provides	a	conversion	from	letter
grades	in	the	takes	relation	to	numeric	scores;	for	example,	an	“A”	grade	could	be	specified	to	correspond
to	4	points,	an	“A−”	to	3.7	points,	a	“B+”	to	3.3	points,	a	“B”	to	3	points,	and	so	on.	The	grade	points
earned	by	a	student	for	a	course	offering	(section)	is	defined	as	the	number	of	credits	for	the	course
multiplied	by	the	numeric	points	for	the	grade	that	the	student	received.

Given	the	preceding	relation,	and	our	university	schema,	write	each	of	the	following	queries	in	SQL.	You
may	assume	for	simplicity	that	no	takes	tuple	has	the	null	value	for	grade.

a.

Find	the	total	grade	points	earned	by	the	student	with	ID	'12345',	across	all	courses	taken	by	the	student.

b.

Find	the	grade	point	average	(GPA)	for	the	above	student,	that	is,	the	total	grade	points	divided	by	the
total	credits	for	the	associated	courses.

c.

Find	the	ID	and	the	grade-point	average	of	each	student.

d.

Now	reconsider	your	answers	to	the	earlier	parts	of	this	exercise	under	the	assumption	that	some	grades
might	be	null.	Explain	whether	your

solutions	still	work	and,	if	not,	provide	versions	that	handle	nulls	properly.

3.3

Write	the	following	inserts,	deletes,	or	updates	in	SQL,	using	the	university	schema.

a.

Increase	the	salary	of	each	instructor	in	the	Comp.	Sci.	department	by	10%.

b.

Delete	all	courses	that	have	never	been	offered	(i.e.,	do	not	occur	in	the	section	relation).

c.

Insert	every	student	whose	tot	cred	attribute	is	greater	than	100	as	an	instructor	in	the	same	department,
with	a	salary	of	$10,000.

3.4

Consider	the	insurance	database	of	Figure	3.17,	where	the	primary	keys	are	underlined.	Construct	the
following	SQL	queries	for	this	relational	database.

a.

Find	the	total	number	of	people	who	owned	cars	that	were	involved	in

accidents	in	2017.

Practice	Exercises

117

person	(driver	id,	name,	address)

car	(license	plate,	model,	year)

accident	(report	number,	year,	location)	owns	(driver	id,	license	plate)

participated	(report	number,	license	plate,	driver	id,	damage	amount)	Figure	3.17	Insurance	database

b.

Delete	all	year-2010	cars	belonging	to	the	person	whose	ID	is	'12345'.

3.5

Suppose	that	we	have	a	relation	marks(ID,	score)	and	we	wish	to	assign	grades	to	students	based	on	the
score	as	follows:	grade	F	if	score	<	40,	grade	C	if	40

≤	score	<	60,	grade	B	if	60	≤	score	<	80,	and	grade	A	if	80	≤	score.	Write	SQL

queries	to	do	the	following:

a.

Display	the	grade	for	each	student,	based	on	the	marks	relation.

b.

Find	the	number	of	students	with	each	grade.

3.6

The	SQL	like	operator	is	case	sensitive	(in	most	systems),	but	the	lower()	function	on	strings	can	be	used
to	perform	case-insensitive	matching.	To	show	how,	write	a	query	that	finds	departments	whose	names
contain	the	string	“sci”	as	a	substring,	regardless	of	the	case.

3.7

Consider	the	SQL	query

select	p.a	1

from	p,	r	1,	r	2

where	p.a	1	=	r	1.	a	1	or	p.a	1	=	r	2.	a	1

Under	what	conditions	does	the	preceding	query	select	values	of	p.a	1	that	are	either	in	r	1	or	in	r	2?
Examine	carefully	the	cases	where	either	r	1	or	r	2	may	be	empty.

3.8

Consider	the	bank	database	of	Figure	3.18,	where	the	primary	keys	are	underlined.	Construct	the
following	SQL	queries	for	this	relational	database.

a.

Find	the	ID	of	each	customer	of	the	bank	who	has	an	account	but	not	a

loan.

b.

Find	the	ID	of	each	customer	who	lives	on	the	same	street	and	in	the	same	city	as	customer	'12345'.

c.

Find	the	name	of	each	branch	that	has	at	least	one	customer	who	has	an	account	in	the	bank	and	who
lives	in	“Harrison”.

118

Chapter	3

Introduction	to	SQL

branch(branch	name,	branch	city,	assets)

customer	(ID,	customer	name,	customer	street,	customer	city)	loan	(loan	number,	branch	name,	amount)

borrower	(ID,	loan	number)

account	(account	number,	branch	name,	balance)	depositor	(ID,	account	number)

Figure	3.18	Banking	database.

3.9

Consider	the	relational	database	of	Figure	3.19,	where	the	primary	keys	are	underlined.	Give	an
expression	in	SQL	for	each	of	the	following	queries.

a.

Find	the	ID,	name,	and	city	of	residence	of	each	employee	who	works	for

“First	Bank	Corporation”.

b.

Find	the	ID,	name,	and	city	of	residence	of	each	employee	who	works	for

“First	Bank	Corporation”	and	earns	more	than	$10000.

c.

Find	the	ID	of	each	employee	who	does	not	work	for	“First	Bank	Corpo-

ration”.

d.

Find	the	ID	of	each	employee	who	earns	more	than	every	employee	of

“Small	Bank	Corporation”.

e.

Assume	that	companies	may	be	located	in	several	cities.	Find	the	name

of	each	company	that	is	located	in	every	city	in	which	“Small	Bank	Corporation”	is	located.

f.

Find	the	name	of	the	company	that	has	the	most	employees	(or	compa-

nies,	in	the	case	where	there	is	a	tie	for	the	most).

g.

Find	the	name	of	each	company	whose	employees	earn	a	higher	salary,

on	average,	than	the	average	salary	at	“First	Bank	Corporation”.

employee	(ID,	person	name,	street,	city)	works	(ID,	company	name,	salary)

company	(company	name,	city)

manages	(ID,	manager	id)

Figure	3.19	Employee	database.

Exercises

119

3.10

Consider	the	relational	database	of	Figure	3.19.	Give	an	expression	in	SQL	for	each	of	the	following:

a.

Modify	the	database	so	that	the	employee	whose	ID	is	'12345'	now	lives	in	“Newtown”.

b.

Give	each	manager	of	“First	Bank	Corporation”	a	10	percent	raise	unless	the	salary	becomes	greater	than
$100000;	in	such	cases,	give	only	a	3

percent	raise.

Exercises

3.11

Write	the	following	queries	in	SQL,	using	the	university	schema.

a.

Find	the	ID	and	name	of	each	student	who	has	taken	at	least	one	Comp.

Sci.	course;	make	sure	there	are	no	duplicate	names	in	the	result.

b.

Find	the	ID	and	name	of	each	student	who	has	not	taken	any	course

offered	before	2017.

c.

For	each	department,	find	the	maximum	salary	of	instructors	in	that	department.	You	may	assume	that
every	department	has	at	least	one	instructor.

d.

Find	the	lowest,	across	all	departments,	of	the	per-department	maximum	salary	computed	by	the
preceding	query.

3.12

Write	the	SQL	statements	using	the	university	schema	to	perform	the	following	operations:

a.

Create	a	new	course	“CS-001”,	titled	“Weekly	Seminar”,	with	0	credits.

b.

Create	a	section	of	this	course	in	Fall	2017,	with	sec	id	of	1,	and	with	the	location	of	this	section	not	yet
specified.

c.

Enroll	every	student	in	the	Comp.	Sci.	department	in	the	above	section.

d.

Delete	enrollments	in	the	above	section	where	the	student’s	ID	is	12345.

e.

Delete	the	course	CS-001.	What	will	happen	if	you	run	this	delete	statement	without	first	deleting
offerings	(sections)	of	this	course?

f.

Delete	all	takes	tuples	corresponding	to	any	section	of	any	course	with	the	word	“advanced”	as	a	part	of
the	title;	ignore	case	when	matching	the	word	with	the	title.

3.13

Write	SQL	DDL	corresponding	to	the	schema	in	Figure	3.17.	Make	any	reasonable	assumptions	about
data	types,	and	be	sure	to	declare	primary	and	foreign	keys.

120

Chapter	3

Introduction	to	SQL

3.14

Consider	the	insurance	database	of	Figure	3.17,	where	the	primary	keys	are	underlined.	Construct	the
following	SQL	queries	for	this	relational	database.

a.

Find	the	number	of	accidents	involving	a	car	belonging	to	a	person	named

“John	Smith”.

b.

Update	the	damage	amount	for	the	car	with	license	plate	“AABB2000”

in	the	accident	with	report	number	“AR2197”	to	$3000.

3.15

Consider	the	bank	database	of	Figure	3.18,	where	the	primary	keys	are	underlined.	Construct	the
following	SQL	queries	for	this	relational	database.

a.

Find	each	customer	who	has	an	account	at	every	branch	located	in	“Brooklyn”.

b.

Find	the	total	sum	of	all	loan	amounts	in	the	bank.

c.

Find	the	names	of	all	branches	that	have	assets	greater	than	those	of	at	least	one	branch	located	in
“Brooklyn”.

3.16

Consider	the	employee	database	of	Figure	3.19,	where	the	primary	keys	are	underlined.	Give	an
expression	in	SQL	for	each	of	the	following	queries.

a.

Find	ID	and	name	of	each	employee	who	lives	in	the	same	city	as	the

location	of	the	company	for	which	the	employee	works.

b.

Find	ID	and	name	of	each	employee	who	lives	in	the	same	city	and	on	the	same	street	as	does	her	or	his
manager.

c.

Find	ID	and	name	of	each	employee	who	earns	more	than	the	average

salary	of	all	employees	of	her	or	his	company.

d.

Find	the	company	that	has	the	smallest	payroll.

3.17

Consider	the	employee	database	of	Figure	3.19.	Give	an	expression	in	SQL	for	each	of	the	following
queries.

a.

Give	all	employees	of	“First	Bank	Corporation”	a	10	percent	raise.

b.

Give	all	managers	of	“First	Bank	Corporation”	a	10	percent	raise.

c.

Delete	all	tuples	in	the	works	relation	for	employees	of	“Small	Bank	Corporation”.

3.18

Give	an	SQL	schema	definition	for	the	employee	database	of	Figure	3.19.

Choose	an	appropriate	domain	for	each	attribute	and	an	appropriate	primary	key	for	each	relation
schema.	Include	any	foreign-key	constraints	that	might	be	appropriate.

3.19

List	two	reasons	why	null	values	might	be	introduced	into	the	database.

3.20

Show	that,	in	SQL,	<>	all	is	identical	to	not	in.

Exercises

121

member(memb	no,	name)

book(isbn,	title,	authors,	publisher)	borrowed(memb	no,	isbn,	date)

Figure	3.20	Library	database.

3.21

Consider	the	library	database	of	Figure	3.20.	Write	the	following	queries	in	SQL.

a.

Find	the	member	number	and	name	of	each	member	who	has	borrowed

at	least	one	book	published	by	“McGraw-Hill”.

b.

Find	the	member	number	and	name	of	each	member	who	has	borrowed

every	book	published	by	“McGraw-Hill”.

c.

For	each	publisher,	find	the	member	number	and	name	of	each	member

who	has	borrowed	more	than	five	books	of	that	publisher.

d.

Find	the	average	number	of	books	borrowed	per	member.	Take	into	ac-

count	that	if	a	member	does	not	borrow	any	books,	then	that	member	does	not	appear	in	the	borrowed
relation	at	all,	but	that	member	still	counts	in	the	average.

3.22

Rewrite	the	where	clause

where	unique	(select	title	from	course)

without	using	the	unique	construct.

3.23

Consider	the	query:

with	dept	total	(dept	name,	value)	as

(select	dept	name,	sum(salary)

from	instructor

group	by	dept	name),

dept	total	avg(value)	as

(select	avg(value)

from	dept	total)

select	dept	name

from	dept	total,	dept	total	avg

where	dept	total.value	>=	dept	total	avg.value;

Rewrite	this	query	without	using	the	with	construct.

3.24

Using	the	university	schema,	write	an	SQL	query	to	find	the	name	and	ID	of	those	Accounting	students

advised	by	an	instructor	in	the	Physics	department.

122

Chapter	3

Introduction	to	SQL

3.25

Using	the	university	schema,	write	an	SQL	query	to	find	the	names	of	those	departments	whose	budget	is
higher	than	that	of	Philosophy.	List	them	in	alphabetic	order.

3.26

Using	the	university	schema,	use	SQL	to	do	the	following:	For	each	student	who	has	retaken	a	course	at
least	twice	(i.e.,	the	student	has	taken	the	course	at	least	three	times),	show	the	course	ID	and	the
student’s	ID.

Please	display	your	results	in	order	of	course	ID	and	do	not	display	duplicate	rows.

3.27

Using	the	university	schema,	write	an	SQL	query	to	find	the	IDs	of	those	students	who	have	retaken	at
least	three	distinct	courses	at	least	once	(i.e,	the	student	has	taken	the	course	at	least	two	times).

3.28

Using	the	university	schema,	write	an	SQL	query	to	find	the	names	and	IDs	of	those	instructors	who	teach
every	course	taught	in	his	or	her	department	(i.e.,	every	course	that	appears	in	the	course	relation	with
the	instructor’s	department	name).	Order	result	by	name.

3.29

Using	the	university	schema,	write	an	SQL	query	to	find	the	name	and	ID	of	each	History	student	whose
name	begins	with	the	letter	‘D’	and	who	has	not	taken	at	least	five	Music	courses.

3.30

Consider	the	following	SQL	query	on	the	university	schema:

select	avg(salary)	-	(sum(salary)	/	count(*))

from	instructor

We	might	expect	that	the	result	of	this	query	is	zero	since	the	average	of	a	set	of	numbers	is	defined	to	be
the	sum	of	the	numbers	divided	by	the	number	of	numbers.	Indeed	this	is	true	for	the	example	instructor
relation	in	Figure	2.1.

However,	there	are	other	possible	instances	of	that	relation	for	which	the	result	would	not	be	zero.	Give
one	such	instance,	and	explain	why	the	result	would	not	be	zero.

3.31

Using	the	university	schema,	write	an	SQL	query	to	find	the	ID	and	name	of	each	instructor	who	has
never	given	an	A	grade	in	any	course	she	or	he	has	taught.

(Instructors	who	have	never	taught	a	course	trivially	satisfy	this	condition.)	3.32

Rewrite	the	preceding	query,	but	also	ensure	that	you	include	only	instructors	who	have	given	at	least	one
other	non-null	grade	in	some	course.

3.33

Using	the	university	schema,	write	an	SQL	query	to	find	the	ID	and	title	of	each	course	in	Comp.	Sci.	that
has	had	at	least	one	section	with	afternoon	hours	(i.e.,	ends	at	or	after	12:00).	(You	should	eliminate
duplicates	if	any.)

3.34

Using	the	university	schema,	write	an	SQL	query	to	find	the	number	of	students	in	each	section.	The
result	columns	should	appear	in	the	order	“courseid,	secid,	year,	semester,	num”.	You	do	not	need	to
output	sections	with	0	students.

Tools

123

3.35

Using	the	university	schema,	write	an	SQL	query	to	find	section(s)	with	maximum	enrollment.	The	result
columns	should	appear	in	the	order	“courseid,	secid,	year,	semester,	num”.	(It	may	be	convenient	to	use
the	with	construct.)	Tools

A	number	of	relational	database	systems	are	available	commercially,	including	IBM

DB2,	IBM	Informix,	Oracle,	SAP	Adaptive	Server	Enterprise	(formerly	Sybase),	and	Microsoft	SQL	Server.
In	addition	several	open-source	database	systems	can	be	downloaded	and	used	free	of	charge,	including
PostgreSQL	and	MySQL	(free	except	for	certain	kinds	of	commercial	use).	Some	commercial	vendors	offer
free	versions	of	their	systems	with	certain	use	limitations.	These	include	Oracle	Express	edition,	Microsoft
SQL	Server	Express,	and	IBM	DB2	Express-C.

The	sql.js	database	is	version	of	the	embedded	SQL	database	SQLite	which	can	be	run	directly	in	a	web
browser,	allowing	SQL	commands	to	be	executed	directly	in	the	browser.	All	data	are	temporary	and
vanishes	when	you	close	the	browser,	but	it	can	be	useful	for	learning	SQL;	be	warned	that	the	subset	of
SQL	that	is	supported	by	sql.js	and	SQLite	is	considerably	smaller	than	what	is	supported	by	other
databases.	An	SQL

tutorial	using	sql.js	as	the	execution	engine	is	hosted	at	www.w3schools.com/sql.

The	web	site	of	our	book,	db-book.com,	provides	a	significant	amount	of	supporting	material	for	the	book.
By	following	the	link	on	the	site	titled	Laboratory	Material,	you	can	get	access	to	the	following:

•	Instructions	on	how	to	set	up	and	access	some	popular	database	systems,	including	sql.js	(which	you
can	run	in	your	browser),	MySQL,	and	PostgreSQL.

•	SQL	schema	definitions	for	the	University	schema.

•	SQL	scripts	for	loading	sample	datasets.

•	Tips	on	how	to	use	the	XData	system,	developed	at	IIT	Bombay,	to	test	queries	for	correctness	by
executing	them	on	multiple	datasets	generated	by	the	system;	and,	for	instructors,	tips	on	how	to	use
XData	to	automate	SQL	query	grading.

•	Get	tips	on	SQL	variations	across	different	databases.

Support	for	different	SQL	features	varies	by	databases,	and	most	databases	also	support	some	non-
standard	extensions	to	SQL.	Read	the	system	manuals	to	understand	the	exact	SQL	features	that	a
database	supports.

Most	database	systems	provide	a	command	line	interface	for	submitting	SQL	commands.	In	addition,	most
databases	also	provide	graphical	user	interfaces	(GUIs),	which	simplify	the	task	of	browsing	the	database,
creating	and	submitting	queries,	and	administering	the	database.	For	PostgreSQL,	the	pgAdmin	tool
provides	GUI	functionality,	while	for	MySQL,	phpMyAdmin	provides	GUI	functionality.	Oracle	provides

124

Chapter	3

Introduction	to	SQL

Oracle	SQL	Developer,	while	Microsoft	SQL	Server	comes	with	the	SQL	Server	Management	Studio.

The	NetBeans	IDEs	SQLEditor	provides	a	GUI	front	end	which	works	with	a	number	of	different	database
systems,	but	with	limited	functionality,	while	the	Eclipse	IDE	supports	similar	functionality	through	the
Data	Tools	Platform	(DTP).	Commercial	IDEs	that	support	SQL	access	across	multiple	database	platforms
include	Embar-cadero’s	RAD	Studio	and	Aqua	Data	Studio.

Further	Reading

The	original	Sequel	language	that	became	SQL	is	described	in	[Chamberlin	et	al.

(1976)].

The	most	important	SQL	reference	is	likely	to	be	the	online	documentation	provided	by	the	vendor	or	the
particular	database	system	you	are	using.	That	documentation	will	identify	any	features	that	deviate	from

the	SQL	standard	features	presented	in	this	chapter.	Here	are	links	to	the	SQL	reference	manuals	for	the
current	(as	of	2018)	versions	of	some	of	the	popular	databases.

•	MySQL	8.0:	dev.mysql.com/doc/refman/8.0/en/

•	Oracle	12c:	docs.oracle.com/database/121/SQLRF/

•	PostgreSQL:	www.postgresql.org/docs/current/static/sql.html

•	SQLite:	www.sqlite.org/lang.html

•	SQL	Server:	docs.microsoft.com/en-us/sql/t-sql

Bibliography

[Chamberlin	et	al.	(1976)]

D.	D.	Chamberlin,	M.	M.	Astrahan,	K.	P.	Eswaran,	P.	P.	Griffiths,

R.	A.	Lorie,	J.	W.	Mehl,	P.	Reisner,	and	B.	W.	Wade,	“SEQUEL	2:	A	Unified	Approach	to	Data	Definition,
Manipulation,	and	Control”,	IBM	Journal	of	Research	and	Development,	Volume	20,	Number	6	(1976),
pages	560–575.

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

C	H	A	P	T	E	R	4

Intermediate	SQL

In	this	chapter,	we	continue	our	study	of	SQL.	We	consider	more	complex	forms	of	SQL	queries,	view
definition,	transactions,	integrity	constraints,	more	details	regarding	SQL	data	definition,	and
authorization.

4.1

Join	Expressions

In	all	of	the	example	queries	we	used	in	Chapter	3	(except	when	we	used	set	operations),	we	combined
information	from	multiple	relations	using	the	Cartesian	product	operator.	In	this	section,	we	introduce	a
number	of	“join”	operations	that	allow	the	programmer	to	write	some	queries	in	a	more	natural	way	and
to	express	some	queries	that	are	difficult	to	do	with	only	the	Cartesian	product.

ID

name

dept	name

tot	cred

00128

Zhang

Comp.	Sci.

102

12345

Shankar

Comp.	Sci.

32

19991

Brandt

History

80

23121

Chavez

Finance

110

44553

Peltier

Physics

56

45678

Levy

Physics

46

54321

Williams

Comp.	Sci.

54

55739

Sanchez

Music

38

70557

Snow

Physics

0

76543

Brown

Comp.	Sci.

58

76653

Aoi

Elec.	Eng.

60

98765

Bourikas

Elec.	Eng.

98

98988

Tanaka

Biology

120

Figure	4.1	The	student	relation.

125

126

Chapter	4

Intermediate	SQL

ID

course	id

sec	id

semester

year

grade

00128

CS-101

1

Fall

2017

A

00128

CS-347

1

Fall

2017

A-

12345

CS-101

1

Fall

2017

C

12345

CS-190

2

Spring

2017

A

12345

CS-315

1

Spring

2018

A

12345

CS-347

1

Fall

2017

A

19991

HIS-351

1

Spring

2018

B

23121

FIN-201

1

Spring

2018

C+

44553

PHY-101

1

Fall

2017

B-

45678

CS-101

1

Fall

2017

F

45678

CS-101

1

Spring

2018

B+

45678

CS-319

1

Spring

2018

B

54321

CS-101

1

Fall

2017

A-

54321

CS-190

2

Spring

2017

B+

55739

MU-199

1

Spring

2018

A-

76543

CS-101

1

Fall

2017

A

76543

CS-319

2

Spring

2018

A

76653

EE-181

1

Spring

2017

C

98765

CS-101

1

Fall

2017

C-

98765

CS-315

1

Spring

2018

B

98988

BIO-101

1

Summer

2017

A

98988

BIO-301

1

Summer

2018

null

Figure	4.2	The	takes	relation.

All	the	examples	used	in	this	section	involve	the	two	relations	student	and	takes,	shown	in	Figure	4.1	and
Figure	4.2,	respectively.	Observe	that	the	attribute	grade	has	a	value	null	for	the	student	with	ID	98988,
for	the	course	BIO-301,	section	1,	taken	in	Summer	2018.	The	null	value	indicates	that	the	grade	has	not
been	awarded	yet.

4.1.1

The	Natural	Join

Consider	the	following	SQL	query,	which	computes	for	each	student	the	set	of	courses	a	student	has
taken:

select	name,	course	id

from	student,	takes

where	student.	ID	=	takes.	ID;

Note	that	this	query	outputs	only	students	who	have	taken	some	course.	Students	who	have	not	taken	any
course	are	not	output.

4.1

Join	Expressions

127

Note	that	in	the	student	and	takes	table,	the	matching	condition	required	student.	ID

to	be	equal	to	takes.	ID.	These	are	the	only	attributes	in	the	two	relations	that	have	the	same	name.	In
fact,	this	is	a	common	case;	that	is,	the	matching	condition	in	the	from	clause	most	often	requires	all
attributes	with	matching	names	to	be	equated.

To	make	the	life	of	an	SQL	programmer	easier	for	this	common	case,	SQL	supports	an	operation	called
the	natural	join,	which	we	describe	below.	In	fact,	SQL	supports	several	other	ways	in	which	information
from	two	or	more	relations	can	be	joined	together.

We	have	already	seen	how	a	Cartesian	product	along	with	a	where	clause	predicate	can	be	used	to	join
information	from	multiple	relations.	Other	ways	of	joining	information	from	multiple	relations	are
discussed	in	Section	4.1.2	through	Section	4.1.4.

The	natural	join	operation	operates	on	two	relations	and	produces	a	relation	as	the	result.	Unlike	the
Cartesian	product	of	two	relations,	which	concatenates	each	tuple	of	the	first	relation	with	every	tuple	of
the	second,	natural	join	considers	only	those	pairs	of	tuples	with	the	same	value	on	those	attributes	that
appear	in	the	schemas	of	both	relations.	So,	going	back	to	the	example	of	the	relations	student	and	takes,
computing:	student	natural	join	takes

considers	only	those	pairs	of	tuples	where	both	the	tuple	from	student	and	the	tuple	from	takes	have	the
same	value	on	the	common	attribute,	ID.

The	resulting	relation,	shown	in	Figure	4.3,	has	only	22	tuples,	the	ones	that	give	information	about	a
student	and	a	course	that	the	student	has	actually	taken.	Notice	that	we	do	not	repeat	those	attributes
that	appear	in	the	schemas	of	both	relations;	rather	they	appear	only	once.	Notice	also	the	order	in	which
the	attributes	are	listed:	first	the	attributes	common	to	the	schemas	of	both	relations,	second	those
attributes	unique	to	the	schema	of	the	first	relation,	and	finally,	those	attributes	unique	to	the	schema	of
the	second	relation.

Earlier	we	wrote	the	query	“For	all	students	in	the	university	who	have	taken	some	course,	find	their
names	and	the	course	ID	of	all	courses	they	took”	as:	select	name,	course	id

from	student,	takes

where	student.	ID	=	takes.	ID;

This	query	can	be	written	more	concisely	using	the	natural-join	operation	in	SQL	as:	select	name,	course
id

from	student	natural	join	takes;

Both	of	the	above	queries	generate	the	same	result.1

1For	notational	symmetry,	SQL	allows	the	Cartesian	product,	which	we	have	denoted	with	a	comma,	to	be
denoted	by	the	keywords	cross	join.	Thus,	“from	student,	takes”	could	be	expressed	equivalently	as	“from
student	cross	join	takes”.

128

Chapter	4

Intermediate	SQL

ID

name

dept	name

tot	cred	course	id	sec	id	semester	year

grade

00128	Zhang

Comp.	Sci.

102	CS-101

1

Fall

2017	A

00128	Zhang

Comp.	Sci.

102	CS-347

1

Fall

2017	A-

12345	Shankar

Comp.	Sci.

32	CS-101

1

Fall

2017	C

12345	Shankar

Comp.	Sci.

32	CS-190

2

Spring

2017	A

12345	Shankar

Comp.	Sci.

32	CS-315

1

Spring

2018	A

12345	Shankar

Comp.	Sci.

32	CS-347

1

Fall

2017	A

19991	Brandt

History

80	HIS-351

1

Spring

2018	B

23121	Chavez

Finance

110	FIN-201

1

Spring

2018	C+

44553	Peltier

Physics

56	PHY-101

1

Fall

2017	B-

45678	Levy

Physics

46	CS-101

1

Fall

2017	F

45678	Levy

Physics

46	CS-101

1

Spring

2018	B+

45678	Levy

Physics

46	CS-319

1

Spring

2018	B

54321	Williams	Comp.	Sci.

54	CS-101

1

Fall

2017	A-

54321	Williams	Comp.	Sci.

54	CS-190

2

Spring

2017	B+

55739	Sanchez

Music

38	MU-199

1

Spring

2018	A-

76543	Brown

Comp.	Sci.

58	CS-101

1

Fall

2017	A

76543	Brown

Comp.	Sci.

58	CS-319

2

Spring

2018	A

76653	Aoi

Elec.	Eng.

60	EE-181

1

Spring

2017	C

98765	Bourikas	Elec.	Eng.

98	CS-101

1

Fall

2017	C-

98765	Bourikas	Elec.	Eng.

98	CS-315

1

Spring

2018	B

98988	Tanaka

Biology

120	BIO-101

1

Summer	2017	A

98988	Tanaka

Biology

120	BIO-301

1

Summer	2018	null

Figure	4.3	The	natural	join	of	the	student	relation	with	the	takes	relation.

The	result	of	the	natural	join	operation	is	a	relation.	Conceptually,	expression	“student	natural	join	takes”
in	the	from	clause	is	replaced	by	the	relation	obtained	by	evaluating	the	natural	join.2	The	where	and
select	clauses	are	then	evaluated	on	this	relation,	as	we	saw	in	Section	3.3.2.

A	from	clause	in	an	SQL	query	can	have	multiple	relations	combined	using	natural	join,	as	shown	here:

select	A	,	A	,	…	,	A

1

2

n

from	r	natural	join	r	natural	join	.	.	.	natural	join	r	1

2

m

where	P;

More	generally,	a	from	clause	can	be	of	the	form

2As	a	consequence,	it	may	not	be	possible	in	some	systems	to	use	attribute	names	containing	the	original
relation	names,	for	instance,	student.	ID	or	takes.	ID,	to	refer	to	attributes	in	the	natural	join	result.	While
some	systems	allow	it,	others	don’t,	and	some	allow	it	for	all	attributes	except	the	join	attributes	(i.e.,
those	that	appear	in	both	relation	schemas).	We	can,	however,	use	attribute	names	such	as	name	and
course	id	without	the	relation	names.

4.1

Join	Expressions

129

from	E	,	E	,	.	.	.	,	E

1

2

n

where	each	E	can	be	a	single	relation	or	an	expression	involving	natural	joins.	For	i

example,	suppose	we	wish	to	answer	the	query	“List	the	names	of	students	along	with	the	titles	of	courses
that	they	have	taken.”	The	query	can	be	written	in	SQL	as	follows:	select	name,	title

from	student	natural	join	takes,	course

where	takes.	course	id	=	course.	course	id;	The	natural	join	of	student	and	takes	is	first	computed,	as	we
saw	earlier,	and	a	Cartesian	product	of	this	result	with	course	is	computed,	from	which	the	where	clause

extracts	only	those	tuples	where	the	course	identifier	from	the	join	result	matches	the	course	identifier
from	the	course	relation.	Note	that	takes.	course	id	in	the	where	clause	refers	to	the	course	id	field	of	the
natural	join	result,	since	this	field,	in	turn,	came	from	the	takes	relation.

In	contrast,	the	following	SQL	query	does	not	compute	the	same	result:	select	name,	title

from	student	natural	join	takes	natural	join	course;	To	see	why,	note	that	the	natural	join	of	student	and
takes	contains	the	attributes	(ID,	name,	dept	name,	tot	cred,	course	id,	sec	id),	while	the	course	relation
contains	the	attributes	(course	id,	title,	dept	name,	credits).	As	a	result,	the	natural	join	would	require
that	the	dept	name	attribute	values	from	the	two	relations	be	the	same	in	addition	to	requiring	that	the
course	id	values	be	the	same.	This	query	would	then	omit	all	(student	name,	course	title)	pairs	where	the
student	takes	a	course	in	a	department	other	than	the	student’s	own	department.	The	previous	query,	on
the	other	hand,	correctly	outputs	such	pairs.

To	provide	the	benefit	of	natural	join	while	avoiding	the	danger	of	equating	attributes	erroneously,	SQL
provides	a	form	of	the	natural	join	construct	that	allows	you	to	specify	exactly	which	columns	should	be
equated.	This	feature	is	illustrated	by	the	following	query:

select	name,	title

from	(student	natural	join	takes)	join	course	using	(course	id);	The	operation	join	…	using	requires	a	list
of	attribute	names	to	be	specified.	Both	relations	being	joined	must	have	attributes	with	the	specified
names.	Consider	the	operation	r	join	r	using(A	,	A).	The	operation	is	similar	to	r	natural	join	r	,	except
that	1

2

1

2

1

2

a	pair	of	tuples	t	from	r	and	t	from	r	match	if	t	.A	=	t	.A	and	t	.A	=	t	.A	;	even	1

1

2

2

1

1

2

1

1

2

2

2

if	r	and	r	both	have	an	attribute	named	A	,	it	is	not	required	that	t	.A	=	t	.A	.

1

2

3

1

3

2

3

130

Chapter	4

Intermediate	SQL

Thus,	in	the	preceding	SQL	query,	the	join	construct	permits	student.	dept	name	and	course.	dept	name	to
differ,	and	the	SQL	query	gives	the	correct	answer.

4.1.2

Join	Conditions

In	Section	4.1.1,	we	saw	how	to	express	natural	joins,	and	we	saw	the	join	…	using	clause,	which	is	a	form
of	natural	join	that	requires	values	to	match	only	on	specified	attributes.	SQL	supports	another	form	of
join,	in	which	an	arbitrary	join	condition	can	be	specified.

The	on	condition	allows	a	general	predicate	over	the	relations	being	joined.	This	predicate	is	written	like	a
where	clause	predicate	except	for	the	use	of	the	keyword	on	rather	than	where.	Like	the	using	condition,
the	on	condition	appears	at	the	end	of	the	join	expression.

Consider	the	following	query,	which	has	a	join	expression	containing	the	on	condition:

select	*

from	student	join	takes	on	student.	ID	=	takes.	ID;	The	on	condition	above	specifies	that	a	tuple	from
student	matches	a	tuple	from	takes	if	their	ID	values	are	equal.	The	join	expression	in	this	case	is	almost
the	same	as	the	join	expression	student	natural	join	takes,	since	the	natural	join	operation	also	requires
that	for	a	student	tuple	and	a	takes	tuple	to	match.	The	one	difference	is	that	the	result	has	the	ID
attribute	listed	twice,	in	the	join	result,	once	for	student	and	once	for	takes,	even	though	their	ID	values
must	be	the	same.

In	fact,	the	preceding	query	is	equivalent	to	the	following	query:

select	*

from	student,	takes

where	student.	ID	=	takes.	ID;

As	we	have	seen	earlier,	the	relation	name	is	used	to	disambiguate	the	attribute	name	ID,	and	thus	the
two	occurrences	can	be	referred	to	as	student.	ID	and	takes.	ID,	respectively.

A	version	of	this	query	that	displays	the	ID	value	only	once	is	as	follows:	select	student.	ID	as	ID,	name,
dept	name,	tot	cred,	course	id,	sec	id,	semester,	year,	grade	from	student	join	takes	on	student.	ID	=
takes.	ID;	The	result	of	this	query	is	exactly	the	same	as	the	result	of	the	natural	join	of	student	and	takes,
which	we	showed	in	Figure	4.3.

The	on	condition	can	express	any	SQL	predicate,	and	thus	join	expressions	using	the	on	condition	can
express	a	richer	class	of	join	conditions	than	natural	join.	However,

4.1

Join	Expressions

131

as	illustrated	by	our	preceding	example,	a	query	using	a	join	expression	with	an	on	condition	can	be
replaced	by	an	equivalent	expression	without	the	on	condition,	with	the	predicate	in	the	on	clause	moved
to	the	where	clause.	Thus,	it	may	appear	that	the	on	condition	is	a	redundant	feature	of	SQL.

However,	there	are	two	good	reasons	for	introducing	the	on	condition.	First,	we	shall	see	shortly	that	for	a
kind	of	join	called	an	outer	join,	on	conditions	do	behave	in	a	manner	different	from	where	conditions.
Second,	an	SQL	query	is	often	more	readable	by	humans	if	the	join	condition	is	specified	in	the	on	clause
and	the	rest	of	the	conditions	appear	in	the	where	clause.

4.1.3

Outer	Joins

Suppose	we	wish	to	display	a	list	of	all	students,	displaying	their	ID,	and	name,	dept	name,	and	tot	cred,
along	with	the	courses	that	they	have	taken.	The	following	SQL

query	may	appear	to	retrieve	the	required	information:

select	*

from	student	natural	join	takes;

Unfortunately,	the	above	query	does	not	work	quite	as	intended.	Suppose	that	there	is	some	student	who
takes	no	courses.	Then	the	tuple	in	the	student	relation	for	that	particular	student	would	not	satisfy	the
condition	of	a	natural	join	with	any	tuple	in	the	takes	relation,	and	that	student’s	data	would	not	appear	in
the	result.	We	would	thus	not	see	any	information	about	students	who	have	not	taken	any	courses.	For
example,	in	the	student	and	takes	relations	of	Figure	4.1	and	Figure	4.2,	note	that	student	Snow,	with	ID
70557,	has	not	taken	any	courses.	Snow	appears	in	student,	but	Snow’s	ID

number	does	not	appear	in	the	ID	column	of	takes.	Thus,	Snow	does	not	appear	in	the	result	of	the	natural
join.

More	generally,	some	tuples	in	either	or	both	of	the	relations	being	joined	may	be	“lost”	in	this	way.	The
outer-join	operation	works	in	a	manner	similar	to	the	join	operations	we	have	already	studied,	but	it
preserves	those	tuples	that	would	be	lost	in	a	join	by	creating	tuples	in	the	result	containing	null	values.

For	example,	to	ensure	that	the	student	named	Snow	from	our	earlier	example	appears	in	the	result,	a
tuple	could	be	added	to	the	join	result	with	all	attributes	from	the	student	relation	set	to	the
corresponding	values	for	the	student	Snow,	and	all	the	remaining	attributes	which	come	from	the	takes
relation,	namely,	course	id,	sec	id,	semester,	and	year,	set	to	null.	Thus,	the	tuple	for	the	student	Snow	is
preserved	in	the	result	of	the	outer	join.

There	are	three	forms	of	outer	join:

•	The	left	outer	join	preserves	tuples	only	in	the	relation	named	before	(to	the	left	of)	the	left	outer	join
operation.

132

Chapter	4

Intermediate	SQL

•	The	right	outer	join	preserves	tuples	only	in	the	relation	named	after	(to	the	right	of)	the	right	outer	join
operation.

•	The	full	outer	join	preserves	tuples	in	both	relations.

In	contrast,	the	join	operations	we	studied	earlier	that	do	not	preserve	nonmatched	tuples	are	called
inner-join	operations,	to	distinguish	them	from	the	outer-join	operations.

We	now	explain	exactly	how	each	form	of	outer	join	operates.	We	can	compute	the	left	outer-join
operation	as	follows:	First,	compute	the	result	of	the	inner	join	as	before.	Then,	for	every	tuple	t	in	the
left-hand-side	relation	that	does	not	match	any	tuple	in	the	right-hand-side	relation	in	the	inner	join,	add	a
tuple	r	to	the	result	of	the	join	constructed	as	follows:

•	The	attributes	of	tuple	r	that	are	derived	from	the	left-hand-side	relation	are	filled	in	with	the	values
from	tuple	t.

•	The	remaining	attributes	of	r	are	filled	with	null	values.

Figure	4.4	shows	the	result	of:

select	*

from	student	natural	left	outer	join	takes;

That	result	includes	student	Snow	(ID	70557),	unlike	the	result	of	an	inner	join,	but	the	tuple	for	Snow
includes	nulls	for	the	attributes	that	appear	only	in	the	schema	of	the	takes	relation.3

As	another	example	of	the	use	of	the	outer-join	operation,	we	can	write	the	query

“Find	all	students	who	have	not	taken	a	course”	as:

select	ID

from	student	natural	left	outer	join	takes

where	course	id	is	null;

The	right	outer	join	is	symmetric	to	the	left	outer	join.	Tuples	from	the	right-hand-side	relation	that	do	not
match	any	tuple	in	the	left-hand-side	relation	are	padded	with	nulls	and	are	added	to	the	result	of	the
right	outer	join.	Thus,	if	we	rewrite	the	preceding	query	using	a	right	outer	join	and	swapping	the	order	in
which	we	list	the	relations	as	follows:

select	*

from	takes	natural	right	outer	join	student;

we	get	the	same	result	except	for	the	order	in	which	the	attributes	appear	in	the	result	(see	Figure	4.5).

3We	show	null	values	in	tables	using	null,	but	most	systems	display	null	values	as	a	blank	field.

4.1

Join	Expressions

133

ID

name

dept	name

tot	cred	course	id	sec	id	semester	year

grade

00128	Zhang

Comp.	Sci.

102	CS-101

1

Fall

2017	A

00128	Zhang

Comp.	Sci.

102	CS-347

1

Fall

2017	A-

12345	Shankar

Comp.	Sci.

32	CS-101

1

Fall

2017	C

12345	Shankar

Comp.	Sci.

32	CS-190

2

Spring

2017	A

12345	Shankar

Comp.	Sci.

32	CS-315

1

Spring

2018	A

12345	Shankar

Comp.	Sci.

32	CS-347

1

Fall

2017	A

19991	Brandt

History

80	HIS-351

1

Spring

2018	B

23121	Chavez

Finance

110	FIN-201

1

Spring

2018	C+

44553	Peltier

Physics

56	PHY-101

1

Fall

2017	B-

45678	Levy

Physics

46	CS-101

1

Fall

2017	F

45678	Levy

Physics

46	CS-101

1

Spring

2018	B+

45678	Levy

Physics

46	CS-319

1

Spring

2018	B

54321	Williams	Comp.	Sci.

54	CS-101

1

Fall

2017	A-

54321	Williams	Comp.	Sci.

54	CS-190

2

Spring

2017	B+

55739	Sanchez

Music

38	MU-199

1

Spring

2018	A-

70557	Snow

Physics

0	null

null

null

null

null

76543	Brown

Comp.	Sci.

58	CS-101

1

Fall

2017	A

76543	Brown

Comp.	Sci.

58	CS-319

2

Spring

2018	A

76653	Aoi

Elec.	Eng.

60	EE-181

1

Spring

2017	C

98765	Bourikas	Elec.	Eng.

98	CS-101

1

Fall

2017	C-

98765	Bourikas	Elec.	Eng.

98	CS-315

1

Spring

2018	B

98988	Tanaka

Biology

120	BIO-101

1

Summer	2017	A

98988	Tanaka

Biology

120	BIO-301

1

Summer	2018	null

Figure	4.4	Result	of	student	natural	left	outer	join	takes.

The	full	outer	join	is	a	combination	of	the	left	and	right	outer-join	types.	After	the	operation	computes	the
result	of	the	inner	join,	it	extends	with	nulls	those	tuples	from	the	left-hand-side	relation	that	did	not
match	with	any	from	the	right-hand-side	relation	and	adds	them	to	the	result.	Similarly,	it	extends	with
nulls	those	tuples	from	the	right-hand-side	relation	that	did	not	match	with	any	tuples	from	the	left-hand-
side	relation	and	adds	them	to	the	result.	Said	differently,	full	outer	join	is	the	union	of	a	left	outer	join
and	the	corresponding	right	outer	join.4

As	an	example	of	the	use	of	full	outer	join,	consider	the	following	query:	“Display	a	list	of	all	students	in
the	Comp.	Sci.	department,	along	with	the	course	sections,	if	any,	that	they	have	taken	in	Spring	2017;	all
course	sections	from	Spring	2017	must	4In	those	systems,	notably	MySQL,	that	implement	only	left	and
right	outer	join,	this	is	exactly	how	one	has	to	write	a	full	outer	join.

134

Chapter	4

Intermediate	SQL

ID

course	id	sec	id	semester	year

grade	name

dept	name

tot	cred

00128	CS-101

1

Fall

2017	A

Zhang

Comp.	Sci.

102

00128	CS-347

1

Fall

2017	A-

Zhang

Comp.	Sci.

102

12345	CS-101

1

Fall

2017	C

Shankar

Comp.	Sci.

32

12345	CS-190

2

Spring

2017	A

Shankar

Comp.	Sci.

32

12345	CS-315

1

Spring

2018	A

Shankar

Comp.	Sci.

32

12345	CS-347

1

Fall

2017	A

Shankar

Comp.	Sci.

32

19991	HIS-351

1

Spring

2018	B

Brandt

History

80

23121	FIN-201

1

Spring

2018	C+

Chavez

Finance

110

44553	PHY-101

1

Fall

2017	B-

Peltier

Physics

56

45678	CS-101

1

Fall

2017	F

Levy

Physics

46

45678	CS-101

1

Spring

2018	B+

Levy

Physics

46

45678	CS-319

1

Spring

2018	B

Levy

Physics

46

54321	CS-101

1

Fall

2017	A-

Williams	Comp.	Sci.

54

54321	CS-190

2

Spring

2017	B+

Williams	Comp.	Sci.

54

55739	MU-199

1

Spring

2018	A-

Sanchez

Music

38

70557	null

null

null

null

null

Snow

Physics

0

76543	CS-101

1

Fall

2017	A

Brown

Comp.	Sci.

58

76543	CS-319

2

Spring

2018	A

Brown

Comp.	Sci.

58

76653	EE-181

1

Spring

2017	C

Aoi

Elec.	Eng.

60

98765	CS-101

1

Fall

2017	C-

Bourikas	Elec.	Eng.

98

98765	CS-315

1

Spring

2018	B

Bourikas	Elec.	Eng.

98

98988	BIO-101

1

Summer	2017	A

Tanaka

Biology

120

98988	BIO-301

1

Summer	2018	null

Tanaka

Biology

120

Figure	4.5	The	result	of	takes	natural	right	outer	join	student.

be	displayed,	even	if	no	student	from	the	Comp.	Sci.	department	has	taken	the	course	section.”	This	query
can	be	written	as:

select	*

from	(select	*

from	student

where	dept	name	=	'Comp.	Sci.')

natural	full	outer	join

(select	*

from	takes

where	semester	=	'Spring'	and	year	=	2017);

The	result	appears	in	Figure	4.6.

4.1

Join	Expressions

135

ID

name

dept	name

tot	cred	course	id	sec	id	semester	year

grade

00128	Zhang

Comp.	Sci.

102	null

null

null

null

null

12345	Shankar

Comp.	Sci.

32	CS-190

2

Spring

2017	A

54321	Williams	Comp.	Sci.

54	CS-190

2

Spring

2017	B+

76543	Brown

Comp.	Sci.

58	null

null

null

null

null

76653	null

null

null	ECE-181

1

Spring

2017	C

Figure	4.6	Result	of	full	outer	join	example	(see	text).

The	on	clause	can	be	used	with	outer	joins.	The	following	query	is	identical	to	the	first	query	we	saw
using	“student	natural	left	outer	join	takes,”	except	that	the	attribute	ID	appears	twice	in	the	result.

select	*

from	student	left	outer	join	takes	on	student.	ID	=	takes.	ID;	As	we	noted	earlier,	on	and	where	behave
differently	for	outer	join.	The	reason	for	this	is	that	outer	join	adds	null-padded	tuples	only	for	those
tuples	that	do	not	contribute	to	the	result	of	the	corresponding	“inner”	join.	The	on	condition	is	part	of	the
outer	join	specification,	but	a	where	clause	is	not.	In	our	example,	the	case	of	the	student	tuple	for
student	“Snow”	with	ID	70557,	illustrates	this	distinction.	Suppose	we	modify	the	preceding	query	by
moving	the	on	clause	predicate	to	the	where	clause	and	instead	using	an	on	condition	of	true.5

select	*

from	student	left	outer	join	takes	on	true

where	student.	ID	=	takes.	ID;

The	earlier	query,	using	the	left	outer	join	with	the	on	condition,	includes	a	tuple	(70557,	Snow,	Physics,	0,
null,	null,	null,	null,	null,	null)	because	there	is	no	tuple	in	takes	with	ID	=	70557.	In	the	latter	query,
however,	every	tuple	satisfies	the	join	condition	true,	so	no	null-padded	tuples	are	generated	by	the	outer
join.	The	outer	join	actually	generates	the	Cartesian	product	of	the	two	relations.	Since	there	is	no	tuple
in	takes	with	ID	=	70557,	every	time	a	tuple	appears	in	the	outer	join	with	name	=

“Snow”,	the	values	for	student.	ID	and	takes.	ID	must	be	different,	and	such	tuples	would	be	eliminated	by
the	where	clause	predicate.	Thus,	student	Snow	never	appears	in	the	result	of	the	latter	query.

5Some	systems	do	not	allow	the	use	of	the	Boolean	constant	true.	To	test	this	on	those	systems,	use	a
tautology	(i.e.,	a	predicate	that	always	evaluates	to	true),	like	“1=1”.

136

Chapter	4

Intermediate	SQL

Note	4.1	SQL	AND	MULTISET	RELATIONAL	ALGEBRA	-	PART	4

The	relational	algebra	supports	the	left	outer-join	operation,	denoted	by	⟕θ,	the	right	outer-join
operation,	denoted	by	⟖θ,	and	the	full	outer-join	operation,	denoted	by	⟗θ.	It	also	supports	the	natural
join	operation,	denoted	by	⋈,	as	well	as	the	natural	join	versions	of	the	left,	right	and	full	outer-join
operations,	denoted	by	⟕,	⟖,	and	⟗.	The	definitions	of	all	these	operations	are	identical	to	the	definitions
of	the	corresponding	operations	in	SQL,	which	we	have	seen	in	Section	4.1.

4.1.4

Join	Types	and	Conditions

To	distinguish	normal	joins	from	outer	joins,	normal	joins	are	called	inner	joins	in	SQL.

A	join	clause	can	thus	specify	inner	join	instead	of	outer	join	to	specify	that	a	normal	join	is	to	be	used.
The	keyword	inner	is,	however,	optional.	The	default	join	type,	when	the	join	clause	is	used	without	the
outer	prefix,	is	the	inner	join.	Thus,	select	*

from	student	join	takes	using	(ID);

is	equivalent	to:

select	*

from	student	inner	join	takes	using	(ID);

Similarly,	natural	join	is	equivalent	to	natural	inner	join.

Figure	4.7	shows	a	full	list	of	the	various	types	of	join	that	we	have	discussed.	As	can	be	seen	from	the
figure,	any	form	of	join	(inner,	left	outer,	right	outer,	or	full	outer)	can	be	combined	with	any	join	condition
(natural,	using,	or	on).

Join	types

Join	conditions

inner	join

natural

left	outer	join

on	<	predicate>

right	outer	join

using	(A	1,	A	2,	.	.	.,	An)

full	outer	join

Figure	4.7	Join	types	and	join	conditions.

4.2

Views

137

4.2

Views

It	is	not	always	desirable	for	all	users	to	see	the	entire	set	of	relations	in	the	database.

In	Section	4.7,	we	shall	see	how	to	use	the	SQL	authorization	mechanism	to	restrict	access	to	relations,

but	security	considerations	may	require	that	only	certain	data	in	a	relation	be	hidden	from	a	user.
Consider	a	clerk	who	needs	to	know	an	instructor’s	ID,	name,	and	department	name,	but	does	not	have
authorization	to	see	the	instructor’s	salary	amount.	This	person	should	see	a	relation	described	in	SQL	by:

select	ID,	name,	dept	name

from	instructor;

Aside	from	security	concerns,	we	may	wish	to	create	a	personalized	collection	of	“virtual”	relations	that	is
better	matched	to	a	certain	user’s	intuition	of	the	structure	of	the	enterprise.	In	our	university	example,
we	may	want	to	have	a	list	of	all	course	sections	offered	by	the	Physics	department	in	the	Fall	2017
semester,	with	the	building	and	room	number	of	each	section.	The	relation	that	we	would	create	for
obtaining	such	a	list	is:

select	course.	course	id,	sec	id,	building,	room	number	from	course,	section

where	course.	course	id	=	section.	course	id	and	course.	dept	name	=	'Physics'

and	section.	semester	=	'Fall'

and	section.	year	=	2017;

It	is	possible	to	compute	and	store	the	results	of	these	queries	and	then	make	the	stored	relations
available	to	users.	However,	if	we	did	so,	and	the	underlying	data	in	the	relations	instructor,	course,	or
section	changed,	the	stored	query	results	would	then	no	longer	match	the	result	of	reexecuting	the	query
on	the	relations.	In	general,	it	is	a	bad	idea	to	compute	and	store	query	results	such	as	those	in	the	above
examples	(although	there	are	some	exceptions	that	we	study	later).

Instead,	SQL	allows	a	“virtual	relation”	to	be	defined	by	a	query,	and	the	relation	conceptually	contains
the	result	of	the	query.	The	virtual	relation	is	not	precomputed	and	stored	but	instead	is	computed	by
executing	the	query	whenever	the	virtual	relation	is	used.	We	saw	a	feature	for	this	in	Section	3.8.6,
where	we	described	the	with	clause.

The	with	clause	allows	us	to	to	assign	a	name	to	a	subquery	for	use	as	often	as	desired,	but	in	one
particular	query	only.	Here,	we	present	a	way	to	extend	this	concept	beyond	a	single	query	by	defining	a
view.	It	is	possible	to	support	a	large	number	of	views	on	top	of	any	given	set	of	actual	relations.

138

Chapter	4

Intermediate	SQL

4.2.1

View	Definition

We	define	a	view	in	SQL	by	using	the	create	view	command.	To	define	a	view,	we	must	give	the	view	a
name	and	must	state	the	query	that	computes	the	view.	The	form	of	the	create	view	command	is:

create	view	v	as	<	query	expression	>;

where	<	query	expression	>	is	any	legal	query	expression.	The	view	name	is	represented	by	v.

Consider	again	the	clerk	who	needs	to	access	all	data	in	the	instructor	relation,	except	salary.	The	clerk
should	not	be	authorized	to	access	the	instructor	relation	(we	see	in	Section	4.7,	how	authorizations	can
be	specified).	Instead,	a	view	relation	faculty	can	be	made	available	to	the	clerk,	with	the	view	defined	as
follows:

create	view	faculty	as

select	ID,	name,	dept	name

from	instructor;

As	explained	earlier,	the	view	relation	conceptually	contains	the	tuples	in	the	query	result,	but	it	is	not
precomputed	and	stored.	Instead,	the	database	system	stores	the	query	expression	associated	with	the
view	relation.	Whenever	the	view	relation	is	accessed,	its	tuples	are	created	by	computing	the	query
result.	Thus,	the	view	relation	is	created	whenever	needed,	on	demand.

To	create	a	view	that	lists	all	course	sections	offered	by	the	Physics	department	in	the	Fall	2017	semester
with	the	building	and	room	number	of	each	section,	we	write:	create	view	physics	fall	2017	as

select	course.	course	id,	sec	id,	building,	room	number	from	course,	section

where	course.	course	id	=	section.	course	id	and	course.	dept	name	=	'Physics'

and	section.	semester	=	'Fall'

and	section.	year	=	2017;

Later,	when	we	study	the	SQL	authorization	mechanism	in	Section	4.7,	we	shall	see	that	users	can	be
given	access	to	views	in	place	of,	or	in	addition	to,	access	to	relations.

Views	differ	from	the	with	statement	in	that	views,	once	created,	remain	available	until	explicitly	dropped.
The	named	subquery	defined	by	with	is	local	to	the	query	in	which	it	is	defined.

4.2.2

Using	Views	in	SQL	Queries

Once	we	have	defined	a	view,	we	can	use	the	view	name	to	refer	to	the	virtual	relation	that	the	view
generates.	Using	the	view	physics	fall	2017,	we	can	find	all	Physics	courses	offered	in	the	Fall	2017
semester	in	the	Watson	building	by	writing:

4.2

Views

139

select	course	id

from	physics	fall	2017

where	building	=	'Watson';

View	names	may	appear	in	a	query	any	place	where	a	relation	name	may	appear,	The	attribute	names	of	a
view	can	be	specified	explicitly	as	follows:

create	view	departments	total	salary(dept	name,	total	salary)	as	select	dept	name,	sum	(salary)

from	instructor

group	by	dept	name;

The	preceding	view	gives	for	each	department	the	sum	of	the	salaries	of	all	the	instructors	at	that
department.	Since	the	expression	sum(salary)	does	not	have	a	name,	the	attribute	name	is	specified
explicitly	in	the	view	definition.

Intuitively,	at	any	given	time,	the	set	of	tuples	in	the	view	relation	is	the	result	of	evaluation	of	the	query
expression	that	defines	the	view.	Thus,	if	a	view	relation	is	computed	and	stored,	it	may	become	out	of
date	if	the	relations	used	to	define	it	are	modified.	To	avoid	this,	views	are	usually	implemented	as	follows:
When	we	define	a	view,	the	database	system	stores	the	definition	of	the	view	itself,	rather	than	the	result
of	evaluation	of	the	query	expression	that	defines	the	view.	Wherever	a	view	relation	appears	in	a	query,	it
is	replaced	by	the	stored	query	expression.	Thus,	whenever	we	evaluate	the	query,	the	view	relation	is
recomputed.

One	view	may	be	used	in	the	expression	defining	another	view.	For	example,	we	can	define	a	view	physics
fall	2017	watson	that	lists	the	course	ID	and	room	number	of	all	Physics	courses	offered	in	the	Fall	2017
semester	in	the	Watson	building	as	follows:	create	view	physics	fall	2017	watson	as

select	course	id,	room	number

from	physics	fall	2017

where	building	=	'Watson';

where	physics	fall	2017	watson	is	itself	a	view	relation.	This	is	equivalent	to:	create	view	physics	fall	2017
watson	as

select	course	id,	room	number

from	(select	course.	course	id,	building,	room	number	from	course,	section

where	course.	course	id	=	section.	course	id	and	course.	dept	name	=	'Physics'

and	section.	semester	=	'Fall'

and	section.	year	=	2017)

where	building	=	'Watson';

140

Chapter	4

Intermediate	SQL

4.2.3

Materialized	Views

Certain	database	systems	allow	view	relations	to	be	stored,	but	they	make	sure	that,	if	the	actual	relations
used	in	the	view	definition	change,	the	view	is	kept	up-to-date.	Such	views	are	called	materialized	views.

For	example,	consider	the	view	departments	total	salary.	If	that	view	is	materialized,	its	results	would	be
stored	in	the	database,	allowing	queries	that	use	the	view	to	potentially	run	much	faster	by	using	the
precomputed	view	result,	instead	of	recomputing	it.

However,	if	an	instructor	tuple	is	added	to	or	deleted	from	the	instructor	relation,	the	result	of	the	query
defining	the	view	would	change,	and	as	a	result	the	materialized	view’s	contents	must	be	updated.
Similarly,	if	an	instructor’s	salary	is	updated,	the	tuple	in	departments	total	salary	corresponding	to	that
instructor’s	department	must	be	updated.

The	process	of	keeping	the	materialized	view	up-to-date	is	called	materialized	view	maintenance	(or	often,
just	view	maintenance)	and	is	covered	in	Section	16.5.	View	maintenance	can	be	done	immediately	when
any	of	the	relations	on	which	the	view	is	defined	is	updated.	Some	database	systems,	however,	perform
view	maintenance	lazily,	when	the	view	is	accessed.	Some	systems	update	materialized	views	only
periodically;	in	this	case,	the	contents	of	the	materialized	view	may	be	stale,	that	is,	not	up-to-date,	when
it	is	used,	and	it	should	not	be	used	if	the	application	needs	up-to-date	data.

And	some	database	systems	permit	the	database	administrator	to	control	which	of	the	preceding	methods
is	used	for	each	materialized	view.

Applications	that	use	a	view	frequently	may	benefit	if	the	view	is	materialized.

Applications	that	demand	fast	response	to	certain	queries	that	compute	aggregates	over	large	relations
can	also	benefit	greatly	by	creating	materialized	views	corresponding	to	the	queries.	In	this	case,	the
aggregated	result	is	likely	to	be	much	smaller	than	the	large	relations	on	which	the	view	is	defined;	as	a
result	the	materialized	view	can	be	used	to	answer	the	query	very	quickly,	avoiding	reading	the	large
underlying	relations.

The	benefits	to	queries	from	the	materialization	of	a	view	must	be	weighed	against	the	storage	costs	and
the	added	overhead	for	updates.

SQL	does	not	define	a	standard	way	of	specifying	that	a	view	is	materialized,	but	many	database	systems
provide	their	own	SQL	extensions	for	this	task.	Some	database	systems	always	keep	materialized	views
up-to-date	when	the	underlying	relations	change,	while	others	permit	them	to	become	out	of	date	and
periodically	recompute	them.

4.2.4

Update	of	a	View

Although	views	are	a	useful	tool	for	queries,	they	present	serious	problems	if	we	express	updates,
insertions,	or	deletions	with	them.	The	difficulty	is	that	a	modification	to	the	database	expressed	in	terms
of	a	view	must	be	translated	to	a	modification	to	the	actual	relations	in	the	logical	model	of	the	database.

4.2

Views

141

Suppose	the	view	faculty,	which	we	saw	earlier,	is	made	available	to	a	clerk.	Since	we	allow	a	view	name
to	appear	wherever	a	relation	name	is	allowed,	the	clerk	can	write:

insert	into	faculty

values	('30765',	'Green',	'Music');

This	insertion	must	be	represented	by	an	insertion	into	the	relation	instructor,	since	instructor	is	the
actual	relation	from	which	the	database	system	constructs	the	view	faculty.	However,	to	insert	a	tuple	into
instructor,	we	must	have	some	value	for	salary.

There	are	two	reasonable	approaches	to	dealing	with	this	insertion:

•	Reject	the	insertion,	and	return	an	error	message	to	the	user.

•	Insert	a	tuple	('30765',	'Green',	'Music',	null)	into	the	instructor	relation.

Another	problem	with	modification	of	the	database	through	views	occurs	with	a	view	such	as:

create	view	instructor	info	as

select	ID,	name,	building

from	instructor,	department

where	instructor.	dept	name	=	department.	dept	name;	This	view	lists	the	ID,	name,	and	building-name	of
each	instructor	in	the	university.

Consider	the	following	insertion	through	this	view:

insert	into	instructor	info

values	('69987',	'White',	'Taylor');

Suppose	there	is	no	instructor	with	ID	69987,	and	no	department	in	the	Taylor	building.	Then	the	only
possible	method	of	inserting	tuples	into	the	instructor	and	department	relations	is	to	insert	('69987',
'White',	null,	null)	into	instructor	and	(null,

'Taylor',	null)	into	department.	Then	we	obtain	the	relations	shown	in	Figure	4.8.	However,	this	update
does	not	have	the	desired	effect,	since	the	view	relation	instructor	info	still	does	not	include	the	tuple
('69987',	'White',	'Taylor').	Thus,	there	is	no	way	to	update	the	relations	instructor	and	department	by
using	nulls	to	get	the	desired	update	on	instructor	info.

Because	of	problems	such	as	these,	modifications	are	generally	not	permitted	on	view	relations,	except	in
limited	cases.	Different	database	systems	specify	different	conditions	under	which	they	permit	updates	on
view	relations;	see	the	database	system	manuals	for	details.

In	general,	an	SQL	view	is	said	to	be	updatable	(i.e.,	inserts,	updates,	or	deletes	can	be	applied	on	the
view)	if	the	following	conditions	are	all	satisfied	by	the	query	defining	the	view:

•	The	from	clause	has	only	one	database	relation.

142

Chapter	4

Intermediate	SQL

ID

name

dept	name

salary

10101

Srinivasan

Comp.	Sci.

65000

12121

Wu

Finance

90000

15151

Mozart

Music

40000

22222

Einstein

Physics

95000

32343

El	Said

History

60000

33456

Gold

Physics

87000

45565

Katz

Comp.	Sci.

75000

58583

Califieri

History

62000

76543

Singh

Finance

80000

76766

Crick

Biology

72000

83821

Brandt

Comp.	Sci.

92000

98345

Kim

Elec.	Eng.

80000

69987

White

null

null

instructor

dept	name

building

budget

Biology

Watson

90000

Comp.	Sci.

Taylor

100000

Electrical	Eng.

Taylor

85000

Finance

Painter

120000

History

Painter

50000

Music

Packard

80000

Physics

Watson

70000

null

Taylor

null

department

Figure	4.8	Relations	instructor	and	department	after	insertion	of	tuples.

•	The	select	clause	contains	only	attribute	names	of	the	relation	and	does	not	have	any	expressions,
aggregates,	or	distinct	specification.

•	Any	attribute	not	listed	in	the	select	clause	can	be	set	to	null;	that	is,	it	does	not	have	a	not	null
constraint	and	is	not	part	of	a	primary	key.

•	The	query	does	not	have	a	group	by	or	having	clause.

Under	these	constraints,	the	update,	insert,	and	delete	operations	would	be	allowed	on	the	following	view:

4.3

Transactions

143

create	view	history	instructors	as

select	*

from	instructor

where	dept	name	=	'History';

Even	with	the	conditions	on	updatability,	the	following	problem	still	remains.	Suppose	that	a	user	tries	to
insert	the	tuple	('25566',	'Brown',	'Biology',	100000)	into	the	history	instructors	view.	This	tuple	can	be
inserted	into	the	instructor	relation,	but	it	would	not	appear	in	the	history	instructors	view	since	it	does
not	satisfy	the	selection	imposed	by	the	view.

By	default,	SQL	would	allow	the	above	update	to	proceed.	However,	views	can	be	defined	with	a	with
check	option	clause	at	the	end	of	the	view	definition;	then,	if	a	tuple	inserted	into	the	view	does	not	satisfy
the	view’s	where	clause	condition,	the	insertion	is	rejected	by	the	database	system.	Updates	are	similarly
rejected	if	the	new	value	does	not	satisfy	the	where	clause	conditions.

SQL:1999	has	a	more	complex	set	of	rules	about	when	inserts,	updates,	and	deletes	can	be	executed	on	a
view	that	allows	updates	through	a	larger	class	of	views;	however,	the	rules	are	too	complex	to	be
discussed	here.

An	alternative,	and	often	preferable,	approach	to	modifying	the	database	through	a	view	is	to	use	the
trigger	mechanism	discussed	in	Section	5.3.	The	instead	of	feature	in	declaring	triggers	allows	one	to
replace	the	default	insert,	update,	and	delete	operations	on	a	view	with	actions	designed	especially	for
each	particular	case.

4.3

Transactions

A	transaction	consists	of	a	sequence	of	query	and/or	update	statements.	The	SQL	standard	specifies	that	a
transaction	begins	implicitly	when	an	SQL	statement	is	executed.

One	of	the	following	SQL	statements	must	end	the	transaction:

•	Commit	work	commits	the	current	transaction;	that	is,	it	makes	the	updates	performed	by	the
transaction	become	permanent	in	the	database.	After	the	transaction	is	committed,	a	new	transaction	is
automatically	started.

•	Rollback	work	causes	the	current	transaction	to	be	rolled	back;	that	is,	it	undoes	all	the	updates
performed	by	the	SQL	statements	in	the	transaction.	Thus,	the	database	state	is	restored	to	what	it	was
before	the	first	statement	of	the	transaction	was	executed.

The	keyword	work	is	optional	in	both	the	statements.

Transaction	rollback	is	useful	if	some	error	condition	is	detected	during	execution	of	a	transaction.
Commit	is	similar,	in	a	sense,	to	saving	changes	to	a	document	that	is	being	edited,	while	rollback	is
similar	to	quitting	the	edit	session	without	saving

144

Chapter	4

Intermediate	SQL

changes.	Once	a	transaction	has	executed	commit	work,	its	effects	can	no	longer	be	undone	by	rollback
work.	The	database	system	guarantees	that	in	the	event	of	some	failure,	such	as	an	error	in	one	of	the
SQL	statements,	a	power	outage,	or	a	system	crash,	a	transaction’s	effects	will	be	rolled	back	if	it	has	not
yet	executed	commit	work.

In	the	case	of	power	outage	or	other	system	crash,	the	rollback	occurs	when	the	system	restarts.

For	instance,	consider	a	banking	application	where	we	need	to	transfer	money	from	one	bank	account	to
another	in	the	same	bank.	To	do	so,	we	need	to	update	two	account	balances,	subtracting	the	amount
transferred	from	one,	and	adding	it	to	the	other.	If	the	system	crashes	after	subtracting	the	amount	from
the	first	account	but	before	adding	it	to	the	second	account,	the	bank	balances	will	be	inconsistent.	A
similar	problem	occurs	if	the	second	account	is	credited	before	subtracting	the	amount	from	the	first
account	and	the	system	crashes	just	after	crediting	the	amount.

As	another	example,	consider	our	running	example	of	a	university	application.	We	assume	that	the
attribute	tot	cred	of	each	tuple	in	the	student	relation	is	kept	up-to-date	by	modifying	it	whenever	the
student	successfully	completes	a	course.	To	do	so,	whenever	the	takes	relation	is	updated	to	record
successful	completion	of	a	course	by	a	student	(by	assigning	an	appropriate	grade),	the	corresponding
student	tuple	must	also	be	updated.	If	the	application	performing	these	two	updates	crashes	after	one
update	is	performed,	but	before	the	second	one	is	performed,	the	data	in	the	database	will	be
inconsistent.

By	either	committing	the	actions	of	a	transaction	after	all	its	steps	are	completed,	or	rolling	back	all	its
actions	in	case	the	transaction	could	not	complete	all	its	actions	successfully,	the	database	provides	an
abstraction	of	a	transaction	as	being	atomic,	that	is,	indivisible.	Either	all	the	effects	of	the	transaction
are	reflected	in	the	database	or	none	are	(after	rollback).

Applying	the	notion	of	transactions	to	the	above	applications,	the	update	statements	should	be	executed
as	a	single	transaction.	An	error	while	a	transaction	executes	one	of	its	statements	would	result	in
undoing	the	effects	of	the	earlier	statements	of	the	transaction	so	that	the	database	is	not	left	in	a
partially	updated	state.

If	a	program	terminates	without	executing	either	of	these	commands,	the	updates	are	either	committed	or
rolled	back.	The	standard	does	not	specify	which	of	the	two	happens,	and	the	choice	is	implementation
dependent.

In	many	SQL	implementations,	including	MySQL	and	PostgreSQL,	by	default	each	SQL	statement	is	taken
to	be	a	transaction	on	its	own,	and	it	gets	committed	as	soon	as	it	is	executed.	Such	automatic	commit	of
individual	SQL	statements	must	be	turned	off	if	a	transaction	consisting	of	multiple	SQL	statements	needs
to	be	executed.	How	to	turn	off	automatic	commit	depends	on	the	specific	SQL	implementation,	although
many	databases	support	the	command	set	autocommit	off.6

6There	is	a	standard	way	of	turning	autocommit	on	or	off	when	using	application	program	interfaces	such

as	JDBC	or	ODBC,	which	we	study	in	Section	5.1.1	and	Section	5.1.3,	respectively.

4.4

Integrity	Constraints

145

A	better	alternative,	which	is	part	of	the	SQL:1999	standard	is	to	allow	multiple	SQL

statements	to	be	enclosed	between	the	keywords	begin	atomic	…	end.	All	the	statements	between	the
keywords	then	form	a	single	transaction,	which	is	committed	by	default	if	execution	reaches	the	end
statement.	Only	some	databases,	such	as	SQL	Server,	support	the	above	syntax.	However,	several	other
databases,	such	as	MySQL	and	PostgreSQL,	support	a	begin	statement	which	starts	a	transaction
containing	all	subsequent	SQL

statements,	but	do	not	support	the	end	statement;	instead,	the	transaction	must	be	ended	by	either	a
commit	work	or	a	rollback	work	command.

If	you	use	a	database	such	as	Oracle,	where	the	automatic	commit	is	not	the	default	for	DML	statements,
be	sure	to	issue	a	commit	command	after	adding	or	modifying	data,	or	else	when	you	disconnect,	all	your
database	modifications	will	be	rolled	back!7

You	should	be	aware	that	although	Oracle	has	automatic	commit	turned	off	by	default,	that	default	may	be
overridden	by	local	configuration	settings.

We	study	further	properties	of	transactions	in	Chapter	17;	issues	in	implementing	transactions	are
addressed	in	Chapter	18	and	Chapter	19.

4.4

Integrity	Constraints

Integrity	constraints	ensure	that	changes	made	to	the	database	by	authorized	users	do	not	result	in	a	loss
of	data	consistency.	Thus,	integrity	constraints	guard	against	accidental	damage	to	the	database.	This	is	in
contrast	to	security	constraints,	which	guard	against	access	to	the	database	by	unauthorized	users.

Examples	of	integrity	constraints	are:

•	An	instructor	name	cannot	be	null.

•	No	two	instructors	can	have	the	same	instructor	ID.

•	Every	department	name	in	the	course	relation	must	have	a	matching	department	name	in	the
department	relation.

•	The	budget	of	a	department	must	be	greater	than	$0.00.

In	general,	an	integrity	constraint	can	be	an	arbitrary	predicate	pertaining	to	the	database.	However,
arbitrary	predicates	may	be	costly	to	test.	Thus,	most	database	systems	allow	one	to	specify	only	those
integrity	constraints	that	can	be	tested	with	minimal	overhead.

We	have	already	seen	some	forms	of	integrity	constraints	in	Section	3.2.2.	We	study	some	more	forms	of
integrity	constraints	in	this	section.	In	Chapter	7,	we	study	another	form	of	integrity	constraint,	called
functional	dependencies,	that	is	used	primarily	in	the	process	of	schema	design.

7Oracle	does	automatically	commit	DDL	statements.

146

Chapter	4

Intermediate	SQL

Integrity	constraints	are	usually	identified	as	part	of	the	database	schema	design	process	and	declared	as
part	of	the	create	table	command	used	to	create	relations.

However,	integrity	constraints	can	also	be	added	to	an	existing	relation	by	using	the	command	alter	table
table-name	add	constraint,	where	constraint	can	be	any	constraint	on	the	relation.	When	such	a	command
is	executed,	the	system	first	ensures	that	the	relation	satisfies	the	specified	constraint.	If	it	does,	the
constraint	is	added	to	the	relation;	if	not,	the	command	is	rejected.

4.4.1

Constraints	on	a	Single	Relation

We	described	in	Section	3.2	how	to	define	tables	using	the	create	table	command.	The	create	table
command	may	also	include	integrity-constraint	statements.	In	addition	to	the	primary-key	constraint,
there	are	a	number	of	other	ones	that	can	be	included	in	the	create	table	command.	The	allowed	integrity
constraints	include

•	not	null

•	unique

•	check(<	predicate	>)

We	cover	each	of	these	types	of	constraints	in	the	following	sections.

4.4.2

Not	Null	Constraint

As	we	discussed	in	Chapter	3,	the	null	value	is	a	member	of	all	domains,	and	as	a	result	it	is	a	legal	value
for	every	attribute	in	SQL	by	default.	For	certain	attributes,	however,	null	values	may	be	inappropriate.
Consider	a	tuple	in	the	student	relation	where	name	is	null.	Such	a	tuple	gives	student	information	for	an
unknown	student;	thus,	it	does	not	contain	useful	information.	Similarly,	we	would	not	want	the
department	budget	to	be	null.	In	cases	such	as	this,	we	wish	to	forbid	null	values,	and	we	can	do	so	by
restricting	the	domain	of	the	attributes	name	and	budget	to	exclude	null	values,	by	declaring	it	as	follows:

name	varchar(20)	not	null

budget	numeric(12,2)	not	null

The	not	null	constraint	prohibits	the	insertion	of	a	null	value	for	the	attribute,	and	is	an	example	of	a
domain	constraint.	Any	database	modification	that	would	cause	a	null	to	be	inserted	in	an	attribute
declared	to	be	not	null	generates	an	error	diagnostic.

There	are	many	situations	where	we	want	to	avoid	null	values.	In	particular,	SQL

prohibits	null	values	in	the	primary	key	of	a	relation	schema.	Thus,	in	our	university	example,	in	the
department	relation,	if	the	attribute	dept	name	is	declared	as	the	primary	key	for	department,	it	cannot
take	a	null	value.	As	a	result	it	would	not	need	to	be	declared	explicitly	to	be	not	null.

4.4

Integrity	Constraints

147

4.4.3

Unique	Constraint

SQL	also	supports	an	integrity	constraint:

unique	(A	,	A	,	…	,	A)

j

j

j

1

2

m

The	unique	specification	says	that	attributes	A	,	A	,	…	,	A	form	a	superkey;	that	is,	no	j

j

j

1

2

m

two	tuples	in	the	relation	can	be	equal	on	all	the	listed	attributes.	However,	attributes	declared	as	unique
are	permitted	to	be	null	unless	they	have	explicitly	been	declared	to	be	not	null.	Recall	that	a	null	value
does	not	equal	any	other	value.	(The	treatment	of	nulls	here	is	the	same	as	that	of	the	unique	construct
defined	in	Section	3.8.4.)	4.4.4

The	Check	Clause

When	applied	to	a	relation	declaration,	the	clause	check(P)	specifies	a	predicate	P	that	must	be	satisfied
by	every	tuple	in	a	relation.

A	common	use	of	the	check	clause	is	to	ensure	that	attribute	values	satisfy	specified	conditions,	in	effect
creating	a	powerful	type	system.	For	instance,	a	clause	check	(budget	>	0)	in	the	create	table	command
for	relation	department	would	ensure	that	the	value	of	budget	is	nonnegative.

As	another	example,	consider	the	following:

create	table	section

(course	id

varchar	(8),

sec	id

varchar	(8),

semester

varchar	(6),

year

numeric	(4,0),

building

varchar	(15),

room	number	varchar	(7),

time	slot	id

varchar	(4),

primary	key	(course	id,	sec	id,	semester,	year),	check	(semester	in	('Fall',	'Winter',	'Spring',	'Summer')));

Here,	we	use	the	check	clause	to	simulate	an	enumerated	type	by	specifying	that	semester	must	be	one	of
'Fall',	'Winter',	'Spring',	or	'Summer'.	Thus,	the	check	clause	permits	attribute	domains	to	be	restricted	in
powerful	ways	that	most	programming-language	type	systems	do	not	permit.

Null	values	present	an	interesting	special	case	in	the	evaluation	of	a	check	clause.

A	check	clause	is	satisfied	if	it	is	not	false,	so	clauses	that	evaluate	to	unknown	are	not	violations.	If	null
values	are	not	desired,	a	separate	not	null	constraint	(see	Section	4.4.2)	must	be	specified.

A	check	clause	may	appear	on	its	own,	as	shown	above,	or	as	part	of	the	declaration	of	an	attribute.	In
Figure	4.9,	we	show	the	check	constraint	for	the	semester	attribute

148

Chapter	4

Intermediate	SQL

create	table	classroom

(building

varchar	(15),

room	number	varchar	(7),

capacity

numeric	(4,0),

primary	key	(building,	room	number));

create	table	department

(dept	name

varchar	(20),

building

varchar	(15),

budget

numeric	(12,2)	check	(budget	>	0),

primary	key	(dept	name));

create	table	course

(course	id

varchar	(8),

title

varchar	(50),

dept	name

varchar	(20),

credits

numeric	(2,0)	check	(credits	>	0),

primary	key	(course	id),

foreign	key	(dept	name)	references	department);

create	table	instructor

(ID

varchar	(5),

name

varchar	(20)	not	null,

dept	name

varchar	(20),

salary

numeric	(8,2)	check	(salary	>	29000),

primary	key	(ID),

foreign	key	(dept	name)	references	department);

create	table	section

(course	id

varchar	(8),

sec	id

varchar	(8),

semester

varchar	(6)	check	(semester	in

(’Fall’,	’Winter’,	’Spring’,	’Summer’)),

year

numeric	(4,0)	check	(year	>	1759	and	year	<	2100),

building

varchar	(15),

room	number	varchar	(7),

time	slot	id

varchar	(4),

primary	key	(course	id,	sec	id,	semester,	year),	foreign	key	(course	id)	references	course,

foreign	key	(building,	room	number)	references	classroom);	Figure	4.9	SQL	data	definition	for	part	of
the	university	database.

4.4

Integrity	Constraints

149

as	part	of	the	declaration	of	semester.	The	placement	of	a	check	clause	is	a	matter	of	coding	style.
Typically,	constraints	on	the	value	of	a	single	attribute	are	listed	with	that	attribute,	while	more	complex
check	clauses	are	listed	separately	at	the	end	of	a	create	table	statement.

The	predicate	in	the	check	clause	can,	according	to	the	SQL	standard,	be	an	arbitrary	predicate	that	can
include	a	subquery.	However,	currently	none	of	the	widely	used	database	products	allows	the	predicate	to
contain	a	subquery.

4.4.5

Referential	Integrity

Often,	we	wish	to	ensure	that	a	value	that	appears	in	one	relation	(the	referencing	relation)	for	a	given	set
of	attributes	also	appears	for	a	certain	set	of	attributes	in	another	relation	(the	referenced	relation).	As
we	saw	earlier,	in	Section	2.3,	such	conditions	are	called	referential	integrity	constraints,	and	foreign	keys
are	a	form	of	a	referential	integrity	constraint	where	the	referenced	attributes	form	a	primary	key	of	the
referenced	relation.

Foreign	keys	can	be	specified	as	part	of	the	SQL	create	table	statement	by	using	the	foreign	key	clause,
as	we	saw	in	Section	3.2.2.	We	illustrate	foreign-key	declarations	by	using	the	SQL	DDL	definition	of	part
of	our	university	database,	shown	in	Figure	4.9.

The	definition	of	the	course	table	has	a	declaration

“foreign	key	(dept	name)	references	department”.

This	foreign-key	declaration	specifies	that	for	each	course	tuple,	the	department	name	specified	in	the
tuple	must	exist	in	the	department	relation.	Without	this	constraint,	it	is	possible	for	a	course	to	specify	a
nonexistent	department	name.

By	default,	in	SQL	a	foreign	key	references	the	primary-key	attributes	of	the	referenced	table.	SQL	also
supports	a	version	of	the	references	clause	where	a	list	of	attributes	of	the	referenced	relation	can	be
specified	explicitly.8	For	example,	the	foreign	key	declaration	for	the	course	relation	can	be	specified	as:

foreign	key	(dept	name)	references	department(dept	name)	The	specified	list	of	attributes	must,
however,	be	declared	as	a	superkey	of	the	referenced	relation,	using	either	a	primary	key	constraint	or	a
unique	constraint.	A	more	general	form	of	a	referential-integrity	constraint,	where	the	referenced
columns	need	not	be	a	candidate	key,	cannot	be	directly	specified	in	SQL.	The	SQL	standard	specifies
other	constructs	that	can	be	used	to	implement	such	constraints,	which	are	described	in	Section	4.4.8;
however,	these	alternative	constructs	are	not	supported	by	any	of	the	widely	used	database	systems.

Note	that	the	foreign	key	must	reference	a	compatible	set	of	attributes,	that	is,	the	number	of	attributes
must	be	the	same	and	the	data	types	of	corresponding	attributes	must	be	compatible.

8Some	systems,	notably	MySQL,	do	not	support	the	default	and	require	that	the	attributes	of	the
referenced	relations	be	specified.

150

Chapter	4

Intermediate	SQL

We	can	use	the	following	as	part	of	a	table	definition	to	declare	that	an	attribute	forms	a	foreign	key:

dept	name	varchar(20)	references	department

When	a	referential-integrity	constraint	is	violated,	the	normal	procedure	is	to	reject	the	action	that	caused
the	violation	(i.e.,	the	transaction	performing	the	update	action	is	rolled	back).	However,	a	foreign	key
clause	can	specify	that	if	a	delete	or	update	action	on	the	referenced	relation	violates	the	constraint,	then,
instead	of	rejecting	the	action,	the	system	must	take	steps	to	change	the	tuple	in	the	referencing	relation
to	restore	the	constraint.	Consider	this	definition	of	an	integrity	constraint	on	the	relation	course:	create
table	course

(…

foreign	key	(dept	name)	references	department

on	delete	cascade

on	update	cascade,

…);

Because	of	the	clause	on	delete	cascade	associated	with	the	foreign-key	declaration,	if	a	delete	of	a	tuple
in	department	results	in	this	referential-integrity	constraint	being	violated,	the	system	does	not	reject	the

delete.	Instead,	the	delete	“cascades”	to	the	course	relation,	deleting	the	tuple	that	refers	to	the
department	that	was	deleted.	Similarly,	the	system	does	not	reject	an	update	to	a	field	referenced	by	the
constraint	if	it	violates	the	constraint;	instead,	the	system	updates	the	field	dept	name	in	the	referencing
tuples	in	course	to	the	new	value	as	well.	SQL	also	allows	the	foreign	key	clause	to	specify	actions	other
than	cascade,	if	the	constraint	is	violated:	The	referencing	field	(here,	dept	name)	can	be	set	to	null	(by
using	set	null	in	place	of	cascade),	or	to	the	default	value	for	the	domain	(by	using	set	default).

If	there	is	a	chain	of	foreign-key	dependencies	across	multiple	relations,	a	deletion	or	update	at	one	end	of
the	chain	can	propagate	across	the	entire	chain.	An	interesting	case	where	the	foreign	key	constraint	on	a
relation	references	the	same	relation	appears	in	Exercise	4.9.	If	a	cascading	update	or	delete	causes	a
constraint	violation	that	cannot	be	handled	by	a	further	cascading	operation,	the	system	aborts	the
transaction.	As	a	result,	all	the	changes	caused	by	the	transaction	and	its	cascading	actions	are	undone.

Null	values	complicate	the	semantics	of	referential-integrity	constraints	in	SQL.

Attributes	of	foreign	keys	are	allowed	to	be	null,	provided	that	they	have	not	otherwise	been	declared	to
be	not	null.	If	all	the	columns	of	a	foreign	key	are	nonnull	in	a	given	tuple,	the	usual	definition	of	foreign-
key	constraints	is	used	for	that	tuple.	If	any	of	the	foreign-key	columns	is	null,	the	tuple	is	defined
automatically	to	satisfy	the	constraint.

This	definition	may	not	always	be	the	right	choice,	so	SQL	also	provides	constructs	that	allow	you	to
change	the	behavior	with	null	values;	we	do	not	discuss	the	constructs	here.

4.4

Integrity	Constraints

151

4.4.6

Assigning	Names	to	Constraints

It	is	possible	for	us	to	assign	a	name	to	integrity	constraints.	Such	names	are	useful	if	we	want	to	drop	a
constraint	that	was	defined	previously.

To	name	a	constraint,	we	precede	the	constraint	with	the	keyword	constraint	and	the	name	we	wish	to
assign	it.	So,	for	example,	if	we	wish	to	assign	the	name	minsalary	to	the	check	constraint	on	the	salary
attribute	of	instructor	(see	Figure	4.9),	we	would	modify	the	declaration	for	salary	to:

salary	numeric(8,2),	constraint	minsalary	check	(salary	>	29000),	Later,	if	we	decide	we	no	longer	want
this	constraint,	we	can	write:

alter	table	instructor	drop	constraint	minsalary;

Lacking	a	name,	we	would	need	first	to	use	system-specific	features	to	identify	the	system-assigned	name
for	the	constraint.	Not	all	systems	support	this,	but,	for	example,	in	Oracle,	the	system	table	user
constraints	contains	this	information.

4.4.7

Integrity	Constraint	Violation	During	a	Transaction

Transactions	may	consist	of	several	steps,	and	integrity	constraints	may	be	violated	temporarily	after	one
step,	but	a	later	step	may	remove	the	violation.	For	instance,	suppose	we	have	a	relation	person	with
primary	key	name,	and	an	attribute	spouse,	and	suppose	that	spouse	is	a	foreign	key	on	person.	That	is,
the	constraint	says	that	the	spouse	attribute	must	contain	a	name	that	is	present	in	the	person	table.
Suppose	we	wish	to	note	the	fact	that	John	and	Mary	are	married	to	each	other	by	inserting	two	tuples,
one	for	John	and	one	for	Mary,	in	the	preceding	relation,	with	the	spouse	attributes	set	to	Mary	and	John,
respectively.	The	insertion	of	the	first	tuple	would	violate	the	foreign-key	constraint,	regardless	of	which
of	the	two	tuples	is	inserted	first.	After	the	second	tuple	is	inserted,	the	foreign-key	constraint	would	hold
again.

To	handle	such	situations,	the	SQL	standard	allows	a	clause	initially	deferred	to	be	added	to	a	constraint
specification;	the	constraint	would	then	be	checked	at	the	end	of	a	transaction	and	not	at	intermediate
steps.	A	constraint	can	alternatively	be	specified	as	deferrable,	which	means	it	is	checked	immediately	by
default	but	can	be	deferred	when	desired.	For	constraints	declared	as	deferrable,	executing	a	statement
set	constraints	constraint-list	deferred	as	part	of	a	transaction	causes	the	checking	of	the	specified
constraints	to	be	deferred	to	the	end	of	that	transaction.	Constraints	that	are	to	appear	in	a	constraint	list
must	have	names	assigned.	The	default	behavior	is	to	check	constraints	immediately,	and	many	database

implementations	do	not	support	deferred	constraint	checking.

We	can	work	around	the	problem	in	the	preceding	example	in	another	way,	if	the	spouse	attribute	can	be
set	to	null:	We	set	the	spouse	attributes	to	null	when	inserting	the

152

Chapter	4

Intermediate	SQL

tuples	for	John	and	Mary,	and	we	update	them	later.	However,	this	technique	requires	more	programming
effort,	and	it	does	not	work	if	the	attributes	cannot	be	set	to	null.

4.4.8

Complex	Check	Conditions	and	Assertions

There	are	additional	constructs	in	the	SQL	standard	for	specifying	integrity	constraints	that	are	not
currently	supported	by	most	systems.	We	discuss	some	of	these	in	this	section.

As	defined	by	the	SQL	standard,	the	predicate	in	the	check	clause	can	be	an	arbitrary	predicate	that	can
include	a	subquery.	If	a	database	implementation	supports	subqueries	in	the	check	clause,	we	could
specify	the	following	referential-integrity	constraint	on	the	relation	section:

check	(time	slot	id	in	(select	time	slot	id	from	time	slot))	The	check	condition	verifies	that	the	time	slot	id
in	each	tuple	in	the	section	relation	is	actually	the	identifier	of	a	time	slot	in	the	time	slot	relation.	Thus,
the	condition	has	to	be	checked	not	only	when	a	tuple	is	inserted	or	modified	in	section,	but	also	when	the
relation	time	slot	changes	(in	this	case,	when	a	tuple	is	deleted	or	modified	in	relation	time	slot).

Another	natural	constraint	on	our	university	schema	would	be	to	require	that	every	section	has	at	least
one	instructor	teaching	the	section.	In	an	attempt	to	enforce	this,	we	may	try	to	declare	that	the
attributes	(course	id,	sec	id,	semester,	year)	of	the	section	relation	form	a	foreign	key	referencing	the
corresponding	attributes	of	the	teaches	relation.	Unfortunately,	these	attributes	do	not	form	a	candidate
key	of	the	relation	teaches.

A	check	constraint	similar	to	that	for	the	time	slot	attribute	can	be	used	to	enforce	this	constraint,	if
check	constraints	with	subqueries	were	supported	by	a	database	system.

Complex	check	conditions	can	be	useful	when	we	want	to	ensure	the	integrity	of	data,	but	they	may	be
costly	to	test.	In	our	example,	the	predicate	in	the	check	clause	would	not	only	have	to	be	evaluated	when
a	modification	is	made	to	the	section	relation,	but	it	may	have	to	be	checked	if	a	modification	is	made	to
the	time	slot	relation	because	that	relation	is	referenced	in	the	subquery.

An	assertion	is	a	predicate	expressing	a	condition	that	we	wish	the	database	always	to	satisfy.	Consider
the	following	constraints,	which	can	be	expressed	using	assertions.

•	For	each	tuple	in	the	student	relation,	the	value	of	the	attribute	tot	cred	must	equal	the	sum	of	credits	of
courses	that	the	student	has	completed	successfully.

•	An	instructor	cannot	teach	in	two	different	classrooms	in	a	semester	in	the	same	time	slot.9

9We	assume	that	lectures	are	not	displayed	remotely	in	a	second	classroom!	An	alternative	constraint	that
specifies	that	“an	instructor	cannot	teach	two	courses	in	a	given	semester	in	the	same	time	slot”	may	not
hold	since	courses	are	sometimes	cross-listed;	that	is,	the	same	course	is	given	two	identifiers	and	titles.

4.5

SQL	Data	Types	and	Schemas

153

create	assertion	credits	earned	constraint	check

(not	exists	(select	ID

from	student

where	tot	cred	<>	(select	coalesce(sum(credits),	0)

from	takes	natural	join	course

where	student.	ID=	takes.	ID

and	grade	is	not	null	and	grade<>	’F’)))

Figure	4.10	An	assertion	example.

An	assertion	in	SQL	takes	the	form:

create	assertion	<	assertion-name	>	check	<	predicate	>;	In	Figure	4.10,	we	show	how	the	first	example
of	constraints	can	be	written	in	SQL.

Since	SQL	does	not	provide	a	“for	all	X	,	P(X)”	construct	(where	P	is	a	predicate),	we	are	forced	to
implement	the	constraint	by	an	equivalent	construct,	“not	exists	X	such	that	not	P(X)”,	that	can	be
expressed	in	SQL.

We	leave	the	specification	of	the	second	constraint	as	an	exercise.	Although	these	two	constraints	can	be
expressed	using	check	predicates,	using	an	assertion	may	be	more	natural,	especially	for	the	second
constraint.

When	an	assertion	is	created,	the	system	tests	it	for	validity.	If	the	assertion	is	valid,	then	any	future
modification	to	the	database	is	allowed	only	if	it	does	not	cause	that	assertion	to	be	violated.	This	testing
may	introduce	a	significant	amount	of	overhead	if	complex	assertions	have	been	made.	Hence,	assertions
should	be	used	with	great	care.	The	high	overhead	of	testing	and	maintaining	assertions	has	led	some
system	developers	to	omit	support	for	general	assertions,	or	to	provide	specialized	forms	of	assertion	that
are	easier	to	test.

Currently,	none	of	the	widely	used	database	systems	supports	either	subqueries	in	the	check	clause
predicate	or	the	create	assertion	construct.	However,	equivalent	functionality	can	be	implemented	using
triggers,	which	are	described	in	Section	5.3,	if	they	are	supported	by	the	database	system.	Section	5.3
also	describes	how	the	referential	integrity	constraint	on	time	slot	id	can	be	implemented	using	triggers.

4.5

SQL	Data	Types	and	Schemas

In	Chapter	3,	we	covered	a	number	of	built-in	data	types	supported	in	SQL,	such	as	integer	types,	real
types,	and	character	types.	There	are	additional	built-in	data	types	supported	by	SQL,	which	we	describe
below.	We	also	describe	how	to	create	basic	user-defined	types	in	SQL.

154

Chapter	4

Intermediate	SQL

4.5.1

Date	and	Time	Types	in	SQL

In	addition	to	the	basic	data	types	we	introduced	in	Section	3.2,	the	SQL	standard	supports	several	data
types	relating	to	dates	and	times:

•	date:	A	calendar	date	containing	a	(four-digit)	year,	month,	and	day	of	the	month.

•	time:	The	time	of	day,	in	hours,	minutes,	and	seconds.	A	variant,	time(p),	can	be	used	to	specify	the
number	of	fractional	digits	for	seconds	(the	default	being	0).

It	is	also	possible	to	store	time-zone	information	along	with	the	time	by	specifying	time	with	timezone.

•	timestamp:	A	combination	of	date	and	time.	A	variant,	timestamp(p),	can	be	used	to	specify	the	number
of	fractional	digits	for	seconds	(the	default	here	being	6).

Time-zone	information	is	also	stored	if	with	timezone	is	specified.

Date	and	time	values	can	be	specified	like	this:

date	'2018-04-25'

time	'09:30:00'

timestamp	'2018-04-25	10:29:01.45'

Dates	must	be	specified	in	the	format	year	followed	by	month	followed	by	day,	as	shown.10	The	seconds
field	of	time	or	timestamp	can	have	a	fractional	part,	as	in	the	timestamp	above.

To	extract	individual	fields	of	a	date	or	time	value	d,	we	can	use	extract	(field	from	d),	where	field	can	be
one	of	year,	month,	day,	hour,	minute,	or	second.	Time-zone	information	can	be	extracted	using	timezone
hour	and	timezone	minute.

SQL	defines	several	functions	to	get	the	current	date	and	time.	For	example,	current	date	returns	the
current	date,	current	time	returns	the	current	time	(with	time	zone),	and	localtime	returns	the	current
local	time	(without	time	zone).	Timestamps	(date	plus	time)	are	returned	by	current	timestamp	(with	time
zone)	and	localtimestamp	(local	date	and	time	without	time	zone).

Some	systems,	including	MySQL	offer	the	datetime	data	type	that	represents	a	time	that	is	not	adjustable
for	time	zone.	In	practice,	specification	of	time	has	numerous	special	cases,	including	the	use	of	standard
time	versus	“daylight”	or	“summer”	time.

Systems	vary	in	the	range	of	times	representable.

SQL	allows	comparison	operations	on	all	the	types	listed	here,	and	it	allows	both	arithmetic	and
comparison	operations	on	the	various	numeric	types.	SQL	also	provides	a	data	type	called	interval,	and	it
allows	computations	based	on	dates	and	times	and	on	intervals.	For	example,	if	x	and	y	are	of	type	date,
then	x	−	y	is	an	interval	whose	value	is	the	number	of	days	from	date	x	to	date	y.	Similarly,	adding	or
subtracting	an	interval	from	a	date	or	time	gives	back	a	date	or	time,	respectively.

10Many	database	systems	offer	greater	flexibility	in	default	conversions	of	strings	to	dates	and
timestamps.

4.5

SQL	Data	Types	and	Schemas

155

4.5.2

Type	Conversion	and	Formatting	Functions

Although	systems	perform	some	data	type	conversions	automatically,	others	need	to	be	requested
explicitly.	We	can	use	an	expression	of	the	form	cast	(e	as	t)	to	convert	an	expression	e	to	the	type	t.	Data-
type	conversions	may	be	needed	to	perform	certain	operations	or	to	enforce	certain	sort	orders.	For
example,	consider	the	ID	attribute	of	instructor,	which	we	have	specified	as	being	a	string	(varchar(5)).	If
we	were	to	order	output	by	this	attribute,	the	ID	11111	comes	before	the	ID	9,	because	the	first	character,

'1',	comes	before	'9'.	However,	if	we	were	to	write:

select	cast(ID	as	numeric(5))	as	inst	id

from	instructor

order	by	inst	id

the	result	would	be	the	sorted	order	we	desire.

A	different	type	of	conversion	may	be	required	for	data	to	be	displayed	as	the	result	of	a	query.	For
example,	we	may	wish	numbers	to	be	shown	with	a	specific	number	of	digits,	or	data	to	be	displayed	in	a
particular	format	(such	as	month-day-year	or	day-month-year).	These	changes	in	display	format	are	not
conversion	of	data	type	but	rather	conversion	of	format.	Database	systems	offer	a	variety	of	formatting
functions,	and	details	vary	among	the	leading	systems.	MySQL	offers	a	format	function.	Oracle	and
PostgreSQL	offer	a	set	of	functions,	to	char,	to	number,	and	to	date.	SQL	Server	offers	a	convert	function.

Another	issue	in	displaying	results	is	the	handling	of	null	values.	In	this	text,	we	use	null	for	clarity	of
reading,	but	the	default	in	most	systems	is	just	to	leave	the	field	blank.

We	can	choose	how	null	values	are	output	in	a	query	result	using	the	coalesce	function.

It	takes	an	arbitrary	number	of	arguments,	all	of	which	must	be	of	the	same	type,	and	returns	the	first
non-null	argument.	For	example,	if	we	wished	to	display	instructor	IDs	and	salaries	but	to	show	null
salaries	as	0,	we	would	write:

select	ID,	coalesce(salary,	0)	as	salary

from	instructor

A	limitation	of	coalesce	is	the	requirement	that	all	the	arguments	must	be	of	the	same	type.	If	we	had
wanted	null	salaries	to	appear	as	'N/A'	to	indicate	“not	available”,	we	would	not	be	able	to	use	coalesce.
System-specific	functions,	such	as	Oracle’s	decode,	do	allow	such	conversions.	The	general	form	of
decode	is:

decode	(value,	match-1,	replacement-1,	match-2,	replacement-2,	…	,	match-N,	replacement-N,	default-
replacement);

It	compares	value	against	the	match	values	and	if	a	match	is	found,	it	replaces	the	attribute	value	with	the
corresponding	replacement	value.	If	no	match	succeeds,	then	the	attribute	value	is	replaced	with	the
default	replacement	value.	There	are	no	require-

156

Chapter	4

Intermediate	SQL

ments	that	datatypes	match.	Conveniently,	the	value	null	may	appear	as	a	match	value	and,	unlike	the
usual	case,	null	is	treated	as	being	equal	to	null.	Thus,	we	could	replace	null	salaries	with	'N/A'	as	follows:

select	ID,	decode	(salary,	null,	'N/A',	salary)	as	salary	from	instructor

4.5.3

Default	Values

SQL	allows	a	default	value	to	be	specified	for	an	attribute	as	illustrated	by	the	following	create	table
statement:

create	table	student

(ID

varchar	(5),

name

varchar	(20)	not	null,

dept	name

varchar	(20),

tot	cred

numeric	(3,0)	default	0,

primary	key	(ID));

The	default	value	of	the	tot	cred	attribute	is	declared	to	be	0.	As	a	result,	when	a	tuple	is	inserted	into	the
student	relation,	if	no	value	is	provided	for	the	tot	cred	attribute,	its	value	is	set	to	0.	The	following	insert
statement	illustrates	how	an	insertion	can	omit	the	value	for	the	tot	cred	attribute.

insert	into	student(ID,	name,	dept	name)	values	('12789',	'Newman',	'Comp.	Sci.');

4.5.4

Large-Object	Types

Many	database	applications	need	to	store	attributes	whose	domain	consists	of	large	data	items	such	as	a
photo,	a	high-resolution	medical	image,	or	a	video.	SQL,	therefore,	provides	large-object	data	types	for
character	data	(clob)	and	binary	data	(blob).	The	letters	“lob”	in	these	data	types	stand	for	“Large
OBject.”	For	example,	we	may	declare	attributes

book	review	clob(10KB)

image	blob(10MB)

movie	blob(2GB)

For	result	tuples	containing	large	objects	(multiple	megabytes	to	gigabytes),	it	is	inefficient	or	impractical
to	retrieve	an	entire	large	object	into	memory.	Instead,	an	application	would	usually	use	an	SQL	query	to
retrieve	a	“locator”	for	a	large	object	and	then	use	the	locator	to	manipulate	the	object	from	the	host
language	in	which	the	application	itself	is	written.	For	instance,	the	JDBC	application	program	interface
(described	in	Section	5.1.1)	permits	a	locator	to	be	fetched	instead	of	the	entire	large

4.5

SQL	Data	Types	and	Schemas

157

Note	4.2	TEMPORAL	VALIDITY

In	some	situations,	there	is	a	need	to	include	historical	data,	as,	for	example,	if	we	wish	to	store	not	only
the	current	salary	of	each	instructor	but	also	entire	salary	histories.	It	is	easy	enough	to	do	this	by	adding
two	attributes	to	the	instructor	relation	schema	indicating	the	starting	date	for	a	given	salary	value	and
another	indicating	the	end	date.	Then,	an	instructor	may	have	several	salary	values,	each	corresponding
to	a	specific	pair	of	start	and	end	dates.	Those	start	and	end	dates	are	called	the	valid	time	values	for	the
corresponding	salary	value.

Observe	that	there	may	now	be	more	than	one	tuple	in	the	instructor	relation	with	the	same	value	of	ID.
Issues	in	specifying	primary	key	and	foreign	key	constraints	in	the	context	of	such	temporal	data	are
discussed	in	Section	7.10.

For	a	database	system	to	support	such	temporal	constructs,	a	first	step	is	to	provide	syntax	to	specify	that
certain	attributes	define	a	valid	time	interval.	We	use	Oracle	12’s	syntax	as	an	example.	The	SQL	DDL	for
instructor	is	augmented	using	a	period	declaration	as	follows,	to	indicate	that	start	date	and	end	date
attributes	specify	a	valid-time	interval.

create	table	instructor

(…

start	date

date,

end	date

date,

period	for	valid	time	(start	date,	end	date),

…);

Oracle	12c	also	provides	several	DML	extensions	to	ease	querying	with	temporal	data.	The	as	of	period
for	construct	can	then	be	used	in	query	to	fetch	only	those	tuples	whose	valid	time	period	includes	a
specific	time.	To	find	instructors	and	their	salaries	as	of	some	time	in	the	past,	say	January	20,	2014,	we
write:	select	name,	salary,	start	date,	end	date

from	instructor	as	of	period	for	valid	time	'20-JAN-2014';	If	we	wish	to	find	tuples	whose	period	of	validity
includes	all	or	part	of	a	period	of	time,	say,	January	20,	2014	to	January	30,	2014,	we	write:

select	name,	salary,	start	date,	end	date

from	instructor	versions	period	for	valid	time	between	'20-JAN-2014'	and	'30-JAN-2014';	Oracle	12c	also
implements	a	feature	that	allows	stored	database	procedures	(covered	in	Chapter	5)	to	be	run	as	of	a
specified	time	period.

The	above	constructs	ease	the	specification	of	the	queries,	although	the	queries	can	be	written	without
using	the	constructs.

158

Chapter	4

Intermediate	SQL

object;	the	locator	can	then	be	used	to	fetch	the	large	object	in	small	pieces,	rather	than	all	at	once,	much
like	reading	data	from	an	operating	system	file	using	a	read	function	call.

4.5.5

User-Defined	Types

SQL	supports	two	forms	of	user-defined	data	types.	The	first	form,	which	we	cover	here,	is	called	distinct
types.	The	other	form,	called	structured	data	types,	allows	the	creation	of	complex	data	types	with	nested
record	structures,	arrays,	and	multisets.	We	do	not	cover	structured	data	types	in	this	chapter,	but	we
describe	them	in	Section	8.2.

It	is	possible	for	several	attributes	to	have	the	same	data	type.	For	example,	the	name	attributes	for
student	name	and	instructor	name	might	have	the	same	domain:	the	set	of	all	person	names.	However,	the
domains	of	budget	and	dept	name	certainly	ought	to	be	distinct.	It	is	perhaps	less	clear	whether	name	and
dept	name	should	have	the	same	domain.	At	the	implementation	level,	both	instructor	names	and
department	names	are	character	strings.	However,	we	would	normally	not	consider	the	query	“Find	all
instructors	who	have	the	same	name	as	a	department”	to	be	a	meaningful	query.

Thus,	if	we	view	the	database	at	the	conceptual,	rather	than	the	physical,	level,	name	and	dept	name
should	have	distinct	domains.

More	importantly,	at	a	practical	level,	assigning	an	instructor’s	name	to	a	department	name	is	probably	a
programming	error;	similarly,	comparing	a	monetary	value	expressed	in	dollars	directly	with	a	monetary

value	expressed	in	pounds	is	also	almost	surely	a	programming	error.	A	good	type	system	should	be	able
to	detect	such	assignments	or	comparisons.	To	support	such	checks,	SQL	provides	the	notion	of	distinct
types.

The	create	type	clause	can	be	used	to	define	new	types.	For	example,	the	statements:	create	type	Dollars
as	numeric(12,2)	final;

create	type	Pounds	as	numeric(12,2)	final;

define	the	user-defined	types	Dollars	and	Pounds	to	be	decimal	numbers	with	a	total	of	12	digits,	two	of
which	are	placed	after	the	decimal	point.11	The	newly	created	types	can	then	be	used,	for	example,	as
types	of	attributes	of	relations.	For	example,	we	can	declare	the	department	table	as:

create	table	department

(dept	name

varchar	(20),

building

varchar	(15),

budget

Dollars);

An	attempt	to	assign	a	value	of	type	Dollars	to	a	variable	of	type	Pounds	results	in	a	compile-time	error,
although	both	are	of	the	same	numeric	type.	Such	an	assignment	is	likely	to	be	due	to	a	programmer
error,	where	the	programmer	forgot	about	the	11	The	keyword	final	isn’t	really	meaningful	in	this	context
but	is	required	by	the	SQL:1999	standard	for	reasons	we	won’t	get	into	here;	some	implementations	allow
the	final	keyword	to	be	omitted.

4.5

SQL	Data	Types	and	Schemas

159

differences	in	currency.	Declaring	different	types	for	different	currencies	helps	catch	such	errors.

As	a	result	of	strong	type	checking,	the	expression	(department.budget+20)	would	not	be	accepted	since
the	attribute	and	the	integer	constant	20	have	different	types.

As	we	saw	in	Section	4.5.2,	values	of	one	type	can	be	converted	to	another	domain,	as	illustrated	below:

cast	(department.budget	to	numeric(12,2))

We	could	do	addition	on	the	numeric	type,	but	to	save	the	result	back	to	an	attribute	of	type	Dollars	we
would	have	to	use	another	cast	expression	to	convert	the	type	back	to	Dollars.

SQL	provides	drop	type	and	alter	type	clauses	to	drop	or	modify	types	that	have	been	created	earlier.

Even	before	user-defined	types	were	added	to	SQL	(in	SQL:1999),	SQL	had	a	similar	but	subtly	different
notion	of	domain	(introduced	in	SQL-92),	which	can	add	integrity	constraints	to	an	underlying	type.	For
example,	we	could	define	a	domain	DDollars	as	follows.

create	domain	DDollars	as	numeric(12,2)	not	null;

The	domain	DDollars	can	be	used	as	an	attribute	type,	just	as	we	used	the	type	Dollars.

However,	there	are	two	significant	differences	between	types	and	domains:	1.	Domains	can	have
constraints,	such	as	not	null,	specified	on	them,	and	can	have	default	values	defined	for	variables	of	the
domain	type,	whereas	user-defined	types	cannot	have	constraints	or	default	values	specified	on	them.
User-defined	types	are	designed	to	be	used	not	just	for	specifying	attribute	types,	but	also	in	procedural
extensions	to	SQL	where	it	may	not	be	possible	to	enforce	constraints.

2.	Domains	are	not	strongly	typed.	As	a	result,	values	of	one	domain	type	can	be	assigned	to	values	of
another	domain	type	as	long	as	the	underlying	types	are	compatible.

When	applied	to	a	domain,	the	check	clause	permits	the	schema	designer	to	specify	a	predicate	that	must
be	satisfied	by	any	attribute	declared	to	be	from	this	domain.	For	instance,	a	check	clause	can	ensure	that
an	instructor’s	salary	domain	allows	only	values	greater	than	a	specified	value:

create	domain	YearlySalary	numeric(8,2)

constraint	salary	value	test	check(value	>=	29000.00);	The	domain	YearlySalary	has	a	constraint	that
ensures	that	the	YearlySalary	is	greater	than	or	equal	to	$29,000.00.	The	clause	constraint	salary	value
test	is	optional	and	is

160

Chapter	4

Intermediate	SQL

Note	4.3	SUPPORT	FOR	TYPES	AND	DOMAINS

Although	the	create	type	and	create	domain	constructs	described	in	this	section	are	part	of	the	SQL
standard,	the	forms	of	these	constructs	described	here	are	not	fully	supported	by	most	database
implementations.	PostgreSQL	supports	the	create	domain	construct,	but	its	create	type	construct	has	a
different	syntax	and	interpretation.

IBM	DB2	supports	a	version	of	the	create	type	that	uses	the	syntax	create	distinct	type,	but	it	does	not
support	create	domain.	Microsoft	SQL	Server	implements	a	version	of	create	type	construct	that	supports
domain	constraints,	similar	to	the	SQL	create	domain	construct.

Oracle	does	not	support	either	construct	as	described	here.	Oracle,	IBM	DB2,	PostgreSQL,	and	SQL
Server	all	support	object-oriented	type	systems	using	different	forms	of	the	create	type	construct.

However,	SQL	also	defines	a	more	complex	object-oriented	type	system,	which	we	study	in	Section	8.2.
Types	may	have	structure	within	them,	like,	for	example,	a	Name	type	consisting	of	firstname	and
lastname.	Subtyping	is	allowed	as	well;	for	example,	a	Person	type	may	have	subtypes	Student,	Instructor,
etc.	Inheritance	rules	are	similar	to	those	in	object-oriented	programming	languages.	It	is	possible	to	use
references	to	tuples	that	behave	much	like	references	to	objects	in	object-oriented	programming
languages.	SQL	allows	array	and	multiset	datatypes	along	with	ways	to	manipulate	those	types.

We	do	not	cover	the	details	of	these	features	here.	Database	systems	differ	in	how	they	implement	them,	if
they	are	implemented	at	all.

used	to	give	the	name	salary	value	test	to	the	constraint.	The	name	is	used	by	the	system	to	indicate	the
constraint	that	an	update	violated.

As	another	example,	a	domain	can	be	restricted	to	contain	only	a	specified	set	of	values	by	using	the	in
clause:

create	domain	degree	level	varchar(10)

constraint	degree	level	test

check	(value	in	('Bachelors',	'Masters',	'Doctorate'));

4.5.6

Generating	Unique	Key	Values

In	our	university	example,	we	have	seen	primary-key	attributes	with	different	data	types.

Some,	like	dept	name,	hold	actual	real-world	information.	Others,	like	ID,	hold	values	created	by	the
enterprise	solely	for	identification	purposes.	Those	latter	types	of	primary-key	domains	generate	the
practical	problem	of	new-value	creation.	Suppose

4.5

SQL	Data	Types	and	Schemas

161

the	university	hires	a	new	instructor.	What	ID	should	be	assigned?	How	do	we	determine	that	the	new	ID
is	unique?	Although	it	is	possible	to	write	an	SQL	statement	to	do	this,	such	a	statement	would	need	to
check	all	preexisting	IDs,	which	would	harm	system	performance.	Alternatively,	one	could	set	up	a	special
table	holding	the	largest	ID	value	issued	so	far.	Then,	when	a	new	ID	is	needed,	that	value	can	be
incremented	to	the	next	one	in	sequence	and	stored	as	the	new	largest	value.

Database	systems	offer	automatic	management	of	unique	key-value	generation.	The	syntax	differs	among
the	most	popular	systems	and,	sometimes,	between	versions	of	systems.	The	syntax	we	show	here	is	close
to	that	of	Oracle	and	DB2.	Suppose	that	instead	of	declaring	instructor	IDs	in	the	instructor	relation	as
“ID	varchar(5)”,	we	instead	choose	to	let	the	system	select	a	unique	instructor	ID	value.	Since	this	feature
works	only	for	numeric	key-	value	data	types,	we	change	the	type	of	ID	to	number,	and	write:

ID	number(5)	generated	always	as	identity

When	the	always	option	is	used,	any	insert	statement	must	avoid	specifying	a	value	for	the	automatically
generated	key.	To	do	this,	use	the	syntax	for	insert	in	which	the	attribute	order	is	specified	(see	Section
3.9.2).	For	our	example	of	instructor,	we	need	specify	only	the	values	for	name,	dept	name,	and	salary,	as
shown	in	the	following	example:

insert	into	instructor	(name,	dept	name,	salary)	values	('Newprof',	'Comp.	Sci.',	100000);

The	generated	ID	value	can	be	found	via	a	normal	select	query.	If	we	replace	always	with	by	default,	we
have	the	option	of	specifying	our	own	choice	of	ID	or	relying	on	the	system	to	generate	one.

In	PostgreSQL,	we	can	define	the	type	of	ID	as	serial,	which	tells	PostgreSQL	to	automatically	generate
identifiers;	in	MySQL	we	use	auto	increment	in	place	of	generated	always	as	identity,	while	in	SQL	Server
we	can	use	just	identity.

Additional	options	can	be	specified,	with	the	identity	specification,	depending	on	the	database,	including
setting	minimum	and	maximum	values,	choosing	the	starting	value,	choosing	the	increment	from	one
value	to	the	next,	and	so	on.

Further,	many	databases	support	a	create	sequence	construct,	which	creates	a	sequence	counter	object
separate	from	any	relation,	and	allow	SQL	queries	to	get	the	next	value	from	the	sequence.	Each	call	to
get	the	next	value	increments	the	sequence	counter.	See	the	system	manuals	of	the	database	to	find	the
exact	syntax	for	creating	sequences,	and	for	retrieving	the	next	value.	Using	sequences,	we	can	generate
identifiers	that	are	unique	across	multiple	relations,	for	example,	across	student.	ID,	and	instructor.	ID.

162

Chapter	4

Intermediate	SQL

4.5.7

Create	Table	Extensions

Applications	often	require	the	creation	of	tables	that	have	the	same	schema	as	an	existing	table.	SQL
provides	a	create	table	like	extension	to	support	this	task:12

create	table	temp	instructor	like	instructor;

The	above	statement	creates	a	new	table	temp	instructor	that	has	the	same	schema	as	instructor.

When	writing	a	complex	query,	it	is	often	useful	to	store	the	result	of	a	query	as	a	new	table;	the	table	is
usually	temporary.	Two	statements	are	required,	one	to	create	the	table	(with	appropriate	columns)	and
the	second	to	insert	the	query	result	into	the	table.	SQL:2003	provides	a	simpler	technique	to	create	a
table	containing	the	results	of	a	query.	For	example,	the	following	statement	creates	a	table	t1	containing
the	results	of	a	query.

create	table	t1	as

(select	*

from	instructor

where	dept	name	=	'Music')

with	data;

By	default,	the	names	and	data	types	of	the	columns	are	inferred	from	the	query	result.

Names	can	be	explicitly	given	to	the	columns	by	listing	the	column	names	after	the	relation	name.

As	defined	by	the	SQL:2003	standard,	if	the	with	data	clause	is	omitted,	the	table	is	created	but	not
populated	with	data.	However,	many	implementations	populate	the	table	with	data	by	default	even	if	the
with	data	clause	is	omitted.	Note	that	several	implementations	support	the	functionality	of	create	table	…
like	and	create	table	…	as	using	different	syntax;	see	the	respective	system	manuals	for	further	details.

The	above	create	table	…	as	statement,	closely	resembles	the	create	view	statement	and	both	are	defined
by	using	queries.	The	main	difference	is	that	the	contents	of	the	table	are	set	when	the	table	is	created,
whereas	the	contents	of	a	view	always	reflect	the	current	query	result.

4.5.8

Schemas,	Catalogs,	and	Environments

To	understand	the	motivation	for	schemas	and	catalogs,	consider	how	files	are	named	in	a	file	system.
Early	file	systems	were	flat;	that	is,	all	files	were	stored	in	a	single	directory.	Current	file	systems	have	a
directory	(or,	synonymously,	folder)	structure,	with	files	stored	within	subdirectories.	To	name	a	file
uniquely,	we	must	specify	the	full	path	name	of	the	file,	for	example,	/users/avi/db-book/chapter3.tex.

12This	syntax	is	not	supported	in	all	systems.

4.5

SQL	Data	Types	and	Schemas

163

Like	early	file	systems,	early	database	systems	also	had	a	single	name	space	for	all	relations.	Users	had	to
coordinate	to	make	sure	they	did	not	try	to	use	the	same	name	for	different	relations.	Contemporary
database	systems	provide	a	three-level	hierarchy	for	naming	relations.	The	top	level	of	the	hierarchy
consists	of	catalogs,	each	of	which	can	contain	schemas.	SQL	objects	such	as	relations	and	views	are
contained	within	a	schema.	(Some	database	implementations	use	the	term	d	atabase	in	place	of	the	term	c
atalog.)

In	order	to	perform	any	actions	on	a	database,	a	user	(or	a	program)	must	first	connect	to	the	database.
The	user	must	provide	the	user	name	and	usually,	a	password	for	verifying	the	identity	of	the	user.	Each
user	has	a	default	catalog	and	schema,	and	the	combination	is	unique	to	the	user.	When	a	user	connects
to	a	database	system,	the	default	catalog	and	schema	are	set	up	for	the	connection;	this	corresponds	to
the	current	directory	being	set	to	the	user’s	home	directory	when	the	user	logs	into	an	operating	system.

To	identify	a	relation	uniquely,	a	three-part	name	may	be	used,	for	example,	catalog5.univ	schema.course

We	may	omit	the	catalog	component,	in	which	case	the	catalog	part	of	the	name	is	considered	to	be	the
default	catalog	for	the	connection.	Thus,	if	catalog5	is	the	default	catalog,	we	can	use	univ	schema.course
to	identify	the	same	relation	uniquely.

If	a	user	wishes	to	access	a	relation	that	exists	in	a	different	schema	than	the	default	schema	for	that	user,
the	name	of	the	schema	must	be	specified.	However,	if	a	relation	is	in	the	default	schema	for	a	particular
user,	then	even	the	schema	name	may	be	omitted.

Thus,	we	can	use	just	course	if	the	default	catalog	is	catalog5	and	the	default	schema	is	univ	schema.

With	multiple	catalogs	and	schemas	available,	different	applications	and	different	users	can	work
independently	without	worrying	about	name	clashes.	Moreover,	multiple	versions	of	an	application	—	one
a	production	version,	other	test	versions	—	can	run	on	the	same	database	system.

The	default	catalog	and	schema	are	part	of	an	SQL	environment	that	is	set	up	for	each	connection.	The
environment	additionally	contains	the	user	identifier	(also	referred	to	as	the	authorization	identifier).	All
the	usual	SQL	statements,	including	the	DDL	and	DML	statements,	operate	in	the	context	of	a	schema.

We	can	create	and	drop	schemas	by	means	of	create	schema	and	drop	schema	statements.	In	most
database	systems,	schemas	are	also	created	automatically	when	user	accounts	are	created,	with	the
schema	name	set	to	the	user	account	name.	The	schema	is	created	in	either	a	default	catalog	or	a	catalog
specified	when	creating	the	user	account.

The	newly	created	schema	becomes	the	default	schema	for	the	user	account.

Creation	and	dropping	of	catalogs	is	implementation	dependent	and	not	part	of	the	SQL	standard.

164

Chapter	4

Intermediate	SQL

4.6

Index	Definition	in	SQL

Many	queries	reference	only	a	small	proportion	of	the	records	in	a	file.	For	example,	a	query	like	“Find	all
instructors	in	the	Physics	department”	or	“Find	the	salary	value	of	the	instructor	with	ID	22201”
references	only	a	fraction	of	the	instructor	records.	It	is	inefficient	for	the	system	to	read	every	record
and	to	check	ID	field	for	the	ID	“32556,”

or	the	building	field	for	the	value	“Physics”.

An	index	on	an	attribute	of	a	relation	is	a	data	structure	that	allows	the	database	system	to	find	those
tuples	in	the	relation	that	have	a	specified	value	for	that	attribute	efficiently,	without	scanning	through	all
the	tuples	of	the	relation.	For	example,	if	we	create	an	index	on	attribute	dept	name	of	relation	instructor,
the	database	system	can	find	the	record	with	any	specified	dept	name	value,	such	as	“Physics”,	or
“Music”,	directly,	without	reading	all	the	tuples	of	the	instructor	relation.	An	index	can	also	be	created	on
a	list	of	attributes,	for	example,	on	attributes	name	and	dept	name	of	instructor.

Indices	are	not	required	for	correctness,	since	they	are	redundant	data	structures.

Indices	form	part	of	the	physical	schema	of	the	database,	as	opposed	to	its	logical	schema.

However,	indices	are	important	for	efficient	processing	of	transactions,	including	both	update
transactions	and	queries.	Indices	are	also	important	for	efficient	enforcement	of	integrity	constraints	such
as	primary-key	and	foreign-key	constraints.	In	principle,	a	database	system	can	decide	automatically	what
indices	to	create.	However,	because	of	the	space	cost	of	indices,	as	well	as	the	effect	of	indices	on	update
processing,	it	is	not	easy	to	automatically	make	the	right	choices	about	what	indices	to	maintain.

Therefore,	most	SQL	implementations	provide	the	programmer	with	control	over	the	creation	and
removal	of	indices	via	data-definition-language	commands.	We	illustrate	the	syntax	of	these	commands
next.	Although	the	syntax	that	we	show	is	widely	used	and	supported	by	many	database	systems,	it	is	not
part	of	the	SQL	standard.	The	SQL	standard	does	not	support	control	of	the	physical	database	schema;	it
restricts	itself	to	the	logical	database	schema.

We	create	an	index	with	the	create	index	command,	which	takes	the	form:	create	index	<	index-name	>
on	<	relation-name	>	(<	attribute-list	>);	The	attribute-list	is	the	list	of	attributes	of	the	relations	that
form	the	search	key	for	the	index.

To	define	an	index	named	dept	index	on	the	instructor	relation	with	dept	name	as	the	search	key,	we
write:

create	index	dept	index	on	instructor	(dept	name);	When	a	user	submits	an	SQL	query	that	can	benefit
from	using	an	index,	the	SQL

query	processor	automatically	uses	the	index.	For	example,	given	an	SQL	query	that

4.7

Authorization

165

selects	the	instructor	tuple	with	dept	name	“Music”,	the	SQL	query	processor	would	use	the	index	dept
index	defined	above	to	find	the	required	tuple	without	reading	the	whole	relation.

If	we	wish	to	declare	that	the	search	key	is	a	candidate	key,	we	add	the	attribute	unique	to	the	index
definition.	Thus,	the	command:

create	unique	index	dept	index	on	instructor	(dept	name);	declares	dept	name	to	be	a	candidate	key	for
instructor	(which	is	probably	not	what	we	actually	would	want	for	our	university	database).	If,	at	the	time
we	enter	the	create	unique	index	command,	dept	name	is	not	a	candidate	key,	the	system	will	display	an
error	message,	and	the	attempt	to	create	the	index	will	fail.	If	the	index-creation	attempt	succeeds,	any
subsequent	attempt	to	insert	a	tuple	that	violates	the	key	declaration	will	fail.	Note	that	the	unique
feature	is	redundant	if	the	database	system	supports	the	unique	declaration	of	the	SQL	standard.

The	index	name	we	specified	for	an	index	is	required	to	drop	an	index.	The	drop	index	command	takes	the
form:

drop	index	<	index-name	>;

Many	database	systems	also	provide	a	way	to	specify	the	type	of	index	to	be	used,	such	as	B+-tree	or	hash
indices,	which	we	study	in	Chapter	14.	Some	database	systems	also	permit	one	of	the	indices	on	a	relation
to	be	declared	to	be	clustered;	the	system	then	stores	the	relation	sorted	by	the	search	key	of	the
clustered	index.	We	study	in	Chapter	14	how	indices	are	actually	implemented,	as	well	as	what	indices	are
automatically	created	by	databases,	and	how	to	decide	on	what	additional	indices	to	create.

4.7

Authorization

We	may	assign	a	user	several	forms	of	authorizations	on	parts	of	the	database.	Authorizations	on	data
include:

•	Authorization	to	read	data.

•	Authorization	to	insert	new	data.

•	Authorization	to	update	data.

•	Authorization	to	delete	data.

Each	of	these	types	of	authorizations	is	called	a	privilege.	We	may	authorize	the	user	all,	none,	or	a
combination	of	these	types	of	privileges	on	specified	parts	of	a	database,	such	as	a	relation	or	a	view.

166

Chapter	4

Intermediate	SQL

When	a	user	submits	a	query	or	an	update,	the	SQL	implementation	first	checks	if	the	query	or	update	is
authorized,	based	on	the	authorizations	that	the	user	has	been	granted.	If	the	query	or	update	is	not
authorized,	it	is	rejected.

In	addition	to	authorizations	on	data,	users	may	also	be	granted	authorizations	on	the	database	schema,
allowing	them,	for	example,	to	create,	modify,	or	drop	relations.

A	user	who	has	some	form	of	authorization	may	be	allowed	to	pass	on	(grant)	this	authorization	to	other
users,	or	to	withdraw	(revoke)	an	authorization	that	was	granted	earlier.	In	this	section,	we	see	how	each
of	these	authorizations	can	be	specified	in	SQL.

The	ultimate	form	of	authority	is	that	given	to	the	database	administrator.	The	database	administrator
may	authorize	new	users,	restructure	the	database,	and	so	on.

This	form	of	authorization	is	analogous	to	that	of	a	superuser,	administrator,	or	operator	for	an	operating
system.

4.7.1

Granting	and	Revoking	of	Privileges

The	SQL	standard	includes	the	privileges	select,	insert,	update,	and	delete.	The	privilege	all	privileges	can
be	used	as	a	short	form	for	all	the	allowable	privileges.	A	user	who	creates	a	new	relation	is	given	all
privileges	on	that	relation	automatically.

The	SQL	data-definition	language	includes	commands	to	grant	and	revoke	privileges.	The	grant	statement
is	used	to	confer	authorization.	The	basic	form	of	this	statement	is:

grant	<	privilege	list	>

on	<	relation	name	or	view	name	>

to	<	user/role	list	>;

The	privilege	list	allows	the	granting	of	several	privileges	in	one	command.	The	notion	of	roles	is	covered
in	Section	4.7.2.

The	select	authorization	on	a	relation	is	required	to	read	tuples	in	the	relation.	The	following	grant
statement	grants	database	users	Amit	and	Satoshi	select	authorization	on	the	department	relation:

grant	select	on	department	to	Amit,	Satoshi;

This	allows	those	users	to	run	queries	on	the	department	relation.

The	update	authorization	on	a	relation	allows	a	user	to	update	any	tuple	in	the	relation.	The	update
authorization	may	be	given	either	on	all	attributes	of	the	relation	or	on	only	some.	If	update	authorization
is	included	in	a	grant	statement,	the	list	of	attributes	on	which	update	authorization	is	to	be	granted
optionally	appears	in	parentheses	immediately	after	the	update	keyword.	If	the	list	of	attributes	is
omitted,	the	update	privilege	will	be	granted	on	all	attributes	of	the	relation.

This	grant	statement	gives	users	Amit	and	Satoshi	update	authorization	on	the	budget	attribute	of	the
department	relation:

4.7

Authorization

167

grant	update	(budget)	on	department	to	Amit,	Satoshi;	The	insert	authorization	on	a	relation	allows	a
user	to	insert	tuples	into	the	relation.

The	insert	privilege	may	also	specify	a	list	of	attributes;	any	inserts	to	the	relation	must	specify	only	these
attributes,	and	the	system	either	gives	each	of	the	remaining	attributes	default	values	(if	a	default	is
defined	for	the	attribute)	or	sets	them	to	null.

The	delete	authorization	on	a	relation	allows	a	user	to	delete	tuples	from	a	relation.

The	user	name	public	refers	to	all	current	and	future	users	of	the	system.	Thus,	privileges	granted	to
public	are	implicitly	granted	to	all	current	and	future	users.

By	default,	a	user/role	that	is	granted	a	privilege	is	not	authorized	to	grant	that	privilege	to	another
user/role.	SQL	allows	a	privilege	grant	to	specify	that	the	recipient	may	further	grant	the	privilege	to
another	user.	We	describe	this	feature	in	more	detail	in	Section	4.7.5.

It	is	worth	noting	that	the	SQL	authorization	mechanism	grants	privileges	on	an	entire	relation,	or	on
specified	attributes	of	a	relation.	However,	it	does	not	permit	authorizations	on	specific	tuples	of	a
relation.

To	revoke	an	authorization,	we	use	the	revoke	statement.	It	takes	a	form	almost	identical	to	that	of	grant:

revoke	<	privilege	list	>

on	<	relation	name	or	view	name	>

from	<	user/role	list	>;

Thus,	to	revoke	the	privileges	that	we	granted	previously,	we	write

revoke	select	on	department	from	Amit,	Satoshi;	revoke	update	(budget)	on	department	from	Amit,
Satoshi;	Revocation	of	privileges	is	more	complex	if	the	user	from	whom	the	privilege	is	revoked	has
granted	the	privilege	to	another	user.	We	return	to	this	issue	in	Section	4.7.5.

4.7.2

Roles

Consider	the	real-world	roles	of	various	people	in	a	university.	Each	instructor	must	have	the	same	types
of	authorizations	on	the	same	set	of	relations.	Whenever	a	new	instructor	is	appointed,	she	will	have	to	be
given	all	these	authorizations	individually.

A	better	approach	would	be	to	specify	the	authorizations	that	every	instructor	is	to	be	given,	and	to
identify	separately	which	database	users	are	instructors.	The	system	can	use	these	two	pieces	of
information	to	determine	the	authorizations	of	each	instructor.	When	a	new	instructor	is	hired,	a	user
identifier	must	be	allocated	to	him,	and	he	must	be	identified	as	an	instructor.	Individual	permissions
given	to	instructors	need	not	be	specified	again.

168

Chapter	4

Intermediate	SQL

The	notion	of	roles	captures	this	concept.	A	set	of	roles	is	created	in	the	database.

Authorizations	can	be	granted	to	roles,	in	exactly	the	same	fashion	as	they	are	granted	to	individual	users.
Each	database	user	is	granted	a	set	of	roles	(which	may	be	empty)	that	she	is	authorized	to	perform.

In	our	university	database,	examples	of	roles	could	include	instructor,	teaching	assistant,	student,	dean,
and	department	chair.

A	less	preferable	alternative	would	be	to	create	an	instructor	userid	and	permit	each	instructor	to	connect
to	the	database	using	the	instructor	userid.	The	problem	with	this	approach	is	that	it	would	not	be
possible	to	identify	exactly	which	instructor	carried	out	a	database	update,	and	this	could	create	security
risks.	Furthermore,	if	an	instructor	leaves	the	university	or	is	moved	to	a	non	instructional	role,	then	a
new	instructor	password	must	be	created	and	distributed	in	a	secure	manner	to	all	instructors.	The	use	of
roles	has	the	benefit	of	requiring	users	to	connect	to	the	database	with	their	own	userid.

Any	authorization	that	can	be	granted	to	a	user	can	be	granted	to	a	role.	Roles	are	granted	to	users	just
as	authorizations	are.

Roles	can	be	created	in	SQL	as	follows:

create	role	instructor;

Roles	can	then	be	granted	privileges	just	as	the	users	can,	as	illustrated	in	this	statement:

grant	select	on	takes

to	instructor;

Roles	can	be	granted	to	users,	as	well	as	to	other	roles,	as	these	statements	show:	create	role	dean;

grant	instructor	to	dean;

grant	dean	to	Satoshi;

Thus,	the	privileges	of	a	user	or	a	role	consist	of:

•	All	privileges	directly	granted	to	the	user/role.

•	All	privileges	granted	to	roles	that	have	been	granted	to	the	user/role.

Note	that	there	can	be	a	chain	of	roles;	for	example,	the	role	teaching	assistant	may	be	granted	to	all
instructors.	In	turn,	the	role	instructor	is	granted	to	all	dean	s.	Thus,	the	dean	role	inherits	all	privileges
granted	to	the	roles	instructor	and	to	teaching	assistant	in	addition	to	privileges	granted	directly	to	dean.

When	a	user	logs	in	to	the	database	system,	the	actions	executed	by	the	user	during	that	session	have	all
the	privileges	granted	directly	to	the	user,	as	well	as	all	privileges

4.7

Authorization

169

granted	to	roles	that	are	granted	(directly	or	indirectly	via	other	roles)	to	that	user.

Thus,	if	a	user	Amit	has	been	granted	the	role	dean,	user	Amit	holds	all	privileges	granted	directly	to
Amit,	as	well	as	privileges	granted	to	dean,	plus	privileges	granted	to	instructor	and	teaching	assistant	if,
as	above,	those	roles	were	granted	(directly	or	indirectly)	to	the	role	dean.

It	is	worth	noting	that	the	concept	of	role-based	authorization	is	not	specific	to	SQL,	and	role-based
authorization	is	used	for	access	control	in	a	wide	variety	of	shared	applications.

4.7.3

Authorization	on	Views

In	our	university	example,	consider	a	staff	member	who	needs	to	know	the	salaries	of	all	faculty	in	a
particular	department,	say	the	Geology	department.	This	staff	member	is	not	authorized	to	see
information	regarding	faculty	in	other	departments.	Thus,	the	staff	member	must	be	denied	direct	access
to	the	instructor	relation.	But	if	he	is	to	have	access	to	the	information	for	the	Geology	department,	he
might	be	granted	access	to	a	view	that	we	shall	call	geo	instructor,	consisting	of	only	those	instructor
tuples	pertaining	to	the	Geology	department.	This	view	can	be	defined	in	SQL	as	follows:	create	view	geo
instructor	as

(select	*

from	instructor

where	dept	name	=	'Geology');

Suppose	that	the	staff	member	issues	the	following	SQL	query:

select	*

from	geo	instructor;

The	staff	member	is	authorized	to	see	the	result	of	this	query.	However,	when	the	query	processor
translates	it	into	a	query	on	the	actual	relations	in	the	database,	it	replaces	uses	of	a	view	by	the
definition	of	the	view,	producing	a	query	on	instructor.	Thus,	the	system	must	check	authorization	on	the
clerk’s	query	before	it	replaces	views	by	their	definitions.

A	user	who	creates	a	view	does	not	necessarily	receive	all	privileges	on	that	view.

She	receives	only	those	privileges	that	provide	no	additional	authorization	beyond	those	that	she	already
had.	For	example,	a	user	who	creates	a	view	cannot	be	given	update	authorization	on	a	view	without
having	update	authorization	on	the	relations	used	to	define	the	view.	If	a	user	creates	a	view	on	which	no
authorization	can	be	granted,	the	system	will	deny	the	view	creation	request.	In	our	geo	instructor	view
example,	the	creator	of	the	view	must	have	select	authorization	on	the	instructor	relation.

As	we	will	see	in	Section	5.2,	SQL	supports	the	creation	of	functions	and	procedures,	which	may,	in	turn,
contain	queries	and	updates.	The	execute	privilege	can	be	granted	on	a	function	or	procedure,	enabling	a
user	to	execute	the	function	or	proce-

170

Chapter	4

Intermediate	SQL

dure.	By	default,	just	like	views,	functions	and	procedures	have	all	the	privileges	that	the	creator	of	the
function	or	procedure	had.	In	effect,	the	function	or	procedure	runs	as	if	it	were	invoked	by	the	user	who
created	the	function.

Although	this	behavior	is	appropriate	in	many	situations,	it	is	not	always	appropriate.	Starting	with

SQL:2003,	if	the	function	definition	has	an	extra	clause	sql	security	invoker,	then	it	is	executed	under	the
privileges	of	the	user	who	invokes	the	function,	rather	than	the	privileges	of	the	definer	of	the	function.
This	allows	the	creation	of	libraries	of	functions	that	can	run	under	the	same	authorization	as	the	invoker.

4.7.4

Authorizations	on	Schema

The	SQL	standard	specifies	a	primitive	authorization	mechanism	for	the	database	schema:	Only	the	owner
of	the	schema	can	carry	out	any	modification	to	the	schema,	such	as	creating	or	deleting	relations,	adding
or	dropping	attributes	of	relations,	and	adding	or	dropping	indices.

However,	SQL	includes	a	references	privilege	that	permits	a	user	to	declare	foreign	keys	when	creating
relations.	The	SQL	references	privilege	is	granted	on	specific	attributes	in	a	manner	like	that	for	the
update	privilege.	The	following	grant	statement	allows	user	Mariano	to	create	relations	that	reference	the
key	dept	name	of	the	department	relation	as	a	foreign	key:

grant	references	(dept	name)	on	department	to	Mariano;	Initially,	it	may	appear	that	there	is	no	reason
ever	to	prevent	users	from	creating	foreign	keys	referencing	another	relation.	However,	recall	that
foreign-key	constraints	restrict	deletion	and	update	operations	on	the	referenced	relation.	Suppose
Mariano	creates	a	foreign	key	in	a	relation	r	referencing	the	dept	name	attribute	of	the	department
relation	and	then	inserts	a	tuple	into	r	pertaining	to	the	Geology	department.	It	is	no	longer	possible	to
delete	the	Geology	department	from	the	department	relation	without	also	modifying	relation	r.	Thus,	the
definition	of	a	foreign	key	by	Mariano	restricts	future	activity	by	other	users;	therefore,	there	is	a	need	for
the	references	privilege.

Continuing	to	use	the	example	of	the	department	relation,	the	references	privilege	on	department	is	also
required	to	create	a	check	constraint	on	a	relation	r	if	the	constraint	has	a	subquery	referencing
department.	This	is	reasonable	for	the	same	reason	as	the	one	we	gave	for	foreign-key	constraints;	a
check	constraint	that	references	a	relation	limits	potential	updates	to	that	relation.

4.7.5

Transfer	of	Privileges

A	user	who	has	been	granted	some	form	of	authorization	may	be	allowed	to	pass	on	this	authorization	to
other	users.	By	default,	a	user/role	that	is	granted	a	privilege	is	not	authorized	to	grant	that	privilege	to
another	user/role.	If	we	wish	to	grant	a	privilege	and	to	allow	the	recipient	to	pass	the	privilege	on	to
other	users,	we	append	the	with	grant	option	clause	to	the	appropriate	grant	command.	For	example,	if
we	wish	to	allow

4.7

Authorization

171

Amit	the	select	privilege	on	department	and	allow	Amit	to	grant	this	privilege	to	others,	we	write:

grant	select	on	department	to	Amit	with	grant	option;

The	creator	of	an	object	(relation/view/role)	holds	all	privileges	on	the	object,	including	the	privilege	to
grant	privileges	to	others.

Consider,	as	an	example,	the	granting	of	update	authorization	on	the	teaches	relation	of	the	university
database.	Assume	that,	initially,	the	database	administrator	grants	update	authorization	on	teaches	to
users	U	,	U	,	and	U	,	who	may,	in	turn,	pass	on	this	1

2

3

authorization	to	other	users.	The	passing	of	a	specific	authorization	from	one	user	to	another	can	be
represented	by	an	authorization	graph.	The	nodes	of	this	graph	are	the	users.

Consider	the	graph	for	update	authorization	on	teaches.	The	graph	includes	an	edge	U	→	U	if	user	U
grants	update	authorization	on	teaches	to	U	.	The	root	of	the	i

j

i

j

graph	is	the	database	administrator.	In	the	sample	graph	in	Figure	4.11,	observe	that	user	U	is	granted
authorization	by	both	U	and	U	;	U	is	granted	authorization	by	5

1

2

4

only	U	.

1

A	user	has	an	authorization	if	and	only	if	there	is	a	path	from	the	root	of	the	authorization	graph	(the	node
representing	the	database	administrator)	down	to	the	node	representing	the	user.

4.7.6

Revoking	of	Privileges

Suppose	that	the	database	administrator	decides	to	revoke	the	authorization	of	user	U	.	Since	U	has
authorization	from	U	,	that	authorization	should	be	revoked	as	well.

1

4

1

However,	U	was	granted	authorization	by	both	U	and	U	.	Since	the	database	ad-5

1

2

ministrator	did	not	revoke	update	authorization	on	teaches	from	U	,	U	retains	update	2

5

U	1

U	4

DBA

U

U

2

5

U	3

Figure	4.11	Authorization-grant	graph	(U	1,	U	2,	…	,	U	5	are	users	and	DBA	refers	to	the	database
administrator).

172

Chapter	4

Intermediate	SQL

authorization	on	teaches.	If	U	eventually	revokes	authorization	from	U	,	then	U	loses	2

5

5

the	authorization.

A	pair	of	devious	users	might	attempt	to	defeat	the	rules	for	revocation	of	authorization	by	granting
authorization	to	each	other.	For	example,	U	is	initially	granted	an	2

authorization	by	the	database	administrator,	and	U	further	grants	it	to	U	.	Suppose	2

3

U	now	grants	the	privilege	back	to	U	.	If	the	database	administrator	revokes	autho-3

2

rization	from	U	,	it	might	appear	that	U	retains	authorization	through	U	.	However,	2

2

3

note	that	once	the	administrator	revokes	authorization	from	U	,	there	is	no	path	in	the	2

authorization	graph	from	the	root	either	to	U	or	to	U	.	Thus,	SQL	ensures	that	the	2

3

authorization	is	revoked	from	both	the	users.

As	we	just	saw,	revocation	of	a	privilege	from	a	user/role	may	cause	other	users/roles	also	to	lose	that
privilege.	This	behavior	is	called	cascading	revocation.	In	most	database	systems,	cascading	is	the	default
behavior.	However,	the	revoke	statement	may	specify	restrict	in	order	to	prevent	cascading	revocation:

revoke	select	on	department	from	Amit,	Satoshi	restrict;

In	this	case,	the	system	returns	an	error	if	there	are	any	cascading	revocations	and	does	not	carry	out	the
revoke	action.

The	keyword	cascade	can	be	used	instead	of	restrict	to	indicate	that	revocation	should	cascade;	however,
it	can	be	omitted,	as	we	have	done	in	the	preceding	examples,	since	it	is	the	default	behavior.

The	following	revoke	statement	revokes	only	the	grant	option,	rather	than	the	actual	select	privilege:

revoke	grant	option	for	select	on	department	from	Amit;

Note	that	some	database	implementations	do	not	support	the	above	syntax;	instead,	the	privilege	itself
can	be	revoked	and	then	granted	again	without	the	grant	option.

Cascading	revocation	is	inappropriate	in	many	situations.	Suppose	Satoshi	has	the	role	of	dean,	grants
instructor	to	Amit,	and	later	the	role	dean	is	revoked	from	Satoshi	(perhaps	because	Satoshi	leaves	the
university);	Amit	continues	to	be	employed	on	the	faculty	and	should	retain	the	instructor	role.

To	deal	with	this	situation,	SQL	permits	a	privilege	to	be	granted	by	a	role	rather	than	by	a	user.	SQL	has
a	notion	of	the	current	role	associated	with	a	session.	By	default,	the	current	role	associated	with	a
session	is	null	(except	in	some	special	cases).	The	current	role	associated	with	a	session	can	be	set	by
executing	set	role	role	name.	The	specified	role	must	have	been	granted	to	the	user,	otherwise	the	set	role
statement	fails.

To	grant	a	privilege	with	the	grantor	set	to	the	current	role	associated	with	a	session,	we	can	add	the
clause:

granted	by	current	role

to	the	grant	statement,	provided	the	current	role	is	not	null.

4.8

Summary

173

Suppose	the	granting	of	the	role	instructor	(or	other	privileges)	to	Amit	is	done	using	the	granted	by
current	role	clause,	with	the	current	role	set	to	dean,	instead	of	the	grantor	being	the	user	Satoshi.	Then,
revoking	of	roles/privileges	(including	the	role	dean)	from	Satoshi	will	not	result	in	revoking	of	privileges
that	had	the	grantor	set	to	the	role	dean,	even	if	Satoshi	was	the	user	who	executed	the	grant;	thus,	Amit
would	retain	the	instructor	role	even	after	Satoshi’s	privileges	are	revoked.

4.7.7

Row-Level	Authorization

The	types	of	authorization	privileges	we	have	studied	apply	at	the	level	of	relations	or	views.	Some
database	systems	provide	mechanisms	for	fine-grained	authorization	at	the	level	of	specific	tuples	within
a	relation.

Suppose,	for	example,	that	we	wish	to	allow	a	student	to	see	her	or	his	own	data	in	the	takes	relation	but
not	those	data	of	other	users.	We	can	enforce	such	a	restriction	using	row-level	authorization,	if	the
database	supports	it.	We	describe	row-level	authorization	in	Oracle	below;	PostgreSQL	and	SQL	Server
too	support	row-level	authorization	using	a	conceptually	similar	mechanism,	but	using	a	different	syntax.

The	Oracle	Virtual	Private	Database	(VPD)	feature	supports	row-level	authorization	as	follows.	It	allows	a
system	administrator	to	associate	a	function	with	a	relation;	the	function	returns	a	predicate	that	gets
added	automatically	to	any	query	that	uses	the	relation.	The	predicate	can	use	the	function	sys	context,
which	returns	the	identifier	of	the	user	on	whose	behalf	a	query	is	being	executed.	For	our	example	of
students	accessing	their	data	in	the	takes	relation,	we	would	specify	the	following	predicate	to	be
associated	with	the	takes	relation:

ID	=	sys	context	('USERENV',	'SESSION	USER')

This	predicate	is	added	by	the	system	to	the	where	clause	of	every	query	that	uses	the	takes	relation.	As	a
result,	each	student	can	see	only	those	takes	tuples	whose	ID	value	matches	her	ID.

VPD	provides	authorization	at	the	level	of	specific	tuples,	or	rows,	of	a	relation,	and	is	therefore	said	to	be
a	row-level	authorization	mechanism.	A	potential	pitfall	with	adding	a	predicate	as	described	above	is	that
it	may	change	the	meaning	of	a	query	significantly.	For	example,	if	a	user	wrote	a	query	to	find	the
average	grade	over	all	courses,	she	would	end	up	getting	the	average	of	her	grades,	not	all	grades.
Although	the	system	would	give	the	“right”	answer	for	the	rewritten	query,	that	answer	would	not
correspond	to	the	query	the	user	may	have	thought	she	was	submitting.

4.8

Summary

•	SQL	supports	several	types	of	joins	including	natural	join,	inner	and	outer	joins,	and	several	types	of	join
conditions.

174

Chapter	4

Intermediate	SQL

°	Natural	join	provides	a	simple	way	to	write	queries	over	multiple	relations	in	which	a	where	predicate
would	otherwise	equate	attributes	with	matching	names	from	each	relation.	This	convenience	comes	at
the	risk	of	query	semantics	changing	if	a	new	attribute	is	added	to	the	schema.

°	The	join-using	construct	provides	a	simple	way	to	write	queries	over	multiple	relations	in	which	equality
is	desired	for	some	but	not	necessarily	all	attributes	with	matching	names.

°	The	join-on	construct	provides	a	way	to	include	a	join	predicate	in	the	from	clause.

°	Outer	join	provides	a	means	to	retain	tuples	that,	due	to	a	join	predicate	(whether	a	natural	join,	a	join-
using,	or	a	join-on),	would	otherwise	not	appear	anywhere	in	the	result	relation.	The	retained	tuples	are
padded	with	null	values	so	as	to	conform	to	the	result	schema.

•	View	relations	can	be	defined	as	relations	containing	the	result	of	queries.	Views	are	useful	for	hiding
unneeded	information	and	for	gathering	together	information	from	more	than	one	relation	into	a	single
view.

•	Transactions	are	sequences	of	queries	and	updates	that	together	carry	out	a	task.

Transactions	can	be	committed,	or	rolled	back;	when	a	transaction	is	rolled	back,	the	effects	of	all
updates	performed	by	the	transaction	are	undone.

•	Integrity	constraints	ensure	that	changes	made	to	the	database	by	authorized	users	do	not	result	in	a
loss	of	data	consistency.

•	Referential-integrity	constraints	ensure	that	a	value	that	appears	in	one	relation	for	a	given	set	of
attributes	also	appears	for	a	certain	set	of	attributes	in	another	relation.

•	Domain	constraints	specify	the	set	of	possible	values	that	may	be	associated	with	an	attribute.	Such
constraints	may	also	prohibit	the	use	of	null	values	for	particular	attributes.

•	Assertions	are	declarative	expressions	that	state	predicates	that	we	require	always	to	be	true.

•	The	SQL	data-definition	language	provides	support	for	defining	built-in	domain	types	such	as	date	and
time	as	well	as	user-defined	domain	types.

•	Indices	are	important	for	efficient	processing	of	queries,	as	well	as	for	efficient	enforcement	of	integrity
constraints.	Although	not	part	of	the	SQL	standard,	SQL

commands	for	creation	of	indices	are	supported	by	most	database	systems.

•	SQL	authorization	mechanisms	allow	one	to	differentiate	among	the	users	of	the	database	on	the	type	of
access	they	are	permitted	on	various	data	values	in	the	database.

Practice	Exercises

175

•	Roles	enable	us	to	assign	a	set	of	privileges	to	a	user	according	to	the	role	that	the	user	plays	in	the
organization.

Review	Terms

•	Join	types

°	Default	values

°	Natural	join

°	Large	objects

⋄	clob

°	Inner	join	with	using	and	on

⋄	blob

°	Left,	right	and	full	outer	join

Ůser-defined	types

°	Outer	join	with	using	and	on

•

°	distinct	types

View	definition

°	Domains

°	Materialized	views

°	Type	conversions

°	View	maintenance

•	Catalogs

°	View	update

•	Schemas

•	Transactions

•	Indices

°	Commit	work

•	Privileges

°	Rollback	work

°	Types	of	privileges

°	Atomic	transaction

⋄	select

⋄

•

insert

Constraints

⋄	update

°	Integrity	constraints

°	Granting	of	privileges

°	Domain	constraints

°	Revoking	of	privileges

Ůnique	constraint

°	Privilege	to	grant	privileges

°	Check	clause

°	Grant	option

°	Referential	integrity

⋄

•	Roles

Cascading	deletes

⋄

•	Authorization	on	views

Cascading	updates

•	Execute	authorization

°	Assertions

•	Invoker	privileges

•	Data	types

•	Row-level	authorization

°	Date	and	time	types

•	Virtual	private	database	(VPD)

176

Chapter	4

Intermediate	SQL

Practice	Exercises

4.1

Consider	the	following	SQL	query	that	seeks	to	find	a	list	of	titles	of	all	courses	taught	in	Spring	2017
along	with	the	name	of	the	instructor.

select	name,	title

from	instructor	natural	join	teaches	natural	join	section	natural	join	course	where	semester	=	'Spring'	and
year	=	2017

What	is	wrong	with	this	query?

4.2

Write	the	following	queries	in	SQL:

a.

Display	a	list	of	all	instructors,	showing	each	instructor’s	ID	and	the	number	of	sections	taught.	Make
sure	to	show	the	number	of	sections	as	0	for	instructors	who	have	not	taught	any	section.	Your	query
should	use	an

outer	join,	and	should	not	use	subqueries.

b.

Write	the	same	query	as	in	part	a,	but	using	a	scalar	subquery	and	not	using	outer	join.

c.

Display	the	list	of	all	course	sections	offered	in	Spring	2018,	along	with	the	ID	and	name	of	each
instructor	teaching	the	section.	If	a	section	has	more	than	one	instructor,	that	section	should	appear	as
many	times	in

the	result	as	it	has	instructors.	If	a	section	does	not	have	any	instructor,	it	should	still	appear	in	the	result
with	the	instructor	name	set	to	“	—	”.

d.

Display	the	list	of	all	departments,	with	the	total	number	of	instructors	in	each	department,	without	using
subqueries.	Make	sure	to	show	departments	that	have	no	instructors,	and	list	those	departments	with	an
instructor	count	of	zero.

4.3

Outer	join	expressions	can	be	computed	in	SQL	without	using	the	SQL	outer	join	operation.	To	illustrate
this	fact,	show	how	to	rewrite	each	of	the	following	SQL	queries	without	using	the	outer	join	expression.

a.

select	*	from	student	natural	left	outer	join	takes

b.

select	*	from	student	natural	full	outer	join	takes

4.4

Suppose	we	have	three	relations	r(A,	B),	s(B,	C),	and	t(B,	D),	with	all	attributes	declared	as	not	null.

a.

Give	instances	of	relations	r,	s,	and	t	such	that	in	the	result	of	(r	natural	left	outer	join	s)	natural	left
outer	join	t	attribute	C	has	a	null	value	but	attribute	D	has	a	non-null	value.

b.

Are	there	instances	of	r,	s,	and	t	such	that	the	result	of	r	natural	left	outer	join	(s	natural	left	outer	join	t)

Exercises

177

employee	(ID,	person	name,	street,	city)	works	(ID,	company	name,	salary)

company	(company	name,	city)

manages	(ID,	manager	id)

Figure	4.12	Employee	database.

has	a	null	value	for	C	but	a	non-null	value	for	D?	Explain	why	or	why	not.

4.5

Testing	SQL	queries:	To	test	if	a	query	specified	in	English	has	been	correctly	written	in	SQL,	the	SQL
query	is	typically	executed	on	multiple	test	databases,	and	a	human	checks	if	the	SQL	query	result	on
each	test	database	matches	the	intention	of	the	specification	in	English.

a.

In	Section	4.1.1	we	saw	an	example	of	an	erroneous	SQL	query	which	was	intended	to	find	which	courses
had	been	taught	by	each	instructor;	the	query	computed	the	natural	join	of	instructor,	teaches,	and
course,	and	as	a	result	it	unintentionally	equated	the	dept	name	attribute	of	instructor	and	course.	Give
an	example	of	a	dataset	that	would	help	catch	this	particular	error.

b.

When	creating	test	databases,	it	is	important	to	create	tuples	in	referenced	relations	that	do	not	have	any
matching	tuple	in	the	referencing	relation	for	each	foreign	key.	Explain	why,	using	an	example	query	on
the	university	database.

c.

When	creating	test	databases,	it	is	important	to	create	tuples	with	null	values	for	foreign-key	attributes,
provided	the	attribute	is	nullable	(SQL

allows	foreign-key	attributes	to	take	on	null	values,	as	long	as	they	are	not	part	of	the	primary	key	and
have	not	been	declared	as	not	null).	Explain	why,	using	an	example	query	on	the	university	database.

Hint:	Use	the	queries	from	Exercise	4.2.

4.6

Show	how	to	define	the	view	student	grades	(ID,	GPA)	giving	the	grade-point	average	of	each	student,
based	on	the	query	in	Exercise	3.2;	recall	that	we	used	a	relation	grade	points(grade,	points)	to	get	the
numeric	points	associated	with	a	letter	grade.	Make	sure	your	view	definition	correctly	handles	the	case
of	null	values	for	the	grade	attribute	of	the	takes	relation.

4.7

Consider	the	employee	database	of	Figure	4.12.	Give	an	SQL	DDL	definition	of	this	database.	Identify
referential-integrity	constraints	that	should	hold,	and	include	them	in	the	DDL	definition.

178

Chapter	4

Intermediate	SQL

4.8

As	discussed	in	Section	4.4.8,	we	expect	the	constraint	“an	instructor	cannot	teach	sections	in	two
different	classrooms	in	a	semester	in	the	same	time	slot”

to	hold.

a.

Write	an	SQL	query	that	returns	all	(instructor,	section)	combinations	that	violate	this	constraint.

b.

Write	an	SQL	assertion	to	enforce	this	constraint	(as	discussed	in	Section	4.4.8,	current	generation
database	systems	do	not	support	such	assertions,	although	they	are	part	of	the	SQL	standard).

4.9

SQL	allows	a	foreign-key	dependency	to	refer	to	the	same	relation,	as	in	the	following	example:

create	table	manager

(employee	ID

char(20),

manager	ID

char(20),

primary	key	employee	ID,

foreign	key	(manager	ID)	references	manager(employee	ID)	on	delete	cascade)

Here,	employee	ID	is	a	key	to	the	table	manager,	meaning	that	each	employee	has	at	most	one	manager.
The	foreign-key	clause	requires	that	every	manager	also	be	an	employee.	Explain	exactly	what	happens
when	a	tuple	in	the	relation	manager	is	deleted.

4.10

Given	the	relations	a(name,	address,	title)	and	b(name,	address,	salary),	show	how	to	express	a	natural
full	outer	join	b	using	the	full	outer-join	operation	with	an	on	condition	rather	than	using	the	natural	join
syntax.	This	can	be	done	using	the	coalesce	operation.	Make	sure	that	the	result	relation	does	not	contain
two	copies	of	the	attributes	name	and	address	and	that	the	solution	is	correct	even	if	some	tuples	in	a	and
b	have	null	values	for	attributes	name	or	address.

4.11

Operating	systems	usually	offer	only	two	types	of	authorization	control	for	data	files:	read	access	and
write	access.	Why	do	database	systems	offer	so	many	kinds	of	authorization?

4.12

Suppose	a	user	wants	to	grant	select	access	on	a	relation	to	another	user.	Why	should	the	user	include	(or
not	include)	the	clause	granted	by	current	role	in	the	grant	statement?

4.13

Consider	a	view	v	whose	definition	references	only	relation	r.

•	If	a	user	is	granted	select	authorization	on	v,	does	that	user	need	to	have	select	authorization	on	r	as
well?	Why	or	why	not?

•	If	a	user	is	granted	update	authorization	on	v,	does	that	user	need	to	have	update	authorization	on	r	as
well?	Why	or	why	not?

Exercises

179

•	Give	an	example	of	an	insert	operation	on	a	view	v	to	add	a	tuple	t	that	is	not	visible	in	the	result	of
select	*	from	v.	Explain	your	answer.

Exercises

4.14

Consider	the	query

select	course	id,	semester,	year,	sec	id,	avg	(tot	cred)	from	takes	natural	join	student

where	year	=	2017

group	by	course	id,	semester,	year,	sec	id	having	count	(ID)	>=	2;

Explain	why	appending	natural	join	section	in	the	from	clause	would	not	change	the	result.

4.15

Rewrite	the	query

select	*

from	section	natural	join	classroom

without	using	a	natural	join	but	instead	using	an	inner	join	with	a	using	condition.

4.16

Write	an	SQL	query	using	the	university	schema	to	find	the	ID	of	each	student	who	has	never	taken	a
course	at	the	university.	Do	this	using	no	subqueries	and	no	set	operations	(use	an	outer	join).

4.17

Express	the	following	query	in	SQL	using	no	subqueries	and	no	set	operations.

select	ID

from	student

except

select	s	id

from	advisor

where	i	ID	is	not	null

4.18

For	the	database	of	Figure	4.12,	write	a	query	to	find	the	ID	of	each	employee	with	no	manager.	Note	that
an	employee	may	simply	have	no	manager	listed	or	may	have	a	null	manager.	Write	your	query	using	an
outer	join	and	then	write	it	again	using	no	outer	join	at	all.

4.19

Under	what	circumstances	would	the	query

180

Chapter	4

Intermediate	SQL

select	*

from	student	natural	full	outer	join	takes

natural	full	outer	join	course

include	tuples	with	null	values	for	the	title	attribute?

4.20

Show	how	to	define	a	view	tot	credits	(year,	num	credits),	giving	the	total	number	of	credits	taken	in	each
year.

4.21

For	the	view	of	Exercise	4.18,	explain	why	the	database	system	would	not	allow	a	tuple	to	be	inserted	into
the	database	through	this	view.

4.22

Show	how	to	express	the	coalesce	function	using	the	case	construct.

4.23

Explain	why,	when	a	manager,	say	Satoshi,	grants	an	authorization,	the	grant	should	be	done	by	the
manager	role,	rather	than	by	the	user	Satoshi.

4.24

Suppose	user	A,	who	has	all	authorization	privileges	on	a	relation	r,	grants	select	on	relation	r	to	public
with	grant	option.	Suppose	user	B	then	grants	select	on	r	to	A.	Does	this	cause	a	cycle	in	the	authorization
graph?	Explain	why.

4.25

Suppose	a	user	creates	a	new	relation	r	1	with	a	foreign	key	referencing	another	relation	r	2.	What
authorization	privilege	does	the	user	need	on	r	2?	Why	should	this	not	simply	be	allowed	without	any	such
authorization?

4.26

Explain	the	difference	between	integrity	constraints	and	authorization	constraints.

Further	Reading

General	SQL	references	were	provided	in	Chapter	3.	As	noted	earlier,	many	systems	implement	features
in	a	non-standard	manner,	and,	for	that	reason,	a	reference	specific	to	the	database	system	you	are	using
is	an	essential	guide.	Most	vendors	also	provide	extensive	support	on	the	web.

The	rules	used	by	SQL	to	determine	the	updatability	of	a	view,	and	how	updates	are	reflected	on	the
underlying	database	relations	appeared	in	SQL:1999	and	are	summarized	in	[Melton	and	Simon	(2001)].

The	original	SQL	proposals	for	assertions	date	back	to	[Astrahan	et	al.	(1976)],

[Chamberlin	et	al.	(1976)],	and	[Chamberlin	et	al.	(1981)].

Bibliography

[Astrahan	et	al.	(1976)]

M.	M.	Astrahan,	M.	W.	Blasgen,	D.	D.	Chamberlin,	K.	P.	Eswaran,

J.	N.	Gray,	P.	P.	Griffiths,	W.	F.	King,	R.	A.	Lorie,	P.	R.	McJones,	J.	W.	Mehl,	G.	R.	Putzolu,	I.	L.	Traiger,	B.	W.
Wade,	and	V.	Watson,	“System	R,	A	Relational	Approach	to	Data	Base

Further	Reading

181

Management”,	ACM	Transactions	on	Database	Systems,	Volume	1,	Number	2	(1976),	pages	97–137.

[Chamberlin	et	al.	(1976)]

D.	D.	Chamberlin,	M.	M.	Astrahan,	K.	P.	Eswaran,	P.	P.	Griffiths,

R.	A.	Lorie,	J.	W.	Mehl,	P.	Reisner,	and	B.	W.	Wade,	“SEQUEL	2:	A	Unified	Approach	to	Data	Definition,
Manipulation,	and	Control”,	IBM	Journal	of	Research	and	Development,	Volume	20,	Number	6	(1976),
pages	560–575.

[Chamberlin	et	al.	(1981)]

D.	D.	Chamberlin,	M.	M.	Astrahan,	M.	W.	Blasgen,	J.	N.	Gray,

W.	F.	King,	B.	G.	Lindsay,	R.	A.	Lorie,	J.	W.	Mehl,	T.	G.	Price,	P.	G.	Selinger,	M.	Schkolnick,	D.	R.	Slutz,	I.	L.
Traiger,	B.	W.	Wade,	and	R.	A.	Yost,	“A	History	and	Evaluation	of	System	R”,	Communications	of	the	ACM,
Volume	24,	Number	10	(1981),	pages	632–646.

[Melton	and	Simon	(2001)]

J.	Melton	and	A.	R.	Simon,	SQL:1999,	Understanding	Relational

Language	Components,	Morgan	Kaufmann	(2001).

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

C	H	A	P	T	E	R	5

Advanced	SQL

Chapter	3	and	Chapter	4	provided	detailed	coverage	of	the	basic	structure	of	SQL.	In	this	chapter,	we	first
address	the	issue	of	how	to	access	SQL	from	a	general-purpose	programming	language,	which	is	very
important	for	building	applications	that	use	a	database	to	manage	data.	We	then	cover	some	of	the	more
advanced	features	of	SQL,	starting	with	how	procedural	code	can	be	executed	within	the	database	either
by	extending	the	SQL	language	to	support	procedural	actions	or	by	allowing	functions	defined	in
procedural	languages	to	be	executed	within	the	database.	We	describe	triggers,	which	can	be	used	to
specify	actions	that	are	to	be	carried	out	automatically	on	certain	events	such	as	insertion,	deletion,	or
update	of	tuples	in	a	specified	relation.	Finally,	we	discuss	recursive	queries	and	advanced	aggregation
features	supported	by	SQL.

5.1

Accessing	SQL	from	a	Programming	Language

SQL	provides	a	powerful	declarative	query	language.	Writing	queries	in	SQL	is	usually	much	easier	than
coding	the	same	queries	in	a	general-purpose	programming	language.

However,	a	database	programmer	must	have	access	to	a	general-purpose	programming	language	for	at
least	two	reasons:

1.	Not	all	queries	can	be	expressed	in	SQL,	since	SQL	does	not	provide	the	full	expressive	power	of	a
general-purpose	language.	That	is,	there	exist	queries	that	can	be	expressed	in	a	language	such	as	C,
Java,	or	Python	that	cannot	be	expressed	in	SQL.	To	write	such	queries,	we	can	embed	SQL	within	a	more
powerful	language.

2.	Nondeclarative	actions	—	such	as	printing	a	report,	interacting	with	a	user,	or	sending	the	results	of	a
query	to	a	graphical	user	interface	—	cannot	be	done	from	within	SQL.	Applications	usually	have	several
components,	and	querying	or	updating	data	are	only	one	component;	other	components	are	written	in
general-purpose	programming	languages.	For	an	integrated	application,	there	must	be	a	means	to
combine	SQL	with	a	general-purpose	programming	language.

There	are	two	approaches	to	accessing	SQL	from	a	general-purpose	programming	language:

183

184

Chapter	5

Advanced	SQL

1.	Dynamic	SQL:	A	general-purpose	program	can	connect	to	and	communicate	with	a	database	server
using	a	collection	of	functions	(for	procedural	languages)	or	methods	(for	object-oriented	languages).
Dynamic	SQL	allows	the	program	to	construct	an	SQL	query	as	a	character	string	at	runtime,	submit	the
query,	and	then	retrieve	the	result	into	program	variables	a	tuple	at	a	time.	The	dynamic	SQL	component
of	SQL	allows	programs	to	construct	and	submit	SQL	queries	at	runtime.

In	this	chapter,	we	look	at	two	standards	for	connecting	to	an	SQL	database	and	performing	queries	and
updates.	One,	JDBC	(Section	5.1.1),	is	an	application	program	interface	for	the	Java	language.	The	other,
ODBC	(Section	5.1.3),	is	an	application	program	interface	originally	developed	for	the	C	language,	and
subsequently	extended	to	other	languages	such	as	C++,	C#,	Ruby,	Go,	PHP,	and	Visual	Basic.	We	also
illustrate	how	programs	written	in	Python	can	connect	to	a	database	using	the	Python	Database	API
(Section	5.1.2).

The	ADO.NET	API,	designed	for	the	Visual	Basic	.NET	and	C#	languages,

provides	functions	to	access	data,	which	at	a	high	level	are	similar	to	the	JDBC

functions,	although	details	differ.	The	ADO.NET	API	can	also	be	used	with	some	kinds	of	non-relational
data	sources.	Details	of	ADO.NET	may	be	found	in	the	manuals	available	online	and	are	not	covered
further	in	this	chapter.

2.	Embedded	SQL:	Like	dynamic	SQL,	embedded	SQL	provides	a	means	by	which	a	program	can	interact
with	a	database	server.	However,	under	embedded	SQL,	the	SQL	statements	are	identified	at	compile	time
using	a	preprocessor,	which	translates	requests	expressed	in	embedded	SQL	into	function	calls.	At

runtime,	these	function	calls	connect	to	the	database	using	an	API	that	provides	dynamic	SQL	facilities
but	may	be	specific	to	the	database	that	is	being	used.	Section	5.1.4

briefly	covers	embedded	SQL.

A	major	challenge	in	mixing	SQL	with	a	general-purpose	language	is	the	mismatch	in	the	ways	these
languages	manipulate	data.	In	SQL,	the	primary	type	of	data	are	relations.	SQL	statements	operate	on
relations	and	return	relations	as	a	result.	Programming	languages	normally	operate	on	a	variable	at	a
time,	and	those	variables	correspond	roughly	to	the	value	of	an	attribute	in	a	tuple	in	a	relation.	Thus,
integrating	these	two	types	of	languages	into	a	single	application	requires	providing	a	mechanism	to
return	the	result	of	a	query	in	a	manner	that	the	program	can	handle.

Our	examples	in	this	section	assume	that	we	are	accessing	a	database	on	a	server	that	runs	a	database
system.	An	alternative	approach	using	an	embedded	database	is	discussed	in	Note	5.1	on	page	198.

5.1.1

JDBC

The	JDBC	standard	defines	an	application	program	interface	(API)	that	Java	programs	can	use	to	connect
to	database	servers.	(The	word	JDBC	was	originally	an	abbreviation	for	Java	Database	Connectivity,	but
the	full	form	is	no	longer	used.)

5.1

Accessing	SQL	from	a	Programming	Language

185

Figure	5.1	shows	example	Java	code	that	uses	the	JDBC	interface.	The	Java	program	must	import
java.sql.*,	which	contains	the	interface	definitions	for	the	functionality	provided	by	JDBC.

5.1.1.1

Connecting	to	the	Database

The	first	step	in	accessing	a	database	from	a	Java	program	is	to	open	a	connection	to	the	database.	This
step	is	required	to	select	which	database	to	use,	such	as	an	instance	of	Oracle	running	on	your	machine,
or	a	PostgreSQL	database	running	on	another	machine.	Only	after	opening	a	connection	can	a	Java
program	execute	SQL	statements.

public	static	void	JDBCexample(String	userid,	String	passwd)

{

try	(

Connection	conn	=	DriverManager.getConnection(

"jdbc:oracle:thin:@db.yale.edu:1521:univdb",

userid,	passwd);

Statement	stmt	=	conn.createStatement();

)	{

try	{

stmt.executeUpdate(

"insert	into	instructor	values(’77987’,’Kim’,’Physics’,98000)");

}

catch	(SQLException	sqle)	{

System.out.println("Could	not	insert	tuple.	"	+	sqle);

}

ResultSet	rset	=	stmt.executeQuery(

"select	dept	name,	avg	(salary)	"+

"	from	instructor	"+

"	group	by	dept	name");

while	(rset.next())	{

System.out.println(rset.getString("dept	name")	+	"	"	+

rset.getFloat(2));

}

}

catch	(Exception	sqle)

{

System.out.println("Exception	:	"	+	sqle);

}

}

Figure	5.1	An	example	of	JDBC	code.

186

Chapter	5

Advanced	SQL

A	connection	is	opened	using	the	getConnection()	method	of	the	DriverManager	class	(within	java.sql).
This	method	takes	three	parameters.1

1.	The	first	parameter	to	the	getConnection()	call	is	a	string	that	specifies	the	URL,	or	machine	name,
where	the	server	runs	(in	our	example,	db.yale.edu),	along	with	possibly	some	other	information	such	as
the	protocol	to	be	used	to	communicate	with	the	database	(in	our	example,	jdbc:oracle:thin:;	we	shall
shortly	see	why	this	is	required),	the	port	number	the	database	system	uses	for	communication	(in	our
example,	2000),	and	the	specific	database	on	the	server	to	be	used	(in	our	example,	univdb).	Note	that
JDBC	specifies	only	the	API,	not	the	communication	protocol.	A	JDBC	driver	may	support	multiple
protocols,	and	we	must	specify	one	supported	by	both	the	database	and	the	driver.	The	protocol	details
are	vendor	specific.

2.	The	second	parameter	to	getConnection()	is	a	database	user	identifier,	which	is	a	string.

3.	The	third	parameter	is	a	password,	which	is	also	a	string.	(Note	that	the	need	to	specify	a	password
within	the	JDBC	code	presents	a	security	risk	if	an	unauthorized	person	accesses	your	Java	code.)

In	our	example	in	the	figure,	we	have	created	a	Connection	object	whose	handle	is	conn.

Each	database	product	that	supports	JDBC	(all	the	major	database	vendors	do)	provides	a	JDBC	driver
that	must	be	dynamically	loaded	in	order	to	access	the	database	from	Java.	In	fact,	loading	the	driver
must	be	done	first,	before	connecting	to	the	database.	If	the	appropriate	driver	has	been	downloaded	from
the	vendor’s	web	site	and	is	in	the	classpath,	the	getConnection()	method	will	locate	the	needed	driver.2
The	driver	provides	for	the	translation	of	product-independent	JDBC	calls	into	the	product-specific	calls
needed	by	the	specific	database	management	system	being	used.	The	actual	protocol	used	to	exchange
information	with	the	database	depends	on	the	driver	that	is	used,	and	it	is	not	defined	by	the	JDBC
standard.	Some	drivers	support	more	than	one	protocol,	and	a	suitable	protocol	must	be	chosen
depending	on	what	protocol	the	particular	database	product	supports.	In	our	example,	when	opening	a
connection	with	the	database,	the	string	jdbc:oracle:thin:	specifies	a	particular	protocol	supported	by
Oracle.	The	MySQL	equivalent	is	jdbc:mysql:

5.1.1.2

Shipping	SQL	Statements	to	the	Database	System

Once	a	database	connection	is	open,	the	program	can	use	it	to	send	SQL	statements	to	the	database
system	for	execution.	This	is	done	via	an	instance	of	the	class	Statement.

1There	are	multiple	versions	of	the	getConnection()	method,	which	differ	in	the	parameters	that	they
accept.	We	present	the	most	commonly	used	version.

2Prior	to	version	4,	locating	the	driver	was	done	manually	by	invoking	Class.forName	with	one	argument
specifying	a	concrete	class	implementing	the	java.sql.Driver	interface,	in	a	line	of	code	prior	to	the
getConnection	call.

5.1

Accessing	SQL	from	a	Programming	Language

187

A	Statement	object	is	not	the	SQL	statement	itself,	but	rather	an	object	that	allows	the	Java	program	to
invoke	methods	that	ship	an	SQL	statement	given	as	an	argument	for	execution	by	the	database	system.
Our	example	creates	a	Statement	handle	(stmt)	on	the	connection	conn.

To	execute	a	statement,	we	invoke	either	the	executeQuery()	method	or	the	executeUpdate()	method,
depending	on	whether	the	SQL	statement	is	a	query	(and,	thus,	returns	a	result	set)	or	nonquery
statement	such	as	update,	insert,	delete,	or	create	table.	In	our	example,	stmt.executeUpdate()	executes
an	update	statement	that	inserts	into	the	instructor	relation.	It	returns	an	integer	giving	the	number	of
tuples	inserted,	updated,	or	deleted.	For	DDL	statements,	the	return	value	is	zero.

5.1.1.3

Exceptions	and	Resource	Management

Executing	any	SQL	method	might	result	in	an	exception	being	thrown.	The	try	{	…	}

catch	{	…	}	construct	permits	us	to	catch	any	exceptions	(error	conditions)	that	arise	when	JDBC	calls	are
made	and	take	appropriate	action.	In	JDBC	programming,	it	may	be	useful	to	distinguish	between	an
SQLexception,	which	is	an	SQL-specific	exception,	and	the	general	case	of	an	Exception,	which	could	be
any	Java	exception	such	as	a	null-pointer	exception,	or	array-index-out-of-bounds	exception.	We	show	both
in	Figure	5.1.	In	practice,	one	would	write	more	complete	exception	handlers	than	we	do	(for	the	sake	of
conciseness)	in	our	example	code.

Opening	a	connection,	a	statement,	and	other	JDBC	objects	are	all	actions	that	consume	system
resources.	Programmers	must	take	care	to	ensure	that	programs	close	all	such	resources.	Failure	to	do	so
may	cause	the	database	system’s	resource	pools	to	become	exhausted,	rendering	the	system	inaccessible
or	inoperative	until	a	time-out	period	expires.	One	way	to	do	this	is	to	code	explicit	calls	to	close
connections	and	statements.	This	approach	fails	if	the	code	exits	due	to	an	exception	and,	in	so	doing,
avoids	the	Java	statement	with	the	close	invocation.	For	this	reason,	the	preferred	approach	is	to	use	the
try-with-resources	construct	in	Java.	In	the	example	of	Figure	5.1,	the	opening	of	the	connection	and
statement	objects	is	done	within	parentheses	rather	than	in	the	main	body	of	the	try	in	curly	braces.
Resources	opened	in	the	code	within	parentheses	are	closed	automatically	at	the	end	of	the	try	block.	This
protects	us	from	leaving	connections	or	statements	unclosed.	Since	closing	a	statement	implicitly	closes
objects	opened	for	that	statement	(i.e.,	the	ResultSet	objects	we	shall	discuss	in	the	next	section,	this
coding	practice	protects	us	from	leaving	resources	unclosed.3

In	the	example	of	Figure	5.1,	we	could	have	closed	the	connection	explicitly	with	the	statement
conn.close()	and	closed	the	statement	explicitly	with	stmt.close(),	though	doing	so	was	not	necessary	in
our	example.

5.1.1.4

Retrieving	the	Result	of	a	Query

The	example	code	of	Figure	5.1	executes	a	query	by	using	stmt.executeQuery().	It	retrieves	the	set	of
tuples	in	the	result	into	a	ResultSet	object	rset	and	fetches	them	one	3This	Java	feature,	called	try-with-
resources,	was	introduced	in	Java	7.

188

Chapter	5

Advanced	SQL

tuple	at	a	time.	The	next()	method	on	the	result	set	tests	whether	or	not	there	remains	at	least	one
unfetched	tuple	in	the	result	set	and	if	so,	fetches	it.	The	return	value	of	the	next()	method	is	a	Boolean
indicating	whether	it	fetched	a	tuple.	Attributes	from	the	fetched	tuple	are	retrieved	using	various
methods	whose	names	begin	with	get.

The	method	getString()	can	retrieve	any	of	the	basic	SQL	data	types	(converting	the	value	to	a	Java	String
object),	but	more	restrictive	methods	such	as	getFloat()	can	be	used	as	well.	The	argument	to	the	various
get	methods	can	either	be	an	attribute	name	specified	as	a	string,	or	an	integer	indicating	the	position	of
the	desired	attribute	within	the	tuple.	Figure	5.1	shows	two	ways	of	retrieving	the	values	of	attributes	in	a
tuple:	using	the	name	of	the	attribute	(dept	name)	and	using	the	position	of	the	attribute	(2,	to	denote	the
second	attribute).

5.1.1.5

Prepared	Statements

We	can	create	a	prepared	statement	in	which	some	values	are	replaced	by	“?”,	thereby	specifying	that
actual	values	will	be	provided	later.	The	database	system	compiles	the	query	when	it	is	prepared.	Each
time	the	query	is	executed	(with	new	values	to	replace	the	“?”s),	the	database	system	can	reuse	the
previously	compiled	form	of	the	query	and	apply	the	new	values	as	parameters.	The	code	fragment	in
Figure	5.2	shows	how	prepared	statements	can	be	used.

The	prepareStatement()	method	of	the	Connection	class	defines	a	query	that	may	contain	parameter
values;	some	JDBC	drivers	may	submit	the	query	to	the	database	for	compilation	as	part	of	the	method,
but	other	drivers	do	not	contact	the	database	at	this	point.	The	method	returns	an	object	of	class
PreparedStatement.	At	this	point,	no	SQL	statement	has	been	executed.	The	executeQuery()	and
executeUpdate()	methods	of	PreparedStatement	class	do	that.	But	before	they	can	be	invoked,	we	must
use	methods	of	class	PreparedStatement	that	assign	values	for	the	“?”	parameters.	The	setString()
method	and	other	similar	methods	such	as	setInt()	for	other	basic	SQL

types	allow	us	to	specify	the	values	for	the	parameters.	The	first	argument	specifies	the

“?”	parameter	for	which	we	are	assigning	a	value	(the	first	parameter	is	1,	unlike	most	other	Java
constructs,	which	start	with	0).	The	second	argument	specifies	the	value	to	be	assigned.

In	the	example	in	Figure	5.2,	we	prepare	an	insert	statement,	set	the	“?”	parameters,	and	then	invoke
executeUpdate().	The	final	two	lines	of	our	example	show	that	parameter	assignments	remain	unchanged
until	we	specifically	reassign	them.	Thus,	the	final	statement,	which	invokes	executeUpdate(),	inserts	the
tuple	(“88878”,	“Perry”,

“Finance”,	125000).

Prepared	statements	allow	for	more	efficient	execution	in	cases	where	the	same	query	can	be	compiled
once	and	then	run	multiple	times	with	different	parameter	values.	However,	there	is	an	even	more
significant	advantage	to	prepared	statements	that	makes	them	the	preferred	method	of	executing	SQL
queries	whenever	a	user-entered	value	is	used,	even	if	the	query	is	to	be	run	only	once.	Suppose	that	we
read	in	a	user-entered	value	and	then	use	Java	string	manipulation	to	construct	the	SQL	statement.

5.1

Accessing	SQL	from	a	Programming	Language

189

PreparedStatement	pStmt	=	conn.prepareStatement(

"insert	into	instructor	values(?,?,?,?)");

pStmt.setString(1,	"88877");

pStmt.setString(2,	"Perry");

pStmt.setString(3,	"Finance");

pStmt.setInt(4,	125000);

pStmt.executeUpdate();

pStmt.setString(1,	"88878");

pStmt.executeUpdate();

Figure	5.2	Prepared	statements	in	JDBC	code.

If	the	user	enters	certain	special	characters,	such	as	a	single	quote,	the	resulting	SQL

statement	may	be	syntactically	incorrect	unless	we	take	extraordinary	care	in	checking	the	input.	The
setString()	method	does	this	for	us	automatically	and	inserts	the	needed	escape	characters	to	ensure
syntactic	correctness.

In	our	example,	suppose	that	the	values	for	the	variables	ID,	name,	dept	name,	and	salary	have	been
entered	by	a	user,	and	a	corresponding	row	is	to	be	inserted	into	the	instructor	relation.	Suppose	that,
instead	of	using	a	prepared	statement,	a	query	is	constructed	by	concatenating	the	strings	using	the
following	Java	expression:

"insert	into	instructor	values(’	"	+	ID	+	"	’,	’	"	+	name	+	"	’,	"	+

"	’"	+	dept	name	+	"	’,	"	+	salary	+	")"

and	the	query	is	executed	directly	using	the	executeQuery()	method	of	a	Statement	object.	Observe	the
use	of	single	quotes	in	the	string,	which	would	surround	the	values	of	ID,	name	and	dept	name	in	the
generated	SQL	query.

Now,	if	the	user	typed	a	single	quote	in	the	ID	or	name	fields,	the	query	string	would	have	a	syntax	error.
It	is	quite	possible	that	an	instructor	name	may	have	a	quotation	mark	in	its	name	(for	example,
“O’Henry”).

While	the	above	example	might	be	considered	an	annoyance,	the	situation	can	be	much	worse.	A
technique	called	SQL	injection	can	be	used	by	malicious	hackers	to	steal	data	or	damage	the	database.

Suppose	a	Java	program	inputs	a	string	name	and	constructs	the	query:

"select	*	from	instructor	where	name	=	’"	+	name	+	"’"

If	the	user,	instead	of	entering	a	name,	enters:

X’	or	’Y’	=	’Y

then	the	resulting	statement	becomes:

190

Chapter	5

Advanced	SQL

"select	*	from	instructor	where	name	=	’"	+	"X’	or	’Y’	=	’Y"	+	"’"

which	is:

select	*	from	instructor	where	name	=	’X’	or	’Y’	=	’Y’

In	the	resulting	query,	the	where	clause	is	always	true	and	the	entire	instructor	relation	is	returned.

More	clever	malicious	users	could	arrange	to	output	even	more	data,	including	credentials	such	as
passwords	that	allow	the	user	to	connect	to	the	database	and	perform	any	actions	they	want.	SQL
injection	attacks	on	update	statements	can	be	used	to	change	the	values	that	are	being	stored	in	updated
columns.	In	fact	there	have	been	a	number	of	attacks	in	the	real	world	using	SQL	injections;	attacks	on
multiple	financial	sites	have	resulted	in	theft	of	large	amounts	of	money	by	using	SQL	injection	attacks.

Use	of	a	prepared	statement	would	prevent	this	problem	because	the	input	string	would	have	escape
characters	inserted,	so	the	resulting	query	becomes:

"select	*	from	instructor	where	name	=	’X∖’	or	∖’Y∖’	=	∖’Y’

which	is	harmless	and	returns	the	empty	relation.

Programmers	must	pass	user-input	strings	to	the	database	only	through	parameters	of	prepared
statements;	creating	SQL	queries	by	concatenating	strings	with	user-input	values	is	an	extremely	serious
security	risk	and	should	never	be	done	in	any	program.

Some	database	systems	allow	multiple	SQL	statements	to	be	executed	in	a	single	JDBC	execute	method,
with	statements	separated	by	a	semicolon.	This	feature	has	been	turned	off	by	default	on	some	JDBC
drivers	because	it	allows	malicious	hackers	to	insert	whole	SQL	statements	using	SQL	injection.	For
instance,	in	our	earlier	SQL

injection	example	a	malicious	user	could	enter:

X’;	drop	table	instructor;	–	–

which	will	result	in	a	query	string	with	two	statements	separated	by	a	semicolon	being	submitted	to	the
database.	Because	these	statements	run	with	the	privileges	of	the	database	userid	used	by	the	JDBC
connection,	devastating	SQL	statements	such	as	drop	table,	or	updates	to	any	table	of	the	user’s	choice,
could	be	executed.	However,	some	databases	still	allow	execution	of	multiple	statements	as	above;	it	is
thus	very	important	to	correctly	use	prepared	statements	to	avoid	the	risk	of	SQL	injection.

5.1.1.6

Callable	Statements

JDBC	also	provides	a	CallableStatement	interface	that	allows	invocation	of	SQL	stored	procedures	and
functions	(described	in	Section	5.2).	These	play	the	same	role	for	functions	and	procedures	as
prepareStatement	does	for	queries.

5.1

Accessing	SQL	from	a	Programming	Language

191

CallableStatement	cStmt1	=	conn.prepareCall("{?	=	call	some	function(?)}");	CallableStatement	cStmt2
=	conn.prepareCall("{call	some	procedure(?,?)}");	The	data	types	of	function	return	values	and	out
parameters	of	procedures	must	be	registered	using	the	method	registerOutParameter(),	and	can	be
retrieved	using	get	methods	similar	to	those	for	result	sets.	See	a	JDBC	manual	for	more	details.

5.1.1.7

Metadata	Features

As	we	noted	earlier,	a	Java	application	program	does	not	include	declarations	for	data	stored	in	the
database.	Those	declarations	are	part	of	the	SQL	DDL	statements.	Therefore,	a	Java	program	that	uses
JDBC	must	either	have	assumptions	about	the	database	schema	hard-coded	into	the	program	or
determine	that	information	directly	from	the	database	system	at	runtime.	The	latter	approach	is	usually
preferable,	since	it	makes	the	application	program	more	robust	to	changes	in	the	database	schema.

Recall	that	when	we	submit	a	query	using	the	executeQuery()	method,	the	result	of	the	query	is	contained
in	a	ResultSet	object.	The	interface	ResultSet	has	a	method,	getMetaData(),	that	returns	a
ResultSetMetaData	object	that	contains	metadata	about	the	result	set.	ResultSetMetaData,	in	turn,	has
methods	to	find	metadata	information,	such	as	the	number	of	columns	in	the	result,	the	name	of	a
specified	column,	or	the	type	of	a	specified	column.	In	this	way,	we	can	write	code	to	execute	a	query	even
if	we	have	no	prior	knowledge	of	the	schema	of	the	result.

The	following	Java	code	segment	uses	JDBC	to	print	out	the	names	and	types	of	all	columns	of	a	result	set.
The	variable	rs	in	the	code	is	assumed	to	refer	to	a	ResultSet	instance	obtained	by	executing	a	query.

ResultSetMetaData	rsmd	=	rs.getMetaData();

for(int	i	=	1;	i	<=	rsmd.getColumnCount();	i++)	{

System.out.println(rsmd.getColumnName(i));

System.out.println(rsmd.getColumnTypeName(i));

}

The	getColumnCount()	method	returns	the	arity	(number	of	attributes)	of	the	result	relation.	That	allows
us	to	iterate	through	each	attribute	(note	that	we	start	at	1,	as	is	conventional	in	JDBC).	For	each
attribute,	we	retrieve	its	name	and	data	type	using	the	methods	getColumnName()	and
getColumnTypeName(),	respectively.

The	DatabaseMetaData	interface	provides	a	way	to	find	metadata	about	the	database.	The	interface

Connection	has	a	method	getMetaData()	that	returns	a	DatabaseMetaData	object.	The	DatabaseMetaData
interface	in	turn	has	a	very	large	number	of	methods	to	get	metadata	about	the	database	and	the
database	system	to	which	the	application	is	connected.

For	example,	there	are	methods	that	return	the	product	name	and	version	number	of	the	database	system.
Other	methods	allow	the	application	to	query	the	database	system	about	its	supported	features.

192

Chapter	5

Advanced	SQL

DatabaseMetaData	dbmd	=	conn.getMetaData();

ResultSet	rs	=	dbmd.getColumns(null,	"univdb",	"department",	"%");

//	Arguments	to	getColumns:	Catalog,	Schema-pattern,	Table-pattern,

//

and	Column-Pattern

//	Returns:	One	row	for	each	column;	row	has	a	number	of	attributes

//

such	as	COLUMN	NAME,	TYPE	NAME

while(rs.next())	{

System.out.println(rs.getString("COLUMN	NAME"),

rs.getString("TYPE	NAME");

}

Figure	5.3	Finding	column	information	in	JDBC	using	DatabaseMetaData.

Still	other	methods	return	information	about	the	database	itself.	The	code	in	Figure	5.3	illustrates	how	to
find	information	about	columns	(attributes)	of	relations	in	a	database.	The	variable	conn	is	assumed	to	be
a	handle	for	an	already	opened	database	connection.	The	method	getColumns()	takes	four	arguments:	a
catalog	name	(null	signifies	that	the	catalog	name	is	to	be	ignored),	a	schema	name	pattern,	a	table	name
pattern,	and	a	column	name	pattern.	The	schema	name,	table	name,	and	column	name	patterns	can	be
used	to	specify	a	name	or	a	pattern.	Patterns	can	use	the	SQL	string	matching	special	characters	“%”	and
“	”;	for	instance,	the	pattern	“%”	matches	all	names.	Only	columns	of	tables	of	schemas	satisfying	the
specified	name	or	pattern	are	retrieved.	Each	row	in	the	result	set	contains	information	about	one
column.	The	rows	have	a	number	of	columns	such	as	the	name	of	the	catalog,	schema,	table	and	column,
the	type	of	the	column,	and	so	on.

The	getTables()	method	allows	you	to	get	a	list	of	all	tables	in	the	database.	The	first	three	parameters	to
getTables()	are	the	same	as	for	getColumns().	The	fourth	parameter	can	be	used	to	restrict	the	types	of
tables	returned;	if	set	to	null,	all	tables,	including	system	internal	tables	are	returned,	but	the	parameter
can	be	set	to	restrict	the	tables	returned	to	only	user-created	tables.

Examples	of	other	methods	provided	by	DatabaseMetaData	that	provide	information	about	the	database
include	those	for	primary	keys	(getPrimaryKeys()),	foreign-key	references	(getCrossReference()),
authorizations,	database	limits	such	as	maximum	number	of	connections,	and	so	on.

The	metadata	interfaces	can	be	used	for	a	variety	of	tasks.	For	example,	they	can	be	used	to	write	a
database	browser	that	allows	a	user	to	find	the	tables	in	a	database,	examine	their	schema,	examine	rows
in	a	table,	apply	selections	to	see	desired	rows,	and	so	on.	The	metadata	information	can	be	used	to	make
code	used	for	these	tasks	generic;	for	example,	code	to	display	the	rows	in	a	relation	can	be	written	in
such	a	way	that	it	would	work	on	all	possible	relations	regardless	of	their	schema.	Similarly,	it	is

5.1

Accessing	SQL	from	a	Programming	Language

193

possible	to	write	code	that	takes	a	query	string,	executes	the	query,	and	prints	out	the	results	as	a
formatted	table;	the	code	can	work	regardless	of	the	actual	query	submitted.

5.1.1.8

Other	Features

JDBC	provides	a	number	of	other	features,	such	as	updatable	result	sets.	It	can	create	an	updatable	result
set	from	a	query	that	performs	a	selection	and/or	a	projection	on	a	database	relation.	An	update	to	a	tuple
in	the	result	set	then	results	in	an	update	to	the	corresponding	tuple	of	the	database	relation.

Recall	from	Section	4.3	that	a	transaction	allows	multiple	actions	to	be	treated	as	a	single	atomic	unit
which	can	be	committed	or	rolled	back.	By	default,	each	SQL	statement	is	treated	as	a	separate
transaction	that	is	committed	automatically.	The	method	setAutoCommit()	in	the	JDBC	Connection
interface	allows	this	behavior	to	be	turned	on	or	off.	Thus,	if	conn	is	an	open	connection,
conn.setAutoCommit(false)	turns	off	automatic	commit.	Transactions	must	then	be	committed	or	rolled
back	explicitly	using	either	conn.commit()	or	conn.rollback().	conn.setAutoCommit(true)	turns	on
automatic	commit.

JDBC	provides	interfaces	to	deal	with	large	objects	without	requiring	an	entire	large	object	to	be	created
in	memory.	To	fetch	large	objects,	the	ResultSet	interface	provides	methods	getBlob()	and	getClob()	that
are	similar	to	the	getString()	method,	but	return	objects	of	type	Blob	and	Clob,	respectively.	These	objects
do	not	store	the	entire	large	object,	but	instead	store	“locators”	for	the	large	objects,	that	is,	logical
pointers	to	the	actual	large	object	in	the	database.	Fetching	data	from	these	objects	is	very	much	like
fetching	data	from	a	file	or	an	input	stream,	and	it	can	be	performed	using	methods	such	as	getBytes()
and	getSubString().

Conversely,	to	store	large	objects	in	the	database,	the	PreparedStatement	class	permits	a	database
column	whose	type	is	blob	to	be	linked	to	an	input	stream	(such	as	a	file	that	has	been	opened)	using	the
method	setBlob(int	parameterIndex,	InputStream	inputStream).	When	the	prepared	statement	is
executed,	data	are	read	from	the	input	stream	and	written	to	the	blob	in	the	database.	Similarly,	a	clob
column	can	be	set	using	the	setClob()	method,	which	takes	as	arguments	a	parameter	index	and	a
character	stream.

JDBC	includes	a	row	set	feature	that	allows	result	sets	to	be	collected	and	shipped	to	other	applications.
Row	sets	can	be	scanned	both	backward	and	forward	and	can	be	modified.

5.1.2

Database	Access	from	Python

Database	access	can	be	done	from	Python	as	illustrated	by	the	method	shown	in	Figure	5.4.	The
statement	containing	the	insert	query	shows	how	to	use	the	Python	equivalent	of	JDBC	prepared
statements,	with	parameters	identified	in	the	SQL	query	by	“%s”,	and	parameter	values	provided	as	a	list.
Updates	are	not	committed	to	the	database	automatically;	the	commit()	method	needs	to	be	called	to
commit	an	update.

194

Chapter	5

Advanced	SQL

import	psycopg2

def	PythonDatabaseExample(userid,	passwd)

try:

conn	=	psycopg2.connect(host="db.yale.edu",	port=5432,

dbname="univdb",	user=userid,	password=passwd)

cur	=	conn.cursor()

try:

cur.execute("insert	into	instructor	values(%s,	%s,	%s,	%s)",

("77987","Kim","Physics",98000))

conn.commit();

except	Exception	as	sqle:

print("Could	not	insert	tuple.	",	sqle)

conn.rollback()

cur.execute(("select	dept	name,	avg	(salary)	"

"	from	instructor	group	by	dept	name"))

for	dept	in	cur:

print	dept[0],	dept[1]

except	Exception	as	sqle:

print("Exception	:	",	sqle)

Figure	5.4	Database	access	from	Python

The	try:,	except	…:	block	shows	how	to	catch	exceptions	and	to	print	information	about	the	exception.	The
for	loop	illustrates	how	to	loop	over	the	result	of	a	query	execution,	and	to	access	individual	attributes	of
a	particular	row.

The	preceding	program	uses	the	psycopg2	driver,	which	allows	connection	to	PostgreSQL	databases	and
is	imported	in	the	first	line	of	the	program.	Drivers	are	usually	database	specific,	with	the	MySQLdb
driver	to	connect	to	MySQL,	and	cx	Oracle	to	connect	to	Oracle;	but	the	pyodbc	driver	can	connect	to
most	databases	that	support	ODBC.	The	Python	Database	API	used	in	the	program	is	implemented	by
drivers	for	many	databases,	but	unlike	with	JDBC,	there	are	minor	differences	in	the	API	across	different
drivers,	in	particular	in	the	parameters	to	the	connect()	function.

5.1.3

ODBC

The	Open	Database	Connectivity	(ODBC)	standard	defines	an	API	that	applications	can	use	to	open	a
connection	with	a	database,	send	queries	and	updates,	and	get	back	results.	Applications	such	as
graphical	user	interfaces,	statistics	packages,	and	spreadsheets	can	make	use	of	the	same	ODBC	API	to
connect	to	any	database	server	that	supports	ODBC.

Each	database	system	supporting	ODBC	provides	a	library	that	must	be	linked	with	the	client	program.
When	the	client	program	makes	an	ODBC	API	call,	the	code

5.1

Accessing	SQL	from	a	Programming	Language

195

void	ODBCexample()

{

RETCODE	error;

HENV	env;	/*	environment	*/

HDBC	conn;	/*	database	connection	*/

SQLAllocEnv(&env);

SQLAllocConnect(env,	&conn);

SQLConnect(conn,	"db.yale.edu",	SQL	NTS,	"avi",	SQL	NTS,

"avipasswd",	SQL	NTS);

{

char	deptname[80];

float	salary;

int	lenOut1,	lenOut2;

HSTMT	stmt;

char	*	sqlquery	=	"select	dept	name,	sum	(salary)

from	instructor

group	by	dept	name";

SQLAllocStmt(conn,	&stmt);

error	=	SQLExecDirect(stmt,	sqlquery,	SQL	NTS);

if	(error	==	SQL	SUCCESS)	{

SQLBindCol(stmt,	1,	SQL	C	CHAR,	deptname	,	80,	&lenOut1);

SQLBindCol(stmt,	2,	SQL	C	FLOAT,	&salary,	0	,	&lenOut2);

while	(SQLFetch(stmt)	==	SQL	SUCCESS)	{

printf	("	%s	%g∖n",	deptname,	salary);

}

}

SQLFreeStmt(stmt,	SQL	DROP);

}

SQLDisconnect(conn);

SQLFreeConnect(conn);

SQLFreeEnv(env);

}

Figure	5.5	ODBC	code	example.

in	the	library	communicates	with	the	server	to	carry	out	the	requested	action	and	fetch	results.

Figure	5.5	shows	an	example	of	C	code	using	the	ODBC	API.	The	first	step	in	using	ODBC	to	communicate
with	a	server	is	to	set	up	a	connection	with	the	server.	To	do	so,	the	program	first	allocates	an	SQL
environment,	then	a	database	connection	handle.

ODBC	defines	the	types	HENV,	HDBC,	and	RETCODE.	The	program	then	opens	the

196

Chapter	5

Advanced	SQL

database	connection	by	using	SQLConnect.	This	call	takes	several	parameters,	including	the	connection
handle,	the	server	to	which	to	connect,	the	user	identifier,	and	the	password	for	the	database.	The
constant	SQL	NTS	denotes	that	the	previous	argument	is	a	null-terminated	string.

Once	the	connection	is	set	up,	the	program	can	send	SQL	commands	to	the	database	by	using
SQLExecDirect.	C	language	variables	can	be	bound	to	attributes	of	the	query	result,	so	that	when	a	result
tuple	is	fetched	using	SQLFetch,	its	attribute	values	are	stored	in	corresponding	C	variables.	The
SQLBindCol	function	does	this	task;	the	second	argument	identifies	the	position	of	the	attribute	in	the
query	result,	and	the	third	argument	indicates	the	type	conversion	required	from	SQL	to	C.	The	next
argument	gives	the	address	of	the	variable.	For	variable-length	types	like	character	arrays,	the	last	two
arguments	give	the	maximum	length	of	the	variable	and	a	location	where	the	actual	length	is	to	be	stored
when	a	tuple	is	fetched.	A	negative	value	returned	for	the	length	field	indicates	that	the	value	is	null.	For
fixed-length	types	such	as	integer	or	float,	the	maximum	length	field	is	ignored,	while	a	negative	value
returned	for	the	length	field	indicates	a	null	value.

The	SQLFetch	statement	is	in	a	while	loop	that	is	executed	until	SQLFetch	returns	a	value	other	than	SQL
SUCCESS.	On	each	fetch,	the	program	stores	the	values	in	C

variables	as	specified	by	the	calls	on	SQLBindCol	and	prints	out	these	values.

At	the	end	of	the	session,	the	program	frees	the	statement	handle,	disconnects	from	the	database,	and
frees	up	the	connection	and	SQL	environment	handles.	Good	programming	style	requires	that	the	result
of	every	function	call	must	be	checked	to	make	sure	there	are	no	errors;	we	have	omitted	most	of	these
checks	for	brevity.

It	is	possible	to	create	an	SQL	statement	with	parameters;	for	example,	consider	the	statement	insert	into
department	values(?,?,?).	The	question	marks	are	placeholders	for	values	which	will	be	supplied	later.	The
above	statement	can	be	“prepared,”	that	is,	compiled	at	the	database,	and	repeatedly	executed	by
providing	actual	values	for	the	placeholders	—	in	this	case,	by	providing	a	department	name,	building,	and
budget	for	the	relation	department.

ODBC	defines	functions	for	a	variety	of	tasks,	such	as	finding	all	the	relations	in	the	database	and	finding
the	names	and	types	of	columns	of	a	query	result	or	a	relation	in	the	database.

By	default,	each	SQL	statement	is	treated	as	a	separate	transaction	that	is	committed	automatically.	The
SQLSetConnectOption(conn,	SQL	AUTOCOMMIT,	0)	turns	off	automatic	commit	on	connection	conn,	and
transactions	must	then	be	committed	explicitly	by	SQLTransact(conn,	SQL	COMMIT)	or	rolled	back	by
SQLTransact(conn,	SQL	ROLLBACK).

The	ODBC	standard	defines	conformance	levels,	which	specify	subsets	of	the	functionality	defined	by	the
standard.	An	ODBC	implementation	may	provide	only	core	level	features,	or	it	may	provide	more
advanced	(level	1	or	level	2)	features.	Level	1

requires	support	for	fetching	information	about	the	catalog,	such	as	information	about	what	relations	are
present	and	the	types	of	their	attributes.	Level	2	requires	further	fea-

5.1

Accessing	SQL	from	a	Programming	Language

197

tures,	such	as	the	ability	to	send	and	retrieve	arrays	of	parameter	values	and	to	retrieve	more	detailed
catalog	information.

The	SQL	standard	defines	a	call	level	interface	(CLI)	that	is	similar	to	the	ODBC

interface.

5.1.4

Embedded	SQL

The	SQL	standard	defines	embeddings	of	SQL	in	a	variety	of	programming	languages,	such	as	C,	C++,
Cobol,	Pascal,	Java,	PL/I,	and	Fortran.	A	language	in	which	SQL

queries	are	embedded	is	referred	to	as	a	host	language,	and	the	SQL	structures	permitted	in	the	host
language	constitute	embedded	SQL.

Programs	written	in	the	host	language	can	use	the	embedded	SQL	syntax	to	access	and	update	data
stored	in	a	database.	An	embedded	SQL	program	must	be	processed	by	a	special	preprocessor	prior	to
compilation.	The	preprocessor	replaces	embedded	SQL	requests	with	host-language	declarations	and
procedure	calls	that	allow	runtime	execution	of	the	database	accesses.	Then	the	resulting	program	is
compiled	by	the	host-language	compiler.	This	is	the	main	distinction	between	embedded	SQL	and	JDBC	or
ODBC.

To	identify	embedded	SQL	requests	to	the	preprocessor,	we	use	the	EXEC	SQL

statement;	it	has	the	form:

EXEC	SQL	<	embedded	SQL	statement	>;

Before	executing	any	SQL	statements,	the	program	must	first	connect	to	the	database.

Variables	of	the	host	language	can	be	used	within	embedded	SQL	statements,	but	they	must	be	preceded
by	a	colon	(:)	to	distinguish	them	from	SQL	variables.

To	iterate	over	the	results	of	an	embedded	SQL	query,	we	must	declare	a	cursor	variable,	which	can	then
be	opened,	and	fetch	commands	issued	in	a	host	language	loop	to	fetch	consecutive	rows	of	the	query
result.	Attributes	of	a	row	can	be	fetched	into	host	language	variables.	Database	updates	can	also	be
performed	using	a	cursor	on	a	relation	to	iterate	through	the	rows	of	the	relation,	optionally	using	a
where	clause	to	iterate	through	only	selected	rows.	Embedded	SQL	commands	can	be	used	to	update	the
current	row	where	the	cursor	is	pointing.

The	exact	syntax	for	embedded	SQL	requests	depends	on	the	language	in	which	SQL	is	embedded.	You
may	refer	to	the	manuals	of	the	specific	language	embedding	that	you	use	for	further	details.

In	JDBC,	SQL	statements	are	interpreted	at	runtime	(even	if	they	are	created	using	the	prepared
statement	feature).	When	embedded	SQL	is	used,	there	is	a	potential	for	catching	some	SQL-related
errors	(including	data-type	errors)	at	the	time	of	preprocessing.	SQL	queries	in	embedded	SQL	programs
are	also	easier	to	comprehend	than	in	programs	using	dynamic	SQL.	However,	there	are	also	some
disadvantages	with	embedded	SQL.	The	preprocessor	creates	new	host	language	code,	which	may
complicate	debugging	of	the	program.	The	constructs	used	by	the	preprocessor	to	identify	SQL

198

Chapter	5

Advanced	SQL

Note	5.1	EMBEDDED	DATABASES

Both	JDBC	and	ODBC	assume	that	a	server	is	running	on	the	database	system	hosting	the	database.	Some
applications	use	a	database	that	exists	entirely	within	the	application.	Such	applications	maintain	the
database	only	for	internal	use	and	offer	no	accessibility	to	the	database	except	through	the	application
itself.	In	such	cases,	one	may	use	an	embedded	database	and	use	one	of	several	packages	that	implement
an	SQL	database	accessible	from	within	a	programming	language.	Popular	choices	include	Java	DB,
SQLite,	HSQLBD,	and	˝

2.	There	is	also	an	embedded

version	of	MySQL.

Embedded	database	systems	lack	many	of	the	features	of	full	server-based	database	systems,	but	they
offer	advantages	for	applications	that	can	benefit	from	the	database	abstractions	but	do	not	need	to
support	very	large	databases	or	large-scale	transaction	processing.

Do	not	confuse	embedded	databases	with	embedded	SQL;	the	latter	is	a	means	of	connecting	to	a
database	running	on	a	server.

statements	may	clash	syntactically	with	host	language	syntax	introduced	in	subsequent	versions	of	the
host	language.

As	a	result,	most	current	systems	use	dynamic	SQL,	rather	than	embedded	SQL.

One	exception	is	the	Microsoft	Language	Integrated	Query	(LINQ)	facility,	which	extends	the	host
language	to	include	support	for	queries	instead	of	using	a	preprocessor	to	translate	embedded	SQL
queries	into	the	host	language.

5.2

Functions	and	Procedures

We	have	already	seen	several	functions	that	are	built	into	the	SQL	language.	In	this	section,	we	show	how
developers	can	write	their	own	functions	and	procedures,	store	them	in	the	database,	and	then	invoke
them	from	SQL	statements.	Functions	are	particularly	useful	with	specialized	data	types	such	as	images
and	geometric	objects.	For	instance,	a	line-segment	data	type	used	in	a	map	database	may	have	an
associated	function	that	checks	whether	two	line	segments	overlap,	and	an	image	data	type	may	have
associated	functions	to	compare	two	images	for	similarity.

Procedures	and	functions	allow	“business	logic”	to	be	stored	in	the	database	and	executed	from	SQL
statements.	For	example,	universities	usually	have	many	rules	about	how	many	courses	a	student	can	take
in	a	given	semester,	the	minimum	number	of	courses	a	full-time	instructor	must	teach	in	a	year,	the
maximum	number	of	majors	a	student	can	be	enrolled	in,	and	so	on.	While	such	business	logic	can	be
encoded	as	programming-language	procedures	stored	entirely	outside	the	database,	defining	them	as
stored	procedures	in	the	database	has	several	advantages.	For	example,	it	allows

5.2

Functions	and	Procedures

199

create	function	dept	count(dept	name	varchar(20))

returns	integer

begin

declare	d	count	integer;

select	count(*)	into	d	count

from	instructor

where	instructor.	dept	name=	dept	name

return	d	count;

end

Figure	5.6	Function	defined	in	SQL.

multiple	applications	to	access	the	procedures,	and	it	allows	a	single	point	of	change	in	case	the	business
rules	change,	without	changing	other	parts	of	the	application.	Application	code	can	then	call	the	stored
procedures	instead	of	directly	updating	database	relations.

SQL	allows	the	definition	of	functions,	procedures,	and	methods.	These	can	be	defined	either	by	the
procedural	component	of	SQL	or	by	an	external	programming	language	such	as	Java,	C,	or	C++.	We	look
at	definitions	in	SQL	first	and	then	see	how	to	use	definitions	in	external	languages	in	Section	5.2.3.

Although	the	syntax	we	present	here	is	defined	by	the	SQL	standard,	most	databases	implement
nonstandard	versions	of	this	syntax.	For	example,	the	procedural	languages	supported	by	Oracle
(PL/SQL),	Microsoft	SQL	Server	(TransactSQL),	and	PostgreSQL	(PL/pgSQL)	all	differ	from	the	standard
syntax	we	present	here.	We	illustrate	some	of	the	differences	for	the	case	of	Oracle	in	Note	5.2	on	page

204.	See	the	respective	system	manuals	for	further	details.	Although	parts	of	the	syntax	we	present	here
may	not	be	supported	on	such	systems,	the	concepts	we	describe	are	applicable	across	implementations,
although	with	a	different	syntax.

5.2.1

Declaring	and	Invoking	SQL	Functions	and	Procedures

Suppose	that	we	want	a	function	that,	given	the	name	of	a	department,	returns	the	count	of	the	number	of
instructors	in	that	department.	We	can	define	the	function	as	shown	in	Figure	5.6.4	This	function	can	be
used	in	a	query	that	returns	names	and	budgets	of	all	departments	with	more	than	12	instructors:

select	dept	name,	budget

from	department

where	dept	count(dept	name)	>	12;

4If	you	are	entering	your	own	functions	or	procedures,	you	should	write	“create	or	replace”	rather	than
create	so	that	it	is	easy	to	modify	your	code	(by	replacing	the	function)	during	debugging.

200

Chapter	5

Advanced	SQL

create	function	instructor	of	(dept	name	varchar(20))	returns	table	(

ID	varchar	(5),

name	varchar	(20),

dept	name	varchar	(20),

salary	numeric	(8,2))

return	table

(select	ID,	name,	dept	name,	salary

from	instructor

where	instructor.	dept	name	=	instructor	of.dept	name);	Figure	5.7	Table	function	in	SQL.

Performance	problems	have	been	observed	on	many	database	systems	when	invoking	complex	user-
defined	functions	within	a	query,	if	the	functions	are	invoked	on	a	large	number	of	tuples.	Programmers
should	therefore	take	performance	into	consideration	when	deciding	whether	to	use	user-defined
functions	in	a	query.

The	SQL	standard	supports	functions	that	can	return	tables	as	results;	such	functions	are	called	table
functions.	Consider	the	function	defined	in	Figure	5.7.	The	function	returns	a	table	containing	all	the

instructors	of	a	particular	department.	Note	that	the	function’s	parameter	is	referenced	by	prefixing	it
with	the	name	of	the	function	(instructor	of.dept	name).

The	function	can	be	used	in	a	query	as	follows:

select	*

from	table(instructor	of	('Finance'));

This	query	returns	all	instructors	of	the	'Finance'	department.	In	this	simple	case	it	is	straightforward	to
write	this	query	without	using	table-valued	functions.	In	general,	however,	table-valued	functions	can	be
thought	of	as	parameterized	views	that	generalize	the	regular	notion	of	views	by	allowing	parameters.

SQL	also	supports	procedures.	The	dept	count	function	could	instead	be	written	as	a	procedure:

create	procedure	dept	count	proc(in	dept	name	varchar(20),	out	d	count	integer)

begin

select	count(*)	into	d	count

from	instructor

where	instructor.	dept	name=	dept	count	proc.	dept	name	end

5.2

Functions	and	Procedures

201

The	keywords	in	and	out	indicate,	respectively,	parameters	that	are	expected	to	have	values	assigned	to
them	and	parameters	whose	values	are	set	in	the	procedure	in	order	to	return	results.

Procedures	can	be	invoked	either	from	an	SQL	procedure	or	from	embedded	SQL

by	the	call	statement:

declare	d	count	integer;

call	dept	count	proc('Physics',	d	count);

Procedures	and	functions	can	be	invoked	from	dynamic	SQL,	as	illustrated	by	the	JDBC

syntax	in	Section	5.1.1.5.

SQL	permits	more	than	one	procedure	of	the	same	name,	so	long	as	the	number	of	arguments	of	the
procedures	with	the	same	name	is	different.	The	name,	along	with	the	number	of	arguments,	is	used	to
identify	the	procedure.	SQL	also	permits	more	than	one	function	with	the	same	name,	so	long	as	the
different	functions	with	the	same	name	either	have	different	numbers	of	arguments,	or	for	functions	with
the	same	number	of	arguments,	they	differ	in	the	type	of	at	least	one	argument.

5.2.2

Language	Constructs	for	Procedures	and	Functions

SQL	supports	constructs	that	give	it	almost	all	the	power	of	a	general-purpose	programming	language.
The	part	of	the	SQL	standard	that	deals	with	these	constructs	is	called	the	Persistent	Storage	Module
(PSM).

Variables	are	declared	using	a	declare	statement	and	can	have	any	valid	SQL	data	type.	Assignments	are
performed	using	a	set	statement.

A	compound	statement	is	of	the	form	begin	…	end,	and	it	may	contain	multiple	SQL	statements	between
the	begin	and	the	end.	Local	variables	can	be	declared	within	a	compound	statement,	as	we	have	seen	in
Section	5.2.1.	A	compound	statement	of	the	form	begin	atomic	…	end	ensures	that	all	the	statements
contained	within	it	are	executed	as	a	single	transaction.

The	syntax	for	while	statements	and	repeat	statements	is:

while	boolean	expression	do

sequence	of	statements;

end	while

repeat

sequence	of	statements;

until	boolean	expression

end	repeat

There	is	also	a	for	loop	that	permits	iteration	over	all	the	results	of	a	query:

202

Chapter	5

Advanced	SQL

declare	n	integer	default	0;

for	r	as

select	budget	from	department

where	dept	name	=	‘Music‘

do

set	n	=	n−	r.budget

end	for

The	program	fetches	the	query	results	one	row	at	a	time	into	the	for	loop	variable	(r,	in	the	above
example).	The	statement	leave	can	be	used	to	exit	the	loop,	while	iterate	starts	on	the	next	tuple,	from	the
beginning	of	the	loop,	skipping	the	remaining	statements.

The	conditional	statements	supported	by	SQL	include	if-then-else	statements	by	using	this	syntax:

if	boolean	expression

then	statement	or	compound	statement

elseif	boolean	expression

then	statement	or	compound	statement

else	statement	or	compound	statement

end	if

SQL	also	supports	a	case	statement	similar	to	the	C/C++	language	case	statement	(in	addition	to	case
expressions,	which	we	saw	in	Chapter	3).

Figure	5.8	provides	a	larger	example	of	the	use	of	procedural	constructs	in	SQL.

The	function	registerStudent	defined	in	the	figure	registers	a	student	in	a	course	section	after	verifying
that	the	number	of	students	in	the	section	does	not	exceed	the	capacity	of	the	room	allocated	to	the
section.	The	function	returns	an	error	code	—	a	value	greater	than	or	equal	to	0	signifies	success,	and	a
negative	value	signifies	an	error	condition	—

and	a	message	indicating	the	reason	for	the	failure	is	returned	as	an	out	parameter.

The	SQL	procedural	language	also	supports	the	signaling	of	exception	conditions	and	declaring	of
handlers	that	can	handle	the	exception,	as	in	this	code:	declare	out	of	classroom	seats	condition

declare	exit	handler	for	out	of	classroom	seats

begin

sequence	of	statements

end

The	statements	between	the	begin	and	the	end	can	raise	an	exception	by	executing	signal	out	of
classroom	seats.	The	handler	says	that	if	the	condition	arises,	the	action	to	be	taken	is	to	exit	the
enclosing	begin	end	statement.	Alternative	actions	would	be	continue,	which	continues	execution	from	the
next	statement	following	the	one	that	raised	the	exception.	In	addition	to	explicitly	defined	conditions,
there	are	also	predefined	conditions	such	as	sqlexception,	sqlwarning,	and	not	found.

5.2

Functions	and	Procedures

203

–	–	Registers	a	student	after	ensuring	classroom	capacity	is	not	exceeded

–	–	Returns	0	on	success,	and	-1	if	capacity	is	exceeded.

create	function	registerStudent(

in	s	id	varchar(5),

in	s	courseid	varchar	(8),

in	s	secid	varchar	(8),

in	s	semester	varchar	(6),

in	s	year	numeric	(4,0),

out	errorMsg	varchar(100)

returns	integer

begin

declare	currEnrol	int;

select	count(*)	into	currEnrol

from	takes

where	course	id	=	s	courseid	and	sec	id	=	s	secid	and	semester	=	s	semester	and	year	=	s	year;	declare
limit	int;

select	capacity	into	limit

from	classroom	natural	join	section

where	course	id	=	s	courseid	and	sec	id	=	s	secid	and	semester	=	s	semester	and	year	=	s	year;	if	(
currEnrol	<	limit)

begin

insert	into	takes	values

(s	id,	s	courseid,	s	secid,	s	semester,	s	year,	null);	return(0);

end

–	–	Otherwise,	section	capacity	limit	already	reached

set	errorMsg	=	’Enrollment	limit	reached	for	course	’	||	s	courseid

||	’	section	’	||	s	secid;

return(-1);

end;

Figure	5.8	Procedure	to	register	a	student	for	a	course	section.

5.2.3

External	Language	Routines

Although	the	procedural	extensions	to	SQL	can	be	very	useful,	they	are	unfortunately	not	supported	in	a
standard	way	across	databases.	Even	the	most	basic	features	have	different	syntax	or	semantics	in
different	database	products.	As	a	result,	programmers	have	to	learn	a	new	language	for	each	database
product.	An	alternative	that	is	gaining

204

Chapter	5

Advanced	SQL

Note	5.2	NONSTANDARD	SYNTAX	FOR	PROCEDURES	AND	FUNCTIONS

Although	the	SQL	standard	defines	the	syntax	for	procedures	and	functions,	most	databases	do	not	follow
the	standard	strictly,	and	there	is	considerable	variation	in	the	syntax	supported.	One	of	the	reasons	for
this	situation	is	that	these	databases	typically	introduced	support	for	procedures	and	functions	before	the
syntax	was	standardized,	and	they	continue	to	support	their	original	syntax.	It	is	not	possible	to	list	the
syntax	supported	by	each	database	here,	but	we	illustrate	a	few	of	the	differences	in	the	case	of	Oracle’s
PL/SQL	by	showing	below	a	version	of	the	function	from	Figure	5.6	as	it	would	be	defined	in	PL/SQL.

create	function	dept	count	(dname	in	instructor.dept	name%type)	return	integer	as

d	count	integer;

begin

select	count(*)	into	d	count

from	instructor

where	instructor.dept	name	=	dname;

return	d	count;

end;

While	the	two	versions	are	similar	in	concept,	there	are	a	number	of	minor	syntactic	differences,	some	of
which	are	evident	when	comparing	the	two	versions	of	the	function.	Although	not	shown	here,	the	syntax
for	control	flow	in	PL/SQL	also	has	several	differences	from	the	syntax	presented	here.

Observe	that	PL/SQL	allows	a	type	to	be	specified	as	the	type	of	an	attribute	of	a	relation,	by	adding	the
suffix	%type.	On	the	other	hand,	PL/SQL	does	not	directly	support	the	ability	to	return	a	table,	although
there	is	an	indirect	way	of	implementing	this	functionality	by	creating	a	table	type.	The	procedural
languages	supported	by	other	databases	also	have	a	number	of	syntactic	and	semantic	differences.	See
the	respective	language	references	for	more	information.	The	use	of	nonstandard	syntax	for	stored
procedures	and	functions	is	an	impediment	to	porting	an	application	to	a	different	database.

support	is	to	define	procedures	in	an	imperative	programming	language,	but	allow	them	to	be	invoked
from	SQL	queries	and	trigger	definitions.

SQL	allows	us	to	define	functions	in	a	programming	language	such	as	Java,	C#,	C,	or	C++.	Functions
defined	in	this	fashion	can	be	more	efficient	than	functions	defined	in	SQL,	and	computations	that	cannot
be	carried	out	in	SQL	can	be	executed	by	these	functions.

5.2

Functions	and	Procedures

205

External	procedures	and	functions	can	be	specified	in	this	way	(note	that	the	exact	syntax	depends	on	the
specific	database	system	you	use):

create	procedure	dept	count	proc(in	dept	name	varchar(20),

out	count	integer)

language	C

external	name	'/usr/avi/bin/dept	count	proc'

create	function	dept	count	(dept	name	varchar(20))

returns	integer

language	C

external	name	'/usr/avi/bin/dept	count'

In	general,	the	external	language	procedures	need	to	deal	with	null	values	in	parameters	(both	in	and	out)
and	return	values.	They	also	need	to	communicate	failure/success	status	and	to	deal	with	exceptions.	This
information	can	be	communicated	by	extra	parameters:	an	sqlstate	value	to	indicate	failure/success
status,	a	parameter	to	store	the	return	value	of	the	function,	and	indicator	variables	for	each
parameter/function	result	to	indicate	if	the	value	is	null.	Other	mechanisms	are	possible	to	handle	null
values,	for	example,	by	passing	pointers	instead	of	values.	The	exact	mechanisms	depend	on	the	database.
However,	if	a	function	does	not	deal	with	these	situations,	an	extra	line	parameter	style	general	can	be
added	to	the	declaration	to	indicate	that	the	external	procedures/functions	take	only	the	arguments
shown	and	do	not	handle	null	values	or	exceptions.

Functions	defined	in	a	programming	language	and	compiled	outside	the	database	system	may	be	loaded
and	executed	with	the	database-system	code.	However,	doing	so	carries	the	risk	that	a	bug	in	the	program
can	corrupt	the	internal	structures	of	the	database	and	can	bypass	the	access-control	functionality	of	the
database	system.

Database	systems	that	are	concerned	more	about	efficient	performance	than	about	security	may	execute

procedures	in	such	a	fashion.	Database	systems	that	are	concerned	about	security	may	execute	such	code
as	part	of	a	separate	process,	communicate	the	parameter	values	to	it,	and	fetch	results	back	via
interprocess	communication.	However,	the	time	overhead	of	interprocess	communication	is	quite	high;	on
typical	CPU

architectures,	tens	to	hundreds	of	thousands	of	instructions	can	execute	in	the	time	taken	for	one
interprocess	communication.

If	the	code	is	written	in	a	“safe”	language	such	as	Java	or	C#,	there	is	another	possibility:	executing	the
code	in	a	sandbox	within	the	database	query	execution	process	itself.	The	sandbox	allows	the	Java	or	C#
code	to	access	its	own	memory	area,	but	it	prevents	the	code	from	reading	or	updating	the	memory	of	the
query	execution	process,	or	accessing	files	in	the	file	system.	(Creating	a	sandbox	is	not	possible	for	a
language	such	as	C,	which	allows	unrestricted	access	to	memory	through	pointers.)	Avoiding	interprocess
communication	reduces	function	call	overhead	greatly.

206

Chapter	5

Advanced	SQL

Several	database	systems	today	support	external	language	routines	running	in	a	sandbox	within	the	query
execution	process.	For	example,	Oracle	and	IBM	DB2	allow	Java	functions	to	run	as	part	of	the	database
process.	Microsoft	SQL	Server	allows	procedures	compiled	into	the	Common	Language	Runtime	(CLR)	to
execute	within	the	database	process;	such	procedures	could	have	been	written,	for	example,	in	C#	or
Visual	Basic.	PostgreSQL	allows	functions	defined	in	several	languages,	such	as	Perl,	Python,	and	Tcl.

5.3

Triggers

A	trigger	is	a	statement	that	the	system	executes	automatically	as	a	side	effect	of	a	modification	to	the
database.	To	define	a	trigger,	we	must:

•	Specify	when	a	trigger	is	to	be	executed.	This	is	broken	up	into	an	event	that	causes	the	trigger	to	be
checked	and	a	condition	that	must	be	satisfied	for	trigger	execution	to	proceed.

•	Specify	the	actions	to	be	taken	when	the	trigger	executes.

Once	we	enter	a	trigger	into	the	database,	the	database	system	takes	on	the	responsibility	of	executing	it
whenever	the	specified	event	occurs	and	the	corresponding	condition	is	satisfied.

5.3.1

Need	for	Triggers

Triggers	can	be	used	to	implement	certain	integrity	constraints	that	cannot	be	specified	using	the
constraint	mechanism	of	SQL.	Triggers	are	also	useful	mechanisms	for	alerting	humans	or	for	starting
certain	tasks	automatically	when	certain	conditions	are	met.	As	an	illustration,	we	could	design	a	trigger
that,	whenever	a	tuple	is	inserted	into	the	takes	relation,	updates	the	tuple	in	the	student	relation	for	the
student	taking	the	course	by	adding	the	number	of	credits	for	the	course	to	the	student’s	total	credits.	As
another	example,	suppose	a	warehouse	wishes	to	maintain	a	minimum	inventory	of	each	item;	when	the
inventory	level	of	an	item	falls	below	the	minimum	level,	an	order	can	be	placed	automatically.	On	an
update	of	the	inventory	level	of	an	item,	the	trigger	compares	the	current	inventory	level	with	the
minimum	inventory	level	for	the	item,	and	if	the	level	is	at	or	below	the	minimum,	a	new	order	is	created.

Note	that	triggers	cannot	usually	perform	updates	outside	the	database,	and	hence,	in	the	inventory
replenishment	example,	we	cannot	use	a	trigger	to	place	an	order	in	the	external	world.	Instead,	we	add
an	order	to	a	relation	holding	reorders.	We	must	create	a	separate	permanently	running	system	process
that	periodically	scans	that	relation	and	places	orders.	Some	database	systems	provide	built-in	support	for
sending	email	from	SQL	queries	and	triggers	using	this	approach.

5.3

Triggers

207

create	trigger	timeslot	check1	after	insert	on	section

referencing	new	row	as	nrow

for	each	row

when	(nrow.time	slot	id	not	in	(

select	time	slot	id

from	time	slot))	/*	time	slot	id	not	present	in	time	slot	*/

begin

rollback

end;

create	trigger	timeslot	check2	after	delete	on	timeslot

referencing	old	row	as	orow

for	each	row

when	(orow.time	slot	id	not	in	(

select	time	slot	id

from	time	slot)	/*	last	tuple	for	time	slot	id	deleted	from	time	slot	*/

and	orow.time	slot	id	in	(

select	time	slot	id

from	section))	/*	and	time	slot	id	still	referenced	from	section*/

begin

rollback

end;

Figure	5.9	Using	triggers	to	maintain	referential	integrity.

5.3.2

Triggers	in	SQL

We	now	consider	how	to	implement	triggers	in	SQL.	The	syntax	we	present	here	is	defined	by	the	SQL
standard,	but	most	databases	implement	nonstandard	versions	of	this	syntax.	Although	the	syntax	we

present	here	may	not	be	supported	on	such	systems,	the	concepts	we	describe	are	applicable	across
implementations.	We	discuss	nonstandard	trigger	implementations	in	Note	5.3	on	page	212.	In	each
system,	trigger	syntax	is	based	upon	that	system’s	syntax	for	coding	functions	and	procedures.

Figure	5.9	shows	how	triggers	can	be	used	to	ensure	referential	integrity	on	the	time	slot	id	attribute	of
the	section	relation.	The	first	trigger	definition	in	the	figure	specifies	that	the	trigger	is	initiated	after	any
insert	on	the	relation	section	and	it	ensures	that	the	time	slot	id	value	being	inserted	is	valid.	SQL	bf
insert	statement	could	insert	multiple	tuples	of	the	relation,	and	the	for	each	row	clause	in	the	trigger
code	would	then	explicitly	iterate	over	each	inserted	row.	The	referencing	new	row	as	clause	creates	a
variable	nrow	(called	a	transition	variable)	that	stores	the	value	of	the	row	being	inserted.

208

Chapter	5

Advanced	SQL

The	when	statement	specifies	a	condition.	The	system	executes	the	rest	of	the	trigger	body	only	for	tuples
that	satisfy	the	condition.	The	begin	atomic	…	end	clause	can	serve	to	collect	multiple	SQL	statements
into	a	single	compound	statement.	In	our	example,	though,	there	is	only	one	statement,	which	rolls	back
the	transaction	that	caused	the	trigger	to	get	executed.	Thus,	any	transaction	that	violates	the	referential
integrity	constraint	gets	rolled	back,	ensuring	the	data	in	the	database	satisfies	the	constraint.

It	is	not	sufficient	to	check	referential	integrity	on	inserts	alone;	we	also	need	to	consider	updates	of
section,	as	well	as	deletes	and	updates	to	the	referenced	table	time	slot.	The	second	trigger	definition	in
Figure	5.9	considers	the	case	of	deletes	to	time	slot.	This	trigger	checks	that	the	time	slot	id	of	the	tuple
being	deleted	is	either	still	present	in	time	slot,	or	that	no	tuple	in	section	contains	that	particular	time
slot	id	value;	otherwise,	referential	integrity	would	be	violated.

To	ensure	referential	integrity,	we	would	also	have	to	create	triggers	to	handle	updates	to	section	and
time	slot;	we	describe	next	how	triggers	can	be	executed	on	updates,	but	we	leave	the	definition	of	these
triggers	as	an	exercise	to	the	reader.

For	updates,	the	trigger	can	specify	attributes	whose	update	causes	the	trigger	to	execute;	updates	to
other	attributes	would	not	cause	it	to	be	executed.	For	example,	to	specify	that	a	trigger	executes	after	an
update	to	the	grade	attribute	of	the	takes	relation,	we	write:

after	update	of	takes	on	grade

The	referencing	old	row	as	clause	can	be	used	to	create	a	variable	storing	the	old	value	of	an	updated	or
deleted	row.	The	referencing	new	row	as	clause	can	be	used	with	updates	in	addition	to	inserts.

Figure	5.10	shows	how	a	trigger	can	be	used	to	keep	the	tot	cred	attribute	value	of	student	tuples	up-to-
date	when	the	grade	attribute	is	updated	for	a	tuple	in	the	takes	relation.	The	trigger	is	executed	only
when	the	grade	attribute	is	updated	from	a	value	that	is	either	null	or	’F’	to	a	grade	that	indicates	the
course	is	successfully	completed.

The	update	statement	is	normal	SQL	syntax	except	for	the	use	of	the	variable	nrow.

A	more	realistic	implementation	of	this	example	trigger	would	also	handle	grade	corrections	that	change
a	successful	completion	grade	to	a	failing	grade	and	handle	insertions	into	the	takes	relation	where	the
grade	indicates	successful	completion.	We	leave	these	as	an	exercise	for	the	reader.

As	another	example	of	the	use	of	a	trigger,	the	action	on	delete	of	a	student	tuple	could	be	to	check	if	the
student	has	any	entries	in	the	takes	relation,	and	if	so,	to	delete	them.

Many	database	systems	support	a	variety	of	other	triggering	events,	such	as	when	a	user	(application)
logs	on	to	the	database	(that	is,	opens	a	connection),	the	system	shuts	down,	or	changes	are	made	to
system	settings.

Triggers	can	be	activated	before	the	event	(insert,	delete,	or	update)	instead	of	after	the	event.	Triggers
that	execute	before	an	event	can	serve	as	extra	constraints	that	can	prevent	invalid	updates,	inserts,	or
deletes.	Instead	of	letting	the	invalid	action	proceed

5.3

Triggers

209

create	trigger	credits	earned	after	update	of	takes	on	grade	referencing	new	row	as	nrow

referencing	old	row	as	orow

for	each	row

when	nrow.grade	<>	’F’	and	nrow.grade	is	not	null

and	(orow.grade	=	’F’	or	orow.grade	is	null)

begin	atomic

update	student

set	tot	cred=	tot	cred+

(select	credits

from	course

where	course.	course	id=	nrow.course	id)

where	student.id	=	nrow.id;

end;

Figure	5.10	Using	a	trigger	to	maintain	credits	earned	values.

and	cause	an	error,	the	trigger	might	take	action	to	correct	the	problem	so	that	the	update,	insert,	or
delete	becomes	valid.	For	example,	if	we	attempt	to	insert	an	instructor	into	a	department	whose	name
does	not	appear	in	the	department	relation,	the	trigger	could	insert	a	tuple	into	the	department	relation
for	that	department	name	before	the	insertion	generates	a	foreign-key	violation.	As	another	example,
suppose	the	value	of	an	inserted	grade	is	blank,	presumably	to	indicate	the	absence	of	a	grade.	We	can
define	a	trigger	that	replaces	the	value	with	the	null	value.	The	set	statement	can	be	used	to	carry	out
such	modifications.	An	example	of	such	a	trigger	appears	in	Figure	5.11.

Instead	of	carrying	out	an	action	for	each	affected	row,	we	can	carry	out	a	single	action	for	the	entire	SQL
statement	that	caused	the	insert,	delete,	or	update.	To	do	so,	we	use	the	for	each	statement	clause	instead
of	the	for	each	row	clause.	The	clauses	create	trigger	setnull	before	update	of	takes

referencing	new	row	as	nrow

for	each	row

when	(nrow.grade	=	’	’)

begin	atomic

set	nrow.grade	=	null;

end;

Figure	5.11	Example	of	using	set	to	change	an	inserted	value.

210

Chapter	5

Advanced	SQL

referencing	old	table	as	or	referencing	new	table	as	can	then	be	used	to	refer	to	temporary	tables	(called
transition	tables)	containing	all	the	affected	rows.	Transition	tables	cannot	be	used	with	before	triggers,
but	they	can	be	used	with	after	triggers,	regardless	of	whether	they	are	statement	triggers	or	row
triggers.	A	single	SQL	statement	can	then	be	used	to	carry	out	multiple	actions	on	the	basis	of	the
transition	tables.

Triggers	can	be	disabled	or	enabled;	by	default	they	are	enabled	when	they	are	created,	but	they	can	be
disabled	by	using	alter	trigger	trigger	name	disable	(some	databases	use	alternative	syntax	such	as
disable	trigger	trigger	name).	A	trigger	that	has	been	disabled	can	be	enabled	again.	A	trigger	can
instead	be	dropped,	which	removes	it	permanently,	by	using	the	command	drop	trigger	trigger	name.

Returning	to	our	inventory-replenishment	example	from	Section	5.3.1,	suppose	we	have	the	following
relations:

•	inventory	(item,	level),	which	notes	the	current	amount	of	the	item	in	the	warehouse.

•	minlevel	(item,	level),	which	notes	the	minimum	amount	of	the	item	to	be	maintained.

•	reorder	(item,	amount),	which	notes	the	amount	of	the	item	to	be	ordered	when	its	level	falls	below	the
minimum.

•	orders	(item,	amount),	which	notes	the	amount	of	the	item	to	be	ordered.

To	place	a	reorder	when	inventory	falls	below	a	specified	minimum,	we	can	use	the	trigger	shown	in
Figure	5.12.	Note	that	we	have	been	careful	to	place	an	order	only	when	the	amount	falls	from	above	the
minimum	level	to	below	the	minimum	level.	If	we	check	only	that	the	new	value	after	an	update	is	below
the	minimum	level,	we	may	place	an	order	erroneously	when	the	item	has	already	been	reordered.

SQL-based	database	systems	use	triggers	widely,	although	before	SQL:1999	they	were	not	part	of	the	SQL
standard.	Unfortunately,	as	a	result,	each	database	system	implemented	its	own	syntax	for	triggers,
leading	to	incompatibilities.	The	SQL:1999

syntax	for	triggers	that	we	use	here	is	similar,	but	not	identical,	to	the	syntax	in	the	IBM	DB2	and	Oracle
database	systems.	See	Note	5.3	on	page	212.

5.3.3

When	Not	to	Use	Triggers

There	are	many	good	uses	for	triggers,	such	as	those	we	have	just	seen	in	Section	5.3.2,	but	some	uses
are	best	handled	by	alternative	techniques.	For	example,	we	could	implement	the	on	delete	cascade
feature	of	a	foreign-key	constraint	by	using	a	trigger	instead	of	using	the	cascade	feature.	Not	only	would
this	be	more	work	to	implement,	but	also	it	would	be	much	harder	for	a	database	user	to	understand	the
set	of	constraints	implemented	in	the	database.

5.3

Triggers

211

create	trigger	reorder	after	update	of	level	on	inventory	referencing	old	row	as	orow,	new	row	as	nrow

for	each	row

when	nrow.level	<=	(select	level

from	minlevel

where	minlevel.item	=	orow.item)

and	orow.level	>	(select	level

from	minlevel

where	minlevel.item	=	orow.item)

begin	atomic

insert	into	orders

(select	item,	amount

from	reorder

where	reorder.item	=	orow.item);

end;

Figure	5.12	Example	of	trigger	for	reordering	an	item.

As	another	example,	triggers	can	be	used	to	maintain	materialized	views.	For	instance,	if	we	wished	to
support	very	fast	access	to	the	total	number	of	students	registered	for	each	course	section,	we	could	do
this	by	creating	a	relation	section	registration(course	id,	sec	id,	semester,	year,	total	students)	defined	by
the	query

select	course	id,	sec	id,	semester,	year,	count(ID)	as	total	students	from	takes

group	by	course	id,	sec	id,	semester,	year;	The	value	of	total	students	for	each	course	must	be	maintained
up-to-date	by	triggers	on	insert,	delete,	or	update	of	the	takes	relation.	Such	maintenance	may	require
insertion,	update	or	deletion	of	tuples	from	section	registration,	and	triggers	must	be	written	accordingly.

However,	many	database	systems	now	support	materialized	views,	which	are	automatically	maintained	by
the	database	system	(see	Section	4.2.3).	As	a	result,	there	is	no	need	to	write	trigger	code	for	maintaining
such	materialized	views.

Triggers	have	been	used	for	maintaining	copies,	or	replicas,	of	databases.	A	collection	of	triggers	on
insert,	delete,	or	update	can	be	created	on	each	relation	to	record	the	changes	in	relations	called	change
or	delta	relations.	A	separate	process	copies	over	the	changes	to	the	replica	of	the	database.	Modern
database	systems,	however,	provide

212

Chapter	5

Advanced	SQL

Note	5.3	NONSTANDARD	TRIGGER	SYNTAX

Although	the	trigger	syntax	we	describe	here	is	part	of	the	SQL	standard,	and	is	supported	by	IBM	DB2,
most	other	database	systems	have	nonstandard	syntax	for	specifying	triggers	and	may	not	implement	all
features	in	the	SQL	standard.

We	outline	a	few	of	the	differences	below;	see	the	respective	system	manuals	for	further	details.

For	example,	in	the	Oracle	syntax,	unlike	the	SQL	standard	syntax,	the	keyword	row	does	not	appear	in
the	referencing	statement.	The	keyword	atomic	does	not	appear	after	begin.	The	reference	to	nrow	in	the
select	statement	nested	in	the	update	statement	must	begin	with	a	colon	(:)	to	inform	the	system	that	the
variable	nrow	is	defined	externally	from	the	SQL	statement.	Further,	subqueries	are	not	allowed	in	the
when	and	if	clauses.	It	is	possible	to	work	around	this	problem	by	moving	complex	predicates	from	the
when	clause	into	a	separate	query	that	saves	the	result	into	a	local	variable,	and	then	reference	that
variable	in	an	if	clause,	and	the	body	of	the	trigger	then	moves	into	the	corresponding	then	clause.
Further,	in	Oracle,	triggers	are	not	allowed	to	execute	a	transaction	rollback	directly;	however,	they	can
instead	use	a	function	called	raise	application	error	to	not	only	roll	back	the	transaction	but	also	return	an
error	message	to	the	user/application	that	performed	the	update.

As	another	example,	in	Microsoft	SQL	Server	the	keyword	on	is	used	instead	of	after.	The	referencing
clause	is	omitted,	and	old	and	new	rows	are	referenced	by	the	tuple	variables	deleted	and	inserted.
Further,	the	for	each	row	clause	is	omitted,	and	when	is	replaced	by	if.	The	before	specification	is	not
supported,	but	an	instead	of	specification	is	supported.

In	PostgreSQL,	triggers	do	not	have	a	body,	but	instead	invoke	a	procedure	for	each	row,	which	can
access	variables	new	and	old	containing	the	old	and	new	values	of	the	row.	Instead	of	performing	a
rollback,	the	trigger	can	raise	an	exception	with	an	associated	error	message.

built-in	facilities	for	database	replication,	making	triggers	unnecessary	for	replication	in	most	cases.
Replicated	databases	are	discussed	in	detail	in	Chapter	23.

Another	problem	with	triggers	lies	in	unintended	execution	of	the	triggered	action	when	data	are	loaded
from	a	backup	copy,5	or	when	database	updates	at	a	site	are	replicated	on	a	backup	site.	In	such	cases,
the	triggered	action	has	already	been	executed,	and	typically	it	should	not	be	executed	again.	When
loading	data,	triggers	can	be	disabled	explicitly.	For	backup	replica	systems	that	may	have	to	take	over
from	the	primary	system,	triggers	would	have	to	be	disabled	initially	and	enabled	when	the	backup	5We
discuss	database	backup	and	recovery	from	failures	in	detail	in	Chapter	19.

5.4

Recursive	Queries

213

course	id

prereq	id

BIO-301

BIO-101

BIO-399

BIO-101

CS-190

CS-101

CS-315

CS-190

CS-319

CS-101

CS-319

CS-315

CS-347

CS-319

Figure	5.13	An	instance	of	the	prereq	relation.

site	takes	over	processing	from	the	primary	system.	As	an	alternative,	some	database	systems	allow
triggers	to	be	specified	as	not	for	replication,	which	ensures	that	they	are	not	executed	on	the	backup	site
during	database	replication.	Other	database	systems	provide	a	system	variable	that	denotes	that	the
database	is	a	replica	on	which	database	actions	are	being	replayed;	the	trigger	body	should	check	this
variable	and	exit	if	it	is	true.	Both	solutions	remove	the	need	for	explicit	disabling	and	enabling	of
triggers.

Triggers	should	be	written	with	great	care,	since	a	trigger	error	detected	at	runtime	causes	the	failure	of
the	action	statement	that	set	off	the	trigger.	Furthermore,	the	action	of	one	trigger	can	set	off	another
trigger.	In	the	worst	case,	this	could	even	lead	to	an	infinite	chain	of	triggering.	For	example,	suppose	an
insert	trigger	on	a	relation	has	an	action	that	causes	another	(new)	insert	on	the	same	relation.	The	insert
action	then	triggers	yet	another	insert	action,	and	so	on	ad	infinitum.	Some	database	systems	limit	the
length	of	such	chains	of	triggers	(for	example,	to	16	or	32)	and	consider	longer	chains	of	triggering	an
error.	Other	systems	flag	as	an	error	any	trigger	that	attempts	to	reference	the	relation	whose
modification	caused	the	trigger	to	execute	in	the	first	place.

Triggers	can	serve	a	very	useful	purpose,	but	they	are	best	avoided	when	alternatives	exist.	Many	trigger
applications	can	be	substituted	by	appropriate	use	of	stored	procedures,	which	we	discussed	in	Section
5.2.

5.4

Recursive	Queries

Consider	the	instance	of	the	relation	prereq	shown	in	Figure	5.13	containing	information	about	the
various	courses	offered	at	the	university	and	the	prerequisite	for	each	course.6

Suppose	now	that	we	want	to	find	out	which	courses	are	a	prerequisite	whether	directly	or	indirectly,	for
a	specific	course	—	say,	CS-347.	That	is,	we	wish	to	find	a	course	6This	instance	of	prereq	differs	from
that	used	earlier	for	reasons	that	will	become	apparent	as	we	use	it	to	explain	recursive	queries.

214

Chapter	5

Advanced	SQL

that	is	a	direct	prerequisite	for	CS-347,	or	is	a	prerequisite	for	a	course	that	is	a	prerequisite	for	CS-347,
and	so	on.

Thus,	since	CS-319	is	a	prerequisite	for	CS-347	and	CS-315	and	CS-101	are	prerequisites	for	CS-319,	CS-
315	and	CS-101	are	also	prerequisites	(indirectly)	for	CS-347.

Then,	since	CS-190	is	a	prerequisite	for	CS-315,	CS-190	is	another	indirect	prerequisite	for	CS-347.
Continuing,	we	see	that	CS-101	is	a	prerequisite	for	CS-190,	but	note	that	CS-101	was	already	added	to
the	list	of	prerequisites	for	CS-347.	In	a	real	university,	rather	than	our	example,	we	would	not	expect
such	a	complex	prerequisite	structure,	but	this	example	serves	to	show	some	of	the	situations	that	might
possibly	arise.

The	transitive	closure	of	the	relation	prereq	is	a	relation	that	contains	all	pairs	(cid,	pre)	such	that	pre	is
a	direct	or	indirect	prerequisite	of	cid.	There	are	numerous	applications	that	require	computation	of
similar	transitive	closures	on	hierarchies.	For	instance,	organizations	typically	consist	of	several	levels	of
organizational	units.	Machines	consist	of	parts	that	in	turn	have	subparts,	and	so	on;	for	example,	a
bicycle	may	have	subparts	such	as	wheels	and	pedals,	which	in	turn	have	subparts	such	as	tires,	rims,	and
spokes.	Transitive	closure	can	be	used	on	such	hierarchies	to	find,	for	example,	all	parts	in	a	bicycle.

5.4.1

Transitive	Closure	Using	Iteration

One	way	to	write	the	preceding	query	is	to	use	iteration:	First	find	those	courses	that	are	a	direct
prerequisite	of	CS-347,	then	those	courses	that	are	a	prerequisite	of	all	the	courses	under	the	first	set,
and	so	on.	This	iterative	process	continues	until	we	reach	an	iteration	where	no	courses	are	added.	Figure
5.14	shows	a	function	findAllPrereqs(cid)	to	carry	out	this	task;	the	function	takes	the	course	id	of	the
course	as	a	parameter	(cid),	computes	the	set	of	all	direct	and	indirect	prerequisites	of	that	course,	and
returns	the	set.

The	procedure	uses	three	temporary	tables:

•	c	prereq:	stores	the	set	of	tuples	to	be	returned.

•	new	c	prereq:	stores	the	courses	found	in	the	previous	iteration.

•	temp:	used	as	temporary	storage	while	sets	of	courses	are	manipulated.

Note	that	SQL	allows	the	creation	of	temporary	tables	using	the	command	create	temporary	table;	such
tables	are	available	only	within	the	transaction	executing	the	query	and	are	dropped	when	the	transaction
finishes.	Moreover,	if	two	instances	of	findAllPrereqs	run	concurrently,	each	gets	its	own	copy	of	the
temporary	tables;	if	they	shared	a	copy,	their	result	could	be	incorrect.

The	procedure	inserts	all	direct	prerequisites	of	course	cid	into	new	c	prereq	before	the	repeat	loop.	The
repeat	loop	first	adds	all	courses	in	new	c	prereq	to	c	prereq.	Next,	it	computes	prerequisites	of	all	those
courses	in	new	c	prereq,	except	those	that	have	already	been	found	to	be	prerequisites	of	cid,	and	stores
them	in	the	temporary	table

5.4

Recursive	Queries

215

create	function	findAllPrereqs(cid	varchar(8))

–	–	Finds	all	courses	that	are	prerequisite	(directly	or	indirectly)	for	cid	returns	table	(course	id
varchar(8))

–	–	The	relation	prereq(course	id,	prereq	id)	specifies	which	course	is

–	–	directly	a	prerequisite	for	another	course.

begin

create	temporary	table	c	prereq	(course	id	varchar(8));

–	–	table	c	prereq	stores	the	set	of	courses	to	be	returned

create	temporary	table	new	c	prereq	(course	id	varchar(8));

–	–	table	new	c	prereq	contains	courses	found	in	the	previous	iteration	create	temporary	table	temp	(
course	id	varchar(8));

–	–	table	temp	is	used	to	store	intermediate	results

insert	into	new	c	prereq

select	prereq	id

from	prereq

where	course	id	=	cid;

repeat

insert	into	c	prereq

select	course	id

from	new	c	prereq;

insert	into	temp

(select	prereq.	prereq	id

from	new	c	prereq,	prereq

where	new	c	prereq.	course	id	=	prereq.	course	id

)

except	(

select	course	id

from	c	prereq

);

delete	from	new	c	prereq;

insert	into	new	c	prereq

select	*

from	temp;

delete	from	temp;

until	not	exists	(select	*	from	new	c	prereq)

end	repeat;

return	table	c	prereq;

end

Figure	5.14	Finding	all	prerequisites	of	a	course.

216

Chapter	5

Advanced	SQL

Iteration	Number

Tuples	in	c1

0

1

(CS-319)

2

(CS-319),	(CS-315),	(CS-101)

3

(CS-319),	(CS-315),	(CS-101),	(CS-190)

4

(CS-319),	(CS-315),	(CS-101),	(CS-190)

5

done

Figure	5.15	Prerequisites	of	CS-347	in	iterations	of	function	findAllPrereqs.

temp.	Finally,	it	replaces	the	contents	of	new	c	prereq	with	the	contents	of	temp.	The	repeat	loop
terminates	when	it	finds	no	new	(indirect)	prerequisites.

Figure	5.15	shows	the	prerequisites	that	are	found	in	each	iteration	when	the	procedure	is	called	for	CS-

347.	While	c	prereq	could	have	been	updated	in	one	SQL	statement,	we	need	first	to	construct	new	c
prereq	so	we	can	tell	when	nothing	is	being	added	in	the	(final)	iteration.

The	use	of	the	except	clause	in	the	function	ensures	that	the	function	works	even	in	the	(abnormal)	case
where	there	is	a	cycle	of	prerequisites.	For	example,	if	a	is	a	prerequisite	for	b,	b	is	a	prerequisite	for	c,
and	c	is	a	prerequisite	for	a,	there	is	a	cycle.

While	cycles	may	be	unrealistic	in	course	prerequisites,	cycles	are	possible	in	other	applications.	For
instance,	suppose	we	have	a	relation	flights(to,	from)	that	says	which	cities	can	be	reached	from	which
other	cities	by	a	direct	flight.	We	can	write	code	similar	to	that	in	the	findAllPrereqs	function,	to	find	all
cities	that	are	reachable	by	a	sequence	of	one	or	more	flights	from	a	given	city.	All	we	have	to	do	is	to
replace	prereq	with	flight	and	replace	attribute	names	correspondingly.	In	this	situation,	there	can	be
cycles	of	reachability,	but	the	function	would	work	correctly	since	it	would	eliminate	cities	that	have
already	been	seen.

5.4.2

Recursion	in	SQL

It	is	rather	inconvenient	to	specify	transitive	closure	using	iteration.	There	is	an	alternative	approach,
using	recursive	view	definitions,	that	is	easier	to	use.

We	can	use	recursion	to	define	the	set	of	courses	that	are	prerequisites	of	a	particular	course,	say	CS-347,
as	follows.	The	courses	that	are	prerequisites	(directly	or	indirectly)	of	CS-347	are:

•	Courses	that	are	prerequisites	for	CS-347.

•	Courses	that	are	prerequisites	for	those	courses	that	are	prerequisites	(directly	or	indirectly)	for	CS-
347.

Note	that	case	2	is	recursive,	since	it	defines	the	set	of	courses	that	are	prerequisites	of	CS-347	in	terms
of	the	set	of	courses	that	are	prerequisites	of	CS-347.	Other	examples

5.4

Recursive	Queries

217

with	recursive	rec	prereq(course	id,	prereq	id)	as	(

select	course	id,	prereq	id

from	prereq

union

select	rec	prereq.	course	id,	prereq.	prereq	id	from	rec	prereq,	prereq

where	rec	prereq.	prereq	id	=	prereq.	course	id

)

select	∗

from	rec	prereq;

Figure	5.16	Recursive	query	in	SQL.

of	transitive	closure,	such	as	finding	all	subparts	(direct	or	indirect)	of	a	given	part	can	also	be	defined	in
a	similar	manner,	recursively.

The	SQL	standard	supports	a	limited	form	of	recursion,	using	the	with	recursive	clause,	where	a	view	(or
temporary	view)	is	expressed	in	terms	of	itself.	Recursive	queries	can	be	used,	for	example,	to	express
transitive	closure	concisely.	Recall	that	the	with	clause	is	used	to	define	a	temporary	view	whose
definition	is	available	only	to	the	query	in	which	it	is	defined.	The	additional	keyword	recursive	specifies
that	the	view	is	recursive.7

For	example,	we	can	find	every	pair	(cid,	pre)	such	that	pre	is	directly	or	indirectly	a	prerequisite	for
course	cid,	using	the	recursive	SQL	view	shown	in	Figure	5.16.

Any	recursive	view	must	be	defined	as	the	union8	of	two	subqueries:	a	base	query	that	is	nonrecursive
and	a	recursive	query	that	uses	the	recursive	view.	In	the	example	in	Figure	5.16,	the	base	query	is	the
select	on	prereq	while	the	recursive	query	computes	the	join	of	prereq	and	rec	prereq.

The	meaning	of	a	recursive	view	is	best	understood	as	follows:	First	compute	the	base	query	and	add	all
the	resultant	tuples	to	the	recursively	defined	view	relation	rec	prereq	(which	is	initially	empty).	Next
compute	the	recursive	query	using	the	current	contents	of	the	view	relation,	and	add	all	the	resulting
tuples	back	to	the	view	relation.

Keep	repeating	the	above	step	until	no	new	tuples	are	added	to	the	view	relation.	The	resultant	view
relation	instance	is	called	a	fixed	point	of	the	recursive	view	definition.

(The	term	“fixed”	refers	to	the	fact	that	there	is	no	further	change.)	The	view	relation	is	thus	defined	to
contain	exactly	the	tuples	in	the	fixed-point	instance.

Applying	this	logic	to	our	example,	we	first	find	all	direct	prerequisites	of	each	course	by	executing	the
base	query.	The	recursive	query	adds	one	more	level	of	courses	7Some	systems	treat	the	recursive
keyword	as	optional;	others	disallow	it.

8Some	systems,	notably	Oracle,	require	use	of	union	all.

218

Chapter	5

Advanced	SQL

in	each	iteration,	until	the	maximum	depth	of	the	course-prereq	relationship	is	reached.

At	this	point	no	new	tuples	are	added	to	the	view,	and	a	fixed	point	is	reached.

To	find	the	prerequisites	of	a	specific	course,	such	as	CS-347,	we	can	modify	the	outer	level	query	by
adding	a	where	clause	“where	rec	prereq.course	id	=	‘CS-347‘”.	One	way	to	evaluate	the	query	with	the
selection	is	to	compute	the	full	contents	of	rec	prereq	using	the	iterative	technique,	and	then	select	from
this	result	only	those	tuples	whose	course	id	is	CS-347.	However,	this	would	result	in	computing	(course,
prerequisite)	pairs	for	all	courses,	all	of	which	are	irrelevant	except	for	those	for	the	course	CS-347.

In	fact	the	database	system	is	not	required	to	use	this	iterative	technique	to	compute	the	full	result	of	the
recursive	query	and	then	perform	the	selection.	It	may	get	the	same	result	using	other	techniques	that
may	be	more	efficient,	such	as	that	used	in	the	function	findAllPrereqs	which	we	saw	earlier.	See	the
bibliographic	notes	for	references	to	more	information	on	this	topic.

There	are	some	restrictions	on	the	recursive	query	in	a	recursive	view;	specifically,	the	query	must	be
monotonic,	that	is,	its	result	on	a	view	relation	instance	V	must	be	a	1

superset	of	its	result	on	a	view	relation	instance	V	if	V	is	a	superset	of	V	.	Intuitively,	2

1

2

if	more	tuples	are	added	to	the	view	relation,	the	recursive	query	must	return	at	least	the	same	set	of
tuples	as	before,	and	possibly	return	additional	tuples.

In	particular,	recursive	queries	may	not	use	any	of	the	following	constructs,	since	they	would	make	the
query	nonmonotonic:

•	Aggregation	on	the	recursive	view.

•	not	exists	on	a	subquery	that	uses	the	recursive	view.

•	Set	difference	(except)	whose	right-hand	side	uses	the	recursive	view.

For	instance,	if	the	recursive	query	was	of	the	form	r	−	v,	where	v	is	the	recursive	view,	if	we	add	a	tuple
to	v,	the	result	of	the	query	can	become	smaller;	the	query	is	therefore	not	monotonic.

The	meaning	of	recursive	views	can	be	defined	by	the	iterative	procedure	as	long	as	the	recursive	query	is
monotonic;	if	the	recursive	query	is	nonmonotonic,	the	meaning	of	the	view	is	hard	to	define.	SQL
therefore	requires	the	queries	to	be	monotonic.	Recursive	queries	are	discussed	in	more	detail	in	the
context	of	the	Datalog	query	language,	in	Section	27.4.6.

SQL	also	allows	creation	of	recursively	defined	permanent	views	by	using	create	recursive	view	in	place
of	with	recursive.	Some	implementations	support	recursive	queries	using	a	different	syntax.	This	includes
the	Oracle	start	with	/	connect	by	prior	syntax	for	what	it	calls	hierarchical	queries.	9	See	the	respective
system	manuals	for	further	details.

9Staring	with	Oracle	12.c,	the	standard	syntax	is	accepted	in	addition	to	the	legacy	hierarchical	syntax,
with	the	recursive	keyword	omitted	and	with	the	requirement	in	our	example	that	union	all	be	used
instead	of	union.

5.5

Advanced	Aggregation	Features

219

5.5

Advanced	Aggregation	Features

The	aggregation	support	in	SQL	is	quite	powerful	and	handles	most	common	tasks	with	ease.	However,
there	are	some	tasks	that	are	hard	to	implement	efficiently	with	the	basic	aggregation	features.	In	this
section,	we	study	features	in	SQL	to	handle	some	such	tasks.

5.5.1

Ranking

Finding	the	position	of	a	value	within	a	set	is	a	common	operation.	For	instance,	we	may	wish	to	assign
students	a	rank	in	class	based	on	their	grade-point	average	(GPA),	with	the	rank	1	going	to	the	student
with	the	highest	GPA,	the	rank	2	to	the	student	with	the	next	highest	GPA,	and	so	on.	A	related	type	of
query	is	to	find	the	percentile	in	which	a	value	in	a	(multi)set	belongs,	for	example,	the	bottom	third,
middle	third,	or	top	third.	While	such	queries	can	be	expressed	using	the	SQL	constructs	we	have	seen	so
far,	they	are	difficult	to	express	and	inefficient	to	evaluate.	Programmers	may	resort	to	writing	the	query
partly	in	SQL	and	partly	in	a	programming	language.	We	study	SQL	support	for	direct	expression	of	these
types	of	queries	here.

In	our	university	example,	the	takes	relation	shows	the	grade	each	student	earned	in	each	course	taken.
To	illustrate	ranking,	let	us	assume	we	have	a	view	student	grades	(ID,	GPA)	giving	the	grade-point
average	of	each	student.10

Ranking	is	done	with	an	order	by	specification.	The	following	query	gives	the	rank	of	each	student:

select	ID,	rank()	over	(order	by	(GPA)	desc)	as	s	rank	from	student	grades;

Note	that	the	order	of	tuples	in	the	output	is	not	defined,	so	they	may	not	be	sorted	by	rank.	An	extra
order	by	clause	is	needed	to	get	them	in	sorted	order,	as	follows:	select	ID,	rank	()	over	(order	by	(GPA)
desc)	as	s	rank	from	student	grades

order	by	s	rank;

A	basic	issue	with	ranking	is	how	to	deal	with	the	case	of	multiple	tuples	that	are	the	same	on	the
ordering	attribute(s).	In	our	example,	this	means	deciding	what	to	do	if	there	are	two	students	with	the
same	GPA.	The	rank	function	gives	the	same	rank	to	all	tuples	that	are	equal	on	the	order	by	attributes.
For	instance,	if	the	highest	GPA	is	shared	by	two	students,	both	would	get	rank	1.	The	next	rank	given
would	be	3,	not	2,	so	if	three	students	get	the	next	highest	GPA,	they	would	all	get	rank	3,	and	the	next
10The	SQL	statement	to	create	the	view	student	grades	is	somewhat	complex	since	we	must	convert	the
letter	grades	in	the	takes	relation	to	numbers	and	weight	the	grades	for	each	course	by	the	number	of
credits	for	that	course.	The	definition	of	this	view	is	the	goal	of	Exercise	4.6.

220

Chapter	5

Advanced	SQL

student(s)	would	get	rank	6,	and	so	on.	There	is	also	a	dense	rank	function	that	does	not	create	gaps	in
the	ordering.	In	the	preceding	example,	the	tuples	with	the	second	highest	value	all	get	rank	2,	and	tuples
with	the	third	highest	value	get	rank	3,	and	so	on.

If	there	are	null	values	among	the	values	being	ranked,	they	are	treated	as	the	highest	values.	That	makes
sense	in	some	situations,	although	for	our	example,	it	would	result	in	students	with	no	courses	being
shown	as	having	the	highest	GPAs.	Thus,	we	see	that	care	needs	to	be	taken	in	writing	ranking	queries	in
cases	where	null	values	may	appear.	SQL	permits	the	user	to	specify	where	they	should	occur	by	using
nulls	first	or	nulls	last,	for	instance:

select	ID,	rank	()	over	(order	by	GPA	desc	nulls	last)	as	s	rank	from	student	grades;

It	is	possible	to	express	the	preceding	query	with	the	basic	SQL	aggregation	functions,	using	the	following
query:

select	ID,	(1	+	(select	count(*)

from	student	grades	B

where	B.	GPA	>	A.	GPA))	as	s	rank

from	student	grades	A

order	by	s	rank;

It	should	be	clear	that	the	rank	of	a	student	is	merely	1	plus	the	number	of	students	with	a	higher	GPA,
which	is	exactly	what	the	query	specifies.11	However,	this	computation	of	each	student’s	rank	takes	time
linear	in	the	size	of	the	relation,	leading	to	an	overall	time	quadratic	in	the	size	of	the	relation.	On	large
relations,	the	above	query	could	take	a	very	long	time	to	execute.	In	contrast,	the	system’s
implementation	of	the	rank	clause	can	sort	the	relation	and	compute	the	rank	in	much	less	time.

Ranking	can	be	done	within	partitions	of	the	data.	For	instance,	suppose	we	wish	to	rank	students	by
department	rather	than	across	the	entire	university.	Assume	that	a	view	is	defined	like	student	grades	but
including	the	department	name:	dept	grades(ID,	dept	name,	GPA).	The	following	query	then	gives	the
rank	of	students	within	each	section:

select	ID,	dept	name,

rank	()	over	(partition	by	dept	name	order	by	GPA	desc)	as	dept	rank	from	dept	grades

order	by	dept	name,	dept	rank;

11	There	is	a	slight	technical	difference	if	a	student	has	not	taken	any	courses	and	therefore	has	a	null
GPA.	Due	to	how	comparisons	of	null	values	work	in	SQL,	a	student	with	a	null	GPA	does	not	contribute	to
other	students’	count	values.

5.5

Advanced	Aggregation	Features

221

The	outer	order	by	clause	orders	the	result	tuples	by	department	name,	and	within	each	department	by
the	rank.

Multiple	rank	expressions	can	be	used	within	a	single	select	statement;	thus,	we	can	obtain	the	overall
rank	and	the	rank	within	the	department	by	using	two	rank	expressions	in	the	same	select	clause.	When
ranking	(possibly	with	partitioning)	occurs	along	with	a	group	by	clause,	the	group	by	clause	is	applied
first,	and	partitioning	and	ranking	are	done	on	the	results	of	the	group	by.	Thus,	aggregate	values	can
then	be	used	for	ranking.

It	is	often	the	case,	especially	for	large	results,	that	we	may	be	interested	only	in	the	top-ranking	tuples	of
the	result	rather	than	the	entire	list.	For	rank	queries,	this	can	be	done	by	nesting	the	ranking	query
within	a	containing	query	whose	where	clause	chooses	only	those	tuples	whose	rank	is	lower	than	some
specified	value.	For	example,	to	find	the	top	5	ranking	students	based	on	GPA	we	could	extend	our	earlier
example	by	writing:

select	*

from	(select	ID,	rank()	over	(order	by	(GPA)	desc)	as	s	rank	from	student	grades)

where	s	rank	<=	5;

This	query	does	not	necessarily	give	5	students,	since	there	could	be	ties.	For	example,	if	2	students	tie
for	fifth,	the	result	would	contain	a	total	of	6	tuples.	Note	that	the	bottom	n	is	simply	the	same	as	the	top
n	with	a	reverse	sorting	order.

Several	database	systems	provide	nonstandard	SQL	syntax	to	specify	directly	that	only	the	top	n	results
are	required.	In	our	example,	this	would	allow	us	to	find	the	top	5	students	without	the	need	to	use	the
rank	function.	However,	those	constructs	result	in	exactly	the	number	of	tuples	specified	(5	in	our
example),	and	so	ties	for	the	final	position	are	broken	arbitrarily.	The	exact	syntax	for	these	“top	n”
queries	varies	widely	among	systems;	see	Note	5.4	on	page	222.	Note	that	the	top	n	constructs	do	not
support	partitioning;	so	we	cannot	get	the	top	n	within	each	partition	without	performing	ranking.

Several	other	functions	can	be	used	in	place	of	rank.	For	instance,	percent	rank	of	a	tuple	gives	the	rank
of	the	tuple	as	a	fraction.	If	there	are	n	tuples	in	the	partition12

and	the	rank	of	the	tuple	is	r,	then	its	percent	rank	is	defined	as	(r	−	1)∕(n	−	1)	(and	as	null	if	there	is
only	one	tuple	in	the	partition).	The	function	cume	dist,	short	for	cumulative	distribution,	for	a	tuple	is
defined	as	p∕	n	where	p	is	the	number	of	tuples	in	the	partition	with	ordering	values	preceding	or	equal	to
the	ordering	value	of	the	tuple	and	n	is	the	number	of	tuples	in	the	partition.	The	function	row	number
sorts	the	rows	and	gives	each	row	a	unique	number	corresponding	to	its	position	in	the	sort	order;
different	rows	with	the	same	ordering	value	would	get	different	row	numbers,	in	a	nondeterministic
fashion.

12The	entire	set	is	treated	as	a	single	partition	if	no	explicit	partition	is	used.

222

Chapter	5

Advanced	SQL

Note	5.4	TOP-N	QUERIES

Often,	only	the	first	few	tuples	of	a	query	result	are	required.	This	may	occur	in	a	ranking	query	where
only	top-ranked	results	are	of	interest.	Another	case	where	this	may	occur	is	in	a	query	with	an	order	by
from	which	only	the	top	values	are	of	interest.	Restricting	results	to	the	top-ranked	results	can	be	done
using	the	rank	function	as	we	saw	earlier,	but	that	syntax	is	rather	cumbersome.	Many	databases	support
a	simpler	syntax	for	such	restriction,	but	the	syntax	varies	widely	among	the	leading	database	systems.
We	provide	a	few	examples	here.

Some	systems	(including	MySQL	and	PostgreSQL)	allow	a	clause	limit	n	to	be	added	at	the	end	of	an	SQL
query	to	specify	that	only	the	first	n	tuples	should	be	output.	This	clause	can	be	used	in	conjunction	with
an	order	by	clause	to	fetch	the	top	n	tuples,	as	illustrated	by	the	following	query,	which	retrieves	the	ID
and	GPA	of	the	top	10	students	in	order	of	GPA:

select	ID,	GPA

from	student	grades

order	by	GPA	desc

limit	10;

In	IBM	DB2	and	the	most	recent	versions	of	Oracle,	the	equivalent	of	the	limit	clause	is	fetch	first	10	rows
only.	Microsoft	SQL	Server	places	its	version	of	this	feature	in	the	select	clause	rather	than	adding	a
separate	limit	clause.	The	select	clause	is	written	as:	select	top	10	ID,	GPA.

Oracle	(both	current	and	older	versions)	offers	the	concept	of	a	row	number	to	provide	this	feature.	A
special,	hidden	attribute	rownum	numbers	tuples	of	a	result	relation	in	order	of	retrieval.	This	attribute
can	then	be	used	in	a	where	clause	within	a	containing	query.	However,	the	use	of	this	feature	is	a	bit
tricky,	since	the	rownum	is	decided	before	rows	are	sorted	by	an	order	by	clause.	To	use	it	properly,	a
nested	query	should	be	used	as	follows:

select	*

from	(select	ID,	GPA

from	student	grades

order	by	GPA	desc)

where	rownum	<=	10;

The	nested	query	ensures	that	the	predicate	on	rownum	is	applied	only	after	the	order	by	is	applied.

Some	database	systems	have	features	allowing	tuple	limits	to	be	exceeded	in	case	of	ties.	See	your
system’s	documentation	for	details.

5.5

Advanced	Aggregation	Features

223

Finally,	for	a	given	constant	n,	the	ranking	function	ntile(n)	takes	the	tuples	in	each	partition	in	the
specified	order	and	divides	them	into	n	buckets	with	equal	numbers	of	tuples.13	For	each	tuple,	ntile(n)
then	gives	the	number	of	the	bucket	in	which	it	is	placed,	with	bucket	numbers	starting	with	1.	This
function	is	particularly	useful	for	constructing	histograms	based	on	percentiles.	We	can	show	the	quartile
into	which	each	student	falls	based	on	GPA	by	the	following	query:

select	ID,	ntile(4)	over	(order	by	(GPA	desc))	as	quartile	from	student	grades;

5.5.2

Windowing

Window	queries	compute	an	aggregate	function	over	ranges	of	tuples.	This	is	useful,	for	example,	to
compute	an	aggregate	of	a	fixed	range	of	time;	the	time	range	is	called	a	window.	Windows	may	overlap,
in	which	case	a	tuple	may	contribute	to	more	than	one	window.	This	is	unlike	the	partitions	we	saw
earlier,	where	a	tuple	could	contribute	to	only	one	partition.

An	example	of	the	use	of	windowing	is	trend	analysis.	Consider	our	earlier	sales	example.	Sales	may
fluctuate	widely	from	day	to	day	based	on	factors	like	weather	(e.g.,	a	snowstorm,	flood,	hurricane,	or
earthquake	might	reduce	sales	for	a	period	of	time).

However,	over	a	sufficiently	long	period	of	time,	fluctuations	might	be	less	(continuing	the	example,	sales
may	“make	up”	for	weather-related	downturns).	Stock-market	trend	analysis	is	another	example	of	the	use
of	the	windowing	concept.	Various	“moving	averages”	are	found	on	business	and	investment	web	sites.

It	is	relatively	easy	to	write	an	SQL	query	using	those	features	we	have	already	studied	to	compute	an
aggregate	over	one	window,	for	example,	sales	over	a	fixed	3-day	period.	However,	if	we	want	to	do	this
for	every	3-day	period,	the	query	becomes	cumbersome.

SQL	provides	a	windowing	feature	to	support	such	queries.	Suppose	we	are	given	a	view	tot	credits	(year,
num	credits)	giving	the	total	number	of	credits	taken	by	students	in	each	year.14	Note	that	this	relation
can	contain	at	most	one	tuple	for	each	year.

Consider	the	following	query:

select	year,	avg(num	credits)

over	(order	by	year	rows	3	preceding)

as	avg	total	credits

from	tot	credits;

13If	the	total	number	of	tuples	in	a	partition	is	not	divisible	by	n,	then	the	number	of	tuples	in	each	bucket
can	differ	by	at	most	1.	Tuples	with	the	same	value	for	the	ordering	attribute	may	be	assigned	to	different
buckets,	nondeterministically,	in	order	to	make	the	number	of	tuples	in	each	bucket	equal.

14We	leave	the	definition	of	this	view	in	terms	of	our	university	example	as	an	exercise.

224

Chapter	5

Advanced	SQL

This	query	computes	averages	over	the	three	preceding	tuples	in	the	specified	sort	order.

Thus,	for	2019,	if	tuples	for	years	2018	and	2017	are	present	in	the	relation	tot	credits,	since	each	year	is
represented	by	only	one	tuple,	the	result	of	the	window	definition	is	the	average	of	the	values	for	years
2017,	2018,	and	2019.	The	averages	each	year	would	be	computed	in	a	similar	manner.	For	the	earliest
year	in	the	relation	tot	credits,	the	average	would	be	over	only	that	year	itself,	while	for	the	next	year,	the
average	would	be	over	2	years.	Note	that	this	example	makes	sense	only	because	each	year	appears	only

once	in	tot	weight.	Were	this	not	the	case,	then	there	would	be	several	possible	orderings	of	tuples	since
tuples	for	the	same	year	could	be	in	any	order.	We	shall	see	shortly	a	windowing	query	that	uses	a	range
of	values	instead	of	a	specific	number	of	tuples.

Suppose	that	instead	of	going	back	a	fixed	number	of	tuples,	we	want	the	window	to	consist	of	all	prior
years.	That	means	the	number	of	prior	years	considered	is	not	fixed.	To	get	the	average	total	credits	over
all	prior	years,	we	write:	select	year,	avg(num	credits)

over	(order	by	year	rows	unbounded	preceding)

as	avg	total	credits

from	tot	credits;

It	is	possible	to	use	the	keyword	following	in	place	of	preceding.	If	we	did	this	in	our	example,	the	year
value	specifies	the	beginning	of	the	window	instead	of	the	end.

Similarly,	we	can	specify	a	window	beginning	before	the	current	tuple	and	ending	after	it:

select	year,	avg(num	credits)

over	(order	by	year	rows	between	3	preceding	and	2	following)	as	avg	total	credits

from	tot	credits;

In	our	example,	all	tuples	pertain	to	the	entire	university.	Suppose	instead	we	have	credit	data	for	each
department	in	a	view	tot	credits	dept	(dept	name,	year,	num	credits)	giving	the	total	number	of	credits
students	took	with	the	particular	department	in	the	specified	year.	(Again,	we	leave	writing	this	view
definition	as	an	exercise.)	We	can	write	windowing	queries	that	treat	each	department	separately	by
partitioning	by	dept	name:

select	dept	name,	year,	avg(num	credits)

over	(partition	by	dept	name

order	by	year	rows	between	3	preceding	and	current	row)

as	avg	total	credits

from	tot	credits	dept;

5.5

Advanced	Aggregation	Features

225

item	name

color

clothes	size

quantity

dress

dark

small

2

dress

dark

medium

6

dress

dark

large

12

dress

pastel

small

4

dress

pastel

medium

3

dress

pastel

large

3

dress

white

small

2

dress

white

medium

3

dress

white

large

0

pants

dark

small

14

pants

dark

medium

6

pants

dark

large

0

pants

pastel

small

1

pants

pastel

medium

0

pants

pastel

large

1

pants

white

small

3

pants

white

medium

0

pants

white

large

2

shirt

dark

small

2

shirt

dark

medium

6

shirt

dark

large

6

shirt

pastel

small

4

shirt

pastel

medium

1

shirt

pastel

large

2

shirt

white

small

17

shirt

white

medium

1

shirt

white

large

10

skirt

dark

small

2

skirt

dark

medium

5

skirt

dark

large

1

skirt

pastel

small

11

skirt

pastel

medium

9

skirt

pastel

large

15

skirt

white

small

2

skirt

white

medium

5

skirt

white

large

3

Figure	5.17	An	example	of	sales	relation.

226

Chapter	5

Advanced	SQL

item	name

clothes	size

dark

pastel

white

dress

small

2

4

2

dress

medium

6

3

3

dress

large

12

3

0

pants

small

14

1

3

pants

medium

6

0

0

pants

large

0

1

2

shirt

small

2

4

17

shirt

medium

6

1

1

shirt

large

6

2

10

skirt

small

2

11

2

skirt

medium

5

9

5

skirt

large

1

15

3

Figure	5.18	Result	of	SQL	pivot	operation	on	the	sales	relation	of	Figure	5.17.

The	use	of	the	keyword	range	in	place	of	row	allows	the	windowing	query	to	cover	all	tuples	with	a
particular	value	rather	than	covering	a	specific	number	of	tuples.	Thus	for	example,	rows	current	row
refers	to	exactly	one	tuple,	while	range	current	row	refers	to	all	tuples	whose	value	for	the	sort	attribute
is	the	same	as	that	of	the	current	tuple.

The	range	keyword	is	not	implemented	fully	in	every	system.15

5.5.3

Pivoting

Consider	an	application	where	a	shop	wants	to	find	out	what	kinds	of	clothes	are	popular.	Let	us	suppose
that	clothes	are	characterized	by	their	item	name,	color,	and	size,	and	that	we	have	a	relation	sales	with
the	schema.

sales	(item	name,	color,	clothes	size,	quantity)	Suppose	that	item	name	can	take	on	the	values	(skirt,
dress,	shirt,	pants),	color	can	take	on	the	values	(dark,	pastel,	white),	clothes	size	can	take	on	values
(small,	medium,	large),	and	quantity	is	an	integer	value	representing	the	total	number	of	items	sold	of	a
given	(item	name,	color,	clothes	size)	combination.	An	instance	of	the	sales	relation	is	shown	in	Figure
5.17.

Figure	5.18	shows	an	alternative	way	to	view	the	data	that	is	present	in	Figure	5.17;	the	values	“dark”,
“pastel”,	and	“white”	of	attribute	color	have	become	attribute	names	in	Figure	5.18.	The	table	in	Figure
5.18	is	an	example	of	a	cross-tabulation	(or	cross-tab,	for	short),	also	referred	to	as	a	pivot-table.

The	values	of	the	new	attributes	dark,	pastel	and	white	in	our	example	are	defined	as	follows.	For	a
particular	combination	of	item	name,	clothes	size	(e.g.,	(“dress”,	“dark”))	15Some	systems,	such	as
PostgreSQL,	allow	range	only	with	unbounded.

5.5

Advanced	Aggregation	Features

227

if	there	is	a	single	tuple	with	color	value	“dark”,	the	quantity	value	of	that	attribute	appears	as	the	value
for	the	attribute	dark.	If	there	are	multiple	such	tuples,	the	values	are	aggregated	using	the	sum
aggregate	in	our	example;	in	general	other	aggregate	functions	could	be	used	instead.	Values	for	the
other	two	attributes,	pastel	and	white,	are	similarly	defined.

In	general,	a	cross-tab	is	a	table	derived	from	a	relation	(say,	R),	where	values	for	some	attribute	of
relation	R	(say,	A)	become	attribute	names	in	the	result;	the	attribute	A	is	the	pivot	attribute.	Cross-tabs
are	widely	used	for	data	analysis,	and	are	discussed	in	more	detail	in	Section	11.3.

Several	SQL	implementations,	such	as	Microsoft	SQL	Server,	and	Oracle,	support	a	pivot	clause	that
allows	creation	of	cross-tabs.	Given	the	sales	relation	from	Figure	5.17,	the	query:

select	*

from	sales

pivot	(

sum(quantity)

for	color	in	(’dark’,	’pastel’,	’white’)

)

returns	the	result	shown	in	Figure	5.18.

Note	that	the	for	clause	within	the	pivot	clause	specifies	(i)	a	pivot	attribute	(color,	in	the	above	query),
(ii)	the	values	of	that	attribute	that	should	appear	as	attribute	names	in	the	pivot	result	(dark,	pastel	and
white,	in	the	above	query),	and	(iii)	the	aggregate	function	that	should	be	used	to	compute	the	value	of
the	new	attributes	(aggregate	function	sum,	on	the	attribute	quantity,	in	the	above	query).

The	attribute	color	and	quantity	do	not	appear	in	the	result,	but	all	other	attributes	are	retained.	In	case
more	than	one	tuple	contributes	values	to	a	given	cell,	the	aggregate	operation	within	the	pivot	clause
specifies	how	the	values	should	be	combined.	In	the	above	example,	the	quantity	values	are	aggregated
using	the	sum	function.

A	query	using	pivot	can	be	written	using	basic	SQL	constructs,	without	using	the	pivot	construct,	but	the
construct	simplifies	the	task	of	writing	such	queries.

5.5.4

Rollup	and	Cube

SQL	supports	generalizations	of	the	group	by	construct	using	the	rollup	and	cube	operations,	which	allow
multiple	group	by	queries	to	be	run	in	a	single	query,	with	the	result	returned	as	a	single	relation.

Consider	again	our	retail	shop	example	and	the	relation:

sales	(item	name,	color,	clothes	size,	quantity)	We	can	find	the	number	of	items	sold	in	each	item	name
by	writing	a	simple	group	by	query:

228

Chapter	5

Advanced	SQL

select	item	name,	sum(quantity)	as	quantity

from	sales

group	by	item	name;

Similarly,	we	can	find	the	number	of	items	sold	in	each	color,	and	each	size.	We	can	further	find	a
breakdown	of	sales	by	item-name	and	color	by	writing:	select	item	name,	color,	sum(quantity)	as	quantity
from	sales

group	by	item	name,	color	;

Similarly,	a	query	with	group	by	item	name,	color,	clothes	size	would	allow	us	to	see	the	sales	breakdown

by	(item	name,	color,	clothes	size)	combinations.

Data	analysts	often	need	to	view	data	aggregated	in	multiple	ways	as	illustrated	above.	The	SQL	rollup
and	cube	constructs	provide	a	concise	way	to	get	multiple	such	aggregates	using	a	single	query,	instead	of
writing	multiple	queries.

The	rollup	construct	is	illustrated	using	the	following	query:

select	item	name,	color,	sum(quantity)

from	sales

group	by	rollup(item	name,	color);

The	result	of	the	query	is	shown	in	Figure	5.19.	The	above	query	is	equivalent	to	the	following	query
using	the	union	operation.

(select	item	name,	color,	sum(quantity)	as	quantity	from	sales

group	by	item	name,	color)

union

(select	item	name,	null	as	color,	sum(quantity)	as	quantity	from	sales

group	by	item	name)

union

(select	null	as	item	name,	null	as	color,	sum(quantity)	as	quantity	from	sales)

The	construct	group	by	rollup(item	name,	color)	generates	3	groupings:

{	(item	name,	color),	(item	name),	()	}

where	()	denotes	an	empty	group	by	list.	Observe	that	a	grouping	is	present	for	each	prefix	of	the
attributes	listed	in	the	rollup	clause,	including	the	empty	prefix.	The	query	result	contains	the	union	of	the
results	by	these	groupings.	The	different	groupings	generate	different	schemas;	to	bring	the	results	of	the
different	groupings	to	a	common

5.5

Advanced	Aggregation	Features

229

item	name

color

quantity

skirt

dark

8

skirt

pastel

35

skirt

white

10

dress

dark

20

dress

pastel

10

dress

white

5

shirt

dark

14

shirt

pastel

7

shirt

white

28

pants

dark

20

pants

pastel

2

pants

white

5

skirt

null

53

dress

null

35

shirt

null

49

pants

null

27

null

null

164

Figure	5.19	Query	result:	group	by	rollup	(item	name,	color).

schema,	tuples	in	the	result	contain	null	as	the	value	of	those	attributes	not	present	in	a	particular
grouping.16

The	cube	construct	generates	an	even	larger	number	of	groupings,	consisting	of	all	subsets	of	the
attributes	listed	in	the	cube	construct.	For	example,	the	query:	select	item	name,	color,	clothes	size,	sum(
quantity)	from	sales

group	by	cube(item	name,	color,	clothes	size);	generates	the	following	groupings:

{	(item	name,	color,	clothes	size),	(item	name,	color),	(item	name,	clothes	size),	(color,	clothes	size),	(
item	name),	(color),	(clothes	size),	()	}

To	bring	the	results	of	the	different	groupings	to	a	common	schema,	as	with	rollup,	tuples	in	the	result
contain	null	as	the	value	of	those	attributes	not	present	in	a	particular	grouping.

16The	SQL	outer	union	operation	can	be	used	to	perform	a	union	of	relations	that	may	not	have	a
common	schema.

The	resultant	schema	has	the	union	of	all	the	attributes	across	the	inputs;	each	input	tuple	is	mapped	to
an	output	tuple	by	adding	all	the	attributes	missing	in	that	tuple,	with	the	value	set	to	null.	Our	union
query	can	be	written	using	outer	union,	and	in	that	case	we	do	not	need	to	explicitly	generate	null-value
attributes	using	null	as	attribute-name	constructs,	as	we	have	done	in	the	above	query.

230

Chapter	5

Advanced	SQL

Multiple	rollups	and	cubes	can	be	used	in	a	single	group	by	clause.	For	instance,	the	following	query:

select	item	name,	color,	clothes	size,	sum(quantity)	from	sales

group	by	rollup(item	name),	rollup(color,	clothes	size);	generates	the	groupings:

{	(item	name,	color,	clothes	size),	(item	name,	color),	(item	name),	(color,	clothes	size),	(color),	()	}

To	understand	why,	observe	that	rollup(item	name)	generates	a	set	of	two	groupings,	{(item	name),	()},
while	rollup(color,	clothes	size)	generates	a	set	of	three	groupings,	{(color,	clothes	size),	(color),	()	}.
The	Cartesian	product	of	the	two	sets	gives	us	the	six	groupings	shown.

Neither	the	rollup	nor	the	cube	clause	gives	complete	control	on	the	groupings	that	are	generated.	For
instance,	we	cannot	use	them	to	specify	that	we	want	only	groupings	{(color,	clothes	size),	(clothes	size,
item	name)}.	Such	restricted	groupings	can	be	generated	by	using	the	grouping	sets	construct,	in	which
one	can	specify	the	specific	list	of	groupings	to	be	used.	To	obtain	only	groupings	{(color,	clothes	size),	(
clothes	size,	item	name)},	we	would	write:

select	item	name,	color,	clothes	size,	sum(quantity)	from	sales

group	by	grouping	sets	((color,	clothes	size),	(clothes	size,	item	name));	Analysts	may	want	to	distinguish
those	nulls	generated	by	rollup	and	cube	operations	from	“normal”	nulls	actually	stored	in	the	database	or
arising	from	an	outer	join.

The	grouping()	function	returns	1	if	its	argument	is	a	null	value	generated	by	a	rollup	or	cube	and	0
otherwise	(note	that	the	grouping	function	is	different	from	the	grouping	sets	construct).	If	we	wish	to
display	the	rollup	query	result	shown	in	Figure	5.19,	but	using	the	value	“all”	in	place	of	nulls	generated
by	rollup,	we	can	use	the	query:	select	(case	when	grouping(item	name)	=	1	then	’all’

else	item	name	end)	as	item	name,

(case	when	grouping(color)	=	1	then	’all’

else	color	end)	as	color,

sum(quantity)	as	quantity

from	sales

group	by	rollup(item	name,	color);

One	might	consider	using	the	following	query	using	coalesce,	but	it	would	incorrectly	convert	null	item
names	and	colors	to	all:

Review	Terms

231

select	coalesce	(item	name,’all’)	as	item	name,

coalesce	(color,’all’)	as	color,

sum(quantity)	as	quantity

from	sales

group	by	rollup(item	name,	color);

5.6

Summary

•	SQL	queries	can	be	invoked	from	host	languages	via	embedded	and	dynamic	SQL.

The	ODBC	and	JDBC	standards	define	application	program	interfaces	to	access	SQL	databases	from	C	and
Java	language	programs.

•	Functions	and	procedures	can	be	defined	using	SQL	procedural	extensions	that	allow	iteration	and
conditional	(if-then-else)	statements.

•	Triggers	define	actions	to	be	executed	automatically	when	certain	events	occur	and	corresponding
conditions	are	satisfied.	Triggers	have	many	uses,	such	as	business	rule	implementation	and	audit
logging.	They	may	carry	out	actions	outside	the	database	system	by	means	of	external	language	routines.

•	Some	queries,	such	as	transitive	closure,	can	be	expressed	either	by	using	iteration	or	by	using
recursive	SQL	queries.	Recursion	can	be	expressed	using	either	recursive	views	or	recursive	with	clause
definitions.

•	SQL	supports	several	advanced	aggregation	features,	including	ranking	and	windowing	queries,	as	well
as	pivot,	and	rollup/cube	operations.	These	simplify	the	expression	of	some	aggregates	and	allow	more
efficient	evaluation.

Review	Terms

•	JDBC

•	Table	functions.

•	Prepared	statements

•	Parameterized	views

•	SQL	injection

•	Persistent	Storage	Module	(PSM).

•	Metadata

•	Exception	conditions

•	Updatable	result	sets

•	Handlers

•	Open

Database

Connectivity

•	External	language	routines

(ODBC)

•	Sandbox

•	Embedded	SQL

•	Trigger

•	Embedded	database

•	Transitive	closure

•	Stored	procedures	and	functions

•	Hierarchies

232

Chapter	5

Advanced	SQL

•	Create	temporary	table

•	Ranking	functions

•	Base	query

•	Cross-tabulation

•	Recursive	query

•	Cross-tab

•	Fixed	point

•	Pivot-table

•	Monotonic

•	Pivot

•	Windowing

•	SQL	group	by	cube,	group	by	rollup

Practice	Exercises

5.1

Consider	the	following	relations	for	a	company	database:

•	emp	(ename,	dname,	salary)

•	mgr	(ename,	mname)

and	the	Java	code	in	Figure	5.20,	which	uses	the	JDBC	API.	Assume	that	the	userid,	password,	machine
name,	etc.	are	all	okay.	Describe	in	concise	English	what	the	Java	program	does.	(That	is,	produce	an
English	sentence	like	“It	finds	the	manager	of	the	toy	department,”	not	a	line-by-line	description	of	what
each	Java	statement	does.)

5.2

Write	a	Java	method	using	JDBC	metadata	features	that	takes	a	ResultSet	as	an	input	parameter	and
prints	out	the	result	in	tabular	form,	with	appropriate	names	as	column	headings.

5.3

Suppose	that	we	wish	to	find	all	courses	that	must	be	taken	before	some	given	course.	That	means	finding
not	only	the	prerequisites	of	that	course,	but	prerequisites	of	prerequisites,	and	so	on.	Write	a	complete
Java	program	using	JDBC

that:

•	Takes	a	course	id	value	from	the	keyboard.

•	Finds	prerequisites	of	that	course	using	an	SQL	query	submitted	via	JDBC.

•	For	each	course	returned,	finds	its	prerequisites	and	continues	this	process	iteratively	until	no	new
prerequisite	courses	are	found.

•	Prints	out	the	result.

For	this	exercise,	do	not	use	a	recursive	SQL	query,	but	rather	use	the	iterative	approach	described
previously.	A	well-developed	solution	will	be	robust	to	the	error	case	where	a	university	has	accidentally
created	a	cycle	of	prerequisites	(that	is,	for	example,	course	A	is	a	prerequisite	for	course	B,	course	B	is	a
prerequisite	for	course	C,	and	course	C	is	a	prerequisite	for	course	A).

Practice	Exercises

233

import	java.sql.*;

public	class	Mystery	{

public	static	void	main(String[]	args)	{

try	(

Connection	con=DriverManager.getConnection(

"jdbc:oracle:thin:star/X@//edgar.cse.lehigh.edu:1521/XE");

q	=	"select	mname	from	mgr	where	ename	=	?";

PreparedStatement	stmt=con.prepareStatement();

)

{

String	q;

String	empName	=	"dog";

boolean	more;

ResultSet	result;

do	{

stmt.setString(1,	empName);

result	=	stmt.executeQuery(q);

more	=	result.next();

if	(more)	{

empName	=	result.getString("mname");

System.out.println	(empName);

}

}	while	(more);

s.close();

con.close();

}

catch(Exception	e){

e.printStackTrace();

}

}

}

Figure	5.20	Java	code	for	Exercise	5.1	(using	Oracle	JDBC).

5.4

Describe	the	circumstances	in	which	you	would	choose	to	use	embedded	SQL

rather	than	SQL	alone	or	only	a	general-purpose	programming	language.

5.5

Show	how	to	enforce	the	constraint	“an	instructor	cannot	teach	two	different	sections	in	a	semester	in	the
same	time	slot.”	using	a	trigger	(remember	that	the	constraint	can	be	violated	by	changes	to	the	teaches
relation	as	well	as	to	the	section	relation).

234

Chapter	5

Advanced	SQL

branch	(branch	name,	branch	city,	assets)

customer	(customer	name,	customer	street,	cust	omer	city)	loan	(loan	number,	branch	name,	amount)

borrower	(customer	name,	loan	number)

account	(account	number,	branch	name,	balance)	depositor	(customer	name,	account	number)

Figure	5.21	Banking	database	for	Exercise	5.6.

5.6

Consider	the	bank	database	of	Figure	5.21.	Let	us	define	a	view	branch	cust	as	follows:

create	view	branch	cust	as

select	branch	name,	customer	name

from	depositor,	account

where	depositor.account	number	=	account.account	number

Suppose	that	the	view	is	materialized;	that	is,	the	view	is	computed	and	stored.

Write	triggers	to	maintain	the	view,	that	is,	to	keep	it	up-to-date	on	insertions	to	depositor	or	account.	It	is
not	necessary	to	handle	deletions	or	updates.	Note	that,	for	simplicity,	we	have	not	required	the
elimination	of	duplicates.

5.7

Consider	the	bank	database	of	Figure	5.21.	Write	an	SQL	trigger	to	carry	out	the	following	action:	On
delete	of	an	account,	for	each	customer-owner	of	the	account,	check	if	the	owner	has	any	remaining
accounts,	and	if	she	does	not,	delete	her	from	the	depositor	relation.

5.8

Given	a	relation	S(student,	subject,	marks),	write	a	query	to	find	the	top	10	students	by	total	marks,	by
using	SQL	ranking.	Include	all	students	tied	for	the	final	spot	in	the	ranking,	even	if	that	results	in	more
than	10	total	students.

5.9

Given	a	relation	nyse(year,	month,	day,	shares	traded,	dollar	volume)	with	trading	data	from	the	New

York	Stock	Exchange,	list	each	trading	day	in	order	of	number	of	shares	traded,	and	show	each	day’s
rank.

5.10

Using	the	relation	from	Exercise	5.9,	write	an	SQL	query	to	generate	a	report	showing	the	number	of
shares	traded,	number	of	trades,	and	total	dollar	volume	broken	down	by	year,	each	month	of	each	year,
and	each	trading	day.

5.11

Show	how	to	express	group	by	cube(a,	b,	c,	d)	using	rollup;	your	answer	should	have	only	one	group	by
clause.

Exercises

235

Exercises

5.12

Write	a	Java	program	that	allows	university	administrators	to	print	the	teaching	record	of	an	instructor.

a.

Start	by	having	the	user	input	the	login	ID	and	password;	then	open	the	proper	connection.

b.

The	user	is	asked	next	for	a	search	substring	and	the	system	returns	(ID,	name)	pairs	of	instructors	whose
names	match	the	substring.	Use	the	like	('%substring%')	construct	in	SQL	to	do	this.	If	the	search	comes
back

empty,	allow	continued	searches	until	there	is	a	nonempty	result.

c.

Then	the	user	is	asked	to	enter	an	ID	number,	which	is	a	number	between	0	and	99999.	Once	a	valid
number	is	entered,	check	if	an	instructor	with	that	ID	exists.	If	there	is	no	instructor	with	the	given	ID,
print	a	reasonable	message	and	quit.

d.

If	the	instructor	has	taught	no	courses,	print	a	message	saying	that.	Otherwise	print	the	teaching	record
for	the	instructor,	showing	the	department	name,	course	identifier,	course	title,	section	number,	semester,
year,	and	total	enrollment	(and	sort	those	by	dept	name,	course	id,	year,	semester).

Test	carefully	for	bad	input.	Make	sure	your	SQL	queries	won’t	throw	an	exception.	At	login,	exceptions
may	occur	since	the	user	might	type	a	bad	password,	but	catch	those	exceptions	and	allow	the	user	to	try
again.

5.13

Suppose	you	were	asked	to	define	a	class	MetaDisplay	in	Java,	containing	a	method	static	void
printTable(String	r);	the	method	takes	a	relation	name	r	as	input,	executes	the	query	“select	*	from	r”,
and	prints	the	result	out	in	tabular	format,	with	the	attribute	names	displayed	in	the	header	of	the	table.

a.

What	do	you	need	to	know	about	relation	r	to	be	able	to	print	the	result	in	the	specified	tabular	format?

b.

What	JDBC	methods(s)	can	get	you	the	required	information?

c.

Write	the	method	printTable(String	r)	using	the	JDBC	API.

5.14

Repeat	Exercise	5.13	using	ODBC,	defining	void	printTable(char	*r)	as	a	function	instead	of	a	method.

5.15

Consider	an	employee	database	with	two	relations

employee	(employee	name,	street,	city)	works	(employee	name,	company	name,	salary)

236

Chapter	5

Advanced	SQL

where	the	primary	keys	are	underlined.	Write	a	function	avg	salary	that	takes	a	company	name	as	an
argument	and	finds	the	average	salary	of	employees	at	that	company.	Then,	write	an	SQL	statement,
using	that	function,	to	find	companies	whose	employees	earn	a	higher	salary,	on	average,	than	the
average	salary	at

“First	Bank”.

5.16

Consider	the	relational	schema

part(part	id,	name,	cost)

subpart(part	id,	subpart	id,	count)

where	the	primary-key	attributes	are	underlined.	A	tuple	(p	,	p	,	3)	in	the	subpart	1

2

relation	denotes	that	the	part	with	part	id	p	is	a	direct	subpart	of	the	part	2

with	part	id	p	,	and	p	has	3	copies	of	p	.	Note	that	p	may	itself	have	further	1

1

2

2

subparts.	Write	a	recursive	SQL	query	that	outputs	the	names	of	all	subparts	of	the	part	with	part-id	'P-
100'.

5.17

Consider	the	relational	schema	from	Exercise	5.16.	Write	a	JDBC	function	using	nonrecursive	SQL	to	find
the	total	cost	of	part	“P-100”,	including	the	costs	of	all	its	subparts.	Be	sure	to	take	into	account	the	fact
that	a	part	may	have	multiple	occurrences	of	a	subpart.	You	may	use	recursion	in	Java	if	you	wish.

5.18

Redo	Exercise	5.12	using	the	language	of	your	database	system	for	coding	stored	procedures	and
functions.	Note	that	you	are	likely	to	have	to	consult	the	online	documentation	for	your	system	as	a
reference,	since	most	systems	use	syntax	differing	from	the	SQL	standard	version	followed	in	the	text.
Specifically,	write	a	prodedure	that	takes	an	instructor	ID	as	an	argument	and	produces	printed	output	in
the	format	specified	in	Exercise	5.12,	or	an	appropriate	message	if	the	instructor	does	not	exist	or	has
taught	no	courses.	(For	a	simpler	version	of	this	exercise,	rather	than	providing	printed	output,	assume	a
relation	with	the	appropriate	schema	and	insert	your	answer	there	without	worrying	about	testing	for
erroneous	argument	values.)

5.19

Suppose	there	are	two	relations	r	and	s,	such	that	the	foreign	key	B	of	r	references	the	primary	key	A	of	s.
Describe	how	the	trigger	mechanism	can	be	used	to	implement	the	on	delete	cascade	option	when	a	tuple
is	deleted	from	s.

5.20

The	execution	of	a	trigger	can	cause	another	action	to	be	triggered.	Most	database	systems	place	a	limit
on	how	deep	the	nesting	can	be.	Explain	why	they	might	place	such	a	limit.

5.21

Modify	the	recursive	query	in	Figure	5.16	to	define	a	relation

prereq	depth(course	id,	prereq	id,	depth)

Tools

237

building

room	number

time	slot	id

course	id

sec	id

Garfield

359

A

BIO-101

1

Garfield

359

B

BIO-101

2

Saucon

651

A

CS-101

2

Saucon

550

C

CS-319

1

Painter

705

D

MU-199

1

Painter

403

D

FIN-201

1

Figure	5.22	The	relation	r	for	Exercise	5.24.

where	the	attribute	depth	indicates	how	many	levels	of	intermediate	prerequisites	there	are	between	the
course	and	the	prerequisite.	Direct	prerequisites	have	a	depth	of	0.	Note	that	a	prerequisite	course	may
have	multiple	depths	and	thus	may	appear	more	than	once.

5.22

Given	relation	s(a,	b,	c),	write	an	SQL	statement	to	generate	a	histogram	showing	the	sum	of	c	values
versus	a,	dividing	a	into	20	equal-sized	partitions	(i.e.,	where	each	partition	contains	5	percent	of	the
tuples	in	s,	sorted	by	a).

5.23

Consider	the	nyse	relation	of	Exercise	5.9.	For	each	month	of	each	year,	show	the	total	monthly	dollar
volume	and	the	average	monthly	dollar	volume	for	that	month	and	the	two	prior	months.	(Hint:	First
write	a	query	to	find	the	total	dollar	volume	for	each	month	of	each	year.	Once	that	is	right,	put	that	in	the
from	clause	of	the	outer	query	that	solves	the	full	problem.	That	outer	query	will	need	windowing.	The
subquery	does	not.)

5.24

Consider	the	relation,	r,	shown	in	Figure	5.22.	Give	the	result	of	the	following	query:

select	building,	room	number,	time	slot	id,	count(*)	from	r

group	by	rollup	(building,	room	number,	time	slot	id)	Tools

We	provide	sample	JDBC	code	on	our	book	web	site	db-book.com.

Most	database	vendors,	including	IBM,	Microsoft,	and	Oracle,	provide	OLAP	tools	as	part	of	their
database	systems,	or	as	add-on	applications.	Tools	may	be	integrated	with	a	larger	“business	intelligence”
product	such	as	IBM	Cognos.	Many	companies	also	provide	analysis	tools	for	specific	applications,	such	as

customer	relationship	management	(e.g.,	Oracle	Siebel	CRM).

238

Chapter	5

Advanced	SQL

Further	Reading

More	details	about	JDBC	may	be	found	at	docs.oracle.com/javase/tutorial/jdbc.

In	order	to	write	stored	procedures,	stored	functions,	and	triggers	that	can	be	executed	on	a	given
system,	you	need	to	refer	to	the	system	documentation.

Although	our	discussion	of	recursive	queries	focused	on	SQL	syntax,	there	are	other	approaches	to
recursion	in	relational	databases.	Datalog	is	a	database	language	based	on	the	Prolog	programming
language	and	is	described	in	more	detail	in	Section	27.4	(available	online).

OLAP	features	in	SQL,	including	rollup,	and	cubes	were	introduced	in	SQL:1999,	and	window	functions
with	ranking	and	partitioning	were	added	in	SQL:2003.	OLAP

features,	including	window	functions,	are	supported	by	most	databases	today.	Although	most	follow	the
SQL	standard	syntax	that	we	have	presented,	there	are	some	differences;	refer	to	the	system	manuals	of
the	system	that	you	are	using	for	further	details.

Microsoft’s	Multidimensional	Expressions	(MDX)	is	an	SQL-like	query	language	designed	for	querying
OLAP	cubes.

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

PART	2

DATABASE	DESIGN

The	task	of	creating	a	database	application	is	a	complex	one,	involving	design	of	the	database	schema,
design	of	the	programs	that	access	and	update	the	data,	and	design	of	a	security	scheme	to	control	access

to	data.	The	needs	of	the	users	play	a	central	role	in	the	design	process.	In	this	part,	we	focus	primarily	on
the	design	of	the	database	schema.	We	also	outline	some	of	the	other	design	tasks.

The	entity-relationship	(E-R)	model	described	in	Chapter	6	is	a	high-level	data	model.	Instead	of
representing	all	data	in	tables,	it	distinguishes	between	basic	objects,	called	entities,	and	relationships
among	these	objects.	It	is	often	used	as	a	first	step	in	database-schema	design.

Relational	database	design	—	the	design	of	the	relational	schema	—	was	covered	informally	in	earlier
chapters.	There	are,	however,	principles	that	can	be	used	to	distinguish	good	database	designs	from	bad
ones.	These	are	formalized	by	means	of	several

“normal	forms”	that	offer	different	trade-offs	between	the	possibility	of	inconsistencies	and	the	efficiency
of	certain	queries.	Chapter	7	describes	the	formal	design	of	relational	schemas.

239

C	H	A	P	T	E	R	6

Database	Design	Using	the	E-R

Model

Up	to	this	point	in	the	text,	we	have	assumed	a	given	database	schema	and	studied	how	queries	and
updates	are	expressed.	We	now	consider	how	to	design	a	database	schema	in	the	first	place.	In	this
chapter,	we	focus	on	the	entity-relationship	data	model	(E-R),	which	provides	a	means	of	identifying
entities	to	be	represented	in	the	database	and	how	those	entities	are	related.	Ultimately,	the	database
design	will	be	expressed	in	terms	of	a	relational	database	design	and	an	associated	set	of	constraints.	We
show	in	this	chapter	how	an	E-R	design	can	be	transformed	into	a	set	of	relation	schemas	and	how	some
of	the	constraints	can	be	captured	in	that	design.	Then,	in	Chapter	7,	we	consider	in	detail	whether	a	set
of	relation	schemas	is	a	good	or	bad	database	design	and	study	the	process	of	creating	good	designs	using
a	broader	set	of	constraints.	These	two	chapters	cover	the	fundamental	concepts	of	database	design.

6.1

Overview	of	the	Design	Process

The	task	of	creating	a	database	application	is	a	complex	one,	involving	design	of	the	database	schema,
design	of	the	programs	that	access	and	update	the	data,	and	design	of	a	security	scheme	to	control	access
to	data.	The	needs	of	the	users	play	a	central	role	in	the	design	process.	In	this	chapter,	we	focus	on	the
design	of	the	database	schema,	although	we	briefly	outline	some	of	the	other	design	tasks	later	in	the
chapter.

6.1.1

Design	Phases

For	small	applications,	it	may	be	feasible	for	a	database	designer	who	understands	the	application
requirements	to	decide	directly	on	the	relations	to	be	created,	their	attributes,	and	constraints	on	the
relations.	However,	such	a	direct	design	process	is	difficult	for	real-world	applications,	since	they	are
often	highly	complex.	Often	no	one	person	understands	the	complete	data	needs	of	an	application.	The
database	designer	must	interact	with	users	of	the	application	to	understand	the	needs	of	the	application,
represent	them	in	a	high-level	fashion	that	can	be	understood	by	the	users,	and	241

242

Chapter	6

Database	Design	Using	the	E-R	Model

then	translate	the	requirements	into	lower	levels	of	the	design.	A	high-level	data	model	serves	the
database	designer	by	providing	a	conceptual	framework	in	which	to	specify,	in	a	systematic	fashion,	the
data	requirements	of	the	database	users,	and	a	database	structure	that	fulfills	these	requirements.

•	The	initial	phase	of	database	design	is	to	characterize	fully	the	data	needs	of	the	prospective	database
users.	The	database	designer	needs	to	interact	extensively	with	domain	experts	and	users	to	carry	out	this
task.	The	outcome	of	this	phase	is	a	specification	of	user	requirements.	While	there	are	techniques	for
diagrammati-cally	representing	user	requirements,	in	this	chapter	we	restrict	ourselves	to	textual
descriptions	of	user	requirements.

•	Next,	the	designer	chooses	a	data	model	and,	by	applying	the	concepts	of	the	chosen	data	model,
translates	these	requirements	into	a	conceptual	schema	of	the	database.	The	schema	developed	at	this
conceptual-design	phase	provides	a	detailed	overview	of	the	enterprise.	The	entity-relationship	model,
which	we	study	in	the	rest	of	this	chapter,	is	typically	used	to	represent	the	conceptual	design.	Stated	in
terms	of	the	entity-relationship	model,	the	conceptual	schema	specifies	the	entities	that	are	represented
in	the	database,	the	attributes	of	the	entities,	the	relationships	among	the	entities,	and	constraints	on	the
entities	and	relationships.	Typically,	the	conceptual-design	phase	results	in	the	creation	of	an	entity-
relationship	diagram	that	provides	a	graphic	representation	of	the	schema.

The	designer	reviews	the	schema	to	confirm	that	all	data	requirements	are	indeed	satisfied	and	are	not	in
conflict	with	one	another.	She	can	also	examine	the	design	to	remove	any	redundant	features.	Her	focus
at	this	point	is	on	describing	the	data	and	their	relationships,	rather	than	on	specifying	physical	storage
details.

•	A	fully	developed	conceptual	schema	also	indicates	the	functional	requirements	of	the	enterprise.	In	a
specification	of	functional	requirements,	users	describe	the	kinds	of	operations	(or	transactions)	that	will
be	performed	on	the	data.	Example	operations	include	modifying	or	updating	data,	searching	for	and
retrieving	specific	data,	and	deleting	data.	At	this	stage	of	conceptual	design,	the	designer	can	review	the
schema	to	ensure	that	it	meets	functional	requirements.

•	The	process	of	moving	from	an	abstract	data	model	to	the	implementation	of	the	database	proceeds	in
two	final	design	phases.

°	In	the	logical-design	phase,	the	designer	maps	the	high-level	conceptual	schema	onto	the
implementation	data	model	of	the	database	system	that	will	be	used.

The	implementation	data	model	is	typically	the	relational	data	model,	and	this	step	typically	consists	of
mapping	the	conceptual	schema	defined	using	the	entity-relationship	model	into	a	relation	schema.

°	Finally,	the	designer	uses	the	resulting	system-specific	database	schema	in	the	subsequent	physical-
design	phase,	in	which	the	physical	features	of	the	database

6.1

Overview	of	the	Design	Process

243

are	specified.	These	features	include	the	form	of	file	organization	and	choice	of	index	structures,
discussed	in	Chapter	13	and	Chapter	14.

The	physical	schema	of	a	database	can	be	changed	relatively	easily	after	an	application	has	been	built.
However,	changes	to	the	logical	schema	are	usually	harder	to	carry	out,	since	they	may	affect	a	number	of
queries	and	updates	scattered	across	application	code.	It	is	therefore	important	to	carry	out	the	database
design	phase	with	care,	before	building	the	rest	of	the	database	application.

6.1.2

Design	Alternatives

A	major	part	of	the	database	design	process	is	deciding	how	to	represent	in	the	design	the	various	types
of	“things”	such	as	people,	places,	products,	and	the	like.	We	use	the	term	entity	to	refer	to	any	such
distinctly	identifiable	item.	In	a	university	database,	examples	of	entities	would	include	instructors,
students,	departments,	courses,	and	course	offerings.	We	assume	that	a	course	may	have	run	in	multiple
semesters,	as	well	as	multiple	times	in	a	semester;	we	refer	to	each	such	offering	of	a	course	as	a	section.

The	various	entities	are	related	to	each	other	in	a	variety	of	ways,	all	of	which	need	to	be	captured	in	the
database	design.	For	example,	a	student	takes	a	course	offering,	while	an	instructor	teaches	a	course
offering;	teaches	and	takes	are	examples	of	relationships	between	entities.

In	designing	a	database	schema,	we	must	ensure	that	we	avoid	two	major	pitfalls:	1.	Redundancy:	A	bad
design	may	repeat	information.	For	example,	if	we	store	the	course	identifier	and	title	of	a	course	with
each	course	offering,	the	title	would	be	stored	redundantly	(i.e.,	multiple	times,	unnecessarily)	with	each
course	offering.

It	would	suffice	to	store	only	the	course	identifier	with	each	course	offering,	and	to	associate	the	title	with
the	course	identifier	only	once,	in	a	course	entity.

Redundancy	can	also	occur	in	a	relational	schema.	In	the	university	example	we	have	used	so	far,	we	have
a	relation	with	section	information	and	a	separate	relation	with	course	information.	Suppose	that	instead
we	have	a	single	relation	where	we	repeat	all	of	the	course	information	(course	id,	title,	dept	name,
credits)	once	for	each	section	(offering)	of	the	course.	Information	about	courses	would	then	be	stored
redundantly.

The	biggest	problem	with	such	redundant	representation	of	information	is	that	the	copies	of	a	piece	of
information	can	become	inconsistent	if	the	information	is	updated	without	taking	precautions	to	update	all
copies	of	the	information.

For	example,	different	offerings	of	a	course	may	have	the	same	course	identifier,	but	may	have	different
titles.	It	would	then	become	unclear	what	the	correct	title	of	the	course	is.	Ideally,	information	should
appear	in	exactly	one	place.

2.	Incompleteness:	A	bad	design	may	make	certain	aspects	of	the	enterprise	difficult	or	impossible	to
model.	For	example,	suppose	that,	as	in	case	(1)	above,	we	only	had	entities	corresponding	to	course
offering,	without	having	an	entity

244

Chapter	6

Database	Design	Using	the	E-R	Model

corresponding	to	courses.	Equivalently,	in	terms	of	relations,	suppose	we	have	a	single	relation	where	we
repeat	all	of	the	course	information	once	for	each	section	that	the	course	is	offered.	It	would	then	be
impossible	to	represent	information	about	a	new	course,	unless	that	course	is	offered.	We	might	try	to
make	do	with	the	problematic	design	by	storing	null	values	for	the	section	information.

Such	a	work-around	is	not	only	unattractive	but	may	be	prevented	by	primary-key	constraints.

Avoiding	bad	designs	is	not	enough.	There	may	be	a	large	number	of	good	designs	from	which	we	must
choose.	As	a	simple	example,	consider	a	customer	who	buys	a	product.	Is	the	sale	of	this	product	a
relationship	between	the	customer	and	the	product?	Alternatively,	is	the	sale	itself	an	entity	that	is	related
both	to	the	customer	and	to	the	product?	This	choice,	though	simple,	may	make	an	important	difference	in
what	aspects	of	the	enterprise	can	be	modeled	well.	Considering	the	need	to	make	choices	such	as	this	for
the	large	number	of	entities	and	relationships	in	a	real-world	enterprise,	it	is	not	hard	to	see	that
database	design	can	be	a	challenging	problem.	Indeed	we	shall	see	that	it	requires	a	combination	of	both

science	and	“good	taste.”

6.2

The	Entity-Relationship	Model

The	entity-relationship	(E-R)	data	model	was	developed	to	facilitate	database	design	by	allowing
specification	of	an	enterprise	schema	that	represents	the	overall	logical	structure	of	a	database.

The	E-R	model	is	very	useful	in	mapping	the	meanings	and	interactions	of	real-world	enterprises	onto	a
conceptual	schema.	Because	of	this	usefulness,	many	database-design	tools	draw	on	concepts	from	the	E-
R	model.	The	E-R	data	model	employs	three	basic	concepts:	entity	sets,	relationship	sets,	and	attributes.
The	E-R	model	also	has	an	associated	diagrammatic	representation,	the	E-R	diagram.	As	we	saw	briefly	in
Section	1.3.1,	an	E-R	diagram	can	express	the	overall	logical	structure	of	a	database	graphically.

E-R	diagrams	are	simple	and	clear	—	qualities	that	may	well	account	in	large	part	for	the	widespread	use
of	the	E-R	model.

The	Tools	section	at	the	end	of	the	chapter	provides	information	about	several	diagram	editors	that	you
can	use	to	create	E-R	diagrams.

6.2.1

Entity	Sets

An	entity	is	a	“thing”	or	“object”	in	the	real	world	that	is	distinguishable	from	all	other	objects.	For
example,	each	person	in	a	university	is	an	entity.	An	entity	has	a	set	of	properties,	and	the	values	for	some
set	of	properties	must	uniquely	identify	an	entity.	For	instance,	a	person	may	have	a	person	id	property
whose	value	uniquely	identifies	that	person.	Thus,	the	value	677-89-9011	for	person	id	would	uniquely
identify	one	particular	person	in	the	university.	Similarly,	courses	can	be	thought	of	as	entities,	and	course
id	uniquely	identifies	a	course	entity	in	the	university.	An	entity	may	be	concrete,	such

6.2

The	Entity-Relationship	Model

245

as	a	person	or	a	book,	or	it	may	be	abstract,	such	as	a	course,	a	course	offering,	or	a	flight	reservation.

An	entity	set	is	a	set	of	entities	of	the	same	type	that	share	the	same	properties,	or	attributes.	The	set	of
all	people	who	are	instructors	at	a	given	university,	for	example,	can	be	defined	as	the	entity	set
instructor.	Similarly,	the	entity	set	student	might	represent	the	set	of	all	students	in	the	university.

In	the	process	of	modeling,	we	often	use	the	term	entity	set	in	the	abstract,	without	referring	to	a
particular	set	of	individual	entities.	We	use	the	term	extension	of	the	entity	set	to	refer	to	the	actual
collection	of	entities	belonging	to	the	entity	set.	Thus,	the	set	of	actual	instructors	in	the	university	forms
the	extension	of	the	entity	set	instructor.

This	distinction	is	similar	to	the	difference	between	a	relation	and	a	relation	instance,	which	we	saw	in
Chapter	2.

Entity	sets	do	not	need	to	be	disjoint.	For	example,	it	is	possible	to	define	the	entity	set	person	consisting
of	all	people	in	a	university.	A	person	entity	may	be	an	instructor	entity,	a	student	entity,	both,	or	neither.

An	entity	is	represented	by	a	set	of	attributes.	Attributes	are	descriptive	properties	possessed	by	each
member	of	an	entity	set.	The	designation	of	an	attribute	for	an	entity	set	expresses	that	the	database
stores	similar	information	concerning	each	entity	in	the	entity	set;	however,	each	entity	may	have	its	own
value	for	each	attribute.	Possible	attributes	of	the	instructor	entity	set	are	ID,	name,	dept	name,	and
salary.	In	real	life,	there	would	be	further	attributes,	such	as	street	number,	apartment	number,	state,
postal	code,	and	country,	but	we	generally	omit	them	to	keep	our	examples	simple.

Possible	attributes	of	the	course	entity	set	are	course	id,	title,	dept	name,	and	credits.

In	this	section	we	consider	only	attributes	that	are	simple	—	those	not	divided	into	subparts.	In	Section
6.3,	we	discuss	more	complex	situations	where	attributes	can	be	composite	and	multivalued.

Each	entity	has	a	value	for	each	of	its	attributes.	For	instance,	a	particular	instructor	entity	may	have	the
value	12121	for	ID,	the	value	Wu	for	name,	the	value	Finance	for	dept	name,	and	the	value	90000	for
salary.

The	ID	attribute	is	used	to	identify	instructors	uniquely,	since	there	may	be	more	than	one	instructor	with
the	same	name.	Historically,	many	enterprises	found	it	convenient	to	use	a	government-issued
identification	number	as	an	attribute	whose	value	uniquely	identifies	the	person.	However,	that	is
considered	bad	practice	for	reasons	of	security	and	privacy.	In	general,	the	enterprise	would	have	to
create	and	assign	its	own	unique	identifier	for	each	instructor.

A	database	thus	includes	a	collection	of	entity	sets,	each	of	which	contains	any	number	of	entities	of	the
same	type.	A	database	for	a	university	may	include	a	number	of	other	entity	sets.	For	example,	in	addition
to	keeping	track	of	instructors	and	students,	the	university	also	has	information	about	courses,	which	are
represented	by	the	entity	set	course	with	attributes	course	id,	title,	dept	name	and	credits.	In	a	real
setting,	a	university	database	may	keep	dozens	of	entity	sets.

An	entity	set	is	represented	in	an	E-R	diagram	by	a	rectangle,	which	is	divided	into	two	parts.	The	first
part,	which	in	this	text	is	shaded	blue,	contains	the	name	of

246

Chapter	6

Database	Design	Using	the	E-R	Model

instructor

student

ID

ID

name

name

salary

tot_cred

Figure	6.1	E-R	diagram	showing	entity	sets	instructor	and	student.

the	entity	set.	The	second	part	contains	the	names	of	all	the	attributes	of	the	entity	set.	The	E-R	diagram
in	Figure	6.1	shows	two	entity	sets	instructor	and	student.	The	attributes	associated	with	instructor	are
ID,	name,	and	salary.	The	attributes	associated	with	student	are	ID,	name,	and	tot	cred.	Attributes	that
are	part	of	the	primary	key	are	underlined	(see	Section	6.5).

6.2.2

Relationship	Sets

A	relationship	is	an	association	among	several	entities.	For	example,	we	can	define	a	relationship	advisor
that	associates	instructor	Katz	with	student	Shankar.	This	relationship	specifies	that	Katz	is	an	advisor	to
student	Shankar.	A	relationship	set	is	a	set	of	relationships	of	the	same	type.

Consider	two	entity	sets	instructor	and	student.	We	define	the	relationship	set	advisor	to	denote	the
associations	between	students	and	the	instructors	who	act	as	their	advisors.	Figure	6.2	depicts	this
association.	To	keep	the	figure	simple,	only	some	of	the	attributes	of	the	two	entity	sets	are	shown.

A	relationship	instance	in	an	E-R	schema	represents	an	association	between	the	named	entities	in	the
real-world	enterprise	that	is	being	modeled.	As	an	illustration,	the	individual	instructor	entity	Katz,	who
has	instructor	ID	45565,	and	the	student	entity	Shankar,	who	has	student	ID	12345,	participate	in	a
relationship	instance	of	advi-76766	Crick

98988	Tanaka

45565	Katz

12345	Shankar

10101	Srinivasan

00128	Zhang

98345	Kim

76543	Brown

76543	Singh

76653	Aoi

22222	Einstein

23121	Chavez

instructor

44553	Peltier

student

Figure	6.2	Relationship	set	advisor	(only	some	attributes	of	instructor	and	student	are	shown).

6.2

The	Entity-Relationship	Model

247

instructor

student

ID

advisor

ID

name

name

salary

tot_cred

Figure	6.3	E-R	diagram	showing	relationship	set	advisor.

sor.	This	relationship	instance	represents	that	in	the	university,	the	instructor	Katz	is	advising	student
Shankar.

A	relationship	set	is	represented	in	an	E-R	diagram	by	a	diamond,	which	is	linked	via	lines	to	a	number	of
different	entity	sets	(rectangles).	The	E-R	diagram	in	Figure	6.3

shows	the	two	entity	sets	instructor	and	student,	related	through	a	binary	relationship	set	advisor.

As	another	example,	consider	the	two	entity	sets	student	and	section,	where	section	denotes	an	offering	of
a	course.	We	can	define	the	relationship	set	takes	to	denote	the	association	between	a	student	and	a
section	in	which	that	student	is	enrolled.

Although	in	the	preceding	examples	each	relationship	set	was	an	association	between	two	entity	sets,	in
general	a	relationship	set	may	denote	the	association	of	more	than	two	entity	sets.

Formally,	a	relationship	set	is	a	mathematical	relation	on	n	≥	2	(possibly	nondis-tinct)	entity	sets.	If	E	,	E	,
…	,	E	are	entity	sets,	then	a	relationship	set	R	is	a	subset	1

2

n

of

{(e	,	e	,	…	,	e)	|	e	∈	E	,	e	∈	E	,	…	,	e	∈	E	}

1

2

n

1

1

2

2

n

n

where	(e	,	e	,	…	,	e)	is	a	relationship	instance.

1

2

n

The	association	between	entity	sets	is	referred	to	as	participation;	i.e.,	the	entity	sets	E	,	E	,	…	,	E
participate	in	relationship	set	R.

1

2

n

The	function	that	an	entity	plays	in	a	relationship	is	called	that	entity’s	role.	Since	entity	sets	participating
in	a	relationship	set	are	generally	distinct,	roles	are	implicit	and	are	not	usually	specified.	However,	they
are	useful	when	the	meaning	of	a	relationship	needs	clarification.	Such	is	the	case	when	the	entity	sets	of
a	relationship	set	are	not	distinct;	that	is,	the	same	entity	set	participates	in	a	relationship	set	more	than
once,	in	different	roles.	In	this	type	of	relationship	set,	sometimes	called	a	recursive	relationship	set,
explicit	role	names	are	necessary	to	specify	how	an	entity	participates	in	a	relationship	instance.	For
example,	consider	the	entity	set	course	that	records	information	about	all	the	courses	offered	in	the
university.	To	depict	the	situation	where	one	course	(C2)	is	a	prerequisite	for	another	course	(C1)	we	have
relationship	set	prereq	that	is	modeled	by	ordered	pairs	of	course	entities.	The	first	course	of	a	pair	takes
the	role	of	course	C1,	whereas	the	second	takes	the	role	of	prerequisite	course	C2.	In	this	way,	all
relationships	of	prereq	are	characterized	by	(C1,	C2)	pairs;	(C2,	C1)	pairs	are	excluded.	We	indicate	roles
in	E-R	diagrams	by	labeling	the	lines	that	connect	diamonds

248

Chapter	6

Database	Design	Using	the	E-R	Model

course

course_id

course_id

title

prereq

prereq_id

credits

Figure	6.4	E-R	diagram	with	role	indicators.

to	rectangles.	Figure	6.4	shows	the	role	indicators	course	id	and	prereq	id	between	the	course	entity	set
and	the	prereq	relationship	set.

A	relationship	may	also	have	attributes	called	descriptive	attributes.	As	an	example	of	descriptive
attributes	for	relationships,	consider	the	relationship	set	takes	which	relates	entity	sets	student	and
section.	We	may	wish	to	store	a	descriptive	attribute	grade	with	the	relationship	to	record	the	grade	that
a	student	received	in	a	course	offering.

An	attribute	of	a	relationship	set	is	represented	in	an	E-R	diagram	by	an	undivided	rectangle.	We	link	the
rectangle	with	a	dashed	line	to	the	diamond	representing	that	relationship	set.	For	example,	Figure	6.5
shows	the	relationship	set	takes	between	the	entity	sets	section	and	student.	We	have	the	descriptive
attribute	grade	attached	to	the	relationship	set	takes.	A	relationship	set	may	have	multiple	descriptive
attributes;	for	example,	we	may	also	store	a	descriptive	attribute	for	credit	with	the	takes	relationship	set
to	record	whether	a	student	has	taken	the	section	for	credit,	or	is	auditing	(or	sitting	in	on)	the	course.

Observe	that	the	attributes	of	the	two	entity	sets	have	been	omitted	from	the	E-R

diagram	in	Figure	6.5,	with	the	understanding	that	they	are	specified	elsewhere	in	the	complete	E-R
diagram	for	the	university;	we	have	already	seen	the	attributes	for	student,	and	we	will	see	the	attributes
of	section	later	in	this	chapter.	Complex	E-R	designs	may	need	to	be	split	into	multiple	diagrams	that	may
be	located	in	different	pages.	Relationship	sets	should	be	shown	in	only	one	location,	but	entity	sets	may
be	repeated	in	more	than	one	location.	The	attributes	of	an	entity	set	should	be	shown	in	the	first
occurrence.	Subsequent	occurrences	of	the	entity	set	should	be	shown	without	attributes,	to	avoid
repetition	of	information	and	the	resultant	possibility	of	inconsistency	in	the	attributes	shown	in	different
occurrences.

grade

student

takes

section

Figure	6.5	E-R	diagram	with	an	attribute	attached	to	a	relationship	set.

6.3

Complex	Attributes

249

It	is	possible	to	have	more	than	one	relationship	set	involving	the	same	entity	sets.

For	example,	suppose	that	students	may	be	teaching	assistants	for	a	course.	Then,	the	entity	sets	section
and	student	may	participate	in	a	relationship	set	teaching	assistant,	in	addition	to	participating	in	the
takes	relationship	set.

The	formal	definition	of	a	relationship	set,	which	we	saw	earlier,	defines	a	relationship	set	as	a	set	of
relationship	instances.	Consider	the	takes	relationship	between	student	and	section.	Since	a	set	cannot
have	duplicates,	it	follows	that	a	particular	student	can	have	only	one	association	with	a	particular	section
in	the	takes	relationship.

Thus,	a	student	can	have	only	one	grade	associated	with	a	section,	which	makes	sense	in	this	case.
However,	if	we	wish	to	allow	a	student	to	have	more	than	one	grade	for	the	same	section,	we	need	to	have
an	attribute	grades	which	stores	a	set	of	grades;	such	attributes	are	called	multivalued	attributes,	and	we
shall	see	them	later	in	Section	6.3.

The	relationship	sets	advisor	and	takes	provide	examples	of	a	binary	relationship	set	—	that	is,	one	that
involves	two	entity	sets.	Most	of	the	relationship	sets	in	a	database	system	are	binary.	Occasionally,
however,	relationship	sets	involve	more	than	two	entity	sets.	The	number	of	entity	sets	that	participate	in
a	relationship	set	is	the	degree	of	the	relationship	set.	A	binary	relationship	set	is	of	degree	2;	a	ternary
relationship	set	is	of	degree	3.

As	an	example,	suppose	that	we	have	an	entity	set	project	that	represents	all	the	research	projects	carried
out	in	the	university.	Consider	the	entity	sets	instructor,	student,	and	project.	Each	project	can	have
multiple	associated	students	and	multiple	associated	instructors.	Furthermore,	each	student	working	on	a

project	must	have	an	associated	instructor	who	guides	the	student	on	the	project.	For	now,	we	ignore	the
first	two	relationships,	between	project	and	instructor,	and	between	project	and	student.	Instead,	we
focus	on	the	information	about	which	instructor	is	guiding	which	student	on	a	particular	project.

To	represent	this	information,	we	relate	the	three	entity	sets	through	a	ternary	relationship	set	proj	guide,
which	relates	entity	sets	instructor,	student,	and	project.	An	instance	of	proj	guide	indicates	that	a
particular	student	is	guided	by	a	particular	instructor	on	a	particular	project.	Note	that	a	student	could
have	different	instructors	as	guides	for	different	projects,	which	cannot	be	captured	by	a	binary
relationship	between	students	and	instructors.

Nonbinary	relationship	sets	can	be	specified	easily	in	an	E-R	diagram.	Figure	6.6

shows	the	E-R	diagram	representation	of	the	ternary	relationship	set	proj	guide.

6.3

Complex	Attributes

For	each	attribute,	there	is	a	set	of	permitted	values,	called	the	domain,	or	value	set,	of	that	attribute.	The
domain	of	attribute	course	id	might	be	the	set	of	all	text	strings	of	a	certain	length.	Similarly,	the	domain
of	attribute	semester	might	be	strings	from	the	set	{Fall,	Winter,	Spring,	Summer}.

250

Chapter	6

Database	Design	Using	the	E-R	Model

project

.	.	.

instructor

student

ID

proj_	guide

ID

name

name

salary

tot_cred

Figure	6.6	E-R	diagram	with	a	ternary	relationship	proj	guide.

name

address

composite

attributes

first_name

middle_initial

last_name

street

city

state

postal_code

component

attributes

street_number

street_name

apartment_number

Figure	6.7	Composite	attributes	instructor	name	and	address.

An	attribute,	as	used	in	the	E-R	model,	can	be	characterized	by	the	following	attribute	types.

•	Simple	and	composite	attributes.	In	our	examples	thus	far,	the	attributes	have	been	simple;	that	is,	they
have	not	been	divided	into	subparts.	Composite	attributes,	on	the	other	hand,	can	be	divided	into	subparts
(i.e.,	other	attributes).	For	example,	an	attribute	name	could	be	structured	as	a	composite	attribute
consisting	of	first	name,	middle	initial,	and	last	name.	Using	composite	attributes	in	a	design	schema	is	a
good	choice	if	a	user	will	wish	to	refer	to	an	entire	attribute	on	some	occasions,	and	to	only	a	component
of	the	attribute	on	other	occasions.	Suppose	we	were	to	add	an	address	to	the	student	entity-set.	The
address	can	be	defined	as	the	composite	attribute	address	with	the	attributes	street,	city,	state,	and
postal	code.1	Composite	attributes	help	us	to	group	together	related	attributes,	making	the	modeling
cleaner.

Note	also	that	a	composite	attribute	may	appear	as	a	hierarchy.	In	the	composite	attribute	address,	its
component	attribute	street	can	be	further	divided	into	street	number,	street	name,	and	apartment
number.	Figure	6.7	depicts	these	examples	of	composite	attributes	for	the	instructor	entity	set.

1We	assume	the	address	format	used	in	the	United	States,	which	includes	a	numeric	postal	code	called	a
zip	code.

6.3

Complex	Attributes

251

•	Single-valued	and	multivalued	attributes.	The	attributes	in	our	examples	all	have	a	single	value	for	a
particular	entity.	For	instance,	the	student	ID	attribute	for	a	specific	student	entity	refers	to	only	one
student	ID.	Such	attributes	are	said	to	be	single	valued.	There	may	be	instances	where	an	attribute	has	a
set	of	values	for	a	specific	entity.	Suppose	we	add	to	the	instructor	entity	set	a	phone	number	attribute.
An	instructor	may	have	zero,	one,	or	several	phone	numbers,	and	different	instructors	may	have	different
numbers	of	phones.	This	type	of	attribute	is	said	to	be	multivalued.	As	another	example,	we	could	add	to
the	instructor	entity	set	an	attribute	dependent	name	listing	all	the	dependents.	This	attribute	would	be

multivalued,	since	any	particular	instructor	may	have	zero,	one,	or	more	dependents.

•	Derived	attributes.	The	value	for	this	type	of	attribute	can	be	derived	from	the	values	of	other	related
attributes	or	entities.	For	instance,	let	us	say	that	the	instructor	entity	set	has	an	attribute	students
advised,	which	represents	how	many	students	an	instructor	advises.	We	can	derive	the	value	for	this
attribute	by	counting	the	number	of	student	entities	associated	with	that	instructor.

As	another	example,	suppose	that	the	instructor	entity	set	has	an	attribute	age	that	indicates	the
instructor’s	age.	If	the	instructor	entity	set	also	has	an	attribute	date	of	birth,	we	can	calculate	age	from
date	of	birth	and	the	current	date.	Thus,	age	is	a	derived	attribute.	In	this	case,	date	of	birth	may	be
referred	to	as	a	base	attribute,	or	a	stored	attribute.	The	value	of	a	derived	attribute	is	not	stored	but	is
computed	when	required.

Figure	6.8	shows	how	composite	attributes	can	be	represented	in	the	E-R	notation.

Here,	a	composite	attribute	name	with	component	attributes	first	name,	middle	initial,	and	last	name
replaces	the	simple	attribute	name	of	instructor.	As	another	example,	suppose	we	were	to	add	an	address
to	the	instructor	entity	set.	The	address	can	be	defined	as	the	composite	attribute	address	with	the
attributes	street,	city,	state,	and	postal	code.	The	attribute	street	is	itself	a	composite	attribute	whose
component	attributes	are	street	number,	street	name,	and	apartment	number.	The	figure	also	illustrates	a
multivalued	attribute	phone	number,	denoted	by	“{	phone	number}”,	and	a	derived	attribute	age,
depicted	by	“age	()”.

An	attribute	takes	a	null	value	when	an	entity	does	not	have	a	value	for	it.	The	null	value	may	indicate
“not	applicable”	—	that	is,	the	value	does	not	exist	for	the	entity.	For	example,	a	person	who	has	no	middle
name	may	have	the	middle	initial	attribute	set	to	null.	Null	can	also	designate	that	an	attribute	value	is
unknown.	An	unknown	value	may	be	either	missing	(the	value	does	exist,	but	we	do	not	have	that
information)	or	not	known	(we	do	not	know	whether	or	not	the	value	actually	exists).

For	instance,	if	the	name	value	for	a	particular	instructor	is	null,	we	assume	that	the	value	is	missing,
since	every	instructor	must	have	a	name.	A	null	value	for	the	apartment	number	attribute	could	mean	that
the	address	does	not	include	an	apartment	number	(not	applicable),	that	an	apartment	number	exists	but
we	do	not	know	what

252

Chapter	6

Database	Design	Using	the	E-R	Model

instructor

ID

name

first_name

middle_initial

last_name

address

street

street_number

street_name

apt_number

city

state

zip

{	phone_number	}

date_of_birth

age	()

Figure	6.8	E-R	diagram	with	composite,	multivalued,	and	derived	attributes.

it	is	(missing),	or	that	we	do	not	know	whether	or	not	an	apartment	number	is	part	of	the	instructor’s
address	(unknown).

6.4

Mapping	Cardinalities

Mapping	cardinalities,	or	cardinality	ratios,	express	the	number	of	entities	to	which	another	entity	can	be
associated	via	a	relationship	set.	Mapping	cardinalities	are	most	useful	in	describing	binary	relationship
sets,	although	they	can	contribute	to	the	description	of	relationship	sets	that	involve	more	than	two	entity
sets.

For	a	binary	relationship	set	R	between	entity	sets	A	and	B,	the	mapping	cardinality	must	be	one	of	the
following:

•	One-to-one.	An	entity	in	A	is	associated	with	at	most	one	entity	in	B,	and	an	entity	in	B	is	associated	with
at	most	one	entity	in	A.	(See	Figure	6.9a.)

•	One-to-many.	An	entity	in	A	is	associated	with	any	number	(zero	or	more)	of	entities	in	B.	An	entity	in	B,
however,	can	be	associated	with	at	most	one	entity	in	A.

(See	Figure	6.9b.)

•	Many-to-one.	An	entity	in	A	is	associated	with	at	most	one	entity	in	B.	An	entity	in	B,	however,	can	be
associated	with	any	number	(zero	or	more)	of	entities	in	A.

(See	Figure	6.10a.)

6.4

Mapping	Cardinalities

253

A

B

A

B

b1

a1

b

a

b

1

1

2

a2

b

a

b

2

2

3

a3

b

a

b

3

3

4

a4

b5

(a)

(b)

Figure	6.9	Mapping	cardinalities.	(a)	One-to-one.	(b)	One-to-many.

•	Many-to-many.	An	entity	in	A	is	associated	with	any	number	(zero	or	more)	of	entities	in	B,	and	an	entity
in	B	is	associated	with	any	number	(zero	or	more)	of	entities	in	A.	(See	Figure	6.10b.)

The	appropriate	mapping	cardinality	for	a	particular	relationship	set	obviously	depends	on	the	real-world
situation	that	the	relationship	set	is	modeling.

As	an	illustration,	consider	the	advisor	relationship	set.	If	a	student	can	be	advised	by	several	instructors
(as	in	the	case	of	students	advised	jointly),	the	relationship	set	is	many-to-many.	In	contrast,	if	a	particular
university	imposes	a	constraint	that	a	student	can	be	advised	by	only	one	instructor,	and	an	instructor	can
advise	several	students,	then	the	relationship	set	from	instructor	to	student	must	be	one-to-many.	Thus,
mapping	A

B

A

B

a1

a

b

1

1

a

aa

b

2

1

2

a

b

2

2

a

b

3

2

a

b

3

3

a

b

4

3

a

b

4

4

a5

(a)

(b)

Figure	6.10	Mapping	cardinalities.	(a)	Many-to-one.	(b)	Many-to-many.

254

Chapter	6

Database	Design	Using	the	E-R	Model

cardinalities	can	be	used	to	specify	constraints	on	what	relationships	are	permitted	in	the	real	world.

In	the	E-R	diagram	notation,	we	indicate	cardinality	constraints	on	a	relationship	by	drawing	either	a
directed	line	(→)	or	an	undirected	line	(—)	between	the	relationship	set	and	the	entity	set	in	question.
Specifically,	for	the	university	example:

•	One-to-one.	We	draw	a	directed	line	from	the	relationship	set	to	both	entity	sets.

For	example,	in	Figure	6.11a,	the	directed	lines	to	instructor	and	student	indicate	that	an	instructor	may
advise	at	most	one	student,	and	a	student	may	have	at	most	one	advisor.

instructor

student

ID

advisor

ID

name

name

salary

tot_cred

(a)	One-to-one

instructor

student

advisor

ID

ID

name

name

salary

tot_cred

(b)	One-to-many

instructor

student

advisor

ID

ID

name

name

salary

tot_cred

(c)	Many-to-one

instructor

student

advisor

ID

ID

name

name

salary

tot_cred

(d)	Many-to-many

Figure	6.11	Relationship	cardinalities.

6.4

Mapping	Cardinalities

255

•	One-to-many.	We	draw	a	directed	line	from	the	relationship	set	to	the	“one”	side	of	the	relationship.
Thus,	in	Figure	6.11b,	there	is	a	directed	line	from	relationship	set	advisor	to	the	entity	set	instructor,	and
an	undirected	line	to	the	entity	set	student.

This	indicates	that	an	instructor	may	advise	many	students,	but	a	student	may	have	at	most	one	advisor.

•	Many-to-one.	We	draw	a	directed	line	from	the	relationship	set	to	the	“one”	side	of	the	relationship.
Thus,	in	Figure	6.11c,	there	is	an	undirected	line	from	the	relationship	set	advisor	to	the	entity	set
instructor	and	a	directed	line	to	the	entity	set	student.	This	indicates	that	an	instructor	may	advise	at
most	one	student,	but	a	student	may	have	many	advisors.

•	Many-to-many.	We	draw	an	undirected	line	from	the	relationship	set	to	both	entity	sets.	Thus,	in	Figure
6.11d,	there	are	undirected	lines	from	the	relationship	set	advisor	to	both	entity	sets	instructor	and
student.	This	indicates	that	an	instructor	may	advise	many	students,	and	a	student	may	have	many
advisors.

The	participation	of	an	entity	set	E	in	a	relationship	set	R	is	said	to	be	total	if	every	entity	in	E	must
participate	in	at	least	one	relationship	in	R.	If	it	is	possible	that	some	entities	in	E	do	not	participate	in
relationships	in	R,	the	participation	of	entity	set	E	in	relationship	R	is	said	to	be	partial.

For	example,	a	university	may	require	every	student	to	have	at	least	one	advisor;	in	the	E-R	model,	this
corresponds	to	requiring	each	entity	to	be	related	to	at	least	one	instructor	through	the	advisor
relationship.	Therefore,	the	participation	of	student	in	the	relationship	set	advisor	is	total.	In	contrast,	an
instructor	need	not	advise	any	students.	Hence,	it	is	possible	that	only	some	of	the	instructor	entities	are
related	to	the	student	entity	set	through	the	advisor	relationship,	and	the	participation	of	instructor	in	the
advisor	relationship	set	is	therefore	partial.

We	indicate	total	participation	of	an	entity	in	a	relationship	set	using	double	lines.

Figure	6.12	shows	an	example	of	the	advisor	relationship	set	where	the	double	line	indicates	that	a
student	must	have	an	advisor.

E-R	diagrams	also	provide	a	way	to	indicate	more	complex	constraints	on	the	number	of	times	each	entity
participates	in	relationships	in	a	relationship	set.	A	line	may	have	an	associated	minimum	and	maximum
cardinality,	shown	in	the	form	l..h,	where	l	instructor

student

ID

advisor

ID

name

name

salary

tot_cred

Figure	6.12	E-R	diagram	showing	total	participation.

256

Chapter	6

Database	Design	Using	the	E-R	Model

instructor

student

ID

0..	*

advisor

1..1

ID

name

name

salary

tot_cred

Figure	6.13	Cardinality	limits	on	relationship	sets.

is	the	minimum	and	h	the	maximum	cardinality.	A	minimum	value	of	1	indicates	total	participation	of	the
entity	set	in	the	relationship	set;	that	is,	each	entity	in	the	entity	set	occurs	in	at	least	one	relationship	in
that	relationship	set.	A	maximum	value	of	1	indicates	that	the	entity	participates	in	at	most	one
relationship,	while	a	maximum	value	∗	indicates	no	limit.

For	example,	consider	Figure	6.13.	The	line	between	advisor	and	student	has	a	cardinality	constraint	of	1
..	1,	meaning	the	minimum	and	the	maximum	cardinality	are	both	1.	That	is,	each	student	must	have
exactly	one	advisor.	The	limit	0	..	∗	on	the	line	between	advisor	and	instructor	indicates	that	an	instructor
can	have	zero	or	more	students.	Thus,	the	relationship	advisor	is	one-to-many	from	instructor	to	student,
and	further	the	participation	of	student	in	advisor	is	total,	implying	that	a	student	must	have	an	advisor.

It	is	easy	to	misinterpret	the	0	..	∗	on	the	left	edge	and	think	that	the	relationship	advisor	is	many-to-one
from	instructor	to	student	—	this	is	exactly	the	reverse	of	the	correct	interpretation.

If	both	edges	have	a	maximum	value	of	1,	the	relationship	is	one-to-one.	If	we	had	specified	a	cardinality
limit	of	1	..	∗	on	the	left	edge,	we	would	be	saying	that	each	instructor	must	advise	at	least	one	student.

The	E-R	diagram	in	Figure	6.13	could	alternatively	have	been	drawn	with	a	double	line	from	student	to
advisor,	and	an	arrow	on	the	line	from	advisor	to	instructor,	in	place	of	the	cardinality	constraints	shown.
This	alternative	diagram	would	enforce	exactly	the	same	constraints	as	the	constraints	shown	in	the
figure.

In	the	case	of	nonbinary	relationship	sets,	we	can	specify	some	types	of	many-to-one	relationships.
Suppose	a	student	can	have	at	most	one	instructor	as	a	guide	on	a	project.	This	constraint	can	be
specified	by	an	arrow	pointing	to	instructor	on	the	edge	from	proj	guide.

We	permit	at	most	one	arrow	out	of	a	nonbinary	relationship	set,	since	an	E-R

diagram	with	two	or	more	arrows	out	of	a	nonbinary	relationship	set	can	be	interpreted	in	two	ways.	We
elaborate	on	this	issue	in	Section	6.5.2.

6.5

Primary	Key

We	must	have	a	way	to	specify	how	entities	within	a	given	entity	set	and	relationships	within	a	given
relationship	set	are	distinguished.

6.5

Primary	Key

257

6.5.1

Entity	Sets

Conceptually,	individual	entities	are	distinct;	from	a	database	perspective,	however,	the	differences	among
them	must	be	expressed	in	terms	of	their	attributes.

Therefore,	the	values	of	the	attribute	values	of	an	entity	must	be	such	that	they	can	uniquely	identify	the
entity.	In	other	words,	no	two	entities	in	an	entity	set	are	allowed	to	have	exactly	the	same	value	for	all
attributes.

The	notion	of	a	key	for	a	relation	schema,	as	defined	in	Section	2.3,	applies	directly	to	entity	sets.	That	is,
a	key	for	an	entity	is	a	set	of	attributes	that	suffice	to	distinguish	entities	from	each	other.	The	concepts	of
superkey,	candidate	key,	and	primary	key	are	applicable	to	entity	sets	just	as	they	are	applicable	to
relation	schemas.

Keys	also	help	to	identify	relationships	uniquely,	and	thus	distinguish	relationships	from	each	other.	Next,
we	define	the	corresponding	notions	of	keys	for	relationship	sets.

6.5.2

Relationship	Sets

We	need	a	mechanism	to	distinguish	among	the	various	relationships	of	a	relationship	set.

Let	R	be	a	relationship	set	involving	entity	sets	E	,	E	,	…	,	E	.	Let	primary-key(E)	1

2

n

i

denote	the	set	of	attributes	that	forms	the	primary	key	for	entity	set	E	.	Assume	for	i

now	that	the	attribute	names	of	all	primary	keys	are	unique.	The	composition	of	the	primary	key	for	a
relationship	set	depends	on	the	set	of	attributes	associated	with	the	relationship	set	R.

If	the	relationship	set	R	has	no	attributes	associated	with	it,	then	the	set	of	attributes	primary-key(E)	∪
primary-key(E)	∪	⋯	∪	primary-key(E)	1

2

n

describes	an	individual	relationship	in	set	R.

If	the	relationship	set	R	has	attributes	a	,	a	,	…	,	a	associated	with	it,	then	the	set	1

2

m

of	attributes

primary-key(E)	∪	primary-key(E)	∪	⋯	∪	primary-key(E)	∪	{	a	,	a	,	…	,	a	}

1

2

n

1

2

m

describes	an	individual	relationship	in	set	R.

If	the	attribute	names	of	primary	keys	are	not	unique	across	entity	sets,	the	attributes	are	renamed	to
distinguish	them;	the	name	of	the	entity	set	combined	with	the	name	of	the	attribute	would	form	a	unique
name.	If	an	entity	set	participates	more	than	once	in	a	relationship	set	(as	in	the	prereq	relationship	in
Section	6.2.2),	the	role	name	is	used	instead	of	the	name	of	the	entity	set,	to	form	a	unique	attribute
name.

Recall	that	a	relationship	set	is	a	set	of	relationship	instances,	and	each	instance	is	uniquely	identified	by
the	entities	that	participate	in	it.	Thus,	in	both	of	the	preceding	cases,	the	set	of	attributes

primary-key(E)	∪	primary-key(E)	∪	⋯	∪	primary-key(E)	1

2

n

forms	a	superkey	for	the	relationship	set.

258

Chapter	6

Database	Design	Using	the	E-R	Model

The	choice	of	the	primary	key	for	a	binary	relationship	set	depends	on	the	mapping	cardinality	of	the
relationship	set.	For	many-to-many	relationships,	the	preceding	union	of	the	primary	keys	is	a	minimal
superkey	and	is	chosen	as	the	primary	key.

As	an	illustration,	consider	the	entity	sets	instructor	and	student,	and	the	relationship	set	advisor,	in
Section	6.2.2.	Suppose	that	the	relationship	set	is	many-to-many.	Then	the	primary	key	of	advisor	consists
of	the	union	of	the	primary	keys	of	instructor	and	student.

For	one-to-many	and	many-to-one	relationships,	the	primary	key	of	the	“many”	side	is	a	minimal	superkey
and	is	used	as	the	primary	key.	For	example,	if	the	relationship	is	many-to-one	from	student	to	instructor
—	that	is,	each	student	can	have	at	most	one	advisor	—	then	the	primary	key	of	advisor	is	simply	the
primary	key	of	student.	However,	if	an	instructor	can	advise	only	one	student	—	that	is,	if	the	advisor
relationship	is	many-to-one	from	instructor	to	student	—	then	the	primary	key	of	advisor	is	simply	the
primary	key	of	instructor.

For	one-to-one	relationships,	the	primary	key	of	either	one	of	the	participating	entity	sets	forms	a	minimal
superkey,	and	either	one	can	be	chosen	as	the	primary	key	of	the	relationship	set.	However,	if	an
instructor	can	advise	only	one	student,	and	each	student	can	be	advised	by	only	one	instructor	—	that	is,
if	the	advisor	relationship	is	one-to-one	—	then	the	primary	key	of	either	student	or	instructor	can	be
chosen	as	the	primary	key	for	advisor.

For	nonbinary	relationships,	if	no	cardinality	constraints	are	present,	then	the	superkey	formed	as
described	earlier	in	this	section	is	the	only	candidate	key,	and	it	is	chosen	as	the	primary	key.	The	choice
of	the	primary	key	is	more	complicated	if	cardinality	constraints	are	present.	As	we	noted	in	Section	6.4,
we	permit	at	most	one	arrow	out	of	a	relationship	set.	We	do	so	because	an	E-R	diagram	with	two	or	more
arrows	out	of	a	nonbinary	relationship	set	can	be	interpreted	in	the	two	ways	we	describe	below.

Suppose	there	is	a	relationship	set	R	between	entity	sets	E	,	E	,	E	,	E	,	and	the	only	1

2

3

4

arrows	are	on	the	edges	to	entity	sets	E	and	E	.	Then,	the	two	possible	interpretations	3

4

are:

1.	A	particular	combination	of	entities	from	E	,	E	can	be	associated	with	at	most	1

2

one	combination	of	entities	from	E	,	E	.	Thus,	the	primary	key	for	the	relation-3

4

ship	R	can	be	constructed	by	the	union	of	the	primary	keys	of	E	and	E	.

1

2

2.	A	particular	combination	of	entities	from	E	,	E	,	E	can	be	associated	with	at	1

2

3

most	one	combination	of	entities	from	E	,	and	further	a	particular	combination	4

of	entities	from	E	,	E	,	E	can	be	associated	with	at	most	one	combination	of	1

2

4

entities	from	E	,	Then	the	union	of	the	primary	keys	of	E	,	E	,	and	E	forms	a	3

1

2

3

candidate	key,	as	does	the	union	of	the	primary	keys	of	E	,	E	,	and	E	.

1

2

4

Each	of	these	interpretations	has	been	used	in	practice	and	both	are	correct	for	particular	enterprises
being	modeled.	Thus,	to	avoid	confusion,	we	permit	only	one	arrow	out	of	a	nonbinary	relationship	set,	in
which	case	the	two	interpretations	are	equivalent.

6.5

Primary	Key

259

In	order	to	represent	a	situation	where	one	of	the	multiple-arrow	situations	holds,	the	E-R	design	can	be
modified	by	replacing	the	non-binary	relationship	set	with	an	entity	set.	That	is,	we	treat	each	instance	of
the	non-binary	relationship	set	as	an	entity.

Then	we	can	relate	each	of	those	entities	to	corresponding	instances	of	E	,	E	,	E	via	1

2

4

separate	relationship	sets.	A	simpler	approach	is	to	use	functional	dependencies,	which	we	study	in
Chapter	7	(Section	7.4).	Functional	dependencies	which	allow	either	of	these	interpretations	to	be
specified	simply	in	an	unambiguous	manner.

The	primary	key	for	the	relationship	set	R	is	then	the	union	of	the	primary	keys	of	those	participating
entity	sets	E	that	do	not	have	an	incoming	arrow	from	the	relation-i

ship	set	R.

6.5.3

Weak	Entity	Sets

Consider	a	section	entity,	which	is	uniquely	identified	by	a	course	identifier,	semester,	year,	and	section
identifier.	Section	entities	are	related	to	course	entities.	Suppose	we	create	a	relationship	set	sec	course
between	entity	sets	section	and	course.

Now,	observe	that	the	information	in	sec	course	is	redundant,	since	section	already	has	an	attribute
course	id,	which	identifies	the	course	with	which	the	section	is	related.

One	option	to	deal	with	this	redundancy	is	to	get	rid	of	the	relationship	sec	course;	however,	by	doing	so
the	relationship	between	section	and	course	becomes	implicit	in	an	attribute,	which	is	not	desirable.

An	alternative	way	to	deal	with	this	redundancy	is	to	not	store	the	attribute	course	id	in	the	section	entity
and	to	only	store	the	remaining	attributes	sec	id,	year,	and	semester.2	However,	the	entity	set	section
then	does	not	have	enough	attributes	to	identify	a	particular	section	entity	uniquely;	although	each
section	entity	is	distinct,	sections	for	different	courses	may	share	the	same	sec	id,	year,	and	semester.	To
deal	with	this	problem,	we	treat	the	relationship	sec	course	as	a	special	relationship	that	provides	extra
information,	in	this	case	the	course	id,	required	to	identify	section	entities	uniquely.

The	notion	of	weak	entity	set	formalizes	the	above	intuition.	A	weak	entity	set	is	one	whose	existence	is
dependent	on	another	entity	set,	called	its	identifying	entity	set;	instead	of	associating	a	primary	key	with
a	weak	entity,	we	use	the	primary	key	of	the	identifying	entity,	along	with	extra	attributes,	called

discriminator	attributes	to	uniquely	identify	a	weak	entity.	An	entity	set	that	is	not	a	weak	entity	set	is
termed	a	strong	entity	set.

Every	weak	entity	must	be	associated	with	an	identifying	entity;	that	is,	the	weak	entity	set	is	said	to	be
existence	dependent	on	the	identifying	entity	set.	The	identifying	entity	set	is	said	to	own	the	weak	entity
set	that	it	identifies.	The	relationship	associating	the	weak	entity	set	with	the	identifying	entity	set	is
called	the	identifying	relationship.

The	identifying	relationship	is	many-to-one	from	the	weak	entity	set	to	the	identifying	entity	set,	and	the
participation	of	the	weak	entity	set	in	the	relationship	is	total.

2Note	that	the	relational	schema	we	eventually	create	from	the	entity	set	section	does	have	the	attribute
course	id,	for	reasons	that	will	become	clear	later,	even	though	we	have	dropped	the	attribute	course	id
from	the	entity	set	section.

260

Chapter	6

Database	Design	Using	the	E-R	Model

The	identifying	relationship	set	should	not	have	any	descriptive	attributes,	since	any	such	attributes	can
instead	be	associated	with	the	weak	entity	set.

In	our	example,	the	identifying	entity	set	for	section	is	course,	and	the	relationship	sec	course,	which
associates	section	entities	with	their	corresponding	course	entities,	is	the	identifying	relationship.	The
primary	key	of	section	is	formed	by	the	primary	key	of	the	identifying	entity	set	(that	is,	course),	plus	the
discriminator	of	the	weak	entity	set	(that	is,	section).	Thus,	the	primary	key	is	{	course	id,	sec	id,	year,
semester}.

Note	that	we	could	have	chosen	to	make	sec	id	globally	unique	across	all	courses	offered	in	the	university,
in	which	case	the	section	entity	set	would	have	had	a	primary	key.	However,	conceptually,	a	section	is	still
dependent	on	a	course	for	its	existence,	which	is	made	explicit	by	making	it	a	weak	entity	set.

In	E-R	diagrams,	a	weak	entity	set	is	depicted	via	a	double	rectangle	with	the	discriminator	being
underlined	with	a	dashed	line.	The	relationship	set	connecting	the	weak	entity	set	to	the	identifying
strong	entity	set	is	depicted	by	a	double	diamond.	In	Figure	6.14,	the	weak	entity	set	section	depends	on
the	strong	entity	set	course	via	the	relationship	set	sec	course.

The	figure	also	illustrates	the	use	of	double	lines	to	indicate	that	the	participation	of	the	(weak)	entity	set
section	in	the	relationship	sec	course	is	total,	meaning	that	every	section	must	be	related	via	sec	course	to
some	course.	Finally,	the	arrow	from	sec	course	to	course	indicates	that	each	section	is	related	to	a	single
course.

In	general,	a	weak	entity	set	must	have	a	total	participation	in	its	identifying	relationship	set,	and	the
relationship	is	many-to-one	toward	the	identifying	entity	set.

A	weak	entity	set	can	participate	in	relationships	other	than	the	identifying	relationship.	For	instance,	the
section	entity	could	participate	in	a	relationship	with	the	time	slot	entity	set,	identifying	the	time	when	a
particular	class	section	meets.	A	weak	entity	set	may	participate	as	owner	in	an	identifying	relationship
with	another	weak	entity	set.	It	is	also	possible	to	have	a	weak	entity	set	with	more	than	one	identifying
entity	set.	A	particular	weak	entity	would	then	be	identified	by	a	combination	of	entities,	one	from	each
identifying	entity	set.	The	primary	key	of	the	weak	entity	set	would	consist	of	the	union	of	the	primary
keys	of	the	identifying	entity	sets,	plus	the	discriminator	of	the	weak	entity	set.

course

section

course_id

sec_course

sec_id

title

semester

credits

year

Figure	6.14	E-R	diagram	with	a	weak	entity	set.

6.6

Removing	Redundant	Attributes	in	Entity	Sets

261

6.6

Removing	Redundant	Attributes	in	Entity	Sets

When	we	design	a	database	using	the	E-R	model,	we	usually	start	by	identifying	those	entity	sets	that
should	be	included.	For	example,	in	the	university	organization	we	have	discussed	thus	far,	we	decided	to
include	such	entity	sets	as	student	and	instructor.	Once	the	entity	sets	are	decided	upon,	we	must	choose
the	appropriate	attributes.

These	attributes	are	supposed	to	represent	the	various	values	we	want	to	capture	in	the	database.	In	the
university	organization,	we	decided	that	for	the	instructor	entity	set,	we	will	include	the	attributes	ID,
name,	dept	name,	and	salary.	We	could	have	added	the	attributes	phone	number,	office	number,	home
page,	and	others.	The	choice	of	what	attributes	to	include	is	up	to	the	designer,	who	has	a	good
understanding	of	the	structure	of	the	enterprise.

Once	the	entities	and	their	corresponding	attributes	are	chosen,	the	relationship	sets	among	the	various
entities	are	formed.	These	relationship	sets	may	result	in	a	situation	where	attributes	in	the	various	entity
sets	are	redundant	and	need	to	be	removed	from	the	original	entity	sets.	To	illustrate,	consider	the	entity
sets	instructor	and	department:

•	The	entity	set	instructor	includes	the	attributes	ID,	name,	dept	name,	and	salary,	with	ID	forming	the
primary	key.

•	The	entity	set	department	includes	the	attributes	dept	name,	building,	and	budget,	with	dept	name
forming	the	primary	key.

We	model	the	fact	that	each	instructor	has	an	associated	department	using	a	relationship	set	inst	dept
relating	instructor	and	department.

The	attribute	dept	name	appears	in	both	entity	sets.	Since	it	is	the	primary	key	for	the	entity	set
department,	it	is	redundant	in	the	entity	set	instructor	and	needs	to	be	removed.

Removing	the	attribute	dept	name	from	the	instructor	entity	set	may	appear	rather	unintuitive,	since	the
relation	instructor	that	we	used	in	the	earlier	chapters	had	an	attribute	dept	name.	As	we	shall	see	later,
when	we	create	a	relational	schema	from	the	E-R	diagram,	the	attribute	dept	name	in	fact	gets	added	to
the	relation	instructor,	but	only	if	each	instructor	has	at	most	one	associated	department.	If	an	instructor
has	more	than	one	associated	department,	the	relationship	between	instructors	and	departments	is
recorded	in	a	separate	relation	inst	dept.

Treating	the	connection	between	instructors	and	departments	uniformly	as	a	relationship,	rather	than	as

an	attribute	of	instructor,	makes	the	logical	relationship	explicit,	and	it	helps	avoid	a	premature
assumption	that	each	instructor	is	associated	with	only	one	department.

Similarly,	the	student	entity	set	is	related	to	the	department	entity	set	through	the	relationship	set	student
dept	and	thus	there	is	no	need	for	a	dept	name	attribute	in	student.

262

Chapter	6

Database	Design	Using	the	E-R	Model

As	another	example,	consider	course	offerings	(sections)	along	with	the	time	slots	of	the	offerings.	Each
time	slot	is	identified	by	a	time	slot	id,	and	has	associated	with	it	a	set	of	weekly	meetings,	each	identified
by	a	day	of	the	week,	start	time,	and	end	time.	We	decide	to	model	the	set	of	weekly	meeting	times	as	a
multivalued	composite	attribute.	Suppose	we	model	entity	sets	section	and	time	slot	as	follows:

•	The	entity	set	section	includes	the	attributes	course	id,	sec	id,	semester,	year,	building,	room	number,
and	time	slot	id,	with	(course	id,	sec	id,	year,	semester)	forming	the	primary	key.

•	The	entity	set	time	slot	includes	the	attributes	time	slot	id,	which	is	the	primary	key,3	and	a	multivalued
composite	attribute	{(day,	start	time,	end	time)}.4

These	entities	are	related	through	the	relationship	set	sec	time	slot.

The	attribute	time	slot	id	appears	in	both	entity	sets.	Since	it	is	the	primary	key	for	the	entity	set	time
slot,	it	is	redundant	in	the	entity	set	section	and	needs	to	be	removed.

As	a	final	example,	suppose	we	have	an	entity	set	classroom,	with	attributes	building,	room	number,	and
capacity,	with	building	and	room	number	forming	the	primary	key.

Suppose	also	that	we	have	a	relationship	set	sec	class	that	relates	section	to	classroom.

Then	the	attributes	{	building,	room	number}	are	redundant	in	the	entity	set	section.

A	good	entity-relationship	design	does	not	contain	redundant	attributes.	For	our	university	example,	we
list	the	entity	sets	and	their	attributes	below,	with	primary	keys	underlined:

•	classroom:	with	attributes	(building,	room	number,	capacity).

•	department:	with	attributes	(dept	name,	building,	budget).

•	course:	with	attributes	(course	id,	title,	credits).

•	instructor:	with	attributes	(ID,	name,	salary).

•	section:	with	attributes	(course	id,	sec	id,	semester,	year).

•	student:	with	attributes	(ID,	name,	tot	cred).

•	time	slot:	with	attributes	(time	slot	id,	{(day,	start	time,	end	time)	}).

The	relationship	sets	in	our	design	are	listed	below:

•	inst	dept:	relating	instructors	with	departments.

•	stud	dept:	relating	students	with	departments.

3We	shall	see	later	on	that	the	primary	key	for	the	relation	created	from	the	entity	set	time	slot	includes
day	and	start	time;	however,	day	and	start	time	do	not	form	part	of	the	primary	key	of	the	entity	set	time
slot.

4We	could	optionally	give	a	name,	such	as	meeting,	for	the	composite	attribute	containing	day,	start	time,
and	end	time.

6.6

Removing	Redundant	Attributes	in	Entity	Sets

263

•	teaches:	relating	instructors	with	sections.

•	takes:	relating	students	with	sections,	with	a	descriptive	attribute	grade.

•	course	dept:	relating	courses	with	departments.

•	sec	course:	relating	sections	with	courses.

•	sec	class:	relating	sections	with	classrooms.

•	sec	time	slot:	relating	sections	with	time	slots.

•	advisor:	relating	students	with	instructors.

•	prereq:	relating	courses	with	prerequisite	courses.

You	can	verify	that	none	of	the	entity	sets	has	any	attribute	that	is	made	redundant	by	one	of	the
relationship	sets.	Further,	you	can	verify	that	all	the	information	(other	than	constraints)	in	the	relational
schema	for	our	university	database,	which	we	saw	earlier	in	Figure	2.9,	has	been	captured	by	the	above
design,	but	with	several	attributes	in	the	relational	design	replaced	by	relationships	in	the	E-R	design.

We	are	finally	in	a	position	to	show	(Figure	6.15)	the	E-R	diagram	that	corresponds	to	the	university
enterprise	that	we	have	been	using	thus	far	in	the	text.	This	E-R	diagram	is	equivalent	to	the	textual
description	of	the	university	E-R	model,	but	with	several	additional	constraints.

In	our	university	database,	we	have	a	constraint	that	each	instructor	must	have	exactly	one	associated
department.	As	a	result,	there	is	a	double	line	in	Figure	6.15

between	instructor	and	inst	dept,	indicating	total	participation	of	instructor	in	inst	dept;	that	is,	each
instructor	must	be	associated	with	a	department.	Further,	there	is	an	arrow	from	inst	dept	to	department,
indicating	that	each	instructor	can	have	at	most	one	associated	department.

Similarly,	entity	set	course	has	a	double	line	to	relationship	set	course	dept,	indicating	that	every	course
must	be	in	some	department,	and	entity	set	student	has	a	double	line	to	relationship	set	stud	dept,
indicating	that	every	student	must	be	majoring	in	some	department.	In	each	case,	an	arrow	points	to	the
entity	set	department	to	show	that	a	course	(and,	respectively,	a	student)	can	be	related	to	only	one
department,	not	several.

Similarly,	entity	set	course	has	a	double	line	to	relationship	set	course	dept,	indicating	that	every	course
must	be	in	some	department,	and	entity	set	student	has	a	double	line	to	relationship	set	stud	dept,
indicating	that	every	student	must	be	majoring	in	some	department.	In	each	case,	an	arrow	points	to	the
entity	set	department	to	show	that	a	course	(and,	respectively,	a	student)	can	be	related	to	only	one
department,	not	several.

Further,	Figure	6.15	shows	that	the	relationship	set	takes	has	a	descriptive	attribute	grade,	and	that	each
student	has	at	most	one	advisor.	The	figure	also	shows	that	section	is	a	weak	entity	set,	with	attributes	sec
id,	semester,	and	year	forming	the	discriminator;	sec	course	is	the	identifying	relationship	set	relating
weak	entity	set	section	to	the	strong	entity	set	course.

264

Chapter	6

Database	Design	Using	the	E-R	Model

department

course_dept

dept_name

building

budget

inst_dept

stud_dept

instructor

student

ID

ID

advisor

name

name

salary

tot_cred

teaches

takes

grade

section

course

time_slot

sec_id

course_id

semester

time_slot_id

sec_course

sec_time_slot

title

year

{	day

credits

start_time

end_time

}

prereq

course_id

prereq_id

sec_class

classroom

building

room_number

capacity

Figure	6.15	E-R	diagram	for	a	university	enterprise.

In	Section	6.7,	we	show	how	this	E-R	diagram	can	be	used	to	derive	the	various	relation	schemas	we	use.

6.7

Reducing	E-R	Diagrams	to	Relational	Schemas

Both	the	E-R	model	and	the	relational	database	model	are	abstract,	logical	representations	of	real-world
enterprises.	Because	the	two	models	employ	similar	design	principles,	we	can	convert	an	E-R	design	into
a	relational	design.	For	each	entity	set	and	for	each	relationship	set	in	the	database	design,	there	is	a
unique	relation	schema	to	which	we	assign	the	name	of	the	corresponding	entity	set	or	relationship	set.

6.7

Reducing	E-R	Diagrams	to	Relational	Schemas

265

In	this	section,	we	describe	how	an	E-R	schema	can	be	represented	by	relation	schemas	and	how
constraints	arising	from	the	E-R	design	can	be	mapped	to	constraints	on	relation	schemas.

6.7.1

Representation	of	Strong	Entity	Sets

Let	E	be	a	strong	entity	set	with	only	simple	descriptive	attributes	a	,	a	,	…	,	a	.	We	1

2

n

represent	this	entity	with	a	schema	called	E	with	n	distinct	attributes.	Each	tuple	in	a	relation	on	this
schema	corresponds	to	one	entity	of	the	entity	set	E.

For	schemas	derived	from	strong	entity	sets,	the	primary	key	of	the	entity	set	serves	as	the	primary	key	of
the	resulting	schema.	This	follows	directly	from	the	fact	that	each	tuple	corresponds	to	a	specific	entity	in
the	entity	set.

As	an	illustration,	consider	the	entity	set	student	of	the	E-R	diagram	in	Figure	6.15.

This	entity	set	has	three	attributes:	ID,	name,	tot	cred.	We	represent	this	entity	set	by	a	schema	called
student	with	three	attributes:

student	(ID,	name,	tot	cred)

Note	that	since	student	ID	is	the	primary	key	of	the	entity	set,	it	is	also	the	primary	key	of	the	relation
schema.

Continuing	with	our	example,	for	the	E-R	diagram	in	Figure	6.15,	all	the	strong	entity	sets,	except	time
slot,	have	only	simple	attributes.	The	schemas	derived	from	these	strong	entity	sets	are	depicted	in	Figure
6.16.	Note	that	the	instructor,	student,	and	course	schemas	are	different	from	the	schemas	we	have	used
in	the	previous	chapters	(they	do	not	contain	the	attribute	dept	name).	We	shall	revisit	this	issue	shortly.

6.7.2

Representation	of	Strong	Entity	Sets	with	Complex	Attributes

When	a	strong	entity	set	has	nonsimple	attributes,	things	are	a	bit	more	complex.	We	handle	composite
attributes	by	creating	a	separate	attribute	for	each	of	the	component	attributes;	we	do	not	create	a
separate	attribute	for	the	composite	attribute	itself.	To	illustrate,	consider	the	version	of	the	instructor
entity	set	depicted	in	Figure	6.8.	For	the	composite	attribute	name,	the	schema	generated	for	instructor
contains	the	attributes	classroom(building,	room	number,	capacity)	department(dept	name,	building,
budget)	course(course	id,	title,	credits)

instructor(ID,	name,	salary)

student(ID,	name,	tot	cred)

Figure	6.16	Schemas	derived	from	the	entity	sets	in	the	E-R	diagram	in	Figure	6.15.

266

Chapter	6

Database	Design	Using	the	E-R	Model

first	name,	middle	initial,	and	last	name;	there	is	no	separate	attribute	or	schema	for	name.	Similarly,	for
the	composite	attribute	address,	the	schema	generated	contains	the	attributes	street,	city,	state,	and
postal	code.	Since	street	is	a	composite	attribute	it	is	replaced	by	street	number,	street	name,	and	apt
number.

Multivalued	attributes	are	treated	differently	from	other	attributes.	We	have	seen	that	attributes	in	an	E-R
diagram	generally	map	directly	into	attributes	for	the	appropriate	relation	schemas.	Multivalued
attributes,	however,	are	an	exception;	new	relation	schemas	are	created	for	these	attributes,	as	we	shall
see	shortly.

Derived	attributes	are	not	explicitly	represented	in	the	relational	data	model.	However,	they	can	be
represented	as	stored	procedures,	functions,	or	methods	in	other	data	models.

The	relational	schema	derived	from	the	version	of	entity	set	instructor	with	complex	attributes,	without
including	the	multivalued	attribute,	is	thus:

instructor	(ID,	first	name,	middle	initial,	last	name,	street	number,	street	name,	apt	number,

city,	state,	postal	code,	date	of	birth)	For	a	multivalued	attribute	M	,	we	create	a	relation	schema	R	with
an	attribute	A	that	corresponds	to	M	and	attributes	corresponding	to	the	primary	key	of	the	entity	set	or
relationship	set	of	which	M	is	an	attribute.

As	an	illustration,	consider	the	E-R	diagram	in	Figure	6.8	that	depicts	the	entity	set	instructor,	which
includes	the	multivalued	attribute	phone	number.	The	primary	key	of	instructor	is	ID.	For	this	multivalued
attribute,	we	create	a	relation	schema	instructor	phone	(ID,	phone	number)

Each	phone	number	of	an	instructor	is	represented	as	a	unique	tuple	in	the	relation	on	this	schema.	Thus,
if	we	had	an	instructor	with	ID	22222,	and	phone	numbers	555-1234

and	555-4321,	the	relation	instructor	phone	would	have	two	tuples	(22222,	555-1234)	and	(22222,	555-
4321).

We	create	a	primary	key	of	the	relation	schema	consisting	of	all	attributes	of	the	schema.	In	the	above
example,	the	primary	key	consists	of	both	attributes	of	the	relation	schema	instructor	phone.

In	addition,	we	create	a	foreign-key	constraint	on	the	relation	schema	created	from	the	multivalued
attribute.	In	that	newly	created	schema,	the	attribute	generated	from	the	primary	key	of	the	entity	set
must	reference	the	relation	generated	from	the	entity	set.	In	the	above	example,	the	foreign-key
constraint	on	the	instructor	phone	relation	would	be	that	attribute	ID	references	the	instructor	relation.

In	the	case	that	an	entity	set	consists	of	only	two	attributes	—	a	single	primary-key	attribute	B	and	a
single	multivalued	attribute	M	—	the	relation	schema	for	the	entity	set	would	contain	only	one	attribute,
namely,	the	primary-key	attribute	B.	We	can	drop

6.7

Reducing	E-R	Diagrams	to	Relational	Schemas

267

this	relation,	while	retaining	the	relation	schema	with	the	attribute	B	and	attribute	A	that	corresponds	to
M	.

To	illustrate,	consider	the	entity	set	time	slot	depicted	in	Figure	6.15.	Here,	time	slot	id	is	the	primary	key
of	the	time	slot	entity	set,	and	there	is	a	single	multivalued	attribute	that	happens	also	to	be	composite.
The	entity	set	can	be	represented	by	just	the	following	schema	created	from	the	multivalued	composite
attribute:	time	slot	(time	slot	id,	day,	start	time,	end	time)	Although	not	represented	as	a	constraint	on
the	E-R	diagram,	we	know	that	there	cannot	be	two	meetings	of	a	class	that	start	at	the	same	time	of	the
same	day	of	the	week	but	end	at	different	times;	based	on	this	constraint,	end	time	has	been	omitted	from
the	primary	key	of	the	time	slot	schema.

The	relation	created	from	the	entity	set	would	have	only	a	single	attribute	time	slot	id;	the	optimization	of
dropping	this	relation	has	the	benefit	of	simplifying	the	resultant	database	schema,	although	it	has	a
drawback	related	to	foreign	keys,	which	we	briefly	discuss	in	Section	6.7.4.

6.7.3

Representation	of	Weak	Entity	Sets

Let	A	be	a	weak	entity	set	with	attributes	a	,	a	,	…	,	a	.	Let	B	be	the	strong	entity	set	1

2

m

on	which	A	depends.	Let	the	primary	key	of	B	consist	of	attributes	b	,	b	,	…	,	b	.	We	1

2

n

represent	the	entity	set	A	by	a	relation	schema	called	A	with	one	attribute	for	each	member	of	the	set:

{	a	,	a	,	…	,	a	}	∪	{	b	,	b	,	…	,	b	}

1

2

m

1

2

n

For	schemas	derived	from	a	weak	entity	set,	the	combination	of	the	primary	key	of	the	strong	entity	set
and	the	discriminator	of	the	weak	entity	set	serves	as	the	primary	key	of	the	schema.	In	addition	to
creating	a	primary	key,	we	also	create	a	foreign-key	constraint	on	the	relation	A,	specifying	that	the
attributes	b	,	b	,	…	,	b	reference	the	1

2

n

primary	key	of	the	relation	B.	The	foreign-key	constraint	ensures	that	for	each	tuple	representing	a	weak
entity,	there	is	a	corresponding	tuple	representing	the	corresponding	strong	entity.

As	an	illustration,	consider	the	weak	entity	set	section	in	the	E-R	diagram	of	Figure	6.15.	This	entity	set
has	the	attributes:	sec	id,	semester,	and	year.	The	primary	key	of	the	course	entity	set,	on	which	section
depends,	is	course	id.	Thus,	we	represent	section	by	a	schema	with	the	following	attributes:

section	(course	id,	sec	id,	semester,	year)	The	primary	key	consists	of	the	primary	key	of	the	entity	set
course,	along	with	the	discriminator	of	section,	which	is	sec	id,	semester,	and	year.	We	also	create	a
foreign-key

268

Chapter	6

Database	Design	Using	the	E-R	Model

constraint	on	the	section	schema,	with	the	attribute	course	id	referencing	the	primary	key	of	the	course
schema.5

6.7.4

Representation	of	Relationship	Sets

Let	R	be	a	relationship	set,	let	a	,	a	,	…	,	a	be	the	set	of	attributes	formed	by	the	union	1

2

m

of	the	primary	keys	of	each	of	the	entity	sets	participating	in	R,	and	let	the	descriptive	attributes	(if	any)
of	R	be	b	,	b	,	…	,	b	.	We	represent	this	relationship	set	by	a	relation	1

2

n

schema	called	R	with	one	attribute	for	each	member	of	the	set:

{	a	,	a	,	…	,	a	}	∪	{	b	,	b	,	…	,	b	}

1

2

m

1

2

n

We	described	in	Section	6.5,	how	to	choose	a	primary	key	for	a	binary	relationship	set.	The	primary	key
attributes	of	the	relationship	set	are	also	used	as	the	primary	key	attributes	of	the	relational	schema	R.

As	an	illustration,	consider	the	relationship	set	advisor	in	the	E-R	diagram	of	Figure	6.15.	This
relationship	set	involves	the	following	entity	sets:

•	instructor,	with	the	primary	key	ID.

•	student,	with	the	primary	key	ID.

Since	the	relationship	set	has	no	attributes,	the	advisor	schema	has	two	attributes,	the	primary	keys	of
instructor	and	student.	Since	both	attributes	have	the	same	name,	we	rename	them	i	ID	and	s	ID.	Since
the	advisor	relationship	set	is	many-to-one	from	student	to	instructor	the	primary	key	for	the	advisor
relation	schema	is	s	ID.

We	also	create	foreign-key	constraints	on	the	relation	schema	R	as	follows:	For	each	entity	set	E	related
by	relationship	set	R,	we	create	a	foreign-key	constraint	from	rela-i

tion	schema	R,	with	the	attributes	of	R	that	were	derived	from	primary-key	attributes	of	E	referencing	the
primary	key	of	the	relation	schema	representing	E	.

i

i

Returning	to	our	earlier	example,	we	thus	create	two	foreign-key	constraints	on	the	advisor	relation,	with
attribute	i	ID	referencing	the	primary	key	of	instructor	and	attribute	s	ID	referencing	the	primary	key	of
student.

Applying	the	preceding	techniques	to	the	other	relationship	sets	in	the	E-R	diagram	in	Figure	6.15,	we	get
the	relational	schemas	depicted	in	Figure	6.17.

Observe	that	for	the	case	of	the	relationship	set	prereq,	the	role	indicators	associated	with	the
relationship	are	used	as	attribute	names,	since	both	roles	refer	to	the	same	relation	course.

Similar	to	the	case	of	advisor,	the	primary	key	for	each	of	the	relations	sec	course,	sec	time	slot,	sec	class,
inst	dept,	stud	dept,	and	course	dept	consists	of	the	primary	key	5Optionally,	the	foreign-key	constraint
could	have	an	“on	delete	cascade”	specification,	so	that	deletion	of	a	course	entity	automatically	deletes
any	section	entities	that	reference	the	course	entity.	Without	that	specification,	each	section	of	a	course
would	have	to	be	deleted	before	the	corresponding	course	can	be	deleted.

6.7

Reducing	E-R	Diagrams	to	Relational	Schemas

269

teaches	(ID,	course	id,	sec	id,	semester,	year)	takes	(ID,	course	id,	sec	id,	semester,	year,	grade)	prereq	(
course	id,	prereq	id)

advisor	(s	ID,	i	ID)

sec	course	(course	id,	sec	id,	semester,	year)	sec	time	slot	(course	id,	sec	id,	semester,	year,	time	slot	id)
sec	class	(course	id,	sec	id,	semester,	year,	building,	room	number)	inst	dept	(ID,	dept	name)

stud	dept	(ID,	dept	name)

course	dept	(course	id,	dept	name)

Figure	6.17	Schemas	derived	from	relationship	sets	in	the	E-R	diagram	in	Figure	6.15.

of	only	one	of	the	two	related	entity	sets,	since	each	of	the	corresponding	relationships	is	many-to-one.

Foreign	keys	are	not	shown	in	Figure	6.17,	but	for	each	of	the	relations	in	the	figure	there	are	two
foreign-key	constraints,	referencing	the	two	relations	created	from	the	two	related	entity	sets.	Thus,	for
example,	sec	course	has	foreign	keys	referencing	section	and	classroom,	teaches	has	foreign	keys
referencing	instructor	and	section,	and	takes	has	foreign	keys	referencing	student	and	section.

The	optimization	that	allowed	us	to	create	only	a	single	relation	schema	from	the	entity	set	time	slot,
which	had	a	multivalued	attribute,	prevents	the	creation	of	a	foreign	key	from	the	relation	schema	sec
time	slot	to	the	relation	created	from	entity	set	time	slot,	since	we	dropped	the	relation	created	from	the
entity	set	time	slot.	We	retained	the	relation	created	from	the	multivalued	attribute	and	named	it	time
slot,	but	this	relation	may	potentially	have	no	tuples	corresponding	to	a	time	slot	id,	or	it	may	have
multiple	tuples	corresponding	to	a	time	slot	id;	thus,	time	slot	id	in	sec	time	slot	cannot	reference	this
relation.

The	astute	reader	may	wonder	why	we	have	not	seen	the	schemas	sec	course,	sec	time	slot,	sec	class,	inst
dept,	stud	dept,	and	course	dept	in	the	previous	chapters.	The	reason	is	that	the	algorithm	we	have
presented	thus	far	results	in	some	schemas	that	can	be	either	eliminated	or	combined	with	other
schemas.	We	explore	this	issue	next.

6.7.5

Redundancy	of	Schemas

A	relationship	set	linking	a	weak	entity	set	to	the	corresponding	strong	entity	set	is	treated	specially.	As
we	noted	in	Section	6.5.3,	these	relationships	are	many-to-one	and	have	no	descriptive	attributes.
Furthermore,	the	of	a	weak	entity	set	includes	the	primary	key	of	the	strong	entity	set.	In	the	E-R	diagram
of	Figure	6.14,	the	weak	entity	set	section	is	dependent	on	the	strong	entity	set	course	via	the
relationship	set	sec	course.

270

Chapter	6

Database	Design	Using	the	E-R	Model

The	primary	key	of	section	is	{	course	id,	sec	id,	semester,	year},	and	the	primary	key	of	course	is	course
id.	Since	sec	course	has	no	descriptive	attributes,	the	sec	course	schema	has	attributes	course	id,	sec	id,
semester,	and	year.	The	schema	for	the	entity	set	section	includes	the	attributes	course	id,	sec	id,
semester,	and	year	(among	others).	Every	(course	id,	sec	id,	semester,	year)	combination	in	a	sec	course
relation	would	also	be	present	in	the	relation	on	schema	section,	and	vice	versa.	Thus,	the	sec	course
schema	is	redundant.

In	general,	the	schema	for	the	relationship	set	linking	a	weak	entity	set	to	its	corresponding	strong	entity
set	is	redundant	and	does	not	need	to	be	present	in	a	relational	database	design	based	upon	an	E-R
diagram.

6.7.6

Combination	of	Schemas

Consider	a	many-to-one	relationship	set	AB	from	entity	set	A	to	entity	set	B.	Using	our	relational-schema
construction	algorithm	outlined	previously,	we	get	three	schemas:	A,	B,	and	AB.	Suppose	further	that	the
participation	of	A	in	the	relationship	is	total;	that	is,	every	entity	a	in	the	entity	set	A	must	participate	in
the	relationship	AB.	Then	we	can	combine	the	schemas	A	and	AB	to	form	a	single	schema	consisting	of
the	union	of	attributes	of	both	schemas.	The	primary	key	of	the	combined	schema	is	the	primary	key	of
the	entity	set	into	whose	schema	the	relationship	set	schema	was	merged.

To	illustrate,	let’s	examine	the	various	relations	in	the	E-R	diagram	of	Figure	6.15

that	satisfy	the	preceding	criteria:

•	inst	dept.	The	schemas	instructor	and	department	correspond	to	the	entity	sets	A	and	B,	respectively.
Thus,	the	schema	inst	dept	can	be	combined	with	the	instructor	schema.	The	resulting	instructor	schema
consists	of	the	attributes	{	ID,	name,	dept	name,	salary}.

•	stud	dept.	The	schemas	student	and	department	correspond	to	the	entity	sets	A	and	B,	respectively.
Thus,	the	schema	stud	dept	can	be	combined	with	the	student	schema.	The	resulting	student	schema
consists	of	the	attributes	{	ID,	name,	dept	name,	tot	cred}.

•	course	dept.	The	schemas	course	and	department	correspond	to	the	entity	sets	A	and	B,	respectively.
Thus,	the	schema	course	dept	can	be	combined	with	the	course	schema.	The	resulting	course	schema

consists	of	the	attributes	{	course	id,	title,	dept	name,	credits}.

•	sec	class.	The	schemas	section	and	classroom	correspond	to	the	entity	sets	A	and	B,	respectively.	Thus,
the	schema	sec	class	can	be	combined	with	the	section	schema.

The	resulting	section	schema	consists	of	the	attributes	{	course	id,	sec	id,	semester,	year,	building,	room
number}.

•	sec	time	slot.	The	schemas	section	and	time	slot	correspond	to	the	entity	sets	A	and	B	respectively,
Thus,	the	schema	sec	time	slot	can	be	combined	with	the	section

6.8

Extended	E-R	Features

271

schema	obtained	in	the	previous	step.	The	resulting	section	schema	consists	of	the	attributes	{	course	id,
sec	id,	semester,	year,	building,	room	number,	time	slot	id}.

In	the	case	of	one-to-one	relationships,	the	relation	schema	for	the	relationship	set	can	be	combined	with
the	schemas	for	either	of	the	entity	sets.

We	can	combine	schemas	even	if	the	participation	is	partial	by	using	null	values.

In	the	preceding	example,	if	inst	dept	were	partial,	then	we	would	store	null	values	for	the	dept	name
attribute	for	those	instructors	who	have	no	associated	department.

Finally,	we	consider	the	foreign-key	constraints	that	would	have	appeared	in	the	schema	representing	the
relationship	set.	There	would	have	been	foreign-key	constraints	referencing	each	of	the	entity	sets
participating	in	the	relationship	set.	We	drop	the	constraint	referencing	the	entity	set	into	whose	schema
the	relationship	set	schema	is	merged,	and	add	the	other	foreign-key	constraints	to	the	combined	schema.
For	example,	inst	dept	has	a	foreign	key	constraint	of	the	attribute	dept	name	referencing	the	department
relation.	This	foreign	constraint	is	enforced	implicitly	by	the	instructor	relation	when	the	schema	for	inst
dept	is	merged	into	instructor.

6.8

Extended	E-R	Features

Although	the	basic	E-R	concepts	can	model	most	database	features,	some	aspects	of	a	database	may	be
more	aptly	expressed	by	certain	extensions	to	the	basic	E-R	model.

In	this	section,	we	discuss	the	extended	E-R	features	of	specialization,	generalization,	higher-	and	lower-
level	entity	sets,	attribute	inheritance,	and	aggregation.

To	help	with	the	discussions,	we	shall	use	a	slightly	more	elaborate	database	schema	for	the	university.	In
particular,	we	shall	model	the	various	people	within	a	university	by	defining	an	entity	set	person,	with
attributes	ID,	name,	street,	and	city.

6.8.1

Specialization

An	entity	set	may	include	subgroupings	of	entities	that	are	distinct	in	some	way	from	other	entities	in	the
set.	For	instance,	a	subset	of	entities	within	an	entity	set	may	have	attributes	that	are	not	shared	by	all
the	entities	in	the	entity	set.	The	E-R	model	provides	a	means	for	representing	these	distinctive	entity
groupings.

As	an	example,	the	entity	set	person	may	be	further	classified	as	one	of	the	following:

•	employee.

•	student.

Each	of	these	person	types	is	described	by	a	set	of	attributes	that	includes	all	the	attributes	of	entity	set
person	plus	possibly	additional	attributes.	For	example,	employee	entities	may	be	described	further	by	the
attribute	salary,	whereas	student	entities	may

272

Chapter	6

Database	Design	Using	the	E-R	Model

be	described	further	by	the	attribute	tot	cred.	The	process	of	designating	subgroupings	within	an	entity
set	is	called	specialization.	The	specialization	of	person	allows	us	to	distinguish	among	person	entities
according	to	whether	they	correspond	to	employees	or	students:	in	general,	a	person	could	be	an
employee,	a	student,	both,	or	neither.

As	another	example,	suppose	the	university	divides	students	into	two	categories:	graduate	and
undergraduate.	Graduate	students	have	an	office	assigned	to	them.	Undergraduate	students	are	assigned
to	a	residential	college.	Each	of	these	student	types	is	described	by	a	set	of	attributes	that	includes	all	the
attributes	of	the	entity	set	student	plus	additional	attributes.

We	can	apply	specialization	repeatedly	to	refine	a	design.	The	university	could	create	two	specializations
of	student,	namely	graduate	and	undergraduate.	As	we	saw	earlier,	student	entities	are	described	by	the
attributes	ID,	name,	street,	city,	and	tot	cred.	The	entity	set	graduate	would	have	all	the	attributes	of
student	and	an	additional	attribute	office	number.	The	entity	set	undergraduate	would	have	all	the
attributes	of	student,	and	an	additional	attribute	residential	college.	As	another	example,	university
employees	may	be	further	classified	as	one	of	instructor	or	secretary.

Each	of	these	employee	types	is	described	by	a	set	of	attributes	that	includes	all	the	attributes	of	entity
set	employee	plus	additional	attributes.	For	example,	instructor	entities	may	be	described	further	by	the
attribute	rank	while	secretary	entities	are	described	by	the	attribute	hours	per	week.	Further,	secretary
entities	may	participate	in	a	relationship	secretary	for	between	the	secretary	and	employee	entity	sets,
which	identifies	the	employees	who	are	assisted	by	a	secretary.

An	entity	set	may	be	specialized	by	more	than	one	distinguishing	feature.	In	our	example,	the
distinguishing	feature	among	employee	entities	is	the	job	the	employee	performs.	Another,	coexistent,
specialization	could	be	based	on	whether	the	person	is	a	temporary	(limited	term)	employee	or	a
permanent	employee,	resulting	in	the	entity	sets	temporary	employee	and	permanent	employee.	When
more	than	one	specialization	is	formed	on	an	entity	set,	a	particular	entity	may	belong	to	multiple
specializations.

For	instance,	a	given	employee	may	be	a	temporary	employee	who	is	a	secretary.

In	terms	of	an	E-R	diagram,	specialization	is	depicted	by	a	hollow	arrow-head	pointing	from	the
specialized	entity	to	the	other	entity	(see	Figure	6.18).	We	refer	to	this	relationship	as	the	ISA
relationship,	which	stands	for	“is	a”	and	represents,	for	example,	that	an	instructor	“is	a”	employee.

The	way	we	depict	specialization	in	an	E-R	diagram	depends	on	whether	an	entity	may	belong	to	multiple
specialized	entity	sets	or	if	it	must	belong	to	at	most	one	specialized	entity	set.	The	former	case	(multiple
sets	permitted)	is	called	overlapping	specialization,	while	the	latter	case	(at	most	one	permitted)	is	called
disjoint	specialization.	For	an	overlapping	specialization	(as	is	the	case	for	student	and	employee	as
specializations	of	person),	two	separate	arrows	are	used.	For	a	disjoint	specialization	(as	is	the	case	for
instructor	and	secretary	as	specializations	of	employee),	a	single	arrow	is	used.	The	specialization
relationship	may	also	be	referred	to	as	a	superclass-subclass	relationship.	Higher-	and	lower-level	entity
sets	are	depicted	as	regular	entity	sets	—	that	is,	as	rectangles	containing	the	name	of	the	entity	set.

6.8

Extended	E-R	Features

273

person

ID

name

street

city

employee

student

salary

tot_credits

instructor

secretary

rank

hours_	per_week

Figure	6.18	Specialization	and	generalization.

6.8.2

Generalization

The	refinement	from	an	initial	entity	set	into	successive	levels	of	entity	subgroupings	represents	a	top-
down	design	process	in	which	distinctions	are	made	explicit.	The	design	process	may	also	proceed	in	a
bottom-up	manner,	in	which	multiple	entity	sets	are	synthesized	into	a	higher-level	entity	set	on	the	basis
of	common	features.	The	database	designer	may	have	first	identified:

•	instructor	entity	set	with	attributes	instructor	id,	instructor	name,	instructor	salary,	and	rank.

•	secretary	entity	set	with	attributes	secretary	id,	secretary	name,	secretary	salary,	and	hours	per	week.

There	are	similarities	between	the	instructor	entity	set	and	the	secretary	entity	set	in	the	sense	that	they
have	several	attributes	that	are	conceptually	the	same	across	the	two	entity	sets:	namely,	the	identifier,
name,	and	salary	attributes.	This	commonality	can	be	expressed	by	generalization,	which	is	a	containment
relationship	that	exists	between	a	higher-level	entity	set	and	one	or	more	lower-level	entity	sets.	In	our
example,	employee	is	the	higher-level	entity	set	and	instructor	and	secretary	are	lower-level	entity	sets.	In
this	case,	attributes	that	are	conceptually	the	same	had	different	names	in	the	two	lower-level	entity	sets.
To	create	a	generalization,	the	attributes	must	be	given	a	common	name	and	represented	with	the	higher-
level	entity	person.	We	can	use	the	attribute	names	ID,	name,	street,	and	city,	as	we	saw	in	the	example	in
Section	6.8.1.

274

Chapter	6

Database	Design	Using	the	E-R	Model

Higher-	and	lower-level	entity	sets	also	may	be	designated	by	the	terms	superclass	and	subclass,
respectively.	The	person	entity	set	is	the	superclass	of	the	employee	and	student	subclasses.

For	all	practical	purposes,	generalization	is	a	simple	inversion	of	specialization.

We	apply	both	processes,	in	combination,	in	the	course	of	designing	the	E-R	schema	for	an	enterprise.	In
terms	of	the	E-R	diagram	itself,	we	do	not	distinguish	between	specialization	and	generalization.	New
levels	of	entity	representation	are	distinguished	(specialization)	or	synthesized	(generalization)	as	the
design	schema	comes	to	express	fully	the	database	application	and	the	user	requirements	of	the	database.
Differences	in	the	two	approaches	may	be	characterized	by	their	starting	point	and	overall	goal.

Specialization	stems	from	a	single	entity	set;	it	emphasizes	differences	among	entities	within	the	set	by
creating	distinct	lower-level	entity	sets.	These	lower-level	entity	sets	may	have	attributes,	or	may
participate	in	relationships,	that	do	not	apply	to	all	the	entities	in	the	higher-level	entity	set.	Indeed,	the
reason	a	designer	applies	specialization	is	to	represent	such	distinctive	features.	If	student	and	employee
have	exactly	the	same	attributes	as	person	entities,	and	participate	in	exactly	the	same	relationships	as
person	entities,	there	would	be	no	need	to	specialize	the	person	entity	set.

Generalization	proceeds	from	the	recognition	that	a	number	of	entity	sets	share	some	common	features
(namely,	they	are	described	by	the	same	attributes	and	participate	in	the	same	relationship	sets).	On	the
basis	of	their	commonalities,	generalization	synthesizes	these	entity	sets	into	a	single,	higher-level	entity
set.	Generalization	is	used	to	emphasize	the	similarities	among	lower-level	entity	sets	and	to	hide	the
differences;	it	also	permits	an	economy	of	representation	in	that	shared	attributes	are	not	repeated.

6.8.3

Attribute	Inheritance

A	crucial	property	of	the	higher-	and	lower-level	entities	created	by	specialization	and	generalization	is
attribute	inheritance.	The	attributes	of	the	higher-level	entity	sets	are	said	to	be	inherited	by	the	lower-
level	entity	sets.	For	example,	student	and	employee	inherit	the	attributes	of	person.	Thus,	student	is
described	by	its	ID,	name,	street,	and	city	attributes,	and	additionally	a	tot	cred	attribute;	employee	is
described	by	its	ID,	name,	street,	and	city	attributes,	and	additionally	a	salary	attribute.	Attribute
inheritance	applies	through	all	tiers	of	lower-level	entity	sets;	thus,	instructor	and	secretary,	which	are
subclasses	of	employee,	inherit	the	attributes	ID,	name,	street,	and	city	from	person,	in	addition	to
inheriting	salary	from	employee.

A	lower-level	entity	set	(or	subclass)	also	inherits	participation	in	the	relationship	sets	in	which	its	higher-
level	entity	(or	superclass)	participates.	Like	attribute	inheritance,	participation	inheritance	applies
through	all	tiers	of	lower-level	entity	sets.	For	example,	suppose	the	person	entity	set	participates	in	a
relationship	person	dept	with	department.	Then,	the	student,	employee,	instructor	and	secretary	entity
sets,	which	are	subclasses	of	the	person	entity	set,	also	implicitly	participate	in	the	person	dept
relationship	with	department.	These	entity	sets	can	participate	in	any	relationships	in	which	the	person
entity	set	participates.

6.8

Extended	E-R	Features

275

Whether	a	given	portion	of	an	E-R	model	was	arrived	at	by	specialization	or	generalization,	the	outcome	is
basically	the	same:

•	A	higher-level	entity	set	with	attributes	and	relationships	that	apply	to	all	of	its	lower-level	entity	sets.

•	Lower-level	entity	sets	with	distinctive	features	that	apply	only	within	a	particular	lower-level	entity	set.

In	what	follows,	although	we	often	refer	to	only	generalization,	the	properties	that	we	discuss	belong	fully
to	both	processes.

Figure	6.18	depicts	a	hierarchy	of	entity	sets.	In	the	figure,	employee	is	a	lower-level	entity	set	of	person
and	a	higher-level	entity	set	of	the	instructor	and	secretary	entity	sets.

In	a	hierarchy,	a	given	entity	set	may	be	involved	as	a	lower-level	entity	set	in	only	one	ISA	relationship;
that	is,	entity	sets	in	this	diagram	have	only	single	inheritance.	If	an	entity	set	is	a	lower-level	entity	set	in
more	than	one	ISA	relationship,	then	the	entity	set	has	multiple	inheritance,	and	the	resulting	structure	is
said	to	be	a	lattice.

6.8.4

Constraints	on	Specializations

To	model	an	enterprise	more	accurately,	the	database	designer	may	choose	to	place	certain	constraints	on
a	particular	generalization/specialization.

One	type	of	constraint	on	specialization	which	we	saw	earlier	specifies	whether	a	specialization	is	disjoint
or	overlapping.	Another	type	of	constraint	on	a	specialization/generalization	is	a	completeness	constraint,
which	specifies	whether	or	not	an	entity	in	the	higher-level	entity	set	must	belong	to	at	least	one	of	the
lower-level	entity	sets	within	the	generalization/specialization.	This	constraint	may	be	one	of	the
following:

•	Total	specialization	or	generalization.	Each	higher-level	entity	must	belong	to	a	lower-level	entity	set.

•	Partial	specialization	or	generalization.	Some	higher-level	entities	may	not	belong	to	any	lower-level
entity	set.

Partial	specialization	is	the	default.	We	can	specify	total	specialization	in	an	E-R	diagram	by	adding	the
keyword	“total”	in	the	diagram	and	drawing	a	dashed	line	from	the	keyword	to	the	corresponding	hollow
arrowhead	to	which	it	applies	(for	a	total	specialization),	or	to	the	set	of	hollow	arrowheads	to	which	it
applies	(for	an	overlapping	specialization).

The	specialization	of	person	to	student	or	employee	is	total	if	the	university	does	not	need	to	represent
any	person	who	is	neither	a	student	nor	an	employee.	However,	if	the	university	needs	to	represent	such
persons,	then	the	specialization	would	be	partial.

The	completeness	and	disjointness	constraints,	do	not	depend	on	each	other.	Thus,	specializations	may	be
partial-overlapping,	partial-disjoint,	total-overlapping,	and	total-disjoint.

276

Chapter	6

Database	Design	Using	the	E-R	Model

We	can	see	that	certain	insertion	and	deletion	requirements	follow	from	the	constraints	that	apply	to	a
given	generalization	or	specialization.	For	instance,	when	a	total	completeness	constraint	is	in	place,	an
entity	inserted	into	a	higher-level	entity	set	must	also	be	inserted	into	at	least	one	of	the	lower-level	entity
sets.	An	entity	that	is	deleted	from	a	higher-level	entity	set	must	also	be	deleted	from	all	the	associated
lower-level	entity	sets	to	which	it	belongs.

6.8.5

Aggregation

One	limitation	of	the	E-R	model	is	that	it	cannot	express	relationships	among	relationships.	To	illustrate
the	need	for	such	a	construct,	consider	the	ternary	relationship	proj	guide,	which	we	saw	earlier,	between
an	instructor,	student	and	project	(see	Figure	6.6).

Now	suppose	that	each	instructor	guiding	a	student	on	a	project	is	required	to	file	a	monthly	evaluation
report.	We	model	the	evaluation	report	as	an	entity	evaluation,	with	a	primary	key	evaluation	id.	One
alternative	for	recording	the	(student,	project,	instructor)	combination	to	which	an	evaluation
corresponds	is	to	create	a	quaternary	(4-way)	relationship	set	eval	for	between	instructor,	student,
project,	and	evaluation.	(A	quaternary	relationship	is	required	—	a	binary	relationship	between	student
and	evaluation,	for	example,	would	not	permit	us	to	represent	the	(project,	instructor)	combination	to
which	an	evaluation	corresponds.)	Using	the	basic	E-R	modeling	constructs,	we	obtain	the	E-R	diagram	of
Figure	6.19.	(We	have	omitted	the	attributes	of	the	entity	sets,	for	simplicity.)

It	appears	that	the	relationship	sets	proj	guide	and	eval	for	can	be	combined	into	one	single	relationship
set.	Nevertheless,	we	should	not	combine	them	into	a	single	project

instructor

student

proj_	guide

eval_	for

evaluation

Figure	6.19	E-R	diagram	with	redundant	relationships.

6.8

Extended	E-R	Features

277

project

instructor

student

proj_	guide

eval_	for

evaluation

Figure	6.20	E-R	diagram	with	aggregation.

relationship,	since	some	instructor,	student,	project	combinations	may	not	have	an	associated	evaluation.

There	is	redundant	information	in	the	resultant	figure,	however,	since	every	instructor,	student,	project
combination	in	eval	for	must	also	be	in	proj	guide.	If	evaluation	was	modeled	as	a	value	rather	than	an
entity,	we	could	instead	make	evaluation	a	multivalued	composite	attribute	of	the	relationship	set	proj
guide.	However,	this	alternative	may	not	be	an	option	if	an	evaluation	may	also	be	related	to	other
entities;	for	example,	each	evaluation	report	may	be	associated	with	a	secretary	who	is	responsible	for
further	processing	of	the	evaluation	report	to	make	scholarship	payments.

The	best	way	to	model	a	situation	such	as	the	one	just	described	is	to	use	aggregation.	Aggregation	is	an
abstraction	through	which	relationships	are	treated	as	higher-level	entities.	Thus,	for	our	example,	we
regard	the	relationship	set	proj	guide	(relating	the	entity	sets	instructor,	student,	and	project)	as	a	higher-
level	entity	set	called	proj	guide.	Such	an	entity	set	is	treated	in	the	same	manner	as	is	any	other	entity
set.	We	can	then	create	a	binary	relationship	eval	for	between	proj	guide	and	evaluation	to	represent
which	(student,	project,	instructor)	combination	an	evaluation	is	for.	Figure	6.20

shows	a	notation	for	aggregation	commonly	used	to	represent	this	situation.

6.8.6

Reduction	to	Relation	Schemas

We	are	in	a	position	now	to	describe	how	the	extended	E-R	features	can	be	translated	into	relation
schemas.

278

Chapter	6

Database	Design	Using	the	E-R	Model

6.8.6.1

Representation	of	Generalization

There	are	two	different	methods	of	designing	relation	schemas	for	an	E-R	diagram	that	includes
generalization.	Although	we	refer	to	the	generalization	in	Figure	6.18	in	this	discussion,	we	simplify	it	by
including	only	the	first	tier	of	lower-level	entity	sets	—	that	is,	employee	and	student.	We	assume	that	ID
is	the	primary	key	of	person.

1.	Create	a	schema	for	the	higher-level	entity	set.	For	each	lower-level	entity	set,	create	a	schema	that
includes	an	attribute	for	each	of	the	attributes	of	that	entity	set	plus	one	for	each	attribute	of	the	primary
key	of	the	higher-level	entity	set.

Thus,	for	the	E-R	diagram	of	Figure	6.18	(ignoring	the	instructor	and	secretary	entity	sets)	we	have	three
schemas:

person	(ID,	name,	street,	city)

employee	(ID,	salary)

student	(ID,	tot	cred)

The	primary-key	attributes	of	the	higher-level	entity	set	become	primary-key	attributes	of	the	higher-level
entity	set	as	well	as	all	lower-level	entity	sets.	These	can	be	seen	underlined	in	the	preceding	example.

In	addition,	we	create	foreign-key	constraints	on	the	lower-level	entity	sets,	with	their	primary-key
attributes	referencing	the	primary	key	of	the	relation	created	from	the	higher-level	entity	set.	In	the
preceding	example,	the	ID	attribute	of	employee	would	reference	the	primary	key	of	person,	and	similarly
for	student.

2.	An	alternative	representation	is	possible,	if	the	generalization	is	disjoint	and	complete	—	that	is,	if	no
entity	is	a	member	of	two	lower-level	entity	sets	directly	below	a	higher-level	entity	set,	and	if	every	entity
in	the	higher-level	entity	set	is	also	a	member	of	one	of	the	lower-level	entity	sets.	Here,	we	do	not	create
a	schema	for	the	higher-level	entity	set.	Instead,	for	each	lower-level	entity	set,	we	create	a	schema	that
includes	an	attribute	for	each	of	the	attributes	of	that	entity	set	plus	one	for	each	attribute	of	the	higher-
level	entity	set.	Then,	for	the	E-R	diagram	of	Figure	6.18,	we	have	two	schemas:

employee	(ID,	name,	street,	city,	salary)	student	(ID,	name,	street,	city,	tot	cred)	Both	these	schemas
have	ID,	which	is	the	primary-key	attribute	of	the	higher-level	entity	set	person,	as	their	primary	key.

One	drawback	of	the	second	method	lies	in	defining	foreign-key	constraints.	To	illustrate	the	problem,
suppose	we	have	a	relationship	set	R	involving	entity	set	person.

With	the	first	method,	when	we	create	a	relation	schema	R	from	the	relationship	set,	we	also	define	a
foreign-key	constraint	on	R,	referencing	the	schema	person.	Unfortunately,	with	the	second	method,	we
do	not	have	a	single	relation	to	which	a	foreign-key

6.9

Entity-Relationship	Design	Issues

279

constraint	on	R	can	refer.	To	avoid	this	problem,	we	need	to	create	a	relation	schema	person	containing	at
least	the	primary-key	attributes	of	the	person	entity.

If	the	second	method	were	used	for	an	overlapping	generalization,	some	values	would	be	stored	multiple
times,	unnecessarily.	For	instance,	if	a	person	is	both	an	employee	and	a	student,	values	for	street	and	city
would	be	stored	twice.

If	the	generalization	were	disjoint	but	not	complete	—	that	is,	if	some	person	is	neither	an	employee	nor	a
student	—	then	an	extra	schema

person	(ID,	name,	street,	city)

would	be	required	to	represent	such	people.	However,	the	problem	with	foreign-key	constraints
mentioned	above	would	remain.	As	an	attempt	to	work	around	the	problem,	suppose	employees	and
students	are	additionally	represented	in	the	person	relation.

Unfortunately,	name,	street,	and	city	information	would	then	be	stored	redundantly	in	the	person	relation
and	the	student	relation	for	students,	and	similarly	in	the	person	relation	and	the	employee	relation	for
employees.	That	suggests	storing	name,	street,	and	city	information	only	in	the	person	relation	and
removing	that	information	from	student	and	employee.	If	we	do	that,	the	result	is	exactly	the	first	method
we	presented.

6.8.6.2

Representation	of	Aggregation

Designing	schemas	for	an	E-R	diagram	containing	aggregation	is	straightforward.	Consider	Figure	6.20.
The	schema	for	the	relationship	set	eval	for	between	the	aggregation	of	proj	guide	and	the	entity	set
evaluation	includes	an	attribute	for	each	attribute	in	the	primary	keys	of	the	entity	set	evaluation	and	the
relationship	set	proj	guide.	It	also	includes	an	attribute	for	any	descriptive	attributes,	if	they	exist,	of	the
relationship	set	eval	for.	We	then	transform	the	relationship	sets	and	entity	sets	within	the	aggregated
entity	set	following	the	rules	we	have	already	defined.

The	rules	we	saw	earlier	for	creating	primary-key	and	foreign-key	constraints	on	relationship	sets	can	be
applied	to	relationship	sets	involving	aggregations	as	well,	with	the	aggregation	treated	like	any	other
entity	set.	The	primary	key	of	the	aggregation	is	the	primary	key	of	its	defining	relationship	set.	No
separate	relation	is	required	to	represent	the	aggregation;	the	relation	created	from	the	defining
relationship	is	used	instead.

6.9

Entity-Relationship	Design	Issues

The	notions	of	an	entity	set	and	a	relationship	set	are	not	precise,	and	it	is	possible	to	define	a	set	of
entities	and	the	relationships	among	them	in	a	number	of	different	ways.	In	this	section,	we	examine	basic
issues	in	the	design	of	an	E-R	database	schema.

Section	6.11	covers	the	design	process	in	further	detail.

280

Chapter	6

Database	Design	Using	the	E-R	Model

student

department

ID

stud—dept

dept_name

name

building

tot_cred

budget

dept_name

(a)	Incorrect	use	of	attribute

assignment

marks

student

stud_section

section

(b)	Erroneous	use	of	relationship	attributes

Figure	6.21	Example	of	erroneous	E-R	diagrams

6.9.1

Common	Mistakes	in	E-R	Diagrams

A	common	mistake	when	creating	E-R	models	is	the	use	of	the	primary	key	of	an	entity	set	as	an	attribute
of	another	entity	set,	instead	of	using	a	relationship.	For	example,	in	our	university	E-R	model,	it	is
incorrect	to	have	dept	name	as	an	attribute	of	student,	as	depicted	in	Figure	6.21a,	even	though	it	is
present	as	an	attribute	in	the	relation	schema	for	student.	The	relationship	stud	dept	is	the	correct	way	to
represent	this	information	in	the	E-R	model,	since	it	makes	the	relationship	between	student	and
department	explicit,	rather	than	implicit	via	an	attribute.	Having	an	attribute	dept	name	as	well	as	a
relationship	stud	dept	would	result	in	duplication	of	information.

Another	related	mistake	that	people	sometimes	make	is	to	designate	the	primary-key	attributes	of	the
related	entity	sets	as	attributes	of	the	relationship	set.	For	example,	ID	(the	primary-key	attributes	of
student)	and	ID	(the	primary	key	of	instructor)	should	not	appear	as	attributes	of	the	relationship	advisor.
This	should	not	be	done	since	the	primary-key	attributes	are	already	implicit	in	the	relationship	set.6

A	third	common	mistake	is	to	use	a	relationship	with	a	single-valued	attribute	in	a	situation	that	requires
a	multivalued	attribute.	For	example,	suppose	we	decided	to	represent	the	marks	that	a	student	gets	in
different	assignments	of	a	course	offering	(section).	A	wrong	way	of	doing	this	would	be	to	add	two
attributes	assignment	and	marks	to	the	relationship	takes,	as	depicted	in	Figure	6.21b.	The	problem	with
this	design	is	that	we	can	only	represent	a	single	assignment	for	a	given	student-section	pair,	6When	we
create	a	relation	schema	from	the	E-R	schema,	the	attributes	may	appear	in	a	schema	created	from	the
advisor	relationship	set,	as	we	shall	see	later;	however,	they	should	not	appear	in	the	advisor	relationship
set.

6.9

Entity-Relationship	Design	Issues

281

marks

student

marks_in

assignment

sec_assign

section

(c)	Correct	alternative	to	erroneous	E-R	diagram	(b)

{assignment_marks

assignment

marks

}

student

stud_section

section

(d)	Correct	alternative	to	erroneous	E-R	diagram	(b)

Figure	6.22	Correct	versions	of	the	E-R	diagram	of	Figure	6.21.

since	relationship	instances	must	be	uniquely	identified	by	the	participating	entities,	student	and	section.

One	solution	to	the	problem	depicted	in	Figure	6.21c,	shown	in	Figure	6.22a,	is	to	model	assignment	as	a
weak	entity	identified	by	section,	and	to	add	a	relationship	marks	in	between	assignment	and	student;	the
relationship	would	have	an	attribute	marks.	An	alternative	solution,	shown	in	Figure	6.22d,	is	to	use	a
multivalued	composite	attribute

{	assignment	marks}	to	takes,	where	assignment	marks	has	component	attributes	assignment	and	marks.
Modeling	an	assignment	as	a	weak	entity	is	preferable	in	this	case,	since	it	allows	recording	other
information	about	the	assignment,	such	as	maximum	marks	or	deadlines.

When	an	E-R	diagram	becomes	too	big	to	draw	in	a	single	piece,	it	makes	sense	to	break	it	up	into	pieces,
each	showing	part	of	the	E-R	model.	When	doing	so,	you	may	need	to	depict	an	entity	set	in	more	than
one	page.	As	discussed	in	Section	6.2.2,	attributes	of	the	entity	set	should	be	shown	only	once,	in	its	first
occurrence.	Subsequent	occurrences	of	the	entity	set	should	be	shown	without	any	attributes,	to	avoid
repeating	the	same	information	at	multiple	places,	which	may	lead	to	inconsistency.

6.9.2

Use	of	Entity	Sets	versus	Attributes

Consider	the	entity	set	instructor	with	the	additional	attribute	phone	number	(Figure	6.23a.)	It	can	be
argued	that	a	phone	is	an	entity	in	its	own	right	with	attributes	phone

282

Chapter	6

Database	Design	Using	the	E-R	Model

instructor

instructor

phone

ID

inst_phone

phone_number

ID

name

location

name

salary

salary

phone_number

(a)

(b)

Figure	6.23	Alternatives	for	adding	phone	to	the	instructor	entity	set.

number	and	location;	the	location	may	be	the	office	or	home	where	the	phone	is	located,	with	mobile	(cell)
phones	perhaps	represented	by	the	value	“mobile.”	If	we	take	this	point	of	view,	we	do	not	add	the
attribute	phone	number	to	the	instructor.	Rather,	we	create:

•	A	phone	entity	set	with	attributes	phone	number	and	location.

•	A	relationship	set	inst	phone,	denoting	the	association	between	instructors	and	the	phones	that	they
have.

This	alternative	is	shown	in	Figure	6.23b.

What,	then,	is	the	main	difference	between	these	two	definitions	of	an	instructor?

Treating	a	phone	as	an	attribute	phone	number	implies	that	instructors	have	precisely	one	phone	number
each.	Treating	a	phone	as	an	entity	phone	permits	instructors	to	have	several	phone	numbers	(including
zero)	associated	with	them.	However,	we	could	instead	easily	define	phone	number	as	a	multivalued
attribute	to	allow	multiple	phones	per	instructor.

The	main	difference	then	is	that	treating	a	phone	as	an	entity	better	models	a	situation	where	one	may
want	to	keep	extra	information	about	a	phone,	such	as	its	location,	or	its	type	(mobile,	IP	phone,	or	plain
old	phone),	or	all	who	share	the	phone.

Thus,	treating	phone	as	an	entity	is	more	general	than	treating	it	as	an	attribute	and	is	appropriate	when
the	generality	may	be	useful.

In	contrast,	it	would	not	be	appropriate	to	treat	the	attribute	name	(of	an	instructor)	as	an	entity;	it	is
difficult	to	argue	that	name	is	an	entity	in	its	own	right	(in	contrast	to	the	phone).	Thus,	it	is	appropriate
to	have	name	as	an	attribute	of	the	instructor	entity	set.

Two	natural	questions	thus	arise:	What	constitutes	an	attribute,	and	what	constitutes	an	entity	set?
Unfortunately,	there	are	no	simple	answers.	The	distinctions	mainly	depend	on	the	structure	of	the	real-
world	enterprise	being	modeled	and	on	the	semantics	associated	with	the	attribute	in	question.

6.9.3

Use	of	Entity	Sets	versus	Relationship	Sets

It	is	not	always	clear	whether	an	object	is	best	expressed	by	an	entity	set	or	a	relationship	set.	In	Figure
6.15,	we	used	the	takes	relationship	set	to	model	the	situation	where	a

6.9

Entity-Relationship	Design	Issues

283

registration

...

section_reg

student_reg

...

...

section

student

sec_id

ID

semester

name

year

tot_cred

Figure	6.24	Replacement	of	takes	by	registration	and	two	relationship	sets.

student	takes	a	(section	of	a)	course.	An	alternative	is	to	imagine	that	there	is	a	course-registration	record
for	each	course	that	each	student	takes.	Then,	we	have	an	entity	set	to	represent	the	course-registration
record.	Let	us	call	that	entity	set	registration.

Each	registration	entity	is	related	to	exactly	one	student	and	to	exactly	one	section,	so	we	have	two
relationship	sets,	one	to	relate	course-registration	records	to	students	and	one	to	relate	course-
registration	records	to	sections.	In	Figure	6.24,	we	show	the	entity	sets	section	and	student	from	Figure
6.15	with	the	takes	relationship	set	replaced	by	one	entity	set	and	two	relationship	sets:

•	registration,	the	entity	set	representing	course-registration	records.

•	section	reg,	the	relationship	set	relating	registration	and	course.

•	student	reg,	the	relationship	set	relating	registration	and	student.

Note	that	we	use	double	lines	to	indicate	total	participation	by	registration	entities.

Both	the	approach	of	Figure	6.15	and	that	of	Figure	6.24	accurately	represent	the	university’s
information,	but	the	use	of	takes	is	more	compact	and	probably	preferable.

However,	if	the	registrar’s	office	associates	other	information	with	a	course-registration	record,	it	might
be	best	to	make	it	an	entity	in	its	own	right.

One	possible	guideline	in	determining	whether	to	use	an	entity	set	or	a	relationship	set	is	to	designate	a
relationship	set	to	describe	an	action	that	occurs	between	entities.

This	approach	can	also	be	useful	in	deciding	whether	certain	attributes	may	be	more	appropriately
expressed	as	relationships.

6.9.4

Binary	versus	n-ary	Relationship	Sets

Relationships	in	databases	are	often	binary.	Some	relationships	that	appear	to	be	nonbinary	could	actually
be	better	represented	by	several	binary	relationships.	For	instance,	one	could	create	a	ternary
relationship	parent,	relating	a	child	to	his/her	mother	and	father.	However,	such	a	relationship	could	also
be	represented	by	two	binary	relationships,	mother	and	father,	relating	a	child	to	his/her	mother	and
father	separately.	Using

284

Chapter	6

Database	Design	Using	the	E-R	Model

the	two	relationships	mother	and	father	provides	us	with	a	record	of	a	child’s	mother,	even	if	we	are	not
aware	of	the	father’s	identity;	a	null	value	would	be	required	if	the	ternary	relationship	parent	were	used.
Using	binary	relationship	sets	is	preferable	in	this	case.

In	fact,	it	is	always	possible	to	replace	a	nonbinary	(n-ary,	for	n	>	2)	relationship	set	by	a	number	of
distinct	binary	relationship	sets.	For	simplicity,	consider	the	abstract	ternary	(n	=	3)	relationship	set	R,
relating	entity	sets	A,	B,	and	C.	We	replace	the	relationship	set	R	with	an	entity	set	E,	and	we	create	three
relationship	sets	as	shown	in	Figure	6.25:

•	R	,	a	many-to-one	relationship	set	from	E	to	A.

A

•	R	,	a	many-to-one	relationship	set	from	E	to	B.

B

•	R	,	a	many-to-one	relationship	set	from	E	to	C.

C

E	is	required	to	have	total	participation	in	each	of	R	,	R	,	and	R	.	If	the	relationship	A

B

C

set	R	had	any	attributes,	these	are	assigned	to	entity	set	E;	further,	a	special	identifying	attribute	is
created	for	E	(since	it	must	be	possible	to	distinguish	different	entities	in	an	entity	set	on	the	basis	of	their
attribute	values).	For	each	relationship	(a	,	b	,	c)	in	i

i

i

the	relationship	set	R,	we	create	a	new	entity	e	in	the	entity	set	E.	Then,	in	each	of	the	i

three	new	relationship	sets,	we	insert	a	relationship	as	follows:

•	(e	,	a)	in	R	.

i

i

A

•	(e	,	b)	in	R	.

i

i

B

•	(e	,	c)	in	R	.

i

i

C

We	can	generalize	this	process	in	a	straightforward	manner	to	n-ary	relationship	sets.	Thus,	conceptually,
we	can	restrict	the	E-R	model	to	include	only	binary	relationship	sets.	However,	this	restriction	is	not
always	desirable.

A

A

RA

B

R

C

B

R

E

R

C

B

C

(a)

(b)

Figure	6.25	Ternary	relationship	versus	three	binary	relationships.

6.10

Alternative	Notations	for	Modeling	Data

285

•	An	identifying	attribute	may	have	to	be	created	for	the	entity	set	created	to	represent	the	relationship
set.	This	attribute,	along	with	the	extra	relationship	sets	required,	increases	the	complexity	of	the	design
and	(as	we	shall	see	in	Section	6.7)	overall	storage	requirements.

•	An	n-ary	relationship	set	shows	more	clearly	that	several	entities	participate	in	a	single	relationship.

•	There	may	not	be	a	way	to	translate	constraints	on	the	ternary	relationship	into	constraints	on	the
binary	relationships.	For	example,	consider	a	constraint	that	says	that	R	is	many-to-one	from	A,	B	to	C;
that	is,	each	pair	of	entities	from	A	and	B	is	associated	with	at	most	one	C	entity.	This	constraint	cannot	be
expressed	by	using	cardinality	constraints	on	the	relationship	sets	R	,	R	,	and	R	.

A

B

C

Consider	the	relationship	set	proj	guide	in	Section	6.2.2,	relating	instructor,	student,	and	project.	We
cannot	directly	split	proj	guide	into	binary	relationships	between	instructor	and	project	and	between
instructor	and	student.	If	we	did	so,	we	would	be	able	to	record	that	instructor	Katz	works	on	projects	A
and	B	with	students	Shankar	and	Zhang;	however,	we	would	not	be	able	to	record	that	Katz	works	on
project	A	with	student	Shankar	and	works	on	project	B	with	student	Zhang,	but	does	not	work	on	project
A	with	Zhang	or	on	project	B	with	Shankar.

The	relationship	set	proj	guide	can	be	split	into	binary	relationships	by	creating	a	new	entity	set	as
described	above.	However,	doing	so	would	not	be	very	natural.

6.10

Alternative	Notations	for	Modeling	Data

A	diagrammatic	representation	of	the	data	model	of	an	application	is	a	very	important	part	of	designing	a
database	schema.	Creation	of	a	database	schema	requires	not	only	data	modeling	experts,	but	also
domain	experts	who	know	the	requirements	of	the	application	but	may	not	be	familiar	with	data	modeling.
An	intuitive	diagrammatic	representation	is	particularly	important	since	it	eases	communication	of
information	between	these	groups	of	experts.

A	number	of	alternative	notations	for	modeling	data	have	been	proposed,	of	which	E-R	diagrams	and	UML
class	diagrams	are	the	most	widely	used.	There	is	no	universal	standard	for	E-R	diagram	notation,	and
different	books	and	E-R	diagram	software	use	different	notations.

In	the	rest	of	this	section,	we	study	some	of	the	alternative	E-R	diagram	notations,	as	well	as	the	UML
class	diagram	notation.	To	aid	in	comparison	of	our	notation	with	these	alternatives,	Figure	6.26
summarizes	the	set	of	symbols	we	have	used	in	our	E-R

diagram	notation.

6.10.1

Alternative	E-R	Notations

Figure	6.27	indicates	some	of	the	alternative	E-R	notations	that	are	widely	used.	One	alternative
representation	of	attributes	of	entities	is	to	show	them	in	ovals	connected

286

Chapter	6

Database	Design	Using	the	E-R	Model

E

E

entity	set

A1

attributes:

A2

simple	(A1),

A2.1

composite	(A2)	and

R

relationship	set

A2.2

multivalued	(A3)

derived	(A4)

{A3}

A4()

identifying

R

relationship	set

E

for	weak	entity	set

primary	key

A1

total	participation

E

discriminating

R

E

of	entity	set	in

attribute	of

relationship

A1

weak	entity	set

many-to-many

R

R

many-to-one

relationship

relationship

R

one-to-one

l..h

cardinality

R

E

relationship

limits

role-

E1

name

R

E

ISA:	generalization

role	indicator

or	specialization

E2

E3

E1

E1

total	(disjoint)

disjoint

total

generalization

generalization

E2

E3

E2

E3

Figure	6.26	Symbols	used	in	the	E-R	notation.

to	the	box	representing	the	entity;	primary	key	attributes	are	indicated	by	underlining	them.	The	above
notation	is	shown	at	the	top	of	the	figure.	Relationship	attributes	can	be	similarly	represented,	by
connecting	the	ovals	to	the	diamond	representing	the	relationship.

Cardinality	constraints	on	relationships	can	be	indicated	in	several	different	ways,	as	shown	in	Figure
6.27.	In	one	alternative,	shown	on	the	left	side	of	the	figure,	labels

∗	and	1	on	the	edges	out	of	the	relationship	are	used	for	depicting	many-to-many,	one-

6.10

Alternative	Notations	for	Modeling	Data

287

entity	set	E	with

A2.1

A2.2

simple	attribute	A1,

composite	attribute	A2,

A2

multivalued	attribute	A3,

A1

A3

derived	attribute	A4,

A4

and	primary	key	A1

E

many-to-many

E1

*

R

*

R

relationship

E2

E1

E2

one-to-one

1

1

E1

R

R

relationship

E2

E1

E2

many-to-one

R

E1

*

1

R

E2

E1

E2

relationship

participation

R

in	R:	total	(E1)

E1

R

E2

E1

E2

and	partial	(E2)

total

weak	entity	set

generalization

ISA

ISA

generalization

Figure	6.27	Alternative	E-R	notations.

to-one,	and	many-to-one	relationships.	The	case	of	one-to-many	is	symmetric	to	many-to-one	and	is	not
shown.

In	another	alternative	notation	shown	on	the	right	side	of	Figure	6.27,	relationship	sets	are	represented
by	lines	between	entity	sets,	without	diamonds;	only	binary	relationships	can	be	modeled	thus.	Cardinality
constraints	in	such	a	notation	are	shown	by

“crow’s-foot”	notation,	as	in	the	figure.	In	a	relationship	R	between	E	1	and	E	2,	crow’s	feet	on	both	sides
indicate	a	many-to-many	relationship,	while	crow’s	feet	on	just	the	E	1	side	indicate	a	many-to-one
relationship	from	E	1	to	E	2.	Total	participation	is	specified	in	this	notation	by	a	vertical	bar.	Note
however,	that	in	a	relationship	R	between	entities	E	1	and	E	2,	if	the	participation	of	E	1	in	R	is	total,	the
vertical	bar	is	placed	on	the	opposite	side,	adjacent	to	entity	E	2.	Similarly,	partial	participation	is
indicated	by	using	a	circle,	again	on	the	opposite	side.

The	bottom	part	of	Figure	6.27	shows	an	alternative	representation	of	generalization,	using	triangles
instead	of	hollow	arrowheads.

288

Chapter	6

Database	Design	Using	the	E-R	Model

In	prior	editions	of	this	text	up	to	the	fifth	edition,	we	used	ovals	to	represent	attributes,	with	triangles
representing	generalization,	as	shown	in	Figure	6.27.	The	notation	using	ovals	for	attributes	and
diamonds	for	relationships	is	close	to	the	original	form	of	E-R	diagrams	used	by	Chen	in	his	paper	that
introduced	the	notion	of	E-R

modeling.	That	notation	is	now	referred	to	as	Chen’s	notation.

The	U.S.	National	Institute	for	Standards	and	Technology	defined	a	standard	called	IDEF1X	in	1993.
IDEF1X	uses	the	crow’s-foot	notation,	with	vertical	bars	on	the	relationship	edge	to	denote	total
participation	and	hollow	circles	to	denote	partial	participation,	and	it	includes	other	notations	that	we
have	not	shown.

With	the	growth	in	the	use	of	Unified	Markup	Language	(UML),	described	in	Section	6.10.2,	we	have
chosen	to	update	our	E-R	notation	to	make	it	closer	to	the	form	of	UML	class	diagrams;	the	connections
will	become	clear	in	Section	6.10.2.	In	comparison	with	our	previous	notation,	our	new	notation	provides
a	more	compact	representation	of	attributes,	and	it	is	also	closer	to	the	notation	supported	by	many	E-R
modeling	tools,	in	addition	to	being	closer	to	the	UML	class	diagram	notation.

There	are	a	variety	of	tools	for	constructing	E-R	diagrams,	each	of	which	has	its	own	notational	variants.

Some	of	the	tools	even	provide	a	choice	between	several	E-R

notation	variants.	See	the	tools	section	at	the	end	of	the	chapter	for	references.

One	key	difference	between	entity	sets	in	an	E-R	diagram	and	the	relation	schemas	created	from	such
entities	is	that	attributes	in	the	relational	schema	corresponding	to	E-R	relationships,	such	as	the	dept
name	attribute	of	instructor,	are	not	shown	in	the	entity	set	in	the	E-R	diagram.	Some	data	modeling	tools
allow	designers	to	choose	between	two	views	of	the	same	entity,	one	an	entity	view	without	such
attributes,	and	other	a	relational	view	with	such	attributes.

6.10.2

The	Unified	Modeling	Language	UML

Entity-relationship	diagrams	help	model	the	data	representation	component	of	a	software	system.	Data
representation,	however,	forms	only	one	part	of	an	overall	system	design.	Other	components	include
models	of	user	interactions	with	the	system,	specification	of	functional	modules	of	the	system	and	their
interaction,	etc.	The	Unified	Modeling	Language	(UML)	is	a	standard	developed	under	the	auspices	of	the
Object	Management	Group	(OMG)	for	creating	specifications	of	various	components	of	a	software	system.
Some	of	the	parts	of	UML	are:

•	Class	diagram.	A	class	diagram	is	similar	to	an	E-R	diagram.	Later	in	this	section	we	illustrate	a	few
features	of	class	diagrams	and	how	they	relate	to	E-R	diagrams.

•	Use	case	diagram.	Use	case	diagrams	show	the	interaction	between	users	and	the	system,	in	particular
the	steps	of	tasks	that	users	perform	(such	as	withdrawing	money	or	registering	for	a	course).

•	Activity	diagram.	Activity	diagrams	depict	the	flow	of	tasks	between	various	components	of	a	system.

6.10

Alternative	Notations	for	Modeling	Data

289

•	Implementation	diagram.	Implementation	diagrams	show	the	system	components	and	their
interconnections,	both	at	the	software	component	level	and	the	hardware	component	level.

We	do	not	attempt	to	provide	detailed	coverage	of	the	different	parts	of	UML	here.

Instead	we	illustrate	some	features	of	that	part	of	UML	that	relates	to	data	modeling	through	examples.
See	the	Further	Reading	section	at	the	end	of	the	chapter	for	references	on	UML.

Figure	6.28	shows	several	E-R	diagram	constructs	and	their	equivalent	UML	class	diagram	constructs.	We
describe	these	constructs	below.	UML	actually	models	objects,	whereas	E-R	models	entities.	Objects	are
like	entities,	and	have	attributes,	but	additionally	provide	a	set	of	functions	(called	methods)	that	can	be
invoked	to	compute	values	on	the	basis	of	attributes	of	the	objects,	or	to	update	the	object	itself.	Class
diagrams	can	depict	methods	in	addition	to	attributes.	We	cover	objects	in	Section	8.2.	UML	does	not
support	composite	or	multivalued	attributes,	and	derived	attributes	are	equivalent	to	methods	that	take
no	parameters.	Since	classes	support	encapsulation,	UML	allows	attributes	and	methods	to	be	prefixed
with	a	“+”,	“-”,	or	“#”,	which	denote	respectively	public,	private,	and	protected	access.	Private	attributes
can	only	be	used	in	methods	of	the	class,	while	protected	attributes	can	be	used	only	in	methods	of	the
class	and	its	subclasses;	these	should	be	familiar	to	anyone	who	knows	Java,	C++,	or	C#.

In	UML	terminology,	relationship	sets	are	referred	to	as	associations;	we	shall	refer	to	them	as
relationship	sets	for	consistency	with	E-R	terminology.	We	represent	binary	relationship	sets	in	UML	by
just	drawing	a	line	connecting	the	entity	sets.	We	write	the	relationship	set	name	adjacent	to	the	line.	We
may	also	specify	the	role	played	by	an	entity	set	in	a	relationship	set	by	writing	the	role	name	on	the	line,
adjacent	to	the	entity	set.	Alternatively,	we	may	write	the	relationship	set	name	in	a	box,	along	with
attributes	of	the	relationship	set,	and	connect	the	box	by	a	dotted	line	to	the	line	depicting	the
relationship	set.	This	box	can	then	be	treated	as	an	entity	set,	in	the	same	way	as	an	aggregation	in	E-R
diagrams,	and	can	participate	in	relationships	with	other	entity	sets.

Since	UML	version	1.3,	UML	supports	nonbinary	relationships,	using	the	same	diamond	notation	used	in
E-R	diagrams.	Nonbinary	relationships	could	not	be	directly	represented	in	earlier	versions	of	UML	—
they	had	to	be	converted	to	binary	relationships	by	the	technique	we	have	seen	earlier	in	Section	6.9.4.
UML	allows	the	diamond	notation	to	be	used	even	for	binary	relationships,	but	most	designers	use	the
line	notation.

Cardinality	constraints	are	specified	in	UML	in	the	same	way	as	in	E-R	diagrams,	in	the	form	l..h,	where	l
denotes	the	minimum	and	h	the	maximum	number	of	relationships	an	entity	can	participate	in.	However,

you	should	be	aware	that	the	positioning	of	the	constraints	is	exactly	the	reverse	of	the	positioning	of
constraints	in	E-R	diagrams,	as	shown	in	Figure	6.28.	The	constraint	0	..	∗	on	the	E	2	side	and	0	..	1	on
the	E	1	side	means	that	each	E	2	entity	can	participate	in	at	most	one	relationship,	whereas	each	E	1
entity	can	participate	in	many	relationships;	in	other	words,	the	relationship	is	many-to-one	from	E	2	to	E
1.

290

Chapter	6

Database	Design	Using	the	E-R	Model

ER	Diagram	Notation

Equivalent	in	UML

E

entity	with

E

class	with	simple	attributes

attributes	(simple,

and	methods	(attribute

A1

–A1

composite,

prefixes:	+	=	public,

M10

multivalued,	derived)

+M10

–	=	private,	#	=	protected)

role1

role2

binary

role1	R	role2

E1

R

E2

E1

E2

relationship

A1

R

A1

role1

role2

relationship

role1

role2

E1

R

E2

attributes

E1

E2

0..*

0..1

cardinality

R

0_1

0_*

E1

R

E2

E1

E2

constraints

E2

E2

n-ary

E1

R

relationships

E1

R

E3

E3

E1

E1

overlapping

overlapping

generalization

E2

E3

E2

E3

E1

E1

disjoint

disjoint

generalization

E2

E3

E2

E3

weak-entity

E1

R

E2

E1

E2

composition

Figure	6.28	Symbols	used	in	the	UML	class	diagram	notation.

Single	values	such	as	1	or	∗	may	be	written	on	edges;	the	single	value	1	on	an	edge	is	treated	as
equivalent	to	1	..	1,	while	∗	is	equivalent	to	0	..	∗.	UML	supports	generalization;	the	notation	is	basically
the	same	as	in	our	E-R	notation,	including	the	representation	of	disjoint	and	overlapping	generalizations.

UML	class	diagrams	include	several	other	notations	that	approximately	correspond	to	the	E-R	notations
we	have	seen.	A	line	between	two	entity	sets	with	a	small	shaded	diamond	at	one	end	in	UML	specifies
“composition”	in	UML.	The	composition	relationship	between	E	2	and	E	1	in	Figure	6.28	indicates	that	E	2
is	existence	dependent	on	E	1;	this	is	roughly	equivalent	to	denoting	E	2	as	a	weak	entity	set	that	is
existence

6.11

Other	Aspects	of	Database	Design

291

dependent	on	the	identifying	entity	set	E	1.	(The	term	aggregation	in	UML	denotes	a	variant	of
composition	where	E	2	is	contained	in	E	1	but	may	exist	independently,	and	it	is	denoted	using	a	small
hollow	diamond.)

UML	class	diagrams	also	provide	notations	to	represent	object-oriented	language	features	such	as
interfaces.	See	the	Further	Reading	section	for	more	information	on	UML	class	diagrams.

6.11

Other	Aspects	of	Database	Design

Our	extensive	discussion	of	schema	design	in	this	chapter	may	create	the	false	impression	that	schema
design	is	the	only	component	of	a	database	design.	There	are	indeed	several	other	considerations	that	we
address	more	fully	in	subsequent	chapters,	and	survey	briefly	here.

6.11.1

Functional	Requirements

All	enterprises	have	rules	on	what	kinds	of	functionality	are	to	be	supported	by	an	enterprise	application.
These	could	include	transactions	that	update	the	data,	as	well	as	queries	to	view	data	in	a	desired	fashion.
In	addition	to	planning	the	functionality,	designers	have	to	plan	the	interfaces	to	be	built	to	support	the
functionality.

Not	all	users	are	authorized	to	view	all	data,	or	to	perform	all	transactions.	An	authorization	mechanism	is
very	important	for	any	enterprise	application.	Such	authorization	could	be	at	the	level	of	the	database,
using	database	authorization	features.

But	it	could	also	be	at	the	level	of	higher-level	functionality	or	interfaces,	specifying	who	can	use	which
functions/interfaces.

6.11.2

Data	Flow,	Workflow

Database	applications	are	often	part	of	a	larger	enterprise	application	that	interacts	not	only	with	the
database	system	but	also	with	various	specialized	applications.	As	an	example,	consider	a	travel-expense
report.	It	is	created	by	an	employee	returning	from	a	business	trip	(possibly	by	means	of	a	special
software	package)	and	is	subsequently	routed	to	the	employee’s	manager,	perhaps	other	higher-level
managers,	and	eventually	to	the	accounting	department	for	payment	(at	which	point	it	interacts	with	the
enterprise’s	accounting	information	systems).

The	term	workflow	refers	to	the	combination	of	data	and	tasks	involved	in	processes	like	those	of	the
preceding	examples.	Workflows	interact	with	the	database	system	as	they	move	among	users	and	users
perform	their	tasks	on	the	workflow.	In	addition	to	the	data	on	which	workflows	operate,	the	database
may	store	data	about	the	workflow	itself,	including	the	tasks	making	up	a	workflow	and	how	they	are	to
be	routed	among	users.

Workflows	thus	specify	a	series	of	queries	and	updates	to	the	database	that	may	be	taken	into	account	as
part	of	the	database-design	process.	Put	in	other	terms,	modeling	the

292

Chapter	6

Database	Design	Using	the	E-R	Model

enterprise	requires	us	not	only	to	understand	the	semantics	of	the	data	but	also	the	business	processes
that	use	those	data.

6.11.3

Schema	Evolution

Database	design	is	usually	not	a	one-time	activity.	The	needs	of	an	organization	evolve	continually,	and	the
data	that	it	needs	to	store	also	evolve	correspondingly.	During	the	initial	database-design	phases,	or
during	the	development	of	an	application,	the	database	designer	may	realize	that	changes	are	required	at
the	conceptual,	logical,	or	physical	schema	levels.	Changes	in	the	schema	can	affect	all	aspects	of	the
database	application.	A	good	database	design	anticipates	future	needs	of	an	organization	and	ensures	that
the	schema	requires	minimal	changes	as	the	needs	evolve.

It	is	important	to	distinguish	between	fundamental	constraints	that	are	expected	to	be	permanent	and
constraints	that	are	anticipated	to	change.	For	example,	the	constraint	that	an	instructor-id	identify	a
unique	instructor	is	fundamental.	On	the	other	hand,	a	university	may	have	a	policy	that	an	instructor	can
have	only	one	department,	which	may	change	at	a	later	date	if	joint	appointments	are	allowed.	A	database
design	that	only	allows	one	department	per	instructor	might	require	major	changes	if	joint	appointments
are	allowed.	Such	joint	appointments	can	be	represented	by	adding	an	extra	relationship	without
modifying	the	instructor	relation,	as	long	as	each	instructor	has	only	one	primary	department	affiliation;	a
policy	change	that	allows	more	than	one	primary	affiliation	may	require	a	larger	change	in	the	database
design.	A	good	design	should	account	not	only	for	current	policies,	but	should	also	avoid	or	minimize	the
need	for	modifications	due	to	changes	that	are	anticipated	or	have	a	reasonable	chance	of	happening.

Finally,	it	is	worth	noting	that	database	design	is	a	human-oriented	activity	in	two	senses:	the	end	users	of
the	system	are	people	(even	if	an	application	sits	between	the	database	and	the	end	users);	and	the
database	designer	needs	to	interact	extensively	with	experts	in	the	application	domain	to	understand	the
data	requirements	of	the	application.	All	of	the	people	involved	with	the	data	have	needs	and	preferences
that	should	be	taken	into	account	in	order	for	a	database	design	and	deployment	to	succeed	within	the
enterprise.

6.12

Summary

•	Database	design	mainly	involves	the	design	of	the	database	schema.	The	entity-relationship	(E-R)	data
model	is	a	widely	used	data	model	for	database	design.

It	provides	a	convenient	graphical	representation	to	view	data,	relationships,	and	constraints.

•	The	E-R	model	is	intended	primarily	for	the	database-design	process.	It	was	developed	to	facilitate
database	design	by	allowing	the	specification	of	an	enterprise	schema.	Such	a	schema	represents	the
overall	logical	structure	of	the	database.

This	overall	structure	can	be	expressed	graphically	by	an	E-R	diagram.

Review	Terms

293

•	An	entity	is	an	object	that	exists	in	the	real	world	and	is	distinguishable	from	other	objects.	We	express
the	distinction	by	associating	with	each	entity	a	set	of	attributes	that	describes	the	object.

•	A	relationship	is	an	association	among	several	entities.	A	relationship	set	is	a	collection	of	relationships
of	the	same	type,	and	an	entity	set	is	a	collection	of	entities	of	the	same	type.

•	The	terms	superkey,	candidate	key,	and	primary	key	apply	to	entity	and	relationship	sets	as	they	do	for
relation	schemas.	Identifying	the	primary	key	of	a	relationship	set	requires	some	care,	since	it	is
composed	of	attributes	from	one	or	more	of	the	related	entity	sets.

•	Mapping	cardinalities	express	the	number	of	entities	to	which	another	entity	can	be	associated	via	a
relationship	set.

•	An	entity	set	that	does	not	have	sufficient	attributes	to	form	a	primary	key	is	termed	a	weak	entity	set.
An	entity	set	that	has	a	primary	key	is	termed	a	strong	entity	set.

•	The	various	features	of	the	E-R	model	offer	the	database	designer	numerous	choices	in	how	to	best
represent	the	enterprise	being	modeled.	Concepts	and	objects	may,	in	certain	cases,	be	represented	by
entities,	relationships,	or	attributes.

Aspects	of	the	overall	structure	of	the	enterprise	may	be	best	described	by	using	weak	entity	sets,
generalization,	specialization,	or	aggregation.	Often,	the	designer	must	weigh	the	merits	of	a	simple,
compact	model	versus	those	of	a	more	precise,	but	more	complex	one.

•	A	database	design	specified	by	an	E-R	diagram	can	be	represented	by	a	collection	of	relation	schemas.
For	each	entity	set	and	for	each	relationship	set	in	the	database,	there	is	a	unique	relation	schema	that	is
assigned	the	name	of	the	corresponding	entity	set	or	relationship	set.	This	forms	the	basis	for	deriving	a
relational	database	design	from	an	E-R	diagram.

•	Specialization	and	generalization	define	a	containment	relationship	between	a	higher-level	entity	set
and	one	or	more	lower-level	entity	sets.	Specialization	is	the	result	of	taking	a	subset	of	a	higher-level
entity	set	to	form	a	lower-level	entity	set.	Generalization	is	the	result	of	taking	the	union	of	two	or	more
disjoint	(lower-level)	entity	sets	to	produce	a	higher-level	entity	set.	The	attributes	of	higher-level	entity
sets	are	inherited	by	lower-level	entity	sets.

•	Aggregation	is	an	abstraction	in	which	relationship	sets	(along	with	their	associated	entity	sets)	are
treated	as	higher-level	entity	sets,	and	can	participate	in	relationships.

•	Care	must	be	taken	in	E-R	design.	There	are	a	number	of	common	mistakes	to	avoid.	Also,	there	are
choices	among	the	use	of	entity	sets,	relationship	sets,	and

294

Chapter	6

Database	Design	Using	the	E-R	Model

attributes	in	representing	aspects	of	the	enterprise	whose	correctness	may	depend	on	subtle	details
specific	to	the	enterprise.

•	UML	is	a	popular	modeling	language.	UML	class	diagrams	are	widely	used	for	modeling	classes,	as	well
as	for	general-purpose	data	modeling.

Review	Terms

•	Design	Process

°	Superkey,	candidate	key,	and	pri-

mary	key

°	Conceptual-design

°	Logical-design

°	Role

°	Physical-design

°	Recursive	relationship	set

•	Entity-relationship	(E-R)	data	model

•	E-R	diagram

•	Entity	and	entity	set

•	Mapping	cardinality:

°	Simple	and	composite	attributes

°	One-to-one	relationship

°	Single-valued	and	multivalued	at-

°	One-to-many	relationship

tributes

°	Many-to-one	relationship

°	Derived	attribute

°	Many-to-many	relationship

•	Key

•	Total	and	partial	participation

°	Superkey

•	Weak	entity	sets	and	strong	entity	sets

°	Candidate	key

°	Discriminator	attributes

°	Primary	key

°	Identifying	relationship

•	Relationship	and	relationship	set

•	Specialization	and	generalization

°	Binary	relationship	set

•	Aggregation

°	Degree	of	relationship	set

•	Design	choices

°	Descriptive	attributes

•	United	Modeling	Language	(UML)

Practice	Exercises

6.1

Construct	an	E-R	diagram	for	a	car	insurance	company	whose	customers	own	one	or	more	cars	each.
Each	car	has	associated	with	it	zero	to	any	number	of	recorded	accidents.	Each	insurance	policy	covers
one	or	more	cars	and	has	one	or	more	premium	payments	associated	with	it.	Each	payment	is	for	a
particular	period	of	time,	and	has	an	associated	due	date,	and	the	date	when	the	payment	was	received.

Practice	Exercise

295

6.2

Consider	a	database	that	includes	the	entity	sets	student,	course,	and	section	from	the	university	schema
and	that	additionally	records	the	marks	that	students	receive	in	different	exams	of	different	sections.

a.

Construct	an	E-R	diagram	that	models	exams	as	entities	and	uses	a	ternary	relationship	as	part	of	the
design.

b.

Construct	an	alternative	E-R	diagram	that	uses	only	a	binary	relationship	between	student	and	section.
Make	sure	that	only	one	relationship	exists	between	a	particular	student	and	section	pair,	yet	you	can
represent	the	marks	that	a	student	gets	in	different	exams.

6.3

Design	an	E-R	diagram	for	keeping	track	of	the	scoring	statistics	of	your	favorite	sports	team.	You	should
store	the	matches	played,	the	scores	in	each	match,	the	players	in	each	match,	and	individual	player
scoring	statistics	for	each	match.

Summary	statistics	should	be	modeled	as	derived	attributes	with	an	explanation	as	to	how	they	are
computed.

6.4

Consider	an	E-R	diagram	in	which	the	same	entity	set	appears	several	times,	with	its	attributes	repeated
in	more	than	one	occurrence.	Why	is	allowing	this	redundancy	a	bad	practice	that	one	should	avoid?

6.5

An	E-R	diagram	can	be	viewed	as	a	graph.	What	do	the	following	mean	in	terms	of	the	structure	of	an
enterprise	schema?

a.

The	graph	is	disconnected.

b.

The	graph	has	a	cycle.

6.6

Consider	the	representation	of	the	ternary	relationship	of	Figure	6.29a	using	the	binary	relationships
illustrated	in	Figure	6.29b	(attributes	not	shown).

a.

Show	a	simple	instance	of	E,	A,	B,	C,	R	,	R	,	and	R	that	cannot	corre-A

B

C

spond	to	any	instance	of	A,	B,	C,	and	R.

b.

Modify	the	E-R	diagram	of	Figure	6.29b	to	introduce	constraints	that	will	guarantee	that	any	instance	of
E,	A,	B,	C,	R	,	R	,	and	R	that	satisfies	the	A

B

C

constraints	will	correspond	to	an	instance	of	A,	B,	C,	and	R.

c.

Modify	the	preceding	translation	to	handle	total	participation	constraints	on	the	ternary	relationship.

6.7

A	weak	entity	set	can	always	be	made	into	a	strong	entity	set	by	adding	to	its	attributes	the	primary-key
attributes	of	its	identifying	entity	set.	Outline	what	sort	of	redundancy	will	result	if	we	do	so.

6.8

Consider	a	relation	such	as	sec	course,	generated	from	a	many-to-one	relationship	set	sec	course.	Do	the
primary	and	foreign	key	constraints	created	on	the	relation	enforce	the	many-to-one	cardinality
constraint?	Explain	why.

296

Chapter	6

Database	Design	Using	the	E-R	Model

A

A

RA

B

R

C

B

R

E

RC

C

B

(a)

(b)

R

A

R

AB

AC

B

RBC

C

(c)

Figure	6.29	Representation	of	a	ternary	relationship	using	binary	relationships.

6.9

Suppose	the	advisor	relationship	set	were	one-to-one.	What	extra	constraints	are	required	on	the	relation
advisor	to	ensure	that	the	one-to-one	cardinality	constraint	is	enforced?

6.10

Consider	a	many-to-one	relationship	R	between	entity	sets	A	and	B.	Suppose	the	relation	created	from	R	is
combined	with	the	relation	created	from	A.	In	SQL,	attributes	participating	in	a	foreign	key	constraint	can
be	null.	Explain	how	a	constraint	on	total	participation	of	A	in	R	can	be	enforced	using	not	null	constraints
in	SQL.

6.11

In	SQL,	foreign	key	constraints	can	reference	only	the	primary	key	attributes	of	the	referenced	relation	or
other	attributes	declared	to	be	a	superkey	using	the	unique	constraint.	As	a	result,	total	participation
constraints	on	a	many-to-many	relationship	set	(or	on	the	“one”	side	of	a	one-to-many	relationship	set)
cannot	be	enforced	on	the	relations	created	from	the	relationship	set,	using	primary	key,	foreign	key,	and
not	null	constraints	on	the	relations.

a.

Explain	why.

b.

Explain	how	to	enforce	total	participation	constraints	using	complex

check	constraints	or	assertions	(see	Section	4.4.8).	(Unfortunately,	these	features	are	not	supported	on
any	widely	used	database	currently.)

6.12

Consider	the	following	lattice	structure	of	generalization	and	specialization	(attributes	not	shown).

Exercises

297

X

Y

A

B

C

For	entity	sets	A,	B,	and	C,	explain	how	attributes	are	inherited	from	the	higher-level	entity	sets	X	and	Y	.
Discuss	how	to	handle	a	case	where	an	attribute	of	X

has	the	same	name	as	some	attribute	of	Y	.

6.13

An	E-R	diagram	usually	models	the	state	of	an	enterprise	at	a	point	in	time.

Suppose	we	wish	to	track	temporal	changes,	that	is,	changes	to	data	over	time.

For	example,	Zhang	may	have	been	a	student	between	September	2015	and

May	2019,	while	Shankar	may	have	had	instructor	Einstein	as	advisor	from	May	2018	to	December	2018,

and	again	from	June	2019	to	January	2020.	Similarly,	attribute	values	of	an	entity	or	relationship,	such	as
title	and	credits	of	course,	salary,	or	even	name	of	instructor,	and	tot	cred	of	student,	can	change	over
time.

One	way	to	model	temporal	changes	is	as	follows:	We	define	a	new	data	type	called	valid	time,	which	is	a
time	interval,	or	a	set	of	time	intervals.	We	then	associate	a	valid	time	attribute	with	each	entity	and
relationship,	recording	the	time	periods	during	which	the	entity	or	relationship	is	valid.	The	end	time	of
an	interval	can	be	infinity;	for	example,	if	Shankar	became	a	student	in	September	2018,	and	is	still	a
student,	we	can	represent	the	end	time	of	the	valid	time	interval	as	infinity	for	the	Shankar	entity.
Similarly,	we	model	attributes	that	can	change	over	time	as	a	set	of	values,	each	with	its	own	valid	time.

a.

Draw	an	E-R	diagram	with	the	student	and	instructor	entities,	and	the	advisor	relationship,	with	the	above
extensions	to	track	temporal	changes.

b.

Convert	the	E-R	diagram	discussed	above	into	a	set	of	relations.

It	should	be	clear	that	the	set	of	relations	generated	is	rather	complex,	leading	to	difficulties	in	tasks	such
as	writing	queries	in	SQL.	An	alternative	approach,	which	is	used	more	widely,	is	to	ignore	temporal
changes	when	designing	the	E-R	model	(in	particular,	temporal	changes	to	attribute	values),	and	to	modify
the	relations	generated	from	the	E-R	model	to	track	temporal	changes.

Exercises

6.14

Explain	the	distinctions	among	the	terms	primary	key,	candidate	key,	and	superkey.

298

Chapter	6

Database	Design	Using	the	E-R	Model

6.15

Construct	an	E-R	diagram	for	a	hospital	with	a	set	of	patients	and	a	set	of	medical	doctors.	Associate	with
each	patient	a	log	of	the	various	tests	and	examina-tions	conducted.

6.16

Extend	the	E-R	diagram	of	Exercise	6.3	to	track	the	same	information	for	all	teams	in	a	league.

6.17

Explain	the	difference	between	a	weak	and	a	strong	entity	set.

6.18

Consider	two	entity	sets	A	and	B	that	both	have	the	attribute	X	(among	others	whose	names	are	not
relevant	to	this	question).

a.

If	the	two	X	s	are	completely	unrelated,	how	should	the	design	be	improved?

b.

If	the	two	X	s	represent	the	same	property	and	it	is	one	that	applies	both	to	A	and	to	B,	how	should	the
design	be	improved?	Consider	three	subcases:

•	X	is	the	primary	key	for	A	but	not	B

•	X	is	the	primary	key	for	both	A	and	B

•	X	is	not	the	primary	key	for	A	nor	for	B

6.19

We	can	convert	any	weak	entity	set	to	a	strong	entity	set	by	simply	adding	appropriate	attributes.	Why,

then,	do	we	have	weak	entity	sets?

6.20

Construct	appropriate	relation	schemas	for	each	of	the	E-R	diagrams	in:	a.

Exercise	6.1.

b.

Exercise	6.2.

c.

Exercise	6.3.

d.

Exercise	6.15.

6.21

Consider	the	E-R	diagram	in	Figure	6.30,	which	models	an	online	bookstore.

a.

Suppose	the	bookstore	adds	Blu-ray	discs	and	downloadable	video	to	its	collection.	The	same	item	may	be
present	in	one	or	both	formats,	with	differing	prices.	Draw	the	part	of	the	E-R	diagram	that	models	this
addition,	showing	just	the	parts	related	to	video.

b.

Now	extend	the	full	E-R	diagram	to	model	the	case	where	a	shopping	basket	may	contain	any	combination
of	books,	Blu-ray	discs,	or	downloadable	video.

6.22

Design	a	database	for	an	automobile	company	to	provide	to	its	dealers	to	assist	them	in	maintaining
customer	records	and	dealer	inventory	and	to	assist	sales	staff	in	ordering	cars.

Exercises

299

author

publisher

name

name

address

address

URL

phone

URL

customer

email

written_by

name

published_by

address

phone

book

number

ISBN

title

shopping_basket

basket_of

year

contains

basket_id

price

number

warehouse

code

stocks

address

phone

Figure	6.30	E-R	diagram	for	modeling	an	online	bookstore.

Each	vehicle	is	identified	by	a	vehicle	identification	number	(VIN).	Each	individual	vehicle	is	a	particular
model	of	a	particular	brand	offered	by	the	company	(e.g.,	the	XF	is	a	model	of	the	car	brand	Jaguar	of	Tata
Motors).	Each	model	can	be	offered	with	a	variety	of	options,	but	an	individual	car	may	have	only	some
(or	none)	of	the	available	options.	The	database	needs	to	store	information	about	models,	brands,	and
options,	as	well	as	information	about	individual	dealers,	customers,	and	cars.

Your	design	should	include	an	E-R	diagram,	a	set	of	relational	schemas,	and	a	list	of	constraints,	including
primary-key	and	foreign-key	constraints.

6.23

Design	a	database	for	a	worldwide	package	delivery	company	(e.g.,	DHL	or	FedEx).	The	database	must	be
able	to	keep	track	of	customers	who	ship	items	and	customers	who	receive	items;	some	customers	may	do
both.	Each	package	must	be	identifiable	and	trackable,	so	the	database	must	be	able	to	store	the	location
of	the	package	and	its	history	of	locations.	Locations	include	trucks,	planes,	airports,	and	warehouses.

Your	design	should	include	an	E-R	diagram,	a	set	of	relational	schemas,	and	a	list	of	constraints,	including
primary-key	and	foreign-key	constraints.

6.24

Design	a	database	for	an	airline.	The	database	must	keep	track	of	customers	and	their	reservations,
flights	and	their	status,	seat	assignments	on	individual	flights,	and	the	schedule	and	routing	of	future
flights.

Your	design	should	include	an	E-R	diagram,	a	set	of	relational	schemas,	and	a	list	of	constraints,	including
primary-key	and	foreign-key	constraints.

300

Chapter	6

Database	Design	Using	the	E-R	Model

6.25

In	Section	6.9.4,	we	represented	a	ternary	relationship	(repeated	in	Figure	6.29a)	using	binary

relationships,	as	shown	in	Figure	6.29b.	Consider	the	alternative	shown	in	Figure	6.29c.	Discuss	the
relative	merits	of	these	two	alternative	representations	of	a	ternary	relationship	by	binary	relationships.

6.26

Design	a	generalization	–	specialization	hierarchy	for	a	motor	vehicle	sales	company.	The	company	sells
motorcycles,	passenger	cars,	vans,	and	buses.	Justify	your	placement	of	attributes	at	each	level	of	the
hierarchy.	Explain	why	they	should	not	be	placed	at	a	higher	or	lower	level.

6.27

Explain	the	distinction	between	disjoint	and	overlapping	constraints.

6.28

Explain	the	distinction	between	total	and	partial	constraints.

Tools

Many	database	systems	provide	tools	for	database	design	that	support	E-R	diagrams.

These	tools	help	a	designer	create	E-R	diagrams,	and	they	can	automatically	create	corresponding	tables
in	a	database.	See	bibliographical	notes	of	Chapter	1	for	references	to	database-system	vendors’	web
sites.

There	are	also	several	database-independent	data	modeling	tools	that	support	E-R

diagrams	and	UML	class	diagrams.

Dia,	which	is	a	free	diagram	editor	that	runs	on	multiple	platforms	such	as	Linux	and	Windows,	supports
E-R	diagrams	and	UML	class	diagrams.	To	represent	entities	with	attributes,	you	can	use	either	classes
from	the	UML	library	or	tables	from	the	Database	library	provided	by	Dia,	since	the	default	E-R	notation
in	Dia	represents	attributes	as	ovals.	The	free	online	diagram	editor	LucidChart	allows	you	to	create	E-R

diagrams	with	entities	represented	in	the	same	ways	as	we	do.	To	create	relationships,	we	suggest	you
use	diamonds	from	the	Flowchart	shape	collection.	Draw.io	is	another	online	diagram	editor	that	supports
E-R	diagrams.

Commercial	tools	include	IBM	Rational	Rose	Modeler,	Microsoft	Visio,	ERwin	Data	Modeler,	Poseidon	for
UML,	and	SmartDraw.

Further	Reading

The	E-R	data	model	was	introduced	by	[Chen	(1976)].	The	Integration	Definition	for	Information	Modeling
(IDEF1X)	standard	[NIST	(1993)]	released	by	the	United	States	National	Institute	of	Standards	and
Technology	(NIST)	defined	standards	for	E-R	diagrams.	However,	a	variety	of	E-R	notations	are	in	use
today.

[Thalheim	(2000)]	provides	a	detailed	textbook	coverage	of	research	in	E-R	modeling.

As	of	2018,	the	current	UML	version	was	2.5,	which	was	released	in	June	2015.	See	www.uml.org	for
more	information	on	UML	standards	and	tools.

Further	Reading

301

Bibliography

[Chen	(1976)]

P.	P.	Chen,	“The	Entity-Relationship	Model:	Toward	a	Unified	View	of	Data”,	ACM	Transactions	on
Database	Systems,	Volume	1,	Number	1	(1976),	pages	9–36.

[NIST	(1993)]

NIST,	“Integration	Definition	for	Information	Modeling	(IDEF1X)”,	Technical	Report	Federal	Information
Processing	Standards	Publication	184,	National	Institute	of	Standards	and	Technology	(NIST)	(1993).

[Thalheim	(2000)]

B.	Thalheim,	Entity-Relationship	Modeling:	Foundations	of	Database	Technology,	Springer	Verlag	(2000).

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

C	H	A	P	T	E	R	7

Relational	Database	Design

In	this	chapter,	we	consider	the	problem	of	designing	a	schema	for	a	relational	database.

Many	of	the	issues	in	doing	so	are	similar	to	design	issues	we	considered	in	Chapter	6

using	the	E-R	model.

In	general,	the	goal	of	relational	database	design	is	to	generate	a	set	of	relation	schemas	that	allows	us	to
store	information	without	unnecessary	redundancy,	yet	also	allows	us	to	retrieve	information	easily.	This	is
accomplished	by	designing	schemas	that	are	in	an	appropriate	normal	form.	To	determine	whether	a
relation	schema	is	in	one	of	the	desirable	normal	forms,	we	need	information	about	the	real-world
enterprise	that	we	are	modeling	with	the	database.	Some	of	this	information	exists	in	a	well-designed	E-R
diagram,	but	additional	information	about	the	enterprise	may	be	needed	as	well.

In	this	chapter,	we	introduce	a	formal	approach	to	relational	database	design	based	on	the	notion	of
functional	dependencies.	We	then	define	normal	forms	in	terms	of	functional	dependencies	and	other
types	of	data	dependencies.	First,	however,	we	view	the	problem	of	relational	design	from	the	standpoint
of	the	schemas	derived	from	a	given	entity-relationship	design.

7.1

Features	of	Good	Relational	Designs

Our	study	of	entity-relationship	design	in	Chapter	6	provides	an	excellent	starting	point	for	creating	a
relational	database	design.	We	saw	in	Section	6.7	that	it	is	possible	to	generate	a	set	of	relation	schemas
directly	from	the	E-R	design.	The	goodness	(or	badness)	of	the	resulting	set	of	schemas	depends	on	how
good	the	E-R	design	was	in	the	first	place.	Later	in	this	chapter,	we	shall	study	precise	ways	of	assessing

the	desirability	of	a	collection	of	relation	schemas.	However,	we	can	go	a	long	way	toward	a	good	design
using	concepts	we	have	already	studied.	For	ease	of	reference,	we	repeat	the	schemas	for	the	university
database	in	Figure	7.1.

Suppose	that	we	had	started	out	when	designing	the	university	enterprise	with	the	schema	in	dep.

in	dep	(ID,	name,	salary,	dept	name,	building,	budget)	303

304

Chapter	7

Relational	Database	Design

classroom(building,	room	number,	capacity)	department(dept	name,	building,	budget)	course(course	id,
title,	dept	name,	credits)	instructor(ID,	name,	dept	name,	salary)	section(course	id,	sec	id,	semester,
year,	building,	room	number,	time	slot	id)	teaches(ID,	course	id,	sec	id,	semester,	year)	student(ID,
name,	dept	name,	tot	cred)	takes(ID,	course	id,	sec	id,	semester,	year,	grade)	advisor(s	ID,	i	ID)

time	slot(time	slot	id,	day,	start	time,	end	time)	prereq(course	id,	prereq	id)

Figure	7.1	Database	schema	for	the	university	example.

This	represents	the	result	of	a	natural	join	on	the	relations	corresponding	to	instructor	and	department.
This	seems	like	a	good	idea	because	some	queries	can	be	expressed	using	fewer	joins,	until	we	think
carefully	about	the	facts	about	the	university	that	led	to	our	E-R	design.

Let	us	consider	the	instance	of	the	in	dep	relation	shown	in	Figure	7.2.	Notice	that	we	have	to	repeat	the
department	information	(“building”	and	“budget”)	once	for	each	instructor	in	the	department.	For
example,	the	information	about	the	Comp.	Sci.

department	(Taylor,	100000)	is	included	in	the	tuples	of	instructors	Katz,	Srinivasan,	and	Brandt.

It	is	important	that	all	these	tuples	agree	as	to	the	budget	amount	since	otherwise	our	database	would	be
inconsistent.	In	our	original	design	using	instructor	and	department,	we	stored	the	amount	of	each	budget
exactly	once.	This	suggests	that	using	in	dep	is	a	bad	idea	since	it	stores	the	budget	amounts	redundantly
and	runs	the	risk	that	some	user	might	update	the	budget	amount	in	one	tuple	but	not	all,	and	thus	create
inconsistency.

Even	if	we	decided	to	live	with	the	redundancy	problem,	there	is	still	another	problem	with	the	in	dep
schema.	Suppose	we	are	creating	a	new	department	in	the	university.	In	the	alternative	design	above,	we
cannot	represent	directly	the	information	concerning	a	department	(dept	name,	building,	budget)	unless
that	department	has	at	least	one	instructor	at	the	university.	This	is	because	tuples	in	the	in	dep	table
require	values	for	ID,	name,	and	salary.	This	means	that	we	cannot	record	information	about	the	newly
created	department	until	the	first	instructor	is	hired	for	the	new	department.

In	the	old	design,	the	schema	department	can	handle	this,	but	under	the	revised	design,	we	would	have	to
create	a	tuple	with	a	null	value	for	building	and	budget.	In	some	cases	null	values	are	troublesome,	as	we
saw	in	our	study	of	SQL.	However,	if	we	decide	that

7.1

Features	of	Good	Relational	Designs

305

ID

name

salary

dept	name

building

budget

22222

Einstein

95000

Physics

Watson

70000

12121

Wu

90000

Finance

Painter

120000

32343

El	Said

60000

History

Painter

50000

45565

Katz

75000

Comp.	Sci.

Taylor

100000

98345

Kim

80000

Elec.	Eng.

Taylor

85000

76766

Crick

72000

Biology

Watson

90000

10101

Srinivasan

65000

Comp.	Sci.

Taylor

100000

58583

Califieri

62000

History

Painter

50000

83821

Brandt

92000

Comp.	Sci.

Taylor

100000

15151

Mozart

40000

Music

Packard

80000

33456

Gold

87000

Physics

Watson

70000

76543

Singh

80000

Finance

Painter

120000

Figure	7.2	The	in	dep	relation.

this	is	not	a	problem	to	us	in	this	case,	then	we	can	proceed	to	use	the	revised	design,	though,	as	we
noted,	we	would	still	have	the	redundancy	problem.

7.1.1

Decomposition

The	only	way	to	avoid	the	repetition-of-information	problem	in	the	in	dep	schema	is	to	decompose	it	into
two	schemas	(in	this	case,	the	instructor	and	department	schemas).

Later	on	in	this	chapter	we	shall	present	algorithms	to	decide	which	schemas	are	appropriate	and	which
ones	are	not.	In	general,	a	schema	that	exhibits	repetition	of	information	may	have	to	be	decomposed	into
several	smaller	schemas.

Not	all	decompositions	of	schemas	are	helpful.	Consider	an	extreme	case	in	which	all	schemas	consist	of
one	attribute.	No	interesting	relationships	of	any	kind	could	be	expressed.	Now	consider	a	less	extreme
case	where	we	choose	to	decompose	the	employee	schema	(Section	6.8):

employee	(ID,	name,	street,	city,	salary)	into	the	following	two	schemas:

employee1	(ID,	name)

employee2	(name,	street,	city,	salary)	The	flaw	in	this	decomposition	arises	from	the	possibility	that	the
enterprise	has	two	employees	with	the	same	name.	This	is	not	unlikely	in	practice,	as	many	cultures	have
certain	highly	popular	names.	Each	person	would	have	a	unique	employee-id,	which	is	why	ID	can	serve
as	the	primary	key.	As	an	example,	let	us	assume	two	employees,

306

Chapter	7

Relational	Database	Design

both	named	Kim,	work	at	the	university	and	have	the	following	tuples	in	the	relation	on	schema	employee
in	the	original	design:

(57766,	Kim,	Main,	Perryridge,	75000)

(98776,	Kim,	North,	Hampton,	67000)

Figure	7.3	shows	these	tuples,	the	resulting	tuples	using	the	schemas	resulting	from	the	decomposition,
and	the	result	if	we	attempted	to	regenerate	the	original	tuples	using	a	natural	join.	As	we	see	in	the
figure,	the	two	original	tuples	appear	in	the	result	along	with	two	new	tuples	that	incorrectly	mix	data
values	pertaining	to	the	two	employees	named	Kim.	Although	we	have	more	tuples,	we	actually	have	less
information	in	the	following	sense.	We	can	indicate	that	a	certain	street,	city,	and	salary	pertain	to
someone	named	Kim,	but	we	are	unable	to	distinguish	which	of	the	Kims.	Thus,	our	decomposition	is
unable	to	represent	certain	important	facts	about	the	university	ID

name

street

city

salary

...

57766

Kim

Main

Perryridge

75000

98776

Kim

North

Hampton

67000

...

employee

ID

name

name

street

city

salary

..

.

.

..

57766

Kim

Kim

Main

Perryridge

75000

98776

.

Kim

Kim

North

Hampton

67000

.

.

.

.	.

natural	join

ID

name

street

city

salary

...

57766

Kim

Main

Perryridge

75000

57766

Kim

North

Hampton

67000

98776

Kim

Main

Perryridge

75000

98776

Kim

North

Hampton

67000

...

Figure	7.3	Loss	of	information	via	a	bad	decomposition.

7.1

Features	of	Good	Relational	Designs

307

employees.	We	would	like	to	avoid	such	decompositions.	We	shall	refer	to	such	decompositions	as	being
lossy	decompositions,	and,	conversely,	to	those	that	are	not	as	lossless	decompositions.

For	the	remainder	of	the	text	we	shall	insist	that	all	decompositions	should	be	lossless	decompositions.

7.1.2

Lossless	Decomposition

Let	R	be	a	relation	schema	and	let	R	and	R	form	a	decomposition	of	R	—	that	is,	view-1

2

ing	R,	R	,	and	R	as	sets	of	attributes,	R	=	R	∪	R	.	We	say	that	the	decomposition	is	a	1

2

1

2

lossless	decomposition	if	there	is	no	loss	of	information	by	replacing	R	with	two	relation	schemas	R	and	R
.	Loss	of	information	occurs	if	it	is	possible	to	have	an	instance	of	1

2

a	relation	r(R)	that	includes	information	that	cannot	be	represented	if	instead	of	the	instance	of	r(R)	we
must	use	instances	of	r	(R)	and	r	(R).	More	precisely,	we	say	1

1

2

2

the	decomposition	is	lossless	if,	for	all	legal	(we	shall	formally	define	“legal”	in	Section	7.2.2.)	database
instances,	relation	r	contains	the	same	set	of	tuples	as	the	result	of	the	following	SQL	query:1

select	*

from	(select	R	from	r)

1

natural	join

(select	R	from	r)

2

This	is	stated	more	succinctly	in	the	relational	algebra	as:

Π	(r)	⋈	Π	(r)	=	r

R

R

1

2

In	other	words,	if	we	project	r	onto	R	and	R	,	and	compute	the	natural	join	of	the	1

2

projection	results,	we	get	back	exactly	r.

Conversely,	a	decomposition	is	lossy	if	when	we	compute	the	natural	join	of	the	projection	results,	we	get
a	proper	superset	of	the	original	relation.	This	is	stated	more	succinctly	in	the	relational	algebra	as:

r	⊂	Π	(r)	⋈	Π	(r)

R

R

1

2

Let	us	return	to	our	decomposition	of	the	employee	schema	into	employee1	and	employee2	(Figure	7.3)
and	a	case	where	two	or	more	employees	have	the	same	name.

The	result	of	employee1	natural	join	employee2	is	a	superset	of	the	original	relation	employee,	but	the

decomposition	is	lossy	since	the	join	result	has	lost	information	about	which	employee	identifiers
correspond	to	which	addresses	and	salaries.

1The	definition	of	lossless	is	stated	assuming	that	no	attribute	that	appears	on	the	left	side	of	a	functional
dependency	can	have	a	null	value.	This	is	explored	further	in	Exercise	7.10.

308

Chapter	7

Relational	Database	Design

It	may	seem	counterintuitive	that	we	have	more	tuples	but	less	information,	but	that	is	indeed	the	case.
The	decomposed	version	is	unable	to	represent	the	absence	of	a	connection	between	a	name	and	an
address	or	salary,	and	absence	of	a	connection	is	indeed	information.

7.1.3

Normalization	Theory

We	are	now	in	a	position	to	define	a	general	methodology	for	deriving	a	set	of	schemas	each	of	which	is	in
“good	form”;	that	is,	does	not	suffer	from	the	repetition-of-information	problem.

The	method	for	designing	a	relational	database	is	to	use	a	process	commonly	known	as	normalization.	The
goal	is	to	generate	a	set	of	relation	schemas	that	allows	us	to	store	information	without	unnecessary
redundancy,	yet	also	allows	us	to	retrieve	information	easily.	The	approach	is:

•	Decide	if	a	given	relation	schema	is	in	“good	form.”	There	are	a	number	of	different	forms	(called
normal	form	s),	which	we	cover	in	Section	7.3.

•	If	a	given	relation	schema	is	not	in	“good	form,”	then	we	decompose	it	into	a	number	of	smaller	relation
schemas,	each	of	which	is	in	an	appropriate	normal	form.	The	decomposition	must	be	a	lossless
decomposition.

To	determine	whether	a	relation	schema	is	in	one	of	the	desirable	normal	forms,	we	need	additional
information	about	the	real-world	enterprise	that	we	are	modeling	with	the	database.	The	most	common
approach	is	to	use	functional	dependencies,	which	we	cover	in	Section	7.2.

7.2

Decomposition	Using	Functional	Dependencies

A	database	models	a	set	of	entities	and	relationships	in	the	real	world.	There	are	usually	a	variety	of
constraints	(rules)	on	the	data	in	the	real	world.	For	example,	some	of	the	constraints	that	are	expected	to
hold	in	a	university	database	are:

1.	Students	and	instructors	are	uniquely	identified	by	their	ID.

2.	Each	student	and	instructor	has	only	one	name.

3.	Each	instructor	and	student	is	(primarily)	associated	with	only	one	department.2

4.	Each	department	has	only	one	value	for	its	budget,	and	only	one	associated	building.

2An	instructor,	in	most	real	universities,	can	be	associated	with	more	than	one	department,	for	example,
via	a	joint	appointment	or	in	the	case	of	adjunct	faculty.	Similarly,	a	student	may	have	two	(or	more)
majors	or	a	minor.	Our	simplified	university	schema	models	only	the	primary	department	associated	with
each	instructor	or	student.

7.2

Decomposition	Using	Functional	Dependencies

309

An	instance	of	a	relation	that	satisfies	all	such	real-world	constraints	is	called	a	legal	instance	of	the
relation;	a	legal	instance	of	a	database	is	one	where	all	the	relation	instances	are	legal	instances.

7.2.1

Notational	Conventions

In	discussing	algorithms	for	relational	database	design,	we	shall	need	to	talk	about	arbitrary	relations	and
their	schema,	rather	than	talking	only	about	examples.	Recalling	our	introduction	to	the	relational	model
in	Chapter	2,	we	summarize	our	notation	here.

•	In	general,	we	use	Greek	letters	for	sets	of	attributes	(e.g.,	α).	We	use	an	uppercase	Roman	letter	to
refer	to	a	relation	schema.	We	use	the	notation	r(R)	to	show	that	the	schema	R	is	for	relation	r.

A	relation	schema	is	a	set	of	attributes,	but	not	all	sets	of	attributes	are	schemas.

When	we	use	a	lowercase	Greek	letter,	we	are	referring	to	a	set	of	attributes	that	may	or	may	not	be	a
schema.	A	Roman	letter	is	used	when	we	wish	to	indicate	that	the	set	of	attributes	is	definitely	a	schema.

•	When	a	set	of	attributes	is	a	superkey,	we	may	denote	it	by	K.	A	superkey	pertains	to	a	specific	relation
schema,	so	we	use	the	terminology	“K	is	a	superkey	for	R.”

•	We	use	a	lowercase	name	for	relations.	In	our	examples,	these	names	are	intended	to	be	realistic	(e.g.,
instructor),	while	in	our	definitions	and	algorithms,	we	use	single	letters,	like	r.

•	The	notation	r(R)	thus	refers	to	the	relation	r	with	schema	R.	When	we	write	r(R),	we	thus	refer	both	to
the	relation	and	its	schema.

•	A	relation,	has	a	particular	value	at	any	given	time;	we	refer	to	that	as	an	instance	and	use	the	term
“instance	of	r.”	When	it	is	clear	that	we	are	talking	about	an	instance,	we	may	use	simply	the	relation
name	(e.g.,	r).

For	simplicity,	we	assume	that	attribute	names	have	only	one	meaning	within	the	database	schema.

7.2.2

Keys	and	Functional	Dependencies

Some	of	the	most	commonly	used	types	of	real-world	constraints	can	be	represented	formally	as	keys
(superkeys,	candidate	keys,	and	primary	keys),	or	as	functional	dependencies,	which	we	define	below.

In	Section	2.3,	we	defined	the	notion	of	a	superkey	as	a	set	of	one	or	more	attributes	that,	taken
collectively,	allows	us	to	identify	uniquely	a	tuple	in	the	relation.	We	restate	that	definition	here	as	follows:
Given	r(R),	a	subset	K	of	R	is	a	superkey	of	r(R)	if,	in	any	legal	instance	of	r(R),	for	all	pairs	t	and	t	of
tuples	in	the	instance	of	r	if	t

≠	t	,

1

2

1

2

then	t	[K]	≠	t	[K].	That	is,	no	two	tuples	in	any	legal	instance	of	relation	r(R)	may	1

2

310

Chapter	7

Relational	Database	Design

have	the	same	value	on	attribute	set	K.3	If	no	two	tuples	in	r	have	the	same	value	on	K	,	then	a	K	-value
uniquely	identifies	a	tuple	in	r.

Whereas	a	superkey	is	a	set	of	attributes	that	uniquely	identifies	an	entire	tuple,	a	functional	dependency
allows	us	to	express	constraints	that	uniquely	identify	the	values	of	certain	attributes.	Consider	a	relation
schema	r(R),	and	let	α	⊆	R	and	β	⊆	R.

•	Given	an	instance	of	r(R),	we	say	that	the	instance	satisfies	the	functional	dependency	α	→	β	if	for	all
pairs	of	tuples	t	and	t	in	the	instance	such	that	1

2

t	[α]	=	t	[α],	it	is	also	the	case	that	t	[β]	=	t	[β].

1

2

1

2

•	We	say	that	the	functional	dependency	α	→	β	holds	on	schema	r(R)	if,	every	legal	instance	of	r(R)
satisfies	the	functional	dependency.

Using	the	functional-dependency	notation,	we	say	that	K	is	a	superkey	for	r(R)	if	the	functional
dependency	K	→	R	holds	on	r(R).	In	other	words,	K	is	a	superkey	if,	for	every	legal	instance	of	r(R),	for
every	pair	of	tuples	t	and	t	from	the	instance,	1

2

whenever	t	[K]	=	t	[K],	it	is	also	the	case	that	t	[R]	=	t	[R]	(i.e.,	t	=	t).4

1

2

1

2

1

2

Functional	dependencies	allow	us	to	express	constraints	that	we	cannot	express	with	superkeys.	In
Section	7.1,	we	considered	the	schema:

in	dep	(ID,	name,	salary,	dept	name,	building,	budget)	in	which	the	functional	dependency	dept	name	→
budget	holds	because	for	each	department	(identified	by	dept	name)	there	is	a	unique	budget	amount.

We	denote	the	fact	that	the	pair	of	attributes	(ID,	dept	name)	forms	a	superkey	for	in	dep	by	writing:

ID,	dept	name	→	name,	salary,	building,	budget	We	shall	use	functional	dependencies	in	two	ways:

1.	To	test	instances	of	relations	to	see	whether	they	satisfy	a	given	set	F	of	functional	dependencies.

2.	To	specify	constraints	on	the	set	of	legal	relations.	We	shall	thus	concern	ourselves	with	only	those
relation	instances	that	satisfy	a	given	set	of	functional	dependencies.	If	we	wish	to	constrain	ourselves	to
relations	on	schema	r(R)	that	satisfy	a	set	F	of	functional	dependencies,	we	say	that	F	holds	on	r(R).

3In	our	discussion	of	functional	dependencies,	we	use	equality	(=)	in	the	normal	mathematical	sense,	not
the	three-valued-logic	sense	of	SQL.	Said	differently,	in	discussing	functional	dependencies,	we	assume	no
null	values.

4Note	that	we	assume	here	that	relations	are	sets.	SQL	deals	with	multisets,	and	a	primary	key
declaration	in	SQL	for	a	set	of	attributes	K	requires	not	only	that	t

=

1

t	2	if	t	1[K]	=	t	2[K],	but	also	that	there	be	no	duplicate	tuples.	SQL	also	requires	that	attributes	in	the
set	K	cannot	be	assigned	a	null	value.

7.2

Decomposition	Using	Functional	Dependencies

311

A

B

C

D

a

b

c

d

1

1

1

1

a

b

c

d

1

2

1

2

a

b

c

d

2

2

2

2

a

b

c

d

2

3

2

3

a

b

c

d

3

3

2

4

Figure	7.4	Sample	instance	of	relation	r.

Let	us	consider	the	instance	of	relation	r	of	Figure	7.4,	to	see	which	functional	dependencies	are	satisfied.
Observe	that	A	→	C	is	satisfied.	There	are	two	tuples	that	have	an	A	value	of	a	.	These	tuples	have	the
same	C	value	—	namely,	c	.	Similarly,	the	1

1

two	tuples	with	an	A	value	of	a	have	the	same	C	value,	c	.	There	are	no	other	pairs	2

2

of	distinct	tuples	that	have	the	same	A	value.	The	functional	dependency	C	→	A	is	not	satisfied,	however.
To	see	that	it	is	not,	consider	the	tuples	t

=	(a	,	b	,	c	,	d)	and	t	=

1

2

3

2

3

2

(a	,	b	,	c	,	d).	These	two	tuples	have	the	same	C	values,	c	,	but	they	have	different	A	3

3

2

4

2

values,	a	and	a	,	respectively.	Thus,	we	have	found	a	pair	of	tuples	t	and	t	such	that	2

3

1

2

t	[C]	=	t	[C],	but	t	[A]	≠	t	[A].

1

2

1

2

Some	functional	dependencies	are	said	to	be	trivial	because	they	are	satisfied	by	all	relations.	For
example,	A	→	A	is	satisfied	by	all	relations	involving	attribute	A.	Reading	the	definition	of	functional
dependency	literally,	we	see	that,	for	all	tuples	t	and	t	such	1

2

that	t	[A]	=	t	[A],	it	is	the	case	that	t	[A]	=	t	[A].	Similarly,	AB	→	A	is	satisfied	1

2

1

2

by	all	relations	involving	attribute	A.	In	general,	a	functional	dependency	of	the	form	α	→	β	is	trivial	if	β	⊆
α.

It	is	important	to	realize	that	an	instance	of	a	relation	may	satisfy	some	functional	dependencies	that	are
not	required	to	hold	on	the	relation’s	schema.	In	the	instance	of	the	classroom	relation	of	Figure	7.5,	we
see	that	room	number	→	capacity	is	satisfied.

However,	we	believe	that,	in	the	real	world,	two	classrooms	in	different	buildings	can	have	the	same	room
number	but	with	different	room	capacity.	Thus,	it	is	possible,	at	some	time,	to	have	an	instance	of	the
classroom	relation	in	which	room	number	→

capacity	is	not	satisfied.	So,	we	would	not	include	room	number	→	capacity	in	the	set	of	building

room	number

capacity

Packard

101

500

Painter

514

10

Taylor

3128

70

Watson

100

30

Watson

120

50

Figure	7.5	An	instance	of	the	classroom	relation.

312

Chapter	7

Relational	Database	Design

functional	dependencies	that	hold	on	the	schema	for	the	classroom	relation.	However,	we	would	expect
the	functional	dependency	building,	room	number	→	capacity	to	hold	on	the	classroom	schema.

Because	we	assume	that	attribute	names	have	only	one	meaning	in	the	database	schema,	if	we	state	that
a	functional	dependency	α	→	β	holds	as	a	constraint	on	the	database,	then	for	any	schema	R	such	that	α	⊆
R	and	β	⊆	R,	α	→	β	must	hold.

Given	that	a	set	of	functional	dependencies	F	holds	on	a	relation	r(R),	it	may	be	possible	to	infer	that
certain	other	functional	dependencies	must	also	hold	on	the	relation.	For	example,	given	a	schema	r(A,	B,
C),	if	functional	dependencies	A	→	B	and	B	→	C	hold	on	r,	we	can	infer	the	functional	dependency	A	→	C
must	also	hold	on	r.

This	is	because,	given	any	value	of	A,	there	can	be	only	one	corresponding	value	for	B,	and	for	that	value
of	B,	there	can	only	be	one	corresponding	value	for	C.	We	study	in	Section	7.4.1,	how	to	make	such
inferences.

We	shall	use	the	notation	F	+	to	denote	the	closure	of	the	set	F	,	that	is,	the	set	of	all	functional
dependencies	that	can	be	inferred	given	the	set	F	.	F	+	contains	all	of	the	functional	dependencies	in	F	.

7.2.3

Lossless	Decomposition	and	Functional	Dependencies

We	can	use	functional	dependencies	to	show	when	certain	decompositions	are	lossless.

Let	R,	R	,	R	,	and	F	be	as	above.	R	and	R	form	a	lossless	decomposition	of	R	if	at	1

2

1

2

least	one	of	the	following	functional	dependencies	is	in	F	+:

•	R	∩	R	→	R

1

2

1

•	R	∩	R	→	R

1

2

2

In	other	words,	if	R	∩	R	forms	a	superkey	for	either	R	or	R	,	the	decomposition	of	R	is	1

2

1

2

a	lossless	decomposition.	We	can	use	attribute	closure	to	test	efficiently	for	superkeys,	as	we	have	seen
earlier.

To	illustrate	this,	consider	the	schema

in	dep	(ID,	name,	salary,	dept	name,	building,	budget)	that	we	decomposed	in	Section	7.1	into	the
instructor	and	department	schemas:	instructor	(ID,	name,	dept	name,	salary)	department	(dept	name,
building,	budget)	Consider	the	intersection	of	these	two	schemas,	which	is	dept	name.	We	see	that
because	dept	name→	dept	name,	building,	budget,	the	lossless-decomposition	rule	is	satisfied.

7.3

Normal	Forms

313

For	the	general	case	of	decomposition	of	a	schema	into	multiple	schemas	at	once,	the	test	for	lossless
decomposition	is	more	complicated.	See	the	Further	Reading	section	at	the	end	of	this	chapter	for
references	on	this	topic.

While	the	test	for	binary	decomposition	is	clearly	a	sufficient	condition	for	lossless	decomposition,	it	is	a
necessary	condition	only	if	all	constraints	are	functional	dependencies.	We	shall	see	other	types	of
constraints	later	(in	particular,	a	type	of	constraint	called	multivalued	dependencies	discussed	in	Section
7.6.1)	that	can	ensure	that	a	decomposition	is	lossless	even	if	no	functional	dependencies	are	present.

Suppose	we	decompose	a	relation	schema	r(R)	into	r	(R)	and	r	(R),	where	R	∩

1

1

2

2

1

R	→	R	.5	Then	the	following	SQL	constraints	must	be	imposed	on	the	decomposed	2

1

schema	to	ensure	their	contents	are	consistent	with	the	original	schema.

•	R	∩	R	is	the	primary	key	of	r	.

1

2

1

This	constraint	enforces	the	functional	dependency.

•	R	∩	R	is	a	foreign	key	from	r	referencing	r	.

1

2

2

1

This	constraint	ensures	that	each	tuple	in	r	has	a	matching	tuple	in	r	,	without	2

1

which	it	would	not	appear	in	the	natural	join	of	r	and	r	.

1

2

If	r	or	r	is	decomposed	further,	as	long	as	the	decomposition	ensures	that	all	attributes	1

2

in	R	∩	R	are	in	one	relation,	the	primary	or	foreign-key	constraint	on	r	or	r	would	1

2

1

2

be	inherited	by	that	relation.

7.3

Normal	Forms

As	stated	in	Section	7.1.3,	there	are	a	number	of	different	normal	forms	that	are	used	in	designing
relational	databases.	In	this	section,	we	cover	two	of	the	most	common	ones.

7.3.1

Boyce	–	Codd	Normal	Form

One	of	the	more	desirable	normal	forms	that	we	can	obtain	is	Boyce	–	Codd	normal	form	(BCNF).	It
eliminates	all	redundancy	that	can	be	discovered	based	on	functional	dependencies,	though,	as	we	shall
see	in	Section	7.6,	there	may	be	other	types	of	redundancy	remaining.

7.3.1.1

Definition

A	relation	schema	R	is	in	BCNF	with	respect	to	a	set	F	of	functional	dependencies	if,	for	all	functional
dependencies	in	F	+	of	the	form	α	→	β,	where	α	⊆	R	and	β	⊆	R,	at	least	one	of	the	following	holds:

5The	case	for	R	∩

→

1

R	2

R	2	is	symmetrical,	and	ignored.

314

Chapter	7

Relational	Database	Design

•	α	→	β	is	a	trivial	functional	dependency	(i.e.,	β	⊆	α).

•	α	is	a	superkey	for	schema	R.

A	database	design	is	in	BCNF	if	each	member	of	the	set	of	relation	schemas	that	constitutes	the	design	is
in	BCNF.

We	have	already	seen	in	Section	7.1	an	example	of	a	relational	schema	that	is	not	in	BCNF:

in	dep	(ID,	name,	salary,	dept	name,	building,	budget)	The	functional	dependency	dept	name	→	budget
holds	on	in	dep,	but	dept	name	is	not	a	superkey	(because	a	department	may	have	a	number	of	different
instructors).	In	Section	7.1	we	saw	that	the	decomposition	of	in	dep	into	instructor	and	department	is	a
better	design.	The	instructor	schema	is	in	BCNF.	All	of	the	nontrivial	functional	dependencies	that	hold,
such	as:

ID	→	name,	dept	name,	salary

include	ID	on	the	left	side	of	the	arrow,	and	ID	is	a	superkey	(actually,	in	this	case,	the	primary	key)	for
instructor.	(In	other	words,	there	is	no	nontrivial	functional	dependency	with	any	combination	of	name,
dept	name,	and	salary,	without	ID,	on	the	left	side.)	Thus,	instructor	is	in	BCNF.

Similarly,	the	department	schema	is	in	BCNF	because	all	of	the	nontrivial	functional	dependencies	that
hold,	such	as:

dept	name	→	building,	budget

include	dept	name	on	the	left	side	of	the	arrow,	and	dept	name	is	a	superkey	(and	the	primary	key)	for
department.	Thus,	department	is	in	BCNF.

We	now	state	a	general	rule	for	decomposing	schemas	that	are	not	in	BCNF.	Let	R	be	a	schema	that	is	not
in	BCNF.	Then	there	is	at	least	one	nontrivial	functional	dependency	α	→	β	such	that	α	is	not	a	superkey
for	R.	We	replace	R	in	our	design	with	two	schemas:

•	(α	∪	β)

•	(R	−	(β	−	α))

In	the	case	of	in	dep	above,	α	=	dept	name,	β	=	{	building,	budget},	and	in	dep	is	replaced	by

•	(α	∪	β)	=	(dept	name,	building,	budget)

•	(R	−	(β	−	α))	=	(ID,	name,	dept	name,	salary)

7.3

Normal	Forms

315

department

dept_name

building

budget

instructor

student

ID

dept_advisor

ID

name

name

salary

tot_cred

Figure	7.6	The	dept	advisor	relationship	set.

In	this	example,	it	turns	out	that	β	−	α	=	β.	We	need	to	state	the	rule	as	we	did	so	as	to	deal	correctly	with
functional	dependencies	that	have	attributes	that	appear	on	both	sides	of	the	arrow.	The	technical	reasons
for	this	are	covered	later	in	Section	7.5.1.

When	we	decompose	a	schema	that	is	not	in	BCNF,	it	may	be	that	one	or	more	of	the	resulting	schemas
are	not	in	BCNF.	In	such	cases,	further	decomposition	is	required,	the	eventual	result	of	which	is	a	set	of
BCNF	schemas.

7.3.1.2

BCNF	and	Dependency	Preservation

We	have	seen	several	ways	in	which	to	express	database	consistency	constraints:	primary-key	constraints,
functional	dependencies,	check	constraints,	assertions,	and	triggers.	Testing	these	constraints	each	time
the	database	is	updated	can	be	costly	and,	therefore,	it	is	useful	to	design	the	database	in	a	way	that
constraints	can	be	tested	efficiently.	In	particular,	if	testing	a	functional	dependency	can	be	done	by
considering	just	one	relation,	then	the	cost	of	testing	this	constraint	is	low.	We	shall	see	that,	in	some
cases,	decomposition	into	BCNF	can	prevent	efficient	testing	of	certain	functional	dependencies.

To	illustrate	this,	suppose	that	we	make	a	small	change	to	our	university	organization.	In	the	design	of
Figure	6.15,	a	student	may	have	only	one	advisor.	This	follows	from	the	relationship	set	advisor	being
many-to-one	from	student	to	advisor.	The	“small”

change	we	shall	make	is	that	an	instructor	can	be	associated	with	only	a	single	department,	and	a	student
may	have	more	than	one	advisor,	but	no	more	than	one	from	a	given	department.6

One	way	to	implement	this	change	using	the	E-R	design	is	by	replacing	the	advisor	relationship	set	with	a
ternary	relationship	set,	dept	advisor,	involving	entity	sets	instructor,	student,	and	department	that	is
many-to-one	from	the	pair	{	student,	instructor}	to	department	as	shown	in	Figure	7.6.	The	E-R	diagram
specifies	the	constraint	that	6Such	an	arrangement	makes	sense	for	students	with	a	double	major.

316

Chapter	7

Relational	Database	Design

“a	student	may	have	more	than	one	advisor,	but	at	most	one	corresponding	to	a	given	department.”

With	this	new	E-R	diagram,	the	schemas	for	the	instructor,	department,	and	student	relations	are
unchanged.	However,	the	schema	derived	from	the	dept	advisor	relationship	set	is	now:

dept	advisor	(s	ID,	i	ID,	dept	name)

Although	not	specified	in	the	E-R	diagram,	suppose	we	have	the	additional	constraint	that	“an	instructor
can	act	as	advisor	for	only	a	single	department.”

Then,	the	following	functional	dependencies	hold	on	dept	advisor:	i	ID	→	dept	name

s	ID,	dept	name	→	i	ID

The	first	functional	dependency	follows	from	our	requirement	that	“an	instructor	can	act	as	an	advisor	for
only	one	department.”	The	second	functional	dependency	follows	from	our	requirement	that	“a	student
may	have	at	most	one	advisor	for	a	given	department.”

Notice	that	with	this	design,	we	are	forced	to	repeat	the	department	name	once	for	each	time	an
instructor	participates	in	a	dept	advisor	relationship.	We	see	that	dept	advisor	is	not	in	BCNF	because	i	ID
is	not	a	superkey.	Following	our	rule	for	BCNF

decomposition,	we	get:

(s	ID,	i	ID)

(i	ID,	dept	name)

Both	the	above	schemas	are	BCNF.	(In	fact,	you	can	verify	that	any	schema	with	only	two	attributes	is	in
BCNF	by	definition.)

Note,	however,	that	in	our	BCNF	design,	there	is	no	schema	that	includes	all	the	attributes	appearing	in
the	functional	dependency	s	ID,	dept	name	→	i	ID.	The	only	dependency	that	can	be	enforced	on	the
individual	decomposed	relations	is	ID	→	dept	name.	The	functional	dependency	s	ID,	dept	name	→	i	ID	can
only	be	checked	by	computing	the	join	of	the	decomposed	relations.7

Because	our	design	does	not	permit	the	enforcement	of	this	functional	dependency	without	a	join,	we	say
that	our	design	is	not	dependency	preserving	(we	provide	a	formal	definition	of	dependency	preservation
in	Section	7.4.4).	Because	dependency	preservation	is	usually	considered	desirable,	we	consider	another
normal	form,	weaker	than	BCNF,	that	will	allow	us	to	preserve	dependencies.	That	normal	form	is	called
the	third	normal	form.8

7Technically,	it	is	possible	that	a	dependency	whose	attributes	do	not	all	appear	in	any	one	schema	is	still
implicitly	enforced,	because	of	the	presence	of	other	dependencies	that	imply	it	logically.	We	address	that
case	in	Section	7.4.4.

8You	may	have	noted	that	we	skipped	second	normal	form.	It	is	of	historical	significance	only	and,	in
practice,	one	of	third	normal	form	or	BCNF	is	always	a	better	choice.	We	explore	second	normal	form	in
Exercise	7.19.	First	normal	form	pertains	to	attribute	domains,	not	decomposition.	We	discuss	it	in
Section	7.8.

7.3

Normal	Forms

317

7.3.2

Third	Normal	Form

BCNF	requires	that	all	nontrivial	dependencies	be	of	the	form	α	→	β,	where	α	is	a	superkey.	Third	normal
form	(3NF)	relaxes	this	constraint	slightly	by	allowing	certain	nontrivial	functional	dependencies	whose
left	side	is	not	a	superkey.	Before	we	define	3NF,	we	recall	that	a	candidate	key	is	a	minimal	superkey	—
that	is,	a	superkey	no	proper	subset	of	which	is	also	a	superkey.

A	relation	schema	R	is	in	third	normal	form	with	respect	to	a	set	F	of	functional	dependencies	if,	for	all
functional	dependencies	in	F	+	of	the	form	α	→	β,	where	α	⊆	R

and	β	⊆	R,	at	least	one	of	the	following	holds:

•	α	→	β	is	a	trivial	functional	dependency.

•	α	is	a	superkey	for	R.

•	Each	attribute	A	in	β	−	α	is	contained	in	a	candidate	key	for	R.

Note	that	the	third	condition	above	does	not	say	that	a	single	candidate	key	must	contain	all	the	attributes
in	β	−	α;	each	attribute	A	in	β	−	α	may	be	contained	in	a	different	candidate	key.

The	first	two	alternatives	are	the	same	as	the	two	alternatives	in	the	definition	of	BCNF.	The	third
alternative	in	the	3NF	definition	seems	rather	unintuitive,	and	it	is	not	obvious	why	it	is	useful.	It
represents,	in	some	sense,	a	minimal	relaxation	of	the	BCNF

conditions	that	helps	ensure	that	every	schema	has	a	dependency-preserving	decomposition	into	3NF.	Its
purpose	will	become	more	clear	later,	when	we	study	decomposition	into	3NF.

Observe	that	any	schema	that	satisfies	BCNF	also	satisfies	3NF,	since	each	of	its	functional	dependencies
would	satisfy	one	of	the	first	two	alternatives.	BCNF	is	therefore	a	more	restrictive	normal	form	than	is
3NF.

The	definition	of	3NF	allows	certain	functional	dependencies	that	are	not	allowed	in	BCNF.	A	dependency
α	→	β	that	satisfies	only	the	third	alternative	of	the	3NF

definition	is	not	allowed	in	BCNF	but	is	allowed	in	3NF.9

Now,	let	us	again	consider	the	schema	for	the	dept	advisor	relation,	which	has	the	following	functional
dependencies:

i	ID	→	dept	name

s	ID,	dept	name	→	i	ID

In	Section	7.3.1.2,	we	argued	that	the	functional	dependency	“i	ID	→	dept	name”

caused	the	dept	advisor	schema	not	to	be	in	BCNF.	Note	that	here	α	=	i	ID,	β	=	dept	name,	and	β	−	α	=
dept	name.	Since	the	functional	dependency	s	ID,	dept	name	→

9These	dependencies	are	examples	of	transitive	dependencies	(see	Practice	Exercise	7.18).	The	original
definition	of	3NF	was	in	terms	of	transitive	dependencies.	The	definition	we	use	is	equivalent	but	easier	to
understand.

318

Chapter	7

Relational	Database	Design

i	ID	holds	on	dept	advisor,	the	attribute	dept	name	is	contained	in	a	candidate	key	and,	therefore,	dept
advisor	is	in	3NF.

We	have	seen	the	trade-off	that	must	be	made	between	BCNF	and	3NF	when	there	is	no	dependency-
preserving	BCNF	design.	These	trade-offs	are	described	in	more	detail	in	Section	7.3.3.

7.3.3

Comparison	of	BCNF	and	3NF

Of	the	two	normal	forms	for	relational	database	schemas,	3NF	and	BCNF	there	are	advantages	to	3NF	in
that	we	know	that	it	is	always	possible	to	obtain	a	3NF	design	without	sacrificing	losslessness	or
dependency	preservation.	Nevertheless,	there	are	disadvantages	to	3NF:	We	may	have	to	use	null	values
to	represent	some	of	the	possible	meaningful	relationships	among	data	items,	and	there	is	the	problem	of
repetition	of	information.

Our	goals	of	database	design	with	functional	dependencies	are:

1.	BCNF.

2.	Losslessness.

3.	Dependency	preservation.

Since	it	is	not	always	possible	to	satisfy	all	three,	we	may	be	forced	to	choose	between	BCNF	and
dependency	preservation	with	3NF.

It	is	worth	noting	that	SQL	does	not	provide	a	way	of	specifying	functional	dependencies,	except	for	the
special	case	of	declaring	superkeys	by	using	the	primary	key	or	unique	constraints.	It	is	possible,	although
a	little	complicated,	to	write	assertions	that	enforce	a	functional	dependency	(see	Practice	Exercise	7.9);
unfortunately,	currently	no	database	system	supports	the	complex	assertions	that	are	required	to	enforce
arbitrary	functional	dependencies,	and	the	assertions	would	be	expensive	to	test.	Thus	even	if	we	had	a
dependency-preserving	decomposition,	if	we	use	standard	SQL	we	can	test	efficiently	only	those
functional	dependencies	whose	left-hand	side	is	a	key.

Although	testing	functional	dependencies	may	involve	a	join	if	the	decomposition	is	not	dependency
preserving,	if	the	database	system	supports	materialized	views,	we	could	in	principle	reduce	the	cost	by
storing	the	join	result	as	materialized	view;	however,	this	approach	is	feasible	only	if	the	database	system
supports	primary	key	constraints	or	unique	constraints	on	materialized	views.	On	the	negative	side,	there
is	a	space	and	time	overhead	due	to	the	materialized	view,	but	on	the	positive	side,	the	application
programmer	need	not	worry	about	writing	code	to	keep	redundant	data	consistent	on	updates;	it	is	the	job
of	the	database	system	to	maintain	the	materialized	view,	that	is,	keep	it	up	to	date	when	the	database	is
updated.	(In	Section	16.5,	we	outline	how	a	database	system	can	perform	materialized	view	maintenance
efficiently.)	Unfortunately,	most	current	database	systems	limit	constraints	on	materialized	views	or	do	not
support	them	at	all.	Even	if	such	constraints	are	allowed,	there	is	an	additional	requirement:	the	database
must	update	the	view	and	check	the	constraint

7.3

Normal	Forms

319

immediately	(as	part	of	the	same	transaction)	when	an	underlying	relation	is	updated.

Otherwise,	a	constraint	violation	may	get	detected	well	after	the	update	has	been	performed	and	the
transaction	that	caused	the	violation	has	committed.

In	summary,	even	if	we	are	not	able	to	get	a	dependency-preserving	BCNF	decomposition,	it	is	still
preferable	to	opt	for	BCNF,	since	checking	functional	dependencies	other	than	primary	key	constraints	is
difficult	in	SQL.

7.3.4

Higher	Normal	Forms

Using	functional	dependencies	to	decompose	schemas	may	not	be	sufficient	to	avoid	unnecessary
repetition	of	information	in	certain	cases.	Consider	a	slight	variation	in	the	instructor	entity-set	definition
in	which	we	record	with	each	instructor	a	set	of	children’s	names	and	a	set	of	landline	phone	numbers
that	may	be	shared	by	multiple	people.

Thus,	phone	number	and	child	name	would	be	multivalued	attributes	and,	following	our	rules	for
generating	schemas	from	an	E-R	design,	we	would	have	two	schemas,	one	for	each	of	the	multivalued
attributes,	phone	number	and	child	name:	(ID,	child	name)

(ID,	phone	number)

If	we	were	to	combine	these	schemas	to	get

(ID,	child	name,	phone	number)

we	would	find	the	result	to	be	in	BCNF	because	no	nontrivial	functional	dependencies	hold.	As	a	result	we
might	think	that	such	a	combination	is	a	good	idea.	However,	such	a	combination	is	a	bad	idea,	as	we	can
see	by	considering	the	example	of	an	instructor	with	two	children	and	two	phone	numbers.	For	example,

let	the	instructor	with	ID	99999	have	two	children	named	“David”	and	“William”	and	two	phone	numbers,
512-555-1234	and	512-555-4321.	In	the	combined	schema,	we	must	repeat	the	phone	numbers	once	for
each	dependent:

(99999,	David,	512-555-1234)

(99999,	David,	512-555-4321)

(99999,	William,	512-555-1234)

(99999,	William,	512-555-4321)

If	we	did	not	repeat	the	phone	numbers,	and	we	stored	only	the	first	and	last	tuples,	we	would	have
recorded	the	dependent	names	and	the	phone	numbers,	but	the	resultant	tuples	would	imply	that	David
corresponded	to	512-555-1234,	while	William	corresponded	to	512-555-4321.	This	would	be	incorrect.

Because	normal	forms	based	on	functional	dependencies	are	not	sufficient	to	deal	with	situations	like	this,
other	dependencies	and	normal	forms	have	been	defined.	We	cover	these	in	Section	7.6	and	Section	7.7.

320

Chapter	7

Relational	Database	Design

7.4

Functional-Dependency	Theory

We	have	seen	in	our	examples	that	it	is	useful	to	be	able	to	reason	systematically	about	functional
dependencies	as	part	of	a	process	of	testing	schemas	for	BCNF	or	3NF.

7.4.1

Closure	of	a	Set	of	Functional	Dependencies

We	shall	see	that,	given	a	set	F	of	functional	dependencies	on	a	schema,	we	can	prove	that	certain	other
functional	dependencies	also	hold	on	the	schema.	We	say	that	such	functional	dependencies	are	“logically
implied”	by	F	.	When	testing	for	normal	forms,	it	is	not	sufficient	to	consider	the	given	set	of	functional
dependencies;	rather,	we	need	to	consider	all	functional	dependencies	that	hold	on	the	schema.

More	formally,	given	a	relation	schema	r(R),	a	functional	dependency	f	on	R	is	logically	implied	by	a	set	of
functional	dependencies	F	on	R	if	every	instance	of	a	relation	r(R)	that	satisfies	F	also	satisfies	f	.

Suppose	we	are	given	a	relation	schema	r(A,	B,	C,	G,	H	,	I)	and	the	set	of	functional	dependencies:

A	→	B

A	→	C

CG	→	H

CG	→	I

B	→	H

The	functional	dependency:

A	→	H

is	logically	implied.	That	is,	we	can	show	that,	whenever	a	relation	instance	satisfies	our	given	set	of
functional	dependencies,	A	→	H	must	also	be	satisfied	by	that	relation	instance.	Suppose	that	t	and	t	are
tuples	such	that:	1

2

t	[A]	=	t	[A]

1

2

Since	we	are	given	that	A	→	B,	it	follows	from	the	definition	of	functional	dependency	that:

t	[B]	=	t	[B]

1

2

Then,	since	we	are	given	that	B	→	H,	it	follows	from	the	definition	of	functional	dependency	that:

t	[H]	=	t	[H]

1

2

7.4

Functional-Dependency	Theory

321

Therefore,	we	have	shown	that,	whenever	t	and	t	are	tuples	such	that	t	[A]	=	t	[A],	1

2

1

2

it	must	be	that	t	[H]	=	t	[H].	But	that	is	exactly	the	definition	of	A	→	H.

1

2

Let	F	be	a	set	of	functional	dependencies.	The	closure	of	F	,	denoted	by	F	+,	is	the	set	of	all	functional
dependencies	logically	implied	by	F	.	Given	F	,	we	can	compute	F	+

directly	from	the	formal	definition	of	functional	dependency.	If	F	were	large,	this	process	would	be	lengthy
and	difficult.	Such	a	computation	of	F	+	requires	arguments	of	the	type	just	used	to	show	that	A	→	H	is	in
the	closure	of	our	example	set	of	dependencies.

Axioms,	or	rules	of	inference,	provide	a	simpler	technique	for	reasoning	about	functional	dependencies.	In
the	rules	that	follow,	we	use	Greek	letters	(α,	β,	γ,	…)	for	sets	of	attributes	and	uppercase	Roman	letters
from	the	beginning	of	the	alphabet	for	individual	attributes.	We	use	αβ	to	denote	α	∪	β.

We	can	use	the	following	three	rules	to	find	logically	implied	functional	dependencies.	By	applying	these
rules	repeatedly,	we	can	find	all	of	F	+,	given	F	.	This	collection	of	rules	is	called	Armstrong’s	axioms	in
honor	of	the	person	who	first	proposed	it.

•	Reflexivity	rule.	If	α	is	a	set	of	attributes	and	β	⊆	α,	then	α	→	β	holds.

•	Augmentation	rule.	If	α	→	β	holds	and	γ	is	a	set	of	attributes,	then	γα	→	γβ

holds.

•	Transitivity	rule.	If	α	→	β	holds	and	β	→	γ	holds,	then	α	→	γ	holds.

Armstrong’s	axioms	are	sound,	because	they	do	not	generate	any	incorrect	functional	dependencies.	They
are	complete,	because,	for	a	given	set	F	of	functional	dependencies,	they	allow	us	to	generate	all	F	+.	The
Further	Reading	section	provides	references	for	proofs	of	soundness	and	completeness.

Although	Armstrong’s	axioms	are	complete,	it	is	tiresome	to	use	them	directly	for	the	computation	of	F	+.
To	simplify	matters	further,	we	list	additional	rules.	It	is	possible	to	use	Armstrong’s	axioms	to	prove	that
these	rules	are	sound	(see	Practice	Exercise	7.4,	Practice	Exercise	7.5,	and	Exercise	7.27).

•	Union	rule.	If	α	→	β	holds	and	α	→	γ	holds,	then	α	→	βγ	holds.

•	Decomposition	rule.	If	α	→	βγ	holds,	then	α	→	β	holds	and	α	→	γ	holds.

•	Pseudotransitivity	rule.	If	α	→	β	holds	and	γβ	→	δ	holds,	then	αγ	→	δ	holds.

Let	us	apply	our	rules	to	the	example	of	schema	R	=	(A,	B,	C,	G,	H,	I)	and	the	set	F	of	functional
dependencies	{	A	→	B,	A	→	C,	CG	→	H,	CG	→	I,	B	→	H}.	We	list	several	members	of	F	+	here:

•	A	→	H.	Since	A	→	B	and	B	→	H	hold,	we	apply	the	transitivity	rule.	Observe	that	it	was	much	easier	to
use	Armstrong’s	axioms	to	show	that	A	→	H	holds	than	it	was	to	argue	directly	from	the	definitions,	as	we
did	earlier	in	this	section.

•	CG	→	HI.	Since	CG	→	H	and	CG	→	I,	the	union	rule	implies	that	CG	→	HI.

322

Chapter	7

Relational	Database	Design

F	+	=	F

apply	the	reflexivity	rule	/*	Generates	all	trivial	dependencies	*/

repeat

for	each	functional	dependency	f	in	F	+

apply	the	augmentation	rule	on	f

add	the	resulting	functional	dependencies	to	F	+

for	each	pair	of	functional	dependencies	f	and	f	in	F	+

1

2

if	f	and	f	can	be	combined	using	transitivity

1

2

add	the	resulting	functional	dependency	to	F	+

until	F	+	does	not	change	any	further

Figure	7.7	A	procedure	to	compute	F+.

•	AG	→	I.	Since	A	→	C	and	CG	→	I,	the	pseudotransitivity	rule	implies	that	AG	→	I	holds.

Another	way	of	finding	that	AG	→	I	holds	is	as	follows:	We	use	the	augmentation	rule	on	A	→	C	to	infer	AG
→	CG.	Applying	the	transitivity	rule	to	this	dependency	and	CG	→	I,	we	infer	AG	→	I.

Figure	7.7	shows	a	procedure	that	demonstrates	formally	how	to	use	Armstrong’s	axioms	to	compute	F	+.
In	this	procedure,	when	a	functional	dependency	is	added	to	F	+,	it	may	be	already	present,	and	in	that
case	there	is	no	change	to	F	+.	We	shall	see	an	alternative	way	of	computing	F	+	in	Section	7.4.2.

The	left-hand	and	right-hand	sides	of	a	functional	dependency	are	both	subsets	of	R.	Since	a	set	of	size	n
has	2	n	subsets,	there	are	a	total	of	2	n	×	2	n	=	22	n	possible	functional	dependencies,	where	n	is	the
number	of	attributes	in	R.	Each	iteration	of	the	repeat	loop	of	the	procedure,	except	the	last	iteration,
adds	at	least	one	functional	dependency	to	F	+.	Thus,	the	procedure	is	guaranteed	to	terminate,	though	it
may	be	very	lengthy.

7.4.2

Closure	of	Attribute	Sets

We	say	that	an	attribute	B	is	functionally	determined	by	α	if	α	→	B.	To	test	whether	a	set	α	is	a	superkey,
we	must	devise	an	algorithm	for	computing	the	set	of	attributes	functionally	determined	by	α.	One	way	of
doing	this	is	to	compute	F	+,	take	all	functional	dependencies	with	α	as	the	left-hand	side,	and	take	the
union	of	the	right-hand	sides	of	all	such	dependencies.	However,	doing	so	can	be	expensive,	since	F	+	can
be	large.

An	efficient	algorithm	for	computing	the	set	of	attributes	functionally	determined	by	α	is	useful	not	only
for	testing	whether	α	is	a	superkey,	but	also	for	several	other	tasks,	as	we	shall	see	later	in	this	section.

7.4

Functional-Dependency	Theory

323

Let	α	be	a	set	of	attributes.	We	call	the	set	of	all	attributes	functionally	determined	by	α	under	a	set	F	of
functional	dependencies	the	closure	of	α	under	F	;	we	denote	it	by	α+.	Figure	7.8	shows	an	algorithm,
written	in	pseudocode,	to	compute	α+.	The	input	is	a	set	F	of	functional	dependencies	and	the	set	α	of
attributes.	The	output	is	stored	in	the	variable	result.

To	illustrate	how	the	algorithm	works,	we	shall	use	it	to	compute	(AG)+	with	the	functional	dependencies
defined	in	Section	7.4.1.	We	start	with	result	=	AG.	The	first	time	that	we	execute	the	repeat	loop	to	test
each	functional	dependency,	we	find	that:

•	A	→	B	causes	us	to	include	B	in	result.	To	see	this	fact,	we	observe	that	A	→	B	is	in	F	,	A	⊆	result	(which
is	AG),	so	result	:=	result	∪	B.

•	A	→	C	causes	result	to	become	ABCG.

•	CG	→	H	causes	result	to	become	ABCGH.

•	CG	→	I	causes	result	to	become	ABCGHI.

The	second	time	that	we	execute	the	repeat	loop,	no	new	attributes	are	added	to	result,	and	the	algorithm
terminates.

Let	us	see	why	the	algorithm	of	Figure	7.8	is	correct.	The	first	step	is	correct	because	α	→	α	always	holds
(by	the	reflexivity	rule).	We	claim	that,	for	any	subset	β	of	result,	α	→	β.	Since	we	start	the	repeat	loop
with	α	→	result	being	true,	we	can	add	γ	to	result	only	if	β	⊆	result	and	β	→	γ.	But	then	result	→	β	by	the
reflexivity	rule,	so	α	→	β

by	transitivity.	Another	application	of	transitivity	shows	that	α	→	γ	(using	α	→	β	and	β	→	γ).	The	union	rule
implies	that	α	→	result	∪	γ,	so	α	functionally	determines	any	new	result	generated	in	the	repeat	loop.
Thus,	any	attribute	returned	by	the	algorithm	is	in	α+.

It	is	easy	to	see	that	the	algorithm	finds	all	of	α+.	Consider	an	attribute	A	in	α+	that	is	not	yet	in	result	at
any	point	during	the	execution.	There	must	be	a	way	to	prove	that	result	→	A	using	the	axioms.	Either
result	→	A	is	in	F	itself	(making	the	proof	trivial	and	ensuring	A	is	added	to	result)	or	there	must	a	proof
step	using	transitivity	to	show	result	:=	α;

repeat

for	each	functional	dependency	β	→	γ	in	F	do

begin

if	β	⊆	result	then	result	:=	result	∪	γ;

end

until	(result	does	not	change)

Figure	7.8	An	algorithm	to	compute	α+,	the	closure	of	α	under	F.

324

Chapter	7

Relational	Database	Design

for	some	attribute	B	that	result	→	B.	If	it	happens	that	A	=	B,	then	we	have	shown	that	A	is	added	to
result.	If	not,	B	≠	A	is	added.	Then	repeating	this	argument,	we	see	that	A	must	eventually	be	added	to
result.

It	turns	out	that,	in	the	worst	case,	this	algorithm	may	take	an	amount	of	time	quadratic	in	the	size	of	F	.
There	is	a	faster	(although	slightly	more	complex)	algorithm	that	runs	in	time	linear	in	the	size	of	F	;	that
algorithm	is	presented	as	part	of	Practice	Exercise	7.8.

There	are	several	uses	of	the	attribute	closure	algorithm:

•	To	test	if	α	is	a	superkey,	we	compute	α+	and	check	if	α+	contains	all	attributes	in	R.

•	We	can	check	if	a	functional	dependency	α	→	β	holds	(or,	in	other	words,	is	in	F	+),	by	checking	if	β	⊆	α
+.	That	is,	we	compute	α+	by	using	attribute	closure,	and	then	check	if	it	contains	β.	This	test	is
particularly	useful,	as	we	shall	see	later	in	this	chapter.

•	It	gives	us	an	alternative	way	to	compute	F	+:	For	each	γ	⊆	R,	we	find	the	closure	γ+,	and	for	each	S	⊆
γ+,	we	output	a	functional	dependency	γ	→	S.

7.4.3

Canonical	Cover

Suppose	that	we	have	a	set	of	functional	dependencies	F	on	a	relation	schema.	Whenever	a	user	performs
an	update	on	the	relation,	the	database	system	must	ensure	that	the	update	does	not	violate	any
functional	dependencies,	that	is,	all	the	functional	dependencies	in	F	are	satisfied	in	the	new	database
state.

The	system	must	roll	back	the	update	if	it	violates	any	functional	dependencies	in	the	set	F	.

We	can	reduce	the	effort	spent	in	checking	for	violations	by	testing	a	simplified	set	of	functional
dependencies	that	has	the	same	closure	as	the	given	set.	Any	database	that	satisfies	the	simplified	set	of
functional	dependencies	also	satisfies	the	original	set,	and	vice	versa,	since	the	two	sets	have	the	same
closure.	However,	the	simplified	set	is	easier	to	test.	We	shall	see	how	the	simplified	set	can	be
constructed	in	a	moment.

First,	we	need	some	definitions.

An	attribute	of	a	functional	dependency	is	said	to	be	extraneous	if	we	can	remove	it	without	changing	the
closure	of	the	set	of	functional	dependencies.

•	Removing	an	attribute	from	the	left	side	of	a	functional	dependency	could	make	it	a	stronger	constraint.
For	example,	if	we	have	AB	→	C	and	remove	B,	we	get	the	possibly	stronger	result	A	→	C.	It	may	be
stronger	because	A	→	C	logically	implies	AB	→	C,	but	AB	→	C	does	not,	on	its	own,	logically	imply	A	→	C.

But,	depending	on	what	our	set	F	of	functional	dependencies	happens	to	be,	we	may	be	able	to	remove	B
from	AB	→	C	safely.	For	example,	suppose	that	the	set

7.4

Functional-Dependency	Theory

325

F	=	{	AB	→	C,	A	→	D,	D	→	C}.	Then	we	can	show	that	F	logically	implies	A	→	C,	making	B	extraneous	in
AB	→	C.

•	Removing	an	attribute	from	the	right	side	of	a	functional	dependency	could	make	it	a	weaker	constraint.
For	example,	if	we	have	AB	→	CD	and	remove	C,	we	get	the	possibly	weaker	result	AB	→	D.	It	may	be
weaker	because	using	just	AB	→	D,	we	can	no	longer	infer	AB	→	C.	But,	depending	on	what	our	set	F	of
functional	dependencies	happens	to	be,	we	may	be	able	to	remove	C	from	AB	→	CD	safely.

For	example,	suppose	that	F	=	{	AB	→	CD,	A	→	C}.	Then	we	can	show	that	even	after	replacing	AB	→	CD
by	AB	→	D,	we	can	still	infer	AB	→	C	and	thus	AB	→	CD.

The	formal	definition	of	extraneous	attributes	is	as	follows:	Consider	a	set	F	of	functional	dependencies
and	the	functional	dependency	α	→	β	in	F	.

•	Removal	from	the	left	side:	Attribute	A	is	extraneous	in	α	if	A	∈	α	and	F	logically	implies	(F	−	{α	→	β})
∪	{(α	−	A)	→	β}.

•	Removal	from	the	right	side:	Attribute	A	is	extraneous	in	β	if	A	∈	β	and	the	set	of	functional
dependencies	(F	−	{α	→	β})	∪	{α	→	(β	−	A)}	logically	implies	F	.

Beware	of	the	direction	of	the	implications	when	using	the	definition	of	extraneous	attributes:	If	you
reverse	the	statement,	the	implication	will	always	hold.	That	is,	(F	−

{α	→	β})	∪	{(α	−	A)	→	β}	always	logically	implies	F,	and	also	F	always	logically	implies	(F	−	{α	→	β})	∪
{α	→	(β	−	A)}.

Here	is	how	we	can	test	efficiently	if	an	attribute	is	extraneous.	Let	R	be	the	relation	schema,	and	let	F	be
the	given	set	of	functional	dependencies	that	hold	on	R.	Consider	an	attribute	A	in	a	dependency	α	→	β.

•	If	A	∈	β,	to	check	if	A	is	extraneous,	consider	the	set	F	′	=	(F	−	{α	→	β})	∪	{α	→	(β	−	A)}

and	check	if	α	→	A	can	be	inferred	from	F	′.	To	do	so,	compute	α+	(the	closure	of	α)	under	F′;	if	α+
includes	A,	then	A	is	extraneous	in	β.

•	If	A	∈	α,	to	check	if	A	is	extraneous,	let	γ	=	α	−	{	A},	and	check	if	γ	→	β	can	be	inferred	from	F	.	To	do
so,	compute	γ+	(the	closure	of	γ)	under	F	;	if	γ+	includes	all	attributes	in	β,	then	A	is	extraneous	in	α.

For	example,	suppose	F	contains	AB	→	CD,	A	→	E,	and	E	→	C.	To	check	if	C	is	extraneous	in	AB	→	CD,	we
compute	the	attribute	closure	of	AB	under	F	′	=	{	AB	→	D,	A	→	E,	E	→	C}.	The	closure	is	ABCDE,	which
includes	CD,	so	we	infer	that	C	is	extraneous.

326

Chapter	7

Relational	Database	Design

F	=	F

c

repeat

Use	the	union	rule	to	replace	any	dependencies	in	F	of	the	form	c

α	→	β	and	α	→	β	with	α	→	β	β	.

1

1

1

2

1

1

2

Find	a	functional	dependency	α	→	β	in	F	with	an	extraneous

c

attribute	either	in	α	or	in	β.

/*	Note:	the	test	for	extraneous	attributes	is	done	using	F	,	not	F	*/

c

If	an	extraneous	attribute	is	found,	delete	it	from	α	→	β	in	F	.

c

until	(F	does	not	change)

c

Figure	7.9	Computing	canonical	cover.

Having	defined	the	concept	of	extraneous	attributes,	we	can	explain	how	we	can	construct	a	simplified	set
of	functional	dependencies	equivalent	to	a	given	set	of	functional	dependencies.

A	canonical	cover	F	for	F	is	a	set	of	dependencies	such	that	F	logically	implies	c

all	dependencies	in	F	,	and	F	logically	implies	all	dependencies	in	F	.	Furthermore,	F

c

c

c

must	have	the	following	properties:

•	No	functional	dependency	in	F	contains	an	extraneous	attribute.

c

•	Each	left	side	of	a	functional	dependency	in	F	is	unique.	That	is,	there	are	no	two	c

dependencies	α	→	β	and	α	→	β	in	F	such	that	α	=	α	.

1

1

2

2

c

1

2

A	canonical	cover	for	a	set	of	functional	dependencies	F	can	be	computed	as	described	in	Figure	7.9.	It	is
important	to	note	that	when	checking	if	an	attribute	is	extraneous,	the	check	uses	the	dependencies	in	the
current	value	of	F	,	and	not	the	depen-c

dencies	in	F	.	If	a	functional	dependency	contains	only	one	attribute	in	its	right-hand	side,	for	example	A
→	C,	and	that	attribute	is	found	to	be	extraneous,	we	would	get	a	functional	dependency	with	an	empty
right-hand	side.	Such	functional	dependencies	should	be	deleted.

Since	the	algorithm	permits	a	choice	of	any	extraneous	attribute,	it	is	possible	that	there	may	be	several
possible	canonical	covers	for	a	given	F	.	Any	such	F	is	equally	c

acceptable.	Any	canonical	cover	of	F	,	F	,	can	be	shown	to	have	the	same	closure	as	c

F	;	hence,	testing	whether	F	is	satisfied	is	equivalent	to	testing	whether	F	is	satisfied.

c

However,	F	is	minimal	in	a	certain	sense	—	it	does	not	contain	extraneous	attributes,	c

and	it	combines	functional	dependencies	with	the	same	left	side.	It	is	cheaper	to	test	F	than	it	is	to	test	F
itself.

c

We	now	consider	an	example.	Assume	we	are	given	the	following	set	F	of	functional	dependencies	on
schema	(A,	B,	C):

7.4

Functional-Dependency	Theory

327

A	→	BC

B	→	C

A	→	B

AB	→	C

Let	us	compute	a	canonical	cover	for	F	.

•	There	are	two	functional	dependencies	with	the	same	set	of	attributes	on	the	left	side	of	the	arrow:

A	→	BC

A	→	B

We	combine	these	functional	dependencies	into	A	→	BC.

•	A	is	extraneous	in	AB	→	C	because	F	logically	implies	(F	−	{	AB	→	C})	∪	{	B	→

C}.	This	assertion	is	true	because	B	→	C	is	already	in	our	set	of	functional	dependencies.

•	C	is	extraneous	in	A	→	BC,	since	A	→	BC	is	logically	implied	by	A	→	B	and	B	→

C.

Thus,	our	canonical	cover	is:

A	→	B

B	→	C

Given	a	set	F	of	functional	dependencies,	it	may	be	that	an	entire	functional	dependency	in	the	set	is
extraneous,	in	the	sense	that	dropping	it	does	not	change	the	closure	of	F	.	We	can	show	that	a	canonical
cover	F	of	F	contains	no	such	extraneous	c

functional	dependency.	Suppose	that,	to	the	contrary,	there	were	such	an	extraneous	functional
dependency	in	F	.	The	right-side	attributes	of	the	dependency	would	then	c

be	extraneous,	which	is	not	possible	by	the	definition	of	canonical	covers.

As	we	noted	earlier,	a	canonical	cover	might	not	be	unique.	For	instance,	consider	the	set	of	functional
dependencies	F	=	{	A	→	BC,	B	→	AC,	and	C	→	AB}.	If	we	apply	the	test	for	extraneous	attributes	to	A	→
BC,	we	find	that	both	B	and	C	are	extraneous	under	F	.	However,	it	is	incorrect	to	delete	both!	The
algorithm	for	finding	the	canonical	cover	picks	one	of	the	two	and	deletes	it.	Then,

1.	If	C	is	deleted,	we	get	the	set	F	′	=	{	A	→	B,	B	→	AC,	and	C	→	AB}.	Now,	B	is	not	extraneous	on	the	right
side	of	A	→	B	under	F	′.	Continuing	the	algorithm,	we	find	A	and	B	are	extraneous	in	the	right	side	of	C	→
AB,	leading	to	two	choices	of	canonical	cover:

328

Chapter	7

Relational	Database	Design

compute	F	+;

for	each	schema	R	in	D	do

i

begin

F	:	=	the	restriction	of	F	+	to	R	;

i

i

end

F	′	:=	∅

for	each	restriction	F	do

i

begin

F	′	=	F	′	∪	Fi

end

compute	F	′+;

if	(F	′+	=	F	+)	then	return	(true)

else	return	(false);

Figure	7.10	Testing	for	dependency	preservation.

F	=	{	A	→	B,	B	→	C,	C	→	A}

c

F	=	{	A	→	B,	B	→	AC,	C	→	B}.

c

2.	If	B	is	deleted,	we	get	the	set	{	A	→	C,	B	→	AC,	and	C	→	AB}.	This	case	is	symmetrical	to	the	previous
case,	leading	to	two	more	choices	of	canonical	cover:

F	=	{	A	→	C,	C	→	B,	and	B	→	A}

c

F	=	{	A	→	C,	B	→	C,	and	C	→	AB}.

c

As	an	exercise,	can	you	find	one	more	canonical	cover	for	F	?

7.4.4

Dependency	Preservation

Using	the	theory	of	functional	dependencies,	there	is	a	way	to	describe	dependency	preservation	that	is
simpler	than	the	ad	hoc	approach	we	used	in	Section	7.3.1.2.

Let	F	be	a	set	of	functional	dependencies	on	a	schema	R,	and	let	R	,	R	,	…	,	R	be	a	1

2

n

decomposition	of	R.	The	restriction	of	F	to	R	is	the	set	F	of	all	functional	dependencies	i

i

in	F	+	that	include	only	attributes	of	R	.	Since	all	functional	dependencies	in	a	restriction	i

involve	attributes	of	only	one	relation	schema,	it	is	possible	to	test	such	a	dependency	for	satisfaction	by
checking	only	one	relation.

Note	that	the	definition	of	restriction	uses	all	dependencies	in	F	+,	not	just	those	in	F	.	For	instance,
suppose	F	=	{	A	→	B,	B	→	C},	and	we	have	a	decomposition	into	AC	and	AB.	The	restriction	of	F	to	AC
includes	A	→	C,	since	A	→	C	is	in	F	+,	even	though	it	is	not	in	F	.

7.4

Functional-Dependency	Theory

329

The	set	of	restrictions	F	,	F	,	…	,	F	is	the	set	of	dependencies	that	can	be	checked	1

2

n

efficiently.	We	now	must	ask	whether	testing	only	the	restrictions	is	sufficient.	Let	F	′	=

F	∪	F	∪	⋯	∪	F	.	F	′	is	a	set	of	functional	dependencies	on	schema	R,	but,	in	general,	1

2

n

F	′	≠	F	.	However,	even	if	F	′	≠	F	,	it	may	be	that	F	′+	=	F	+.	If	the	latter	is	true,	then	every	dependency	in
F	is	logically	implied	by	F	′,	and,	if	we	verify	that	F	′	is	satisfied,	we	have	verified	that	F	is	satisfied.	We	say
that	a	decomposition	having	the	property	F	′+	=	F	+	is	a	dependency-preserving	decomposition.

Figure	7.10	shows	an	algorithm	for	testing	dependency	preservation.	The	input	is	a	set	D	=	{	R	,	R	,	…	,	R

}	of	decomposed	relation	schemas,	and	a	set	F	of	functional	1

2

n

dependencies.	This	algorithm	is	expensive	since	it	requires	computation	of	F	+.	Instead	of	applying	the
algorithm	of	Figure	7.10,	we	consider	two	alternatives.

First,	note	that	if	each	member	of	F	can	be	tested	on	one	of	the	relations	of	the	decomposition,	then	the
decomposition	is	dependency	preserving.	This	is	an	easy	way	to	show	dependency	preservation;	however,
it	does	not	always	work.	There	are	cases	where,	even	though	the	decomposition	is	dependency
preserving,	there	is	a	dependency	in	F	that	cannot	be	tested	in	any	one	relation	in	the	decomposition.
Thus,	this	alternative	test	can	be	used	only	as	a	sufficient	condition	that	is	easy	to	check;	if	it	fails	we
cannot	conclude	that	the	decomposition	is	not	dependency	preserving;	instead	we	will	have	to	apply	the
general	test.

We	now	give	a	second	alternative	test	for	dependency	preservation	that	avoids	computing	F	+.	We	explain
the	intuition	behind	the	test	after	presenting	the	test.	The	test	applies	the	following	procedure	to	each	α	→
β	in	F	.

result	=	α

repeat

for	each	R	in	the	decomposition

i

t	=	(result	∩	R)+	∩	R

i

i

result	=	result	∪	t

until	(result	does	not	change)

The	attribute	closure	here	is	under	the	set	of	functional	dependencies	F	.	If	result	contains	all	attributes	in
β,	then	the	functional	dependency	α	→	β	is	preserved.	The	decomposition	is	dependency	preserving	if	and
only	if	the	procedure	shows	that	all	the	dependencies	in	F	are	preserved.

The	two	key	ideas	behind	the	preceding	test	are	as	follows:

•	The	first	idea	is	to	test	each	functional	dependency	α	→	β	in	F	to	see	if	it	is	preserved	in	F	′	(where	F	′	is
as	defined	in	Figure	7.10).	To	do	so,	we	compute	the	closure	of	α	under	F	′;	the	dependency	is	preserved
exactly	when	the	closure	includes	β.	The	decomposition	is	dependency	preserving	if	(and	only	if)	all	the
dependencies	in	F	are	found	to	be	preserved.

330

Chapter	7

Relational	Database	Design

•	The	second	idea	is	to	use	a	modified	form	of	the	attribute-closure	algorithm	to	compute	closure	under	F
′,	without	actually	first	computing	F	′.	We	wish	to	avoid	computing	F	′	since	computing	it	is	quite
expensive.	Note	that	F	′	is	the	union	of	all	F	,	where	F	is	the	restriction	of	F	on	R	.	The	algorithm	computes
the	attribute	i

i

i

closure	of	(result	∩	R)	with	respect	to	F	,	intersects	the	closure	with	R	,	and	adds	the	i

i

resultant	set	of	attributes	to	result;	this	sequence	of	steps	is	equivalent	to	computing	the	closure	of	result
under	F	.	Repeating	this	step	for	each	i	inside	the	while	loop	i

gives	the	closure	of	result	under	F	′.

To	understand	why	this	modified	attribute-closure	approach	works	correctly,	we	note	that	for	any	γ	⊆	R	,	γ
→	γ+	is	a	functional	dependency	in	F	+,	and	γ	→	γ+	∩	R

i

i

is	a	functional	dependency	that	is	in	F	,	the	restriction	of	F	+	to	R	.	Conversely,	if	i

i

γ	→	δ	were	in	F	,	then	δ	would	be	a	subset	of	γ+	∩	R	.

i

i

This	test	takes	polynomial	time,	instead	of	the	exponential	time	required	to	compute	F	+.

7.5

Algorithms	for	Decomposition	Using	Functional	Dependencies

Real-world	database	schemas	are	much	larger	than	the	examples	that	fit	in	the	pages	of	a	book.	For	this
reason,	we	need	algorithms	for	the	generation	of	designs	that	are	in	appropriate	normal	form.	In	this
section,	we	present	algorithms	for	BCNF	and	3NF.

7.5.1

BCNF	Decomposition

The	definition	of	BCNF	can	be	used	directly	to	test	if	a	relation	is	in	BCNF.	However,	computation	of	F	+
can	be	a	tedious	task.	We	first	describe	simplified	tests	for	verifying	if	a	relation	is	in	BCNF.	If	a	relation	is
not	in	BCNF,	it	can	be	decomposed	to	create	relations	that	are	in	BCNF.	Later	in	this	section,	we	describe
an	algorithm	to	create	a	lossless	decomposition	of	a	relation,	such	that	the	decomposition	is	in	BCNF.

7.5.1.1

Testing	for	BCNF

Testing	of	a	relation	schema	R	to	see	if	it	satisfies	BCNF	can	be	simplified	in	some	cases:

•	To	check	if	a	nontrivial	dependency	α	→	β	causes	a	violation	of	BCNF,	compute	α+	(the	attribute	closure
of	α),	and	verify	that	it	includes	all	attributes	of	R;	that	is,	it	is	a	superkey	for	R.

•	To	check	if	a	relation	schema	R	is	in	BCNF,	it	suffices	to	check	only	the	dependencies	in	the	given	set	F
for	violation	of	BCNF,	rather	than	check	all	dependencies	in	F	+.

We	can	show	that	if	none	of	the	dependencies	in	F	causes	a	violation	of	BCNF,	then	none	of	the
dependencies	in	F	+	will	cause	a	violation	of	BCNF,	either.

7.5

Algorithms	for	Decomposition	Using	Functional	Dependencies

331

result	:=	{	R};

done	:=	false;

while	(not	done)	do

if	(there	is	a	schema	R	in	result	that	is	not	in

i

BCNF)

then	begin

let	α	→	β	be	a	nontrivial	functional	dependency	that	holds

on	R	such	that	α+	does	not	contain	R	and	α	∩	β	=	∅	;	i

i

result	:=	(result	−	R)	∪	(R	−	β)	∪	(α,	β);	i

i

end

else	done	:=	true;

Figure	7.11	BCNF	decomposition	algorithm.

Unfortunately,	the	latter	procedure	does	not	work	when	a	relation	schema	is	decomposed.	That	is,	it	does
not	suffice	to	use	F	when	we	test	a	relation	schema	R	,	in	a	i

decomposition	of	R,	for	violation	of	BCNF.	For	example,	consider	relation	schema	(A,	B,	C,	D,	E),	with
functional	dependencies	F	containing	A	→	B	and	BC	→	D.	Suppose	this	were	decomposed	into	(A,	B)	and	(
A,	C,	D,	E).	Now,	neither	of	the	dependencies	in	F	contains	only	attributes	from	(A,	C,	D,	E),	so	we	might
be	misled	into	thinking	that	it	is	in	BCNF.	In	fact,	there	is	a	dependency	AC	→	D	in	F	+	(which	can	be
inferred	using	the	pseudotransitivity	rule	from	the	two	dependencies	in	F)	that	shows	that	(A,	C,	D,	E)	is
not	in	BCNF.	Thus,	we	may	need	a	dependency	that	is	in	F	+,	but	is	not	in	F	,	to	show	that	a	decomposed
relation	is	not	in	BCNF.

An	alternative	BCNF	test	is	sometimes	easier	than	computing	every	dependency	in	F	+.	To	check	if	a
relation	schema	R	in	a	decomposition	of	R	is	in	BCNF,	we	apply	i

this	test:

•	For	every	subset	α	of	attributes	in	R	,	check	that	α+	(the	attribute	closure	i

of	α	under	F)	either	includes	no	attribute	of	R	−	α,	or	includes	all	attributes	of	R	.

i

i

If	the	condition	is	violated	by	some	set	of	attributes	α	in	R	,	consider	the	following	i

functional	dependency,	which	can	be	shown	to	be	present	in	F	+:	α	→	(α+	−	α)	∩	R	.	i

This	dependency	shows	that	R	violates	BCNF.

i

7.5.1.2

BCNF	Decomposition	Algorithm

We	are	now	able	to	state	a	general	method	to	decompose	a	relation	schema	so	as	to	satisfy	BCNF.	Figure
7.11	shows	an	algorithm	for	this	task.	If	R	is	not	in	BCNF,	we	can	decompose	R	into	a	collection	of	BCNF
schemas	R	,	R	,	…	,	R	by	the	algorithm.

1

2

n

332

Chapter	7

Relational	Database	Design

The	algorithm	uses	dependencies	that	demonstrate	violation	of	BCNF	to	perform	the	decomposition.

The	decomposition	that	the	algorithm	generates	is	not	only	in	BCNF,	but	is	also	a	lossless	decomposition.
To	see	why	our	algorithm	generates	only	lossless	decompositions,	we	note	that,	when	we	replace	a
schema	R	with	(R	−	β)	and	(α,	β),	the	i

i

dependency	α	→	β	holds,	and	(R	−	β)	∩	(α,	β)	=	α.

i

If	we	did	not	require	α	∩	β	=	∅,	then	those	attributes	in	α	∩	β	would	not	appear	in	the	schema	(R	−	β),
and	the	dependency	α	→	β	would	no	longer	hold.

i

It	is	easy	to	see	that	our	decomposition	of	in	dep	in	Section	7.3.1	would	result	from	applying	the
algorithm.	The	functional	dependency	dept	name	→	building,	budget	satisfies	the	α	∩	β	=	∅	condition	and
would	therefore	be	chosen	to	decompose	the	schema.

The	BCNF	decomposition	algorithm	takes	time	exponential	to	the	size	of	the	initial	schema,	since	the
algorithm	for	checking	whether	a	relation	in	the	decomposition	satisfies	BCNF	can	take	exponential	time.
There	is	an	algorithm	that	can	compute	a	BCNF

decomposition	in	polynomial	time;	however,	the	algorithm	may	“overnormalize,”	that	is,	decompose	a
relation	unnecessarily.

As	a	longer	example	of	the	use	of	the	BCNF	decomposition	algorithm,	suppose	we	have	a	database	design
using	the	class	relation,	whose	schema	is	as	shown	below:	class	(course	id,	title,	dept	name,	credits,	sec
id,	semester,	year,	building,	room	number,	capacity,	time	slot	id)

The	set	of	functional	dependencies	that	we	need	to	hold	on	this	schema	are:	course	id	→	title,	dept	name,
credits

building,	room	number	→	capacity

course	id,	sec	id,	semester,	year→	building,	room	number,	time	slot	id	A	candidate	key	for	this	schema	is	{
course	id,	sec	id,	semester,	year}.

We	can	apply	the	algorithm	of	Figure	7.11	to	the	class	example	as	follows:

•	The	functional	dependency:

course	id	→	title,	dept	name,	credits

holds,	but	course	id	is	not	a	superkey.	Thus,	class	is	not	in	BCNF.	We	replace	class	with	two	relations	with
the	following	schemas:

course	(course	id,	title,	dept	name,	credits)	class-1	(course	id,	sec	id,	semester,	year,	building,	room
number	capacity,	time	slot	id)

7.5

Algorithms	for	Decomposition	Using	Functional	Dependencies

333

The	only	nontrivial	functional	dependencies	that	hold	on	course	include	course	id	on	the	left	side	of	the
arrow.	Since	course	id	is	a	superkey	for	course,	course	is	in	BCNF.

•	A	candidate	key	for	class-1	is	{	course	id,	sec	id,	semester,	year}.	The	functional	dependency:

building,	room	number	→	capacity

holds	on	class-1,	but	{	building,	room	number}	is	not	a	superkey	for	class-1.	We	replace	class-1	two
relations	with	the	following	schemas:

classroom	(building,	room	number,	capacity)	section	(course	id,	sec	id,	semester,	year,	building,	room
number,	time	slot	id)

These	two	schemas	are	in	BCNF.

Thus,	the	decomposition	of	class	results	in	the	three	relation	schemas	course,	classroom,	and	section,
each	of	which	is	in	BCNF.	These	correspond	to	the	schemas	that	we	have	used	in	this	and	previous
chapters.	You	can	verify	that	the	decomposition	is	lossless	and	dependency	preserving.

7.5.2

3NF	Decomposition

Figure	7.12	shows	an	algorithm	for	finding	a	dependency-preserving,	lossless	decomposition	into	3NF.
The	set	of	dependencies	F	used	in	the	algorithm	is	a	canonical	cover	c

for	F.	Note	that	the	algorithm	considers	the	set	of	schemas	R	,	j	=	1,	2,	…	,	i;	initially	j

i	=	0,	and	in	this	case	the	set	is	empty.

Let	us	apply	this	algorithm	to	our	example	of	dept	advisor	from	Section	7.3.2,	where	we	showed	that:

dept	advisor	(s	ID,	i	ID,	dept	name)

is	in	3NF	even	though	it	is	not	in	BCNF.	The	algorithm	uses	the	following	functional	dependencies	in	F	:

f	:	i	ID	→	dept	name

1

f	:	s	ID,	dept	name	→	i	ID

2

There	are	no	extraneous	attributes	in	any	of	the	functional	dependencies	in	F	,	so	F	contains	f	and	f	.	The

algorithm	then	generates	as	R	the	schema,	(i	ID	dept	name),	c

1

2

1

and	as	R	the	schema	(s

contains

2

ID,	dept	name,	i	ID).	The	algorithm	then	finds	that	R	2

a	candidate	key,	so	no	further	relation	schema	is	created.

334

Chapter	7

Relational	Database	Design

let	F	be	a	canonical	cover	for	F;

c

i	:=	0;

for	each	functional	dependency	α	→	β	in	Fc

i	:=	i	+	1;

R	:=	α	β;

i

if	none	of	the	schemas	R	,	j	=	1,	2,	…	,	i	contains	a	candidate	key	for	R

j

then

i	:=	i	+	1;

R	:=	any	candidate	key	for	R;

i

/*	Optionally,	remove	redundant	relations	*/

repeat

if	any	schema	R	is	contained	in	another	schema	R

j

k

then

/*	Delete	R	*/

j

R	:=	R	;

j

i

i	:=	i	-	1;

until	no	more	R	s	can	be	deleted

j

return	(R	,	R	,	…	,	R)

1

2

i

Figure	7.12	Dependency-preserving,	lossless	decomposition	into	3NF.

The	resultant	set	of	schemas	can	contain	redundant	schemas,	with	one	schema	Rk	containing	all	the
attributes	of	another	schema	R	.	For	example,	R	above	contains	all	j

2

the	attributes	from	R	.	The	algorithm	deletes	all	such	schemas	that	are	contained	in	1

another	schema.	Any	dependencies	that	could	be	tested	on	an	R	that	is	deleted	can	j

also	be	tested	on	the	corresponding	relation	R	,	and	the	decomposition	is	lossless	even	k

if	R	is	deleted.

j

Now	let	us	consider	again	the	schema	of	the	class	relation	of	Section	7.5.1.2	and	apply	the	3NF
decomposition	algorithm.	The	set	of	functional	dependencies	we	listed	there	happen	to	be	a	canonical
cover.	As	a	result,	the	algorithm	gives	us	the	same	three	schemas	course,	classroom,	and	section.

The	preceding	example	illustrates	an	interesting	property	of	the	3NF	algorithm.

Sometimes,	the	result	is	not	only	in	3NF,	but	also	in	BCNF.	This	suggests	an	alternative	method	of
generating	a	BCNF	design.	First	use	the	3NF	algorithm.	Then,	for	any	schema	in	the	3NF	design	that	is
not	in	BCNF,	decompose	using	the	BCNF	algorithm.

If	the	result	is	not	dependency-preserving,	revert	to	the	3NF	design.

7.5.3

Correctness	of	the	3NF	Algorithm

The	3NF	algorithm	ensures	the	preservation	of	dependencies	by	explicitly	building	a	schema	for	each
dependency	in	a	canonical	cover.	It	ensures	that	the	decomposition	is	a

7.5

Algorithms	for	Decomposition	Using	Functional	Dependencies

335

lossless	decomposition	by	guaranteeing	that	at	least	one	schema	contains	a	candidate	key	for	the	schema
being	decomposed.	Practice	Exercise	7.16	provides	some	insight	into	the	proof	that	this	suffices	to
guarantee	a	lossless	decomposition.

This	algorithm	is	also	called	the	3NF	synthesis	algorithm,	since	it	takes	a	set	of	dependencies	and	adds
one	schema	at	a	time,	instead	of	decomposing	the	initial	schema	repeatedly.	The	result	is	not	uniquely
defined,	since	a	set	of	functional	dependencies	can	have	more	than	one	canonical	cover.	The	algorithm
may	decompose	a	relation	even	if	it	is	already	in	3NF;	however,	the	decomposition	is	still	guaranteed	to	be
in	3NF.

To	see	that	the	algorithm	produces	a	3NF	design,	consider	a	schema	R	in	the	i

decomposition.	Recall	that	when	we	test	for	3NF	it	suffices	to	consider	functional	dependencies	whose
right-hand	side	consists	of	a	single	attribute.	Therefore,	to	see	that	R	is	in	3NF	you	must	convince	yourself
that	any	functional	dependency	γ	→	B	that	i

holds	on	R	satisfies	the	definition	of	3NF.	Assume	that	the	dependency	that	generated	i

R	in	the	synthesis	algorithm	is	α	→	β.	B	must	be	in	α	or	β,	since	B	is	in	R	and	α	→	β

i

i

generated	R	.	Let	us	consider	the	three	possible	cases:

i

•	B	is	in	both	α	and	β.	In	this	case,	the	dependency	α	→	β	would	not	have	been	in	F	since	B	would	be
extraneous	in	β.	Thus,	this	case	cannot	hold.

c

•	B	is	in	β	but	not	α.	Consider	two	cases:

°	γ	is	a	superkey.	The	second	condition	of	3NF	is	satisfied.

°	γ	is	not	a	superkey.	Then	α	must	contain	some	attribute	not	in	γ.	Now,	since	γ	→

B	is	in	F	+,	it	must	be	derivable	from	F	by	using	the	attribute	closure	algorithm	c

on	γ.	The	derivation	could	not	have	used	α	→	β,	because	if	it	had	been	used,	α	must	be	contained	in	the
attribute	closure	of	γ,	which	is	not	possible,	since	we	assumed	γ	is	not	a	superkey.	Now,	using	α	→	(β	−	{
B})	and	γ	→	B,	we	can	derive	α	→	B	(since	γ	⊆	αβ,	and	γ	cannot	contain	B	because	γ	→	B

is	nontrivial).	This	would	imply	that	B	is	extraneous	in	the	right-hand	side	of	α	→	β,	which	is	not	possible
since	α	→	β	is	in	the	canonical	cover	F	.	Thus,	if	c

B	is	in	β,	then	γ	must	be	a	superkey,	and	the	second	condition	of	3NF	must	be	satisfied.

•	B	is	in	α	but	not	β.

Since	α	is	a	candidate	key,	the	third	alternative	in	the	definition	of	3NF	is	satisfied.

Interestingly,	the	algorithm	we	described	for	decomposition	into	3NF	can	be	implemented	in	polynomial
time,	even	though	testing	a	given	schema	to	see	if	it	satisfies	3NF	is	NP-hard	(which	means	that	it	is	very
unlikely	that	a	polynomial-time	algorithm	will	ever	be	invented	for	this	task).

336

Chapter	7

Relational	Database	Design

7.6

Decomposition	Using	Multivalued	Dependencies

Some	relation	schemas,	even	though	they	are	in	BCNF,	do	not	seem	to	be	sufficiently	normalized,	in	the
sense	that	they	still	suffer	from	the	problem	of	repetition	of	information.	Consider	a	variation	of	the
university	organization	where	an	instructor	may	be	associated	with	multiple	departments,	and	we	have	a
relation:

inst	(ID,	dept	name,	name,	street,	city)	The	astute	reader	will	recognize	this	schema	as	a	non-BCNF
schema	because	of	the	functional	dependency

ID	→	name,	street,	city

and	because	ID	is	not	a	key	for	inst.

Further	assume	that	an	instructor	may	have	several	addresses	(say,	a	winter	home	and	a	summer	home).
Then,	we	no	longer	wish	to	enforce	the	functional	dependency

“ID→	street,	city”,	though,	we	still	want	to	enforce	“ID	→	name”	(i.e.,	the	university	is	not	dealing	with
instructors	who	operate	under	multiple	aliases!).	Following	the	BCNF

decomposition	algorithm,	we	obtain	two	schemas:

r	(ID,	name)

1

r	(

2

ID,	dept	name,	street,	city)

Both	of	these	are	in	BCNF	(recall	that	an	instructor	can	be	associated	with	multiple	departments	and	a

department	may	have	several	instructors,	and	therefore,	neither	“ID

→	dept	name”	nor	“dept	name	→	ID”	hold).

Despite	r	being	in	BCNF,	there	is	redundancy.	We	repeat	the	address	information	2

of	each	residence	of	an	instructor	once	for	each	department	with	which	the	instructor	is	associated.	We
could	solve	this	problem	by	decomposing	r	further	into:	2

r

(dept	name,	ID)

21

r

(ID,	street,	city)

22

but	there	is	no	constraint	that	leads	us	to	do	this.

To	deal	with	this	problem,	we	must	define	a	new	form	of	constraint,	called	a	multivalued	dependency.	As
we	did	for	functional	dependencies,	we	shall	use	multivalued	dependencies	to	define	a	normal	form	for
relation	schemas.	This	normal	form,	called	fourth	normal	form	(4NF),	is	more	restrictive	than	BCNF.	We
shall	see	that	every	4NF

schema	is	also	in	BCNF	but	there	are	BCNF	schemas	that	are	not	in	4NF.

7.6

Decomposition	Using	Multivalued	Dependencies

337

α

β

R	―	α	―	β

t	1

a	1	.	.	.	ai

ai	+	1	.	.	.	aj

aj	+	1	.	.	.	an

t	2

a	1	.	.	.	ai

bi	+	1	.	.	.	bj

bj	+	1	.	.	.	bn

t	3

a	1	.	.	.	ai

ai	+	1	.	.	.	aj

bj	+	1	.	.	.	bn

t	4

a	1	.	.	.	ai

bi	+	1	.	.	.	bj

aj	+	1	.	.	.	an

Figure	7.13	Tabular	representation	of	α	→→	β.

7.6.1

Multivalued	Dependencies

Functional	dependencies	rule	out	certain	tuples	from	being	in	a	relation.	If	A	→	B,	then	we	cannot	have
two	tuples	with	the	same	A	value	but	different	B	values.	Multivalued	dependencies,	on	the	other	hand,	do
not	rule	out	the	existence	of	certain	tuples.

Instead,	they	require	that	other	tuples	of	a	certain	form	be	present	in	the	relation.	For	this	reason,
functional	dependencies	sometimes	are	referred	to	as	equality-generating	dependencies,	and	multivalued
dependencies	are	referred	to	as	tuple-generating	dependencies.

Let	r(R)	be	a	relation	schema	and	let	α	⊆	R	and	β	⊆	R.	The	multivalued	dependency	α	→→	β

holds	on	R	if,	in	any	legal	instance	of	relation	r(R),	for	all	pairs	of	tuples	t	and	t	in	r	1

2

such	that	t	[α]	=	t	[α],	there	exist	tuples	t	and	t	in	r	such	that	1

2

3

4

t	[α]	=	t	[α]	=	t	[α]	=	t	[α]

1

2

3

4

t	[β]	=	t	[β]

3

1

t	[R	−	β]	=	t	[R	−	β]

3

2

t	[β]	=	t	[β]

4

2

t	[R	−	β]	=	t	[R	−	β]

4

1

This	definition	is	less	complicated	than	it	appears	to	be.	Figure	7.13	gives	a	tabular	picture	of	t	,	t	,	t	,	and
t	.	Intuitively,	the	multivalued	dependency	α	→→	β	says	that	the	1

2

3

4

relationship	between	α	and	β	is	independent	of	the	relationship	between	α	and	R	−	β.

If	the	multivalued	dependency	α	→→	β	is	satisfied	by	all	relations	on	schema	R,	then	α	→→	β	is	a	trivial
multivalued	dependency	on	schema	R.	Thus,	α	→→	β	is	trivial	if	β	⊆	α	or	β	∪	α	=	R.	This	can	be	seen	by
looking	at	Figure	7.13	and	considering	the	two	special	cases	β	⊆	α	and	β	∪	α	=	R.	In	each	case,	the	table
reduces	to	just	two	columns	and	we	see	that	t	and	t	are	able	to	serve	in	the	roles	of	t	and	t	.

1

2

3

4

To	illustrate	the	difference	between	functional	and	multivalued	dependencies,	we	consider	the	schema	r
again,	and	an	example	relation	on	that	schema	is	shown	in	Fig-2

ure	7.14.	We	must	repeat	the	department	name	once	for	each	address	that	an	instructor	has,	and	we	must
repeat	the	address	for	each	department	with	which	an	instructor	is	associated.	This	repetition	is
unnecessary,	since	the	relationship	between	an	instructor

338

Chapter	7

Relational	Database	Design

ID

dept	name

street

city

22222

Physics

North

Rye

22222

Physics

Main

Manchester

12121

Finance

Lake

Horseneck

Figure	7.14	An	example	of	redundancy	in	a	relation	on	a	BCNF	schema.

and	his	address	is	independent	of	the	relationship	between	that	instructor	and	a	department.	If	an
instructor	with	ID	22222	is	associated	with	the	Physics	department,	we	want	that	department	to	be
associated	with	all	of	that	instructor’s	addresses.	Thus,	the	relation	of	Figure	7.15	is	illegal.	To	make	this
relation	legal,	we	need	to	add	the	tuples	(Physics,	22222,	Main,	Manchester)	and	(Math,	22222,	North,
Rye)	to	the	relation	of	Figure	7.15.

Comparing	the	preceding	example	with	our	definition	of	multivalued	dependency,	we	see	that	we	want	the
multivalued	dependency:

ID	→→	street,	city

to	hold.	(The	multivalued	dependency	ID	→→	dept	name	will	do	as	well.	We	shall	soon	see	that	they	are
equivalent.)

As	with	functional	dependencies,	we	shall	use	multivalued	dependencies	in	two	ways:

1.	To	test	relations	to	determine	whether	they	are	legal	under	a	given	set	of	functional	and	multivalued
dependencies.

2.	To	specify	constraints	on	the	set	of	legal	relations;	we	shall	thus	concern	ourselves	with	only	those
relations	that	satisfy	a	given	set	of	functional	and	multivalued	dependencies.

Note	that,	if	a	relation	r	fails	to	satisfy	a	given	multivalued	dependency,	we	can	construct	a	relation	r′	that
does	satisfy	the	multivalued	dependency	by	adding	tuples	to	r.

Let	D	denote	a	set	of	functional	and	multivalued	dependencies.	The	closure	D+

of	D	is	the	set	of	all	functional	and	multivalued	dependencies	logically	implied	by	D.

As	we	did	for	functional	dependencies,	we	can	compute	D+	from	D,	using	the	formal	definitions	of
functional	dependencies	and	multivalued	dependencies.	We	can	manage	ID

dept	name

street

city

22222

Physics

North

Rye

22222

Math

Main

Manchester

Figure	7.15	An	illegal	r	2	relation.

7.6

Decomposition	Using	Multivalued	Dependencies

339

with	such	reasoning	for	very	simple	multivalued	dependencies.	Luckily,	multivalued	dependencies	that
occur	in	practice	appear	to	be	quite	simple.	For	complex	dependencies,	it	is	better	to	reason	about	sets	of
dependencies	by	using	a	system	of	inference	rules.

From	the	definition	of	multivalued	dependency,	we	can	derive	the	following	rules	for	α,	β	⊆	R:

•	If	α	→	β,	then	α	→→	β.	In	other	words,	every	functional	dependency	is	also	a	multivalued	dependency.

•	If	α	→→	β,	then	α	→→	R	−	α	−	β

Section	28.1.1	outlines	a	system	of	inference	rules	for	multivalued	dependencies.

7.6.2

Fourth	Normal	Form

Consider	again	our	example	of	the	BCNF	schema:

r	(ID,	dept	name,	street,	city)	2

in	which	the	multivalued	dependency	ID	→→	street,	city	holds.	We	saw	in	the	opening	paragraphs	of
Section	7.6	that,	although	this	schema	is	in	BCNF,	the	design	is	not	ideal,	since	we	must	repeat	an
instructor’s	address	information	for	each	department.	We	shall	see	that	we	can	use	the	given	multivalued
dependency	to	improve	the	database	design	by	decomposing	this	schema	into	a	fourth	normal	form
decomposition.

A	relation	schema	R	is	in	fourth	normal	form	(4NF)	with	respect	to	a	set	D	of	functional	and	multivalued
dependencies	if,	for	all	multivalued	dependencies	in	D+	of	the	form	α	→→	β,	where	α	⊆	R	and	β	⊆	R,	at
least	one	of	the	following	holds:

•	α	→→	β	is	a	trivial	multivalued	dependency.

•	α	is	a	superkey	for	R.

A	database	design	is	in	4NF	if	each	member	of	the	set	of	relation	schemas	that	constitutes	the	design	is	in
4NF.

Note	that	the	definition	of	4NF	differs	from	the	definition	of	BCNF	in	only	the	use	of	multivalued
dependencies.	Every	4NF	schema	is	in	BCNF.	To	see	this	fact,	we	note	that,	if	a	schema	R	is	not	in	BCNF,
then	there	is	a	nontrivial	functional	dependency	α	→	β	holding	on	R,	where	α	is	not	a	superkey.	Since	α	→
β	implies	α	→→	β,	R	cannot	be	in	4NF.

Let	R	be	a	relation	schema,	and	let	R	,	R	,	…	,	R	be	a	decomposition	of	R.	To	1

2

n

check	if	each	relation	schema	R	in	the	decomposition	is	in	4NF,	we	need	to	find	what	i

multivalued	dependencies	hold	on	each	R	.	Recall	that,	for	a	set	F	of	functional	depen-i

dencies,	the	restriction	F	of	F	to	R	is	all	functional	dependencies	in	F	+	that	include	i

i

only	attributes	of	R	.	Now	consider	a	set	D	of	both	functional	and	multivalued	depen-i

dencies.	The	restriction	of	D	to	R	is	the	set	D	consisting	of:	i

i

340

Chapter	7

Relational	Database	Design

1.	All	functional	dependencies	in	D+	that	include	only	attributes	of	R	.

i

2.	All	multivalued	dependencies	of	the	form:

α	→→	β	∩	Ri

where	α	⊆	R	and	α	→→	β	is	in	D+.

i

7.6.3

4NF	Decomposition

The	analogy	between	4NF	and	BCNF	applies	to	the	algorithm	for	decomposing	a	schema	into	4NF.	Figure
7.16	shows	the	4NF	decomposition	algorithm.	It	is	identical	to	the	BCNF	decomposition	algorithm	of
Figure	7.11,	except	that	it	uses	multivalued	dependencies	and	uses	the	restriction	of	D+	to	R	.

i

If	we	apply	the	algorithm	of	Figure	7.16	to	(ID,	dept	name,	street,	city),	we	find	that	ID→→	dept	name	is	a
nontrivial	multivalued	dependency,	and	ID	is	not	a	superkey	for	the	schema.	Following	the	algorithm,	we
replace	it	with	two	schemas:

(ID,	dept	name)

(ID,	street,	city)

This	pair	of	schemas,	which	is	in	4NF,	eliminates	the	redundancy	we	encountered	earlier.

As	was	the	case	when	we	were	dealing	solely	with	functional	dependencies,	we	are	interested	in
decompositions	that	are	lossless	and	that	preserve	dependencies.	The	following	fact	about	multivalued
dependencies	and	losslessness	shows	that	the	algorithm	of	Figure	7.16	generates	only	lossless
decompositions:

result	:=	{	R};

done	:=	false;

compute	D+;	Given	schema	R	,	let	D	denote	the	restriction	of	D+	to	R

i

i

i

while	(not	done)	do

if	(there	is	a	schema	R	in	result	that	is	not	in

)

i

4NF	w.r.t.	Di

then	begin

let	α	→→	β	be	a	nontrivial	multivalued	dependency	that	holds

on	R	such	that	α	→	R	is	not	in	D	,	and	α	∩	β	=	∅;	i

i

i

result	:=	(result	−	R)	∪	(R	−	β)	∪	(α,	β);	i

i

end

else	done	:=	true;

Figure	7.16	4NF	decomposition	algorithm.

7.7

More	Normal	Forms

341

•	Let	r(R)	be	a	relation	schema,	and	let	D	be	a	set	of	functional	and	multivalued	dependencies	on	R.	Let	r
(R)	and	r	(R)	form	a	decomposition	of	R.	This	de-1

1

2

2

composition	of	R	is	lossless	if	and	only	if	at	least	one	of	the	following	multivalued	dependencies	is	in	D+:

R	∩	R	→→	R

1

2

1

R	∩	R	→→	R

1

2

2

Recall	that	we	stated	in	Section	7.2.3	that,	if	R	∩	R	→	R	or	R	∩	R	→	R	,	then	1

2

1

1

2

2

r	(R)	and	r	(R)	forms	a	lossless	decomposition	of	r(R).	The	preceding	fact	about	1

1

2

2

multivalued	dependencies	is	a	more	general	statement	about	losslessness.	It	says	that,	for	every	lossless
decomposition	of	r(R)	into	two	schemas	r	(R)	and	r	(R),	one	of	1

1

2

2

the	two	dependencies	R	∩	R	→→	R	or	R	∩	R	→→	R	must	hold.	To	see	that	this	1

2

1

1

2

2

is	true,	we	need	to	show	first	that	if	at	least	one	of	these	dependencies	holds,	then	Π	(r)	⋈	Π	(r)	=	r	and
next	we	need	to	show	that	if	Π	(r)	⋈	Π	(r)	=	r	then	r(R)	R

R

R

R

1

2

1

2

must	satisfy	at	least	one	of	these	dependencies.	See	the	Further	Reading	section	for	references	to	a	full
proof.

The	issue	of	dependency	preservation	when	we	decompose	a	relation	schema	becomes	more	complicated
in	the	presence	of	multivalued	dependencies.	Section	28.1.2

pursues	this	topic.

A	further	complication	arises	from	the	fact	that	it	is	possible	for	a	multivalued	dependency	to	hold	only	on
a	proper	subset	of	the	given	schema,	with	no	way	to	express	that	multivalued	dependency	on	that	given
schema.	Such	a	multivalued	dependency	may	appear	as	the	result	of	a	decomposition.	Fortunately,	such
cases,	called	embedded	multivalued	dependencies,	are	rare.	See	the	Further	Reading	section	for	details.

7.7

More	Normal	Forms

The	fourth	normal	form	is	by	no	means	the	“ultimate”	normal	form.	As	we	saw	earlier,	multivalued
dependencies	help	us	understand	and	eliminate	some	forms	of	repetition	of	information	that	cannot	be
understood	in	terms	of	functional	dependencies.	There	are	types	of	constraints	called	join	dependencies
that	generalize	multivalued	dependencies	and	lead	to	another	normal	form	called	project-join	normal	form
(PJNF).	PJNF	is	called	fifth	normal	form	in	some	books.	There	is	a	class	of	even	more	general	constraints
that	leads	to	a	normal	form	called	domain-key	normal	form	(DKNF).

A	practical	problem	with	the	use	of	these	generalized	constraints	is	that	they	are	not	only	hard	to	reason
with,	but	there	is	also	no	set	of	sound	and	complete	inference	rules	for	reasoning	about	the	constraints.
Hence	PJNF	and	DKNF	are	used	quite	rarely.

Chapter	28	provides	more	details	about	these	normal	forms.

Conspicuous	by	its	absence	from	our	discussion	of	normal	forms	is	second	normal	form	(2NF).	We	have
not	discussed	it	because	it	is	of	historical	interest	only.	We	simply

342

Chapter	7

Relational	Database	Design

define	it	and	let	you	experiment	with	it	in	Practice	Exercise	7.19.	First	normal	form	deals	with	a	different
issue	than	the	normal	forms	we	have	seen	so	far.	It	is	discussed	in	the	next	section.

7.8

Atomic	Domains	and	First	Normal	Form

The	E-R	model	allows	entity	sets	and	relationship	sets	to	have	attributes	that	have	some	degree	of
substructure.	Specifically,	it	allows	multivalued	attributes	such	as	phone	number	in	Figure	6.8	and
composite	attributes	(such	as	an	attribute	address	with	component	attributes	street,	city,	and	state).
When	we	create	tables	from	E-R	designs	that	contain	these	types	of	attributes,	we	eliminate	this
substructure.	For	composite	attributes,	we	let	each	component	be	an	attribute	in	its	own	right.	For

multivalued	attributes,	we	create	one	tuple	for	each	item	in	a	multivalued	set.

In	the	relational	model,	we	formalize	this	idea	that	attributes	do	not	have	any	substructure.	A	domain	is
atomic	if	elements	of	the	domain	are	considered	to	be	indivisible	units.	We	say	that	a	relation	schema	R	is
in	first	normal	form	(1NF)	if	the	domains	of	all	attributes	of	R	are	atomic.

A	set	of	names	is	an	example	of	a	non-atomic	value.	For	example,	if	the	schema	of	a	relation	employee
included	an	attribute	children	whose	domain	elements	are	sets	of	names,	the	schema	would	not	be	in	first
normal	form.

Composite	attributes,	such	as	an	attribute	address	with	component	attributes	street	and	city	also	have
non-atomic	domains.

Integers	are	assumed	to	be	atomic,	so	the	set	of	integers	is	an	atomic	domain;	however,	the	set	of	all	sets
of	integers	is	a	non-atomic	domain.	The	distinction	is	that	we	do	not	normally	consider	integers	to	have
subparts,	but	we	consider	sets	of	integers	to	have	subparts	—	namely,	the	integers	making	up	the	set.	But
the	important	issue	is	not	what	the	domain	itself	is,	but	rather	how	we	use	domain	elements	in	our
database.

The	domain	of	all	integers	would	be	non-atomic	if	we	considered	each	integer	to	be	an	ordered	list	of
digits.

As	a	practical	illustration	of	this	point,	consider	an	organization	that	assigns	employees	identification
numbers	of	the	following	form:	The	first	two	letters	specify	the	department	and	the	remaining	four	digits
are	a	unique	number	within	the	department	for	the	employee.	Examples	of	such	numbers	would	be
“CS001”	and	“EE1127”.	Such	identification	numbers	can	be	divided	into	smaller	units	and	are	therefore
non-atomic.

If	a	relation	schema	had	an	attribute	whose	domain	consists	of	identification	numbers	encoded	as	above,
the	schema	would	not	be	in	first	normal	form.

When	such	identification	numbers	are	used,	the	department	of	an	employee	can	be	found	by	writing	code
that	breaks	up	the	structure	of	an	identification	number.	Doing	so	requires	extra	programming,	and
information	gets	encoded	in	the	application	program	rather	than	in	the	database.	Further	problems	arise
if	such	identification	numbers	are	used	as	primary	keys:	When	an	employee	changes	departments,	the
employee’s	identification	number	must	be	changed	everywhere	it	occurs,	which	can	be	a	difficult	task,	or
the	code	that	interprets	the	number	would	give	a	wrong	result.

7.9

Database-Design	Process

343

From	this	discussion,	it	may	appear	that	our	use	of	course	identifiers	such	as	“CS-101”,	where	“CS”
indicates	the	Computer	Science	department,	means	that	the	domain	of	course	identifiers	is	not	atomic.
Such	a	domain	is	not	atomic	as	far	as	humans	using	the	system	are	concerned.	However,	the	database
application	still	treats	the	domain	as	atomic,	as	long	as	it	does	not	attempt	to	split	the	identifier	and
interpret	parts	of	the	identifier	as	a	department	abbreviation.	The	course	schema	stores	the	department
name	as	a	separate	attribute,	and	the	database	application	can	use	this	attribute	value	to	find	the
department	of	a	course,	instead	of	interpreting	particular	characters	of	the	course	identifier.	Thus,	our
university	schema	can	be	considered	to	be	in	first	normal	form.

The	use	of	set-valued	attributes	can	lead	to	designs	with	redundant	storage	of	data,	which	in	turn	can
result	in	inconsistencies.	For	instance,	instead	of	having	the	relationship	between	instructors	and	sections
being	represented	as	a	separate	relation	teaches,	a	database	designer	may	be	tempted	to	store	a	set	of
course	section	identifiers	with	each	instructor	and	a	set	of	instructor	identifiers	with	each	section.	(The
primary	keys	of	section	and	instructor	are	used	as	identifiers.)	Whenever	data	pertaining	to	which
instructor	teaches	which	section	is	changed,	the	update	has	to	be	performed	at	two	places:	in	the	set	of
instructors	for	the	section,	and	in	the	set	of	sections	for	the	instructor.	Failure	to	perform	both	updates
can	leave	the	database	in	an	inconsistent	state.

Keeping	only	one	of	these	sets	would	avoid	repeated	information;	however	keeping	only	one	of	these
would	complicate	some	queries,	and	it	is	unclear	which	of	the	two	it	would	be	better	to	retain.

Some	types	of	non-atomic	values	can	be	useful,	although	they	should	be	used	with	care.	For	example,
composite-valued	attributes	are	often	useful,	and	set-valued	attributes	are	also	useful	in	many	cases,
which	is	why	both	are	supported	in	the	E-R	model.	In	many	domains	where	entities	have	a	complex
structure,	forcing	a	first	normal	form	representation	represents	an	unnecessary	burden	on	the	application
programmer,	who	has	to	write	code	to	convert	data	into	atomic	form.	There	is	also	the	runtime	overhead
of	converting	data	back	and	forth	from	the	atomic	form.	Support	for	non-atomic	values	can	thus	be	very

useful	in	such	domains.	In	fact,	modern	database	systems	do	support	many	types	of	non-atomic	values,	as
we	shall	see	in	Chapter	29

restrict	ourselves	to	relations	in	first	normal	form,	and	thus	all	domains	are	atomic.

7.9

Database-Design	Process

So	far	we	have	looked	at	detailed	issues	about	normal	forms	and	normalization.	In	this	section,	we	study
how	normalization	fits	into	the	overall	database-design	process.

Earlier	in	the	chapter	starting	in	Section	7.1.1,	we	assumed	that	a	relation	schema	r(R)	is	given,	and	we
proceeded	to	normalize	it.	There	are	several	ways	in	which	we	could	have	come	up	with	the	schema	r(R):

1.	r(R)	could	have	been	generated	in	converting	an	E-R	diagram	to	a	set	of	relation	schemas.

344

Chapter	7

Relational	Database	Design

2.	r(R)	could	have	been	a	single	relation	schema	containing	all	attributes	that	are	of	interest.	The
normalization	process	then	breaks	up	r(R)	into	smaller	schemas.

3.	r(R)	could	have	been	the	result	of	an	ad	hoc	design	of	relations	that	we	then	test	to	verify	that	it
satisfies	a	desired	normal	form.

In	the	rest	of	this	section,	we	examine	the	implications	of	these	approaches.	We	also	examine	some
practical	issues	in	database	design,	including	denormalization	for	performance	and	examples	of	bad
design	that	are	not	detected	by	normalization.

7.9.1

E-R	Model	and	Normalization

When	we	define	an	E-R	diagram	carefully,	identifying	all	entity	sets	correctly,	the	relation	schemas
generated	from	the	E-R	diagram	should	not	need	much	further	normalization.	However,	there	can	be
functional	dependencies	among	attributes	of	an	entity	set.	For	instance,	suppose	an	instructor	entity	set
had	attributes	dept	name	and	dept	address,	and	there	is	a	functional	dependency	dept	name	→	dept
address.	We	would	then	need	to	normalize	the	relation	generated	from	instructor.

Most	examples	of	such	dependencies	arise	out	of	poor	E-R	diagram	design.	In	the	preceding	example,	if
we	had	designed	the	E-R	diagram	correctly,	we	would	have	created	a	department	entity	set	with	attribute
dept	address	and	a	relationship	set	between	instructor	and	department.	Similarly,	a	relationship	set
involving	more	than	two	entity	sets	may	result	in	a	schema	that	may	not	be	in	a	desirable	normal	form.
Since	most	relationship	sets	are	binary,	such	cases	are	relatively	rare.	(In	fact,	some	E-R-diagram	variants
actually	make	it	difficult	or	impossible	to	specify	nonbinary	relationship	sets.)	Functional	dependencies
can	help	us	detect	poor	E-R	design.	If	the	generated	relation	schemas	are	not	in	desired	normal	form,	the
problem	can	be	fixed	in	the	E-R

diagram.	That	is,	normalization	can	be	done	formally	as	part	of	data	modeling.	Alternatively,	normalization
can	be	left	to	the	designer’s	intuition	during	E-R	modeling,	and	it	can	be	done	formally	on	the	relation
schemas	generated	from	the	E-R	model.

A	careful	reader	will	have	noted	that	in	order	for	us	to	illustrate	a	need	for	multivalued	dependencies	and
fourth	normal	form,	we	had	to	begin	with	schemas	that	were	not	derived	from	our	E-R	design.	Indeed,	the
process	of	creating	an	E-R	design	tends	to	generate	4NF	designs.	If	a	multivalued	dependency	holds	and
is	not	implied	by	the	corresponding	functional	dependency,	it	usually	arises	from	one	of	the	following
sources:

•	A	many-to-many	relationship	set.

•	A	multivalued	attribute	of	an	entity	set.

For	a	many-to-many	relationship	set,	each	related	entity	set	has	its	own	schema,	and	there	is	an	additional
schema	for	the	relationship	set.	For	a	multivalued	attribute,	a	separate	schema	is	created	consisting	of
that	attribute	and	the	primary	key	of	the	entity	set	(as	in	the	case	of	the	phone	number	attribute	of	the
entity	set	instructor).

7.9

Database-Design	Process

345

The	universal-relation	approach	to	relational	database	design	starts	with	an	assumption	that	there	is	one
single	relation	schema	containing	all	attributes	of	interest.

This	single	schema	defines	how	users	and	applications	interact	with	the	database.

7.9.2

Naming	of	Attributes	and	Relationships

A	desirable	feature	of	a	database	design	is	the	unique-role	assumption,	which	means	that	each	attribute
name	has	a	unique	meaning	in	the	database.	This	prevents	us	from	using	the	same	attribute	to	mean
different	things	in	different	schemas.	For	example,	we	might	otherwise	consider	using	the	attribute
number	for	phone	number	in	the	instructor	schema	and	for	room	number	in	the	classroom	schema.	The
join	of	a	relation	on	schema	instructor	with	one	on	classroom	is	meaningless.	While	users	and	application
developers	can	work	carefully	to	ensure	use	of	the	right	number	in	each	circumstance,	having	a	different
attribute	name	for	phone	number	and	for	room	number	serves	to	reduce	user	errors.

While	it	is	a	good	idea	to	keep	names	for	incompatible	attributes	distinct,	if	attributes	of	different
relations	have	the	same	meaning,	it	may	be	a	good	idea	to	use	the	same	attribute	name.	For	this	reason
we	used	the	same	attribute	name	“name”	for	both	the	instructor	and	the	student	entity	sets.	If	this	was
not	the	case	(i.e.,	if	we	used	different	naming	conventions	for	the	instructor	and	student	names),	then	if
we	wished	to	generalize	these	entity	sets	by	creating	a	person	entity	set,	we	would	have	to	rename	the
attribute.	Thus,	even	if	we	did	not	currently	have	a	generalization	of	student	and	instructor,	if	we	foresee
such	a	possibility,	it	is	best	to	use	the	same	name	in	both	entity	sets	(and	relations).

Although	technically,	the	order	of	attribute	names	in	a	schema	does	not	matter,	it	is	a	convention	to	list
primary-key	attributes	first.	This	makes	reading	default	output	(as	from	select	*)	easier.

In	large	database	schemas,	relationship	sets	(and	schemas	derived	therefrom)	are	often	named	via	a
concatenation	of	the	names	of	related	entity	sets,	perhaps	with	an	intervening	hyphen	or	underscore.	We
have	used	a	few	such	names,	for	example,	inst	sec	and	student	sec.	We	used	the	names	teaches	and	takes
instead	of	using	the	longer	concatenated	names.	This	was	acceptable	since	it	is	not	hard	for	you	to
remember	the	associated	entity	sets	for	a	few	relationship	sets.	We	cannot	always	create	relationship-set
names	by	simple	concatenation;	for	example,	a	manager	or	works-for	relationship	between	employees
would	not	make	much	sense	if	it	were	called	employee	employee!

Similarly,	if	there	are	multiple	relationship	sets	possible	between	a	pair	of	entity	sets,	the	relationship-set
names	must	include	extra	parts	to	identify	the	relationship	set.

Different	organizations	have	different	conventions	for	naming	entity	sets.	For	example,	we	may	call	an
entity	set	of	students	student	or	students.	We	have	chosen	to	use	the	singular	form	in	our	database
designs.	Using	either	singular	or	plural	is	acceptable,	as	long	as	the	convention	is	used	consistently	across
all	entity	sets.

346

Chapter	7

Relational	Database	Design

As	schemas	grow	larger,	with	increasing	numbers	of	relationship	sets,	using	consistent	naming	of
attributes,	relationships,	and	entities	makes	life	much	easier	for	the	database	designer	and	application
programmers.

7.9.3

Denormalization	for	Performance

Occasionally	database	designers	choose	a	schema	that	has	redundant	information;	that	is,	it	is	not
normalized.	They	use	the	redundancy	to	improve	performance	for	specific	applications.	The	penalty	paid
for	not	using	a	normalized	schema	is	the	extra	work	(in	terms	of	coding	time	and	execution	time)	to	keep
redundant	data	consistent.

For	instance,	suppose	all	course	prerequisites	have	to	be	displayed	along	with	the	course	information,
every	time	a	course	is	accessed.	In	our	normalized	schema,	this	requires	a	join	of	course	with	prereq.

One	alternative	to	computing	the	join	on	the	fly	is	to	store	a	relation	containing	all	the	attributes	of	course
and	prereq.	This	makes	displaying	the	“full”	course	information	faster.	However,	the	information	for	a
course	is	repeated	for	every	course	prerequisite,	and	all	copies	must	be	updated	by	the	application,
whenever	a	course	prerequisite	is	added	or	dropped.	The	process	of	taking	a	normalized	schema	and
making	it	nonnormalized	is	called	denormalization,	and	designers	use	it	to	tune	the	performance	of
systems	to	support	time-critical	operations.

A	better	alternative,	supported	by	many	database	systems	today,	is	to	use	the	normalized	schema	and
additionally	store	the	join	of	course	and	prereq	as	a	materialized	view.	(Recall	that	a	materialized	view	is	a
view	whose	result	is	stored	in	the	database	and	brought	up	to	date	when	the	relations	used	in	the	view
are	updated.)	Like	denormalization,	using	materialized	views	does	have	space	and	time	overhead;
however,	it	has	the	advantage	that	keeping	the	view	up	to	date	is	the	job	of	the	database	system,	not	the
application	programmer.

7.9.4

Other	Design	Issues

There	are	some	aspects	of	database	design	that	are	not	addressed	by	normalization	and	can	thus	lead	to
bad	database	design.	Data	pertaining	to	time	or	to	ranges	of	time	have	several	such	issues.	We	give
examples	here;	obviously,	such	designs	should	be	avoided.

Consider	a	university	database,	where	we	want	to	store	the	total	number	of	instructors	in	each
department	in	different	years.	A	relation	total	inst(dept	name,	year,	size)	could	be	used	to	store	the
desired	information.	The	only	functional	dependency	on	this	relation	is	dept	name,	year→	size,	and	the
relation	is	in	BCNF.

An	alternative	design	is	to	use	multiple	relations,	each	storing	the	size	information	for	a	different	year.	Let
us	say	the	years	of	interest	are	2017,	2018,	and	2019;	we	would	then	have	relations	of	the	form	total	inst
2017,	total	inst	2018,	total	inst	2019,	all	of	which	are	on	the	schema	(dept	name,	size).	The	only
functional	dependency	here	on	each	relation	would	be	dept	name	→	size,	so	these	relations	are	also	in
BCNF.

However,	this	alternative	design	is	clearly	a	bad	idea	—	we	would	have	to	create	a	new	relation	every
year,	and	we	would	also	have	to	write	new	queries	every	year,	to	take

7.10

Modeling	Temporal	Data

347

each	new	relation	into	account.	Queries	would	also	be	more	complicated	since	they	may	have	to	refer	to

many	relations.

Yet	another	way	of	representing	the	same	data	is	to	have	a	single	relation	dept	year(dept	name,	total	inst
2017,	total	inst	2018,	total	inst	2019).	Here	the	only	functional	dependencies	are	from	dept	name	to	the
other	attributes,	and	again	the	relation	is	in	BCNF.	This	design	is	also	a	bad	idea	since	it	has	problems
similar	to	the	previous	design	—	namely,	we	would	have	to	modify	the	relation	schema	and	write	new
queries	every	year.	Queries	would	also	be	more	complicated,	since	they	may	have	to	refer	to	many
attributes.

Representations	such	as	those	in	the	dept	year	relation,	with	one	column	for	each	value	of	an	attribute,
are	called	crosstabs;	they	are	widely	used	in	spreadsheets	and	reports	and	in	data	analysis	tools.	While
such	representations	are	useful	for	display	to	users,	for	the	reasons	just	given,	they	are	not	desirable	in	a
database	design.	SQL

includes	features	to	convert	data	from	a	normal	relational	representation	to	a	crosstab,	for	display,	as	we
discussed	in	Section	11.3.1.

7.10

Modeling	Temporal	Data

Suppose	we	retain	data	in	our	university	organization	showing	not	only	the	address	of	each	instructor,	but
also	all	former	addresses	of	which	the	university	is	aware.	We	may	then	ask	queries,	such	as	“Find	all
instructors	who	lived	in	Princeton	in	1981.”	In	this	case,	we	may	have	multiple	addresses	for	instructors.
Each	address	has	an	associated	start	and	end	date,	indicating	when	the	instructor	was	resident	at	that
address.	A	special	value	for	the	end	date,	for	example,	null,	or	a	value	well	into	the	future,	such	as	9999-
12-31,	can	be	used	to	indicate	that	the	instructor	is	still	resident	at	that	address.

In	general,	temporal	data	are	data	that	have	an	associated	time	interval	during	which	they	are	valid.10

Modeling	temporal	data	is	a	challenging	problem	for	several	reasons.	For	example,	suppose	we	have	an
instructor	entity	set	with	which	we	wish	to	associate	a	time-varying	address.	To	add	temporal	information
to	an	address,	we	would	then	have	to	create	a	multivalued	attribute,	each	of	whose	values	is	a	composite
value	containing	an	address	and	a	time	interval.	In	addition	to	time-varying	attribute	values,	entities	may
themselves	have	an	associated	valid	time.	For	example,	a	student	entity	may	have	a	valid	time	from	the
date	the	student	entered	the	university	to	the	date	the	student	graduated	(or	left	the	university).
Relationships	too	may	have	associated	valid	times.	For	example,	the	prereq	relationship	may	record	when
a	course	became	a	prerequisite	for	another	course.

We	would	thus	have	to	add	valid	time	intervals	to	attribute	values,	entity	sets,	and	relationship	sets.
Adding	such	detail	to	an	E-R	diagram	makes	it	very	difficult	to	create	and	to	comprehend.	There	have
been	several	proposals	to	extend	the	E-R	notation	to	10There	are	other	models	of	temporal	data	that
distinguish	between	valid	time	and	transaction	time,	the	latter	recording	when	a	fact	was	recorded	in	the
database.	We	ignore	such	details	for	simplicity.

348

Chapter	7

Relational	Database	Design

course	id

title

dept	name

credits

start

end

BIO-101

Intro.	to	Biology

Biology

4

1985-01-01

9999-12-31

CS-201

Intro.	to	C

Comp.	Sci.

4

1985-01-01

1999-01-01

CS-201

Intro.	to	Java

Comp.	Sci.

4

1999-01-01

2010-01-01

CS-201

Intro.	to	Python

Comp.	Sci.

4

2010-01-01

9999-12-31

Figure	7.17	A	temporal	version	of	the	course	relation

specify	in	a	simple	manner	that	an	attribute	value	or	relationship	is	time	varying,	but	there	are	no
accepted	standards.

In	practice,	database	designers	fall	back	to	simpler	approaches	to	designing	temporal	databases.	One
commonly	used	approach	is	to	design	the	entire	database	(including	E-R	design	and	relational	design)
ignoring	temporal	changes.	After	this,	the	designer	studies	the	various	relations	and	decides	which
relations	require	temporal	variation	to	be	tracked.

The	next	step	is	to	add	valid	time	information	to	each	such	relation	by	adding	start	and	end	time	as
attributes.	For	example,	consider	the	course	relation.	The	title	of	the	course	may	change	over	time,	which
can	be	handled	by	adding	a	valid	time	range;	the	resultant	schema	would	be:

course	(course	id,	title,	dept	name,	credits,	start,	end)	An	instance	of	the	relation	is	shown	in	Figure	7.17.
Each	tuple	has	a	valid	interval	associated	with	it.	Note	that	as	per	the	SQL:2011	standard,	the	interval	is
closed	on	the	left-hand	side,	that	is,	the	tuple	is	valid	at	time	start,	but	is	open	on	the	right-hand	side,	that
is,	the	tuple	is	valid	until	just	before	time	end,	but	is	invalid	at	time	end.	This	allows	a	tuple	to	have	the
same	start	time	as	the	end	time	of	another	tuple,	without	overlapping.	In	general,	left	and	right	endpoints
that	are	closed	are	denoted	by	[and

],	while	left	and	right	endpoints	that	are	open	are	denoted	by	(and).	Intervals	in	SQL:2011	are	of	the
form	[start,	end),	that	is	they	are	closed	on	the	left	and	open	on	the	right,	Note	that	9999-12-31	is	the
highest	possible	date	as	per	the	SQL	standard.

It	can	be	seen	in	Figure	7.17	that	the	title	of	the	course	CS-201	has	changed	several	times.	Suppose	that
on	2020-01-01	the	title	of	the	course	is	updated	again	to,	say,	“Intro.

to	Scala”.	Then,	the	end	attribute	value	of	the	tuple	with	title	“Intro.	to	Python”	would	be	updated	to
2020-01-01,	and	a	new	tuple	(CS-201,	Intro.	to	Scala,	Comp.	Sci.,	4,	2020-01-01,	9999-12-31)	would	be
added	to	the	relation.

When	we	track	data	values	across	time,	functional	dependencies	that	we	assumed	to	hold,	such	as:

course	id	→	title,	dept	name,	credits

may	no	longer	hold.	The	following	constraint	(expressed	in	English)	would	hold	instead:	“A	course	course
id	has	only	one	title	and	dept	name	value	at	any	given	time	t.”

7.10

Modeling	Temporal	Data

349

Functional	dependencies	that	hold	at	a	particular	point	in	time	are	called	temporal	functional
dependencies.	We	use	the	term	snapshot	of	data	to	mean	the	value	of	the	data	at	a	particular	point	in
time.	Thus,	a	snapshot	of	course	data	gives	the	values	of	all	attributes,	such	as	title	and	department,	of	all
courses	at	a	particular	point	in	time.

τ

Formally,	a	temporal	functional	dependency	α	→	β	holds	on	a	relation	schema	r(R)	if,	for	all	legal
instances	of	r(R),	all	snapshots	of	r	satisfy	the	functional	dependency	α	→	β.

The	original	primary	key	for	a	temporal	relation	would	no	longer	uniquely	identify	a	tuple.	We	could	try	to
fix	the	problem	by	adding	start	and	end	time	attributes	to	the	primary	key,	ensuring	no	two	tuples	have
the	same	primary	key	value.	However,	this	solution	is	not	correct,	since	it	is	possible	to	store	data	with
overlapping	valid	time	intervals,	which	would	not	be	caught	by	merely	adding	the	start	and	end	time
attributes	to	the	primary-key	constraint.	Instead,	the	temporal	version	of	the	primary	key	constraint	must
ensure	that	if	any	two	tuples	have	the	same	primary	key	values,	their	valid	time	intervals	do	not	overlap.
Formally,	if	r.A	is	a	temporal	primary	key	of	relation	r,	then	whenever	two	tuples	t	and	t	in	r	are	such	that
t	.A	=	t	.A,	their	valid	1

2

1

2

time	intervals	of	t	and	t	must	not	overlap.

1

2

Foreign-key	constraints	are	also	more	complicated	when	the	referenced	relation	is	a	temporal	relation.	A
temporal	foreign	key	should	ensure	that	not	only	does	each	tuple	in	the	referencing	relation,	say	r,	have	a
matching	tuple	in	the	referenced	relation,	say	s,	but	also	their	time	intervals	are	accounted	for.	It	is	not
required	that	there	be	a	matching	tuple	in	s	with	exactly	the	same	time	interval,	nor	even	that	a	single
tuple	in	s	has	a	time	interval	containing	the	time	interval	of	the	r	tuple.	Instead,	we	allow	the	time	interval
of	the	r	tuple	to	be	covered	by	one	or	more	s	tuples.	Formally,	a	temporal	foreign-key	constraint	from	r.A
to	s.B	ensures	the	following:	for	each	tuple	t	in	r,	with	valid	time	interval	(l,	u),	there	is	a	subset	s	of	one
or	more	tuples	in	s	such	that	each	t

tuple	s	∈	s	has	s	.B	=	t.A,	and	further	the	union	of	the	temporal	intervals	of	all	the	s	i

t

i

i

contains	(l,	u).

A	record	in	a	student’s	transcript	should	refer	to	the	course	title	at	the	time	when	the	student	took	the
course.	Thus,	the	referencing	relation	must	also	record	time	information,	to	identify	a	particular	record
from	the	course	relation.	In	our	university	schema,	takes.	course	id	is	a	foreign	key	referencing	course.
The	year	and	semester	values	of	a	takes	tuple	could	be	mapped	to	a	representative	date,	such	as	the	start
date	of	the	semester;	the	resulting	date	value	could	be	used	to	identify	a	tuple	in	the	temporal	version	of
the	course	relation	whose	valid	time	interval	contains	the	specified	date.	Alternatively,	a	takes	tuple	may
be	associated	with	a	valid	time	interval	from	the	start	date	of	the	semester	until	the	end	date	of	the
semester,	and	course	tuples	with	a	matching	course	id	and	an	overlapping	valid	time	may	be	retrieved;	as
long	as	course	tuples	are	not	updated	during	a	semester,	there	would	be	only	one	such	record.

Instead	of	adding	temporal	information	to	each	relation,	some	database	designers	create	for	each	relation
a	corresponding	history	relation	that	stores	the	history	of	updates	to	the	tuples.	For	example,	a	designer
may	leave	the	course	relation	unchanged,

350

Chapter	7

Relational	Database	Design

but	create	a	relation	course	history	containing	all	the	attributes	of	course,	with	an	additional	timestamp

attribute	indicating	when	a	record	was	added	to	the	course	history	table.	However,	such	a	scheme	has
limitations,	such	as	an	inability	to	associate	a	takes	record	with	the	correct	course	title.

The	SQL:2011	standard	added	support	for	temporal	data.	In	particular,	it	allows	existing	attributes	to	be
declared	to	specify	a	valid	time	interval	for	a	tuple.	For	example,	for	the	extended	course	relation	we	saw
above,	we	could	declare	period	for	validtime	(start,	end)

to	specify	that	the	tuple	is	valid	in	the	interval	specified	by	the	start	and	end	(which	are	otherwise
ordinary	attributes).

Temporal	primary	keys	can	be	declared	in	SQL:2011,	as	illustrated	below,	using	the	extended	course
schema:

primary	key	(course	id,	validtime	without	overlaps)

SQL:2011	also	supports	temporal	foreign-key	constraints	that	allow	a	period	to	be	specified	along	with	the
referencing	relation	attributes,	as	well	as	with	the	referenced	relation	attributes.	Most	databases,	with
the	exception	of	IBM	DB2,	Teradata,	and	possibly	a	few	others,	do	not	support	temporal	primary-key
constraints.	To	the	best	of	our	knowledge,	no	database	system	currently	supports	temporal	foreign-key
constraints	(Teradata	allows	them	to	be	specified,	but	at	least	as	of	2018,	does	not	enforce	them).

Some	databases	that	do	not	directly	support	temporal	primary-key	constraints	allow	workarounds	to
enforce	such	constraints.	For	example,	although	PostgreSQL	does	not	support	temporal	primary-key
constraints	natively,	such	constraints	can	be	enforced	using	the	exclude	constraint	feature	supported	by
PostgreSQL.	For	example,	consider	the	course	relation,	whose	primary	key	is	course	id.	In	PostgreSQL,
we	can	add	an	attribute	validtime,	of	type	tsrange;	the	tsrange	data	type	of	PostgreSQL	stores	a
timestamp	range	with	a	start	and	end	timestamp.	PostgreSQL	supports	an	&&	operator	on	a	pair	of
ranges,	which	returns	true	if	two	ranges	overlap	and	false	otherwise.

The	temporal	primary	key	can	be	enforced	by	adding	the	following	exclude	constraint	(a	type	of	constraint
supported	by	PostgreSQL)	to	the	course	relation	as	follows:	exclude	(course	id	with	=,	validtime	with	&&)

The	above	constraint	ensures	that	if	two	course	tuples	have	the	same	course	id	value,	then	their	validtime
intervals	do	not	overlap.

Relational	algebra	operations,	such	as	select,	project,	or	join,	can	be	extended	to	take	temporal	relations
as	inputs	and	generate	temporal	relations	as	outputs.	Selection	and	projection	operations	on	temporal
relations	output	tuples	whose	valid	time	intervals	are	the	same	as	that	of	their	corresponding	input	tuples.
A	temporal	join	is	slightly	different:	the	valid	time	of	a	tuple	in	the	join	result	is	defined	as	the	intersection
of	the	valid	times	of	the	tuples	from	which	it	is	derived.	If	the	valid	times	do	not	intersect,	the	tuple	is
discarded	from	the	result.	To	the	best	of	our	knowledge,	no	database	supports	temporal	joins	natively,
although	they	can	be	expressed	by	SQL	queries	that	explicitly

7.11

Summary

351

handle	the	temporal	conditions.	Predicates,	such	as	overlaps,	contains,	before,	and	after	and	operations
such	as	intersection	and	difference	on	pairs	of	intervals	are	supported	by	several	database	systems.

7.11

Summary

•	We	showed	pitfalls	in	database	design	and	how	to	design	a	database	schema	systematically	in	a	way	that
avoids	those	pitfalls.	The	pitfalls	included	repeated	information	and	inability	to	represent	some
information.

•	Chapter	6	showed	the	development	of	a	relational	database	design	from	an	E-R

design	and	when	schemas	may	be	combined	safely.

•	Functional	dependencies	are	consistency	constraints	that	are	used	to	define	two	widely	used	normal
forms,	Boyce	–	Codd	normal	form	(BCNF)	and	third	normal	form	(3NF).

•	If	the	decomposition	is	dependency	preserving,	all	functional	dependencies	can	be	inferred	logically	by
considering	only	those	dependencies	that	apply	to	one	relation.	This	permits	the	validity	of	an	update	to
be	tested	without	the	need	to	compute	a	join	of	relations	in	the	decomposition.

•	A	canonical	cover	is	a	set	of	functional	dependencies	equivalent	to	a	given	set	of	functional

dependencies,	that	is	minimized	in	a	specific	manner	to	eliminate	extraneous	attributes.

•	The	algorithm	for	decomposing	relations	into	BCNF	ensures	a	lossless	decomposition.	There	are	relation
schemas	with	a	given	set	of	functional	dependencies	for	which	there	is	no	dependency-preserving	BCNF
decomposition.

•	A	canonical	cover	is	used	to	decompose	a	relation	schema	into	3NF,	which	is	a	small	relaxation	of	the
BCNF	condition.	This	algorithm	produces	designs	that	are	both	lossless	and	dependency-preserving.
Relations	in	3NF	may	have	some	redundancy,	but	that	is	deemed	an	acceptable	trade-off	in	cases	where
there	is	no	dependency-preserving	decomposition	into	BCNF.

•	Multivalued	dependencies	specify	certain	constraints	that	cannot	be	specified	with	functional
dependencies	alone.	Fourth	normal	form	(4NF)	is	defined	using	the	concept	of	multivalued	dependencies.
Section	28.1.1	gives	details	on	reasoning	about	multivalued	dependencies.

•	Other	normal	forms	exist,	including	PJNF	and	DKNF,	which	eliminate	more	subtle	forms	of	redundancy.
However,	these	are	hard	to	work	with	and	are	rarely	used.

Chapter	28	gives	details	on	these	normal	forms.	Second	normal	form	is	of	only	historical	interest	since	it
provides	no	benefit	over	3NF.

•	Relational	designs	typically	are	based	on	simple	atomic	domains	for	each	attribute.

This	is	called	first	normal	form.

352

Chapter	7

Relational	Database	Design

•	Time	plays	an	important	role	in	database	systems.	Databases	are	models	of	the	real	world.	Whereas
most	databases	model	the	state	of	the	real	world	at	a	point	in	time	(at	the	current	time),	temporal
databases	model	the	states	of	the	real	world	across	time.

•	There	are	possible	database	designs	that	are	bad	despite	being	lossless,	dependency-preserving,	and	in
an	appropriate	normal	form.	We	showed	examples	of	some	such	designs	to	illustrate	that	functional-
dependency-based	normalization,	though	highly	important,	is	not	the	only	aspect	of	good	relational
design.

•	In	order	for	a	database	to	store	not	only	current	data	but	also	historical	data,	the	database	must	also
store	for	each	such	tuple	the	time	period	for	which	the	tuple	is	or	was	valid.	It	then	becomes	necessary	to
define	temporal	functional	dependencies	to	represent	the	idea	that	the	functional	dependency	holds	at
any	point	in	time	but	not	over	the	entire	relation.	Similarly,	the	join	operation	needs	to	be	modified	so	as
to	appropriately	join	only	tuples	with	overlapping	time	intervals.

•	In	reviewing	the	issues	in	this	chapter,	note	that	the	reason	we	could	define	rigorous	approaches	to
relational	database	design	is	that	the	relational	data	model	rests	on	a	firm	mathematical	foundation.	That
is	one	of	the	primary	advantages	of	the	relational	model	compared	with	the	other	data	models	that	we
have	studied.

Review	Terms

•	Decomposition

•	Third	normal	form

•	Transitive	dependencies

°	Lossy	decompositions

•	Logically	implied

°	Lossless	decompositions

•	Axioms

•	Normalization

•	Armstrong’s	axioms

•	Functional	dependencies

•	Sound

•	Legal	instance

•	Complete

•	Superkey

•	Functionally	determined

•	R	satisfies	F

•	Extraneous	attributes

•	Functional	dependency

•	Canonical	cover

°	Holds

•	Restriction	of	F	to	Ri

°	Trivial

•	Dependency-preserving	decomposi-

tion

°	Trivial

•	Boyce–Codd	normal	form

•	Closure	of	a	set	of	functional

(BCNF)

dependencies

•	BCNF	decomposition	algorithm

•	Dependency	preserving

Practice	Exercises

353

•	Third	normal	form	(3NF)

•	Domain-key	normal	form	(DKNF)

•	3NF	decomposition	algorithm

•	Atomic	domains

•	3NF	synthesis	algorithm

•	First	normal	form	(1NF)

•	Multivalued	dependency

•	Unique-role	assumption

•

°	Equality-generating	dependencies

Denormalization

•	Crosstabs

°	Tuple-generating	dependencies

•	Temporal	data

°	Embedded	multivalued	dependen-

•	Snapshot

cies

•	Temporal	functional	dependency

•	Closure

•	Temporal	primary	key

•	Fourth	normal	form	(4NF)

•	Temporal	foreign-key

•	Restriction	of	D	to	Ri

•	Temporal	join

•	Fifth	normal	form

Practice	Exercises

7.1

Suppose	that	we	decompose	the	schema	R	=	(A,	B,	C,	D,	E)	into	(A,	B,	C)

(A,	D,	E).

Show	that	this	decomposition	is	a	lossless	decomposition	if	the	following	set	F

of	functional	dependencies	holds:

A	→	BC

CD	→	E

B	→	D

E	→	A

7.2

List	all	nontrivial	functional	dependencies	satisfied	by	the	relation	of	Figure	7.18.

A

B

C

a

b

c

1

1

1

a

b

c

1

1

2

a

b

c

2

1

1

a

b

c

2

1

3

Figure	7.18	Relation	of	Exercise	7.2.

354

Chapter	7

Relational	Database	Design

7.3

Explain	how	functional	dependencies	can	be	used	to	indicate	the	following:

•	A	one-to-one	relationship	set	exists	between	entity	sets	student	and	instructor.

•	A	many-to-one	relationship	set	exists	between	entity	sets	student	and	instructor.

7.4

Use	Armstrong’s	axioms	to	prove	the	soundness	of	the	union	rule.	(Hint:	Use	the	augmentation	rule	to
show	that,	if	α	→	β,	then	α	→	αβ.	Apply	the	augmentation	rule	again,	using	α	→	γ,	and	then	apply	the
transitivity	rule.)

7.5

Use	Armstrong’s	axioms	to	prove	the	soundness	of	the	pseudotransitivity	rule.

7.6

Compute	the	closure	of	the	following	set	F	of	functional	dependencies	for	relation	schema	R	=	(A,	B,	C,
D,	E).

A	→	BC

CD	→	E

B	→	D

E	→	A

List	the	candidate	keys	for	R.

7.7

Using	the	functional	dependencies	of	Exercise	7.6,	compute	the	canonical	cover	F	.

c

7.8

Consider	the	algorithm	in	Figure	7.19	to	compute	α+.	Show	that	this	algorithm	is	more	efficient	than	the
one	presented	in	Figure	7.8	(Section	7.4.2)	and	that	it	computes	α+	correctly.

7.9

Given	the	database	schema	R(A,	B,	C),	and	a	relation	r	on	the	schema	R,	write	an	SQL	query	to	test
whether	the	functional	dependency	B	→	C	holds	on	relation	r.	Also	write	an	SQL	assertion	that	enforces
the	functional	dependency.

Assume	that	no	null	values	are	present.	(Although	part	of	the	SQL	standard,	such	assertions	are	not
supported	by	any	database	implementation	currently.)	7.10

Our	discussion	of	lossless	decomposition	implicitly	assumed	that	attributes	on	the	left-hand	side	of	a
functional	dependency	cannot	take	on	null	values.	What	could	go	wrong	on	decomposition,	if	this	property
is	violated?

7.11

In	the	BCNF	decomposition	algorithm,	suppose	you	use	a	functional	dependency	α	→	β	to	decompose	a
relation	schema	r(α,	β,	γ)	into	r	(α,	β)	and	r	(α,	γ).

1

2

a.

What	primary	and	foreign-key	constraint	do	you	expect	to	hold	on	the

decomposed	relations?

b.

Give	an	example	of	an	inconsistency	that	can	arise	due	to	an	erroneous	update,	if	the	foreign-key
constraint	were	not	enforced	on	the	decomposed	relations	above.

Practice	Exercises

355

result	:=	∅;

/*	fdcount	is	an	array	whose	i	th	element	contains	the	number	of	attributes	on	the	left	side	of	the	i	th	FD
that	are	not	yet	known	to	be	in	α+	*/

for	i	:=	1	to	|	F	|	do

begin

let	β	→	γ	denote	the	i	th	FD;

fdcount	[i]	:=	|β|;

end

/*	appears	is	an	array	with	one	entry	for	each	attribute.	The	entry	for	attribute	A	is	a	list	of	integers.	Each
integer

i	on	the	list	indicates	that	A	appears	on	the	left	side	of	the	i	th	FD	*/

for	each	attribute	A	do

begin

appears	[A]	:=	NIL;

for	i	:=	1	to	|	F	|	do

begin

let	β	→	γ	denote	the	i	th	FD;

if	A	∈	β	then	add	i	to	appears	[A];

end

end

addin	(α);

return	(result);

procedure	addin	(α);

for	each	attribute	A	in	α	do

begin

if	A	∉	result	then

begin

result	:=	result	∪	{	A};

for	each	element	i	of	appears[A]	do

begin

fdcount	[i]	:=	fdcount	[i]	−	1;

if	fdcount	[i]	:=	0	then

begin

let	β	→	γ	denote	the	i	th	FD;

addin	(γ);

end

end

end

end

Figure	7.19	An	algorithm	to	compute	α+.

356

Chapter	7

Relational	Database	Design

c.

When	a	relation	schema	is	decomposed	into	3NF	using	the	algorithm	in

Section	7.5.2,	what	primary	and	foreign-key	dependencies	would	you	ex-

pect	to	hold	on	the	decomposed	schema?

7.12

Let	R	,	R	,	…	,	R	be	a	decomposition	of	schema	U.	Let	u(U)	be	a	relation,	and	1

2

n

let	r	=	Π	(u).	Show	that

i

RI

u	⊆	r	⋈	r	⋈	⋯	⋈	r

1

2

n

7.13

Show	that	the	decomposition	in	Exercise	7.1	is	not	a	dependency-preserving	decomposition.

7.14

Show	that	there	can	be	more	than	one	canonical	cover	for	a	given	set	of	functional	dependencies,	using
the	following	set	of	dependencies:

X	→	YZ,	Y	→	XZ,	and	Z	→	XY	.

7.15

The	algorithm	to	generate	a	canonical	cover	only	removes	one	extraneous	attribute	at	a	time.	Use	the
functional	dependencies	from	Exercise	7.14	to	show	what	can	go	wrong	if	two	attributes	inferred	to	be
extraneous	are	deleted	at	once.

7.16

Show	that	it	is	possible	to	ensure	that	a	dependency-preserving	decomposition	into	3NF	is	a	lossless
decomposition	by	guaranteeing	that	at	least	one	schema	contains	a	candidate	key	for	the	schema	being
decomposed.	(Hint:	Show	that	the	join	of	all	the	projections	onto	the	schemas	of	the	decomposition
cannot	have	more	tuples	than	the	original	relation.)

7.17

Give	an	example	of	a	relation	schema	R′	and	set	F	′	of	functional	dependencies	such	that	there	are	at	least
three	distinct	lossless	decompositions	of	R′	into	BCNF.

7.18

Let	a	prime	attribute	be	one	that	appears	in	at	least	one	candidate	key.	Let	α	and	β	be	sets	of	attributes
such	that	α	→	β	holds,	but	β	→	α	does	not	hold.	Let	A	be	an	attribute	that	is	not	in	α,	is	not	in	β,	and	for
which	β	→	A	holds.	We	say	that	A	is	transitively	dependent	on	α.	We	can	restate	the	definition	of	3NF	as
follows:	A	relation	schema	R	is	in	3NF	with	respect	to	a	set	F	of	functional	dependencies	if	there	are	no
nonprime	attributes	A	in	R	for	which	A	is	transitively	dependent	on	a	key	for	R.	Show	that	this	new
definition	is	equivalent	to	the	original	one.

7.19

A	functional	dependency	α	→	β	is	called	a	partial	dependency	if	there	is	a	proper	subset	γ	of	α	such	that	γ
→	β;	we	say	that	β	is	partially	dependent	on	α.	A	relation	schema	R	is	in	second	normal	form	(2NF)	if	each
attribute	A	in	R	meets	one	of	the	following	criteria:

•	It	appears	in	a	candidate	key.

Exercises

357

•	It	is	not	partially	dependent	on	a	candidate	key.

Show	that	every	3NF	schema	is	in	2NF.	(Hint:	Show	that	every	partial	dependency	is	a	transitive
dependency.)

7.20

Give	an	example	of	a	relation	schema	R	and	a	set	of	dependencies	such	that	R

is	in	BCNF	but	is	not	in	4NF.

Exercises

7.21

Give	a	lossless	decomposition	into	BCNF	of	schema	R	of	Exercise	7.1.

7.22

Give	a	lossless,	dependency-preserving	decomposition	into	3NF	of	schema	R	of	Exercise	7.1.

7.23

Explain	what	is	meant	by	repetition	of	information	and	inability	to	represent	information.	Explain	why
each	of	these	properties	may	indicate	a	bad	relational-database	design.

7.24

Why	are	certain	functional	dependencies	called	trivial	functional	dependencies?

7.25

Use	the	definition	of	functional	dependency	to	argue	that	each	of	Armstrong’s	axioms	(reflexivity,
augmentation,	and	transitivity)	is	sound.

7.26

Consider	the	following	proposed	rule	for	functional	dependencies:	If	α	→	β	and	γ	→	β,	then	α	→	γ.	Prove
that	this	rule	is	not	sound	by	showing	a	relation	r	that	satisfies	α	→	β	and	γ	→	β,	but	does	not	satisfy	α	→	γ.

7.27

Use	Armstrong’s	axioms	to	prove	the	soundness	of	the	decomposition	rule.

7.28

Using	the	functional	dependencies	of	Exercise	7.6,	compute	B+.

7.29

Show	that	the	following	decomposition	of	the	schema	R	of	Exercise	7.1	is	not	a	lossless	decomposition:

(A,	B,	C)

(C,	D,	E).

Hint:	Give	an	example	of	a	relation	r	(R)	such	that	Π

(r)	⋈	Π

(r)	≠	r

A,	B,	C

C,	D,	E

7.30

Consider	the	following	set	F	of	functional	dependencies	on	the	relation	schema	(A,	B,	C,	D,	E,	G):

A	→	BCD

BC	→	DE

B	→	D

D	→	A

358

Chapter	7

Relational	Database	Design

a.

Compute	B+.

b.

Prove	(using	Armstrong’s	axioms)	that	AG	is	a	superkey.

c.

Compute	a	canonical	cover	for	this	set	of	functional	dependencies	F	;	give	each	step	of	your	derivation
with	an	explanation.

d.

Give	a	3NF	decomposition	of	the	given	schema	based	on	a	canonical

cover.

e.

Give	a	BCNF	decomposition	of	the	given	schema	using	the	original	set	F

of	functional	dependencies.

7.31

Consider	the	schema	R	=	(A,	B,	C,	D,	E,	G)	and	the	set	F	of	functional	dependencies:

AB	→	CD

B	→	D

DE	→	B

DEG	→	AB

AC	→	DE

R	is	not	in	BCNF	for	many	reasons,	one	of	which	arises	from	the	functional	dependency	AB	→	CD.	Explain
why	AB	→	CD	shows	that	R	is	not	in	BCNF

and	then	use	the	BCNF	decomposition	algorithm	starting	with	AB	→	CD	to	generate	a	BCNF
decomposition	of	R.	Once	that	is	done,	determine	whether	your	result	is	or	is	not	dependency	preserving,

and	explain	your	reasoning.

7.32

Consider	the	schema	R	=	(A,	B,	C,	D,	E,	G)	and	the	set	F	of	functional	dependencies:

A	→	BC

BD	→	E

CD	→	AB

a.

Find	a	nontrivial	functional	dependency	containing	no	extraneous	at-

tributes	that	is	logically	implied	by	the	above	three	dependencies	and	explain	how	you	found	it.

b.

Use	the	BCNF	decomposition	algorithm	to	find	a	BCNF	decomposition

of	R.	Start	with	A	→	BC.	Explain	your	steps.

c.

For	your	decomposition,	state	whether	it	is	lossless	and	explain	why.

d.

For	your	decomposition,	state	whether	it	is	dependency	preserving	and

explain	why.

Exercises

359

7.33

Consider	the	schema	R	=	(A,	B,	C,	D,	E,	G)	and	the	set	F	of	functional	dependencies:

AB	→	CD

ADE	→	GDE

B	→	GC

G	→	DE

Use	the	3NF	decomposition	algorithm	to	generate	a	3NF	decomposition	of	R,	and	show	your	work.	This
means:

a.

A	list	of	all	candidate	keys

b.

A	canonical	cover	for	F	,	along	with	an	explanation	of	the	steps	you	took	to	generate	it

c.

The	remaining	steps	of	the	algorithm,	with	explanation

d.

The	final	decomposition

7.34

Consider	the	schema	R	=	(A,	B,	C,	D,	E,	G,	H)	and	the	set	F	of	functional	dependencies:

AB	→	CD

D	→	C

DE	→	B

DEH	→	AB

AC	→	DC

Use	the	3NF	decomposition	algorithm	to	generate	a	3NF	decomposition	of	R,	and	show	your	work.	This
means:

a.

A	list	of	all	candidate	keys

b.

A	canonical	cover	for	F

c.

The	steps	of	the	algorithm,	with	explanation

d.

The	final	decomposition

7.35

Although	the	BCNF	algorithm	ensures	that	the	resulting	decomposition	is	lossless,	it	is	possible	to	have	a
schema	and	a	decomposition	that	was	not	generated	by	the	algorithm,	that	is	in	BCNF,	and	is	not	lossless.
Give	an	example	of	such	a	schema	and	its	decomposition.

7.36

Show	that	every	schema	consisting	of	exactly	two	attributes	must	be	in	BCNF

regardless	of	the	given	set	F	of	functional	dependencies.

360

Chapter	7

Relational	Database	Design

7.37

List	the	three	design	goals	for	relational	databases,	and	explain	why	each	is	desirable.

7.38

In	designing	a	relational	database,	why	might	we	choose	a	non-BCNF	design?

7.39

Given	the	three	goals	of	relational	database	design,	is	there	any	reason	to	design	a	database	schema	that
is	in	2NF,	but	is	in	no	higher-order	normal	form?	(See	Exercise	7.19	for	the	definition	of	2NF.)

7.40

Given	a	relational	schema	r(A,	B,	C,	D),	does	A	→→	BC	logically	imply	A	→→	B

and	A	→→	C?	If	yes	prove	it,	or	else	give	a	counter	example.

7.41

Explain	why	4NF	is	a	normal	form	more	desirable	than	BCNF.

7.42

Normalize	the	following	schema,	with	given	constraints,	to	4NF.

books(accessionno,	isbn,	title,	author,	publisher)	users(userid,	name,	deptid,	deptname)	accessionno	→
isbn

isbn	→	title

isbn	→	publisher

isbn	→→	author

userid	→	name

userid	→	deptid

deptid	→	deptname

7.43

Although	SQL	does	not	support	functional	dependency	constraints,	if	the	database	system	supports
constraints	on	materialized	views,	and	materialized	views	are	maintained	immediately,	it	is	possible	to
enforce	functional	dependency	constraints	in	SQL.	Given	a	relation	r(A,	B,	C),	explain	how	constraints	on
materialized	views	can	be	used	to	enforce	the	functional	dependency	B	→	C.

7.44

Given	two	relations	r(A,	B,	validtime)	and	s(B,	C,	validtime),	where	validtime	denotes	the	valid	time
interval,	write	an	SQL	query	to	compute	the	temporal	natural	join	of	the	two	relations.	You	can	use	the
&&	operator	to	check	if	two	intervals	overlap	and	the	∗	operator	to	compute	the	intersection	of	two
intervals.

Further	Reading

The	first	discussion	of	relational	database	design	theory	appeared	in	an	early	paper	by

[Codd	(1970)].	In	that	paper,	Codd	also	introduced	functional	dependencies	and	first,	second,	and	third
normal	forms.

Armstrong’s	axioms	were	introduced	in	[Armstrong	(1974)].	BCNF	was	introduced	in	[Codd	(1972)].
[Maier	(1983)]	is	a	classic	textbook	that	provides	detailed	coverage	of	normalization	and	the	theory	of
functional	and	multivalued	dependencies.

Further	Reading

361

Bibliography

[Armstrong	(1974)]

W.	W.	Armstrong,	“Dependency	Structures	of	Data	Base	Relation-

ships”,	In	Proc.	of	the	1974	IFIP	Congress	(1974),	pages	580–583.

[Codd	(1970)]

E.	F.	Codd,	“A	Relational	Model	for	Large	Shared	Data	Banks”,	Communications	of	the	ACM,	Volume	13,
Number	6	(1970),	pages	377–387.

[Codd	(1972)]

E.	F.	Codd.	“Further	Normalization	of	the	Data	Base	Relational	Model”,	In

[Rustin	(1972)],	pages	33–64	(1972).

[Maier	(1983)]

D.	Maier,	The	Theory	of	Relational	Databases,	Computer	Science	Press	(1983).

[Rustin	(1972)]

R.	Rustin,	Data	Base	Systems,	Prentice	Hall	(1972).

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

PART	3

APPLICATION	DESIGN

AND	DEVELOPMENT

One	of	the	key	requirements	of	the	relational	model	is	that	data	values	be	atomic:	multivalued,	composite,
and	other	complex	data	types	are	disallowed	by	the	core	relational	model.	However,	there	are	many
applications	where	the	constraints	on	data	types	imposed	by	the	relational	model	cause	more	problems
than	they	solve.	In	Chapter	8,	we	discuss	several	complex	data	types,	including	semistructured	data	types
that	are	widely	used	in	building	applications,	object-based	data,	textual	data,	and	spatial	data.

Practically	all	use	of	databases	occurs	from	within	application	programs.	Correspondingly,	almost	all	user
interaction	with	databases	is	indirect,	via	application	programs.	Database-backed	applications	are
ubiquitous	on	the	web	as	well	as	on	mobile	platforms.	In	Chapter	9,	we	study	tools	and	technologies	that
are	used	to	build	applications,	focusing	on	interactive	applications	that	use	databases	to	store	and
retrieve	data.

363

C	H	A	P	T	E	R	8

Complex	Data	Types

The	relational	model	is	very	widely	used	for	data	representation	for	a	large	number	of	application
domains.	One	of	the	key	requirements	of	the	relational	model	is	that	data	values	be	atomic:	multivalued,
composite,	and	other	complex	data	types	are	disallowed	by	the	core	relational	model.	However,	there	are
many	applications	where	the	constraints	on	data	types	imposed	by	the	relational	model	cause	more
problems	than	they	solve.	In	this	chapter,	we	discuss	several	non-atomic	data	types	that	are	widely	used,
including	semi-structured	data,	object-based	data,	textual	data,	and	spatial	data.

8.1

Semi-structured	Data

Relational	database	designs	have	tables	with	a	fixed	number	of	attributes,	each	of	which	contains	an
atomic	value.	Changes	to	the	schema,	such	as	adding	an	extra	attribute,	are	rare	events,	and	may	require
changing	of	application	code.	Such	a	design	is	well	suited	to	many	organizational	applications.

However,	there	are	many	application	domains	that	need	to	store	more	complex	data,	whose	schema
changes	often.	Fast	evolving	web	applications	are	an	example	of	such	a	domain.	As	an	example	of	the	data
management	needs	of	such	applications,	consider	the	profile	of	a	user	which	needs	to	be	accessible	to	a
number	of	different	applications.	The	profile	contains	a	variety	of	attributes,	and	there	are	frequent
additions	to	the	attributes	stored	in	the	profile.	Some	attributes	may	contain	complex	data;	for	example,
an	attribute	may	store	a	set	of	interests	that	can	be	used	to	show	the	user	articles	related	to	the	set	of
interests.	While	such	a	set	can	be	stored	in	a	normalized	fashion	in	a	separate	relation,	a	set	data	type
allows	significantly	more	efficient	access	than	does	a	normalized	representation.	We	study	a	number	of
data	models	that	support	representation	of	semi-structured	data	in	this	section.

Data	exchange	is	another	very	important	motivation	for	semi-structured	data	representations;	it	is
perhaps	even	more	important	than	storage	for	many	applications.	A	popular	architecture	for	building
information	systems	today	is	to	create	a	web	service	that	allows	retrieval	of	data	and	to	build	application
code	that	displays	the	data	and	allows	user	interaction.	Such	application	code	may	be	developed	as	mobile
applications,	365

366

Chapter	8

Complex	Data	Types

or	it	may	be	written	in	JavaScript	and	run	on	the	browser.	In	either	case,	the	ability	to	run	on	the	client’s
machine	allows	developers	to	create	very	responsive	user	interfaces,	unlike	the	early	generation	of	web
interfaces	where	backend	servers	send	HTML

marked-up	text	to	browsers,	which	display	the	HTML.	A	key	to	building	such	applications	is	the	ability	to
efficiently	exchange	and	process	complex	data	between	backend	servers	and	clients.	We	study	the	JSON
and	XML	data	models	that	have	been	widely	adopted	for	this	task.

8.1.1

Overview	of	Semi-structured	Data	Models

The	relational	data	model	has	been	extended	in	several	ways	to	support	the	storage	and	data	exchange
needs	of	modern	applications.

8.1.1.1

Flexible	Schema

Some	database	systems	allow	each	tuple	to	potentially	have	a	different	set	of	attributes;	such	a
representation	is	referred	to	as	a	wide	column	data	representation.	The	set	of	attributes	is	not	fixed	in
such	a	representation;	each	tuple	may	have	a	different	set	of	attributes,	and	new	attributes	may	be	added
as	needed.

A	more	restricted	form	of	this	representation	is	to	have	a	fixed	but	very	large	number	of	attributes,	with
each	tuple	using	only	those	attributes	that	it	needs,	leaving	the	rest	with	null	values;	such	a
representation	is	called	a	sparse	column	representation.

8.1.1.2

Multivalued	Data	Types

Many	data	representations	allow	attributes	to	contain	non-atomic	values.	Many	databases	allow	the
storage	of	sets,	multisets,	or	arrays	as	attribute	values.	For	example,	an	application	that	stores	topics	of
interest	to	a	user,	and	uses	the	topics	to	target	articles	or	advertisements	to	the	user,	may	store	the	topics
as	a	set.	An	example	of	such	a	set	may	be:

{	basketball,	La	Liga,	cooking,	anime,	Jazz	}

Although	a	set-valued	attribute	can	be	stored	in	a	normalized	form	as	we	saw	earlier	in	Section	6.7.2,
doing	so	provides	no	benefits	in	this	case,	since	lookups	are	always	based	on	the	user,	and	normalization
would	significantly	increase	the	storage	and	querying	overhead.

Some	representations	allow	attributes	to	store	key-value	maps,	which	store	key-value	pairs.	A	key-value
map,	often	just	called	a	map,	is	a	set	of	(key,	value)	pairs,	such	that	each	key	occurs	in	at	most	one
element.	For	example,	e-commerce	sites	often	list	specifications	or	details	for	each	product	that	they	sell,
such	as	brand,	model,	size,	color,	and	numerous	other	product-specific	details.	The	set	of	specifications
may	be	different	for	each	product.	Such	specifications	can	be	represented	as	a	map,	where

8.1

Semi-structured	Data

367

the	specifications	form	the	key,	and	the	associated	value	is	stored	with	the	key.	The	following	example
illustrates	such	a	map:

{	(brand,	Apple),	(ID,	MacBook	Air),	(size,	13),	(color,	silver)	}

The	put(key,	value)	method	can	be	used	to	add	a	key-value	pair,	while	the	get(key)	method	can	be	used	to
retrieve	the	value	associated	with	a	key.	The	delete(key)	method	can	be	used	to	delete	a	key-value	pair
from	the	map.

Arrays	are	very	important	for	scientific	and	monitoring	applications.	For	example,	scientific	applications
may	need	to	store	images,	which	are	basically	two-dimensional	arrays	of	pixel	values.	Scientific
experiments	as	well	as	industrial	monitoring	applications	often	use	multiple	sensors	that	provide	readings
at	regular	intervals.	Such	readings	can	be	viewed	as	an	array.	In	fact,	treating	a	stream	of	readings	as	an

array	requires	far	less	space	than	storing	each	reading	as	a	separate	tuple,	with	attributes	such	as	(time,
reading).	Not	only	do	we	avoid	storing	the	time	attribute	explicitly	(it	can	be	inferred	from	the	offset),	but
we	can	also	reduce	per-tuple	overhead	in	the	database,	and	most	importantly	we	can	use	compression
techniques	to	reduce	the	space	needed	to	store	an	array	of	readings.

Support	for	multivalued	attribute	types	was	proposed	early	in	the	history	of	databases,	and	the	associated
data	model	was	called	the	non	first-normal-form,	or	NFNF	,	data	model.	Several	relational	databases	such
as	Oracle	and	PostgreSQL	support	set	and	array	types.

An	array	database	is	a	database	that	provides	specialized	support	for	arrays,	including	efficient
compressed	storage,	and	query	language	extensions	to	support	operations	on	arrays.	Examples	include
the	Oracle	GeoRaster,	the	PostGIS	extension	to	PostgreSQL,	the	SciQL	extension	of	MonetDB,	and	SciDB,
a	database	tailored	for	scientific	applications,	with	a	number	of	features	tailored	for	array	data	types.

8.1.1.3

Nested	Data	Types

Many	data	representations	allow	attributes	to	be	structured,	directly	modeling	composite	attributes	in	the
E-R	model.	For	example,	an	attribute	name	may	have	component	attributes	firstname,	and	lastname.
These	representations	also	support	multivalued	data	types	such	as	sets,	arrays,	and	maps.	All	of	these
data	types	represent	a	hierarchy	of	data	types,	and	that	structure	leads	to	the	use	of	the	term	nested	data
types.	Many	databases	support	such	types	as	part	of	their	support	for	object-oriented	data,	which	we
describe	in	Section	8.2.

In	this	section,	we	outline	two	widely	used	data	representations	that	allow	values	to	have	complex	internal
structures	and	that	are	flexible	in	that	values	are	not	forced	to	adhere	to	a	fixed	schema.	These	are	the
JavaScript	Object	Notation	(JSON),	which	we	describe	in	Section	8.1.2,	and	the	Extensible	Markup
Language	(XML),	which	we	describe	in	Section	8.1.3.

Like	the	wide-table	approach,	the	JSON	and	XML	representations	provide	flexibility	in	the	set	of	attributes
that	a	record	contains,	as	well	as	the	types	of	these	attributes.

368

Chapter	8

Complex	Data	Types

However,	the	JSON	and	XML	representations	permit	a	more	flexible	structuring	of	data,	where	objects
could	have	sub-objects;	each	object	thus	corresponds	to	a	tree	structure.

Since	they	allow	multiple	pieces	of	information	about	a	business	object	to	be	packaged	into	a	single
structure,	the	JSON	and	XML	representations	have	both	found	significant	acceptance	in	the	context	of
data	exchange	between	applications.

Today,	JSON	is	widely	used	today	for	exchanging	data	between	the	backends	and	the	user-facing	sides	of
applications,	such	as	mobile	apps,	and	Web	apps.	JSON	has	also	found	favor	for	storing	complex	objects	in
storage	systems	that	collect	different	data	related	to	a	particular	user	into	one	large	object	(sometimes
referred	to	as	a	document),	allowing	data	to	be	retrieved	without	the	need	for	joins.	XML	is	an	older
representation	and	is	used	by	many	systems	for	storing	configuration	and	other	information,	and	for	data
exchange.

8.1.1.4

Knowledge	Representation

Representation	of	human	knowledge	has	long	been	a	goal	of	the	artificial	intelligence	community.	A
variety	of	models	were	proposed	for	this	task,	with	varying	degrees	of	complexity;	these	could	represent
facts	as	well	as	rules	about	facts.	With	the	growth	of	the	web,	a	need	arose	to	represent	extremely	large
knowledge	bases,	with	potentially	billions	of	facts.	The	Resource	Description	Format	(RDF)	data
representation	is	one	such	representation	that	has	found	very	wide	acceptance.	The	representation
actually	has	far	fewer	features	than	earlier	representations,	but	it	was	better	suited	to	handle	very	large
data	volumes	than	the	earlier	knowledge	representations.

Like	the	E-R	model	which	we	studied	earlier,	RDF	models	data	as	objects	that	have	attributes	and	have
relationships	with	other	objects.	RDF	data	can	be	viewed	as	a	set	of	triples	(3-tuples),	or	as	a	graph,	with
objects	and	attribute	values	modeled	as	nodes	and	relationships	and	attribute	names	as	edges.	We	study
RDF	in	more	detail	in	Section	8.1.4.

8.1.2

JSON

The	JavaScript	Object	Notation	(JSON),	is	a	textual	representation	of	complex	data	types	that	is	widely
used	to	transmit	data	between	applications	and	to	store	complex	data.	JSON	supports	the	primitive	data
types	integer,	real	and	string,	as	well	as	arrays,	and	“objects,”	which	are	a	collection	of	(attribute	name,
value)	pairs.

Figure	8.1	shows	an	example	of	data	represented	using	JSON.	Since	objects	do	not	have	to	adhere	to	any
fixed	schema,	they	are	basically	the	same	as	key-value	maps,	with	the	attribute	names	as	keys	and	the
attribute	values	as	the	associated	values.

The	example	also	illustrates	arrays,	shown	in	square	brackets.	In	JSON,	an	array	can	be	thought	of	as	a
map	from	integer	offsets	to	values,	with	the	square-bracket	syntax	viewed	as	just	a	convenient	way	of
creating	such	maps.

JSON	is	today	the	primary	data	representation	used	for	communication	between	applications	and	web
services.	Many	modern	applications	use	web	services	to	store

8.1

Semi-structured	Data

369

{

"ID":	"22222",

"name":	{

"firstname:	"Albert",

"lastname:	"Einstein"

},

"deptname":	"Physics",

"children":	[

{"firstname":	"Hans",	"lastname":	"Einstein"	},

{"firstname":	"Eduard",	"lastname":	"Einstein"	}

]

}

Figure	8.1	Example	of	JSON	data.

and	retrieve	data	and	to	perform	computations	at	a	backend	server;	web	services	are	described	in	more
detail	in	Section	9.5.2.	Applications	invoke	web	services	by	sending	parameters	either	as	simple	values
such	as	strings	or	numbers,	or	by	using	JSON	for	more	complex	parameters.	The	web	service	then	returns
results	using	JSON.	For	example,	an	email	user	interface	may	invoke	web	services	for	each	of	these	tasks:
authenticating	the	user,	fetching	email	header	information	to	show	a	list	of	emails,	fetching	an	email	body,
sending	email,	and	so	on.

The	data	exchanged	in	each	of	these	steps	are	complex	and	have	an	internal	structure.	The	ability	of	JSON
to	represent	complex	structures,	and	its	ability	to	allow	flexible	structuring,	make	it	a	good	fit	for	such
applications.

A	number	of	libraries	are	available	that	make	it	easy	to	transform	data	between	the	JSON	representation
and	the	object	representation	used	in	languages	such	as	JavaScript,	Java,	Python,	PHP,	and	other
languages.	The	ease	of	interfacing	between	JSON	and	programming	language	data	structures	has	played
a	significant	role	in	the	widespread	use	of	JSON.

Unlike	a	relational	representation,	JSON	is	verbose	and	takes	up	more	storage	space	for	the	same	data.
Further,	parsing	the	text	to	retrieve	required	fields	can	be	very	CPU

intensive.	Compressed	representations	that	also	make	it	easier	to	retrieve	values	without	parsing	are
therefore	popular	for	storage	of	data.	For	example,	a	compressed	binary	format	called	BSON	(short	for

Binary	JSON)	is	used	in	many	systems	for	storing	JSON

data.

The	SQL	language	itself	has	been	extended	to	support	the	JSON	representation	in	several	ways:

•	JSON	data	can	be	stored	as	a	JSON	data	type.

•	SQL	queries	can	generate	JSON	data	from	relational	data:

370

Chapter	8

Complex	Data	Types

°	There	are	SQL	extensions	that	allow	construction	of	JSON	objects	in	each	row	of	a	query	result.	For
example,	PostgreSQL	supports	a	json	build	object()	function.	As	an	example	of	its	use,	json	build
object('ID',	12345,	'name'	'Einstein')	returns	a	JSON	object	{"ID":	12345,	"name",	"Einstein"}.

°	There	are	also	SQL	extensions	that	allow	creation	of	a	JSON	object	from	a	collection	of	rows	by	using	an
aggregate	function.	For	example,	the	json	agg	aggregate	function	in	PostgreSQL	allows	creation	of	a
single	JSON	object	from	a	collection	of	JSON	objects.	Oracle	supports	a	similar	aggregate	function	json
objectagg,	as	well	as	an	aggregate	json	arraytagg,	which	creates	a	JSON

array	with	objects	in	a	specified	order.	SQL	Server	supports	a	FOR	JSON	AUTO

clause	that	formats	the	result	of	an	SQL	query	as	a	JSON	array,	with	one	element	per	row	in	the	SQL
query.

•	SQL	queries	can	extract	data	from	a	JSON	object	using	some	form	of	path	constructs.	For	example,	in
PostgreSQL,	if	a	value	v	is	of	type	JSON	and	has	an	attribute	“ID”,	v−	>’ID’	would	return	the	value	of	the
“ID”	attribute	of	v.	Oracle	supports	a	similar	feature,	using	a	“.”	instead	of	“−	>”,	while	SQL	Server	uses	a
function	JSON	VALUE(value,	path)	to	extract	values	from	JSON	objects	using	a	specified	path.

The	exact	syntax	and	semantics	of	these	extensions,	unfortunately,	depend	entirely	on	the	specific
database	system.	You	can	find	references	to	more	details	on	these	extensions	in	the	bibliographic	notes
for	this	chapter,	available	online.

8.1.3

XML

The	XML	data	representation	adds	tags	enclosed	in	angle	brackets,	<>,	to	mark	up	information	in	a
textual	representation.	Tags	are	used	in	pairs,	with	<	tag	>	and	</tag	>

delimiting	the	beginning	and	the	end	of	the	portion	of	the	text	to	which	the	tag	refers.

For	example,	the	title	of	a	document	might	be	marked	up	as	follows:

<	title	>	Database	System	Concepts	</title	>

Such	tags	can	be	used	to	represent	relational	data	specifying	relation	names	and	attribute	names	as	tags,
as	shown	below:

CS-101

Comp.	Sci.

4

8.1

Semi-structured	Data

371

<	purchase	order	>

<	identifier	>	P-101	</identifier	>

<	purchaser	>

<	name	>	Cray	Z.	Coyote	</name	>

<	address	>	Route	66,	Mesa	Flats,	Arizona	86047,	USA	</address	>

</purchaser	>

<	supplier	>

<	name	>	Acme	Supplies	</name	>

<	address	>	1	Broadway,	New	York,	NY,	USA	</address	>

</supplier	>

<	itemlist	>

<	item	>

<	identifier	>	RS1	</identifier	>

<	description	>	Atom	powered	rocket	sled	</description	>

<	quantity	>	2	</quantity	>

<	price	>	199.95	</price	>

</item	>

<	item	>

<	identifier	>	SG2	</identifier	>

<	description	>	Superb	glue	</description	>

<	quantity	>	1	</quantity	>

<	unit-of-measure	>	liter	</unit-of-measure	>

<	price	>	29.95	</price	>

</item	>

</itemlist	>

<	total	cost	>	429.85	</total	cost	>

<	payment	terms	>	Cash-on-delivery	</payment	terms	>

<	shipping	mode	>	1-second-delivery	</shipping	mode	>

</purchase	order	>

Figure	8.2	XML	representation	of	a	purchase	order.

Unlike	with	a	relational	schema,	new	tags	can	be	introduced	easily,	and	with	suitable	names	the	data	are

“self-documenting”	in	that	a	human	can	understand	or	guess	what	a	particular	piece	of	data	means	based
on	the	name.

Furthermore,	tags	can	be	used	to	create	hierarchical	structures,	which	is	not	possible	with	the	relational
model.	Hierarchical	structures	are	particularly	important	for	representing	business	objects	that	must	be
exchanged	between	organizations;	examples	include	bills,	purchase	orders,	and	so	forth.

Figure	8.2,	which	shows	how	information	about	a	purchase	order	can	be	represented	in	XML,	illustrates	a
more	realistic	use	of	XML.	Purchase	orders	are	typically	generated	by	one	organization	and	sent	to
another.	A	purchase	order	contains	a	variety	of	information;	the	nested	representation	allows	all
information	in	a	purchase	order	to

372

Chapter	8

Complex	Data	Types

be	represented	naturally	in	a	single	document.	(Real	purchase	orders	have	considerably	more	information
than	that	depicted	in	this	simplified	example.)	XML	provides	a	standard	way	of	tagging	the	data;	the	two
organizations	must	of	course	agree	on	what	tags	appear	in	the	purchase	order	and	what	they	mean.

The	XQuery	language	was	developed	to	support	querying	of	XML	data.	Further	details	of	XML	and
XQuery	may	be	found	in	Chapter	30.	Although	XQuery	implementations	are	available	from	several
vendors,	unlike	SQL,	adoption	of	XQuery	has	been	relatively	limited.

However,	the	SQL	language	itself	has	been	extended	to	support	XML	in	several	ways:

•	XML	data	can	be	stored	as	an	XML	data	type.

•	SQL	queries	can	generate	XML	data	from	relational	data.	Such	extensions	are	very	useful	for	packaging
related	pieces	of	data	into	one	XML	document,	which	can	then	be	sent	to	another	application.

The	extensions	allow	the	construction	of	XML	representations	from	individual	rows,	as	well	as	the
creation	of	an	XML	document	from	a	collection	of	rows	by	using	an	XMLAGG	aggregate	function.

•	SQL	queries	can	extract	data	from	an	XML	data	type	value.	For	example,	the	XPath	language	supports
“path	expressions”	that	allow	the	extraction	of	desired	parts	of	data	from	an	XML	document.

You	can	find	more	details	on	these	extensions	in	Chapter	30.

8.1.4

RDF	and	Knowledge	Graphs

The	Resource	Description	Framework	(RDF)	is	a	data	representation	standard	based	on	the	entity-
relationship	model.	We	provide	an	overview	of	RDF	in	this	section.

8.1.4.1

Triple	Representation

The	RDF	model	represents	data	by	a	set	of	triples	that	are	in	one	of	these	two	forms:	1.	(ID,	attribute-
name,	value)

2.	(ID1,	relationship-name,	ID2)

where	ID,	ID1	and	ID2	are	identifiers	of	entities;	entities	are	also	referred	to	as	resources	in	RDF.	Note
that	unlike	the	E-R	model,	the	RDF	model	only	supports	binary	relationships,	and	it	does	not	support	more
general	n-ary	relationships;	we	return	to	this	issue	later.

The	first	attribute	of	a	triple	is	called	its	subject,	the	second	attribute	is	called	its	predicate,	and	the	last
attribute	is	called	its	object.	Thus,	a	triple	has	the	structure	(subject,	predicate,	object).

8.1

Semi-structured	Data

373

10101

instance-of

instructor	.

10101

name

"Srinivasan"	.

10101

salary

"6500"	.

00128

instance-of

student	.

00128

name

"Zhang"	.

00128

tot	cred

"102"	.

comp	sci

instance-of

department	.

comp	sci

dept	name

"Comp.	Sci."	.

biology

instance-of

department	.

CS-101

instance-of

course	.

CS-101

title

"Intro.	to	Computer	Science"	.

CS-101

course	dept

comp	sci	.

sec1

instance-of

section	.

sec1

sec	course

CS-101	.

sec1

sec	id

"1"	.

sec1

semester

"Fall"	.

sec1

year

"2017"	.

sec1

classroom

packard-101	.

sec1

time	slot	id

"H"	.

10101

inst	dept

comp	sci	.

00128

stud	dept

comp	sci	.

00128

takes

sec1	.

10101

teaches

sec1	.

Figure	8.3	RDF	representation	of	part	of	the	University	database.

Figure	8.3	shows	a	triple	representation	of	a	small	part	of	the	University	database.

All	attribute	values	are	shown	in	quotes,	while	identifiers	are	shown	without	quotes.

Attribute	and	relationship	names	(which	form	the	predicate	part	of	each	triple)	are	also	shown	without
quotes.

In	our	example,	we	use	the	ID	values	to	identify	instructors	and	students	and	course	id	to	identify	courses.
Each	of	their	attributes	is	represented	as	a	separate	triple.	The	type	information	of	objects	is	provided	by
the	instance-of	relationship;	for	example,	10101	is	identified	as	an	instance	of	instructor,	while	00128	is
an	instance	of	student.	To	follow	RDF	syntax,	the	identifier	of	the	Comp.	Sci.	department	is	denoted	as
comp	sci.

Only	one	attribute	of	the	department,	dept	name,	is	shown.	Since	the	primary	key	of	section	is	composite,
we	have	created	new	identifiers	to	identify	sections;	“sec1”	identifies	one	such	section,	shown	with	its
semester,	year	and	sec	id	attributes,	and	with	a	relationship	course	to	CS-101.

Relationships	shown	in	the	figure	include	the	takes	and	teaches	relationships,	which	appear	in	the
university	schema.	The	departments	of	instructors,	students	and	courses	are	shown	as	relationships	inst
dept,	stud	dept	and	course	dept	respectively,	following	the	E-R	model;	similarly,	the	classroom	associated
with	a	section	is	also	shown	as	a	classroom	relationship	with	a	classroom	object	(packard-101,	in	our
example),	and	the

374

Chapter	8

Complex	Data	Types

course	associated	with	a	section	is	shown	as	a	relationship	sec	course	between	the	section	and	the	course.

As	we	saw,	entity	type	information	is	represented	using	instance-of	relationships	between	entities	and
objects	representing	types;	type-subtype	relationships	can	also	be	represented	as	subtype	edges	between
type	objects.

In	contrast	to	the	E-R	model	and	relational	schemas,	RDF	allows	new	attributes	to	be	easily	added	to	an
object	and	also	to	create	new	types	of	relationships.

8.1.4.2

Graph	Representation	of	RDF

The	RDF	representation	has	a	very	natural	graph	interpretation.	Entities	and	attribute	values	can	be
considered	as	nodes,	and	attribute	names	and	relationships	can	be	considered	as	edges	between	the

nodes.	The	attribute/relationship	name	can	be	viewed	as	the	label	of	the	corresponding	edge.	Figure	8.4
shows	a	graph	representation	of	the	data	from	Figure	8.3.	Objects	are	shown	as	ovals,	attribute	values	in
rectangles,	and	relationships	as	edges	with	associated	labels	identifying	the	relationship.	We	have	omitted
the	instance-of	relationships	for	brevity.

A	representation	of	information	using	the	RDF	graph	model	(or	its	variants	and	extensions)	is	referred	to
as	a	knowledge	graph.	Knowledge	graphs	are	used	for	a	variety	of	purposes.	One	such	application	is	to
store	facts	that	are	harvested	from	a	variety	of	data	sources,	such	as	Wikipedia,	Wikidata,	and	other
sources	on	the	web.	An	example	of	a	fact	is	“Washington,	D.C.	is	the	capital	of	U.S.A.”	Such	a	fact	can	be
represented	as	an	edge	labeled	capital-of	connecting	two	nodes,	one	representing	the	entity	Washington,
D.C.,	and	the	other	representing	the	entity	U.S.A.

Srinivasan

6500

Comp.	Sci.

Zhang

102

name

salary

dept_name

name

tot_cred

inst_dept

stud_dept

10101

comp_sci

00128

teaches

course_dept

takes

CS-101

sec1

sec_course

sec_id

1

title

classroom

semester

year

Intro.	to	Computer	Science

packard-101

Fall

2017

Figure	8.4	Graph	representation	of	RDF	data.

8.1

Semi-structured	Data

375

Questions	about	entities	can	be	answered	using	a	knowledge	graph	that	contains	relevant	information.
For	example,	the	question	“Which	city	is	the	capital	of	the	U.S.A.?”	can	be	answered	by	looking	for	an
edge	labeled	capital-of,	linking	an	entity	to	the	country	U.S.A.	(If	type	information	is	available,	the	query
may	also	verify	that	there	is	an	instance-of	edge	connecting	Washington,	D.C.,	to	a	node	representing	the
entity	type	City).

8.1.4.3

SPARQL

SPARQL	is	a	query	language	designed	to	query	RDF	data.	The	language	is	based	on	triple	patterns,	which
look	like	RDF	triples	but	may	contain	variables.	For	example,	the	triple	pattern:

?cid	title	"Intro.	to	Computer	Science"

would	match	all	triples	whose	predicate	is	“title”	and	object	is	“Intro.	to	Computer	Science”.	Here,	?cid	is
a	variable	that	can	match	any	value.

Queries	can	have	multiple	triple	patterns,	with	variables	shared	across	triples.	Consider	the	following	pair
of	triples:

?cid	title	"Intro.	to	Computer	Science"

?sid	course	?cid

On	the	university-triple	dataset	shown	in	Figure	8.3,	the	first	triple	pattern	matches	the	triple	(CS-101,
title,	"Intro.	to	Computer	Science"),	while	the	second	triple	pattern	matches	(sec1,	course,	CS-101).	The
shared	variable	?cid	enforces	a	join	condition	between	the	two	triple	patterns.

We	can	now	show	a	complete	SPARQL	query.	The	following	query	retrieves	names	of	all	students	who
have	taken	a	section	whose	course	is	titled	“Intro.	to	Computer	Science”.

select	?name

where	{

?cid	title	"Intro.	to	Computer	Science"	.

?sid	course	?cid	.

?id	takes	?sid	.

?id	name	?name	.

}

The	shared	variables	between	these	triples	enforce	a	join	condition	between	the	tuples	matching	each	of
these	triples.

Note	that	unlike	in	SQL,	the	predicate	in	a	triple	pattern	can	be	a	variable,	which	can	match	any
relationship	or	attribute	name.	SPARQL	has	many	more	features,	such

376

Chapter	8

Complex	Data	Types

as	aggregation,	optional	joins	(similar	to	outerjoins),	and	subqueries.	For	more	information	in	SPARQL,
see	the	references	in	Further	Reading.

8.1.4.4

Representing	N-ary	Relationships

Relationships	represented	as	edges	can	model	only	binary	relationships.	Knowledge	graphs	have	been
extended	to	store	more	complex	relationships.	For	example,	knowledge	graphs	have	been	extended	with
temporal	information	to	record	the	time	period	during	which	a	fact	is	true;	if	the	capital	of	the	U.S.A.
changed	from	Washington,	DC.,	to	say,	New	York,	in	2050,	this	would	be	represented	by	two	facts,	one	for
the	period	ending	in	2050	when	Washington	was	the	capital,	and	one	for	the	period	after	2050.

As	we	saw	in	Section	6.9.4,	an	n-ary	relationship	can	be	represented	using	binary	relationships	by
creating	an	artificial	entity	corresponding	to	a	tuple	in	an	n-ary	relationship	and	linking	that	artificial
entity	to	each	of	the	entities	participating	in	the	relationship.	In	the	preceding	example,	we	can	create	an
artificial	entity	e	to	represent	1

the	fact	that	Barack	Obama	was	president	of	the	U.S.A.	from	2008	to	2016.	We	link	e	to	the	entities
representing	Obama	and	U.S.A.	by	person	and	country	relationship	1

edges	respectively,	and	to	the	values	2008	and	2016	by	attribute	edges	president-from	and	president-till
respectively.	If	we	chose	to	represent	years	as	entities,	the	edges	created	to	the	two	years	above	would
represent	relationships	instead	of	attributes.

The	above	idea	is	similar	to	the	E-R	model	notion	of	aggregation	which,	as	we	saw	in	Section	6.8.5,	can
treat	a	relationship	as	an	entity;	this	idea	is	called	reification	in	RDF.	Reification	is	used	in	many
knowledge-graph	representations,	where	the	extra	information	such	as	time	period	of	validity	are	treated
as	qualifiers	of	the	underlying	edge.

Other	models	add	a	fourth	attribute,	called	the	context,	to	triples;	thus,	instead	of	storing	triples,	they
store	quads.	The	basic	relationship	is	still	binary,	but	the	fourth	attribute	allows	a	context	entity	to	be
associated	with	a	relationship.	Information	such	as	valid	time	period	can	be	treated	as	attributes	of	the
context	entity.

There	are	several	knowledge	bases,	such	as	Wikidata,	DBPedia,	Freebase,	and	Yago,	that	provide	an
RDF/knowledge	graph	representation	of	a	wide	variety	of	knowledge.	In	addition,	there	are	a	very	large
number	of	domain-specific	knowledge	graphs.

The	linked	open	data	project	is	aimed	at	making	a	variety	of	such	knowledge	graphs	open	source	and
further	creating	links	between	these	independently	created	knowledge	graphs.	Such	links	allow	queries	to
make	inferences	using	information	from	multiple	knowledge	graphs	along	with	links	to	the	knowledge
graphs.	References	to	more	information	on	this	topic	may	be	found	in	the	bibliographic	notes	for	this
chapter,	available	online.

8.2

Object	Orientation

The	object-relational	data	model	extends	the	relational	data	model	by	providing	a	richer	type	system,
including	complex	data	types	and	object	orientation.	Relational	query

8.2

Object	Orientation

377

languages,	in	particular	SQL,	have	been	extended	correspondingly	to	deal	with	the	richer	type	system.
Such	extensions	attempt	to	preserve	the	relational	foundations	—

in	particular,	the	declarative	access	to	data	—	while	extending	the	modeling	power.

Many	database	applications	are	written	using	an	object-oriented	programming	language,	such	as	Java,
Python,	or	C++,	but	they	need	to	store	and	fetch	data	from	databases.	Due	to	the	type	difference	between
the	native	type	system	of	the	object-oriented	programming	language	and	the	relational	model	supported
by	databases,	data	need	to	be	translated	between	the	two	models	whenever	they	are	fetched	or	stored.

Merely	extending	the	type	system	supported	by	the	database	was	not	enough	to	solve	this	problem
completely.	Having	to	express	database	access	using	a	language	(SQL)	that	is	different	from	the
programming	language	again	makes	the	job	of	the	programmer	harder.	It	is	desirable,	for	many
applications,	to	have	programming	language	constructs	or	extensions	that	permit	direct	access	to	data	in
the	database,	without	having	to	go	through	an	intermediate	language	such	as	SQL.

Three	approaches	are	used	in	practice	for	integrating	object	orientation	with	database	systems:

1.	Build	an	object-relational	database	system,	which	adds	object-oriented	features	to	a	relational	database
system.

2.	Automatically	convert	data	from	the	native	object-oriented	type	system	of	the	programming	language	to
a	relational	representation	for	storage,	and	vice	versa	for	retrieval.	Data	conversion	is	specified	using	an
object-relational	mapping.

3.	Build	an	object-oriented	database	system,	that	is,	a	database	system	that	natively	supports	an	object-
oriented	type	system	and	allows	direct	access	to	data	from	an	object-oriented	programming	language
using	the	native	type	system	of	the	language.

We	provide	a	brief	introduction	to	the	first	two	approaches	in	this	section.	While	the	third	approach,	the
object-oriented	database	approach,	has	some	benefits	over	the	first	two	approaches	in	terms	of	language
integration,	it	has	not	seen	much	success	for	two	reasons.	First,	declarative	querying	is	very	important	for
efficiently	accessing	data,	and	such	querying	is	not	supported	by	imperative	programming	languages.
Second,	direct	access	to	objects	via	pointers	was	found	to	result	in	increased	risk	of	database	corruption
due	to	pointer	errors.	We	do	not	describe	the	object-oriented	approach	any	further.

8.2.1

Object-Relational	Database	Systems

In	this	section,	we	outline	how	object-oriented	features	can	be	added	to	relational	database	systems.

378

Chapter	8

Complex	Data	Types

8.2.1.1

User-Defined	Types

Object	extensions	to	SQL	allow	creation	of	structured	user-defined	types,	references	to	such	types,	and
tables	containing	tuples	of	such	types.1

create	type	Person

(ID	varchar(20)	primary	key,

name	varchar(20),

address	varchar(20))

ref	from(ID);

create	table	people	of	Person;

We	can	create	a	new	person	as	follows:

insert	into	people	(ID,	name,	address)	values

('12345',	'Srinivasan',	'23	Coyote	Run');

Many	database	systems	support	array	and	table	types;	attributes	of	relations	and	of	user-defined	types
can	be	declared	to	be	of	such	array	or	table	types.	The	support	for	such	features	as	well	as	the	syntax
varies	widely	by	database	system.	In	PostgreSQL,	for	example,	integer[]	denotes	an	array	of	integers
whose	size	is	not	prespecified,	while	Oracle	supports	the	syntax	varray(10)	of	integer	to	specify	an	array
of	10	integers.	SQL

Server	allows	table-valued	types	to	be	declared	as	shown	in	the	following	example:	create	type	interest	as
table	(

topic	varchar(20),

degree	of	interest	int

);

create	table	users	(

ID	varchar(20),

name	varchar(20),

interests	interest

);

User-defined	types	can	also	have	methods	associated	with	them.	Only	a	few	database	systems,	such	as
Oracle,	support	this	feature;	we	omit	details.

8.2.1.2

Type	Inheritance

Consider	the	earlier	definition	of	the	type	Person	and	the	table	people.	We	may	want	to	store	extra
information	in	the	database	about	people	who	are	students	and	about	people	1Structured	types	are
different	from	the	simpler	“distinct”	data	types	that	we	covered	in	Section	4.5.5.

8.2

Object	Orientation

379

who	are	teachers.	Since	students	and	teachers	are	also	people,	we	can	use	inheritance	to	define	the
student	and	teacher	types	in	SQL:

create	type	Student	under	Person

(degree	varchar(20))	;

create	type	Teacher	under	Person

(salary	integer);

Both	Student	and	Teacher	inherit	the	attributes	of	Person	—	namely,	ID,	name,	and	address.	Student	and
Teacher	are	said	to	be	subtypes	of	Person,	and	Person	is	a	supertype	of	Student,	as	well	as	of	Teacher.

Methods	of	a	structured	type	are	inherited	by	its	subtypes,	just	as	attributes	are.

However,	a	subtype	can	redefine	the	effect	of	a	method.	We	omit	details.

8.2.1.3

Table	Inheritance

Table	inheritance	allows	a	table	to	be	declared	as	a	subtable	of	another	table	and	corresponds	to	the	E-R
notion	of	specialization/generalization.	Several	database	systems	support	table	inheritance,	but	in
different	ways.

In	PostgreSQL,	we	could	create	a	table	people	and	then	create	tables	students	and	teachers	as	subtables
of	people	as	follows:

create	table	students

(degree	varchar(20))

inherits	people;

create	table	teachers

(salary	integer)

inherits	people;

As	a	result,	every	attribute	present	in	the	table	people	is	also	present	in	the	subtables	students	and
teachers.

SQL:1999	supports	table	inheritance	but	requires	table	types	to	be	specified	first.

Thus,	in	Oracle,	which	supports	SQL:1999,	we	could	use:

create	table	people	of	Person;

create	table	students	of	Student

under	people;

create	table	teachers	of	Teacher

under	people;

where	the	types	Student	and	Teacher	have	been	declared	to	be	subtypes	of	Person	as	described	earlier.

380

Chapter	8

Complex	Data	Types

In	either	case,	we	can	insert	a	tuple	into	the	student	table	as	follows:	insert	into	student	values	('00128',
'Zhang',	'235	Coyote	Run',	'Ph.D.');	where	we	provide	values	for	the	attributes	inherited	from	people	as
well	as	the	local	attributes	of	student.

When	we	declare	students	and	teachers	as	subtables	of	people,	every	tuple	present	in	students	or
teachers	becomes	implicitly	present	in	people.	Thus,	if	a	query	uses	the	table	people,	it	will	find	not	only
tuples	directly	inserted	into	that	table	but	also	tuples	inserted	into	its	subtables,	namely,	students	and
teachers.	However,	only	those	attributes	that	are	present	in	people	can	be	accessed	by	that	query.	SQL
permits	us	to	find	tuples	that	are	in	people	but	not	in	its	subtables	by	using	“only	people”	in	place	of
people	in	a	query.

8.2.1.4

Reference	Types	in	SQL

Some	SQL	implementations	such	as	Oracle	support	reference	types.	For	example,	we	could	define	the
Person	type	as	follows,	with	a	reference-type	declaration:	create	type	Person

(ID	varchar(20)	primary	key,

name	varchar(20),

address	varchar(20))

ref	from(ID);

create	table	people	of	Person;

By	default,	SQL	assigns	system-defined	identifiers	for	tuples,	but	an	existing	primary-key	value	can	be
used	to	reference	a	tuple	by	including	the	ref	from	clause	in	the	type	definition	as	shown	above.

We	can	define	a	type	Department	with	a	field	name	and	a	field	head	that	is	a	reference	to	the	type	Person.
We	can	then	create	a	table	departments	of	type	Department,	as	follows:

create	type	Department	(

dept	name	varchar(20),

head	ref(Person)	scope	people);

create	table	departments	of	Department;

Note	that	the	scope	clause	above	completes	the	definition	of	the	foreign	key	from	departments.head	to	the
people	relation.

When	inserting	a	tuple	for	departments,	we	can	then	use:

insert	into	departments

values	('CS',	'12345');

8.2

Object	Orientation

381

since	the	ID	attribute	is	used	as	a	reference	to	Person.	Alternatively,	the	definition	of	Person	can	specify
that	the	reference	must	be	generated	automatically	by	the	system	when	a	Person	object	is	created.
System-generated	identifiers	can	be	retrieved	using	ref(r)	where	r	is	a	table	name	of	table	alias	used	in	a
query.	Thus,	we	could	create	a	Person	tuple,	and,	using	the	ID	or	name	of	the	person,	we	could	retrieve
the	reference	to	the	tuple	in	a	subquery,	which	is	used	to	create	the	value	for	the	head	attribute	when
inserting	a	tuple	into	the	departments	table.	Since	most	database	systems	do	not	allow	subqueries	in	an
insert	into	departments	values	statement,	the	following	two	queries	can	be	used	to	carry	out	the	task:

insert	into	departments

values	('CS',	null);

update	departments

set	head	=	(select	ref(p)

from	people	as	p

where	ID	=	'12345')

where	dept	name	=	'CS';

References	are	dereferenced	in	SQL:1999	by	the	−	>	symbol.	Consider	the	departments	table	defined
earlier.	We	can	use	this	query	to	find	the	names	and	addresses	of	the	heads	of	all	departments:

select	head−	>name,	head−	>address

from	departments;

An	expression	such	as	“head−	>name”	is	called	a	path	expression.

Since	head	is	a	reference	to	a	tuple	in	the	people	table,	the	attribute	name	in	the	preceding	query	is	the
name	attribute	of	the	tuple	from	the	people	table.	References	can	be	used	to	hide	join	operations;	in	the
preceding	example,	without	the	references,	the	head	field	of	department	would	be	declared	a	foreign	key
of	the	table	people.	To	find	the	name	and	address	of	the	head	of	a	department,	we	would	require	an
explicit	join	of	the	relations	departments	and	people.	The	use	of	references	simplifies	the	query
considerably.

We	can	use	the	operation	deref	to	return	the	tuple	pointed	to	by	a	reference	and	then	access	its
attributes,	as	shown	below:

select	deref(head).	name

from	departments;

8.2.2

Object-Relational	Mapping

Object-relational	mapping	(ORM)	systems	allow	a	programmer	to	define	a	mapping	between	tuples	in
database	relations	and	objects	in	the	programming	language.

382

Chapter	8

Complex	Data	Types

An	object,	or	a	set	of	objects,	can	be	retrieved	based	on	a	selection	condition	on	its	attributes;	relevant
data	are	retrieved	from	the	underlying	database	based	on	the	selection	conditions,	and	one	or	more
objects	are	created	from	the	retrieved	data,	based	on	the	prespecified	mapping	between	objects	and
relations.

The	program	can	update	retrieved	objects,	create	new	objects,	or	specify	that	an	object	is	to	be	deleted,
and	then	issue	a	save	command;	the	mapping	from	objects	to	relations	is	then	used	to	correspondingly
update,	insert,	or	delete	tuples	in	the	database.

The	primary	goal	of	object-relational	mapping	systems	is	to	ease	the	job	of	programmers	who	build
applications	by	providing	them	an	object	model	while	retaining	the	benefits	of	using	a	robust	relational
database	underneath.	As	an	added	benefit,	when	operating	on	objects	cached	in	memory,	object-relational
systems	can	provide	significant	performance	gains	over	direct	access	to	the	underlying	database.

Object-relational	mapping	systems	also	provide	query	languages	that	allow	programmers	to	write	queries
directly	on	the	object	model;	such	queries	are	translated	into	SQL	queries	on	the	underlying	relational
database,	and	result	objects	are	created	from	the	SQL	query	results.

A	fringe	benefit	of	using	an	ORM	is	that	any	of	a	number	of	databases	can	be	used	to	store	data,	with
exactly	the	same	high-level	code.	ORMs	hide	minor	SQL	differences	between	databases	from	the	higher
levels.	Migration	from	one	database	to	another	is	thus	relatively	straightforward	when	using	an	ORM,
whereas	SQL	differences	can	make	such	migration	significantly	harder	if	an	application	uses	SQL	to
communicate	with	the	database.

On	the	negative	side,	object-relational	mapping	systems	can	suffer	from	significant	performance
inefficiencies	for	bulk	database	updates,	as	well	as	for	complex	queries	that	are	written	directly	in	the
imperative	language.	It	is	possible	to	update	the	database	directly,	bypassing	the	object-relational
mapping	system,	and	to	write	complex	queries	directly	in	SQL	in	cases	where	such	inefficiencies	are
discovered.

The	benefits	of	object-relational	models	exceed	the	drawbacks	for	many	applications,	and	object-relational
mapping	systems	have	seen	widespread	adoption	in	recent	years.	In	particular,	Hibernate	has	seen	wide
adoption	with	Java,	while	several	ORMs	including	Django	and	SQLAlchemy	are	widely	used	with	Python.
More	information	on	the	Hibernate	ORM	system,	which	provides	an	object-relational	mapping	for	Java,
and	the	Django	ORM	system,	which	provides	an	object-relational	mapping	for	Python,	can	be	found	in
Section	9.6.2.

8.3

Textual	Data

Textual	data	consists	of	unstructured	text.	The	term	information	retrieval	generally	refers	to	the	querying
of	unstructured	textual	data.	In	the	traditional	model	used	in	the	field	of	information	retrieval,	textual
information	is	organized	into	documents.	In	a	database,	a	text-valued	attribute	can	be	considered	a
document.	In	the	context	of	the	web,	each	web	page	can	be	considered	to	be	a	document.

8.3

Textual	Data

383

8.3.1

Keyword	Queries

Information	retrieval	systems	support	the	ability	to	retrieve	documents	with	some	desired	information.
The	desired	documents	are	typically	described	by	a	set	of	keywords

—	for	example,	the	keywords	“database	system”	may	be	used	to	locate	documents	on	database	systems,
and	the	keywords	“stock”	and	“scandal”	may	be	used	to	locate	articles	about	stock-market	scandals.
Documents	have	associated	with	them	a	set	of	keywords;	typically,	all	the	words	in	the	documents	are
considered	keywords.	A	keyword	query	retrieves	documents	whose	set	of	keywords	contains	all	the
keywords	in	the	query.

In	its	simplest	form,	an	information-retrieval	system	locates	and	returns	all	documents	that	contain	all	the
keywords	in	the	query.	More-sophisticated	systems	estimate	the	relevance	of	documents	to	a	query	so	that
the	documents	can	be	shown	in	order	of	estimated	relevance.	They	use	information	about	keyword
occurrences,	as	well	as	hyperlink	information,	to	estimate	relevance.

Keyword	search	was	originally	targeted	at	document	repositories	within	organizations	or	domain-specific
document	repositories	such	as	research	publications.	But	information	retrieval	is	also	important	for
documents	stored	in	a	database.

Keyword-based	information	retrieval	can	be	used	not	only	for	retrieving	textual	data,	but	also	for
retrieving	other	types	of	data,	such	as	video	and	audio	data,	that	have	descriptive	keywords	associated
with	them.	For	instance,	a	video	movie	may	have	associated	with	it	keywords	such	as	its	title,	director,
actors,	and	genre,	while	an	image	or	video	clip	may	have	tags,	which	are	keywords	describing	the	image
or	video	clip,	associated	with	it.

Web	search	engines	are,	at	core,	information	retrieval	systems.	They	retrieve	and	store	web	pages	by
crawling	the	web.	Users	submit	keyword	queries,	and	the	information	retrieval	part	of	the	web	search
engine	finds	stored	web	pages	containing	the	required	keyword.	Web	search	engines	have	today	evolved
beyond	just	retrieving	web	pages.

Today,	search	engines	aim	to	satisfy	a	user’s	information	needs	by	judging	what	topic	a	query	is	about	and
displaying	not	only	web	pages	judged	as	relevant	but	also	other	kinds	of	information	about	the	topic.	For
example,	given	a	query	term	“cricket”,	a	search	engine	may	display	scores	from	ongoing	or	recent	cricket
matches,	rather	than	just	top-ranked	documents	related	to	cricket.	As	another	example,	in	response	to	a
query	“New	York”,	a	search	engine	may	show	a	map	of	New	York	and	images	of	New	York	in	addition	to
web	pages	related	to	New	York.

8.3.2

Relevance	Ranking

The	set	of	all	documents	that	contain	the	keywords	in	a	query	may	be	very	large;	in	particular,	there	are
billions	of	documents	on	the	web,	and	most	keyword	queries	on	a	web	search	engine	find	hundreds	of
thousands	of	documents	containing	some	or	all	of	the	keywords.	Not	all	the	documents	are	equally
relevant	to	a	keyword	query.

Information-retrieval	systems	therefore	estimate	relevance	of	documents	to	a	query	and	return	only	highly
ranked	documents	as	answers.	Relevance	ranking	is	not	an	exact	science,	but	there	are	some	well-
accepted	approaches.

384

Chapter	8

Complex	Data	Types

8.3.2.1

Ranking	Using	TF-IDF

The	word	term	refers	to	a	keyword	occurring	in	a	document,	or	given	as	part	of	a	query.

The	first	question	to	address	is,	given	a	particular	term	t,	how	relevant	is	a	particular	document	d	to	the
term.	One	approach	is	to	use	the	number	of	occurrences	of	the	term	in	the	document	as	a	measure	of	its
relevance,	on	the	assumption	that	more	relevant	terms	are	likely	to	be	mentioned	many	times	in	a
document.	Just	counting	the	number	of	occurrences	of	a	term	is	usually	not	a	good	indicator:	first,	the
number	of	occurrences	depends	on	the	length	of	the	document,	and	second,	a	document	containing	10

occurrences	of	a	term	may	not	be	10	times	as	relevant	as	a	document	containing	one	occurrence.

One	way	of	measuring	TF	(d,	t),	the	relevance	of	a	term	t	to	a	document	d,	is:	(

)

TF	(d,	t)	=	log	1	+	n(d,	t)	n(d)

where	n(d)	denotes	the	number	of	term	occurrences	in	the	document	and	n(d,	t)	denotes	the	number	of
occurrences	of	term	t	in	the	document	d.	Observe	that	this	metric	takes	the	length	of	the	document	into
account.	The	relevance	grows	with	more	occurrences	of	a	term	in	the	document,	although	it	is	not	directly
proportional	to	the	number	of	occurrences.

Many	systems	refine	the	above	metric	by	using	other	information.	For	instance,	if	the	term	occurs	in	the
title,	or	the	author	list,	or	the	abstract,	the	document	would	be	considered	more	relevant	to	the	term.
Similarly,	if	the	first	occurrence	of	a	term	is	late	in	the	document,	the	document	may	be	considered	less
relevant	than	if	the	first	occurrence	is	early	in	the	document.	The	above	notions	can	be	formalized	by
extensions	of	the	formula	we	have	shown	for	TF	(d,	t).	In	the	information	retrieval	community,	the
relevance	of	a	document	to	a	term	is	referred	to	as	term	frequency	(TF),	regardless	of	the	exact	formula
used.

A	query	Q	may	contain	multiple	keywords.	The	relevance	of	a	document	to	a	query	with	two	or	more
keywords	is	estimated	by	combining	the	relevance	measures	of	the	document	for	each	keyword.	A	simple
way	of	combining	the	measures	is	to	add	them	up.

However,	not	all	terms	used	as	keywords	are	equal.	Suppose	a	query	uses	two	terms,	one	of	which	occurs
frequently,	such	as	“database”,	and	another	that	is	less	frequent,	such	as	“Silberschatz”.	A	document
containing	“Silberschatz”	but	not	“database”	should	be	ranked	higher	than	a	document	containing	the
term	“database”	but	not	“Silberschatz”.

To	fix	this	problem,	weights	are	assigned	to	terms	using	the	inverse	document	frequency	(IDF),	defined
as:

IDF	(t)	=	1

n(t)

where	n(t)	denotes	the	number	of	documents	(among	those	indexed	by	the	system)	that	contain	the	term
t.	The	relevance	of	a	document	d	to	a	set	of	terms	Q	is	then	defined	as:

8.3

Textual	Data

385

∑

r(d,	Q)	=

TF	(d,	t)	∗	IDF(t)

t∈	Q

This	measure	can	be	further	refined	if	the	user	is	permitted	to	specify	weights	w(t)	for	terms	in	the	query,
in	which	case	the	user-specified	weights	are	also	taken	into	account	by	multiplying	TF	(t)	by	w(t)	in	the
preceding	formula.

The	above	approach	of	using	term	frequency	and	inverse	document	frequency	as	a	measure	of	the
relevance	of	a	document	is	called	the	TF–IDF	approach.

Almost	all	text	documents	(in	English)	contain	words	such	as	“and,”	“or,”	“a,”	and	so	on,	and	hence	these
words	are	useless	for	querying	purposes	since	their	inverse	document	frequency	is	extremely	low.
Information-retrieval	systems	define	a	set	of	words,	called	stop	words,	containing	100	or	so	of	the	most
common	words,	and	ignore	these	words	when	indexing	a	document.	Such	words	are	not	used	as
keywords,	and	they	are	discarded	if	present	in	the	keywords	supplied	by	the	user.

Another	factor	taken	into	account	when	a	query	contains	multiple	terms	is	the	proximity	of	the	terms	in
the	document.	If	the	terms	occur	close	to	each	other	in	the	document,	the	document	will	be	ranked	higher
than	if	they	occur	far	apart.	The	formula	for	r(d,	Q)	can	be	modified	to	take	proximity	of	the	terms	into
account.

Given	a	query	Q,	the	job	of	an	information-retrieval	system	is	to	return	documents	in	descending	order	of
their	relevance	to	Q.	Since	there	may	be	a	very	large	number	of	documents	that	are	relevant,	information-
retrieval	systems	typically	return	only	the	first	few	documents	with	the	highest	degree	of	estimated
relevance	and	permit	users	to	interactively	request	further	documents.

8.3.2.2

Ranking	Using	Hyperlinks

Hyperlinks	between	documents	can	be	used	to	decide	on	the	overall	importance	of	a	document,
independent	of	the	keyword	query;	for	example,	documents	linked	from	many	other	documents	are
considered	more	important.

The	web	search	engine	Google	introduced	PageRank,	which	is	a	measure	of	popularity	of	a	page	based	on
the	popularity	of	pages	that	link	to	the	page.	Using	the	PageRank	popularity	measure	to	rank	answers	to	a
query	gave	results	so	much	better	than	previously	used	ranking	techniques	that	Google	became	the	most
widely	used	search	engine	in	a	rather	short	period	of	time.

Note	that	pages	that	are	pointed	to	from	many	web	pages	are	more	likely	to	be	visited,	and	thus	should
have	a	higher	PageRank.	Similarly,	pages	pointed	to	by	web	pages	with	a	high	PageRank	will	also	have	a
higher	probability	of	being	visited,	and	thus	should	have	a	higher	PageRank.

The	PageRank	of	a	document	d	is	thus	defined	(circularly)	based	on	the	PageRank	of	other	documents	that
link	to	document	d.	PageRank	can	be	defined	by	a	set	of	linear	equations,	as	follows:	First,	web	pages	are
given	integer	identifiers.	The	jump	probability	matrix	T	is	defined	with	T	[i,	j]	set	to	the	probability	that	a
random	walker	who	is	following	a	link	out	of	page	i	follows	the	link	to	page	j.	Assuming	that	each	link

386

Chapter	8

Complex	Data	Types

from	i	has	an	equal	probability	of	being	followed	T	[i,	j]	=	1∕	N	,	where	N	is	the	number	i

i

of	links	out	of	page	i.	Then	the	PageRank	P[j]	for	each	page	j	can	be	defined	as:	N

∑

P[j]	=	δ∕	N	+	(1	−	δ)	∗

(T	[i,	j]	∗	P[i])

i=1

where	δ	is	a	constant	between	0	and	1,	usually	set	to	0.15,	and	N	is	the	number	of	pages.

The	set	of	equations	generated	as	above	are	usually	solved	by	an	iterative	technique,	starting	with	each	P[
i]	set	to	1∕	N.	Each	step	of	the	iteration	computes	new	values	for	each	P[i]	using	the	P	values	from	the
previous	iteration.	Iteration	stops	when	the	maximum	change	in	any	P[i]	value	in	an	iteration	goes	below
some	cutoff	value.

Note	that	PageRank	is	a	static	measure,	independent	of	the	keyword	query;	given	a	keyword	query,	it	is
used	in	combination	with	TF–IDF	scores	of	a	document	to	judge	its	relevance	of	the	document	to	the
keyword	query.

PageRank	is	not	the	only	measure	of	the	popularity	of	a	site.	Information	about	how	often	a	site	is	visited
is	another	useful	measure	of	popularity.	Further,	search	engines	track	what	fraction	of	times	users	click
on	a	page	when	it	is	returned	as	an	answer.

Keywords	that	occur	in	the	anchor	text	associated	with	the	hyperlink	to	a	page	are	viewed	as	very
important	and	are	given	a	higher	term	frequency.	These	and	a	number	of	other	factors	are	used	to	rank
answers	to	a	keyword	query.

8.3.3

Measuring	Retrieval	Effectiveness

Ranking	of	results	of	a	keyword	query	is	not	an	exact	science.	Two	metrics	are	used	to	measure	how	well
an	information-retrieval	system	is	able	to	answer	queries.	The	first,	precision,	measures	what	percentage
of	the	retrieved	documents	are	actually	relevant	to	the	query.	The	second,	recall,	measures	what
percentage	of	the	documents	relevant	to	the	query	were	retrieved.	Since	search	engines	find	a	very	large
number	of	answers,	and	users	typically	stop	after	browsing	some	number	(say,	10	or	20)	of	the	answers,
the	precision	and	recall	numbers	are	usually	measured	“@K”,	where	K	is	the	number	of	answers	viewed.
Thus,	one	can	talk	of	precision@10	or	recall@20.

8.3.4

Keyword	Querying	on	Structured	Data	and	Knowledge	Graphs

Although	querying	on	structured	data	are	typically	done	using	query	languages	such	as	SQL,	users	who
are	not	familiar	with	the	schema	or	the	query	language	find	it	difficult	to	get	information	from	such	data.
Based	on	the	success	of	keyword	querying	in	the	context	of	information	retrieval	from	the	web,
techniques	have	been	developed	to	support	keyword	queries	on	structured	and	semi-structured	data.

One	approach	is	to	represent	the	data	using	graphs,	and	then	perform	keyword	queries	on	the	graphs.	For
example,	tuples	can	be	treated	as	nodes	in	the	graph,	and	foreign	key	and	other	connections	between
tuples	can	be	treated	as	edges	in	the	graph.

Keyword	search	is	then	modeled	as	finding	tuples	containing	the	given	keywords	and	finding	connecting
paths	between	them	in	the	corresponding	graph.

8.4

Spatial	Data

387

For	example,	a	query	“Zhang	Katz”	on	a	university	database	may	find	the	name

“Zhang”	occurring	in	a	student	tuple,	and	the	name	“Katz”	in	an	instructor	tuple,	a	path	through	the
advisor	relation	connecting	the	two	tuples.	Other	paths,	such	as	student

“Zhang”	taking	a	course	taught	by	“Katz”	may	also	be	found	in	response	to	this	query.

Such	queries	may	be	used	for	ad	hoc	browsing	and	querying	of	data	when	the	user	does	not	know	the
exact	schema	and	does	not	wish	to	take	the	effort	to	write	an	SQL	query	defining	what	she	is	searching
for.	Indeed	it	is	unreasonable	to	expect	lay	users	to	write	queries	in	a	structured	query	language,	whereas
keyword	querying	is	quite	natural.

Since	queries	are	not	fully	defined,	they	may	have	many	different	types	of	answers,	which	must	be	ranked.
A	number	of	techniques	have	been	proposed	to	rank	answers	in	such	a	setting,	based	on	the	lengths	of
connecting	paths	and	on	techniques	for	assigning	directions	and	weights	to	edges.	Techniques	have	also
been	proposed	for	assigning	popularity	ranks	to	tuples	based	on	foreign	key	links.	More	information	on
keyword	searching	of	structured	data	may	be	found	in	the	bibliographic	notes	for	this	chapter,	available
online.

Further,	knowledge	graphs	can	be	used	along	with	textual	information	to	answer	queries.	For	example,
knowledge	graphs	can	be	used	to	provide	unique	identifiers	to	entities,	which	are	used	to	annotate
mentions	of	the	entities	in	textual	documents.	Now	a	particular	mention	of	a	person	in	a	document	may
have	the	phrase	“Stonebraker	developed	PostgreSQL”;	from	the	context,	the	word	Stonebraker	may	be
inferred	to	be	the	database	researcher	“Michael	Stonebraker”	and	annotated	by	linking	the	word
Stonebraker	to	the	entity	“Michael	Stonebraker”.	The	knowledge	graph	may	also	record	the	fact	that
Stonebraker	won	the	Turing	award.	A	query	asking	for	“turing	award	postgresql”	can	now	be	answered	by
using	information	from	the	document	and	the	knowledge	graph.2

Web	search	engines	today	use	large	knowledge	graphs,	in	addition	to	crawled	documents,	to	answer	user
queries.

8.4

Spatial	Data

Spatial	data	support	in	database	systems	is	important	for	efficiently	storing,	indexing,	and	querying	of
data	on	the	basis	of	spatial	locations.

Two	types	of	spatial	data	are	particularly	important:

•	Geographic	data	such	as	road	maps,	land-usage	maps,	topographic	elevation	maps,	political	maps
showing	boundaries,	land-ownership	maps,	and	so	on.	Geographic	information	systems	are	special-
purpose	database	systems	tailored	for	storing	geographic	data.	Geographic	data	is	based	on	a	round-earth
coordinate	system,	with	latitude,	longitude,	and	elevation.

2In	this	case	the	knowledge	graph	may	already	record	that	Stonebraker	developed	PostgreSQL,	but	there
are	many	other	pieces	of	information	that	may	exist	only	in	documents,	and	not	in	the	knowledge	graphs.

388

Chapter	8

Complex	Data	Types

•	Geometric	data,	which	include	spatial	information	about	how	objects—such	as	buildings,	cars,	or
aircraft	—	are	constructed.	Geometric	data	is	based	on	a	two-dimensional	or	three-dimensional	Euclidean
space,	with	X	,	Y	,	and	Z	coordinates.

Geographic	and	geometric	data	types	are	supported	by	many	database	systems,	such	as	Oracle	Spatial
and	Graph,	the	PostGIS	extension	of	PostgreSQL,	SQL	Server,	and	the	IBM	DB2	Spatial	Extender.

In	this	section	we	describe	the	modeling	and	querying	of	spatial	data;	implementation	techniques	such	as
indexing	and	query	processing	techniques	are	covered	in	Chapter	14	and	in	Chapter	15.

The	syntax	for	representing	geographic	and	geometric	data	varies	by	database,	although	representations
based	on	the	Open	Geospatial	Consortium	(OGC)	standard	are	now	increasingly	supported.	See	the
manuals	of	the	database	you	use	to	learn	more	about	the	specific	syntax	supported	by	the	database.

8.4.1

Representation	of	Geometric	Information

Figure	8.5	illustrates	how	various	geometric	constructs	can	be	represented	in	a	database,	in	a	normalized
fashion.	We	stress	here	that	geometric	information	can	be	represented	in	several	different	ways,	only
some	of	which	we	describe.

A	line	segment	can	be	represented	by	the	coordinates	of	its	endpoints.	For	example,	in	a	map	database,
the	two	coordinates	of	a	point	would	be	its	latitude	and	longitude.

A	polyline	(also	called	a	linestring)	consists	of	a	connected	sequence	of	line	segments	and	can	be
represented	by	a	list	containing	the	coordinates	of	the	endpoints	of	the	segments,	in	sequence.	We	can
approximately	represent	an	arbitrary	curve	with	polylines	by	partitioning	the	curve	into	a	sequence	of
segments.	This	representation	is	useful	for	two-dimensional	features	such	as	roads;	here,	the	width	of	the
road	is	small	enough	relative	to	the	size	of	the	full	map	that	it	can	be	considered	to	be	a	line.	Some
systems	also	support	circular	arcs	as	primitives,	allowing	curves	to	be	represented	as	sequences	of	arcs.

We	can	represent	a	polygon	by	listing	its	vertices	in	order,	as	in	Figure	8.5.3	The	list	of	vertices	specifies
the	boundary	of	a	polygonal	region.	In	an	alternative	representation,	a	polygon	can	be	divided	into	a	set	of
triangles,	as	shown	in	Figure	8.5.	This	process	is	called	triangulation,	and	any	polygon	can	be
triangulated.	The	complex	polygon	can	be	given	an	identifier,	and	each	of	the	triangles	into	which	it	is
divided	carries	the	identifier	of	the	polygon.	Circles	and	ellipses	can	be	represented	by	corresponding
types	or	approximated	by	polygons.

List-based	representations	of	polylines	or	polygons	are	often	convenient	for	query	processing.	Such	non-
first-normal-form	representations	are	used	when	supported	by	the	underlying	database.	So	that	we	can
use	fixed-size	tuples	(in	first	normal	form)	for	representing	polylines,	we	can	give	the	polyline	or	curve	an
identifier,	and	we	can	3Some	references	use	the	term	closed	polygon	to	refer	to	what	we	call	polygons	and
refer	to	polylines	as	open	polygons.

8.4

Spatial	Data

389

2

line	segment

{(x1,y1),	(x2,y2)}

1

3

triangle

{(x1,y1),	(x2,y2),	(x3,y3)}

1

2

2

3

polygon

1

{(x1,y1),	(x2,y2),	(x3,y3),	(x4,y4),	(x5,y5)}

4

5

2

3

{(x1,y1),	(x2,y2),	(x3,y3),	ID1}

polygon

1

{(x1,y1),	(x3,y3),	(x4,y4),	ID1}

{(x1,y1),	(x4,y4),	(x5,y5),	ID1}

4

5

object

representation

Figure	8.5	Representation	of	geometric	constructs.

represent	each	segment	as	a	separate	tuple	that	also	carries	with	it	the	identifier	of	the	polyline	or	curve.
Similarly,	the	triangulated	representation	of	polygons	allows	a	first	normal	form	relational	representation
of	polygons.

The	representation	of	points	and	line	segments	in	three-dimensional	space	is	similar	to	their
representation	in	two-dimensional	space,	the	only	difference	being	that	points	have	an	extra	z	component.
Similarly,	the	representation	of	planar	figures	—	such	as	triangles,	rectangles,	and	other	polygons	—	does
not	change	much	when	we	move	to	three	dimensions.	Tetrahedrons	and	cuboids	can	be	represented	in	the
same	way	as	triangles	and	rectangles.	We	can	represent	arbitrary	polyhedra	by	dividing	them	into
tetrahedrons,	just	as	we	triangulate	polygons.	We	can	also	represent	them	by	listing	their	faces,	each	of
which	is	itself	a	polygon,	along	with	an	indication	of	which	side	of	the	face	is	inside	the	polyhedron.

390

Chapter	8

Complex	Data	Types

For	example,	SQL	Server	and	PostGIS	support	the	geometry	and	geography	types,	each	of	which	has
subtypes	such	as	point,	linestring,	curve,	polygon,	as	well	as	collections	of	these	types	called	multipoint,
multilinestring,	multicurve	and	multipoly-gon.	Textual	representations	of	these	types	are	defined	by	the
OGC	standards,	and	can	be	converted	to	internal	representations	using	conversion	functions.	For
example,	LINESTRING(1	1,	2	3,	4	4)	defines	a	line	that	connects	points	(1,	1),	(2,	3)	and	(4,	4),	while
POLYGON((1	1,	2	3,	4	4,	1	1))	defines	a	triangle	defined	by	these	points.

Functions	ST	GeometryFromText()	and	ST	GeographyFromText()	convert	the	textual	representations	to
geometry	and	geography	objects	respectively.	Operations	on	geometry	and	geography	types	that	return
objects	of	the	same	type	include	the	ST	Union()	and	ST	Intersection()	functions	which	compute	the	union
and	intersection	of	geometric	objects	such	as	linestrings	and	polygons.	The	function	names	as	well	as
syntax	differ	by	system;	see	the	system	manuals	for	details.

In	the	context	of	map	data,	the	various	line	segments	representing	the	roads	are	actually	interconnected
to	form	a	graph.	Such	a	spatial	network	or	spatial	graph	has	spatial	locations	for	vertices	of	the	graph,
along	with	interconnection	information	between	the	vertices,	which	form	the	edges	of	the	graph.	The
edges	have	a	variety	of	associated	information,	such	as	distance,	number	of	lanes,	average	speed	at
different	times	of	the	day,	and	so	on.

8.4.2

Design	Databases

Computer-aided-design	(CAD)	systems	traditionally	stored	data	in	memory	during	editing	or	other
processing	and	wrote	the	data	back	to	a	file	at	the	end	of	a	session	of	editing.

The	drawbacks	of	such	a	scheme	include	the	cost	(programming	complexity,	as	well	as	time	cost)	of
transforming	data	from	one	form	to	another	and	the	need	to	read	in	an	entire	file	even	if	only	parts	of	it
are	required.	For	large	designs,	such	as	the	design	of	a	large-scale	integrated	circuit	or	the	design	of	an
entire	airplane,	it	may	be	impossible	to	hold	the	complete	design	in	memory.	Designers	of	object-oriented
databases	were	motivated	in	large	part	by	the	database	requirements	of	CAD	systems.	Object-oriented
databases	represent	components	of	the	design	as	objects,	and	the	connections	between	the	objects
indicate	how	the	design	is	structured.

The	objects	stored	in	a	design	database	are	generally	geometric	objects.	Simple	two-dimensional
geometric	objects	include	points,	lines,	triangles,	rectangles,	and,	in	general,	polygons.	Complex	two-
dimensional	objects	can	be	formed	from	simple	objects	by	means	of	union,	intersection,	and	difference
operations.	Similarly,	complex	three-dimensional	objects	may	be	formed	from	simpler	objects	such	as

spheres,	cylinders,	and	cuboids	by	union,	intersection,	and	difference	operations,	as	in	Figure	8.6.

Three-dimensional	surfaces	may	also	be	represented	by	wireframe	models,	which	essentially	model	the
surface	as	a	set	of	simpler	objects,	such	as	line	segments,	triangles,	and	rectangles.

Design	databases	also	store	nonspatial	information	about	objects,	such	as	the	material	from	which	the
objects	are	constructed.	We	can	usually	model	such	information

8.4

Spatial	Data

391

(a)	Difference	of	cylinders

(b)	Union	of	cylinders

Figure	8.6	Complex	three-dimensional	objects.

by	standard	data-modeling	techniques.	We	concern	ourselves	here	with	only	the	spatial	aspects.

Various	spatial	operations	must	be	performed	on	a	design.	For	instance,	the	designer	may	want	to	retrieve
that	part	of	the	design	that	corresponds	to	a	particular	region	of	interest.	Spatial-index	structures,
discussed	in	Section	14.10.1,	are	useful	for	such	tasks.	Spatial-index	structures	are	multidimensional,
dealing	with	two-	and	three-dimensional	data,	rather	than	dealing	with	just	the	simple	one-dimensional
ordering	provided	by	the	B+-trees.

Spatial-integrity	constraints,	such	as	“two	pipes	should	not	be	in	the	same	location,”	are	important	in
design	databases	to	prevent	interference	errors.	Such	errors	often	occur	if	the	design	is	performed
manually	and	are	detected	only	when	a	prototype	is	being	constructed.	As	a	result,	these	errors	can	be
expensive	to	fix.	Database	support	for	spatial-integrity	constraints	helps	people	to	avoid	design	errors,
thereby	keeping	the	design	consistent.	Implementing	such	integrity	checks	again	depends	on	the
availability	of	efficient	multidimensional	index	structures.

8.4.3

Geographic	Data

Geographic	data	are	spatial	in	nature	but	differ	from	design	data	in	certain	ways.	Maps	and	satellite
images	are	typical	examples	of	geographic	data.	Maps	may	provide	not	only	location	information	—	about
boundaries,	rivers,	and	roads,	for	example	—	but	also	much	more	detailed	information	associated	with
locations,	such	as	elevation,	soil	type,	land	usage,	and	annual	rainfall.

8.4.3.1

Applications	of	Geographic	Data

Geographic	databases	have	a	variety	of	uses,	including	online	map	and	navigation	services,	which	are
ubiquitous	today.	Other	applications	include	distribution-network	information	for	public-service	utilities
such	as	telephone,	electric-power,	and	water-supply

392

Chapter	8

Complex	Data	Types

systems,	and	land-usage	information	for	ecologists	and	planners,	land	records	to	track	land	ownership,
and	many	more.

Geographic	databases	for	public-utility	information	have	become	very	important	as	the	network	of	buried
cables	and	pipes	has	grown.	Without	detailed	maps,	work	carried	out	by	one	utility	may	damage	the
structure	of	another	utility,	resulting	in	large-scale	disruption	of	service.	Geographic	databases,	coupled
with	accurate	location-finding	systems	using	GPS	help	avoid	such	problems.

8.4.3.2

Representation	of	Geographic	Data

Geographic	data	can	be	categorized	into	two	types:

•	Raster	data.	Such	data	consist	of	bitmaps	or	pixel	maps,	in	two	or	more	dimensions.	A	typical	example

of	a	two-dimensional	raster	image	is	a	satellite	image	of	an	area.	In	addition	to	the	actual	image,	the	data
include	the	location	of	the	image,	specified,	for	example,	by	the	latitude	and	longitude	of	its	corners,	and
the	resolution,	specified	either	by	the	total	number	of	pixels,	or,	more	commonly	in	the	context	of
geographic	data,	by	the	area	covered	by	each	pixel.

Raster	data	are	often	represented	as	tiles,	each	covering	a	fixed-size	area.	A	larger	area	can	be	displayed
by	displaying	all	the	tiles	that	overlap	with	the	area.

To	allow	the	display	of	data	at	different	zoom	levels,	a	separate	set	of	tiles	is	created	for	each	zoom	level.
Once	the	zoom	level	is	set	by	the	user	interface	(e.g.,	a	web	browser),	tiles	at	the	specified	zoom	level	that
overlap	the	area	being	displayed	are	retrieved	and	displayed.

Raster	data	can	be	three-dimensional	—	for	example,	the	temperature	at	different	altitudes	at	different
regions,	again	measured	with	the	help	of	a	satellite.	Time	could	form	another	dimension	—	for	example,
the	surface	temperature	measure-ments	at	different	points	in	time.

•	Vector	data.	Vector	data	are	constructed	from	basic	geometric	objects,	such	as	points,	line	segments,
polylines,	triangles,	and	other	polygons	in	two	dimensions,	and	cylinders,	spheres,	cuboids,	and	other
polyhedrons	in	three	dimensions.	In	the	context	of	geographic	data,	points	are	usually	represented	by
latitude	and	longitude,	and	where	the	height	is	relevant,	additionally	by	elevation.

Map	data	are	often	represented	in	vector	format.	Roads	are	often	represented	as	polylines.	Geographic
features,	such	as	large	lakes,	or	even	political	features	such	as	states	and	countries,	are	represented	as
complex	polygons.	Some	features,	such	as	rivers,	may	be	represented	either	as	complex	curves	or	as
complex	polygons,	depending	on	whether	their	width	is	relevant.

Geographic	information	related	to	regions,	such	as	annual	rainfall,	can	be	represented	as	an	array	—	that
is,	in	raster	form.	For	space	efficiency,	the	array	can	be	stored	in	a	compressed	form.	In	Section	24.4.1,
we	study	an	alternative	representation	of	such	arrays	by	a	data	structure	called	a	quadtree.

8.4

Spatial	Data

393

As	another	alternative,	we	can	represent	region	information	in	vector	form,	using	polygons,	where	each
polygon	is	a	region	within	which	the	array	value	is	the	same.	The	vector	representation	is	more	compact
than	the	raster	representation	in	some	applications.	It	is	also	more	accurate	for	some	tasks,	such	as
depicting	roads,	where	dividing	the	region	into	pixels	(which	may	be	fairly	large)	leads	to	a	loss	of
precision	in	location	information.	However,	the	vector	representation	is	unsuitable	for	applications	where
the	data	are	intrinsically	raster	based,	such	as	satellite	images.

Topographical	information,	that	is	information	about	the	elevation	(height)	of	each	point	on	a	surface,	can
be	represented	in	raster	form.	Alternatively,	it	can	be	represented	in	vector	form	by	dividing	the	surface
into	polygons	covering	regions	of	(approximately)	equal	elevation,	with	a	single	elevation	value	associated
with	each	polygon.	As	another	alternative,	the	surface	can	be	triangulated	(i.e.,	divided	into	triangles),
with	each	triangle	represented	by	the	latitude,	longitude,	and	elevation	of	each	of	its	corners.	The	latter
representation,	called	the	triangulated	irregular	network	(TIN)	representation,	is	a	compact
representation	which	is	particularly	useful	for	generating	three-dimensional	views	of	an	area.

Geographic	information	systems	usually	contain	both	raster	and	vector	data,	and	they	can	merge	the	two
kinds	of	data	when	displaying	results	to	users.	For	example,	map	applications	usually	contain	both
satellite	images	and	vector	data	about	roads,	buildings,	and	other	landmarks.	A	map	display	usually
overlays	different	kinds	of	information;	for	example,	road	information	can	be	overlaid	on	a	background
satellite	image	to	create	a	hybrid	display.	In	fact,	a	map	typically	consists	of	multiple	layers,	which	are
displayed	in	bottom-to-top	order;	data	from	higher	layers	appear	on	top	of	data	from	lower	layers.

It	is	also	interesting	to	note	that	even	information	that	is	actually	stored	in	vector	form	may	be	converted
to	raster	form	before	it	is	sent	to	a	user	interface	such	as	a	web	browser.	One	reason	is	that	even	web
browsers	in	which	JavaScript	has	been	disabled	can	then	display	map	data;	a	second	reason	may	be	to
prevent	end	users	from	extracting	and	using	the	vector	data.

Map	services	such	as	Google	Maps	and	Bing	Maps	provide	APIs	that	allow	users	to	create	specialized	map
displays,	containing	application-specific	data	overlaid	on	top	of	standard	map	data.	For	example,	a	web
site	may	show	a	map	of	an	area	with	information	about	restaurants	overlaid	on	the	map.	The	overlays	can
be	constructed	dynamically,	displaying	only	restaurants	with	a	specific	cuisine,	for	example,	or	allowing
users	to	change	the	zoom	level	or	pan	the	display.

8.4.4

Spatial	Queries

There	are	a	number	of	types	of	queries	that	involve	spatial	locations.

•	Region	queries	deal	with	spatial	regions.	Such	a	query	can	ask	for	objects	that	lie	partially	or	fully	inside
a	specified	region.	A	query	to	find	all	retail	shops	within	the	geographic	boundaries	of	a	given	town	is	an
example.	PostGIS	supports	predicates	between	two	geometry	or	geography	objects	such	as	ST	Contains(),
ST	Overlaps(),

394

Chapter	8

Complex	Data	Types

ST	Disjoint()	and	ST	Touches().	These	can	be	used	to	find	objects	that	are	contained	in,	or	intersect,	or	are
disjoint	from	a	region.	SQL	Server	supports	equivalent	functions	with	slightly	different	names.

Suppose	we	have	a	shop	relation,	with	an	attribute	location	of	type	point,	and	a	geography	object	of	type
polygon.	Then	the	ST	Contains()	function	can	be	used	to	retrieve	all	shops	whose	location	is	contained	in
the	given	polygon.

•	Nearness	queries	request	objects	that	lie	near	a	specified	location.	A	query	to	find	all	restaurants	that
lie	within	a	given	distance	of	a	given	point	is	an	example	of	a	nearness	query.	The	nearest-neighbor	query
requests	the	object	that	is	nearest	to	a	specified	point.	For	example,	we	may	want	to	find	the	nearest
gasoline	station.

Note	that	this	query	does	not	have	to	specify	a	limit	on	the	distance,	and	hence	we	can	ask	it	even	if	we
have	no	idea	how	far	the	nearest	gasoline	station	lies.

The	PostGIS	ST	Distance()	function	gives	the	minimum	distance	between	two	such	objects,	and	can	be
used	to	find	objects	that	are	within	a	specified	distance	from	a	point	or	region.	Nearest	neighbors	can	be
found	by	finding	objects	with	minimum	distance.

•	Spatial	graph	queries	request	information	based	on	spatial	graphs	such	as	road	maps.	For	example,	a
query	may	ask	for	the	shortest	path	between	two	locations	via	the	road	network,	or	via	a	train	network,
each	of	which	can	be	represented	as	a	spatial	graph.	Such	queries	are	ubiquitous	for	navigation	systems.

Queries	that	compute	intersections	of	regions	can	be	thought	of	as	computing	the	spatial	join	of	two
spatial	relations	—	for	example,	one	representing	rainfall	and	the	other	representing	population	density	—
with	the	location	playing	the	role	of	join	attribute.	In	general,	given	two	relations,	each	containing	spatial
objects,	the	spatial	join	of	the	two	relations	generates	either	pairs	of	objects	that	intersect	or	the
intersection	regions	of	such	pairs.	Spatial	predicates	such	as	ST	Contains()	or	ST	Overlaps()	can	be	used
as	join	predicates	when	performing	spatial	joins.

In	general,	queries	on	spatial	data	may	have	a	combination	of	spatial	and	nonspatial	requirements.	For
instance,	we	may	want	to	find	the	nearest	restaurant	that	has	vegetarian	selections	and	that	charges	less
than	$10	for	a	meal.

8.5

Summary

•	There	are	many	application	domains	that	need	to	store	more	complex	data	than	simple	tables	with	a
fixed	number	of	attributes.

•	The	SQL	standard	includes	extensions	of	the	SQL	data-definition	and	query	language	to	deal	with	new
data	types	and	with	object	orientation.	These	include	support	for	collection-valued	attributes,	inheritance,
and	tuple	references.	Such	extensions	attempt	to	preserve	the	relational	foundations	—	in	particular,	the
declarative	access	to	data	—	while	extending	the	modeling	power.

8.5

Summary

395

•	Semi-structured	data	are	characterized	by	complex	data,	whose	schema	changes	often.

•	A	popular	architecture	for	building	information	systems	today	is	to	create	a	web	service	that	allows
retrieval	of	data	and	to	build	application	code	that	displays	the	data	and	allows	user	interaction.

•	The	relational	data	model	has	been	extended	in	several	ways	to	support	the	storage	and	data	exchange
needs	of	modern	applications.

°	Some	database	systems	allow	each	tuple	to	potentially	have	a	different	set	of	attributes.

°	Many	data	representations	allow	attributes	to	non-atomic	values.

°	Many	data	representations	allow	attributes	to	be	structured,	directly	modeling	composite	attributes	in
the	E-R	model.

•	The	JavaScript	Object	Notation	(JSON)	is	a	textual	representation	of	complex	data	types	which	is	widely
used	for	transmitting	data	between	applications	and	for	storing	complex	data.

•	XML	representations	provide	flexibility	in	the	set	of	attributes	that	a	record	contains	as	well	as	the	types
of	these	attributes.

•	The	Resource	Description	Framework	(RDF)	is	a	data	representation	standard	based	on	the	entity-
relationship	model.	The	RDF	representation	has	a	very	natural	graph	interpretation.	Entities	and	attribute
values	can	be	considered	nodes,	and	attribute	names	and	relationships	can	be	considered	edges	between
the	nodes.

•	SPARQL	is	a	query	language	designed	to	query	RDF	data	and	is	based	on	triple	patterns.

•	Object	orientation	provides	inheritance	with	subtypes	and	subtables	as	well	as	object	(tuple)	references.

•	The	object-relational	data	model	extends	the	relational	data	model	by	providing	a	richer	type	system,
including	collection	types	and	object	orientation.

•	Object-relational	database	systems	(i.e.,	database	systems	based	on	the	object-relational	model)	provide
a	convenient	migration	path	for	users	of	relational	databases	who	wish	to	use	object-oriented	features.

•	Object-relational	mapping	systems	provide	an	object	view	of	data	that	are	stored	in	a	relational
database.	Objects	are	transient,	and	there	is	no	notion	of	persistent	object	identity.	Objects	are	created	on
demand	from	relational	data,	and	updates	to	objects	are	implemented	by	updating	the	relational	data.
Object-relational	mapping	systems	have	been	widely	adopted,	unlike	the	more	limited	adoption	of
persistent	programming	languages.

396

Chapter	8

Complex	Data	Types

•	Information-retrieval	systems	are	used	to	store	and	query	textual	data	such	as	documents.	They	use	a
simpler	data	model	than	do	database	systems	but	provide	more	powerful	querying	capabilities	within	the
restricted	model.

•	Queries	attempt	to	locate	documents	that	are	of	interest	by	specifying,	for	example,	sets	of	keywords.
The	query	that	a	user	has	in	mind	usually	cannot	be	stated	precisely;	hence,	information-retrieval	systems
order	answers	on	the	basis	of	potential	relevance.

•	Relevance	ranking	makes	use	of	several	types	of	information,	such	as:

°	Term	frequency:	how	important	each	term	is	to	each	document.

°	Inverse	document	frequency.

°	Popularity	ranking.

•	Spatial	data	management	is	important	for	many	applications.	Geometric	and	geographic	data	types	are
supported	by	many	database	systems,	with	subtypes	including	points,	linestrings	and	polygons.	Region
queries,	nearest	neighbor	queries,	and	spatial	graph	queries	are	among	the	commonly	used	types	of
spatial	queries.

Review	Terms

•	Wide	column

•	Object-oriented	database	system

•	Sparse	column

•	Path	expression

•	Key-value	map

•	Keywords

•	Map

•	Keyword	query

•	Array	database

•	Term

•	Tags

•	Relevance

•	Triples

•	TF–IDF

•	Resources

•	Stop	words

•	Subject

•	Proximity

•	Predicate

•	PageRank

•	Object

•	Precision

•	Knowledge	graph

•	Recall

•	Reification

•	Geographic	data

•	Quads

•	Geometric	data

•	Linked	open	data

•	Geographic	information	system

•	Object-relational	data	model

•	Computer-aided-design	(CAD)

•	Object-relational	database	system

•	Polyline

•	Object-relational	mapping

•	Linestring

Practice	Exercises

397

•	Triangulation

•	Triangulated	irregular	network	(TIN)

•	Spatial	network

•	Overlays

•	Spatial	graph

•	Nearness	queries

•	Raster	data

•	Nearest-neighbor	query

•	Tiles

•	Region	queries

•	Vector	data

•	Spatial	graph	queries

•	Topographical	information

•	Spatial	join

Practice	Exercises

8.1

Provide	information	about	the	student	named	Shankar	in	our	sample	university	database,	including
information	from	the	student	tuple	corresponding	to	Shankar,	the	takes	tuples	corresponding	to	Shankar
and	the	course	tuples	corresponding	to	these	takes	tuples,	in	each	of	the	following	representations:	a.

Using	JSON,	with	an	appropriate	nested	representation.

b.

Using	XML,	with	the	same	nested	representation.

c.

Using	RDF	triples.

d.

As	an	RDF	graph.

8.2

Consider	the	RDF	representation	of	information	from	the	university	schema	as	shown	in	Figure	8.3.	Write
the	following	queries	in	SPARQL.

a.

Find	the	titles	of	all	courses	taken	by	any	student	named	Zhang.

b.

Find	titles	of	all	courses	such	that	a	student	named	Zhang	takes	a	section	of	the	course	that	is	taught	by
an	instructor	named	Srinivasan.

c.

Find	the	attribute	names	and	values	of	all	attributes	of	the	instruc-

tor	named	Srinivasan,	without	enumerating	the	attribute	names	in	your

query.

8.3

A	car-rental	company	maintains	a	database	for	all	vehicles	in	its	current	fleet.

For	all	vehicles,	it	includes	the	vehicle	identification	number,	license	number,	manufacturer,	model,	date
of	purchase,	and	color.	Special	data	are	included	for	certain	types	of	vehicles:

•	Trucks:	cargo	capacity.

•	Sports	cars:	horsepower,	renter	age	requirement.

•	Vans:	number	of	passengers.

•	Off-road	vehicles:	ground	clearance,	drivetrain	(four-	or	two-wheel	drive).

398

Chapter	8

Complex	Data	Types

instructor

ID

name

first_name

middle_inital

last_name

address

street

street_number

street_name

apt_number

city

state

zip

{	phone_	number}

date_of_birth

age	()

Figure	8.7	E-R	diagram	with	composite,	multivalued,	and	derived	attributes.

Construct	an	SQL	schema	definition	for	this	database.	Use	inheritance	where	appropriate.

8.4

Consider	a	database	schema	with	a	relation	Emp	whose	attributes	are	as	shown	below,	with	types
specified	for	multivalued	attributes.

Emp	=	(ename,	ChildrenSet	multiset	(Children),	SkillSet	multiset	(Skills))	Children	=	(name,	birthday)

Skills	=	(type,	ExamSet	setof	(Exams))

Exams	=	(year,	city)

Define	the	above	schema	in	SQL,	using	the	SQL	Server	table	type	syntax	from	Section	8.2.1.1	to	declare
multiset	attributes.

8.5

Consider	the	E-R	diagram	in	Figure	8.7	showing	entity	set	instructor.

Give	an	SQL	schema	definition	corresponding	to	the	E-R	diagram,	treating	phone	number	as	an	array	of
10	elements,	using	Oracle	or	PostgreSQL	syntax.

8.6

Consider	the	relational	schema	shown	in	Figure	8.8.

a.

Give	a	schema	definition	in	SQL	corresponding	to	the	relational	schema	but	using	references	to	express
foreign-key	relationships.

b.

Write	each	of	the	following	queries	on	the	schema,	using	SQL.

i.

Find	the	company	with	the	most	employees.

Exercises

399

employee	(person	name,	street,	city)

works	(person	name,	company	name,	salary)	company	(company	name,	city)

manages	(person	name,	manager	name)

Figure	8.8	Relational	database	for	Exercise	8.6.

ii.

Find	the	company	with	the	smallest	payroll.

iii.

Find	those	companies	whose	employees	earn	a	higher	salary,	on	aver-

age,	than	the	average	salary	at	First	Bank	Corporation.

8.7

Compute	the	relevance	(using	appropriate	definitions	of	term	frequency	and	inverse	document	frequency)
of	each	of	the	Practice	Exercises	in	this	chapter	to	the	query	“SQL	relation”.

8.8

Show	how	to	represent	the	matrices	used	for	computing	PageRank	as	relations.

Then	write	an	SQL	query	that	implements	one	iterative	step	of	the	iterative	technique	for	finding
PageRank;	the	entire	algorithm	can	then	be	implemented	as	a	loop	containing	the	query.

8.9

Suppose	the	student	relation	has	an	attribute	named	location	of	type	point,	and	the	classroom	relation	has
an	attribute	location	of	type	polygon.	Write	the	following	queries	in	SQL	using	the	PostGIS	spatial

functions	and	predicates	that	we	saw	earlier:

a.

Find	the	names	of	all	students	whose	location	is	within	the	classroom

Packard	101.

b.

Find	all	classrooms	that	are	within	100	meters	or	Packard	101;	assume	all	distances	are	represented	in
units	of	meters.

c.

Find	the	ID	and	name	of	student	who	is	geographically	nearest	to	the

student	with	ID	12345.

d.

Find	the	ID	and	names	of	all	pairs	of	students	whose	locations	are	less	than	200	meters	apart.

Exercises

8.10

Redesign	the	database	of	Exercise	8.4	into	first	normal	form	and	fourth	normal	form.	List	any	functional
or	multivalued	dependencies	that	you	assume.	Also	list	all	referential-integrity	constraints	that	should	be
present	in	the	first	and	fourth	normal	form	schemas.

400

Chapter	8

Complex	Data	Types

person

ID

name

address

employee

student

salary

tot_credits

instructor

secretary

rank

hours_	per_week

Figure	8.9	Specialization	and	generalization.

8.11

Consider	the	schemas	for	the	table	people,	and	the	tables	students	and	teachers,	which	were	created
under	people,	in	Section	8.2.1.3.	Give	a	relational	schema	in	third	normal	form	that	represents	the	same
information.	Recall	the	constraints	on	subtables,	and	give	all	constraints	that	must	be	imposed	on	the
relational	schema	so	that	every	database	instance	of	the	relational	schema	can	also	be	represented	by	an
instance	of	the	schema	with	inheritance.

8.12

Consider	the	E-R	diagram	in	Figure	8.9,	which	contains	specializations,	using	subtypes	and	subtables.

a.

Give	an	SQL	schema	definition	of	the	E-R	diagram.

b.

Give	an	SQL	query	to	find	the	names	of	all	people	who	are	not	secretaries.

c.

Give	an	SQL	query	to	print	the	names	of	people	who	are	neither	employ-

ees	nor	students.

d.

Can	you	create	a	person	who	is	an	employee	and	a	student	with	the

schema	you	created?	Explain	how,	or	explain	why	it	is	not	possible.

8.13

Suppose	you	wish	to	perform	keyword	querying	on	a	set	of	tuples	in	a	database,	where	each	tuple	has
only	a	few	attributes,	each	containing	only	a	few	words.

Does	the	concept	of	term	frequency	make	sense	in	this	context?	And	that	of	inverse	document	frequency?
Explain	your	answer.	Also	suggest	how	you	can	define	the	similarity	of	two	tuples	using	TF–IDF	concepts.

8.14

Web	sites	that	want	to	get	some	publicity	can	join	a	web	ring,	where	they	create	links	to	other	sites	in	the
ring	in	exchange	for	other	sites	in	the	ring	creating	links

Further	Reading

401

to	their	site.	What	is	the	effect	of	such	rings	on	popularity	ranking	techniques	such	as	PageRank?

8.15

The	Google	search	engine	provides	a	feature	whereby	web	sites	can	display	advertisements	supplied	by
Google.	The	advertisements	supplied	are	based	on	the	contents	of	the	page.	Suggest	how	Google	might
choose	which	advertisements	to	supply	for	a	page,	given	the	page	contents.

Further	Reading

A	tutorial	on	JSON	can	be	found	at	www.w3schools.com/js/js	json	intro.asp.	More	information	about	XML
can	be	found	in	Chapter	30,	available	online.	More	information	about	RDF	can	be	found	at
www.w3.org/RDF/.	Apache	Jena	provides	an	RDF

implementation,	with	support	for	SPARQL;	a	tutorial	on	SPARQL	can	be	found	at
jena.apache.org/tutorials/sparql.html

POSTGRES	([Stonebraker	and	Rowe	(1986)]	and	[Stonebraker	(1986)])	was	an	early	implementation	of	an
object-relational	system.	Oracle	provides	a	fairly	complete	implementation	of	the	object-relational
features	of	SQL,	while	PostgreSQL	provides	a	smaller	subset	of	those	features.	More	information	on
support	for	these	features	may	be	found	in	their	respective	manuals.

[Salton	(1989)]	is	an	early	textbook	on	information-retrieval	systems,	while	[Manning	et	al.	(2008)]	is	a
modern	textbook	on	the	subject.	Information	about	spatial	database	support	in	Oracle,	PostgreSQL	and
SQL	Server	may	be	found	in	their	respective	manuals	online.

Bibliography

[Manning	et	al.	(2008)]

C.	D.	Manning,	P.	Raghavan,	and	H.	Schütze,	Introduction	to	Infor-

mation	Retrieval,	Cambridge	University	Press	(2008).

[Salton	(1989)]

G.	Salton,	Automatic	Text	Processing,	Addison	Wesley	(1989).

[Stonebraker	(1986)]

M.	Stonebraker,	“Inclusion	of	New	Types	in	Relational	Database	Sys-

tems”,	In	Proc.	of	the	International	Conf.	on	Data	Engineering	(1986),	pages	262–269.

[Stonebraker	and	Rowe	(1986)]

M.	Stonebraker	and	L.	Rowe,	“The	Design	of	POSTGRES”,

In	Proc.	of	the	ACM	SIGMOD	Conf.	on	Management	of	Data	(1986),	pages	340–355.

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock

C	H	A	P	T	E	R	9

Application	Development

Practically	all	use	of	databases	occurs	from	within	application	programs.	Correspondingly,	almost	all	user
interaction	with	databases	is	indirect,	via	application	programs.

In	this	chapter,	we	study	tools	and	technologies	that	are	used	to	build	applications,	focusing	on	interactive
applications	that	use	databases	to	store	and	retrieve	data.

A	key	requirement	for	any	user-centric	application	is	a	good	user	interface.	The	two	most	common	types
of	user	interfaces	today	for	database-backed	applications	are	the	web	and	mobile	app	interfaces.

In	the	initial	part	of	this	chapter,	we	provide	an	introduction	to	application	programs	and	user	interfaces
(Section	9.1),	and	to	web	technologies	(Section	9.2).	We	then	discuss	development	of	web	applications
using	the	widely	used	Java	Servlets	technology	at	the	back	end	(Section	9.3),	and	using	other	frameworks
(Section	9.4).	Client-side	code	implemented	using	JavaScript	or	mobile	app	technologies	is	crucial	for

building	responsive	user	interfaces,	and	we	discuss	some	of	these	technologies	(Section	9.5).	We	then
provide	an	overview	of	web	application	architectures	(Section	9.6)	and	cover	performance	issues	in
building	large	web	applications	(Section	9.7).	Finally,	we	discuss	issues	in	application	security	that	are	key
to	making	applications	resilient	to	attacks	(Section	9.8),	and	encryption	and	its	use	in	applications
(Section	9.9).

9.1

Application	Programs	and	User	Interfaces

Although	many	people	interact	with	databases,	very	few	people	use	a	query	language	to	interact	with	a
database	system	directly.	The	most	common	way	in	which	users	interact	with	databases	is	through	an
application	program	that	provides	a	user	interface	at	the	front	end	and	interfaces	with	a	database	at	the
back	end.	Such	applications	take	input	from	users,	typically	through	a	forms-based	interface,	and	either
enter	data	into	a	database	or	extract	information	from	a	database	based	on	the	user	input,	and	they	then
generate	output,	which	is	displayed	to	the	user.

As	an	example	of	an	application,	consider	a	university	registration	system.	Like	other	such	applications,
the	registration	system	first	requires	you	to	identify	and	authenticate	yourself,	typically	by	a	user	name
and	password.	The	application	then	uses	your	403

404

Chapter	9

Application	Development

identity	to	extract	information,	such	as	your	name	and	the	courses	for	which	you	have	registered,	from
the	database	and	displays	the	information.	The	application	provides	a	number	of	interfaces	that	let	you
register	for	courses	and	query	other	information,	such	as	course	and	instructor	information.
Organizations	use	such	applications	to	automate	a	variety	of	tasks,	such	as	sales,	purchases,	accounting
and	payroll,	human-resources	management,	and	inventory	management,	among	many	others.

Application	programs	may	be	used	even	when	it	is	not	apparent	that	they	are	being	used.	For	example,	a
news	site	may	provide	a	page	that	is	transparently	customized	to	individual	users,	even	if	the	user	does
not	explicitly	fill	any	forms	when	interacting	with	the	site.	To	do	so,	it	actually	runs	an	application
program	that	generates	a	customized	page	for	each	user;	customization	can,	for	example,	be	based	on	the
history	of	articles	browsed	by	the	user.

A	typical	application	program	includes	a	front-end	component,	which	deals	with	the	user	interface,	a
backend	component,	which	communicates	with	a	database,	and	a	middle	layer,	which	contains	“business
logic,”	that	is,	code	that	executes	specific	requests	for	information	or	updates,	enforcing	rules	of	business
such	as	what	actions	should	be	carried	out	to	execute	a	given	task	or	who	can	carry	out	what	task.

Applications	such	as	airline	reservations	have	been	around	since	the	1960s.	In	the	early	days	of	computer
applications,	applications	ran	on	large	“mainframe”	computers,	and	users	interacted	with	the	application
through	terminals,	some	of	which	even	supported	forms.	The	growth	of	personal	computers	resulted	in
the	development	of	database	applications	with	graphical	user	interfaces,	or	GUIs.	These	interfaces
depended	on	code	running	on	a	personal	computer	that	directly	communicated	with	a	shared	database.
Such	an	architecture	was	called	a	client–server	architecture.	There	were	two	drawbacks	to	using	such
applications:	first,	user	machines	had	direct	access	to	databases,	leading	to	security	risks.	Second,	any
change	to	the	application	or	the	database	required	all	the	copies	of	the	application,	located	on	individual
computers,	to	be	updated	together.

Two	approaches	have	evolved	to	avoid	the	above	problems:

•	Web	browsers	provide	a	universal	front	end,	used	by	all	kinds	of	information	services.	Browsers	use	a
standardized	syntax,	the	HyperText	Markup	Language	(HTML)	standard,	which	supports	both	formatted
display	of	information	and	creation	of	forms-based	interfaces.	The	HTML	standard	is	independent	of	the
operating	system	or	browser,	and	pretty	much	every	computer	today	has	a	web	browser	installed.	Thus	a
web-based	application	can	be	accessed	from	any	computer	that	is	connected	to	the	internet.

Unlike	client–server	architectures,	there	is	no	need	to	install	any	application-specific	software	on	client
machines	in	order	to	use	web-based	applications.

However,	sophisticated	user	interfaces,	supporting	features	well	beyond	what	is	possible	using	plain
HTML,	are	now	widely	used,	and	are	built	with	the	scripting	language	JavaScript,	which	is	supported	by
most	web	browsers.	JavaScript	programs,	unlike	programs	written	in	C,	can	be	run	in	a	safe	mode,
guaranteeing

9.2

Web	Fundamentals

405

they	cannot	cause	security	problems.	JavaScript	programs	are	downloaded	transparently	to	the	browser
and	do	not	need	any	explicit	software	installation	on	the	user’s	computer.

While	the	web	browser	provides	the	front	end	for	user	interaction,	application	programs	constitute	the
back	end.	Typically,	requests	from	a	browser	are	sent	to	a	web	server,	which	in	turn	executes	an
application	program	to	process	the	request.

A	variety	of	technologies	are	available	for	creating	application	programs	that	run	at	the	back	end,
including	Java	servlets,	Java	Server	Pages	(JSP),	Active	Server	Page	(ASP),	or	scripting	languages	such	as
PHP	and	Python.

•	Application	programs	are	installed	on	individual	devices,	which	are	primarily	mobile	devices.	They
communicate	with	backend	applications	through	an	API	and	do	not	have	direct	access	to	the	database.
The	back	end	application	provides	services,	including	user	authentication,	and	ensures	that	users	can	only
access	services	that	they	are	authorized	to	access.

This	approach	is	widely	used	in	mobile	applications.	One	of	the	motivations	for	building	such	applications
was	to	customize	the	display	for	the	small	screen	of	mobile	devices.	A	second	was	to	allow	application
code,	which	can	be	relatively	large,	to	be	downloaded	or	updated	when	the	device	is	connected	to	a	high-
speed	network,	instead	of	downloading	such	code	when	a	web	page	is	accessed,	perhaps	over	a	lower
bandwidth	or	more	expensive	mobile	network.

With	the	increasing	use	of	JavaScript	code	as	part	of	web	front	ends,	the	difference	between	the	two
approaches	above	has	today	significantly	decreased.	The	back	end	often	provides	an	API	that	can	be
invoked	from	either	mobile	app	or	JavaScript	code	to	carry	out	any	required	task	at	the	back	end.	In	fact,
the	same	back	end	is	often	used	to	build	multiple	front	ends,	which	could	include	web	front	ends	with
JavaScript,	and	multiple	mobile	platforms	(primarily	Android	and	iOS,	today).

9.2

Web	Fundamentals

In	this	section,	we	review	some	of	the	fundamental	technology	behind	the	World	Wide	Web,	for	readers
who	are	not	familiar	with	the	technology	underlying	the	web.

9.2.1

Uniform	Resource	Locators

A	uniform	resource	locator	(URL)	is	a	globally	unique	name	for	each	document	that	can	be	accessed	on
the	web.	An	example	of	a	URL	is:

http://www.acm.org/sigmod

The	first	part	of	the	URL	indicates	how	the	document	is	to	be	accessed:	“http”	indicates	that	the
document	is	to	be	accessed	by	the	HyperText	Transfer	Protocol	(HTTP),

406

Chapter	9

Application	Development

<	html	>

<	body	>

<	table	border	>

<	tr	>	<	th	>	ID	</th	>

<	th	>	Name	</th	>

<	th	>	Department	</th	>	</tr	>

<	tr	>	<	td	>	00128	</td	>	<	td	>	Zhang	</td	>	<	td	>	Comp.	Sci.	</td	>	</tr	>

<	tr	>	<	td	>	12345	</td	>	<	td	>	Shankar	</td	>	<	td	>	Comp.	Sci.	</td	>	</tr	>

<	tr	>	<	td	>	19991	</td	>	<	td	>	Brandt	</td	>	<	td	>	History	</td	>	</tr	>

</table	>

</body	>

</html	>

Figure	9.1	Tabular	data	in	HTML	format.

which	is	a	protocol	for	transferring	HTML	documents;	“https”	would	indicate	that	the	secure	version	of
the	HTTP	protocol	must	be	used,	and	is	the	preferred	mode	today.

The	second	part	gives	the	name	of	a	machine	that	has	a	web	server.	The	rest	of	the	URL

is	the	path	name	of	the	file	on	the	machine,	or	other	unique	identifier	of	a	document	within	the	machine.

A	URL	can	contain	the	identifier	of	a	program	located	on	the	web	server	machine,	as	well	as	arguments	to
be	given	to	the	program.	An	example	of	such	a	URL	is	https://www.google.com/search?q=silberschatz

which	says	that	the	program	search	on	the	server	www.google.com	should	be	executed	with	the	argument
q=silberschatz.	On	receiving	a	request	for	such	a	URL,	the	web	server	executes	the	program,	using	the
given	arguments.	The	program	returns	an	HTML

document	to	the	web	server,	which	sends	it	back	to	the	front	end.

9.2.2

HyperText	Markup	Language

Figure	9.1	is	an	example	of	a	table	represented	in	the	HTML	format,	while	Figure	9.2

shows	the	displayed	image	generated	by	a	browser	from	the	HTML	representation	of	the	table.	The	HTML
source	shows	a	few	of	the	HTML	tags.	Every	HTML	page	should	be	enclosed	in	an	html	tag,	while	the
body	of	the	page	is	enclosed	in	a	body	tag.	A	table	ID

Name

Department

00128	Zhang

Comp.	Sci.

12345	Shankar	Comp.	Sci.

19991	Brandt

History

Figure	9.2	Display	of	HTML	source	from	Figure	9.1.

9.2

Web	Fundamentals

407

<	html	>

<	body	>

<	form	action="PersonQuery"	method=get	>

Search	for:

<	select	name="persontype"	>

<	option	value="student"	selected	>	Student	</option	>

<	option	value="instructor"	>	Instructor	</option	>

</select	>	<	br	>

Name:	<	input	type=text	size=20	name="name"	>

<	input	type=submit	value="submit"	>

</form	>

</body	>

</html	>

Figure	9.3	An	HTML	form.

is	specified	by	a	table	tag,	which	contains	rows	specified	by	a	tr	tag.	The	header	row	of	the	table	has	table
cells	specified	by	a	th	tag,	while	regular	rows	have	table	cells	specified	by	a	td	tag.	We	do	not	go	into
more	details	about	the	tags	here;	see	the	bibliographical	notes	for	references	containing	more	detailed
descriptions	of	HTML.

Figure	9.3	shows	how	to	specify	an	HTML	form	that	allows	users	to	select	the	person	type	(student	or
instructor)	from	a	menu	and	to	input	a	number	in	a	text	box.

Figure	9.4	shows	how	the	above	form	is	displayed	in	a	web	browser.	Two	methods	of	accepting	input	are
illustrated	in	the	form,	but	HTML	also	supports	several	other	input	methods.	The	action	attribute	of	the
form	tag	specifies	that	when	the	form	is	submitted	(by	clicking	on	the	submit	button),	the	form	data
should	be	sent	to	the	URL

PersonQuery	(the	URL	is	relative	to	that	of	the	page).	The	web	server	is	configured	such	that	when	this
URL	is	accessed,	a	corresponding	application	program	is	invoked,	with	the	user-provided	values	for	the
arguments	persontype	and	name	(specified	in	the	select	and	input	fields).	The	application	program
generates	an	HTML	document,	which	is	then	sent	back	and	displayed	to	the	user;	we	shall	see	how	to
construct	such	programs	later	in	this	chapter.

HTTP	defines	two	ways	in	which	values	entered	by	a	user	at	the	browser	can	be	sent	to	the	web	server.
The	get	method	encodes	the	values	as	part	of	the	URL.	For	example,	if	the	Google	search	page	used	a
form	with	an	input	parameter	named	q	with	the	get	Search	for:	Student

Name:

submit

Figure	9.4	Display	of	HTML	source	from	Figure	9.3.

408

Chapter	9

Application	Development

method,	and	the	user	typed	in	the	string	“silberschatz”	and	submitted	the	form,	the	browser	would
request	the	following	URL	from	the	web	server:

https://www.google.com/search?q=silberschatz

The	post	method	would	instead	send	a	request	for	the	URL	https://www.google.com,	and	send	the
parameter	values	as	part	of	the	HTTP	protocol	exchange	between	the	web	server	and	the	browser.	The
form	in	Figure	9.3	specifies	that	the	form	uses	the	get	method.

Although	HTML	code	can	be	created	using	a	plain	text	editor,	there	are	a	number	of	editors	that	permit
direct	creation	of	HTML	text	by	using	a	graphical	interface.	Such	editors	allow	constructs	such	as	forms,
menus,	and	tables	to	be	inserted	into	the	HTML

document	from	a	menu	of	choices,	instead	of	manually	typing	in	the	code	to	generate	the	constructs.

HTML	supports	stylesheets,	which	can	alter	the	default	definitions	of	how	an	HTML

formatting	construct	is	displayed,	as	well	as	other	display	attributes	such	as	background	color	of	the
page.	The	cascading	stylesheet	(CSS)	standard	allows	the	same	stylesheet	to	be	used	for	multiple	HTML
documents,	giving	a	distinctive	but	uniform	look	to	all	the	pages	on	a	web	site.	You	can	find	more
information	on	stylesheets	online,	for	example	at	www.w3schools.com/css/.

The	HTML5	standard,	which	was	released	in	2014,	provides	a	wide	variety	of	form	input	types,	including
the	following:

•	Date	and	time	selection,	using	<	input	type="date"	name="abc"	>,	and	<	input	type="time"
name="xyz"	>.	Browsers	would	typically	display	a	graphical	date	or	time	picker	for	such	an	input	field;
the	input	value	is	saved	in	the	form	attributes	abc	and	xyz.	The	optional	attributes	min	and	max	can	be
used	to	specify	minimum	and	maximum	values	that	can	be	chosen.

•	File	selection,	using	<	input	type="file",	name="xyz"	>,	which	allows	a	file	to	be	chosen,	and	its	name
saved	in	the	form	attribute	xyz.

•	Input	restrictions	(constraints)	on	a	variety	of	input	types,	including	minimum,	maximum,	format
matching	a	regular	expression,	and	so	on.	For	example,

<	input	type="number"	name="start"	min="0"	max="55"	step="5"	value="0"	>

allows	the	user	to	choose	one	of	0,	5,	10,	15,	and	so	on	till	55,	with	a	default	value	of	0.

9.2.3

Web	Servers	and	Sessions

A	web	server	is	a	program	running	on	the	server	machine	that	accepts	requests	from	a	web	browser	and
sends	back	results	in	the	form	of	HTML	documents.	The	browser	and	web	server	communicate	via	HTTP.
Web	servers	provide	powerful	features,	beyond	the	simple	transfer	of	documents.	The	most	important
feature	is	the	ability	to	execute

9.2

Web	Fundamentals

409

web	server

network

application	server

database	server

HTTP

browser

data

server

Figure	9.5	Three-layer	web	application	architecture.

programs,	with	arguments	supplied	by	the	user,	and	to	deliver	the	results	back	as	an	HTML	document.

As	a	result,	a	web	server	can	act	as	an	intermediary	to	provide	access	to	a	variety	of	information	services.
A	new	service	can	be	created	by	creating	and	installing	an	application	program	that	provides	the	service.
The	common	gateway	interface	(CGI)	standard	defines	how	the	web	server	communicates	with	application
programs.	The	application	program	typically	communicates	with	a	database	server,	through	ODBC,	JDBC,
or	other	protocols,	in	order	to	get	or	store	data.

Figure	9.5	shows	a	web	application	built	using	a	three-layer	architecture,	with	a	web	server,	an
application	server,	and	a	database	server.	Using	multiple	levels	of	servers	increases	system	overhead;	the
CGI	interface	starts	a	new	process	to	service	each	request,	which	results	in	even	greater	overhead.

Most	web	applications	today	therefore	use	a	two-layer	web	application	architecture,	where	the	web	and
application	servers	are	combined	into	a	single	server,	as	shown	in	Figure	9.6.	We	study	systems	based	on
the	two-layer	architecture	in	more	detail	in	subsequent	sections.

There	is	no	continuous	connection	between	the	client	and	the	web	server;	when	a	web	server	receives	a
request,	a	connection	is	temporarily	created	to	send	the	request	and	receive	the	response	from	the	web
server.	But	the	connection	may	then	be	closed,	and	the	next	request	could	come	over	a	new	connection.	In
contrast,	when	a	user	logs	on	to	a	computer,	or	connects	to	a	database	using	ODBC	or	JDBC,	a	session	is
created,	and	session	information	is	retained	at	the	server	and	the	client	until	the	session	is	terminated	—

information	such	as	the	user-identifier	of	the	user	and	session	options	that	the	user	has	set.	One
important	reason	that	HTTP	is	connectionless	is	that	most	computers	have	limits	on	the	number	of
simultaneous	connections	they	can	accommodate,	and	if	a	large	number	of	sites	on	the	web	open
connections	to	a	single	server,	this	limit	would	be	exceeded,	denying	service	to	further	users.	With	a
connectionless	protocol,	the	con-

410

Chapter	9

Application	Development

network

web	server	and

application	server

database	server

HTTP

browser

data

server

Figure	9.6	Two-layer	web	application	architecture.

nection	can	be	broken	as	soon	as	a	request	is	satisfied,	leaving	connections	available	for	other	requests.1

Most	web	applications,	however,	need	session	information	to	allow	meaningful	user	interaction.	For
instance,	applications	typically	restrict	access	to	information,	and	therefore	need	to	authenticate	users.
Authentication	should	be	done	once	per	session,	and	further	interactions	in	the	session	should	not	require
reauthentication.

To	implement	sessions	in	spite	of	connections	getting	closed,	extra	information	has	to	be	stored	at	the
client	and	returned	with	each	request	in	a	session;	the	server	uses	this	information	to	identify	that	a
request	is	part	of	a	user	session.	Extra	information	about	the	session	also	has	to	be	maintained	at	the
server.

This	extra	information	is	usually	maintained	in	the	form	of	a	cookie	at	the	client;	a	cookie	is	simply	a	small
piece	of	text	containing	identifying	information	and	with	an	associated	name.	For	example,	google.com
may	set	a	cookie	with	the	name	prefs,	which	encodes	preferences	set	by	the	user	such	as	the	preferred
language	and	the	number	of	answers	displayed	per	page.	On	each	search	request,	google.com	can
retrieve	the	cookie	named	prefs	from	the	user’s	browser,	and	display	results	according	to	the	specified
preferences.	A	domain	(web	site)	is	permitted	to	retrieve	only	cookies	that	it	has	set,	not	cookies	set	by
other	domains,	and	cookie	names	can	be	reused	across	domains.

For	the	purpose	of	tracking	a	user	session,	an	application	may	generate	a	session	identifier	(usually	a
random	number	not	currently	in	use	as	a	session	identifier),	and	send	a	cookie	named	(for	instance)
sessionid	containing	the	session	identifier.	The	session	identifier	is	also	stored	locally	at	the	server.	When
a	request	comes	in,	the	application	server	requests	the	cookie	named	sessionid	from	the	client.	If	the
client	1For	performance	reasons,	connections	may	be	kept	open	for	a	short	while,	to	allow	subsequent
requests	to	reuse	the	connection.	However,	there	is	no	guarantee	that	the	connection	will	be	kept	open,
and	applications	must	be	designed	assuming	the	connection	may	be	closed	as	soon	as	a	request	is
serviced.

9.3

Servlets

411

does	not	have	the	cookie	stored,	or	returns	a	value	that	is	not	currently	recorded	as	a	valid	session
identifier	at	the	server,	the	application	concludes	that	the	request	is	not	part	of	a	current	session.	If	the
cookie	value	matches	a	stored	session	identifier,	the	request	is	identified	as	part	of	an	ongoing	session.

If	an	application	needs	to	identify	users	securely,	it	can	set	the	cookie	only	after	authenticating	the	user;

for	example	a	user	may	be	authenticated	only	when	a	valid	user	name	and	password	are	submitted.2

For	applications	that	do	not	require	high	security,	such	as	publicly	available	news	sites,	cookies	can	be
stored	permanently	at	the	browser	and	at	the	server;	they	identify	the	user	on	subsequent	visits	to	the
same	site,	without	any	identification	information	being	typed	in.	For	applications	that	require	higher
security,	the	server	may	invalidate	(drop)	the	session	after	a	time-out	period,	or	when	the	user	logs	out.
(Typically	a	user	logs	out	by	clicking	on	a	logout	button,	which	submits	a	logout	form,	whose	action	is	to
invalidate	the	current	session.)	Invalidating	a	session	merely	consists	of	dropping	the	session	identifier
from	the	list	of	active	sessions	at	the	application	server.

9.3

Servlets

The	Java	servlet	specification	defines	an	application	programming	interface	for	communication	between
the	web/application	server	and	the	application	program.	The	HttpServlet	class	in	Java	implements	the
servlet	API	specification;	servlet	classes	used	to	implement	specific	functions	are	defined	as	subclasses	of
this	class.3	Often	the	word	servlet	is	used	to	refer	to	a	Java	program	(and	class)	that	implements	the
servlet	interface.	Figure	9.7	shows	a	servlet	example;	we	explain	it	in	detail	shortly.

The	code	for	a	servlet	is	loaded	into	the	web/application	server	when	the	server	is	started,	or	when	the
server	receives	a	remote	HTTP	request	to	execute	a	particular	servlet.	The	task	of	a	servlet	is	to	process
such	a	request,	which	may	involve	accessing	a	database	to	retrieve	necessary	information,	and
dynamically	generating	an	HTML	page	to	be	returned	to	the	client	browser.

9.3.1

A	Servlet	Example

Servlets	are	commonly	used	to	generate	dynamic	responses	to	HTTP	requests.	They	can	access	inputs
provided	through	HTML	forms,	apply	“business	logic”	to	decide	what	2The	user	identifier	could	be	stored
at	the	client	end,	in	a	cookie	named,	for	example,	userid.	Such	cookies	can	be	used	for	low-security
applications,	such	as	free	web	sites	identifying	their	users.	However,	for	applications	that	require	a	higher
level	of	security,	such	a	mechanism	creates	a	security	risk:	The	value	of	a	cookie	can	be	changed	at	the
browser	by	a	malicious	user,	who	can	then	masquerade	as	a	different	user.	Setting	a	cookie	(named
sessionid,	for	example)	to	a	randomly	generated	session	identifier	(from	a	large	space	of	numbers)	makes
it	highly	improbable	that	a	user	can	masquerade	as	(i.e.,	pretend	to	be)	another	user.	A	sequentially
generated	session	identifier,	on	the	other	hand,	would	be	susceptible	to	masquerading.

3The	servlet	interface	can	also	support	non-HTTP	requests,	although	our	example	uses	only	HTTP.

412

Chapter	9

Application	Development

response	to	provide,	and	then	generate	HTML	output	to	be	sent	back	to	the	browser.

Servlet	code	is	executed	on	a	web	or	application	server.

Figure	9.7	shows	an	example	of	servlet	code	to	implement	the	form	in	Figure	9.3.	The	servlet	is	called
PersonQueryServlet,	while	the	form	specifies	that

“action="PersonQuery".”	The	web/application	server	must	be	told	that	this	servlet	is	to	be	used	to	handle
requests	for	PersonQuery,	which	is	done	by	using	the	anno-import	java.io.*;

import	javax.servlet.*;

import	javax.servlet.http.*;

@WebServlet("PersonQuery")

public	class	PersonQueryServlet	extends	HttpServlet	{

public	void	doGet(HttpServletRequest	request,

HttpServletResponse	response)

throws	ServletException,	IOException

{

response.setContentType("text/html");

PrintWriter	out	=	response.getWriter();

...	check	if	user	is	logged	in	...

out.println("	<	HEAD	><	TITLE	>	Query	Result	</TITLE	></HEAD	>");	out.println("	<	BODY	>");

String	persontype	=	request.getParameter("persontype");

String	name	=	request.getParameter("name");

if(persontype.equals("student"))	{

...	code	to	find	students	with	the	specified	name	...

...	using	JDBC	to	communicate	with	the	database	..

...	Assume	ResultSet	rs	has	been	retrieved,	and

...	contains	attributes	ID,	name,	and	department	name

String	headers	=	new	String[]{"ID",	"Name",	"Department	Name"};

Util::resultSetToHTML(rs,	headers,	out);

}

else	{

...	as	above,	but	for	instructors	...

}

out.println("	</BODY	>");

out.close();

}

}

Figure	9.7	Example	of	servlet	code.

9.3

Servlets

413

tation	@WebServlet("PersonQuery")	shown	in	the	code.	The	form	specifies	that	the	HTTP	get	mechanism
is	used	for	transmitting	parameters.	So	the	doGet()	method	of	the	servlet,	as	defined	in	the	code,	is
invoked.

Each	servlet	request	results	in	a	new	thread	within	which	the	call	is	executed,	so	multiple	requests	can	be
handled	in	parallel.	Any	values	from	the	form	menus	and	input	fields	on	the	web	page,	as	well	as	cookies,
pass	through	an	object	of	the	HttpServletRequest	class	that	is	created	for	the	request,	and	the	reply	to
the	request	passes	through	an	object	of	the	class	HttpServletResponse.

The	doGet()	method	in	the	example	extracts	values	of	the	parameters	persontype	and	name	by	using
request.getParameter(),	and	uses	these	values	to	run	a	query	against	a	database.	The	code	used	to	access
the	database	and	to	get	attribute	values	from	the	query	result	is	not	shown;	refer	to	Section	5.1.1.5	for
details	of	how	to	use	JDBC	to	access	a	database.	We	assume	that	the	result	of	the	query	in	the	form	of	a
JDBC	ResultSet	is	available	in	the	variable	resultset.

The	servlet	code	returns	the	results	of	the	query	to	the	requester	by	outputting	them	to	the
HttpServletResponse	object	response.	Outputting	the	results	to	response	is	implemented	by	first	getting	a
PrintWriter	object	out	from	response,	and	then	printing	the	query	result	in	HTML	format	to	out.	In	our
example,	the	query	result	is	printed	by	calling	the	function	Util::resultSetToHTML(resultset,	header,	out),
which	is	shown	in	Figure	9.8.	The	function	uses	JDBC	metadata	function	on	the	ResultSet	rs	to	figure	out
how	many	columns	need	to	be	printed.	An	array	of	column	headers	is	passed	to	this	function	to	be	printed

out;	the	column	names	could	have	been	obtained	using	JDBC

metadata,	but	the	database	column	names	may	not	be	appropriate	for	display	to	a	user,	so	we	provide
meaningful	column	names	to	the	function.

9.3.2

Servlet	Sessions

Recall	that	the	interaction	between	a	browser	and	a	web/application	server	is	stateless.

That	is,	each	time	the	browser	makes	a	request	to	the	server,	the	browser	needs	to	connect	to	the	server,
request	some	information,	then	disconnect	from	the	server.	Cookies	can	be	used	to	recognize	that	a
request	is	from	the	same	browser	session	as	an	earlier	request.	However,	cookies	form	a	low-level
mechanism,	and	programmers	require	a	better	abstraction	to	deal	with	sessions.

The	servlet	API	provides	a	method	of	tracking	a	session	and	storing	information	pertaining	to	it.
Invocation	of	the	method	getSession(false)	of	the	class	HttpServletRequest	retrieves	the	HttpSession
object	corresponding	to	the	browser	that	sent	the	request.	An	argument	value	of	true	would	have
specified	that	a	new	session	object	must	be	created	if	the	request	is	a	new	request.

When	the	getSession()	method	is	invoked,	the	server	first	asks	the	client	to	return	a	cookie	with	a
specified	name.	If	the	client	does	not	have	a	cookie	of	that	name,	or	returns	a	value	that	does	not	match
any	ongoing	session,	then	the	request	is	not	part	of	an	ongoing	session.	In	this	case,	getSession()	would
return	a	null	value,	and	the	servlet	could	direct	the	user	to	a	login	page.

414

Chapter	9

Application	Development

import	java.io.*;

import	javax.servlet.*;

import	javax.servlet.http.*;

public	class	Util	{

public	static	void	resultSetToHTML(ResultSet	rs,

String	headers[],	PrintWriter	out)	{

ResultSetMetaData	rsmd	=	rs.getMetaData();

int	numCols	=	rsmd.getColumnCount();

out.println("	<	table	border=1	>");

out.println("	<	tr	>");

for	(int	i=0;	i	<	numCols;	i++)

out.println("	<	th	>"+	headers[i]	+	<∕th	>

out.println("	<∕tr	>");

while	(rs.next())	{

out.println("	<	tr	>");

for	(int	i=0;	i	<	numCols;	i++)

out.println("	<	td	>"+	rs.getString(i)	+	<∕td	>

out.println("	<∕tr	>");

}

}

}

Figure	9.8	Utility	function	to	output	ResultSet	as	a	table.

The	login	page	could	allow	the	user	to	provide	a	user	name	and	password.	The	servlet	corresponding	to
the	login	page	could	verify	that	the	password	matches	the	user;	for	example,	by	using	the	user	name	to
retrieve	the	password	from	the	database	and	checking	if	the	password	entered	matches	the	stored
password.4

If	the	user	is	properly	authenticated,	the	login	servlet	would	execute	getSession(true),	which	would	return
a	new	session	object.	To	create	a	new	session,	the	server	would	internally	carry	out	the	following	tasks:
set	a	cookie	(called,	for	example,	sessionId)	with	a	session	identifier	as	its	associated	value	at	the	client
browser,	create	a	new	session	object,	and	associate	the	session	identifier	value	with	the	session	object.

4It	is	a	bad	idea	to	store	unencrypted	passwords	in	the	database,	since	anyone	with	access	to	the
database	contents,	such	as	a	system	administrator	or	a	hacker,	could	steal	the	password.	Instead,	a
hashing	function	is	applied	to	the	password,	and	the	result	is	stored	in	the	database;	even	if	someone	sees
the	hashing	result	stored	in	the	database,	it	is	very	hard	to	infer	what	was	the	original	password.	The
same	hashing	function	is	applied	to	the	user-supplied	password,	and	the	result	is	compared	with	the
stored	hashing	result.	Further,	to	ensure	that	even	if	two	users	use	the	same	password	the	hash	values
are	different,	the	password	system	typically	stores	a	different	random	string	(called	the	salt)	for	each
user,	and	it	appends	the	random	string	to	the	password	before	computing	the	hash	value.	Thus,	the
password	relation	would	have	the	schema	user	password(user,	salt,	passwordhash),	where	passwordhash
is	generated	by	hash(append(password,	salt)).

Encryption	is	described	in	more	detail	in	Section	9.9.1.

9.3

Servlets

415

The	servlet	code	can	also	store	and	look	up	(attribute-name,	value)	pairs	in	the	HttpSession	object,	to
maintain	state	across	multiple	requests	within	a	session.	For	example,	after	the	user	is	authenticated	and
the	session	object	has	been	created,	the	login	servlet	could	store	the	user-id	of	the	user	as	a	session
parameter	by	executing	the	method

session.setAttribute(“userid”,	userid)

on	the	session	object	returned	by	getSession();	the	Java	variable	userid	is	assumed	to	contain	the	user
identifier.

If	the	request	was	part	of	an	ongoing	session,	the	browser	would	have	returned	the	cookie	value,	and	the
corresponding	session	object	would	be	returned	by	getSession().

The	servlet	could	then	retrieve	session	parameters	such	as	user-id	from	the	session	object	by	executing
the	method

session.getAttribute(“userid”)

on	the	session	object	returned	above.	If	the	attribute	userid	is	not	set,	the	function	would	return	a	null
value,	which	would	indicate	that	the	client	user	has	not	been	authenticated.

Consider	the	line	in	the	servlet	code	in	Figure	9.7	that	says	“...	check	if	user	is	logged	in...”.	The	following
code	implements	this	check;	if	the	user	is	not	logged	in,	it	sends	an	error	message,	and	after	a	gap	of	5
seconds,	redirects	the	user	to	the	login	page.

Session	session	=	request.getSession(false);

if	(session	==	null	||	session.getAttribute(userid)	==	null)	{

out.println("You	are	not	logged	in.");

response.setHeader("Refresh",	"5;url=login.html");

return();

}

9.3.3

Servlet	Life	Cycle

The	life	cycle	of	a	servlet	is	controlled	by	the	web/application	server	in	which	the	servlet	has	been
deployed.	When	there	is	a	client	request	for	a	specific	servlet,	the	server	first	checks	if	an	instance	of	the
servlet	exists	or	not.	If	not,	the	server	loads	the	servlet	class	into	the	Java	virtual	machine	(JVM)	and
creates	an	instance	of	the	servlet	class.

In	addition,	the	server	calls	the	init()	method	to	initialize	the	servlet	instance.	Notice	that	each	servlet
instance	is	initialized	only	once	when	it	is	loaded.

After	making	sure	the	servlet	instance	does	exist,	the	server	invokes	the	service	method	of	the	servlet,
with	a	request	object	and	a	response	object	as	parameters.	By	default,	the	server	creates	a	new	thread	to
execute	the	service	method;	thus,	multiple

416

Chapter	9

Application	Development

requests	on	a	servlet	can	execute	in	parallel,	without	having	to	wait	for	earlier	requests	to	complete
execution.	The	service	method	calls	doGet	or	doPost	as	appropriate.

When	no	longer	required,	a	servlet	can	be	shut	down	by	calling	the	destroy()	method.	The	server	can	be
set	up	to	shut	down	a	servlet	automatically	if	no	requests	have	been	made	on	a	servlet	within	a	time-out
period;	the	time-out	period	is	a	server	parameter	that	can	be	set	as	appropriate	for	the	application.

9.3.4

Application	Servers

Many	application	servers	provide	built-in	support	for	servlets.	One	of	the	most	popular	is	the	Tomcat
Server	from	the	Apache	Jakarta	Project.	Other	application	servers	that	support	servlets	include	Glassfish,
JBoss,	BEA	Weblogic	Application	Server,	Oracle	Application	Server,	and	IBM’s	WebSphere	Application
Server.

The	best	way	to	develop	servlet	applications	is	by	using	an	IDE	such	as	Eclipse	or	NetBeans,	which	come
with	Tomcat	or	Glassfish	servers	built	in.

Application	servers	usually	provide	a	variety	of	useful	services,	in	addition	to	basic	servlet	support.	They
allow	applications	to	be	deployed	or	stopped,	and	they	provide	functionality	to	monitor	the	status	of	the
application	server,	including	performance	statistics.	Many	application	servers	also	support	the	Java	2
Enterprise	Edition	(J2EE)	platform,	which	provides	support	and	APIs	for	a	variety	of	tasks,	such	as	for
handling	objects,	and	parallel	processing	across	multiple	application	servers.

9.4

Alternative	Server-Side	Frameworks

There	are	several	alternatives	to	Java	Servlets	for	processing	requests	at	the	application	server,	including
scripting	languages	and	web	application	frameworks	developed	for	languages	such	as	Python.

9.4.1

Server-Side	Scripting

Writing	even	a	simple	web	application	in	a	programming	language	such	as	Java	or	C

is	a	time-consuming	task	that	requires	many	lines	of	code	and	programmers	who	are	familiar	with	the
intricacies	of	the	language.	An	alternative	approach,	that	of	server-side	scripting,	provides	a	much	easier
method	for	creating	many	applications.	Scripting	languages	provide	constructs	that	can	be	embedded
within	HTML	documents.

In	server-side	scripting,	before	delivering	a	web	page,	the	server	executes	the	scripts	embedded	within
the	HTML	contents	of	the	page.	Each	piece	of	script,	when	executed,	can	generate	text	that	is	added	to
the	page	(or	may	even	delete	content	from	the	page).

The	source	code	of	the	scripts	is	removed	from	the	page,	so	the	client	may	not	even	be	aware	that	the
page	originally	had	any	code	in	it.	The	executed	script	may	also	contain	SQL	code	that	is	executed	against
a	database.	Many	of	these	languages	come	with	libraries	and	tools	that	together	constitute	a	framework

for	web	application	development.

9.4

Alternative	Server-Side	Frameworks

417

<	html	>

<	head	>	<	title	>	Hello	</title	>	</head	>

<	body	>

<	%	if	(request.getParameter(“name”)	==	null)

{	out.println(“Hello	World”);	}

else	{	out.println(“Hello,	”	+	request.getParameter(“name”));	}

%	>

</body	>

</html	>

Figure	9.9	A	JSP	page	with	embedded	Java	code.

Some	of	the	widely	used	scripting	frameworks	include	Java	Server	Pages	(JSP),	ASP.NET	from	Microsoft,
PHP,	and	Ruby	on	Rails.	These	frameworks	allow	code	written	in	languages	such	as	Java,	C#,	VBScript,
and	Ruby	to	be	embedded	into	or	invoked	from	HTML	pages.	For	instance,	JSP	allows	Java	code	to	be
embedded	in	HTML	pages,	while	Microsoft’s	ASP.NET	and	ASP	support	embedded	C#	and	VBScript.

9.4.1.1

Java	Server	Pages

Next	we	briefly	describe	Java	Server	Pages	(JSP),	a	scripting	language	that	allows	HTML	programmers	to
mix	static	HTML	with	dynamically	generated	HTML.	The	motivation	is	that,	for	many	dynamic	web	pages,
most	of	their	content	is	still	static	(i.e.,	the	same	content	is	present	whenever	the	page	is	generated).	The
dynamic	content	of	the	web	pages	(which	are	generated,	for	example,	on	the	basis	of	form	parameters)	is
often	a	small	part	of	the	page.	Creating	such	pages	by	writing	servlet	code	results	in	a	large	amount	of
HTML	being	coded	as	Java	strings.	JSP	instead	allows	Java	code	to	be	embedded	in	static	HTML;	the
embedded	Java	code	generates	the	dynamic	part	of	the	page.	JSP	scripts	are	actually	translated	into
servlet	code	that	is	then	compiled,	but	the	application	programmer	is	saved	the	trouble	of	writing	much	of
the	Java	code	to	create	the	servlet.

Figure	9.9	shows	the	source	text	of	a	JSP	page	that	includes	embedded	Java	code.

The	Java	code	in	the	script	is	distinguished	from	the	surrounding	HTML	code	by	being	enclosed	in	<%	…
%	>.	The	code	uses	request.getParameter()	to	get	the	value	of	the	attribute	name.

When	a	JSP	page	is	requested	by	a	browser,	the	application	server	generates	HTML

output	from	the	page,	which	is	sent	to	the	browser.	The	HTML	part	of	the	JSP	page	is	output	as	is.5
Wherever	Java	code	is	embedded	within	<%	…%	>,	the	code	is	replaced	in	the	HTML	output	by	the	text	it
prints	to	the	object	out.	In	the	JSP	code	in	Figure	9.9,	5JSP	allows	a	more	complex	embedding,	where
HTML	code	is	within	a	Java	if-else	statement,	and	gets	output	conditionally	depending	on	whether	the	if
condition	evaluates	to	true	or	not.	We	omit	details	here.

418

Chapter	9

Application	Development

if	no	value	was	entered	for	the	form	parameter	name,	the	script	prints	“Hello	World”;	if	a	value	was

entered,	the	script	prints	“Hello”	followed	by	the	name.

A	more	realistic	example	may	perform	more	complex	actions,	such	as	looking	up	values	from	a	database
using	JDBC.

JSP	also	supports	the	concept	of	a	tag	library,	which	allows	the	use	of	tags	that	look	much	like	HTML	tags
but	are	interpreted	at	the	server	and	are	replaced	by	appropriately	generated	HTML	code.	JSP	provides	a
standard	set	of	tags	that	define	variables	and	control	flow	(iterators,	if-then-else),	along	with	an
expression	language	based	on	JavaScript	(but	interpreted	at	the	server).	The	set	of	tags	is	extensible,	and
a	number	of	tag	libraries	have	been	implemented.	For	example,	there	is	a	tag	library	that	supports
paginated	display	of	large	data	sets	and	a	library	that	simplifies	display	and	parsing	of	dates	and	times.

9.4.1.2

PHP

PHP	is	a	scripting	language	that	is	widely	used	for	server-side	scripting.	PHP	code	can	be	intermixed	with
HTML	in	a	manner	similar	to	JSP.	The	characters	“<?php”	indicate	the	start	of	PHP	code,	while	the
characters	“?	>”	indicate	the	end	of	PHP	code.	The	following	code	performs	the	same	actions	as	the	JSP
code	in	Figure	9.9.

<	html	>

<	head	>	<	title	>	Hello	</title	>	</head	>

<	body	>

<?php	if	(!isset($	REQUEST['name']))

{	echo	'Hello	World';	}

else	{	echo	'Hello,	'	.	$	REQUEST['name'];	}

?	>

</body	>

</html	>

The	array	$	REQUEST	contains	the	request	parameters.	Note	that	the	array	is	indexed	by	the	parameter
name;	in	PHP	arrays	can	be	indexed	by	arbitrary	strings,	not	just	numbers.	The	function	isset	checks	if
the	element	of	the	array	has	been	initialized.

The	echo	function	prints	its	argument	to	the	output	HTML.	The	operator	“.”	between	two	strings
concatenates	the	strings.

A	suitably	configured	web	server	would	interpret	any	file	whose	name	ends	in

“.php”	to	be	a	PHP	file.	If	the	file	is	requested,	the	web	server	processes	it	in	a	manner	similar	to	how	JSP
files	are	processed	and	returns	the	generated	HTML	to	the	browser.

A	number	of	libraries	are	available	for	the	PHP	language,	including	libraries	for	database	access	using
ODBC	(similar	to	JDBC	in	Java).

9.4.2

Web	Application	Frameworks

Web	application	development	frameworks	ease	the	task	of	constructing	web	applications	by	providing
features	such	as	these:

9.4

Alternative	Server-Side	Frameworks

419

•	A	library	of	functions	to	support	HTML	and	HTTP	features,	including	sessions.

•	A	template	scripting	system.

•	A	controller	that	maps	user	interaction	events	such	as	form	submits	to	appropriate	functions	that	handle
the	event.	The	controller	also	manages	authentication	and	sessions.	Some	frameworks	also	provide	tools
for	managing	authorizations.

•	A	(relatively)	declarative	way	of	specifying	a	form	with	validation	constraints	on	user	inputs,	from	which
the	system	generates	HTML	and	Javascript/Ajax	code	to	implement	the	form.

•	An	object-oriented	model	with	an	object-relational	mapping	to	store	data	in	a	relational	database
(described	in	Section	9.6.2).

Thus,	these	frameworks	provide	a	variety	of	features	that	are	required	to	build	web	applications	in	an
integrated	manner.	By	generating	forms	from	declarative	specifications	and	managing	data	access
transparently,	the	frameworks	minimize	the	amount	of	coding	that	a	web	application	programmer	has	to
carry	out.

There	are	a	large	number	of	such	frameworks,	based	on	different	languages.	Some	of	the	more	widely
used	frameworks	include	the	Django	framework	for	the	Python	language,	Ruby	on	Rails,	which	supports
the	Rails	framework	on	the	Ruby	programming	language,	Apache	Struts,	Swing,	Tapestry,	and
WebObjects,	all	based	on	Java/JSP.

Many	of	these	frameworks	also	make	it	easy	to	create	simple	CRUD	web	interfaces;	that	is,	interfaces	that
support	create,	read,	update	and	delete	of	objects/tuples	by	generating	code	from	an	object	model	or	a
database.	Such	tools	are	particularly	useful	to	get	simple	applications	running	quickly,	and	the	generated
code	can	be	edited	to	build	more	sophisticated	web	interfaces.

9.4.3

The	Django	Framework

The	Django	framework	for	Python	is	a	widely	used	web	application	framework.	We	illustrate	a	few
features	of	the	framework	through	examples.

Views	in	Django	are	functions	that	are	equivalent	to	servlets	in	Java.	Django	requires	a	mapping,	typically
specified	in	a	file	urls.py,	which	maps	URLs	to	Django	views.	When	the	Django	application	server	receives
an	HTTP	request,	it	uses	the	URL

mapping	to	decide	which	view	function	to	invoke.

Figure	9.10	shows	sample	code	implementing	the	person	query	task	that	we	earlier	implemented	using
Java	servlets.	The	code	shows	a	view	called	person	query	view.

We	assume	that	the	PersonQuery	URL	is	mapped	to	the	view	person	query	view,	and	is	invoked	from	the
HTML	form	shown	earlier	in	Figure	9.3.

We	also	assume	that	the	root	of	the	application	is	mapped	to	a	login	view.	We	have	not	shown	the	code	for
login	view,	but	we	assume	it	displays	a	login	form,	and	on	submit	it	invokes	the	authenticate	view.	We
have	not	shown	the	authenticate	view,

420

Chapter	9

Application	Development

either,	but	we	assume	that	it	checks	the	login	name	and	password.	If	the	password	is	validated,	the
authenticate	view	redirects	to	a	person	query	form,	which	displays	the	HTML	code	that	we	saw	earlier	in
Figure	9.3;	if	password	validation	fails,	it	redirects	to	the	login	view.

Returning	to	Figure	9.10,	the	view	person	query	view()	first	checks	if	the	user	is	logged	in	by	checking	the
session	variable	username.	If	the	session	variable	is	not	set,	the	browser	is	redirected	to	the	login	screen.
Otherwise,	the	requested	user	informa-from	django.http	import	HttpResponse

from	django.db	import	connection

def	result	set	to	html(headers,	cursor):

html	=	"	"

html	+=	"

"

for	header	in	headers:

html	+=	"

"

html	+=	"

"

for	row	in	cursor.fetchall():

html	+=	"

"

for	col	in	row:

html	+=	"

"

html	+=	"

"

html	+=	"

"	+	header	+	"
"	+	col	+	"
"

return	html

def	person	query	view(request):

if	"username"	not	in	request.session:

return	login	view(request)

persontype	=	request.GET.get("persontype")

personname	=	request.GET.get("personname")

if	persontype	==	"student":

query	tmpl	=	"select	id,	name,	dept	name	from	student	where	name=%s"

else:

query	tmpl	=	"select	id,	name,	dept	name	from	instructor	where	name=%s"

with	connection.cursor()	as	cursor:

cursor.execute(query	tmpl,	[personname])

headers	=	["ID",	"Name",	"Department	Name"]

return	HttpResponse(result	set	to	html(headers,	cursor))

Figure	9.10	The	person	query	application	in	Django.

9.5

Client-Side	Code	and	Web	Services

421

tion	is	fetched	by	connecting	to	the	database;	connection	details	for	the	database	are	specified	in	a
Django	configuration	file	settings.py	and	are	omitted	in	our	description.

A	cursor	(similar	to	a	JDBC	statement)	is	opened	on	the	connection,	and	the	query	is	executed	using	the
cursor.	Note	that	the	first	argument	of	cursor.execute	is	the	query,	with	parameters	marked	by	“%s”,	and
the	second	argument	is	a	list	of	values	for	the	parameters.	The	result	of	the	database	query	is	then
displayed	by	calling	a	function	result	set	to	html(),	which	iterates	over	the	result	set	fetched	from	the
database	and	outputs	the	results	in	HTML	format	to	a	string;	the	string	is	then	returned	as	an
HttpResponse.

Django	provides	support	for	a	number	of	other	features,	such	as	creating	HTML

forms	and	validating	data	entered	in	the	forms,	annotations	to	simplify	checking	of	authentication,	and
templates	for	creating	HTML	pages,	which	are	somewhat	similar	to	JSP	pages.	Django	also	supports	an
object-relation	mapping	system,	which	we	describe	in	Section	9.6.2.2.

9.5

Client-Side	Code	and	Web	Services

The	two	most	widely	used	classes	of	user	interfaces	today	are	the	web	interfaces	and	mobile	application
interfaces.

While	early	generation	web	browsers	only	displayed	HTML	code,	the	need	was	soon	felt	to	allow	code	to
run	on	the	browsers.	Client-side	scripting	languages	are	languages	designed	to	be	executed	on	the
client’s	web	browser.	The	primary	motivation	for	such	scripting	languages	is	flexible	interaction	with	the
user,	providing	features	beyond	the	limited	interaction	power	provided	by	HTML	and	HTML	forms.
Further,	executing	programs	at	the	client	site	speeds	up	interaction	greatly	compared	to	every	interaction
being	sent	to	a	server	site	for	processing.

The	JavaScript	language	is	by	far	the	most	widely	used	client-side	scripting	language.	The	current
generation	of	web	interfaces	uses	the	JavaScript	scripting	language	extensively	to	construct	sophisticated
user	interfaces.

Any	client-side	interface	needs	to	store	and	retrieve	data	from	the	back	end.	Directly	accessing	a	database
is	not	a	good	idea,	since	it	not	only	exposes	low-level	details,	but	it	also	exposes	the	database	to	attacks.
Instead,	back	ends	provide	access	to	store	and	retrieve	data	through	web	services.	We	discuss	web
services	in	Section	9.5.2.

Mobile	applications	are	very	widely	used,	and	user	interfaces	for	mobile	devices	are	very	important	today.
Although	we	do	not	cover	mobile	application	development	in	this	book,	we	offer	pointers	to	some	mobile
application	development	frameworks	in	Section	9.5.4.

9.5.1

JavaScript

JavaScript	is	used	for	a	variety	of	tasks,	including	validation,	flexible	user	interfaces,	and	interaction	with
web	services,	which	we	now	describe.

422

Chapter	9

Application	Development

9.5.1.1

Input	Validation

Functions	written	in	JavaScript	can	be	used	to	perform	error	checks	(validation)	on	user	input,	such	as	a
date	string	being	properly	formatted,	or	a	value	entered	(such	as	age)	being	in	an	appropriate	range.
These	checks	are	carried	out	on	the	browser	as	data	are	entered	even	before	the	data	are	sent	to	the	web
server.

With	HTML5,	many	validation	constraints	can	be	specified	as	part	of	the	input	tag.

For	example,	the	following	HTML	code:

<	input	type="number"	name="credits"	size="2"	min="1"	max="15"	>

ensures	that	the	input	for	the	parameter	“credits”	is	a	number	between	1	and	15.	More	complex
validations	that	cannot	be	performed	using	HTML5	features	are	best	done	using	JavaScript.

Figure	9.11	shows	an	example	of	a	form	with	a	JavaScript	function	used	to	validate	a	form	input.	The
function	is	declared	in	the	head	section	of	the	HTML	document.	The	form	accepts	a	start	and	an	end	date.
The	validation	function	ensures	that	the	start	date

Start	Date:	

End	Date	:	

Submit

Figure	9.11	Example	of	JavaScript	used	to	validate	form	input.

9.5

Client-Side	Code	and	Web	Services

423

is	not	greater	than	the	end	date.	The	form	tag	specifies	that	the	validation	function	is	to	be	invoked	when	the	form	is	submitted.	If	the	validation	fails,	an	alert	box	is
shown	to	the	user,	and	if	it	succeeds,	the	form	is	submitted	to	the	server.

9.5.1.2

Responsive	User	Interfaces

The	most	important	benefit	of	JavaScript	is	the	ability	to	create	highly	responsive	user	interfaces	within	a	browser	using	JavaScript.	The	key	to	building	such	a	user
interface	is	the	ability	to	dynamically	modify	the	HTML	code	being	displayed	by	using	JavaScript.

The	browser	parses	HTML	code	into	an	in-memory	tree	structure	defined	by	a	standard	called	the	Document	Object	Model	(DOM).	JavaScript	code	can	modify	the	tree
structure	to	carry	out	certain	operations.	For	example,	suppose	a	user	needs	to	enter	a	number	of	rows	of	data,	for	example	multiple	items	in	a	single	bill.	A	table
containing	text	boxes	and	other	form	input	methods	can	be	used	to	gather	user	input.	The	table	may	have	a	default	size,	but	if	more	rows	are	needed,	the	user	may	click
on	a	button	labeled	(for	example)	“Add	Item.”	This	button	can	be	set	up	to	invoke	a	JavaScript	function	that	modifies	the	DOM	tree	by	adding	an	extra	row	in	the	table.

Although	the	JavaScript	language	has	been	standardized,	there	are	differences	between	browsers,	particularly	in	the	details	of	the	DOM	model.	As	a	result,	JavaScript
code	that	works	on	one	browser	may	not	work	on	another.	To	avoid	such	problems,	it	is	best	to	use	a	JavaScript	library,	such	as	the	JQuery	library,	which	allows	code	to	be
written	in	a	browser-independent	way.	Internally,	the	functions	in	the	library	can	find	out	which	browser	is	in	use	and	send	appropriately	generated	JavaScript	to	the
browser.

JavaScript	libraries	such	as	JQuery	provide	a	number	of	UI	elements,	such	as	menus,	tabs,	widgets	such	as	sliders,	and	features	such	as	autocomplete,	that	can	be	created
and	executed	using	library	functions.

The	HTML5	standard	supports	a	number	of	features	for	rich	user	interaction,	including	drag-and-drop,	geolocation	(which	allows	the	user’s	location	to	be	provided	to	the
application	with	user	permission),	allowing	customization	of	the	data/interface	based	on	location.	HTML5	also	supports	Server-Side	Events	(SSE),	which	allows	a	backend
to	notify	the	front	end	when	some	event	occurs.

9.5.1.3

Interfacing	with	Web	Services

Today,	JavaScript	is	widely	used	to	create	dynamic	web	pages,	using	several	technologies	that	are	collectively	called	Ajax.	Programs	written	in	JavaScript	can	communicate
with	the	web	server	asynchronously	(that	is,	in	the	background,	without	blocking	user	interaction	with	the	web	browser),	and	can	fetch	data	and	display	it.	The	JavaScript
Object	Notation,	or	JSON,	representation	described	in	Section	8.1.2	is	the	most	widely	used	data	format	for	transferring	data,	although	other	formats	such	as	XML	are	also
used.

The	role	of	the	code	for	the	above	tasks,	which	runs	at	the	application	server,	is	to	send	data	to	the	JavaScript	code,	which	then	renders	the	data	on	the	browser.

424

Chapter	9

Application	Development

Such	backend	services,	which	serve	the	role	of	functions	which	can	be	invoked	to	fetch	required	data,	are	known	as	web	services.	Such	services	can	be	implemented	using
Java	Servlets,	Python,	or	any	of	a	number	of	other	language	frameworks.

As	an	example	of	the	use	of	Ajax,	consider	the	autocomplete	feature	implemented	by	many	web	applications.	As	the	user	types	a	value	in	a	text	box,	the	system	suggests
completions	for	the	value	being	typed.	Such	autocomplete	is	very	useful	for	helping	a	user	choose	a	value	from	a	large	number	of	values	where	a	drop-down	list	would	not
be	feasible.	Libraries	such	as	jQuery	provide	support	for	autocomplete	by	associating	a	function	with	a	text	box;	the	function	takes	partial	input	in	the	box,	connected	to	a
web	back	end	to	get	possible	completions,	and	displays	them	as	suggestions	for	the	autocomplete.

The	JavaScript	code	shown	in	Figure	9.12	uses	the	jQuery	library	to	implement	autocomplete	and	the	DataTables	plug-in	for	the	jQuery	library	to	provide	a	tabular	display
of	data.	The	HTML	code	has	a	text	input	box	for	name,	which	has	an	id	attribute	set	to	name.	The	script	associates	an	autocomplete	function	from	the	jQuery	library	with
the	text	box	by	using	$("#name")	syntax	of	jQuery	to	locate	the	DOM	node	for	text	box	with	id	“name”,	and	then	associating	the	autocomplete	function	with	the	node.	The
attribute	source	passed	to	the	function	identifies	the	web	service	that	must	be	invoked	to	get	values	for	the	autocomplete	functionality.	We	assume	that	a	servlet

/autocomplete	name	has	been	defined,	which	accepts	a	parameter	term	containing	the	letters	typed	so	far	by	the	user,	even	as	they	are	being	typed.	The	servlet	should
return	a	JSON	array	of	names	of	students/instructors	that	match	the	letters	in	the	term	parameter.

The	JavaScript	code	also	illustrates	how	data	can	be	retrieved	from	a	web	service	and	then	displayed.	Our	sample	code	uses	the	DataTables	jQuery	plug-in;	there	are	a
number	of	other	alternative	libraries	for	displaying	tabular	data.	We	assume	that	the	person	query	ajax	Servlet,	which	is	not	shown,	returns	the	ID,	name,	and	department
name	of	students	or	instructors	with	a	given	name,	as	we	saw	earlier	in	Figure	9.7,	but	encoded	in	JSON	as	an	object	with	attribute	data	containing	an	array	of	rows;	each
row	is	a	JSON	object	with	attributes	id,	name,	and	dept	name.

The	line	starting	with	myTable	shows	how	the	jQuery	plug-in	DataTable	is	associated	with	the	HTML	table	shown	later	in	the	figure,	whose	identifier	is	personTable.

When	the	button	“Show	details”	is	clicked,	the	function	loadTableAsync()	is	invoked.

This	function	first	creates	a	URL	string	url	that	is	used	to	invoke	person	query	ajax	with	values	for	person	type	and	name.	The	function	ajax.url(url).load()	invoked	on
myTable	fills	the	rows	of	the	table	using	the	JSON	data	fetched	from	the	web	service	whose	URL	we	created	above.	This	happens	asynchronously;	that	is,	the	function
returns	immediately,	but	when	the	data	have	been	fetched,	the	table	rows	are	filled	with	the	returned	data.

Figure	9.13	shows	a	screenshot	of	a	browser	displaying	the	result	of	the	code	in	Figure	9.12.

As	another	example	of	the	use	of	Ajax,	consider	a	web	site	with	a	form	that	allows	you	to	select	a	country,	and	once	a	country	has	been	selected,	you	are	allowed	to	select

9.5

Client-Side	Code	and	Web	Services

425

<	html	>	<	head	>

<	script	src="https://code.jquery.com/jquery-3.3.1.js"	>	</script	>

<	script	src="https://cdn.datatables.net/1.10.19/js/jquery.dataTables.min.js"	></script	>

<	script	src="https://code.jquery.com/ui/1.12.1/jquery-ui.min.js"	></script	>

<	script	src="https://cdn.datatables.net/1.10.19/js/jquery.dataTables.min.js"	></script	>

<	link	rel="stylesheet"

href="https://code.jquery.com/ui/1.12.1/themes/base/jquery-ui.css"	/	>

<	link	rel="stylesheet"

href="https://cdn.datatables.net/1.10.19/css/jquery.dataTables.min.css"/	>

<	script	>

var	myTable;

$(document).ready(function()	{

$("#name").autocomplete({	source:	"/autocomplete	name"	});

myTable	=	$("#personTable").DataTable({

columns:	[{data:"id"},	{data:"name"},	{data:"dept	name"}]

});

});

function	loadTableAsync()	{

var	params	=	{persontype:$("#persontype").val(),	name:$("#name").val()};	var	url	=	"/person	query	ajax?"	+	jQuery.param(params);

myTable.ajax.url(url).load();

}

</script	>

</head	>	<	body	>

Search	for:

<	select	id="persontype"	>

<	option	value="student"	selected	>	Student	</option	>

<	option	value="instructor"	>	Instructor	</option	>

</select	>	<	br	>

Name:	<	input	type=text	size=20	id="name"	>

<	button	onclick="loadTableAsync()"	>	Show	details	</button	>

<	table	id="personTable"	border="1"	>

<	thead	>

<	tr	>	<	th	>	ID	</th	>	<	th	>	Name	</th	>	<	th	>	Dept.	Name	</th	>	</tr	>

</thead	>

</table	>

</body	>	</html	>

Figure	9.12	HTML	page	using	JavaScript	and	Ajax.

a	state	from	a	list	of	states	in	that	country.	Until	the	country	is	selected,	the	drop-down	list	of	states	is	empty.	The	Ajax	framework	allows	the	list	of	states	to	be
downloaded

426

Chapter	9

Application	Development

Figure	9.13	Screenshot	of	display	generated	by	Figure	9.12.

from	the	web	site	in	the	background	when	the	country	is	selected,	and	as	soon	as	the	list	has	been	fetched,	it	is	added	to	the	drop-down	list,	which	allows	you	to	select	the
state.

9.5.2

Web	Services

A	web	service	is	an	application	component	that	can	be	invoked	over	the	web	and	functions,	in	effect,	like	an	application	programming	interface.	A	web	service	request	is
sent	using	the	HTTP	protocol,	it	is	executed	at	an	application	server,	and	the	results	are	sent	back	to	the	calling	program.

Two	approaches	are	widely	used	to	implement	web	services.	In	the	simpler	approach,	called	Representation	State	Transfer	(or	REST),	web	service	function	calls	are
executed	by	a	standard	HTTP	request	to	a	URL	at	an	application	server,	with	parameters	sent	as	standard	HTTP	request	parameters.	The	application	server	executes	the
request	(which	may	involve	updating	the	database	at	the	server),	generates	and	encodes	the	result,	and	returns	the	result	as	the	result	of	the	HTTP	request.	The	most
widely	used	encoding	for	the	results	today	is	the	JSON	representation,	although	XML,	which	we	saw	earlier	in	Section	8.1.3,	is	also	used.	The	requestor	parses	the
returned	page	to	access	the	returned	data.

In	many	applications	of	such	RESTful	web	services	(i.e.,	web	services	using	REST),	the	requestor	is	JavaScript	code	running	in	a	web	browser;	the	code	updates	the
browser	screen	using	the	result	of	the	function	call.	For	example,	when	you	scroll	the	display	on	a	map	interface	on	the	web,	the	part	of	the	map	that	needs	to	be	newly
displayed	may	be	fetched	by	JavaScript	code	using	a	RESTful	interface	and	then	displayed	on	the	screen.

While	some	web	services	are	not	publicly	documented	and	are	used	only	internally	by	specific	applications,	other	web	services	have	their	interfaces	documented	and	can
be	used	by	any	application.	Such	services	may	allow	use	without	any	restriction,

9.5

Client-Side	Code	and	Web	Services

427

may	require	users	to	be	logged	in	before	accessing	the	service,	or	may	require	users	or	application	developers	to	pay	the	web	service	provider	for	the	privilege	of	using
the	service.

Today,	a	very	large	variety	of	RESTful	web	services	are	available,	and	most	front-end	applications	use	one	or	more	such	services	to	perform	backend	activities.	For
example,	your	web-based	email	system,	your	social	media	web	page,	or	your	web-based	map	service	would	almost	surely	be	built	with	JavaScript	code	for	rendering	and
would	use	backend	web	services	to	fetch	data	as	well	as	to	perform	updates.	Similarly,	any	mobile	app	that	stores	data	at	the	back	end	almost	surely	uses	web	services	to
fetch	data	and	to	perform	updates.

Web	services	are	also	increasingly	used	at	the	backend,	to	make	use	of	functionalities	provided	by	other	backend	systems.	For	example,	web-based	storage	systems
provide	a	web	service	API	for	storing	and	retrieving	data;	such	services	are	provided	by	a	number	of	providers,	such	as	Amazon	S3,	Google	Cloud	Storage,	and	Microsoft
Azure.	They	are	very	popular	with	application	developers	since	they	allow	storage	of	very	large	amounts	of	data,	and	they	support	a	very	large	number	of	operations	per
second,	allowing	scalability	far	beyond	what	a	centralized	database	can	support.

There	are	many	more	such	web-service	APIs.	For	example,	text-to-speech,	speech	recognition,	and	vision	web-service	APIs	allow	developers	to	construct	applications
incorporating	speech	and	image	recognition	with	very	little	development	effort.

A	more	complex	and	less	frequently	used	approach,	sometimes	referred	to	as	“Big	Web	Services,”	uses	XML	encoding	of	parameters	as	well	as	results,	has	a	formal
definition	of	the	web	API	using	a	special	language,	and	uses	a	protocol	layer	built	on	top	of	the	HTTP	protocol.

9.5.3

Disconnected	Operation

Many	applications	wish	to	support	some	operations	even	when	a	client	is	disconnected	from	the	application	server.	For	example,	a	student	may	wish	to	complete	an
application	form	even	if	her	laptop	is	disconnected	from	the	network	but	have	it	saved	back	when	the	laptop	is	reconnected.	As	another	example,	if	an	email	client	is	built
as	a	web	application,	a	user	may	wish	to	compose	an	email	even	if	her	laptop	is	disconnected	from	the	network	and	have	it	sent	when	it	is	reconnected.	Building	such
applications	requires	local	storage	in	the	client	machine.

The	HTML5	standard	supports	local	storage,	which	can	be	accessed	using	JavaScript.	The	code:

if	(typeof(Storage)	!==	"undefined")	{	//	browser	supports	local	storage

...

}

checks	if	the	browser	supports	local	storage.	If	it	does,	the	following	functions	can	be	used	to	store,	load,	or	delete	values	for	a	given	key.

428

Chapter	9

Application	Development

localStorage.setItem(key,	value)

localStorage.getItem(key)

localStorage.deleteItem(key)

To	avoid	excessive	data	storage,	the	browser	may	limit	a	web	site	to	storing	at	most	some	amount	of	data;	the	default	maximum	is	typically	5	megabytes.

The	above	interface	only	allows	storage/retrieval	of	key/value	pairs.	Retrieval	requires	that	a	key	be	provided;	otherwise	the	entire	set	of	key/value	pairs	will	need	to	be
scanned	to	find	a	required	value.	Applications	may	need	to	store	tuples	indexed	on	multiple	attributes,	allowing	efficient	access	based	on	values	of	any	of	the	attributes.

HTML5	supports	IndexedDB,	which	allows	storage	of	JSON	objects	with	indices	on	multiple	attributes.	IndexedDB	also	supports	schema	versions	and	allows	the	developer
to	provide	code	to	migrate	data	from	one	schema	version	to	the	next	version.

9.5.4

Mobile	Application	Platforms

Mobile	applications	(or	mobile	apps,	for	short)	are	widely	used	today,	and	they	form	the	primary	user	interface	for	a	large	class	of	users.	The	two	most	widely	used	mobile
platforms	today	are	Android	and	iOS.	Each	of	these	platforms	provides	a	way	of	building	applications	with	a	graphical	user	interface,	tailored	to	small	touch-screen
devices.	The	graphical	user	interface	provides	a	variety	of	standard	GUI	features	such	as	menus,	lists,	buttons,	check	boxes,	progress	bars,	and	so	on,	and	the	ability	to
display	text,	images,	and	video.

Mobile	apps	can	be	downloaded	and	stored	and	used	later.	Thus,	the	user	can	download	apps	when	connected	to	a	high-speed	network	and	then	use	the	app	with	a	lower-
speed	network.	In	contrast,	web	apps	may	get	downloaded	when	they	are	used,	resulting	in	a	lot	of	data	transfer	when	a	user	may	be	connected	to	a	lower-speed	network
or	a	network	where	data	transfer	is	expensive.	Further,	mobile	apps	can	be	better	tuned	to	small-sized	devices	than	web	apps,	with	user	interfaces	that	work	well	on	small
devices.	Mobile	apps	can	also	be	compiled	to	machine	code,	resulting	in	lower	power	demands	than	web	apps.	More	importantly,	unlike	(earlier	generation)	web	apps,
mobile	apps	can	store	data	locally,	allowing	offline	usage.	Further,	mobile	apps	have	a	well-developed	authorization	model,	allowing	them	to	use	information	and	device
features	such	as	location,	cameras,	contacts,	and	so	on	with	user	authorization.

However,	one	of	the	drawbacks	of	using	mobile-app	interfaces	is	that	code	written	for	the	Android	platform	can	only	run	on	that	platform	and	not	on	iOS,	and	vice	versa.

As	a	result,	developers	are	forced	to	code	every	application	twice,	once	for	Android	and	once	for	iOS,	unless	they	decide	to	ignore	one	of	the	platforms	completely,	which	is
not	very	desirable.

The	ability	to	create	applications	where	the	same	high-level	code	can	run	on	either	Android	or	iOS	is	clearly	very	important.	The	React	Native	framework	based	on
JavaScript,	developed	by	Facebook,	and	the	Flutter	framework	based	on	the	Dart	language	developed	by	Google,	are	designed	to	allow	cross-platform	development.	(Dart

9.6

Application	Architectures

429

is	a	language	optimized	for	developing	user	interfaces,	providing	features	such	as	asynchronous	function	invocation	and	functions	on	streams.)	Both	frameworks	allow
much	of	the	application	code	to	be	common	for	both	Android	and	iOS,	but	some	functionality	can	be	made	specific	to	the	underlying	platform	in	case	it	is	not	supported	in
the	platform-independent	part	of	the	framework.

With	the	wide	availability	of	high-speed	mobile	networks,	some	of	the	motivation	for	using	mobile	apps	instead	of	web	apps,	such	as	the	ability	to	download	ahead	of	time,
is	not	as	important	anymore.	A	new	generation	of	web	apps,	called	Progressive	Web	Apps	(PWA)	that	combine	the	benefits	of	mobile	apps	with	web	apps	is	seeing
increasing	usage.	Such	apps	are	built	using	JavaScript	and	HTML5	and	are	tailored	for	mobile	devices.

A	key	enabling	feature	for	PWAs	is	the	HTML5	support	for	local	data	storage,	which	allows	apps	to	be	used	even	when	the	device	is	offline.	Another	enabling	feature	is	the
support	for	compilation	of	JavaScript	code;	compilation	is	restricted	to	code	that	follows	a	restricted	syntax,	since	compilation	of	arbitrary	JavaScript	code	is	not	practical.

Such	compilation	is	typically	done	just-in-time,	that	is,	it	is	done	when	the	code	needs	to	be	executed,	or	if	it	has	already	been	executed	multiple	times.	Thus,	by	writing
CPU-heavy	parts	of	a	web	application	using	only	JavaScript	features	that	allow	compilation,	it	is	possible	to	ensure	CPU	and	energy-efficient	execution	of	the	code	on	a
mobile	device.

PWAs	also	make	use	of	HTML5	service	workers,	which	allow	a	script	to	run	in	the	background	in	the	browser,	separate	from	a	web	page.	Such	service	workers	can	be
used	to	perform	background	synchronization	operations	between	the	local	store	and	a	web	service,	or	to	receive	or	push	notifications	from	a	backend	service.	HTML5	also
allows	apps	to	get	device	location	(after	user	authorization),	allowing	PWAs	to	use	location	information.

Thus,	PWAs	are	likely	to	see	increasing	use,	replacing	many	(but	certainly	not	all)	of	the	use	cases	for	mobile	apps.

9.6

Application	Architectures

To	handle	their	complexity,	large	applications	are	often	broken	into	several	layers:

•	The	presentation	or	user-interface	layer,	which	deals	with	user	interaction.	A	single	application	may	have	several	different	versions	of	this	layer,	corresponding	to
distinct	kinds	of	interfaces	such	as	web	browsers	and	user	interfaces	of	mobile	phones,	which	have	much	smaller	screens.

In	many	implementations,	the	presentation/user-interface	layer	is	itself	conceptually	broken	up	into	layers,	based	on	the	model-view-controller	(MVC)	architecture.

The	model	corresponds	to	the	business-logic	layer,	described	below.	The	view	defines	the	presentation	of	data;	a	single	underlying	model	can	have	different	views
depending	on	the	specific	software/device	used	to	access	the	application.	The	controller	receives	events	(user	actions),	executes	actions	on	the	model,	and	returns

430

Chapter	9

Application	Development

a	view	to	the	user.	The	MVC	architecture	is	used	in	a	number	of	web	application	frameworks.

•	The	business-logic	layer,	which	provides	a	high-level	view	of	data	and	actions	on	data.	We	discuss	the	business-logic	layer	in	more	detail	in	Section	9.6.1.

•	The	data-access	layer,	which	provides	the	interface	between	the	business-logic	layer	and	the	underlying	database.	Many	applications	use	an	object-oriented	language	to
code	the	business-logic	layer	and	use	an	object-oriented	model	of	data,	while	the	underlying	database	is	a	relational	database.	In	such	cases,	the	data-access	layer	also
provides	the	mapping	from	the	object-oriented	data	model	used	by	the	business	logic	to	the	relational	model	supported	by	the	database.	We	discuss	such	mappings	in
more	detail	in	Section	9.6.2.

Figure	9.14	shows	these	layers,	along	with	a	sequence	of	steps	taken	to	process	a	request	from	the	web	browser.	The	labels	on	the	arrows	in	the	figure	indicate	the	order
of	the	steps.	When	the	request	is	received	by	the	application	server,	the	controller	sends	a	request	to	the	model.	The	model	processes	the	request,	using	business	logic,
which	may	involve	updating	objects	that	are	part	of	the	model,	followed	by	creating	a	result	object.	The	model	in	turn	uses	the	data-access	layer	to	update	or	retrieve
information	from	a	database.	The	result	object	created	by	the	model	is	sent	to	the	view	module,	which	creates	an	HTML	view	of	the	result	to	be	displayed	on	the	web
browser.	The	view	may	be	tailored	based	on	the	characteristics	of	the	device	used	to	view	the	result

—	for	example,	whether	it	is	a	computer	monitor	with	a	large	screen	or	a	small	screen	on	a	phone.	Increasingly,	the	view	layer	is	implemented	by	code	running	at	the
client,	instead	of	at	the	server.

1

internet

controller

8

6

2

7

5

web	browser

view

model

3

data-access

layer

4

database

web/application	server

Figure	9.14	Web	application	architecture.

9.6

Application	Architectures

431

9.6.1

The	Business-Logic	Layer

The	business-logic	layer	of	an	application	for	managing	a	university	may	provide	abstractions	of	entities	such	as	students,	instructors,	courses,	sections,	etc.,	and	actions
such	as	admitting	a	student	to	the	university,	enrolling	a	student	in	a	course,	and	so	on.	The	code	implementing	these	actions	ensures	that	business	rules	are	satisfied;	for
example,	the	code	would	ensure	that	a	student	can	enroll	for	a	course	only	if	she	has	already	completed	course	prerequisites	and	has	paid	her	tuition	fees.

In	addition,	the	business	logic	includes	workflows,	which	describe	how	a	particular	task	that	involves	multiple	participants	is	handled.	For	example,	if	a	candidate	applies
to	the	university,	there	is	a	workflow	that	defines	who	should	see	and	approve	the	application	first,	and	if	approved	in	the	first	step,	who	should	see	the	application	next,
and	so	on	until	either	an	offer	is	made	to	the	student,	or	a	rejection	note	is	sent	out.

Workflow	management	also	needs	to	deal	with	error	situations;	for	example,	if	a	deadline	for	approval/rejection	is	not	met,	a	supervisor	may	need	to	be	informed	so	she
can	intervene	and	ensure	the	application	is	processed.

9.6.2

The	Data-Access	Layer	and	Object-Relational	Mapping

In	the	simplest	scenario,	where	the	business-logic	layer	uses	the	same	data	model	as	the	database,	the	data-access	layer	simply	hides	the	details	of	interfacing	with	the
database.

However,	when	the	business-logic	layer	is	written	using	an	object-oriented	programming	language,	it	is	natural	to	model	data	as	objects,	with	methods	invoked	on	objects.

In	early	implementations,	programmers	had	to	write	code	for	creating	objects	by	fetching	data	from	the	database	and	for	storing	updated	objects	back	in	the	database.

However,	such	manual	conversions	between	data	models	is	cumbersome	and	error	prone.	One	approach	to	handling	this	problem	was	to	develop	a	database	system	that
natively	stores	objects,	and	relationships	between	objects,	and	allows	objects	in	the	database	to	be	accessed	in	exactly	the	same	way	as	in-memory	objects.	Such
databases,	called	object-oriented	databases,	were	discussed	in	Section	8.2.	However,	object-oriented	databases	did	not	achieve	commercial	success	for	a	variety	of
technical	and	commercial	reasons.

An	alternative	approach	is	to	use	traditional	relational	databases	to	store	data,	but	to	automate	the	mapping	of	data	in	relation	to	in-memory	objects,	which	are	created	on
demand	(since	memory	is	usually	not	sufficient	to	store	all	data	in	the	database),	as	well	as	the	reverse	mapping	to	store	updated	objects	back	as	relations	in	the	database.

Several	systems	have	been	developed	to	implement	such	object-relational	mappings.

We	describe	the	Hibernate	and	Django	ORMs	next.

9.6.2.1

Hibernate	ORM

The	Hibernate	system	is	widely	used	for	mapping	from	Java	objects	to	relations.	Hibernate	provides	an	implementation	of	the	Java	Persistence	API	(JPA).	In	Hibernate,	the
mapping	from	each	Java	class	to	one	or	more	relations	is	specified	in	a	mapping	file.

432

Chapter	9

Application	Development

The	mapping	file	can	specify,	for	example,	that	a	Java	class	called	Student	is	mapped	to	the	relation	student,	with	the	Java	attribute	ID	mapped	to	the	attribute	student.ID,
and	so	on.	Information	about	the	database,	such	as	the	host	on	which	it	is	running	and	user	name	and	password	for	connecting	to	the	database,	are	specified	in	a
properties	file.	The	program	has	to	open	a	session,	which	sets	up	the	connection	to	the	database.

Once	the	session	is	set	up,	a	Student	object	stud	created	in	Java	can	be	stored	in	the	database	by	invoking	session.save(stud).	The	Hibernate	code	generates	the	SQL
commands	required	to	store	corresponding	data	in	the	student	relation.

While	entities	in	an	E-R	model	naturally	correspond	to	objects	in	an	object-oriented	language	such	as	Java,	relationships	often	do	not.	Hibernate	supports	the	ability	to
map	such	relationships	as	sets	associated	with	objects.	For	example,	the	takes	relationship	between	student	and	section	can	be	modeled	by	associating	a	set	of	section	s
with	each	student,	and	a	set	of	student	s	with	each	section.	Once	the	appropriate	mapping	is	specified,	Hibernate	populates	these	sets	automatically	from	the	database
relation	takes,	and	updates	to	the	sets	are	reflected	back	to	the	database	relation	on	commit.

As	an	example	of	the	use	of	Hibernate,	we	create	a	Java	class	corresponding	to	the	student	relation	as	follows:

@Entity	public	class	Student	{

@Id	String	ID;

String	name;

String	department;

int	tot	cred;

}

To	be	precise,	the	class	attributes	should	be	declared	as	private,	and	getter/setter	methods	should	be	provided	to	access	the	attributes,	but	we	omit	these	details.

The	mapping	of	the	class	attributes	of	Student	to	attributes	of	the	relation	student	can	be	specified	in	a	mapping	file,	in	an	XML	format,	or	more	conveniently,	by	means	of
annotations	of	the	Java	code.	In	the	example	above,	the	annotation	@Entity	denotes	that	the	class	is	mapped	to	a	database	relation,	whose	name	by	default	is	the	class
name,	and	whose	attributes	are	by	default	the	same	as	the	class	attributes.	The	default	relation	name	and	attribute	names	can	be	overridden	using	@Table	and	@Column
annotations.

The	@Id	annotation	in	the	example	specifies	that	ID	is	the	primary	key	attribute.

The	following	code	snippet	then	creates	a	Student	object	and	saves	it	to	the	database.

Session	session	=	getSessionFactory().openSession();

Transaction	txn	=	session.beginTransaction();

Student	stud	=	new	Student("12328",	"John	Smith",	"Comp.	Sci.",	0);

session.save(stud);

txn.commit();

session.close();

9.6

Application	Architectures

433

Hibernate	automatically	generates	the	required	SQL	insert	statement	to	create	a	student	tuple	in	the	database.

Objects	can	be	retrieved	either	by	primary	key	or	by	a	query,	as	illustrated	in	the	following	code	snippet:

Session	session	=	getSessionFactory().openSession();

Transaction	txn	=	session.beginTransaction();

//	Retrieve	student	object	by	identifier

Student	stud1	=	session.get(Student.class,	"12328");

..	print	out	the	Student	information	..

List	students	=

session.createQuery("from	Student	as	s	order	by	s.ID	asc").list();

for	(Iterator	iter	=	students.iterator();	iter.hasNext();)	{

Student	stud	=	(Student)	iter.next();

..	print	out	the	Student	information	..

}

txn.commit();

session.close();

A	single	object	can	be	retrieved	using	the	session.get()	method	by	providing	its	class	and	its	primary	key.	The	retrieved	object	can	be	updated	in	memory;	when	the
transaction	on	the	ongoing	Hibernate	session	is	committed,	Hibernate	automatically	saves	the	updated	objects	by	making	corresponding	updates	on	relations	in	the
database.

The	preceding	code	snippet	also	shows	a	query	in	Hibernate’s	HQL	query	language,	which	is	based	on	SQL	but	designed	to	allow	objects	to	be	used	directly	in	the	query.

The	HQL	query	is	automatically	translated	to	SQL	by	Hibernate	and	executed,	and	the	results	are	converted	into	a	list	of	Student	objects.	The	for	loop	iterates	over	the
objects	in	this	list.

These	features	help	to	provide	the	programmer	with	a	high-level	model	of	data	without	bothering	about	the	details	of	the	relational	storage.	However,	Hibernate,	like
other	object-relational	mapping	systems,	also	allows	queries	to	be	written	using	SQL	on	the	relations	stored	in	the	database;	such	direct	database	access,	bypassing	the
object	model,	can	be	quite	useful	for	writing	complex	queries.

9.6.2.2

The	Django	ORM

Several	ORMs	have	been	developed	for	the	Python	language.	The	ORM	component	of	the	Django	framework	is	one	of	the	most	popular	such	ORMs,	while	SQLAlchemy	is
another	popular	Python	ORM.

Figure	9.15	shows	a	model	definition	for	Student	and	Instructor	in	Django.	Observe	that	all	of	the	fields	of	student	and	instructor	have	been	defined	as	fields	in	the	class
Student	and	Instructor,	with	appropriate	type	definitions.

In	addition,	the	relation	advisor	has	been	modeled	here	as	a	many-to-many	relationship	between	Student	and	Instructor.	The	relationship	is	accessed	by	an	attribute

434

Chapter	9

Application	Development

from	django.db	import	models

class	student(models.Model):

id	=	models.CharField(primary	key=True,	max	length=5)

name	=	models.CharField(max	length=20)

dept	name	=	models.CharField(max	length=20)

tot	cred	=	models.DecimalField(max	digits=3,	decimal	places=0)

class	instructor(models.Model):

id	=	models.CharField(primary	key=True,	max	length=5)

name	=	models.CharField(max	length=20)

dept	name	=	models.CharField(max	length=20)

salary	=	models.DecimalField(max	digits=8,	decimal	places=2)

advisees	=	models.ManyToManyField(student,	related	name="advisors")

Figure	9.15	Model	definition	in	Django.

called	advisees	in	Instructor,	which	stores	a	set	of	references	to	Student	objects.	The	reverse	relationship	from	Student	to	Instructor	is	created	automatically,	and	the
model	specifies	that	the	reverse	relationship	attribute	in	the	Student	class	is	named	advisors;	this	attribute	stores	a	set	of	references	to	Instructor	objects.

The	Django	view	person	query	model	shown	in	Figure	9.16	illustrates	how	to	access	database	objects	directly	from	the	Python	language,	without	using	SQL.	The
expression	Student.objects.filter()	returns	all	student	objects	that	satisfy	the	specified	filter	condition;	in	this	case,	students	with	the	given	name.	The	student	names	are
printed	out	along	with	the	names	of	their	advisors.	The	expression	Student.advisors.all()	returns	a	list	of	advisors	(advisor	objects)	of	a	given	student,	whose	names	are
then	retrieved	and	returned	by	the	get	names()	function.	The	case	for	instructors	is	similar,	with	instructor	names	being	printed	out	along	with	the	names	of	their	advisees.

Django	provides	a	tool	called	migrate,	which	creates	database	relations	from	a	given	model.	Models	can	be	given	version	numbers.	When	migrate	is	invoked	on	a	model
with	a	new	version	number,	while	an	earlier	version	number	is	already	in	the	database,	the	migrate	tool	also	generates	SQL	code	for	migrating	the	existing	data	from	the
old	database	schema	to	the	new	database	schema.	It	is	also	possible	to	create	Django	models	from	existing	database	schemas.

9.7

Application	Performance

Web	sites	may	be	accessed	by	millions	of	people	from	across	the	globe,	at	rates	of	thousands	of	requests	per	second,	or	even	more,	for	the	most	popular	sites.	Ensuring

9.7

Application	Performance

435

from	models	import	Student,	Instructor

def	get	names(persons):

res	=	""

for	p	in	persons:

res	+=	p.name	+	",	"

return	res.rstrip(",	")

def	person	query	model(request):

persontype	=	request.GET.get(’persontype’)

personname	=	request.GET.get(’personname’)

html	=	""

if	persontype	==	’student’:

students	=	Student.objects.filter(name=personname)

for	student	in	students:

advisors	=	students.advisors.all()

html	=	html	+	"Advisee:	"	+	student.name	+	"

Advisors:	"

+	get	names(advisors)	+	"	<	br	>	∖n"

else:

instructors	=	Instructor.objects.filter(name=personname)

for	instructor	in	instructors:

advisees	=	instructor.advisees.all()

html	=	html+"Advisor:	"	+	instructor.name	+	"

Advisees:	"

+	get	names(advisees)	+	"	<	br	>	∖n"

return	HttpResponse(html)

Figure	9.16	View	definition	in	Django	using	models.

that	requests	are	served	with	low	response	times	is	a	major	challenge	for	web-site	developers.	To	do	so,	application	developers	try	to	speed	up	the	processing	of	individual
requests	by	using	techniques	such	as	caching,	and	they	exploit	parallel	processing	by	using	multiple	application	servers.	We	describe	these	techniques	briefly	next.	Tuning
of	database	applications	is	another	way	to	improve	performance	and	is	described	in	Section	25.1.

9.7.1

Reducing	Overhead	by	Caching

Suppose	that	the	application	code	for	servicing	each	user	request	connects	to	a	database	through	JDBC.	Creating	a	new	JDBC	connection	may	take	several	milliseconds,	so
opening	a	new	connection	for	each	user	request	is	not	a	good	idea	if	very	high	transaction	rates	are	to	be	supported.

436

Chapter	9

Application	Development

The	connection	pooling	method	is	used	to	reduce	this	overhead;	it	works	as	follows:	The	connection	pool	manager	(typically	a	part	of	the	application	server)	creates	a	pool
(that	is,	a	set)	of	open	ODBC/JDBC	connections.	Instead	of	opening	a	new	connection	to	the	database,	the	code	servicing	a	user	request	(typically	a	servlet)	asks	for
(requests)	a	connection	from	the	connection	pool	and	returns	the	connection	to	the	pool	when	the	code	(servlet)	completes	its	processing.	If	the	pool	has	no	unused
connections	when	a	connection	is	requested,	a	new	connection	is	opened	to	the	database	(taking	care	not	to	exceed	the	maximum	number	of	connections	that	the	database
system	can	support	concurrently).	If	there	are	many	open	connections	that	have	not	been	used	for	a	while,	the	connection	pool	manager	may	close	some	of	the	open
database	connections.	Many	application	servers	and	newer	ODBC/JDBC	drivers	provide	a	built-in	connection	pool	manager.

Details	of	how	to	create	a	connection	pool	vary	by	application	server	or	JDBC

driver,	but	most	implementations	require	the	creation	of	a	DataSource	object	using	the	JDBC	connection	details	such	as	the	machine,	port,	database,	user-id	and
password,	as	well	as	other	parameters	related	to	connection	pooling.	The	getConnection()	method	invoked	on	the	DataSource	object	gets	a	connection	from	the	connection
pool.	Closing	the	connection	returns	the	connection	to	the	pool.

Certain	requests	may	result	in	exactly	the	same	query	being	resubmitted	to	the	database.	The	cost	of	communication	with	the	database	can	be	greatly	reduced	by	caching
the	results	of	earlier	queries	and	reusing	them,	so	long	as	the	query	result	has	not	changed	at	the	database.	Some	web	servers	support	such	query-result	caching;	caching
can	otherwise	be	done	explicitly	in	application	code.

Costs	can	be	further	reduced	by	caching	the	final	web	page	that	is	sent	in	response	to	a	request.	If	a	new	request	comes	with	exactly	the	same	parameters	as	a	previous
request,	the	request	does	not	perform	any	updates,	and	the	resultant	web	page	is	in	the	cache,	that	page	can	be	reused	to	avoid	the	cost	of	recomputing	the	page.	Caching
can	be	done	at	the	level	of	fragments	of	web	pages,	which	are	then	assembled	to	create	complete	web	pages.

Cached	query	results	and	cached	web	pages	are	forms	of	materialized	views.	If	the	underlying	database	data	change,	the	cached	results	must	be	discarded,	or
recomputed,	or	even	incrementally	updated,	as	in	materialized-view	maintenance	(described	in	Section	16.5).	Some	database	systems	(such	as	Microsoft	SQL	Server)
provide	a	way	for	the	application	server	to	register	a	query	with	the	database	and	get	a	notification	from	the	database	when	the	result	of	the	query	changes.	Such	a
notification	mechanism	can	be	used	to	ensure	that	query	results	cached	at	the	application	server	are	up-to-date.

There	are	several	widely	used	main-memory	caching	systems;	among	the	more	popular	ones	are	memcached	and	Redis.	Both	systems	allow	applications	to	store	data	with
an	associated	key	and	retrieve	data	for	a	specified	key.	Thus,	they	act	as	hash-map	data	structures	that	allow	data	to	be	stored	in	the	main	memory	but	also	provide	cache
eviction	of	infrequently	used	data.

9.8

Application	Security

437

For	example,	with	memcached,	data	can	be	stored	using	memcached.add(key,	data)	and	fetched	using	memcached.fetch(key).	Instead	of	issuing	a	database	query	to	fetch
user	data	with	a	specified	key,	say	key1,	from	a	relation	r,	an	application	would	first	check	if	the	required	data	are	already	cached	by	issuing	a	fetch("r:"+key1)	(here,	the
key	is	appended	to	the	relation	name,	to	distinguish	data	from	different	relations	that	may	be	stored	in	the	same	memcached	instance).	If	the	fetch	returns	null,	the
database	query	is	issued,	a	copy	of	the	data	fetched	from	the	database	is	stored	in	memcached,	and	the	data	are	then	returned	to	the	user.	If	the	fetch	does	find	the
requested	data,	it	can	be	used	without	accessing	the	database,	leading	to	much	faster	access.

A	client	can	connect	to	multiple	memcached	instances,	which	may	run	on	different	machines	and	store/retrieve	data	from	any	of	them.	How	to	decide	what	data	are	stored
on	which	instance	is	left	to	the	client	code.	By	partitioning	the	data	storage	across	multiple	machines,	an	application	can	benefit	from	the	aggregate	main	memory
available	across	all	the	machines.

Memcached	does	not	support	automatic	invalidation	of	cached	data,	but	the	application	can	track	database	changes	and	issue	updates	(using	memcached	set(key,
newvalue))	or	deletes	(using	memcached	delete(key))	for	the	key	values	affected	by	update	or	deletion	in	the	database.	Redis	offers	very	similar	functionality.	Both
memcached	and	Redis	provide	APIs	in	multiple	languages.

9.7.2

Parallel	Processing

A	commonly	used	approach	to	handling	such	very	heavy	loads	is	to	use	a	large	number	of	application	servers	running	in	parallel,	each	handling	a	fraction	of	the	requests.
A	web	server	or	a	network	router	can	be	used	to	route	each	client	request	to	one	of	the	application	servers.	All	requests	from	a	particular	client	session	must	go	to	the
same	application	server,	since	the	server	maintains	state	for	a	client	session.	This	property	can	be	ensured,	for	example,	by	routing	all	requests	from	a	particular	IP
address	to	the	same	application	server.	The	underlying	database	is,	however,	shared	by	all	the	application	servers,	so	users	see	a	consistent	view	of	the	database.

While	the	above	architecture	ensures	that	application	servers	do	not	become	bottlenecks,	it	cannot	prevent	the	database	from	becoming	a	bottleneck,	since	there	is	only
one	database	server.	To	avoid	overloading	the	database,	application	designers	often	use	caching	techniques	to	reduce	the	number	of	requests	to	the	database.	In	addition,
parallel	database	systems,	described	in	Chapter	21	through	Chapter	23,	are	used	when	the	database	needs	to	handle	very	large	amounts	of	data,	or	a	very	large	query
load.

Parallel	data	storage	systems	that	are	accessible	via	web	service	APIs	are	also	popular	in	applications	that	need	to	scale	to	a	very	large	number	of	users.

9.8

Application	Security

Application	security	has	to	deal	with	several	security	threats	and	issues	beyond	those	handled	by	SQL	authorization.

438

Chapter	9

Application	Development

The	first	point	where	security	has	to	be	enforced	is	in	the	application.	To	do	so,	applications	must	authenticate	users	and	ensure	that	users	are	only	allowed	to	carry	out
authorized	tasks.

There	are	many	ways	in	which	an	application’s	security	can	be	compromised,	even	if	the	database	system	is	itself	secure,	due	to	badly	written	application	code.	In	this
section,	we	first	describe	several	security	loopholes	that	can	permit	hackers	to	carry	out	actions	that	bypass	the	authentication	and	authorization	checks	carried	out	by	the
application,	and	we	explain	how	to	prevent	such	loopholes.	Later	in	the	section,	we	describe	techniques	for	secure	authentication,	and	for	fine-grained	authorization.	We
then	describe	audit	trails	that	can	help	in	recovering	from	unauthorized	access	and	from	erroneous	updates.	We	conclude	the	section	by	describing	issues	in	data	privacy.

9.8.1

SQL	Injection

In	SQL	injection	attacks,	the	attacker	manages	to	get	an	application	to	execute	an	SQL

query	created	by	the	attacker.	In	Section	5.1.1.5,	we	saw	an	example	of	an	SQL	injection	vulnerability	if	user	inputs	are	concatenated	directly	with	an	SQL	query	and
submitted	to	the	database.	As	another	example	of	SQL	injection	vulnerability,	consider	the	form	source	text	shown	in	Figure	9.3.	Suppose	the	corresponding	servlet	shown
in	Figure	9.7	creates	an	SQL	query	string	using	the	following	Java	expression:

String	query	=	“select	*	from	student	where	name	like	’%”

+	name	+	“%’	”

where	name	is	a	variable	containing	the	string	input	by	the	user,	and	then	executes	the	query	on	the	database.	A	malicious	attacker	using	the	web	form	can	then	type	a
string	such	as	“	’;	<	some	SQL	statement	>;	–	–	”,	where	<	some	SQL	statement	>	denotes	any	SQL	statement	that	the	attacker	desires,	in	place	of	a	valid	student	name.
The	servlet	would	then	execute	the	following	string.

select	*	from	student	where	name	like	'%';	<	some	SQL	statement	>;	–	–	%’

The	quote	inserted	by	the	attacker	closes	the	string,	the	following	semicolon	terminates	the	query,	and	the	following	text	inserted	by	the	attacker	gets	interpreted	as	a
second	SQL	query,	while	the	closing	quote	has	been	commented	out.	Thus,	the	malicious	user	has	managed	to	insert	an	arbitrary	SQL	statement	that	is	executed	by	the
application.

The	statement	can	cause	significant	damage,	since	it	can	perform	any	action	on	the	database,	bypassing	all	security	measures	implemented	in	the	application	code.

As	discussed	in	Section	5.1.1.5,	to	avoid	such	attacks,	it	is	best	to	use	prepared	statements	to	execute	SQL	queries.	When	setting	a	parameter	of	a	prepared	query,	JDBC
automatically	adds	escape	characters	so	that	the	user-supplied	quote	would	no	longer	be	able	to	terminate	the	string.	Equivalently,	a	function	that	adds	such	escape

9.8

Application	Security

439

characters	could	be	applied	on	input	strings	before	they	are	concatenated	with	the	SQL

query,	instead	of	using	prepared	statements.

Another	source	of	SQL-injection	risk	comes	from	applications	that	create	queries	dynamically,	based	on	selection	conditions	and	ordering	attributes	specified	in	a	form.

For	example,	an	application	may	allow	a	user	to	specify	what	attribute	should	be	used	for	sorting	the	results	of	a	query.	An	appropriate	SQL	query	is	constructed,	based	on
the	attribute	specified.	Suppose	the	application	takes	the	attribute	name	from	a	form,	in	the	variable	orderAttribute,	and	creates	a	query	string	such	as	the	following:
String	query	=	“select	*	from	takes	order	by	”	+	orderAttribute;

A	malicious	user	can	send	an	arbitrary	string	in	place	of	a	meaningful	orderAttribute	value,	even	if	the	HTML	form	used	to	get	the	input	tried	to	restrict	the	allowed	values
by	providing	a	menu.	To	avoid	this	kind	of	SQL	injection,	the	application	should	ensure	that	the	orderAttribute	variable	value	is	one	of	the	allowed	values	(in	our	example,
attribute	names)	before	appending	it.

9.8.2

Cross-Site	Scripting	and	Request	Forgery

A	web	site	that	allows	users	to	enter	text,	such	as	a	comment	or	a	name,	and	then	stores	it	and	later	displays	it	to	other	users,	is	potentially	vulnerable	to	a	kind	of	attack
called	a	cross-site	scripting	(XSS)	attack.	In	such	an	attack,	a	malicious	user	enters	code	written	in	a	client-side	scripting	language	such	as	JavaScript	or	Flash	instead	of
entering	a	valid	name	or	comment.	When	a	different	user	views	the	entered	text,	the	browser	executes	the	script,	which	can	carry	out	actions	such	as	sending	private
cookie	information	back	to	the	malicious	user	or	even	executing	an	action	on	a	different	web	server	that	the	user	may	be	logged	into.

For	example,	suppose	the	user	happens	to	be	logged	into	her	bank	account	at	the	time	the	script	executes.	The	script	could	send	cookie	information	related	to	the	bank
account	login	back	to	the	malicious	user,	who	could	use	the	information	to	connect	to	the	bank’s	web	server,	fooling	it	into	believing	that	the	connection	is	from	the
original	user.	Or	the	script	could	access	appropriate	pages	on	the	bank’s	web	site,	with	appropriately	set	parameters,	to	execute	a	money	transfer.	In	fact,	this	particular
problem	can	occur	even	without	scripting	by	simply	using	a	line	of	code	such	as

<	img	src=

"https://mybank.com/transfermoney?amount=1000&toaccount=14523"	>

assuming	that	the	URL	mybank.com/transfermoney	accepts	the	specified	parameters	and	carries	out	a	money	transfer.	This	latter	kind	of	vulnerability	is	also	called	cross-
site	request	forgery	or	XSRF	(sometimes	also	called	CSRF).

XSS	can	be	done	in	other	ways,	such	as	luring	a	user	into	visiting	a	web	site	that	has	malicious	scripts	embedded	in	its	pages.	There	are	other	more	complex	kinds	of	XSS

440

Chapter	9

Application	Development

and	XSRF	attacks,	which	we	shall	not	get	into	here.	To	protect	against	such	attacks,	two	things	need	to	be	done:

•	Prevent	your	web	site	from	being	used	to	launch	XSS	or	XSRF	attacks.

The	simplest	technique	is	to	disallow	any	HTML	tags	whatsoever	in	text	input	by	users.	There	are	functions	that	detect	or	strip	all	such	tags.	These	functions	can	be	used
to	prevent	HTML	tags,	and	as	a	result,	any	scripts,	from	being	displayed	to	other	users.	In	some	cases	HTML	formatting	is	useful,	and	in	that	case	functions	that	parse	the
text	and	allow	limited	HTML	constructs	but	disallow	other	dangerous	constructs	can	be	used	instead;	these	must	be	designed	carefully,	since	something	as	innocuous	as
an	image	include	could	potentially	be	dangerous	in	case	there	is	a	bug	in	the	image	display	software	that	can	be	exploited.

•	Protect	your	web	site	from	XSS	or	XSRF	attacks	launched	from	other	sites.

If	the	user	has	logged	into	your	web	site	and	visits	a	different	web	site	vulnerable	to	XSS,	the	malicious	code	executing	on	the	user’s	browser	could	execute	actions	on
your	web	site	or	pass	session	information	related	to	your	web	site	back	to	the	malicious	user,	who	could	try	to	exploit	it.	This	cannot	be	prevented	altogether,	but	you	can
take	a	few	steps	to	minimize	the	risk.

°	The	HTTP	protocol	allows	a	server	to	check	the	referer	of	a	page	access,	that	is,	the	URL	of	the	page	that	had	the	link	that	the	user	clicked	on	to	initiate	the	page	access.
By	checking	that	the	referer	is	valid,	for	example,	that	the	referer	URL	is	a	page	on	the	same	web	site,	XSS	attacks	that	originated	on	a	different	web	page	accessed	by	the
user	can	be	prevented.

°	Instead	of	using	only	the	cookie	to	identify	a	session,	the	session	could	also	be	restricted	to	the	IP	address	from	which	it	was	originally	authenticated.	As	a	result,	even	if
a	malicious	user	gets	a	cookie,	he	may	not	be	able	to	log	in	from	a	different	computer.

°	Never	use	a	GET	method	to	perform	any	updates.	This	prevents	attacks	using

<	img	src	..	>	such	as	the	one	we	saw	earlier.	In	fact,	the	HTTP	standard	specifies	that	GET	methods	should	not	perform	any	updates.

°	If	you	use	a	web	application	framework	like	Django,	make	sure	to	use	the	XSRF/CSRF	protection	mechanisms	provided	by	the	framework.

9.8.3

Password	Leakage

Another	problem	that	application	developers	must	deal	with	is	storing	passwords	in	clear	text	in	the	application	code.	For	example,	programs	such	as	JSP	scripts	often
contain	passwords	in	clear	text.	If	such	scripts	are	stored	in	a	directory	accessible	by	a	web	server,	an	external	user	may	be	able	to	access	the	source	code	of	the	script
and	get	access	to	the	password	for	the	database	account	used	by	the	application.	To	avoid	such	problems,	many	application	servers	provide	mechanisms	to	store
passwords	in

9.8

Application	Security

441

encrypted	form,	which	the	server	decrypts	before	passing	it	on	to	the	database.	Such	a	feature	removes	the	need	for	storing	passwords	as	clear	text	in	application
programs.

However,	if	the	decryption	key	is	also	vulnerable	to	being	exposed,	this	approach	is	not	fully	effective.

As	another	measure	against	compromised	database	passwords,	many	database	systems	allow	access	to	the	database	to	be	restricted	to	a	given	set	of	internet	addresses,
typically,	the	machines	running	the	application	servers.	Attempts	to	connect	to	the	database	from	other	internet	addresses	are	rejected.	Thus,	unless	the	malicious	user	is
able	to	log	into	the	application	server,	she	cannot	do	any	damage	even	if	she	gains	access	to	the	database	password.

9.8.4

Application-Level	Authentication

Authentication	refers	to	the	task	of	verifying	the	identity	of	a	person/software	connecting	to	an	application.	The	simplest	form	of	authentication	consists	of	a	secret
password	that	must	be	presented	when	a	user	connects	to	the	application.	Unfortunately,	passwords	are	easily	compromised,	for	example,	by	guessing,	or	by	sniffing	of
packets	on	the	network	if	the	passwords	are	not	sent	encrypted.	More	robust	schemes	are	needed	for	critical	applications,	such	as	online	bank	accounts.	Encryption	is	the
basis	for	more	robust	authentication	schemes.	Authentication	through	encryption	is	addressed	in	Section	9.9.3.

Many	applications	use	two-factor	authentication,	where	two	independent	factors	(i.e.,	pieces	of	information	or	processes)	are	used	to	identify	a	user.	The	two	factors
should	not	share	a	common	vulnerability;	for	example,	if	a	system	merely	required	two	passwords,	both	could	be	vulnerable	to	leakage	in	the	same	manner	(by	network
sniffing,	or	by	a	virus	on	the	computer	used	by	the	user,	for	example).	While	biometrics	such	as	fingerprints	or	iris	scanners	can	be	used	in	situations	where	a	user	is
physically	present	at	the	point	of	authentication,	they	are	not	very	meaningful	across	a	network.

Passwords	are	used	as	the	first	factor	in	most	such	two-factor	authentication	schemes.	Smart	cards	or	other	encryption	devices	connected	through	the	USB	interface,
which	can	be	used	for	authentication	based	on	encryption	techniques	(see	Section	9.9.3),	are	widely	used	as	second	factors.

One-time	password	devices,	which	generate	a	new	pseudo-random	number	(say)	every	minute	are	also	widely	used	as	a	second	factor.	Each	user	is	given	one	of	these
devices	and	must	enter	the	number	displayed	by	the	device	at	the	time	of	authentication,	along	with	the	password,	to	authenticate	himself.	Each	device	generates	a
different	sequence	of	pseudo-random	numbers.	The	application	server	can	generate	the	same	sequence	of	pseudo-random	numbers	as	the	device	given	to	the	user,
stopping	at	the	number	that	would	be	displayed	at	the	time	of	authentication,	and	verify	that	the	numbers	match.	This	scheme	requires	that	the	clock	in	the	device	and	at
the	server	are	synchronized	reasonably	closely.

Yet	another	second-factor	approach	is	to	send	an	SMS	with	a	(randomly	generated)	one-time	password	to	the	user’s	phone	(whose	number	is	registered	earlier)	whenever

442

Chapter	9

Application	Development

the	user	wishes	to	log	in	to	the	application.	The	user	must	possess	a	phone	with	that	number	to	receive	the	SMS	and	then	enter	the	one-time	password,	along	with	her
regular	password,	to	be	authenticated.

It	is	worth	noting	that	even	with	two-factor	authentication,	users	may	still	be	vulnerable	to	man-in-the-middle	attacks.	In	such	attacks,	a	user	attempting	to	connect	to	the
application	is	diverted	to	a	fake	web	site,	which	accepts	the	password	(including	second	factor	passwords)	from	the	user	and	uses	it	immediately	to	authenticate	to	the
original	application.	The	HTTPS	protocol,	described	in	Section	9.9.3.2,	is	used	to	authenticate	the	web	site	to	the	user	(so	the	user	does	not	connect	to	a	fake	site	believing
it	to	be	the	intended	site).	The	HTTPS	protocol	also	encrypts	data	and	prevents	man-in-the-middle	attacks.

When	users	access	multiple	web	sites,	it	is	often	annoying	for	a	user	to	have	to	authenticate	herself	to	each	site	separately,	often	with	different	passwords	on	each	site.

There	are	systems	that	allow	the	user	to	authenticate	herself	to	one	central	authentication	service,	and	other	web	sites	and	applications	can	authenticate	the	user	through
the	central	authentication	service;	the	same	password	can	then	be	used	to	access	multiple	sites.	The	LDAP	protocol	is	widely	used	to	implement	such	a	central	point	of
authentication	for	applications	within	a	single	organization;	organizations	implement	an	LDAP	server	containing	user	names	and	password	information,	and	applications
use	the	LDAP	server	to	authenticate	users.

In	addition	to	authenticating	users,	a	central	authentication	service	can	provide	other	services,	for	example,	providing	information	about	the	user	such	as	name,	email,	and
address	information,	to	the	application.	This	obviates	the	need	to	enter	this	information	separately	in	each	application.	LDAP	can	be	used	for	this	task,	as	described	in
Section	25.5.2.	Other	directory	systems	such	Microsoft’s	Active	Directories	also	provide	mechanisms	for	authenticating	users	as	well	as	for	providing	user	information.

A	single	sign-on	system	further	allows	the	user	to	be	authenticated	once,	and	multiple	applications	can	then	verify	the	user’s	identity	through	an	authentication	service
without	requiring	reauthentication.	In	other	words,	once	a	user	is	logged	in	at	one	site,	he	does	not	have	to	enter	his	user	name	and	password	at	other	sites	that	use	the
same	single	sign-on	service.	Such	single	sign-on	mechanisms	have	long	been	used	in	network	authentication	protocols	such	as	Kerberos,	and	implementations	are	now
available	for	web	applications.

The	Security	Assertion	Markup	Language	(SAML)	is	a	protocol	for	exchanging	authentication	and	authorization	information	between	different	security	domains,	to	provide
cross-organization	single	sign-on.	For	example,	suppose	an	application	needs	to	provide	access	to	all	students	from	a	particular	university,	say	Yale.	The	university	can	set
up	a	web-based	service	that	carries	out	authentication.	Suppose	a	user	connects	to	the	application	with	a	username	such	as	“joe@yale.edu”.	The	application,	instead	of
directly	authenticating	a	user,	diverts	the	user	to	Yale	University’s	authentication	service,	which	authenticates	the	user	and	then	tells	the	application	who	the	user	is	and

9.8

Application	Security

443

may	provide	some	additional	information	such	as	the	category	of	the	user	(student	or	instructor)	or	other	relevant	information.	The	user’s	password	and	other
authentication	factors	are	never	revealed	to	the	application,	and	the	user	need	not	register	explicitly	with	the	application.	However,	the	application	must	trust	the
university’s	authentication	service	when	authenticating	a	user.

The	OpenID	protocol	is	an	alternative	for	single	sign-on	across	organizations,	which	works	in	a	manner	similar	to	SAML.	The	OAuth	protocol	is	another	protocol	that
allows	users	to	authorize	access	to	certain	resources,	via	sharing	of	an	authorization	token.

9.8.5

Application-Level	Authorization

Although	the	SQL	standard	supports	a	fairly	flexible	system	of	authorization	based	on	roles	(described	in	Section	4.7),	the	SQL	authorization	model	plays	a	very	limited
role	in	managing	user	authorizations	in	a	typical	application.	For	instance,	suppose	you	want	all	students	to	be	able	to	see	their	own	grades,	but	not	the	grades	of	anyone
else.

Such	authorization	cannot	be	specified	in	SQL	for	at	least	two	reasons:	1.	Lack	of	end-user	information.	With	the	growth	in	the	web,	database	accesses	come	primarily
from	web	application	servers.	The	end	users	typically	do	not	have	individual	user	identifiers	on	the	database	itself,	and	indeed	there	may	only	be	a	single	user	identifier	in
the	database	corresponding	to	all	users	of	an	application	server.

Thus,	authorization	specification	in	SQL	cannot	be	used	in	the	above	scenario.

It	is	possible	for	an	application	server	to	authenticate	end	users	and	then	pass	the	authentication	information	on	to	the	database.	In	this	section	we	will	assume	that	the
function	syscontext.user	id()	returns	the	identifier	of	the	application	user	on	whose	behalf	a	query	is	being	executed.	6

2.	Lack	of	fine-grained	authorization.	Authorization	must	be	at	the	level	of	individual	tuples	if	we	are	to	authorize	students	to	see	only	their	own	grades.	Such	authorization
is	not	possible	in	the	current	SQL	standard,	which	permits	authorization	only	on	an	entire	relation	or	view,	or	on	specified	attributes	of	relations	or	views.

We	could	try	to	get	around	this	limitation	by	creating	for	each	student	a	view	on	the	takes	relation	that	shows	only	that	student’s	grades.	While	this	would	work	in
principle,	it	would	be	extremely	cumbersome	since	we	would	have	to	create	one	such	view	for	every	single	student	enrolled	in	the	university,	which	is	completely
impractical.7

An	alternative	is	to	create	a	view	of	the	form

6In	Oracle,	a	JDBC	connection	using	Oracle’s	JDBC	drivers	can	set	the	end	user	identifier	using	the	method	OracleConnection.setClientIdentifier(userId),	and	an	SQL
query	can	use	the	function	sys	context('USERENV',

'CLIENT	IDENTIFIER')	to	retrieve	the	user	identifier.

7Database	systems	are	designed	to	manage	large	relations	but	to	manage	schema	information	such	as	views	in	a	way	that	assumes	smaller	data	volumes	so	as	to	enhance
overall	performance.

444

Chapter	9

Application	Development

create	view	studentTakes	as

select	*

from	takes

where	takes.	ID=	syscontext.user	id()

Users	are	then	given	authorization	to	this	view,	rather	than	to	the	underlying	takes	relation.	However,	queries	executed	on	behalf	of	students	must	now	be	written	on	the
view	studentTakes,	rather	than	on	the	original	takes	relation,	whereas	queries	executed	on	behalf	of	instructors	may	need	to	use	a	different	view.	The	task	of	developing
applications	becomes	more	complex	as	a	result.

The	task	of	authorization	is	often	typically	carried	out	entirely	in	the	application,	bypassing	the	authorization	facilities	of	SQL.	At	the	application	level,	users	are	authorized
to	access	specific	interfaces,	and	they	may	further	be	restricted	to	view	or	update	certain	data	items	only.

While	carrying	out	authorization	in	the	application	gives	a	great	deal	of	flexibility	to	application	developers,	there	are	problems,	too.

•	The	code	for	checking	authorization	becomes	intermixed	with	the	rest	of	the	application	code.

•	Implementing	authorization	through	application	code,	rather	than	specifying	it	declaratively	in	SQL,	makes	it	hard	to	ensure	the	absence	of	loopholes.	Because	of	an
oversight,	one	of	the	application	programs	may	not	check	for	authorization,	allowing	unauthorized	users	access	to	confidential	data.

Verifying	that	all	application	programs	make	all	required	authorization	checks	involves	reading	through	all	the	application-server	code,	a	formidable	task	in	a	large	system.
In	other	words,	applications	have	a	very	large	“surface	area,”	making	the	task	of	protecting	the	application	significantly	harder.	And	in	fact,	security	loopholes	have	been
found	in	a	variety	of	real-life	applications.

In	contrast,	if	a	database	directly	supported	fine-grained	authorization,	authorization	policies	could	be	specified	and	enforced	at	the	SQL	level,	which	has	a	much	smaller
surface	area.	Even	if	some	of	the	application	interfaces	inadvertently	omit	required	authorization	checks,	the	SQL-level	authorization	could	prevent	unauthorized	actions
from	being	executed.

Some	database	systems	provide	mechanisms	for	row-level	authorization	as	we	saw	in	Section	4.7.7.	For	example,	the	Oracle	Virtual	Private	Database	(VPD)	allows	a
system	administrator	to	associate	a	function	with	a	relation;	the	function	returns	a	predicate	that	must	be	added	to	any	query	that	uses	the	relation	(different	functions
can	be	defined	for	relations	that	are	being	updated).	For	example,	using	our	syntax	for	retrieving	application	user	identifiers,	the	function	for	the	takes	relation	can	return
a	predicate	such	as:

9.8

Application	Security

445

ID	=	sys	context.user	id()

This	predicate	is	added	to	the	where	clause	of	every	query	that	uses	the	takes	relation.

As	a	result	(assuming	that	the	application	program	sets	the	user	id	value	to	the	student’s	ID),	each	student	can	see	only	the	tuples	corresponding	to	courses	that	she	took.

As	we	discussed	in	Section	4.7.7,	a	potential	pitfall	with	adding	a	predicate	as	described	above	is	that	it	may	change	the	meaning	of	a	query.	For	example,	if	a	user	wrote	a
query	to	find	the	average	grade	over	all	courses,	she	would	end	up	getting	the	average	of	her	grades,	not	all	grades.	Although	the	system	would	give	the	“right”	answer
for	the	rewritten	query,	that	answer	would	not	correspond	to	the	query	the	user	may	have	thought	she	was	submitting.

PostgreSQL	and	Microsoft	SQL	Server	offer	row-level	authorization	support	with	similar	functionality	to	Oracle	VPD.	More	information	on	Oracle	VPD	and	PostgreSQL

and	SQL	Server	row-level	authorization	may	be	found	in	their	respective	system	manuals	available	online.

9.8.6

Audit	Trails

An	audit	trail	is	a	log	of	all	changes	(inserts,	deletes,	and	updates)	to	the	application	data,	along	with	information	such	as	which	user	performed	the	change	and	when	the
change	was	performed.	If	application	security	is	breached,	or	even	if	security	was	not	breached,	but	some	update	was	carried	out	erroneously,	an	audit	trail	can	(a)	help
find	out	what	happened,	and	who	may	have	carried	out	the	actions,	and	(b)	aid	in	fixing	the	damage	caused	by	the	security	breach	or	erroneous	update.

For	example,	if	a	student’s	grade	is	found	to	be	incorrect,	the	audit	log	can	be	examined	to	locate	when	and	how	the	grade	was	updated,	as	well	as	to	find	which	user

carried	out	the	updates.	The	university	could	then	also	use	the	audit	trail	to	trace	all	the	updates	performed	by	this	user	in	order	to	find	other	incorrect	or	fraudulent
updates,	and	then	correct	them.

Audit	trails	can	also	be	used	to	detect	security	breaches	where	a	user’s	account	is	compromised	and	accessed	by	an	intruder.	For	example,	each	time	a	user	logs	in,	she
may	be	informed	about	all	updates	in	the	audit	trail	that	were	done	from	that	login	in	the	recent	past;	if	the	user	sees	an	update	that	she	did	not	carry	out,	it	is	likely	the
account	has	been	compromised.

It	is	possible	to	create	a	database-level	audit	trail	by	defining	appropriate	triggers	on	relation	updates	(using	system-defined	variables	that	identify	the	user	name	and
time).

However,	many	database	systems	provide	built-in	mechanisms	to	create	audit	trails	that	are	much	more	convenient	to	use.	Details	of	how	to	create	audit	trails	vary	across
database	systems,	and	you	should	refer	to	the	database-system	manuals	for	details.

Database-level	audit	trails	are	usually	insufficient	for	applications,	since	they	are	usually	unable	to	track	who	was	the	end	user	of	the	application.	Further,	updates	are
recorded	at	a	low	level,	in	terms	of	updates	to	tuples	of	a	relation,	rather	than	at	a	higher	level,	in	terms	of	the	business	logic.	Applications,	therefore,	usually	create	a

446

Chapter	9

Application	Development

higher-level	audit	trail,	recording,	for	example,	what	action	was	carried	out,	by	whom,	when,	and	from	which	IP	address	the	request	originated.

A	related	issue	is	that	of	protecting	the	audit	trail	itself	from	being	modified	or	deleted	by	users	who	breach	application	security.	One	possible	solution	is	to	copy	the	audit
trail	to	a	different	machine,	to	which	the	intruder	would	not	have	access,	with	each	record	in	the	trail	copied	as	soon	as	it	is	generated.	A	more	robust	solution	is	to	use
blockchain	techniques,	which	are	described	in	Chapter	26;	blockchain	techniques	store	logs	in	multiple	machines	and	use	a	hashing	mechanism	that	makes	it	very	difficult
for	an	intruder	to	modify	or	delete	data	without	being	detected.

9.8.7

Privacy

In	a	world	where	an	increasing	amount	of	personal	data	are	available	online,	people	are	increasingly	worried	about	the	privacy	of	their	data.	For	example,	most	people
would	want	their	personal	medical	data	to	be	kept	private	and	not	revealed	publicly.

However,	the	medical	data	must	be	made	available	to	doctors	and	emergency	medical	technicians	who	treat	the	patient.	Many	countries	have	laws	on	privacy	of	such	data
that	define	when	and	to	whom	the	data	may	be	revealed.	Violation	of	privacy	law	can	result	in	criminal	penalties	in	some	countries.	Applications	that	access	such	private
data	must	be	built	carefully,	keeping	the	privacy	laws	in	mind.

On	the	other	hand,	aggregated	private	data	can	play	an	important	role	in	many	tasks	such	as	detecting	drug	side	effects,	or	in	detecting	the	spread	of	epidemics.	How	to
make	such	data	available	to	researchers	carrying	out	such	tasks	without	compromising	the	privacy	of	individuals	is	an	important	real-world	problem.	As	an	example,
suppose	a	hospital	hides	the	name	of	the	patient	but	provides	a	researcher	with	the	date	of	birth	and	the	postal	code	of	the	patient	(both	of	which	may	be	useful	to	the
researcher).

Just	these	two	pieces	of	information	can	be	used	to	uniquely	identify	the	patient	in	many	cases	(using	information	from	an	external	database),	compromising	his	privacy.

In	this	particular	situation,	one	solution	would	be	to	give	the	year	of	birth	but	not	the	date	of	birth,	along	with	the	address,	which	may	suffice	for	the	researcher.	This
would	not	provide	enough	information	to	uniquely	identify	most	individuals.8

As	another	example,	web	sites	often	collect	personal	data	such	as	address,	telephone,	email,	and	credit-card	information.	Such	information	may	be	required	to	carry	out	a
transaction	such	as	purchasing	an	item	from	a	store.	However,	the	customer	may	not	want	the	information	to	be	made	available	to	other	organizations,	or	may	want	part	of
the	information	(such	as	credit-card	numbers)	to	be	erased	after	some	period	of	time	as	a	way	to	prevent	it	from	falling	into	unauthorized	hands	in	the	event	of	a	security
breach.	Many	web	sites	allow	customers	to	specify	their	privacy	preferences,	and	those	web	sites	must	then	ensure	that	these	preferences	are	respected.

8For	extremely	old	people,	who	are	relatively	rare,	even	the	year	of	birth	plus	postal	code	may	be	enough	to	uniquely	identify	the	individual,	so	a	range	of	values,	such	as
90	years	or	older,	may	be	provided	instead	of	the	actual	age	for	people	older	than	90	years.

9.9

Encryption	and	Its	Applications

447

9.9

Encryption	and	Its	Applications

Encryption	refers	to	the	process	of	transforming	data	into	a	form	that	is	unreadable,	unless	the	reverse	process	of	decryption	is	applied.	Encryption	algorithms	use	an
encryption	key	to	perform	encryption,	and	they	require	a	decryption	key	(which	could	be	the	same	as	the	encryption	key,	depending	on	the	encryption	algorithm	used)	to
perform	decryption.

The	oldest	uses	of	encryption	were	for	transmitting	messages,	encrypted	using	a	secret	key	known	only	to	the	sender	and	the	intended	receiver.	Even	if	the	message	is
intercepted	by	an	enemy,	the	enemy,	not	knowing	the	key,	will	not	be	able	to	decrypt	and	understand	the	message.	Encryption	is	widely	used	today	for	protecting	data	in
transit	in	a	variety	of	applications	such	as	data	transfer	on	the	internet,	and	on	cell-phone	networks.	Encryption	is	also	used	to	carry	out	other	tasks,	such	as
authentication,	as	we	will	see	in	Section	9.9.3.

In	the	context	of	databases,	encryption	is	used	to	store	data	in	a	secure	way,	so	that	even	if	the	data	are	acquired	by	an	unauthorized	user	(e.g.,	a	laptop	computer
containing	the	data	is	stolen),	the	data	will	not	be	accessible	without	a	decryption	key.

Many	databases	today	store	sensitive	customer	information,	such	as	credit-card	numbers,	names,	fingerprints,	signatures,	and	identification	numbers	such	as,	in	the
United	States,	social	security	numbers.	A	criminal	who	gets	access	to	such	data	can	use	them	for	a	variety	of	illegal	activities,	such	as	purchasing	goods	using	a	credit-
card	number,	or	even	acquiring	a	credit	card	in	someone	else’s	name.	Organizations	such	as	credit-card	companies	use	knowledge	of	personal	information	as	a	way	of
identifying	who	is	requesting	a	service	or	goods.	Leakage	of	such	personal	information	allows	a	criminal	to	impersonate	someone	else	and	get	access	to	service	or	goods;
such	impersonation	is	referred	to	as	identity	theft.	Thus,	applications	that	store	such	sensitive	data	must	take	great	care	to	protect	them	from	theft.

To	reduce	the	chance	of	sensitive	information	being	acquired	by	criminals,	many	countries	and	states	today	require	by	law	that	any	database	storing	such	sensitive
information	must	store	the	information	in	an	encrypted	form.	A	business	that	does	not	protect	its	data	thus	could	be	held	criminally	liable	in	case	of	data	theft.	Thus,
encryption	is	a	critical	component	of	any	application	that	stores	such	sensitive	information.

9.9.1

Encryption	Techniques

There	are	a	vast	number	of	techniques	for	the	encryption	of	data.	Simple	encryption	techniques	may	not	provide	adequate	security,	since	it	may	be	easy	for	an
unauthorized	user	to	break	the	code.	As	an	example	of	a	weak	encryption	technique,	consider	the	substitution	of	each	character	with	the	next	character	in	the	alphabet.
Thus,	Perryridge

becomes

Qfsszsjehf

448

Chapter	9

Application	Development

If	an	unauthorized	user	sees	only	“Qfsszsjehf,”	she	probably	has	insufficient	information	to	break	the	code.	However,	if	the	intruder	sees	a	large	number	of	encrypted
branch	names,	she	could	use	statistical	data	regarding	the	relative	frequency	of	characters	to	guess	what	substitution	is	being	made	(for	example,	E	is	the	most	common
letter	in	English	text,	followed	by	T,	A,	O,	N,	I	,	and	so	on).

A	good	encryption	technique	has	the	following	properties:

•	It	is	relatively	simple	for	authorized	users	to	encrypt	and	decrypt	data.

•	It	depends	not	on	the	secrecy	of	the	algorithm,	but	rather	on	a	parameter	of	the	algorithm	called	the	encryption	key,	which	is	used	to	encrypt	data.	In	a	symmetric-key
encryption	technique,	the	encryption	key	is	also	used	to	decrypt	data.	In	contrast,	in	public-key	(also	known	as	asymmetric-key)	encryption	techniques,	there	are	two
different	keys,	the	public	key	and	the	private	key,	used	to	encrypt	and	decrypt	the	data.

•	Its	decryption	key	is	extremely	difficult	for	an	intruder	to	determine,	even	if	the	intruder	has	access	to	encrypted	data.	In	the	case	of	asymmetric-key	encryption,	it	is
extremely	difficult	to	infer	the	private	key	even	if	the	public	key	is	available.

The	Advanced	Encryption	Standard	(AES)	is	a	symmetric-key	encryption	algorithm	that	was	adopted	as	an	encryption	standard	by	the	U.S.	government	in	2000	and	is	now
widely	used.	The	standard	is	based	on	the	Rijndael	algorithm	(named	for	the	inventors	V.	Rijmen	and	J.	Daemen).	The	algorithm	operates	on	a	128-bit	block	of	data	at	a
time,	while	the	key	can	be	128,	192,	or	256	bits	in	length.	The	algorithm	runs	a	series	of	steps	to	jumble	up	the	bits	in	a	data	block	in	a	way	that	can	be	reversed	during
decryption,	and	it	performs	an	XOR	operation	with	a	128-bit	“round	key”	that	is	derived	from	the	encryption	key.	A	new	round	key	is	generated	from	the	encryption	key	for
each	block	of	data	that	is	encrypted.	During	decryption,	the	round	keys	are	generated	again	from	the	encryption	key	and	the	encryption	process	is	reversed	to	recover	the
original	data.

An	earlier	standard	called	the	Data	Encryption	Standard	(DES),	adopted	in	1977,	was	very	widely	used	earlier.

For	any	symmetric-key	encryption	scheme	to	work,	authorized	users	must	be	provided	with	the	encryption	key	via	a	secure	mechanism.	This	requirement	is	a	major
weakness,	since	the	scheme	is	no	more	secure	than	the	security	of	the	mechanism	by	which	the	encryption	key	is	transmitted.

Public-key	encryption	is	an	alternative	scheme	that	avoids	some	of	the	problems	faced	by	symmetric-key	encryption	techniques.	It	is	based	on	two	keys:	a	public	key	and	a
private	key.	Each	user	U	has	a	public	key	E	and	a	private	key	D	.	All	public	keys	are	i

i

i

published:	They	can	be	seen	by	anyone.	Each	private	key	is	known	to	only	the	one	user	to	whom	the	key	belongs.	If	user	U	wants	to	store	encrypted	data,	U	encrypts	them
1

1

using	public	key	E	.	Decryption	requires	the	private	key	D	.

1

1

Because	the	encryption	key	for	each	user	is	public,	it	is	possible	to	exchange	information	securely	by	this	scheme.	If	user	U	wants	to	share	data	with	U	,	U	encrypts	1

2

1

9.9

Encryption	and	Its	Applications

449

the	data	using	E	,	the	public	key	of	U	.	Since	only	user	U	knows	how	to	decrypt	the	2

2

2

data,	information	can	be	transferred	securely.

For	public-key	encryption	to	work,	there	must	be	a	scheme	for	encryption	such	that	it	is	infeasible	(that	is,	extremely	hard)	to	deduce	the	private	key,	given	the	public	key.
Such	a	scheme	does	exist	and	is	based	on	these	conditions:

•	There	is	an	efficient	algorithm	for	testing	whether	or	not	a	number	is	prime.

•	No	efficient	algorithm	is	known	for	finding	the	prime	factors	of	a	number.

For	purposes	of	this	scheme,	data	are	treated	as	a	collection	of	integers.	We	create	a	public	key	by	computing	the	product	of	two	large	prime	numbers:	P	and	P	.	The
private	1

2

key	consists	of	the	pair	(P	,	P).	The	decryption	algorithm	cannot	be	used	successfully	1

2

if	only	the	product	P	P	is	known;	it	needs	the	individual	values	P	and	P	.	Since	all	that	1	2

1

2

is	published	is	the	product	P	P	,	an	unauthorized	user	would	need	to	be	able	to	factor	1	2

P	P	to	steal	data.	By	choosing	P	and	P	to	be	sufficiently	large	(over	100	digits),	1	2

1

2

we	can	make	the	cost	of	factoring	P	P	prohibitively	high	(on	the	order	of	years	of	1	2

computation	time,	on	even	the	fastest	computers).

The	details	of	public-key	encryption	and	the	mathematical	justification	of	this	technique’s	properties	are	referenced	in	the	bibliographical	notes.

Although	public-key	encryption	by	this	scheme	is	secure,	it	is	also	computationally	very	expensive.	A	hybrid	scheme	widely	used	for	secure	communication	is	as	follows:	a
symmetric	encryption	key	(based,	for	example,	on	AES)	is	randomly	generated	and	exchanged	in	a	secure	manner	using	a	public-key	encryption	scheme,	and	symmetric-
key	encryption	using	that	key	is	used	on	the	data	transmitted	subsequently.

Encryption	of	small	values,	such	as	identifiers	or	names,	is	made	complicated	by	the	possibility	of	dictionary	attacks,	particularly	if	the	encryption	key	is	publicly	available.
For	example,	if	date-of-birth	fields	are	encrypted,	an	attacker	trying	to	decrypt	a	particular	encrypted	value	e	could	try	encrypting	every	possible	date	of	birth	until	he
finds	one	whose	encrypted	value	matches	e.	Even	if	the	encryption	key	is	not	publicly	available,	statistical	information	about	data	distributions	can	be	used	to	figure	out
what	an	encrypted	value	represents	in	some	cases,	such	as	age	or	address.	For	example,	if	the	age	18	is	the	most	common	age	in	a	database,	the	encrypted	age	value	that
occurs	most	often	can	be	inferred	to	represent	18.

Dictionary	attacks	can	be	deterred	by	adding	extra	random	bits	to	the	end	of	the	value	before	encryption	(and	removing	them	after	decryption).	Such	extra	bits,	referred
to	as	an	initialization	vector	in	AES,	or	as	salt	bits	in	other	contexts,	provide	good	protection	against	dictionary	attack.

9.9.2

Encryption	Support	in	Databases

Many	file	systems	and	database	systems	today	support	encryption	of	data.	Such	encryption	protects	the	data	from	someone	who	is	able	to	access	the	data	but	is	not	able
to	access	the	decryption	key.	In	the	case	of	file-system	encryption,	the	data	to	be	encrypted	are	usually	large	files	and	directories	containing	information	about	files.

450

Chapter	9

Application	Development

In	the	context	of	databases,	encryption	can	be	done	at	several	different	levels.	At	the	lowest	level,	the	disk	blocks	containing	database	data	can	be	encrypted,	using	a	key
available	to	the	database-system	software.	When	a	block	is	retrieved	from	disk,	it	is	first	decrypted	and	then	used	in	the	usual	fashion.	Such	disk-block-level	encryption
protects	against	attackers	who	can	access	the	disk	contents	but	do	not	have	access	to	the	encryption	key.

At	the	next	higher	level,	specified	(or	all)	attributes	of	a	relation	can	be	stored	in	encrypted	form.	In	this	case,	each	attribute	of	a	relation	could	have	a	different	encryption
key.	Many	databases	today	support	encryption	at	the	level	of	specified	attributes	as	well	as	at	the	level	of	an	entire	relation,	or	all	relations	in	a	database.	Encryption	of
specified	attributes	minimizes	the	overhead	of	decryption	by	allowing	applications	to	encrypt	only	attributes	that	contain	sensitive	values	such	as	credit-card	numbers.

Encryption	also	then	needs	to	use	extra	random	bits	to	prevent	dictionary	attacks,	as	described	earlier.	However,	databases	typically	do	not	allow	primary	and	foreign	key
attributes	to	be	encrypted,	and	they	do	not	support	indexing	on	encrypted	attributes.

A	decryption	key	is	obviously	required	to	get	access	to	encrypted	data.	A	single	master	encryption	key	may	be	used	for	all	the	encrypted	data;	with	attribute	level
encryption,	different	encryption	keys	could	be	used	for	different	attributes.	In	this	case,	the	decryption	keys	for	different	attributes	can	be	stored	in	a	file	or	relation	(often
referred	to	as	“wallet”),	which	is	itself	encrypted	using	a	master	key.

A	connection	to	the	database	that	needs	to	access	encrypted	attributes	must	then	provide	the	master	key;	unless	this	is	provided,	the	connection	will	not	be	able	to	access
encrypted	data.	The	master	key	would	be	stored	in	the	application	program	(typically	on	a	different	computer),	or	memorized	by	the	database	user,	and	provided	when	the
user	connects	to	the	database.

Encryption	at	the	database	level	has	the	advantage	of	requiring	relatively	low	time	and	space	overhead	and	does	not	require	modification	of	applications.	For	example,	if
data	in	a	laptop	computer	database	need	to	be	protected	from	theft	of	the	computer	itself,	such	encryption	can	be	used.	Similarly,	someone	who	gets	access	to	backup
tapes	of	a	database	would	not	be	able	to	access	the	data	contained	in	the	backups	without	knowing	the	decryption	key.

An	alternative	to	performing	encryption	in	the	database	is	to	perform	it	before	the	data	are	sent	to	the	database.	The	application	must	then	encrypt	the	data	before
sending	it	to	the	database	and	decrypt	the	data	when	they	are	retrieved.	This	approach	to	data	encryption	requires	significant	modifications	to	be	done	to	the	application,
unlike	encryption	performed	in	a	database	system.

9.9.3

Encryption	and	Authentication

Password-based	authentication	is	used	widely	by	operating	systems	as	well	as	database	systems.	However,	the	use	of	passwords	has	some	drawbacks,	especially	over	a
network.

If	an	eavesdropper	is	able	to	“sniff”	the	data	being	sent	over	the	network,	she	may	be	able	to	find	the	password	as	it	is	being	sent	across	the	network.	Once	the
eavesdropper

9.9

Encryption	and	Its	Applications

451

has	a	user	name	and	password,	she	can	connect	to	the	database,	pretending	to	be	the	legitimate	user.

A	more	secure	scheme	involves	a	challenge-response	system.	The	database	system	sends	a	challenge	string	to	the	user.	The	user	encrypts	the	challenge	string	using	a
secret	password	as	encryption	key	and	then	returns	the	result.	The	database	system	can	verify	the	authenticity	of	the	user	by	decrypting	the	string	with	the	same	secret
password	and	checking	the	result	with	the	original	challenge	string.	This	scheme	ensures	that	no	passwords	travel	across	the	network.

Public-key	systems	can	be	used	for	encryption	in	challenge	–	response	systems.	The	database	system	encrypts	a	challenge	string	using	the	user’s	public	key	and	sends	it	to
the	user.	The	user	decrypts	the	string	using	her	private	key	and	returns	the	result	to	the	database	system.	The	database	system	then	checks	the	response.	This	scheme	has
the	added	benefit	of	not	storing	the	secret	password	in	the	database,	where	it	could	potentially	be	seen	by	system	administrators.

Storing	the	private	key	of	a	user	on	a	computer	(even	a	personal	computer)	has	the	risk	that	if	the	computer	is	compromised,	the	key	may	be	revealed	to	an	attacker	who
can	then	masquerade	as	the	user.	Smart	cards	provide	a	solution	to	this	problem.

In	a	smart	card,	the	key	can	be	stored	on	an	embedded	chip;	the	operating	system	of	the	smart	card	guarantees	that	the	key	can	never	be	read,	but	it	allows	data	to	be
sent	to	the	card	for	encryption	or	decryption,	using	the	private	key.9

9.9.3.1

Digital	Signatures

Another	interesting	application	of	public-key	encryption	is	in	digital	signatures	to	verify	authenticity	of	data;	digital	signatures	play	the	electronic	role	of	physical
signatures	on	documents.	The	private	key	is	used	to	“sign,”	that	is,	encrypt,	data,	and	the	signed	data	can	be	made	public.	Anyone	can	verify	the	signature	by	decrypting
the	data	using	the	public	key,	but	no	one	could	have	generated	the	signed	data	without	having	the	private	key.	(Note	the	reversal	of	the	roles	of	the	public	and	private	keys
in	this	scheme.)	Thus,	we	can	authenticate	the	data;	that	is,	we	can	verify	that	the	data	were	indeed	created	by	the	person	who	is	supposed	to	have	created	them.

Furthermore,	digital	signatures	also	serve	to	ensure	nonrepudiation.	That	is,	in	case	the	person	who	created	the	data	later	claims	she	did	not	create	them	(the	electronic
equivalent	of	claiming	not	to	have	signed	the	check),	we	can	prove	that	that	person	must	have	created	the	data	(unless	her	private	key	was	leaked	to	others).

9.9.3.2

Digital	Certificates

Authentication	is,	in	general,	a	two-way	process,	where	each	of	a	pair	of	interacting	entities	authenticates	itself	to	the	other.	Such	pairwise	authentication	is	needed	even
9Smart	cards	provide	other	functionality	too,	such	as	the	ability	to	store	cash	digitally	and	make	payments,	which	is	not	relevant	in	our	context.

452

Chapter	9

Application	Development

when	a	client	contacts	a	web	site,	to	prevent	a	malicious	site	from	masquerading	as	a	legal	web	site.	Such	masquerading	could	be	done,	for	example,	if	the	network
routers	were	compromised	and	data	rerouted	to	the	malicious	site.

For	a	user	to	ensure	that	she	is	interacting	with	an	authentic	web	site,	she	must	have	the	site’s	public	key.	This	raises	the	problem	of	how	the	user	can	get	the	public	key
—	if	it	is	stored	on	the	web	site,	the	malicious	site	could	supply	a	different	key,	and	the	user	would	have	no	way	of	verifying	if	the	supplied	public	key	is	itself	authentic.

Authentication	can	be	handled	by	a	system	of	digital	certificates,	whereby	public	keys	are	signed	by	a	certification	agency,	whose	public	key	is	well	known.	For	example,
the	public	keys	of	the	root	certification	authorities	are	stored	in	standard	web	browsers.	A	certificate	issued	by	them	can	be	verified	by	using	the	stored	public	keys.

A	two-level	system	would	place	an	excessive	burden	of	creating	certificates	on	the	root	certification	authorities,	so	a	multilevel	system	is	used	instead,	with	one	or	more
root	certification	authorities	and	a	tree	of	certification	authorities	below	each	root.

Each	authority	(other	than	the	root	authorities)	has	a	digital	certificate	issued	by	its	parent.

A	digital	certificate	issued	by	a	certification	authority	A	consists	of	a	public	key	KA	and	an	encrypted	text	E	that	can	be	decoded	by	using	the	public	key	K	.	The	encrypted
A

text	contains	the	name	of	the	party	to	whom	the	certificate	was	issued	and	her	public	key	K	.	In	case	the	certification	authority	A	is	not	a	root	certification	authority,	the	c

encrypted	text	also	contains	the	digital	certificate	issued	to	A	by	its	parent	certification	authority;	this	certificate	authenticates	the	key	K	itself.	(That	certificate	may	in
turn	A

contain	a	certificate	from	a	further	parent	authority,	and	so	on.)

To	verify	a	certificate,	the	encrypted	text	E	is	decrypted	by	using	the	public	key	K	to	retrieve	the	name	of	the	party	(i.e.,	the	name	of	the	organization	owning	the	A

web	site);	additionally,	if	A	is	not	a	root	authority	whose	public	key	is	known	to	the	verifier,	the	public	key	K	is	verified	recursively	by	using	the	digital	certificate	con-A

tained	within	E;	recursion	terminates	when	a	certificate	issued	by	the	root	authority	is	reached.	Verifying	the	certificate	establishes	the	chain	through	which	a	particular

site	was	authenticated	and	provides	the	name	and	authenticated	public	key	for	the	site.

Digital	certificates	are	widely	used	to	authenticate	web	sites	to	users,	to	prevent	malicious	sites	from	masquerading	as	other	web	sites.	In	the	HTTPS	protocol	(the	secure
version	of	the	HTTP	protocol),	the	site	provides	its	digital	certificate	to	the	browser,	which	then	displays	it	to	the	user.	If	the	user	accepts	the	certificate,	the	browser	then
uses	the	provided	public	key	to	encrypt	data.	A	malicious	site	will	have	access	to	the	certificate,	but	not	the	private	key,	and	will	thus	not	be	able	to	decrypt	the	data	sent
by	the	browser.	Only	the	authentic	site,	which	has	the	corresponding	private	key,	can	decrypt	the	data	sent	by	the	browser.	We	note	that	public-/private-key	encryption	and
decryption	costs	are	much	higher	than	encryption/decryption	costs	using	symmetric	private	keys.	To	reduce	encryption	costs,	HTTPS	actually	creates	a	one-time
symmetric	key	after	authentication	and	uses	it	to	encrypt	data	for	the	rest	of	the	session.

9.10

Summary

453

Digital	certificates	can	also	be	used	for	authenticating	users.	The	user	must	submit	a	digital	certificate	containing	her	public	key	to	a	site,	which	verifies	that	the
certificate	has	been	signed	by	a	trusted	authority.	The	user’s	public	key	can	then	be	used	in	a	challenge-response	system	to	ensure	that	the	user	possesses	the
corresponding	private	key,	thereby	authenticating	the	user.

9.10

Summary

•	Application	programs	that	use	databases	as	back	ends	and	interact	with	users	have	been	around	since	the	1960s.	Application	architectures	have	evolved	over	this
period.	Today	most	applications	use	web	browsers	as	their	front	end,	and	a	database	as	their	back	end,	with	an	application	server	in	between.

•	HTML	provides	the	ability	to	define	interfaces	that	combine	hyperlinks	with	forms	facilities.	Web	browsers	communicate	with	web	servers	by	the	HTTP	protocol.	Web
servers	can	pass	on	requests	to	application	programs	and	return	the	results	to	the	browser.

•	Web	servers	execute	application	programs	to	implement	desired	functionality.

Servlets	are	a	widely	used	mechanism	to	write	application	programs	that	run	as	part	of	the	web	server	process,	in	order	to	reduce	overhead.	There	are	also	many	server-
side	scripting	languages	that	are	interpreted	by	the	web	server	and	provide	application-program	functionality	as	part	of	the	web	server.

•	There	are	several	client-side	scripting	languages—JavaScript	is	the	most	widely	used	—	that	provide	richer	user	interaction	at	the	browser	end.

•	Complex	applications	usually	have	a	multilayer	architecture,	including	a	model	implementing	business	logic,	a	controller,	and	a	view	mechanism	to	display	results.

They	may	also	include	a	data	access	layer	that	implements	an	object-relational	mapping.	Many	applications	implement	and	use	web	services,	allowing	functions	to	be
invoked	over	HTTP.

•	Techniques	such	as	caching	of	various	forms,	including	query	result	caching	and	connection	pooling,	and	parallel	processing	are	used	to	improve	application
performance.

•	Application	developers	must	pay	careful	attention	to	security,	to	prevent	attacks	such	as	SQL	injection	attacks	and	cross-site	scripting	attacks.

•	SQL	authorization	mechanisms	are	coarse	grained	and	of	limited	value	to	applications	that	deal	with	large	numbers	of	users.	Today	application	programs	implement	fine-
grained,	tuple-level	authorization,	dealing	with	a	large	number	of	application	users,	completely	outside	the	database	system.	Database	extensions	to	provide	tuple-level
access	control	and	to	deal	with	large	numbers	of	application	users	have	been	developed,	but	are	not	standard	as	yet.

454

Chapter	9

Application	Development

•	Protecting	the	privacy	of	data	are	an	important	task	for	database	applications.

Many	countries	have	legal	requirements	on	protection	of	certain	kinds	of	data,	such	as	credit-card	information	or	medical	data.

•	Encryption	plays	a	key	role	in	protecting	information	and	in	authentication	of	users	and	web	sites.	Symmetric-key	encryption	and	public-key	encryption	are	two
contrasting	but	widely	used	approaches	to	encryption.	Encryption	of	certain	sensitive	data	stored	in	databases	is	a	legal	requirement	in	many	countries	and	states.

•	Encryption	also	plays	a	key	role	in	authentication	of	users	to	applications,	of	Web	sites	to	users,	and	for	digital	signatures.

Review	Terms

•	Application	programs

•	Business-logic	layer

•	Web	interfaces	to	databases

•	Data-access	layer

•	HTML

•	Object-relational	mapping

•	Hyperlinks

•	Hibernate

•	Uniform	resource	locator	(URL)

•	Django

•	Forms

•	Web	services

•	HyperText	Transfer	Protocol

•	RESTful	web	services

(HTTP)

•	Web	application	frameworks

•	Connectionless	protocols

•	Connection	pooling

•	Cookie

•	Query	result	caching

•	Session

•	Application	security

•	Servlets	and	Servlet	sessions

•	SQL	injection

•	Server-side	scripting

•	Cross-site	scripting	(XSS)

•	Java	Server	Pages	(JSP)

•	Cross-site	request	forgery	(XSRF)

•	PHP

•	Authentication

•	Client-side	scripting

•	Two-factor	authentication

•	JavaScript

•	Man-in-the-middle	attack

•	Document	Object	Model	(DOM)

•	Central	authentication

•	Ajax

•	Single	sign-on

•	Progressive	Web	Apps

•	OpenID

•	Application	architecture

•	Authorization

•	Presentation	layer

•	Virtual	Private	Database	(VPD)

•	Model-view-controller	(MVC)

•	Audit	trail

architecture

Practice	Exercises

455

•	Encryption

•	Challenge–response

•	Symmetric-key	encryption

•	Digital	signatures

•	Public-key	encryption

•	Digital	certificates

•	Dictionary	attack

Practice	Exercises

9.1

What	is	the	main	reason	why	servlets	give	better	performance	than	programs	that	use	the	common	gateway	interface	(CGI),	even	though	Java	programs	generally	run
slower	than	C	or	C++	programs?

9.2

List	some	benefits	and	drawbacks	of	connectionless	protocols	over	protocols	that	maintain	connections.

9.3

Consider	a	carelessly	written	web	application	for	an	online-shopping	site,	which	stores	the	price	of	each	item	as	a	hidden	form	variable	in	the	web	page	sent	to	the
customer;	when	the	customer	submits	the	form,	the	information	from	the	hidden	form	variable	is	used	to	compute	the	bill	for	the	customer.	What	is	the	loophole	in	this
scheme?	(There	was	a	real	instance	where	the	loophole	was	exploited	by	some	customers	of	an	online-shopping	site	before	the	problem	was	detected	and	fixed.)

9.4

Consider	another	carelessly	written	web	application	which	uses	a	servlet	that	checks	if	there	was	an	active	session	but	does	not	check	if	the	user	is	authorized	to	access
that	page,	instead	depending	on	the	fact	that	a	link	to	the	page	is	shown	only	to	authorized	users.	What	is	the	risk	with	this	scheme?	(There	was	a	real	instance	where
applicants	to	a	college	admissions	site	could,	after	logging	into	the	web	site,	exploit	this	loophole	and	view	information	they	were	not	authorized	to	see;	the	unauthorized
access	was,	however,	detected,	and	those	who	accessed	the	information	were	punished	by	being	denied	admission.)

9.5

Why	is	it	important	to	open	JDBC	connections	using	the	try-with-resources	(try	(…){	…	})	syntax?

9.6

List	three	ways	in	which	caching	can	be	used	to	speed	up	web	server	performance.

9.7

The	netstat	command	(available	on	Linux	and	on	Windows)	shows	the	active	network	connections	on	a	computer.	Explain	how	this	command	can	be	used	to	find	out	if	a
particular	web	page	is	not	closing	connections	that	it	opened,	or	if	connection	pooling	is	used,	not	returning	connections	to	the	connection	pool.

You	should	account	for	the	fact	that	with	connection	pooling,	the	connection	may	not	get	closed	immediately.

456

Chapter	9

Application	Development

9.8

Testing	for	SQL-injection	vulnerability:

a.

Suggest	an	approach	for	testing	an	application	to	find	if	it	is	vulnerable	to	SQL	injection	attacks	on	text	input.

b.

Can	SQL	injection	occur	with	forms	of	HTML	input	other	than	text	boxes?

If	so,	how	would	you	test	for	vulnerability?

9.9

A	database	relation	may	have	the	values	of	certain	attributes	encrypted	for	security.	Why	do	database	systems	not	support	indexing	on	encrypted	attributes?

Using	your	answer	to	this	question,	explain	why	database	systems	do	not	allow	encryption	of	primary-key	attributes.

9.10

Exercise	9.9	addresses	the	problem	of	encryption	of	certain	attributes.	However,	some	database	systems	support	encryption	of	entire	databases.	Explain	how	the	problems
raised	in	Exercise	9.9	are	avoided	if	the	entire	database	is	encrypted.

9.11

Suppose	someone	impersonates	a	company	and	gets	a	certificate	from	a

certificate-issuing	authority.	What	is	the	effect	on	things	(such	as	purchase	orders	or	programs)	certified	by	the	impersonated	company,	and	on	things	certified	by	other
companies?

9.12

Perhaps	the	most	important	data	items	in	any	database	system	are	the	passwords	that	control	access	to	the	database.	Suggest	a	scheme	for	the	secure	storage	of
passwords.	Be	sure	that	your	scheme	allows	the	system	to	test	passwords	supplied	by	users	who	are	attempting	to	log	into	the	system.

Exercises

9.13

Write	a	servlet	and	associated	HTML	code	for	the	following	very	simple	application:	A	user	is	allowed	to	submit	a	form	containing	a	value,	say	n,	and	should	get	a	response
containing	n	“*”	symbols.

9.14

Write	a	servlet	and	associated	HTML	code	for	the	following	simple	application:	A	user	is	allowed	to	submit	a	form	containing	a	number,	say	n,	and	should	get	a	response
saying	how	many	times	the	value	n	has	been	submitted	previously.	The	number	of	times	each	value	has	been	submitted	previously	should	be	stored	in	a	database.

9.15

Write	a	servlet	that	authenticates	a	user	(based	on	user	names	and	passwords	stored	in	a	database	relation)	and	sets	a	session	variable	called	userid	after	authentication.

9.16

What	is	an	SQL	injection	attack?	Explain	how	it	works	and	what	precautions	must	be	taken	to	prevent	SQL	injection	attacks.

9.17

Write	pseudocode	to	manage	a	connection	pool.	Your	pseudocode	must	include	a	function	to	create	a	pool	(providing	a	database	connection	string,	database	user	name,
and	password	as	parameters),	a	function	to	request	a	connection

Exercises

457

from	the	pool,	a	connection	to	release	a	connection	to	the	pool,	and	a	function	to	close	the	connection	pool.

9.18

Explain	the	terms	CRUD	and	REST.

9.19

Many	web	sites	today	provide	rich	user	interfaces	using	Ajax.	List	two	features	each	of	which	reveals	if	a	site	uses	Ajax,	without	having	to	look	at	the	source	code.	Using
the	above	features,	find	three	sites	which	use	Ajax;	you	can	view	the	HTML	source	of	the	page	to	check	if	the	site	is	actually	using	Ajax.

9.20

XSS	attacks:

a.

What	is	an	XSS	attack?

b.

How	can	the	referer	field	be	used	to	detect	some	XSS	attacks?

9.21

What	is	multifactor	authentication?	How	does	it	help	safeguard	against	stolen	passwords?

9.22

Consider	the	Oracle	Virtual	Private	Database	(VPD)	feature	described	in	Section	9.8.5	and	an	application	based	on	our	university	schema.

a.

What	predicate	(using	a	subquery)	should	be	generated	to	allow	each	faculty	member	to	see	only	takes	tuples	corresponding	to	course	sections	that	they	have	taught?

b.

Give	an	SQL	query	such	that	the	query	with	the	predicate	added	gives

a	result	that	is	a	subset	of	the	original	query	result	without	the	added	predicate.

c.

Give	an	SQL	query	such	that	the	query	with	the	predicate	added	gives

a	result	containing	a	tuple	that	is	not	in	the	result	of	the	original	query	without	the	added	predicate.

9.23

What	are	two	advantages	of	encrypting	data	stored	in	the	database?

9.24

Suppose	you	wish	to	create	an	audit	trail	of	changes	to	the	takes	relation.

a.

Define	triggers	to	create	an	audit	trail,	logging	the	information	into	a	relation	called,	for	example,	takes	trail.	The	logged	information	should	include	the	user-id	(assume	a
function	user	id()	provides	this	information)	and	a	timestamp,	in	addition	to	old	and	new	values.	You	must	also	provide	the	schema	of	the	takes	trail	relation.

b.

Can	the	preceding	implementation	guarantee	that	updates	made	by	a	ma-

licious	database	administrator	(or	someone	who	manages	to	get	the	ad-

ministrator’s	password)	will	be	in	the	audit	trail?	Explain	your	answer.

9.25

Hackers	may	be	able	to	fool	you	into	believing	that	their	web	site	is	actually	a	web	site	(such	as	a	bank	or	credit	card	web	site)	that	you	trust.	This	may	be	done	by
misleading	email,	or	even	by	breaking	into	the	network	infrastructure

458

Chapter	9

Application	Development

and	rerouting	network	traffic	destined	for,	say	mybank.com,	to	the	hacker’s	site.	If	you	enter	your	user	name	and	password	on	the	hacker’s	site,	the	site	can	record	it	and
use	it	later	to	break	into	your	account	at	the	real	site.	When	you	use	a	URL	such	as	https://mybank.com,	the	HTTPS	protocol	is	used	to	prevent	such	attacks.	Explain	how
the	protocol	might	use	digital	certificates	to	verify	authenticity	of	the	site.

9.26

Explain	what	is	a	challenge	–	response	system	for	authentication.	Why	is	it	more	secure	than	a	traditional	password-based	system?

Project	Suggestions

Each	of	the	following	is	a	large	project,	which	can	be	a	semester-long	project	done	by	a	group	of	students.	The	difficulty	of	the	project	can	be	adjusted	easily	by	adding	or
deleting	features.

You	can	choose	to	use	either	a	web	front-end	using	HTML5,	or	a	mobile	front-end	on	Android	or	iOS	for	your	project.

Project	9.1	Pick	your	favorite	interactive	web	site,	such	as	Bebo,	Blogger,	Facebook,	Flickr,	Last.FM,	Twitter,	Wikipedia;	these	are	just	a	few	examples,	there	are	many
more.	Most	of	these	sites	manage	a	large	amount	of	data	and	use	databases	to	store	and	process	the	data.	Implement	a	subset	of	the	functionality	of	the	web	site	you
picked.	Implementing	even	a	significant	subset	of	the	features	of	such	a	site	is	well	beyond	a	course	project,	but	it	is	possible	to	find	a	set	of	features	that	is	interesting	to
implement	yet	small	enough	for	a	course	project.

Most	of	today’s	popular	web	sites	make	extensive	use	of	Javascript	to	create	rich	interfaces.	You	may	wish	to	go	easy	on	this	for	your	project,	at	least	initially,	since	it	takes
time	to	build	such	interfaces,	and	then	add	more	features	to	your	interfaces,	as	time	permits.

Make	use	of	web	application	development	frameworks,	or	Javascript	libraries	available	on	the	web,	such	as	the	jQuery	library,	to	speed	up	your	front-end	development.
Alternatively,	implement	the	application	as	a	mobile	app	on	Android	or	iOS.

Project	9.2	Create	a	“mashup”	which	uses	web	services	such	as	Google	or	Yahoo	map	APIs	to	create	an	interactive	web	site.	For	example,	the	map	APIs	provide	a	way	to
display	a	map	on	the	web	page,	with	other	information	overlaid	on	the	maps.	You	could	implement	a	restaurant	recommendation	system,	with	users	contributing
information	about	restaurants	such	as	location,	cuisine,	price	range,	and	ratings.	Results	of	user	searches	could	be	displayed	on	the	map.	You	could	allow	Wikipedia-like
features,	such	as	allowing	users	to	add	information	and	edit

Project	Suggestions

459

information	added	by	other	users,	along	with	moderators	who	can	weed	out	malicious	updates.	You	could	also	implement	social	features,	such	as	giving	more	importance
to	ratings	provided	by	your	friends.

Project	9.3	Your	university	probably	uses	a	course-management	system	such	as	Moo-dle,	Blackboard,	or	WebCT.	Implement	a	subset	of	the	functionality	of	such	a	course-
management	system.	For	example,	you	can	provide	assignment	submission	and	grading	functionality,	including	mechanisms	for	students	and	teachers/teaching	assistants
to	discuss	grading	of	a	particular	assignment.	You	could	also	provide	polls	and	other	mechanisms	for	getting	feedback.

Project	9.4	Consider	the	E-R	schema	of	Practice	Exercise	6.3	(Chapter	6),	which	represents	information	about	teams	in	a	league.	Design	and	implement	a	web-based
system	to	enter,	update,	and	view	the	data.

Project	9.5	Design	and	implement	a	shopping	cart	system	that	lets	shoppers	collect	items	into	a	shopping	cart	(you	can	decide	what	information	is	to	be	supplied	for	each
item)	and	purchased	together.	You	can	extend	and	use	the	E-R	schema	of	Exercise	6.21	of	Chapter	6.	You	should	check	for	availability	of	the	item	and	deal	with
nonavailable	items	as	you	feel	appropriate.

Project	9.6	Design	and	implement	a	web-based	system	to	record	student	registration	and	grade	information	for	courses	at	a	university.

Project	9.7	Design	and	implement	a	system	that	permits	recording	of	course	performance	information	—	specifically,	the	marks	given	to	each	student	in	each	assignment
or	exam	of	a	course,	and	computation	of	a	(weighted)	sum	of	marks	to	get	the	total	course	marks.	The	number	of	assignments/exams	should	not	be	predefined;	that	is,
more	assignments/exams	can	be	added	at	any	time.	The	system	should	also	support	grading,	permitting	cutoffs	to	be	specified	for	various	grades.

You	may	also	wish	to	integrate	it	with	the	student	registration	system	of	Project	9.6	(perhaps	being	implemented	by	another	project	team).

Project	9.8	Design	and	implement	a	web-based	system	for	booking	classrooms	at	your	university.	Periodic	booking	(fixed	days/times	each	week	for	a	whole	semester)	must
be	supported.	Cancellation	of	specific	lectures	in	a	periodic	booking	should	also	be	supported.

You	may	also	wish	to	integrate	it	with	the	student	registration	system	of	Project	9.6	(perhaps	being	implemented	by	another	project	team)	so	that	classrooms	can	be
booked	for	courses,	and	cancellations	of	a	lecture	or	addition	of	extra	lectures	can	be	noted	at	a	single	interface	and	will	be	reflected	in	the	classroom	booking	and
communicated	to	students	via	email.

460

Chapter	9

Application	Development

Project	9.9	Design	and	implement	a	system	for	managing	online	multiple-choice	tests.

You	should	support	distributed	contribution	of	questions	(by	teaching	assistants,	for	example),	editing	of	questions	by	whoever	is	in	charge	of	the	course,	and	creation	of
tests	from	the	available	set	of	questions.	You	should	also	be	able	to	administer	tests	online,	either	at	a	fixed	time	for	all	students	or	at	any	time	but	with	a	time	limit	from
start	to	finish	(support	one	or	both),	and	the	system	should	give	students	feedback	on	their	scores	at	the	end	of	the	allotted	time.

Project	9.10	Design	and	implement	a	system	for	managing	email	customer	service.

Incoming	mail	goes	to	a	common	pool.	There	is	a	set	of	customer	service	agents	who	reply	to	email.	If	the	email	is	part	of	an	ongoing	series	of	replies	(tracked	using	the	in-
reply-to	field	of	email)	the	mail	should	preferably	be	replied	to	by	the	same	agent	who	replied	earlier.	The	system	should	track	all	incoming	mail	and	replies,	so	an	agent
can	see	the	history	of	questions	from	a	customer	before	replying	to	an	email.

Project	9.11	Design	and	implement	a	simple	electronic	marketplace	where	items	can	be	listed	for	sale	or	for	purchase	under	various	categories	(which	should	form	a
hierarchy).	You	may	also	wish	to	support	alerting	services,	whereby	a	user	can	register	interest	in	items	in	a	particular	category,	perhaps	with	other	constraints	as	well,
without	publicly	advertising	her	interest,	and	is	notified	when	such	an	item	is	listed	for	sale.

Project	9.12	Design	and	implement	a	web-based	system	for	managing	a	sports	“lad-der.”	Many	people	register	and	may	be	given	some	initial	rankings	(perhaps	based	on
past	performance).	Anyone	can	challenge	anyone	else	to	a	match,	and	the	rankings	are	adjusted	according	to	the	result.	One	simple	system	for	adjusting	rankings	just
moves	the	winner	ahead	of	the	loser	in	the	rank	order,	in	case	the	winner	was	behind	earlier.	You	can	try	to	invent	more	complicated	rank-adjustment	systems.

Project	9.13	Design	and	implement	a	publication-listing	service.	The	service	should	permit	entering	of	information	about	publications,	such	as	title,	authors,	year,	where
the	publication	appeared,	and	pages.	Authors	should	be	a	separate	entity	with	attributes	such	as	name,	institution,	department,	email,	address,	and	home	page.

Your	application	should	support	multiple	views	on	the	same	data.	For	instance,	you	should	provide	all	publications	by	a	given	author	(sorted	by	year,	for	example),	or	all
publications	by	authors	from	a	given	institution	or	department.

You	should	also	support	search	by	keywords,	on	the	overall	database	as	well	as	within	each	of	the	views.

Project	9.14	A	common	task	in	any	organization	is	to	collect	structured	information	from	a	group	of	people.	For	example,	a	manager	may	need	to	ask	employees	to	enter
their	vacation	plans,	a	professor	may	wish	to	collect	feedback	on	a	particu-

Project	Suggestions

461

lar	topic	from	students,	or	a	student	organizing	an	event	may	wish	to	allow	other	students	to	register	for	the	event,	or	someone	may	wish	to	conduct	an	online	vote	on
some	topic.	Google	Forms	can	be	used	for	such	activities;	your	task	is	to	create	something	like	Google	Forms,	but	with	authorization	on	who	can	fill	a	form.

Specifically,	create	a	system	that	will	allow	users	to	easily	create	information	collection	events.	When	creating	an	event,	the	event	creator	must	define	who	is	eligible	to
participate;	to	do	so,	your	system	must	maintain	user	information	and	allow	predicates	defining	a	subset	of	users.	The	event	creator	should	be	able	to	specify	a	set	of
inputs	(with	types,	default	values,	and	validation	checks)	that	the	users	will	have	to	provide.	The	event	should	have	an	associated	deadline,	and	the	system	should	have	the
ability	to	send	reminders	to	users	who	have	not	yet	submitted	their	information.	The	event	creator	may	be	given	the	option	of	automatic	enforcement	of	the	deadline	based
on	a	specified	date/time,	or	choosing	to	login	and	declare	the	deadline	is	over.	Statistics	about	the	submissions	should	be	generated	—	to	do	so,	the	event	creator	may	be
allowed	to	create	simple	summaries	on	the	entered	information.	The	event	creator	may	choose	to	make	some	of	the	summaries	public,	viewable	by	all	users,	either
continually	(e.g.,	how	many	people	have	responded)	or	after	the	deadline	(e.g.,	what	was	the	average	feedback	score).

Project	9.15	Create	a	library	of	functions	to	simplify	creation	of	web	interfaces,	using	jQuery.	You	must	implement	at	least	the	following	functions:	a	function	to	display	a
JDBC	result	set	(with	tabular	formatting),	functions	to	create	different	types	of	text	and	numeric	inputs	(with	validation	criteria	such	as	input	type	and	optional	range,
enforced	at	the	client	by	appropriate	JavaScript	code),	and	functions	to	create	menu	items	based	on	a	result	set.	Also	implement	functions	to	get	input	for	specified	fields
of	specified	relations,	ensuring	that	database	constraints	such	as	type	and	foreign-key	constraints	are	enforced	at	the	client	side.	Foreign	key	constraints	can	also	be	used
to	provide	either	autocomplete	or	drop-down	menus,	to	ease	the	task	of	data	entry	for	the	fields.

For	extra	credit,	use	support	CSS	styles	which	allow	the	user	to	change	style	parameters	such	as	colors	and	fonts.	Build	a	sample	database	application	to	illustrate	the	use
of	these	functions.

Project	9.16	Design	and	implement	a	web-based	multiuser	calendar	system.	The	system	must	track	appointments	for	each	person,	including	multioccurrence	events,	such
as	weekly	meetings,	and	shared	events	(where	an	update	made	by	the	event	creator	gets	reflected	to	all	those	who	share	the	event).	Provide	interfaces	to	schedule
multiuser	events,	where	an	event	creator	can	add	a	number	of	users	who	are	invited	to	the	event.	Provide	email	notification	of	events.	For	extra	credits	implement	a	web
service	that	can	be	used	by	a	reminder	program	running	on	the	client	machine.

462

Chapter	9

Application	Development

Tools

There	are	several	integrated	development	environments	that	provide	support	for	web	application	development.	Eclipse	(www.eclipse.org)	and	Netbeans	(netbeans.org)	are
popular	open-source	IDEs.	IntelliJ	IDEA	(www.jetbrains.com/idea/)	is	a	popular	commercial	IDE	which	provides	free	licenses	for	students,	teachers

and

non-commercial

open

source

projects.

Microsoft’s

Visual

Studio

(visualstudio.microsoft.com)	also	supports	web	application	development.	All	these	IDEs	support	integration	with	application	servers,	to	allow	web	applications	to	be
executed	directly	from	the	IDE.

The

Apache

Tomcat

(jakarta.apache.org),

Glassfish

(javaee.github.io/glassfish/),

JBoss

Enterprise

Application

Platform

(developers.redhat.com/products/eap/overview/),	WildFly	(wildfly.org)	(which	is	the	community	edition	of	JBoss)	and	Caucho’s	Resin	(www.caucho.com),	are	application
servers	that	support	servlets	and	JSP.	The	Apache	web	server	(apache.org)	is	the	most	widely	used	web	server	today.	Microsoft’s	IIS	(Internet	Information	Services)	is	a
web	and	application	server	that	is	widely	used	on	Microsoft	Windows	platforms,	supporting	Microsoft’s	ASP.NET	(msdn.microsoft.com/asp.net/).

The	jQuery	JavaScript	library	jquery.com	is	among	the	most	widely	used	JavaScript	libraries	for	creating	interactive	web	interfaces.

Android	Studio	(developer.android.com/studio/)	is	a	widely	used	IDE	for	developing	Android	apps.	XCode	(developer.apple.com/xcode/)	from	Apple	and	App-Code
(www.jetbrains.com/objc/)	are	popular	IDEs	for	iOS	application	development.

Google’s	Flutter	framework	(flutter.io),	which	is	based	on	the	Dart	language,	and	Facebook’s	React	Native	(facebook.github.io/react-native/)	which	is	based	on	Javascript,
are	frameworks	that	support	cross-platform	application	development	across	Android	and	iOS.

The	Open	Web	Application	Security	Project	(OWASP)	(www.owasp.org)	pro-

vides	a	variety	of	resources	related	to	application	security,	including	technical	articles,	guides,	and	tools.

Further	Reading

The

HTML

tutorials

at

www.w3schools.com/html,	the	CSS	tutorials	at

www.w3schools.com/css	are	good	resources	for	learning	HTML	and	CSS.	A	tutorial	on	Java	Servlets	can	be	found	at	docs.oracle.com/javaee/7/tutorial/servlets.htm.

The	JavaScript	tutorials	at	www.w3schools.com/js	are	an	excellent	source	of	learning	material	on	JavaScript.	You	can	also	learn	more	about	JSON	and	Ajax	as	part	of	the
JavaScript	tutorial.	The	jQuery	tutorial	at	www.w3schools.com/Jquery	is	a	very	good	resource	for	learning	how	to	use	jQuery.	These	tutorials	allow	you	to	modify	sample
code	and	test	it	in	the	browser,	with	no	software	download.	Information	about	the

Further	Reading

463

.NET	framework	and	about	web	application	development	using	ASP.NET	can	be	found	at	msdn.microsoft.com.

You	can	learn	more	about	the	Hibernate	ORM	and	Django	(including	the

Django	ORM)	from	the	tutorials	and	documentation	at	hibernate.org/orm	and	docs.djangoproject.com	respectively.

The	Open	Web	Application	Security	Project	(OWASP)	(www.owasp.org)	provides	a	variety	of	technical	material	such	as	the	OWASP	Testing	Guide,	the	OWASP	Top	Ten
document	which	describes	critical	security	risks,	and	standards	for	application	security	verification.

The	concepts	behind	cryptographic	hash	functions	and	public-key	encryption	were	introduced	in	[Diffie	and	Hellman	(1976)]	and	[Rivest	et	al.	(1978)].	A	good	reference
for	cryptography	is	[Katz	and	Lindell	(2014)],	while	[Stallings	(2017)]	provides	textbook	coverage	of	cryptography	and	network	security.

Bibliography

[Diffie	and	Hellman	(1976)]

W.	Diffie	and	M.	E.	Hellman,	“New	Directions	in	Cryptogra-

phy”,	IEEE	Transactions	on	Information	Theory,	Volume	22,	Number	6	(1976),	pages	644–

654.

[Katz	and	Lindell	(2014)]

J.	Katz	and	Y.	Lindell,	Introduction	to	Modern	Cryptography,	3rd	edition,	Chapman	and	Hall/CRC	(2014).

[Rivest	et	al.	(1978)]

R.	L.	Rivest,	A.	Shamir,	and	L.	Adleman,	“A	Method	for	Obtaining

Digital	Signatures	and	Public-Key	Cryptosystems”,	Communications	of	the	ACM,	Volume	21,	Number	2	(1978),	pages	120–126.

[Stallings	(2017)]

W.	Stallings,	Cryptography	and	Network	Security	-	Principles	and	Practice,	7th	edition,	Pearson	(2017).

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

PART	4

BIG	DATA	ANALYTICS

Traditional	applications	of	relational	databases	are	based	on	structured	data	and	they	deal	with	data	from	a	single	enterprise.	Modern	data	management	applications	often
need	to	deal	with	data	that	are	not	necessarily	in	relational	form;	further,	such	applications	also	need	to	deal	with	volumes	of	data	that	are	far	larger	than	what	a	single
traditional	organization	would	have	generated.	In	Chapter	10,	we	study	techniques	for	managing	such	data,	often	referred	to	as	Big	Data.	Our	coverage	of	Big	Data	in	this
chapter	is	from	the	perspective	of	a	programmer	who	uses	Big	Data	systems.	We	start	with	storage	systems	for	Big	Data,	and	then	cover	querying	techniques,	including
the	MapReduce	framework,	algebraic	operations,	steaming	data,	and	graph	databases.

One	major	application	of	Big	Data	is	data	analytics,	which	refers	broadly	to	the	processing	of	data	to	infer	patterns,	correlations,	or	models	for	prediction.	The	financial
benefits	of	making	correct	decisions	can	be	substantial,	as	can	the	costs	of	making	wrong	decisions.	Organizations	therefore	make	substantial	investments	both	to	gather
or	purchase	required	data	and	to	build	systems	for	data	analytics.	In	Chapter	11,	we	cover	data	analytics	in	general	and,	in	particular,	decision-making	tasks	that	benefit
greatly	by	using	data	about	the	past	to	predict	the	future	and	using	the	predictions	to	make	decisions.	Topics	covered	include	data	warehousing,	online	analytical
processing,	and	data	mining.

465

C	H	A	P	T	E	R	10

Big	Data

Traditional	applications	of	relational	databases	are	based	on	structured	data,	and	they	deal	with	data	from	a	single	enterprise.	Modern	data	management	applications
often	need	to	deal	with	data	that	are	not	necessarily	in	relational	form;	further,	such	applications	also	need	to	deal	with	volumes	of	data	that	are	far	larger	than	what	a
single	enterprise	would	generate.	We	study	techniques	for	managing	such	data,	often	referred	to	as	Big	Data,	in	this	chapter.

10.1

Motivation

The	growth	of	the	World	Wide	Web	in	the	1990s	and	2000s	resulted	in	the	need	to	store	and	query	data	with	volumes	that	far	exceeded	the	enterprise	data	that	relational
databases	were	designed	to	manage.	Although	much	of	the	user-visible	data	on	the	web	in	the	early	days	was	static,	web	sites	generated	a	very	large	amount	of	data	about
users	who	visited	their	sites,	what	web	pages	they	accessed,	and	when.	These	data	were	typically	stored	on	log	files	on	the	web	server,	in	textual	form.	People	managing
web	sites	soon	realized	that	there	was	a	wealth	of	information	in	the	web	logs	that	could	be	used	by	companies	to	understand	more	about	their	users	and	to	target
advertisements	and	marketing	campaigns	at	users.	Such	information	included	details	of	which	pages	had	been	accessed	by	users,	which	could	also	be	linked	with	user
profile	data,	such	as	age,	gender,	income	level,	and	so	on,	that	were	collected	by	many	web	sites.	Transactional	web	sites	such	as	shopping	sites	had	other	kinds	of	data	as
well,	such	as	what	products	a	user	had	browsed	or	purchased.	The	2000s	saw	exceptionally	large	growth	in	the	volume	of	user-generated	data,	in	particular	social-media
data.

The	volume	of	such	data	soon	grew	well	beyond	the	scale	that	could	be	handled	by	traditional	database	systems,	and	both	storage	and	processing	require	a	very	high
degree	of	parallelism.	Furthermore,	much	of	the	data	were	in	textual	form	such	as	log	records,	or	in	other	semi-structured	forms	that	we	saw	in	Chapter	8.	Such	data,	are
characterized	by	their	size,	speed	at	which	they	are	generated,	and	the	variety	of	formats,	are	generically	called	Big	Data.

467

468

Chapter	10

Big	Data

Big	Data	has	been	contrasted	with	traditional	relational	databases	on	the	following	metrics:

•	Volume:	The	amount	of	data	to	be	stored	and	processed	is	much	larger	than	traditional	databases,	including	traditional	parallel	relational	databases,	were	designed	to
handle.	Although	there	is	a	long	history	of	parallel	database	systems,	early	generation	parallel	databases	were	designed	to	work	on	tens	to	a	few	hundreds	of	machines.	In
contrast,	some	of	the	new	applications	require	the	use	of	thousands	of	machines	in	parallel	to	store	and	process	the	data.

•	Velocity:	The	rate	of	arrival	of	data	are	much	higher	in	today’s	networked	world	than	in	earlier	days.	Data	management	systems	must	be	able	to	ingest	and	store	data	at
very	high	rates.	Further,	many	applications	need	data	items	to	be	processed	as	they	arrive,	in	order	to	detect	and	respond	quickly	to	certain	events	(such	systems	are
referred	to	a	streaming	data	systems).	Thus,	processing	velocity	is	very	important	for	many	applications	today.

•	Variety:	The	relational	representation	of	data,	relational	query	languages,	and	relational	database	systems	have	been	very	successful	over	the	past	several	decades,	and
they	form	the	core	of	the	data	representation	of	most	organizations.	However,	clearly,	not	all	data	are	relational.

As	we	saw	in	Chapter	8,	a	variety	of	data	representations	are	used	for	different	purposes	today.	While	much	of	today’s	data	can	be	efficiently	represented	in	relational
form,	there	are	many	data	sources	that	have	other	forms	of	data,	such	as	semi-structured	data,	textual	data,	and	graph	data.	The	SQL	query	language	is	well	suited	to
specifying	a	variety	of	queries	on	relational	data,	and	it	has	been	extended	to	handle	semi-structured	data.	However,	many	computations	cannot	be	easily	expressed	in	SQL
or	efficiently	evaluated	if	represented	using	SQL.

A	new	generation	of	languages	and	frameworks	has	been	developed	for	specifying	and	efficiently	executing	complex	queries	on	new	forms	of	data.

We	shall	use	the	term	Big	Data	in	a	generic	sense,	to	refer	to	any	data-processing	need	that	requires	a	high	degree	of	parallelism	to	handle,	regardless	of	whether	the	data
are	relational	or	otherwise.

Over	the	past	decade,	several	systems	have	been	developed	for	storing	and	processing	Big	Data,	using	very	large	clusters	of	machines,	with	thousands,	or	in	some	cases,
tens	of	thousands	of	machines.	The	term	node	is	often	used	to	refer	to	a	machine	in	a	cluster.

10.1.1

Sources	and	Uses	of	Big	Data

The	rapid	growth	of	the	web	was	the	key	driver	for	the	enormous	growth	of	data	volumes	in	the	late	1990s	and	early	2000s.	The	initial	sources	of	data	were	logs	from	web
server	software,	which	recorded	user	interactions	with	the	web	servers.	With	each	user

10.1

Motivation

469

clicking	on	multiple	links	each	day,	and	hundreds	of	millions	of	users,	which	later	grew	to	billions	of	users,	the	large	web	companies	found	they	were	generating	multiple
terabytes	of	data	each	day.	Web	companies	soon	realized	that	there	was	a	lot	of	important	information	in	the	web	logs,	which	could	be	used	for	multiple	purposes,	such	as
these:

•	Deciding	what	posts,	news,	and	other	information	to	present	to	which	user,	to	keep	them	more	engaged	with	the	site.	Information	on	what	the	user	had	viewed	earlier,	as
well	as	information	on	what	other	users	with	similar	preferences	had	viewed,	are	key	to	making	these	decisions.

•	Deciding	what	advertisements	to	show	to	which	users,	to	maximize	the	benefit	to	the	advertiser,	while	also	ensuring	the	advertisements	that	a	user	sees	are	more	likely

to	be	of	relevance	to	the	user.	Again,	information	on	what	pages	a	user	had	visited,	or	what	advertisements	a	user	had	clicked	on	earlier,	are	key	to	making	such	decisions.

•	Deciding	how	a	web	site	should	be	structured,	to	make	it	easy	for	most	users	to	find	information	that	they	are	looking	for.	Knowing	to	what	pages	users	typically
navigate,	and	what	page	they	typically	view	after	visiting	a	particular	page,	is	key	to	making	such	decisions.

•	Determining	user	preferences	and	trends	based	on	page	views,	which	can	help	a	manufacturer	or	vendor	decide	what	items	to	produce	or	stock	more	of,	and	what	to
produce	or	stock	less	of.	This	is	part	of	a	more	general	topic	of	business	intelligence.

•	Advertisement	display	and	click-through	information.	A	click-through	refers	to	a	user	clicking	on	an	advertisement	to	get	more	information,	and	is	a	measure	of	the
success	of	the	advertisement	in	getting	user	attention.	A	conversion	occurs	when	the	user	actually	purchases	the	advertised	product	or	service.	Web	sites	are	often	paid
when	a	click-through	or	conversion	occurs.	This	makes	click-through	and	conversion	rates	for	different	advertisements	a	key	metric	for	a	site	to	decide	which
advertisements	to	display.

Today,	there	are	many	other	sources	of	very	high-volume	data.	Examples	include	the	following:

•	Data	from	mobile	phone	apps	that	help	in	understanding	user	interaction	with	the	app,	in	the	same	way	that	clicks	on	a	web	site	help	in	understanding	user	interaction
with	the	web	site.

•	Transaction	data	from	retain	enterprises	(both	online	and	offline).	Early	users	of	very	large	volumes	of	data	included	large	retail	chains	such	as	Walmart,	who	used
parallel	database	systems	even	in	the	years	preceding	the	web,	to	manage	and	analyze	their	data.

470

Chapter	10

Big	Data

•	Data	from	sensors.	High-end	equipment	today	typically	has	a	large	number	of	sensors	to	monitor	the	health	of	the	equipment.	Collecting	such	data	centrally	helps	to
track	status	and	predict	the	chances	of	problems	with	the	equipment,	helping	fix	problems	before	they	result	in	failure.	The	increasing	use	of	such	sensors	to	the
connection	of	sensors	and	other	computing	devices	embedded	within	other	objects	such	as	vehicles,	buildings,	machinery,	and	so	forth	to	the	internet,	often	referred	to	as
the	internet	of	things.	The	number	of	such	devices	is	now	more	than	the	number	of	humans	on	the	internet.

•	Metadata	from	communication	networks,	including	traffic	and	other	monitoring	information	for	data	networks,	and	call	information	for	voice	networks.	Such	data	are
important	for	detecting	potential	problems	before	they	occur,	for	detecting	problems	as	they	occur,	and	for	capacity	planning	and	other	related	decisions.

The	amount	of	data	stored	in	databases	has	been	growing	rapidly	for	multiple	decades,	well	before	the	term	Big	Data	came	into	use.	But	the	extremely	rapid	growth	of	the
web	created	an	inflection	point,	with	the	major	web	sites	having	to	handle	data	generated	by	hundreds	of	millions	to	billions	of	users;	this	was	a	scale	significantly	greater
than	most	of	the	earlier	applications.

Even	companies	that	are	not	web	related	have	found	it	necessary	to	deal	with	very	large	amounts	of	data.	Many	companies	procure	and	analyze	large	volumes	of	data
generated	by	other	companies.	For	example,	web	search	histories	annotated	with	user	profile	information,	have	become	available	to	many	companies,	which	can	use	such
information	to	make	a	variety	of	business	decisions,	such	as	planning	advertising	campaigns,	planning	what	products	to	manufacture	and	when,	and	so	on.

Companies	today	find	it	essential	to	make	use	of	social	media	data	to	make	business	decisions.	Reactions	to	new	product	launches	by	a	company,	or	a	change	in	existing
offerings	can	be	found	on	Twitter	and	other	social	media	sites.	Not	only	is	the	volume	of	data	on	social	media	sites	such	as	Twitter	very	high,	but	the	data	arrives	at	a	very
high	velocity,	and	needs	to	be	analyzed	and	responded	to	very	quickly.	For	example,	if	a	company	puts	out	an	advertisement,	and	there	is	strong	negative	reaction	on
Twitter,	the	company	would	want	to	detect	the	issue	quickly,	and	perhaps	stop	using	the	advertisement	before	there	is	too	much	damage.	Thus,	Big	Data	has	become	a	key
enabler	for	a	variety	of	activities	of	many	organizations	today.

10.1.2

Querying	Big	Data

SQL	is	by	far	the	most	widely	used	language	for	querying	relational	databases.	However,	there	is	a	wider	variety	of	query	language	options	for	Big	Data	applications,
driven	by	the	need	to	handle	more	variety	of	data	types,	and	by	the	need	to	scale	to	very	large	data	volumes/velocity.

Building	data	management	systems	that	can	scale	to	a	large	volume/velocity	of	data	requires	parallel	storage	and	processing	of	data.	Building	a	relational	database	that
supports	SQL	along	with	other	database	features,	such	as	transactions	(which	we

10.1

Motivation

471

study	later	in	Chapter	17),	and	at	the	same	time	can	support	very	high	performance	by	running	on	a	very	large	number	of	machines,	is	not	an	easy	task.	There	are	two
categories	of	such	applications:

1.	Transaction-processing	systems	that	need	very	high	scalability:	Transaction-processing	systems	support	a	large	number	of	short	running	queries	and	updates.

It	is	much	easier	for	a	database	designed	to	support	transaction	processing	to	scale	to	very	large	numbers	of	machines	if	the	requirements	to	support	all	features	of	a
relational	database	are	relaxed.	Conversely,	many	transaction-processing	applications	that	need	to	scale	to	very	high	volumes/velocity	can	manage	without	full	database
support.

The	primary	mode	of	data	access	for	such	applications	is	to	store	data	with	an	associated	key,	and	to	retrieve	data	with	that	key;	such	a	storage	system	is	called	a	key-
value	store.	In	the	preceding	user	profile	example,	the	key	for	user-profile	data	would	be	the	user’s	identifier.	There	are	applications	that	conceptually	require	joins	but
implement	the	joins	either	in	application	code	or	by	a	form	of	view	materialization.

For	example,	in	a	social-networking	application,	when	a	user	connects	to	the	system,	the	user	should	be	shown	new	posts	from	all	her	friends.	If	the	data	about	posts	and
friends	is	maintained	in	relational	format,	this	would	require	a	join.	Suppose	that	instead,	the	system	maintains	an	object	for	each	user	in	a	key-value	store,	containing
their	friend	information	as	well	as	their	posts.	Instead	of	a	join	done	in	the	database,	the	application	code	could	implement	the	join	by	first	finding	the	set	of	friends	of	the
user,	and	then	querying	the	data	object	of	each	friend	to	find	their	posts.	Another	alternative	is	as	follows:	whenever	a	user	u	0	makes	a	post,	for	each	friend	ui	of	the	user,
a	message	is	sent	to	the	data	object	representing	ui,	and	the	data	associated	with	the	friend	are	updated	with	a	summary	of	the	new	post.	When	that	user	ui	checks	for
updates,	all	data	required	to	provide	a	summary	view	of	posts	by	friends	are	available	in	one	place	and	can	be	retrieved	quickly.

There	are	trade-offs	between	the	two	alternatives,	such	as	higher	cost	at	query	time	for	the	first	alternative,	versus	higher	storage	cost	and	higher	cost	at	the	time	of
writes	for	the	second	alternative.1But	both	approaches	allow	the	application	to	carry	out	its	tasks	without	support	for	joins	in	the	key-value	storage	system.

2.	Query	processing	systems	that	need	very	high	scalability,	and	need	to	support	nonrelational	data:	Typical	examples	of	such	systems	are	those	designed	to	perform
analysis	on	logs	generated	by	web	servers	and	other	applications.	Other	examples	include	document	and	knowledge	storage	and	indexing	systems,	such	as	those	that
support	keyword	search	on	the	web.

1It	is	worth	mentioning	that	it	appears	(based	on	limited	publicly	available	information	as	of	2018)	that	Facebook	uses	the	first	alternative	for	its	news	feed	to	avoid	the
high	storage	overhead	of	the	second	alternative.

472

Chapter	10

Big	Data

The	data	consumed	by	many	such	applications	are	stored	in	multiple	files.	A	system	designed	to	support	such	applications	first	needs	to	be	able	to	store	a	large	number	of
large	files.	Second,	it	must	be	able	to	support	parallel	querying	of	data	stored	in	such	files.	Since	the	data	are	not	necessarily	relational,	a	system	designed	for	querying
such	data	must	support	arbitrary	program	code,	not	just	relational	algebra	or	SQL	queries.

Big	Data	applications	often	require	processing	of	very	large	volumes	of	text,	image,	and	video	data.	Traditionally	such	data	were	stored	in	file	systems	and	processed	using
stand-alone	applications.	For	example,	keyword	search	on	textual	data,	and	its	successor,	keyword	search	on	the	web,	both	depend	on	preprocessing	textual	data,	followed
by	query	processing	using	data	structures	such	as	indices	built	during	the	preprocessing	step.	It	should	be	clear	that	the	SQL	constructs	we	have	seen	earlier	are	not
suited	for	carrying	out	such	tasks,	since	the	input	data	are	not	in	relational	form,	and	the	output	too	may	not	be	in	relational	form.

In	earlier	days,	processing	of	such	data	was	done	using	stand-alone	programs;	this	is	very	similar	to	how	organizational	data	were	processed	prior	to	the	advent	of
database	management	systems.	However,	with	the	very	rapid	growth	of	data	sizes,	the	limitations	of	stand-alone	programs	became	clear.	Parallel	processing	is	critical
given	the	very	large	scale	of	Big	Data.	Writing	programs	that	can	process	data	in	parallel	while	dealing	with	failures	(which	are	common	with	large	scale	parallelism)	is
not	easy.

In	this	chapter,	we	study	techniques	for	querying	of	Big	Data	that	are	widely	used	today.	A	key	to	the	success	of	these	techniques	is	the	fact	that	they	allow	specification	of
complex	data	processing	tasks,	while	enabling	easy	parallelization	of	the	tasks.	These	techniques	free	the	programmer	from	having	to	deal	with	issues	such	as	how	to
perform	parallelization,	how	to	deal	with	failures,	how	to	deal	with	load	imbalances	between	machines,	and	many	other	similar	low-level	issues.

10.2

Big	Data	Storage	Systems

Applications	on	Big	Data	have	extremely	high	scalability	requirements.	Popular	applications	have	hundreds	of	millions	of	users,	and	many	applications	have	seen	their	load
increase	many-fold	within	a	single	year,	or	even	within	a	few	months.	To	handle	the	data	management	needs	of	such	applications,	data	must	be	stored	partitioned	across
thousands	of	computing	and	storage	nodes.

A	number	of	systems	for	Big	Data	storage	have	been	developed	and	deployed	over	the	past	two	decades	to	address	the	data	management	requirements	of	such
applications.	These	include	the	following:

•	Distributed	File	Systems.	These	allow	files	to	be	stored	across	a	number	of	machines,	while	allowing	access	to	files	using	a	traditional	file-system	interface.	Distributed
file	systems	are	used	to	store	large	files,	such	as	log	files.	They	are	also	used	as	a	storage	layer	for	systems	that	support	storage	of	records.

10.2

Big	Data	Storage	Systems

473

•	Sharding	across	multiple	databases.	Sharding	refers	to	the	process	of	partitioning	of	records	across	multiple	systems;	in	other	words,	the	records	are	divided	up	among
the	systems.	A	typical	use	case	for	sharding	is	to	partition	records	corresponding	to	different	users	across	a	collection	of	databases.	Each	database	is	a	traditional
centralized	database,	which	may	not	have	any	information	about	the	other	databases.	It	is	the	job	of	client	software	to	keep	track	of	how	records	are	partitioned,	and	to
send	each	query	to	the	appropriate	database.

•	Key-Value	Storage	Systems.	These	allow	records	to	be	stored	and	retrieved	based	on	a	key,	and	may	additionally	provide	limited	query	facilities.	However,	they	are	not
full-fledged	database	systems;	they	are	sometimes	called	NoSQL	systems,	since	such	storage	systems	typically	do	not	support	the	SQL	language.

•	Parallel	and	Distributed	Databases.	These	provide	a	traditional	database	interface	but	store	data	across	multiple	machines,	and	they	perform	query	processing	in	parallel
across	multiple	machines.

Parallel	and	distributed	database	storage	systems,	including	distributed	file	systems	and	key-value	stores,	are	described	in	detail	in	Chapter	21.	We	provide	a	user-level
overview	of	these	Big	Data	storage	systems	in	this	section.

10.2.1

Distributed	File	Systems

A	distributed	file	system	stores	files	across	a	large	collection	of	machines	while	giving	a	single-file-system	view	to	clients.	As	with	any	file	system,	there	is	a	system	of	file
names	and	directories,	which	clients	can	use	to	identify	and	access	files.	Clients	do	not	need	to	bother	about	where	the	files	are	stored.	Such	distributed	file	systems	can
store	very	large	amounts	of	data,	and	support	very	large	numbers	of	concurrent	clients.	Such	systems	are	ideal	for	storing	unstructured	data,	such	as	web	pages,	web
server	logs,	images,	and	so	on,	that	are	stored	as	large	files.

A	landmark	system	in	this	context	was	the	Google	File	System	(GFS),	developed	in	the	early	2000s,	which	saw	widespread	use	within	Google.	The	open-source	Hadoop	File
System	(HDFS)	is	based	on	the	GFS	architecture	and	is	now	very	widely	used.

Distributed	file	systems	are	designed	for	efficient	storage	of	large	files,	whose	sizes	range	from	tens	of	megabytes	to	hundreds	of	gigabytes	or	more.

The	data	in	a	distributed	file	system	is	stored	across	a	number	of	machines.	Files	are	broken	up	into	multiple	blocks.	The	blocks	of	a	single	file	can	be	partitioned	across
multiple	machines.	Further,	each	file	block	is	replicated	across	multiple	(typically	three)	machines,	so	that	a	machine	failure	does	not	result	in	the	file	becoming
inaccessible.

File	systems,	whether	centralized	or	distributed,	typically	support	the	following:

•	A	directory	system,	which	allows	a	hierarchical	organization	of	files	into	directories	and	subdirectories.

•	A	mapping	from	a	file	name	to	the	sequence	of	identifiers	of	blocks	that	store	the	actual	data	in	each	file.

474

Chapter	10

Big	Data

•	The	ability	to	store	and	retrieve	data	to/from	a	block	with	a	specified	identifier.

In	the	case	of	a	centralized	file	system,	the	block	identifiers	help	locate	blocks	in	a	storage	device	such	as	a	disk.	In	the	case	of	a	distributed	file	system,	in	addition	to
providing	a	block	identifier,	the	file	system	must	provide	the	location	(machine	identifier)	where	the	block	is	stored;	in	fact,	due	to	replication,	the	file	system	provides	a
set	of	machine	identifiers	along	with	each	block	identifier.

Figure	10.1	shows	the	architecture	of	the	Hadoop	File	System	(HDFS),	which	is	derived	from	the	architecture	of	the	Google	File	System	(GFS).	The	core	of	HDFS	is
NameNode

Metadata	(name,	replicas,	..)

Metadata	Ops

BackupNode

Metadata	(name,	replicas,	..)

Client

Block	Read

DataNodes

Blocks

Client

Block	Write

Replication

Rack	1

Rack	2

Figure	10.1	Hadoop	Distributed	File	System	(HDFS)	architecture.

10.2

Big	Data	Storage	Systems

475

a	server	running	a	machine	referred	to	as	the	NameNode.	All	file	system	requests	are	sent	to	the	NameNode.	A	file	system	client	program	that	wants	to	read	an	existing
file	sends	the	file	name	(which	can	be	a	path,	such	as	/home/avi/book/ch10)	to	the	NameNode.	The	NameNode	stores	a	list	of	block	identifiers	of	the	blocks	in	each	file;	for
each	block	identifier,	the	NameNode	also	stores	the	identifiers	of	machines	that	store	copies	of	that	block.	The	machines	that	store	data	blocks	in	HDFS	are	called
DataNodes.

For	a	file	read	request,	the	HDFS	server	sends	back	a	list	of	block	identifiers	of	the	blocks	in	the	file	and	the	identifiers	of	the	machines	that	contain	each	block.	Each

block	is	then	fetched	from	one	of	the	machines	that	store	a	copy	of	the	block.

For	a	file	write,	the	HDFS	server	creates	new	block	identifiers	and	assigns	each	block	identifier	to	several	(usually	three)	machines,	and	returns	the	block	identifiers	and
machine	assignment	to	the	client.	The	client	then	sends	the	block	identifiers	and	block	data	to	the	assigned	machines,	which	store	the	data.

Files	can	be	accessed	by	programs	by	using	HDFS	file	system	APIs	that	are	available	in	multiple	languages,	such	as	Java	and	Python;	the	APIs	allow	a	program	to	connect
to	the	HDFS	server	and	access	data.

An	HDFS	distributed	file	system	can	also	be	connected	to	the	local	file	system	of	a	machine	in	such	a	way	that	files	in	HDFS	can	be	accessed	as	though	they	are	stored
locally.	This	requires	providing	the	address	of	the	NameNode	machine,	and	the	port	on	which	the	HDFS	server	listens	for	requests,	to	the	local	file	system.	The	local	file
system	recognizes	which	file	accesses	are	to	files	in	HDFS	based	on	the	file	path,	and	sends	appropriate	requests	to	the	HDFS	server.

More	details	about	distributed	file	system	implementation	may	be	found	in	Section	21.6.

10.2.2

Sharding

A	single	database	system	typically	has	sufficient	storage	and	performance	to	handle	all	the	transaction	processing	needs	of	an	enterprise.	However,	using	a	single
database	is	not	sufficient	for	applications	with	millions	or	even	billions	of	users,	including	social-media	or	similar	web-scale	applications,	but	also	the	user-facing
applications	of	very	large	organizations	such	as	large	banks.

Suppose	an	organization	has	built	an	application	with	a	centralized	database,	but	needs	to	scale	to	handle	more	users,	and	the	centralized	database	is	not	capable	of
handling	the	storage	or	processing	speed	requirements.	A	commonly	used	way	to	deal	with	such	a	situation	is	to	partition	the	data	across	multiple	databases,	with	a	subset
of	users	assigned	to	each	of	the	databases.	The	term	sharding	refers	to	the	partitioning	of	data	across	multiple	databases	or	machines.

Partitioning	is	usually	done	on	one	or	more	attributes,	referred	to	as	partitioning	attributes,	partitioning	keys,	or	shard	keys.	User	or	account	identifiers	are	commonly
used	as	partitioning	keys.	Partitioning	can	be	done	by	defining	a	range	of	keys	that	each	of	the	databases	handles;	for	example,	keys	from	1	to	100,000	may	be	assigned	to
the

476

Chapter	10

Big	Data

first	database,	keys	from	100,001	to	200,000	to	the	second	database,	and	so	on.	Such	partitioning	is	called	range	partitioning.	Partitioning	may	also	be	done	by	computing
a	hash	function	that	maps	a	key	value	to	a	partition	number;	such	partitioning	is	called	hash	partitioning.	We	study	partitioning	of	data	in	detail	in	Chapter	21.

When	sharding	is	done	in	application	code,	the	application	must	keep	track	of	which	keys	are	stored	on	which	database,	and	must	route	queries	to	the	appropriate
database.	Queries	that	read	or	update	data	from	multiple	databases	cannot	be	processed	in	a	simple	manner,	since	it	is	not	possible	to	submit	a	single	query	that	gets
executed	across	all	the	databases.	Instead,	the	application	would	need	to	read	data	from	multiple	databases	and	compute	the	final	query	result.	Updates	across	databases
cause	further	issues,	which	we	discuss	in	Section	10.2.5.

While	sharding	performed	by	modifying	application	code	provided	a	simple	way	to	scale	applications,	the	limitations	of	the	approach	soon	became	apparent.	First,	the
application	code	has	to	track	how	data	was	partitioned	and	route	queries	appropriately.

If	a	database	becomes	overloaded,	parts	of	the	data	in	that	database	have	to	be	offloaded	to	a	new	database,	or	to	one	of	the	other	existing	databases;	managing	this
process	is	a	non-trivial	task.	As	more	databases	are	added,	there	is	a	greater	chance	of	failure	leading	to	loss	of	access	to	data.	Replication	is	needed	to	ensure	data	is
accessible	despite	failures,	but	managing	the	replicas,	and	ensuring	they	are	consistent,	poses	further	challenges.	Key-value	stores,	which	we	study	next,	address	some	of
these	issues.

Challenges	related	to	consistency	and	availability	are	discussed	later,	in	Section	10.2.5.

10.2.3

Key-Value	Storage	Systems

Many	web	applications	need	to	store	very	large	numbers	(many	billions	or	in	extreme	cases,	trillions)	of	relatively	small	records	(of	size	ranging	from	a	few	kilobytes	to	a
few	megabytes).	Storing	each	record	as	a	separate	file	is	infeasible,	since	file	systems,	including	distributed	file	systems,	are	not	designed	to	store	such	large	numbers	of
files.

Ideally,	a	massively	parallel	relational	database	should	be	used	to	store	such	data.

However,	it	is	not	easy	to	build	relational	database	systems	that	can	run	in	parallel	across	a	large	number	of	machines	while	also	supporting	standard	database	features
such	as	foreign-key	constraints	and	transactions.

A	number	of	storage	systems	have	been	developed	that	can	scale	to	the	needs	of	web	applications	and	store	large	amounts	of	data,	scaling	to	thousands	to	tens	of
thousands	of	machines,	but	typically	offering	only	a	simple	key-value	storage	interface.

A	key-value	storage	system	(or	key-value	store)	is	a	system	that	provides	a	way	to	store	or	update	a	record	(value)	with	an	associated	key	and	to	retrieve	the	record	with	a
given	key.

Parallel	key-value	stores	partition	keys	across	multiple	machines,	and	route	updates	and	lookups	to	the	correct	machine.	They	also	support	replication,	and	ensure	that
replicas	are	kept	consistent.	Further,	they	provide	the	ability	to	add	more	machines	to	a	system	when	required,	and	ensure	that	the	load	is	automatically	balanced	across
the	machines	in	a	system	In	contrast	to	systems	that	implement	sharding	in	the	application

10.2

Big	Data	Storage	Systems

477

code,	systems	that	use	a	parallel	key-value	store	do	not	need	to	worry	about	any	of	the	above	issues.	Parallel	key-value	stores	are	therefore	more	widely	used	than
sharding	today.

Widely	used	parallel	key-value	stores	include	Bigtable	from	Google,	Apache	HBase,	Dynamo	from	Amazon,	Cassandra	from	Facebook,	MongoDB,	Azure	cloud	storage	from
Microsoft,	and	Sherpa/PNUTS	from	Yahoo!,	among	many	others.

While	several	key-value	data	stores	view	the	values	stored	in	the	data	store	as	an	uninterpreted	sequence	of	bytes,	and	do	not	look	at	their	content,	other	data	stores	allow
some	form	of	structure	or	schema	to	be	associated	with	each	record.	Several	such	key-value	storage	systems	require	the	stored	data	to	follow	a	specified	data
representation,	allowing	the	data	store	to	interpret	the	stored	values	and	execute	simple	queries	based	on	stored	values.	Such	data	stores	are	called	document	stores.
MongoDB	is	a	widely	used	data	store	that	accepts	values	in	the	JSON	format.

Key-value	storage	systems	are,	at	their	core,	based	on	two	primitive	functions,	put(key,	value),	used	to	store	values	with	an	associated	key,	and	get(key),	used	to	retrieve
the	stored	value	associated	with	the	specified	key.	Some	systems,	such	as	Bigtable,	additionally	provide	range	queries	on	key	values.	Document	stores	additionally	support
limited	forms	of	querying	on	the	data	values.

An	important	motivation	for	the	use	of	key-value	stores	is	their	ability	to	handle	very	large	amounts	of	data	as	well	as	queries,	by	distributing	the	work	across	a	cluster
consisting	of	a	large	number	of	machines.	Records	are	partitioned	(divided	up)	among	the	machines	in	the	cluster,	with	each	machine	storing	a	subset	of	the	records	and
processing	lookups	and	updates	on	those	records.

Note	that	key-value	stores	are	not	full-fledged	databases,	since	they	do	not	provide	many	of	the	features	that	are	viewed	as	standard	on	database	systems	today.	Key-value
stores	typically	do	not	support	declarative	querying	(using	SQL	or	any	other	declarative	query	language)	and	do	not	support	transactions	(which,	as	we	shall	see	in
Chapter	17,	allow	multiple	updates	to	be	committed	atomically	to	ensure	that	the	database	state	remains	consistent	despite	failures,	and	control	concurrent	access	to	data
to	ensure	that	problems	do	not	arise	due	to	concurrent	access	by	multiple	transactions).	Key-value	stores	also	typically	do	not	support	retrieval	of	records	based	on
selections	on	non-key	attributes,	although	some	document	stores	do	support	such	retrieval.

An	important	reason	for	not	supporting	such	features	is	that	some	of	them	are	not	easy	to	support	on	very	large	clusters;	thus,	most	systems	sacrifice	these	features	in
order	to	achieve	scalability.	Applications	that	need	scalability	may	be	willing	to	sacrifice	these	features	in	exchange	for	scalability.

Key-value	stores	are	also	called	NoSQL	systems,	to	emphasize	that	they	do	not	support	SQL,	and	the	lack	of	support	for	SQL	was	initially	viewed	as	something	positive,
rather	than	a	limitation.	However,	it	soon	became	clear	that	lack	of	database	features	such	as	transaction	support	and	support	for	SQL,	make	application	development
more	complicated.	Thus,	many	key-value	stores	have	evolved	to	support	features,	such	as	the	SQL	language	and	transactions.

478

Chapter	10

Big	Data

show	dbs	//	Shows	available	databases

use	sampledb	//	Use	database	sampledb,	creating	it	if	it	does	not	exist	db.createCollection("student")	//	Create	a	collection

db.createCollection("instructor")

show	collections	//	Shows	all	collections	in	the	database

db.student.insert({	"id"	:	"00128",	"name"	:	"Zhang",

"dept	name"	:	"Comp.	Sci.",	"tot	cred"	:	102,	"advisors"	:	["45565"]	})	db.student.insert({	"id"	:	"12345",	"name"	:	"Shankar",

"dept	name"	:	"Comp.	Sci.",	"tot	cred"	:	32,	"advisors"	:	["45565"]	})	db.student.insert({	"id"	:	"19991",	"name"	:	"Brandt",

"dept	name"	:	"History",	"tot	cred"	:	80,	"advisors"	:	[]	})

db.instructor.insert({	"id"	:	"45565",	"name"	:	"Katz",

"dept	name"	:	"Comp.	Sci.",	"salary"	:	75000,

"advisees"	:	["00128","12345"]	})

db.student.find()	//	Fetch	all	students	in	JSON	format

db.student.findOne({"ID":	"00128"})	//	Find	one	matching	student

db.student.remove({"dept	name":	"Comp.	Sci."})	//	Delete	matching	students	db.student.drop()	//	Drops	the	entire	collection

Figure	10.2	MongoDB	shell	commands.

The	APIs	provided	by	these	systems	to	store	and	access	data	are	widely	used.	While	the	basic	get()	and	put()	functions	mentioned	earlier	are	straightforward,	most
systems	support	further	features.	As	an	example	of	such	APIs,	we	provide	a	brief	overview	of	the	MongoDB	API.

Figure	10.2	illustrates	access	to	the	MongoDB	document	store	through	a	JavaScript	shell	interface.	Such	a	shell	can	be	opened	by	executing	the	mongo	command	on	a
system	that	has	MongoDB	installed	and	configured.	MongoDB	also	provides	equivalent	API	functions	in	a	variety	of	languages,	including	Java	and	Python.

The	use	command	shown	in	the	figure	opens	the	specified	database,	creating	it	if	it	does	not	already	exist.	The	db.createCollection()	command	is	used	to	create
collections,	which	store	documents;	a	document	in	MongoDB	is	basically	a	JSON	object.	The	code	in	the	figure	creates	two	collections,	student	and	instructor,	and	inserts
JSON

objects	representing	students	and	instructors	into	the	two	collections.

MongoDB	automatically	creates	identifiers	for	the	inserted	objects,	which	can	be	used	as	keys	to	retrieve	the	objects.	The	key	associated	with	an	object	can	be	fetched
using	the	id	attribute,	and	an	index	on	this	attribute	is	created	by	default.

MongoDB	also	supports	queries	based	on	the	stored	values.	The	db.student.find()	function	returns	a	collection	of	all	objects	in	the	student	collection,	while	the	findOne()
function	returns	one	object	from	the	collection.	Both	functions	can	take	as	argument	a	JSON	object	that	specifies	a	selection	on	desired	attributes.	In	our	example,	the

10.2

Big	Data	Storage	Systems

479

student	with	ID	00128	is	retrieved.	Similarly,	all	objects	matching	such	a	selection	can	be	deleted	by	the	remove()	function	shown	in	the	figure.	The	drop()	function	shown
in	the	figure	drops	an	entire	collection.

MongoDB	supports	a	variety	of	other	features	such	as	creation	of	indices	on	specified	attributes	of	the
stored	JSON	objects,	such	as	the	ID	and	name	attributes.

Since	a	key	goal	of	MongoDB	is	to	enable	scaling	to	very	large	data	sizes	and	query/update	loads,
MongoDB	allows	multiple	machines	to	be	part	of	a	single	MongoDB	cluster.	Data	are	then	sharded
(partitioned)	across	these	machines.	We	study	partitioning	of	data	across	machines	in	detail	in	Chapter
21,	and	we	study	parallel	processing	of	queries	in	detail	in	Chapter	22.	However	we	outline	key	ideas	in
this	section.

In	MongoDB	(as	in	many	other	databases),	partitioning	is	done	based	on	the	value	of	a	specified	attribute,
called	the	partitioning	attribute	or	shard	key.	For	example,	if	we	specify	that	the	student	collection	should
be	partitioned	on	the	dept	name	attribute,	all	objects	of	a	particular	department	are	stored	on	one
machine,	but	objects	of	different	departments	may	be	stored	on	different	machines.	To	ensure	data	can	be
accessed	even	if	a	machine	has	failed,	each	partition	is	replicated	on	multiple	machines.	This	way,	even	if
one	machine	fails,	the	data	in	that	partition	can	be	fetched	from	another	machine.

Requests	from	a	MongoDB	client	are	sent	to	a	router,	which	then	forwards	requests	to	the	appropriate
partitions	in	a	cluster.

Bigtable	is	another	key-value	store	that	requires	data	values	to	follow	a	format	that	allows	the	storage
system	access	to	individual	parts	of	a	stored	value.	In	Bigtable,	data	values	(records)	can	have	multiple
attributes;	the	set	of	attribute	names	is	not	predetermined	and	can	vary	across	different	records.	Thus,
the	key	for	an	attribute	value	conceptually	consists	of	(record-identifier,	attribute-name).	Each	attribute
value	is	just	a	string	as	far	as	Bigtable	is	concerned.	To	fetch	all	attributes	of	a	record,	a	range	query,	or
more	precisely	a	prefix-match	query	consisting	of	just	the	record	identifier,	is	used.

The	get()	function	returns	the	attribute	names	along	with	the	values.	For	efficient	retrieval	of	all
attributes	of	a	record,	the	storage	system	stores	entries	sorted	by	the	key,	so	all	attribute	values	of	a
particular	record	are	clustered	together.

In	fact,	the	record	identifier	can	itself	be	structured	hierarchically,	although	to	Bigtable	itself	the	record
identifier	is	just	a	string.	For	example,	an	application	that	stores	pages	retrieved	from	a	web	crawl	could
map	a	URL	of	the	form:

www.cs.yale.edu/people/silberschatz.html

to	the	record	identifier:

edu.yale.cs.www/people/silberschatz.html

With	this	representation,	all	URLs	of	cs.yale.edu	can	be	retried	by	a	query	that	fetches	all	keys	with	the
prefix	edu.yale.cs,	which	would	be	stored	in	a	consecutive	range	of	key	values	in	the	sorted	key	order.
Similarly,	all	URLs	of	yale.edu	would	have	a	prefix	of	edu.yale	and	would	be	stored	in	a	consecutive	range
of	key	values.

480

Chapter	10

Big	Data

Although	Bigtable	does	not	support	JSON	natively,	JSON	data	can	be	mapped	to	the	data	model	of
Bigtable.	For	example,	consider	the	following	JSON	data:

{

"ID":	"22222",

"name":	{	"firstname:	"Albert",	"lastname:	"Einstein"	},

"deptname":	"Physics",

"children":	[

{"firstname":	"Hans",	"lastname":	"Einstein"	},

{"firstname":	"Eduard",	"lastname":	"Einstein"	}]

}

The	above	data	can	be	represented	by	a	Bigtable	record	with	identifier	“22222”,	with	multiple	attribute

names	such	as	“name.firstname”,	“deptname”,	“children[1].firstname”	or	“children[2].lastname”.

Further,	a	single	instance	of	Bigtable	can	store	data	for	multiple	applications,	with	multiple	tables	per
application,	by	simply	prefixing	the	application	name	and	table	name	to	the	record	identifier.

Many	data-storage	systems	allow	multiple	versions	of	data	items	to	be	stored.	Versions	are	often	identified
by	timestamp,	but	they	may	be	alternatively	identified	by	an	integer	value	that	is	incremented	whenever	a
new	version	of	a	data	item	is	created.

Lookups	can	specify	the	required	version	of	a	data	item	or	can	pick	the	version	with	the	highest	version
number.	In	Bigtable,	for	example,	a	key	actually	consists	of	three	parts:	(record-identifier,	attribute-name,
timestamp).	Bigtable	can	be	accessed	as	a	service	from	Google.	The	open-source	version	of	Bigtable,
HBase,	is	widely	used.

10.2.4

Parallel	and	Distributed	Databases

Parallel	databases	are	databases	that	run	on	multiple	machines	(together	referred	to	as	a	cluster)	and	are
designed	to	store	data	across	multiple	machines	and	to	process	large	queries	using	multiple	machines.
Parallel	databases	were	initially	developed	in	the	1980s,	and	thus	they	predate	the	modern	generation	of
Big	Data	systems.	From	a	programmer	viewpoint,	parallel	databases	can	be	used	just	like	databases
running	on	a	single	machine.

Early	generation	parallel	databases	designed	for	transaction	processing	supported	only	a	few	machines	in
a	cluster,	while	those	designed	to	process	large	analytical	queries	were	designed	to	support	tens	to
hundreds	of	machines.	Data	are	replicated	across	multiple	machines	in	a	cluster,	to	ensure	that	data	are
not	lost,	and	they	continue	to	be	accessible,	even	if	a	machine	in	a	cluster	fails.	Although	failures	do	occur
and	need	to	be	dealt	with,	failures	during	the	processing	of	a	query	are	not	common	in	systems	with	tens
to	hundreds	of	machines.	If	a	query	was	being	processed	on	a	node	that	failed,	the	query	is	simply
restarted,	using	replicas	of	data	that	are	on	other	nodes.

If	such	database	systems	are	run	on	clusters	with	thousands	of	machines,	the	probability	of	failure	during
execution	of	a	query	increases	significantly	for	queries	that	process	a	large	amount	of	data	and
consequently	run	for	a	long	time.	Restarting	a	query	in

10.2

Big	Data	Storage	Systems

481

the	event	of	a	failure	is	no	longer	an	option,	since	there	is	a	fairly	high	probability	that	a	failure	will
happen	yet	again	while	the	query	is	executing.	Techniques	to	avoid	complete	restart,	allowing	only
computation	on	the	failed	machines	to	be	redone,	were	developed	in	the	context	of	map-reduce	systems,
which	we	study	in	Section	10.3.	However,	these	techniques	introduce	significant	overhead;	given	the	fact
that	computation	spanning	thousands	to	tens	of	thousands	of	nodes	is	needed	only	by	some	exceptionally
large	applications,	even	today	most	parallel	relational	database	systems	target	applications	that	run	on
tens	to	hundreds	of	machines	and	just	restart	queries	in	the	event	of	failure.

Query	processing	in	such	parallel	and	distributed	databases	is	covered	in	detail	in	Chapter	22,	while
transaction	processing	in	such	databases	is	covered	in	Chapter	23.

10.2.5

Replication	and	Consistency

Replication	is	key	to	ensuring	availability	of	data,	ensuring	a	data	item	can	be	accessed	despite	failure	of
some	of	the	machines	storing	the	data	item.	Any	update	to	a	data	item	must	be	applied	to	all	replicas	of
the	data	item.	As	long	as	all	the	machines	containing	the	replicas	are	up	and	connected	to	each	other,
applying	the	update	to	all	replicas	is	straightforward.

However,	since	machines	do	fail,	there	are	two	key	problems.	The	first	is	how	to	ensure	atomic	execution
of	a	transaction	that	updates	data	at	more	than	one	machine:	the	transaction	execution	is	said	to	be
atomic	if	despite	failures,	either	all	the	data	items	updated	by	the	transaction	are	successfully	updated,	or
all	the	data	items	are	reverted	back	to	their	original	values.	The	second	problem	is,	how	to	perform
updates	on	a	data	item	that	has	been	replicated,	when	some	of	the	replicas	of	the	data	item	are	on	a
machine	that	has	failed.	A	key	requirement	here	is	consistency,	that	is,	all	live	replicas	of	a	data	item	have
the	same	value,	and	each	read	sees	the	latest	version	of	the	data	item.	There	are	several	possible
solutions,	which	offer	different	degrees	of	resilience	to	failures.	We	study	solutions	to	the	both	these
problems	in	Chapter	23.

We	note	that	the	solutions	to	the	second	problem	typically	require	that	a	majority	of	the	replicas	are
available	for	reading	and	update.	If	we	had	3	replicas,	this	would	require	not	more	than	1	fail,	but	if	we
had	5	replicas,	even	if	two	machines	fail	we	would	still	have	a	majority	of	replicas	available.	Under	these
assumptions,	writes	will	not	get	blocked,	and	reads	will	see	the	latest	value	for	any	data	item.

While	the	probability	of	multiple	machines	failing	is	relatively	low,	network	link	failures	can	cause	further
problems.	In	particular,	a	network	partition	is	said	to	occur	if	two	live	machines	in	a	network	are	unable	to
communicate	with	each	other.

It	has	been	shown	that	no	protocol	can	ensure	availability,	that	is,	the	ability	to	read	and	write	data,	while
also	guaranteeing	consistency,	in	the	presence	of	network	partitions.	Thus,	distributed	systems	need	to
make	tradeoffs:	if	they	want	high	availability,	they	need	to	sacrifice	consistency,	for	example	by	allowing
reads	to	see	old	values	of	data	items,	or	to	allow	different	replicas	to	have	different	values.	In	the	latter
case,	how	to	bring	the	replicas	to	a	common	value	by	merging	the	updates	is	a	task	that	the

482

Chapter	10

Big	Data

Note	10.1	Building	Scalable	Database	Applications

When	faced	with	the	task	of	creating	a	database	application	that	can	scale	to	a	very	large	number	of
users,	application	developers	typically	have	to	choose	between	a	database	system	that	runs	on	a	single
server,	and	a	key-value	store	that	can	scale	by	running	on	a	large	number	of	servers.	A	database	that
supports	SQL	and	atomic	transactions,	and	at	the	same	time	is	highly	scalable,	would	be	ideal;	as	of	2018,
Google	Cloud	Spanner,	which	is	only	available	on	the	cloud,	and	the	recently	developed	open	source
database	CockroachDB	are	the	only	such	databases.

Simple	applications	can	be	written	using	only	key-value	stores,	but	more	complex	applications	benefit
greatly	from	having	SQL	support.	Application	developers	therefore	typically	use	a	combination	of	parallel
key-value	stores	and	databases.

Some	relations,	such	as	those	that	store	user	account	and	user	profile	data	are	queried	frequently,	but
with	simple	select	queries	on	a	key,	typically	on	the	user	identifier.	Such	relations	are	stored	in	a	parallel
key-value	store.	In	case	select	queries	on	other	attributes	are	required,	key-value	stores	that	support
indexing	on	attributes	other	than	the	primary	key,	such	as	MongoDB,	could	still	be	used.

Other	relations	that	are	used	in	more	complex	queries	are	stored	in	a	relational	database	that	runs	on	a
single	server.	Databases	running	on	a	single	server	do	exploit	the	availability	of	multiple	cores	to	execute
transactions	in	parallel,	but	are	limited	by	the	number	of	cores	that	can	be	supported	in	a	single	machine.

Most	relational	databases	support	a	form	of	replication	where	update	transactions	run	on	only	one
database	(the	primary),	but	the	updates	are	propagated	to	replicas	of	the	database	running	on	other
servers.	Applications	can	execute	read-only	queries	on	these	replicas,	but	with	the	understanding	that
they	may	see	data	that	is	a	few	seconds	behind	in	time,	as	compared	to	the	primary	database.	Offloading
read-only	queries	from	the	primary	database	allows	the	system	to	handle	a	load	larger	than	what	a	single
database	server	can	handle.

In-memory	caching	systems,	such	as	memcached	or	Redis,	are	also	used	to	get	scalable	read-only	access
to	relations	stored	in	a	database.	Applications	may	store	some	relations,	or	some	parts	of	some	relations,
in	such	an	in-memory	cache,	which	may	be	replicated	or	partitioned	across	multiple	machines.	Thereby,
applications	can	get	fast	and	scalable	read-only	access	to	the	cached	data.	Updates	must	however	be
performed	on	the	database,	and	the	application	is	responsible	for	updating	the	cache	whenever	the	data	is
updated	on	the	database.

application	has	to	deal	with.	Some	applications,	or	some	parts	of	an	application,	may	choose	to	prioritize
availability	over	consistency.	But	other	applications,	or	some	parts	of	an	application,	may	choose	to
prioritize	consistency	even	at	the	cost	of	potential	non-availability	of	the	system	in	the	event	of	failures.
The	above	issues	are	discussed	in	more	detail	in	Chapter	23.

10.3

The	MapReduce	Paradigm

483

10.3

The	MapReduce	Paradigm

The	MapReduce	paradigm	models	a	common	situation	in	parallel	processing,	where	some	processing,
identified	by	the	map()	function,	is	applied	to	each	of	a	large	number	of	input	records,	and	then	some	form
of	aggregation,	identified	by	the	reduce()	function,	is	applied	to	the	result	of	the	map()	function.	The
map()	function	is	also	permitted	to	specify	grouping	keys,	such	that	the	aggregation	specified	in	the
reduce()	function	is	applied	within	each	group,	identified	by	the	grouping	key,	of	the	map()	output.	We
examine	the	MapReduce	paradigm,	and	the	map()	and	reduce()	functions	in	detail,	in	the	rest	of	this
section.

The	MapReduce	paradigm	for	parallel	processing	has	a	long	history,	dating	back	several	decades,	in	the
functional	programming	and	parallel	processing	community	(the	map	and	reduce	functions	were
supported	in	the	Lisp	language,	for	example).

10.3.1

Why	MapReduce?

As	a	motivating	example	for	the	use	of	the	MapReduce	paradigm,	we	consider	the	following	word	count
application,	which	takes	a	large	number	of	files	as	input,	and	outputs	a	count	of	the	number	of	times	each
word	appears,	across	all	the	files.	Here,	the	input	would	be	in	the	form	of	a	potentially	large	number	of
files	stored	in	a	directory.

We	start	by	considering	the	case	of	a	single	file.	In	this	case,	it	is	straightforward	to	write	a	program	that
reads	in	the	words	in	the	file	and	maintains	an	in-memory	data	structure	that	keeps	track	of	all	the	words
encountered	so	far,	along	with	their	counts.

The	question	is,	how	to	extend	the	above	algorithm,	which	is	sequential	in	nature,	to	an	environment
where	there	are	tens	of	thousands	of	files,	each	containing	tens	to	hundreds	of	megabytes	of	data.	It	is
infeasible	to	process	such	a	large	volume	of	data	sequentially.

One	solution	is	to	extend	the	above	scheme	by	coding	it	as	a	parallel	program	that	would	run	across	many
machines	with	each	machine	processing	a	part	of	the	files.	The	counts	computed	locally	at	each	machine
must	then	be	combined	to	get	the	final	counts.	In	this	case,	the	programmer	would	be	responsible	for	all
the	“plumbing”

required	to	start	up	jobs	on	different	machines,	coordinate	them,	and	to	compute	the	final	answer.	In
addition,	the	“plumbing”	code	must	also	deal	with	ensuring	completion	of	the	program	in	spite	of	machine
failures;	failures	are	quite	frequent	when	the	number	of	participating	machines	is	large,	such	as	in	the
thousands,	and	the	program	runs	for	a	long	duration.

The	“plumbing”	code	to	implement	the	above	requirements	is	quite	complex;	it	makes	sense	to	write	it
just	once	and	reuse	it	for	all	desired	applications.

MapReduce	systems	provide	the	programmer	a	way	of	specifying	the	core	logic	needed	for	an	application,
with	the	details	of	the	earlier-mentioned	plumbing	handled	by	the	MapReduce	system.	The	programmer
needs	to	provide	only	map()	and	reduce()	functions,	plus	optionally	functions	for	reading	and	writing	data.
The	map()	and	reduce()	functions	provided	by	the	programmer	are	invoked	on	the	data	by	the	MapRe-

484

Chapter	10

Big	Data

duce	system	to	process	data	in	parallel.	The	programmer	does	not	need	to	be	aware	of	the	plumbing	or	its
complexity;	in	fact,	she	can	for	the	most	part	ignore	the	fact	that	the	program	is	to	be	executed	in	parallel
on	multiple	machines.

The	MapReduce	approach	can	be	used	to	process	large	amounts	of	data	for	a	variety	of	applications.	The
above-mentioned	word	count	program	is	a	toy	example	of	a	class	of	text	and	document	processing
applications.	Consider,	for	example,	search	engines	which	take	keywords	and	return	documents
containing	the	keywords.	MapReduce	can,	for	example,	be	used	to	process	documents	and	create	text
indices,	which	are	then	used	to	efficiently	find	documents	containing	specified	keywords.

10.3.2

MapReduce	By	Example	1:	Word	Count

Our	word	count	application	can	be	implemented	in	the	MapReduce	framework	using	the	following
functions,	which	we	defined	in	pseudocode.	Note	that	our	pseudocode	is	not	in	any	specific	programming

language;	it	is	intended	to	introduce	concepts.	We	describe	how	to	write	MapReduce	code	in	specific
languages	in	later	sections.

1.	In	the	MapReduce	paradigm,	the	map()	function	provided	by	the	programmer	is	invoked	on	each	input
record	and	emits	zero	or	more	output	data	items,	which	are	then	passed	on	to	the	reduce()	function.	The
first	question	is,	what	is	a	record?

MapReduce	systems	provide	defaults,	treating	each	line	of	each	input	file	as	a	record;	such	a	default
works	well	for	our	word	count	application,	but	the	programmers	are	allowed	to	specify	their	own
functions	to	break	up	input	files	into	records.

For	the	word	count	application,	the	map()	function	could	break	up	each	record	(line)	into	individual	words
and	output	a	number	of	records,	each	of	which	is	a	pair	(word,	count),	where	count	is	the	number	of
occurrences	of	the	word	in	the	record.	In	fact	in	our	simplified	implementation,	the	map()	function	does
even	less	work	and	outputs	each	word	as	it	is	found,	with	a	count	of	1.	These	counts	are	added	up	later	by
the	reduce().	Pseudocode	for	the	map()	function	for	the	word	count	program	is	shown	in	Figure	10.3.

The	function	breaks	up	the	record	(line)	into	individual	words.2	As	each	word	is	found,	the	map()	function
emits	(outputs)	a	record	(word,	1).	Thus,	if	the	file	contained	just	the	sentence:

“One	a	penny,	two	a	penny,	hot	cross	buns.”

the	records	output	by	the	map()	function	would	be

(“one”,	1),	(“a”,	1),	(“penny”,	1),(“two”,	1),	(“a”,	1),	(“penny”,	1),	(“hot”,	1),	(“cross”,	1),	(“buns”,	1).

2We	omit	details	of	how	a	line	is	broken	up	into	words.	In	a	real	implementation,	non-alphabet	characters
would	be	removed,	and	uppercase	characters	mapped	to	lowercase,	before	breaking	up	the	line	based	on
spaces	to	generate	a	list	of	words.

10.3

The	MapReduce	Paradigm

485

map(String	record)	{

For	each	word	in	record

emit(word,	1).

}

reduce(String	key,	List	value	list)	{

String	word	=	key;

int	count	=	0;

For	each	value	in	value	list

count	=	count	+	value

output(word,	count)

}

Figure	10.3	Pseudocode	of	map-reduce	job	for	word	counting	in	a	set	of	files.

In	general,	the	map()	function	outputs	a	set	of	(key,	value)	pairs	for	each	input	record.	The	first	attribute
(key)	of	the	map()	output	record	is	referred	to	as	a	reduce	key,	since	it	is	used	by	the	reduce	step,	which
we	study	next.

2.	The	MapReduce	system	takes	all	the	(key,	value)	pairs	emitted	by	the	map()	functions	and	sorts	(or	at
least,	groups	them)	such	that	all	records	with	a	particular	key	are	gathered	together.	All	records	whose
keys	match	are	grouped	together,	and	a	list	of	all	the	associated	values	is	created.	The	(key,	list)	pairs	are
then	passed	to	the	reduce()	function.

In	our	word	count	example,	each	key	is	a	word,	and	the	associated	list	is	a	list	of	counts	generated	for
different	lines	of	different	files.	With	our	example	data,	the	result	of	this	step	is	the	following:

(“a”,	[1,1]),	(“buns”,	[1])	(“cross”,	[1]),	(“hot”,	[1]),	(“one”,	[1]),	(“penny”,	[1,1]),	(“two”,	[1])

The	reduce()	function	for	our	example	combines	the	list	of	word	counts	by	adding	the	counts,	and	outputs
(word,	total-count)	pairs.	For	the	example	input,	the	records	output	by	the	reduce()	function	would	be	as
follows:

(“one”,	1),	(“a”,	2),	(“penny”,	2),	(“two”,	1),	(“hot”,	1),	(“cross”,	1),	(“buns”,	1).

Pseudocode	for	the	reduce()	function	for	the	word	count	program	is	shown	in	Figure	10.3.	The	counts
generated	by	the	map()	function	are	all	1,	so	the	reduce()	function	could	have	just	counted	the	number	of
values	in	the	list,	but	adding	up	the	values	allows	some	optimizations	that	we	will	see	later.

A	key	issue	here	is	that	with	many	files,	there	may	be	many	occurrences	of	the	same	word	across	different
files.	Reorganizing	the	outputs	of	the	map()	functions

486

Chapter	10

Big	Data

…

2013/02/21	10:31:22.00EST	/slide-dir/11.ppt

2013/02/21	10:43:12.00EST	/slide-dir/12.ppt

2013/02/22	18:26:45.00EST	/slide-dir/13.ppt

2013/02/22	18:26:48.00EST	/exer-dir/2.pdf

2013/02/22	18:26:54.00EST	/exer-dir/3.pdf

2013/02/22	20:53:29.00EST	/slide-dir/12.ppt

…

Figure	10.4	Log	files.

is	required	to	bring	all	the	values	for	a	particular	key	together.	In	a	parallel	system	with	many	machines,
this	requires	data	for	different	reduce	keys	to	be	exchanged	between	machines,	so	all	the	values	for	any
particular	reduce	key	are	available	at	a	single	machine.	This	work	is	done	by	the	shuffle	step,	which
performs	data	exchange	between	machines	and	then	sorts	the	(key,	value)	pairs	to	bring	all	the	values	for
a	key	together.	Observe	in	our	example	that	the	words	have	actually	been	sorted	alphabetically.	Sorting
the	output	records	from	the	map()	is	one	way	for	the	system	to	collect	all	occurrences	of	a	word	together;
the	lists	for	each	word	are	created	from	the	sorted	records.

By	default,	the	output	of	the	reduce()	function	is	sent	to	one	or	more	files,	but	MapReduce	systems	allow
programmers	to	control	what	happens	to	the	output.

10.3.3

MapReduce	by	Example	2:	Log	Processing

As	another	example	of	the	use	of	the	MapReduce	paradigm,	which	is	closer	to	traditional	database	query
processing,	suppose	we	have	a	log	file	recording	accesses	to	a	web	site,	which	is	structured	as	shown	in
Figure	10.4.	The	goal	of	our	file	access	count	application	is	to	find	how	many	times	each	of	the	files	in	the
slide-dir	directory	was	accessed	between	2013/01/01	and	2013/01/31.	The	application	illustrates	one	of	a
variety	of	kinds	of	questions	an	analyst	may	ask	using	data	from	web	log	files.

For	our	log-file	processing	application,	each	line	of	the	input	file	can	be	treated	as	a	record.	The	map()
function	would	do	the	following:	it	would	first	break	up	the	input	record	into	individual	fields,	namely
date,	time,	and	filename.	If	the	date	is	in	the	required	date	range,	the	map()	function	would	emit	a	record
(filename,	1),	which	indicates	that	the	filename	appeared	once	in	that	record.	Pseudocode	for	the	map()
function	for	this	example	is	shown	in	Figure	10.5.

The	shuffle	step	brings	all	the	values	for	a	particular	reduce	key	(in	our	case,	a	file	name)	together	as	a

list.	The	reduce()	function	provided	by	the	programmer,	shown	in	Figure	10.6,	is	then	invoked	for	each
reduce	key	value.	The	first	argument	of	reduce()	is	the	reduce	key	itself,	while	the	second	argument	is	a
list	containing	the	values	in	the

10.3

The	MapReduce	Paradigm

487

map(String	record)	{

String	attribute[3];

break	up	record	into	tokens	(based	on	space	character),	and

store	the	tokens	in	array	attributes

String	date	=	attribute[0];

String	time	=	attribute[1];

String	filename	=	attribute[2];

if(date	between	2013/01/01	and	2013/01/31

and	filename	starts	with	“http://db-book.com/slide-dir”)

emit(filename,	1).

}

Figure	10.5	Pseudocode	of	map	functions	for	counting	file	accesses.

records	emitted	by	the	map()	function	for	that	reduce	key.	In	our	example,	the	values	for	a	particular	key
are	added	to	get	the	total	number	of	accesses	for	a	file.	This	number	is	then	output	by	the	reduce()
function.

If	we	were	to	use	the	values	generated	by	the	map()	function,	the	values	would	be

“1”	for	all	emitted	records,	and	we	could	have	just	counted	the	number	of	elements	in	the	list.	However,
MapReduce	systems	support	optimizations	such	as	performing	a	partial	addition	of	values	from	each	input
file,	before	they	are	redistributed.	In	that	case,	the	values	received	by	the	reduce()	function	may	not
necessarily	be	ones,	and	we	therefore	add	the	values.

Figure	10.7	shows	a	schematic	view	of	the	flow	of	keys	and	values	through	the	map()	and	reduce()
functions.	In	the	figure	the	mk	i’s	denote	map	keys,	mv	i’s	denote	map	input	values,	rk	i’s	denote	reduce
keys,	and	rv	i’s	denote	reduce	input	values.	Reduce	outputs	are	not	shown.

reduce(String	key,	List	value	list)	{

String	filename	=	key;

int	count	=	0;

For	each	value	in	value	list

count	=	count	+	value

output(filename,	count)

}

Figure	10.6	Pseudocode	of	reduce	functions	for	counting	file	accesses.

488

Chapter	10

Big	Data

rk1

rv1

rk1	rv1,rv7,...

rk7	rv2

rk2	rv8,rv	i,...

mk1

mv1

rk3	rv3,...

rk3	rv3

mk2

mv2

rk1	rv7

rk7	rv2,...

rk2	rv8

rk	i	...	rv	n,...

rk2	rv	i

mk	n

mv	n

rk	i

rv	n

map	inputs

reduce	inputs

map	outputs

(key,	value)

(key,	value)

Figure	10.7	Flow	of	keys	and	values	in	a	MapReduce	job.

10.3.4

Parallel	Processing	of	MapReduce	Tasks

Our	description	of	the	map()	and	reduce()	functions	so	far	has	ignored	the	issue	of	parallel	processing.	We
can	understand	the	meaning	of	MapReduce	code	without	considering	parallel	processing.	However,	our
goal	in	using	the	MapReduce	paradigm	is	to	enable	parallel	processing.	Thus,	MapReduce	systems
execute	the	map()	function	in	parallel	on	multiple	machines,	with	each	map	task	processing	some	part	of
the	data,	for	example	some	of	the	files,	or	even	parts	of	a	file	in	case	the	input	files	are	very	large.

Similarly,	the	reduce()	functions	are	also	executed	in	parallel	on	multiple	machines,	with	each	reduce	task
processing	a	subset	of	the	reduce	keys	(note	that	a	particular	call	to	the	reduce()	function	is	still	for	a
single	reduce	key).

Parallel	execution	of	map	and	reduce	tasks	is	shown	pictorially	in	Figure	10.8.

In	the	figure,	the	input	file	partitions,	denoted	as	Part	i,	could	be	files	or	parts	of	files.

The	nodes	denoted	as	Map	i	are	the	map	tasks,	and	the	nodes	denoted	Reduce	i	are	the	reduce	tasks.	The
master	node	sends	copies	of	the	map()	and	reduce()	code	to	the	map	and	reduce	tasks.	The	map	tasks

execute	the	code	and	write	output	data	to	local	files	on	the	machines	where	the	tasks	are	executed,	after
being	sorted	and	partitioned	based	on	the	reduce	key	values;	separate	files	are	created	for	each	reduce
task	at	each	Map	node.	These	files	are	fetched	across	the	network	by	the	reduce	tasks;	the	files	fetched
by	a	reduce	task	(from	different	map	tasks)	are	merged	and	sorted	to	ensure	that	all	occurrences	of	a
particular	reduce	key	are	together	in	the	sorted	file.	The	reduce	keys	and	values	are	then	fed	to	the
reduce()	functions.

10.3

The	MapReduce	Paradigm

489

User

Program

copy

copy

copy

Master

assign

assign

map

reduce

Part	1

Map	1

Reduce	1

File	1

Part	2

Part	3

write

Map	2

Reduce	1

File	2

Part	4

local

write

Part	n

read

Map	n

Reduce	m

File	m

Remote

Read,	Sort

Input	file

Intermediate

Output	files

partitions

files

Figure	10.8	Parallel	processing	of	MapReduce	job.

MapReduce	systems	also	need	to	parallelize	file	input	and	output	across	multiple	machines;	otherwise	the
single	machine	storing	the	data	will	become	a	bottleneck.	Parallelization	of	file	input	and	output	can	be
done	by	using	a	distributed	file	system,	such	as	the	Hadoop	File	System	(HDFS).	As	we	saw	in	Section
10.2,	distributed	file	systems	allow	a	number	of	machines	to	cooperate	in	storing	files,	partitioning	the
files	across	the	machines.	Further,	file	system	data	are	replicated	(copied)	across	several	(typically	three)
machines,	so	that	even	if	a	few	of	the	machines	fail,	the	data	are	available	from	other	machines	which
have	copies	of	the	data	in	the	failed	machine.

Today,	in	addition	to	distributed	file	systems	such	as	HDFS,	MapReduce	systems	support	input	from	a
variety	of	Big	Data	storage	systems	such	as	HBase,	MongoDB,	Cassandra,	and	Amazon	Dynamo,	by	using
storage	adapters.	Output	can	similarly	be	sent	to	any	of	these	storage	systems.

10.3.5

MapReduce	in	Hadoop

The	Hadoop	project	provides	a	widely	used	open-source	implementation	of	MapReduce	in	the	Java
language.	We	summarize	its	main	features	here	using	the	Java	API	provided	by	Hadoop.	We	note	that
Hadoop	provides	MapReduce	APIs	in	several	other	languages,	such	as	Python	and	C++.

Unlike	our	MapReduce	pseudocode,	real	implementations	such	as	Hadoop	require	types	to	be	specified
for	the	input	keys	and	values,	as	well	as	the	output	keys	and	value,	of	the	map()	function.	Similarly,	the
types	of	the	input	as	well	as	output	keys	and	values	of	the	reduce()	function	need	to	be	specified.	Hadoop
requires	the	programmer	to	implement	map()	and	reduce()	functions	as	member	functions	of	classes	that
extend	Hadoop	Mapper	and	Reducer	classes.	Hadoop	allows	the	programmer	to	provide

490

Chapter	10

Big	Data

functions	to	break	up	the	file	into	records,	or	to	specify	that	the	file	is	one	of	the	file	types	for	which
Hadoop	provides	built-in	functions	to	break	up	files	into	records.	For	example,	the	TextInputFormat
specifies	that	the	file	should	be	broken	up	into	lines,	with	each	line	being	a	separate	record.	Compressed
file	formats	are	widely	used	today,	with	Avro,	ORC,	and	Parquet	being	the	most	widely	used	compressed
file	formats	in	the	Hadoop	world	(compressed	file	formats	are	discussed	in	Section	13.6).	Decompression
is	done	by	the	system,	and	a	programmer	writing	a	query	need	only	specify	one	of	the	supported	types,
and	the	uncompressed	representation	is	made	available	to	the	code	implementing	the	query.

Input	files	in	Hadoop	can	come	from	a	file	system	of	a	single	machine,	but	for	large	datasets,	a	file	system
on	a	single	machine	would	become	a	performance	bottleneck.

Hadoop	MapReduce	allows	input	and	output	files	to	be	stored	in	a	distributed	file	system	such	as	HDFS,
allowing	multiple	machines	to	read	and	write	data	in	parallel.

In	addition	to	the	reduce()	function,	Hadoop	also	allows	the	programmer	to	define	a	combine()	function,
which	can	perform	a	part	of	the	reduce()	operation	at	the	node	where	the	map()	function	is	executed.	In
our	word	count	example,	the	combine()	function	would	be	the	same	as	the	reduce()	function	we	saw
earlier.	The	reduce()	function	would	then	receive	a	list	of	partial	counts	for	a	particular	word;	since	the
reduce()	function	for	word	count	adds	up	the	values,	it	would	work	correctly	even	with	the	combine()
function.	One	benefit	of	using	the	combine()	function	is	that	it	reduces	the	amount	of	data	that	has	to	be
sent	over	the	network:	each	node	that	runs	map	tasks	would	send	only	one	entry	for	a	word	across	the
network,	instead	of	multiple	entries.

A	single	MapReduce	step	in	Hadoop	executes	a	map	and	a	reduce	function.	A	program	may	have	multiple
MapReduce	steps,	with	each	step	having	its	own	map	and	reduce	functions.	The	Hadoop	API	allows	a
program	to	execute	multiple	such	MapReduce	steps.	The	reduce()	output	from	each	step	is	written	to	the
(distributed)	file	system	and	read	back	in	the	following	step.	Hadoop	also	allows	the	programmer	to
control	the	number	of	map	and	reduce	tasks	to	be	run	in	parallel	for	the	job.

The	rest	of	this	section	assumes	a	basic	knowledge	of	Java	(you	may	skip	the	rest	of	this	section	without
loss	of	continuity,	if	you	are	not	familiar	with	Java).

Figure	10.9	shows	the	Java	implementation	in	Hadoop	of	the	word	count	application	we	saw	earlier.	For
brevity	we	have	omitted	Java	import	statements.	The	code	defines	two	classes,	one	that	implements	the
Mapper	interface,	and	another	that	implements	the	Reducer	interface.	The	Mapper	and	Reducer	classes
are	generic	classes	which	take	as	arguments	the	types	of	the	keys	and	values.	Specifically,	the	generic
Mapper	and	Reducer	interfaces	both	takes	four	type	arguments	that	specify	the	types	of	the	input	key,
input	value,	output	key,	and	output	value,	respectively.

The	type	definition	of	the	Map	class	in	Figure	10.9,	which	implements	the	Mapper	interface,	specifies	that
the	map	key	is	of	type	LongWritable,	is	basically	a	long	integer,	and	the	value	which	is	(all	or	part	of)	a
document	is	of	type	Text.	The	output	of	map	has	a	key	of	type	Text,	since	the	key	is	a	word,	while	the
value	is	of	type	IntWritable,	which	is	an	integer	value.

10.3

The	MapReduce	Paradigm

491

public	class	WordCount	{

public	static	class	Map	extends	Mapper	{

private	final	static	IntWritable	one	=	new	IntWritable(1);

private	Text	word	=	new	Text();

public	void	map(LongWritable	key,	Text	value,	Context	context)

throws	IOException,	InterruptedException	{

String	line	=	value.toString();

StringTokenizer	tokenizer	=	new	StringTokenizer(line);

while	(tokenizer.hasMoreTokens())	{

word.set(tokenizer.nextToken());

context.write(word,	one);

}

}

}

public	static	class	Reduce	extends	Reducer	{

public	void	reduce(Text	key,	Iterable	values,	Context	context)	throws	IOException,	InterruptedException	{

int	sum	=	0;

for	(IntWritable	val	:	values)	{

sum	+=	val.get();

}

context.write(key,	new	IntWritable(sum));

}

}

public	static	void	main(String[]	args)	throws	Exception	{

Configuration	conf	=	new	Configuration();

Job	job	=	new	Job(conf,	"wordcount");

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

job.setMapperClass(Map.class);

job.setReducerClass(Reduce.class);

job.setInputFormatClass(TextInputFormat.class);

job.setOutputFormatClass(TextOutputFormat.class);

FileInputFormat.addInputPath(job,	new	Path(args[0]));

FileOutputFormat.setOutputPath(job,	new	Path(args[1]));

job.waitForCompletion(true);

}

}

Figure	10.9	The	word	count	program	written	in	Hadoop.

The	map()	code	for	the	word	count	example	breaks	up	the	input	text	value	into	words	using
StringTokenizer,	and	then	for	each	word,	it	invokes	context.write(word,

492

Chapter	10

Big	Data

one)	to	output	a	key	and	value	pair;	note	that	one	is	an	IntWritable	object	with	numeric	value	1.

All	the	values	output	by	the	map()	invocations	that	have	a	particular	key	(word,	in	our	example)	are
collected	in	a	list	by	the	MapReduce	system	infrastructure.	Doing	so	requires	interchange	of	data	from
multiple	map	tasks	to	multiple	reduce	tasks;	in	a	distributed	setting,	the	data	would	have	to	be	sent	over
the	network.	To	ensure	that	all	values	for	a	particular	key	come	together,	the	MapReduce	system	typically
sorts	the	keys	output	by	the	map	functions,	ensuring	all	values	for	a	particular	key	will	come	together	in
the	sorted	order.	This	list	of	values	for	each	key	is	provided	to	the	reduce()	function.

The	type	of	the	reduce()	input	key	is	the	same	as	the	type	of	the	map	output	key.	The	reduce()	input	value
in	our	example	is	a	Java	Iterable	<	IntWritable	>	object,	which	contains	a	list	of	map	output	values
(IntWritable	is	the	type	of	the	map	output	value).	The	output	key	for	reduce()	is	a	word,	of	type	Text,	while
the	output	value	is	a	word	count,	of	type	IntWritable.

In	our	example,	the	reduce()	simply	adds	up	the	values	it	receives	in	its	input	to	get	the	total	count;
reduce()	writes	the	word	and	the	total	count	using	the	context.write()	function.

Note	that	in	our	simple	example,	the	values	are	all	1,	so	reduce()	just	needs	to	count	the	number	of	values
it	receives.	In	general,	however,	Hadoop	allows	the	programmer	to	declare	a	Combiner	class,	whose
combine()	function	is	run	on	the	output	of	a	single	map	job;	the	output	of	this	function	replaces	multiple
map()	output	values	for	a	single	key	with	a	single	value.	In	our	example,	a	combine()	function	could	just
count	the	number	of	occurrences	of	each	word	and	output	a	single	value,	which	is	the	local	word	count	at
the	map	task.	These	outputs	are	then	passed	on	to	the	reduce()	function,	which	would	add	up	the	local
counts	to	get	the	overall	count.	The	Combiner’s	job	is	to	reduce	the	traffic	over	the	network.

A	MapReduce	job	runs	a	map	and	a	reduce	step.	A	program	may	have	multiple	MapReduce	steps,	and
each	step	would	have	its	own	settings	for	the	map	and	reduce	functions.	The	main()	function	sets	up	the
parameters	for	each	MapReduce	job,	and	then	executes	it.

The	example	code	in	Figure	10.9	executes	a	single	MapReduce	job;	the	parameters	for	the	job	are	as
follows:

•	The	classes	that	contain	the	map	and	reduce	functions	for	the	job,	set	by	the	methods	setMapperClass
and	setReducerClass.

•	The	types	of	the	job’s	output	key	and	values,	set	to	Text	(for	the	words)	and	IntWritable	(for	the	count),
respectively,	by	methods	setOutputKeyClass	and	setOutputValueClass,	respectively.

•	The	input	format	of	the	job,	set	to	TextInputFormat	by	the	method

job.setInputFormatClass.	The	default	input	format	in	Hadoop	is	the	TextInputFormat,	which	creates	a	map
key	whose	value	is	a	byte	offset	into	the	file,	and	the

10.3

The	MapReduce	Paradigm

493

map	value	is	the	contents	of	one	line	of	the	file.	Since	files	are	allowed	to	be	bigger	than	4	gigabytes,	the
offset	is	of	type	LongWritable.	Programmers	can	provide	their	own	implementations	for	the	input	format
class,	which	would	process	input	files	and	break	the	files	into	records.

•	The	output	format	of	the	job,	set	to	TextOutputFormat	by	the	method

job.setOutputFormatClass.

•	The	directories	where	the	input	files	are	stored,	and	where	the	output	files	must	be	created,	set	by	the
methods	addInputPath	and	addOutputPath.

Hadoop	supports	many	more	parameters	for	MapReduce	jobs,	such	as	the	number	of	map	and	reduce
tasks	to	be	run	in	parallel	for	the	job	and	the	amount	of	memory	to	be	allocated	to	each	map	and	reduce
task,	among	many	others.

10.3.6

SQL	on	MapReduce

Many	of	the	applications	of	MapReduce	are	for	parallel	processing	of	large	amounts	of	non-relational
data,	using	computations	that	cannot	be	expressed	easily	in	SQL.	For	example,	our	word	count	program
cannot	be	expressed	easily	in	SQL.	There	are	many	real-world	uses	of	MapReduce	that	cannot	be
expressed	in	SQL.	Examples	include	computation	of	“inverted	indices”	which	are	key	for	web	search
engines	to	efficiently	answer	keyword	queries,	and	computation	of	Google’s	PageRank,	which	is	an
important	measure	of	the	importance	of	web	sites,	and	is	used	to	rank	answers	to	web	search	queries.

However,	there	are	a	large	number	of	applications	that	have	used	the	MapReduce	paradigm	for	data
processing	of	various	kinds,	whose	logic	can	be	easily	expressed	using	SQL.	If	the	data	were	in	a
database,	it	would	make	sense	to	write	such	queries	using	SQL	and	execute	the	queries	on	a	parallel
database	system	(parallel	database	systems	are	discussed	in	detail	in	Chapter	22.	Using	SQL	is	much
easier	for	users	than	is	coding	in	the	MapReduce	paradigm.	However,	the	data	for	many	such	applications
reside	in	a	file	system,	and	there	are	significant	time	and	space	overhead	demands	when	loading	them
into	a	database.

Relational	operations	can	be	implemented	using	map	and	reduce	steps,	as	illustrated	by	the	following
examples:

•	The	relational	selection	operation	can	be	implemented	by	a	single	map()	function,	without	a	reduce()
function	(or	with	a	reduce()	function	that	simply	outputs	its	inputs,	without	any	change).

•	The	relational	group	by	and	aggregate	function	γ	can	be	implemented	using	a	single	MapReduce	step:
the	map()	outputs	records	with	the	group	by	attribute	values	as	the	reduce	key;	the	reduce()	function
receives	a	list	of	all	the	attribute	values	for	a	particular	group	by	key	and	computes	the	required
aggregate	on	the	values	in	its	input	list.

494

Chapter	10

Big	Data

•	A	join	operation	can	be	implemented	using	a	single	MapReduce	step,	Consider	the	equijoin	operation	r
⋈	r.A=	s.A	s.	We	define	a	map()	function	which	for	each	input	record	ri	outputs	a	pair	(ri.A,	ri),	and
similarly	for	each	input	record	si	outputs	a	pair	(si.A,	si);	the	map	output	also	includes	a	tag	to	indicate
which	relation	(r	or	s)	the	output	came	from.	The	reduce()	function	is	invoked	for	each	join-attribute
value,	with	a	list	of	all	the	ri	and	si	records	with	that	join-attribute	value.	The	function	separates	out	the	r
and	s	tuples,	and	then	outputs	a	cross	products	of	the	r	tuples	and	the	s	tuples,	since	all	of	them	have	the
same	value	for	the	join	attribute.

We	leave	details	as	an	exercise	to	the	reader	(Exercise	10.4).	More	complex	tasks,	for	example	a	query
with	multiple	operations,	can	be	expressed	using	multiple	stages	of	map	and	reduce	tasks.

While	it	is	indeed	possible	for	relational	queries	to	be	expressed	using	the	MapReduce	paradigm,	it	can	be

very	cumbersome	for	a	human	to	do	so.	Writing	queries	in	SQL	is	much	more	concise	and	easy	to
understand,	but	traditional	databases	did	not	allow	data	access	from	files,	nor	did	they	support	parallel
processing	of	such	queries.

A	new	generation	of	systems	have	been	developed	that	allows	queries	written	in	(variants	of)	the	SQL
language	to	be	executed	in	parallel	on	data	stored	in	file	systems.	These	systems	include	Apache	Hive
(which	was	initially	developed	at	Facebook),	SCOPE,	which	developed	by	Microsoft,	both	of	which	use
variants	of	SQL,	and	Apache	Pig	(which	was	initially	developed	at	Yahoo!),	which	uses	a	declarative
language	called	Pig	Latin,	based	on	the	relational	algebra.	All	these	systems	allow	data	to	be	read	directly
from	the	file	system	but	allow	the	programmer	to	define	functions	that	convert	the	input	data	to	a	record
format.

All	these	systems	generate	a	program	containing	a	sequence	of	map	and	reduce	tasks	to	execute	a	given
query.	The	programs	are	compiled	and	executed	on	a	MapReduce	framework	such	as	Hadoop.	These
systems	became	very	popular,	and	far	more	queries	are	written	using	these	systems	today	than	are
written	directly	using	the	MapReduce	paradigm.

Today,	Hive	implementations	provide	an	option	of	compiling	SQL	code	to	a	tree	of	algebraic	operations
that	are	executed	on	a	parallel	environment.	Apache	Tez	and	Spark	are	two	widely	used	platforms	that
support	the	execution	of	a	tree	(or	DAG)	of	algebraic	operations	on	a	parallel	environment,	which	we
study	next	in	Section	10.4.

10.4

Beyond	MapReduce:	Algebraic	Operations

Relational	algebra	forms	the	foundation	of	relational	query	processing,	allowing	queries	to	be	modeled	as
trees	of	operations.	This	idea	is	extended	to	settings	with	more	complex	data	types	by	supporting
algebraic	operators	that	can	work	on	datasets	containing	records	with	complex	data	types,	and	returning
datasets	with	records	containing	similar	complex	data	types.

10.4

Beyond	MapReduce:	Algebraic	Operations

495

10.4.1

Motivation	for	Algebraic	Operations

As	we	saw	in	Section	10.3.6,	relational	operations	can	be	expressed	by	a	sequence	of	map	and	reduce
steps.	Expressing	tasks	in	such	as	fashion	can	be	quite	cumbersome.

For	example,	if	programmers	need	to	compute	the	join	of	two	inputs,	they	should	be	able	to	express	it	as	a
single	algebraic	operation,	instead	of	having	to	express	it	indirectly	via	map	and	reduce	functions.	Having
access	to	functions	such	as	joins	can	greatly	simplify	the	job	of	a	programmer.

The	join	operation	can	be	executed	in	parallel,	using	a	variety	of	techniques	that	we	will	see	later	in
Section	22.3.	In	fact,	doing	so	can	be	much	more	efficient	than	implementing	the	join	using	map	and
reduce	functions.	Thus,	even	systems	like	Hive,	where	programmers	do	not	directly	write	MapReduce
code,	can	benefit	from	direct	support	for	operations	such	as	join.

Later-generation	parallel	data-processing	systems	therefore	added	support	for	other	relational	operations
such	as	joins	(including	variants	such	as	outerjoins	and	semijoins),	as	well	as	a	variety	of	other	operations
to	support	data	analytics.	For	example,	many	machine-learning	models	can	be	modeled	as	operators	that
take	a	set	of	records	as	input	then	output	a	set	of	records	that	have	an	extra	attribute	containing	the	value
predicted	by	the	model	based	on	the	other	attributes	of	the	record.	Machine-learning	algorithms	can
themselves	be	modeled	as	operators	that	take	a	set	of	training	records	as	input	and	output	a	learned
model.	Processing	of	data	often	involves	multiple	steps,	which	can	be	modeled	as	a	sequence	(pipeline)	or
tree	of	operators.

A	unifying	framework	for	these	operations	is	to	treat	them	as	algebraic	operations	that	take	one	or	more
datasets	as	inputs	and	output	one	or	more	datasets.

Recall	that	in	the	relational	algebra	(Section	2.6)	each	operation	takes	one	or	more	relations	as	input,	and
outputs	a	relation.	These	later-generation	parallel	query-processing	systems	are	based	on	the	same	idea,
but	there	are	several	differences.	A	key	difference	is	that	the	input	data	could	be	of	arbitrary	types,
instead	of	just	consisting	of	columns	with	atomic	data	types	as	in	the	relational	model.	Recall	that	the
extended	relational	algebra	required	to	support	SQL	could	restrict	itself	to	simple	arithmetic,	string,	and
boolean	expressions.	In	contrast,	the	new-generation	algebraic	operators	need	to	support	more	complex

expressions,	requiring	the	full	power	of	a	programming	language.

There	are	a	number	of	frameworks	that	support	algebraic	operations	on	complex	data;	the	most	widely
used	ones	today	are	Apache	Tez	and	Apache	Spark.

Apache	Tez	provides	a	low-level	API	which	is	suitable	for	system	implementors.	For	example,	Hive	on	Tez
compiles	SQL	queries	into	algebraic	operations	that	run	on	Tez.

Tez	programmers	can	create	trees	(or	in	general	Directed	Acyclic	Graphs,	or	DAGs)	of	nodes,	and	they
provide	code	that	is	to	be	executed	on	each	of	the	nodes.	Input	nodes	would	read	in	data	from	data
sources	and	pass	them	to	other	nodes,	which	operate	on	the	data.	Data	can	be	partitioned	across	multiple
machines,	and	the	code	for	each	node	can	be	executed	on	each	of	the	machines.	Since	Tez	is	not	really
designed	for	application	programmers	to	use	directly,	we	do	not	describe	it	in	further	detail.

496

Chapter	10

Big	Data

However,	Apache	Spark	provides	higher-level	APIs	which	are	suitable	for	application	programmers.	We
describe	Spark	in	more	detail	next.

10.4.2

Algebraic	Operations	in	Spark

Apache	Spark	is	a	widely	used	parallel	data	processing	system	that	supports	a	variety	of	algebraic
operations.	Data	can	be	input	from	or	output	to	a	variety	of	storage	systems.

Just	as	relational	databases	use	a	relation	as	the	primary	abstraction	for	data	representation,	Spark	uses	a
representation	called	a	Resilient	Distributed	Dataset	(RDD),	which	is	a	collection	of	records	that	can	be
stored	across	multiple	machines.	The	term	distributed	refers	to	the	records	being	stored	on	different
machines,	and	resilient	refers	to	the	resilience	to	failure,	in	that	even	if	one	of	the	machines	fails,	records
can	be	retrieved	from	other	machines	where	they	are	stored.

Operators	in	Spark	take	one	or	more	RDDs	as	input,	and	their	output	is	an	RDD.

The	types	of	records	stored	in	RDDs	is	not	predefined	and	can	be	anything	that	the	application	desires.
Spark	also	supports	a	relational	data	representation	called	a	DataSet,	which	we	describe	later.

Spark	provides	APIs	for	Java,	Scala,	and	Python.	Our	coverage	of	Spark	is	based	on	the	Java	API.

Figure	10.10	shows	our	word	count	application,	written	in	Java	using	Apache	Spark;	this	program	uses
the	RDD	data	representation,	whose	Java	type	is	called	JavaRDD.	Note	that	JavaRDDs	require	a	type	for
the	record,	specified	in	angular	brackets	(“<>”).	In	the	program	we	have	RDDs	of	Java	Strings.	The
program	also	has	JavaPairRDD	types,	which	store	records	with	two	attributes	of	specified	types.	Records
with	multiple	attributes	can	be	represented	by	using	structured	data	types	instead	of	primitive	data	types.
While	any	user-defined	data	type	can	be	used,	the	predefined	data	types	Tuple2	which	stores	two
attributes,	Tuple3,	which	stores	three	attributes,	and	Tuple4,	which	stores	four	attributes,	are	widely
used.

The	first	step	in	processing	data	using	Spark	is	to	convert	data	from	input	representation	to	the	RDD
representation,	which	is	done	by	the	spark.read().textfile()	function,	which	creates	a	record	for	each	line
in	the	input.	Note	that	the	input	can	be	a	file	or	a	directory	with	multiple	files;	a	Spark	system	running	on
multiple	nodes	will	actually	partition	the	RDD	across	multiple	machines,	although	the	program	can	treat	it
(for	most	purposes)	as	if	it	is	a	data	structure	on	a	single	machine.	In	our	sample	code	in	Figure	10.10,	the
result	is	the	RDD	called	lines.

The	next	step	in	our	Spark	program	is	to	split	each	line	into	an	array	of	words,	by	calling	s.split("	"))	on
the	line;	this	function	breaks	up	the	line	based	on	spaces	and	returns	an	array	of	words;	a	more	complete
function	would	split	the	input	on	other	punctuation	characters	such	as	periods,	semicolons,	and	so	on.	The
split	function	can	be	invoked	on	each	line	in	the	input	RDD	by	calling	the	map()	function,	which	in	Spark
returns	a	single	record	for	each	input	record.	In	our	example,	we	instead	use	a	variant	called	flatMap(),
which	works	as	follows:	like	map(),	flatMap()	invokes	a	user-defined

10.4

Beyond	MapReduce:	Algebraic	Operations

497

import	java.util.Arrays;

import	java.util.List;

import	scala.Tuple2;

import	org.apache.spark.api.java.JavaPairRDD;

import	org.apache.spark.api.java.JavaRDD;

import	org.apache.spark.sql.SparkSession;

public	class	WordCount	{

public	static	void	main(String[]	args)	throws	Exception	{

if	(args.length	<	1)	{

System.err.println("Usage:	WordCount	");

System.exit(1);

}

SparkSession	spark	=

SparkSession.builder().appName("WordCount").getOrCreate();

JavaRDD	lines	=	spark.read().textFile(args[0]).javaRDD();

JavaRDD	words	=	lines.flatMap(s	->	Arrays.asList(s.split("	")).iterator());	JavaPairRDD	ones	=
words.mapToPair(s	->	new	Tuple2<>(s,	1));	JavaPairRDD	counts	=	ones.reduceByKey((i1,	i2)	->	i1	+	i2);
counts.saveAsTextFile("outputDir");	//	Save	output	files	in	this	directory	List

for	(Tuple2	tuple	:	output)	{

System.out.println(tuple);

}

spark.stop();

}

}

Figure	10.10	Word	count	program	in	Spark.

function	on	each	input	record;	the	function	is	expected	to	return	an	iterator.	A	Java	iterator	supports	a
next()	function	that	can	be	used	to	fetch	multiple	results	by	calling	the	function	multiple	times.	The
flatMap()	function	invokes	the	user-defined	function	to	get	an	iterator,	invokes	the	next()	function
repeatedly	on	the	iterator	to	get	multiple	values,	and	then	returns	an	RDD	containing	the	union	of	all	the
values	across	all	input	records.

The	code	shown	in	Figure	10.10	uses	the	“lambda	expression”	syntax	introduced	in	Java	8,	which	allows
functions	to	be	defined	compactly,	without	even	giving	them	a	name;	in	the	Java	code,	the	syntax

s	−	>	Arrays.asList(s.split("	")).iterator()

498

Chapter	10

Big	Data

defines	a	function	that	takes	a	parameter	s	and	returns	an	expression	that	does	the	following:	it	applies
the	split	function	described	earlier	to	create	an	array	of	words,	then	uses	Arrays.asList	to	convert	the
array	to	a	list,	and	finally	applies	the	iterator()	method	on	the	list	to	create	an	iterator.	The	flatMap()
function	works	on	this	iterator	as	described	earlier.

The	result	of	the	above	steps	is	an	RDD	called	words,	where	each	record	contains	a	single	word.

The	next	step	is	to	create	a	JavaPairRDD	called	ones,	which	contains	pairs	of	the	form	“(word,	1)”	for	each
word	in	words;	if	a	word	appears	multiple	times	in	the	input	file,	there	would	correspondingly	be	as	many
records	in	words	and	in	ones.

Finally	the	algebraic	operation	reduceByKey()	implements	a	group	by	and	aggregation	step.	In	the	sample
code,	we	specify	that	addition	is	to	be	used	for	aggregation,	by	passing	the	lambda	function	(i1,	i2)	−	>
i1+i2	to	the	reduceByKey()	function.	The	reduceByKey()	function	works	on	a	JavaPairRDD,	grouping	by
the	first	attribute,	and	aggregating	the	values	of	the	second	attribute	using	the	provided	lambda	function.

When	applied	on	the	ones	RDD,	grouping	would	be	on	the	word,	which	is	the	first	attribute,	and	the
values	of	the	second	attribute	(all	ones,	in	the	ones	RDD)	would	be	added	up.	The	result	is	stored	in	the
JavaPairRDD	counts.

In	general,	any	binary	function	can	be	used	to	perform	the	aggregation,	as	long	as	it	gives	the	same	result
regardless	of	the	order	in	which	it	is	applied	on	a	collection	of	values.

Finally,	the	counts	RDD	is	stored	to	the	file	system	by	saveAsTextFile().	Instead	of	creating	just	one	file,
the	function	creates	multiple	files	if	the	RDD	itself	is	partitioned	across	machines.

Key	to	understanding	how	parallel	processing	is	achieved	is	to	understand	that

•	RDDs	may	be	partitioned	and	stored	on	multiple	machines,	and

•	each	operation	may	be	executed	in	parallel	on	multiple	machines,	on	the	RDD

partition	available	at	the	machine.	Operations	may	first	repartition	their	input,	to	bring	related	records	to
the	same	machine	before	executing	operations	in	parallel.

For	example,	reduceByKey()	would	repartition	the	input	RDD	to	bring	all	records	belonging	to	a	group
together	on	a	single	machine;	records	of	different	groups	may	be	on	different	machines.

Another	important	aspect	of	Spark	is	that	the	algebraic	operations	are	not	necessarily	evaluated
immediately	on	the	function	call,	although	the	code	seems	to	imply	that	this	is	what	happens.	Instead,	the
code	shown	in	the	figure	actually	creates	a	tree	of	operations;	in	our	code,	the	leaf	operation	textFile()
reads	data	from	a	file;	the	next	operation	flatMap()	has	the	textFile()	operation	as	its	child;	the
mapToPairs()	in	turn	has	flatMap()	as	child,	and	so	on.	The	operators	can	be	thought	of	in	relational	terms
as	defining	views,	which	are	not	executed	as	soon	as	they	are	defined	but	get	executed	later.

10.4

Beyond	MapReduce:	Algebraic	Operations

499

The	entire	tree	of	operations	actually	get	evaluated	only	when	certain	operations	demand	that	the	tree	be
evaluated.	For	example,	saveAsTextFile()	forces	the	tree	to	be	evaluated;	other	such	functions	include
collect(),	which	evaluates	the	tree	and	brings	all	records	to	a	single	machine,	where	they	can
subsequently	be	processed,	for	example	by	printing	them	out.

An	important	benefit	of	such	lazy	evaluation	of	the	tree	(i.e.,	the	tree	is	evaluated	when	required,	rather
than	when	it	is	defined)	is	that	before	actual	evaluation,	it	is	possible	for	a	query	optimizer	to	rewrite	the
tree	to	another	tree	that	computes	the	same	result	but	may	execute	faster.	Query	optimization	techniques,
which	we	study	in	Chapter	16	can	be	applied	to	optimize	such	trees.

While	the	preceding	example	created	a	tree	of	operations,	in	general	the	operations	may	form	a	Directed
Acyclic	Graph	(DAG)	structure,	if	the	result	of	an	operation	is	consumed	by	more	than	one	other
operation.	That	would	result	in	operations	having	more	than	one	parent,	leading	to	a	DAG	structure,
whereas	operations	in	a	tree	can	have	at	most	one	parent.

While	RDDs	are	well	suited	for	representing	certain	data	types	such	as	textual	data,	a	very	large	fraction
of	Big	Data	applications	need	to	deal	with	structured	data,	where	each	record	may	have	multiple
attributes.	Spark	therefore	introduced	the	DataSet	type,	which	supports	records	with	attributes.	The
DataSet	type	works	well	with	widely	used	Parquet,	ORC,	and	Avro	file	formats	(discussed	in	more	detail
later	in	Section	13.6),	which	are	designed	to	store	records	with	multiple	attributes	in	a	compressed
fashion.

Spark	also	supports	JDBC	connectors	that	can	read	relations	from	a	database.

The	following	code	illustrates	how	data	in	Parquet	format	can	be	read	and	processed	in	Spark,	where

spark	is	a	Spark	session	that	has	been	opened	earlier.

Dataset	<	Row	>	instructor	=	spark.read().parquet("...");	Dataset	<	Row	>	department	=
spark.read().parquet("...");	instructor.filter(instructor.col("salary").gt(100000))

.join(department,	instructor.col("dept	name")

.equalTo(department.col("dept	name")))

.groupBy(department.col("building"))

.agg(count(instructor.col("ID")));

The	DataSet	<	Row	>	type	above	uses	the	type	Row,	which	allows	access	to	column	values	by	name.	The
code	reads	instructor	and	department	relations	from	Parquet	files	(whose	names	are	omitted	in	the	code
above);	Parquet	files	store	metadata	such	as	column	names	in	addition	to	the	values,	which	allows	Spark
to	create	a	schema	for	the	relations.	The	Spark	code	then	applies	a	filter	(selection)	operation	on	the
instructor	relation,	which	retains	only	instructors	with	salary	greater	than	100000,	then	joins	the	result
with	the	department	relation	on	the	dept	name	attribute,	performs	a	group	by	on	the	building	attribute
(an	attribute	of	the	department	relation),	and	for	each	group	(here,	each	building),	a	count	of	the	number
of	ID	values	is	computed.

500

Chapter	10

Big	Data

The	ability	to	define	new	algebraic	operations	and	to	use	them	in	queries	has	been	found	to	be	very	useful
for	many	applications	and	has	led	to	wide	adoption	of	Spark.

The	Spark	system	also	supports	compilation	of	Hive	SQL	queries	into	Spark	operation	trees,	which	are
then	executed.

Spark	also	allows	classes	other	than	Row	to	be	used	with	DataSets.	Spark	requires	that	for	each	attribute
Attrk	of	the	class,	methods	getAttrk()	and	setAttrk()	must	be	defined	to	allow	retrieval	and	storage	of
attribute	values.	Suppose	we	have	created	a	class	Instructor,	and	we	have	a	Parquet	file	whose	attributes
match	those	of	the	class.

Then	we	can	read	data	from	Parquet	files	as	follows:

Dataset	<	Instructor	>	instructor	=	spark.read().parquet("...").

as(Encoders.bean(Instructor.class));

In	this	case	Parquet	provides	the	names	of	attributes	in	the	input	file,	which	are	used	to	map	their	values
to	attributes	of	the	Instructor	class.	Unlike	with	Row,	where	the	types	are	not	known	at	compile	time	the
types	of	attributes	of	Instructor	are	known	at	compile	time,	and	can	be	represented	more	compactly	than
if	we	used	the	Row	type.	Further,	the	methods	of	the	class	Instructor	can	be	used	to	access	attributes;	for
example,	we	could	use	getSalary()	instead	of	using	col("salary"),	which	avoids	the	runtime	cost	of
mapping	attribute	names	to	locations	in	the	underlying	records.	More	information	on	how	to	use	these
constructs	can	be	found	on	the	Spark	documentation	available	online	at	spark.apache.org.

Our	coverage	of	Spark	has	focused	on	database	operations,	but	as	mentioned	earlier,	Spark	supports	a
number	of	other	algebraic	operations	such	as	those	related	to	machine	learning,	which	can	be	invoked	on
DataSet	types.

10.5

Streaming	Data

Querying	of	data	can	be	done	in	an	ad	hoc	manner	—	for	example,	whenever	an	analyst	wants	to	extract
some	information	from	a	database.	It	can	also	be	done	in	a	periodic	manner	—	for	example,	queries	may
be	executed	at	the	beginning	of	each	day	to	get	a	summary	of	transactions	that	happened	on	the	previous
day.

However,	there	are	many	applications	where	queries	need	to	be	executed	continuously,	on	data	that	arrive
in	a	continuous	fashion.	The	term	streaming	data	refers	to	data	that	arrive	in	a	continuous	fashion.	Many
application	domains	need	to	process	incoming	data	in	real	time	(i.e.,	as	they	arrive,	with	delays,	if	any,
guaranteed	to	be	less	than	some	bound).

10.5.1

Applications	of	Streaming	Data

Here	are	a	few	examples	of	streaming	data,	and	the	real-time	needs	of	applications	that	use	the	data.

10.5

Streaming	Data

501

•	Stock	market:	In	a	stock	market,	each	trade	that	is	made	(i.e.,	a	stock	is	sold	by	someone	and	bought	by
someone	else)	is	represented	by	a	tuple.	Trades	are	sent	as	a	stream	to	processing	systems.

Stock	market	traders	analyze	the	stream	of	trades	to	look	for	patterns,	and	they	make	buy	or	sell
decisions	based	on	the	patterns	that	they	observe.	Real-time	requirements	in	such	systems	used	to	be	of
the	order	of	seconds	in	earlier	days,	but	many	of	today’s	systems	require	delays	to	be	of	the	order	of	tens
of	microseconds	(usually	to	be	able	to	react	before	others	do,	to	the	same	patterns).

Stock	market	regulators	may	use	the	same	stream,	but	for	a	different	purpose:	to	see	if	there	are	patterns
of	trades	that	are	indicative	of	illegal	activities.	In	both	cases,	there	is	a	need	for	continuous	queries	that
look	for	patterns;	the	results	of	the	queries	are	used	to	carry	out	further	actions.

•	E-commerce:	In	an	e-commerce	site,	each	purchase	made	is	represented	as	a	tuple,	and	the	sequence	of
all	purchases	forms	a	stream.	Further,	even	the	searches	executed	by	a	customer	are	of	value	to	the	e-
commerce	site,	even	if	no	actual	purchase	is	made;	thus,	the	searches	executed	by	users	form	a	stream.

These	streams	can	be	used	for	multiple	purposes.	For	example,	if	an	advertising	campaign	is	launched,
the	e-commerce	site	may	wish	to	monitor	in	real	time	how	the	campaign	is	affecting	searches	and
purchases.	The	e-commerce	site	may	also	wish	to	detect	any	spikes	in	sales	of	specific	products	to	which
it	may	need	to	respond	by	ordering	more	of	that	product.	Similarly,	the	site	may	wish	to	monitor	users	for
patterns	of	activities	such	as	frequently	returning	items,	and	block	further	returns	or	purchases	by	the
user.

•	Sensors:	Sensors	are	very	widely	used	in	systems	such	as	vehicles,	buildings,	and	factories.	These
sensors	send	readings	periodically,	and	thus	the	readings	form	a	stream.	Readings	in	the	stream	are	used
to	monitor	the	health	of	the	system.	If	some	readings	are	abnormal,	actions	may	need	to	be	taken	to	raise
alarms,	and	to	detect	and	fix	any	underlying	faults,	with	minimal	delay.

Depending	on	the	complexity	of	the	system	and	the	required	frequency	of	readings,	the	stream	can	be	of
very	high	volume.	In	many	cases,	the	monitoring	is	done	at	a	central	facility	in	the	cloud,	which	monitors
a	very	large	number	of	systems.

Parallel	processing	is	essential	in	such	a	system	to	handle	very	large	volumes	of	data	in	the	incoming
streams.

•	Network	data:	Any	organization	that	manages	a	large	computer	network	needs	to	monitor	activity	on
the	network	to	detect	network	problems	as	well	as	attacks	on	the	network	by	malicious	software
(malware).	The	underlying	data	being	monitored	can	be	represented	as	a	stream	of	tuples	containing	data
observed	by	each	monitoring	point	(such	as	network	switch).	The	tuples	could	contain	information	about
individual	network	packets,	such	as	source	and	destination	addresses,	size	of	the	packet,	and	timestamp
of	packet	generation.	However,	the	rate	of	creation	of	tuples	in	such	a	stream	is	extremely	high,	and	they
cannot	be	handled	except	us-

502

Chapter	10

Big	Data

ing	special-purpose	hardware.	Instead,	data	can	be	aggregated	to	reduce	the	rate	at	which	tuples	are
generated:	for	example,	individual	tuples	could	record	data	such	as	source	and	destination	addresses,
time	interval,	and	total	bytes	transmitted	in	the	time	interval.

This	aggregated	stream	must	then	be	processed	to	detect	problems.	For	example,	link	failures	could	be
detected	by	observing	a	sudden	drop	in	tuples	traversing	a	particular	link.	Excessive	traffic	from	multiple
hosts	to	a	single	or	a	few	destina-tions	could	indicate	a	denial-of-service	attack.	Packets	sent	from	one
host	to	many	other	hosts	in	the	network	could	indicate	malware	trying	to	propagate	itself	to	other	hosts	in
the	network.	Detection	of	such	patterns	must	be	done	in	real	time	so	that	links	can	be	fixed	or	action
taken	to	stop	the	malware	attack.

•	Social	media:	Social	media	such	as	Facebook	and	Twitter	get	a	continuous	stream	of	messages	(such	as

posts	or	tweets)	from	users.	Each	message	in	the	stream	of	messages	must	be	routed	appropriately,	for
example	by	sending	it	to	friends	or	followers.	The	messages	that	can	potentially	be	delivered	to	a
subscriber	are	then	ranked	and	delivered	in	rank	order,	based	on	user	preferences,	past	interactions,	or
advertisement	charges.

Social-media	streams	can	be	consumed	not	just	by	humans,	but	also	by	software.	For	example,	companies
may	keep	a	lookout	for	tweets	regarding	the	company	and	raise	an	alert	if	there	are	many	tweets	that
reflect	a	negative	sentiment	about	the	company	or	its	products.	If	a	company	launches	an	advertisement
campaign,	it	may	analyze	tweets	to	see	if	the	campaign	had	an	impact	on	users.

There	are	many	more	examples	of	the	need	to	process	and	query	streaming	data	across	a	variety	of
domains.

10.5.2

Querying	Streaming	Data

Data	stored	in	a	database	are	sometimes	referred	to	as	data-at-rest,	in	contrast	to	streaming	data.	In
contrast	to	stored	data,	streams	are	unbounded,	that	is,	conceptually	they	may	never	end.	Queries	that
can	output	results	only	after	seeing	all	the	tuples	in	a	stream	would	then	never	be	able	to	output	any
result.	As	an	example,	a	query	that	asks	for	the	number	of	tuples	in	a	stream	can	never	give	a	final	result.

One	way	to	deal	with	the	unbounded	nature	of	streams	is	to	define	windows	on	the	streams,	where	each
window	contains	tuples	with	a	certain	timestamp	range	or	a	certain	number	of	tuples.	Given	information
about	timestamps	of	incoming	tuples	(e.g.,	they	are	increasing),	we	can	infer	when	all	tuples	in	a
particular	window	have	been	seen.	Based	on	the	above,	some	query	languages	for	streaming	data	require
that	windows	be	defined	on	streams,	and	queries	can	refer	to	one	or	a	few	windows	of	tuples	rather	than
to	a	stream.

Another	option	is	to	output	results	that	are	correct	at	a	particular	point	in	the	stream,	but	to	output
updates	as	more	tuples	arrive.	For	example,	a	count	query	can

10.5

Streaming	Data

503

output	the	number	of	tuples	seen	at	a	particular	point	in	time,	and	as	more	tuples	arrive,	the	query
updates	its	result	based	on	the	new	count.

Several	approaches	have	been	developed	for	querying	streaming	data,	based	on	the	two	options	described
above.

1.	Continuous	queries.	In	this	approach	the	incoming	data	stream	is	treated	as	inserts	to	a	relation,	and
queries	on	the	relations	can	be	written	in	SQL,	or	using	relational	algebra	operations.	These	queries	can
be	registered	as	continuous	queries,	that	is,	queries	that	are	running	continuously.	The	result	of	the	query
on	initial	data	are	output	when	the	system	starts	up.	Each	incoming	tuple	may	result	in	insertion,	update,
or	deletion	of	tuples	in	the	result	of	the	continuous	query.	The	output	of	a	continuous	query	is	then	a
stream	of	updates	to	the	query	result,	as	the	underlying	database	is	updated	by	the	incoming	streams.

This	approach	has	some	benefits	in	applications	where	users	wish	to	view	all	database	inserts	that	satisfy
some	conditions.	However,	a	major	drawback	of	the	approach	is	that	consumers	of	a	query	result	would
be	flooded	with	a	large	number	of	updates	to	continuous	queries	if	the	input	rate	is	high.	In	particular,
this	approach	is	not	desirable	for	applications	that	output	aggregated	values,	where	users	may	wish	to	see
final	aggregates	for	some	period	of	time,	rather	than	every	intermediate	result	as	each	incoming	tuple	is
inserted.

2.	Stream	query	languages.	A	second	approach	is	to	define	a	query	language	by	extending	SQL	or
relational	algebra,	where	streams	are	treated	differently	from	stored	relations.

Most	stream	query	languages	use	window	operations,	which	are	applied	to	streams,	and	create	relations
corresponding	to	the	contents	of	a	window.	For	example,	a	window	operation	on	a	stream	may	create	sets
of	tuples	for	each	hour	of	the	day;	each	such	set	is	thus	a	relation.	Relational	operations	can	be	executed
on	each	such	set	of	tuples,	including	aggregation,	selection,	and	joins	with	stored	relational	data	or	with
windows	of	other	streams,	to	generate	outputs.

We	provide	an	outline	of	stream	query	languages	in	Section	10.5.2.1.	These	languages	separate	streaming
data	from	stored	relations	at	the	language	level	and	require	window	operations	to	be	applied	before
performing	relational	operations.

Doing	so	ensures	that	results	can	be	output	after	seeing	only	part	of	a	stream.	For	example,	if	a	stream
guarantees	that	tuples	have	increasing	timestamps,	a	window	based	on	time	can	be	deduced	to	have	no
more	tuples	once	a	tuple	with	a	higher	timestamp	than	the	window	end	has	been	seen.	The	aggregation
result	for	the	window	can	be	output	at	this	point.

Some	streams	do	not	guarantee	that	tuples	have	increasing	timestamps.	However,	such	streams	would
contain	punctuations,	that	is,	metadata	tuples	that	state	that	all	future	tuples	will	have	a	timestamp
greater	than	some	value.	Such	punctuations	are	emitted	periodically	and	can	be	used	by	window
operators	to	decide

504

Chapter	10

Big	Data

when	an	aggregate	result,	such	as	aggregates	for	an	hourly	window,	is	complete	and	can	be	output.

3.	Algebraic	operators	on	streams.	A	third	approach	is	to	allow	users	to	write	operators	(user-defined
functions)	that	are	executed	on	each	incoming	tuple.	Tuples	are	routed	from	inputs	to	operators;	outputs
of	an	operator	may	be	routed	to	another	operator,	to	a	system	output,	or	may	be	stored	in	a	database.
Operators	can	maintain	internal	state	across	the	tuples	that	are	processed,	allowing	them	to	aggregate
incoming	data.	They	may	also	be	permitted	to	store	data	persistently	in	a	database,	for	long-term	use.

This	approach	has	seen	widespread	adoption	in	recent	years,	and	we	describe	it	in	more	detail	later.

4.	Pattern	matching.	A	fourth	option	is	to	define	a	pattern	matching	language	and	allow	users	to	write
multiple	rules,	each	with	a	pattern	and	an	action.	When	the	system	finds	a	subsequence	of	tuples	that
match	a	particular	pattern,	the	action	corresponding	to	the	pattern	is	executed.	Such	systems	are	called
complex	event	processing	(CEP)	systems.	Popular	complex	event	processing	systems	include	Oracle	Event
Processing,	Microsoft	StreamInsight,	and	FlinkCEP,	which	is	part	of	the	Apache	Flink	project,

We	discuss	stream	query	languages	and	algebraic	operations	in	more	detail	later	in	this	section.

Many	stream-processing	systems	keep	data	in-memory	and	do	not	provide	persistence	guarantees;	their
goal	is	to	generate	results	with	minimum	delay,	to	enable	fast	response	based	on	analysis	of	streaming
data.	On	the	other	hand,	the	incoming	data	may	also	need	to	be	stored	in	a	database	for	later	processing.
To	support	both	patterns	of	querying,	many	applications	use	a	so-called	lambda	architecture,	where	a
copy	of	the	input	data	is	provided	to	the	stream-processing	system	and	another	copy	is	provided	to	a
database	for	storage	and	later	processing.	Such	an	architecture	allows	stream-processing	systems	to	be
developed	rapidly,	without	worrying	about	persistence-related	issues.	However,	the	streaming	system	and
database	system	are	separate,	resulting	in	these	problems:

•	Queries	may	need	to	be	written	twice,	once	for	the	streaming	system	and	once	for	the	database	system,
in	different	languages.

•	Streaming	queries	may	not	be	able	to	access	stored	data	efficiently.

Systems	that	support	streaming	queries	along	with	persistent	storage	and	queries	that	span	streams	and
stored	data	avoid	these	problems.

10.5.2.1

Stream	Extensions	to	SQL

SQL	window	operations	were	described	in	Section	5.5.2,	but	stream	query	languages	support	further
window	types	that	are	not	supported	by	SQL	window	functions.	For

10.5

Streaming	Data

505

example,	a	window	that	contains	tuples	for	each	hour	cannot	be	specified	using	SQL

window	functions;	note,	however,	that	aggregates	on	such	windows	can	be	specified	in	SQL	in	a	more
roundabout	fashion,	first	computing	an	extra	attribute	that	contains	just	the	hour	component	of	a
timestamp,	and	then	grouping	on	the	hour	attribute.	Window	functions	in	streaming	query	languages
simplify	specification	of	such	aggregation.

Commonly	supported	window	functions	include:

•	Tumbling	window:	Hourly	windows	are	an	example	of	tumbling	windows.	Windows	do	not	overlap	but
are	adjacent	to	each	other.	Windows	are	specified	by	their	window	size	(for	example,	number	of	hours,
minutes,	or	seconds).

•	Hopping	window:	An	hourly	window	computed	every	20	minutes	would	be	an	example	of	a	hopping
window;	the	window	width	is	fixed,	similar	to	tumbling	windows,	but	adjacent	windows	can	overlap.

•	Sliding	window:	Sliding	windows	are	windows	of	a	specified	size	(based	on	time,	or	number	of	tuples)
around	each	incoming	tuple.	These	are	supported	by	the	SQL

standard.

•	Session	window:	Session	windows	model	users	who	perform	multiple	operations	as	part	of	a	session.	A
window	is	identified	by	a	user	and	a	time-out	interval,	and	contains	a	sequence	of	operations	such	that
each	operation	occurs	within	the	timeout	interval	from	the	previous	operation.	For	example,	if	the	time-
out	is	5	minutes,	and	a	user	performs	an	operation	at	10	AM,	a	second	operation	at	10:04	AM,	and	a	third
operation	at	11	AM,	then	the	first	two	operations	are	part	of	one	session,	while	the	third	is	part	of	a
different	session.	A	maximum	duration	may	also	be	specified,	so	once	that	duration	expires,	the	session
window	is	closed	even	if	some	operations	have	been	performed	within	the	time-out	interval.

The	exact	syntax	for	specifying	windows	varies	by	implementation.	Suppose	we	have	a	relation	order(
orderid,	datetime,	itemid,	amount).	In	Azure	Stream	Analytics,	the	total	order	amount	for	each	item	for
each	hour	can	be	specified	by	the	following	tumbling	window:

select	item,	System.Timestamp	as	window	end,	sum(amount)	from	order	timestamp	by	datetime

group	by	itemid,	tumblingwindow(hour,	1)

Each	output	tuple	has	a	timestamp	whose	value	is	equal	to	the	timestamp	of	the	end	of	the	window;	the
timestamp	can	be	accessed	using	the	keyword	System.Timestamp	as	shown	in	the	query	above.

SQL	extensions	to	support	streams	differentiate	between	streams,	where	tuples	have	implicit	timestamps
and	are	expected	to	receive	a	potentially	unbounded	number	of	tuples	and	relations	whose	content	is
fixed	at	any	point.	For	example,	customers,	suppliers,	and	items	associated	with	orders	would	be	treated
as	relations,	rather	than

506

Chapter	10

Big	Data

as	streams.	The	results	of	queries	with	windowing	are	treated	as	relations,	rather	than	as	streams.

Joins	are	permitted	between	a	stream	and	a	relation,	and	the	result	is	a	stream;	the	timestamp	of	a	join
result	tuple	is	the	same	as	the	timestamp	of	the	input	stream	tuple.	Joins	between	two	streams	have	the
problem	that	a	tuple	early	in	one	stream	may	match	a	tuple	that	occurs	much	later	in	the	other	stream;
such	a	join	condition	would	require	storing	the	entire	stream	for	a	potentially	unbounded	amount	of	time.
To	avoid	this	problem,	streaming	SQL	systems	allow	stream-to-stream	join	only	if	there	is	a	join	condition
that	bounds	the	time	difference	between	matching	tuples.	A	condition	that	the	timestamps	of	the	two
tuples	differ	by	at	most	1	hour	is	an	example	of	such	a	condition.

10.5.3

Algebraic	Operations	on	Streams

While	SQL	queries	on	streaming	data	are	quite	useful,	there	are	many	applications	where	SQL	queries	are
not	a	good	fit.	With	the	algebraic	operations	approach	to	stream	processing,	user-defined	code	can	be
provided	for	implementing	an	algebraic	operation;	a	number	of	predefined	algebraic	operations,	such	as
selection	and	windowed	aggregation,	are	also	provided.

To	perform	computation,	incoming	tuples	must	be	routed	to	operators	that	consume	the	tuples,	and
outputs	of	operators	must	be	routed	to	their	consumers.	A	key	task	of	the	implementation	is	to	provide
fault-tolerant	routing	of	tuples	between	system	input,	operators,	and	outputs.	Apache	Storm	and	Kafka
are	widely	used	implementations	that	support	such	routing	of	data.

The	logical	routing	of	tuples	is	done	by	creating	a	directed	acyclic	graph	(DAG)	with	operators	as	nodes.
Edges	between	nodes	define	the	flow	of	tuples.	Each	tuple	output	by	an	operator	is	sent	along	all	the	out-
edges	of	the	operator,	to	the	consuming	operators.

Each	operator	receives	tuples	from	all	its	in-edges.	Figure	10.11a	depicts	the	logical	Data

Op

Op

Source

Data

Data

Op

Sink

Source

Data

Data

Sink

Source

Data

Data

Op

Sink

Source

Publish-Subscribe

Data

Data

System

Sink

Data

Source

Data

Op

Op

Source

Sink

Data

Data

Data

Sink

Source

Source

Op

Op

(a)	DAG	representation	of	streaming	data	flow

(b)	Publish-subscribe	representation	of	streaming	data	flow

Figure	10.11	Routing	of	streams	using	DAG	and	publish-subscribe	representations.

10.5

Streaming	Data

507

routing	of	stream	tuples	through	a	DAG	structure.	Operation	nodes	are	denoted	as

“Op”	nodes	in	the	figure.	The	entry	points	to	the	stream-processing	system	are	the	data-source	nodes	of
the	DAG;	these	nodes	consume	tuples	from	the	stream	sources	and	inject	them	into	the	stream-processing
system.	The	exit	points	of	the	stream-processing	system	are	data-sink	nodes;	tuples	exiting	the	system
through	a	data	sink	may	be	stored	in	a	data	store	or	file	system	or	may	be	output	in	some	other	manner.

One	way	of	implementing	a	stream-processing	system	is	by	specifying	the	graph	as	part	of	the	system
configuration,	which	is	read	when	the	system	starts	processing	tuples,	and	is	then	used	to	route	tuples.
The	Apache	Storm	stream-processing	system	is	an	example	of	a	system	that	uses	a	configuration	file	to
define	the	graph,	which	is	called	a	topology	in	the	Storm	system.	Data-source	nodes	are	called	spouts	in
the	Storm	system,	while	operator	nodes	are	called	bolts,	and	edges	connect	these	nodes.

An	alternative	way	of	creating	such	a	routing	graph	is	by	using	publish-subscribe	systems.	A	publish-
subscribe	system	allows	publication	of	documents	or	other	forms	of	data,	with	an	associated	topic.
Subscribers	correspondingly	subscribe	to	specified	topics.	Whenever	a	document	is	published	to	a
particular	topic,	a	copy	of	the	document	is	sent	to	all	subscribers	who	have	subscribed	to	that	topic.
Publish-subscribe	systems	are	also	referred	to	as	pub-sub	systems	for	short.

When	a	publish-subscribe	system	is	used	for	routing	tuples	in	a	stream-processing	system,	tuples	are
considered	documents,	and	each	tuple	is	tagged	with	a	topic.	The	entry	points	to	the	system	conceptually
“publish”	tuples,	each	with	an	associated	topic.

Operators	subscribe	to	one	or	more	topics;	the	system	routes	all	tuples	with	a	specific	topic	to	all
subscribers	of	that	topic.	Operators	can	also	publish	their	outputs	back	to	the	publish-subscribe	system,
with	an	associated	topic.

A	major	benefit	of	the	publish-subscribe	approach	is	that	operators	can	be	added	to	the	system,	or
removed	from	it,	with	relative	ease.	Figure	10.11b	depicts	the	routing	of	tuples	using	a	publish-subscribe
representation.	Each	data	source	is	assigned	a	unique	topic	name;	the	output	of	each	operator	is	also
assigned	a	unique	topic	name.	Each	operator	subscribes	to	the	topics	of	its	inputs	and	publishes	to	the
topics	corresponding	to	its	output.	Data	sources	publish	to	their	associated	topic,	while	data	sinks
subscribe	to	the	topics	of	the	operators	whose	output	goes	to	the	sink.

The	Apache	Kafka	system	uses	the	publish-subscribe	model	to	manage	routing	of	tuples	in	streams.	In	the
Kafka	system,	tuples	published	for	a	topic	are	retained	for	a	specified	period	of	time	(called	the	retention
period),	even	if	there	is	currently	no	subscriber	for	the	topic.	Subscribers	usually	process	tuples	at	the
earliest	possible	time,	but	in	case	processing	is	delayed	or	temporarily	stopped	due	to	failures,	the	tuples
are	still	available	for	processing	until	the	retention	time	expires.

More	details	of	routing,	and	in	particular	how	publish-subscribe	is	implemented	in	a	parallel	system,	are
provided	in	Section	22.8.

The	next	detail	to	be	addressed	is	how	to	implement	the	algebraic	operations.	We	saw	earlier	how
algebraic	operations	can	be	computed	using	data	from	files	and	other	data	sources	as	inputs.

508

Chapter	10

Big	Data

Apache	Spark	allows	streaming	data	sources	to	be	used	as	inputs	for	such	operations.	The	key	issue	is

that	some	of	the	operations	may	not	output	any	results	at	all	until	the	entire	stream	is	consumed,	which
may	take	potentially	unbounded	time.	To	avoid	this	problem,	Spark	breaks	up	streams	into	discretized
streams,	where	the	stream	data	for	a	particular	time	window	are	treated	as	a	data	input	to	algebraic
operators.	When	the	data	in	that	window	have	been	consumed,	the	operator	generates	its	output,	just	as	it
would	have	if	the	data	source	were	a	file	or	a	relation.

However,	the	above	approach	has	the	problem	that	the	discretization	of	streams	has	to	be	done	before	any
algebraic	operations	are	executed.	Other	systems	such	as	Apache	Storm	and	Apache	Flink	support	stream
operations,	which	take	a	stream	as	input	and	output	another	stream.	This	is	straightforward	for
operations	such	as	map	or	relational	select	operations;	each	output	tuple	inherits	a	timestamp	from	the
input	tuple.	On	the	other	hand,	relational	aggregate	operations	and	reduce	operations	may	be	unable	to
generate	any	output	until	the	entire	stream	is	consumed.	To	support	such	operations,	Flink	supports	a
window	operation	which	breaks	up	the	stream	into	windows;	aggregates	are	computed	within	each
window	and	are	output	once	the	window	is	complete.	Note	that	the	output	is	treated	as	a	stream,	where
tuples	have	a	timestamp	based	on	the	end	of	the	window.3

10.6

Graph	Databases

Graphs	are	an	important	type	of	data	that	databases	need	to	deal	with.	For	example,	a	computer	network
with	multiple	routers	and	links	between	them	can	be	modeled	as	a	graph,	with	routers	as	nodes	and
network	links	as	edges.	Road	networks	are	another	common	type	of	graph,	with	road	intersections
modeled	as	nodes	and	the	road	links	between	intersections	as	edges.	Web	pages	with	hyperlinks	between
them	are	yet	another	example	of	graphs,	where	web	pages	can	be	modeled	as	nodes	and	hyperlinks
between	them	as	edges.

In	fact,	if	we	consider	an	E-R	model	of	an	enterprise,	every	entity	can	be	modeled	as	a	node	of	a	graph,
and	every	binary	relationship	can	be	modeled	as	an	edge	of	the	graph.	Ternary	and	higher-degree
relationships	are	harder	to	model,	but	as	we	saw	in	Section	6.9.4,	such	relationships	can	be	modeled	as	a
set	of	binary	relationships	if	desired.

Graphs	can	be	represented	using	the	relational	model	using	the	following	two	relations:

1.	node(ID,	label,	node	data)

2.	edge(fromID,	toID,	label,	edge	data)

where	node	data	and	edge	data	contain	all	the	data	related	to	nodes	and	edges,	respectively.

3Some	systems	generate	timestamps	based	on	when	the	window	is	processed,	but	doing	so	results	in
output	timestamps	that	are	nondeterministic.

10.6

Graph	Databases

509

Modeling	a	graph	using	just	two	relations	is	too	simplistic	for	complex	database	schemas.	For	example,
applications	require	modeling	of	many	types	of	nodes,	each	with	its	own	set	of	attributes,	and	many	types
of	edges,	each	with	its	own	set	of	attributes.

We	can	correspondingly	have	multiple	relations	that	store	nodes	of	different	types	and	multiple	relations
that	store	edges	of	different	types.

Although	graph	data	can	be	easily	stored	in	relational	databases,	graph	databases	such	as	the	widely	used
Neo4j	provide	several	extra	features:

•	They	allow	relations	to	be	identified	as	representing	nodes	or	edges	and	offer	special	syntax	for	defining
such	relations

•	They	support	query	languages	designed	for	easily	expressing	path	queries,	which	may	be	harder	to
express	in	SQL.

•	They	provide	efficient	implementations	for	such	queries,	which	can	execute	queries	much	faster	than	if
they	were	expressed	in	SQL	and	executed	on	a	regular	database.

•	They	provide	support	for	other	features	such	as	graph	visualization.

As	an	example	of	a	graph	query,	we	consider	a	query	in	the	Cypher	query	language	supported	by	Neo4j.
Suppose	the	input	graph	has	nodes	corresponding	to	students	(stored	in	a	relation	student)	and
instructors	(stored	in	a	relation	instructor,	and	an	edge	type	advisor	from	student	to	instructor.	We	omit
details	of	how	to	create	such	node	and	edge	types	in	Neo4j	and	assume	appropriate	schemas	for	these
types.	We	can	then	write	the	following	query:

match	(i:	instructor)	<−[:	advisor]−(s:	student)	where	i.	dept	name=	'Comp.	Sci.'

return	i.ID	as	ID,	i.	name	as	name,	collect(s.	name)	as	advisees	Observe	that	the	match	clause	in	the
query	connects	instructors	to	students	via	the	advisor	relation,	which	is	modeled	as	a	graph	path	that
traverses	the	advisor	edge	in	the	backwards	direction	(the	edge	points	from	student	to	instructor),	by
using	the	syntax	(i:	instructor)	<−[:	advisor]−(s:	student).	This	step	basically	performs	a	join	of	the
instructor,	advisor	and	student	relations.	The	query	then	performs	a	group	by	on	instructor	ID	and	name,
and	collects	all	the	students	advised	by	the	instructor	into	a	set	called	advisees.	We	omit	details,	and	refer
the	interested	reader	to	online	tutorials	available	at	neo4j.com/developer.

Neo4J	also	supports	recursive	traversal	of	edges.	For	example,	suppose	we	wish	to	find	direct	and	indirect
prerequisites	of	courses,	with	the	relation	course	modeled	with	type	node,	and	relation	prereq(course	id,
prereq	id)	modeled	with	type	edge.	We	can	then	write	the	following	query:

match	(c1:	course)−[:	prereq	*1..]−	>(c	2:	course)	return	c	1.	course	id,	c	2.	course	id

510

Chapter	10

Big	Data

Here,	the	annotation	“*1..”	indicates	we	want	to	consider	paths	with	multiple	prereq	edges,	with	a
minimum	of	1	edge	(with	a	minimum	of	0,	a	course	would	appear	as	its	own	prerequisite).

We	note	that	Neo4j	is	a	centralized	system	and	does	not	(as	of	2018)	support	parallel	processing.
However,	there	are	many	applications	that	need	to	process	very	large	graphs,	and	parallel	processing	is
key	for	such	applications.

Computation	of	PageRank	(which	we	saw	earlier	in	Section	8.3.2.2)	on	very	large	graphs	containing	a
node	for	every	web	page,	and	an	edge	for	every	hyperlink	from	one	page	to	another,	is	a	good	example	of
a	complex	computation	on	very	large	graphs.

The	web	graph	today	has	hundreds	of	billions	of	nodes	and	trillions	of	edges.	Social	networks	are	another
example	of	very	large	graphs,	containing	billions	of	nodes	and	edges;	computations	on	such	graphs
include	shortest	paths	(to	find	connectivity	between	people),	or	computing	how	influential	people	are
based	on	edges	in	the	social	network.

There	are	two	popular	approaches	for	parallel	graph	processing:

1.	Map-reduce	and	algebraic	frameworks:	Graphs	can	be	represented	as	relations,	and	individual	steps	of
many	parallel	graph	algorithms	can	be	represented	as	joins.	Graphs	can	thus	be	stored	in	a	parallel
storage	system,	partitioned	across	multiple	machines.	We	can	then	use	map-reduce	programs,	algebraic
frameworks	such	as	Spark,	or	parallel	relational	database	implementations	to	process	each	step	of	a
graph	algorithm	in	parallel	across	multiple	nodes.

Such	approaches	work	well	for	many	applications.	However,	when	performing	iterative	computations	that
traverse	long	paths	in	graphs,	these	approaches	are	quite	inefficient,	since	they	typically	read	the	entire
graph	in	each	iteration.

2.	Bulk	synchronous	processing	frameworks:	The	bulk	synchronous	processing	(BSP)	framework	for	graph
algorithms	frames	graph	algorithms	as	computations	associated	with	vertices	that	operate	in	an	iterative
manner.	Unlike	the	preceding	approach,	here	the	graph	is	typically	stored	in	memory,	with	vertices
partitioned	across	multiple	machines;	most	importantly,	the	graph	does	not	have	to	be	read	in	each
iteration.

Each	vertex	(node)	of	the	graph	has	data	(state)	associated	with	it.	Similar	to	how	programmers	provide
map()	and	reduce()	functions	in	the	MapReduce	framework,	in	the	BSP	framework	programmers	provide
methods	that	are	executed	for	each	node	of	the	graph.	The	methods	can	send	messages	to	neighboring
nodes	and	receive	messages	from	neighboring	nodes	of	the	graph.	In	each	iteration,	called	a	superstep,
the	method	associated	with	each	node	is	executed;	the	method	consumes	any	incoming	messages,	updates
the	data	associated	with	the	node,	and	may	optionally	send	messages	to	neighboring	nodes.	Messages
sent	in	one	iteration	are	received	by	the	recipients	in	the	next	iteration.	The	method	executing	at	each

vertex	may	vote	to	halt	if	they	decide	they	have	no	more	computation	to	carry	out.	If	in	some	iteration	all
vertices	vote	to	halt,	and	no	messages	are	sent	out,	the	computation	can	be	halted.

10.7

Summary

511

The	result	of	the	computation	is	contained	in	the	state	at	each	node.	The	state	can	be	collected	and	output
as	the	result	of	the	computation.

The	idea	of	bulk	synchronous	processing	is	quite	old	but	was	popularized	by	the	Pregel	system	developed
by	Google,	which	provided	a	fault-tolerant	implementation	of	the	framework.	The	Apache	Giraph	system	is
an	open-source	version	of	the	Pregel	system.

The	GraphX	component	of	Apache	Spark	supports	graph	computations	on	large	graphs.	It	provides	an	API
based	on	Pregel,	as	well	as	a	number	of	other	operations	that	take	a	graph	as	input,	and	output	a	graph.
Operations	supported	by	GraphX	include	map	functions	applied	on	vertices	and	edges	of	graphs,	join	of	a
graph	with	an	RDD,	and	an	aggregation	operation	that	works	as	follows:	a	user-defined	function	is	used	to
create	messages	that	are	sent	to	all	the	neighbors	of	each	node,	and	another	user-defined	function	is	used
to	aggregate	the	messages.	All	these	operations	can	be	executed	in	parallel	to	handle	large	graphs.

For	more	information	on	how	to	write	graph	algorithms	in	such	settings,	see	the	references	in	the	Further
Reading	section	at	the	end	of	the	chapter.

10.7

Summary

•	Modern	data	management	applications	often	need	to	deal	with	data	that	are	not	necessarily	in	relational
form,	and	these	applications	also	need	to	deal	with	volumes	of	data	that	are	far	larger	than	what	a	single
traditional	organization	would	have	generated.

•	The	increasing	use	of	data	sensors	leads	to	the	connection	of	sensors	and	other	computing	devices
embedded	within	other	objects	to	the	internet,	often	referred	to	as	the	“internet	of	things.”

•	There	is	now	a	wider	variety	of	query	language	options	for	Big	Data	applications,	driven	by	the	need	to
handle	more	varied	of	data	types,	and	by	the	need	to	scale	to	very	large	data	volumes/velocity.

•	Building	data	management	systems	that	can	scale	to	large	volume/velocity	of	data	requires	parallel
storage	and	processing	of	data.

•	Distributed	file	systems	allow	files	to	be	stored	across	a	number	of	machines,	while	allowing	access	to
files	using	a	traditional	file-system	interface.

•	Key-value	storage	systems	allow	records	to	be	stored	and	retrieved	based	on	a	key	and	may	additionally
provide	limited	query	facilities.	These	systems	are	not	full-fledged	database	systems,	and	they	are
sometimes	called	NoSQL	systems.

•	Parallel	and	distributed	databases	provide	a	traditional	database	interface,	but	they	store	data	across
multiple	machines,	and	they	perform	query	processing	in	parallel	across	multiple	machines.

512

Chapter	10

Big	Data

•	The	MapReduce	paradigm	models	a	common	situation	in	parallel	processing,	where	some	processing,
identified	by	the	map()	function,	is	applied	to	each	of	a	large	number	of	input	records,	and	then	some	form
of	aggregation,	identified	by	the	reduce()	function,	is	applied	to	the	result	of	the	map()	function.

•	The	Hadoop	system	provides	a	widely	used	open-source	implementation	of	MapReduce	in	the	Java
language.

•	There	are	a	large	number	of	applications	that	use	the	MapReduce	paradigm	for	data	processing	of
various	kinds	whose	logic	can	be	easily	expressed	using	SQL.

•	Relational	algebra	forms	the	foundation	of	relational	query	processing,	allowing	queries	to	be	modeled
as	trees	of	operations.	This	idea	is	extended	to	settings	with	more	complex	data	types	by	supporting
algebraic	operators	that	can	work	on	datasets	containing	records	with	complex	data	types,	and	returning

datasets	with	records	containing	similar	complex	data	types.

•	There	are	many	applications	where	queries	need	to	be	executed	continuously,	on	data	that	arrive	in	a
continuous	fashion.	The	term	streaming	data	refers	to	data	that	arrive	in	a	continuous	fashion.	Many
application	domains	need	to	process	incoming	data	in	real	time.

•	Graphs	are	an	important	type	of	data	that	databases	need	to	deal	with.

Review	Terms

•	Volume

•	Shuffle	step

•	Velocity

•	Streaming	data

•	Conversion

•	Data-at-rest

•	Internet	of	things

•	Windows	on	the	streams

•	Distributed	file	system

•	Continuous	queries

•	NameNode	server

•	Punctuations

•	DataNodes	machines

•	Lambda	architecture

•	Sharding

•	Tumbling	window

•	Partitioning	attribute

•	Hopping	window

•	Key-value	storage	system

•	Sliding	window

•	Key-value	store

•	Session	window

•	Document	stores

•	Publish-subscribe	systems

•	NoSQL	systems

•	Pub-sub	systems

•	Shard	key

•	Discretized	streams

•	Parallel	databases

•	Superstep

•	Reduce	key

Practice	Exercises

513

Practice	Exercises

10.1

Suppose	you	need	to	store	a	very	large	number	of	small	files,	each	of	size	say	2

kilobytes.	If	your	choice	is	between	a	distributed	file	system	and	a	distributed	key-value	store,	which
would	you	prefer,	and	explain	why.

10.2

Suppose	you	need	to	store	data	for	a	very	large	number	of	students	in	a	distributed	document	store	such
as	MongoDB.	Suppose	also	that	the	data	for	each	student	correspond	to	the	data	in	the	student	and	the
takes	relations.

How	would	you	represent	the	above	data	about	students,	ensuring	that	all	the	data	for	a	particular
student	can	be	accessed	efficiently?	Give	an	example	of	the	data	representation	for	one	student.

10.3

Suppose	you	wish	to	store	utility	bills	for	a	large	number	of	users,	where	each	bill	is	identified	by	a
customer	ID	and	a	date.	How	would	you	store	the	bills	in	a	key-value	store	that	supports	range	queries,	if
queries	request	the	bills	of	a	specified	customer	for	a	specified	date	range.

10.4

Give	pseudocode	for	computing	a	join	r	⋈	r.A=	s.A	s	using	a	single	MapReduce	step,	assuming	that	the
map()	function	is	invoked	on	each	tuple	of	r	and	s.

Assume	that	the	map()	function	can	find	the	name	of	the	relation	using	context.relname().

10.5

What	is	the	conceptual	problem	with	the	following	snippet	of	Apache	Spark	code	meant	to	work	on	very
large	data.	Note	that	the	collect()	function	returns	a	Java	collection,	and	Java	collections	(from	Java	8
onwards)	support	map	and	reduce	functions.

JavaRDD	<	String	<	lines	=	sc.textFile("logDirectory");	int	totalLength	=	lines.collect().map(s	−	>
s.length())

.reduce(0,(a,b)	−	>	a+b);

10.6

Apache	Spark:

a.

How	does	Apache	Spark	perform	computations	in	parallel?

b.

Explain	the	statement:	“Apache	Spark	performs	transformations	on

RDDs	in	a	lazy	manner.”

c.

What	are	some	of	the	benefits	of	lazy	evaluation	of	operations	in	Apache	Spark?

10.7

Given	a	collection	of	documents,	for	each	word	wi,	let	ni	denote	the	number	of	times	the	word	occurs	in
the	collection.	Let	N	be	the	total	number	of	word	occurrences	across	all	documents.	Next,	consider	all
pairs	of	consecutive	words

514

Chapter	10

Big	Data

(wi,	wj)	in	the	document;	let	ni,	j	denote	the	number	of	occurrences	of	the	word	pair	(wi,	wj)	across	all
documents.

Write	an	Apache	Spark	program	that,	given	a	collection	of	documents	in	a	directory,	computes	N	,	all	pairs
(wi,	ni),	and	all	pairs	((wi,	wj),	ni,	j).	Then	output	all	word	pairs	such	that	ni,	j∕	N	≥	10	∗	(ni∕	N)	∗	(nj∕	N).
These	are	word	pairs	that	occur	10	times	or	more	as	frequently	as	they	would	be	expected	to	occur	if	the
two	words	occurred	independently	of	each	other.

You	will	find	the	join	operation	on	RDDs	useful	for	the	last	step,	to	bring	related	counts	together.	For
simplicity,	do	not	bother	about	word	pairs	that	cross	lines.	Also	assume	for	simplicity	that	words	only
occur	in	lowercase	and	that	there	are	no	punctuation	marks.

10.8

Consider	the	following	query	using	the	tumbling	window	operator:

select	item,	System.Timestamp	as	window	end,	sum(amount)	from	order	timestamp	by	datetime

group	by	itemid,	tumblingwindow(hour,	1)

Give	an	equivalent	query	using	normal	SQL	constructs,	without	using	the	tumbling	window	operator.	You
can	assume	that	the	timestamp	can	be	converted	to	an	integer	value	that	represents	the	number	of
seconds	elapsed	since	(say)	midnight,	January	1,	1970,	using	the	function	to	seconds(timestamp).	You	can
also	assume	that	the	usual	arithmetic	functions	are	available,	along	with	the	function	floor(a)	which
returns	the	largest	integer	≤	a.

10.9

Suppose	you	wish	to	model	the	university	schema	as	a	graph.	For	each	of	the	following	relations,	explain
whether	the	relation	would	be	modeled	as	a	node	or	as	an	edge:

(i)	student,	(ii)	instructor,	(iii)	course,	(iv)	section,	(v)	takes,	(vi)	teaches.

Does	the	model	capture	connections	between	sections	and	courses?

Exercises

10.10

Give	four	ways	in	which	information	in	web	logs	pertaining	to	the	web	pages	visited	by	a	user	can	be	used
by	the	web	site.

10.11

One	of	the	characteristics	of	Big	Data	is	the	variety	of	data.	Explain	why	this	characteristic	has	resulted	in
the	need	for	languages	other	than	SQL	for	processing	Big	Data.

10.12

Suppose	your	company	has	built	a	database	application	that	runs	on	a	centralized	database,	but	even	with
a	high-end	computer	and	appropriate	indices	created	on	the	data,	the	system	is	not	able	to	handle	the
transaction	load,	lead-

Tools

515

ing	to	slow	processing	of	queries.	What	would	be	some	of	your	options	to	allow	the	application	to	handle
the	transaction	load?

10.13

The	map-reduce	framework	is	quite	useful	for	creating	inverted	indices	on	a	set	of	documents.	An
inverted	index	stores	for	each	word	a	list	of	all	document	IDs	that	it	appears	in	(offsets	in	the	documents
are	also	normally	stored,	but	we	shall	ignore	them	in	this	question).

For	example,	if	the	input	document	IDs	and	contents	are	as	follows:

1:	data	clean

2:	data	base

3:	clean	base

then	the	inverted	lists	would

data:	1,	2

clean:	1,	3

base:	2,	3

Give	pseudocode	for	map	and	reduce	functions	to	create	inverted	indices	on	a	given	set	of	files	(each	file
is	a	document).	Assume	the	document	ID	is	available	using	a	function	context.getDocumentID(),	and	the
map	function	is	invoked	once	per	line	of	the	document.	The	output	inverted	list	for	each	word	should	be	a
list	of	document	IDs	separated	by	commas.	The	document	IDs	are	normally	sorted,	but	for	the	purpose	of
this	question	you	do	not	need	to	bother	to	sort	them.

10.14

Fill	in	the	blanks	below	to	complete	the	following	Apache	Spark	program	which	computes	the	number	of
occurrences	of	each	word	in	a	file.	For	simplicity	we	assume	that	words	only	occur	in	lowercase,	and	there
are	no	punctuation	marks.

JavaRDD	<	String	>	textFile	=	sc.textFile("hdfs://...");	JavaPairRDD	<	String,	Integer	>	counts	=

textFile.

(s	−	>	Arrays.asList(s.split("	")).

())

.mapToPair(word	->	new

).reduceByKey((a,	b)	−	>	a	+	b);

10.15

Suppose	a	stream	can	deliver	tuples	out	of	order	with	respect	to	tuple	timestamps.	What	extra
information	should	the	stream	provide,	so	a	stream	query	processing	system	can	decide	when	all	tuples	in
a	window	have	been	seen?

10.16

Explain	how	multiple	operations	can	be	executed	on	a	stream	using	a	publish-subscribe	system	such	as
Apache	Kafka.

Tools

A	wide	variety	of	open-source	Big	Data	tools	are	available,	in	addition	to	some	commercial	tools.	In
addition,	a	number	of	these	tools	are	available	on	cloud	plat-

516

Chapter	10

Big	Data

forms.	We	list	below	several	popular	tools,	along	with	the	URLs	where	they	can	be	found.	Apache	HDFS
(hadoop.apache.org)	is	a	widely	used	distributed	file	system	implementation.	Open-source
distributed/parallel	key-value	stores	include	Apache	HBase	(hbase.apache.org),	Apache	Cassandra
(cassandra.apache.org),	MongoDB

(www.mongodb.com),	and	Riak	(basho.com).

Hosted	cloud	storage	systems	include	the	Amazon	S3	storage	system

(aws.amazon.com/s3)	and	Google	Cloud	Storage	(cloud.google.com/storage).

Hosted	key-value	stores	include	Google	BigTable	(cloud.google.com/bigtable),	and	Amazon	DynamoDB
(aws.amazon.com/dynamodb).

Google	Spanner	(cloud.google.com/spanner)	and	the	open	source	Cock-

roachDB	(www.cockroachlabs.com)	are	scalable	parallel	databases	that	support	SQL

and	transactions,	and	strongly	consistent	storage.

Open-source	MapReduce	systems	include	Apache	Hadoop	(hadoop.apache.org),	and	Apache	Spark
(spark.apache.org),	while	Apache	Tez	(tez.apache.org)	supports	data	processing	using	a	DAG	of	algebraic
operators.	These	are	also	available	as	cloud-based	offerings	from	Amazon	Elastic	MapReduce
(aws.amazon.com/emr),	which	also	supports	Apache	HDFS	and	Apache	HBase,	and	from	Microsoft	Azure
(azure.microsoft.com).

Apache	Hive	(hive.apache.org)	is	a	popular	open-source	SQL	implementation	that	runs	on	top	of	the
Apache	MapReduce,	Apache	Tez,	as	well	as	Apache	Spark;	these	systems	are	designed	to	support	large
queries	running	in	parallel	on	multiple	machines.	Apache	Impala	(impala.apache.org)	is	an	SQL
implementation	that	runs	on	Hadoop,	and	is	designed	to	handle	a	large	number	of	queries,	and	to	return
query	results	with	minimal	delays	(latency).	Hosted	SQL	offerings	on	the	cloud	that	support	parallel
processing	include	Amazon	EMR	(aws.amazon.com/emr),	Google	Cloud	SQL

(cloud.google.com/sql),	and	Microsoft	Azure	SQL	(azure.microsoft.com).

Apache	Kafka	(kafka.apache.org)	and	Apache	Flink	(flink.apache.org)	are	open-source	stream-processing
systems;	Apache	Spark	also	provides	support	for	stream	processing.	Hosted	stream-processing	platforms
include	Amazon	Kinesis	(aws.amazon.com/kinesis),	Google	Cloud	Dataflow	(cloud.google.com/dataflow)
and	Microsoft	Stream	Analytics	(azure.microsoft.com).	Open	source	graph	processing	platforms	include
Neo4J	(neo4j.com)	and	Apache	Giraph	(giraph.apache.org).

Further	Reading

[Davoudian	et	al.	(2018)]	provides	a	nice	survey	of	NoSQL	data	stores,	including	data	model	querying	and
internals.	More	information	about	Apache	Hadoop,	including	documentation	on	HDFS	and	Hadoop
MapReduce,	can	be	found	on	the	Apache	Hadoop	homepage,	hadoop.apache.org.	Information	about
Apache	Spark	may	be	found	on	the	Spark	homepage,	spark.apache.org.	Information	about	the	Apache
Kafka	streaming	data	platform	may	be	found	on	kafka.apache.org,	and	details	of	stream	processing	in
Apache	Flink	may	be	found	on	flink.apache.org.	Bulk	Synchronous	Processing

Further	Reading

517

was	introduced	in	[Valiant	(1990)].	A	description	of	the	Pregel	system,	including	its	support	for	bulk
synchronous	processing,	may	be	found	in	[Malewicz	et	al.	(2010)],	while	information	about	the	open
source	equivalent,	Apache	Giraph,	may	be	found	on	giraph.apache.org.

Bibliography

[Davoudian	et	al.	(2018)]

A.	Davoudian,	L.	Chen,	and	M.	Liu,	“A	Survey	of	NoSQL	Stores”,

ACM	Computing	Surveys,	Volume	51,	Number	2	(2018),	pages	2–42.

[Malewicz	et	al.	(2010)]

G.	Malewicz,	M.	H.	Austern,	A.	J.	C.	Bik,	J.	C.	Dehnert,	I.	Horn,

N.	Leiser,	and	G.	Czajkowski,	“Pregel:	a	system	for	large-scale	graph	processing”,	In	Proc.	of	the	ACM
SIGMOD	Conf.	on	Management	of	Data	(2010),	pages	135–146.

[Valiant	(1990)]

L.	G.	Valiant,	“A	Bridging	Model	for	Parallel	Computation”,	Communications	of	the	ACM,	Volume	33,
Number	8	(1990),	pages	103–111.

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

C	H	A	P	T	E	R	11

Data	Analytics

Decision-making	tasks	benefit	greatly	by	using	data	about	the	past	to	predict	the	future	and	using	the
predictions	to	make	decisions.	For	example,	online	advertisement	systems	need	to	decide	what
advertisement	to	show	to	each	user.	Analysis	of	past	actions	and	profiles	of	other	users,	as	well	as	past
actions	and	profile	of	the	current	user,	are	key	to	deciding	which	advertisement	the	user	is	most	likely	to
respond	to.	Here,	each	decision	is	low-value,	but	with	high	volumes	the	overall	value	of	making	the	right
decisions	is	very	high.	At	the	other	end	of	the	value	spectrum,	manufacturers	and	retailers	need	to	decide
what	items	to	manufacture	or	stock	many	months	ahead	of	the	actual	sale	of	the	items.	Predicting	future
demand	of	different	types	of	items	based	on	past	sales	and	other	indicators	is	key	to	avoiding	both
overproduction	or	overstocking	of	some	items,	and	underproduction	or	understocking	of	other	items.
Errors	can	lead	to	monetary	loss	due	to	unsold	inventory	of	some	items,	or	loss	of	potential	revenue	due	to
nonavailability	of	some	items.

The	term	data	analytics	refers	broadly	to	the	processing	of	data	to	infer	patterns,	correlations,	or	models
for	prediction.	The	results	of	analytics	are	then	used	to	drive	business	decisions.

The	financial	benefits	of	making	correct	decisions	can	be	substantial,	as	can	the	costs	of	making	wrong
decisions.	Organizations	therefore	invest	a	lot	of	money	to	gather	or	purchase	required	data	and	build
systems	for	data	analytics.

11.1

Overview	of	Analytics

Large	companies	have	diverse	sources	of	data	that	they	need	to	use	for	making	business	decisions.	The
sources	may	store	the	data	under	different	schemas.	For	performance	reasons	(as	well	as	for	reasons	of
organization	control),	the	data	sources	usually	will	not	permit	other	parts	of	the	company	to	retrieve	data
on	demand.

Organizations	therefore	typically	gather	data	from	multiple	sources	into	one	location,	referred	to	as	a	data
warehouse.	Data	warehouses	gather	data	from	multiple	sources	at	a	single	site,	under	a	unified	schema
(which	is	usually	designed	to	support	efficient	analysis,	even	at	the	cost	of	redundant	storage).	Thus,	they
provide	the	user	519

520

Chapter	11

Data	Analytics

a	single	uniform	interface	to	data.	However,	data	warehouses	today	also	collect	and	store	data	from	non-
relational	sources,	where	schema	unification	is	not	possible.	Some	sources	of	data	have	errors	that	can	be
detected	and	corrected	using	business	constraints;	further,	organizations	may	collect	data	from	multiple
sources,	and	there	may	be	duplicates	in	the	data	collected	from	different	sources.	These	steps	of
collecting	data,	cleaning/deduplicating	the	data,	and	loading	the	data	into	a	warehouse	are	referred	to	as
extract,	transform	and	load	(ETL)	tasks.	We	study	issues	in	building	and	maintaining	a	data	warehouse	in
Section	11.2.

The	most	basic	form	of	analytics	is	generation	of	aggregates	and	reports	summarizing	the	data	in	ways
that	are	meaningful	to	the	organization.	Analysts	need	to	get	a	number	of	different	aggregates	and
compare	them	to	understand	patterns	in	the	data.

Aggregates,	and	in	some	cases	the	underlying	data,	are	typically	presented	graphically	as	charts,	to	make
it	easy	for	humans	to	visualize	the	data.	Dashboards	that	display	charts	summarizing	key	organizational
parameters,	such	as	sales,	expenses,	product	returns,	and	so	forth,	are	popular	means	of	monitoring	the
health	of	an	organization.

Analysts	also	need	to	visualize	data	in	ways	that	can	highlight	anomalies	or	give	insights	into	causes	for
changes	in	the	business.

Systems	that	support	very	efficient	analysis,	where	aggregate	queries	on	large	data	are	answered	in
almost	real	time	(as	opposed	to	being	answered	after	tens	of	minutes	or	multiple	hours)	are	popular	with
analysts.	Such	systems	are	referred	to	as	online	analytical	processing	(OLAP)	systems.	We	discuss	online
analytical	processing	in	Section	11.3,	where	we	cover	the	concept	of	multidimensional	data,	OLAP
operations,	relational	representation	of	multidimensional	summaries.	We	also	discuss	graphical
representation	of	data	and	visualization	in	Section	11.3.

Statistical	analysis	is	an	important	part	of	data	analysis.	There	are	several	tools	that	are	designed	for
statistical	analysis,	including	the	R	language/environment,	which	is	open	source,	and	commercial	systems
such	as	SAS	and	SPSS.	The	R	language	is	widely	used	today,	and	in	addition	to	features	for	statistical
analysis,	it	supports	facilities	for	graphical	display	of	data.	A	large	number	of	R	packages	(libraries)	are
available	that	implement	a	wide	variety	of	data	analysis	tasks,	including	many	machine-learning
algorithms.	R	has	been	integrated	with	databases	as	well	as	with	Big	Data	systems	such	as	Apache	Spark,
which	allows	R	programs	to	be	executed	in	parallel	on	large	datasets.

Statistical	analysis	is	a	large	area	by	itself,	and	we	do	not	discuss	it	further	in	this	book.

References	providing	more	information	may	be	found	in	the	Further	Reading	section	at	the	end	of	this
chapter.

Prediction	of	different	forms	is	another	key	aspect	of	analytics.	For	example,	banks	need	to	decide
whether	to	give	a	loan	to	a	loan	applicant,	and	online	advertisers	need	to	decide	which	advertisement	to
show	to	a	particular	user.	As	another	example,	manufacturers	and	retailers	need	to	make	decisions	on
what	items	to	manufacture	or	order	in	what	quantities.

These	decisions	are	driven	significantly	by	techniques	for	analyzing	past	data	and	using	the	past	to
predict	the	future.	For	example,	the	risk	of	loan	default	can	be	predicted	as	follows.	First,	the	bank	would
examine	the	loan	default	history	of	past	cus-

11.2

Data	Warehousing

521

tomers,	find	key	features	of	customers,	such	as	salary,	education	level,	job	history,	and	so	on,	that	help	in
prediction	of	loan	default.	The	bank	would	then	build	a	prediction	model	(such	as	a	decision	tree,	which
we	study	later	in	this	chapter)	using	the	chosen	features.	When	a	customer	then	applies	for	a	loan,	the
features	of	that	particular	customer	are	fed	into	the	model	which	makes	a	prediction,	such	as	an
estimated	likelihood	of	loan	default.	The	prediction	is	used	to	make	business	decisions,	such	as	whether	to
give	a	loan	to	the	customer.

Similarly,	analysts	may	look	at	the	past	history	of	sales	and	use	it	to	predict	future	sales,	to	make
decisions	on	what	and	how	much	to	manufacture	or	order,	or	how	to	target	their	advertising.	For	example,

a	car	company	may	search	for	customer	attributes	that	help	predict	who	buys	different	types	of	cars.	It
may	find	that	most	of	its	small	sports	cars	are	bought	by	young	women	whose	annual	incomes	are	above
$50,000.

The	company	may	then	target	its	marketing	to	attract	more	such	women	to	buy	its	small	sports	cars	and
may	avoid	wasting	money	trying	to	attract	other	categories	of	people	to	buy	those	cars.

Machine-learning	techniques	are	key	to	finding	patterns	in	data	and	in	making	predictions	from	these
patterns.	The	field	of	data	mining	combines	knowledge-discovery	techniques	invented	by	machine-
learning	researchers	with	efficient	implementation	techniques	that	enable	them	to	be	used	on	extremely
large	databases.	Section	11.4

discusses	data	mining.

The	term	business	intelligence	(BI)	is	used	in	a	broadly	similar	sense	to	data	analytics.	The	term	decision
support	is	also	used	in	a	related	but	narrower	sense,	with	a	focus	on	reporting	and	aggregation,	but	not
including	machine	learning/data	mining.	Decision-support	tasks	typically	use	SQL	queries	to	process	large
amounts	of	data.

Decision-support	queries	are	can	be	contrasted	with	queries	for	online	transaction	processing,	where
each	query	typically	reads	only	a	small	amount	of	data	and	may	perform	a	few	small	updates.

11.2

Data	Warehousing

Large	organizations	have	a	complex	internal	organization	structure,	and	therefore	different	data	may	be
present	in	different	locations,	or	on	different	operational	systems,	or	under	different	schemas.	For
instance,	manufacturing-problem	data	and	customer-complaint	data	may	be	stored	on	different	database
systems.	Organizations	often	purchase	data	from	external	sources,	such	as	mailing	lists	that	are	used	for
product	promotions,	or	credit	scores	of	customers	that	are	provided	by	credit	bureaus,	to	decide	on
creditworthiness	of	customers.1

Corporate	decision	makers	require	access	to	information	from	multiple	such	sources.	Setting	up	queries
on	individual	sources	is	both	cumbersome	and	inefficient.

1Credit	bureaus	are	companies	that	gather	information	about	consumers	from	multiple	sources	and
compute	a	creditworthiness	score	for	each	consumer.

522

Chapter	11

Data	Analytics

Moreover,	the	sources	of	data	may	store	only	current	data,	whereas	decision	makers	may	need	access	to
past	data	as	well;	for	instance,	information	about	how	purchase	patterns	have	changed	in	the	past	few
years	could	be	of	great	importance.	Data	warehouses	provide	a	solution	to	these	problems.

A	data	warehouse	is	a	repository	(or	archive)	of	information	gathered	from	multiple	sources,	stored	under
a	unified	schema,	at	a	single	site.	Once	gathered,	the	data	are	stored	for	a	long	time,	permitting	access	to
historical	data.	Thus,	data	warehouses	provide	the	user	a	single	consolidated	interface	to	data,	making
decision-support	queries	easier	to	write.	Moreover,	by	accessing	information	for	decision	support	from	a
data	warehouse,	the	decision	maker	ensures	that	online	transaction-processing	systems	are	not	affected
by	the	decision-support	workload.

11.2.1

Components	of	a	Data	Warehouse

Figure	11.1	shows	the	architecture	of	a	typical	data	warehouse	and	illustrates	the	gathering	of	data,	the
storage	of	data,	and	the	querying	and	data	analysis	support.	Among	the	issues	to	be	addressed	in	building
a	warehouse	are	the	following:

•	When	and	how	to	gather	data.	In	a	source-driven	architecture	for	gathering	data,	the	data	sources
transmit	new	information,	either	continually	(as	transaction	processing	takes	place),	or	periodically
(nightly,	for	example).	In	a	destination-driven	architecture,	the	data	warehouse	periodically	sends
requests	for	new	data	to	the	sources.

Unless	updates	at	the	sources	are	“synchronously”	replicated	at	the	warehouse,	the	warehouse	will	never
be	quite	up-to-date	with	the	sources.	Synchronous	replication	can	be	expensive,	so	many	data	warehouses
do	not	use	synchronous	replication,	and	they	perform	queries	only	on	data	that	are	old	enough	that	they

have	data	source	1

data

loaders

data	source	2

...

query	and

DBMS

analysis	tools

data	warehouse

data	source	n

Figure	11.1	Data-warehouse	architecture.

11.2

Data	Warehousing

523

been	completely	replicated.	Traditionally,	analysts	were	happy	with	using	yester-day’s	data,	so	data
warehouses	could	be	loaded	with	data	up	to	the	end	of	the	previous	day.	However,	increasingly
organizations	want	more	up-to-date	data.	The	data	freshness	requirements	depend	on	the	application.
Data	that	are	within	a	few	hours	old	may	be	sufficient	for	some	applications;	others	that	require	real-time
responses	to	events	may	use	stream	processing	infrastructure	(described	in	Section	10.5)	instead	of
depending	on	a	warehouse	infrastructure.

•	What	schema	to	use.	Data	sources	that	have	been	constructed	independently	are	likely	to	have	different
schemas.	In	fact,	they	may	even	use	different	data	models.

Part	of	the	task	of	a	warehouse	is	to	perform	schema	integration	and	to	convert	data	to	the	integrated
schema	before	they	are	stored.	As	a	result,	the	data	stored	in	the	warehouse	are	not	just	a	copy	of	the
data	at	the	sources.	Instead,	they	can	be	thought	of	as	a	materialized	view	of	the	data	at	the	sources.

•	Data	transformation	and	cleansing.	The	task	of	correcting	and	preprocessing	data	is	called	data
cleansing.	Data	sources	often	deliver	data	with	numerous	minor	inconsistencies,	which	can	be	corrected.
For	example,	names	are	often	misspelled,	and	addresses	may	have	street,	area,	or	city	names	misspelled,
or	postal	codes	entered	incorrectly.	These	can	be	corrected	to	a	reasonable	extent	by	consulting	a
database	of	street	names	and	postal	codes	in	each	city.	The	approximate	matching	of	data	required	for
this	task	is	referred	to	as	fuzzy	lookup.

Address	lists	collected	from	multiple	sources	may	have	duplicates	that	need	to	be	eliminated	in	a	merge–
purge	operation	(this	operation	is	also	referred	to	as	deduplication).	Records	for	multiple	individuals	in	a
house	may	be	grouped	together	so	only	one	mailing	is	sent	to	each	house;	this	operation	is	called
householding.

Data	may	be	transformed	in	ways	other	than	cleansing,	such	as	changing	the	units	of	measure,	or
converting	the	data	to	a	different	schema	by	joining	data	from	multiple	source	relations.	Data	warehouses
typically	have	graphical	tools	to	support	data	transformation.	Such	tools	allow	transformation	to	be
specified	as	boxes,	and	edges	can	be	created	between	boxes	to	indicate	the	flow	of	data.

Conditional	boxes	can	route	data	to	an	appropriate	next	step	in	transformation.

•	How	to	propagate	updates.	Updates	on	relations	at	the	data	sources	must	be	propagated	to	the	data
warehouse.	If	the	relations	at	the	data	warehouse	are	exactly	the	same	as	those	at	the	data	source,	the
propagation	is	straightforward.	If	they	are	not,	the	problem	of	propagating	updates	is	basically	the	view-
maintenance	problem,	which	was	discussed	in	Section	4.2.3,	and	is	covered	in	more	detail	in	Section	16.5.

•	What	data	to	summarize.	The	raw	data	generated	by	a	transaction-processing	system	may	be	too	large
to	store	online.	However,	we	can	answer	many	queries	by	maintaining	just	summary	data	obtained	by
aggregation	on	a	relation,	rather	than	maintaining	the	entire	relation.	For	example,	instead	of	storing	data
about	every	sale	of	clothing,	we	can	store	total	sales	of	clothing	by	item	name	and	category.

524

Chapter	11

Data	Analytics

The	different	steps	involved	in	getting	data	into	a	data	warehouse	are	called	extract,	transform,	and	load
or	ETL	tasks;	extraction	refers	to	getting	data	from	the	sources,	while	load	refers	to	loading	the	data	into
the	data	warehouse.	In	current	generation	data	warehouses	that	support	user-defined	functions	or
MapReduce	frameworks,	data	may	be	extracted,	loaded	into	the	warehouse,	and	then	transformed.	The
steps	are	then	referred	to	as	extract,	load,	and	transform	or	ELT	tasks.	The	ELT	approach	permits	the	use
of	parallel	processing	frameworks	for	data	transformation.

11.2.2

Multidimensional	Data	and	Warehouse	Schemas

Data	warehouses	typically	have	schemas	that	are	designed	for	data	analysis,	using	tools	such	as	OLAP
tools.	The	relations	in	a	data	warehouse	schema	can	usually	be	classified	as	fact	tables	and	dimension
tables.	Fact	tables	record	information	about	individual	events,	such	as	sales,	and	are	usually	very	large.	A
table	recording	sales	information	for	a	retail	store,	with	one	tuple	for	each	item	that	is	sold,	is	a	typical
example	of	a	fact	table.	The	attributes	in	fact	table	can	be	classified	as	either	dimension	attributes	or
measure	attributes,	The	measure	attributes	store	quantitative	information,	which	can	be	aggregated
upon;	the	measure	attributes	of	a	sales	table	would	include	the	number	of	items	sold	and	the	price	of	the
items.	In	contrast,	dimension	attributes	are	dimensions	upon	which	measure	attributes,	and	summaries	of
measure	attributes,	are	grouped	and	viewed.	The	dimension	attributes	of	a	sales	table	would	include	an
item	identifier,	the	date	when	the	item	is	sold,	which	location	(store)	the	item	was	sold	from,	the	customer
who	bought	the	item,	and	so	on.

Data	that	can	be	modeled	using	dimension	attributes	and	measure	attributes	are	called	multidimensional
data.

To	minimize	storage	requirements,	dimension	attributes	are	usually	short	identifiers	that	are	foreign	keys
into	other	tables	called	dimension	tables.	For	instance,	a	fact	table	sales	would	have	dimension	attributes
item	id,	store	id,	customer	id,	and	date,	and	measure	attributes	number	and	price.	The	attribute	store	id	is
a	foreign	key	into	a	dimension	table	store,	which	has	other	attributes	such	as	store	location	(city,	state,
country).

The	item	id	attribute	of	the	sales	table	would	be	a	foreign	key	into	a	dimension	table	item	info,	which
would	contain	information	such	as	the	name	of	the	item,	the	category	to	which	the	item	belongs,	and
other	item	details	such	as	color	and	size.	The	customer	id	attribute	would	be	a	foreign	key	into	a	customer
table	containing	attributes	such	as	name	and	address	of	the	customer.	We	can	also	view	the	date	attribute
as	a	foreign	key	into	a	date	info	table	giving	the	month,	quarter,	and	year	of	each	date.

The	resultant	schema	appears	in	Figure	11.2.	Such	a	schema,	with	a	fact	table,	multiple	dimension	tables,
and	foreign	keys	from	the	fact	table	to	the	dimension	tables	is	called	a	star	schema.	More	complex	data-
warehouse	designs	may	have	multiple	levels	of	dimension	tables;	for	instance,	the	item	info	table	may
have	an	attribute	manufacturer	id	that	is	a	foreign	key	into	another	table	giving	details	of	the
manufacturer.	Such	schemas	are	called	snowflake	schemas.	Complex	data-warehouse	designs	may	also
have	more	than	one	fact	table.

11.2

Data	Warehousing

525

item_info

store

item_id

store_id

itemname

city

color

state

sales

size

country

item_id

category

store_id

customer_id

date

customer

number

customer_id

date_info

price

name

date

street

month

city

quarter

state

year

zipcode

country

Figure	11.2	Star	schema	for	a	data	warehouse.

11.2.3

Database	Support	for	Data	Warehouses

The	requirements	of	a	database	system	designed	for	transaction	processing	are	somewhat	different	from
one	designed	to	support	a	data-warehouse	system.	One	key	difference	is	that	a	transaction-processing
database	needs	to	support	many	small	queries,	which	may	involve	updates	in	addition	to	reads.	In
contrast,	data	warehouses	typically	need	to	process	far	fewer	queries,	but	each	query	accesses	a	much
larger	amount	of	data.

Most	importantly,	while	new	records	are	inserted	into	relations	in	a	data	warehouse,	and	old	records	may
be	deleted	once	they	are	no	longer	needed,	to	make	space	for	new	data,	records	are	typically	never
updated	once	they	are	added	to	a	relation.

Thus,	data	warehouses	do	not	need	to	pay	any	overhead	for	concurrency	control.	(As	described	in	Chapter
17	and	Chapter	18,	if	concurrent	transactions	read	and	write	the	same	data,	the	resultant	data	may
become	inconsistent.	Concurrency	control	restricts	concurrent	accesses	in	a	way	that	ensures	there	is	no
erroneous	update	to	the	database.)	The	overhead	of	concurrency	control	can	be	significant	in	terms	of	not

just	time	taken	for	query	processing,	but	also	in	terms	of	storage,	since	databases	often	store	multiple
versions	of	data	to	avoid	conflicts	between	small	update	transactions	and	long	read-only	transactions.
None	of	these	overheads	are	needed	in	a	data	warehouse.

Databases	traditionally	store	all	attributes	of	a	tuple	together,	and	tuples	are	stored	sequentially	in	a	file.
Such	a	storage	layout	is	referred	to	as	row-oriented	storage.	In	contrast,	in	column-oriented	storage,	each
attribute	of	a	relation	is	stored	in	a	separate	file,	with	values	from	successive	tuples	stored	at	successive
positions	in	the	file.	Assuming	fixed-size	data	types,	the	value	of	attribute	A	of	the	i	th	tuple	of	a	relation
can	be	found

526

Chapter	11

Data	Analytics

by	accessing	the	file	corresponding	to	attribute	A	and	reading	the	value	at	offset	(i	−	1)	times	the	size	(in
bytes)	of	values	in	attribute	A.

Column-oriented	storage	has	at	least	two	major	benefits	over	row-oriented	storage:	1.	When	a	query
needs	to	access	only	a	few	attributes	of	a	relation	with	a	large	number	of	attributes,	the	remaining
attributes	need	not	be	fetched	from	disk	into	memory.	In	contrast,	in	row-oriented	storage,	not	only	are
irrelevant	attributes	fetched	into	memory,	but	they	may	also	get	prefetched	into	processor	cache,	wasting
cache	space	and	memory	bandwidth,	if	they	are	stored	adjacent	to	attributes	used	in	the	query.

2.	Storing	values	of	the	same	type	together	increases	the	effectiveness	of	compression;	compression	can
greatly	reduce	both	the	disk	storage	cost	and	the	time	to	retrieve	data	from	disk.

On	the	other	hand,	column-oriented	storage	has	the	drawback	that	storing	or	fetching	a	single	tuple
requires	multiple	I/O	operations.

As	a	result	of	these	trade-offs,	column-oriented	storage	is	not	widely	used	for	transaction-processing
applications.	However,	column-oriented	storage	is	today	widely	used	for	data-warehousing	applications,
where	accesses	are	rarely	to	individual	tuples	but	rather	require	scanning	and	aggregating	multiple
tuples.	Column-oriented	storage	is	described	in	more	detail	in	Section	13.6.

Database	implementations	that	are	designed	purely	for	data	warehouse	applications	include	Teradata,
Sybase	IQ,	and	Amazon	Redshift.	Many	traditional	databases	support	efficient	execution	of	data
warehousing	applications	by	adding	features	such	as	columnar	storage;	these	include	Oracle,	SAP	HANA,
Microsoft	SQL	Server,	and	IBM

DB2.

In	the	2010s	there	has	been	an	explosive	growth	in	Big	Data	systems	that	are	designed	to	process	queries
over	data	stored	in	files.	Such	systems	are	now	a	key	part	of	the	data	warehouse	infrastructure.	As	we
saw	in	Section	10.3,	the	motivation	for	such	systems	was	the	growth	of	data	generated	by	online	systems
in	the	form	of	log	files,	which	have	a	lot	of	valuable	information	that	can	be	exploited	for	decision	support.

However,	these	systems	can	handle	any	kind	of	data,	including	relational	data.	Apache	Hadoop	is	one	such
system,	and	the	Hive	system	allows	SQL	queries	to	be	executed	on	top	of	the	Hadoop	system.

A	number	of	companies	provide	software	to	optimize	Hive	query	processing,	including	Cloudera	and
Hortonworks.	Apache	Spark	is	another	popular	Big	Data	system	that	supports	SQL	queries	on	data	stored
in	files.	Compressed	file	structures	containing	records	with	columns,	such	as	Orc	and	Parquet,	are
increasingly	used	to	store	such	log	records,	simplifying	integration	with	SQL.	Such	file	formats	are
discussed	in	more	detail	in	Section	13.6.

11.3

Online	Analytical	Processing

527

11.2.4

Data	Lakes

While	data	warehouses	pay	a	lot	of	attention	to	ensuring	a	common	data	schema	to	ease	the	job	of
querying	the	data,	there	are	situations	where	organizations	want	to	store	data	without	paying	the	cost	of
creating	a	common	schema	and	transforming	data	to	the	common	schema.	The	term	data	lake	is	used	to
refer	to	a	repository	where	data	can	be	stored	in	multiple	formats,	including	structured	records	and
unstructured	file	formats.	Unlike	data	warehouses,	data	lakes	do	not	require	up-front	effort	to	preprocess
data,	but	they	do	require	more	effort	when	creating	queries.	Since	data	may	be	stored	in	many	different
formats,	querying	tools	also	need	to	be	quite	flexible.	Apache	Hadoop	and	Apache	Spark	are	popular	tools
for	querying	such	data,	since	they	support	querying	of	both	unstructured	and	structured	data.

11.3

Online	Analytical	Processing

Data	analysis	often	involves	looking	for	patterns	that	arise	when	data	values	are	grouped	in	“interesting”
ways.	As	a	simple	example,	summing	credit	hours	for	each	department	is	a	way	to	discover	which
departments	have	high	teaching	responsibilities.	In	a	retail	business,	we	might	group	sales	by	product,
the	date	or	month	of	the	sale,	the	color	or	size	of	the	product,	or	the	profile	(such	as	age	group	and
gender)	of	the	customer	who	bought	the	product.

11.3.1

Aggregation	on	Multidimensional	Data

Consider	an	application	where	a	shop	wants	to	find	out	what	kinds	of	clothes	are	popular.	Let	us	suppose
that	clothes	are	characterized	by	their	item	name,	color,	and	size,	and	that	we	have	a	relation	sales	with
the	schema.

sales	(item	name,	color,	clothes	size,	quantity)	Suppose	that	item	name	can	take	on	the	values	(skirt,
dress,	shirt,	pants),	color	can	take	on	the	values	(dark,	pastel,	white),	clothes	size	can	take	on	values
(small,	medium,	large),	and	quantity	is	an	integer	value	representing	the	total	number	of	items	of	a	given

{	item	name,	color,	clothes	size	}.	An	instance	of	the	sales	relation	is	shown	in	Figure	11.3.

Statistical	analysis	often	requires	grouping	on	multiple	attributes.	The	attribute	quantity	of	the	sales
relation	is	a	measure	attribute,	since	it	measures	the	number	of	units	sold,	while	item	name,	color,	and
clothes	size	are	dimension	attributes.	(A	more	realistic	version	of	the	sales	relation	would	have	additional
dimensions,	such	as	time	and	sales	location,	and	additional	measures	such	as	monetary	value	of	the	sale.)
To	analyze	the	multidimensional	data,	a	manager	may	want	to	see	data	laid	out	as	shown	in	the	table	in
Figure	11.4.	The	table	shows	total	quantities	for	different	combinations	of	item	name	and	color.	The	value
of	clothes	size	is	specified	to	be	all,	indicating	that	the	displayed	values	are	a	summary	across	all	values	of
clothes	size	(i.e.,	we	want	to	group	the	“small,”	“medium,”	and	“large”	items	into	one	single	group.

528

Chapter	11

Data	Analytics

item	name

color

clothes	size

quantity

dress

dark

small

2

dress

dark

medium

6

dress

dark

large

12

dress

pastel

small

4

dress

pastel

medium

3

dress

pastel

large

3

dress

white

small

2

dress

white

medium

3

dress

white

large

0

pants

dark

small

14

pants

dark

medium

6

pants

dark

large

0

pants

pastel

small

1

pants

pastel

medium

0

pants

pastel

large

1

pants

white

small

3

pants

white

medium

0

pants

white

large

2

shirt

dark

small

2

shirt

dark

medium

6

shirt

dark

large

6

shirt

pastel

small

4

shirt

pastel

medium

1

shirt

pastel

large

2

shirt

white

small

17

shirt

white

medium

1

shirt

white

large

10

skirt

dark

small

2

skirt

dark

medium

5

skirt

dark

large

1

skirt

pastel

small

11

skirt

pastel

medium

9

skirt

pastel

large

15

skirt

white

small

2

skirt

white

medium

5

skirt

white

large

3

Figure	11.3	An	example	of	sales	relation.

The	table	in	Figure	11.4	is	an	example	of	a	cross-tabulation	(or	cross-tab,	for	short),	also	referred	to	as	a
pivot-table.	In	general,	a	cross-tab	is	a	table	derived	from	a	relation

11.3

Online	Analytical	Processing

529

clothes_size	all

color

dark

pastel

white

total

skirt

8

35

10

53

dress

20

10

5

35

item_name

shirt

14

7

28

49

pants

20

2

5

27

total

62

54

48

164

Figure	11.4	Cross-tabulation	of	sales	by	item	name	and	color.

(say	R),	where	values	for	one	attribute	(say	A)	form	the	column	headers	and	values	for	another	attribute
(say	B)	form	the	row	header.	For	example,	in	Figure	11.4,	the	attribute	color	corresponds	to	A	(with	values
“dark,”	“pastel,”	and	“white”),	and	the	attribute	item	name	corresponds	to	B	(with	values	“skirt,”	“dress,”
“shirt,”	and	“pants”).

Each	cell	in	the	pivot-table	can	be	identified	by	(a	,	b),	where	a	is	a	value	for	A	i

j

i

and	b	a	value	for	B.	The	values	of	the	various	cells	in	the	pivot-table	are	derived	from	j

the	relation	R	as	follows:	If	there	is	at	most	one	tuple	in	R	with	any	(a	,	b)	value,	the	i

j

value	in	the	cell	is	derived	from	that	single	tuple	(if	any);	for	instance,	it	could	be	the	value	of	one	or	more
other	attributes	of	the	tuple.	If	there	can	be	multiple	tuples	with	an	(a	,	b)	value,	the	value	in	the	cell
must	be	derived	by	aggregation	on	the	tuples	with	i

j

that	value.	In	our	example,	the	aggregation	used	is	the	sum	of	the	values	for	attribute	quantity,	across	all
values	for	clothes	size,	as	indicated	by	“clothes	size:	all”	above	the	cross-tab	in	Figure	11.4.	Thus,	the
value	for	cell	(skirt,	pastel)	is	35,	since	there	are	three	tuples	in	the	sales	table	that	meet	that	criteria,
with	values	11,	9,	and	15.

In	our	example,	the	cross-tab	also	has	an	extra	column	and	an	extra	row	storing	the	totals	of	the	cells	in
the	row/column.	Most	cross-tabs	have	such	summary	rows	and	columns.

The	generalization	of	a	cross-tab,	which	is	two-dimensional,	to	n	dimensions	can	be	visualized	as	an	n-
dimensional	cube,	called	the	data	cube.	Figure	11.5	shows	a	data	cube	on	the	sales	relation.	The	data
cube	has	three	dimensions,	item	name,	color,	and	clothes	size,	and	the	measure	attribute	is	quantity.	Each
cell	is	identified	by	values	for	these	three	dimensions.	Each	cell	in	the	data	cube	contains	a	value,	just	as
in	a	crosstab.	In	Figure	11.5,	the	value	contained	in	a	cell	is	shown	on	one	of	the	faces	of	the	cell;	other
faces	of	the	cell	are	shown	blank	if	they	are	visible.	All	cells	contain	values,	even	if	they	are	not	visible.

The	value	for	a	dimension	may	be	all,	in	which	case	the	cell	contains	a	summary	over	all	values	of	that
dimension,	as	in	the	case	of	cross-tabs.

The	number	of	different	ways	in	which	the	tuples	can	be	grouped	for	aggregation	can	be	large.	In	the
example	of	Figure	11.5,	there	are	3	colors,	4	items,	and	3	sizes	resulting	in	a	cube	size	of	3	×	4	×	3	=	36.
Including	the	summary	values,	we	obtain	a

530

Chapter	11

Data	Analytics

2

5

3

1

11

4

7

6

12

29

2

8

5

7

22

16

dark

8

20

14

20

62

4

34

18

pastel

35

10

7

2

54

9

color

21

45

white

10

5

28

5

48

42

small

77

medium

all

53

35

49

27

164

large

all

clothes_size

skirt

dress

shirt

pants

all

item_name

Figure	11.5	Three-dimensional	data	cube.

4	×	5	×	4	cube,	whose	size	is	80.	In	fact,	for	a	table	with	n	dimensions,	aggregation	can	be	performed
with	grouping	on	each	of	the	2	n	subsets	of	the	n	dimensions.2

An	online	analytic	processing	(OLAP)	system	allows	a	data	analyst	to	look	at	different	cross-tabs	on	the
same	data	by	interactively	selecting	the	attributes	in	the	cross-tab.

Each	cross-tab	is	a	two-dimensional	view	on	a	multidimensional	data	cube.	For	instance,	the	analyst	may
select	a	cross-tab	on	item	name	and	clothes	size	or	a	cross-tab	on	color	and	clothes	size.	The	operation	of

changing	the	dimensions	used	in	a	cross-tab	is	called	pivoting.

OLAP	systems	allow	an	analyst	to	see	a	cross-tab	on	item	name	and	color	for	a	fixed	value	of	clothes	size,
for	example,	large,	instead	of	the	sum	across	all	sizes.	Such	an	operation	is	referred	to	as	slicing,	since	it
can	be	thought	of	as	viewing	a	slice	of	the	data	cube.	The	operation	is	sometimes	called	dicing,
particularly	when	values	for	multiple	dimensions	are	fixed.

When	a	cross-tab	is	used	to	view	a	multidimensional	cube,	the	values	of	dimension	attributes	that	are	not
part	of	the	cross-tab	are	shown	above	the	cross-tab.	The	value	of	such	an	attribute	can	be	all,	as	shown	in
Figure	11.4,	indicating	that	data	in	the	cross-tab	are	a	summary	over	all	values	for	the	attribute.
Slicing/dicing	simply	consists	of	selecting	specific	values	for	these	attributes,	which	are	then	displayed	on
top	of	the	cross-tab.

OLAP	systems	permit	users	to	view	data	at	any	desired	level	of	granularity.	The	operation	of	moving	from
finer-granularity	data	to	a	coarser	granularity	(by	means	of	aggregation)	is	called	a	rollup.	In	our
example,	starting	from	the	data	cube	on	the	2Grouping	on	the	set	of	all	n	dimensions	is	useful	only	if	the
table	may	have	duplicates.

11.3

Online	Analytical	Processing

531

sales	table,	we	got	our	example	cross-tab	by	rolling	up	on	the	attribute	clothes	size.	The	opposite
operation—that	of	moving	from	coarser-granularity	data	to	finer-granularity	data—is	called	a	drill	down.
Finer-granularity	data	cannot	be	generated	from	coarse-granularity	data;	they	must	be	generated	either
from	the	original	data	or	from	even	finer-granularity	summary	data.

Analysts	may	wish	to	view	a	dimension	at	different	levels	of	detail.	For	instance,	consider	an	attribute	of
type	datetime	that	contains	a	date	and	a	time	of	day.	Using	time	precise	to	a	second	(or	less)	may	not	be
meaningful:	An	analyst	who	is	interested	in	rough	time	of	day	may	look	at	only	the	hour	value.	An	analyst
who	is	interested	in	sales	by	day	of	the	week	may	map	the	date	to	a	day	of	the	week	and	look	only	at	that.

Another	analyst	may	be	interested	in	aggregates	over	a	month,	or	a	quarter,	or	for	an	entire	year.

The	different	levels	of	detail	for	an	attribute	can	be	organized	into	a	hierarchy.

Figure	11.6a	shows	a	hierarchy	on	the	datetime	attribute.	As	another	example,	Figure	11.6b	shows	a
hierarchy	on	location,	with	the	city	being	at	the	bottom	of	the	hierarchy,	state	above	it,	country	at	the	next
level,	and	region	being	the	top	level.	In	our	earlier	example,	clothes	can	be	grouped	by	category	(for
instance,	menswear	or	womenswear);	category	would	then	lie	above	item	name	in	our	hierarchy	on
clothes.	At	the	level	of	actual	values,	skirts	and	dresses	would	fall	under	the	womenswear	category	and
pants	and	shirts	under	the	menswear	category.

year

quarter

region

day	of	week

month

country

hour	of	day

date

state

date	time

city

(a)	time	hierarchy

(b)	location	hierarchy

Figure	11.6	Hierarchies	on	dimensions.

532

Chapter	11

Data	Analytics

clothes_size:

all

category	item_name	color

dark

pastel

white

total

womenswear

skirt

8

8

10

53

dress

20

20

5

35

subtotal

28

28

15

88

menswear

pants

14

14

28

49

shirt

20

20

5

27

subtotal

34

34

33

76

total

62

62

48

164

Figure	11.7	Cross-tabulation	of	sales	with	hierarchy	on	item	name.

An	analyst	may	be	interested	in	viewing	sales	of	clothes	divided	as	menswear	and	womenswear,	and	not
interested	in	individual	values.	After	viewing	the	aggregates	at	the	level	of	womenswear	and	menswear,
an	analyst	may	drill	down	the	hierarchy	to	look	at	individual	values.	An	analyst	looking	at	the	detailed
level	may	drill	up	the	hierarchy	and	look	at	coarser-level	aggregates.	Both	levels	can	be	displayed	on	the
same	cross-tab,	as	in	Figure	11.7.

11.3.2

Relational	Representation	of	Cross-Tabs

A	cross-tab	is	different	from	relational	tables	usually	stored	in	databases,	since	the	number	of	columns	in
the	cross-tab	depends	on	the	actual	data.	A	change	in	the	data	values	may	result	in	adding	more	columns,
which	is	not	desirable	for	data	storage.	However,	a	cross-tab	view	is	desirable	for	display	to	users.	It	is
straightforward	to	represent	a	cross-tab	without	summary	values	in	a	relational	form	with	a	fixed	number
of	columns.

A	cross-tab	with	summary	rows/columns	can	be	represented	by	introducing	a	special	value	all	to
represent	subtotals,	as	in	Figure	11.8.	The	SQL	standard	actually	uses	the	null	value	in	place	of	all,	but	to
avoid	confusion	with	regular	null	values,	we	shall	continue	to	use	all.

Consider	the	tuples	(skirt,	all,	all,	53)	and	(dress,	all,	all,	35).	We	have	obtained	these	tuples	by
eliminating	individual	tuples	with	different	values	for	color	and	clothes	size,	and	by	replacing	the	value	of
quantity	with	an	aggregate	—	namely,	the	sum	of	the	quantities.	The	value	all	can	be	thought	of	as
representing	the	set	of	all	values	for	an	attribute.	Tuples	with	the	value	all	for	the	color	and	clothes	size
dimensions	can	be	obtained	by	an	aggregation	on	the	sales	relation	with	a	group	by	on	the	column	item
name.	Similarly,	a	group	by	on	color,	clothes	size	can	be	used	to	get	the	tuples	with	the	value	all	for	item
name,	and	a	group	by	with	no	attributes	(which	can	simply	be	omitted	in	SQL)	can	be	used	to	get	the
tuple	with	value	all	for	item	name,	color,	and	clothes	size.

11.3

Online	Analytical	Processing

533

item	name

color

clothes	size

quantity

skirt

dark

all

8

skirt

pastel

all

35

skirt

white

all

10

skirt

all

all

53

dress

dark

all

20

dress

pastel

all

10

dress

white

all

5

dress

all

all

35

shirt

dark

all

14

shirt

pastel

all

7

shirt

white

all

28

shirt

all

all

49

pants

dark

all

20

pants

pastel

all

2

pants

white

all

5

pants

all

all

27

all

dark

all

62

all

pastel

all

54

all

white

all

48

all

all

all

164

Figure	11.8	Relational	representation	of	the	data	in	Figure	11.4.

Hierarchies	can	also	be	represented	by	relations.	For	example,	the	fact	that	skirts	and	dresses	fall	under
the	womenswear	category	and	the	pants	and	shirts	under	the	menswear	category	can	be	represented	by	a
relation	itemcategory	(item	name,	category).

This	relation	can	be	joined	with	the	sales	relation	to	get	a	relation	that	includes	the	category	for	each
item.	Aggregation	on	this	joined	relation	allows	us	to	get	a	crosstab	with	hierarchy.	As	another	example,	a
hierarchy	on	city	can	be	represented	by	a	single	relation	city	hierarchy	(ID,	city,	state,	country,	region),	or
by	multiple	relations,	each	mapping	values	in	one	level	of	the	hierarchy	to	values	at	the	next	level.	We
assume	here	that	cities	have	unique	identifiers,	stored	in	the	attribute	ID,	to	avoid	confusing	between	two
cities	with	the	same	name,	for	example,	the	Springfield	in	Missouri	and	the	Springfield	in	Illinois.

11.3.3

OLAP	in	SQL

Analysts	using	OLAP	systems	need	answers	to	multiple	aggregates	to	be	generated	interactively,	without
having	to	wait	for	multiple	minutes	or	hours.	This	led	initially	to	the	development	of	specialized	systems
for	OLAP	(see	Note	11.1	on	page	535).	Many	database	systems	now	implement	OLAP	along	with	SQL
constructs	to	express	OLAP

queries.	As	we	saw	in	Section	5.5.3,	several	SQL	implementations,	such	as	Microsoft

534

Chapter	11

Data	Analytics

SQL	Server	and	Oracle,	support	a	pivot	clause	that	allows	creation	of	cross-tabs.	Given	the	sales	relation
from	Figure	11.3,	the	query:

select	*

from	sales

pivot	(

sum(quantity)

for	color	in	('dark','pastel','white')

)

order	by	item	name;

returns	the	cross-tab	shown	in	Figure	11.9.	Note	that	the	for	clause	within	the	pivot	clause	specifies	the
color	values	that	appear	as	attribute	names	in	the	pivot	result.	The	attribute	color	itself	does	not	appear	in
the	result,	although	all	other	attributes	are	retained,	except	that	the	values	for	the	newly	created
attributes	are	specified	to	come	from	the	attribute	quantity.	In	case	more	than	one	tuple	contributes
values	to	a	given	cell,	the	aggregate	operation	within	the	pivot	clause	specifies	how	the	values	should	be
combined.	In	the	above	example,	the	quantity	values	are	summed	up.

Note	that	the	pivot	clause	by	itself	does	not	compute	the	subtotals	we	saw	in	the	pivot	table	from	Figure
11.4.	However,	we	can	first	generate	the	relational	representation	shown	in	Figure	11.8,	using	a	cube
operation,	as	outlined	shortly,	and	then	apply	the	pivot	clause	on	that	representation	to	get	an	equivalent
result.	In	this	case,	the	value	all	must	also	be	listed	in	the	for	clause,	and	the	order	by	clause	needs	to	be
modified	to	order	all	at	the	end.

The	data	in	a	data	cube	cannot	be	generated	by	a	single	SQL	query	if	we	use	only	the	basic	group	by
constructs,	since	aggregates	are	computed	for	several	different	groupings	item	name

clothes	size

dark

pastel

white

dress

small

2

4

2

dress

medium

6

3

3

dress

large

12

3

0

pants

small

14

1

3

pants

medium

6

0

0

pants

large

0

1

2

shirt

small

2

4

17

shirt

medium

6

1

1

shirt

large

6

2

10

skirt

small

2

11

2

skirt

medium

5

9

5

skirt

large

1

15

3

Figure	11.9	Result	of	SQL	pivot	operation	on	the	sales	relation	of	Figure	11.3.

11.3

Online	Analytical	Processing

535

Note	11.1	OLAP	IMPLEMENTATION

The	earliest	OLAP	systems	used	multidimensional	arrays	in	memory	to	store	data	cubes	and	are	referred
to	as	multidimensional	OLAP	(MOLAP)	systems.	Later,	OLAP	facilities	were	integrated	into	relational
systems,	with	data	stored	in	a	relational	database.	Such	systems	are	referred	to	as	relational	OLAP
(ROLAP)	systems.

Hybrid	systems,	which	store	some	summaries	in	memory	and	store	the	base	data	and	other	summaries	in
a	relational	database,	are	called	hybrid	OLAP	(HOLAP)	systems.

Many	OLAP	systems	are	implemented	as	client-server	systems.	The	server	contains	the	relational
database	as	well	as	any	MOLAP	data	cubes.	Client	systems	obtain	views	of	the	data	by	communicating
with	the	server.

A	na¨ıve	way	of	computing	the	entire	data	cube	(all	groupings)	on	a	relation	is	to	use	any	standard
algorithm	for	computing	aggregate	operations,	one	grouping	at	a	time.	The	na¨ıve	algorithm	would
require	a	large	number	of	scans	of	the	relation.

A	simple	optimization	is	to	compute	an	aggregation	on,	say,	(item	name,	color)	from	an	aggregation	(item
name,	color,	clothes	size),	instead	of	from	the	original	relation.	The	amount	of	data	read	drops
significantly	by	computing	an	aggregate	from	another	aggregate,	instead	of	from	the	original	relation.
Further	improvements	are	possible;	for	instance,	multiple	groupings	can	be	computed	on	a	single	scan	of
the	data.

Early	OLAP	implementations	precomputed	and	stored	entire	data	cubes,	that	is,	groupings	on	all	subsets
of	the	dimension	attributes.	Precomputation	allows	OLAP	queries	to	be	answered	within	a	few	seconds,

even	on	datasets	that	may	contain	millions	of	tuples	adding	up	to	gigabytes	of	data.	However,	there	are	2
n	groupings	with	n	dimension	attributes;	hierarchies	on	attributes	increase	the	number	further.	As	a
result,	the	entire	data	cube	is	often	larger	than	the	original	relation	that	formed	the	data	cube	and	in
many	cases	it	is	not	feasible	to	store	the	entire	data	cube.

Instead	of	precomputing	and	storing	all	possible	groupings,	it	makes	sense	to	precompute	and	store	some
of	the	groupings,	and	to	compute	others	on	demand.

Instead	of	computing	queries	from	the	original	relation,	which	may	take	a	very	long	time,	we	can	compute
them	from	other	precomputed	queries.	For	instance,	suppose	that	a	query	requires	grouping	by	(item
name,	color),	and	this	has	not	been	precomputed.	The	query	result	can	be	computed	from	summaries	by	(
item	name,	color,	clothes	size),	if	that	has	been	precomputed.	See	the	bibliographical	notes	for	references
on	how	to	select	a	good	set	of	groupings	for	precomputation,	given	limits	on	the	storage	available	for
precomputed	results.

536

Chapter	11

Data	Analytics

of	the	dimension	attributes.	Using	only	the	basic	group	by	construct,	we	would	have	to	write	many
separate	SQL	queries	and	combine	them	using	a	union	operation.	SQL

supports	special	syntax	to	allow	multiple	group	by	operations	to	be	specified	concisely.

As	we	saw	in	Section	5.5.4,	SQL	supports	generalizations	of	the	group	by	construct	to	perform	the	cube
and	rollup	operations.	The	cube	and	rollup	constructs	in	the	group	by	clause	allow	multiple	group	by
queries	to	be	run	in	a	single	query	with	the	result	returned	as	a	single	relation	in	a	style	similar	to	that	of
the	relation	of	Figure	11.8.

Consider	again	our	retail	shop	example	and	the	relation:

sales	(item	name,	color,	clothes	size,	quantity)	If	we	want	to	generate	the	entire	data	cube	using
individual	group	by	queries,	we	have	to	write	a	separate	query	for	each	of	the	following	eight	sets	of
group	by	attributes:

{	(item	name,	color,	clothes	size),	(item	name,	color),	(item	name,	clothes	size),	(color,	clothes	size),	(
item	name),	(color),	(clothes	size),	()	}

where	()	denotes	an	empty	group	by	list.

As	we	saw	in	Section	5.5.4,	the	cube	construct	allows	us	to	accomplish	this	in	one	query:

select	item	name,	color,	clothes	size,	sum(quantity)	from	sales

group	by	cube(item	name,	color,	clothes	size);	The	preceding	query	produces	a	relation	whose	schema	is:

(item	name,	color,	clothes	size,	sum(quantity))	So	that	the	result	of	this	query	is	indeed	a	relation,	tuples
in	the	result	contain	null	as	the	value	of	those	attributes	not	present	in	a	particular	grouping.	For

example,	tuples	produced	by	grouping	on	clothes	size	have	a	schema	(clothes	size,	sum(quantity)).	They
are	converted	to	tuples	on	(item	name,	color,	clothes	size,	sum(quantity))	by	inserting	null	for	item	name
and	color.

Data	cube	relations	are	often	very	large.	The	cube	query	above,	with	3	possible	colors,	4	possible	item
names,	and	3	sizes,	has	80	tuples.	The	relation	of	Figure	11.8

is	generated	by	doing	a	group	by	cube	on	item	name	and	color,	with	an	extra	column	specified	in	the
select	clause	showing	all	for	clothes	size.

To	generate	that	relation	in	SQL,	we	substitute	all	for	null	using	the	grouping	function,	as	we	saw	earlier
in	Section	5.5.4.	The	grouping	function	distinguishes	those	nulls	generated	by	OLAP	operations	from
“normal”	nulls	actually	stored	in	the	database	or	arising	from	an	outer	join.	Recall	that	the	grouping
function	returns	1	if	its	argument

11.3

Online	Analytical	Processing

537

is	a	null	value	generated	by	a	cube	or	rollup	and	0	otherwise.	We	may	then	operate	on	the	result	of	a	call
to	grouping	using	case	expressions	to	replace	OLAP-generated	nulls	with	all.	Then	the	relation	in	Figure
11.8,	with	occurrences	of	null	replaced	by	all,	can	be	computed	by	the	query:

select	case	when	grouping(item	name)	=	1	then	'all'

else	item	name	end	as	item	name,

case	when	grouping(color)	=	1	then	'all'

else	color	end	as	color,

'all'	as	clothes	size,	sum(quantity)	as	quantity

from	sales

group	by	cube(item	name,	color);

The	rollup	construct	is	the	same	as	the	cube	construct	except	that	rollup	generates	fewer	group	by
queries.	We	saw	that	group	by	cube	(item	name,	color,	clothes	size)	generated	all	eight	ways	of	forming	a
group	by	query	using	some	(or	all	or	none)	of	the	attributes.	In:

select	item	name,	color,	clothes	size,	sum(quantity)	from	sales

group	by	rollup(item	name,	color,	clothes	size);	the	clause	group	by	rollup(item	name,	color,	clothes	size)
generates	only	four	groupings:

{	(item	name,	color,	clothes	size),	(item	name,	color),	(item	name),	()	}

Notice	that	the	order	of	the	attributes	in	the	rollup	makes	a	difference;	the	last	attribute	(clothes	size,	in
our	example)	appears	in	only	one	grouping,	the	penultimate	(second	last)	attribute	in	two	groupings,	and

so	on,	with	the	first	attribute	appearing	in	all	groups	but	one	(the	empty	grouping).

Why	might	we	want	the	specific	groupings	that	are	used	in	rollup?	These	groups	are	of	frequent	practical
interest	for	hierarchies	(as	in	Figure	11.6,	for	example).	For	the	location	hierarchy	(Region,	Country,
State,	City),	we	may	want	to	group	by	Region	to	get	sales	by	region.	Then	we	may	want	to	“drill	down”	to
the	level	of	countries	within	each	region,	which	means	we	would	group	by	Region,	Country.	Drilling	down
further,	we	may	wish	to	group	by	Region,	Country,	State	and	then	by	Region,	Country,	State,	City.	The
rollup	construct	allows	us	to	specify	this	sequence	of	drilling	down	for	further	detail.

As	we	saw	earlier	in	Section	5.5.4,	multiple	rollups	and	cubes	can	be	used	in	a	single	group	by	clause.	For
instance,	the	following	query:

select	item	name,	color,	clothes	size,	sum(quantity)	from	sales

group	by	rollup(item	name),	rollup(color,	clothes	size);

538

Chapter	11

Data	Analytics

generates	the	groupings:

{	(item	name,	color,	clothes	size),	(item	name,	color),	(item	name),	(color,	clothes	size),	(color),	()	}

To	understand	why,	observe	that	rollup(item	name)	generates	two	groupings,	{(item	name),	()},	and
rollup(color,	clothes	size)	generates	three	groupings,	{(color,	clothes	size),	(color),	()	}.	The	Cartesian
product	of	the	two	gives	us	the	six	groupings	shown.

Neither	the	rollup	nor	the	cube	clause	gives	complete	control	on	the	groupings	that	are	generated.	For
instance,	we	cannot	use	them	to	specify	that	we	want	only	groupings	{(color,	clothes	size),	(clothes	size,
item	name)}.	Such	restricted	groupings	can	be	generated	by	using	the	grouping	sets	construct,	in	which
one	can	specify	the	specific	list	of	groupings	to	be	used.	To	obtain	only	groupings	{(color,	clothes	size),	(
clothes	size,	item	name)},	we	would	write:

select	item	name,	color,	clothes	size,	sum(quantity)	from	sales

group	by	grouping	sets	((color,	clothes	size),	(clothes	size,	item	name));	Specialized	languages	have	been
developed	for	querying	multidimensional	OLAP

schemas,	which	allow	some	common	tasks	to	be	expressed	more	easily	than	with	SQL.

These	include	the	MDX	and	DAX	query	languages	developed	by	Microsoft.

11.3.4

Reporting	and	Visualization	Tools

Report	generators	are	tools	to	generate	human-readable	summary	reports	from	a	database.	They
integrate	querying	the	database	with	the	creation	of	formatted	text	and	summary	charts	(such	as	bar	or
pie	charts).	For	example,	a	report	may	show	the	total	sales	in	each	of	the	past	2	months	for	each	sales
region.

The	application	developer	can	specify	report	formats	by	using	the	formatting	facilities	of	the	report
generator.	Variables	can	be	used	to	store	parameters	such	as	the	month	and	the	year	and	to	define	fields
in	the	report.	Tables,	graphs,	bar	charts,	or	other	graphics	can	be	defined	via	queries	on	the	database.
The	query	definitions	can	make	use	of	the	parameter	values	stored	in	the	variables.

Once	we	have	defined	a	report	structure	on	a	report-generator	facility,	we	can	store	it	and	can	execute	it
at	any	time	to	generate	a	report.	Report-generator	systems	provide	a	variety	of	facilities	for	structuring
tabular	output,	such	as	defining	table	and	column	headers,	displaying	subtotals	for	each	group	in	a	table,
automatically	splitting	long	tables	into	multiple	pages,	and	displaying	subtotals	at	the	end	of	each	page.

Figure	11.10	is	an	example	of	a	formatted	report.	The	data	in	the	report	are	generated	by	aggregation	on
information	about	orders.

Report-generation	tools	are	available	from	a	variety	of	vendors,	such	as	SAP	Crystal	Reports	and
Microsoft	(SQL	Server	Reporting	Services).	Several	application	suites,	such	as	Microsoft	Office,	provide	a
way	of	embedding	formatted	query	results	from

11.3

Online	Analytical	Processing

539

Acme	Supply	Company,	Inc.

Quarterly	Sales	Report

Period:	Jan.	1	to	March	31,	2009

Region

Category

Sales

Subtotal

North	Computer

Hardware

1,000,000

Computer

Software

500,000

All

categories

1,500,000

South	Computer

Hardware

200,000

Computer

Software

400,000

All

categories

600,000

Total	Sales

2,100,000

Figure	11.10	A	formatted	report.

a	database	directly	into	a	document.	Chart-generation	facilities	provided	by	Crystal	Reports	or	by
spreadsheets	such	as	Excel	can	be	used	to	access	data	from	databases	and	to	generate	tabular	depictions
of	data	or	graphical	depictions	using	charts	or	graphs.

Such	charts	can	be	embedded	within	text	documents.	The	charts	are	created	initially	from	data	generated
by	executing	queries	against	the	database;	the	queries	can	be	reexecuted	and	the	charts	regenerated
when	required,	to	generate	a	current	version	of	the	overall	report.

Techniques	for	data	visualization,	that	is,	graphical	representation	of	data,	that	go	beyond	the	basic	chart
types,	are	very	important	for	data	analysis.	Data-visualization	systems	help	users	to	examine	large
volumes	of	data	and	to	detect	patterns	visually.

Visual	displays	of	data—such	as	maps,	charts,	and	other	graphical	representations—

allow	data	to	be	presented	compactly	to	users.	A	single	graphical	screen	can	encode	as	much	information
as	a	far	larger	number	of	text	screens.

For	example,	if	the	user	wants	to	find	out	whether	the	occurrence	of	a	disease	is	correlated	to	the
locations	of	the	patients,	the	locations	of	patients	can	be	encoded	in	a	special	color—say,	red—on	a	map.
The	user	can	then	quickly	discover	locations	where	problems	are	occurring.	The	user	may	then	form
hypotheses	about	why	problems	are	occurring	in	those	locations	and	may	verify	the	hypotheses
quantitatively	against	the	database.

As	another	example,	information	about	values	can	be	encoded	as	a	color	and	can	be	displayed	with	as
little	as	one	pixel	of	screen	area.	To	detect	associations	between	pairs	of	items,	we	can	use	a	two-
dimensional	pixel	matrix,	with	each	row	and	each	column	representing	an	item.	The	percentage	of
transactions	that	buy	both	items	can	be	encoded	by	the	color	intensity	of	the	pixel.	Items	with	high
association	will	show	up	as	bright	pixels	in	the	screen	—	easy	to	detect	against	the	darker	background.

540

Chapter	11

Data	Analytics

In	recent	years	a	number	of	tools	have	been	developed	for	web-based	data	visualization	and	for	the
creation	of	dashboards	that	display	multiple	charts	showing	key	organizational	information.	These	include
Tableau	(www.tableau.com),	FusionCharts	(www.fusioncharts.com),	plotly	(plot.ly),	Datawrapper
(www.datawrapper.de),	and	Google	Charts	(developers.google.com/chart),	among	others.	Since	their
display	is	based	on	HTML	and	JavaScript,	they	can	be	used	on	a	wide	variety	of	browsers	and	on	mobile
devices.

Interaction	is	a	key	element	of	visualization.	For	example,	a	user	can	“drill	down”

into	areas	of	interest,	such	as	moving	from	an	aggregate	view	showing	the	total	sales	across	an	entire
year	to	the	monthly	sales	figures	for	a	particular	year.	Analysts	may	wish	to	interactively	add	selection
conditions	to	visualize	subsets	of	data.	Data	visualization	tools	such	as	Tableau	offer	a	rich	set	of	features
for	interactive	visualization.

11.4

Data	Mining

The	term	data	mining	refers	loosely	to	the	process	of	analyzing	large	databases	to	find	useful	patterns.
Like	knowledge	discovery	in	artificial	intelligence	(also	called	machine	learning)	or	statistical	analysis,
data	mining	attempts	to	discover	rules	and	patterns	from	data.	However,	data	mining	differs	from
traditional	machine	learning	and	statistics	in	that	it	deals	with	large	volumes	of	data,	stored	primarily	on
disk.	Today,	many	machine-learning	algorithms	also	work	on	very	large	volumes	of	data,	blurring	the
distinction	between	data	mining	and	machine	learning.	Data-mining	techniques	form	part	of	the	process
of	knowledge	discovery	in	databases	(KDD).

Some	types	of	knowledge	discovered	from	a	database	can	be	represented	by	a	set	of	rules.	The	following
is	an	example	of	a	rule,	stated	informally:	“Young	women	with	annual	incomes	greater	than	$50,000	are
the	most	likely	people	to	buy	small	sports	cars.”	Of	course	such	rules	are	not	universally	true	and	have
degrees	of	“support”	and

“confidence,”	as	we	shall	see.	Other	types	of	knowledge	are	represented	by	equations	relating	different

variables	to	each	other.	More	generally,	knowledge	discovered	by	applying	machine-learning	techniques
on	past	instances	in	a	database	is	represented	by	a	model,	which	is	then	used	for	predicting	outcomes	for
new	instances.	Features	or	attributes	of	instances	are	inputs	to	the	model,	and	the	output	of	a	model	is	a
prediction.

There	are	a	variety	of	possible	types	of	patterns	that	may	be	useful,	and	different	techniques	are	used	to
find	different	types	of	patterns.	We	shall	study	a	few	examples	of	patterns	and	see	how	they	may	be
automatically	derived	from	a	database.

Usually	there	is	a	manual	component	to	data	mining,	consisting	of	preprocessing	data	to	a	form
acceptable	to	the	algorithms	and	post-processing	of	discovered	patterns	to	find	novel	ones	that	could	be
useful.	There	may	also	be	more	than	one	type	of	pattern	that	can	be	discovered	from	a	given	database,
and	manual	interaction	may	be	needed	to	pick	useful	types	of	patterns.	For	this	reason,	data	mining	is
really	a	semiautomatic	process	in	real	life.	However,	in	our	description	we	concentrate	on	the	automatic
aspect	of	mining.

11.4

Data	Mining

541

11.4.1

Types	of	Data-Mining	Tasks

The	most	widely	used	applications	of	data	mining	are	those	that	require	some	sort	of	prediction.	For
instance,	when	a	person	applies	for	a	credit	card,	the	credit-card	company	wants	to	predict	if	the	person
is	a	good	credit	risk.	The	prediction	is	to	be	based	on	known	attributes	of	the	person,	such	as	age,	income,
debts,	and	past	debt-repayment	history.	Rules	for	making	the	prediction	are	derived	from	the	same
attributes	of	past	and	current	credit-card	holders,	along	with	their	observed	behavior,	such	as	whether
they	defaulted	on	their	credit-card	dues.	Other	types	of	prediction	include	predicting	which	customers
may	switch	over	to	a	competitor	(these	customers	may	be	offered	special	discounts	to	tempt	them	not	to
switch),	predicting	which	people	are	likely	to	respond	to	promotional	mail	(“junk	mail”),	or	predicting
what	types	of	phone	calling-card	usage	are	likely	to	be	fraudulent.

Another	class	of	applications	looks	for	associations,	for	instance,	books	that	tend	to	be	bought	together.	If
a	customer	buys	a	book,	an	online	bookstore	may	suggest	other	associated	books.	If	a	person	buys	a
camera,	the	system	may	suggest	accessories	that	tend	to	be	bought	along	with	cameras.	A	good
salesperson	is	aware	of	such	patterns	and	exploits	them	to	make	additional	sales.	The	challenge	is	to
automate	the	process.

Other	types	of	associations	may	lead	to	discovery	of	causation.	For	instance,	discovery	of	unexpected
associations	between	a	newly	introduced	medicine	and	cardiac	problems	led	to	the	finding	that	the
medicine	may	cause	cardiac	problems	in	some	people.	The	medicine	was	then	withdrawn	from	the
market.

Associations	are	an	example	of	descriptive	patterns.	Clusters	are	another	example	of	such	patterns.	For
example,	over	a	century	ago	a	cluster	of	typhoid	cases	was	found	around	a	well,	which	led	to	the
discovery	that	the	water	in	the	well	was	contaminated	and	was	spreading	typhoid.	Detection	of	clusters	of
disease	remains	important	even	today.

11.4.2

Classification

Abstractly,	the	classification	problem	is	this:	Given	that	items	belong	to	one	of	several	classes,	and	given
past	instances	(called	training	instances)	of	items	along	with	the	classes	to	which	they	belong,	the
problem	is	to	predict	the	class	to	which	a	new	item	belongs.	The	class	of	the	new	instance	is	not	known,
so	other	attributes	of	the	instance	must	be	used	to	predict	the	class.

As	an	example,	suppose	that	a	credit-card	company	wants	to	decide	whether	or	not	to	give	a	credit	card	to
an	applicant.	The	company	has	a	variety	of	information	about	the	person,	such	as	her	age,	educational
background,	annual	income,	and	current	debts,	that	it	can	use	for	making	a	decision.

To	make	the	decision,	the	company	assigns	a	credit	worthiness	level	of	excellent,	good,	average,	or	bad	to
each	of	a	sample	set	of	current	or	past	customers	according	to	each	customer’s	payment	history.	These
instances	form	the	set	of	training	instances.

Then,	the	company	attempts	to	learn	rules	or	models	that	classify	the	creditworthiness	of	a	new	applicant
as	excellent,	good,	average,	or	bad,	on	the	basis	of	the

542

Chapter	11

Data	Analytics

information	about	the	person,	other	than	the	actual	payment	history	(which	is	unavailable	for	new
customers).	There	are	a	number	of	techniques	for	classification,	and	we	outline	a	few	of	them	in	this
section.

11.4.2.1

Decision-Tree	Classifiers

Decision-tree	classifiers	are	a	widely	used	technique	for	classification.	As	the	name	suggests,	decision-
tree	classifiers	use	a	tree;	each	leaf	node	has	an	associated	class,	and	each	internal	node	has	a	predicate
(or	more	generally,	a	function)	associated	with	it.

Figure	11.11	shows	an	example	of	a	decision	tree.	To	keep	the	example	simple,	we	use	just	two	attributes:
education	level	(highest	degree	earned)	and	income.

To	classify	a	new	instance,	we	start	at	the	root	and	traverse	the	tree	to	reach	a	leaf;	at	an	internal	node
we	evaluate	the	predicate	(or	function)	on	the	data	instance	to	find	which	child	to	go	to.	The	process
continues	until	we	reach	a	leaf	node.	For	example,	if	the	degree	level	of	a	person	is	masters,	and	the
person’s	income	is	40K,	starting	from	the	root	we	follow	the	edge	labeled	“masters,”	and	from	there	the
edge	labeled	“25K	to	75K,”	to	reach	a	leaf.	The	class	at	the	leaf	is	“good,”	so	we	predict	that	the	credit
risk	of	that	person	is	good.

There	are	a	number	of	techniques	for	building	decision-tree	classifiers	from	a	given	training	set.	We	omit
details,	but	you	can	learn	more	details	from	the	references	provided	in	the	Further	Reading	section.

degree

bachelors

masters

doctorate

none

income

income

income

income

<50K

>100K

<25K

>75K	<25K

>=25K

<50K

>=50K

50	to	100K

25	to	75K

bad

average

good

bad

average

good

excellent

Figure	11.11	Classification	tree.

11.4

Data	Mining

543

11.4.2.2

Bayesian	Classifiers

Bayesian	classifiers	find	the	distribution	of	attribute	values	for	each	class	in	the	training	data;	when	given
a	new	instance	d,	they	use	the	distribution	information	to	estimate,	for	each	class	c	,	the	probability	that
instance	d	belongs	to	class	c	,	denoted	by	p(c	|	d),	j

j

j

in	a	manner	outlined	here.	The	class	with	maximum	probability	becomes	the	predicted	class	for	instance
d.

To	find	the	probability	p(c	|	d)	of	instance	d	being	in	class	c	,	Bayesian	classifiers	j

j

use	Bayes’	theorem,	which	says:

p(d|	c)	p(c)

j

j

p(c	|	d)	=

j

p(d)

where	p(d|	c)	is	the	probability	of	generating	instance	d	given	class	c	,	p(c)	is	the	prob-j

j

j

ability	of	occurrence	of	class	c	,	and	p(d)	is	the	probability	of	instance	d	occurring.	Of	j

these,	p(d)	can	be	ignored	since	it	is	the	same	for	all	classes.	p(c)	is	simply	the	fraction	j

of	training	instances	that	belong	to	class	c	.

j

For	example,	let	us	consider	a	special	case	where	only	one	attribute,	income,	is	used	for	classification,	and
suppose	we	need	to	classify	a	person	whose	income	is	76,000.	We	assume	that	income	values	are	broken
up	into	buckets,	and	we	assume	that	the	bucket	containing	76,000	contains	values	in	the	range	(75,000,
80,000).	Suppose	among	instances	of	class	excellent,	the	probability	of	income	being	in	(75,000,	80,000)
is	0	.	1,	while	among	instances	of	class	good,	the	probability	of	income	being	in	(75,000,	80,000)	is	0	.	05.
Suppose	also	that	overall	0	.	1	fraction	of	people	are	classified	as	excellent,	and	0	.	3	are	classified	as
good.	Then,	p(d|	c)	p(c)	for	class	excellent	is	.	01,	j

j

while	for	class	good,	it	is	0	.	015.	The	person	would	therefore	be	classified	in	class	good.

In	general,	multiple	attributes	need	to	be	considered	for	classification.	Then,	finding	p(d|	c)	exactly	is
difficult,	since	it	requires	the	distribution	of	instances	of	c	,	across	j

j

all	combinations	of	values	for	the	attributes	used	for	classification.	The	number	of	such	combinations	(for
example	of	income	buckets,	with	degree	values	and	other	attributes)	can	be	very	large.	With	a	limited
training	set	used	to	find	the	distribution,	most	combinations	would	not	have	even	a	single	training	set
matching	them,	leading	to	incorrect	classification	decisions.	To	avoid	this	problem,	as	well	as	to	simplify
the	task	of	classification,	naive	Bayesian	classifiers	assume	attributes	have	independent	distributions	and
thereby	estimate:

p(d|	c)	=	p(d	|	c)	∗	p(d	|	c)	∗	⋯	∗	p(d	|	c)	j

1

j

2

j

n

j

That	is,	the	probability	of	the	instance	d	occurring	is	the	product	of	the	probability	of	occurrence	of	each
of	the	attribute	values	d	of	d,	given	the	class	is	c	.

i

j

The	probabilities	p(d	|	c)	derive	from	the	distribution	of	values	for	each	attribute	i,	i

j

for	each	class	c	.	This	distribution	is	computed	from	the	training	instances	that	belong	j

to	each	class	c	;	the	distribution	is	usually	approximated	by	a	histogram.	For	instance,	j

we	may	divide	the	range	of	values	of	attribute	i	into	equal	intervals,	and	store	the	fraction	of	instances	of
class	c	that	fall	in	each	interval.	Given	a	value	d	for	attribute	i,	the	j

i

544

Chapter	11

Data	Analytics

value	of	p(d	|	c)	is	simply	the	fraction	of	instances	belonging	to	class	c	that	fall	in	the	i

j

j

interval	to	which	d	belongs.

i

11.4.2.3

Support	Vector	Machine	Classifiers

The	Support	Vector	Machine	(SVM)	is	a	type	of	classifier	that	has	been	found	to	give	very	accurate
classification	across	a	range	of	applications.	We	provide	some	basic	information	about	Support	Vector
Machine	classifiers	here;	see	the	references	in	the	bibliographical	notes	for	further	information.

Support	Vector	Machine	classifiers	can	best	be	understood	geometrically.	In	the	simplest	case,	consider	a

set	of	points	in	a	two-dimensional	plane,	some	belonging	to	class	A,	and	some	belonging	to	class	B.	We	are
given	a	training	set	of	points	whose	class	(A	or	B)	is	known,	and	we	need	to	build	a	classifier	of	points
using	these	training	points.

This	situation	is	illustrated	in	Figure	11.12,	where	the	points	in	class	A	are	denoted	by	X	marks,	while
those	in	class	B	are	denoted	by	O	marks.

Suppose	we	can	draw	a	line	on	the	plane,	such	that	all	points	in	class	A	lie	to	one	side	and	all	points	in
line	B	lie	to	the	other.	Then,	the	line	can	be	used	to	classify	new	points,	whose	class	we	don’t	already
know.	But	there	may	be	many	possible	such	lines	that	can	separate	points	in	class	A	from	points	in	class	B.
A	few	such	lines	are	shown	in	Figure	11.12.	The	Support	Vector	Machine	classifier	chooses	the	line	whose
distance	from	the	nearest	point	in	either	class	(from	the	points	in	the	training	dataset)	is	maximum.	This
line	(called	the	maximum	margin	line)	is	then	used	to	classify	other	points	into	class	A	or	B,	depending	on
which	side	of	the	line	they	lie	on.	In	Figure	11.12,	the	maximum	margin	line	is	shown	in	bold,	while	the
other	lines	are	shown	as	dashed	lines.

Figure	11.12	Example	of	a	Support	Vector	Machine	classifier.

11.4

Data	Mining

545

The	preceding	intuition	can	be	generalized	to	more	than	two	dimensions,	allowing	multiple	attributes	to
be	used	for	classification;	in	this	case,	the	classifier	finds	a	dividing	plane,	not	a	line.	Further,	by	first
transforming	the	input	points	using	certain	functions,	called	kernel	functions,	Support	Vector	Machine
classifiers	can	find	nonlin-ear	curves	separating	the	sets	of	points.	This	is	important	for	cases	where	the
points	are	not	separable	by	a	line	or	plane.	In	the	presence	of	noise,	some	points	of	one	class	may	lie	in
the	midst	of	points	of	the	other	class.	In	such	cases,	there	may	not	be	any	line	or	meaningful	curve	that
separates	the	points	in	the	two	classes;	then,	the	line	or	curve	that	most	accurately	divides	the	points	into
the	two	classes	is	chosen.

Although	the	basic	formulation	of	Support	Vector	Machines	is	for	binary	classifiers,	i.e.,	those	with	only
two	classes,	they	can	be	used	for	classification	into	multiple	classes	as	follows:	If	there	are	N	classes,	we
build	N	classifiers,	with	classifier	i	performing	a	binary	classification,	classifying	a	point	either	as	in	class
i	or	not	in	class	i.	Given	a	point,	each	classifier	i	also	outputs	a	value	indicating	how	related	a	given	point
is	to	class	i.	We	then	apply	all	N	classifiers	on	a	given	point	and	choose	the	class	for	which	the	relatedness
value	is	the	highest.

11.4.2.4

Neural	Network	Classifiers

Neural-net	classifiers	use	the	training	data	to	train	artificial	neural	nets.	There	is	a	large	body	of
literature	on	neural	nets;	we	do	not	provide	details	here,	but	we	outline	a	few	key	properties	of	neural
network	classifiers.

Neural	networks	consist	of	several	layers	of	“neurons,”	each	of	which	are	connected	to	neurons	in	the
preceding	layer.	An	input	instance	of	the	problem	is	fed	to	the	first	layer;	neurons	at	each	layer	are
“activated”	based	on	some	function	applied	to	the	inputs	at	the	preceding	layer.	The	function	applied	at
each	neuron	computes	a	weighted	combination	of	the	activations	of	the	input	neurons	and	generates	an
output	based	on	the	weighted	combination.	The	activation	of	a	neuron	in	one	layer	thus	affects	the
activation	of	neurons	in	the	next	layer.	The	final	output	layer	typically	has	one	neuron	corresponding	to
each	class	of	the	classification	problem	being	addressed.	The	neuron	with	maximum	activation	for	a	given
input	decides	the	predicted	class	for	that	input.

Key	to	the	success	of	a	neural	network	is	the	weights	used	in	the	computation	described	above.	These
weights	are	learned,	based	on	training	data.	They	are	initially	set	to	some	default	value,	and	then	training
data	are	used	to	learn	the	weights.	Training	is	typically	done	by	applying	each	input	to	the	current	state	of
the	neural	network	and	checking	if	the	prediction	is	correct.	If	not,	a	backpropagation	algorithm	is	used
to	tweak	the	weights	of	the	neurons	in	the	network,	to	bring	the	prediction	closer	to	the	correct	one	for
the	current	input.	Repeating	this	process	results	in	a	trained	neural	network,	which	can	then	be	used	for
classification	on	new	inputs.

In	recent	years,	neural	networks	have	achieved	a	great	degree	of	success	for	tasks	which	were	earlier
considered	very	hard,	such	as	vision	(e.g.,	recognition	of	objects	in	images),	speech	recognition,	and
natural	language	translation.	A	simple	example	of	a	vision	task	is	that	of	identifying	the	species,	such	as
cat	or	dog,	given	an	image	of

546

Chapter	11

Data	Analytics

an	animal;	such	problems	are	basically	classification	problems.	Other	examples	include	identifying	object
occurrences	in	an	image	and	assigning	a	class	label	to	each	identified	object.

Deep	neural	networks,	which	are	neural	networks	with	a	large	number	of	layers,	have	proven	very
successful	at	such	tasks,	if	given	a	very	large	number	of	training	instances.	The	term	deep	learning	refers
to	the	machine-learning	techniques	that	create	such	deep	neural	networks,	and	train	them	on	very	large
numbers	of	training	instances.

11.4.3

Regression

Regression	deals	with	the	prediction	of	a	value,	rather	than	a	class.	Given	values	for	a	set	of	variables,	X	,
X	,	…	,	X	,	we	wish	to	predict	the	value	of	a	variable	Y	.	For	instance,	1

2

n

we	could	treat	the	level	of	education	as	a	number	and	income	as	another	number,	and,	on	the	basis	of
these	two	variables,	we	wish	to	predict	the	likelihood	of	default,	which	could	be	a	percentage	chance	of
defaulting,	or	the	amount	involved	in	the	default.

One	way	is	to	infer	coefficients	a	,	a	,	a	,	…	,	a	such	that:	0

1

2

n

Y	=	a	+	a	∗	X	+	a	∗	X	+	⋯	+	a	∗	X

0

1

1

2

2

n

n

Finding	such	a	linear	polynomial	is	called	linear	regression.	In	general,	we	wish	to	find	a	curve	(defined
by	a	polynomial	or	other	formula)	that	fits	the	data;	the	process	is	also	called	curve	fitting.

The	fit	may	be	only	approximate,	because	of	noise	in	the	data	or	because	the	relationship	is	not	exactly	a
polynomial,	so	regression	aims	to	find	coefficients	that	give	the	best	possible	fit.	There	are	standard
techniques	in	statistics	for	finding	regression	coefficients.	We	do	not	discuss	these	techniques	here,	but
the	bibliographical	notes	provide	references.

11.4.4

Association	Rules

Retail	shops	are	often	interested	in	associations	between	different	items	that	people	buy.	Examples	of
such	associations	are:

•	Someone	who	buys	bread	is	quite	likely	also	to	buy	milk.

•	A	person	who	bought	the	book	Database	System	Concepts	is	quite	likely	also	to	buy	the	book	Operating
System	Concepts.

Association	information	can	be	used	in	several	ways.	When	a	customer	buys	a	particular	book,	an	online
shop	may	suggest	associated	books.	A	grocery	shop	may	decide	to	place	bread	close	to	milk,	since	they

are	often	bought	together,	to	help	shoppers	finish	their	task	faster.	Or,	the	shop	may	place	them	at
opposite	ends	of	a	row	and	place	other	associated	items	in	between	to	tempt	people	to	buy	those	items	as
well	as	the	shoppers	walk	from	one	end	of	the	row	to	the	other.	A	shop	that	offers	discounts	on	one	associ-

11.4

Data	Mining

547

ated	item	may	not	offer	a	discount	on	the	other,	since	the	customer	will	probably	buy	the	other	anyway.

An	example	of	an	association	rule	is:

bread	⇒	milk

In	the	context	of	grocery-store	purchases,	the	rule	says	that	customers	who	buy	bread	also	tend	to	buy
milk	with	a	high	probability.	An	association	rule	must	have	an	associated	population:	The	population
consists	of	a	set	of	instances.	In	the	grocery-store	example,	the	population	may	consist	of	all	grocery-store
purchases;	each	purchase	is	an	instance.	In	the	case	of	a	bookstore,	the	population	may	consist	of	all
people	who	made	purchases,	regardless	of	when	they	made	a	purchase.	Each	customer	is	an	instance.	In
the	bookstore	example,	the	analyst	has	decided	that	when	a	purchase	is	made	is	not	significant,	whereas
for	the	grocery-store	example,	the	analyst	may	have	decided	to	concentrate	on	single	purchases,	ignoring
multiple	visits	by	the	same	customer.

Rules	have	an	associated	support,	as	well	as	an	associated	confidence.	These	are	defined	in	the	context	of
the	population:

•	Support	is	a	measure	of	what	fraction	of	the	population	satisfies	both	the	antecedent	and	the
consequent	of	the	rule.

For	instance,	suppose	only	0	.	001	percent	of	all	purchases	include	milk	and	screwdrivers.	The	support	for
the	rule:

milk	⇒	screwdrivers

is	low.	The	rule	may	not	even	be	statistically	significant—perhaps	there	was	only	a	single	purchase	that
included	both	milk	and	screwdrivers.	Businesses	are	usually	not	interested	in	rules	that	have	low	support,
since	they	involve	few	customers	and	are	not	worth	bothering	about.

On	the	other	hand,	if	50	percent	of	all	purchases	involve	milk	and	bread,	then	support	for	rules	involving
bread	and	milk	(and	no	other	item)	is	relatively	high,	and	such	rules	may	be	worth	attention.	Exactly	what
minimum	degree	of	support	is	considered	desirable	depends	on	the	application.

•	Confidence	is	a	measure	of	how	often	the	consequent	is	true	when	the	antecedent	is	true.	For	instance,
the	rule:

bread	⇒	milk

has	a	confidence	of	80	percent	if	80	percent	of	the	purchases	that	include	bread	also	include	milk.	A	rule
with	a	low	confidence	is	not	meaningful.	In	business	applications,	rules	usually	have	confidences
significantly	less	than	100	percent,	whereas	in	other	domains,	such	as	in	physics,	rules	may	have	high
confidences.

Note	that	the	confidence	of	bread	⇒	milk	may	be	very	different	from	the	confidence	of	milk	⇒	bread,
although	both	have	the	same	support.

548

Chapter	11

Data	Analytics

11.4.5

Clustering

Intuitively,	clustering	refers	to	the	problem	of	finding	clusters	of	points	in	the	given	data.	The	problem	of
clustering	can	be	formalized	from	distance	metrics	in	several	ways.	One	way	is	to	phrase	it	as	the	problem

of	grouping	points	into	k	sets	(for	a	given	k)	so	that	the	average	distance	of	points	from	the	centroid	of
their	assigned	cluster	is	minimized.	3	Another	way	is	to	group	points	so	that	the	average	distance
between	every	pair	of	points	in	each	cluster	is	minimized.	There	are	other	definitions	too;	see	the
bibliographical	notes	for	details.	But	the	intuition	behind	all	these	definitions	is	to	group	similar	points
together	in	a	single	set.

Another	type	of	clustering	appears	in	classification	systems	in	biology.	(Such	classification	systems	do	not
attempt	to	predict	classes;	rather	they	attempt	to	cluster	related	items	together.)	For	instance,	leopards
and	humans	are	clustered	under	the	class	mammalia,	while	crocodiles	and	snakes	are	clustered	under
reptilia.	Both	mammalia	and	reptilia	come	under	the	common	class	chordata.	The	clustering	of	mammalia
has	further	subclusters,	such	as	carnivora	and	primates.	We	thus	have	hierarchical	clustering.	Given
characteristics	of	different	species,	biologists	have	created	a	complex	hierarchical	clustering	scheme
grouping	related	species	together	at	different	levels	of	the	hierarchy.

The	statistics	community	has	studied	clustering	extensively.	Database	research	has	provided	scalable
clustering	algorithms	that	can	cluster	very	large	datasets	(that	may	not	fit	in	memory).

An	interesting	application	of	clustering	is	to	predict	what	new	movies	(or	books	or	music)	a	person	is
likely	to	be	interested	in	on	the	basis	of:

1.	The	person’s	past	preferences	in	movies.

2.	Other	people	with	similar	past	preferences.

3.	The	preferences	of	such	people	for	new	movies.

One	approach	to	this	problem	is	as	follows:	To	find	people	with	similar	past	preferences	we	create
clusters	of	people	based	on	their	preferences	for	movies.	The	accuracy	of	clustering	can	be	improved	by
previously	clustering	movies	by	their	similarity,	so	even	if	people	have	not	seen	the	same	movies,	if	they
have	seen	similar	movies	they	would	be	clustered	together.	We	can	repeat	the	clustering,	alternately
clustering	people,	then	movies,	then	people,	and	so	on	until	we	reach	an	equilibrium.	Given	a	new	user,
we	find	a	cluster	of	users	most	similar	to	that	user,	on	the	basis	of	the	user’s	preferences	for	movies
already	seen.	We	then	predict	movies	in	movie	clusters	that	are	popular	with	that	user’s	cluster	as	likely
to	be	interesting	to	the	new	user.	In	fact,	this	problem	3The	centroid	of	a	set	of	points	is	defined	as	a	point
whose	coordinate	on	each	dimension	is	the	average	of	the	coordinates	of	all	the	points	of	that	set	on	that
dimension.	For	example,	in	two	dimensions,	the	centroid	of	a	set	of	points	(∑

)

n

∑	n

{

x

y

(x

i=1	i

i=1	i

1,	y	1),	(x	2,	y	2),	…	,	(x	,

)	}	is	given	by

,

.

n	yn

n

n

11.4

Data	Mining

549

is	an	instance	of	collaborative	filtering,	where	users	collaborate	in	the	task	of	filtering	information	to	find
information	of	interest.

11.4.6

Text	Mining

Text	mining	applies	data-mining	techniques	to	textual	documents.	There	are	a	number	of	different	text
mining	tasks.	One	such	task	is	sentiment	analysis.	For	example,	suppose	a	company	wishes	to	find	out
how	users	have	reacted	to	a	new	product.	There	are	typically	a	large	number	of	product	reviews	on	the
web	—	for	example,	reviews	by	different	users	on	e-commerce	platforms.	Reading	each	review	to	find	out
reactions	is	not	practical	for	a	human.	Instead,	the	company	may	analyze	reviews	to	find	the	sentiment	of
the	reviews	of	the	product;	the	sentiment	could	be	positive,	negative,	or	neutral.	The	occurrence	of
specific	words	such	as	excellent,	good,	awesome,	beautiful,	and	so	on	are	correlated	with	a	positive
sentiment,	while	words	such	as	awful,	average,	worthless,	poor	quality,	and	so	on	are	correlated	with	a
negative	sentiment.	Sentiment	analysis	techniques	can	be	used	to	analyze	the	reviews	and	come	up	with
an	overall	score	reflecting	the	broad	sense	of	the	reviews.

Another	task	is	information	extraction,	which	creates	structured	information	from	unstructured	textual
descriptions,	or	semi-structured	data	such	as	tabular	displays	of	data	in	documents.	A	key	subtask	of	this
process	is	entity	recognition,	that	is,	the	task	of	identifying	mentions	of	entities	in	text	and	disambiguating
them.	For	example,	an	article	may	mention	the	name	Michael	Jordan.	There	are	at	least	two	famous
people	named	Michael	Jordan:	one	was	a	basketball	player,	while	the	other	is	a	professor	who	is	a	well
known	machine-learning	expert.	Disambiguation	is	the	process	of	figuring	out	which	of	these	two	is	being
referred	to	in	a	particular	article,	and	it	can	be	done	based	on	the	article	context;	in	this	case,	an
occurrence	of	the	name	Michael	Jordan	in	a	sports	article	probably	refers	to	the	basketball	player,	while
an	occurrence	in	a	machine-learning	paper	probably	refers	to	the	professor.	After	entity	recognition,	other
techniques	may	be	used	to	learn	attributes	of	entities	and	to	learn	relationships	between	entities.

Information	extraction	can	be	used	in	many	ways.	For	example,	it	can	be	used	to	analyze	customer
support	conversations	or	reviews	posted	on	social	media,	to	judge	customer	satisfaction,	and	to	decide
when	intervention	is	needed	to	retain	customers.

Service	providers	may	want	to	know	what	aspect	of	the	service	such	as	pricing,	quality,	hygiene,	or
behavior	of	the	person	providing	the	service,	a	review	was	positive	or	negative	about;	information
extraction	techniques	can	be	used	to	infer	what	aspect	an	article	or	a	part	of	an	article	is	about,	and	to
infer	the	associated	sentiment.	Attributes	such	as	the	location	of	service	can	also	be	extracted	and	are
important	for	taking	corrective	action.

Information	extracted	from	the	enormous	collection	of	documents	and	other	resources	on	the	web	can	be
valuable	for	many	tasks.	Such	extracted	information	can	be	represented	in	a	graph,	called	a	knowledge
graph,	which	we	outlined	in	Section	8.1.4.

Such	knowledge	graphs	are	used	by	web	search	engines	to	generate	more	meaningful	answers	to	user
queries.

550

Chapter	11

Data	Analytics

11.5

Summary

•	Data	analytics	systems	analyze	online	data	collected	by	transaction-processing	systems,	along	with	data
collected	from	other	sources,	to	help	people	make	business	decisions.	Decision-support	systems	come	in
various	forms,	including	OLAP	systems	and	data-mining	systems.

•	Data	warehouses	help	gather	and	archive	important	operational	data.	Warehouses	are	used	for	decision
support	and	analysis	on	historical	data,	for	instance,	to	predict	trends.	Data	cleansing	from	input	data
sources	is	often	a	major	task	in	data	warehousing.	Warehouse	schemas	tend	to	be	multidimensional,
involving	one	or	a	few	very	large	fact	tables	and	several	much	smaller	dimension	tables.

•	Online	analytical	processing	(OLAP)	tools	help	analysts	view	data	summarized	in	different	ways,	so	that
they	can	gain	insight	into	the	functioning	of	an	organization.

°	OLAP	tools	work	on	multidimensional	data,	characterized	by	dimension	attributes	and	measure

attributes.

°	The	data	cube	consists	of	multidimensional	data	summarized	in	different	ways.

Precomputing	the	data	cube	helps	speed	up	queries	on	summaries	of	data.

°	Cross-tab	displays	permit	users	to	view	two	dimensions	of	multidimensional	data	at	a	time,	along	with
summaries	of	the	data.

°	Drill	down,	rollup,	slicing,	and	dicing	are	among	the	operations	that	users	perform	with	OLAP	tools.

•	The	SQL	standard	provides	a	variety	of	operators	for	data	analysis,	including	cube,	rollup,	and	pivot
operations.

•	Data	mining	is	the	process	of	semiautomatically	analyzing	large	databases	to	find	useful	patterns.	There
are	a	number	of	applications	of	data	mining,	such	as	prediction	of	values	based	on	past	examples,	finding
of	associations	between	purchases,	and	automatic	clustering	of	people	and	movies.

•	Classification	deals	with	predicting	the	class	of	test	instances	by	using	attributes	of	the	test	instances,
based	on	attributes	of	training	instances,	and	the	actual	class	of	training	instances.	There	are	several
types	of	classifiers,	such	as:

°	Decision-tree	classifiers,	which	perform	classification	by	constructing	a	tree	based	on	training	instances
with	leaves	having	class	labels.

°	Bayesian	classifiers,	which	are	based	on	probability	theory.

°	The	support	vector	machine	is	another	widely	used	classification	technique.

°	Neural	networks,	and	in	particular	deep	learning,	has	been	very	successful	in	classification	and	related
tasks	in	the	context	of	vision,	speech	recognition,	and	language	understanding	and	translation.

Practice	Exercises

551

•	Association	rules	identify	items	that	co-occur	frequently,	for	instance,	items	that	tend	to	be	bought	by
the	same	customer.	Correlations	look	for	deviations	from	expected	levels	of	association.

•	Other	types	of	data	mining	include	clustering	and	text	mining.

Review	Terms

•	Decision-support	systems

°	Rollup	and	drill	down

•	Business	intelligence

°	SQL	group	by	cube,	group	by	rollup

•	Data	warehousing

•	Data	visualization

°	Gathering	data

•	Data	mining

°	Source-driven	architecture

•	Prediction

°	Destination-driven	architecture

•	Classification

°	Data	cleansing

°	Training	data

°	Extract,	transform,	load	(ETL)

°	Test	data

°	Extract,	load,	transform	(ELT)

•	Decision-tree	classifiers

•	Warehouse	schemas

•	Bayesian	classifiers

°	Fact	table

°	Bayes’	theorem

°	Dimension	tables

°	Naive	Bayesian	classifiers

°	Star	schema

•	Support	Vector	Machine	(SVM)

°	Snowflake	schema

•	Regression

•	Column-oriented	storage

•	Neural-networks

•	Online	analytical	processing

•	Deep	learning

(OLAP)

•	Association	rules

•	Multidimensional	data

•	Clustering

•	Text	mining

°	Measure	attributes

°	Dimension	attributes

°	Sentiment	analysis

°	Hierarchy

°	Information	extraction

°	Cross-tabulation	/	Pivoting

°	Named	entity	recognition

°	Data	cube

°	Knowledge	graph

552

Chapter	11

Data	Analytics

Practice	Exercises

11.1

Describe	benefits	and	drawbacks	of	a	source-driven	architecture	for	gathering	of	data	at	a	data
warehouse,	as	compared	to	a	destination-driven	architecture.

11.2

Draw	a	diagram	that	shows	how	the	classroom	relation	of	our	university	example	as	shown	in	Appendix	A
would	be	stored	under	a	column-oriented	storage	structure.

11.3

Consider	the	takes	relation.	Write	an	SQL	query	that	computes	a	cross-tab	that	has	a	column	for	each	of
the	years	2017	and	2018,	and	a	column	for	all,	and	one	row	for	each	course,	as	well	as	a	row	for	all.	Each
cell	in	the	table	should	contain	the	number	of	students	who	took	the	corresponding	course	in	the
corresponding	year,	with	column	all	containing	the	aggregate	across	all	years,	and	row	all	containing	the
aggregate	across	all	courses.

11.4

Consider	the	data	warehouse	schema	depicted	in	Figure	11.2.	Give	an	SQL

query	to	summarize	sales	numbers	and	price	by	store	and	date,	along	with	the	hierarchies	on	store	and
date.

11.5

Classification	can	be	done	using	classification	rules,	which	have	a	condition,	a	class,	and	a	confidence;	the
confidence	is	the	percentage	of	the	inputs	satisfying	the	condition	that	fall	in	the	specified	class.

For	example,	a	classification	rule	for	credit	ratings	may	have	a	condition	that	salary	is	between	$30,000
and	$50,000,	and	education	level	is	graduate,	with	the	credit	rating	class	of	good,	and	a	confidence	of
80%.	A	second	rule	may	have	a	condition	that	salary	is	between	$30,000	and	$50,000,	and	education	level
is	high-school,	with	the	credit	rating	class	of	satisfactory,	and	a	confidence	of	80%.	A	third	rule	may	have
a	condition	that	salary	is	above	$50,001,	with	the	credit	rating	class	of	excellent,	and	confidence	of	90%.
Show	a	decision	tree	classifier	corresponding	to	the	above	rules.

Show	how	the	decision	tree	classifier	can	be	extended	to	record	the	confidence	values.

11.6

Consider	a	classification	problem	where	the	classifier	predicts	whether	a	person	has	a	particular	disease.
Suppose	that	95%	of	the	people	tested	do	not	suffer	from	the	disease.	Let	pos	denote	the	fraction	of	true
positives,	which	is	5%	of	the	test	cases,	and	let	neg	denote	the	fraction	of	true	negatives,	which	is	95%	of
the	test	cases.	Consider	the	following	classifiers:

•	Classifier	C	,	which	always	predicts	negative	(a	rather	useless	classifier,	of	1

course).

•	Classifier	C	,	which	predicts	positive	in	80%	of	the	cases	where	the	person	2

actually	has	the	disease	but	also	predicts	positive	in	5%	of	the	cases	where	the	person	does	not	have	the
disease.

Exercises

553

•	Classifier	C	,	which	predicts	positive	in	95%	of	the	cases	where	the	person	3

actually	has	the	disease	but	also	predicts	positive	in	20%	of	the	cases	where	the	person	does	not	have	the
disease.

For	each	classifier,	let	t	pos	denote	the	true	positive	fraction,	that	is	the	fraction	of	cases	where	the
classifier	prediction	was	positive,	and	the	person	actually	had	the	disease.	Let	f	pos	denote	the	false

positive	fraction,	that	is	the	fraction	of	cases	where	the	prediction	was	positive,	but	the	person	did	not
have	the	disease.	Let	t	neg	denote	true	negative	and	f	neg	denote	false	negative	fractions,	which	are
defined	similarly,	but	for	the	cases	where	the	classifier	prediction	was	negative.

a.

Compute	the	following	metrics	for	each	classifier:

i.

Accuracy,	defined	as	(t	pos	+	t	neg)∕(pos+	neg),	that	is,	the	fraction	of	the	time	when	the	classifier	gives
the	correct	classification.

ii.

Recall	(also	known	as	sensitivity)	defined	as	t	pos∕	pos,	that	is,	how	many	of	the	actual	positive	cases	are
classified	as	positive.

iii.

Precision,	defined	as	t	pos/(t	pos+	f	pos),	that	is,	how	often	the	positive	prediction	is	correct.

iv.

Specificity,	defined	as	t	neg/	neg.

b.

If	you	intend	to	use	the	results	of	classification	to	perform	further	screen-ing	for	the	disease,	how	would
you	choose	between	the	classifiers?

c.

On	the	other	hand,	if	you	intend	to	use	the	result	of	classification	to	start	medication,	where	the
medication	could	have	harmful	effects	if	given	to	someone	who	does	not	have	the	disease,	how	would	you
choose	between

the	classifiers?

Exercises

11.7

Why	is	column-oriented	storage	potentially	advantageous	in	a	database	system	that	supports	a	data
warehouse?

11.8

Consider	each	of	the	takes	and	teaches	relations	as	a	fact	table;	they	do	not	have	an	explicit	measure
attribute,	but	assume	each	table	has	a	measure	attribute	reg	count	whose	value	is	always	1.	What	would
the	dimension	attributes	and	dimension	tables	be	in	each	case.	Would	the	resultant	schemas	be	star
schemas	or	snowflake	schemas?

11.9

Consider	the	star	schema	from	Figure	11.2.	Suppose	an	analyst	finds	that	monthly	total	sales	(sum	of	the
price	values	of	all	sales	tuples)	have	decreased,	instead	of	growing,	from	April	2018	to	May	2018.	The
analyst	wishes	to	check	if	there	are	specific	item	categories,	stores,	or	customer	countries	that	are
responsible	for	the	decrease.

554

Chapter	11

Data	Analytics

a.

What	are	the	aggregates	that	the	analyst	would	start	with,	and	what	are	the	relevant	drill-down
operations	that	the	analyst	would	need	to	execute?

b.

Write	an	SQL	query	that	shows	the	item	categories	that	were	responsible	for	the	decrease	in	sales,
ordered	by	the	impact	of	the	category	on	the	sales	decrease,	with	categories	that	had	the	highest	impact
sorted	first.

11.10

Suppose	half	of	all	the	transactions	in	a	clothes	shop	purchase	jeans,	and	one-third	of	all	transactions	in
the	shop	purchase	T-shirts.	Suppose	also	that	half	of	the	transactions	that	purchase	jeans	also	purchase	T-
shirts.	Write	down	all	the	(nontrivial)	association	rules	you	can	deduce	from	the	above	information,	giving
support	and	confidence	of	each	rule.

11.11

The	organization	of	parts,	chapters,	sections,	and	subsections	in	a	book	is	related	to	clustering.	Explain
why,	and	to	what	form	of	clustering.

11.12

Suggest	how	predictive	mining	techniques	can	be	used	by	a	sports	team,	using	your	favorite	sport	as	an
example.

Tools

Data	warehouse	systems	are	available	from	Teradata,	Teradata	Aster,	SAP	IQ	(formerly	known	as	Sybase
IQ),	and	Amazon	Redshift,	all	of	which	support	parallel	processing	across	a	large	number	of	machines.	A
number	of	databases	including	Oracle,	SAP

HANA,	Microsoft	SQL	Server,	and	IBM	DB2	support	data	warehouse	applications	by	adding	features	such
as	columnar	storage.	There	are	a	number	of	commercial	ETL

tools	including	tools	from	Informatica,	Business	Objects,	IBM	InfoSphere,	Microsoft	Azure	Data	Factory,
Microsoft	SQL	Server	Integration	Services,	Oracle	Warehouse	Builder,	and	Pentaho	Data	Integration.
Open-source	ETL	tools	include	Apache	NiFi	(nifi.apache.org),	Jasper	ETL	(www.jaspersoft.com/data-
integration)	and	Talend	(sourceforge.net/projects/talend-studio).	Apache	Kafka	(kafka.apache.org)	can
also	be	used	to	build	ETL	systems.

Most	database	vendors	provide	OLAP	tools	as	part	of	their	database	systems,	or	as	add-on	applications.
These	include	OLAP	tools	from	Microsoft	Corp.,	Oracle,	IBM	and	SAP.	The	Mondrian	OLAP	server
(github.com/pentaho/mondrian)	is	an	open-source	OLAP	server.	Apache	Kylin	(kylin.apache.org)	is	an
open-source	distributed	analytics	engine	which	can	process	data	stored	in	Hadoop,	build	OLAP	cubes	and
store	them	in	the	HBase	key-value	store,	and	then	query	the	stored	cubes	using	SQL.	Many	companies
also	provide	analysis	tools	for	specific	applications,	such	as	customer	relationship	management.

Tools	for	visualization	include	Tableau	(www.tableau.com),	FusionCharts	(www.fusioncharts.com),	plotly
(plot.ly),	Datawrapper	(www.datawrapper.de),	and	Google	Charts	(developers.google.com/chart).

Further	Reading

555

The	Python	language	is	very	popular	for	machine-learning	tasks,	due	to	the	availability	of	a	number	of
open-source	libraries	for	machine-learning	tasks.	The	R	language	is	also	used	widely	for	statistical
analysis	and	machine	learning,	for	the	same	reasons.

Popular	utility	libraries	in	Python	include	are	NumPy	(www.numpy.org)	which	provides	operations	on
arrays	and	matrices,	SciPy	(www.scipy.org),	which	provides	linear	algebra,	optimization	and	statistics
functions,	and	Pandas	(pandas.pydata.org),	which	provides	a	relational	abstraction	of	data.	Popular
machine-learning	libraries	in	Python	include	SciKit-Learn	(scikit-learn.org),	which	adds	image-processing
and	machine-learning	functionality	to	SciPy.	Deep	learning	libraries	in	Python	include	Keras	(keras.io),
and	TensorFlow	(www.tensorflow.org)	which	was	developed	by	Google;	TensorFlow	provides	APIs	in
several	languages,	with	particularly	good	support	for	Python.	Text	mining	is	supported	by	natural
language	processing	libraries,	such	as	NLTK	(www.nltk.org)	and	web	crawling	libraries,	such	as	Scrapy
(scrapy.org).	Visualization	is	supported	by	libraries	such	as	Matplotlib	(matplotlib.org),	Plotly	(plot.ly)	and
Bokeh	(bokeh.pydata.org).

Open-source	tools	for	data	mining	include	RapidMiner	(rapidminer.com),	Weka
(www.cs.waikato.ac.nz/ml/weka),	and	Orange	(orange.biolab.si).	Commercial	tools	include	SAS	Enterprise
Miner,	IBM	Intelligent	Miner,	and	Oracle	Data	Mining.

Further	Reading

[Kimball	et	al.	(2008)]	and	[Kimball	and	Ross	(2013)]	provide	textbook	coverage	of	data	warehouses	and
multidimensional	modeling.

[Mitchell	(1997)]	is	a	classic	textbook	on	machine	learning	and	covers	classification	techniques	in	detail.
[Goodfellow	et	al.	(2016)]	is	a	definitive	text	on	deep	learning.

[Witten	et	al.	(2011)]	and	[Han	et	al.	(2011)]	provide	textbook	coverage	of	data	mining.

[Agrawal	et	al.	(1993)]	introduced	the	notion	of	association	rules.

Information	about	the	R	language	and	environment	may	be	found	at

www.r-project.org;	information	about	the	SparkR	package,	which	provides	an	R	fron-tend	to	Apache
Spark,	may	be	found	at	spark.apache.org/docs/latest/sparkr.html.

[Chakrabarti	(2002)],	[Manning	et	al.	(2008)]	and	[Baeza-Yates	and	Ribeiro-Neto	(2011)]	provide	textbook
description	of	information	retrieval,	including	extensive	coverage	of	data-mining	tasks	related	to	textual
and	hypertext	data,	such	as	classification	and	clustering.

Bibliography

[Agrawal	et	al.	(1993)]

R.	Agrawal,	T.	Imielinski,	and	A.	Swami,	“Mining	Association	Rules

between	Sets	of	Items	in	Large	Databases”,	In	Proc.	of	the	ACM	SIGMOD	Conf.	on	Management	of	Data
(1993),	pages	207–216.

[Baeza-Yates	and	Ribeiro-Neto	(2011)]

R.	Baeza-Yates	and	B.	Ribeiro-Neto,	Modern	Informa-

tion	Retrieval,	2nd	edition,	ACM	Press	(2011).

556

Chapter	11

Data	Analytics

[Chakrabarti	(2002)]

S.	Chakrabarti,	Mining	the	Web:	Discovering	Knowledge	from	HyperText	Data,	Morgan	Kaufmann	(2002).

[Goodfellow	et	al.	(2016)]

I.	Goodfellow,	Y.	Bengio,	and	A.	Courville,	Deep	Learning,	MIT

Press	(2016).

[Han	et	al.	(2011)]

J.	Han,	M.	Kamber,	and	J.	Pei,	Data	Mining:	Concepts	and	Techniques,	3rd	edition,	Morgan	Kaufmann
(2011).

[Kimball	and	Ross	(2013)]

R.	Kimball	and	M.	Ross,	“The	Data	Warehouse	Tookit:	The

Definitive	Guide	to	Dimensional	Modeling”,	John	Wiley	and	Sons	(2013).

[Kimball	et	al.	(2008)]

R.	Kimball,	M.	Ross,	W.	Thornthwaite,	J.	Mundy,	and	B.	Becker,

“The	Data	Warehouse	Lifecycle	Toolkit”,	John	Wiley	and	Sons	(2008).

[Manning	et	al.	(2008)]

C.	D.	Manning,	P.	Raghavan,	and	H.	Schütze,	Introduction	to	Infor-

mation	Retrieval,	Cambridge	University	Press	(2008).

[Mitchell	(1997)]

T.	M.	Mitchell,	Machine	Learning,	McGraw	Hill	(1997).

[Witten	et	al.	(2011)]

I.	H.	Witten,	E.	Frank,	and	M.	Hall,	Data	Mining:	Practical	Machine	Learning	Tools	and	Techniques	with
Java	Implementations,	3rd	edition,	Morgan	Kaufmann	(2011).

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

PART	5

STORAGE	MANAGEMENT

AND	INDEXING

Although	a	database	system	provides	a	high-level	view	of	data,	ultimately	data	have	to	be	stored	as	bits	on
one	or	more	storage	devices.	A	vast	majority	of	database	systems	today	store	data	on	magnetic	disk,	with
data	having	higher	performance	requirements	stored	on	flash-based	solid-state	drives.	Database	systems
fetch	data	into	main	memory	for	processing,	and	write	data	back	to	storage	for	persistence.	Data	are	also
copied	to	tapes	and	other	backup	devices	for	archival	storage.	The	physical	characteristics	of	storage
devices	play	a	major	role	in	the	way	data	are	stored,	in	particular	because	access	to	a	random	piece	of
data	on	magnetic	disk	is	much	slower	than	main-memory	access.

Magnetic	disk	access	takes	tens	of	milliseconds,	flash-based	storage	access	takes	20	to	100	microseconds,
whereas	main-memory	access	takes	a	tenth	of	a	microsecond.

Chapter	12	begins	with	an	overview	of	physical	storage	media,	including	magnetic	disks	and	flash-based
solid-state	drives	(SSD).	The	chapter	then	covers	mechanisms	to	minimize	the	chance	of	data	loss	due	to
device	failures,	including	RAID.	The	chapter	concludes	with	a	discussion	of	techniques	for	efficient	disk-
block	access.

Chapter	13	describes	how	records	are	mapped	to	files,	which	in	turn	are	mapped	to	bits	on	the	disk.	The
chapter	then	covers	techniques	for	the	efficient	management	of	the	main-memory	buffer	for	disk-based
data.	Column-oriented	storage,	used	in	data	analytics	systems,	is	also	covered	in	this	chapter.

Many	queries	reference	only	a	small	proportion	of	the	records	in	a	file.	An	index	is	a	structure	that	helps

locate	desired	records	of	a	relation	quickly,	without	examining	all	records.	Chapter	14	describes	several
types	of	indices	used	in	database	systems.

557

C	H	A	P	T	E	R	12

Physical	Storage	Systems

In	preceding	chapters,	we	have	emphasized	the	higher-level	models	of	a	database.	For	example,	at	the
conceptual	or	logical	level,	we	viewed	the	database,	in	the	relational	model,	as	a	collection	of	tables.
Indeed,	the	logical	model	of	the	database	is	the	correct	level	for	database	users	to	focus	on.	This	is
because	the	goal	of	a	database	system	is	to	simplify	and	facilitate	access	to	data;	users	of	the	system
should	not	be	burdened	unnecessarily	with	the	physical	details	of	the	implementation	of	the	system.

In	this	chapter,	however,	as	well	as	in	Chapter	13,	Chapter	14,	Chapter	15,	and	Chapter	16,	we	probe
below	the	higher	levels	as	we	describe	various	methods	for	implementing	the	data	models	and	languages
presented	in	preceding	chapters.	We	start	with	characteristics	of	the	underlying	storage	media,	with	a
particular	focus	on	magnetic	disks	and	flash-based	solid-state	disks,	and	then	discuss	how	to	create	highly
reliable	storage	structures	by	using	multiple	storage	devices.

12.1

Overview	of	Physical	Storage	Media

Several	types	of	data	storage	exist	in	most	computer	systems.	These	storage	media	are	classified	by	the
speed	with	which	data	can	be	accessed,	by	the	cost	per	unit	of	data	to	buy	the	medium,	and	by	the
medium’s	reliability.	Among	the	media	typically	available	are	these:

•	Cache.	The	cache	is	the	fastest	and	most	costly	form	of	storage.	Cache	memory	is	relatively	small;	its
use	is	managed	by	the	computer	system	hardware.	We	shall	not	be	concerned	about	managing	cache
storage	in	the	database	system.	It	is,	however,	worth	noting	that	database	implementors	do	pay	attention
to	cache	effects	when	designing	query	processing	data	structures	and	algorithms,	and	we	shall	return	to
this	issue	in	later	chapters.

•	Main	memory.	The	storage	medium	used	for	data	that	are	available	to	be	operated	on	is	main	memory.

The	general-purpose	machine	instructions	operate	on	main	memory.	Main	memory	may	contain	tens	of
gigabytes	of	data	on	a	personal	com-559

560

Chapter	12

Physical	Storage	Systems

puter,	and	even	hundreds	to	thousands	of	gigabytes	of	data	in	large	server	systems.

It	is	generally	too	small	(or	too	expensive)	for	storing	the	entire	database	for	very	large	databases,	but
many	enterprise	databases	can	fit	in	main	memory.	However,	the	contents	of	main	memory	are	lost	in	the
event	of	a	power	failure	or	system	crash;	main	memory	is	therefore	said	to	be	volatile.

•	Flash	memory.	Flash	memory	differs	from	main	memory	in	that	stored	data	are	retained	even	if	power	is
turned	off	(or	fails)	—	that	is,	it	is	non-volatile.	Flash	memory	has	a	lower	cost	per	byte	than	main	memory,
but	a	higher	cost	per	byte	than	magnetic	disks.

Flash	memory	is	widely	used	for	data	storage	in	devices	such	as	cameras	and	cell	phones.	Flash	memory
is	also	used	for	storing	data	in	“USB	flash	drives,”	also	known	as	“pen	drives,”	which	can	be	plugged	into
the	Universal	Serial	Bus	(USB)	slots	of	computing	devices.

Flash	memory	is	also	increasingly	used	as	a	replacement	for	magnetic	disks	in	personal	computers	as	well
as	in	servers.	A	solid-state	drive	(SSD)	uses	flash	memory	internally	to	store	data	but	provides	an
interface	similar	to	a	magnetic	disk,	allowing	data	to	be	stored	or	retrieved	in	units	of	a	block;	such	an
interface	is	called	a	block-oriented	interface.	Block	sizes	typically	range	from	512	bytes	to	8-kilobytes.	As
of	2018,	a	1-terabyte	SSD	costs	around	$250.	We	provide	more	details	about	flash	memory	in	Section
12.4.

•	Magnetic-disk	storage.	The	primary	medium	for	the	long-term	online	storage	of	data	is	the	magnetic
disk	drive,	which	is	also	referred	to	as	the	hard	disk	drive	(HDD).	Magnetic	disk,	like	flash	memory,	is	non-
volatile:	that	is,	magnetic	disk	storage	survives	power	failures	and	system	crashes.	Disks	may	sometimes
fail	and	destroy	data,	but	such	failures	are	quite	rare	compared	to	system	crashes	or	power	failures.

To	access	data	stored	on	magnetic	disk,	the	system	must	first	move	the	data	from	disk	to	main	memory,
from	where	they	can	be	accessed.	After	the	system	has	performed	the	designated	operations,	the	data
that	have	been	modified	must	be	written	to	disk.

Disk	capacities	have	grown	steadily	over	the	years.	As	of	2018,	the	size	of	magnetic	disks	ranges	from	500
gigabytes	to	14	terabytes,	and	a	1-terabyte	disk	costs	about	$50,	while	an	8-terabyte	disk	around	$150.
Although	significantly	cheaper	than	SSDs,	magnetic	disks	provide	lower	performance	in	terms	of	number
of	data	access	operations	that	they	can	support	per	second.	We	provide	further	details	about	magnetic
disks	in	Section	12.3.

•	Optical	storage.	The	digital	video	disk	(DVD)	is	an	optical	storage	medium,	with	data	written	and	read
back	using	a	laser	light	source.	The	Blu-ray	DVD	format	has	a	capacity	of	27	gigabytes	to	128	gigabytes,
depending	on	the	number	of	layers	supported.	Although	the	original	(and	still	main)	use	of	DVDs	was	to
store	video	data,	they	are	capable	of	storing	any	type	of	digital	data,	including	backups	of

12.1

Overview	of	Physical	Storage	Media

561

database	contents.	DVDs	are	not	suitable	for	storing	active	database	data	since	the	time	required	to
access	a	given	piece	of	data	can	be	quite	long	compared	to	the	time	taken	by	a	magnetic	disk.

Some	DVD	versions	are	read-only,	written	at	the	factory	where	they	are	produced,	other	versions	support
write-once,	allowing	them	to	be	written	once,	but	not	overwritten,	and	some	versions	can	be	rewritten
multiple	times.	Disks	that	can	be	written	only	once	are	called	write-once,	read-many	(WORM)	disks.

Optical	disk	jukebox	systems	contain	a	few	drives	and	numerous	disks	that	can	be	loaded	into	one	of	the
drives	automatically	(by	a	robot	arm)	on	demand.

•	Tape	storage.	Tape	storage	is	used	primarily	for	backup	and	archival	data.	Archival	data	refers	to	data
that	must	be	stored	safely	for	a	long	period	of	time,	often	for	legal	reasons.	Magnetic	tape	is	cheaper	than
disks	and	can	safely	store	data	for	many	years.	However,	access	to	data	is	much	slower	because	the	tape
must	be	accessed	sequentially	from	the	beginning	of	the	tape;	tapes	can	be	very	long,	requiring	tens	to
hundreds	of	seconds	to	access	data.	For	this	reason,	tape	storage	is	referred	to	as	sequential-access

storage.	In	contrast,	magnetic	disk	and	SSD	storage	are	referred	to	as	direct-access	storage	because	it	is
possible	to	read	data	from	any	location	on	disk.

Tapes	have	a	high	capacity	(1	to	12	terabyte	capacities	are	currently	available),	and	can	be	removed	from
the	tape	drive.	Tape	drives	tend	to	be	expensive,	but	individual	tapes	are	usually	significantly	cheaper
than	magnetic	disks	of	the	same	capacity.	As	a	result,	tapes	are	well	suited	to	cheap	archival	storage	and
to	transferring	large	amounts	of	data	between	different	locations.	Archival	storage	of	large	video	files,	as
well	as	storage	of	large	volumes	of	scientific	data,	which	can	range	up	to	many	petabytes	(1	petabyte	=
1015	bytes)	of	data,	are	two	common	use	cases	for	tapes.

Tape	libraries	(jukeboxes)	are	used	to	hold	large	collections	of	tapes,	allowing	automated	storage	and
retrieval	of	tapes	without	human	intervention.

The	various	storage	media	can	be	organized	in	a	hierarchy	(Figure	12.1)	according	to	their	speed	and
their	cost.	The	higher	levels	are	expensive,	but	fast.	As	we	move	down	the	hierarchy,	the	cost	per	bit
decreases,	whereas	the	access	time	increases.	This	trade-off	is	reasonable;	if	a	given	storage	system	were
both	faster	and	less	expensive	than	another	—	other	properties	being	the	same	—	then	there	would	be	no
reason	to	use	the	slower,	more	expensive	memory.

The	fastest	storage	media	—	for	example,	cache	and	main	memory	—	are	referred	to	as	primary	storage.
The	media	in	the	next	level	in	the	hierarchy	—	for	example,	flash	memory	and	magnetic	disks	—	are
referred	to	as	secondary	storage,	or	online	storage.

The	media	in	the	lowest	level	in	the	hierarchy	—	for	example,	magnetic	tape	and	optical-disk	jukeboxes	—
are	referred	to	as	tertiary	storage,	or	offline	storage.

In	addition	to	the	speed	and	cost	of	the	various	storage	systems,	there	is	also	the	issue	of	storage
volatility.	In	the	hierarchy	shown	in	Figure	12.1,	the	storage	systems

562

Chapter	12

Physical	Storage	Systems

cache

main	memory

flash	memory

magnetic	disk

optical	disk

magnetic	tapes

Figure	12.1	Storage	device	hierarchy.

from	main	memory	up	are	volatile,	whereas	the	storage	systems	from	flash	memory	down	are	non-volatile.
Data	must	be	written	to	non-volatile	storage	for	safekeeping.	We	shall	return	to	the	subject	of	safe	storage
of	data	in	the	face	of	system	failures	later,	in	Chapter	19.

12.2

Storage	Interfaces

Magnetic	disks	as	well	as	flash-based	solid-state	disks	are	connected	to	a	computer	system	through	a
high-speed	interconnection.	Disks	typically	support	either	the	Serial	ATA	(SATA)	interface,	or	the	Serial
Attached	SCSI	(SAS)	interface;	the	SAS	interface	is	typically	used	only	in	servers.	The	SATA-3	version	of
SATA	nominally	supports	6

gigabytes	per	second,	allowing	data	transfer	speeds	of	up	to	600	megabytes	per	second,	while	SAS
version	3	supports	data	transfer	rates	of	12	gigabits	per	second.	The	NonVolatile	Memory	Express
(NVMe)	interface	is	a	logical	interface	standard	developed	to	better	support	SSDs	and	is	typically	used
with	the	PCIe	interface	(the	PCIe	interface	provides	high-speed	data	transfer	internal	to	computer
systems).

While	disks	are	usually	connected	directly	by	cables	to	the	disk	interface	of	the	computer	system,	they	can
be	situated	remotely	and	connected	by	a	high-speed	network	to	the	computer.	In	the	storage	area	network
(SAN)	architecture,	large	numbers	of	disks	are	connected	by	a	high-speed	network	to	a	number	of	server
computers.	The	disks	are	usually	organized	locally	using	a	storage	organization	technique	called

redundant	arrays	of	independent	disks	(RAID)	(described	later,	in	Section	12.5),	to	give	the	servers	a
logical	view	of	a	very	large	and	very	reliable	disk.	Interconnection	technologies	used

12.3

Magnetic	Disks

563

in	storage	area	networks	include	iSCSI,	which	allows	SCSI	commands	to	be	sent	over	an	IP	network,
Fiber	Channel	FC,	which	supports	transfer	rates	of	1.6	to	12	gigabytes	per	second,	depending	on	the
version,	and	InfiniBand,	which	provides	very	low	latency	high-bandwidth	network	communication.

Network	attached	storage	(NAS)	is	an	alternative	to	SAN.	NAS	is	much	like	SAN,	except	that	instead	of
the	networked	storage	appearing	to	be	a	large	disk,	it	provides	a	file	system	interface	using	networked
file	system	protocols	such	as	NFS	or	CIFS.	Recent	years	have	also	seen	the	growth	of	cloud	storage,
where	data	are	stored	in	the	cloud	and	accessed	via	an	API.	Cloud	storage	has	a	very	high	latency	of	tens
to	hundreds	of	milliseconds,	if	the	data	are	not	co-located	with	the	database,	and	is	thus	not	ideal	as	the
underlying	storage	for	databases.	However,	applications	often	use	cloud	storage	for	storing	objects.
Cloud-based	storage	systems	are	discussed	further	in	Section	21.7.

12.3

Magnetic	Disks

Magnetic	disks	provide	the	bulk	of	secondary	storage	for	modern	computer	systems.

Magnetic	disk	capacities	have	been	growing	steadily	year	after	year,	but	the	storage	requirements	of
large	applications	have	also	been	growing	very	fast,	in	some	cases	even	faster	than	the	growth	rate	of
disk	capacities.	Very	large	databases	at	“web-scale”	require	thousands	to	tens	of	thousands	of	disks	to
store	their	data.1

In	recent	years,	SSD	storage	sizes	have	grown	rapidly,	and	the	cost	of	SSDs	has	come	down	significantly;
the	increasing	affordability	of	SSDs	coupled	with	their	much	better	performance	has	resulted	in	SSDs
increasingly	becoming	a	competitor	to	magnetic	disk	storage	for	several	applications.	However,	the	fact
that	the	per-byte	cost	of	storage	on	SSDs	is	around	six	to	eight	times	the	per-byte	cost	of	storage	on
magnetic	disks	means	that	magnetic	disks	continue	to	be	the	preferred	choice	for	storing	very	large
volumes	of	data	in	many	applications.	Example	of	such	data	include	video	and	image	data,	as	well	as	data
that	is	accessed	less	frequently,	such	as	user-generated	data	in	many	web-scale	applications.	SSDs	have
however,	increasingly	become	the	preferred	choice	for	enterprise	data.

12.3.1

Physical	Characteristics	of	Disks

Figure	12.2	shows	a	schematic	diagram	of	a	magnetic	disk,	while	Figure	12.3	shows	the	internals	of	an
actual	magnetic	disk.	Each	disk	platter	has	a	flat,	circular	shape.	Its	two	surfaces	are	covered	with	a
magnetic	material,	and	information	is	recorded	on	the	surfaces.	Platters	are	made	from	rigid	metal	or
glass.

When	the	disk	is	in	use,	a	drive	motor	spins	it	at	a	constant	high	speed,	typically	5400	to	10,000
revolutions	per	minute,	depending	on	the	model.	There	is	a	read-write	head	positioned	just	above	the
surface	of	the	platter.	The	disk	surface	is	logically	di-1We	study	later,	in	Chapter	21,	how	to	partition	such
large	amounts	of	data	across	multiple	nodes	in	a	parallel	computing	system.

564

Chapter	12

Physical	Storage	Systems

track	t

spindle

arm	assembly

sector	s

cylinder	c

read–write

head

platter

arm

rotation

Figure	12.2	Schematic	diagram	of	a	magnetic	disk.

vided	into	tracks,	which	are	subdivided	into	sectors.	A	sector	is	the	smallest	unit	of	information	that	can
be	read	from	or	written	to	the	disk.	Sector	sizes	are	typically	512

bytes,	and	current	generation	disks	have	between	2	billion	and	24	billion	sectors.	The	inner	tracks	(closer
to	the	spindle)	are	of	smaller	length	than	the	outer	tracks,	and	the	outer	tracks	contain	more	sectors	than
the	inner	tracks.

The	read	–	write	head	stores	information	on	a	sector	magnetically	as	reversals	of	the	direction	of
magnetization	of	the	magnetic	material.

Figure	12.3	Internals	of	an	actual	magnetic	disk.

12.3

Magnetic	Disks

565

Each	side	of	a	platter	of	a	disk	has	a	read-write	head	that	moves	across	the	platter	to	access	different
tracks.	A	disk	typically	contains	many	platters,	and	the	read-write	heads	of	all	the	tracks	are	mounted	on
a	single	assembly	called	a	disk	arm	and	move	together.	The	disk	platters	mounted	on	a	spindle	and	the
heads	mounted	on	a	disk	arm	are	together	known	as	head-disk	assemblies.	Since	the	heads	on	all	the
platters	move	together,	when	the	head	on	one	platter	is	on	the	i	th	track,	the	heads	on	all	other	platters
are	also	on	the	i	th	track	of	their	respective	platters.	Hence,	the	i	th	tracks	of	all	the	platters	together	are
called	the	i	th	cylinder.

The	read-write	heads	are	kept	as	close	as	possible	to	the	disk	surface	to	increase	the	recording	density.
The	head	typically	floats	or	flies	only	microns	from	the	disk	surface;	the	spinning	of	the	disk	creates	a
small	breeze,	and	the	head	assembly	is	shaped	so	that	the	breeze	keeps	the	head	floating	just	above	the
disk	surface.	Because	the	head	floats	so	close	to	the	surface,	platters	must	be	machined	carefully	to	be
flat.

Head	crashes	can	be	a	problem.	If	the	head	contacts	the	disk	surface,	the	head	can	scrape	the	recording
medium	off	the	disk,	destroying	the	data	that	had	been	there.	In	older-generation	disks,	the	head	touching
the	surface	caused	the	removed	medium	to	become	airborne	and	to	come	between	the	other	heads	and
their	platters,	causing	more	crashes;	a	head	crash	could	thus	result	in	failure	of	the	entire	disk.	Current-
generation	disk	drives	use	a	thin	film	of	magnetic	metal	as	recording	medium.	They	are	much	less
susceptible	to	failure	of	the	entire	disk,	but	are	susceptible	to	failure	of	individual	sectors.

A	disk	controller	interfaces	between	the	computer	system	and	the	actual	hardware	of	the	disk	drive;	in
modern	disk	systems,	the	disk	controller	is	implemented	within	the	disk	drive	unit.	A	disk	controller
accepts	high-level	commands	to	read	or	write	a	sector,	and	initiates	actions,	such	as	moving	the	disk	arm
to	the	right	track	and	actually	reading	or	writing	the	data.	Disk	controllers	also	attach	checksums	to	each
sector	that	is	written;	the	checksum	is	computed	from	the	data	written	to	the	sector.	When	the	sector	is
read	back,	the	controller	computes	the	checksum	again	from	the	retrieved	data	and	compares	it	with	the
stored	checksum;	if	the	data	are	corrupted,	with	a	high	probability	the	newly	computed	checksum	will	not
match	the	stored	checksum.	If	such	an	error	occurs,	the	controller	will	retry	the	read	several	times;	if	the
error	continues	to	occur,	the	controller	will	signal	a	read	failure.

Another	interesting	task	that	disk	controllers	perform	is	remapping	of	bad	sectors.

If	the	controller	detects	that	a	sector	is	damaged	when	the	disk	is	initially	formatted,	or	when	an	attempt
is	made	to	write	the	sector,	it	can	logically	map	the	sector	to	a	different	physical	location	(allocated	from	a
pool	of	extra	sectors	set	aside	for	this	purpose).	The	remapping	is	noted	on	disk	or	in	non-volatile	memory,
and	the	write	is	carried	out	on	the	new	location.

12.3.2

Performance	Measures	of	Disks

The	main	measures	of	the	qualities	of	a	disk	are	capacity,	access	time,	data-transfer	rate,	and	reliability.

566

Chapter	12

Physical	Storage	Systems

Access	time	is	the	time	from	when	a	read	or	write	request	is	issued	to	when	data	transfer	begins.	To
access	(i.e.,	to	read	or	write)	data	on	a	given	sector	of	a	disk,	the	arm	first	must	move	so	that	it	is
positioned	over	the	correct	track,	and	then	must	wait	for	the	sector	to	appear	under	it	as	the	disk	rotates.
The	time	for	repositioning	the	arm	is	called	the	seek	time,	and	it	increases	with	the	distance	that	the	arm
must	move.	Typical	seek	times	range	from	2	to	20	milliseconds	depending	on	how	far	the	track	is	from	the
initial	arm	position.	Smaller	disks	tend	to	have	lower	seek	times	since	the	head	has	to	travel	a	smaller
distance.

The	average	seek	time	is	the	average	of	the	seek	times,	measured	over	a	sequence	of	(uniformly
distributed)	random	requests.	If	all	tracks	have	the	same	number	of	sectors,	and	we	disregard	the	time
required	for	the	head	to	start	moving	and	to	stop	moving,	we	can	show	that	the	average	seek	time	is	one-
third	the	worst-case	seek	time.	Taking	these	factors	into	account,	the	average	seek	time	is	around	one-half
of	the	maximum	seek	time.	Average	seek	times	currently	range	between	4	and	10	milliseconds,	depending
on	the	disk	model.2

Once	the	head	has	reached	the	desired	track,	the	time	spent	waiting	for	the	sector	to	be	accessed	to
appear	under	the	head	is	called	the	rotational	latency	time.	Rotational	speeds	of	disks	today	range	from
5400	rotations	per	minute	(90	rotations	per	second)	up	to	15,000	rotations	per	minute	(250	rotations	per
second),	or,	equivalently,	4	milliseconds	to	11.1	milliseconds	per	rotation.	On	an	average,	one-half	of	a
rotation	of	the	disk	is	required	for	the	beginning	of	the	desired	sector	to	appear	under	the	head.	Thus,	the
average	latency	time	of	the	disk	is	one-half	the	time	for	a	full	rotation	of	the	disk.

Disks	with	higher	rotational	speeds	are	used	for	applications	where	latency	needs	to	be	minimized.

The	access	time	is	then	the	sum	of	the	seek	time	and	the	latency;	average	access	times	range	from	5	to	20
milliseconds	depending	on	the	disk	model.	Once	the	first	sector	of	the	data	to	be	accessed	has	come	under
the	head,	data	transfer	begins.	The	data-transfer	rate	is	the	rate	at	which	data	can	be	retrieved	from	or
stored	to	the	disk.

Current	disk	systems	support	maximum	transfer	rates	of	50	to	200	megabytes	per	second;	transfer	rates
are	significantly	lower	than	the	maximum	transfer	rates	for	inner	tracks	of	the	disk,	since	they	have	fewer
sectors.	For	example,	a	disk	with	a	maximum	transfer	rate	of	100	megabytes	per	second	may	have	a
sustained	transfer	rate	of	around	30	megabytes	per	second	on	its	inner	tracks.

Requests	for	disk	I/O	are	typically	generated	by	the	file	system	but	can	be	generated	directly	by	the
database	system.	Each	request	specifies	the	address	on	the	disk	to	be	referenced;	that	address	is	in	the
form	of	a	block	number.	A	disk	block	is	a	logical	unit	of	storage	allocation	and	retrieval,	and	block	sizes
today	typically	range	from	4	to	16

2Smaller	2.5-inch	diameter	disks	have	a	lesser	arm	movement	distance	than	larger	3.5-inch	disks,	and
thus	have	lower	seek	times.	As	a	result	2.5-inch	disks	have	been	the	preferred	choice	for	applications
where	latency	needs	to	be	minimized,	although	SSDs	are	increasingly	preferred	for	such	applications.
Larger	3.5-inch	diameter	disks	have	a	lower	cost	per	byte	and	are	used	in	data	storage	applications	where
cost	is	an	important	factor.

12.4

Flash	Memory

567

kilobytes.	Data	are	transferred	between	disk	and	main	memory	in	units	of	blocks.	The	term	page	is	often
used	to	refer	to	blocks,	although	in	a	few	contexts	(such	as	flash	memory)	they	refer	to	different	things.

A	sequence	of	requests	for	blocks	from	disk	may	be	classified	as	a	sequential	access	pattern	or	a	random
access	pattern.	In	a	sequential	access	pattern,	successive	requests	are	for	successive	block	numbers,
which	are	on	the	same	track,	or	on	adjacent	tracks.

To	read	blocks	in	sequential	access,	a	disk	seek	may	be	required	for	the	first	block,	but	successive
requests	would	either	not	require	a	seek,	or	require	a	seek	to	an	adjacent	track,	which	is	faster	than	a
seek	to	a	track	that	is	farther	away.	Data	transfer	rates	are	highest	with	a	sequential	access	pattern,	since
seek	time	is	minimal.

In	contrast,	in	a	random	access	pattern,	successive	requests	are	for	blocks	that	are	randomly	located	on
disk.	Each	such	request	would	require	a	seek.	The	number	of	I/O

operations	per	second	(IOPS),	that	is,	the	number	random	block	accesses	that	can	be	satisfied	by	a	disk	in
a	second,	depends	on	the	access	time,	and	the	block	size,	and	the	data	transfer	rate	of	the	disk.	With	a	4-
kilobyte	block	size,	current	generation	disks	support	between	50	and	200	IOPS,	depending	on	the	model.
Since	only	a	small	amount	(one	block)	of	data	are	read	per	seek,	the	data	transfer	rate	is	significantly
lower	with	a	random	access	pattern	than	with	a	sequential	access	pattern.

The	final	commonly	used	measure	of	a	disk	is	the	mean	time	to	failure	(MTTF),3

which	is	a	measure	of	the	reliability	of	the	disk.	The	mean	time	to	failure	of	a	disk	(or	of	any	other	system)
is	the	amount	of	time	that,	on	average,	we	can	expect	the	system	to	run	continuously	without	any	failure.
According	to	vendors’	claims,	the	mean	time	to	failure	of	disks	today	ranges	from	500,000	to	1,200,000
hours	—	about	57	to	136

years.	In	practice	the	claimed	mean	time	to	failure	is	computed	on	the	probability	of	failure	when	the	disk
is	new	—	the	figure	means	that	given	1000	relatively	new	disks,	if	the	MTTF	is	1,200,000	hours,	on	an
average	one	of	them	will	fail	in	1200	hours.	A	mean	time	to	failure	of	1,200,000	hours	does	not	imply	that
the	disk	can	be	expected	to	function	for	136	years!	Most	disks	have	an	expected	life	span	of	about	5	years
and	have	significantly	higher	rates	of	failure	once	they	become	more	than	a	few	years	old.

12.4

Flash	Memory

There	are	two	types	of	flash	memory,	NOR	flash	and	NAND	flash.	NAND	flash	is	the	variant	that	is
predominantly	used	for	data	storage.	Reading	from	NAND	flash	requires	an	entire	page	of	data,	which	is
very	commonly	4096	bytes,	to	be	fetched	from	NAND

flash	into	main	memory.	Pages	in	a	NAND	flash	are	thus	similar	to	sectors	in	a	magnetic	disk.

3The	term	mean	time	between	failures	(MTBF)	is	often	used	to	refer	to	MTTF	in	the	context	of	disk
drives,	although	technically	MTBF	should	only	be	used	in	the	context	of	systems	that	can	be	repaired	after
failure,	and	may	fail	again;	MTBF	would	then	be	the	sum	of	MTTF	and	the	mean	time	to	repair.	Magnetic
disks	can	almost	never	be	repaired	after	a	failure.

568

Chapter	12

Physical	Storage	Systems

Solid-state	disks	(SSDs)	are	built	using	NAND	flash	and	provide	the	same	block-oriented	interface	as	disk
storage.	Compared	to	magnetic	disks,	SSDs	can	provide	much	faster	random	access:	the	latency	to
retrieve	a	page	of	data	ranges	from	20	to	100	microseconds	for	SSDs,	whereas	a	random	access	on	disk
would	take	5	to	10	milliseconds.

The	data	transfer	rate	of	SSDs	is	higher	than	that	of	magnetic	disks	and	is	usually	limited	by	the
interconnect	technology;	transfer	rates	range	from	around	500	megabytes	per	second	with	SATA
interfaces,	up	to	3	gigabytes	per	second	using	NVMe	PCIe	interfaces,	depending	on	the	specific	SSD
model,	in	contrast	to	a	maximum	of	about	200	megabytes	per	second	with	magnetic	disk.	The	power
consumption	of	SSDs	is	also	significantly	lower	than	that	of	magnetic	disks.

Writes	to	flash	memory	are	a	little	more	complicated.	A	write	to	a	page	of	flash	memory	typically	takes
about	100	microseconds.	However,	once	written,	a	page	of	flash	memory	cannot	be	directly	overwritten.
Instead,	it	has	to	be	erased	and	rewritten	subsequently.	The	erase	operation	must	be	performed	on	a
group	of	pages,	called	an	erase	block,	erasing	all	the	pages	in	the	block,	and	takes	about	2	to	5
milliseconds.

An	erase	block	(often	referred	to	as	just	“block”	in	flash	literature),	is	typically	256

kilobytes	to	1	megabyte,	and	contains	around	128	to	256	pages.	Further,	there	is	a	limit	to	how	many
times	a	flash	page	can	be	erased,	typically	around	100,000	to	1,000,000

times.	Once	this	limit	is	reached,	errors	in	storing	bits	are	likely	to	occur.

Flash	memory	systems	limit	the	impact	of	both	the	slow	erase	speed	and	the	update	limits	by	mapping
logical	page	numbers	to	physical	page	numbers.	When	a	logical	page	is	updated,	it	can	be	remapped	to
any	already	erased	physical	page,	and	the	original	location	can	be	erased	later.	Each	physical	page	has	a
small	area	of	memory	where	its	logical	address	is	stored;	if	the	logical	address	is	remapped	to	a	different
physical	page,	the	original	physical	page	is	marked	as	deleted.	Thus,	by	scanning	the	physical	pages,	we
can	find	where	each	logical	page	resides.	The	logical-to-physical	page	mapping	is	replicated	in	an	in-
memory	translation	table	for	quick	access.

Blocks	containing	multiple	deleted	pages	are	periodically	erased,	taking	care	to	first	copy	nondeleted
pages	in	those	blocks	to	a	different	block	(the	translation	table	is	updated	for	these	nondeleted	pages).
Since	each	physical	page	can	be	updated	only	a	fixed	number	of	times,	physical	pages	that	have	been
erased	many	times	are	assigned

“cold	data,”	that	is,	data	that	are	rarely	updated,	while	pages	that	have	not	been	erased	many	times	are
used	to	store	“hot	data,”	that	is,	data	that	are	updated	frequently.	This	principle	of	evenly	distributing
erase	operations	across	physical	blocks	is	called	wear	leveling	and	is	usually	performed	transparently	by
flash-memory	controllers.	If	a	physical	page	is	damaged	due	to	an	excessive	number	of	updates,	it	can	be
removed	from	usage,	without	affecting	the	flash	memory	as	a	whole.

All	the	above	actions	are	carried	out	by	a	layer	of	software	called	the	flash	translation	layer;	above	this
layer,	flash	storage	looks	identical	to	magnetic	disk	storage,	providing	the	same	page/sector-oriented
interface,	except	that	flash	storage	is	much	faster.

File	systems	and	database	storage	structures	can	thus	see	an	identical	logical	view	of	the	underlying
storage	structure,	regardless	of	whether	it	is	flash	or	magnetic	storage.

12.4

Flash	Memory

569

Note	12.1	STORAGE	CLASS	MEMORY

Although	flash	is	the	most	widely	used	type	of	non-volatile	memory,	there	have	been	a	number	of
alternative	non-volatile	memory	technologies	developed	over	the	years.	Several	of	these	technologies
allow	direct	read	and	write	access	to	individual	bytes	or	words,	avoiding	the	need	to	read	or	write	in	units
of	pages	(and	also	avoiding	the	erase	overhead	of	NAND	flash).	Such	types	of	non-volatile	memory	are
referred	to	as	storage	class	memory,	since	they	can	be	treated	as	a	large	nonvolatile	block	of	memory.	The
3D-XPoint	memory	technology,	developed	by	Intel	and	Micron,	is	a	recently	developed	storage	class

memory	technology.	In	terms	of	cost	per	byte,	latency	of	access,	and	capacity,	3D-XPoint	memory	lies	in
between	main	memory	and	flash	memory.	Intel	Optane	SSDs	based	on	3D-XPoint	started	shipping	in	2017,
and	Optane	persistent	memory	modules	were	announced	in	2018.

SSD	performance	is	usually	expressed	in	terms	of:

1.	The	number	of	random	block	reads	per	second,	with	4-kilobyte	blocks	being	the	standard.	Typical
values	in	2018	are	about	10,000	random	reads	per	second	(also	referred	to	as	10,000	IOPS)	with	4-
kilobyte	blocks,	although	some	models	support	higher	rates.

Unlike	magnetic	disks,	SSDs	can	support	multiple	random	requests	in	parallel,	with	32	parallel	requests
being	commonly	supported;	a	flash	disk	with	SATA	interface	supports	nearly	100,000	random	4-kilobyte
block	reads	in	a	second	with	32	requests	sent	in	parallel,	while	SSDs	connected	using	NVMe	PCIe	can
support	over	350,000	random	4-kilobyte	block	reads	per	second.	These	numbers	are	specified	as	QD-1	for
rates	without	parallelism	and	QD-n	for	n-way	parallelism,	with	QD-32	being	the	most	commonly	used
number.

2.	The	data	transfer	rate	for	sequential	reads	and	sequential	writes.	Typical	rates	for	both	sequential
reads	and	sequential	writes	are	400	to	500	megabytes	per	second	for	SSDs	with	a	SATA	3	interface,	and	2
to	3	gigabytes	per	second	for	SSDs	using	NVMe	over	the	PCIe	3.0x4	interface.

3.	The	number	of	random	block	writes	per	second,	with	4-kilobyte	blocks	being	the	standard.	Typical
values	in	2018	are	about	40,000	random	4-kilobyte	writes	per	second	for	QD-1	(without	parallelism),	and
around	100,000	IOPS	for	QD-32.

although	some	models	support	higher	rates	for	both	QD-1	and	QD-32.

Hybrid	disk	drives	are	hard-disk	systems	that	combine	magnetic	storage	with	a	smaller	amount	of	flash
memory,	which	is	used	as	a	cache	for	frequently	accessed	data.

Frequently	accessed	data	that	are	rarely	updated	are	ideal	for	caching	in	flash	memory.

570

Chapter	12

Physical	Storage	Systems

Modern	SAN	and	NAS	systems	support	the	use	of	a	combination	of	magnetic	disks	and	SSDs,	and	they
can	be	configured	to	use	the	SSDs	as	a	cache	for	data	that	reside	on	magnetic	disks.

12.5

RAID

The	data-storage	requirements	of	some	applications	(in	particular	web,	database,	and	multimedia
applications)	have	been	growing	so	fast	that	a	large	number	of	disks	are	needed	to	store	their	data,	even
though	disk-drive	capacities	have	been	growing	very	fast.

Having	a	large	number	of	disks	in	a	system	presents	opportunities	for	improving	the	rate	at	which	data
can	be	read	or	written,	if	the	disks	are	operated	in	parallel.	Several	independent	reads	or	writes	can	also
be	performed	in	parallel.	Furthermore,	this	setup	offers	the	potential	for	improving	the	reliability	of	data
storage,	because	redundant	information	can	be	stored	on	multiple	disks.	Thus,	failure	of	one	disk	does	not
lead	to	loss	of	data.

A	variety	of	disk-organization	techniques,	collectively	called	redundant	arrays	of	independent	disks
(RAID),	have	been	proposed	to	achieve	improved	performance	and	reliability.

In	the	past,	system	designers	viewed	storage	systems	composed	of	several	small,	cheap	disks	as	a	cost-
effective	alternative	to	using	large,	expensive	disks;	the	cost	per	megabyte	of	the	smaller	disks	was	less
than	that	of	larger	disks.	In	fact,	the	I	in	RAID,	which	now	stands	for	independent,	originally	stood	for
inexpensive.	Today,	however,	all	disks	are	physically	small,	and	larger-capacity	disks	actually	have	a	lower
cost	per	megabyte.	RAID	systems	are	used	for	their	higher	reliability	and	higher	performance	rate,	rather
than	for	economic	reasons.	Another	key	justification	for	RAID	use	is	easier	management	and	operations.

12.5.1

Improvement	of	Reliability	via	Redundancy

Let	us	first	consider	reliability.	The	chance	that	at	least	one	disk	out	of	a	set	of	N	disks	will	fail	is	much
higher	than	the	chance	that	a	specific	single	disk	will	fail.	Suppose	that	the	mean	time	to	failure	of	a	disk
is	100,000	hours,	or	slightly	over	11	years.	Then,	the	mean	time	to	failure	of	some	disk	in	an	array	of	100

disks	will	be	100,000∕100	=	1000

hours,	or	around	42	days,	which	is	not	long	at	all!	If	we	store	only	one	copy	of	the	data,	then	each	disk
failure	will	result	in	loss	of	a	significant	amount	of	data	(as	discussed	in	Section	12.3.1).	Such	a	high
frequency	of	data	loss	is	unacceptable.

The	solution	to	the	problem	of	reliability	is	to	introduce	redundancy;	that	is,	we	store	extra	information
that	is	not	needed	normally	but	that	can	be	used	in	the	event	of	failure	of	a	disk	to	rebuild	the	lost
information.	Thus,	even	if	a	disk	fails,	data	are	not	lost,	so	the	effective	mean	time	to	failure	is	increased,
provided	that	we	count	only	failures	that	lead	to	loss	of	data	or	to	non-availability	of	data.

12.5

RAID

571

The	simplest	(but	most	expensive)	approach	to	introducing	redundancy	is	to	duplicate	every	disk.	This
technique	is	called	mirroring	(or,	sometimes,	shadowing).	A	logical	disk	then	consists	of	two	physical
disks,	and	every	write	is	carried	out	on	both	disks.	If	one	of	the	disks	fails,	the	data	can	be	read	from	the
other.	Data	will	be	lost	only	if	the	second	disk	fails	before	the	first	failed	disk	is	repaired.

The	mean	time	to	failure	(where	failure	is	the	loss	of	data)	of	a	mirrored	disk	depends	on	the	mean	time	to
failure	of	the	individual	disks,	as	well	as	on	the	mean	time	to	repair,	which	is	the	time	it	takes	(on	an
average)	to	replace	a	failed	disk	and	to	restore	the	data	on	it.	Suppose	that	the	failures	of	the	two	disks
are	independent;	that	is,	there	is	no	connection	between	the	failure	of	one	disk	and	the	failure	of	the
other.	Then,	if	the	mean	time	to	failure	of	a	single	disk	is	100,000	hours,	and	the	mean	time	to	repair	is	10
hours,	the	mean	time	to	data	loss	of	a	mirrored	disk	system	is	100,	0002∕(2	∗	10)	=

500	∗	106	hours,	or	57,000	years!	(We	do	not	go	into	the	derivations	here;	references	in	the
bibliographical	notes	provide	the	details.)

You	should	be	aware	that	the	assumption	of	independence	of	disk	failures	is	not	valid.	Power	failures	and
natural	disasters	such	as	earthquakes,	fires,	and	floods	may	result	in	damage	to	both	disks	at	the	same
time.	As	disks	age,	the	probability	of	failure	increases,	increasing	the	chance	that	a	second	disk	will	fail
while	the	first	is	being	repaired.	In	spite	of	all	these	considerations,	however,	mirrored-disk	systems	offer
much	higher	reliability	than	do	single-disk	systems.	Mirrored-disk	systems	with	mean	time	to	data	loss	of
about	500,000	to	1,000,000	hours,	or	55	to	110	years,	are	available	today.

Power	failures	are	a	particular	source	of	concern,	since	they	occur	far	more	frequently	than	do	natural
disasters.	Power	failures	are	not	a	concern	if	there	is	no	data	transfer	to	disk	in	progress	when	they	occur.
However,	even	with	mirroring	of	disks,	if	writes	are	in	progress	to	the	same	block	in	both	disks,	and
power	fails	before	both	blocks	are	fully	written,	the	two	blocks	can	be	in	an	inconsistent	state.	The
solution	to	this	problem	is	to	write	one	copy	first,	then	the	next,	so	that	one	of	the	two	copies	is	always
consistent.	Some	extra	actions	are	required	when	we	restart	after	a	power	failure,	to	recover	from
incomplete	writes.	This	matter	is	examined	in	Practice	Exercise	12.6.

12.5.2

Improvement	in	Performance	via	Parallelism

Now	let	us	consider	the	benefit	of	parallel	access	to	multiple	disks.	With	disk	mirroring,	the	rate	at	which
read	requests	can	be	handled	is	doubled,	since	read	requests	can	be	sent	to	either	disk	(as	long	as	both
disks	in	a	pair	are	functional,	as	is	almost	always	the	case).	The	transfer	rate	of	each	read	is	the	same	as
in	a	single-disk	system,	but	the	number	of	reads	per	unit	time	has	doubled.

With	multiple	disks,	we	can	improve	the	transfer	rate	as	well	(or	instead)	by	striping	data	across	multiple
disks.	In	its	simplest	form,	data	striping	consists	of	splitting	the	bits	of	each	byte	across	multiple	disks;
such	striping	is	called	bit-level	striping.	For	example,	if	we	have	an	array	of	eight	disks,	we	write	bit	i	of
each	byte	to	disk	i.	In	such	an	organization,	every	disk	participates	in	every	access	(read	or	write),	so	the
number	of	accesses	that	can	be	processed	per	second	is	about	the	same	as	on	a	single	disk,	but	each
access	can	read	eight	times	as	much	data	in	the	same	time	as	on	a	single	disk.

572

Chapter	12

Physical	Storage	Systems

Block-level	striping	stripes	blocks	across	multiple	disks.	It	treats	the	array	of	disks	as	a	single	large	disk,
and	it	gives	blocks	logical	numbers;	we	assume	the	block	numbers	start	from	0.	With	an	array	of	n	disks,

block-level	striping	assigns	logical	block	i	of	the	disk	array	to	disk	(i	mod	n)	+	1;	it	uses	the	⌊i∕n⌋th
physical	block	of	the	disk	to	store	logical	block	i.	For	example,	with	eight	disks,	logical	block	0	is	stored	in
physical	block	0	of	disk	1,	while	logical	block	11	is	stored	in	physical	block	1	of	disk	4.	When	reading	a
large	file,	block-level	striping	fetches	n	blocks	at	a	time	in	parallel	from	the	n	disks,	giving	a	high	data-
transfer	rate	for	large	reads.	When	a	single	block	is	read,	the	data-transfer	rate	is	the	same	as	on	one
disk,	but	the	remaining	n−1	disks	are	free	to	perform	other	actions.

Block-level	striping	offers	several	advantages	over	bit-level	striping,	including	the	ability	to	support	a
larger	number	of	block	reads	per	second,	and	lower	latency	for	single	block	reads.	As	a	result,	bit-level
striping	is	not	used	in	any	practical	system.

In	summary,	there	are	two	main	goals	of	parallelism	in	a	disk	system:

1.	Load-balance	multiple	small	accesses	(block	accesses),	so	that	the	throughput	of	such	accesses
increases.

2.	Parallelize	large	accesses	so	that	the	response	time	of	large	accesses	is	reduced.

12.5.3

RAID	Levels

Mirroring	provides	high	reliability,	but	it	is	expensive.	Striping	provides	high	data-transfer	rates,	but	does
not	improve	reliability.	Various	alternative	schemes	aim	to	provide	redundancy	at	lower	cost	by	combining
disk	striping	with	“parity	blocks”.

Blocks	in	a	RAID	system	are	partitioned	into	sets,	as	we	shall	see.	For	a	given	set	of	blocks,	a	parity	block
can	be	computed	and	stored	on	disk;	the	ith	bit	of	the	parity	block	is	computed	as	the	“exclusive	or”	(XOR)
of	the	ith	bits	of	the	all	blocks	in	the	set.	If	the	contents	of	any	one	of	the	blocks	in	a	set	is	lost	due	to	a
failure,	the	block	contents	can	be	recovered	by	computing	the	bitwise-XOR	of	the	remaining	blocks	in	the
set,	along	with	the	parity	block.

Whenever	a	block	is	written,	the	parity	block	for	its	set	must	be	recomputed	and	written	to	disk.	The	new
value	of	the	parity	block	can	be	computed	by	either	(i)	reading	all	the	other	blocks	in	the	set	from	disk	and
computing	the	new	parity	block,	or	(ii)	by	computing	the	XOR	of	the	old	value	of	the	parity	block	with	the
old	and	new	value	of	the	updated	block.

These	schemes	have	different	cost-performance	trade-offs.	The	schemes	are	classified	into	RAID	levels.4.
Figure	12.4	illustrates	the	four	levels	that	are	used	in	practice.	In	the	figure,	P	indicates	error-correcting
bits,	and	C	indicates	a	second	copy	of	the	data.

For	all	levels,	the	figure	depicts	four	disks’	worth	of	data,	and	the	extra	disks	depicted	are	used	to	store
redundant	information	for	failure	recovery.

4There	are	7	different	RAID	levels,	numbered	0	to	6;	Levels	2,	3,	and	4	are	not	used	in	practice	anymore
and	thus	are	not	covered	in	the	text

12.5

RAID

573

(a)	RAID	0:	nonredundant	striping

C

C

C

C

(b)	RAID	1:	mirrored	disks

P

P

P

P

P

(c)	RAID	5:	block-interleaved	distributed	parity

P

P	Q

PQ

Q

Q

P

P	Q

P	Q

(d)	RAID	6:	P	+	Q	redundancy

Figure	12.4	RAID	levels.

•	RAID	level	0	refers	to	disk	arrays	with	striping	at	the	level	of	blocks,	but	without	any	redundancy	(such
as	mirroring	or	parity	bits).	Figure	12.4a	shows	an	array	of	size	4.

•	RAID	level	1	refers	to	disk	mirroring	with	block	striping.	Figure	12.4b	shows	a	mirrored	organization
that	holds	four	disks’	worth	of	data.

Note	that	some	vendors	use	the	term	RAID	level	1+0	or	RAID	level	10	to	refer	to	mirroring	with	striping,
and	they	use	the	term	RAID	level	1	to	refer	to	mirroring	without	striping.	Mirroring	without	striping	can
also	be	used	with	arrays	of	disks,	to	give	the	appearance	of	a	single	large,	reliable	disk:	if	each	disk	has	M
blocks,	logical	blocks	0	to	M	−	1	are	stored	on	disk	0,	M	to	2	M	−	1	on	disk	1(the	second	disk),	and	so	on,
and	each	disk	is	mirrored.5

•	RAID	level	5	refers	to	block-interleaved	distributed	parity.	The	data	and	parity	are	partitioned	among	all
N	+	1	disks.	For	each	set	of	N	logical	blocks,	one	of	the	disks	stores	the	parity,	and	the	other	N	disks	store
the	blocks.	The	parity	blocks	are	stored	on	different	disks	for	different	sets	of	N	blocks.	Thus,	all	disks	can
participate	in	satisfying	read	requests.6

Figure	12.4c	shows	the	setup.	The	P’s	are	distributed	across	all	the	disks.	For	example,	with	an	array	of
five	disks,	the	parity	block,	labeled	Pk,	for	logical	blocks	5Note	that	some	vendors	use	the	term	RAID	0+1
to	refer	to	a	version	of	RAID	that	uses	striping	to	create	a	RAID	0

array,	and	mirrors	the	array	onto	another	array,	with	the	difference	from	RAID	1	being	that	if	a	disk	fails,
the	RAID

0	array	containing	the	disk	becomes	unusable.	The	mirrored	array	can	still	be	used,	so	there	is	no	loss	of
data.	This	arrangement	is	inferior	to	RAID	1	when	a	disk	has	failed,	since	the	other	disks	in	the	RAID	0
array	can	continue	to	be	used	in	RAID	1,	but	remain	idle	in	RAID	0+1.

6In	RAID	level	4	(which	is	not	used	in	practice)	all	parity	blocks	are	stored	on	one	disk.	That	disk	would
not	be	useful	for	reads,	and	it	would	also	have	a	higher	load	than	other	disks	if	there	were	many	random
writes.

574

Chapter	12

Physical	Storage	Systems

4	k,	4	k	+	1,	4	k	+	2,	4	k	+	3	is	stored	in	disk	k	mod	5;	the	corresponding	blocks	of	the	other	four	disks
store	the	four	data	blocks	4	k	to	4	k	+	3.	The	following	table	indicates	how	the	first	20	blocks,	numbered	0
to	19,	and	their	parity	blocks	are	laid	out.	The	pattern	shown	gets	repeated	on	further	blocks.

P0

0

1

2

3

4

P1

5

6

7

8

9

P2

10

11

12

13

14

P3

15

16

17

18

19

P4

Note	that	a	parity	block	cannot	store	parity	for	blocks	in	the	same	disk,	since	then	a	disk	failure	would
result	in	loss	of	data	as	well	as	of	parity,	and	hence	would	not	be	recoverable.

•	RAID	level	6,	the	P	+	Q	redundancy	scheme,	is	much	like	RAID	level	5,	but	it	stores	extra	redundant
information	to	guard	against	multiple	disk	failures.	Instead	of	using	parity,	level	6	uses	error-correcting
codes	such	as	the	Reed-Solomon	codes	(see	the	bibliographical	notes).	In	the	scheme	in	Figure	12.4g,	two
bits	of	redundant	data	are	stored	for	every	four	bits	of	data	—	unlike	one	parity	bit	in	level	5	—	and	the
system	can	tolerate	two	disk	failures.

The	letters	P	and	Q	in	the	figure	denote	blocks	containing	the	two	corresponding	error-correcting	blocks
for	a	given	set	of	data	blocks.	The	layout	of	blocks	is	an	extension	of	that	for	RAID	5.	For	example,	with	six
disks,	the	two	parity	blocks,	labeled	Pk	and	Qk,	for	logical	blocks	4	k,	4	k	+	1,	4	k	+	2,	and	4	k	+	3	are
stored	in	disk	k	mod	6	and	(k	+	1)	mod	6,	and	the	corresponding	blocks	of	the	other	four	disks	store	the
four	data	blocks	4	k	to	4	k	+	3.

Finally,	we	note	that	several	variations	have	been	proposed	to	the	basic	RAID

schemes	described	here,	and	different	vendors	use	different	terminologies	for	the	variants.	Some	vendors
support	nested	schemes	that	create	multiple	separate	RAID	arrays,	and	then	stripe	data	across	the	RAID
arrays;	one	of	RAID	levels	1,	5	or	6	is	chosen	for	the	individual	arrays.	References	to	further	information
on	this	idea	are	provided	in	the	Further	Reading	section	at	the	end	of	the	chapter.

12.5.4

Hardware	Issues

RAID	can	be	implemented	with	no	change	at	the	hardware	level,	using	only	software	modification.	Such
RAID	implementations	are	called	software	RAID.	However,	there	are	significant	benefits	to	be	had	by
building	special-purpose	hardware	to	support	RAID,	which	we	outline	below;	systems	with	special

hardware	support	are	called	hardware	RAID	systems.

12.5

RAID

575

Hardware	RAID	implementations	can	use	non-volatile	RAM	to	record	writes	before	they	are	performed.	In
case	of	power	failure,	when	the	system	comes	back	up,	it	retrieves	information	about	any	incomplete
writes	from	non-volatile	RAM	and	then	completes	the	writes.	Normal	operations	can	then	commence.

In	contrast,	with	software	RAID	extra	work	needs	to	be	done	to	detect	blocks	that	may	have	been	partially
written	before	power	failure.	For	RAID	1,	all	blocks	of	the	disks	are	scanned	to	see	if	any	pair	of	blocks	on
the	two	disks	have	different	contents.	For	RAID	5,	the	disks	need	to	be	scanned	and	parity	recomputed	for
each	set	of	blocks	and	compared	to	the	stored	parity.	Such	scans	take	a	long	time,	and	they	are	done	in
the	background	using	a	small	fraction	of	the	disks’	available	bandwidth.	See	Practice	Exercise	12.6	for
details	of	how	to	recover	data	to	the	latest	value,	when	an	inconsistency	is	detected;	we	revisit	this	issue
in	the	context	of	database	system	recovery	in	Section	19.2.1.	The	RAID	system	is	said	to	be
resynchronizing	(or	resynching)	during	this	phase;	normal	reads	and	writes	are	allowed	while
resynchronization	is	in	progress,	but	a	failure	of	a	disk	during	this	phase	could	result	in	data	loss	for
blocks	with	incomplete	writes.

Hardware	RAID	does	not	have	this	limitation.

Even	if	all	writes	are	completed	properly,	there	is	a	small	chance	of	a	sector	in	a	disk	becoming
unreadable	at	some	point,	even	though	it	was	successfully	written	earlier.

Reasons	for	loss	of	data	on	individual	sectors	could	range	from	manufacturing	defects	to	data	corruption
on	a	track	when	an	adjacent	track	is	written	repeatedly.	Such	loss	of	data	that	were	successfully	written
earlier	is	sometimes	referred	to	as	a	latent	failure,	or	as	bit	rot.	When	such	a	failure	happens,	if	it	is
detected	early	the	data	can	be	recovered	from	the	remaining	disks	in	the	RAID	organization.	However,	if
such	a	failure	remains	undetected,	a	single	disk	failure	could	lead	to	data	loss	if	a	sector	in	one	of	the
other	disks	has	a	latent	failure.

To	minimize	the	chance	of	such	data	loss,	good	RAID	controllers	perform	scrubbing;	that	is,	during
periods	when	disks	are	idle,	every	sector	of	every	disk	is	read,	and	if	any	sector	is	found	to	be	unreadable,
the	data	are	recovered	from	the	remaining	disks	in	the	RAID	organization,	and	the	sector	is	written	back.
(If	the	physical	sector	is	damaged,	the	disk	controller	would	remap	the	logical	sector	address	to	a
different	physical	sector	on	disk.)

Server	hardware	is	often	designed	to	permit	hot	swapping;	that	is,	faulty	disks	can	be	removed	and
replaced	by	new	ones	without	turning	power	off.	The	RAID	controller	can	detect	that	a	disk	was	replaced
by	a	new	one	and	can	immediately	proceed	to	reconstruct	the	data	that	was	on	the	old	disk,	and	write	it	to
the	new	disk.	Hot	swapping	reduces	the	mean	time	to	repair,	since	replacement	of	a	disk	does	not	have	to
wait	until	a	time	when	the	system	can	be	shut	down.	In	fact,	many	critical	systems	today	run	on	a	24	×	7
schedule;	that	is,	they	run	24	hours	a	day,	7	days	a	week,	providing	no	time	for	shutting	down	and
replacing	a	failed	disk.	Further,	many	RAID	implementations	assign	a	spare	disk	for	each	array	(or	for	a
set	of	disk	arrays).	If	a	disk	fails,	the	spare	disk	is	immediately	used	as	a	replacement.	As	a	result,	the
mean	time	to	repair	is	reduced	greatly,	minimizing	the	chance	of	any	data	loss.	The	failed	disk	can	be
replaced	at	leisure.

576

Chapter	12

Physical	Storage	Systems

The	power	supply,	or	the	disk	controller,	or	even	the	system	interconnection	in	a	RAID	system	could
become	a	single	point	of	failure	that	could	stop	the	functioning	of	the	RAID	system.	To	avoid	this
possibility,	good	RAID	implementations	have	multiple	redundant	power	supplies	(with	battery	backups	so
they	continue	to	function	even	if	power	fails).	Such	RAID	systems	have	multiple	disk	interfaces	and
multiple	interconnections	to	connect	the	RAID	system	to	the	computer	system	(or	to	a	network	of
computer	systems).	Thus,	failure	of	any	single	component	will	not	stop	the	functioning	of	the	RAID
system.

12.5.5

Choice	of	RAID	Level

The	factors	to	be	taken	into	account	in	choosing	a	RAID	level	are:

•	Monetary	cost	of	extra	disk-storage	requirements.

•	Performance	requirements	in	terms	of	number	of	I/O	operations	per	second.

•	Performance	when	a	disk	has	failed.

•	Performance	during	rebuild	(i.e.,	while	the	data	in	a	failed	disk	are	being	rebuilt	on	a	new	disk).

The	time	to	rebuild	the	data	of	a	failed	disk	can	be	significant,	and	it	varies	with	the	RAID	level	that	is
used.	Rebuilding	is	easiest	for	RAID	level	1,	since	data	can	be	copied	from	another	disk;	for	the	other
levels,	we	need	to	access	all	the	other	disks	in	the	array	to	rebuild	data	of	a	failed	disk.	The	rebuild
performance	of	a	RAID	system	may	be	an	important	factor	if	continuous	availability	of	data	is	required,	as
it	is	in	high-performance	database	systems.	Furthermore,	since	rebuild	time	can	form	a	significant	part	of
the	repair	time,	rebuild	performance	also	influences	the	mean	time	to	data	loss.

RAID	level	0	is	used	in	a	few	high-performance	applications	where	data	safety	is	not	critical,	but	not
anywhere	else.

RAID	level	1	is	popular	for	applications	such	as	storage	of	log	files	in	a	database	system,	since	it	offers	the
best	write	performance.	RAID	level	5	has	a	lower	storage	overhead	than	level	1,	but	it	has	a	higher	time
overhead	for	writes.	For	applications	where	data	are	read	frequently,	and	written	rarely,	level	5	is	the
preferred	choice.

Disk-storage	capacities	have	been	increasing	rapidly	for	many	years.	Capacities	were	effectively	doubling
every	13	months	at	one	point;	although	the	current	rate	of	growth	is	much	less	now,	capacities	have
continued	to	increase	rapidly.	The	cost	per	byte	of	disk	storage	has	been	falling	at	about	the	same	rate	as
the	capacity	increase.	As	a	result,	for	many	existing	database	applications	with	moderate	storage
requirements,	the	monetary	cost	of	the	extra	disk	storage	needed	for	mirroring	has	become	relatively
small	(the	extra	monetary	cost,	however,	remains	a	significant	issue	for	storage-intensive	applications
such	as	video	data	storage).	Disk	access	speeds	have	not	improved	significantly	in	recent	years,	while	the
number	of	I/O	operations	required	per	second	has	increased	tremendously,	particularly	for	web
application	servers.

12.6

Disk-Block	Access

577

RAID	level	5	has	a	significant	overhead	for	random	writes,	since	a	single	random	block	write	requires	2
block	reads	(to	get	the	old	values	of	the	block	and	parity	block)	and	2	block	writes	to	write	these	blocks
back.	In	contrast,	the	overhead	is	low	for	large	sequential	writes,	since	the	parity	block	can	be	computed
from	the	new	blocks	in	most	cases,	without	any	reads.	RAID	level	1	is	therefore	the	RAID	level	of	choice
for	many	applications	with	moderate	storage	requirements	and	high	random	I/O	requirements.

RAID	level	6	offers	better	reliability	than	level	1	or	5,	since	it	can	tolerate	two	disk	failures	without	losing
data.	In	terms	of	performance	during	normal	operation,	it	is	similar	to	RAID	level	5,	but	it	has	a	higher
storage	cost	than	RAID	level	5.	RAID

level	6	is	used	in	applications	where	data	safety	is	very	important.	It	is	being	viewed	as	increasingly
important	since	latent	sector	failures	are	not	uncommon,	and	it	may	take	a	long	time	to	be	detected	and
repaired.	A	failure	of	a	different	disk	before	a	latent	failure	is	detected	and	repaired	would	then	be	similar
to	a	two-disk	failure	for	that	sector	and	result	in	loss	of	data	of	that	sector.	RAID	levels	1	and	5	would
suffer	from	data	loss	in	such	a	scenario,	unlike	level	6.

Mirroring	can	also	be	extended	to	store	copies	on	three	disks	instead	of	two	to	survive	two-disk	failures.
Such	triple-redundancy	schemes	are	not	commonly	used	in	RAID	systems,	although	they	are	used	in
distributed	file	systems,	where	data	are	stored	in	multiple	machines,	since	the	probability	of	machine
failure	is	significantly	higher	than	that	of	disk	failure.

RAID	system	designers	have	to	make	several	other	decisions	as	well.	For	example,	how	many	disks	should
there	be	in	an	array?	How	many	bits	should	be	protected	by	each	parity	bit?	If	there	are	more	disks	in	an
array,	data-transfer	rates	are	higher,	but	the	system	will	be	more	expensive.	If	there	are	more	bits
protected	by	a	parity	bit,	the	space	overhead	due	to	parity	bits	is	lower,	but	there	is	an	increased	chance
that	a	second	disk	will	fail	before	the	first	failed	disk	is	repaired,	and	that	will	result	in	data	loss.

12.5.6

Other	RAID	Applications

The	concepts	of	RAID	have	been	generalized	to	other	storage	devices,	including	in	the	flash	memory

devices	within	SSDs,	arrays	of	tapes,	and	even	to	the	broadcast	of	data	over	wireless	systems.	Individual
flash	pages	have	a	higher	rate	of	data	loss	than	sectors	of	magnetic	disks.	Flash	devices	such	as	SSDs
implement	RAID	internally,	to	ensure	that	the	device	does	not	lose	data	due	to	the	loss	of	a	flash	page.
When	applied	to	arrays	of	tapes,	the	RAID	structures	are	able	to	recover	data	even	if	one	of	the	tapes	in
an	array	of	tapes	is	damaged.	When	applied	to	broadcast	of	data,	a	block	of	data	are	split	into	short	units
and	is	broadcast	along	with	a	parity	unit;	if	one	of	the	units	is	not	received	for	any	reason,	it	can	be
reconstructed	from	the	other	units.

12.6

Disk-Block	Access

Requests	for	disk	I/O	are	generated	by	the	database	system,	with	the	query	processing	subsystem
responsible	for	most	of	the	disk	I/O.	Each	request	specifies	a	disk	identifier	and	a	logical	block	number	on
the	disk;	in	case	database	data	are	stored	in	operating

578

Chapter	12

Physical	Storage	Systems

system	files,	the	request	instead	specifies	the	file	identifier	and	a	block	number	within	the	file.	Data	are
transferred	between	disk	and	main	memory	in	units	of	blocks.

As	we	saw	earlier,	a	sequence	of	requests	for	blocks	from	disk	may	be	classified	as	a	sequential	access
pattern	or	a	random	access	pattern.	In	a	sequential	access	pattern,	successive	requests	are	for	successive
block	numbers,	which	are	on	the	same	track,	or	on	adjacent	tracks.	In	contrast,	in	a	random	access
pattern,	successive	requests	are	for	blocks	that	are	randomly	located	on	disk.	Each	such	request	would
require	a	seek,	resulting	in	a	longer	access	time,	and	a	lower	number	of	random	I/O	operations	per
second.

A	number	of	techniques	have	been	developed	for	improving	the	speed	of	access	to	blocks,	by	minimizing
the	number	of	accesses,	and	in	particular	minimizing	the	number	of	random	accesses.	We	describe	these
techniques	below.	Reducing	the	number	of	random	accesses	is	very	important	for	data	stored	on	magnetic
disks;	SSDs	support	much	faster	random	access	than	do	magnetic	disks,	so	the	impact	of	random	access	is
less	with	SSDs,	but	data	access	from	SSDs	can	still	benefit	from	some	of	the	techniques	described	below.

•	Buffering.	Blocks	that	are	read	from	disk	are	stored	temporarily	in	an	in-memory	buffer,	to	satisfy	future
requests.	Buffering	is	done	by	both	the	operating	system	and	the	database	system.	Database	buffering	is
discussed	in	more	detail	in	Section	13.5.

•	Read-ahead.	When	a	disk	block	is	accessed,	consecutive	blocks	from	the	same	track	are	read	into	an	in-
memory	buffer	even	if	there	is	no	pending	request	for	the	blocks.

In	the	case	of	sequential	access,	such	read-ahead	ensures	that	many	blocks	are	already	in	memory	when
they	are	requested,	and	it	minimizes	the	time	wasted	in	disk	seeks	and	rotational	latency	per	block	read.
Operating	systems	also	routinely	perform	read-ahead	for	consecutive	blocks	of	an	operating	system	file.
Read-ahead	is,	however,	not	very	useful	for	random	block	accesses.

•	Scheduling.	If	several	blocks	from	a	cylinder	need	to	be	transferred	from	disk	to	main	memory,	we	may
be	able	to	save	access	time	by	requesting	the	blocks	in	the	order	in	which	they	will	pass	under	the	heads.
If	the	desired	blocks	are	on	different	cylinders,	it	is	advantageous	to	request	the	blocks	in	an	order	that
minimizes	disk-arm	movement.	Disk-arm–scheduling	algorithms	attempt	to	order	accesses	to	tracks	in	a
fashion	that	increases	the	number	of	accesses	that	can	be	processed.

A	commonly	used	algorithm	is	the	elevator	algorithm,	which	works	in	the	same	way	many	elevators	do.
Suppose	that,	initially,	the	arm	is	moving	from	the	inner-most	track	toward	the	outside	of	the	disk.	Under
the	elevator	algorithm’s	control,	for	each	track	for	which	there	is	an	access	request,	the	arm	stops	at	that
track,	services	requests	for	the	track,	and	then	continues	moving	outward	until	there	are	no	waiting
requests	for	tracks	farther	out.	At	this	point,	the	arm	changes	direction	and	moves	toward	the	inside,
again	stopping	at	each	track	for	which	there	is	a	re-

12.6

Disk-Block	Access

579

quest,	until	it	reaches	a	track	where	there	is	no	request	for	tracks	farther	toward	the	center.	Then,	it
reverses	direction	and	starts	a	new	cycle.

Disk	controllers	usually	perform	the	task	of	reordering	read	requests	to	improve	performance,	since	they
are	intimately	aware	of	the	organization	of	blocks	on	disk,	of	the	rotational	position	of	the	disk	platters,
and	of	the	position	of	the	disk	arm.	To	enable	such	reordering,	the	disk	controller	interface	must	allow
multiple	requests	to	be	added	to	a	queue;	results	may	be	returned	in	a	different	order	from	the	request
order.

•	File	organization.	To	reduce	block-access	time,	we	can	organize	blocks	on	disk	in	a	way	that
corresponds	closely	to	the	way	we	expect	data	to	be	accessed.	For	example,	if	we	expect	a	file	to	be
accessed	sequentially,	then	we	should	ideally	keep	all	the	blocks	of	the	file	sequentially	on	adjacent
cylinders.	Modern	disks	hide	the	exact	block	location	from	the	operating	system	but	use	a	logical
numbering	of	blocks	that	gives	consecutive	numbers	to	blocks	that	are	adjacent	to	each	other.	By
allocating	consecutive	blocks	of	a	file	to	disk	blocks	that	are	consecutively	numbered,	operating	systems
ensure	that	files	are	stored	sequentially.

Storing	a	large	file	in	a	single	long	sequence	of	consecutive	blocks	poses	challenges	to	disk	block
allocation;	instead,	operating	systems	allocate	some	number	of	consecutive	blocks	(an	extent)	at	a	time	to
a	file.	Different	extents	allocated	to	a	file	may	not	be	adjacent	to	each	other	on	disk.	Sequential	access	to
the	file	needs	one	seek	per	extent,	instead	of	one	seek	per	block	if	blocks	are	randomly	allocated;	with
large	enough	extents,	the	cost	of	seeks	relative	to	data	transfer	costs	can	be	minimized.

Over	time,	a	sequential	file	that	has	multiple	small	appends	may	become	fragmented;	that	is,	its	blocks
become	scattered	all	over	the	disk.	To	reduce	fragmentation,	the	system	can	make	a	backup	copy	of	the
data	on	disk	and	restore	the	entire	disk.	The	restore	operation	writes	back	the	blocks	of	each	file
contiguously	(or	nearly	so).	Some	systems	(such	as	different	versions	of	the	Windows	operating	system)
have	utilities	that	scan	the	disk	and	then	move	blocks	to	decrease	the	fragmentation.	The	performance
increases	realized	from	these	techniques	can	be	quite	significant.

•	Non-volatile	write	buffers.	Since	the	contents	of	main	memory	are	lost	in	a	power	failure,	information
about	database	updates	has	to	be	recorded	on	disk	to	survive	possible	system	crashes.	For	this	reason,	the
performance	of	update-intensive	database	applications,	such	as	transaction-processing	systems,	is	heavily
dependent	on	the	latency	of	disk	writes.

We	can	use	non-volatile	random-access	memory	(NVRAM)	to	speed	up	disk	writes.	The	contents	of
NVRAM	are	not	lost	in	power	failure.	NVRAM	was	implemented	using	battery-backed-up	RAM	in	earlier
days,	but	flash	memory	is	currently	the	primary	medium	for	non-volatile	write	buffering.	The	idea	is	that,
when	the	database	system	(or	the	operating	system)	requests	that	a	block	be	written	to	disk,	the	disk
controller	writes	the	block	to	a	non-volatile	write	buffer	and	imme-

580

Chapter	12

Physical	Storage	Systems

diately	notifies	the	operating	system	that	the	write	completed	successfully.	The	controller	can
subsequently	write	the	data	to	their	destination	on	disk	in	a	way	that	minimizes	disk	arm	movement,	using
the	elevator	algorithm,	for	example.	If	such	write	reordering	is	done	without	using	non-volatile	write
buffers,	the	database	state	may	become	inconsistent	in	the	event	of	a	system	crash;	recovery	algorithms
that	we	study	later	in	Chapter	19	depend	on	writes	being	written	in	the	specified	order.	When	the
database	system	requests	a	block	write,	it	notices	a	delay	only	if	the	NVRAM	buffer	is	full.	On	recovery
from	a	system	crash,	any	pending	buffered	writes	in	the	NVRAM	are	written	back	to	the	disk.	NVRAM
buffers	are	found	in	certain	high-end	disks,	but	are	more	frequently	found	in	RAID	controllers.

In	addition	to	the	above	low-level	optimizations,	optimizations	to	minimize	random	accesses	can	be	done
at	a	higher	level,	by	clever	design	of	query	processing	algorithms.

We	study	efficient	query	processing	techniques	in	Chapter	15.

12.7

Summary

•	Several	types	of	data	storage	exist	in	most	computer	systems.	They	are	classified	by	the	speed	with
which	they	can	access	data,	by	their	cost	per	unit	of	data	to	buy	the	memory,	and	by	their	reliability.
Among	the	media	available	are	cache,	main	memory,	flash	memory,	magnetic	disks,	optical	disks,	and
magnetic	tapes.

•	Magnetic	disks	are	mechanical	devices,	and	data	access	requires	a	read–write	head	to	move	to	the
required	cylinder,	and	the	rotation	of	the	platters	must	then	bring	the	required	sector	under	the	read–
write	head.	Magnetic	disks	thus	have	a	high	latency	for	data	access.

•	SSDs	have	a	much	lower	latency	for	data	access,	and	higher	data	transfer	bandwidth	than	magnetic
disks.	However,	they	also	have	a	higher	cost	per	byte	than	magnetic	disks.

•	Disks	are	vulnerable	to	failure,	which	could	result	in	loss	of	data	stored	on	the	disk.	We	can	reduce	the
likelihood	of	irretrievable	data	loss	by	retaining	multiple	copies	of	data.

•	Mirroring	reduces	the	probability	of	data	loss	greatly.	More	sophisticated	methods	based	on	redundant
arrays	of	independent	disks	(RAID)	offer	further	benefits.

By	striping	data	across	disks,	these	methods	offer	high	throughput	rates	on	large	accesses;	by	introducing
redundancy	across	disks,	they	improve	reliability	greatly.

•	Several	different	RAID	organizations	are	possible,	each	with	different	cost,	performance,	and	reliability
characteristics.	RAID	level	1	(mirroring)	and	RAID	level	5

are	the	most	commonly	used.

•	Several	techniques	have	been	developed	to	optimize	disk	block	access,	such	as	read	ahead,	buffering,
disk	arm	scheduling,	prefetching,	and	non-volatile	write	buffers.

Review	Terms

581

Review	Terms

•	Physical	storage	media

•	Disk	block

•

°	Cache

Performance	measures	of	disks

°	Main	memory

°	Access	time

°	Flash	memory

°	Seek	time

°	Magnetic	disk

°	Latency	time

°	Optical	storage

°	I/O	operations	per	second	(IOPS)

°	Tape	storage

°	Rotational	latency

•	Volatile	storage

°	Data-transfer	rate

•	Non-volatile	storage

°	Mean	time	to	failure	(MTTF)

•	Sequential-access

•	Flash	Storage

•	Direct-access

•	Storage	interfaces

°	Erase	Block

°	Wear	leveling

°	Serial	ATA	(SATA)

°	Flash	translation	table

°	Serial	Attached	SCSI	(SAS)

°	Flash	Translation	Layer

°	Non-Volatile	Memory	Express

(NVMe)

•	Storage	class	memory

°	Storage	area	network	(SAN)

°	3D-XPoint

°	Network	attached	storage	(NAS)

•	Redundant	arrays	of	independent

•	Magnetic	disk

disks	(RAID)

°	Platter

°	Mirroring

°	Hard	disks

°	Data	striping

°	Tracks

°	Bit-level	striping

°	Sectors

°	Block-level	striping

°	Read–write	head

•	RAID	levels

°	Disk	arm

°	Level	0	(block	striping,

no	redundancy)

°	Cylinder

°	Disk	controller

°	Level	1	(block	striping,

mirroring)

°	Checksums

°	Level	5	(block	striping,

°	Remapping	of	bad	sectors

distributed	parity)

582

Chapter	12

Physical	Storage	Systems

°	Level	6	(block	striping,

°	Disk-arm	scheduling

P	+	Q	redundancy)

°	Elevator	algorithm

•	Rebuild	performance

°	File	organization

•	Software	RAID

°	Defragmenting

•	Hardware	RAID

•	Hot	swapping

°	Non-volatile	write	buffers

•	Optimization	of	disk-block	access

°	Log	disk

Practice	Exercises

12.1

SSDs	can	be	used	as	a	storage	layer	between	memory	and	magnetic	disks,	with	some	parts	of	the
database	(e.g.,	some	relations)	stored	on	SSDs	and	the	rest	on	magnetic	disks.	Alternatively,	SSDs	can	be
used	as	a	buffer	or	cache	for	magnetic	disks;	frequently	used	blocks	would	reside	on	the	SSD	layer,	while
infrequently	used	blocks	would	reside	on	magnetic	disk.

a.

Which	of	the	two	alternatives	would	you	choose	if	you	need	to	support

real-time	queries	that	must	be	answered	within	a	guaranteed	short	period	of	time?	Explain	why.

b.

Which	of	the	two	alternatives	would	you	choose	if	you	had	a	very	large	customer	relation,	where	only
some	disk	blocks	of	the	relation	are	accessed	frequently,	with	other	blocks	rarely	accessed.

12.2

Some	databases	use	magnetic	disks	in	a	way	that	only	sectors	in	outer	tracks	are	used,	while	sectors	in
inner	tracks	are	left	unused.	What	might	be	the	benefits	of	doing	so?

12.3

Flash	storage:

a.

How	is	the	flash	translation	table,	which	is	used	to	map	logical	page

numbers	to	physical	page	numbers,	created	in	memory?

b.

Suppose	you	have	a	64-gigabyte	flash	storage	system,	with	a	4096-byte

page	size.	How	big	would	the	flash	translation	table	be,	assuming	each	page	has	a	32-bit	address,	and	the
table	is	stored	as	an	array?

c.

Suggest	how	to	reduce	the	size	of	the	translation	table	if	very	often	long	ranges	of	consecutive	logical
page	numbers	are	mapped	to	consecutive

physical	page	numbers.

12.4

Consider	the	following	data	and	parity-block	arrangement	on	four	disks:

Exercises

583

Disk	1

Disk	2

Disk	3

Disk	4

B1

B2

B3

B4

P1

B5

B6

B7

B8

P

B

B

…

2

…

9

…

10

…

The	B	s	represent	data	blocks;	the	P	s	represent	parity	blocks.	Parity	block	P

i

i

i

is	the	parity	block	for	data	blocks	B

to	B	.	What,	if	any,	problem	might	this

4	i−3

4	i

arrangement	present?

12.5

A	database	administrator	can	choose	how	many	disks	are	organized	into	a	single	RAID	5	array.	What	are
the	trade-offs	between	having	fewer	disks	versus	more	disks,	in	terms	of	cost,	reliability,	performance
during	failure,	and	performance	during	rebuild?

12.6

A	power	failure	that	occurs	while	a	disk	block	is	being	written	could	result	in	the	block	being	only
partially	written.	Assume	that	partially	written	blocks	can	be	detected.	An	atomic	block	write	is	one	where
either	the	disk	block	is	fully	written	or	nothing	is	written	(i.e.,	there	are	no	partial	writes).	Suggest
schemes	for	getting	the	effect	of	atomic	block	writes	with	the	following	RAID	schemes.

Your	schemes	should	involve	work	on	recovery	from	failure.

a.

RAID	level	1	(mirroring)

b.

RAID	level	5	(block	interleaved,	distributed	parity)

12.7

Storing	all	blocks	of	a	large	file	on	consecutive	disk	blocks	would	minimize	seeks	during	sequential	file
reads.	Why	is	it	impractical	to	do	so?	What	do	operating	systems	do	instead,	to	minimize	the	number	of
seeks	during	sequential	reads?

Exercises

12.8

List	the	physical	storage	media	available	on	the	computers	you	use	routinely.

Give	the	speed	with	which	data	can	be	accessed	on	each	medium.

12.9

How	does	the	remapping	of	bad	sectors	by	disk	controllers	affect	data-retrieval	rates?

12.10

Operating	systems	try	to	ensure	that	consecutive	blocks	of	a	file	are	stored	on	consecutive	disk	blocks.
Why	is	doing	so	very	important	with	magnetic	disks?

If	SSDs	were	used	instead,	is	doing	so	still	important,	or	is	it	irrelevant?	Explain	why.

584

Chapter	12

Physical	Storage	Systems

12.11

RAID	systems	typically	allow	you	to	replace	failed	disks	without	stopping	access	to	the	system.	Thus,	the
data	in	the	failed	disk	must	be	rebuilt	and	written	to	the	replacement	disk	while	the	system	is	in
operation.	Which	of	the	RAID

levels	yields	the	least	amount	of	interference	between	the	rebuild	and	ongoing	disk	accesses?	Explain
your	answer.

12.12

What	is	scrubbing,	in	the	context	of	RAID	systems,	and	why	is	scrubbing	important?

12.13

Suppose	you	have	data	that	should	not	be	lost	on	disk	failure,	and	the	application	is	write-intensive.	How
would	you	store	the	data?

Further	Reading

[Hennessy	et	al.	(2017)]	is	a	popular	textbook	on	computer	architecture,	which	includes	coverage	of	cache
and	memory	organization.

The	specifications	of	current-generation	magnetic	disk	drives	can	be	obtained	from	the	web	sites	of	their
manufacturers,	such	as	Hitachi,	Seagate,	Maxtor,	and	Western	Digital.	The	specifications	of	current-
generation	SSDs	can	be	obtained	from	the	web	sites	of	their	manufacturers,	such	as	Crucial,	Intel,
Micron,	Samsung,	SanDisk,	Toshiba	and	Western	Digital.

[Patterson	et	al.	(1988)]	provided	early	coverage	of	RAID	levels	and	helped	standardize	the	terminology.
[Chen	et	al.	(1994)]	presents	a	survey	of	RAID	principles	and	implementation.

A	comprehensive	coverage	of	RAID	levels	supported	by	most	modern	RAID	systems,	including	the	nested
RAID	levels,	10,	50	and	60,	which	combine	RAID	levels	1,	5	and	6	with	striping	as	in	RAID	level	0,	can	be
found	in	the	“Introduction	to	RAID”

chapter	of	[Cisco	(2018)].	Reed-Solomon	codes	are	covered	in	[Pless	(1998)].

Bibliography

[Chen	et	al.	(1994)]

P.	M.	Chen,	E.	K.	Lee,	G.	A.	Gibson,	R.	H.	Katz,	and	D.	A.	Patterson,

“RAID:	High-Performance,	Reliable	Secondary	Storage”,	ACM	Computing	Surveys,	Volume	26,	Number	2
(1994),	pages	145–185.

[Cisco	(2018)]

Cisco	UCS	Servers	RAID	Guide.	Cisco	(2018).

[Hennessy	et	al.	(2017)]

J.	L.	Hennessy,	D.	A.	Patterson,	and	D.	Goldberg,	Computer	Archi-

tecture:	A	Quantitative	Approach,	6th	edition,	Morgan	Kaufmann	(2017).

[Patterson	et	al.	(1988)]

D.	A.	Patterson,	G.	Gibson,	and	R.	H.	Katz,	“A	Case	for	Redundant

Arrays	of	Inexpensive	Disks	(RAID)”,	In	Proc.	of	the	ACM	SIGMOD	Conf.	on	Management	of	Data	(1988),
pages	109–116.

Further	Reading

585

[Pless	(1998)]

V.	Pless,	Introduction	to	the	Theory	of	Error-Correcting	Codes,	3rd	edition,	John	Wiley	and	Sons	(1998).

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

Figure	12.3	is	due	to	©Silberschatz,	Korth,	and	Sudarshan.

C	H	A	P	T	E	R	13

Data	Storage	Structures

In	Chapter	12	we	studied	the	characteristics	of	physical	storage	media,	focusing	on	magnetic	disks	and
SSDs,	and	saw	how	to	build	fast	and	reliable	storage	systems	using	multiple	disks	in	a	RAID	structure.	In
this	chapter,	we	focus	on	the	organization	of	data	stored	on	the	underlying	storage	media,	and	how	data
are	accessed.

13.1

Database	Storage	Architecture

Persistent	data	are	stored	on	non-volatile	storage,	which,	as	we	saw	in	Chapter	12,	is	typically	magnetic
disk	or	SSD.	Magnetic	disks	as	well	as	SSDs	are	block	structured	devices,	that	is,	data	are	read	or	written
in	units	of	a	block.	In	contrast,	databases	deal	with	records,	which	are	usually	much	smaller	than	a	block
(although	in	some	cases	records	may	have	attributes	that	are	very	large).

Most	databases	use	operating	system	files	as	an	intermediate	layer	for	storing	records,	which	abstract
away	some	details	of	the	underlying	blocks.	However,	to	ensure	efficient	access,	as	well	as	to	support
recovery	from	failures	(as	we	will	see	later	in	Chapter	19),	databases	must	continue	to	be	aware	of	blocks.
Thus,	in	Section	13.2,	we	study	how	individual	records	are	stored	in	files,	taking	block	structure	into
account.

Given	a	set	of	records,	the	next	decision	lies	in	how	to	organize	them	in	the	file	structure;	for	example,
they	may	stored	in	sorted	order,	in	the	order	they	are	created,	or	in	an	arbitrary	order.	Section	13.3
studies	several	alternative	file	organizations.

Section	13.4	then	describes	how	databases	organize	data	about	the	relational	schemas	as	well	as	storage
organization,	in	the	data	dictionary.	Information	in	the	data	dictionary	is	crucial	for	many	tasks,	for
example,	to	locate	and	retrieve	records	of	a	relation	when	given	the	name	of	the	relation.

For	a	CPU	to	access	data,	it	must	be	in	main	memory,	whereas	persistent	data	must	be	resident	on	non-
volatile	storage	such	as	magnetic	disks	or	SSDs.	For	databases	that	are	larger	than	main	memory,	which
is	the	usual	case,	data	must	be	fetched	from	nonvolatile	storage	and	saved	back	if	it	is	updated.	Section
13.5	describes	how	databases	use	a	region	of	memory	called	the	database	buffer	to	store	blocks	that	are

fetched	from	non-volatile	storage.

587

588

Chapter	13

Data	Storage	Structures

An	approach	to	storing	data	based	on	storing	all	values	of	a	particular	column	together,	rather	than
storing	all	attributes	of	a	particular	row	together,	has	been	found	to	work	very	well	for	analytical	query
processing.	This	idea,	called	column-oriented	storage,	is	discussed	in	Section	13.6.

Some	applications	need	very	fast	access	to	data	and	have	small	enough	data	sizes	that	the	entire	database
can	fit	into	the	main	memory	of	a	database	server	machine.

In	such	cases,	we	can	keep	a	copy	of	the	entire	database	in	memory.1	Databases	that	store	the	entire
database	in	memory	and	optimize	in-memory	data	structures	as	well	as	query	processing	and	other
algorithms	used	by	the	database	to	exploit	the	memory	residency	of	data	are	called	main-memory
databases.	Storage	organization	in	main-memory	databases	is	discussed	in	Section	13.7.	We	note	that
non-volatile	memory	that	allows	direct	access	to	individual	bytes	or	cache	lines,	called	storage	class
memory,	is	under	development.	Main-memory	database	architectures	can	be	further	optimized	for	such
storage.

13.2

File	Organization

A	database	is	mapped	into	a	number	of	different	files	that	are	maintained	by	the	underlying	operating
system.	These	files	reside	permanently	on	disks.	A	file	is	organized	logically	as	a	sequence	of	records.
These	records	are	mapped	onto	disk	blocks.	Files	are	provided	as	a	basic	construct	in	operating	systems,
so	we	shall	assume	the	existence	of	an	underlying	file	system.	We	need	to	consider	ways	of	representing
logical	data	models	in	terms	of	files.

Each	file	is	also	logically	partitioned	into	fixed-length	storage	units	called	blocks,	which	are	the	units	of
both	storage	allocation	and	data	transfer.	Most	databases	use	block	sizes	of	4	to	8	kilobytes	by	default,
but	many	databases	allow	the	block	size	to	be	specified	when	a	database	instance	is	created.	Larger	block
sizes	can	be	useful	in	some	database	applications.

A	block	may	contain	several	records;	the	exact	set	of	records	that	a	block	contains	is	determined	by	the
form	of	physical	data	organization	being	used.	We	shall	assume	that	no	record	is	larger	than	a	block.	This
assumption	is	realistic	for	most	data-processing	applications,	such	as	our	university	example.	There	are
certainly	several	kinds	of	large	data	items,	such	as	images,	that	can	be	significantly	larger	than	a	block.
We	briefly	discuss	how	to	handle	such	large	data	items	in	Section	13.2.2,	by	storing	large	data	items
separately,	and	storing	a	pointer	to	the	data	item	in	the	record.

In	addition,	we	shall	require	that	each	record	is	entirely	contained	in	a	single	block;	that	is,	no	record	is
contained	partly	in	one	block,	and	partly	in	another.	This	restriction	simplifies	and	speeds	up	access	to
data	items.

1To	be	safe,	not	only	should	the	current	database	fit	in	memory,	but	there	should	be	a	reasonable
certainty	that	the	database	will	continue	to	fit	in	memory	in	the	medium	term	future,	despite	potential
growth	of	the	organization.

13.2

File	Organization

589

In	a	relational	database,	tuples	of	distinct	relations	are	generally	of	different	sizes.

One	approach	to	mapping	the	database	to	files	is	to	use	several	files	and	to	store	records	of	only	one	fixed
length	in	any	given	file.	An	alternative	is	to	structure	our	files	so	that	we	can	accommodate	multiple
lengths	for	records;	however,	files	of	fixed-length	records	are	easier	to	implement	than	are	files	of
variable-length	records.	Many	of	the	techniques	used	for	the	former	can	be	applied	to	the	variable-length
case.	Thus,	we	begin	by	considering	a	file	of	fixed-length	records	and	consider	storage	of	variable-length
records	later.

13.2.1

Fixed-Length	Records

As	an	example,	let	us	consider	a	file	of	instructor	records	for	our	university	database.

Each	record	of	this	file	is	defined	(in	pseudocode)	as:

type	instructor	=	record

ID	varchar	(5);

name	varchar(20);

dept	name	varchar	(20);

salary	numeric	(8,2);

end

Assume	that	each	character	occupies	1	byte	and	that	numeric	(8,2)	occupies	8

bytes.	Suppose	that	instead	of	allocating	a	variable	amount	of	bytes	for	the	attributes	ID,	name,	and	dept
name,	we	allocate	the	maximum	number	of	bytes	that	each	attribute	can	hold.	Then,	the	instructor	record
is	53	bytes	long.	A	simple	approach	is	to	use	the	first	53	bytes	for	the	first	record,	the	next	53	bytes	for
the	second	record,	and	so	on	(Figure	13.1).

record	0

10101

Srinivasan

Comp.	Sci.

65000

record	1

12121

Wu

Finance

90000

record	2

15151

Mozart

Music

40000

record	3

22222

Einstein

Physics

95000

record	4

32343

El	Said

History

60000

record	5

33456

Gold

Physics

87000

record	6

45565

Katz

Comp.	Sci.

75000

record	7

58583

Califieri

History

62000

record	8

76543

Singh

Finance

80000

record	9

76766

Crick

Biology

72000

record	10

83821

Brandt

Comp.	Sci.

92000

record	11

98345

Kim

Elec.	Eng.

80000

Figure	13.1	File	containing	instructor	records.

590

Chapter	13

Data	Storage	Structures

record	0

10101

Srinivasan

Comp.	Sci.

65000

record	1

12121

Wu

Finance

90000

record	2

15151

Mozart

Music

40000

record	4

32343

El	Said

History

60000

record	5

33456

Gold

Physics

87000

record	6

45565

Katz

Comp.	Sci.

75000

record	7

58583

Califieri

History

62000

record	8

76543

Singh

Finance

80000

record	9

76766

Crick

Biology

72000

record	10

83821

Brandt

Comp.	Sci.

92000

record	11

98345

Kim

Elec.	Eng.

80000

Figure	13.2	File	of	Figure	13.1,	with	record	3	deleted	and	all	records	moved.

However,	there	are	two	problems	with	this	simple	approach:

1.	Unless	the	block	size	happens	to	be	a	multiple	of	53	(which	is	unlikely),	some	records	will	cross	block
boundaries.	That	is,	part	of	the	record	will	be	stored	in	one	block	and	part	in	another.	It	would	thus
require	two	block	accesses	to	read	or	write	such	a	record.

2.	It	is	difficult	to	delete	a	record	from	this	structure.	The	space	occupied	by	the	record	to	be	deleted
must	be	filled	with	some	other	record	of	the	file,	or	we	must	have	a	way	of	marking	deleted	records	so
that	they	can	be	ignored.

To	avoid	the	first	problem,	we	allocate	only	as	many	records	to	a	block	as	would	fit	entirely	in	the	block
(this	number	can	be	computed	easily	by	dividing	the	block	size	by	the	record	size,	and	discarding	the
fractional	part).	Any	remaining	bytes	of	each	block	are	left	unused.

When	a	record	is	deleted,	we	could	move	the	record	that	comes	after	it	into	the	space	formerly	occupied
by	the	deleted	record,	and	so	on,	until	every	record	following	the	deleted	record	has	been	moved	ahead
(Figure	13.2).	Such	an	approach	requires	moving	a	large	number	of	records.	It	might	be	easier	simply	to
move	the	final	record	of	the	file	into	the	space	occupied	by	the	deleted	record	(Figure	13.3).

It	is	undesirable	to	move	records	to	occupy	the	space	freed	by	a	deleted	record,	since	doing	so	requires
additional	block	accesses.	Since	insertions	tend	to	be	more	frequent	than	deletions,	it	is	acceptable	to
leave	open	the	space	occupied	by	the	deleted	record	and	to	wait	for	a	subsequent	insertion	before	reusing
the	space.	A	simple	marker	on	a	deleted	record	is	not	sufficient,	since	it	is	hard	to	find	this	available	space
when	an	insertion	is	being	done.	Thus,	we	need	to	introduce	an	additional	structure.

At	the	beginning	of	the	file,	we	allocate	a	certain	number	of	bytes	as	a	file	header.

The	header	will	contain	a	variety	of	information	about	the	file.	For	now,	all	we	need

13.2

File	Organization

591

record	0

10101

Srinivasan

Comp.	Sci.

65000

record	1

12121

Wu

Finance

90000

record	2

15151

Mozart

Music

40000

record	11

98345

Kim

Elec.	Eng.

80000

record	4

32343

El	Said

History

60000

record	5

33456

Gold

Physics

87000

record	6

45565

Katz

Comp.	Sci.

75000

record	7

58583

Califieri

History

62000

record	8

76543

Singh

Finance

80000

record	9

76766

Crick

Biology

72000

record	10

83821

Brandt

Comp.	Sci.

92000

Figure	13.3	File	of	Figure	13.1,	with	record	3	deleted	and	final	record	moved.

to	store	there	is	the	address	of	the	first	record	whose	contents	are	deleted.	We	use	this	first	record	to
store	the	address	of	the	second	available	record,	and	so	on.	Intuitively,	we	can	think	of	these	stored
addresses	as	pointers,	since	they	point	to	the	location	of	a	record.	The	deleted	records	thus	form	a	linked
list,	which	is	often	referred	to	as	a	free	list.	Figure	13.4	shows	the	file	of	Figure	13.1,	with	the	free	list,
after	records	1,	4,	and	6	have	been	deleted.

On	insertion	of	a	new	record,	we	use	the	record	pointed	to	by	the	header.	We	change	the	header	pointer
to	point	to	the	next	available	record.	If	no	space	is	available,	we	add	the	new	record	to	the	end	of	the	file.

header

record	0

10101

Srinivasan

Comp.	Sci.

65000

record	1

record	2

15151

Mozart

Music

40000

record	3

22222

Einstein

Physics

95000

record	4

record	5

33456

Gold

Physics

87000

record	6

record	7

58583

Califieri

History

62000

record	8

76543

Singh

Finance

80000

record	9

76766

Crick

Biology

72000

record	10

83821

Brandt

Comp.	Sci.

92000

record	11

98345

Kim

Elec.	Eng.

80000

Figure	13.4	File	of	Figure	13.1,	with	free	list	after	deletion	of	records	1,	4,	and	6.

592

Chapter	13

Data	Storage	Structures

Insertion	and	deletion	for	files	of	fixed-length	records	are	simple	to	implement	because	the	space	made
available	by	a	deleted	record	is	exactly	the	space	needed	to	insert	a	record.	If	we	allow	records	of
variable-length	in	a	file,	this	match	no	longer	holds.	An	inserted	record	may	not	fit	in	the	space	left	free	by
a	deleted	record,	or	it	may	fill	only	part	of	that	space.

13.2.2

Variable-Length	Records

Variable-length	records	arise	in	database	systems	due	to	several	reasons.	The	most	common	reason	is	the
presence	of	variable	length	fields,	such	as	strings.	Other	reasons	include	record	types	that	contain
repeating	fields	such	as	arrays	or	multisets,	and	the	presence	of	multiple	record	types	within	a	file.

Different	techniques	for	implementing	variable-length	records	exist.	Two	different	problems	must	be
solved	by	any	such	technique:

1.	How	to	represent	a	single	record	in	such	a	way	that	individual	attributes	can	be	extracted	easily,	even	if
they	are	of	variable	length

2.	How	to	store	variable-length	records	within	a	block,	such	that	records	in	a	block	can	be	extracted	easily

The	representation	of	a	record	with	variable-length	attributes	typically	has	two	parts:	an	initial	part	with
fixed-length	information,	whose	structure	is	the	same	for	all	records	of	the	same	relation,	followed	by	the
contents	of	variable-length	attributes.

Fixed-length	attributes,	such	as	numeric	values,	dates,	or	fixed-length	character	strings	are	allocated	as
many	bytes	as	required	to	store	their	value.	Variable-length	attributes,	such	as	varchar	types,	are
represented	in	the	initial	part	of	the	record	by	a	pair	(offset,	length),	where	offset	denotes	where	the	data
for	that	attribute	begins	within	the	record,	and	length	is	the	length	in	bytes	of	the	variable-sized	attribute.
The	values	for	the	variable-length	attributes	are	stored	consecutively,	after	the	initial	fixed-length	part	of
the	record.	Thus,	the	initial	part	of	the	record	stores	a	fixed	size	of	information	about	each	attribute,
whether	it	is	fixed-length	or	variable-length.

An	example	of	such	a	record	representation	is	shown	in	Figure	13.5.	The	figure	shows	an	instructor
record	whose	first	three	attributes	ID,	name,	and	dept	name	are	variable-length	strings,	and	whose	fourth
attribute	salary	is	a	fixed-sized	number.	We	assume	that	the	offset	and	length	values	are	stored	in	two
bytes	each,	for	a	total	of	4

Null	bitmap	(stored	in	1	byte)

0000

21,	5

26,	10	36,	10

65000

10101	Srinivasan

Comp.	Sci.

Bytes	0

4

8

12

20	21

26

36

45

Figure	13.5	Representation	of	a	variable-length	record	of	the	instructor	relation.

13.2

File	Organization

593

Block	Header

Records

Size

#	Entries

Free	Space

Location

End	of	Free	Space

Figure	13.6	Slotted-page	structure.

bytes	per	attribute.	The	salary	attribute	is	assumed	to	be	stored	in	8	bytes,	and	each	string	takes	as	many
bytes	as	it	has	characters.

The	figure	also	illustrates	the	use	of	a	null	bitmap,	which	indicates	which	attributes	of	the	record	have	a
null	value.	In	this	particular	record,	if	the	salary	were	null,	the	fourth	bit	of	the	bitmap	would	be	set	to	1,
and	the	salary	value	stored	in	bytes	12

through	19	would	be	ignored.	Since	the	record	has	four	attributes,	the	null	bitmap	for	this	record	fits	in	1
byte,	although	more	bytes	may	be	required	with	more	attributes.	In	some	representations,	the	null	bitmap
is	stored	at	the	beginning	of	the	record,	and	for	attributes	that	are	null,	no	data	(value,	or	offset/length)
are	stored	at	all.	Such	a	representation	would	save	some	storage	space,	at	the	cost	of	extra	work	to
extract	attributes	of	the	record.	This	representation	is	particularly	useful	for	certain	applications	where
records	have	a	large	number	of	fields,	most	of	which	are	null.

We	next	address	the	problem	of	storing	variable-length	records	in	a	block.	The	slotted-page	structure	is
commonly	used	for	organizing	records	within	a	block	and	is	shown	in	Figure	13.6.2	There	is	a	header	at
the	beginning	of	each	block,	containing	the	following	information:

•	The	number	of	record	entries	in	the	header

•	The	end	of	free	space	in	the	block

•	An	array	whose	entries	contain	the	location	and	size	of	each	record

The	actual	records	are	allocated	contiguously	in	the	block,	starting	from	the	end	of	the	block.	The	free
space	in	the	block	is	contiguous	between	the	final	entry	in	the	header	array	and	the	first	record.	If	a
record	is	inserted,	space	is	allocated	for	it	at	the	end	of	free	space,	and	an	entry	containing	its	size	and
location	is	added	to	the	header.

If	a	record	is	deleted,	the	space	that	it	occupies	is	freed,	and	its	entry	is	set	to	deleted	(its	size	is	set	to
−1,	for	example).	Further,	the	records	in	the	block	before	the	deleted	record	are	moved,	so	that	the	free
space	created	by	the	deletion	gets	occupied,	and	all	2Here,	“page”	is	synonymous	with	“block.”

594

Chapter	13

Data	Storage	Structures

free	space	is	again	between	the	final	entry	in	the	header	array	and	the	first	record.	The	end-of-free-space
pointer	in	the	header	is	appropriately	updated	as	well.	Records	can	be	grown	or	shrunk	by	similar
techniques,	as	long	as	there	is	space	in	the	block.	The	cost	of	moving	the	records	is	not	too	high,	since	the
size	of	a	block	is	limited:	typical	values	are	around	4	to	8	kilobytes.

The	slotted-page	structure	requires	that	there	be	no	pointers	that	point	directly	to	records.	Instead,
pointers	must	point	to	the	entry	in	the	header	that	contains	the	actual	location	of	the	record.	This	level	of
indirection	allows	records	to	be	moved	to	prevent	fragmentation	of	space	inside	a	block,	while	supporting
indirect	pointers	to	the	record.

13.2.3

Storing	Large	Objects

Databases	often	store	data	that	can	be	much	larger	than	a	disk	block.	For	instance,	an	image	or	an	audio
recording	may	be	multiple	megabytes	in	size,	while	a	video	object	may	be	multiple	gigabytes	in	size.
Recall	that	SQL	supports	the	types	blob	and	clob,	which	store	binary	and	character	large	objects.

Many	databases	internally	restrict	the	size	of	a	record	to	be	no	larger	than	the	size	of	a	block.3	These
databases	allow	records	to	logically	contain	large	objects,	but	they	store	the	large	objects	separate	from
the	other	(short)	attributes	of	records	in	which	they	occur.	A	(logical)	pointer	to	the	object	is	then	stored
in	the	record	containing	the	large	object.

Large	objects	may	be	stored	either	as	files	in	a	file	system	area	managed	by	the	database,	or	as	file
structures	stored	in	and	managed	by	the	database.	In	the	latter	case,	such	in-database	large	objects	can
optionally	be	represented	using	B+-tree	file	organizations,	which	we	study	in	Section	14.4.1,	to	allow
efficient	access	to	any	location	within	the	object.	B+-tree	file	organizations	permit	us	to	read	an	entire
object,	or	specified	byte	ranges	in	the	object,	as	well	as	to	insert	and	delete	parts	of	the	object.

However,	there	are	some	performance	issues	with	storing	very	large	objects	in	databases.	The	efficiency
of	accessing	large	objects	via	database	interfaces	is	one	concern.	A	second	concern	is	the	size	of	database
backups.	Many	enterprises	periodically	create	“database	dumps,”	that	is,	backup	copies	of	their
databases;	storing	large	objects	in	the	database	can	result	in	a	large	increase	in	the	size	of	the	database
dumps.

Many	applications	therefore	choose	to	store	very	large	objects,	such	as	video	data,	outside	of	the
database,	in	a	file	system.	In	such	cases,	the	application	may	store	the	file	name	(usually	a	path	in	the	file
system)	as	an	attribute	of	a	record	in	the	database.

Storing	data	in	files	outside	the	database	can	result	in	file	names	in	the	database	pointing	to	files	that	do
not	exist,	perhaps	because	they	have	been	deleted,	which	results	in	a	form	of	foreign-key	constraint
violation.	Further,	database	authorization	controls	are	not	applicable	to	data	stored	in	the	file	system.

3This	restriction	helps	simplify	buffer	management;	as	we	see	in	Section	13.5,	disk	blocks	are	brought
into	an	area	of	memory	called	the	buffer	before	they	are	accessed.	Records	larger	than	a	block	would	get
split	between	blocks,	which	may	be	different	areas	of	the	buffer,	and	thus	cannot	be	guaranteed	to	be	in	a
contiguous	area	of	memory.

13.3

Organization	of	Records	in	Files

595

Some	databases	support	file	system	integration	with	the	database,	to	ensure	that	constraints	are	satisfied
(for	example,	deletion	of	files	will	be	blocked	if	the	database	has	a	pointer	to	the	file),	and	to	ensure	that
access	authorizations	are	enforced.	Files	can	be	accessed	both	from	a	file	system	interface	and	from	the
database	SQL	interface.

For	example,	Oracle	supports	such	integration	through	its	SecureFiles	and	Database	File	System	features.

13.3

Organization	of	Records	in	Files

So	far,	we	have	studied	how	records	are	represented	in	a	file	structure.	A	relation	is	a	set	of	records.
Given	a	set	of	records,	the	next	question	is	how	to	organize	them	in	a	file.	Several	of	the	possible	ways	of
organizing	records	in	files	are:

•	Heap	file	organization.	Any	record	can	be	placed	anywhere	in	the	file	where	there	is	space	for	the
record.	There	is	no	ordering	of	records.	Typically,	there	is	either	a	single	file	or	a	set	of	files	for	each
relation.	Heap	file	organization	is	discussed	in	Section	13.3.1.

•	Sequential	file	organization.	Records	are	stored	in	sequential	order,	according	to	the	value	of	a	“search
key”	of	each	record.	Section	13.3.2	describes	this	organization.

•	Multitable	clustering	file	organization:	Generally,	a	separate	file	or	set	of	files	is	used	to	store	the
records	of	each	relation.	However,	in	a	multitable	clustering	file	organization,	records	of	several	different
relations	are	stored	in	the	same	file,	and	in	fact	in	the	same	block	within	a	file,	to	reduce	the	cost	of
certain	join	operations.

Section	13.3.3	describes	the	multitable	clustering	file	organization.

•	B+-tree	file	organization.	The	traditional	sequential	file	organization	described	in	Section	13.3.2	does
support	ordered	access	even	if	there	are	insert,	delete,	and	update	operations,	which	may	change	the
ordering	of	records.	However,	in	the	face	of	a	large	number	of	such	operations,	efficiency	of	ordered
access	suffers.

We	study	another	way	of	organizing	records,	called	the	B+	-tree	file	organization,	in	Section	14.4.1.	The
B+-tree	file	organization	is	related	to	the	B+-tree	index	structure	described	in	that	chapter	and	can
provide	efficient	ordered	access	to	records	even	if	there	are	a	large	number	of	insert,	delete,	or	update
operations.	Further,	it	supports	very	efficient	access	to	specific	records,	based	on	the	search	key.

•	Hashing	file	organization.	A	hash	function	is	computed	on	some	attribute	of	each	record.	The	result	of
the	hash	function	specifies	in	which	block	of	the	file	the	record	should	be	placed.	Section	14.5	describes
this	organization;	it	is	closely	related	to	the	indexing	structures	described	in	that	chapter.

596

Chapter	13

Data	Storage	Structures

13.3.1

Heap	File	Organization

In	a	heap	file	organization,	a	record	may	be	stored	anywhere	in	the	file	corresponding	to	a	relation.	Once
placed	in	a	particular	location,	the	record	is	not	usually	moved.4

When	a	record	is	inserted	in	a	file,	one	option	for	choosing	the	location	is	to	always	add	it	at	the	end	of
the	file.	However,	if	records	get	deleted,	it	makes	sense	to	use	the	space	thus	freed	up	to	store	new
records.	It	is	important	for	a	database	system	to	be	able	to	efficiently	find	blocks	that	have	free	space,
without	having	to	sequentially	search	through	all	the	blocks	of	the	file.

Most	databases	use	a	space-efficient	data	structure	called	a	free-space	map	to	track	which	blocks	have
free	space	to	store	records.	The	free-space	map	is	commonly	represented	by	an	array	containing	1	entry
for	each	block	in	the	relation.	Each	entry	represents	a	fraction	f	such	that	at	least	a	fraction	f	of	the	space
in	the	block	is	free.	In	PostgreSQL,	for	example,	an	entry	is	1	byte,	and	the	value	stored	in	the	entry	must
be	divided	by	256	to	get	the	free-space	fraction.	The	array	is	stored	in	a	file,	whose	blocks	are	fetched	into
memory,	5	as	required.	Whenever	a	record	is	inserted,	deleted,	or	changed	in	size,	if	the	occupancy
fraction	changes	enough	to	affect	the	entry	value,	the	entry	is	updated	in	the	free-space	map.	An	example
of	a	free-space	map	for	a	file	with	16	blocks	is	shown	below.	We	assume	that	3	bits	are	used	to	store	the
occupancy	fraction;	the	value	at	position	i	should	be	divided	by	8	to	get	the	free-space	fraction	for	block	i.

4	2	1	4	7	3	6	5	1	2	0	1	1	0	5	6

For	example,	a	value	of	7	indicates	that	at	least	7∕8	th	of	the	space	in	the	block	is	free.

To	find	a	block	to	store	a	new	record	of	a	given	size,	the	database	can	scan	the	free-space	map	to	find	a
block	that	has	enough	free	space	to	store	that	record.	If	there	is	no	such	block,	a	new	block	is	allocated
for	the	relation.

While	such	a	scan	is	much	faster	than	actually	fetching	blocks	to	find	free	space,	it	can	still	be	very	slow
for	large	files.	To	further	speed	up	the	task	of	locating	a	block	with	sufficient	free	space,	we	can	create	a
second-level	free-space	map,	which	has,	say	1

entry	for	every	100	entries	of	the	main	free-space	map.	That	1	entry	stores	the	maximum	value	amongst
the	100	entries	in	the	main	free-space	map	that	it	corresponds	to.	The	free-space	map	below	is	a	second
level	free-space	map	for	our	earlier	example,	with	1

entry	for	every	4	entries	in	the	main	free-space	map.

4	7	2	6

4Records	may	be	occasionally	moved,	for	example,	if	the	database	sorts	the	records	of	the	relation;	but
note	that	even	if	the	relation	is	reordered	by	sorting,	subsequent	insertions	and	updates	may	result	in	the
records	no	longer	being	ordered.

5Via	the	database	buffer,	which	we	discuss	in	Section	13.5.

13.3

Organization	of	Records	in	Files

597

With	1	entry	for	every	100	entries	in	the	main	free-space	map,	a	scan	of	the	second-level	free	space	map
would	take	only	1/100th	of	the	time	to	scan	the	main	free-space	map;	once	a	suitable	entry	indicating
enough	free	space	is	found	there,	its	corresponding	100	entries	in	the	main	free-space	map	can	be
examined	to	find	a	block	with	sufficient	free	space.	Such	a	block	must	exist,	since	the	second-level	free-
space	map	entry	stores	the	maximum	of	the	entries	in	the	main	free-space	map.	To	deal	with	very	large
relations,	we	can	create	more	levels	beyond	the	second	level,	using	the	same	idea.

Writing	the	free-space	map	to	disk	every	time	an	entry	in	the	map	is	updated	would	be	very	expensive.
Instead,	the	free-space	map	is	written	periodically;	as	a	result,	the	free-space	map	on	disk	may	be
outdated,	and	when	a	database	starts	up,	it	may	get	outdated	data	about	available	free	space.	The	free-
space	map	may,	as	a	result,	claim	a	block	has	free	space	when	it	does	not;	such	an	error	will	be	detected
when	the	block	is	fetched,	and	can	be	dealt	with	by	a	further	search	in	the	free-space	map	to	find	another
block.	On	the	other	hand,	the	free-space	map	may	claim	that	a	block	does	not	have	free	space	when	it
does;	generally	this	will	not	result	in	any	problem	other	than	unused	free	space.	To	fix	any	such	errors,
the	relation	is	scanned	periodically	and	the	free-space	map	recomputed	and	written	to	disk.

13.3.2

Sequential	File	Organization

A	sequential	file	is	designed	for	efficient	processing	of	records	in	sorted	order	based	on	some	search	key.
A	search	key	is	any	attribute	or	set	of	attributes;	it	need	not	be	the	primary	key,	or	even	a	superkey.	To
permit	fast	retrieval	of	records	in	search-key	order,	we	chain	together	records	by	pointers.	The	pointer	in
each	record	points	to	the	next	record	in	search-key	order.	Furthermore,	to	minimize	the	number	of	block
accesses	in	sequential	file	processing,	we	store	records	physically	in	search-key	order,	or	as	close	to
search-key	order	as	possible.

Figure	13.7	shows	a	sequential	file	of	instructor	records	taken	from	our	university	example.	In	that
example,	the	records	are	stored	in	search-key	order,	using	ID	as	the	search	key.

The	sequential	file	organization	allows	records	to	be	read	in	sorted	order;	that	can	be	useful	for	display
purposes,	as	well	as	for	certain	query-processing	algorithms	that	we	shall	study	in	Chapter	15.

It	is	difficult,	however,	to	maintain	physical	sequential	order	as	records	are	inserted	and	deleted,	since	it
is	costly	to	move	many	records	as	a	result	of	a	single	insertion	or	deletion.	We	can	manage	deletion	by
using	pointer	chains,	as	we	saw	previously.	For	insertion,	we	apply	the	following	two	rules:

1.	Locate	the	record	in	the	file	that	comes	before	the	record	to	be	inserted	in	search-key	order.

2.	If	there	is	a	free	record	(i.e.,	space	left	after	a	deletion)	within	the	same	block	as	this	record,	insert	the
new	record	there.	Otherwise,	insert	the	new	record	in

598

Chapter	13

Data	Storage	Structures

10101

Srinivasan

Comp.	Sci.

65000

12121

Wu

Finance

90000

15151

Mozart

Music

40000

22222

Einstein

Physics

95000

32343

El	Said

History

60000

33456

Gold

Physics

87000

45565

Katz

Comp.	Sci.

75000

58583

Califieri

History

62000

76543

Singh

Finance

80000

76766

Crick

Biology

72000

83821

Brandt

Comp.	Sci.

92000

98345

Kim

Elec.	Eng.

80000

Figure	13.7	Sequential	file	for	instructor	records.

an	overflow	block.	In	either	case,	adjust	the	pointers	so	as	to	chain	together	the	records	in	search-key
order.

Figure	13.8	shows	the	file	of	Figure	13.7	after	the	insertion	of	the	record	(32222,	Verdi,	Music,	48000).
The	structure	in	Figure	13.8	allows	fast	insertion	of	new	records,	but	it	forces	sequential	file-processing
applications	to	process	records	in	an	order	that	does	not	match	the	physical	order	of	the	records.

If	relatively	few	records	need	to	be	stored	in	overflow	blocks,	this	approach	works	well.	Eventually,
however,	the	correspondence	between	search-key	order	and	physical	order	may	be	totally	lost	over	a
period	of	time,	in	which	case	sequential	processing	will	become	much	less	efficient.	At	this	point,	the	file
should	be	reorganized	so	that	it	is	once	again	physically	in	sequential	order.	Such	reorganizations	are
costly	and	must	be	done	during	times	when	the	system	load	is	low.	The	frequency	with	which
reorganizations	are	needed	depends	on	the	frequency	of	insertion	of	new	records.	In	the	extreme	case	in
which	insertions	rarely	occur,	it	is	possible	always	to	keep	the	file	in	physically	sorted	order.	In	such	a
case,	the	pointer	field	in	Figure	13.7	is	not	needed.

The	B+-tree	file	organization,	which	we	describe	in	Section	14.4.1,	provides	efficient	ordered	access	even
if	there	are	many	inserts,	deletes,	and	updates,	without	requiring	expensive	reorganizations.

13.3.3

Multitable	Clustering	File	Organization

Most	relational	database	systems	store	each	relation	in	a	separate	file,	or	a	separate	set	of	files.	Thus,
each	file,	and	as	a	result,	each	block,	stores	records	of	only	one	relation,	in	such	a	design.

13.3

Organization	of	Records	in	Files

599

10101

Srinivasan

Comp.	Sci.

65000

12121

Wu

Finance

90000

15151

Mozart

Music

40000

22222

Einstein

Physics

95000

32343

El	Said

History

60000

33456

Gold

Physics

87000

45565

Katz

Comp.	Sci.

75000

58583

Califieri

History

62000

76543

Singh

Finance

80000

76766

Crick

Biology

72000

83821

Brandt

Comp.	Sci.

92000

98345

Kim

Elec.	Eng.

80000

32222

Verdi

Music

48000

Figure	13.8	Sequential	file	after	an	insertion.

However,	in	some	cases	it	can	be	useful	to	store	records	of	more	than	one	relation	in	a	single	block.	To	see
the	advantage	of	storing	records	of	multiple	relations	in	one	block,	consider	the	following	SQL	query	for
the	university	database:

select	dept	name,	building,	budget,	ID,	name,	salary	from	department	natural	join	instructor;

This	query	computes	a	join	of	the	department	and	instructor	relations.	Thus,	for	each	tuple	of	department,
the	system	must	locate	the	instructor	tuples	with	the	same	value	for	dept	name.	Ideally,	these	records	will
be	located	with	the	help	of	indices,	which	we	shall	discuss	in	Chapter	14.	Regardless	of	how	these	records
are	located,	however,	they	need	to	be	transferred	from	disk	into	main	memory.	In	the	worst	case,	each
record	will	reside	on	a	different	block,	forcing	us	to	do	one	block	read	for	each	record	required	by	the
query.

As	a	concrete	example,	consider	the	department	and	instructor	relations	of	Figure	13.9	and	Figure	13.10,
respectively	(for	brevity,	we	include	only	a	subset	of	the	tuples	dept	name

building

budget

Comp.	Sci.

Taylor

100000

Physics

Watson

70000

Figure	13.9	The	department	relation.

600

Chapter	13

Data	Storage	Structures

ID

name

dept	name

salary

10101

Srinivasan

Comp.	Sci.

65000

33456

Gold

Physics

87000

45565

Katz

Comp.	Sci.

75000

83821

Brandt

Comp.	Sci.

92000

Figure	13.10	The	instructor	relation.

of	the	relations	we	have	used	thus	far).	In	Figure	13.11,	we	show	a	file	structure	designed	for	the	efficient
execution	of	queries	involving	the	natural	join	of	department	and	instructor.	All	the	instructor	tuples	for	a
particular	dept	name	are	stored	near	the	department	tuple	for	that	dept	name.	We	say	that	the	two
relations	are	clustered	on	the	key	dept	name.	We	assume	that	each	record	contains	the	identifier	of	the
relation	to	which	it	belongs,	although	this	is	not	shown	in	Figure	13.11.

Although	not	depicted	in	the	figure,	it	is	possible	to	store	the	value	of	the	dept	name	attribute,	which
defines	the	clustering,	only	once	for	a	group	of	tuples	(from	both	relations),	reducing	storage	overhead.

This	structure	allows	for	efficient	processing	of	the	join.	When	a	tuple	of	the	department	relation	is	read,
the	entire	block	containing	that	tuple	is	copied	from	disk	into	main	memory.	Since	the	corresponding
instructor	tuples	are	stored	on	the	disk	near	the	department	tuple,	the	block	containing	the	department
tuple	contains	tuples	of	the	instructor	relation	needed	to	process	the	query.	If	a	department	has	so	many
instructors	that	the	instructor	records	do	not	fit	in	one	block,	the	remaining	records	appear	on	nearby
blocks.

A	multitable	clustering	file	organization	is	a	file	organization,	such	as	that	illustrated	in	Figure	13.11,	that
stores	related	records	of	two	or	more	relations	in	each	block.6

The	cluster	key	is	the	attribute	that	defines	which	records	are	stored	together;	in	our	preceding	example,
the	cluster	key	is	dept	name.

Comp.	Sci.

Taylor

100000

10101

Srinivasan

Comp.	Sci.

65000

45565

Katz

Comp.	Sci.

75000

83821

Brandt

Comp.	Sci.

92000

Physics

Watson

70000

33456

Gold

Physics

87000

Figure	13.11	Multitable	clustering	file	structure.

6Note	that	the	word	cluster	is	often	used	to	refer	to	a	group	of	machines	that	together	constitute	a
parallel	database;	that	use	of	the	word	cluster	is	unrelated	to	the	concept	of	multitable	clustering.

13.3

Organization	of	Records	in	Files

601

Although	a	multitable	clustering	file	organization	can	speed	up	certain	join	queries,	it	can	result	in
slowing	processing	of	other	types	of	queries.	For	example,	in	our	preceding	example,

select	*

from	department;

requires	more	block	accesses	than	it	did	in	the	scheme	under	which	we	stored	each	relation	in	a	separate
file,	since	each	block	now	contains	significantly	fewer	department	records.	To	locate	efficiently	all	tuples
of	the	department	relation	within	a	particular	block,	we	can	chain	together	all	the	records	of	that	relation
using	pointers;	however,	the	number	of	blocks	read	does	not	get	affected	by	using	such	chains.

When	multitable	clustering	is	to	be	used	depends	on	the	types	of	queries	that	the	database	designer
believes	to	be	most	frequent.	Careful	use	of	multitable	clustering	can	produce	significant	performance
gains	in	query	processing.

Multitable	clustering	is	supported	by	the	Oracle	database	system.	Clusters	can	be	created	by	using	a
create	cluster	command,	with	a	specified	cluster	key.	An	extension	of	the	create	table	command	can	be
used	to	specify	that	a	relation	is	to	be	stored	in	a	specific	cluster,	with	a	particular	attribute	used	as	the
cluster	key.	Multiple	relations	can	thus	be	allocated	to	a	cluster.

13.3.4

Partitioning

Many	databases	allow	the	records	in	a	relation	to	be	partitioned	into	smaller	relations	that	are	stored
separately.	Such	table	partitioning	is	typically	done	on	the	basis	of	an	attribute	value;	for	example,
records	in	a	transaction	relation	in	an	accounting	database	may	be	partitioned	by	year	into	smaller
relations	corresponding	to	each	year,	such	as	transaction	2018,	transaction	2019,	and	so	on.	Queries	can
be	written	based	on	the	transaction	relation	but	are	translated	into	queries	on	the	year-wise	relations.
Most	accesses	are	to	records	of	the	current	year	and	include	a	selection	based	on	the	year.	Query
optimizers	can	rewrite	such	a	query	to	only	access	the	smaller	relation	corresponding	to	the	requested
year,	and	they	can	avoid	reading	records	corresponding	to	other	years.

For	example,	a	query

select	*

from	transaction

where	year=2019

would	only	access	the	relation	transaction	2019,	ignoring	the	other	relations,	while	a	query	without	the
selection	condition	would	read	all	the	relations.

The	cost	of	some	operations,	such	as	finding	free	space	for	a	record,	increase	with	relation	size;	by
reducing	the	size	of	each	relation,	partitioning	helps	reduce	such	overheads.	Partitioning	can	also	be	used
to	store	different	parts	of	a	relation	on	different

602

Chapter	13

Data	Storage	Structures

storage	devices;	for	example,	in	the	year	2019,	transaction	2018	and	earlier	year	transactions	can	which
are	infrequently	accessed	could	be	stored	on	magnetic	disk,	while	transaction	2019	could	be	stored	on
SSD,	for	faster	access.

13.4

Data-Dictionary	Storage

So	far,	we	have	considered	only	the	representation	of	the	relations	themselves.	A	relational	database

system	needs	to	maintain	data	about	the	relations,	such	as	the	schema	of	the	relations.	In	general,	such
“data	about	data”	are	referred	to	as	metadata.

Relational	schemas	and	other	metadata	about	relations	are	stored	in	a	structure	called	the	data	dictionary
or	system	catalog.	Among	the	types	of	information	that	the	system	must	store	are	these:

•	Names	of	the	relations

•	Names	of	the	attributes	of	each	relation

•	Domains	and	lengths	of	attributes

•	Names	of	views	defined	on	the	database,	and	definitions	of	those	views

•	Integrity	constraints	(e.g.,	key	constraints)

In	addition,	many	systems	keep	the	following	data	on	users	of	the	system:

•	Names	of	users,	the	default	schemas	of	the	users,	and	passwords	or	other	information	to	authenticate
users

•	Information	about	authorizations	for	each	user

Further,	the	database	may	store	statistical	and	descriptive	data	about	the	relations	and	attributes,	such	as
the	number	of	tuples	in	each	relation,	or	the	number	of	distinct	values	for	each	attribute.

The	data	dictionary	may	also	note	the	storage	organization	(heap,	sequential,	hash,	etc.)	of	relations,	and
the	location	where	each	relation	is	stored:

•	If	relations	are	stored	in	operating	system	files,	the	dictionary	would	note	the	names	of	the	file	(or	files)
containing	each	relation.

•	If	the	database	stores	all	relations	in	a	single	file,	the	dictionary	may	note	the	blocks	containing	records
of	each	relation	in	a	data	structure	such	as	a	linked	list.

In	Chapter	14,	in	which	we	study	indices,	we	shall	see	a	need	to	store	information	about	each	index	on
each	of	the	relations:

•	Name	of	the	index

13.4

Data-Dictionary	Storage

603

•	Name	of	the	relation	being	indexed

•	Attributes	on	which	the	index	is	defined

•	Type	of	index	formed

All	this	metadata	information	constitutes,	in	effect,	a	miniature	database.	Some	database	systems	store
such	metadata	by	using	special-purpose	data	structures	and	code.	It	is	generally	preferable	to	store	the
data	about	the	database	as	relations	in	the	database	itself.	By	using	database	relations	to	store	system
metadata,	we	simplify	the	overall	structure	of	the	system	and	harness	the	full	power	of	the	database	for
fast	access	to	system	data.

The	exact	choice	of	how	to	represent	system	metadata	by	relations	must	be	made	by	the	system
designers.	We	show	the	schema	diagram	of	a	toy	data	dictionary	in	Figure	13.12,	storing	part	of	the
information	mentioned	above.	The	schema	is	only	illustrative;	real	implementations	store	far	more
information	than	what	the	figure	shows.	Read	the	manuals	for	whichever	database	you	use	to	see	what
system	metadata	it	maintains.

In	the	metadata	representation	shown,	the	attribute	index	attributes	of	the	relation	Index	metadata	is
assumed	to	contain	a	list	of	one	or	more	attributes,	which	can	be	represented	by	a	character	string	such
as	“dept	name,	building”.	The	Index	metadata	relation	is	thus	not	in	first	normal	form;	it	can	be
normalized,	but	the	preceding	representation	is	likely	to	be	more	efficient	to	access.	The	data	dictionary	is
often	stored	in	a	nonnormalized	form	to	achieve	fast	access.

Relation_metadata

Attribute_metadata

relation_name

relation_name

number_of_attributes

attribute_name

storage_organization

domain_type

location

position

length

Index_metadata

index_name

relation_name

index_type

User_metadata

index_attributes

user_name

encrypted_password

group

View_metadata

view_name

definition

Figure	13.12	Relational	schema	representing	part	of	the	system	metadata.

604

Chapter	13

Data	Storage	Structures

Whenever	the	database	system	needs	to	retrieve	records	from	a	relation,	it	must	first	consult	the	Relation
metadata	relation	to	find	the	location	and	storage	organization	of	the	relation,	and	then	fetch	records
using	this	information.

However,	the	storage	organization	and	location	of	the	Relation	metadata	relation	itself	must	be	recorded
elsewhere	(e.g.,	in	the	database	code	itself,	or	in	a	fixed	location	in	the	database),	since	we	need	this
information	to	find	the	contents	of	Relation	metadata.

Since	system	metadata	are	frequently	accessed,	most	databases	read	it	from	the	database	into	in-memory
data	structures	that	can	be	accessed	very	efficiently.	This	is	done	as	part	of	the	database	startup,	before
the	database	starts	processing	any	queries.

13.5

Database	Buffer

The	size	of	main	memory	on	servers	has	increased	greatly	over	the	years,	and	many	medium-sized

databases	can	fit	in	memory.	However,	a	server	has	many	demands	on	its	memory,	and	the	amount	of
memory	it	can	give	to	a	database	may	be	much	smaller	than	the	database	size	even	for	medium-sized
databases.	And	many	large	databases	are	much	larger	than	the	available	memory	on	servers.

Thus,	even	today,	database	data	reside	primarily	on	disk	in	most	databases,	and	they	must	be	brought	into
memory	to	be	read	or	updated;	updated	data	blocks	must	be	written	back	to	disk	subsequently.

Since	data	access	from	disk	is	much	slower	than	in-memory	data	access,	a	major	goal	of	the	database
system	is	to	minimize	the	number	of	block	transfers	between	the	disk	and	memory.	One	way	to	reduce	the
number	of	disk	accesses	is	to	keep	as	many	blocks	as	possible	in	main	memory.	The	goal	is	to	maximize
the	chance	that,	when	a	block	is	accessed,	it	is	already	in	main	memory,	and,	thus,	no	disk	access	is
required.

Since	it	is	not	possible	to	keep	all	blocks	in	main	memory,	we	need	to	manage	the	allocation	of	the	space
available	in	main	memory	for	the	storage	of	blocks.	The	buffer	is	that	part	of	main	memory	available	for
storage	of	copies	of	disk	blocks.	There	is	always	a	copy	kept	on	disk	of	every	block,	but	the	copy	on	disk
may	be	a	version	of	the	block	older	than	the	version	in	the	buffer.	The	subsystem	responsible	for	the
allocation	of	buffer	space	is	called	the	buffer	manager.

13.5.1

Buffer	Manager

Programs	in	a	database	system	make	requests	(i.e.,	calls)	on	the	buffer	manager	when	they	need	a	block
from	disk.	If	the	block	is	already	in	the	buffer,	the	buffer	manager	passes	the	address	of	the	block	in	main
memory	to	the	requester.	If	the	block	is	not	in	the	buffer,	the	buffer	manager	first	allocates	space	in	the
buffer	for	the	block,	throwing	out	some	other	block,	if	necessary,	to	make	space	for	the	new	block.	The
thrown-out	block	is	written	back	to	disk	only	if	it	has	been	modified	since	the	most	recent	time	that	it	was
written	to	the	disk.	Then,	the	buffer	manager	reads	in	the	requested	block	from	the	disk	to	the	buffer,	and
passes	the	address	of	the	block	in	main	memory	to	the

13.5

Database	Buffer

605

requester.	The	internal	actions	of	the	buffer	manager	are	transparent	to	the	programs	that	issue	disk-
block	requests.

If	you	are	familiar	with	operating-system	concepts,	you	will	note	that	the	buffer	manager	appears	to	be
nothing	more	than	a	virtual-memory	manager,	like	those	found	in	most	operating	systems.	One	difference
is	that	the	size	of	the	database	might	be	larger	than	the	hardware	address	space	of	a	machine,	so	memory
addresses	are	not	sufficient	to	address	all	disk	blocks.	Further,	to	serve	the	database	system	well,	the
buffer	manager	must	use	techniques	more	sophisticated	than	typical	virtual-memory	management
schemes:

13.5.1.1

Buffer	replacement	strategy

When	there	is	no	room	left	in	the	buffer,	a	block	must	be	evicted,	that	is,	removed,	from	the	buffer	before
a	new	one	can	be	read	in.	Most	operating	systems	use	a	least	recently	used	(LRU)	scheme,	in	which	the
block	that	was	referenced	least	recently	is	written	back	to	disk	and	is	removed	from	the	buffer.	This
simple	approach	can	be	improved	on	for	database	applications(see	Section	13.5.2).

13.5.1.2

Pinned	blocks

Once	a	block	has	been	brought	into	the	buffer,	a	database	process	can	read	the	contents	of	the	block	from
the	buffer	memory.	However,	while	the	block	is	being	read,	if	a	concurrent	process	evicts	the	block	and
replaces	it	with	a	different	block,	the	reader	that	was	reading	the	contents	of	the	old	block	will	see
incorrect	data;	if	the	block	was	being	written	when	it	was	evicted,	the	writer	would	end	up	damaging	the
contents	of	the	replacement	block.

It	is	therefore	important	that	before	a	process	reads	data	from	a	buffer	block,	it	ensures	that	the	block
will	not	get	evicted.	To	do	so,	the	process	executes	a	pin	operation	on	the	block;	the	buffer	manager	never
evicts	a	pinned	block.	When	it	has	finished	reading	data,	the	process	should	execute	an	unpin	operation,
allowing	the	block	to	be	evicted	when	required.	The	database	code	should	be	written	carefully	to	avoid
pinning	too	many	blocks:	if	all	the	blocks	in	the	buffer	get	pinned,	no	blocks	can	be	evicted,	and	no	other

block	can	be	brought	into	the	buffer.	If	this	happens,	the	database	will	be	unable	to	carry	out	any	further
processing!

Multiple	processes	can	read	data	from	a	block	that	is	in	the	buffer.	Each	of	them	is	required	to	execute	a
pin	operation	before	accessing	data,	and	an	unpin	after	completing	access.	The	block	cannot	be	evicted
until	all	processes	that	have	executed	a	pin	have	then	executed	an	unpin	operation.	A	simple	way	to
ensure	this	property	is	to	keep	a	pin	count	for	each	buffer	block.	Each	pin	operation	increments	the	count,
and	an	unpin	operation	decrements	the	count.	A	page	can	be	evicted	only	if	the	pin	count	equals	0.

13.5.1.3

Shared	and	Exclusive	Locks	on	Buffer

A	process	that	adds	or	deletes	a	tuple	from	a	page	may	need	to	move	the	page	contents	around;	during
this	period,	no	other	process	should	read	the	contents	of	the	page,	since

606

Chapter	13

Data	Storage	Structures

they	may	be	inconsistent.	Database	buffer	managers	allow	processes	to	get	shared	and	exclusive	locks	on
the	buffer.

We	will	study	locking	in	more	detail	in	Chapter	18,	but	here	we	discuss	a	limited	form	of	locking	in	the
context	of	the	buffer	manager.	The	locking	system	provided	by	the	buffer	manager	allows	a	database
process	to	lock	a	buffer	block	either	in	shared	mode	or	in	exclusive	mode	before	accessing	the	block,	and
to	release	the	lock	later,	after	the	access	is	completed.	Here	are	the	rules	for	locking:

•	Any	number	of	processes	may	have	shared	locks	on	a	block	at	the	same	time.

•	Only	one	process	is	allowed	to	get	an	exclusive	lock	at	a	time,	and	further	when	a	process	has	an
exclusive	lock,	no	other	process	may	have	a	shared	lock	on	the	block.	Thus,	an	exclusive	lock	can	be
granted	only	when	no	other	process	has	a	lock	on	the	buffer	block.

•	If	a	process	requests	an	exclusive	lock	when	a	block	is	already	locked	in	shared	or	exclusive	mode,	the
request	is	kept	pending	until	all	earlier	locks	are	released.

•	If	a	process	requests	a	shared	lock	when	a	block	is	not	locked,	or	already	shared	locked,	the	lock	may	be
granted;	however,	if	another	process	has	an	exclusive	lock,	the	shared	lock	is	granted	only	after	the
exclusive	lock	has	been	released.

Locks	are	acquired	and	released	as	follows:

•	Before	carrying	out	any	operation	on	a	block,	a	process	must	pin	the	block	as	we	saw	earlier.	Locks	are
obtained	subsequently	and	must	be	released	before	unpinning	the	block.

•	Before	reading	data	from	a	buffer	block,	a	process	must	get	a	shared	lock	on	the	block.	When	it	is	done
reading	the	data,	the	process	must	release	the	lock.

•	Before	updating	the	contents	of	a	buffer	block,	a	process	must	get	an	exclusive	lock	on	the	block;	the
lock	must	be	released	after	the	update	is	complete.

These	rules	ensure	that	a	block	cannot	be	updated	while	another	process	is	reading	it,	and	conversely,	a
block	cannot	be	read	while	another	process	is	updating	it.	These	rules	are	required	for	safety	of	buffer
access;	however,	to	protect	a	database	system	from	problems	due	to	concurrent	access,	these	steps	are
not	sufficient:	further	steps	need	to	be	taken.	These	are	discussed	further	in	Chapter	17	and	Chapter	18.

13.5.1.4

Output	of	blocks

It	is	possible	to	output	a	block	only	when	the	buffer	space	is	needed	for	another	block.

However,	it	makes	sense	to	not	wait	until	the	buffer	space	is	needed,	but	to	rather	write	out	updated
blocks	ahead	of	such	a	need.	Then,	when	space	is	required	in	the	buffer,

13.5

Database	Buffer

607

a	block	that	has	already	been	written	out	can	be	evicted,	provided	it	is	not	currently	pinned.

However,	for	the	database	system	to	be	able	to	recover	from	crashes	(Chapter	19),	it	is	necessary	to
restrict	those	times	when	a	block	may	be	written	back	to	disk.	For	instance,	most	recovery	systems
require	that	a	block	should	not	be	written	to	disk	while	an	update	on	the	block	is	in	progress.	To	enforce
this	requirement,	a	process	that	wishes	to	write	the	block	to	disk	must	obtain	a	shared	lock	on	the	block.

Most	databases	have	a	process	that	continually	detects	updated	blocks	and	writes	them	back	to	disk.

13.5.1.5

Forced	output	of	blocks

There	are	situations	in	which	it	is	necessary	to	write	a	block	to	disk,	to	ensure	that	certain	data	on	disk
are	in	a	consistent	state.	Such	a	write	is	called	a	forced	output	of	a	block.	We	shall	see	the	reason	for
forced	output	in	Chapter	19.

Memory	contents	and	thus	buffer	contents	are	lost	in	a	crash,	whereas	data	on	disk	(usually)	survive	a
crash.	Forced	output	is	used	in	conjunction	with	a	logging	mechanism	to	ensure	that	when	a	transaction
that	has	performed	updates	commits,	enough	data	has	been	written	to	disk	to	ensure	the	updates	of	the
transaction	are	not	lost.	How	exactly	this	is	done	is	covered	in	detail	in	Chapter	19.

13.5.2

Buffer-Replacement	Strategies

The	goal	of	a	replacement	strategy	for	blocks	in	the	buffer	is	to	minimize	accesses	to	the	disk.	For
general-purpose	programs,	it	is	not	possible	to	predict	accurately	which	blocks	will	be	referenced.
Therefore,	operating	systems	use	the	past	pattern	of	block	references	as	a	predictor	of	future	references.
The	assumption	generally	made	is	that	blocks	that	have	been	referenced	recently	are	likely	to	be
referenced	again.	Therefore,	if	a	block	must	be	replaced,	the	least	recently	referenced	block	is	replaced.
This	approach	is	called	the	least	recently	used	(LRU)	block-replacement	scheme.

LRU	is	an	acceptable	replacement	scheme	in	operating	systems.	However,	a	database	system	is	able	to
predict	the	pattern	of	future	references	more	accurately	than	an	operating	system.	A	user	request	to	the
database	system	involves	several	steps.	The	database	system	is	often	able	to	determine	in	advance	which
blocks	will	be	needed	by	looking	at	each	of	the	steps	required	to	perform	the	user-requested	operation.
Thus,	unlike	operating	systems,	which	must	rely	on	the	past	to	predict	the	future,	database	systems	may
have	information	regarding	at	least	the	short-term	future.

To	illustrate	how	information	about	future	block	access	allows	us	to	improve	the	LRU	strategy,	consider
the	processing	of	the	SQL	query:

select	*

from	instructor	natural	join	department;

608

Chapter	13

Data	Storage	Structures

Assume	that	the	strategy	chosen	to	process	this	request	is	given	by	the	pseudocode	program	shown	in
Figure	13.13.	(We	shall	study	other,	more	efficient,	strategies	in	Chapter	15.)

Assume	that	the	two	relations	of	this	example	are	stored	in	separate	files.	In	this	example,	we	can	see
that,	once	a	tuple	of	instructor	has	been	processed,	that	tuple	is	not	needed	again.	Therefore,	once
processing	of	an	entire	block	of	instructor	tuples	is	completed,	that	block	is	no	longer	needed	in	main
memory,	even	though	it	has	been	used	recently.	The	buffer	manager	should	be	instructed	to	free	the	space
occupied	by	an	instructor	block	as	soon	as	the	final	tuple	has	been	processed.	This	buffer-management
strategy	is	called	the	toss-immediate	strategy.

Now	consider	blocks	containing	department	tuples.	We	need	to	examine	every	block	of	department	tuples

once	for	each	tuple	of	the	instructor	relation.	When	processing	of	a	department	block	is	completed,	we
know	that	that	block	will	not	be	accessed	again	until	all	other	department	blocks	have	been	processed.
Thus,	the	most	recently	used	department	block	will	be	the	final	block	to	be	re-referenced,	and	the	least
recently	used	department	block	is	the	block	that	will	be	referenced	next.	This	assumption	set	is	the	exact
opposite	of	the	one	that	forms	the	basis	for	the	LRU	strategy.	Indeed,	the	optimal	strategy	for	block
replacement	for	the	above	procedure	is	the	most	recently	used	(MRU)	strategy.	If	a	department	block
must	be	removed	from	the	buffer,	the	MRU

strategy	chooses	the	most	recently	used	block	(blocks	are	not	eligible	for	replacement	while	they	are
being	used).

for	each	tuple	i	of	instructor	do

for	each	tuple	d	of	department	do

if	i[dept	name]	=	d[dept	name]

then	begin

let	x	be	a	tuple	defined	as	follows:

x[ID]	:=	i[ID]

x[dept	name]	:=	i[dept	name]

x[name]	:=	i[name]

x[salary]	:=	i[salary]

x[building]	:=	d[building]

x[budget]	:=	d[budget]

include	tuple	x	as	part	of	result	of	instructor	⋈	department	end

end

end

Figure	13.13	Procedure	for	computing	join.

13.5

Database	Buffer

609

For	the	MRU	strategy	to	work	correctly	for	our	example,	the	system	must	pin	the	department	block
currently	being	processed.	After	the	final	department	tuple	has	been	processed,	the	block	is	unpinned,
and	it	becomes	the	most	recently	used	block.

In	addition	to	using	knowledge	that	the	system	may	have	about	the	request	being	processed,	the	buffer
manager	can	use	statistical	information	about	the	probability	that	a	request	will	reference	a	particular
relation.	For	example,	the	data	dictionary,	which	we	saw	in	Section	13.4,	is	one	of	the	most	frequently
accessed	parts	of	the	database,	since	the	processing	of	every	query	needs	to	access	the	data	dictionary.
Thus,	the	buffer	manager	should	try	not	to	remove	data-dictionary	blocks	from	main	memory,	unless	other
factors	dictate	that	it	do	so.	In	Chapter	14,	we	discuss	indices	for	files.	Since	an	index	for	a	file	may	be
accessed	more	frequently	than	the	file	itself,	the	buffer	manager	should,	in	general,	not	remove	index
blocks	from	main	memory	if	alternatives	are	available.

The	ideal	database	block-replacement	strategy	needs	knowledge	of	the	database	operations	—	both	those
being	performed	and	those	that	will	be	performed	in	the	future.	No	single	strategy	is	known	that	handles
all	the	possible	scenarios	well.	Indeed,	a	surprisingly	large	number	of	database	systems	use	LRU,	despite
that	strategy’s	faults.

The	practice	questions	and	exercises	explore	alternative	strategies.

The	strategy	that	the	buffer	manager	uses	for	block	replacement	is	influenced	by	factors	other	than	the
time	at	which	the	block	will	be	referenced	again.	If	the	system	is	processing	requests	by	several	users
concurrently,	the	concurrency-control	subsystem	(Chapter	18)	may	need	to	delay	certain	requests,	to
ensure	preservation	of	database	consistency.	If	the	buffer	manager	is	given	information	from	the
concurrency-control	subsystem	indicating	which	requests	are	being	delayed,	it	can	use	this	information	to

alter	its	block-replacement	strategy.	Specifically,	blocks	needed	by	active	(nondelayed)	requests	can	be
retained	in	the	buffer	at	the	expense	of	blocks	needed	by	the	delayed	requests.

The	crash-recovery	subsystem	(Chapter	19)	imposes	stringent	constraints	on	block	replacement.	If	a	block
has	been	modified,	the	buffer	manager	is	not	allowed	to	write	back	the	new	version	of	the	block	in	the
buffer	to	disk,	since	that	would	destroy	the	old	version.	Instead,	the	block	manager	must	seek	permission
from	the	crash-recovery	subsystem	before	writing	out	a	block.	The	crash-recovery	subsystem	may	demand
that	certain	other	blocks	be	force-output	before	it	grants	permission	to	the	buffer	manager	to	output	the
block	requested.	In	Chapter	19,	we	define	precisely	the	interaction	between	the	buffer	manager	and	the
crash-recovery	subsystem.

13.5.3

Reordering	of	Writes	and	Recovery

Database	buffers	allow	writes	to	be	performed	in-memory	and	output	to	disk	at	a	later	time,	possibly	in	an
order	different	from	the	order	in	which	the	writes	were	performed.

File	systems,	too,	routinely	reorder	write	operations.	However,	such	reordering	can	lead	to	inconsistent
data	on	disk	in	the	event	of	a	system	crash.

610

Chapter	13

Data	Storage	Structures

To	understand	the	problem	in	the	context	of	a	file	system,	suppose	that	a	file	system	uses	a	linked	list	to
track	which	blocks	are	part	of	a	file.	Suppose	also	that	it	inserts	a	new	node	at	the	end	of	the	list	by	first
writing	the	data	for	the	new	node,	then	updating	the	pointer	from	the	previous	node.	Suppose	further	that
the	writes	were	reordered,	so	the	pointer	was	updated	first,	and	the	system	crashes	before	the	new	node
is	written.

The	contents	of	the	node	would	then	be	whatever	happened	to	be	on	that	disk	earlier,	resulting	in	a
corrupted	data	structure.

To	deal	with	the	possibility	of	such	data	structure	corruption,	earlier-generation	file	systems	had	to
perform	a	file	system	consistency	check	on	system	restart,	to	ensure	that	the	data	structures	were
consistent.	And	if	they	were	not,	extra	steps	had	to	be	taken	to	restore	them	to	consistency.	These	checks
resulted	in	long	delays	in	system	restart	after	a	crash,	and	the	delays	became	worse	as	disk	systems	grew
to	higher	capacities.

The	file	system	can	avoid	inconsistencies	in	many	cases	if	it	writes	updates	to	metadata	in	a	carefully
chosen	order.	But	doing	so	would	mean	that	optimizations	such	as	disk	arm	scheduling	cannot	be	done,
affecting	the	efficiency	of	the	update.	If	a	nonvolatile	write	buffer	were	available,	it	could	be	used	to
perform	the	writes	in	order	to	non-volatile	RAM	and	later	reorder	the	writes	when	writing	them	to	disk.

However,	most	disks	do	not	come	with	a	non-volatile	write	buffer;	instead,	modern	file	systems	assign	a
disk	for	storing	a	log	of	the	writes	in	the	order	that	they	are	performed.	Such	a	disk	is	called	a	log	disk.
For	each	write,	the	log	contains	the	block	number	to	be	written	to,	and	the	data	to	be	written,	in	the	order
in	which	the	writes	were	performed.	All	access	to	the	log	disk	is	sequential,	essentially	eliminating	seek
time,	and	several	consecutive	blocks	can	be	written	at	once,	making	writes	to	the	log	disk	several	times
faster	than	random	writes.	As	before,	the	data	have	to	be	written	to	their	actual	location	on	disk	as	well,
but	the	write	to	the	actual	location	can	be	done	later;	the	writes	can	be	reordered	to	minimize	disk-arm
movement.

If	the	system	crashes	before	some	writes	to	the	actual	disk	location	have	been	completed,	when	the
system	comes	back	up	it	reads	the	log	disk	to	find	those	writes	that	had	not	been	completed	and	carries
them	out	then.	After	the	writes	have	been	performed,	the	records	are	deleted	from	the	log	disk.

File	systems	that	support	log	disks	as	above	are	called	journaling	file	systems.	Journaling	file	systems	can
be	implemented	even	without	a	separate	log	disk,	keeping	data	and	the	log	on	the	same	disk.	Doing	so
reduces	the	monetary	cost	at	the	expense	of	lower	performance.

Most	modern	file	systems	implement	journaling	and	use	the	log	disk	when	writing	file	system	metadata
such	as	file	allocation	information.	Journaling	file	systems	allow	quick	restart	without	the	need	for	such
file	system	consistency	checks.

However,	writes	performed	by	applications	are	usually	not	written	to	the	log	disk.

Database	systems	instead	implement	their	own	forms	of	logging,	which	we	study	in	Chapter	19,	to	ensure

that	the	contents	of	a	database	can	be	safely	recovered	in	the	event	of	a	failure,	even	if	writes	were
reordered.

13.6

Column-Oriented	Storage

611

13.6

Column-Oriented	Storage

Databases	traditionally	store	all	attributes	of	a	tuple	together	in	a	record,	and	tuples	are	stored	in	a	file	as
we	have	just	seen.	Such	a	storage	layout	is	referred	to	as	a	row-oriented	storage.

In	contrast,	in	column-oriented	storage,	also	called	a	columnar	storage,	each	attribute	of	a	relation	is
stored	separately,	with	values	of	the	attribute	from	successive	tuples	stored	at	successive	positions	in	the
file.	Figure	13.14	shows	how	the	instructor	relation	would	be	stored	in	column-oriented	storage,	with
each	attribute	stored	separately.

In	the	simplest	form	of	column-oriented	storage,	each	attribute	is	stored	in	a	separate	file.	Further,	each
file	is	compressed,	to	reduce	its	size.	(We	discuss	more	complex	schemes	that	store	columns	consecutively
in	a	single	file	later	in	this	section.)	If	a	query	needs	to	access	the	entire	contents	of	the	i	th	row	of	a
table,	the	values	at	the	i	th	position	in	each	of	the	columns	are	retrieved	and	used	to	reconstruct	the	row.

Column-oriented	storage	thus	has	the	drawback	that	fetching	multiple	attributes	of	a	single	tuple	requires
multiple	I/O	operations.	Thus,	it	is	not	suitable	for	queries	that	fetch	multiple	attributes	from	a	few	rows
of	a	relation.

However,	column-oriented	storage	is	well	suited	for	data	analysis	queries,	which	process	many	rows	of	a
relation,	but	often	only	access	some	of	the	attributes.	The	reasons	are	as	follows:

•	Reduced	I/O.	When	a	query	needs	to	access	only	a	few	attributes	of	a	relation	with	a	large	number	of
attributes,	the	remaining	attributes	need	not	be	fetched	from	disk	into	memory.	In	contrast,	in	row-
oriented	storage,	irrelevant	attributes	are	fetched	into	memory	from	disk.	The	reduction	in	I/O	can	lead	to
significant	reduction	in	query	execution	cost.

10101

Srinivasan

Comp.	Sci.

65000

12121

Wu

Finance

90000

15151

Mozart

Music

40000

22222

Einstein

Physics

95000

32343

El	Said

History

60000

33456

Gold

Physics

87000

45565

Katz

Comp.	Sci.

75000

58583

Califieri

History

62000

76543

Singh

Finance

80000

76766

Crick

Biology

72000

83821

Brandt

Comp.	Sci.

92000

98345

Kim

Elec.	Eng.

80000

Figure	13.14	Columnar	representation	of	the	instructor	relation.

612

Chapter	13

Data	Storage	Structures

•	Improved	CPU	cache	performance.	When	the	query	processor	fetches	the	contents	of	a	particular
attribute,	with	modern	CPU	architectures	multiple	consecutive	bytes,	called	a	cache	line,	are	fetched	from
memory	to	CPU	cache.	If	these	bytes	are	accessed	later,	access	is	much	faster	if	they	are	in	cache	than	if
they	have	to	be	fetched	from	main	memory.	However,	if	these	adjacent	bytes	contain	values	for	attributes
that	are	not	be	needed	by	the	query,	fetching	them	into	cache	wastes	memory	bandwidth	and	uses	up
cache	space	that	could	have	been	used	for	other	data.	Column-oriented	storage	does	not	suffer	from	this
problem,	since	adjacent	bytes	are	from	the	same	column,	and	data	analysis	queries	usually	access	all
these	values	consecutively.

•	Improved	compression.	Storing	values	of	the	same	type	together	significantly	increases	the
effectiveness	of	compression,	when	compared	to	compressing	data	stored	in	row	format;	in	the	latter
case,	adjacent	attributes	are	of	different	types,	reducing	the	efficiency	of	compression.	Compression
significantly	reduces	the	time	taken	to	retrieve	data	from	disk,	which	is	often	the	highest-cost	component
for	many	queries.	If	the	compressed	files	are	stored	in	memory,	the	in-memory	storage	space	is	also
reduced	correspondingly,	which	is	particularly	important	since	main	memory	is	significantly	more
expensive	than	disk	storage.

•	Vector	processing.	Many	modern	CPU	architectures	support	vector	processing,	which	allows	a	CPU
operation	to	be	applied	in	parallel	on	a	number	of	elements	of	an	array.	Storing	data	columnwise	allows
vector	processing	of	operations	such	as	comparing	an	attribute	with	a	constant,	which	is	important	for
applying	selection	conditions	on	a	relation.	Vector	processing	can	also	be	used	to	compute	an	aggregate
of	multiple	values	in	parallel,	instead	of	aggregating	the	values	one	at	a	time.

As	a	result	of	these	benefits,	column-oriented	storage	is	increasingly	used	in	data-warehousing
applications,	where	queries	are	primarily	data	analysis	queries.	It	should	be	noted	that	indexing	and
query	processing	techniques	need	to	be	carefully	designed	to	get	the	performance	benefits	of	column-
oriented	storage.	We	outline	indexing	and	query	processing	techniques	based	on	bitmap	representations,
which	are	well	suited	to	column-oriented	storage,	in	Section	14.9;	further	details	are	provided	in	Section
24.3.

Databases	that	use	column-oriented	storage	are	referred	to	as	column	stores,	while	databases	that	use
row-oriented	storage	are	referred	to	as	row	stores.

It	should	be	noted	that	column-oriented	storage	does	have	several	drawbacks,	which	make	them
unsuitable	for	transaction	processing.

•	Cost	of	tuple	reconstruction.	As	we	saw	earlier,	reconstructing	a	tuple	from	the	individual	columns	can
be	expensive,	negating	the	benefits	of	columnar	representation	if	many	columns	need	to	be	reconstructed.
While	tuple	reconstruction	is	common	in	transaction-processing	applications,	data	analysis	applications
usually

13.6

Column-Oriented	Storage

613

output	only	a	few	columns	out	of	many	that	are	stored	in	“fact	tables”	in	data	warehouses.

•	Cost	of	tuple	deletion	and	update.	Deleting	or	updating	a	single	tuple	in	a	compressed	representation
would	require	rewriting	the	entire	sequence	of	tuples	that	are	compressed	as	one	unit.	Since	updates	and
deletes	are	common	in	transaction-processing	applications,	column-oriented	storage	would	result	in	a
high	cost	for	these	operations	if	a	large	number	of	tuples	were	compressed	as	one	unit.

In	contrast,	data-warehousing	systems	typically	do	not	support	updates	to	tuples,	and	instead	support
only	insert	of	new	tuples	and	bulk	deletes	of	a	large	number	of	old	tuples	at	a	time.	Inserts	are	done	at	the
end	of	the	relation	representation,	that	is,	new	tuples	are	appended	to	the	relation.	Since	small	deletes
and	updates	do	not	occur	in	a	data	warehouse,	large	sequences	of	attribute	values	can	be	stored	and
compressed	together	as	one	unit,	allowing	for	better	compression	than	with	small	sequences.

•	Cost	of	decompression.	Fetching	data	from	a	compressed	representation	requires	decompression,	which
in	the	simplest	compressed	representations	requires	reading	all	the	data	from	the	beginning	of	a	file.
Transaction	processing	queries	usually	only	need	to	fetch	a	few	records;	sequential	access	is	expensive	in
such	a	scenario,	since	many	irrelevant	records	may	have	to	be	decompressed	to	access	a	few	relevant
records.

Since	data	analysis	queries	tend	to	access	many	consecutive	records,	the	time	spent	on	decompression	is
typically	not	wasted.	However,	even	data	analysis	queries	do	not	need	to	access	records	that	fail	selection
conditions,	and	attributes	of	such	records	should	be	skipped	to	reduce	disk	I/O.

To	allow	skipping	of	attribute	values	from	such	records,	compressed	representations	for	column	stores
allow	decompression	to	start	at	any	of	a	number	of	points	in	the	file,	skipping	earlier	parts	of	the	file.	This
could	be	done	by	starting	compression	afresh	after	every	10,000	values	(for	example).	By	keeping	track	of
where	in	the	file	the	data	start	for	each	group	of	10,000	values,	it	is	possible	to	access	the	i	th	value	by
going	to	the	start	of	the	group	⌊	i∕10000⌋	and	starting	decompression	from	there.

ORC	and	Parquet	are	columnar	file	representations	used	in	many	big-data	processing	applications.	In
ORC,	a	row-oriented	representation	is	converted	to	column-oriented	representation	as	follows:	A	sequence
of	tuples	occupying	several	hundred	megabytes	is	broken	up	into	a	columnar	representation	called	a
stripe.	An	ORC	file	contains	several	such	stripes,	with	each	stripe	occupying	around	250	megabytes.

Figure	13.15	illustrates	some	details	of	the	ORC	file	format.	Each	stripe	has	index	data	followed	by	row
data.	The	row	data	area	stores	a	compressed	representation	of	the	sequence	of	value	for	the	first	column,
followed	by	the	compressed	representation	of	the	second	column,	and	so	on.	The	index	data	region	of	a
stripe	stores	for	each	attribute	the	starting	point	within	the	stripe	for	each	group	of	(say)	10,000	values	of

614

Chapter	13

Data	Storage	Structures

Index	Data

Stripe	1

Col1	Index

Row	Data

Col2	Index

Col3	Index

Stripe	Footer

Col4	Index

Index	Data

Col5	Index

Stripe	2

Row	Data

Col1	Data

Col2	Data

Stripe	Footer

Col3	Data

Col4	Data

Col5	Data

Index	Data

Stripe	n

Row	Data

Stripe	Footer

File	Footer

Figure	13.15	Columnar	data	representation	in	the	ORC	file	format.

that	attribute.7	The	index	is	useful	for	quick	access	to	a	desired	tuple	or	sequence	of	tuples;	the	index	also
allows	queries	containing	selections	to	skip	groups	of	tuples	if	the	query	determines	that	no	tuple	in	those
groups	satisfies	the	selections.	ORC	files	store	several	other	pieces	of	information	in	the	stripe	footer	and
file	footer,	which	we	skip	here.

Some	column-store	systems	allow	groups	of	columns	that	are	often	accessed	together	to	be	stored
together,	instead	of	breaking	up	each	column	into	a	different	file.

Such	systems	thus	allow	a	spectrum	of	choices	that	range	from	pure	column-oriented	storage,	where
every	column	is	stored	separately,	to	pure	row-oriented	storage,	where	all	columns	are	stored	together.
The	choice	of	which	attributes	to	store	together	depends	on	the	query	workload.

7ORC	files	have	some	other	information	that	we	ignore	here.

13.7

Storage	Organization	in	Main-Memory	Databases

615

Some	of	the	benefits	of	column-oriented	storage	can	be	obtained	even	in	a	row-oriented	storage	system	by
logically	decomposing	a	relation	into	multiple	relations.	For	example,	the	instructor	relation	could	be
decomposed	into	three	relations,	containing	(ID,	name),	(ID,	dept	name)	and	(ID,	salary),	respectively.
Then,	queries	that	access	only	the	name	do	not	have	to	fetch	the	dept	name	and	salary	attributes.
However,	in	this	case	the	same	ID	attribute	occurs	in	three	tuples,	resulting	in	wasted	space.

Some	database	systems	use	a	column-oriented	representation	for	data	within	a	disk	block,	without	using
compression.8	Thus,	a	block	contains	data	for	a	set	of	tuples,	and	all	attributes	for	that	set	of	tuples	are
stored	in	the	same	block.	Such	a	scheme	is	useful	in	transaction-processing	systems,	since	retrieving	all
attribute	values	does	not	require	multiple	disk	accesses.	At	the	same	time,	using	column-oriented	storage
within	the	block	provides	the	benefits	of	more	efficient	memory	access	and	cache	usage,	as	well	as	the
potential	for	using	vector	processing	on	the	data.	However,	this	scheme	does	not	allow	irrelevant	disk
blocks	to	be	skipped	when	only	a	few	attributes	are	retrieved,	nor	does	it	give	the	benefits	of
compression.	Thus,	it	represents	a	point	in	the	space	between	pure	row-oriented	storage	and	pure
column-oriented	storage.

Some	databases,	such	as	SAP	HANA	support	two	underlying	storage	systems,	one	a	row-oriented	one
designed	for	transaction	processing,	and	the	second	a	column-oriented	one,	designed	for	data	analysis.
Tuples	are	normally	created	in	the	row-oriented	store	but	are	later	migrated	to	the	column-oriented	store
when	they	are	no	longer	likely	to	be	accessed	in	a	row-oriented	manner.	Such	systems	are	called	hybrid
row/column	stores.

In	other	cases,	applications	store	transactional	data	in	a	row-oriented	store,	but	copy	data	periodically
(e.g.,	once	a	day	or	a	few	times	a	day)	to	a	data	warehouse,	which	may	use	a	column-oriented	storage
system.

Sybase	IQ	was	one	of	the	early	products	to	use	column-oriented	storage,	but	there	are	now	several
research	projects	and	companies	that	have	developed	database	systems	based	on	column	stores,	including
C-Store,	Vertica,	MonetDB,	Vectorwise,	among	others.	See	Further	Reading	at	the	end	of	the	chapter	for
more	details.

13.7

Storage	Organization	in	Main-Memory	Databases

Today,	main-memory	sizes	are	large	enough,	and	main	memory	is	cheap	enough,	that	many	organizational
databases	fit	entirely	in	memory.	Such	large	main	memories	can	be	used	by	allocating	a	large	amount	of
memory	to	the	database	buffer,	which	will	allow	the	entire	database	to	be	loaded	into	buffer,	avoiding	disk
I/O	operations	for	reading	data;	updated	blocks	still	have	to	be	written	back	to	disk	for	persistence.	Thus,
such	a	setup	would	provide	much	better	performance	than	one	where	only	part	of	the	database	can	fit	in
the	buffer.

8Compression	can	be	applied	to	data	in	a	disk	block,	but	accessing	them	requires	decompression,	and	the
decompressed	data	may	no	longer	fit	in	a	block.	Significant	changes	need	to	be	made	to	the	database
code,	including	buffer	management,	to	handle	such	issues.

616

Chapter	13

Data	Storage	Structures

However,	if	the	entire	database	fits	in	memory,	performance	can	be	improved	significantly	by	tailoring	the
storage	organization	and	database	data	structures	to	exploit	the	fact	that	data	are	fully	in	memory.	A
main-memory	database	is	a	database	where	all	data	reside	in	memory;	main-memory	database	systems
are	typically	designed	to	optimize	performance	by	making	use	of	this	fact.	In	particular,	they	do	away
entirely	with	the	buffer	manager.

As	an	example	of	optimizations	that	can	be	done	with	memory-resident	data,	consider	the	cost	of
accessing	a	record,	given	a	record	pointer.	With	disk-based	databases,	records	are	stored	in	blocks,	and
pointers	to	records	consist	of	a	block	identifier	and	an	offset	or	slot	number	within	the	block.	Following
such	a	record	pointer	requires	checking	if	the	block	is	in	the	buffer	(usually	done	by	using	an	in-memory
hash	index),	and	if	it	is,	finding	where	in	the	buffer	it	is	located.	If	it	is	not	in	buffer,	it	has	to	be	fetched.

All	these	actions	take	a	significant	number	of	CPU	cycles.

In	contrast,	in	a	main-memory	database,	it	is	possible	to	keep	direct	pointers	to	records	in	memory,	and
accessing	a	record	is	just	an	in-memory	pointer	traversal,	which	is	a	very	efficient	operation.	This	is
possible	as	long	as	records	are	not	moved	around.

Indeed,	one	reason	for	such	movement,	namely	loading	into	buffer	and	eviction	from	buffer,	is	no	longer
an	issue.

If	records	are	stored	in	a	slotted-page	structure	within	a	block,	records	may	move	within	a	block	as	other
records	are	deleted	or	resized.	Direct	pointers	to	records	are	not	possible	in	that	case,	although	records
can	be	accessed	with	one	level	of	indirection	through	the	entries	in	the	slotted	page	header.	Locking	of
the	block	may	be	required	to	ensure	that	a	record	does	not	get	moved	while	another	process	is	reading	its
data.	To	avoid	these	overheads,	many	main-memory	databases	do	not	use	a	slotted-page	structure	for
allocating	records.	Instead	they	directly	allocate	records	in	main	memory,	and	ensure	that	records	never
get	moved	due	to	updates	to	other	records.	However,	a	problem	with	direct	allocation	of	records	is	that
memory	may	get	fragmented	if	variable	sized	records	are	repeatedly	inserted	and	deleted.	The	database
must	ensure	that	main	memory	does	not	get	fragmented	over	time,	either	by	using	suitably	designed
memory	management	schemes	or	by	periodically	performing	compaction	of	memory;	the	latter	scheme
will	result	in	record	movement,	but	it	can	be	done	without	acquiring	locks	on	blocks.

If	a	column-oriented	storage	scheme	is	used	in	main	memory,	all	the	values	of	a	column	can	be	stored	in
consecutive	memory	locations.	However,	if	there	are	appends	to	the	relation,	ensuring	contiguous
allocation	would	require	existing	data	be	reallocated.	To	avoid	this	overhead,	the	logical	array	for	a
column	may	be	divided	into	multiple	physical	arrays.	An	indirection	table	stores	pointers	to	all	the
physical	arrays.

This	scheme	is	depicted	in	Figure	13.16.	To	find	the	i	th	element	of	a	logical	array,	the	indirection	table	is
used	to	locate	the	physical	array	containing	the	i	th	element,	and	then	an	appropriate	offset	is	computed
and	looked	up	within	that	physical	array.

There	are	other	ways	in	which	processing	can	be	optimized	with	main-memory	databases,	as	we	shall	see
in	later	chapters.

13.8

Summary

617

Col1	Data

Col2	Data

Col3	Data

Col4	Data

Col5	Data

Col1	Data

Col2	Data

Col3	Data

Col4	Data

Col5	Data

Col1	Data

Col2	Data

Col3	Data

Indirection	Table

Col4	Data

Col5	Data

Figure	13.16	In-memory	columnar	data	representation.

13.8

Summary

•	We	can	organize	a	file	logically	as	a	sequence	of	records	mapped	onto	disk	blocks.

One	approach	to	mapping	the	database	to	files	is	to	use	several	files,	and	to	store	records	of	only	one
fixed	length	in	any	given	file.	An	alternative	is	to	structure	files	so	that	they	can	accommodate	multiple
lengths	for	records.	The	slotted-page	method	is	widely	used	to	handle	varying-length	records	within	a	disk
block.

•	Since	data	are	transferred	between	disk	storage	and	main	memory	in	units	of	a	block,	it	is	worthwhile	to
assign	file	records	to	blocks	in	such	a	way	that	a	single	block	contains	related	records.	If	we	can	access
several	of	the	records	we	want	with	only	one	block	access,	we	save	disk	accesses.	Since	disk	accesses	are
usually	the	bottleneck	in	the	performance	of	a	database	system,	careful	assignment	of	records	to	blocks
can	pay	significant	performance	dividends.

•	The	data	dictionary,	also	referred	to	as	the	system	catalog,	keeps	track	of	metadata,	that	is,	data	about
data,	such	as	relation	names,	attribute	names	and	types,	storage	information,	integrity	constraints,	and
user	information.

618

Chapter	13

Data	Storage	Structures

•	One	way	to	reduce	the	number	of	disk	accesses	is	to	keep	as	many	blocks	as	possible	in	main	memory.
Since	it	is	not	possible	to	keep	all	blocks	in	main	memory,	we	need	to	manage	the	allocation	of	the	space
available	in	main	memory	for	the	storage	of	blocks.	The	buffer	is	that	part	of	main	memory	available	for
storage	of	copies	of	disk	blocks.	The	subsystem	responsible	for	the	allocation	of	buffer	space	is	called	the
buffer	manager.

•	Column-oriented	storage	systems	provide	good	performance	for	many	data	warehousing	applications.

Review	Terms

•	File	Organization

°	System	catalog

°	File

•	Database	buffer

°	Blocks

°	Buffer	manager

•	Fixed-length	records

°	Pinned	blocks

•	File	header

•

°	Evicted	blocks

Free	list

•	Variable-length	records

°	Forced	output	of	blocks

•	Null	bitmap

°	Shared	and	exclusive	locks

•	Slotted-page	structure

•	Buffer-replacement	strategies

•	Large	objects

°	Least	recently	used	(LRU)

•	Organization	of	records

°	Toss-immediate

°	Heap	file	organization

°	Most	recently	used	(MRU)

°	Sequential	file	organization

•	Output	of	blocks

°	Multitable	clustering	file	organiza-

•	Forced	output	of	blocks

tion

•	Log	disk

°	B+-tree	file	organizations

•	Journaling	file	systems

°	Hashing	file	organization

•	Column-oriented	storage

•	Free-space	map

°	Columnar	storage

•	Sequential	file

°	Vector	processing

•	Search	key

•	Cluster	key

°	Column	stores

•	Table	partitioning

°	Row	stores

•	Data-dictionary	storage

°	Stripe

°	Metadata

°	Hybrid	row/column	storage

°	Data	dictionary

•	Main-memory	database

Practice	Exercises

619

Practice	Exercises

13.1

Consider	the	deletion	of	record	5	from	the	file	of	Figure	13.3.	Compare	the	relative	merits	of	the	following
techniques	for	implementing	the	deletion:	a.

Move	record	6	to	the	space	occupied	by	record	5,	and	move	record	7	to

the	space	occupied	by	record	6.

b.

Move	record	7	to	the	space	occupied	by	record	5.

c.

Mark	record	5	as	deleted,	and	move	no	records.

13.2

Show	the	structure	of	the	file	of	Figure	13.4	after	each	of	the	following	steps:	a.

Insert	(24556,	Turnamian,	Finance,	98000).

b.

Delete	record	2.

c.

Insert	(34556,	Thompson,	Music,	67000).

13.3

Consider	the	relations	section	and	takes.	Give	an	example	instance	of	these	two	relations,	with	three
sections,	each	of	which	has	five	students.	Give	a	file	structure	of	these	relations	that	uses	multitable
clustering.

13.4

Consider	the	bitmap	representation	of	the	free-space	map,	where	for	each	block	in	the	file,	two	bits	are
maintained	in	the	bitmap.	If	the	block	is	between	0	and	30	percent	full	the	bits	are	00,	between	30	and	60
percent	the	bits	are	01,	between	60	and	90	percent	the	bits	are	10,	and	above	90	percent	the	bits	are	11.
Such	bitmaps	can	be	kept	in	memory	even	for	quite	large	files.

a.

Outline	two	benefits	and	one	drawback	to	using	two	bits	for	a	block,

instead	of	one	byte	as	described	earlier	in	this	chapter.

b.

Describe	how	to	keep	the	bitmap	up	to	date	on	record	insertions	and

deletions.

c.

Outline	the	benefit	of	the	bitmap	technique	over	free	lists	in	searching	for	free	space	and	in	updating	free
space	information.

13.5

It	is	important	to	be	able	to	quickly	find	out	if	a	block	is	present	in	the	buffer,	and	if	so	where	in	the	buffer
it	resides.	Given	that	database	buffer	sizes	are	very	large,	what	(in-memory)	data	structure	would	you	use
for	this	task?

13.6

Suppose	your	university	has	a	very	large	number	of	takes	records,	accumulated	over	many	years.	Explain
how	table	partitioning	can	be	done	on	the	takes	relation,	and	what	benefits	it	could	offer.	Explain	also	one
potential	drawback	of	the	technique.

620

Chapter	13

Data	Storage	Structures

13.7

Give	an	example	of	a	relational-algebra	expression	and	a	query-processing	strategy	in	each	of	the
following	situations:

a.

MRU	is	preferable	to	LRU.

b.

LRU	is	preferable	to	MRU.

13.8

PostgreSQL	normally	uses	a	small	buffer,	leaving	it	to	the	operating	system	buffer	manager	to	manage	the
rest	of	main	memory	available	for	file	system	buffering.	Explain	(a)	what	is	the	benefit	of	this	approach,
and	(b)	one	key	limitation	of	this	approach.

Exercises

13.9

In	the	variable-length	record	representation,	a	null	bitmap	is	used	to	indicate	if	an	attribute	has	the	null
value.

a.

For	variable-length	fields,	if	the	value	is	null,	what	would	be	stored	in	the	offset	and	length	fields?

b.

In	some	applications,	tuples	have	a	very	large	number	of	attributes,	most	of	which	are	null.	Can	you
modify	the	record	representation	such	that

the	only	overhead	for	a	null	attribute	is	the	single	bit	in	the	null	bitmap?

13.10

Explain	why	the	allocation	of	records	to	blocks	affects	database-system	performance	significantly.

13.11

List	two	advantages	and	two	disadvantages	of	each	of	the	following	strategies	for	storing	a	relational
database:

a.

Store	each	relation	in	one	file.

b.

Store	multiple	relations	(perhaps	even	the	entire	database)	in	one	file.

13.12

In	the	sequential	file	organization,	why	is	an	overflow	block	used	even	if	there	is,	at	the	moment,	only	one
overflow	record?

13.13

Give	a	normalized	version	of	the	Index	metadata	relation,	and	explain	why	using	the	normalized	version
would	result	in	worse	performance.

13.14

Standard	buffer	managers	assume	each	block	is	of	the	same	size	and	costs	the	same	to	read.	Consider	a
buffer	manager	that,	instead	of	LRU,	uses	the	rate	of	reference	to	objects,	that	is,	how	often	an	object	has
been	accessed	in	the	last	n	seconds.	Suppose	we	want	to	store	in	the	buffer	objects	of	varying	sizes,	and
varying	read	costs	(such	as	web	pages,	whose	read	cost	depends	on	the	site	from	which	they	are	fetched).
Suggest	how	a	buffer	manager	may	choose	which	block	to	evict	from	the	buffer.

Further	Reading

621

Further	Reading

[Hennessy	et	al.	(2017)]	is	a	popular	textbook	on	computer	architecture,	which	includes	coverage	of
hardware	aspects	of	translation	look-aside	buffers,	caches,	and	memory-management	units.

The	storage	structure	of	specific	database	systems,	such	as	IBM	DB2,	Oracle,	Microsoft	SQL	Server,	and
PostgreSQL	are	documented	in	their	respective	system	manuals,	which	are	available	online.

Algorithms	for	buffer	management	in	database	systems,	along	with	a	performance	evaluation,	were
presented	by	[Chou	and	Dewitt	(1985)].	Buffer	management	in	operating	systems	is	discussed	in	most
operating-system	texts,	including	in	[Silberschatz	et	al.	(2018)].

[Abadi	et	al.	(2008)]	presents	a	comparison	of	column-oriented	and	row-oriented	storage,	including	issues
related	to	query	processing	and	optimization.

Sybase	IQ,	developed	in	the	mid	1990s,	was	the	first	commercially	successful	column-oriented	database,
designed	for	analytics.	MonetDB	and	C-Store	were	column-oriented	databases	developed	as	academic
research	projects.	The	Vertica	column-oriented	database	is	a	commercial	database	that	grew	out	of	C-
Store,	while	VectorWise	is	a	commercial	database	that	grew	out	of	MonetDB.	As	its	name	suggests,
VectorWise	supports	vector	processing	of	data,	and	as	a	result	supports	very	high	processing	rates	for
many	analytical	queries.	[Stonebraker	et	al.	(2005)]	describe	C-Store,	while	[Idreos	et	al.	(2012)]	give	an
overview	of	the	MonetDB	project	and	[Zukowski	et	al.	(2012)]

describes	Vectorwise.

The	ORC	and	Parquet	columnar	file	formats	were	developed	to	support	compressed	storage	of	data	for
big-data	applications	that	run	on	the	Apache	Hadoop	platform.

Bibliography

[Abadi	et	al.	(2008)]

D.	J.	Abadi,	S.	Madden,	and	N.	Hachem,	“Column-Stores	vs.	Row-S-

tores:	How	Different	Are	They	Really?”,	In	Proc.	of	the	ACM	SIGMOD	Conf.	on	Management	of	Data
(2008),	pages	967–980.

[Chou	and	Dewitt	(1985)]

H.	T.	Chou	and	D.	J.	Dewitt,	“An	Evaluation	of	Buffer	Manage-

ment	Strategies	for	Relational	Database	Systems”,	In	Proc.	of	the	International	Conf.	on	Very	Large
Databases	(1985),	pages	127–141.

[Hennessy	et	al.	(2017)]

J.	L.	Hennessy,	D.	A.	Patterson,	and	D.	Goldberg,	Computer	Archi-

tecture:	A	Quantitative	Approach,	6th	edition,	Morgan	Kaufmann	(2017).

[Idreos	et	al.	(2012)]

S.	Idreos,	F.	Groffen,	N.	Nes,	S.	Manegold,	K.	S.	Mullender,	and	M.	L.

Kersten,	“MonetDB:	Two	Decades	of	Research	in	Column-oriented	Database	Architectures”,	IEEE	Data
Engineering	Bulletin,	Volume	35,	Number	1	(2012),	pages	40–45.

[Silberschatz	et	al.	(2018)]

A.	Silberschatz,	P.	B.	Galvin,	and	G.	Gagne,	Operating	System

Concepts,	10th	edition,	John	Wiley	and	Sons	(2018).

622

Chapter	13

Data	Storage	Structures

[Stonebraker	et	al.	(2005)]

M.	Stonebraker,	D.	J.	Abadi,	A.	Batkin,	X.	Chen,	M.	Cherniack,

M.	Ferreira,	E.	Lau,	A.	Lin,	S.	Madden,	E.	J.	O’Neil,	P.	E.	O’Neil,	A.	Rasin,	N.	Tran,	and	S.	B.	Zdonik,	“C-
Store:	A	Column-oriented	DBMS”,	In	Proc.	of	the	International	Conf.	on	Very	Large	Databases	(2005),
pages	553–564.

[Zukowski	et	al.	(2012)]

M.	Zukowski,	M.	van	de	Wiel,	and	P.	A.	Boncz,	“Vectorwise:	A

Vectorized	Analytical	DBMS”,	In	Proc.	of	the	International	Conf.	on	Data	Engineering	(2012),	pages	1349–
1350.

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

C	H	A	P	T	E	R	14

Indexing

Many	queries	reference	only	a	small	proportion	of	the	records	in	a	file.	For	example,	a	query	like	“Find	all
instructors	in	the	Physics	department”	or	“Find	the	total	number	of	credits	earned	by	the	student	with	ID
22201”	references	only	a	fraction	of	the	instructor	or	student	records.	It	is	inefficient	for	the	system	to
read	every	tuple	in	the	instructor	relation	to	check	if	the	dept	name	value	is	“Physics”.	Likewise,	it	is
inefficient	to	read	the	entire	student	relation	just	to	find	the	one	tuple	for	the	ID	“22201”.	Ideally,	the
system	should	be	able	to	locate	these	records	directly.	To	allow	these	forms	of	access,	we	design
additional	structures	that	we	associate	with	files.

14.1

Basic	Concepts

An	index	for	a	file	in	a	database	system	works	in	much	the	same	way	as	the	index	in	this	textbook.	If	we
want	to	learn	about	a	particular	topic	(specified	by	a	word	or	a	phrase)	in	this	textbook,	we	can	search	for

the	topic	in	the	index	at	the	back	of	the	book,	find	the	pages	where	it	occurs,	and	then	read	the	pages	to
find	the	information	for	which	we	are	looking.	The	words	in	the	index	are	in	sorted	order,	making	it	easy
to	find	the	word	we	want.	Moreover,	the	index	is	much	smaller	than	the	book,	further	reducing	the	effort
needed.

Database-system	indices	play	the	same	role	as	book	indices	in	libraries.	For	example,	to	retrieve	a	student
record	given	an	ID,	the	database	system	would	look	up	an	index	to	find	on	which	disk	block1	the
corresponding	record	resides,	and	then	fetch	the	disk	block,	to	get	the	appropriate	student	record.

Indices	are	critical	for	efficient	processing	of	queries	in	databases.	Without	indices,	every	query	would
end	up	reading	the	entire	contents	of	every	relation	that	it	uses;	doing	so	would	be	unreasonably
expensive	for	queries	that	only	fetch	a	few	records,	for	example,	a	single	student	record,	or	the	records	in
the	takes	relation	corresponding	to	a	single	student.

1As	in	earlier	chapters,	we	use	the	term	disk	to	refer	to	persistent	storage	devices,	such	as	magnetic	disks
and	solid-state	drives.

623

624

Chapter	14

Indexing

Implementing	an	index	on	the	student	relation	by	keeping	a	sorted	list	of	students’

ID	would	not	work	well	on	very	large	databases,	since	(i)	the	index	would	itself	be	very	big,	(ii)	even
though	keeping	the	index	sorted	reduces	the	search	time,	finding	a	student	can	still	be	rather	time-
consuming,	and	(iii)	updating	a	sorted	list	as	students	are	added	or	removed	from	the	database	can	be
very	expensive.	Instead,	more	sophisticated	indexing	techniques	are	used	in	database	systems.	We	shall
discuss	several	of	these	techniques	in	this	chapter.

There	are	two	basic	kinds	of	indices:

•	Ordered	indices.	Based	on	a	sorted	ordering	of	the	values.

•	Hash	indices.	Based	on	a	uniform	distribution	of	values	across	a	range	of	buckets.

The	bucket	to	which	a	value	is	assigned	is	determined	by	a	function,	called	a	hash	function.

We	shall	consider	several	techniques	for	ordered	indexing.	No	one	technique	is	the	best.	Rather,	each
technique	is	best	suited	to	particular	database	applications.	Each	technique	must	be	evaluated	on	the
basis	of	these	factors:

•	Access	types:	The	types	of	access	that	are	supported	efficiently.	Access	types	can	include	finding
records	with	a	specified	attribute	value	and	finding	records	whose	attribute	values	fall	in	a	specified
range.

•	Access	time:	The	time	it	takes	to	find	a	particular	data	item,	or	set	of	items,	using	the	technique	in
question.

•	Insertion	time:	The	time	it	takes	to	insert	a	new	data	item.	This	value	includes	the	time	it	takes	to	find
the	correct	place	to	insert	the	new	data	item,	as	well	as	the	time	it	takes	to	update	the	index	structure.

•	Deletion	time:	The	time	it	takes	to	delete	a	data	item.	This	value	includes	the	time	it	takes	to	find	the
item	to	be	deleted,	as	well	as	the	time	it	takes	to	update	the	index	structure.

•	Space	overhead:	The	additional	space	occupied	by	an	index	structure.	Provided	that	the	amount	of
additional	space	is	moderate,	it	is	usually	worthwhile	to	sacrifice	the	space	to	achieve	improved
performance.

We	often	want	to	have	more	than	one	index	for	a	file.	For	example,	we	may	wish	to	search	for	a	book	by
author,	by	subject,	or	by	title.

An	attribute	or	set	of	attributes	used	to	look	up	records	in	a	file	is	called	a	search	key.	Note	that	this
definition	of	key	differs	from	that	used	in	primary	key,	candidate	key,	and	superkey.	This	duplicate
meaning	for	key	is	(unfortunately)	well	established	in	practice.	Using	our	notion	of	a	search	key,	we	see
that	if	there	are	several	indices	on	a	file,	there	are	several	search	keys.

14.2

Ordered	Indices

625

10101

Srinivasan

Comp.	Sci.

65000

12121

Wu

Finance

90000

15151

Mozart

Music

40000

22222

Einstein

Physics

95000

32343

El	Said

History

60000

33456

Gold

Physics

87000

45565

Katz

Comp.	Sci.

75000

58583

Califieri

History

62000

76543

Singh

Finance

80000

76766

Crick

Biology

72000

83821

Brandt

Comp.	Sci.

92000

98345

Kim

Elec.	Eng.

80000

Figure	14.1	Sequential	file	for	instructor	records.

14.2

Ordered	Indices

To	gain	fast	random	access	to	records	in	a	file,	we	can	use	an	index	structure.	Each	index	structure	is
associated	with	a	particular	search	key.	Just	like	the	index	of	a	book	or	a	library	catalog,	an	ordered	index
stores	the	values	of	the	search	keys	in	sorted	order	and	associates	with	each	search	key	the	records	that
contain	it.

The	records	in	the	indexed	file	may	themselves	be	stored	in	some	sorted	order,	just	as	books	in	a	library
are	stored	according	to	some	attribute	such	as	the	Dewey	decimal	number.	A	file	may	have	several
indices,	on	different	search	keys.	If	the	file	containing	the	records	is	sequentially	ordered,	a	clustering
index	is	an	index	whose	search	key	also	defines	the	sequential	order	of	the	file.	Clustering	indices	are	also
called	primary	indices;	the	term	primary	index	may	appear	to	denote	an	index	on	a	primary	key,	but	such
indices	can	in	fact	be	built	on	any	search	key.	The	search	key	of	a	clustering	index	is	often	the	primary
key,	although	that	is	not	necessarily	so.	Indices	whose	search	key	specifies	an	order	different	from	the
sequential	order	of	the	file	are	called	nonclustering	indices,	or	secondary	indices.	The	terms	“clustered”
and	“nonclustered”	are	often	used	in	place	of	“clustering”	and	“nonclustering.”

In	Section	14.2.1	through	Section	14.2.3,	we	assume	that	all	files	are	ordered	sequentially	on	some	search
key.	Such	files,	with	a	clustering	index	on	the	search	key,	are	called	index-sequential	files.	They	represent
one	of	the	oldest	index	schemes	used	in	database	systems.	They	are	designed	for	applications	that	require
both	sequential	processing	of	the	entire	file	and	random	access	to	individual	records.	In	Section	14.2.4

we	cover	secondary	indices.

Figure	14.1	shows	a	sequential	file	of	instructor	records	taken	from	our	university	example.	In	the
example	of	Figure	14.1,	the	records	are	stored	in	sorted	order	of	instructor	ID,	which	is	used	as	the
search	key.

626

Chapter	14

Indexing

14.2.1

Dense	and	Sparse	Indices

An	index	entry,	or	index	record,	consists	of	a	search-key	value	and	pointers	to	one	or	more	records	with
that	value	as	their	search-key	value.	The	pointer	to	a	record	consists	of	the	identifier	of	a	disk	block	and

an	offset	within	the	disk	block	to	identify	the	record	within	the	block.

There	are	two	types	of	ordered	indices	that	we	can	use:

•	Dense	index:	In	a	dense	index,	an	index	entry	appears	for	every	search-key	value	in	the	file.	In	a	dense
clustering	index,	the	index	record	contains	the	search-key	value	and	a	pointer	to	the	first	data	record	with
that	search-key	value.	The	rest	of	the	records	with	the	same	search-key	value	would	be	stored
sequentially	after	the	first	record,	since,	because	the	index	is	a	clustering	one,	records	are	sorted	on	the
same	search	key.

In	a	dense	nonclustering	index,	the	index	must	store	a	list	of	pointers	to	all	records	with	the	same	search-
key	value.

•	Sparse	index:	In	a	sparse	index,	an	index	entry	appears	for	only	some	of	the	search-key	values.	Sparse
indices	can	be	used	only	if	the	relation	is	stored	in	sorted	order	of	the	search	key;	that	is,	if	the	index	is	a
clustering	index.	As	is	true	in	dense	indices,	each	index	entry	contains	a	search-key	value	and	a	pointer	to
the	first	data	record	with	that	search-key	value.	To	locate	a	record,	we	find	the	index	entry	with	the
largest	search-key	value	that	is	less	than	or	equal	to	the	search-key	value	for	which	we	are	looking.	We
start	at	the	record	pointed	to	by	that	index	entry	and	follow	the	pointers	in	the	file	until	we	find	the
desired	record.

Figure	14.2	and	Figure	14.3	show	dense	and	sparse	indices,	respectively,	for	the	instructor	file.	Suppose
that	we	are	looking	up	the	record	of	instructor	with	ID	“22222”.

Using	the	dense	index	of	Figure	14.2,	we	follow	the	pointer	directly	to	the	desired	record.	Since	ID	is	a
primary	key,	there	exists	only	one	such	record	and	the	search	is	complete.	If	we	are	using	the	sparse
index	(Figure	14.3),	we	do	not	find	an	index	entry	for	“22222”.	Since	the	last	entry	(in	numerical	order)
before	“22222”	is	“10101”,	we	follow	that	pointer.	We	then	read	the	instructor	file	in	sequential	order
until	we	find	the	desired	record.

Consider	a	(printed)	dictionary.	The	header	of	each	page	lists	the	first	word	alphabetically	on	that	page.
The	words	at	the	top	of	each	page	of	the	book	index	together	form	a	sparse	index	on	the	contents	of	the
dictionary	pages.

As	another	example,	suppose	that	the	search-key	value	is	not	a	primary	key.	Figure	14.4	shows	a	dense
clustering	index	for	the	instructor	file	with	the	search	key	being	dept	name.	Observe	that	in	this	case	the
instructor	file	is	sorted	on	the	search	key	dept	name,	instead	of	ID,	otherwise	the	index	on	dept	name
would	be	a	nonclustering	index.

Suppose	that	we	are	looking	up	records	for	the	History	department.	Using	the	dense	index	of	Figure	14.4,
we	follow	the	pointer	directly	to	the	first	History	record.	We	process	this	record	and	follow	the	pointer	in
that	record	to	locate	the	next	record	in

14.2

Ordered	Indices

627

10101

10101

Srinivasan

Comp.	Sci.

65000

12121

12121

Wu

Finance

90000

15151

15151

Mozart

Music

40000

22222

22222

Einstein

Physics

95000

32343

32343

El	Said

History

60000

33456

33456

Gold

Physics

87000

45565

45565

Katz

Comp.	Sci.

75000

58583

58583

Califieri

History

62000

76543

76543

Singh

Finance

80000

76766

76766

Crick

Biology

72000

83821

83821

Brandt

Comp.	Sci.

92000

98345

98345

Kim

Elec.	Eng.

80000

Figure	14.2	Dense	index.

search-key	(dept	name)	order.	We	continue	processing	records	until	we	encounter	a	record	for	a
department	other	than	History.

As	we	have	seen,	it	is	generally	faster	to	locate	a	record	if	we	have	a	dense	index	rather	than	a	sparse
index.	However,	sparse	indices	have	advantages	over	dense	indices	in	that	they	require	less	space	and
they	impose	less	maintenance	overhead	for	insertions	and	deletions.

There	is	a	trade-off	that	the	system	designer	must	make	between	access	time	and	space	overhead.
Although	the	decision	regarding	this	trade-off	depends	on	the	specific	application,	a	good	compromise	is
to	have	a	sparse	index	with	one	index	entry	per	10101

10101

Srinivasan

Comp.	Sci.

65000

32343

12121

Wu

Finance

90000

76766

15151

Mozart

Music

40000

22222

Einstein

Physics

95000

32343

El	Said

History

60000

33456

Gold

Physics

87000

45565

Katz

Comp.	Sci.

75000

58583

Califieri

History

62000

76543

Singh

Finance

80000

76766

Crick

Biology

72000

83821

Brandt

Comp.	Sci.

92000

98345

Kim

Elec.	Eng.

80000

Figure	14.3	Sparse	index.

628

Chapter	14

Indexing

Biology

76766

Crick

Biology

72000

Comp.	Sci.

10101

Srinivasan

Comp.	Sci.

65000

Elec.	Eng.

45565

Katz

Comp.	Sci.

75000

Finance

83821

Brandt

Comp.	Sci.

92000

History

98345

Kim

Elec.	Eng.

80000

Music

12121

Wu

Finance

90000

Physics

76543

Singh

Finance

80000

32343

El	Said

History

60000

58583

Califieri

History

62000

15151

Mozart

Music

40000

22222

Einstein

Physics

95000

33465

Gold

Physics

87000

Figure	14.4	Dense	index	with	search	key	dept	name.

block.	The	reason	this	design	is	a	good	trade-off	is	that	the	dominant	cost	in	processing	a	database
request	is	the	time	that	it	takes	to	bring	a	block	from	disk	into	main	memory.

Once	we	have	brought	in	the	block,	the	time	to	scan	the	entire	block	is	negligible.

Using	this	sparse	index,	we	locate	the	block	containing	the	record	that	we	are	seeking.

Thus,	unless	the	record	is	on	an	overflow	block	(see	Section	13.3.2),	we	minimize	block	accesses	while
keeping	the	size	of	the	index	(and	thus	our	space	overhead)	as	small	as	possible.

For	the	preceding	technique	to	be	fully	general,	we	must	consider	the	case	where	records	for	one	search-
key	value	occupy	several	blocks.	It	is	easy	to	modify	our	scheme	to	handle	this	situation.

14.2.2

Multilevel	Indices

Suppose	we	build	a	dense	index	on	a	relation	with	1,000,000	tuples.	Index	entries	are	smaller	than	data
records,	so	let	us	assume	that	100	index	entries	fit	on	a	4-kilobyte	block.	Thus,	our	index	occupies	10,000
blocks.	If	the	relation	instead	had	100,000,000

tuples,	the	index	would	instead	occupy	1,000,000	blocks,	or	4	gigabytes	of	space.	Such	large	indices	are
stored	as	sequential	files	on	disk.

If	an	index	is	small	enough	to	be	kept	entirely	in	main	memory,	the	search	time	to	find	an	entry	is	low.
However,	if	the	index	is	so	large	that	not	all	of	it	can	be	kept	in	memory,	index	blocks	must	be	fetched
from	disk	when	required.	(Even	if	an	index	is	smaller	than	the	main	memory	of	a	computer,	main	memory
is	also	required	for	a	number	of	other	tasks,	so	it	may	not	be	possible	to	keep	the	entire	index	in	memory.)
The	search	for	an	entry	in	the	index	then	requires	several	disk-block	reads.

Binary	search	can	be	used	on	the	index	file	to	locate	an	entry,	but	the	search	still	has	a	large	cost.	If	the
index	would	occupy	b	blocks,	binary	search	requires	as	many	as

⌈log	(b)⌉	blocks	to	be	read.	(⌈	x⌉	denotes	the	least	integer	that	is	greater	than	or	equal	2

to	x;	that	is,	we	round	upward.)	Note	that	the	blocks	that	are	read	are	not	adjacent

14.2

Ordered	Indices

629

to	each	other,	so	each	read	requires	a	random	(i.e.,	non-sequential)	I/O	operation.	For	a	10,000-block
index,	binary	search	requires	14	random	block	reads.	On	a	magnetic	disk	system	where	a	random	block
read	takes	on	average	10	milliseconds,	the	index	search	will	take	140	milliseconds.	This	may	not	seem
much,	but	we	would	be	able	to	carry	out	only	seven	index	searches	a	second	on	a	single	disk,	whereas	a
more	efficient	search	mechanism	would	let	us	carry	out	far	more	searches	per	second,	as	we	shall	see
shortly.	Note	that,	if	overflow	blocks	have	been	used,	binary	search	is	only	possible	on	the	non-overflow
blocks,	and	the	actual	cost	may	be	even	higher	than	the	logarithmic	bound	above.	A	sequential	search
requires	b	sequential	block	reads,	which	may	take	even	longer	(although	in	some	cases	the	lower	cost	of
sequential	block	reads	may	result	in	sequential	search	being	faster	than	a	binary	search).	Thus,	the
process	of	searching	a	large	index	may	be	costly.

To	deal	with	this	problem,	we	treat	the	index	just	as	we	would	treat	any	other	sequential	file,	and	we
construct	a	sparse	outer	index	on	the	original	index,	which	we	now	call	the	inner	index,	as	shown	in
Figure	14.5.	Note	that	the	index	entries	are	always	in	sorted	order,	allowing	the	outer	index	to	be	sparse.
To	locate	a	record,	we	first	use	binary	search	on	the	outer	index	to	find	the	record	for	the	largest	search-
key	value	less	index

data

block	0

…

block	0

…

index

data

block	1

…

block	1

outer	index

…

inner	index

Figure	14.5	Two-level	sparse	index.

630

Chapter	14

Indexing

than	or	equal	to	the	one	that	we	desire.	The	pointer	points	to	a	block	of	the	inner	index.

We	scan	this	block	until	we	find	the	record	that	has	the	largest	search-key	value	less	than	or	equal	to	the
one	that	we	desire.	The	pointer	in	this	record	points	to	the	block	of	the	file	that	contains	the	record	for
which	we	are	looking.

In	our	example,	an	inner	index	with	10,000	blocks	would	require	10,000	entries	in	the	outer	index,	which
would	occupy	just	100	blocks.	If	we	assume	that	the	outer	index	is	already	in	main	memory,	we	would
read	only	one	index	block	for	a	search	using	a	multilevel	index,	rather	than	the	14	blocks	we	read	with
binary	search.	As	a	result,	we	can	perform	14	times	as	many	index	searches	per	second.

If	our	file	is	extremely	large,	even	the	outer	index	may	grow	too	large	to	fit	in	main	memory.	With	a
100,000,000-tuple	relation,	the	inner	index	would	occupy	1,000,000

blocks,	and	the	outer	index	would	occupy	10,000	blocks,	or	40	megabytes.	Since	there	are	many	demands
on	main	memory,	it	may	not	be	possible	to	reserve	that	much	main	memory	just	for	this	particular	outer

index.	In	such	a	case,	we	can	create	yet	another	level	of	index.	Indeed,	we	can	repeat	this	process	as
many	times	as	necessary.	Indices	with	two	or	more	levels	are	called	multilevel	indices.	Searching	for
records	with	a	multilevel	index	requires	significantly	fewer	I/O	operations	than	does	searching	for	records
by	binary	search.2

Multilevel	indices	are	closely	related	to	tree	structures,	such	as	the	binary	trees	used	for	in-memory
indexing.	We	shall	examine	the	relationship	later,	in	Section	14.3.

14.2.3

Index	Update

Regardless	of	what	form	of	index	is	used,	every	index	must	be	updated	whenever	a	record	is	either
inserted	into	or	deleted	from	the	file.	Further,	in	case	a	record	in	the	file	is	updated,	any	index	whose
search-key	attribute	is	affected	by	the	update	must	also	be	updated;	for	example,	if	the	department	of	an
instructor	is	changed,	an	index	on	the	dept	name	attribute	of	instructor	must	be	updated	correspondingly.
Such	a	record	update	can	be	modeled	as	a	deletion	of	the	old	record,	followed	by	an	insertion	of	the	new
value	of	the	record,	which	results	in	an	index	deletion	followed	by	an	index	insertion.	As	a	result	we	only
need	to	consider	insertion	and	deletion	on	an	index,	and	we	do	not	need	to	consider	updates	explicitly.

We	first	describe	algorithms	for	updating	single-level	indices.

14.2.3.1

Insertion

First,	the	system	performs	a	lookup	using	the	search-key	value	that	appears	in	the	record	to	be	inserted.
The	actions	the	system	takes	next	depend	on	whether	the	index	is	dense	or	sparse:

2In	the	early	days	of	disk-based	indices,	each	level	of	the	index	corresponded	to	a	unit	of	physical	storage.
Thus,	we	may	have	indices	at	the	track,	cylinder,	and	disk	levels.	Such	a	hierarchy	does	not	make	sense
today	since	disk	subsystems	hide	the	physical	details	of	disk	storage,	and	the	number	of	disks	and	platters
per	disk	is	very	small	compared	to	the	number	of	cylinders	or	bytes	per	track.

14.2

Ordered	Indices

631

•	Dense	indices:

1.	If	the	search-key	value	does	not	appear	in	the	index,	the	system	inserts	an	index	entry	with	the	search-
key	value	in	the	index	at	the	appropriate	position.

2.	Otherwise	the	following	actions	are	taken:

a.	If	the	index	entry	stores	pointers	to	all	records	with	the	same	search-key	value,	the	system	adds	a
pointer	to	the	new	record	in	the	index	entry.

b.	Otherwise,	the	index	entry	stores	a	pointer	to	only	the	first	record	with	the	search-key	value.	The
system	then	places	the	record	being	inserted	after	the	other	records	with	the	same	search-key	values.

•	Sparse	indices:	We	assume	that	the	index	stores	an	entry	for	each	block.	If	the	system	creates	a	new
block,	it	inserts	the	first	search-key	value	(in	search-key	order)	appearing	in	the	new	block	into	the	index.
On	the	other	hand,	if	the	new	record	has	the	least	search-key	value	in	its	block,	the	system	updates	the
index	entry	pointing	to	the	block;	if	not,	the	system	makes	no	change	to	the	index.

14.2.3.2

Deletion

To	delete	a	record,	the	system	first	looks	up	the	record	to	be	deleted.	The	actions	the	system	takes	next
depend	on	whether	the	index	is	dense	or	sparse:

•	Dense	indices:

1.	If	the	deleted	record	was	the	only	record	with	its	particular	search-key	value,	then	the	system	deletes
the	corresponding	index	entry	from	the	index.

2.	Otherwise	the	following	actions	are	taken:

a.	If	the	index	entry	stores	pointers	to	all	records	with	the	same	search-key	value,	the	system	deletes	the
pointer	to	the	deleted	record	from	the	index	entry.

b.	Otherwise,	the	index	entry	stores	a	pointer	to	only	the	first	record	with	the	search-key	value.	In	this
case,	if	the	deleted	record	was	the	first	record	with	the	search-key	value,	the	system	updates	the	index
entry	to	point	to	the	next	record.

•	Sparse	indices:

1.	If	the	index	does	not	contain	an	index	entry	with	the	search-key	value	of	the	deleted	record,	nothing
needs	to	be	done	to	the	index.

2.	Otherwise	the	system	takes	the	following	actions:

a.	If	the	deleted	record	was	the	only	record	with	its	search	key,	the	system	replaces	the	corresponding
index	record	with	an	index	record	for	the

next	search-key	value	(in	search-key	order).	If	the	next	search-key	value	already	has	an	index	entry,	the
entry	is	deleted	instead	of	being	replaced.

632

Chapter	14

Indexing

b.	Otherwise,	if	the	index	entry	for	the	search-key	value	points	to	the	record	being	deleted,	the	system
updates	the	index	entry	to	point	to	the	next	record	with	the	same	search-key	value.

Insertion	and	deletion	algorithms	for	multilevel	indices	are	a	simple	extension	of	the	scheme	just
described.	On	deletion	or	insertion,	the	system	updates	the	lowest-level	index	as	described.	As	far	as	the
second	level	is	concerned,	the	lowest-level	index	is	merely	a	file	containing	records—thus,	if	there	is	any
change	in	the	lowest-level	index,	the	system	updates	the	second-level	index	as	described.	The	same
technique	applies	to	further	levels	of	the	index,	if	there	are	any.

14.2.4

Secondary	Indices

Secondary	indices	must	be	dense,	with	an	index	entry	for	every	search-key	value,	and	a	pointer	to	every
record	in	the	file.	A	clustering	index	may	be	sparse,	storing	only	some	of	the	search-key	values,	since	it	is
always	possible	to	find	records	with	intermediate	search-key	values	by	a	sequential	access	to	a	part	of	the
file,	as	described	earlier.	If	a	secondary	index	stores	only	some	of	the	search-key	values,	records	with
intermediate	search-key	values	may	be	anywhere	in	the	file	and,	in	general,	we	cannot	find	them	without
searching	the	entire	file.

A	secondary	index	on	a	candidate	key	looks	just	like	a	dense	clustering	index,	except	that	the	records
pointed	to	by	successive	values	in	the	index	are	not	stored	sequentially.	In	general,	however,	secondary
indices	may	have	a	different	structure	from	clustering	indices.	If	the	search	key	of	a	clustering	index	is
not	a	candidate	key,	it	suffices	if	the	index	points	to	the	first	record	with	a	particular	value	for	the	search
key,	since	the	other	records	can	be	fetched	by	a	sequential	scan	of	the	file.

In	contrast,	if	the	search	key	of	a	secondary	index	is	not	a	candidate	key,	it	is	not	enough	to	point	to	just
the	first	record	with	each	search-key	value.	The	remaining	records	with	the	same	search-key	value	could
be	anywhere	in	the	file,	since	the	records	are	ordered	by	the	search	key	of	the	clustering	index,	rather
than	by	the	search	key	of	the	secondary	index.	Therefore,	a	secondary	index	must	contain	pointers	to	all
the	records.

If	a	relation	can	have	more	than	one	record	containing	the	same	search	key	value	(that	is,	two	or	more
records	can	have	the	same	values	for	the	indexed	attributes),	the	search	key	is	said	to	be	a	nonunique
search	key.

One	way	to	implement	secondary	indices	on	nonunique	search	keys	is	as	follows:	Unlike	the	case	of
primary	indices,	the	pointers	in	such	a	secondary	index	do	not	point	directly	to	the	records.	Instead,	each
pointer	in	the	index	points	to	a	bucket	that	in	turn	contains	pointers	to	the	file.	Figure	14.6	shows	the
structure	of	a	secondary	index	that	uses	such	an	extra	level	of	indirection	on	the	instructor	file,	on	the
search	key	dept	name.

However,	this	approach	has	a	few	drawbacks.	First,	index	access	takes	longer,	due	to	an	extra	level	of
indirection,	which	may	require	a	random	I/O	operation.	Second,

14.2

Ordered	Indices

633

10101

Srinivasan

Comp.	Sci.

65000

12121

Wu

Finance

90000

Biology

15151

Mozart

Music

40000

22222

Einstein

Physics

95000

Comp.	Sci.

32343

El	Said

History

60000

Elec.	Eng.

33456

Gold

Physics

87000

Finance

45565

Katz

Comp.	Sci.

75000

History

58583

Califieri

History

62000

Music

76543

Singh

Finance

80000

Physics

76766

Crick

Biology

72000

83821

Brandt

Comp.	Sci.

92000

98345

Kim

Elec.	Eng.

80000

Figure	14.6	Secondary	index	on	instructor	file,	on	noncandidate	key	dept	name.

if	a	key	has	very	few	or	no	duplicates,	if	a	whole	block	is	allocated	to	its	associated	bucket,	a	lot	of	space
would	be	wasted.	Later	in	this	chapter,	we	study	more	efficient	alternatives	for	implementing	secondary
indices,	which	avoid	these	drawbacks.

A	sequential	scan	in	clustering	index	order	is	efficient	because	records	in	the	file	are	stored	physically	in
the	same	order	as	the	index	order.	However,	we	cannot	(except	in	rare	special	cases)	store	a	file
physically	ordered	by	both	the	search	key	of	the	clustering	index	and	the	search	key	of	a	secondary	index.
Because	secondary-key	order	and	physical-key	order	differ,	if	we	attempt	to	scan	the	file	sequentially	in
secondary-key	order,	the	reading	of	each	record	is	likely	to	require	the	reading	of	a	new	block	from	disk,
which	is	very	slow.

The	procedure	described	earlier	for	deletion	and	insertion	can	also	be	applied	to	secondary	indices;	the
actions	taken	are	those	described	for	dense	indices	storing	a	pointer	to	every	record	in	the	file.	If	a	file
has	multiple	indices,	whenever	the	file	is	modified,	every	index	must	be	updated.

Secondary	indices	improve	the	performance	of	queries	that	use	keys	other	than	the	search	key	of	the
clustering	index.	However,	they	impose	a	significant	overhead	on	modification	of	the	database.	The
designer	of	a	database	decides	which	secondary	indices	are	desirable	on	the	basis	of	an	estimate	of	the
relative	frequency	of	queries	and	modifications.

14.2.5

Indices	on	Multiple	Keys

Although	the	examples	we	have	seen	so	far	have	had	a	single	attribute	in	a	search	key,	in	general	a	search
key	can	have	more	than	one	attribute.	A	search	key	containing	more	than	one	attribute	is	referred	to	as	a
composite	search	key.	The	structure	of	the	index	is	the	same	as	that	of	any	other	index,	the	only	difference
being	that	the	search	key	is	not	a	single	attribute,	but	rather	is	a	list	of	attributes.	The	search	key	can	be
represented	as	a	tuple	of	values,	of	the	form	(a	,	…	,	a),	where	the	indexed	attributes	are	A	,	…	,	A	.

1

n

1

n

634

Chapter	14

Indexing

The	ordering	of	search-key	values	is	the	lexicographic	ordering.	For	example,	for	the	case	of	two	attribute
search	keys,	(a	,	a)	<	(b	,	b)	if	either	a	<	b	or	a	=	b	and	1

2

1

2

1

1

1

1

a	<	b	.	Lexicographic	ordering	is	basically	the	same	as	alphabetic	ordering	of	words.

2

2

As	an	example,	consider	an	index	on	the	takes	relation,	on	the	composite	search	key	(course	id,	semester,
year).	Such	an	index	would	be	useful	to	find	all	students	who	have	registered	for	a	particular	course	in	a
particular	semester/year.	An	ordered	index	on	a	composite	key	can	also	be	used	to	answer	several	other
kinds	of	queries	efficiently,	as	we	shall	see	in	Section	14.6.2.

14.3

B+-Tree	Index	Files

The	main	disadvantage	of	the	index-sequential	file	organization	is	that	performance	degrades	as	the	file
grows,	both	for	index	lookups	and	for	sequential	scans	through	the	data.	Although	this	degradation	can	be
remedied	by	reorganization	of	the	file,	frequent	reorganizations	are	undesirable.

The	B+-tree	index	structure	is	the	most	widely	used	of	several	index	structures	that	maintain	their
efficiency	despite	insertion	and	deletion	of	data.	A	B+-tree	index	takes	the	form	of	a	balanced	tree	in
which	every	path	from	the	root	of	the	tree	to	a	leaf	of	the	tree	is	of	the	same	length.	Each	nonleaf	node	in
the	tree	(other	than	the	root)	has	between	⌈	n∕2⌉	and	n	children,	where	n	is	fixed	for	a	particular	tree;	the
root	has	between	2	and	n	children.

We	shall	see	that	the	B+-tree	structure	imposes	performance	overhead	on	insertion	and	deletion	and	adds
space	overhead.	The	overhead	is	acceptable	even	for	frequently	modified	files,	since	the	cost	of	file
reorganization	is	avoided.	Furthermore,	since	nodes	may	be	as	much	as	half	empty	(if	they	have	the
minimum	number	of	children),	there	is	some	wasted	space.	This	space	overhead,	too,	is	acceptable	given
the	performance	benefits	of	the	B+-tree	structure.

14.3.1

Structure	of	a	B+-Tree

A	B+-tree	index	is	a	multilevel	index,	but	it	has	a	structure	that	differs	from	that	of	the	multilevel	index-
sequential	file.	We	assume	for	now	that	there	are	no	duplicate	search	key	values,	that	is,	each	search	key
is	unique	and	occurs	in	at	most	one	record;	we	consider	the	issue	of	nonunique	search	keys	later.

Figure	14.7	shows	a	typical	node	of	a	B+-tree.	It	contains	up	to	n	−	1	search-key	values	K	,	K	,	…	,	K

,	and	n	pointers	P	,	P	,	…	,	P	.	The	search-key	values	within	a	1

2

n	−	1

1

2

n

node	are	kept	in	sorted	order;	thus,	if	i	<	j,	then	K	<	K	.

i

j

P	1

K	1

P	2

…

Pn	1

Kn	1

Pn

Figure	14.7	Typical	node	of	a	B+-tree.

14.3

B+-Tree	Index	Files

635

leaf	node

Brandt

Califieri

Crick

Pointer	to	next	leaf	node

10101

Srinivasan

Comp.	Sci.

65000

12121

Wu

Finance

90000

15151

Mozart

Music

40000

22222

Einstein

Physics

95000

32343

El	Said

History

80000

33456

Gold

Physics

87000

45565

Katz

Comp.	Sci.

75000

58583

Califieri

History

60000

76543

Singh

Finance

80000

76766

Crick

Biology

72000

83821

Brandt

Comp.	Sci.

92000

98345

Kim

Elec.	Eng.

80000

instructor	file

Figure	14.8	A	leaf	node	for	instructor	B+-tree	index	(n	=	4).

We	consider	first	the	structure	of	the	leaf	nodes.	For	i	=	1,	2,	…	,	n	−	1,	pointer	Pi	points	to	a	file	record
with	search-key	value	K	.	Pointer	P	has	a	special	purpose	that	i

n

we	shall	discuss	shortly.

Figure	14.8	shows	one	leaf	node	of	a	B+-tree	for	the	instructor	file,	in	which	we	have	chosen	n	to	be	4,
and	the	search	key	is	name.

Now	that	we	have	seen	the	structure	of	a	leaf	node,	let	us	consider	how	search-key	values	are	assigned	to
particular	nodes.	Each	leaf	can	hold	up	to	n	−	1	values.	We	allow	leaf	nodes	to	contain	as	few	as	⌈(n	−
1)∕2⌉	values.	With	n	=	4	in	our	example	B+-tree,	each	leaf	must	contain	at	least	two	values,	and	at	most
three	values.

If	L	and	L	are	leaf	nodes	and	i	<	j	(that	is,	L	is	to	the	left	of	L	in	the	tree),	then	i

j

i

j

every	search-key	value	v	in	L	is	less	than	every	search-key	value	v	in	L	.

i

i

j

j

If	the	B+-tree	index	is	used	as	a	dense	index	(as	is	usually	the	case),	every	search-key	value	must	appear
in	some	leaf	node.

Now	we	can	explain	the	use	of	the	pointer	P	.	Since	there	is	a	linear	order	on	the	n

leaves	based	on	the	search-key	values	that	they	contain,	we	use	P	to	chain	together	the	n

leaf	nodes	in	search-key	order.	This	ordering	allows	for	efficient	sequential	processing	of	the	file.

The	nonleaf	nodes	of	the	B+-tree	form	a	multilevel	(sparse)	index	on	the	leaf	nodes.

The	structure	of	nonleaf	nodes	is	the	same	as	that	for	leaf	nodes,	except	that	all	pointers	are	pointers	to
tree	nodes.	A	nonleaf	node	may	hold	up	to	n	pointers	and	must	hold	at	least	⌈	n∕2⌉	pointers.	The	number	of
pointers	in	a	node	is	called	the	fanout	of	the	node.	Nonleaf	nodes	are	also	referred	to	as	internal	nodes.

636

Chapter	14

Indexing

Mozart

Root	node

Einstein

Gold

Srinivasan

Internal	nodes

Leaf	nodes

Brandt

Califieri

Crick

Einstein

El	Said

Gold

Katz

Kim

Mozart

Singh

Srinivasan

Wu

10101

Srinivasan

Comp.	Sci.

65000

12121

Wu

Finance

90000

15151

Mozart

Music

40000

22222

Einstein

Physics

95000

32343

El	Said

History

80000

33456

Gold

Physics

87000

45565

Katz

Comp.	Sci.

75000

58583

Califieri

History

60000

76543

Singh

Finance

80000

76766

Crick

Biology

72000

83821

Brandt

Comp.	Sci.

92000

98345

Kim

Elec.	Eng.

80000

Figure	14.9	B+-tree	for	instructor	file	(n	=	4).

Let	us	consider	a	node	containing	m	pointers	(m	≤	n).	For	i	=	2,	3,	…	,	m	−	1,	pointer	P	points	to	the
subtree	that	contains	search-key	values	less	than	K	and	greater	i

i

than	or	equal	to	K

.	Pointer	P	points	to	the	part	of	the	subtree	that	contains	those	i	−	1

m

key	values	greater	than	or	equal	to	K

,	and	pointer	P	points	to	the	part	of	the	subtree

m	−	1

1

that	contains	those	search-key	values	less	than	K	.

1

Unlike	other	nonleaf	nodes,	the	root	node	can	hold	fewer	than	⌈	n∕2⌉	pointers;	however,	it	must	hold	at
least	two	pointers,	unless	the	tree	consists	of	only	one	node.	It	is	always	possible	to	construct	a	B+-tree,
for	any	n,	that	satisfies	the	preceding	requirements.

Figure	14.9	shows	a	complete	B+-tree	for	the	instructor	file	(with	n	=	4).	We	have	omitted	null	pointers
for	simplicity;	any	pointer	field	in	the	figure	that	does	not	have	an	arrow	is	understood	to	have	a	null
value.

Figure	14.10	shows	another	B+-tree	for	the	instructor	file,	this	time	with	n	=	6.

Observe	that	the	height	of	this	tree	is	less	than	that	of	the	previous	tree,	which	had	n	=	4.

El	Said

Mozart

Brandt

Califieri

Crick

Einstein

El	Said

Gold

Katz

Kim

Mozart

Singh

Srinivasan

Wu

Figure	14.10	B+-tree	for	instructor	file	with	n	=	6.

14.3

B+-Tree	Index	Files

637

These	examples	of	B+-trees	are	all	balanced.	That	is,	the	length	of	every	path	from	the	root	to	a	leaf	node
is	the	same.	This	property	is	a	requirement	for	a	B+-tree.	Indeed,	the	“B”	in	B+-tree	stands	for
“balanced.”	It	is	the	balance	property	of	B+-trees	that	ensures	good	performance	for	lookup,	insertion,
and	deletion.

In	general,	search	keys	could	have	duplicates.	One	way	to	handle	the	case	of	nonunique	search	keys	is	to
modify	the	tree	structure	to	store	each	search	key	at	a	leaf	node	as	many	times	as	it	appears	in	records,
with	each	copy	pointing	to	one	record.

The	condition	that	K	<	K	if	i	<	j	will	need	to	be	modified	to	K	≤	K	.	However,	this	i

j

i

j

approach	can	result	in	duplicate	search	key	values	at	internal	nodes,	making	the	insertion	and	deletion
procedures	more	complicated	and	expensive.	Another	alternative	is	to	store	a	set	(or	bucket)	of	record
pointers	with	each	search	key	value,	as	we	saw	earlier.	This	approach	is	more	complicated	and	can	result
in	inefficient	access,	especially	if	the	number	of	record	pointers	for	a	particular	key	is	very	large.

Most	database	implementations	instead	make	search	keys	unique	as	follows:	Suppose	the	desired	search
key	attribute	a	of	relation	r	is	nonunique.	Let	A	be	the	primary	i

p

key	of	r.	Then	the	unique	composite	search	key	(a	,	A)	is	used	instead	of	a	when	buildi

p

i

ing	the	index.	(Any	set	of	attributes	that	together	with	a	guarantee	uniqueness	can	also	i

be	used	instead	of	A	.)	For	example,	if	we	wished	to	create	an	index	on	the	instructor	p

relation	on	the	attribute	name,	we	instead	create	an	index	on	the	composite	search	key	(name,	ID),	since
ID	is	the	primary	key	for	instructor.	Index	lookups	on	just	name	can	be	efficiently	handled	using	this
index,	as	we	shall	see	shortly.	Section	14.3.5	covers	issues	in	handling	of	nonunique	search	keys	in	more
detail.

In	our	examples,	we	show	indices	on	some	nonunique	search	keys,	such	as	instructor.	name,	assuming	for
simplicity	that	there	are	no	duplicates;	in	reality	most	databases	would	automatically	add	extra	attributes
internally,	to	ensure	the	absence	of	duplicates.

14.3.2

Queries	on	B+-Trees

Let	us	consider	how	we	process	queries	on	a	B+-tree.	Suppose	that	we	wish	to	find	a	record	with	a	given
value	v	for	the	search	key.	Figure	14.11	presents	pseudocode	for	a	function	find(v)	to	carry	out	this	task,
assuming	there	are	no	duplicates,	that	is,	there	is	at	most	one	record	with	a	particular	search	key.	We
address	the	issue	of	nonunique	search	keys	later	in	this	section.

Intuitively,	the	function	starts	at	the	root	of	the	tree	and	traverses	the	tree	down	until	it	reaches	a	leaf
node	that	would	contain	the	specified	value	if	it	exists	in	the	tree.	Specifically,	starting	with	the	root	as	the
current	node,	the	function	repeats	the	following	steps	until	a	leaf	node	is	reached.	First,	the	current	node
is	examined,	looking	for	the	smallest	i	such	that	search-key	value	K	is	greater	than	or	equal	to	v.	Suppose
i

such	a	value	is	found;	then,	if	K	is	equal	to	v,	the	current	node	is	set	to	the	node	pointed	i

to	by	P

,	otherwise	K	>	v,	and	the	current	node	is	set	to	the	node	pointed	to	by	P	.	If	i+1

i

i

no	such	value	K	is	found,	then	v	>	K

,	where	P	is	the	last	nonnull	pointer	in	the

i

m−1

m

node.	In	this	case	the	current	node	is	set	to	that	pointed	to	by	P	.	The	above	procedure	m

is	repeated,	traversing	down	the	tree	until	a	leaf	node	is	reached.

638

Chapter	14

Indexing

function	find(v)

/*	Assumes	no	duplicate	keys,	and	returns	pointer	to	the	record	with

*	search	key	value	v	if	such	a	record	exists,	and	null	otherwise	*/

Set	C	=	root	node

while	(C	is	not	a	leaf	node)	begin

Let	i	=	smallest	number	such	that	v	≤	C.Ki

if	there	is	no	such	number	i	then	begin

Let	P	=	last	non-null	pointer	in	the	node

m

Set	C	=	C.Pm

end

else	if	(v	=	C.K)	then	Set	C	=	C.P

i

i+1

else	Set	C	=	C.P	/*	v	<	C.K	*/

i

i

end

/*	C	is	a	leaf	node	*/

if	for	some	i,	K	=	v

i

then	return	Pi

else	return	null	;	/*	No	record	with	key	value	v	exists*/

Figure	14.11	Querying	a	B+-tree.

At	the	leaf	node,	if	there	is	a	search-key	value	K	=	v,	pointer	P	directs	us	to	a	i

i

record	with	search-key	value	K	.	The	function	then	returns	the	pointer	to	the	record,	i

P	.	If	no	search	key	with	value	v	is	found	in	the	leaf	node,	no	record	with	key	value	v	i

exists	in	the	relation,	and	function	find	returns	null,	to	indicate	failure.

B+-trees	can	also	be	used	to	find	all	records	with	search	key	values	in	a	specified	range	[lb,	ub].	For
example,	with	a	B+-tree	on	attribute	salary	of	instructor,	we	can	find	all	instructor	records	with	salary	in
a	specified	range	such	as	[50000,	100000]	(in	other	words,	all	salaries	between	50000	and	100000).	Such
queries	are	called	range	queries.

To	execute	such	queries,	we	can	create	a	procedure	findRange	(lb,	ub),	shown	in	Figure	14.12.	The
procedure	does	the	following:	it	first	traverses	to	a	leaf	in	a	manner	similar	to	find(lb);	the	leaf	may	or
may	not	actually	contain	value	lb.	It	then	steps	through	records	in	that	and	subsequent	leaf	nodes
collecting	pointers	to	all	records	with	key	values	C.K	s.t.	lb	≤	C.K	≤	ub	into	a	set	resultSet.	The	function
stops	when	i

i

C.K	>	ub,	or	there	are	no	more	keys	in	the	tree.

i

A	real	implementation	would	provide	a	version	of	findRange	supporting	an	iterator	interface	similar	to
that	provided	by	the	JDBC	ResultSet,	which	we	saw	in	Section	5.1.1.

Such	an	iterator	interface	would	provide	a	method	next(),	which	can	be	called	repeatedly	to	fetch
successive	records.	The	next()	method	would	step	through	the	entries	at	the	leaf	level,	in	a	manner	similar
to	findRange,	but	each	call	takes	only	one	step	and	records	where	it	left	off,	so	that	successive	calls	to
next()	step	through	successive	en-

14.3

B+-Tree	Index	Files

639

function	findRange(lb,	ub)

/*	Returns	all	records	with	search	key	value	V	such	that	lb	≤	V	≤	ub.	*/

Set	resultSet	=	{};

Set	C	=	root	node

while	(C	is	not	a	leaf	node)	begin

Let	i	=	smallest	number	such	that	lb	≤	C.Ki

if	there	is	no	such	number	i	then	begin

Let	P	=	last	non-null	pointer	in	the	node

m

Set	C	=	C.Pm

end

else	if	(lb	=	C.K)	then	Set	C	=	C.P

i

i+1

else	Set	C	=	C.P	/*	lb	<	C.K	*/

i

i

end

/*	C	is	a	leaf	node	*/

Let	i	be	the	least	value	such	that	K	≥	lb

i

if	there	is	no	such	i

then	Set	i	=	1	+	number	of	keys	in	C;	/*	To	force	move	to	next	leaf	*/

Set	done	=	false;

while	(not	done)	begin

Let	n	=	number	of	keys	in	C.

if	(i	≤	n	and	C.K	≤	ub)	then	begin

i

Add	C.P	to	resultSet

i

Set	i	=	i	+	1

end

else	if	(i	≤	n	and	C.K	>	ub)

i

then	Set	done	=	true;

else	if	(i	>	n	and	C.P

is	not	null)

n+1

then	Set	C	=	C.P

,	and	i	=	1	/*	Move	to	next	leaf	*/

n+1

else	Set	done	=	true;	/*	No	more	leaves	to	the	right	*/

end

return	resultSet;

Figure	14.12	Range	query	on	a	B+-tree.

tries.	We	omit	details	for	simplicity,	and	leave	the	pseudocode	for	the	iterator	interface	as	an	exercise	for
the	interested	reader.

We	now	consider	the	cost	of	querying	on	a	B+-tree	index.	In	processing	a	query,	we	traverse	a	path	in	the
tree	from	the	root	to	some	leaf	node.	If	there	are	N	records	in	the	file,	the	path	is	no	longer	than	⌈log⌈	n∕2⌉
(N)⌉.

Typically,	the	node	size	is	chosen	to	be	the	same	as	the	size	of	a	disk	block,	which	is	typically	4	kilobytes.
With	a	search-key	size	of	12	bytes,	and	a	disk-pointer	size	of

640

Chapter	14

Indexing

8	bytes,	n	is	around	200.	Even	with	a	more	conservative	estimate	of	32	bytes	for	the	search-key	size,	n	is
around	100.	With	n	=	100,	if	we	have	1	million	search-key	values	in	the	file,	a	lookup	requires	only	⌈log
(1,000,000)⌉	=	4	nodes	to	be	accessed.	Thus,	at	50

most	four	blocks	need	to	be	read	from	disk	to	traverse	the	path	from	the	root	to	a	leaf.

The	root	node	of	the	tree	is	usually	heavily	accessed	and	is	likely	to	be	in	the	buffer,	so	typically	only	three
or	fewer	blocks	need	to	be	read	from	disk.

An	important	difference	between	B+-tree	structures	and	in-memory	tree	structures,	such	as	binary	trees,
is	the	size	of	a	node,	and	as	a	result,	the	height	of	the	tree.	In	a	binary	tree,	each	node	is	small	and	has	at
most	two	pointers.	In	a	B+-tree,	each	node	is	large—typically	a	disk	block—and	a	node	can	have	a	large
number	of	pointers.	Thus,	B+-trees	tend	to	be	fat	and	short,	unlike	thin	and	tall	binary	trees.	In	a
balanced	binary	tree,	the	path	for	a	lookup	can	be	of	length	⌈log	(N)⌉,	where	N	is	the	number	of	2

records	in	the	file	being	indexed.	With	N	=	1,000,000	as	in	the	previous	example,	a	balanced	binary	tree
requires	around	20	node	accesses.	If	each	node	were	on	a	different	disk	block,	20	block	reads	would	be
required	to	process	a	lookup,	in	contrast	to	the	four	block	reads	for	the	B+-tree.	The	difference	is
significant	with	a	magnetic	disk,	since	each	block	read	could	require	a	disk	arm	seek	which,	together	with
the	block	read,	takes	about	10	milliseconds	on	a	magnetic	disk.	The	difference	is	not	quite	as	drastic	with
flash	storage,	where	a	read	of	a	4	kilobyte	page	takes	around	10	to	100	microseconds,	but	it	is	still
significant.

After	traversing	down	to	the	leaf	level,	queries	on	a	single	value	of	a	unique	search	key	require	one	more
random	I/O	operation	to	fetch	any	matching	record.

Range	queries	have	an	additional	cost,	after	traversing	down	to	the	leaf	level:	all	the	pointers	in	the	given
range	must	be	retrieved.	These	pointers	are	in	consecutive	leaf	nodes;	thus,	if	M	such	pointers	are
retrieved,	at	most	⌈	M∕(n∕2)⌉	+	1	leaf	nodes	need	to	be	accessed	to	retrieve	the	pointers	(since	each	leaf
node	has	at	least	n∕2	pointers,	but	even	two	pointers	may	be	split	across	two	pages).	To	this	cost,	we	need
to	add	the	cost	of	accessing	the	actual	records.	For	secondary	indices,	each	such	record	may	be	on	a
different	block,	which	could	result	in	M	random	I/O	operations	in	the	worst	case.

For	clustered	indices,	these	records	would	be	in	consecutive	blocks,	with	each	block	containing	multiple
records,	resulting	in	a	significantly	lower	cost.

Now,	let	us	consider	the	case	of	nonunique	keys.	As	explained	earlier,	if	we	wish	to	create	an	index	on	an
attribute	a	that	is	not	a	candidate	key,	and	may	thus	have	i

duplicates,	we	instead	create	an	index	on	a	composite	key	that	is	duplicate-free.	The	composite	key	is
created	by	adding	extra	attributes,	such	as	the	primary	key,	to	a	,	to	i

ensure	uniqueness.	Suppose	we	created	an	index	on	the	composite	key	(a	,	A)	instead	i

p

of	creating	an	index	on	a	.

i

An	important	question,	then,	is	how	do	we	retrieve	all	tuples	with	a	given	value	v	for	a	using	the	above
index?	This	question	is	easily	answered	by	using	the	function	i

findRange(lb,	ub),	with	lb	=	(v,	−∞)	and	ub	=	(v,	∞),	where	−∞	and	∞	denote	the	smallest	and	largest
possible	values	of	A	.	All	records	with	a	=	v	would	be	returned	p

i

by	the	above	function	call.	Range	queries	on	a	can	be	handled	similarly.	These	range	i

14.3

B+-Tree	Index	Files

641

queries	retrieve	pointers	to	the	records	quite	efficiently,	although	retrieval	of	the	records	may	be
expensive,	as	discussed	earlier.

14.3.3

Updates	on	B+-Trees

When	a	record	is	inserted	into,	or	deleted	from	a	relation,	indices	on	the	relation	must	be	updated
correspondingly.	Recall	that	updates	to	a	record	can	be	modeled	as	a	deletion	of	the	old	record	followed
by	insertion	of	the	updated	record.	Hence	we	only	consider	the	case	of	insertion	and	deletion.

Insertion	and	deletion	are	more	complicated	than	lookup,	since	it	may	be	necessary	to	split	a	node	that
becomes	too	large	as	the	result	of	an	insertion,	or	to	coalesce	nodes	(i.e.,	combine	nodes)	if	a	node
becomes	too	small	(fewer	than	⌈	n∕2⌉	pointers).

Furthermore,	when	a	node	is	split	or	a	pair	of	nodes	is	combined,	we	must	ensure	that	balance	is
preserved.	To	introduce	the	idea	behind	insertion	and	deletion	in	a	B+-tree,	we	shall	assume	temporarily
that	nodes	never	become	too	large	or	too	small.	Under	this	assumption,	insertion	and	deletion	are
performed	as	defined	next.

•	Insertion.	Using	the	same	technique	as	for	lookup	from	the	find()	function	(Figure	14.11),	we	first	find
the	leaf	node	in	which	the	search-key	value	would	appear.	We	then	insert	an	entry	(i.e.,	a	search-key	value
and	record	pointer	pair)	in	the	leaf	node,	positioning	it	such	that	the	search	keys	are	still	in	order.

•	Deletion.	Using	the	same	technique	as	for	lookup,	we	find	the	leaf	node	containing	the	entry	to	be
deleted	by	performing	a	lookup	on	the	search-key	value	of	the	deleted	record;	if	there	are	multiple	entries
with	the	same	search-key	value,	we	search	across	all	entries	with	the	same	search-key	value	until	we	find
the	entry	that	points	to	the	record	being	deleted.	We	then	remove	the	entry	from	the	leaf	node.

All	entries	in	the	leaf	node	that	are	to	the	right	of	the	deleted	entry	are	shifted	left	by	one	position,	so	that
there	are	no	gaps	in	the	entries	after	the	entry	is	deleted.

We	now	consider	the	general	case	of	insertion	and	deletion,	dealing	with	node	splitting	and	node
coalescing.

14.3.3.1

Insertion

We	now	consider	an	example	of	insertion	in	which	a	node	must	be	split.	Assume	that	a	record	is	inserted
on	the	instructor	relation,	with	the	name	value	being	Adams.	We	then	need	to	insert	an	entry	for	“Adams”
into	the	B+-tree	of	Figure	14.9.	Using	the	algorithm	for	lookup,	we	find	that	“Adams”	should	appear	in	the

leaf	node	containing

“Brandt”,	“Califieri”,	and	“Crick.”	There	is	no	room	in	this	leaf	to	insert	the	search-key	value	“Adams.”
Therefore,	the	node	is	split	into	two	nodes.	Figure	14.13	shows	the	two	leaf	nodes	that	result	from	the
split	of	the	leaf	node	on	inserting	“Adams”.	The	search-key	values	“Adams”	and	“Brandt”	are	in	one	leaf,
and	“Califieri”	and	“Crick”

are	in	the	other.	In	general,	we	take	the	n	search-key	values	(the	n	−	1	values	in	the	leaf

642

Chapter	14

Indexing

Adams

Brandt

Califieri

Crick

Figure	14.13	Split	of	leaf	node	on	insertion	of	“Adams”.

node	plus	the	value	being	inserted),	and	put	the	first	⌈	n∕2⌉	in	the	existing	node	and	the	remaining	values
in	a	newly	created	node.

Having	split	a	leaf	node,	we	must	insert	the	new	leaf	node	into	the	B+-tree	structure.

In	our	example,	the	new	node	has	“Califieri”	as	its	smallest	search-key	value.	We	need	to	insert	an	entry
with	this	search-key	value,	and	a	pointer	to	the	new	node,	into	the	parent	of	the	leaf	node	that	was	split.
The	B+-tree	of	Figure	14.14	shows	the	result	of	the	insertion.	It	was	possible	to	perform	this	insertion
with	no	further	node	split,	because	there	was	room	in	the	parent	node	for	the	new	entry.	If	there	were	no
room,	the	parent	would	have	had	to	be	split,	requiring	an	entry	to	be	added	to	its	parent.	In	the	worst
case,	all	nodes	along	the	path	to	the	root	must	be	split.	If	the	root	itself	is	split,	the	entire	tree	becomes
deeper.

Splitting	of	a	nonleaf	node	is	a	little	different	from	splitting	of	a	leaf	node.	Figure	14.15	shows	the	result
of	inserting	a	record	with	search	key	“Lamport”	into	the	tree	shown	in	Figure	14.14.	The	leaf	node	in
which	“Lamport”	is	to	be	inserted	already	has	entries	“Gold”,	“Katz”,	and	“Kim”,	and	as	a	result	the	leaf
node	has	to	be	split.	The	new	right-hand-side	node	resulting	from	the	split	contains	the	search-key	values
“Kim”

and	“Lamport”.	An	entry	(Kim,	n	1)	must	then	be	added	to	the	parent	node,	where	n	1

is	a	pointer	to	the	new	node,	However,	there	is	no	space	in	the	parent	node	to	add	a	new	entry,	and	the
parent	node	has	to	be	split.	To	do	so,	the	parent	node	is	conceptually	expanded	temporarily,	the	entry
added,	and	the	overfull	node	is	then	immediately	split.

When	an	overfull	nonleaf	node	is	split,	the	child	pointers	are	divided	among	the	original	and	the	newly
created	nodes;	in	our	example,	the	original	node	is	left	with	the	first	three	pointers,	and	the	newly	created
node	to	the	right	gets	the	remaining	two	pointers.	The	search	key	values	are,	however,	handled	a	little
differently.	The	search	key	values	that	lie	between	the	pointers	moved	to	the	right	node	(in	our	example,
the	value

“Kim”)	are	moved	along	with	the	pointers,	while	those	that	lie	between	the	pointers	that	stay	on	the	left
(in	our	example,	“Califieri”	and	“Einstein”)	remain	undisturbed.

Mozart

Califieri

Einstein

Gold

Srinivasan

Adams

Brandt

Califieri

Crick

Einstein

El	Said

Gold

Katz

Kim

Mozart

Singh

Srinivasan

Wu

Figure	14.14	Insertion	of	“Adams”	into	the	B+-tree	of	Figure	14.9.

14.3

B+-Tree	Index	Files

643

Gold

Mozart

Califieri

Einstein

Kim

Srinivasan

Adams

Brandt

Califieri

Crick

Einstein

El	Said

Gold

Katz

Kim

Lamport

Mozart

Singh

Srinivasan

Wu

Figure	14.15	Insertion	of	“Lamport”	into	the	B+-tree	of	Figure	14.14.

However,	the	search	key	value	that	lies	between	the	pointers	that	stay	on	the	left,	and	the	pointers	that
move	to	the	right	node	is	treated	differently.	In	our	example,	the	search	key	value	“Gold”	lies	between	the
three	pointers	that	went	to	the	left	node,	and	the	two	pointers	that	went	to	the	right	node.	The	value
“Gold”	is	not	added	to	either	of	the	split	nodes.	Instead,	an	entry	(Gold,	n	2)	is	added	to	the	parent	node,
where	n	2	is	a	pointer	to	the	newly	created	node	that	resulted	from	the	split.	In	this	case,	the	parent	node
is	the	root,	and	it	has	enough	space	for	the	new	entry.

The	general	technique	for	insertion	into	a	B+-tree	is	to	determine	the	leaf	node	l	into	which	insertion
must	occur.	If	a	split	results,	insert	the	new	node	into	the	parent	procedure	insert(value	K	,	pointer	P)

if	(tree	is	empty)	create	an	empty	leaf	node	L,	which	is	also	the	root	else	Find	the	leaf	node	L	that	should
contain	key	value	K

if	(L	has	less	than	n	−	1	key	values)

then	insert	in	leaf	(L,	K	,	P)

else	begin	/*	L	has	n	−	1	key	values	already,	split	it	*/

Create	node	L′

Copy	L.P	…	L.K

to	a	block	of	memory	T	that	can

1

n−1

hold	n	(pointer,	key-value)	pairs

insert	in	leaf	(T	,	K,	P)

Set	L′	.P	=	L.P	;	Set	L.P	=	L′

n

n

n

Erase	L.P	through	L.K

from	L

1

n−1

Copy	T	.P	through	T	.K

1

⌈	n∕2⌉	from	T	into	L	starting	at	L.P	1

Copy	T	.P⌈

through	T	.K	from	T	into	L′	starting	at	L′	.P

n∕2⌉+1

n

1

Let	K′	be	the	smallest	key-value	in	L′

insert	in	parent(L,	K′,	L′)

end

Figure	14.16	Insertion	of	entry	in	a	B+-tree.

644

Chapter	14

Indexing

of	node	l.	If	this	insertion	causes	a	split,	proceed	recursively	up	the	tree	until	either	an	insertion	does	not
cause	a	split	or	a	new	root	is	created.

Figure	14.16	outlines	the	insertion	algorithm	in	pseudocode.	The	procedure	insert	inserts	a	key-value
pointer	pair	into	the	index,	using	two	subsidiary	procedures	insert	in	leaf	and	insert	in	parent,	shown	in
Figure	14.17.	In	the	pseudocode,	L,	N	,	P

and	T	denote	pointers	to	nodes,	with	L	being	used	to	denote	a	leaf	node.	L.K	and	L.P

i

i

denote	the	i	th	value	and	the	i	th	pointer	in	node	L,	respectively;	T	.K	and	T	.P	are	used	i

i

similarly.	The	pseudocode	also	makes	use	of	the	function	parent(N)	to	find	the	parent	of	a	node	N	.	We
can	compute	a	list	of	nodes	in	the	path	from	the	root	to	the	leaf	while	initially	finding	the	leaf	node,	and
we	can	use	it	later	to	find	the	parent	of	any	node	in	the	path	efficiently.

procedure	insert	in	leaf	(node	L,	value	K	,	pointer	P)	if	(K	<	L.K)

1

then	insert	P,	K	into	L	just	before	L.P	1

else	begin

Let	K	be	the	highest	value	in	L	that	is	less	than	or	equal	to	K

i

Insert	P,	K	into	L	just	after	L.Ki

end

procedure	insert	in	parent(node	N	,	value	K	′,	node	N	′)	if	(N	is	the	root	of	the	tree)

then	begin

Create	a	new	node	R	containing	N	,	K′,	N	′

/*	N	and	N	′	are	pointers	*/

Make	R	the	root	of	the	tree

return

end

Let	P	=	parent	(N)

if	(P	has	less	than	n	pointers)

then	insert	(K	′,	N	′)	in	P	just	after	N

else	begin	/*	Split	P	*/

Copy	P	to	a	block	of	memory	T	that	can	hold	P	and	(K′,	N	′)	Insert	(K′,	N	′)	into	T	just	after	N

Erase	all	entries	from	P;	Create	node	P′

Copy	T	.P	…	T	.P

1

⌈(n+1)∕2⌉	into	P

Let	K′′	=	T	.K⌈(n+1)∕2⌉

Copy	T	.P⌈

…	T	.P

into	P′

(n+1)∕2⌉+1

n+1

insert	in	parent(P,	K′′,	P′)

end

Figure	14.17	Subsidiary	procedures	for	insertion	of	entry	in	a	B+-tree.

14.3

B+-Tree	Index	Files

645

The	procedure	insert	in	parent	takes	as	parameters	N	,	K′,	N	′,	where	node	N	was	split	into	N	and	N	′,	with
K′	being	the	least	value	in	N	′.	The	procedure	modifies	the	parent	of	N	to	record	the	split.	The	procedures
insert	into	index	and	insert	in	parent	use	a	temporary	area	of	memory	T	to	store	the	contents	of	a	node
being	split.	The	procedures	can	be	modified	to	copy	data	from	the	node	being	split	directly	to	the	newly
created	node,	reducing	the	time	required	for	copying	data.	However,	the	use	of	the	temporary	space	T
simplifies	the	procedures.

14.3.3.2

Deletion

We	now	consider	deletions	that	cause	tree	nodes	to	contain	too	few	pointers.	First,	let	us	delete
“Srinivasan”	from	the	B+-tree	of	Figure	14.14.	The	resulting	B+-tree	appears	in	Figure	14.18.	We	now
consider	how	the	deletion	is	performed.	We	first	locate	the	entry	for	“Srinivasan”	by	using	our	lookup
algorithm.	When	we	delete	the	entry	for

“Srinivasan”	from	its	leaf	node,	the	node	is	left	with	only	one	entry,	“Wu”.	Since,	in	our	example,	n	=	4
and	1	<	⌈(n	−	1)∕2⌉,	we	must	either	merge	the	node	with	a	sibling	node	or	redistribute	the	entries
between	the	nodes,	to	ensure	that	each	node	is	at	least	half-full.	In	our	example,	the	underfull	node	with
the	entry	for	“Wu”	can	be	merged	with	its	left	sibling	node.	We	merge	the	nodes	by	moving	the	entries
from	both	the	nodes	into	the	left	sibling	and	deleting	the	now-empty	right	sibling.	Once	the	node	is
deleted,	we	must	also	delete	the	entry	in	the	parent	node	that	pointed	to	the	just	deleted	node.

In	our	example,	the	entry	to	be	deleted	is	(Srinivasan,	n	3),	where	n	3	is	a	pointer	to	the	leaf	containing
“Srinivasan”.	(In	this	case	the	entry	to	be	deleted	in	the	nonleaf	node	happens	to	be	the	same	value	as
that	deleted	from	the	leaf;	that	would	not	be	the	case	for	most	deletions.)	After	deleting	the	above	entry,
the	parent	node,	which	had	a	search	key	value	“Srinivasan”	and	two	pointers,	now	has	one	pointer	(the
leftmost	pointer	in	the	node)	and	no	search-key	values.	Since	1	<	⌈	n∕2⌉	for	n	=	4,	the	parent	node	is
underfull.	(For	larger	n,	a	node	that	becomes	underfull	would	still	have	some	values	as	well	as	pointers.)

Gold

Califieri

Einstein

Mozart

Adams

Brandt

Califieri

Crick

Einstein

El	Said

Gold

Katz

Kim

Mozart

Singh

Wu

Figure	14.18	Deletion	of	“Srinivasan”	from	the	B+-tree	of	Figure	14.14.

646

Chapter	14

Indexing

In	this	case,	we	look	at	a	sibling	node;	in	our	example,	the	only	sibling	is	the	nonleaf	node	containing	the
search	keys	“Califieri”,	“Einstein”,	and	“Gold”.	If	possible,	we	try	to	coalesce	the	node	with	its	sibling.	In
this	case,	coalescing	is	not	possible,	since	the	node	and	its	sibling	together	have	five	pointers,	against	a
maximum	of	four.	The	solution	in	this	case	is	to	redistribute	the	pointers	between	the	node	and	its	sibling,
such	that	each	has	at	least	⌈	n∕2⌉	=	2	child	pointers.	To	do	so,	we	move	the	rightmost	pointer	from	the	left
sibling	(the	one	pointing	to	the	leaf	node	containing	“Gold”)	to	the	underfull	right	sibling.	However,	the
underfull	right	sibling	would	now	have	two	pointers,	namely,	its	leftmost	pointer,	and	the	newly	moved
pointer,	with	no	value	separating	them.	In	fact,	the	value	separating	them	is	not	present	in	either	of	the
nodes,	but	is	present	in	the	parent	node,	between	the	pointers	from	the	parent	to	the	node	and	its	sibling.

In	our	example,	the	value	“Mozart”	separates	the	two	pointers	and	is	present	in	the	right	sibling	after	the
redistribution.	Redistribution	of	the	pointers	also	means	that	the	value	“Mozart”	in	the	parent	no	longer
correctly	separates	search-key	values	in	the	two	siblings.	In	fact,	the	value	that	now	correctly	separates

search-key	values	in	the	two	sibling	nodes	is	the	value	“Gold”,	which	was	in	the	left	sibling	before
redistribution.

As	a	result,	as	can	be	seen	in	the	B+-tree	in	Figure	14.18,	after	redistribution	of	pointers	between
siblings,	the	value	“Gold”	has	moved	up	into	the	parent,	while	the	value	that	was	there	earlier,	“Mozart”,
has	moved	down	into	the	right	sibling.

We	next	delete	the	search-key	values	“Singh”	and	“Wu”	from	the	B+-tree	of	Figure	14.18.	The	result	is
shown	in	Figure	14.19.	The	deletion	of	the	first	of	these	values	does	not	make	the	leaf	node	underfull,	but
the	deletion	of	the	second	value	does.	It	is	not	possible	to	merge	the	underfull	node	with	its	sibling,	so	a
redistribution	of	values	is	carried	out,	moving	the	search-key	value	“Kim”	into	the	node	containing
“Mozart”,	resulting	in	the	tree	shown	in	Figure	14.19.	The	value	separating	the	two	siblings	has	been
updated	in	the	parent,	from	“Mozart”	to	“Kim”.

Now	we	delete	“Gold”	from	the	above	tree;	the	result	is	shown	in	Figure	14.20.	This	results	in	an
underfull	leaf,	which	can	now	be	merged	with	its	sibling.	The	resultant	deletion	of	an	entry	from	the
parent	node	(the	nonleaf	node	containing	“Kim”)	makes	the	parent	underfull	(it	is	left	with	just	one
pointer).	This	time	around,	the	parent	node	can	be	merged	with	its	sibling.	This	merge	results	in	the
search-key	value	“Gold”

Gold

Califieri

Einstein

Kim

Adams

Brandt

Califieri

Crick

Einstein

El	Said

Gold

Katz

Kim	Mozart

Figure	14.19	Deletion	of	“Singh”	and	“Wu”	from	the	B+-tree	of	Figure	14.18.

14.3

B+-Tree	Index	Files

647

Califieri

Einstein

Gold

Adams

Brandt

Califieri

Crick

Einstein

El	Said

Katz

Kim

Mozart

Figure	14.20	Deletion	of	“Gold”	from	the	B+-tree	of	Figure	14.19.

moving	down	from	the	parent	into	the	merged	node.	As	a	result	of	this	merge,	an	entry	is	deleted	from	its
parent,	which	happens	to	be	the	root	of	the	tree.	And	as	a	result	of	that	deletion,	the	root	is	left	with	only
one	child	pointer	and	no	search-key	value,	violating	the	condition	that	the	root	must	have	at	least	two
children.	As	a	result,	the	root	node	is	deleted	and	its	sole	child	becomes	the	root,	and	the	depth	of	the	B+-
tree	has	been	decreased	by	1.

It	is	worth	noting	that,	as	a	result	of	deletion,	a	key	value	that	is	present	in	a	nonleaf	node	of	the	B+-tree
may	not	be	present	at	any	leaf	of	the	tree.	For	example,	in	Figure	14.20,	the	value	“Gold”	has	been
deleted	from	the	leaf	level	but	is	still	present	in	a	nonleaf	node.

In	general,	to	delete	a	value	in	a	B+-tree,	we	perform	a	lookup	on	the	value	and	delete	it.	If	the	node	is
too	small,	we	delete	it	from	its	parent.	This	deletion	results	in	recursive	application	of	the	deletion
algorithm	until	the	root	is	reached,	a	parent	remains	adequately	full	after	deletion,	or	redistribution	is
applied.

Figure	14.21	outlines	the	pseudocode	for	deletion	from	a	B+-tree.	The	procedure	swap	variables(N	,	N	′)
merely	swaps	the	values	of	the	(pointer)	variables	N	and	N	′;	this	swap	has	no	effect	on	the	tree	itself.	The
pseudocode	uses	the	condition	“too	few	pointers/values.”	For	nonleaf	nodes,	this	criterion	means	less	than
⌈	n∕2⌉	pointers;	for	leaf	nodes,	it	means	less	than	⌈(n	−	1)∕2⌉	values.	The	pseudocode	redistributes	entries
by	borrowing	a	single	entry	from	an	adjacent	node.	We	can	also	redistribute	entries	by	repartitioning
entries	equally	between	the	two	nodes.	The	pseudocode	refers	to	deleting	an	entry	(K,	P)	from	a	node.	In
the	case	of	leaf	nodes,	the	pointer	to	an	entry	actually	precedes	the	key	value,	so	the	pointer	P	precedes
the	key	value	K.	For	nonleaf	nodes,	P	follows	the	key	value	K	.

14.3.4

Complexity	of	B+-Tree	Updates

Although	insertion	and	deletion	operations	on	B+-trees	are	complicated,	they	require	relatively	few	I/O
operations,	which	is	an	important	benefit	since	I/O	operations	are	expensive.	It	can	be	shown	that	the
number	of	I/O	operations	needed	in	the	worst	case	for	an	insertion	is	proportional	to	log⌈	n∕2⌉(N),	where
n	is	the	maximum	number	of	pointers	in	a	node,	and	N	is	the	number	of	records	in	the	file	being	indexed.

The	worst-case	complexity	of	the	deletion	procedure	is	also	proportional	to	log⌈	n∕2⌉(N),	provided	there
are	no	duplicate	values	for	the	search	key;	we	discuss	the	case	of	nonunique	search	keys	later	in	this
chapter.

648

Chapter	14

Indexing

procedure	delete(value	K	,	pointer	P)

find	the	leaf	node	L	that	contains	(K,	P)

delete	entry(L,	K,	P)

procedure	delete	entry(node	N	,	value	K	,	pointer	P)	delete	(K,	P)	from	N

if	(N	is	the	root	and	N	has	only	one	remaining	child)	then	make	the	child	of	N	the	new	root	of	the	tree
and	delete	N

else	if	(N	has	too	few	values/pointers)	then	begin

Let	N	′	be	the	previous	or	next	child	of	parent(N)	Let	K′	be	the	value	between	pointers	N	and	N	′	in
parent(N)	if	(entries	in	N	and	N	′	can	fit	in	a	single	node)

then	begin	/*	Coalesce	nodes	*/

if	(N	is	a	predecessor	of	N	′)	then	swap	variables(N	,	N	′)	if	(N	is	not	a	leaf)

then	append	K	′	and	all	pointers	and	values	in	N	to	N	′

else	append	all	(K	,	P)	pairs	in	N	to	N	′;	set	N	′	.P	=	N.P

i

i

n

n

delete	entry(parent(N),	K′,	N);	delete	node	N

end

else	begin	/*	Redistribution:	borrow	an	entry	from	N	′	*/

if	(N	′	is	a	predecessor	of	N)	then	begin

if	(N	is	a	nonleaf	node)	then	begin

let	m	be	such	that	N	′	.P	is	the	last	pointer	in	N′

m

remove	(N	′	.K

,	N	′	.P)	from	N′

m−1

m

insert	(N	′	.P	,	K′)	as	the	first	pointer	and	value	in	N,	m

by	shifting	other	pointers	and	values	right

replace	K′	in	parent(N)	by	N	′	.Km−1

end

else	begin

let	m	be	such	that	(N	′	.P	,	N′	.K)	is	the	last	pointer/value	m

m

pair	in	N	′

remove	(N	′	.P	,	N′	.K)	from	N′

m

m

insert	(N	′	.P	,	N′	.K)	as	the	first	pointer	and	value	in	N,	m

m

by	shifting	other	pointers	and	values	right

replace	K′	in	parent(N)	by	N	′	.Km	end

end

else	…	symmetric	to	the	then	case	…

end

end

Figure	14.21	Deletion	of	entry	from	a	B+-tree.

14.3

B+-Tree	Index	Files

649

In	other	words,	the	cost	of	insertion	and	deletion	operations	in	terms	of	I/O	operations	is	proportional	to
the	height	of	the	B+-tree,	and	is	therefore	low.	It	is	the	speed	of	operation	on	B+-trees	that	makes	them	a
frequently	used	index	structure	in	database	implementations.

In	practice,	operations	on	B+-trees	result	in	fewer	I/O	operations	than	the	worst-case	bounds.	With	fanout
of	100,	and	assuming	accesses	to	leaf	nodes	are	uniformly	distributed,	the	parent	of	a	leaf	node	is	100
times	more	likely	to	get	accessed	than	the	leaf	node.	Conversely,	with	the	same	fanout,	the	total	number
of	nonleaf	nodes	in	a	B+-

tree	would	be	just	a	little	more	than	1/100th	of	the	number	of	leaf	nodes.	As	a	result,	with	memory	sizes	of
several	gigabytes	being	common	today,	for	B+-trees	that	are	used	frequently,	even	if	the	relation	is	very
large	it	is	quite	likely	that	most	of	the	nonleaf	nodes	are	already	in	the	database	buffer	when	they	are
accessed.	Thus,	typically	only	one	or	two	I/O	operations	are	required	to	perform	a	lookup.	For	updates,
the	probability	of	a	node	split	occurring	is	correspondingly	very	small.	Depending	on	the	ordering	of
inserts,	with	a	fanout	of	100,	only	from	1	in	100	to	1	in	50	insertions	will	result	in	a	node	split,	requiring
more	than	one	block	to	be	written.	As	a	result,	on	an	average	an	insert	will	require	just	a	little	more	than
one	I/O	operation	to	write	updated	blocks.

Although	B+-trees	only	guarantee	that	nodes	will	be	at	least	half	full,	if	entries	are	inserted	in	random
order,	nodes	can	be	expected	to	be	more	than	two-thirds	full	on	average.	If	entries	are	inserted	in	sorted
order,	on	the	other	hand,	nodes	will	be	only	half	full.	(We	leave	it	as	an	exercise	to	the	reader	to	figure	out
why	nodes	would	be	only	half	full	in	the	latter	case.)

14.3.5

Nonunique	Search	Keys

We	have	assumed	so	far	that	search	keys	are	unique.	Recall	also	that	we	described	earlier,	in	Section
14.3.1,	how	to	make	search	keys	unique	by	creating	a	composite	search	key	containing	the	original	search
key	and	extra	attributes,	that	together	are	unique	across	all	records.

The	extra	attribute	can	be	a	record-id,	which	is	a	pointer	to	the	record,	or	a	primary	key,	or	any	other
attribute	whose	value	is	unique	among	all	records	with	the	same	search-key	value.	The	extra	attribute	is
called	a	uniquifier	attribute.

A	search	with	the	original	search-key	attribute	can	be	carried	out	using	a	range	search	as	we	saw	in
Section	14.3.2;	alternatively,	we	can	create	a	variant	of	the	findRange	function	that	takes	only	the	original
search	key	value	as	parameter	and	ignores	the	value	of	the	uniquifier	attribute	when	comparing	search-
key	values.

It	is	also	possible	to	modify	the	B+-tree	structure	to	support	duplicate	search	keys.

The	insert,	delete,	and	lookup	methods	all	have	to	be	modified	correspondingly.

•	One	alternative	is	to	store	each	key	value	only	once	in	the	tree,	and	to	keep	a	bucket	(or	list)	of	record
pointers	with	a	search-key	value,	to	handle	nonunique	search	keys.	This	approach	is	space	efficient	since
it	stores	the	key	value	only	once;	however,	it	creates	several	complications	when	B+-trees	are
implemented.	If	the

650

Chapter	14

Indexing

buckets	are	kept	in	the	leaf	node,	extra	code	is	needed	to	deal	with	variable-size	buckets,	and	to	deal	with
buckets	that	grow	larger	than	the	size	of	the	leaf	node.	If	the	buckets	are	stored	in	separate	blocks,	an
extra	I/O	operation	may	be	required	to	fetch	records.

•	Another	option	is	to	store	the	search	key	value	once	per	record;	this	approach	allows	a	leaf	node	to	be
split	in	the	usual	way	if	it	is	found	to	be	full	during	an	insert.	However,	this	approach	makes	handling	of
split	and	search	on	internal	nodes	significantly	more	complicated,	since	two	leaves	may	contain	the	same
search	key	value.	It	also	has	a	higher	space	overhead,	since	key	values	are	stored	as	many	times	as	there
are	records	containing	that	value.

A	major	problem	with	both	these	approaches,	as	compared	to	the	unique	search-key	approach,	lies	in	the
efficiency	of	record	deletion.	(The	complexity	of	lookup	and	insertion	are	the	same	with	both	these
approaches,	as	well	as	with	the	unique	search-key	approach.)	Suppose	a	particular	search-key	value
occurs	a	large	number	of	times,	and	one	of	the	records	with	that	search	key	is	to	be	deleted.	The	deletion
may	have	to	search	through	a	number	of	entries	with	the	same	search-key	value,	potentially	across
multiple	leaf	nodes,	to	find	the	entry	corresponding	to	the	particular	record	being	deleted.	Thus,	the
worst-case	complexity	of	deletion	may	be	linear	in	the	number	of	records.

In	contrast,	record	deletion	can	be	done	efficiently	using	the	unique	search	key	approach.	When	a	record
is	to	be	deleted,	the	composite	search-key	value	is	computed	from	the	record	and	then	used	to	look	up	the
index.	Since	the	value	is	unique,	the	corresponding	leaf-level	entry	can	be	found	with	a	single	traversal
from	root	to	leaf,	with	no	further	accesses	at	the	leaf	level.	The	worst-case	cost	of	deletion	is	logarithmic
in	the	number	of	records,	as	we	saw	earlier.

Due	to	the	inefficiency	of	deletion,	as	well	as	other	complications	due	to	duplicate	search	keys,	B+-tree
implementations	in	most	database	systems	only	handle	unique	search	keys,	and	they	automatically	add
record-ids	or	other	attributes	to	make	nonunique	search	keys	unique.

14.4

B+-Tree	Extensions

In	this	section,	we	discuss	several	extensions	and	variations	of	the	B+-tree	index	structure.

14.4.1

B+-Tree	File	Organization

As	mentioned	in	Section	14.3,	the	main	drawback	of	index-sequential	file	organization	is	the	degradation
of	performance	as	the	file	grows:	With	growth,	an	increasing	percentage	of	index	entries	and	actual
records	become	out	of	order	and	are	stored	in	overflow	blocks.	We	solve	the	degradation	of	index	lookups
by	using	B+-tree	indices	on	the	file.

14.4

B+-Tree	Extensions

651

I

C

F

K

M

(A,4)

(B,8)

(C,1)	(D,9)	(E,4)

(F,7)	(G,3)	(H,3)

(I,4)

(J,8)

(K,1)	(L,6)

(M,4)	(N,8)	(P,6)

Figure	14.22	B+-tree	file	organization.

We	solve	the	degradation	problem	for	storing	the	actual	records	by	using	the	leaf	level	of	the	B+-tree	to
organize	the	blocks	containing	the	actual	records.	We	use	the	B+-tree	structure	not	only	as	an	index,	but
also	as	an	organizer	for	records	in	a	file.	In	a	B+-tree	file	organization,	the	leaf	nodes	of	the	tree	store
records,	instead	of	storing	pointers	to	records.	Figure	14.22	shows	an	example	of	a	B+-tree	file
organization.	Since	records	are	usually	larger	than	pointers,	the	maximum	number	of	records	that	can	be
stored	in	a	leaf	node	is	less	than	the	number	of	pointers	in	a	nonleaf	node.	However,	the	leaf	nodes	are

still	required	to	be	at	least	half	full.

Insertion	and	deletion	of	records	from	a	B+-tree	file	organization	are	handled	in	the	same	way	as
insertion	and	deletion	of	entries	in	a	B+-tree	index.	When	a	record	with	a	given	key	value	v	is	inserted,
the	system	locates	the	block	that	should	contain	the	record	by	searching	the	B+-tree	for	the	largest	key	in
the	tree	that	is	≤	v.	If	the	block	located	has	enough	free	space	for	the	record,	the	system	stores	the	record
in	the	block.

Otherwise,	as	in	B+-tree	insertion,	the	system	splits	the	block	in	two	and	redistributes	the	records	in	it	(in
the	B+-tree–key	order)	to	create	space	for	the	new	record.	The	split	propagates	up	the	B+-tree	in	the
normal	fashion.	When	we	delete	a	record,	the	system	first	removes	it	from	the	block	containing	it.	If	a
block	B	becomes	less	than	half	full	as	a	result,	the	records	in	B	are	redistributed	with	the	records	in	an
adjacent	block	B′.

Assuming	fixed-sized	records,	each	block	will	hold	at	least	one-half	as	many	records	as	the	maximum	that
it	can	hold.	The	system	updates	the	nonleaf	nodes	of	the	B+-tree	in	the	usual	fashion.

When	we	use	a	B+-tree	for	file	organization,	space	utilization	is	particularly	important,	since	the	space
occupied	by	the	records	is	likely	to	be	much	more	than	the	space	occupied	by	keys	and	pointers.	We	can
improve	the	utilization	of	space	in	a	B+-tree	by	involving	more	sibling	nodes	in	redistribution	during	splits
and	merges.	The	technique	is	applicable	to	both	leaf	nodes	and	nonleaf	nodes,	and	it	works	as	follows:
During	insertion,	if	a	node	is	full,	the	system	attempts	to	redistribute	some	of	its	entries	to	one	of	the
adjacent	nodes,	to	make	space	for	a	new	entry.	If	this	attempt	fails	because	the	adjacent	nodes	are
themselves	full,	the	system	splits	the	node	and	divides	the	entries	evenly	among	one	of	the	adjacent	nodes
and	the	two	nodes	that	it	obtained	by	splitting	the	original	node.	Since	the	three	nodes	together	contain
one	more	record

652

Chapter	14

Indexing

than	can	fit	in	two	nodes,	each	node	will	be	about	two-thirds	full.	More	precisely,	each	node	will	have	at
least	⌊2	n∕3⌋	entries,	where	n	is	the	maximum	number	of	entries	that	the	node	can	hold.	(⌊	x⌋	denotes	the
greatest	integer	that	is	less	than	or	equal	to	x;	that	is,	we	drop	the	fractional	part,	if	any.)

During	deletion	of	a	record,	if	the	occupancy	of	a	node	falls	below	⌊2	n∕3⌋,	the	system	attempts	to	borrow
an	entry	from	one	of	the	sibling	nodes.	If	both	sibling	nodes	have	⌊2	n∕3⌋	records,	instead	of	borrowing	an
entry,	the	system	redistributes	the	entries	in	the	node	and	in	the	two	siblings	evenly	between	two	of	the
nodes	and	deletes	the	third	node.	We	can	use	this	approach	because	the	total	number	of	entries	is	3⌊2	n∕3⌋
−	1,	which	is	less	than	2	n.	With	three	adjacent	nodes	used	for	redistribution,	each	node	can	be
guaranteed	to	have	⌊3	n∕4⌋	entries.	In	general,	if	m	nodes	(m−1	siblings)	are	involved	in	redistribution,
each	node	can	be	guaranteed	to	contain	at	least	⌊(m−1)	n∕	m⌋	entries.

However,	the	cost	of	update	becomes	higher	as	more	sibling	nodes	are	involved	in	the	redistribution.

Note	that	in	a	B+-tree	index	or	file	organization,	leaf	nodes	that	are	adjacent	to	each	other	in	the	tree
may	be	located	at	different	places	on	disk.	When	a	file	organization	is	newly	created	on	a	set	of	records,	it
is	possible	to	allocate	blocks	that	are	mostly	contiguous	on	disk	to	leaf	nodes	that	are	contiguous	in	the
tree.	Thus,	a	sequential	scan	of	leaf	nodes	would	correspond	to	a	mostly	sequential	scan	on	disk.	As
insertions	and	deletions	occur	on	the	tree,	sequentiality	is	increasingly	lost,	and	sequential	access	has	to
wait	for	disk	seeks	increasingly	often.	An	index	rebuild	may	be	required	to	restore	sequentiality.

B+-tree	file	organizations	can	also	be	used	to	store	large	objects,	such	as	SQL	clobs	and	blobs,	which	may
be	larger	than	a	disk	block,	and	as	large	as	multiple	gigabytes.

Such	large	objects	can	be	stored	by	splitting	them	into	sequences	of	smaller	records	that	are	organized	in
a	B+-tree	file	organization.	The	records	can	be	sequentially	numbered,	or	numbered	by	the	byte	offset	of
the	record	within	the	large	object,	and	the	record	number	can	be	used	as	the	search	key.

14.4.2

Secondary	Indices	and	Record	Relocation

Some	file	organizations,	such	as	the	B+-tree	file	organization,	may	change	the	location	of	records	even
when	the	records	have	not	been	updated.	As	an	example,	when	a	leaf	node	is	split	in	a	B+-tree	file
organization,	a	number	of	records	are	moved	to	a	new	node.	In	such	cases,	all	secondary	indices	that
store	pointers	to	the	relocated	records	would	have	to	be	updated,	even	though	the	values	in	the	records
may	not	have	changed.

Each	leaf	node	may	contain	a	fairly	large	number	of	records,	and	each	of	them	may	be	in	different
locations	on	each	secondary	index.	Thus,	a	leaf-node	split	may	require	tens	or	even	hundreds	of	I/O
operations	to	update	all	affected	secondary	indices,	making	it	a	very	expensive	operation.

A	widely	used	solution	for	this	problem	is	as	follows:	In	secondary	indices,	in	place	of	pointers	to	the
indexed	records,	we	store	the	values	of	the	primary-index	search-key

14.4

B+-Tree	Extensions

653

attributes.	For	example,	suppose	we	have	a	primary	index	on	the	attribute	ID	of	relation	instructor;	then	a
secondary	index	on	dept	name	would	store	with	each	department	name	a	list	of	instructor’s	ID	values	of
the	corresponding	records,	instead	of	storing	pointers	to	the	records.

Relocation	of	records	because	of	leaf-node	splits	then	does	not	require	any	update	on	any	such	secondary
index.	However,	locating	a	record	using	the	secondary	index	now	requires	two	steps:	First	we	use	the
secondary	index	to	find	the	primary-index	search-key	values,	and	then	we	use	the	primary	index	to	find
the	corresponding	records.

This	approach	thus	greatly	reduces	the	cost	of	index	update	due	to	file	reorganization,	although	it
increases	the	cost	of	accessing	data	using	a	secondary	index.

14.4.3

Indexing	Strings

Creating	B+-tree	indices	on	string-valued	attributes	raises	two	problems.	The	first	problem	is	that	strings
can	be	of	variable	length.	The	second	problem	is	that	strings	can	be	long,	leading	to	a	low	fanout	and	a
correspondingly	increased	tree	height.

With	variable-length	search	keys,	different	nodes	can	have	different	fanouts	even	if	they	are	full.	A	node
must	then	be	split	if	it	is	full,	that	is,	there	is	no	space	to	add	a	new	entry,	regardless	of	how	many	search
entries	it	has.	Similarly,	nodes	can	be	merged	or	entries	redistributed	depending	on	what	fraction	of	the
space	in	the	nodes	is	used,	instead	of	being	based	on	the	maximum	number	of	entries	that	the	node	can
hold.

The	fanout	of	nodes	can	be	increased	by	using	a	technique	called	prefix	compression.	With	prefix
compression,	we	do	not	store	the	entire	search	key	value	at	nonleaf	nodes.	We	only	store	a	prefix	of	each
search	key	value	that	is	sufficient	to	distinguish	between	the	key	values	in	the	subtrees	that	it	separates.
For	example,	if	we	had	an	index	on	names,	the	key	value	at	a	nonleaf	node	could	be	a	prefix	of	a	name;	it
may	suffice	to	store	“Silb”	at	a	nonleaf	node,	instead	of	the	full	“Silberschatz”	if	the	closest	values	in	the
two	subtrees	that	it	separates	are,	say,	“Silas”	and	“Silver”	respectively.

14.4.4

Bulk	Loading	of	B+-Tree	Indices

As	we	saw	earlier,	insertion	of	a	record	in	a	B+-tree	requires	a	number	of	I/O	operations	that	in	the	worst
case	is	proportional	to	the	height	of	the	tree,	which	is	usually	fairly	small	(typically	five	or	less,	even	for
large	relations).

Now	consider	the	case	where	a	B+-tree	is	being	built	on	a	large	relation.	Suppose	the	relation	is
significantly	larger	than	main	memory,	and	we	are	constructing	a	nonclustering	index	on	the	relation	such
that	the	index	is	also	larger	than	main	memory.

In	this	case,	as	we	scan	the	relation	and	add	entries	to	the	B+-tree,	it	is	quite	likely	that	each	leaf	node
accessed	is	not	in	the	database	buffer	when	it	is	accessed,	since	there	is	no	particular	ordering	of	the
entries.	With	such	randomly	ordered	accesses	to	blocks,	each	time	an	entry	is	added	to	the	leaf,	a	disk
seek	will	be	required	to	fetch	the	block	containing	the	leaf	node.	The	block	will	probably	be	evicted	from
the	disk	buffer	before	another	entry	is	added	to	the	block,	leading	to	another	disk	seek	to	write	the	block
back

654

Chapter	14

Indexing

to	disk.	Thus,	a	random	read	and	a	random	write	operation	may	be	required	for	each	entry	inserted.

For	example,	if	the	relation	has	100	million	records,	and	each	I/O	operation	takes	about	10	milliseconds
on	a	magnetic	disk,	it	would	take	at	least	1	million	seconds	to	build	the	index,	counting	only	the	cost	of
reading	leaf	nodes,	not	even	counting	the	cost	of	writing	the	updated	nodes	back	to	disk.	This	is	clearly	a
very	large	amount	of	time;	in	contrast,	if	each	record	occupies	100	bytes,	and	the	disk	subsystem	can
transfer	data	at	50	megabytes	per	second,	it	would	take	just	200	seconds	to	read	the	entire	relation.

Insertion	of	a	large	number	of	entries	at	a	time	into	an	index	is	referred	to	as	bulk	loading	of	the	index.	An
efficient	way	to	perform	bulk	loading	of	an	index	is	as	follows:	First,	create	a	temporary	file	containing
index	entries	for	the	relation,	then	sort	the	file	on	the	search	key	of	the	index	being	constructed,	and
finally	scan	the	sorted	file	and	insert	the	entries	into	the	index.	There	are	efficient	algorithms	for	sorting
large	relations,	described	later	in	Section	15.4,	which	can	sort	even	a	large	file	with	an	I/O

cost	comparable	to	that	of	reading	the	file	a	few	times,	assuming	a	reasonable	amount	of	main	memory	is
available.

There	is	a	significant	benefit	to	sorting	the	entries	before	inserting	them	into	the	B+-tree.	When	the
entries	are	inserted	in	sorted	order,	all	entries	that	go	to	a	particular	leaf	node	will	appear	consecutively,
and	the	leaf	needs	to	be	written	out	only	once;	nodes	will	never	have	to	be	read	from	disk	during	bulk
load,	if	the	B+-tree	was	empty	to	start	with.	Each	leaf	node	will	thus	incur	only	one	I/O	operation	even
though	many	entries	may	be	inserted	into	the	node.	If	each	leaf	contains	100	entries,	the	leaf	level	will
contain	1	million	nodes,	resulting	in	only	1	million	I/O	operations	for	creating	the	leaf	level.	Even	these	I/O
operations	can	be	expected	to	be	sequential,	if	successive	leaf	nodes	are	allocated	on	successive	disk
blocks,	and	few	disk	seeks	would	be	required.	With	magnetic	disks,	1	millisecond	per	block	is	a
reasonable	estimate	for	mostly	sequential	I/O	operations,	in	contrast	to	10	milliseconds	per	block	for
random	I/O	operations.

We	shall	study	the	cost	of	sorting	a	large	relation	later,	in	Section	15.4,	but	as	a	rough	estimate,	the	index
which	would	have	otherwise	taken	up	to	1,000,000	seconds	to	build	on	a	magnetic	disk	can	be
constructed	in	well	under	1000	seconds	by	sorting	the	entries	before	inserting	them	into	the	B+-tree.

If	the	B+-tree	is	initially	empty,	it	can	be	constructed	faster	by	building	it	bottom-up,	from	the	leaf	level,
instead	of	using	the	usual	insert	procedure.	In	bottom-up	B+-

tree	construction,	after	sorting	the	entries	as	we	just	described,	we	break	up	the	sorted	entries	into
blocks,	keeping	as	many	entries	in	a	block	as	can	fit	in	the	block;	the	resulting	blocks	form	the	leaf	level	of
the	B+-tree.	The	minimum	value	in	each	block,	along	with	the	pointer	to	the	block,	is	used	to	create
entries	in	the	next	level	of	the	B+-

tree,	pointing	to	the	leaf	blocks.	Each	further	level	of	the	tree	is	similarly	constructed	using	the	minimum
values	associated	with	each	node	one	level	below,	until	the	root	is	created.	We	leave	details	as	an	exercise
for	the	reader.

Most	database	systems	implement	efficient	techniques	based	on	sorting	of	entries,	and	bottom-up
construction,	when	creating	an	index	on	a	relation,	although	they	use

14.4

B+-Tree	Extensions

655

Einstein

Katz

Singh

Einstein

Katz

Singh

record

record

record

Brandt

Califieri

Crick

El	Said

Gold

Kim

Mozart

Srinivasan

Wu

Brandt

Califieri

...	and	so	on	for	other	records...

record

record

Figure	14.23	B-tree	equivalent	of	B+-tree	in	Figure	14.9.

the	normal	insertion	procedure	when	tuples	are	added	one	at	a	time	to	a	relation	with	an	existing	index.
Some	database	systems	recommend	that	if	a	very	large	number	of	tuples	are	added	at	once	to	an	already
existing	relation,	indices	on	the	relation	(other	than	any	index	on	the	primary	key)	should	be	dropped,	and
then	re-created	after	the	tuples	are	inserted,	to	take	advantage	of	efficient	bulk-loading	techniques.

14.4.5

B-Tree	Index	Files

B-tree	indices	are	similar	to	B+-tree	indices.	The	primary	distinction	between	the	two	approaches	is	that	a
B-tree	eliminates	the	redundant	storage	of	search-key	values.	In	the	B+-tree	of	Figure	14.9,	the	search
keys	“Einstein”,	“Gold”,	“Mozart”,	and	“Srinivasan”

appear	in	nonleaf	nodes,	in	addition	to	appearing	in	the	leaf	nodes.	Every	search-key	value	appears	in
some	leaf	node;	several	are	repeated	in	nonleaf	nodes.

A	B-tree	allows	search-key	values	to	appear	only	once	(if	they	are	unique),	unlike	a	B+-tree,	where	a	value
may	appear	in	a	nonleaf	node,	in	addition	to	appearing	in	a	leaf	node.	Figure	14.23	shows	a	B-tree	that
represents	the	same	search	keys	as	the	B+-tree	of	Figure	14.9.	Since	search	keys	are	not	repeated	in	the
B-tree,	we	may	be	able	to	store	the	index	in	fewer	tree	nodes	than	in	the	corresponding	B+-tree	index.

However,	since	search	keys	that	appear	in	nonleaf	nodes	appear	nowhere	else	in	the	B-tree,	we	are	forced
to	include	an	additional	pointer	field	for	each	search	key	in	a	nonleaf	node.	These	additional	pointers
point	to	either	file	records	or	buckets	for	the	associated	search	key.

It	is	worth	noting	that	many	database	system	manuals,	articles	in	industry	literature,	and	industry
professionals	use	the	term	B-tree	to	refer	to	the	data	structure	that	we	call	the	B+-tree.	In	fact,	it	would
be	fair	to	say	that	in	current	usage,	the	term	B-tree	is	assumed	to	be	synonymous	with	B+-tree.	However,
in	this	book	we	use	the	terms	B-tree	and	B+-tree	as	they	were	originally	defined,	to	avoid	confusion
between	the	two	data	structures.

A	generalized	B-tree	leaf	node	appears	in	Figure	14.24a;	a	nonleaf	node	appears	in	Figure	14.24b.	Leaf
nodes	are	the	same	as	in	B+-trees.	In	nonleaf	nodes,	the	pointers	P	are	the	tree	pointers	that	we	used	also
for	B+-trees,	while	the	pointers	B	are	bucket	i

i

or	file-record	pointers.	In	the	generalized	B-tree	in	the	figure,	there	are	n	−	1	keys	in

656

Chapter	14

Indexing

P

…

1

K

P

1

P	2

n-1

Kn-1

Pn

(a)

P

…

1

B	1

K	1

P	2

B	2

K	2

Pm-1

Bm-1

Km-1

Pm

(b)

Figure	14.24	Typical	nodes	of	a	B-tree.	(a)	Leaf	node.	(b)	Nonleaf	node.

the	leaf	node,	but	there	are	m	−	1	keys	in	the	nonleaf	node.	This	discrepancy	occurs	because	nonleaf
nodes	must	include	pointers	B	,	thus	reducing	the	number	of	search	i

keys	that	can	be	held	in	these	nodes.	Clearly,	m	<	n,	but	the	exact	relationship	between	m	and	n	depends
on	the	relative	size	of	search	keys	and	pointers.

The	number	of	nodes	accessed	in	a	lookup	in	a	B-tree	depends	on	where	the	search	key	is	located.	A
lookup	on	a	B+-tree	requires	traversal	of	a	path	from	the	root	of	the	tree	to	some	leaf	node.	In	contrast,	it
is	sometimes	possible	to	find	the	desired	value	in	a	B-tree	before	reaching	a	leaf	node.	However,	roughly	n
times	as	many	keys	are	stored	in	the	leaf	level	of	a	B-tree	as	in	the	nonleaf	levels,	and,	since	n	is	typically
large,	the	benefit	of	finding	certain	values	early	is	relatively	small.	Moreover,	the	fact	that	fewer	search
keys	appear	in	a	nonleaf	B-tree	node,	compared	to	B+-trees,	implies	that	a	B-tree	has	a	smaller	fanout
and	therefore	may	have	depth	greater	than	that	of	the	corresponding	B+-tree.	Thus,	lookup	in	a	B-tree	is
faster	for	some	search	keys	but	slower	for	others,	although,	in	general,	lookup	time	is	still	proportional	to
the	logarithm	of	the	number	of	search	keys.

Deletion	in	a	B-tree	is	more	complicated.	In	a	B+-tree,	the	deleted	entry	always	appears	in	a	leaf.	In	a	B-
tree,	the	deleted	entry	may	appear	in	a	nonleaf	node.	The	proper	value	must	be	selected	as	a	replacement
from	the	subtree	of	the	node	containing	the	deleted	entry.	Specifically,	if	search	key	K	is	deleted,	the
smallest	search	key	appearing	i

in	the	subtree	of	pointer	P

must	be	moved	to	the	field	formerly	occupied	by	K	.

i	+	1

i

Further	actions	need	to	be	taken	if	the	leaf	node	now	has	too	few	entries.	In	contrast,	insertion	in	a	B-tree
is	only	slightly	more	complicated	than	is	insertion	in	a	B+-tree.

The	space	advantages	of	B-trees	are	marginal	for	large	indices	and	usually	do	not	outweigh	the
disadvantages	that	we	have	noted.	Thus,	pretty	much	all	database-system	implementations	use	the	B+-
tree	data	structure,	even	if	(as	we	discussed	earlier)	they	refer	to	the	data	structure	as	a	B-tree.

14.4.6

Indexing	on	Flash	Storage

In	our	description	of	indexing	so	far,	we	have	assumed	that	data	are	resident	on	magnetic	disks.	Although
this	assumption	continues	to	be	true	for	the	most	part,	flash	storage	capacities	have	grown	significantly,
and	the	cost	of	flash	storage	per	gigabyte	has	dropped	correspondingly,	and	flash	based	SSD	storage	has
now	replaced	magnetic-disk	storage	for	many	applications.

14.4

B+-Tree	Extensions

657

Standard	B+-tree	indices	can	continue	to	be	used	even	on	SSDs,	with	acceptable	update	performance	and
significantly	improved	lookup	performance	compared	to	disk	storage.

Flash	storage	is	structured	as	pages,	and	the	B+-tree	index	structure	can	be	used	with	flash	based	SSDs.
SSDs	provide	much	faster	random	I/O	operations	than	magnetic	disks,	requiring	only	around	20	to	100
microseconds	for	a	random	page	read,	instead	of	about	5	to	10	milliseconds	with	magnetic	disks.	Thus,
lookups	run	much	faster	with	data	on	SSDs,	compared	to	data	on	magnetic	disks.

The	performance	of	write	operations	is	more	complicated	with	flash	storage.	An	important	difference
between	flash	storage	and	magnetic	disks	is	that	flash	storage	does	not	permit	in-place	updates	to	data	at
the	physical	level,	although	it	appears	to	do	so	logically.	Every	update	turns	into	a	copy+write	of	an	entire
flash-storage	page,	requiring	the	old	copy	of	the	page	to	be	erased	subsequently.	A	new	page	can	be
written	in	20	to	100	microseconds,	but	eventually	old	pages	need	to	be	erased	to	free	up	the	pages	for
further	writes.	Erases	are	done	at	the	level	of	blocks	containing	multiple	pages,	and	a	block	erase	takes	2
to	5	milliseconds.

The	optimum	B+-tree	node	size	for	flash	storage	is	smaller	than	that	with	magnetic	disk,	since	flash	pages
are	smaller	than	disk	blocks;	it	makes	sense	for	tree-node	sizes	to	match	to	flash	pages,	since	larger
nodes	would	lead	to	multiple	page	writes	when	a	node	is	updated.	Although	smaller	pages	lead	to	taller
trees	and	more	I/O	operations	to	access	data,	random	page	reads	are	so	much	faster	with	flash	storage
that	the	overall	impact	on	read	performance	is	quite	small.

Although	random	I/O	is	much	cheaper	with	SSDs	than	with	magnetic	disks,	bulk	loading	still	provides
significant	performance	benefits,	compared	to	tuple-at-a-time	insertion,	with	SSDs.	In	particular,	bottom-
up	construction	reduces	the	number	of	page	writes	compared	to	tuple-at-a-time	insertion,	even	if	the
entries	are	sorted	on	the	search	key.	Since	page	writes	on	flash	cannot	be	done	in	place	and	require
relatively	expensive	block	erases	at	a	later	point	in	time,	the	reduction	of	number	of	page	writes	with
bottom-up	B+-tree	construction	provides	significant	performance	benefits.

Several	extensions	and	alternatives	to	B+-trees	have	been	proposed	for	flash	storage,	with	a	focus	on
reducing	the	number	of	erase	operations	that	result	due	to	page	rewrites.	One	approach	is	to	add	buffers
to	internal	nodes	of	B+-trees	and	record	updates	temporarily	in	buffers	at	higher	levels,	pushing	the
updates	down	to	lower	levels	lazily.	The	key	idea	is	that	when	a	page	is	updated,	multiple	updates	are
applied	together,	reducing	the	number	of	page	writes	per	update.	Another	approach	creates	multiple
trees	and	merges	them;	the	log-structured	merge	tree	and	its	variants	are	based	on	this	idea.	In	fact,	both
these	approaches	are	also	useful	for	reducing	the	cost	of	writes	on	magnetic	disks;	we	outline	both	these
approaches	in	Section	14.8.

14.4.7

Indexing	in	Main	Memory

Main	memory	today	is	large	and	cheap	enough	that	many	organizations	can	afford	to	buy	enough	main

memory	to	fit	all	their	operational	data	in-memory.	B+-trees	can

658

Chapter	14

Indexing

be	used	to	index	in-memory	data,	with	no	change	to	the	structure.	However,	some	optimizations	are
possible.

First,	since	memory	is	costlier	than	disk	space,	internal	data	structures	in	main	memory	databases	have	to
be	designed	to	reduce	space	requirements.	Techniques	that	we	saw	in	Section	14.4.1	to	improve	B+-tree
storage	utilization	can	be	used	to	reduce	memory	usage	for	in-memory	B+-trees.

Data	structures	that	require	traversal	of	multiple	pointers	are	acceptable	for	in-memory	data,	unlike	in
the	case	of	disk-based	data,	where	the	cost	of	the	I/Os	to	traverse	multiple	pages	would	be	excessively
high.	Thus,	tree	structures	in	main	memory	databases	can	be	relatively	deep,	unlike	B+-trees.

The	speed	difference	between	cache	memory	and	main	memory,	and	the	fact	that	data	are	transferred
between	main	memory	and	cache	in	units	of	a	cache-line	(typically	about	64	bytes),	results	in	a	situation
where	the	relationship	between	cache	and	main	memory	is	not	dissimilar	to	the	relationship	between
main	memory	and	disk	(although	with	smaller	speed	differences).	When	reading	a	memory	location,	if	it	is
present	in	cache	the	CPU	can	complete	the	read	in	1	or	2	nanoseconds,	whereas	a	cache	miss	results	in
about	50	to	100	nanoseconds	of	delay	to	read	data	from	main	memory.

B+-trees	with	small	nodes	that	fit	in	a	cache	line	have	been	found	to	provide	very	good	performance	with
in-memory	data.	Such	B+-trees	allow	index	operations	to	be	completed	with	far	fewer	cache	misses	than
tall,	skinny	tree	structures	such	as	binary	trees,	since	each	node	traversal	is	likely	to	result	in	a	cache
miss.	Compared	to	B+-trees	with	nodes	that	match	cache	lines,	trees	with	large	nodes	also	tend	to	have
more	cache	misses	since	locating	data	within	a	node	requires	either	a	full	scan	of	the	node	content,
spanning	multiple	cache	lines,	or	a	binary	search,	which	also	results	in	multiple	cache	misses.

For	databases	where	data	do	not	fit	entirely	in	memory,	but	frequently	used	data	are	often	memory
resident,	the	following	idea	is	used	to	create	B+-tree	structures	that	offer	good	performance	on	disk	as
well	as	in-memory.	Large	nodes	are	used	to	optimize	disk-based	access,	but	instead	of	treating	data	in	a
node	as	single	large	array	of	keys	and	pointers,	the	data	within	a	node	are	structured	as	a	tree,	with
smaller	nodes	that	match	the	size	of	a	cache	line.	Instead	of	scanning	data	linearly	or	using	binary	search
within	a	node,	the	tree-structure	within	the	large	B+-tree	node	is	used	to	access	the	data	with	a	minimal
number	of	cache	misses.

14.5

Hash	Indices

Hashing	is	a	widely	used	technique	for	building	indices	in	main	memory;	such	indices	may	be	transiently
created	to	process	a	join	operation	(as	we	will	see	in	Section	15.5.5)	or	may	be	a	permanent	structure	in	a
main	memory	database.	Hashing	has	also	been	used	as	a	way	of	organizing	records	in	a	file,	although
hash	file	organizations	are	not	very	widely	used.	We	initially	consider	only	in-memory	hash	indices,	and
we	consider	disk-based	hashing	later	in	this	section.

14.5

Hash	Indices

659

In	our	description	of	hashing,	we	shall	use	the	term	bucket	to	denote	a	unit	of	storage	that	can	store	one
or	more	records.	For	in-memory	hash	indices,	a	bucket	could	be	a	linked	list	of	index	entries	or	records.
For	disk-based	indices,	a	bucket	would	be	a	linked	list	of	disk	blocks.	In	a	hash	file	organization,	instead	of
record	pointers,	buckets	store	the	actual	records;	such	structures	only	make	sense	with	disk-resident
data.	The	rest	of	our	description	does	not	depend	on	whether	the	buckets	store	record	pointers	or	actual
records.

Formally,	let	K	denote	the	set	of	all	search-key	values,	and	let	B	denote	the	set	of	all	bucket	addresses.	A
hash	function	h	is	a	function	from	K	to	B.	Let	h	denote	a	hash	function.	With	in-memory	hash	indices,	the
set	of	buckets	is	simply	an	array	of	pointers,	with	the	i	th	bucket	at	offset	i.	Each	pointer	stores	the	head
of	a	linked	list	containing	the	entries	in	that	bucket.

To	insert	a	record	with	search	key	K	,	we	compute	h(K),	which	gives	the	address	i

i

of	the	bucket	for	that	record.	We	add	the	index	entry	for	the	record	to	the	list	at	offset	i.	Note	that	there
are	other	variants	of	hash	indices	that	handle	the	case	of	multiple	records	in	a	bucket	differently;	the	form
described	here	is	the	most	widely	used	variant	and	is	called	overflow	chaining.

Hash	indexing	using	overflow	chaining	is	also	called	closed	addressing	(or,	less	commonly,	closed
hashing).	An	alternative	hashing	scheme	called	open	addressing	is	used	in	some	applications,	but	is	not
suitable	for	most	database	indexing	applications	since	open	addressing	does	not	support	deletes
efficiently.	We	do	not	consider	it	further.

Hash	indices	efficiently	support	equality	queries	on	search	keys.	To	perform	a	lookup	on	a	search-key
value	K	,	we	simply	compute	h(K),	then	search	the	bucket	with	i

i

that	address.	Suppose	that	two	search	keys,	K	and	K	,	have	the	same	hash	value;	that	5

7

is,	h(K)	=	h(K).	If	we	perform	a	lookup	on	K	,	the	bucket	h(K)	contains	records	5

7

5

5

with	search-key	values	K	and	records	with	search-key	values	K	.	Thus,	we	have	to	check	5

7

the	search-key	value	of	every	record	in	the	bucket	to	verify	that	the	record	is	one	that	we	want.

Unlike	B+-tree	indices,	hash	indices	do	not	support	range	queries;	for	example,	a	query	that	wishes	to
retrieve	all	search	key	values	v	such	that	l	≤	v	≤	u	cannot	be	efficiently	answered	using	a	hash	index.

Deletion	is	equally	straightforward.	If	the	search-key	value	of	the	record	to	be	deleted	is	K	,	we	compute
h(K),	then	search	the	corresponding	bucket	for	that	record	i

i

and	delete	the	record	from	the	bucket.	With	a	linked	list	representation,	deletion	from	the	linked	list	is
straightforward.

In	a	disk-based	hash	index,	when	we	insert	a	record,	we	locate	the	bucket	by	using	hashing	on	the	search
key,	as	described	earlier.	Assume	for	now	that	there	is	space	in	the	bucket	to	store	the	record.	Then,	the
record	is	stored	in	that	bucket.	If	the	bucket	does	not	have	enough	space,	a	bucket	overflow	is	said	to
occur.	We	handle	bucket	overflow	by	using	overflow	buckets.	If	a	record	must	be	inserted	into	a	bucket	b,
and	b	is	already	full,	the	system	provides	an	overflow	bucket	for	b	and	inserts	the	record	into	the	overflow
bucket.	If	the	overflow	bucket	is	also	full,	the	system	provides	another	overflow	bucket,	and	so	on.	All	the
overflow	buckets	of	a	given	bucket	are	chained	together	in	a	linked

660

Chapter	14

Indexing

bucket	0

bucket	1

overflow	buckets	for	bucket	1

bucket	2

bucket	3

Figure	14.25	Overflow	chaining	in	a	disk-based	hash	structure.

list,	as	in	Figure	14.25.	With	overflow	chaining,	given	search	key	k,	the	lookup	algorithm	must	then
search	not	only	bucket	h(k),	but	also	the	overflow	buckets	linked	from	bucket	h(k).

Bucket	overflow	can	occur	if	there	are	insufficient	buckets	for	the	given	number	of	records.	If	the	number
of	records	that	are	indexed	is	known	ahead	of	time,	the	required	number	of	buckets	can	be	allocated;	we
will	shortly	see	how	to	deal	with	situations	where	the	number	of	records	becomes	significantly	more	than
what	was	initially	anticipated.	Bucket	overflow	can	also	occur	if	some	buckets	are	assigned	more	records
than	are	others,	resulting	in	one	bucket	overflowing	even	when	other	buckets	still	have	a	lot	of	free	space.

Such	skew	in	the	distribution	of	records	can	occur	if	multiple	records	may	have	the	same	search	key.	But
even	if	there	is	only	one	record	per	search	key,	skew	may	occur	if	the	chosen	hash	function	results	in
nonuniform	distribution	of	search	keys.

This	chance	of	this	problem	can	be	minimized	by	choosing	hash	functions	carefully,	to	ensure	the
distribution	of	keys	across	buckets	is	uniform	and	random.	Nevertheless,	some	skew	may	occur.

So	that	the	probability	of	bucket	overflow	is	reduced,	the	number	of	buckets	is	chosen	to	be	(n	∕	f)	∗	(1	+
d),	where	n	denotes	the	number	of	records,	f	denotes	the	r

r

r

r

number	of	records	per	bucket,	d	is	a	fudge	factor,	typically	around	0	.	2.	With	a	fudge	factor	of	0	.	2,	about
20	percent	of	the	space	in	the	buckets	will	be	empty.	But	the	benefit	is	that	the	probability	of	overflow	is
reduced.

Despite	allocation	of	a	few	more	buckets	than	required,	bucket	overflow	can	still	occur,	especially	if	the
number	of	records	increases	beyond	what	was	initially	expected.

14.6

Multiple-Key	Access

661

Hash	indexing	as	described	above,	where	the	number	of	buckets	is	fixed	when	the	index	is	created,	is
called	static	hashing.	One	of	the	problems	with	static	hashing	is	that	we	need	to	know	how	many	records
are	going	to	be	stored	in	the	index.	If	over	time	a	large	number	of	records	are	added,	resulting	in	far	more
records	than	buckets,	lookups	would	have	to	search	through	a	large	number	of	records	stored	in	a	single
bucket,	or	in	one	or	more	overflow	buckets,	and	would	thus	become	inefficient.

To	handle	this	problem,	the	hash	index	can	be	rebuilt	with	an	increased	number	of	buckets.	For	example,
if	the	number	of	records	becomes	twice	the	number	of	buckets,	the	index	can	be	rebuilt	with	twice	as
many	buckets	as	before.	However,	rebuilding	the	index	has	the	drawback	that	it	can	take	a	long	time	if
the	relations	are	large,	causing	disruption	of	normal	processing.	Several	schemes	have	been	proposed
that	allow	the	number	of	buckets	to	be	increased	in	a	more	incremental	fashion.	Such	schemes	are	called
dynamic	hashing	techniques;	the	linear	hashing	technique	and	the	extendable	hashing	technique	are	two
such	schemes;	see	Section	24.5	for	further	details	of	these	techniques.

14.6

Multiple-Key	Access

Until	now,	we	have	assumed	implicitly	that	only	one	index	on	one	attribute	is	used	to	process	a	query	on	a
relation.	However,	for	certain	types	of	queries,	it	is	advantageous	to	use	multiple	indices	if	they	exist,	or
to	use	an	index	built	on	a	multiattribute	search	key.

14.6.1

Using	Multiple	Single-Key	Indices

Assume	that	the	instructor	file	has	two	indices:	one	for	dept	name	and	one	for	salary.

Consider	the	following	query:	“Find	all	instructors	in	the	Finance	department	with	salary	equal	to
$80,000.”	We	write

select	ID

from	instructor

where	dept	name	=	'Finance'	and	salary	=	80000;

There	are	three	strategies	possible	for	processing	this	query:

1.	Use	the	index	on	dept	name	to	find	all	records	pertaining	to	the	Finance	department.	Examine	each
such	record	to	see	whether	salary	=	80000.

2.	Use	the	index	on	salary	to	find	all	records	pertaining	to	instructors	with	salary	of	$80,000.	Examine
each	such	record	to	see	whether	the	department	name	is

“Finance”.

662

Chapter	14

Indexing

3.	Use	the	index	on	dept	name	to	find	pointers	to	all	records	pertaining	to	the	Finance	department.	Also,
use	the	index	on	salary	to	find	pointers	to	all	records	pertaining	to	instructors	with	a	salary	of	$80,000.
Take	the	intersection	of	these	two	sets	of	pointers.	Those	pointers	that	are	in	the	intersection	point	to
records	pertaining	to	instructors	of	the	Finance	department	and	with	salary	of	$80,000.

The	third	strategy	is	the	only	one	of	the	three	that	takes	advantage	of	the	existence	of	multiple	indices.
However,	even	this	strategy	may	be	a	poor	choice	if	all	of	the	following	hold:

•	There	are	many	records	pertaining	to	the	Finance	department.

•	There	are	many	records	pertaining	to	instructors	with	a	salary	of	$80,000.

•	There	are	only	a	few	records	pertaining	to	both	the	Finance	department	and	instructors	with	a	salary	of
$80,000.

If	these	conditions	hold,	we	must	scan	a	large	number	of	pointers	to	produce	a	small	result.	An	index
structure	called	a	“bitmap	index”	can	in	some	cases	greatly	speed	up	the	intersection	operation	used	in
the	third	strategy.	Bitmap	indices	are	outlined	in	Section	14.9.

14.6.2

Indices	on	Multiple	Keys

An	alternative	strategy	for	this	case	is	to	create	and	use	an	index	on	a	composite	search	key	(dept	name,
salary)	—	that	is,	the	search	key	consisting	of	the	department	name	concatenated	with	the	instructor
salary.

We	can	use	an	ordered	(B+-tree)	index	on	the	preceding	composite	search	key	to	answer	efficiently
queries	of	the	form

select	ID

from	instructor

where	dept	name	=	'Finance'	and	salary	=	80000;

Queries	such	as	the	following	query,	which	specifies	an	equality	condition	on	the	first	attribute	of	the
search	key	(dept	name)	and	a	range	on	the	second	attribute	of	the	search	key	(salary),	can	also	be
handled	efficiently	since	they	correspond	to	a	range	query	on	the	search	attribute.

select	ID

from	instructor

where	dept	name	=	'Finance'	and	salary	<	80000;

We	can	even	use	an	ordered	index	on	the	search	key	(dept	name,	salary)	to	answer	the	following	query	on
only	one	attribute	efficiently:

14.6

Multiple-Key	Access

663

select	ID

from	instructor

where	dept	name	=	'Finance';

An	equality	condition	dept	name	=	“Finance”	is	equivalent	to	a	range	query	on	the	range	with	lower	end
(Finance,	−∞)	and	upper	end	(Finance,	+∞).	Range	queries	on	just	the	dept	name	attribute	can	be
handled	in	a	similar	manner.

The	use	of	an	ordered-index	structure	on	a	composite	search	key,	however,	has	a	few	shortcomings.	As	an
illustration,	consider	the	query

select	ID

from	instructor

where	dept	name	<	'Finance'	and	salary	<	80000;

We	can	answer	this	query	by	using	an	ordered	index	on	the	search	key	(dept	name,	salary):	For	each
value	of	dept	name	that	is	less	than	“Finance”	in	alphabetic	order,	the	system	locates	records	with	a
salary	value	of	80000.	However,	each	record	is	likely	to	be	in	a	different	disk	block,	because	of	the
ordering	of	records	in	the	file,	leading	to	many	I/O	operations.

The	difference	between	this	query	and	the	previous	two	queries	is	that	the	condition	on	the	first	attribute
(dept	name)	is	a	comparison	condition,	rather	than	an	equality	condition.	The	condition	does	not
correspond	to	a	range	query	on	the	search	key.

To	speed	the	processing	of	general	composite	search-key	queries	(which	can	involve	one	or	more
comparison	operations),	we	can	use	several	special	structures.	We	shall	consider	bitmap	indices	in
Section	14.9.	There	is	another	structure,	called	the	R-tree,	that	can	be	used	for	this	purpose.	The	R-tree	is
an	extension	of	the	B+-tree	to	handle	indexing	on	multiple	dimensions	and	is	discussed	in	Section	14.10.1.

14.6.3

Covering	Indices

Covering	indices	are	indices	that	store	the	values	of	some	attributes	(other	than	the	search-key	attributes)
along	with	the	pointers	to	the	record.	Storing	extra	attribute	values	is	useful	with	secondary	indices,	since
they	allow	us	to	answer	some	queries	using	just	the	index,	without	even	looking	up	the	actual	records.

For	example,	suppose	that	we	have	a	nonclustering	index	on	the	ID	attribute	of	the	instructor	relation.	If
we	store	the	value	of	the	salary	attribute	along	with	the	record	pointer,	we	can	answer	queries	that
require	the	salary	(but	not	the	other	attribute,	dept	name)	without	accessing	the	instructor	record.

The	same	effect	could	be	obtained	by	creating	an	index	on	the	search	key	(ID,	salary),	but	a	covering
index	reduces	the	size	of	the	search	key,	allowing	a	larger	fanout	in	the	nonleaf	nodes,	and	potentially
reducing	the	height	of	the	index.

664

Chapter	14

Indexing

14.7

Creation	of	Indices

Although	the	SQL	standard	does	not	specify	any	specific	syntax	for	creation	of	indices,	most	databases
support	SQL	commands	to	create	and	drop	indices.	As	we	saw	in	Section	4.6,	indices	can	be	created	using
the	following	syntax,	which	is	supported	by	most	databases.

create	index	<	index-name	>	on	<	relation-name	>	(<	attribute-list	>);	The	attribute-list	is	the	list	of
attributes	of	the	relations	that	form	the	search	key	for	the	index.	Indices	can	be	dropped	using	a
command	of	the	form

drop	index	<	index-name	>;

For	example,	to	define	an	index	named	dept	index	on	the	instructor	relation	with	dept	name	as	the	search
key,	we	write:

create	index	dept	index	on	instructor	(dept	name);	To	declare	that	an	attribute	or	list	of	attributes	is	a
candidate	key,	we	can	use	the	syntax	create	unique	index	in	place	of	create	index	above.	Databases	that
support	multiple	types	of	indices	also	allow	the	type	of	index	to	be	specified	as	part	of	the	index	creation
command.	Refer	to	the	manual	of	your	database	system	to	find	out	what	index	types	are	available,	and	the
syntax	for	specifying	the	index	type.

When	a	user	submits	an	SQL	query	that	can	benefit	from	using	an	index,	the	SQL

query	processor	automatically	uses	the	index.

Indices	can	be	very	useful	on	attributes	that	participate	in	selection	conditions	or	join	conditions	of
queries,	since	they	can	reduce	the	cost	of	queries	significantly.	Consider	a	query	that	retrieves	takes
records	for	a	particular	student	ID	12345	(expressed	in	relational	algebra	as	σ

(takes)).	If	there	were	an	index	on	the	ID	attribute	of

ID=12345

takes,	pointers	to	the	required	records	could	be	obtained	with	only	a	few	I/O	operations.	Since	students
typically	only	take	a	few	tens	of	courses,	even	fetching	the	actual	records	would	take	only	a	few	tens	of
I/O	operations	subsequently.	In	contrast,	in	the	absence	of	this	index,	the	database	system	would	be
forced	to	read	all	takes	records	and	select	those	with	matching	ID	values.	Reading	an	entire	relation	can
be	very	expensive	if	there	are	a	large	number	of	students.

However,	indices	do	have	a	cost,	since	they	have	to	be	updated	whenever	there	is	an	update	to	the
underlying	relation.	Creating	too	many	indices	would	slow	down	update	processing,	since	each	update
would	have	to	also	update	all	affected	indices.

Sometimes	performance	problems	are	apparent	during	testing,	for	example,	if	a	query	takes	tens	of
seconds,	it	is	clear	that	it	is	quite	slow.	However,	suppose	each	query	takes	1	second	to	scan	a	large
relation	without	an	index,	versus	10	milliseconds	to	retrieve	the	same	records	using	an	index.	If	testers
run	one	query	at	a	time,	queries

14.8

Write-Optimized	Index	Structures

665

respond	quickly,	even	without	an	index.	However,	suppose	that	the	queries	are	part	of	a	registration
system	that	is	used	by	a	thousand	students	in	an	hour,	and	the	actions	of	each	student	require	10	such
queries	to	be	executed.	The	total	execution	time	would	then	be	10,000	seconds	for	queries	submitted	in	1
hour,	that	is,	3600	seconds.	Students	are	then	likely	to	find	that	the	registration	system	is	extremely	slow,
or	even	totally	unre-sponsive.	In	contrast,	if	the	required	indices	were	present,	the	execution	time
required	would	be	100	seconds	for	queries	submitted	in	1	hour,	and	the	performance	of	the	registration
system	would	be	very	good.

It	is	therefore	important	when	building	an	application	to	figure	out	which	indices	are	important	for
performance	and	to	create	them	before	the	application	goes	live.

If	a	relation	is	declared	to	have	a	primary	key,	most	database	systems	automatically	create	an	index	on	the
primary	key.	Whenever	a	tuple	is	inserted	into	the	relation,	the	index	can	be	used	to	check	that	the
primary-key	constraint	is	not	violated	(i.e.,	there	are	no	duplicates	on	the	primary-key	value).	Without	the
index	on	the	primary	key,	whenever	a	tuple	is	inserted,	the	entire	relation	has	to	be	scanned	to	ensure
that	the	primary-key	constraint	is	satisfied.

Although	most	database	systems	do	not	automatically	create	them,	it	is	often	a	good	idea	to	create	indices

on	foreign-key	attributes,	too.	Most	joins	are	between	foreign-key	and	primary-key	attributes,	and	queries
containing	such	joins,	where	there	is	also	a	selection	condition	on	the	referenced	table,	are	not
uncommon.	Consider	a	query	takes	⋈	σ

(student),	where	the	foreign-key	attribute	ID	of	takes	refer-name=Shankar

ences	the	primary-key	attribute	ID	of	student.	Since	very	few	students	are	likely	to	be	named	Shankar,	the
index	on	the	foreign-key	attribute	takes.ID	can	be	used	to	efficiently	retrieve	the	takes	tuples
corresponding	to	these	students.

Many	database	systems	provide	tools	that	help	database	administrators	track	what	queries	and	updates
are	being	executed	on	the	system	and	recommend	the	creation	of	indices	depending	on	the	frequencies	of
the	queries	and	updates.	Such	tools	are	referred	to	as	index	tuning	wizards	or	advisors.

Some	recent	cloud-based	database	systems	also	support	completely	automated	creation	of	indices
whenever	the	system	finds	that	doing	so	would	avoid	repeated	relation	scans,	without	the	intervention	of
a	database	administrator.

14.8

Write-Optimized	Index	Structures

One	of	the	drawbacks	of	the	B+-tree	index	structure	is	that	performance	can	be	quite	poor	with	random
writes.	Consider	an	index	that	is	too	large	to	fit	in	memory;	since	the	bulk	of	the	space	is	at	the	leaf	level,
and	memory	sizes	are	quite	large	these	days,	we	assume	for	simplicity	that	higher	levels	of	the	index	fit	in
memory.

Now	suppose	writes	or	inserts	are	done	in	an	order	that	does	not	match	the	sort	order	of	the	index.	Then,
each	write/insert	is	likely	to	touch	a	different	leaf	node;	if	the	number	of	leaf	nodes	is	significantly	larger
than	the	buffer	size,	most	of	these	leaf	accesses	would	require	a	random	read	operation,	as	well	as	a
subsequent	write	operation

666

Chapter	14

Indexing

to	write	the	updated	leaf	page	back	to	disk.	On	a	system	with	a	magnetic	disk,	with	a	10-millisecond
access	time,	the	index	would	support	not	more	than	100	writes/inserts	per	second	per	disk;	and	this	is	an
optimistic	estimate,	assuming	that	the	seek	takes	the	bulk	of	the	time,	and	the	head	has	not	moved
between	the	read	and	the	write	of	a	leaf	page.	On	a	system	with	flash	based	SSDs,	random	I/O	is	much
faster,	but	a	page	write	still	has	a	significant	cost	since	it	(eventually)	requires	a	page	erase,	which	is	an
expensive	operation.	Thus,	the	basic	B+-tree	structure	is	not	ideal	for	applications	that	need	to	support	a
very	large	number	of	random	writes/inserts	per	second.

Several	alternative	index	structures	have	been	proposed	to	handle	workloads	with	a	high	write/insert
rate.	The	log-structured	merge	tree	or	LSM	tree	and	its	variants	are	write-optimized	index	structures	that
have	seen	very	significant	adoption.	The	buffer	tree	is	an	alternative	approach,	which	can	be	used	with	a
variety	of	search	tree	structures.	We	outline	these	structures	in	the	rest	of	this	section.

14.8.1

LSM	Trees

An	LSM	tree	consists	of	several	B+-trees,	starting	with	an	in-memory	tree,	called	L	,	0

and	on-disk	trees	L	,	L	,	…	,	L	for	some	k,	where	k	is	called	the	level.	Figure	14.26

1

2

k

depicts	the	structure	of	an	LSM	tree	for	k	=	3.

An	index	lookup	is	performed	by	using	separate	lookup	operations	on	each	of	the	trees	L	,	…	,	L	,	and
merging	the	results	of	the	lookups.	(We	assume	for	now	that	0

k

there	are	only	inserts,	and	no	updates	or	deletes;	index	lookups	in	the	presence	of	updates/deletes	are
more	complicated	and	are	discussed	later.)

When	a	record	is	first	inserted	into	an	LSM	tree,	it	is	inserted	into	the	in-memory	B+-tree	structure	L	.	A
fairly	large	amount	of	memory	space	is	allocated	for	this	tree.

0

The	tree	grows	as	more	inserts	are	processed,	until	it	fills	the	memory	allocated	to	it.

At	this	point,	we	need	to	move	data	from	the	in-memory	structure	to	a	B+-tree	on	disk.

L	0

Memory

L	1

Disk

L	2

L	3

Figure	14.26	Log-structured	merge	tree	with	three	levels.

14.8

Write-Optimized	Index	Structures

667

If	tree	L	is	empty,	the	entire	in-memory	tree	L	is	written	to	disk	to	create	the	1

0

initial	tree	L	.	However,	if	L	is	not	empty,	the	leaf	level	of	L	is	scanned	in	increasing	1

1

0

key	order,	and	entries	are	merged	with	the	leaf	level	entries	of	L	(also	scanned	in	1

increasing	key	order).	The	merged	entries	are	used	to	create	a	new	B+-tree,	using	the	bottom-up	build
process.	The	new	tree	with	the	merged	entries	then	replaces	the	old	L	.	In	either	case,	after	entries	of	L
have	been	moved	to	L	,	all	entries	in	L	as	well	1

0

1

0

as	the	old	L	,	if	it	existed,	are	deleted.	Inserts	can	then	be	made	to	the	now	empty	L

1

0

in-memory.

Note	that	all	entries	in	the	leaf	level	of	the	old	L	tree,	including	those	in	leaf	nodes	1

that	do	not	have	any	updates,	are	copied	to	the	new	tree	instead	of	performing	updates	on	the	existing	L
tree	node.	This	gives	the	following	benefits.

1

1.	The	leaves	of	the	new	tree	are	sequentially	located,	avoiding	random	I/O	during	subsequent	merges.

2.	The	leaves	are	full,	avoiding	the	overhead	of	partially	occupied	leaves	that	can	occur	with	page	splits.

There	is,	however,	a	cost	to	using	the	LSM	structure	as	described	above:	the	entire	contents	of	the	tree

are	copied	each	time	a	set	of	entries	from	L	are	copied	into	L	.

0

1

One	of	two	techniques	is	used	to	reduce	this	cost:

1.	Multiple	levels	are	used,	with	level	L

trees	having	a	maximum	size	that	is	k

i+1

times	the	maximum	size	of	level	L	trees.	Thus,	each	record	is	written	at	most	k	i

times	at	a	particular	level.	The	number	of	levels	is	proportional	log	(I	∕	M)	where	k

I	is	the	number	of	entries	and	M	is	the	number	of	entries	that	fit	in	the	in-memory	tree	L	.

0

2.	Each	level	(other	than	L)	can	have	up	to	some	number	b	of	trees,	instead	of	0

just	1	tree.	When	an	L	tree	is	written	to	disk,	a	new	L	tree	is	created	instead	0

1

of	merging	it	with	an	existing	L	tree.	When	there	are	b	such	L	trees,	they	are	1

1

merged	into	a	single	new	L	tree.	Similarly,	when	there	are	b	trees	at	level	L	they	2

i

are	merged	into	a	new	L

tree.

i+1

This	variant	of	the	LSM	tree	is	called	a	stepped-merge	index.	The	stepped-merge	index	decreases	the
insert	cost	significantly	compared	to	having	only	one	tree	per	level,	but	it	can	result	in	an	increase	in
query	cost,	since	multiple	trees	may	need	to	be	searched.	Bitmap-based	structures	called	Bloom	filters,
described	in	Section	24.1,	are	used	to	reduce	the	number	of	lookups	by	efficiently	detecting	that	a	search
key	is	not	present	in	a	particular	tree.	Bloom	filters	occupy	very	little	space,	but	they	are	quite	effective	at
reducing	query	cost.

Details	of	all	these	variants	of	LSM	trees	can	be	found	in	Section	24.2.

So	far	we	have	only	described	inserts	and	lookups.	Deletes	are	handled	in	an	interesting	manner.	Instead
of	directly	finding	an	index	entry	and	deleting	it,	deletion

668

Chapter	14

Indexing

results	in	insertion	of	a	new	deletion	entry	that	indicates	which	index	entry	is	to	be	deleted.	The	process
of	inserting	a	deletion	entry	is	identical	to	the	process	of	inserting	a	normal	index	entry.

However,	lookups	have	to	carry	out	an	extra	step.	As	mentioned	earlier,	lookups	retrieve	entries	from	all
the	trees	and	merge	them	in	sorted	order	of	key	value.	If	there	is	a	deletion	entry	for	some	entry,	both	of
them	would	have	the	same	key	value.	Thus,	a	lookup	would	find	both	the	deletion	entry	and	the	original
entry	for	that	key,	which	is	to	be	deleted.	If	a	deletion	entry	is	found,	the	to-be-deleted	entry	is	filtered	out
and	not	returned	as	part	of	the	lookup	result.

When	trees	are	merged,	if	one	of	the	trees	contains	an	entry,	and	the	other	had	a	matching	deletion	entry,
the	entries	get	matched	up	during	the	merge	(both	would	have	the	same	key),	and	are	both	discarded.

Updates	are	handled	in	a	manner	similar	to	deletes,	by	inserting	an	update	entry.

Lookups	need	to	match	update	entries	with	the	original	entries	and	return	the	latest	value.	The	update	is
actually	applied	during	a	merge,	when	one	tree	has	an	entry	and	another	has	its	matching	update	entry;
the	merge	process	would	find	a	record	and	an	update	record	with	the	same	key,	apply	the	update,	and
discard	the	update	entry.

LSM	trees	were	initially	designed	to	reduce	the	write	and	seek	overheads	of	magnetic	disks.	Flash	based
SSDs	have	a	relatively	low	overhead	for	random	I/O	operations	since	they	do	not	require	seek,	and	thus
the	benefit	of	avoiding	random	I/O	that	LSM

tree	variants	provide	is	not	particularly	important	with	SSDs.

However,	recall	that	flash	memory	does	not	allow	in-place	update,	and	writing	even	a	single	byte	to	a	page
requires	the	whole	page	to	be	rewritten	to	a	new	physical	location;	the	original	location	of	the	page	needs
to	be	erased	eventually,	which	is	a	relatively	expensive	operation.	The	reduction	in	number	of	writes	using
LSM	tree	variants,	as	compared	to	traditional	B+-trees,	can	provide	substantial	performance	benefits
when	LSM	trees	are	used	with	SSDs.

A	variant	of	the	LSM	tree	similar	to	the	stepped-merge	index,	with	multiple	trees	in	each	layer,	was	used
in	Google’s	BigTable	system,	as	well	as	in	Apache	HBase,	the	open	source	clone	of	BigTable.	These
systems	are	built	on	top	of	distributed	file	systems	that	allow	appends	to	files	but	do	not	support	updates
to	existing	data.	The	fact	that	LSM

trees	do	not	perform	in-place	update	made	LSM	trees	a	very	good	fit	for	these	systems.

Subsequently,	a	large	number	of	BigData	storage	systems	such	as	Apache	Cassandra,	Apache	AsterixDB,
and	MongoDB	added	support	for	LSM	trees,	with	most	implementing	versions	with	multiple	trees	in	each
layer.	LSM	trees	are	also	supported	in	MySQL	(using	the	MyRocks	storage	engine)	and	in	the	embedded
database	systems	SQLite4	and	LevelDB.

14.8.2

Buffer	Tree

The	buffer	tree	is	an	alternative	to	the	log-structured	merge	tree	approach.	The	key	idea	behind	the
buffer	tree	is	to	associate	a	buffer	with	each	internal	node	of	a	B+-tree,

14.8

Write-Optimized	Index	Structures

669

Internal	node

p

p

p

p

p

k

k

k

k

k

p

1

1

2

2

3

3

4

4

5

5

6

Buffer

Figure	14.27	Structure	of	an	internal	node	of	a	buffer	tree.

including	the	root	node;	this	is	depicted	pictorially	in	Figure	14.27.	We	first	outline	how	inserts	and
lookups	are	handled,	and	subsequently	we	outline	how	deletes	and	updates	are	handled.

When	an	index	record	is	inserted	into	the	buffer	tree,	instead	of	traversing	the	tree	to	the	leaf,	the	index
record	is	inserted	into	the	buffer	of	the	root.	If	the	buffer	becomes	full,	each	index	record	in	the	buffer	is
pushed	one	level	down	the	tree	to	the	appropriate	child	node.	If	the	child	node	is	an	internal	node,	the
index	record	is	added	to	the	child	node’s	buffer;	if	that	buffer	is	full,	all	records	in	that	buffer	are	similarly
pushed	down.

All	records	in	a	buffer	are	sorted	on	the	search	key	before	being	pushed	down.	If	the	child	node	is	a	leaf
node,	index	records	are	inserted	into	the	leaf	in	the	usual	manner.	If	the	insert	results	in	an	overfull	leaf
node,	the	node	is	split	in	the	usual	B+-tree	manner,	with	the	split	potentially	propagating	to	parent	nodes.
Splitting	of	an	overfull	internal	node	is	done	in	the	usual	way,	with	the	additional	step	of	also	splitting	the
buffer;	the	buffer	entries	are	partitioned	between	the	two	split	nodes	based	on	their	key	values.

Lookups	are	done	by	traversing	the	B+-tree	structure	in	the	usual	way,	to	find	leaves	that	contain	records
matching	the	lookup	key.	But	there	is	one	additional	step:	at	each	internal	node	traversed	by	a	lookup,	the
node’s	buffer	must	be	examined	to	see	if	there	are	any	records	matching	the	lookup	key.	Range	lookups
are	done	as	in	a	normal	B+-

tree,	but	they	must	also	examine	the	buffers	of	all	internal	nodes	above	any	of	the	leaf	nodes	that	are
accessed.

Suppose	the	buffer	at	an	internal	node	holds	k	times	as	many	records	as	there	are	child	nodes.	Then,	on
average,	k	records	would	be	pushed	down	at	a	time	to	each	child	(regardless	of	whether	the	child	is	an
internal	node	or	a	leaf	node).	Sorting	of	records	before	they	are	pushed	ensures	that	all	these	records	are
pushed	down	consecutively.

The	benefit	of	the	buffer-tree	approach	for	inserts	is	that	the	cost	of	accessing	the	child	node	from
storage,	and	of	writing	the	updated	node	back,	is	amortized	(divided),	on	average,	between	k	records.
With	sufficiently	large	k,	the	savings	can	be	quite	significant	compared	to	inserts	in	a	regular	B+-tree.

Deletes	and	updates	can	be	processed	in	a	manner	similar	to	LSM	trees,	using	deletion	entries	or	update
entries.	Alternatively,	deletes	and	updates	could	be	processed	using	the	normal	B+-tree	algorithms,	at	the
risk	of	a	higher	I/O	cost	per	delete/update	as	compared	to	the	cost	when	using	deletion/update	entries.

Buffer	trees	provide	better	worst-case	complexity	bounds	on	the	number	of	I/O

operations	than	do	LSM	tree	variants.	In	terms	of	read	cost,	buffer	trees	are	significantly	faster	than	LSM
trees.	However,	write	operations	on	buffer	trees	involve	random	I/O,

670

Chapter	14

Indexing

requiring	more	seeks,	in	contrast	to	sequential	I/O	operations	with	LSM	tree	variants.

For	magnetic	disk	storage,	the	high	cost	of	seeks	results	in	buffer	trees	performing	worse	than	LSM	trees
on	write-intensive	workloads.	LSM	trees	have	thus	found	greater	acceptance	for	write-intensive
workloads	with	data	stored	on	magnetic	disk.	However,	since	random	I/O	operations	are	very	efficient	on

SSDs,	and	buffer	trees	tend	to	perform	fewer	write	operations	overall	compared	to	LSM	trees,	buffer
trees	can	provide	better	write	performance	on	SSDs.	Several	index	structures	designed	for	flash	storage
make	use	of	the	buffer	concept	introduced	by	buffer	trees.

Another	benefit	of	buffer	trees	is	that	the	key	idea	of	associating	buffers	with	internal	nodes,	to	reduce
the	number	of	writes,	can	be	used	with	any	type	of	tree-structured	index.	For	example,	buffering	has	been
used	as	a	way	of	supporting	bulk	loading	of	spatial	indices	such	as	R-trees	(which	we	study	in	Section
14.10.1),	as	well	as	other	types	of	indices,	for	which	sorting	and	bottom-up	construction	are	not
applicable.

Buffer	trees	have	been	implemented	as	part	of	the	Generalized	Search	Tree	(GiST)	index	structure	in
PostgreSQL.	The	GiST	index	allows	user-defined	code	to	be	executed	to	implement	search,	update,	and
split	operations	on	nodes	and	has	been	used	to	implement	R-trees	and	other	spatial	index	structures.

14.9

Bitmap	Indices

Bitmap	indices	are	a	specialized	type	of	index	designed	for	easy	querying	on	multiple	keys,	although	each
bitmap	index	is	built	on	a	single	key.	We	describe	key	features	of	bitmap	indices	in	this	section	but	provide
further	details	in	Section	24.3.

For	bitmap	indices	to	be	used,	records	in	a	relation	must	be	numbered	sequentially,	starting	from,	say,	0.
Given	a	number	n,	it	must	be	easy	to	retrieve	the	record	numbered	n.	This	is	particularly	easy	to	achieve
if	records	are	fixed	in	size	and	allocated	on	consecutive	blocks	of	a	file.	The	record	number	can	then	be
translated	easily	into	a	block	number	and	a	number	that	identifies	the	record	within	the	block.

Consider	a	relation	with	an	attribute	that	can	take	on	only	one	of	a	small	number	(e.g.,	2	to	20)	of	values.
For	instance,	consider	a	relation	instructor	info,	which	has	(in	addition	to	an	ID	attribute)	an	attribute
gender,	which	can	take	only	values	m	(male)	or	f	(female).	Suppose	the	relation	also	has	an	attribute
income	level,	which	stores	the	income	level,	where	income	has	been	broken	up	into	five	levels:	L	1:	0	–
9999,	L	2:	10,	000

–	19,	999,	L	3:	20,	000	–	39,	999,	L	4:	40,	000	–	74,	999,	and	L	5:	75,	000	−	∞.	Here,	the	raw	data	can	take
on	many	values,	but	a	data	analyst	has	split	the	values	into	a	small	number	of	ranges	to	simplify	analysis
of	the	data.	An	instance	of	this	relation	is	shown	on	the	left	side	of	Figure	14.28.

A	bitmap	is	simply	an	array	of	bits.	In	its	simplest	form,	a	bitmap	index	on	the	attribute	A	of	relation	r
consists	of	one	bitmap	for	each	value	that	A	can	take.	Each	bitmap	has	as	many	bits	as	the	number	of
records	in	the	relation.	The	i	th	bit	of	the	bitmap	for	value	v	is	set	to	1	if	the	record	numbered	i	has	the
value	v	for	attribute	A.

j

j

All	other	bits	of	the	bitmap	are	set	to	0.

14.9

Bitmap	Indices

671

Bitmaps	for	gender

Bitmaps	for

record

income_level

m

10010

ID

gender

income_level

number

L1

10100

0

76766

m

L1

f

01101

1

L2

22222

f

L2

01000

2

12121

f

L1

L3

00001

3

15151

m

L4

L4

00010

4

58583

f

L3

L5

00000

Figure	14.28	Bitmap	indices	on	relation	instructor	info.

In	our	example,	there	is	one	bitmap	for	the	value	m	and	one	for	f.	The	i	th	bit	of	the	bitmap	for	m	is	set	to
1	if	the	gender	value	of	the	record	numbered	i	is	m.	All	other	bits	of	the	bitmap	for	m	are	set	to	0.
Similarly,	the	bitmap	for	f	has	the	value	1	for	bits	corresponding	to	records	with	the	value	f	for	the	gender
attribute;	all	other	bits	have	the	value	0.	Figure	14.28	shows	bitmap	indices	on	the	gender	and	income
level	attributes	of	instructor	info	relation,	for	the	relation	instance	shown	in	the	same	figure.

We	now	consider	when	bitmaps	are	useful.	The	simplest	way	of	retrieving	all	records	with	value	m	(or
value	f)	would	be	to	simply	read	all	records	of	the	relation	and	select	those	records	with	value	m	(or	f,
respectively).	The	bitmap	index	doesn’t	really	help	to	speed	up	such	a	selection.	While	it	would	allow	us	to
read	only	those	records	for	a	specific	gender,	it	is	likely	that	every	disk	block	for	the	file	would	have	to	be
read	anyway.

In	fact,	bitmap	indices	are	useful	for	selections	mainly	when	there	are	selections	on	multiple	keys.
Suppose	we	create	a	bitmap	index	on	attribute	income	level,	which	we	described	earlier,	in	addition	to	the
bitmap	index	on	gender.

Consider	now	a	query	that	selects	women	with	income	in	the	range	10,000	to	19,999.	This	query	can	be
expressed	as

select	*

from	instructor	info

where	gender	=	'f'	and	income	level	=	'L2';

To	evaluate	this	selection,	we	fetch	the	bitmaps	for	gender	value	f	and	the	bitmap	for	income	level	value	L
2,	and	perform	an	intersection	(logical-and)	of	the	two	bitmaps.	In	other	words,	we	compute	a	new	bitmap
where	bit	i	has	value	1	if	the	i	th	bit	of	the	two	bitmaps	are	both	1,	and	has	a	value	0	otherwise.	In	the
example	in	Figure	14.28,	the	intersection	of	the	bitmap	for	gender	=	 	(01101)	and	the	bitmap	for	income
level	=	L	2

(01000)	gives	the	bitmap	01000.

672

Chapter	14

Indexing

Since	the	first	attribute	can	take	two	values,	and	the	second	can	take	five	values,	we	would	expect	only
about	1	in	10	records,	on	an	average,	to	satisfy	a	combined	condition	on	the	two	attributes.	If	there	are
further	conditions,	the	fraction	of	records	satisfying	all	the	conditions	is	likely	to	be	quite	small.	The
system	can	then	compute	the	query	result	by	finding	all	bits	with	value	1	in	the	intersection	bitmap	and
retrieving	the	corresponding	records.	If	the	fraction	is	large,	scanning	the	entire	relation	would	remain
the	cheaper	alternative.

More	detailed	coverage	of	bitmap	indices,	including	how	to	efficiently	implement	aggregate	operations,
how	to	speed	up	bitmap	operations,	and	hybrid	indices	that	combine	B+-trees	with	bitmaps,	can	be	found
in	Section	24.3.

14.10

Indexing	of	Spatial	and	Temporal	Data

Traditional	index	structures,	such	as	hash	indices	and	B+-trees,	are	not	suitable	for	indexing	of	spatial
data,	which	are	typically	of	two	or	more	dimensions.	Similarly,	when	tuples	have	temporal	intervals
associated	with	them,	and	queries	may	specify	time	points	or	time	intervals,	the	traditional	index
structures	may	result	in	poor	performance.

14.10.1

Indexing	of	Spatial	Data

In	this	section	we	provide	an	overview	of	techniques	for	indexing	spatial	data.	Further	details	can	be
found	in	Section	24.4.	Spatial	data	refers	to	data	referring	to	a	point	or	a	region	in	two	or	higher
dimensional	space.	For	example,	the	location	of	restaurants,	identified	by	a	(latitude,	longitude)	pair,	is	a
form	of	spatial	data.	Similarly,	the	spatial	extent	of	a	farm	or	a	lake	can	be	identified	by	a	polygon,	with
each	corner	identified	by	a	(latitude,	longitude)	pair.

There	are	many	forms	of	queries	on	spatial	data,	which	need	to	be	efficiently	supported	using	indices.	A
query	that	asks	for	restaurants	at	a	precisely	specified	(latitude,	longitude)	pair	can	be	answered	by
creating	a	B+-tree	on	the	composite	attribute	(latitude,	longitude).	However,	such	a	B+-tree	index	cannot

efficiently	answer	a	query	that	asks	for	all	restaurants	that	are	within	a	500-meter	radius	of	a	user’s
location,	which	is	identified	by	a	(latitude,	longitude)	pair.	Nor	can	such	an	index	efficiently	answer	a
query	that	asks	for	all	restaurants	that	are	within	a	rectangular	region	of	interest.	Both	of	these	are	forms
of	range	queries,	which	retrieve	objects	within	a	specified	area.	Nor	can	such	an	index	efficiently	answer
a	query	that	asks	for	the	nearest	restaurant	to	a	specified	location;	such	a	query	is	an	example	of	a
nearest	neighbor	query.

The	goal	of	spatial	indexing	is	to	support	different	forms	of	spatial	queries,	with	range	and	nearest
neighbor	queries	being	of	particular	interest,	since	they	are	widely	used.

To	understand	how	to	index	spatial	data	consisting	of	two	or	more	dimensions,	we	consider	first	the
indexing	of	points	in	one-dimensional	data.	Tree	structures,	such	as	binary	trees	and	B+-trees,	operate	by
successively	dividing	space	into	smaller	parts.	For

14.10

Indexing	of	Spatial	and	Temporal	Data

673

3

3

2

2

3

1

3

Figure	14.29	Division	of	space	by	a	k-d	tree.

instance,	each	internal	node	of	a	binary	tree	partitions	a	one-dimensional	interval	in	two.	Points	that	lie	in
the	left	partition	go	into	the	left	subtree;	points	that	lie	in	the	right	partition	go	into	the	right	subtree.	In	a
balanced	binary	tree,	the	partition	is	chosen	so	that	approximately	one-half	of	the	points	stored	in	the
subtree	fall	in	each	partition.

Similarly,	each	level	of	a	B+-tree	splits	a	one-dimensional	interval	into	multiple	parts.

We	can	use	that	intuition	to	create	tree	structures	for	two-dimensional	space	as	well	as	in	higher-
dimensional	spaces.	A	tree	structure	called	a	k-d	tree	was	one	of	the	early	structures	used	for	indexing	in
multiple	dimensions.	Each	level	of	a	k-d	tree	partitions	the	space	into	two.	The	partitioning	is	done	along
one	dimension	at	the	node	at	the	top	level	of	the	tree,	along	another	dimension	in	nodes	at	the	next	level,
and	so	on,	cycling	through	the	dimensions.	The	partitioning	proceeds	in	such	a	way	that,	at	each	node,
approximately	one-half	of	the	points	stored	in	the	subtree	fall	on	one	side	and	one-half	fall	on	the	other.
Partitioning	stops	when	a	node	has	less	than	a	given	maximum	number	of	points.

Figure	14.29	shows	a	set	of	points	in	two-dimensional	space,	and	a	k-d	tree	representation	of	the	set	of
points,	where	the	maximum	number	of	points	in	a	leaf	node	has	been	set	at	1.	Each	line	in	the	figure
(other	than	the	outside	box)	corresponds	to	a	node	in	the	k-d	tree.	The	numbering	of	the	lines	in	the	figure
indicates	the	level	of	the	tree	at	which	the	corresponding	node	appears.

Rectangular	range	queries,	which	ask	for	points	within	a	specified	rectangular	region,	can	be	answered
efficiently	using	a	k-d	tree	as	follows:	Such	a	query	essentially	specifies	an	interval	on	each	dimension.
For	example,	a	range	query	may	ask	for	all	points	whose	x	dimension	lies	between	50	and	80,	and	y
dimension	lies	between	40

and	70.	Recall	that	each	internal	node	splits	space	on	one	dimension,	and	as	in	a	B+-

674

Chapter	14

Indexing

tree.	Range	search	can	be	performed	by	the	following	recursive	procedure,	starting	at	the	root:

1.	Suppose	the	node	is	an	internal	node,	and	let	it	be	split	on	a	particular	dimension,	say	x,	at	a	point	x	.

Entries	in	the	left	subtree	have	x	values	<	x	,	and	those	in	the	i

i

right	subtree	have	x	values	≥	x	.	If	the	query	range	contains	x	,	search	is	recuri

i

sively	performed	on	both	children.	If	the	query	range	is	to	the	left	of	x	,	search	is	i

recursively	performed	only	on	the	left	child,	and	otherwise	it	is	performed	only	on	the	right	subtree.

2.	If	the	node	is	a	leaf,	all	entries	that	are	contained	in	the	query	range	are	retrieved.

Nearest	neighbor	search	is	more	complicated,	and	we	shall	not	describe	it	here,	but	nearest	neighbor
queries	can	also	be	answered	quite	efficiently	using	k-d	trees.

The	k-d-B	tree	extends	the	k-d	tree	to	allow	multiple	child	nodes	for	each	internal	node,	just	as	a	B-tree
extends	a	binary	tree,	to	reduce	the	height	of	the	tree.	k-d-B	trees	are	better	suited	for	secondary	storage
than	k-d	trees.	Range	search	as	outlined	above	can	be	easily	extended	to	k-d-B	trees,	and	nearest
neighbor	queries	too	can	be	answered	quite	efficiently	using	k-d-B	trees.

There	are	a	number	of	alternative	index	structures	for	spatial	data.	Instead	of	dividing	the	data	one
dimension	at	a	time,	quadtrees	divide	up	a	two-dimensional	space	into	four	quadrants	at	each	node	of	the
tree.	Details	may	be	found	in	Section	24.4.1.

Indexing	of	regions	of	space,	such	as	line	segments,	rectangles,	and	other	polygons,	presents	new
problems.	There	are	extensions	of	k-d	trees	and	quadtrees	for	this	task.

A	key	idea	is	that	if	a	line	segment	or	polygon	crosses	a	partitioning	line,	it	is	split	along	the	partitioning
line	and	represented	in	each	of	the	subtrees	in	which	its	pieces	occur.	Multiple	occurrences	of	a	line
segment	or	polygon	can	result	in	inefficiencies	in	storage,	as	well	as	inefficiencies	in	querying.

A	storage	structure	called	an	R-tree	is	useful	for	indexing	of	objects	spanning	regions	of	space,	such	as
line	segments,	rectangles,	and	other	polygons,	in	addition	to	points.	An	R-tree	is	a	balanced	tree	structure
with	the	indexed	objects	stored	in	leaf	nodes,	much	like	a	B+-tree.	However,	instead	of	a	range	of	values,
a	rectangular	bounding	box	is	associated	with	each	tree	node.	The	bounding	box	of	a	leaf	node	is	the
smallest	rectangle	parallel	to	the	axes	that	contains	all	objects	stored	in	the	leaf	node.	The	bounding	box
of	internal	nodes	is,	similarly,	the	smallest	rectangle	parallel	to	the	axes	that	contains	the	bounding	boxes
of	its	child	nodes.	The	bounding	box	of	an	object	(such	as	a	polygon)	is	defined,	similarly,	as	the	smallest
rectangle	parallel	to	the	axes	that	contains	the	object.

Each	internal	node	stores	the	bounding	boxes	of	the	child	nodes	along	with	the	pointers	to	the	child
nodes.	Each	leaf	node	stores	the	indexed	objects.

Figure	14.30	shows	an	example	of	a	set	of	rectangles	(drawn	with	a	solid	line)	and	the	bounding	boxes
(drawn	with	a	dashed	line)	of	the	nodes	of	an	R-tree	for	the	set	of	rectangles.	Note	that	the	bounding
boxes	are	shown	with	extra	space	inside	them,	to	make	them	stand	out	pictorially.	In	reality,	the	boxes
would	be	smaller	and	fit	tightly

14.10

Indexing	of	Spatial	and	Temporal	Data

675

A

B

1

C

BB1

BB2

BB3

G

3

H

A

B

C

D	E

F

G	H	I

I

D

2

E

F

Figure	14.30	An	R-tree.

on	the	objects	that	they	contain;	that	is,	each	side	of	a	bounding	box	B	would	touch	at	least	one	of	the
objects	or	bounding	boxes	that	are	contained	in	B.

The	R-tree	itself	is	at	the	right	side	of	Figure	14.30.	The	figure	refers	to	the	coordinates	of	bounding	box	i
as	BB	in	the	figure.	More	details	about	R-trees,	including	i

details	of	how	to	answer	range	queries	using	R-trees,	may	be	found	in	Section	24.4.2.

Unlike	some	alternative	structures	for	storing	polygons	and	line	segments,	such	as	R∗-trees	and	interval
trees,	R-trees	store	only	one	copy	of	each	object,	and	we	can	ensure	easily	that	each	node	is	at	least	half
full.	However,	querying	may	be	slower	than	with	some	of	the	alternatives,	since	multiple	paths	have	to	be
searched.	However,	because	of	their	better	storage	efficiency	and	their	similarity	to	B-trees,	R-trees	and
their	variants	have	proved	popular	in	database	systems	that	support	spatial	data.

14.10.2

Indexing	Temporal	Data

Temporal	data	refers	to	data	that	has	an	associated	time	period,	as	discussed	in	Section	7.10.	The	time
period	associated	with	a	tuple	indicates	the	period	of	time	for	which	the	tuple	is	valid.	For	example,	a
particular	course	identifier	may	have	its	title	changed	at	some	point	of	time.	Thus,	a	course	identifier	is
associated	with	a	title	for	a	given	time	interval,	after	which	the	same	course	identifier	is	associated	with	a
different	title.	This	can	be	modeled	by	having	two	or	more	tuples	in	the	course	relation	with	the	same
course	id,	but	different	title	values,	each	with	its	own	valid	time	interval.

A	time	interval	has	a	start	time	and	an	end	time.	Further	a	time	interval	indicates	whether	the	interval
starts	at	the	start	time,	or	just	after	the	start	time,	that	is,	whether	the	interval	is	closed	or	open	at	the
start	time.	Similarly,	the	time	interval	indicates	whether	it	is	closed	or	open	at	the	end	time.	To	represent
the	fact	that	a	tuple	is	valid	currently,	until	it	is	next	updated,	the	end	time	is	conceptually	set	to	infinity
(which	can	be	represented	by	a	suitably	large	time,	such	as	midnight	of	9999-12-31).

676

Chapter	14

Indexing

In	general,	the	valid	period	for	a	particular	fact	may	not	consist	of	just	one	time	interval;	for	example,	a
student	may	be	registered	in	a	university	one	academic	year,	take	a	leave	of	absence	for	the	next	year,	and
register	again	the	following	year.	The	valid	period	for	the	student’s	registration	at	the	university	is	clearly
not	a	single	time	interval.	However,	any	valid	period	can	be	represented	by	multiple	intervals;	thus,	a
tuple	with	any	valid	period	can	be	represented	by	multiple	tuples,	each	of	which	has	a	valid	period	that	is

a	single	time	interval.	We	shall	therefore	only	consider	time	intervals	when	modeling	temporal	data.

Suppose	we	wish	to	retrieve	the	value	of	a	tuple,	given	a	value	v	for	an	attribute	a,	and	a	point	in	time	t	.
We	can	create	an	index	on	the	a,	and	use	it	to	retrieve	all	tuples	1

with	value	v	for	attribute	a.	While	such	an	index	may	be	adequate	if	the	number	of	time	intervals	for	that
search-key	value	is	small,	in	general	the	index	may	retrieve	a	number	of	tuples	whose	time	intervals	do
not	include	the	time	point	t	.

1

A	better	solution	is	to	use	a	spatial	index	such	as	an	R-tree,	with	the	indexed	tuple	treated	as	having	two
dimensions,	one	being	the	indexed	attribute	a,	and	the	other	being	the	time	dimension.	In	this	case,	the
tuple	forms	a	line	segment,	with	value	v	for	dimension	a,	and	the	valid	time	interval	of	the	tuple	as
interval	in	the	time	dimension.

One	issue	that	complicates	the	use	of	a	spatial	index	such	as	an	R-tree	is	that	the	end	time	interval	may	be
infinity	(perhaps	represented	by	a	very	large	value),	whereas	spatial	indices	typically	assume	that
bounding	boxes	are	finite,	and	may	have	poor	performance	if	bounding	boxes	are	very	large.	This	problem
can	be	dealt	with	as	follows:

•	All	current	tuples	(i.e.,	those	with	end	time	as	infinity,	which	is	perhaps	represented	by	a	large	time
value)	are	stored	in	a	separate	index	from	those	tuples	that	have	a	non-infinite	end	time.	The	index	on
current	tuples	can	be	a	B+-tree	index	on	(a,	start	time),	where	a	is	the	indexed	attribute	and	start	time	is
the	start	time,	while	the	index	for	non-current	tuples	would	be	a	spatial	index	such	as	an	R-tree.

•	Lookups	for	a	key	value	v	at	a	point	in	time	t	would	need	to	search	on	both	indices;	i

the	search	on	the	current-tuple	index	would	be	for	tuples	with	a	=	v,	and	start	ts

≤	t	,	which	can	be	done	by	a	simple	range	query.	Queries	with	a	time	range	can	be	i

handled	similarly.

Instead	of	using	spatial	indices	that	are	designed	for	multidimensional	data,	one	can	use	specialized
indices,	such	as	the	interval	B+-tree,	that	are	designed	to	index	intervals	in	a	single	dimension,	and
provide	better	complexity	guarantees	than	R-tree	indices.	However,	most	database	implementations	find	it
simpler	to	use	R-tree	indices	instead	of	implementing	yet	another	type	of	index	for	time	intervals.

Recall	that	with	temporal	data,	more	than	one	tuple	may	have	the	same	value	for	a	primary	key,	as	long	as
the	tuples	with	the	same	primary-key	value	have	non-overlapping	time	intervals.	Temporal	indices	on	the
primary	key	attribute	can	be	used	to	efficiently	determine	if	the	temporal	primary	key	constraint	is
violated	when	a	new	tuple	is	inserted	or	the	valid	time	interval	of	an	existing	tuple	is	updated.

14.11

Summary

677

14.11

Summary

•	Many	queries	reference	only	a	small	proportion	of	the	records	in	a	file.	To	reduce	the	overhead	in
searching	for	these	records,	we	can	construct	indices	for	the	files	that	store	the	database.

•	There	are	two	types	of	indices	that	we	can	use:	dense	indices	and	sparse	indices.

Dense	indices	contain	entries	for	every	search-key	value,	whereas	sparse	indices	contain	entries	only	for
some	search-key	values.

•	If	the	sort	order	of	a	search	key	matches	the	sort	order	of	a	relation,	an	index	on	the	search	key	is	called
a	clustering	index.	The	other	indices	are	called	nonclustering	or	secondary	indices.	Secondary	indices
improve	the	performance	of	queries	that	use	search	keys	other	than	the	search	key	of	the	clustering
index.	However,	they	impose	an	overhead	on	modification	of	the	database.

•	Index-sequential	files	are	one	of	the	oldest	index	schemes	used	in	database	systems.

To	permit	fast	retrieval	of	records	in	search-key	order,	records	are	stored	sequentially,	and	out-of-order
records	are	chained	together.	To	allow	fast	random	access,	we	use	an	index	structure.

•	The	primary	disadvantage	of	the	index-sequential	file	organization	is	that	performance	degrades	as	the
file	grows.	To	overcome	this	deficiency,	we	can	use	a	B+-	tree	index.

•	A	B+-tree	index	takes	the	form	of	a	balanced	tree,	in	which	every	path	from	the	root	of	the	tree	to	a	leaf
of	the	tree	is	of	the	same	length.	The	height	of	a	B+-

tree	is	proportional	to	the	logarithm	to	the	base	N	of	the	number	of	records	in	the	relation,	where	each
nonleaf	node	stores	N	pointers;	the	value	of	N	is	often	around	50	or	100.	B+-trees	are	much	shorter	than
other	balanced	binary-tree	structures	such	as	AVL	trees,	and	therefore	require	fewer	disk	accesses	to
locate	records.

•	Lookup	on	B+-trees	is	straightforward	and	efficient.	Insertion	and	deletion,	however,	are	somewhat
more	complicated,	but	still	efficient.	The	number	of	operations	required	for	lookup,	insertion,	and	deletion
on	B+-trees	is	proportional	to	the	logarithm	to	the	base	N	of	the	number	of	records	in	the	relation,	where
each	nonleaf	node	stores	N	pointers.

•	We	can	use	B+-trees	for	indexing	a	file	containing	records,	as	well	as	to	organize	records	into	a	file.

•	B-tree	indices	are	similar	to	B+-tree	indices.	The	primary	advantage	of	a	B-tree	is	that	the	B-tree
eliminates	the	redundant	storage	of	search-key	values.	The	major	disadvantages	are	overall	complexity
and	reduced	fanout	for	a	given	node	size.

System	designers	almost	universally	prefer	B+-tree	indices	over	B-tree	indices	in	practice.

678

Chapter	14

Indexing

•	Hashing	is	a	widely	used	technique	for	building	indices	in	main	memory	as	well	as	in	disk-based
systems.

•	Ordered	indices	such	as	B+-trees	can	be	used	for	selections	based	on	equality	conditions	involving
single	attributes.	When	multiple	attributes	are	involved	in	a	selection	condition,	we	can	intersect	record
identifiers	retrieved	from	multiple	indices.

•	The	basic	B+-tree	structure	is	not	ideal	for	applications	that	need	to	support	a	very	large	number	of
random	writes/inserts	per	second.	Several	alternative	index	structures	have	been	proposed	to	handle
workloads	with	a	high	write/insert	rate,	including	the	log-structured	merge	tree	and	the	buffer	tree.

•	Bitmap	indices	provide	a	very	compact	representation	for	indexing	attributes	with	very	few	distinct
values.	Intersection	operations	are	extremely	fast	on	bitmaps,	making	them	ideal	for	supporting	queries
on	multiple	attributes.

•	R-trees	are	a	multidimensional	extension	of	B-trees;	with	variants	such	as	R+-trees	and	R∗-trees,	they
have	proved	popular	in	spatial	databases.	Index	structures	that	partition	space	in	a	regular	fashion,	such
as	quadtrees,	help	in	processing	spatial	join	queries.

•	There	are	a	number	of	techniques	for	indexing	temporal	data,	including	the	use	of	spatial	index	and	the
interval	B+-tree	specialized	index.

Review	Terms

•	Index	type

°	Primary	indices;

°	Ordered	indices

°	Nonclustering	indices

°	Hash	indices

°	Secondary	indices

•	Evaluation	factors

°	Index-sequential	files

°	Access	types

•	Index	entry

•	Index	record

°	Access	time

•	Dense	index

°	Insertion	time

•	Sparse	index

°	Deletion	time

•	Multilevel	indices

°	Space	overhead

•	Nonunique	search	key

•	Search	key

•	Composite	search	key

•	Ordered	indices

•	B+-tree	index	files

°	Ordered	index

°	Balanced	tree

°	Clustering	index

°	Leaf	nodes

Practice	Exercises

679

°	Nonleaf	nodes

°	Dynamic	hashing

°	Internal	nodes

•	Multiple-key	access

°	Range	queries

•	Covering	indices

°	Node	split

•	Write-optimized	index	structure

°	Node	coalesce

°	Log-structured	merge	(LSM)	tree

°	Redistribute	of	pointers

°	Stepped-merge	index

Ůniquifier

°	Buffer	tree

•	B+-tree	extensions

•	Bitmap	index

°	Prefix	compression

•	Bitmap	intersection

°	Bulk	loading

•	Indexing	of	spatial	data

°	Bottom-up	B+-tree	construction

°	Range	queries

•	B-tree	indices

°	Nearest	neighbor	queries

•	Hash	file	organization

°	k-d	tree

°	Hash	function

°	k-d-B	tree

°	Bucket

°	Quadtrees

°	Overflow	chaining

°	R-tree

°	Closed	addressing

°	Bounding	box

°	Closed	hashing

•	Temporal	indices

°	Bucket	overflow

•	Time	interval

°	Skew

•	Closed	interval

°	Static	hashing

•	Open	interval

Practice	Exercises

14.1

Indices	speed	query	processing,	but	it	is	usually	a	bad	idea	to	create	indices	on	every	attribute,	and	every
combination	of	attributes,	that	are	potential	search	keys.	Explain	why.

14.2

Is	it	possible	in	general	to	have	two	clustering	indices	on	the	same	relation	for	different	search	keys?
Explain	your	answer.

14.3

Construct	a	B+-tree	for	the	following	set	of	key	values:

(2,	3,	5,	7,	11,	17,	19,	23,	29,	31)

680

Chapter	14

Indexing

Assume	that	the	tree	is	initially	empty	and	values	are	added	in	ascending	order.

Construct	B+-trees	for	the	cases	where	the	number	of	pointers	that	will	fit	in	one	node	is	as	follows:

a.

Four

b.

Six

c.

Eight

14.4

For	each	B+-tree	of	Exercise	14.3,	show	the	form	of	the	tree	after	each	of	the	following	series	of
operations:

a.

Insert	9.

b.

Insert	10.

c.

Insert	8.

d.

Delete	23.

e.

Delete	19.

14.5

Consider	the	modified	redistribution	scheme	for	B+-trees	described	on	page	651.	What	is	the	expected
height	of	the	tree	as	a	function	of	n?

14.6

Give	pseudocode	for	a	B+-tree	function	findRangeIterator(),	which	is	like	the	function	findRange(),	except
that	it	returns	an	iterator	object,	as	described	in	Section	14.3.2.	Also	give	pseudocode	for	the	iterator
class,	including	the	variables	in	the	iterator	object,	and	the	next()	method.

14.7

What	would	the	occupancy	of	each	leaf	node	of	a	B+-tree	be	if	index	entries	were	inserted	in	sorted
order?	Explain	why.

14.8

Suppose	you	have	a	relation	r	with	n	tuples	on	which	a	secondary	B+-tree	is	r

to	be	constructed.

a.

Give	a	formula	for	the	cost	of	building	the	B+-tree	index	by	inserting	one	record	at	a	time.	Assume	each
block	will	hold	an	average	of	f	entries	and	that	all	levels	of	the	tree	above	the	leaf	are	in	memory.

b.

Assuming	a	random	disk	access	takes	10	milliseconds,	what	is	the	cost

of	index	construction	on	a	relation	with	10	million	records?

c.

Write	pseudocode	for	bottom-up	construction	of	a	B+-tree,	which	was

outlined	in	Section	14.4.4.	You	can	assume	that	a	function	to	efficiently	sort	a	large	file	is	available.

14.9

The	leaf	nodes	of	a	B+-tree	file	organization	may	lose	sequentiality	after	a	sequence	of	inserts.

a.

Explain	why	sequentiality	may	be	lost.

Practice	Exercises

681

b.

To	minimize	the	number	of	seeks	in	a	sequential	scan,	many	databases

allocate	leaf	pages	in	extents	of	n	blocks,	for	some	reasonably	large	n.

When	the	first	leaf	of	a	B+-tree	is	allocated,	only	one	block	of	an	n-block	unit	is	used,	and	the	remaining
pages	are	free.	If	a	page	splits,	and	its	n-block	unit	has	a	free	page,	that	space	is	used	for	the	new	page.	If
the	n-block	unit	is	full,	another	n-block	unit	is	allocated,	and	the	first	n∕2	leaf	pages	are	placed	in	one	n-
block	unit	and	the	remaining	one	in	the	second	n-block	unit.	For	simplicity,	assume	that	there	are	no
delete	operations.

i.

What	is	the	worst-case	occupancy	of	allocated	space,	assuming	no

delete	operations,	after	the	first	n-block	unit	is	full?

ii.

Is	it	possible	that	leaf	nodes	allocated	to	an	n-node	block	unit	are	not	consecutive,	that	is,	is	it	possible
that	two	leaf	nodes	are	allocated	to	one	n-node	block,	but	another	leaf	node	in	between	the	two	is
allocated	to	a	different	n-node	block?

iii.

Under	the	reasonable	assumption	that	buffer	space	is	sufficient	to

store	an	n-page	block,	how	many	seeks	would	be	required	for	a	leaf-level	scan	of	the	B+-tree,	in	the	worst
case?	Compare	this	number

with	the	worst	case	if	leaf	pages	are	allocated	a	block	at	a	time.

iv.

The	technique	of	redistributing	values	to	siblings	to	improve	space

utilization	is	likely	to	be	more	efficient	when	used	with	the	preceding	allocation	scheme	for	leaf	blocks.
Explain	why.

14.10

Suppose	you	are	given	a	database	schema	and	some	queries	that	are	executed	frequently.	How	would	you
use	the	above	information	to	decide	what	indices	to	create?

14.11

In	write-optimized	trees	such	as	the	LSM	tree	or	the	stepped-merge	index,	entries	in	one	level	are	merged
into	the	next	level	only	when	the	level	is	full.

Suggest	how	this	policy	can	be	changed	to	improve	read	performance	during	periods	when	there	are
many	reads	but	no	updates.

14.12

What	trade	offs	do	buffer	trees	pose	as	compared	to	LSM	trees?

14.13

Consider	the	instructor	relation	shown	in	Figure	14.1.

a.

Construct	a	bitmap	index	on	the	attribute	salary,	dividing	salary	values	into	four	ranges:	below	50,000,
50,000	to	below	60,000,	60,000	to	below	70,000,	and	70,000	and	above.

b.

Consider	a	query	that	requests	all	instructors	in	the	Finance	department	with	salary	of	80,000	or	more.
Outline	the	steps	in	answering	the	query,	and	show	the	final	and	intermediate	bitmaps	constructed	to
answer	the

query.

14.14

Suppose	you	have	a	relation	containing	the	x,	y	coordinates	and	names	of	restaurants.	Suppose	also	that
the	only	queries	that	will	be	asked	are	of	the

682

Chapter	14

Indexing

following	form:	The	query	specifies	a	point	and	asks	if	there	is	a	restaurant	exactly	at	that	point.	Which
type	of	index	would	be	preferable,	R-tree	or	B-tree?

Why?

14.15

Suppose	you	have	a	spatial	database	that	supports	region	queries	with	circular	regions,	but	not	nearest-
neighbor	queries.	Describe	an	algorithm	to	find	the	nearest	neighbor	by	making	use	of	multiple	region
queries.

Exercises

14.16

When	is	it	preferable	to	use	a	dense	index	rather	than	a	sparse	index?	Explain	your	answer.

14.17

What	is	the	difference	between	a	clustering	index	and	a	secondary	index?

14.18

For	each	B+-tree	of	Exercise	14.3,	show	the	steps	involved	in	the	following	queries:

a.

Find	records	with	a	search-key	value	of	11.

b.

Find	records	with	a	search-key	value	between	7	and	17,	inclusive.

14.19

The	solution	presented	in	Section	14.3.5	to	deal	with	nonunique	search	keys	added	an	extra	attribute	to
the	search	key.	What	effect	could	this	change	have	on	the	height	of	the	B+-tree?

14.20

Suppose	there	is	a	relation	r(A,	B,	C),	with	a	B+-tree	index	with	search	key	(A,	B).

a.

What	is	the	worst-case	cost	of	finding	records	satisfying	10	<	A	<	50

using	this	index,	in	terms	of	the	number	of	records	retrieved	n	and	the	1

height	h	of	the	tree?

b.

What	is	the	worst-case	cost	of	finding	records	satisfying	10	<	A	<	50	∧

5	<	B	<	10	using	this	index,	in	terms	of	the	number	of	records	n	that	2

satisfy	this	selection,	as	well	as	n	and	h	defined	above?

1

c.

Under	what	conditions	on	n	and	n	would	the	index	be	an	efficient	way	1

2

of	finding	records	satisfying	10	<	A	<	50	∧	5	<	B	<	10?

14.21

Suppose	you	have	to	create	a	B+-tree	index	on	a	large	number	of	names,	where	the	maximum	size	of	a
name	may	be	quite	large	(say	40	characters)	and	the	average	name	is	itself	large	(say	10	characters).
Explain	how	prefix	compression	can	be	used	to	maximize	the	average	fanout	of	nonleaf	nodes.

14.22

Suppose	a	relation	is	stored	in	a	B+-tree	file	organization.	Suppose	secondary	indices	store	record
identifiers	that	are	pointers	to	records	on	disk.

Further	Reading

683

a.

What	would	be	the	effect	on	the	secondary	indices	if	a	node	split	hap-

pened	in	the	file	organization?

b.

What	would	be	the	cost	of	updating	all	affected	records	in	a	secondary	index?

c.

How	does	using	the	search	key	of	the	file	organization	as	a	logical	record	identifier	solve	this	problem?

d.

What	is	the	extra	cost	due	to	the	use	of	such	logical	record	identifiers?

14.23

What	trade-offs	do	write-optimized	indices	pose	as	compared	to	B+-tree	indices?

14.24

An	existence	bitmap	has	a	bit	for	each	record	position,	with	the	bit	set	to	1

if	the	record	exists,	and	0	if	there	is	no	record	at	that	position	(for	example,	if	the	record	were	deleted).
Show	how	to	compute	the	existence	bitmap	from	other	bitmaps.	Make	sure	that	your	technique	works
even	in	the	presence	of	null	values	by	using	a	bitmap	for	the	value	null.

14.25

Spatial	indices	that	can	index	spatial	intervals	can	conceptually	be	used	to	index	temporal	data	by
treating	valid	time	as	a	time	interval.	What	is	the	problem	with	doing	so,	and	how	is	the	problem	solved?

14.26

Some	attributes	of	relations	may	contain	sensitive	data,	and	may	be	required	to	be	stored	in	an	encrypted
fashion.	How	does	data	encryption	affect	index	schemes?	In	particular,	how	might	it	affect	schemes	that
attempt	to	store	data	in	sorted	order?

Further	Reading

B-tree	indices	were	first	introduced	in	[Bayer	and	McCreight	(1972)]	and	[Bayer	(1972)].	B+-trees	are
discussed	in	[Comer	(1979)],[Bayer	and	Unterauer	(1977)],	and

[Knuth	(1973)].	[Gray	and	Reuter	(1993)]	provide	a	good	description	of	issues	in	the	implementation	of
B+-trees.

The	log-structured	merge	(LSM)	tree	is	presented	in	[O’Neil	et	al.	(1996)],	while	the	stepped	merge	tree
is	presented	in	[Jagadish	et	al.	(1997)].	The	buffer	tree	is	presented	in	[Arge	(2003)].	[Vitter	(2001)]
provides	an	extensive	survey	of	external-memory	data	structures	and	algorithms.

Bitmap	indices	are	described	in	[O’Neil	and	Quass	(1997)].	They	were	first	introduced	in	the	IBM	Model
204	file	manager	on	the	AS	400	platform.	They	provide	very	large	speedups	on	certain	types	of	queries
and	are	today	implemented	on	most	database	systems.

[Samet	(2006)]	and	[Shekhar	and	Chawla	(2003)]	provide	textbook	coverage	of	spatial	data	structures	and

spatial	databases.	[Bentley	(1975)]	describes	the	k-d	tree,

684

Chapter	14

Indexing

and	[Robinson	(1981)]	describes	the	k-d-B	tree.	The	R-tree	was	originally	presented	in

[Guttman	(1984)].

Bibliography

[Arge	(2003)]

L.	Arge,	“The	Buffer	Tree:	A	Technique	for	Designing	Batched	External	Data	Structures”,	Algorithmica,
Volume	37,	Number	1	(2003),	pages	1–24.

[Bayer	(1972)]

R.	Bayer,	“Symmetric	Binary	B-trees:	Data	Structure	and	Maintenance	Algorithms”,	Acta	Informatica,
Volume	1,	Number	4	(1972),	pages	290–306.

[Bayer	and	McCreight	(1972)]

R.	Bayer	and	E.	M.	McCreight,	“Organization	and	Mainte-

nance	of	Large	Ordered	Indices”,	Acta	Informatica,	Volume	1,	Number	3	(1972),	pages	173–

189.

[Bayer	and	Unterauer	(1977)]

R.	Bayer	and	K.	Unterauer,	“Prefix	B-trees”,	ACM	Transactions

on	Database	Systems,	Volume	2,	Number	1	(1977),	pages	11–26.

[Bentley	(1975)]

J.	L.	Bentley,	“Multidimensional	Binary	Search	Trees	Used	for	Associative	Searching”,	Communications	of
the	ACM,	Volume	18,	Number	9	(1975),	pages	509–517.

[Comer	(1979)]

D.	Comer,	“The	Ubiquitous	B-tree”,	ACM	Computing	Surveys,	Volume	11,	Number	2	(1979),	pages	121–
137.

[Gray	and	Reuter	(1993)]

J.	Gray	and	A.	Reuter,	Transaction	Processing:	Concepts	and	Tech-

niques,	Morgan	Kaufmann	(1993).

[Guttman	(1984)]

A.	Guttman,	“R-Trees:	A	Dynamic	Index	Structure	for	Spatial	Searching”,	In	Proc.	of	the	ACM	SIGMOD
Conf.	on	Management	of	Data	(1984),	pages	47–57.

[Jagadish	et	al.	(1997)]

H.	V.	Jagadish,	P.	P.	S.	Narayan,	S.	Seshadri,	S.	Sudarshan,	and

R.	Kanneganti,	“Incremental	Organization	for	Data	Recording	and	Warehousing”,	In	Proceedings	of	the
23rd	International	Conference	on	Very	Large	Data	Bases,	VLDB	’97	(1997),	pages	16–25.

[Knuth	(1973)]

D.	E.	Knuth,	The	Art	of	Computer	Programming,	Volume	3,	Addison	Wesley,	Sorting	and	Searching	(1973).

[O’Neil	and	Quass	(1997)]

P.	O’Neil	and	D.	Quass,	“Improved	Query	Performance	with

Variant	Indexes”,	In	Proc.	of	the	ACM	SIGMOD	Conf.	on	Management	of	Data	(1997),	pages	38–49.

[O’Neil	et	al.	(1996)]

P.	O’Neil,	E.	Cheng,	D.	Gawlick,	and	E.	O’Neil,	“The	Log-structured

Merge-tree	(LSM-tree)”,	Acta	Inf.	,	Volume	33,	Number	4	(1996),	pages	351–385.

[Robinson	(1981)]

J.	Robinson,	“The	k-d-B	Tree:	A	Search	Structure	for	Large	Multidimen-

sional	Indexes”,	In	Proc.	of	the	ACM	SIGMOD	Conf.	on	Management	of	Data	(1981),	pages	10–18.

[Samet	(2006)]

H.	Samet,	Foundations	of	Multidimensional	and	Metric	Data	Structures,	Morgan	Kaufmann	(2006).

Further	Reading

685

[Shekhar	and	Chawla	(2003)]

S.	Shekhar	and	S.	Chawla,	Spatial	Databases:	A	TOUR,	Pear-

son	(2003).

[Vitter	(2001)]

J.	S.	Vitter,	“External	Memory	Algorithms	and	Data	Structures:	Dealing	with	Massive	Data”,	ACM
Computing	Surveys,	Volume	33,	(2001),	pages	209–271.

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

PART	6

QUERY	PROCESSING	AND

OPTIMIZATION

User	queries	have	to	be	executed	on	the	database	contents,	which	reside	on	storage	devices.	It	is	usually
convenient	to	break	up	queries	into	smaller	operations,	roughly	corresponding	to	the	relational-algebra
operations.	Chapter	15	describes	how	queries	are	processed,	presenting	algorithms	for	implementing
individual	operations	and	then	outlining	how	the	operations	are	executed	in	synchrony	to	process	a	query.
The	algorithms	covered	include	those	that	can	work	on	data	much	larger	than	main-memory,	as	well	as
those	that	are	optimized	for	in-memory	data.

There	are	many	alternative	ways	of	processing	a	query,	and	these	can	have	widely	varying	costs.	Query
optimization	refers	to	the	process	of	finding	the	lowest-cost	method	of	evaluating	a	given	query.	Chapter
16	describes	the	process	of	query	optimization,	covering	techniques	for	estimating	query	plan	cost,	and
techniques	for	generating	alternative	query	plans	and	picking	the	lowest	cost	plans.	The	chapter	also
describes	other	optimization	techniques,	such	as	materialized	views,	for	speeding	up	query	processing.

687

C	H	A	P	T	E	R	15

Query	Processing

Query	processing	refers	to	the	range	of	activities	involved	in	extracting	data	from	a	database.	The
activities	include	translation	of	queries	in	high-level	database	languages	into	expressions	that	can	be	used
at	the	physical	level	of	the	file	system,	a	variety	of	query-optimizing	transformations,	and	actual
evaluation	of	queries.

15.1

Overview

The	steps	involved	in	processing	a	query	appear	in	Figure	15.1.	The	basic	steps	are:	1.	Parsing	and
translation.

2.	Optimization.

3.	Evaluation.

Before	query	processing	can	begin,	the	system	must	translate	the	query	into	a	usable	form.	A	language
such	as	SQL	is	suitable	for	human	use,	but	it	is	ill	suited	to	be	the	system’s	internal	representation	of	a
query.	A	more	useful	internal	representation	is	one	based	on	the	extended	relational	algebra.

Thus,	the	first	action	the	system	must	take	in	query	processing	is	to	translate	a	given	query	into	its
internal	form.	This	translation	process	is	similar	to	the	work	performed	by	the	parser	of	a	compiler.	In
generating	the	internal	form	of	the	query,	the	parser	checks	the	syntax	of	the	user’s	query,	verifies	that
the	relation	names	appearing	in	the	query	are	names	of	the	relations	in	the	database,	and	so	on.	The
system	constructs	a	parse-tree	representation	of	the	query,	which	it	then	translates	into	a	relational-
algebra	expression.	If	the	query	was	expressed	in	terms	of	a	view,	the	translation	phase	also	replaces	all
uses	of	the	view	by	the	relational-algebra	expression	that	defines	the	view.1

Most	compiler	texts	cover	parsing	in	detail.

1For	materialized	views,	the	expression	defining	the	view	has	already	been	evaluated	and	stored.
Therefore,	the	stored	relation	can	be	used,	instead	of	uses	of	the	view	being	replaced	by	the	expression
defining	the	view.	Recursive	views	are	handled	differently,	via	a	fixed-point	procedure,	as	discussed	in
Section	5.4	and	Section	27.4.7.

689

690

Chapter	15

Query	Processing

parser	and

relational-algebra

query

translator

expression

optimizer

query

evaluation	engine

execution	plan

output

data

statistics

about	data

Figure	15.1	Steps	in	query	processing.

Given	a	query,	there	are	generally	a	variety	of	methods	for	computing	the	answer.

For	example,	we	have	seen	that,	in	SQL,	a	query	could	be	expressed	in	several	different	ways.	Each	SQL
query	can	itself	be	translated	into	a	relational-algebra	expression	in	one	of	several	ways.	Furthermore,	the
relational-algebra	representation	of	a	query	specifies	only	partially	how	to	evaluate	a	query;	there	are
usually	several	ways	to	evaluate	relational-algebra	expressions.	As	an	illustration,	consider	the	query:
select	salary

from	instructor

where	salary	<	75000;

This	query	can	be	translated	into	either	of	the	following	relational-algebra	expressions:

•	σ

(Π

(instructor))

salary<	75000

salary

•	Π

(σ

(instructor))

salary

salary<	75000

Further,	we	can	execute	each	relational-algebra	operation	by	one	of	several	different	algorithms.	For
example,	to	implement	the	preceding	selection,	we	can	search	every	tuple	in	instructor	to	find	tuples	with
salary	less	than	75000.	If	a	B+-tree	index	is	available	on	the	attribute	salary,	we	can	use	the	index	instead
to	locate	the	tuples.

To	specify	fully	how	to	evaluate	a	query,	we	need	not	only	to	provide	the	relational-algebra	expression,	but
also	to	annotate	it	with	instructions	specifying	how	to	evaluate	each	operation.	Annotations	may	state	the
algorithm	to	be	used	for	a	specific	operation	or	the	particular	index	or	indices	to	use.	A	relational-algebra
operation	annotated

15.1

Overview

691

with	instructions	on	how	to	evaluate	it	is	called	an	evaluation	primitive.	A	sequence	of	primitive
operations	that	can	be	used	to	evaluate	a	query	is	a	query-execution	plan	or	query-evaluation	plan.	Figure
15.2	illustrates	an	evaluation	plan	for	our	example	query,	in	which	a	particular	index	(denoted	in	the
figure	as	“index	1”)	is	specified	for	the	selection	operation.	The	query-execution	engine	takes	a	query-
evaluation	plan,	executes	that	plan,	and	returns	the	answers	to	the	query.

The	different	evaluation	plans	for	a	given	query	can	have	different	costs.	We	do	not	expect	users	to	write
their	queries	in	a	way	that	suggests	the	most	efficient	evaluation	plan.	Rather,	it	is	the	responsibility	of
the	system	to	construct	a	query-evaluation	plan	that	minimizes	the	cost	of	query	evaluation;	this	task	is
called	query	optimization.

Chapter	16	describes	query	optimization	in	detail.

Once	the	query	plan	is	chosen,	the	query	is	evaluated	with	that	plan,	and	the	result	of	the	query	is	output.

The	sequence	of	steps	already	described	for	processing	a	query	is	representative;	not	all	databases
exactly	follow	those	steps.	For	instance,	instead	of	using	the	relational-algebra	representation,	several
databases	use	an	annotated	parse-tree	representation	based	on	the	structure	of	the	given	SQL	query.
However,	the	concepts	that	we	describe	here	form	the	basis	of	query	processing	in	databases.

In	order	to	optimize	a	query,	a	query	optimizer	must	know	the	cost	of	each	operation.	Although	the	exact
cost	is	hard	to	compute,	since	it	depends	on	many	parameters	such	as	actual	memory	available	to	the
operation,	it	is	possible	to	get	a	rough	estimate	of	execution	cost	for	each	operation.

In	this	chapter,	we	study	how	to	evaluate	individual	operations	in	a	query	plan	and	how	to	estimate	their
cost;	we	return	to	query	optimization	in	Chapter	16.	Section	15.2

outlines	how	we	measure	the	cost	of	a	query.	Section	15.3	through	Section	15.6	cover	the	evaluation	of
individual	relational-algebra	operations.	Several	operations	may	be	grouped	together	into	a	pipeline,	in
which	each	of	the	operations	starts	working	on	its	input	tuples	even	as	they	are	being	generated	by
another	operation.	In	Section	15.7,	we	examine	how	to	coordinate	the	execution	of	multiple	operations	in
a	query	evaluation	π	salary

σ	salary	<	75000;	use	index	1

instructor

Figure	15.2	A	query-evaluation	plan.

692

Chapter	15

Query	Processing

plan,	in	particular,	how	to	use	pipelined	operations	to	avoid	writing	intermediate	results	to	disk.

15.2

Measures	of	Query	Cost

There	are	multiple	possible	evaluation	plans	for	a	query,	and	it	is	important	to	be	able	to	compare	the
alternatives	in	terms	of	their	(estimated)	cost,	and	choose	the	best	plan.

To	do	so,	we	must	estimate	the	cost	of	individual	operations	and	combine	them	to	get	the	cost	of	a	query
evaluation	plan.	Thus,	as	we	study	evaluation	algorithms	for	each	operation	later	in	this	chapter,	we	also
outline	how	to	estimate	the	cost	of	the	operation.

The	cost	of	query	evaluation	can	be	measured	in	terms	of	a	number	of	different	resources,	including	disk
accesses,	CPU	time	to	execute	a	query,	and,	in	parallel	and	distributed	database	systems,	the	cost	of
communication.	(We	discuss	parallel	and	distributed	database	systems	in	Chapter	21	through	Chapter	23.)

For	large	databases	resident	on	magnetic	disk,	the	I/O	cost	to	access	data	from	disk	usually	dominates	the
other	costs;	thus,	early	cost	models	focused	on	the	I/O	cost	when	estimating	the	cost	of	query	operations.
However,	with	flash	storage	becoming	larger	and	less	expensive,	most	organizational	data	today	can	be
stored	on	solid-state	drives	(SSDs)	in	a	cost	effective	manner.	In	addition,	main	memory	sizes	have
increased	significantly,	and	the	cost	of	main	memory	has	decreased	enough	in	recent	years	that	for	many
organizations,	organizational	data	can	be	stored	cost-effectively	in	main	memory	for	querying,	although	it
must	of	course	be	stored	on	flash	or	magnetic	storage	to	ensure	persistence.

With	data	resident	in-memory	or	on	SSDs,	I/O	cost	does	not	dominate	the	overall	cost,	and	we	must
include	CPU	costs	when	computing	the	cost	of	query	evaluation.

We	do	not	include	CPU	costs	in	our	model	to	simplify	our	presentation,	but	note	that	they	can	be
approximated	by	simple	estimators.	For	example,	the	cost	model	used	by	PostgreSQL	(as	of	2018)
includes	(i)	a	CPU	cost	per	tuple,	(ii)	a	CPU	cost	for	processing	each	index	entry	(in	addition	to	the	I/O
cost),	and	(iii)	a	CPU	cost	per	operator	or	function	(such	as	arithmetic	operators,	comparison	operators,
and	related	functions).

The	database	has	default	values	for	each	of	these	costs,	which	are	multiplied	by	the	number	of	tuples
processed,	the	number	of	index	entries	processed,	and	the	number	of	operators	and	functions	executed,
respectively.	The	defaults	can	be	changed	as	a	configuration	parameter.

We	use	the	number	of	blocks	transferred	from	storage	and	the	number	of	random	I/O

accesses,	each	of	which	will	require	a	disk	seek	on	magnetic	storage,	as	two	important	factors	in
estimating	the	cost	of	a	query-evaluation	plan.	If	the	disk	subsystem	takes	an	average	of	t	seconds	to
transfer	a	block	of	data	and	has	an	average	block-access	time	T

(disk	seek	time	plus	rotational	latency)	of	t	seconds,	then	an	operation	that	transfers	S

b	blocks	and	performs	S	random	I/O	accesses	would	take	b	∗	t	+	S	∗	t	seconds.

T

S

The	values	of	t	and	t	must	be	calibrated	for	the	disk	system	used.	We	summarize	T

S

performance	data	here;	see	Chapter	12	for	full	details	on	storage	systems.	Typical	values	for	high-end
magnetic	disks	in	the	year	2018	would	be	t	=	4	milliseconds	and	t	=	0	.	1

S

T

15.2

Measures	of	Query	Cost

693

milliseconds,	assuming	a	4-kilobyte	block	size	and	a	transfer	rate	of	40	megabytes	per	second.2

Although	SSDs	do	not	perform	a	physical	seek	operation,	they	have	an	overhead	for	initiating	an	I/O
operation;	we	refer	to	the	latency	from	the	time	an	I/O	request	is	made	to	the	time	when	the	first	byte	of
data	is	returned	as	t	.	For	mid-range	SSDs	S

in	2018	using	the	SATA	interface,	t	is	around	90	microseconds,	while	the	transfer	S

time	t	is	about	10	microseconds	for	a	4-kilobyte	block.	Thus,	SSDs	can	support	about	T

10,000	random	4-kilobyte	reads	per	second,	and	they	support	400	megabytes/second	throughput	on
sequential	reads	using	the	standard	SATA	interface.	SSDs	using	the	PCIe	3.0x4	interface	have	smaller	t	,
of	20	to	60	microseconds,	and	much	higher	transfer	S

rates	of	around	2	gigabytes/second,	corresponding	to	t	of	2	microseconds,	allowing	T

around	50,000	to	15,000	random	4-kilobyte	block	reads	per	second,	depending	on	the	model.3

For	data	that	are	already	present	in	main	memory,	reads	happen	at	the	unit	of	cache	lines,	instead	of	disk
blocks.	But	assuming	entire	blocks	of	data	are	read,	the	time	to	transfer	t	for	a	4-kilobyte	block	is	less
than	1	microsecond	for	data	in	memory.

T

The	latency	to	fetch	data	from	memory,	t	,	is	less	than	100	nanoseconds.

S

Given	the	wide	diversity	of	speeds	of	different	storage	devices,	database	systems	must	ideally	perform
test	seeks	and	block	transfers	to	estimate	t	and	t	for	specific	S

T

systems/storage	devices,	as	part	of	the	software	installation	process.	Databases	that	do	not	automatically
infer	these	numbers	often	allow	users	to	specify	the	numbers	as	part	of	configuration	files.

We	can	refine	our	cost	estimates	further	by	distinguishing	block	reads	from	block	writes.	Block	writes	are
typically	about	twice	as	expensive	as	reads	on	magnetic	disks,	since	disk	systems	read	sectors	back	after
they	are	written	to	verify	that	the	write	was	successful.	On	PCIe	flash,	write	throughput	may	be	about	50
percent	less	than	read	throughput,	but	the	difference	is	almost	completely	masked	by	the	limited	speed	of
SATA	interfaces,	leading	to	write	throughput	matching	read	throughput.	However,	the	throughput
numbers	do	not	reflect	the	cost	of	erases	that	are	required	if	blocks	are	overwritten.	For	simplicity,	we
ignore	this	detail.

The	cost	estimates	we	give	do	not	include	the	cost	of	writing	the	final	result	of	an	operation	back	to	disk.
These	are	taken	into	account	separately	where	required.

2Storage	device	specifications	often	mention	the	transfer	rate,	and	the	number	of	random	I/O	operations
that	can	be	carried	out	in	1	second.	The	values	t	can	be	computed	as	block	size	divided	by	transfer	rate,
while	can	be	computed

T

tS

as	(1∕	N)	−	t	,	where

T

N	is	the	number	of	random	I/O	operations	per	second	that	the	device	supports,	since	a	random	I/O
operation	performs	a	random	I/O	access,	followed	by	data	transfer	of	1	block.

3The	I/O	operations	per	second	number	used	here	are	for	the	case	of	sequential	I/O	requests,	usually
denoted	as	QD-1

in	the	SSD	specifications.	SSDs	can	support	multiple	random	requests	in	parallel,	with	32	to	64	parallel
requests	being	commonly	supported;	an	SSD	with	SATA	interface	supports	nearly	100,000	random	4-
kilobyte	block	reads	in	a	second	if	multiple	requests	are	sent	in	parallel,	while	PCIe	disks	can	support
over	350,000	random	4-kilobyte	block	reads	per	second;	these	numbers	are	referred	to	as	the	QD-32	or
QD-64	numbers	depending	on	how	many	requests	are	sent	in	parallel.	We	do	not	explore	parallel	requests
in	our	cost	model,	since	we	only	consider	sequential	query	processing	algorithms	in	this	chapter.	Shared-

memory	parallel	query	processing	techniques,	discussed	in	Section	22.6,	can	be	used	to	exploit	the
parallel	request	capabilities	of	SSDs.

694

Chapter	15

Query	Processing

The	costs	of	all	the	algorithms	that	we	consider	depend	on	the	size	of	the	buffer	in	main	memory.	In	the
best	case,	if	data	fits	in	the	buffer,	the	data	can	be	read	into	the	buffers,	and	the	disk	does	not	need	to	be
accessed	again.	In	the	worst	case,	we	may	assume	that	the	buffer	can	hold	only	a	few	blocks	of	data	—
approximately	one	block	per	relation.	However,	with	large	main	memories	available	today,	such	worst-
case	assumptions	are	overly	pessimistic.	In	fact,	a	good	deal	of	main	memory	is	typically	available	for
processing	a	query,	and	our	cost	estimates	use	the	amount	of	memory	available	to	an	operator,	M	,	as	a
parameter.	In	PostgreSQL	the	total	memory	available	to	a	query,	called	the	effective	cache	size,	is
assumed	by	default	to	be	4	gigabytes,	for	the	purpose	of	cost	estimation;	if	a	query	has	several	operators
that	run	concurrently,	the	available	memory	has	to	be	divided	amongst	the	operators.

In	addition,	although	we	assume	that	data	must	be	read	from	disk	initially,	it	is	possible	that	a	block	that
is	accessed	is	already	present	in	the	in-memory	buffer.	Again,	for	simplicity,	we	ignore	this	effect;	as	a
result,	the	actual	disk-access	cost	during	the	execution	of	a	plan	may	be	less	than	the	estimated	cost.	To
account	(at	least	partially)	for	buffer	residence,	PostgreSQL	uses	the	following	“hack”:	the	cost	of	a
random	page	read	is	assumed	to	be	1/10th	of	the	actual	random	page	read	cost,	to	model	the	situation
that	90%	of	reads	are	found	to	be	resident	in	cache.	Further,	to	model	the	situation	that	internal	nodes	of
B+-tree	indices	are	traversed	often,	most	database	systems	assume	that	all	internal	nodes	are	present	in
the	in-memory	buffer,	and	assume	that	a	traversal	of	an	index	only	incurs	a	single	random	I/O	cost	for	the
leaf	node.

The	response	time	for	a	query-evaluation	plan	(that	is,	the	wall-clock	time	required	to	execute	the	plan),
assuming	no	other	activity	is	going	on	in	the	computer,	would	account	for	all	these	costs,	and	could	be
used	as	a	measure	of	the	cost	of	the	plan.

Unfortunately,	the	response	time	of	a	plan	is	very	hard	to	estimate	without	actually	executing	the	plan,	for
the	following	two	reasons:

1.	The	response	time	depends	on	the	contents	of	the	buffer	when	the	query	begins	execution;	this
information	is	not	available	when	the	query	is	optimized	and	is	hard	to	account	for	even	if	it	were
available.

2.	In	a	system	with	multiple	disks,	the	response	time	depends	on	how	accesses	are	distributed	among
disks,	which	is	hard	to	estimate	without	detailed	knowledge	of	data	layout	on	disk.

Interestingly,	a	plan	may	get	a	better	response	time	at	the	cost	of	extra	resource	consumption.	For
example,	if	a	system	has	multiple	disks,	a	plan	A	that	requires	extra	disk	reads,	but	performs	the	reads	in
parallel	across	multiple	disks	may,	finish	faster	than	another	plan	B	that	has	fewer	disk	reads,	but
performs	reads	from	only	one	disk	at	a	time.	However,	if	many	instances	of	a	query	using	plan	A	run
concurrently,	the	overall	response	time	may	actually	be	more	than	if	the	same	instances	are	executed
using	plan	B,	since	plan	A	generates	more	load	on	the	disks.

As	a	result,	instead	of	trying	to	minimize	the	response	time,	optimizers	generally	try	to	minimize	the	total
resource	consumption	of	a	query	plan.	Our	model	of	estimating

15.3

Selection	Operation

695

the	total	disk	access	time	(including	seek	and	data	transfer)	is	an	example	of	such	a	resource
consumption–based	model	of	query	cost.

15.3

Selection	Operation

In	query	processing,	the	file	scan	is	the	lowest-level	operator	to	access	data.	File	scans	are	search
algorithms	that	locate	and	retrieve	records	that	fulfill	a	selection	condition.

In	relational	systems,	a	file	scan	allows	an	entire	relation	to	be	read	in	those	cases	where	the	relation	is
stored	in	a	single,	dedicated	file.

15.3.1

Selections	Using	File	Scans	and	Indices

Consider	a	selection	operation	on	a	relation	whose	tuples	are	stored	together	in	one	file.	The	most
straightforward	way	of	performing	a	selection	is	as	follows:

•	A1	(linear	search).	In	a	linear	search,	the	system	scans	each	file	block	and	tests	all	records	to	see
whether	they	satisfy	the	selection	condition.	An	initial	seek	is	required	to	access	the	first	block	of	the	file.
In	case	blocks	of	the	file	are	not	stored	contiguously,	extra	seeks	may	be	required,	but	we	ignore	this
effect	for	simplicity.

Although	it	may	be	slower	than	other	algorithms	for	implementing	selection,	the	linear-search	algorithm
can	be	applied	to	any	file,	regardless	of	the	ordering	of	the	file,	or	the	availability	of	indices,	or	the	nature
of	the	selection	operation.

The	other	algorithms	that	we	shall	study	are	not	applicable	in	all	cases,	but	when	applicable	they	are
generally	faster	than	linear	search.

Cost	estimates	for	linear	scan,	as	well	as	for	other	selection	algorithms,	are	shown	in	Figure	15.3.	In	the
figure,	we	use	h	to	represent	the	height	of	the	B+-tree,	and	assume	i

a	random	I/O	operation	is	required	for	each	node	in	the	path	from	the	root	to	a	leaf.

Most	real-life	optimizers	assume	that	the	internal	nodes	of	the	tree	are	present	in	the	in-memory	buffer
since	they	are	frequently	accessed,	and	usually	less	than	1	percent	of	the	nodes	of	a	B+-tree	are	nonleaf
nodes.	The	cost	formulae	can	be	correspondingly	simplified,	charging	only	one	random	I/O	cost	for	a
traversal	from	the	root	to	a	leaf,	by	setting	h	=	1.

i

Index	structures	are	referred	to	as	access	paths,	since	they	provide	a	path	through	which	data	can	be
located	and	accessed.	In	Chapter	14,	we	pointed	out	that	it	is	efficient	to	read	the	records	of	a	file	in	an
order	corresponding	closely	to	physical	order.	Recall	that	a	clustering	index	(also	referred	to	as	a	primary
index)	is	an	index	that	allows	the	records	of	a	file	to	be	read	in	an	order	that	corresponds	to	the	physical
order	in	the	file.	An	index	that	is	not	a	clustering	index	is	called	a	secondary	index	or	a	nonclustering
index.

696

Chapter	15

Query	Processing

Search	algorithms	that	use	an	index	are	referred	to	as	index	scans.	We	use	the	selection	predicate	to
guide	us	in	the	choice	of	the	index	to	use	in	processing	the	query.

Search	algorithms	that	use	an	index	are:

Algorithm

Cost

Reason

A1	Linear	Search

t	+	b	∗	t

One	initial	seek	plus	b	block	transfers,

S

r

T

r

where	b	denotes	the	number	of	blocks	in

r

the	file.

A1	Linear	Search,

Average	case

Since	at	most	one	record	satisfies	the	con-

Equality	on	Key

t	+(b	∕2)	∗	t

dition,	scan	can	be	terminated	as	soon	as

S

r

T

the	required	record	is	found.	In	the	worst

case,	b	block	transfers	are	still	required.

r

A2	Clustering

(h	+	1)	∗

(Where	h	denotes	the	height	of	the	in-

i

i

B+-tree	Index,

(t	+	t)

dex.)	Index	lookup	traverses	the	height	of

T

S

Equality	on	Key

the	tree	plus	one	I/O	to	fetch	the	record;

each	of	these	I/O	operations	requires	a

seek	and	a	block	transfer.

A3	Clustering

h	∗	(t	+	t)	+	One	seek	for	each	level	of	the	tree,	one	i

T

S

B+-tree	Index,

t	+	b	∗	t

seek	for	the	first	block.	Here	b	is	the	num-

S

T

Equality	on

ber	of	blocks	containing	records	with	the

Non-key

specified	search	key,	all	of	which	are	read.

These	blocks	are	leaf	blocks	assumed	to	be

stored	sequentially	(since	it	is	a	clustering

index)	and	don’t	require	additional	seeks.

A4	Secondary

(h	+	1)	∗

This	case	is	similar	to	clustering	index.

i

B+-tree	Index,

(t	+	t)

T

S

Equality	on	Key

A4	Secondary

(h	+	n)	∗

(Where	n	is	the	number	of	records

i

B+-tree	Index,

(t	+	t)

fetched.)	Here,	cost	of	index	traversal	is

T

S

Equality	on

the	same	as	for	A3,	but	each	record	may

Non-key

be	on	a	different	block,	requiring	a	seek

per	record.	Cost	is	potentially	very	high	if

n	is	large.

A5	Clustering

h	∗	(t	+	t)	+	Identical	to	the	case	of	A3,	equality	on	i

T

S

B+-tree	Index,

t	+	b	∗	t

non-key.

S

T

Comparison

A6	Secondary

(h	+	n)	∗

Identical	to	the	case	of	A4,	equality	on

i

B+-tree	Index,

(t	+	t)

non-key.

T

S

Comparison

Figure	15.3	Cost	estimates	for	selection	algorithms.

15.3

Selection	Operation

697

•	A2	(clustering	index,	equality	on	key).	For	an	equality	comparison	on	a	key	attribute	with	a	clustering
index,	we	can	use	the	index	to	retrieve	a	single	record	that	satisfies	the	corresponding	equality	condition.
Cost	estimates	are	shown	in	Figure	15.3.	To	model	the	common	situation	that	the	internal	nodes	of	the
index	are	in	the	in-memory	buffer,	h	can	be	set	to	1.

i

•	A3	(clustering	index,	equality	on	non-key).	We	can	retrieve	multiple	records	by	using	a	clustering	index
when	the	selection	condition	specifies	an	equality	comparison	on	a	non-key	attribute,	A.	The	only
difference	from	the	previous	case	is	that	multiple	records	may	need	to	be	fetched.	However,	the	records
must	be	stored	consecutively	in	the	file	since	the	file	is	sorted	on	the	search	key.	Cost	estimates	are	shown
in	Figure	15.3.

•	A4	(secondary	index,	equality).	Selections	specifying	an	equality	condition	can	use	a	secondary	index.
This	strategy	can	retrieve	a	single	record	if	the	equality	condition	is	on	a	key;	multiple	records	may	be
retrieved	if	the	indexing	field	is	not	a	key.

In	the	first	case,	only	one	record	is	retrieved.	The	cost	in	this	case	is	the	same	as	that	for	a	clustering
index	(case	A2).

In	the	second	case,	each	record	may	be	resident	on	a	different	block,	which	may	result	in	one	I/O
operation	per	retrieved	record,	with	each	I/O	operation	requiring	a	seek	and	a	block	transfer.	The	worst-
case	cost	in	this	case	is	(h	+	n)	∗	(t	+	t),	i

S

T

where	n	is	the	number	of	records	fetched,	if	each	record	is	in	a	different	disk	block,	and	the	block	fetches
are	randomly	ordered.	The	worst-case	cost	could	become	even	worse	than	that	of	linear	search	if	a	large
number	of	records	are	retrieved.

If	the	in-memory	buffer	is	large,	the	block	containing	the	record	may	already	be	in	the	buffer.	It	is	possible
to	construct	an	estimate	of	the	average	or	expected	cost	of	the	selection	by	taking	into	account	the
probability	of	the	block	containing	the	record	already	being	in	the	buffer.	For	large	buffers,	that	estimate
will	be	much	less	than	the	worst-case	estimate.

In	certain	algorithms,	including	A2,	the	use	of	a	B+-tree	file	organization	can	save	one	access	since
records	are	stored	at	the	leaf	level	of	the	tree.

As	described	in	Section	14.4.2,	when	records	are	stored	in	a	B+-tree	file	organization	or	other	file
organizations	that	may	require	relocation	of	records,	secondary	indices	usually	do	not	store	pointers	to
the	records.4	Instead,	secondary	indices	store	the	values	of	the	attributes	used	as	the	search	key	in	a	B+-
tree	file	organization.	Accessing	a	record	through	such	a	secondary	index	is	then	more	expensive:	First
the	secondary	index	is	searched	to	find	the	B+-tree	file	organization	search-key	values,	then	the	B+-

tree	file	organization	is	looked	up	to	find	the	records.	The	cost	formulae	described	for	secondary	indices

have	to	be	modified	appropriately	if	such	indices	are	used.

4Recall	that	if	B+-tree	file	organizations	are	used	to	store	relations,	records	may	be	moved	between
blocks	when	leaf	nodes	are	split	or	merged,	and	when	records	are	redistributed.

698

Chapter	15

Query	Processing

15.3.2

Selections	Involving	Comparisons

Consider	a	selection	of	the	form	σ

(r).	We	can	implement	the	selection	either	by

A≤	v

using	linear	search	or	by	using	indices	in	one	of	the	following	ways:

•	A5	(clustering	index,	comparison).	A	clustering	ordered	index	(for	example,	a	clustering	B+-tree	index)
can	be	used	when	the	selection	condition	is	a	comparison.

For	comparison	conditions	of	the	form	A	>	v	or	A	≥	v,	a	clustering	index	on	A	can	be	used	to	direct	the
retrieval	of	tuples,	as	follows:	For	A	≥	v,	we	look	up	the	value	v	in	the	index	to	find	the	first	tuple	in	the
file	that	has	a	value	of	A	≥	v.	A	file	scan	starting	from	that	tuple	up	to	the	end	of	the	file	returns	all	tuples
that	satisfy	the	condition.	For	A	>	v,	the	file	scan	starts	with	the	first	tuple	such	that	A	>	v.

The	cost	estimate	for	this	case	is	identical	to	that	for	case	A3.

For	comparisons	of	the	form	A	<	v	or	A	≤	v,	an	index	lookup	is	not	required.

For	A	<	v,	we	use	a	simple	file	scan	starting	from	the	beginning	of	the	file,	and	continuing	up	to	(but	not
including)	the	first	tuple	with	attribute	A	=	v.	The	case	of	A	≤	v	is	similar,	except	that	the	scan	continues
up	to	(but	not	including)	the	first	tuple	with	attribute	A	>	v.	In	either	case,	the	index	is	not	useful.

•	A6	(secondary	index,	comparison).	We	can	use	a	secondary	ordered	index	to	guide	retrieval	for
comparison	conditions	involving	<,	≤,	≥,	or	>.	The	lowest-level	index	blocks	are	scanned,	either	from	the
smallest	value	up	to	v	(for	<	and	≤),	or	from	v	up	to	the	maximum	value	(for	>	and	≥).

The	secondary	index	provides	pointers	to	the	records,	but	to	get	the	actual	records	we	have	to	fetch	the
records	by	using	the	pointers.	This	step	may	require	an	I/O	operation	for	each	record	fetched,	since
consecutive	records	may	be	on	different	disk	blocks;	as	before,	each	I/O	operation	requires	a	disk	seek
and	a	block	transfer.	If	the	number	of	retrieved	records	is	large,	using	the	secondary	index	may	be	even
more	expensive	than	using	linear	search.	Therefore,	the	secondary	index	should	be	used	only	if	very	few
records	are	selected.

As	long	as	the	number	of	matching	tuples	is	known	ahead	of	time,	a	query	optimizer	can	choose	between
using	a	secondary	index	or	using	a	linear	scan	based	on	the	cost	estimates.	However,	if	the	number	of
matching	tuples	is	not	known	accurately	at	compilation	time,	either	choice	may	lead	to	bad	performance,
depending	on	the	actual	number	of	matching	tuples.

To	deal	with	the	above	situation,	PostgreSQL	uses	a	hybrid	algorithm	that	it	calls	a	bitmap	index	scan,5
when	a	secondary	index	is	available,	but	the	number	of	matching	records	is	not	known	precisely.	The
bitmap	index	scan	algorithm	first	creates	a	bitmap	with	as	many	bits	as	the	number	of	blocks	in	the
relation,	with	all	bits	initialized	to	0.

The	algorithm	then	uses	the	secondary	index	to	find	index	entries	for	matching	tuples,	but	instead	of
fetching	the	tuples	immediately,	it	does	the	following.	As	each	index	5This	algorithm	should	not	be
confused	with	a	scan	using	a	bitmap	index.

15.3

Selection	Operation

699

entry	is	found,	the	algorithm	gets	the	block	number	from	the	index	entry,	and	sets	the	corresponding	bit

in	the	bitmap	to	1.

Once	all	index	entries	have	been	processed,	the	bitmap	is	scanned	to	find	all	blocks	whose	bit	is	set	to	1.
These	are	exactly	the	blocks	containing	matching	records.	The	relation	is	then	scanned	linearly,	but	blocks
whose	bit	is	not	set	to	1	are	skipped;	only	blocks	whose	bit	is	set	to	1	are	fetched,	and	then	a	scan	within
each	block	is	used	to	retrieve	all	matching	records	in	the	block.

In	the	worst	case,	this	algorithm	is	only	slightly	more	expensive	than	linear	scan,	but	in	the	best	case	it	is
much	cheaper	than	linear	scan.	Similarly,	in	the	worst	case	it	is	only	slightly	more	expensive	than	using	a
secondary	index	scan	to	directly	fetch	tuples,	but	in	the	best	case	it	is	much	cheaper	than	a	secondary
index	scan.	Thus,	this	hybrid	algorithm	ensures	that	performance	is	never	much	worse	than	the	best	plan
for	that	database	instance.

A	variant	of	this	algorithm	collects	all	the	index	entries,	and	sorts	them	(using	sorting	algorithms	which
we	study	later	in	this	chapter),	and	then	performs	a	relation	scan	that	skips	blocks	that	do	not	have	any
matching	entries.	Using	a	bitmap	as	above	can	be	cheaper	than	sorting	the	index	entries.

15.3.3

Implementation	of	Complex	Selections

So	far,	we	have	considered	only	simple	selection	conditions	of	the	form	A	op	B,	where	op	is	an	equality	or
comparison	operation.	We	now	consider	more	complex	selection	predicates.

•	Conjunction:	A	conjunctive	selection	is	a	selection	of	the	form:

σθ	∧θ	∧⋯∧θ	(r)

1

2

n

•	Disjunction:	A	disjunctive	selection	is	a	selection	of	the	form:

σθ	∨θ	∨⋯∨θ	(r)

1

2

n

A	disjunctive	condition	is	satisfied	by	the	union	of	all	records	satisfying	the	individual,	simple	conditions	θ
.

i

•	Negation:	The	result	of	a	selection	σ¬θ(r)	is	the	set	of	tuples	of	r	for	which	the	condition	θ	evaluates	to
false.	In	the	absence	of	nulls,	this	set	is	simply	the	set	of	tuples	in	r	that	are	not	in	σθ(r).

We	can	implement	a	selection	operation	involving	either	a	conjunction	or	a	disjunction	of	simple
conditions	by	using	one	of	the	following	algorithms:

•	A7	(conjunctive	selection	using	one	index).	We	first	determine	whether	an	access	path	is	available	for	an
attribute	in	one	of	the	simple	conditions.	If	one	is,	one	of	the

700

Chapter	15

Query	Processing

selection	algorithms	A2	through	A6	can	retrieve	records	satisfying	that	condition.

We	complete	the	operation	by	testing,	in	the	memory	buffer,	whether	or	not	each	retrieved	record
satisfies	the	remaining	simple	conditions.

To	reduce	the	cost,	we	choose	a	θ	and	one	of	algorithms	A1	through	A6	for	i

which	the	combination	results	in	the	least	cost	for	σθ	(r).	The	cost	of	algorithm	i

A7	is	given	by	the	cost	of	the	chosen	algorithm.

•	A8	(conjunctive	selection	using	composite	index).	An	appropriate	composite	index	(that	is,	an	index	on
multiple	attributes)	may	be	available	for	some	conjunctive	selections.	If	the	selection	specifies	an	equality
condition	on	two	or	more	attributes,	and	a	composite	index	exists	on	these	combined	attribute	fields,	then
the	index	can	be	searched	directly.	The	type	of	index	determines	which	of	algorithms	A2,	A3,	or	A4	will	be
used.

•	A9	(conjunctive	selection	by	intersection	of	identifiers).	Another	alternative	for	implementing
conjunctive	selection	operations	involves	the	use	of	record	pointers	or	record	identifiers.	This	algorithm
requires	indices	with	record	pointers,	on	the	fields	involved	in	the	individual	conditions.	The	algorithm
scans	each	index	for	pointers	to	tuples	that	satisfy	an	individual	condition.	The	intersection	of	all	the
retrieved	pointers	is	the	set	of	pointers	to	tuples	that	satisfy	the	conjunctive	condition.	The	algorithm	then
uses	the	pointers	to	retrieve	the	actual	records.	If	indices	are	not	available	on	all	the	individual
conditions,	then	the	algorithm	tests	the	retrieved	records	against	the	remaining	conditions.

The	cost	of	algorithm	A9	is	the	sum	of	the	costs	of	the	individual	index	scans,	plus	the	cost	of	retrieving
the	records	in	the	intersection	of	the	retrieved	lists	of	pointers.	This	cost	can	be	reduced	by	sorting	the
list	of	pointers	and	retrieving	records	in	the	sorted	order.	Thereby,	(1)	all	pointers	to	records	in	a	block
come	together,	hence	all	selected	records	in	the	block	can	be	retrieved	using	a	single	I/O

operation,	and	(2)	blocks	are	read	in	sorted	order,	minimizing	disk-arm	movement.

Section	15.4	describes	sorting	algorithms.

•	A10	(disjunctive	selection	by	union	of	identifiers).	If	access	paths	are	available	on	all	the	conditions	of	a
disjunctive	selection,	each	index	is	scanned	for	pointers	to	tuples	that	satisfy	the	individual	condition.	The
union	of	all	the	retrieved	pointers	yields	the	set	of	pointers	to	all	tuples	that	satisfy	the	disjunctive
condition.	We	then	use	the	pointers	to	retrieve	the	actual	records.

However,	if	even	one	of	the	conditions	does	not	have	an	access	path,	we	have	to	perform	a	linear	scan	of
the	relation	to	find	tuples	that	satisfy	the	condition.

Therefore,	if	there	is	even	one	such	condition	in	the	disjunct,	the	most	efficient	access	method	is	a	linear
scan,	with	the	disjunctive	condition	tested	on	each	tuple	during	the	scan.

The	implementation	of	selections	with	negation	conditions	is	left	to	you	as	an	exercise	(Practice	Exercise
15.6).

15.4

Sorting

701

15.4

Sorting

Sorting	of	data	plays	an	important	role	in	database	systems	for	two	reasons.	First,	SQL

queries	can	specify	that	the	output	be	sorted.	Second,	and	equally	important	for	query	processing,	several
of	the	relational	operations,	such	as	joins,	can	be	implemented	efficiently	if	the	input	relations	are	first
sorted.	Thus,	we	discuss	sorting	here	before	discussing	the	join	operation	in	Section	15.5.

We	can	sort	a	relation	by	building	an	index	on	the	sort	key	and	then	using	that	index	to	read	the	relation
in	sorted	order.	However,	such	a	process	orders	the	relation	only	logically,	through	an	index,	rather	than
physically.	Hence,	the	reading	of	tuples	in	the	sorted	order	may	lead	to	a	disk	access	(disk	seek	plus	block
transfer)	for	each	record,	which	can	be	very	expensive,	since	the	number	of	records	can	be	much	larger
than	the	number	of	blocks.	For	this	reason,	it	may	be	desirable	to	order	the	records	physically.

The	problem	of	sorting	has	been	studied	extensively,	both	for	relations	that	fit	entirely	in	main	memory
and	for	relations	that	are	bigger	than	memory.	In	the	first	case,	standard	sorting	techniques	such	as
quick-sort	can	be	used.	Here,	we	discuss	how	to	handle	the	second	case.

15.4.1

External	Sort-Merge	Algorithm

Sorting	of	relations	that	do	not	fit	in	memory	is	called	external	sorting.	The	most	commonly	used
technique	for	external	sorting	is	the	external	sort–merge	algorithm.	We	describe	the	external	sort–merge
algorithm	next.	Let	M	denote	the	number	of	blocks	in	the	main	memory	buffer	available	for	sorting,	that

is,	the	number	of	disk	blocks	whose	contents	can	be	buffered	in	available	main	memory.

1.	In	the	first	stage,	a	number	of	sorted	runs	are	created;	each	run	is	sorted	but	contains	only	some	of	the
records	of	the	relation.

i	=	0;

repeat

read	M	blocks	of	the	relation,	or	the	rest	of	the	relation,

whichever	is	smaller;

sort	the	in-memory	part	of	the	relation;

write	the	sorted	data	to	run	file	R	;

i

i	=	i	+	1;

until	the	end	of	the	relation

2.	In	the	second	stage,	the	runs	are	merged.	Suppose,	for	now,	that	the	total	number	of	runs,	N,	is	less
than	M,	so	that	we	can	allocate	one	block	to	each	run	and	have	space	left	to	hold	one	block	of	output.	The
merge	stage	operates	as	follows:

702

Chapter	15

Query	Processing

read	one	block	of	each	of	the	N	files	R	into	a	buffer	block	in	memory;	i

repeat

choose	the	first	tuple	(in	sort	order)	among	all	buffer	blocks;

write	the	tuple	to	the	output,	and	delete	it	from	the	buffer	block;

if	the	buffer	block	of	any	run	R	is	empty	and	not	end-of-file(R)	i

i

then	read	the	next	block	of	R	into	the	buffer	block;

i

until	all	input	buffer	blocks	are	empty

The	output	of	the	merge	stage	is	the	sorted	relation.	The	output	file	is	buffered	to	reduce	the	number	of
disk	write	operations.	The	preceding	merge	operation	is	a	generalization	of	the	two-way	merge	used	by
the	standard	in-memory	sort–merge	algorithm;	it	merges	N	runs,	so	it	is	called	an	N-way	merge.

In	general,	if	the	relation	is	much	larger	than	memory,	there	may	be	M	or	more	runs	generated	in	the	first
stage,	and	it	is	not	possible	to	allocate	a	block	for	each	run	during	the	merge	stage.	In	this	case,	the
merge	operation	proceeds	in	multiple	passes.

Since	there	is	enough	memory	for	M	−1	input	buffer	blocks,	each	merge	can	take	M	−1

runs	as	input.

The	initial	pass	functions	in	this	way:	It	merges	the	first	M	−	1	runs	(as	described	in	item	2	above)	to	get	a
single	run	for	the	next	pass.	Then,	it	merges	the	next	M	−	1

runs	similarly,	and	so	on,	until	it	has	processed	all	the	initial	runs.	At	this	point,	the	number	of	runs	has
been	reduced	by	a	factor	of	M	−	1.	If	this	reduced	number	of	runs	is	still	greater	than	or	equal	to	M	,
another	pass	is	made,	with	the	runs	created	by	the	first	pass	as	input.	Each	pass	reduces	the	number	of
runs	by	a	factor	of	M	−	1.	The	passes	repeat	as	many	times	as	required,	until	the	number	of	runs	is	less
than	M	;	a	final	pass	then	generates	the	sorted	output.

Figure	15.4	illustrates	the	steps	of	the	external	sort–merge	for	an	example	relation.

For	illustration	purposes,	we	assume	that	only	one	tuple	fits	in	a	block	(f	=	1),	and	we	r

assume	that	memory	holds	at	most	three	blocks.	During	the	merge	stage,	two	blocks	are	used	for	input
and	one	for	output.

15.4.2

Cost	Analysis	of	External	Sort-Merge

We	compute	the	disk-access	cost	for	the	external	sort–merge	in	this	way:	Let	b	denote	the	number	of
blocks	containing	records	of	relation	r.	The	first	stage	r

reads	every	block	of	the	relation	and	writes	them	out	again,	giving	a	total	of	2	b	block	r

transfers.	The	initial	number	of	runs	is	⌈	b	∕	M⌉.	During	the	merge	pass,	reading	in	r

each	run	one	block	at	a	time	leads	to	a	large	number	of	seeks;	to	reduce	the	number	of	seeks,	a	larger
number	of	blocks,	denoted	b	,	are	read	or	written	at	a	time,	requiring	b	b

b

buffer	blocks	to	be	allocated	to	each	input	run	and	to	the	output	run.	Then,	⌊	M∕	b	⌋−1

b

runs	can	be	merged	in	each	merge	pass,	decreasing	the	number	of	runs	by	a	factor	of

⌊	M∕	b	⌋	−	1.	The	total	number	of	merge	passes	required	is	⌈log	(b	∕	M)⌉.	Each

b

⌊	M∕	b	⌋−1	r

b

of	these	passes	reads	every	block	of	the	relation	once	and	writes	it	out	once,	with	two	exceptions.	First,
the	final	pass	can	produce	the	sorted	output	without	writing	its	result

15.4

Sorting

703

a	19

a	19

g

24

d	31

a	14

b	14

a	19

g	24

a	19

c	33

d	31

b	14

d	31

b	14

c	33

c	33

e	16

c	33

b	14

d	7

g	24

e	16

e	16

d	21

r	16

d	31

d	21

a	14

d	21

e	16

m	3

d	7

m	3

g	24

r	16

d	21

p	2

m	3

m	3

d	7

a	14

p	2

p	2

a	14

d	7

r	16

r	16

p	2

initial

sorted

relation

runs

runs

output

create

merge

merge

runs

pass–1

pass–2

Figure	15.4	External	sorting	using	sort–merge.

to	disk.	Second,	there	may	be	runs	that	are	not	read	in	or	written	out	during	a	pass

—	for	example,	if	there	are	⌊	M∕	b	⌋	runs	to	be	merged	in	a	pass,	⌊	M∕	b	⌋	−	1	are	read	b

b

in	and	merged,	and	one	run	is	not	accessed	during	the	pass.	Ignoring	the	(relatively	small)	savings	due	to
the	latter	effect,	the	total	number	of	block	transfers	for	external	sorting	of	the	relation	is:

b	(2⌈log

(b	∕	M)⌉	+	1)

r

⌊	M∕	b	⌋−1	r

b

Applying	this	equation	to	the	example	in	Figure	15.4,	with	b	set	to	1,	we	get	a	total	of	b

12	∗	(4	+	1)	=	60	block	transfers,	as	you	can	verify	from	the	figure.	Note	that	these	above	numbers	do	not
include	the	cost	of	writing	out	the	final	result.

We	also	need	to	add	the	disk-seek	costs.	Run	generation	requires	seeks	for	reading	data	for	each	of	the
runs	as	well	as	for	writing	the	runs.	Each	merge	pass	requires	around	⌈	b	∕	b	⌉	seeks	for	reading	data.6
Although	the	output	is	written	sequentially,	if	r

b

it	is	on	the	same	disk	as	the	input	runs,	the	head	may	have	moved	away	between	writes	of	consecutive
blocks.	Thus	we	would	have	to	add	a	total	of	2⌈	b	∕	b	⌉	seeks	for	each	r

b

merge	pass,	except	the	final	pass	(since	we	assume	the	final	result	is	not	written	back	to	disk).

6To	be	more	precise,	since	we	read	each	run	separately	and	may	get	fewer	than	b	blocks	when	reading
the	end	of	a	b

run,	we	may	require	an	extra	seek	for	each	run.	We	ignore	this	detail	for	simplicity.

704

Chapter	15

Query	Processing

2⌈	b	∕	M⌉	+	⌈	b	∕	b	⌉(2⌈log

(b	∕	M)⌉	−	1)

r

r

b

⌊	M∕	b	⌋−1	r

b

Applying	this	equation	to	the	example	in	Figure	15.4,	we	get	a	total	of	8	+	12	∗	(2	∗

2	−	1)	=	44	disk	seeks	if	we	set	the	number	of	buffer	blocks	per	run	b	to	1.

b

15.5

Join	Operation

In	this	section,	we	study	several	algorithms	for	computing	the	join	of	relations,	and	we	analyze	their
respective	costs.

We	use	the	term	equi-join	to	refer	to	a	join	of	the	form	r	⋈

s,	where	A	and	B

r.A=	s.B

are	attributes	or	sets	of	attributes	of	relations	r	and	s,	respectively.

We	use	as	a	running	example	the	expression:

student	⋈	takes

using	the	same	relation	schemas	that	we	used	in	Chapter	2.	We	assume	the	following	information	about
the	two	relations:

•	Number	of	records	of	student:	n

=	5000.

student

•	Number	of	blocks	of	student:	b

=	100.

student

•	Number	of	records	of	takes:	n

=	10,	000.

takes

•	Number	of	blocks	of	takes:	b

=	400.

takes

15.5.1

Nested-Loop	Join

Figure	15.5	shows	a	simple	algorithm	to	compute	the	theta	join,	r	⋈θ	s,	of	two	relations	r	and	s.	This
algorithm	is	called	the	nested-loop	join	algorithm,	since	it	basically	consists	of	a	pair	of	nested	for	loops.
Relation	r	is	called	the	outer	relation	and	relation	s	the	inner	relation	of	the	join,	since	the	loop	for	r
encloses	the	loop	for	s.	The	algorithm	uses	the	notation	t	⋅	t	,	where	t	and	t	are	tuples;	t	⋅	t	denotes	the
tuple	constructed	r

s

r

s

r

s

by	concatenating	the	attribute	values	of	tuples	t	and	t	.

r

s

Like	the	linear	file-scan	algorithm	for	selection,	the	nested-loop	join	algorithm	requires	no	indices,	and	it
can	be	used	regardless	of	what	the	join	condition	is.	Extending	the	algorithm	to	compute	the	natural	join
is	straightforward,	since	the	natural	join	can	be	expressed	as	a	theta	join	followed	by	elimination	of
repeated	attributes	by	a	projection.	The	only	change	required	is	an	extra	step	of	deleting	repeated
attributes	from	the	tuple	t	⋅	t	,	before	adding	it	to	the	result.

r

s

The	nested-loop	join	algorithm	is	expensive,	since	it	examines	every	pair	of	tuples	in	the	two	relations.
Consider	the	cost	of	the	nested-loop	join	algorithm.	The	number	of	pairs	of	tuples	to	be	considered	is	n	∗	n
,	where	n	denotes	the	number	of	tuples	in	r

s

r

r,	and	n	denotes	the	number	of	tuples	in	s.	For	each	record	in	r,	we	have	to	perform	s

15.5

Join	Operation

705

for	each	tuple	t	in	r	do	begin

r

for	each	tuple	t	in	s	do	begin

s

test	pair	(t	,	t)	to	see	if	they	satisfy	the	join	condition	θ

r

s

if	they	do,	add	t	⋅	t	to	the	result;

r

s

end

end

Figure	15.5	Nested-loop	join.

a	complete	scan	on	s.	In	the	worst	case,	the	buffer	can	hold	only	one	block	of	each	relation,	and	a	total	of
n	∗	b	+	b	block	transfers	would	be	required,	where	b	and	b	r

s

r

r

s

denote	the	number	of	blocks	containing	tuples	of	r	and	s,	respectively.	We	need	only	one	seek	for	each
scan	on	the	inner	relation	s	since	it	is	read	sequentially,	and	a	total	of	b	seeks	to	read	r,	leading	to	a	total
of	n	+	b	seeks.	In	the	best	case,	there	is	enough	r

r

r

space	for	both	relations	to	fit	simultaneously	in	memory,	so	each	block	would	have	to	be	read	only	once;
hence,	only	b	+	b	block	transfers	would	be	required,	along	with	r

s

two	seeks.

If	one	of	the	relations	fits	entirely	in	main	memory,	it	is	beneficial	to	use	that	relation	as	the	inner	relation,
since	the	inner	relation	would	then	be	read	only	once.

Therefore,	if	s	is	small	enough	to	fit	in	main	memory,	our	strategy	requires	only	a	total	b	+	b	block
transfers	and	two	seeks	—	the	same	cost	as	that	for	the	case	where	both	r

s

relations	fit	in	memory.

Now	consider	the	natural	join	of	student	and	takes.	Assume	for	now	that	we	have	no	indices	whatsoever
on	either	relation,	and	that	we	are	not	willing	to	create	any	index.	We	can	use	the	nested	loops	to	compute
the	join;	assume	that	student	is	the	outer	relation	and	takes	is	the	inner	relation	in	the	join.	We	will	have
to	examine	5000

∗	10,000	=	50	∗	106	pairs	of	tuples.	In	the	worst	case,	the	number	of	block	transfers	is	5000	∗	400	+	100
=	2,000,100,	plus	5000	+	100	=	5100	seeks.	In	the	best-case	scenario,	however,	we	can	read	both
relations	only	once	and	perform	the	computation.

This	computation	requires	at	most	100	+	400	=	500	block	transfers,	plus	two	seeks

—	a	significant	improvement	over	the	worst-case	scenario.	If	we	had	used	takes	as	the	relation	for	the
outer	loop	and	student	for	the	inner	loop,	the	worst-case	cost	of	our	final	strategy	would	have	been	10,000
∗	100	+	400	=	1,000,400	block	transfers,	plus	10,400	disk	seeks.	The	number	of	block	transfers	is
significantly	less,	and	although	the	number	of	seeks	is	higher,	the	overall	cost	is	reduced,	assuming	t	=	4
milliseconds	S

and	t	=	0	.	1	milliseconds.

T

15.5.2

Block	Nested-Loop	Join

If	the	buffer	is	too	small	to	hold	either	relation	entirely	in	memory,	we	can	still	obtain	a	major	saving	in
block	accesses	if	we	process	the	relations	on	a	per-block	basis,	rather

706

Chapter	15

Query	Processing

than	on	a	per-tuple	basis.	Figure	15.6	shows	block	nested-loop	join,	which	is	a	variant	of	the	nested-loop
join	where	every	block	of	the	inner	relation	is	paired	with	every	block	of	the	outer	relation.	Within	each
pair	of	blocks,	every	tuple	in	one	block	is	paired	with	every	tuple	in	the	other	block,	to	generate	all	pairs
of	tuples.	As	before,	all	pairs	of	tuples	that	satisfy	the	join	condition	are	added	to	the	result.

The	primary	difference	in	cost	between	the	block	nested-loop	join	and	the	basic	nested-loop	join	is	that,	in
the	worst	case,	each	block	in	the	inner	relation	s	is	read	only	once	for	each	block	in	the	outer	relation,
instead	of	once	for	each	tuple	in	the	outer	relation.	Thus,	in	the	worst	case,	there	will	be	a	total	of	b	∗	b	+
b	block	transfers,	r

s

r

where	b	and	b	denote	the	number	of	blocks	containing	records	of	r	and	s,	respectively.

r

s

Each	scan	of	the	inner	relation	requires	one	seek,	and	the	scan	of	the	outer	relation	requires	one	seek	per
block,	leading	to	a	total	of	2	∗	b	seeks.	It	is	more	efficient	to	r

use	the	smaller	relation	as	the	outer	relation,	in	case	neither	of	the	relations	fits	in	memory.	In	the	best
case,	where	the	inner	relation	fits	in	memory,	there	will	be	b	+	b	r

s

block	transfers	and	just	two	seeks	(we	would	choose	the	smaller	relation	as	the	inner	relation	in	this
case).

Now	return	to	our	example	of	computing	student	⋈	takes,	using	the	block	nested-loop	join	algorithm.	In
the	worst	case,	we	have	to	read	each	block	of	takes	once	for	each	block	of	student.	Thus,	in	the	worst
case,	a	total	of	100	∗	400	+	100	=	40,100	block	transfers	plus	2	∗	100	=	200	seeks	are	required.	This	cost
is	a	significant	improvement	over	the	5000	∗	400	+	100	=	2,000,100	block	transfers	plus	5100	seeks
needed	in	the	worst	case	for	the	basic	nested-loop	join.	The	best-case	cost	remains	the	same	—	namely,
100	+	400	=	500	block	transfers	and	two	seeks.

The	performance	of	the	nested-loop	and	block	nested-loop	procedures	can	be	further	improved:

for	each	block	B	of	r	do	begin

r

for	each	block	B	of	s	do	begin

s

for	each	tuple	t	in	B	do	begin

r

r

for	each	tuple	t	in	B	do	begin

s

s

test	pair	(t	,	t)	to	see	if	they	satisfy	the	join	condition	r

s

if	they	do,	add	t	⋅	t	to	the	result;

r

s

end

end

end

end

Figure	15.6	Block	nested-loop	join.

15.5

Join	Operation

707

•	If	the	join	attributes	in	a	natural	join	or	an	equi-join	form	a	key	on	the	inner	relation,	then	for	each	outer
relation	tuple	the	inner	loop	can	terminate	as	soon	as	the	first	match	is	found.

•	In	the	block	nested-loop	algorithm,	instead	of	using	disk	blocks	as	the	blocking	unit	for	the	outer
relation,	we	can	use	the	biggest	size	that	can	fit	in	memory,	while	leaving	enough	space	for	the	buffers	of
the	inner	relation	and	the	output.	In	other	words,	if	memory	has	M	blocks,	we	read	in	M	−	2	blocks	of	the
outer	relation	at	a	time,	and	when	we	read	each	block	of	the	inner	relation	we	join	it	with	all	the	M	−	2
blocks	of	the	outer	relation.	This	change	reduces	the	number	of	scans	of	the	inner	relation	from	b	to	⌈	b	∕(
M	−	2)⌉,	where	b	is	the	number	of	blocks	of	r

r

r

the	outer	relation.	The	total	cost	is	then	⌈	b	∕(M	−	2)⌉	∗	b	+	b	block	transfers	r

s

r

and	2⌈	b	∕(M	−	2)⌉	seeks.

r

•	We	can	scan	the	inner	loop	alternately	forward	and	backward.	This	scanning	method	orders	the
requests	for	disk	blocks	so	that	the	data	remaining	in	the	buffer	from	the	previous	scan	can	be	reused,
thus	reducing	the	number	of	disk	accesses	needed.

•	If	an	index	is	available	on	the	inner	loop’s	join	attribute,	we	can	replace	file	scans	with	more	efficient
index	lookups.	Section	15.5.3	describes	this	optimization.

15.5.3

Indexed	Nested-Loop	Join

In	a	nested-loop	join	(Figure	15.5),	if	an	index	is	available	on	the	inner	loop’s	join	attribute,	index	lookups
can	replace	file	scans.	For	each	tuple	t	in	the	outer	relation	r,	r

the	index	is	used	to	look	up	tuples	in	s	that	will	satisfy	the	join	condition	with	tuple	t	.

r

This	join	method	is	called	an	indexed	nested-loop	join;	it	can	be	used	with	existing	indices,	as	well	as	with
temporary	indices	created	for	the	sole	purpose	of	evaluating	the	join.

Looking	up	tuples	in	s	that	will	satisfy	the	join	conditions	with	a	given	tuple	t	is	r

essentially	a	selection	on	s.	For	example,	consider	student	⋈	takes.	Suppose	that	we	have	a	student	tuple
with	ID	“00128”.	Then,	the	relevant	tuples	in	takes	are	those	that	satisfy	the	selection	“ID	=	00128”.

The	cost	of	an	indexed	nested-loop	join	can	be	computed	as	follows:	For	each	tuple	in	the	outer	relation	r,
a	lookup	is	performed	on	the	index	for	s,	and	the	relevant	tuples	are	retrieved.	In	the	worst	case,	there	is
space	in	the	buffer	for	only	one	block	of	r	and	one	block	of	the	index.	Then,	b	I/O	operations	are	needed	to
read	relation	r,	where	b	r

r

denotes	the	number	of	blocks	containing	records	of	r;	each	I/O	requires	a	seek	and	a	block	transfer,	since
the	disk	head	may	have	moved	in	between	each	I/O.	For	each	tuple	in	r,	we	perform	an	index	lookup	on	s.
Then,	the	cost	of	the	join	can	be	computed	as	b	(t	+	t)	+	n	∗	c,	where	n	is	the	number	of	records	in
relation	r,	and	c	is	the	cost	of	r

T

S

r

r

a	single	selection	on	s	using	the	join	condition.	We	have	seen	in	Section	15.3	how	to	estimate	the	cost	of	a

single	selection	algorithm	(possibly	using	indices);	that	estimate	gives	us	the	value	of	c.

708

Chapter	15

Query	Processing

The	cost	formula	indicates	that,	if	indices	are	available	on	both	relations	r	and	s,	it	is	generally	most
efficient	to	use	the	one	with	fewer	tuples	as	the	outer	relation.

For	example,	consider	an	indexed	nested-loop	join	of	student	⋈	takes,	with	student	as	the	outer	relation.
Suppose	also	that	takes	has	a	clustering	B+-tree	index	on	the	join	attribute	ID,	which	contains	20	entries
on	average	in	each	index	node.	Since	takes	has	10,000	tuples,	the	height	of	the	tree	is	4,	and	one	more
access	is	needed	to	find	the	actual	data.	Since	n

is	5000,	the	total	cost	is	100	+	5000	∗	5	=	25,100	disk

student

accesses,	each	of	which	requires	a	seek	and	a	block	transfer.	In	contrast,	as	we	saw	before,	40,100	block
transfers	plus	200	seeks	were	needed	for	a	block	nested-loop	join.

Although	the	number	of	block	transfers	has	been	reduced,	the	seek	cost	has	actually	increased,	increasing
the	total	cost	since	a	seek	is	considerably	more	expensive	than	a	block	transfer.	However,	if	we	had	a
selection	on	the	student	relation	that	reduces	the	number	of	rows	significantly,	indexed	nested-loop	join
could	be	significantly	faster	than	block	nested-loop	join.

15.5.4

Merge	Join

The	merge-join	algorithm	(also	called	the	sort-merge-join	algorithm)	can	be	used	to	compute	natural	joins
and	equi-joins.	Let	r(R)	and	s(S)	be	the	relations	whose	natural	join	is	to	be	computed,	and	let	R	∩	S
denote	their	common	attributes.	Suppose	that	both	relations	are	sorted	on	the	attributes	R	∩	S.	Then,
their	join	can	be	computed	by	a	process	much	like	the	merge	stage	in	the	merge–sort	algorithm.

15.5.4.1

Merge-Join	Algorithm

Figure	15.7	shows	the	merge-join	algorithm.	In	the	algorithm,	JoinAttrs	refers	to	the	attributes	in	R	∩	S,
and	t	⋈	t	,	where	t	and	t	are	tuples	that	have	the	same	values	for	r

s

r

s

JoinAttrs,	denotes	the	concatenation	of	the	attributes	of	the	tuples,	followed	by	projecting	out	repeated
attributes.	The	merge-join	algorithm	associates	one	pointer	with	each	relation.	These	pointers	point
initially	to	the	first	tuple	of	the	respective	relations.	As	the	algorithm	proceeds,	the	pointers	move	through
the	relation.	A	group	of	tuples	of	one	relation	with	the	same	value	on	the	join	attributes	is	read	into	S	.
The	algorithm	s

in	Figure	15.7	requires	that	every	set	of	tuples	S	fit	in	main	memory;	we	discuss	ex-s

tensions	of	the	algorithm	to	avoid	this	requirement	shortly.	Then,	the	corresponding	tuples	(if	any)	of	the
other	relation	are	read	in	and	are	processed	as	they	are	read.

Figure	15.8	shows	two	relations	that	are	sorted	on	their	join	attribute	a	1.	It	is	instructive	to	go	through
the	steps	of	the	merge-join	algorithm	on	the	relations	shown	in	the	figure.

The	merge-join	algorithm	of	Figure	15.7	requires	that	each	set	S	of	all	tuples	with	s

the	same	value	for	the	join	attributes	must	fit	in	main	memory.	This	requirement	can	usually	be	met,	even
if	the	relation	s	is	large.	If	there	are	some	join	attribute	values	for

15.5

Join	Operation

709

pr	:=	address	of	first	tuple	of	r;

ps	:=	address	of	first	tuple	of	s;

while	(ps	≠	null	and	pr	≠	null)	do

begin

t	:=	tuple	to	which	ps	points;

s

S	:=	{	t	};

s

s

set	ps	to	point	to	next	tuple	of	s;

done	:=	false;

while	(not	done	and	ps	≠	null)	do

begin

t	′	:=	tuple	to	which	ps	points;

s

if	(t	′[JoinAttrs]	=	t	[JoinAttrs])

s

s

then	begin

S	:=	S	∪	{	t	′};

s

s

s

set	ps	to	point	to	next	tuple	of	s;

end

else	done	:=	true;

end

t	:=	tuple	to	which	pr	points;

r

while	(pr	≠	null	and	t	[JoinAttrs]	<	t	[JoinAttrs])	do	r

s

begin

set	pr	to	point	to	next	tuple	of	r;

t	:=	tuple	to	which	pr	points;

r

end

while	(pr	≠	null	and	t	[JoinAttrs]	=	t	[JoinAttrs])	do	r

s

begin

for	each	t	in	S	do

s

s

begin

add	t	⋈	t	to	result;

s

r

end

set	pr	to	point	to	next	tuple	of	r;

t	:=	tuple	to	which	pr	points;

r

end

end.

Figure	15.7	Merge	join.

which	S	is	larger	than	available	memory,	a	block	nested-loop	join	can	be	performed	s

for	such	sets	S	,	matching	them	with	corresponding	blocks	of	tuples	in	r	with	the	same	s

values	for	the	join	attributes.

710

Chapter	15

Query	Processing

a1	a2

a1	a3

pr

ps

a

3

a	A

b

1

b	G

d

8

c	L

d	13

d	N

f	7

m	B

m

5

s

q

6

r

Figure	15.8	Sorted	relations	for	merge	join.

If	either	of	the	input	relations	r	and	s	is	not	sorted	on	the	join	attributes,	they	can	be	sorted	first,	and	then
the	merge-join	algorithm	can	be	used.	The	merge-join	algorithm	can	also	be	easily	extended	from	natural
joins	to	the	more	general	case	of	equi-joins.

15.5.4.2

Cost	Analysis

Once	the	relations	are	in	sorted	order,	tuples	with	the	same	value	on	the	join	attributes	are	in	consecutive
order.	Thereby,	each	tuple	in	the	sorted	order	needs	to	be	read	only	once,	and,	as	a	result,	each	block	is
also	read	only	once.	Since	it	makes	only	a	single	pass	through	both	files	(assuming	all	sets	S	fit	in
memory),	the	merge-join	method	is	s

efficient;	the	number	of	block	transfers	is	equal	to	the	sum	of	the	number	of	blocks	in	both	files,	b	+	b	.

r

s

Assuming	that	b	buffer	blocks	are	allocated	to	each	relation,	the	number	of	disk	b

seeks	required	would	be	⌈	b	∕	b	⌉	+	⌈	b	∕	b	⌉	disk	seeks.	Since	seeks	are	much	more	r

b

s

b

expensive	than	data	transfer,	it	makes	sense	to	allocate	multiple	buffer	blocks	to	each	relation,	provided
extra	memory	is	available.	For	example,	with	t	=	0	.	1	milliseconds	T

per	4-kilobyte	block,	and	t

=	4	milliseconds,	the	buffer	size	is	400	blocks	(or	1.6

S

megabytes),	so	the	seek	time	would	be	4	milliseconds	for	every	40	milliseconds	of	transfer	time;	in	other
words,	seek	time	would	be	just	10	percent	of	the	transfer	time.

If	either	of	the	input	relations	r	and	s	is	not	sorted	on	the	join	attributes,	they	must	be	sorted	first;	the
cost	of	sorting	must	then	be	added	to	the	above	costs.	If	some	sets	S	do	not	fit	in	memory,	the	cost	would
increase	slightly.

s

Suppose	the	merge-join	scheme	is	applied	to	our	example	of	student

⋈	takes.

The	join	attribute	here	is	ID.	Suppose	that	the	relations	are	already	sorted	on	the	join	attribute	ID.	In	this

case,	the	merge	join	takes	a	total	of	400+100	=	500	block	transfers.

If	we	assume	that	in	the	worst	case	only	one	buffer	block	is	allocated	to	each	input	relation	(that	is,	b	=
1),	a	total	of	400	+	100	=	500	seeks	would	also	be	required;	in	b

reality	b	can	be	set	much	higher	since	we	need	to	buffer	blocks	for	only	two	relations,	b

and	the	seek	cost	would	be	significantly	less.

15.5

Join	Operation

711

Suppose	the	relations	are	not	sorted,	and	the	memory	size	is	the	worst	case,	only	three	blocks.	The	cost	is
as	follows:

1.	Using	the	formulae	that	we	developed	in	Section	15.4,	we	can	see	that	sorting	relation	takes	requires
⌈log

(400∕3)⌉	=	8	merge	passes.	Sorting	of	relation

3−1

takes	then	takes	400	∗	(2⌈log

(400∕3)⌉	+	1),	or	6800,	block	transfers,	with

3−1

400	more	transfers	to	write	out	the	result.	The	number	of	seeks	required	is	2	∗

⌈400∕3⌉	+	400	∗	(2	∗	8	−	1)	or	6268	seeks	for	sorting,	and	400	seeks	for	writing	the	output,	for	a	total	of
6668	seeks,	since	only	one	buffer	block	is	available	for	each	run.

2.	Similarly,	sorting	relation	student	takes	⌈log

(100∕3)⌉	=	6	merge	passes	and

3−1

100	∗	(2⌈log

(100∕3)⌉	+	1),	or	1300,	block	transfers,	with	100	more	transfers

3−1

to	write	it	out.	The	number	of	seeks	required	for	sorting	student	is	2	∗	⌈100∕3⌉	+

100	∗	(2	∗	6	−	1)	=	1168,	and	100	seeks	are	required	for	writing	the	output,	for	a	total	of	1268	seeks.

3.	Finally,	merging	the	two	relations	takes	400	+	100	=	500	block	transfers	and	500

seeks.

Thus,	the	total	cost	is	9100	block	transfers	plus	8932	seeks	if	the	relations	are	not	sorted,	and	the	memory
size	is	just	3	blocks.

With	a	memory	size	of	25	blocks,	and	the	relations	not	sorted,	the	cost	of	sorting	followed	by	merge	join
would	be	as	follows:

1.	Sorting	the	relation	takes	can	be	done	with	just	one	merge	step	and	takes	a	total	of	just	400	∗	(2⌈log
(400∕25)⌉	+	1)	=	1200	block	transfers.	Similarly,	sorting	24

student	takes	300	block	transfers.	Writing	the	sorted	output	to	disk	requires	400

+	100	=	500	block	transfers,	and	the	merge	step	requires	500	block	transfers	to	read	the	data	back.
Adding	up	these	costs	gives	a	total	cost	of	2500	block	transfers.

2.	If	we	assume	that	only	one	buffer	block	is	allocated	for	each	run,	the	number	of	seeks	required	in	this
case	is	2	∗	⌈400∕25⌉	+	400	+	400	=	832	seeks	for	sorting	takes	and	writing	the	sorted	output	to	disk,	and
similarly	2	∗	⌈100∕25⌉	+	100	+

100	=	208	for	student,	plus	400	+	100	seeks	for	reading	the	sorted	data	in	the	merge-join	step.	Adding	up
these	costs	gives	a	total	cost	of	1640	seeks.

The	number	of	seeks	can	be	significantly	reduced	by	setting	aside	more	buffer	blocks	for	each	run.	For
example,	if	5	buffer	blocks	are	allocated	for	each	run	and	for	the	output	from	merging	the	4	runs	of
student,	the	cost	is	reduced	to	2	∗	⌈100∕25⌉	+	⌈100∕5⌉	+	⌈100∕5⌉	=	48	seeks,	from	208	seeks.	If	the	merge-
join	step	sets	aside	12	blocks	each	for	buffering	takes	and	student,	the	number	of	seeks	for	the	merge-join
step	goes	down	to	⌈400∕12⌉	+	⌈100∕12⌉	=	43,	from	500.	The	total	number	of	seeks	is	then	251.

712

Chapter	15

Query	Processing

Thus,	the	total	cost	is	2500	block	transfers	plus	251	seeks	if	the	relations	are	not	sorted,	and	the	memory
size	is	25	blocks.

15.5.4.3

Hybrid	Merge	Join

It	is	possible	to	perform	a	variation	of	the	merge-join	operation	on	unsorted	tuples,	if	secondary	indices
exist	on	both	join	attributes.	The	algorithm	scans	the	records	through	the	indices,	resulting	in	their	being
retrieved	in	sorted	order.	This	variation	presents	a	significant	drawback,	however,	since	records	may	be
scattered	throughout	the	file	blocks.	Hence,	each	tuple	access	could	involve	accessing	a	disk	block,	and
that	is	costly.

To	avoid	this	cost,	we	can	use	a	hybrid	merge-join	technique	that	combines	indices	with	merge	join.
Suppose	that	one	of	the	relations	is	sorted;	the	other	is	unsorted,	but	has	a	secondary	B+-tree	index	on
the	join	attributes.	The	hybrid	merge-join	algorithm	merges	the	sorted	relation	with	the	leaf	entries	of	the
secondary	B+-tree	index.	The	result	file	contains	tuples	from	the	sorted	relation	and	addresses	for	tuples
of	the	unsorted	relation.	The	result	file	is	then	sorted	on	the	addresses	of	tuples	of	the	unsorted	relation,
allowing	efficient	retrieval	of	the	corresponding	tuples,	in	physical	storage	order,	to	complete	the	join.
Extensions	of	the	technique	to	handle	two	unsorted	relations	are	left	as	an	exercise	for	you.

15.5.5

Hash	Join

Like	the	merge-join	algorithm,	the	hash-join	algorithm	can	be	used	to	implement	natural	joins	and	equi-
joins.	In	the	hash-join	algorithm,	a	hash	function	h	is	used	to	partition	tuples	of	both	relations.	The	basic
idea	is	to	partition	the	tuples	of	each	of	the	relations	into	sets	that	have	the	same	hash	value	on	the	join
attributes.

We	assume	that:

•	h	is	a	hash	function	mapping	JoinAttrs	values	to	{0,	1,	…	,	n	},	where	JoinAttrs	h

denotes	the	common	attributes	of	r	and	s	used	in	the	natural	join.

•	r	,	r	,	…	,	r	denote	partitions	of	r	tuples,	each	initially	empty.	Each	tuple	t	∈	r	0

1

n

r

h

is	put	in	partition	r	,	where	i	=	h(t	[JoinAttrs]).

i

r

•	s	,	s	,	...	,	s	denote	partitions	of	s	tuples,	each	initially	empty.	Each	tuple	t	∈	s	is	0

1

n

s

h

put	in	partition	s	,	where	i	=	h(t	[JoinAttrs]).

i

s

The	hash	function	h	should	have	the	“goodness”	properties	of	randomness	and	uniformity	that	we
discussed	in	Chapter	14.	Figure	15.9	depicts	the	partitioning	of	the	relations.

15.5.5.1

Basics

The	idea	behind	the	hash-join	algorithm	is	this:	Suppose	that	an	r	tuple	and	an	s	tuple	satisfy	the	join
condition;	then,	they	have	the	same	value	for	the	join	attributes.	If	that	value	is	hashed	to	some	value	i,
the	r	tuple	has	to	be	in	r	and	the	s	tuple	in	s	.	Therefore,	i

i

15.5

Join	Operation

713

0

0

1

1

.

.

.

.

.

2

2

.

.

.

3

3

s

4

4

r

partitions

partitions

of	r

of	s

Figure	15.9	Hash	partitioning	of	relations.

r	tuples	in	r	need	only	be	compared	with	s	tuples	in	s	;	they	do	not	need	to	be	compared	i

i

with	s	tuples	in	any	other	partition.

For	example,	if	d	is	a	tuple	in	student,	c	a	tuple	in	takes,	and	h	a	hash	function	on	the	ID	attributes	of	the
tuples,	then	d	and	c	must	be	tested	only	if	h(c)	=	h(d).	If	h(c)	≠	h(d),	then	c	and	d	must	have	different
values	for	ID.	However,	if	h(c)	=	h(d),	we	must	test	c	and	d	to	see	whether	the	values	in	their	join
attributes	are	the	same,	since	it	is	possible	that	c	and	d	have	different	iid	s	that	have	the	same	hash	value.

Figure	15.10	shows	the	details	of	the	hash-join	algorithm	to	compute	the	natural	join	of	relations	r	and	s.
As	in	the	merge-join	algorithm,	t	⋈	t	denotes	the	concatena-r

s

tion	of	the	attributes	of	tuples	t	and	t	,	followed	by	projecting	out	repeated	attributes.

r

s

After	the	partitioning	of	the	relations,	the	rest	of	the	hash-join	code	performs	a	separate	indexed	nested-
loop	join	on	each	of	the	partition	pairs	i,	for	i	=	0,	…	,	n	.	To	do	so,	h

it	first	builds	a	hash	index	on	each	s	,	and	then	probes	(that	is,	looks	up	s)	with	tuples	i

i

from	r	.	The	relation	s	is	the	build	input,	and	r	is	the	probe	input.

i

The	hash	index	on	s	is	built	in	memory,	so	there	is	no	need	to	access	the	disk	to	i

retrieve	the	tuples.	The	hash	function	used	to	build	this	hash	index	must	be	different	from	the	hash
function	h	used	earlier,	but	it	is	still	applied	to	only	the	join	attributes.	In	the	course	of	the	indexed
nested-loop	join,	the	system	uses	this	hash	index	to	retrieve	records	that	match	records	in	the	probe
input.

The	build	and	probe	phases	require	only	a	single	pass	through	both	the	build	and	probe	inputs.	It	is
straightforward	to	extend	the	hash-join	algorithm	to	compute	general	equi-joins.

The	value	n	must	be	chosen	to	be	large	enough	such	that,	for	each	i,	the	tuples	in	h

the	partition	s	of	the	build	relation,	along	with	the	hash	index	on	the	partition,	fit	in	i

memory.	It	is	not	necessary	for	the	partitions	of	the	probe	relation	to	fit	in	memory.	It	is

714

Chapter	15

Query	Processing

/*	Partition	s	*/

for	each	tuple	t	in	s	do	begin

s

i	:=	h(t	[JoinAttrs]);

s

H	:=	H	∪	{	t	};

s

s

s

i

i

end

/*	Partition	r	*/

for	each	tuple	t	in	r	do	begin

r

i	:=	h(t	[JoinAttrs]);

r

H	:=	H	∪	{	t	};

r

r

r

i

i

end

/*	Perform	join	on	each	partition	*/

for	i	:=	0	to	n	do	begin

h

read	H	and	build	an	in-memory	hash	index	on	it;

si

for	each	tuple	t	in	H	do	begin

r

ri

probe	the	hash	index	on	H	to	locate	all	tuples	t

s

s

i

such	that	t	[JoinAttrs]	=	t	[JoinAttrs];	s

r

for	each	matching	tuple	t	in	H	do	begin

s

si

add	t	⋈	t	to	the	result;

r

s

end

end

end

Figure	15.10	Hash	join.

best	to	use	the	smaller	input	relation	as	the	build	relation.	If	the	size	of	the	build	relation	is	b	blocks,	then,
for	each	of	the	n	partitions	to	be	of	size	less	than	or	equal	to	M	,	n	s

h

h

must	be	at	least	⌈	b	∕	M⌉.	More	precisely	stated,	we	have	to	account	for	the	extra	space	s

occupied	by	the	hash	index	on	the	partition	as	well,	so	n	should	be	correspondingly	h

larger.	For	simplicity,	we	sometimes	ignore	the	space	requirement	of	the	hash	index	in	our	analysis.

15.5.5.2

Recursive	Partitioning

If	the	value	of	n	is	greater	than	or	equal	to	the	number	of	blocks	of	memory,	the	rela-h

tions	cannot	be	partitioned	in	one	pass,	since	there	will	not	be	enough	buffer	blocks.

Instead,	partitioning	has	to	be	done	in	repeated	passes.	In	one	pass,	the	input	can	be	split	into	at	most	as
many	partitions	as	there	are	blocks	available	for	use	as	output	buffers.	Each	bucket	generated	by	one
pass	is	separately	read	in	and	partitioned	again	in	the	next	pass,	to	create	smaller	partitions.	The	hash
function	used	in	a	pass	is	different	from	the	one	used	in	the	previous	pass.	The	system	repeats	this
splitting	of	the

15.5

Join	Operation

715

input	until	each	partition	of	the	build	input	fits	in	memory.	Such	partitioning	is	called	recursive
partitioning.

A	relation	does	not	need	recursive	partitioning	if	M	>	n	+	1,	or	equivalently	h

√

M	>	(b	∕	M)+1,	which	simplifies	(approximately)	to	M	>

b	.	For	example,	consider

s

s

a	memory	size	of	12	megabytes,	divided	into	4-kilobyte	blocks;	it	would	contain	a	total	of	3-kilobyte	(3072)
blocks.	We	can	use	a	memory	of	this	size	to	partition	relations	of	size	up	to	3-kilobyte	∗	3-kilobyte	blocks,
which	is	36	gigabytes.	Similarly,	a	relation

√

of	size	1	gigabyte	requires	just	over

256K	blocks,	or	2	megabytes,	to	avoid	recursive

partitioning.

15.5.5.3

Handling	of	Overflows

Hash-table	overflow	occurs	in	partition	i	of	the	build	relation	s	if	the	hash	index	on	si	is	larger	than	main
memory.	Hash-table	overflow	can	occur	if	there	are	many	tuples	in	the	build	relation	with	the	same	values
for	the	join	attributes,	or	if	the	hash	function	does	not	have	the	properties	of	randomness	and	uniformity.
In	either	case,	some	of	the	partitions	will	have	more	tuples	than	the	average,	whereas	others	will	have
fewer;	partitioning	is	then	said	to	be	skewed.

We	can	handle	a	small	amount	of	skew	by	increasing	the	number	of	partitions	so	that	the	expected	size	of
each	partition	(including	the	hash	index	on	the	partition)	is	somewhat	less	than	the	size	of	memory.	The
number	of	partitions	is	therefore	increased	by	a	small	value,	called	the	fudge	factor,	that	is	usually	about
20	percent	of	the	number	of	hash	partitions	computed	as	described	in	Section	15.5.5.

Even	if,	by	using	a	fudge	factor,	we	are	conservative	on	the	sizes	of	the	partitions,	overflows	can	still
occur.	Hash-table	overflows	can	be	handled	by	either	overflow	resolution	or	overflow	avoidance.	Overflow
resolution	is	performed	during	the	build	phase	if	a	hash-index	overflow	is	detected.	Overflow	resolution
proceeds	in	this	way:	If	s	,	for	i

any	i,	is	found	to	be	too	large,	it	is	further	partitioned	into	smaller	partitions	by	using	a	different	hash
function.	Similarly,	r	is	also	partitioned	using	the	new	hash	function,	i

and	only	tuples	in	the	matching	partitions	need	to	be	joined.

In	contrast,	overflow	avoidance	performs	the	partitioning	carefully,	so	that	overflows	never	occur	during
the	build	phase.	In	overflow	avoidance,	the	build	relation	s	is	initially	partitioned	into	many	small
partitions,	and	then	some	partitions	are	combined	in	such	a	way	that	each	combined	partition	fits	in
memory.	The	probe	relation	r	is	partitioned	in	the	same	way	as	the	combined	partitions	on	s,	but	the	sizes
of	r	do	not	matter.

i

If	a	large	number	of	tuples	in	s	have	the	same	value	for	the	join	attributes,	the	resolution	and	avoidance
techniques	may	fail	on	some	partitions.	In	that	case,	instead	of	creating	an	in-memory	hash	index	and
using	a	nested-loop	join	to	join	the	partitions,	we	can	use	other	join	techniques,	such	as	block	nested-loop
join,	on	those	partitions.

15.5.5.4

Cost	of	Hash	Join

We	now	consider	the	cost	of	a	hash	join.	Our	analysis	assumes	that	there	is	no	hash-table	overflow.	First,
consider	the	case	where	recursive	partitioning	is	not	required.

716

Chapter	15

Query	Processing

•	The	partitioning	of	the	two	relations	r	and	s	calls	for	a	complete	reading	of	both	relations	and	a
subsequent	writing	back	of	them.	This	operation	requires	2(b	+	b)	r

s

block	transfers,	where	b	and	b	denote	the	number	of	blocks	containing	records	r

s

of	relations	r	and	s,	respectively.	The	build	and	probe	phases	read	each	of	the	partitions	once,	calling	for
further	b	+	b	block	transfers.	The	number	of	blocks	r

s

occupied	by	partitions	could	be	slightly	more	than	b	+	b	,	as	a	result	of	partially	r

s

filled	blocks.	Accessing	such	partially	filled	blocks	can	add	an	overhead	of	at	most	2	n	for	each	of	the
relations,	since	each	of	the	n	partitions	could	have	a	partially	h

h

filled	block	that	has	to	be	written	and	read	back.	Thus,	a	hash	join	is	estimated	to	require:

3(b	+	b)	+	4	n

r

s

h

block	transfers.	The	overhead	4	n	is	usually	quite	small	compared	to	b	+	b	and	h

r

s

can	be	ignored.

•	Assuming	b	blocks	are	allocated	for	the	input	buffer	and	each	output	buffer,	parti-b

tioning	requires	a	total	of	2(⌈	b	∕	b	⌉	+	⌈	b	∕	b	⌉)	seeks.	The	build	and	probe	phases	r

b

s

b

require	only	one	seek	for	each	of	the	n	partitions	of	each	relation,	since	each	par-h

tition	can	be	read	sequentially.	The	hash	join	thus	requires	2(⌈	b	∕	b	⌉	+	⌈	b	∕	b	⌉)	+

r

b

s

b

2	n	seeks.

h

Now	consider	the	case	where	recursive	partitioning	is	required.	Again	we	assume	that	b	blocks	are
allocated	for	buffering	each	partition.	Each	pass	then	reduces	the	size	b

of	each	of	the	partitions	by	an	expected	factor	of	⌊	M∕	b	⌋	−	1;	and	passes	are	repeated	b

until	each	partition	is	of	size	at	most	M	blocks.	The	expected	number	of	passes	required	for	partitioning	s
is	therefore	⌈log⌊

(b	∕	M)⌉.

M	∕	b	⌋−1

s

b

•	Since,	in	each	pass,	every	block	of	s	is	read	in	and	written	out,	the	total	number	of	block	transfers	for
partitioning	of	s	is	2	b	⌈log

(b	∕	M)⌉.	The	number	of

s

⌊	M∕	b	⌋−1	s

b

passes	for	partitioning	of	r	is	the	same	as	the	number	of	passes	for	partitioning	of	s,	therefore	the	join	is
estimated	to	require

2(b	+	b)⌈log

(b	∕	M)⌉	+	b	+	b

r

s

⌊	M∕	b	⌋−1	s

r

s

b

block	transfers.

•	Ignoring	the	relatively	small	number	of	seeks	during	the	build	and	probe	phases,	hash	join	with
recursive	partitioning	requires

2(⌈	b	∕	b	⌉	+	⌈	b	∕	b	⌉)⌈log

(b	∕	M)⌉

r

b

s

b

⌊	M∕	b	⌋−1	s

b

disk	seeks.

Consider,	for	example,	the	natural	join	takes	⋈	student.	With	a	memory	size	of	20

blocks,	the	student	relation	can	be	partitioned	into	five	partitions,	each	of	size	20	blocks,	which	size	will
fit	into	memory.	Only	one	pass	is	required	for	the	partitioning.	The

15.5

Join	Operation

717

relation	takes	is	similarly	partitioned	into	five	partitions,	each	of	size	80.	Ignoring	the	cost	of	writing
partially	filled	blocks,	the	cost	is	3(100	+	400)	=	1500	block	transfers.

There	is	enough	memory	to	allocate	the	buffers	for	the	input	and	each	of	the	five	outputs	during

partitioning	(i.e,	b	=	3)	leading	to	2(⌈100∕3⌉	+	⌈400∕3⌉)	=	336	seeks.

b

The	hash	join	can	be	improved	if	the	main	memory	size	is	large.	When	the	entire	build	input	can	be	kept
in	main	memory,	n	can	be	set	to	0;	then,	the	hash-join	algorithm	h

executes	quickly,	without	partitioning	the	relations	into	temporary	files,	regardless	of	the	probe	input’s
size.	The	cost	estimate	goes	down	to	b	+	b	block	transfers	and	two	r

s

seeks.

Indexed	nested	loops	join	can	have	a	much	lower	cost	than	hash	join	in	case	the	outer	relation	is	small,
and	the	index	lookups	fetch	only	a	few	tuples	from	the	inner	(indexed)	relation.	However,	in	case	a
secondary	index	is	used,	and	the	number	of	tuples	in	the	outer	relation	is	large,	indexed	nested	loops	join
can	have	a	very	high	cost,	as	compared	to	hash	join.	If	the	number	of	tuples	in	the	outer	relation	is	known
at	query	optimization	time,	the	best	join	algorithm	can	be	chosen	at	that	time.	However,	in	some	cases,	for
example,	when	there	is	a	selection	condition	on	the	outer	input,	the	optimizer	makes	a	decision	based	on
an	estimate	that	may	potentially	be	imprecise.	The	number	of	tuples	in	the	outer	relation	may	be	found
only	at	runtime,	for	example,	after	executing	selection.	Some	systems	allow	a	dynamic	choice	between	the
two	algorithms	at	run	time,	after	finding	the	number	of	tuples	in	the	outer	input.

15.5.5.5

Hybrid	Hash	Join

The	hybrid	hash-join	algorithm	performs	another	optimization;	it	is	useful	when	memory	sizes	are
relatively	large	but	not	all	of	the	build	relation	fits	in	memory.	The	partitioning	phase	of	the	hash-join
algorithm	needs	a	minimum	of	one	block	of	memory	as	a	buffer	for	each	partition	that	is	created,	and	one
block	of	memory	as	an	input	buffer.

To	reduce	the	impact	of	seeks,	a	larger	number	of	blocks	would	be	used	as	a	buffer;	let	b	denote	the
number	of	blocks	used	as	a	buffer	for	the	input	and	for	each	parti-b

tion.	Hence,	a	total	of	(n	+	1)	∗	b	blocks	of	memory	are	needed	for	partitioning	the	h

b

two	relations.	If	memory	is	larger	than	(n	+	1)	∗	b	,	we	can	use	the	rest	of	memory	h

b

(M	−	(n	+	1)	∗	b	blocks)	to	buffer	the	first	partition	of	the	build	input	(i.e,	s)	so	h

b

0

that	it	will	not	need	to	be	written	out	and	read	back	in.	Further,	the	hash	function	is	designed	in	such	a
way	that	the	hash	index	on	s	fits	in	M	−	(n	+	1)	∗	b	blocks,	in	0

h

b

order	that,	at	the	end	of	partitioning	of	s,	s	is	completely	in	memory	and	a	hash	index	0

can	be	built	on	s	.

0

When	the	system	partitions	r,	it	again	does	not	write	tuples	in	r	to	disk;	instead,	as	0

it	generates	them,	the	system	uses	them	to	probe	the	memory-resident	hash	index	on	s	,	and	to	generate
output	tuples	of	the	join.	After	they	are	used	for	probing,	the	tuples	0

can	be	discarded,	so	the	partition	r	does	not	occupy	any	memory	space.	Thus,	a	write	0

and	a	read	access	have	been	saved	for	each	block	of	both	r	and	s	.	The	system	writes	0

0

out	tuples	in	the	other	partitions	as	usual	and	joins	them	later.	The	savings	of	hybrid	hash	join	can	be
significant	if	the	build	input	is	only	slightly	bigger	than	memory.

718

Chapter	15

Query	Processing

If	the	size	of	the	build	relation	is	b	,	n	is	approximately	equal	to	b	∕	M.	Thus,	hybrid	s

h

s

√

hash	join	is	most	useful	if	M	>>	(b	∕	M)	∗	b	,	or	M	>>

b	∗	b	,	where	the	notation

s

b

s

b

>>	denotes	much	larger	than.	For	example,	suppose	the	block	size	is	4	kilobytes,	the	build	relation	size	is
5	gigabytes,	and	b	is	20.	Then,	the	hybrid	hash-join	algorithm	b

is	useful	if	the	size	of	memory	is	significantly	more	than	20	megabytes;	memory	sizes	of	gigabytes	or	more
are	common	on	computers	today.	If	we	devote	1	gigabyte	for	the	join	algorithm,	s	would	be	nearly	1
gigabyte,	and	hybrid	hash	join	would	be	nearly	20

0

percent	cheaper	than	hash	join.

15.5.6

Complex	Joins

Nested-loop	and	block	nested-loop	joins	can	be	used	regardless	of	the	join	conditions.

The	other	join	techniques	are	more	efficient	than	the	nested-loop	join	and	its	variants,	but	they	can	handle
only	simple	join	conditions,	such	as	natural	joins	or	equi-joins.	We	can	implement	joins	with	complex	join
conditions,	such	as	conjunctions	and	disjunctions,	by	using	the	efficient	join	techniques,	if	we	apply	the
techniques	developed	in	Section	15.3.3	for	handling	complex	selections.

Consider	the	following	join	with	a	conjunctive	condition:

r	⋈	θ	∧	θ	∧	⋯∧θ	s

1

2

n

One	or	more	of	the	join	techniques	described	earlier	may	be	applicable	for	joins	on	the	individual
conditions	r	⋈θ	s,	r	⋈θ	s,	r	⋈θ	s,	and	so	on.	We	can	compute	the	overall	1

2

3

join	by	first	computing	the	result	of	one	of	these	simpler	joins	r	⋈θ	s;	each	pair	of	i

tuples	in	the	intermediate	result	consists	of	one	tuple	from	r	and	one	from	s.	The	result	of	the	complete
join	consists	of	those	tuples	in	the	intermediate	result	that	satisfy	the	remaining	conditions:

θ	∧	⋯	∧	θ	∧	θ	∧	⋯	∧	θ

1

i−1

i+1

n

These	conditions	can	be	tested	as	tuples	in	r	⋈	θ	s	are	being	generated.

i

A	join	whose	condition	is	disjunctive	can	be	computed	in	this	way.	Consider:	r	⋈	θ	∨	θ	∨	⋯∨θ	s

1

2

n

The	join	can	be	computed	as	the	union	of	the	records	in	individual	joins	r	⋈	θ	s:	i

(r	⋈	θ	s)	∪	(r	⋈	θ	s)	∪	⋯	∪	(r	⋈	θ	s)	1

2

n

Section	15.6	describes	algorithms	for	computing	the	union	of	relations.

15.6

Other	Operations

719

15.5.7

Joins	over	Spatial	Data

The	join	algorithms	we	have	presented	make	no	specific	assumptions	about	the	type	of	data	being	joined,
but	they	do	assume	the	use	of	standard	comparison	operations	such	as	equality,	less	than,	or	greater	than,
where	the	values	are	linearly	ordered.

Selection	and	join	conditions	on	spatial	data	involve	comparison	operators	that	check	if	one	region
contains	or	overlaps	another,	or	whether	a	region	contains	a	particular	point;	and	the	regions	may	be
multi-dimensional.	Comparisons	may	pertain	also	to	the	distance	between	points,	for	example,	finding	a
set	of	points	closest	to	a	given	point	in	a	two-dimensional	space.

Merge-join	cannot	be	used	with	such	comparison	operations,	since	there	is	no	simple	sort	order	over
spatial	data	in	two	or	more	dimensions.	Partitioning	of	data	based	on	hashing	is	also	not	applicable,	since
there	is	no	way	to	ensure	that	tuples	that	satisfy	an	overlap	or	containment	predicate	are	hashed	to	the
same	value.	Nested	loops	join	can	always	be	used	regardless	of	the	complexity	of	the	conditions,	but	can
be	very	inefficient	on	large	datasets.

Indexed	nested-loops	join	can	however	be	used,	if	appropriate	spatial	indices	are	available.	In	Section
14.10,	we	saw	several	types	of	indices	for	spatial	data,	including	R-trees,	k-d	trees,	k-d-B	trees,	and
quadtrees.	Additional	details	on	those	indices	appear	in	Section	24.4.	These	index	structures	enable
efficient	retrieval	of	spatial	data	based	on	predicates	such	as	contains,	contained	in,	or	overlaps,	and	can
also	be	effectively	used	to	find	nearest	neighbors.

Most	major	database	systems	today	incorporate	support	for	indexing	spatial	data,	and	make	use	of	them
when	processing	queries	using	spatial	comparison	conditions.

15.6

Other	Operations

Other	relational	operations	and	extended	relational	operations	—	such	as	duplicate	elimination,
projection,	set	operations,	outer	join,	and	aggregation	—	can	be	implemented	as	outlined	in	Section	15.6.1
through	Section	15.6.5.

15.6.1

Duplicate	Elimination

We	can	implement	duplicate	elimination	easily	by	sorting.	Identical	tuples	will	appear	adjacent	to	each
other	as	a	result	of	sorting,	and	all	but	one	copy	can	be	removed.	With	external	sort–merge,	duplicates
found	while	a	run	is	being	created	can	be	removed	before	the	run	is	written	to	disk,	thereby	reducing	the
number	of	block	transfers.	The	remaining	duplicates	can	be	eliminated	during	merging,	and	the	final
sorted	run	has	no	duplicates.	The	worst-case	cost	estimate	for	duplicate	elimination	is	the	same	as	the
worst-case	cost	estimate	for	sorting	of	the	relation.

We	can	also	implement	duplicate	elimination	by	hashing,	as	in	the	hash-join	algorithm.	First,	the	relation
is	partitioned	on	the	basis	of	a	hash	function	on	the	whole	tuple.	Then,	each	partition	is	read	in,	and	an	in-
memory	hash	index	is	constructed.

720

Chapter	15

Query	Processing

While	constructing	the	hash	index,	a	tuple	is	inserted	only	if	it	is	not	already	present.

Otherwise,	the	tuple	is	discarded.	After	all	tuples	in	the	partition	have	been	processed,	the	tuples	in	the
hash	index	are	written	to	the	result.	The	cost	estimate	is	the	same	as	that	for	the	cost	of	processing
(partitioning	and	reading	each	partition)	of	the	build	relation	in	a	hash	join.

Because	of	the	relatively	high	cost	of	duplicate	elimination,	SQL	requires	an	explicit	request	by	the	user
to	remove	duplicates;	otherwise,	the	duplicates	are	retained.

15.6.2

Projection

We	can	implement	projection	easily	by	performing	projection	on	each	tuple,	which	gives	a	relation	that
could	have	duplicate	records,	and	then	removing	duplicate	records.	Duplicates	can	be	eliminated	by	the
methods	described	in	Section	15.6.1.	If	the	attributes	in	the	projection	list	include	a	key	of	the	relation,	no
duplicates	will	exist;	hence,	duplicate	elimination	is	not	required.	Generalized	projection	can	be
implemented	in	the	same	way	as	projection.

15.6.3

Set	Operations

We	can	implement	the	union,	intersection,	and	set-difference	operations	by	first	sorting	both	relations,
and	then	scanning	once	through	each	of	the	sorted	relations	to	produce	the	result.	In	r	∪	s,	when	a
concurrent	scan	of	both	relations	reveals	the	same	tuple	in	both	files,	only	one	of	the	tuples	is	retained.
The	result	of	r	∩	s	will	contain	only	those	tuples	that	appear	in	both	relations.	We	implement	set
difference,	r	−	s,	similarly,	by	retaining	tuples	in	r	only	if	they	are	absent	in	s.

For	all	these	operations,	only	one	scan	of	the	two	sorted	input	relations	is	required,	so	the	cost	is	b	+	b
block	transfers	if	the	relations	are	sorted	in	the	same	order.	As-r

s

suming	a	worst	case	of	one	block	buffer	for	each	relation,	a	total	of	b	+	b	disk	seeks	r

s

would	be	required	in	addition	to	b	+	b	block	transfers.	The	number	of	seeks	can	be	r

s

reduced	by	allocating	extra	buffer	blocks.

If	the	relations	are	not	sorted	initially,	the	cost	of	sorting	has	to	be	included.	Any	sort	order	can	be	used	in
the	evaluation	of	set	operations,	provided	that	both	inputs	have	that	same	sort	order.

Hashing	provides	another	way	to	implement	these	set	operations.	The	first	step	in	each	case	is	to	partition
the	two	relations	by	the	same	hash	function	and	thereby	create	the	partitions	r	,	r	,	…	,	r

and	s	,	s	,	…	,	s	.	Depending	on	the	operation,	the	system	0

1

n

0

1

n

h

h

then	takes	these	steps	on	each	partition	i	=	0,	1,	…	,	n	:	h

•	r	∪	s

1.	Build	an	in-memory	hash	index	on	r	.

i

2.	Add	the	tuples	in	s	to	the	hash	index	only	if	they	are	not	already	present.

i

3.	Add	the	tuples	in	the	hash	index	to	the	result.

15.6

Other	Operations

721

Note	15.1	Answering	Keyword	Queries

Keyword	search	on	documents	is	widely	used	in	the	context	of	web	search.	In	its	simplest	form,	a	keyword
query	provides	a	set	of	words	K	,	K	,	…	,	K	,	and	the	1

2

n

goal	is	to	find	documents	d	from	a	collection	of	documents	D	such	that	d	con-i

i

tains	all	the	keywords	in	the	query.	Real-life	keyword	search	is	more	complicated,	since	it	requires
ranking	of	documents	based	on	various	metrics	such	TF–IDF	and	PageRank,	as	we	saw	earlier	in	Section
8.3.

Documents	that	contain	a	specified	keyword	can	be	located	efficiently	by	using	an	index	(often	referred	to
as	an	inverted	index)	that	maps	each	keyword	K	to	a	i

list	S	of	identifiers	of	the	documents	that	contain	K	.	The	list	is	kept	sorted.	For	i

i

example,	if	documents	d	,	d	and	d

contain	the	term	“Silberschatz”,	the	inverted

1

9

21

list	for	the	keyword	Silberschatz	would	be	“d	;	d	;	d	”.	Compression	techniques	1

9

21

are	used	to	reduce	the	size	of	the	inverted	lists.	A	B+-tree	index	can	be	used	to	map	each	keyword	K	to	its
associated	inverted	list	S	.

i

i

To	answer	a	query	with	keyword	K	,	K	,	…	,	K	,	we	retrieve	the	inverted	list	S

1

2

n

i

for	each	keyword	K	,	and	then	compute	the	intersection	S	∩	S	∩	⋯	∩	S	to	find	i

1

2

n

documents	that	appear	in	all	the	lists.	Since	the	lists	are	sorted,	the	intersection	can	be	efficiently
implemented	by	merging	the	lists	using	concurrent	scans	of	all	the	lists.	Many	information-retrieval
systems	return	documents	that	contain	several,	even	if	not	all,	of	the	keywords;	the	merge	step	can	be
easily	modified	to	output	documents	that	contain	at	least	k	of	the	n	keywords.

To	support	ranking	of	keyword-query	results,	extra	information	can	be	stored	in	each	inverted	list,
including	the	inverse	document	frequency	of	the	term,	and	for	each	document	the	PageRank,	the	term
frequency	of	the	term,	as	well	as	the	positions	within	the	document	where	the	term	occurs.	This
information	can	be	used	to	compute	scores	that	are	then	used	to	rank	the	documents.	For	example,
documents	where	the	keywords	occur	close	to	each	other	may	receive	a	higher	score	for	keyword
proximity	than	those	where	they	occur	farther	from	each	other.

The	keyword	proximity	score	may	be	combined	with	the	TF–IDF	score,	and	PageRank	to	compute	an
overall	score.	Documents	are	then	ranked	on	this	score.	Since	most	web	searches	retrieve	only	the	top
few	answers,	search	engines	incorporate	a	number	of	optimizations	that	help	to	find	the	top	few	answers
efficiently,	without	computing	the	full	list	and	then	finding	the	ranking.	References	providing	further
details	may	be	found	in	the	Further	Reading	section	at	the	end	of	the	chapter.

•	r	∩	s

1.	Build	an	in-memory	hash	index	on	r	.

i

2.	For	each	tuple	in	s	,	probe	the	hash	index	and	output	the	tuple	to	the	result	i

only	if	it	is	already	present	in	the	hash	index.

722

Chapter	15

Query	Processing

•	r	−	s

1.	Build	an	in-memory	hash	index	on	r	.

i

2.	For	each	tuple	in	s	,	probe	the	hash	index,	and,	if	the	tuple	is	present	in	the	i

hash	index,	delete	it	from	the	hash	index.

3.	Add	the	tuples	remaining	in	the	hash	index	to	the	result.

15.6.4

Outer	Join

Recall	the	outer-join	operations	described	in	Section	4.1.3.	For	example,	the	natural	left	outer	join	takes⟕	student	contains	the	join	of	takes	and	student,	and,	in	addition,	for	each	takes	tuple	t	that	has	no
matching	tuple	in	student	(i.e,	where	ID	is	not	in	student),	the	following	tuple	t	is	added	to	the	result.	For
all	attributes	in	the	schema	of	takes,	1

tuple	t	has	the	same	values	as	tuple	t.	The	remaining	attributes	(from	the	schema	of	1

student)	of	tuple	t	contain	the	value	null.

1

We	can	implement	the	outer-join	operations	by	using	one	of	two	strategies:	1.	Compute	the	corresponding
join,	and	then	add	further	tuples	to	the	join	result	to	get	the	outer-join	result.	Consider	the	left	outer-join
operation	and	two	relations:	r(R)	and	s(S).	To	evaluate	r	⟕θ	s,	we	first	compute	r	⋈θ	s	and	save	that
result	as	temporary	relation	q	.	Next,	we	compute	r	−	Π	(q)	to	obtain	those	tuples	in	1

R

1

r	that	do	not	participate	in	the	theta	join.	We	can	use	any	of	the	algorithms	for	computing	the	joins,
projection,	and	set	difference	described	earlier	to	compute	the	outer	joins.	We	pad	each	of	these	tuples
with	null	values	for	attributes	from	s,	and	add	it	to	q	to	get	the	result	of	the	outer	join.

1

The	right	outer-join	operation	r	⟖	θ	s	is	equivalent	to	s	⟕θ	r	and	can	therefore	be	implemented	in	a
symmetric	fashion	to	the	left	outer	join.	We	can	implement	the	full	outer-join	operation	r	⟗	θ	s	by
computing	the	join	r	⋈	s	and	then	adding	the	extra	tuples	of	both	the	left	and	right	outer-join	operations,
as	before.

2.	Modify	the	join	algorithms.	It	is	easy	to	extend	the	nested-loop	join	algorithms	to	compute	the	left	outer
join:	Tuples	in	the	outer	relation	that	do	not	match	any	tuple	in	the	inner	relation	are	written	to	the	output
after	being	padded	with	null	values.	However,	it	is	hard	to	extend	the	nested-loop	join	to	compute	the	full
outer	join.

Natural	outer	joins	and	outer	joins	with	an	equi-join	condition	can	be	computed	by	extensions	of	the
merge-join	and	hash-join	algorithms.	Merge	join	can	be	extended	to	compute	the	full	outer	join	as	follows:
When	the	merge	of	the	two	relations	is	being	done,	tuples	in	either	relation	that	do	not	match	any	tuple	in
the	other	relation	can	be	padded	with	nulls	and	written	to	the	output.	Similarly,	we	can	extend	merge	join
to	compute	the	left	and	right	outer	joins	by	writing	out	nonmatching	tuples	(padded	with	nulls)	from	only
one	of	the	relations.	Since	the	relations	are	sorted,	it	is	easy	to	detect	whether	or	not	a	tuple	matches	any
tuples

15.6

Other	Operations

723

from	the	other	relation.	For	example,	when	a	merge	join	of	takes	and	student	is	done,	the	tuples	are	read
in	sorted	order	of	ID,	and	it	is	easy	to	check,	for	each	tuple,	whether	there	is	a	matching	tuple	in	the
other.

The	cost	estimates	for	implementing	outer	joins	using	the	merge-join	algorithm	are	the	same	as	are	those
for	the	corresponding	join.	The	only	difference	lies	in	the	size	of	the	result,	and	therefore	in	the	block
transfers	for	writing	it	out,	which	we	did	not	count	in	our	earlier	cost	estimates.

The	extension	of	the	hash-join	algorithm	to	compute	outer	joins	is	left	for	you	to	do	as	an	exercise
(Exercise	15.21).

15.6.5

Aggregation

Recall	the	aggregation	function	(operator),	discussed	in	Section	3.7.	For	example,	the	function

select	dept	name,	avg	(salary)

from	instructor

group	by	dept	name;

computes	the	average	salary	in	each	university	department.

The	aggregation	operation	can	be	implemented	in	the	same	way	as	duplicate	elimination.	We	use	either
sorting	or	hashing,	just	as	we	did	for	duplicate	elimination,	but	based	on	the	grouping	attributes	(dept
name	in	the	preceding	example).	However,	instead	of	eliminating	tuples	with	the	same	value	for	the
grouping	attribute,	we	gather	them	into	groups	and	apply	the	aggregation	operations	on	each	group	to
get	the	result.

The	cost	estimate	for	implementing	the	aggregation	operation	is	the	same	as	the	cost	of	duplicate
elimination	for	aggregate	functions	such	as	min,	max,	sum,	count,	and	avg.

Instead	of	gathering	all	the	tuples	in	a	group	and	then	applying	the	aggregation	operations,	we	can
implement	the	aggregation	operations	sum,	min,	max,	count,	and	avg	on	the	fly	as	the	groups	are	being
constructed.	For	the	case	of	sum,	min,	and	max,	when	two	tuples	in	the	same	group	are	found,	the	system
replaces	them	with	a	single	tuple	containing	the	sum,	min,	or	max,	respectively,	of	the	columns	being
aggregated.

For	the	count	operation,	it	maintains	a	running	count	for	each	group	for	which	a	tuple	has	been	found.
Finally,	we	implement	the	avg	operation	by	computing	the	sum	and	the	count	values	on	the	fly,	and	finally
dividing	the	sum	by	the	count	to	get	the	average.

If	all	tuples	of	the	result	fit	in	memory,	the	sort-based	and	the	hash-based	implementations	do	not	need	to
write	any	tuples	to	disk.	As	the	tuples	are	read	in,	they	can	be	inserted	in	a	sorted	tree	structure	or	in	a
hash	index.	When	we	use	on-the-fly	aggregation	techniques,	only	one	tuple	needs	to	be	stored	for	each	of
the	groups.	Hence,	the	sorted	tree	structure	or	hash	index	fits	in	memory,	and	the	aggregation	can	be
processed	with	just	b	block	transfers	(and	1	seek)	instead	of	the	3	b	transfers	(and	a	worst	r

r

case	of	up	to	2	b	seeks)	that	would	be	required	otherwise.

r

724

Chapter	15

Query	Processing

15.7

Evaluation	of	Expressions

So	far,	we	have	studied	how	individual	relational	operations	are	carried	out.	Now	we	consider	how	to
evaluate	an	expression	containing	multiple	operations.	The	obvious	way	to	evaluate	an	expression	is
simply	to	evaluate	one	operation	at	a	time,	in	an	appropriate	order.	The	result	of	each	evaluation	is
materialized	in	a	temporary	relation	for	subsequent	use.	A	disadvantage	to	this	approach	is	the	need	to
construct	the	temporary	relations,	which	(unless	they	are	small)	must	be	written	to	disk.	An	alternative
approach	is	to	evaluate	several	operations	simultaneously	in	a	pipeline,	with	the	results	of	one	operation
passed	on	to	the	next,	without	the	need	to	store	a	temporary	relation.

In	Section	15.7.1	and	Section	15.7.2,	we	consider	both	the	materialization	approach	and	the	pipelining
approach.	We	shall	see	that	the	costs	of	these	approaches	can	differ	substantially,	but	also	that	there	are
cases	where	only	the	materialization	approach	is	feasible.

15.7.1

Materialization

It	is	easiest	to	understand	intuitively	how	to	evaluate	an	expression	by	looking	at	a	pictorial
representation	of	the	expression	in	an	operator	tree.	Consider	the	expression:	Π

(σ

(department)	⋈	instructor)

name

building	=	“Watson”

in	Figure	15.11.

If	we	apply	the	materialization	approach,	we	start	from	the	lowest-level	operations	in	the	expression	(at
the	bottom	of	the	tree).	In	our	example,	there	is	only	one	such	operation:	the	selection	operation	on
department.	The	inputs	to	the	lowest-level	operations	are	relations	in	the	database.	We	execute	these
operations	using	the	algorithms	that	we	studied	earlier,	and	we	store	the	results	in	temporary	relations.
We	can	use	these	temporary	relations	to	execute	the	operations	at	the	next	level	up	in	the	tree,	where	the
inputs	now	are	either	temporary	relations	or	relations	stored	in	the	database.	In	our	Π	name

σ

instructor

building	=	“Watson”

department

Figure	15.11	Pictorial	representation	of	an	expression.

15.7

Evaluation	of	Expressions

725

example,	the	inputs	to	the	join	are	the	instructor	relation	and	the	temporary	relation	created	by	the
selection	on	department.	The	join	can	now	be	evaluated,	creating	another	temporary	relation.

By	repeating	the	process,	we	will	eventually	evaluate	the	operation	at	the	root	of	the	tree,	giving	the	final
result	of	the	expression.	In	our	example,	we	get	the	final	result	by	executing	the	projection	operation	at
the	root	of	the	tree,	using	as	input	the	temporary	relation	created	by	the	join.

Evaluation	as	just	described	is	called	materialized	evaluation,	since	the	results	of	each	intermediate
operation	are	created	(materialized)	and	then	are	used	for	evaluation	of	the	next-level	operations.

The	cost	of	a	materialized	evaluation	is	not	simply	the	sum	of	the	costs	of	the	operations	involved.	When
we	computed	the	cost	estimates	of	algorithms,	we	ignored	the	cost	of	writing	the	result	of	the	operation	to
disk.	To	compute	the	cost	of	evaluating	an	expression	as	done	here,	we	have	to	add	the	costs	of	all	the
operations,	as	well	as	the	cost	of	writing	the	intermediate	results	to	disk.	We	assume	that	the	records	of
the	result	accumulate	in	a	buffer,	and,	when	the	buffer	is	full,	they	are	written	to	disk.	The	number	of
blocks	written	out,	b	,	can	be	estimated	as	n	∕	f	,	where	n	is	the	estimated	r

r

r

r

number	of	tuples	in	the	result	relation	r	and	f	is	the	blocking	factor	of	the	result	relation,	r

that	is,	the	number	of	records	of	r	that	will	fit	in	a	block.	In	addition	to	the	transfer	time,	some	disk	seeks
may	be	required,	since	the	disk	head	may	have	moved	between	successive	writes.	The	number	of	seeks
can	be	estimated	as	⌈	b	∕	b	⌉	where	b	is	the	size	r

b

b

of	the	output	buffer	(measured	in	blocks).

Double	buffering	(using	two	buffers,	with	one	continuing	execution	of	the	algorithm	while	the	other	is
being	written	out)	allows	the	algorithm	to	execute	more	quickly	by	performing	CPU	activity	in	parallel
with	I/O	activity.	The	number	of	seeks	can	be	reduced	by	allocating	extra	blocks	to	the	output	buffer	and
writing	out	multiple	blocks	at	once.

15.7.2

Pipelining

We	can	improve	query-evaluation	efficiency	by	reducing	the	number	of	temporary	files	that	are	produced.
We	achieve	this	reduction	by	combining	several	relational	operations	into	a	pipeline	of	operations,	in
which	the	results	of	one	operation	are	passed	along	to	the	next	operation	in	the	pipeline.	Evaluation	as
just	described	is	called	pipelined	evaluation.

For	example,	consider	the	expression	(Π

(r	⋈	s)).	If	materialization	were	ap-

a	1,	a	2

plied,	evaluation	would	involve	creating	a	temporary	relation	to	hold	the	result	of	the	join	and	then
reading	back	in	the	result	to	perform	the	projection.	These	operations	can	be	combined:	When	the	join
operation	generates	a	tuple	of	its	result,	it	passes	that	tuple	immediately	to	the	project	operation	for
processing.	By	combining	the	join	and	the	projection,	we	avoid	creating	the	intermediate	result	and
instead	create	the	final	result	directly.

726

Chapter	15

Query	Processing

Creating	a	pipeline	of	operations	can	provide	two	benefits:

1.	It	eliminates	the	cost	of	reading	and	writing	temporary	relations,	reducing	the	cost	of	query	evaluation.
Note	that	the	cost	formulae	that	we	saw	earlier	for	each	operation	included	the	cost	of	reading	the	result
from	disk.	If	the	input	to	an	operator	o	is	pipelined	from	a	preceding	operator	o	,	the	cost	of	o	should	not	i

j

i

include	the	cost	of	reading	the	input	from	disk;	the	cost	formulae	that	we	saw	earlier	can	be	modified
accordingly.

2.	It	can	start	generating	query	results	quickly,	if	the	root	operator	of	a	query-evaluation	plan	is	combined
in	a	pipeline	with	its	inputs.	This	can	be	quite	useful	if	the	results	are	displayed	to	a	user	as	they	are
generated,	since	otherwise	there	may	be	a	long	delay	before	the	user	sees	any	query	results.

15.7.2.1

Implementation	of	Pipelining

We	can	implement	a	pipeline	by	constructing	a	single,	complex	operation	that	combines	the	operations
that	constitute	the	pipeline.	Although	this	approach	may	be	feasible	for	some	frequently	occurring
situations,	it	is	desirable	in	general	to	reuse	the	code	for	individual	operations	in	the	construction	of	a
pipeline.

In	the	example	of	Figure	15.11,	all	three	operations	can	be	placed	in	a	pipeline,	which	passes	the	results
of	the	selection	to	the	join	as	they	are	generated.	In	turn,	it	passes	the	results	of	the	join	to	the	projection
as	they	are	generated.	The	memory	requirements	are	low,	since	results	of	an	operation	are	not	stored	for
long.	However,	as	a	result	of	pipelining,	the	inputs	to	the	operations	are	not	available	all	at	once	for
processing.

Pipelines	can	be	executed	in	either	of	two	ways:

1.	In	a	demand-driven	pipeline,	the	system	makes	repeated	requests	for	tuples	from	the	operation	at	the
top	of	the	pipeline.	Each	time	that	an	operation	receives	a	request	for	tuples,	it	computes	the	next	tuple
(or	tuples)	to	be	returned	and	then	returns	that	tuple.	If	the	inputs	of	the	operation	are	not	pipelined,	the
next	tuple(s)	to	be	returned	can	be	computed	from	the	input	relations,	while	the	system	keeps	track	of
what	has	been	returned	so	far.	If	it	has	some	pipelined	inputs,	the	operation	also	makes	requests	for
tuples	from	its	pipelined	inputs.	Using	the	tuples	received	from	its	pipelined	inputs,	the	operation
computes	tuples	for	its	output	and	passes	them	up	to	its	parent.

2.	In	a	producer-driven	pipeline,	operations	do	not	wait	for	requests	to	produce	tuples,	but	instead
generate	the	tuples	eagerly.	Each	operation	in	a	producer-driven	pipeline	is	modeled	as	a	separate
process	or	thread	within	the	system	that	takes	a	stream	of	tuples	from	its	pipelined	inputs	and	generates
a	stream	of	tuples	for	its	output.

15.7

Evaluation	of	Expressions

727

We	describe	next	how	demand-driven	and	producer-driven	pipelines	can	be	implemented.

Each	operation	in	a	demand-driven	pipeline	can	be	implemented	as	an	iterator	that	provides	the	following
functions:	open(),	next(),	and	close().	After	a	call	to	open(),	each	call	to	next()	returns	the	next	output
tuple	of	the	operation.	The	implementation	of	the	operation	in	turn	calls	open()	and	next()	on	its	inputs,	to
get	its	input	tuples	when	required.	The	function	close()	tells	an	iterator	that	no	more	tuples	are	required.
The	iterator	maintains	the	state	of	its	execution	in	between	calls	so	that	successive	next()	requests	receive
successive	result	tuples.

For	example,	for	an	iterator	implementing	the	select	operation	using	linear	search,	the	open()	operation
starts	a	file	scan,	and	the	iterator’s	state	records	the	point	to	which	the	file	has	been	scanned.	When	the
next()	function	is	called,	the	file	scan	continues	from	after	the	previous	point;	when	the	next	tuple
satisfying	the	selection	is	found	by	scanning	the	file,	the	tuple	is	returned	after	storing	the	point	where	it
was	found	in	the	iterator	state.	A	merge-join	iterator’s	open()	operation	would	open	its	inputs,	and	if	they
are	not	already	sorted,	it	would	also	sort	the	inputs.	On	calls	to	next(),	it	would	return	the	next	pair	of
matching	tuples.	The	state	information	would	consist	of	up	to	where	each	input	had	been	scanned.	Details
of	the	implementation	of	iterators	are	left	for	you	to	complete	in	Practice	Exercise	15.7.

Producer-driven	pipelines,	on	the	other	hand,	are	implemented	in	a	different	manner.	For	each	pair	of
adjacent	operations	in	a	producer-driven	pipeline,	the	system	creates	a	buffer	to	hold	tuples	being	passed
from	one	operation	to	the	next.	The	processes	or	threads	corresponding	to	different	operations	execute
concurrently.	Each	operation	at	the	bottom	of	a	pipeline	continually	generates	output	tuples,	and	puts
them	in	its	output	buffer,	until	the	buffer	is	full.	An	operation	at	any	other	level	of	a	pipeline	generates
output	tuples	when	it	gets	input	tuples	from	lower	down	in	the	pipeline	until	its	output	buffer	is	full.	Once
the	operation	uses	a	tuple	from	a	pipelined	input,	it	removes	the	tuple	from	its	input	buffer.	In	either	case,
once	the	output	buffer	is	full,	the	operation	waits	until	its	parent	operation	removes	tuples	from	the	buffer
so	that	the	buffer	has	space	for	more	tuples.	At	this	point,	the	operation	generates	more	tuples	until	the
buffer	is	full	again.	The	operation	repeats	this	process	until	all	the	output	tuples	have	been	generated.

It	is	necessary	for	the	system	to	switch	between	operations	only	when	an	output	buffer	is	full	or	when	an
input	buffer	is	empty	and	more	input	tuples	are	needed	to	generate	any	more	output	tuples.	In	a	parallel-
processing	system,	operations	in	a	pipeline	may	be	run	concurrently	on	distinct	processors	(see	Section
22.5.1).

Using	producer-driven	pipelining	can	be	thought	of	as	pushing	data	up	an	operation	tree	from	below,
whereas	using	demand-driven	pipelining	can	be	thought	of	as	pulling	data	up	an	operation	tree	from	the
top.	Whereas	tuples	are	generated	eagerly	in	producer-driven	pipelining,	they	are	generated	lazily,	on
demand,	in	demand-driven	pipelining.	Demand-driven	pipelining	is	used	more	commonly	than	producer-
driven	pipelining	because	it	is	easier	to	implement.	However,	producer-driven	pipelining	is	very	useful	in
parallel	processing	systems.	Producer-driven	pipelining	has	also	been

728

Chapter	15

Query	Processing

found	to	be	more	efficient	than	demand-driven	pipelining	on	modern	CPUs	since	it	reduces	the	number	of
function	call	invocations	as	compared	to	demand-driven	pipelining.	Producer-driven	pipelining	is
increasingly	used	in	systems	that	generate	machine	code	for	high	performance	query	evaluation.

15.7.2.2

Evaluation	Algorithms	for	Pipelining

Query	plans	can	be	annotated	to	mark	edges	that	are	pipelined;	such	edges	are	called	pipelined	edges.	In
contrast,	non-pipelined	edges	are	referred	to	as	blocking	edges	or	materialized	edges.	The	two	operators
connected	by	a	pipelined	edge	must	be	executed	concurrently,	since	one	consumes	tuples	as	the	other
generates	them.	Since	a	plan	can	have	multiple	pipelined	edges,	the	set	of	all	operators	that	are
connected	by	pipelined	edges	must	be	executed	concurrently.	A	query	plan	can	be	divided	into	subtrees
such	that	each	subtree	has	only	pipelined	edges,	and	the	edges	between	the	subtrees	are	non-pipelined.
Each	such	subtree	is	called	a	pipeline	stage.	The	query	processor	executes	the	plan	one	pipeline	stage	at
a	time,	and	concurrently	executes	all	the	operators	in	a	single	pipeline	stage.

Some	operations,	such	as	sorting,	are	inherently	blocking	operations,	that	is,	they	may	not	be	able	to
output	any	results	until	all	tuples	from	their	inputs	have	been	examined.7	But	interestingly,	blocking

operators	can	consume	tuples	as	they	are	generated,	and	can	output	tuples	to	their	consumers	as	they	are
generated;	such	operations	actually	execute	in	two	or	more	stages,	and	blocking	actually	happens
between	two	stages	of	the	operation.

For	example,	the	external	sort-merge	operation	actually	has	two	steps:	(i)	run-generation,	followed	by	(ii)
merging.	The	run-generation	step	can	accept	tuples	as	they	are	generated	by	the	input	to	the	sort,	and
can	thus	be	pipelined	with	the	sort	input.

The	merge	step,	on	the	other	hand,	can	send	tuples	to	its	consumer	as	they	are	generated,	and	can	thus
be	pipelined	with	the	consumer	of	the	sort	operation.	But	the	merge	step	can	start	only	after	the	run-
generation	step	has	finished.	We	can	thus	model	the	sort-merge	operator	as	two	sub-operators	connected
to	each	other	by	a	non-pipelined	edge,	but	each	of	the	sub-operators	can	be	connected	by	pipelined	edges
to	their	input	and	output	respectively.

Other	operations,	such	as	join,	are	not	inherently	blocking,	but	specific	evaluation	algorithms	may	be
blocking.	For	example,	the	indexed	nested	loops	join	algorithm	can	output	result	tuples	as	it	gets	tuples
for	the	outer	relation.	It	is	therefore	pipelined	on	its	outer	(left-hand	side)	relation;	however,	it	is	blocking
on	its	indexed	(right-hand	side)	input,	since	the	index	must	be	fully	constructed	before	the	indexed
nested-loop	join	algorithm	can	execute.

The	hash-join	algorithm	is	a	blocking	operation	on	both	inputs,	since	it	requires	both	its	inputs	to	be	fully
retrieved	and	partitioned	before	it	outputs	any	tuples.	How-7Blocking	operations	such	as	sorting	may	be
able	to	output	tuples	early	if	the	input	is	known	to	satisfy	some	special	properties	such	as	being	sorted,	or
partially	sorted,	already.	However,	in	the	absence	of	such	information,	blocking	operations	cannot	output
tuples	early.

15.7

Evaluation	of	Expressions

729

r

r

Part.

HJ-BP

HA-IM

γ

Part.

s

s

(a)	Logical	Query

(b)	Pipelined	Plan

Figure	15.12	Query	plan	with	pipelining.

ever,	hash-join	partitions	each	of	its	inputs,	and	then	performs	multiple	build-probe	steps,	once	per
partition.	Thus,	the	hash-join	algorithm	has	3	steps:	(i)	partitioning	of	the	first	input,	(ii)	partitioning	of	the
second	input,	and	(iii)	the	build-probe	step.	The	partitioning	step	for	each	input	can	accept	tuples	as	they
are	generated	by	the	input,	and	can	thus	be	pipelined	with	its	input.	The	build-probe	step	can	output
tuples	to	its	consumer	as	the	tuples	are	generated,	and	can	thus	be	pipelined	with	its	consumer.

But	the	two	partitioning	steps	are	connected	to	the	build-probe	step	by	non-pipelined	edges,	since	build-
probe	can	start	only	after	partitioning	has	been	completed	on	both	inputs.

Hybrid	hash	join	can	be	viewed	as	partially	pipelined	on	the	probe	relation,	since	it	can	output	tuples	from
the	first	partition	as	tuples	are	received	for	the	probe	relation.

However,	tuples	that	are	not	in	the	first	partition	will	be	output	only	after	the	entire	pipelined	input
relation	is	received.	Hybrid	hash	join	thus	provides	fully	pipelined	evaluation	on	its	probe	input	if	the
build	input	fits	entirely	in	memory,	or	nearly	pipelined	evaluation	if	most	of	the	build	input	fits	in	memory.

Figure	15.12a	shows	a	query	that	joins	two	relations	r	and	s,	and	then	performs	an	aggregation	on	the
result;	details	of	the	join	predicate,	group	by	attributes	and	aggregation	functions	are	omitted	for
simplicity.	Figure	15.12b	shows	a	pipelined	plan	for	the	query	using	hash	join	and	in-memory	hash
aggregation.	Pipelined	edges	are	shown	using	a	normal	line,	while	blocking	edges	are	shown	using	a	bold
line.	Pipeline	stages	are	enclosed	in	dashed	boxes.	Note	that	hash	join	has	been	split	into	three
suboperators.	Two	of	suboperators,	shown	abbreviated	to	Part.	,	partition	r	and	s	respectively.

The	third,	abbreviated	to	HJ-BP,	performs	the	build	and	probe	phase	of	the	hash	join.

The	HA-IM	operator	is	the	in-memory	hash	aggregation	operator.	The	edges	from	the	partition	operators
to	the	HJ-BP	operator	are	blocking	edges,	since	the	HJ-BP	operator	can	start	execution	only	after	the
partition	operators	have	completed	execution.	The	edges	from	the	relations	(assumed	to	be	scanned	using
a	relation	scan	operator)	to	the	partition	operators	are	pipelined,	as	is	the	edge	from	the	HJ-BP	operator
to	the	HA-IM

operator.	The	resultant	pipeline	stages	are	shown	enclosed	in	dashed	boxes.

In	general,	for	each	materialized	edge	we	need	to	add	the	cost	of	writing	the	data	to	disk,	and	the	cost	of
the	consumer	operator	should	include	the	cost	of	reading	the	data	from	disk.	However,	when	a
materialized	edge	is	between	suboperators	of	a	single

730

Chapter	15

Query	Processing

done	:=	false;

r

done	:=	false;

s

r	:=	∅;

s	:=	∅;

result	:=	∅;

while	not	done	or	not	done	do

r

s

begin

if	queue	is	empty,	then	wait	until	queue	is	not	empty;

t	:=	top	entry	in	queue;

if	t	=	End	then	done	:=	true

r

r

else	if	t	=	End	then	done	:=	true

s

s

else	if	t	is	from	input	r

then

begin

r	:=	r	∪	{	t};

result	:=	result	∪	({	t}	⋈	s);

end

else	/*	t	is	from	input	s	*/

begin

s	:=	s	∪	{	t};

result	:=	result	∪	(r	⋈	{	t});

end

end

Figure	15.13	Double-pipelined	join	algorithm.

operator,	for	example	between	run	generation	and	merge,	the	materialization	cost	has	already	been
accounted	for	in	the	operators	cost,	and	should	not	be	added	again.

In	some	applications,	a	join	algorithm	that	is	pipelined	on	both	its	inputs	and	its	output	is	desirable.	If
both	inputs	are	sorted	on	the	join	attribute,	and	the	join	condition	is	an	equi-join,	merge	join	can	be	used,
with	both	its	inputs	and	its	output	pipelined.

However,	in	the	more	common	case	that	the	two	inputs	that	we	desire	to	pipeline	into	the	join	are	not
already	sorted,	another	alternative	is	the	double-pipelined	join	technique,	shown	in	Figure	15.13.	The
algorithm	assumes	that	the	input	tuples	for	both	input	relations,	r	and	s,	are	pipelined.	Tuples	made
available	for	both	relations	are	queued	for	processing	in	a	single	queue.	Special	queue	entries,	called	End
and	End	,	r

s

which	serve	as	end-of-file	markers,	are	inserted	in	the	queue	after	all	tuples	from	r	and	s	(respectively)
have	been	generated.	For	efficient	evaluation,	appropriate	indices	should	be	built	on	the	relations	r	and	s.
As	tuples	are	added	to	r	and	s,	the	indices	must	be	kept

15.8

Query	Processing	in	Memory

731

up	to	date.	When	hash	indices	are	used	on	r	and	s,	the	resultant	algorithm	is	called	the	double-pipelined
hash-join	technique.

The	double-pipelined	join	algorithm	in	Figure	15.13	assumes	that	both	inputs	fit	in	memory.	In	case	the
two	inputs	are	larger	than	memory,	it	is	still	possible	to	use	the	double-pipelined	join	technique	as	usual
until	available	memory	is	full.	When	available	memory	becomes	full,	r	and	s	tuples	that	have	arrived	up	to
that	point	can	be	treated	as	being	in	partition	r	and	s	,	respectively.	Tuples	for	r	and	s	that	arrive
subsequently	0

0

are	assigned	to	partitions	r	and	s	,	respectively,	which	are	written	to	disk,	and	are	1

1

not	added	to	the	in-memory	index.	However,	tuples	assigned	to	r	and	s	are	used	to	1

1

probe	s	and	r	,	respectively,	before	they	are	written	to	disk.	Thus,	the	join	of	r	with	0

0

1

s	,	and	s	with	r	,	is	also	carried	out	in	a	pipelined	fashion.	After	r	and	s	have	been	0

1

0

fully	processed,	the	join	of	r	tuples	with	s	tuples	must	be	carried	out	to	complete	the	1

1

join;	any	of	the	join	techniques	we	have	seen	earlier	can	be	used	to	join	r	with	s	.

1

1

15.7.3

Pipelines	for	Continuous-Stream	Data

Pipelining	is	also	applicable	in	situations	where	data	are	entered	into	the	database	in	a	continuous
manner,	as	is	the	case,	for	example,	for	inputs	from	sensors	that	are	continuously	monitoring
environmental	data.	Such	data	are	called	data	streams,	as	we	saw	earlier	in	Section	10.5.	Queries	may	be
written	over	stream	data	in	order	to	respond	to	data	as	they	arrive.	Such	queries	are	called	continuous
queries.

The	operations	in	a	continuous	query	should	be	implemented	using	pipelined	algorithms,	so	that	results
from	the	pipeline	can	be	output	without	blocking.	Producer-driven	pipelines	(which	we	discussed	earlier
in	Section	15.7.2.1)	are	the	best	suited	for	continuous	query	evaluation.

Many	such	queries	perform	aggregation	with	windowing;	tumbling	windows	which	divide	time	into	fixed
size	intervals,	such	as	1	minute,	or	1	hour,	are	commonly	used.

Grouping	and	aggregation	is	performed	separately	on	each	window,	as	tuples	are	received;	assuming
memory	size	is	large	enough,	an	in-memory	hash	index	is	used	to	perform	aggregation.

The	result	of	aggregation	on	a	window	can	be	output	once	the	system	knows	that	no	further	tuples	in	that
window	will	be	received	in	future.	If	tuples	are	guaranteed	to	arrive	sorted	by	timestamp,	the	arrival	of	a
tuple	of	a	following	window	indicates	no	more	tuples	will	be	received	for	an	earlier	window.	If	tuples	may
arrive	out	of	order,	streams	must	carry	punctuations	that	indicate	that	all	future	tuples	will	have	a
timestamp	greater	than	some	specified	value.	The	arrival	of	a	punctuation	allows	the	output	of	aggregates
of	windows	whose	end-timestamp	is	less	than	or	equal	to	the	timestamp	specified	by	the	punctuation.

15.8

Query	Processing	in	Memory

The	query	processing	algorithms	that	we	have	described	so	far	focus	on	minimizing	I/O	cost.	In	this
section,	we	discuss	extensions	to	the	query	processing	techniques	that

732

Chapter	15

Query	Processing

help	minimize	memory	access	costs	by	using	cache-conscious	query	processing	algorithms	and	query
compilation.	We	then	discuss	query	processing	with	column-oriented	storage.	The	algorithms	we	describe
in	this	section	give	significant	benefits	for	memory	resident	data;	they	are	also	very	useful	with	disk-
resident	data,	since	they	can	speed	up	processing	once	data	has	been	brought	into	the	in-memory	buffer.

15.8.1

Cache-Conscious	Algorithms

When	data	is	resident	in	memory,	access	is	much	faster	than	if	data	were	resident	on	magnetic	disks,	or
even	SSDs.	However,	it	must	be	kept	in	mind	that	data	already	in	CPU	cache	can	be	accessed	as	much	as
100	times	faster	than	data	in	memory.	Modern	CPUs	have	several	levels	of	cache.	Commonly	used	CPUs
today	have	an	L1	cache	of	size	around	64	kilobytes,	with	a	latency	of	about	1	nanosecond,	an	L2	cache	of
size	around	256	kilobytes,	with	a	latency	of	around	5	nanoseconds,	and	an	L3	cache	of	having	a	size	of
around	10	megabytes,	with	a	latency	of	10	to	15	nanoseconds.	In	contrast,	reading	data	in	memory	results
in	a	latency	of	around	50	to	100	nanoseconds.	For	simplicity	in	the	rest	of	this	section	we	ignore	the
difference	between	the	L1,	L2	and	L3	cache	levels,	and	assume	that	there	is	only	a	single	cache	level.

As	we	saw	in	Section	14.4.7,	the	speed	difference	between	cache	memory	and	main	memory,	and	the	fact
that	data	are	transferred	between	main	memory	and	cache	in	units	of	a	cache-line	(typically	about	64

bytes),	results	in	a	situation	where	the	relationship	between	cache	and	main	memory	is	not	dissimilar	to
the	relationship	between	main	memory	and	disk	(although	with	smaller	speed	differences).	But	there	is	a
difference:	while	the	contents	of	the	main	memory	buffers	disk-based	data	are	controlled	by	the	database
system,	CPU	cache	is	controlled	by	the	algorithms	built	into	the	computer	hardware.	Thus,	the	database
system	cannot	directly	control	what	is	kept	in	cache.

However,	query	processing	algorithms	can	be	designed	in	a	way	that	the	makes	the	best	use	of	cache,	to
optimize	performance.	Here	are	some	ways	this	can	be	done:

•	To	sort	a	relation	that	is	in-memory,	we	use	the	external	merge-sort	algorithm,	with	the	run	size	chosen
such	that	the	run	fits	into	the	cache;	assuming	we	focus	on	the	L3	cache,	each	run	should	be	a	few
megabytes	in	size.	We	then	use	an	in-memory	sorting	algorithm	on	each	run;	since	the	run	fits	in	cache,
cache	misses	are	likely	to	be	minimal	when	the	run	is	sorted.	The	sorted	runs	(all	of	which	are	in	memory)
are	then	merged.	Merging	is	cache	efficient,	since	access	to	the	runs	is	sequential:	when	a	particular
word	is	accessed	from	memory,	the	cache	line	that	is	fetched	will	contain	the	words	that	would	be
accessed	next	from	that	run.

To	sort	a	relation	larger	than	memory,	we	can	use	external	sort-merge	with	much	larger	run	sizes,	but	use
the	in-memory	merge-sort	technique	we	just	described	to	perform	the	in-memory	sort	of	the	large	runs.

•	Hash-join	requires	probing	of	an	index	on	the	build	relation.	If	the	build	relation	fits	in	memory,	an	index
could	be	built	on	the	whole	relation;	however,	cache	hits	during	probe	can	be	maximized	by	partitioning
the	relations	into	smaller	pieces

15.8

Query	Processing	in	Memory

733

such	that	each	partition	of	the	build-relation	along	with	the	index	fits	in	the	cache.

Each	partition	is	processed	separately,	with	a	build	and	a	probe	phase;	since	the	build	partition	and	its
index	fit	in	cache,	cache	misses	are	minimized	during	the	build	as	well	as	the	probe	phase.

For	relations	larger	than	memory,	the	first	stage	of	hash-join	should	partition	the	two	relations	such	that
for	each	partition,	the	partitions	of	the	two	relations	together	fit	in	memory.	The	technique	just	described
can	then	be	used	to	perform	the	hash	join	on	each	of	these	partitions,	after	fetching	the	contents	into
memory.

•	Attributes	in	a	tuple	can	be	arranged	such	that	attributes	that	tend	to	be	accessed	together	are	laid	out
consecutively.	For	example,	if	a	relation	is	often	used	for	aggregation,	those	attributes	used	as	group	by
attributes,	and	those	that	are	aggregated	upon,	can	be	stored	consecutively.	As	a	result,	if	there	is	a	cache
miss	on	one	attribute,	the	cache	line	that	is	fetched	would	contain	attributes	that	are	likely	to	be	used
immediately.

Cache-aware	algorithms	are	of	increasing	importance	in	modern	database	systems,	since	memory	sizes
are	often	large	enough	that	much	of	the	data	is	memory-resident.

In	cases	where	the	requisite	data	item	is	not	in	cache,	there	is	a	processing	stall	while	the	data	item	is
retrieved	from	memory	and	loaded	into	cache.	In	order	to	continue	to	make	use	of	the	core	that	made	the
request	resulting	in	the	stall,	the	operating	system	maintains	multiple	threads	of	execution	on	which	a
core	may	work.	Parallel	query	processing	algorithms,	which	we	study	in	Chapter	22	can	use	multiple
threads	running	on	a	single	CPU	core;	if	one	thread	is	stalled,	another	can	start	execution	so	the	CPU
core	is	utilized	better.

15.8.2

Query	Compilation

With	data	resident	in	memory,	CPU	cost	becomes	the	bottleneck,	and	minimizing	CPU

cost	can	give	significant	benefits.	Traditional	databases	query	processors	act	as	interpreters	that	execute
a	query	plan.	However,	there	is	a	significant	overhead	due	to	interpretation:	for	example,	to	access	an
attribute	of	a	record,	the	query	execution	engine	may	repeatedly	look	up	the	relation	meta-data	to	find	the
offset	of	the	attribute	within	the	record,	since	the	same	code	must	work	for	all	relations.	There	is	also
significant	overhead	due	to	function	calls	that	are	performed	for	each	record	processed	by	an	operation.

To	avoid	overhead	due	to	interpretation,	modern	main-memory	databases	compile	query	plans	into
machine	code	or	intermediate	level	byte-code.	For	example,	the	compiler	can	compute	the	offset	of	an
attribute	at	compile	time,	and	generate	code	where	the	offset	is	a	constant.	The	compiler	can	also

combine	the	code	for	multiple	functions	in	a	way	that	minimizes	function	calls.	With	these,	and	other
related	optimizations,	compiled	code	has	been	found	to	execute	faster,	by	up	to	a	factor	of	10,	than
interpreted	code.

734

Chapter	15

Query	Processing

15.8.3

Column-Oriented	Storage

In	Section	13.6,	we	saw	that	in	data-analytic	applications,	only	a	few	attributes	of	a	large	schema	may	be
needed,	and	that	in	such	cases,	storing	a	relation	by	column	instead	of	by	row	may	be	advantageous.
Selection	operations	on	a	single	attribute	(or	small	number	of	attributes)	have	significantly	lower	cost	in	a
column	store	since	only	the	relevant	attributes	need	to	be	accessed.	However,	since	accessing	each
attribute	requires	its	own	data	access,	the	cost	of	retrieving	many	attributes	is	higher	and	may	incur
additional	seeks	if	data	are	stored	on	disk.

Because	column	stores	permit	efficient	access	to	many	values	for	a	given	attribute	at	once,	they	are	well
suited	to	exploit	the	vector-processing	capabilities	of	modern	processors.	This	capability	allows	certain
operations	(such	as	comparisons	and	aggregations)	to	be	performed	in	a	parallel	on	multiple	attribute
values.	When	compiling	query	plans	to	machine	code,	the	compiler	can	generate	vector-processing
instructions	supported	by	the	processor.

15.9

Summary

•	The	first	action	that	the	system	must	perform	on	a	query	is	to	translate	the	query	into	its	internal	form,
which	(for	relational	database	systems)	is	usually	based	on	the	relational	algebra.	In	the	process	of
generating	the	internal	form	of	the	query,	the	parser	checks	the	syntax	of	the	user’s	query,	verifies	that
the	relation	names	appearing	in	the	query	are	names	of	relations	in	the	database,	and	so	on.	If	the	query
was	expressed	in	terms	of	a	view,	the	parser	replaces	all	references	to	the	view	name	with	the	relational-
algebra	expression	to	compute	the	view.

•	Given	a	query,	there	are	generally	a	variety	of	methods	for	computing	the	answer.

It	is	the	responsibility	of	the	query	optimizer	to	transform	the	query	as	entered	by	the	user	into	an
equivalent	query	that	can	be	computed	more	efficiently.	Chapter	16	covers	query	optimization.

•	We	can	process	simple	selection	operations	by	performing	a	linear	scan	or	by	making	use	of	indices.	We
can	handle	complex	selections	by	computing	unions	and	intersections	of	the	results	of	simple	selections.

•	We	can	sort	relations	larger	than	memory	by	the	external	sort–merge	algorithm.

•	Queries	involving	a	natural	join	may	be	processed	in	several	ways,	depending	on	the	availability	of
indices	and	the	form	of	physical	storage	for	the	relations.

°	If	the	join	result	is	almost	as	large	as	the	Cartesian	product	of	the	two	relations,	a	block	nested-loop	join
strategy	may	be	advantageous.

°	If	indices	are	available,	the	indexed	nested-loop	join	can	be	used.

Review	Terms

735

°	If	the	relations	are	sorted,	a	merge	join	may	be	desirable.	It	may	be	advantageous	to	sort	a	relation	prior
to	join	computation	(so	as	to	allow	use	of	the	merge-join	strategy).

°	The	hash-join	algorithm	partitions	the	relations	into	several	pieces,	such	that	each	piece	of	one	of	the
relations	fits	in	memory.	The	partitioning	is	carried	out	with	a	hash	function	on	the	join	attributes	so	that
corresponding	pairs	of	partitions	can	be	joined	independently.

•	Duplicate	elimination,	projection,	set	operations	(union,	intersection,	and	difference),	and	aggregation
can	be	done	by	sorting	or	by	hashing.

•	Outer-join	operations	can	be	implemented	by	simple	extensions	of	join	algorithms.

•	Hashing	and	sorting	are	dual,	in	the	sense	that	any	operation	such	as	duplicate	elimination,	projection,
aggregation,	join,	and	outer	join	that	can	be	implemented	by	hashing	can	also	be	implemented	by	sorting,
and	vice	versa;	that	is,	any	operation	that	can	be	implemented	by	sorting	can	also	be	implemented	by
hashing.

•	An	expression	can	be	evaluated	by	means	of	materialization,	where	the	system	computes	the	result	of
each	subexpression	and	stores	it	on	disk	and	then	uses	it	to	compute	the	result	of	the	parent	expression.

•	Pipelining	helps	to	avoid	writing	the	results	of	many	subexpressions	to	disk	by	using	the	results	in	the
parent	expression	even	as	they	are	being	generated.

Review	Terms

•	Query	processing

•	Disjunctive	selection

•	Evaluation	primitive

•	Composite	index

•	Query-execution	plan

•	Intersection	of	identifiers

•	Query-evaluation	plan

•	External	sorting

•	Query-execution	engine

•	External	sort–merge

•	Measures	of	query	cost

•	Runs

•	Sequential	I/O

•	N-way	merge

•	Random	I/O

•	Equi-join

•	File	scan

•	Nested-loop	join

•	Linear	search

•	Block	nested-loop	join

•	Selections	using	indices

•	Indexed	nested-loop	join

•	Access	paths

•	Merge	join

•	Index	scans

•	Sort-merge	join

•	Conjunctive	selection

•	Hybrid	merge	join

736

Chapter	15

Query	Processing

•	Hash-join

•	Spatial	join

•

°	Build

Operator	tree

•	Materialized	evaluation

°	Probe

•	Double	buffering

°	Build	input

•	Pipelined	evaluation

°	Probe	input

°	Demand-driven	pipeline

°	Recursive	partitioning

(lazy,	pulling)

°	Hash-table	overflow

°	Producer-driven	pipeline

°	Skew

(eager,	pushing)

°	Fudge	factor

°	Iterator

°	Overflow	resolution

°	Pipeline	stages

°	Overflow	avoidance

•	Double-pipelined	join

•	Hybrid	hash-join

•	Continuous	query	evaluation

Practice	Exercises

15.1

Assume	(for	simplicity	in	this	exercise)	that	only	one	tuple	fits	in	a	block	and	memory	holds	at	most	three
blocks.	Show	the	runs	created	on	each	pass	of	the	sort-merge	algorithm	when	applied	to	sort	the
following	tuples	on	the	first	attribute:	(kangaroo,	17),	(wallaby,	21),	(emu,	1),	(wombat,	13),	(platypus,	3),
(lion,	8),	(warthog,	4),	(zebra,	11),	(meerkat,	6),	(hyena,	9),	(hornbill,	2),	(baboon,	12).

15.2

Consider	the	bank	database	of	Figure	15.14,	where	the	primary	keys	are	underlined,	and	the	following
SQL	query:

select	T.	branch	name

from	branch	T,	branch	S

where	T.assets	>	S.assets	and	S.branch	city	=	“Brooklyn”

Write	an	efficient	relational-algebra	expression	that	is	equivalent	to	this	query.

Justify	your	choice.

15.3

Let	relations	r	(A,	B,	C)	and	r	(C,	D,	E)	have	the	following	properties:	r	has	1

2

1

20,000	tuples,	r	has	45,000	tuples,	25	tuples	of	r	fit	on	one	block,	and	30

2

1

tuples	of	r	fit	on	one	block.	Estimate	the	number	of	block	transfers	and	seeks	2

required	using	each	of	the	following	join	strategies	for	r	⋈	r	:	1

2

a.

Nested-loop	join.

b.

Block	nested-loop	join.

Practice	Exercises

737

c.

Merge	join.

d.

Hash	join.

15.4

The	indexed	nested-loop	join	algorithm	described	in	Section	15.5.3	can	be	inefficient	if	the	index	is	a
secondary	index	and	there	are	multiple	tuples	with	the	same	value	for	the	join	attributes.	Why	is	it

inefficient?	Describe	a	way,	using	sorting,	to	reduce	the	cost	of	retrieving	tuples	of	the	inner	relation.
Under	what	conditions	would	this	algorithm	be	more	efficient	than	hybrid	merge	join?

15.5

Let	r	and	s	be	relations	with	no	indices,	and	assume	that	the	relations	are	not	sorted.	Assuming	infinite
memory,	what	is	the	lowest-cost	way	(in	terms	of	I/O

operations)	to	compute	r	⋈	s?	What	is	the	amount	of	memory	required	for	this	algorithm?

15.6

Consider	the	bank	database	of	Figure	15.14,	where	the	primary	keys	are	underlined.	Suppose	that	a	B+-
tree	index	on	branch	city	is	available	on	relation	branch,	and	that	no	other	index	is	available.	List	different
ways	to	handle	the	following	selections	that	involve	negation:

a.

σ¬

(branch)

(branch	city<“Brooklyn”)

b.

σ¬

(branch)

(branch	city=“Brooklyn”)

c.

σ¬

(branch)

(branch	city<“Brooklyn”	∨	assets<	5000)

15.7

Write	pseudocode	for	an	iterator	that	implements	indexed	nested-loop	join,	where	the	outer	relation	is
pipelined.	Your	pseudocode	must	define	the	standard	iterator	functions	open(),	next(),	and	close().	Show
what	state	information	the	iterator	must	maintain	between	calls.

15.8

Design	sort-based	and	hash-based	algorithms	for	computing	the	relational	division	operation	(see	Practice
Exercise	2.9	for	a	definition	of	the	division	operation).

branch(branch	name,	branch	city,	assets)

customer	(customer	name,	customer	street,	customer	city)	loan	(loan	number,	branch	name,	amount)

borrower	(customer	name,	loan	number)

account	(account	number,	branch	name,	balance)	depositor	(customer	name,	account	number)

Figure	15.14	Bank	database.

738

Chapter	15

Query	Processing

15.9

What	is	the	effect	on	the	cost	of	merging	runs	if	the	number	of	buffer	blocks	per	run	is	increased	while
overall	memory	available	for	buffering	runs	remains	fixed?

15.10

Consider	the	following	extended	relational-algebra	operators.	Describe	how	to	implement	each	operation
using	sorting	and	using	hashing.

a.

Semijoin	(⋉θ):	The	multiset	semijoin	operator	r⋉θ	s	is	defined	as	follows:	if	a	tuple	r	appears	n	times	in	r,
it	appears	n	times	in	the	result	of	r⋉

i

θ

if	there	is	at	least	one	tuple	s	such	that	r	and	s	satisfy	predicate	θ;	j

i

j

otherwise	r	does	not	appear	in	the	result.

i

b.

Anti-semijoin	(⋉θ):	The	multiset	anti-semijoin	operator	r⋉θ	s	is	defined	as	follows:	if	a	tuple	r	appears	n
times	in	r,	it	appears	n	times	in	the	result	i

of	r⋉θ	if	there	does	not	exist	any	tuple	s	in	s	such	that	r	and	s	satisfy	j

i

j

predicate	θ;	otherwise	r	does	not	appear	in	the	result.

i

15.11

Suppose	a	query	retrieves	only	the	first	K	results	of	an	operation	and	terminates	after	that.	Which	choice
of	demand-driven	or	producer-driven	pipelining	(with	buffering)	would	be	a	good	choice	for	such	a	query?
Explain	your	answer.

15.12

Current	generation	CPUs	include	an	instruction	cache,	which	caches	recently	used	instructions.	A
function	call	then	has	a	significant	overhead	because	the	set	of	instructions	being	executed	changes,
resulting	in	cache	misses	on	the	instruction	cache.

a.

Explain	why	producer-driven	pipelining	with	buffering	is	likely	to	result	in	a	better	instruction	cache	hit
rate,	as	compared	to	demand-driven

pipelining.

b.

Explain	why	modifying	demand-driven	pipelining	by	generating	multiple

results	on	one	call	to	next(),	and	returning	them	together,	can	improve	the	instruction	cache	hit	rate.

15.13

Suppose	you	want	to	find	documents	that	contain	at	least	k	of	a	given	set	of	n	keywords.	Suppose	also	you
have	a	keyword	index	that	gives	you	a	(sorted)	list	of	identifiers	of	documents	that	contain	a	specified
keyword.	Give	an	efficient	algorithm	to	find	the	desired	set	of	documents.

15.14

Suggest	how	a	document	containing	a	word	(such	as	“leopard”)	can	be	indexed	such	that	it	is	efficiently

retrieved	by	queries	using	a	more	general	concept	(such	as	“carnivore”	or	“mammal”).	You	can	assume
that	the	concept	hierarchy	is	not	very	deep,	so	each	concept	has	only	a	few	generalizations	(a	concept
can,	however,	have	a	large	number	of	specializations).	You	can	also	assume	that	you	are	provided	with	a
function	that	returns	the	concept	for	each	word	in	a	document.	Also	suggest	how	a	query	using	a
specialized	concept	can	retrieve	documents	using	a	more	general	concept.

Exercises

739

15.15

Explain	why	the	nested-loops	join	algorithm	(see	Section	15.5.1)	would	work	poorly	on	a	database	stored
in	a	column-oriented	manner.	Describe	an	alternative	algorithm	that	would	work	better,	and	explain	why
your	solution	is	better.

15.16

Consider	the	following	queries.	For	each	query,	indicate	if	column-oriented	storage	is	likely	to	be
beneficial	or	not,	and	explain	why.

a.

Fetch	ID,	name	and	dept	name	of	the	student	with	ID	12345.

b.

Group	the	takes	relation	by	year	and	course	id,	and	find	the	total	number	of	students	for	each	(year,
course	id)	combination.

Exercises

15.17

Suppose	you	need	to	sort	a	relation	of	40	gigabytes,	with	4-kilobyte	blocks,	using	a	memory	size	of	40
megabytes.	Suppose	the	cost	of	a	seek	is	5	milliseconds,	while	the	disk	transfer	rate	is	40	megabytes	per
second.

a.

Find	the	cost	of	sorting	the	relation,	in	seconds,	with	b	=	1	and	with	b

b	=	100.

b

b.

In	each	case,	how	many	merge	passes	are	required?

c.

Suppose	a	flash	storage	device	is	used	instead	of	a	disk,	and	it	has	a	latency	of	20	microsecond	and	a
transfer	rate	of	400	megabytes	per	second.	Recompute	the	cost	of	sorting	the	relation,	in	seconds,	with	b
=	1

b

and	with	b	=	100,	in	this	setting.

b

15.18

Why	is	it	not	desirable	to	force	users	to	make	an	explicit	choice	of	a	query-processing	strategy?	Are	there
cases	in	which	it	is	desirable	for	users	to	be	aware	of	the	costs	of	competing	query-processing	strategies?
Explain	your	answer.

15.19

Design	a	variant	of	the	hybrid	merge-join	algorithm	for	the	case	where	both	relations	are	not	physically
sorted,	but	both	have	a	sorted	secondary	index	on	the	join	attributes.

15.20

Estimate	the	number	of	block	transfers	and	seeks	required	by	your	solution	to	Exercise	15.19	for	r	⋈	r	,
where	r	and	r	are	as	defined	in	Exercise	15.3.

1

2

1

2

15.21

The	hash-join	algorithm	as	described	in	Section	15.5.5	computes	the	natural	join	of	two	relations.
Describe	how	to	extend	the	hash-join	algorithm	to	compute	the	natural	left	outer	join,	the	natural	right
outer	join,	and	the	natural	full	outer	join.	(Hint:	Keep	extra	information	with	each	tuple	in	the	hash	index
to	detect	whether	any	tuple	in	the	probe	relation	matches	the	tuple	in	the	hash	index.)	Try	out	your
algorithm	on	the	takes	and	student	relations.

740

Chapter	15

Query	Processing

15.22

Suppose	you	have	to	compute	γ

(r)	as	well	as

γ

(r).	Describe	how

A	sum(C)

A,	B	sum(C)

to	compute	these	together	using	a	single	sorting	of	r.

15.23

Write	pseudocode	for	an	iterator	that	implements	a	version	of	the	sort	–	merge	algorithm	where	the	result
of	the	final	merge	is	pipelined	to	its	consumers.

Your	pseudocode	must	define	the	standard	iterator	functions	open(),	next(),	and	close().	Show	what	state
information	the	iterator	must	maintain	between	calls.

15.24

Explain	how	to	split	the	hybrid	hash-join	operator	into	sub-operators	to	model	pipelining.	Also	explain	how
this	split	is	different	from	the	split	for	a	hash-join	operator.

15.25

Suppose	you	need	to	sort	relation	r	using	sort—merge	and	merge—join	the	result	with	an	already	sorted
relation	s.

a.

Describe	how	the	sort	operator	is	broken	into	suboperators	to	model	the	pipelining	in	this	case.

b.

The	same	idea	is	applicable	even	if	both	inputs	to	the	merge	join	are	the	outputs	of	sort—merge
operations.	However,	the	available	memory	has	to	be	shared	between	the	two	merge	operations	(the
merge—join	algorithm

itself	needs	very	little	memory).	What	is	the	effect	of	having	to	share	memory	on	the	cost	of	each	sort-
merge	operation?

Further	Reading

[Graefe	(1993)]	presents	an	excellent	survey	of	query-evaluation	techniques.	[Faerber	et	al.	(2017)]
describe	main-memory	database	implementation	techniques,	including	query	processing	techniques	for
main-memory	databases,	while	[Kemper	et	al.	(2012)]

describes	techniques	for	query	processing	with	in-memory	columnar	data.	[Samet	(2006)]	provides	a
textbook	description	of	spatial	data	structures,	while	[Shekhar	and	Chawla	(2003)]	provides	a	textbook
description	of	spatial	databases,	including	indexing	and	query	processing	techniques.	Textbook
descriptions	of	techniques	for	indexing	documents,	and	efficiently	computing	ranked	answers	to	keyword
queries	may	be	found	in	[Manning	et	al.	(2008)].

Bibliography

[Faerber	et	al.	(2017)]

F.	Faerber,	A.	Kemper,	P.-A.	Larson,	J.	Levandoski,	T.	Neumann,	and

A.	Pavlo,	“Main	Memory	Database	Systems”,	Foundations	and	Trends	in	Databases,	Volume	8,	Number	1-2
(2017),	pages	1–130.

[Graefe	(1993)]

G.	Graefe,	“Query	Evaluation	Techniques	for	Large	Databases”,	ACM	Computing	Surveys,	Volume	25,
Number	2	(1993).

Further	Reading

741

[Kemper	et	al.	(2012)]

A.	Kemper,	T.	Neumann,	F.	Funke,	V.	Leis,	and	H.	Mühe,	“HyPer:

Adapting	Columnar	Main-Memory	Data	Management	for	Transaction	AND	Query	Processing”,	IEEE	Data
Engineering	Bulletin,	Volume	35,	Number	1	(2012),	pages	46–51.

[Manning	et	al.	(2008)]

C.	D.	Manning,	P.	Raghavan,	and	H.	Schütze,	Introduction	to	Infor-

mation	Retrieval,	Cambridge	University	Press	(2008).

[Samet	(2006)]

H.	Samet,	Foundations	of	Multidimensional	and	Metric	Data	Structures,	Morgan	Kaufmann	(2006).

[Shekhar	and	Chawla	(2003)]

S.	Shekhar	and	S.	Chawla,	Spatial	Databases:	A	TOUR,	Pear-

son	(2003).

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

C	H	A	P	T	E	R	16

Query	Optimization

Query	optimization	is	the	process	of	selecting	the	most	efficient	query-evaluation	plan	from	among	the
many	strategies	usually	possible	for	processing	a	given	query,	especially	if	the	query	is	complex.	We	do
not	expect	users	to	write	their	queries	so	that	they	can	be	processed	efficiently.	Rather,	we	expect	the
system	to	construct	a	query-evaluation	plan	that	minimizes	the	cost	of	query	evaluation.	This	is	where
query	optimization	comes	into	play.

One	aspect	of	optimization	occurs	at	the	relational-algebra	level,	where	the	system	attempts	to	find	an
expression	that	is	equivalent	to	the	given	expression,	but	more	efficient	to	execute.	Another	aspect	is
selecting	a	detailed	strategy	for	processing	the	query,	such	as	choosing	the	algorithm	to	use	for	executing
an	operation,	choosing	the	specific	indices	to	use,	and	so	on.

The	difference	in	cost	(in	terms	of	evaluation	time)	between	a	good	strategy	and	a	bad	strategy	is	often
substantial	and	may	be	several	orders	of	magnitude.	Hence,	it	is	worthwhile	for	the	system	to	spend	a
substantial	amount	of	time	on	the	selection	of	a	good	strategy	for	processing	a	query,	even	if	the	query	is
executed	only	once.

16.1

Overview

Consider	the	following	relational-algebra	expression,	for	the	query	“Find	the	names	of	all	instructors	in
the	Music	department	together	with	the	course	title	of	all	the	courses	that	the	instructors	teach.”1

Π

(σ

(instructor	⋈	(teaches	⋈	Π

(course))))

name,	title

dept	name	=	“Music”

course	id,	title

The	subexpression	instructor	⋈	teaches	⋈	Π

(course)	in	the	preceding	ex-

course	id,	title

pression	can	create	a	very	large	intermediate	result.	However,	we	are	interested	in	only	a	few	tuples	of
this	intermediate	result,	namely,	those	pertaining	to	instructors	in	the	1Note	that	the	projection	of	course
on	(course	id,	title)	is	required	since	course	shares	an	attribute	dept	name	with	instructor;	if	we	did	not
remove	this	attribute	using	the	projection,	the	above	expression	using	natural	joins	would	return	only
courses	from	the	Music	department,	even	if	some	Music	department	instructors	taught	courses	in	other
departments.

743

744

Chapter	16

Query	Optimization

∏	name,	title

∏

σ

name,	title

dept_name	=	Music

instructor

σ	dept_name	=	Music

teaches

∏

instructor

teaches

∏

course_id,	title

course_id,	title

course

course

(a)	Initial	expression	tree	(b)	Transformed	expression	tree	Figure	16.1	Equivalent	expressions.

Music	department,	and	in	only	two	of	the	nine	attributes	of	this	relation.	Since	we	are	concerned	with
only	those	tuples	in	the	instructor	relation	that	pertain	to	the	Music	department,	we	do	not	need	to
consider	those	tuples	that	do	not	have	dept	name	=

“Music”.	By	reducing	the	number	of	tuples	of	the	instructor	relation	that	we	need	to	access,	we	reduce
the	size	of	the	intermediate	result.	Our	query	is	now	represented	by	the	relational-algebra	expression:

Π

((σ

(instructor))	⋈	(teaches	⋈	Π

(course)))

name,	title

dept	name	=	“Music”

course	id,	title

which	is	equivalent	to	our	original	algebra	expression,	but	which	generates	smaller	intermediate
relations.	Figure	16.1	depicts	the	initial	and	transformed	expressions.

An	evaluation	plan	defines	exactly	what	algorithm	should	be	used	for	each	operation	and	how	the
execution	of	the	operations	should	be	coordinated.	Figure	16.2

illustrates	one	possible	evaluation	plan	for	the	expression	from	Figure	16.1(b).	As	we	have	seen,	several
different	algorithms	can	be	used	for	each	relational	operation,	giving	rise	to	alternative	evaluation	plans.
In	the	figure,	hash	join	has	been	chosen	for	one	of	the	join	operations,	while	the	other	uses	merge	join,
after	sorting	the	relations	on	the	join	attribute,	which	is	ID.	All	edges	are	assumed	to	be	pipelined,	unless
marked	as	materialized.	With	pipelined	edges	the	output	of	the	producer	is	sent	directly	to	the	consumer,
without	being	written	out	to	disk;	with	materialized	edges,	on	the	other	hand,	the	output	is	written	to
disk,	and	then	read	from	the	disk	by	the	consumer.	There	are	no	materialized	edges	in	the	evaluation	plan
in	Figure	16.2,	although	some	of	the	operators,	such	as	sort	and	hash	join,	can	be	represented	using
suboperators	with	materialized	edges	between	the	suboperators,	as	we	saw	in	Section	15.7.2.2.

Given	a	relational-algebra	expression,	it	is	the	job	of	the	query	optimizer	to	come	up	with	a	query-
evaluation	plan	that	computes	the	same	result	as	the	given	expression,	and	is	the	least	costly	way	of
generating	the	result	(or,	at	least,	is	not	much	costlier	than	the	least	costly	way).

16.1

Overview

745

(sort	to	remove	duplicates)

Π	name,	title

(merge	join)

sort	ID

(hash	join)

sort	ID

σ

Π

dept_name	=	Music

course_id,	title

(use	index	1)

instructor

teaches

course

Figure	16.2	An	evaluation	plan.

The	expression	that	we	saw	in	Figure	16.1	may	not	necessarily	lead	to	the	least-cost	evaluation	plan	for

computing	the	result,	since	it	still	computes	the	join	of	the	entire	teaches	relation	with	the	course
relation.	The	following	expression	gives	the	same	final	result,	but	generates	smaller	intermediate	results,
since	it	joins	teaches	with	only	instructor	tuples	corresponding	to	the	Music	department,	and	then	joins
that	result	with	course.

Π

((σ

(instructor)	⋈	teaches)	⋈	Π

(course))

name,	title

dept	name	=	“Music”

course	id,	title

Regardless	of	the	way	the	query	is	written,	it	is	the	job	of	the	optimizer	to	find	the	least-cost	plan	for	the
query.

To	find	the	least	costly	query-evaluation	plan,	the	optimizer	needs	to	generate	alternative	plans	that
produce	the	same	result	as	the	given	expression	and	to	choose	the	least	costly	one.	Generation	of	query-
evaluation	plans	involves	three	steps:	(1)	generating	expressions	that	are	logically	equivalent	to	the	given
expression,	(2)	annotating	the	resultant	expressions	in	alternative	ways	to	generate	alternative	query-
evaluation	plans,	and	(3)	estimating	the	cost	of	each	evaluation	plan,	and	choosing	the	one	whose
estimated	cost	is	the	least.

Steps	(1),	(2),	and	(3)	are	interleaved	in	the	query	optimizer	—	some	expressions	are	generated	and
annotated	to	generate	evaluation	plans,	then	further	expressions	are	generated	and	annotated,	and	so	on.
As	evaluation	plans	are	generated,	their	costs	are	estimated	by	using	statistical	information	about	the
relations,	such	as	relation	sizes	and	index	depths.

To	implement	the	first	step,	the	query	optimizer	must	generate	expressions	equivalent	to	a	given
expression.	It	does	so	by	means	of	equivalence	rules	that	specify	how	to	transform	an	expression	into	a
logically	equivalent	one.	We	describe	these	rules	in	Section	16.2.

In	Section	16.3	we	describe	how	to	estimate	statistics	of	the	results	of	each	operation	in	a	query	plan.
Using	these	statistics	with	the	cost	formulae	in	Chapter	15	allows

746

Chapter	16

Query	Optimization

Note	16.1	VIEWING	QUERY	EVALUATION	PLANS

Most	database	systems	provide	a	way	to	view	the	evaluation	plan	chosen	to	execute	a	given	query.	It	is
usually	best	to	use	the	GUI	provided	with	the	database	system	to	view	evaluation	plans.	However,	if	you
use	a	command	line	interface,	many	databases	support	variations	of	a	command	“explain	<	query	>”,
which	displays	the	execution	plan	chosen	for	the	specified	query	<	query	>.	The	exact	syntax	varies	with
different	databases:

•	PostgreSQL	uses	the	syntax	shown	above.

•	Oracle	uses	the	syntax	explain	plan	for.	However,	the	command	stores	the	resultant	plan	in	a	table
called	plan	table,	instead	of	displaying	it.	The	query

“select	*	from	table(dbms	xplan.display);”	displays	the	stored	plan.

•	DB2	follows	a	similar	approach	to	Oracle,	but	requires	the	program	db2exfmt	to	be	executed	to	display
the	stored	plan.

•	SQL	Server	requires	the	command	set	showplan	text	on	to	be	executed	before	submitting	the	query;
then,	when	a	query	is	submitted,	instead	of	executing	the	query,	the	evaluation	plan	is	displayed.

•	MySQL	uses	the	same	explain	<	query	>	syntax	as	PostgreSQL,	but	the	output	is	a	table	whose	contents

are	not	easy	to	understand.	However,	executing	show	warnings	after	the	explain	command	displays	the
evaluation	plan	in	a	more	human-readable	format.

The	estimated	costs	for	the	plan	are	also	displayed	along	with	the	plan.	It	is	worth	noting	that	the	costs
are	usually	not	in	any	externally	meaningful	unit,	such	as	seconds	or	I/O	operations,	but	rather	in	units	of
whatever	cost	model	the	optimizer	uses.	Some	optimizers	such	as	PostgreSQL	display	two	cost-estimate
numbers;	the	first	indicates	the	estimated	cost	for	outputting	the	first	result,	and	the	second	indicates	the
estimated	cost	for	outputting	all	results.

us	to	estimate	the	costs	of	individual	operations.	The	individual	costs	are	combined	to	determine	the
estimated	cost	of	evaluating	a	given	relational-algebra	expression,	as	outlined	in	Section	15.7.

In	Section	16.4,	we	describe	how	to	choose	a	query-evaluation	plan.	We	can	choose	one	based	on	the
estimated	cost	of	the	plans.	Since	the	cost	is	an	estimate,	the	selected	plan	is	not	necessarily	the	least
costly	plan;	however,	as	long	as	the	estimates	are	good,	the	plan	is	likely	to	be	the	least	costly	one,	or	not
much	more	costly	than	it.

16.2

Transformation	of	Relational	Expressions

747

Finally,	materialized	views	help	to	speed	up	processing	of	certain	queries.	In	Section	16.5,	we	study	how
to	“maintain”	materialized	views	—	that	is,	to	keep	them	up-to-date	—	and	how	to	perform	query
optimization	with	materialized	views.

16.2

Transformation	of	Relational	Expressions

A	query	can	be	expressed	in	several	different	ways,	with	different	costs	of	evaluation.	In	this	section,
rather	than	take	the	relational	expression	as	given,	we	consider	alternative,	equivalent	expressions.

Two	relational-algebra	expressions	are	said	to	be	equivalent	if,	on	every	legal	database	instance,	the	two
expressions	generate	the	same	set	of	tuples.	(Recall	that	a	legal	database	instance	is	one	that	satisfies	all
the	integrity	constraints	specified	in	the	database	schema.)	Note	that	the	order	of	the	tuples	is	irrelevant;
the	two	expressions	may	generate	the	tuples	in	different	orders,	but	would	be	considered	equivalent	as
long	as	the	set	of	tuples	is	the	same.

In	SQL,	the	inputs	and	outputs	are	multisets	of	tuples,	and	the	multiset	version	of	the	relational	algebra
(described	in	Note	3.1	on	page	80,	Note	3.2	on	page	97,	and	Note	3.3	on	page	108)	is	used	for	evaluating
SQL	queries.	Two	expressions	in	the	multiset	version	of	the	relational	algebra	are	said	to	be	equivalent	if
on	every	legal	database	the	two	expressions	generate	the	same	multiset	of	tuples.	The	discussion	in	this
chapter	is	based	on	the	relational	algebra.	We	leave	extensions	to	the	multiset	version	of	the	relational
algebra	to	you	as	exercises.

16.2.1

Equivalence	Rules

An	equivalence	rule	says	that	expressions	of	two	forms	are	equivalent.	We	can	replace	an	expression	of
the	first	form	with	an	expression	of	the	second	form,	or	vice	versa	—

that	is,	we	can	replace	an	expression	of	the	second	form	by	an	expression	of	the	first	form	—	since	the	two
expressions	generate	the	same	result	on	any	valid	database.	The	optimizer	uses	equivalence	rules	to
transform	expressions	into	other	logically	equivalent	expressions.

We	now	describe	several	equivalence	rules	on	relational-algebra	expressions.	Some	of	the	equivalences
listed	appear	in	Figure	16.3.	We	use	θ,	θ	,	θ	,	and	so	on	to	denote	1

2

predicates,	L	,	L	,	L	,	and	so	on	to	denote	lists	of	attributes,	and	E,	E	,	E	,	and	so	on	1

2

3

1

2

to	denote	relational-algebra	expressions.	A	relation	name	r	is	simply	a	special	case	of	a	relational-algebra
expression	and	can	be	used	wherever	E	appears.

1.	Conjunctive	selection	operations	can	be	deconstructed	into	a	sequence	of	individual	selections.	This
transformation	is	referred	to	as	a	cascade	of	σ.

σθ	∧θ	(E)	≡	σθ	(σθ	(E))

1

2

1

2

2.	Selection	operations	are	commutative.

σθ	(σθ	(E))	≡	σθ	(σθ	(E))

1

2

2

1

748

Chapter	16

Query	Optimization

Rule	5

θ

θ

E

E

E

E

1

2

2

1

Rule	6.a

E

E

3

1

E

E

E

E

1

2

2

3

σ

Rule	7.a

θ

If	θ	only	has

attributes	from	E

σ

E

θ

1

2

E

E

E

1

2

1

Figure	16.3	Pictorial	representation	of	equivalences.

3.	Only	the	final	operations	in	a	sequence	of	projection	operations	are	needed;	the	others	can	be	omitted.
This	transformation	can	also	be	referred	to	as	a	cascade	of	Π.

Π	(Π	(…	(Π	(E))	…))	≡	Π	(E)

L

L

L

L

1

2

n

1

where	L	⊆	L	⊆	…	⊆	L	.

1

2

n

4.	Selections	can	be	combined	with	Cartesian	products	and	theta	joins.

a.	σθ(E	×	E)	≡	E	⋈

1

2

1

θ	E	2

This	expression	is	just	the	definition	of	the	theta	join.

b.	σθ	(E	⋈	E)	≡	E	⋈

E

1

θ

2

1

θ	∧θ

2

1

2

1

2

5.	Theta-join	operations	are	commutative.

E	⋈

≡	E	⋈

1

θ	E	2

2

θ	E	1

Recall	that	the	natural-join	operator	is	simply	a	special	case	of	the	theta-join	operator;	hence,	natural	joins
are	also	commutative.

The	order	of	attributes	differs	between	the	left-hand	side	and	right-hand	side	of	the	commutativity	rule,	so
the	equivalence	does	not	hold	if	the	order	of	attributes	is	taken	into	account.	Since	we	use	a	version	of
relational	algebra	where	every	attribute	must	have	a	name	for	it	to	be	referenced,	the	order	of	attributes

16.2

Transformation	of	Relational	Expressions

749

does	not	actually	matter,	except	when	the	result	is	finally	displayed.	When	the	order	does	matter,	a
projection	operation	can	be	added	to	one	of	the	sides	of	the	equivalence	to	appropriately	reorder
attributes.	However,	for	simplicity,	we	omit	the	projection	and	ignore	the	attribute	order	in	all	our
equivalence	rules.

6.

a.	Natural-join	operations	are	associative.

(E	⋈	E)	⋈	E	≡	E	⋈	(E	⋈	E)	1

2

3

1

2

3

b.	Theta	joins	are	associative	in	the	following	manner:

(E	⋈	E)	⋈

E

≡	E	⋈

(E	⋈	E)

1

θ

2

θ	∧θ

3

1

θ	∧θ

2

θ

3

1

2

3

1

3

2

where	θ	involves	attributes	from	only	E	and	E	.	Any	of	these	conditions	2

2

3

may	be	empty;	hence,	it	follows	that	the	Cartesian	product	(×)	operation	is	also	associative.	The
commutativity	and	associativity	of	join	operations	are	important	for	join	reordering	in	query	optimization.

7.	The	selection	operation	distributes	over	the	theta-join	operation	under	the	following	two	conditions:

a.	Selection	distributes	over	the	theta-join	operation	when	all	the	attributes	in	selection	condition	θ
involve	only	the	attributes	of	one	of	the	expressions	1

(say,	E)	being	joined.

1

σθ	(E	⋈

)	≡	(σ	(E))	⋈

1

θ	E	2

θ

1

θ	E	2

1

1

b.	Selection	distributes	over	the	theta-join	operation	when	selection	condition	θ	involves	only	the
attributes	of	E	and	θ	involves	only	the	attributes	of	1

1

2

E	.

2

σθ	∧θ	(E	⋈

)	≡	(σ	(E))	⋈

(E))

1

θ	E	2

θ

1

θ	(σθ

2

1

2

1

2

8.	The	projection	operation	distributes	over	the	theta-join	operation	under	the	following	conditions.

a.	Let	L	and	L	be	attributes	of	E	and	E	,	respectively.	Suppose	that	the	join	1

2

1

2

condition	θ	involves	only	attributes	in	L	∪	L	.	Then,

1

2

Π

(E	⋈

)	≡	(Π	(E))	⋈

(E))

L	∪	L

1

θ	E	2

L

1

θ	(Π	L

2

1

2

1

2

b.	Consider	a	join	E	⋈

.	Let	L	and	L	be	sets	of	attributes	from	E	and	1

θ	E	2

1

2

1

E	,	respectively.	Let	L	be	attributes	of	E	that	are	involved	in	join	condition	2

3

1

θ,	but	are	not	in	L	and	let	L	be	attributes	of	E	that	are	involved	in	join	1

4

2

condition	θ,	but	are	not	in	L	.	Then,

2

Π

(E	⋈

)	≡	Π

((Π

(E))	⋈

(E)))

L	∪	L

1

θ	E	2

L	∪	L

L	∪	L

1

θ	(Π	L	∪	L

2

1

2

1

2

1

3

2

4

Similar	equivalences	hold	for	outer	join	operations	⟕,	⟖	and	⟗.

750

Chapter	16

Query	Optimization

9.	The	set	operations	union	and	intersection	are	commutative.

a.	E

∪	E	≡	E	∪	E

1

2

2

1

b.	E

∩	E	≡	E	∩	E

1

2

2

1

Set	difference	is	not	commutative.

10.	Set	union	and	intersection	are	associative.

a.	(E

∪	E)	∪	E	≡	E	∪	(E	∪	E)

1

2

3

1

2

3

b.	(E

∩	E)	∩	E	≡	E	∩	(E	∩	E)

1

2

3

1

2

3

11.	The	selection	operation	distributes	over	the	union,	intersection,	and	set-difference	operations.

a.	σθ(E	∪	E)	≡	σ

)	∪	σ

)

1

2

θ(E	1

θ(E	2

b.	σθ(E	∩	E)	≡	σ

)	∩	σ

)

1

2

θ(E	1

θ(E	2

c.	σθ(E	−	E)	≡	σ

)	−	σ

)

1

2

θ(E	1

θ(E	2

d.	σθ(E	∩	E)	≡	σ

)	∩	E

1

2

θ(E	1

2

e.	σθ(E	−	E)	≡	σ

)	−	E

1

2

θ(E	1

2

The	preceding	equivalence	does	not	hold	if	−	is	replaced	by	∪.

12.	The	projection	operation	distributes	over	the	union	operation

Π	(E	∪	E)	≡	(Π	(E))	∪	(Π	(E))

L

1

2

L

1

L

2

provided	E	and	E	have	the	same	schema.

1

2

13.	Selection	distributes	over	aggregation	under	the	following	conditions.	Let	G	be	a	set	of	group	by
attributes,	and	A	a	set	of	aggregate	expressions.	When	θ	only	involves	attributes	in	G,	the	following
equivalence	holds.

σθ(γ	(E)	≡	γ	(σ

G	A

G	A

θ(E))

14.

a.	Full	outer	join	is	commutative.

E	⟗	E	≡	E	⟗	E

1

2

2

2

b.	Left	and	right	outer	join	are	not	commutative.	However,	left	outer	join	and	right	outer	join	can	be
exchanged	as	follows.

E	⟕	E	≡	E	⟖	E

1

2

2

1

15.	Selection	distributes	over	left	and	right	outer	join	under	some	conditions.	Specifically,	when	the

selection	condition	θ	involves	only	the	attributes	of	one	of	the	1

expressions	being	joined,	say	E	,	the	following	equivalences	hold.

1

16.2

Transformation	of	Relational	Expressions

751

a.	σθ	(E	⟕
)	≡	(σ	(E))	⟕
1

θ	E	2

θ

1

θ	E	2

1

1

b.	σθ	(E	⟖
)	≡	(E	⟖
(E)))

2

θ	E	1

2

θ	(σθ

1

1

1

16.	Outer	joins	can	be	replaced	by	inner	joins	under	some	conditions.	Specifically,	if	θ	has	the	property
that	it	evaluates	to	false	or	unknown	whenever	the	attributes	1

of	E	are	null,	then	the	following	equivalences	hold.

2

a.	σθ	(E	⟕
)	≡	σ	(E	⋈

)

1

θ	E	2

θ

1

θ	E	2

1

1

b.	σθ	(E	⟖
)	≡	σ	(E	⋈

)

2

θ	E	1

θ

2

θ	E	2

1

1

A	predicate	θ	satisfying	the	above	property	is	said	to	be	null	rejecting	on	E	.	For	1

2

example,	if	θ	is	of	the	form	A	<	4	where	A	is	an	attribute	from	E	,	then	θ	would	1

2

1

evaluate	to	unknown	whenever	A	is	null,	and	as	a	result	any	tuples	in	E	⟕
1

θ	E	2

that	are	not	in	E	⋈

would	be	rejected	by	σ	.	We	can	therefore	replace	the

1

θ	E	2

θ1

outer	join	by	an	inner	join	(or	vice	versa).

More	generally,	the	condition	would	hold	if	θ	is	of	the	form	θ1	∧θ2	∧…∧θ	k,	1

1

1

1

and	at	least	one	of	the	terms	θ	i	is	of	the	form	e	relop	e	,	where	e	and	e	are	1

1

2

1

2

arithmetic	or	string	expressions	involving	at	least	one	attribute	from	E	,	and	relop	2

is	any	of	<,	≤,	=,	≥,	>.

This	is	only	a	partial	list	of	equivalences.	More	equivalences	are	discussed	in	the	exercises.

Some	equivalences	that	hold	for	joins	do	not	hold	for	outer	joins.	For	example,	the	selection	operation
does	not	distribute	over	outer	join	when	the	conditions	specified	in	rule	15.a	or	rule	15.b	do	hold.	To	see
this,	we	look	at	the	expression:	σ

(instructor	⟕	teaches)

year=2017

and	consider	the	case	of	an	instructor	who	teaches	no	courses	at	all,	regardless	of	year.	In	the	above
expression,	the	left	outer	join	retains	a	tuple	for	each	such	instructor	with	a	null	value	for	year.	Then	the
selection	operation	removes	those	tuples	since	the	predicate	null=2017	evaluates	to	unknown,	and	such
instructors	do	not	appear	in	the	result.	However,	if	we	push	the	selection	operation	down	to	teaches,	the
resulting	expression:

instructor	⟕	σ

(teaches)

year=2017

is	syntactically	correct	since	the	selection	predicate	includes	only	attributes	from	teaches,	but	the	result	is
different.	For	an	instructor	that	does	not	teach	at	all,	the	instructor	tuple	appears	in	the	result	of
instructor	⟕	σ

(teaches),	but	not	in	the	result

year=2017

of	σ

(instructor	⟕	teaches).	The	following	equivalence,	however,	does	hold:	year=2017

σ

(instructor	⟕	teaches)	≡	σ

(instructor	⋈	teaches)

year=2017

year=2017

As	another	example,	unlike	inner	joins,	outer	joins	are	not	associative.	We	show	thus	using	an	example	for
the	natural	left	outer	join.	Similar	examples	can	be	con-

752

Chapter	16

Query	Optimization

structed	for	natural	right	and	natural	full	outer	join,	as	well	as	for	the	corresponding	theta-join	versions	of
the	outer	join	operations.

Let	relation	r(A,	B)	be	a	relation	consisting	of	the	single	tuple	(1,	1),	s(B,	C)	be	a	relation	consisting	of
the	single	tuple	(1,	1),	and	t(A,	C)	be	an	empty	relation	with	no	tuples.	We	shall	show	that	for	this
example,

(r	⟕	s)	⟕	t	≢	r	⟕(s	⟕	t)	To	see	this,	note	first	that	(r	⟕	s)	produces	a	result	with	schema	(A,	B,	C)
having	one	tuple	(1,	1,	1).	Computing	the	left	outer	join	of	that	result	with	relation	t	produces	a	result
with	schema	(A,	B,	C)	having	one	tuple	(1,	1,	1).	Next,	we	look	at	the	expression	r	⟕(s	⟕	t),	and	note	that
s	⟕	t	produces	a	result	with	schema	(A,	B,	C)	having	one	tuple	(null,	1,	1).	Computing	the	left	outer	join

of	r	with	that	result	produces	a	result	with	schema	(A,	B,	C)	having	one	tuple	(1,	1,	null).

16.2.2

Examples	of	Transformations

We	now	illustrate	the	use	of	the	equivalence	rules.	We	use	our	university	example	with	the	relation
schemas:

instructor(ID,	name,	dept	name,	salary)	teaches(ID,	course	id,	sec	id,	semester,	year)	course(course	id,
title,	dept	name,	credits)	In	our	example	in	Section	16.1,	the	expression:

Π

(σ

(instructor	⋈	(teaches	⋈	Π

(course))))

name,	title

dept	name	=	“Music”

course	id,	title

was	transformed	into	the	following	expression:

Π

((σ

(instructor))	⋈	(teaches	⋈	Π

(course)))

name,	title

dept	name	=	“Music”

course	id,	title

which	is	equivalent	to	our	original	algebra	expression	but	generates	smaller	intermediate	relations.	We
can	carry	out	this	transformation	by	using	rule	7.a.	Remember	that	the	rule	merely	says	that	the	two
expressions	are	equivalent;	it	does	not	say	that	one	is	better	than	the	other.

Multiple	equivalence	rules	can	be	used,	one	after	the	other,	on	a	query	or	on	parts	of	the	query.	As	an
illustration,	suppose	that	we	modify	our	original	query	to	restrict	attention	to	instructors	who	have	taught
a	course	in	2017.	The	new	relational-algebra	query	is:

Π

(σ

name,	title

dept	name	=	“Music”	∧	year	=	2017

(instructor	⋈	(teaches	⋈	Π

(course))))

course	id,	title

16.2

Transformation	of	Relational	Expressions

753

We	cannot	apply	the	selection	predicate	directly	to	the	instructor	relation,	since	the	predicate	involves
attributes	of	both	the	instructor	and	teaches	relations.	However,	we	can	first	apply	rule	6.a	(associativity
of	natural	join)	to	transform	the	join	instructor	⋈

(teaches	⋈	Π

(course))	into	(instructor	⋈	teaches)	⋈	Π

(course):

course	id,	title

course	id,	title

Π

(σ

name,	title

dept	name	=	“Music”	∧	year	=	2017

((instructor	⋈	teaches)	⋈	Π

(course)))

course	id,	title

Then,	using	rule	7.a,	we	can	rewrite	our	query	as:

Π

((σ

name,	title

dept	name	=	“Music”	∧	year	=	2017

(instructor	⋈	teaches))	⋈	Π

(course))

course	id,	title

Let	us	examine	the	selection	subexpression	within	this	expression.	Using	rule	1,	we	can	break	the
selection	into	two	selections	to	get	the	following	subexpression:	σ

(σ

(instructor	⋈	teaches))

dept	name	=	“Music”

year	=	2017

Both	of	the	preceding	expressions	select	tuples	with	dept	name	=	“Music”	and	course	id	=	2017.
However,	the	latter	form	of	the	expression	provides	a	new	opportunity	to	apply	rule	7.a	(“perform
selections	early”),	resulting	in	the	subexpression:	σ

(instructor)	⋈	σ

(teaches)

dept	name	=	“Music”

year	=	2017

Figure	16.4	depicts	the	initial	expression	and	the	final	expression	after	all	these	transformations.	We

could	equally	well	have	used	rule	7.b	to	get	the	final	expression	directly,	without	using	rule	1	to	break	the
selection	into	two	selections.	In	fact,	rule	7.b	can	itself	be	derived	from	rules	1	and	7.a.

∏

∏

name,	title

name,	title

σ	dept_name	=	Music

year	=	2017

^

∏	course_id,	title

σ

σ

dept_name	=	Music

year	=	2017

instructor

teaches

∏

instructor

teaches

course

course_id,	title

course

(a)	Initial	expression	tree

(b)	Tree	after	multiple	transformations

Figure	16.4	Multiple	transformations.

754

Chapter	16

Query	Optimization

A	set	of	equivalence	rules	is	said	to	be	minimal	if	no	rule	can	be	derived	from	any	combination	of	the
others.	The	preceding	example	illustrates	that	the	set	of	equivalence	rules	in	Section	16.2.1	is	not
minimal.	An	expression	equivalent	to	the	original	expression	may	be	generated	in	different	ways;	the
number	of	different	ways	of	generating	an	expression	increases	when	we	use	a	nonminimal	set	of
equivalence	rules.	Query	optimizers	therefore	use	minimal	sets	of	equivalence	rules.

Now	consider	the	following	form	of	our	example	query:

Π

((σ

(instructor)	⋈	teaches)	⋈	Π

(course))

name,	title

dept	name	=	“Music”

course	id,	title

When	we	compute	the	subexpression:

(σ

(instructor)	⋈	teaches)

dept	name	=	“Music”

we	obtain	a	relation	whose	schema	is:

(ID,	name,	dept	name,	salary,	course	id,	sec	id,	semester,	year)	We	can	eliminate	several	attributes	from
the	schema	by	pushing	projections	based	on	equivalence	rules	8.a	and	8.b.	The	only	attributes	that	we
must	retain	are	those	that	either	appear	in	the	result	of	the	query	or	are	needed	to	process	subsequent
operations.

By	eliminating	unneeded	attributes,	we	reduce	the	number	of	columns	of	the	intermediate	result.	Thus,
we	reduce	the	size	of	the	intermediate	result.	In	our	example,	the	only	attributes	we	need	from	the	join	of
instructor	and	teaches	are	name	and	course	id.

Therefore,	we	can	modify	the	expression	to:

Π

((Π

((σ

(instructor))	⋈	teaches))

name,	title

name,	course	id

dept	name	=	“Music”

⋈	Π

(course))

course	id,	title

The	projection	Π

reduces	the	size	of	the	intermediate	join	results.

name,	course	id

16.2.3

Join	Ordering

A	good	ordering	of	join	operations	is	important	for	reducing	the	size	of	temporary	results;	hence,	most
query	optimizers	pay	a	lot	of	attention	to	the	join	order.	As	mentioned	in	equivalence	rule	6.a,	the	natural-
join	operation	is	associative.	Thus,	for	all	relations	r	,	r	,	and	r	:

1

2

3

(r	⋈	r)	⋈	r	≡	r	⋈	(r	⋈	r)	1

2

3

1

2

3

Although	these	expressions	are	equivalent,	the	costs	of	computing	them	may	differ.

Consider	again	the	expression:

Π

((σ

(instructor))	⋈	teaches	⋈	Π

(course))

name,	title

dept	name	=	“Music”

course	id,	title

16.2

Transformation	of	Relational	Expressions

755

We	could	choose	to	compute	teaches	⋈	Π

(course)	first,	and	then	to	join	the

course	id,	title

result	with:

σ

(instructor)

dept	name	=	“Music”

However,	teaches	⋈	Π

(course)	is	likely	to	be	a	large	relation,	since	it

course	id,	title

contains	one	tuple	for	every	course	taught.	In	contrast:

σ

(instructor)	⋈	teaches

dept	name	=	“Music”

is	probably	a	small	relation.	To	see	that	it	is,	we	note	that	a	university	has	fewer	instructors	than	courses
and,	since	a	university	has	a	large	number	of	departments,	it	is	likely	that	only	a	small	fraction	of	the
university	instructors	are	associated	with	the	Music	department.	Thus,	the	preceding	expression	results	in
one	tuple	for	each	course	taught	by	an	instructor	in	the	Music	department.	Therefore,	the	temporary
relation	that	we	must	store	is	smaller	than	it	would	have	been	had	we	computed	teaches	⋈	Π

(course)	first.

course	id,	title

There	are	other	options	to	consider	for	evaluating	our	query.	We	do	not	care	about	the	order	in	which
attributes	appear	in	a	join,	since	it	is	easy	to	change	the	order	before	displaying	the	result.	Thus,	for	all
relations	r	and	r	:	1

2

r	⋈	r	≡	r	⋈	r

1

2

2

1

That	is,	natural	join	is	commutative	(equivalence	rule	5).

Using	the	associativity	and	commutativity	of	the	natural	join	(rules	5	and	6),	consider	the	following
relational-algebra	expression:

(instructor	⋈	Π

(course))	⋈	teaches

course	id,	title

Note	that	there	are	no	attributes	in	common	between	Π

(course)	and	instruc-

course	id,	title

tor,	so	the	join	is	just	a	Cartesian	product.	If	there	are	a	tuples	in	instructor	and	b	tuples	in	Π

(course),	this	Cartesian	product	generates	a	∗	b	tuples,	one	for	every	course	id,	title

possible	pair	of	instructor	tuple	and	course	(without	regard	for	whether	the	instructor	taught	the	course).
This	Cartesian	product	would	produce	a	very	large	temporary	relation.	However,	if	the	user	had	entered
the	preceding	expression,	we	could	use	the	associativity	and	commutativity	of	the	natural	join	to
transform	this	expression	to	the	more	efficient	expression:

(instructor	⋈	teaches)	⋈	Π

(course)

course	id,	title

16.2.4

Enumeration	of	Equivalent	Expressions

Query	optimizers	can	use	equivalence	rules	to	systematically	generate	expressions	equivalent	to	the	given
query	expression.	The	cost	of	an	expression	is	computed	based

756

Chapter	16

Query	Optimization

procedure	genAllEquivalent(E)

EQ	=	{	E}

repeat

Match	each	expression	E	in	EQ	with	each	equivalence	rule	R

i

j

if	any	subexpression	e	of	E	matches	one	side	of	R

i

i

j

Create	a	new	expression	E′	which	is	identical	to	E	,	except	that	i

e	is	transformed	to	match	the	other	side	of	R

i

j

Add	E′	to	EQ	if	it	is	not	already	present	in	EQ

until	no	new	expression	can	be	added	to	EQ

Figure	16.5	Procedure	to	generate	all	equivalent	expressions.

on	statistics	that	are	discussed	in	Section	16.3.	Cost-based	query	optimizers,	described	in	Section	16.4
compute	the	cost	of	each	alternative	and	pick	the	least	cost	alternative.

Conceptually,	enumeration	of	equivalent	expressions	can	be	done	as	outlined	in	Figure	16.5.	The	process
proceeds	as	follows:	Given	a	query	expression	E,	the	set	of	equivalent	expressions	EQ	initially	contains
only	E.	Now,	each	expression	in	EQ	is	matched	with	each	equivalence	rule.	If	a	subexpression	e	of	any
expression	E	∈	EQ

j

i

(as	a	special	case,	e	could	be	E	itself)	matches	one	side	of	an	equivalence	rule,	the	j

i

optimizer	generates	a	copy	E	of	E	,	in	which	e	is	transformed	to	match	the	other	side	k

i

j

of	the	rule,	and	adds	E	to	EQ.	This	process	continues	until	no	more	new	expressions	k

can	be	generated.	With	a	properly	chosen	set	of	equivalence	rules,	the	set	of	equivalent	expressions	is
finite,	and	the	process	can	be	guaranteed	to	terminate.

For	example,	given	an	expression	r	⋈	(s	⋈	t),	the	commutativity	rule	can	match	the	subexpression	(s	⋈
t),	and	would	create	a	new	expression	r	⋈	(t	⋈	s).	The	commutativity	rule	also	matches	the	join	at	the
root	of	r	⋈	(s	⋈	t),	and	creates	a	new	expression	(s	⋈	t)	⋈	r.	Associativity	and	commutativity	rules	can
continue	to	be	applied	to	generate	new	expressions.	But	eventually	applying	any	equivalence	rule	will	only
generate	expressions	that	were	already	generated	earlier,	and	the	process	will	terminate.

The	preceding	process	is	extremely	costly	both	in	space	and	in	time,	but	optimizers	can	greatly	reduce
both	the	space	and	time	cost,	using	two	key	ideas.

1.	If	we	generate	an	expression	E′	from	an	expression	E	by	using	an	equivalence	1

rule	on	subexpression	e	,	then	E′	and	E	have	identical	subexpressions	except	for	i

1

e	and	its	transformation.	Even	e	and	its	transformed	version	usually	share	many	i

i

identical	subexpressions.	Expression-representation	techniques	that	allow	both	expressions	to	point	to
shared	subexpressions	can	reduce	the	space	requirement	significantly.

16.3

Estimating	Statistics	of	Expression	Results

757

2.	It	is	not	always	necessary	to	generate	every	expression	that	can	be	generated	with	the	equivalence
rules.	If	an	optimizer	takes	cost	estimates	of	evaluation	into	account,	it	may	be	able	to	avoid	examining
some	of	the	expressions,	as	we	shall	see	in	Section	16.4.	We	can	reduce	the	time	required	for	optimization
by	using	techniques	such	as	these.

With	these	and	other	techniques	to	reduce	the	optimization	time,	equivalence	rules	can	be	used	to
enumerate	alternative	plans,	whose	costs	can	be	computed;	the	lowest-cost	plan	amongst	the	alternatives
is	then	chosen.	We	discuss	efficient	implementation	of	cost-based	query	optimization	based	on
equivalence	rules	in	Section	16.4.2.

Some	query	optimizers	use	equivalence	rules	in	a	heuristic	manner.	With	such	an	approach,	if	the	left-
hand	side	of	an	equivalence	rule	matches	a	subtree	in	a	query	plan,	the	subtree	is	rewritten	to	match	the
right-hand	side	of	the	rule.	This	process	is	repeated	till	the	query	plan	cannot	be	further	rewritten.	Rules
must	be	carefully	chosen	such	that	the	cost	decreases	when	a	rule	is	applied,	and	rewriting	must
eventually	terminate.

Although	this	approach	can	be	implemented	to	execute	quite	fast,	there	is	no	guarantee	that	it	will	find
the	optimal	plan.

Yet	other	query	optimizers	focus	on	join	order	selection,	which	is	often	a	key	factor	in	query	cost.	We
discuss	algorithms	for	join-order	optimization	in	Section	16.4.1.

16.3

Estimating	Statistics	of	Expression	Results

The	cost	of	an	operation	depends	on	the	size	and	other	statistics	of	its	inputs.	Given	an	expression	such	as
r	⋈	(s	⋈	t)	to	estimate	the	cost	of	joining	r	with	(s	⋈	t),	we	need	to	have	estimates	of	statistics	such	as
the	size	of	s	⋈	t.

In	this	section,	we	first	list	some	statistics	about	database	relations	that	are	stored	in	database-system
catalogs,	and	then	show	how	to	use	the	stored	statistics	to	estimate	statistics	on	the	results	of	various
relational	operations.

Given	a	query	expression,	we	consider	it	as	a	tree;	we	can	start	from	the	bottom-level	operations,	and
estimate	their	statistics,	and	continue	the	process	on	higher-level	operations,	till	we	reach	the	root	of	the
tree.	The	size	estimates	that	we	compute	as	part	of	these	statistics	can	be	used	to	compute	the	cost	of
algorithms	for	individual	operations	in	the	tree,	and	these	costs	can	be	added	up	to	find	the	cost	of	an
entire	query	plan,	as	we	saw	in	Chapter	15.

One	thing	that	will	become	clear	later	in	this	section	is	that	the	estimates	are	not	very	accurate,	since
they	are	based	on	assumptions	that	may	not	hold	exactly.	A	query-evaluation	plan	that	has	the	lowest
estimated	execution	cost	may	therefore	not	actually	have	the	lowest	actual	execution	cost.	However,	real-
world	experience	has	shown	that	even	if	estimates	are	not	precise,	the	plans	with	the	lowest	estimated
costs	usually	have	actual	execution	costs	that	are	either	the	lowest	actual	execution	costs	or	are	close	to
the	lowest	actual	execution	costs.

758

Chapter	16

Query	Optimization

16.3.1

Catalog	Information

The	database-system	catalog	stores	the	following	statistical	information	about	database	relations:

•	n	,	the	number	of	tuples	in	the	relation	r.

r

•	b	,	the	number	of	blocks	containing	tuples	of	relation	r.

r

•	l	,	the	size	of	a	tuple	of	relation	r	in	bytes.

r

•	f	,	the	blocking	factor	of	relation	r	—that	is,	the	number	of	tuples	of	relation	r	that	r

fit	into	one	block.

•	V	(A,	r),	the	number	of	distinct	values	that	appear	in	the	relation	r	for	attribute	A.

This	value	is	the	same	as	the	size	of	Π	(r).	If	A	is	a	key	for	relation	r,	V	(A,	r)	is	n	.

A

r

The	last	statistic,	V	(A,	r),	can	also	be	maintained	for	sets	of	attributes,	if	desired,	instead	of	just	for
individual	attributes.	Thus,	given	a	set	of	attributes,	,	V	(,	r)	is	the	size	of	Π(r).

If	we	assume	that	the	tuples	of	relation	r	are	stored	together	physically	in	a	file,	the	following	equation
holds:

⌈	⌉

n

b	=

r

r

fr

Statistics	about	indices,	such	as	the	heights	of	B+-tree	indices	and	number	of	leaf	pages	in	the	indices,
are	also	maintained	in	the	catalog.

If	we	wish	to	maintain	accurate	statistics,	then	every	time	a	relation	is	modified,	we	must	also	update	the
statistics.	This	update	incurs	a	substantial	amount	of	overhead.

Therefore,	most	systems	do	not	update	the	statistics	on	every	modification.	Instead,	they	update	the
statistics	during	periods	of	light	system	load.	As	a	result,	the	statistics	used	for	choosing	a	query-
processing	strategy	may	not	be	completely	accurate.	However,	if	not	too	many	updates	occur	in	the
intervals	between	the	updates	of	the	statistics,	the	statistics	will	be	sufficiently	accurate	to	provide	a	good
estimation	of	the	relative	costs	of	the	different	plans.

The	statistical	information	noted	here	is	simplified.	Real-world	optimizers	often	maintain	further
statistical	information	to	improve	the	accuracy	of	their	cost	estimates	of	evaluation	plans.	For	instance,
most	databases	store	the	distribution	of	values	for	each	attribute	as	a	histogram:	in	a	histogram,	the
values	for	the	attribute	are	divided	into	a	number	of	ranges,	and	with	each	range	the	histogram	associates
the	number	of	tuples	whose	attribute	value	lies	in	that	range.	Figure	16.6	shows	an	example	of	a
histogram	for	an	integer-valued	attribute	that	takes	values	in	the	range	1	to	25.

As	an	example	of	a	histogram,	the	range	of	values	for	an	attribute	age	of	a	relation	person	could	be
divided	into	0—9,	10—19,	.	.	.	,	90—99	(assuming	a	maximum	age	of	99).

With	each	range	we	store	a	count	of	the	number	of	person	tuples	whose	age	values	lie	in	that	range.

16.3

Estimating	Statistics	of	Expression	Results

759

50

40

30

equencyfr	20

10

1–5

6–10

11–15	16–20	21–25

value

Figure	16.6	Example	of	histogram.

The	histogram	shown	in	Figure	16.6,	is	an	equi-width	histogram	since	it	divides	the	range	of	values	into
equal-sized	ranges.	In	contrast,	an	equi-depth	histogram	adjusts	the	boundaries	of	the	ranges	such	that
each	range	has	the	same	number	of	values.	Thus,	an	equi-depth	histogram	merely	stores	the	boundaries
of	partitions	of	the	range,	and	need	not	store	the	number	of	values.	For	example,	the	following	could	be
the	equidepth	histogram	for	the	data	whose	equi-width	histogram	is	shown	in	Figure	16.6:	(4,	8,	14,	19)

The	histogram	indicates	that	1∕5th	of	the	tuples	have	age	less	than	4,	another	1∕5th	have	age	≥	4	but	<	8,
and	so	on,	with	the	last	1∕5th	having	age	≥	19.	Information	about	the	total	number	of	tuples	is	also	stored
with	the	equi-width	histogram.	Equi-depth	histograms	are	preferred	to	equi-width	histograms	since	they
provide	better	estimates,	and	occupy	less	space.

Histograms	used	in	database	systems	can	also	record	the	number	of	distinct	values	in	each	range,	in
addition	to	the	number	of	tuples	with	attribute	values	in	that	range.

In	our	example,	the	histogram	could	store	the	number	of	distinct	age	values	that	lie	in	each	range.
Without	such	histogram	information,	an	optimizer	would	have	to	assume	that	the	distribution	of	values	is
uniform;	that	is,	each	range	has	the	same	number	of	distinct	values.

In	many	database	applications,	some	values	are	very	frequent,	compared	to	other	values.	To	get	better
estimates	for	queries	that	specify	these	values,	many	databases	store	a	list	of	n	most	frequent	values	for
some	n	(say	5	or	10),	along	with	the	number	of	times	each	value	appears.	In	our	example,	if	ages	4,	7,	18,
19,	and	23	are	the	five	most	frequently	occurring	values,	the	database	could	store	the	number	of	persons
having	each	of	these	ages.	The	histogram	then	only	stores	statistics	for	age	values	other	than	these	five
values,	since	we	have	now	have	exact	counts	for	these	values.

760

Chapter	16

Query	Optimization

A	histogram	takes	up	only	a	little	space,	so	histograms	on	several	different	attributes	can	be	stored	in	the
system	catalog.

16.3.2

Selection	Size	Estimation

The	size	estimate	of	the	result	of	a	selection	operation	depends	on	the	selection	predicate.	We	first
consider	a	single	equality	predicate,	then	a	single	comparison	predicate,	and	finally	combinations	of
predicates.

•	σ

(r):	If	a	is	a	frequently	occurring	value	for	which	the	occurrence	count	is	A	=	a

available,	we	can	use	that	value	directly	as	the	size	estimate	for	the	selection.

Otherwise	if	there	is	no	histogram	available,	we	assume	uniform	distribution	of	values	(i.e.,	each	value
appears	with	equal	probability),	the	selection	result	is	estimated	to	have	n	∕	V	(A,	r)	tuples,	assuming	that

the	value	a	appears	in	attribute	r

A	of	some	record	of	r.	The	assumption	that	the	value	a	in	the	selection	appears	in	some	record	is	generally
true,	and	cost	estimates	often	make	it	implicitly.	However,	it	is	often	not	realistic	to	assume	that	each
value	appears	with	equal	probability.

The	course	id	attribute	in	the	takes	relation	is	an	example	where	the	assumption	is	not	valid.	It	is
reasonable	to	expect	that	a	popular	undergraduate	course	will	have	many	more	students	than	a	smaller
specialized	graduate	course.	Therefore,	certain	course	id	values	appear	with	greater	probability	than	do
others.	Despite	the	fact	that	the	uniform-distribution	assumption	is	often	not	correct,	it	is	a	reasonable
approximation	of	reality	in	many	cases,	and	it	helps	us	to	keep	our	presentation	relatively	simple.

If	a	histogram	is	available	on	attribute	A,	we	can	locate	the	range	that	contains	the	value	a,	and	modify
the	above-mentioned	estimate	n	∕	V	(A,	r)	by	using	the	r

frequency	count	for	that	range	instead	of	n	,	and	the	number	of	distinct	values	r

that	occurs	in	that	range	instead	of	V	(A,	r).

•	σ	(r):	Consider	a	selection	of	the	form	σ	(r).	Suppose	that	the	lowest	and	A≤	v

A≤	v

highest	values	(min(A,	r)	and	max(A,	r))	for	the	attribute	are	stored	in	the	catalog.

Assuming	that	values	are	uniformly	distributed,	we	can	estimate	the	number	of	records	that	will	satisfy
the	condition	A	≤	v	as:

°	0	if	v	<	min(A,	r)

°	n	if	v	≥	max(A,	r),	and,

r

°	n	⋅

v−min(A,	r)

,	otherwise.

r

max(A,	r)−min(A,	r)

If	a	histogram	is	available	on	attribute	A,	we	can	get	a	more	accurate	estimate;	we	leave	the	details	as	an
exercise	for	you.

In	some	cases,	such	as	when	the	query	is	part	of	a	stored	procedure,	the	value	v	may	not	be	available
when	the	query	is	optimized.	In	such	cases,	we	assume	that	approximately	one-half	the	records	will	satisfy
the	comparison	condition.	That	is,

16.3

Estimating	Statistics	of	Expression	Results

761

Note	16.2	COMPUTING	AND	MAINTAINING	STATISTICS

Conceptually,	statistics	on	relations	can	be	thought	of	as	materialized	views,	which	should	be
automatically	maintained	when	relations	are	modified.	Unfortunately,	keeping	statistics	up-to-date	on
every	insert,	delete	or	update	to	the	database	can	be	very	expensive.	On	the	other	hand,	optimizers
generally	do	not	need	exact	statistics:	an	error	of	a	few	percent	may	result	in	a	plan	that	is	not	quite
optimal	being	chosen,	but	the	alternative	plan	chosen	is	likely	to	have	a	cost	which	is	within	a	few	percent
of	the	optimal	cost.	Thus,	it	is	acceptable	to	have	statistics	that	are	approximate.

Database	systems	reduce	the	cost	of	generating	and	maintaining	statistics,	as	outlined	below,	by
exploiting	the	fact	that	statistics	can	be	approximate.

•	Statistics	are	often	computed	from	a	sample	of	the	underlying	data,	instead	of	examining	the	entire
collection	of	data.	For	example,	a	fairly	accurate	histogram	can	be	computed	from	a	sample	of	a	few
thousand	tuples,	even	on	a	relation	that	has	millions,	or	hundreds	of	millions	of	records.	However,	the

sample	used	must	be	a	random	sample;	a	sample	that	is	not	random	may	have	an	excessive	representation
of	one	part	of	the	relation	and	can	give	misleading	results.	For	example,	if	we	used	a	sample	of	instructors
to	compute	a	histogram	on	salaries,	if	the	sample	has	an	overrepresentation	of	lower-paid	instructors	the
histogram	would	result	in	wrong	estimates.	Database	systems	today	routinely	use	random	sampling	to
create	statistics.	See	the	bibliographical	notes	online	for	references	on	sampling.

•	Statistics	are	not	maintained	on	every	update	to	the	database.	In	fact,	some	database	systems	never
update	statistics	automatically.	They	rely	on	database	administrators	periodically	running	a	command	to
update	statistics.	Oracle	and	PostgreSQL	provide	an	SQL	command	called	analyze	that	generates
statistics	on	specified	relations,	or	on	all	relations.	IBM	DB2	supports	an	equivalent	command	called
runstats.	See	the	system	manuals	for	details.	You	should	be	aware	that	optimizers	sometimes	choose	very
bad	plans	due	to	incorrect	statistics.	Many	database	systems,	such	as	IBM	DB2,	Oracle,	and	SQL	Server,
update	statistics	automatically	at	certain	points	of	time.	For	example,	the	system	can	keep	approximate
track	of	how	many	tuples	there	are	in	a	relation	and	recompute	statistics	if	this	number	changes
significantly.	Another	approach	is	to	compare	estimated	cardinalities	of	a	relation	scan	with	actual
cardinalities	when	a	query	is	executed,	and	if	they	differ	significantly,	initiate	an	update	of	statistics	for
that	relation.

762

Chapter	16

Query	Optimization

we	assume	the	result	has	n	∕2	tuples;	the	estimate	may	be	very	inaccurate,	but	it	r

is	the	best	we	can	do	without	any	further	information.

•	Complex	selections:

°	Conjunction:	A	conjunctive	selection	is	a	selection	of	the	form:	σθ	∧θ	∧⋯∧θ	(r)

1

2

n

We	can	estimate	the	result	size	of	such	a	selection:	For	each	θ	,	we	estimate	i

the	size	of	the	selection	σθ	(r),	denoted	by	s	,	as	described	previously.	Thus,	the	i

i

probability	that	a	tuple	in	the	relation	satisfies	selection	condition	θ	is	s	∕	n	.

i

i

r

The	preceding	probability	is	called	the	selectivity	of	the	selection	σθ	(r).

i

Assuming	that	the	conditions	are	independent	of	each	other,	the	probability	that	a	tuple	satisfies	all	the
conditions	is	simply	the	product	of	all	these	probabilities.

Thus,	we	estimate	the	number	of	tuples	in	the	full	selection	as:

s	∗	s	∗	⋯	∗	s

n	∗	1

2

n

r

nnr

°	Disjunction:	A	disjunctive	selection	is	a	selection	of	the	form:	σθ	∨θ	∨⋯∨θ	(r)

1

2

n

A	disjunctive	condition	is	satisfied	by	the	union	of	all	records	satisfying	the	individual,	simple	conditions	θ
.	i

As	before,	let	s	∕	n	denote	the	probability	that	a	tuple	satisfies	condition	θ	.

i

r

i

The	probability	that	the	tuple	will	satisfy	the	disjunction	is	then	1	minus	the	probability	that	it	will	satisfy
none	of	the	conditions:

s

s

s

1	−	(1	−	1)	∗	(1	−	2)	∗	⋯	∗	(1	−	n)

n

n

n

r

r

r

Multiplying	this	value	by	n	gives	us	the	estimated	number	of	tuples	that	satisfy	r

the	selection.

°	Negation:	In	the	absence	of	nulls,	the	result	of	a	selection	σ¬	θ(r)	is	simply	the	tuples	of	r	that	are	not
in	σθ(r).	We	already	know	how	to	estimate	the	number	of	tuples	in	σθ(r).	The	number	of	tuples	in	σ¬θ(r)
is	therefore	estimated	to	be	n	minus	the	estimated	number	of	tuples	in	σ

r

θ(r).

We	can	account	for	nulls	by	estimating	the	number	of	tuples	for	which

the	condition	θ	would	evaluate	to	unknown,	and	subtracting	that	number	from	the	above	estimate,
ignoring	nulls.	Estimating	that	number	would	require	extra	statistics	to	be	maintained	in	the	catalog.

16.3.3

Join	Size	Estimation

In	this	section,	we	see	how	to	estimate	the	size	of	the	result	of	a	join.

16.3

Estimating	Statistics	of	Expression	Results

763

The	Cartesian	product	r	×	s	contains	n	∗	n	tuples.	Each	tuple	of	r	×	s	occupies	r

s

l	+	l	bytes,	from	which	we	can	calculate	the	size	of	the	Cartesian	product.

r

s

Estimating	the	size	of	a	natural	join	is	somewhat	more	complicated	than	estimating	the	size	of	a	selection
or	of	a	Cartesian	product.	Let	r(R)	and	s(S)	be	relations.

•	If	R	∩	S	=	∅—that	is,	the	relations	have	no	attribute	in	common—then	r	⋈	s	is	the	same	as	r	×	s,	and	we
can	use	our	estimation	technique	for	Cartesian	products.

•	If	R	∩	S	is	a	key	for	R,	then	we	know	that	a	tuple	of	s	will	join	with	at	most	one	tuple	from	r.	Therefore,
the	number	of	tuples	in	r	⋈	s	is	no	greater	than	the	number	of	tuples	in	s.	The	case	where	R	∩	S	is	a	key
for	S	is	symmetric	to	the	case	just	described.	If	R	∩	S	forms	a	foreign	key	of	S,	referencing	R,	the	number
of	tuples	in	r	⋈	s	is	exactly	the	same	as	the	number	of	tuples	in	s.

•	The	most	difficult	case	is	when	R	∩	S	is	a	key	for	neither	R	nor	S.	In	this	case,	we	assume,	as	we	did	for
selections,	that	each	value	appears	with	equal	probability.

Consider	a	tuple	t	of	r,	and	assume	R	∩	S	=	{A}.	We	estimate	that	tuple	t	produces	ns

V	(A,	s)

tuples	in	r	⋈	s,	since	this	number	is	the	average	number	of	tuples	in	s	with	a	given	value	for	the	attributes
A.	Considering	all	the	tuples	in	r,	we	estimate	that	there	are

n	∗	n

r

s

V	(A,	s)

tuples	in	r	⋈	s.	Observe	that,	if	we	reverse	the	roles	of	r	and	s	in	the	preceding	estimate,	we	obtain	an
estimate	of

n	∗	n

r

s

V	(A,	r)

tuples	in	r	⋈	s.	These	two	estimates	differ	if	V	(A,	r)	≠	V	(A,	s).	If	this	situation	occurs,	there	are	likely	to
be	dangling	tuples	that	do	not	participate	in	the	join.

Thus,	the	lower	of	the	two	estimates	is	probably	the	more	accurate	one.

The	preceding	estimate	of	join	size	may	be	too	high	if	the	V	(A,	r)	values	for	attribute	A	in	r	have	few
values	in	common	with	the	V	(A,	s)	values	for	attribute	A	in	s.	However,	this	situation	is	unlikely	to
happen	in	the	real	world,	since	dangling	tuples	either	do	not	exist	or	constitute	only	a	small	fraction	of	the
tuples,	in	most	real-world	relations.

More	important,	the	preceding	estimate	depends	on	the	assumption	that	each	value	appears	with	equal
probability.	More	sophisticated	techniques	for	size	estimation	have	to	be	used	if	this	assumption	does	not
hold.	For	example,	if	we	have	histograms	on	the	join	attributes	of	both	relations,	and	both	histograms
have	the	same	ranges,	then	we	can	use	the	above	estimation	technique	within	each	range,

764

Chapter	16

Query	Optimization

using	the	number	of	rows	with	values	in	the	range	instead	of	n	or	n	,	and	the	r

s

number	of	distinct	values	in	that	range,	instead	of	V	(A,	r)	or	V	(A,	s).	We	then	add	up	the	size	estimates
obtained	for	each	range	to	get	the	overall	size	estimate.	We	leave	the	case	where	both	relations	have
histograms	on	the	join	attribute,	but	the	histograms	have	different	ranges,	as	an	exercise	for	you.

We	can	estimate	the	size	of	a	theta	join	r	⋈θ	s	by	rewriting	the	join	as	σθ(r	×	s)	and	using	the	size
estimates	for	Cartesian	products	along	with	the	size	estimates	for	selections,	which	we	saw	in	Section
16.3.2.

To	illustrate	all	these	ways	of	estimating	join	sizes,	consider	the	expression:	student	⋈	takes

Assume	the	following	catalog	information	about	the	two	relations:

•	n

=	5000.

student

•	n

=	10000.

takes

•	V	(ID,	takes)	=	2500,	which	implies	that	only	half	the	students	have	taken	any	course	(this	is
unrealistic,	but	we	use	it	to	show	that	our	size	estimates	are	correct	even	in	this	case),	and	on	average,
each	student	who	has	taken	a	course	has	taken	four	courses.

Note	that	since	ID	is	a	primary	key	of	student,	V	(ID,	student)	=	n

=	5000.

student

The	attribute	ID	in	takes	is	a	foreign	key	on	student,	and	null	values	do	not	occur	in	takes.	ID,	since	ID	is
part	of	the	primary	key	of	takes;	thus,	the	size	of	student	⋈	takes	is	exactly	n

,	which	is	10000.

takes

We	now	compute	the	size	estimates	for	student	⋈	takes	without	using	information	about	foreign	keys.
Since	V	(ID,	takes)	=	2500	and	V	(ID,	student)	=	5000,	the	two	estimates	we	get	are	5000	∗	10000∕2500
=	20000	and	5000	∗	10000∕5000	=	10000,	and	we	choose	the	lower	one.	In	this	case,	the	lower	of	these
estimates	is	the	same	as	that	which	we	computed	earlier	from	information	about	foreign	keys.

16.3.4

Size	Estimation	for	Other	Operations

Next	we	outline	how	to	estimate	the	sizes	of	the	results	of	other	relational-algebra	operations.

•	Projection:	The	estimated	size	(number	of	records	or	number	of	tuples)	of	a	projection	of	the	form	Π	(r)
is	V	(A,	r),	since	projection	eliminates	duplicates.

A

•	Aggregation:	The	size	of	γ	(r)	is	simply	V	(G,	r),	since	there	is	one	tuple	in	γ	(r)	G	A

G	A

for	each	distinct	value	of	G.

•	Set	operations:	If	the	two	inputs	to	a	set	operation	are	selections	on	the	same	relation,	we	can	rewrite
the	set	operation	as	disjunctions,	conjunctions,	or	negations.

For	example,	σθ	(r)	∪	σθ	(r)	can	be	rewritten	as	σθ	∨θ	(r).	Similarly,	we	can	rewrite	1

2

1

2

16.3

Estimating	Statistics	of	Expression	Results

765

intersections	as	conjunctions,	and	we	can	rewrite	set	difference	by	using	negation,	so	long	as	the	two
relations	participating	in	the	set	operations	are	selections	on	the	same	relation.	We	can	then	use	the
estimates	for	selections	involving	conjunctions,	disjunctions,	and	negation	in	Section	16.3.2.

If	the	inputs	are	not	selections	on	the	same	relation,	we	estimate	the	sizes	this	way:	The	estimated	size	of
r	∪	s	is	the	sum	of	the	sizes	of	r	and	s.	The	estimated	size	of	r	∩	s	is	the	minimum	of	the	sizes	of	r	and	s.
The	estimated	size	of	r	−	s	is	the	same	size	as	r.	All	three	estimates	may	be	inaccurate,	but	provide	upper
bounds	on	the	sizes.

•	Outer	join:	The	estimated	size	of	r	⟕	s	is	the	size	of	r	⋈	s	plus	the	size	of	r;	that	of	r	⟖	s	is	symmetric,
while	that	of	r	⟗	s	is	the	size	of	r	⋈	s	plus	the	sizes	of	r	and	s.	All	three	estimates	may	be	inaccurate,	but
provide	upper	bounds	on	the	sizes.

16.3.5

Estimation	of	Number	of	Distinct	Values

The	size	estimates	discussed	earlier	depend	on	statistics	such	as	histograms,	or	at	a	minimum,	the
number	of	distinct	values	for	an	attribute.	While	these	statistics	can	be	precomputed	and	stored	for
relations	in	the	database,	we	need	to	compute	them	for	intermediate	results.	Note	that	estimation	of	the
number	of	sizes	and	the	number	of	distinct	values	of	attributes	in	an	intermediate	result	E	helps	us
estimate	the	sizes	and	i

number	of	distinct	values	of	attributes	in	the	next	level	intermediate	results	that	use	E	.

i

For	selections,	the	number	of	distinct	values	of	an	attribute	(or	set	of	attributes)	A	in	the	result	of	a
selection,	V	(A,	σθ(r)),	can	be	estimated	in	these	ways:

•	If	the	selection	condition	θ	forces	A	to	take	on	a	specified	value	(e.g.,	A	=	3),	V	(A,	σθ(r))	=	1.

•	If	θ	forces	A	to	take	on	one	of	a	specified	set	of	values	(e.g.,	(A	=	1∨	A	=	3∨	A	=	4)),	then	V	(A,	σθ(r))
is	set	to	the	number	of	specified	values.

•	If	the	selection	condition	θ	is	of	the	form	A	op	v,	where	op	is	a	comparison	operator,	V	(A,	σθ(r))	is
estimated	to	be	V	(A,	r)	∗	s,	where	s	is	the	selectivity	of	the	selection.

•	In	all	other	cases	of	selections,	we	assume	that	the	distribution	of	A	values	is	independent	of	the
distribution	of	the	values	on	which	selection	conditions	are	specified,	and	we	use	an	approximate	estimate
of	min(V	(A,	r),	nσ).	A	more	accurate	θ(r)

estimate	can	be	derived	for	this	case	using	probability	theory,	but	the	preceding	approximation	works
fairly	well.

For	joins,	the	number	of	distinct	values	of	an	attribute	(or	set	of	attributes)	A	in	the	result	of	a	join,	V	(A,	r
⋈	s),	can	be	estimated	in	these	ways:

766

Chapter	16

Query	Optimization

•	If	all	attributes	in	A	are	from	r,	V	(A,	r	⋈	s)	is	estimated	as	min(V	(A,	r),	n

),

r	⋈	s

and	similarly	if	all	attributes	in	A	are	from	s,	V	(A,	r	⋈	s)	is	estimated	to	be	min(V	(A,	s),	n

).

r	⋈	s

•	If	A	contains	attributes	A	1	from	r	and	A	2	from	s,	then	V	(A,	r	⋈	s)	is	estimated	as:	min(V	(A	1,	r)	∗	V	(
A	2	−	A	1,	s),	V	(A	1	−	A	2,	r)	∗	V	(A	2,	s),	n

)

r	⋈	s

Note	that	some	attributes	may	be	in	A	1	as	well	as	in	A	2,	and	A	1	−	A	2	and	A	2	−	A	1

denote,	respectively,	attributes	in	A	that	are	only	from	r	and	attributes	in	A	that	are	only	from	s.	Again,
more	accurate	estimates	can	be	derived	by	using	probability	theory,	but	the	above	approximations	work
fairly	well.

The	estimates	of	distinct	values	are	straightforward	for	projections:	They	are	the	same	in	Π	(r)	as	in	r.
The	same	holds	for	grouping	attributes	of	aggregation.	For	results	A

of	sum,	count,	and	average,	we	can	assume,	for	simplicity,	that	all	aggregate	values	are	distinct.	For	min(
A)	and	max(A),	the	number	of	distinct	values	can	be	estimated	as	min(V	(A,	r),	V	(G,	r)),	where	G
denotes	the	grouping	attributes.	We	omit	details	of	estimating	distinct	values	for	other	operations.

16.4

Choice	of	Evaluation	Plans

Generation	of	expressions	is	only	part	of	the	query-optimization	process,	since	each	operation	in	the
expression	can	be	implemented	with	different	algorithms.	An	evaluation	plan	defines	exactly	what
algorithm	should	be	used	for	each	operation,	and	how	the	execution	of	the	operations	should	be
coordinated.

Given	an	evaluation	plan,	we	can	estimate	its	cost	using	statistics	estimated	by	the	techniques	in	Section
16.3	coupled	with	cost	estimates	for	various	algorithms	and	evaluation	methods	described	in	Chapter	15.

A	cost-based	optimizer	explores	the	space	of	all	query-evaluation	plans	that	are	equivalent	to	the	given
query,	and	chooses	the	one	with	the	least	estimated	cost.	We	have	seen	how	equivalence	rules	can	be	used
to	generate	equivalent	plans.	However,	cost-based	optimization	with	arbitrary	equivalence	rules	is	fairly
complicated.	We	first	cover	a	simpler	version	of	cost-based	optimization,	which	involves	only	join-order
and	join	algorithm	selection,	in	Section	16.4.1.	Then,	in	Section	16.4.2,	we	briefly	sketch	how	a	general-
purpose	optimizer	based	on	equivalence	rules	can	be	built,	without	going	into	details.

Exploring	the	space	of	all	possible	plans	may	be	too	expensive	for	complex	queries.

Most	optimizers	include	heuristics	to	reduce	the	cost	of	query	optimization,	at	the	potential	risk	of	not
finding	the	optimal	plan.	We	study	some	such	heuristics	in	Section	16.4.3.

16.4

Choice	of	Evaluation	Plans

767

16.4.1

Cost-Based	Join-Order	Selection

The	most	common	type	of	query	in	SQL	consists	of	a	join	of	a	few	relations,	with	join	predicates	and
selections	specified	in	the	where	clause.	In	this	section	we	consider	the	problem	of	choosing	the	optimal
join	order	for	such	a	query.

For	a	complex	join	query,	the	number	of	different	query	plans	that	are	equivalent	to	the	query	can	be
large.	As	an	illustration,	consider	the	expression:	r	⋈	r	⋈	⋯	⋈	r

1

2

n

where	the	joins	are	expressed	without	any	ordering.	With	n	=	3,	there	are	12	different	join	orderings:

r	⋈	(r	⋈	r)

r	⋈	(r	⋈	r)

(r	⋈	r)	⋈	r

(r	⋈	r)	⋈	r

1

2

3

1

3

2

2

3

1

3

2

1

r	⋈	(r	⋈	r)

r	⋈	(r	⋈	r)

(r	⋈	r)	⋈	r

(r	⋈	r)	⋈	r

2

1

3

2

3

1

1

3

2

3

1

2

r	⋈	(r	⋈	r)

r	⋈	(r	⋈	r)

(r	⋈	r)	⋈	r

(r	⋈	r)	⋈	r

3

1

2

3

2

1

1

2

3

2

1

3

In	general,	with	n	relations,	there	are	(2(n	−	1))!∕(n	−	1)!	different	join	orders.

(We	leave	the	computation	of	this	expression	for	you	to	do	in	Exercise	16.12.)	For	joins	involving	small
numbers	of	relations,	this	number	is	acceptable;	for	example,	with	n	=	5,	the	number	is	1680.	However,	as
n	increases,	this	number	rises	quickly.	With	n	=	7,	the	number	is	665,280;	with	n	=	10,	the	number	is
greater	than	17	.	6	billion!

Luckily,	it	is	not	necessary	to	generate	all	the	expressions	equivalent	to	a	given	expression.	For	example,
suppose	we	want	to	find	the	best	join	order	of	the	form:	(r	⋈	r	⋈	r)	⋈	r	⋈	r

1

2

3

4

5

which	represents	all	join	orders	where	r	,	r	,	and	r	are	joined	first	(in	some	order),	and	1

2

3

the	result	is	joined	(in	some	order)	with	r	and	r	.	There	are	12	different	join	orders	4

5

for	computing	r	⋈	r	⋈	r	,	and	12	orders	for	computing	the	join	of	this	result	with	1

2

3

r	and	r	.	Thus,	there	appear	to	be	144	join	orders	to	examine.	However,	once	we	have	4

5

found	the	best	join	order	for	the	subset	of	relations	{	r	,	r	,	r	},	we	can	use	that	order	for	1

2

3

further	joins	with	r	and	r	,	and	we	can	ignore	all	costlier	join	orders	of	r	⋈	r	⋈	r	.

4

5

1

2

3

Thus,	instead	of	144	choices	to	examine,	we	need	to	examine	only	12	+	12	choices.

Using	this	idea,	we	can	develop	a	dynamic-programming	algorithm	for	finding	optimal	join	orders.
Dynamic-programming	algorithms	store	results	of	computations	and	reuse	them,	a	procedure	that	can
reduce	execution	time	greatly.

We	now	consider	how	to	find	the	optimal	join	order	for	a	set	of	n	relations	S	=

{	r	,	r	,	…	,	r	},	where	each	relation	may	have	selection	conditions,	and	a	set	of	join	1

2

n

conditions	between	the	relations	r	is	provided.	We	assume	that	relations	have	unique	i

names.

A	recursive	procedure	implementing	the	dynamic-programming	algorithm	appears	in	Figure	16.7	and	is
invoked	as	FindBestPlan(S),	where	S	is	the	set	of	relations	above.

The	procedure	applies	selections	on	individual	relations	at	the	earliest	possible	point,

768

Chapter	16

Query	Optimization

procedure	FindBestPlan(S)

if	(bestplan[S]	.cost	≠	∞)	/*	bestplan[S]	already	computed	*/

return	bestplan[S]

if	(S	contains	only	1	relation)

set	bestplan[S]	.plan	and	bestplan[S]	.cost	based	on	the	best	way	of	accessing	S	using	selection
conditions	(if	any)	on	S.

else	for	each	non-empty	subset	S	1	of	S	such	that	S	1	≠	S

P1	=	FindBestPlan(S	1)

P2	=	FindBestPlan(S	−	S	1)

for	each	algorithm	A	for	joining	the	results	of	P	1	and	P	2

//	For	indexed-nested	loops	join,	the	outer	relation	could	be	P	1	or	P	2.

//	Similarly	for	hash-join,	the	build	relation	could	be	P	1	or	P	2.

//	We	assume	the	alternatives	are	considered	as	separate	algorithms.

//	We	assume	cost	of	A	does	not	include	cost	of	reading	the	inputs.

if	algorithm	A	is	indexed	nested	loops

Let	P	and	P	denote	the	outer	and	inner	inputs	of	A	o

i

if	P	has	a	single	relation	r	,	and	r	has	an	index	on	the	join	i

i

i

attributes

plan	=	“execute	P	.plan;	join	results	of	P	and	r	using	A”,	o

o

i

with	any	selection	condition	on	P	performed	as

i

part	of	the	join	condition

cost	=	P	.cost	+	cost	of	A

o

else	/*	Cannot	use	indexed	nested	loops	join	*/

cost	=	∞

else

plan	=	“execute	P	1	.plan;	execute	P	2	.plan;	join	results	of	P	1	and	P	2	using	A”

cost	=	P	1	.cost	+	P	2	.cost	+	cost	of	A	if	cost	<	bestplan[S]	.cost

bestplan[S]	.cost	=	cost

bestplan[S]	.plan	=	plan

return	bestplan[S]

Figure	16.7	Dynamic-programming	algorithm	for	join-order	optimization.

that	is,	when	the	relations	are	accessed.	It	is	easiest	to	understand	the	procedure	assuming	that	all	joins
are	natural	joins,	although	the	procedure	works	unchanged	with	any	join	condition.	With	arbitrary	join
conditions,	the	join	of	two	subexpressions	is	understood	to	include	all	join	conditions	that	relate	attributes
from	the	two	subexpressions.

16.4

Choice	of	Evaluation	Plans

769

The	procedure	stores	the	evaluation	plans	it	computes	in	an	associative	array	bestplan,	which	is	indexed
by	sets	of	relations.	Each	element	of	the	associative	array	contains	two	components:	the	cost	of	the	best
plan	of	S,	and	the	plan	itself.	The	value	of	bestplan[S]	.cost	is	assumed	to	be	initialized	to	∞	if	bestplan[S]
has	not	yet	been	computed.

The	procedure	first	checks	if	the	best	plan	for	computing	the	join	of	the	given	set	of	relations	S	has	been
computed	already	(and	stored	in	the	associative	array	bestplan);	if	so,	it	returns	the	already	computed
plan.

If	S	contains	only	one	relation,	the	best	way	of	accessing	S	(taking	selections	on	S,	if	any,	into	account)	is
recorded	in	bestplan.	This	may	involve	using	an	index	to	identify	tuples,	and	then	fetching	the	tuples
(often	referred	to	as	an	index	scan),	or	scanning	the	entire	relation	(often	referred	to	as	a	relation	scan).2
If	there	is	any	selection	condition	on	S,	other	than	those	ensured	by	an	index	scan,	a	selection	operation	is
added	to	the	plan	to	ensure	all	selections	on	S	are	satisfied.

Otherwise,	if	S	contains	more	than	one	relation,	the	procedure	tries	every	way	of	dividing	S	into	two
disjoint	subsets.	For	each	division,	the	procedure	recursively	finds	the	best	plans	for	each	of	the	two
subsets.	It	then	considers	all	possible	algorithms	for	joining	the	results	of	the	two	subsets.	Note	that	since
indexed	nested	loops	join	can	potentially	use	either	input	P	1	or	P	2	as	the	inner	input,	we	consider	the
two	alternatives	as	two	different	algorithms.	The	choice	of	build	versus	probe	input	also	leads	us	to
consider	the	two	choices	for	hash	join	as	two	different	algorithms.

The	cost	of	each	alternative	is	considered,	and	the	least	cost	option	chosen.	The	join	cost	considered

should	not	include	the	cost	of	reading	the	inputs,	since	we	assume	that	the	input	is	pipelined	from	the
preceding	operators,	which	could	be	a	relation/index	scan,	or	a	preceding	join.	Recall	that	some
operators,	such	as	hash	join,	can	be	treated	as	having	suboperators	with	a	blocking	(materialized)	edge
between	them,	but	with	the	input	and	output	edges	of	the	join	being	pipelined.	The	join	cost	formulae	that
we	saw	in	Chapter	15	can	be	used	with	appropriate	modifications	to	ignore	the	cost	of	reading	the	input
relations.	Note	that	indexed	nested	loops	join	is	treated	differently	from	other	join	techniques:	the	plan	as
well	as	the	cost	are	different	in	this	case,	since	we	do	not	perform	a	relation/index	scan	of	the	inner	input,
and	the	index	lookup	cost	is	included	in	the	cost	of	indexed	nested	loops	join.

The	procedure	picks	the	cheapest	plan	from	among	all	the	alternatives	for	dividing	S	into	two	sets	and	the
algorithms	for	joining	the	results	of	the	two	sets.	The	cheapest	plan	and	its	cost	are	stored	in	the	array
bestplan	and	returned	by	the	procedure.	The	time	complexity	of	the	procedure	can	be	shown	to	be	O(3	n)
(see	Practice	Exercise	16.13).

The	order	in	which	tuples	are	generated	by	the	join	of	a	set	of	relations	is	important	for	finding	the	best
overall	join	order,	since	it	can	affect	the	cost	of	further	joins.	For	2If	an	index	contains	all	the	attributes	of
a	relation	that	are	used	in	a	query,	it	is	possible	to	perform	an	index-only	scan,	which	retrieves	the
required	attribute	values	from	the	index,	without	fetching	actual	tuples.

770

Chapter	16

Query	Optimization

instance,	if	merge	join	is	used,	a	potentially	expensive	sort	operation	is	required	on	the	input,	unless	the
input	is	already	sorted	on	the	join	attribute.

A	particular	sort	order	of	the	tuples	is	said	to	be	an	interesting	sort	order	if	it	could	be	useful	for	a	later
operation.	For	instance,	generating	the	result	of	r	⋈	r	⋈	r	sorted	1

2

3

on	the	attributes	common	with	r	or	r	may	be	useful,	but	generating	it	sorted	on	the	4

5

attributes	common	to	only	r	and	r	is	not	useful.	Using	merge	join	for	computing	1

2

r	⋈	r	⋈	r	may	be	costlier	than	using	some	other	join	technique,	but	it	may	provide	1

2

3

an	output	sorted	in	an	interesting	sort	order.

Hence,	it	is	not	sufficient	to	find	the	best	join	order	for	each	subset	of	the	set	of	n	given	relations.	Instead,
we	have	to	find	the	best	join	order	for	each	subset,	for	each	interesting	sort	order	of	the	join	result	for
that	subset.	The	bestplan	array	can	now	be	indexed	by	[S,	o],	where	S	is	a	set	of	relations,	and	o	is	an
interesting	sort	order.

The	FindBestPlan	function	can	then	be	modified	to	take	interesting	sort	orders	into	consideration;	we
leave	details	as	an	exercise	for	you	(see	Practice	Exercise	16.11).

The	number	of	subsets	of	n	relations	is	2	n.	The	number	of	interesting	sort	orders	is	generally	not	large.
Thus,	about	2	n	join	expressions	need	to	be	stored.	The	dynamic-programming	algorithm	for	finding	the
best	join	order	can	be	extended	to	handle	sort	orders.	Specifically,	when	considering	sort-merge	join,	the
cost	of	sorting	has	to	be	added	if	an	input	(which	may	be	a	relation,	or	the	result	of	a	join	operation)	is	not
sorted	on	the	join	attribute,	but	is	not	added	if	it	is	sorted.

The	cost	of	the	extended	algorithm	depends	on	the	number	of	interesting	orders	for	each	subset	of
relations;	since	this	number	has	been	found	to	be	small	in	practice,	the	cost	remains	at	O(3	n).	With	n	=
10,	this	number	is	around	59,000,	which	is	much	better	than	the	17	.	6	billion	different	join	orders.	More
important,	the	storage	required	is	much	less	than	before,	since	we	need	to	store	only	one	join	order	for
each	interesting	sort	order	of	each	of	1024	subsets	of	r	,	…	,	r	.	Although	both	numbers	still	increase	1

10

rapidly	with	n,	commonly	occurring	joins	usually	have	less	than	10	relations	and	can	be	handled	easily.

The	code	shown	in	Figure	16.7	actually	considers	each	possible	way	of	dividing	S

into	two	disjoint	subsets	twice,	since	each	of	the	two	subsets	can	play	the	role	of	S	1.

Considering	the	division	twice	does	not	affect	correctness,	but	wastes	time.	The	code	can	be	optimized	as
follows:	find	the	alphabetically	smallest	relation	r	in	S	1,	and	the	i

alphabetically	smallest	relation	r	in	S	−	S	1,	and	execute	the	loop	only	if	r	<	r	.	Doing	j

i

j

so	ensures	that	each	division	is	considered	only	once.

Further,	the	code	also	considers	all	possible	join	orders,	including	those	that	contain	Cartesian	products;
for	example,	if	two	relations	r	and	r	do	not	have	any	join	1

3

condition	linking	the	two	relations,	the	code	will	still	consider	S	=	{	r	,	r	},	which	will	1

3

result	in	a	Cartesian	product.	It	is	possible	to	take	join	conditions	into	account,	and	modify	the	code	to
only	generate	divisions	that	do	not	result	in	Cartesian	products.	This	optimization	can	save	a	great	deal	of
time	for	many	queries.	See	the	Further	Reading	section	at	the	end	of	the	chapter	for	references	providing
more	details	on	Cartesian-product-free	join	order	enumeration.

16.4

Choice	of	Evaluation	Plans

771

16.4.2

Cost-Based	Optimization	with	Equivalence	Rules

The	join-order	optimization	technique	we	just	saw	handles	the	most	common	class	of	queries,	which
perform	an	inner	join	of	a	set	of	relations.	However,	many	queries	use	other	features,	such	as
aggregation,	outer	join,	and	nested	queries,	which	are	not	addressed	by	join-order	selection,	but	can	be
handled	by	using	equivalence	rules.

In	this	section	we	outline	how	to	create	a	general-purpose	cost-based	optimizer	based	on	equivalence
rules.	Equivalence	rules	can	help	explore	alternatives	with	a	wide	variety	of	operations,	such	as	outer
joins,	aggregations,	and	set	operations,	as	we	have	seen	earlier.	Equivalence	rules	can	be	added	if
required	for	further	operations,	such	as	operators	that	return	the	top-K	results	in	sorted	order.

In	Section	16.2.4,	we	saw	how	an	optimizer	could	systematically	generate	all	expressions	equivalent	to
the	given	query.	The	procedure	for	generating	equivalent	expressions	can	be	modified	to	generate	all
possible	evaluation	plans	as	follows:	A	new	class	of	equivalence	rules,	called	physical	equivalence	rules,	is
added	that	allows	a	logical	operation,	such	as	a	join,	to	be	transformed	to	a	physical	operation,	such	as	a
hash	join,	or	a	nested-loops	join.	By	adding	such	rules	to	the	original	set	of	equivalence	rules,	the
procedure	can	generate	all	possible	evaluation	plans.	The	cost	estimation	techniques	we	have	seen	earlier
can	then	be	used	to	choose	the	optimal	(i.e.,	the	least-cost)	plan.

However,	the	procedure	shown	in	Section	16.2.4	is	very	expensive,	even	if	we	do	not	consider	generation
of	evaluation	plans.	To	make	the	approach	work	efficiently	requires	the	following:

1.	A	space-efficient	representation	of	expressions	that	avoids	making	multiple	copies	of	the	same
subexpressions	when	equivalence	rules	are	applied.

2.	E	fficient	techniques	for	detecting	duplicate	derivations	of	the	same	expression.

3.	A	form	of	dynamic	programming	based	on	memoization,	which	stores	the	optimal	query	evaluation	plan
for	a	subexpression	when	it	is	optimized	for	the	first	time;	subsequent	requests	to	optimize	the	same
subexpression	are	handled	by	returning	the	already	memorized	plan.

4.	Techniques	that	avoid	generating	all	possible	equivalent	plans	by	keeping	track	of	the	cheapest	plan
generated	for	any	subexpression	up	to	any	point	of	time,	and	pruning	away	any	plan	that	is	more
expensive	than	the	cheapest	plan	found	so	far	for	that	subexpression.

The	details	are	more	complex	than	we	wish	to	deal	with	here.	This	approach	was	pioneered	by	the
Volcano	research	project,	and	the	query	optimizer	of	SQL	Server	is	based	on	this	approach.	See	the
bibliographical	notes	for	references	containing	further	information.

16.4.3

Heuristics	in	Optimization

A	drawback	of	cost-based	optimization	is	the	cost	of	optimization	itself.	Although	the	cost	of	query
optimization	can	be	reduced	by	clever	algorithms,	the	number	of	different

772

Chapter	16

Query	Optimization

evaluation	plans	for	a	query	can	be	very	large,	and	finding	the	optimal	plan	from	this	set	requires	a	lot	of
computational	effort.	Hence,	optimizers	use	heuristics	to	reduce	the	cost	of	optimization.

An	example	of	a	heuristic	rule	is	the	following	rule	for	transforming	relational-algebra	queries:

•	Perform	selection	operations	as	early	as	possible.

A	heuristic	optimizer	would	use	this	rule	without	finding	out	whether	the	cost	is	reduced	by	this
transformation.	In	the	first	transformation	example	in	Section	16.2,	the	selection	operation	was	pushed
into	a	join.

We	say	that	the	preceding	rule	is	a	heuristic	because	it	usually,	but	not	always,	helps	to	reduce	the	cost.
For	an	example	of	where	it	can	result	in	an	increase	in	cost,	consider	an	expression	σθ(r	⋈	s),	where	the
condition	θ	refers	to	only	attributes	in	s.	The	selection	can	certainly	be	performed	before	the	join.
However,	if	r	is	extremely	small	compared	to	s,	and	if	there	is	an	index	on	the	join	attributes	of	s,	but	no
index	on	the	attributes	used	by	θ,	then	it	is	probably	a	bad	idea	to	perform	the	selection	early.

Performing	the	selection	early	—	that	is,	directly	on	s	—	would	require	doing	a	scan	of	all	tuples	in	s.	It	is
probably	cheaper,	in	this	case,	to	compute	the	join	by	using	the	index	and	then	to	reject	tuples	that	fail	the
selection.	(This	case	is	specifically	handled	by	the	dynamic	programming	algorithm	for	join	order
optimization.)

The	projection	operation,	like	the	selection	operation,	reduces	the	size	of	relations.

Thus,	whenever	we	need	to	generate	a	temporary	relation,	it	is	advantageous	to	apply	immediately	any
projections	that	are	possible.	This	advantage	suggests	a	companion	to	the	“perform	selections	early”
heuristic:

•	Perform	projections	early.

It	is	usually	better	to	perform	selections	earlier	than	projections,	since	selections	have	the	potential	to
reduce	the	sizes	of	relations	greatly,	and	selections	enable	the	use	of	indices	to	access	tuples.	An	example
similar	to	the	one	used	for	the	selection	heuristic	should	convince	you	that	this	heuristic	does	not	always
reduce	the	cost.

Optimizers	based	on	join-order	enumeration	typically	use	heuristic	transformations	to	handle	constructs
other	than	joins,	and	applying	the	cost-based	join-order	selection	algorithm	to	subexpressions	involving
only	joins	and	selections.	Details	of	such	heuristics	are	for	the	most	part	specific	to	individual	optimizers,
and	we	do	not	cover	them.

Most	practical	query	optimizers	have	further	heuristics	to	reduce	the	cost	of	optimization.	For	example,
many	query	optimizers,	such	as	the	System	R	optimizer,3	do	not	consider	all	join	orders,	but	rather
restrict	the	search	to	particular	kinds	of	join	or-3System	R	was	one	of	the	first	implementations	of	SQL,
and	its	optimizer	pioneered	the	idea	of	cost-based	join-order	optimization.

16.4

Choice	of	Evaluation	Plans

773

r5

r4

r4

r5

r3

r3

r1

r2

r1

r2

(a)	Left-deep	join	tree

(b)	Non-left-deep	join	tree

Figure	16.8	Left-deep	join	trees.

ders.	The	System	R	optimizer	considers	only	those	join	orders	where	the	right	operand	of	each	join	is	one
of	the	initial	relations	r	,	…	,	r	.	Such	join	orders	are	called	left-deep	1

n

join	orders.	Left-deep	join	orders	are	particularly	convenient	for	pipelined	evaluation,	since	the	right
operand	is	a	stored	relation,	and	thus	only	one	input	to	each	join	is	pipelined.

Figure	16.8	illustrates	the	difference	between	left-deep	join	trees	and	non-left-deep	join	trees.	The	time	it
takes	to	consider	all	left-deep	join	orders	is	O(n!),	which	is	much	less	than	the	time	to	consider	all	join
orders.	With	the	use	of	dynamic-programming	optimizations,	the	System	R	optimizer	can	find	the	best	join
order	in	time	O(n	2	n).

Contrast	this	cost	with	the	O(3	n)	time	required	to	find	the	best	overall	join	order.	The	System	R	optimizer
uses	heuristics	to	push	selections	and	projections	down	the	query	tree.

A	heuristic	approach	to	reduce	the	cost	of	join-order	selection,	which	was	originally	used	in	some	versions
of	Oracle,	works	roughly	this	way:	For	an	n-way	join,	it	considers	n	evaluation	plans.	Each	plan	uses	a	left-
deep	join	order,	starting	with	a	different	one	of	the	n	relations.	The	heuristic	constructs	the	join	order	for
each	of	the	n	evaluation	plans	by	repeatedly	selecting	the	“best”	relation	to	join	next,	on	the	basis	of	a
ranking	of	the	available	access	paths.	Either	nested-loop	or	sort-merge	join	is	chosen	for	each	of	the	joins,
depending	on	the	available	access	paths.	Finally,	the	heuristic	chooses	one	of	the	n	evaluation	plans	in	a
heuristic	manner,	on	the	basis	of	minimizing	the	number	of	nested-loop	joins	that	do	not	have	an	index
available	on	the	inner	relation	and	on	the	number	of	sort-merge	joins.

Query-optimization	approaches	that	apply	heuristic	plan	choices	for	some	parts	of	the	query,	with	cost-
based	choice	based	on	generation	of	alternative	access	plans	on	other	parts	of	the	query,	have	been
adopted	in	several	systems.	The	approach	used	in	System	R	and	in	its	successor,	the	Starburst	project,	is
a	hierarchical	procedure	based	on	the	nested-block	concept	of	SQL.	The	cost-based	optimization
techniques	described	here	are	used	for	each	block	of	the	query	separately.	The	optimizers	in	several

774

Chapter	16

Query	Optimization

database	products,	such	as	IBM	DB2	and	Oracle,	are	based	on	the	above	approach,	with	extensions	to
handle	other	operations	such	as	aggregation.	For	compound	SQL	queries	(using	the	∪,	∩,	or	−	operation),
the	optimizer	processes	each	component	separately	and	combines	the	evaluation	plans	to	form	the	overall
evaluation	plan.

Most	optimizers	allow	a	cost	budget	to	be	specified	for	query	optimization.	The	search	for	the	optimal
plan	is	terminated	when	the	optimization	cost	budget	is	exceeded,	and	the	best	plan	found	up	to	that	point
is	returned.	The	budget	itself	may	be	set	dynamically;	for	example,	if	a	cheap	plan	is	found	for	a	query,	the
budget	may	be	reduced,	on	the	premise	that	there	is	no	point	spending	a	lot	of	time	optimizing	the	query
if	the	best	plan	found	so	far	is	already	quite	cheap.	On	the	other	hand,	if	the	best	plan	found	so	far	is
expensive,	it	makes	sense	to	invest	more	time	in	optimization,	which	could	result	in	a	significant	reduction
in	execution	time.	To	best	exploit	this	idea,	optimizers	usually	first	apply	cheap	heuristics	to	find	a	plan
and	then	start	full	cost-based	optimization	with	a	budget	based	on	the	heuristically	chosen	plan.

Many	applications	execute	the	same	query	repeatedly,	but	with	different	values	for	the	constants.	For
example,	a	university	application	may	repeatedly	execute	a	query	to	find	the	courses	for	which	a	student
has	registered,	but	each	time	for	a	different	student	with	a	different	value	for	the	student	ID.	As	a
heuristic,	many	optimizers	optimize	a	query	once,	with	whatever	values	were	provided	for	the	constants
when	the	query	was	first	submitted,	and	cache	the	query	plan.	Whenever	the	query	is	executed	again,
perhaps	with	new	values	for	constants,	the	cached	query	plan	is	reused	(using	new	values	for	the
constants).	The	optimal	plan	for	the	new	constants	may	differ	from	the	optimal	plan	for	the	initial	values,
but	as	a	heuristic	the	cached	plan	is	reused.4	Caching	and	reuse	of	query	plans	is	referred	to	as	plan
caching.

Even	with	the	use	of	heuristics,	cost-based	query	optimization	imposes	a	substantial	overhead	on	query
processing.	However,	the	added	cost	of	cost-based	query	optimization	is	usually	more	than	offset	by	the
saving	at	query-execution	time,	which	is	dominated	by	slow	disk	accesses.	The	difference	in	execution
time	between	a	good	plan	and	a	bad	one	may	be	huge,	making	query	optimization	essential.	The	achieved
saving	is	magnified	in	those	applications	that	run	on	a	regular	basis,	where	a	query	can	be	optimized
once,	and	the	selected	query	plan	can	be	used	each	time	the	query	is	executed.

Therefore,	most	commercial	systems	include	relatively	sophisticated	optimizers.	The	bibliographical	notes
give	references	to	descriptions	of	the	query	optimizers	of	actual	database	systems.

16.4.4

Optimizing	Nested	Subqueries

SQL	conceptually	treats	nested	subqueries	in	the	where	clause	as	functions	that	take	parameters	and
return	either	a	single	value	or	a	set	of	values	(possibly	an	empty	set).

The	parameters	are	the	variables	from	an	outer-level	query	that	are	used	in	the	nested	4For	the	student
registration	query,	the	plan	would	almost	certainly	be	the	same	for	any	student	ID.	But	a	query	that	took	a
range	of	student	IDs,	and	returned	registration	information	for	all	student	IDs	in	that	range,	would
probably	have	a	different	optimal	plan	if	the	range	were	very	small	than	if	the	range	were	large.

16.4

Choice	of	Evaluation	Plans

775

subquery	(these	variables	are	called	correlation	variables).	For	instance,	suppose	we	have	the	following
query,	to	find	the	names	of	all	instructors	who	taught	a	course	in	2019:

select	name

from	instructor

where	exists	(select	*

from	teaches

where	instructor.	ID	=	teaches.	ID

and	teaches.	year	=	2019);

Conceptually,	the	subquery	can	be	viewed	as	a	function	that	takes	a	parameter	(here,	instructor.	ID)	and
returns	the	set	of	all	courses	taught	in	2019	by	instructors	(with	the	same	ID).

SQL	evaluates	the	overall	query	(conceptually)	by	computing	the	Cartesian	product	of	the	relations	in	the
outer	from	clause	and	then	testing	the	predicates	in	the	where	clause	for	each	tuple	in	the	product.	In	the
preceding	example,	the	predicate	tests	if	the	result	of	the	subquery	evaluation	is	empty.	In	practice,	the
predicates	in	the	where	clause	that	can	be	used	as	join	predicates,	or	as	selection	predicates	are
evaluated	as	part	of	the	selections	on	relations	or	to	perform	joins	that	avoid	Cartesian	products.

Predicates	involving	nested	subqueries	in	the	where	clause	are	evaluated	subsequently,	since	they	are
usually	expensive,	by	invoking	the	subquery	as	a	function.

The	technique	of	evaluating	a	nested	subquery	by	invoking	it	as	a	function	is	called	correlated	evaluation.
Correlated	evaluation	is	not	very	efficient,	since	the	subquery	is	separately	evaluated	for	each	tuple	in	the
outer	level	query.	A	large	number	of	random	disk	I/O	operations	may	result.

SQL	optimizers	therefore	attempt	to	transform	nested	subqueries	into	joins,	where	possible.	Efficient	join
algorithms	help	avoid	expensive	random	I/O.	Where	the	transformation	is	not	possible,	the	optimizer
keeps	the	subqueries	as	separate	expressions,	optimizes	them	separately,	and	then	evaluates	them	by
correlated	evaluation.

As	an	attempt	at	transforming	a	nested	subquery	into	a	join,	the	query	in	the	preceding	example	can	be
rewritten	in	relational	algebra	as	a	join:

Π

(instructor	⋈

teaches)

name

instructor.ID=	teaches.ID	∧	teaches.year=2019

Unfortunately,	the	above	query	is	not	quite	correct,	since	the	multiset	versions	of	the	relational	algebra
operators	are	used	in	SQL	implementations,	and	as	a	result	an	instructor	who	teaches	multiple	sections	in
2019	will	appear	multiple	times	in	the	result	of	the	relational	algebra	query,	although	that	instructor
would	appear	only	once	in	the	SQL	query	result.	Using	the	set	version	of	the	relational	algebra	operators
will	not	help	either,	since	if	there	are	two	instructors	with	the	same	name	who	teach	in	2019,	the	name
would	appear	only	once	with	the	set	version	of	relational	algebra,	but	would	appear	twice	in	the	SQL
query	result.	(We	note	that	the	set	version	of	relational	algebra

776

Chapter	16

Query	Optimization

would	give	the	correct	result	if	the	query	output	contained	the	primary	key	of	instructor,	namely	ID.)

To	properly	reflect	SQL	semantics,	the	number	of	duplicates	of	a	tuple	in	the	result	should	not	change
because	of	the	rewriting.	The	semijoin	operator	of	the	relational	algebra	provides	a	solution	to	this
problem.	The	multiset	version	of	the	semijoin	operator	r	⋉θ	s	is	defined	as	follows:	if	a	tuple	r	appears	n
times	in	r,	it	appears	n	times	in	the	i

result	of	r⋉θ	if	there	is	at	least	one	tuple	s	such	that	r	and	s	together	satisfy	predicate	j

i

j

θ;	otherwise	r	does	not	appear	in	the	result.	The	set	version	of	the	semijoin	operator	i

r	⋉θ	s	can	be	defined	as	Π	(r	⋈

R

θ	s),	where	R	is	the	set	of	attributes	in	the	schema

of	r.	The	multiset	version	of	the	semijoin	operator	outputs	the	same	tuples,	but	the	number	of	duplicates
of	each	tuple	r	in	the	semijoin	result	is	the	same	as	the	number	i

of	duplicates	of	r	in	r.

i

The	preceding	SQL	query	can	be	translated	into	the	following	equivalent	relational	algebra	using	the
multiset	semijoin	operator:

Π

(instructor	⋉

teaches)

name

instructor.ID=	teaches.ID	∧	teaches.year=2019

The	above	query	in	the	multiset	relational	algebra	gives	the	same	result	as	the	SQL

query,	including	the	counts	of	duplicates.	The	query	can	equivalently	be	written	as:	Π

(instructor	⋉

(σ

(teaches)))

name

instructor.ID=	teaches.ID

teaches.year=2019

The	following	SQL	query	using	the	in	clause	is	equivalent	to	the	preceding	SQL	query	using	the	exists
clause,	and	can	be	translated	to	the	same	relational	algebra	expression	using	semijoin.

select	name

from	instructor

where	instructor.	ID	in	(select	teaches.	ID

from	teaches

where	teaches.	year	=	2019);

The	anti-semijoin	is	useful	with	not	exists	queries.	The	multiset	anti-semijoin	operator	r	⋉θ	s	is	defined	as
follows:	if	a	tuple	r	appears	n	times	in	r,	it	appears	n	times	i

in	the	result	of	r	⋉θ	s	if	there	does	not	exist	any	tuple	s	in	s	such	that	r	and	s	satisfy	j

i

j

predicate	θ;	otherwise	r	does	not	appear	in	the	result.	The	anti-semijoin	operator	is	i

also	known	as	the	anti-join	operator.

Consider	the	SQL	query:

select	name

from	instructor

where	not	exists	(select	*

from	teaches

where	instructor.	ID	=	teaches.	ID

and	teaches.	year	=	2019);

16.4

Choice	of	Evaluation	Plans

777

The	preceding	query	can	be	translated	into	the	following	relational	algebra	using	the	anti-semijoin
operator:

Π

(instructor	⋉

(σ

(teaches)))

name

instructor.ID=	teaches.ID

teaches.year=2019

In	general,	a	query	of	the	form:

select	A

from	r	,	r	,	.	.	.	,	r

1

2

n

where	P	and	exists	(select	*

1

from	s	,	s	,	.	.	.	,	s

1

2

m

where	P	1	and	P	2);

2

2

where	P	1	are	predicates	that	only	reference	the	relations	s	in	the	subquery,	and	P	2

2

i

2

predicates	that	also	reference	the	relations	r	from	the	outer	query,	can	be	translated	i

to:

Π	((σ	(r	×	r	×	…	×	r))	⋉	σ	(s	×	s	×	…	×	s))	A

P

1

2

n

P	2

P	1

1

2

m

1

2

2

If	not	exists	were	used	instead	of	exists,	the	semijoin	should	be	replaced	by	anti-semijoin	in	the	relational
algebra	query.	If	an	in	clause	is	used	instead	of	exists,	the	relational	algebra	query	can	be	appropriately
modified	by	adding	a	corresponding	predicate	in	the	semijoin	predicate,	as	our	earlier	example	illustrated.

The	process	of	replacing	a	nested	query	by	a	query	with	a	join,	semijoin,	or	anti-semijoin	is	called
decorrelation.	The	semijoin	and	anti-semijoin	operators	can	be	efficiently	implemented	using
modifications	of	the	join	algorithms,	as	explored	in	Practice	Exercise	15.10.

Consider	the	following	query	with	aggregation	in	a	scalar	subquery,	that	finds	instructors	who	have
taught	more	than	one	course	section	in	2019.

select	name

from	instructor

where	1	<	(select	count(*)

from	teaches

where	instructor.	ID	=	teaches.	ID

and	teaches.	year	=	2019);

The	above	query	can	be	rewritten	using	a	semijoin	as	follows:

Π

(instructor	⋉

(

γ

(σ

(teaches)))

name

(instructor.ID=	TID)∧(1)	ID	as	TID	count(∗)	as	cnt	year=2019

Observe	that	the	subquery	has	a	predicate	instructor.	ID=	teaches.	ID,	and	aggregation	without	a	group
by	clause.	The	decorrelated	query	has	the	predicate	moved	into	the	semijoin	condition,	and	the
aggregation	is	now	grouped	by	ID.	The	predicate	1	<	(subquery)	has	turned	into	a	semijoin	predicate.
Intuitively,	the	subquery	performs	a	sep-

778

Chapter	16

Query	Optimization

arate	count	for	each	instructor.	ID;	grouping	by	ID	ensures	that	counts	are	computed	separately	for	each
ID.

Decorrelation	is	clearly	more	complicated	when	the	nested	subquery	uses	aggregation,	or	when	the
nested	subquery	is	used	as	a	scalar	subquery.	In	fact,	decorrelation	is	not	possible	for	certain	cases	of
subqueries.	For	example,	a	subquery	that	is	used	as	a	scalar	subquery	is	expected	to	return	only	one
result;	if	it	returns	more	than	one	result,	a	runtime	exception	can	occur,	which	is	not	possible	with	a
decorrelated	query.

Further,	whether	to	decorrelate	or	not	should	ideally	be	done	in	a	cost-based	manner,	depending	on
whether	decorrelation	reduces	the	cost	or	not.	Some	query	optimizers	represent	nested	subqueries	using
extended	relational-algebra	constructs,	and	express	transformations	of	nested	subqueries	to	semijoin,
anti-semijoin,	and	so	forth,	as	equivalence	rules.	We	do	not	attempt	to	give	algorithms	for	the	general
case,	and	instead	refer	you	to	relevant	items	in	the	online	bibliographical	notes.

Optimization	of	complex	nested	subqueries	is	a	complicated	task,	as	you	can	infer	from	the	preceding
discussion,	and	many	optimizers	do	only	a	limited	amount	of	decorrelation.	It	better	to	avoid	using
complex	nested	subqueries,	where	possible,	since	we	cannot	be	sure	that	the	query	optimizer	will	succeed
in	converting	them	to	a	form	that	can	be	evaluated	efficiently.

16.5

Materialized	Views

When	a	view	is	defined,	normally	the	database	stores	only	the	query	defining	the	view.

In	contrast,	a	materialized	view	is	a	view	whose	contents	are	computed	and	stored.

Materialized	views	constitute	redundant	data,	in	that	their	contents	can	be	inferred	from	the	view

definition	and	the	rest	of	the	database	contents.	However,	it	is	much	cheaper	in	many	cases	to	read	the
contents	of	a	materialized	view	than	to	compute	the	contents	of	the	view	by	executing	the	query	defining
the	view.

Materialized	views	are	important	for	improving	performance	in	some	applications.

Consider	this	view,	which	gives	the	total	salary	in	each	department:

create	view	department	total	salary(dept	name,	total	salary)	as	select	dept	name,	sum	(salary)

from	instructor

group	by	dept	name;

Suppose	the	total	salary	amount	at	a	department	is	required	frequently.	Computing	the	view	requires
reading	every	instructor	tuple	pertaining	to	a	department	and	summing	up	the	salary	amounts,	which	can
be	time-consuming.	In	contrast,	if	the	view	definition	of	the	total	salary	amount	were	materialized,	the
total	salary	amount	could	be	found	by	looking	up	a	single	tuple	in	the	materialized	view.5

5The	difference	may	not	be	all	that	large	for	a	medium-sized	university,	but	in	other	settings	the
difference	can	be	very	large.	For	example,	if	the	materialized	view	computed	total	sales	of	each	product,
from	a	sales	relation	with	tens

16.5

Materialized	Views

779

16.5.1

View	Maintenance

A	problem	with	materialized	views	is	that	they	must	be	kept	up-to-date	when	the	data	used	in	the	view
definition	changes.	For	instance,	if	the	salary	value	of	an	instructor	is	updated,	the	materialized	view	will
become	inconsistent	with	the	underlying	data,	and	it	must	be	updated.	The	task	of	keeping	a	materialized
view	up-to-date	with	the	underlying	data	is	known	as	view	maintenance.

Views	can	be	maintained	by	manually	written	code:	That	is,	every	piece	of	code	that	updates	the	salary
value	can	be	modified	to	also	update	the	total	salary	amount	for	the	corresponding	department.	However,
this	approach	is	error	prone,	since	it	is	easy	to	miss	some	places	where	the	salary	is	updated,	and	the
materialized	view	will	then	no	longer	match	the	underlying	data.

Another	option	for	maintaining	materialized	views	is	to	define	triggers	on	insert,	delete,	and	update	of
each	relation	in	the	view	definition.	The	triggers	must	modify	the	contents	of	the	materialized	view,	to
take	into	account	the	change	that	caused	the	trigger	to	fire.	A	simplistic	way	of	doing	so	is	to	completely
recompute	the	materialized	view	on	every	update.

A	better	option	is	to	modify	only	the	affected	parts	of	the	materialized	view,	which	is	known	as
incremental	view	maintenance.	We	describe	how	to	perform	incremental	view	maintenance	in	Section
16.5.2.

Modern	database	systems	provide	more	direct	support	for	incremental	view	maintenance.	Database-
system	programmers	no	longer	need	to	define	triggers	for	view	maintenance.	Instead,	once	a	view	is
declared	to	be	materialized,	the	database	system	computes	the	contents	of	the	view	and	incrementally
updates	the	contents	when	the	underlying	data	change.

Most	database	systems	perform	immediate	view	maintenance;	that	is,	incremental	view	maintenance	is
performed	as	soon	as	an	update	occurs,	as	part	of	the	updating	transaction.	Some	database	systems	also
support	deferred	view	maintenance,	where	view	maintenance	is	deferred	to	a	later	time;	for	example,
updates	may	be	collected	throughout	a	day,	and	materialized	views	may	be	updated	at	night.	This
approach	reduces	the	overhead	on	update	transactions.	However,	materialized	views	with	deferred	view
maintenance	may	not	be	consistent	with	the	underlying	relations	on	which	they	are	defined.

16.5.2

Incremental	View	Maintenance

To	understand	how	to	maintain	materialized	views	incrementally,	we	start	off	by	considering	individual
operations,	and	then	we	see	how	to	handle	a	complete	expression.

The	changes	to	a	relation	that	can	cause	a	materialized	view	to	become	out-of-date	are	inserts,	deletes,
and	updates.	To	simplify	our	description,	we	replace	updates	to	a	tuple	by	deletion	of	the	tuple	followed
by	insertion	of	the	updated	tuple.	Thus,	we	need	of	millions	of	tuples,	the	difference	between	computing
the	aggregate	from	the	underlying	data	and	looking	up	the	materialized	view	can	be	many	orders	of
magnitude.

780

Chapter	16

Query	Optimization

to	consider	only	inserts	and	deletes.	The	changes	(inserts	and	deletes)	to	a	relation	or	expression	are
referred	to	as	its	differential.

16.5.2.1

Join	Operation

Consider	the	materialized	view	v	=	r	⋈	s.	Suppose	we	modify	r	by	inserting	a	set	of	tuples	denoted	by	i	.	If
the	old	value	of	r	is	denoted	by	r	old,	and	the	new	value	of	r	by	r

r	new,	r	new	=	r	old	∪	i	.	Now,	the	old	value	of	the	view,	v	old,	is	given	by	r	old	⋈	s,	and	the	r

new	value	v	new	is	given	by	r	new	⋈	s.	We	can	rewrite	r	new	⋈	s	as	(r	old	∪	i)	⋈	s,	which	r

we	can	again	rewrite	as	(r	old	⋈	s)	∪	(i	⋈	s).	In	other	words:	r

v	new	=	v	old	∪	(i	⋈	s)

r

Thus,	to	update	the	materialized	view	v,	we	simply	need	to	add	the	tuples	i	⋈	s	to	the	r

old	contents	of	the	materialized	view.	Inserts	to	s	are	handled	in	an	exactly	symmetric	fashion.

Now	suppose	r	is	modified	by	deleting	a	set	of	tuples	denoted	by	d	.	Using	the	same	r

reasoning	as	above,	we	get:

v	new	=	v	old	−	(d	⋈	s)

r

Deletes	on	s	are	handled	in	an	exactly	symmetric	fashion.

16.5.2.2

Selection	and	Projection	Operations

Consider	a	view	v	=	σθ(r).	If	we	modify	r	by	inserting	a	set	of	tuples	i	,	the	new	value	r

of	v	can	be	computed	as:

v	new	=	v	old	∪	σθ(i)

r

Similarly,	if	r	is	modified	by	deleting	a	set	of	tuples	d	,	the	new	value	of	v	can	be	com-r

puted	as:

v	new	=	v	old	−	σθ(d)

r

Projection	is	a	more	difficult	operation	with	which	to	deal.	Consider	a	materialized	view	v	=	Π	(r).
Suppose	the	relation	r	is	on	the	schema	R	=	(A,	B),	and	r	contains	two	A

tuples	(a,	2)	and	(a,	3).	Then,	Π	(r)	has	a	single	tuple	(a).	If	we	delete	the	tuple	(a,	2)	A

from	r,	we	cannot	delete	the	tuple	(a)	from	Π	(r):	If	we	did	so,	the	result	would	be	an	A

empty	relation,	whereas	in	reality	Π	(r)	still	has	a	single	tuple	(a).	The	reason	is	that	A

the	same	tuple	(a)	is	derived	in	two	ways,	and	deleting	one	tuple	from	r	removes	only	one	of	the	ways	of
deriving	(a);	the	other	is	still	present.

This	reason	also	gives	us	the	intuition	for	a	solution:	For	each	tuple	in	a	projection	such	as	Π	(r),	we	will
keep	a	count	of	how	many	times	it	was	derived.

A

16.5

Materialized	Views

781

When	a	set	of	tuples	d	is	deleted	from	r,	for	each	tuple	t	in	d	we	do	the	following:	r

r

Let	t.A	denote	the	projection	of	t	on	the	attribute	A.	We	find	(t.A)	in	the	materialized	view	and	decrease
the	count	stored	with	it	by	1.	If	the	count	becomes	0,	(t.A)	is	deleted	from	the	materialized	view.

Handling	insertions	is	relatively	straightforward.	When	a	set	of	tuples	i	is	inserted	r

into	r,	for	each	tuple	t	in	i	we	do	the	following:	If	(t.A)	is	already	present	in	the	ma-r

terialized	view,	we	increase	the	count	stored	with	it	by	1.	If	not,	we	add	(t.A)	to	the	materialized	view,
with	the	count	set	to	1.

16.5.2.3

Aggregation	Operations

Aggregation	operations	proceed	somewhat	like	projections.	The	aggregate	operations	in	SQL	are	count,
sum,	avg,	min,	and	max:

•	count:	Consider	a	materialized	view	v	=	γ

(r),	which	computes	the	count

G	count(B)

of	the	attribute	B,	after	grouping	r	by	attribute	G.

When	a	set	of	tuples	i	is	inserted	into	r,	for	each	tuple	t	in	i	we	do	the	following:	r

r

We	look	for	the	group	t.G	in	the	materialized	view.	If	it	is	not	present,	we	add	(t.G,	1)	to	the	materialized
view.	If	the	group	t.G	is	present,	we	add	1	to	the	count	of	the	group.

When	a	set	of	tuples	d	is	deleted	from	r,	for	each	tuple	t	in	d	we	do	the	r

r

following:	We	look	for	the	group	t.G	in	the	materialized	view	and	subtract	1	from	the	count	for	the	group.
If	the	count	becomes	0,	we	delete	the	tuple	for	the	group	t.G	from	the	materialized	view.

•	sum:	Consider	a	materialized	view	v	=	γ

(r).

G	sum(B)

When	a	set	of	tuples	i	is	inserted	into	r,	for	each	tuple	t	in	i	we	do	the	following:	r

r

We	look	for	the	group	t.G	in	the	materialized	view.	If	it	is	not	present,	we	add	(t.G,	t.B)	to	the	materialized
view;	in	addition,	we	store	a	count	of	1	associated	with	(t.G,	t.B),	just	as	we	did	for	projection.	If	the
group	t.G	is	present,	we	add	the	value	of	t.B	to	the	aggregate	value	for	the	group	and	add	1	to	the	count
of	the	group.

When	a	set	of	tuples	d	is	deleted	from	r,	for	each	tuple	t	in	d	we	do	the	r

r

following:	We	look	for	the	group	t.G	in	the	materialized	view	and	subtract	t.B

from	the	aggregate	value	for	the	group.	We	also	subtract	1	from	the	count	for	the	group,	and	if	the	count
becomes	0,	we	delete	the	tuple	for	the	group	t.G	from	the	materialized	view.

Without	keeping	the	extra	count	value,	we	would	not	be	able	to	distinguish	a	case	where	the	sum	for	a
group	is	0	from	the	case	where	the	last	tuple	in	a	group	is	deleted.

•	avg:	Consider	a	materialized	view	v	=	γ

(r).

G	avg(B)

Directly	updating	the	average	on	an	insert	or	delete	is	not	possible,	since	it	depends	not	only	on	the	old
average	and	the	tuple	being	inserted/deleted,	but	also	on	the	number	of	tuples	in	the	group.

782

Chapter	16

Query	Optimization

Instead,	to	handle	the	case	of	avg,	we	maintain	the	sum	and	count	aggregate	values	as	described	earlier
and	compute	the	average	as	the	sum	divided	by	the	count.

•	min,	max:	Consider	a	materialized	view	v	=	γ

(r).	(The	case	of	max	is	exactly

G	min(B)

equivalent.)

Handling	insertions	on	r	is	straightforward,	similar	to	the	case	of	sum.	Maintaining	the	aggregate	values
min	and	max	on	deletions	may	be	more	expensive.	For	example,	if	the	tuple	t	corresponding	to	the
minimum	value	for	a	group	is	deleted	from	r,	we	have	to	look	at	the	other	tuples	of	r	that	are	in	the	same
group	to	find	the	new	minimum	value.	It	is	a	good	idea	to	create	an	ordered	index	on	(G,	B)	since	it	would
help	us	to	find	the	new	minimum	value	for	a	group	very	efficiently.

16.5.2.4

Other	Operations

The	set	operation	intersection	is	maintained	as	follows:	Given	materialized	view	v	=

r	∩	s,	when	a	tuple	is	inserted	in	r	we	check	if	it	is	present	in	s,	and	if	so	we	add	it	to	v.	If	a	tuple	is
deleted	from	r,	we	delete	it	from	the	intersection	if	it	is	present.	The	other	set	operations,	union	and	set
difference,	are	handled	in	a	similar	fashion;	we	leave	details	to	you.

Outer	joins	are	handled	in	much	the	same	way	as	joins,	but	with	some	extra	work.

In	the	case	of	deletion	from	r	we	have	to	handle	tuples	in	s	that	no	longer	match	any	tuple	in	r.	In	the	case
of	insertion	to	r,	we	have	to	handle	tuples	in	s	that	did	not	match	any	tuple	in	r.	Again	we	leave	details	to
you.

16.5.2.5

Handling	Expressions

So	far	we	have	seen	how	to	update	incrementally	the	result	of	a	single	operation.	To	handle	an	entire
expression,	we	can	derive	expressions	for	computing	the	incremental	change	to	the	result	of	each
subexpression,	starting	from	the	smallest	subexpressions.

For	example,	suppose	we	wish	to	incrementally	update	a	materialized	view	E	⋈	E

1

2

when	a	set	of	tuples	i	is	inserted	into	relation	r.	Let	us	assume	r	is	used	in	E	alone.

r

1

Suppose	the	set	of	tuples	to	be	inserted	into	E	is	given	by	expression	D	.	Then	the	1

1

expression	D	⋈	E	gives	the	set	of	tuples	to	be	inserted	into	E	⋈	E	.

1

2

1

2

See	the	online	bibliographical	notes	for	further	details	on	incremental	view	maintenance	with	expressions.

16.5.3

Query	Optimization	and	Materialized	Views

Query	optimization	can	be	performed	by	treating	materialized	views	just	like	regular	relations.	However,
materialized	views	offer	further	opportunities	for	optimization:

•	Rewriting	queries	to	use	materialized	views:

Suppose	a	materialized	view	v	=	r	⋈	s	is	available,	and	a	user	submits	a	query	r	⋈	s	⋈	t.	Rewriting	the
query	as	v	⋈	t	may	provide	a	more	efficient	query	plan

16.6

Advanced	Topics	in	Query	Optimization

783

than	optimizing	the	query	as	submitted.	Thus,	it	is	the	job	of	the	query	optimizer	to	recognize	when	a
materialized	view	can	be	used	to	speed	up	a	query.

•	Replacing	a	use	of	a	materialized	view	with	the	view	definition:

Suppose	a	materialized	view	v	=	r	⋈	s	is	available,	but	without	any	index	on	it,	and	a	user	submits	a	query
σ

(v).	Suppose	also	that	s	has	an	index	on	the

A=10

common	attribute	B,	and	r	has	an	index	on	attribute	A.	The	best	plan	for	this	query	may	be	to	replace	v
with	r	⋈	s,	which	can	lead	to	the	query	plan	σ

(r)	⋈	s;	the

A=10

selection	and	join	can	be	performed	efficiently	by	using	the	indices	on	r.A	and	s.B,	respectively.	In
contrast,	evaluating	the	selection	directly	on	v	may	require	a	full	scan	of	v,	which	may	be	more	expensive.

The	online	bibliographical	notes	give	pointers	to	research	showing	how	to	perform	query	optimization
efficiently	with	materialized	views.

16.5.4

Materialized	View	and	Index	Selection

Another	related	optimization	problem	is	that	of	materialized	view	selection,	namely,

“What	is	the	best	set	of	views	to	materialize?”	This	decision	must	be	made	on	the	basis	of	the	system
workload,	which	is	a	sequence	of	queries	and	updates	that	reflects	the	typical	load	on	the	system.	One
simple	criterion	would	be	to	select	a	set	of	materialized	views	that	minimizes	the	overall	execution	time	of
the	workload	of	queries	and	updates,	including	the	time	taken	to	maintain	the	materialized	views.

Database	administrators	usually	modify	this	criterion	to	take	into	account	the	importance	of	different
queries	and	updates:	Fast	response	may	be	required	for	some	queries	and	updates,	but	a	slow	response
may	be	acceptable	for	others.

Indices	are	just	like	materialized	views,	in	that	they	too	are	derived	data,	can	speed	up	queries,	and	may
slow	down	updates.	Thus,	the	problem	of	index	selection	is	closely	related	to	that	of	materialized	view
selection,	although	it	is	simpler.	We	examine	index	and	materialized	view	selection	in	more	detail	in
Section	25.1.4.1	and	Section	25.1.4.2.

Most	database	systems	provide	tools	to	help	the	database	administrator	with	index	and	materialized	view
selection.	These	tools	examine	the	history	of	queries	and	updates	and	suggest	indices	and	views	to	be
materialized.	The	Microsoft	SQL	Server	Database	Tuning	Assistant,	the	IBM	DB2	Design	Advisor,	and	the
Oracle	SQL	Tuning	Wizard	are	examples	of	such	tools.

16.6

Advanced	Topics	in	Query	Optimization

There	are	a	number	of	opportunities	for	optimizing	queries,	beyond	those	we	have	seen	so	far.	We
examine	a	few	of	these	in	this	section.

784

Chapter	16

Query	Optimization

16.6.1

Top-	K	Optimization

Many	queries	fetch	results	sorted	on	some	attributes,	and	require	only	the	top	K	results	for	some	K.
Sometimes	the	bound	K	is	specified	explicitly.	For	example,	some	databases	support	a	limit	K	clause	which
results	in	only	the	top	K	results	being	returned	by	the	query.	Other	databases	support	alternative	ways	of
specifying	similar	limits.	In	other	cases,	the	query	may	not	specify	such	a	limit,	but	the	optimizer	may
allow	a	hint	to	be	specified,	indicating	that	only	the	top	K	results	of	the	query	are	likely	to	be	retrieved,
even	if	the	query	generates	more	results.

When	K	is	small,	a	query	optimization	plan	that	generates	the	entire	set	of	results,	then	sorts	and
generates	the	top	K,	is	very	inefficient	since	it	discards	most	of	the	intermediate	results	that	it	computes.
Several	techniques	have	been	proposed	to	optimize	such	top-K	queries.	One	approach	is	to	use	pipelined
plans	that	can	generate	the	results	in	sorted	order.	Another	approach	is	to	estimate	what	is	the	highest
value	on	the	sorted	attributes	that	will	appear	in	the	top-	K	output,	and	introduce	selection	predicates	that
eliminate	larger	values.	If	extra	tuples	beyond	the	top-	K	are	generated	they	are	discarded,	and	if	too	few
tuples	are	generated	then	the	selection	condition	is	changed	and	the	query	is	re-executed.	See	the
bibliographical	notes	for	references	to	work	on	top-	K	optimization.

16.6.2

Join	Minimization

When	queries	are	generated	through	views,	sometimes	more	relations	are	joined	than	are	needed	for
computation	of	the	query.	For	example,	a	view	v	may	include	the	join	of	instructor	and	department,	but	a
use	of	the	view	v	may	use	only	attributes	from	instructor.	The	join	attribute	dept	name	of	instructor	is	a
foreign	key	referencing	department.

Assuming	that	instructor.	dept	name	has	been	declared	not	null,	the	join	with	department	can	be	dropped,
with	no	impact	on	the	query.	For	under	the	above	assumption,	the	join	with	department	does	not	eliminate
any	tuples	from	instructor,	nor	does	it	result	in	extra	copies	of	any	instructor	tuple.

Dropping	a	relation	from	a	join	as	above	is	an	example	of	join	minimization.	In	fact,	join	minimization	can
be	performed	in	other	situations	as	well.	See	the	bibliographical	notes	for	references	on	join	minimization.

16.6.3

Optimization	of	Updates

Update	queries	often	involve	subqueries	in	the	set	and	where	clauses,	which	must	also	be	taken	into
account	in	optimizing	the	update.	Updates	that	involve	a	selection	on	the	updated	column	(e.g.,	give	a	10
percent	salary	raise	to	all	employees	whose	salary	is	≥

$100,000)	must	be	handled	carefully.	If	the	update	is	done	while	the	selection	is	being	evaluated	by	an
index	scan,	an	updated	tuple	may	be	reinserted	in	the	index	ahead	of	the	scan	and	seen	again	by	the	scan;
the	same	employee	tuple	may	then	get	incorrectly	updated	multiple	times	(an	infinite	number	of	times,	in
this	case).	A	similar	problem	also	arises	with	updates	involving	subqueries	whose	result	is	affected	by	the
update.

16.6

Advanced	Topics	in	Query	Optimization

785

The	problem	of	an	update	affecting	the	execution	of	a	query	associated	with	the	update	is	known	as	the
Halloween	problem	(named	so	because	it	was	first	recognized	on	a	Halloween	day,	at	IBM).	The	problem
can	be	avoided	by	executing	the	queries	defining	the	update	first,	creating	a	list	of	affected	tuples,	and
updating	the	tuples	and	indices	as	the	last	step.	However,	breaking	up	the	execution	plan	in	such	a
fashion	increases	the	execution	cost.	Update	plans	can	be	optimized	by	checking	if	the	Halloween
problem	can	occur,	and	if	it	cannot	occur,	updates	can	be	performed	while	the	query	is	being	processed,
reducing	the	update	overheads.	For	example,	the	Halloween	problem	cannot	occur	if	the	update	does	not
affect	index	attributes.	Even	if	it	does,	if	the	updates	decrease	the	value	while	the	index	is	scanned	in
increasing	order,	updated	tuples	will	not	be	encountered	again	during	the	scan.	In	such	cases,	the	index
can	be	updated	even	while	the	query	is	being	executed,	reducing	the	overall	cost.

Update	queries	that	result	in	a	large	number	of	updates	can	also	be	optimized	by	collecting	the	updates	as
a	batch	and	then	applying	the	batch	of	updates	separately	to	each	affected	index.	When	applying	the
batch	of	updates	to	an	index,	the	batch	is	first	sorted	in	the	index	order	for	that	index;	such	sorting	can
greatly	reduce	the	amount	of	random	I/O	required	for	updating	indices.

Such	optimizations	of	updates	are	implemented	in	most	database	systems.	See	the	bibliographical	notes
for	references	to	such	optimization.

16.6.4

Multiquery	Optimization	and	Shared	Scans

When	a	batch	of	queries	are	submitted	together,	a	query	optimizer	can	potentially	exploit	common
subexpressions	between	the	different	queries,	evaluating	them	once	and	reusing	them	where	required.
Complex	queries	may	in	fact	have	subexpressions	repeated	in	different	parts	of	the	query,	which	can	be
similarly	exploited	to	reduce	query	evaluation	cost.	Such	optimization	is	known	as	multiquery
optimization.

Common	subexpression	elimination	optimizes	subexpressions	shared	by	different	expressions	in	a
program	by	computing	and	storing	the	result	and	reusing	it	wherever	the	subexpression	occurs.	Common
subexpression	elimination	is	a	standard	optimization	applied	on	arithmetic	expressions	by	programming-
language	compilers.	Exploiting	common	subexpressions	among	evaluation	plans	chosen	for	each	of	a
batch	of	queries	is	just	as	useful	in	database	query	evaluation,	and	is	implemented	by	some	databases.

However,	multiquery	optimization	can	do	even	better	in	some	cases:	A	query	typically	has	more	than	one
evaluation	plan,	and	a	judiciously	chosen	set	of	query	evaluation	plans	for	the	queries	may	provide	for	a
greater	sharing	and	lesser	cost	than	that	afforded	by	choosing	the	lowest	cost	evaluation	plan	for	each
query.	More	details	on	multiquery	optimization	may	be	found	in	references	cited	in	the	bibliographical
notes.

Sharing	of	relation	scans	between	queries	is	another	limited	form	of	multiquery	optimization	that	is
implemented	in	some	databases.	The	shared-scan	optimization	works	as	follows:	Instead	of	reading	the
relation	repeatedly	from	disk,	once	for	each	query	that	needs	to	scan	a	relation,	data	are	read	once	from
disk,	and	pipelined	to	each	of

786

Chapter	16

Query	Optimization

the	queries.	The	shared-scan	optimization	is	particularly	useful	when	multiple	queries	perform	a	scan	on	a
single	large	relation	(typically	a	“fact	table”).

16.6.5

Parametric	Query	Optimization

Plan	caching,	which	we	saw	in	Section	16.4.3,	is	used	as	a	heuristic	in	many	databases.

Recall	that	with	plan	caching,	if	a	query	is	invoked	with	some	constants,	the	plan	chosen	by	the	optimizer
is	cached	and	reused	if	the	query	is	submitted	again,	even	if	the	constants	in	the	query	are	different.	For
example,	suppose	a	query	takes	a	department	name	as	a	parameter	and	retrieves	all	courses	of	the
department.	With	plan	caching,	a	plan	chosen	when	the	query	is	executed	for	the	first	time,	say	for	the
Music	department,	is	reused	if	the	query	is	executed	for	any	other	department.

Such	reuse	of	plans	by	plan	caching	is	reasonable	if	the	optimal	query	plan	is	not	significantly	affected	by
the	exact	value	of	the	constants	in	the	query.	However,	if	the	plan	is	affected	by	the	value	of	the	constants,
parametric	query	optimization	is	an	alternative.

In	parametric	query	optimization,	a	query	is	optimized	without	being	provided	specific	values	for	its
parameters	—	for	example,	dept	name	in	the	preceding	example.	The	optimizer	then	outputs	several
plans,	each	optimal	for	a	different	parameter	value.	A	plan	would	be	output	by	the	optimizer	only	if	it	is
optimal	for	some	possible	value	of	the	parameters.	The	set	of	alternative	plans	output	by	the	optimizer	are
stored.	When	a	query	is	submitted	with	specific	values	for	its	parameters,	instead	of	performing	a	full
optimization,	the	cheapest	plan	from	the	set	of	alternative	plans	computed	earlier	is	used.	Finding	the
cheapest	such	plan	usually	takes	much	less	time	than	reoptimization.

See	the	bibliographical	notes	for	references	on	parametric	query	optimization.

16.6.6

Adaptive	Query	Processing

As	we	noted	earlier,	query	optimization	is	based	on	estimates	that	are	at	best	approximations.	Thus,	it	is
possible	at	times	for	the	optimizer	to	choose	a	plan	that	turns	out	to	perform	very	badly.	Adaptive
operators	that	choose	the	specific	operator	at	execution	time	provide	a	partial	solution	to	this	problem.
For	example,	SQL	Server	supports	an	adaptive	join	algorithm	that	checks	the	size	of	its	outer	input,	and
chooses	either	nested	loops	join,	or	hash	join	depending	on	the	size	of	the	outer	input.

Many	systems	also	include	the	ability	to	monitor	the	behavior	of	a	plan	during	query	execution,	and	adapt
the	plan	accordingly.	For	example,	suppose	the	statistics	collected	by	the	system	during	early	stages	of
the	plan’s	execution	(or	the	execution	of	subparts	of	the	plan)	are	found	to	differ	substantially	from	the
optimizers	estimates	to	such	an	extent	that	it	is	clear	that	the	chosen	plan	is	suboptimal.	Then	an	adaptive
system	may	abort	the	execution,	choose	a	new	query	execution	plan	using	the	statistics	collected	during
the	initial	execution,	and	restart	execution	using	the	new	plan;	the	statistics	collected	during	the
execution	of	the	old	plan	ensure	the	old	plan	is	not	selected	again.	Further,	the	system	must	avoid
repeated	aborts	and	restarts;	ideally,	the	system	should	ensure	that	the	overall	cost	of	query	evaluation	is
close	to	that	with	the

16.7

Summary

787

plan	that	would	be	chosen	if	the	optimizer	had	exact	statistics.	The	specific	criteria	and	mechanisms	for
such	adaptive	query	processing	are	complex,	and	are	referenced	in	the	bibliographic	notes	available
online.

16.7

Summary

•	Given	a	query,	there	are	generally	a	variety	of	methods	for	computing	the	answer.

It	is	the	responsibility	of	the	system	to	transform	the	query	as	entered	by	the	user	into	an	equivalent
query	that	can	be	computed	more	efficiently.	The	process	of	finding	a	good	strategy	for	processing	a
query	is	called	query	optimization.

•	The	evaluation	of	complex	queries	involves	many	accesses	to	disk.	Since	the	transfer	of	data	from	disk	is
slow	relative	to	the	speed	of	main	memory	and	the	CPU

of	the	computer	system,	it	is	worthwhile	to	allocate	a	considerable	amount	of	processing	to	choose	a
method	that	minimizes	disk	accesses.

•	There	are	a	number	of	equivalence	rules	that	we	can	use	to	transform	an	expression	into	an	equivalent
one.	We	use	these	rules	to	generate	systematically	all	expressions	equivalent	to	the	given	query.

•	Each	relational-algebra	expression	represents	a	particular	sequence	of	operations.

The	first	step	in	selecting	a	query-processing	strategy	is	to	find	a	relational-algebra	expression	that	is
equivalent	to	the	given	expression	and	is	estimated	to	cost	less	to	execute.

•	The	strategy	that	the	database	system	chooses	for	evaluating	an	operation	depends	on	the	size	of	each
relation	and	on	the	distribution	of	values	within	columns.	So	that	they	can	base	the	strategy	choice	on
reliable	information,	database	systems	may	store	statistics	for	each	relation	r.	These	statistics	include:

°	The	number	of	tuples	in	the	relation	r.

°	The	size	of	a	record	(tuple)	of	relation	r	in	bytes.

°	The	number	of	distinct	values	that	appear	in	the	relation	r	for	a	particular	attribute.

•	Most	database	systems	use	histograms	to	store	the	number	of	values	for	an	attribute	within	each	of
several	ranges	of	values.	Histograms	are	often	computed	using	sampling.

•	These	statistics	allow	us	to	estimate	the	sizes	of	the	results	of	various	operations,	as	well	as	the	cost	of
executing	the	operations.	Statistical	information	about	relations	is	particularly	useful	when	several	indices
are	available	to	assist	in	the	processing	of	a	query.	The	presence	of	these	structures	has	a	significant
influence	on	the	choice	of	a	query-processing	strategy.

788

Chapter	16

Query	Optimization

•	Alternative	evaluation	plans	for	each	expression	can	be	generated	by	equivalence	rules,	and	the
cheapest	plan	across	all	expressions	can	be	chosen.	Several	optimization	techniques	are	available	to
reduce	the	number	of	alternative	expressions	and	plans	that	need	to	be	generated.

•	We	use	heuristics	to	reduce	the	number	of	plans	considered,	and	thereby	to	reduce	the	cost	of
optimization.	Heuristic	rules	for	transforming	relational-algebra	queries	include	“Perform	selection
operations	as	early	as	possible,”	“Perform	projections	early,”	and	“Avoid	Cartesian	products.”

•	Materialized	views	can	be	used	to	speed	up	query	processing.	Incremental	view	maintenance	is	needed
to	efficiently	update	materialized	views	when	the	underlying	relations	are	modified.	The	differential	of	an
operation	can	be	computed	by	means	of	algebraic	expressions	involving	differentials	of	the	inputs	of	the
operation.	Other	issues	related	to	materialized	views	include	how	to	optimize	queries	by	making	use	of
available	materialized	views,	and	how	to	select	views	to	be	materialized.

•	A	number	of	advanced	optimization	techniques	have	been	proposed,	such	as	top-K	optimization,	join
minimization,	optimization	of	updates,	multiquery	optimization,	and	parametric	query	optimization.

Review	Terms

•	Query	optimization

•	Histograms

•	Transformation	of	expressions

•	Distinct	value	estimation

•	Equivalence	of	expressions

•	Random	sample

•	Equivalence	rules

•	Choice	of	evaluation	plans

°	Join	commutativity

•	Interaction	of	evaluation

techniques

°	Join	associativity

•	Cost-based	optimization

•	Minimal	set	of	equivalence	rules

•	Join-order	optimization

•	Enumeration	of	equivalent

expressions

°	Dynamic-programming

•	Statistics	estimation

algorithm

•	Catalog	information

°	Left-deep	join	order

•	Size	estimation

°	Interesting	sort	order

°	Selection

•	Heuristic	optimization

°	Selectivity

•	Plan	caching

°	Join

•	Access-plan	selection

Practice	Exercises

789

•	Correlated	evaluation

°	Deletion

•	Decorrelation

Ůpdates

•	Semijoin

•	Query	optimization	with

•	Anti-semijoin

materialized	views

•	Materialized	views

•	Index	selection

•	Materialized	view	maintenance

•	Materialized	view	selection

•	Top-	K	optimization

°	Recomputation

•	Join	minimization

°	Incremental	maintenance

•	Halloween	problem

°	Insertion

•	Multiquery	optimization

Practice	Exercises

16.1

Download	the	university	database	schema	and	the	large	university	dataset	from	dbbook.com.	Create	the
university	schema	on	your	favorite	database,	and	load	the	large	university	dataset.	Use	the	explain
feature	described	in	Note	16.1	on	page	746	to	view	the	plan	chosen	by	the	database,	in	different	cases	as
detailed	below.

a.

Write	a	query	with	an	equality	condition	on	student.	name	(which	does	not	have	an	index),	and	view	the
plan	chosen.

b.

Create	an	index	on	the	attribute	student.	name,	and	view	the	plan	chosen	for	the	above	query.

c.

Create	simple	queries	joining	two	relations,	or	three	relations,	and	view	the	plans	chosen.

d.

Create	a	query	that	computes	an	aggregate	with	grouping,	and	view	the

plan	chosen.

e.

Create	an	SQL	query	whose	chosen	plan	uses	a	semijoin	operation.

f.

Create	an	SQL	query	that	uses	a	not	in	clause,	with	a	subquery	using

aggregation.	Observe	what	plan	is	chosen.

g.

Create	a	query	for	which	the	chosen	plan	uses	correlated	evaluation	(the	way	correlated	evaluation	is
represented	varies	by	database,	but	most

databases	would	show	a	filter	or	a	project	operator	with	a	subplan	or

subquery).

h.

Create	an	SQL	update	query	that	updates	a	single	row	in	a	relation.	View	the	plan	chosen	for	the	update
query.

790

Chapter	16

Query	Optimization

i.

Create	an	SQL	update	query	that	updates	a	large	number	of	rows	in	a	relation,	using	a	subquery	to
compute	the	new	value.	View	the	plan	chosen	for	the	update	query.

16.2

Show	that	the	following	equivalences	hold.	Explain	how	you	can	apply	them	to	improve	the	efficiency	of
certain	queries:

a.

E	⋈

−	E)	≡	(E	⋈

−	E	⋈

).

1

θ	(E	2

3

1

θ	E	2

1

θ	E	3

b.

σθ(γ	(E))	≡

γ	(σ

A	F

A	F

θ(E)),	where	θ	uses	only	attributes	from	A.

c.

σθ(E	⟕	E)	≡	σ

)	⟕	E	,	where	θ	uses	only	attributes	from	E	.

1

2

θ(E	1

2

1

16.3

For	each	of	the	following	pairs	of	expressions,	give	instances	of	relations	that	show	the	expressions	are
not	equivalent.

a.

Π	(r	−	s)	and	Π	(r)	−	Π	(s).

A

A

A

b.

σ	(γ

(r))	and

γ

(σ

(r)).

B<	4	A	max(B)	as	B

A	max(B)	as	B

B<	4

c.

In	the	preceding	expressions,	if	both	occurrences	of	max	were	replaced	by	min,	would	the	expressions	be
equivalent?

d.

(r	⟖	s)	⟖	t	and	r	⟖(s	⟖	t)	In	other	words,	the	natural	right	outer	join	is	not	associative.

e.

σθ(E	⟕	E)	and	E	⟕	σ

),	where	θ	uses	only	attributes	from	E	.

1

2

1

θ(E	2

2

16.4

SQL	allows	relations	with	duplicates	(Chapter	3),	and	the	multiset	version	of	the	relational	algebra	is
defined	in	Note	3.1	on	page	80,	Note	3.2	on	page	97,	and	Note	3.3	on	page	108.	Check	which	of	the
equivalence	rules	1	through	7.b	hold	for	the	multiset	version	of	the	relational	algebra.

16.5

Consider	the	relations	r	(A,	B,	C),	r	(C,	D,	E),	and	r	(E,	F),	with	primary	keys	1

2

3

A,	C,	and	E,	respectively.	Assume	that	r	has	1000	tuples,	r	has	1500	tuples,	1

2

and	r	has	750	tuples.	Estimate	the	size	of	r	⋈	r	⋈	r	,	and	give	an	efficient	3

1

2

3

strategy	for	computing	the	join.

16.6

Consider	the	relations	r	(A,	B,	C),	r	(C,	D,	E),	and	r	(E,	F)	of	Practice	Exer-1

2

3

cise	16.5.	Assume	that	there	are	no	primary	keys,	except	the	entire	schema.

Let	V	(C,	r)	be	900,	V	(C,	r)	be	1100,	V	(E,	r)	be	50,	and	V	(E,	r)	be	100.

1

2

2

3

Assume	that	r	has	1000	tuples,	r	has	1500	tuples,	and	r	has	750	tuples.	Es-1

2

3

timate	the	size	of	r	⋈	r	⋈	r	and	give	an	efficient	strategy	for	computing	1

2

3

the	join.

16.7

Suppose	that	a	B+-tree	index	on	building	is	available	on	relation	department	and	that	no	other	index	is
available.	What	would	be	the	best	way	to	handle	the	following	selections	that	involve	negation?

a.

σ¬

(department)

(building	<	“Watson”)

Practice	Exercises

791

b.

σ¬

(department)

(building	=	“Watson”)

c.

σ¬

(department)

(building	<	“Watson”	∨	budget	<	50000)

16.8

Consider	the	query:

select	*

from	r,	s

where	upper(r.A)	=	upper(s.A);

where	“upper”	is	a	function	that	returns	its	input	argument	with	all	lowercase	letters	replaced	by	the
corresponding	uppercase	letters.

a.

Find	out	what	plan	is	generated	for	this	query	on	the	database	system

you	use.

b.

Some	database	systems	would	use	a	(block)	nested-loop	join	for	this

query,	which	can	be	very	inefficient.	Briefly	explain	how	hash-join	or	merge-join	can	be	used	for	this
query.

16.9

Give	conditions	under	which	the	following	expressions	are	equivalent:

γ

(E	⋈	E)

and

(γ

(E))	⋈	E

A,	B	agg(C)

1

2

A	agg(C)

1

2

where	agg	denotes	any	aggregation	operation.	How	can	the	above	conditions	be	relaxed	if	agg	is	one	of
min	or	max?

16.10

Consider	the	issue	of	interesting	orders	in	optimization.	Suppose	you	are	given	a	query	that	computes	the
natural	join	of	a	set	of	relations	S.	Given	a	subset	S	1	of	S,	what	are	the	interesting	orders	of	S	1?

16.11

Modify	the	FindBestPlan(S)	function	to	create	a	function	FindBestPlan(S,	O),	where	O	is	a	desired	sort
order	for	S,	and	which	considers	interesting	sort	orders.	A	null	order	indicates	that	the	order	is	not
relevant.	Hints:	An	algorithm	A	may	give	the	desired	order	O;	if	not	a	sort	operation	may	need	to	be	added
to	get	the	desired	order.	If	A	is	a	merge-join,	FindBestPlan	must	be	invoked	on	the	two	inputs	with	the
desired	orders	for	the	inputs.

16.12

Show	that,	with	n	relations,	there	are	(2(n	−	1))!∕(n	−	1)!	different	join	orders.

Hint:	A	complete	binary	tree	is	one	where	every	internal	node	has	exactly	two	children.	Use	the	fact	that
the	number	of	different	complete	binary	trees	with	n	leaf	nodes	is:

(

)

1

2(n	−	1)

n

(n	−	1)

If	you	wish,	you	can	derive	the	formula	for	the	number	of	complete	binary	trees	with	n	nodes	from	the
formula	for	the	number	of	binary	trees	with	n	nodes.

The	number	of	binary	trees	with	n	nodes	is:

()

1

2	n

n	+	1

n

792

Chapter	16

Query	Optimization

This	number	is	known	as	the	Catalan	number,	and	its	derivation	can	be	found	in	any	standard	textbook	on
data	structures	or	algorithms.

16.13

Show	that	the	lowest-cost	join	order	can	be	computed	in	time	O(3	n).	Assume	that	you	can	store	and	look
up	information	about	a	set	of	relations	(such	as	the	optimal	join	order	for	the	set,	and	the	cost	of	that	join
order)	in	constant	time.	(If	you	find	this	exercise	difficult,	at	least	show	the	looser	time	bound	of	O(22	n).)

16.14

Show	that,	if	only	left-deep	join	trees	are	considered,	as	in	the	System	R	optimizer,	the	time	taken	to	find
the	most	efficient	join	order	is	around	n	2	n.	Assume	that	there	is	only	one	interesting	sort	order.

16.15

Consider	the	bank	database	of	Figure	16.9,	where	the	primary	keys	are	underlined.	Construct	the
following	SQL	queries	for	this	relational	database.

a.

Write	a	nested	query	on	the	relation	account	to	find,	for	each	branch	with	name	starting	with	B,	all
accounts	with	the	maximum	balance	at

the	branch.

b.

Rewrite	the	preceding	query	without	using	a	nested	subquery;	in	other

words,	decorrelate	the	query,	but	in	SQL.

c.

Give	a	relational	algebra	expression	using	semijoin	equivalent	to	the

query.

d.

Give	a	procedure	(similar	to	that	described	in	Section	16.4.4)	for	decorrelating	such	queries.

Exercises

16.16

Suppose	that	a	B+-tree	index	on	(dept	name,	building)	is	available	on	relation	department.	What	would
be	the	best	way	to	handle	the	following	selection?

σ

(department)

(building	<	“Watson”)	∧	(budget	<	55000)	∧	(dept	name	=	“Music”)	branch(branch	name,	branch	city,
assets)

customer	(customer	name,	customer	street,	customer	city)	loan	(loan	number,	branch	name,	amount)

borrower	(customer	name,	loan	number)

account	(account	number,	branch	name,	balance)	depositor	(customer	name,	account	number)

Figure	16.9	Banking	database.

Exercises

793

16.17

Show	how	to	derive	the	following	equivalences	by	a	sequence	of	transformations	using	the	equivalence
rules	in	Section	16.2.1.

a.

σθ	∧θ	∧θ	(E)	≡	σθ	(σθ	(σθ	(E)))

1

2

3

1

2

3

b.

σθ	∧θ	(E	⋈	E)	≡	σ	(E	⋈	(σ	(E))),	where	θ	involves	only	1

θ

2

θ

1

θ

θ

2

2

1

2

3

1

3

2

attributes	from	E	2

16.18

Consider	the	two	expressions	σθ(E	⟕	E)	and	σ

⋈	E).

1

2

θ(E	1

2

a.

Show	using	an	example	that	the	two	expressions	are	not	equivalent	in

general.

b.

Give	a	simple	condition	on	the	predicate	θ,	which	if	satisfied	will	ensure	that	the	two	expressions	are
equivalent.

16.19

A	set	of	equivalence	rules	is	said	to	be	complete	if,	whenever	two	expressions	are	equivalent,	one	can	be
derived	from	the	other	by	a	sequence	of	uses	of	the	equivalence	rules.	Is	the	set	of	equivalence	rules	that
we	considered	in	Section	16.2.1	complete?	Hint:	Consider	the	equivalence	σ

(r)	≡	{	}.

3=5

16.20

Explain	how	to	use	a	histogram	to	estimate	the	size	of	a	selection	of	the	form	σ	(r).

A≤	v

16.21

Suppose	two	relations	r	and	s	have	histograms	on	attributes	r.A	and	s.A,	respectively,	but	with	different
ranges.	Suggest	how	to	use	the	histograms	to	estimate	the	size	of	r	⋈	s.	Hint:	Split	the	ranges	of	each
histogram	further.

16.22

Consider	the	query

select	A,	B

from	r

where	r.B	<	some	(select	B

from	s

where	s.A	=	r.A)

Show	how	to	decorrelate	this	query	using	the	multiset	version	of	the	semi	join	operation.

16.23

Describe	how	to	incrementally	maintain	the	results	of	the	following	operations	on	both	insertions	and

deletions:

a.

Union	and	set	difference.

b.

Left	outer	join.

16.24

Give	an	example	of	an	expression	defining	a	materialized	view	and	two	situations	(sets	of	statistics	for	the
input	relations	and	the	differentials)	such	that	incremental	view	maintenance	is	better	than
recomputation	in	one	situation,	and	recomputation	is	better	in	the	other	situation.

794

Chapter	16

Query	Optimization

16.25

Suppose	you	want	to	get	answers	to	r	⋈	s	sorted	on	an	attribute	of	r,	and	want	only	the	top	K	answers	for
some	relatively	small	K.	Give	a	good	way	of	evaluating	the	query:

a.

When	the	join	is	on	a	foreign	key	of	r	referencing	s,	where	the	foreign	key	attribute	is	declared	to	be	not
null.

b.

When	the	join	is	not	on	a	foreign	key.

16.26

Consider	a	relation	r(A,	B,	C),	with	an	index	on	attribute	A.	Give	an	example	of	a	query	that	can	be
answered	by	using	the	index	only,	without	looking	at	the	tuples	in	the	relation.	(Query	plans	that	use	only
the	index,	without	accessing	the	actual	relation,	are	called	index-only	plans.)

16.27

Suppose	you	have	an	update	query	U	.	Give	a	simple	sufficient	condition	on	U	that	will	ensure	that	the
Halloween	problem	cannot	occur,	regardless	of	the	execution	plan	chosen	or	the	indices	that	exist.

Further	Reading

The	seminal	work	of	[Selinger	et	al.	(1979)]	describes	access-path	selection	in	the	System	R	optimizer,
which	was	one	of	the	earliest	relational-query	optimizers.	Query	processing	in	Starburst,	described	in
[Haas	et	al.	(1989)],	forms	the	basis	for	query	optimization	in	IBM	DB2.

[Graefe	and	McKenna	(1993)]	describes	Volcano,	an	equivalence-rule–based	query	optimizer	that,	along
with	its	successor	Cascades	([Graefe	(1995)]),	forms	the	basis	of	query	optimization	in	Microsoft	SQL
Server.	[Moerkotte	(2014)]	provides	extensive	textbook	coverage	of	query	optimization,	including
optimizations	of	the	dynamic	programming	algorithm	for	join	order	optimization	to	avoid	considering
Cartesian	products.	Avoiding	generation	of	plans	with	Cartesian	products	can	result	in	substantial
reduction	in	optimization	cost	for	common	queries.

The	bibliographic	notes	for	this	chapter,	available	online,	provides	references	to	research	on	a	variety	of
optimization	techniques,	including	optimization	of	queries	with	aggregates,	with	outer	joins,	nested
subqueries,	top-K	queries,	join	minimization,	optimization	of	update	queries,	materialized	view
maintenance	and	view	matching,	index	and	materialized	view	selection,	parametric	query	optimization,
and	multiquery	optimization.

Bibliography

[Graefe	(1995)]

G.	Graefe,	“The	Cascades	Framework	for	Query	Optimization”,	Data	Engineering	Bulletin,	Volume	18,
Number	3	(1995),	pages	19–29.

Further	Reading

795

[Graefe	and	McKenna	(1993)]

G.	Graefe	and	W.	McKenna,	“The	Volcano	Optimizer	Gen-

erator”,	In	Proc.	of	the	International	Conf.	on	Data	Engineering	(1993),	pages	209–218.

[Haas	et	al.	(1989)]

L.	M.	Haas,	J.	C.	Freytag,	G.	M.	Lohman,	and	H.	Pirahesh,	“Extensible

Query	Processing	in	Starburst”,	In	Proc.	of	the	ACM	SIGMOD	Conf.	on	Management	of	Data	(1989),	pages
377–388.

[Moerkotte	(2014)]

G.	Moerkotte,	Building	Query	Compilers,	available	online	at	http://pi3.

informatik.uni-mannheim.de/∼moer/querycompiler.pdf,	retrieved	13	Dec	2018	(2014).

[Selinger	et	al.	(1979)]

P.	G.	Selinger,	M.	M.	Astrahan,	D.	D.	Chamberlin,	R.	A.	Lorie,	and

T.	G.	Price,	“Access	Path	Selection	in	a	Relational	Database	System”,	In	Proc.	of	the	ACM

SIGMOD	Conf.	on	Management	of	Data	(1979),	pages	23–34.

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

PART	7

TRANSACTION

MANAGEMENT

The	term	transaction	refers	to	a	collection	of	operations	that	form	a	single	logical	unit	of	work.	For
instance,	transfer	of	money	from	one	account	to	another	is	a	transaction	consisting	of	two	updates,	one	to
each	account.

It	is	important	that	either	all	actions	of	a	transaction	be	executed	completely,	or,	in	case	of	some	failure,
partial	effects	of	each	incomplete	transaction	be	undone.	This	property	is	called	atomicity.	Further,	once	a
transaction	is	successfully	executed,	its	effects	must	persist	in	the	database	—	a	system	failure	should	not
result	in	the	database	forgetting	about	a	transaction	that	successfully	completed.	This	property	is	called
durability.

In	a	database	system	where	multiple	transactions	are	executing	concurrently,	if	updates	to	shared	data
are	not	controlled,	there	is	potential	for	transactions	to	see	inconsistent	intermediate	states	created	by
updates	of	other	transactions.	Such	a	situation	can	result	in	erroneous	updates	to	data	stored	in	the
database.	Thus,	database	systems	must	provide	mechanisms	to	isolate	transactions	from	the	effects	of
other	concurrently	executing	transactions.	This	property	is	called	isolation.

Chapter	17	describes	the	concept	of	a	transaction	in	detail,	including	the	properties	of	atomicity,
durability,	isolation,	and	other	properties	provided	by	the	transaction	abstraction.	In	particular,	the
chapter	makes	precise	the	notion	of	isolation	by	means	of	a	concept	called	serializability.

Chapter	18	describes	several	concurrency-control	techniques	that	help	implement	the	isolation	property.
Chapter	19	describes	the	recovery	management	component	of	a	database,	which	implements	the
atomicity	and	durability	properties.

Taken	as	a	whole,	the	transaction-management	component	of	a	database	system	allows	application
developers	to	focus	on	the	implementation	of	individual	transactions,	ignoring	the	issues	of	concurrency
and	fault	tolerance.

797

C	H	A	P	T	E	R	17

Transactions

Often,	a	collection	of	several	operations	on	the	database	appears	to	be	a	single	unit	from	the	point	of	view
of	the	database	user.	For	example,	a	transfer	of	funds	from	a	checking	account	to	a	savings	account	is	a

single	operation	from	the	customer’s	standpoint;	within	the	database	system,	however,	it	consists	of
several	operations.	It	is	essential	that	all	these	operations	occur,	or	that,	in	case	of	a	failure,	none	occur.	It
would	be	unacceptable	if	the	checking	account	were	debited	but	the	savings	account	not	credited.

Collections	of	operations	that	form	a	single	logical	unit	of	work	are	called	transactions.	A	database	system
must	ensure	proper	execution	of	transactions	despite	failures	—	either	the	entire	transaction	executes,	or
none	of	it	does.	Furthermore,	it	must	manage	concurrent	execution	of	transactions	in	a	way	that	avoids
the	introduction	of	inconsistency.	In	our	funds-transfer	example,	a	transaction	computing	the	customer’s
total	balance	might	see	the	checking-account	balance	before	it	is	debited	by	the	funds-transfer
transaction,	but	see	the	savings	balance	after	it	is	credited.	As	a	result,	it	would	obtain	an	incorrect	result.

This	chapter	introduces	the	basic	concepts	of	transaction	processing.	Details	on	concurrent	transaction
processing	and	recovery	from	failures	are	in	Chapter	18	and	Chapter	19,	respectively.

17.1

Transaction	Concept

A	transaction	is	a	unit	of	program	execution	that	accesses	and	possibly	updates	various	data	items.
Usually,	a	transaction	is	initiated	by	a	user	program	written	in	a	high-level	data-manipulation	language
(typically	SQL),	or	programming	language	(e.g.,	C++	or	Java),	with	embedded	database	accesses	in	JDBC
or	ODBC.	A	transaction	is	delimited	by	statements	(or	function	calls)	of	the	form	begin	transaction	and
end	transaction.	The	transaction	consists	of	all	operations	executed	between	the	begin	transaction	and
end	transaction.

This	collection	of	steps	must	appear	to	the	user	as	a	single,	indivisible	unit.	Since	a	transaction	is
indivisible,	it	either	executes	in	its	entirety	or	not	at	all.	Thus,	if	a	799

800

Chapter	17

Transactions

transaction	begins	to	execute	but	fails	for	whatever	reason,	any	changes	to	the	database	that	the
transaction	may	have	made	must	be	undone.	This	requirement	holds	regardless	of	whether	the
transaction	itself	failed	(e.g.,	if	it	divided	by	zero),	the	operating	system	crashed,	or	the	computer	itself
stopped	operating.	As	we	shall	see,	ensuring	that	this	requirement	is	met	is	difficult	since	some	changes
to	the	database	may	still	be	stored	only	in	the	main-memory	variables	of	the	transaction,	while	others	may
have	been	written	to	the	database	and	stored	on	disk.	This	“all-or-none”	property	is	referred	to	as
atomicity.

Furthermore,	since	a	transaction	is	a	single	unit,	its	actions	cannot	appear	to	be	separated	by	other
database	operations	not	part	of	the	transaction.	While	we	wish	to	present	this	user-level	impression	of
transactions,	we	know	that	reality	is	quite	different.	Even	a	single	SQL	statement	involves	many	separate
accesses	to	the	database,	and	a	transaction	may	consist	of	several	SQL	statements.	Therefore,	the
database	system	must	take	special	actions	to	ensure	that	transactions	operate	properly	without
interference	from	concurrently	executing	database	statements.	This	property	is	referred	to	as	isolation.

Even	if	the	system	ensures	correct	execution	of	a	transaction,	this	serves	little	purpose	if	the	system
subsequently	crashes	and,	as	a	result,	the	system	“forgets”	about	the	transaction.	Thus,	a	transaction’s
actions	must	persist	across	crashes.	This	property	is	referred	to	as	durability.

Because	of	the	above	three	properties,	transactions	are	an	ideal	way	of	structuring	interaction	with	a
database.	This	leads	us	to	impose	a	requirement	on	transactions	themselves.	A	transaction	must	preserve
database	consistency	—	if	a	transaction	is	run	atomically	in	isolation	starting	from	a	consistent	database,
the	database	must	again	be	consistent	at	the	end	of	the	transaction.	This	consistency	requirement	goes
beyond	the	data-integrity	constraints	we	have	seen	earlier	(such	as	primary-key	constraints,	referential
integrity,	check	constraints,	and	the	like).	Rather,	transactions	are	expected	to	go	beyond	that	to	ensure
preservation	of	those	application-dependent	consistency	constraints	that	are	too	complex	to	state	using
the	SQL	constructs	for	data	integrity.

How	this	is	done	is	the	responsibility	of	the	programmer	who	codes	a	transaction.	This	property	is
referred	to	as	consistency.

To	restate	the	above	more	concisely,	we	require	that	the	database	system	maintain	the	following
properties	of	the	transactions:

•	Atomicity.	Either	all	operations	of	the	transaction	are	reflected	properly	in	the	database,	or	none	are.

•	Consistency.	Execution	of	a	transaction	in	isolation	(i.e.,	with	no	other	transaction	executing

concurrently)	preserves	the	consistency	of	the	database.

•	Isolation.	Even	though	multiple	transactions	may	execute	concurrently,	the	system	guarantees	that,	for
every	pair	of	transactions	T	and	T	,	it	appears	to	T	that	either	i

j

i

T	finished	execution	before	T	started	or	T	started	execution	after	T	finished.

j

i

j

i

17.2

A	Simple	Transaction	Model

801

Thus,	each	transaction	is	unaware	of	other	transactions	executing	concurrently	in	the	system.

•	Durability.	After	a	transaction	completes	successfully,	the	changes	it	has	made	to	the	database	persist,
even	if	there	are	system	failures.

These	properties	are	often	called	the	ACID	properties;	the	acronym	is	derived	from	the	first	letter	of	each
of	the	four	properties.

As	we	shall	see	later,	ensuring	the	isolation	property	may	have	a	significant	adverse	effect	on	system
performance.	For	this	reason,	some	applications	compromise	on	the	isolation	property.	We	shall	study
these	compromises	after	first	studying	the	strict	enforcement	of	the	ACID	properties.

17.2

A	Simple	Transaction	Model

Because	SQL	is	a	powerful	and	complex	language,	we	begin	our	study	of	transactions	with	a	simple
database	language	that	focuses	on	when	data	are	moved	from	disk	to	main	memory	and	from	main
memory	to	disk.	In	doing	this,	we	ignore	SQL	insert	and	delete	operations	and	defer	considering	them
until	Section	18.4.	The	only	actual	operations	on	the	data	are	restricted	in	our	simple	language	to
arithmetic	operations.

Later	we	shall	discuss	transactions	in	a	realistic,	SQL-based	context	with	a	richer	set	of	operations.	The
data	items	in	our	simplified	model	contain	a	single	data	value	(a	number	in	our	examples).	Each	data	item
is	identified	by	a	name	(typically	a	single	letter	in	our	examples,	that	is,	A,	B,	C,	etc.).

We	shall	illustrate	the	transaction	concept	using	a	simple	bank	application	consisting	of	several	accounts
and	a	set	of	transactions	that	access	and	update	those	accounts.

Transactions	access	data	using	two	operations:

•	read(X),	which	transfers	the	data	item	X	from	the	database	to	a	variable,	also	called	X	,	in	a	buffer	in
main	memory	belonging	to	the	transaction	that	executed	the	read	operation.

•	write(X),	which	transfers	the	value	in	the	variable	X	in	the	main-memory	buffer	of	the	transaction	that
executed	the	write	to	the	data	item	X	in	the	database.

It	is	important	to	know	if	a	change	to	a	data	item	appears	only	in	main	memory	or	if	it	has	been	written	to
the	database	on	disk.	In	a	real	database	system,	the	write	operation	does	not	necessarily	result	in	the
immediate	update	of	the	data	on	the	disk;	the	write	operation	may	be	temporarily	stored	elsewhere	and
executed	on	the	disk	later.	For	now,	however,	we	shall	assume	that	the	write	operation	updates	the
database	immediately.	We	discuss	storage	issues	further	in	Section	17.3	and	discuss	the	issue	of	when
database	data	in	main	memory	are	written	to	the	database	on	disk	in	Chapter	19.

802

Chapter	17

Transactions

Let	T	be	a	transaction	that	transfers	$50	from	account	A	to	account	B.	This	transi

action	can	be	defined	as:

T	:

i

read(A);

A	:=	A	−	50;

write(A);

read(B);

B	:=	B	+	50;

write(B).

Let	us	now	consider	each	of	the	ACID	properties.	(For	ease	of	presentation,	we	consider	them	in	an	order
different	from	the	order	A-C-I-D.)

•	Consistency:	The	consistency	requirement	here	is	that	the	sum	of	A	and	B	be	unchanged	by	the
execution	of	the	transaction.	Without	the	consistency	requirement,	money	could	be	created	or	destroyed
by	the	transaction!	It	can	be	verified	easily	that,	if	the	database	is	consistent	before	an	execution	of	the
transaction,	the	database	remains	consistent	after	the	execution	of	the	transaction.

Ensuring	consistency	for	an	individual	transaction	is	the	responsibility	of	the	application	programmer	who
codes	the	transaction.	This	task	may	be	facilitated	by	automatic	testing	of	integrity	constraints,	as	we
discussed	in	Section	4.4.

•	Atomicity:	Suppose	that,	just	before	the	execution	of	transaction	T	,	the	values	of	i

accounts	A	and	B	are	$1000	and	$2000,	respectively.	Now	suppose	that,	during	the	execution	of
transaction	T	,	a	failure	occurs	that	prevents	T	from	completing	its	ex-i

i

ecution	successfully.	Further,	suppose	that	the	failure	happened	after	the	write(A)	operation	but	before
the	write(B)	operation.	In	this	case,	the	values	of	accounts	A	and	B	reflected	in	the	database	are	$950
and	$2000.	The	system	destroyed	$50

as	a	result	of	this	failure.	In	particular,	we	note	that	the	sum	A	+	B	is	no	longer	preserved.

Thus,	because	of	the	failure,	the	state	of	the	system	no	longer	reflects	a	real	state	of	the	world	that	the
database	is	supposed	to	capture.	We	term	such	a	state	an	inconsistent	state.	We	must	ensure	that	such
inconsistencies	are	not	visible	in	a	database	system.	Note,	however,	that	the	system	must	at	some	point	be
in	an	inconsistent	state.	Even	if	transaction	T	is	executed	to	completion,	there	exists	i

a	point	at	which	the	value	of	account	A	is	$950	and	the	value	of	account	B	is	$2000,	which	is	clearly	an
inconsistent	state.	This	state,	however,	is	eventually	replaced	by	the	consistent	state	where	the	value	of
account	A	is	$950,	and	the	value	of	account	B	is	$2050.	Thus,	if	the	transaction	never	started	or	was
guaranteed	to	complete,	such	an	inconsistent	state	would	not	be	visible	except	during	the	execution	of	the
transaction.	That	is	the	reason	for	the	atomicity	requirement:	If	the	atomicity	property	is	present,	all
actions	of	the	transaction	are	reflected	in	the	database,	or	none	are.

17.2

A	Simple	Transaction	Model

803

The	basic	idea	behind	ensuring	atomicity	is	this:	The	database	system	keeps	track	(on	disk)	of	the	old
values	of	any	data	on	which	a	transaction	performs	a	write.	This	information	is	written	to	a	file	called	the
log.	If	the	transaction	does	not	complete	its	execution,	the	database	system	restores	the	old	values	from
the	log	to	make	it	appear	as	though	the	transaction	never	executed.	We	discuss	these	ideas	further	in
Section	17.4.	Ensuring	atomicity	is	the	responsibility	of	the	database	system;	specifically,	it	is	handled	by
a	component	of	the	database	called	the	recovery	system,	which	we	describe	in	detail	in	Chapter	19.

•	Durability:	Once	the	execution	of	the	transaction	completes	successfully,	and	the	user	who	initiated	the
transaction	has	been	notified	that	the	transfer	of	funds	has	taken	place,	it	must	be	the	case	that	no	system
failure	can	result	in	a	loss	of	data	corresponding	to	this	transfer	of	funds.	The	durability	property
guarantees	that,	once	a	transaction	completes	successfully,	all	the	updates	that	it	carried	out	on	the
database	persist,	even	if	there	is	a	system	failure	after	the	transaction	completes	execution.

We	assume	for	now	that	a	failure	of	the	computer	system	may	result	in	loss	of	data	in	main	memory,	but
data	written	to	disk	are	never	lost.	Protection	against	loss	of	data	on	disk	is	discussed	in	Chapter	19.	We
can	guarantee	durability	by	ensuring	that	either:

1.	The	updates	carried	out	by	the	transaction	have	been	written	to	disk	before	the	transaction	completes.

2.	Information	about	the	updates	carried	out	by	the	transaction	is	written	to	disk,	and	such	information	is
sufficient	to	enable	the	database	to	reconstruct	the	updates	when	the	database	system	is	restarted	after
the	failure.

The	recovery	system	of	the	database,	described	in	Chapter	19,	is	responsible	for	ensuring	durability,	in
addition	to	ensuring	atomicity.

•	Isolation:	Even	if	the	consistency	and	atomicity	properties	are	ensured	for	each	transaction,	if	several
transactions	are	executed	concurrently,	their	operations	may	interleave	in	some	undesirable	way,
resulting	in	an	inconsistent	state.

For	example,	as	we	saw	earlier,	the	database	is	temporarily	inconsistent	while	the	transaction	to	transfer
funds	from	A	to	B	is	executing,	with	the	deducted	total	written	to	A	and	the	increased	total	yet	to	be
written	to	B.	If	a	second	concurrently	running	transaction	reads	A	and	B	at	this	intermediate	point	and
computes	A	+	B,	it	will	observe	an	inconsistent	value.	Furthermore,	if	this	second	transaction	then
performs	updates	on	A	and	B	based	on	the	inconsistent	values	that	it	read,	the	database	may	be	left	in	an
inconsistent	state	even	after	both	transactions	have	completed.

A	way	to	avoid	the	problem	of	concurrently	executing	transactions	is	to	execute	transactions	serially	—
that	is,	one	after	the	other.	However,	concurrent	execution	of	transactions	provides	significant
performance	benefits,	as	we	shall	see	in	Section

804

Chapter	17

Transactions

17.5.	Other	solutions	have	therefore	been	developed;	they	allow	multiple	transactions	to	execute
concurrently.

We	discuss	the	problems	caused	by	concurrently	executing	transactions	in	Section	17.5.	The	isolation
property	of	a	transaction	ensures	that	the	concurrent	execution	of	transactions	results	in	a	system	state
that	is	equivalent	to	a	state	that	could	have	been	obtained	had	these	transactions	executed	one	at	a	time
in	some	order.	We	shall	discuss	the	principles	of	isolation	further	in	Section	17.6.	Ensuring	the	isolation
property	is	the	responsibility	of	a	component	of	the	database	system	called	the	concurrency-control
system,	which	we	discuss	in	Chapter	18.

17.3

Storage	Structure

To	understand	how	to	ensure	the	atomicity	and	durability	properties	of	a	transaction,	we	must	gain	a
better	understanding	of	how	the	various	data	items	in	the	database	may	be	stored	and	accessed.

In	Chapter	12,	we	saw	that	storage	media	can	be	distinguished	by	their	relative	speed,	capacity,	and
resilience	to	failure,	and	classified	as	volatile	storage	or	non-volatile	storage.	We	review	these	terms	and
introduce	another	class	of	storage,	called	stable	storage.

•	Volatile	storage.	Information	residing	in	volatile	storage	does	not	usually	survive	system	crashes.
Examples	of	such	storage	are	main	memory	and	cache	memory.

Access	to	volatile	storage	is	extremely	fast,	both	because	of	the	speed	of	the	memory	access	itself	and
because	it	is	possible	to	access	any	data	item	in	volatile	storage	directly.

•	Non-volatile	storage.	Information	residing	in	non-volatile	storage	survives	system	crashes.	Examples	of
non-volatile	storage	include	secondary	storage	devices	such	as	magnetic	disk	and	flash	storage,	used	for
online	storage,	and	tertiary	storage	devices	such	as	optical	media	and	magnetic	tapes,	used	for	archival
storage.	At	the	current	state	of	technology,	non-volatile	storage	is	slower	than	volatile	storage,

particularly	for	random	access.	Both	secondary	and	tertiary	storage	devices,	however,	are	susceptible	to
failures	that	may	result	in	loss	of	information.

•	Stable	storage.	Information	residing	in	stable	storage	is	never	lost	(never	should	be	taken	with	a	grain
of	salt,	since	theoretically	never	cannot	be	guaranteed—for	example,	it	is	possible,	although	extremely
unlikely,	that	a	black	hole	may	envelop	the	earth	and	permanently	destroy	all	data!).	Although	stable
storage	is	theoretically	impossible	to	obtain,	it	can	be	closely	approximated	by	techniques	that	make	data
loss	extremely	unlikely.	To	implement	stable	storage,	we	replicate	the	information	in	several	non-volatile
storage	media	(usually	disk)	with	independent	failure	modes.	Updates	must	be	done	with	care	to	ensure
that	a	failure	during	an	update	to	stable	storage	does	not	cause	a	loss	of	information.	Section	19.2.1
discusses	stable-storage	implementation.

17.4

Transaction	Atomicity	and	Durability

805

The	distinctions	among	the	various	storage	types	can	be	less	clear	in	practice	than	in	our	presentation.
For	example,	certain	systems,	for	example	some	RAID	controllers,	provide	battery	backup,	so	that	some
main	memory	can	survive	system	crashes	and	power	failures.

For	a	transaction	to	be	durable,	its	changes	need	to	be	written	to	stable	storage.

Similarly,	for	a	transaction	to	be	atomic,	log	records	need	to	be	written	to	stable	storage	before	any
changes	are	made	to	the	database	on	disk.	The	degree	to	which	a	system	ensures	durability	and	atomicity
depends	on	how	stable	its	implementation	of	stable	storage	really	is.	In	some	cases,	a	single	copy	on	disk
is	considered	sufficient,	but	applications	whose	data	are	highly	valuable	and	whose	transactions	are
highly	important	require	multiple	copies,	or,	in	other	words,	a	closer	approximation	of	the	idealized
concept	of	stable	storage.

17.4

Transaction	Atomicity	and	Durability

As	we	noted	earlier,	a	transaction	may	not	always	complete	its	execution	successfully.

Such	a	transaction	is	termed	aborted.	If	we	are	to	ensure	the	atomicity	property,	an	aborted	transaction
must	have	no	effect	on	the	state	of	the	database.	Thus,	any	changes	that	the	aborted	transaction	made	to
the	database	must	be	undone.	Once	the	changes	caused	by	an	aborted	transaction	have	been	undone,	we
say	that	the	transaction	has	been	rolled	back.	It	is	part	of	the	responsibility	of	the	recovery	scheme	to
manage	transaction	aborts.	This	is	done	typically	by	maintaining	a	log.	Each	database	modification	made
by	a	transaction	is	first	recorded	in	the	log.	We	record	the	identifier	of	the	transaction	performing	the
modification,	the	identifier	of	the	data	item	being	modified,	and	both	the	old	value	(prior	to	modification)
and	the	new	value	(after	modification)	of	the	data	item.	Only	then	is	the	database	itself	modified.
Maintaining	a	log	provides	the	possibility	of	redoing	a	modification	to	ensure	atomicity	and	durability	as
well	as	the	possibility	of	undoing	a	modification	to	ensure	atomicity	in	case	of	a	failure	during	transaction
execution.	Details	of	log-based	recovery	are	discussed	in	Chapter	19.

A	transaction	that	completes	its	execution	successfully	is	said	to	be	committed.	A	committed	transaction
that	has	performed	updates	transforms	the	database	into	a	new	consistent	state,	which	must	persist	even
if	there	is	a	system	failure.

Once	a	transaction	has	committed,	we	cannot	undo	its	effects	by	aborting	it.	The	only	way	to	undo	the
effects	of	a	committed	transaction	is	to	execute	a	compensating	transaction.	For	instance,	if	a	transaction
added	$20	to	an	account,	the	compensating	transaction	would	subtract	$20	from	the	account.	However,	it
is	not	always	possible	to	create	such	a	compensating	transaction.	Therefore,	the	responsibility	of	writing
and	executing	a	compensating	transaction	is	left	to	the	user	and	is	not	handled	by	the	database	system.

We	need	to	be	more	precise	about	what	we	mean	by	successful	completion	of	a	transaction.	We	therefore
establish	a	simple	abstract	transaction	model.	A	transaction	must	be	in	one	of	the	following	states:

806

Chapter	17

Transactions

•	Active,	the	initial	state;	the	transaction	stays	in	this	state	while	it	is	executing.

•	Partially	committed,	after	the	final	statement	has	been	executed.

•	Failed,	after	the	discovery	that	normal	execution	can	no	longer	proceed.

•	Aborted,	after	the	transaction	has	been	rolled	back	and	the	database	has	been	restored	to	its	state	prior
to	the	start	of	the	transaction.

•	Committed,	after	successful	completion.

The	state	diagram	corresponding	to	a	transaction	appears	in	Figure	17.1.	We	say	that	a	transaction	has
committed	only	if	it	has	entered	the	committed	state.	Similarly,	we	say	that	a	transaction	has	aborted	only
if	it	has	entered	the	aborted	state.	A	transaction	is	said	to	have	terminated	if	it	has	either	committed	or
aborted.

A	transaction	starts	in	the	active	state.	When	it	finishes	its	final	statement,	it	enters	the	partially
committed	state.	At	this	point,	the	transaction	has	completed	its	execution,	but	it	is	still	possible	that	it
may	have	to	be	aborted,	since	the	actual	output	may	still	be	temporarily	residing	in	main	memory,	and
thus	a	hardware	failure	may	preclude	its	successful	completion.

The	database	system	then	writes	out	enough	information	to	disk	that,	even	in	the	event	of	a	failure,	the
updates	performed	by	the	transaction	can	be	re-created	when	the	system	restarts	after	the	failure.	When
the	last	of	this	information	is	written	out,	the	transaction	enters	the	committed	state.

As	mentioned	earlier,	we	assume	for	now	that	failures	do	not	result	in	loss	of	data	on	disk.	Chapter	19
discusses	techniques	to	deal	with	loss	of	data	on	disk.

A	transaction	enters	the	failed	state	after	the	system	determines	that	the	transaction	can	no	longer
proceed	with	its	normal	execution	(e.g.,	because	of	hardware	or	logical	errors).	Such	a	transaction	must
be	rolled	back.	Then,	it	enters	the	aborted	state.	At	this	point,	the	system	has	two	options:

partially

committed

committed

active

failed

aborted

Figure	17.1	State	diagram	of	a	transaction.

17.5

Transaction	Isolation

807

•	It	can	restart	the	transaction,	but	only	if	the	transaction	was	aborted	as	a	result	of	some	hardware	or
software	error	that	was	not	created	through	the	internal	logic	of	the	transaction.	A	restarted	transaction
is	considered	to	be	a	new	transaction.

•	It	can	kill	the	transaction.	It	usually	does	so	because	of	some	internal	logical	error	that	can	be	corrected
only	by	rewriting	the	application	program,	or	because	the	input	was	bad,	or	because	the	desired	data
were	not	found	in	the	database.

We	must	be	cautious	when	dealing	with	observable	external	writes,	such	as	writes	to	a	user’s	screen,	or
sending	email.	Once	such	a	write	has	occurred,	it	cannot	be	erased,	since	it	may	have	been	seen	external
to	the	database	system.	Most	systems	allow	such	writes	to	take	place	only	after	the	transaction	has
entered	the	committed	state.	One	way	to	implement	such	a	scheme	is	for	the	database	system	to	store	any
value	associated	with	such	external	writes	temporarily	in	a	special	relation	in	the	database,	and	to
perform	the	actual	writes	only	after	the	transaction	enters	the	committed	state.	If	the	system	should	fail
after	the	transaction	has	entered	the	committed	state,	but	before	it	could	complete	the	external	writes,
the	database	system	will	carry	out	the	external	writes	(using	the	data	in	non-volatile	storage)	when	the
system	is	restarted.

Handling	external	writes	can	be	more	complicated	in	some	situations.	For	example,	suppose	the	external
action	is	that	of	dispensing	cash	at	an	automated	teller	machine,	and	the	system	fails	just	before	the	cash
is	actually	dispensed	(we	assume	that	cash	can	be	dispensed	atomically).	It	makes	no	sense	to	dispense
cash	when	the	system	is	restarted,	since	the	user	may	have	left	the	machine.	In	such	a	case	a
compensating	transaction,	such	as	depositing	the	cash	back	into	the	user’s	account,	needs	to	be	executed
when	the	system	is	restarted.

As	another	example,	consider	a	user	making	a	booking	over	the	web.	It	is	possible	that	the	database
system	or	the	application	server	crashes	just	after	the	booking	transaction	commits.	It	is	also	possible	that
the	network	connection	to	the	user	is	lost	just	after	the	booking	transaction	commits.	In	either	case,	even
though	the	transaction	has	committed,	the	external	write	has	not	taken	place.	To	handle	such	situations,
the	application	must	be	designed	such	that	when	the	user	connects	to	the	web	application	again,	she	will
be	able	to	see	whether	her	transaction	had	succeeded	or	not.

For	certain	applications,	it	may	be	desirable	to	allow	active	transactions	to	display	data	to	users,
particularly	for	long-duration	transactions	that	run	for	minutes	or	hours.

Unfortunately,	we	cannot	allow	such	output	of	observable	data	unless	we	are	willing	to	compromise
transaction	atomicity.

17.5

Transaction	Isolation

Transaction-processing	systems	usually	allow	multiple	transactions	to	run	concurrently.

Allowing	multiple	transactions	to	update	data	concurrently	causes	several	complications	with	consistency
of	the	data,	as	we	saw	earlier.	Ensuring	consistency	in	spite	of

808

Chapter	17

Transactions

Note	17.1	TRENDS	IN	CONCURRENCY

Several	current	trends	in	the	field	of	computing	are	giving	rise	to	an	increase	in	the	amount	of
concurrency	possible.	As	database	systems	exploit	this	concurrency	to	increase	overall	system
performance,	there	will	necessarily	be	an	increasing	number	of	transactions	run	concurrently.

Early	computers	had	only	one	processor.	Therefore,	there	was	never	any	real	concurrency	in	the
computer.	The	only	concurrency	was	apparent	concurrency	created	by	the	operating	system	as	it	shared
the	processor	among	several	distinct	tasks	or	processes.	Modern	computers	are	likely	to	have	many
processors.	Each	processor	is	referred	to	as	a	core;	a	single	processor	chip	may	contain	several	cores,	and
several	such	chips	may	be	connected	together	in	a	single	system,	which	all	share	a	common	system
memory.	Further,	parallel	database	systems	may	contain	multiple	such	systems.	Parallel	database
architectures	are	discussed	in	Chapter	20.

The	parallelism	provided	by	multiple	processors	and	cores	is	used	for	two	purposes.	One	is	to	execute
different	parts	of	a	single	long	running	query	in	parallel,	to	speed	up	query	execution.	The	other	is	to
allow	a	large	number	of	queries	(often	much	smaller	queries)	to	execute	concurrently,	for	example	to
support	a	very	large	number	of	concurrent	users.	Chapter	21	through	Chapter	23	describe	algorithms	for
building	parallel	database	systems.

concurrent	execution	of	transactions	requires	extra	work;	it	is	far	easier	to	insist	that	transactions	run
serially	—	that	is,	one	at	a	time,	each	starting	only	after	the	previous	one	has	completed.	However,	there
are	two	good	reasons	for	allowing	concurrency:

•	Improved	throughput	and	resource	utilization.	A	transaction	consists	of	many	steps.

Some	involve	I/O	activity;	others	involve	CPU	activity.	The	CPU	and	the	disks	in	a	computer	system	can
operate	in	parallel.	Therefore,	I/O	activity	can	be	done	in	parallel	with	processing	at	the	CPU.	The
parallelism	of	the	CPU	and	the	I/O

system	can	therefore	be	exploited	to	run	multiple	transactions	in	parallel.	While	a	read	or	write	on	behalf
of	one	transaction	is	in	progress	on	one	disk,	another	transaction	can	be	running	in	the	CPU,	while
another	disk	may	be	executing	a	read	or	write	on	behalf	of	a	third	transaction.	All	of	this	increases	the
throughput	of	the	system	—	that	is,	the	number	of	transactions	executed	in	a	given	amount	of	time.
Correspondingly,	the	processor	and	disk	utilization	also	increase;	in	other	words,	the	processor	and	disk
spend	less	time	idle,	or	not	performing	any	useful	work.

•	Reduced	waiting	time.	There	may	be	a	mix	of	transactions	running	on	a	system,	some	short	and	some
long.	If	transactions	run	serially,	a	short	transaction	may	have	to	wait	for	a	preceding	long	transaction	to
complete,	which	can	lead	to	un-

17.5

Transaction	Isolation

809

predictable	delays	in	running	a	transaction.	If	the	transactions	are	operating	on	different	parts	of	the
database,	it	is	better	to	let	them	run	concurrently,	sharing	the	CPU	cycles	and	disk	accesses	among	them.
Concurrent	execution	reduces	the	unpredictable	delays	in	running	transactions.	Moreover,	it	also	reduces
the	average	response	time:	the	average	time	for	a	transaction	to	be	completed	after	it	has	been
submitted.

The	motivation	for	using	concurrent	execution	in	a	database	is	essentially	the	same	as	the	motivation	for
using	multiprogramming	in	an	operating	system.

When	several	transactions	run	concurrently,	the	isolation	property	may	be	violated,	resulting	in	database
consistency	being	destroyed	despite	the	correctness	of	each	individual	transaction.	In	this	section,	we
present	the	concept	of	schedules	to	help	identify	those	executions	that	are	guaranteed	to	ensure	the
isolation	property	and	thus	database	consistency.

The	database	system	must	control	the	interaction	among	the	concurrent	transactions	to	prevent	them
from	destroying	the	consistency	of	the	database.	It	does	so	through	a	variety	of	mechanisms	called
concurrency-control	schemes.	We	study	concurrency-control	schemes	in	Chapter	18;	for	now,	we	focus	on
the	concept	of	correct	concurrent	execution.

Consider	again	the	simplified	banking	system	of	Section	17.1,	which	has	several	accounts,	and	a	set	of
transactions	that	access	and	update	those	accounts.	Let	T	and	1

T	be	two	transactions	that	transfer	funds	from	one	account	to	another.	Transaction	T

2

1

transfers	$50	from	account	A	to	account	B.	It	is	defined	as:	T	:

1

read(A);

A	:=	A	−	50;

write(A);

read(B);

B	:=	B	+	50;

write(B).

Transaction	T	transfers	10	percent	of	the	balance	from	account	A	to	account	B.	It	is	2

defined	as:

T	:

2

read(A);

temp	:=	A	*	0.1;

A	:=	A	−	temp;

write(A);

read(B);

B	:=	B	+	temp;

write(B).

810

Chapter	17

Transactions

T

T

1

2

read(A)

A	:=	A	−	50

write(A)

read(B)

B	:=	B	+	50

write(B)

commit

read(A)

temp	:=	A	∗	0.1

A	:=	A	−	temp

write(A)

read(B)

B	:=	B	+	temp

write(B)

commit

Figure	17.2	Schedule	1—a	serial	schedule	in	which	T	1	is	followed	by	T	2.

Suppose	the	current	values	of	accounts	A	and	B	are	$1000	and	$2000,	respectively.

Suppose	also	that	the	two	transactions	are	executed	one	at	a	time	in	the	order	T	fol-1

lowed	by	T	.	This	execution	sequence	appears	in	Figure	17.2.	In	the	figure,	the	sequence	2

of	instruction	steps	is	in	chronological	order	from	top	to	bottom,	with	instructions	of	T	appearing	in	the
left	column	and	instructions	of	T	appearing	in	the	right	column.

1

2

The	final	values	of	accounts	A	and	B,	after	the	execution	in	Figure	17.2	takes	place,	are	$855	and	$2145,
respectively.	Thus,	the	total	amount	of	money	in	accounts	A	and	B	—

that	is,	the	sum	A	+	B	—	is	preserved	after	the	execution	of	both	transactions.

Similarly,	if	the	transactions	are	executed	one	at	a	time	in	the	order	T	followed	2

by	T	,	then	the	corresponding	execution	sequence	is	that	of	Figure	17.3.	Again,	as	1

expected,	the	sum	A	+	B	is	preserved,	and	the	final	values	of	accounts	A	and	B	are	$850

and	$2150,	respectively.

The	execution	sequences	just	described	are	called	schedules.	They	represent	the	chronological	order	in
which	instructions	are	executed	in	the	system.	Clearly,	a	schedule	for	a	set	of	transactions	must	consist	of
all	instructions	of	those	transactions	and	they	must	preserve	the	order	in	which	the	instructions	appear	in
each	individual	transaction.	For	example,	in	transaction	T	,	the	instruction

1

write(A)	must	appear	before

the	instruction	read(B),	in	any	valid	schedule.	Note	that	we	include	in	our	schedules	the	commit
operation	to	indicate	that	the	transaction	has	entered	the	committed	state.

In	the	following	discussion,	we	shall	refer	to	the	first	execution	sequence	(T	followed	1

by	T)	as	schedule	1,	and	to	the	second	execution	sequence	(T	followed	by	T)	as	2

2

1

schedule	2.

17.5

Transaction	Isolation

811

T

T

1

2

read(A)

temp	:=	A	∗	0.1

A	:=	A	−	temp

write(A)

read(B)

B	:=	B	+	temp

write(B)

commit

read(A)

A	:=	A	−	50

write(A)

read(B)

B	:=	B	+	50

write(B)

commit

Figure	17.3	Schedule	2—a	serial	schedule	in	which	T	2	is	followed	by	T	1.

These	schedules	are	serial:	Each	serial	schedule	consists	of	a	sequence	of	instructions	from	various
transactions,	where	the	instructions	belonging	to	one	single	transaction	appear	together	in	that	schedule.
Recalling	a	well-known	formula	from	combinatorics,	we	note	that,	for	a	set	of	n	transactions,	there	exist	n
factorial	(n!)	different	valid	serial	schedules.

When	the	database	system	executes	several	transactions	concurrently,	the	corresponding	schedule	no
longer	needs	to	be	serial.	If	two	transactions	are	running	concurrently,	the	operating	system	may	execute
one	transaction	for	a	little	while,	then	perform	a	context	switch,	execute	the	second	transaction	for	some
time,	and	then	switch	back	to	the	first	transaction	for	some	time,	and	so	on.	With	multiple	transactions,
the	CPU

time	is	shared	among	all	the	transactions.

Several	execution	sequences	are	possible,	since	the	various	instructions	from	both	transactions	may	now
be	interleaved.	In	general,	it	is	not	possible	to	predict	exactly	how	many	instructions	of	a	transaction	will
be	executed	before	the	CPU	switches	to	another	transaction.1

Returning	to	our	previous	example,	suppose	that	the	two	transactions	are	executed	concurrently.	One
possible	schedule	appears	in	Figure	17.4.	After	this	execution	takes	place,	we	arrive	at	the	same	state	as
the	one	in	which	the	transactions	are	executed	serially	in	the	order	T	followed	by	T	.	The	sum	A	+	B	is
indeed	preserved.

1

2

1The	number	of	possible	schedules	for	a	set	of	n	transactions	is	very	large.	There	are	n!	different	serial
schedules.

Considering	all	the	possible	ways	that	steps	of	transactions	might	be	interleaved,	the	total	number	of
possible	schedules	is	much	larger	than	n!.

812

Chapter	17

Transactions

T

T

1

2

read(A)

A	:=	A	−	50

write(A)

read(A)

temp	:=	A	∗	0.1

A	:=	A	−	temp

write(A)

read(B)

B	:=	B	+	50

write(B)

commit

read(B)

B	:=	B	+	temp

write(B)

commit

Figure	17.4	Schedule	3—a	concurrent	schedule	equivalent	to	schedule	1.

Not	all	concurrent	executions	result	in	a	correct	state.	To	illustrate,	consider	the	schedule	of	Figure	17.5.
After	the	execution	of	this	schedule,	we	arrive	at	a	state	where	the	final	values	of	accounts	A	and	B	are
$950	and	$2100,	respectively.	This	final	state	is	an	inconsistent	state,	since	we	have	gained	$50	in	the
process	of	the	concurrent	execution.	Indeed,	the	sum	A	+	B	is	not	preserved	by	the	execution	of	the	two
transactions.

If	control	of	concurrent	execution	is	left	entirely	to	the	operating	system,	many	possible	schedules,
including	ones	that	leave	the	database	in	an	inconsistent	state,	such	as	the	one	just	described,	are
possible.	It	is	the	job	of	the	database	system	to	ensure	that	any	schedule	that	is	executed	will	leave	the
database	in	a	consistent	state.	The	concurrency-control	component	of	the	database	system	carries	out	this
task.

We	can	ensure	consistency	of	the	database	under	concurrent	execution	by	making	sure	that	any	schedule
that	is	executed	has	the	same	effect	as	a	schedule	that	could	have	occurred	without	any	concurrent
execution.	That	is,	the	schedule	should,	in	some	sense,	be	equivalent	to	a	serial	schedule.	Such	schedules

are	called	serializable	schedules.

17.6

Serializability

Before	we	can	consider	how	the	concurrency-control	component	of	the	database	system	can	ensure
serializability,	we	consider	how	to	determine	when	a	schedule	is	serializable.	Certainly,	serial	schedules
are	serializable,	but	if	steps	of	multiple	transactions	are	interleaved,	it	is	harder	to	determine	whether	a
schedule	is	serializable.	Since	trans-

17.6

Serializability

813

T

T

1

2

read(A)

A	:=	A	−	50

read(A)

temp	:=	A	∗	0.1

A	:=	A	−	temp

write(A)

read(B)

write(A)

read(B)

B	:=	B	+	50

write(B)

commit

B	:=	B	+	temp

write(B)

commit

Figure	17.5	Schedule	4—a	concurrent	schedule	resulting	in	an	inconsistent	state.

actions	are	programs,	it	is	difficult	to	determine	exactly	what	operations	a	transaction	performs	and	how
operations	of	various	transactions	interact.	For	this	reason,	we	shall	not	consider	the	various	types	of
operations	that	a	transaction	can	perform	on	a	data	item,	but	instead	consider	only	two	operations:	read
and	write.	We	assume	that,	between	a	read(Q)	instruction	and	a	write(Q)	instruction	on	a	data	item	Q,	a
transaction	may	perform	an	arbitrary	sequence	of	operations	on	the	copy	of	Q	that	is	residing	in	the	local
buffer	of	the	transaction.	In	this	model,	the	only	significant	operations	of	a	transaction,	from	a	scheduling
point	of	view,	are	its	read	and	write	instructions.	Commit	operations,	though	relevant,	are	not	considered
until	Section	17.7.	We	therefore	may	show	only	read	and	write	instructions	in	schedules,	as	we	do	for
schedule	3	in	Figure	17.6.

In	this	section,	we	discuss	different	forms	of	schedule	equivalence	but	focus	on	a	particular	form	called
conflict	serializability.

Let	us	consider	a	schedule	S	in	which	there	are	two	consecutive	instructions,	I	and	J,	of	transactions	T
and	T	,	respectively	(i	≠	j).	If	I	and	J	refer	to	different	data	i

j

items,	then	we	can	swap	I	and	J	without	affecting	the	results	of	any	instruction	in	the	schedule.	However,
if	I	and	J	refer	to	the	same	data	item	Q,	then	the	order	of	the	two	steps	may	matter.	Since	we	are	dealing
with	only	read	and	write	instructions,	there	are	four	cases	that	we	need	to	consider:

1.	I	=	read(Q),	J	=	read(Q).	The	order	of	I	and	J	does	not	matter,	since	the	same	value	of	Q	is	read	by	T
and	T	,	regardless	of	the	order.

i

j

814

Chapter	17

Transactions

T

T

1

2

read(A)

write(A)

read(A)

write(A)

read(B)

write(B)

read(B)

write(B)

Figure	17.6	Schedule	3—showing	only	the	read	and	write	instructions.

2.	I	=	read(Q),	J	=	write(Q).	If	I	comes	before	J,	then	T	does	not	read	the	value	i

of	Q	that	is	written	by	T	in	instruction	J.	If	J	comes	before	I	,	then	T	reads	the	j

i

value	of	Q	that	is	written	by	T	.	Thus,	the	order	of	I	and	J	matters.

j

3.	I	=	write(Q),	J	=	read(Q).	The	order	of	I	and	J	matters	for	reasons	similar	to	those	of	the	previous	case.

4.	I	=	write(Q),	J	=	write(Q).	Since	both	instructions	are	write	operations,	the	order	of	these	instructions
does	not	affect	either	T	or	T	.	However,	the	value	i

j

obtained	by	the	next	read(Q)	instruction	of	S	is	affected,	since	the	result	of	only	the	latter	of	the	two
write	instructions	is	preserved	in	the	database.	If	there	is	no	other	write(Q)	instruction	after	I	and	J	in	S,
then	the	order	of	I	and	J	directly	affects	the	final	value	of	Q	in	the	database	state	that	results	from
schedule	S.

Thus,	only	in	the	case	where	both	I	and	J	are	read	instructions	does	the	relative	order	of	their	execution
not	matter.

We	say	that	I	and	J	conflict	if	they	are	operations	by	different	transactions	on	the	same	data	item,	and	at
least	one	of	these	instructions	is	a	write	operation.

To	illustrate	the	concept	of	conflicting	instructions,	we	consider	schedule	3	in	Figure	17.6.	The	write(A)
instruction	of	T	conflicts	with	the

.

1

read(A)	instruction	of	T	2

However,	the	write(A)	instruction	of	T	does	not	conflict	with	the	2

read(B)	instruction

of	T	because	the	two	instructions	access	different	data	items.

1

Let	I	and	J	be	consecutive	instructions	of	a	schedule	S.	If	I	and	J	are	instructions	of	different	transactions
and	I	and	J	do	not	conflict,	then	we	can	swap	the	order	of	I	and	J	to	produce	a	new	schedule	S′.	S	is
equivalent	to	S′,	since	all	instructions	appear	in	the	same	order	in	both	schedules	except	for	I	and	J,
whose	order	does	not	matter.

Since	the	write(A)	instruction	of	T	in	schedule	3	of	Figure	17.6	does	not	con-2

flict	with	the	read(B)	instruction	of	T	,	we	can	swap	these	instructions	to	generate	an	1

equivalent	schedule,	schedule	5,	in	Figure	17.7.	Regardless	of	the	initial	system	state,	schedules	3	and	5
both	produce	the	same	final	system	state.

17.6

Serializability

815

T

T

1

2

read(A)

write(A)

read(A)

read(B)

write(A)

write(B)

read(B)

write(B)

Figure	17.7	Schedule	5—schedule	3	after	swapping	of	a	pair	of	instructions.

We	continue	to	swap	nonconflicting	instructions:

•	Swap	the	read(B)	instruction	of	T	with	the

.

1

read(A)	instruction	of	T	2

•	Swap	the	write(B)	instruction	of	T	with	the

.

1

write(A)	instruction	of	T	2

•	Swap	the	write(B)	instruction	of	T	with	the

.

1

read(A)	instruction	of	T	2

The	final	result	of	these	swaps,	schedule	6	of	Figure	17.8,	is	a	serial	schedule.	Note	that	schedule	6	is
exactly	the	same	as	schedule	1,	but	it	shows	only	the	read	and	write	instructions.	Thus,	we	have	shown
that	schedule	3	is	equivalent	to	a	serial	schedule.

This	equivalence	implies	that,	regardless	of	the	initial	system	state,	schedule	3	produces	the	same	final
state	as	some	serial	schedule.

If	a	schedule	S	can	be	transformed	into	a	schedule	S′	by	a	series	of	swaps	of	nonconflicting	instructions,
we	say	that	S	and	S′	are	conflict	equivalent.2

T

T

1

2

read(A)

write(A)

read(B)

write(B)

read(A)

write(A)

read(B)

write(B)

Figure	17.8	Schedule	6—a	serial	schedule	that	is	equivalent	to	schedule	3.

2We	use	the	term	conflict	equivalent	to	distinguish	the	way	we	have	just	defined	equivalence	from	other
definitions	that	we	shall	discuss	later	on	in	this	section.

816

Chapter	17

Transactions

T

T

3

4

read(Q)

write(Q)

write(Q)

Figure	17.9	Schedule	7.

Not	all	serial	schedules	are	conflict	equivalent	to	each	other.	For	example,	schedules	1	and	2	are	not
conflict	equivalent.

The	concept	of	conflict	equivalence	leads	to	the	concept	of	conflict	serializability.

We	say	that	a	schedule	S	is	conflict	serializable	if	it	is	conflict	equivalent	to	a	serial	schedule.	Thus,
schedule	3	is	conflict	serializable,	since	it	is	conflict	equivalent	to	the	serial	schedule	1.

Finally,	consider	schedule	7	of	Figure	17.9;	it	consists	of	only	the	significant	operations	(that	is,	the	read
and	write)	of	transactions	T	and	T	.	This	schedule	is	not	3

4

conflict	serializable,	since	it	is	not	equivalent	to	either	the	serial	schedule	,	T	>	or	3

4

the	serial	schedule	,	T	>.

4

3

We	now	present	a	simple	and	efficient	method	for	determining	the	conflict	serializability	of	a	schedule.
Consider	a	schedule	S.	We	construct	a	directed	graph,	called	a	precedence	graph,	from	S.	This	graph
consists	of	a	pair	G	=	(V,	E),	where	V	is	a	set	of	vertices	and	E	is	a	set	of	edges.	The	set	of	vertices
consists	of	all	the	transactions	participating	in	the	schedule.	The	set	of	edges	consists	of	all	edges	T	→	T
for	which	i

j

one	of	three	conditions	holds:

1.	T	executes

executes

i

write(Q)	before	Tj

read(Q).

2.	T	executes

executes

i

read(Q)	before	Tj

write(Q).

3.	T	executes

executes

i

write(Q)	before	Tj

write(Q).

If	an	edge	T	→	T	exists	in	the	precedence	graph,	then,	in	any	serial	schedule	S′	equiv-i

j

alent	to	S,	T	must	appear	before	T	.

i

j

For	example,	the	precedence	graph	for	schedule	1	in	Figure	17.10a	contains	the	single	edge	T	→	T	,	since
all	the	instructions	of	T	are	executed	before	the	first	in-1

2

1

struction	of	T	is	executed.	Similarly,	Figure	17.10b	shows	the	precedence	graph	for	2

T

T

T

T

1

2

2

1

(a)

(b)

Figure	17.10	Precedence	graph	for	(a)	schedule	1	and	(b)	schedule	2.

17.6

Serializability

817

T

T

1

2

Figure	17.11	Precedence	graph	for	schedule	4.

schedule	2	with	the	single	edge	T	→	T	,	since	all	the	instructions	of	T	are	executed	2

1

2

before	the	first	instruction	of	T	is	executed.

1

The	precedence	graph	for	schedule	4	appears	in	Figure	17.11.	It	contains	the	edge	T	→	T	because	T
executes

executes

1

2

1

read(A)	before	T	2

write(A).	It	also	contains	the

edge	T	→	T	because	T	executes

executes

2

1

2

read(B)	before	T	1

write(B).

If	the	precedence	graph	for	S	has	a	cycle,	then	schedule	S	is	not	conflict	serializable.	If	the	graph	contains
no	cycles,	then	the	schedule	S	is	conflict	serializable.

A	serializability	order	of	the	transactions	can	be	obtained	by	finding	a	linear	order	consistent	with	the
partial	order	of	the	precedence	graph.	This	process	is	called	topological	sorting.	There	are,	in	general,
several	possible	linear	orders	that	can	be	obtained	through	a	topological	sort.	For	example,	the	graph	of
Figure	17.12a	has	the	two	acceptable	linear	orderings	shown	in	Figure	17.12b	and	Figure	17.12c.

Thus,	to	test	for	conflict	serializability,	we	need	to	construct	the	precedence	graph	and	to	invoke	a	cycle-
detection	algorithm.	Cycle-detection	algorithms	can	be	found	in	standard	textbooks	on	algorithms.	Cycle-
detection	algorithms,	such	as	those	based	on	depth-first	search,	require	on	the	order	of	n	2	operations,
where	n	is	the	number	of	vertices	in	the	graph	(that	is,	the	number	of	transactions).3

Returning	to	our	previous	examples,	note	that	the	precedence	graphs	for	schedules	1	and	2	(Figure	17.10)
indeed	do	not	contain	cycles.	The	precedence	graph	for	schedule	4	(Figure	17.11),	on	the	other	hand,
contains	a	cycle,	indicating	that	this	schedule	is	not	conflict	serializable.

It	is	possible	to	have	two	schedules	that	produce	the	same	outcome	but	that	are	not	conflict	equivalent.
For	example,	consider	transaction	T	,	which	transfers	$10	from	5

account	B	to	account	A.	Let	schedule	8	be	as	defined	in	Figure	17.13.	We	claim	that	schedule	8	is	not
conflict	equivalent	to	the	serial	schedule	,	T	>,	since,	in	sched-1

5

ule	8,	the	write(B)	instruction	of	T	conflicts	with	the

.	This

5

read(B)	instruction	of	T	1

creates	an	edge	T	→	T	in	the	precedence	graph.	Similarly,	we	see	that	the	5

1

write(A)

instruction	of	T	conflicts	with	the

,	creating	an	edge	T	→	T	.

1

read	instruction	of	T	5

1

5

This	shows	that	the	precedence	graph	has	a	cycle	and	that	schedule	8	is	not	serializable.

However,	the	final	values	of	accounts	A	and	B	after	the	execution	of	either	schedule	8

or	the	serial	schedule	,	T	>	are	the	same—$960	and	$2040,	respectively.

1

5

3If	instead	we	measure	complexity	in	terms	of	the	number	of	edges,	which	corresponds	to	the	number	of
actual	conflicts	between	active	transactions,	then	depth-first-based	cycle	detection	is	linear.

818

Chapter	17

Transactions

Ti

T

T

j

k

Tm

(a)

T

T

i

i

Tj

Tk

T

T

k

j

T

T

m

m

(b)

(c)

Figure	17.12	Illustration	of	topological	sorting.

We	can	see	from	this	example	that	there	are	less-stringent	definitions	of	schedule	equivalence	than
conflict	equivalence.	For	the	system	to	determine	that	schedule	8

produces	the	same	outcome	as	the	serial	schedule	,	T	>,	it	must	analyze	the	com-1

5

putation	performed	by	T	and	T	,	rather	than	just	the

1

5

read	and	write	operations.	In

general,	such	analysis	is	hard	to	implement	and	is	computationally	expensive.	In	our	example,	the	final

result	is	the	same	as	that	of	a	serial	schedule	because	of	the	mathematical	fact	that	the	increment	and
decrement	operations	are	commutative.	While	this	may	be	easy	to	see	in	our	simple	example,	the	general
case	is	not	so	easy	since	a	transaction	may	be	expressed	as	a	complex	SQL	statement,	a	Java	program
with	JDBC

calls,	etc.

However,	there	are	other	definitions	of	schedule	equivalence	based	purely	on	the	read	and	write
operations.	One	such	definition	is	view	equivalence,	a	definition	that	leads	to	the	concept	of	view
serializability.	View	serializability	is	not	used	in	practice	due	to	its	high	degree	of	computational
complexity.4	We	therefore	defer	discussion	of	4Testing	for	view	serializability	has	been	proven	to	be	NP-
complete,	which	means	that	it	is	virtually	certain	that	no	efficient	test	for	view	serializability	exists.

17.7

Transaction	Isolation	and	Atomicity

819

T

T

1

5

read(A)

A	:=	A	−	50

write(A)

read(B)

B	:=	B	−	10

write(B)

read(B)

B	:=	B	+	50

write(B)

read(A)

A	:=	A	+	10

write(A)

Figure	17.13	Schedule	8.

view	serializability	to	Chapter	18,	but,	for	completeness,	note	here	that	the	example	of	schedule	8	is	not

view	serializable.

17.7

Transaction	Isolation	and	Atomicity

So	far,	we	have	studied	schedules	while	assuming	implicitly	that	there	are	no	transaction	failures.	We	now
address	the	effect	of	transaction	failures	during	concurrent	execution.

If	a	transaction	T	fails,	for	whatever	reason,	we	need	to	undo	the	effect	of	this	i

transaction	to	ensure	the	atomicity	property	of	the	transaction.	In	a	system	that	allows	concurrent
execution,	the	atomicity	property	requires	that	any	transaction	T	that	is	j

dependent	on	T	(i.e.,	T	has	read	data	written	by	T)	is	also	aborted.	To	achieve	this,	i

j

i

we	need	to	place	restrictions	on	the	types	of	schedules	permitted	in	the	system.

In	the	following	two	subsections,	we	address	the	issue	of	what	schedules	are	acceptable	from	the
viewpoint	of	recovery	from	transaction	failure.	We	describe	in	Chapter	18	how	to	ensure	that	only	such
acceptable	schedules	are	generated.

17.7.1

Recoverable	Schedules

Consider	the	partial	schedule	9	in	Figure	17.14,	in	which	T	is	a	transaction	that	per-7

forms	only	one	instruction:	read(A).	We	call	this	a	partial	schedule	because	we	have	not	included	a
commit	or	abort	operation	for	T	.	Notice	that	T	commits	immediately	6

7

after	executing	the	read(A)	instruction.	Thus,	T	commits	while	T	is	still	in	the	ac-7

6

tive	state.	Now	suppose	that	T	fails	before	it	commits.	T	has	read	the	value	of	data	6

7

item	A	written	by	T	.	Therefore,	we	say	that	T	is	dependent	on	T	.	Because	of	this,	we	6

7

6

must	abort	T	to	ensure	atomicity.	However,	T	has	already	committed	and	cannot	be	7

7

820

Chapter	17

Transactions

T

T

6

7

read(A)

write(A)

read(A)

commit

read(B)

Figure	17.14	Schedule	9,	a	nonrecoverable	schedule.

aborted.	Thus,	we	have	a	situation	where	it	is	impossible	to	recover	correctly	from	the	failure	of	T	.

6

Schedule	9	is	an	example	of	a	nonrecoverable	schedule.	A	recoverable	schedule	is	one	where,	for	each
pair	of	transactions	T	and	T	such	that	T	reads	a	data	item	previously	i

j

j

written	by	T	,	the	commit	operation	of	T	appears	before	the	commit	operation	of	T	.

i

i

j

For	the	example	of	schedule	9	to	be	recoverable,	T	would	have	to	delay	committing	7

until	after	T	commits.

6

17.7.2

Cascadeless	Schedules

Even	if	a	schedule	is	recoverable,	to	recover	correctly	from	the	failure	of	a	transaction	T	,	we	may	have	to

roll	back	several	transactions.	Such	situations	occur	if	transac-i

tions	have	read	data	written	by	T	.	As	an	illustration,	consider	the	partial	schedule	of	i

Figure	17.15.	Transaction	T	writes	a	value	of	A	that	is	read	by	transaction	T	.	Transac-8

9

tion	T	writes	a	value	of	A	that	is	read	by	transaction	T	.	Suppose	that,	at	this	point,	9

10

T	fails.	T	must	be	rolled	back.	Since	T	is	dependent	on	T	,	T	must	be	rolled	back.

8

8

9

8

9

Since	T

is	dependent	on	T	,	T

must	be	rolled	back.	This	phenomenon,	in	which	a

10

9

10

single	transaction	failure	leads	to	a	series	of	transaction	rollbacks,	is	called	cascading	rollback.

T

T

T

8

9

10

read(A)

read(B)

write(A)

read(A)

write(A)

read(A)

abort

Figure	17.15	Schedule	10.

17.8

Transaction	Isolation	Levels

821

Cascading	rollback	is	undesirable,	since	it	leads	to	the	undoing	of	a	significant	amount	of	work.	It	is
desirable	to	restrict	the	schedules	to	those	where	cascading	rollbacks	cannot	occur.	Such	schedules	are

called	cascadeless	schedules.	Formally,	a	cascadeless	schedule	is	one	where,	for	each	pair	of	transactions
T	and	T	such	that	T	reads	i

j

j

a	data	item	previously	written	by	T	,	the	commit	operation	of	T	appears	before	the	read	i

i

operation	of	T	.	It	is	easy	to	verify	that	every	cascadeless	schedule	is	also	recoverable.

j

17.8

Transaction	Isolation	Levels

Serializability	is	a	useful	concept	because	it	allows	programmers	to	ignore	issues	related	to	concurrency
when	they	code	transactions.	If	every	transaction	has	the	property	that	it	maintains	database	consistency
if	executed	alone,	then	serializability	ensures	that	concurrent	executions	maintain	consistency.	However,
the	protocols	required	to	ensure	serializability	may	allow	too	little	concurrency	for	certain	applications.	In
these	cases,	weaker	levels	of	consistency	are	used.	The	use	of	weaker	levels	of	consistency	places
additional	burdens	on	programmers	for	ensuring	database	correctness.

The	SQL	standard	also	allows	a	transaction	to	specify	that	it	may	be	executed	in	such	a	way	that	it
becomes	nonserializable	with	respect	to	other	transactions.	For	instance,	a	transaction	may	operate	at	the
isolation	level	of	read	uncommitted,	which	permits	the	transaction	to	read	a	data	item	even	if	it	was
written	by	a	transaction	that	has	not	been	committed.	SQL	provides	such	features	for	the	benefit	of	long
transactions	whose	results	do	not	need	to	be	precise.	If	these	transactions	were	to	execute	in	a
serializable	fashion,	they	could	interfere	with	other	transactions,	causing	the	others’

execution	to	be	delayed.

The	isolation	levels	specified	by	the	SQL	standard	are	as	follows:

•	Serializable	usually	ensures	serializable	execution.	However,	as	we	shall	explain	shortly,	some	database
systems	implement	this	isolation	level	in	a	manner	that	may,	in	certain	cases,	allow	nonserializable
executions.

•	Repeatable	read	allows	only	committed	data	to	be	read	and	further	requires	that,	between	two	reads	of
a	data	item	by	a	transaction,	no	other	transaction	is	allowed	to	update	it.	However,	the	transaction	may
not	be	serializable	with	respect	to	other	transactions.	For	instance,	when	it	is	searching	for	data	satisfying
some	conditions,	a	transaction	may	find	some	of	the	data	inserted	by	a	committed	transaction,	but	may
not	find	other	data	inserted	by	the	same	transaction.

•	Read	committed	allows	only	committed	data	to	be	read,	but	does	not	require	repeatable	reads.	For
instance,	between	two	reads	of	a	data	item	by	the	transaction,	another	transaction	may	have	updated	the
data	item	and	committed.

•	Read	uncommitted	allows	uncommitted	data	to	be	read.	It	is	the	lowest	isolation	level	allowed	by	SQL.

822

Chapter	17

Transactions

All	the	isolation	levels	above	additionally	disallow	dirty	writes,	that	is,	they	disallow	writes	to	a	data	item
that	has	already	been	written	by	another	transaction	that	has	not	yet	committed	or	aborted.

Many	database	systems	run,	by	default,	at	the	read-committed	isolation	level.	In	SQL,	it	is	possible	to	set
the	isolation	level	explicitly,	rather	than	accepting	the	system’s	default	setting.	For	example,	the
statement

set	transaction	isolation	level	serializable

sets	the	isolation	level	to	serializable;	any	of	the	other	isolation	levels	may	be	specified	instead.	The
preceding	syntax	is	supported	by	Oracle,	PostgreSQL,	and	SQL	Server;	Oracle	uses	the	syntax

alter	session	set	isolation	level	=	serializable

while	DB2	uses	the	syntax	“change	isolation	level”	with	its	own	abbreviations	for	isolation	levels.
Changing	of	the	isolation	level	must	be	done	as	the	first	statement	of	a	transaction.

By	default,	most	databases	commit	individual	statements	as	soon	as	they	are	executed.	Such	automatic
commit	of	individual	statements	must	be	turned	off	to	allow	multiple	statements	to	run	as	a	single
transaction.	The	command	start	transaction	ensures	that	subsequent	SQL	statements,	until	a	subsequent
commit	or	rollback,	are	executed	as	a	single	transaction.	As	expected,	the	commit	operation	commits	the
preceding	SQL

statements,	while	rollback	rolls	back	the	preceding	SQL	statements.	(SQL	Server	uses	begin	transaction
in	place	of	start	transaction,	while	Oracle	and	PostgreSQL	treat	begin	as	identical	to	start	transaction.)

APIs	such	as	JDBC	and	ODBC	provide	functions	to	turn	off	automatic	commit.	In	JDBC	the	setAutoCommit
method	of	the	Connection	interface	(which	we	saw	earlier	in	Section	5.1.1.8)	can	be	used	to	turn
automatic	commit	off	by	invoking	setAutoCommit(false),	or	on	by	invoking	setAutoCommit(true).	Further,
in	JDBC	the	method	set-TransactionIsolation(int	level)	of	the	Connection	interface	can	be	invoked	with
any	one	of

•	Connection.TRANSACTION	SERIALIZABLE,

•	Connection.TRANSACTION	REPEATABLE	READ,

•	Connection.TRANSACTION	READ	COMMITTED,	or

•	Connection.TRANSACTION	READ	UNCOMMITTED

to	set	the	transaction	isolation	level	correspondingly.

An	application	designer	may	decide	to	accept	a	weaker	isolation	level	in	order	to	improve	system
performance.	As	we	shall	see	in	Section	17.9	and	Chapter	18,	ensuring	serializability	may	force	a
transaction	to	wait	for	other	transactions	or,	in	some	cases,	to	abort	because	the	transaction	can	no
longer	be	executed	as	part	of	a	serializable	execution.	While	it	may	seem	shortsighted	to	risk	database
consistency	for	performance,

17.9

Implementation	of	Isolation	Levels

823

this	trade-off	makes	sense	if	we	can	be	sure	that	the	inconsistency	that	may	occur	is	not	relevant	to	the
application.

There	are	many	means	of	implementing	isolation	levels.	As	long	as	the	implementation	ensures
serializability,	the	designer	of	a	database	application	or	a	user	of	an	application	does	not	need	to	know	the
details	of	such	implementations,	except	perhaps	for	dealing	with	performance	issues.	Unfortunately,	even
if	the	isolation	level	is	set	to	serializable,	some	database	systems	actually	implement	a	weaker	level	of
isolation,	which	does	not	rule	out	every	possible	nonserializable	execution;	we	revisit	this	issue	in	Section
17.9.	If	weaker	levels	of	isolation	are	used,	either	explicitly	or	implicitly,	the	application	designer	has	to	be
aware	of	some	details	of	the	implementation,	to	avoid	or	minimize	the	chance	of	inconsistency	due	to	lack
of	serializability.

17.9

Implementation	of	Isolation	Levels

So	far,	we	have	seen	what	properties	a	schedule	must	have	if	it	is	to	leave	the	database	in	a	consistent
state	and	allow	transaction	failures	to	be	handled	in	a	safe	manner.

There	are	various	concurrency-control	policies	that	we	can	use	to	ensure	that,	even	when	multiple
transactions	are	executed	concurrently,	only	acceptable	schedules	are	generated,	regardless	of	how	the
operating	system	time-shares	resources	(such	as	CPU

time)	among	the	transactions.

As	a	trivial	example	of	a	concurrency-control	policy,	consider	this:	A	transaction	acquires	a	lock	on	the
entire	database	before	it	starts	and	releases	the	lock	after	it	has	committed.	While	a	transaction	holds	a
lock,	no	other	transaction	is	allowed	to	acquire	the	lock,	and	all	must	therefore	wait	for	the	lock	to	be
released.	As	a	result	of	the	locking	policy,	only	one	transaction	can	execute	at	a	time.	Therefore,	only
serial	schedules	are	generated.	These	are	trivially	serializable,	and	it	is	easy	to	verify	that	they	are
recoverable	and	cascadeless	as	well.

A	concurrency-control	policy	such	as	this	one	leads	to	poor	performance,	since	it	forces	transactions	to
wait	for	preceding	transactions	to	finish	before	they	can	start.	In	other	words,	it	provides	a	poor	degree	of
concurrency	(indeed,	no	concurrency	at	all).

As	we	saw	in	Section	17.5,	concurrent	execution	has	substantial	performance	benefits.

The	goal	of	concurrency-control	policies	is	to	provide	a	high	degree	of	concurrency,	while	ensuring	that	all
schedules	that	can	be	generated	are	conflict	or	view	serializable,	recoverable,	and	cascadeless.

Here	we	provide	an	overview	of	how	some	of	most	important	concurrency-control	mechanisms	work,	and
we	defer	the	details	to	Chapter	18.

17.9.1

Locking

Instead	of	locking	the	entire	database,	a	transaction	could	instead	lock	only	those	data	items	that	it
accesses.	Under	such	a	policy,	the	transaction	must	hold	locks	long	enough	to	ensure	serializability,	but
for	a	period	short	enough	not	to	harm	performance	exces-

824

Chapter	17

Transactions

Note	17.2	SERIALIZABILITY	IN	THE	REAL	WORLD

Serializable	schedules	are	the	ideal	way	to	ensure	consistency,	but	in	our	day-today	lives,	we	don’t	impose
such	stringent	requirements.	A	web	site	offering	goods	for	sale	may	list	an	item	as	being	in	stock,	yet	by
the	time	a	user	selects	the	item	and	goes	through	the	checkout	process,	that	item	might	no	longer	be
available.

Viewed	from	a	database	perspective,	this	would	be	a	nonrepeatable	read.

As	another	example,	consider	seat	selection	for	air	travel.	Assume	that	a	traveler	has	already	booked	an
itinerary	and	now	is	selecting	seats	for	each	flight.	Many	airline	web	sites	allow	the	user	to	step	through
the	various	flights	and	choose	a	seat,	after	which	the	user	is	asked	to	confirm	the	selection.	It	could	be
that	other	travelers	are	selecting	seats	or	changing	their	seat	selections	for	the	same	flights	at	the	same
time.	The	seat	availability	that	the	traveler	was	shown	is	thus	actually	changing,	but	the	traveler	is	shown
a	snapshot	of	the	seat	availability	as	of	when	the	traveler	started	the	seat	selection	process.

Even	if	two	travelers	are	selecting	seats	at	the	same	time,	most	likely	they	will	select	different	seats,	and
if	so	there	would	be	no	real	conflict.	However,	the	transactions	are	not	serializable,	since	each	traveler
has	read	data	that	was	subsequently	updated	by	the	other	traveler,	leading	to	a	cycle	in	the	precedence
graph.	If	two	travelers	performing	seat	selection	concurrently	actually	selected	the	same	seat,	one	of
them	would	not	be	able	to	get	the	seat	they	selected;	however,	the	situation	could	be	easily	resolved	by
asking	the	traveler	to	perform	the	selection	again,	with	updated	seat	availability	information.

It	is	possible	to	enforce	serializability	by	allowing	only	one	traveler	to	do	seat	selection	for	a	particular
flight	at	a	time.	However,	doing	so	could	cause	significant	delays	as	travelers	would	have	to	wait	for	their
flight	to	become	available	for	seat	selection;	in	particular	a	traveler	who	takes	a	long	time	to	make	a
choice	could	cause	serious	problems	for	other	travelers.	Instead,	any	such	transaction	is	typically	broken
up	into	a	part	that	requires	user	interaction	and	a	part	that	runs	exclusively	on	the	database.	In	the
example	above,	the	database	transaction	would	check	if	the	seats	chosen	by	the	user	are	still	available,
and	if	so	update	the	seat	selection	in	the	database.	Serializability	is	ensured	only	for	the	transactions	that
run	on	the	database,	without	user	interaction.

sively.	Complicating	matters	are	SQL	statements	where	the	data	items	accessed	depend	on	a	where
clause,	which	we	discuss	in	Section	17.10.	In	Chapter	18,	we	present	the	two-phase	locking	protocol,	a
simple,	widely	used	technique	that	ensures	serializability.

Stated	simply,	two-phase	locking	requires	a	transaction	to	have	two	phases,	one	where	it	acquires	locks

but	does	not	release	any,	and	a	second	phase	where	the	transaction	releases	locks	but	does	not	acquire
any.	(In	practice,	locks	are	usually	released	only	when	the	transaction	completes	its	execution	and	has
been	either	committed	or	aborted.)

17.9

Implementation	of	Isolation	Levels

825

Further	improvements	to	locking	result	if	we	have	two	kinds	of	locks:	shared	and	exclusive.	Shared	locks
are	used	for	data	that	the	transaction	reads	and	exclusive	locks	are	used	for	those	it	writes.	Many
transactions	can	hold	shared	locks	on	the	same	data	item	at	the	same	time,	but	a	transaction	is	allowed	an
exclusive	lock	on	a	data	item	only	if	no	other	transaction	holds	any	lock	(regardless	of	whether	shared	or
exclusive)	on	the	data	item.	This	use	of	two	modes	of	locks	along	with	two-phase	locking	allows
concurrent	reading	of	data	while	still	ensuring	serializability.

17.9.2

Timestamps

Another	category	of	techniques	for	the	implementation	of	isolation	assigns	each	transaction	a	timestamp,
typically	when	it	begins.	For	each	data	item,	the	system	keeps	two	timestamps.	The	read	timestamp	of	a
data	item	holds	the	largest	(that	is,	the	most	recent)	timestamp	of	those	transactions	that	read	the	data
item.	The	write	timestamp	of	a	data	item	holds	the	timestamp	of	the	transaction	that	wrote	the	current
value	of	the	data	item.	Timestamps	are	used	to	ensure	that	transactions	access	each	data	item	in	order	of
the	transactions’	timestamps	if	their	accesses	conflict.	When	this	is	not	possible,	offending	transactions
are	aborted	and	restarted	with	a	new	timestamp.

17.9.3

Multiple	Versions	and	Snapshot	Isolation

By	maintaining	more	than	one	version	of	a	data	item,	it	is	possible	to	allow	a	transaction	to	read	an	old
version	of	a	data	item	rather	than	a	newer	version	written	by	an	uncommitted	transaction	or	by	a
transaction	that	should	come	later	in	the	serialization	order.	There	are	a	variety	of	multiversion
concurrency-control	techniques.	One	in	particular,	called	snapshot	isolation,	is	widely	used	in	practice.

In	snapshot	isolation,	we	can	imagine	that	each	transaction	is	given	its	own	version,	or	snapshot,	of	the
database	when	it	begins.5	It	reads	data	from	this	private	version	and	is	thus	isolated	from	the	updates
made	by	other	transactions.	If	the	transaction	updates	the	database,	that	update	appears	only	in	its	own
version,	not	in	the	actual	database	itself.	Information	about	these	updates	is	saved	so	that	the	updates	can
be	applied	to	the	“real”	database	if	the	transaction	commits.

When	a	transaction	T	enters	the	partially	committed	state,	it	then	proceeds	to	the	committed	state	only	if
no	other	concurrent	transaction	has	modified	data	that	T

intends	to	update.	Transactions	that,	as	a	result,	cannot	commit	abort	instead.

Snapshot	isolation	ensures	that	attempts	to	read	data	never	need	to	wait	(unlike	locking).	Read-only
transactions	cannot	be	aborted;	only	those	that	modify	data	run	a	slight	risk	of	aborting.	Since	each
transaction	reads	its	own	version	or	snapshot	of	the	database,	reading	data	does	not	cause	subsequent
update	attempts	by	other	transactions	to	wait	(unlike	locking).	Since	most	transactions	are	read-only	(and
most	others	read	more	data	than	they	update),	this	is	often	a	major	source	of	performance	improvement
as	compared	to	locking.

5In	reality,	the	entire	database	is	not	copied.	Multiple	versions	are	kept	only	of	those	data	items	that	are
changed.

826

Chapter	17

Transactions

The	problem	with	snapshot	isolation	is	that,	paradoxically,	it	provides	too	much	isolation.	Consider	two
transactions	T	and	T	′.	In	a	serializable	execution,	either	T	sees	all	the	updates	made	by	T	′	or	T	′	sees	all
the	updates	made	by	T	,	because	one	must	follow	the	other	in	the	serialization	order.	Under	snapshot
isolation,	there	are	cases	where	neither	transaction	sees	the	updates	of	the	other.	This	is	a	situation	that
cannot	occur	in	a	serializable	execution.	In	many	(indeed,	most)	cases,	the	data	accesses	by	the	two
transactions	do	not	conflict	and	there	is	no	problem.	However,	if	T	reads	some	data	item	that	T	′	updates

and	T	′	reads	some	data	item	that	T	updates,	it	is	possible	that	both	transactions	fail	to	read	the	update
made	by	the	other.	The	result,	as	we	shall	see	in	Chapter	18,	may	be	an	inconsistent	database	state	that,
of	course,	could	not	be	obtained	in	any	serializable	execution.

Oracle,	PostgreSQL,	and	SQL	Server	offer	the	option	of	snapshot	isolation.	Oracle	and	PostgreSQL
versions	prior	to	PostgreSQL	9.1	implement	the	serializable	isolation	level	using	snapshot	isolation.	As	a
result,	their	implementation	of	serializability	can,	in	exceptional	circumstances,	result	in	a	nonserializable
execution	being	allowed.	SQL

Server	instead	includes	an	additional	isolation	level	beyond	the	standard	ones,	called	snapshot,	to	offer
the	option	of	snapshot	isolation.	PostgreSQL	versions	subsequent	to	9.1	implement	a	form	of	concurrency
control	called	serializable	snapshot	isolation,	which	provides	the	benefits	of	snapshot	isolation	while
ensuring	serializability.

17.10

Transactions	as	SQL	Statements

In	Section	4.3,	we	presented	the	SQL	syntax	for	specifying	the	beginning	and	end	of	transactions.	Now
that	we	have	seen	some	of	the	issues	in	ensuring	the	ACID	properties	for	transactions,	we	are	ready	to
consider	how	those	properties	are	ensured	when	transactions	are	specified	as	a	sequence	of	SQL
statements	rather	than	the	restricted	model	of	simple	reads	and	writes	that	we	considered	up	to	this
point.

In	our	simple	model,	we	assumed	a	set	of	data	items	exists.	While	our	simple	model	allowed	data-item
values	to	be	changed,	it	did	not	allow	data	items	to	be	created	or	deleted.	In	SQL,	however,	insert
statements	create	new	data	and	delete	statements	delete	data.	These	two	statements	are,	in	effect,	write
operations,	since	they	change	the	database,	but	their	interactions	with	the	actions	of	other	transactions
are	different	from	what	we	saw	in	our	simple	model.	As	an	example,	consider	how	insertion	or	deletion
would	conflict	with	the	following	SQL	query,	which	finds	all	instructors	who	earn	more	than	$90,000:

select	ID,	name

from	instructor

where	salary	>	90000;

Using	our	sample	instructor	relation	(Section	A.3),	we	find	that	only	Einstein	and	Brandt	satisfy	the
condition.	Now	assume	that	around	the	same	time	we	are	running	our	query,	another	user	inserts	a	new
instructor	named	“James”	whose	salary	is	$100,000.

17.10

Transactions	as	SQL	Statements

827

insert	into	instructor	values	('11111',	'James',	'Marketing',	100000);	The	result	of	our	query	depends	on
whether	this	insert	comes	before	or	after	our	query	is	run.	In	a	concurrent	execution	of	these
transactions,	it	is	intuitively	clear	that	they	conflict,	but	this	is	a	conflict	that	may	not	be	captured	by	our
simple	model.	This	situation	is	referred	to	as	the	phantom	phenomenon	because	a	conflict	may	exist	on
“phantom”	data.

Our	simple	model	of	transactions	required	that	operations	operate	on	a	specific	data	item	given	as	an
argument	to	the	operation.	In	our	simple	model,	we	can	look	at	the	read	and	write	steps	to	see	which	data
items	are	referenced.	But	in	an	SQL	statement,	the	specific	data	items	(tuples)	referenced	may	be
determined	by	a	where	clause	predicate.

So	the	same	transaction,	if	run	more	than	once,	might	reference	different	data	items	each	time	it	is	run	if
the	values	in	the	database	change	between	runs.	In	our	example,	the	'James'	tuple	is	referenced	only	if
our	query	comes	after	the	insertion.	Let	T	denote	the	query	and	let	T	′	denote	the	insert.	If	T	′	comes	first,
then	there	is	an	edge	T	′	→	T

in	the	precedence	graph.	However,	in	the	case	where	the	query	T	comes	first,	there	is	no	edge	in	the
precedence	graph	between	T	and	T	′	despite	the	actual	conflict	on	phantom	data	that	forces	T	to	be
serialized	before	T	′.

The	above-mentioned	problem	demonstrates	that	it	is	not	sufficient	for	concurrency	control	to	consider
only	the	tuples	that	are	accessed	by	a	transaction;	the	information	used	to	find	the	tuples	that	are
accessed	by	the	transaction	must	also	be	considered	for	the	purpose	of	concurrency	control.	The
information	used	to	find	tuples	could	be	updated	by	an	insertion	or	deletion,	or	in	the	case	of	an	index,

even	by	an	update	to	a	search-key	attribute.	For	example,	if	locking	is	used	for	concurrency	control,	the
data	structures	that	track	the	tuples	in	a	relation,	as	well	as	index	structures,	must	be	appropriately
locked.	However,	such	locking	can	lead	to	poor	concurrency	in	some	situations;	index-locking	protocols
that	maximize	concurrency,	while	ensuring	serializability	in	spite	of	inserts,	deletes,	and	predicates	in
queries,	are	discussed	in	Section	18.4.3.

Let	us	consider	again	the	query:

select	ID,	name

from	instructor

where	salary>	90000;

and	the	following	SQL	update:

update	instructor

set	salary	=	salary	*	0.9

where	name	=	’Wu’;

We	now	face	an	interesting	situation	in	determining	whether	our	query	conflicts	with	the	update
statement.	If	our	query	reads	the	entire	instructor	relation,	then	it	reads	the

828

Chapter	17

Transactions

tuple	with	Wu’s	data	and	conflicts	with	the	update.	However,	if	an	index	were	available	that	allowed	our
query	direct	access	to	those	tuples	with	salary	>	90000,	then	our	query	would	not	have	accessed	Wu’s
data	at	all	because	Wu’s	salary	is	initially	$90,000	in	our	example	instructor	relation	and	reduces	to
$81,000	after	the	update.

However,	using	the	above	approach,	it	would	appear	that	the	existence	of	a	conflict	depends	on	a	low-
level	query	processing	decision	by	the	system	that	is	unrelated	to	a	user-level	view	of	the	meaning	of	the
two	SQL	statements!	An	alternative	approach	to	concurrency	control	treats	an	insert,	delete,	or	update	as
conflicting	with	a	predicate	on	a	relation,	if	it	could	affect	the	set	of	tuples	selected	by	a	predicate.	In	our
example	query	above,	the	predicate	is	“salary	>	90000”,	and	an	update	of	Wu’s	salary	from	$90,000	to	a
value	greater	than	$90,000,	or	an	update	of	Einstein’s	salary	from	a	value	greater	than	$90,000	to	a	value
less	than	or	equal	to	$90,000,	would	conflict	with	this	predicate.	Locking	based	on	this	idea	is	called
predicate	locking;	predicate	locking	is	often	implemented	using	locks	on	index	nodes	as	we	see	in	Section
18.4.3.

17.11

Summary

•	A	transaction	is	a	unit	of	program	execution	that	accesses	and	possibly	updates	various	data	items.
Understanding	the	concept	of	a	transaction	is	critical	for	understanding	and	implementing	updates	of
data	in	a	database	in	such	a	way	that	concurrent	executions	and	failures	of	various	forms	do	not	result	in
the	database	becoming	inconsistent.

•	Transactions	are	required	to	have	the	ACID	properties:	atomicity,	consistency,	isolation,	and	durability.

°	Atomicity	ensures	that	either	all	the	effects	of	a	transaction	are	reflected	in	the	database,	or	none	are;	a
failure	cannot	leave	the	database	in	a	state	where	a	transaction	is	partially	executed.

°	Consistency	ensures	that,	if	the	database	is	initially	consistent,	the	execution	of	the	transaction	(by
itself)	leaves	the	database	in	a	consistent	state.

°	Isolation	ensures	that	concurrently	executing	transactions	are	isolated	from	one	another,	so	that	each
has	the	impression	that	no	other	transaction	is	executing	concurrently	with	it.

°	Durability	ensures	that,	once	a	transaction	has	been	committed,	that	transaction’s	updates	do	not	get
lost,	even	if	there	is	a	system	failure.

•	Concurrent	execution	of	transactions	improves	throughput	of	transactions	and	system	utilization	and
also	reduces	the	waiting	time	of	transactions.

•	The	various	types	of	storage	in	a	computer	are	volatile	storage,	non-volatile	storage,	and	stable	storage.
Data	in	volatile	storage,	such	as	in	RAM,	are	lost	when	the	computer	crashes.	Data	in	non-volatile	storage,
such	as	disk,	are	not	lost	when

17.11

Summary

829

the	computer	crashes	but	may	occasionally	be	lost	because	of	failures	such	as	disk	crashes.	Data	in	stable
storage	are	never	lost.

•	Stable	storage	that	must	be	accessible	online	is	approximated	with	mirrored	disks,	or	other	forms	of
RAID,	which	provide	redundant	data	storage.	Offline,	or	archival,	stable	storage	may	consist	of	multiple
tape	copies	of	data	stored	in	physically	secure	locations.

•	When	several	transactions	execute	concurrently	on	the	database,	the	consistency	of	data	may	no	longer
be	preserved.	It	is	therefore	necessary	for	the	system	to	control	the	interaction	among	the	concurrent
transactions.

°	Since	a	transaction	is	a	unit	that	preserves	consistency,	a	serial	execution	of	transactions	guarantees
that	consistency	is	preserved.

°	A	schedule	captures	the	key	actions	of	transactions	that	affect	concurrent	execution,	such	as	read	and
write	operations,	while	abstracting	away	internal	details	of	the	execution	of	the	transaction.

°	We	require	that	any	schedule	produced	by	concurrent	processing	of	a	set	of	transactions	will	have	an
effect	equivalent	to	a	schedule	produced	when	these	transactions	are	run	serially	in	some	order.

°	A	system	that	guarantees	this	property	is	said	to	ensure	serializability.

°	There	are	several	different	notions	of	equivalence	leading	to	the	concepts	of	conflict	serializability	and
view	serializability.

•	Serializability	of	schedules	generated	by	concurrently	executing	transactions	can	be	ensured	through
one	of	a	variety	of	mechanisms	called	concurrency-control	policies.

•	We	can	test	a	given	schedule	for	conflict	serializability	by	constructing	a	precedence	graph	for	the
schedule	and	by	searching	for	the	absence	of	cycles	in	the	graph.	However,	there	are	more	efficient
concurrency-control	policies	for	ensuring	serializability.

•	Schedules	must	be	recoverable,	to	make	sure	that	if	transaction	a	sees	the	effects	of	transaction	b,	and
b	then	aborts,	then	a	also	gets	aborted.

•	Schedules	should	preferably	be	cascadeless,	so	that	the	abort	of	a	transaction	does	not	result	in
cascading	aborts	of	other	transactions.	Cascadelessness	is	ensured	by	allowing	transactions	to	only	read
committed	data.

•	The	concurrency-control	management	component	of	the	database	is	responsible	for	handling	the
concurrency-control	policies.	Techniques	include	locking,	timestamp	ordering,	and	snapshot	isolation.
Chapter	18	describes	concurrency-control	policies.

830

Chapter	17

Transactions

•	Database	systems	offer	isolation	levels	weaker	than	serializability	to	allow	less	restriction	of
concurrency	and	thus	improved	performance.	This	introduces	a	risk	of	inconsistency	that	some
applications	find	acceptable.

•	Ensuring	correct	concurrent	execution	in	the	presence	of	SQL	update,	insert,	and	delete	operations
requires	additional	care	due	to	the	phantom	phenomenon.

Review	Terms

•	Transaction

•	Observable	external	writes

•	ACID	properties

•	Concurrent	executions

•

°	Atomicity

Serial	execution

•	Schedules

°	Consistency

•	Conflict	of	operations

°	Isolation

•	Conflict	equivalence

°	Durability

•	Conflict	serializability

•	Inconsistent	state

•	Serializability	testing

•	Storage	types

•	Precedence	graph

°	Volatile	storage

•	Serializability	order

•	Recoverable	schedules

°	Non-volatile	storage

•	Cascading	rollback

°	Stable	storage

•	Cascadeless	schedules

•	Concurrency-control	system

•	Isolation	levels

•	Recovery	system

•	Transaction	state

°	Serializable

°	Active

°	Repeatable	read

°	Partially	committed

°	Read	committed

°	Failed

°	Read	uncommitted

°	Aborted

•	Dirty	writes

°	Committed

•	Automatic	commit

•	Concurrency	control

°	Terminated

•	Locking

•	compensating	transaction

•	Timestamp	ordering

•	Transaction

•	Snapshot	isolation

°	Restart

•	Phantom	phenomenon

°	Kill

•	Predicate	locking

Practice	Exercises

831

Practice	Exercises

17.1

Suppose	that	there	is	a	database	system	that	never	fails.	Is	a	recovery	manager	required	for	this	system?

17.2

Consider	a	file	system	such	as	the	one	on	your	favorite	operating	system.

a.

What	are	the	steps	involved	in	the	creation	and	deletion	of	files	and	in	writing	data	to	a	file?

b.

Explain	how	the	issues	of	atomicity	and	durability	are	relevant	to	the	creation	and	deletion	of	files	and	to
writing	data	to	files.

17.3

Database-system	implementers	have	paid	much	more	attention	to	the	ACID

properties	than	have	file-system	implementers.	Why	might	this	be	the	case?

17.4

What	class	or	classes	of	storage	can	be	used	to	ensure	durability?	Why?

17.5

Since	every	conflict-serializable	schedule	is	view	serializable,	why	do	we	emphasize	conflict	serializability
rather	than	view	serializability?

17.6

Consider	the	precedence	graph	of	Figure	17.16.	Is	the	corresponding	schedule	conflict	serializable?
Explain	your	answer.

17.7

What	is	a	cascadeless	schedule?	Why	is	cascadelessness	of	schedules	desirable?	Are	there	any
circumstances	under	which	it	would	be	desirable	to	allow	noncascadeless	schedules?	Explain	your	answer.

17.8

The	lost	update	anomaly	is	said	to	occur	if	a	transaction	T	reads	a	data	item,	j

then	another	transaction	T	writes	the	data	item	(possibly	based	on	a	previous	k

read),	after	which	T	writes	the	data	item.	The	update	performed	by	T	has	j

k

been	lost,	since	the	update	done	by	T	ignored	the	value	written	by	T	.

j

k

T

T

1

2

T

T

4

3

T5

Figure	17.16	Precedence	graph	for	Practice	Exercise	17.6.

832

Chapter	17

Transactions

a.

Give	an	example	of	a	schedule	showing	the	lost	update	anomaly.

b.

Give	an	example	schedule	to	show	that	the	lost	update	anomaly	is	possible	with	the	read	committed
isolation	level.

c.

Explain	why	the	lost	update	anomaly	is	not	possible	with	the	repeatable	read	isolation	level.

17.9

Consider	a	database	for	a	bank	where	the	database	system	uses	snapshot	isolation.	Describe	a	particular
scenario	in	which	a	nonserializable	execution	occurs	that	would	present	a	problem	for	the	bank.

17.10

Consider	a	database	for	an	airline	where	the	database	system	uses	snapshot	isolation.	Describe	a
particular	scenario	in	which	a	nonserializable	execution	occurs,	but	the	airline	may	be	willing	to	accept	it
in	order	to	gain	better	overall	performance.

17.11

The	definition	of	a	schedule	assumes	that	operations	can	be	totally	ordered	by	time.	Consider	a	database
system	that	runs	on	a	system	with	multiple	processors,	where	it	is	not	always	possible	to	establish	an
exact	ordering	between	operations	that	executed	on	different	processors.	However,	operations	on	a	data
item	can	be	totally	ordered.

Does	this	situation	cause	any	problem	for	the	definition	of	conflict	serializability?	Explain	your	answer.

Exercises

17.12

List	the	ACID	properties.	Explain	the	usefulness	of	each.

17.13

During	its	execution,	a	transaction	passes	through	several	states,	until	it	finally	commits	or	aborts.	List	all
possible	sequences	of	states	through	which	a	transaction	may	pass.	Explain	why	each	state	transition	may
occur.

17.14

Explain	the	distinction	between	the	terms	serial	schedule	and	serializable	schedule.

17.15

Consider	the	following	two	transactions:

T	:

13

read(A);

read(B);

if	A	=	0	then	B	:=	B	+	1;

write(B).

T	:

14

read(B);

read(A);

if	B	=	0	then	A	:=	A	+	1;

write(A).

Exercises

833

Let	the	consistency	requirement	be	A	=	0	∨	B	=	0,	with	A	=	B	=	0	as	the	initial	values.

a.

Show	that	every	serial	execution	involving	these	two	transactions	pre-

serves	the	consistency	of	the	database.

b.

Show	a	concurrent	execution	of	T

and	T

that	produces	a	nonserializ-

13

14

able	schedule.

c.

Is	there	a	concurrent	execution	of	T

and	T

that	produces	a	serializable

13

14

schedule?

17.16

Give	an	example	of	a	serializable	schedule	with	two	transactions	such	that	the	order	in	which	the
transactions	commit	is	different	from	the	serialization	order.

17.17

What	is	a	recoverable	schedule?	Why	is	recoverability	of	schedules	desirable?

Are	there	any	circumstances	under	which	it	would	be	desirable	to	allow	nonrecoverable	schedules?
Explain	your	answer.

17.18

Why	do	database	systems	support	concurrent	execution	of	transactions,	despite	the	extra	effort	needed	to
ensure	that	concurrent	execution	does	not	cause	any	problems?

17.19

Explain	why	the	read-committed	isolation	level	ensures	that	schedules	are	cascade-free.

17.20

For	each	of	the	following	isolation	levels,	give	an	example	of	a	schedule	that	respects	the	specified	level	of
isolation	but	is	not	serializable:

a.

Read	uncommitted

b.

Read	committed

c.

Repeatable	read

17.21

Suppose	that	in	addition	to	the	operations	read	and	write,	we	allow	an	operation	pred	read(r,	P),	which
reads	all	tuples	in	relation	r	that	satisfy	predicate	P.

a.

Give	an	example	of	a	schedule	using	the	pred	read	operation	that	ex-

hibits	the	phantom	phenomenon	and	is	nonserializable	as	a	result.

b.

Give	an	example	of	a	schedule	where	one	transaction	uses	the

pred	read	operation	on	relation	r	and	another	concurrent	transaction	deletes	a	tuple	from	r,	but	the
schedule	does	not	exhibit	a	phantom	conflict.	(To	do	so,	you	have	to	give	the	schema	of	relation	r	and
show	the	attribute	values	of	the	deleted	tuple.)

834

Chapter	17

Transactions

Further	Reading

[Gray	and	Reuter	(1993)]	provides	detailed	textbook	coverage	of	transaction-processing	concepts,
techniques,	and	implementation	details,	including	concurrency	control	and	recovery	issues.	[Bernstein
and	Newcomer	(2009)]	provides	textbook	coverage	of	various	aspects	of	transaction	processing.

The	concept	of	serializability	was	formalized	by	[Eswaran	et	al.	(1976)]	in	connection	with	work	on
concurrency	control	for	System	R.

References	covering	specific	aspects	of	transaction	processing,	such	as	concurrency	control	and	recovery,
are	cited	in	Chapter	18	and	Chapter	19.

Bibliography

[Bernstein	and	Newcomer	(2009)]

P.	A.	Bernstein	and	E.	Newcomer,	Principles	of	Transaction

Processing,	2nd	edition,	Morgan	Kaufmann	(2009).

[Eswaran	et	al.	(1976)]

K.	P.	Eswaran,	J.	N.	Gray,	R.	A.	Lorie,	and	I.	L.	Traiger,	“The	Notions	of	Consistency	and	Predicate	Locks	in
a	Database	System”,	Communications	of	the	ACM,	Volume	19,	Number	11	(1976),	pages	624–633.

[Gray	and	Reuter	(1993)]

J.	Gray	and	A.	Reuter,	Transaction	Processing:	Concepts	and	Tech-

niques,	Morgan	Kaufmann	(1993).

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

C	H	A	P	T	E	R	18

Concurrency	Control

We	saw	in	Chapter	17	that	one	of	the	fundamental	properties	of	a	transaction	is	isolation.	When	several
transactions	execute	concurrently	in	the	database,	however,	the	isolation	property	may	no	longer	be
preserved.	To	ensure	that	it	is,	the	system	must	control	the	interaction	among	the	concurrent
transactions;	this	control	is	achieved	through	one	of	a	variety	of	mechanisms	called	concurrency-control
schemes.	In	this	chapter,	we	consider	the	management	of	concurrently	executing	transactions,	and	we
ignore	failures.	In	Chapter	19,	we	shall	see	how	the	system	can	recover	from	failures.

As	we	shall	see,	there	are	a	variety	of	concurrency-control	schemes.	No	one	scheme	is	clearly	the	best;
each	one	has	advantages.	In	practice,	the	most	frequently	used	schemes	are	two-phase	locking	and
snapshot	isolation.

18.1

Lock-Based	Protocols

One	way	to	ensure	isolation	is	to	require	that	data	items	be	accessed	in	a	mutually	exclusive	manner;	that
is,	while	one	transaction	is	accessing	a	data	item,	no	other	transaction	can	modify	that	data	item.	The
most	common	method	used	to	implement	this	requirement	is	to	allow	a	transaction	to	access	a	data	item
only	if	it	is	currently	holding	a	lock	on	that	item.	We	introduced	the	concept	of	locking	in	Section	17.9.

18.1.1

Locks

There	are	various	modes	in	which	a	data	item	may	be	locked.	In	this	section,	we	restrict	our	attention	to
two	modes:

1.	Shared.	If	a	transaction	T	has	obtained	a	shared-mode	lock	(denoted	by	S)	on	i

item	Q,	then	T	can	read,	but	cannot	write,	Q.

i

2.	Exclusive.	If	a	transaction	T	has	obtained	an	exclusive-mode	lock	(denoted	by	X)	i

on	item	Q,	then	T	can	both	read	and	write	Q.

i

We	require	that	every	transaction	request	a	lock	in	an	appropriate	mode	on	data	item	Q,	depending	on	the
types	of	operations	that	it	will	perform	on	Q.	The	transaction	835

836

Chapter	18

Concurrency	Control

S

X

S

true

false

X

false

false

Figure	18.1	Lock-compatibility	matrix	comp.

makes	the	request	to	the	concurrency-control	manager.	The	transaction	can	proceed	with	the	operation
only	after	the	concurrency-control	manager	grants	the	lock	to	the	transaction.	The	use	of	these	two	lock
modes	allows	multiple	transactions	to	read	a	data	item	but	limits	write	access	to	just	one	transaction	at	a
time.

To	state	this	more	generally,	given	a	set	of	lock	modes,	we	can	define	a	compatibility	function	on	them	as
follows:	Let	A	and	B	represent	arbitrary	lock	modes.	Suppose	that	a	transaction	T	requests	a	lock	of	mode

A	on	item	Q	on	which	transaction	T	(T

i

j

i

≠	T)	currently	holds	a	lock	of	mode	B.	If	transaction	T	can	be	granted	a	lock	on	j

i

Q	immediately,	in	spite	of	the	presence	of	the	mode	B	lock,	then	we	say	mode	A	is	compatible	with	mode
B.	Such	a	function	can	be	represented	conveniently	by	a	matrix.

The	compatibility	relation	between	the	two	modes	of	locking	discussed	in	this	section	appears	in	the
matrix	comp	of	Figure	18.1.	An	element	comp(A,	B)	of	the	matrix	has	the	value	true	if	and	only	if	mode	A
is	compatible	with	mode	B.

Note	that	shared	mode	is	compatible	with	shared	mode,	but	not	with	exclusive	mode.	At	any	time,	several
shared-mode	locks	can	be	held	simultaneously	(by	different	transactions)	on	a	particular	data	item.	A
subsequent	exclusive-mode	lock	request	has	to	wait	until	the	currently	held	shared-mode	locks	are
released.

A	transaction	requests	a	shared	lock	on	data	item	Q	by	executing	the	lock-S(Q)	instruction.	Similarly,	a
transaction	requests	an	exclusive	lock	through	the	lock-X(Q)	instruction.	A	transaction	can	unlock	a	data
item	Q	by	the	unlock(Q)	instruction.

To	access	a	data	item,	transaction	T	must	first	lock	that	item.	If	the	data	item	is	al-i

ready	locked	by	another	transaction	in	an	incompatible	mode,	the	concurrency-control	manager	will	not
grant	the	lock	until	all	incompatible	locks	held	by	other	transactions	have	been	released.	Thus,	T	is	made
to	wait	until	all	incompatible	locks	held	by	other	i

transactions	have	been	released.

Transaction	T	may	unlock	a	data	item	that	it	had	locked	at	some	earlier	point.

i

Note	that	a	transaction	must	hold	a	lock	on	a	data	item	as	long	as	it	accesses	that	item.	Moreover,	it	is	not
necessarily	desirable	for	a	transaction	to	unlock	a	data	item	immediately	after	its	final	access	of	that	data
item,	since	serializability	may	not	be	ensured.

As	an	illustration,	consider	again	the	banking	example	that	we	introduced	in	Chapter	17.	Let	A	and	B	be
two	accounts	that	are	accessed	by	transactions	T	and	T	.	Trans-1

2

action	T	transfers	$50	from	account	B	to	account	A	(Figure	18.2).	Transaction	T

1

2

displays	the	total	amount	of	money	in	accounts	A	and	B—that	is,	the	sum	A	+	B	(Figure	18.3).

18.1

Lock-Based	Protocols

837

T	:

1

lock-X(B);

read(B);

B	:=	B	−	50;

write(B);

unlock(B);

lock-X(A);

read(A);

A	:=	A	+	50;

write(A);

unlock(A).

Figure	18.2	Transaction	T	1.

Suppose	that	the	values	of	accounts	A	and	B	are	$100	and	$200,	respectively.	If	these	two	transactions
are	executed	serially,	either	in	the	order	T	,	T	or	the	order	T	,	1

2

2

T	,	then	transaction	T	will	display	the	value	$300.	If,	however,	these	transactions	are	1

2

executed	concurrently,	then	schedule	1,	in	Figure	18.4,	is	possible.	In	this	case,	transaction	T	displays
$250,	which	is	incorrect.	The	reason	for	this	mistake	is	that	the	2

transaction	T	unlocked	data	item	B	too	early,	as	a	result	of	which	T	saw	an	inconsis-1

2

tent	state.

The	schedule	shows	the	actions	executed	by	the	transactions,	as	well	as	the	points	at	which	the
concurrency-control	manager	grants	the	locks.	The	transaction	making	a	lock	request	cannot	execute	its
next	action	until	the	concurrency-control	manager	grants	the	lock.	Hence,	the	lock	must	be	granted	in	the
interval	of	time	between	the	lock-request	operation	and	the	following	action	of	the	transaction.	Exactly
when	within	this	interval	the	lock	is	granted	is	not	important;	we	can	safely	assume	that	the	lock	is
granted	just	before	the	following	action	of	the	transaction.	We	shall	therefore	drop	the	T	:

2

lock-S(A);

read(A);

unlock(A);

lock-S(B);

read(B);

unlock(B);

display(A	+	B).

Figure	18.3	Transaction	T	2.

838

Chapter	18

Concurrency	Control

T

T

concurrency-control	manager

1

2

lock-X(B)

grant-X(B,	T)

1

read(B)

B	:=	B	−	50

write(B)

unlock(B)

lock-S(A)

grant-S(A,	T)

2

read(A)

unlock(A)

lock-S(B)

grant-S(B,	T)

2

read(B)

unlock(B)

display(A	+	B)

lock-X(A)

grant-X(A,	T)

1

read(A)

A	:=	A	+	50

write(A)

unlock(A)

Figure	18.4	Schedule	1.

column	depicting	the	actions	of	the	concurrency-control	manager	from	all	schedules	depicted	in	the	rest
of	the	chapter.	We	let	you	infer	when	locks	are	granted.

Suppose	now	that	unlocking	is	delayed	to	the	end	of	the	transaction.	Transaction	T	corresponds	to	T	with
unlocking	delayed	(Figure	18.5).	Transaction	T	corresponds	3

1

4

to	T	with	unlocking	delayed	(Figure	18.6).

2

You	should	verify	that	the	sequence	of	reads	and	writes	in	schedule	1,	which	lead	to	an	incorrect	total	of
$250	being	displayed,	is	no	longer	possible	with	T	and	T	.	Other	3

4

schedules	are	possible.	T	will	not	print	out	an	inconsistent	result	in	any	of	them;	we	4

shall	see	why	later.

Unfortunately,	locking	can	lead	to	an	undesirable	situation.	Consider	the	partial	schedule	of	Figure	18.7
for	T	and	T	.	Since	T	is	holding	an	exclusive-mode	lock	on	3

4

3

B	and	T	is	requesting	a	shared-mode	lock	on	B,	T	is	waiting	for	T	to	unlock	B.

4

4

3

Similarly,	since	T	is	holding	a	shared-mode	lock	on	A	and	T	is	requesting	an	exclusive-4

3

mode	lock	on	A,	T	is	waiting	for	T	to	unlock	A.	Thus,	we	have	arrived	at	a	state	3

4

where	neither	of	these	transactions	can	ever	proceed	with	its	normal	execution.	This	situation	is	called
deadlock.	When	deadlock	occurs,	the	system	must	roll	back	one	of

18.1

Lock-Based	Protocols

839

T	:

3

lock-X(B);

read(B);

B	:=	B	−	50;

write(B);

lock-X(A);

read(A);

A	:=	A	+	50;

write(A);

unlock(B);

unlock(A).

Figure	18.5	Transaction	T	3	(transaction	T	1	with	unlocking	delayed).

the	two	transactions.	Once	a	transaction	has	been	rolled	back,	the	data	items	that	were	locked	by	that
transaction	are	unlocked.	These	data	items	are	then	available	to	the	other	transaction,	which	can	continue
with	its	execution.	We	shall	return	to	the	issue	of	deadlock	handling	in	Section	18.2.

If	we	do	not	use	locking,	or	if	we	unlock	data	items	too	soon	after	reading	or	writing	them,	we	may	get
inconsistent	states.	On	the	other	hand,	if	we	do	not	unlock	a	data	item	before	requesting	a	lock	on	another
data	item,	deadlocks	may	occur.	There	are	ways	to	avoid	deadlock	in	some	situations,	as	we	shall	see	in
Section	18.1.5.	However,	in	general,	deadlocks	are	a	necessary	evil	associated	with	locking,	if	we	want	to
avoid	inconsistent	states.	Deadlocks	are	definitely	preferable	to	inconsistent	states,	since	they	can	be
handled	by	rolling	back	transactions,	whereas	inconsistent	states	may	lead	to	real-world	problems	that
cannot	be	handled	by	the	database	system.

We	shall	require	that	each	transaction	in	the	system	follow	a	set	of	rules,	called	a	locking	protocol,
indicating	when	a	transaction	may	lock	and	unlock	each	of	the	data	items.	Locking	protocols	restrict	the
number	of	possible	schedules.	The	set	of	all	such	T	:

4

lock-S(A);

read(A);

lock-S(B);

read(B);

display(A	+	B);

unlock(A);

unlock(B).

Figure	18.6	Transaction	T	4	(transaction	T	2	with	unlocking	delayed).

840

Chapter	18

Concurrency	Control

T

T

3

4

lock-X(B)

read(B)

B	:=	B	−	50

write(B)

lock-S(A)

read(A)

lock-S(B)

lock-X(A)

Figure	18.7	Schedule	2.

schedules	is	a	proper	subset	of	all	possible	serializable	schedules.	We	shall	present	several	locking
protocols	that	allow	only	conflict-serializable	schedules,	and	thereby	ensure	isolation.	Before	doing	so,	we
introduce	some	terminology.

Let	{	T	,	T	,	…	,	T	}	be	a	set	of	transactions	participating	in	a	schedule	S.	We	say	0

1

n

that	T	precedes	T	in	S,	written	T	→	T	,	if	there	exists	a	data	item	Q	such	that	T	has	i

j

i

j

i

held	lock	mode	A	on	Q,	and	T	has	held	lock	mode	B	on	Q	later,	and	j

comp(A,B)	=	false.

If	T	→	T	,	then	that	precedence	implies	that	in	any	equivalent	serial	schedule,	T	must	i

j

i

appear	before	T	.	Observe	that	this	graph	is	similar	to	the	precedence	graph	that	we	j

used	in	Section	17.6	to	test	for	conflict	serializability.	Conflicts	between	instructions	correspond	to
noncompatibility	of	lock	modes.

We	say	that	a	schedule	S	is	legal	under	a	given	locking	protocol	if	S	is	a	possible	schedule	for	a	set	of
transactions	that	follows	the	rules	of	the	locking	protocol.	We	say	that	a	locking	protocol	ensures	conflict
serializability	if	and	only	if	all	legal	schedules	are	conflict	serializable;	in	other	words,	for	all	legal
schedules	the	associated	→	relation	is	acyclic.

18.1.2

Granting	of	Locks

When	a	transaction	requests	a	lock	on	a	data	item	in	a	particular	mode,	and	no	other	transaction	has	a
lock	on	the	same	data	item	in	a	conflicting	mode,	the	lock	can	be	granted.	However,	care	must	be	taken	to
avoid	the	following	scenario.	Suppose	a	transaction	T	has	a	shared-mode	lock	on	a	data	item,	and	another
transaction	T	requests	2

1

an	exclusive-mode	lock	on	the	data	item.	T	has	to	wait	for	T	to	release	the	shared-1

2

mode	lock.	Meanwhile,	a	transaction	T	may	request	a	shared-mode	lock	on	the	same	3

data	item.	The	lock	request	is	compatible	with	the	lock	granted	to	T	,	so	T	may	be	2

3

granted	the	shared-mode	lock.	At	this	point	T	may	release	the	lock,	but	still	T	has	2

1

to	wait	for	T	to	finish.	But	again,	there	may	be	a	new	transaction	T	that	requests	a	3

4

shared-mode	lock	on	the	same	data	item,	and	is	granted	the	lock	before	T	releases	it.

3

In	fact,	it	is	possible	that	there	is	a	sequence	of	transactions	that	each	requests	a	shared-mode	lock	on	the
data	item,	and	each	transaction	releases	the	lock	a	short	while	after	it

18.1

Lock-Based	Protocols

841

is	granted,	but	T	never	gets	the	exclusive-mode	lock	on	the	data	item.	The	transaction	1

T	may	never	make	progress,	and	is	said	to	be	starved.

1

We	can	avoid	starvation	of	transactions	by	granting	locks	in	the	following	manner:	When	a	transaction	T
requests	a	lock	on	a	data	item	Q	in	a	particular	mode	M	,	the	i

concurrency-control	manager	grants	the	lock	provided	that:

•	There	is	no	other	transaction	holding	a	lock	on	Q	in	a	mode	that	conflicts	with	M.

•	There	is	no	other	transaction	that	is	waiting	for	a	lock	on	Q	and	that	made	its	lock	request	before	T	.

i

Thus,	a	lock	request	will	never	get	blocked	by	a	lock	request	that	is	made	later.

18.1.3

The	Two-Phase	Locking	Protocol

One	protocol	that	ensures	serializability	is	the	two-phase	locking	protocol.	This	protocol	requires	that
each	transaction	issue	lock	and	unlock	requests	in	two	phases:	1.	Growing	phase.	A	transaction	may
obtain	locks,	but	may	not	release	any	lock.

2.	Shrinking	phase.	A	transaction	may	release	locks,	but	may	not	obtain	any	new	locks.

Initially,	a	transaction	is	in	the	growing	phase.	The	transaction	acquires	locks	as	needed.

Once	the	transaction	releases	a	lock,	it	enters	the	shrinking	phase,	and	it	can	issue	no	more	lock	requests.

For	example,	transactions	T	and	T	are	two	phase.	On	the	other	hand,	transactions	3

4

T	and	T	are	not	two	phase.	Note	that	the	unlock	instructions	do	not	need	to	appear	1

2

at	the	end	of	the	transaction.	For	example,	in	the	case	of	transaction	T	,	we	could	3

move	the	unlock(B)	instruction	to	just	after	the	lock-X(A)	instruction	and	still	retain	the	two-phase
locking	property.

We	can	show	that	the	two-phase	locking	protocol	ensures	conflict	serializability.

Consider	any	transaction.	The	point	in	the	schedule	where	the	transaction	has	obtained	its	final	lock	(the
end	of	its	growing	phase)	is	called	the	lock	point	of	the	transaction.

Now,	transactions	can	be	ordered	according	to	their	lock	points—this	ordering	is,	in	fact,	a	serializability
ordering	for	the	transactions.	We	leave	the	proof	as	an	exercise	for	you	to	do	(see	Practice	Exercise	18.1).

Two-phase	locking	does	not	ensure	freedom	from	deadlock.	Observe	that	transactions	T	and	T	are	two
phase,	but,	in	schedule	2	(Figure	18.7),	they	are	deadlocked.

3

4

Recall	from	Section	17.7.2	that,	in	addition	to	being	serializable,	schedules	should	be	cascadeless.
Cascading	rollback	may	occur	under	two-phase	locking.	As	an	illustration,	consider	the	partial	schedule	of
Figure	18.8.	Each	transaction	observes	the	two-phase	locking	protocol,	but	the	failure	of	T	after	the

leads	to

5

read(A)	step	of	T	7

cascading	rollback	of	T	and	T	.

6

7

842

Chapter	18

Concurrency	Control

T

T

T

5

6

7

lock-X(A)

read(A)

lock-S(B)

read(B)

write(A)

unlock(A)

lock-X(A)

read(A)

write(A)

unlock(A)

lock-S(A)

read(A)

Figure	18.8	Partial	schedule	under	two-phase	locking.

Cascading	rollbacks	can	be	avoided	by	a	modification	of	two-phase	locking	called	the	strict	two-phase
locking	protocol.	This	protocol	requires	not	only	that	locking	be	two	phase,	but	also	that	all	exclusive-
mode	locks	taken	by	a	transaction	be	held	until	that	transaction	commits.	This	requirement	ensures	that
any	data	written	by	an	uncommitted	transaction	are	locked	in	exclusive	mode	until	the	transaction
commits,	preventing	any	other	transaction	from	reading	the	data.

Another	variant	of	two-phase	locking	is	the	rigorous	two-phase	locking	protocol,	which	requires	that	all
locks	be	held	until	the	transaction	commits.	We	can	easily	verify	that,	with	rigorous	two-phase	locking,
transactions	can	be	serialized	in	the	order	in	which	they	commit.

Consider	the	following	two	transactions,	for	which	we	have	shown	only	some	of	the	significant	read	and
write	operations:

T	:

);

8

read(a	1

read(a);

2

.	.	.

read(a);

n

write(a).

1

T	:

);

9

read(a	1

read(a);

2

display(a	+	a).

1

2

If	we	employ	the	two-phase	locking	protocol,	then	T	must	lock	a	in	exclusive	8

1

mode.	Therefore,	any	concurrent	execution	of	both	transactions	amounts	to	a	serial	execution.	Notice,
however,	that	T	needs	an	exclusive	lock	on	a	only	at	the	end	of	8

1

18.1

Lock-Based	Protocols

843

T

T

8

9

lock-S(a)

1

lock-S(a)

1

lock-S(a)

2

lock-S(a)

2

lock-S(a)

3

lock-S(a)

4

unlock(a)

1

unlock(a)

2

lock-S(a)

n

upgrade(a)

1

Figure	18.9	Incomplete	schedule	with	a	lock	conversion.

its	execution,	when	it	writes	a	.	Thus,	if	T	could	initially	lock	a	in	shared	mode,	and	1

8

1

then	could	later	change	the	lock	to	exclusive	mode,	we	could	get	more	concurrency,	since	T	and	T	could
access	a	and	a	simultaneously.

8

9

1

2

This	observation	leads	us	to	a	refinement	of	the	basic	two-phase	locking	protocol,	in	which	lock
conversions	are	allowed.	We	shall	provide	a	mechanism	for	upgrading	a	shared	lock	to	an	exclusive	lock,
and	downgrading	an	exclusive	lock	to	a	shared	lock.	We	denote	conversion	from	shared	to	exclusive
modes	by	upgrade,	and	from	exclusive	to	shared	by	downgrade.	Lock	conversion	cannot	be	allowed
arbitrarily.	Rather,	upgrading	can	take	place	in	only	the	growing	phase,	whereas	downgrading	can	take
place	in	only	the	shrinking	phase.

Returning	to	our	example,	transactions	T	and	T	can	run	concurrently	under	the	8

9

refined	two-phase	locking	protocol,	as	shown	in	the	incomplete	schedule	of	Figure	18.9,	where	only	some
of	the	locking	instructions	are	shown.

Note	that	a	transaction	attempting	to	upgrade	a	lock	on	an	item	Q	may	be	forced	to	wait.	This	enforced
wait	occurs	if	Q	is	currently	locked	by	another	transaction	in	shared	mode.

Just	like	the	basic	two-phase	locking	protocol,	two-phase	locking	with	lock	conversion	generates	only
conflict-serializable	schedules,	and	transactions	can	be	serialized	by	their	lock	points.	Further,	if	exclusive
locks	are	held	until	the	end	of	the	transaction,	the	schedules	are	cascadeless.

For	a	set	of	transactions,	there	may	be	conflict-serializable	schedules	that	cannot	be	obtained	through	the
two-phase	locking	protocol.	However,	to	obtain	conflict-serializable	schedules	through	non-two-phase
locking	protocols,	we	need	either	to	have	additional	information	about	the	transactions	or	to	impose	some
structure	or	ordering	on	the	set	of	data	items	in	the	database.	We	shall	see	examples	when	we	consider
other	locking	protocols	later	in	this	chapter.

Strict	two-phase	locking	and	rigorous	two-phase	locking	(with	lock	conversions)	are	used	extensively	in

commercial	database	systems.

844

Chapter	18

Concurrency	Control

A	simple	but	widely	used	scheme	automatically	generates	the	appropriate	lock	and	unlock	instructions	for
a	transaction,	on	the	basis	of	read	and	write	requests	from	the	transaction:

•	When	a	transaction	T	issues	a

i

read(Q)	operation,	the	system	issues	a	lock-S(Q)

instruction	followed	by	the	read(Q)	instruction.

•	When	T	issues	a

already

i

write(Q)	operation,	the	system	checks	to	see	whether	Ti

holds	a	shared	lock	on	Q.	If	it	does,	then	the	system	issues	an	upgrade(Q)	instruction,	followed	by	the
write(Q)	instruction.	Otherwise,	the	system	issues	a	lock-X(Q)	instruction,	followed	by	the	write(Q)
instruction.

•	All	locks	obtained	by	a	transaction	are	unlocked	after	that	transaction	commits	or	aborts.

18.1.4

Implementation	of	Locking

A	lock	manager	can	be	implemented	as	a	process	that	receives	messages	from	transactions	and	sends
messages	in	reply.	The	lock-manager	process	replies	to	lock-request	messages	with	lock-grant	messages,
or	with	messages	requesting	rollback	of	the	transaction	(in	case	of	deadlocks).	Unlock	messages	require
only	an	acknowledgment	in	response,	but	may	result	in	a	grant	message	to	another	waiting	transaction.

The	lock	manager	uses	this	data	structure:	For	each	data	item	that	is	currently	locked,	it	maintains	a
linked	list	of	records,	one	for	each	request,	in	the	order	in	which	the	requests	arrived.	It	uses	a	hash
table,	indexed	on	the	name	of	a	data	item,	to	find	the	linked	list	(if	any)	for	a	data	item;	this	table	is	called
the	lock	table.	Each	record	of	the	linked	list	for	a	data	item	notes	which	transaction	made	the	request,
and	what	lock	mode	it	requested.	The	record	also	notes	if	the	request	has	currently	been	granted.

Figure	18.10	shows	an	example	of	a	lock	table.	The	table	contains	locks	for	five	different	data	items,	I4,
I7,	I23,	I44,	and	I912.	The	lock	table	uses	overflow	chaining,	so	there	is	a	linked	list	of	data	items	for	each
entry	in	the	lock	table.	There	is	also	a	list	of	transactions	that	have	been	granted	locks,	or	are	waiting	for
locks,	for	each	of	the	data	items.	Granted	locks	are	the	rectangles	filled	in	a	darker	shade,	while	waiting
requests	are	the	rectangles	filled	in	a	lighter	shade.	We	have	omitted	the	lock	mode	to	keep	the	figure
simple.	It	can	be	seen,	for	example,	that	T23	has	been	granted	locks	on	I912	and	I7	and	is	waiting	for	a
lock	on	I4.

Although	the	figure	does	not	show	it,	the	lock	table	should	also	maintain	an	index	on	transaction
identifiers	so	that	it	is	possible	to	determine	efficiently	the	set	of	locks	held	by	a	given	transaction.

The	lock	manager	processes	requests	this	way:

•	When	a	lock	request	message	arrives,	it	adds	a	record	to	the	end	of	the	linked	list	for	the	data	item,	if
the	linked	list	is	present.	Otherwise	it	creates	a	new	linked	list,	containing	only	the	record	for	the	request.

18.1

Lock-Based	Protocols

845

I7

I23

T23

T1

T8

T2

I912

T23

I4

T1

T23

I44

granted

waiting

T8

Figure	18.10	Lock	table.

It	always	grants	a	lock	request	on	a	data	item	that	is	not	currently	locked.	But	if	the	transaction	requests
a	lock	on	an	item	on	which	a	lock	is	currently	held,	the	lock	manager	grants	the	request	only	if	it	is
compatible	with	the	locks	that	are	currently	held,	and	all	earlier	requests	have	been	granted	already.
Otherwise	the	request	has	to	wait.

•	When	the	lock	manager	receives	an	unlock	message	from	a	transaction,	it	deletes	the	record	for	that
data	item	in	the	linked	list	corresponding	to	that	transaction.	It	tests	the	record	that	follows,	if	any,	as
described	in	the	previous	paragraph,	to	see	if	that	request	can	now	be	granted.	If	it	can,	the	lock	manager
grants	that	request	and	processes	the	record	following	it,	if	any,	similarly,	and	so	on.

•	If	a	transaction	aborts,	the	lock	manager	deletes	any	waiting	request	made	by	the	transaction.	Once	the
database	system	has	taken	appropriate	actions	to	undo	the	transaction	(see	Section	19.3),	it	releases	all
locks	held	by	the	aborted	transaction.

846

Chapter	18

Concurrency	Control

This	algorithm	guarantees	freedom	from	starvation	for	lock	requests,	since	a	request	can	never	be
granted	while	a	request	received	earlier	is	waiting	to	be	granted.

We	study	how	to	detect	and	handle	deadlocks	later,	in	Section	18.2.2.	Section	20.3.1

describes	an	alternative	implementation	—	one	that	uses	shared	memory	instead	of	message	passing	for
lock	request/grant.

18.1.5

Graph-Based	Protocols

As	noted	in	Section	18.1.3,	if	we	wish	to	develop	protocols	that	are	not	two	phase,	we	need	additional
information	on	how	each	transaction	will	access	the	database.	There	are	various	models	that	can	give	us
the	additional	information,	each	differing	in	the	amount	of	information	provided.	The	simplest	model
requires	that	we	have	prior	knowledge	about	the	order	in	which	the	database	items	will	be	accessed.
Given	such	information,	it	is	possible	to	construct	locking	protocols	that	are	not	two	phase,	but	that,
nevertheless,	ensure	conflict	serializability.

To	acquire	such	prior	knowledge,	we	impose	a	partial	ordering	→	on	the	set	D	=	{	d	,	d	,	…	,	d	}	of	all	data
items.	If	d	→	d	,	then	any	transaction	accessing	both	1

2

h

i

j

d	and	d	must	access	d	before	accessing	d	.	This	partial	ordering	may	be	the	result	of	i

j

i

j

either	the	logical	or	the	physical	organization	of	the	data,	or	it	may	be	imposed	solely	for	the	purpose	of
concurrency	control.

The	partial	ordering	implies	that	the	set	D	may	now	be	viewed	as	a	directed	acyclic	graph,	called	a
database	graph.	In	this	section,	for	the	sake	of	simplicity,	we	will	restrict	our	attention	to	only	those
graphs	that	are	rooted	trees.	We	shall	present	a	simple	protocol,	called	the	tree	protocol,	which	is
restricted	to	employ	only	exclusive	locks.

References	to	other,	more	complex,	graph-based	locking	protocols	are	in	the	online	bibliographical	notes.

In	the	tree	protocol,	the	only	lock	instruction	allowed	is	lock-X.	Each	transaction	T	can	lock	a	data	item	at
most	once,	and	must	observe	the	following	rules:	i

1.	The	first	lock	by	T	may	be	on	any	data	item.

i

2.	Subsequently,	a	data	item	Q	can	be	locked	by	T	only	if	the	parent	of	Q	is	currently	i

locked	by	T	.

i

3.	Data	items	may	be	unlocked	at	any	time.

4.	A	data	item	that	has	been	locked	and	unlocked	by	T	cannot	subsequently	be	i

relocked	by	T	.

i

All	schedules	that	are	legal	under	the	tree	protocol	are	conflict	serializable.

To	illustrate	this	protocol,	consider	the	database	graph	of	Figure	18.11.	The	following	four	transactions
follow	the	tree	protocol	on	this	graph.	We	show	only	the	lock	and	unlock	instructions:

18.1

Lock-Based	Protocols

847

A

B

C

F

D

E

G

H

I

J

Figure	18.11	Tree-structured	database	graph.

T	:

10

lock-X(B);	lock-X(E);	lock-X(D);	unlock(B);	unlock(E);	lock-X(G);	unlock(D);	unlock(G).

T	:

11

lock-X(D);	lock-X(H);	unlock(D);	unlock(H).

T	:

12

lock-X(B);	lock-X(E);	unlock(E);	unlock(B).

T	:

13

lock-X(D);	lock-X(H);	unlock(D);	unlock(H).

One	possible	schedule	in	which	these	four	transactions	participated	appears	in	Figure	18.12.	Note	that,
during	its	execution,	transaction	T

holds	locks	on	two	disjoint

10

subtrees.

Observe	that	the	schedule	of	Figure	18.12	is	conflict	serializable.	It	can	be	shown	not	only	that	the	tree
protocol	ensures	conflict	serializability,	but	also	that	this	protocol	ensures	freedom	from	deadlock.

The	tree	protocol	in	Figure	18.12	does	not	ensure	recoverability	and	cascadelessness.	To	ensure
recoverability	and	cascadelessness,	the	protocol	can	be	modified	to	not	permit	release	of	exclusive	locks
until	the	end	of	the	transaction.	Holding	exclusive	locks	until	the	end	of	the	transaction	reduces
concurrency.	Here	is	an	alternative	that	improves	concurrency,	but	ensures	only	recoverability:	For	each
data	item	with	an	uncommitted	write,	we	record	which	transaction	performed	the	last	write	to	the	data
item.	Whenever	a	transaction	T	performs	a	read	of	an	uncommitted	data	item,	i

we	record	a	commit	dependency	of	T	on	the	transaction	that	performed	the	last	write	i

to	the	data	item.	Transaction	T	is	then	not	permitted	to	commit	until	the	commit	of	all	i

transactions	on	which	it	has	a	commit	dependency.	If	any	of	these	transactions	aborts,	T	must	also	be
aborted.

i

848

Chapter	18

Concurrency	Control

T

T

T

T

10

11

12

13

lock-X(B)

lock-X(D)

lock-X(H)

unlock(D)

lock-X(E)

lock-X(D)

unlock(B)

unlock(E)

lock-X(B)

lock-X(E)

unlock(H)

lock-X(G)

unlock(D)

lock-X(D)

lock-X(H)

unlock(D)

unlock(H)

unlock(E)

unlock(B)

unlock(G)

Figure	18.12	Serializable	schedule	under	the	tree	protocol.

The	tree-locking	protocol	has	an	advantage	over	the	two-phase	locking	protocol	in	that,	unlike	two-phase
locking,	it	is	deadlock-free,	so	no	rollbacks	are	required.	The	tree-locking	protocol	has	another	advantage
over	the	two-phase	locking	protocol	in	that	unlocking	may	occur	earlier.	Earlier	unlocking	may	lead	to
shorter	waiting	times	and	to	an	increase	in	concurrency.

However,	the	protocol	has	the	disadvantage	that,	in	some	cases,	a	transaction	may	have	to	lock	data	items
that	it	does	not	access.	For	example,	a	transaction	that	needs	to	access	data	items	A	and	J	in	the	database
graph	of	Figure	18.11	must	lock	not	only	A	and	J,	but	also	data	items	B,	D,	and	H	.	This	additional	locking
results	in	increased	locking	overhead,	the	possibility	of	additional	waiting	time,	and	a	potential	decrease
in	concurrency.	Further,	without	prior	knowledge	of	what	data	items	will	need	to	be	locked,	transactions
will	have	to	lock	the	root	of	the	tree,	and	that	can	reduce	concurrency	greatly.

For	a	set	of	transactions,	there	may	be	conflict-serializable	schedules	that	cannot	be	obtained	through	the
tree	protocol.	Indeed,	there	are	schedules	possible	under	the	two-phase	locking	protocol	that	are	not
possible	under	the	tree	protocol,	and	vice	versa.

Examples	of	such	schedules	are	explored	in	the	exercises.

18.2

Deadlock	Handling

849

18.2

Deadlock	Handling

A	system	is	in	a	deadlock	state	if	there	exists	a	set	of	transactions	such	that	every	transaction	in	the	set	is

waiting	for	another	transaction	in	the	set.	More	precisely,	there	exists	a	set	of	waiting	transactions	{	T	,	T
,	…	,	T	}	such	that	T	is	waiting	for	a	data	0

1

n

0

item	that	T	holds,	and	T	is	waiting	for	a	data	item	that	T	holds,	and	…	,	and	T

1

1

2

n−1

is	waiting	for	a	data	item	that	T	holds,	and	T	is	waiting	for	a	data	item	that	T	holds.

n

n

0

None	of	the	transactions	can	make	progress	in	such	a	situation.

The	only	remedy	to	this	undesirable	situation	is	for	the	system	to	invoke	some	drastic	action,	such	as
rolling	back	some	of	the	transactions	involved	in	the	deadlock.

Rollback	of	a	transaction	may	be	partial:	That	is,	a	transaction	may	be	rolled	back	to	the	point	where	it
obtained	a	lock	whose	release	resolves	the	deadlock.

There	are	two	principal	methods	for	dealing	with	the	deadlock	problem.	We	can	use	a	deadlock	prevention
protocol	to	ensure	that	the	system	will	never	enter	a	deadlock	state.	Alternatively,	we	can	allow	the
system	to	enter	a	deadlock	state,	and	then	try	to	recover	by	using	a	deadlock	detection	and	deadlock
recovery	scheme.	As	we	shall	see,	both	methods	may	result	in	transaction	rollback.	Prevention	is
commonly	used	if	the	probability	that	the	system	would	enter	a	deadlock	state	is	relatively	high;
otherwise,	detection	and	recovery	are	more	efficient.

Note	that	a	detection	and	recovery	scheme	requires	overhead	that	includes	not	only	the	run-time	cost	of
maintaining	the	necessary	information	and	of	executing	the	detection	algorithm,	but	also	the	potential
losses	inherent	in	recovery	from	a	deadlock.

18.2.1

Deadlock	Prevention

There	are	two	approaches	to	deadlock	prevention.	One	approach	ensures	that	no	cyclic	waits	can	occur	by
ordering	the	requests	for	locks,	or	requiring	all	locks	to	be	acquired	together.	The	other	approach	is
closer	to	deadlock	recovery,	and	it	performs	transaction	rollback	instead	of	waiting	for	a	lock	whenever
the	wait	could	potentially	result	in	a	deadlock.

The	simplest	scheme	under	the	first	approach	requires	that	each	transaction	locks	all	its	data	items
before	it	begins	execution.	Moreover,	either	all	are	locked	in	one	step	or	none	are	locked.	There	are	two
main	disadvantages	to	this	protocol:	(1)	it	is	often	hard	to	predict,	before	the	transaction	begins,	what
data	items	need	to	be	locked;	(2)	data-item	utilization	may	be	very	low,	since	many	of	the	data	items	may
be	locked	but	unused	for	a	long	time.

Another	approach	for	preventing	deadlocks	is	to	impose	an	ordering	of	all	data	items	and	to	require	that	a
transaction	lock	data	items	only	in	a	sequence	consistent	with	the	ordering.	We	have	seen	one	such
scheme	in	the	tree	protocol,	which	uses	a	partial	ordering	of	data	items.

A	variation	of	this	approach	is	to	use	a	total	order	of	data	items,	in	conjunction	with	two-phase	locking.
Once	a	transaction	has	locked	a	particular	item,	it	cannot	request	locks	on	items	that	precede	that	item	in
the	ordering.	This	scheme	is	easy	to	implement,

850

Chapter	18

Concurrency	Control

as	long	as	the	set	of	data	items	accessed	by	a	transaction	is	known	when	the	transaction	starts	execution.
There	is	no	need	to	change	the	underlying	concurrency-control	system	if	two-phase	locking	is	used:	All
that	is	needed	is	to	ensure	that	locks	are	requested	in	the	right	order.

The	second	approach	for	preventing	deadlocks	is	to	use	preemption	and	transaction	rollbacks.	In
preemption,	when	a	transaction	T	requests	a	lock	that	transaction	j

T	holds,	the	lock	granted	to	T	may	be	preempted	by	rolling	back	of	T	,	and	granting	i

i

i

of	the	lock	to	T	.	To	control	the	preemption,	we	assign	a	unique	timestamp,	based	on	j

a	counter	or	on	the	system	clock,	to	each	transaction	when	it	begins.	The	system	uses	these	timestamps
only	to	decide	whether	a	transaction	should	wait	or	roll	back.	Locking	is	still	used	for	concurrency	control.
If	a	transaction	is	rolled	back,	it	retains	its	old	timestamp	when	restarted.	Two	different	deadlock-
prevention	schemes	using	timestamps	have	been	proposed:

1.	The	wait–die	scheme	is	a	nonpreemptive	technique.	When	transaction	T	requests	i

a	data	item	currently	held	by	T	,	T	is	allowed	to	wait	only	if	it	has	a	timestamp	j

i

smaller	than	that	of	T	(i.e.,	T	is	older	than	T).	Otherwise,	T	is	rolled	back	(dies).

j

i

j

i

For	example,	suppose	that	transactions	T	,	T	,	and	T

have	timestamps	5,

14

15

16

10,	and	15,	respectively.	If	T

requests	a	data	item	held	by	T	,	then	T

will	wait.

14

15

14

If	T

requests	a	data	item	held	by	T	,	then	T

will	be	rolled	back.

16

15

16

2.	The	wound–wait	scheme	is	a	preemptive	technique.	It	is	a	counterpart	to	the	wait–

die	scheme.	When	transaction	T	requests	a	data	item	currently	held	by	T	,	T	is	i

j

i

allowed	to	wait	only	if	it	has	a	timestamp	larger	than	that	of	T	(i.e.,	T	is	younger	j

i

than	T).	Otherwise,	T	is	rolled	back	(T	is	wounded	by	T).

j

j

j

i

Returning	to	our	example,	with	transactions	T	,	T	,	and	T	,	if	T

requests

14

15

16

14

a	data	item	held	by	T	,	then	the	data	item	will	be	preempted	from	T	,	and	T

15

15

15

will	be	rolled	back.	If	T

requests	a	data	item	held	by	T	,	then	T

will	wait.

16

15

16

The	major	problem	with	both	of	these	schemes	is	that	unnecessary	rollbacks	may	occur.

Another	simple	approach	to	deadlock	prevention	is	based	on	lock	timeouts.	In	this	approach,	a	transaction
that	has	requested	a	lock	waits	for	at	most	a	specified	amount	of	time.	If	the	lock	has	not	been	granted
within	that	time,	the	transaction	is	said	to	time	out,	and	it	rolls	itself	back	and	restarts.	If	there	was	in	fact
a	deadlock,	one	or	more	transactions	involved	in	the	deadlock	will	time	out	and	roll	back,	allowing	the
others	to	proceed.	This	scheme	falls	somewhere	between	deadlock	prevention,	where	a	deadlock	will
never	occur,	and	deadlock	detection	and	recovery,	which	Section	18.2.2	discusses.

The	timeout	scheme	is	particularly	easy	to	implement,	and	it	works	well	if	transactions	are	short	and	if
long	waits	are	likely	to	be	due	to	deadlocks.	However,	in	general	it	is	hard	to	decide	how	long	a
transaction	must	wait	before	timing	out.	Too	long	a	wait	results	in	unnecessary	delays	once	a	deadlock
has	occurred.	Too	short	a	wait	results	in	transaction	rollback	even	when	there	is	no	deadlock,	leading	to
wasted	resources.

18.2

Deadlock	Handling

851

Starvation	is	also	a	possibility	with	this	scheme.	Hence,	the	timeout-based	scheme	has	limited

applicability.

18.2.2

Deadlock	Detection	and	Recovery

If	a	system	does	not	employ	some	protocol	that	ensures	deadlock	freedom,	then	a	detection	and	recovery
scheme	must	be	used.	An	algorithm	that	examines	the	state	of	the	system	is	invoked	periodically	to
determine	whether	a	deadlock	has	occurred.

If	one	has,	then	the	system	must	attempt	to	recover	from	the	deadlock.	To	do	so,	the	system	must:

•	Maintain	information	about	the	current	allocation	of	data	items	to	transactions,	as	well	as	any
outstanding	data	item	requests.

•	Provide	an	algorithm	that	uses	this	information	to	determine	whether	the	system	has	entered	a	deadlock
state.

•	Recover	from	the	deadlock	when	the	detection	algorithm	determines	that	a	deadlock	exists.

In	this	section,	we	elaborate	on	these	issues.

18.2.2.1

Deadlock	Detection

Deadlocks	can	be	described	precisely	in	terms	of	a	directed	graph	called	a	wait-for	graph.	This	graph
consists	of	a	pair	G	=	(V	,	E),	where	V	is	a	set	of	vertices	and	E	is	a	set	of	edges.	The	set	of	vertices
consists	of	all	the	transactions	in	the	system.	Each	element	in	the	set	E	of	edges	is	an	ordered	pair	T	→	T	.
If	T	→	T	is	in	E,	then	there	i

j

i

j

is	a	directed	edge	from	transaction	T	to	T	,	implying	that	transaction	T	is	waiting	for	i

j

i

transaction	T	to	release	a	data	item	that	it	needs.

j

When	transaction	T	requests	a	data	item	currently	being	held	by	transaction	T	,	i

j

then	the	edge	T

→	T	is	inserted	in	the	wait-for	graph.	This	edge	is	removed	only	i

j

when	transaction	T	is	no	longer	holding	a	data	item	needed	by	transaction	T	.

j

i

A	deadlock	exists	in	the	system	if	and	only	if	the	wait-for	graph	contains	a	cycle.

Each	transaction	involved	in	the	cycle	is	said	to	be	deadlocked.	To	detect	deadlocks,	the	system	needs	to
maintain	the	wait-for	graph,	and	periodically	to	invoke	an	algorithm	that	searches	for	a	cycle	in	the	graph.

To	illustrate	these	concepts,	consider	the	wait-for	graph	in	Figure	18.13,	which	depicts	the	following
situation:

•	Transaction	T	is	waiting	for	transactions	T	and	T	.

17

18

19

•	Transaction	T	is	waiting	for	transaction	T	.

19

18

•	Transaction	T	is	waiting	for	transaction	T	.

18

20

852

Chapter	18

Concurrency	Control

T

T

18

20

T17

T19

Figure	18.13	Wait-for	graph	with	no	cycle.

Since	the	graph	has	no	cycle,	the	system	is	not	in	a	deadlock	state.

Suppose	now	that	transaction	T

is	requesting	an	item	held	by	T	.	The	edge	T

→

20

19

20

T

is	added	to	the	wait-for	graph,	resulting	in	the	new	system	state	in	Figure	18.14.	This	19

time,	the	graph	contains	the	cycle:

T

→	T	→	T	→	T

18

20

19

18

implying	that	transactions	T	,	T	,	and	T

are	all	deadlocked.

18

19

20

Consequently,	the	question	arises:	When	should	we	invoke	the	detection	algorithm?	The	answer	depends
on	two	factors:

1.	How	often	does	a	deadlock	occur?

2.	How	many	transactions	will	be	affected	by	the	deadlock?

If	deadlocks	occur	frequently,	then	the	detection	algorithm	should	be	invoked	more	frequently.	Data	items
allocated	to	deadlocked	transactions	will	be	unavailable	to	other	transactions	until	the	deadlock	can	be
broken.	In	addition,	the	number	of	cycles	in	the	graph	may	also	grow.	In	the	worst	case,	we	would	invoke
the	detection	algorithm	every	time	a	request	for	allocation	could	not	be	granted	immediately.

T

T

18

20

T17

T19

Figure	18.14	Wait-for	graph	with	a	cycle.

18.3

Multiple	Granularity

853

18.2.2.2

Recovery	from	Deadlock

When	a	detection	algorithm	determines	that	a	deadlock	exists,	the	system	must	recover	from	the
deadlock.	The	most	common	solution	is	to	roll	back	one	or	more	transactions	to	break	the	deadlock.	Three
actions	need	to	be	taken:

1.	Selection	of	a	victim.	Given	a	set	of	deadlocked	transactions,	we	must	determine	which	transaction	(or
transactions)	to	roll	back	to	break	the	deadlock.	We	should	roll	back	those	transactions	that	will	incur	the
minimum	cost.	Unfortunately,	the	term	minimum	cost	is	not	a	precise	one.	Many	factors	may	determine
the	cost	of	a	rollback,	including:

a.	How	long	the	transaction	has	computed,	and	how	much	longer	the	transaction	will	compute	before	it
completes	its	designated	task.

b.	How	many	data	items	the	transaction	has	used.

c.	How	many	more	data	items	the	transaction	needs	for	it	to	complete.

d.	How	many	transactions	will	be	involved	in	the	rollback.

2.	Rollback.	Once	we	have	decided	that	a	particular	transaction	must	be	rolled	back,	we	must	determine
how	far	this	transaction	should	be	rolled	back.

The	simplest	solution	is	a	total	rollback:	Abort	the	transaction	and	then	restart	it.	However,	it	is	more
effective	to	roll	back	the	transaction	only	as	far	as	necessary	to	break	the	deadlock.	Such	partial	rollback
requires	the	system	to	maintain	additional	information	about	the	state	of	all	the	running	transactions.
Specifically,	the	sequence	of	lock	requests/grants	and	updates	performed	by	the	transaction	needs	to	be
recorded.	The	deadlock	detection	mechanism	should	decide	which	locks	the	selected	transaction	needs	to
release	in	order	to	break	the	deadlock.	The	selected	transaction	must	be	rolled	back	to	the	point	where	it
obtained	the	first	of	these	locks,	undoing	all	actions	it	took	after	that	point.	The	recovery	mechanism	must
be	capable	of	performing	such	partial	rollbacks.	Furthermore,	the	transactions	must	be	capable	of
resuming	execution	after	a	partial	rollback.	See	the	online	bibliographical	notes	for	relevant	references.

3.	Starvation.	In	a	system	where	the	selection	of	victims	is	based	primarily	on	cost	factors,	it	may	happen
that	the	same	transaction	is	always	picked	as	a	victim.

As	a	result,	this	transaction	never	completes	its	designated	task,	thus	there	is	starvation.	We	must	ensure
that	a	transaction	can	be	picked	as	a	victim	only	a	(small)	finite	number	of	times.	The	most	common
solution	is	to	include	the	number	of	rollbacks	in	the	cost	factor.

18.3

Multiple	Granularity

In	the	concurrency-control	schemes	described	thus	far,	we	have	used	each	individual	data	item	as	the	unit
on	which	synchronization	is	performed.

854

Chapter	18

Concurrency	Control

There	are	circumstances,	however,	where	it	would	be	advantageous	to	group	several	data	items,	and	to
treat	them	as	one	individual	synchronization	unit.	For	example,	if	a	transaction	T	needs	to	access	an
entire	relation,	and	a	locking	protocol	is	used	to	lock	i

tuples,	then	T	must	lock	each	tuple	in	the	relation.	Clearly,	acquiring	many	such	locks	i

is	time-consuming;	even	worse,	the	lock	table	may	become	very	large	and	no	longer	fit	in	memory.	It
would	be	better	if	T	could	issue	a	single	lock	request	to	lock	the	entire	i

relation.	On	the	other	hand,	if	transaction	T	needs	to	access	only	a	few	tuples,	it	should	j

not	be	required	to	lock	the	entire	relation,	since	otherwise	concurrency	is	lost.

What	is	needed	is	a	mechanism	to	allow	the	system	to	define	multiple	levels	of	granularity.	This	is	done	by
allowing	data	items	to	be	of	various	sizes	and	defining	a	hierarchy	of	data	granularities,	where	the	small
granularities	are	nested	within	larger	ones.	Such	a	hierarchy	can	be	represented	graphically	as	a	tree.
Note	that	the	tree	that	we	describe	here	is	significantly	different	from	that	used	by	the	tree	protocol
(Section	18.1.5).	A	nonleaf	node	of	the	multiple-granularity	tree	represents	the	data	associated	with	its
descendants.	In	the	tree	protocol,	each	node	is	an	independent	data	item.

As	an	illustration,	consider	the	tree	of	Figure	18.15,	which	consists	of	four	levels	of	nodes.	The	highest
level	represents	the	entire	database.	Below	it	are	nodes	of	type	area;	the	database	consists	of	exactly
these	areas.	Each	area	in	turn	has	nodes	of	type	file	as	its	children.	Each	area	contains	exactly	those	files
that	are	its	child	nodes.	No	file	is	in	more	than	one	area.	Finally,	each	file	has	nodes	of	type	record.	As
before,	the	file	consists	of	exactly	those	records	that	are	its	child	nodes,	and	no	record	can	be	present	in
more	than	one	file.

Each	node	in	the	tree	can	be	locked	individually.	As	we	did	in	the	two-phase	locking	protocol,	we	shall	use
shared	and	exclusive	lock	modes.	When	a	transaction	locks	a	node,	in	either	shared	or	exclusive	mode,	the
transaction	also	has	implicitly	locked	all	the	descendants	of	that	node	in	the	same	lock	mode.	For
example,	if	transaction	Ti	gets	an	explicit	lock	on	file	F	of	Figure	18.15,	in	exclusive	mode,	then	it	has	an
implicit	c

DB

A1

A2

Fa

Fb

Fc

ra

r

r

r

r

r

r

.

1

a2

an

b1

bk

c1

cm

Figure	18.15	Granularity	hierarchy.

18.3

Multiple	Granularity

855

lock	in	exclusive	mode	on	all	the	records	belonging	to	that	file.	It	does	not	need	to	lock	the	individual
records	of	F	explicitly.

c

Suppose	that	transaction	T	wishes	to	lock	record	r

of	file	F	.	Since	T	has	locked

j

b

b

i

6

F	explicitly,	it	follows	that	r

is	also	locked	(implicitly).	But,	when	T	issues	a	lock

b

b

j

6

request	for	r	,	r

is	not	explicitly	locked!	How	does	the	system	determine	whether	T

b

b

j

6

6

can	lock	r	?	T	must	traverse	the	tree	from	the	root	to	record	r	.	If	any	node	in	that	b

j

b

6

6

path	is	locked	in	an	incompatible	mode,	then	T	must	be	delayed.

j

Suppose	now	that	transaction	T	wishes	to	lock	the	entire	database.	To	do	so,	it	k

simply	must	lock	the	root	of	the	hierarchy.	Note,	however,	that	T	should	not	succeed	k

in	locking	the	root	node,	since	T	is	currently	holding	a	lock	on	part	of	the	tree	(specifi-i

cally,	on	file	F).	But	how	does	the	system	determine	if	the	root	node	can	be	locked?	One	b

possibility	is	for	it	to	search	the	entire	tree.	This	solution,	however,	defeats	the	whole	purpose	of	the
multiple-granularity	locking	scheme.	A	more	efficient	way	to	gain	this	knowledge	is	to	introduce	a	new
class	of	lock	modes,	called	intention	lock	modes.	If	a	node	is	locked	in	an	intention	mode,	explicit	locking
is	done	at	a	lower	level	of	the	tree	(that	is,	at	a	finer	granularity).	Intention	locks	are	put	on	all	the
ancestors	of	a	node	before	that	node	is	locked	explicitly.	Thus,	a	transaction	does	not	need	to	search	the
entire	tree	to	determine	whether	it	can	lock	a	node	successfully.	A	transaction	wish-ing	to	lock	a	node—
say,	Q—must	traverse	a	path	in	the	tree	from	the	root	to	Q.	While	traversing	the	tree,	the	transaction
locks	the	various	nodes	in	an	intention	mode.

There	is	an	intention	mode	associated	with	shared	mode,	and	there	is	one	with	exclusive	mode.	If	a	node
is	locked	in	intention-shared	(IS)	mode,	explicit	locking	is	being	done	at	a	lower	level	of	the	tree,	but	with
only	shared-mode	locks.	Similarly,	if	a	node	is	locked	in	intention-exclusive	(IX)	mode,	then	explicit	locking
is	being	done	at	a	lower	level,	with	exclusive-mode	or	shared-mode	locks.	Finally,	if	a	node	is	locked	in
shared	and	intention-exclusive	(SIX)	mode,	the	subtree	rooted	by	that	node	is	locked	explicitly	in	shared
mode,	and	that	explicit	locking	is	being	done	at	a	lower	level	with	exclusive-mode	locks.	The	compatibility
function	for	these	lock	modes	is	shown	in	Figure	18.16.

IS

IX

S

SIX

X

IS

true

true

true

true

false

IX

true

true

false

false

false

S

true

false

true

false

false

SIX

true

false

false

false

false

X

false

false

false

false

false

Figure	18.16	Compatibility	matrix.

856

Chapter	18

Concurrency	Control

The	multiple-granularity	locking	protocol	uses	these	lock	modes	to	ensure	serializability.	It	requires	that	a
transaction	T	that	attempts	to	lock	a	node	Q	must	follow	these	i

rules:

•	Transaction	T	must	observe	the	lock-compatibility	function	of	Figure	18.16.

i

•	Transaction	T	must	lock	the	root	of	the	tree	first	and	can	lock	it	in	any	mode.

i

•	Transaction	T	can	lock	a	node	Q	in	S	or	IS	mode	only	if	T	currently	has	the	parent	i

i

of	Q	locked	in	either	IX	or	IS	mode.

•	Transaction	T	can	lock	a	node	Q	in	X,	SIX,	or	IX	mode	only	if	T	currently	has	the	i

i

parent	of	Q	locked	in	either	IX	or	SIX	mode.

•	Transaction	T	can	lock	a	node	only	if	T	has	not	previously	unlocked	any	node	i

i

(i.e.,	T	is	two	phase).

i

•	Transaction	T	can	unlock	a	node	Q	only	if	T	currently	has	none	of	the	children	i

i

of	Q	locked.

Observe	that	the	multiple-granularity	protocol	requires	that	locks	be	acquired	in	top-down	(root-to-leaf)
order,	whereas	locks	must	be	released	in	bottom-up	(leaf-to-root)	order.	Deadlock	is	possible	in	the
multiple-granularity	protocol,	as	it	is	in	the	two-phase	locking	protocol.

As	an	illustration	of	the	protocol,	consider	the	tree	of	Figure	18.15	and	these	transactions:

•	Suppose	that	transaction	T	reads	record	r	in	file	F	.	Then,	T	needs	to	lock	21

a

a

21

2

the	database,	area	A	,	and	F	in	IS	mode	(and	in	that	order),	and	finally	to	lock	r	1

a

a	2

in	S	mode.

•	Suppose	that	transaction	T	modifies	record	r	in	file	F	.	Then,	T	needs	to	lock	22

a

a

22

9

the	database,	area	A	,	and	file	F	(and	in	that	order)	in	IX	mode,	and	finally	to	lock	1

a

r

in	X	mode.

a	9

•	Suppose	that	transaction	T

reads	all	the	records	in	file	F	.	Then,	T

needs	to

23

a

23

lock	the	database	and	area	A	(and	in	that	order)	in	IS	mode,	and	finally	to	lock	1

F	in	S	mode.

a

•	Suppose	that	transaction	T	reads	the	entire	database.	It	can	do	so	after	locking	24

the	database	in	S	mode.

We	note	that	transactions	T	,	T	,	and	T

can	access	the	database	concurrently.	Trans-

21

23

24

action	T

can	execute	concurrently	with	T	,	but	not	with	either	T

or	T	.

22

21

23

24

This	protocol	enhances	concurrency	and	reduces	lock	overhead.	It	is	particularly	useful	in	applications
that	include	a	mix	of:

•	Short	transactions	that	access	only	a	few	data	items.

•	Long	transactions	that	produce	reports	from	an	entire	file	or	set	of	files.

18.4

Insert	Operations,	Delete	Operations,	and	Predicate	Reads

857

The	number	of	locks	that	an	SQL	query	may	need	to	acquire	can	usually	be	estimated	based	on	the
relation	scan	operations	performed	by	a	query.	A	relation	scan,	for	example,	would	acquire	a	lock	at	a
relation	level,	while	an	index	scan	that	is	expected	to	fetch	only	a	few	records	may	acquire	an	intention
lock	at	the	relation	level	and	regular	locks	at	the	tuple	level.	In	case	the	a	transaction	acquires	a	large
number	of	tuple	locks,	the	lock	table	may	become	overfull.	To	deal	with	this	situation,	the	lock	manager
may	perform	lock	escalation,	replacing	many	lower	level	locks	by	a	single	higher	level	lock;	in	our
example,	a	single	relation	lock	could	replace	a	large	number	of	tuple	locks.

18.4

Insert	Operations,	Delete	Operations,	and	Predicate	Reads

Until	now,	we	have	restricted	our	attention	to	read	and	write	operations.	This	restriction	limits
transactions	to	data	items	already	in	the	database.	Some	transactions	require	not	only	access	to	existing
data	items,	but	also	the	ability	to	create	new	data	items.	Others	require	the	ability	to	delete	data	items.	To
examine	how	such	transactions	affect	concurrency	control,	we	introduce	these	additional	operations:

•	delete(Q)	deletes	data	item	Q	from	the	database.

•	insert(Q)	inserts	a	new	data	item	Q	into	the	database	and	assigns	Q	an	initial	value.

An	attempt	by	a	transaction	T	to	perform	a

i

read(Q)	operation	after	Q	has	been	deleted

results	in	a	logical	error	in	T	.	Likewise,	an	attempt	by	a	transaction	T	to	perform	a	i

i

read(Q)	operation	before	Q	has	been	inserted	results	in	a	logical	error	in	T	.	It	is	also	i

a	logical	error	to	attempt	to	delete	a	nonexistent	data	item.

18.4.1

Deletion

To	understand	how	the	presence	of	delete	instructions	affects	concurrency	control,	we	must	decide	when

a	delete	instruction	conflicts	with	another	instruction.	Let	I	and	i

I	be	instructions	of	T	and	T	,	respectively,	that	appear	in	schedule	S	in	consecutive	j

i

j

order.	Let	I	=	delete(Q).	We	consider	several	instructions	I	.

i

j

•	I	=

and	I	conflict.	If	I	comes	before	I	,	T	will	have	a	logical	error.	If	j

read(Q).	Ii

j

i

j

j

I	comes	before	I	,	T	can	execute	the

j

i

j

read	operation	successfully.

•	I	=

and	I	conflict.	If	I	comes	before	I	,	T	will	have	a	logical	error.	If	j

write(Q).	Ii

j

i

j

j

I	comes	before	I	,	T	can	execute	the

j

i

j

write	operation	successfully.

•	I	=	delete(Q).	I	and	I	conflict.	If	I	comes	before	I	,	T	will	have	a	logical	error.	If	j

i

j

i

j

j

I	comes	before	I	,	T	will	have	a	logical	error.

j

i

i

•	I	=	insert(Q).	I	and	I	conflict.	Suppose	that	data	item	Q	did	not	exist	prior	to	j

i

j

the	execution	of	I	and	I	.	Then,	if	I	comes	before	I	,	a	logical	error	results	for	T	.

i

j

i

j

i

858

Chapter	18

Concurrency	Control

If	I	comes	before	I	,	then	no	logical	error	results.	Likewise,	if	Q	existed	prior	to	j

i

the	execution	of	I	and	I	,	then	a	logical	error	results	if	I	comes	before	I	,	but	not	i

j

j

i

otherwise.

We	can	conclude	the	following:

•	Under	the	two-phase	locking	protocol,	an	exclusive	lock	is	required	on	a	data	item	before	that	item	can
be	deleted.

•	Under	the	timestamp-ordering	protocol,	a	test	similar	to	that	for	a	write	must	be	performed.	Suppose
that	transaction	T	issues	delete(Q).

i

°	If	TS(T)	<	R-timestamp(Q),	then	the	value	of	Q	that	T	was	to	delete	has	al-i

i

ready	been	read	by	a	transaction	T	with	TS(T)	>	TS(T).	Hence,	the	delete	j

j

i

operation	is	rejected,	and	T	is	rolled	back.

i

°	If	TS(T)	<	W-timestamp(Q),	then	a	transaction	T	with	TS(T)	>	TS(T)	has	i

j

j

i

written	Q.	Hence,	this	delete	operation	is	rejected,	and	T	is	rolled	back.

i

°	Otherwise,	the	delete	is	executed.

18.4.2

Insertion

We	have	already	seen	that	an	insert(Q)	operation	conflicts	with	a	delete(Q)	operation.

Similarly,	insert(Q)	conflicts	with	a	read(Q)	operation	or	a	write(Q)	operation;	no	read	or	write	can	be
performed	on	a	data	item	before	it	exists.

Since	an	insert(Q)	assigns	a	value	to	data	item	Q,	an	insert	is	treated	similarly	to	a	write	for	concurrency-
control	purposes:

•	Under	the	two-phase	locking	protocol,	if	T	performs	an	insert(Q)	operation,	T	is	i

i

given	an	exclusive	lock	on	the	newly	created	data	item	Q.

•	Under	the	timestamp-ordering	protocol,	if	T	performs	an	insert(Q)	operation,	the	i

values	R-timestamp(Q)	and	W-timestamp(Q)	are	set	to	TS(T).

i

18.4.3

Predicate	Reads	and	The	Phantom	Phenomenon

Consider	transaction	T

that	executes	the	following	SQL	query	on	the	university

30

database:

select	count(*)

from	instructor

where	dept	name	=	'Physics'	;

Transaction	T

requires	access	to	all	tuples	of	the	instructor	relation	pertaining	to	the	30

Physics	department.

18.4

Insert	Operations,	Delete	Operations,	and	Predicate	Reads

859

Let	T

be	a	transaction	that	executes	the	following	SQL	insertion:

31

insert	into	instructor

values	(11111,	'Feynman',	'Physics',	94000);

Let	S	be	a	schedule	involving	T

and	T	.	We	expect	there	to	be	potential	for	a

30

31

conflict	for	the	following	reasons:

•	If	T	uses	the	tuple	newly	inserted	by	T	in	computing	count(*),	then	T	reads	30

31

30

a	value	written	by	T	.	Thus,	in	a	serial	schedule	equivalent	to	S,	T

must	come

31

31

before	T	.

30

•	If	T	does	not	use	the	tuple	newly	inserted	by	T	in	computing	count(*),	then	in	30

31

a	serial	schedule	equivalent	to	S,	T

must	come	before	T	.

30

31

The	second	of	these	two	cases	is	curious.	T

and	T

do	not	access	any	tuple	in	com-

30

31

mon,	yet	they	conflict	with	each	other!	In	effect,	T

and	T

conflict	on	a	phantom

30

31

tuple.	If	concurrency	control	is	performed	at	the	tuple	granularity,	this	conflict	would	go	undetected.	As	a
result,	the	system	could	fail	to	prevent	a	nonserializable	schedule.

This	problem	is	an	instance	of	the	phantom	phenomenon.

Phantom	phenomena	can	occur	not	just	with	inserts,	but	also	with	updates.	Consider	the	situation	we	saw
in	Section	17.10,	where	a	transaction	T	used	an	index	to	i

find	only	tuples	with	dept	name	=	“Physics”,	and	as	a	result	did	not	read	any	tuples	with	other
department	names.	If	another	transaction	T	updates	one	of	these	tuples,	j

changing	its	department	name	to	Physics,	a	problem	similar	to	the	above	problem	occurs:	even	though	T

and	T	have	not	accessed	any	tuples	in	common,	they	do	conflict	i

j

with	each	other.	This	problem	too	is	an	instance	of	the	phantom	phenomenon.	In	general,	the	phantom
phenomenon	is	rooted	in	predicate	reads	that	conflict	with	inserts	or	updates	that	result	in	new/updated
tuples	that	satisfy	the	predicate.

We	can	prevent	these	problems	by	allowing	transaction	T

to	prevent	other	trans-

30

actions	from	creating	new	tuples	in	the	instructor	relation	with	dept	name	=	“Physics”,	and	from	updating
the	department	name	of	an	existing	instructor	tuple	to	Physics.

To	find	all	instructor	tuples	with	dept	name	=	“Physics”,	T

must	search	either	the

30

whole	instructor	relation,	or	at	least	an	index	on	the	relation.	Up	to	now,	we	have	assumed	implicitly	that
the	only	data	items	accessed	by	a	transaction	are	tuples.	However,	T

is	an	example	of	a	transaction	that	reads	information	about	what	tuples	are	in	a	30

relation,	and	T

is	an	example	of	a	transaction	that	updates	that	information.

31

Clearly,	it	is	not	sufficient	merely	to	lock	the	tuples	that	are	accessed;	the	information	used	to	find	the
tuples	that	are	accessed	by	the	transaction	must	also	be	locked.

Locking	of	information	used	to	find	tuples	can	be	implemented	by	associating	a	data	item	with	the
relation;	the	data	item	represents	the	information	used	to	find	the	tuples	in	the	relation.	Transactions,
such	as	T	,	that	read	the	information	about	what	30

tuples	are	in	a	relation	would	then	have	to	lock	the	data	item	corresponding	to	the

860

Chapter	18

Concurrency	Control

relation	in	shared	mode.	Transactions,	such	as	T	,	that	update	the	information	about	31

what	tuples	are	in	a	relation	would	have	to	lock	the	data	item	in	exclusive	mode.	Thus,	T

and	T

would	conflict	on	a	real	data	item,	rather	than	on	a	phantom.	Similarly,	30

31

transactions	that	use	an	index	to	retrieve	tuples	must	lock	the	index	itself.

Do	not	confuse	the	locking	of	an	entire	relation,	as	in	multiple-granularity	locking,	with	the	locking	of	the
data	item	corresponding	to	the	relation.	By	locking	the	data	item,	a	transaction	only	prevents	other
transactions	from	updating	information	about	what	tuples	are	in	the	relation.	Locking	is	still	required	on
tuples.	A	transaction	that	directly	accesses	a	tuple	can	be	granted	a	lock	on	the	tuples	even	when	another
transaction	has	an	exclusive	lock	on	the	data	item	corresponding	to	the	relation	itself.

The	major	disadvantage	of	locking	a	data	item	corresponding	to	the	relation,	or	locking	an	entire	index,	is
the	low	degree	of	concurrency—	two	transactions	that	insert	different	tuples	into	a	relation	are	prevented
from	executing	concurrently.

A	better	solution	is	an	index-locking	technique	that	avoids	locking	the	whole	index.

Any	transaction	that	inserts	a	tuple	into	a	relation	must	insert	information	into	every	index	maintained	on
the	relation.	We	eliminate	the	phantom	phenomenon	by	imposing	a	locking	protocol	for	indices.	For
simplicity	we	shall	consider	only	B+-tree	indices.

As	we	saw	in	Chapter	14,	every	search-key	value	is	associated	with	an	index	leaf	node.	A	query	will
usually	use	one	or	more	indices	to	access	a	relation.	An	insert	must	insert	the	new	tuple	in	all	indices	on
the	relation.	In	our	example,	we	assume	that	there	is	an	index	on	instructor	for	attribute	dept	name.	Then,
T

must	modify	the

31

leaf	containing	the	key	“Physics”.	If	T

reads	the	same	leaf	node	to	locate	all	tuples

30

pertaining	to	the	Physics	department,	then	T

and	T

conflict	on	that	leaf	node.

30

31

The	index-locking	protocol	takes	advantage	of	the	availability	of	indices	on	a	relation,	by	turning	instances
of	the	phantom	phenomenon	into	conflicts	on	locks	on	index	leaf	nodes.	The	protocol	operates	as	follows:

•	Every	relation	must	have	at	least	one	index.

•	A	transaction	T	can	access	tuples	of	a	relation	only	after	first	finding	them	through	i

one	or	more	of	the	indices	on	the	relation.	For	the	purpose	of	the	index-locking	protocol,	a	relation	scan	is
treated	as	a	scan	through	all	the	leaves	of	one	of	the	indices.

•	A	transaction	T	that	performs	a	lookup	(whether	a	range	lookup	or	a	point	i

lookup)	must	acquire	a	shared	lock	on	all	the	index	leaf	nodes	that	it	accesses.

•	A	transaction	T	may	not	insert,	delete,	or	update	a	tuple	t	in	a	relation	r	without	i

i

updating	all	indices	on	r.	The	transaction	must	obtain	exclusive	locks	on	all	index	leaf	nodes	that	are
affected	by	the	insertion,	deletion,	or	update.	For	insertion	and	deletion,	the	leaf	nodes	affected	are	those
that	contain	(after	insertion)	or	contained	(before	deletion)	the	search-key	value	of	the	tuple.	For	updates,
the	leaf	nodes	affected	are	those	that	(before	the	modification)	contained	the	old	value	of	the	search	key,
and	nodes	that	(after	the	modification)	contain	the	new	value	of	the	search	key.

18.5

Timestamp-Based	Protocols

861

•	Locks	are	obtained	on	tuples	as	usual.

•	The	rules	of	the	two-phase	locking	protocol	must	be	observed.

Note	that	the	index-locking	protocol	does	not	address	concurrency	control	on	internal	nodes	of	an	index;
techniques	for	concurrency	control	on	indices,	which	minimize	lock	conflicts,	are	presented	in	Section
18.10.2.

Locking	an	index	leaf	node	prevents	any	update	to	the	node,	even	if	the	update	did	not	actually	conflict
with	the	predicate.	A	variant	called	key-value	locking,	which	minimizes	such	false	lock	conflicts,	is
presented	in	Section	18.10.2	as	part	of	index	concurrency	control.

As	noted	in	Section	17.10,	it	would	appear	that	the	existence	of	a	conflict	between	transactions	depends

on	a	low-level	query-processing	decision	by	the	system	that	is	unrelated	to	a	user-level	view	of	the
meaning	of	the	two	transactions.	An	alternative	approach	to	concurrency	control	acquires	shared	locks	on
predicates	in	a	query,	such	as	the	predicate	“salary	>	90000”	on	the	instructor	relation.	Inserts	and
deletes	of	the	relation	must	then	be	checked	to	see	if	they	satisfy	the	predicate;	if	they	do,	there	is	a	lock
conflict,	forcing	the	insert	or	delete	to	wait	till	the	predicate	lock	is	released.	For	updates,	both	the	initial
value	and	the	final	value	of	the	tuple	must	be	checked	against	the	predicate.	Such	conflicting	inserts,
deletes,	and	updates	affect	the	set	of	tuples	selected	by	the	predicate,	and	they	cannot	be	allowed	to
execute	concurrently	with	the	query	that	acquired	the	(shared)	predicate	lock.	We	call	this	protocol
predicate	locking;1	predicate	locking	is	not	used	in	practice	since	it	is	more	expensive	to	implement	than
the	index-locking	protocol	and	does	not	give	significant	additional	benefits.

18.5

Timestamp-Based	Protocols

The	locking	protocols	that	we	have	described	thus	far	determine	the	order	between	every	pair	of
conflicting	transactions	at	execution	time	by	the	first	lock	that	both	members	of	the	pair	request	that
involves	incompatible	modes.	Another	method	for	determining	the	serializability	order	is	to	select	an
ordering	among	transactions	in	advance.	The	most	common	method	for	doing	so	is	to	use	a	timestamp-
ordering	scheme.

18.5.1

Timestamps

With	each	transaction	T	in	the	system,	we	associate	a	unique	fixed	timestamp,	denoted	i

by	TS(T).	This	timestamp	is	assigned	by	the	database	system	before	the	transaction	i

T	starts	execution.	If	a	transaction	T	has	been	assigned	timestamp	TS(T),	and	a	new	i

i

i

transaction	T	enters	the	system,	then	TS(T)	<	TS(T).	There	are	two	simple	methods	j

i

j

for	implementing	this	scheme:

1The	term	predicate	locking	was	used	for	a	version	of	the	protocol	that	used	shared	and	exclusive	locks
on	predicates,	and	was	thus	more	complicated.	The	version	we	present	here,	with	only	shared	locks	on
predicates,	is	also	referred	to	as	precision	locking.

862

Chapter	18

Concurrency	Control

1.	Use	the	value	of	the	system	clock	as	the	timestamp;	that	is,	a	transaction’s	timestamp	is	equal	to	the
value	of	the	clock	when	the	transaction	enters	the	system.

2.	Use	a	logical	counter	that	is	incremented	after	a	new	timestamp	has	been	assigned;	that	is,	a
transaction’s	timestamp	is	equal	to	the	value	of	the	counter	when	the	transaction	enters	the	system.

The	timestamps	of	the	transactions	determine	the	serializability	order.	Thus,	if	TS(T)	<	TS(T),	then	the
system	must	ensure	that	the	produced	schedule	is	equivalent	i

j

to	a	serial	schedule	in	which	transaction	T	appears	before	transaction	T	.

i

j

To	implement	this	scheme,	we	associate	with	each	data	item	Q	two	timestamp	values:

1.	W-timestamp(Q)	denotes	the	largest	timestamp	of	any	transaction	that	executed	write(Q)	successfully.

2.	R-timestamp(Q)	denotes	the	largest	timestamp	of	any	transaction	that	executed	read(Q)	successfully.

These	timestamps	are	updated	whenever	a	new	read(Q)	or	write(Q)	instruction	is	executed.

18.5.2

The	Timestamp-Ordering	Protocol

The	timestamp-ordering	protocol	ensures	that	any	conflicting	read	and	write	operations	are	executed	in
timestamp	order.	This	protocol	operates	as	follows:

•	Suppose	that	transaction	T	issues

i

read(Q).

°	If	TS(T)	<	W-timestamp(Q),	then	T	needs	to	read	a	value	of	Q	that	was	already	i

i

overwritten.	Hence,	the	read	operation	is	rejected,	and	T	is	rolled	back.

i

°	If	TS(T)	≥	W-timestamp(Q),	then	the

i

read	operation	is	executed,	and	R-

timestamp(Q)	is	set	to	the	maximum	of	R-timestamp(Q)	and	TS(T).

i

•	Suppose	that	transaction	T	issues

i

write(Q).

°	If	TS(T)	<	R-timestamp(Q),	then	the	value	of	Q	that	T	is	producing	was	i

i

needed	previously,	and	the	system	assumed	that	that	value	would	never	be	produced.	Hence,	the	system
rejects	the	write	operation	and	rolls	T	back.

i

°	If	TS(T)	<	W-timestamp(Q),	then	T	is	attempting	to	write	an	obsolete	value	i

i

of	Q.	Hence,	the	system	rejects	this	write	operation	and	rolls	T	back.

i

°	Otherwise,	the	system	executes	the	write	operation	and	sets	W-time-

stamp(Q)	to	TS(T).

i

18.5

Timestamp-Based	Protocols

863

If	a	transaction	T	is	rolled	back	by	the	concurrency-control	scheme	as	result	of	issuance	i

of	either	a	read	or	write	operation,	the	system	assigns	it	a	new	timestamp	and	restarts	it.

To	illustrate	this	protocol,	we	consider	transactions	T

and	T	.	Transaction	T

25

26

25

displays	the	contents	of	accounts	A	and	B:

T	:

25

read(B);

read(A);

display(A	+	B).

Transaction	T

transfers	$50	from	account	B	to	account	A,	and	then	displays	the	con-26

tents	of	both:

T	:

26

read(B);

B	:=	B	−	50;

write(B);

read(A);

A	:=	A	+	50;

write(A);

display(A	+	B).

In	presenting	schedules	under	the	timestamp	protocol,	we	shall	assume	that	a	transaction	is	assigned	a
timestamp	immediately	before	its	first	instruction.	Thus,	in	schedule	3	of	Figure	18.17,	TS(T)	<	TS(T),
and	the	schedule	is	possible	under	the	timestamp	25

26

protocol.

We	note	that	the	preceding	execution	can	also	be	produced	by	the	two-phase	locking	protocol.	There	are,
however,	schedules	that	are	possible	under	the	two-phase	locking	protocol,	but	are	not	possible	under	the
timestamp	protocol,	and	vice	versa	(see	Exercise	18.27).

The	timestamp-ordering	protocol	ensures	conflict	serializability.	This	is	because	conflicting	operations	are
processed	in	timestamp	order.

The	protocol	ensures	freedom	from	deadlock,	since	no	transaction	ever	waits.	However,	there	is	a
possibility	of	starvation	of	long	transactions	if	a	sequence	of	conflicting	short	transactions	causes
repeated	restarting	of	the	long	transaction.	If	a	transaction	is	suffering	from	repeated	restarts,	conflicting
transactions	need	to	be	temporarily	blocked	to	enable	the	transaction	to	finish.

The	protocol	can	generate	schedules	that	are	not	recoverable.	However,	it	can	be	extended	to	make	the
schedules	recoverable,	in	one	of	several	ways:

•	Recoverability	and	cascadelessness	can	be	ensured	by	performing	all	writes	together	at	the	end	of	the
transaction.	The	writes	must	be	atomic	in	the	following	sense:	While	the	writes	are	in	progress,	no
transaction	is	permitted	to	access	any	of	the	data	items	that	have	been	written.

864

Chapter	18

Concurrency	Control

T

T

25

26

read(B)

read(B)

B	:=	B	−	50

write(B)

read(A)

read(A)

display(A	+	B)

A	:=	A	+	50

write(A)

display(A	+	B)

Figure	18.17	Schedule	3.

•	Recoverability	and	cascadelessness	can	also	be	guaranteed	by	using	a	limited	form	of	locking,	whereby
reads	of	uncommitted	items	are	postponed	until	the	transaction	that	updated	the	item	commits	(see
Exercise	18.28).

•	Recoverability	alone	can	be	ensured	by	tracking	uncommitted	writes	and	allowing	a	transaction	T	to
commit	only	after	the	commit	of	any	transaction	that	wrote	a	i

value	that	T	read.	Commit	dependencies,	outlined	in	Section	18.1.5,	can	be	used	i

for	this	purpose.

If	the	timestamp-ordering	protocol	is	applied	only	to	tuples,	the	protocol	would	be	vulnerable	to	the
phantom	problems	that	we	saw	in	Section	17.10	and	Section	18.4.3.

To	avoid	this	problem,	the	timestamp-ordering	protocol	could	be	applied	to	all	data	that	is	read	by	a
transaction,	including	relation	metadata	and	index	data.	In	the	context	of	locking-based	concurrency
control,	the	index-locking	protocol,	described	in	Section	18.4.3,	is	a	more	efficient	alternative	for	avoiding
the	phantom	problem;	recall	that	the	index-locking	protocol	obtains	locks	on	index	nodes,	in	addition	to
obtaining	locks	on	tuples.	The	timestamp-ordering	protocol	can	be	similarly	modified	to	treat	each	index
node	as	a	data	item,	with	associated	read	and	write	timestamps,	and	to	apply	the	timestamp-ordering
tests	on	these	data	items,	too.	This	extended	version	of	the	timestamp-ordering	protocol	avoids	phantom

problems	and	ensures	serializability	even	with	predicate	reads.

18.5.3

Thomas’	Write	Rule

We	now	present	a	modification	to	the	timestamp-ordering	protocol	that	allows	greater	potential
concurrency	than	does	the	protocol	of	Section	18.5.2.	Let	us	consider	schedule	4	of	Figure	18.18	and
apply	the	timestamp-ordering	protocol.	Since	T

starts	before

27

T	,	we	shall	assume	that	TS(T)	<	TS(T).	The	succeeds,

28

27

28

read(Q)	operation	of	T	27

as	does	the	write(Q)	operation	of	T	.	When	T

attempts	its

28

27

write(Q)	operation,

18.5

Timestamp-Based	Protocols

865

T

T

27

28

read(Q)

write(Q)

write(Q)

Figure	18.18	Schedule	4.

we	find	that	TS(T)	<	W-timestamp(Q),	since	W-timestamp(Q)	=	TS(T).	Thus,	the	27

28

write(Q)	by	T

is	rejected	and	transaction	T

must	be	rolled	back.

27

27

Although	the	rollback	of	T

is	required	by	the	timestamp-ordering	protocol,	it

27

is	unnecessary.	Since	T

has	already	written	Q,	the	value	that	T

is	attempting	to

28

27

write	is	one	that	will	never	need	to	be	read.	Any	transaction	T	with	TS(T)	<	TS(T)	i

i

28

that	attempts	a	read(Q)	will	be	rolled	back,	since	TS(T)	<	W-timestamp(Q).	Any	i

transaction	T	with	TS(T)	>	TS(T)	must	read	the	value	of	Q	written	by	T	,	rather	j

j

28

28

than	the	value	that	T

is	attempting	to	write.

27

This	observation	leads	to	a	modified	version	of	the	timestamp-ordering	protocol	in	which	obsolete	write
operations	can	be	ignored	under	certain	circumstances.	The	protocol	rules	for	read	operations	remain
unchanged.	The	protocol	rules	for	write	operations,	however,	are	slightly	different	from	the	timestamp-
ordering	protocol	of	Section	18.5.2.

The	modification	to	the	timestamp-ordering	protocol,	called	Thomas’	write	rule,	is	this:	Suppose	that
transaction	T	issues

i

write(Q).

1.	If	TS(T)	<	R-timestamp(Q),	then	the	value	of	Q	that	T	is	producing	was	previ-i

i

ously	needed,	and	it	had	been	assumed	that	the	value	would	never	be	produced.

Hence,	the	system	rejects	the	write	operation	and	rolls	T	back.

i

2.	If	TS(T)	<	W-timestamp(Q),	then	T	is	attempting	to	write	an	obsolete	value	of	i

i

Q.	Hence,	this	write	operation	can	be	ignored.

3.	Otherwise,	the	system	executes	the	write	operation	and	sets	W-timestamp(Q)	to	TS(T).

i

The	difference	between	these	rules	and	those	of	Section	18.5.2	lies	in	the	second	rule.	The	timestamp-
ordering	protocol	requires	that	T	be	rolled	back	if	T	issues	i

i

write(Q)	and	TS(T)	<	W-timestamp(Q).	However,	here,	in	those	cases	where	TS(T)	i

i

≥	R-timestamp(Q),	we	ignore	the	obsolete	write.

By	ignoring	the	write,	Thomas’	write	rule	allows	schedules	that	are	not	conflict	serializable	but	are
nevertheless	correct.	Those	non-conflict-serializable	schedules	allowed	satisfy	the	definition	of	view
serializable	schedules	(see	Note	18.1	on	page	867).	Thomas’

write	rule	makes	use	of	view	serializability	by,	in	effect,	deleting	obsolete	write	operations	from	the
transactions	that	issue	them.	This	modification	of	transactions	makes	it	possible	to	generate	serializable
schedules	that	would	not	be	possible	under	the	other

866

Chapter	18

Concurrency	Control

protocols	presented	in	this	chapter.	For	example,	schedule	4	of	Figure	18.18	is	not	conflict	serializable
and,	thus,	is	not	possible	under	the	two-phase	locking	protocol,	the	tree	protocol,	or	the	timestamp-
ordering	protocol.	Under	Thomas’	write	rule,	the	write(Q)	operation	of	T

would	be	ignored.	The	result	is	a	schedule	that	is	view	equivalent	to	the	27

serial	schedule	,	T	>.

27

28

18.6

Validation-Based	Protocols

In	cases	where	a	majority	of	transactions	are	read-only	transactions,	the	rate	of	conflicts	among
transactions	may	be	low.	Thus,	many	of	these	transactions,	if	executed	without	the	supervision	of	a
concurrency-control	scheme,	would	nevertheless	leave	the	system	in	a	consistent	state.	A	concurrency-
control	scheme	imposes	overhead	of	code	execution	and	possible	delay	of	transactions.	It	may	be	better	to
use	an	alternative	scheme	that	imposes	less	overhead.	A	difficulty	in	reducing	the	overhead	is	that	we	do
not	know	in	advance	which	transactions	will	be	involved	in	a	conflict.	To	gain	that	knowledge,	we	need	a
scheme	for	monitoring	the	system.

The	validation	protocol	requires	that	each	transaction	T	executes	in	two	or	three	i

different	phases	in	its	lifetime,	depending	on	whether	it	is	a	read-only	or	an	update	transaction.	The
phases	are,	in	order:

1.	Read	phase.	During	this	phase,	the	system	executes	transaction	T	.	It	reads	the	i

values	of	the	various	data	items	and	stores	them	in	variables	local	to	T	.	It	peri

forms	all	write	operations	on	temporary	local	variables,	without	updates	of	the	actual	database.

2.	Validation	phase.	The	validation	test	(described	below)	is	applied	to	transaction	T	.	This	determines
whether	T	is	allowed	to	proceed	to	the	write	phase	without	i

i

causing	a	violation	of	serializability.	If	a	transaction	fails	the	validation	test,	the	system	aborts	the
transaction.

3.	Write	phase.	If	the	validation	test	succeeds	for	transaction	T	,	the	temporary	local	i

variables	that	hold	the	results	of	any	write	operations	performed	by	T	are	copied	i

to	the	database.	Read-only	transactions	omit	this	phase.

Each	transaction	must	go	through	the	phases	in	the	order	shown.	However,	phases	of	concurrently
executing	transactions	can	be	interleaved.

To	perform	the	validation	test,	we	need	to	know	when	the	various	phases	of	transactions	took	place.	We
shall,	therefore,	associate	three	different	timestamps	with	each	transaction	T	:

i

1.	StartTS(T),	the	time	when	T	started	its	execution.

i

i

2.	ValidationTS(T),	the	time	when	T	finished	its	read	phase	and	started	its	valida-i

i

tion	phase.

3.	FinishTS(T),	the	time	when	T	finished	its	write	phase.

i

i

18.6

Validation-Based	Protocols

867

Note	18.1	VIEW	SERIALIZABILITY

There	is	another	form	of	equivalence	that	is	less	stringent	than	conflict	equivalence,	but	that,	like	conflict
equivalence,	is	based	on	only	the	read	and	write	operations	of	transactions.

Consider	two	schedules	S	and	S′,	where	the	same	set	of	transactions	participates	in	both	schedules.	The
schedules	S	and	S′	are	said	to	be	view	equivalent	if	three	conditions	are	met:

1.	For	each	data	item	Q,	if	transaction	T	reads	the	initial	value	of	Q	in	schedule	i

S,	then	transaction	T	must,	in	schedule	S′,	also	read	the	initial	value	of	Q.

i

2.	For	each	data	item	Q,	if	transaction	T	executes

i

read(Q)	in	schedule	S,	and	if

that	value	was	produced	by	a	write(Q)	operation	executed	by	transaction	T	,	j	then	the	read(Q)	operation
of	transaction	T	must,	in	schedule	S′,	also	read	i

the	value	of	Q	that	was	produced	by	the	same	write(Q)	operation	of	transaction	T	.

j

3.	For	each	data	item	Q,	the	transaction	(if	any)	that	performs	the	final	write(Q)	operation	in	schedule	S
must	perform	the	final	write(Q)	in	schedule	S′.

Conditions	1	and	2	ensure	that	each	transaction	reads	the	same	values	in	both	schedules	and,	therefore,
performs	the	same	computation.	Condition	3,	coupled	with	conditions	1	and	2,	ensures	that	both
schedules	result	in	the	same	final	system	state.

The	concept	of	view	equivalence	leads	to	the	concept	of	view	serializability.	We	say	that	a	schedule	S	is
view	serializable	if	it	is	view	equivalent	to	a	serial	schedule.

As	an	illustration,	suppose	that	we	augment	schedule	4	with	transaction	T	29

and	obtain	the	following	view	serializable	(schedule	5):

T

T

T

27

28

29

read	(Q)

write	(Q)

write	(Q)

write	(Q)

Indeed,	schedule	5	is	view	equivalent	to	the	serial	schedule	,	T	,	T	>,	since	27

28

29

the	one	read(Q)	instruction	reads	the	initial	value	of	Q	in	both	schedules	and	T	29

performs	the	final	write	of	Q	in	both	schedules.

Every	conflict-serializable	schedule	is	also	view	serializable,	but	there	are	view-serializable	schedules	that
are	not	conflict	serializable.	Indeed,	schedule	5	is	not	conflict	serializable,	since	every	pair	of	consecutive
instructions	conflicts,	and,	thus,	no	swapping	of	instructions	is	possible.

868

Chapter	18

Concurrency	Control

Note	18.1	VIEW	SERIALIZABILITY	(Cont.)

Observe	that,	in	schedule	5,	transactions	T

and	T

perform

28

29

write(Q)	op-

erations	without	having	performed	a	read(Q)	operation.	Writes	of	this	sort	are	called	blind	writes.	Blind
writes	appear	in	any	view-serializable	schedule	that	is	not	conflict	serializable.

We	determine	the	serializability	order	by	the	timestamp-ordering	technique,	using	the	value	of	the
timestamp	ValidationTS(T).	Thus,	the	value	TS(T)	=	ValidationTS(T)	i

i

i

and,	if	TS(T)	<	TS(T),	then	any	produced	schedule	must	be	equivalent	to	a	serial	j

k

schedule	in	which	transaction	T	appears	before	transaction	T	.

j

k

The	validation	test	for	transaction	T	requires	that,	for	all	transactions	T	with	i

k

TS(T)	<	TS(T),	one	of	the	following	two	conditions	must	hold:	k

i

1.	FinishTS(T)	<	StartTS(T).	Since	T	completes	its	execution	before	T	started,	k

i

k

i

the	serializability	order	is	indeed	maintained.

2.	The	set	of	data	items	written	by	T	does	not	intersect	with	the	set	of	data	items	k

read	by	T	,	and	T	completes	its	write	phase	before	T	starts	its	validation	phase	i

k

i

(StartTS(T)	<	FinishTS(T)	<	ValidationTS(T)).	This	condition	ensures	that	the	i

k

i

writes	of	T	and	T	do	not	overlap.	Since	the	writes	of	T	do	not	affect	the	read	k

i

k

of	T	,	and	since	T	cannot	affect	the	read	of	T	,	the	serializability	order	is	indeed	i

i

k

maintained.

As	an	illustration,	consider	again	transactions	T

and	T	.	Suppose	that	TS(T)

25

26

25

<	TS(T).	Then,	the	validation	phase	succeeds	in	the	schedule	6	in	Figure	18.19.	Note	26

that	the	writes	to	the	actual	variables	are	performed	only	after	the	validation	phase	of	T	.	Thus,	T

reads	the	old	values	of	B	and	A,	and	this	schedule	is	serializable.

26

25

The	validation	scheme	automatically	guards	against	cascading	rollbacks,	since	the	actual	writes	take
place	only	after	the	transaction	issuing	the	write	has	committed.

However,	there	is	a	possibility	of	starvation	of	long	transactions,	due	to	a	sequence	of	conflicting	short
transactions	that	cause	repeated	restarts	of	the	long	transaction.	To	avoid	starvation,	conflicting
transactions	must	be	temporarily	blocked	to	enable	the	long	transaction	to	finish.

Note	also	that	the	validation	conditions	result	in	a	transaction	T	only	being	validated	again	the	set	of
transactions	T	that	finished	after	T	started,	and,	further,	are	i

serialized	before	T	.	Transactions	that	finished	before	T	started	can	be	ignored	in	the	validation	tests.
Transactions	T	that	are	serialized	after	T	(that	is,	they	have	Valida-i

tionTS(T)	>	ValidationTS(T))	can	also	be	ignored;	when	such	a	transaction	T	is	vali-i

i

dated,	it	would	be	validated	against	T	if	T	finished	after	T	started.

i

18.7

Multiversion	Schemes

869

T

T

25

26

read(B)

read(B)

B	:=	B	−	50

read(A)

A	:=	A	+	50

read(A)

<	validate	>

display(A	+	B)

<	validate	>

write(B)

write(A)

Figure	18.19	Schedule	6,	a	schedule	produced	by	using	validation.

This	validation	scheme	is	called	the	optimistic	concurrency-control	scheme	since	transactions	execute
optimistically,	assuming	they	will	be	able	to	finish	execution	and	validate	at	the	end.	In	contrast,	locking
and	timestamp	ordering	are	pessimistic	in	that	they	force	a	wait	or	a	rollback	whenever	a	conflict	is

detected,	even	though	there	is	a	chance	that	the	schedule	may	be	conflict	serializable.

It	is	possible	to	use	TS(T)	=	StartTS(T)	instead	of	ValidationTS(T)	without	af-i

i

i

fecting	serializability.	However,	doing	so	may	result	in	a	transaction	T	entering	the	i

validation	phase	before	a	transaction	T	that	has	TS(T)	<	TS(T).	Then,	the	validation	j

j

i

of	T	would	have	to	wait	for	T	to	complete,	so	its	read	and	write	sets	are	completely	i

j

known.	Using	ValidationTS	avoids	this	problem.

18.7

Multiversion	Schemes

The	concurrency-control	schemes	discussed	thus	far	ensure	serializability	by	either	delaying	an	operation
or	aborting	the	transaction	that	issued	the	operation.	For	example,	a	read	operation	may	be	delayed
because	the	appropriate	value	has	not	been	written	yet;	or	it	may	be	rejected	(that	is,	the	issuing
transaction	must	be	aborted)	because	the	value	that	it	was	supposed	to	read	has	already	been
overwritten.	These	difficulties	could	be	avoided	if	old	copies	of	each	data	item	were	kept	in	a	system.

In	multiversion	concurrency-control	schemes,	each	write(Q)	operation	creates	a	new	version	of	Q.	When
a	transaction	issues	a	read(Q)	operation,	the	concurrency-control	manager	selects	one	of	the	versions	of
Q	to	be	read.	The	concurrency-control	scheme	must	ensure	that	the	version	to	be	read	is	selected	in	a
manner	that	ensures	serializability.	It	is	also	crucial,	for	performance	reasons,	that	a	transaction	be	able
to	determine	easily	and	quickly	which	version	of	the	data	item	should	be	read.

870

Chapter	18

Concurrency	Control

18.7.1

Multiversion	Timestamp	Ordering

The	timestamp-ordering	protocol	can	be	extended	to	a	multiversion	protocol.	With	each	transaction	T	in
the	system,	we	associate	a	unique	static	timestamp,	denoted	i

by	TS(T).	The	database	system	assigns	this	timestamp	before	the	transaction	starts	i

execution,	as	described	in	Section	18.5.

With	each	data	item	Q,	a	sequence	of	versions	",	Q	,	…	,	Q	>	is	associated.	"

1

2

m

Each	version	Q	contains	three	data	fields:

k

1.	Content	is	the	value	of	version	Q	.

k

2.	W-timestamp(Q)	is	the	timestamp	of	the	transaction	that	created	version	Q	.

k

k

3.	R-timestamp(Q)	is	the	largest	timestamp	of	any	transaction	that	successfully	read	k

version	Q	.

k

A	transaction—say,	T	—creates	a	new	version	Q	of	data	item	Q	by	issuing	a	i

k

write(Q)

operation.	The	content	field	of	the	version	holds	the	value	written	by	T	.	The	system	i

initializes	the	W-timestamp	and	R-timestamp	to	TS(T).	It	updates	the	R-timestamp	i

value	of	Q	whenever	a	transaction	T	reads	the	content	of	Q	and	R-timestamp(Q)	<

k

j

k

k

TS(T).

j

The	multiversion	timestamp-ordering	scheme	presented	next	ensures	serializability.	The	scheme	operates
as	follows:	Suppose	that	transaction	T	issues	a	i

read(Q)	or

write(Q)	operation.	Let	Q	denote	the	version	of	Q	whose	write	timestamp	is	the	largest	k

write	timestamp	less	than	or	equal	to	TS(T).

i

1.	If	transaction	T	issues	a

i

read(Q),	then	the	value	returned	is	the	content	of	ver-

sion	Q	.

k

2.	If	transaction	T	issues

)	<	R-timestamp(Q),	then

i

write(Q),	and	if	TS(Ti

k

the	system	rolls	back	transaction	T	.	On	the	other	hand,	if	TS(T)	=	W-i

i

timestamp(Q),	the	system	overwrites	the	contents	of	Q	;	otherwise	(if	TS(T)	k

k

i

>	R-timestamp(Q)),	it	creates	a	new	version	of	Q.

k

The	justification	for	rule	1	is	clear.	A	transaction	reads	the	most	recent	version	that	comes	before	it	in
time.	The	second	rule	forces	a	transaction	to	abort	if	it	is	“too	late”	in	doing	a	write.	More	precisely,	if	T
attempts	to	write	a	version	that	some	other	i

transaction	would	have	read,	then	we	cannot	allow	that	write	to	succeed.

The	valid	interval	of	a	version	Q	of	Q	with	W-timestamp	t	is	defined	as	follows:	if	i

Q	is	the	latest	version	of	Q,	the	interval	is	[t,	∞];	otherwise	let	the	next	version	of	Q

i

have	timestamp	s;	then	the	valid	interval	is	[t,	s).	You	can	easily	verify	that	reads	by	a	transaction	with
timestamp	t	return	the	content	of	the	version	whose	valid	interval	i

contains	t	.

i

Versions	that	are	no	longer	needed	are	removed	according	to	the	following	rule:	Suppose	that	there	are
two	versions,	Q	and	Q	,	of	a	data	item,	and	that	both	versions	k

j

18.7

Multiversion	Schemes

871

have	a	W-timestamp	less	than	the	timestamp	of	the	oldest	transaction	in	the	system.

Then,	the	older	of	the	two	versions	Q	and	Q	will	not	be	used	again,	and	can	be	deleted.

k

j

The	multiversion	timestamp-ordering	scheme	has	the	desirable	property	that	a	read	request	never	fails
and	is	never	made	to	wait.	In	typical	database	systems,	where	reading	is	a	more	frequent	operation	than
is	writing,	this	advantage	may	be	of	major	practical	significance.

The	scheme,	however,	suffers	from	two	undesirable	properties.	First,	the	reading	of	a	data	item	also
requires	the	updating	of	the	R-timestamp	field,	resulting	in	two	potential	disk	accesses,	rather	than	one.
Second,	the	conflicts	between	transactions	are	resolved	through	rollbacks,	rather	than	through	waits.
This	alternative	may	be	expensive.	Section	18.7.2	describes	an	algorithm	to	alleviate	this	problem.

This	multiversion	timestamp-ordering	scheme	does	not	ensure	recoverability	and	cascadelessness.	It	can
be	extended	in	the	same	manner	as	the	basic	timestamp-ordering	scheme	to	make	it	recoverable	and
cascadeless.

18.7.2

Multiversion	Two-Phase	Locking

The	multiversion	two-phase	locking	protocol	attempts	to	combine	the	advantages	of	multiversion
concurrency	control	with	the	advantages	of	two-phase	locking.	This	protocol	differentiates	between	read-
only	transactions	and	update	transactions.

Update	transactions	perform	rigorous	two-phase	locking;	that	is,	they	hold	all	locks	up	to	the	end	of	the
transaction.	Thus,	they	can	be	serialized	according	to	their	commit	order.	Each	version	of	a	data	item	has
a	single	timestamp.	The	timestamp	in	this	case	is	not	a	real	clock-based	timestamp,	but	rather	is	a
counter,	which	we	will	call	the	ts-counter,	that	is	incremented	during	commit	processing.

The	database	system	assigns	read-only	transactions	a	timestamp	by	reading	the	current	value	of	ts-
counter	before	they	start	execution;	they	follow	the	multiversion	timestamp-ordering	protocol	for
performing	reads.	Thus,	when	a	read-only	transaction	T	issues	a

i

read(Q),	the	value	returned	is	the	contents	of	the	version	whose	timestamp	is	the	largest	timestamp	less
than	or	equal	to	TS(T).

i

When	an	update	transaction	reads	an	item,	it	gets	a	shared	lock	on	the	item	and	reads	the	latest	version
of	that	item.	When	an	update	transaction	wants	to	write	an	item,	it	first	gets	an	exclusive	lock	on	the	item
and	then	creates	a	new	version	of	the	data	item.	The	write	is	performed	on	the	new	version,	and	the
timestamp	of	the	new	version	is	initially	set	to	a	value	∞,	a	value	greater	than	that	of	any	possible
timestamp.

When	the	update	transaction	T	completes	its	actions,	it	carries	out	commit	pro-i

cessing;	only	one	update	transaction	is	allowed	to	perform	commit	processing	at	a	time.

First,	T	sets	the	timestamp	on	every	version	it	has	created	to	1	more	than	the	value	of	i

ts-counter;	then,	T	increments

i

ts-counter	by	1,	and	commits.

Read-only	transactions	see	the	old	value	of	ts-counter	until	T	has	successfully	i

committed.	As	a	result,	read-only	transactions	that	start	after	T	commits	will	see	the	i

values	updated	by	T	,	whereas	those	that	start	before	T	commits	will	see	the	value	i

i

before	the	updates	by	T	.	In	either	case,	read-only	transactions	never	need	to	wait	for	i

872

Chapter	18

Concurrency	Control

Note	18.2	MULTIVERSIONING	AND	DATABASE	IMPLEMENTATION

Consider	a	database	system	that	implements	a	primary	key	constraint	by	ensuring	that	only	one	tuple
exists	for	any	value	of	the	primary	key	attribute.	The	creation	of	a	second	version	of	the	record	with	the
same	primary	key	would	appear	to	be	a	violation	of	the	primary	key	constraint.	However,	it	is	logically	not
a	violation,	since	the	two	versions	do	not	coexist	at	any	time	in	the	database.	Therefore,	primary
constraint	enforcement	must	be	modified	to	allow	multiple	records	with	the	same	primary	key,	as	long	as
they	are	different	versions	of	the	same	record.

Next,	consider	the	issue	of	deletion	of	tuples.	This	can	be	implemented	by	creating	a	new	version	of	the
tuple,	with	timestamps	created	as	usual,	but	with	a	special	marker	denoting	that	the	tuple	has	been
deleted.	Transactions	that	read	such	a	tuple	simply	skip	it,	since	it	has	been	deleted.

Further,	consider	the	issue	of	enforcing	foreign-key	dependencies.	Consider	the	case	of	a	relation	r	whose
attribute	r.B	is	a	foreign-key	referencing	attribute	s.B	of	relation	s.	In	general,	deletion	of	a	tuple	t	in	s	or
update	of	a	primary	key	s

attribute	of	tuple	t	in	s	causes	a	foreign-key	violation	if	there	is	an	r	tuple	t	such	that	s

r

t	.B	=	t	.B.	With	multiversioning,	if	the	timestamp	of	the	transaction	performing	r

s

the	deletion/update	is	ts	,	the	corresponding	condition	for	violation	is	the	existence	i

of	such	a	tuple	version	t	,	with	the	additional	condition	that	the	valid	interval	of	t	r

r

contains	ts	.

i

Finally,	consider	the	case	of	an	index	on	attribute	r.B	of	relation	r.	If	there	are	multiple	versions	of	a
record	t	with	the	same	value	for	B,	the	index	could	point	to	i

the	latest	version	of	the	record,	and	the	latest	version	could	have	pointers	to	earlier	versions.	However,	if
an	update	was	made	to	attribute	t	.B,	the	index	would	need	i

to	contain	separate	entries	for	different	versions	of	record	t	;	one	entry	for	the	old	i

value	of	t	.B	and	another	for	the	new	value	of	t	.B.	When	old	versions	of	a	record	i

i

are	deleted,	any	entry	in	the	index	for	the	old	version	must	also	be	deleted.

locks.	Multiversion	two-phase	locking	also	ensures	that	schedules	are	recoverable	and	cascadeless.

Versions	are	deleted	in	a	manner	like	that	of	multiversion	timestamp	ordering.

Suppose	there	are	two	versions,	Q	and	Q	,	of	a	data	item,	and	that	both	versions	have	k

j

a	timestamp	less	than	or	equal	to	the	timestamp	of	the	oldest	read-only	transaction	in	the	system.	Then,
the	older	of	the	two	versions	Q	and	Q	will	not	be	used	again	and	it	k

j

can	be	deleted.

18.8

Snapshot	Isolation

Snapshot	isolation	is	a	particular	type	of	concurrency-control	scheme	that	has	gained	wide	acceptance	in
commercial	and	open-source	systems,	including	Oracle,

18.8

Snapshot	Isolation

873

PostgreSQL,	and	SQL	Server.	We	introduced	snapshot	isolation	in	Section	17.9.3.	Here,	we	take	a	more
detailed	look	into	how	it	works.

Conceptually,	snapshot	isolation	involves	giving	a	transaction	a	“snapshot”	of	the	database	at	the	time
when	it	begins	its	execution.	It	then	operates	on	that	snapshot	in	complete	isolation	from	concurrent
transactions.	The	data	values	in	the	snapshot	consist	only	of	values	written	by	committed	transactions.
This	isolation	is	ideal	for	read-only	transactions	since	they	never	wait	and	are	never	aborted	by	the
concurrency	manager.

Transactions	that	update	the	database	potentially	have	conflicts	with	other	transactions	that	update	the
database.	Updates	performed	by	a	transaction	must	be	validated	before	the	transaction	is	allowed	to
commit.	We	describe	how	validation	is	performed,	later	in	this	section.	Updates	are	kept	in	the
transaction’s	private	workspace	until	the	transaction	is	validated,	at	which	point	the	updates	are	written
to	the	database.

When	a	transaction	T	is	allowed	to	commit,	the	transition	of	T	to	the	committed	state	and	the	writing	of	all
of	the	updates	made	by	T	to	the	database	must	be	conceptually	done	as	an	atomic	action	so	that	any
snapshot	created	for	another	transaction	either	includes	all	updates	by	transaction	T	or	none	of	them.

18.8.1

Multiversioning	in	Snapshot	Isolation

To	implement	snapshot	isolation,	transactions	are	given	two	timestamps.	The	first	timestamp,	StartTS(T),
is	the	time	at	which	transaction	T	started.	The	second	times-i

i

tamp,	CommitTS(T)	is	the	time	when	the	transaction	T	requested	validation.

i

i

Note	that	timestamps	can	be	wall	clock	time,	as	long	as	no	two	transactions	are	given	the	same
timestamp,	but	they	are	usually	assigned	from	a	counter	that	is	incremented	every	time	a	transaction
enters	its	validation	phase.

Snapshot	isolation	is	based	on	multiversioning,	and	each	transaction	that	updates	a	data	item	creates	a
version	of	the	data	item.	Versions	have	only	one	timestamp,	which	is	the	write	timestamp,	indicating	when
the	version	was	created.	The	timestamp	of	a	version	created	by	transaction	T	is	set	to	CommitTS(T).
(Since	updates	to	the	database	i

i

are	also	only	made	after	validation	of	the	transaction	T	,	CommitTS(T)	is	available	i

i

when	a	version	is	created.)2

When	a	transaction	T	reads	a	data	item,	the	latest	version	of	the	data	item	whose	i

timestamp	is	≤	StartTS(T)	is	returned	to	T	.	Thus,	T	does	not	see	the	updates	of	i

i

i

any	transactions	that	committed	after	T	started,	while	it	does	see	the	updates	of	all	i

transactions	that	commit	before	it	started.	As	a	result,	T	effectively	sees	a	snapshot	of	i

the	database	as	of	the	time	it	started.3

2Many	implementations	create	versions	even	before	the	transaction	starts	validation;	since	the	version
timestamp	is	not	available	at	this	point,	the	timestamp	is	set	to	infinity	initially,	and	is	updated	to	the
correct	value	at	the	time	of	validation.	Further	optimizations	are	used	in	actual	implementations,	but	we
ignore	them	for	simplicity.

3To	efficiently	find	the	correct	version	of	a	data	item	for	a	given	timestamp,	many	implementations	store
not	only	the	timestamp	when	a	version	was	created,	but	also	the	timestamp	when	the	next	version	was
created,	which	can	be	considered	an	invalidation	timestamp	for	that	version;	the	version	is	valid	between
the	creation	and	invalidation	timestamps.	The	current	version	of	a	data	item	has	the	invalidation
timestamp	set	to	infinity.

874

Chapter	18

Concurrency	Control

18.8.2

Validation	Steps	for	Update	Transactions

Deciding	whether	or	not	to	allow	an	update	transaction	to	commit	requires	some	care.

Potentially,	two	transactions	running	concurrently	might	both	update	the	same	data	item.	Since	these	two
transactions	operate	in	isolation	using	their	own	private	snapshots,	neither	transaction	sees	the	update
made	by	the	other.	If	both	transactions	are	allowed	to	write	to	the	database,	the	first	update	written	will
be	overwritten	by	the	second.	The	result	is	a	lost	update.	This	must	be	prevented.	There	are	two	variants
of	snapshot	isolation,	both	of	which	prevent	lost	updates.	They	are	called	first	committer	wins	and	first
updater	wins.	Both	approaches	are	based	on	testing	the	transaction	against	concurrent	transactions.

A	transaction	T	is	said	to	be	concurrent	with	a	given	transaction	T	if	it	was	active	j

i

or	partially	committed	at	any	point	from	the	start	of	T	up	to	the	point	when	validation	of	T	started.

Formally,	T	is	concurrent	with	T	if	either	i

j

i

StartTS(T)	≤	StartTS(T)	≤	CommitTS(T),	or	j

i

j

StartTS(T)	≤	StartTS(T)	≤	CommitTS(T).

i

j

i

Under	first	committer	wins,	when	a	transaction	T	starts	validation,	the	following	i

actions	are	performed	as	part	of	validation,	after	its	CommitTS	is	assigned.	(We	assume	for	simplicity	that
only	one	transaction	performs	validation	at	a	time,	although	real	implementations	do	support	concurrent
validation.)

•	A	test	is	made	to	see	if	any	transaction	that	was	concurrent	with	T	has	already	written	an	update	to	the
database	for	some	data	item	that	T	intends	to	write.

This	can	be	done	by	checking	for	each	data	item	d	that	T	intends	to	write,	whether	i

there	is	a	version	of	the	data	item	d	whose	timestamp	is	between	StartTS(T)	and	i

CommitTS(T).4

i

•	If	any	such	data	item	is	found,	then	T	aborts.

i

•	If	no	such	data	item	is	found,	then	T	commits	and	its	updates	are	written	to	the	database.

This	approach	is	called	“first	committer	wins”	because	if	transactions	conflict,	the	first	one	to	be	tested
using	the	above	rule	succeeds	in	writing	its	updates,	while	the	subsequent	ones	are	forced	to	abort.
Details	of	how	to	implement	these	tests	are	addressed	in	Exercise	18.15.

Under	first	updater	wins,	the	system	uses	a	locking	mechanism	that	applies	only	to	updates	(reads	are
unaffected	by	this,	since	they	do	not	obtain	locks).	When	a	transaction	T	attempts	to	update	a	data	item,	it
requests	a	write	lock	on	that	data	item.	If	i

the	lock	is	not	held	by	a	concurrent	transaction,	the	following	steps	are	taken	after	the	lock	is	acquired:

•	If	the	item	has	been	updated	by	any	concurrent	transaction,	then	T	aborts.

i

4There	are	alternative	implementations,	based	on	keeping	track	of	read	and	write	sets	for	transactions.

18.8

Snapshot	Isolation

875

•	Otherwise	T	may	proceed	with	its	execution,	including	possibly	committing.

i

If,	however,	some	other	concurrent	transaction	T	already	holds	a	write	lock	on	that	j

data	item,	then	T	cannot	proceed,	and	the	following	rules	are	followed:	i

•	T	waits	until	T	aborts	or	commits.

i

j

°	If	T	aborts,	then	the	lock	is	released	and	T	can	obtain	the	lock.	After	the	lock	j

i

is	acquired,	the	check	for	an	update	by	a	concurrent	transaction	is	performed	as	described	earlier:	T
aborts	if	a	concurrent	transaction	had	updated	the	data	i

item,	and	it	proceeds	with	its	execution	otherwise.

°	If	T	commits,	then	T	must	abort.

j

i

Locks	are	released	when	the	transaction	commits	or	aborts.

This	approach	is	called	“first	updater	wins”	because	if	transactions	conflict,	the	first	one	to	obtain	the	lock
is	the	one	that	is	permitted	to	commit	and	perform	its	update.

Those	that	attempt	the	update	later	abort	unless	the	first	updater	subsequently	aborts	for	some	other
reason.	(As	an	alternative	to	waiting	to	see	if	the	first	updater	T	aborts,	j

a	subsequent	updater	T	can	be	aborted	as	soon	as	it	finds	that	the	write	lock	it	wishes	i

to	obtain	is	held	by	T	.)

j

18.8.3

Serializability	Issues	and	Solutions

Snapshot	isolation	is	attractive	in	practice	because	transactions	that	read	a	lot	of	data	(typically	for	data
analysis)	do	not	interfere	with	shorter	update	transactions	(typically	used	for	transaction	processing).
With	two-phase	locking,	such	long	read-only	transactions	would	block	update	transactions	for	long	periods
of	time,	which	is	often	unacceptable.

It	is	worth	noting	that	integrity	constraints	that	are	enforced	by	the	database,	such	as	primary-key	and
foreign-key	constraints,	cannot	be	checked	on	a	snapshot;	otherwise	it	would	be	possible	for	two
concurrent	transactions	to	insert	two	tuples	with	the	same	primary	key	value,	or	for	a	transaction	to
insert	a	foreign	key	value	that	is	concurrently	deleted	from	the	referenced	table.	This	problem	is	handled
by	checking	these	constraints	on	the	current	state	of	the	database,	rather	than	on	the	snapshot,	as	part	of
validation	at	the	time	of	commit.

Even	with	the	above	fix,	there	is	still	a	serious	problem	with	the	snapshot	isolation	scheme	as	we	have
presented	it	and	as	it	is	implemented	in	practice:	snapshot	isolation	does	not	ensure	serializability!

Next	we	give	examples	of	possible	nonserializable	executions	under	snapshot	isolation.	We	then	outline
the	serializable	snapshot	isolation	technique	that	is	supported	by	some	databases,	which	extends	the
snapshot	isolation	technique	to	ensure	serializability.	Snapshot	isolation	implementations	that	do	not
support	serializable	snapshot	isolation	often	support	SQL	extensions	that	allow	the	programmer	to	ensure
serializability	even	with	snapshot	isolation;	we	study	these	extensions	at	the	end	of	the	section.

876

Chapter	18

Concurrency	Control

T

T

i

j

read(A)

read(B)

read(A)

read(B)

A=B

B=A

write(A)

write(B)

Figure	18.20	Nonserializable	schedule	under	snapshot	isolation.

•	Consider	the	transaction	schedule	shown	in	Figure	18.20.	Two	concurrent	transactions	T	and	T	both
read	data	items	A	and	B.	T	sets	A	=	B	and	writes	A,	while	T

i

j

i

j

sets	B	=	A	and	writes	B.	Since	T	and	T	are	concurrent,	under	snapshot	isolation	i

j

neither	transaction	sees	the	update	by	the	other	in	its	snapshot.	But,	since	they	update	different	data
items,	both	are	allowed	to	commit	regardless	of	whether	the	system	uses	the	first-update-wins	policy	or
the	first-committer-wins	policy.

However,	the	execution	is	not	serializable,	since	it	results	in	swapping	of	the	values	of	A	and	B,	whereas
any	serializable	schedule	would	set	both	A	and	B	to	the	same	value:	either	the	initial	value	of	A	or	the
initial	value	of	B,	depending	on	the	order	of	T	and	T	.

i

j

It	can	be	easily	seen	that	the	precedence	graph	has	a	cycle.	There	is	an	edge	in	the	precedence	graph
from	T	to	T	because	T	reads	the	value	of	A	that	existed	i

j

i

before	T	writes	A.	There	is	also	an	edge	in	the	precedence	graph	from	T	to	T

j

j

i

because	T	reads	the	value	of	B	that	existed	before	T	writes	B.	Since	there	is	a	j

i

cycle	in	the	precedence	graph,	the	result	is	a	nonserializable	schedule.

This	situation,	where	each	of	a	pair	of	transactions	has	read	a	data	item	that	is	written	by	the	other,	but
the	set	of	data	items	written	by	the	two	transactions	do	not	have	any	data	item	in	common,	is	referred	to
as	write	skew.

•	As	another	example	of	write	skew,	consider	a	banking	scenario.	Suppose	that	the	bank	enforces	the
integrity	constraint	that	the	sum	of	the	balances	in	the	checking	and	the	savings	account	of	a	customer
must	not	be	negative.	Suppose	the	checking	and	savings	balances	for	a	customer	are	$100	and	$200,
respectively.	Suppose	that	transaction	T

withdraws	$200	from	the	checking	account,	after	verifying	the	in-

36

tegrity	constraint	by	reading	both	balances.	Suppose	that	concurrently	transaction	T

withdraws	$200	from	the	savings	account,	again	after	verifying	the	integrity	37

constraint.	Since	each	of	the	transactions	checks	the	integrity	constraint	on	its	own	snapshot,	if	they	run
concurrently	each	will	believe	that	the	sum	of	the	balances	after	the	withdrawal	is	$100,	and	therefore	its
withdrawal	does	not	violate

18.8

Snapshot	Isolation

877

the	constraint.	Since	the	two	transactions	update	different	data	items,	they	do	not	have	any	update
conflict,	and	under	snapshot	isolation	both	of	them	can	commit.

Unfortunately,	in	the	final	state	after	both	T

and	T

have	committed,	the	sum

36

37

of	the	balances	is	$100,	violating	the	integrity	constraint.	Such	a	violation	could	never	have	occurred	in
any	serial	execution	of	T

and	T	.

36

37

•	Many	financial	applications	create	consecutive	sequence	numbers,	for	example	to	number	bills,	by
taking	the	maximum	current	bill	number	and	adding	1	to	the	value	to	get	a	new	bill	number.	If	two	such
transactions	run	concurrently,	each	would	see	the	same	set	of	bills	in	its	snapshot,	and	each	would	create
a	new	bill	with	the	same	number.	Both	transactions	pass	the	validation	tests	for	snapshot	isolation,	since
they	do	not	update	any	tuple	in	common.	However,	the	execution	is	not	serializable;	the	resultant
database	state	cannot	be	obtained	by	any	serial	execution	of	the	two	transactions.	Creating	two	bills	with
the	same	number	could	have	serious	legal	implications.

The	above	problem	is	in	fact	an	example	of	the	phantom	phenomenon,	which	we	saw	in	Section	18.4.3,
since	the	insert	performed	by	each	transaction	conflicts	with	the	read	performed	by	the	other	transaction
to	find	the	maximum	bill	number,	but	the	conflict	is	not	detected	by	snapshot	isolation.5

The	problems	listed	above	seem	to	indicate	that	the	snapshot	isolation	technique	is	vulnerable	to	many
serializability	problems	and	should	never	be	used.	However,	serializability	problems	are	relatively	rare	for
two	reasons:

1.	The	fact	that	the	database	must	check	integrity	constraints	at	the	time	of	commit,	and	not	on	a

snapshot,	helps	avoid	inconsistencies	in	many	situations.	For	example,	in	the	financial	application	example
that	we	saw	earlier,	the	bill	number	would	likely	have	been	declared	as	a	primary	key.	The	database
system	would	detect	the	primary	key	violation	outside	the	snapshot	and	roll	back	one	of	the	two
transactions.

It	was	shown	that	primary	key	constraints	ensured	that	all	transactions	in	a	popular	transaction
processing	benchmark,	TPC-C,	were	free	from	nonserializ-ability	problems,	when	executed	under
snapshot	isolation.	This	was	viewed	as	an	indication	that	such	problems	are	rare.	However,	they	do	occur
occasionally,	and	when	they	occur	they	must	be	dealt	with.6

2.	In	many	applications	that	are	vulnerable	to	serializability	problems,	such	as	skew	writes,	on	some	data
items,	the	transactions	conflict	on	other	data	items,	ensuring	5The	SQL	standard	uses	the	term	phantom
problem	to	refer	to	nonrepeatable	predicate	reads,	leading	some	to	claim	that	snapshot	isolation	avoids
the	phantom	problem;	however,	such	a	claim	is	not	valid	under	our	definition	of	phantom	conflict.

6For	example,	the	problem	of	duplicate	bill	numbers	actually	occurred	several	times	in	a	financial
application	in	I.I.T.

Bombay,	where	(for	reasons	too	complex	to	discuss	here)	the	bill	number	was	not	a	primary	key,	and	it
was	detected	by	financial	auditors.

878

Chapter	18

Concurrency	Control

such	transactions	cannot	execute	concurrently;	as	a	result,	the	execution	of	such	transactions	under
snapshot	isolation	remains	serializable.

Nonserializable	may	nevertheless	occur	with	snapshot	isolation.	The	impact	of	nonserializable	execution
due	to	snapshot	isolation	is	not	very	severe	for	many	applications.	For	example,	consider	a	university
application	that	implements	enrollment	limits	for	a	course	by	counting	the	current	enrollment	before
allowing	registration.	Snapshot	isolation	could	allow	the	class	enrollment	limit	to	be	exceeded.	However,
this	may	happen	very	rarely,	and	if	it	does,	having	one	extra	student	in	a	class	is	usually	not	a	major
problem.	The	fact	that	snapshot	isolation	allows	long	read	transactions	to	execute	without	blocking
updaters	is	a	large	enough	benefit	for	many	such	applications	to	live	with	occasional	glitches.

Nonserializability	may	not	be	acceptable	for	many	other	applications,	such	as	financial	applications.	There
are	several	possible	solutions.

•	A	modified	form	of	snapshot	isolation,	called	serializable	snapshot	isolation,	can	be	used	if	it	is
supported	by	the	database	system.	This	technique	extends	the	snapshot	isolation	technique	in	a	way	that
ensures	serializability.

•	Some	systems	allow	different	transactions	to	run	under	different	isolation	levels,	which	can	be	used	to
avoid	the	serializability	problems	mentioned	above.

•	Some	systems	that	support	snapshot	isolation	provide	a	way	for	SQL	programmers	to	create	artificial
conflicts,	using	a	for	update	clause	in	SQL,	which	can	be	used	to	ensure	serializability.

We	briefly	outline	each	of	these	solutions	below.

Since	version	9.1,	PostgreSQL	implements	a	technique	called	serializable	snapshot	isolation,	which
ensures	serializability;	in	addition,	PostgreSQL	versions	from	9.1	onwards	include	an	index-locking-based
technique	to	provide	protection	against	phantom	problems.

The	intuition	behind	the	serializable	snapshot	isolation	(SSI)	protocol	is	as	follows:	Suppose	we	track	all
conflicts	(i.e.,	write-write,	read-write,	and	write-read	conflicts)	between	transactions.	Recall	from	Section
17.6	that	we	can	construct	a	transaction	precedence	graph	which	has	a	directed	edge	from	T	to	T	if
transactions	T	and	T

1

2

1

2

have	conflicting	operations	on	a	tuple,	with	T	’s	action	preceding	T	’s	action.	As	we	saw	1

2

in	Section	17.6,	one	way	to	ensure	serializability	is	to	look	for	cycles	in	the	transaction	precedence	graph
and	roll	back	transactions	if	a	cycle	is	found.

The	key	reason	for	loss	of	serializability	with	snapshot	isolation	is	that	read-write	conflicts,	where	a
transaction	T	writes	a	version	of	an	object,	and	a	transaction	T	sub-1

2

sequently	reads	an	earlier	version	of	the	object,	are	not	tracked	by	snapshot	isolation.

This	conflict	can	be	represented	by	a	read-write	conflict	edge	from	T	to	T	.

2

1

It	has	been	shown	that	in	all	cases	where	snapshot	isolation	allows	nonserializable	schedules,	there	must
be	a	transaction	that	has	both	an	incoming	read-write	conflict

18.8

Snapshot	Isolation

879

edge	and	an	outgoing	read-write	conflict	edge	(all	other	cases	of	cycles	in	the	conflict	graph	are	caught	by
the	snapshot	isolation	rules).	Thus,	serializable	snapshot	isolation	implementations	track	all	read-write
conflicts	between	concurrent	transactions	to	detect	if	a	transaction	has	both	an	incoming	and	an	outgoing
read-write	conflict	edge.	If	such	a	situation	is	detected,	one	of	the	transactions	involved	in	the	read-write
conflicts	is	rolled	back.	This	check	is	significantly	cheaper	than	tracking	all	conflicts	and	looking	for
cycles,	although	it	may	result	in	some	unnecessary	rollbacks.

It	is	also	worth	mentioning	that	the	technique	used	by	PostgreSQL	to	prevent	phantoms	uses	index
locking,	but	the	locks	are	not	held	in	a	two-phase	manner.	Instead,	they	are	used	to	detect	potential
conflicts	between	concurrent	transactions	and	must	be	retained	for	some	time	even	after	a	transaction
commits,	to	allow	checks	against	other	concurrent	transactions.	The	index-locking	technique	used	by
PostgreSQL	also	does	not	result	in	any	deadlocks.

SQL	Server	offers	the	option	of	allowing	some	transactions	to	run	under	snapshot	isolation,	while	allowing
others	to	run	under	the	serializable	isolation	level.	Running	long	read-only	transactions	under	the
snapshot	isolation	level	while	running	update	transactions	under	the	serializable	isolation	level	ensures
that	the	read-only	transaction	does	not	block	updaters,	while	also	ensuring	that	the	above	anomalies
cannot	occur.

In	Oracle	versions	till	at	least	Oracle	12c	(to	the	best	of	our	knowledge),	and	in	PostgreSQL	versions	prior
to	9.1,	the	serializable	isolation	level	actually	implements	snapshot	isolation.	As	a	result,	even	with	the
isolation	level	set	to	serializable,	it	is	possible	that	the	database	permits	some	schedules	that	are	not
serializable.

If	an	application	has	to	run	under	snapshot	isolation,	on	several	of	these	databases	an	application
developer	can	guard	against	certain	snapshot	anomalies	by	appending	a	for	update	clause	to	the	SQL
select	query	as	illustrated	below:

select	*

from	instructor

where	ID	=	22222

for	update;

Adding	the	for	update	clause	causes	the	system	to	treat	data	that	are	read	as	if	they	had	been	updated	for
purposes	of	concurrency	control.	In	our	first	example	of	write	skew	shown	in	Figure	18.20,	if	the	for
update	clause	were	appended	to	the	select	queries	that	read	the	values	of	A	and	B,	only	one	of	the	two
concurrent	transactions	would	be	allowed	to	commit	since	it	appears	that	both	transactions	have	updated
both	A	and	B.

Formal	methods	exist	(see	the	online	bibliographical	notes)	to	determine	whether	a	given	mix	of
transactions	runs	the	risk	of	nonserializable	execution	under	snapshot	isolation	and	to	decide	on	what
conflicts	to	introduce	(using	the	for	update	clause,	for	example)	to	ensure	serializability.	Such	methods

can	work	only	if	we	know	in	advance	what	transactions	are	being	executed.	In	some	applications,	all
transactions	are	from	a	predetermined	set	of	transactions,	making	this	analysis	possible.	However,	if	the
application	allows	unrestricted,	ad	hoc	transactions,	then	no	such	analysis	is	possible.

880

Chapter	18

Concurrency	Control

18.9

Weak	Levels	of	Consistency	in	Practice

In	Section	17.8,	we	discussed	the	isolation	levels	specified	by	the	SQL	standard:	serializable,	repeatable
read,	read	committed,	and	read	uncommitted.	In	this	section,	we	first	briefly	outline	some	older
terminology	relating	to	consistency	levels	weaker	than	serializability	and	relate	it	to	the	SQL	standard
levels.	We	then	discuss	the	issue	of	concurrency	control	for	transactions	that	involve	user	interaction,	an
issue	that	we	briefly	discussed	in	Section	17.8.

18.9.1

Degree-Two	Consistency

The	purpose	of	degree-two	consistency	is	to	avoid	cascading	aborts	without	necessarily	ensuring
serializability.	The	locking	protocol	for	degree-two	consistency	uses	the	same	two	lock	modes	that	we
used	for	the	two-phase	locking	protocol:	shared	(S)	and	exclusive	(X).	A	transaction	must	hold	the
appropriate	lock	mode	when	it	accesses	a	data	item,	but	two-phase	behavior	is	not	required.

In	contrast	to	the	situation	in	two-phase	locking,	S-locks	may	be	released	at	any	time,	and	locks	may	be
acquired	at	any	time.	Exclusive	locks,	however,	cannot	be	released	until	the	transaction	either	commits	or
aborts.	Serializability	is	not	ensured	by	this	protocol.	Indeed,	a	transaction	may	read	the	same	data	item
twice	and	obtain	different	results.	In	Figure	18.21,	T

reads	the	value	of	Q	before	that	value	is	written	by

32

T	,	and	again	after	it	is	written	by	T	.

33

33

Reads	are	not	repeatable,	but	since	exclusive	locks	are	held	until	transaction	commit,	no	transaction	can
read	an	uncommitted	value.	Thus,	degree-two	consistency	is	one	particular	implementation	of	the	read-
committed	isolation	level.

It	is	interesting	to	note	that	with	degree-two	consistency,	a	transaction	that	is	scanning	an	index	may
potentially	see	two	versions	of	a	record	that	was	updated	while	the	scan	was	in	progress	and	may	also
potentially	see	neither	version!	For	example,	T

T

32

33

lock-S(Q)

read(Q)

unlock(Q)

lock-X(Q)

read(Q)

write(Q)

unlock(Q)

lock-S(Q)

read(Q)

unlock(Q)

Figure	18.21	Nonserializable	schedule	with	degree-two	consistency.

18.9

Weak	Levels	of	Consistency	in	Practice

881

consider	a	relation	r(A,	B,	C),	with	primary	key	A,	with	an	index	on	attribute	B.	Now	consider	a	query	that
is	scanning	the	relation	r	using	the	index	on	attribute	B,	using	degree-two	consistency.	Suppose	there	is	a
concurrent	update	to	a	tuple	t	∈	r	that	1

updates	attribute	t	.B	from	v	to	v	.	Such	an	update	requires	deletion	of	an	entry	corre-1

1

2

sponding	to	value	v	from	the	index	and	insertion	of	a	new	entry	corresponding	to	v	.

1

2

Now,	the	scan	of	r	could	possibly	scan	the	index	node	corresponding	to	v	after	the	old	1

tuple	is	deleted	there	but	visit	the	index	node	corresponding	to	v	before	the	updated	2

tuple	is	inserted	in	that	node.	Then,	the	scan	would	completely	miss	the	tuple,	even	though	it	should	have
seen	either	the	old	value	or	the	new	value	of	t	.	Further,	a	scan	1

using	degree-two	consistency	could	possibly	visit	the	node	corresponding	to	v	before	1

the	delete,	and	the	node	corresponding	to	v	after	the	insert,	and	thereby	see	two	ver-2

sions	of	t	,	one	from	before	the	update	and	one	from	after	the	update.	(This	problem	1

would	not	arise	if	the	scan	and	the	update	both	used	two-phase	locking.)	18.9.2

Cursor	Stability

Cursor	stability	is	a	form	of	degree-two	consistency	designed	for	programs	that	iterate	over	tuples	of	a
relation	by	using	cursors.	Instead	of	locking	the	entire	relation,	cursor	stability	ensures	that:

•	The	tuple	that	is	currently	being	processed	by	the	iteration	is	locked	in	shared	mode.	Once	the	tuple	is
processed,	the	lock	on	the	tuple	can	be	released.

•	Any	modified	tuples	are	locked	in	exclusive	mode	until	the	transaction	commits.

These	rules	ensure	that	degree-two	consistency	is	obtained.	But	locking	is	not	done	in	a	two-phase
manner,	and	serializability	is	not	guaranteed.	Cursor	stability	is	used	in	practice	on	heavily	accessed
relations	as	a	means	of	increasing	concurrency	and	improving	system	performance.	Applications	that	use

cursor	stability	must	be	coded	in	a	way	that	ensures	database	consistency	despite	the	possibility	of
nonserializable	schedules.	Thus,	the	use	of	cursor	stability	is	limited	to	specialized	situations	with	simple
consistency	constraints.

When	supported	by	the	database,	snapshot	isolation	is	a	better	alternative	to	degree-two	consistency	as
well	as	cursor	stability,	since	it	offers	a	similar	or	even	better	level	of	concurrency	while	reducing	the	risk
of	nonserializable	executions.

18.9.3

Concurrency	Control	Across	User	Interactions

Concurrency-control	protocols	usually	consider	transactions	that	do	not	involve	user	interaction.	Consider
the	airline	seat	selection	example	from	Section	17.8,	which	involved	user	interaction.	Suppose	we	treat	all
the	steps	from	when	the	seat	availability	is	initially	shown	to	the	user,	until	the	seat	selection	is
confirmed,	as	a	single	transaction.

If	two-phase	locking	is	used,	the	entire	set	of	seats	on	a	flight	would	be	locked	in	shared	mode	until	the
user	has	completed	the	seat	selection,	and	no	other	transaction	would	be	able	to	update	the	seat
allocation	information	in	this	period.	Such	locking

882

Chapter	18

Concurrency	Control

would	be	a	very	bad	idea	since	a	user	may	take	a	long	time	to	make	a	selection,	or	even	just	abandon	the
transaction	without	explicitly	cancelling	it.	Timestamp	protocols	or	validation	could	be	used	instead,
which	avoid	the	problem	of	locking,	but	both	these	protocols	would	abort	the	transaction	for	a	user	A	if
any	other	user	B	has	updated	the	seat	allocation	information,	even	if	the	seat	selected	by	B	does	not
conflict	with	the	seat	selected	by	user	A.	Snapshot	isolation	is	a	good	option	in	this	situation,	since	it
would	not	abort	the	transaction	of	user	A	as	long	as	B	did	not	select	the	same	seat	as	A.

However,	snapshot	isolation	requires	the	database	to	remember	information	about	updates	performed	by
a	transaction	even	after	it	has	committed,	as	long	as	any	other	concurrent	transaction	is	still	active,	which
can	be	problematic	for	long-duration	transactions.

Another	option	is	to	split	a	transaction	that	involves	user	interaction	into	two	or	more	transactions,	such
that	no	transaction	spans	a	user	interaction.	If	our	seat	selection	transaction	is	split	thus,	the	first
transaction	would	read	the	seat	availability,	while	the	second	transaction	would	complete	the	allocation	of
the	selected	seat.	If	the	second	transaction	is	written	carelessly,	it	could	assign	the	selected	seat	to	the
user,	without	checking	if	the	seat	was	meanwhile	assigned	to	some	other	user,	resulting	in	a	lost-update
problem.	To	avoid	the	problem,	as	we	outlined	in	Section	17.8,	the	second	transaction	should	perform	the
seat	allocation	only	if	the	seat	was	not	meanwhile	assigned	to	some	other	user.

The	above	idea	has	been	generalized	in	an	alternative	concurrency	control	scheme,	which	uses	version
numbers	stored	in	tuples	to	avoid	lost	updates.	The	schema	of	each	relation	is	altered	by	adding	an	extra
version	number	attribute,	which	is	initialized	to	0

when	the	tuple	is	created.	When	a	transaction	reads	(for	the	first	time)	a	tuple	that	it	intends	to	update,	it
remembers	the	version	number	of	that	tuple.	The	read	is	performed	as	a	stand-alone	transaction	on	the
database,	and	hence	any	locks	that	may	be	obtained	are	released	immediately.	Updates	are	done	locally
and	copied	to	the	database	as	part	of	commit	processing,	using	the	following	steps	which	are	executed
atomically	(i.e.,	as	part	of	a	single	database	transaction):

•	For	each	updated	tuple,	the	transaction	checks	if	the	current	version	number	is	the	same	as	the	version
number	of	the	tuple	when	it	was	first	read	by	the	transaction.

1.	If	the	version	numbers	match,	the	update	is	performed	on	the	tuple	in	the	database,	and	its	version
number	is	incremented	by	1.

2.	If	the	version	numbers	do	not	match,	the	transaction	is	aborted,	rolling	back	all	the	updates	it
performed.

•	If	the	version	number	check	succeeds	for	all	updated	tuples,	the	transaction	commits.	It	is	worth	noting
that	a	timestamp	could	be	used	instead	of	the	version	number	without	impacting	the	scheme	in	any	way.

18.10

Advanced	Topics	in	Concurrency	Control

883

Observe	the	close	similarity	between	the	preceding	scheme	and	snapshot	isolation.

The	version	number	check	implements	the	first-committer-wins	rule	used	in	snapshot	isolation,	and	it	can
be	used	even	if	the	transaction	was	active	for	a	very	long	time.

However,	unlike	snapshot	isolation,	the	reads	performed	by	a	transaction	may	not	correspond	to	a
snapshot	of	the	database;	and	unlike	the	validation-based	protocol,	reads	performed	by	the	transaction
are	not	validated.

We	refer	to	the	above	scheme	as	optimistic	concurrency	control	without	read	validation.	Optimistic
concurrency	control	without	read	validation	provides	a	weak	level	of	serializability,	and	it	does	not	ensure
serializability.	A	variant	of	this	scheme	uses	version	numbers	to	validate	reads	at	the	time	of	commit,	in
addition	to	validating	writes,	to	ensure	that	the	tuples	read	by	the	transaction	were	not	updated
subsequent	to	the	initial	read;	this	scheme	is	equivalent	to	the	optimistic	concurrency-control	scheme
which	we	saw	earlier.

This	scheme	has	been	widely	used	by	application	developers	to	handle	transactions	that	involve	user
interaction.	An	attractive	feature	of	the	scheme	is	that	it	can	be	implemented	easily	on	top	of	a	database
system.	The	validation	and	update	steps	performed	as	part	of	commit	processing	are	then	executed	as	a
single	transaction	in	the	database,	using	the	concurrency-control	scheme	of	the	database	to	ensure
atomicity	for	commit	processing.	The	scheme	is	also	used	by	the	Hibernate	object-relational	mapping
system	(Section	9.6.2),	and	other	object-relational	mapping	systems,	where	it	is	referred	to	as	optimistic
concurrency	control	(even	though	reads	are	not	validated	by	default).	Hibernate	and	other	object-
relational	mapping	systems	therefore	perform	the	version	number	checks	transparently	as	part	of	commit
processing.	(Transactions	that	involve	user	interaction	are	called	conversations	in	Hibernate	to
differentiate	them	from	regular	transactions;	validation	using	version	numbers	is	particularly	useful	for
such	transactions.)

Application	developers	must,	however,	be	aware	of	the	potential	for	nonserializable	execution,	and	they
must	restrict	their	usage	of	the	scheme	to	applications	where	non-serializability	does	not	cause	serious
problems.

18.10

Advanced	Topics	in	Concurrency	Control

Instead	of	using	two-phase	locking,	special-purpose	concurrency	control	techniques	can	be	used	for	index
structures,	resulting	in	improved	concurrency.	When	using	main-memory	databases,	conversely,	index
concurrency	control	can	be	simplified.	Further,	concurrency	control	actions	often	become	bottlenecks	in
main-memory	databases,	and	techniques	such	as	latch-free	data	structures	have	been	designed	to	reduce
concurrency	control	overheads.	Instead	of	detecting	conflicts	at	the	level	of	reads	and	writes,	it	is	possible
to	consider	operations,	such	as	increment	of	a	counter,	as	basic	operations,	and	perform	concurrency
control	on	the	basis	of	conflicts	between	operations.	Certain	applications	require	guarantees	on
transaction	completion	time.	Specialized	concurrency	control	techniques	have	been	developed	for	such
applications.

884

Chapter	18

Concurrency	Control

18.10.1

Online	Index	Creation

When	we	are	dealing	with	large	volumes	of	data	(ranging	in	the	terabytes),	operations	such	as	creating	an
index	can	take	a	long	time	—	perhaps	hours	or	even	days.	When	the	operation	finishes,	the	index	contents
must	be	consistent	with	the	contents	of	the	relation,	and	all	further	updates	to	the	relation	must	maintain
the	index.

One	way	of	ensuring	that	the	data	and	the	index	are	consistent	is	to	block	all	updates	to	the	relation	while
the	index	is	created,	for	example	by	getting	a	shared	lock	on	the	relation.	After	the	index	is	created,	and
the	relation	metadata	are	updated	to	reflect	the	existence	of	the	index	locks	can	be	released.	Subsequent
update	transactions	will	find	the	index,	and	carry	out	index	maintenance	as	part	of	the	transaction.

However,	the	above	approach	would	make	the	system	unavailable	for	updates	to	the	relation	for	a	very
long	time,	which	is	unacceptable.	Instead,	most	database	systems	support	online	index	creation,	which
allows	relation	updates	to	occur	even	as	the	index	is	being	created.	Online	index	creation	can	be	carried

out	as	follows:	1.	Index	creation	gets	a	snapshot	of	the	relation	and	uses	it	to	create	the	index;	meanwhile,
the	system	logs	all	updates	to	the	relation	that	happen	after	the	snapshot	is	created.

2.	When	the	index	on	the	snapshot	data	is	complete,	it	is	not	yet	ready	for	use,	since	subsequent	updates
are	missing.	At	this	point,	the	log	of	updates	to	the	relation	is	used	to	update	the	index.	But	while	the
index	update	is	being	carried	out,	further	updates	may	be	happening	on	the	relation.

3.	The	index	update	then	obtains	a	shared	lock	on	the	relation	to	prevent	further	updates	and	applies	all
remaining	updates	to	the	index.	At	this	point,	the	index	is	consistent	with	the	contents	of	the	relation.	The
relation	metadata	are	then	updated	to	indicate	the	existence	of	the	new	index.	Subsequently	all	locks	are
released.

Any	transaction	that	executes	after	this	will	see	the	existence	of	the	index;	if	the	transaction	updates	the
relation,	it	will	also	update	the	index.

Creation	of	materialized	views	that	are	maintained	immediately,	as	part	of	the	transaction	that	updates
any	of	the	relations	used	in	the	view,	can	also	benefit	from	online	construction	techniques	that	are	similar
to	online	index	construction.	The	query	defining	the	view	is	executed	on	a	snapshot	of	the	participating
relations,	and	subsequent	updates	are	logged.	The	updates	are	applied	to	the	materialized	view,	with	a
final	phase	of	locking	and	catching	up	similar	to	the	case	of	online	index	creation.

Schema	changes	such	as	adding	or	deleting	attributes	or	constraints	can	also	have	a	significant	impact	if
relations	are	locked	while	the	schema	change	is	implemented	on	all	tuples.

•	For	adding	or	deleting	attributes,	a	version	number	can	be	kept	with	each	tuple,	and	tuples	can	be
updated	in	the	background,	or	whenever	they	are	accessed;	the	version	number	is	used	to	determine	if
the	schema	change	has	already	been	applied

18.10

Advanced	Topics	in	Concurrency	Control

885

to	the	tuple,	and	the	schema	change	is	applied	to	the	tuple	if	it	has	not	already	been	applied.

•	Adding	of	constraints	requires	that	existing	data	must	be	checked	to	ensure	that	the	constraint	is
satisfied.	For	example,	adding	a	primary	or	unique	key	constraint	on	an	attribute	ID	requires	checking	of
existing	tuples	to	ensure	that	no	two	tuples	have	the	same	ID	value.	Online	addition	of	such	constraints	is
done	in	a	manner	similar	to	online	index	construction,	by	checking	the	constraints	on	a	relation	snapshot,
while	keeping	a	log	of	updates	that	occur	after	the	snapshot.	The	updates	in	the	log	must	then	be	checked
to	ensure	that	they	do	not	violate	the	constraint.	In	a	final	catch-up	phase,	the	constraint	is	checked	on
any	remaining	updates	in	the	log	and	added	to	the	relation	metadata	while	holding	a	shared	lock	on	the
relation.

18.10.2

Concurrency	in	Index	Structures

It	is	possible	to	treat	access	to	index	structures	like	any	other	database	structure	and	to	apply	the
concurrency-control	techniques	discussed	earlier.	However,	since	indices	are	accessed	frequently,	they
would	become	a	point	of	great	lock	contention,	leading	to	a	low	degree	of	concurrency.	Luckily,	indices	do
not	have	to	be	treated	like	other	database	structures;	it	is	desirable	to	release	index	locks	early,	in	a	non-
two-phase	manner,	to	maximize	concurrency.	In	fact,	it	is	perfectly	acceptable	for	a	transaction	to	perform
a	lookup	on	an	index	twice	and	to	find	that	the	structure	of	the	index	has	changed	in	between,	as	long	as
the	index	lookup	returns	the	correct	set	of	tuples.	Informally,	it	is	acceptable	to	have	nonserializable
concurrent	access	to	an	index,	as	long	as	the	accuracy	of	the	index	is	maintained;	we	formalize	this	notion
next.

Operation	serializability	for	index	operations	is	defined	as	follows:	A	concurrent	execution	of	index
operations	on	an	index	is	said	to	be	serializable	if	there	is	a	serialization	order	of	the	operations	that	is
consistent	with	the	results	that	each	index	operation	in	the	concurrent	execution	sees,	as	well	as	with	the
final	state	of	the	index	after	all	the	operations	have	been	executed.	Index	concurrency	control	techniques
must	ensure	that	any	concurrent	execution	of	index	operations	is	serializable.

We	outline	two	techniques	for	managing	concurrent	access	to	B+-trees	as	well	as	an	index-concurrency
control	technique	to	prevent	the	phantom	phenomenon.	The	online	bibliographical	notes	reference	other
techniques	for	B+-trees	as	well	as	techniques	for	other	index	structures.	The	techniques	that	we	present
for	concurrency	control	on	B+-trees	are	based	on	locking,	but	neither	two-phase	locking	nor	the	tree
protocol	is	employed.	The	algorithms	for	lookup,	insertion,	and	deletion	are	those	used	in	Chapter	14,
with	only	minor	modifications.

The	first	technique	is	called	the	crabbing	protocol:

•	When	searching	for	a	key	value,	the	crabbing	protocol	first	locks	the	root	node	in	shared	mode.	When
traversing	down	the	tree,	it	acquires	a	shared	lock	on	the	child	node	to	be	traversed	further.	After
acquiring	the	lock	on	the	child	node,	it	releases	the	lock	on	the	parent	node.	It	repeats	this	process	until	it
reaches	a	leaf	node.

886

Chapter	18

Concurrency	Control

•	When	inserting	or	deleting	a	key	value,	the	crabbing	protocol	takes	these	actions:

°	It	follows	the	same	protocol	as	for	searching	until	it	reaches	the	desired	leaf	node.	Up	to	this	point,	it
obtains	(and	releases)	only	shared	locks.

°	It	locks	the	leaf	node	in	exclusive	mode	and	inserts	or	deletes	the	key	value.

°	If	it	needs	to	split	a	node	or	coalesce	it	with	its	siblings,	or	redistribute	key	values	between	siblings,	the
crabbing	protocol	locks	the	parent	of	the	node	in	exclusive	mode.	After	performing	these	actions,	it
releases	the	locks	on	the	node	and	siblings.

If	the	parent	requires	splitting,	coalescing,	or	redistribution	of	key	values,	the	protocol	retains	the	lock	on
the	parent,	and	splitting,	coalescing,	or	redistribution	propagates	further	in	the	same	manner.	Otherwise,
it	releases	the	lock	on	the	parent.

The	protocol	gets	its	name	from	the	way	in	which	crabs	advance	by	moving	side-ways,	moving	the	legs	on
one	side,	then	the	legs	on	the	other,	and	so	on	alternately.

The	progress	of	locking	while	the	protocol	both	goes	down	the	tree	and	goes	back	up	(in	case	of	splits,
coalescing,	or	redistribution)	proceeds	in	a	similar	crab-like	manner.

Once	a	particular	operation	releases	a	lock	on	a	node,	other	operations	can	access	that	node.	There	is	a
possibility	of	deadlocks	between	search	operations	coming	down	the	tree,	and	splits,	coalescing,	or
redistribution	propagating	up	the	tree.	The	system	can	easily	handle	such	deadlocks	by	restarting	the
search	operation	from	the	root,	after	releasing	the	locks	held	by	the	operation.

Locks	that	are	held	for	a	short	duration,	instead	of	being	held	in	a	two-phase	manner,	are	often	referred	to
as	latches.	Latches	are	used	internally	in	databases	to	achieve	mutual	exclusion	on	shared	data
structures.	In	the	above	case,	locks	are	held	in	a	way	that	does	not	ensure	mutual	exclusion	during	an
insert	or	delete	operation,	yet	the	resultant	execution	of	index	operations	is	serializable.

The	second	technique	achieves	even	more	concurrency,	avoiding	even	holding	the	lock	on	one	node	while
acquiring	the	lock	on	another	node;	thereby,	deadlocks	are	avoided,	and	concurrency	is	increased.	This
technique	uses	a	modified	version	of	B+-

trees	called	B-link	trees;	B-link	trees	require	that	every	node	(including	internal	nodes,	not	just	the
leaves)	maintain	a	pointer	to	its	right	sibling.	This	pointer	is	required	because	a	lookup	that	occurs	while
a	node	is	being	split	may	have	to	search	not	only	that	node	but	also	that	node’s	right.

Unlike	the	crabbing	protocol,	the	B-link-tree	locking	protocol	holds	locks	on	only	one	internal	node	at	a
time.	The	protocol	releases	the	lock	on	the	current	internal	node	before	requesting	a	lock	on	a	child	node
(when	traversing	downwards),	or	on	a	parent	node	(while	traversing	upwards	during	a	split	or	merge).
Doing	so	can	result	in	anomalies:	for	example,	between	the	time	the	lock	on	a	node	is	released	and	the
lock	on	a	parent	is	requested,	a	concurrent	insert	or	delete	on	a	sibling	may	cause	a	split	or	merge	on	the
parent,	and	the	original	parent	node	may	no	longer	be	a	parent	of	the

18.10

Advanced	Topics	in	Concurrency	Control

887

child	node	when	it	is	locked.	The	protocol	detects	and	handles	such	situations,	ensuring	operation
serializability	while	avoiding	deadlocks	between	operations	and	increasing	concurrency	compared	to	the
crabbing	protocol.

The	phantom	phenomenon,	where	conflicts	between	a	predicate	read	and	an	insert	or	update	are	not
detected,	can	allow	nonserializable	executions	to	occur.	The	index-locking	technique,	which	we	saw	in
Section	18.4.3,	prevents	the	phantom	phenomenon	by	locking	index	leaf	nodes	in	a	two-phase	manner.

Instead	of	locking	an	entire	index	leaf	node,	some	index	concurrency-control	schemes	use	key-value
locking	on	individual	key	values,	allowing	other	key	values	to	be	inserted	or	deleted	from	the	same	leaf.
Key-value	locking	thus	provides	increased	concurrency.

Using	key-value	locking	na¨ıvely,	however,	would	allow	the	phantom	phenomenon	to	occur;	to	prevent	the
phantom	phenomenon,	the	next-key	locking	technique	is	used.

In	this	technique,	every	index	lookup	must	lock	not	only	the	keys	found	within	the	range	(or	the	single	key,
in	case	of	a	point	lookup)	but	also	the	next-key	value	—	that	is,	the	key	value	just	greater	than	the	last	key
value	that	was	within	the	range.	Also,	every	insert	must	lock	not	only	the	value	that	is	inserted,	but	also
the	next-key	value.	Thus,	if	a	transaction	attempts	to	insert	a	value	that	was	within	the	range	of	the	index
lookup	of	another	transaction,	the	two	transactions	would	conflict	on	the	key	value	next	to	the	inserted
key	value.	Similarly,	deletes	must	also	lock	the	next-key	value	to	the	value	being	deleted	to	ensure	that
conflicts	with	subsequent	range	lookups	of	other	queries	are	detected.

18.10.3

Concurrency	Control	in	Main-Memory	Databases

With	data	stored	on	hard	disk,	the	cost	of	I/O	operations	often	dominates	the	cost	of	transaction
processing.	When	disk	I/O	is	the	bottleneck	cost	in	a	system,	there	is	little	benefit	from	optimizing	other
smaller	costs,	such	as	the	cost	of	concurrency	control.

However,	in	a	main-memory	database,	with	disk	I/O	no	longer	the	bottleneck,	systems	benefit	from
reducing	other	costs,	such	as	query	processing	costs,	as	we	saw	in	Section	15.8;	we	now	consider	how	to
reduce	the	cost	of	concurrency	control	in	main-memory	databases.

As	we	saw	in	Section	18.10.2,	concurrency-control	techniques	for	operations	on	disk-based	index
structures	acquire	locks	on	individual	nodes,	to	increase	the	potential	for	concurrent	access	to	the	index.
However,	such	locking	comes	at	the	increased	cost	of	acquiring	the	locks.	In	a	main-memory	database,
where	data	are	in	memory,	index	operations	take	very	little	time	for	execution.	Thus,	it	may	be	acceptable
to	perform	locking	at	a	coarse	granularity:	for	example,	the	entire	index	could	be	locked	using	a	single
latch	(i.e.,	short	duration	lock),	the	operation	performed,	and	the	latch	released.

The	reduced	overhead	of	locking	has	been	found	to	make	up	for	the	slightly	reduced	concurrency,	and	to
improve	overall	performance.

There	is	another	way	to	improve	performance	with	in-memory	indices,	using	atomic	instructions	to	carry
out	index	updates	without	acquiring	any	latches	at	all.

888

Chapter	18

Concurrency	Control

insert(value,	head)	{

node	=	new	node

node−	>value	=	value

node−	>next	=	head

head	=	node

}

Figure	18.22	Insertion	code	that	is	unsafe	with	concurrent	inserts.

Data	structures	implementations	that	support	concurrent	operations	without	requiring	latches	are	called
latch-free	data	structure	implementations.

Consider	a	linked	list,	where	each	node	has	a	value	value	and	a	next	pointer,	and	the	head	of	the	linked
list	is	stored	in	the	variable	head.	The	function	insert()	shown	in	Figure	18.22	would	work	correctly	to
insert	a	node	at	the	head	of	the	list,	if	there	are	no	concurrent	invocations	of	the	code	for	the	same	list.7

However,	if	two	processes	execute	the	insert()	function	concurrently	on	the	same	list,	it	is	possible	that
both	of	them	would	read	the	same	value	of	variable	head,	and	then	both	would	update	the	variable	after
that.	The	final	result	would	contain	one	of	the	two	nodes	being	inserted,	while	the	other	node	being
inserted	would	be	lost.

One	way	of	preventing	such	a	problem	is	to	get	an	exclusive	latch	(short	term	lock)	on	the	linked	list,
perform	the	insert()	function,	and	then	release	the	latch.	The	insert()	function	can	be	modified	to	acquire
and	release	a	latch	on	the	list.

An	alternative	implementation,	which	is	faster	in	practice,	is	to	use	an	atomic	compare-and-swap()
instruction,	abbreviated	to	CAS,	which	works	as	follows:	The	instruction	CAS(var,	oldval,	newval)	takes
three	arguments:	a	variable	var	and	two	values,	oldval	and	newval.	The	instruction	does	the	following
atomically:	check	if	the	value	of	var	is	equal	to	oldval,	and	if	so,	set	var	to	newval,	and	return	success.	If
the	value	is	not	equal,	it	returns	failure.	The	instruction	is	supported	by	most	modern	processor
architectures,	and	it	executes	very	quickly.

The	function	insert	latchfree(),	shown	in	Figure	18.23	is	a	modification	of	insert()	that	works	correctly
even	with	concurrent	inserts	on	the	same	list,	without	obtaining	any	latches.	With	this	code,	if	two
processes	concurrently	read	the	old	value	of	head,	and	then	both	execute	the	CAS	instruction,	one	of	them
will	find	the	CAS	instruction	returning	success,	while	the	other	one	will	find	it	returning	failure	since	the
value	of	head	changes	between	the	time	it	is	read	and	when	the	CAS	instruction	is	executed.

The	repeat	loop	then	retries	the	insert	using	the	new	value	of	head,	until	it	succeeds.

Function	delete	latchfree(),	shown	in	Figure	18.23,	similarly	implements	deletion	from	the	head	of	the	list
using	the	compare	and	swap	instruction,	without	requiring	latches.	(In	this	case,	the	list	is	used	as	a
stack,	since	deletion	occurs	at	the	head	of	7We	assume	all	parameters	are	passed	by	reference.

18.10

Advanced	Topics	in	Concurrency	Control

889

insert	latchfree(head,	value)	{

node	=	new	node

node−	>value	=	value

repeat

oldhead	=	head

node−	>next	=	oldhead

result	=	CAS(head,	oldhead,	node)

until	(result	==	success)

}

delete	latchfree(head)	{

/*	This	function	is	not	quite	safe;	see	explanation	in	text.	*/

repeat

oldhead	=	head

newhead	=	oldhead−	>next

result	=	CAS(head,	oldhead,	newhead)

until	(result	==	success)

}

Figure	18.23	Latch-free	insertion	and	deletion	on	a	list.

the	list.)	However,	it	has	a	problem:	it	does	not	work	correctly	in	some	rare	cases.	The	problem	can	occur
when	a	process	P	1	is	performing	a	delete,	with	node	n	1	at	the	head	of	the	list,	and	concurrently	a	second
process	P	2	deletes	the	first	two	elements,	n	1	and	n	2,	and	then	reinserts	n	1	at	the	head	of	the	list,	with
some	other	element,	say	n	3	as	the	next	element.	If	P	1	read	n	1	before	P	2	deleted	it,	but	performs	the
CAS	after	P	2

has	reinserted	n	1,	the	CAS	operation	of	P	1	will	succeed,	but	set	the	head	of	the	list	to	point	to	n	2,	which
has	been	deleted,	leaving	the	list	in	an	inconsistent	state.	This	problem	is	known	as	the	ABA	problem.

One	solution	is	to	keep	a	counter	along	with	each	pointer,	which	is	incremented	every	time	the	pointer	is
updated.	The	CAS	instruction	is	applied	on	the	(pointer,	counter)	pair;	most	CAS	implementations	on	64
bit	processors	support	such	a	double	compare-and-swap	on	128	bits.	The	ABA	problem	can	then	be
avoided	since	although	the	reinsert	of	n	1	would	result	in	the	head	pointing	to	n	1,	the	counter	would	be
different,	resulting	in	the	CAS	operation	of	P	1	failing.	See	the	online	solutions	to	Practice	Exercise	18.16
for	more	details	of	the	ABA	problem	and	the	above	solution.	With	such	a	modification,	both	inserts	and
deletes	can	be	executed	concurrently	without	acquiring	latches.	There	are	other	solutions	that	do	not
require	a	double	compare-and-swap,	but	are	more	complicated.

Deletion	from	the	tail	of	the	list	(to	implement	a	queue)	as	well	as	more	complex	data	structures	such	as
hash	indices	and	search	trees	can	also	be	implemented	in	a	latch-

890

Chapter	18

Concurrency	Control

free	manner.	It	is	best	to	use	latch-free	data	structure	implementations	(more	often	referred	to	as	lock-
free	data	structure	implementations)	that	are	provided	by	standard	libraries,	such	as	the	Boost	library	for
C++,	or	the	ConcurrentLinkedQueue	class	in	Java;	do	not	build	your	own,	since	you	may	introduce	bugs

due	to	“race	conditions”

between	concurrent	accesses,	that	can	be	very	hard	to	detect	or	debug.

Since	today’s	multiprocessor	CPUs	have	a	large	number	of	cores,	latch-free	implementations	have	been
found	to	significantly	outperform	implementations	that	obtain	latches,	in	the	context	of	in-memory	indices
and	other	in-memory	data	structures	18.10.4

Long-Duration	Transactions

The	transaction	concept	developed	initially	in	the	context	of	data-processing	applications,	in	which	most
transactions	are	noninteractive	and	of	short	duration.	Serious	problems	arise	when	this	concept	is	applied
to	database	systems	that	involve	human	interaction.	Such	transactions	have	these	key	properties:

•	Long	duration.	Once	a	human	interacts	with	an	active	transaction,	that	transaction	becomes	a	long-
duration	transaction	from	the	perspective	of	the	computer,	since	human	response	time	is	slow	relative	to
computer	speed.	Furthermore,	in	design	applications,	the	human	activity	may	involve	hours,	days,	or	an
even	longer	period.

Thus,	transactions	may	be	of	long	duration	in	human	terms,	as	well	as	in	machine	terms.

•	Exposure	of	uncommitted	data.	Data	generated	and	displayed	to	a	user	by	a	long-duration	transaction
are	uncommitted,	since	the	transaction	may	abort.	Thus,	users	—	and,	as	a	result,	other	transactions	—
may	be	forced	to	read	uncommitted	data.	If	several	users	are	cooperating	on	a	project,	user	transactions
may	need	to	exchange	data	prior	to	transaction	commit.

•	Subtasks.	An	interactive	transaction	may	consist	of	a	set	of	subtasks	initiated	by	the	user.	The	user	may
wish	to	abort	a	subtask	without	necessarily	causing	the	entire	transaction	to	abort.

•	Recoverability.	It	is	unacceptable	to	abort	a	long-duration	interactive	transaction	because	of	a	system
crash.	The	active	transaction	must	be	recovered	to	a	state	that	existed	shortly	before	the	crash	so	that
relatively	little	human	work	is	lost.

•	Performance.	Good	performance	in	an	interactive	transaction	system	is	defined	as	fast	response	time.
This	definition	is	in	contrast	to	that	in	a	noninteractive	system,	in	which	high	throughput	(number	of
transactions	per	second)	is	the	goal.	Systems	with	high	throughput	make	efficient	use	of	system
resources.	However,	in	the	case	of	interactive	transactions,	the	most	costly	resource	is	the	user.	If	the
efficiency	and	satisfaction	of	the	user	are	to	be	optimized,	response	time	should	be	fast	(from	a	human
perspective).	In	those	cases	where	a	task	takes	a	long	time,	response	time

18.10

Advanced	Topics	in	Concurrency	Control

891

T

T

1

2

read(A)

A	:=	A	−	50

write(A)

read(B)

B	:=	B	−	10

write(B)

read(B)

B	:=	B	+	50

write(B)

read(A)

A	:=	A	+	10

write(A)

Figure	18.24	A	non-conflict-serializable	schedule.

should	be	predictable	(i.e.,	the	variance	in	response	times	should	be	low)	so	that	users	can	manage	their
time	well.

Snapshot	isolation,	described	in	Section	18.8,	can	provide	a	partial	solution	to	these	issues,	as	can	the
optimistic	concurrency	control	without	read	validation	protocol	described	in	Section	18.9.3.	The	latter
protocol	was	in	fact	designed	specifically	to	deal	with	long-duration	transactions	that	involve	user
interaction.	Although	it	does	not	guarantee	serializability,	optimistic	concurrency	control	without	read
validation	is	quite	widely	used.

However,	when	transactions	are	of	long	duration,	conflicting	updates	are	more	likely,	resulting	in
additional	waits	or	aborts.	These	considerations	are	the	basis	for	the	alternative	concepts	of	correctness
of	concurrent	executions	and	transaction	recovery	that	we	consider	in	the	remainder	of	this	section.

18.10.5

Concurrency	Control	with	Operations

Consider	a	bank	database	consisting	of	two	accounts	A	and	B,	with	the	consistency	requirement	that	the
sum	A	+	B	be	preserved.	Consider	the	schedule	of	Figure	18.24.

Although	the	schedule	is	not	conflict	serializable,	it	nevertheless	preserves	the	sum	of	A	+	B.	It	also
illustrates	two	important	points	about	the	concept	of	correctness	without	serializability.

1.	Correctness	depends	on	the	specific	consistency	constraints	for	the	database.

2.	Correctness	depends	on	the	properties	of	operations	performed	by	each	transaction.

892

Chapter	18

Concurrency	Control

While	two-phase	locking	ensures	serializability,	it	can	result	in	poor	concurrency	in	case	a	large	number	of
transactions	conflict	on	a	particular	data	item.	Timestamp	and	validation	protocols	also	have	similar
problems	in	this	case.

Concurrency	can	be	increased	by	treating	some	operations	besides	read	and	write	as	fundamental	low-

level	operations	and	to	extend	concurrency	control	to	deal	with	them.

Consider	the	case	of	materialized	view	maintenance,	which	we	saw	in	Section	16.5.1.	Suppose	there	is	a
relation	sales(date,	custID,	itemID,	amount),	and	a	materialized	view	daily	sales	total(date,	total	amount),
that	records	total	sales	on	each	day.

Every	sales	transaction	must	update	the	materialized	view	as	part	of	the	transaction	if	immediate	view
maintenance	is	used.	With	a	high	volume	of	sales,	and	every	transaction	updating	the	same	record	in	the
daily	sales	total	relation,	the	degree	of	concurrency	will	be	quite	low	if	two-phase	locking	is	used	on	the
materialized	view.

A	better	way	to	perform	concurrency	control	for	the	materialized	view	is	as	follows:	Observe	that	each
transaction	increments	a	record	in	the	daily	sales	total	relation	by	some	value	but	does	not	need	to	see
the	value.	It	would	make	sense	to	have	an	operation	increment(v,	n),	that	adds	a	value	n	to	a	variable	v
without	making	the	value	of	v	visible	to	the	transaction;	we	shall	see	shortly	how	this	is	implemented.	In
our	sales	example,	a	transaction	that	inserts	a	sales	tuple	with	amount	n	invokes	the	increment	operation
with	the	first	argument	being	the	total	amount	value	of	the	appropriate	tuple	in	the	materialized	view
daily	sales	total,	and	the	second	argument	being	the	value	n.

The	increment	operation	does	not	lock	the	variable	in	a	two-phase	manner;	however,	individual	operations
should	be	executed	serially	on	the	variable.	Thus,	if	two	increment	operations	are	initiated	concurrently
on	the	same	variable,	one	must	finish	before	the	other	is	allowed	to	start.	This	can	be	ensured	by
acquiring	an	exclusive	latch	(lock)	on	the	variable	v	before	starting	the	operation	and	releasing	the	latch
after	the	operation	has	finished	its	updates.	Increment	operations	can	also	be	implemented	using
compare-and-swap	operations,	without	getting	latches.

Two	transactions	that	invoke	the	increment	operation	should	be	allowed	to	execute	concurrently	to	avoid
concurrency	control	bottlenecks.	In	fact,	increment	operations	executed	by	two	transactions	do	not
conflict	with	each	other,	since	the	final	result	is	the	same	regardless	of	the	order	in	which	the	operations
were	executed.	If	one	of	the	transactions	rolls	back,	the	increment(v,	n)	operation	must	be	rolled	back	by
executing	an	operation	increment(v,	−	n),	which	adds	a	negative	of	the	original	value;	this	operation	is
referred	to	as	a	compensating	operation.

However,	if	a	transaction	T	wishes	to	read	the	materialized	view,	it	clearly	conflicts	with	any	concurrent
transaction	that	has	performed	an	increment	operation;	the	value	that	T	reads	depends	on	whether	the
other	transaction	is	serialized	before	or	after	T	.

We	can	define	a	locking	protocol	to	handle	the	preceding	situation	by	defining	an	increment	lock.	The
increment	lock	is	compatible	with	itself	but	is	not	compatible	with	shared	and	exclusive	locks.	Figure
18.25	shows	a	lock-compatibility	matrix	for	three	lock	modes:	share	mode,	exclusive	mode,	and	increment
mode.

18.10

Advanced	Topics	in	Concurrency	Control

893

S

X

I

S

true

false

false

X

false

false

false

I

false

false

true

Figure	18.25	Lock-compatibility	matrix	with	increment	lock	mode.

As	another	example	of	special-purpose	concurrency	control	for	operations,	consider	an	insert	operation	on
a	B+-tree	index	which	releases	locks	early,	as	we	saw	in	Section	18.10.2.	In	this	case,	there	is	no	special
lock	mode,	but	holding	locks	on	leaf	nodes	in	a	two-phase	manner	(or	using	next-key	locking)	as	we	saw	in
Section	18.10.2

ensures	serializability.	The	insert	operation	may	have	modified	several	nodes	of	the	B+-

tree	index.	Other	transactions	may	have	read	and	updated	these	nodes	further	while	processing	other
operations.	To	roll	back	the	insertion,	we	would	have	to	delete	the	record	inserted	by	T	;	deletion	is	the
compensating	action	for	insertion.	The	result	is	a	i

correct,	consistent	B+-tree,	but	not	necessarily	one	with	exactly	the	same	structure	as	the	one	we	had
before	T	started.

i

While	operation	locking	can	be	done	in	a	way	that	ensures	serializability,	in	some	cases	it	may	even	be
used	in	a	way	that	does	not	guarantee	serializability,	but	where	violations	may	be	acceptable.	Consider
the	case	of	concert	tickets,	where	every	transaction	needs	to	access	and	update	the	total	ticket	sales.	We
can	have	an	operation	increment	conditional(v,	n)	which	increments	v	by	n,	provided	the	resultant	value
would	be

≥	0;	the	operation	returns	a	status	of	success	in	case	the	resultant	value	is	≥	0	and	returns	failure
otherwise.	Consider	a	transaction	T	executed	to	purchase	tickets.	To	book	i

three	tickets,	where	variable	avail	tickets	indicates	the	number	of	available	tickets,	the	transaction	can
execute	increment	conditional(avail	tickets,	−3).	A	return	value	of	success	indicates	that	there	were
enough	tickets	available,	and	decrements	the	available	tickets,	while	failure	indicates	insufficient
availability	of	tickets.

If	the	variable	avail	tickets	is	locked	in	a	two-phase	manner,	concurrency	would	be	very	poor,	with
customers	being	forced	to	wait	for	bookings	while	an	earlier	transaction	commits,	even	when	there	are
many	tickets	available.	Concurrency	can	be	greatly	increased	by	executing	the	increment	conditional
operation,	without	holding	any	locks	on	avail	tickets	in	a	two-phase	manner;	instead,	an	exclusive	lock	is
obtained	on	the	variable,	the	operation	is	performed,	and	the	lock	is	then	released.

The	transaction	T	also	needs	to	carry	out	other	steps,	such	as	collecting	the	payi

ment;	if	one	of	the	subsequent	steps,	such	as	payment,	fails,	the	increment	operation	must	be	rolled	back
by	executing	a	compensating	operation;	if	the	original	operation	added	−	n	to	avail	tickets,	the
compensating	operation	adds	+	n	to	avail	tickets.

It	may	appear	that	two	increment	conditional	operations	are	compatible	with	each	other,	similar	to	the
increment	operation	that	we	saw	earlier.	But	that	is	not

894

Chapter	18

Concurrency	Control

the	case.	Consider	two	concurrent	transactions	to	purchase	a	single	ticket,	and	assume	that	there	is	only
one	ticket	left.	The	order	in	which	the	operations	are	executed	has	an	obvious	impact	on	which	one
succeeds	and	which	one	fails.	Nevertheless,	many	real-world	applications	allow	operations	that	hold

short-term	locks	while	they	execute	and	release	them	at	the	end	of	the	operation	to	increase	concurrency,
even	at	the	cost	of	loss	of	serializability	in	some	situations.

18.10.6

Real-Time	Transaction	Systems

In	certain	applications,	the	constraints	include	deadlines	by	which	a	task	must	be	completed.	Examples	of
such	applications	include	plant	management,	traffic	control,	and	scheduling.	When	deadlines	are
included,	correctness	of	an	execution	is	no	longer	solely	an	issue	of	database	consistency.	Rather,	we	are
concerned	with	how	many	deadlines	are	missed,	and	by	how	much	time	they	are	missed.	Deadlines	are
characterized	as	follows:

•	Hard	deadline.	Serious	problems,	such	as	system	crash,	may	occur	if	a	task	is	not	completed	by	its
deadline.

•	Firm	deadline.	The	task	has	zero	value	if	it	is	completed	after	the	deadline.

•	Soft	deadlines.	The	task	has	diminishing	value	if	it	is	completed	after	the	deadline,	with	the	value
approaching	zero	as	the	degree	of	lateness	increases.

Systems	with	deadlines	are	called	real-time	systems.

Transaction	management	in	real-time	systems	must	take	deadlines	into	account.

If	the	concurrency-control	protocol	determines	that	a	transaction	T	must	wait,	it	may	i

cause	T	to	miss	the	deadline.	In	such	cases,	it	may	be	preferable	to	pre-empt	the	transi

action	holding	the	lock,	and	to	allow	T	to	proceed.	Pre-emption	must	be	used	with	i

care,	however,	because	the	time	lost	by	the	pre-empted	transaction	(due	to	rollback	and	restart)	may
cause	the	pre-empted	transaction	to	miss	its	deadline.	Unfortunately,	it	is	difficult	to	determine	whether
rollback	or	waiting	is	preferable	in	a	given	situation.

Due	to	the	unpredictable	nature	of	delays	when	reading	data	from	disk,	main-memory	databases	are	often
used	if	real-time	constraints	have	to	be	met.	However,	even	if	data	are	resident	in	main	memory,	variances
in	execution	time	arise	from	lock	waits,	transaction	aborts,	and	so	on.	Researchers	have	devoted
considerable	effort	to	concurrency	control	for	real-time	databases.	They	have	extended	locking	protocols
to	provide	higher	priority	for	transactions	with	early	deadlines.	They	have	found	that	optimistic
concurrency	protocols	perform	well	in	real-time	databases;	that	is,	these	protocols	result	in	fewer	missed
deadlines	than	even	the	extended	locking	protocols.	The	online	bibliographical	notes	provide	references
to	research	in	the	area	of	real-time	databases.

18.11

Summary

•	When	several	transactions	execute	concurrently	in	the	database,	the	consistency	of	data	may	no	longer
be	preserved.	It	is	necessary	for	the	system	to	control	the	in-

18.11

Summary

895

teraction	among	the	concurrent	transactions,	and	this	control	is	achieved	through	one	of	a	variety	of
mechanisms	called	concurrency-control	schemes.

•	To	ensure	serializability,	we	can	use	various	concurrency-control	schemes.	All	these	schemes	either
delay	an	operation	or	abort	the	transaction	that	issued	the	operation.	The	most	common	ones	are	locking
protocols,	timestamp-ordering	schemes,	validation	techniques,	and	multiversion	schemes.

•	A	locking	protocol	is	a	set	of	rules	that	state	when	a	transaction	may	lock	and	unlock	each	of	the	data
items	in	the	database.

•	The	two-phase	locking	protocol	allows	a	transaction	to	lock	a	new	data	item	only	if	that	transaction	has
not	yet	unlocked	any	data	item.	The	protocol	ensures	serializability,	but	not	deadlock	freedom.	In	the
absence	of	information	concerning	the	manner	in	which	data	items	are	accessed,	the	two-phase	locking
protocol	is	both	necessary	and	sufficient	for	ensuring	serializability.

•	The	strict	two-phase	locking	protocol	permits	release	of	exclusive	locks	only	at	the	end	of	transaction,	in
order	to	ensure	recoverability	and	cascadelessness	of	the	resulting	schedules.	The	rigorous	two-phase
locking	protocol	releases	all	locks	only	at	the	end	of	the	transaction.

•	Various	locking	protocols	do	not	guard	against	deadlocks.	One	way	to	prevent	deadlock	is	to	use	an
ordering	of	data	items	and	to	request	locks	in	a	sequence	consistent	with	the	ordering.

•	Another	way	to	prevent	deadlock	is	to	use	preemption	and	transaction	rollbacks.

To	control	the	preemption,	we	assign	a	unique	timestamp	to	each	transaction.	The	system	uses	these
timestamps	to	decide	whether	a	transaction	should	wait	or	roll	back.	The	wound	–	wait	scheme	is	a
preemptive	scheme.

•	If	deadlocks	are	not	prevented,	the	system	must	deal	with	them	by	using	a	deadlock	detection	and
recovery	scheme.	To	do	so,	the	system	constructs	a	wait-for	graph.

A	system	is	in	a	deadlock	state	if	and	only	if	the	wait-for	graph	contains	a	cycle.

When	the	deadlock	detection	algorithm	determines	that	a	deadlock	exists,	the	system	rolls	back	one	or
more	transactions	to	break	the	deadlock.

•	There	are	circumstances	where	it	would	be	advantageous	to	group	several	data	items	and	to	treat	them
as	one	aggregate	data	item	for	purposes	of	working,	resulting	in	multiple	levels	of	granularity.	We	allow
data	items	of	various	sizes,	and	we	define	a	hierarchy	of	data	items	where	the	small	items	are	nested
within	larger	ones.	Such	a	hierarchy	can	be	represented	graphically	as	a	tree.	In	such	multi-granularity
locking	protocols,	locks	are	acquired	in	root-to-leaf	order;	they	are	released	in	leaf-to-root	order.	Intention
lock	modes	are	used	at	higher	levels	to	get	better	concurrency,	without	affecting	serializability.

896

Chapter	18

Concurrency	Control

•	A	timestamp-ordering	scheme	ensures	serializability	by	selecting	an	ordering	in	advance	between	every
pair	of	transactions.	A	unique	fixed	timestamp	is	associated	with	each	transaction	in	the	system.	The
timestamps	of	the	transactions	determine	the	serializability	order.	Thus,	if	the	timestamp	of	transaction	T
is	smaller	than	the	i

timestamp	of	transaction	T	,	then	the	scheme	ensures	that	the	produced	schedule	j

is	equivalent	to	a	serial	schedule	in	which	transaction	T	appears	before	transaction	i

T	.	It	does	so	by	rolling	back	a	transaction	whenever	such	an	order	is	violated.

j

•	A	validation	scheme	is	an	appropriate	concurrency-control	method	in	cases	where	a	majority	of
transactions	are	read-only	transactions,	and	thus	the	rate	of	conflicts	among	these	transactions	is	low.	A
unique	fixed	timestamp	is	associated	with	each	transaction	in	the	system.	The	serializability	order	is
determined	by	the	timestamp	of	the	transaction.	A	transaction	in	this	scheme	is	never	delayed.	It	must,
however,	pass	a	validation	test	to	complete.	If	it	does	not	pass	the	validation	test,	the	system	rolls	it	back
to	its	initial	state.

•	A	multiversion	concurrency-control	scheme	is	based	on	the	creation	of	a	new	version	of	a	data	item	for
each	transaction	that	writes	that	item.	When	a	read	operation	is	issued,	the	system	selects	one	of	the
versions	to	be	read.	The	concurrency-control	scheme	ensures	that	the	version	to	be	read	is	selected	in	a
manner	that	ensures	serializability	by	using	timestamps.	A	read	operation	always	succeeds.

°	In	multiversion	timestamp	ordering,	a	write	operation	may	result	in	the	rollback	of	the	transaction.

°	In	multiversion	two-phase	locking,	write	operations	may	result	in	a	lock	wait	or,	possibly,	in	deadlock.

•	Snapshot	isolation	is	a	multiversion	concurrency-control	protocol	based	on	validation,	which,	unlike
multiversion	two-phase	locking,	does	not	require	transactions	to	be	declared	as	read-only	or	update.
Snapshot	isolation	does	not	guarantee	serializability	but	is	nevertheless	supported	by	many	database
systems.	Serializable	snapshot	isolation	is	an	extension	of	snapshot	isolation	which	guarantees
serializability.

•	A	delete	operation	may	be	performed	only	if	the	transaction	deleting	the	tuple	has	an	exclusive	lock	on
the	tuple	to	be	deleted.	A	transaction	that	inserts	a	new	tuple	into	the	database	is	given	an	exclusive	lock
on	the	tuple.

•	Insertions	can	lead	to	the	phantom	phenomenon,	in	which	an	insertion	logically	conflicts	with	a	query
even	though	the	two	transactions	may	access	no	tuple	in	common.	Such	conflict	cannot	be	detected	if
locking	is	done	only	on	tuples	accessed	by	the	transactions.	Locking	is	required	on	the	data	used	to	find
the	tuples	in	the	relation.	The	index-locking	technique	solves	this	problem	by	requiring	locks	on	certain
index	nodes.	These	locks	ensure	that	all	conflicting	transactions	conflict	on	a	real	data	item,	rather	than
on	a	phantom.

Review	Terms

897

•	Weak	levels	of	consistency	are	used	in	some	applications	where	consistency	of	query	results	is	not
critical,	and	using	serializability	would	result	in	queries	adversely	affecting	transaction	processing.
Degree-two	consistency	is	one	such	weaker	level	of	consistency;	cursor	stability	is	a	special	case	of
degree-two	consistency	and	is	widely	used.

•	Concurrency	control	is	a	challenging	task	for	transactions	that	span	user	interactions.	Applications	often
implement	a	scheme	based	on	validation	of	writes	using	version	numbers	stored	in	tuples;	this	scheme
provides	a	weak	level	of	serializability	and	can	be	implemented	at	the	application	level	without
modifications	to	the	database.

•	Special	concurrency-control	techniques	can	be	developed	for	special	data	structures.	Often,	special
techniques	are	applied	in	B+-trees	to	allow	greater	concurrency.	These	techniques	allow	nonserializable
access	to	the	B+-tree,	but	they	ensure	that	the	B+-tree	structure	is	correct,	and	they	ensure	that	accesses
to	the	database	itself	are	serializable.	Latch-free	data	structures	are	used	to	implement	high-performance
indices	and	other	data	structures	in	main-memory	databases.

Review	Terms

•	Concurrency	control

°	Strict	two-phase	locking

•	Lock	types

°	Rigorous	two-phase	locking

°	Shared-mode	(S)	lock

•	Lock	conversion

°	Exclusive-mode	(X)	lock

Ůpgrade

•	Lock

°	Downgrade

°	Compatibility

•	Graph-based	protocols

°	Request

°	Tree	protocol

°	Wait

°	Commit	dependency

°	Grant

•	Deadlock	handling

•	Deadlock

°	Prevention

•	Starvation

•

°	Detection

Locking	protocol

•	Legal	schedule

°	Recovery

•	Two-phase	locking	protocol

•	Deadlock	prevention

°	Growing	phase

°	Ordered	locking

°	Shrinking	phase

°	Preemption	of	locks

°	Lock	point

°	Wait–die	scheme

898

Chapter	18

Concurrency	Control

°	Wound–wait	scheme

°	Write	phase

°	Timeout-based	schemes

°	Validation	test

•	Deadlock	detection

•	Multiversion	timestamp	ordering

°	Wait-for	graph

•	Multiversion	two-phase	locking

•	Deadlock	recovery

°	Read-only	transactions

°	Total	rollback

Ůpdate	transactions

°	Partial	rollback

•	Snapshot	isolation

•	Multiple	granularity

°	Lost	update

°	Explicit	locks

°	First	committer	wins

°	Implicit	locks

°	First	updater	wins

°	Intention	locks

°	Write	skew

•	Intention	lock	modes

°	Select	for	update

°	Intention-shared	(IS)

•	Insert	and	delete	operations

•	Phantom	phenomenon

°	Intention-exclusive	(IX)

•	Index-locking	protocol

°	Shared	and	intention-

•	Predicate	locking

exclusive	(SIX)

•	Weak	levels	of	consistency

•	Multiple-granularity	locking

protocol

°	Degree-two	consistency

•	Timestamp

°	Cursor	stability

°	System	clock

•	Optimistic	concurrency	control	with-

out	read	validation

°	Logical	counter

•	Conversations

°	W-timestamp(Q)

•	Concurrency	in	indices

°	R-timestamp(Q)

°	Crabbing	protocol

•	Timestamp-ordering	protocol

°	B-link	trees

°	Thomas’	write	rule

°	B-link-tree	locking	protocol

•	Validation-based	protocols

°	Next-key	locking

°	Read	phase

•	Latch-free	data	structures

°	Validation	phase

•	Compare-and-swap	(CAS)	instruction

Practice	Exercises

899

Practice	Exercises

18.1

Show	that	the	two-phase	locking	protocol	ensures	conflict	serializability	and	that	transactions	can	be
serialized	according	to	their	lock	points.

18.2

Consider	the	following	two	transactions:

T	:

34

read(A);

read(B);

if	A	=	0	then	B	:=	B	+	1;

write(B).

T	:

35

read(B);

read(A);

if	B	=	0	then	A	:=	A	+	1;

write(A).

Add	lock	and	unlock	instructions	to	transactions	T

and	T

so	that	they	ob-

31

32

serve	the	two-phase	locking	protocol.	Can	the	execution	of	these	transactions	result	in	a	deadlock?

18.3

What	benefit	does	rigorous	two-phase	locking	provide?	How	does	it	compare	with	other	forms	of	two-
phase	locking?

18.4

Consider	a	database	organized	in	the	form	of	a	rooted	tree.	Suppose	that	we	insert	a	dummy	vertex
between	each	pair	of	vertices.	Show	that,	if	we	follow	the	tree	protocol	on	the	new	tree,	we	get	better
concurrency	than	if	we	follow	the	tree	protocol	on	the	original	tree.

18.5

Show	by	example	that	there	are	schedules	possible	under	the	tree	protocol	that	are	not	possible	under	the
two-phase	locking	protocol,	and	vice	versa.

18.6

Locking	is	not	done	explicitly	in	persistent	programming	languages.	Rather,	objects	(or	the	corresponding
pages)	must	be	locked	when	the	objects	are	accessed.	Most	modern	operating	systems	allow	the	user	to
set	access	protections	(no	access,	read,	write)	on	pages,	and	memory	access	that	violate	the	access
protections	result	in	a	protection	violation	(see	the	Unix	mprotect	command,	for	example).	Describe	how
the	access-protection	mechanism	can	be	used	for	page-level	locking	in	a	persistent	programming
language.

18.7

Consider	a	database	system	that	includes	an	atomic	increment	operation,	in	addition	to	the	read	and	write
operations.	Let	V	be	the	value	of	data	item	X.

The	operation

increment(X)	by	C

900

Chapter	18

Concurrency	Control

sets	the	value	of	X	to	V	+	C	in	an	atomic	step.	The	value	of	X	is	not	available	to	the	transaction	unless	the
latter	executes	a	read(X).

Assume	that	increment	operations	lock	the	item	in	increment	mode	using	the	compatibility	matrix	in
Figure	18.25.

a.

Show	that,	if	all	transactions	lock	the	data	that	they	access	in	the	corresponding	mode,	then	two-phase
locking	ensures	serializability.

b.

Show	that	the	inclusion	of	increment	mode	locks	allows	for	increased

concurrency.

18.8

In	timestamp	ordering,	W-timestamp(Q)	denotes	the	largest	timestamp	of	any	transaction	that	executed
write(Q)	successfully.	Suppose	that,	instead,	we	defined	it	to	be	the	timestamp	of	the	most	recent
transaction	to	execute	write(Q)	successfully.	Would	this	change	in	wording	make	any	difference?	Explain
your	answer.

18.9

Use	of	multiple-granularity	locking	may	require	more	or	fewer	locks	than	an	equivalent	system	with	a
single	lock	granularity.	Provide	examples	of	both	situations,	and	compare	the	relative	amount	of
concurrency	allowed.

18.10

For	each	of	the	following	protocols,	describe	aspects	of	practical	applications	that	would	lead	you	to
suggest	using	the	protocol,	and	aspects	that	would	suggest	not	using	the	protocol:

•	Two-phase	locking

•	Two-phase	locking	with	multiple-granularity	locking.

•	The	tree	protocol

•	Timestamp	ordering

•	Validation

•	Multiversion	timestamp	ordering

•	Multiversion	two-phase	locking

18.11

Explain	why	the	following	technique	for	transaction	execution	may	provide	better	performance	than	just
using	strict	two-phase	locking:	First	execute	the	transaction	without	acquiring	any	locks	and	without
performing	any	writes	to	the	database	as	in	the	validation-based	techniques,	but	unlike	the	validation
techniques	do	not	perform	either	validation	or	writes	on	the	database.	Instead,	rerun	the	transaction
using	strict	two-phase	locking.	(Hint:	Consider	waits	for	disk	I/O.)

18.12

Consider	the	timestamp-ordering	protocol,	and	two	transactions,	one	that	writes	two	data	items	p	and	q,

and	another	that	reads	the	same	two	data	items.

Practice	Exercises

901

Give	a	schedule	whereby	the	timestamp	test	for	a	write	operation	fails	and	causes	the	first	transaction	to
be	restarted,	in	turn	causing	a	cascading	abort	of	the	other	transaction.	Show	how	this	could	result	in
starvation	of	both	transactions.	(Such	a	situation,	where	two	or	more	processes	carry	out	actions,	but	are
unable	to	complete	their	task	because	of	interaction	with	the	other	processes,	is	called	a	livelock.)

18.13

Devise	a	timestamp-based	protocol	that	avoids	the	phantom	phenomenon.

18.14

Suppose	that	we	use	the	tree	protocol	of	Section	18.1.5	to	manage	concurrent	access	to	a	B+-tree.	Since
a	split	may	occur	on	an	insert	that	affects	the	root,	it	appears	that	an	insert	operation	cannot	release	any
locks	until	it	has	completed	the	entire	operation.	Under	what	circumstances	is	it	possible	to	release	a	lock
earlier?

18.15

The	snapshot	isolation	protocol	uses	a	validation	step	which,	before	performing	a	write	of	a	data	item	by
transaction	T	,	checks	if	a	transaction	concurrent	with	T	has	already	written	the	data	item.

a.

A	straightforward	implementation	uses	a	start	timestamp	and	a	commit

timestamp	for	each	transaction,	in	addition	to	an	update	set,	that,	is	the	set	of	data	items	updated	by	the
transaction.	Explain	how	to	perform

validation	for	the	first-committer-wins	scheme	by	using	the	transaction	timestamps	along	with	the	update
sets.	You	may	assume	that	validation

and	other	commit	processing	steps	are	executed	serially,	that	is,	for	one	transaction	at	a	time,

b.

Explain	how	the	validation	step	can	be	implemented	as	part	of	commit

processing	for	the	first-committer-wins	scheme,	using	a	modification	of	the	above	scheme,	where	instead
of	using	update	sets,	each	data	item

has	a	write	timestamp	associated	with	it.	Again,	you	may	assume	that

validation	and	other	commit	processing	steps	are	executed	serially.

c.

The	first-updater-wins	scheme	can	be	implemented	using	timestamps	as

described	above,	except	that	validation	is	done	immediately	after	acquiring	an	exclusive	lock,	instead	of
being	done	at	commit	time.

i.

Explain	how	to	assign	write	timestamps	to	data	items	to	implement

the	first-updater-wins	scheme.

ii.

Show	that	as	a	result	of	locking,	if	the	validation	is	repeated	at	commit	time	the	result	would	not	change.

iii.

Explain	why	there	is	no	need	to	perform	validation	and	other	commit

processing	steps	serially	in	this	case.

18.16

Consider	functions	insert	latchfree()	and	delete	latchfree(),	shown	in	Figure	18.23.

902

Chapter	18

Concurrency	Control

a.

Explain	how	the	ABA	problem	can	occur	if	a	deleted	node	is	reinserted.

b.

Suppose	that	adjacent	to	head	we	store	a	counter	cnt.	Also	suppose	that	DCAS((head,cnt),	(oldhead,
oldcnt),	(newhead,	newcnt))	atomically	performs	a	compare-and-swap	on	the	128	bit	value	(head,cnt).
Modify	the	insert	latchfree()	and	delete	latchfree()	to	use	the	DCAS	operation	to	avoid	the	ABA	problem.

c.

Since	most	processors	use	only	48	bits	of	a	64	bit	address	to	actually	address	memory,	explain	how	the
other	16	bits	can	be	used	to	implement	a	counter,	in	case	the	DCAS	operation	is	not	supported.

Exercises

18.17

What	benefit	does	strict	two-phase	locking	provide?	What	disadvantages	result?

18.18

Most	implementations	of	database	systems	use	strict	two-phase	locking.	Suggest	three	reasons	for	the
popularity	of	this	protocol.

18.19

Consider	a	variant	of	the	tree	protocol	called	the	forest	protocol.	The	database	is	organized	as	a	forest	of
rooted	trees.	Each	transaction	T	must	follow	the	i

following	rules:

•	The	first	lock	in	each	tree	may	be	on	any	data	item.

•	The	second,	and	all	subsequent,	locks	in	a	tree	may	be	requested	only	if	the	parent	of	the	requested
node	is	currently	locked.

•	Data	items	may	be	unlocked	at	any	time.

•	A	data	item	may	not	be	relocked	by	T	after	it	has	been	unlocked	by	T	.

i

i

Show	that	the	forest	protocol	does	not	ensure	serializability.

18.20

Under	what	conditions	is	it	less	expensive	to	avoid	deadlock	than	to	allow	deadlocks	to	occur	and	then	to
detect	them?

18.21

If	deadlock	is	avoided	by	deadlock-avoidance	schemes,	is	starvation	still	possible?	Explain	your	answer.

18.22

In	multiple-granularity	locking,	what	is	the	difference	between	implicit	and	explicit	locking?

18.23

Although	SIX	mode	is	useful	in	multiple-granularity	locking,	an	exclusive	and	intention-shared	(XIS)	mode
is	of	no	use.	Why	is	it	useless?

18.24

The	multiple-granularity	protocol	rules	specify	that	a	transaction	T	can	lock	a	i

node	Q	in	S	or	IS	mode	only	if	T	currently	has	the	parent	of	Q	locked	in	either	i

Exercises

903

IX	or	IS	mode.	Given	that	SIX	and	S	locks	are	stronger	than	IX	or	IS	locks,	why	does	the	protocol	not
allow	locking	a	node	in	S	or	IS	mode	if	the	parent	is	locked	in	either	SIX	or	S	mode?

18.25

Suppose	the	lock	hierarchy	for	a	database	consists	of	database,	relations,	and	tuples.

a.

If	a	transaction	needs	to	read	a	lot	of	tuples	from	a	relation	r,	what	locks	should	it	acquire?

b.

Now	suppose	the	transaction	wants	to	update	a	few	of	the	tuples	in	r	after	reading	a	lot	of	tuples.	What
locks	should	it	acquire?

c.

If	at	run-time	the	transaction	finds	that	it	needs	to	actually	update	a	very	large	number	of	tuples	(after
acquiring	locks	assuming	only	a	few	tuples	would	be	updated).	What	problems	would	this	cause	to	the
lock	table,

and	what	could	the	database	do	to	avoid	the	problem?

18.26

When	a	transaction	is	rolled-back	under	timestamp	ordering,	it	is	assigned	a	new	timestamp.	Why	can	it
not	simply	keep	its	old	timestamp?

18.27

Show	that	there	are	schedules	that	are	possible	under	the	two-phase	locking	protocol	but	not	possible
under	the	timestamp	protocol,	and	vice	versa.

18.28

Under	a	modified	version	of	the	timestamp	protocol,	we	require	that	a	commit	bit	be	tested	to	see
whether	a	read	request	must	wait.	Explain	how	the	commit	bit	can	prevent	cascading	abort.	Why	is	this
test	not	necessary	for	write	requests?

18.29

As	discussed	in	Exercise	18.15,	snapshot	isolation	can	be	implemented	using	a	form	of	timestamp
validation.	However,	unlike	the	multiversion	timestamp-ordering	scheme,	which	guarantees	serializability,
snapshot	isolation	does	not	guarantee	serializability.	Explain	the	key	difference	between	the	protocols	that
results	in	this	difference.

18.30

Outline	the	key	similarities	and	differences	between	the	timestamp-based	implementation	of	the	first-
committer-wins	version	of	snapshot	isolation,	described	in	Exercise	18.15,	and	the	optimistic-concurrency
control-without-read-validation	scheme,	described	in	Section	18.9.3.

18.31

Consider	a	relation	r(A,	B,	C)	and	a	transaction	T	that	does	the	following:	find	the	maximum	A	value	in	r,
and	insert	a	new	tuple	in	r	whose	A	value	is	1+	the	maximum	A	value.	Assume	that	an	index	is	used	to
find	the	maximum	A	value.

a.

Suppose	that	the	transaction	locks	each	tuple	it	reads	in	S	mode,	and

the	tuple	it	creates	in	X	mode,	and	performs	no	other	locking.	Now	suppose	two	instances	of	T	are	run
concurrently.	Explain	how	the	resultant	execution	could	be	non-serializable.

904

Chapter	18

Concurrency	Control

b.

Now	suppose	that	r.A	is	declared	as	a	primary	key.	Can	the	above	nonserializable	execution	occur	in	this
case?	Explain	why	or	why	not.

18.32

Explain	the	phantom	phenomenon.	Why	may	this	phenomenon	lead	to	an

incorrect	concurrent	execution	despite	the	use	of	the	two-phase	locking	protocol?

18.33

Explain	the	reason	for	the	use	of	degree-two	consistency.	What	disadvantages	does	this	approach	have?

18.34

Give	example	schedules	to	show	that	with	key-value	locking,	if	lookup,	insert,	or	delete	does	not	lock	the
next-key	value,	the	phantom	phenomenon	could	go	undetected.

18.35

Many	transactions	update	a	common	item	(e.g.,	the	cash	balance	at	a	branch)	and	private	items	(e.g.,
individual	account	balances).	Explain	how	you	can	increase	concurrency	(and	throughput)	by	ordering	the
operations	of	the	transaction.

18.36

Consider	the	following	locking	protocol:	All	items	are	numbered,	and	once	an	item	is	unlocked,	only
higher-numbered	items	may	be	locked.	Locks	may	be	released	at	any	time.	Only	X-locks	are	used.	Show	by
an	example	that	this	protocol	does	not	guarantee	serializability.

Further	Reading

[Gray	and	Reuter	(1993)]	provides	detailed	textbook	coverage	of	transaction-processing	concepts,
including	concurrency-control	concepts	and	implementation	details.	[Bernstein	and	Newcomer	(2009)]
provides	textbook	coverage	of	various	aspects	of	transaction	processing	including	concurrency	control.

The	two-phase	locking	protocol	was	introduced	by	[Eswaran	et	al.	(1976)].	The	locking	protocol	for
multiple-granularity	data	items	is	from	[Gray	et	al.	(1975)].	The	timestamp-based	concurrency-control
scheme	is	from	[Reed	(1983)].	The	validation	concurrency-control	scheme	is	from	[Kung	and	Robinson
(1981)].	Multiversion	timestamp	order	was	introduced	in	[Reed	(1983)].	A	multiversion	tree-locking
algorithm	appears	in	[Silberschatz	(1982)].

Degree-two	consistency	was	introduced	in	[Gray	et	al.	(1975)].	The	levels	of	consistency	—	or	isolation	—
offered	in	SQL	are	explained	and	critiqued	in	[Berenson	et	al.

(1995)];	the	snapshot	isolation	technique	was	also	introduced	in	the	same	paper.	Serializable	snapshot-
isolation	was	introduced	by	[Cahill	et	al.	(2009)];	[Ports	and	Grittner	(2012)]	describes	the	implementation
of	serializable	snapshot	isolation	in	PostgreSQL.

Concurrency	in	B+-trees	was	studied	by	[Bayer	and	Schkolnick	(1977)]	and	[Johnson	and	Shasha	(1993)].
The	crabbing	and	B-link	tree	techniques	were	introduced	by

[Kung	and	Lehman	(1980)]	and	[Lehman	and	Yao	(1981)].	The	technique	of	key-value	locking	used	in
ARIES	provides	for	very	high	concurrency	on	B+-tree	access	and	is	de-

Further	Reading

905

scribed	in	[Mohan	(1990)]	and	[Mohan	and	Narang	(1992)].	[Faerber	et	al.	(2017)]

provide	a	survey	of	main-memory	databases,	including	coverage	of	concurrency	control	in	main-memory
databases.	The	ABA	problem	with	latch-free	data	structures	as	well	as	solutions	for	the	problem	are
discussed	in	[Dechev	et	al.	(2010)].

Bibliography

[Bayer	and	Schkolnick	(1977)]

R.	Bayer	and	M.	Schkolnick,	“Concurrency	of	Operating	on

B-trees”,	Acta	Informatica,	Volume	9,	Number	1	(1977),	pages	1–21.

[Berenson	et	al.	(1995)]

H.	Berenson,	P.	Bernstein,	J.	Gray,	J.	Melton,	E.	O’Neil,	and

P.	O’Neil,	“A	Critique	of	ANSI	SQL	Isolation	Levels”,	In	Proc.	of	the	ACM	SIGMOD	Conf.

on	Management	of	Data	(1995),	pages	1–10.

[Bernstein	and	Newcomer	(2009)]

P.	A.	Bernstein	and	E.	Newcomer,	Principles	of	Transaction

Processing,	2nd	edition,	Morgan	Kaufmann	(2009).

[Cahill	et	al.	(2009)]

M.	J.	Cahill,	U.	Röhm,	and	A.	D.	Fekete,	“Serializable	isolation	for

snapshot	databases”,	ACM	Transactions	on	Database	Systems,	Volume	34,	Number	4	(2009),	pages	20:1–
20:42.

[Dechev	et	al.	(2010)]

D.	Dechev,	P.	Pirkelbauer,	and	B.	Stroustrup,	“Understanding	and	Ef-

fectively	Preventing	the	ABA	Problem	in	Descriptor-Based	Lock-Free	Designs”,	In	IEEE

Int’l	Symp.	on	Object/Component/Service-Oriented	Real-Time	Distributed	Computing,	(ISORC)	(2010),
pages	185–192.

[Eswaran	et	al.	(1976)]

K.	P.	Eswaran,	J.	N.	Gray,	R.	A.	Lorie,	and	I.	L.	Traiger,	“The	Notions	of	Consistency	and	Predicate	Locks	in
a	Database	System”,	Communications	of	the	ACM,	Volume	19,	Number	11	(1976),	pages	624–633.

[Faerber	et	al.	(2017)]

F.	Faerber,	A.	Kemper,	P.-A.	Larson,	J.	Levandoski,	T.	Neumann,	and

A.	Pavlo,	“Main	Memory	Database	Systems”,	Foundations	and	Trends	in	Databases,	Volume	8,	Number	1-2
(2017),	pages	1–130.

[Gray	and	Reuter	(1993)]

J.	Gray	and	A.	Reuter,	Transaction	Processing:	Concepts	and	Tech-

niques,	Morgan	Kaufmann	(1993).

[Gray	et	al.	(1975)]

J.	Gray,	R.	A.	Lorie,	and	G.	R.	Putzolu,	“Granularity	of	Locks	and	De-

grees	of	Consistency	in	a	Shared	Data	Base”,	In	Proc.	of	the	International	Conf.	on	Very	Large	Databases
(1975),	pages	428–451.

[Johnson	and	Shasha	(1993)]

T.	Johnson	and	D.	Shasha,	“The	Performance	of	Concurrent

B-Tree	Algorithms”,	ACM	Transactions	on	Database	Systems,	Volume	18,	Number	1	(1993),	pages	51–101.

[Kung	and	Lehman	(1980)]

H.	T.	Kung	and	P.	L.	Lehman,	“Concurrent	Manipulation	of	Bi-

nary	Search	Trees”,	ACM	Transactions	on	Database	Systems,	Volume	5,	Number	3	(1980),	pages	339–353.

906

Chapter	18

Concurrency	Control

[Kung	and	Robinson	(1981)]

H.	T.	Kung	and	J.	T.	Robinson,	“Optimistic	Concurrency	Con-

trol”,	ACM	Transactions	on	Database	Systems,	Volume	6,	Number	2	(1981),	pages	312–326.

[Lehman	and	Yao	(1981)]

P.	L.	Lehman	and	S.	B.	Yao,	“Efficient	Locking	for	Concurrent

Operations	on	B-trees”,	ACM	Transactions	on	Database	Systems,	Volume	6,	Number	4	(1981),	pages	650–
670.

[Mohan	(1990)]

C.	Mohan,	“ARIES/KVL:	A	Key-Value	Locking	Method	for	Concurrency

Control	of	Multiaction	Transactions	Operations	on	B-Tree	indexes”,	In	Proc.	of	the	International	Conf.	on
Very	Large	Databases	(1990),	pages	392–405.

[Mohan	and	Narang	(1992)]

C.	Mohan	and	I.	Narang,	“Efficient	Locking	and	Caching	of

Data	in	the	Multisystem	Shared	Disks	Transaction	Environment”,	In	Proc.	of	the	International	Conf.	on
Extending	Database	Technology	(1992),	pages	453–468.

[Ports	and	Grittner	(2012)]

D.	R.	K.	Ports	and	K.	Grittner,	“Serializable	Snapshot	Isolation

in	PostgreSQL”,	Proceedings	of	the	VLDB	Endowment,	Volume	5,	Number	12	(2012),	pages	1850–1861.

[Reed	(1983)]

D.	Reed,	“Implementing	Atomic	Actions	on	Decentralized	Data”,	Transactions	on	Computer	Systems,
Volume	1,	Number	1	(1983),	pages	3–23.

[Silberschatz	(1982)]

A.	Silberschatz,	“A	Multi-Version	Concurrency	Control	Scheme	With

No	Rollbacks”,	In	Proc.	of	the	ACM	Symposium	on	Principles	of	Distributed	Computing	(1982),	pages	216–
223.

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

C	H	A	P	T	E	R	19

Recovery	System

A	computer	system,	like	any	other	device,	is	subject	to	failure	from	a	variety	of	causes:	disk	crash,	power
outage,	software	error,	a	fire	in	the	machine	room,	even	sabotage.

In	any	failure,	information	may	be	lost.	Therefore,	the	database	system	must	take	actions	in	advance	to
ensure	that	the	atomicity	and	durability	properties	of	transactions,	introduced	in	Chapter	17,	are
preserved.	An	integral	part	of	a	database	system	is	a	recovery	scheme	that	can	restore	the	database	to
the	consistent	state	that	existed	before	the	failure.

The	recovery	scheme	must	also	support	high	availability,	that	is,	the	database	should	be	usable	for	a	very
high	percentage	of	time.	To	support	high	availability	in	the	face	of	machine	failure	(as	also	planned
machine	shutdowns	for	hardware/software	upgrades	and	maintenance),	the	recovery	scheme	must
support	the	ability	to	keep	a	backup	copy	of	the	database	synchronized	with	the	current	contents	of	the
primary	copy	of	the	database.	If	the	machine	with	the	primary	copy	fails,	transaction	processing	can
continue	on	the	backup	copy.

19.1

Failure	Classification

There	are	various	types	of	failure	that	may	occur	in	a	system,	each	of	which	needs	to	be	dealt	with	in	a
different	manner.	In	this	chapter,	we	shall	consider	only	the	following	types	of	failure:

•	Transaction	failure.	There	are	two	types	of	errors	that	may	cause	a	transaction	to	fail:

°	Logical	error.	The	transaction	can	no	longer	continue	with	its	normal	execution	because	of	some	internal
condition,	such	as	bad	input,	data	not	found,	overflow,	or	resource	limit	exceeded.

°	System	error.	The	system	has	entered	an	undesirable	state	(e.g.,	deadlock),	as	a	result	of	which	a
transaction	cannot	continue	with	its	normal	execution.	The	transaction,	however,	can	be	reexecuted	at	a
later	time.

907

908

Chapter	19

Recovery	System

•	System	crash.	There	is	a	hardware	malfunction,	or	a	bug	in	the	database	software	or	the	operating
system,	that	causes	the	loss	of	the	content	of	volatile	storage	and	brings	transaction	processing	to	a	halt.
The	content	of	non-volatile	storage	remains	intact	and	is	not	corrupted.

The	assumption	that	hardware	errors	and	bugs	in	the	software	bring	the	system	to	a	halt,	but	do	not
corrupt	the	non-volatile	storage	contents,	is	known	as	the	fail-stop	assumption.	Well-designed	systems
have	numerous	internal	checks,	at	the	hardware	and	the	software	level,	that	bring	the	system	to	a	halt
when	there	is	an	error.	Hence,	the	fail-stop	assumption	is	a	reasonable	one.

•	Disk	failure.	A	disk	block	loses	its	content	as	a	result	of	either	a	head	crash	or	failure	during	a	data-
transfer	operation.	Copies	of	the	data	on	other	disks,	or	archival	backups	on	tertiary	media,	such	as	DVD
or	tapes,	are	used	to	recover	from	the	failure.

To	determine	how	the	system	should	recover	from	failures,	we	need	to	identify	the	failure	modes	of	those
devices	used	for	storing	data.	Next,	we	must	consider	how	these	failure	modes	affect	the	contents	of	the
database.	We	can	then	propose	algorithms	to	ensure	database	consistency	and	transaction	atomicity
despite	failures.	These	algorithms,	known	as	recovery	algorithms,	have	two	parts:

1.	Actions	taken	during	normal	transaction	processing	to	ensure	that	enough	information	exists	to	allow
recovery	from	failures.

2.	Actions	taken	after	a	failure	to	recover	the	database	contents	to	a	state	that	ensures	database
consistency,	transaction	atomicity,	and	durability.

19.2

Storage

As	we	saw	in	Chapter	13,	the	various	data	items	in	the	database	may	be	stored	and	accessed	in	a	number
of	different	storage	media.	In	Section	17.3,	we	saw	that	storage	media	can	be	distinguished	by	their
relative	speed,	capacity,	and	resilience	against	failure.	We	identified	three	categories	of	storage:

1.	Volatile	storage

2.	Non-Volatile	storage

3.	Stable	storage

Stable	storage	or,	more	accurately,	an	approximation	thereof,	plays	a	critical	role	in	recovery	algorithms.

19.2

Storage

909

19.2.1

Stable-Storage	Implementation

To	implement	stable	storage,	we	need	to	replicate	the	needed	information	in	several	non-volatile	storage
media	(usually	disk)	with	independent	failure	modes	and	to	update	the	information	in	a	controlled	manner
to	ensure	that	failure	during	data	transfer	does	not	damage	the	needed	information.

Recall	(from	Chapter	12)	that	RAID	systems	guarantee	that	the	failure	of	a	single	disk	(even	during	data
transfer)	will	not	result	in	loss	of	data.	The	simplest	and	fastest	form	of	RAID	is	the	mirrored	disk,	which
keeps	two	copies	of	each	block	on	separate	disks.	Other	forms	of	RAID	offer	lower	costs,	but	at	the
expense	of	lower	performance.

RAID	systems,	however,	cannot	guard	against	data	loss	due	to	disasters	such	as	fires	or	flooding.	Many
systems	store	archival	backups	of	tapes	off-site	to	guard	against	such	disasters.	However,	since	tapes
cannot	be	carried	off-site	continually,	updates	since	the	most	recent	time	that	tapes	were	carried	off-site
could	be	lost	in	such	a	disaster.	More	secure	systems	keep	a	copy	of	each	block	of	stable	storage	at	a
remote	site,	writing	it	out	over	a	computer	network,	in	addition	to	storing	the	block	on	a	local	disk	system.

Since	the	blocks	are	output	to	a	remote	system	as	and	when	they	are	output	to	local	storage,	once	an

output	operation	is	complete,	the	output	is	not	lost,	even	in	the	event	of	a	disaster	such	as	a	fire	or	flood.
We	study	such	remote	backup	systems	in	Section	19.7.

In	the	remainder	of	this	section,	we	discuss	how	storage	media	can	be	protected	from	failure	during	data
transfer.	Block	transfer	between	memory	and	disk	storage	can	result	in:

•	Successful	completion.	The	transferred	information	arrived	safely	at	its	destination.

•	Partial	failure.	A	failure	occurred	in	the	midst	of	transfer,	and	the	destination	block	has	incorrect
information.

•	Total	failure.	The	failure	occurred	sufficiently	early	during	the	transfer	that	the	destination	block
remains	intact.

We	require	that,	if	a	data-transfer	failure	occurs,	the	system	detects	it	and	invokes	a	recovery	procedure
to	restore	the	block	to	a	consistent	state.	To	do	so,	the	system	must	maintain	two	physical	blocks	for	each
logical	database	block;	in	the	case	of	mirrored	disks,	both	blocks	are	at	the	same	location;	in	the	case	of
remote	backup,	one	of	the	blocks	is	local,	whereas	the	other	is	at	a	remote	site.	An	output	operation	is
executed	as	follows:

1.	Write	the	information	onto	the	first	physical	block.

2.	When	the	first	write	completes	successfully,	write	the	same	information	onto	the	second	physical	block.

3.	The	output	is	completed	only	after	the	second	write	completes	successfully.

910

Chapter	19

Recovery	System

If	the	system	fails	while	blocks	are	being	written,	it	is	possible	that	the	two	copies	of	a	block	could	be
inconsistent	with	each	other.	During	recovery,	for	each	block,	the	system	would	need	to	examine	two
copies	of	the	blocks.	If	both	are	the	same	and	no	detectable	error	exists,	then	no	further	actions	are
necessary.	(Recall	that	errors	in	a	disk	block,	such	as	a	partial	write	to	the	block,	are	detected	by	storing	a
checksum	with	each	block.)	If	the	system	detects	an	error	in	one	block,	then	it	replaces	its	content	with
the	content	of	the	other	block.	If	both	blocks	contain	no	detectable	error,	but	they	differ	in	content,	then
the	system	can	either	replace	the	content	of	the	first	block	with	the	value	of	the	second,	or	replace	the
content	of	the	second	block	with	the	value	of	the	first.	Either	way,	the	recovery	procedure	ensures	that	a
write	to	stable	storage	either	succeeds	completely	(i.e.,	updates	all	copies)	or	results	in	no	change.

The	requirement	of	comparing	every	corresponding	pair	of	blocks	during	recovery	is	expensive	to	meet.
We	can	reduce	the	cost	greatly	by	keeping	track	of	block	writes	that	are	in	progress,	using	a	small	amount
of	non-volatile	RAM.	On	recovery,	only	blocks	for	which	writes	were	in	progress	need	to	be	compared.

The	protocols	for	writing	out	a	block	to	a	remote	site	are	similar	to	the	protocols	for	writing	blocks	to	a
mirrored	disk	system,	which	we	examined	in	Chapter	12,	and	particularly	in	Practice	Exercise	12.6.

We	can	extend	this	procedure	easily	to	allow	the	use	of	an	arbitrarily	large	number	of	copies	of	each	block
of	stable	storage.	Although	a	large	number	of	copies	reduces	the	probability	of	a	failure	to	even	lower
than	two	copies	do,	it	is	usually	reasonable	to	simulate	stable	storage	with	only	two	copies.

19.2.2

Data	Access

As	we	saw	in	Chapter	12,	the	database	system	resides	permanently	on	non-volatile	storage	(usually	disks),
and	only	parts	of	the	database	are	in	memory	at	any	time.

(In	main-memory	databases,	the	entire	database	resides	in	memory,	but	a	copy	still	resides	on	non-volatile
storage	so	data	can	survive	the	loss	of	main-memory	contents.)	The	database	is	partitioned	into	fixed-
length	storage	units	called	blocks.	Blocks	are	the	units	of	data	transfer	to	and	from	disk	and	may	contain
several	data	items.	We	shall	assume	that	no	data	item	spans	two	or	more	blocks.	This	assumption	is
realistic	for	most	data-processing	applications,	such	as	a	bank	or	a	university.

Transactions	input	information	from	the	disk	into	main	memory	and	then	output	the	information	back	onto
the	disk.	The	input	and	output	operations	are	done	in	block	units.	The	blocks	residing	on	the	disk	are
referred	to	as	physical	blocks;	the	blocks	residing	temporarily	in	main	memory	are	referred	to	as	buffer
blocks.	The	area	of	memory	where	blocks	reside	temporarily	is	called	the	disk	buffer.

Block	movements	between	disk	and	main	memory	are	initiated	through	the	following	two	operations:

1.	input(B)	transfers	the	physical	block	B	to	main	memory.

19.2

Storage

911

2.	output(B)	transfers	the	buffer	block	B	to	the	disk	and	replaces	the	appropriate	physical	block	there.

Figure	19.1	illustrates	this	scheme.

Conceptually,	each	transaction	T	has	a	private	work	area	in	which	copies	of	data	i

items	accessed	and	updated	by	T	are	kept.	The	system	creates	this	work	area	when	i

the	transaction	is	initiated;	the	system	removes	it	when	the	transaction	either	commits	or	aborts.	Each
data	item	X	kept	in	the	work	area	of	transaction	T	is	denoted	by	x	.

i

i

Transaction	T	interacts	with	the	database	system	by	transferring	data	to	and	from	its	i

work	area	to	the	system	buffer.	We	transfer	data	by	these	two	operations:	1.	read(X)	assigns	the	value	of
data	item	X	to	the	local	variable	x	.	It	executes	this	i

operation	as	follows:

a.	If	block	B	on	which	X	resides	is	not	in	main	memory,	it	issues

).

X

input(BX

b.	It	assigns	to	x	the	value	of	X	from	the	buffer	block.

i

2.	write(X)	assigns	the	value	of	local	variable	x	to	data	item	X	in	the	buffer	block.

i

It	executes	this	operation	as	follows:

a.	If	block	B	on	which	X	resides	is	not	in	main	memory,	it	issues

).

X

input(BX

b.	It	assigns	the	value	of	x	to	X	in	buffer	B	.

i

X

Note	that	both	operations	may	require	the	transfer	of	a	block	from	disk	to	main	memory.	They	do	not,
however,	specifically	require	the	transfer	of	a	block	from	main	memory	to	disk.

A	buffer	block	is	eventually	written	out	to	the	disk	either	because	the	buffer	manager	needs	the	memory
space	for	other	purposes	or	because	the	database	system	wishes	input(A)

A

output(B)

B

B

disk

main	memory

Figure	19.1	Block	storage	operations.

912

Chapter	19

Recovery	System

to	reflect	the	change	to	B	on	the	disk.	We	shall	say	that	the	database	system	performs	a	force-output	of
buffer	B	if	it	issues	an	output(B).

When	a	transaction	needs	to	access	a	data	item	X	for	the	first	time,	it	must	execute	read(X).	The
transaction	then	performs	all	updates	to	X	on	x	.	At	any	point	during	its	i

execution	a	transaction	may	execute	write(X)	to	reflect	the	change	to	X	in	the	database	itself;	write(X)
must	certainly	be	done	after	the	final	write	to	x	.	i	The	output(B)	operation	for	the	buffer	block	B	on
which	X	resides	does	not	need	X

X

to	take	effect	immediately	after	write(X)	is	executed,	since	the	block	B	may	contain	X

other	data	items	that	are	still	being	accessed.	Thus,	the	actual	output	may	take	place	later.	Notice	that,	if
the	system	crashes	after	the	write(X)	operation	was	executed	but	before	output(B)	was	executed,	the
new	value	of	X	is	never	written	to	disk	and,	thus,	X

is	lost.	As	we	shall	see	shortly,	the	database	system	executes	extra	actions	to	ensure	that	updates
performed	by	committed	transactions	are	not	lost	even	if	there	is	a	system	crash.

19.3

Recovery	and	Atomicity

Consider	again	our	simplified	banking	system	and	a	transaction	T	that	transfers	$50

i

from	account	A	to	account	B,	with	initial	values	of	A	and	B	being	$1000	and	$2000,	respectively.	Suppose
that	a	system	crash	has	occurred	during	the	execution	of	T	,	after	i

output(B)	has	taken	place,	but	before

)	was	executed,	where	B	and	B

A

output(BB

A

B

denote	the	buffer	blocks	on	which	A	and	B	reside.	Since	the	memory	contents	were	lost,	we	do	not	know
the	fate	of	the	transaction.

When	the	system	restarts,	the	value	of	A	would	be	$950,	while	that	of	B	would	be	$2000,	which	is	clearly
inconsistent	with	the	atomicity	requirement	for	transaction	T	.

i

Unfortunately,	there	is	no	way	to	find	out	by	examining	the	database	state	what	blocks	had	been	output
and	what	had	not	before	the	crash.	It	is	possible	that	the	transaction	completed,	updating	the	database	on
stable	storage	from	an	initial	state	with	the	values	of	A	and	B	being	$1000	and	$1950;	it	is	also	possible
that	the	transaction	did	not	affect	the	stable	storage	at	all,	and	the	values	of	A	and	B	were	$950	and
$2000	initially;	or	that	the	updated	B	was	output	but	not	the	updated	A;	or	that	the	updated	A	was	output
but	the	updated	B	was	not.

Our	goal	is	to	perform	either	all	or	no	database	modifications	made	by	T	.	Howi

ever,	if	T	performed	multiple	database	modifications,	several	output	operations	may	i

be	required,	and	a	failure	may	occur	after	some	of	these	modifications	have	been	made,	but	before	all	of
them	are	made.

To	achieve	our	goal	of	atomicity,	we	must	first	output	to	stable	storage	information	describing	the
modifications,	without	modifying	the	database	itself.	As	we	shall	see,	this	information	can	help	us	ensure
that	all	modifications	performed	by	committed	transactions	are	reflected	in	the	database	(perhaps	during
the	course	of	recovery	actions	after	a	crash).	We	also	need	to	store	information	about	the	old	value	of	any
item	updated	by	a	modification	in	case	the	transaction	performing	the	modification

19.3

Recovery	and	Atomicity

913

fails	(aborts).	This	information	can	help	us	undo	the	modifications	made	by	the	failed	transaction.

The	most	commonly	used	technique	for	recovery	is	based	on	log	records,	and	we	study	log-based	recovery
in	detail	in	this	chapter.	An	alternative,	called	shadow	copying,	is	used	by	text	editors	but	is	not	used	in
database	systems;	this	approach	is	summarized	in	Note	19.1	on	page	914.

19.3.1

Log	Records

The	most	widely	used	structure	for	recording	database	modifications	is	the	log.	The	log	is	a	sequence	of
log	records,	recording	all	the	update	activities	in	the	database.

There	are	several	types	of	log	records.	An	update	log	record	describes	a	single	database	write.	It	has
these	fields:

•	Transaction	identifier,	which	is	the	unique	identifier	of	the	transaction	that	performed	the	write
operation.

•	Data-item	identifier,	which	is	the	unique	identifier	of	the	data	item	written.	Typically,	it	is	the	location	on
disk	of	the	data	item,	consisting	of	the	block	identifier	of	the	block	on	which	the	data	item	resides	and	an
offset	within	the	block.

•	Old	value,	which	is	the	value	of	the	data	item	prior	to	the	write.

•	New	value,	which	is	the	value	that	the	data	item	will	have	after	the	write.

We	represent	an	update	log	record	as	,	X	,	V	,	V	>,	indicating	that	transaction	T

i

j

1

2

i

has	performed	a	write	on	data	item	X	.	X	had	value	V	before	the	write	and	has	value	j

j

1

V	after	the	write.	Other	special	log	records	exist	to	record	significant	events	during	2

transaction	processing,	such	as	the	start	of	a	transaction	and	the	commit	or	abort	of	a	transaction.	Among
the	types	of	log	records	are:

•

has	started.

i	start	>.	Transaction	Ti

•

has	committed.

i	commit	>.	Transaction	Ti

•

has	aborted.

i	abort	>.	Transaction	Ti

We	shall	introduce	several	other	types	of	log	records	later.

Whenever	a	transaction	performs	a	write,	it	is	essential	that	the	log	record	for	that	write	be	created	and
added	to	the	log,	before	the	database	is	modified.	Once	a	log	record	exists,	we	can	output	the	modification
to	the	database	if	that	is	desirable.	Also,	we	have	the	ability	to	undo	a	modification	that	has	already	been
output	to	the	database.

We	undo	it	by	using	the	old-value	field	in	log	records.

For	log	records	to	be	useful	for	recovery	from	system	and	disk	failures,	the	log	must	reside	in	stable
storage.	For	now,	we	assume	that	every	log	record	is	written	to	the	end

914

Chapter	19

Recovery	System

Note	19.1	SHADOW	COPIES	AND	SHADOW	PAGING

In	the	shadow-copy	scheme,	a	transaction	that	wants	to	update	the	database	first	creates	a	complete	copy
of	the	database.	All	updates	are	done	on	the	new	database	copy,	leaving	the	original	copy,	the	shadow
copy,	untouched.	If	at	any	point	the	transaction	has	to	be	aborted,	the	system	merely	deletes	the	new
copy.	The	old	copy	of	the	database	has	not	been	affected.	The	current	copy	of	the	database	is	identified	by
a	pointer,	called	db-pointer,	which	is	stored	on	disk.

If	the	transaction	partially	commits	(i.e.,	executes	its	final	statement)	it	is	committed	as	follows:	First,	the
operating	system	is	asked	to	make	sure	that	all	pages	of	the	new	copy	of	the	database	have	been	written
out	to	disk.	(Unix	systems	use	the	fsync	command	for	this	purpose.)	After	the	operating	system	has
written	all	the	pages	to	disk,	the	database	system	updates	the	pointer	db-pointer	to	point	to	the	new	copy
of	the	database;	the	new	copy	then	becomes	the	current	copy	of	the	database.	The	old	copy	of	the
database	is	then	deleted.	The	transaction	is	said	to	have	been	committed	at	the	point	where	the	updated
db-pointer	is	written	to	disk.

The	implementation	actually	depends	on	the	write	to	db-pointer	being	atomic;	that	is,	either	all	its	bytes
are	written	or	none	of	its	bytes	are	written.	Disk	systems	provide	atomic	updates	to	entire	blocks,	or	at
least	to	a	disk	sector.	In	other	words,	the	disk	system	guarantees	that	it	will	update	db-pointer	atomically,
as	long	as	we	make	sure	that	db-pointer	lies	entirely	in	a	single	sector,	which	we	can	ensure	by	storing	db-
pointer	at	the	beginning	of	a	block.

Shadow-copy	schemes	are	commonly	used	by	text	editors	(saving	the	file	is	equivalent	to	transaction
commit,	while	quitting	without	saving	the	file	is	equivalent	to	transaction	abort).	Shadow	copying	can	be
used	for	small	databases,	but	copying	a	large	database	would	be	extremely	expensive.	A	variant	of	shadow
copying,	called	shadow	paging,	reduces	copying	as	follows:	the	scheme	uses	a	page	table	containing
pointers	to	all	pages;	the	page	table	itself	and	all	updated	pages	are	copied	to	a	new	location.	Any	page
which	is	not	updated	by	a	transaction	is	not	copied,	but	instead	the	new	page	table	just	stores	a	pointer	to
the	original	page.

When	a	transaction	commits,	it	atomically	updates	the	pointer	to	the	page	table,	which	acts	as	db-pointer
to	point	to	the	new	copy.

Shadow	paging	unfortunately	does	not	work	well	with	concurrent	transactions	and	is	not	widely	used	in
databases.

of	the	log	on	stable	storage	as	soon	as	it	is	created.	In	Section	19.5,	we	shall	see	when	it	is	safe	to	relax
this	requirement	so	as	to	reduce	the	overhead	imposed	by	logging.

Observe	that	the	log	contains	a	complete	record	of	all	database	activity.	As	a	result,	the	volume	of	data
stored	in	the	log	may	become	unreasonably	large.	In	Section	19.3.6,	we	shall	show	when	it	is	safe	to	erase
log	information.

19.3

Recovery	and	Atomicity

915

19.3.2

Database	Modification

As	we	noted	earlier,	a	transaction	creates	a	log	record	prior	to	modifying	the	database.

The	log	records	allow	the	system	to	undo	changes	made	by	a	transaction	in	the	event	that	the	transaction
must	be	aborted;	they	allow	the	system	also	to	redo	changes	made	by	a	transaction	if	the	transaction	has
committed	but	the	system	crashed	before	those	changes	could	be	stored	in	the	database	on	disk.	In	order
for	us	to	understand	the	role	of	these	log	records	in	recovery,	we	need	to	consider	the	steps	a	transaction
takes	in	modifying	a	data	item:

1.	The	transaction	performs	some	computations	in	its	own	private	part	of	main	memory.

2.	The	transaction	modifies	the	data	block	in	the	disk	buffer	in	main	memory	holding	the	data	item.

3.	The	database	system	executes	the	output	operation	that	writes	the	data	block	to	disk.

We	say	a	transaction	modifies	the	database	if	it	performs	an	update	on	a	disk	buffer,	or	on	the	disk	itself;
updates	to	the	private	part	of	main	memory	do	not	count	as	database	modifications.	If	a	transaction	does
not	modify	the	database	until	it	has	committed,	it	is	said	to	use	the	deferred-modification	technique.	If
database	modifications	occur	while	the	transaction	is	still	active,	the	transaction	is	said	to	use	the
immediate-modification	technique.	Deferred	modification	has	the	overhead	that	transactions	need	to
make	local	copies	of	all	updated	data	items;	further,	if	a	transaction	reads	a	data	item	that	it	has	updated,
it	must	read	the	value	from	its	local	copy.

The	recovery	algorithms	we	describe	in	this	chapter	support	immediate	modification.	As	described,	they
work	correctly	even	with	deferred	modification,	but	they	can	be	optimized	to	reduce	overhead	when	used
with	deferred	modification;	we	leave	details	as	an	exercise.

A	recovery	algorithm	must	take	into	account	a	variety	of	factors,	including:

•	The	possibility	that	a	transaction	may	have	committed	although	some	of	its	database	modifications	exist
only	in	the	disk	buffer	in	main	memory	and	not	in	the	database	on	disk.

•	The	possibility	that	a	transaction	may	have	modified	the	database	while	in	the	active	state	and,	as	a
result	of	a	subsequent	failure,	may	need	to	abort.

Because	all	database	modifications	must	be	preceded	by	the	creation	of	a	log	record,	the	system	has
available	both	the	old	value	prior	to	the	modification	of	the	data	item	and	the	new	value	that	is	to	be
written	for	the	data	item.	This	allows	the	system	to	perform	undo	and	redo	operations	as	appropriate.

916

Chapter	19

Recovery	System

•	The	undo	operation	using	a	log	record	sets	the	data	item	specified	in	the	log	record	to	the	old	value
contained	in	the	log	record.

•	The	redo	operation	using	a	log	record	sets	the	data	item	specified	in	the	log	record	to	the	new	value
contained	in	the	log	record.

19.3.3

Concurrency	Control	and	Recovery

If	the	concurrency	control	scheme	allows	a	data	item	X	that	has	been	modified	by	a	transaction	T	to	be
further	modified	by	another	transaction	T	before	T	commits,	1

2

1

then	undoing	the	effects	of	T	by	restoring	the	old	value	of	X	(before	T	updated	X)	1

1

would	also	undo	the	effects	of	T	.	To	avoid	such	situations,	recovery	algorithms	usually	2

require	that	if	a	data	item	has	been	modified	by	a	transaction,	no	other	transaction	can	modify	the	data
item	until	the	first	transaction	commits	or	aborts.

This	requirement	can	be	ensured	by	acquiring	an	exclusive	lock	on	any	updated	data	item	and	holding	the
lock	until	the	transaction	commits;	in	other	words,	by	using	strict	two-phase	locking.	Snapshot	isolation
and	validation-based	concurrency-control	techniques	also	acquire	exclusive	locks	on	data	items	at	the
time	of	validation,	before	modifying	the	data	items,	and	hold	the	locks	until	the	transaction	is	committed;
as	a	result	the	above	requirement	is	satisfied	even	by	these	concurrency	control	protocols.

We	discuss	in	Section	19.8	how	the	above	requirement	can	be	relaxed	in	certain	cases.

When	either	snapshot	isolation	or	validation	is	used	for	concurrency	control,	database	updates	of	a
transaction	are	(conceptually)	deferred	until	the	transaction	is	partially	committed;	the	deferred-
modification	technique	is	a	natural	fit	with	these	concurrency	control	schemes.	However,	it	is	worth
noting	that	some	implementations	of	snapshot	isolation	use	immediate	modification	but	provide	a	logical
snapshot	on	demand:	when	a	transaction	needs	to	read	an	item	that	a	concurrent	transaction	has
updated,	a	copy	of	the	(already	updated)	item	is	made,	and	updates	made	by	concurrent	transactions	are
rolled	back	on	the	copy	of	the	item.	Similarly,	immediate	modification	of	the	database	is	a	natural	fit	with
two-phase	locking,	but	deferred	modification	can	also	be	used	with	two-phase	locking.

<	T	0	start>

<	T	0	,	A,	1000,	950>

<	T	0	,	B,	2000,	2050>

<	T	0	commit>

<	T	1	start>

<	T	1	,	C,	700,	600>

<	T	1	commit>

Figure	19.2	Portion	of	the	system	log	corresponding	to	T	0	and	T	1.

19.3

Recovery	and	Atomicity

917

19.3.4

Transaction	Commit

We	say	that	a	transaction	has	committed	when	its	commit	log	record,	which	is	the	last	log	record	of	the
transaction,	has	been	output	to	stable	storage;	at	that	point	all	earlier	log	records	have	already	been
output	to	stable	storage.	Thus,	there	is	enough	information	in	the	log	to	ensure	that	even	if	there	is	a
system	crash,	the	updates	of	the	transaction	can	be	redone.	If	a	system	crash	occurs	before	a	log	record
commit	>

is	output	to	stable	storage,	transaction	T	will	be	rolled	back.	Thus,	the	output	of	the	i

block	containing	the	commit	log	record	is	the	single	atomic	action	that	results	in	a	transaction	getting
committed.1

With	most	log-based	recovery	techniques,	including	the	ones	we	describe	in	this	chapter,	blocks
containing	the	data	items	modified	by	a	transaction	do	not	have	to	be	output	to	stable	storage	when	the
transaction	commits	but	can	be	output	some	time	later.	We	discuss	this	issue	further	in	Section	19.5.2.

19.3.5

Using	the	Log	to	Redo	and	Undo	Transactions

We	now	provide	an	overview	of	how	the	log	can	be	used	to	recover	from	a	system	crash	and	to	roll	back
transactions	during	normal	operation.	However,	we	postpone	details	of	the	procedures	for	failure	recovery
and	rollback	to	Section	19.4.

Consider	our	simplified	banking	system.	Let	T	be	a	transaction	that	transfers	$50

0

from	account	A	to	account	B:

T	:

0

read(A);

A	:=	A	−	50;

write(A);

read(B);

B	:=	B	+	50;

write(B).

Let	T	be	a	transaction	that	withdraws	$100	from	account	C:	1

T	:

1

read(C);

C	:=	C	−	100;

write(C).

The	portion	of	the	log	containing	the	relevant	information	concerning	these	two	transactions	appears	in
Figure	19.2.

Figure	19.3	shows	one	possible	order	in	which	the	actual	outputs	took	place	in	both	the	database	system
and	the	log	as	a	result	of	the	execution	of	T	and	T	.2

0

1

1The	output	of	a	block	can	be	made	atomic	by	techniques	for	dealing	with	data-transfer	failure,	as
described	in	Section	19.2.1.

2Notice	that	this	order	could	not	be	obtained	using	the	deferred-modification	technique,	because	the
database	is	modified	by	T	0	before	it	commits,	and	likewise	for	T	1.

918

Chapter	19

Recovery	System

Log

Database

<	T	0	start>

<	T	0	,	A,	1000,	950>

<	T	0	,	B,	2000,	2050>

A	=	950

B	=	2050

<	T	0	commit>

<	T	1	start>

<	T	1	,	C,	700,	600>

C	=	600

<	T	1	commit>

Figure	19.3	State	of	system	log	and	database	corresponding	to	T	0	and	T	1.

Using	the	log,	the	system	can	handle	any	failure	that	does	not	result	in	the	loss	of	information	in	non-
volatile	storage.	The	recovery	scheme	uses	two	recovery	procedures.

Both	these	procedures	make	use	of	the	log	to	find	the	set	of	data	items	updated	by	each	transaction	T	and
their	respective	old	and	new	values.

i

•	redo(T).	The	procedure	sets	the	value	of	all	data	items	updated	by	transaction	T

i

i

to	the	new	values.	The	order	in	which	updates	are	carried	out	by	redo	is	important;	when	recovering	from
a	system	crash,	if	updates	to	a	particular	data	item	are	applied	in	an	order	different	from	the	order	in
which	they	were	applied	originally,	the	final	state	of	that	data	item	will	have	a	wrong	value.	Most	recovery
algorithms,	including	the	one	we	describe	in	Section	19.4,	do	not	perform	redo	of	each	transaction
separately;	instead	they	perform	a	single	scan	of	the	log,	during	which	redo	actions	are	performed	for
each	log	record	as	it	is	encountered.	This	approach	ensures	the	order	of	updates	is	preserved,	and	it	is
more	efficient	since	the	log	needs	to	be	read	only	once	overall,	instead	of	once	per	transaction.

•	undo(T).	The	procedure	restores	the	value	of	all	data	items	updated	by	transaction	i

T	to	the	old	values.	In	the	recovery	scheme	that	we	describe	in	Section	19.4:	i

°	The	undo	operation	not	only	restores	the	data	items	to	their	old	value,	but	also	writes	log	records	to
record	the	updates	performed	as	part	of	the	undo	process.	These	log	records	are	special	redo-only	log
records,	since	they	do	not	need	to	contain	the	old	value	of	the	updated	data	item;	note	that	when	such	log
records	are	used	during	undo,	the	“old	value”	is	actually	the	value	written	by	the	transaction	that	is	being
rolled	back,	and	the	“new	value”	is	the	original	value	that	is	being	restored	by	the	undo	operation.

As	with	the	redo	procedure,	the	order	in	which	undo	operations	are	performed	is	important;	again	we
postpone	details	to	Section	19.4.

19.3

Recovery	and	Atomicity

919

°	When	the	undo	operation	for	transaction	T	completes,	it	writes	a

i

i	abort	>

log	record,	indicating	that	the	undo	has	completed.

As	we	shall	see	in	Section	19.4,	the	undo(T)	procedure	is	executed	only	i

once	for	a	transaction,	if	the	transaction	is	rolled	back	during	normal	processing	or	if	on	recovering	from
a	system	crash,	neither	a	commit	nor	an	abort	record	is	found	for	transaction	T	.	As	a	result,	every
transaction	will	eventually	i

have	either	a	commit	or	an	abort	record	in	the	log.

After	a	system	crash	has	occurred,	the	system	consults	the	log	to	determine	which	transactions	need	to	be
redone	and	which	need	to	be	undone	so	as	to	ensure	atomicity.

•	Transaction	T	needs	to	be	undone	if	the	log	contains	the	record

i

i	start	>	but

does	not	contain	either	the	record	commit	>	or	the	record	abort	>.

•	Transaction	T	needs	to	be	redone	if	the	log	contains	the	record

i

i	start	>	and

either	the	record	commit	>	or	the	record	abort	>.	It	may	seem	strange	to	redo	T	if	the	record

i

i	abort	>	is	in	the	log.	To	see	why	this	works,	note	that	if	abort	>	is	in	the	log,	so	are	the	redo-only	records
written	by	the	undo	operation.

Thus,	the	end	result	will	be	to	undo	T	’s	modifications	in	this	case.	This	slight	i

redundancy	simplifies	the	recovery	algorithm	and	enables	faster	overall	recovery	time.

As	an	illustration,	return	to	our	banking	example,	with	transaction	T	and	T	ex-0

1

ecuted	one	after	the	other	in	the	order	T	followed	by	T	.	Suppose	that	the	system	0

1

crashes	before	the	completion	of	the	transactions.	We	shall	consider	three	cases.	The	state	of	the	logs	for
each	of	these	cases	appears	in	Figure	19.4.

First,	let	us	assume	that	the	crash	occurs	just	after	the	log	record	for	the	step:	write(B)

of	transaction	T	has	been	written	to	stable	storage	(Figure	19.4a).	When	the	system	0

comes	back	up,	it	finds	the	record	0	start	>	in	the	log,	but	no	corresponding	0

commit	>	or

must	be	undone,	so	an

)

0	abort	>	record.	Thus,	transaction	T	0

undo(T	0

is	performed.	As	a	result,	the	values	in	accounts	A	and	B	(on	the	disk)	are	restored	to	$1000	and	$2000,
respectively.

Next,	let	us	assume	that	the	crash	comes	just	after	the	log	record	for	the	step:	write(C)

of	transaction	T	has	been	written	to	stable	storage	(Figure	19.4b).	When	the	system	1

comes	back	up,	two	recovery	actions	need	to	be	taken.	The	operation	undo(T)	must	1

be	performed,	since	the	record	1	start	>	appears	in	the	log,	but	there	is	no	record

)	must	be	performed,	since	the

1	commit	>	or	1	abort	>.	The	operation	redo(T	0

log	contains	both	the	record	0	start	>	and	the	record	0	commit	>.	At	the	end	of

920

Chapter	19

Recovery	System

<	T	0	start>

<	T	0	start>

<	T	0	start>

<	T	0	,	A,	1000,	950>

<	T	0	,	A,	1000,	950>

<	T	0	,	A,	1000,	950>

<	T	0	,	B,	2000,	2050>

<	T	0	,	B

,	2000,	2050>

<	T	0	,	B,	2000,	2050>

<	T	0	commit>

<	T	0	commit>

<	T	1	start>

<	T	1	start>

<	T	1	,	C	,	700,	600>

<	T	1	,	C,	700,	600>

<	T	1	commit>

(a)

(b)

(c)

Figure	19.4	The	same	log,	shown	at	three	different	times.

the	entire	recovery	procedure,	the	values	of	accounts	A,	B,	and	C	are	$950,	$2050,	and	$700,	respectively.

Finally,	let	us	assume	that	the	crash	occurs	just	after	the	log	record:

1	commit	>

has	been	written	to	stable	storage	(Figure	19.4c).	When	the	system	comes	back	up,	both	T	and	T	need	to
be	redone,	since	the	records

0

1

0	start	>	and	0	commit	>

appear	in	the	log,	as	do	the	records	1	start	>	and	1	commit	>.	After	the	system	performs	the	recovery
procedures	redo(T)	and

),	the	values	in	accounts	A,	B,

0

redo(T	1

and	C	are	$950,	$2050,	and	$600,	respectively.

19.3.6

Checkpoints

When	a	system	crash	occurs,	we	must	consult	the	log	to	determine	those	transactions	that	need	to	be
redone	and	those	that	need	to	be	undone.	In	principle,	we	need	to	search	the	entire	log	to	determine	this
information.	There	are	two	major	difficulties	with	this	approach:

1.	The	search	process	is	time-consuming.

2.	Most	of	the	transactions	that,	according	to	our	algorithm,	need	to	be	redone	have	already	written	their
updates	into	the	database.	Although	redoing	them	will	cause	no	harm,	it	will	nevertheless	cause	recovery
to	take	longer.

To	reduce	these	types	of	overhead,	we	introduce	checkpoints.

We	describe	below	a	simple	checkpoint	scheme	that	(a)	does	not	permit	any	updates	to	be	performed
while	the	checkpoint	operation	is	in	progress,	and	(b)	outputs	all	modified	buffer	blocks	to	disk	when	the
checkpoint	is	performed.	We	discuss	later	how	to	modify	the	checkpointing	and	recovery	procedures	to
provide	more	flexibility	by	relaxing	both	these	requirements.

A	checkpoint	is	performed	as	follows:

19.3

Recovery	and	Atomicity

921

1.	Output	onto	stable	storage	all	log	records	currently	residing	in	main	memory.

2.	Output	to	the	disk	all	modified	buffer	blocks.

3.	Output	onto	stable	storage	a	log	record	of	the	form	<	checkpoint	L>,	where	L	is	a	list	of	transactions
active	at	the	time	of	the	checkpoint.

Transactions	are	not	allowed	to	perform	any	update	actions,	such	as	writing	to	a	buffer	block	or	writing	a
log	record,	while	a	checkpoint	is	in	progress.	We	discuss	how	this	requirement	can	be	enforced	in	Section
19.5.2.

The	presence	of	a	<	checkpoint	L>	record	in	the	log	allows	the	system	to	stream-line	its	recovery
procedure.	Consider	a	transaction	T	that	completed	prior	to	the	checki

point.	For	such	a	transaction,	the	commit	>	record	(or	<	Ti	abort	>	record)	appears	in	the	log	before	the
<	checkpoint	>	record.	Any	database	modifications	made	by	T	must	have	been	written	to	the	database
either	prior	to	the	checkpoint	or	as	part	i

of	the	checkpoint	itself.	Thus,	at	recovery	time,	there	is	no	need	to	perform	a	redo	operation	on	T	.

i

After	a	system	crash	has	occurred,	the	system	examines	the	log	to	find	the	last

<	checkpoint	L>	record	(this	can	be	done	by	searching	the	log	backward,	from	the	end	of	the	log,	until
the	first	<	checkpoint	L>	record	is	found).

The	redo	or	undo	operations	need	to	be	applied	only	to	transactions	in	L,	and	to	all	transactions	that
started	execution	after	the	<	checkpoint	L>	record	was	written	to	the	log.	Let	us	denote	this	set	of
transactions	as	T	.

•	For	all	transactions	T	in	T	that	have	no

k

k	commit	>	record	or	abort	>

record	in	the	log,	execute	undo(T).

k

•	For	all	transactions	T	in	T	such	that	either	the	record

k

k	commit	>	or	the	record

).

k	abort	>	appears	in	the	log,	execute	redo(Tk

Note	that	we	need	only	examine	the	part	of	the	log	starting	with	the	last	checkpoint	log	record	to	find	the

set	of	transactions	T	and	to	find	out	whether	a	commit	or	abort	record	occurs	in	the	log	for	each
transaction	in	T	.

As	an	illustration,	consider	the	set	of	transactions	{	T	,	T	,	…	,	T

}.	Suppose	that

0

1

100

the	most	recent	checkpoint	took	place	during	the	execution	of	transaction	T

and

67

T	,	while	T

and	all	transactions	with	subscripts	lower	than	67	completed	before	the	69

68

checkpoint.	Thus,	only	transactions	T	,	T	,	…	,	T

need	to	be	considered	during

67

69

100

the	recovery	scheme.	Each	of	them	needs	to	be	redone	if	it	has	completed	(i.e.,	either	committed	or
aborted);	otherwise,	it	was	incomplete	and	needs	to	be	undone.

Consider	the	set	of	transactions	L	in	a	checkpoint	log	record.	For	each	transaction	T	in	L,	log	records	of
the	transaction	that	occur	prior	to	the	checkpoint	log	record	i

may	be	needed	to	undo	the	transaction,	in	case	it	does	not	commit.	However,	all	log	records	prior	to	the
earliest	of	the

in	L,

i	start	>	log	records,	among	transactions	Ti

922

Chapter	19

Recovery	System

are	not	needed	once	the	checkpoint	has	completed.	These	log	records	can	be	erased	whenever	the
database	system	needs	to	reclaim	the	space	occupied	by	these	records.

The	requirement	that	transactions	must	not	perform	any	updates	to	buffer	blocks	or	to	the	log	during
checkpointing	can	be	bothersome,	since	transaction	processing	has	to	halt	while	a	checkpoint	is	in
progress.	A	fuzzy	checkpoint	is	a	checkpoint	where	transactions	are	allowed	to	perform	updates	even
while	buffer	blocks	are	being	written	out.	Section	19.5.4	describes	fuzzy-checkpointing	schemes.	Later	in
Section	19.9

we	describe	a	checkpoint	scheme	that	is	not	only	fuzzy,	but	does	not	even	require	all	modified	buffer
blocks	to	be	output	to	disk	at	the	time	of	the	checkpoint.

19.4

Recovery	Algorithm

Until	now,	in	discussing	recovery,	we	have	identified	transactions	that	need	to	be	redone	and	those	that
need	to	be	undone,	but	we	have	not	given	a	precise	algorithm	for	performing	these	actions.	We	are	now
ready	to	present	the	full	recovery	algorithm	using	log	records	for	recovery	from	transaction	failure	and	a

combination	of	the	most	recent	checkpoint	and	log	records	to	recover	from	a	system	crash.

The	recovery	algorithm	described	in	this	section	requires	that	a	data	item	that	has	been	updated	by	an
uncommitted	transaction	cannot	be	modified	by	any	other	transaction,	until	the	first	transaction	has
either	committed	or	aborted.	Recall	that	this	restriction	was	discussed	in	Section	19.3.3.

19.4.1

Transaction	Rollback

First	consider	transaction	rollback	during	normal	operation	(i.e.,	not	during	recovery	from	a	system
crash).	Rollback	of	a	transaction	T	is	performed	as	follows:	i

1.	The	log	is	scanned	backward,	and	for	each	log	record	of	T	of	the	form	i

,	X	,	V	,	V	>	that	is	found:

i

j

1

2

a.	The	value	V	is	written	to	data	item	X	,	and

1

j

b.	A	special	redo-only	log	record	,	X	,	V	>	is	written	to	the	log,	where	i

j

1

V	is	the	value	being	restored	to	data	item	X	during	the	rollback.	These	1

j

log	records	are	sometimes	called	compensation	log	records.	Such	records	do	not	need	undo	information,
since	we	never	need	to	undo	such	an	undo	operation.	We	shall	explain	later	how	they	are	used.

2.	Once	the	log	record	start	>	is	found,	the	backward	scan	is	stopped,	and	a	log	record	abort	>	is	written
to	the	log.

Observe	that	every	update	action	performed	by	the	transaction	or	on	behalf	of	the	transaction,	including
actions	taken	to	restore	data	items	to	their	old	value,	have	now	been	recorded	in	the	log.	In	Section	19.4.2
we	shall	see	why	this	is	a	good	idea.

19.4

Recovery	Algorithm

923

19.4.2

Recovery	After	a	System	Crash

Recovery	actions,	when	the	database	system	is	restarted	after	a	crash,	take	place	in	two	phases:

1.	In	the	redo	phase,	the	system	replays	updates	of	all	transactions	by	scanning	the	log	forward	from	the
last	checkpoint.	The	log	records	that	are	replayed	include	log	records	for	transactions	that	were	rolled
back	before	system	crash,	and	those	that	had	not	committed	when	the	system	crash	occurred.

This	phase	also	determines	all	transactions	that	were	incomplete	at	the	time	of	the	crash,	and	must
therefore	be	rolled	back.	Such	incomplete	transactions	would	either	have	been	active	at	the	time	of	the
checkpoint,	and	thus	would	appear	in	the	transaction	list	in	the	checkpoint	record,	or	would	have	started
later;	further,	such	incomplete	transactions	would	have	neither	a	abort	>	nor	a	commit	>

record	in	the	log.

The	specific	steps	taken	while	scanning	the	log	are	as	follows:

a.	The	list	of	transactions	to	be	rolled	back,	undo-list,	is	initially	set	to	the	list	L	in	the	<	checkpoint	L>	log
record.

b.	Whenever	a	normal	log	record	of	the	form	,	X	,	V	,	V	>,	or	a	redoi

j

1

2

only	log	record	of	the	form	,	X	,	V	>	is	encountered,	the	operation	is	i

j

2

redone;	that	is,	the	value	V	is	written	to	data	item	X	.

2

j

c.	Whenever	a	log	record	of	the	form

is	added	to

i	start	>	is	found,	Ti

undo-list.

d.	Whenever	a	log	record	of	the	form	abort	>	or	commit	>	is	found,	T	is	removed	from	undo-list.

i

At	the	end	of	the	redo	phase,	undo-list	contains	the	list	of	all	transactions	that	are	incomplete,	that	is,	they
neither	committed	nor	completed	rollback	before	the	crash.

2.	In	the	undo	phase,	the	system	rolls	back	all	transactions	in	the	undo-list.	It	performs	rollback	by
scanning	the	log	backward	from	the	end.

a.	Whenever	it	finds	a	log	record	belonging	to	a	transaction	in	the	undo-list,	it	performs	undo	actions	just
as	if	the	log	record	had	been	found	during	the	rollback	of	a	failed	transaction.

b.	When	the	system	finds	a

in	undo-

i	start	>	log	record	for	a	transaction	Ti

list,	it	writes	a

from	undo-

i	abort	>	log	record	to	the	log	and	removes	Ti

list.

c.	The	undo	phase	terminates	once	undo-list	becomes	empty,	that	is,	the	system	has	found	start	>	log
records	for	all	transactions	that	were	initially	in	undo-list.

924

Chapter	19

Recovery	System

After	the	undo	phase	of	recovery	terminates,	normal	transaction	processing	can	resume.

Observe	that	the	redo	phase	replays	every	log	record	since	the	most	recent	checkpoint	record.	In	other
words,	this	phase	of	restart	recovery	repeats	all	the	update	actions	that	were	executed	after	the
checkpoint,	and	whose	log	records	reached	the	stable	log.

The	actions	include	actions	of	incomplete	transactions	and	the	actions	carried	out	to	roll	back	failed
transactions.	The	actions	are	repeated	in	the	same	order	in	which	they	were	originally	carried	out;	hence,
this	process	is	called	repeating	history.	Although	it	may	appear	wasteful,	repeating	history	even	for	failed
transactions	simplifies	recovery	schemes.

Figure	19.5	shows	an	example	of	actions	logged	during	normal	operation	and	actions	performed	during
failure	recovery.	In	the	log	shown	in	the	figure,	transaction	T	1

had	committed,	and	transaction	T	had	been	completely	rolled	back,	before	the	system	0

crashed.	Observe	how	the	value	of	data	item	B	is	restored	during	the	rollback	of	T	.

0

Observe	also	the	checkpoint	record,	with	the	list	of	active	transactions	containing	T	0

and	T	.

1

When	recovering	from	a	crash,	in	the	redo	phase,	the	system	performs	a	redo	of	all	operations	after	the
last	checkpoint	record.	In	this	phase,	the	list	undo-list	initially	contains	T	and	T	;	T	is	removed	first	when
its	commit	log	record	is	found,	while	T

0

1

1

2

is	added	when	its	start	log	record	is	found.	Transaction	T	is	removed	from	undo-list	0

when	its	abort	log	record	is	found,	leaving	only	T	in	undo-list.	The	undo	phase	scans	2

the	log	backwards	from	the	end,	and	when	it	finds	a	log	record	of	T	updating	A,	the	2

old	value	of	A	is	restored,	and	a	redo-only	log	record	is	written	to	the	log.	When	the	Start	log	records

Beginning	of	log

found	for	all

older

<	T0	start>

transactions	in

<	T0,	B,	2000,	2050>

undo	list

<	T

T

1	start>

0	rollback

Redo	Pass

T

(during	normal

0,	T1	}>

operation)

<	T1,	C,	700,	600>

begins

<	T1	commit>

<	T2	start>

T

End	of	log

0	rollback

<	T2,	A,	500,	400>

complete

at	crash!

<	T0,	B,	2000>

T

<	T

2	is	incomplete

0	abort>

Log	records

at	crash

Undo	list:	T

Undo	Pass

2

added	during

<	T2,	A,	500>

recovery

<	T

T

2	abort>

2	rolled	back

in	undo	pass

newer

Figure	19.5	Example	of	logged	actions	and	actions	during	recovery.

19.4

Recovery	Algorithm

925

start	record	for	T	is	found,	an

.	Since	undo-list	contains

2

abort	record	is	added	for	T	2

no	more	transactions,	the	undo	phase	terminates,	completing	recovery.

19.4.3

Optimizing	Commit	Processing

Committing	a	transaction	requires	that	its	log	records	have	been	forced	to	disk.	If	a	separate	log	flush	is
done	for	each	transaction,	each	commit	incurs	a	significant	log	write	overhead.	The	rate	of	transaction
commit	can	be	increased	using	the	group-commit	technique.	With	this	technique,	instead	of	attempting	to
force	the	log	as	soon	as	a	transaction	completes,	the	system	waits	until	several	transactions	have
completed,	or	a	certain	period	of	time	has	passed	since	a	transaction	completed	execution.	It	then
commits	the	group	of	transactions	that	are	waiting,	together.	Blocks	written	to	the	log	on	stable	storage
would	contain	records	of	several	transactions.	By	careful	choice	of	group	size	and	maximum	waiting	time,
the	system	can	ensure	that	blocks	are	full	when	they	are	written	to	stable	storage	without	making
transactions	wait	excessively.	This	technique	results,	on	average,	in	fewer	output	operations	per
committed	transaction.

If	logging	is	done	to	hard	disk,	writing	a	block	of	data	can	take	about	5	to	10

milliseconds.	As	a	result,	without	group	commit,	at	most	100	to	200	transactions	can	be	committed	per
second.	If	records	of	10	transactions	fit	in	a	disk	block,	group	commit	will	allow	1000	to	2000	transactions
to	be	committed	per	second.

If	logging	is	done	to	flash,	writing	a	block	can	take	about	100	microseconds,	allowing	10,000	transactions
to	be	committed	per	second	without	group	commit.	If	records	of	10	transactions	fit	in	a	disk	block,	group
commit	will	allow	100,000	transactions	to	be	committed	per	second	on	flash.	A	further	benefit	of	group
commit	with	flash	is	that	it	minimizes	the	number	of	times	the	same	page	is	written,	which	in	turn
minimizes	the	number	of	erase	operations,	which	can	be	expensive.	(Recall	that	flash	storage	systems
remap	logical	pages	to	a	pre-erased	physical	page,	avoiding	delay	at	the	time	a	page	is	written,	but	the
erase	operation	must	be	performed	eventually	as	part	of	garbage	collection	of	old	versions	of	pages.)

Although	group	commit	reduces	the	overhead	imposed	by	logging,	it	results	in	a	slight	delay	in	commit	of
transactions	that	perform	updates.	When	the	rate	of	commits	is	low,	the	delay	may	not	be	worth	the
benefit,	but	with	high	rates	of	transaction	commit,	the	overall	delay	in	commit	is	actually	reduced	by
using	group	commit.

In	addition	to	optimizations	done	at	the	database,	programmers	can	also	take	some	steps	to	improve
transaction	commit	performance.	For	example,	consider	an	application	that	loads	data	into	a	database.	If
the	application	performs	each	insert	as	a	separate	transaction,	the	number	of	inserts	that	can	be
performed	per	second	is	limited	by	the	number	of	blocks	writes	that	can	be	performed	per	second.	If	the
application	waits	for	one	insert	to	finish	before	starting	the	next	one,	group	commit	does	not	offer	any
benefits	and	in	fact	may	slow	the	system	down.	However,	in	such	a	case,	performance	can	be	significantly
improved	by	performing	a	batch	of	inserts	as	a	single	transaction.	The	log	records	corresponding	to
multiple	inserts	are	then	written	together	in	one	page.	The	number	of	inserts	that	can	be	performed	per
second	then	increases	correspondingly.

926

Chapter	19

Recovery	System

19.5

Buffer	Management

In	this	section,	we	consider	several	subtle	details	that	are	essential	to	the	implementation	of	a	crash-
recovery	scheme	that	ensures	data	consistency	and	imposes	a	minimal	amount	of	overhead	on
interactions	with	the	database.

19.5.1

Log-Record	Buffering

So	far,	we	have	assumed	that	every	log	record	is	output	to	stable	storage	at	the	time	it	is	created.	This
assumption	imposes	a	high	overhead	on	system	execution	for	several	reasons:	Typically,	output	to	stable
storage	is	in	units	of	blocks.	In	most	cases,	a	log	record	is	much	smaller	than	a	block.	Thus,	the	output	of
each	log	record	translates	to	a	much	larger	output	at	the	physical	level.	Furthermore,	as	we	saw	in
Section	19.2.1,	the	output	of	a	block	to	stable	storage	may	involve	several	output	operations	at	the
physical	level.

The	cost	of	outputting	a	block	to	stable	storage	is	sufficiently	high	that	it	is	desirable	to	output	multiple
log	records	at	once.	To	do	so,	we	write	log	records	to	a	log	buffer	in	main	memory,	where	they	stay
temporarily	until	they	are	output	to	stable	storage.

Multiple	log	records	can	be	gathered	in	the	log	buffer	and	output	to	stable	storage	in	a	single	output
operation.	The	order	of	log	records	in	the	stable	storage	must	be	exactly	the	same	as	the	order	in	which
they	were	written	to	the	log	buffer.

As	a	result	of	log	buffering,	a	log	record	may	reside	in	only	main	memory	(volatile	storage)	for	a
considerable	time	before	it	is	output	to	stable	storage.	Since	such	log	records	are	lost	if	the	system
crashes,	we	must	impose	additional	requirements	on	the	recovery	techniques	to	ensure	transaction
atomicity:

•	Transaction	T	enters	the	commit	state	after	the

i

i	commit	>	log	record	has	been

output	to	stable	storage.

•	Before	the	commit	>	log	record	can	be	output	to	stable	storage,	all	log	records	pertaining	to	transaction
T	must	have	been	output	to	stable	storage.

i

•	Before	a	block	of	data	in	main	memory	can	be	output	to	the	database	(in	nonvolatile	storage),	all	log
records	pertaining	to	data	in	that	block	must	have	been	output	to	stable	storage.

This	rule	is	called	the	write-ahead	logging	(WAL)	rule.	(Strictly	speaking,	the	WAL	rule	requires	only	that
the	undo	information	in	the	log	has	been	output	to	stable	storage,	and	it	permits	the	redo	information	to
be	written	later.	The	difference	is	relevant	in	systems	where	undo	information	and	redo	information	are
stored	in	separate	log	records.)

The	three	rules	state	situations	in	which	certain	log	records	must	have	been	output	to	stable	storage.
There	is	no	problem	resulting	from	the	output	of	log	records	earlier	than	necessary.	Thus,	when	the
system	finds	it	necessary	to	output	a	log	record	to

19.5

Buffer	Management

927

stable	storage,	it	outputs	an	entire	block	of	log	records,	if	there	are	enough	log	records	in	main	memory
to	fill	a	block.	If	there	are	insufficient	log	records	to	fill	the	block,	all	log	records	in	main	memory	are
combined	into	a	partially	full	block	and	are	output	to	stable	storage.

Writing	the	buffered	log	to	disk	is	sometimes	referred	to	as	a	log	force.

19.5.2

Database	Buffering

In	Section	19.2.2,	we	described	the	use	of	a	two-level	storage	hierarchy.	The	system	stores	the	database	in
non-volatile	storage	(disk),	and	brings	blocks	of	data	into	main	memory	as	needed.	Since	main	memory	is
typically	much	smaller	than	the	entire	database,	it	may	be	necessary	to	overwrite	a	block	B	in	main
memory	when	another	1

block	B	needs	to	be	brought	into	memory.	If	B	has	been	modified,	B	must	be	output	2

1

1

prior	to	the	input	of	B	.	As	discussed	in	Section	13.5.1	this	storage	hierarchy	is	similar	2

to	the	standard	operating-system	concept	of	virtual	memory.

One	might	expect	that	transactions	would	force-output	all	modified	blocks	to	disk	when	they	commit.
Such	a	policy	is	called	the	force	policy.	The	alternative,	the	no-force	policy,	allows	a	transaction	to	commit
even	if	it	has	modified	some	blocks	that	have	not	yet	been	written	back	to	disk.	All	the	recovery
algorithms	described	in	this	chapter	work	correctly	even	with	the	no-force	policy.	The	no-force	policy
allows	faster	commit	of	transactions;	moreover	it	allows	multiple	updates	to	accumulate	on	a	block	before
it	is	output	to	stable	storage,	which	can	reduce	the	number	of	output	operations	greatly	for	frequently
updated	blocks.	As	a	result,	the	standard	approach	taken	by	most	systems	is	the	no-force	policy.

Similarly,	one	might	expect	that	blocks	modified	by	a	transaction	that	is	still	active	should	not	be	written
to	disk.	This	policy	is	called	the	no-steal	policy.	The	alternative,	the	steal	policy,	allows	the	system	to	write
modified	blocks	to	disk	even	if	the	transactions	that	made	those	modifications	have	not	all	committed.	As
long	as	the	write-ahead	logging	rule	is	followed,	all	the	recovery	algorithms	we	study	in	the	chapter	work
correctly	even	with	the	steal	policy.	Further,	the	no-steal	policy	does	not	work	with	transactions	that
perform	a	large	number	of	updates,	since	the	buffer	may	get	filled	with	updated	pages	that	cannot	be
evicted	to	disk,	and	the	transaction	cannot	then	proceed.

As	a	result,	the	standard	approach	taken	by	most	systems	is	the	steal	policy.

To	illustrate	the	need	for	the	write-ahead	logging	requirement,	consider	our	banking	example	with
transactions	T	and	T	.	Suppose	that	the	state	of	the	log	is:	0

1

0	start	>

,	A,	1000,	950	>

0

and	that	transaction	T	issues	a

0

read(B).	Assume	that	the	block	on	which	B	resides	is

not	in	main	memory	and	that	main	memory	is	full.	Suppose	that	the	block	on	which	A	resides	is	chosen	to
be	output	to	disk.	If	the	system	outputs	this	block	to	disk	and	then	a	crash	occurs,	the	values	in	the
database	for	accounts	A,	B,	and	C	are	$950,	$2000,	and

928

Chapter	19

Recovery	System

$700,	respectively.	This	database	state	is	inconsistent.	However,	because	of	the	WAL

requirements,	the	log	record:

,	A,	1000,	950	>

0

must	be	output	to	stable	storage	prior	to	output	of	the	block	on	which	A	resides.	The	system	can	use	the
log	record	during	recovery	to	bring	the	database	back	to	a	consistent	state.

When	a	block	B	is	to	be	output	to	disk,	all	log	records	pertaining	to	data	in	B

1

1

must	be	output	to	stable	storage	before	B	is	output.	It	is	important	that	no	writes	to	1

the	block	B	be	in	progress	while	the	block	is	being	output,	since	such	a	write	could	1

violate	the	write-ahead	logging	rule.	We	can	ensure	that	there	are	no	writes	in	progress	by	using	a	special
means	of	locking:

•	Before	a	transaction	performs	a	write	on	a	data	item,	it	acquires	an	exclusive	lock	on	the	block	in	which
the	data	item	resides.	The	lock	is	released	immediately	after	the	update	has	been	performed.

•	The	following	sequence	of	actions	is	taken	when	a	block	is	to	be	output:

°	Obtain	an	exclusive	lock	on	the	block,	to	ensure	that	no	transaction	is	performing	a	write	on	the	block.

°	Output	log	records	to	stable	storage	until	all	log	records	pertaining	to	block	B	1

have	been	output.

°	Output	block	B	to	disk.

1

°	Release	the	lock	once	the	block	output	has	completed.

Locks	on	buffer	blocks	are	unrelated	to	locks	used	for	concurrency	control	of	transactions,	and	releasing
them	in	a	non-two-phase	manner	does	not	have	any	implications	on	transaction	serializability.	These	locks,
and	other	similar	locks	that	are	held	for	a	short	duration,	are	often	referred	to	as	latches.

Locks	on	buffer	blocks	can	also	be	used	to	ensure	that	buffer	blocks	are	not	updated,	and	log	records	are
not	generated,	while	a	checkpoint	is	in	progress.	This	restriction	may	be	enforced	by	acquiring	exclusive
locks	on	all	buffer	blocks,	as	well	as	an	exclusive	lock	on	the	log,	before	the	checkpoint	operation	is
performed.	These	locks	can	be	released	as	soon	as	the	checkpoint	operation	has	completed.

Database	systems	usually	have	a	process	that	continually	cycles	through	the	buffer	blocks,	outputting
modified	buffer	blocks	back	to	disk.	The	above	locking	protocol	must	of	course	be	followed	when	the
blocks	are	output.	As	a	result	of	continuous	output	of	modified	blocks,	the	number	of	dirty	blocks	in	the
buffer,	that	is,	blocks	that	have	been	modified	in	the	buffer	but	have	not	been	subsequently	output,	is
minimized.	Thus,	the	number	of	blocks	that	have	to	be	output	during	a	checkpoint	is	minimized;	further,

19.5

Buffer	Management

929

when	a	block	needs	to	be	evicted	from	the	buffer,	it	is	likely	that	there	will	be	a	non-dirty	block	available
for	eviction,	allowing	the	input	to	proceed	immediately	instead	of	waiting	for	an	output	to	complete.

19.5.3

Operating	System	Role	in	Buffer	Management

We	can	manage	the	database	buffer	by	using	one	of	two	approaches:

1.	The	database	system	reserves	part	of	main	memory	to	serve	as	a	buffer	that	it,	rather	than	the
operating	system,	manages.	The	database	system	manages	data-block	transfer	in	accordance	with	the
requirements	in	Section	19.5.2.

This	approach	has	the	drawback	of	limiting	flexibility	in	the	use	of	main	memory.	The	buffer	must	be	kept
small	enough	that	other	applications	have	sufficient	main	memory	available	for	their	needs.	However,
even	when	the	other	applications	are	not	running,	the	database	will	not	be	able	to	make	use	of	all	the
available	memory.	Likewise,	non-database	applications	may	not	use	that	part	of	main	memory	reserved	for
the	database	buffer,	even	if	some	of	the	pages	in	the	database	buffer	are	not	being	used.

2.	The	database	system	implements	its	buffer	within	the	virtual	memory	provided	by	the	operating
system.	Since	the	operating	system	knows	about	the	memory	requirements	of	all	processes	in	the	system,
ideally	it	should	be	in	charge	of	deciding	what	buffer	blocks	must	be	force-output	to	disk,	and	when.	But,
to	ensure	the	write-ahead	logging	requirements	in	Section	19.5.1,	the	operating	system	should	not	write
out	the	database	buffer	pages	itself,	but	instead	should	request	the	database	system	to	force-output	the
buffer	blocks.	The	database	system	in	turn	would	force-output	the	buffer	blocks	to	the	database,	after
writing	relevant	log	records	to	stable	storage.

Unfortunately,	almost	all	current-generation	operating	systems	retain	complete	control	of	virtual	memory.
The	operating	system	reserves	space	on	disk	for	storing	virtual-memory	pages	that	are	not	currently	in
main	memory;	this	space	is	called	swap	space.	If	the	operating	system	decides	to	output	a	block	B	,	that	x

block	is	output	to	the	swap	space	on	disk,	and	there	is	no	way	for	the	database	system	to	get	control	of
the	output	of	buffer	blocks.

Therefore,	if	the	database	buffer	is	in	virtual	memory,	transfers	between	database	files	and	the	buffer	in
virtual	memory	must	be	managed	by	the	database	system,	which	enforces	the	write-ahead	logging
requirements	that	we	discussed.

This	approach	may	result	in	extra	output	of	data	to	disk.	If	a	block	B	is	output	x

by	the	operating	system,	that	block	is	not	output	to	the	database.	Instead,	it	is	output	to	the	swap	space
for	the	operating	system’s	virtual	memory.	When	the	database	system	needs	to	output	B	,	the	operating
system	may	need	first	to	input	x

B	from	its	swap	space.	Thus,	instead	of	a	single	output	of	B	,	there	may	be	two	x

x

outputs	of	B	(one	by	the	operating	system,	and	one	by	the	database	system)	and	x

one	extra	input	of	B	.

x

930

Chapter	19

Recovery	System

Although	both	approaches	suffer	from	some	drawbacks,	one	or	the	other	must	be	chosen	unless	the
operating	system	is	designed	to	support	the	requirements	of	database	logging.

19.5.4

Fuzzy	Checkpointing

The	checkpointing	technique	described	in	Section	19.3.6	requires	that	all	updates	to	the	database	be
temporarily	suspended	while	the	checkpoint	is	in	progress.	If	the	number	of	pages	in	the	buffer	is	large,	a
checkpoint	may	take	a	long	time	to	finish,	which	can	result	in	an	unacceptable	interruption	in	processing
of	transactions.

To	avoid	such	interruptions,	the	checkpointing	technique	can	be	modified	to	permit	updates	to	start	once
the	checkpoint	record	has	been	written,	but	before	the	modified	buffer	blocks	are	written	to	disk.	The
checkpoint	thus	generated	is	a	fuzzy	checkpoint.

Since	pages	are	output	to	disk	only	after	the	checkpoint	record	has	been	written,	it	is	possible	that	the
system	could	crash	before	all	pages	are	written.	Thus,	a	checkpoint	on	disk	may	be	incomplete.	One	way
to	deal	with	incomplete	checkpoints	is	this:	The	location	in	the	log	of	the	checkpoint	record	of	the	last
completed	checkpoint	is	stored	in	a	fixed	position,	last-checkpoint,	on	disk.	The	system	does	not	update
this	information	when	it	writes	the	checkpoint	record.	Instead,	before	it	writes	the	checkpoint	record,	it
creates	a	list	of	all	modified	buffer	blocks.	The	last-checkpoint	information	is	updated	only	after	all	buffer
blocks	in	the	list	of	modified	buffer	blocks	have	been	output	to	disk.

Even	with	fuzzy	checkpointing,	a	buffer	block	must	not	be	updated	while	it	is	being	output	to	disk,
although	other	buffer	blocks	may	be	updated	concurrently.	The	write-ahead	log	protocol	must	be	followed
so	that	(undo)	log	records	pertaining	to	a	block	are	on	stable	storage	before	the	block	is	output.

19.6

Failure	with	Loss	of	Non-Volatile	Storage

Until	now,	we	have	considered	only	the	case	where	a	failure	results	in	the	loss	of	information	residing	in
volatile	storage	while	the	content	of	the	non-volatile	storage	remains	intact.	Although	failures	in	which	the
content	of	non-volatile	storage	is	lost	are	rare,	we	nevertheless	need	to	be	prepared	to	deal	with	this	type
of	failure.	In	this	section,	we	discuss	only	disk	storage.	Our	discussions	apply	as	well	to	other	non-volatile
storage	types.

The	basic	scheme	is	to	dump	the	entire	contents	of	the	database	to	stable	storage	periodically	—	say,	once
per	day.	For	example,	we	may	dump	the	database	to	one	or	more	magnetic	tapes.	If	a	failure	occurs	that
results	in	the	loss	of	physical	database	blocks,	the	system	uses	the	most	recent	dump	in	restoring	the
database	to	a	previous	consistent	state.	Once	this	restoration	has	been	accomplished,	the	system	uses	the
log	to	bring	the	database	system	to	the	most	recent	consistent	state.

One	approach	to	database	dumping	requires	that	no	transaction	may	be	active	during	the	dump
procedure,	and	it	uses	a	procedure	similar	to	checkpointing:

19.7

High	Availability	Using	Remote	Backup	Systems

931

1.	Output	all	log	records	currently	residing	in	main	memory	onto	stable	storage.

2.	Output	all	buffer	blocks	onto	the	disk.

3.	Copy	the	contents	of	the	database	to	stable	storage.

4.	Output	a	log	record	<	dump	>	onto	the	stable	storage.

Steps	1,	2,	and	4	correspond	to	the	three	steps	used	for	checkpoints	in	Section	19.3.6.

To	recover	from	the	loss	of	non-volatile	storage,	the	system	restores	the	database	to	disk	by	using	the
most	recent	dump.	Then,	it	consults	the	log	and	redoes	all	the	actions	since	the	most	recent	dump
occurred.	Notice	that	no	undo	operations	need	to	be	executed.

In	case	of	a	partial	failure	of	non-volatile	storage,	such	as	the	failure	of	a	single	block	or	a	few	blocks,	only
those	blocks	need	to	be	restored,	and	redo	actions	performed	only	for	those	blocks.

A	dump	of	the	database	contents	is	also	referred	to	as	an	archival	dump,	since	we	can	archive	the	dumps
and	use	them	later	to	examine	old	states	of	the	database.	Dumps	of	a	database	and	checkpointing	of

buffers	are	similar.

Most	database	systems	also	support	an	SQL	dump,	which	writes	out	SQL	DDL

statements	and	SQL	insert	statements	to	a	file,	which	can	then	be	reexecuted	to	re-create	the	database.
Such	dumps	are	useful	when	migrating	data	to	a	different	instance	of	the	database,	or	to	a	different
version	of	the	database	software,	since	the	physical	locations	and	layout	may	be	different	in	the	other
database	instance	or	database	software	version.

The	simple	dump	procedure	described	here	is	costly	for	the	following	two	reasons.

First,	the	entire	database	must	be	copied	to	stable	storage,	resulting	in	considerable	data	transfer.
Second,	since	transaction	processing	is	halted	during	the	dump	procedure,	CPU	cycles	are	wasted.	Fuzzy
dump	schemes	have	been	developed	that	allow	transactions	to	be	active	while	the	dump	is	in	progress.
They	are	similar	to	fuzzy-checkpointing	schemes;	see	the	bibliographical	notes	for	more	details.

19.7

High	Availability	Using	Remote	Backup	Systems

Traditional	transaction-processing	systems	are	centralized	or	client–server	systems.

Such	systems	are	vulnerable	to	environmental	disasters	such	as	fire,	flooding,	or	earthquakes.	Today’s
applications	need	transaction-processing	systems	that	can	function	in	spite	of	system	failures	or
environmental	disasters.	Such	systems	must	provide	high	availability;	that	is,	the	time	for	which	the
system	is	unusable	must	be	extremely	short.

We	can	achieve	high	availability	by	performing	transaction	processing	at	one	site,	called	the	primary	site,
and	having	a	remote	backup	site	where	all	the	data	from	the	primary	site	are	replicated.	The	remote
backup	site	is	sometimes	also	called	the	secondary	site.	The	remote	site	must	be	kept	synchronized	with
the	primary	site	as	updates	are	performed	at	the	primary.	We	achieve	synchronization	by	sending	all	log
records	from	the	primary	site	to	the	remote	backup	site.	The	remote	backup	site	must	be	physically

932

Chapter	19

Recovery	System

primary

network

backup

log

records

Figure	19.6	Architecture	of	remote	backup	system.

separated	from	the	primary—for	example,	we	can	locate	it	in	a	different	state—so	that	a	disaster	such	as	a
fire,	flood	or	an	earthquake	at	the	primary	does	not	also	damage	the	remote	backup	site.3	Figure	19.6
shows	the	architecture	of	a	remote	backup	system.

When	the	primary	site	fails,	the	remote	backup	site	takes	over	processing.	First,	however,	it	performs
recovery,	using	its	(perhaps	outdated)	copy	of	the	data	from	the	primary	and	the	log	records	received
from	the	primary.	In	effect,	the	remote	backup	site	is	performing	recovery	actions	that	would	have	been
performed	at	the	primary	site	when	the	latter	recovered.	Standard	recovery	algorithms,	with	minor
modifications,	can	be	used	for	recovery	at	the	remote	backup	site.	Once	recovery	has	been	performed,	the
remote	backup	site	starts	processing	transactions.

Availability	is	greatly	increased	over	a	single-site	system,	since	the	system	can	recover	even	if	all	data	at
the	primary	site	are	lost.

Several	issues	must	be	addressed	in	designing	a	remote	backup	system:

•	Detection	of	failure.	It	is	important	for	the	remote	backup	system	to	detect	when	the	primary	has	failed.
Failure	of	communication	lines	can	fool	the	remote	backup	into	believing	that	the	primary	has	failed.	To
avoid	this	problem,	we	maintain	several	communication	links	with	independent	modes	of	failure	between
the	primary	and	the	remote	backup.	For	example,	several	independent	network	connections,	including

perhaps	a	modem	connection	over	a	telephone	line,	may	be	used.	These	connections	may	be	backed	up
via	manual	intervention	by	operators,	who	can	communicate	over	the	telephone	system.

•	Transfer	of	control.	When	the	primary	fails,	the	backup	site	takes	over	processing	and	becomes	the	new
primary.	The	decision	to	transfer	control	can	be	done	manually	or	can	be	automated	using	software
provided	by	database	system	vendors.

Queries	must	now	be	sent	to	the	new	primary.	To	do	so	automatically,	many	systems	assign	the	IP	address
of	the	old	primary	to	the	new	primary.	Existing	database	connections	will	fail,	but	when	an	application
tries	to	reopen	a	connection	it	gets	connected	to	the	new	primary.	Some	systems	instead	use	a	high
availability	proxy	3Since	earthquakes	can	cause	damage	over	a	wide	area,	the	backup	is	generally
required	to	be	in	a	different	seismic	zone.

19.7

High	Availability	Using	Remote	Backup	Systems

933

machine.	Application	clients	do	not	connect	to	the	database	directly,	but	connect	through	the	proxy.	The
proxy	transparently	routes	application	requests	to	the	current	primary.	(There	can	be	more	than	one
machine	acting	as	proxy	at	the	same	time,	to	deal	with	a	situation	where	a	proxy	machine	fails;	requests
can	be	routed	through	any	active	proxy	machine.)

When	the	original	primary	site	recovers,	it	can	either	play	the	role	of	remote	backup	or	it	can	take	over
the	role	of	primary	site	again.	In	either	case,	the	old	primary	must	receive	a	log	of	updates	carried	out	by
the	backup	site	while	the	old	primary	was	down.	The	old	primary	must	catch	up	with	the	updates	in	the
log	by	applying	them	locally.	The	old	primary	can	then	act	as	a	remote	backup	site.	If	control	must	be
transferred	back,	the	new	primary	(which	is	the	old	backup	site)	can	pretend	to	have	failed,	resulting	in
the	old	primary	taking	over.

•	Time	to	recover.	If	the	log	at	the	remote	backup	grows	large,	recovery	will	take	a	long	time.	The	remote
backup	site	can	periodically	process	the	redo	log	records	that	it	has	received	and	can	perform	a
checkpoint	so	that	earlier	parts	of	the	log	can	be	deleted.	The	delay	before	the	remote	backup	takes	over
can	be	significantly	reduced	as	a	result.

A	hot-spare	configuration	can	make	takeover	by	the	backup	site	almost	instantaneous.	In	this
configuration,	the	remote	backup	site	continually	processes	redo	log	records	as	they	arrive,	applying	the
updates	locally.	As	soon	as	the	failure	of	the	primary	is	detected,	the	backup	site	completes	recovery	by
rolling	back	incomplete	transactions;	it	is	then	ready	to	process	new	transactions.

•	Time	to	commit.	To	ensure	that	the	updates	of	a	committed	transaction	are	durable,	a	transaction	must
not	be	declared	committed	until	its	log	records	have	reached	the	backup	site.	This	delay	can	result	in	a
longer	wait	to	commit	a	transaction,	and	some	systems	therefore	permit	lower	degrees	of	durability.	The
degrees	of	durability	can	be	classified	as	follows:

°	One-safe.	A	transaction	commits	as	soon	as	its	commit	log	record	is	written	to	stable	storage	at	the
primary	site.

The	problem	with	this	scheme	is	that	the	updates	of	a	committed	transaction	may	not	have	made	it	to	the
backup	site	when	the	backup	site	takes	over	processing.	Thus,	the	updates	may	appear	to	be	lost.	When
the	primary	site	recovers,	the	lost	updates	cannot	be	merged	in	directly,	since	the	updates	may	conflict
with	later	updates	performed	at	the	backup	site.	Thus,	human	intervention	may	be	required	to	bring	the
database	to	a	consistent	state.

°	Two-very-safe.	A	transaction	commits	as	soon	as	its	commit	log	record	is	written	to	stable	storage	at	the
primary	and	the	backup	site.

The	problem	with	this	scheme	is	that	transaction	processing	cannot	proceed	if	either	the	primary	or	the
backup	site	is	down.	Thus,	availability	is	actually	less	than	in	the	single-site	case,	although	the	probability
of	data	loss	is	much	less.

934

Chapter	19

Recovery	System

°	Two-safe.	This	scheme	is	the	same	as	two-very-safe	if	both	primary	and	backup	sites	are	active.	If	only
the	primary	is	active,	the	transaction	is	allowed	to	commit	as	soon	as	its	commit	log	record	is	written	to
stable	storage	at	the	primary	site.

This	scheme	provides	better	availability	than	does	two-very-safe,	while	avoiding	the	problem	of	lost
transactions	faced	by	the	one-safe	scheme.	It	results	in	a	slower	commit	than	the	one-safe	scheme,	but	the
benefits	generally	outweigh	the	cost.

Most	database	systems	today	provide	support	for	replication	to	a	backup	copy,	along	with	support	for	hot
spares	and	quick	switchover	from	the	primary	to	the	backup.

Many	database	systems	also	allow	replication	to	more	than	one	backup;	such	a	feature	can	be	used	to
provide	a	local	backup	to	deal	with	machine	failures,	along	with	a	remote	backup	to	deal	with	disasters.

Although	update	transactions	cannot	be	executed	at	a	backup	server,	many	database	systems	allow	read-
only	queries	to	be	executed	at	backup	servers.	The	load	at	the	primary	can	be	reduced	by	executing	at
least	some	of	the	read-only	transactions	at	the	backup.	Snapshot-isolation	can	be	used	at	the	backup
server	to	give	readers	a	transaction	consistent	view	of	the	data,	while	ensuring	that	updates	are	never
blocked	from	being	applied	at	the	backup.

Remote	backup	is	also	supported	at	the	level	of	file	systems,	typically	by	network	file	system	or	NAS
implementations,	as	well	as	at	the	disk	level,	typically	by	storage	area	network	(SAN)	implementations.
Remote	backups	are	kept	synchronized	with	the	primary	by	ensuring	that	all	block	writes	performed	at
the	primary	are	also	replicated	at	the	backup.	File-system	level	and	disk	level	backups	can	be	used	to
replicate	the	database	data	as	well	as	log	files.	If	the	primary	fails,	the	backup	system	can	recover	using
its	replica	of	the	data	and	log	files.	However,	to	ensure	that	recovery	will	work	correctly	at	the	backup
site,	the	file	system	level	replication	must	be	done	in	a	way	that	ensures	that	the	write-ahead	logging
(WAL)	rule	continues	to	hold.	To	do	so,	if	the	database	forces	a	block	to	disk	and	then	performs	some
other	update	actions	at	the	primary,	the	block	must	also	be	forced	to	disk	at	the	backup,	before
subsequent	updates	are	performed	at	the	backup	system.

An	alternative	way	of	achieving	high	availability	is	to	use	a	distributed	database,	with	data	replicated	at
more	than	one	site.	Transactions	are	then	required	to	update	all	replicas	of	any	data	item	that	they
update.	We	study	distributed	databases,	including	replication,	in	Chapter	23.	When	properly	implemented,
distributed	databases	can	provide	a	higher	level	of	availability	than	remote	backup	systems,	but	are	more
complex	and	expensive	to	implement	and	maintain.

End-users	typically	interact	with	applications,	rather	than	directly	with	database.

To	ensure	availability	of	an	application,	as	well	as	to	support	handling	of	a	large	number	of	requests	per
second,	applications	may	run	on	multiple	application	servers.	Requests	from	clients	are	load-balanced
across	the	servers.	The	load-balancer	ensures	that	all	requests	from	a	particular	client	are	sent	to	a	single
application	server,	as	long	as	the

19.8

Early	Lock	Release	and	Logical	Undo	Operations

935

application	server	is	functional.	If	an	application	server	fails,	client	requests	are	routed	to	other
application	servers,	so	users	can	continue	to	use	the	application.	Although	users	may	notice	a	small
interruption,	application	servers	can	ensure	that	a	user	is	not	forced	to	login	again,	by	sharing	session
information	across	application	servers.

19.8

Early	Lock	Release	and	Logical	Undo	Operations

Any	index	used	in	processing	a	transaction,	such	as	a	B+-tree,	can	be	treated	as	normal	data,	but	to
increase	concurrency,	we	can	use	the	B+-tree	concurrency-control	algorithm	described	in	Section	18.10.2
to	allow	locks	to	be	released	early,	in	a	non-two-phase	manner.	As	a	result	of	early	lock	release,	it	is
possible	that	a	value	in	a	B+-tree	node	is	updated	by	one	transaction	T	,	which	inserts	an	entry	(V	1,	R	1),
and	subsequently	1

by	another	transaction	T	,	which	inserts	an	entry	(V	2,	R	2)	in	the	same	node,	moving	2

the	entry	(V	1,	R	1)	even	before	T	completes	execution.4	At	this	point,	we	cannot	undo	1

transaction	T	by	replacing	the	contents	of	the	node	with	the	old	value	prior	to	T	per-1

1

forming	its	insert,	since	that	would	also	undo	the	insert	performed	by	T	;	transaction	2

T	may	still	commit	(or	may	have	already	committed).	In	this	example,	the	only	way	to	2

undo	the	effect	of	insertion	of	(V	1,	R	1)	is	to	execute	a	corresponding	delete	operation.

In	the	rest	of	this	section,	we	see	how	to	extend	the	recovery	algorithm	of	Section	19.4	to	support	early
lock	release.

19.8.1

Logical	Operations

The	insertion	and	deletion	operations	are	examples	of	a	class	of	operations	that	require	logical	undo
operations	since	they	release	locks	early;	we	call	such	operations	logical	operations.	Such	early	lock
release	is	important	not	only	for	indices,	but	also	for	operations	on	other	system	data	structures	that	are
accessed	and	updated	very	frequently;	examples	include	data	structures	that	track	the	blocks	containing
records	of	a	relation,	the	free	space	in	a	block,	and	the	free	blocks	in	a	database.	If	locks	were	not
released	early	after	performing	operations	on	such	data	structures,	transactions	would	tend	to	run
serially,	affecting	system	performance.

The	theory	of	conflict	serializability	has	been	extended	to	operations,	based	on	what	operations	conflict
with	what	other	operations.	For	example,	two	insert	operations	on	a	B+-tree	do	not	conflict	if	they	insert
different	key	values,	even	if	they	both	update	overlapping	areas	of	the	same	index	page.	However,	insert
and	delete	operations	conflict	with	other	insert	and	delete	operations,	as	well	as	with	read	operations,	if
they	use	the	same	key	value.	See	the	bibliographical	notes	for	references	to	more	information	on	this
topic.

Operations	acquire	lower-level	locks	while	they	execute	but	release	them	when	they	complete;	the
corresponding	transaction	must	however	retain	a	higher-level	lock	in	a	4Recall	that	an	entry	consists	of	a
key	value	and	a	record	identifier,	or	a	key	value	and	a	record	in	the	case	of	the	leaf	level	of	a	B+-tree	file
organization.

936

Chapter	19

Recovery	System

two-phase	manner	to	prevent	concurrent	transactions	from	executing	conflicting	actions.	For	example,
while	an	insert	operation	is	being	performed	on	a	B+-tree	page,	a	short-term	lock	is	obtained	on	the	page,
allowing	entries	in	the	page	to	be	shifted	during	the	insert;	the	short-term	lock	is	released	as	soon	as	the
page	has	been	updated.

Such	early	lock	release	allows	a	second	insert	to	execute	on	the	same	page.	However,	each	transaction
must	obtain	a	lock	on	the	key	values	being	inserted	or	deleted	and	retain	it	in	a	two-phase	manner,	to
prevent	a	concurrent	transaction	from	executing	a	conflicting	read,	insert,	or	delete	operation	on	the
same	key	value.

Once	the	lower-level	lock	is	released,	the	operation	cannot	be	undone	by	using	the	old	values	of	updated
data	items	and	must	instead	be	undone	by	executing	a	compensating	operation;	such	an	operation	is
called	a	logical	undo	operation.	It	is	important	that	the	lower-level	locks	acquired	during	an	operation	are
sufficient	to	perform	a	subsequent	logical	undo	of	the	operation,	for	reasons	explained	later	in	Section
19.8.4.

19.8.2

Logical	Undo	Log	Records

To	allow	logical	undo	of	operations,	before	an	operation	is	performed	to	modify	an	index,	the	transaction
creates	a	log	record	,	O	,

is	a

i

j

operation-begin	>,	where	Oj

unique	identifier	for	the	operation	instance.5	While	the	system	is	executing	the	operation,	it	creates
update	log	records	in	the	normal	fashion	for	all	updates	performed	by	the	operation.	Thus,	the	usual	old-
value	and	new-value	information	is	written	out	as	usual	for	each	update	performed	by	the	operation;	the

old-value	information	is	required	in	case	the	transaction	needs	to	be	rolled	back	before	the	operation
completes.

When	the	operation	finishes,	it	writes	an	operation-end	log	record	of	the	form	,	O	,	i

j

operation-end,	U>,	where	the	U	denotes	undo	information.

For	example,	if	the	operation	inserted	an	entry	in	a	B+-tree,	the	undo	information	U	would	indicate	that	a
deletion	operation	is	to	be	performed	and	would	identify	the	B+-tree	and	what	entry	to	delete	from	the
tree.	Such	logging	of	information	about	operations	is	called	logical	logging.	In	contrast,	logging	of	old-
value	and	new-value	information	is	called	physical	logging,	and	the	corresponding	log	records	are	called
physical	log	records.

Note	that	in	the	above	scheme,	logical	logging	is	used	only	for	undo,	not	for	redo;	redo	operations	are
performed	exclusively	using	physical	log	record.	This	is	because	the	state	of	the	database	after	a	system
failure	may	reflect	some	updates	of	an	operation	and	not	other	operations,	depending	on	what	buffer
blocks	had	been	written	to	disk	before	the	failure.	Data	structures	such	as	B+-trees	would	not	be	in	a
consistent	state,	and	neither	logical	redo	nor	logical	undo	operations	can	be	performed	on	an	inconsistent
data	structure.	To	perform	logical	redo	or	undo,	the	database	state	on	disk	must	be	operation	consistent,
that	is,	it	should	not	have	partial	effects	of	any	operation.	However,	as	we	shall	see,	the	physical	redo
processing	in	the	redo	phase	of	the	recovery	scheme,	along	with	undo	processing	using	physical	log
records,	ensures	that	the	parts	of	the	5The	position	in	the	log	of	the	operation-begin	log	record	can	be
used	as	the	unique	identifier.

19.8

Early	Lock	Release	and	Logical	Undo	Operations

937

database	accessed	by	a	logical	undo	operation	are	in	an	operation	consistent	state	before	the	logical	undo
operation	is	performed.

An	operation	is	said	to	be	idempotent	if	executing	it	several	times	in	a	row	gives	the	same	result	as
executing	it	once.	Operations	such	as	inserting	an	entry	into	a	B+-tree	may	not	be	idempotent,	and	the
recovery	algorithm	must	therefore	make	sure	that	an	operation	that	has	already	been	performed	is	not
performed	again.	On	the	other	hand,	a	physical	log	record	is	idempotent,	since	the	corresponding	data
item	would	have	the	same	value	regardless	of	whether	the	logged	update	is	executed	one	or	multiple
times.

19.8.3

Transaction	Rollback	with	Logical	Undo

When	rolling	back	a	transaction	T	,	the	log	is	scanned	backwards,	and	log	records	i

corresponding	to	T	are	processed	as	follows:

i

1.	Physical	log	records	encountered	during	the	scan	are	handled	as	described	earlier,	except	those	that
are	skipped	as	described	shortly.	Incomplete	logical	operations	are	undone	using	the	physical	log	records
generated	by	the	operation.

2.	Completed	logical	operations,	identified	by	operation-end	records,	are	rolled	back	differently.	Whenever
the	system	finds	a	log	record	,	O	,	i

j	operation-end,

U	>,	it	takes	special	actions:

a.	It	rolls	back	the	operation	by	using	the	undo	information	U	in	the	log	record.	It	logs	the	updates
performed	during	the	rollback	of	the	operation	just	like	updates	performed	when	the	operation	was	first
executed.

At	the	end	of	the	operation	rollback,	instead	of	generating	a	log	record

,	O	,

i

j

operation-end,	U>,	the	database	system	generates	a	log	record

,	O	,

i

j	operation-abort	>.

b.	As	the	backward	scan	of	the	log	continues,	the	system	skips	all	log	records	of	transaction	T	until	it	finds
the	log	record	,	O	,	i

i

j

operation-begin	>.

After	it	finds	the	operation-begin	log	record,	it	processes	log	records	of	transaction	T	in	the	normal
manner	again.

i

Observe	that	the	system	logs	physical	undo	information	for	the	updates	performed	during	rollback,
instead	of	using	redo-only	compensation	log	records.

This	is	because	a	crash	may	occur	while	a	logical	undo	is	in	progress,	and	on	recovery	the	system	has	to
complete	the	logical	undo;	to	do	so,	restart	recovery	will	undo	the	partial	effects	of	the	earlier	undo,	using
the	physical	undo	information,	and	then	perform	the	logical	undo	again.

Observe	also	that	skipping	over	physical	log	records	when	the	operation-end	log	record	is	found	during
rollback	ensures	that	the	old	values	in	the	physical	log	record	are	not	used	for	rollback	once	the	operation
completes.

938

Chapter	19

Recovery	System

3.	If	the	system	finds	a	record	,	Oj,	operation-abort	>,	it	skips	all	preceding	records	(including	the
operation-end	record	for	Oj)	until	it	finds	the	record	,	Oj,	operation-begin	>.

An	operation-abort	log	record	would	be	found	only	if	a	transaction	that	is	being	rolled	back	had	been
partially	rolled	back	earlier.	Recall	that	logical	operations	may	not	be	idempotent,	and	hence	a	logical
undo	operation	must	not	be	performed	multiple	times.	These	preceding	log	records	must	be	skipped	to
prevent	multiple	rollback	of	the	same	operation	in	case	there	had	been	a	crash	during	an	earlier	rollback
and	the	transaction	had	already	been	partly	rolled	back.

4.	As	before,	when	the	start	>	log	record	has	been	found,	the	transaction	rollback	is	complete,	and	the
system	adds	a	record	abort	>	to	the	log.

If	a	failure	occurs	while	a	logical	operation	is	in	progress,	the	operation-end	log	record	for	the	operation
will	not	be	found	when	the	transaction	is	rolled	back.	However,	for	every	update	performed	by	the
operation,	undo	information—in	the	form	of	the	old	value	in	the	physical	log	records—is	available	in	the
log.	The	physical	log	records	will	be	used	to	roll	back	the	incomplete	operation.

Now	suppose	an	operation	undo	was	in	progress	when	the	system	crash	occurred,	which	could	happen	if	a
transaction	was	being	rolled	back	when	the	crash	occurred.

If	T0	aborts	before

operation	O1	ends,	undo	of

update	to	C	will	be	physical

Beginning	of	log

T0	has	completed	operation	O1

on	C,	releases	lower-level

lock;	physical	undo	cannot	be

done	anymore,	logical	undo

will	add	100	to	C

T1	can	update	C	since	T0	has

released	lower-level	lock	on	C

T

0

T1	releases	lower-level	lock

decides

on	C

to	abort

Logical	undo	of	O1	adds	100

0,	C,	400,	500>

on	C

O1	undo	complete

Figure	19.7	Transaction	rollback	with	logical	undo	operations.

19.8

Early	Lock	Release	and	Logical	Undo	Operations

939

Then	the	physical	log	records	written	during	operation	undo	would	be	found,	and	the	partial	operation
undo	would	itself	be	undone	using	these	physical	log	records.	Continuing	in	the	backward	scan	of	the	log,
the	original	operation’s	operation-end	record	would	then	be	found,	and	the	operation	undo	would	be
executed	again.	Rolling	back	the	partial	effects	of	the	earlier	undo	operation	using	the	physical	log
records	brings	the	database	to	a	consistent	state,	allowing	the	logical	undo	operation	to	be	executed
again.

Figure	19.7	shows	an	example	of	a	log	generated	by	two	transactions,	which	add	or	subtract	a	value	from
a	data	item.	Early	lock	release	on	the	data	item	C	by	transaction	T	after	operation	O	completes	allows
transaction	T	to	update	the	data	item	using	0

1

1

O	,	even	before	T	completes,	but	necessitates	logical	undo.	The	logical	undo	operation	2

0

needs	to	add	or	subtract	a	value	from	the	data	item	instead	of	restoring	an	old	value	to	the	data	item.

The	annotations	on	the	figure	indicate	that	before	an	operation	completes,	rollback	can	perform	physical
undo;	after	the	operation	completes	and	releases	lower-level	locks,	the	undo	must	be	performed	by
subtracting	or	adding	a	value,	instead	of	restoring	the	old	value.	In	the	example	in	the	figure,	T	rolls	back
operation	O	by	adding	100	to	C;	0

1

on	the	other	hand,	for	data	item	B,	which	was	not	subject	to	early	lock	release,	undo	is	performed
physically.	Observe	that	T	,	which	had	performed	an	update	on	C,	commits,	1

and	its	update	O	,	which	added	200	to	C	and	was	performed	before	the	undo	of	O	,	2

1

has	persisted	even	though	O	has	been	undone.

1

Figure	19.8	shows	an	example	of	recovery	from	a	crash	with	logical	undo	logging.

In	this	example,	operation	T	was	active	and	executing	operation	O	at	the	time	of	1

4

checkpoint.	In	the	redo	pass,	the	actions	of	O	that	are	after	the	checkpoint	log	record	4

are	redone.	At	the	time	of	crash,	operation	O	was	being	executed	by	T	,	but	the	oper-5

2

ation	was	not	complete.	The	undo-list	contains	T	and	T	at	the	end	of	the	redo	pass.

1

2

During	the	undo	pass,	the	undo	of	operation	O	is	carried	out	using	the	old	value	in	5

the	physical	log	record,	setting	C	to	400;	this	operation	is	logged	using	a	redo-only	log	record.	The	start
record	of	T	is	encountered	next,	resulting	in	the	addition	of

2

2

abort	>	to	the	log	and	removal	of	T	from	undo-list.

2

The	next	log	record	encountered	is	the	operation-end	record	of	O	;	logical	undo	4

is	performed	for	this	operation	by	adding	300	to	C,	which	is	logged	physically,	and	an	operation-abort	log
record	is	added	for	O	.	The	physical	log	records	that	were	4

part	of	O	are	skipped	until	the

is	encountered.

4

operation-begin	log	record	for	O	4

In	this	example,	there	are	no	other	intervening	log	records,	but	in	general	log	records	from	other
transactions	may	be	found	before	we	reach	the	operation-begin	log	record;	such	log	records	should	of
course	not	be	skipped	(unless	they	are	part	of	a	completed	operation	for	the	corresponding	transaction
and	the	algorithm	skips	those	records).

After	the	operation-begin	log	record	is	found	for	O	,	a	physical	log	record	is	found	4

for	T	,	which	is	rolled	back	physically.	Finally	the

is	found;	this

1

start	log	record	for	T	1

results	in	<	T

being	deleted	from	undo-list.	At

1	abort	>	being	added	to	the	log	and	T	1

this	point	undo-list	is	empty,	and	the	undo	phase	is	complete.

940

Chapter	19

Recovery	System

Start	log	records

Beginning	of	log

found	for	all

<	T0	start>

transactions	in

<	T

undo	list

0,	B,	2000,	2050>

<	T0	commit>

<	T1	start>

<	T1,	B,	2050,	2100>

<	T1,	O	4,	operation-begin>

T1}>

Redo	Pass

<	T1,	C,	700,	400>

<	T1,	O	4,	operation-end	(C,	+300)>

<	T2	start>

End	of

<	T2,	O	5,	operation-begin>

log	at

<	T

crash!

2,	C,	400,	300>

Undo	list:	T1,	T2	Undo	Pass

<	T2,	C,	400>

Update	of	C	was	part	of	O	5,	undone

<	T2	abort>

Records

physically	during	recovery	since

<	T1,	C,	400,	700>

O

added

5	did	not	complete

<	T

during

1,	O	4,	operation-abort>

recovery

<	T1,	B,	2050>

Logical	undo	of	O	4	adds	300	to	C

<	T1	abort>

Figure	19.8	Failure	recovery	actions	with	logical	undo	operations.

19.8.4

Concurrency	Issues	in	Logical	Undo

As	mentioned	earlier,	it	is	important	that	the	lower-level	locks	acquired	during	an	operation	are	sufficient
to	perform	a	subsequent	logical	undo	of	the	operation;	otherwise	concurrent	operations	that	execute
during	normal	processing	may	cause	problems	in	the	undo	phase.	For	example,	suppose	the	logical	undo
of	operation	O	of	transaction	1

T	can	conflict	at	the	data	item	level	with	a	concurrent	operation	O	of	transaction	T	,	1

2

2

and	O	completes	while	O	does	not.	Assume	also	that	neither	transaction	had	commit-1

2

ted	when	the	system	crashed.	The	physical	update	log	records	of	O	may	appear	before	2

and	after	the	operation-end	record	for	O	,	and	during	recovery	updates	done	during	1

the	logical	undo	of	O	may	get	fully	or	partially	overwritten	by	old	values	during	the	1

physical	undo	of	O	.	This	problem	cannot	occur	if	O	had	obtained	all	the	lower-level	2

1

locks	required	for	the	logical	undo	of	O	,	since	then	there	cannot	be	such	a	concurrent	1

O	.

2

If	both	the	original	operation	and	its	logical	undo	operation	access	a	single	page	(such	operations	are
called	physiological	operations	and	are	discussed	in	Section	19.9),	the	locking	requirement	above	is	met
easily.	Otherwise	the	details	of	the	specific	operation	need	to	be	considered	when	deciding	on	what	lower-
level	locks	need	to	be	obtained.

For	example,	update	operations	on	a	B+-tree	could	obtain	a	short-term	lock	on	the	root,

19.9

ARIES

941

to	ensure	that	operations	execute	serially.	See	the	bibliographical	notes	for	references	on	B+-tree
concurrency	control	and	recovery	exploiting	logical	undo	logging.	See	the	bibliographical	notes	also	for
references	to	an	alternative	approach,	called	multilevel	recovery,	which	relaxes	this	locking	requirement.

19.9

ARIES

The	state	of	the	art	in	recovery	methods	is	best	illustrated	by	the	ARIES	recovery	method.	The	recovery
technique	that	we	described	in	Section	19.4,	along	with	the	logical	undo	logging	techniques	described	in
Section	19.8,	are	modeled	after	ARIES,	but	they	have	been	simplified	significantly	to	bring	out	key
concepts	and	make	them	easier	to	understand.	In	contrast,	ARIES	uses	a	number	of	techniques	to	reduce
the	time	taken	for	recovery	and	to	reduce	the	overhead	of	checkpointing.	In	particular,	ARIES	is	able	to
avoid	redoing	many	logged	operations	that	have	already	been	applied	and	to	reduce	the	amount	of
information	logged.	The	price	paid	is	greater	complexity;	the	benefits	are	worth	the	price.

The	four	major	differences	between	ARIES	and	the	recovery	algorithm	presented	earlier	are	that	ARIES:

1.	Uses	a	log	sequence	number	(LSN)	to	identify	log	records	and	stores	LSNs	in	database	pages	to
identify	which	operations	have	been	applied	to	a	database	page.

2.	Supports	physiological	redo	operations,	which	are	physical	in	that	the	affected	page	is	physically
identified	but	can	be	logical	within	the	page.

For	instance,	the	deletion	of	a	record	from	a	page	may	result	in	many	other	records	in	the	page	being
shifted,	if	a	slotted	page	structure	(Section	13.2.2)	is	used.	With	physical	redo	logging,	all	bytes	of	the
page	affected	by	the	shifting	of	records	must	be	logged.	With	physiological	logging,	the	deletion	operation
can	be	logged,	resulting	in	a	much	smaller	log	record.	Redo	of	the	deletion	operation	would	delete	the
record	and	shift	other	records	as	required.

3.	Uses	a	dirty	page	table	to	minimize	unnecessary	redos	during	recovery.	As	mentioned	earlier,	dirty
pages	are	those	that	have	been	updated	in	memory,	and	the	disk	version	is	not	up-to-date.

4.	Uses	a	fuzzy-checkpointing	scheme	that	records	only	information	about	dirty	pages	and	associated
information	and	does	not	even	require	writing	of	dirty	pages	to	disk.	It	flushes	dirty	pages	in	the
background,	continuously,	instead	of	writing	them	during	checkpoints.

In	the	rest	of	this	section,	we	provide	an	overview	of	ARIES.	The	bibliographical	notes	list	some
references	that	provide	a	complete	description	of	ARIES.

942

Chapter	19

Recovery	System

19.9.1

Data	Structures

Each	log	record	in	ARIES	has	a	log	sequence	number	(LSN)	that	uniquely	identifies	the	record.	The
number	is	conceptually	just	a	logical	identifier	whose	value	is	greater	for	log	records	that	occur	later	in
the	log.	In	practice,	the	LSN	is	generated	in	such	a	way	that	it	can	also	be	used	to	locate	the	log	record	on
disk.	Typically,	ARIES	splits	a	log	into	multiple	log	files,	each	of	which	has	a	file	number.	When	a	log	file
grows	to	some	limit,	ARIES	appends	further	log	records	to	a	new	log	file;	the	new	log	file	has	a	file
number	that	is	higher	by	1	than	the	previous	log	file.	The	LSN	then	consists	of	a	file	number	and	an	offset
within	the	file.

Each	page	also	maintains	an	identifier	called	the	PageLSN.	Whenever	an	update	operation	(whether
physical	or	physiological)	occurs	on	a	page,	the	operation	stores	the	LSN	of	its	log	record	in	the	PageLSN
field	of	the	page.	During	the	redo	phase	of	recovery,	any	log	records	with	LSN	less	than	or	equal	to	the
PageLSN	of	a	page	should	not	be	executed	on	the	page,	since	their	actions	are	already	reflected	on	the
page.	In	combination	with	a	scheme	for	recording	PageLSNs	as	part	of	checkpointing,	which	we	present
later,	ARIES	can	avoid	even	reading	many	pages	for	which	logged	operations	are	already	reflected	on
disk.	Thereby,	recovery	time	is	reduced	significantly.

The	PageLSN	is	essential	for	ensuring	idempotence	in	the	presence	of	physiological	redo	operations,	since
reapplying	a	physiological	redo	that	has	already	been	applied	to	a	page	could	cause	incorrect	changes	to
a	page.

Pages	should	not	be	flushed	to	disk	while	an	update	is	in	progress,	since	physiological	operations	cannot
be	redone	on	the	partially	updated	state	of	the	page	on	disk.

Therefore,	ARIES	uses	latches	on	buffer	pages	to	prevent	them	from	being	written	to	disk	while	they	are
being	updated.	It	releases	the	buffer	page	latch	only	after	the	update	is	completed	and	the	log	record	for
the	update	has	been	written	to	the	log.

Each	log	record	also	contains	the	LSN	of	the	previous	log	record	of	the	same	transaction.	This	value,
stored	in	the	PrevLSN	field,	permits	log	records	of	a	transaction	to	be	fetched	backward,	without	reading
the	whole	log.	There	are	special	redo-only	log	records	generated	during	transaction	rollback,	called
compensation	log	records	(CLRs)	in	ARIES.	These	serve	the	same	purpose	as	the	redo-only	log	records	in
our	earlier	recovery	scheme.	In	addition,	CLRs	serve	the	role	of	the	operation-abort	log	records	in	our
scheme.	The	CLRs	have	an	extra	field,	called	the	UndoNextLSN,	that	records	the	LSN	of	the	log	that
needs	to	be	undone	next,	when	the	transaction	is	being	rolled	back.

This	field	serves	the	same	purpose	as	the	operation	identifier	in	the	operation-abort	log	record	in	our
earlier	recovery	scheme,	which	helps	to	skip	over	log	records	that	have	already	been	rolled	back.

The	DirtyPageTable	contains	a	list	of	pages	that	have	been	updated	in	the	database	buffer.	For	each	page,
it	stores	the	PageLSN	and	a	field	called	the	RecLSN,	which	helps	identify	log	records	that	have	been
applied	already	to	the	version	of	the	page	on	disk.

When	a	page	is	inserted	into	the	DirtyPageTable	(when	it	is	first	modified	in	the	buffer	pool),	the	value	of
RecLSN	is	set	to	the	current	end	of	log.	Whenever	the	page	is	flushed	to	disk,	the	page	is	removed	from
the	DirtyPageTable.

19.9

ARIES

943

A	checkpoint	log	record	contains	the	DirtyPageTable	and	a	list	of	active	transactions.	For	each
transaction,	the	checkpoint	log	record	also	notes	LastLSN,	the	LSN	of	the	last	log	record	written	by	the
transaction.	A	fixed	position	on	disk	also	notes	the	LSN	of	the	last	(complete)	checkpoint	log	record.

Figure	19.9	illustrates	some	of	the	data	structures	used	in	ARIES.	The	log	records	shown	in	the	figure	are
prefixed	by	their	LSN;	these	may	not	be	explicitly	stored,	but	inferred	from	the	position	in	the	log,	in	an
actual	implementation.	The	data	item	identifier	in	a	log	record	is	shown	in	two	parts,	for	example,	4894.1;
the	first	identifies	the	page,	and	the	second	part	identifies	a	record	within	the	page	(we	assume	a	slotted
page	record	organization	within	a	page).	Note	that	the	log	is	shown	with	the	newest	records	on	top,	since
older	log	records,	which	are	on	disk,	are	shown	lower	in	the	figure.

Each	page	(whether	in	the	buffer	or	on	disk)	has	an	associated	PageLSN	field.	You	can	verify	that	the	LSN
for	the	last	log	record	that	updated	page	4894	is	7567.	By	comparing	PageLSNs	for	the	pages	in	the
buffer	with	the	PageLSNs	for	the	corresponding	pages	in	stable	storage,	you	can	observe	that	the
DirtyPageTable	contains	entries	for	all	pages	in	the	buffer	that	have	been	modified	since	they	were
fetched	from	stable	storage.	The	RecLSN	entry	in	the	DirtyPageTable	reflects	the	LSN	at	the	end	of	the
log	PageID	PageLSN	RecLSN

7567

2345

4894

7567

7564

7200

7565

7565

Page	4894

Page	9923

Dirty	Page	Table

7565

7567:

7566:

Page	7200

143,	commit>

Database	Buffer

Log	Buffer

(PrevLSN	and	UndoNextLSN

fields	not	shown)

Stable	data

Stable	log

4566

4404

7565:

7564:

Page	4894

Page	7200

7563:

2345

Page	9923

Figure	19.9	Data	structures	used	in	ARIES.

944

Chapter	19

Recovery	System

when	the	page	was	added	to	DirtyPageTable	and	would	be	greater	than	or	equal	to	the	PageLSN	for	that
page	on	stable	storage.

19.9.2

Recovery	Algorithm

ARIES	recovers	from	a	system	crash	in	three	passes.

•	Analysis	pass:	This	pass	determines	which	transactions	to	undo,	which	pages	were	dirty	at	the	time	of
the	crash,	and	the	LSN	from	which	the	redo	pass	should	start.

•	Redo	pass:	This	pass	starts	from	a	position	determined	during	analysis	and	performs	a	redo,	repeating
history,	to	bring	the	database	to	a	state	it	was	in	before	the	crash.

•	Undo	pass:	This	pass	rolls	back	all	transactions	that	were	incomplete	at	the	time	of	crash.

19.9.2.1

Analysis	Pass

The	analysis	pass	finds	the	last	complete	checkpoint	log	record	and	reads	in	the	DirtyPageTable	from	this
record.	It	then	sets	RedoLSN	to	the	minimum	of	the	RecLSNs	of	the	pages	in	the	DirtyPageTable.	If	there
are	no	dirty	pages,	it	sets	RedoLSN	to	the	LSN

of	the	checkpoint	log	record.	The	redo	pass	starts	its	scan	of	the	log	from	RedoLSN.	All	the	log	records
earlier	than	this	point	have	already	been	applied	to	the	database	pages	on	disk.	The	analysis	pass	initially
sets	the	list	of	transactions	to	be	undone,	undo-list,	to	the	list	of	transactions	in	the	checkpoint	log	record.
The	analysis	pass	also	reads	from	the	checkpoint	log	record	the	LSNs	of	the	last	log	record	for	each
transaction	in	undo-list.

The	analysis	pass	continues	scanning	forward	from	the	checkpoint.	Whenever	it	finds	a	log	record	for	a
transaction	not	in	the	undo-list,	it	adds	the	transaction	to	undo-list.	Whenever	it	finds	a	transaction	end
log	record,	it	deletes	the	transaction	from	undo-list.	All	transactions	left	in	undo-list	at	the	end	of	analysis
have	to	be	rolled	back	later,	in	the	undo	pass.	The	analysis	pass	also	keeps	track	of	the	last	record	of	each
transaction	in	undo-list,	which	is	used	in	the	undo	pass.

The	analysis	pass	also	updates	DirtyPageTable	whenever	it	finds	a	log	record	for	an	update	on	a	page.	If
the	page	is	not	in	DirtyPageTable,	the	analysis	pass	adds	it	to	DirtyPageTable	and	sets	the	RecLSN	of	the
page	to	the	LSN	of	the	log	record.

19.9.2.2

Redo	Pass

The	redo	pass	repeats	history	by	replaying	every	action	that	is	not	already	reflected	in	the	page	on	disk.
The	redo	pass	scans	the	log	forward	from	RedoLSN.	Whenever	it	finds	an	update	log	record,	it	takes	this
action:

19.9

ARIES

945

•	If	the	page	is	not	in	DirtyPageTable	or	if	the	LSN	of	the	update	log	record	is	less	than	the	RecLSN	of	the
page	in	DirtyPageTable,	then	the	redo	pass	skips	the	log	record.

•	Otherwise	the	redo	pass	fetches	the	page	from	disk,	and	if	the	PageLSN	is	less	than	the	LSN	of	the	log
record,	it	redoes	the	log	record.

Note	that	if	either	of	the	tests	is	negative,	then	the	effects	of	the	log	record	have	already	appeared	on	the
page;	otherwise	the	effects	of	the	log	record	are	not	reflected	on	the	page.	Since	ARIES	allows	non-
idempotent	physiological	log	records,	a	log	record	should	not	be	redone	if	its	effect	is	already	reflected	on
the	page.	If	the	first	test	is	negative,	it	is	not	even	necessary	to	fetch	the	page	from	disk	to	check	its
PageLSN.

19.9.2.3

Undo	Pass	and	Transaction	Rollback

The	undo	pass	is	relatively	straightforward.	It	performs	a	single	backward	scan	of	the	log,	undoing	all
transactions	in	undo-list.	The	undo	pass	examines	only	log	records	of	transactions	in	undo-list;	the	last
LSN	recorded	during	the	analysis	pass	is	used	to	find	the	last	log	record	for	each	transaction	in	undo-list.

Whenever	an	update	log	record	is	found,	it	is	used	to	perform	an	undo	(whether	for	transaction	rollback
during	normal	processing,	or	during	the	restart	undo	pass).

The	undo	pass	generates	a	CLR	containing	the	undo	action	performed	(which	must	be	physiological).	It
sets	the	UndoNextLSN	of	the	CLR	to	the	PrevLSN	value	of	the	update	log	record.

If	a	CLR	is	found,	its	UndoNextLSN	value	indicates	the	LSN	of	the	next	log	record	to	be	undone	for	that
transaction;	later	log	records	for	that	transaction	have	already	been	rolled	back.	For	log	records	other
than	CLRs,	the	PrevLSN	field	of	the	log	record	indicates	the	LSN	of	the	next	log	record	to	be	undone	for
that	transaction.	The	next	log	record	to	be	processed	at	each	stop	in	the	undo	pass	is	the	maximum,
across	all	transactions	in	undo-list,	of	next	log	record	LSN.

Figure	19.10	illustrates	the	recovery	actions	performed	by	ARIES	on	an	example	log.	We	assume	that	the
last	completed	checkpoint	pointer	on	disk	points	to	the	checkpoint	log	record	with	LSN	7568.	The
PrevLSN	values	in	the	log	records	are	shown	using	arrows	in	the	figure,	while	the	UndoNextLSN	value	is
shown	using	a	dashed	arrow	for	the	one	compensation	log	record,	with	LSN	7565,	in	the	figure.	The
analysis	pass	would	start	from	LSN	7568,	and	when	it	is	complete,	RedoLSN	would	be	7564.	Thus,	the
redo	pass	must	start	at	the	log	record	with	LSN	7564.	Note	that	this	LSN	is	less	than	the	LSN	of	the
checkpoint	log	record,	since	the	ARIES	checkpointing	algorithm	does	not	flush	modified	pages	to	stable
storage.	The	DirtyPageTable	at	the	end	of	analysis	would	include	pages	4894,	7200	from	the	checkpoint
log	record,	and	2390	which	is	updated	by	the	log	record	with	LSN	7570.	At	the	end	of	the	analysis	pass,
the	list	of	transactions	to	be	undone	consists	of	only	T

in	this	example.

145

The	redo	pass	for	the	preceding	example	starts	from	LSN	7564	and	performs	redo	of	log	records	whose
pages	appear	in	DirtyPageTable.	The	undo	pass	needs	to	undo

946

Chapter	19

Recovery	System

newer

PrevLSN

End	of	log	at	crash

pointers

7571:

7570:

7569:

7568:	checkpoint

Txn

lastLSN

T145

7567

PageID	PageLSN	RecLSN

4894

7567

7564

Undo

7200

7565

7565

pass

Analysis

7567:

pass

7566:

CLR

7565:

7564:

Redo

pass

7563:

older

7562:

UndoNextLSN

143,	7200.2,	60,	80>

Figure	19.10	Recovery	actions	in	ARIES.

only	transaction	T

,	and	hence	it	starts	from	its	LastLSN	value	7567	and	continues

145

backwards	until	the	record	145	start	>	is	found	at	LSN	7563.

19.9.3

Other	Features

Among	other	key	features	that	ARIES	provides	are:

•	Nested	top	actions:	ARIES	allows	the	logging	of	operations	that	should	not	be	undone	even	if	a
transaction	gets	rolled	back;	for	example,	if	a	transaction	allocates	a	page	to	a	relation,	even	if	the
transaction	is	rolled	back,	the	page	allocation	should	not	be	undone	since	other	transactions	may	have
stored	records	in	the	page.	Such	operations	that	should	not	be	undone	are	called	nested	top	actions.	Such
operations	can	be	modeled	as	operations	whose	undo	action	does	nothing.	In	ARIES,	such	operations	are
implemented	by	creating	a	dummy	CLR	whose	UndoNextLSN

is	set	such	that	transaction	rollback	skips	the	log	records	generated	by	the	operation.

•	Recovery	independence:	Some	pages	can	be	recovered	independently	from	others	so	that	they	can	be
used	even	while	other	pages	are	being	recovered.	If	some	pages

19.10

Recovery	in	Main-Memory	Databases

947

of	a	disk	fail,	they	can	be	recovered	without	stopping	transaction	processing	on	other	pages.

•	Savepoints:	Transactions	can	record	savepoints	and	can	be	rolled	back	partially	up	to	a	savepoint.	This
can	be	quite	useful	for	deadlock	handling,	since	transactions	can	be	rolled	back	up	to	a	point	that	permits
release	of	required	locks	and	then	restarted	from	that	point.

Programmers	can	also	use	savepoints	to	undo	a	transaction	partially,	and	then	continue	execution;	this
approach	can	be	useful	to	handle	certain	kinds	of	errors	detected	during	the	transaction	execution.

•	Fine-grained	locking:	The	ARIES	recovery	algorithm	can	be	used	with	index	concurrency-control
algorithms	that	permit	tuple-level	locking	on	indices,	instead	of	page-level	locking,	which	improves
concurrency	significantly.

•	Recovery	optimizations:	The	DirtyPageTable	can	be	used	to	prefetch	pages	during	redo,	instead	of
fetching	a	page	only	when	the	system	finds	a	log	record	to	be	applied	to	the	page.	Out-of-order	redo	is
also	possible:	Redo	can	be	postponed	on	a	page	being	fetched	from	disk	and	performed	when	the	page	is
fetched.	Meanwhile,	other	log	records	can	continue	to	be	processed.

In	summary,	the	ARIES	algorithm	is	a	state-of-the-art	recovery	algorithm,	incorporating	a	variety	of
optimizations	designed	to	improve	concurrency,	reduce	logging	overhead,	and	reduce	recovery	time.

19.10

Recovery	in	Main-Memory	Databases

Main-memory	databases	support	fast	querying	and	updates,	since	main	memory	supports	very	fast
random	access.	However,	the	contents	of	main	memory	are	lost	on	system	failure,	as	well	as	on	system
shutdown.	Thus,	data	must	be	additionally	stored	on	persistent	or	stable	storage	to	allow	recovery	of	data
when	the	system	comes	back	up.

Traditional	recovery	algorithms	can	be	used	with	main-memory	databases.	Log	records	for	updates	have
to	be	output	to	stable	storage.	On	recovery,	the	database	has	to	be	reloaded	from	disk	and	log	records
applied	to	restore	the	database	state.	Data	blocks	that	have	been	modified	by	committed	transactions	still
have	to	be	written	to	disk,	and	checkpoints	have	to	be	performed,	so	that	the	amount	of	log	that	has	to	be
replayed	at	recovery	time	is	reduced.

However,	some	optimizations	are	possible	with	main-memory	databases.

•	With	main-memory	databases,	indices	can	be	rebuilt	very	quickly	after	the	underlying	relation	is
brought	into	memory	and	recovery	has	been	performed	on	the	relation.	Thus,	many	systems	do	not
perform	any	redo	logging	actions	for	index	updates.	Undo	logging	to	support	transaction	abort	is	still
required,	but	such	undo

948

Chapter	19

Recovery	System

Note	19.2	NON-VOLATILE	RAM

Some	newly	launched	non-volatile	storage	systems	support	direct	access	to	individual	words,	instead	of
requiring	that	an	entire	page	must	be	read	or	written.	Such	non-volatile	RAM	systems,	also	called	storage
class	memory	(SCM),	support	very	fast	random	access,	with	latency	and	bandwidth	comparable	to	RAM
access.	The	contents	of	such	non-volatile	RAM	survive	power	failures,	like	flash,	but	offer	direct	access,
like	RAM.	In	terms	of	capacity	and	cost	per	megabyte,	current	generation	non-volatile	storage	lies
between	RAM	and	flash	storage.

Recovery	techniques	have	been	specialized	to	deal	with	NVRAM	storage.	In	particular,	redo	logging	can
be	avoided,	although	undo	logging	may	be	used	to	deal	with	transaction	aborts.	Issues	such	as	atomic
updates	to	NVRAM	have	to	be	taken	into	consideration	when	designing	such	recovery	techniques.

log	records	can	be	kept	in	memory,	and	they	need	not	be	written	to	the	log	on	stable	storage.

•	Several	main-memory	databases	reduce	logging	overhead	by	performing	only	redo	logging.	Checkpoints
are	taken	periodically,	either	ensuring	that	uncommitted	data	are	not	written	to	disk	or	avoiding	in-place
updates	of	records	by	creating	multiple	versions	of	records.	Recovery	consists	of	reloading	the	checkpoint
and	then	performing	redo	operations.	(Record	versions	created	by	uncommitted	transactions	must	be
garbage	collected	eventually.)

•	Fast	recovery	is	crucial	for	main-memory	databases,	since	the	entire	database	has	to	be	loaded	and
recovery	actions	performed	before	any	transaction	processing	can	be	done.

Several	main-memory	databases	therefore	perform	recovery	in	parallel	using	multiple	cores,	to	minimize
recovery	time.	To	do	so,	data	and	log	records	may	be	partitioned,	with	log	records	of	a	partition	affecting
only	data	in	the	corresponding	data	partition.	Each	core	is	then	responsible	for	performing	recovery
operations	for	a	particular	partition,	and	it	can	perform	recovery	operations	in	parallel	with	other	cores.

19.11

Summary

•	A	computer	system,	like	any	other	mechanical	or	electrical	device,	is	subject	to	failure.	There	are	a
variety	of	causes	of	such	failure,	including	disk	crash,	power	failure,	and	software	errors.	In	each	of	these
cases,	information	concerning	the	database	system	is	lost.

19.11

Summary

949

•	In	addition	to	system	failures,	transactions	may	also	fail	for	various	reasons,	such	as	violation	of
integrity	constraints	or	deadlocks.

•	An	integral	part	of	a	database	system	is	a	recovery	scheme	that	is	responsible	for	the	detection	of
failures	and	for	the	restoration	of	the	database	to	a	state	that	existed	before	the	occurrence	of	the	failure.

•	The	various	types	of	storage	in	a	computer	are	volatile	storage,	non-volatile	storage,	and	stable	storage.
Data	in	volatile	storage,	such	as	in	RAM,	are	lost	when	the	computer	crashes.	Data	in	non-volatile	storage,
such	as	disk,	are	not	lost	when	the	computer	crashes	but	may	occasionally	be	lost	because	of	failures	such
as	disk	crashes.	Data	in	stable	storage	are	never	lost.

•	Stable	storage	that	must	be	accessible	online	is	approximated	with	mirrored	disks,	or	other	forms	of
RAID,	which	provide	redundant	data	storage.	Offline,	or	archival,	stable	storage	may	consist	of	multiple
tape	copies	of	data	stored	in	a	physically	secure	location.

•	In	case	of	failure,	the	state	of	the	database	system	may	no	longer	be	consistent;	that	is,	it	may	not
reflect	a	state	of	the	world	that	the	database	is	supposed	to	capture.	To	preserve	consistency,	we	require
that	each	transaction	be	atomic.	It	is	the	responsibility	of	the	recovery	scheme	to	ensure	the	atomicity	and
durability	property.

•	In	log-based	schemes,	all	updates	are	recorded	on	a	log,	which	must	be	kept	in	stable	storage.	A
transaction	is	considered	to	have	committed	when	its	last	log	record,	which	is	the	commit	log	record	for
the	transaction,	has	been	output	to	stable	storage.

•	Log	records	contain	old	values	and	new	values	for	all	updated	data	items.	The	new	values	are	used	in
case	the	updates	need	to	be	redone	after	a	system	crash.	The	old	values	are	used	to	roll	back	the	updates
of	the	transaction	if	the	transaction	aborts	during	normal	operation,	as	well	as	to	roll	back	the	updates	of

the	transaction	in	case	the	system	crashed	before	the	transaction	committed.

•	In	the	deferred-modifications	scheme,	during	the	execution	of	a	transaction,	all	the	write	operations	are
deferred	until	the	transaction	has	been	committed,	at	which	time	the	system	uses	the	information	on	the
log	associated	with	the	transaction	in	executing	the	deferred	writes.	With	deferred	modification,	log
records	do	not	need	to	contain	old	values	of	updated	data	items.

•	To	reduce	the	overhead	of	searching	the	log	and	redoing	transactions,	we	can	use	checkpointing
techniques.

•	Modern	recovery	algorithms	are	based	on	the	concept	of	repeating	history,	whereby	all	actions	taken
during	normal	operation	(since	the	last	completed	checkpoint)	are	replayed	during	the	redo	pass	of
recovery.	Repeating	history	restores

950

Chapter	19

Recovery	System

the	system	state	to	what	it	was	at	the	time	the	last	log	record	was	output	to	stable	storage	before	the
system	crashed.	Undo	is	then	performed	from	this	state	by	executing	an	undo	pass	that	processes	log
records	of	incomplete	transactions	in	reverse	order.

•	Undo	of	an	incomplete	transaction	writes	out	special	redo-only	log	records	and	an	abort	log	record.
After	that,	the	transaction	can	be	considered	to	have	completed,	and	it	will	not	be	undone	again.

•	Transaction	processing	is	based	on	a	storage	model	in	which	main	memory	holds	a	log	buffer,	a
database	buffer,	and	a	system	buffer.	The	system	buffer	holds	pages	of	system	object	code	and	local	work
areas	of	transactions.

•	Efficient	implementation	of	a	recovery	scheme	requires	that	the	number	of	writes	to	the	database	and	to
stable	storage	be	minimized.	Log	records	may	be	kept	in	volatile	log	buffer	initially,	but	they	must	be
written	to	stable	storage	when	one	of	the	following	conditions	occurs:

°	Before	the	commit	>	log	record	may	be	output	to	stable	storage,	all	log	records	pertaining	to
transaction	T	must	have	been	output	to	stable	storage.

i

°	Before	a	block	of	data	in	main	memory	is	output	to	the	database	(in	non-volatile	storage),	all	log	records
pertaining	to	data	in	that	block	must	have	been	output	to	stable	storage.

•	Remote	backup	systems	provide	a	high	degree	of	availability,	allowing	transaction	processing	to
continue	even	if	the	primary	site	is	destroyed	by	a	fire,	flood,	or	earthquake.	Data	and	log	records	from	a
primary	site	are	continually	backed	up	to	a	remote	backup	site.	If	the	primary	site	fails,	the	remote
backup	site	takes	over	transaction	processing,	after	executing	certain	recovery	actions.

•	Modern	recovery	techniques	support	high-concurrency	locking	techniques,	such	as	those	used	for	B+-
tree	concurrency	control.	These	techniques	allow	early	release	of	lower-level	locks	obtained	by	operations
such	as	inserts	or	deletes,	which	allows	other	such	operations	to	be	performed	by	other	transactions.
After	lower-level	locks	are	released,	physical	undo	is	not	possible,	and	instead	logical	undo,	such	as	a
deletion	to	undo	an	insertion,	is	required.	Transactions	retain	higher-level	locks	that	ensure	that
concurrent	transactions	cannot	perform	actions	that	could	make	logical	undo	of	an	operation	impossible.

•	To	recover	from	failures	that	result	in	the	loss	of	non-volatile	storage,	we	must	dump	the	entire	contents
of	the	database	onto	stable	storage	periodically—say,	once	per	day.	If	a	failure	occurs	that	results	in	the
loss	of	physical	database	blocks,	we	use	the	most	recent	dump	in	restoring	the	database	to	a	previous
consistent	state.	Once	this	restoration	has	been	accomplished,	we	use	the	log	to	bring	the	database
system	to	the	most	recent	consistent	state.

Review	Terms

951

•	The	ARIES	recovery	scheme	is	a	state-of-the-art	scheme	that	supports	a	number	of	features	to	provide
greater	concurrency,	reduce	logging	overheads,	and	minimize	recovery	time.	It	is	also	based	on	repeating
history,	and	it	allows	logical	undo	operations.	The	scheme	flushes	pages	on	a	continuous	basis	and	does
not	need	to	flush	all	pages	at	the	time	of	a	checkpoint.	It	uses	log	sequence	numbers	(LSNs)	to	implement
a	variety	of	optimizations	that	reduce	the	time	taken	for	recovery.

Review	Terms

•	Recovery	scheme

•	Uncommitted	modifications

•	Failure	classification

•	Checkpoints

•	Recovery	algorithm

°	Transaction	failure

•	Restart	recovery

°	Logical	error

•	Transaction	rollback

°	System	error

•	Physical	undo

°	System	crash

•	Physical	logging

°	Data-transfer	failure

•	Transaction	rollback

•

•	Restart	recovery

Fail-stop	assumption

•

•	Redo	phase

Disk	failure

•

•	Undo	phase

Storage	types

•	Repeating	history

°	Volatile	storage

•	Buffer	management

°	Non-Volatile	storage

•	Log-record	buffering

°	Stable	storage

•	Write-ahead	logging	(WAL)

•

•	Log	force

Blocks

•	Database	buffering

°	Physical	blocks

•	Latches

°	Buffer	blocks

•	Operating	system	and	buffer

•	Disk	buffer

management

•

•

Force-output

Fuzzy	checkpointing

•

•

Log-based	recovery

High	availability

•

•

Log

Remote	backup	systems

•	Log	records

°	Primary	site

•	Update	log	record

•	Deferred	modification

°	Remote	backup	site

•	Immediate	modification

°	Secondary	site

952

Chapter	19

Recovery	System

•	Detection	of	failure

•	Fuzzy	dump

•	Transfer	of	control

•	ARIES

•	Time	to	recover

°	Log	sequence	number	(LSN)

•	Hot-spare	configuration

°	PageLSN

•	Time	to	commit

°	Physiological	redo

°	One-safe

°	Compensation	log	record

°	Two-very-safe

(CLR)

°	Two-safe

°	DirtyPageTable

•	Early	lock	release

°	Checkpoint	log	record

•	Logical	operations

°	Analysis	pass

•	Logical	logging

•	Logical	undo

°	Redo	pass

•	Loss	of	non-volatile	storage

Ůndo	pass

•	Archival	dump

Practice	Exercises

19.1

Explain	why	log	records	for	transactions	on	the	undo-list	must	be	processed	in	reverse	order,	whereas
redo	is	performed	in	a	forward	direction.

19.2

Explain	the	purpose	of	the	checkpoint	mechanism.	How	often	should	checkpoints	be	performed?	How
does	the	frequency	of	checkpoints	affect:

•	System	performance	when	no	failure	occurs?

•	The	time	it	takes	to	recover	from	a	system	crash?

•	The	time	it	takes	to	recover	from	a	media	(disk)	failure?

19.3

Some	database	systems	allow	the	administrator	to	choose	between	two	forms	of	logging:	normal	logging,
used	to	recover	from	system	crashes,	and	archival	logging,	used	to	recover	from	media	(disk)	failure.
When	can	a	log	record	be	deleted,	in	each	of	these	cases,	using	the	recovery	algorithm	of	Section	19.4?

19.4

Describe	how	to	modify	the	recovery	algorithm	of	Section	19.4	to	implement	savepoints	and	to	perform
rollback	to	a	savepoint.	(Savepoints	are	described	in	Section	19.9.3.)

19.5

Suppose	the	deferred	modification	technique	is	used	in	a	database.

a.

Is	the	old	value	part	of	an	update	log	record	required	any	more?	Why	or	why	not?

Practice	Exercises

953

b.

If	old	values	are	not	stored	in	update	log	records,	transaction	undo	is	clearly	not	feasible.	How	would	the

redo	phase	of	recovery	have	to	be

modified	as	a	result?

c.

Deferred	modification	can	be	implemented	by	keeping	updated	data

items	in	local	memory	of	transactions	and	reading	data	items	that	have	not	been	updated	directly	from
the	database	buffer.	Suggest	how	to	efficiently	implement	a	data	item	read,	ensuring	that	a	transaction
sees	its	own	updates.

d.

What	problem	would	arise	with	the	above	technique	if	transactions	per-

form	a	large	number	of	updates?

19.6

The	shadow-paging	scheme	requires	the	page	table	to	be	copied.	Suppose	the	page	table	is	represented
as	a	B+-tree.

a.

Suggest	how	to	share	as	many	nodes	as	possible	between	the	new	copy

and	the	shadow	copy	of	the	B+-tree,	assuming	that	updates	are	made

only	to	leaf	entries,	with	no	insertions	or	deletions.

b.

Even	with	the	above	optimization,	logging	is	much	cheaper	than	a

shadow	copy	scheme,	for	transactions	that	perform	small	updates.	Ex-

plain	why.

19.7

Suppose	we	(incorrectly)	modify	the	recovery	algorithm	of	Section	19.4	to	note	log	actions	taken	during
transaction	rollback.	When	recovering	from	a	system	crash,	transactions	that	were	rolled	back	earlier
would	then	be	included	in	undo-list	and	rolled	back	again.	Give	an	example	to	show	how	actions	taken
during	the	undo	phase	of	recovery	could	result	in	an	incorrect	database	state.

(Hint:	Consider	a	data	item	updated	by	an	aborted	transaction	and	then	updated	by	a	transaction	that
commits.)

19.8

Disk	space	allocated	to	a	file	as	a	result	of	a	transaction	should	not	be	released	even	if	the	transaction	is
rolled	back.	Explain	why,	and	explain	how	ARIES

ensures	that	such	actions	are	not	rolled	back.

19.9

Suppose	a	transaction	deletes	a	record,	and	the	free	space	generated	thus	is	allocated	to	a	record
inserted	by	another	transaction,	even	before	the	first	transaction	commits.

a.

What	problem	can	occur	if	the	first	transaction	needs	to	be	rolled	back?

b.

Would	this	problem	be	an	issue	if	page-level	locking	is	used	instead	of	tuple-level	locking?

c.

Suggest	how	to	solve	this	problem	while	supporting	tuple-level	locking,	by	logging	post-commit	actions	in
special	log	records,	and	executing

954

Chapter	19

Recovery	System

them	after	commit.	Make	sure	your	scheme	ensures	that	such	actions

are	performed	exactly	once.

19.10

Explain	the	reasons	why	recovery	of	interactive	transactions	is	more	difficult	to	deal	with	than	is	recovery
of	batch	transactions.	Is	there	a	simple	way	to	deal	with	this	difficulty?	(Hint:	Consider	an	automatic	teller
machine	transaction	in	which	cash	is	withdrawn.)

19.11

Sometimes	a	transaction	has	to	be	undone	after	it	has	committed	because	it	was	erroneously	executed	—
for	example,	because	of	erroneous	input	by	a	bank	teller.

a.

Give	an	example	to	show	that	using	the	normal	transaction	undo	mech-

anism	to	undo	such	a	transaction	could	lead	to	an	inconsistent	state.

b.

One	way	to	handle	this	situation	is	to	bring	the	whole	database	to	a	state	prior	to	the	commit	of	the
erroneous	transaction	(called	point-in-time	recovery).	Transactions	that	committed	later	have	their	effects
rolled	back	with	this	scheme.

Suggest	a	modification	to	the	recovery	algorithm	of	Section	19.4	to

implement	point-in-time	recovery	using	database	dumps.

c.

Later	nonerroneous	transactions	can	be	reexecuted	logically,	if	the	updates	are	available	in	the	form	of
SQL	but	cannot	be	reexecuted	using

their	log	records.	Why?

19.12

The	recovery	techniques	that	we	described	assume	that	blocks	are	written	atomically	to	disk.	However,	a
block	may	be	partially	written	when	power	fails,	with	some	sectors	written,	and	others	not	yet	written.

a.

What	problems	can	partial	block	writes	cause?

b.

Partial	block	writes	can	be	detected	using	techniques	similar	to	those	used	to	validate	sector	reads.
Explain	how.

c.

Explain	how	RAID	1	can	be	used	to	recover	from	a	partially	written

block,	restoring	the	block	to	either	its	old	value	or	to	its	new	value.

19.13

The	Oracle	database	system	uses	undo	log	records	to	provide	a	snapshot	view	of	the	database	under
snapshot	isolation.	The	snapshot	view	seen	by	transaction	T	reflects	updates	of	all	transactions	that	had
committed	when	T	started	i

i

and	the	updates	of	T	;	updates	of	all	other	transactions	are	not	visible	to	T	.

i

i

Describe	a	scheme	for	buffer	handling	whereby	transactions	are	given	a	snapshot	view	of	pages	in	the
buffer.	Include	details	of	how	to	use	the	log	to	generate	the	snapshot	view.	You	can	assume	that
operations	as	well	as	their	undo	actions	affect	only	one	page.

Exercises

955

Exercises

19.14

Explain	the	difference	between	the	three	storage	types	—	volatile,	nonvolatile,	and	stable	—	in	terms	of
I/O	cost.

19.15

Stable	storage	cannot	be	implemented.

a.

Explain	why	it	cannot	be.

b.

Explain	how	database	systems	deal	with	this	problem.

19.16

Explain	how	the	database	may	become	inconsistent	if	some	log	records	pertaining	to	a	block	are	not
output	to	stable	storage	before	the	block	is	output	to	disk.

19.17

Outline	the	drawbacks	of	the	no-steal	and	force	buffer	management	policies.

19.18

Suppose	two-phase	locking	is	used,	but	exclusive	locks	are	released	early,	that	is,	locking	is	not	done	in	a
strict	two-phase	manner.	Give	an	example	to	show	why	transaction	rollback	can	result	in	a	wrong	final
state,	when	using	the	log-based	recovery	algorithm.

19.19

Physiological	redo	logging	can	reduce	logging	overheads	significantly,	especially	with	a	slotted	page
record	organization.	Explain	why.

19.20

Explain	why	logical	undo	logging	is	used	widely,	whereas	logical	redo	logging	(other	than	physiological
redo	logging)	is	rarely	used.

19.21

Consider	the	log	in	Figure	19.5.	Suppose	there	is	a	crash	just	before	the	log	record	0	abort	>	is	written
out.	Explain	what	would	happen	during	recovery.

19.22

Suppose	there	is	a	transaction	that	has	been	running	for	a	very	long	time	but	has	performed	very	few
updates.

a.

What	effect	would	the	transaction	have	on	recovery	time	with	the	recovery	algorithm	of	Section	19.4,	and
with	the	ARIES	recovery	algorithm?

b.

What	effect	would	the	transaction	have	on	deletion	of	old	log	records?

19.23

Consider	the	log	in	Figure	19.7.	Suppose	there	is	a	crash	during	recovery,	just	before	the	operation	abort
log	record	is	written	for	operation	O	.	Explain	what	1

will	happen	when	the	system	recovers	again.

19.24

Compare	log-based	recovery	with	the	shadow-copy	scheme	in	terms	of	their	overheads	for	the	case	when
data	are	being	added	to	newly	allocated	disk	pages	(in	other	words,	there	is	no	old	value	to	be	restored	in
case	the	transaction	aborts).

19.25

In	the	ARIES	recovery	algorithm:

956

Chapter	19

Recovery	System

a.

If	at	the	beginning	of	the	analysis	pass,	a	page	is	not	in	the	checkpoint	dirty	page	table,	will	we	need	to
apply	any	redo	records	to	it?	Why?

b.

What	is	RecLSN,	and	how	is	it	used	to	minimize	unnecessary	redos?

19.26

Explain	the	difference	between	a	system	crash	and	a	“disaster.”

19.27

For	each	of	the	following	requirements,	identify	the	best	choice	of	degree	of	durability	in	a	remote	backup
system:

a.

Data	loss	must	be	avoided,	but	some	loss	of	availability	may	be	tolerated.

b.

Transaction	commit	must	be	accomplished	quickly,	even	at	the	cost	of

loss	of	some	committed	transactions	in	a	disaster.

c.

A	high	degree	of	availability	and	durability	is	required,	but	a	longer	running	time	for	the	transaction
commit	protocol	is	acceptable.

Further	Reading

[Gray	and	Reuter	(1993)]	is	an	excellent	textbook	source	of	information	about	recovery,	including
interesting	implementation	and	historical	details.	[Bernstein	and	Goodman	(1981)]	is	an	early	textbook
source	of	information	on	concurrency	control	and	recovery.	[Faerber	et	al.	(2017)]	provide	an	overview	of
main-memory	databases,	including	recovery	techniques.

An	overview	of	the	recovery	scheme	of	System	R	is	presented	by	[Gray	(1978)]

(which	also	includes	extensive	coverage	of	concurrency	control	and	other	aspects	of	System	R),	and	[Gray
et	al.	(1981)].	A	comprehensive	presentation	of	the	principles	of	recovery	is	offered	by	[Haerder	and
Reuter	(1983)].	The	ARIES	recovery	method	is	described	in	[Mohan	et	al.	(1992)].	Many	databases
support	high-availability	features;	more	details	may	be	found	in	their	online	manuals.

Bibliography

[Bayer	et	al.	(1978)]

R.	Bayer,	R.	M.	Graham,	and	G.	Seegmuller,	editors,	Operating	Systems:	An	Advanced	Course,	volume	60
of	Lecture	Notes	in	Computer	Science,	Springer	Verlag	(1978).

[Bernstein	and	Goodman	(1981)]

P.	A.	Bernstein	and	N.	Goodman,	“Concurrency	Control

in	Distributed	Database	Systems”,	ACM	Computing	Surveys,	Volume	13,	Number	2	(1981),	pages	185–
221.

[Faerber	et	al.	(2017)]

F.	Faerber,	A.	Kemper,	P.-A.	Larson,	J.	Levandoski,	T.	Neumann,	and

A.	Pavlo,	“Main	Memory	Database	Systems”,	Foundations	and	Trends	in	Databases,	Volume	8,	Number	1-2
(2017),	pages	1–130.

[Gray	(1978)]

J.	Gray.	“Notes	on	Data	Base	Operating	System”,	In	[Bayer	et	al.	(1978)],	pages	393–481.	Springer	Verlag
(1978).

Further	Reading

957

[Gray	and	Reuter	(1993)]

J.	Gray	and	A.	Reuter,	Transaction	Processing:	Concepts	and	Tech-

niques,	Morgan	Kaufmann	(1993).

[Gray	et	al.	(1981)]

J.	Gray,	P.	R.	McJones,	and	M.	Blasgen,	“The	Recovery	Manager	of	the

System	R	Database	Manager”,	ACM	Computing	Surveys,	Volume	13,	Number	2	(1981),	pages	223–242.

[Haerder	and	Reuter	(1983)]

T.	Haerder	and	A.	Reuter,	“Principles	of	Transaction-Oriented

Database	Recovery”,	ACM	Computing	Surveys,	Volume	15,	Number	4	(1983),	pages	287–318.

[Mohan	et	al.	(1992)]

C.	Mohan,	D.	Haderle,	B.	Lindsay,	H.	Pirahesh,	and	P.	Schwarz,

“ARIES:	A	Transaction	Recovery	Method	Supporting	Fine-Granularity	Locking	and	Partial	Rollbacks	Using
Write-Ahead	Logging”,	ACM	Transactions	on	Database	Systems,	Volume	17,	Number	1	(1992),	pages	94–
162.

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

PART	8

PARALLEL	AND

DISTRIBUTED	DATABASES

Database	systems	can	be	centralized,	where	one	server	machine	executes	operations	on	the	database.
Database	systems	can	also	be	designed	to	exploit	parallel	computer	architectures.	Distributed	databases
span	multiple	geographically	separated	machines.

Chapter	20	first	outlines	the	architectures	of	database	systems	running	on	server	systems,	which	are	used
in	centralized	and	client–server	architectures.	The	chapter	then	outlines	parallel	computer	architectures,
and	parallel	database	architectures	designed	for	different	types	of	parallel	computers.	Finally,	the	chapter
outlines	architectural	issues	in	building	a	distributed	database	system.

Chapter	21	discusses	techniques	for	data	storage	and	indexing	in	parallel	and	distributed	database
systems.	These	include	data	partitioning	and	replication.	Key-value	stores,	which	offer	some	but	not	all
features	of	a	full	database	system,	are	discussed	along	with	their	benefits	and	drawbacks.

Chapter	22	discusses	algorithms	for	query	processing	in	parallel	and	distributed	database	systems.	This
chapter	focuses	on	query	processing	in	decision-support	systems.	Such	systems	need	to	execute	queries
on	very	large	amounts	of	data,	and	parallel	processing	of	the	query	across	multiple	nodes	is	critical	for
processing	queries	within	acceptable	response	times.	The	chapter	covers	parallel	sort	and	join,	pipelining,
the	implementation	of	MapReduce	systems,	and	parallel	stream	processing.

Chapter	23	discusses	how	to	carry	out	transaction	processing	in	parallel	and	distributed	database
systems.	In	addition	to	supporting	concurrency	control	and	recovery,	the	system	must	deal	with	issues
pertaining	to	replication	of	data	and	with	failures	that	involve	some,	but	not	all,	nodes.	The	chapter	covers
atomic	commit	protocols	and	consensus	protocols	designed	for	distributed	databases,	distributed
concurrency	control,	replica	consistency,	and	trade-offs	of	consistency	for	the	sake	of	performance	and
availability.

959

C	H	A	P	T	E	R	20

Database-System	Architectures

The	architecture	of	a	database	system	is	greatly	influenced	by	the	underlying	computer	system	on	which
it	runs,	in	particular	by	such	aspects	as	processor	and	memory	architecture,	and	networking,	as	well	as	by
requirements	of	parallelism	and	distribution.	In	this	chapter,	we	provide	a	high-level	view	of	database
architectures,	with	a	focus	on	how	they	are	influenced	by	the	underlying	hardware,	as	well	as	by
requirements	of	parallel	and	distributed	processing.

20.1

Overview

The	earliest	databases	were	built	to	run	on	a	single	physical	machine	supporting	multitasking;	such
centralized	database	systems	are	still	widely	used.	An	enterprise-scale	application	that	runs	on	a
centralized	database	system	today	may	have	from	tens	to	thousands	of	users	and	database	sizes	ranging
from	megabytes	to	hundreds	of	gigabytes.

Parallel	database	systems	were	developed,	starting	in	the	late	1980s	to	execute	tasks	in	parallel	on	a	large
number	of	machines.	These	were	developed	to	handle	high-end	enterprise	applications	whose
requirements	in	terms	of	transaction	processing	performance,	time	to	process	decision	support	queries,
and	storage	capacity	could	not	be	met	by	centralized	databases.	These	databases	were	designed	to	run	in
parallel	on	hundreds	of	machines.	Today,	the	growth	of	parallel	databases	is	driven	not	just	by	enterprise
applications,	but	even	more	so	by	web-scale	applications,	which	may	have	millions	to	even	hundreds	of
millions	of	users	and	may	need	to	deal	with	many	petabytes	of	data.

Parallel	data	storage	systems	are	designed	primarily	to	store	and	retrieve	data	based	on	keys.	Unlike
parallel	databases,	data	storage	systems	typically	provide	very	limited	support	for	transactions,	and	they
lack	support	for	declarative	querying.	On	the	other	hand,	such	systems	can	be	run	in	parallel	on	very
large	numbers	of	machines	(thousands	to	tens	of	thousands),	a	scale	that	most	parallel	databases	cannot
handle.

Further,	data	are	often	generated	and	stored	on	different	database	systems,	and	there	is	a	need	to
execute	queries	and	update	transactions	across	multiple	databases.

This	need	led	to	the	development	of	distributed	database	systems.	Techniques	developed	for	fault
tolerance	in	the	context	of	distributed	databases	today	also	play	a	key	role	in	961

962

Chapter	20

Database-System	Architectures

ensuring	the	extremely	high	reliability	and	availability	of	massively	parallel	database	and	data	storage
systems.

We	study	the	architecture	of	database	systems	in	this	chapter,	starting	with	the	traditional	centralized
architectures	and	covering	parallel	and	distributed	database	architectures.	We	cover	issues	of	parallel
and	distributed	data	storage	and	indexing	in	Chapter	21.	Chapter	22	covers	issues	of	parallel	and
distributed	query	processing,	while	Chapter	23	covers	issues	of	parallel	and	distributed	transaction
processing.

20.2

Centralized	Database	Systems

Centralized	database	systems	are	those	that	run	on	a	single	computer	system.	Such	database	systems
span	a	range	from	single-user	database	systems	running	on	mobile	devices	or	personal	computers	to	high-
performance	database	systems	running	on	a	server	with	multiple	CPU	cores	and	disks	and	a	large	amount
of	main	memory	that	can	be	accessed	by	any	of	the	CPU	cores.	Centralized	database	systems	are	widely
used	for	enterprise-scale	applications.

We	distinguish	two	ways	in	which	computers	are	used:	as	single-user	systems	and	as	multiuser	systems.
Smartphones	and	personal	computers	fall	into	the	first	category.

A	typical	single-user	system	is	a	system	used	by	a	single	person,	usually	with	only	one	processor	(usually
with	multiple	cores),	and	one	or	two	disks.1	A	typical	multiuser	system,	on	the	other	hand,	has	multiple
disks,	a	large	amount	of	memory,	and	multiple	processors.	Such	systems	serve	a	large	number	of	users
who	are	connected	to	the	system	remotely,	and	they	are	called	server	systems.

Database	systems	designed	for	single-user	systems	usually	do	not	provide	many	of	the	facilities	that	a
multiuser	database	provides.	In	particular,	they	may	support	very	simple	concurrency	control	schemes,
since	highly	concurrent	access	to	the	database	is	very	unlikely.	Provisions	for	crash	recovery	in	such
systems	may	also	be	either	very	basic	(e.g.,	making	a	copy	of	data	before	updating	it),	or	even	absent	in
some	cases.

Such	systems	may	not	support	SQL	and	may	instead	provide	an	API	for	data	access.

Such	database	systems	are	referred	to	as	embedded	databases,	since	they	are	usually	designed	to	be
linked	to	a	single	application	program	and	are	accessible	only	from	that	application.

In	contrast,	multiuser	database	systems	support	the	full	transactional	features	that	we	have	studied
earlier.	Such	databases	are	usually	designed	as	servers,	which	service	requests	received	from	application
programs;	the	requests	could	be	in	the	form	of	SQL

queries,	or	they	could	be	requests	for	retrieving,	storing,	or	updating	data	specified	using	an	API.

Most	general-purpose	computer	systems	in	use	today	have	a	few	multicore	processors	(typically	one	to
four),	with	each	multicore	processor	having	a	few	cores	(typically	1Recall	that	we	use	the	term	disk	to
refer	to	hard	disks	as	well	as	solid-state	drives.

20.3

Server	System	Architectures

963

4	to	8).	Main	memory	is	shared	across	all	the	processors.	Parallelism	with	such	a	small	number	of	cores,
and	with	shared	memory,	is	referred	to	as	coarse-grained	parallelism.

Operating	systems	that	run	on	single-processor	systems	support	multitasking,	allowing	multiple	processes
to	run	on	the	same	processor	in	a	time-shared	manner.	Actions	of	different	processes	may	thus	be
interleaved.	Databases	designed	for	single-processor	machines	have	long	been	designed	to	allow	multiple
processes	or	threads	to	access	shared	database	structures	concurrently.	Thus,	many	of	the	issues	in
handling	multiple	processes	running	truly	in	parallel,	such	as	concurrent	access	to	data,	are	already

addressed	by	databases	designed	for	single-processor	machines.	As	a	result,	database	systems	designed
for	time-shared	single-processor	machines	could	be	adapted	relatively	easily	to	run	on	coarse-grained
parallel	systems.

Databases	running	on	coarse-grained	parallel	machines	traditionally	did	not	attempt	to	partition	a	single
query	among	the	processors;	instead,	they	ran	each	query	on	a	single	processor,	allowing	multiple	queries
to	run	concurrently.	Thus,	such	systems	support	a	higher	throughput;	that	is,	they	allow	a	greater	number
of	transactions	to	run	per	second,	although	individual	transactions	do	not	run	any	faster.	In	recent	years,
with	even	mobile	phones	supporting	multiple	cores,	such	systems	are	evolving	to	support	parallel
processing	of	individual	queries.

In	contrast,	machines	with	fine-grained	parallelism	have	a	large	number	of	processors,	and	database
systems	running	on	such	machines	attempt	to	parallelize	single	tasks	(queries,	for	example)	submitted	by
users.

Parallelism	has	emerged	as	a	critical	issue	in	the	design	of	software	systems	in	general,	and	in	particular
in	the	design	of	database	systems.	As	a	result,	parallel	database	systems,	which	once	were	specialized
systems	running	on	specially	designed	hardware,	are	increasingly	becoming	the	norm.	We	study	the
architecture	of	parallel	database	systems	in	Section	20.4.

20.3

Server	System	Architectures

Server	systems	can	be	broadly	categorized	as	transaction	servers	and	data	servers.

•	Transaction-server	systems,	also	called	query-server	systems,	provide	an	interface	to	which	clients	can
send	requests	to	perform	an	action,	in	response	to	which	they	execute	the	action	and	send	back	results	to
the	client.	Usually,	client	machines	ship	transactions	to	the	server	systems,	where	those	transactions	are
executed,	and	results	are	shipped	back	to	clients	that	are	in	charge	of	displaying	the	data.	Requests	may
be	specified	through	the	use	of	SQL	or	through	a	specialized	application	program	interface.

•	Data-server	systems	allow	clients	to	interact	with	the	servers	by	making	requests	to	read	or	update
data,	in	units	such	as	files,	pages,	or	objects.	For	example,	file	servers	provide	a	file-system	interface
where	clients	can	create,	update,	read,	and

964

Chapter	20

Database-System	Architectures

delete	files.	Data	servers	for	database	systems	offer	much	more	functionality;	they	support	units	of	data	—
such	as	pages,	tuples,	or	objects	—	that	are	smaller	than	a	file.

They	provide	indexing	facilities	for	data,	and	they	provide	transaction	facilities	so	that	the	data	are	never
left	in	an	inconsistent	state	if	a	client	machine	or	process	fails.

Of	these,	the	transaction-server	architecture	is	by	far	the	more	widely	used	architecture,	although	parallel
data	servers	are	widely	used	to	handle	traffic	at	web	scale.	We	shall	elaborate	on	the	transaction-server
and	data-server	architectures	in	Section	20.3.1	and	Section	20.3.2.

20.3.1

Transaction-Server	Architecture

A	typical	transaction-server	system	today	consists	of	multiple	processes	accessing	data	in	shared	memory,
as	in	Figure	20.1.	The	processes	that	form	part	of	the	database	system	include:

user

user

user

process

process

process

ODBC

JDBC

server

server

server

process

process

process

process

buffer	pool

monitor

shared

process

memory

query	plan	cache

lock

manager

log	buffer

lock	table

process

database

log	writer

checkpoint

writer

process

process

process

log	disks

data	disks

Figure	20.1	Shared	memory	and	process	structure.

20.3

Server	System	Architectures

965

•	Server	processes:	These	are	processes	that	receive	user	queries	(transactions),	execute	them,	and	send
the	results	back.	The	queries	may	be	submitted	to	the	server	processes	from	a	user	interface,	or	from	a
user	process	running	embedded	SQL,	or	via	JDBC,	ODBC,	or	similar	protocols.	Some	database	systems
use	a	separate	process	for	each	user	session,	and	a	few	use	a	single	database	process	for	all	user
sessions,	but	with	multiple	threads	so	that	multiple	queries	can	execute	concurrently.

(A	thread	is	similar	to	a	process,	but	multiple	threads	execute	as	part	of	the	same	process,	and	all	threads
within	a	process	run	in	the	same	virtual-memory	space.

Multiple	threads	within	a	process	can	execute	concurrently.)	Many	database	systems	use	a	hybrid

architecture,	with	multiple	processes,	each	one	running	multiple	threads.

•	Lock	manager	process:	This	process	implements	lock	manager	functionality,	which	includes	lock	grant,
lock	release,	and	deadlock	detection.

•	Database	writer	process:	There	are	one	or	more	processes	that	output	modified	buffer	blocks	back	to
disk	on	a	continuous	basis.

•	Log	writer	process:	This	process	outputs	log	records	from	the	log	record	buffer	to	stable	storage.	Server
processes	simply	add	log	records	to	the	log	record	buffer	in	shared	memory,	and	if	a	log	force	is	required,
they	request	the	log	writer	process	to	output	log	records	(recall	that	a	log	force	causes	the	log	contents	in
memory	to	be	output	to	stable	storage).

•	Checkpoint	process:	This	process	performs	periodic	checkpoints.

•	Process	monitor	process:	This	process	monitors	other	processes,	and	if	any	of	them	fails,	it	takes
recovery	actions	for	the	process,	such	as	aborting	any	transaction	being	executed	by	the	failed	process
and	then	restarting	the	process.

The	shared	memory	contains	all	shared	data,	such	as:

•	Buffer	pool.

•	Lock	table.

•	Log	buffer,	containing	log	records	waiting	to	be	output	to	the	log	on	stable	storage.

•	Cached	query	plans,	which	can	be	reused	if	the	same	query	is	submitted	again.

All	database	processes	can	access	the	data	in	shared	memory.	Since	multiple	processes	may	read	or
perform	updates	on	data	structures	in	shared	memory,	there	must	be	a	mechanism	to	ensure	mutual
exclusion,	that	is,	to	ensure	that	a	data	structure	is	modified	by	at	most	one	process	at	a	time,	and	no
process	is	reading	a	data	structure	while	it	is	being	written	by	other	processes.

Such	mutual	exclusion	can	be	implemented	by	means	of	operating	system	functions	called	semaphores.
Alternative	implementations,	with	less	overhead,	use	one	of

966

Chapter	20

Database-System	Architectures

Note	20.1	ATOMIC	INSTRUCTIONS

1.	The	instruction	test-and-set	(M)	performs	the	following	two	actions	atomically:	(i)	test,	that	is,	read
the	value	of	memory	location	M	,	and	then	(ii)	set	it	to	1;	the	test-and-set	instruction	returns	the	value	that
it	read	in	step	(i).

Suppose	a	memory	location	M	representing	an	exclusive	lock	is	initially	set	to	0.	A	process	that	wishes	to
get	the	lock	executes	the	test-and-set	(M).

If	it	is	the	only	process	executing	the	instruction	on	M	,	the	value	that	is	read	and	returned	would	be	0,
indicating	to	the	process	that	it	has	acquired	the	lock,	and	M	would	be	set	to	1.	When	the	process	is	done
using	the	lock,	it	releases	the	lock	by	setting	M	back	to	0.

If	a	second	process	executes	test-and-set	(M)	before	the	lock	is	released,	the	value	returned	would	be	1,
indicating	that	some	other	process	already	has	the	lock.	The	process	could	repeat	the	execution	of	test-
and-set	on	M

periodically,	until	it	gets	a	return	value	of	0,	indicating	that	it	has	acquired	the	lock	after	it	was	released
by	another	process.

Now,	if	two	processes	execute	test-and-set	(M)	concurrently,	one	of	them	would	see	a	return	value	of	0,
while	the	other	would	see	a	return	value	of	1;	this	is	because	the	read	operation	and	the	set	operation	are
executed	together,	atomically.	The	first	process	to	read	the	value	would	also	set	it	to	1,	and	the	second
process	would	find	that	M	is	already	set	to	1.	Thus,	only	one	process	acquires	the	lock,	ensuring	mutual
execution.

2.	The	compare-and-swap	instruction	is	another	atomic	instruction	similar	to	the	test-and-set	instruction,
but	it	takes	the	following	operands:	(M	,	V	,	V),	o

n

where	M	is	a	memory	location,	and	value	V	and	V	are	two	values	(referred	o

n

to	as	the	old	and	new	values).	The	instruction	does	the	following	atomically:	it	compares	the	value	at	M
with	V	,	and	if	it	matches,	it	updates	the	value	o

to	V	and	returns	success.	If	the	values	do	not	match,	it	does	not	update	M	,	n

and	it	returns	failure.

Similar	to	the	case	of	test-and-set,	we	have	a	memory	location	M	representing	a	lock,	which	is	initially	set
to	0.	A	process	that	wants	to	acquire	the	lock	executes	compare-and-swap	(M	,	0,	id)	where	id	can	be	any
nonzero	value	and	is	typically	the	process	identifier.	If	no	process	has	the	lock,	the	compare-and-swap
operation	returns	success,	after	storing	the	process	identifier	in	M	;	otherwise,	the	operation	returns
failure.

A	benefit	of	compare-and-swap	over	the	test-and-set	implementation	is

that	it	is	easy	to	find	out	which	process	has	acquired	the	lock	by	just	reading	the	content	of	M	,	if	the
process	identifier	is	used	as	V	.

n

20.3

Server	System	Architectures

967

the	atomic	instructions,	test-and-set,	or	compare-and-swap,	which	are	supported	by	the	computer
hardware.	See	Note	20.1	on	page	966	for	details	of	these	instructions.	All	multiprocessor	systems	today
support	either	the	test-and-set	or	the	compare-and-swap	atomic	instructions.	Further	details	on	these
instructions	may	be	found	in	operating	systems	textbooks.

Note	that	the	atomic	instructions	can	be	used	for	mutual	exclusion,	which	is	equivalent	to	supporting
exclusive	locks,	but	they	do	not	directly	support	shared	locks.

Thus,	they	cannot	be	used	directly	to	implement	general-purpose	locking	in	databases.

Atomic	instructions	are,	however,	used	to	implement	short-duration	locks,	also	known	as	latches,	which
are	used	for	mutual	exclusion	in	databases.

To	avoid	the	overhead	of	message	passing,	in	many	database	systems,	server	processes	implement	locking
by	directly	updating	the	lock	table	(which	is	in	shared	memory)	instead	of	sending	lock	request	messages
to	a	lock	manager	process.	(The	lock	table	is	shown	in	Figure	18.10.)

Since	multiple	server	processes	may	access	the	lock	table	in	shared	memory	concurrently,	processes	must
ensure	mutual	exclusion	on	access	to	the	lock	table.	This	is	typically	done	by	acquiring	a	mutex	(also
referred	to	as	a	latch)	on	the	lock	table,	using	the	test-and-set	or	compare-and-swap	instructions	on	a
memory	location	representing	a	lock	on	the	lock	table.

A	transaction	that	wants	to	acquire	a	lock	by	directly	updating	the	lock	table	in	shared	memory	executes
the	following	steps.

1.	Acquire	a	mutex	(latch)	on	the	lock	table.

2.	Check	if	the	requested	lock	can	be	allocated,	using	the	procedure	we	saw	in	Section	18.1.4.	If	it	can,
update	the	lock	table	to	indicate	the	lock	is	allocated.	Otherwise,	update	the	lock	table	to	indicate	that	the
lock	request	is	in	the	queue	for	that	lock.

3.	Release	the	mutex	on	the	lock	table.

If	a	lock	cannot	be	obtained	immediately	because	of	a	lock	conflict,	the	transaction	may	periodically	read
the	lock	table	to	check	if	the	lock	has	been	allocated	to	it	due	to	a	lock	release,	which	is	described	next.

Lock	release	is	done	as	follows:

1.	Acquire	a	mutex	on	the	lock	table

2.	Remove	the	entry	in	the	lock	table	for	the	lock	being	released.

3.	If	there	are	any	other	lock	requests	pending	for	the	data	item	that	can	now	be	allocated	to	the	lock,	the
lock	table	is	updated	to	mark	those	requests	as	allocated.

The	rules	on	which	lock	requests	may	be	granted	are	as	described	in	Section	18.1.4.

4.	Release	the	mutex	on	the	lock	table.

968

Chapter	20

Database-System	Architectures

To	avoid	repeated	checks	on	the	lock	table	(an	example	of	the	phenomenon	of	busy	waiting),	operating
system	semaphores	can	be	used	by	the	lock	request	code	to	wait	for	a	lock	grant	notification.	The	lock
release	code	must	then	use	the	semaphore	mechanism	to	notify	waiting	transactions	that	their	locks	have
been	granted.

Even	if	the	system	handles	lock	requests	through	shared	memory,	it	still	uses	the	lock	manager	process
for	deadlock	detection.

20.3.2

Data	Servers	and	Data	Storage	Systems

Data-server	systems	were	originally	developed	to	support	data	access	from	object-oriented	databases;
object-oriented	databases	allow	programmers	to	use	a	programming	language	that	allows	creation,
retrieval,	and	update	of	persistent	objects.

Many	of	the	target	applications	of	object-oriented	databases,	such	as	computer-aided	design	(CAD)
systems,	required	extensive	computation	on	the	retrieved	data.

For	example,	the	CAD	system	may	store	a	model	of	a	computer	chip	or	a	building,	and	it	may	perform
computations	such	as	simulations	on	the	retrieved	model,	which	may	be	expensive	in	terms	of	CPU	time.

If	all	the	computation	were	done	at	the	server,	the	server	would	be	overloaded.

Instead,	in	such	an	environment,	it	makes	sense	to	store	data	on	a	separate	data	server	machine,	fetch
data	to	client	machines	when	needed,	perform	all	processing	at	the	client	machines,	and	then	to	store
new	or	updated	data	back	on	the	data	server	machine.	Thus,	the	processing	power	of	client	machines	can
be	used	to	carry	out	the	computation,	while	the	server	needs	only	to	store	and	fetch	data,	without
performing	any	computation.

More	recently,	a	number	of	parallel	data	storage	systems	have	been	developed	for	handling	very	high
volumes	of	data	and	transactions.	Such	systems	do	not	necessarily	support	SQL,	but	instead	provide	APIs
for	storing,	retrieving,	and	updating	data	items.

Data	items	stored	in	such	systems	they	could	be	tuples,	or	could	be	objects	represented	in	formats	such	as
JSON	or	XML,	or	they	could	even	be	files	or	documents.

We	use	the	term	data	item	to	refer	to	tuples,	objects,	files,	and	documents.	We	also	use	the	terms	data
server	and	data	storage	system	interchangeably.

Data	servers	support	communication	of	entire	data	items;	in	the	case	of	very	large	data	items,	they	may
also	support	communication	of	only	specified	parts	of	the	data	item,	for	instance,	specified	blocks,	instead
of	requiring	that	the	entire	data	item	be	fetched	or	stored.

Data	servers	in	earlier	generations	of	storage	systems	supported	a	concept	called	page	shipping,	where
the	unit	of	communication	is	a	database	page	that	may	potentially	contain	multiple	data	items.	Page
shipping	is	not	used	today,	since	storage	systems	do	not	expose	the	underlying	storage	layout	to	clients.

20.3.3

Caching	at	Clients

The	time	cost	of	communication	between	a	client	application	and	a	server	(whether	a	transaction	server,
or	a	data	server)	is	high	compared	to	that	of	a	local	memory

20.3

Server	System	Architectures

969

reference	(milliseconds,	versus	less	than	100	nanoseconds).	The	time	to	send	a	message	over	a	network,
and	get	a	response	back,	called	the	network	round-trip	time,	or	network	latency,	can	be	nearly	a
millisecond	even	if	the	data	server	is	in	the	same	location	as	the	client.

As	a	result,	applications	running	at	the	clients	adopt	several	optimization	strategies	to	reduce	the	effects
of	network	latency.	The	same	strategies	can	also	be	useful	in	parallel	database	systems,	where	some	of
the	data	required	for	processing	a	query	may	be	stored	on	a	different	machine	from	where	it	is	consumed.
The	optimization	strategies	include	the	following:

•	Prefetching.	If	the	unit	of	communication	is	a	single	small	item,	the	overhead	of	message	passing	is	high
compared	to	the	amount	of	data	transmitted.	In	particular,	network	latency	can	cause	significant	delays	if
a	transaction	makes	repeated	requests	for	data	items	across	a	network.

Thus,	when	an	item	is	requested,	it	may	make	sense	to	also	send	other	items	that	are	likely	to	be	used	in
the	near	future.	Fetching	items	even	before	they	are	requested	is	called	prefetching.

•	Data	caching.	Data	that	are	shipped	to	a	client	on	behalf	of	a	transaction	can	be	cached	at	the	client
within	the	scope	of	a	single	transaction.	Data	can	be	cached	even	after	the	transaction	completes,
allowing	successive	transactions	at	the	same	client	to	make	use	of	the	cached	data.

However,	cache	coherency	is	an	issue:	Even	if	a	transaction	finds	cached	data,	it	must	make	sure	that
those	data	are	up	to	date,	since	they	may	have	been	updated,	or	even	deleted,	by	a	different	client	after
they	were	cached.	Thus,	a	message	must	still	be	exchanged	with	the	server	to	check	validity	of	the	data
and	to	acquire	a	lock	on	the	data,	unless	the	application	is	willing	to	live	with	potentially	stale	data.

Further,	new	tuples	may	have	been	inserted	after	a	transaction	caches	data,	which	may	not	be	in	the
cache.	The	transaction	may	have	to	contact	the	server	to	find	such	tuples.

•	Lock	caching.	If	the	usage	of	data	is	mostly	partitioned	among	the	clients,	with	clients	rarely	requesting
data	that	are	also	requested	by	other	clients,	locks	can	also	be	cached	at	the	client	machine.	Suppose	that
a	client	finds	a	data	item	in	the	cache,	and	that	it	also	finds	the	lock	required	for	an	access	to	the	data
item	in	the	cache.	Then,	the	access	can	proceed	without	any	communication	with	the	server.	However,	the
server	must	keep	track	of	cached	locks;	if	a	client	requests	a	lock	from	the	server,	the	server	must	call
back	all	conflicting	locks	on	the	data	item	from	any	other	client	machines	that	have	cached	the	locks.	The
task	becomes	more	complicated	when	machine	failures	are	taken	into	account.

•	Adaptive	lock	granularity.	If	a	transaction	requires	locks	on	multiple	data	items,	discovered	in	the	course
of	a	transaction,	and	each	lock	acquisition	requires	a	round	trip	to	a	data	server,	the	transaction	may
waste	a	good	deal	of	time	on

970

Chapter	20

Database-System	Architectures

just	lock	acquisition.	In	such	a	situation,	multi-granularity	locking	can	be	used	to	avoid	multiple	requests.
For	example,	if	multiple	data	items	are	stored	in	a	page,	a	single	page	lock	(which	is	at	a	coarser
granularity)	can	avoid	the	need	to	acquire	multiple	data-item	locks	(which	are	at	a	finer	granularity).	This
strategy	works	well	if	there	is	very	little	lock	contention,	but	with	higher	contention,	acquiring	a	coarse
granularity	lock	can	affect	concurrency	significantly.

Lock	de-escalation,	is	a	way	of	adaptively	decreasing	the	lock	granularity	if	there	is	higher	contention.
Lock	de-escalation	is	initiated	by	the	data	server	sending	a	request	to	the	client	to	de-escalate	a	lock,	and
the	client	responds	by	acquiring	finer-granularity	locks	and	then	releasing	the	coarser-granularity	lock.

When	switching	to	a	finer	granularity,	if	some	of	the	locks	were	for	cached	data	items	that	are	not
currently	locked	by	any	transaction	at	a	client,	the	data	item	can	be	removed	from	the	cache	instead	of
acquiring	a	finer-granularity	lock	on	it.

20.4

Parallel	Systems

Parallel	systems	improve	processing	and	I/O	speeds	by	using	a	large	number	of	computers	in	parallel.
Parallel	machines	are	becoming	increasingly	common,	making	the	study	of	parallel	database	systems
correspondingly	more	important.

In	parallel	processing,	many	operations	are	performed	simultaneously,	as	opposed	to	serial	processing,	in

which	the	computational	steps	are	performed	sequentially.	A	coarse-grain	parallel	machine	consists	of	a
small	number	of	powerful	processors;	a	massively	parallel	or	fine-grain	parallel	machine	uses	thousands
of	smaller	processors.	Virtually	all	high-end	server	machines	today	offer	some	degree	of	coarse-grain
parallelism,	with	up	to	two	or	four	processors	each	of	which	may	have	20	to	40	cores.

Massively	parallel	computers	can	be	distinguished	from	the	coarse-grain	parallel	machines	by	the	much
larger	degree	of	parallelism	that	they	support.	It	is	not	practical	to	share	memory	between	a	large
number	of	processors.	As	a	result,	massively	parallel	computers	are	typically	built	using	a	large	number	of
computers,	each	of	which	has	its	own	memory,	and	often,	its	own	set	of	disks.	Each	such	computer	is
referred	to	as	a	node	in	the	system.

Parallel	systems	at	the	scale	of	hundreds	to	thousands	of	nodes	or	more	are	housed	in	a	data	center,
which	is	a	facility	that	houses	a	large	number	of	servers.	Data	centers	provide	high-speed	network
connectivity	within	the	data	center,	as	well	as	to	the	outside	world.	The	numbers	and	sizes	of	data	centers
have	grown	tremendously	in	the	last	decade,	and	modern	data	centers	may	have	several	hundred
thousand	servers.

20.4.1

Motivation	for	Parallel	Databases

The	transaction	requirements	of	organizations	have	grown	with	the	increasing	use	of	computers.
Moreover,	the	growth	of	the	World	Wide	Web	has	created	many	sites	with	millions	of	viewers,	and	the
increasing	amounts	of	data	collected	from	these	viewers	has	produced	extremely	large	databases	at	many
companies.

20.4

Parallel	Systems

971

The	driving	force	behind	parallel	database	systems	is	the	demands	of	applications	that	have	to	query
extremely	large	databases	(of	the	order	of	petabytes	—	that	is,	1000

terabytes,	or	equivalently,	1015	bytes)	or	that	have	to	process	an	extremely	large	number	of	transactions
per	second	(of	the	order	of	thousands	of	transactions	per	second).

Centralized	and	client	–	server	database	systems	are	not	powerful	enough	to	handle	such	applications.

Web-scale	applications	today	often	require	hundreds	to	thousands	of	nodes	(and	in	some	cases,	tens	of
thousands	of	nodes)	to	handle	the	vast	number	of	users	on	the	web.

Organizations	are	using	these	increasingly	large	volumes	of	data	—	such	as	data	about	what	items	people
buy,	what	web	links	users	click	on,	and	when	people	make	telephone	calls	—	to	plan	their	activities	and
pricing.	Queries	used	for	such	purposes	are	called	decision-support	queries,	and	the	data	requirements
for	such	queries	may	run	into	terabytes.	Single-node	systems	are	not	capable	of	handling	such	large
volumes	of	data	at	the	required	rates.

The	set-oriented	nature	of	database	queries	naturally	lends	itself	to	parallelization.

A	number	of	commercial	and	research	systems	have	demonstrated	the	power	and	scalability	of	parallel
query	processing.

As	the	cost	of	computing	systems	has	reduced	significantly	over	the	years,	parallel	machines	have	become
common	and	relatively	inexpensive.	Individual	computers	have	themselves	become	parallel	machines
using	multicore	architectures.	Parallel	databases	are	thus	quite	affordable	even	for	small	organizations.

Parallel	database	systems	which	can	support	hundreds	of	nodes	have	been	available	commercially	for
several	decades,	but	the	number	of	such	products	has	seen	a	significant	increase	since	the	mid	2000s.
Open-source	platforms	for	parallel	data	storage	such	as	the	Hadoop	File	System	(HDFS),	and	HBase,	and
for	query	processing,	such	as	Hadoop	Map-Reduce	and	Hive	(among	many	others),	have	also	seen
extensive	adoption.

It	is	worth	noting	that	application	programs	are	typically	built	such	that	they	can	be	executed	in	parallel
on	a	number	of	application	servers,	which	communicate	over	a	network	with	a	database	server,	which
may	itself	be	a	parallel	system.	The	parallel	architectures	described	in	this	section	can	be	used	not	only
for	data	storage	and	query	processing	in	the	database	but	also	for	parallel	processing	of	application
programs.

20.4.2

Measures	of	Performance	for	Parallel	Systems

There	are	two	main	measures	of	performance	of	a	database	system:	(1)	throughput,	the	number	of	tasks
that	can	be	completed	in	a	given	time	interval,	and	(2)	response	time,	the	amount	of	time	it	takes	to
complete	a	single	task	from	the	time	it	is	submitted.	A	system	that	processes	a	large	number	of	small
transactions	can	improve	throughput	by	processing	many	transactions	in	parallel.	A	system	that	processes
large	transactions	can	improve	response	time	as	well	as	throughput	by	performing	subtasks	of	each
transaction	in	parallel.

972

Chapter	20

Database-System	Architectures

linear	speedup

sublinear	speedup

speed

resources

Figure	20.2	Speedup	with	increasing	resources.

Parallel	processing	within	a	computer	system	allows	database-system	activities	to	be	speeded	up,	allowing
faster	response	to	transactions,	as	well	as	more	transactions	to	be	executed	per	second.	Queries	can	be
processed	in	a	way	that	exploits	the	parallelism	offered	by	the	underlying	computer	system.

Two	important	issues	in	studying	parallelism	are	speedup	and	scaleup.	Running	a	given	task	in	less	time
by	increasing	the	degree	of	parallelism	is	called	speedup.	Handling	larger	tasks	by	increasing	the	degree
of	parallelism	is	called	scaleup.

Consider	a	database	application	running	on	a	parallel	system	with	a	certain	number	of	processors	and
disks.	Now	suppose	that	we	increase	the	size	of	the	system	by	increasing	the	number	of	processors,	disks,
and	other	components	of	the	system.	The	goal	is	to	process	the	task	in	time	inversely	proportional	to	the
number	of	processors	and	disks	allocated.	Suppose	that	the	execution	time	of	a	task	on	the	larger
machine	is	T	,	and	that	the	execution	time	of	the	same	task	on	the	smaller	machine	is	T	.	The	L

S

speedup	due	to	parallelism	is	defined	as	T	∕	T	.	The	parallel	system	is	said	to	demonS

L

strate	linear	speedup	if	the	speedup	is	N	when	the	larger	system	has	N	times	the	resources	(processors,
disk,	and	so	on)	of	the	smaller	system.	If	the	speedup	is	less	than	N	,	the	system	is	said	to	demonstrate
sublinear	speedup.	Figure	20.2	illustrates	linear	and	sublinear	speedup.2

Scaleup	relates	to	the	ability	to	process	larger	tasks	in	the	same	amount	of	time	by	providing	more
resources.	Let	Q	be	a	task,	and	let	Q

be	a	task	that	is	N	times

N

bigger	than	Q.	Suppose	that	the	execution	time	of	task	Q	on	a	given	machine	M	is	S

T	,	and	the	execution	time	of	task	Q	on	a	parallel	machine	M	that	is	N	times	larger	S

N

L

than	M	is	T	.	The	scaleup	is	then	defined	as	T	∕	T	.	The	parallel	system	M	is	said	S

L

S

L

L

to	demonstrate	linear	scaleup	on	task	Q	if	T

=	T	.	If	T	>	T	,	the	system	is	said

L

S

L

S

2In	some	cases,	a	parallel	system	may	provide	superlinear	speedup,	that	is,	an	N	times	larger	system	may
provide	speedup	greater	than	N	.	This	could	happen,	for	example,	because	data	that	did	not	fit	in	the	main
memory	of	a	smaller	system	do	fit	in	the	main	memory	of	a	larger	system,	avoiding	disk	I/O.	Similarly,	data
may	fit	in	the	cache	of	a	larger	system,	reducing	memory	accesses	compared	to	a	smaller	system,	which
could	lead	to	superlinear	speedup.

20.4

Parallel	Systems

973

linear	scaleup

TS

TL

sublinear	scaleup

problem	size

Figure	20.3	Scaleup	with	increasing	problem	size	and	resources.

to	demonstrate	sublinear	scaleup.	Figure	20.3	illustrates	linear	and	sublinear	scaleups	(where	the
resources	increase	in	proportion	to	problem	size).	There	are	two	kinds	of	scaleup	that	are	relevant	in
parallel	database	systems,	depending	on	how	the	size	of	the	task	is	measured:

•	In	batch	scaleup,	the	size	of	the	database	increases,	and	the	tasks	are	large	jobs	whose	runtime	depends
on	the	size	of	the	database.	An	example	of	such	a	task	is	a	scan	of	a	relation	whose	size	is	proportional	to
the	size	of	the	database.	Thus,	the	size	of	the	database	is	the	measure	of	the	size	of	the	problem.	Batch
scaleup	also	applies	in	scientific	applications,	such	as	executing	a	weather	simulation	at	an	N	-times	finer
resolution,3	or	performing	the	simulation	for	an	N	-times	longer	period	of	time.

•	In	transaction	scaleup,	the	rate	at	which	transactions	are	submitted	to	the	database	increases,	and	the
size	of	the	database	increases	proportionally	to	the	transaction	rate.	This	kind	of	scaleup	is	what	is
relevant	in	transaction-processing	systems	where	the	transactions	are	small	updates	—	for	example,	a
deposit	or	withdrawal	from	an	account	—	and	transaction	rates	grow	as	more	accounts	are	created.	Such
transaction	processing	is	especially	well	adapted	for	parallel	execution,	since	transactions	can	run
concurrently	and	independently	on	separate	nodes,	and	each	transaction	takes	roughly	the	same	amount
of	time,	even	if	the	database	grows.

Scaleup	is	usually	the	more	important	metric	for	measuring	the	efficiency	of	parallel	database	systems.
The	goal	of	parallelism	in	database	systems	is	usually	to	make	sure	that	the	database	system	can	continue
to	perform	at	an	acceptable	speed,	even	as	the	size	of	the	database	and	the	number	of	transactions
increases.	Increasing	the	ca-3For	example,	a	weather	simulation	that	divides	the	atmosphere	in	a
particular	region	into	cubes	of	side	200	meters	may	need	to	be	modified	to	use	a	finer	resolution,	with
cubes	of	side	100	meters;	the	number	of	cubes	would	thus	be	scaled	up	by	a	factor	of	8.

974

Chapter	20

Database-System	Architectures

pacity	of	the	system	by	increasing	the	parallelism	provides	a	smoother	path	for	growth	for	an	enterprise
than	does	replacing	a	centralized	system	with	a	faster	machine	(even	assuming	that	such	a	machine
exists).	However,	we	must	also	look	at	absolute	performance	numbers	when	using	scaleup	measures;	a
machine	that	scales	up	linearly	may	perform	worse	than	a	machine	that	scales	less	than	linearly,	simply
because	the	latter	machine	is	much	faster	to	start	off	with.

A	number	of	factors	work	against	efficient	parallel	operation	and	can	diminish	both	speedup	and	scaleup.

•	Sequential	computation.	Many	tasks	have	some	components	that	can	benefit	from	parallel	processing,
and	some	components	that	have	to	be	executed	sequentially.

Consider	a	task	that	takes	time	T	to	run	sequentially.	Suppose	the	fraction	of	the	total	execution	time	that
can	benefit	from	parallelization	is	p,	and	that	part	is	executed	by	n	nodes	in	parallel.	Then	the	total	time
taken	would	be	(1	−	p)	T	+(p∕	n)	T	,	and	the	speedup	would	be

1

.	(This	formula	is	referred	to	as	Amdahl’s	law.)

(1−	p)+(p∕	n)

If	the	fraction	p	is,	say	9	,	then	the	maximum	speedup	possible,	even	with	very	large	10

n,	would	be	10.

Now	consider	scaleup,	where	the	problem	size	increases.	If	the	time	taken	by	the	sequential	part	of	a	task
increases	along	with	the	problem	size,	scaleup	will	be	similarly	limited.	Suppose	fraction	p	of	the
execution	time	of	a	problem	benefits	from	increasing	resources,	while	fraction	(1−	p)	is	sequential	and
does	not	benefit	from	increasing	resources.	Then	the	scaleup	with	n	times	more	resources	on	a	problem
that	is	n	times	larger	will	be

1

.	(This	formula	is	referred	to

n(1−	p)+	p

as	Gustafson’s	law.)	However,	if	the	time	taken	by	the	sequential	part	does	not	increase	with	problem	size,
its	impact	on	scaleup	will	be	less	as	the	problem	sizes.

Start-up	costs.	There	is	a	start-up	cost	associated	with	initiating	a	single	process.

In	a	parallel	operation	consisting	of	thousands	of	processes,	the	start-up	time	may	overshadow	the	actual
processing	time,	affecting	speedup	adversely.

•	Interference.	Since	processes	executing	in	a	parallel	system	often	access	shared	resources,	a	slowdown
may	result	from	the	interference	of	each	new	process	as	it	competes	with	existing	processes	for
commonly	held	resources,	such	as	a	system	bus,	or	shared	disks,	or	even	locks.	Both	speedup	and	scaleup
are	affected	by	this	phenomenon.

•	Skew.	By	breaking	down	a	single	task	into	a	number	of	parallel	steps,	we	reduce	the	size	of	the	average
step.	Nonetheless,	the	service	time	for	the	single	slowest	step	will	determine	the	service	time	for	the	task
as	a	whole.	It	is	often	difficult	to	divide	a	task	into	exactly	equal-sized	parts,	and	the	way	that	the	sizes	are
distributed	is	therefore	skewed.	For	example,	if	a	task	of	size	100	is	divided	into	10	parts,	and	the	division
is	skewed,	there	may	be	some	tasks	of	size	less	than	10	and	some	tasks	of	size	more	than	10;	if	even	one
task	happens	to	be	of	size	20,	the	speedup	obtained	by	running	the	tasks	in	parallel	is	only	5,	instead	of	10
as	we	would	have	hoped.

20.4

Parallel	Systems

975

(a)	bus

(b)	ring

(c)	mesh

(d)	hypercube

core

switches

.	.	.

aggregation

switches

.	.	.

top-of-rack

switches

.	.	.

(e)	tree-like	topology

Figure	20.4	Interconnection	networks.

20.4.3

Interconnection	Networks

Parallel	systems	consist	of	a	set	of	components	(processors,	memory,	and	disks)	that	can	communicate
with	each	other	via	an	interconnection	network.	Figure	20.4	shows	several	commonly	used	types	of
interconnection	networks:

•	Bus.	All	the	system	components	can	send	data	on	and	receive	data	from	a	single	communication	bus.
This	type	of	interconnection	is	shown	in	Figure	20.4a.	Bus	interconnects	were	used	in	earlier	days	to
connect	multiple	nodes	in	a	network,	but	they	are	no	longer	used	for	this	task.	However,	bus
interconnections	are	still	used	for	connecting	multiple	CPUs	and	memory	units	within	a	single	node,	and
they	work	well	for	small	numbers	of	processors.	However,	they	do	not	scale	well

976

Chapter	20

Database-System	Architectures

with	increasing	parallelism,	since	the	bus	can	handle	communication	from	only	one	component	at	a	time;
with	increasing	numbers	of	CPUs	and	memory	banks	in	a	node,	other	interconnection	mechanisms	such
as	ring	or	mesh	interconnections	are	now	used	even	within	a	single	node.

•	Ring.	The	components	are	nodes	arranged	in	a	ring	(circle),	and	each	node	is	connected	to	its	two
adjacent	nodes	in	the	ring,	as	shown	in	Figure	20.4b.	Unlike	a	bus,	each	link	can	transmit	data
concurrently	with	other	links	in	the	ring,	leading	to	better	scalability.	However,	to	transmit	data	from	one
node	to	another	node	on	the	ring	may	require	a	large	number	of	hops;	specifically,	up	to	n∕2	hops	may	be
needed	on	a	ring	with	n	nodes,	assuming	communication	can	be	done	in	either	direction	on	the	ring.
Furthermore,	the	transmission	delay	increases	if	the	number	of	nodes	in	the	ring	is	increased.

•	Mesh.	The	components	are	nodes	in	a	grid,	and	each	component	connects	to	all	its	adjacent	components
in	the	grid.	In	a	two-dimensional	mesh,	each	node	connects	to	(up	to)	four	adjacent	nodes,	while	in	a
three-dimensional	mesh,	each	node	connects	to	(up	to)	six	adjacent	nodes.	Figure	20.4c	shows	a	two-
dimensional	mesh.

Nodes	that	are	not	directly	connected	can	communicate	with	one	another	by	routing	messages	via	a
sequence	of	intermediate	nodes	that	are	directly	connected	to	one	another.	The	number	of	communication
links	grows	as	the	number	of	components	grows,	and	the	communication	capacity	of	a	mesh	therefore
scales	better	with	increasing	parallelism.

Mesh	interconnects	are	used	to	connect	multiple	cores	in	a	processor,	or	processors	in	a	single	server,	to
each	other;	each	processor	core	has	direct	access	to	a	bank	of	memory	connected	to	the	processor	core,
but	the	system	transparently	fetches	data	from	other	memory	banks	by	sending	messages	over	the	mesh
interconnects.

However,	mesh	interconnects	are	no	longer	used	for	interconnecting	nodes,	since	the	number	of	hops
required	to	transmit	data	increases	significantly	with	the	number	of	nodes	(the	number	of	hops	required

to	transmit	data	from	one	node	to	another	node	in	a	mesh	is	proportional	in	the	worst	case	to	the	square
root	of	the	number	of	nodes).	Parallel	systems	today	have	very	large	numbers	of	nodes,	and	mesh
interconnects	would	thus	be	impractically	slow.

•	Hypercube.	The	components	are	numbered	in	binary,	and	a	component	is	connected	to	another	if	the
binary	representations	of	their	numbers	differ	in	exactly	one	bit.	Thus,	each	of	the	n	components	is
connected	to	log(n)	other	components.

Figure	20.4d	shows	a	hypercube	with	eight	nodes.	In	a	hypercube	interconnection,	a	message	from	a
component	can	reach	any	other	component	by	going	through	at	most	log(n)	links.	In	contrast,	in	a	mesh
architecture	a	component	may	be

√

√

2(

n	−	1)	links	away	from	some	of	the	other	components	(or

n	links	away,

if	the	mesh	interconnection	wraps	around	at	the	edges	of	the	grid).	Thus	communication	delays	in	a
hypercube	are	significantly	lower	than	in	a	mesh.

20.4

Parallel	Systems

977

Hypercubes	have	been	used	to	interconnect	nodes	in	massively	parallel	computers	in	earlier	days,	but
they	are	no	longer	commonly	used.

•	Tree-like.	Server	systems	in	a	data	center	are	typically	mounted	in	racks,	with	each	rack	holding	up	to
about	40	nodes.	Multiple	racks	are	used	to	build	systems	with	larger	numbers	of	nodes.	A	key	issue	is	how
to	interconnect	such	nodes.

To	connect	nodes	within	a	rack,	there	is	typically	a	network	switch	mounted	at	the	top	of	the	rack;	48	port
switches	are	commonly	used,	so	a	single	switch	can	be	used	to	connect	all	the	servers	in	a	rack.	Current-
generation	network	switches	typically	support	a	bandwidth	of	1	to	10	gigabits	per	second	(Gbps)
simultaneously	from/to	each	of	the	servers	connected	to	the	switch,	although	more	expensive	network
interconnects	with	40	to	100	Gbps	bandwidths	are	available.

Multiple	top-of-rack	switches	(also	referred	to	as	edge	switches)	can	in	turn	be	connected	to	another
switch,	called	an	aggregation	switch,	allowing	interconnection	between	racks.	If	there	are	a	large	number
of	racks,	the	racks	may	be	divided	into	groups,	with	one	aggregation	switch	connecting	a	group	of	racks,
and	all	the	aggregation	switches	in	turn	connected	to	a	core	switch.	Such	an	architecture	is	a	tree
topology	with	three	tiers.	The	core	switch	at	the	top	of	the	tree	also	provides	connectivity	to	outside
networks.

A	problem	with	this	basic	tree	structure,	which	is	frequently	used	in	local-area	networks	within
organizations,	is	that	the	available	bandwidth	between	racks	is	often	not	sufficient	if	multiple	machines	in
a	rack	try	to	communicate	significant	amounts	of	data	with	machines	from	other	racks.	Typically,	the
interconnects	of	the	aggregation	switches	support	higher	bandwidths	of	10	to	40	Gbps,	although
interconnects	of	100	Gbps	are	available.	Interconnects	of	even	higher	capacity	can	be	created	by	using
multiple	interconnects	in	parallel.	However,	even	such	high-speed	links	can	be	saturated	if	a	large	enough
number	of	servers	in	a	rack	attempt	to	communicate	at	their	full	connection	bandwidth	to	servers	in	other
racks.

To	avoid	the	bandwidth	bottleneck	of	a	tree	structure,	data	centers	typically	connect	each	top-of-rack
(edge)	switch	to	multiple	aggregation	switches.	Each	aggregation	switch	in	turn	is	linked	to	a	number	of
core	switches	at	the	next	layer.

Such	an	interconnection	topology	is	called	a	tree-like	topology;	Figure	20.4e	shows	a	tree-like	topology
with	three	tiers.	The	tree-like	topology	is	also	referred	to	as	a	fat-tree	topology,	although	originally	the	fat-
tree	topology	referred	to	a	tree	topology	where	edges	higher	in	the	tree	have	a	higher	bandwidth	than
edges	lower	in	the	tree.

The	benefit	of	the	tree-like	architecture	is	that	each	top-of-rack	switch	can	route	its	messages	through	any
of	the	aggregation	switches	that	it	is	connected	to,	increasing	the	inter-rack	bandwidth	greatly	as

compared	to	the	tree	topology.	Similarly,	each	aggregation	switch	can	communicate	with	another
aggregation	switch	via	any	of	the	core	switches	that	it	is	connected	to,	increasing	the	bandwidth	available
between	the	aggregation	switches.	Further,	even	if	an	aggregation	or	edge	switch	fails,	there	are
alternative	paths	through	other	switches.	With	appropriate

978

Chapter	20

Database-System	Architectures

routing	algorithms,	the	network	can	continue	functioning	even	if	a	switch	fails,	making	the	network	fault-
tolerant,	at	least	to	failures	of	one	or	a	few	switches.

A	tree-like	architecture	with	three	tiers	can	handle	a	cluster	of	tens	of	thousands	of	machines.	Although	a
tree-like	topology	improves	the	inter-rack	bandwidth	greatly	compared	to	a	tree	topology,	parallel
processing	applications,	including	parallel	storage	and	parallel	database	systems,	perform	best	if	they	are
designed	in	a	way	that	reduces	inter-rack	traffic.

The	tree-like	topology	and	variants	of	it	are	widely	used	in	data	centers	today.

The	complex	interconnection	networks	in	a	data	center	are	referred	to	as	a	data	center	fabric.

While	network	topologies	are	very	important	for	scalability,	a	key	to	network	performance	is	network
technology	used	for	individual	links.	The	popular	technologies	include:

•	Ethernet:	The	dominant	technology	for	network	connections	today	is	the	Ethernet	technology.	Ethernet
standards	have	evolved	over	time,	and	the	predominant	versions	used	today	are	1-gigabit	Ethernet	and
10-gigabit	Ethernet,	which	support	bandwidths	of	1	and	10	gigabits	per	second	respectively.	Forty-gigabit
Ethernet	and	100-gigabit	Ethernet	technologies	are	also	available	at	a	higher	cost	and	are	seeing
increasing	usage.	Ethernet	protocols	can	be	used	over	cheaper	copper	cables	for	short	distances,	and
over	optical	fiber	for	longer	distances.

•	Fiber	channel:	The	Fiber	Channel	Protocol	standard	was	designed	for	high-speed	interconnection
between	storage	systems	and	computers,	and	it	is	predominantly	used	to	implement	storage	area
networks	(described	in	Section	20.4.6).	The	different	versions	of	the	standard	have	supported	increasing
bandwidth	over	the	years,	with	16	gigabits	per	second	available	as	of	2011,	and	32	and	128	gigabits	per
second	supported	from	2016.

•	Infiniband:	The	Infiniband	standard	was	designed	for	interconnections	with	a	data	center;	it	was
specifically	designed	for	high-performance	computing	applications	which	need	not	just	very	high
bandwidth,	but	also	very	low	latency.	The	Infiniband	standard	has	evolved,	with	link	speeds	of	8-gigabits
per	second	available	by	2007

and	24-gigabits	per	second	available	by	2014.	Multiple	links	can	be	aggregated	to	give	a	bandwidth	of	120
to	290-gigabits	per	second.

The	latency	associated	with	message	delivery	is	as	important	as	bandwidth	for	many	applications.	A	key
benefit	of	Infiniband	is	that	it	supports	latencies	as	low	as	0.7	to	0.5	microseconds.	In	contrast,	Ethernet
latencies	can	be	up	to	hundreds	of	microseconds	in	an	unoptimized	local-area	network,	while	latency-
optimized	Ethernet	implementations	still	have	latencies	of	several	microseconds.

One	of	the	important	techniques	used	to	reduce	latency	is	to	allow	applications	to	send	and	receive
messages	by	directly	interfacing	with	the	hardware,	bypassing	the	operating	system.	With	the	standard
implementations	of	the	networking	stack,	applications

20.4

Parallel	Systems

979

P

M

P

M

P

M

P

P

M

P

P

M

P

P

M

P

(a)	shared	memory

(b)	shared	disk

M

P

P

M

P

P

P

M

M

M

P

P

P

M

P

P

P

P

P

M

P

P

P

M

P

P

P

P

(c)	shared	nothing

(d)	hierarchical

Figure	20.5	Parallel	database	architectures.

send	messages	to	the	operating	system,	which	in	turn	interfaces	with	the	hardware,	which	in	turn	delivers
the	message	to	the	other	computer,	where	again	the	hardware	interfaces	with	the	operating	system,
which	then	interfaces	with	the	application	to	deliver	the	message.	Support	for	direct	access	to	the
network	interface,	bypassing	the	operating	system,	reduces	the	communication	latency	significantly.

Another	approach	to	reducing	latency	is	to	use	remote	direct	memory	access	(RDMA),	a	technology	which
allows	a	process	on	one	node	to	directly	read	or	write	to	memory	on	another	node,	without	explicit
message	passing.	Hardware	support	ensures	that	RDMA	can	transfer	data	at	very	high	rates	with	very
low	latency.	RDMA	implementations	can	use	Infiniband,	Ethernet,	or	other	networking	technologies	for
physical	communication	between	nodes.

20.4.4

Parallel	Database	Architectures

There	are	several	architectural	models	for	parallel	machines.	Among	the	most	promi-nent	ones	are	those
in	Figure	20.5	(in	the	figure,	M	denotes	memory,	P	denotes	a	processor,	and	disks	are	shown	as	cylinders):

•	Shared	memory.	All	the	processors	share	a	common	memory	(Figure	20.5a).

980

Chapter	20

Database-System	Architectures

•	Shared	disk.	A	set	of	nodes	that	share	a	common	set	of	disks;	each	node	has	its	own	processor	and
memory	(Figure	20.5b).	Shared-disk	systems	are	sometimes	called	clusters.

•	Shared	nothing.	A	set	of	nodes	that	share	neither	a	common	memory	nor	common	disk	(Figure	20.5c).

•	Hierarchical.	This	model	is	a	hybrid	of	the	preceding	three	architectures	(Figure	20.5d).	This	model	is
the	most	widely	used	model	today.

In	Section	20.4.5	through	Section	20.4.8,	we	elaborate	on	each	of	these	models.

Note	that	the	interconnection	networks	are	shown	in	an	abstract	manner	in	Figure	20.5.	Do	not	interpret
the	interconnection	networks	shown	in	the	figures	as	necessarily	being	a	bus;	in	fact	other
interconnection	networks	are	used	in	practice.	For	example,	mesh	networks	are	used	within	a	processor,
and	tree-like	networks	are	often	used	to	interconnect	nodes.

20.4.5

Shared	Memory

In	a	shared-memory	architecture,	the	processors	have	access	to	a	common	memory,	typically	through	an
interconnection	network.	Disks	are	also	shared	by	the	processors.

The	benefit	of	shared	memory	is	extremely	efficient	communication	between	processes

—	data	in	shared	memory	can	be	accessed	by	any	process	without	being	moved	with	software.	A	process
can	send	messages	to	other	processes	much	faster	by	using	memory	writes	(which	usually	take	less	than	a
microsecond)	than	by	sending	a	message	through	a	communication	mechanism.

Multicore	processors	with	4	to	8	cores	are	now	common	not	just	in	desktop	computers,	but	even	in	mobile
phones.	High-end	processing	systems	such	as	Intel’s	Xeon	processor	have	up	to	28	cores	per	CPU,	with	up
to	8	CPUs	on	a	board,	while	the	Xeon	Phi	coprocessor	systems	contain	around	72	cores,	as	of	2018,	and
these	numbers	have	been	increasing	steadily.	The	reason	for	the	increasing	number	of	cores	is	that	the

sizes	of	features	such	as	logic	gates	in	integrated	circuits	has	been	decreasing	steadily,	allowing	more
gates	to	be	packed	in	a	single	chip.	The	number	of	transistors	that	can	be	accommodated	on	a	given	area
of	silicon	has	been	doubling	approximately	every	1	1/2

to	2	years.4

Since	the	number	of	gates	required	for	a	processor	core	has	not	increased	correspondingly,	it	makes
sense	to	have	multiple	processors	on	a	single	chip.	To	maintain	a	distinction	between	on-chip
multiprocessors	and	traditional	processors,	the	term	core	is	used	for	an	on-chip	processor.	Thus,	we	say
that	a	machine	has	a	multicore	processor.

4Gordon	Moore,	cofounder	of	Intel,	predicted	such	an	exponential	growth	in	the	number	of	transistors
back	in	the	1960s;	his	prediction	is	popularly	known	as	Moore’s	law,	even	though,	technically,	it	is	not	a
law,	but	rather	an	observation	and	a	prediction.	In	earlier	decades,	processor	speeds	also	increased	along
with	the	decrease	in	the	feature	sizes,	but	that	trend	ended	in	the	mid-2000s	since	processor	clock
frequencies	beyond	a	few	gigahertz	could	not	be	attained	without	unreasonable	increase	in	power
consumption	and	heat	generation.	Moores’s	law	is	sometimes	erroneously	interpreted	to	have	predicted
exponential	increases	in	processor	speeds.

20.4

Parallel	Systems

981

All	the	cores	on	a	single	processor	typically	access	a	shared	memory.	Further,	a	system	can	have	multiple
processors	which	can	share	memory.	Another	effect	of	the	increasing	number	of	gates	has	been	the	steady
increase	in	the	size	of	main	memory	as	well	as	a	decrease	in	cost,	per-byte,	of	main	memory.

Given	the	availability	of	multicore	processors	at	a	low	cost,	as	well	as	the	concurrent	availability	of	very
large	amounts	of	memory	at	a	low	cost,	shared-memory	parallel	processing	has	become	increasingly
important	in	recent	years.

20.4.5.1

Shared-Memory	Architectures

In	earlier	generation	architectures,	processors	were	connected	to	memory	via	a	bus,	with	all	processor
cores	and	memory	banks	sharing	a	single	bus.	A	downside	of	shared-memory	accessed	via	a	common	bus
is	that	the	bus	or	the	interconnection	network	becomes	a	bottleneck,	since	it	is	shared	by	all	processors.
Adding	more	processors	does	not	help	after	a	point,	since	the	processors	will	spend	most	of	their	time
waiting	for	their	turn	on	the	bus	to	access	memory.

As	a	result,	modern	shared-memory	architectures	associate	memory	directly	with	processors;	each
processor	has	locally	connected	memory,	which	can	be	accessed	very	quickly;	however,	each	processor
can	also	access	memory	associated	with	other	processors;	a	fast	interprocessor	communication	network
ensures	that	data	are	fetched	with	relatively	low	overhead.	Since	there	is	a	difference	in	memory	access
speed	depending	on	which	part	of	memory	is	accessed,	such	an	architecture	is	often	referred	to	as	non-
uniform	memory	architecture	(NUMA).

Figure	20.6	shows	a	conceptual	architecture	of	a	modern	shared-memory	system	with	multiple
processors;	note	that	each	processor	has	a	bank	of	memory	directly	connected	to	it,	and	the	processors
are	linked	by	a	fast	interconnect	system;	processors	are	also	connected	to	I/O	controllers	which	interface
with	external	storage.

I/O

Controller

C

Memory

ontroller

CPU

CPU

ntrollero

Memory

C

Memory

Memory

C

Memory

ontroller

CPU

CPU

ntrollero

Memory

C

I/O

Controller

Figure	20.6	Architecture	of	a	modern	shared-memory	system.

982

Chapter	20

Database-System	Architectures

Because	shared-memory	architectures	require	specialized	high-speed	interconnects	between	cores	and
between	processors,	the	number	of	cores/processors	that	can	be	interconnected	in	a	shared-memory
system	is	relatively	small.	As	a	result,	the	scalability	of	shared-memory	parallelism	is	limited	to	at	most	a
few	hundred	cores.

Processor	architectures	include	cache	memory,	since	access	to	cache	memory	is	much	faster	than	access
to	main	memory	(cache	can	be	accessed	in	a	few	nanoseconds	compared	to	nearly	a	hundred	nanoseconds
for	main	memory).	Large	cache	memory	is	particularly	important	in	shared-memory	architectures,	since	a
large	cache	can	help	minimize	the	number	of	accesses	to	shared	memory.

If	an	instruction	needs	to	access	a	data	item	that	is	not	in	cache,	it	must	be	fetched	from	main	memory.
Because	main	memory	is	much	slower	than	processors,	a	significant	amount	of	potential	processing	speed
may	be	lost	while	a	core	waits	for	data	from	main	memory.	These	waits	are	referred	to	as	cache	misses.

Many	processor	architectures	support	a	feature	called	hyper-threading,	or	hardware	threads,	where	a
single	physical	core	appears	as	two	or	more	logical	cores	or	threads.

Different	processes	could	be	mapped	to	different	logical	cores.	Only	one	of	the	logical	cores
corresponding	to	a	single	physical	core	can	actually	execute	at	any	time.	But	the	motivation	for	logical
cores	is	that	if	the	code	running	on	one	logical	core	blocks	on	a	cache	miss,	waiting	for	data	to	be	fetched
from	memory,	the	hardware	of	the	physical	core	can	start	execution	of	one	of	the	other	logical	cores
instead	of	idling	while	waiting	for	data	to	be	fetched	from	memory.

A	typical	multicore	processor	has	multiple	levels	of	cache,	with	the	L1	cache	being	fastest	to	access,	but
also	the	smallest;	lower	cache	levels	such	as	L2	and	L3	are	slower	(although	still	much	faster	than	main
memory)	but	considerably	larger	than	the	L1

cache.	Lower	cache	levels	are	usually	shared	between	multiple	cores	on	a	single	processor.	In	the	cache
architecture	shown	in	Figure	20.7,	the	L1	and	L2	caches	are	local	to	each	of	the	4	cores,	while	the	L3
cache	is	shared	by	all	cores	of	the	processor.	data	are	read	into,	or	written	from,	cache	in	units	of	a	cache
line,	which	typically	consists	of	64	consecutive	bytes.

Core	0	Core	1	Core	2	Core	3

L1	Cache	L1	Cache	L1	Cache	L1	Cache

L2	Cache	L2	Cache	L2	Cache	L2	Cache

Shared	L3	Cache

Figure	20.7	Multilevel	cache	system.

20.4

Parallel	Systems

983

20.4.5.2

Cache	Coherency

Cache	coherency	is	an	issue	whenever	there	are	multiple	cores	or	processors,	each	with	its	own	cache.	An
update	done	on	one	core	may	not	be	seen	by	another	core,	if	the	local	cache	on	the	second	core	contains
an	old	value	of	the	affected	memory	location.

Thus,	whenever	an	update	occurs	to	a	memory	location,	copies	of	the	content	of	that	memory	location	that
are	cached	on	other	caches	must	be	invalidated.

Such	invalidation	is	done	lazily	in	many	processor	architectures;	that	is,	there	may	be	some	time	lag
between	a	write	to	a	cache	and	the	dispatch	of	invalidation	messages	to	other	caches;	in	addition	there
may	be	a	further	lag	in	processing	invalidation	messages	that	are	received	at	a	cache.	(Requiring
immediate	invalidation	to	be	done	always	can	cause	a	significant	performance	penalty,	and	thus	it	is	not
done	in	current-generation	systems.)	Thus,	it	is	quite	possible	for	a	write	to	happen	on	one	processor,	and
a	subsequent	read	on	another	processor	may	not	see	the	updated	value.

Such	a	lack	of	cache	coherency	can	cause	problems	if	a	process	expects	to	see	an	updated	memory
location	but	does	not.	Modern	processors	therefore	support	memory	barrier	instructions,	which	ensure
certain	orderings	between	load/store	operations	before	the	barrier	and	those	after	the	barrier.	For
example,	the	store	barrier	instruction	(sfence)	on	the	x86	architecture	forces	the	processor	to	wait	until
invalidation	messages	are	sent	to	all	caches	for	all	updates	done	prior	to	the	instruction,	before	any
further	load/store	operations	are	issued.	Similarly,	the	load	barrier	instruction	(lfence)	ensures	all
received	invalidation	messages	have	been	applied	before	any	further	load/store	operations	are	issued.	The
mfence	instruction	does	both	of	these	tasks.

Memory	barrier	instructions	must	be	used	with	interprocess	synchronization	protocols	to	ensure	that	the
protocols	execute	correctly.	Without	the	use	of	memory	barriers,	if	the	caches	are	not	“strongly”	coherent,
the	following	scenario	can	happen.

Consider	a	situation	where	a	process	P	1	updates	memory	location	A	first,	then	location	B;	a	concurrent
process	P	2	running	on	a	different	core	or	processor	reads	B	first	and	then	reads	A.	With	a	coherent
cache,	if	P	2	sees	the	updated	value	of	B,	it	must	also	see	the	updated	value	of	A.	However,	in	the	absence
of	cache	coherence,	the	writes	may	be	propagated	out	of	order,	and	P	2	may	thus	see	the	updated	value	of
B	but	the	old	value	of	A.	While	many	architectures	disallow	out-of-order	propagation	of	writes,	there	are
other	subtle	errors	that	can	occur	due	to	lack	of	cache	coherency.	However,	executing	sfence	instructions
after	each	of	these	writes	and	lfence	before	each	of	the	reads	will	always	ensure	that	reads	see	a	cache
coherent	state.	As	a	result,	in	the	above	example,	the	updated	value	of	B	will	be	seen	only	if	the	updated
value	of	A	is	seen.

It	is	worth	noting	that	programs	do	not	need	to	include	any	extra	code	to	deal	with	cache	coherency,	as
long	as	they	acquire	locks	before	accessing	data,	and	release	locks	only	after	performing	updates,	since
lock	acquire	and	release	functions	typically	include	the	required	memory	barrier	instructions.	Specifically,
an	sfence	instruction	is	executed	as	part	of	the	lock	release	code,	before	the	data	item	is	actually
unlocked.	Similarly	an	lfence	is	executed	right	after	locking	a	data	item,	as	part	of	the	lock	acquisition

984

Chapter	20

Database-System	Architectures

function,	and	is	thus	executed	before	the	item	is	read.	Thus,	the	reader	is	guaranteed	to	see	the	most
recent	value	written	to	the	data	item.

Synchronization	primitives	supported	in	a	variety	of	languages	also	internally	execute	memory	barrier
instructions;	as	a	result,	programmers	who	use	these	primitives	need	not	be	concerned	about	lack	of
cache	coherency.

It	is	also	interesting	to	note	that	many	processor	architectures	use	a	form	of	hardware-level	shared	and
exclusive	locking	of	memory	locations	to	ensure	cache	coherency.	A	widely	used	protocol,	called	the	MESI
protocol,	can	be	understood	as	follows:	Locking	is	done	at	the	level	of	cache	lines,	containing	multiple

memory	locations,	instead	of	supporting	locks	on	individual	memory	locations,	since	cache	lines	are	the
units	of	cache	access.	Locking	is	implemented	in	the	hardware,	rather	than	in	software,	to	provide	the
required	high	performance.

The	MESI	protocol	keeps	track	of	the	state	of	each	cache	line,	which	can	be	Modified	(updated	after
exclusive	locking),	Exclusive	locked	(locked	but	not	yet	modified,	or	already	written	back	to	memory),
Share	locked,	or	Invalid.	A	read	of	a	memory	location	automatically	acquires	a	shared	lock	on	the	cache
line	containing	that	location,	while	a	memory	write	gets	an	exclusive	lock	on	the	cache	line	before
performing	the	write.

In	contrast	to	database	locks,	memory	lock	requests	do	not	wait;	instead	they	immediately	revoke
conflicting	locks.	Thus,	an	exclusive	lock	request	automatically	invalidates	all	cached	copies	of	the	cache
line	and	revokes	all	shared	locks	on	the	cache	line.	Symmetrically,	a	shared	lock	request	causes	any
existing	exclusive	lock	to	be	revoked	and	then	fetches	the	latest	copy	of	the	memory	location	into	cache.

In	principle,	it	is	possible	to	ensure	“strong”	cache	coherency	with	such	a	locking-based	cache	coherence
protocol,	making	memory	barrier	instructions	redundant.	However,	many	implementations	include	some
optimizations	that	speed	up	processing,	such	as	allowing	delayed	delivery	of	invalidation	messages,	at	the
cost	of	not	guaranteeing	cache	coherence.	As	a	result,	memory	barrier	instructions	are	required	on	many
processor	architectures	to	ensure	cache	coherency.

20.4.6

Shared	Disk

In	the	shared-disk	model,	each	node	has	its	own	processors	and	memory,	but	all	nodes	can	access	all	disks
directly	via	an	interconnection	network.	There	are	two	advantages	of	this	architecture	over	a	shared-
memory	architecture.	First,	a	shared-disk	system	can	scale	to	a	larger	number	of	processors	than	a
shared-memory	system.	Second,	it	offers	a	cheap	way	to	provide	a	degree	of	fault	tolerance:	If	a	node
fails,	the	other	nodes	can	take	over	its	tasks,	since	the	database	is	resident	on	disks	that	are	accessible
from	all	nodes.

We	can	make	the	disk	subsystem	itself	fault	tolerant	by	using	a	RAID	architecture,	as	described	in
Chapter	12,	allowing	the	system	to	function	even	if	individual	disks	fail.

The	presence	of	a	large	number	of	storage	devices	in	a	RAID	system	also	provides	some	degree	of	I/O
parallelism.

20.4

Parallel	Systems

985

node

node

storage	array

storage	area

node

network

node

storage	array

node

Figure	20.8	Storage-area	network.

A	storage-area	network	(SAN)	is	a	high-speed	local-area	network	designed	to	connect	large	banks	of
storage	devices	(disks)	to	nodes	that	use	the	data	(see	Figure	20.8).

The	storage	devices	physically	consist	of	an	array	of	multiple	disks	but	provide	a	view	of	a	logical	disk,	or
set	of	disks,	that	hides	the	details	of	the	underlying	disks.	For	example,	a	logical	disk	may	be	much	larger
than	any	of	the	physical	disks,	and	a	logical	disk’s	size	can	be	increased	by	adding	more	physical	disks.
The	processing	nodes	can	access	disks	as	if	they	are	local	disks,	even	though	they	are	physically	separate.

Storage-area	networks	are	usually	built	with	redundancy,	such	as	multiple	paths	between	nodes,	so	if	a
component	such	as	a	link	or	a	connection	to	the	network	fails,	the	network	continues	to	function.

Storage-area	networks	are	well	suited	for	building	shared-disk	systems.	The	shared-disk	architecture	with
storage-area	networks	has	found	acceptance	in	applications	that	do	not	need	a	very	high	degree	of
parallelism	but	do	require	high	availability.

Compared	to	shared-memory	systems,	shared-disk	systems	can	scale	to	a	larger	number	of	processors,
but	communication	across	nodes	is	slower	(up	to	a	few	milliseconds	in	the	absence	of	special-purpose
hardware	for	communication),	since	it	has	to	go	through	a	communication	network.

One	limitation	of	shared-disk	systems	is	that	the	bandwidth	of	the	network	connection	to	storage	in	a
shared-disk	system	is	usually	less	than	the	bandwidth	available	to	access	local	storage.	Thus,	storage
access	can	become	a	bottleneck,	limiting	scalability.

20.4.7

Shared	Nothing

In	a	shared-nothing	system,	each	node	consists	of	a	processor,	memory,	and	one	or	more	disks.	The	nodes
communicate	by	a	high-speed	interconnection	network.	A	node

986

Chapter	20

Database-System	Architectures

functions	as	the	server	for	the	data	on	the	disk	or	disks	that	the	node	owns.	Since	local	disk	references
are	serviced	by	local	disks	at	each	node,	the	shared-nothing	model	overcomes	the	disadvantage	of
requiring	all	I/O	to	go	through	a	single	interconnection	network.

Moreover,	the	interconnection	networks	for	shared-nothing	systems,	such	as	the	tree-like	interconnection
network,	are	usually	designed	to	be	scalable,	so	their	transmission	capacity	increases	as	more	nodes	are
added.	Consequently,	shared-nothing	architectures	are	more	scalable	and	can	easily	support	a	very	large
number	of	nodes.

The	main	drawbacks	of	shared-nothing	systems	are	the	costs	of	communication	and	of	nonlocal	disk
access,	which	are	higher	than	in	a	shared-memory	or	shared-disk	architecture	since	sending	data	involves
software	interaction	at	both	ends.

Due	to	their	high	scalability,	shared-nothing	architectures	are	widely	used	to	deal	with	very	large	data
volumes,	supporting	scalability	to	thousands	of	nodes,	or	in	extreme	cases,	even	to	tens	of	thousands	of
nodes.

20.4.8

Hierarchical

The	hierarchical	architecture	combines	the	characteristics	of	shared-memory,	shared-disk,	and	shared-
nothing	architectures.	At	the	top	level,	the	system	consists	of	nodes	that	are	connected	by	an
interconnection	network	and	do	not	share	disks	or	memory	with	one	another.	Thus,	the	top	level	is	a
shared-nothing	architecture.	Each	node	of	the	system	could	actually	be	a	shared-memory	system	with	a
few	processors.	Alternatively,	each	node	could	be	a	shared-disk	system,	and	each	of	the	systems	sharing	a
set	of	disks	could	be	a	shared-memory	system.	Thus,	a	system	could	be	built	as	a	hierarchy,	with	shared-
memory	architecture	with	a	few	processors	at	the	base,	and	a	shared-nothing	architecture	at	the	top,	with
possibly	a	shared-disk	architecture	in	the	middle.	Figure	20.5d	illustrates	a	hierarchical	architecture	with
shared-memory	nodes	connected	together	in	a	shared-nothing	architecture.

Parallel	database	systems	today	typically	run	on	a	hierarchical	architecture,	where	each	node	supports
shared-memory	parallelism,	with	multiple	nodes	interconnected	in	a	shared-nothing	manner.

20.5

Distributed	Systems

In	a	distributed	database	system,	the	database	is	stored	on	nodes	located	at	geographically	separated
sites.	The	nodes	in	a	distributed	system	communicate	with	one	another	through	various	communication
media,	such	as	high-speed	private	networks	or	the	internet.	They	do	not	share	main	memory	or	disks.	The
general	structure	of	a	distributed	system	appears	in	Figure	20.9.

The	main	differences	between	shared-nothing	parallel	databases	and	distributed	databases	include	the

following:

20.5

Distributed	Systems

987

site	A

site	C

network

communication

via	network

site	B

Figure	20.9	A	distributed	system.

•	Distributed	databases	have	sites	that	are	geographically	separated.	As	a	result,	the	network	connections
have	lower	bandwidth,	higher	latency,	and	greater	probability	of	failures,	as	compared	to	networks	within
a	single	data	center.

Systems	built	on	distributed	databases	therefore	need	to	be	aware	of	network	latency,	and	failures,	as
well	as	of	physical	data	location.	We	discuss	these	issues	later	in	this	section.	In	particular,	it	is	often
desirable	to	keep	a	copy	of	the	data	at	a	data	center	close	to	the	end	user.

•	Parallel	database	systems	address	the	problem	of	node	failure.	However,	some	failures,	particularly
those	due	to	earthquakes,	fires,	or	other	natural	disasters,	may	affect	an	entire	data	center,	causing
failure	of	a	large	number	of	nodes.	Distributed	database	systems	need	to	continue	working	even	in	the
event	of	failure	of	an	entire	data	center,	to	ensure	high	availability.	This	requires	replication	of	data	across
geographically	separated	data	centers,	to	ensure	that	a	common	natural	disaster	does	not	affect	all	the
data	centers.	Replication	and	other	techniques	to	ensure	high	availability	are	similar	in	both	parallel	and
distributed	databases,	although	implementation	details	may	differ.

•	Distributed	databases	may	be	separately	administered,	with	each	site	retaining	some	degree	of
autonomy	of	operation.	Such	databases	are	often	the	result	of	the	integration	of	existing	databases	to
allow	queries	and	transactions	to	cross	database	boundaries.	However,	distributed	databases	that	are
built	for	providing	geographic	distribution,	versus	those	built	by	integrating	existing	databases,	may	be
centrally	administered.

•	Nodes	in	a	distributed	database	tend	to	vary	more	in	size	and	function,	whereas	parallel	databases	tend
to	have	nodes	that	are	of	similar	capacity.

988

Chapter	20

Database-System	Architectures

•	In	a	distributed	database	system,	we	differentiate	between	local	and	global	transactions.	A	local
transaction	is	one	that	accesses	data	only	from	nodes	where	the	transaction	was	initiated.	A	global
transaction,	on	the	other	hand,	is	one	that	either	accesses	data	in	a	node	different	from	the	one	at	which
the	transaction	was	initiated,	or	accesses	data	in	several	different	nodes.

Web-scale	applications	today	run	on	data	management	systems	that	combine	support	for	parallelism	and
distribution.	Parallelism	is	used	within	a	data	center	to	handle	high	loads,	while	distribution	across	data
centers	is	used	to	ensure	high	availability	even	in	the	event	of	natural	disasters.	At	the	lower	end	of
functionality,	such	systems	may	be	distributed	data	storage	systems	that	support	only	limited	functionality
such	as	storage	and	retrieval	of	data	by	key,	and	they	may	not	support	schemas,	query	languages,	or
transactions;	all	such	higher-level	functionality	has	to	be	managed	by	the	applications.	At	the	higher	end
of	functionality,	there	are	distributed	database	systems	that	support	schemas,	query	language,	and
transactions.	However,	one	characteristic	of	such	systems	is	that	they	are	centrally	administered.

In	contrast,	distributed	databases	that	are	built	by	integrating	existing	database	systems	have	somewhat
different	characteristics.

•	Sharing	data.	The	major	advantage	in	building	a	distributed	database	system	is	the	provision	of	an
environment	where	users	at	one	site	may	be	able	to	access	the	data	residing	at	other	sites.	For	instance,

in	a	distributed	university	system,	where	each	campus	stores	data	related	to	that	campus,	it	is	possible	for
a	user	in	one	campus	to	access	data	in	another	campus.	Without	this	capability,	the	transfer	of	student
records	from	one	campus	to	another	campus	would	have	to	rely	on	some	external	mechanism.

•	Autonomy.	The	primary	advantage	of	sharing	data	by	means	of	data	distribution	is	that	each	site	can
retain	a	degree	of	control	over	data	that	are	stored	locally.

In	a	centralized	system,	the	database	administrator	of	the	central	site	controls	the	database.	In	a
distributed	system,	there	is	a	global	database	administrator	responsible	for	the	entire	system.	A	part	of
these	responsibilities	is	delegated	to	the	local	database	administrator	for	each	site.	Depending	on	the
design	of	the	distributed	database	system,	each	administrator	may	have	a	different	degree	of	local
autonomy.

In	a	homogeneous	distributed	database	system,	nodes	share	a	common	global	schema	(although	some
relations	may	be	stored	only	at	some	nodes),	all	nodes	run	the	same	distributed	database-management
software,	and	the	nodes	actively	cooperate	in	processing	transactions	and	queries.

However,	in	many	cases	a	distributed	database	has	to	be	constructed	by	linking	together	multiple	already-
existing	database	systems,	each	with	its	own	schema	and	possibly	running	different	database-
management	software.	The	sites	may	not	be	aware	of	one	another,	and	they	may	provide	only	limited
facilities	for	cooperation	in	query	and	transaction	processing.	Such	systems	are	sometimes	called
federated	database	systems	or	heterogeneous	distributed	database	systems.

20.6

Transaction	Processing	in	Parallel	and	Distributed	Systems

989

Nodes	in	a	distributed	database	communicate	over	wide-area	networks	(WAN).	Although	wide-area
networks	have	bandwidth	much	greater	than	local-area	networks,	the	bandwidth	is	usually	shared	by
multiple	users/applications	and	is	expensive	relative	to	local-area	network	bandwidth.	Thus,	applications
that	communicate	across	wide-area	networks	usually	have	a	lower	bandwidth.

Communication	in	a	WAN	must	also	contend	with	significant	latency:	a	message	may	take	up	to	a	few
hundred	milliseconds	to	be	delivered	across	the	world,	both	due	to	speed-of-light	delays,	and	due	to
queuing	delays	at	a	number	of	routers	in	the	path	of	the	message.	Latency	in	a	wide-area	setting	is	a
fundamental	problem	that	cannot	be	reduced	beyond	a	point.	Thus,	applications	whose	data	and
computing	resources	are	distributed	geographically	have	to	be	carefully	designed	to	ensure	that	latency
does	not	affect	system	performance	excessively.

Wide-area	networks	also	have	to	contend	with	network-link	failures,	a	problem	that	is	relatively	rare	in
local-area	networks.	In	particular,	network-link	failures	may	result	in	two	sites	that	are	both	alive	having
no	way	to	communicate	with	each	other,	a	situation	referred	to	as	a	network	partition.5	In	the	event	of	a
partition,	it	may	not	be	possible	for	a	user	or	an	application	to	access	required	data.	Thus,	network
partitioning	affects	the	availability	of	a	system.	Tradeoffs	between	availability	and	consistency	of	data	in
the	event	of	network	partitions	are	discussed	in	Section	23.4.

20.6

Transaction	Processing	in	Parallel	and	Distributed	Systems

Atomicity	of	transactions	is	an	important	issue	in	building	a	parallel	and	distributed	database	system.	If	a
transaction	runs	across	two	nodes,	unless	the	system	designers	are	careful,	it	may	commit	at	one	node
and	abort	at	another,	leading	to	an	inconsistent	state.	Transaction	commit	protocols	ensure	such	a
situation	cannot	arise.	The	two-phase	commit	protocol	(2PC)	is	the	most	widely	used	of	these	protocols.

The	2PC	protocol	is	described	in	detail	in	Section	23.2.1,	but	the	key	ideas	are	as	follows:	The	basic	idea
behind	2PC	is	for	each	node	to	execute	the	transaction	until	it	enters	the	partially	committed	state,	and
then	leave	the	commit	decision	to	a	single	coordinator	node;	the	transaction	is	said	to	be	in	the	ready
state	at	a	node	at	this	point.

The	coordinator	decides	to	commit	the	transaction	only	if	the	transaction	reaches	the	ready	state	at	every
node	where	it	executed;	otherwise	(e.g.,	if	the	transaction	aborts	at	any	node),	the	coordinator	decides	to
abort	the	transaction.	Every	node	where	the	transaction	executed	must	follow	the	decision	of	the
coordinator.	If	a	node	fails	when	a	transaction	is	in	ready	state,	when	the	node	recovers	from	failure	it
should	be	in	a	position	to	either	commit	or	abort	the	transaction,	depending	on	the	decision	of	the
coordinator.

5Do	not	confuse	the	term	network	partitioning	with	the	term	data	partitioning;	data	partitioning	refers	to

dividing	up	of	data	items	into	partitions,	which	may	be	stored	at	different	nodes.

990

Chapter	20

Database-System	Architectures

Concurrency	control	is	another	issue	in	parallel	and	distributed	databases.	Since	a	transaction	may	access
data	items	at	several	nodes,	transaction	managers	at	several	nodes	may	need	to	coordinate	to	implement
concurrency	control.	If	locking	is	used,	locking	can	be	performed	locally	at	the	nodes	containing	accessed
data	items,	but	there	is	also	a	possibility	of	deadlock	involving	transactions	originating	at	multiple	nodes.
Therefore	deadlock	detection	needs	to	be	carried	out	across	multiple	nodes.

Failures	are	more	common	in	distributed	systems	since	not	only	may	computers	fail,	but	communication
links	may	also	fail.	Replication	of	data	items,	which	is	the	key	to	the	continued	functioning	of	distributed
databases	when	failures	occur,	further	complicates	concurrency	control.	We	describe	concurrency-control
techniques	for	distributed	databases	in	Section	23.3	(which	describes	techniques	based	on	locking)	and
Section	23.3.4	(which	describes	techniques	based	on	timestamps).

The	standard	transaction	models,	based	on	multiple	actions	carried	out	by	a	single	program	unit,	are
often	inappropriate	for	carrying	out	tasks	that	cross	the	boundaries	of	databases	that	cannot	or	will	not
cooperate	to	implement	protocols	such	as	2PC.

Alternative	approaches,	based	on	persistent	messaging	for	communication,	are	generally	used	for	such
tasks;	persistent	messaging	is	discussed	in	Section	23.2.3.

When	the	tasks	to	be	carried	out	are	complex,	involving	multiple	databases	and/or	multiple	interactions
with	humans,	coordination	of	the	tasks	and	ensuring	transaction	properties	for	the	tasks	become	more
complicated.	Workflow	management	systems	are	systems	designed	to	help	with	carrying	out	such	tasks.

20.7

Cloud-Based	Services

Traditionally,	enterprises	purchased	and	ran	servers	that	execute	the	database	as	well	as	the	applications.
There	is	a	high	cost	to	maintaining	servers,	including	setting	up	server	room	infrastructure	dealing	with
all	kinds	of	failures	such	as	air	conditioning	and	power	failures,	not	to	mention	failures	of	CPUs,	disks,
and	other	components	of	the	servers.	Further,	if	there	is	a	sudden	increase	in	demand,	it	is	very	difficult
to	add	infrastructure	to	service	the	demand,	and	if	demand	falls,	the	infrastructure	may	lie	idle.

In	contrast,	in	the	cloud	computing	model,	applications	of	an	enterprise	are	executed	on	an	infrastructure
that	is	managed	by	another	company,	typically	at	a	data	center	that	hosts	a	large	number	of	machines
used	by	many	different	enterprises/users.

The	service	provider	may	provide	not	just	hardware,	but	also	support	platforms	such	as	databases,	and
application	software.

A	variety	of	vendors	offer	cloud	services;	these	include	major	vendors	such	as	Amazon,	Microsoft,	IBM,
and	Google,	and	a	number	of	smaller	vendors.	One	of	the	pioneers	of	cloud	services,	Amazon,	originally
built	a	large	computing	infrastructure	purely	for	its	internal	use;	then,	seeing	a	business	opportunity,	it
offered	computing	infrastructure	as	a	service	to	other	users.	Cloud	services	became	very	popular	within
just	a	few	years.

20.7

Cloud-Based	Services

991

Cloud	Clients

Web	browsers,	mobile	apps,	...

internet

Software-as-a-Service

Enterprise	applications,	email,

shared	documents,	...

Platform-as-a-Service

Data	storage,	Database,

Application	server,	...

Infrastructure-as-a-Service

Containers

Virtual	Machines

Servers	Storage

Figure	20.10	Cloud	service	models.

20.7.1

Cloud	Service	Models

There	are	several	ways	in	which	cloud	computing	can	be	utilized,	which	are	summarized	in	Figure	20.10.
These	include	infrastructure-as-a-service,	platform-as-a-service,	and	software-as-a-service	models.

•	In	the	infrastructure-as-a-service	model,	an	enterprise	rents	computing	facilities;	for	example,	an
enterprise	may	rent	one	or	more	physical	machines,	along	with	disk	storage	space.

More	frequently,	cloud	computing	providers	provide	an	abstraction	of	a	virtual	machine	(VM),	which
appears	to	the	user	to	be	a	real	machine.	These	machines	are	not	“real”	machines,	but	rather	are
simulated	by	software	that	allows	a	single

992

Chapter	20

Database-System	Architectures

real	computer	to	simulate	several	independent	computers.	Containers	are	a	lower	cost	alternative	to	VMs
and	are	described	later	in	this	section.	Multiple	VMs	can	run	on	a	single	server	machine,	and	multiple
containers	can	run	on	a	single	VM

or	server.

By	running	a	very	large	data	center	with	many	machines,	cloud-service

providers	can	exploit	economies	of	scale	and	deliver	computing	power	at	much	lower	cost	than	an
enterprise	can	do	using	its	own	infrastructure.

Another	major	advantage	of	cloud	computing	is	that	the	cloud-service	provider	usually	has	a	large	number
of	machines,	with	spare	capacity,	and	thus	an	enterprise	can	rent	more	(virtual)	machines	as	needed	to
meet	demand	and	release	them	at	times	of	light	load.	The	ability	to	expand	or	contract	capacity	at	short
notice	is	often	referred	to	as	elasticity.

The	above	benefits	of	on-demand	elastic	provisioning	of	server	systems	have	led	to	the	widespread
adoption	of	infrastructure-as-service	platforms,	especially	by	companies	that	anticipate	rapid	growth	in
their	computing	usage.	However,	due	to	the	potential	security	risks	of	storing	data	outside	the	enterprise,
the	use	of	cloud	computing	is	still	limited	in	high-security	enterprise	needs,	such	as	banking.

In	the	infrastructure-as-service	model,	the	client	enterprise	runs	its	own	software,	including	database
systems,	on	virtual	machines	provided	by	the	cloud-service	provider;	the	client	has	to	install	the	database
system	and	deal	with	maintenance	issues	such	as	backup	and	restore.

•	In	the	platform-as-a-service	model,	the	service	provider	not	only	provides	computing	infrastructure,	but
it	also	deploys	and	manages	platforms,	such	as	data	storage,	databases,	and	application	servers,	that	are
used	by	application	software.	The	client	has	to	install	and	maintain	application	software,	such	as
enterprise	resource	planning	(ERP)	systems,	which	run	on	such	platform-provided	services	as	application
servers,	database	services,	or	data	storage	services.

°	Cloud-based	data	storage	platforms	provide	a	service	that	applications	can	use	to	store	and	retrieve
data.	The	service	provider	takes	care	of	provisioning	sufficient	amount	of	storage	and	computing	power	to
support	the	load	on	the	data	storage	platform.	Such	storage	systems	could	support	files,	which	are
typically	large,	ranging	in	size	from	a	few	megabytes	to	thousands	of	megabytes,	supporting	millions	of
such	files.	Or	such	storage	systems	could	support	data	items,	which	are	typically	small,	ranging	from

hundreds	of	bytes	to	a	few	megabytes,	but	supporting	billions	of	such	data	items.	Such	distributed	file
systems	and	data	storage	systems	are	discussed	in	Section	21.6	and	Section	21.7.	Database	applications
using	cloud-based	storage	may	run	on	the	same	cloud	(i.e.,	the	same	set	of	machines),	or	on	another
cloud.

One	of	the	main	attractions	of	cloud-based	storage	is	that	it	can	be	used	by	paying	a	fee	without	worrying
about	purchasing,	maintaining,	and	managing	the	computer	systems	on	which	such	a	service	runs.
Further,	if	there	is	an

20.7

Cloud-Based	Services

993

increase	in	demand,	the	number	of	servers	on	which	the	service	runs	can	be	increased	by	paying	a	larger
fee,	without	having	to	actually	purchase	and	deploy	more	servers.	The	service	provider	would	of	course
have	to	deploy	extra	servers,	but	they	benefit	from	economies	of	scale;	the	cost	of	deployment,	and
especially	the	time	to	deployment,	are	greatly	reduced	compared	to	what	they	would	be	if	the	end-users
did	it	on	their	own.

The	fees	for	cloud-based	data	storage	are	typically	based	on	the	amount	of	data	stored,	and	amount	of
data	input	to,	and	the	amount	of	data	output	from,	the	data	storage	system.

°	Database-as-a-service	platforms	provide	a	database	that	can	be	accessed	and	queried	by	clients.	Unlike
storage	services,	database-as-a-service	platforms	provide	database	functionality	such	as	querying	using
SQL	or	other	query	languages,	which	data	storage	systems	do	not	provide.	Early	offerings	of	database-as-
a-service	only	supported	databases	that	run	on	a	single	node,	although	the	node	itself	can	have	a
substantial	number	of	processors,	memory,	and	storage.

More	recently,	parallel	database	systems	are	being	offered	as	a	service	on	the	cloud.

•	In	the	software-as-a-service	model,	the	service	provider	provides	the	application	software	as	a	service.
The	client	does	not	need	to	deal	with	issues	such	as	software	installation	or	upgrades;	these	tasks	are	left
to	the	service	provider.	The	client	can	directly	use	interfaces	provided	by	the	software-as-a-service
provider,	such	as	web	interfaces,	or	mobile	app	interfaces	that	provide	a	front	end,	with	the	application
software	acting	as	the	back	end.

The	concept	of	virtual	machines	was	developed	in	the	1960s	to	allow	an	expensive	mainframe	computer	to
be	shared	concurrently	by	users	running	different	operating	systems.	Although	computers	are	now	much
cheaper,	there	is	still	a	cost	associated	with	supplying	electrical	power	to	the	computers	and	maintaining
them;	virtual	machines	allow	this	cost	to	be	shared	by	multiple	concurrent	users.	Virtual	machines	also
ease	the	task	of	moving	services	to	new	machines:	a	virtual	machine	can	be	shut	down	on	one	physical
server	and	restarted	on	another	physical	server	with	very	little	delay	or	downtime.	This	feature	is
particularly	important	for	quick	recovery	in	the	event	of	hardware	failure	or	upgrade.

Although	multiple	virtual	machines	can	run	on	a	single	real	machine,	each	VM

has	a	high	overhead,	since	it	runs	an	entire	operating	system	internally.	When	a	single	organization
wishes	to	run	a	number	of	services,	if	it	creates	a	separate	VM	for	each	service,	the	overhead	can	be	very
high.	If	multiple	applications	are	run	on	one	machine	(or	VM),	two	problems	often	arise:	(1)	applications
conflict	on	network	ports	by	each	trying	to	listen	to	the	same	network	port,	and	(2)	applications	require
different	versions	of	shared	libraries,	causing	conflicts.

Containers	solve	both	these	problems;	applications	run	in	a	container,	which	has	its	own	IP	address	and
its	own	set	of	shared	libraries.	Each	application	can	consist	of

994

Chapter	20

Database-System	Architectures

App

App

App

App

App

App

Libraries

Libraries

Libraries

Libraries

App

App

OS	Kernel

OS	Kernel

App

App

Libraries

Libraries

Libraries

OS	Kernel

Hypervisor

OS	Kernel

a)	Multiple	applications	on	a

b)	Each	application	running	on

c)	Each	application	running	in

single	machine

its	own	VM,	with	multiple	VMs

its	own	container,	with	multiple

running	in	a	machine

containers	running	in	a	machine

Figure	20.11	Application	deployment	alternatives.

multiple	processes,	all	running	within	the	same	container.	The	cost	of	using	containers	to	run	applications
is	much	less	than	the	alternative	of	running	each	application	in	its	own	VM,	since	many	containers	can
share	the	same	operating	system	kernel.	Each	container	appears	to	have	its	own	file	system,	but	the	files
are	all	stored	in	a	common	underlying	file	system	across	all	containers.	Processes	within	a	container	can
interact	with	each	other	through	the	file	system	as	well	as	interprocess	communication,	but	they	can
interact	with	processes	from	other	containers	only	via	network	connections.

Figure	20.11	depicts	the	different	deployment	alternatives	for	a	set	of	applications.

Figure	20.11a	shows	the	alternative	of	multiple	applications	running	in	a	single	machine,	sharing	libraries
and	operating-system	kernel.	Figure	20.11b	shows	the	alternative	of	running	each	application	in	its	own
VM,	with	multiple	VMs	running	on	a	single	machine.	The	different	VMs	running	on	a	single	real	machine
are	managed	by	a	software	layer	called	the	hypervisor.	Figure	20.11c	shows	the	alternative	of	using
containers,	with	each	container	having	its	own	libraries,	and	multiple	containers	running	on	a	single
machine.	Since	containers	have	lower	overheads,	a	single	machine	can	support	more	containers	than
VMs.

Containers	provide	low-cost	support	for	elasticity,	since	more	containers	can	be	deployed	very	quickly	on
existing	virtual	machines,	instead	of	starting	up	fresh	virtual	machines.

Many	applications	today	are	built	as	a	collection	of	multiple	services,	each	of	which	runs	as	a	separate

process,	offering	a	network	API;	that	is,	the	functions	provided	by	the	service	are	invoked	by	creating	a
network	connection	to	the	process	and	sending	a	service	request	over	the	network	connection.	Such	an
application	architecture,	which	builds	an	application	as	a	collection	of	small	services,	is	called	a
microservices	architecture.	Containers	fit	the	microservices	architecture	very	well,	since	they	provide	a
very	low	overhead	mechanism	to	execute	processes	supporting	each	service.

20.8

Summary

995

Docker	is	a	very	widely	used	container	platform,	while	Kubernetes	is	a	very	popular	platform	that
provides	not	only	containers,	but	also	a	microservices	platform.	Kubernetes	allows	applications	to	specify
declaratively	their	container	needs,	and	it	automatically	deploys	and	links	multiple	containers	to	execute
the	application.	It	can	also	manage	a	number	of	pods,	which	allow	multiple	containers	to	share	storage
(file	system)	and	network	(IP	address)	while	allowing	containers	to	retain	their	own	copies	of	shared
libraries.	Furthermore,	it	can	manage	elasticity	by	controlling	the	deployment	of	additional	containers
when	required.	Kubernetes	can	support	application	scalability	by	load-balancing	API	requests	across	a
collection	of	containers	that	all	run	copies	of	the	same	application.	Users	of	the	API	do	not	need	to	know
what	IP	addresses	(each	corresponding	to	a	container)	the	service	is	running	on,	and	they	can	instead
connect	to	a	single	IP	address.	The	load	balancer	distributes	the	requests	from	the	common	IP

address	to	a	set	of	containers	(each	with	its	own	IP	address)	running	the	service.

20.7.2

Benefits	and	Limitations	of	Cloud	Services

Many	enterprises	are	finding	the	model	of	cloud	computing	and	services	beneficial.

The	cloud	model	saves	client	enterprises	the	need	to	maintain	a	large	system-support	staff	and	allows	new
enterprises	to	begin	operation	without	having	to	make	a	large,	up-front	capital	investment	in	computing
systems.	Further,	as	the	needs	of	the	enterprise	grow,	more	resources	(computing	and	storage)	can	be
added	as	required;	the	cloud-computing	vendor	generally	has	very	large	clusters	of	computers,	making	it
easy	for	the	vendor	to	allocate	resources	on	demand.

Users	of	cloud	computing	must	be	willing	to	accept	that	their	data	are	held	by	another	organization.	This
may	present	a	variety	of	risks	in	terms	of	security	and	legal	liability.	If	the	cloud	vendor	suffers	a	security
breach,	client	data	may	be	divulged,	causing	the	client	to	face	legal	challenges	from	its	customers.	Yet	the
client	has	no	direct	control	over	cloud-vendor	security.	These	issues	become	more	complex	if	the	cloud
vendor	chooses	to	store	data	(or	replicas	of	data)	in	a	foreign	country.	Various	legal	jurisdictions	differ	in
their	privacy	laws.	So,	for	example,	if	a	German	company’s	data	are	replicated	on	a	server	in	New	York,
then	the	privacy	laws	of	the	United	States	may	apply	instead	of	or	in	addition	to	those	of	Germany	or	the
European	Union.	The	cloud	vendor	might	be	required	to	release	client	data	to	the	U.S.	government	even
though	the	client	never	knew	that	its	data	would	be	stored	in	a	location	under	U.S.

jurisdiction.	Specific	cloud	vendors	offer	their	clients	varying	degrees	of	control	over	how	their	data	are
distributed	geographically	and	replicated.

Despite	the	drawbacks,	the	benefits	of	cloud	services	are	great	enough	that	there	is	a	rapidly	growing
market	for	such	services.

20.8

Summary

•	Centralized	database	systems	run	entirely	on	a	single	computer.	Database	systems	designed	for
multiuser	systems	need	to	support	the	full	set	of	transaction	features.

996

Chapter	20

Database-System	Architectures

Such	systems	are	usually	designed	as	servers	that	accept	requests	from	applications	via	SQL	or	their	own
APIs.

•	Parallelism	with	a	small	number	of	cores	is	referred	to	as	coarse-grained	parallelism.	Parallelism	with	a
large	number	of	processors	is	referred	to	as	fine-grained	parallelism.

•	Transaction	servers	have	multiple	processes,	possibly	running	on	multiple	processors.	So	that	these
processes	have	access	to	common	data,	such	as	the	database	buffer,	systems	store	such	data	in	shared
memory.	In	addition	to	processes	that	handle	queries,	there	are	system	processes	that	carry	out	tasks
such	as	lock	and	log	management	and	checkpointing.

•	Access	to	shared	memory	is	controlled	by	a	mutual-exclusion	mechanism	based	on	machine-level	atomic
instructions	(test-and-set	or	compare-and-swap).

•	Data-server	systems	supply	raw	data	to	clients.	Such	systems	strive	to	minimize	communication
between	clients	and	servers	by	caching	data	and	locks	at	the	clients.	Parallel	database	systems	use	similar
optimizations.

•	Parallel	database	systems	consist	of	multiple	processors	and	multiple	disks	connected	by	a	fast
interconnection	network.	Speedup	measures	how	much	we	can	increase	processing	speed	by	increasing
parallelism	for	a	single	transaction.	Scaleup	measures	how	well	we	can	handle	an	increased	number	of
transactions	by	increasing	parallelism.	Interference,	skew,	and	start-up	costs	act	as	barriers	to	getting
ideal	speedup	and	scaleup.

•	The	components	of	a	parallel	system	are	connected	via	several	possible	types	of	interconnection
networks:	bus,	ring,	mesh,	hypercube,	or	a	tree-like	topology.

•	Parallel	database	architectures	include	the	shared-memory,	shared-disk,	shared-nothing,	and
hierarchical	architectures.	These	architectures	have	different	tradeoffs	of	scalability	versus
communication	speed.

•	Modern	shared-memory	architectures	associate	some	memory	with	each	processor,	resulting	in	a	non-
uniform	memory	architecture	(NUMA).	Since	each	processor	has	its	own	cache,	there	is	a	problem	of
ensuring	cache	coherency,	that	is,	consistency	of	data	across	the	caches	of	multiple	processors.

•	Storage-area	networks	are	a	special	type	of	local-area	network	designed	to	provide	fast	interconnection
between	large	banks	of	storage	devices	and	multiple	computers.

•	A	distributed	database	system	is	a	collection	of	partially	independent	database	systems	that	(ideally)
share	a	common	schema	and	coordinate	processing	of	transactions	that	access	nonlocal	data.

Review	Terms

997

•	Cloud	services	may	be	provided	at	a	variety	of	levels:	The	infrastructure-as-a-service	model	provides
clients	with	a	virtual	machine	on	which	clients	install	their	own	software.	The	platform-as-a-service	model
provides	data-storage,	database,	and	application	servers	in	addition	to	virtual	machines,	but	the	client
needs	to	install	and	maintain	application	software.	The	software-as-a-service	model	provides	that
application	software	plus	the	underlying	platform.

•	Organizations	using	cloud	services	have	to	consider	a	wide	variety	of	technical,	economic,	and	legal
issues	in	order	to	ensure	the	privacy	and	security	of	data	and	adequate	performance	despite	the	likelihood
of	data	being	stored	at	a	remote	location.

Review	Terms

•	Centralized	Database	Systems

°	Data	center

°	Single-user	system

•	Decision-support	queries

°	Multiuser	system

•	Measure	of	performance

°	Server	systems

°	Throughput

°	Embedded	databases

°	Response	time

°	Servers

°	Linear	speedup

°	Coarse-grained	parallelism

°	Sublinear	speedup

°	Fine-grained	parallelism

°	Linear	scaleup

•	Server	System	Architectures

°	Sublinear	scaleup

°	Transaction-server

•	Sequential	computation

•

°	Query-server

Amdahl’s	law

•	Start-up	costs

°	Data-server	systems

•	Interconnection	network

°	Server	processes

•

°	Bus

Mutual	exclusion

•	Atomic	instructions

°	Ring

•	Data	caching

°	Mesh

•	Parallel	Systems

°	Hypercube

°	Coarse-grain	parallel	machine

°	Tree-like

°	Massively	parallel	machine

°	Edge	switches

°	Fine-grain	parallel	machine

•	Aggregation	switch

998

Chapter	20

Database-System	Architectures

•	Ethernet

•	Shared-disk

•	Fiber	channel

•	Fault	tolerance

•	Infiniband

•	Storage-area	network	(SAN)

•	Remote

direct

memory

access

•	Distributed	database	system

(RDMA)

•	Local	autonomy

•	Parallel	Database	Architectures

•	Homogeneous	distributed	database

•	Federated	database	systems

°	Shared	memory

•	Heterogeneous	distributed	database

°	Shared	disk

systems

°	Clusters

•	Latency

•

°	Shared	nothing

Network	partition

•	Availability

°	Hierarchical

•	Cloud	computing

•	Moore’s	law

•	Infrastructure-as-a-service

•	NUMA

•	Platform-as-a-service

•	Cache	misses

•	Cloud-based	data	storage

•	Hyper-threading

•	Database-as-a-service

•	Hardware	threads

•	Software-as-a-service

•	Cache

•	Microservices	architecture

Practice	Exercises

20.1

Is	a	multiuser	system	necessarily	a	parallel	system?	Why	or	why	not?

20.2

Atomic	instructions	such	as	compare-and-swap	and	test-and-set	also	execute	a	memory	fence	as	part	of
the	instruction	on	many	architectures.	Explain	what	is	the	motivation	for	executing	the	memory	fence,
from	the	viewpoint	of	data	in	shared	memory	that	is	protected	by	a	mutex	implemented	by	the	atomic
instruction.	Also	explain	what	a	process	should	do	before	releasing	a	mutex.

20.3

Instead	of	storing	shared	structures	in	shared	memory,	an	alternative	architecture	would	be	to	store	them
in	the	local	memory	of	a	special	process	and	access	the	shared	data	by	interprocess	communication	with
the	process.	What	would	be	the	drawback	of	such	an	architecture?

20.4

Explain	the	distinction	between	a	latch	and	a	lock	as	used	for	transactional	concurrency	control.

20.5

Suppose	a	transaction	is	written	in	C	with	embedded	SQL,	and	about	80	percent	of	the	time	is	spent	in	the
SQL	code,	with	the	remaining	20	percent	spent

Exercises

999

in	C	code.	How	much	speedup	can	one	hope	to	attain	if	parallelism	is	used	only	for	the	SQL	code?	Explain.

20.6

Consider	a	pair	of	processes	in	a	shared	memory	system	such	that	process	A	updates	a	data	structure,
and	then	sets	a	flag	to	indicate	that	the	update	is	completed.	Process	B	monitors	the	flag,	and	starts
processing	the	data	structure	only	after	it	finds	the	flag	is	set.

Explain	the	problems	that	could	arise	in	a	memory	architecture	where

writes	may	be	reordered,	and	explain	how	the	sfence	and	lfence	instructions	can	be	used	to	ensure	the
problem	does	not	occur.

20.7

In	a	shared-memory	architecture,	why	might	the	time	to	access	a	memory	location	vary	depending	on	the
memory	location	being	accessed?

20.8

Most	operating	systems	for	parallel	machines	(i)	allocate	memory	in	a	local	memory	area	when	a	process
requests	memory,	and	(ii)	avoid	moving	a	process	from	one	core	to	another.	Why	are	these	optimizations
important	with	a	NUMA	architecture?

20.9

Some	database	operations	such	as	joins	can	see	a	significant	difference	in	speed	when	data	(e.g.,	one	of
the	relations	involved	in	a	join)	fits	in	memory	as	compared	to	the	situation	where	the	data	do	not	fit	in
memory.	Show	how	this	fact	can	explain	the	phenomenon	of	superlinear	speedup,	where	an	application
sees	a	speedup	greater	than	the	amount	of	resources	allocated	to	it.

20.10

What	is	the	key	distinction	between	homogeneous	and	federated	distributed	database	systems?

20.11

Why	might	a	client	choose	to	subscribe	only	to	the	basic	infrastructure-as-a-service	model	rather	than	to
the	services	offered	by	other	cloud	service	models?

20.12

Why	do	cloud-computing	services	support	traditional	database	systems	best	by	using	a	virtual	machine,
instead	of	running	directly	on	the	service	provider’s	actual	machine,	assuming	that	data	is	on	external
storage?

Exercises

20.13

Consider	a	bank	that	has	a	collection	of	sites,	each	running	a	database	system.

Suppose	the	only	way	the	databases	interact	is	by	electronic	transfer	of	money	between	themselves,	using
persistent	messaging.	Would	such	a	system	qualify	as	a	distributed	database?	Why?

20.14

Assume	that	a	growing	enterprise	has	outgrown	its	current	computer	system	and	is	purchasing	a	new
parallel	computer.	If	the	growth	has	resulted	in	many	more	transactions	per	unit	time,	but	the	length	of
individual	transactions	has

1000

Chapter	20

Database-System	Architectures

not	changed,	what	measure	is	most	relevant	—	speedup,	batch	scaleup,	or	transaction	scaleup?	Why?

20.15

Database	systems	are	typically	implemented	as	a	set	of	processes	(or	threads)	accessing	shared	memory.

a.

How	is	access	to	the	shared-memory	area	controlled?

b.

Is	two-phase	locking	appropriate	for	serializing	access	to	the	data	structures	in	shared	memory?	Explain
your	answer.

20.16

Is	it	wise	to	allow	a	user	process	to	access	the	shared-memory	area	of	a	database	system?	Explain	your
answer.

20.17

What	are	the	factors	that	can	work	against	linear	scale	up	in	a	transaction	processing	system?	Which	of
the	factors	are	likely	to	be	the	most	important	in	each	of	the	following	architectures:	shared-memory,
shared	disk,	and	shared	nothing?

20.18

Memory	systems	today	are	divided	into	multiple	modules,	each	of	which	can	be	serving	a	separate	request
at	a	given	time,	in	contrast	to	earlier	architectures	where	there	was	a	single	interface	to	memory.	What
impact	has	such	a	memory	architecture	have	on	the	number	of	processors	that	can	be	supported	in	a
shared-memory	system?

20.19

Assume	we	have	data	items	d	,	d	,	…	,	d	with	each	d	protected	by	a	lock	stored	1

2

n

i

in	memory	location	M	.

i

a.

Describe	the	implementation	of	lock-X(d)	and

)	via	the	use

i

unlock(di

of	the	test-and-set	instruction.

b.

Describe	the	implementation	of	lock-X(d)	and

)	via	the	use

i

unlock(di

of	the	compare-and-swap	instruction.

20.20

In	a	shared-nothing	system	data	access	from	a	remote	node	can	be	done	by	remote	procedure	calls,	or	by
sending	messages.	But	remote	direct	memory	access	(RDMA)	provides	a	much	faster	mechanism	for	such
data	access.	Explain	why.

20.21

Suppose	that	a	major	database	vendor	offers	its	database	system	(e.g.,	Oracle,	SQL	Server	DB2)	as	a
cloud	service.	Where	would	this	fit	among	the	cloud-service	models?	Why?

20.22

If	an	enterprise	uses	its	own	ERP	application	on	a	cloud	service	under	the	platform-as-a-service	model,
what	restrictions	would	there	be	on	when	that	enterprise	may	upgrade	the	ERP	system	to	a	new	version?

Further	Reading

1001

Further	Reading

[Hennessy	et	al.	(2017)]	provides	an	excellent	introduction	to	the	area	of	computer	architecture,	including
the	topics	of	shared-memory	architectures	and	cache	coherency,	parallel	computing	architectures,	and
cloud	computing,	which	we	covered	in	this	chapter.	[Gray	and	Reuter	(1993)]	provides	the	classic
textbook	description	of	transaction	processing,	including	the	architecture	of	client	–	server	and
distributed	systems.

[Ozsu	and	Valduriez	(2010)]	provides	textbook	coverage	of	distributed	database	systems.	[Abts	and
Felderman	(2012)]	provides	an	overview	of	data	center	networking.

Bibliography

[Abts	and	Felderman	(2012)]

D.	Abts	and	B.	Felderman,	“A	Guided	Tour	of	Datacenter	Net-

working”,	Communications	of	the	ACM,	Volume	55,	Number	6	(2012),	pages	44–51.

[Gray	and	Reuter	(1993)]

J.	Gray	and	A.	Reuter,	Transaction	Processing:	Concepts	and	Tech-

niques,	Morgan	Kaufmann	(1993).

[Hennessy	et	al.	(2017)]

J.	L.	Hennessy,	D.	A.	Patterson,	and	D.	Goldberg,	Computer	Archi-

tecture:	A	Quantitative	Approach,	6th	edition,	Morgan	Kaufmann	(2017).

[Ozsu	and	Valduriez	(2010)]

T.	Ozsu	and	P.	Valduriez,	Principles	of	Distributed	Database	Sys-

tems,	3nd	edition,	Prentice	Hall	(2010).

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

C	H	A	P	T	E	R	21

Parallel	and	Distributed	Storage

As	we	discussed	in	Chapter	20,	parallelism	is	used	to	provide	speedup,	where	queries	are	executed	faster
because	more	resources,	such	as	processors	and	disks,	are	provided.

Parallelism	is	also	used	to	provide	scaleup,	where	increasing	workloads	are	handled	without	increased
response	time,	via	an	increase	in	the	degree	of	parallelism.

In	this	chapter,	we	discuss	techniques	for	data	storage	and	indexing	in	parallel	database	systems.

21.1

Overview

We	first	describe,	in	Section	21.2	and	Section	21.3,	how	to	partition	data	amongst	multiple	nodes.	We	then
discuss,	in	Section	21.4,	replication	of	data	and	parallel	indexing	(in	Section	21.5).	Our	description
focuses	on	shared-nothing	parallel	database	systems,	but	the	techniques	we	describe	are	also	applicable
to	distributed	database	systems,	where	data	are	stored	in	a	geographically	distributed	manner.

File	systems	that	run	on	a	large	number	of	nodes,	called	distributed	file	systems,	are	a	widely	used	way	to
store	data	in	a	parallel	system.	We	discuss	distributed	file	systems	in	Section	21.6.

In	recent	years	parallel	data	storage	and	indexing	techniques	have	been	extensively	used	for	storage	of
nonrelational	data,	including	unstructured	text	data,	and	semistructured	data	in	XML,	JSON,	or	other
formats.	Such	data	are	often	stored	in	parallel	key-value	stores,	which	store	data	items	with	an	associated
key.	The	techniques	we	describe	for	parallel	storage	of	relational	data	can	also	be	used	for	key-value

stores	which	are	discussed	in	Section	21.7.	We	use	the	term	data	storage	system	to	refer	to	both	key-value
stores,	and	the	data	storage	and	access	layer	of	parallel	database	systems.

Query	processing	in	parallel	and	distributed	databases	is	discussed	in	Chapter	22,	while	and	transaction
processing	in	parallel	and	distributed	databases	is	discussed	in	Chapter	23.

1003

1004

Chapter	21

Parallel	and	Distributed	Storage

21.2

Data	Partitioning

In	its	simplest	form,	I/O	parallelism	refers	to	reducing	the	time	required	to	retrieve	data	from	disk	by
partitioning	the	data	over	multiple	disks.1

At	the	lowest	level,	RAID	systems	allow	blocks	to	be	partitioned	across	multiple	disks,	allowing	them	to	be
accessed	in	parallel.	Blocks	are	usually	allocated	to	different	disks	in	a	round-robin	fashion,	as	we	saw	in
Section	12.5.	For	example,	if	there	are	n	disks	numbered	0	to	n	−	1,	round-robin	allocation	assigns	block	i
to	disk	i	mod	n.

However,	the	block-level	partitioning	techniques	supported	by	RAID	systems	do	not	offer	any	control	in
terms	of	which	tuples	of	a	relation	are	stored	on	which	disk	or	node.	Therefore,	parallel	database	systems
typically	do	not	use	block-level	partitioning	and	instead	perform	partitioning	at	the	level	of	tuples.

In	systems	with	multiple	nodes	(computers),	each	with	multiple	disks,	partitioning	can	potentially	be
specified	to	the	level	of	individual	disks.	However,	parallel	database	systems	typically	focus	on
partitioning	data	across	nodes	and	leave	it	to	the	operating	system	on	each	node	to	decide	on	assigning
blocks	to	disks	within	the	node.

In	a	parallel	storage	system,	the	tuples	of	a	relation	are	partitioned	(divided)	among	many	nodes,	so	that
each	tuple	resides	on	one	node;	such	partitioning	is	referred	to	as	horizontal	partitioning.	Several
partitioning	strategies	have	been	proposed	for	horizontal	partitioning,	which	we	study	next.

We	note	that	vertical	partitioning,	discussed	in	Section	13.6	in	the	context	of	columnar	storage,	is
orthogonal	to	horizontal	partitioning.	(As	an	example	of	vertical	partitioning,	a	relation	r(A,	B,	C,	D)
where	A	is	a	primary	key,	may	be	vertically	partitioned	into	r(A,	B)	and	r(A,	C,	D),	if	many	queries	require
B	values,	while	C	and	D	values	are	large	in	size	and	not	required	for	many	queries.)	Once	tuples	are
horizontally	partitioned,	they	may	be	stored	in	a	vertically	partitioned	manner	at	each	node.

We	also	note	that	several	database	vendors	use	the	term	partitioning	to	denote	the	partitioning	of	tuples
of	a	relation	r	into	multiple	physical	relations	r	,	r	,	…	,	r	,	where	1

2

n

all	the	physical	relations	r	are	stored	in	a	single	node.	The	relation	r	is	not	stored,	but	i

treated	as	a	view	defined	by	the	query	r	∪	r	∪	…	∪	r	.	Such	intra-node	partitioning	of	a	1

2

n

relation	is	typically	used	to	ensure	that	frequently	accessed	tuples	are	stored	separately	from	infrequently
accessed	tuples	and	is	different	from	horizontal	partitioning	across	nodes.	Intra-node	partitioning	is
described	in	more	detail	in	Section	25.1.4.3.

In	the	rest	of	this	chapter,	as	well	as	in	subsequent	chapters,	we	use	the	term	partitioning	to	refer	to
horizontal	partitioning	across	multiple	nodes.

21.2.1

Partitioning	Strategies

We	present	three	basic	data-partitioning	strategies	for	partitioning	tuples.	Assume	that	there	are	n	nodes,

N	,	N	,	…	,	N	,	across	which	the	data	are	to	be	partitioned.

1

1

n

1As	in	earlier	chapters,	we	use	the	term	disk	to	refer	to	persistent	storage	devices,	such	as	magnetic	hard
disks	and	solid-state	drives.

21.2

Data	Partitioning

1005

Range	partitioning

Range	associated

vector

Node

with	the	node

Node	1

[–∞,	15)

15

Node	2

[15,	40)

40

75

Node	3

[40,	75)

Node	4

[75,	+∞]

Figure	21.1	Example	of	range	partitioning	vector.

•	Round-robin.	This	strategy	scans	the	relation	in	any	order	and	sends	the	i	th	tuple	fetched	during	the
scan	to	node	number	N

.	The	round-robin	scheme

((i−1)	mod	n)+1

ensures	an	even	distribution	of	tuples	across	nodes;	that	is,	each	node	has	approximately	the	same
number	of	tuples	as	the	others.

•	Hash	partitioning.	This	declustering	strategy	designates	one	or	more	attributes	from	the	given	relation’s
schema	as	the	partitioning	attributes.	A	hash	function	is	chosen	whose	range	is	{1,	2,	…	,	n}.	Each	tuple
of	the	original	relation	is	hashed	on	the	partitioning	attributes.	If	the	hash	function	returns	i,	then	the
tuple	is	placed	on	node	N	.2

i

•	Range	partitioning.	This	strategy	distributes	tuples	by	assigning	contiguous	attribute-value	ranges	to
each	node.	It	chooses	a	partitioning	attribute,	A,	and	a	partitioning	vector	[v	,	v	,	…	,	v

],	such	that,	if	i	<	j,	then	v	<	v	.	The	relation	is

1

2

n−1

i

j

partitioned	as	follows:	Consider	a	tuple	t	such	that	t[A]	=	x.	If	x	<	v	,	then	t	goes	1

on	node	N	.	If	x	≥	v

,	then	t	goes	on	node	N	.	If	v	≤	x	<	v

,	then	t	goes	on

1

n−1

n

i

i+1

node	N

.

i+1

Figure	21.1	shows	an	example	of	a	range	partitioning	vector.	In	the	example	in	the	figure,	values	less	than
15	are	mapped	to	Node	1.	Values	in	the	range	[15,	40),	i.e.,	values	≥	15	but	<	40.	are	mapped	to	Node	2;
Values	in	the	range	[40,	75),	i.e.,	values

≥	40	but	<	75,	are	mapped	to	Node	3,	while	values	>	75	are	mapped	to	Node	4.

We	now	consider	how	partitioning	is	maintained	when	a	relation	is	updated.

1.	When	a	tuple	is	inserted	into	a	relation,	it	is	sent	to	the	appropriate	node	based	on	the	partitioning
strategy.

2Hash-function	design	is	discussed	in	Section	24.5.1.1.

1006

Chapter	21

Parallel	and	Distributed	Storage

2.	If	a	tuple	is	deleted,	its	location	is	first	found	based	on	the	value	of	its	partitioning	attribute	(for	round-
robin,	all	partitions	are	searched).	The	tuple	is	then	deleted	from	wherever	it	is	located.

3.	If	a	tuple	is	updated,	its	location	is	not	affected	if	either	round-robin	partitioning	is	used	or	if	the
update	does	not	affect	a	partitioning	attribute.

However,	if	range	partitioning	or	hash	partitioning	is	used,	and	the	update	affects	a	partitioning	attribute,
the	location	of	the	tuple	may	be	affected.	In	this	case:	a.	The	original	tuple	is	deleted	from	the	original
location,	and

b.	The	updated	tuple	is	inserted	and	sent	to	the	appropriate	node	based	on	the	partitioning	strategy	used.

21.2.2

Comparison	of	Partitioning	Techniques

Once	a	relation	has	been	partitioned	among	several	nodes,	we	can	retrieve	it	in	parallel,	using	all	the
nodes.	Similarly,	when	a	relation	is	being	partitioned,	it	can	be	written	to	multiple	nodes	in	parallel.	Thus,

the	transfer	rates	for	reading	or	writing	an	entire	relation	are	much	faster	with	I/O	parallelism	than
without	it.	However,	reading	an	entire	relation,	or	scanning	a	relation,	is	only	one	kind	of	access	to	data.
Access	to	data	can	be	classified	as	follows:

1.	Scanning	the	entire	relation.

2.	Locating	a	tuple	associatively	(e.g.,	employee	name	=	“Campbell”);	these	queries,	called	point	queries,
seek	tuples	that	have	a	specified	value	for	a	specific	attribute.

3.	Locating	all	tuples	for	which	the	value	of	a	given	attribute	lies	within	a	specified	range	(e.g.,	10000	<
salary	<	20000);	these	queries	are	called	range	queries.

The	different	partitioning	techniques	support	these	types	of	access	at	different	levels	of	efficiency:

•	Round-robin.	The	scheme	is	ideally	suited	for	applications	that	wish	to	read	the	entire	relation
sequentially	for	each	query.	With	this	scheme,	both	point	queries	and	range	queries	are	complicated	to
process,	since	each	of	the	n	nodes	must	be	used	for	the	search.

•	Hash	partitioning.	This	scheme	is	best	suited	for	point	queries	based	on	the	partitioning	attribute.	For
example,	if	a	relation	is	partitioned	on	the	telephone	number	attribute,	then	we	can	answer	the	query
“Find	the	record	of	the	employee	with	telephone	number	=	555-3333”	by	applying	the	partitioning	hash
function	to	555-3333	and	then	searching	that	node.	Directing	a	query	to	a	single	node	saves	the	start-up
cost	of	initiating	a	query	on	multiple	nodes	and	leaves	the	other	nodes	free	to	process	other	queries.

21.3

Dealing	with	Skew	in	Partitioning

1007

Hash	partitioning	is	also	useful	for	sequential	scans	of	the	entire	relation.	If	the	hash	function	is	a	good
randomizing	function,	and	the	partitioning	attributes	form	a	key	of	the	relation,	then	the	number	of	tuples
in	each	of	the	nodes	is	approximately	the	same,	without	much	variance.	Hence,	the	time	taken	to	scan	the
relation	is	approximately	1∕	n	of	the	time	required	to	scan	the	relation	in	a	single	node	system.

The	scheme,	however,	is	not	well	suited	for	point	queries	on	nonpartitioning	attributes.	Hash-based
partitioning	is	also	not	well	suited	for	answering	range	queries,	since,	typically,	hash	functions	do	not
preserve	proximity	within	a	range.

Therefore,	all	the	nodes	need	to	be	scanned	for	range	queries	to	be	answered.

•	Range	partitioning.	This	scheme	is	well	suited	for	point	and	range	queries	on	the	partitioning	attribute.
For	point	queries,	we	can	consult	the	partitioning	vector	to	locate	the	node	where	the	tuple	resides.	For
range	queries,	we	consult	the	partitioning	vector	to	find	the	range	of	nodes	on	which	the	tuples	may
reside.	In	both	cases,	the	search	narrows	to	exactly	those	nodes	that	might	have	any	tuples	of	interest.

An	advantage	of	this	feature	is	that,	if	there	are	only	a	few	tuples	in	the	queried	range,	then	the	query	is
typically	sent	to	one	node,	as	opposed	to	all	the	nodes.

Since	other	nodes	can	be	used	to	answer	other	queries,	range	partitioning	results	in	higher	throughput
while	maintaining	good	response	time.	On	the	other	hand,	if	there	are	many	tuples	in	the	queried	range
(as	there	are	when	the	queried	range	is	a	larger	fraction	of	the	domain	of	the	relation),	many	tuples	have
to	be	retrieved	from	a	few	nodes,	resulting	in	an	I/O	bottleneck	(hot	spot)	at	those	nodes.	In	this	example
of	execution	skew,	all	processing	occurs	in	one	—	or	only	a	few	—	partitions.

In	contrast,	hash	partitioning	and	round-robin	partitioning	would	engage	all	the	nodes	for	such	queries,
giving	a	faster	response	time	for	approximately	the	same	throughput.

The	type	of	partitioning	also	affects	other	relational	operations,	such	as	joins,	as	we	shall	see	in	Section
22.3	and	Section	22.4.1.

Thus,	the	choice	of	partitioning	technique	also	depends	on	the	operations	that	need	to	be	executed.	In
general,	hash	partitioning	or	range	partitioning	are	preferred	to	round-robin	partitioning.

Partitioning	is	important	for	large	relations.	Large	databases	that	benefit	from	parallel	storage	often	have
some	small	relations.	Partitioning	is	not	a	good	idea	for	such	small	relations,	since	each	node	would	end
up	with	just	a	few	tuples.	Partitioning	is	worthwhile	only	if	each	node	would	contain	at	least	a	few	disk
blocks	worth	of	data.

Small	relations	are	best	left	unpartitioned,	while	medium-sized	relations	could	be	partitioned	across	some
of	the	nodes,	rather	than	across	all	the	nodes,	in	a	large	system.

21.3

Dealing	with	Skew	in	Partitioning

When	a	relation	is	partitioned	(by	a	technique	other	than	round-robin),	there	may	be	a	skew	in	the
distribution	of	tuples,	with	a	high	percentage	of	tuples	placed	in	some

1008

Chapter	21

Parallel	and	Distributed	Storage

partitions	and	fewer	tuples	in	other	partitions.	Such	an	imbalance	in	the	distribution	of	data	is	called	data
distribution	skew.	Data	distribution	skew	may	be	caused	by	one	of	two	factors.

•	Attribute-value	skew,	which	refers	to	the	fact	that	some	values	appear	in	the	partitioning	attributes	of
many	tuples.	All	the	tuples	with	the	same	value	for	the	partitioning	attribute	end	up	in	the	same	partition,
resulting	in	skew.

•	Partition	skew,	which	refers	to	the	fact	that	there	may	be	load	imbalance	in	the	partitioning,	even	when
there	is	no	attribute	skew.

Attribute-value	skew	can	result	in	skewed	partitioning	regardless	of	whether	range	partitioning	or	hash
partitioning	is	used.	If	the	partition	vector	is	not	chosen	carefully,	range	partitioning	may	result	in
partition	skew.	Partition	skew	is	less	likely	with	hash	partitioning	if	a	good	hash	function	is	chosen.

As	Section	20.4.2	noted,	even	a	small	skew	can	result	in	a	significant	decrease	in	performance.	Skew
becomes	an	increasing	problem	with	a	higher	degree	of	parallelism.

For	example,	if	a	relation	of	1000	tuples	is	divided	into	10	parts,	and	the	division	is	skewed,	then	there
may	be	some	partitions	of	size	less	than	100	and	some	partitions	of	size	more	than	100;	if	even	one
partition	happens	to	be	of	size	200,	the	speedup	that	we	would	obtain	by	accessing	the	partitions	in
parallel	is	only	5,	instead	of	the	10	for	which	we	would	have	hoped.	If	the	same	relation	has	to	be
partitioned	into	100	parts,	a	partition	will	have	10	tuples	on	an	average.	If	even	one	partition	has	40
tuples	(which	is	possible,	given	the	large	number	of	partitions)	the	speedup	that	we	would	obtain	by
accessing	them	in	parallel	would	be	25,	rather	than	100.	Thus,	we	see	that	the	loss	of	speedup	due	to
skew	increases	with	parallelism.

In	addition	to	skew	in	the	distribution	of	tuples,	there	may	be	execution	skew	even	if	there	is	no	skew	in
the	distribution	of	tuples,	if	queries	tend	to	access	some	partitions	more	often	than	others.	For	example,
suppose	a	relation	is	partitioned	by	the	timestamp	of	the	tuples,	and	most	queries	refer	to	recent	tuples;
then,	even	if	all	partitions	contain	the	same	number	of	tuples,	the	partition	containing	recent	tuples	would
experience	a	significantly	higher	load.

In	the	rest	of	this	section,	we	consider	several	approaches	to	handling	skew.

21.3.1

Balanced	Range-Partitioning	Vectors

Data	distribution	skew	in	range	partitioning	can	be	avoided	by	choosing	a	balanced	range-partitioning
vector,	which	evenly	distributes	tuples	across	all	nodes.

A	balanced	range-partitioning	vector	can	be	constructed	by	sorting,	as	follows:	The	relation	is	first	sorted
on	the	partitioning	attributes.	The	relation	is	then	scanned	in	sorted	order.	After	every	1∕	n	of	the	relation
has	been	read,	the	value	of	the	partitioning	attribute	of	the	next	tuple	is	added	to	the	partition	vector.
Here,	n	denotes	the	number	of	partitions	to	be	constructed.

21.3

Dealing	with	Skew	in	Partitioning

1009

The	main	disadvantage	of	this	method	is	the	extra	I/O	overhead	incurred	in	doing	the	initial	sort.	The	I/O
overhead	for	constructing	balanced	range-partitioning	vectors	can	be	reduced	by	using	a	precomputed
frequency	table,	or	histogram,	of	the	attribute	values	for	each	attribute	of	each	relation.	Figure	21.2
shows	an	example	of	a	histogram	for	an	integer-valued	attribute	that	takes	values	in	the	range	1	to	25.	It
is	straightforward	to	construct	a	balanced	range-partitioning	function	given	a	histogram	on	the
partitioning	attributes.	A	histogram	takes	up	only	a	little	space,	so	histograms	on	several	different
attributes	can	be	stored	in	the	system	catalog.	If	the	histogram	is	not	stored,	it	can	be	computed

approximately	by	sampling	the	relation,	using	only	tuples	from	a	randomly	chosen	subset	of	the	disk
blocks	of	the	relation.	Using	a	random	sample	allows	the	histogram	to	be	constructed	in	much	less	time
than	it	would	take	to	sort	the	relation.

The	preceding	approach	for	creating	range-partitioning	vectors	addresses	data-distribution	skew;
extensions	to	handle	execution	skew	are	left	as	an	exercise	for	the	reader	(Exercise	21.3).

A	drawback	of	the	above	approach	is	that	it	is	static:	the	partitioning	is	decided	at	some	point	and	is	not
automatically	updated	as	tuples	are	inserted,	deleted,	or	updated.	The	partitioning	vectors	can	be
recomputed,	and	the	data	repartitioned,	whenever	the	system	detects	skew	in	data	distribution.	However,
the	cost	of	repartitioning	can	be	quite	large,	and	doing	it	periodically	would	introduce	a	high	load	which
can	affect	normal	processing.	Dynamic	techniques	for	avoiding	skew,	which	can	adapt	in	a	continuous	and
less	disruptive	fashion,	are	discussed	in	Section	21.3.2	and	in	Section	21.3.3.

21.3.2

Virtual	Node	Partitioning

Another	approach	to	minimizing	the	effect	of	skew	is	to	use	virtual	nodes.	In	the	virtual	nodes	approach,
we	pretend	there	are	several	times	as	many	virtual	nodes	as	the	number	50

40

30

equencyfr	20

10

1–5

6–10

11–15	16–20	21–25

value

Figure	21.2	Example	of	histogram.

1010

Chapter	21

Parallel	and	Distributed	Storage

of	real	nodes.	Any	of	the	partitioning	techniques	described	earlier	can	be	used,	but	to	map	tuples	and
work	to	virtual	nodes	instead	of	to	real	nodes.3

Virtual	nodes,	in	turn,	are	mapped	to	real	nodes.	One	way	to	map	virtual	nodes	to	real	nodes	is	round-
robin	allocation;	thus,	if	there	are	n	real	nodes	numbered	1	to	n,	virtual	node	i	is	mapped	to	real	node	((i
−	1)	modn)	+	1.	The	idea	is	that	even	if	one	range	had	many	more	tuples	than	the	others	because	of	skew,
these	tuples	would	get	split	across	multiple	virtual	nodes	ranges.	Round-robin	allocation	of	virtual	nodes
to	real	nodes	would	distribute	the	extra	work	among	multiple	real	nodes,	so	that	one	node	does	not	have
to	bear	all	the	burden.

A	more	sophisticated	way	of	doing	the	mapping	is	by	tracking	the	number	of	tuples	in	each	virtual	node,
and	the	load	(e.g.,	the	number	of	accesses	per	second)	on	each	virtual	node.	Virtual	nodes	are	then
mapped	to	real	nodes	in	a	way	that	balances	the	number	of	stored	tuples	as	well	as	the	load	across	the
real	nodes.	Thus,	data-distribution	skew	and	execution	skew	can	be	minimized.

The	system	must	then	record	this	mapping	and	use	it	to	route	accesses	to	the	correct	real	node.	If	virtual
nodes	are	numbered	by	consecutive	integers,	this	mapping	can	be	stored	as	an	array	virtual	to	real	map[],
with	m	entries,	where	there	are	m	virtual	nodes;	the	i	th	element	of	this	array	stores	the	real	node	to
which	virtual	node	i	is	mapped.

Yet	another	benefit	of	the	virtual	node	approach	is	that	it	allows	elasticity	of	storage,	that	is,	as	the	load
on	the	system	increases	it	is	possible	to	add	more	resources	(nodes)	to	the	system	to	handle	the	load.
When	a	new	node	is	added,	some	of	the	virtual	nodes	are	migrated	to	the	new	real	node,	which	can	be

done	without	affecting	any	of	the	other	virtual	nodes.	If	the	amount	of	data	mapped	to	each	virtual	node	is
small,	the	migration	of	a	virtual	node	from	one	node	to	another	can	be	done	relatively	fast,	minimizing
disruption.

21.3.3

Dynamic	Repartitioning

While	the	virtual-node	approach	can	reduce	skew	with	range	partitioning	as	well	as	hash	partitioning,	it
does	not	work	very	well	if	the	data	distribution	changes	over	time,	resulting	in	some	virtual	nodes	having
a	very	large	number	of	tuples,	or	a	very	high	execution	load.	For	example,	if	partitioning	was	done	by
timestamps	of	records,	the	last	timestamp	range	would	get	an	increasing	number	of	records,	as	more
records	are	inserted,	while	other	ranges	would	not	get	any	new	records.	Thus,	even	if	the	initial
partitioning	is	balanced,	it	could	become	increasingly	skewed	over	time.

Skew	can	be	dealt	with	by	recomputing	the	partitioning	scheme	entirely.	However,	repartitioning	the	data
based	on	the	new	partitioning	scheme	would,	in	general,	be	a	very	expensive	operation.	In	the	preceding
example,	we	would	end	up	moving	a	significant	number	of	records	from	each	partition	to	a	partition	that
precedes	it	in	timestamp	3The	virtual	node	approach	is	also	called	the	virtual	processor	approach,	a	term
used	in	earlier	editions	of	this	book;	since	the	term	virtual	processor	is	now	commonly	used	in	a	different
sense	in	the	context	of	virtual	machines,	we	now	use	the	term	virtual	node.

21.3

Dealing	with	Skew	in	Partitioning

1011

order.	When	dealing	with	large	amounts	of	data,	such	repartitioning	would	be	unreasonably	expensive.

Dynamic	repartitioning	can	be	done	in	an	efficient	manner	by	instead	exploiting	the	virtual	node	scheme.
The	basic	idea	is	to	split	a	virtual	node	into	two	virtual	nodes	when	it	has	too	many	tuples,	or	too	much
load;	the	idea	is	very	similar	to	a	B+-tree	node	being	split	into	two	nodes	when	it	is	overfull.	One	of	the
newly	created	virtual	nodes	can	then	be	migrated	to	a	different	node	to	rebalance	the	data	stored	at	each
node,	or	the	load	at	each	node.

Considering	the	preceding	example,	if	the	virtual	node	corresponding	to	a	range	of	timestamps	2017-01-
01	to	MaxDate	were	to	become	overfull,	the	partition	could	be	split	into	two	partitions.	For	example,	if
half	the	tuples	in	this	range	have	timestamps	less	than	2018-01-01,	one	partition	would	have	timestamps
from	2017-01-01	to	less	than	2018-01-01,	and	the	other	would	have	tuples	with	timestamps	from	2018-01-
01	to	MaxDate.	To	rebalance	the	number	of	tuples	in	a	real	node,	we	would	just	need	to	move	one	of	the
virtual	nodes	to	a	new	real	node.

Dynamic	repartitioning	in	this	way	is	very	widely	used	in	parallel	databases	and	parallel	data	storage
systems	today.	In	data	storage	systems,	the	term	table	refers	to	a	collection	of	data	items.	Tables	are
partitioned	into	multiple	tablets.	The	number	of	tablets	into	which	a	table	is	divided	is	much	larger	than
the	number	of	real	nodes	in	the	system;	thus	tablets	correspond	to	virtual	nodes.

The	system	needs	to	maintain	a	partition	table,	which	provides	a	mapping	from	the	partitioning	key
ranges	to	a	tablet	identifier,	as	well	as	the	real	node	on	which	the	tablet	data	reside.	Figure	21.3	shows	an
example	of	a	partition	table,	where	the	partition	key	is	a	date.	Tablet0	stores	records	with	key	value	<
2012-01-01.	Tablet1	stores	records	with	key	values	≥	2012-01-01,	but	<	2013-01-01.	Tablet2	stores
records	with	key	values

≥	2013-01-01,	but	<	2014-01-01,	and	so	on.	Finally,	Tablet6	stores	values	≥	2017-01-01.

Read	requests	must	specify	a	value	for	the	partitioning	attribute,	which	is	used	to	identify	the	tablet
which	could	contain	a	record	with	that	key	value;	a	request	that	does	not	specify	a	value	for	the
partitioning	attribute	would	have	to	be	sent	to	all	tablets.

A	read	request	is	processed	by	using	the	partitioning	key	value	v	to	identify	the	tablet	Value

Tablet	ID

Node	ID

2012-01-01

Tablet0

Node0

2013-01-01

Tablet1

Node1

2014-01-01

Tablet2

Node2

2015-01-01

Tablet3

Node2

2016-01-01

Tablet4

Node0

2017-01-01

Tablet5

Node1

MaxDate

Tablet6

Node1

Figure	21.3	Example	of	a	partition	table.

1012

Chapter	21

Parallel	and	Distributed	Storage

whose	range	of	keys	contains	v,	and	then	sending	the	request	to	the	real	node	where	the	tablet	resides.
The	request	can	be	handled	efficiently	at	that	node	by	maintaining,	for	each	tablet,	an	index	on	the
partitioning	key	attribute.

Write,	insert,	and	delete	requests	are	processed	similarly,	by	routing	the	requests	to	the	correct	tablet	and
real	node,	using	the	mechanism	described	above	for	reads.

The	above	scheme	allows	tablets	to	be	split	if	they	become	too	big;	the	key	range	corresponding	to	the
tablet	is	split	into	two,	with	a	newly	created	tablet	getting	half	the	key	range.	Records	whose	key	range	is
mapped	to	the	new	tablet	are	then	moved	from	the	original	tablet	to	the	new	tablet.	The	partition	table	is
updated	to	reflect	the	split,	so	requests	are	then	correctly	directed	to	the	appropriate	tablet.

If	a	real	node	gets	overloaded,	either	due	to	a	large	number	of	requests	or	due	to	too	much	data	at	the
node,	some	of	the	tablets	from	the	node	can	be	moved	to	a	different	real	node	that	has	a	lower	load.
Tablets	can	also	be	moved	similarly	in	case	one	of	the	real	nodes	has	a	large	amount	of	data,	while
another	real	node	has	less	data.	Finally,	if	a	new	real	node	joins	a	system,	some	tables	can	be	moved	from
existing	nodes	to	the	new	node.	Whenever	a	tablet	is	moved	to	a	different	real	node,	the	partition	table	is
updated;	subsequent	requests	will	then	be	sent	to	the	correct	real	node.

Figure	21.4	shows	the	partition	table	from	Figure	21.3	after	Tablet6,	which	had	values	≥	2017-01-01,	has
been	split	into	two:	Tablet6	now	has	values	≥	2017-01-01,	but

<	2018-01-01,	while	the	new	tablet,	Tablet7,	has	values	≥	2018-01-01.	Such	a	split	could	be	caused	by	a
large	number	of	inserts	into	Tablet6,	making	it	very	large;	the	split	rebalances	the	sizes	of	the	tablets.

Note	also	that	Tablet1,	which	was	in	Node1,	has	now	been	moved	to	Node0	in	Figure	21.4.	Such	a	tablet
move	could	be	because	Node1	is	overloaded	due	to	excessive	data,	or	due	to	a	high	number	of	requests.

Most	parallel	data	storage	systems	store	the	partition	table	at	a	master	node.	However,	to	support	a	large
number	of	requests	each	second,	the	partition	table	is	usually	replicated,	either	to	all	client	nodes	that
access	data	or	to	multiple	routers.	Routers	accept	read/write	requests	from	clients	and	forward	the
requests	to	the	appropriate	Value

Tablet	ID

Node	ID

2012-01-01

Tablet0

Node0

2013-01-01

Tablet1

Node0

2014-01-01

Tablet2

Node2

2015-01-01

Tablet3

Node2

2016-01-01

Tablet4

Node0

2017-01-01

Tablet5

Node1

2018-01-01

Tablet6

Node1

MaxDate

Tablet7

Node1

Figure	21.4	Example	partition	table	after	tablet	split	and	tablet	move.

21.4

Replication

1013

real	node	containing	the	tablet/virtual	nodes	based	on	the	key	values	specified	in	the	request.

An	alternative	fully	distributed	approach	is	supported	by	a	hash	based	partitioning	scheme	called
consistent	hashing.	In	the	consistent	hashing	approach,	keys	are	hashed	to	a	large	space,	such	as	32	bit
integers.	Further,	node	(or	virtual	node)	identifiers	are	also	hashed	to	the	same	space.	A	key	k	could	be
logically	mapped	to	the	node	n	whose	i

j

hash	value	h(n)	is	the	highest	value	among	all	nodes	satisfying	h(n)	<	h(k).	But	to	j

j

i

ensure	that	every	key	is	assigned	to	a	node,	hash	values	are	treated	as	lying	on	a	cycle	similar	to	the	face
of	a	clock,	where	the	maximum	hash	value	maxhash	is	immediately	followed	by	0.	Then,	key	k	is	then
logically	mapped	to	the	node	n	whose	hash	value	i

j

h(n)	is	the	closest	among	all	nodes,	when	we	move	anti-clockwise	in	the	circle	from	j

h(k).

i

Distributed	hash	tables	based	on	this	idea	have	been	developed	where	there	is	no	need	for	either	a	master
node	or	a	router;	instead	each	participating	node	keeps	track	of	a	few	other	peer	nodes,	and	routing	is
implemented	in	a	cooperative	manner.	New	nodes	can	join	the	system,	and	integrate	themselves	by
following	specified	protocols	in	a	completely	peer-to-peer	manner,	without	the	need	for	a	master.	See	the
Further	Reading	section	at	the	end	of	the	chapter	for	references	providing	further	details.

21.4

Replication

With	a	large	number	of	nodes,	the	probability	that	at	least	one	node	will	malfunction	in	a	parallel	system
is	significantly	greater	than	in	a	single-node	system.	A	poorly	designed	parallel	system	will	stop
functioning	if	any	node	fails.	Assuming	that	the	probability	of	failure	of	a	single	node	is	small,	the
probability	of	failure	of	the	system	goes	up	linearly	with	the	number	of	nodes.	For	example,	if	a	single
node	would	fail	once	every	5	years,	a	system	with	100	nodes	would	have	a	failure	every	18	days.

Parallel	data	storage	systems	must,	therefore,	be	resilient	to	failure	of	nodes.	Not	only	should	data	not	be
lost	in	the	event	of	a	node	failure,	but	also,	the	system	should	continue	to	be	available,	that	is,	continue	to
function,	even	during	such	a	failure.

To	ensure	tuples	are	not	lost	on	node	failure,	tuples	are	replicated	across	at	least	two	nodes,	and	often
three	nodes.	If	a	node	fails,	the	tuples	that	it	stored	can	still	be	accessed	from	the	other	nodes	where	the
tuples	are	replicated.4

Tracking	the	replicas	at	the	level	of	individual	tuples	would	result	in	significant	overhead	in	terms	of
storage	and	query	processing.	Instead,	replication	is	done	at	the	level	of	partitions	(tablets,	nodes,	or
virtual	nodes).	That	is,	each	partition	is	replicated;	the	locations	of	the	partition	replicas	are	recorded	as
part	of	the	partition	table.

Figure	21.5	shows	a	partition	table	with	replication	of	tablets.	Each	tablet	is	replicated	in	two	nodes.

4Caching	also	results	in	replication	of	data,	but	with	the	aim	of	speeding	up	access.	Since	data	may	be
evicted	from	cache	at	any	time,	caching	does	not	ensure	availability	in	the	event	of	failure.

1014

Chapter	21

Parallel	and	Distributed	Storage

Value

Tablet	ID

Node	ID

2012-01-01

Tablet0

Node0,Node1

2013-01-01

Tablet1

Node0,Node2

2014-01-01

Tablet2

Node2,Node0

2015-01-01

Tablet3

Node2,Node1

2016-01-01

Tablet4

Node0,Node1

2017-01-01

Tablet5

Node1,Node0

2018-01-01

Tablet6

Node1,Node2

MaxDate

Tablet7

Node1,Node2

Figure	21.5	Partition	table	of	Figure	21.4	with	replication.

The	database	system	keeps	track	of	failed	nodes;	requests	for	data	stored	at	a	failed	node	are
automatically	routed	to	the	backup	nodes	that	store	a	replica	of	the	data.

Issues	of	how	to	handle	the	case	where	one	or	more	replicas	are	stored	at	a	currently	failed	node	are
addressed	briefly	in	Section	21.4.2,	and	in	more	detail	later,	in	Section	23.4.

21.4.1

Location	of	Replicas

Replication	to	two	nodes	provides	protection	from	data	loss/unavailability	in	the	event	of	single	node
failure,	while	replication	to	three	nodes	provides	protection	even	in	the	event	of	two	node	failures.	If	all
nodes	where	a	partition	is	replicated	fail,	obviously	there	is	no	way	to	prevent	data	loss/unavailability.
Systems	that	use	low-cost	commodity	machines	for	data	storage	typically	use	three-way	replication,	while
systems	that	use	more	reliable	machines	typically	use	two-way	replication.

There	are	multiple	possible	failure	modes	in	a	parallel	system.	A	single	node	could	fail	due	to	some
internal	fault.	Further,	it	is	possible	for	all	the	nodes	in	a	rack	to	fail	if	there	is	some	problem	with	the
rack	such	as,	for	example,	failure	of	power	supply	to	the	entire	rack,	or	failure	of	the	network	switches	in
a	rack,	making	all	the	nodes	in	the	rack	inaccessible.	Further,	there	is	a	possibility	of	failure	of	an	entire
data	center,	for	example,	due	to	fire,	flooding,	or	a	large-scale	power	failure.

The	location	of	the	nodes	where	the	replicas	of	a	partition	are	stored	must,	therefore,	be	chosen	carefully,
to	maximize	the	probability	of	at	least	one	copy	being	accessible	even	during	a	failure.	Such	replication
can	be	within	a	data	center	or	across	data	centers.

•	Replication	within	a	data	center:	Since	single	node	failures	are	the	most	common	failure	mode,
partitions	are	often	replicated	to	another	node.

With	the	tree-like	interconnection	topology	commonly	used	in	data	center	networks	(described	in	Section
20.4.3)	network	bandwidth	within	a	rack	is	much

21.4

Replication

1015

higher	than	the	network	bandwidth	between	racks.	As	a	result,	replication	to	another	node	within	the
same	rack	as	the	first	node	reduces	network	demand	on	the	network	between	racks.	But	to	deal	with	the
possibility	of	a	rack	failure,	partitions	are	also	replicated	to	a	node	on	a	different	rack.

•	Replication	across	data	centers:	To	deal	with	the	possibility	of	failure	of	an	entire	data	center,	partitions
may	also	be	replicated	at	one	or	more	geographically	separated	data	centers.	Geographic	separation	is
important	to	deal	with	disasters	such	as	earthquakes	or	storms	that	may	shut	down	all	data	centers	in	a
geographic	region.

For	many	web	applications,	round-trip	delays	across	a	long-distance	network	can	affect	performance
significantly,	a	problem	that	is	increasing	with	the	use	of	Ajax	applications	that	require	multiple	rounds	of
communication	between	the	browser	and	the	application.	To	deal	with	this	problem,	users	are	connected
with	application	servers	that	are	closest	to	them	geographically,	and	data	replication	is	done	in	such	a	way
that	one	of	the	replicas	is	in	the	same	data	center	as	(or	at	least,	geographically	close	to)	the	application
server.

Suppose	all	the	partitions	at	a	node	N	are	replicated	at	a	single	node	N	,	and	N

1

2

1

fails.	Then,	node	N	will	have	to	handle	all	the	requests	that	would	originally	have	gone	2

to	N	,	as	well	as	requests	routed	to	node	N	.	As	a	result,	node	N	would	have	to	perform	1

2

2

twice	as	much	work	as	other	nodes	in	the	system,	resulting	in	execution	skew	during	failure	of	node	N	.

1

To	avoid	this	problem,	the	replicas	of	partitions	residing	at	a	node,	say	N	,	are	1

spread	across	multiple	other	nodes.	For	example,	consider	a	system	with	10	nodes	and	two-way
replication.	Suppose	node	N	had	one	of	the	replicas	of	partitions	p	through	1

1

p	.	Then,	the	other	replica	of	partitions	p	could	be	stored	on	N	,	of	p	on	N	,	and	so	9

1

2

2

3

on	to	p	on	N	.	Then	in	the	event	of	failure	of	N	,	nodes	N	through	N

would	share

9

10

1

2

10

the	extra	work	equally,	instead	of	burdening	a	single	node	with	all	the	extra	work.

21.4.2

Updates	and	Consistency	of	Replicas

Since	each	partition	is	replicated,	updates	made	to	tuples	in	a	partition	must	be	performed	on	all	the
replicas	of	the	partition.	For	data	that	is	never	updated	after	it	has	been	created,	reads	can	be	performed
at	any	of	the	replicas,	since	all	of	them	will	have	the	same	value.	If	a	storage	system	ensures	that	all
replicas	are	exclusive-locked	and	updated	atomically	(using,	for	example,	the	two-phase	commit	protocol
which	we	will	see	in	Section	23.2.1),	reads	of	a	tuple	can	be	performed	(after	obtaining	a	shared	lock)	at
any	of	the	replicas	and	will	see	the	most	recent	version	of	the	tuple.

If	data	are	updated,	and	replicas	are	not	updated	atomically,	different	replicas	may	temporarily	have
different	values.	Thus,	a	read	may	see	a	different	value	depending	on	which	replica	it	accesses.	Most

applications	require	that	read	requests	for	a	tuple	must

1016

Chapter	21

Parallel	and	Distributed	Storage

receive	the	most	recent	version	of	the	tuple;	updates	that	are	based	on	reading	an	older	version	could
result	in	a	lost	update	problem.

One	way	of	ensuring	that	reads	get	the	latest	value	is	to	treat	one	of	the	replicas	of	each	partition	as	a
master	replica.	All	updates	are	sent	to	the	master	replica	and	are	then	propagated	to	other	replicas.
Reads	are	also	sent	to	the	master	replica,	so	that	reads	get	the	latest	version	of	any	data	item	even	if
updates	have	not	yet	been	applied	to	the	other	replicas.

If	a	master	replica	fails,	a	new	master	is	assigned	for	that	partition.	It	is	important	to	ensure	that	every
update	operation	performed	by	the	old	master	has	also	been	seen	by	the	new	master.	Further,	the	old
master	may	have	updated	some	of	the	replicas,	but	not	all,	before	it	failed;	the	new	master	must	complete
the	task	of	updating	all	the	replicas.	We	discuss	details	in	Section	23.6.2.

It	is	important	to	know	which	node	is	the	(current)	master	for	each	partition.	This	information	can	be
stored	along	with	the	partition	table.	Specifically,	the	partition	table	must	record,	in	addition	to	the	range
of	key	values	assigned	to	that	partition,	where	the	replicas	of	the	partition	are	stored,	and	further	which
replica	is	currently	the	master.

Three	solutions	are	commonly	used	to	update	replicas.

•	The	two-phase	commit	(2PC)	protocol,	which	ensures	that	multiple	updates	performed	by	a	transaction
are	applied	atomically	across	multiple	sites,	is	described	in	Section	23.2.	This	protocol	can	be	used	with
replicas	to	ensure	that	an	update	is	performed	atomically	on	all	replicas	of	a	tuple.

We	assume	for	now	that	all	replicas	are	available	and	can	be	updated.	Issues	of	how	to	allow	two-phase
commit	to	continue	execution	in	the	presence	of	failures,	when	some	replicas	may	not	be	reachable,	are
discussed	in	Section	23.4.

•	Persistent	messaging	systems,	described	in	Section	23.2.3,	which	guarantee	that	a	message	is	delivered
once	it	is	sent.	Persistent	messaging	systems	can	be	used	to	update	replicas	as	follows:	An	update	to	a
tuple	is	registered	as	a	persistent	message,	sent	to	all	replicas	of	the	tuple.	Once	the	message	is	recorded,
the	persistent	messaging	system	ensures	it	will	be	delivered	to	all	replicas.	Thus,	all	replicas	will	get	the
update,	eventually;	the	property	is	known	as	eventual	consistency	of	replicas.

However,	there	may	be	a	delay	in	message	delivery,	and	during	that	time	some	replicas	may	have	applied
an	update	while	others	have	not.	To	ensure	that	reads	get	a	consistent	version,	reads	are	performed	only
at	a	master	replica,	where	updates	are	made	first.	(If	the	site	with	a	master	replica	of	a	tuple	has	failed,
another	replica	can	take	over	as	the	master	replica	after	ensuring	all	pending	persistent	messages	with
updates	have	been	applied.)	Details	are	presented	in	Section	23.6.2.

•	Protocols	called	consensus	protocols,	that	allow	updates	of	replicas	to	proceed	even	in	the	face	of
failures,	when	some	replicas	may	not	be	reachable,	can	be	used	to	manage	update	of	replicas.	Unlike	the
preceding	protocols,	consensus	protocols	can	work	even	without	a	designated	master	replica.	We	study
consensus	protocols	in	Section	23.8.

21.5

Parallel	Indexing

1017

21.5

Parallel	Indexing

Indices	in	a	parallel	data	storage	system	can	be	divided	into	two	kinds:	local	and	global	indices.	In	the
following	discussion,	when	virtual	node	partitioning	is	used,	the	term	node	should	be	understood	to	mean
virtual	node	(or	equivalently,	tablet).

•	A	local	index	is	an	index	built	on	tuples	stored	in	a	particular	node;	typically,	such	an	index	would	be
built	on	all	the	partitions	of	a	given	relation.	The	index	contents	are	stored	on	the	same	node	as	the	data.

•	A	global	index	is	an	index	built	on	data	stored	across	multiple	nodes;	a	global	index	can	be	used	to
efficiently	find	matching	tuples,	regardless	of	where	the	tuples	are	stored.

While	the	contents	of	a	global	index	could	be	stored	at	a	single	central	location,	such	a	scheme	would
result	in	poor	scalability;	as	a	result,	the	contents	of	a	global	index	should	partitioned	across	multiple
nodes.

A	global	primary	index	on	a	relation	is	a	global	index	on	the	attributes	on	which	the	tuples	of	the	relation
are	partitioned.	A	global	index	on	partitioning	attribute	K	is	constructed	by	merely	creating	local	indices
on	K	on	each	partition.

A	query	that	is	intended	to	retrieve	tuples	with	a	specific	key	value	k	1	for	K	can	be	answered	by	first
finding	which	partition	could	hold	the	key	value	k	1,	and	then	using	the	local	index	in	that	partition	to	find
the	required	tuples.

For	example,	suppose	the	student	relation	is	partitioned	on	the	attribute	ID,	and	a	global	index	is	to	be
constructed	on	the	attribute	ID.	All	that	is	required	is	to	construct	a	local	index	on	ID	on	each	partition.
Figure	21.6(a)	shows	a	global	primary	index	on	the	student	relation,	on	attribute	ID;	the	local	indices	are
not	shown	explicitly	in	the	figure.

A	query	that	is	intended	to	retrieve	tuples	with	a	specific	value	for	ID,	say	557,	can	be	answered	by	first
using	the	partitioning	function	on	ID	to	first	find	which	partition	could	contain	the	specified	ID	value	557;
the	query	is	then	sent	to	the	corresponding	node,	which	uses	the	local	index	on	ID	to	locate	the	required
tuples.

Note	that	ID	is	the	primary	key	for	the	relation	student;	however,	the	above	scheme	would	work	even	if
the	partitioning	attribute	were	not	the	primary	key.	The	scheme	can	be	extended	to	handle	range	queries,
provided	the	partitioning	function	is	itself	based	on	ranges	of	values;	a	partitioning	scheme	based	on
hashing	cannot	support	range	queries.

A	global	secondary	index	on	a	relation	is	a	global	index	whose	index	attributes	do	not	match	the	attributes
on	which	the	tuples	are	partitioned.

Suppose	the	partitioning	attributes	are	K	,	while	the	index	attributes	are	K	,	with	p

i

K	≠	K	.	One	approach	for	answering	a	selection	query	on	attributes	K	is	as	follows:	If	p

i

i

a	local	index	is	created	on	K	on	each	partition	of	the	relation,	the	query	is	sent	to	each	i

1018

Chapter	21

Parallel	and	Distributed	Storage

Tablet	1

Tablet	6

001

Zhang

Comp.	Sci.

102

766

Aoi

123

Shankar

Comp.	Sci.

32

987

Bourakis

199

Brandt

History

80

199

Brandt

765

Brown

Partition	Table

Tablet	2

Partition	Table

231

Chavez

Finance

110

445

Peltier

Physics

56

Tablet	7

231

456

Levy

Physics

46

231

Chavez

Chavez

456

Levy

Tablet	3

445

Peltier

543

543

Williams

Comp.	Sci.

54

557

Sanchez

Shankar

557

Sanchez

Music

38

765

705

Snow

Physics

0

Tablet	8

Tablet	4

123

Shankar

765

Brown

Comp.	Sci.

58

705

Snow

766

Aoi

Elec.	Eng.

6

989

Tanaka

987

Bourakis

Elec.	Eng.

98

543

Williams

989

Tanaka

Biology

120

001

Zhang

(a)	Primary	index	on	ID

(b)	Secondary	index	on	name

Figure	21.6	Global	primary	and	secondary	indices	on	student	relation	partition,	and	the	local	index	is
used	to	find	matching	tuples.	Such	an	approach	using	local	indices	is	very	inefficient	if	the	number	of
partitions	is	large,	since	every	partition	has	to	be	queried,	even	if	only	one	or	a	few	partitions	contain
matching	tuples.

We	now	illustrate	an	efficient	scheme	for	constructing	a	global	secondary	index	by	using	an	example.
Consider	again	the	student	relation	partitioned	on	the	attribute	ID,	and	suppose	a	global	index	is	to	be
constructed	on	the	attribute	name.	A	simple	way	to	construct	such	an	index	is	to	create	a	set	of	(name,
ID)	tuples,	with	one	tuple	per	student	tuple;	let	us	call	this	set	of	tuples	index	name.	Now,	the	index	name
tuples	are	partitioned	on	the	attribute	name.	A	local	index	on	name	is	then	constructed	on	each	partition
of	index	name.	In	addition,	a	global	index	is	created	on	the	ID,	which	is	the	partitioning	attribute.	Figure
21.6(b)	shows	a	secondary	index	on	the	student	relation	on	attribute	name;	local	indices	are	not	explicitly
shown	in	the	figure.

Now,	a	query	that	needs	to	retrieve	students	with	a	given	name	can	be	handled	by	first	examining	the
partition	function	of	index	name	to	find	which	partition	could	store	index	name	tuples	with	the	given
name;	the	query	is	then	sent	to	that	partition,	which	uses	the	local	index	on	name	to	find	the
corresponding	ID	value.	Next,	the	global	index	on	the	ID	value	is	used	to	find	the	required	tuple.

Note	that	in	the	example	above,	the	partitioning	attribute	ID	does	not	have	duplicates;	hence	it	suffices	to
add	only	the	index	key	name	and	the	attribute	ID	to	the	index	name	relation.	Otherwise,	further	attributes
would	have	to	be	added	to	ensure	tuples	can	be	uniquely	identified,	as	described	next.

In	general,	given	a	relation	r,	which	is	partitioned	on	a	set	of	attributes	K	,	if	we	p

wish	to	create	a	global	secondary	index	on	a	set	of	attributes	K	,	we	create	a	new	relation	i

rs,	containing	the	following	attributes:

i

21.6

Distributed	File	Systems

1019

1.	K	,	and	K

i

p

2.	If	the	partitioning	attributes	K	have	duplicates,	we	would	have	to	add	further	p

attributes	K	,	such	that	K	∪	K	is	a	key	for	the	relation	being	indexed.

u

p

u

The	relation	rs	is	partitioned	on	K	,	and	a	local	index	is	created	on	K	.	In	addition,	a	i

i

i

local	index	on	attributes	(K	,	K)	is	created	on	each	partition	of	relation	r.

p

u

We	now	consider	how	to	use	a	global	secondary	index	to	answer	a	query.	Consider	a	query	that	specifies	a
particular	value	v	for	K	.	The	query	is	processed	as	follows:	i

1.	The	relevant	partition	of	rs	for	the	value	v	is	found	using	the	partitioning	function	i

on	K	.

i

2.	Use	the	local	index	on	K	at	the	above	partition	to	find	tuples	of	rs	that	have	the	i

i

specified	value	v	for	K	.

i

3.	The	tuples	in	the	preceding	result	are	partitioned	based	on	the	K	value	and	sent	p

to	the	corresponding	nodes.

4.	At	each	node,	the	tuples	received	from	the	preceding	step	are	used	along	with	the	local	index	on	r	on
attributes	K	∪	K	,	to	find	matching	r	tuples.

p

u

Note	that	relation	rs	is	basically	a	materialized	view	defined	as	rs	=	Π

(r).

i

i

K	,	K	,	K

i

p

u

Whenever	r	is	modified	by	inserts,	deletions,	or	updates	to	tuples,	the	materialized	view	rs	must	be
correspondingly	updated.

i

Note	also	that	updates	to	a	tuple	of	r	at	some	node	may	result	in	updates	to	tuples	of	rs	at	other	nodes.
For	example,	in	Figure	21.6,	if	the	name	of	ID	001	is	updated	from	i

Zhang	to	Yang,	the	tuple	(Zhang,	001)	at	Tablet8	will	be	updated	to	(Yang,	001);	since	both	Zhang	and
Yang	belong	in	the	same	partition	of	the	secondary	index,	no	other	partition	is	affected.	On	the	other
hand,	if	the	name	is	updated	from	Zhang	to	Bolin,	the	tuple	(Zhang,	001)	will	be	deleted	from	Tablet8	and
a	new	entry	(Bolin,	001)	added	to	Tablet6.

Performing	the	above	updates	to	the	secondary	index	as	part	of	the	same	transaction	that	updates	the
base	relation	requires	updates	to	be	committed	atomically	across	multiple	nodes.	Two-phase	commit,
discussed	in	Section	23.2,	can	be	used	for	this	task.	Alternatives	based	on	persistent	messaging	can	also
be	used	as	described	in	Section	23.2.3,	provided	it	is	acceptable	for	the	secondary	index	to	be	somewhat

out	of	date.

21.6

Distributed	File	Systems

A	distributed	file	system	stores	files	across	a	large	collection	of	machines	while	giving	a	single-file-system
view	to	clients.	As	with	any	file	system,	there	is	a	system	of	file	names	and	directories,	which	clients	can
use	to	identify	and	access	files.	Clients	do	not	need	to	bother	about	where	the	files	are	stored.

1020

Chapter	21

Parallel	and	Distributed	Storage

The	goal	of	first-generation	distributed	file	systems	was	to	allow	client	machines	to	access	files	stored	on
one	or	more	file	servers.	In	contrast,	later-generation	distributed	file	systems,	which	we	focus	on,	address
distribution	of	file	blocks	across	a	very	large	number	of	nodes.	Such	distributed	file	systems	can	store
very	large	amounts	of	data	and	support	very	large	numbers	of	concurrent	clients.	A	landmark	system	in
this	context	was	the	Google	File	System	(GFS),	developed	in	the	early	2000s,	which	saw	widespread	use
within	Google.	The	open-source	Hadoop	File	System	(HDFS)	is	based	on	the	GFS

architecture	and	is	now	very	widely	used.

Distributed	file	systems	are	generally	designed	to	efficiently	store	large	files	whose	sizes	range	from	tens
of	megabytes	to	hundreds	of	gigabytes	or	more.	However,	they	are	designed	to	store	moderate	numbers	of
such	files,	of	the	order	of	millions;	they	are	typically	not	designed	to	stores	billions	of	different	files.	In
contrast,	the	parallel	data	storage	systems	we	have	seen	earlier	are	designed	to	store	very	large	numbers
(billions	or	more)	of	data	items,	whose	size	can	range	from	small	(tens	of	bytes)	to	medium	(a	few
megabytes).

As	in	parallel	data	storage	systems,	the	data	in	a	distributed	file	system	are	stored	across	a	number	of
nodes.	Since	files	can	be	much	larger	than	data	items	in	a	data	storage	system,	files	are	broken	up	into
multiple	blocks.	The	blocks	of	a	single	file	can	be	partitioned	across	multiple	machines.	Further,	each	file
block	is	replicated	across	multiple	(typically	three)	machines,	so	that	a	machine	failure	does	not	result	in
the	file	becoming	inaccessible.

File	systems	typically	support	two	kinds	of	metadata:

1.	A	directory	system,	which	allows	a	hierarchical	organization	of	files	into	directories	and	subdirectories,
and

2.	A	mapping	from	a	file	name	to	the	sequence	of	identifiers	of	blocks	that	store	the	actual	data	in	each
file.

In	the	case	of	a	centralized	file	system,	the	block	identifiers	help	locate	blocks	in	a	storage	device	such	as
a	disk.	In	the	case	of	a	distributed	file	system,	in	addition	to	providing	a	block	identifier,	the	file	system
must	provide	the	location	(node	identifier)	where	the	block	is	stored;	in	fact,	due	to	replication,	the	file
system	provides	a	set	of	node	identifiers	along	with	each	block	identifier.

In	the	rest	of	this	section,	we	describe	the	organization	of	the	Hadoop	File	System	(HDFS),	which	is
shown	in	Figure	21.7;	the	architecture	of	HDFS	is	derived	from	that	of	the	Google	File	System	(GFS).	The
nodes	(machines)	which	store	data	blocks	in	HDFS	are	called	datanodes.	Blocks	have	an	associated	ID,
and	datanodes	map	the	block	ID	to	a	location	in	their	local	file	system	where	the	block	is	stored.

The	file	system	metadata	too	can	be	partitioned	across	many	nodes,	but	unless	carefully	architected,	this
could	lead	to	bad	performance.	GFS	and	HDFS	took	a	simpler	and	more	pragmatic	approach	of	storing
the	file	system	metadata	at	a	single	node,	called	the	namenode	in	HDFS.

21.6

Distributed	File	Systems

1021

NameNode

Metadata	(name,	replicas,	...)

Metadata	Ops

BackupNode

Metadata	(name,	replicas,	...)

Client

Block	Read

DataNodes

Blocks

Client

Block	Write

Replication

Rack	1

Rack	2

Figure	21.7	Hadoop	Distributed	File	System	(HDFS)	architecture

Since	all	metadata	reads	have	to	go	to	the	namenode,	if	a	disk	access	were	required	to	satisfy	a	metadata
read,	the	number	of	requests	that	could	be	satisfied	per	second	would	be	very	small.	To	ensure	acceptable
performance,	HDFS	namenodes	cache	the	entire	metadata	in	memory;	the	size	of	memory	then	becomes	a
limiting	factor	in	the	number	of	files	and	blocks	that	the	file	system	can	manage.	To	reduce	the	memory
size,	HDFS	uses	very	large	block	sizes	(typically	64	MB)	to	reduce	the	number	of	blocks	that	the
namenode	must	track	for	each	file.	Despite	this,	the	limited	amount	of	main	memory	on	most	machines
constrains	namenodes	to	support	only	a	limited	number	of

1022

Chapter	21

Parallel	and	Distributed	Storage

files	(of	the	order	of	millions).	However,	with	main-memory	sizes	of	many	gigabytes,	and	block	sizes	of
tens	of	megabytes,	an	HDFS	system	can	comfortably	handle	many	petabytes	of	data.

In	any	system	with	a	large	number	of	datanodes,	datanode	failures	are	a	frequent	occurrence.	To	deal
with	datanode	failures,	data	blocks	must	be	replicated	to	multiple	datanodes.	If	a	datanode	fails,	the	block
can	still	be	read	from	one	of	the	other	datanodes	that	stores	a	replica	of	the	block.	Replication	to	three
datanodes	is	widely	used	to	provide	high	availability,	without	paying	too	high	a	storage	overhead.

We	now	consider	how	a	file	open	and	read	request	is	satisfied	with	HDFS.	First,	the	client	contacts	the
namenode,	with	the	name	of	the	file.	The	namenode	finds	the	list	of	IDs	of	blocks	containing	the	file	data
and	returns	to	the	client	the	list	of	block	IDs,	along	with	the	set	of	nodes	that	contain	replicas	of	each	of
the	blocks.	The	client	then	contacts	any	one	of	the	replicas	for	each	block	of	the	file,	sending	it	the	ID	of
the	block,	to	retrieve	the	block.	In	case	that	particular	replica	does	not	respond,	the	client	can	contact	any
of	the	other	replicas.

To	satisfy	a	write	request,	the	client	first	contacts	the	namenode,	which	allocates	blocks,	and	decides
which	datanodes	should	store	replicas	of	each	block.	The	metadata	are	recorded	at	the	namenode	and
sent	back	to	the	client.	The	client	then	writes	the	block	to	all	the	replicas.	As	an	optimization	to	reduce
network	traffic,	HDFS	implementations	may	choose	to	store	two	replicas	in	the	same	rack;	in	that	case,
the	block	write	is	performed	to	one	replica,	which	then	copies	the	data	to	the	second	replica	on	the	same
rack.	When	all	the	replicas	have	processed	the	write	of	a	block,	an	acknowledgment	is	sent	to	the	client.

Replication	introduces	the	problem	of	consistency	of	data	across	the	replicas	in	case	the	file	is	updated.
As	an	example,	suppose	one	of	the	replicas	of	a	data	block	is	updated,	but	due	to	system	failure,	another
replica	does	not	get	updated;	then	the	system	could	end	up	with	inconsistent	states	across	the	replicas.
And	what	value	is	read	would	depend	on	which	replica	is	accessed,	which	is	not	an	acceptable	situation.

While	data	storage	systems	in	general	need	to	deal	with	consistency,	using	techniques	that	we	study	in
Chapter	23,	some	distributed	file	systems	such	as	HDFS	take	a	different	approach:	namely,	not	allowing
updates.	In	other	words,	a	file	can	be	appended	to,	but	data	that	are	written	cannot	be	updated.	As	each
block	of	the	file	is	written,	the	block	is	copied	to	the	replicas.	The	file	cannot	be	read	until	it	is	closed,	that
is,	all	data	have	been	written	to	the	file,	and	the	blocks	have	been	written	successfully	at	all	their	replicas.
The	model	of	writing	data	to	a	file	is	sometimes	referred	to	as	write-once-read-many	access	model.	Others
such	as	GFS	allow	updates	and	detect	certain	inconsistent	states	caused	by	failures	while	writing	to

replicas;	however,	transactional	(atomic)	updates	are	not	supported.

The	restriction	that	files	cannot	be	updated,	but	can	only	be	appended	to,	is	not	a	problem	for	many
applications	of	a	distributed	file	system.	Applications	that	require	updates	should	use	a	data-storage
system	that	supports	updates	instead	of	using	a	distributed	file	system.

21.7

Parallel	Key-Value	Stores

1023

21.7

Parallel	Key-Value	Stores

Many	Web	applications	need	to	store	very	large	numbers	(many	billions)	of	relatively	small	records	(of
size	ranging	from	a	few	kilobytes	to	a	few	megabytes).	Storage	would	have	to	be	distributed	across
thousands	of	nodes.	Storing	such	records	as	files	in	a	distributed	file	system	is	infeasible,	since	file
systems	are	not	designed	to	store	such	large	numbers	of	small	files.	Ideally,	a	massively	parallel	relational
database	should	be	used	to	store	such	data.	But	the	parallel	relational	databases	available	in	the	early
2000s	were	not	designed	to	work	at	a	massive	scale;	nor	did	they	support	the	ability	to	easily	add	more
nodes	to	the	system	without	causing	significant	disruption	to	ongoing	activities.

A	number	of	parallel	key-value	storage	systems	were	developed	to	meet	the	needs	of	such	web
applications.	A	key-value	store	provides	a	way	to	store	or	update	a	data	item	(value)	with	an	associated
key	and	to	retrieve	the	data	item	with	a	given	key.	Some	key-value	stores	treat	the	data	items	as
uninterpreted	sequences	of	bytes,	while	others	allow	a	schema	to	be	associated	with	the	data	item.	If	the
system	supports	definition	of	a	schema	for	data	items,	it	is	possible	for	the	system	to	create	and	maintain
secondary	indices	on	specified	attributes	of	data	items.

Key-value	stores	support	two	very	basic	functions	on	tables:	put(table,	key,	value),	used	to	store	values,
with	an	associated	key,	in	a	table,	and	get(table,	key),	which	retrieves	the	stored	value	associated	with	the
specified	key.	In	addition,	they	may	support	other	functions,	such	as	range	queries	on	key	values,	using
get(table,	key1,	key2).

Further,	many	key-value	stores	support	some	form	of	flexible	schema.

•	Some	allow	column	names	to	be	specified	as	part	of	a	schema	definition,	similar	to	relational	data
stores.

•	Others	allow	columns	to	be	added	to,	or	deleted	from,	individual	tuples;	such	key-value	stores	are
sometimes	referred	to	as	wide-column	stores.	Such	key-value	stores	support	functions	such	as	put(table,
key,	columname,	value),	to	store	a	value	in	a	specific	column	of	a	row	identified	by	the	key	(creating	the
column	if	it	does	not	already	exist),	and	get(table,	key,	columname),	which	retrieves	the	value	for	a
specific	column	of	a	specific	row	identified	by	the	key.	Further,	delete(table,	key,	columname)	deletes	a
specific	column	from	a	row.

•	Yet	other	key-value	stores	allow	the	value	stored	with	a	key	to	have	a	complex	structure,	typically	based
on	JSON;	they	are	sometimes	referred	to	as	document	stores.

The	ability	to	specify	a	(partial)	schema	of	the	stored	value	allows	the	key-value	store	to	evaluate	selection
predicates	at	the	data	store;	some	stores	also	use	the	schema	to	support	secondary	indices.

We	use	the	term	key-value	store	to	include	all	the	above	types	of	data	stores;	however,	some	people	use
the	term	key-value	store	to	refer	more	specifically	to	those	that

1024

Chapter	21

Parallel	and	Distributed	Storage

do	not	support	any	form	of	schema	and	treat	the	value	as	an	uninterpreted	sequence	of	bytes.

Parallel	key-value	stores	typically	support	elasticity,	whereby	the	number	of	nodes	can	be	increased	or
decreased	incrementally,	depending	on	demand.	As	nodes	are	added,	tablets	can	be	moved	to	the	new
nodes.	To	reduce	the	number	of	nodes,	tablets	can	be	moved	away	from	some	nodes,	which	can	then	be
removed	from	the	system.

Widely	used	parallel	key-value	stores	that	support	flexible	columns	(also	known	as	wide-column	stores)
include	Bigtable	from	Google,	Apache	HBase,	Apache	Cassandra	(originally	developed	at	Facebook),	and

Microsoft	Azure	Table	Storage	from	Microsoft,	among	others.	Key-value	stores	that	support	a	schema
include	Megastore	and	Spanner	from	Google,	and	Sherpa/PNUTS	from	Yahoo!.	Key-value	stores	that
support	semi-structured	data	(also	known	as	document-stores)	include	Couchbase,	DynamoDB

from	Amazon,	and	MongoDB,	among	others.	Redis	and	Memcached	are	parallel	in-memory	key-value
stores	which	are	widely	used	for	caching	data.

Key-value	stores	are	not	full-fledged	databases,	since	they	do	not	provide	many	of	the	features	that	are
viewed	as	standard	on	database	systems	today.	Features	that	key-value	stores	typically	do	not	support
include	declarative	querying	(using	SQL	or	any	other	declarative	query	language),	support	for
transactions,	and	support	for	efficient	retrieval	of	records	based	on	selections	on	nonkey	attributes
(traditional	databases	support	such	retrieval	using	secondary	indices).	In	fact,	they	typically	do	not
support	primary-key	constraints	for	attributes	other	than	the	key,	and	do	not	support	foreign-key
constraints.

21.7.1

Data	Representation

As	an	example	of	data	management	needs	of	web	applications,	consider	the	profile	of	a	user,	which	needs
to	be	accessible	to	a	number	of	different	applications	that	are	run	by	an	organization.	The	profile	contains
a	variety	of	attributes,	and	there	are	frequent	additions	to	the	attributes	stored	in	the	profile.	Some
attributes	may	contain	complex	data.	A	simple	relational	representation	is	often	not	sufficient	for	such
complex	data.

Many	key-value	stores	support	the	JavaScript	Object	Notation	(JSON)	representation,	which	has	found
increasing	acceptance	for	representing	complex	data	(JSON	is	covered	in	Section	8.1.2).	The	JSON
representation	provides	flexibility	in	the	set	of	attributes	that	a	record	contains,	as	well	as	the	types	of
these	attributes.	Yet	others,	such	as	Bigtable,	define	their	own	data	model	for	complex	data,	including
support	for	records	with	a	very	large	number	of	optional	columns.

In	Bigtable,	a	record	is	not	stored	as	a	single	value	but	is	instead	split	into	component	attributes	that	are
stored	separately.	Thus,	the	key	for	an	attribute	value	conceptually	consists	of	(record-identifier,	attribute-
name).	Each	attribute	value	is	just	a	string	as	far	as	Bigtable	is	concerned.	To	fetch	all	attributes	of	a
record,	a	range	query,	or	more	precisely	a	prefix-match	query	consisting	of	just	the	record	identifier,	is
used.	The	get()	function	returns	the	attribute	names	along	with	the	values.	For	efficient	retrieval

21.7

Parallel	Key-Value	Stores

1025

of	all	attributes	of	a	record,	the	storage	system	stores	entries	sorted	by	the	key,	so	all	attribute	values	of	a
particular	record	are	clustered	together.

In	fact,	the	record	identifier	can	itself	be	structured	hierarchically,	although	to	Bigtable	itself	the	record
identifier	is	just	a	string.	For	example,	an	application	that	stores	pages	retrieved	from	a	web	crawl	could
map	a	URL	of	the	form:

www.cs.yale.edu/people/silberschatz.html

to	the	record	identifier:

edu.yale.cs.www/people/silberschatz.html

so	that	pages	are	clustered	in	a	useful	order.

Data-storage	systems	often	allow	multiple	versions	of	data	items	to	be	stored.	Versions	are	often	identified
by	timestamp,	but	they	may	be	alternatively	identified	by	an	integer	value	that	is	incremented	whenever	a
new	version	of	a	data	item	is	created.

Reads	can	specify	the	required	version	of	a	data	item,	or	they	can	pick	the	version	with	the	highest
version	number.	In	Bigtable,	for	example,	a	key	actually	consists	of	three	parts:	(record-identifier,
attribute-name,	timestamp).

Some	key-value	stores	support	columnar	storage	of	rows,	with	each	column	of	a	row	stored	separately,
with	the	row	key	and	the	column	value	stored	for	each	row.	Such	a	representation	allows	a	scan	to
efficiently	retrieve	a	specified	column	of	all	rows,	without	having	to	retrieve	other	columns	from	storage.
In	contrast,	if	rows	are	stored	in	the	usual	manner,	with	all	column	values	stored	with	the	row,	a
sequential	scan	of	the	storage	would	fetch	columns	that	are	not	required,	reducing	performance.

Further,	some	key-value	stores	support	the	notion	of	a	column	family,	which	groups	sets	of	columns	into	a
column	family.	For	a	given	row,	all	the	columns	in	a	specific	column	family	are	stored	together,	but
columns	from	other	column	families	are	stored	separately.	If	a	set	of	columns	are	often	retrieved	together,
storing	them	as	a	column	family	may	allow	more	efficient	retrieval,	as	compared	to	either	columnar
storage	where	these	are	stored	and	retrieved	separately,	or	a	row	storage,	which	could	result	in	retrieving
unneeded	columns	from	storage.

21.7.2

Storing	and	Retrieving	Data

In	this	section,	we	use	the	term	tablet	to	refer	to	partitions,	as	discussed	in	Section	21.3.3.	We	also	use
the	term	tablet	server	to	refer	to	the	node	that	acts	as	the	server	for	a	particular	tablet;	all	requests
related	to	a	tablet	are	sent	to	the	tablet	server	for	that	tablet.5.	The	tablet	server	would	be	one	of	the
nodes	that	has	a	replica	of	the	tablet	and	plays	the	role	of	master	replica	as	discussed	in	Section	21.4.1.6

5HBase	uses	the	terms	region	and	region	server	in	place	of	the	terms	tablet	and	tablet	server	6In
BigTable	and	HBase,	replication	is	handled	by	the	underlying	distributed	file	system;	tablet	data	are
stored	in	files,	and	one	of	the	nodes	containing	a	replica	of	the	tablet	files	is	chosen	as	the	tablet	server.

1026

Chapter	21

Parallel	and	Distributed	Storage

We	use	the	term	master	to	refer	to	a	site	that	stores	a	master	copy	of	the	partition	information,	including,
for	each	tablet,	the	key	ranges	for	the	tablet,	the	sites	storing	the	replicas	of	the	tablet,	and	the	current
tablet	server	for	that	tablet.7	The	master	is	also	responsible	for	tracking	the	health	of	tablet	servers;	in
case	a	tablet	server	node	fails,	the	master	assigns	one	of	the	other	nodes	that	contains	a	replica	of	the
tablet	to	act	as	the	new	tablet	server	for	that	tablet.	The	master	is	also	responsible	for	reassigning	tablets
to	balance	the	load	in	the	system	if	some	node	is	overloaded	or	if	a	new	node	is	added	to	the	system.

For	each	request	coming	into	the	system,	the	tablet	corresponding	to	the	key	must	be	identified,	and	the
request	routed	to	the	tablet	server.	If	a	single	master	site	were	responsible	for	this	task,	it	would	get
overloaded.	Instead,	the	routing	task	is	parallelized	in	one	of	two	ways:

•	By	replicating	the	partition	information	to	the	client	sites;	the	key-value	store	API	used	by	clients	looks
up	the	partition	information	copy	stored	at	the	client	to	decide	where	to	route	a	request.	This	approach	is
used	in	Bigtable	and	HBase.

•	By	replicating	the	partition	information	to	a	set	of	router	sites,	which	route	requests	to	the	site	with	the
appropriate	tablet.	Requests	can	be	sent	to	any	one	of	the	router	sites,	which	forward	the	request	to	the
correct	tablet	master.	This	approach	is	used,	for	example,	in	the	PNUTS	system.

Since	there	may	be	a	gap	between	actually	splitting	or	moving	a	tablet	and	updating	the	partition
information	at	a	router	(or	client),	the	partition	information	may	be	out	of	date	when	the	routing	decision
is	made.	When	the	request	reaches	the	identified	tablet	master	node,	the	node	detects	that	the	tablet	has
been	split,	or	that	the	site	no	longer	stores	a	(master)	replica	of	the	tablet.	In	such	a	case,	the	request	is
returned	to	the	router	with	an	indication	that	the	routing	was	incorrect;	the	router	then	retrieves	up-to-
date	tablet	mapping	information	from	the	master	and	reroutes	the	request	to	the	correct	destination.

Figure	21.8	depicts	the	architecture	of	a	cloud	data-storage	system,	based	loosely	on	the	PNUTS
architecture.	Other	systems	provide	similar	functionality,	although	their	architecture	may	vary.	For
example,	Bigtable/HBase	do	not	have	separate	routers;	the	partitioning	and	tablet-server	mapping
information	is	stored	in	the	Google	File	System/HDFS,	and	clients	read	the	information	from	the	file
system	and	decide	where	to	send	their	requests.

21.7.2.1

Geographically	Distributed	Storage

Several	key-value	stores	support	replication	of	data	to	geographically	distributed	locations;	some	of	these
also	support	partitioning	of	data	across	geographically	distributed	locations,	allowing	different	partitions
to	be	replicated	in	different	sets	of	locations.

7The	term	tablet	controller	is	used	by	PNUTS	to	refer	to	the	master	site.

21.7

Parallel	Key-Value	Stores

1027

Requests

Requests

Requests

Master	copy	of

partition	table/

tablet	mapping

Tablet

Routers

controller

Tablets

Tablet	servers

Figure	21.8	Architecture	of	a	cloud	data	storage	system.

One	of	the	key	motivations	for	geographic	distribution	is	fault	tolerance,	which	allows	the	system	to
continue	functioning	even	if	an	entire	data	center	fails	due	to	a	disaster	such	as	a	fire	or	an	earthquake;	in
fact,	earthquakes	could	cause	all	data	centers	in	a	region	to	fail.	A	second	key	motivation	is	to	allow	a
copy	of	the	data	to	reside	at	a	geographic	region	close	to	the	user;	requiring	data	to	be	fetched	from
across	the	world	could	result	in	latencies	of	hundreds	of	milliseconds.

A	key	performance	issue	with	geographical	replication	of	data	is	that	the	latency	across	geographical
regions	is	much	higher	than	the	latency	within	a	data	center.	Some	key-value	stores	nevertheless	support
geographically	distributed	replication,	requiring	transactions	to	wait	for	confirmation	of	updates	from
remote	locations.	Other	key-value	stores	support	asynchronous	replication	of	updates	to	remote	locations,
allowing	a	transaction	to	commit	without	waiting	for	confirmation	of	updates	from	a	remote	location.
There	is,	however,	a	risk	of	loss	of	updates	in	case	of	failure	before	the	updates	are	replicated.	Some	key-
value	stores	allow	the	application	to	choose	whether	to	wait	for	confirmation	from	remote	locations	or	to
commit	as	soon	as	updates	are	performed	locally.

Key-value	stores	that	support	geographic	replication	include	Apache	Cassandra,	Megastore	and	Spanner
from	Google,	Windows	Azure	storage	from	Microsoft,	and	PNUTS/Sherpa	from	Yahoo!,	among	others.

1028

Chapter	21

Parallel	and	Distributed	Storage

21.7.2.2

Index	Structure

The	records	in	each	tablet	in	a	key-value	store	are	indexed	on	the	key;	range	queries	can	be	efficiently
supported	by	storing	records	clustered	on	the	key.	A	B+-tree	file	organization	is	a	good	option,	since	it
supports	indexing	with	clustered	storage	of	records.

The	widely	used	key-value	stores	BigTable	and	HBase	are	built	on	top	of	distributed	file	systems	in	which
files	are	immutable;	that	is,	files	cannot	be	updated	once	they	are	created.	Thus	B+-tree	indices	or	file
organization	cannot	be	stored	in	immutable	files,	since	B+-trees	require	updates,	which	cannot	be	done
on	an	immutable	file.

Instead,	the	BigTable	and	HBase	systems	use	the	stepped-merge	variant	of	the	log	structured	merge	tree	(
LSM	tree),	which	we	saw	in	Section	14.8.1,	and	is	described	in	more	detail	in	Section	24.2.	The	LSM	tree
does	not	perform	updates	on	existing	trees,	but	instead	creates	new	trees	either	using	new	data	or	by
merging	existing	trees.	Thus,	it	is	an	ideal	fit	for	use	on	top	of	distributed	file	systems	that	only	support
immutable	files.	As	an	extra	benefit,	the	LSM	tree	supports	clustered	storage	of	records,	and	can	support
very	high	insert	and	update	rates,	which	has	been	found	very	useful	in	many	applications	of	key-value
stores.	Several	key-value	stores,	such	as	Apache	Cassandra	and	the	WiredTiger	storage	structure	used	by
MongoDB,	use	the	LSM	tree	structure.

21.7.3

Support	for	Transactions

Most	key-value	stores	offer	limited	support	for	transactions.	For	example,	key-value	stores	typically
support	atomic	updates	on	a	single	data	item	and	ensure	that	updates	on	the	data	item	are	serialized,	that
is,	run	one	after	the	other.	Serializability	at	the	level	of	individual	operations	is	thus	trivially	satisfied,
since	the	operations	are	run	serially.

Note	that	serializability	at	the	level	of	transactions	is	not	guaranteed	by	serial	execution	of	updates	on
individual	data	items,	since	a	transaction	may	access	more	than	one	data	item.

Some	key-value	stores,	such	as	Google’s	MegaStore	and	Spanner,	provide	full	support	for	ACID
transactions	across	multiple	nodes.	However,	most	key-value	stores	do	not	support	transactions	across
multiple	data	items.

Some	key-value	stores	provide	a	test-and-set	operation	that	can	help	applications	implement	limited	forms
of	concurrency	control,	as	we	see	next.

21.7.3.1

Concurrency	Control

Some	key-value	stores,	such	as	the	Megastore	and	Spanner	systems	from	Google,	support	concurrency
control	via	locking.	Issues	in	distributed	concurrency	control	are	discussed	in	Chapter	23.	Spanner	also
supports	versioning	and	database	snapshots	based	on	timestamps.	Details	of	the	multiversion
concurrency	control	technique	implemented	in	Spanner	are	discussed	in	Section	23.5.1.

However,	most	of	the	other	key-value	stores,	such	as	Bigtable,	PNUTS/Sherpa,	and	MongoDB,	support
atomic	operations	on	single	data	items	(which	may	have	multiple	columns,	or	may	be	JSON	documents	in
MongoDB).

21.7

Parallel	Key-Value	Stores

1029

Some	key-value	stores,	such	as	HBase	and	PNUTS,	provide	an	atomic	test-and-set	function,	which	allows
an	update	to	a	data	item	to	be	conditional	on	the	current	version	of	the	data	item	being	the	same	as	a
specified	version	number;	the	check	(test)	and	the	update	(set)	are	performed	atomically.	This	feature	can
be	used	to	implement	a	limited	form	of	validation-based	concurrency	control,	as	discussed	in	Section
23.3.7.

Some	data	stores	support	atomic	increment	operations	on	data	items	and	atomic	execution	of	stored
procedures.	For	example,	HBase	supports	the	incrementColum-nValue()	operation,	which	atomically	reads
and	increments	a	column	value,	and	a	checkAndPut()	which	atomically	checks	a	condition	on	a	data	item
and	updates	it	only	if	the	check	succeeds.	HBase	also	supports	atomic	execution	of	stored	procedures,
which	are	called	“coprocessors”	in	HBase	terminology.	These	procedures	run	on	a	single	data	item	and
are	executed	atomically.

21.7.3.2

Atomic	Commit

BigTable,	HBase,	and	PNUTS	support	atomic	commit	of	multiple	updates	to	a	single	row;	however,	none	of
these	systems	supports	atomic	updates	across	different	rows.

As	one	of	the	results	of	the	above	limitation,	none	of	these	systems	supports	secondary	indices;	updates	to
a	data	item	would	require	updates	to	the	secondary	index,	which	cannot	be	done	atomically.

Some	systems,	such	as	PNUTS,	support	secondary	indices	or	materialized	views	with	deferred	updates;
updates	to	a	data	item	result	in	updates	to	the	secondary	index	or	materialized	view	being	added	to	a
messaging	service	to	be	delivered	to	the	node	where	the	update	needs	to	be	applied.	These	updates	are
guaranteed	to	be	delivered	and	applied	subsequently;	however,	until	they	are	applied,	the	secondary	index
may	be	inconsistent	with	the	underlying	data.	View	maintenance	is	also	supported	by	PNUTS

in	the	same	deferred	fashion.	There	is	no	transactional	guarantee	on	the	updates	of	such	secondary
indices	or	materialized	views,	and	only	a	best-effort	guarantee	in	terms	of	when	the	updates	reach	their
destination.	Consistency	issues	with	deferred	maintenance	are	discussed	in	Section	23.6.3.

In	contrast,	the	Megastore	and	Spanner	systems	developed	by	Google	support	atomic	commit	for

transactions	spanning	multiple	data	items,	which	can	be	spread	across	multiple	nodes.	These	systems	use
two-phase	commit	(discussed	in	Section	23.2)	to	ensure	atomic	commit	across	multiple	nodes.

21.7.3.3

Dealing	with	Failures

If	a	tablet	server	node	fails,	another	node	that	has	a	copy	of	the	tablet	should	be	assigned	the	task	of
serving	the	tablet.	The	master	node	is	responsible	for	detecting	node	failures	and	reassigning	tablet
servers.

When	a	new	node	takes	over	as	tablet	server,	it	must	recover	the	state	of	the	tablet.

To	ensure	that	updates	to	the	tablet	survive	node	failures,	updates	to	a	tablet	are	logged,	and	the	log	is
itself	replicated.	When	a	site	fails,	the	tablets	at	the	site	are	assigned	to

1030

Chapter	21

Parallel	and	Distributed	Storage

other	sites;	the	new	master	site	of	each	tablet	is	responsible	for	performing	recovery	actions	using	the	log
to	bring	its	copy	of	the	tablet	to	an	up-to-date	state,	after	which	updates	and	reads	can	be	performed	on
the	tablet.

In	Bigtable,	as	an	example,	mapping	information	is	stored	in	an	index	structure,	and	the	index,	as	well	as
the	actual	tablet	data,	are	stored	in	the	file	system.	Tablet	data	updates	are	not	flushed	immediately,	but
log	data	are.	The	file	system	ensures	that	the	file	system	data	are	replicated	and	will	be	available	even	in
the	face	of	failure	of	a	few	nodes	in	the	cluster.	Thus,	when	a	tablet	is	reassigned,	the	new	server	for	that
tablet	has	access	to	up-to-date	log	data.

Yahoo!’s	Sherpa/PNUTS	system,	on	the	other	hand,	explicitly	replicates	tablets	to	multiple	nodes	in	a
cluster	and	uses	a	persistent	messaging	system	to	implement	the	log.	The	persistent	messaging	system
replicates	log	records	at	multiple	sites	to	ensure	availability	in	the	event	of	a	failure.	When	a	new	node
takes	over	as	the	tablet	server,	it	must	apply	any	pending	log	records	that	were	generated	by	the	earlier
tablet	server	before	taking	over	as	the	tablet	server.

To	ensure	availability	in	the	face	of	failures,	data	must	be	replicated.	As	noted	in	Section	21.4.2,	a	key
issue	with	replication	is	the	task	of	keeping	the	replicas	consistent	with	each	other.	Different	systems
implement	atomic	update	of	replicas	in	different	fashions.	Google	BigTable	and	Apache	HBase	use
replication	features	provided	by	an	underlying	file	system	(GFS	for	BigTable,	and	HDFS	for	HBase),
instead	of	implementing	replication	on	their	own.	Interestingly,	neither	GFS	nor	HDFS	supports	atomic
updates	of	all	replicas	of	a	file;	instead	they	support	appends	to	files,	which	are	copied	to	all	replicas	of
the	file	blocks.	An	append	is	successful	only	when	it	has	been	applied	to	all	replicas.	System	failures	can
result	in	appends	that	are	applied	to	only	some	replicas;	such	incomplete	appends	are	detected	using
sequence	numbers	and	are	cleaned	up	when	they	are	detected.

Some	systems	such	as	PNUTS	use	a	persistent	messaging	service	to	log	updates;	the	messaging	service
guarantees	that	updates	will	be	delivered	to	all	replicas.	Other	systems,	such	as	Google’s	Megastore	and
Spanner,	use	a	technique	called	distributed	consensus	to	implement	consistent	replication,	as	we	discuss
in	Section	23.8.	Such	systems	require	a	majority	of	replicas	to	be	available	to	perform	an	update.	Other
systems,	such	as	Apache	Cassandra	and	MongoDB,	allow	the	user	control	over	how	many	replicas	must	be
available	to	perform	an	update.	Setting	the	value	low	could	result	in	conflicting	updates,	which	must	be
resolved	later.	We	discuss	these	issues	in	Section	23.6.

21.7.4

Managing	Without	Declarative	Queries

Key-value	stores	do	not	provide	any	query	processing	facility,	such	as	SQL	language	support,	or	even
lower-level	primitives	such	as	joins.	Many	applications	that	use	key-value	stores	can	manage	without
query	language	support.	The	primary	mode	of	data	access	in	such	applications	is	to	store	data	with	an
associated	key	and	to	retrieve	data

21.7

Parallel	Key-Value	Stores

1031

with	that	key.	In	the	user	profile	example,	the	key	for	user-profile	data	would	be	the	user’s	identifier.

There	are	applications	that	require	joins	but	implement	the	joins	either	in	application	code	or	by	a	form	of
view	materialization.	For	example,	in	a	social-networking	application,	each	user	should	be	shown	new
posts	from	all	her	friends,	which	conceptually	requires	a	join.

One	approach	to	computing	the	join	is	to	implement	it	in	the	application	code,	by	first	finding	the	set	of
friends	of	a	given	user,	and	then	querying	the	data	object	representing	each	friend,	to	find	their	recent
posts.

An	alternative	approach	is	as	follows:	Whenever	a	user	makes	a	post,	for	each	friend	of	the	user	a
message	is	sent	to,	the	data	object	representing	that	friend	and	the	data	associated	with	the	friend	are
updated	with	a	summary	of	the	new	post.	When	that	user	checks	for	updates,	all	required	data	are
available	in	one	place	and	can	be	retrieved	quickly.

Both	approaches	can	be	used	without	any	underlying	support	for	joins.	There	are	trade-offs	between	the
two	alternatives	such	as	higher	cost	at	query	time	for	the	first	alternative	versus	higher	storage	cost	and
higher	cost	at	the	time	of	writes	for	the	second	alternative.

21.7.5

Performance	Optimizations

When	using	a	data	storage	system,	the	physical	location	of	data	are	decided	by	the	storage	system	and
hidden	from	the	client.	When	storing	multiple	relations	that	need	to	be	joined,	partitioning	each
independently	may	be	suboptimal	in	terms	of	communication	cost.	For	example,	if	the	join	of	two	relations
is	computed	frequently,	it	may	be	best	if	they	are	partitioned	in	exactly	the	same	way,	on	their	join
attributes.	As	we	will	see	in	Section	22.7.4,	doing	so	would	allow	the	join	to	be	computed	in	parallel	at
each	storage	site,	without	data	transfer.

To	support	such	scenarios,	some	data	storage	systems	allow	the	schema	designer	to	specify	that	tuples	of
one	relation	should	be	stored	in	the	same	partitions	as	tuples	of	another	relation	that	they	reference,
typically	using	a	foreign	key.	A	typical	use	of	this	functionality	is	to	store	all	tuples	related	to	a	particular
entity	together	in	the	same	partition;	the	set	of	such	tuples	is	called	an	entity	group.

Further,	many	data	storage	systems,	such	as	HBase,	support	stored	functions	or	stored	procedures.
Stored	functions/procedures	allow	clients	to	invoke	a	function	on	a	tuple	(or	an	entity	group)	and	instead
of	the	tuples	being	fetched	and	executed	locally,	the	function	is	executed	at	the	partition	where	the	tuple
is	stored.	Stored	functions/procedures	are	particularly	useful	if	the	stored	tuples	are	large,	while	the
function/procedure	results	are	small,	reducing	data	transfer.

Many	data	storage	systems	provide	features	such	as	support	for	automatically	deleting	old	versions	of
data	items	after	some	period	of	time,	or	even	deleting	data	items	that	are	older	than	some	specified
period.

1032

Chapter	21

Parallel	and	Distributed	Storage

21.8

Summary

•	Parallel	databases	have	gained	significant	commercial	acceptance	in	the	past	20

years.

•	Data	storage	and	indexing	are	two	important	aspects	of	parallel	database	systems.

•	Data	partitioning	involves	the	distribution	of	data	among	multiple	nodes.	In	I/O

parallelism,	relations	are	partitioned	among	available	disks	so	that	they	can	be	retrieved	faster.	Three
commonly	used	partitioning	techniques	are	round-robin	partitioning,	hash	partitioning,	and	range
partitioning.

•	Skew	is	a	major	problem,	especially	with	increasing	degrees	of	parallelism.	Balanced	partitioning
vectors,	using	histograms,	and	virtual	node	partitioning	are	among	the	techniques	used	to	reduce	skew.

•	Parallel	data	storage	systems	must	be	resilient	to	failure	of	nodes.	To	ensure	that	data	are	not	lost	on
node	failure,	tuples	are	replicated	across	at	least	two	nodes,	and	often	three	nodes.	If	a	node	fails,	the
tuples	that	it	stored	can	still	be	accessed	from	the	other	nodes	where	the	tuples	are	replicated.

•	Indices	in	a	parallel	data	storage	system	can	be	divided	into	two	kinds:	local	and	global.	A	local	index	is
an	index	built	on	tuples	stored	in	a	particular	node;	The	index	contents	are	stored	on	the	same	node	as
the	data.	A	global	index	is	an	index	built	on	data	stored	across	multiple	nodes.

•	A	distributed	file	system	stores	files	across	a	large	collection	of	machines,	while	giving	a	single-file-
system	view	to	clients.	As	with	any	file	system,	there	is	a	system	of	file	names	and	directories,	which
clients	can	use	to	identify	and	access	files.

Clients	do	not	need	to	bother	about	where	the	files	are	stored.

•	Web	applications	need	to	store	very	large	numbers	(many	billions)	of	relatively	small	records	(of	size
ranging	from	a	few	kilobytes	to	a	few	megabytes).	A	number	of	parallel	key-value	storage	systems	were
developed	to	meet	the	needs	of	such	web	applications.	A	key-value	store	provides	a	way	to	store	or	update
a	data	item	(value)	with	an	associated	key,	and	to	retrieve	the	data	item	with	a	given	key.

Review	Terms

•	Key-value	stores

•	Partitioning	strategies

•	Data	storage	system

°	Round-robin

•	I/O	parallelism

°	Hash	partitioning

•	Data	partitioning

•

°	Range	partitioning

Horizontal	partitioning

•	Partitioning	vector

Practice	Exercises

1033

•	Point	queries

•	Routers

•	Range	queries

•	Consistent	hashing

•	Skew

•	Distributed	hash	tables

°	Execution	skew

•	Replication

°	Data	distribution	skew

°	Replication	within	a	data	center

°	Attribute-value	skew

°	Replication	across	data	center

°	Partition	skew

°	Master	replicas

°	Execution	skew

°	Consistency	of	replicas

•	Handling	of	skew

•	Eventual	consistency

°	Balanced	range-partitioning

•	Global	primary	index

vector

•	Global	secondary	index

°	Histogram

•	Distributed	file	system

°	Virtual	nodes

•	Write-once-read-many	access	model

•	Elasticity	of	storage

•	Key-value	store

•	Table

•	Wide-column	stores

•	Tablets

•	Document	stores

•	Partition	table

•	Column	family

•	Master	node

•	Tablet	server

Practice	Exercises

21.1

In	a	range	selection	on	a	range-partitioned	attribute,	it	is	possible	that	only	one	disk	may	need	to	be
accessed.	Describe	the	benefits	and	drawbacks	of	this	property.

21.2

Recall	that	histograms	are	used	for	constructing	load-balanced	range	partitions.

a.

Suppose	you	have	a	histogram	where	values	are	between	1	and	100,	and

are	partitioned	into	10	ranges,	1	–	10,	11	–	20,	…	,	91–100,	with	frequencies	15,	5,	20,	10,	10,	5,	5,	20,	5,
and	5,	respectively.	Give	a	load-balanced	range	partitioning	function	to	divide	the	values	into	five
partitions.

b.

Write	an	algorithm	for	computing	a	balanced	range	partition	with	p	partitions,	given	a	histogram	of
frequency	distributions	containing	n	ranges.

21.3

Histograms	are	traditionally	constructed	on	the	values	of	a	specific	attribute	(or	set	of	attributes)	of	a
relation.	Such	histograms	are	good	for	avoiding	data

1034

Chapter	21

Parallel	and	Distributed	Storage

distribution	skew	but	are	not	very	useful	for	avoiding	execution	skew.	Explain	why.

Now	suppose	you	have	a	workload	of	queries	that	perform	point	lookups.

Explain	how	you	can	use	the	queries	in	the	workload	to	come	up	with	a	partitioning	scheme	that	avoids
execution	skew.

21.4

Replication:

a.

Give	two	reasons	for	replicating	data	across	geographically	distributed	data	centers.

b.

Centralized	databases	support	replication	using	log	records.	How	is

the	replication	in	centralized	databases	different	from	that	in	paral-

lel/distributed	databases?

21.5

Parallel	indices:

a.

Secondary	indices	in	a	centralized	database	store	the	record	identifier.

A	global	secondary	index	too	could	potentially	store	a	partition	num-

ber	holding	the	record,	and	a	record	identifier	within	the	partition.	Why	would	this	be	a	bad	idea?

b.

Global	secondary	indices	are	implemented	in	a	way	similar	to	local	secondary	indices	that	are	used	when
records	are	stored	in	a	B+-tree	file	organization.	Explain	the	similarities	between	the	two	scenarios	that
result	in	a	similar	implementation	of	the	secondary	indices.

21.6

Parallel	database	systems	store	replicas	of	each	data	item	(or	partition)	on	more	than	one	node.

a.

Why	is	it	a	good	idea	to	distribute	the	copies	of	the	data	items	allocated	to	a	node	across	multiple	other
nodes,	instead	of	storing	all	the	copies	in	the	same	node	(or	set	of	nodes).

b.

What	are	the	benefits	and	drawbacks	of	using	RAID	storage	instead	of

storing	an	extra	copy	of	each	data	item?

21.7

Partitioning	and	replication.

a.

Explain	why	range-partitioning	gives	better	control	on	tablet	sizes	than	hash	partitioning.	List	an	analogy
between	this	case	and	the	case	of	B+-

tree	indices	versus	hash	indices.

b.

Some	systems	first	perform	hashing	on	the	key,	and	then	use	range	par-

titioning	on	the	hash	values.	What	could	be	a	motivation	for	this	choice,	and	what	are	its	drawbacks	as
compared	to	performing	range	partition

direction	on	the	key?

c.

It	is	possible	to	horizontally	partition	data,	and	then	perform	vertical	partitioning	locally	at	each	node.	It
is	also	possible	to	do	the	converse,

Practice	Exercises

1035

where	vertical	partitioning	is	done	first,	and	then	each	partition	is	then	horizontally	partitioned
independently.	What	are	are	the	benefits	of	the	first	option	over	the	second	one?

21.8

In	order	to	send	a	request	to	the	master	replica	of	a	data	item,	a	node	must	know	which	replica	is	the
master	for	that	data	item.

a.

Suppose	that	between	the	time	the	node	identifies	which	node	is	the

master	replica	for	a	data	item,	and	the	time	the	request	reaches	the	identified	node,	the	mastership	has
changed,	and	a	different	node	is	now	the	master.	How	can	such	a	situation	be	dealt	with?

b.

While	the	master	replica	could	be	chosen	on	a	per-partition	basis,	some	systems	support	a	per-record
master	replica,	where	the	records	of	a	partition	(or	tablet)	are	replicated	at	some	set	of	nodes,	but	each
record’s	master	replica	can	be	on	any	of	the	nodes	from	within	this	set	of	nodes,	independent	of	the
master	replica	of	other	records.	List	two	benefits	of	keeping	track	of	master	on	a	per-record	basis.

c.

Suggest	how	to	keep	track	of	the	master	replica	for	each	record,	when

there	are	a	large	number	of	records.

Exercises

21.9

For	each	of	the	three	partitioning	techniques,	namely,	round-robin,	hash	partitioning,	and	range
partitioning,	give	an	example	of	a	query	for	which	that	partitioning	technique	would	provide	the	fastest
response.

21.10

What	factors	could	result	in	skew	when	a	relation	is	partitioned	on	one	of	its	attributes	by:

a.

Hash	partitioning?

b.

Range	partitioning?

In	each	case,	what	can	be	done	to	reduce	the	skew?

21.11

What	is	the	motivation	for	storing	related	records	together	in	a	key-value	store?

Explain	the	idea	using	the	notion	of	an	entity	group.

21.12

Why	is	it	easier	for	a	distributed	file	system	such	as	GFS	or	HDFS	to	support	replication	than	it	is	for	a
key-value	store?

21.13

Joins	can	be	expensive	in	a	key-value	store,	and	difficult	to	express	if	the	system	does	not	support	SQL	or
a	similar	declarative	query	language.	What	can	an	application	developer	do	to	efficiently	get	results	of
join	or	aggregate	queries	in	such	a	setting?

1036

Chapter	21

Parallel	and	Distributed	Storage

Tools

A	wide	variety	of	open-source	Big	Data	tools	are	available,	in	addition	to	some	commercial	tools.	In
addition,	a	number	of	these	tools	are	available	on	cloud	platforms.

Google	File	System	(GFS)	was	an	early	generation	parallel	file	system.	Apache	HDFS

(hadoop.apache.org)	is	a	widely	used	distributed	file	system	implementation	modeled	after	GFS.	HDFS	by
itself	does	not	define	any	internal	format	for	files,	but	Hadoop	implementations	today	support	several
optimized	file	formats	such	as	Sequence	files	(which	allow	binary	data),	Avro	(which	supports	semi-
structured	schemas)	and	Parquet	and	Orc	(which	support	columnar	data	representation).	Hosted	cloud
storage	systems	include	the	Amazon	S3	storage	system	(aws.amazon.com/s3)	and	Google	Cloud	Storage
(cloud.google.com/storage).

Google’s	Bigtable	was	an	early	generation	parallel	data	storage	system,	architected	as	a	layer	on	top	of
GFS.	Amazon’s	Dynamo	is	an	early	generation	parallel	key-value	store	which	is	based	on	the	idea	of
consistent	hashing,	developed	initially	for	peer-to-peer	data	storage.	Both	are	available	hosted	on	the
cloud	as	Google	Bigtable	(cloud.google.com/bigtable)	and	Amazon	DynamoDB

(aws.amazon.com/dynamodb).	Google	Spanner	(cloud.google.com/spanner)	is	a	hosted	storage	system
that	provides	extensive	transactional	support.	Apache	HBase	(hbase.apache.org)	is	a	widely	used	open-
source	data	storage	system	which	is	based	on	Bigtable	and	is	implemented	as	a	layer	on	top	of	HDFS.
Apache	Cassandra	(cassandra.apache.org)	which	was	developed	at	Facebook,	Voldemort	(www.project-
voldemort.com)	developed	at	LinkedIn,	MongoDB

(www.mongodb.com),	CouchDB	(couchdb.apache.org)	and	Riak	(basho.com)	are	all	open-source	key-value
stores.	MongoDB	and	CouchDB	use	the	JSON	format	for	storing	data.	Aerospike	(www.aerospike.com)	is
an	open-source	data	storage	system	optimized	for	Flash	storage.	There	are	many	other	open-source
parallel	data	storage	systems	available	today.

Commercial	parallel	database	systems	include	Teradata,	Teradata	Aster	Data,	IBM

Netezza,	and	Pivotal	Greenplum.	IBM	Netezza,	Pivotal	Greenplum,	and	Teradata	Aster	Data	all	use
PostgreSQL	as	the	underlying	database,	running	independently	on	each	node;	each	of	these	systems
builds	a	layer	on	top,	to	partition	data,	and	parallelize	query	processing	across	the	nodes.

Further	Reading

In	the	late	1970s	and	early	1980s,	as	the	relational	model	gained	reasonably	sound	foot-ing,	people
recognized	that	relational	operators	are	highly	parallelizable	and	have	good	dataflow	properties.	Several
research	projects,	including	GAMMA	([DeWitt	(1990)]),	XPRS	([Stonebraker	et	al.	(1988)]),	and	Volcano
([Graefe	(1990)])	were	launched	to	investigate	the	practicality	of	parallel	storage	of	data	and	parallel
execution	of	queries.

Teradata	was	one	of	the	first	commercial	shared-nothing	parallel	database	systems	designed	for	decision
support	systems,	and	it	continues	to	have	a	large	market	share.

Further	Reading

1037

Teradata	supports	partitioning	and	replication	of	data	to	deal	with	node	failures.	The	Red	Brick
Warehouse	was	another	early	parallel	database	system	designed	for	decision	support	(Red	Brick	was
bought	by	Informix,	and	later	IBM).

Information	on	the	Google	file	system	can	be	found	in	[Ghemawat	et	al.	(2003)],	while	the	Google	Bigtable
system	is	described	in	[Chang	et	al.	(2008)].	The	Yahoo!

PNUTS	system	is	described	in	[Cooper	et	al.	(2008)],	while	Google	Megastore	and	Google	Spanner	are
described	in	[Baker	et	al.	(2011)]	and	[Corbett	et	al.	(2013)]	respectively.	Consistent	hashing	is	described
in	[Karger	et	al.	(1997)],	while	Dynamo,	which	is	based	on	consistent	hashing,	is	described	in	[DeCandia
et	al.	(2007)].

Bibliography

[Baker	et	al.	(2011)]

J.	Baker,	C.	Bond,	J.	C.	Corbett,	J.	J.	Furman,	A.	Khorlin,	J.	Larson,	J.-M.	Leon,	Y.	Li,	A.	Lloyd,	and	V.
Yushprakh,	“Megastore:	Providing	Scalable,	Highly	Available	Storage	for	Interactive	Services”,	In
Proceedings	of	the	Conference	on	Innovative	Data	system	Research	(CIDR)	(2011),	pages	223–234.

[Chang	et	al.	(2008)]

F.	Chang,	J.	Dean,	S.	Ghemawat,	W.	C.	Hsieh,	D.	A.	Wallach,	M.	Bur-

rows,	T.	Chandra,	A.	Fikes,	and	R.	E.	Gruber,	“Bigtable:	A	Distributed	Storage	System	for	Structured
Data”,	ACM	Trans.	Comput.	Syst.	,	Volume	26,	Number	2	(2008).

[Cooper	et	al.	(2008)]

B.	F.	Cooper,	R.	Ramakrishnan,	U.	Srivastava,	A.	Silberstein,	P.	Bo-

hannon,	H.-A.	Jacobsen,	N.	Puz,	D.	Weaver,	and	R.	Yerneni,	“PNUTS:	Yahoo!’s	Hosted	Data	Serving
Platform”,	Proceedings	of	the	VLDB	Endowment,	Volume	1,	Number	2	(2008),	pages	1277–1288.

[Corbett	et	al.	(2013)]

J.	C.	Corbett	et	al.,	“Spanner:	Google’s	Globally	Distributed

Database”,	ACM	Trans.	on	Computer	Systems,	Volume	31,	Number	3	(2013).

[DeCandia	et	al.	(2007)]

G.	DeCandia,	D.	Hastorun,	M.	Jampani,	G.	Kakulapati,	A.	Laksh-

man,	A.	Pilchin,	S.	Sivasubramanian,	P.	Vosshall,	and	W.	Vogels,	“Dynamo:	Amazons	Highly	Available	Key-
value	Store”,	In	Proc.	of	the	ACM	Symposium	on	Operating	System	Principles	(2007),	pages	205–220.

[DeWitt	(1990)]

D.	DeWitt,	“The	Gamma	Database	Machine	Project”,	IEEE	Transactions	on	Knowledge	and	Data
Engineering,	Volume	2,	Number	1	(1990),	pages	44–62.

[Ghemawat	et	al.	(2003)]

S.	Ghemawat,	H.	Gobioff,	and	S.-T.	Leung,	“The	Google	File	Sys-

tem”,	Proc.	of	the	ACM	Symposium	on	Operating	System	Principles	(2003).

[Graefe	(1990)]

G.	Graefe,	“Encapsulation	of	Parallelism	in	the	Volcano	Query	Processing	System”,	In	Proc.	of	the	ACM
SIGMOD	Conf.	on	Management	of	Data	(1990),	pages	102–111.

[Karger	et	al.	(1997)]

D.	Karger,	E.	Lehman,	T.	Leighton,	R.	Panigrahy,	M.	Levine,	and

D.	Lewin,	“Consistent	Hashing	and	Random	Trees:	Distributed	Caching	Protocols	for	Re-lieving	Hot	Spots
on	the	World	Wide	Web”,	In	Proc.	of	the	ACM	Symposium	on	Theory	of	Computing	(1997),	pages	654–663.

1038

Chapter	21

Parallel	and	Distributed	Storage

[Stonebraker	et	al.	(1988)]

M.	Stonebraker,	R.	H.	Katz,	D.	A.	Patterson,	and	J.	K.	Ouster-

hout,	“The	Design	of	XPRS”,	In	Proc.	of	the	International	Conf.	on	Very	Large	Databases	(1988),	pages
318–330.

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

C	H	A	P	T	E	R	22

Parallel	and	Distributed	Query

Processing

In	this	chapter,	we	discuss	algorithms	for	query	processing	in	parallel	database	systems.	We	assume	that
the	queries	are	read	only,	and	our	focus	is	on	query	processing	in	decision	support	systems.	Such	systems
need	to	execute	queries	on	very	large	amounts	of	data,	and	parallel	processing	of	the	query	across
multiple	nodes	is	critical	for	processing	queries	within	acceptable	response	times.

Our	focus	in	the	early	parts	of	this	chapter	is	on	relational	query	processing.	However,	later	in	the
chapter,	we	examine	issues	in	parallel	processing	of	queries	expressed	in	models	other	than	the	relational
model.

Transaction	processing	systems	execute	large	numbers	of	queries	that	perform	updates,	but	each	query
affects	only	a	small	number	of	tuples.	Parallel	execution	is	key	to	handle	large	transaction	processing
loads;	however,	this	topic	is	covered	in	Chapter	23.

22.1

Overview

Parallel	processing	can	be	exploited	in	two	distinct	ways	in	a	database	system.	One	approach	is	interquery
parallelism,	which	refers	to	the	execution	of	multiple	queries	in	parallel	with	each	other,	across	multiple
nodes.	The	second	approach	is	intraquery	parallelism,	which	refers	to	the	processing	of	different	parts	of
the	execution	of	a	single	query,	in	parallel	across	multiple	nodes.

Interquery	parallelism	is	essential	for	transaction	processing	systems.	Transaction	throughput	can	be
increased	by	this	form	of	parallelism.	However,	the	response	times	of	individual	transactions	are	no	faster
than	they	would	be	if	the	transactions	were	run	in	isolation.	Thus,	the	primary	use	of	interquery
parallelism	is	to	scale	up	a	transaction-processing	system	to	support	a	larger	number	of	transactions	per
second.	Transaction	processing	systems	are	considered	in	Chapter	23.

In	contrast,	intraquery	parallelism	is	essential	for	speeding	up	long-running	queries,	and	it	is	the	focus	of

this	chapter.

1039

1040

Chapter	22

Parallel	and	Distributed	Query	Processing

Execution	of	a	single	query	involves	execution	of	multiple	operations,	such	as	selects,	joins,	or	aggregate
operations.	The	key	to	exploiting	large-scale	parallelism	is	to	process	each	operation	in	parallel,	across
multiple	nodes.	Such	parallelism	is	referred	to	as	intraoperation	parallelism.	Since	the	number	of	tuples	in
a	relation	can	be	large,	the	degree	of	intraoperation	parallelism	is	also	potentially	very	large;	thus,
intraoperation	parallelism	is	natural	in	a	database	system.

To	illustrate	the	parallel	evaluation	of	a	query,	consider	a	query	that	requires	a	relation	to	be	sorted.
Suppose	that	the	relation	has	been	partitioned	across	multiple	disks	by	range	partitioning	on	some
attribute,	and	the	sort	is	requested	on	the	partitioning	attribute.	The	sort	operation	can	be	implemented
by	sorting	each	partition	in	parallel,	then	concatenating	the	sorted	partitions	to	get	the	final	sorted
relation.	Thus,	we	can	parallelize	a	query	by	parallelizing	individual	operations.

There	is	another	source	of	parallelism	in	evaluating	a	query:	The	operator	tree	for	a	query	can	contain
multiple	operations.	We	can	parallelize	the	evaluation	of	the	operator	tree	by	evaluating	in	parallel	some
of	the	operations	that	do	not	depend	on	one	another.	Further,	as	Chapter	15	mentions,	we	may	be	able	to
pipeline	the	output	of	one	operation	to	another	operation.	The	two	operations	can	be	executed	in	parallel
on	separate	nodes,	one	generating	output	that	is	consumed	by	the	other,	even	as	it	is	generated.	Both
these	forms	of	parallelism	are	examples	of	interoperation	parallelism,	which	allows	different	operators	of
a	query	to	be	executed	in	parallel.

In	summary,	the	execution	of	a	single	query	can	be	parallelized	in	two	different	ways:

•	Intraoperation	parallelism,	which	we	consider	in	detail	in	the	next	few	sections,	where	we	study	parallel
implementations	of	common	relational	operations	such	as	sort,	join,	aggregate	and	other	operations.

•	Interoperation	parallelism,	which	we	consider	in	detail	in	Section	22.5.1.

The	two	forms	of	parallelism	are	complementary	and	can	be	used	simultaneously	on	a	query.	Since	the
number	of	operations	in	a	typical	query	is	small,	compared	to	the	number	of	tuples	processed	by	each
operation,	intraoperation	parallelism	can	scale	better	with	increasing	parallelism.	However,
interoperation	parallelism	is	also	important,	especially	in	shared	memory	systems	with	multiple	cores.

To	simplify	the	presentation	of	the	algorithms,	we	assume	a	shared	nothing	architecture	with	n	nodes,	N	,
N	,	…	,	N	.	Each	node	may	have	one	or	more	disks,	but	1

2

n

typically	the	number	of	such	disks	is	small.	We	do	not	address	how	to	partition	the	data	between	the	disks
at	a	node;	RAID	organizations	can	be	used	with	these	disks	to	exploit	parallelism	at	the	storage	level,
rather	than	at	the	query	processing	level.

The	choice	of	algorithms	for	parallelizing	query	evaluation	depends	on	the	machine	architecture.	Rather
than	present	algorithms	for	each	architecture	separately,	we	use	a	shared-nothing	architecture	in	our
description.	Thus,	we	explicitly	describe	when	data	have	to	be	transferred	from	one	node	to	another.

22.2

Parallel	Sort

1041

We	can	simulate	this	model	easily	by	using	the	other	architectures,	since	transfer	of	data	can	be	done	via
shared	memory	in	a	shared-memory	architecture,	and	via	shared	disks	in	a	shared-disk	architecture.
Hence,	algorithms	for	shared-nothing	architectures	can	be	used	on	the	other	architectures	too.	In	Section
22.6,	we	discuss	how	some	of	the	algorithms	can	be	further	optimized	for	shared-memory	systems.

Current-generation	parallel	systems	are	typically	based	on	a	hybrid	architecture,	where	each	computer
has	multiple	cores	with	a	shared	memory,	and	there	are	multiple	computers	organized	in	a	shared-nothing
fashion.	For	the	purpose	of	our	discussion,	with	such	an	architecture,	each	core	can	be	considered	a	node
in	a	shared-nothing	system.	Optimizations	to	exploit	the	fact	that	some	of	the	cores	share	memory	with

other	cores	can	be	performed	as	discussed	in	Section	22.6.

22.2

Parallel	Sort

Suppose	that	we	wish	to	sort	a	relation	r	that	resides	on	n	nodes	N	,	N	,	…	,	N	.	If	the	1

2

n

relation	has	been	range-partitioned	on	the	attributes	on	which	it	is	to	be	sorted,	we	can	sort	each	partition
separately	and	concatenate	the	results	to	get	the	full	sorted	relation.

Since	the	tuples	are	partitioned	on	n	nodes,	the	time	required	for	reading	the	entire	relation	is	reduced	by
a	factor	of	n	by	the	parallel	access.

If	relation	r	has	been	partitioned	in	any	other	way,	we	can	sort	it	in	one	of	two	ways:

1.	We	can	range-partition	r	on	the	sort	attributes,	and	then	sort	each	partition	separately.

2.	We	can	use	a	parallel	version	of	the	external	sort-merge	algorithm.

22.2.1

Range-Partitioning	Sort

Range-partitioning	sort,	shown	pictorially	in	Figure	22.1a,	works	in	two	steps:	first	range-partitioning	the
relation,	then	sorting	each	partition	separately.	When	we	sort	by	range-partitioning	the	relation,	it	is	not
necessary	to	range-partition	the	relation	on	the	same	set	of	nodes	as	those	on	which	that	relation	is
stored.	Suppose	that	we	choose	nodes	N	,	N	,	…	,	N	to	sort	the	relation.	There	are	two	steps	involved	in
this	operation:	1

2

m

1.	Redistribute	the	tuples	in	the	relation,	using	a	range-partition	strategy,	so	that	all	tuples	that	lie	within
the	i	th	range	are	sent	to	node	n	,	which	stores	the	relation	i

temporarily	on	its	local	disk.

To	implement	range	partitioning,	in	parallel	every	node	reads	the	tuples	from	its	disk	and	sends	each
tuple	to	its	destination	node	based	on	the	partition	function.	Each	node	N	,	N	,	…	,	N	also	receives	tuples
belonging	to	its	partition	and	1

2

m

stores	them	locally.	This	step	requires	disk	I/O	and	network	communication.

1042

Chapter	22

Parallel	and	Distributed	Query	Processing

r

r	‘

Local	Sort

Local	Sort

r	‘

1

r

Merge

1

1

1

r

r	‘

Local	Sort

r

Local	Sort

Merge

r	‘

2

2

2

2

r

r	‘

r	‘

3

r

3

Local	Sort

Local	Sort

Merge

3

3

r

r	‘m

r

r	‘

n

Local	Sort

n

Local	Sort

Merge

m

1.	Range	Partition

2.	Local	Sort

1.	Local	Sort

2.	Range	Partition	and	Merge

(a)	Range	Partitioning	Sort

(b)	Parallel	External	Sort-Merge

Figure	22.1	Parallel	sorting	algorithms.

2.	Each	of	the	nodes	sorts	its	partition	of	the	relation	locally,	without	interaction	with	the	other	nodes.
Each	node	executes	the	same	operation	—	namely,	sorting	—

on	a	different	data	set.	(Execution	of	the	same	operation	in	parallel	on	different	sets	of	data	are	called
data	parallelism.)

The	final	merge	operation	is	trivial,	because	the	range	partitioning	in	the	first	phase	ensures	that,	for	1	≤
i	<	j	≤	m,	the	key	values	in	node	N	are	all	less	than	i

the	key	values	in	N	.

j

We	must	do	range	partitioning	with	a	balanced	range-partition	vector	so	that	each	partition	will	have
approximately	the	same	number	of	tuples.	We	saw	how	to	create	such	partition	vectors	in	Section	21.3.1.
Virtual	node	partitioning,	as	discussed	in	Section	21.3.2,	can	also	be	used	to	reduce	skew.	Recall	that
there	are	several	times	as	many	virtual	nodes	as	real	nodes,	and	virtual	node	partitioning	creates	a
partition	for	each	virtual	node.	Virtual	nodes	are	then	mapped	to	real	nodes;	doing	so	in	a	round-robin
fashion	tends	to	spreads	virtual	nodes	across	real	nodes	in	a	way	that	reduces	the	degree	of	skew	at	real
nodes.

22.2.2

Parallel	External	Sort-Merge

Parallel	external	sort-merge,	shown	pictorially	in	Figure	22.1b,	is	an	alternative	to	range	partitioning	sort.
Suppose	that	a	relation	has	already	been	partitioned	among	nodes	N	,	N	,	…	,	N	(it	does	not	matter	how
the	relation	has	been	partitioned).	Parallel	ex-1

2

n

ternal	sort-merge	then	works	this	way:

1.	Each	node	N	sorts	the	data	available	at	N	.

i

i

2.	The	system	then	merges	the	sorted	runs	on	each	node	to	get	the	final	sorted	output.

22.3

Parallel	Join

1043

The	merging	of	the	sorted	runs	in	step	2	can	be	parallelized	by	this	sequence	of	actions:

1.	The	system	range-partitions	the	sorted	partitions	at	each	node	N	(all	by	the	same	i

partition	vector)	across	the	nodes	N	,	N	,	…	,	N	.	It	sends	the	tuples	in	sorted	1

2

m

order,	so	each	node	receives	the	tuples	as	sorted	streams.

2.	Each	node	N	performs	a	merge	on	the	streams	of	tuples	as	they	are	received	to	i

get	a	single	sorted	run.

3.	The	system	concatenates	the	sorted	runs	on	nodes	N	,	N	,	…	,	N	to	get	the	final	1

2

m

result.

As	described,	this	sequence	of	actions	results	in	an	interesting	form	of	execution	skew,	since	at	first	every
node	sends	all	tuples	of	partition	1	to	N	,	then	every	node	sends	all	1

tuples	of	partition	2	to	N	,	and	so	on.	Thus,	while	sending	happens	in	parallel,	receiving	2

tuples	becomes	sequential:	First	only	N	receives	tuples,	then	only	N	receives	tuples,	1

2

and	so	on.	To	avoid	this	problem,	the	sorted	sequence	of	tuples	S

from	any	node	i

i,	j

destined	to	any	other	node	j	is	broken	up	into	multiple	blocks.	Each	node	N	sends	i

the	first	block	of	tuples	from	S	node	N	,	for	each	j;	it	then	sends	the	second	block	of	i,	j

j

tuples	to	each	node	N	,	and	so	on,	until	all	blocks	have	been	sent.	As	a	result,	all	nodes	j

receive	data	in	parallel.	(Note	that	tuples	are	sent	in	blocks,	rather	than	individually,	to	reduce	network
overheads.)

22.3

Parallel	Join

Parallel	join	algorithms	attempt	to	divide	the	tuples	of	the	input	relations	over	several	nodes.	Each	node
then	computes	part	of	the	join	locally.	Then,	the	system	collects	the	results	from	each	node	to	produce	the
final	result.	How	exactly	to	divide	the	tuples	depends	on	the	join	algorithm,	as	we	see	next.

22.3.1

Partitioned	Join

For	certain	kinds	of	joins,	it	is	possible	to	partition	the	two	input	relations	across	the	nodes	and	to
compute	the	join	locally	at	each	node.	The	partitioned	join	technique	can	be	used	for	inner	joins,	where
the	join	condition	is	an	equi-join	(e.g.,	r	⋈

s);

r.A=	s.B

the	relations	r	and	s	are	partitioned	by	the	same	partitioning	function	on	their	join	attributes.	The	idea	of
partitioning	is	exactly	the	same	as	that	behind	the	partitioning	step	of	hash	join.	Partitioned	join	can	also
be	used	for	outer	joins,	as	we	shall	see	shortly.

Suppose	that	we	are	using	m	nodes	to	perform	the	join,	and	that	the	relations	to	be	joined	are	r	and	s.
Partitioned	join	then	works	this	way:	The	system	partitions	the	relations	r	and	s	each	into	m	partitions,
denoted	r	,	r	,	…	,	r	and	s	,	s	,	…	,	s	.	In	a	1

2

m

1

2

m

partitioned	join,	however,	there	are	two	different	ways	of	partitioning	r	and	s:

1044

Chapter	22

Parallel	and	Distributed	Query	Processing

•	Range	partitioning	on	the	join	attributes.

•	Hash	partitioning	on	the	join	attributes.

In	either	case,	the	same	partitioning	function	must	be	used	for	both	relations.	For	range	partitioning,	the
same	partition	vector	must	be	used	for	both	relations.	For	hash	partitioning,	the	same	hash	function	must
be	used	on	both	relations.	Figure	22.2	depicts	the	partitioning	in	a	partitioned	parallel	join.

The	partitioned	join	algorithm	first	partitions	one	of	the	relations	by	scanning	its	tuples	and	sending	them
to	the	appropriate	node	based	on	the	partition	function	and	the	join	attribute	values	of	each	tuple.
Specifically,	each	node	N	reads	in	the	tuples	of	i

one	of	the	relations,	say	r,	from	local	disk,	computes	for	each	tuple	t	the	partition	rj	to	which	t	belongs,
and	sends	the	tuple	t	to	node	N	.	Each	node	also	simultaneously	j

receives	tuples	that	are	sent	to	it	and	stores	them	on	its	local	disk	(this	can	be	done	by	having	separate
threads	for	sending	and	receiving	data).	The	process	is	repeated	for	all	tuples	from	the	other	relation,	s.

Once	both	relations	are	partitioned,	we	can	use	any	join	technique	locally	at	each	node	N	to	compute	the
join	of	r	and	s	.	Thus,	we	can	use	partitioning	to	parallelize	i

i

i

any	join	technique.

Partitioned	join	can	be	used	not	only	for	inner	joins,	but	also	for	all	three	forms	of	outer	join	(left,	right
and	full	outer	join).	Each	node	computes	the	corresponding	outer	join	locally,	after	partitioning	is	done	on
the	join	attributes.	Further,	since	natural	join	can	be	expressed	as	an	equijoin	followed	by	a	projection,
natural	joins	can	also	be	computed	using	partitioned	join.

If	one	or	both	of	the	relations	r	and	s	are	already	partitioned	on	the	join	attributes	(by	either	hash
partitioning	or	range	partitioning),	the	work	needed	for	partitioning	is	reduced	greatly.	If	the	relations	are
not	partitioned	or	are	partitioned	on	attributes	other	than	the	join	attributes,	then	the	tuples	need	to	be
repartitioned.

r

r΄	1

s΄	1

1

s	1

r	2

r΄

s

2

΄

s	2

2

r	3

r΄	3

s΄	3

s	3

r	n

r΄

s	΄

s

m

m

n

Step	1:	Partition	r

Step	2:	Partition	s

Step	3:	Each	node	Ni	computes	r	i

΄

s	i	΄

Figure	22.2	Partitioned	parallel	join.

22.3

Parallel	Join

1045

We	now	consider	issues	specific	to	the	join	technique	used	locally	at	each	node	N	.

i

The	local	join	operation	can	be	optimized	by	performing	some	initial	steps	on	tuples	as	they	arrive	at	a
node,	instead	of	first	storing	the	tuples	to	disk	and	then	reading	them	back	to	perform	these	initial	steps.
These	optimizations,	which	we	describe	below,	are	also	used	in	nonparallel	query	processing,	when
results	of	an	earlier	operation	are	pipelined	into	a	subsequent	operation;	thus,	they	are	not	specific	to
parallel	query	processing.

•	If	we	use	hash	join	locally,	the	resultant	parallel	join	technique	is	called	partitioned	parallel	hash	join.

Recall	that	hash	join	first	partitions	both	input	relations	into	smaller	pieces	such	that	each	partition	of	the
smaller	relation	(the	build	relation)	fits	into	memory.	Thus,	to	implement	hash	join,	the	partitions	r	and	s
received	by	node	N

i

i

i

must	be	repartitioned	using	a	hash	function,	say	h	1().	If	the	partitioning	of	r	and	s	across	the	nodes	was
done	by	using	a	hash	function	h	0(),	the	system	must	ensure	that	h	1()	is	different	from	h	0().	Let	the
resultant	partitions	at	node	N	be	r	and	i

i,	j

s	for	j	=	1	…	n	,	where	n	denotes	the	number	of	local	partitions	at	node	N	.

i,	j

i

i

i

Note	that	the	tuples	can	be	repartitioned	based	on	the	hash	function	used	for	the	local	hash	join	as	they
arrive	and	written	out	to	the	appropriate	partitions,	avoiding	the	need	to	write	the	tuples	to	disk	and	read
them	back	in.

Recall	also	that	hash	join	then	loads	each	partition	of	the	build	relation	into	memory,	builds	an	in-memory
index	on	the	join	attributes,	and	finally	probes	the	in-memory	index	using	each	tuple	of	the	other	relation,
called	the	probe	relation.

Assume	that	relation	s	is	chosen	as	the	build	relation.	Then	each	partition	s	is

i,	j

loaded	in	memory,	with	an	index	built	on	the	join	attributes,	and	the	index	is	probed	with	each	tuple	of	r	.

i,	j

Hybrid	hash	join	(described	in	Section	15.5.5.5)	can	be	used	in	case	the	partitions	of	one	of	the	relations
are	small	enough	that	a	significant	part	of	the	partition	fits	in	memory	at	each	node.	In	this	case,	the
smaller	relation,	say	s,	which	is	used	as	the	build	relation,	should	be	partitioned	first,	followed	by	the
larger	relation,	say	r,	which	is	used	as	the	probe	relation.	Recall	that	with	hybrid	hash	join,	the	tuples	in
the	partition	s	of	the	build	relation	s	are	retained	in	memory,	and	an	in-memory	0

index	is	built	on	these	tuples.	When	the	probe	relation	tuples	arrive	at	the	node,	they	are	also
repartitioned;	tuples	in	the	r	partition	are	used	directly	to	probe	the	0

index	on	the	s	tuples,	instead	of	being	written	out	to	disk	and	read	back	in.

0

•	If	we	use	merge	join	locally,	the	resultant	technique	is	called	partitioned	parallel	merge	join.	Each	of	the
partitions	s	and	r	must	be	sorted,	and	merged	locally,	at	i

i

node	N	.

i

The	first	step	of	sorting,	namely,	run	generation,	can	directly	consume	incoming	tuples	to	generate	runs,
avoiding	a	write	to	disk	before	run	generation.

•	If	we	use	nested-loops	or	indexed	nested-loops	join	locally,	the	resultant	technique	is	called	partitioned
parallel	nested-loop	join	or	partitioned	parallel	indexed	nested-

1046

Chapter	22

Parallel	and	Distributed	Query	Processing

loops	join.	Each	node	N	performs	a	nested-loops	(or	indexed	nested-loops)	join	i

on	s	and	r	.

i

i

22.3.2

Fragment-and-Replicate	Join

Partitioning	is	not	applicable	to	all	types	of	joins.	For	instance,	if	the	join	condition	is	an	inequality,	such
as	r	⋈

s,	it	is	possible	that	all	tuples	in	r	join	with	some	tuple	r.a

in	s	(and	vice	versa).	Thus,	there	may	be	no	nontrivial	way	of	partitioning	r	and	s	so	that	tuples	in
partition	r	join	with	only	tuples	in	partition	s	.

i

i

We	can	parallelize	such	joins	by	using	a	technique	called	fragment-and-replicate.

We	first	consider	a	special	case	of	fragment-and-replicate	—	asymmetric	fragment-and-replicate	join	—
which	works	as	follows:

1.	The	system	partitions	one	of	the	relations	—	say,	r.	Any	partitioning	technique	can	be	used	on	r,
including	round-robin	partitioning.

2.	The	system	replicates	the	other	relation,	s,	across	all	the	nodes.

3.	Node	N	then	locally	computes	the	join	of	r	with	all	of	s,	using	any	join	technique.

i

i

The	asymmetric	fragment-and-replicate	scheme	appears	in	Figure	22.3a.	If	r	is	already	stored	by
partitioning,	there	is	no	need	to	partition	it	further	in	step	1.	All	that	is	required	is	to	replicate	s	across	all
nodes.

The	asymmetric	fragment-and-replicate	join	technique	is	also	referred	to	as	broadcast	join.	It	is	a	very
useful	technique,	even	for	equi-joins,	if	one	of	the	relations,	say	s,	is	small,	and	the	other	relation,	say	r,	is
large,	since	replicating	the	small	relation	s	across	all	nodes	may	be	cheaper	than	repartitioning	the	large
relation	r.

The	general	case	of	fragment-and-replicate	join	(also	called	the	symmetric	fragment-and-replicate	join
appears	in	Figure	22.3b;	it	works	this	way:	The	system	partitions	relation	r	into	n	partitions,	r	,	r	,	…	,	r	,
and	partitions	s	into	m	partitions,	s	,	s	,	…	,	s	.

1

2

n

1

2

m

As	before,	any	partitioning	technique	may	be	used	on	r	and	on	s.	The	values	of	m	and	n	do	not	need	to	be
equal,	but	they	must	be	chosen	so	that	there	are	at	least	m	∗	n	nodes.	Asymmetric	fragment-and-replicate
is	simply	a	special	case	of	general	fragment-and-replicate,	where	m	=	1.	Fragment-and-replicate	reduces
the	sizes	of	the	relations	at	each	node,	compared	to	asymmetric	fragment-and-replicate.

Let	the	nodes	be	N

,	N

,	…	,	N

,	N

,	…	,	N

.	Node	N	computes	the	join	of

1,1

1,2

1,	m

2,1

n,	m

i,	j

r	with	s	.	To	ensure	that	each	node	N	gets	all	tuples	of	r	and	s	,	the	system	replicates	i

j

i,	j

i

j

r	to	nodes	N	,	N	,	…	,	N

(which	form	a	row	in	Figure	22.3b),	and	replicates	s	to

i

i,1

i,2

i,	m

i

nodes	N	,	N	,	…	,	N

(which	form	a	column	in	Figure	22.3b).	Any	join	technique

1,	i

2,	i

n,	i

can	be	used	at	each	node	N	.

i,	j

Fragment-and-replicate	works	with	any	join	condition,	since	every	tuple	in	r	can	be	tested	with	every
tuple	in	s.	Thus,	it	can	be	used	where	partitioning	cannot	be	used.

However,	note	that	each	tuple	in	r	is	replicated	m	times,	and	each	tuple	in	s	is	replicated	n	times.

22.3

Parallel	Join

1047

s

s

s

s

s

.	.	.

s

1

2

3

4

m

r

N

N

N

.

1

N

r

N

1

1,1

1

1,2

1,3

1,4

r

N

N

N

.

2

N

r	2

2

2,1

2,2

2,3

r

s

r

N

N

.

2

N	3

r	r	3

3,1

3,2

r

.

3

N

r	4

4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

r

N

n

n,	m

(a)	Asymmetric

(b)	Fragment	and	replicate

fragment	and	replicate

Figure	22.3	Fragment-and-replicate	schemes.

Fragment-and-replicate	join	has	a	higher	cost	than	partitioning,	since	it	involves	replication	of	both
relations,	and	is	therefore	used	only	if	the	join	does	not	involve	equi-join	conditions.	Asymmetric
fragment-and-replicate,	on	the	other	hand,	is	useful	even	for	equi-join	conditions,	if	one	of	the	relations	is
small,	as	discussed	earlier.

Note	that	asymmetric	fragment-and-replicate	join	can	be	used	to	compute	the	left	outer	join	operation	r⟕θ	s	if	s	is	replicated,	by	simply	computing	the	left	outer	join	locally	at	each	node.	There	is	no	restriction
on	the	join	condition	θ.

However,	r	⟕θ	s	cannot	be	computed	locally	if	s	is	fragmented	and	r	is	replicated,	since	an	r	tuple	may
have	no	matching	tuple	in	partition	s	,	but	may	have	a	matching	i

tuple	in	partition	s	,	j	≠	i.	Thus,	a	decision	on	whether	or	not	to	output	the	r	tuple	with	j

null	values	for	s	attributes	cannot	be	made	locally	at	node	N	.	For	the	same	reason,	i

asymmetric	fragment-and-replicate	cannot	be	used	to	compute	the	full	outer	join	operation,	and
symmetric	fragment-and-replicate	cannot	be	used	to	compute	any	of	the	outer	join	operations.

22.3.3

Handling	Skew	in	Parallel	Joins

Skew	presents	a	special	problem	for	parallel	join	techniques.	If	one	of	the	nodes	has	a	much	heavier	load
than	other	nodes,	the	parallel	join	operation	will	take	much	longer	to	finish,	with	many	idle	nodes	waiting
for	the	heavily	loaded	node	to	finish	its	task.

1048

Chapter	22

Parallel	and	Distributed	Query	Processing

When	partitioning	data	for	storage,	to	minimize	skew	in	storage	we	use	a	balanced	partitioning	vector
that	ensures	all	nodes	get	the	same	number	of	tuples.	For	parallel	joins,	we	need	to	instead	balance	the
execution	time	of	join	operations	across	all	nodes.

Hash	partitioning	using	any	good	hash	function	usually	works	quite	well	at	balancing	the	load	across
nodes,	unless	some	join	attribute	values	occur	very	frequently.	Range	partitioning,	on	the	other	hand,	is
more	vulnerable	to	join	skew,	unless	the	ranges	are	carefully	chosen	to	balance	the	load.1

Virtual-node	partitioning	with,	say,	round-robin	distribution	of	virtual	nodes	to	real	nodes,	can	help	in
reducing	skew	at	the	level	of	real	nodes	even	if	there	is	skew	at	the	level	of	virtual	nodes,	since	the
skewed	virtual	nodes	tend	to	get	spread	over	multiple	real	nodes.

The	preceding	techniques	are	examples	of	join	skew	avoidance.	Virtual-node	partitioning,	in	particular,	is
very	effective	at	skew	avoidance	in	most	cases.

However,	there	are	cases	with	high	skew,	for	example	where	some	join	attribute	values	are	very	frequent
in	both	input	relations,	leading	to	a	large	join	result	size.	In	such	cases,	there	could	be	significant	join
skew,	even	with	virtual-node	partitioning.

Dynamic	handling	of	join	skew	is	an	alternative	to	skew	avoidance.	A	dynamic	approach	can	be	used	to
detect	and	handle	skew	in	such	situations.	Virtual	node	partitioning	is	used,	and	the	system	then	monitors
the	join	progress	at	each	real	node.	Each	real	node	schedules	one	virtual	node	at	a	time.	Suppose	that
some	real	node	has	completed	join	processing	for	all	virtual	nodes	assigned	to	it,	and	is	thus	idle,	while
some	other	real	node	has	multiple	virtual	nodes	waiting	to	be	processed.	Then,	the	idle	node	can	get	a
copy	of	the	data	corresponding	to	one	of	the	virtual	nodes	at	the	busy	node	and	process	the	join	for	that
virtual	node.	This	process	can	be	repeated	whenever	there	is	an	idle	real	node,	as	long	as	some	real	node
has	virtual	nodes	waiting	to	be	processed.

This	technique	is	an	example	of	work	stealing,	where	a	processor	that	is	idle	takes	work	that	is	in	the
queue	of	another	processor	that	is	busy.	Work	stealing	is	inexpensive	in	a	shared-memory	system,	since	all
data	can	be	accessed	quickly	from	the	shared	memory,	as	discussed	further	in	Section	22.6.	In	a	shared-
nothing	environment,	data	movement	may	be	required	to	move	a	task	from	one	processor	to	another,	but
it	is	often	worth	paying	the	overhead	to	reduce	the	completion	time	of	a	task.

22.4

Other	Operations

In	this	section,	we	discuss	parallel	processing	of	other	relational	operations,	as	well	as	parallel	processing
in	the	MapReduce	framework.

1Cost	estimation	should	be	done	using	histograms	on	join	attributes.	A	heuristic	approximation	is	to
estimate	the	join	cost	at	each	node	N	as	the	sum	of	the	sizes	of

and

,	and	choose	range	partitioning	vectors	to	balance	the	sum	of

i

ri

si

the	sizes.

22.4

Other	Operations

1049

22.4.1

Other	Relational	Operations

The	evaluation	of	other	relational	operations	also	can	be	parallelized:

•	Selection.	Let	the	selection	be	σθ(r).	Consider	first	the	case	where	θ	is	of	the	form	a	=	v,	where	a	is	an
attribute	and	v	is	a	value.	If	the	relation	r	is	partitioned	on	i

i

a	,	the	selection	proceeds	at	a	single	node.	If	θ	is	of	the	form	l	≤	a	≤	u—that	is,	i

i

θ	is	a	range	selection—and	the	relation	has	been	range-partitioned	on	a	,	then	the	i

selection	proceeds	at	each	node	whose	partition	overlaps	with	the	specified	range	of	values.	In	all	other
cases,	the	selection	proceeds	in	parallel	at	all	the	nodes.

•	Duplicate	elimination.	Duplicates	can	be	eliminated	by	sorting;	either	of	the	parallel	sort	techniques	can
be	used,	optimized	to	eliminate	duplicates	as	soon	as	they	appear	during	sorting.	We	can	also	parallelize
duplicate	elimination	by	partitioning	the	tuples	(by	either	range	or	hash	partitioning)	and	eliminating
duplicates	locally	at	each	node.

•	Projection.	Projection	without	duplicate	elimination	can	be	performed	as	tuples	are	read	in	from	disk	in
parallel.	If	duplicates	are	to	be	eliminated,	either	of	the	techniques	just	described	can	be	used.

•	Aggregation.	Consider	an	aggregation	operation.	We	can	parallelize	the	operation	by	partitioning	the
relation	on	the	grouping	attributes,	and	then	computing	the	aggregate	values	locally	at	each	node.	Either
hash	partitioning	or	range	partitioning	can	be	used.	If	the	relation	is	already	partitioned	on	the	grouping
attributes,	the	first	step	can	be	skipped.

We	can	reduce	the	cost	of	transferring	tuples	during	partitioning	by	partly	computing	aggregate	values
before	partitioning,	at	least	for	the	commonly	used	aggregate	functions.	Consider	an	aggregation
operation	on	a	relation	r,	using	the	sum	aggregate	function	on	attribute	B,	with	grouping	on	attribute	A.
The	system	can	perform	the	sum	aggregation	at	each	node	N	on	those	r	tuples	stored	at	N	.

i

i

This	computation	results	in	tuples	with	partial	sums	at	each	node;	the	result	at	N	has	one	tuple	for	each	A
value	present	in	r	tuples	stored	at	N	,	with	the	sum	i

i

of	the	B	values	of	those	tuples.	The	system	then	partitions	the	result	of	the	local	aggregation	on	the
grouping	attribute	A	and	performs	the	aggregation	again	(on	tuples	with	the	partial	sums)	at	each	node	N
to	get	the	final	result.

i

As	a	result	of	this	optimization,	which	is	called	partial	aggregation,	fewer	tuples	need	to	be	sent	to	other
nodes	during	partitioning.	This	idea	can	be	extended	easily	to	the	min	and	max	aggregate	functions.
Extensions	to	the	count	and	avg	aggregate	functions	are	left	for	you	to	do	in	Exercise	22.2.

Skew	handling	for	aggregation	is	easier	than	skew	handling	for	joins,	since	the	cost	of	aggregation	is
directly	proportional	to	the	input	size.	Usually,	all	that	needs	to	be	done	is	to	use	a	good	hash	function	to
ensure	the	group-by	attribute	values	are	evenly	distributed	amongst	the	participating	nodes.	However,	in
some	extreme	cases,	a	few

1050

Chapter	22

Parallel	and	Distributed	Query	Processing

values	occur	very	frequently	in	the	group-by	attributes,	and	hashing	can	lead	to	uneven	distribution	of
values.	When	applicable,	partial	aggregation	is	very	effective	in	avoiding	skew	in	such	situations.
However,	when	partial	aggregation	is	not	applicable,	skew	can	occur	with	aggregation.

Dynamic	detection	and	handling	of	such	skew	can	be	done	in	some	such	cases:	in	case	a	node	is	found	to
be	overloaded,	some	of	the	key	values	that	are	not	yet	processed	by	the	node	can	be	reassigned	to
another	node,	to	balance	the	load.	Such	reassignment	is	greatly	simplified	if	virtual-node	partitioning	is
used;	in	that	case,	if	a	real	node	is	found	to	be	overloaded,	some	virtual	nodes	assigned	to	the	overloaded
real	node,	but	not	yet	processed,	are	identified,	and	reassigned	to	other	real	nodes.

More	information	on	skew	handling	for	join	and	other	operators	may	be	found	in	the	Further	Reading
section	at	the	end	of	the	chapter.

22.4.2

Map	and	Reduce	Operations

Recall	the	MapReduce	paradigm,	described	in	Section	10.3,	which	is	designed	to	ease	the	writing	of
parallel	data	processing	programs.

Recall	that	the	map()	function	provided	by	the	programmer	is	invoked	on	each	input	record	and	emits
zero	or	more	output	data	items,	which	are	then	passed	on	to	the	reduce()	function.	Each	data	item	output
by	a	map()	function	consists	of	a	record	(key,	value);	we	shall	call	the	key	as	the	intermediate	key.	In
general,	a	map()	function	can	emit	multiple	such	records	and	since	there	are	many	input	records,	there
are	potentially	many	output	records	overall.

The	MapReduce	system	takes	all	the	records	emitted	by	the	map()	functions,	and	groups	them	such	that
all	records	with	a	particular	intermediate	key	are	gathered	together.	The	reduce()	function	provided	by
the	programmer	is	then	invoked	for	each	intermediate	key	and	iterates	over	a	collection	of	all	values
associated	with	that	key.

Note	that	the	map	function	can	be	thought	of	as	a	generalization	of	the	project	operation:	both	process	a
single	record	at	a	time,	but	for	a	given	input	record	the	project	operation	generates	a	single	output
record,	whereas	the	map	function	can	output	multiple	records	(including,	as	a	special	case,	0	records).
Unlike	the	project	operation,	the	output	of	a	map	function	is	usually	intended	to	become	the	input	of	a
reduce	function;	hence,	the	output	of	a	map	function	has	an	associated	key	that	serves	as	a	group	by
attribute.	Recall	that	the	reduce	function	takes	as	input	a	collection	of	values	and	outputs	a	result;	with
most	of	the	reduce	functions	commonly	in	use,	the	result	is	an	aggregate	computed	on	the	input	values,
and	the	reduce	function	is	then	essentially	a	user-defined	aggregation	function.

MapReduce	systems	are	designed	for	parallel	processing	of	data.	A	key	requirement	for	parallel
processing	is	the	ability	to	parallelize	file	input	and	output	across	multiple	machines;	otherwise,	the	single
machine	storing	the	data	will	become	a	bottleneck.	Parallelization	of	file	input	and	output	can	be	done	by
using	a	distributed	file	system,	such	as	the	Hadoop	File	System	(HDFS),	discussed	in	Section	21.6,	or	by
using	a	parallel/distributed	storage	system,	discussed	in	Section	21.7.	Recall	that	in	such	sys-

22.4

Other	Operations

1051

User

Program

copy

copy

copy

Master

assign

assign

map

reduce

Part	1

Map	1

Reduce	1

File	1

Part	2

Part	3

write

Map	2

Reduce	1

File	2

Part	4

local

write

Part	p	read	Map	n

Reduce	m

File	m

Remote

Read,	Sort

Input	file

Intermediate

Output	files

partitions

files

Figure	22.4	Parallel	processing	of	MapReduce	job.

tems,	data	are	replicated	(copied)	across	several	(typically	3)	machines,	so	that	even	if	a	few	of	the
machines	fail,	the	data	are	available	from	other	machines	that	have	copies	of	the	data	in	the	failed
machine.

Conceptually,	the	map	and	reduce	operations	are	parallelized	in	the	same	way	that	the	relational
operations	project	and	aggregation	are	parallelized.	Each	node	in	the	system	has	a	number	of
concurrently	executing	workers,	which	are	processes	that	execute	map	and	reduce	functions.	The	number
of	workers	on	one	machine	is	often	set	to	match	the	number	of	processor	cores	on	the	machine.

Parallel	processing	of	MapReduce	jobs	is	shown	schematically	in	Figure	22.4.	As	shown	in	the	figure,
MapReduce	systems	split	the	input	data	into	multiple	pieces;	the	job	of	processing	one	such	piece	is
called	a	task.	Splitting	can	be	done	in	units	of	files,	and	large	files	can	be	split	into	multiple	parts.	Tasks
correspond	to	virtual	nodes	in	our	terminology,	while	workers	correspond	to	real	nodes.	Note	that	with	a
multicore	processor	(as	is	standard	today),	MapReduce	systems	typically	allocate	one	worker	per	core.

MapReduce	systems	also	have	a	scheduler,	which	assigns	tasks	to	workers.2	Whenever	a	worker
completes	a	task,	it	is	assigned	a	new	task,	until	all	tasks	have	been	assigned.

A	key	step	between	the	map	and	reduce	operations	is	the	repartitioning	of	records	output	by	the	map
step;	these	records	are	repartitioned	based	on	their	intermediate	(reduce)	key,	such	that	all	records	with	a
particular	key	are	assigned	to	the	same	reducer	task.	This	could	be	done	either	by	range-partitioning	on
the	reduce	key	or	by	computing	a	hash	function	on	the	reduce	key.	In	either	case,	the	records	are	divided
into	multiple	2The	scheduler	is	run	on	a	dedicated	node	called	the	master	node;	the	nodes	that	perform

map()	and	reduce()	tasks	are	called	slave	nodes	in	the	Hadoop	MapReduce	terminology.

1052

Chapter	22

Parallel	and	Distributed	Query	Processing

partitions,	each	of	which	is	called	a	reduce	task.	A	scheduler	assigns	reduce	tasks	to	workers.

This	step	is	identical	to	the	repartitioning	done	for	parallelizing	the	relational	aggregation	operation,	with
records	partitioned	into	a	number	of	virtual	nodes	based	on	their	group-by	key.

To	process	the	records	in	a	particular	reduce	task,	the	records	are	sorted	(or	grouped)	by	the	reduce	key,
so	that	all	records	with	the	same	reduce-key	value	are	brought	together,	and	then	the	reduce()	is	executed
on	each	group	of	reduce-key	values.

The	reduce	tasks	are	executed	in	parallel	by	the	workers.	When	a	worker	completes	a	reduce	task,
another	task	is	assigned	to	it,	until	all	reduce	tasks	have	been	completed.

A	reduce	task	may	have	multiple	different	reduce	key	values,	but	a	particular	call	to	the	reduce()	function
is	for	a	single	reduce	key;	thus,	the	reduce()	function	is	called	for	each	key	in	the	reduce	task.

Tasks	correspond	to	virtual	nodes	in	the	virtual-node	partitioning	scheme.	There	are	far	more	tasks	than
there	are	nodes,	and	tasks	are	divided	among	the	nodes.	As	discussed	in	Section	22.3.3,	virtual-node
partitioning	reduces	skew.	Also	note	that	as	discussed	in	Section	22.4.1,	skew	can	be	reduced	by	partial
aggregation,	which	corresponds	to	combiners	in	the	MapReduce	framework.

Further,	MapReduce	implementations	typically	also	carry	out	dynamic	detection	and	handling	of	skew,	as
discussed	in	Section	22.4.1.

Most	MapReduce	implementations	include	techniques	to	ensure	that	processing	can	be	continued	even	if
some	nodes	fail	during	query	execution.	Details	are	discussed	further	in	Section	22.5.4.

22.5

Parallel	Evaluation	of	Query	Plans

As	discussed	in	Section	22.1,	there	are	two	types	of	parallelism:	intraoperation	and	interoperation.	Until
now	in	this	chapter,	we	have	focused	on	intraoperation	parallelism.

In	this	section,	we	consider	execution	plans	for	queries	containing	multiple	operations.

We	first	consider	how	to	exploit	interoperator	parallelism.	We	then	consider	a	model	of	parallel	query
execution	which	breaks	parallel	query	processing	into	two	types	of	steps:	partitioning	of	data	using	the
exchange	operator,	and	execution	of	operations	on	purely	local	data,	without	any	data	exchange.	This
model	is	surprisingly	powerful	and	is	widely	used	in	parallel	database	implementations.

22.5.1

Interoperation	Parallelism

There	are	two	forms	of	interoperation	parallelism:	pipelined	parallelism	and	independent	parallelism.	We
first	describe	these	forms	of	parallelism,	assuming	each	operator	runs	on	a	single	node	without
intraoperation	parallelism.

22.5

Parallel	Evaluation	of	Query	Plans

1053

We	then	describe	a	model	for	parallel	execution	based	on	the	exchange	operator,	in	Section	22.5.2.
Finally,	in	Section	22.5.3,	we	describe	how	a	complete	plan	can	be	executed,	combining	all	the	forms	of
parallelism.

22.5.1.1

Pipelined	Parallelism

Recall	from	Section	15.7.2	that	in	pipelining,	the	output	tuples	of	one	operation,	A,	are	consumed	by	a
second	operation,	B,	even	before	the	first	operation	has	produced	the	entire	set	of	tuples	in	its	output.
The	major	advantage	of	pipelined	execution	in	a	sequential	evaluation	is	that	we	can	carry	out	a	sequence

of	such	operations	without	writing	any	of	the	intermediate	results	to	disk.

Parallel	systems	use	pipelining	primarily	for	the	same	reason	that	sequential	systems	do.	However,
pipelines	are	a	source	of	parallelism	as	well,	since	it	is	possible	to	run	operations	A	and	B	simultaneously
on	different	nodes	(or	different	cores	of	a	single	node),	so	that	B	consumes	tuples	in	parallel	with	A
producing	them.	This	form	of	parallelism	is	called	pipelined	parallelism.

Pipelined	parallelism	is	useful	with	a	small	number	of	nodes,	but	it	does	not	scale	up	well.	First,	pipeline
chains	generally	do	not	attain	sufficient	length	to	provide	a	high	degree	of	parallelism.	Second,	it	is	not
possible	to	pipeline	relational	operators	that	do	not	produce	output	until	all	inputs	have	been	accessed,
such	as	the	set-difference	operation.	Third,	only	marginal	speedup	is	obtained	for	the	frequent	cases	in
which	one	operator’s	execution	cost	is	much	higher	than	are	those	of	the	others.

All	things	considered,	when	the	degree	of	parallelism	is	high,	pipelining	is	a	less	important	source	of
parallelism	than	partitioning.	The	real	reason	for	using	pipelining	with	parallel	query	processing	is	the
same	reason	that	pipelining	is	used	with	sequential	query	processing:	namely,	that	pipelined	executions
can	avoid	writing	intermediate	results	to	disk.

Pipelining	in	centralized	databases	was	discussed	in	Section	15.7.2;	as	mentioned	there,	pipelining	can	be
done	using	a	demand-driven,	or	pull,	model	of	computation,	or	using	a	producer-driven,	or	push,	model	of
computation.	The	pull	model	is	widely	used	in	centralized	database	systems.

However,	the	push	model	is	greatly	preferred	in	parallel	database	systems,	since,	unlike	the	pull	model,
the	push	model	allows	both	the	producer	and	consumer	to	execute	in	parallel.

Unlike	the	pull	model,	the	push	model	requires	a	buffer	that	can	hold	multiple	tuples,	between	the
producer	and	consumer;	without	such	a	buffer,	the	producer	would	stall	as	soon	as	it	generates	one	tuple.
Figure	22.5	shows	a	producer	and	consumer	with	a	buffer	in-between.	If	the	producer	and	consumer	are
on	the	same	node,	as	shown	in	Figure	22.5a,	the	buffer	can	be	in	shared	memory.	However,	if	the
producer	and	consumer	are	in	different	nodes,	as	shown	in	Figure	22.5b,	there	will	be	two	buffers:	one	at
the	producer	node	to	collect	tuples	as	they	are	produced,	and	another	at	the	consumer	node	to	collect
them	as	they	are	sent	across	the	network.

1054

Chapter	22

Parallel	and	Distributed	Query	Processing

producer

consumer

buffer

(a)	Producer-consumer	in	shared	memory

consumer

buffer

network

producer

buffer

(b)	Producer-consumer	across	a	network

Figure	22.5	Producer	and	consumer	with	buffer.

When	sending	tuples	across	a	network,	it	makes	sense	to	collect	multiple	tuples	and	send	them	as	a	single
batch,	rather	than	send	tuples	one	at	a	time,	since	there	is	usually	a	very	significant	overhead	per
message.	Batching	greatly	reduces	this	overhead.

If	the	producer	and	consumer	are	on	the	same	node	and	can	communicate	via	a	shared	memory	buffer,
mutual	exclusion	needs	to	be	ensured	when	inserting	tuples	into,	or	fetching	tuples	from,	the	buffer.
Mutual	exclusion	protocols	have	some	overhead,	which	can	be	reduced	by	inserting/retrieving	a	batch	of
tuples	at	a	time,	instead	of	one	tuple	at	a	time.

Note	that	with	the	pull	model,	either	the	producer	or	the	consumer,	but	not	both,	can	be	executing	at	a
given	time;	while	this	avoids	the	contention	on	the	shared	buffer	that	arises	with	the	use	of	the	push

model,	it	also	prevents	the	producer	and	consumer	from	running	concurrently.

22.5.1.2

Independent	Parallelism

Operations	in	a	query	expression	that	do	not	depend	on	one	another	can	be	executed	in	parallel.	This	form
of	parallelism	is	called	independent	parallelism.

Consider	the	join	r	⋈	r	⋈	r	⋈	r	.	One	possible	plan	is	to	compute	intermedi-1

2

3

4

ate	result	t

←	r	⋈	r	in	parallel	with	intermediate	result	t	←	r	⋈	r	.	Neither	of	1

1

2

2

3

4

these	computations	depends	on	each	other,	and	hence	they	can	be	parallelized	by	independent
parallelism.	In	other	words,	the	execution	of	these	two	joins	can	be	scheduled	in	parallel.

22.5

Parallel	Evaluation	of	Query	Plans

1055

When	these	two	computations	complete,	we	can	compute:

t

⋈	t

1

2

Note	that	computation	of	the	above	join	depends	on	the	results	of	the	first	two	joins,	hence	it	cannot	be
done	using	independent	parallelism.

Like	pipelined	parallelism,	independent	parallelism	does	not	provide	a	high	degree	of	parallelism	and	is
less	useful	in	a	highly	parallel	system,	although	it	is	useful	with	a	lower	degree	of	parallelism.

22.5.2

The	Exchange	Operator	Model

The	Volcano	parallel	database	popularized	a	model	of	parallelization	called	the	exchange-operator	model.
The	exchange	operation	repartitions	data	in	a	specified	way;	data	interchange	between	nodes	is	done	only
by	the	exchange	operator.	All	other	operations	work	on	local	data,	just	as	they	would	in	a	centralized
database	system;	the	data	may	be	available	locally	either	because	it	is	already	present,	or	because	of	the
execution	of	a	preceding	exchange	operator.

The	exchange	operator	has	two	components:	a	scheme	for	partitioning	outgoing	data,	applied	at	each
source	node,	and	a	scheme	for	merging	incoming	data,	applied	at	each	destination	node.	The	operator	is
shown	pictorially	in	Figure	22.6,	with	the	partitioning	scheme	denoted	as	“Partition,”	and	the	merging
scheme	denoted	as	“Merge.”

The	exchange	operator	can	partition	data	in	one	of	several	ways:	1.	By	hash	partitioning	on	a	specified	set
of	attributes.

2.	By	range	partitioning	on	a	specified	set	of	attributes.

3.	By	replicating	the	input	data	at	all	nodes,	referred	to	as	broadcasting.

4.	By	sending	all	data	to	a	single	node.

r

Partition

Merge

r	‘

1

1

r

Partition

Merge

r	‘

2

2

r

Partition

Merge

r	‘

3

3

r

Partition

Merge

n

r	‘	m

Figure	22.6	The	exchange	operator	used	for	repartitioning.

1056

Chapter	22

Parallel	and	Distributed	Query	Processing

Broadcasting	data	to	all	nodes	is	required	for	operations	such	as	the	asymmetric	fragment-and-replicate
join.	Sending	all	data	to	a	single	node	is	usually	done	as	a	final	step	of	parallel	query	processing,	to	get
partitioned	results	together	at	a	single	site.

Note	also	that	the	input	to	the	exchange	operator	can	be	at	a	single	site	(referred	to	as	unpartitioned),	or
already	partitioned	across	multiple	sites.	Repartitioning	of	already	partitioned	data	results	in	each
destination	node	receiving	data	from	multiple	source	nodes,	as	shown	in	Figure	22.6.

Each	destination	node	merges	the	data	items	received	from	the	source	nodes.	This	merge	step	can	store
data	in	the	order	received	(which	may	be	nondeterministic,	since	it	depends	on	the	speeds	of	the
machines	and	unpredictable	network	delays);	such	merging	is	called	random	merge.

On	the	other	hand,	if	the	input	data	from	each	source	is	sorted,	the	merge	step	can	exploit	the	sort	order
by	performing	an	ordered	merge.	Suppose,	for	example,	nodes	N	,	…	,	N	first	sort	a	relation	locally,	and

then	repartition	the	sorted	relation	using	1

m

range	partitioning.	Each	node	performs	an	ordered	merge	operation	on	the	tuples	that	it	receives,	to
generate	a	sorted	output	locally.

Thus,	the	exchange	operator	performs	the	partitioning	of	data	at	the	source	nodes,	as	well	the	merging	of
data	at	the	destination	nodes.

All	the	parallel	operator	implementations	we	have	seen	so	far	can	be	modeled	as	a	sequence	of	exchange
operations,	and	local	operators,	at	each	node,	that	are	completely	unaware	of	parallelism.

•	Range	partitioning	sort:	can	be	implemented	by	an	exchange	operation	that	performs	range
partitioning,	with	random	merge	at	the	destination	nodes,	followed	by	a	local	sort	operation	at	each
destination	node.

•	Parallel	external	sort-merge:	can	be	implemented	by	local	sorting	at	the	source	nodes,	followed	by	an
exchange	operation	that	performs	range	partitioning,	along	with	ordered	merging.

•	Partitioned	join:	can	be	implemented	by	an	exchange	operation	that	performs	the	desired	partitioning,
followed	by	local	join	at	each	node.

•	Asymmetric	fragment-and-replicate	join:	can	be	implemented	by	an	exchange	operation	that	performs
broadcast	“partitioning”	of	the	smaller	relation,	followed	by	a	local	join	at	each	node.

•	Symmetric	fragment-and-replicate	join:	can	be	implemented	by	an	exchange	operation	that	partitions,
and	partially	broadcasts	each	partition,	followed	by	a	local	join	at	each	node.

•	Aggregation:	can	be	implemented	by	an	exchange	operation	that	performs	hash-partitioning	on	the
grouping	attributes,	followed	by	a	local	aggregation	operation	at	each	node.	The	partial-aggregation
optimization	simply	requires	an	extra	local	aggregation	operation	at	each	node,	before	the	exchange
operation.

22.5

Parallel	Evaluation	of	Query	Plans

1057

Other	relational	operations	can	be	implemented	similarly,	by	a	sequence	of	local	operations	running	in
parallel	at	each	node,	interspersed	with	exchange	operations.

As	noted	earlier,	parallel	execution	where	data	are	partitioned,	and	operations	are	executed	locally	at
each	node,	is	referred	to	as	data	parallelism.	The	use	of	the	exchange	operator	model	to	implement	data
parallel	execution	has	the	major	benefit	of	allowing	existing	database	query	engines	to	be	used	at	each	of
the	local	nodes,	without	any	significant	code	changes.	As	a	result,	the	exchange-operator	model	of	parallel
execution	is	widely	used	in	parallel	database	systems.

There	are,	however,	some	operator	implementations	that	can	benefit	from	being	aware	of	the	parallel
nature	of	the	system	they	are	running	on.	For	example,	an	indexed	nested-loops	join	where	the	inner
relation	is	indexed	on	a	parallel	data-store	would	require	remote	access	for	each	index	lookup;	the	index
lookup	operation	is	thus	aware	of	the	parallel	nature	of	the	underlying	system.	Similarly,	in	a	shared-
memory	system	it	may	make	sense	to	have	a	hash	table	or	index	in	shared-memory,	which	is	accessed	by
multiple	processors	(this	approach	is	discussed	briefly	in	Section	22.6);	the	operations	running	on	each
processor	are	then	aware	of	the	parallel	nature	of	the	system.

As	we	discussed	in	Section	22.5.1.1,	while	the	demand-driven	(or	pull)	iterator	model	for	pipelined
execution	of	operators	is	widely	used	in	centralized	database	engines,	the	push	model	is	preferred	for
parallel	execution	of	operators	in	a	pipeline.

The	exchange	operator	can	be	used	to	implement	the	push	model	between	nodes	in	a	parallel	system,
while	allowing	existing	implementations	of	local	operators	to	run	using	the	pull	model.	To	do	so,	at	each
source	node	of	an	exchange	operator,	the	operator	can	pull	multiple	tuples	from	its	input	and	create	a
batch	of	tuples	destined	for	each	destination	node.	The	input	may	be	computed	by	a	local	operation,
whose	implementation	can	use	the	demand-driven	iterator	model.

The	exchange	operator	then	sends	batches	of	tuples	to	the	destination	nodes,	where	they	are	merged	and
kept	in	a	buffer.	The	local	operations	can	then	consume	the	tuples	in	a	demand-driven	manner.

22.5.3

Putting	It	All	Together

Figure	22.7	shows	a	query,	along	with	a	sequential	and	two	alternative	parallel	query	execution	plans.	The
query,	shown	in	Figure	22.7a,	computes	a	join	of	two	relations,	r	and	s,	and	then	computes	an	aggregate
on	the	join	result.	Assume	for	concreteness	that	the	query	is

γ

(r	⋈

s).

r.C,	s.D	sum(s.E)

r.A=	s.B

The	sequential	plan,	shown	in	Figure	22.7b,	uses	a	hash	join	(denoted	as	“HJ”	in	the	figure),	which
executes	in	three	separate	stages.	The	first	stage	partitions	the	first	input	(r)	locally	on	r.A;	the	second
stage	partitions	the	second	input	(s)	locally	on	s.B;	and	the	third	stage	computes	the	join	of	each	of	the
corresponding	partitions	of	r	and	s.

The	aggregate	is	computed	using	in-memory	hash-aggregation,	denoted	by	the	operator	HA;	we	assume
that	the	number	of	groups	is	small	enough	that	the	hash	table	fits	in	memory.

1058

Chapter	22

Parallel	and	Distributed	Query	Processing

r

r

Loc.

Part.

γ

HJ

HA

Loc.

s

Part.

s

(a)	Logical	Query

(b)	Sequential	Plan

r

E

Loc.

1

Part.

HJ

E

E

3

HA

4

Result

E

Loc.

s

2

Part.

E	:	partition	on	r.A

1

E	:	partition	on	s.B

2

E	:	partition	on	(r.C,s.D)

3

E	:	collect	results

4

(c)	Parallel	Plan

r

Loc.

E	1

Part.

HJ

HA

E

E

3

HA

4

Result

1

2

Loc.

E	2

s

Part.

E	:	partition	on

E	:	partition	on

2

s.B

1

r.A

E	:	partition	on	(

E	:	collect	results

4

3

r.C,s.D)

(d)	Parallel	Plan	with	Partial	Aggregation

Figure	22.7	Parallel	query	execution	plans.

The	dashed	boxes	in	the	figure	show	which	steps	run	in	a	pipelined	fashion.	In	the	sequential	plan,	the
read	of	the	relation	r	is	pipelined	to	the	first	partitioning	stage	of	the	sequential	hash	join;	similarly,	the
read	of	relations	s	is	pipelined	to	the	second	partitioning	stage	of	the	hash	join.	The	third	stage	of	the
hash	join	pipelines	its	output	tuples	to	the	hash	aggregation	operator.

The	parallel	query	evaluation	plan,	shown	in	Figure	22.7c,	starts	with	r	and	s	already	partitioned,	but	not
on	the	required	join	attributes.3	The	plan,	therefore,	uses	the	exchange	operation	E	to	repartition	r	using
attribute	r.A;	similarly,	exchange	operator	1

E	repartitions	s	using	s.B.	Each	node	then	uses	hash	join	locally	to	compute	the	join	2

3Note	the	multiple	boxes	indicating	a	relation	is	stored	in	multiple	nodes;	similarly,	multiple	circles
indicate	that	an	operation	is	executed	in	parallel	on	multiple	nodes.

22.5

Parallel	Evaluation	of	Query	Plans

1059

of	its	partition	of	r	and	s.	Note	that	these	partitions	are	not	assumed	to	fit	in	memory,	so	they	must	be
further	partitioned	by	the	first	two	stages	of	hash	join;	this	local	partitioning	step	is	denoted	as	“Loc.
Part.”	in	the	figure.	The	dashed	boxes	indicate	that	the	output	of	the	exchange	operator	can	be	pipelined
to	the	local	partitioning	step.	As	in	the	sequential	plan,	there	are	two	pipelined	stages,	one	each	for	r	and
s.	Note	that	exchange	of	tuples	across	nodes	is	done	only	by	the	exchange	operator,	and	all	other	edges
denote	tuple	flows	within	each	node.

Subsequently,	the	hash	join	algorithm	is	executed	in	parallel	at	all	participating	nodes,	and	its	output
pipelined	to	the	exchange	operator	E	.	This	exchange	operator	3

repartitions	its	input	on	the	pair	of	attributes	(r.C,	s.D),	which	are	the	grouping	attributes	of	the
subsequent	aggregation.	At	the	receiving	end	of	the	exchange	operator,	tuples	are	pipelined	to	the	hash
aggregation	operator.	Note	that	the	above	steps	all	run	together	as	a	single	pipelined	stage,	even	though
there	is	an	exchange	operator	as	part	of	the	stage.	Note	that	the	local	operators	computing	hash	join	and
hash	aggregate	need	not	be	aware	of	the	parallel	execution.

The	results	of	the	aggregates	are	then	collected	together	at	a	central	location	by	the	final	exchange
operator	E	,	to	create	the	final	result	relation.

4

Figure	22.7d	shows	an	alternative	plan	that	performs	partial	aggregation	on	the	results	of	the	hash	join,
before	partitioning	the	results.	The	partial	aggregation	is	computed	locally	at	each	node	by	the	operator
HA	.	Since	no	tuple	is	output	by	the	partial	1

aggregation	operator	until	all	its	input	is	consumed,	the	pipelined	stage	contains	only	the	local	hash	join
and	hash	aggregation	operators.	The	subsequent	exchange	operator	E	which	partitions	its	input	on	(r.C,
s.D)	is	part	of	a	subsequent	pipelined	stage	along	3

with	the	hash	aggregation	operation	HA	which	computes	the	final	aggregate	values.

2

As	before,	the	exchange	operator	E	collects	the	results	at	a	centralized	location.

4

The	above	example	shows	how	pipelined	execution	can	be	performed	across	nodes,	as	well	as	within
nodes,	and	further	how	it	can	be	done	along	with	intra-operator	parallel	execution.	The	example	also
shows	that	some	pipelined	stages	depend	on	the	output	of	earlier	pipelined	stages;	therefore	their
execution	can	start	only	after	the	previous	step	finishes.	On	the	other	hand,	the	initial	exchange	and
partitioning	of	r	and	s	occur	in	pipelined	stages	that	are	independent	of	each	other;	such	independent
stages	can	be	scheduled	concurrently,	that	is,	at	the	same	time,	if	desired.

To	execute	a	parallel	plan	such	as	the	one	in	our	example,	the	different	pipelined	stages	have	to	be
scheduled	for	execution,	in	an	order	that	ensures	inter-stage	dependencies	are	met.	When	executing	a
particular	stage,	the	system	must	decide	how	many	nodes	an	operation	should	be	executed	on.	These
decisions	are	usually	made	as	part	of	the	scheduling	phase,	before	query	execution	starts.

22.5.4

Fault	Tolerance	in	Query	Plans

Parallel	processing	of	queries	across	a	moderate	number	of	nodes,	for	example,	hundreds	of	nodes,	can	be
done	without	worrying	about	fault	tolerance.	If	a	fault	occurs,	the	query	is	rerun,	after	removing	any
failed	nodes	from	the	system	(replication	of	data

1060

Chapter	22

Parallel	and	Distributed	Query	Processing

at	the	storage	layer	ensures	that	data	continues	to	be	available	even	in	the	event	of	a	failure).	However,
this	simple	solution	does	not	work	well	when	operating	at	the	scale	of	thousands	or	tens	of	thousands	of
nodes:	if	a	query	runs	for	several	hours,	there	is	a	significant	chance	that	there	will	be	a	failure	while	the
query	is	being	executed.	If	the	query	is	restarted,	there	is	a	significant	chance	of	another	failure	while	it	is
executing,	which	is	obviously	an	undesirable	situation.

To	deal	with	this	problem,	the	query	processing	system	should	ideally	just	be	able	to	redo	the	actions	of	a
failed	node,	without	redoing	the	rest	of	the	computation.

Implementations	of	MapReduce	that	are	designed	to	work	at	a	massively	parallel	scale	can	be	made	fault
tolerant	as	follows:

1.	Each	map	operation	executed	at	each	node	writes	its	output	to	local	files.

2.	The	next	operation,	which	is	a	reduce	operation,	executes	at	each	node;	the	operation	execution	at	a
node	reads	data	from	the	files	stored	at	multiple	nodes,	collects	the	data,	and	starts	processing	the	data
only	after	it	has	got	all	its	required	data.

3.	The	reduce	operation	writes	its	output	to	a	distributed	file	system	(or	distributed	storage	system)	that
replicates	data,	so	that	the	data	would	be	available	even	in	the	event	of	a	failure.

Let	us	now	examine	the	reason	why	things	are	done	as	above.	First,	if	a	particular	map	node	fails,	the
work	done	at	that	node	can	be	redone	at	a	backup	node;	the	work	done	at	other	map	nodes	is	not
affected.	Work	is	not	carried	out	by	reduce	nodes	until	all	the	required	data	has	been	fetched;	the	failure
of	a	map	node	just	means	the	reduce	nodes	fetch	data	from	the	backup	map	nodes.	There	is	certainly	a
delay	while	the	backup	node	does	its	work,	but	there	is	no	need	to	repeat	the	entire	computation.

Further,	once	a	reduce	node	has	finished	its	work,	its	output	goes	to	replicated	storage	to	ensure	it	is	not
lost	even	if	a	data	storage	node	fails.	This	means	that	if	a	reduce	node	fails	before	it	completes	its	work,	it
will	have	to	be	reexecuted	at	a	backup	node;	other	reduce	nodes	are	not	affected.	Once	a	reduce	node	has
finished	its	work,	there	is	no	need	to	reexecute	it.

Note	that	it	is	possible	to	store	the	output	of	a	map	node	in	a	replicated	storage	system.	However,	this
increases	the	execution	cost	significantly,	and	hence	map	output	is	stored	in	local	storage,	even	at	the	risk
of	having	to	reexecute	the	work	done	by	a	map	node	in	case	it	fails	before	all	the	reduce	nodes	have
fetched	the	data	that	they	require	from	that	map	node.

It	is	also	worth	noting	that	sometimes	nodes	do	not	completely	fail,	but	run	very	slowly;	such	nodes	are
called	straggler	nodes.	Even	a	single	straggler	node	can	delay	all	the	nodes	in	the	next	step	(if	there	is	a
following	step),	or	delay	task	completion	(if	it	is	in	the	last	step).	Straggler	nodes	can	be	dealt	with	by

treating	them	similar	to	failed	nodes,	and	reexecuting	their	tasks	on	other	nodes	(the	original	task	on	the
straggler	node	can	also	be	allowed	to	continue,	in	case	it	finishes	first).	Such	reexecution	to	deal	with

22.6

Query	Processing	on	Shared-Memory	Architectures

1061

stragglers	has	been	found	to	significantly	improve	time	to	completion	of	MapReduce	tasks.

While	the	above	scheme	for	fault	tolerance	is	quite	effective,	there	is	an	overhead	that	must	be	noted:	a
reduce	stage	cannot	perform	any	work	until	the	previous	map	stage	has	finished;4	and	if	multiple	map
and	reduce	steps	are	executed,	the	next	map	stage	cannot	perform	any	work	until	the	preceding	reduce
stage	has	finished.	In	particular,	this	means	that	pipelining	of	data	between	stages	cannot	be	supported;
data	are	always	materialized	before	it	is	sent	to	the	next	stage.	Materialization	carries	a	significant
overhead,	which	can	slow	down	computation.

Apache	Spark	uses	an	abstraction	called	Resilient	Distributed	Datasets	(RDDs)	to	implement	fault
tolerance.	As	we	have	seen	in	Section	10.4.2,	RDDs	can	be	viewed	as	collections,	and	Spark	supports
algebraic	operations	that	take	RDDs	as	input,	and	generate	RDDs	as	output.	Spark	keeps	track	of	the
operations	used	to	create	an	RDD.

In	case	of	failures	that	result	in	loss	of	an	RDD,	the	operations	used	to	create	the	RDD

can	be	reexecuted	to	regenerate	the	RDD.	However,	this	may	be	time-consuming,	so	Spark	also	supports
replication	to	reduce	the	chance	of	data	loss,	as	well	as	storing	of	local	copies	of	data	when	a	shuffle
(exchange)	step	is	executed,	to	allow	reexecution	to	be	restricted	to	computation	that	was	performed	on
failed	nodes.

There	has	been	a	good	deal	of	research	on	how	to	allow	pipelining	of	data,	while	not	requiring	query
execution	to	restart	from	the	beginning	in	case	of	a	single	failure.	Such	schemes	typically	require	nodes	to
track	what	data	they	have	received	from	each	source	node.	In	the	event	of	a	source	node	failure,	the	work
of	the	source	node	is	redone	on	a	backup	node,	which	can	result	in	some	tuples	that	were	received	earlier
being	received	again.	Tracking	the	data	received	earlier	is	important	to	ensure	duplicate	tuples	are
detected	and	eliminated	by	the	receiving	node.	The	above	ideas	can	also	be	used	to	implement	fault
tolerance	for	other	algebraic	operations,	such	as	joins.	In	particular,	if	we	use	the	exchange	operator	with
data	parallelism,	fault	tolerance	can	be	implemented	as	an	extension	of	the	exchange	operator.

References	to	more	information	on	fault	tolerant	pipelining	based	on	extensions	of	the	exchange	operator,
as	well	as	on	fault	tolerance	schemes	used	in	MapReduce	and	in	Apache	Spark,	may	be	found	in	the
Further	Reading	section	at	the	end	of	the	chapter.

22.6

Query	Processing	on	Shared-Memory	Architectures

Parallel	algorithms	designed	for	shared-nothing	architectures	can	be	used	in	shared-memory
architectures.	Each	processor	can	be	treated	as	having	its	own	partition	of	memory,	and	we	can	ignore	the
fact	that	the	processors	have	a	common	shared-4Once	a	map	node	finishes	its	tasks,	redistribution	of
results	from	that	node	to	the	reduce	nodes	can	start	even	if	other	map	nodes	are	still	active;	but	the
actual	computation	at	the	reduce	node	cannot	start	until	all	map	tasks	have	completed	and	all	map	results
redistributed.

1062

Chapter	22

Parallel	and	Distributed	Query	Processing

memory.	However,	execution	can	be	optimized	significantly	by	exploiting	the	fast	access	to	shared-
memory	from	any	of	the	processors.

Before	we	study	optimizations	that	exploit	shared-memory,	we	note	that	while	many	large-scale	systems
can	execute	on	a	single	shared-memory	system,	the	largest-scale	systems	today	are	typically	implemented
using	a	hierarchical	architecture,	with	a	shared-nothing	architecture	at	the	outer	level,	but	with	each
node	having	a	shared-memory	architecture	locally,	as	discussed	in	Section	20.4.8.	The	techniques	we	have
studied	so	far	for	storing,	indexing,	and	querying	data	in	shared-nothing	architectures	are	used	to	divide
up	storage,	indexing,	and	query	processing	tasks	among	the	different	nodes	in	the	system.	Each	node	is	a
shared-memory	parallel	system,	which	uses	parallel	query	processing	techniques	to	execute	the	query

processing	tasks	assigned	to	it.	The	optimizations	we	describe	in	this	section	can	thus	be	used	locally,	at
each	node.

Parallel	processing	in	a	shared	memory	system	is	typically	done	by	using	threads,	rather	than	separate
processes.	A	thread	is	an	execution	stream	that	shares	its	entire	memory5	with	other	threads.	Multiple
threads	can	be	started	up,	and	the	operating	system	schedules	threads	on	available	processors.

We	list	below	some	optimizations	that	can	be	applied	when	parallel	algorithms	that	we	saw	earlier	are
executed	in	a	shared	memory	system.

1.	If	we	use	asymmetric	fragment-and-replicate	join,	the	smaller	relation	need	not	be	replicated	to	each
processor.	Instead,	only	one	copy	needs	to	be	stored	in	shared	memory,	which	can	be	accessed	by	all	the
processors.	This	optimization	is	particularly	useful	if	there	are	a	large	number	of	processors	in	the	shared-
memory	system.

2.	Skew	is	a	significant	problem	in	parallel	systems,	and	it	becomes	worse	as	the	number	of	processors
grows.	Handing	off	work	from	an	overloaded	node	to	an	underloaded	node	is	expensive	in	a	shared-
nothing	system	since	it	involves	network	traffic.	In	contrast,	in	a	shared	memory	system,	data	assigned	to
a	processor	can	be	easily	accessed	from	another	processor.

To	address	skew	in	a	shared-memory	system,	a	good	option	is	to	use	virtual-node	partitioning,	which
allows	work	to	be	redistributed	in	order	to	balance	load.

Such	redistribution	could	be	done	when	a	processor	is	found	to	be	overloaded.

Alternatively,	whenever	a	processor	finds	that	it	has	finished	processing	all	the	virtual	nodes	assigned	to
it,	it	can	find	other	processors	that	still	have	virtual	nodes	left	to	be	processed,	and	take	over	some	of
those	tasks;	as	mentioned	in	Section	22.3.3,	this	approach	is	called	work	stealing.	Note	that	such	an
approach	to	avoiding	skew	would	be	much	more	expensive	in	a	shared-nothing	environment	since	a
significant	amount	of	data	movement	would	be	involved,	unlike	in	the	shared-memory	case.

5Technically,	in	operating-system	terminology,	its	address	space.

22.6

Query	Processing	on	Shared-Memory	Architectures

1063

3.	Hash	join	can	be	executed	in	two	distinct	ways.

a.	The	first	option	is	to	partition	both	relations	to	each	processor	and	then	compute	the	joins	of	the
partitions,	in	a	manner	similar	to	shared-nothing	hash	join.	Each	partition	must	be	small	enough	that	the
hash	index	on	a	build-relation	partition	fits	in	the	part	of	shared	memory	allocated	to	each	processor.

b.	The	second	option	is	to	partition	the	relations	into	fewer	pieces,	such	that	the	hash	index	on	a	build-
relation	partition	fits	into	common	shared	memory,	rather	than	a	fraction	of	the	shared	memory.	The
construction	of	the	in-memory	index,	as	well	as	probing	of	the	index,	must	now	be	done	in

parallel	by	all	the	processors.

Parallelizing	the	probe	phase	is	relatively	easy,	since	each	processor	can	work	on	some	partition	of	the
probe	relation.	In	fact	it	makes	sense	to	use	the	virtual	node	approach	and	partition	the	probe	relation
into	many	small	pieces	(sometimes	called	“morsels”),	and	have	processors	process	a	morsel	at	a	time.
When	a	processor	is	done	with	a	morsel,	it	finds	an	unprocessed	morsel	and	works	on	it,	until	there	are	no
morsels	left	to	be	processed.

Parallelizing	the	construction	of	the	shared	hash	index	is	more	com-

plicated,	since	multiple	processors	may	attempt	to	update	the	same	part	of	the	hash	index.	Using	locks	is
an	option,	but	there	are	overheads	due	to	locking.	Techniques	based	on	lock-free	data	structures	can	be
used	to	construct	the	hash	index	in	parallel.

References	to	more	details	on	how	to	parallelize	join	implementations	in	shared	memory	may	be	found	in
the	Further	Reading	section	at	the	end	of	the	chapter.

Algorithms	designed	for	shared-memory	systems	must	take	into	account	the	fact	that	in	today’s
processors,	memory	is	divided	into	multiple	memory	banks,	with	each	bank	directly	linked	to	some
processor.	The	cost	of	accessing	memory	from	a	given	processor	is	less	if	the	memory	is	directly	linked	to
the	processor,	and	is	more	if	it	is	linked	to	a	different	processor.	Such	memory	systems	are	said	to	have	a
Non-Uniform	Memory	Access	or	NUMA	architecture.

To	get	the	best	performance,	algorithms	must	be	NUMA-aware;	that	is,	they	must	be	designed	to	ensure
that	data	accessed	by	a	thread	running	on	a	particular	processor	is,	as	far	as	possible,	stored	in	memory
local	to	that	processor.	Operating	systems	support	this	task	in	two	ways:

1.	Each	thread	is	scheduled,	as	far	as	possible,	on	the	same	processor	core,	every	time	it	is	executed.

2.	When	a	thread	requests	memory	from	the	operating	system	memory	manager,	the	operating	system
allocates	memory	that	is	local	to	that	processor	core.

Note	that	the	techniques	for	making	the	best	use	of	shared	memory	are	complementary	to	techniques	that
make	the	best	use	of	processor	caches,	including	cache-

1064

Chapter	22

Parallel	and	Distributed	Query	Processing

conscious	index	structures	(which	we	saw	in	Section	14.4.7)	and	cache-conscious	algorithms	for
processing	relational	operators.

But	in	addition,	since	each	processor	core	has	its	own	cache,	it	is	possible	for	a	cache	to	have	an	old	value
that	was	subsequently	updated	on	another	processor	core.

Thus,	query	processing	algorithms	that	update	shared	data	structures	should	be	careful	to	ensure	that
there	are	no	bugs	due	to	the	use	of	outdated	values,	and	due	to	race	conditions	on	updating	the	same
memory	location	from	two	processor	cores.	Locking	and	fence	instructions	to	ensure	cache	consistency
(Section	20.4.5)	are	used	in	combination	to	implement	updates	to	shared	data	structures.

The	form	of	parallelism	we	have	studied	so	far	allows	each	processor	to	execute	its	own	code
independently	of	other	processors.	However,	some	parallel	systems	support	a	different	form	of
parallelism,	called	Single	Instruction	Multiple	Data	(SIMD).	With	SIMD	parallelism,	the	same	instruction
is	executed	on	each	of	multiple	data	items,	which	are	typically	elements	of	an	array.	SIMD	architectures
became	widely	used	in	graphics	processing	units	(GPUs),	which	were	initially	used	for	speeding	up
processing	of	computer	graphics	tasks.	However,	more	recently,	GPU	chips	have	been	used	for
parallelizing	a	variety	of	other	tasks,	one	of	which	is	parallel	processing	of	relational	operations	using	the
SIMD	support	provided	by	GPUs.	Intel’s	Xeon	Phi	coprocessor	supports	not	only	multiple	cores	in	a	single
chip,	but	also	several	SIMD	instructions	that	can	operate	in	parallel	on	multiple	words.	There	has	been	a
good	deal	of	research	on	how	to	process	relational	operations	in	parallel	on	such	SIMD	architectures;
references	to	more	information	on	this	topic	may	be	found	in	the	bibliographic	notes	for	this	chapter,
available	online.

22.7

Query	Optimization	for	Parallel	Execution

Query	optimizers	for	parallel	query	evaluation	are	more	complicated	than	query	optimizers	for	sequential
query	evaluation.	First,	the	space	of	plan	alternatives	can	be	much	larger	than	that	for	sequential	plans.
In	particular,	in	a	parallel	setting,	we	need	to	take	into	account	the	different	possible	ways	of	partitioning
the	inputs	and	intermediate	results,	since	different	partitioning	schemes	can	lead	to	different	query
execution	costs,	which	is	not	an	issue	for	a	sequential	plan.

Second,	the	cost	models	are	more	complicated,	since	the	cost	of	partitioning	must	be	taken	into	account,
and	issues	such	as	skew	and	resource	contention	must	be	addressed.

22.7.1

Parallel	Query	Plan	Space

As	we	have	seen	in	Section	15.1,	a	sequential	query	plan	can	be	expressed	as	an	algebraic	expression
tree,	where	each	node	is	a	physical	operator,	such	as	a	sort	operator,	a	hash	join	operator,	a	merge-join
operator,	etc.	Such	a	plan	may	be	further	annotated	with	instructions	on	what	operations	are	to	be
pipelined	and	what	intermediate	results	are	to	be	materialized,	as	we	saw	in	Section	15.7.

22.7

Query	Optimization	for	Parallel	Execution

1065

In	addition	to	the	above,	a	parallel	query	plan	must	specify

•	How	to	parallelize	each	operation,	including	deciding	what	algorithm	to	use,	and	how	to	partition	the
inputs	and	intermediate	results.	Exchange	operators	can	be	used	to	partition	inputs	as	well	as
intermediate	results	and	final	results.

•	How	the	plan	is	to	be	scheduled;	specifically:

°	How	many	nodes	to	use	for	each	operation.

°	What	operations	to	pipeline	within	the	same	node,	or	across	different	nodes.

°	What	operations	to	execute	sequentially,	one	after	the	other.

°	What	operations	to	execute	independently	in	parallel.

As	an	example	of	the	partitioning	decision,	a	join	r	⋈

s	can	be	paral-

r.A=	s.A∧	r.B=	s.B

lelized	by	partitioning	r	and	s	on	the	attributes	r.A	and	s.A	alone,	or	on	the	attributes	r.B	and	s.B	alone,	or
on	(r.A,	r.B)	and	(s.A,	s.B).	The	last	option	is	likely	to	be	the	best	if	we	consider	only	this	join,	since	it
minimizes	the	chances	of	skew	which	can	arise	if	the	cardinalities	of	r.A,	r.B,	s.A	or	s.B	are	low.

But	consider	now	the	query

γ

(r	⋈

s).	If	we	perform	the	join

r.A	sum(s.C)

r.A=	s.A∧	r.B=	s.B

by	partitioning	on	(r.A,	r.B)	(and	(s.A,	s.B)),	we	would	then	need	to	repartition	the	join	result	by	r.A	to
compute	the	aggregate.	On	the	other	hand,	if	we	performed	the	join	by	partitioning	on	r	and	s	on	r.A	and
s.A	respectively,	both	the	join	and	the	aggregate	can	be	computed	without	any	repartitioning,	which	could
reduce	the	cost.	This	option	is	particularly	likely	to	be	a	good	option	if	r.A	and	s.A	have	high	cardinality
and	few	duplicates,	since	the	chance	of	skew	is	less	in	this	case.

Thus,	the	optimizer	has	to	consider	a	larger	space	of	alternatives,	taking	partitioning	into	account.
References	with	more	details	about	how	to	implement	query	optimization	for	parallel	query	processing
systems,	taking	partitioning	alternatives	into	account,	may	be	found	in	the	Further	Reading	section	at	the
end	of	the	chapter.

22.7.2

Cost	of	Parallel	Query	Evaluation

The	cost	of	a	sequential	query	plan	is	typically	estimated	based	on	the	total	resource	consumption	of	the
plan,	adding	up	the	CPU	and	I/O	costs	of	the	operators	in	a	query	plan.	The	resource	consumption	cost
model	can	also	be	used	in	a	parallel	system,	additionally	taking	into	account	the	network	cost,	and	adding
it	along	with	the	other	costs.

As	discussed	in	Section	15.2,	even	in	a	sequential	system,	the	resource	consumption	cost	model	does	not
guarantee	minimization	of	the	execution	time	of	an	individual	query.	There	are	other	cost	models	that	are
better	at	modeling	the	time	to	complete	a	query;	however,	the	resource	consumption	cost	model	has	the
benefit	of	reducing	the	cost	of	query	optimization,	and	is	thus	widely	used.	We	return	to	the	issue	of	other
cost	models	later	in	the	section.

1066

Chapter	22

Parallel	and	Distributed	Query	Processing

We	now	study	how	the	cost	of	a	parallel	query	plan	can	be	estimated	based	on	the	resource	consumption
model.	If	a	query	plan	is	data	parallel,	then	each	operation,	other	than	the	exchange	operation,	runs
locally;	the	cost	of	such	operations	can	be	estimated	using	techniques	we	have	seen	earlier	in	Chapter	15,
if	we	assume	that	the	input	relations	are	uniformly	partitioned	across	n	nodes,	with	each	node	receiving	1∕

n	th	of	the	overall	input.

The	cost	of	the	exchange	operation	can	be	estimated	based	on	the	network	topology,	the	amount	of	data
transferred,	and	the	network	bandwidth;	as	before	it	is	assumed	that	each	node	is	equally	loaded	during
the	exchange	operation.	The	cost	of	a	query	plan	under	the	resource-consumption	model	can	then	be
found	by	adding	up	the	costs	of	the	individual	operations.

However,	in	a	parallel	system,	two	plans	with	the	same	resource	consumption	may	have	significantly
different	time	to	completion.	A	response-time	cost	model	is	a	cost	model	that	attempts	to	better	estimate
the	time	to	completion	of	a	query.	If	a	particular	operation	is	able	to	perform	I/O	operations	in	parallel
with	CPU	execution,	the	response	time	would	be	better	modeled	as	max(CPU	cost,	I/O	cost),	rather	than
the	resource	consumption	cost	model	of	(CPU	cost	+	I/O	cost).	Similarly,	if	two	operations	o	and	1

o	are	in	a	pipeline	on	a	single	node,	and	their	CPU	and	I/O	costs	are	c	,	io	and	c	,	io	2

1

1

2

2

respectively,	then	their	response	time	cost	would	be	max(c	+	c	,	io	+	io).	Similarly,	1

2

1

2

if	operations	o	and	o	are	executed	sequentially,	then	their	response	time	cost	would	1

2

be	max(c	,	io)	+	max(c	,	io).

1

1

2

2

When	executing	operations	in	parallel	across	multiple	nodes,	the	response	time	cost	model	would	have	to
take	into	account:

•	Start-up	costs	for	initiating	an	operation	at	multiple	nodes.

•	Skew	in	the	distribution	of	work	among	the	nodes,	with	some	nodes	getting	a	larger	number	of	tuples
than	others,	and	thus	taking	longer	to	complete.	It	is	the	time	to	completion	of	the	slowest	node	that
determines	the	time	to	completion	of	the	operation.

Thus,	any	skew	in	the	distribution	of	the	work	across	nodes	greatly	affects	performance.

Estimating	the	time	to	completion	of	the	slowest	node	due	to	skew	is	not	an	easy	task	since	it	is	highly
data	dependent.	However,	statistics	such	as	number	of	distinct	values	of	partitioning	attributes,
histograms	on	the	distribution	of	values	of	partitioning	attributes,	and	counts	of	most	frequent	values	can
be	used	to	estimate	the	potential	for	skew.	Partitioning	algorithms	that	can	detect	and	minimize	the	effect
of	skew,	such	as	those	discussed	in	Section	21.3,	are	important	to	minimize	skew.

22.7.3

Choosing	a	Parallel	Query	Plan

The	number	of	parallel	evaluation	plans	from	which	to	choose	is	much	larger	than	the	number	of
sequential	evaluation	plans.	Optimization	of	parallel	queries	by	considering	all	alternatives	is	therefore
much	more	expensive	than	optimization	of	sequential

22.7

Query	Optimization	for	Parallel	Execution

1067

queries.	Hence,	we	usually	adopt	heuristic	approaches	to	reduce	the	number	of	parallel	execution	plans
that	we	have	to	consider.	We	describe	two	popular	approaches	here.

1.	A	simple	approach	is	to	choose	the	most	efficient	sequential	evaluation	plan,	and	then	to	choose	the
optimal	way	to	parallelize	the	operations	in	that	evaluation	plan.	When	choosing	a	sequential	plan,	the
optimizer	may	use	a	basic	sequential	cost	model;	or	it	may	use	a	simple	cost	model	that	takes	some
aspects	of	parallel	execution	into	account	but	does	not	consider	issues	such	as	partitioning	or	scheduling.
This	option	allows	an	existing	sequential	query	optimizer	to	be	used	with	minimal	changes	for	the	first
step.

Next,	the	optimizer	decides	how	to	create	an	optimal	parallel	plan	corresponding	to	the	chosen	sequential
plan.	At	this	point,	choices	of	what	partitioning	techniques	to	use	and	how	to	schedule	operators	can	be
made	in	a	cost-based	manner.

The	chosen	sequential	plan	may	not	be	optimal	in	the	parallel	context,	since	the	exact	cost	formulae	for
parallel	execution	were	not	used	when	choosing	it;	nevertheless,	the	approach	works	reasonably	well	in
many	cases.

2.	A	more	principled	approach	is	to	find	the	best	plan,	assuming	that	each	operation	is	executed	in
parallel	across	all	the	nodes	(operations	with	very	small	inputs	may	be	executed	on	fewer	nodes).
Scheduling	of	independent	operations	in	parallel	on	different	nodes	is	not	considered	at	this	stage.

Partitioning	of	inputs	and	intermediate	results	is	taken	into	consideration	when	estimating	the	cost	of	a
query	plan.	Existing	techniques	for	query	optimization	have	been	extended	by	considering	partitioning	as
a	physical	property,	in	addition	to	physical	properties	such	as	sort	orders	that	are	already	taken	into
account	when	choosing	a	sequential	query	plan.	Just	as	sort	operators	are	added	to	a	query	plan	to	get	a
desired	sort	order,	exchange	operators	are	added	to	get	the	desired	partitioning	property.	The	cost	model
used	in	practice	is	typically	a	resource	consumption	model,	which	we	saw	earlier.	Although	response-time
cost	models	offer	better	estimates	of	query	execution	time,	the	cost	of	query	optimization	is	higher	when
using	a	response-time	cost	model	compared	to	the	cost	of	optimization	when	using	a	resource-
consumption	cost	model.	References	providing	more	information	on	the	response-time	cost	model	may	be
found	in	the	Further	Reading	section	at	the	end	of	the	chapter.

Yet	another	dimension	of	optimization	is	the	design	of	physical-storage	organization	to	speed	up	queries.
For	example,	a	relation	can	be	stored	partitioned	on	any	of	several	different	attributes,	and	it	may	even	be
replicated	and	replicas	can	be	stored	partitioned	on	different	attributes.	For	example,	a	relation	r(A,	B,	C)
could	be	stored	partitioned	on	A,	and	a	replica	could	be	partitioned	on	B.	The	query	optimizer	chooses	the
replica	that	is	best	suited	for	the	query.	The	optimal	physical	organization	differs

1068

Chapter	22

Parallel	and	Distributed	Query	Processing

for	different	queries.	The	database	administrator	must	choose	a	physical	organization	that	appears	to	be
good	for	the	expected	mix	of	database	queries.

22.7.4

Colocation	of	Data

Even	with	parallel	data	storage	and	parallel	processing	of	operations,	the	execution	time	of	some	queries
can	be	too	slow	for	the	needs	of	some	applications.	In	particular,	queries	that	access	small	amounts	of
data	stored	at	multiple	nodes	may	run	quite	slowly	when	executed	in	parallel,	as	compared	to	the
execution	of	the	same	query	on	a	single	node,	if	all	the	data	were	available	at	that	node.	There	are	many
applications	that	need	such	queries	to	return	answers	with	very	low	latency.

An	important	technique	to	speed	up	such	queries	is	to	colocate	data	that	a	query	accesses	in	a	single
node.	For	example,	suppose	an	application	needs	to	access	student	information,	along	with	information
about	courses	taken	by	the	student.	Then,	the	student	relation	may	be	partitioned	on	the	ID,	and	the	takes
relation	also	partitioned	in	exactly	the	same	manner	on	ID.	Tuples	in	the	course	relation,	which	is	a	small
relation,	may	be	replicated	to	all	nodes.	With	such	a	partitioning,	any	query	involving	these	three	relations
that	retrieves	data	for	a	single	ID	can	be	answered	locally	at	a	single	node.	The	query	processing	engine
just	detects	which	node	is	responsible	for	that	ID	and	sends	the	query	to	that	node,	where	it	is	executed

locally.

Colocation	of	tuples	from	different	relations	is	supported	by	many	data	storage	systems.	If	the	data
storage	system	does	not	natively	support	colocation,	an	alternative	is	to	create	an	object	containing
related	tuples	that	share	a	key	(e.g.,	student	and	takes	records	corresponding	to	a	particular	ID),	and
store	it	in	the	data	storage	system	with	the	associated	key	(ID,	in	our	example).

The	colocation	technique,	however,	does	not	work	directly	if	different	queries	need	a	relation	partitioned
in	different	ways.	For	example,	if	the	goal	is	to	find	all	students	who	have	taken	a	particular	course
section,	the	takes	relation	needs	to	be	partitioned	on	the	section	information	(course	id,	year,	semester,
sec	id)	instead	of	being	partitioned	on	ID.

A	simple	technique	to	handle	this	situation	is	to	allow	multiple	copies	of	a	relation,	partitioned	on	different
attributes.	These	copies	can	be	modeled	as	indices	on	the	relation,	partitioned	on	different	attributes;
when	tuples	in	the	relation	are	updated,	so	are	the	copies,	to	keep	them	consistent.	In	our	example,	one
copy	of	takes	can	be	partitioned	on	ID	to	be	colocated	with	the	student	partitions,	while	another	copy	is
partitioned	on	(course	id,	year,	semester,	sec	id)	to	be	colocated	with	the	section	relation.

Colocation	helps	optimize	queries	that	compute	joins	between	two	relations;	it	can	extend	to	three	or
more	relations	if	either	the	remaining	relations	are	replicated,	or	if	all	relations	share	a	common	set	of
join	attributes.	In	the	latter	case,	all	tuples	that	would	join	together	can	be	colocated	by	partitioning	on
the	common	join	attributes.	In	either	case,	the	join	can	be	computed	locally	at	a	single	node,	if	the	query
only	wants	the	results	for	a	specific	value	of	the	join	attribute,	as	we	saw	earlier.	However,	not	all	join

22.7

Query	Optimization	for	Parallel	Execution

1069

queries	are	amenable	to	evaluation	at	a	single	node	by	using	colocation.	Materialized	views,	which	we
discuss	next,	offer	a	more	general	alternative.

22.7.5

Parallel	Maintenance	of	Materialized	Views

Materialized	views,	which	we	saw	in	Section	4.2.3	for	speeding	up	queries	in	centralized	databases,	can
also	be	used	to	speed	up	queries	in	parallel	databases.	Materialized	views	need	to	be	maintained	when
the	database	is	updated,	as	we	saw	in	Section	16.5.

Materialized	views	in	a	parallel	database	can	have	a	very	large	amount	of	data,	and	must,	therefore,	be
stored	partitioned	across	multiple	nodes.

As	in	the	centralized	case,	materialized	views	in	a	parallel	database	speed	up	query	answering	at	the	cost
of	the	overhead	of	view	maintenance	at	the	time	of	processing	updates.

We	consider	first	a	very	simple	case	of	materialized	views.	It	is	often	useful	to	store	an	extra	copy	of	a
relation,	partitioned	on	different	attributes,	to	speed	up	answering	of	some	queries.	Such	a	repartitioning
can	be	considered	a	very	simple	case	of	a	materialized	view;	view	maintenance	for	such	a	view	is
straightforward,	just	requiring	updates	to	be	sent	to	the	appropriate	partition.

Indices	can	be	considered	a	form	of	materialized	views.	Recall	from	Section	21.5

how	parallel	indices	are	maintained.	Consider	the	case	of	maintenance	of	a	parallel	secondary	index	on	an
attribute	B	of	a	relation	r(A,	B,	C),	with	primary	key	A.	The	secondary	index	would	be	sorted	on	attribute
B	and	would	include	unique	key	A;	assume	it	also	includes	attribute	C.	Suppose	now	that	attribute	B	of	a
tuple	(a	1,	b	1,	c	1)	is	updated	from	b	1	to	b	2.	This	update	results	in	two	updates	to	the	secondary	index:
delete	the	index	entry	with	key	(b	1,	a	1,	c	1),	and	add	an	entry	(b	2,	a	1,	c	1).	Since	the	secondary	index
is	itself	partitioned,	these	two	updates	need	to	be	sent	to	the	appropriate	partition,	based	on	the	unique
key	attributes	(B,	A).

In	some	cases,	materialized	view	maintenance	can	be	done	by	partitioning	followed	by	local	view
maintenance.	Consider	a	view	that	groups	takes	tuples	by	(course	id,	year,	semester,	sec	id),	and	then
counts	the	number	of	students	who	have	taken	that	course	section.	Such	a	materialized	view	would	be
stored	partitioned	on	the	grouping	attributes	(course	id,	year,	semester,	sec	id).	It	can	be	computed	by

maintaining	a	copy	of	the	takes	relation	partitioned	on	(course	id,	year,	semester,	sec	id),	and
materializing	the	aggregates	locally	at	each	node.	When	there	is	an	update,	say	an	insert	or	delete	to	the
takes	relation,	that	update	must	be	propagated	to	the	appropriate	node	based	on	the	partitioning	chosen
above.	The	materialized	aggregate	can	be	maintained	locally	at	each	node,	as	updates	are	received	for	the
set	of	local	tuples	of	the	takes	relation.

For	more	complex	views,	materialized	view	maintenance	cannot	be	done	by	a	single	step	of	partitioning
and	local	view	maintenance.	We	consider	a	more	general	approach	next.

First,	consider	an	operator	o,	whose	result	is	materialized,	and	an	update	(insert	or	delete)	to	one	of	the
input	relations	of	o	that	requires	maintenance	of	the	materialized	result	of	o.	Suppose	the	execution	of
operator	o	is	parallelized	using	the	exchange	op-

1070

Chapter	22

Parallel	and	Distributed	Query	Processing

erator	model	(Section	22.5.2)	where	the	inputs	are	partitioned,	and	then	operators	are	executed	at	each
node	on	data	made	available	locally	by	(re)partitioning.	To	support	materialized	view	maintenance	of	the
result	of	o,	we	materialize	the	output	of	o	at	each	node	and	additionally	materialize	(store)	the	input
partitions	sent	to	the	node	when	the	materialized	view	result	is	initially	computed.

Now,	when	there	is	an	update	(insert	or	delete)	to	an	input	to	o,	we	send	the	update	to	the	appropriate
node	using	the	same	partition	function	used	during	the	initial	computation	of	o.	Consider	a	node	that	has
received	such	an	update.	Now,	the	maintenance	of	the	locally	materialized	result	at	the	node	can	be	done
using	standard	(nonparallel)	view	maintenance	techniques	using	only	locally	available	data.

Note	that	as	we	saw	in	Section	22.5.2,	a	variety	of	operations	can	be	parallelized	using	the	exchange
operator	model,	and	hence	the	preceding	scheme	provides	a	parallel	view	maintenance	technique	for	all
such	operators.

Next,	consider	a	query	with	multiple	operators.	Such	a	query	can	be	parallelized	using	the	exchange
operator	model.	The	exchange	operators	repartition	data	between	nodes,	and	each	node	computing
(possibly	multiple)	operations	using	data	made	available	locally	by	the	exchange	operators,	as	we	saw	in
Section	22.5.2.

We	can	materialize	the	inputs	and	results	at	each	node.	Now,	when	there	is	a	change	to	an	input	at	a
node,	we	use	standard	view	maintenance	techniques	locally	to	find	the	change	to	the	materialized	result,
say	v,	at	that	node.	If	that	result	v	is	the	final	output	of	the	query,	we	are	done.	Otherwise,	there	must	be
an	exchange	operator	above	it;	we	use	the	exchange	operator	to	route	the	updates	(inserts	or	delete)	to	v
to	the	next	operator.

That	operator	in	turn	computes	the	change	to	its	result,	and	propagates	it	further	if	required,	until	we	get
to	the	root	of	the	original	materialized	view.

The	issue	of	consistency	of	materialized	views	in	the	face	of	concurrent	updates	to	the	underlying
relations	is	addressed	in	Section	23.6.3.

22.8

Parallel	Processing	of	Streaming	Data

We	saw	several	applications	of	streaming	data	in	Section	10.5.	Many	of	the	streaming	data	applications
that	we	saw	in	that	section,	such	as	network	monitoring	or	stock	market	applications,	have	very	high
rates	of	tuple	arrival.	Incoming	tuples	cannot	be	processed	by	a	single	computer,	and	parallel	processing
is	essential	for	such	systems.

Streaming	data	systems	apply	a	variety	of	operations	on	incoming	data.	We	now	see	how	some	of	these
operations	can	be	executed	in	parallel.

Parallelism	is	essential	at	all	stages	of	query	processing,	starting	with	the	entry	of	tuples	from	the
sources.	Thus,	a	parallel	stream	processing	system	needs	to	support	a	large	number	of	entry	points	for
data.

For	example,	a	system	that	is	monitoring	queries	posed	on	a	search	engine	such	as	Google	or	Bing	search
has	to	keep	up	with	a	very	high	rate	of	queries.	Search	engines	have	a	large	number	of	machines	across
which	user	queries	are	distributed	and	executed.	Each	of	these	machines	becomes	a	source	for	the	query
stream.	The	stream

22.8

Parallel	Processing	of	Streaming	Data

1071

processing	system	must	have	multiple	entry	points	for	the	data,	which	receive	data	from	the	original
sources	and	route	them	within	the	stream	processing	system.

Processing	of	data	must	be	done	by	routing	tuples	from	producers	to	consumers.

We	discuss	routing	of	tuples	in	Section	22.8.1.	Parallel	processing	of	stream	operations	is	discussed	in
Section	22.8.2,	while	fault	tolerance	is	discussed	in	Section	22.8.3.

It	is	also	worth	noting	that	many	applications	that	perform	real-time	analytics	on	streaming	data	also	need
to	store	the	data	and	analyze	it	in	other	ways	subsequently.

Thus,	many	systems	duplicate	incoming	data	streams,	sending	one	copy	to	a	storage	system	for
subsequent	analysis	and	sending	the	other	copy	to	a	streaming	data	system;	such	an	architecture	is	called
the	lambda	architecture:	the	Greek	symbol	λ	is	used	to	pictorially	denote	that	incoming	data	are	forked
into	two	copies,	sent	to	two	different	systems.

While	the	lambda	architecture	allows	streaming	systems	to	be	built	quickly,	it	also	results	in	duplication	of
effort:	programmers	need	to	write	code	to	store	and	query	the	data	in	the	format/language	supported	by	a
database,	as	well	as	to	query	the	data	in	the	language	supported	by	a	streaming	data	system.	More
recently,	there	have	been	efforts	to	perform	stream	processing	as	well	as	query	processing	on	stored	data
within	the	same	system	to	avoid	this	duplication.

22.8.1

Routing	of	Tuples

Since	processing	of	data	typically	involves	multiple	operators,	routing	of	data	to	operators	is	an	important
task.	We	first	consider	the	logical	structure	of	such	routing,	and	address	the	physical	structure,	which
takes	parallel	processing	into	account,	later.

The	logical	routing	of	tuples	is	done	by	creating	a	directed	acyclic	graph	(DAG)	with	operators	as	nodes.
Edges	between	nodes	define	the	flow	of	tuples.	Each	tuple	output	by	an	operator	is	sent	along	all	the	out-
edges	of	the	operator,	to	the	consuming	operators.

Each	operator	receives	tuples	from	all	its	in-edges.	Figure	22.8a	depicts	the	logical	Data

Op

Op

Source

Data

Data

Op

Source

Data

Sink

Data

Sink

Source

Data

Data

Op

Source

Sink

Publish-Subscribe

Data

Data

System

Sink

Data

Source

Data

Op

Op

Source

Sink

Data

Data

Data

Sink

Source

Source

Op

Op

(a)	DAG	representation	of	streaming	data	flow

(b)	Publish-subscribe	representation	of	streaming	data	flow

Figure	22.8	Routing	of	streams	using	DAG	and	publish-subscribe	representations.

1072

Chapter	22

Parallel	and	Distributed	Query	Processing

routing	of	stream	tuples	through	a	DAG	structure.	Operation	nodes	are	denoted	as

“Op”	nodes	in	the	figure.	The	entry	points	to	the	stream	processing	system	are	the	data	source	nodes	of
the	DAG;	these	nodes	consume	tuples	from	the	stream	sources	and	inject	them	into	the	stream	processing
system.	The	exit	points	of	the	stream	processing	system	are	data	sink	nodes;	tuples	exiting	the	system
through	a	data	sink	may	be	stored	in	a	data	store	or	file	system	or	may	be	output	in	some	other	manner.

One	way	of	implementing	a	stream	processing	system	is	by	specifying	the	graph	as	part	of	the	system
configuration,	which	is	read	when	the	system	starts	processing	tuples	and	is	then	used	to	route	tuples.
The	Apache	Storm	stream	processing	system	is	an	example	of	a	system	that	uses	a	configuration	file	to
define	the	graph,	which	is	called	a	topology	in	the	Storm	system.	(Data	source	nodes	are	called	spouts	in
the	Storm	system,	while	operator	nodes	are	called	bolts,	and	edges	connect	these	nodes.)	An	alternative
way	of	creating	such	a	routing	graph	is	by	using	publish-subscribe	systems.	A	publish-subscribe	system
allows	publication	of	documents	or	other	forms	of	data,	with	an	associated	topic.	Subscribers
correspondingly	subscribe	to	specified	topics.	Whenever	a	document	is	published	to	a	particular	topic,	a
copy	of	the	document	is	sent	to	all	subscribers	who	have	subscribed	to	that	topic.	Publish-subscribe
systems	are	also	referred	to	as	pub-sub	systems	for	short.

When	a	publish-subscribe	system	is	used	for	routing	tuples	in	a	stream	processing	system,	tuples	are

considered	documents,	and	each	tuple	is	tagged	with	a	topic.	The	entry	points	to	the	system	conceptually
“publish”	tuples,	each	with	an	associated	topic.

Operators	subscribe	to	one	or	more	topics;	the	system	routes	all	tuples	with	a	specific	topic	to	all
subscribers	of	that	topic.	Operators	can	also	publish	their	outputs	back	to	the	publish-subscribe	system,
with	an	associated	topic.

A	major	benefit	of	the	publish-subscribe	approach	is	that	operators	can	be	added	to	the	system,	or
removed	from	it,	with	relative	ease.	Figure	22.8b	depicts	the	routing	of	tuples	using	a	publish-subscribe
representation.	Each	data	source	is	assigned	a	unique	topic	name;	the	output	of	each	operator	is	also
assigned	a	unique	topic	name.	Each	operator	subscribes	to	the	topics	of	its	inputs	and	publishes	to	the
topics	corresponding	to	its	output.	Data	sources	publish	to	their	associated	topic,	while	data	sinks
subscribe	to	the	topics	of	the	operators	whose	output	goes	to	the	sink.

The	Apache	Kafka	system	uses	the	publish-subscribe	model	to	manage	routing	of	tuples	in	streams.	In	the
Kafka	system,	tuples	published	for	a	topic	are	retained	for	a	specified	period	of	time	(called	the	retention
period),	even	if	there	is	currently	no	subscriber	for	the	topic.	Subscribers	usually	process	tuples	at	the
earliest	possible	time,	but	in	case	processing	is	delayed	or	temporarily	stopped	due	to	failures,	the	tuples
are	still	available	for	processing	until	the	retention	time	expires.

Many	streaming	data	systems,	such	as	Google’s	Millwheel,	and	the	Muppet	stream	processing	system,	use
the	term	stream	in	place	of	the	term	topic.	In	such	systems,	streams	are	assigned	names;	operators	can
publish	tuples	to	a	stream,	or	subscribe	to	a	stream,	based	on	the	name.

We	now	consider	the	physical	routing	of	tuples.	Regardless	of	the	model	used	above,	each	logical	operator
must	have	multiple	physical	instances	running	in	parallel	on	dif-

22.8

Parallel	Processing	of	Streaming	Data

1073

ferent	nodes.	Incoming	tuples	for	a	logical	operator	must	be	routed	to	the	appropriate	physical	instance(s)
of	the	operator.	A	partitioning	function	is	used	to	determine	which	tuple	goes	to	which	instance	of	the
operator.

In	the	context	of	a	publish-subscribe	system,	each	topic	can	be	thought	of	as	a	separate	logical	operator
that	accepts	tuples	and	passes	them	on	to	all	subscribers	of	the	topic.	Since	there	may	be	a	very	large
number	of	tuples	for	a	given	topic,	they	must	be	processed	in	parallel	across	multiple	nodes	in	a	parallel
publish-subscribe	system.

In	the	Kafka	system,	for	example,	a	topic	is	divided	into	multiple	partitions,	called	a	topic-partition;	each
tuple	for	that	topic	is	sent	to	only	one	of	the	topic-partitions.

Kafka	allows	a	partition	key	to	be	attached	to	each	tuple,	and	ensures	that	tuples	with	the	same	key	are
delivered	to	the	same	partition.

To	allow	processing	by	consumers,	Kafka	allows	consumer	operators	register	with	a	specified	“consumer
group.”	The	consumer	group	corresponds	to	a	logical	operator,	while	the	individual	consumers	correspond
to	physical	instances	of	the	logical	operator	that	run	in	parallel.	Each	tuple	of	a	topic	is	sent	to	only	one
consumer	in	the	consumer	group.	More	precisely,	all	tuples	in	a	particular	topic-partition	are	sent	to	a
single	consumer	in	a	consumer	group;	however,	tuples	from	multiple	partitions	may	be	sent	to	the	same
consumer,	leading	to	a	many-to-one	relationship	from	partitions	to	consumers.

Kafka	is	used	in	many	streaming	data	processing	implementations	for	routing	tuples.	Kafka	Streams
provides	a	client	library	supporting	algebraic	operations	on	streams,	which	can	be	used	to	build
streaming	applications	on	top	of	the	Kafka	publish-subscribe	system.

22.8.2

Parallel	Processing	of	Stream	Operations

For	standard	relational	operations,	the	techniques	that	we	have	seen	for	parallel	evaluation	of	the
operations	can	be	used	with	streaming	data.

Some	of	these,	such	as	selection	and	projection	operations,	can	be	done	in	parallel	on	different	tuples.
Others,	such	as	grouping,	have	to	bring	all	tuples	of	a	group	together	to	one	machine.6	When	grouping	is
done	with	aggregation,	optimizations	such	as	pre-aggregation	can	be	used	to	reduce	the	data	transferred,
but	information	about	the	tuples	in	a	group	must	still	be	delivered	to	a	single	machine.

Windowing	is	an	important	operation	in	streaming	data	systems.	Recall	from	Section	10.5.2.1	that
incoming	data	are	divided	into	windows,	typically	based	on	timestamps	(windows	can	also	be	defined
based	on	the	number	of	tuples).	Windowing	is	often	combined	with	grouping/aggregation,	with
aggregates	computed	on	groups	of	tuples	within	a	window.	The	use	of	windows	ensures	that	once	the
system	can	determine	that	new	tuples	will	no	longer	belong	to	a	particular	window,	aggregates	for	that
window	can	be	output.	For	example,	suppose	a	window	is	based	on	time,	say	with	each	5

minutes	defining	a	window;	once	the	system	determines	that	future	tuples	will	have	a	6When	grouping	is
combined	with	windowing	(Section	10.5.2.1),	a	group	contains	all	tuples	in	a	window	that	have	the	same
values	for	their	grouping	attributes.

1074

Chapter	22

Parallel	and	Distributed	Query	Processing

timestamp	larger	than	the	end	of	a	particular	window,	aggregates	on	that	window	can	be	output.	Unlike
grouping,	windows	can	overlap	each	other.

When	windowing	and	grouping	are	used	together	to	compute	aggregates,	if	there	are	overlapping
windows,	it	is	best	to	partition	on	just	the	grouping	attributes.	Otherwise,	tuples	which	belong	to	multiple
windows	would	have	to	be	sent	to	multiple	windows,	an	overhead	that	is	avoided	by	partitioning	on	only
the	grouping	attributes.

Many	streaming	systems	allow	users	to	create	their	own	operators.	It	is	important	to	be	able	to	parallelize
user-defined	operators	by	allowing	multiple	instances	of	the	operator	to	run	concurrently.	Such	systems
typically	require	each	tuple	to	have	an	associated	key,	and	all	tuples	with	a	particular	key	are	sent	to	a
particular	instance	of	the	operator.	Tuples	with	different	keys	can	be	sent	to	different	operator	instances,
allowing	parallel	processing.

Stream	operations	often	need	to	store	state.	For	example,	a	windowing	operator	may	need	to	retain	all
tuples	that	it	has	seen	in	a	particular	window,	as	long	as	the	window	is	active.	Or,	it	may	need	to	store
aggregates	computed	at	some	resolution	(say	per	minute)	to	later	compute	coarser	resolution	aggregates
(say	per	hour).	There	are	many	other	reasons	for	operators	to	store	state.	User-defined	operators	often
define	state	internal	to	the	operator	(local	variables),	which	needs	to	be	stored.

Such	state	may	be	stored	locally,	at	each	node	where	a	copy	of	the	operator	is	executed.	Alternatively,	it
may	be	stored	centrally	in	a	parallel	data-storage	system.	The	store-locally	alternative	has	a	lower	cost
but	a	higher	risk	of	losing	state	information	on	failure,	as	compared	to	storing	state	in	a	parallel	data-
storage	system.	This	aspect	is	discussed	further	in	Section	22.8.3.

22.8.3

Fault	Tolerance	with	Streaming	Data

Fault	tolerance	when	querying	stored	data	can	be	achieved	by	reexecuting	the	query,	or	parts	of	the
query,	as	we	have	seen	in	Section	22.5.4.	However,	such	an	approach	to	fault	tolerance	does	not	work	well
in	a	streaming	setting	for	multiple	reasons.	First,	many	streaming	data	applications	are	latency	sensitive,
and	delays	in	delivering	results	due	to	restarts	are	not	desirable.	Second,	streaming	systems	provide	a
continuous	stream	of	outputs.	In	the	event	of	a	failure,	reexecuting	the	entire	system	or	parts	of	it	could
potentially	lead	to	duplicate	copies	of	output	tuples,	which	is	not	acceptable	for	many	applications.

Thus,	streaming	data	systems	need	to	provide	guarantees	about	delivery	of	output	tuples,	which	can	be
one	of:	at-least	once,	at-most	once,	and	exactly-once.	The	at-least-once	semantics	guarantees	that	each
tuple	is	output	at	least	once,	but	allows	duplicate	delivery	during	recovery	from	failures.	The	at-most-once
semantics	guarantees	that	each	tuple	is	delivered	at	most	once,	without	duplicates,	but	some	tuples	may
be	lost	in	the	event	of	a	failure.	The	exactly-once	semantics	guarantees	that	each	tuple	will	be	delivered
exactly	once,	regardless	of	failures.	This	is	the	model	that	most	applications	require,	although	some
applications	may	not	care	about	duplicates	and	may	accept	at-least-once	semantics.

22.8

Parallel	Processing	of	Streaming	Data

1075

To	ensure	such	semantics,	streaming	systems	must	track	what	tuples	have	been	processed	at	each
operator	and	what	tuples	have	been	output.	Duplicates	can	be	detected	by	comparing	against	tuples
output	earlier	and	removed.	(This	can	be	done	only	if	the	system	guarantees	the	absence	of	duplicates
during	normal	processing,	since	otherwise	the	semantics	of	the	streaming	query	may	be	affected	by

removal	of	genuine	duplicates.)

One	way	to	implement	fault	tolerance	is	to	support	it	in	the	subsystem	that	routes	tuples	between
operators.	For	example,	in	Kafka,	tuples	are	published	to	topics,	and	each	topic-partition	can	be	stored	in
two	or	more	nodes	so	that	even	if	one	of	the	nodes	fails,	the	other	one	is	available.	Further,	the	tuples	are
stored	on	disk	in	each	of	the	nodes	so	that	they	are	not	lost	on	power	failure	or	system	restart.	Thus,	the
streaming	data	system	can	use	this	underlying	fault	tolerance	and	high	availability	mechanism	to
implement	fault-tolerance	and	high	availability	at	a	higher	level	of	the	system.

In	such	a	system,	if	an	operator	was	executing	on	a	failed	node,	it	can	be	restarted	on	another	node.	The
system	must	also	(at	least	periodically)	record	up	to	what	point	each	input	stream	had	been	consumed	by
the	operator.	The	operator	must	be	restarted	and	each	input	stream	replayed	from	a	point	such	that	the
operator	can	correctly	output	all	tuples	that	it	had	not	already	output	before	the	failure.	This	is	relatively
easy	for	operators	without	any	state;	operators	without	any	state	need	to	do	extra	work	to	restore	the
state	that	existed	before	failure.	For	example,	a	window	operator	needs	to	start	from	a	point	in	the	stream
corresponding	to	the	start	of	a	window	and	replay	tuples	from	that	point.

If	the	window	is	very	large,	restarting	from	a	very	old	point	in	the	stream	would	be	very	inefficient.
Instead,	the	operator	may	checkpoint	its	state	periodically,	along	with	points	in	the	input	stream	up	to
which	processing	has	been	done.	In	the	event	of	a	failure,	the	latest	checkpoint	may	be	restored,	and	only
input	stream	tuples	that	were	processed	since	the	last	checkpoint	need	to	be	replayed.

The	same	approach	can	be	for	other	operators	that	have	state	information;	the	state	can	be	checkpointed
periodically,	and	replay	starts	from	the	last	checkpoint.	The	checkpointed	state	may	be	stored	locally;
however,	this	means	that	until	the	node	recovers,	stream	processing	cannot	proceed.	As	an	alternative,
the	state	may	be	stored	in	a	distributed	file	system	or	in	a	parallel	data-storage	system.	Such	systems
replicate	data	to	ensure	high	availability	even	in	the	event	of	failures.	Thus,	if	a	node	has	failed,	its
functions	can	be	restarted	on	a	different	node,	starting	with	the	last	checkpoint,	and	replaying	the	stream
contents.

If	the	underlying	system	does	not	implement	fault	tolerance,	operators	can	implement	their	own	fault-
tolerance	mechanisms	to	avoid	tuple	loss.	For	example,	each	operator	may	store	all	tuples	that	it	has
output;	a	tuple	can	be	discarded	only	after	the	operator	knows	that	no	consumer	will	need	the	tuple,	even
in	the	event	of	a	failure.

Further,	streaming	systems	must	often	guarantee	low	latency,	even	in	the	event	of	failures.	To	do	so,	some
streaming	systems	have	replicas	of	each	operator,	running	concurrently.	If	one	replica	fails,	the	output	can
be	fetched	from	the	other	replica.

The	system	must	make	sure	that	duplicate	tuples	from	the	replicas	are	not	output	to

1076

Chapter	22

Parallel	and	Distributed	Query	Processing

consumers.	In	such	systems,	one	copy	of	an	operator	is	treated	as	a	primary	copy,	and	the	other	copy	as	a
hot-spare	replica	(recall	that	we	discussed	hot-spares	in	Section	19.7).

What	we	have	described	above	is	a	high-level	view	of	how	streaming	data	systems	implement	fault
tolerance.	References	to	more	information	on	how	to	implement	fault	tolerance	in	streaming	systems	may
be	found	in	the	Further	Reading	section	at	the	end	of	the	chapter.

22.9

Distributed	Query	Processing

The	need	for	distributed	query	processing	originally	arose	when	organizations	needed	to	execute	queries
across	multiple	databases	that	were	often	geographically	distributed.

However,	today	the	same	need	arises	because	organizations	have	data	stored	in	multiple	different
databases	and	data	storage	systems,	and	they	need	to	execute	queries	that	access	multiples	of	these
databases	and	data	storage	systems.

22.9.1

Data	Integration	from	Multiple	Data	Sources

Different	parts	of	an	enterprise	may	use	different	databases,	either	because	of	a	legacy	of	how	they	were
automated,	or	because	of	mergers	of	companies.	Migrating	an	entire	organization	to	a	common	system

may	be	an	expensive	and	time-consuming	operation.

An	alternative	is	to	keep	data	in	individual	databases,	but	to	provide	users	with	a	logical	view	of
integrated	data.	The	local	database	systems	may	employ	different	logical	models,	different	data-definition
and	data-manipulation	languages,	and	may	differ	in	their	concurrency-control	and	transaction-
management	mechanisms.	Some	of	the	sources	of	data	may	not	be	full-fledged	database	systems	but	may
instead	be	data	storage	systems,	or	even	just	files	in	a	file	system.	Yet	another	possibility	is	that	the	data
source	may	be	on	the	cloud	and	accessed	as	a	web	service.	Queries	may	need	access	to	data	stored	across
multiple	databases	and	data	sources.

Manipulation	of	information	located	in	multiple	databases	and	other	data	sources	requires	an	additional
software	layer	on	top	of	existing	database	systems.	This	layer	creates	the	illusion	of	logical	database
integration	without	requiring	physical	database	integration	and	is	sometimes	called	a	federated	database
system.

Database	integration	can	be	done	in	several	different	ways:

•	The	federated	database	approach	creates	a	common	schema,	called	a	global	schema,	for	data	from	all
the	databases/data	sources;	each	database	has	its	own	local	schema.	The	task	of	creating	a	unified	global
schema	from	multiple	local	schemas	is	referred	to	as	schema	integration.

Users	can	issue	queries	against	the	global	schema.	A	query	on	a	global	schema	must	be	translated	into
queries	on	the	local	schemas	at	each	of	the	sites	where	the	query	has	to	be	executed.	The	query	results
have	to	be	translated	back	into	the	global	schema	and	combined	to	get	the	final	result.

22.9

Distributed	Query	Processing

1077

In	general,	updates	to	the	common	schema	also	need	to	be	mapped	to	updates	to	the	individual
databases;	systems	that	support	a	common	schema	and	queries,	but	not	updates,	against	the	schema	are
sometimes	referred	to	as	mediator	systems.

•	The	data	virtualization	approach	allows	applications	to	access	data	from	multiple	databases/data
sources,	but	it	does	not	try	to	enforce	a	common	schema.	Users	have	to	be	aware	of	the	different	schemas
used	in	different	databases,	but	they	do	not	need	to	worry	about	which	data	are	stored	on	which	database
system,	or	about	how	to	combine	information	from	multiple	databases.

•	The	external	data	approach	allows	database	administrators	to	provide	schema	information	about	data
that	are	stored	in	other	databases,	along	with	other	information,	such	as	connection	and	authorization
information	needed	to	access	the	data.

Data	stored	in	external	sources	that	can	be	accessed	from	a	database	are	referred	to	as	external	data.
Foreign	tables	are	views	defined	in	a	database	whose	actual	data	are	stored	in	an	external	data	source.
Such	tables	can	be	read	as	well	as	updated,	depending	on	what	operations	the	external	data	source
supports.	Updates	on	foreign	tables,	if	supported,	must	be	translated	into	updates	on	the	external	data
source.

Unlike	the	earlier-mentioned	approaches,	the	goal	here	is	not	to	create	a	full-fledged	distributed
database,	but	merely	to	facilitate	access	to	data	from	other	data	sources.	The	SQL	Management	of
External	Data	(SQL	MED)	component

of	the	SQL	standard	defines	standards	for	accessing	external	data	sources	from	a	database.

If	a	data	source	is	a	database	that	supports	SQL,	its	data	can	be	easily	accessed	using	ODBC	or	JDBC
connections.	Data	in	parallel	data	storage	systems	that	do	not	support	SQL,	such	as	HBase,	can	be
accessed	using	the	API	methods	that	they	provide.

A	wrapper	provides	a	view	of	data	stored	at	a	data	source,	in	a	desired	schema.	For	example,	if	the	system
has	a	global	schema,	and	the	local	database	schema	is	different	from	the	global	schema,	a	wrapper	can
provide	a	view	of	the	data	in	the	global	schema.

Wrappers	can	even	be	used	to	provide	a	relational	view	of	nonrelational	data	sources,	such	as	web
services,	flat	files	(e.g.,	web	logs),	and	directory	systems.

Wrappers	can	also	translate	queries	on	the	global	schema	into	queries	on	the	local	schema,	and	translate
results	back	into	the	global	schema.	Wrappers	may	be	provided	by	individual	sites,	they	may	be	written	as
part	of	the	federated	database	system.

Many	relational	databases	today	support	wrappers	that	provide	a	relational	view	of	data	stored	in	file
systems;	such	wrappers	are	specific	to	the	type	of	data	stored	in	the	files.

If	the	goal	of	data	integration	is	solely	to	run	decision	support	queries,	data	warehouses,	which	we	saw	in
Section	11.2,	are	a	widely	used	alternative	to	database	integration.	Data	warehouses	import	data	from
multiple	sources	into	a	single	(possibly	parallel)	system,	with	a	centralized	schema.	Data	are	typically
imported	periodically,

1078

Chapter	22

Parallel	and	Distributed	Query	Processing

for	example,	once	in	a	day	or	once	in	a	few	hours,	although	continuous	import	is	also	increasingly	used.
Raw	data	imported	from	the	data	sources	are	typically	processed	and	cleaned	before	being	stored	in	the
data	warehouse.

However,	with	the	scale	at	which	data	are	generated	by	some	applications,	creating	and	maintaining	such
a	warehouse	can	be	expensive.	Furthermore,	queries	cannot	access	the	most	recent	data,	since	there	is	a
delay	between	updates	on	the	source	database	and	import	of	the	updates	to	the	data	warehouse.	On	the
other	hand,	query	processing	can	be	done	more	efficiently	in	a	data	warehouse;	further,	queries	at	a	data
warehouse	do	not	affect	the	performance	of	other	queries	and	transactions	at	the	data	source.

Whether	to	use	a	data	warehouse	architecture,	or	to	directly	access	data	from	the	data	sources	in
response	to	individual	queries,	is	a	decision	that	each	enterprise	has	to	make	based	on	its	needs.

The	term	data	lake	is	used	to	refer	to	an	architecture	where	data	are	stored	in	multiple	data	storage
systems	and	in	different	formats,	including	in	file	systems,	but	can	be	queried	from	a	single	system.	Data
lakes	are	viewed	as	an	alternative	to	data	warehouses,	since	they	do	not	require	up-front	effort	to
preprocess	data,	although	they	do	require	more	effort	when	creating	queries.

22.9.2

Schema	and	Data	Integration

The	first	task	in	providing	a	unified	view	of	data	lies	in	creating	a	unified	conceptual	schema,	a	task	that	is
referred	to	as	schema	integration.	Each	local	system	provides	its	own	conceptual	schema.	The	database
system	must	integrate	these	separate	schemas	into	one	common	schema.	Schema	integration	is	a
complicated	task,	mainly	because	of	the	semantic	heterogeneity.	The	same	attribute	names	may	appear	in
different	local	databases	but	with	different	meanings.

Schema	integration	requires	the	creation	of	a	global	schema,	which	provides	a	unified	view	of	data	in
different	databases.	Schema	integration	also	requires	a	way	to	define	how	data	are	mapped	from	the	local
schema	representation	at	each	database,	to	the	global	schema.	This	step	can	be	done	by	defining	views	at
each	site	which,	transform	data	from	the	local	schema	to	the	global	schema.	Data	in	the	global	schema	is
then	treated	as	the	union	of	the	global	views	at	the	individual	site.	This	approach	is	called	the	global-as-
view	(GAV)	approach.

Consider	an	example	with	two	sites	which	store	student	information	in	two	different	ways:

•	Site	s1	which	uses	the	relation	student1(ID,	name,	dept	name),	and	the	relation	studentCreds(ID,	tot
cred).

•	Site	s2	which	uses	the	relation	student2(ID,	name,	tot	cred),	and	the	relation	studentDept(ID,	dept
name).

Let	the	global	schema	chosen	be	student(ID,	name,	dept	name,	tot	cred).

22.9

Distributed	Query	Processing

1079

Then,	the	global	schema	view	at	site	s1	would	be	defined	as	the	view:	create	view	student	s1(ID,	name,
dept	name,	tot	cred)	as	select	ID,	name,	dept	name,	tot	cred

from	student1,	studentCreds

where	student1.	ID=	studentCreds.	ID;

While	the	global	schema	view	at	site	s2	would	be	defined	as	the	view:	create	view	student	s2(ID,	name,
dept	name,	tot	cred)	as	select	ID,	name,	dept	name,	tot	cred

from	student2,	studentDept

where	student2.	ID=	studentDept.	ID;

Finally,	the	global	schema	student	would	be	defined	as	the	union	of	student	s1	and	student	s2.

Note	that	with	the	above	view	definition,	a	query	on	the	global	schema	relation	student	can	be	easily
translated	into	queries	on	the	local	schema	relations	at	the	sites	s1	and	s2.	It	is	harder	to	translate
updates	on	the	global	schema	into	updates	on	the	local	schema,	since	there	may	not	be	a	unique	way	to
do	so	as	discussed	in	Section	4.2.

There	are	more	complex	mapping	schemes	that	are	designed	to	deal	with	duplication	of	information
across	sites	and	to	allow	translation	of	updates	on	the	global	schema	into	updates	on	the	local	schema.
The	local-as-view	(LAV)	approach,	which	defines	local	data	in	each	site	as	a	view	on	a	conceptual	unified
global	relation,	is	one	such	approach.

Consider	for	example	a	situation	where	the	student	relation	is	partitioned	between	two	sites	based	on	the
dept	name	attribute,	with	all	students	in	the	“Comp.	Sci.”	department	at	site	s	3	and	all	students	in	other
departments	in	site	s	4.	This	can	be	specified	using	the	local-as-view	approach	by	defining	the	relations
student	s3	and	student	s4,	which	are	actually	stored	at	the	sites	s3	and	s4,	as	equivalent	to	views	defined
on	the	global	relation	student.

create	view	student	s3	as

select	∗

from	student

where	student.	dept	name	=	'Comp.	Sci.';

and

create	view	student	s4	as

select	∗

from	student

where	student.	dept	name	!	=	'Comp.	Sci.';

1080

Chapter	22

Parallel	and	Distributed	Query	Processing

With	this	extra	information,	the	query	optimizer	can	figure	out	that	a	query	that	seeks	to	retrieve	students

in	the	Comp.	Sci.	department	need	only	be	executed	at	site	s3	and	need	not	be	executed	at	site	s4.	More
information	on	schema	integration	may	be	found	in	the	bibliographic	notes	for	this	chapter,	available
online.

The	second	task	in	providing	a	unified	view	of	data	from	multiple	sources	lies	in	dealing	with	differences
in	data	types	and	values.	For	example,	the	data	types	used	in	one	system	may	not	be	supported	by	other
systems,	and	translation	between	types	may	not	be	simple.	Even	for	identical	data	types,	problems	may
arise	from	the	physical	representation	of	data:	One	system	may	use	8-bit	ASCII,	while	another	may	use
16-bit	Unicode;	floating-point	representations	may	differ;	integers	may	be	represented	in	big-endian	or
little-endian	form.	At	the	semantic	level,	an	integer	value	for	length	may	be	inches	in	one	system	and
millimeters	in	another;	when	integrating	the	data,	a	single	representation	must	be	used,	and	values
converted	to	the	chosen	representation.

Mapping	between	types	can	be	done	as	part	of	the	view	definitions	that	translate	data	between	the	local
schemas	and	the	global	schema.

A	deeper	problem	is	that	the	same	conceptual	entity	may	have	different	names	in	different	systems.	For
example,	a	system	based	in	the	United	States	may	refer	to	the	city	“Cologne,”	whereas	one	in	Germany
refers	to	it	as	“Köln.”	One	approach	to	deal	with	this	problem	is	to	have	a	globally	unique	naming	system,
and	map	values	to	the	unique	names	as	part	of	the	view	definitions	used	for	schema	mappings.	For
example,	the	International	Standards	Organization	has	a	unique	code	for	country	names,	and	for
states/provinces	within	the	countries.	The	GeoNames	database	(www.geonames.org)	provides	unique
names	for	several	million	locations	such	as	cities,	geographical	features,	roads,	buildings,	and	so	forth.

When	such	standard	naming	systems	are	not	available,	some	systems	allow	the	specification	of	name
equivalences;	for	example,	such	a	system	could	allow	a	user	to	say	that	“Cologne”	is	the	same	as	“Köln”.
This	approach	is	used	in	the	Linked	Data	project,	which	supports	the	integration	of	a	very	large	number	of
databases	that	use	the	RDF	representation	of	data	(the	RDF	representation	is	described	in	Section	8.1.4).

However,	querying	is	more	complicated	in	such	a	scenario.

In	our	description	of	the	view	definitions	above,	we	assumed	that	data	are	stored	in	local	databases,	and
the	view	definitions	are	used	to	provide	a	global	view	of	the	data,	without	actually	materializing	the	data
in	the	global	schema.	However,	such	views	can	also	be	used	to	materialize	the	data	in	the	global	schema,
which	can	then	be	stored	in	a	data	warehouse.	In	the	latter	case,	updates	on	underlying	data	must	be
propagated	to	the	data	warehouse.

22.9.3

Query	Processing	Across	Multiple	Data	Sources

A	naive	way	to	execute	a	query	that	accesses	data	from	multiple	data	sources	is	to	fetch	all	required	data
to	one	database,	which	then	executes	the	query.	But	suppose,	for	example,	that	the	query	has	a	selection
condition	that	is	satisfied	by	only	one	or	a	few	records	out	of	a	large	relation.	If	the	data	source	allows	the
selection	to	be	performed	at

22.9

Distributed	Query	Processing

1081

the	data	source,	it	makes	no	sense	to	retrieve	the	entire	relation;	instead,	the	selection	operation	should
be	performed	at	the	data	source,	while	other	operations,	if	any,	may	be	performed	at	the	database	where
the	query	was	issued.

In	general,	different	data	sources	may	support	different	query	capabilities.	For	example,	if	the	source	is	a
data	storage	system,	it	may	support	selections	on	key	attributes	only.	Web	data	sources	may	restrict	which
fields	selections	are	allowed	on	and	may	additionally	require	that	selections	be	present	on	certain	fields.
On	the	other	hand,	if	the	source	is	a	database	that	supports	SQL,	operations	such	as	join	or	aggregation
could	be	performed	at	the	source	and	only	the	result	brought	over	to	the	database	that	issues	the	query.
In	general,	queries	may	have	to	be	broken	up	and	performed	partly	at	the	data	source	and	partly	at	the
site	issuing	the	query.

The	cost	of	processing	a	query	that	accesses	multiple	data	sources	depends	on	the	local	execution	costs,
as	well	as	on	the	data	transfer	cost.	If	the	network	is	a	low	bandwidth	wide-area	network,	particular
attention	must	be	paid	to	minimizing	data	transfer.

In	this	section,	we	study	issues	in	distributed	query	processing	and	optimization.

22.9.3.1

Join	Locations	and	Join	Ordering

Consider	the	following	relational-algebra	expression:

r	⋈	r	⋈	r

1

2

3

Assume	that	r	is	stored	at	site	S	,	r	at	S	,	and	r	at	S	.	Let	S	denote	the	site	at	which	1

1

2

2

3

3

I

the	query	was	issued.	The	system	needs	to	produce	the	result	at	site	S	.	Among	the	I

possible	strategies	for	processing	this	query	are	these:

•	Ship	copies	of	all	three	relations	to	site	S	.	Using	the	techniques	of	Chapter	16,	I

choose	a	strategy	for	processing	the	entire	query	locally	at	site	S	.

I

•	Ship	a	copy	of	the	r	relation	to	site	S	,	and	compute	temp	=	r	⋈	r	at	S	.	Ship	1

2

1

1

2

2

temp	from	S	to	S	,	and	compute	temp	=	temp	⋈	r	at	S	.	Ship	the	result	temp	1

2

3

2

1

3

3

2

to	S	.

I

•	Devise	strategies	similar	to	the	previous	one,	with	the	roles	of	S	,	S	,	S	exchanged.

1

2

3

There	are	several	other	possible	strategies.

No	one	strategy	is	always	the	best	one.	Among	the	factors	that	must	be	considered	are	the	volume	of	data
being	shipped,	the	cost	of	transmitting	a	block	of	data	between	a	pair	of	sites,	and	the	relative	speed	of
processing	at	each	site.	Consider	the	first	strategy.

Suppose	indices	present	at	S	and	S	are	useful	for	computing	the	join.	If	we	ship	all	2

3

three	relations	to	S	,	we	would	need	to	either	re-create	these	indices	at	S	or	use	a	I

I

different,	possibly	more	expensive,	join	strategy.	Re-creation	of	indices	entails	extra	processing	overhead
and	extra	disk	accesses.	There	are	many	variants	of	the	second	strategy,	which	process	joins	in	different
orders.

1082

Chapter	22

Parallel	and	Distributed	Query	Processing

The	cost	of	each	of	the	strategies	depends	on	the	sizes	of	the	intermediate	results,	the	network
transmission	costs,	and	the	costs	of	processing	at	each	node.	The	query	optimizer	needs	to	choose	the
best	strategy,	based	on	cost	estimates.

22.9.3.2

Semijoin	Strategy

Suppose	that	we	wish	to	evaluate	the	expression	r

⋈	r	,	where	r	and	r	are	stored	at

1

2

1

2

sites	S	and	S	,	respectively.	Let	the	schemas	of	r	and	r	be	R	and	R	.	Suppose	that	1

2

1

2

1

2

we	wish	to	obtain	the	result	at	S	.	If	there	are	many	tuples	of	r	that	do	not	join	with	1

2

any	tuple	of	r	,	then	shipping	r	to	S	entails	shipping	tuples	that	fail	to	contribute	to	1

2

1

the	result.	We	want	to	remove	such	tuples	before	shipping	data	to	S	,	particularly	if	1

network	costs	are	high.

A	possible	strategy	to	accomplish	all	this	is:

1.	Compute	temp	←	Π

(r)	at	S	.

1

R	∩	R

1

1

1

2

2.	Ship	temp	from	S	to	S	.

1

1

2

3.	Compute	temp	←	r	⋈	temp	at	S	.

2

2

1

2

4.	Ship	temp	from	S	to	S	.

2

2

1

5.	Compute	r

⋈	temp	at	S	.	The	resulting	relation	is	the	same	as	r	⋈	r	.

1

2

1

1

2

Before	considering	the	efficiency	of	this	strategy,	let	us	verify	that	the	strategy	computes	the	correct
answer.	In	step	3,	temp	has	the	result	of	r

⋈	Π

(r).	In	step	5,	we

2

2

R	∩	R

1

1

2

compute:

r

⋈	r	⋈	Π

(r)

1

2

R	∩	R

1

1

2

Since	join	is	associative	and	commutative,	we	can	rewrite	this	expression	as:	(r

⋈	Π

(r))	⋈	r

1

R	∩	R

1

2

1

2

Since	r

⋈	Π

(r)	=	r	,	the	expression	is,	indeed,	equal	to	r

⋈	r	,	the

1

(R	∩	R)

1

1

1

2

1

2

expression	we	are	trying	to	evaluate.

This	strategy	is	called	a	semijoin	strategy,	after	the	semijoin	operator	of	the	relational	algebra,	denoted	⋉,
which	we	saw	in	Section	16.4.4.	The	natural	semijoin	of	r	1

with	r	,	denoted	r	⋉	r	,	is	defined	as:

2

1

2

r	⋉	r	≝	Π	(r	⋈	r)

1

2

R

1

2

1

Thus,	r	⋉	r	selects	those	tuples	of	relation	r	that	contributed	to	r	⋈	r	.	In	step	1

2

1

1

2

3,	temp	=	r	⋉	r	.	The	semijoin	operation	is	easily	extended	to	theta-joins.	The	theta	2

2

1

semijoin	of	r	with	r	,	denoted	r	⋉

,	is	defined	as:

1

2

1

θ	r	2

r	⋉

≝	Π	(r	⋈

)

1

θ	r	2

R

1

θ	r	2

1

22.9

Distributed	Query	Processing

1083

For	joins	of	several	relations,	the	semijoin	strategy	can	be	extended	to	a	series	of	semijoin	steps.	It	is	the
job	of	the	query	optimizer	to	choose	the	best	strategy	based	on	cost	estimates.

This	strategy	is	particularly	advantageous	when	relatively	few	tuples	of	r	contribute	2

to	the	join.	This	situation	is	likely	to	occur	if	r	is	the	result	of	a	relational-algebra	ex-1

pression	involving	selection.	In	such	a	case,	temp	,	that	is,	r	⋉	r	,	may	have	significantly	2

2

1

fewer	tuples	than	r	.	The	cost	savings	of	the	strategy	result	from	having	to	ship	only	2

r	⋉	r	,	rather	than	all	of	r	,	to	S	.

2

1

2

1

Some	additional	cost	is	incurred	in	shipping	temp	,	that	is	Π

(r)	to	S	.	If	a

1

R	∩	R

1

2

1

2

sufficiently	small	fraction	of	tuples	in	r	contribute	to	the	join,	the	overhead	of	shipping	2

temp	will	be	dominated	by	the	savings	of	shipping	only	a	fraction	of	the	tuples	in	r	.

1

2

The	overhead	of	sending	temp	tuples	from	s	to	s	can	be	reduced	as	follows.	For	the	1

1

2

purpose	of	optimization	of	join	processing,	the	semijoin	operation	can	be	implemented	in	a	manner	that
overapproximates	the	true	semijoin	result.	That	is,	the	result	should	contain	all	the	tuples	in	the	actual
semijoin	result,	but	it	may	contain	a	few	extra	tuples.

The	extra	tuples	will	get	eliminated	later	by	the	join	operation.

An	efficient	overapproximation	of	the	semijoin	result	can	be	computed	by	using	a	probabilistic	data
structure	called	a	Bloom	filter,	which	uses	bitmaps.	Bloom	filters	are	described	in	more	detail	in	Section
24.1.	To	implement	r	⋉	r	,	a	Bloom	filter	with	a	2

1

bitmap	b	of	size	m,	initialized	with	all	bits	set	to	0	is	used.	The	join	attributes	of	each	tuple	of	r	are	hashed
to	a	value	in	the	range	0	…	(m	−	1),	and	the	corresponding	bit	1

of	b	is	set	to	1.	The	bitmap	b,	which	is	much	smaller	than	the	relation	r	,	can	now	be	1

sent	to	the	site	containing	r	.	There,	the	same	hash	function	is	computed	on	the	join	2

attributes	of	each	tuple	of	r	.	If	the	corresponding	bit	is	set	to	1	in	b,	that	r	tuple	is	2

2

accepted	(added	to	the	result	relation),	and	otherwise	it	is	rejected.

Note	that	it	is	possible	for	different	join	attribute	values,	say	v	and	v	to	have	the	1

2

same	hash	value;	even	if	r	has	a	tuple	with	value	v	,	but	does	not	have	any	tuple	with	1

1

value	v	,	the	result	of	the	above	procedure	may	include	r	tuples	whose	join	attribute	2

2

value	is	v	.	Such	a	situation	is	referred	to	as	a	false	positive.	However,	if	v	is	present	in	2

1

r	,	the	technique	will	never	reject	a	tuple	in	r	that	has	join	attribute	value	v	,	which	is	1

2

1

important	for	correctness.

The	result	relation	computed	above,	which	is	a	superset	of	or	equal	to	r	⋉	r	,	is	2

1

sent	to	site	s	.	The	join	r	⋈	result	is	then	computed	at	site	s	to	get	the	required	join	1

1

1

result.	False	positives	may	result	in	extra	tuples	in	result	that	are	not	present	in	r	⋉	r	,	2

1

but	such	tuples	would	be	eliminated	by	the	join.

To	keep	the	probability	of	false	positives	low,	the	number	of	bits	in	the	Bloom	filter	is	usually	set	to	a	few
times	the	estimated	number	of	distinct	join	attribute	values.

Further,	it	is	possible	to	use	k	independent	hash	functions,	for	some	k	>	1,	to	identify	k	bit	positions	for	a
given	value,	and	set	all	of	them	to	1	when	creating	the	bitmap.

When	querying	it	with	a	given	value,	the	same	k	hash	functions	are	used	to	identify	k	bit	locations,	and
the	value	is	determined	to	be	absent	if	even	one	of	the	k	bits	has	a	0

value.	For	example,	if	the	bitmap	has	10	n	bits,	where	n	is	the	number	of	distinct	join

1084

Chapter	22

Parallel	and	Distributed	Query	Processing

attribute	values,	and	k	=	7	hash	functions	are	used,	the	false	positive	rate	would	be	about	1%.

22.9.3.3

Distributed	Query	Optimization

Several	extensions	need	to	be	made	to	existing	query	optimization	techniques	in	order	to	optimize
distributed	query	plans.

The	first	extension	is	to	record	the	location	of	data	as	a	physical	property	of	the	data;	recall	that
optimizers	already	deal	with	other	physical	properties	such	as	the	sort	order	of	results.	Just	as	the	sort
operation	is	used	to	create	different	sort	orders,	an	exchange	operation	is	used	to	transfer	data	between
different	sites.

The	second	extension	is	to	track	where	an	operator	is	executed;	optimizers	already	consider	different
algorithms,	such	as	hash	join	or	merge	join,	for	a	given	logical	operator,	in	this	case,	the	join	operator.	The
optimizer	is	extended	to	additionally	consider	alternative	sites	for	execution	of	each	algorithm.	Note	that
to	execute	an	operator	at	a	given	site,	its	inputs	must	satisfy	the	physical	property	of	being	located	at	that

site.

The	third	extension	is	to	consider	semijoin	operations	to	reduce	data	transfer	costs.

Semijoin	operations	can	be	introduced	as	logical	transformation	rules;	however,	if	done	naively,	the	search
space	increases	greatly,	making	this	approach	infeasible.	Optimization	cost	can	be	reduced	by	restricting,
as	a	heuristic,	semijoins	to	be	applied	only	on	database	tables,	and	never	on	intermediate	join	results.

A	fourth	extension	is	to	use	schema	information	to	restrict	the	set	of	nodes	at	which	a	query	needs	to	be
executed.	Recall	from	Section	22.9.2	that	the	local-as-view	approach	can	be	used	to	specify	that	a	relation
is	partitioned	in	a	particular	way.	In	the	example	we	saw	there,	site	s3	contains	all	student	tuples	with
dept	name	being	Comp.

Sci.,	while	s4	contains	all	the	other	student	tuples.	Suppose	a	query	has	a	selection

“dept	name='Comp.	Sci.'”	on	student;	then,	the	optimizer	should	recognize	that	there	is	no	need	to
involve	site	s4	when	executing	this	query.

As	another	example,	if	the	student	data	at	site	s5	is	a	replica	of	the	data	at	site	s3,	then	the	optimizer	can
choose	to	execute	the	query	at	either	of	the	sites,	depending	on	which	is	cheaper;	there	is	no	need	to
execute	the	query	at	both	sites.

22.9.4

Distributed	Directory	Systems

A	directory	is	a	listing	of	information	about	some	class	of	objects	such	as	persons.

Directories	can	be	used	to	find	information	about	a	specific	object,	or	in	the	reverse	direction	to	find
objects	that	meet	a	certain	requirement.	Several	directory	access	protocols	have	been	developed	to
provide	a	standardized	way	of	accessing	data	in	a	directory.

A	very	widely	used	distributed	directory	system	is	the	internet	Domain	Name	Service	(DNS)	system,
which	provides	a	standardized	way	to	map	domain	names	(such	as	db-book.com	or	www.cs.yale.edu,	to
the	IP	addresses	of	the	machines.	(Although	users	see	only	the	domain	names,	the	underlying	network
routes	messages	based	on	IP	addresses,	and	hence	a	way	to	convert	domain	names	to	IP	addresses	is
critical	for

22.9

Distributed	Query	Processing

1085

the	functioning	of	the	internet.)	The	Lightweight	Directory	Access	Protocol	(LDAP)	is	another	very	widely
used	protocol	designed	for	storing	organizational	data.

Data	stored	in	directories	can	be	represented	in	the	relational	model,	stored	in	a	relational	database,	and
accessed	through	standard	protocols	such	as	JDBC	or	ODBC.

The	question	then	is,	why	come	up	with	a	specialized	protocol	for	accessing	directory	information?	There
are	several	reasons.

•	First,	directory	access	protocols	are	simplified	protocols	that	cater	to	a	limited	type	of	access	to	data.
They	evolved	in	parallel	with	the	database	access	protocol	standards.

•	Second,	directory	systems	were	designed	to	support	a	hierarchical	naming	system	for	objects,	similar	to
file	system	directory	names.	Such	a	naming	system	is	important	in	many	applications.	For	example,	all
computers	whose	names	end	in	yale.edu	belong	to	Yale,	while	those	whose	names	end	in	iitb.ac.in	belong
to	IIT

Bombay.	Within	the	yale.edu	domain,	there	are	subdomains	such	as	cs.yale.edu,	which	corresponds	to	the
CS	department	in	Yale,	and	math.yale.edu	which	corresponds	to	the	Math	department	at	Yale.

•	Third,	and	most	important	from	a	distributed	systems	perspective,	the	data	in	a	distributed	directory
system	are	stored	and	controlled	in	a	distributed,	hierarchical,	manner.

For	example,	a	DNS	server	at	Yale	would	store	information	about	names	of	computers	at	Yale,	along	with
associated	information	such	as	their	IP	addresses.

Similarly,	DNS	servers	at	Lehigh	and	IIT	Bombay	would	store	information	about	computers	in	their
respective	domains.	The	DNS	servers	store	information	in	a	hierarchical	fashion;	for	example,	the

information	provided	by	the	Yale	DNS	server	may	be	stored	in	a	distributed	fashion	across	subdomains	at
Yale,	such	as	the	CS

and	Math	DNS	servers.

Distributed	directory	systems	automatically	forward	queries	submitted	at	a	site	to	the	site	where	the
required	information	is	actually	stored,	to	give	a	unified	view	of	data	to	users	and	applications.

Further,	distributed	directory	implementations	typically	support	replication	to	ensure	the	availability	of
data	even	if	some	nodes	have	failed.

Another	example	of	usage	of	directory	systems	is	for	organization	data.	Such	systems	store	information
about	employees,	such	as	the	employee	identifier,	name,	email,	organization	unit	(such	as	department),
room	number,	phone	number,	and	(encrypted)	password	of	each	employee.	The	schema	of	such
organizational	data	are	standardized	as	part	of	the	Lightweight	Directory	Access	Protocol	(LDAP).
Directory	systems	based	on	the	LDAP	protocol	are	widely	used	to	authenticate	users,	using	the	encrypted
passwords	stored	for	each	user.	(More	information	about	the	LDAP	data	representation	may	be	found	in
Section	25.5.)

1086

Chapter	22

Parallel	and	Distributed	Query	Processing

Although	distributed	data	storage	across	organizational	units	was	important	at	one	time,	such	directory
systems	are	often	centralized	these	days.	In	fact,	several	directory	implementations	use	relational
databases	to	store	data,	instead	of	creating	special-purpose	storage	systems.	However,	the	fact	that	the
data	representation	and	protocol	to	access	the	data	are	standardized	has	meant	that	these	protocols
continue	to	be	widely	used.

22.10

Summary

•	Current	generation	parallel	systems	are	typically	based	on	a	hybrid	architecture,	where	each	computer
has	multiple	cores	with	a	shared	memory,	and	there	are	multiple	computers	organized	in	a	shared-nothing
fashion.

•	Parallel	processing	in	a	database	system	can	be	exploited	in	two	distinct	ways.

°	Interquery	parallelism—the	execution	of	multiple	queries	in	parallel	with	each	other,	across	multiple
nodes.

°	Intraquery	parallelism—the	processing	of	different	parts	of	the	execution	of	a	single	query,	in	parallel
across	multiple	nodes.

•	Interquery	parallelism	is	essential	for	transaction-processing	systems,	while	intraquery	parallelism	is
essential	for	speeding	up	long-running	queries.

•	Execution	of	a	single	query	involves	execution	of	multiple	relational	operations.

The	key	to	exploiting	large-scale	parallelism	is	to	process	each	operation	in	parallel,	across	multiple	nodes
(referred	to	as	intraoperation	parallelism).

•	The	operations	that	are	the	most	amenable	to	parallelism	are:	sort,	selection,	duplicate	elimination,
projection,	and	aggregation.

•	Range-partitioning	sort	works	in	two	steps:	first	range-partitioning	the	relation,	then	sorting	each
partition	separately.

•	Parallel	external	sort-merge	works	in	two	steps:	first,	each	node	N	sorts	the	data	i

available	at	node	N	,	then	the	system	merges	the	sorted	runs	on	each	node	to	get	i

the	final	sorted	output.

•	Parallel	join	algorithms	divide	the	tuples	of	the	input	relations	over	several	nodes.

Each	node	then	computes	part	of	the	join	locally.	Then	the	system	collects	the	results	from	each	node	to
produce	the	final	result.

•	Skew	is	a	major	problem,	especially	with	increasing	degrees	of	parallelism.	Balanced	partitioning
vectors,	using	histograms,	and	virtual	node	partitioning	are	among	the	techniques	used	to	reduce	skew.

22.10

Summary

1087

•	The	MapReduce	paradigm	is	designed	to	ease	the	writing	of	parallel	data	processing	programs	using
imperative	programming	languages	that	may	not	be	expressible	using	SQL.	Fault-tolerant
implementations	of	the	MapReduce	paradigm	are	important	for	a	variety	of	very	large	scale	data
processing	tasks.	Extensions	of	the	MapReduce	model	based	on	algebraic	operations	is	increasingly
important.	The	Hive	SQL	system	uses	a	MapReduce	system	as	its	underlying	execution	engine,	compiling
SQL	queries	to	MapReduce	code.

•	There	are	two	forms	of	interoperation	parallelism:	pipelined	parallelism	and	independent	parallelism.
Pipelined	parallelism	is	usually	implemented	using	a	push	model,	with	buffers	between	operations.

•	The	exchange	operation	repartitions	data	in	a	specified	way.	Parallel	query	plans	can	be	created	in	such
a	way	that	data	interchange	between	nodes	is	done	only	by	the	exchange	operator,	while	all	other
operations	work	on	local	data,	just	as	they	would	in	a	centralized	database	system.

•	In	the	event	of	failure,	parallel	query	execution	plans	could	be	restarted.	However,	in	very	large	systems
where	there	is	a	significant	chance	of	failure	during	the	execution	of	a	query,	fault	tolerance	techniques
are	important	to	ensure	that	queries	complete	execution	without	restarting,	despite	failures.

•	Parallel	algorithms	designed	for	shared-nothing	architectures	can	be	used	in	shared-memory
architectures.	Each	processor	can	be	treated	as	having	its	own	partition	of	memory,	and	we	can	ignore	the
fact	that	the	processors	have	a	common	shared	memory.	However,	execution	can	be	optimized
significantly	by	exploiting	the	fast	access	to	shared	memory	from	any	of	the	processors.

•	Query	optimization	for	parallel	execution	can	be	done	using	the	traditional	resource	consumption	cost
model,	or	using	the	response	time	cost	model.	Partitioning	of	tables	must	be	taken	into	account	when
choosing	a	plan,	to	minimize	data	exchange	which	is	often	a	significant	factor	in	query	execution	cost.
Materialized	views	can	be	important	in	parallel	environments	since	they	can	significantly	reduce	query
execution	cost.

•	There	are	many	streaming	data	applications	today	that	require	high	performance	processing,	which	can
only	be	achieved	by	parallel	processing	of	streaming	data.

Incoming	tuples	and	results	of	operations	need	to	be	routed	to	other	operations.

The	publish-subscribe	model,	implemented	for	example	in	Apache	Kafka,	has	proven	quite	useful	for	such
routing.	Fault-tolerant	processing	of	streaming	data	with	exactly-once	semantics	for	processing	tuples	is
important	in	many	applications.	Persistence	provided	by	publish-subscribe	systems	helps	in	this	regard.

•	Integration	of	schema	and	data	from	multiple	databases	is	needed	for	many	data	processing	tasks.	The
external	data	approach	allows	external	data	to	be	queries	in	a	database	as	if	it	is	locally	resident.	The
global-as-view	and	local-as-view	architec-

1088

Chapter	22

Parallel	and	Distributed	Query	Processing

tures	allows	rewriting	of	queries	from	a	global	schema	to	individual	local	schemas.

The	semijoin	strategy	using	Bloom	filters	can	be	useful	to	reduce	data	movement	for	joins	in	a	distributed
database.	Distributed	directory	systems	are	a	type	of	distributed	database	designed	for	distributed
storage	and	querying	of	directories.

Review	Terms

•	Interquery	parallelism

•	Independent	parallelism

•	Intraquery	parallelism

•	Exchange	operator

°	Intraoperation	parallelism

•	Unpartitioned

°	Interoperation	parallelism

•	Random	merge

•

•

Range-partitioning	sort

Ordered	merge

•

•

Data	parallelism

Parallel	query	execution	plan

•

•

Parallel	external	sort-merge

Query	processing	in	shared	memory

•

•

Partitioned	join

Thread

•

•

Partitioned	parallel	hash	join

Single	Instruction	Multiple	Data

(SIMD)

•	Partitioned	parallel	merge	join

•	Response-time	cost	model

•	Partitioned	parallel	nested-loop	join

•	Parallel	view	maintenance

•	Partitioned	parallel	indexed	nested-

•

loops	join

Streaming	data

•

•

Asymmetric	fragment-and-replicate

Lambda	architecture

join

•	Routing	of	streams

•	Broadcast	join

•	Publish-subscribe

•	Fragment-and-replicate	join

•	Topic-partition

•	Symmetric	fragment-and-replicate

•	At-least-once	semantics

join

•	At-most-once	semantics

•	Join	skew	avoidance

•	Exactly-once	semantics

•	Dynamic	handling	of	join	skew

•	Federated	database	system

•	Work	stealing

•	Global	schema

•	Parallel	selection

•	Local	schema

•	Parallel	duplicate	elimination

•	Schema	integration

•	Parallel	projection

•	Mediator

•	Parallel	aggregation

•	Data	virtualization

•	Partial	aggregation

•	External	data

•	Intermediate	key

•	Foreign	tables

•	Pipelined	parallelism

Practice	Exercises

1089

•	Data	lake

•	Theta	semijoin

•	Global-as-view	(GAV)

•	Bloom	filter

•	Local-as-view	(LAV)

•	False	positive

•	Linked	Data

•	Directory	access	protocols

•	Semijoin	strategy

•	Domain	Name	Service	(DNS)

•	Semijoin

•	Lightweight	Directory	Access	Proto-

col	(LDAP)

Practice	Exercises

22.1

What	form	of	parallelism	(interquery,	interoperation,	or	intraoperation)	is	likely	to	be	the	most	important
for	each	of	the	following	tasks?

a.

Increasing	the	throughput	of	a	system	with	many	small	queries

b.

Increasing	the	throughput	of	a	system	with	a	few	large	queries	when	the	number	of	disks	and	processors
is	large

22.2

Describe	how	partial	aggregation	can	be	implemented	for	the	count	and	avg	aggregate	functions	to
reduce	data	transfer.

22.3

With	pipelined	parallelism,	it	is	often	a	good	idea	to	perform	several	operations	in	a	pipeline	on	a	single
processor,	even	when	many	processors	are	available.

a.

Explain	why.

b.

Would	the	arguments	you	advanced	in	part	a	hold	if	the	machine	has	a	shared-memory	architecture?
Explain	why	or	why	not.

c.

Would	the	arguments	in	part	a	hold	with	independent	parallelism?	(That	is,	are	there	cases	where,	even	if
the	operations	are	not	pipelined	and	there	are	many	processors	available,	it	is	still	a	good	idea	to	perform
several	operations	on	the	same	processor?)

22.4

Consider	join	processing	using	symmetric	fragment	and	replicate	with	range	partitioning.	How	can	you
optimize	the	evaluation	if	the	join	condition	is	of	the	form	∣	r.A	−	s.B	∣	≤	k,	where	k	is	a	small	constant?
Here,	∣	x	∣	denotes	the	absolute	value	of	x.	A	join	with	such	a	join	condition	is	called	a	band	join.

22.5

Suppose	relation	r	is	stored	partitioned	and	indexed	on	A,	and	s	is	stored	partitioned	and	indexed	on	B.
Consider	the	query:

γ

((σ

(r))	⋈

s)

r.C	count(s.D)

A>	5

r.B=	s.B

a.

Give	a	parallel	query	plan	using	the	exchange	operator,	for	computing

the	subtree	of	the	query	involving	only	the	select	and	join	operators.

1090

Chapter	22

Parallel	and	Distributed	Query	Processing

b.

Now	extend	the	above	to	compute	the	aggregate.	Make	sure	to	use	pre-

aggregation	to	minimize	the	data	transfer.

c.

Skew	during	aggregation	is	a	serious	problem.	Explain	how	pre-

aggregation	as	above	can	also	significantly	reduce	the	effect	of	skew	during	aggregation.

22.6

Suppose	relation	r	is	stored	partitioned	and	indexed	on	A,	and	s	is	stored	partitioned	and	indexed	on	B.
Consider	the	join	r	⋈

s.	Suppose	s	is	relatively

r.B=	s.B

small,	but	not	small	enough	to	make	asymmetric	fragment-and-replicate	join	the	best	choice,	and	r	is
large,	with	most	r	tuples	not	matching	any	s	tuple.	A	hash-join	can	be	performed	but	with	a	semijoin	filter
used	to	reduce	the	data	transfer.	Explain	how	semijoin	filtering	using	Bloom	filters	would	work	in	this
parallel	join	setting.

22.7

Suppose	you	want	to	compute	r	⟕
s.

r.A=	s.A

a.

Suppose	s	is	a	small	relation,	while	r	is	stored	partitioned	on	r.B.	Give	an	efficient	parallel	algorithm	for
computing	the	left	outer	join.

b.

Now	suppose	that	r	is	a	small	relation,	and	s	is	a	large	relation,	stored	partitioned	on	attribute	s.B.	Give
an	efficient	parallel	algorithm	for	computing	the	above	left	outer	join.

22.8

Suppose	you	want	to	compute

γ

on	a	relation	s	which	is	stored	par-

A,	B	sum(C)

titioned	on	s.B.	Explain	how	you	would	do	it	efficiently,	minimizing/avoiding	repartitioning,	if	the	number
of	distinct	s.B	values	is	large,	and	the	distribution	of	number	of	tuples	with	each	s.B	value	is	relatively
uniform.

22.9

MapReduce	implementations	provide	fault	tolerance,	where	you	can	reexecute	only	failed	mappers	or
reducers.	By	default,	a	partitioned	parallel	join	execution	would	have	to	be	rerun	completely	in	case	of
even	one	node	failure.	It	is	possible	to	modify	a	parallel	partitioned	join	execution	to	add	fault	tolerance	in
a	manner	similar	to	MapReduce,	so	failure	of	a	node	does	not	require	full	reexecution	of	the	query,	but
only	actions	related	to	that	node.	Explain	what	needs	to	be	done	at	the	time	of	partitioning	at	the	sending
node	and	receiving	node	to	do	this.

22.10

If	a	parallel	data-store	is	used	to	store	two	relations	r	and	s	and	we	need	to	join	r	and	s,	it	may	be	useful
to	maintain	the	join	as	a	materialized	view.	What	are	the	benefits	and	overheads	in	terms	of	overall
throughput,	use	of	space,	and	response	time	to	user	queries?

22.11

Explain	how	each	of	the	following	join	algorithms	can	be	implemented	using	the	MapReduce	framework:

a.

Broadcast	join	(also	known	as	asymmetric	fragment-and-replicate	join).

Practice	Exercises

1091

b.

Indexed	nested	loop	join,	where	the	inner	relation	is	stored	in	a	parallel	data-store.

c.

Partitioned	join.

Exercises

22.12

Can	partitioned	join	be	used	for	r	⋈

s?	Explain	your	answer.

r.A∧	r.B=	s.B

22.13

Describe	a	good	way	to	parallelize	each	of	the	following:

a.

The	difference	operation

b.

Aggregation	by	the	count	operation

c.

Aggregation	by	the	count	distinct	operation

d.

Aggregation	by	the	avg	operation

e.

Left	outer	join,	if	the	join	condition	involves	only	equality

f.

Left	outer	join,	if	the	join	condition	involves	comparisons	other	than	equality

g.

Full	outer	join,	if	the	join	condition	involves	comparisons	other	than	equality

22.14

Suppose	you	wish	to	handle	a	workload	consisting	of	a	large	number	of	small	transactions	by	using
shared-nothing	parallelism.

a.

Is	intraquery	parallelism	required	in	such	a	situation?	If	not,	why,	and	what	form	of	parallelism	is
appropriate?

b.

What	form	of	skew	would	be	of	significance	with	such	a	workload?

c.

Suppose	most	transactions	accessed	one	account	record,	which	includes	an	account	type	attribute,	and	an
associated	account	type	master	record,	which	provides	information	about	the	account	type.	How	would
you	partition	and/or	replicate	data	to	speed	up	transactions?	You	may	assume

that	the	account	type	master	relation	is	rarely	updated.

22.15

What	is	the	motivation	for	work-stealing	with	virtual	nodes	in	a	shared-memory	setting?	Why	might	work-
stealing	not	be	as	efficient	in	a	shared-nothing	setting?

22.16

The	attribute	on	which	a	relation	is	partitioned	can	have	a	significant	impact	on	the	cost	of	a	query.

a.

Given	a	workload	of	SQL	queries	on	a	single	relation,	what	attributes

would	be	candidates	for	partitioning?

1092

Chapter	22

Parallel	and	Distributed	Query	Processing

b.

How	would	you	choose	between	the	alternative	partitioning	techniques,

based	on	the	workload?

c.

Is	it	possible	to	partition	a	relation	on	more	than	one	attribute?	Explain	your	answer.

22.17

Consider	system	that	is	processing	a	stream	of	tuples	for	a	relation	r	with	attributes	(A,	B,	C,	timestamp)

Suppose	the	goal	of	a	parallel	stream	processing	system	is	to	compute	the	number	of	tuples	for	each	A
value	in	each	5	minute	window	(based	on	the	timestamp	of	the	tuple).	What	would	be	the	topic	and	the
topic	partitions?	Explain	why.

Tools

A	wide	variety	of	open-source	tools	are	available,	in	addition	to	some	commercial	tools,	for	parallel	query
processing.	A	number	of	these	tools	are	also	available	on	hosted	cloud	platforms.

Teradata	was	one	of	the	first	commercial	parallel	database	systems,	and	it	continues	to	have	a	large
market	share.	The	Red	Brick	Warehouse	was	another	early	parallel	database	system;	Red	Brick	was
acquired	by	Informix,	which	was	itself	acquired	by	IBM.	Other	commercial	parallel	database	systems
include	Teradata	Aster	Data,	IBM

Netezza,	and	Pivotal	Greenplum.	IBM	Netezza,	Pivotal	Greenplum,	and	Teradata	Aster	Data	all	use
PostgreSQL	as	the	underlying	database,	running	independently	on	each	node;	each	of	these	systems
builds	a	layer	on	top,	to	partition	data,	and	parallelize	query	processing	across	the	nodes.

The	open	source	Hadoop	platform	(hadoop.apache.org)	includes	the	HDFS	distributed	file	system	and	the
Hadoop	MapReduce	platform.	Systems	that	support	SQL

on	a	MapReduce	platform	include	Apache	Hive	(hive.apache.org),	which	originated	at	Facebook,	Apache
Impala	(impala.apache.org),	which	originated	at	Cloudera,	and	Apache	HAWQ	(hawq.apache.org),	which
originated	at	Pivotal.	Apache	Spark	(spark.apache.org),	which	originated	at	the	Univ.	of	California,
Berkeley,	and	Apache	Tez	(tez.apache.org)	are	parallel	execution	frameworks	that	support	a	variety	of
operators	beyond	the	basic	map	and	reduce	operators;	and	Hive	SQL	queries	can	be	executed	on	both
these	platforms.	Other	parallel	execution	frameworks	include	Apache	Pig	(pig.apache.org),	which
originated	at	Yahoo!,	the	Asterix	system	(asterix.ics.uci.edu),	which	originated	at	the	University	of
California,	Irvine,	the	Apache	Flink	system	(flink.apache.org),	which	originated	as	the	Stratosphere
project	at	the	Technical	University,	Berlin,	Humboldt	University	and	the	Hasso-Plattner	Institute).	Apache
Spark	and	Apache	Flink	also	support	libraries	for	parallel	machine	learning.

These	systems	can	access	data	stored	in	multiple	different	data	formats,	such	as	files	in	different	formats
in	HDFS,	or	objects	in	a	storage	system	such	as	HBase.	Hadoop	file	formats	were	initially	textual	files,	but
today	Hadoop	implementations	support	several	optimized	file	formats	such	as	Sequence	files	(which	allow
binary	data),	Avro

Further	Reading

1093

(which	supports	semi-structured	schemas)	and	Parquet	(which	supports	columnar	data	representation).

Apache

Kafka

(kafka.apache.org)

is

widely

used

for

routing

tu-

ples

in

streaming

data

systems.

Systems

designed

for

query

process-

ing

on

streaming

data

include

Apache

Storm

(storm.apache.org),

Kafka

Streams

(kafka.apache.org/documentation/streams/)

and

Heron

(apache.github.io/incubator-heron/),

developed

by

Twitter.

Apache

Flink

(flink.apache.org),	Spark	Streaming	(spark.apache.org/streaming/),	the	streaming	component	of	Apache
Spark,	and	Apache	Apex	(apex.apache.org)	support	analytics	on	streaming	data	along	with	analytics	on
stored	data.

Many	of	the	above	systems	are	also	offered	as	cloud-based	services,	as	part	of	the	cloud	services	offered
by	Amazon	AWS,	Google	Cloud,	Microsoft	Azure,	and	other	similar	platforms.

Further	Reading

Early	work	on	parallel	database	systems	include	GAMMA	([DeWitt	(1990)]),	XPRS

([Stonebraker	et	al.	(1989)])	and	Volcano	([Graefe	(1990)]).	[Graefe	(1993)]	presents	an	excellent	survey
of	query	processing,	including	parallel	processing	of	queries.	The	exchange-operator	model	was
advocated	by	[Graefe	(1990)]	and	[Graefe	and	McKenna	(1993)].	Skew	handling	in	parallel	joins	is
described	by	[DeWitt	et	al.	(1992)].

[Ganguly	et	al.	(1992)]	describe	query-optimization	techniques	based	on	the	response-time	cost	model	for
parallel	query	execution,	while	[Zhou	et	al.	(2010)]	describe	how	to	extend	a	query	optimizer	to	account
for	partitioning	properties	and	parallel	plans.	View	maintenance	in	parallel	data	storage	systems	is
described	by	[Agrawal	et	al.	(2009)].

A	fault-tolerant	implementation	of	the	MapReduce	framework	at	Google,	which	lead	to	the	widespread	use
of	the	MapReduce	paradigm,	is	described	by	[Dean	and	Ghemawat	(2010)].	[Kwon	et	al.	(2013)]	provide
an	overview	of	skew	handling	in	the	Hadoop	MapReduce	framework.	[Herodotou	and	Babu	(2013)]
describe	how	to	optimize	a	number	of	parameters	for	query	execution	in	the	MapReduce	framework.	An
overview	of	the	Apache	Spark	system	is	provided	by	[Zaharia	et	al.	(2016)],	while	[Zaharia	et	al.	(2012)]
describe	Resilient	Distributed	Datasets,	a	fault-tolerant	abstraction	which	formed	a	basis	for	the	Spark

implementation.	Extensions	of	the	exchange	operator	to	support	fault-tolerance,	are	described	by	[Shah	et
al.	(2004)],	with	a	focus	on	fault-tolerant	continuous	queries.	Fault-tolerant	stream	processing	in	the
Google	MillWheel	system	is	described	in	[Akidau	et	al.	(2013)].

The	morsel-driven	approach	to	parallel	query	evaluation	in	shared-memory	systems	with	multi-core
processors	is	described	in	[Leis	et	al.	(2014)].	[Kersten	et	al.

(2018)]	provides	a	comparison	of	vectorwise	query	processing	using	optimizations	such	as	SIMD
instructions,	with	producer-driven	pipelining.

1094

Chapter	22

Parallel	and	Distributed	Query	Processing

[Carbone	et	al.	(2015)]	describe	stream	and	batch	processing	in	Apache	Flink.

[Ozsu	and	Valduriez	(2010)]	provides	textbook	coverage	of	distributed	database	systems.

Bibliography

[Agrawal	et	al.	(2009)]

P.	Agrawal,	A.	Silberstein,	B.	F.	Cooper,	U.	Srivastava,	and	R.	Ra-

makrishnan,	“Asynchronous	view	maintenance	for	VLSD	databases”,	In	Proc.	of	the	ACM

SIGMOD	Conf.	on	Management	of	Data	(2009),	pages	179–192.

[Akidau	et	al.	(2013)]

T.	Akidau,	A.	Balikov,	K.	Bekiro˘

glu,	S.	Chernyak,	J.	Haberman,

R.	Lax,	S.	McVeety,	D.	Mills,	P.	Nordstrom,	and	S.	Whittle,	“MillWheel:	Fault-tolerant	Stream	Processing	at
Internet	Scale”,	Proceedings	of	the	VLDB	Endowment,	Volume	6,	Number	11	(2013),	pages	1033–1044.

[Carbone	et	al.	(2015)]

P.	Carbone,	A.	Katsifodimos,	S.	Ewen,	V.	Markl,	S.	Haridi,	and

K.	Tzoumas,	“Apache	Flink:	Stream	and	Batch	Processing	in	a	Single	Engine”,	IEEE	Data	Eng.	Bull.	,
Volume	38,	Number	4	(2015),	pages	28–38.

[Dean	and	Ghemawat	(2010)]

J.	Dean	and	S.	Ghemawat,	“MapReduce:	a	flexible	data	pro-

cessing	tool”,	Communications	of	the	ACM,	Volume	53,	Number	1	(2010),	pages	72–77.

[DeWitt	(1990)]

D.	DeWitt,	“The	Gamma	Database	Machine	Project”,	IEEE	Transactions	on	Knowledge	and	Data
Engineering,	Volume	2,	Number	1	(1990),	pages	44–62.

[DeWitt	et	al.	(1992)]

D.	DeWitt,	J.	Naughton,	D.	Schneider,	and	S.	Seshadri,	“Practical

Skew	Handling	in	Parallel	Joins”,	In	Proc.	of	the	International	Conf.	on	Very	Large	Databases	(1992),
pages	27–40.

[Ganguly	et	al.	(1992)]

S.	Ganguly,	W.	Hasan,	and	R.	Krishnamurthy,	“Query	Optimization

for	Parallel	Execution”,	In	Proc.	of	the	ACM	SIGMOD	Conf.	on	Management	of	Data	(1992),	pages	9–18.

[Graefe	(1990)]

G.	Graefe,	“Encapsulation	of	Parallelism	in	the	Volcano	Query	Processing	System”,	In	Proc.	of	the	ACM
SIGMOD	Conf.	on	Management	of	Data	(1990),	pages	102–111.

[Graefe	(1993)]

G.	Graefe,	“Query	Evaluation	Techniques	for	Large	Databases”,	ACM	Computing	Surveys,	Volume	25,
Number	2	(1993).

[Graefe	and	McKenna	(1993)]

G.	Graefe	and	W.	McKenna,	“The	Volcano	Optimizer	Gen-

erator”,	In	Proc.	of	the	International	Conf.	on	Data	Engineering	(1993),	pages	209–218.

[Herodotou	and	Babu	(2013)]

H.	Herodotou	and	S.	Babu,	“A	What-if	Engine	for	Cost-based

MapReduce	Optimization”,	IEEE	Data	Eng.	Bull.	,	Volume	36,	Number	1	(2013),	pages	5–14.

[Kersten	et	al.	(2018)]

T.	Kersten,	V.	Leis,	A.	Kemper,	T.	Neumann,	A.	Pavlo,	and	P.	A.

Boncz,	“Everything	You	Always	Wanted	to	Know	About	Compiled	and	Vectorized	Queries	But	Were	Afraid
to	Ask”,	Proceedings	of	the	VLDB	Endowment,	Volume	11,	Number	13	(2018),	pages	2209–2222.

Further	Reading

1095

[Kwon	et	al.	(2013)]

Y.	Kwon,	K.	Ren,	M.	Balazinska,	and	B.	Howe,	“Managing	Skew	in

Hadoop”,	IEEE	Data	Eng.	Bull.	,	Volume	36,	Number	1	(2013),	pages	24–33.

[Leis	et	al.	(2014)]

V.	Leis,	P.	A.	Boncz,	A.	Kemper,	and	T.	Neumann,	“Morsel-driven	par-

allelism:	a	NUMA-aware	query	evaluation	framework	for	the	many-core	age”,	In	Proc.	of	the	ACM
SIGMOD	Conf.	on	Management	of	Data	(2014),	pages	743–754.

[Ozsu	and	Valduriez	(2010)]

T.	Ozsu	and	P.	Valduriez,	Principles	of	Distributed	Database	Sys-

tems,	3rd	edition,	Prentice	Hall	(2010).

[Shah	et	al.	(2004)]

M.	A.	Shah,	J.	M.	Hellerstein,	and	E.	A.	Brewer,	“Highly-Available,

Fault-Tolerant,	Parallel	Dataflows”,	In	Proc.	of	the	ACM	SIGMOD	Conf.	on	Management	of	Data	(2004),
pages	827–838.

[Stonebraker	et	al.	(1989)]

M.	Stonebraker,	P.	Aoki,	and	M.	Seltzer,	“Parallelism	in	XPRS”,

In	Proc.	of	the	ACM	SIGMOD	Conf.	on	Management	of	Data	(1989).

[Zaharia	et	al.	(2012)]

M.	Zaharia,	M.	Chowdhury,	T.	Das,	A.	Dave,	J.	Ma,	M.	McCauly,

M.	J.	Franklin,	S.	Shenker,	and	I.	Stoica,	“Resilient	Distributed	Datasets:	A	Fault-Tolerant	Abstraction	for
In-Memory	Cluster	Computing”,	In	Procs.	USENIX	Symposium	on	Networked	Systems	Design	and
Implementation,	NSDI	(2012),	pages	15–28.

[Zaharia	et	al.	(2016)]

M.	Zaharia,	R.	S.	Xin,	P.	Wendell,	T.	Das,	M.	Armbrust,	A.	Dave,

X.	Meng,	J.	Rosen,	S.	Venkataraman,	M.	J.	Franklin,	A.	Ghodsi,	J.	Gonzalez,	S.	Shenker,	and	I.	Stoica,

“Apache	Spark:	a	unified	engine	for	big	data	processing”,	Communications	of	the	ACM,	Volume	59,
Number	11	(2016),	pages	56–65.

[Zhou	et	al.	(2010)]

J.	Zhou,	P.	Larson,	and	R.	Chaiken,	“Incorporating	partitioning	and	parallel	plans	into	the	SCOPE
optimizer”,	In	Proc.	of	the	International	Conf.	on	Data	Engineering	(2010),	pages	1060–1071.

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

C	H	A	P	T	E	R	23

Parallel	and	Distributed

Transaction	Processing

We	studied	transaction	processing	in	centralized	databases	earlier,	covering	concurrency	control	in
Chapter	18	and	recovery	in	Chapter	19.	In	this	chapter,	we	study	how	to	carry	out	transaction	processing
in	parallel	and	distributed	databases.	In	addition	to	supporting	concurrency	control	and	recovery,
transaction	processing	in	parallel	and	distributed	databases	must	also	deal	with	issues	due	to	replication
of	data,	and	of	failures	of	some	nodes.

Both	parallel	and	distributed	databases	have	multiple	nodes,	which	can	fail	independently.	The	main
difference	between	parallel	and	distributed	databases	from	the	view	point	of	transaction	processing	is
that	the	latency	of	remote	access	is	much	higher,	and	bandwidth	lower,	in	a	distributed	database	than	in	a
parallel	database	where	all	nodes	are	in	a	single	data	center.	Failures	such	as	network	partitioning	and
message	delays	are	much	less	likely	within	a	data	center	than	across	geographically	distributed	sites,	but
nevertheless	they	can	occur;	transaction	processing	must	be	done	correctly	even	if	they	do	occur.

Thus,	most	techniques	for	transaction	processing	are	common	to	both	parallel	and	distributed	databases.
In	the	few	cases	where	there	is	a	difference,	we	explicitly	point	out	the	difference.	And	as	a	result,	in	this
chapter,	whenever	we	say	that	a	technique	is	applicable	to	distributed	databases,	it	should	be	interpreted
to	mean	that	it	is	applicable	to	distributed	databases	as	well	as	to	parallel	databases,	unless	we	explicitly
say	otherwise.

In	Section	23.1,	we	outline	a	model	for	transaction	processing	in	a	distributed	database.	In	Section	23.2,
we	describe	how	to	implement	atomic	transactions	in	a	distributed	database	by	using	special	commit
protocols.

In	Section	23.3	we	describe	how	to	extend	traditional	concurrency	control	techniques	to	distributed
databases.	Section	23.4	describes	concurrency	control	techniques	for	the	case	where	data	items	are
replicated,	while	Section	23.5	describes	further	extensions	including	how	multiversion	concurrency
control	techniques	can	be	extended	to	deal	with	distributed	databases,	and	concurrency	control	can	be
implemented	with	1097

1098

Chapter	23

Parallel	and	Distributed	Transaction	Processing

heterogeneous	distributed	databases.	Replication	with	weak	degrees	of	consistency	is	discussed	in
Section	23.6.

Most	techniques	for	dealing	with	distributed	data	require	the	use	of	coordinators	to	ensure	consistent	and
efficient	transaction	processing.	In	Section	23.7	we	discuss	how	coordinators	can	be	chosen	in	a
distributed	fashion,	robust	to	failures.	Finally,	Section	23.8	describes	the	distributed	consensus	problem,
outlines	solutions	for	the	problem,	and	then	discusses	how	these	solutions	can	be	used	to	implement	fault-
tolerant	services	by	means	of	replication	of	a	log.

23.1

Distributed	Transactions

Access	to	the	various	data	items	in	a	distributed	system	is	usually	accomplished	through	transactions,
which	must	preserve	the	ACID	properties	(Section	17.1).	There	are	two	types	of	transaction	that	we	need
to	consider.	The	local	transactions	are	those	that	access	and	update	data	in	only	one	local	database;	the
global	transactions	are	those	that	access	and	update	data	in	several	local	databases.	Ensuring	the	ACID
properties	of	the	local	transactions	can	be	done	as	described	in	Chapter	17,	Chapter	18,	and	Chapter	19.
However,	for	global	transactions,	this	task	is	much	more	complicated,	since	several	nodes	may	be
participating	in	the	execution	of	the	transaction.	The	failure	of	one	of	these	nodes,	or	the	failure	of	a
communication	link	connecting	these	nodes,	may	result	in	erroneous	computations.

In	this	section,	we	study	the	system	structure	of	a	distributed	database	and	its	possible	failure	modes.	In
later	sections,	we	discuss	how	to	ensure	ACID	properties	are	satisfied	in	a	distributed	database,	despite
failures.	We	reemphasize	that	these	failure	modes	occur	with	parallel	databases	as	well,	and	the
techniques	we	describe	are	equally	applicable	to	parallel	databases.

23.1.1

System	Structure

We	now	consider	a	system	structure	with	multiple	nodes,	each	of	which	can	fail	independently	of	the
others.	We	note	that	the	nodes	may	be	within	a	single	data	center,	corresponding	to	a	parallel	database
system,	or	geographically	distributed,	in	a	distributed	database	system.	The	system	structure	is	similar	in
either	case;	the	problems	with	respect	to	transaction	isolation	and	atomicity	are	the	same	in	both	cases,
as	are	the	solutions.

We	note	that	the	system	structure	we	consider	here	is	not	applicable	to	a	shared-memory	parallel
database	system	whose	components	do	not	have	independent	modes	of	failures.	In	such	systems	either
the	whole	system	is	up,	or	the	whole	system	is	down.

Further,	there	is	usually	only	one	transaction	log	used	for	recovery.	Concurrency	control	and	recovery
techniques	that	are	designed	for	centralized	database	systems	can	be	used	in	such	systems,	and	are
preferable	to	techniques	described	in	this	chapter.

Each	node	has	its	own	local	transaction	manager,	whose	function	is	to	ensure	the	ACID	properties	of
those	transactions	that	execute	at	that	node.	The	various	trans-

23.1

Distributed	Transactions

1099

TC

transaction

1

TCn

coordinator

TM

transaction

1

TMn

manager

computer	1

computer	n

Figure	23.1	System	architecture.

action	managers	cooperate	to	execute	global	transactions.	To	understand	how	such	a	manager	can	be
implemented,	consider	an	abstract	model	of	a	transaction	system,	in	which	each	node	contains	two
subsystems:

•	The	transaction	manager	manages	the	execution	of	those	transactions	(or	subtransactions)	that	access
data	stored	in	the	node.	Note	that	each	such	transaction	may	be	either	a	local	transaction	(i.e.,	a
transaction	that	executes	at	only	that	node)	or	part	of	a	global	transaction	(i.e.,	a	transaction	that
executes	at	several	nodes).

•	The	transaction	coordinator	coordinates	the	execution	of	the	various	transactions	(both	local	and	global)
initiated	at	that	node.

The	overall	system	architecture	appears	in	Figure	23.1.

The	structure	of	a	transaction	manager	is	similar	in	many	respects	to	the	structure	of	a	centralized
system.	Each	transaction	manager	is	responsible	for:

•	Maintaining	a	log	for	recovery	purposes.

•	Participating	in	an	appropriate	concurrency-control	scheme	to	coordinate	the	concurrent	execution	of
the	transactions	executing	at	that	node.

As	we	shall	see,	we	need	to	modify	both	the	recovery	and	concurrency	schemes	to	accommodate	the
distributed	execution	of	transactions.

The	transaction	coordinator	subsystem	is	not	needed	in	the	centralized	environment,	since	a	transaction
accesses	data	at	only	a	single	node.	A	transaction	coordinator,	as	its	name	implies,	is	responsible	for
coordinating	the	execution	of	all	the	transactions	initiated	at	that	node.	For	each	such	transaction,	the
coordinator	is	responsible	for:

1100

Chapter	23

Parallel	and	Distributed	Transaction	Processing

•	Starting	the	execution	of	the	transaction.

•	Breaking	the	transaction	into	a	number	of	subtransactions	and	distributing	these	subtransactions	to	the
appropriate	nodes	for	execution.

•	Coordinating	the	termination	of	the	transaction,	which	may	result	in	the	transaction	being	committed	at
all	nodes	or	aborted	at	all	nodes.

23.1.2

System	Failure	Modes

A	distributed	system	may	suffer	from	the	same	types	of	failure	that	a	centralized	system	does	(e.g.,

software	errors,	hardware	errors,	or	disk	crashes).	There	are,	however,	additional	types	of	failure	with
which	we	need	to	deal	in	a	distributed	environment.

The	basic	failure	types	are:

•	Failure	of	a	node.

•	Loss	of	messages.

•	Failure	of	a	communication	link.

•	Network	partition.

The	loss	or	corruption	of	messages	is	always	a	possibility	in	a	distributed	system.

The	system	uses	transmission-control	protocols,	such	as	TCP/IP,	to	handle	such	errors.

Information	about	such	protocols	may	be	found	in	standard	textbooks	on	networking.

However,	if	two	nodes	A	and	B	are	not	directly	connected,	messages	from	one	to	the	other	must	be	routed
through	a	sequence	of	communication	links.	If	a	communication	link	fails,	messages	that	would	have	been
transmitted	across	the	link	must	be	rerouted.

In	some	cases,	it	is	possible	to	find	another	route	through	the	network,	so	that	the	messages	are	able	to
reach	their	destination.	In	other	nodes,	a	failure	may	result	in	there	being	no	connection	between	some
pairs	of	nodes.	A	system	is	partitioned	if	it	has	been	split	into	two	(or	more)	subsystems,	called	partitions,
that	lack	any	connection	between	them.	Note	that,	under	this	definition,	a	partition	may	consist	of	a	single
node.

23.2

Commit	Protocols

If	we	are	to	ensure	atomicity,	all	the	nodes	in	which	a	transaction	T	executed	must	agree	on	the	final
outcome	of	the	execution.	T	must	either	commit	at	all	nodes,	or	it	must	abort	at	all	nodes.	To	ensure	this
property,	the	transaction	coordinator	of	T	must	execute	a	commit	protocol.

Among	the	simplest	and	most	widely	used	commit	protocols	is	the	two-phase	commit	protocol	(2PC),
which	is	described	in	Section	23.2.1.

23.2

Commit	Protocols

1101

23.2.1

Two-Phase	Commit

We	first	describe	how	the	two-phase	commit	protocol	(2PC)	operates	during	normal	operation,	then
describe	how	it	handles	failures	and	finally	how	it	carries	out	recovery	and	concurrency	control.

Consider	a	transaction	T	initiated	at	node	N	,	where	the	transaction	coordinator	i

is	C	.

i

23.2.1.1

The	Commit	Protocol

When	T	completes	its	execution	—	that	is,	when	all	the	nodes	at	which	T	has	executed	inform	C	that	T	has
completed	—	C	starts	the	2PC	protocol.

i

i

•	Phase	1.	C	adds	the	record	<

i

prepare	T	>	to	the	log	and	forces	the	log	onto	stable

storage.	It	then	sends	a	prepare	T	message	to	all	nodes	at	which	T	executed.

On	receiving	such	a	message,	the	transaction	manager	at	that	node	determines	whether	it	is	willing	to
commit	its	portion	of	T	.	If	the	answer	is	no,	it	adds	a	record	<	no	T	>	to	the	log	and	then	responds	by
sending	an	abort	T	message	to	C	.	If	the	answer	is	yes,	it	adds	a	record	<

i

ready	T	>	to	the	log	and	forces	the	log

(with	all	the	log	records	corresponding	to	T)	onto	stable	storage.	The	transaction	manager	then	replies
with	a	ready	T	message	to	C	.	i

•	Phase	2.	When	C	receives

i

ready	responses	to	the	prepare	T	message	from	all

the	nodes,	or	when	it	receives	an	abort	T	message	from	at	least	one	participant	node,	C	can	determine
whether	the	transaction	T	can	be	committed	or	aborted.

i

Transaction	T	can	be	committed	if	C	received	a

i

ready	T	message	from	all	the

participating	nodes.	Otherwise,	transaction	T	must	be	aborted.	Depending	on	the	verdict,	either	a	record
<	commit	T	>	or	a	record	<	abort	T	>	is	added	to	the	log	and	the	log	is	forced	onto	stable	storage.	At	this
point,	the	fate	of	the	transaction	has	been	sealed.

Following	this	point,	the	coordinator	sends	either	a	commit	T	or	an	abort	T

message	to	all	participating	nodes.	When	a	node	receives	that	message,	it	records	the	result	(either	<
commit	T	>	or	<	abort	T	>)	in	its	log,	and	correspondingly	either	commits	or	aborts	the	transaction.

Since	nodes	may	fail,	the	coordinator	cannot	wait	indefinitely	for	responses	from	all	the	nodes.	Instead,
when	a	prespecified	interval	of	time	has	elapsed	since	the	prepare	T	message	was	sent	out,	if	any	node
has	not	responded	to	the	coordinator,	the	coordinator	can	decide	to	abort	the	transaction;	the	steps
described	for	aborting	the	transaction	must	be	followed,	just	as	if	a	node	had	sent	an	abort	message	for
the	transaction.

Figure	23.2	shows	an	instance	of	successful	execution	of	2PC	for	a	transaction	T	,	with	two	nodes,	N	and
N	,	that	are	both	willing	to	commit	transaction	T	.	If	any	of	the	1

2

1102

Chapter	23

Parallel	and	Distributed	Transaction	Processing

Coordinator

Node	N1

Node	N2

Force	log	record

<	prepare	T	>

Send	message

prepare	T

Force	log	record

Force	log	record

<	ready	T	>

<	ready	T	>

Send	message

Send	message

ready	T

ready	T

Force	log	record

<	commit	T	>

Send	message

commit	T

Force	log	record

Force	log	record

<	commit	T	>

<	commit	T	>

Figure	23.2	Successful	execution	of	2PC.

nodes	sends	a	no	T	message,	the	coordinator	will	send	an	abort	T	message	to	all	the	nodes,	which	will
then	abort	the	transaction.

A	node	at	which	T	executed	can	unconditionally	abort	T	at	any	time	before	it	sends	the	message	ready	T
to	the	coordinator.	Once	the	<	ready	T	>	log	record	is	written,	the	transaction	T	is	said	to	be	in	the	ready
state	at	the	node.	The	ready	T	message	is,	in	effect,	a	promise	by	a	node	to	follow	the	coordinator’s	order
to	commit	T	or	to	abort	T	.	To	make	such	a	promise,	the	needed	information	must	first	be	stored	in	stable
storage.	Otherwise,	if	the	node	crashes	after	sending	ready	T	,	it	may	be	unable	to	make	good	on	its
promise.	Further,	locks	acquired	by	the	transaction	must	continue	to	be	held	until	the	transaction
completes,	even	if	there	is	an	intervening	node	failure,	as	we	shall	see	in	Section	23.2.1.3.

23.2

Commit	Protocols

1103

Since	unanimity	is	required	to	commit	a	transaction,	the	fate	of	T	is	sealed	as	soon	as	at	least	one	node
responds	abort	T	.	Since	the	coordinator	node	N	is	one	of	the	i

nodes	at	which	T	executed,	the	coordinator	can	decide	unilaterally	to	abort	T	.	The	final	verdict	regarding
T	is	determined	at	the	time	that	the	coordinator	writes	that	verdict	(commit	or	abort)	to	the	log	and	forces
that	verdict	to	stable	storage.

In	some	implementations	of	the	2PC	protocol,	a	node	sends	an	acknowledge	T

message	to	the	coordinator	at	the	end	of	the	second	phase	of	the	protocol.	When	the	coordinator	receives
the	acknowledge	T	message	from	all	the	nodes,	it	adds	the	record

<	complete	T>	to	the	log.	Until	this	step,	the	coordinator	cannot	forget	about	the	commit	or	abort
decision	on	T	,	since	a	node	may	ask	for	the	decision.	(A	node	that	has	not	received	a	commit	or	abort	for
transaction	T	,	perhaps	due	to	a	network	failure	or	temporary	node	failure,	may	send	such	a	request	to	the
coordinator.)	After	this	step,	the	coordinator	can	discard	information	about	transaction	T	.

23.2.1.2

Handling	of	Failures

The	2PC	protocol	responds	in	different	ways	to	various	types	of	failure:

•	Failure	of	a	participating	node.	If	the	coordinator	C	detects	that	a	node	has	failed,	i

it	takes	these	actions:	If	the	node	fails	before	responding	with	a	ready	T	message	to	C	,	the	coordinator
assumes	that	it	responded	with	an

i

abort	T	message.	If	the

node	fails	after	the	coordinator	has	received	the	ready	T	message	from	the	node,	the	coordinator	executes
the	rest	of	the	commit	protocol	in	the	normal	fashion,	ignoring	the	failure	of	the	node.

When	a	participating	node	N	recovers	from	a	failure,	it	must	examine	its	log	k

to	determine	the	fate	of	those	transactions	that	were	in	the	midst	of	execution	when	the	failure	occurred.
Let	T	be	one	such	transaction.	We	consider	each	of	the	possible	cases:

°	The	log	contains	a	<	commit	T	>	record.	In	this	case,	the	node	executes	redo(T).

°	The	log	contains	an	<	abort	T	>	record.	In	this	case,	the	node	executes	undo(T).

°	The	log	contains	a	<	ready	T	>	record.	In	this	case,	the	node	must	consult	C	to	i

determine	the	fate	of	T	.	If	C	is	up,	it	notifies	N	regarding	whether	T	committed	i

k

or	aborted.	In	the	former	case,	it	executes	redo(T);	in	the	latter	case,	it	executes	undo(T).	If	C	is	down,
N	must	try	to	find	the	fate	of	T	from	other	nodes.	It	i

k

does	so	by	sending	a	querystatus	T	message	to	all	the	nodes	in	the	system.

On	receiving	such	a	message,	a	node	must	consult	its	log	to	determine	whether	T	has	executed	there,	and
if	T	has,	whether	T	committed	or	aborted.	It	then	notifies	N	about	this	outcome.	If	no	node	has	the
appropriate	information	k

(i.e.,	whether	T	committed	or	aborted),	then	N	can	neither	abort	nor	commit	k

T	.	The	decision	concerning	T	is	postponed	until	N	can	obtain	the	needed	k

1104

Chapter	23

Parallel	and	Distributed	Transaction	Processing

information.	Thus,	N	must	periodically	resend	the

k

querystatus	message	to

the	other	nodes.	It	continues	to	do	so	until	a	node	that	contains	the	needed	information	has	recovered.
Note	that	the	node	at	which	C	resides	always	has	i

the	needed	information.

°	The	log	contains	no	control	records	(abort,	commit,	ready)	concerning	T	.

Thus,	we	know	that	N	failed	before	responding	to	the

k

prepare	T	message

from	C	.	Since	the	failure	of	N	precludes	the	sending	of	such	a	response,	by	i

k

our	algorithm	C	must	abort	T	.	Hence,	N	must	execute	i

k

undo(T).

•	Failure	of	the	coordinator.	If	the	coordinator	fails	in	the	midst	of	the	execution	of	the	commit	protocol
for	transaction	T	,	then	the	participating	nodes	must	decide	the	fate	of	T	.	We	shall	see	that,	in	certain
cases,	the	participating	nodes	cannot	decide	whether	to	commit	or	abort	T	,	and	therefore	these	nodes
must	wait	for	the	recovery	of	the	failed	coordinator.

°	If	an	active	node	contains	a	<	commit	T	>	record	in	its	log,	then	T	must	be	committed.

°	If	an	active	node	contains	an	<	abort	T	>	record	in	its	log,	then	T	must	be	aborted.

°	If	some	active	node	does	not	contain	a	<	ready	T	>	record	in	its	log,	then	the	failed	coordinator	C	cannot
have	decided	to	commit	T	,	because	a	node	that	i

does	not	have	a	<	ready	T	>	record	in	its	log	cannot	have	sent	a	ready	T	message	to	C	.	However,	the
coordinator	may	have	decided	to	abort	T	,	but	not	to	i

commit	T	.	Rather	than	wait	for	C	to	recover,	it	is	preferable	to	abort	T	.

i

°	If	none	of	the	preceding	cases	holds,	then	all	active	nodes	must	have	a	<	ready	T	>	record	in	their	logs,
but	no	additional	control	records	(such	as	<	abort	T	>

or	<	commit	T	>).	Since	the	coordinator	has	failed,	it	is	impossible	to	determine	whether	a	decision	has
been	made,	and	if	one	has,	what	that	decision	is,	until	the	coordinator	recovers.	Thus,	the	active	nodes
must	wait	for	C	to	recover.

i

Since	the	fate	of	T	remains	in	doubt,	T	may	continue	to	hold	system	resources.	For	example,	if	locking	is
used,	T	may	hold	locks	on	data	at	active	nodes.	Such	a	situation	is	undesirable,	because	it	may	be	hours	or
days	before	C	is	again	active.	During	this	time,	other	transactions	may	be	forced	to	wait	i

for	T	.	As	a	result,	data	items	may	be	unavailable	not	only	on	the	failed	node	(C),	but	on	active	nodes	as
well.	This	situation	is	called	the	blocking	problem,	i

because	T	is	blocked	pending	the	recovery	of	node	C	.

i

•	Network	partition.	When	a	network	partition	occurs,	two	possibilities	exist:	1.	The	coordinator	and	all	its
participants	remain	in	one	partition.	In	this	case,	the	failure	has	no	effect	on	the	commit	protocol.

23.2

Commit	Protocols

1105

2.	The	coordinator	and	its	participants	belong	to	several	partitions.	From	the	viewpoint	of	the	nodes	in
one	of	the	partitions,	it	appears	that	the	nodes	in	other	partitions	have	failed.	Nodes	that	are	not	in	the
partition	containing	the	coordinator	simply	execute	the	protocol	to	deal	with	the	failure	of	the	coordinator.
The	coordinator	and	the	nodes	that	are	in	the	same	partition	as	the	coordinator	follow	the	usual	commit
protocol,	assuming	that	the	nodes	in	the	other	partitions	have	failed.

Thus,	the	major	disadvantage	of	the	2PC	protocol	is	that	coordinator	failure	may	result	in	blocking,	where
a	decision	either	to	commit	or	to	abort	T	may	have	to	be	postponed	until	C	recovers.	We	discuss	how	to
remove	this	limitation	shortly,	in	Section	23.2.2.

i

23.2.1.3

Recovery	and	Concurrency	Control

When	a	failed	node	restarts,	we	can	perform	recovery	by	using,	for	example,	the	recovery	algorithm
described	in	Section	19.4.	To	deal	with	distributed	commit	protocols,	the	recovery	procedure	must	treat
in-doubt	transactions	specially;	in-doubt	transactions	are	transactions	for	which	a	<	ready	T	>	log	record
is	found,	but	neither	a	<	commit	T	>

log	record	nor	an	<	abort	T	>	log	record	is	found.	The	recovering	node	must	determine	the	commit–abort
status	of	such	transactions	by	contacting	other	nodes,	as	described	in	Section	23.2.1.2.

If	recovery	is	done	as	just	described,	however,	normal	transaction	processing	at	the	node	cannot	begin
until	all	in-doubt	transactions	have	been	committed	or	rolled	back.	Finding	the	status	of	in-doubt
transactions	can	be	slow,	since	multiple	nodes	may	have	to	be	contacted.	Further,	if	the	coordinator	has
failed,	and	no	other	node	has	information	about	the	commit–abort	status	of	an	incomplete	transaction,
recovery	potentially	could	become	blocked	if	2PC	is	used.	As	a	result,	the	node	performing	restart
recovery	may	remain	unusable	for	a	long	period.

To	circumvent	this	problem,	recovery	algorithms	typically	provide	support	for	noting	lock	information	in
the	log.	(We	are	assuming	here	that	locking	is	used	for	concurrency	control.)	Instead	of	writing	a	<	ready
T	>	log	record,	the	algorithm	writes	a

<	ready	T,	L	>	log	record,	where	L	is	a	list	of	all	write	locks	held	by	the	transaction	T	when	the	log	record
is	written.	At	recovery	time,	after	performing	local	recovery	actions,	for	every	in-doubt	transaction	T	,	all
the	write	locks	noted	in	the	<	ready	T	,	L	>

log	record	(read	from	the	log)	are	reacquired.

After	lock	reacquisition	is	complete	for	all	in-doubt	transactions,	transaction	processing	can	start	at	the
node,	even	before	the	commit–abort	status	of	the	in-doubt	transactions	is	determined.	The	commit	or
rollback	of	in-doubt	transactions	proceeds	concurrently	with	the	execution	of	new	transactions.	Thus,
node	recovery	is	faster	and	never	gets	blocked.	Note	that	new	transactions	that	have	a	lock	conflict	with
any	write	locks	held	by	in-doubt	transactions	will	be	unable	to	make	progress	until	the	conflicting	in-doubt
transactions	have	been	committed	or	rolled	back.

1106

Chapter	23

Parallel	and	Distributed	Transaction	Processing

23.2.2

Avoiding	Blocking	During	Commit

The	blocking	problem	of	2PC	is	a	serious	concern	for	system	designers,	since	the	failure	of	a	coordinator
node	could	lead	to	blocking	of	a	transaction	that	has	acquired	locks	on	a	frequently	used	data	item,	which
in	turn	prevents	other	transactions	that	need	to	acquire	a	conflicting	lock	from	completing	their
execution.

By	involving	multiple	nodes	in	the	commit	decision	step	of	2PC,	it	is	possible	to	avoid	blocking	as	long	as	a
majority	of	the	nodes	involved	in	the	commit	decision	are	alive	and	can	communicate	with	each	other.	This
is	done	by	using	the	idea	of	fault-tolerant	distributed	consensus.	Details	of	distributed	consensus	are
discussed	in	detail	later,	in	Section	23.8,	but	we	outline	the	problem	and	sketch	a	solution	approach
below.

The	distributed	consensus	problem	is	as	follows:	A	set	of	n	nodes	need	to	agree	on	a	decision;	in	this	case,
whether	or	not	to	commit	a	particular	transaction.	The	inputs	to	make	the	decision	are	provided	to	all	the
nodes,	and	then	each	node	votes	on	the	decision;	in	the	case	of	2PC,	the	decision	is	on	whether	or	not	to
commit	a	transaction.

The	key	goal	of	protocols	for	achieving	distributed	consensus	is	that	the	decision	should	be	made	in	such
a	way	that	all	nodes	will	“learn”	the	same	value	for	the	decision	(i.e.,	all	nodes	will	learn	that	the
transaction	is	to	be	committed,	or	all	nodes	will	learn	that	the	transaction	is	to	be	aborted),	even	if	some
nodes	fail	during	the	execution	of	the	protocol,	or	there	are	network	partitions.	Further,	the	distributed
consensus	protocol	should	not	block,	as	long	as	a	majority	of	the	nodes	participating	remain	alive	and	can
communicate	with	each	other.

There	are	several	protocols	for	distributed	consensus,	two	of	which	are	widely	used	today	(Paxos	and
Raft).	We	study	distributed	consensus	in	Section	23.8.	A	key	idea	behind	these	protocols	is	the	idea	of	a
vote,	which	succeeds	only	if	a	majority	of	the	participating	nodes	agree	on	a	particular	decision.

Given	an	implementation	of	distributed	consensus,	the	blocking	problem	due	to	coordinator	failure	can	be
avoided	as	follows:	Instead	of	the	coordinator	locally	deciding	to	commit	or	abort	a	transaction,	it	initiates
the	distributed	consensus	protocol,	requesting	that	the	value	“committed”	or	“aborted”	be	assigned	to	the
transaction	T	.

The	request	is	sent	to	all	the	nodes	participating	in	the	distributed	consensus,	and	the	consensus	protocol
is	then	executed	by	those	nodes.	Since	the	protocol	is	fault	tolerant,	it	will	succeed	even	if	some	nodes
fail,	as	long	as	a	majority	of	the	nodes	are	up	and	remain	connected.	The	transaction	can	be	declared
committed	by	the	coordinator	only	after	the	consensus	protocol	completes	successfully.

There	are	two	possible	failure	scenarios:

•	The	coordinator	fails	at	any	stage	before	informing	all	participating	nodes	of	the	commit	or	abort	status
of	a	transaction	T	.

In	this	case,	a	new	coordinator	is	chosen	(we	will	see	how	to	do	so	in	Section	23.7).	The	new	coordinator
checks	with	the	nodes	participating	in	the	distributed	consensus	to	see	if	a	decision	was	made,	and	if	so
informs	the	2PC	participants

23.2

Commit	Protocols

1107

of	the	decision.	A	majority	of	the	nodes	participating	in	consensus	must	respond,	to	check	if	a	decision
was	made	or	not;	the	protocol	will	not	block	as	long	as	the	failed/disconnected	nodes	are	in	a	minority.

If	no	decision	was	made	earlier	for	transaction	T	,	the	new	coordinator	again	checks	with	the	2PC
participants	to	check	if	they	are	ready	to	commit	or	wish	to	abort	the	transaction,	and	follows	the	usual
coordinator	protocol	based	on	their	responses.	As	before,	if	no	response	is	received	from	a	participant,
the	new	coordinator	may	choose	to	abort	T	.

•	The	distributed	consensus	protocol	fails	to	reach	a	decision.

Failure	of	the	protocol	can	occur	due	to	the	failure	of	some	participating	nodes.

It	could	also	occur	because	of	conflicting	requests,	none	of	which	gets	a	majority	of

“votes”	during	the	consensus	protocol.	For	2PC,	the	request	normally	comes	from	a	single	coordinator,	so
such	a	conflict	is	unlikely.	However,	conflicting	requests	can	arise	in	rare	cases	if	a	coordinator	fails	after
sending	out	a	commit	message,	but	its	commit	message	is	delivered	late;	meanwhile,	a	new	2PC
coordinator	makes	an	abort	decision	since	it	could	not	reach	some	participating	nodes.	Even	with	such	a
conflict,	the	distributed	consensus	protocol	guarantees	that	only	one	of	the	commit	or	abort	requests	can
succeed,	even	in	the	presence	of	failures.	But	if	some	nodes	are	down,	and	neither	the	commit	nor	the
abort	request	gets	a	majority	vote	from	nodes	participating	in	the	distributed	consensus,	it	is	possible	for
the	protocol	to	fail	to	reach	a	decision.

Regardless	of	the	reason,	if	the	distributed	consensus	protocol	fails	to	reach	a	decision,	the	new
coordinator	just	re-initiates	the	protocol.

Note	that	in	the	event	of	a	network	partition,	a	node	that	gets	disconnected	from	the	majority	of	the	nodes
participating	in	consensus	may	not	learn	about	a	decision,	even	if	a	decision	was	successfully	made.	Thus,
transactions	running	at	such	a	node	may	be	blocked.

Failure	of	2PC	participants	could	make	data	unavailable,	in	the	absence	of	replication.	Distributed
consensus	can	also	be	used	to	keep	replicas	of	a	data	item	in	a	consistent	state,	as	we	explain	later	in
Section	23.8.4.

The	idea	of	distributed	consensus	to	make	2PC	nonblocking	was	proposed	in	the	1980s;	it	is	used,	for
example,	in	the	Google	Spanner	distributed	database	system.

The	three-phase	commit	(3PC)	protocol	is	an	extension	of	the	two-phase	commit	protocol	that	avoids	the
blocking	problem	under	certain	assumptions.	One	variant	of	the	protocol	avoids	blocking	as	long	as
network	partitions	do	not	occur,	but	it	may	lead	to	inconsistent	decisions	in	the	event	of	a	network
partition.	Extensions	of	the	protocol	that	work	safely	under	network	partitioning	were	developed
subsequently.	The	idea	behind	these	extensions	is	similar	to	the	majority	voting	idea	of	distributed
consensus,	but	the	protocols	are	specifically	tailored	for	the	task	of	atomic	commit.

1108

Chapter	23

Parallel	and	Distributed	Transaction	Processing

23.2.3

Alternative	Models	of	Transaction	Processing

With	two-phase	commit,	participating	nodes	agree	to	let	the	coordinator	decide	the	fate	of	a	transaction,
and	are	forced	to	wait	for	the	decision	of	the	coordinator,	while	holding	locks	on	updated	data	items.
While	such	loss	of	autonomy	may	be	acceptable	within	an	organization,	no	organization	would	be	willing

to	force	its	computers	to	wait,	potentially	for	a	long	time,	while	a	computer	at	another	organization	makes
the	decision.

In	this	section,	we	describe	how	to	use	persistent	messaging	to	avoid	the	problem	of	distributed	commit.
To	understand	persistent	messaging,	consider	how	one	might	transfer	funds	between	two	different	banks,
each	with	its	own	computer.	One	approach	is	to	have	a	transaction	span	the	two	nodes	and	use	two-phase
commit	to	ensure	atomicity.	However,	the	transaction	may	have	to	update	the	total	bank	balance,	and
blocking	could	have	a	serious	impact	on	all	other	transactions	at	each	bank,	since	almost	all	transactions
at	the	bank	would	update	the	total	bank	balance.

In	contrast,	consider	how	funds	transfer	by	a	bank	check	occurs.	The	bank	first	deducts	the	amount	of	the
check	from	the	available	balance	and	prints	out	a	check.

The	check	is	then	physically	transferred	to	the	other	bank	where	it	is	deposited.	After	verifying	the	check,
the	bank	increases	the	local	balance	by	the	amount	of	the	check.

The	check	constitutes	a	message	sent	between	the	two	banks.	So	that	funds	are	not	lost	or	incorrectly
increased,	the	check	must	not	be	lost	and	must	not	be	duplicated	and	deposited	more	than	once.	When
the	bank	computers	are	connected	by	a	network,	persistent	messages	provide	the	same	service	as	the
check	(but	much	faster).

Persistent	messages	are	messages	that	are	guaranteed	to	be	delivered	to	the	recipient	exactly	once
(neither	less	nor	more),	regardless	of	failures,	if	the	transaction	sending	the	message	commits,	and	are
guaranteed	to	not	be	delivered	if	the	transaction	aborts.	Database	recovery	techniques	are	used	to
implement	persistent	messaging	on	top	of	the	normal	network	channels,	as	we	shall	see	shortly.	In
contrast,	regular	messages	may	be	lost	or	may	even	be	delivered	multiple	times	in	some	situations.

Error	handling	is	more	complicated	with	persistent	messaging	than	with	two-phase	commit.	For	instance,
if	the	account	where	the	check	is	to	be	deposited	has	been	closed,	the	check	must	be	sent	back	to	the
originating	account	and	credited	back	there.	Both	nodes	must,	therefore,	be	provided	with	error-handling
code,	along	with	code	to	handle	the	persistent	messages.	In	contrast,	with	two-phase	commit,	the	error
would	be	detected	by	the	transaction,	which	would	then	never	deduct	the	amount	in	the	first	place.

The	types	of	exception	conditions	that	may	arise	depend	on	the	application,	so	it	is	not	possible	for	the
database	system	to	handle	exceptions	automatically.	The	application	programs	that	send	and	receive
persistent	messages	must	include	code	to	handle	exception	conditions	and	bring	the	system	back	to	a
consistent	state.	For	instance,	it	is	not	acceptable	to	just	lose	the	money	being	transferred	if	the	receiving
account	has	been	closed;	the	money	must	be	credited	back	to	the	originating	account,	and	if	that	is	not
possible	for	some	reason,	humans	must	be	alerted	to	resolve	the	situation	manually.

23.2

Commit	Protocols

1109

Atomic	Transaction	at	Sending	Node

Atomic	Transaction	at	Receiving	Node

Perform	database	updates

Process	any	unprocessed	message	in

Write	message	to	messages_to_send	relation

received_messages

Mark	message	as	processed

messages_to_send

received	_messages

Message	Delivery	Process

Message	Receiving	Process

Monitor	messages_to_send	relation

On	receiving	message,	execute	transaction	to

Send	any	new	messages	to	recipient

add	message	to	received_messages	relation,

Also	periodically	resend	old	messages

if	not	already	present

When	Acknowledgment	received	from	recipient,

After	transaction	commits,	send

for	a	message,	delete	message

Acknowledgement

Figure	23.3	Implementation	of	persistent	messaging.

There	are	many	applications	where	the	benefit	of	eliminating	blocking	is	well	worth	the	extra	effort	to
implement	systems	that	use	persistent	messages.	In	fact,	few	organizations	would	agree	to	support	two-
phase	commit	for	transactions	originating	outside	the	organization,	since	failures	could	result	in	blocking
of	access	to	local	data.	Persistent	messaging	therefore	plays	an	important	role	in	carrying	out	transactions
that	cross	organizational	boundaries.

We	now	consider	the	implementation	of	persistent	messaging.	Persistent	messaging	can	be	implemented
on	top	of	an	unreliable	messaging	infrastructure,	which	may	lose	messages	or	deliver	them	multiple
times.	Figure	23.3	shows	a	summary	of	the	implementation,	which	is	described	in	detail	next.

•	Sending	node	protocol.	When	a	transaction	wishes	to	send	a	persistent	message,	it	writes	a	record
containing	the	message	in	a	special	relation	messages	to	send,	instead	of	directly	sending	out	the
message.	The	message	is	also	given	a	unique	message	identifier.	Note	that	this	relation	acts	as	a	message
outbox.

A	message	delivery	process	monitors	the	relation,	and	when	a	new	message	is	found,	it	sends	the	message
to	its	destination.	The	usual	database	concurrency-control	mechanisms	ensure	that	the	system	process
reads	the	message	only	after	the	transaction	that	wrote	the	message	commits;	if	the	transaction	aborts,
the	usual	recovery	mechanism	would	delete	the	message	from	the	relation.

The	message	delivery	process	deletes	a	message	from	the	relation	only	after	it	receives	an
acknowledgment	from	the	destination	node.	If	it	receives	no	acknowledgment	from	the	destination	node,
after	some	time	it	sends	the	message	again.

It	repeats	this	until	an	acknowledgment	is	received.	In	case	of	permanent	failures,

1110

Chapter	23

Parallel	and	Distributed	Transaction	Processing

the	system	will	decide,	after	some	period	of	time,	that	the	message	is	undeliver-able.	Exception	handling
code	provided	by	the	application	is	then	invoked	to	deal	with	the	failure.

Writing	the	message	to	a	relation	and	processing	it	only	after	the	transaction	has	committed	ensures	that
the	message	will	be	delivered	if	and	only	if	the	transaction	commits.	Repeatedly	sending	it	guarantees	it
will	be	delivered	even	if	there	are	(temporary)	system	or	network	failures.

•	Receiving	node	protocol.	When	a	node	receives	a	persistent	message,	it	runs	a	transaction	that	adds	the
message	to	a	special	received	messages	relation,	provided	it	is	not	already	present	in	the	relation	(the
unique	message	identifier	allows	duplicates	to	be	detected).	The	relation	has	an	attribute	to	indicate	if	the
message	has	been	processed,	which	is	set	to	false	when	the	message	is	inserted	in	the	relation.	Note	that
this	relation	acts	as	a	message	inbox.

After	the	transaction	commits,	or	if	the	message	was	already	present	in	the	relation,	the	receiving	node
sends	an	acknowledgment	back	to	the	sending	node.

Note	that	sending	the	acknowledgment	before	the	transaction	commits	is	not	safe,	since	a	system	failure
may	then	result	in	loss	of	the	message.	Checking	whether	the	message	has	been	received	earlier	is
essential	to	avoid	multiple	deliveries	of	the	message.

•	Processing	of	message.	Received	messages	must	be	processed	to	carry	out	the	actions	specified	in	the
message.	A	process	at	the	receiving	node	monitors	the	received	messages	relation	to	check	for	messages
that	have	not	been	processed.	When	it	finds	such	a	message,	the	message	is	processed,	and	as	part	of	the
same	transaction	that	processes	the	message,	the	processed	flag	is	set	to	true.	This	ensures	that	a
message	is	processed	exactly	once	after	it	is	received.

•	Deletion	of	old	messages.	In	many	messaging	systems,	it	is	possible	for	messages	to	get	delayed
arbitrarily,	although	such	delays	are	very	unlikely.	Therefore,	to	be	safe,	the	message	must	never	be
deleted	from	the	received	messages	relation.	Deleting	it	could	result	in	a	duplicate	delivery	not	being
detected.	But	as	a	result,	the	received	messages	relation	may	grow	indefinitely.	To	deal	with	this	problem,
each	message	is	given	a	timestamp,	and	if	the	timestamp	of	a	received	message	is	older	than	some	cutoff,
the	message	is	discarded.	All	messages	recorded	in	the	received	messages	relation	that	are	older	than	the
cutoff	can	be	deleted.

Workflows	provide	a	general	model	of	distributed	transaction	processing	involving	multiple	nodes	and
possibly	human	processing	of	certain	steps,	and	they	are	supported	by	application	software	used	by
enterprises.	For	instance,	as	we	saw	in	Section	9.6.1,	when	a	bank	receives	a	loan	application,	there	are
many	steps	it	must	take,	including	contacting	external	credit-checking	agencies,	before	approving	or
rejecting	a	loan	application.	The	steps,	together,	form	a	workflow.	Persistent	messaging	forms	the
underlying	basis	for	supporting	workflows	in	a	distributed	environment.

23.3

Concurrency	Control	in	Distributed	Databases

1111

23.3

Concurrency	Control	in	Distributed	Databases

We	now	consider	how	the	concurrency-control	schemes	discussed	in	Chapter	18	can	be	modified	so	that
they	can	be	used	in	a	distributed	environment.	We	assume	that	each	node	participates	in	the	execution	of
a	commit	protocol	to	ensure	global	transaction	atomicity.

In	this	section,	we	assume	that	data	items	are	not	replicated,	and	we	do	not	consider	multiversion
techniques.	We	discuss	how	to	handle	replicas	later,	in	Section	23.4,	and	we	discuss	distributed
multiversion	concurrency	control	techniques	in	Section	23.5.

23.3.1

Locking	Protocols

The	various	locking	protocols	described	in	Chapter	18	can	be	used	in	a	distributed	environment.	We
discuss	implementation	issues	in	this	section.

23.3.1.1

Single	Lock-Manager	Approach

In	the	single	lock-manager	approach,	the	system	maintains	a	single	lock	manager	that	resides	in	a	single
chosen	node	—	say	N	.	All	lock	and	unlock	requests	are	made	at	node	i

N	.	When	a	transaction	needs	to	lock	a	data	item,	it	sends	a	lock	request	to	N	.	The	i

i

lock	manager	determines	whether	the	lock	can	be	granted	immediately.	If	the	lock	can	be	granted,	the
lock	manager	sends	a	message	to	that	effect	to	the	node	at	which	the	lock	request	was	initiated.
Otherwise,	the	request	is	delayed	until	it	can	be	granted,	at	which	time	a	message	is	sent	to	the	node	at
which	the	lock	request	was	initiated.	The	transaction	can	read	the	data	item	from	any	one	of	the	nodes	at
which	a	replica	of	the	data	item	resides.	In	the	case	of	a	write,	all	the	nodes	where	a	replica	of	the	data
item	resides	must	be	involved	in	the	writing.

The	scheme	has	these	advantages:

•	Simple	implementation.	This	scheme	requires	two	messages	for	handling	lock	requests	and	one	message
for	handling	unlock	requests.

•	Simple	deadlock	handling.	Since	all	lock	and	unlock	requests	are	made	at	one	node,	the	deadlock-
handling	algorithms	discussed	in	Chapter	18	can	be	applied	directly.

The	disadvantages	of	the	scheme	are:

•	Bottleneck.	The	node	N	becomes	a	bottleneck,	since	all	requests	must	be	processed	i

there.

•	Vulnerability.	If	the	node	N	fails,	the	concurrency	controller	is	lost.	Either	pro-i

cessing	must	stop,	or	a	recovery	scheme	must	be	used	so	that	a	backup	node	can	take	over	lock
management	from	N	,	as	described	in	Section	23.7.

i

1112

Chapter	23

Parallel	and	Distributed	Transaction	Processing

23.3.1.2

Distributed	Lock	Manager

A	compromise	between	the	advantages	and	disadvantages	can	be	achieved	through	the	distributed-lock-
manager	approach,	in	which	the	lock-manager	function	is	distributed	over	several	nodes.

Each	node	maintains	a	local	lock	manager	whose	function	is	to	administer	the	lock	and	unlock	requests
for	those	data	items	that	are	stored	in	that	node.	When	a	transaction	wishes	to	lock	a	data	item	Q	that
resides	at	node	N	,	a	message	is	sent	to	i

the	lock	manager	at	node	N	requesting	a	lock	(in	a	particular	lock	mode).	If	data	item	i

Q	is	locked	in	an	incompatible	mode,	then	the	request	is	delayed	until	it	can	be	granted.

Once	it	has	determined	that	the	lock	request	can	be	granted,	the	lock	manager	sends	a	message	back	to
the	initiator	indicating	that	it	has	granted	the	lock	request.

The	distributed-lock-manager	scheme	has	the	advantage	of	simple	implementation,	and	it	reduces	the
degree	to	which	the	coordinator	is	a	bottleneck.	It	has	a	reasonably	low	overhead,	requiring	two	message
transfers	for	handling	lock	requests,	and	one	message	transfer	for	handling	unlock	requests.	However,
deadlock	handling	is	more	complex,	since	the	lock	and	unlock	requests	are	no	longer	made	at	a	single
node:	There	may	be	internode	deadlocks	even	when	there	is	no	deadlock	within	a	single	node.	The
deadlock-handling	algorithms	discussed	in	Chapter	18	must	be	modified,	as	we	shall	discuss	in	Section
23.3.2,	to	detect	global	deadlocks.

23.3.2

Deadlock	Handling

The	deadlock-prevention	and	deadlock-detection	algorithms	in	Chapter	18	can	be	used	in	a	distributed
system,	with	some	modifications.

Consider	first	the	deadlock-prevention	techniques,	which	we	saw	in	Section	18.2.1.

•	Techniques	for	deadlock	prevention	based	on	lock	ordering	can	be	used	in	a	distributed	system,	with	no
changes	at	all.	These	techniques	prevent	cyclic	lock	waits;	the	fact	that	locks	may	be	obtained	at	different
nodes	has	no	effect	on	prevention	of	cyclic	lock	waits.

•	Techniques	based	on	preemption	and	transaction	rollback	can	also	be	used	unchanged	in	a	distributed
system.	In	particular,	the	wait-die	technique	is	used	in	several	distributed	systems.	Recall	that	this
technique	allows	older	transactions	to	wait	for	locks	held	by	younger	transactions,	but	if	a	younger
transaction	needs	to	wait	for	a	lock	held	by	an	older	transaction,	the	younger	transaction	is	rolled	back.

The	transaction	that	is	rolled	back	may	subsequently	be	executed	again;	recall	that	it	retains	its	original
start	time;	if	it	is	treated	as	a	new	transaction,	it	could	be	rolled	back	repeatedly,	and	starve,	even	as
other	transactions	make	progress	and	complete.

•	Timeout-based	schemes,	too,	work	without	any	changes	in	a	distributed	system.

23.3

Concurrency	Control	in	Distributed	Databases

1113

T

T

1

T	2

2

T	4

T	5

T	3

T	3

site	S	1

site	S	2

Figure	23.4	Local	wait-for	graphs.

Deadlock-prevention	techniques	may	result	in	unnecessary	waiting	and	rollback	when	used	in	a
distributed	system,	just	as	in	a	centralized	system,

We	now	consider	deadlock-detection	techniques	that	allow	deadlocks	to	occur	and	detect	them	if	they	do.
The	main	problem	in	a	distributed	system	is	deciding	how	to	maintain	the	wait-for	graph.	Common
techniques	for	dealing	with	this	issue	require	that	each	node	keep	a	local	wait-for	graph.	The	nodes	of	the
graph	correspond	to	all	the	transactions	(local	as	well	as	nonlocal)	that	are	currently	either	holding	or
requesting	any	of	the	items	local	to	that	node.	For	example,	Figure	23.4	depicts	a	system	consisting	of	two
nodes,	each	maintaining	its	local	wait-for	graph.	Note	that	transactions	T	and	2

T	appear	in	both	graphs,	indicating	that	the	transactions	have	requested	items	at	both	3

nodes.

These	local	wait-for	graphs	are	constructed	in	the	usual	manner	for	local	transactions	and	data	items.
When	a	transaction	T	on	node	N	needs	a	resource	in	node	N	,	i

1

2

it	sends	a	request	message	to	node	N	.	If	the	resource	is	held	by	transaction	T	,	the	2

j

system	inserts	an	edge	T	→	T	in	the	local	wait-for	graph	of	node	N	.

i

j

2

If	any	local	wait-for	graph	has	a	cycle,	a	deadlock	has	occurred.	On	the	other	hand,	the	fact	that	there	are
no	cycles	in	any	of	the	local	wait-for	graphs	does	not	mean	that	there	are	no	deadlocks.	To	illustrate	this
problem,	we	consider	the	local	wait-for	graphs	of	Figure	23.4.	Each	wait-for	graph	is	acyclic;
nevertheless,	a	deadlock	exists	in	the	system	because	the	union	of	the	local	wait-for	graphs	contains	a
cycle.	This	graph	appears	in	Figure	23.5.

T	1

T

T

2

4

T	5

T	3

Figure	23.5	Global	wait-for	graph	for	Figure	23.4.

1114

Chapter	23

Parallel	and	Distributed	Transaction	Processing

In	the	centralized	deadlock	detection	approach,	the	system	constructs	and	maintains	a	global	wait-for
graph	(the	union	of	all	the	local	graphs)	in	a	single	node:	the	deadlock-detection	coordinator.	Since	there
is	communication	delay	in	the	system,	we	must	distinguish	between	two	types	of	wait-for	graphs.	The	real
graph	describes	the	real	but	unknown	state	of	the	system	at	any	instance	in	time,	as	would	be	seen	by	an
omni-scient	observer.	The	constructed	graph	is	an	approximation	generated	by	the	controller	during	the
execution	of	the	controller’s	algorithm.	Obviously,	the	controller	must	generate	the	constructed	graph	in
such	a	way	that,	whenever	the	detection	algorithm	is	invoked,	the	reported	results	are	correct.	Correct
means	in	this	case	that,	if	a	deadlock	exists,	it	is	reported	promptly,	and	if	the	system	reports	a	deadlock,
it	is	indeed	in	a	deadlock	state.

The	global	wait-for	graph	can	be	reconstructed	or	updated	under	these	conditions:

•	Whenever	a	new	edge	is	inserted	in	or	removed	from	one	of	the	local	wait-for	graphs.

•	Periodically,	when	a	number	of	changes	have	occurred	in	a	local	wait-for	graph.

•	Whenever	the	coordinator	needs	to	invoke	the	cycle-detection	algorithm.

When	the	coordinator	invokes	the	deadlock-detection	algorithm,	it	searches	its	global	graph.	If	it	finds	a
cycle,	it	selects	a	victim	to	be	rolled	back.	The	coordinator	must	notify	all	the	nodes	that	a	particular
transaction	has	been	selected	as	the	victim.

The	nodes,	in	turn,	roll	back	the	victim	transaction.

This	scheme	may	produce	unnecessary	rollbacks	if:

•	False	cycles	exist	in	the	global	wait-for	graph.	As	an	illustration,	consider	a	snapshot	of	the	system
represented	by	the	local	wait-for	graphs	of	Figure	23.6.	Suppose	that	T	releases	the	resource	that	it	is
holding	in	node	N	,	resulting	in	the	deletion	2

1

of	the	edge	T

→	T	in	N	.	Transaction	T	then	requests	a	resource	held	by	T

1

2

1

2

3

at	node	N	,	resulting	in	the	addition	of	the	edge	T

→	T	in	N	.	If	the

2

2

3

2

insert

T

→	T	message	from	N	arrives	before	the

→	T	message	from	N	,

2

3

2

remove	T	1

2

1

the	coordinator	may	discover	the	false	cycle	T

→	T	→	T	after	the

1

2

3

insert	(but

before	the	remove).	Deadlock	recovery	may	be	initiated,	although	no	deadlock	has	occurred.

Note	that	the	false-cycle	situation	could	not	occur	under	two-phase	locking.

The	likelihood	of	false	cycles	is	usually	sufficiently	low	that	they	do	not	cause	a	serious	performance
problem.

•	A	deadlock	has	indeed	occurred	and	a	victim	has	been	picked,	while	one	of	the	transactions	was	aborted
for	reasons	unrelated	to	the	deadlock.	For	example,	suppose	that	node	N	in	Figure	23.4	decides	to	abort	T
.	At	the	same	time,	the	coor-1

2

dinator	has	discovered	a	cycle	and	has	picked	T	as	a	victim.	Both	T	and	T	are	3

2

3

now	rolled	back,	although	only	T	needed	to	be	rolled	back.

2

23.3

Concurrency	Control	in	Distributed	Databases

1115

T	1

T	1

T	2

T	3

S

S

1

2

T	1

T	2

T	3

coordinator

Figure	23.6	False	cycles	in	the	global	wait-for	graph.

Deadlock	detection	can	be	done	in	a	distributed	manner,	with	several	nodes	taking	on	parts	of	the	task,
instead	of	it	being	done	at	a	single	node.	However,	such	algorithms	are	more	complicated	and	more
expensive.	See	the	bibliographical	notes	for	references	to	such	algorithms.

23.3.3

Leases

One	of	the	issues	with	using	locking	in	a	distributed	system	is	that	a	node	holding	a	lock	may	fail,	and	not
release	the	lock.	The	locked	data	item	could	thus	become	(logically)	inaccessible,	until	the	failed	node
recovers	and	releases	the	lock,	or	the	lock	is	released	by	another	node	on	behalf	of	the	failed	node.

If	an	exclusive	lock	has	been	obtained	on	a	data	item,	and	the	transaction	is	in	the	prepared	state,	the
lock	cannot	be	released	until	a	commit/abort	decision	is	made	for	the	transaction.	However,	in	many	other
cases	it	is	acceptable	for	a	lock	that	has	been	granted	earlier	to	be	revoked	subsequently.	In	such	cases,
the	concept	of	a	lease	can	be	very	useful.

A	lease	is	a	lock	that	is	granted	for	a	specific	period	of	time.	If	the	process	that	acquires	a	lease	needs	to
continue	holding	the	lock	beyond	the	specified	period,	it	can	renew	the	lease.	A	lease	renewal	request	is
sent	to	the	lock	manager,	which	extends	the	lease	and	responds	with	an	acknowledgment	as	long	as	the
renewal	request	comes	in	time.	However,	if	the	time	expires,	and	the	process	does	not	renew	the	lease,
the	lease	is	said	to	expire,	and	the	lock	is	released.	Thus,	any	lease	acquired	by	a	node	that	either	fails,	or
gets	disconnected	from	the	lock	manager,	is	automatically	released	when	the

1116

Chapter	23

Parallel	and	Distributed	Transaction	Processing

lease	expires.	The	node	that	holds	a	lease	regularly	compares	the	current	lease	expiry	time	with	its	local
clock	to	determine	if	it	still	has	the	lease	or	the	lease	has	expired.

One	of	the	uses	of	leases	is	to	ensure	that	there	is	only	one	coordinator	for	a	protocol	in	a	distributed
system.	A	node	that	wants	to	act	as	coordinator	requests	an	exclusive	lease	on	a	data	item	associated	with
the	protocol.	If	it	gets	the	lease,	it	can	act	as	coordinator	until	the	lease	expires;	as	long	as	it	is	active,	it
requests	lease	renewal	before	the	lease	expires,	and	it	continues	to	be	the	coordinator	as	long	as	the	lock
manager	permits	the	lease	renewal.

If	a	node	N	acting	as	coordinator	dies	after	the	expiry	of	the	lease	period,	the	1

lease	automatically	expires,	and	another	node	N	that	requests	the	lease	can	acquire	2

it	and	become	the	coordinator.	In	most	protocols	it	is	important	that	there	should	be	only	one	coordinator
at	a	given	time.	The	lease	mechanism	guarantees	this,	as	long	as	clocks	are	synchronized.	However,	if	the
coordinator’s	clock	runs	slower	than	the	lock	manager’s	clock,	a	situation	can	arise	where	the	coordinator
thinks	it	still	has	the	lease,	while	the	lock	manager	thinks	the	lease	has	expired.	While	clocks	cannot	be
exactly	synchronized,	in	practice	the	inaccuracy	is	not	very	high.	The	lock	manager	waits	for	some	extra
wait	time	after	the	lease	expiry	time	to	account	for	clock	inaccuracies	before	it	actually	treats	the	lease	as
expired.

A	node	that	checks	the	local	clock	and	decides	it	still	has	a	lease	may	then	take	a	subsequent	action	as
coordinator.	It	is	possible	that	the	lease	may	have	expired	between	when	the	clock	was	checked	and	when
the	subsequent	action	took	place,	which	could	result	in	the	action	taking	place	after	the	node	is	no	longer
the	coordinator.	Further,	even	if	the	action	took	place	while	the	node	had	a	valid	lease,	a	message	sent	by
the	node	may	be	delivered	after	a	delay,	by	which	time	the	node	may	have	lost	its	lease.

While	it	is	possible	for	the	network	to	deliver	a	message	arbitrarily	late,	the	system	can	decide	on	a
maximum	message	delay	time,	and	any	message	that	is	older	is	ignored	by	the	recipient;	messages	have
timestamps	set	by	the	sender,	which	are	used	to	detect	if	a	message	needs	to	be	ignored.

The	time	gaps	due	to	the	above	two	issues	can	be	taken	into	account	by	checking	that	the	lease	expiry	is
at	least	some	time	t′	into	the	future	before	initiating	an	action,	where	t′	is	a	bound	on	how	long	the	action
will	take	after	the	lease	time	check,	including	the	maximum	message	delay.

We	have	assumed	here	that	while	coordinators	may	fail,	the	lock	manager	that	issues	leases	is	able	to
tolerate	faults.	We	study	in	Section	23.8.4	how	to	build	a	fault-tolerant	lock	manager;	we	note	that	the
techniques	described	in	that	section	are	general	purpose	and	can	be	used	to	implement	fault-tolerant
versions	of	any	deterministic	process,	modeled	as	a	“state	machine.”

23.3.4

Distributed	Timestamp-Based	Protocols

The	principal	idea	behind	the	timestamp-based	concurrency	control	protocols	in	Section	18.5	is	that	each
transaction	is	given	a	unique	timestamp	that	the	system	uses	in

23.3

Concurrency	Control	in	Distributed	Databases

1117

local	unique

site

timestamp

identifier

global	unique

identifier

Figure	23.7	Generation	of	unique	timestamps.

deciding	the	serialization	order.	Our	first	task,	then,	in	generalizing	the	centralized	scheme	to	a
distributed	scheme	is	to	develop	a	scheme	for	generating	unique	timestamps.	We	then	discuss	how	the
timestamp-based	protocols	can	be	used	in	a	distributed	setting.

23.3.5

Generation	of	Timestamps

There	are	two	primary	methods	for	generating	unique	timestamps,	one	centralized	and	one	distributed.	In
the	centralized	scheme,	a	single	node	distributes	the	timestamps.

The	node	can	use	a	logical	counter	or	its	own	local	clock	for	this	purpose.	While	this	scheme	is	easy	to
implement,	failure	of	the	node	would	potentially	block	all	transaction	processing	in	the	system.

In	the	distributed	scheme,	each	node	generates	a	unique	local	timestamp	by	using	either	a	logical	counter
or	the	local	clock.	We	obtain	the	unique	global	timestamp	by	concatenating	the	unique	local	timestamp
with	the	node	identifier,	which	also	must	be	unique	(Figure	23.7).	If	a	node	has	multiple	threads	running
on	it	(as	is	almost	always	the	case	today),	a	thread	identifier	is	concatenated	with	the	node	identifier,	to
make	the	timestamp	unique.	Further,	we	assume	that	consecutive	calls	to	get	the	local	timestamp	within	a
node/thread	will	return	different	timestamps;	if	this	is	not	guaranteed	by	the	local	clock,	the	returned
local	timestamp	value	may	need	to	be	incremented,	to	ensure	two	calls	do	not	get	the	same	local
timestamp.

The	order	of	concatenation	is	important!	We	use	the	node	identifier	in	the	least	significant	position	to
ensure	that	the	global	timestamps	generated	in	one	node	are	not	always	greater	than	those	generated	in
another	node.

We	may	still	have	a	problem	if	one	node	generates	local	timestamps	at	a	rate	faster	than	that	of	the	other
nodes.	In	such	a	case,	the	fast	node’s	logical	counter	will	be	larger	than	that	of	other	nodes.	Therefore,	all
timestamps	generated	by	the	fast	node	will	be	larger	than	those	generated	by	other	nodes.	What	we	need
is	a	mechanism	to	ensure	that	local	timestamps	are	generated	fairly	across	the	system.	There	are	two
solution	approaches	for	this	problem.

1.	Keep	the	clocks	synchronized	by	using	a	network	time	protocol,	which	is	a	standard	feature	in
computers	today.	The	protocol	periodically	communicates	with	a

1118

Chapter	23

Parallel	and	Distributed	Transaction	Processing

server	to	find	the	current	time.	If	the	local	time	is	ahead	of	the	time	returned	by	the	server,	the	local	clock
is	slowed	down,	whereas	if	the	local	time	is	behind	the	time	returned	by	the	server	it	is	speeded	up,	to
bring	it	back	in	synchronization	with	the	time	at	the	server.	Since	all	nodes	are	approximately
synchronized	with	the	server,	they	are	also	approximately	synchronized	with	each	other.

2.	We	define	within	each	node	N	a	logical	clock	(LC),	which	generates	the	unique	i

i

local	timestamp.	The	logical	clock	can	be	implemented	as	a	counter	that	is	incremented	after	a	new	local
timestamp	is	generated.	To	ensure	that	the	various	logical	clocks	are	synchronized,	we	require	that	a
node	N	advance	its	logical	i

clock	whenever	a	transaction	T	with	timestamp	<	x,	y	>	visits	that	node	and	x	i

is	greater	than	the	current	value	of	LC	.	In	this	case,	node	N	advances	its	logical	i

i

clock	to	the	value	x	+	1.	As	long	as	messages	are	exchanged	regularly,	the	logical	clocks	will	be
approximately	synchronized.

23.3.6

Distributed	Timestamp	Ordering

The	timestamp	ordering	protocol	can	be	easily	extended	to	a	parallel	or	distributed	database	setting.	Each
transaction	is	assigned	a	globally	unique	timestamp	at	the	node	where	it	originates.	Requests	sent	to
other	nodes	include	the	transaction	timestamp.

Each	node	keeps	track	of	the	read	and	write	timestamps	of	the	data	items	at	that	node.

Whenever	an	operation	is	received	by	a	node,	it	does	the	timestamp	checks	that	we	saw	in	Section	18.5.2,
locally,	without	any	need	to	communicate	with	other	nodes.

Timestamps	must	be	reasonably	synchronized	across	nodes;	otherwise,	the	following	problem	can	occur.
Suppose	one	node	has	a	time	significantly	lagging	the	others,	and	a	transaction	T	gets	its	timestamp	at
that	node	n	.	Suppose	the	transaction	T

1

1

1

fails	a	timestamp	test	on	a	data	item	d	because	d	has	been	updated	by	a	transaction	T

i

i

2

with	a	higher	timestamp;	T	would	be	restarted	with	a	new	timestamp,	but	if	the	time	1

at	node	n	is	not	synchronized,	the	new	timestamp	may	still	be	old	enough	to	cause	1

the	timestamp	test	to	fail,	and	T	would	be	restarted	repeatedly	until	the	time	at	n	1

1

advances	ahead	of	the	timestamp	of	T	.

2

Note	that	as	in	the	centralized	case,	if	a	transaction	T	reads	an	uncommitted	value	i

written	by	another	transaction	T	,	T	cannot	commit	until	T	commits.	This	can	be	en-j

i

j

sured	either	by	making	reads	wait	for	uncommitted	writes	to	be	committed,	which	can	be	implemented
using	locking,	or	by	introducing	commit	dependencies,	as	discussed	in	Section	18.5.	The	waiting	time	can
be	exacerbated	by	the	time	required	to	perform	2PC,	if	the	transaction	performs	updates	at	more	than	one
node.	While	a	transaction	Ti	is	in	the	prepared	state,	its	writes	are	not	committed,	so	any	transaction	with
a	higher	timestamp	that	reads	an	item	written	by	T	would	be	forced	to	wait.

i

We	also	note	that	the	multiversion	timestamp	ordering	protocol	can	be	used	locally	at	each	node,	without
any	need	to	communicate	with	other	nodes,	similar	to	the	case	of	the	timestamp	ordering	protocol.

23.3

Concurrency	Control	in	Distributed	Databases

1119

23.3.7

Distributed	Validation

We	now	consider	the	validation-based	protocol	(also	called	the	optimistic	concurrency	control	protocol)
that	we	saw	in	Section	18.6.	The	protocol	is	based	on	three	timestamps:

•	The	start	timestamp	StartTS(T).

i

•	The	validation	timestamp,	TS(T),	which	is	used	as	the	serialization	order.

i

•	The	finish	timestamp	FinishTS(T)	which	identifies	when	the	writes	of	a	transac-i

tion	have	completed.

While	we	saw	a	serial	version	of	the	validation	protocol	in	Section	18.6,	where	only	one	transaction	can
perform	validation	at	a	time,	there	are	extensions	to	the	protocol	to	allow	validations	of	multiple
transactions	to	occur	concurrently,	within	a	single	system.

We	now	consider	how	to	adapt	the	protocol	to	a	distributed	setting.

1.	Validation	is	done	locally	at	each	node,	with	timestamps	assigned	as	described	below.

2.	In	a	distributed	setting,	the	validation	timestamp	TS(T)	can	be	assigned	at	any	i

of	the	nodes,	but	the	same	timestamp	TS(T)	must	be	used	at	all	nodes	where	i

validation	is	to	be	performed.	Transactions	must	be	serializable	based	on	their	timestamps	TS(T).

i

3.	The	validation	test	for	a	transaction	T	looks	at	all	transactions	T	with	TS(T)	<

i

j

j

TS(T),	to	check	if	T	either	finished	before	T	started,	or	has	no	conflicts	with	i

j

i

T	.	The	assumption	is	that	once	a	particular	transaction	enters	the	validation	i

phase,	no	transaction	with	a	lower	timestamp	can	enter	the	validation	phase.	The	assumption	can	be
ensured	in	a	centralized	system	by	assigning	the	timestamps	in	a	critical	section,	but	cannot	be	ensured	in
a	distributed	setting.

A	key	problem	in	the	distributed	setting	is	that	a	transaction	T	may	enter	the	j

validation	phase	after	a	transaction	T	,	but	with	TS(T)	<	TS(T).	It	is	too	late	for	i

j

i

T	to	be	validated	against	T	.	However,	this	problem	can	be	easily	fixed	by	rolling	i

j

back	any	transaction	if,	when	it	starts	validation	at	a	node,	a	transaction	with	a	later	timestamp	had
already	started	validation	at	that	node.

4.	The	start	and	finish	timestamps	are	used	to	identify	transactions	T	whose	writes	j

would	definitely	have	been	seen	by	a	transaction	T	.	These	timestamps	must	i

be	assigned	locally	at	each	node,	and	must	satisfy	StartTS(T)	≤	TS(T)	≤

i

i

FinishTS(T).	Each	node	uses	these	timestamps	to	perform	validation	locally.

i

5.	When	used	in	conjunction	with	2PC,	a	transaction	must	first	be	validated	and	then	enter	the	prepared
state.	Writes	cannot	be	committed	at	the	database	until

1120

Chapter	23

Parallel	and	Distributed	Transaction	Processing

the	transaction	enters	the	committed	state	in	2PC.	Suppose	a	transaction	T	reads	j

an	item	updated	by	a	transaction	T	that	is	in	the	prepared	state	and	is	allowed	i

to	proceed	using	the	old	value	of	the	data	item	(since	the	value	generated	by	Ti	has	not	yet	been	written
to	the	database).	Then,	when	transaction	T	attempts	to	j

validate,	it	will	be	serialized	after	T	and	will	surely	fail	validation	if	T	commits.

i

i

Thus,	the	read	by	T	may	as	well	be	held	until	T	commits	and	finishes	its	writes.

j

i

The	above	behavior	is	the	same	as	what	would	happen	with	locking,	with	write	locks	acquired	at	the	time
of	validation.

Although	full	implementations	of	validation-based	protocols	are	not	widely	used	in	distributed	settings,
optimistic	concurrency	control	without	read	validation,	which	we	saw	in	Section	18.9.3,	is	widely	used	in
distributed	settings.	Recall	that	the	scheme	depends	on	storing	a	version	number	with	each	data	item,	a
feature	that	is	supported	by	many	key-value	stores.1	Version	numbers	are	incremented	each	time	the	data
item	is	updated.

Validation	is	performed	at	the	time	of	writing	the	data	item,	which	can	be	done	using	a	test-and-set
function	based	on	version	numbers,	that	is	supported	by	some	key-value	stores.	This	function	allows	an

update	to	a	data	item	to	be	conditional	on	the	current	version	of	the	data	item	being	the	same	as	a
specified	version	number.	If	the	current	version	number	of	the	data	item	is	more	recent	than	the	specified
version	number,	the	update	is	not	performed.	For	example,	a	transaction	that	read	version	7	of	a	data	item
can	perform	a	write,	conditional	on	the	version	still	being	at	7.	If	the	item	has	been	updated	meanwhile,
the	current	version	would	not	match,	and	the	write	would	fail;	however,	if	the	version	number	is	still	7,
the	write	would	be	performed	successfully,	and	the	version	number	incremented	to	8.

The	test-and-set	function	can	thus	be	used	by	applications	to	implement	the	limited	form	of	validation-
based	concurrency	control,	discussed	in	Section	18.9.3,	at	the	level	of	individual	data	items.	Thereby,	a
transaction	could	read	a	value	from	a	data	item,	perform	computation	locally,	and	update	the	data	item	at
the	end,	as	long	as	the	value	it	read	has	not	changed	subsequently.	This	approach	does	not	guarantee
overall	serializability,	but	it	does	prevent	the	lost-update	anomaly.

HBase	supports	the	test-and-set	operation	based	on	comparing	values	(similar	to	the	hardware	test-and-
set	operation),	which	is	called	checkAndPut().	Instead	of	comparing	to	a	system-generated	version
number,	the	checkAndPut()	invocation	can	pass	in	a	column	and	a	value;	the	update	is	performed	only	if
the	row	has	the	specified	value	for	the	specified	column.	The	check	and	the	update	are	performed
atomically.

A	variant,	checkAndMutate(),	allows	multiple	modifications	to	a	row,	such	as	adding	or	updating	a	column,
deleting	a	column,	or	incrementing	a	column,	after	checking	a	condition,	as	a	single	atomic	operation.

1Note	that	this	is	not	the	same	as	multiversioning,	since	only	one	version	needs	to	be	stored.

23.4

Replication

1121

23.4

Replication

One	of	the	goals	in	using	distributed	databases	is	high	availability;	that	is,	the	database	must	function
almost	all	the	time.	In	particular,	since	failures	are	more	likely	in	large	distributed	systems,	a	distributed
database	must	continue	functioning	even	when	there	are	various	types	of	failures.	The	ability	to	continue
functioning	even	during	failures	is	referred	to	as	robustness.

For	a	distributed	system	to	be	robust,	data	must	be	replicated,	allowing	the	data	to	be	accessible	even	if	a
node	containing	a	replica	of	the	data	fails.

The	database	system	must	keep	track	of	the	locations	of	the	replicas	of	each	data	item	in	the	database
catalog.	Replication	can	be	at	the	level	of	individual	data	items,	in	which	the	catalog	will	have	one	entry
for	each	data	item,	recording	the	nodes	where	it	is	replicated.	Alternatively,	replication	can	be	done	at	the
level	of	partitions	of	a	relation,	with	an	entire	partition	replicated	at	two	or	more	nodes.	The	catalog
would	then	have	one	entry	for	each	partition,	resulting	in	considerably	lower	overhead	than	having	one
entry	for	each	data	item.

In	this	section	we	first	discuss	(in	Section	23.4.1)	issues	with	consistency	of	values	between	replicas.	We
then	discuss	(in	Section	23.4.2)	how	to	extend	concurrency	control	techniques	to	deal	with	replicas,
ignoring	the	issue	of	failures.	Further	extensions	of	the	techniques	to	handle	failures	but	modifying	how
reads	and	writes	are	executed	are	described	in	Section	23.4.3.

23.4.1

Consistency	of	Replicas

Given	that	a	data	item	(or	partition)	is	replicated,	the	system	should	ideally	ensure	that	the	copies	have
the	same	value.	Practically,	given	that	some	nodes	may	be	disconnected	or	may	have	failed,	it	is
impossible	to	ensure	that	all	copies	have	the	same	value.	Instead,	the	system	must	ensure	that	even	if
some	replicas	do	not	have	the	latest	value,	reads	of	a	data	item	get	to	see	the	latest	value	that	was
written.

More	formally,	the	implementations	of	read	and	write	operations	on	the	replicas	of	a	data	item	must
follow	a	protocol	that	ensures	the	following	property,	called	linearizability:	Given	a	set	of	read	and	write
operations	on	a	data	item,	1.	there	must	be	a	linear	ordering	of	the	operations	such	that	each	read	in	the
ordering	should	see	the	value	written	by	the	most	recent	write	preceding	the	read	(or	the	initial	value	if
there	is	no	such	write),	and

2.	if	an	operation	o	finishes	before	an	operation	o	begins	(based	on	external	time),	1

2

then	o	must	precede	o	in	the	linear	order.

1

2

Note	that	linearizability	only	addresses	what	happens	to	a	single	data	item,	and	it	is	orthogonal	to
serializability.

1122

Chapter	23

Parallel	and	Distributed	Transaction	Processing

We	first	consider	approaches	that	write	all	copies	of	a	data	item	and	discuss	limitations	of	this	approach;
in	particular,	to	ensure	availability	during	failure,	failed	nodes	need	to	be	removed	from	the	set	of
replicas,	which	can	be	quite	tricky	as	we	will	see.

It	is	not	possible,	in	general,	to	differentiate	between	node	failure	and	network	partition.	The	system	can
usually	detect	that	a	failure	has	occurred,	but	it	may	not	be	able	to	identify	the	type	of	failure.	For
example,	suppose	that	node	N	is	not	able	to	1

communicate	with	N	.	It	could	be	that	N	has	failed.	However,	another	possibility	is	2

2

that	the	link	between	N	and	N	has	failed,	resulting	in	network	partition.	The	problem	1

2

is	partly	addressed	by	using	multiple	links	between	nodes,	so	that	even	if	one	link	fails	the	nodes	will
remain	connected.	However,	multiple	link	failures	can	still	occur,	so	there	are	situations	where	we	cannot
be	sure	whether	a	node	failure	or	network	partition	has	occurred.

There	are	protocols	for	data	access	that	can	continue	working	even	if	some	nodes	have	failed,	without	any
explicit	actions	to	deal	with	the	failures,	as	we	shall	see	in	Section	23.4.3.1.	These	protocols	are	based	on
ensuring	a	majority	of	nodes	are	written/read.	With	such	protocols,	actions	to	detect	failed	nodes	and
remove	them	from	the	system	can	be	done	in	the	background,	and	(re)integration	of	new	or	recovered
nodes	into	the	system	can	also	be	done	without	disrupting	processing.

Although	traditional	database	systems	place	a	premium	on	consistency,	there	are	many	applications	today
that	value	availability	more	than	consistency.	The	design	of	replication	protocols	is	different	for	such
systems	and	is	discussed	in	Section	23.6.

In	particular,	one	such	alternative	that	is	widely	used	for	maintaining	replicated	data	is	to	perform	the
update	on	a	primary	copy	of	the	data	item,	and	allow	the	transaction	to	commit	without	updating	the
other	copies.	However,	the	update	is	subsequently	propagated	to	the	other	copies.	Such	propagation	of
updates,	referred	to	as	asynchronous	replication	or	lazy	propagation	of	updates,	is	discussed	in	Section
23.6.2.

One	drawback	of	asynchronous	replication	is	that	replicas	may	be	out	of	date	for	some	time	following
each	update.	Another	drawback	is	that	if	the	primary	copy	fails	after	a	transaction	commits,	but	before
the	updates	were	propagated	to	the	replicas,	the	updates	of	the	committed	transaction	may	not	be	visible
to	subsequent	transactions,	leading	to	an	inconsistency.

On	the	other	hand,	a	major	benefit	of	asynchronous	replication	is	that	exclusive	locks	can	be	released	as
soon	as	the	transaction	commits	on	the	primary	copy.	In	contrast,	if	other	replicas	have	to	be	updated
before	the	transaction	commits,	there	may	be	a	significant	delay	in	committing	the	transaction.	In
particular,	if	data	is	geographically	replicated	to	ensure	availability	despite	failure	of	an	entire	data
center,	the	network	round-trip	time	to	a	remote	data	center	could	range	from	tens	of	milliseconds	to
nearby	locations,	up	to	hundreds	of	milliseconds	for	data	centers	that	are	on	the	other	side	of	the	world.	If
a	transaction	were	to	hold	a	lock	on	a	data	item	for	this	duration,	the	number	of	transactions	that	can
update	that	data	item	would	be	limited	to	approximately	10	to	100	transactions	per	second.	For	certain
applications,	for	example,	user	data	in	a	web	application,	10	to	100	transactions	per	second	for	a	single
data	item	is	quite	sufficient.	However,	for	applications	where	some	data	items	are	updated

23.4

Replication

1123

by	a	large	number	of	transactions	each	second,	holding	locks	for	such	a	long	time	is	not	acceptable.
Asynchronous	replication	may	be	preferred	in	such	cases.

23.4.2

Concurrency	Control	with	Replicas

We	discuss	several	alternative	ways	of	dealing	with	locking	in	the	presence	of	replication	of	data	items,	in
Section	23.4.2.1	to	Section	23.4.2.4.

In	this	section,	we	assume	updates	are	done	on	all	replicas	of	a	data	item.	If	any	node	containing	a	replica
of	a	data	item	has	failed,	or	is	disconnected	from	the	other	nodes,	that	replica	cannot	be	updated.	We
discuss	how	to	perform	reads	and	updates	in	the	presence	of	failures	later,	in	Section	23.4.3.

23.4.2.1

Primary	Copy

When	a	system	uses	data	replication,	we	can	choose	one	of	the	replicas	of	a	data	item	as	the	primary	copy.
For	each	data	item	Q,	the	primary	copy	of	Q	must	reside	in	precisely	one	node,	which	we	call	the	primary
node	of	Q.

When	a	transaction	needs	to	lock	a	data	item	Q,	it	requests	a	lock	at	the	primary	node	of	Q.	As	before,	the
response	to	the	request	is	delayed	until	it	can	be	granted.	The	primary	copy	enables	concurrency	control
for	replicated	data	to	be	handled	like	that	for	unreplicated	data.	This	similarity	allows	for	a	simple
implementation.	However,	if	the	primary	node	of	Q	fails,	lock	information	for	Q	would	be	lost,	and	Q	would
be	inaccessible,	even	though	other	nodes	containing	a	replica	may	be	accessible.

23.4.2.2

Majority	Protocol

The	majority	protocol	works	this	way:	If	data	item	Q	is	replicated	in	n	different	nodes,	then	a	lock-request
message	must	be	sent	to	more	than	one-half	of	the	n	nodes	in	which	Q	is	stored.	Each	lock	manager
determines	whether	the	lock	can	be	granted	immediately	(as	far	as	it	is	concerned).	As	before,	the
response	is	delayed	until	the	request	can	be	granted.	The	transaction	does	not	operate	on	Q	until	it	has
successfully	obtained	a	lock	on	a	majority	of	the	replicas	of	Q.

We	assume	for	now	that	writes	are	performed	on	all	replicas,	requiring	all	nodes	containing	replicas	to	be
available.	However,	the	major	benefit	of	the	majority	protocol	is	that	it	can	be	extended	to	deal	with	node
failures,	as	we	shall	see	in	Section	23.4.3.1.

The	protocol	also	deals	with	replicated	data	in	a	decentralized	manner,	thus	avoiding	the	drawbacks	of
central	control.	However,	it	suffers	from	these	disadvantages:

•	Implementation.	The	majority	protocol	is	more	complicated	to	implement	than	are	the	previous
schemes.	It	requires	at	least	2(n∕2	+	1)	messages	for	handling	lock	requests	and	at	least	(n∕2	+	1)
messages	for	handling	unlock	requests.

•	Deadlock	handling.	In	addition	to	the	problem	of	global	deadlocks	due	to	the	use	of	a	distributed-lock-
manager	approach,	it	is	possible	for	a	deadlock	to	occur	even	if	only	one	data	item	is	being	locked.	As	an
illustration,	consider	a	system	with	four	nodes	and	full	replication.	Suppose	that	transactions	T	and	T	wish
to	lock	1

2

1124

Chapter	23

Parallel	and	Distributed	Transaction	Processing

data	item	Q	in	exclusive	mode.	Transaction	T	may	succeed	in	locking	Q	at	nodes	1

N	and	N	,	while	transaction	T	may	succeed	in	locking	Q	at	nodes	N	and	N	.

1

3

2

2

4

Each	then	must	wait	to	acquire	the	third	lock;	hence,	a	deadlock	has	occurred.

Luckily,	we	can	avoid	such	deadlocks	with	relative	ease	by	requiring	all	nodes	to	request	locks	on	the
replicas	of	a	data	item	in	the	same	predetermined	order.

23.4.2.3

Biased	Protocol

The	biased	protocol	is	another	approach	to	handling	replication.	The	difference	from	the	majority	protocol
is	that	requests	for	shared	locks	are	given	more	favorable	treatment	than	requests	for	exclusive	locks.

•	Shared	locks.	When	a	transaction	needs	to	lock	data	item	Q,	it	simply	requests	a	lock	on	Q	from	the	lock
manager	at	one	node	that	contains	a	replica	of	Q.

•	Exclusive	locks.	When	a	transaction	needs	to	lock	data	item	Q,	it	requests	a	lock	on	Q	from	the	lock
manager	at	all	nodes	that	contain	a	replica	of	Q.

As	before,	the	response	to	the	request	is	delayed	until	it	can	be	granted.

The	biased	scheme	has	the	advantage	of	imposing	less	overhead	on	read	operations	than	does	the
majority	protocol.	This	savings	is	especially	significant	in	common	cases	in	which	the	frequency	of	read	is
much	greater	than	the	frequency	of	write.	However,	the	additional	overhead	on	writes	is	a	disadvantage.
Furthermore,	the	biased	protocol	shares	the	majority	protocol’s	disadvantage	of	complexity	in	handling
deadlock.

23.4.2.4

Quorum	Consensus	Protocol

The	quorum	consensus	protocol	is	a	generalization	of	the	majority	protocol.	The	quorum	consensus
protocol	assigns	each	node	a	nonnegative	weight.	It	assigns	read	and	write	operations	on	an	item	x	two
integers,	called	read	quorum	Q	and	write	quorum	r

Q	,	that	must	satisfy	the	following	condition,	where	S	is	the	total	weight	of	all	nodes	w

at	which	x	resides:

Q	+	Q	>	S	and	2	∗	Q	>	S

r

w

w

To	execute	a	read	operation,	enough	replicas	must	be	locked	that	their	total	weight	is	at	least	Q	.	To
execute	a	write	operation,	enough	replicas	must	be	locked	so	that	their	r

total	weight	is	at	least	Q	.

w

A	benefit	of	the	quorum	consensus	approach	is	that	it	can	permit	the	cost	of	either	read	or	write	locking
to	be	selectively	reduced	by	appropriately	defining	the	read	and	write	quorums.	For	instance,	with	a	small
read	quorum,	reads	need	to	obtain	fewer	locks,	but	the	write	quorum	will	be	higher,	hence	writes	need	to
obtain	more	locks.

Also,	if	higher	weights	are	given	to	some	nodes	(e.g.,	those	less	likely	to	fail),	fewer

23.4

Replication

1125

nodes	need	to	be	accessed	for	acquiring	locks.	In	fact,	by	setting	weights	and	quorums	appropriately,	the

quorum	consensus	protocol	can	simulate	the	majority	protocol	and	the	biased	protocols.

Like	the	majority	protocol,	quorum	consensus	can	be	extended	to	work	even	in	the	presence	of	node
failures,	as	we	shall	see	in	Section	23.4.3.1.

23.4.3

Dealing	with	Failures

Consider	the	following	protocol	to	deal	with	replicated	data.	Writes	must	be	successfully	performed	at	all
replicas	of	a	data	item.	Reads	may	read	from	any	replica.	When	coupled	with	two-phase	locking,	such	a
protocol	will	ensure	that	reads	will	see	the	value	written	by	the	most	recent	write	to	the	same	data	item.
This	protocol	is	also	called	the	read	one,	write	all	copies	protocol	since	all	replicas	must	be	written,	and
any	replica	can	be	read.

The	problem	with	this	protocol	lies	in	what	to	do	if	some	node	is	unavailable.	To	allow	work	to	proceed	in
the	event	of	failures,	it	may	appear	that	we	can	use	a	“read	one,	write	all	available”	protocol.	In	this
approach,	a	read	operation	proceeds	as	in	the	read	one,	write	all	scheme;	any	available	replica	can	be
read,	and	a	read	lock	is	obtained	at	that	replica.	A	write	operation	is	shipped	to	all	replicas,	and	write
locks	are	acquired	on	all	the	replicas.	If	a	node	is	down,	the	transaction	manager	proceeds	without
waiting	for	the	node	to	recover.	While	this	approach	appears	very	attractive,	it	does	not	guarantee
consistency	of	writes	and	reads.	For	example,	a	temporary	communication	failure	may	cause	a	node	to
appear	to	be	unavailable,	resulting	in	a	write	not	being	performed,	but	when	the	link	is	restored,	the	node
is	not	aware	that	it	has	to	perform	some	reintegration	actions	to	catch	up	on	writes	it	has	lost.	Further,	if
the	network	partitions,	each	partition	may	proceed	to	update	the	same	data	item,	believing	that	nodes	in
the	other	partitions	are	all	dead.

23.4.3.1

Robustness	Using	the	Majority-Based	Protocol

The	majority-based	approach	to	distributed	concurrency	control	in	Section	23.4.2.2

can	be	modified	to	work	in	spite	of	failures.	In	this	approach,	each	data	object	stores	with	it	a	version
number	to	detect	when	it	was	last	written.	Whenever	a	transaction	writes	an	object	it	also	updates	the
version	number	in	this	way:

•	If	data	object	a	is	replicated	in	n	different	nodes,	then	a	lock-request	message	must	be	sent	to	more	than
one-half	of	the	n	nodes	at	which	a	is	stored.	The	transaction	does	not	operate	on	a	until	it	has	successfully
obtained	a	lock	on	a	majority	of	the	replicas	of	a.

Updates	to	the	replicas	can	be	committed	atomically	using	2PC.	(We	assume	for	now	that	all	replicas	that
were	accessible	stay	accessible	until	commit,	but	we

1126

Chapter	23

Parallel	and	Distributed	Transaction	Processing

relax	this	requirement	later	in	this	section,	where	we	also	discuss	alternatives	to	2PC.)

•	Read	operations	look	at	all	replicas	on	which	a	lock	has	been	obtained	and	read	the	value	from	the
replica	that	has	the	highest	version	number.	(Optionally,	they	may	also	write	this	value	back	to	replicas
with	lower	version	numbers.)	Writes	read	all	the	replicas	just	like	reads	to	find	the	highest	version
number	(this	step	would	normally	have	been	performed	earlier	in	the	transaction	by	a	read,	and	the	result
can	be	reused).	The	new	version	number	is	one	more	than	the	highest	version	number.	The	write
operation	writes	all	the	replicas	on	which	it	has	obtained	locks	and	sets	the	version	number	at	all	the
replicas	to	the	new	version	number.

Failures	(whether	network	partitions	or	node	failures)	can	be	tolerated	as	long	as	(1)	the	nodes	available
at	commit	contain	a	majority	of	replicas	of	all	the	objects	written	to	and	(2)	during	reads,	a	majority	of
replicas	are	read	to	find	the	version	numbers.

If	these	requirements	are	violated,	the	transaction	must	be	aborted.	As	long	as	the	requirements	are
satisfied,	the	two-phase	commit	protocol	can	be	used,	as	usual,	on	the	nodes	that	are	available.

In	this	scheme,	reintegration	is	trivial;	nothing	needs	to	be	done.	This	is	because	writes	would	have
updated	a	majority	of	the	replicas,	while	reads	will	read	a	majority	of	the	replicas	and	find	at	least	one
replica	that	has	the	latest	version.

However,	the	majority	protocol	using	version	numbers	has	some	limitations,	which	can	be	avoided	by

using	extensions	or	by	using	alternative	protocols.

1.	The	first	problem	is	how	to	deal	with	the	failure	of	participants	during	an	execution	of	the	two-phase
commit	protocol.

This	problem	can	be	dealt	with	by	an	extension	of	the	two-phase	commit	protocol	that	allows	commit	to
happen	even	if	some	replicas	are	unavailable,	as	long	as	a	majority	of	replicas	of	a	partition	confirm	that
they	are	in	prepared	state.	When	participants	recover	or	get	reconnected,	or	otherwise	discover	that	they
do	not	have	the	latest	updates,	they	need	to	query	other	nodes	to	catch	up	on	missing	updates.
References	that	provide	details	of	such	solutions	may	be	found	in	the	bibliographic	notes	for	this	chapter,
available	online.

2.	The	second	problem	is	how	to	deal	with	the	failure	of	the	coordinator	during	an	execution	of	two-phase
commit	protocol,	which	could	lead	to	the	blocking	problem.	Consensus	protocols,	which	we	study	in
Section	23.8,	provide	a	robust	way	of	implementing	two-phase	commit	without	the	risk	of	blocking	even	if
the	coordinator	fails,	as	long	as	a	majority	of	the	nodes	are	up	and	connected,	as	we	will	see	in	Section
23.8.5.

3.	The	third	problem	is	that	reads	pay	a	higher	price,	having	to	contact	a	majority	of	the	copies.	We	study
approaches	to	reducing	the	read	overhead	in	Section	23.4.3.2.

23.4

Replication

1127

23.4.3.2

Reducing	Read	Cost

One	approach	to	dealing	with	this	problem	is	to	use	the	idea	of	read	and	write	quorums	from	the	quorum
consensus	protocol;	reads	can	read	from	a	smaller	read	quorum,	while	writes	have	to	successfully	write	to
a	larger	write	quorum.	There	is	no	change	to	the	version	numbering	technique	described	earlier.	The
drawback	of	this	approach	is	that	a	higher	write	quorum	increases	the	chance	of	blocking	of	update
transactions,	due	to	failure	or	disconnection	of	nodes.	As	a	special	case	of	quorum	consensus,	we	give	unit
weights	to	all	nodes,	set	the	read	quorum	to	1,	and	set	the	write	quorum	to	n	(all	nodes).

This	corresponds	to	the	read-any-write-all	protocol	we	saw	earlier.	There	is	no	need	to	use	version
numbers	with	this	protocol.	However,	if	even	a	single	node	containing	a	data	item	fails,	no	write	to	the
item	can	proceed,	since	the	write	quorum	will	not	be	available.

A	second	approach	is	to	use	the	primary	copy	technique	for	concurrency	control	and	force	all	updates	to
go	through	the	primary	copy.	Reads	can	be	satisfied	by	accessing	only	one	node,	in	contrast	to	the
majority	or	quorum	protocols.	However,	an	issue	with	this	approach	is	how	to	handle	failures.	If	the
primary	copy	node	fails,	and	another	node	is	assigned	to	act	as	the	primary	copy,	it	must	ensure	that	it
has	the	latest	version	of	all	data	items.	Subsequently,	reads	can	be	done	at	the	primary	copy,	without
having	to	read	data	from	other	copies.

This	approach	requires	that	there	be	at	most	one	node	that	can	act	as	primary	copy	at	a	time,	even	in	the
event	of	network	partitions.	This	can	be	ensured	using	leases	as	we	saw	earlier	in	Section	23.7.
Furthermore,	this	approach	requires	an	efficient	way	for	the	new	coordinator	to	ensure	that	it	has	the
latest	version	of	all	data	items.	This	can	be	done	by	having	a	log	at	each	node	and	ensuring	the	logs	are
consistent	with	each	other.	This	problem	is	by	itself	a	nontrivial	process,	but	it	can	be	solved	using
distributed	consensus	protocols	which	we	study	in	Section	23.8.	Distributed	consensus	internally	uses	a
majority	scheme	to	ensure	consistency	of	the	logs.	But	it	turns	out	that	if	distributed	consensus	is	used	to
keep	logs	synchronized,	there	is	no	need	for	version	numbering.

In	fact,	consensus	protocols	provide	a	way	of	implementing	fault-tolerant	replication	of	data,	as	we	see
later	in	Section	23.8.4.	Many	fault-tolerant	storage	system	implementations	today	are	built	using	fault-
tolerant	replication	of	data	based	on	consensus	protocols.

There	is	a	variant	of	the	primary	copy	scheme,	called	the	chain	replication	protocol,	where	the	replicas
are	ordered.	Each	update	is	sent	to	the	first	replica,	which	records	it	locally	and	forwards	it	to	the	next
replica,	and	so	on.	The	update	is	completed	when	the	last	(tail)	replica	receives	the	update.	Reads	must	be
executed	at	the	tail	replica,	to	ensure	that	only	updates	that	have	been	fully	replicated	are	read.	If	a	node
in	a	replica	chain	fails,	reconfiguration	is	required	to	update	the	chain;	further,	the	system	must	ensure
that	any	incomplete	updates	are	completed	before	processing	further	updates.

Optimized	versions	of	the	chain	replication	scheme	are	used	in	several	storage	systems.

1128

Chapter	23

Parallel	and	Distributed	Transaction	Processing

References	providing	more	details	of	the	chain	replication	protocol	may	be	found	in	the	Further	Reading
section	at	the	end	of	the	chapter.

23.4.4

Reconfiguration	and	Reintegration

While	nodes	do	fail,	in	most	cases	nodes	recover	soon,	and	the	protocols	described	earlier	can	ensure	that
they	will	catch	up	with	any	updates	that	they	missed.

However,	in	some	cases	a	node	may	fail	permanently.	The	system	must	then	be	reconfigured	to	remove
failed	nodes,	and	to	allow	other	nodes	to	take	over	the	tasks	assigned	to	the	failed	node.	Further,	the
database	catalog	must	be	updated	to	remove	the	failed	node	from	the	list	of	replicas	of	all	data	items	(or
relation	partitions)	that	were	replicated	at	that	node.

As	discussed	earlier,	a	network	failure	may	result	in	a	node	appearing	to	have	failed,	even	if	it	has	not
actually	failed.	It	is	safe	to	remove	such	a	node	from	the	list	of	replicas;	reads	will	no	longer	be	routed	to
the	node	even	though	it	may	be	accessible,	but	that	will	not	cause	any	consistency	problems.

If	a	failed	node	that	was	removed	from	the	system	eventually	recovers,	it	must	be	reintegrated	into	the
system.	When	a	failed	node	recovers,	if	it	had	replicas	of	any	partition	or	data	item,	it	must	obtain	the
current	values	of	these	data	items	it	stores.

The	database	recovery	log	at	a	live	site	can	be	used	to	find	and	perform	all	updates	that	happened	when
the	node	was	down,

Reintegration	of	a	node	is	more	complicated	than	it	may	seem	to	be	at	first	glance,	since	there	may	be
updates	to	the	data	items	processed	during	the	time	that	the	node	is	recovering.	The	database	recovery
log	at	a	live	site	is	used	for	catching	up	with	the	latest	values	for	all	data	items	at	the	node.	Once	it	has
caught	up	with	the	current	value	of	all	data	items,	the	node	should	be	added	back	into	the	list	of	replicas
for	the	relevant	partitions/data	items,	so	it	will	receive	all	future	updates.	Locks	are	obtained	on	the
partitions/data	items,	updates	up	to	that	point	are	applied	from	the	log,	and	the	node	is	added	to	the	list
of	replicas	for	the	partitions	or	data	items,	before	releasing	the	locks.

Subsequent	updates	will	be	applied	directly	to	the	node,	since	it	will	be	in	the	list	of	replicas.

Reintegration	is	much	easier	with	the	majority-based	protocols	in	Section	23.4.3.1,	since	the	protocol	can
tolerate	nodes	with	out-of-date	data.	In	this	case,	a	node	can	be	reintegrated	even	before	catching	up	on
updates,	and	the	node	can	catch	up	with	missed	updates	subsequently.

Reconfiguration	depends	on	nodes	having	an	up-to-date	version	of	the	catalog	that	records	what	table
partitions	(or	data	items)	are	replicated	at	what	nodes;	thus	information	must	be	consistent	across	all
nodes	in	a	system.	The	replication	information	in	the	catalog	could	be	stored	centrally,	and	consulted	on
each	access,	but	such	a	design	would	not	be	scalable	since	the	central	node	would	be	consulted	very
frequently	and	would	get	overloaded.	To	avoid	such	a	bottleneck,	the	catalog	itself	needs	to	be
partitioned,	and	it	may	be	replicated,	for	example,	using	the	majority	protocol.

23.5

Extended	Concurrency	Control	Protocols

1129

23.5

Extended	Concurrency	Control	Protocols

In	this	section,	we	describe	further	extensions	to	distributed	concurrency	control	protocols.	We	first
consider	multiversion	2PL	and	how	it	can	be	extended	to	get	globally	consistent	timestamps,	in	Section
23.5.1.	Extensions	of	snapshot	isolation	to	distributed	settings	are	described	in	Section	23.5.2.	Issues	in
concurrency	control	in	heterogeneous	distributed	databases,	where	each	node	may	have	its	own
concurrency	control	technique,	are	described	in	Section	23.5.3.

23.5.1

Multiversion	2PL	and	Globally	Consistent	Timestamps

The	multiversion	two-phase	locking	(MV2PL)	protocol,	described	in	Section	18.7.2,	combines	the	benefits
of	lock-free	read-only	transactions	with	the	serializability	guarantees	of	two-phase	locking.	Read-only
transactions	see	a	snapshot	at	a	point	in	time,	while	update	transactions	use	two-phase	locking	but	create
new	versions	of	each	data	item	that	they	update.	Recall	that	with	this	protocol,	each	transaction	T	gets	a	i

unique	timestamp	CommitTS(T)	(which	could	be	a	counter,	instead	of	actual	time)	i

at	the	time	of	commit.	The	transaction	sets	the	timestamp	of	all	items	that	it	updates	to	CommitTS(T).
Only	one	transaction	performs	commit	at	a	point	in	time;	i

this	guarantees	that	once	T	commits,	a	read-only	transaction	T	whose	StartTS(T)	i

j

j

is	set	to	CommitTS(T)	will	see	committed	values	of	all	versions	with	timestamp	≤

i

CommitTS(T).

i

MV2PL	can	be	extended	to	work	in	a	distributed	setting	by	having	a	central	coordinator,	that	assigns	start
and	commit	timestamps	and	ensures	that	only	one	transaction	can	perform	commit	at	a	point	in	time.
However,	the	use	of	a	central	coordinator	limits	scalability	in	a	massively	parallel	data	storage	system.

The	Google	Spanner	data	storage	system	pioneered	a	version	of	the	MV2PL	system	that	is	scalable	and
uses	timestamps	based	on	real	clock	time.	We	study	the	Spanner	MV2PL	implementation	in	the	rest	of	this
section.

Suppose	every	node	has	a	perfectly	accurate	clock,	and	that	commit	processing	can	happen	instantly	with
no	delay	between	initiation	of	commit	and	its	completion.	Then,	when	a	transaction	wants	to	commit,	it
gets	a	commit	timestamp	by	just	reading	the	clock	at	any	one	node	at	any	time	after	getting	all	locks,	but
before	releasing	any	lock.

All	data	item	versions	created	by	the	transaction	use	this	commit	timestamp.	Transactions	can	be
serialized	by	this	commit	timestamp.	Read-only	transactions	simply	read	the	clock	when	they	start	and
use	it	to	get	a	snapshot	of	the	database	as	of	their	start	time.

If	the	clocks	are	perfectly	accurate,	and	commit	processing	is	instantaneous,	this	protocol	can	be	used	to
implement	MV2PL	without	any	central	coordination,	making	it	very	scalable.

Unfortunately,	in	the	real	world,	the	above	assumptions	do	not	hold,	which	can	lead	to	the	following
problems:

1130

Chapter	23

Parallel	and	Distributed	Transaction	Processing

1.	Clocks	are	never	perfectly	accurate,	and	the	clock	at	each	node	may	be	a	little	fast	or	a	little	slow
compared	to	other	clocks.

Thus,	it	is	possible	to	have	the	following	situation.	Two	update	transactions	T	and	T	,	both	write	a	data
item	x,	with	T	writing	it	first,	followed	by	T	but	1

2

1

2

T	may	end	up	with	a	lower	commit	timestamp	because	it	got	the	timestamp	at	2

a	different	node	than	T	.	This	situation	is	not	consistent	with	the	serialization	1

ordering	of	T	and	T	,	and	it	cannot	happen	with	MV2PL	in	a	centralized	setting.

1

2

2.	Commit	processing	takes	time,	which	can	cause	read-only	transactions	to	miss	updates	if	the	protocol	is
not	carefully	designed.	Consider	the	following	situation.

A	read-only	transaction	T	with	start	timestamp	t	reads	data	item	x	at	node	N	,	it	1

1

1

is	possible	that	soon	after	the	read,	another	transaction	T	with	CommitTS(T)	≤

2

2

t	(which	got	the	commit	timestamp	at	a	different	node	N)	may	still	perform	a	1

2

write	on	x.	Then,	T	should	have	read	the	value	written	by	T	,	but	did	not	see	it.

1

2

To	deal	with	the	first	problem,	namely,	the	lack	of	clock	synchronization,	Spanner	uses	the	following
techniques.

•	Spanner	has	a	few	atomic	clocks	that	are	very	accurate	at	each	data	center	and	uses	the	time	they
provide,	along	with	time	information	from	the	Global	Positioning	system	(GPS)	satellites,	which	provides
very	accurate	time	information,	to	get	a	very	good	estimate	of	time	at	each	node.	We	use	the	term	true
time	to	refer	to	the	time	that	would	have	been	given	by	an	absolutely	accurate	clock.

Each	node	periodically	communicates	with	time	servers	to	synchronize	its	clock;	if	the	clock	has	gone
faster	it	is	(logically)	slowed	down,	and	if	it	is	slower,	it	is	moved	forward	to	the	time	from	the	server.	In
between	synchronizations	the	local	clock	continues	to	tick,	advancing	the	local	time.	A	clock	that	ticks
slower	or	faster	than	the	correct	rate	results	in	local	time	at	the	node	that	is	progressively	behind	or
ahead	of	the	true	time.

•	The	second	key	technique	is	to	measure	local	clock	drift	each	time	the	node	synchronizes	with	a	time
server	and	to	use	it	to	estimate	the	rate	at	which	the	local	clock	loses	or	gains	time.	Using	this
information,	the	Spanner	system	maintains	a	value	ϵ	such	that	if	the	local	clock	time	is	t′,	the	true	time	t	is
bounded	by	t′	−	ϵ	≤	t	≤	t′	+	ϵ.	The	Spanner	system	is	able	to	keep	the	uncertainty	value	ϵ	to	less	than	10
msec	typically.	The	TrueTime	API	used	by	Spanner	allows	the	system	to	get	the	current	time	value,	along
with	an	upper	bound	on	the	uncertainty	in	the	time	value.

•	The	next	piece	of	the	solution	is	an	idea	called	commit	wait.	The	idea	is	as	follows:	After	all	locks	have
been	acquired	at	all	nodes,	the	local	time	t′	is	read	at	a	coordinator	node.	We	would	like	to	use	the	true
time	as	timestamp,	but	we	don’t	have	the	exact	value.	Instead,	the	highest	possible	value	of	true	time,
namely,	t′	+	ϵ,	is	used	as	a	commit	timestamp	t	.	The	transaction	then	waits,	while	holding	locks,	until	it	c

23.5

Extended	Concurrency	Control	Protocols

1131

is	sure	that	the	true	time	t	is	≥	t	;	this	just	requires	waiting	for	a	time	interval	2ϵ,	c

calculated	as	described	earlier.

What	the	commit	wait	guarantees	is	that	if	a	transaction	T	has	a	commit	1

timestamp	t	,	at	the	true	time	t	all	locks	were	held	by	T	.

c

c

1

•	Given	the	above,	if	a	version	x	of	a	data	item	x	has	a	timestamp	t,	we	can	say	that	t

that	was	indeed	the	value	of	x	at	true	time	t.	This	allows	us	to	define	a	snapshot	of	the	database	at	a	time
t,	containing	the	latest	versions	of	all	data	items	as	of	time	t.

A	database	system	is	said	to	provide	external	consistency	if	the	serialization	order	is	consistent	with	the
real-world	time	ordering	in	which	the	transactions	commit.

Spanner	guarantees	external	consistency	by	ensuring	that	the	timestamps	used	to	define	the	transaction
serialization	order	correspond	to	the	true	time	when	the	transactions	commit.

•	One	remaining	issue	is	that	transaction	commit	processing	takes	time	(particularly	so	when	2PC	is
used).	While	a	transaction	with	commit	timestamp	t	is	committing,	a	read	of	x	by	a	read-only	transaction
with	timestamp	t	≥	t	may	not	see	the	version	1

x	,	either	because	the	timestamp	has	not	yet	been	propagated	to	the	node	with	the	t

data	item	x,	or	the	transaction	is	in	prepared	state.

To	deal	with	this	problem,	reads	that	ask	for	a	snapshot	as	of	time	t	are	made	1

to	wait	until	the	system	is	sure	that	no	transactions	with	timestamp	≤	t	are	still	1

in	the	process	of	committing.	If	a	transaction	with	timestamp	t	≤	t	is	currently	in	1

the	prepared	phase	of	2PC,	and	we	are	not	sure	whether	it	will	commit	or	abort,	a	read	with	timestamp	t
would	have	to	wait	until	we	know	the	final	commit	status	1

of	the	transaction.

Read-only	transactions	can	be	given	a	somewhat	earlier	timestamp,	to	guarantee	that	they	will	not	have	to
wait;	the	trade-off	here	is	that	to	avoid	waiting,	the	transaction	may	not	see	the	latest	version	of	some
data	items.

23.5.2

Distributed	Snapshot	Isolation

Since	snapshot	isolation	is	widely	used,	extending	it	to	work	in	a	distributed	setting	is	of	significant
practical	importance.	Recall	from	Section	18.8	that	while	snapshot	isolation	does	not	guarantee
serializability,	it	avoids	a	number	of	concurrency	anomalies.

If	each	node	implements	snapshot	isolation	independently,	the	resultant	schedules	can	have	anomalies
that	cannot	occur	in	a	centralized	system.	For	example,	suppose	two	transactions,	T	and	T	run
concurrently	on	node	N	,	where	T	writes	x	and	T

1

2

1

1

2

reads	x;	thus	T	would	not	see	updates	made	by	T	to	x.	Suppose	also	that	T	updates	a	2

1

1

data	item	y	at	node	N	,	and	commits,	and	subsequently	T	reads	y	at	node	N	.	Then	T

2

2

2

2

would	see	the	value	of	y	updated	by	T	at	N	,	but	not	see	T	’s	update	to	x	at	N	.	Such	a	1

2

1

1

situation	could	never	occur	when	using	snapshot	isolation	at	a	single	node.	Thus,	just	depending	on	local
enforcement	of	snapshot	isolation	at	each	node	is	not	sufficient	to	enforce	snapshot	isolation	across
nodes.

1132

Chapter	23

Parallel	and	Distributed	Transaction	Processing

Several	alternative	distributed	snapshot	isolation	protocols	have	been	proposed	in	the	literature.	Since
the	protocols	are	somewhat	complicated,	we	omit	details,	but	references	with	more	details	may	be	found
in	the	bibliographic	notes	for	this	chapter,	available	online.	Some	of	these	protocols	allow	local
transactions	at	each	node	to	execute	without	any	global	coordination	step;	an	extra	cost	is	paid	only	by
global	transactions,	that	is,	transactions	that	execute	at	more	than	one	node.	These	protocols	have	been
prototyped	on	several	databases/data	storage	systems,	such	as	SAP	HANA	and	HBase.

There	has	been	some	work	on	extending	distributed	snapshot	isolation	protocols	to	make	them
serializable.	Approaches	explored	include	adding	timestamp	checks	similar	to	timestamp	ordering,
creating	a	transaction	dependency	graph	at	a	central	server,	and	checking	for	cycles	in	the	graph,	among
other	approaches.

23.5.3

Concurrency	Control	in	Federated	Database	Systems

Recall	from	Section	20.5	that	in	many	cases	a	distributed	database	has	to	be	constructed	by	linking
together	multiple	already-existing	database	systems,	each	with	its	own	schema	and	possibly	running
different	database-management	software.	Recall	that	such	systems	are	called	federated	database	systems
or	heterogeneous	distributed	database	systems,	and	they	consist	of	a	layer	of	software	on	top	of	the
existing	database	systems.

Transactions	in	a	federated	database	may	be	classified	as	follows:

1.	Local	transactions.	These	transactions	are	executed	by	each	local	database	system	outside	of	the
federated	database	system’s	control.

2.	Global	transactions.	These	transactions	are	executed	under	the	control	of	the	federated	database
system.

The	federated	database	system	is	aware	of	the	fact	that	local	transactions	may	run	at	the	local	nodes,	but
it	is	not	aware	of	what	specific	transactions	are	being	executed,	or	of	what	data	they	may	access.

Ensuring	the	local	autonomy	of	each	database	system	requires	that	no	changes	be	made	to	its	software.	A
database	system	at	one	node	thus	is	not	able	to	communicate	directly	with	one	at	any	other	node	to
synchronize	the	execution	of	a	global	transaction	active	at	several	nodes.

Since	the	federated	database	system	has	no	control	over	the	execution	of	local	transactions,	each	local
system	must	use	a	concurrency-control	scheme	(e.g.,	two-phase	locking	or	timestamping)	to	ensure	that
its	schedule	is	serializable.	In	addition,	in	the	case	of	locking,	the	local	system	must	be	able	to	guard
against	the	possibility	of	local	deadlocks.

The	guarantee	of	local	serializability	is	not	sufficient	to	ensure	global	serializability.

As	an	illustration,	consider	two	global	transactions	T	and	T	,	each	of	which	accesses	1

2

and	updates	two	data	items,	A	and	B,	located	at	nodes	N	and	N	,	respectively.	Suppose	1

2

that	the	local	schedules	are	serializable.	It	is	still	possible	to	have	a	situation	where,	at

23.6

Replication	with	Weak	Degrees	of	Consistency

1133

node	N	,	T	follows	T	,	whereas,	at	N	,	T	follows	T	,	resulting	in	a	nonserializable	1

2

1

2

1

2

global	schedule.	Indeed,	even	if	there	is	no	concurrency	among	global	transactions	(i.e.,	a	global
transaction	is	submitted	only	after	the	previous	one	commits	or	aborts),	local	serializability	is	not
sufficient	to	ensure	global	serializability	(see	Practice	Exercise	23.11).

Depending	on	the	implementation	of	the	local	database	systems,	a	global	transaction	may	not	be	able	to
control	the	precise	locking	behavior	of	its	local	subtransactions.

Thus,	even	if	all	local	database	systems	follow	two-phase	locking,	it	may	be	possible	only	to	ensure	that
each	local	transaction	follows	the	rules	of	the	protocol.	For	example,	one	local	database	system	may
commit	its	subtransaction	and	release	locks,	while	the	subtransaction	at	another	local	system	is	still
executing.	If	the	local	systems	permit	control	of	locking	behavior	and	all	systems	follow	two-phase
locking,	then	the	federated	database	system	can	ensure	that	global	transactions	lock	in	a	two-phase
manner	and	the	lock	points	of	conflicting	transactions	would	then	define	their	global	serialization	order.	If
different	local	systems	follow	different	concurrency-control	mechanisms,	however,	this	straightforward
sort	of	global	control	does	not	work.

There	are	many	protocols	for	ensuring	consistency	despite	the	concurrent	execution	of	global	and	local
transactions	in	federated	database	systems.	Some	are	based	on	imposing	sufficient	conditions	to	ensure
global	serializability.	Others	ensure	only	a	form	of	consistency	weaker	than	serializability	but	achieve	this
consistency	by	less	restrictive	means.

There	are	several	schemes	to	ensure	global	serializability	in	an	environment	where	update	transactions	as
well	as	read-only	transactions	can	execute.	Several	of	these	schemes	are	based	on	the	idea	of	a	ticket.	A
special	data	item	called	a	ticket	is	created	in	each	local	database	system.	Every	global	transaction	that
accesses	data	at	a	node	must	write	the	ticket	at	that	node.	This	requirement	ensures	that	global
transactions	conflict	directly	at	every	node	they	visit.	Furthermore,	the	global	transaction	manager	can
control	the	order	in	which	global	transactions	are	serialized,	by	controlling	the	order	in	which	the	tickets
are	accessed.	References	to	such	schemes	appear	in	the	bibliographic	notes	for	this	chapter,	available
online.

23.6

Replication	with	Weak	Degrees	of	Consistency

The	replication	protocols	we	have	seen	so	far	guarantee	consistency,	even	if	there	are	node	and	network
failures.	However,	these	protocols	have	a	nontrivial	cost,	and	further	they	may	block	if	a	significant
number	of	nodes	fail	or	get	disconnected	due	to	a	network	partition.	Further,	in	the	case	of	a	network
partition,	a	node	that	is	not	in	the	majority	partition	would	not	only	be	unable	to	perform	writes,	but	it
would	also	be	unable	to	perform	even	reads.

1134

Chapter	23

Parallel	and	Distributed	Transaction	Processing

Many	applications	wish	to	have	higher	availability,	even	at	the	cost	of	consistency.

We	study	the	trade-offs	between	consistency	and	availability	in	this	section.

23.6.1

Trading	Off	Consistency	for	Availability

The	protocols	we	have	seen	so	far	require	a	(weighted)	majority	of	nodes	be	in	a	partition	for	updates	to
proceed.	Nodes	that	are	in	a	minority	partition	cannot	process	updates;	if	a	network	failure	results	in
more	than	two	partitions,	no	partition	may	have	a	majority	of	nodes.	Under	such	a	situation,	the	system
would	be	completely	unavailable	for	updates,	and	depending	on	the	read-quorum,	may	even	become
unavailable	for	reads.	The	write-all-available	protocol	which	we	saw	earlier	provides	availability	but	not
consistency.

Ideally,	we	would	like	to	have	consistency	and	availability,	even	in	the	face	of	partitions.	Unfortunately,
this	is	not	possible,	a	fact	that	is	crystallized	in	the	so-called	CAP	theorem,	which	states	that	any
distributed	database	can	have	at	most	two	of	the	following	three	properties:

•	Consistency.

•	Availability.

•	Partition-tolerance.

The	proof	of	the	CAP	theorem	uses	the	following	definition	of	consistency,	with	replicated	data:	an
execution	of	a	set	of	operations	(reads	and	writes)	on	replicated	data	is	said	to	be	consistent	if	its	result	is
the	same	as	if	the	operations	were	executed	on	a	single	node,	in	a	sequential	order	that	is	consistent	with
the	ordering	of	operations	issued	by	each	process	(transaction).	The	notion	of	consistency	is	similar	to
atomicity	of	transactions,	but	with	each	operation	treated	as	a	transaction,	and	is	weaker	than	the
atomicity	property	of	transactions.

In	any	large-scale	distributed	system,	partitions	cannot	be	prevented,	and	as	a	result,	either	availability	or
consistency	has	to	be	sacrificed.	The	schemes	we	have	seen	earlier	sacrifice	availability	for	consistency	in
the	face	of	partitions.

Consider	a	web-based	social-networking	system	that	replicates	its	data	on	three	servers,	and	a	network
partition	occurs	that	prevents	the	servers	from	communicating	with	each	other.	Since	none	of	the
partitions	has	a	majority,	it	would	not	be	possible	to	execute	updates	on	any	of	the	partitions.	If	one	of
these	servers	is	in	the	same	partition	as	a	user,	the	user	actually	has	access	to	data,	but	would	be	unable
to	update	the	data,	since	another	user	may	be	concurrently	updating	the	same	object	in	another	partition,
which	could	potentially	lead	to	inconsistency.	Inconsistency	is	not	as	great	a	risk	in	a	social-networking
system	as	in	a	banking	database.	A	designer	of	such	a	system	may	decide	that	a	user	who	can	access	the
system	should	be	allowed	to	perform	updates	on	whatever	replicas	are	accessible,	even	at	the	risk	of
inconsistency.

23.6

Replication	with	Weak	Degrees	of	Consistency

1135

In	contrast	to	systems	such	as	banking	databases	that	require	the	ACID	properties,	systems	such	as	the
social-networking	system	mentioned	above	are	said	to	require	the	BASE	properties:

•	Basically	available.

•	Soft	state.

•	Eventually	consistent.

The	primary	requirement	is	availability,	even	at	the	cost	of	consistency.	Updates	should	be	allowed,	even
in	the	event	of	partitioning,	following,	for	example,	the	write-all-available	protocol	(which	is	similar	to
multimaster	replication	described	in	Section	23.6).	Soft	state	refers	to	the	property	that	the	state	of	the
database	may	not	be	precisely	defined,	with	each	replica	possibly	having	a	somewhat	different	state	due
to	partitioning	of	the	network.	Eventually	consistent	is	the	requirement	that	once	a	partitioning	is
resolved,	eventually	all	replicas	will	become	consistent	with	each	other.

This	last	step	requires	that	inconsistent	copies	of	data	items	be	identified;	if	one	is	an	earlier	version	of
the	other,	the	earlier	version	can	be	replaced	by	the	later	version.

It	is	possible,	however,	that	the	two	copies	were	the	result	of	independent	updates	to	a	common	base
copy.	A	scheme	for	detecting	such	inconsistent	updates,	called	the	version-vector	scheme,	is	described	in
Section	23.6.4.

Restoring	consistency	in	the	face	of	inconsistent	updates	requires	that	the	updates	be	merged	in	some
way	that	is	meaningful	to	the	application.	We	discuss	possible	solutions	for	resolution	of	conflicting
updates,	in	Section	23.6.5.

In	general,	no	system	designer	wants	to	deal	with	the	possibility	of	inconsistent	updates	and	the	resultant
problems	of	detection	and	resolution.	Where	possible,	the	system	should	be	kept	consistent.	Inconsistent
updates	are	allowed	only	when	a	node	is	disconnected	from	the	network,	in	applications	that	can	tolerate
inconsistency.

Some	key-value	stores	such	as	Apache	Cassandra	and	MongoDB	allow	an	application	to	specify	how	many
replicas	need	to	be	accessible	to	carry	out	a	write	operation	or	a	read	operation.	As	long	as	a	majority	of

replicas	are	accessible,	there	is	no	problem	with	consistency	for	writes.	However,	if	the	application	sets
the	required	number	at	less	than	a	majority,	and	many	replicas	are	inaccessible,	updates	are	allowed	to	go
ahead;	there	is,	however,	a	risk	of	inconsistent	updates,	which	must	be	resolved	later.

For	applications	where	inconsistency	can	cause	significant	problems,	or	is	harder	to	resolve,	system
designers	prefer	to	build	fault-tolerant	systems	using	replication	and	distributed	consensus	that	avoid
inconsistencies,	even	at	the	cost	of	potential	nonavailability.

23.6.2

Asynchronous	Replication

Many	relational	database	systems	support	replication	with	weak	consistency,	which	can	take	one	of
several	forms.

1136

Chapter	23

Parallel	and	Distributed	Transaction	Processing

With	asynchronous	replication	the	database	allows	updates	at	a	primary	node	(also	referred	to	as	the
master	node)	and	propagates	updates	to	replicas	at	other	nodes	subsequently;	the	transaction	that
performs	the	update	can	commit	once	the	update	is	performed	at	the	primary,	even	before	replicas	are
updated.	Propagation	of	updates	after	commit	is	also	referred	to	as	lazy	propagation.	In	contrast,	the	term
synchronous	replication	refers	to	the	case	where	updates	are	propagated	to	other	replicas	as	part	of	a
single	transaction.

With	asynchronous	replication,	the	system	must	guarantee	that	once	the	transaction	commits	at	the
primary,	the	updates	are	eventually	propagated	to	all	replicas,	even	if	there	are	system	failures	in
between.	Later	in	this	section,	we	shall	see	how	this	property	is	guaranteed	using	persistent	messaging.

Since	propagation	of	updates	is	done	asynchronously,	a	read	at	a	replica	may	not	get	the	latest	version	of
a	data	item.	Asynchronous	propagation	of	updates	is	commonly	used	to	allow	update	transactions	to
commit	quickly,	even	at	the	cost	of	consistency.

A	system	designer	may	choose	to	use	replicas	only	for	fault	tolerance.	However,	if	the	replica	is	available
on	a	local	machine,	or	another	machine	that	can	be	accessed	with	low	latency,	it	may	be	much	cheaper	to
read	the	data	item	at	the	replica	instead	of	reading	it	from	the	primary,	as	long	as	the	application	is
willing	to	accept	potentially	stale	data	values.

Data	storage	systems	based	on	asynchronous	replication	may	allow	data	items	to	have	versions,	with
associated	timestamps.	A	transaction	may	then	request	a	version	with	required	freshness	properties,	for
example	not	more	than	10	minutes	old.	If	a	local	replica	has	a	version	of	the	data	item	satisfying	the
freshness	criterion,	it	can	be	used;	otherwise,	the	read	may	have	to	be	sent	to	the	primary	node.

Consider,	for	example,	an	airline	reservation	site	that	shows	the	prices	of	multiple	flight	options.	Prices
may	vary	frequently,	and	the	system	does	not	guarantee	that	a	user	will	actually	be	able	to	book	a	ticket	at
the	price	shown	initially.	Thus,	it	is	quite	acceptable	to	show	a	price	that	is	a	few	minutes	old.
Asynchronous	replication	is	a	good	solution	for	this	application:	price	data	can	be	replicated	to	a	large
number	of	servers,	which	share	the	load	of	user	queries;	and	price	data	are	updated	at	a	primary	node
and	replicated	asynchronously	to	all	other	replicas.

Multiversion	concurrency	control	schemes	can	be	used	to	give	a	transaction-consistent	snapshot	of	the
database	to	read-only	transactions	that	execute	at	a	replica;	that	is,	the	transaction	should	see	all	updates
of	all	transactions	up	to	some	transaction	in	the	serialization	order	and	should	not	see	any	updates	of
transactions	later	in	the	serialization	order.	The	multiversion	2PL	scheme,	described	in	Section	23.5.1,
can	be	extended	to	allow	a	read-only	transaction	to	access	a	replica	that	may	not	have	up-to-date	versions
of	some	data	items,	but	still	get	a	transaction-consistent	snapshot	view	of	the	database.	To	do	so,	replicas
must	be	aware	of	what	is	the	latest	timestamp	tsafe	such	that	they	have	received	all	updates	with	commit
timestamp	before	t.	Any	read	of	a	snapshot	with	timestamp	t	<	t

can	be	processed	by	that	replica.	Such	a	scheme	is

safe

used	in	the	Google	Spanner	database,

23.6

Replication	with	Weak	Degrees	of	Consistency

1137

Asynchronous	replication	is	used	in	traditional	(centralized)	databases	to	create	one	or	more	replicas	of
the	database,	on	which	large	queries	can	be	executed,	without	interfering	with	transactions	running	on	a
primary	node.	Such	replication	is	referred	to	master-slave	replication,	since	the	replicas	cannot	perform
any	updates	on	their	own	but	must	only	perform	updates	that	the	master	node	asks	them	to	perform.

In	such	systems,	asynchronous	propagation	of	updates	is	typically	done	in	a	continuous	fashion	to
minimize	delays	until	an	update	is	seen	at	a	replica.	However,	in	data	warehouses,	updates	may	be
propagated	periodically	—	every	night,	for	example	—

so	that	update	propagation	does	not	interfere	with	query	processing.

Some	database	systems	support	multimaster	replication	(also	called	update-anywhere	replication);
updates	are	permitted	at	any	replica	of	a	data	item	and	are	propagated	to	all	replicas	either
synchronously,	using	two-phase	commit,	or	asynchronously.

Asynchronous	replication	is	also	used	in	some	distributed	storage	systems.	Such	systems	partition	data,
as	we	have	seen	earlier,	but	replicate	each	partition.	There	is	a	primary	node	for	each	partition,	and
updates	are	typically	sent	to	the	primary	node,	which	commits	the	updates	locally,	and	propagates	them
asynchronously	to	the	other	replicas	of	the	partition.	Some	systems	such	as	PNUTS	even	allow	each	data
item	in	a	partition	to	specify	which	node	should	act	as	the	primary	node	for	that	data	item;	that	node	is
responsible	for	committing	updates	to	the	data	item,	and	propagating	the	update	to	the	other	replicas.
The	motivation	is	to	allow	a	node	that	is	geographically	close	to	a	user	to	act	as	the	primary	node	for	data
items	corresponding	to	that	user.

In	any	system	supporting	asynchronous	propagation	of	updates,	it	is	important	that	once	an	update	is
committed	at	the	primary,	it	must	definitely	be	delivered	to	the	other	replicas.	If	there	are	multiple
updates	at	a	primary	node,	they	must	be	delivered	in	the	same	order	to	the	replicas;	out-of-order	delivery
can	cause	an	earlier	update	to	arrive	late	and	overwrite	a	later	update.

Persistent	messaging,	which	we	saw	in	Section	23.2.3,	provides	guaranteed	delivery	of	messages	and	is
widely	used	for	asynchronous	replication.	The	implementation	techniques	for	persistent	messages
described	in	Section	23.2.3	can	be	easily	modified	to	ensure	that	messages	are	delivered	in	the	order	in
which	they	were	sent.	With	persistent	messaging,	each	primary	node	needs	to	be	aware	of	the	location	of
all	the	replicas.

Publish-subscribe	systems,	which	we	saw	in	Section	22.8.1,	offer	a	more	flexible	way	of	ensuring	reliable
message	delivery.	Recall	that	publish-subscribe	systems	allow	messages	to	be	published	with	an
associated	topic,	and	subscribers	can	subscribe	to	any	desired	topic.	To	implement	asynchronous
replication,	a	topic	is	created	corresponding	to	each	partition.	All	replicas	of	a	partition	subscribe	to	the
topic	corresponding	to	the	partition.	Any	update	(including	inserts,	deletes,	and	data	item	updates)	to	a
partition	is	published	as	a	message	with	the	topic	corresponding	to	the	partition.	The	publish-subscribe
system	ensures	that	once	such	a	message	is	published,	it	will	be	delivered	to	all	subscribers	in	the	order
in	which	it	was	published.

Publish-subscribe	systems	designed	for	parallel	systems,	such	as	the	Apache	Kafka	system,	or	the	Yahoo
Message	Bus	service	used	for	asynchronous	replication	in	the	PNUTS	distributed	data	storage	system,
allow	a	large	number	of	topics,	and	use	mul-

1138

Chapter	23

Parallel	and	Distributed	Transaction	Processing

tiple	servers	to	handle	messages	to	different	topics	in	parallel.	Thus,	asynchronous	replication	can	be
made	scalable.

Fault	tolerance	is	an	issue	with	asynchronous	propagation	of	updates.	If	a	primary	node	fails,	a	new	node
must	take	over	as	primary;	this	can	be	done	either	using	an	election	algorithm,	as	we	saw	earlier	or	by
having	a	master	node	(which	is	itself	chosen	by	election)	decide	which	node	takes	over	the	job	of	a	failed
primary	node.

Consider	what	happens	if	a	primary	copy	records	an	update	but	fails	before	the	update	is	sent	to	the
replicas.	The	new	primary	node	has	no	way	of	finding	out	what	was	the	last	update	committed	at	the
primary	copy.	It	can	either	wait	for	the	primary	to	recover,	which	is	unacceptable,	or	it	can	proceed
without	knowing	what	updates	were	committed	just	before	failure.	In	the	latter	case,	there	is	a	risk	that	a
transaction	on	the	new	primary	may	read	an	old	value	of	a	data	item	or	perform	an	update	that	conflicts
with	an	earlier	update	on	the	old	primary.

To	reduce	the	chance	of	such	problems,	some	systems	replicate	the	log	records	of	the	primary	node	to	a
backup	node	and	allow	the	transaction	to	commit	at	the	primary	only	after	the	log	record	has	been
successfully	replicated	at	the	backup	node;	if	the	primary	node	fails,	the	backup	node	takes	over	as	the
primary.	Recall	that	this	is	the	two-safe	protocol	from	Section	19.7.	This	protocol	is	resilient	to	failure	of
one	node,	but	not	to	the	failure	of	two	nodes.

If	an	application	is	built	on	top	of	a	storage	system	using	asynchronous	replication,	applications	may
potentially	see	some	anomalous	behaviors	such	as	a	read	not	seeing	the	effect	of	an	earlier	write	done	by
the	same	application,	or	a	later	read	seeing	an	earlier	version	of	a	data	item	than	an	earlier	read,	if
different	reads	and	writes	are	sent	to	different	replicas.	While	such	anomalies	cannot	be	completely
prevented	in	the	event	of	failures,	they	can	be	avoided	during	normal	operation	by	taking	some
precautions.

For	example,	if	read	and	write	requests	for	a	data	item	from	a	particular	node	are	always	sent	to	the	same
replica,	the	application	will	see	any	writes	it	has	performed,	and	if	two	reads	are	performed	on	the	same
data	item,	the	later	read	will	see	a	version	at	least	as	new	as	the	earlier	read.	This	property	is	guaranteed
if	a	primary	replica	is	used	to	perform	all	actions	on	a	data	item.

23.6.3

Asynchronous	View	Maintenance

Indices	and	materialized	views	are	forms	of	data	derived	from	underlying	data,	and	can	thus	be	viewed	as
forms	of	replicated	data.	Just	like	replicas,	indices	and	materialized	views	could	be	updated	(maintained)
as	part	of	each	transaction	that	updates	the	underlying	data;	doing	so	would	ensure	consistency	of	the
derived	data	with	the	underlying	data.

However,	many	systems	prefer	to	perform	index	and	view	maintenance	in	an	asynchronous	manner,	to
reduce	the	overhead	on	transactions	that	update	the	underlying	data.	As	a	result,	the	indices	and
materialized	views	could	be	out	of	date.	Any	transac-

23.6

Replication	with	Weak	Degrees	of	Consistency

1139

tion	that	uses	such	indices	or	materialized	views	must	be	aware	that	these	structures	may	be	out	of	date.

We	now	consider	how	to	maintain	indices	and	materialized	views	in	the	face	of	concurrent	updates.

•	The	first	requirement	for	view	maintenance	is	for	the	subsystem	that	performs	maintenance	to	receive
information	about	updates	to	the	underlying	data	in	such	a	way	that	each	update	is	delivered	exactly
once,	despite	failures.

Publish-subscribe	systems	are	a	good	match	for	the	first	requirement	above.

All	updates	to	any	underlying	relation	are	published	to	the	pub-sub	system	with	the	relation	name	as	the
topic;	the	view	maintenance	subsystem	subscribes	to	the	topics	corresponding	to	its	underlying	relations
and	received	all	relevant	updates.

As	we	saw	in	Section	22.8.1,	we	can	have	topics	corresponding	to	each	tablet	of	a	stored	relation.	For	a
nonmaterialized	intermediate	relation	that	is	partitioned,	we	can	have	a	topic	corresponding	to	each
partition.

•	The	second	requirement	is	for	the	subsystem	to	update	the	derived	data	in	such	a	way	that	the	derived
data	will	be	consistent	with	the	underlying	data,	despite	concurrent	updates	to	the	underlying	data.

Since	the	underlying	data	may	receive	further	updates	as	an	earlier	update	is	being	processed,	no
asynchronous	view	maintenance	technique	can	guarantee	that	the	view	state	is	consistent	with	the	state
of	the	underlying	data	at	all	times.

However,	the	consistency	requirement	can	be	formalized	as	follows:	if	there	are	no	updates	to	the
underlying	data	for	a	sufficient	amount	of	time,	asynchronous	maintenance	must	ensure	that	the	derived
data	is	consistent	with	the	underlying	data;	such	a	requirement	is	known	as	an	eventual	consistency
requirement.

The	technique	for	parallel	maintenance	of	materialized	views	which	we	saw	in	Section	22.7.5	uses	the
exchange	operator	model	to	send	updates	to	nodes	and	allows	view	maintenance	to	be	done	locally.
Techniques	designed	for	view	maintenance	in	a	centralized	setting	can	be	used	at	each	node,	on	locally
materialized	input	data.	Recall	from	Section	16.5.1	that	view	maintenance	may	be	deferred,	that	is,	it	may

be	done	after	the	transaction	commits.	Techniques	for	deferred	view	maintenance	in	a	centralized	setting
already	need	to	deal	with	concurrent	updates;	such	techniques	can	be	used	locally	at	each	node.

•	A	third	requirement	is	for	reads	to	get	a	consistent	view	of	data.	In	general,	a	query	that	reads	data
from	multiple	nodes	may	not	observe	the	updates	of	a	transaction	T	on	node	N	,	but	may	see	the	updates
that	T	performed	on	node	N	,	thus	seeing	1

2

a	transactionally	inconsistent	view	of	data.	Systems	that	use	asynchronous	replication	typically	do	not
support	transactionally	consistent	views	of	the	database.

Further,	scans	of	the	database	may	not	see	an	operation-consistent	view	of	the	database.	(Recall	the
notion	of	operation	consistency	from	Section	18.9,	which	requires	that	any	operation	should	not	see	a
database	state	that	reflects	only	some	of	the	updates	of	another	operation.	In	Section	18.9	we	saw	an
example	of	a	scan

1140

Chapter	23

Parallel	and	Distributed	Transaction	Processing

using	an	index	that	could	see	two	versions,	or	neither	version,	of	a	record	updated	by	a	concurrent
transaction,	if	the	relation	scan	does	not	follow	two-phase	locking.

A	similar	problem	occurs	with	asynchronous	propagation	of	updates,	even	if	both	the	relation	scan	and
the	update	transaction	follow	two-phase	locking.

For	example,	consider	a	relation	r(A,	B,	C),	with	primary	key	A,	which	is	partitioned	on	attribute	B.	Now
consider	a	query	that	is	scanning	the	relation	r.	Suppose	there	is	a	concurrent	update	to	a	tuple	t	∈	r,
which	updates	attribute	t	.B	from	v	1

1

1

to	v	.	Such	an	update	requires	deletion	of	the	old	tuple	from	the	partition	corre-2

sponding	to	value	v	,	and	insertion	of	the	new	tuple	in	the	partition	corresponding	1

to	v	.	These	updates	are	propagated	asynchronously.

2

Now,	the	scan	of	r	could	possibly	scan	the	node	corresponding	to	v	after	1

the	old	tuple	is	deleted	there	but	visit	the	node	corresponding	to	v	before	the	2

asynchronous	propagation	inserts	the	updated	tuple	in	that	node.	Then,	the	scan	would	completely	miss
the	tuple,	even	though	it	should	have	seen	either	the	old	value	or	the	new	value	of	t	.	Further,	the	scan
could	visit	the	node	corresponding	1

to	v	before	the	delete	is	propagated	to	that	node,	and	the	node	corresponding	to	1

v	after	the	insert	is	propagated	to	that	node,	and	thereby	see	two	versions	of	t	,	2

1

one	from	before	the	update	and	one	from	after	the	update.	Neither	case	would	be	possible	with	two-phase
locking,	if	updates	are	propagated	synchronously	to	all	copies.

If	a	multiversion	concurrency	control	technique	is	used,	where	data	items	have	timestamps,	snapshot
reads	are	a	good	way	to	get	a	consistent	scan	of	a	relation;	the	snapshot	timestamp	should	be	set	a
sufficiently	old	value	that	all	updates	as	of	that	timestamp	have	reached	all	replicas.

23.6.4

Detecting	Inconsistent	Updates

Many	applications	developed	for	such	high	availability	are	designed	to	continue	functioning	locally	even
when	the	node	running	the	application	is	disconnected	from	the	other	nodes.

As	an	example,	when	data	are	replicated,	and	the	network	gets	partitioned,	if	a	system	chooses	to	trade
off	consistency	to	get	availability,	updates	may	be	done	concurrently	at	multiple	replicas.	Such	conflicting
updates	need	to	be	detected	and	resolved.

When	a	connection	is	re-established,	the	application	needs	to	communicate	with	a	storage	system	to	send
any	updates	done	locally	and	fetch	updates	performed	elsewhere.

There	is	a	potential	for	conflicting	updates	from	different	nodes.	For	example,	node	N	1

may	update	a	locally	cached	copy	of	a	data	item	while	it	is	disconnected;	concurrently	another	node	may
have	updated	the	data	item	on	the	storage	system,	or	may	have	updated	its	own	local	copy	of	the	data
item.	Such	conflicting	updates	must	be	detected,	and	resolved.

As	another	example,	consider	an	application	on	a	mobile	device	that	supports	offline	updates	(i.e.,	permits
updates	even	if	the	mobile	device	is	not	connected	to	the

23.6

Replication	with	Weak	Degrees	of	Consistency

1141

network).	To	give	the	user	a	seamless	usage	experience,	such	applications	perform	the	updates	on	a
locally	cached	copy,	and	then	apply	the	update	to	the	data	store	when	the	device	goes	back	online.	If	the
same	data	item	may	be	updated	from	multiple	devices,	the	problem	of	conflicting	updates	arises	here,	too.
The	schemes	described	below	can	be	used	in	this	context	too,	with	nodes	understood	to	also	refer	to
mobile	devices.

A	mechanism	for	detecting	conflicting	updates	is	described	in	this	section.	How	to	resolve	conflicting
updates	once	they	are	detected	is	application	dependent,	and	there	is	no	general	technique	for	doing	so.
However,	some	commonly	used	approaches	are	discussed	in	Section	23.6.5.

For	data	items	updated	by	only	one	node,	it	is	a	simple	matter	to	propagate	the	updates	when	the	node
gets	reconnected	to	the	storage	system.	If	the	node	only	caches	read-only	copies	of	data	that	may	be
updated	by	other	nodes,	the	cached	data	may	become	inconsistent.	When	the	node	gets	reconnected,	it
can	be	sent	invalidation	reports	that	inform	it	of	out-of-date	cache	entries.

However,	if	updates	can	occur	at	more	than	one	node,	detecting	conflicting	updates	is	more	difficult.
Schemes	based	on	version	numbering	allow	updates	of	shared	data	from	multiple	nodes.	These	schemes
do	not	guarantee	that	the	updates	will	be	consistent.	Rather,	they	guarantee	that,	if	two	nodes
independently	update	the	same	version	of	a	data	item,	the	clash	will	be	detected	eventually,	when	the
nodes	exchange	information	either	directly	or	through	a	common	node.

The	version-vector	scheme	detects	inconsistencies	when	replicas	of	a	data	item	are	independently
updated.	This	scheme	allows	copies	of	a	data	item	to	be	stored	at	multiple	nodes.

The	basic	idea	is	for	each	node	i	to	store,	with	its	copy	of	each	data	item	d,	a	version	vector	—	that	is,	a
set	of	version	numbers	{	V	[j]},	with	one	entry	for	each	other	node	j	on	which	the	data	item	could
potentially	be	updated.	When	a	node	i	updates	a	data	item	d,	it	increments	the	version	number	V	[i]	by
one.

For	example,	suppose	a	data	item	is	replicated	at	nodes	N	,	N	and	N	.	If	the	item	1

2

3

is	initially	created	at	N	,	the	version	vector	could	be	[1,	0,	0].	If	it	is	then	replicated	1

at	N	,	and	then	updated	at	node	N	,	the	resultant	version	vector	would	be	[1,	1,	0].

2

2

Suppose	now	that	this	version	of	the	data	item	is	replicated	to	N	,	and	then	both	N

3

2

and	N	concurrently	update	the	data	item.	Then,	the	version	vector	of	the	data	item	at	3

N	would	be	[1,	2,	0],	while	the	version	vector	at	N	would	be	[1,	1,	1].

2

3

Whenever	two	nodes	i	and	j	connect	with	each	other,	they	exchange	updated	data	items,	so	that	both
obtain	new	versions	of	the	data	items.	However,	before	exchanging	data	items,	the	nodes	have	to	discover
whether	the	copies	are	consistent:	1.	If	the	version	vectors	V	and	V	of	the	copy	of	the	data	item	at	nodes	i
and	j	are	i

j

the	same	—	that	is,	for	each	k,	V	[k]	=	V	[k]	—	then	the	copies	of	data	item	d	are	i

j

identical.

2.	If,	for	each	k,	V	[k]	≤	V	[k]	and	the	version	vectors	are	not	identical,	then	the	i

j

copy	of	data	item	d	at	node	i	is	older	than	the	one	at	node	j.	That	is,	the	copy	of

1142

Chapter	23

Parallel	and	Distributed	Transaction	Processing

data	item	d	at	node	j	was	obtained	by	one	or	more	modifications	of	the	copy	of	the	data	item	at	node	i.
Node	i	replaces	its	copy	of	d,	as	well	as	its	copy	of	the	version	vector	for	d,	with	the	copies	from	node	j.

In	our	example	above,	if	N	had	the	vector	[1,	0,	0]	for	a	data	item,	while	N

1

2

had	the	vector	[1,	1,	0],	then	the	version	at	N	is	newer	than	the	version	at	N	.

2

1

3.	If	there	are	a	pair	of	values	k	and	m	such	that	V	[k]	<	V	[k]	and	V	[m]	>	V	[m],	i

j

i

j

then	the	copies	are	inconsistent;	that	is,	the	copy	of	d	at	i	contains	updates	performed	by	node	k	that	have
not	been	propagated	to	node	j,	and,	similarly,	the	copy	of	d	at	j	contains	updates	performed	by	node	m
that	have	not	been	propagated	to	node	i.	Then,	the	copies	of	d	are	inconsistent,	since	two	or	more	updates
have	been	performed	on	d	independently.

In	our	example,	after	the	concurrent	updates	at	N	and	N	,	the	two	version	2

3

vectors	show	the	updates	are	inconsistent.	Let	V	and	V	denote	the	version	vec-2

3

tors	at	N	and	N	.	Then	V	[2]	=	2	while	V	[2]	=	1,	whereas	V	[3]	=	0,	while	2

3

2

3

2

V	[3]	=	1.

3

Manual	intervention	may	be	required	to	merge	the	updates.	After	merging	the	updates	(perhaps
manually),	the	version	vectors	are	merged,	by	setting	V	[k]	to	the	maximum	of	V	[k]	and	V	[k]	for	each	k.
The	node	l	that	performs	the	write	i

j

then	increments	V	[l]	by	1	and	then	writes	the	data	item	and	its	version	vector	V	.

The	version-vector	scheme	was	initially	designed	to	deal	with	failures	in	distributed	file	systems.	The
scheme	gained	importance	because	mobile	devices	often	store	copies	of	data	that	are	also	present	on
server	systems.	The	scheme	is	also	widely	used	in	distributed	storage	systems	that	allow	updates	to
happen	even	if	a	node	is	not	in	a	majority	partition.

The	version-vector	scheme	cannot	solve	the	problem	of	how	to	reconcile	inconsistent	copies	of	data
detected	by	the	scheme.	We	discuss	reconciliation	in	Section	23.6.5.

The	version-vector	scheme	works	well	for	detecting	inconsistent	updates	to	a	single	data	item.	However,	if
a	storage	system	has	a	very	large	number	of	replicated	items,	finding	which	items	have	been
inconsistently	updated	can	be	quite	expensive	if	done	naively.	In	Section	23.6.6	we	study	a	data	structure
called	a	Merkle	tree	that	can	efficiently	detect	differences	between	sets	of	data	items.

23.6.5

Resolving	Conflicting	Updates

Detection	of	conflicting	updates	may	happen	when	a	read	operation	fetches	copies	of	a	data	item	from
multiple	replicas	or	when	the	system	executes	a	background	process	that	compares	data	item	versions.

At	that	point,	conflicting	updates	on	the	same	data	item	need	to	be	resolved,	to	create	a	single	common
version.	Resolution	of	conflicting	updates	is	also	referred	to	as	reconciliation.

23.6

Replication	with	Weak	Degrees	of	Consistency

1143

There	is	no	technique	for	resolution	so	that	can	be	used	across	all	applications.	We	discuss	some
techniques	that	have	been	used	in	several	commonly	used	applications.

Many	applications	can	perform	reconciliation	automatically	by	executing	on	each	node	all	update
operations	that	had	been	performed	on	other	nodes	during	a	period	of	disconnection.	This	solution
requires	that	the	system	keep	track	of	operations,	for	example,	adding	an	item	to	a	shopping	cart,	or
deleting	an	item	from	a	shopping	cart.

This	solution	works	if	operations	commute	—	that	is,	they	generate	the	same	result,	regardless	of	the
order	in	which	they	are	executed.	The	addition	of	items	to	a	shopping	cart	clearly	commutes.	Deletions	do
not	commute	with	additions	in	general,	which	should	be	clear	if	you	consider	what	happens	if	an	addition
of	an	item	is	exchanged	with	a	delete	of	the	same	item.	However,	as	long	as	deletion	always	operates	only
on	items	already	present	in	the	cart,	this	problem	does	not	arise.

As	another	example,	many	banks	allow	customers	to	withdraw	money	from	an	ATM	even	if	it	is
temporarily	disconnected	from	the	bank	network.	When	the	ATM

gets	reconnected,	the	withdrawal	operation	is	applied	to	the	account.	Again,	if	there	are	multiple
withdrawals,	they	may	get	merged	in	an	order	different	from	the	order	in	which	they	happened	in	the	real
world,	but	the	end	result	(balance)	is	the	same.	Note	that	since	the	operation	already	took	place	in	the
physical	world,	it	cannot	be	rejected	because	of	a	negative	balance;	the	fact	that	an	account	has	a
negative	balance	has	to	be	dealt	with	separately.

There	are	other	application-specific	solutions	for	resolving	conflicting	updates.	In	the	worst	case,
however,	a	system	may	need	to	alert	humans	to	the	conflicting	updates,	and	let	the	humans	decide	how	to
resolve	the	conflict.

Dealing	with	such	inconsistency	automatically,	and	assisting	users	in	resolving	inconsistencies	that	cannot
be	handled	automatically,	remains	an	area	of	research.

23.6.6

Detecting	Differences	Between	Collections	Using	Merkle	Tree

The	Merkle	tree	(also	known	as	hash	tree)	is	a	data	structure	that	allows	efficient	detection	of	differences
between	sets	of	data	items	that	may	be	stored	at	different	replicas.

(To	avoid	confusion	between	tree	nodes	and	system	nodes,	we	shall	refer	to	the	latter	as	replicas	in	this
section.)

Detecting	items	that	have	inconsistent	values	across	replicas	due	to	weak	consistency	is	merely	one	of
motivations	for	Merkle	trees.	Another	motivation	is	performing	sanity	checks	of	replicas	that	are
synchronously	updated,	and	should	be	consistent,	but	may	be	inconsistent	due	to	bugs	or	other	failures.
We	consider	below	a	binary	version	of	the	Merkle	tree.

We	assume	that	each	data	item	has	a	key	and	a	value;	in	case	we	are	considering	collections	that	do	not
have	an	explicit	key,	the	data	item	value	itself	can	be	used	as	a	key.

Each	data	item	key	k	is	hashed	by	a	function	h	()	to	get	a	hash	value	with	n	bits,	i

1

where	n	is	chosen	such	that	2	n	is	within	a	small	factor	of	the	number	of	data	items.

Each	data	item	value	v	is	hashed	by	another	function	h	()	to	get	a	hash	value	(which	i

2

1144

Chapter	23

Parallel	and	Distributed	Transaction	Processing

is	typically	much	longer	than	n	bits).	Finally,	we	assume	a	hash	function	h	()	which	3

takes	as	input	a	collection	of	hash	values	and	returns	a	hash	value	computed	from	the	collection	(this	hash
function	must	be	computed	in	a	way	that	does	not	depend	on	the	input	order	of	the	hash	values,	which
can	be	done,	for	example,	by	sorting	the	collection	before	computing	the	hash	function).

Each	node	of	a	Merkle	tree	has	associated	with	it	an	identifier	and	stores	a	hash	value.	Each	leaf	of	the
tree	can	be	identified	by	an	n-bit	binary	number.	For	a	given	leaf	identified	by	number	k,	consider	the	set
of	all	data	items	i	whose	key	k	is	such	i

that	h	(k)	=	k.	Then,	the	hash	value	v	stored	at	leaf	k	is	computed	by	applying	h	()	1

i

k

2

on	each	of	the	data	item	values	v	,	and	then	applying	h	()	on	the	resultant	collection	i

3

of	hash	values.	The	system	also	maintains	an	index	that	can	retrieve	all	the	data	items	with	a	given	hash
value	computed	by	function	h	().

2

Figure	23.8	shows	an	example	of	a	Merkle	tree	on	8	data	items.	The	hash	value	of	these	data	items	on	h
are	shown	on	the	left.	Note	that	if	for	an	item	i	,	h	(i)	=	k,	then	1

j

1

j

the	data	item	i	is	associated	with	the	leaf	with	identifier	k.

j

Each	internal	node	of	the	Merkle	tree	is	identified	by	a	hash	value	that	is	j	bits	long	if	the	node	is	at	depth
j;	leaves	are	at	depth	n,	and	the	root	at	depth	0.	The	internal	node	identified	by	a	number	k	has	as
children	nodes	identified	by	2	k	and	2	k	+	1.	The	hash	value	stored	v	at	node	k	is	computed	by	applying	h
()	to	the	hash	value	stored	at	k

3

nodes	2	k	and	2	k	+	1.

Now,	suppose	this	Merkle	tree	is	constructed	on	the	data	at	two	replicas	(the	replicas	may	be	whole
database	replicas,	or	replicas	of	a	partition	of	the	database).	If	all	items	at	the	two	replicas	are	identical,
the	stored	hash	values	at	the	root	nodes	will	also	be	identical.

As	long	as	h	()	computes	a	long	enough	hash	value,	and	is	suitably	chosen,	it	is	2

very	unlikely	that	h	(v)	=	h	(v)	if	v	≠	v	,	and	similarly	for	h	().	The	SHA1	hash	2

1

2

2

1

2

3

function	with	a	160-bit	hash	value	is	an	example	of	a	hash	function	that	satisfies	this	Hash	values	of

Merkle	Tree

h

2	(v	,	v

0	1)

data	items

h	(i

1)=00

1

h	(i

0

1

1

)=0

2

1

h	(i

1

)=1

3

1

h

h

2	(v	,	v

0

00

1)

2	(v	,	v

10	11)

h	(i

1

)=00

4

h	(i

1

)=1

5

0

h	(i

1

)=1

6

1

00

01

10

11

h	(i

1

)=1

7

0

h

2	(h

3	(i

1),	h

3	(i

4))

h	2(h	3	(i	2))

h

2	(h

3	(i

5),	h

3	(i

7))

h

2	(h

3	(i

3),	h

3	(i))

6

Node	identifier	shown	above	node,	and	has	value	shown	inside	node,

v	deno

i

tes	stored	hash	value	in	node	i

Figure	23.8	Example	of	Merkle	tree.

23.6

Replication	with	Weak	Degrees	of	Consistency

1145

requirement.	Thus,	we	can	assume	that	if	two	nodes	have	the	same	stored	hash	values,	all	the	data	items
under	the	two	nodes	are	identical.

If,	in	fact,	there	is	a	difference	in	the	value	of	any	items	at	the	two	replicas,	or	if	an	item	is	present	at	one
replica	but	not	at	the	other,	the	stored	hash	values	at	the	root	will	be	different,	with	high	probability.

Then,	the	stored	hash	values	at	each	of	the	children	are	compared	with	the	hash	values	at	the
corresponding	child	in	the	other	tree.	Search	traverses	down	each	child	whose	hash	value	differs,	until	a
leaf	is	reached.	The	traversal	is	done	in	parallel	on	both	trees	and	requires	communication	to	send	tree
node	contents	from	one	replica	to	the	other.

At	the	leaf,	if	the	hash	values	differ,	the	list	of	data	item	keys	associated	with	the	leaves,	and	the
corresponding	data	item	values	are	compared	across	the	two	trees,	to	find	data	items	whose	values	differ
as	well	as	data	items	that	are	present	in	one	of	the	trees	but	not	in	the	other.

One	such	traversal	takes	time	at	most	logarithmic	in	the	number	of	leaf	nodes	of	the	tree;	since	the
number	of	leaf	nodes	is	chosen	to	be	close	to	the	number	of	data	items,	the	traversal	time	is	also
logarithmic	in	the	number	of	data	items.	This	cost	is	paid	at	most	once	for	each	data	item	that	differs
between	the	two	replicas.	Furthermore,	a	path	to	a	leaf	is	traversed	only	if	there	is,	in	fact,	a	difference	at
the	leaf.

Thus,	the	overall	cost	for	finding	differences	between	two	(potentially	very	large)	sets	is	O(m	log	N),
where	m	is	the	number	of	data	items	that	differ	and	N	is	the	total	2

number	of	data	items.	Wider	trees	can	be	used	to	reduce	the	number	of	nodes	encountered	in	a	traversal,
which	would	be	log	N	if	each	node	has	K	children,	at	the	cost	of	K

more	data	being	transferred	for	each	node.	Wider	trees	are	preferred	if	network	latency	is	high	compared
to	the	network	bandwidth.

Merkle	trees	have	many	applications;	they	can	be	used	to	find	the	difference	in	contents	of	two	databases
that	are	almost	identical	without	transferring	large	amounts	of	data.	Such	inconsistencies	can	occur	due
to	the	use	of	protocols	that	only	guarantee	weak	consistency.	They	could	also	occur	because	of	message	or
network	failures	that	result	in	differences	in	replicas,	even	if	consensus	or	other	protocols	that	guarantee
consistent	reads	are	used.

The	original	use	of	Merkle	trees	was	for	verification	of	the	contents	of	a	collection	that	may	have
potentially	been	corrupted	by	malicious	users.	Here,	the	Merkle	tree	leaf	nodes	must	store	the	hash
values	of	all	data	items	that	map	to	it,	or	a	tree	variant	that	only	stores	one	data	item	at	a	leaf	may	be
used.	Further,	the	stored	hash	value	at	the	root	is	digitally	signed,	meaning	its	contents	cannot	be
modified	by	a	malicious	user	who	does	not	have	the	private	key	used	for	signing	the	value.

To	check	an	entire	relation,	the	hash	values	can	be	recomputed	from	the	leaves	upwards,	and	the
recomputed	hash	value	at	the	root	can	be	compared	with	the	digitally	signed	hash	value	stored	at	the
root.

To	check	consistency	of	a	single	data	item,	its	hash	value	is	recomputed;	and	then	so	is	the	hash	value	for
its	leaf	node	n	,	using	existing	hash	values	for	other	data	items	i

1146

Chapter	23

Parallel	and	Distributed	Transaction	Processing

that	hash	to	the	same	leaf.	Next	consider	the	parent	node	n	of	node	n	in	the	tree.	The	j

i

hash	value	of	n	is	computed	using	the	recomputed	hash	value	of	n	and	the	already	j

i

stored	hash	values	of	other	children	of	n	.	This	process	is	continued	upward	until	the	j

root	of	the	tree.	If	the	recomputed	hash	value	at	the	root	matches	the	signed	hash	value	stored	with	the
root,	the	contents	of	the	data	item	can	be	determined	to	be	uncorrupted.

The	above	technique	works	for	detecting	corruption	since	with	suitably	chosen	hash	functions,	it	is	very
hard	for	a	malicious	user	to	create	replacement	values	for	data	items	in	a	way	that	the	recomputed	hash
value	is	identical	to	the	signed	hash	value	stored	at	the	root.

23.7

Coordinator	Selection

Several	of	the	algorithms	that	we	have	presented	require	the	use	of	a	coordinator.	If	the	coordinator	fails
because	of	a	failure	of	the	node	at	which	it	resides,	the	system	can	continue	execution	by	restarting	a	new
coordinator	on	another	node.	One	way	to	continue	execution	is	by	maintaining	a	backup	to	the
coordinator	that	is	ready	to	assume	responsibility	if	the	coordinator	fails.	Another	way	is	to	“elect”	a
coordinator	from	among	the	nodes	that	are	alive.	We	outline	these	options	in	this	section.	We	then	briefly
describe	fault-tolerant	distributed	services	that	have	been	developed	to	help	developers	of	distributed
applications	perform	these	tasks.

23.7.1

Backup	Coordinator

A	backup	coordinator	is	a	node	that,	in	addition	to	other	tasks,	maintains	enough	information	locally	to
allow	it	to	assume	the	role	of	coordinator	with	minimal	disruption	to	the	distributed	system.	All	messages
directed	to	the	coordinator	are	received	by	both	the	coordinator	and	its	backup.	The	backup	coordinator
executes	the	same	algorithms	and	maintains	the	same	internal	state	information	(such	as,	for	a
concurrency	coordinator,	the	lock	table)	as	does	the	actual	coordinator.	The	only	difference	in	function
between	the	coordinator	and	its	backup	is	that	the	backup	does	not	take	any	action	that	affects	other
nodes.	Such	actions	are	left	to	the	actual	coordinator.

In	the	event	that	the	backup	coordinator	detects	the	failure	of	the	actual	coordinator,	it	assumes	the	role
of	coordinator.	Since	the	backup	has	all	the	information	available	to	it	that	the	failed	coordinator	had,
processing	can	continue	without	interruption.

The	prime	advantage	of	the	backup	approach	is	the	ability	to	continue	processing	immediately.	If	a	backup
were	not	ready	to	assume	the	coordinator’s	responsibility,	a	newly	appointed	coordinator	would	have	to
seek	information	from	all	nodes	in	the	system	so	that	it	could	execute	the	coordination	tasks.	Frequently,
the	only	source	of	some	of	the	requisite	information	is	the	failed	coordinator.	In	this	case,	it	may	be
necessary	to	abort	several	(or	all)	active	transactions	and	to	restart	them	under	the	control	of	the	new
coordinator.

23.7

Coordinator	Selection

1147

Thus,	the	backup-coordinator	approach	avoids	a	substantial	amount	of	delay	while	the	distributed	system
recovers	from	a	coordinator	failure.	The	disadvantage	is	the	overhead	of	duplicate	execution	of	the
coordinator’s	tasks.	Furthermore,	a	coordinator	and	its	backup	need	to	communicate	regularly	to	ensure
that	their	activities	are	synchronized.

In	short,	the	backup-coordinator	approach	incurs	overhead	during	normal	processing	to	allow	fast
recovery	from	a	coordinator	failure.

23.7.2

Election	of	Coordinator

In	the	absence	of	a	designated	backup	coordinator,	or	in	order	to	handle	multiple	failures,	a	new
coordinator	may	be	chosen	dynamically	by	nodes	that	are	live.

One	possible	approach	is	to	have	a	designated	node	choose	a	new	coordinator,	when	the	current
coordinator	has	failed.	However,	this	raises	the	question	of	what	to	do	if	the	node	that	chooses
replacement	coordinators	itself	fails.

If	we	have	a	fault-tolerant	lock	manager,	a	very	effective	way	of	choosing	a	new	coordinator	for	a	task	is
to	use	lock	leases.	The	current	coordinator	has	a	lock	lease	on	a	data	item	associated	with	the	task.	If	the
coordinator	fails,	the	lease	will	expire.	If	a	participant	determines	that	the	coordinator	may	have	failed,	it
attempts	to	get	a	lock	lease	for	the	task.	Note	that	multiple	participants	may	attempt	to	get	a	lease,	but
the	lock	manager	ensures	that	only	one	of	them	can	get	the	lease.	The	participant	that	gets	the	lease
becomes	the	new	coordinator.	As	discussed	in	Section	23.3.3,	this	ensures	that	only	one	node	that	can	be
the	coordinator	at	a	given	time.	Lock	leases	are	widely	used	to	ensure	that	a	single	node	gets	chosen	as
coordinator.	However,	observe	that	there	is	an	underlying	assumption	of	a	fault-tolerant	lock	manager.

A	participant	determines	that	the	coordinator	may	have	failed	if	it	is	unable	to	communicate	with	the
coordinator.	Participants	send	periodic	heart-beat	messages	to	the	coordinator	and	wait	for	an
acknowledgment;	if	the	acknowledgment	is	not	received	within	a	certain	time,	the	coordinator	is	assumed
to	have	failed.

Note	that	the	participant	cannot	definitively	distinguish	a	situation	where	the	coordinator	is	dead	from	a
situation	where	the	network	link	between	the	node	and	the	coordinator	is	cut.	Thus,	the	system	should	be
able	to	work	correctly	even	if	the	current	coordinator	is	alive,	but	another	participant	determines	that	the
coordinator	is	dead.

Lock	leases	ensure	that	at	most	one	node	can	be	the	coordinator	at	any	time;	once	a	coordinator	dies,
another	node	can	become	the	coordinator.	However,	lock	leases	work	only	if	a	fault-tolerant	lock	manager
is	available.

This	raises	the	question	of	how	to	implement	such	a	lock	manager.	We	return	later,	in	Section	23.8.4,	to
the	question	of	how	to	implement	a	fault-tolerant	lock	manager.

But	it	turns	out	that	to	do	so	efficiently,	we	need	to	have	a	coordinator.	And,	lock	leases	cannot	be	used	to
choose	the	coordinator	for	the	lock	manager!	The	problem	of	how	to	choose	a	coordinator	without
depending	on	a	lock	manager	is	solved	by	election	algorithms,	which	enable	the	participating	nodes	to
choose	a	new	coordinator	in	a	decentralized	manner.

1148

Chapter	23

Parallel	and	Distributed	Transaction	Processing

Suppose	the	goal	is	to	elect	a	coordinator	just	once.	Then,	each	node	that	wishes	to	become	the
coordinator	proposes	itself	as	a	candidate	to	all	the	other	nodes;	such	nodes	are	called	proposers.	The
participating	nodes	then	vote	on	which	node	among	the	candidates	is	to	be	chosen.	If	a	majority	of	the
participating	nodes	(called	acceptors)	vote	for	a	particular	candidate,	it	is	chosen.	A	subset	of	nodes
called	learners	ask	the	acceptor	nodes	for	their	vote	and	determine	if	a	majority	have	voted	for	a
particular	candidate.

The	problem	with	the	above	idea	is	that	if	there	are	multiple	candidates,	none	of	them	may	get	a	majority
of	votes.	The	question	is	what	to	do	in	such	a	situation.	There	are	at	least	two	approaches	that	have	been
proposed:

•	Nodes	are	given	unique	numbers;	if	more	than	one	candidate	proposes	itself,	acceptors	choose	the
highest-numbered	candidate.	Even	then	votes	may	be	split	with	no	majority	decision,	due	to	delayed	or
missing	messages;	in	such	a	case,	the	election	is	run	again.	But	if	a	node	N	that	was	a	candidate	finds	that
a	higher-numbered	1

node	N	has	proposed	itself	as	a	candidate,	then	N	withdraws	from	the	next	round	2

1

of	the	election.	The	highest-numbered	candidate	will	win	the	election.	The	bully	algorithm	for	election	is
based	on	this	idea.

There	are	some	subtle	details	due	to	the	possibility	that	the	highest-numbered	candidate	in	one	round
may	fail	during	a	subsequent	round,	leading	to	there	being	no	candidates	at	all!	If	a	proposer	observes
that	no	coordinator	was	selected	in	a	round	where	it	withdrew	itself	as	a	candidate,	it	proposes	itself	as	a
candidate	again	in	the	next	round.

Note	also	that	the	election	has	multiple	rounds;	each	round	has	a	number,	and	a	candidate	attaches	a
round	number	with	the	proposal.	The	round	number	is	chosen	to	be	the	maximum	round	that	it	has	seen,
plus	1.	A	node	can	give	a	vote	to	only	one	candidate	in	a	particular	round,	but	it	may	change	its	vote	in	the
next	round.

•	The	second	approach	is	based	on	randomized	retry,	which	works	as	follows:	If	there	is	no	majority
decision	in	a	particular	round,	all	participants	wait	for	a	randomly	chosen	amount	of	time;	if	by	that	time	a
coordinator	has	been	chosen	by	a	majority	of	nodes,	it	is	accepted	as	a	coordinator.	Otherwise,	after	the
timeout,	the	node	proposes	itself	as	a	candidate.	As	long	as	the	timeouts	are	chosen	properly	(large
enough	compared	to	network	latency)	with	high	likelihood	only	one	node	proposes	itself	at	a	particular
time	and	will	get	votes	from	a	majority	of	nodes	in	a	particular	round.

If	no	candidate	gets	a	majority	vote	in	a	round,	the	process	is	repeated.	With	very	high	probability,	after	a
few	rounds,	one	of	the	candidates	gets	a	majority	and	is	thus	chosen	as	coordinator.

The	randomized-retry	approach	was	popularized	by	the	Raft	consensus	algorithm,	and	it	is	easier	to
reason	about	it	and	show	not	just	correctness,	but	also	bounds	on	the	expected	time	for	an	election	round
to	succeed	in	choosing	a	coordinator,	as	compared	to	the	node-	numbering-based	approach.

23.7

Coordinator	Selection

1149

Note	that	the	above	description	assumed	that	choosing	a	coordinator	is	a	one-time	activity.	However,	the
chosen	coordinator	may	fail,	requiring	a	fresh	election	algorithm.

The	notion	of	a	term	is	used	to	deal	with	this	situation.	As	mentioned	above,	each	time	a	node	proposes
itself	as	a	coordinator,	it	associates	the	proposal	with	a	round	number,	which	is	1	more	than	the	highest
round	number	it	has	seen	earlier,	after	ensuring	that	in	the	previous	round	no	coordinator	was	chosen,	or
the	chosen	coordinator	has	subsequently	failed.	The	round	number	is	henceforth	referred	to	as	a	term.
When	the	election	succeeds,	the	chosen	coordinator	is	the	coordinator	for	the	corresponding	term.	If	the
election	fails,	the	corresponding	term	does	not	have	any	coordinator	chosen,	but	the	election	should
succeed	in	a	subsequent	term.

Note	also	that	there	are	subtle	issues	that	arise	since	a	node	n	may	be	disconnected	from	the	network	for
a	while,	and	it	may	get	reconnected	without	ever	realizing	that	it	was	disconnected.	In	the	interim,	the
coordinator	may	have	changed.	In	particular,	if	the	node	n	was	the	coordinator,	it	may	continue	to	think	it
is	the	coordinator,	and	some	other	node,	say	N	,	which	was	also	disconnected	may	think	that	n	is	still
coordinator.

1

However,	if	a	coordinator	was	successfully	elected,	the	majority	of	the	nodes	agree	that	some	other	node,
say	N	,	is	the	coordinator.

2

In	general,	it	is	possible	for	more	than	one	node	to	think	that	is	the	coordinator	at	the	same	time,
although	at	most	one	of	them	can	have	the	majority	vote	at	that	point	in	time.

To	avoid	this	problem,	each	coordinator	can	be	given	a	lease	for	a	specified	period.

The	coordinator	can	extend	the	lease	by	requesting	an	extension	from	other	nodes	and	getting

confirmation	from	a	majority	of	the	nodes.	But	if	the	coordinator	is	disconnected	from	a	majority	of	the
nodes,	it	cannot	renew	its	lease,	and	the	lease	expires.

A	node	can	vote	for	a	new	coordinator	only	if	the	last	lease	time	that	it	confirmed	to	the	earlier
coordinator	has	expired.	Since	a	new	coordinator	needs	a	majority	vote,	it	cannot	get	the	vote	until	the
lease	time	of	the	previous	coordinator	has	expired.

However,	even	if	leases	are	used	to	ensure	that	two	nodes	cannot	be	coordinators	at	the	same	time,
delayed	messages	can	result	in	a	node	getting	a	message	from	an	old	coordinator	after	a	new	one	has
been	elected.

To	deal	with	this	problem,	the	current	term	of	the	sender	is	included	with	each	message	exchanged	in	the
system.	Note	that	when	a	node	n	is	elected	as	coordinator,	it	has	an	associated	term	t;	participant	nodes
that	learn	that	n	is	the	coordinator	are	aware	of	the	current	term	t.	A	node	may	receive	a	message	with	an
old	term	either	because	an	old	coordinator	did	not	realize	it	has	been	replaced	or	because	of	message
delivery	delay;	the	latter	problem	can	occur	even	if	leases	or	other	mechanisms	ensure	that	only	one	node
can	be	the	coordinator	at	a	time.	In	either	case,	a	node	that	receives	a	stale	message,	that	is,	one	with	a
term	older	than	the	current	term	of	the	node,	it	can	ignore	the	message.	If	a	node	receives	a	message
with	a	higher	number,	it	is	behind	the	rest	of	the	system,	and	it	needs	to	find	out	the	current	term	and
coordinator	by	contacting	other	nodes.

Some	protocols	do	not	require	the	coordinator	to	store	any	state	information;	in	such	cases,	the	new
coordinator	can	take	over	without	any	further	actions.	However,

1150

Chapter	23

Parallel	and	Distributed	Transaction	Processing

other	protocols	require	coordinators	to	retain	state	information.	In	such	cases,	the	new	coordinator	has	to
reconstruct	the	state	information	from	persistent	data	and	recovery	logs	created	by	the	previous
coordinator.	Such	logs,	in	turn,	need	to	be	replicated	to	multiple	nodes	so	that	the	loss	of	a	node	does	not
result	in	the	loss	of	access	to	the	recovery	data.	We	shall	see	how	to	ensure	availability	by	means	of	data
replication	in	subsequent	sections.

23.7.2.1

Distributed	Coordination	Services

There	are	a	very	large	number	of	distributed	applications	that	are	in	daily	use	today.

Instead	of	each	one	having	to	implement	its	own	mechanism	for	electing	coordinators	(among	other
tasks),	it	makes	sense	to	develop	a	fault-tolerant	coordination	service	that	can	be	used	by	multiple
distributed	applications.

The	ZooKeeper	service	is	one	such	very	widely	used	fault-tolerant	distributed	coordination	service.	The
Chubby	service	developed	earlier	at	Google	is	another	such	service,	which	is	widely	used	for	applications
developed	by	Google.	These	services	internally	use	consensus	protocols	to	implement	fault	tolerance;	we
study	consensus	protocols	in	Section	23.8.

These	services	provide	a	file-system-like	API,	which	supports	the	following	features,	among	others:

•	Store	(small	amounts	of)	data	in	files,	with	a	hierarchical	namespace.	A	typical	use	for	such	storage	is	to
store	configuration	information	that	can	be	used	to	start	up	a	distributed	application,	or	for	new	nodes	to
join	a	distributed	application	by	finding	out	which	node	is	currently	the	coordinator.

•	Create	and	delete	files,	which	can	be	used	to	implement	locking.	For	example,	to	get	a	lock,	a	process
can	attempt	to	create	a	file	with	a	name	corresponding	to	the	lock.	If	another	process	has	already	created
the	file,	the	coordination	service	will	return	an	error,	so	the	process	knows	it	could	not	get	the	lock.

For	example,	a	node	that	acts	as	a	master	for	a	tablet	in	a	key-value	store	would	get	a	lock	on	a	file	whose
name	is	the	identifier	of	the	tablet.	This	ensures	that	two	nodes	cannot	be	masters	for	the	tablet	at	the
same	time.

If	an	overall	application	master	detects	that	a	tablet	master	has	died,	it	could	release	the	lock.	If	the
service	supports	lock	leases,	this	could	happen	automatically,	if	the	tablet	master	does	not	renew	its	lease.

•	Watch	for	changes	on	a	file,	which	can	be	used	by	a	process	to	check	if	a	lock	has	been	released,	or	to
be	informed	about	other	changes	in	the	system	that	require	action	by	the	process.

23.8

Consensus	in	Distributed	Systems

In	this	section	we	first	describe	the	consensus	problem	in	a	distributed	system,	that	is,	how	a	set	of	nodes
agree	on	a	decision	in	a	fault-tolerant	way.	Distributed	consensus	is

23.8

Consensus	in	Distributed	Systems

1151

a	key	building	block	for	protocols	that	update	replicated	data	in	a	fault-tolerant	manner.

We	outline	two	consensus	protocols,	Paxos	and	Raft.	We	then	describe	replicated	state	machines,	which
can	be	used	to	make	services,	such	as	data	storage	systems	and	lock	managers,	fault	tolerant.	We	end	the
section	by	describing	how	consensus	can	be	used	to	make	two-phase	commit	nonblocking.

23.8.1

Problem	Overview

Software	systems	need	to	make	decisions,	such	as	the	coordinator’s	decision	on	whether	to	commit	or
abort	a	transaction	when	using	2PC,	or	a	decision	on	which	node	is	to	act	as	coordinator,	in	case	a	current
coordinator	fails.

If	the	decision	is	made	by	a	single	node,	such	as	the	commit/abort	decision	made	by	a	coordinator	node	in
2PC,	the	system	may	block	in	case	the	node	fails,	since	other	nodes	have	no	way	of	determining	what
decision	was	made.	Thus,	to	ensure	fault	tolerance,	multiple	nodes	must	participate	in	the	decision
protocol;	even	if	some	of	these	nodes	fail,	the	protocol	must	be	able	to	reach	a	decision.	A	single	node	may
make	a	proposal	for	a	decision,	but	it	must	involve	the	other	nodes	to	reach	a	decision	in	a	fault-tolerant
manner.

The	most	basic	form	of	the	distributed	consensus	problem	is	thus	as	follows:	a	set	of	n	nodes	(referred	to
as	participants)	need	to	agree	on	a	decision	by	executing	a	protocol	such	that:

•	All	participants	must	“learn”	the	same	value	for	the	decision	even	if	some	nodes	fail	during	the
execution	of	the	protocol,	or	messages	are	lost,	or	there	are	network	partitions.

•	The	protocol	should	not	block,	and	must	terminate,	as	long	as	some	majority	of	the	nodes	participating
remain	alive	and	can	communicate	with	each	other.

Any	real	system	cannot	just	make	a	single	decision	once,	but	needs	to	make	a	series	of	decisions.	A	good
abstract	of	the	process	of	making	multiple	consensus	decisions	is	to	treat	each	decision	as	adding	a
record	to	a	log.	Each	node	has	a	copy	of	the	log,	and	records	are	appended	to	the	log	at	each	node.	There
can	potentially	be	conflicts	on	what	record	is	added	at	what	point	in	a	log.	The	multiple	consensus
protocol	viewed	from	this	perspective	needs	to	ensure	that	the	log	is	uniquely	defined.

Most	consensus	protocols	allow	temporary	divergence	of	logs	across	nodes	while	the	protocol	is	being
executed;	that	is,	the	same	log	position	at	different	nodes	may	have	different	records,	and	the	end	of	the
log	may	be	different	at	different	nodes.	Shared-log	consensus	protocols	keep	track	of	an	index	into	the	log
such	that	any	entry	before	that	index	has	definitely	been	agreed	upon.	Any	entries	after	that	index	may	be
in	the	process	of	being	agreed	upon,	or	may	be	entries	from	failed	attempts	at	consensus.

However,	the	protocols	subsequently	bring	the	inconsistent	parts	of	the	log	logs	back	in	synchronization.
To	do	this,	log	records	at	some	nodes	may	be	deleted	after	being	inserted;	such	log	records	are	viewed	as
not	yet	committed	and	cannot	be	used	to	make

1152

Chapter	23

Parallel	and	Distributed	Transaction	Processing

decisions.	Only	log	records	in	the	prefix	of	the	log	that	are	in	the	committed	prefix	may	be	used	to	make
decisions.

Several	protocols	have	been	proposed	for	distributed	consensus.	Of	these,	the	Paxos	family	of	protocols	is
one	of	the	most	popular,	and	it	has	been	implemented	in	many	systems.	While	the	basic	Paxos	protocol	is
intuitively	easy	to	understand	at	a	high	level,	there	are	a	number	of	details	in	its	implementation	that	are
rather	complicated,	and	particularly	so	in	the	multiple	consensus	version.	To	address	this	issue,	the	Raft
consensus	protocol	was	developed,	with	ease	of	understanding	and	implementation	being	key	goals,	and	it
has	been	adopted	by	many	systems.	We	outline	the	intuition	behind	these	protocols	in	this	section.

A	key	idea	behind	distributed	consensus	protocols	is	the	idea	of	voting	to	make	a	decision;	a	particular
decision	succeeds	only	if	a	majority	of	the	participating	nodes	vote	for	it.	Note	that	if	two	or	more
different	values	are	proposed	for	a	particular	decision,	at	most	one	of	them	can	be	voted	for	by	a	majority;
thus,	it	is	not	possible	for	two	different	values	to	be	chosen.	Even	if	some	nodes	fail,	if	a	majority	of	the
participants	vote	for	a	value,	it	gets	chosen,	thus	making	the	voting	fault	tolerant	as	long	as	a	majority	of
the	participants	are	up	and	connected	to	each	other.	There	is,	however,	a	risk	that	votes	may	get	split
between	the	proposed	values,	and	some	nodes	may	not	vote	if	they	fail;	as	a	result,	no	value	may	be
decided	on.	In	such	a	case	the	voting	procedure	has	to	be	executed	again.

While	the	above	intuition	is	easy	enough	to	understand,	there	are	many	details	that	make	the	protocols
nontrivial.	We	study	some	of	these	issues	in	the	following	sections.

We	note	that	although	we	study	some	of	the	features	of	the	Paxos	and	Raft	consensus	protocols,	we	omit	a
number	of	details	that	are	needed	for	correct	operation	to	keep	our	description	concise.

We	also	note	that	a	number	of	other	consensus	protocols	have	been	proposed,	and	some	of	them	are
widely	used,	such	as	the	Zab	protocol	which	is	part	of	the	ZooKeeper	distributed	coordination	service.

23.8.2

The	Paxos	Consensus	Protocol

The	basic	Paxos	protocol	for	making	a	single	decision	has	the	following	participants.

1.	One	or	more	nodes	that	can	propose	a	value	for	the	decision;	such	nodes	are	called	proposers.

2.	One	or	more	nodes	that	act	as	acceptors.	An	acceptor	may	get	proposals	with	different	values	from
different	proposers	and	must	choose	(vote	for)	only	one	of	the	values.

Note	that	failure	of	an	acceptor	does	not	cause	a	problem,	as	long	as	a	majority	of	the	acceptors	are	live
and	reachable.	Failure	or	disconnection	of	a	majority	would	block	the	consensus	protocol.

23.8

Consensus	in	Distributed	Systems

1153

3.	A	set	of	nodes,	called	learners,	query	the	acceptors	to	find	what	value	each	acceptor	voted	for	in	a
particular	round.	(Acceptors	could	also	send	the	value	they	accepted	to	the	learners,	without	waiting	for	a
query	from	the	learner.)	Note	that	the	same	node	can	play	the	roles	of	proposer,	acceptor,	and	learner.

If	a	majority	of	the	acceptors	voted	for	a	particular	value,	that	value	is	the	chosen	(consensus)	value	for
that	decision.	But	there	are	two	problems:

1.	It	is	possible	for	votes	to	be	split	among	multiple	proposals,	and	no	proposal	is	accepted	by	a	majority
of	the	acceptors.

If	any	proposed	value	is	to	get	a	majority,	at	least	some	acceptors	must	change	their	decision.	Thus,	we
must	allow	another	round	of	decision	making,	where	acceptors	may	choose	a	new	value.	This	may	need	to
be	repeated	as	long	as	required	until	one	value	wins	a	majority	vote.

2.	Even	if	a	majority	of	nodes	do	accept	a	value,	it	is	possible	that	some	of	these	nodes	die	or	get
disconnected	after	accepting	a	value,	but	before	any	learner	finds	out	about	their	acceptance,	and	the
remaining	acceptors	of	that	value	do	not	constitute	a	majority.

If	this	is	treated	as	the	failure	of	a	round,	and	a	different	value	is	chosen	in	a	subsequent	round,	we	have	a
problem.	In	particular,	a	learner	that	learned	about	the	earlier	majority	would	conclude	that	a	particular
value	was	chosen,	while	another	learner	could	conclude	that	a	different	value	was	chosen,	which	is	not
acceptable.

Note	also	that	acceptors	must	log	their	decision	so	when	they	recover	they	know	what	decision	they	made
earlier.

The	first	problem	above,	namely,	split	votes,	does	not	affect	correctness,	but	it	affects	performance.	To
avoid	this	problem,	Paxos	makes	use	of	a	coordinator	node.

Proposers	send	a	proposal	to	the	coordinator,	which	picks	one	of	the	proposed	values	and	follows	the
preceding	steps	to	get	a	majority	vote.	If	proposals	come	from	only	one	coordinator,	there	is	no	conflict,
and	the	lone	proposed	value	gets	a	majority	vote	(modulo	network	and	node	failures).

Note	that	if	the	coordinator	dies	or	is	unreachable,	a	new	coordinator	can	be	elected,	using	techniques	we

saw	earlier	in	Section	23.7,	and	the	new	coordinator	can	then	do	the	same	job	as	the	earlier	coordinator.
Coordinators	have	no	local	state,	so	the	new	one	can	take	over	without	any	recovery	steps.

The	second	problem,	namely,	different	values	getting	majorities	in	different	rounds,	is	a	serious	problem
and	must	be	avoided	by	the	consensus	protocol.	To	do	so,	Paxos	uses	the	following	steps:

1.	Each	proposal	in	Paxos	has	a	number;	different	proposals	must	have	different	numbers.

1154

Chapter	23

Parallel	and	Distributed	Transaction	Processing

2.	In	phase	1a	of	the	protocol,	a	proposer	sends	a	prepare	message	to	acceptors,	with	its	proposal	number
n.

3.	In	phase	1b	of	the	protocol,	an	acceptor	that	receives	a	prepare	message	with	number	n	checks	if	it	has
already	responded	to	a	message	with	a	number	higher	than	n.	If	so,	it	ignores	the	message.	Otherwise,	it
remembers	the	number	n	and	responds	with	the	highest	proposal	number	m	<	n	that	it	has	already
accepted,	along	with	the	corresponding	value	v;	if	it	has	not	accepted	any	value	earlier,	it	indicates	so	in
its	response.	(Note	that	responding	is	different	from	accepting.)	4.	In	phase	2a,	the	proposer	checks	if	it
got	a	response	from	a	majority	of	the	acceptors.	If	it	does,	it	chooses	a	value	v	as	follows:	If	none	of	the
acceptors	has	already	accepted	any	value,	the	proposer	may	use	whatever	value	it	intended	to	propose.	If
at	least	one	of	the	acceptors	responded	that	it	accepted	a	value	v	with	some	number	m,	the	proposer
chooses	the	value	v	that	has	the	highest	associated	number	m	(note	that	m	must	be	<	n).

The	proposer	now	sends	an	accept	request	with	the	chosen	value	v	and	number	n.

5.	In	phase	2b,	when	an	acceptor	gets	an	accept	request	with	value	v	and	number	n,	it	checks	if	it	has
responded	to	a	prepare	message	with	number	n

>	n;	if

1

so	it	ignores	the	accept	request.	Otherwise,	it	accepts	the	proposed	value	v	with	number	n.

The	above	protocol	is	quite	clever,	since	it	ensures	the	following:	if	a	majority	of	acceptors	accepted	a
value	v	(with	any	number	n),	then	even	if	there	are	further	proposals	with	number	n	>	n,	the	value
proposed	will	be	value	v.	Intuitively,	the	reason	1

is	that	a	value	can	be	accepted	with	number	n	only	if	a	majority	of	nodes	respond	to	a	prepare	message
with	number	n;	let	us	call	this	set	of	acceptors	P.	Suppose	a	value	v	had	been	accepted	earlier	by	a
majority	of	nodes	with	number	m;	call	this	set	of	nodes	A.	Then	A	and	P	must	have	a	node	in	common,	and
the	common	node	will	respond	with	value	v	and	number	m.

Note	that	some	other	proposal	with	a	number	p	>	n	may	have	been	made	earlier,	but	if	it	had	been
accepted	by	even	one	node,	then	a	majority	of	nodes	would	have	responded	to	the	proposal	with	number
p,	and	thus	will	not	respond	to	the	proposal	with	number	n.	Thus,	if	a	proposal	with	value	v	is	accepted	by
a	majority	of	nodes,	we	can	be	sure	that	any	further	proposal	will	be	for	the	already	chosen	value	v.

Note	that	if	a	learner	finds	that	no	proposal	was	accepted	by	a	majority	of	nodes,	it	can	ask	any	proposer
to	issue	a	fresh	proposal.	If	a	value	v	had	been	accepted	by	a	majority	of	nodes,	it	would	be	found	and
accepted	again,	and	the	learner	would	now	learn	about	the	value.	If	no	value	was	accepted	by	a	majority
of	nodes	earlier,	the	new	proposal	could	be	accepted.

The	above	algorithm	is	for	a	single	decision.	Paxos	has	been	extended	to	allow	a	series	of	decisions;	the
extended	algorithm	is	called	Multi-Paxos.	Real	implementations

23.8

Consensus	in	Distributed	Systems

1155

also	need	to	deal	with	other	issues,	such	as	how	to	add	a	node	to	the	set	of	acceptors,	or	to	remove	a	node
from	the	set	of	acceptors	if	it	is	down	for	a	long	time,	without	affecting	the	correctness	of	the	protocol.
References	with	more	details	about	Paxos	and	Multi-Paxos	may	be	found	in	the	bibliographic	notes	for	this
chapter,	available	online.

23.8.3

The	Raft	Consensus	Protocol

There	are	several	consensus	protocols	whose	goal	is	to	maintain	a	log,	to	which	records	can	be	appended
in	a	fault-tolerant	manner.	Each	node	participating	in	such	a	protocol	has	a	replica	of	the	log.	Log-based
protocols	simplify	the	handling	of	multiple	decisions.

The	Raft	consensus	protocol	is	an	example	of	such	a	protocol,	and	it	was	designed	to	be	(relatively)	easy
to	understand.

A	key	goal	of	log-based	protocols	is	to	keep	the	log	replicas	in	sync	by	presenting	a	logical	view	of
appending	records	atomically	to	all	copies	of	the	log.	In	fact,	atomically	appending	the	same	entry	to	all
replicas	is	not	possible,	due	to	failures.	Recall	that	failure	modes	may	include	a	node	being	temporarily
disconnected	and	missing	some	updates,	without	ever	realizing	it	was	disconnected.	Further,	a	log	append
may	be	done	at	just	a	few	nodes,	and	the	append	process	may	fail	subsequently,	leaving	other	replicas
without	the	record.	Thus,	ensuring	all	copies	of	the	log	are	identical	at	all	times	is	impossible.	Such
protocols	must	ensure	the	following:

•	Even	if	a	log	replica	is	temporarily	inconsistent	with	another,	the	protocol	will	bring	it	back	in	sync
eventually	by	deleting	and	replacing	log	records	on	some	copies.

•	A	log	entry	will	not	be	treated	as	committed	until	the	algorithm	guarantees	that	it	will	never	be	deleted.

Protocols	such	as	Raft	that	are	based	on	log	replication	can	allow	each	node	to	run	a	“state	machine,”
with	log	entries	used	as	commands	to	the	state	machine;	state	machines	are	described	in	Section	23.8.4.

The	Raft	algorithm	is	based	on	having	a	coordinator,	which	is	called	a	leader	in	Raft	terminology.	The
other	participating	nodes	are	called	followers.	Since	leaders	may	die	and	need	to	be	replaced,	time	is
divided	into	terms,	which	are	identified	by	integers.

Each	term	has	a	unique	leader,	although	some	terms	may	not	have	any	associated	leader.	Later	terms
have	higher	identifiers	than	earlier	terms.

Leaders	are	elected	in	Raft	using	the	randomized-retry	algorithm	outlined	in	Section	23.7.2.	Recall	that
the	randomized-retry	algorithm	already	incorporates	the	notion	of	a	term.	A	node	that	votes	for	a	leader
does	so	for	a	specific	term.	Nodes	keep	track	of	the	currentTerm	based	on	messages	from	leaders	or
requests	for	votes.

Note	that	a	leader	N	may	get	temporarily	disconnected,	but	get	reconnected	after	1

other	nodes	find	the	leader	cannot	be	reached,	and	elect	a	new	leader	N	.	Node	N

2

1

1156

Chapter	23

Parallel	and	Distributed	Transaction	Processing

log	index

1

2

3

4

5

6

7

1

1

1

2

3

3

3

leader

x	2

<

z	2

<

x	3

<

x

<	4

x	1

<

y	6

<

z

<	4

1

1

1

2

3

follower	1

x	2

<

z	2

<

x	3

<

x

<	4

x	1

<

1

1

1

2

3

3

3

follower	2

x	2

<

z	2

<

x	3

<

x

<	4

x	1

<

y	6

<

z

<	4

1

1

1

follower	3

x	2

<

z	2

<

x	3

<

1

1

1

2

3

3

follower	4

x	2

<

z	2

<

x	3

<

x

<	4

x	1

<

y	6

<

committed	entries

Figure	23.9	Example	of	Raft	logs.

does	not	know	that	there	is	a	new	leader	and	may	continue	to	execute	the	actions	of	a	leader.	The	protocol
should	be	robust	to	such	situations.

Figure	23.9	shows	an	example	of	Raft	logs	at	a	leader	and	four	followers.	Note	that	the	log	index	denotes
the	position	of	a	particular	record	in	a	log.	The	number	at	the	top	of	each	log	record	is	the	term	in	which
the	log	record	was	created,	while	the	part	below	it	shows	the	log	entry,	assumed	here	to	record
assignments	to	different	variables.

Any	node	that	wishes	to	append	a	record	to	the	replicated	log	sends	a	log	append	request	to	the	current
leader.	The	leader	adds	its	term	as	a	field	of	the	log	records	and	appends	the	record	to	its	log;	it	then
sends	an	AppendEntries	remote	procedure	call	to	the	other	nodes;	the	call	contains	several	parameters,
including	these:

•	term:	the	term	of	the	current	leader.

•	previousLogEntryPosition:	the	position	in	the	log	of	the	preceding	log	entry.

•	previousLogEntryTerm:	the	term	associated	with	the	preceding	log	entry.

•	logEntries:	an	array	of	log	records,	allowing	the	call	to	append	multiple	log	records	at	the	same	time.

•	leaderCommitIndex:	an	index	such	that	all	log	records	at	that	index	or	earlier	are	committed.	Recall	that
a	log	entry	is	not	considered	committed	until	a	leader	has	confirmed	that	a	majority	of	nodes	have
accepted	that	log	entry.	The	leader	keeps,	in	leaderCommitIndex,	a	position	in	the	log	such	that	all	log
records	at	that	index	and	earlier	are	committed;	this	value	is	sent	along	with	the	AppendEntries	call	so
that	the	nodes	learn	which	log	records	have	been	committed.

23.8

Consensus	in	Distributed	Systems

1157

If	a	majority	of	the	nodes	respond	to	the	call	with	a	return	value	true,	the	leader	can	report	successful	log
append	(along	with	the	position	in	the	log)	to	the	node	that	initiated	the	log	append.	We	will	shortly	see
what	happens	if	a	majority	do	not	respond	with	true.

Each	follower	that	receives	an	AppendEntries	message	does	the	following:	1.	If	the	term	in	the	message	is
less	than	currentTerm,	then	Return	false.

2.	If	the	log	does	not	contain	an	entry	at	a	previous	log	entry	position,	whose	term	matches	the	term	in
the	message,	then	Return	false.

3.	If	there	is	an	existing	entry	at	the	log	position	that	is	different	from	the	first	log	record	in	the
AppendEntries	message,	the	existing	entry	and	all	subsequent	log	entries	are	deleted.

4.	Any	log	records	in	the	logEntries	parameter	that	are	not	already	in	the	log	are	appended	to	the	log.

5.	The	follower	also	keeps	track	of	a	local	commitIndex	to	track	which	records	are	committed.	If	the
leaderCommitIndex	>	commitIndex,	set	commitIndex	=

min(leaderCommitIndex,	index	of	last	entry	in	log).

6.	Return	true.

Note	that	the	last	step	keeps	track	of	the	last	committed	log	record.	It	is	possible	that	the	leader’s	log	is
ahead	of	the	local	log,	so	commitIndex	cannot	be	blindly	set	to	leaderCommitIndex,	and	it	may	need	to	be
set	to	the	local	end	of	log	if	the	leaderCommitIndex	is	ahead	of	the	local	end	of	log.

Figure	23.9	shows	that	different	followers	may	have	different	log	states,	since	some	AppendEntries
messages	may	not	have	reached	those	nodes.	The	part	of	the	log	up	to	entry	6	is	present	at	a	majority	of
nodes	(namely,	the	leader,	follower	2	and	follower	4).

On	receipt	of	a	true	response	to	the	AppendEntries	call	for	the	log	record	at	position	6	from	these
followers,	the	leader	can	set	leaderCommitIndex	to	6.

It	is	possible	for	a	node	N	to	be	a	leader	in	some	term,	and	on	temporary	discon-1

nection	it	may	get	replaced	by	a	new	leader	N	in	the	next	term.	N	may	not	realize	2

1

that	there	is	a	new	leader	for	some	time	and	may	send	appendEntry	messages	to	other	nodes.	However,	a
majority	of	the	other	nodes	will	know	about	the	new	leader,	and	would	have	a	term	higher	than	that	of	N	.
Thus,	these	nodes	would	return	false,	and	1

include	their	current	term	in	the	response.	Node	N	would	then	realize	that	there	is	a	1

leader	with	a	new	term;	it	then	switches	from	the	role	of	leader	to	that	of	follower.

The	protocol	must	deal	with	the	fact	that	some	nodes	may	have	outdated	logs.	Note	that	in	step	2	of	the
follower	protocol,	the	follower	returns	false	if	its	log	is	outdated.	In	such	a	case,	the	leader	will	retry	an
AppendEntries,	sending	it	all	log	records	from	an	even	earlier	point	in	the	log.	This	may	happen	several
times,	until	the	leader	sends	log

1158

Chapter	23

Parallel	and	Distributed	Transaction	Processing

records	from	a	point	that	is	already	in	the	follower	log.	At	this	point,	the	AppendEntries	command	would
succeed.

A	key	remaining	problem	is	to	ensure	that	if	a	leader	dies,	and	another	one	takes	over,	the	log	is	brought
to	a	consistent	state.	Note	that	the	leader	may	have	appended	some	log	entries	locally	and	replicated
some	of	them	to	some	other	nodes,	but	the	new	leader	may	or	may	not	have	all	these	records.	To	deal	with
this	situation,	the	Raft	protocol	includes	steps	to	ensure	the	following:

1.	The	protocol	ensures	that	any	node	elected	as	leader	has	all	the	committed	log	entries.	To	do	so,	any
candidate	must	contact	a	majority	of	the	nodes	and	send	information	about	its	log	state	when	seeking	a
vote.	A	node	will	vote	for	a	candidate	in	the	election	only	if	it	finds	that	the	candidate’s	log	state	is	at	least
as	up-to-date	as	its	own;	note	that	the	definition	of	“at	least	as	up-to-date”	is	a	little	complicated	since	it
involves	term	identifiers	in	log	records,	and	we	omit	details.

Since	the	above	check	is	done	by	a	majority	of	the	nodes	that	voted	for	the	new	leader,	any	committed
entry	would	certainly	be	present	in	the	log	of	the	newly	elected	leader.

2.	The	protocol	then	forces	all	other	nodes	to	replicate	the	leader’s	log.

Note	that	the	first	step	above	does	not	actually	find	up	to	what	log	record	is	committed.	Some	of	the	log
records	at	the	new	leader	may	not	have	been	committed	earlier,	but	may	get	committed	when	the	new
leader’s	log	is	replicated	in	this	step.

There	is	also	a	subtle	detail	in	that	the	new	leader	cannot	count	the	number	of	replicas	with	a	particular
record	from	an	earlier	term,	and	declare	it	committed	if	it	is	at	a	majority	of	the	nodes.	Intuitively,	the
problem	is	because	of	the	definition	of	“at	least	as	up-to-date”	and	the	possibility	that	a	leader	may	fail,
recover,	and	be	elected	as	leader	again.	We	omit	details,	but	note	that	the	way	this	problem	is	solved	is	for

the	new	leader	to	replicate	a	new	log	record	in	its	current	term;	when	that	log	record	is	determined	to	be
at	a	majority	of	the	replicas,	it	and	all	earlier	log	records	can	be	declared	to	be	committed.

It	should	be	clear	that	although	the	protocol,	like	Paxos,	seems	simple	at	a	high	level,	there	are	many
subtle	details	that	need	to	be	taken	care	of	to	ensure	consistency	even	in	the	face	of	multiple	failures	and
restarts.	There	are	further	details	to	be	taken	care	of,	including	how	to	change	the	cluster	membership,
that	is,	the	set	of	nodes	that	form	the	system,	while	the	system	is	running	(doing	so	carelessly	can	result
in	inconsistencies).	Details	of	the	above	steps,	including	proofs	of	correctness,	may	be	found	in	references
in	the	bibliographic	notes	for	this	chapter,	available	online.

23.8.4

Fault-Tolerant	Services	Using	Replicated	State	Machines

A	key	requirement	in	many	systems	is	for	a	service	to	be	made	fault	tolerant.	A	lock	manager	is	an
example	of	such	a	service,	as	is	a	key-value	storage	system.

23.8

Consensus	in	Distributed	Systems

1159

Client

y	7

<

Consensus

x	3

Consensus

x	3

Consensus

x	3

Module

y	7

Module

y	7

Module

y	7

z	3

z	3

z	3

Log

Log

Log

x	2	z

<

2	x

<

3	y

<

4	y

<

7

x

<

2	z

<

2	x

<

3	y

<

4	y

<

7

<

x	2	z

<

2	x

<

3	y

<

4	y

<

7

<

leader

follower

follower

Leader	declares	log	record	committed	after	it	is	replicated	at	a	majority	of	nodes.	Update	of	state	machine
at	each	replica	happens	only	after	log	record	has	been	committed.

Figure	23.10	Replicated	state	machine.

A	very	powerful	approach	to	making	services	fault	tolerant	is	to	model	them	as

“state	machines”	and	then	use	the	idea	of	replicated	state	machines	that	we	describe	next.

A	state	machine	receives	inputs	and	has	a	stored	state;	it	makes	state	transitions	on	each	input	and	may
output	some	results	along	with	the	state	transition.	A	replicated	state	machine	is	a	state	machine	that	is
replicated	on	multiple	nodes	to	make	it	fault	tolerant.	Intuitively,	even	if	one	of	the	nodes	fails,	the	state
and	output	can	be	obtained	from	any	of	the	nodes	that	are	alive,	provided	all	the	state	machines	are	in	a
consistent	state.	The	key	to	ensuring	that	the	state	machine	replicas	are	consistent	is	to	(a)	require	the
state	machines	to	be	deterministic,	and	(b)	ensure	that	all	replicas	get	exactly	the	same	input	in	the	same
order.

To	ensure	that	all	replicas	get	exactly	the	same	input	in	the	same	order,	we	just	append	the	inputs	to	a
replicated	log,	using,	for	example,	techniques	we	saw	earlier	in	Section	23.8.3.	As	soon	as	a	log	entry	is
determined	to	be	committed,	it	can	be	given	as	input	to	the	state	machine,	which	can	then	process	it.

Figure	23.10	depicts	a	replicated	state	machine	based	on	a	replicated	log.	When	a	client	issues	a
command,	such	as	y	←	7	in	the	figure,	the	command	is	sent	to	the	leader,	where	the	command	is	appended
to	the	log.	The	leader	then	replicates	the	command	to	the	logs	at	the	followers.	Once	a	majority	have
confirmed	that	the	command	has	been	replicated	in	their	logs,	the	leader	declares	the	command
committed	and	applies	the	command	to	its	state	machine.	It	also	informs	the	followers	of	the	commit,	and
the	followers	then	apply	the	command	to	their	state	machine.

In	the	example	in	Figure	23.10,	the	state	machine	merely	records	the	value	of	the	updated	variable;	but	in
general,	the	state	machine	may	execute	any	other	actions.	The	actions	are,	however,	required	to	be
deterministic,	so	all	state	machines	are	in	exactly

1160

Chapter	23

Parallel	and	Distributed	Transaction	Processing

the	same	state	when	they	have	executed	the	same	set	of	commands;	the	order	of	execution	of	commands
will	be	the	same	since	commands	are	executed	in	the	log	order.

Commands	such	as	lock	request	must	return	a	status	to	the	caller.	The	status	can	be	returned	from	any
one	of	the	replicas	where	the	command	is	performed.	Most	implementations	return	the	status	from	the
leader	node,	since	the	request	is	sent	to	the	leader,	and	the	leader	is	also	the	first	node	to	know	when	a
log	record	has	been	committed	(replicated	to	a	majority	of	the	nodes).

We	now	consider	two	applications	that	can	be	made	fault-tolerant	using	the	replicated	state	machine
concept.

We	first	consider	how	to	implement	a	fault-tolerant	lock	manager.	A	lock	manager	gets	commands,
namely,	lock	requests	and	releases,	and	maintains	a	state	(lock	table).

It	also	gives	output	(lock	grants	or	rollback	requests	on	deadlock)	on	processing	inputs	(lock	requests	or
releases).	Lock	managers	can	easily	be	coded	to	be	deterministic,	that	is,	given	the	same	input,	the	state
and	output	will	be	the	same	even	if	the	code	is	executed	again	on	a	different	node.

Thus,	we	can	take	a	centralized	implementation	of	a	lock	manager	and	run	it	on	each	node.	Lock	requests
and	releases	are	appended	to	a	replicated	log	using,	for	example,	the	Raft	protocol.	Once	a	log	entry	is
committed,	the	corresponding	command	(lock	request	or	release)	can	be	processed,	in	order,	by	the	lock
manager	code	at	each	replica.	Even	if	some	of	the	replicas	fail,	the	other	replicas	can	continue	processing
as	long	as	a	majority	are	up	and	connected.

Now	consider	the	issue	of	implementing	a	fault-tolerant	key-value	store.	A	single-node	storage	system	can
be	modeled	as	a	state	machine	that	supports	put()	and	get()	operations.	The	storage	system	is	treated	as	a
state	machine,	and	the	state	machine	is	run	on	multiple	nodes.

The	put()	operations	are	appended	to	the	log	using	a	consensus	protocol	and	are	processed	when	the
consensus	protocol	declares	the	corresponding	log	records	to	be	committed	(i.e.,	replicated	to	a	majority
of	the	nodes).

If	the	consensus	protocol	uses	leaders,	get()	operations	need	not	be	logged,	and	need	to	be	executed	only
on	the	leader.	To	ensure	that	a	get()	operation	sees	the	most	recent	put()	on	the	same	data	item,	all	put()
operations	on	the	same	data	item	that	precede	the	get()	operation	in	the	log	must	be	committed	before
the	get()	operation	is	processed.	(If	a	consensus	protocol	does	not	use	a	leader,	get()	operations	can	also
be	logged	and	executed	by	at	least	one	of	the	replicas	which	returns	the	value	to	the	caller.)

Google’s	Spanner	is	an	example	of	a	system	that	uses	the	replicated	state	machine	approach	to	creating	a
fault-tolerant	implementation	of	a	key-value	storage	system	and	a	lock	manager.

To	ensure	scalability,	Spanner	breaks	up	data	into	partitions,	each	of	which	has	a	subset	of	the	data.	Each
partition	has	its	data	replicated	across	multiple	nodes.	Each	node	runs	two	state	machines:	one	for	the
key-value	storage	system,	and	one	for	the	lock	manager.	The	set	of	replicas	for	a	particular	partition	are
called	a	Paxos	group;	one

23.8

Consensus	in	Distributed	Systems

1161

of	the	nodes	in	a	Paxos	group	acts	as	the	Paxos	group	leader.	Lock	manager	operations,	as	well	as	key-
value	store	operations	for	a	particular	partition,	are	initiated	at	the	Paxos	group	leader	for	that	partition.
The	operations	are	appended	to	a	log,	which	is	replicated	to	the	other	nodes	in	the	Paxos	group	using	the
Paxos	consensus	protocol.2	Requests	are	applied	in	order	at	each	member	of	the	Paxos	group,	once	they
are	committed.

As	an	optimization,	get()	operations	are	not	logged,	and	executed	only	at	the	leader	as	described	earlier.
As	a	further	optimization,	Spanner	allows	reads	to	run	as	of	a	particular	point	in	time,	allowing	reads	to
be	executed	at	any	replica	of	the	partition	(in	other	words,	any	other	member	of	the	Paxos	group)	that	is
sufficiently	up	to	date,	based	on	the	multiversion	two-phase	locking	protocol	described	earlier	in	Section
23.5.1.

23.8.5

Two-Phase	Commit	Using	Consensus

Given	a	consensus	protocol	implementation,	we	can	use	it	to	create	a	non-blocking	two-phase	commit
implementation.	The	idea	is	simple:	instead	of	a	coordinator	recording	its	commit	or	abort	decision	locally,
it	uses	a	consensus	protocol	to	record	its	decision	in	a	replicated	log.	Even	if	the	coordinator	subsequently
fails,	other	participants	in	the	consensus	protocol	know	about	the	decision,	so	the	blocking	problem	is
avoided.

In	case	the	coordinator	fails	before	making	a	decision	for	a	transaction,	a	new	coordinator	can	first	check
the	log	to	see	if	a	decision	was	made	earlier,	and	if	not	it	can	make	a	commit/abort	decision	and	use	the
consensus	protocol	to	record	the	decision.

For	example,	in	the	Spanner	system	developed	by	Google,	a	transaction	may	span	multiple	partitions.
Two-phase	commit	is	initiated	by	a	client	and	coordinated	by	the	Paxos	group	leader	at	one	of	the
partitions	where	the	transaction	executed.	All	other	partitions	where	an	update	was	performed	acts	as	a
participant	in	the	two-phase	commit	protocol.	Prepare	and	commit	messages	are	sent	to	the	Paxos	group
leader	node	of	each	of	the	partitions;	recall	that	two-phase	commit	participants	as	well	as	coordinators
record	decisions	in	their	local	logs.	These	decisions	are	recorded	by	each	leader,	using	consensus
involving	all	the	other	nodes	in	its	Paxos	group.

If	a	Paxos	group	member	other	than	the	leader	dies,	the	leader	can	continue	processing	the	two-phase
commit	steps,	as	long	as	a	majority	of	the	group	nodes	are	up	and	connected.	If	a	Paxos	group	leader	fails,
one	of	the	other	group	members	takes	over	as	the	group	leader.	Note	that	all	the	state	information
required	to	continue	commit	processing	is	available	to	the	new	leader.	Log	records	written	during	commit
processing	are	available	since	the	log	is	replicated.	Also,	recall	from	Section	23.8.4	that	Spanner	makes
the	lock	manager	fault	tolerant	by	using	the	replicated	state	machine	concept.

Thus,	a	consistent	replica	of	the	lock	table	is	also	available	with	the	new	leader.	Thus,	the	two-phase
commit	steps	of	both	the	coordinator	and	the	participants	can	continue	to	be	executed	even	if	some	nodes
fail.

2The	Multi-Paxos	version	of	Paxos	is	used,	but	we	shall	just	refer	to	it	as	Paxos	for	simplicity.

1162

Chapter	23

Parallel	and	Distributed	Transaction	Processing

23.9

Summary

•	A	distributed	database	system	consists	of	a	collection	of	sites	or	nodes,	each	of	which	maintains	a	local
database	system.	Each	node	is	able	to	process	local	transactions:	those	transactions	that	access	data	in
only	that	single	node.	In	addition,	a	node	may	participate	in	the	execution	of	global	transactions:	those
transactions	that	access	data	in	several	nodes.	Transaction	managers	at	each	node	manage	access	to	local
data,	while	the	transaction	coordinator	coordinates	execution	of	global	transactions	across	multiple
nodes.

•	A	distributed	system	may	suffer	from	the	same	types	of	failure	that	can	afflict	a	centralized	system.
There	are,	however,	additional	failures	with	which	we	need	to	deal	in	a	distributed	environment,	including
the	failure	of	a	node,	the	failure	of	a	link,	loss	of	a	message,	and	network	partition.	Each	of	these
problems	needs	to	be	considered	in	the	design	of	a	distributed	recovery	scheme.

•	To	ensure	atomicity,	all	the	nodes	in	which	a	transaction	T	executed	must	agree	on	the	final	outcome	of
the	execution.	T	either	commits	at	all	nodes	or	aborts	at	all	nodes.	To	ensure	this	property,	the	transaction
coordinator	of	T	must	execute	a	commit	protocol.	The	most	widely	used	commit	protocol	is	the	two-phase
commit	protocol.

•	The	two-phase	commit	protocol	may	lead	to	blocking,	the	situation	in	which	the	fate	of	a	transaction
cannot	be	determined	until	a	failed	node	(the	coordinator)	recovers.	We	can	use	distributed	consensus
protocols,	or	the	three-phase	commit	protocol,	to	reduce	the	risk	of	blocking.

•	Persistent	messaging	provides	an	alternative	model	for	handling	distributed	transactions.	The	model
breaks	a	single	transaction	into	parts	that	are	executed	at	different	databases.	Persistent	messages
(which	are	guaranteed	to	be	delivered	exactly	once,	regardless	of	failures),	are	sent	to	remote	nodes	to
request	actions	to	be	taken	there.	While	persistent	messaging	avoids	the	blocking	problem,	application
developers	have	to	write	code	to	handle	various	types	of	failures.

•	The	various	concurrency-control	schemes	used	in	a	centralized	system	can	be	modified	for	use	in	a
distributed	environment.	In	the	case	of	locking	protocols,	the	only	change	that	needs	to	be	incorporated	is
in	the	way	that	the	lock	manager	is	implemented.	Centralized	lock	managers	are	vulnerable	to
overloading	and	to	failures.

Deadlock	detection	in	a	distributed-lock-manager	environment	requires	cooperation	between	multiple
nodes,	since	there	may	be	global	deadlocks	even	when	there	are	no	local	deadlocks.

•	The	timestamp	ordering	and	validation	based	protocols	can	also	be	extended	to	work	in	a	distributed
setting.	Timestamps	used	to	order	transactions	need	to	be	made	globally	unique.

23.9

Summary

1163

•	Protocols	for	handling	replicated	data	must	ensure	consistency	of	data.	Linearizability	is	a	key	property
that	ensures	that	concurrent	reads	and	writes	to	replicas	of	a	single	data	item	can	be	serialized.

•	Protocols	for	handling	replicated	data	include	the	primary	copy,	majority,	biased,	and	quorum	consensus
protocols.	These	have	different	trade-offs	in	terms	of	cost	and	ability	to	work	in	the	presence	of	failures.

•	The	majority	protocol	can	be	extended	by	using	version	numbers	to	permit	transaction	processing	to
proceed	even	in	the	presence	of	failures.	While	the	protocol	has	a	significant	overhead,	it	works
regardless	of	the	type	of	failure.	Less-expensive	protocols	are	available	to	deal	with	node	failures,	but	they
assume	network	partitioning	does	not	occur.

•	To	provide	high	availability,	a	distributed	database	must	detect	failures,	reconfigure	itself	so	that
computation	may	continue,	and	recover	when	a	processor	or	a	link	is	repaired.	The	task	is	greatly
complicated	by	the	fact	that	it	is	hard	to	distinguish	between	network	partitions	and	node	failures.

•	Globally	consistent	and	unique	timestamps	are	key	to	extending	multiversion	two-phase	locking	and
snapshot	isolation	to	a	distributed	setting.

•	The	CAP	theorem	indicates	that	one	cannot	have	consistency	and	availability	in	the	face	of	network
partitions.	Many	systems	tradeoff	consistency	to	get	higher	availability.	The	goal	then	becomes	eventual
consistency,	rather	than	ensuring	consistency	at	all	times.	Detecting	inconsistency	of	replicas	can	be	done
by	using	version	vector	schemes	and	Merkle	trees.

•	Many	database	systems	support	asynchronous	replication,	where	updates	are	propagated	to	replicas
outside	the	scope	of	the	transaction	that	performed	the	update.

Such	facilities	must	be	used	with	great	care,	since	they	may	result	in	nonserializable	executions.

•	Some	of	the	distributed	algorithms	require	the	use	of	a	coordinator.	To	provide	high	availability,	the
system	must	maintain	a	backup	copy	that	is	ready	to	assume	responsibility	if	the	coordinator	fails.
Another	approach	is	to	choose	the	new	coordinator	after	the	coordinator	has	failed.	The	algorithms	that
determine	which	node	should	act	as	a	coordinator	are	called	election	algorithms.	Distributed	coordination
services	such	as	ZooKeeper	support	coordinator	selection	in	a	fault-tolerant	manner.

•	Distributed	consensus	algorithms	allow	consistent	updates	of	replicas,	even	in	the	presence	of	failures,
without	requiring	the	presence	of	a	coordinator.	Coordinators	may	still	be	used	for	efficiency,	but	failure
of	a	coordinator	does	not	affect	correctness	of	the	protocols.	Paxos	and	Raft	are	widely	used	consensus
protocols.

Replicated	state	machines,	which	are	implemented	using	consensus	algorithms,	can	be	used	to	build	a
variety	of	fault-tolerant	services.

1164

Chapter	23

Parallel	and	Distributed	Transaction	Processing

Review	Terms

•	Distributed	transactions

°	Biased	protocol

°	Local	transactions

°	Quorum	consensus	protocol

°	Global	transactions

•	Robustness

•	Transaction	manager

°	Majority-based	approach

•	Transaction	coordinator

°	Read	one,	write	all

•	System	failure	modes

°	Read	one,	write	all	available

•	Network	partition

•

°	Node/Site	reintegration

Commit	protocols

•

•

Two-phase	commit	protocol	(

External	consistency

2PC)

•	Commit	wait

°	Ready	state

•	CAP	theorem

°	In-doubt	transactions

•	BASE	properties

°	Blocking	problem

•	Asynchronous	replication

•

•	Lazy	propagation

Distributed	consensus

•

•	Master–slave	replication

Three-phase	commit	protocol

(3PC)

•	Multimaster	(update-anywhere)

•

replication

Persistent	messaging

•

•	Asynchronous	view	maintenance

Concurrency	control

•

•	Eventual	consistency

Single	lock	manager

•

•	Version-vector	scheme

Distributed	lock	manager

•

•	Merkle	tree

Deadlock	handling

•	Coordinator	selection

°	Local	wait-for	graph

•	Backup	coordinator

°	Global	wait-for	graph

•	Election	algorithms

°	False	cycles

•	Bully	algorithm

•

•	Term

Lock	leases

•

•	Distributed	consensus	protocol

Timestamping

•

•	Paxos

Replicated	data

•	Linearizability

°	Proposers

•	Protocols	for	replicas

°	Acceptors

°	Primary	copy

°	Learners

°	Majority	protocol

•	Raft

Practice	Exercises

1165

•	Leaders

•	Fault	tolerant	lock	manager

•	Followers

•	Non-blocking	two-phase	commit

•	Replicated	state	machine

Practice	Exercises

23.1

What	are	the	key	differences	between	a	local-area	network	and	a	wide-area	network,	that	affect	the
design	of	a	distributed	database?

23.2

To	build	a	highly	available	distributed	system,	you	must	know	what	kinds	of	failures	can	occur.

a.

List	possible	types	of	failure	in	a	distributed	system.

b.

Which	items	in	your	list	from	part	a	are	also	applicable	to	a	centralized	system?

23.3

Consider	a	failure	that	occurs	during	2PC	for	a	transaction.	For	each	possible	failure	that	you	listed	in
Exercise	23.2a,	explain	how	2PC	ensures	transaction	atomicity	despite	the	failure.

23.4

Consider	a	distributed	system	with	two	sites,	A	and	B.	Can	site	A	distinguish	among	the	following?

•	B	goes	down.

•	The	link	between	A	and	B	goes	down.

•	B	is	extremely	overloaded	and	response	time	is	100	times	longer	than	normal.

What	implications	does	your	answer	have	for	recovery	in	distributed	systems?

23.5

The	persistent	messaging	scheme	described	in	this	chapter	depends	on	timestamps.	A	drawback	is	that
they	can	discard	received	messages	only	if	they	are	too	old,	and	may	need	to	keep	track	of	a	large	number
of	received	messages.

Suggest	an	alternative	scheme	based	on	sequence	numbers	instead	of	timestamps,	that	can	discard
messages	more	rapidly.

23.6

Explain	the	difference	between	data	replication	in	a	distributed	system	and	the	maintenance	of	a	remote

backup	site.

23.7

Give	an	example	where	lazy	replication	can	lead	to	an	inconsistent	database	state	even	when	updates	get
an	exclusive	lock	on	the	primary	(master)	copy	if	data	were	read	from	a	node	other	than	the	master.

23.8

Consider	the	following	deadlock-detection	algorithm.	When	transaction	T	,	at	i

site	S	,	requests	a	resource	from	T	,	at	site	S	,	a	request	message	with	time-1

j

3

1166

Chapter	23

Parallel	and	Distributed	Transaction	Processing

stamp	n	is	sent.	The	edge	(T	,	T	,	n)	is	inserted	in	the	local	wait-for	graph	of	i

j

S	.	The	edge	(T	,	T	,	n)	is	inserted	in	the	local	wait-for	graph	of	S	only	if	T

1

i

j

3

j

has	received	the	request	message	and	cannot	immediately	grant	the	requested	resource.	A	request	from	T
to	T	in	the	same	site	is	handled	in	the	usual	mani

j

ner;	no	timestamps	are	associated	with	the	edge	(T	,	T).	A	central	coordinator	i

j

invokes	the	detection	algorithm	by	sending	an	initiating	message	to	each	site	in	the	system.

On	receiving	this	message,	a	site	sends	its	local	wait-for	graph	to	the	coordinator.	Note	that	such	a	graph
contains	all	the	local	information	that	the	site	has	about	the	state	of	the	real	graph.	The	wait-for	graph
reflects	an	instantaneous	state	of	the	site,	but	it	is	not	synchronized	with	respect	to	any	other	site.

When	the	controller	has	received	a	reply	from	each	site,	it	constructs	a	graph	as	follows:

•	The	graph	contains	a	vertex	for	every	transaction	in	the	system.

•	The	graph	has	an	edge	(T	,	T)	if	and	only	if:

i

j

°	There	is	an	edge	(T	,	T)	in	one	of	the	wait-for	graphs.

i

j

°	An	edge	(T	,	T	,	n)	(for	some	n)	appears	in	more	than	one	wait-for	i

j

graph.

Show	that,	if	there	is	a	cycle	in	the	constructed	graph,	then	the	system	is	in	a	deadlock	state,	and	that,	if
there	is	no	cycle	in	the	constructed	graph,	then	the	system	was	not	in	a	deadlock	state	when	the
execution	of	the	algorithm	began.

23.9

Consider	the	chain-replication	protocol,	described	in	Section	23.4.3.2,	which	is	a	variant	of	the	primary-
copy	protocol.

a.

If	locking	is	used	for	concurrency	control,	what	is	the	earliest	point	when	a	process	can	release	an
exclusive	lock	after	updating	a	data	item?

b.

While	each	data	item	could	have	its	own	chain,	give	two	reasons	it	would	be	preferable	to	have	a	chain
defined	at	a	higher	level,	such	as	for	each	partition	or	tablet.

c.

How	can	consensus	protocols	be	used	to	ensure	that	the	chain	is

uniquely	determined	at	any	point	in	time?

23.10

If	the	primary	copy	scheme	is	used	for	replication,	and	the	primary	gets	disconnected	from	the	rest	of	the
system,	a	new	node	may	get	elected	as	primary.

But	the	old	primary	may	not	realize	it	has	got	disconnected,	and	may	get	reconnected	subsequently
without	realizing	that	there	is	a	new	primary.

a.

What	problems	can	arise	if	the	old	primary	does	not	realize	that	a	new	one	has	taken	over?

b.

How	can	leases	be	used	to	avoid	these	problems?

Exercises

1167

c.

Would	such	a	situation,	where	a	participant	node	gets	disconnected	and	then	reconnected	without
realizing	it	was	disconnected,	cause	any	problem	with	the	majority	or	quorum	protocols?

23.11

Consider	a	federated	database	system	in	which	it	is	guaranteed	that	at	most	one	global	transaction	is
active	at	any	time,	and	every	local	site	ensures	local	serializability.

a.

Suggest	ways	in	which	the	federated	database	system	can	ensure	that

there	is	at	most	one	active	global	transaction	at	any	time.

b.

Show	by	example	that	it	is	possible	for	a	nonserializable	global	schedule	to	result	despite	the
assumptions.

23.12

Consider	a	federated	database	system	in	which	every	local	site	ensures	local	serializability,	and	all	global
transactions	are	read	only.

a.

Show	by	example	that	nonserializable	executions	may	result	in	such	a

system.

b.

Show	how	you	could	use	a	ticket	scheme	to	ensure	global	serializability.

23.13

Suppose	you	have	a	large	relation	r(A,	B,	C)	and	a	materialized	view	v	=

γ

(r).	View	maintenance	can	be	performed	as	part	of	each	trans-

A	sum(B)

action	that	updates	r,	on	a	parallel/distributed	storage	system	that	supports	transactions	across	multiple
nodes.	Suppose	the	system	uses	two-phase	commit	along	with	a	consensus	protocol	such	as	Paxos,	across
geographically	distributed	data	centers.

a.

Explain	why	it	is	not	a	good	idea	to	perform	view	maintenance	as	part	of	the	update	transaction,	if	some
values	of	attribute	A	are	“hot”	at	certain	points	in	time,	that	is,	many	updates	pertain	to	those	values	of	A.

b.

Explain	how	operation	locking	(if	supported)	could	solve	this	problem.

c.

Explain	the	tradeoffs	of	using	asynchronous	view	maintenance	in	this

context.

Exercises

23.14

What	characteristics	of	an	application	make	it	easy	to	scale	the	application	by	using	a	key-value	store,	and
what	characteristics	rule	out	deployment	on	key-value	stores?

23.15

Give	an	example	where	the	read	one,	write	all	available	approach	leads	to	an	erroneous	state.

1168

Chapter	23

Parallel	and	Distributed	Transaction	Processing

23.16

In	the	majority	protocol,	what	should	the	reader	do	if	it	finds	different	values	from	different	copies,	to	(a)
decide	what	is	the	correct	value,	and	(b)	to	bring	the	copies	back	to	consistency?	If	the	reader	does	not
bother	to	bring	the	copies	back	to	consistency,	would	it	affect	correctness	of	the	protocol?

23.17

If	we	apply	a	distributed	version	of	the	multiple-granularity	protocol	of	Chapter	18	to	a	distributed
database,	the	site	responsible	for	the	root	of	the	DAG

may	become	a	bottleneck.	Suppose	we	modify	that	protocol	as	follows:

•	Only	intention-mode	locks	are	allowed	on	the	root.

•	All	transactions	are	given	the	strongest	intention-mode	lock	(IX)	on	the	root	automatically.

Show	that	these	modifications	alleviate	this	problem	without	allowing	any	nonserializable	schedules.

23.18

Discuss	the	advantages	and	disadvantages	of	the	two	methods	that	we	presented	in	Section	23.3.4	for
generating	globally	unique	timestamps.

23.19

Spanner	provides	read-only	transactions	a	snapshot	view	of	data,	using	multiversion	two-phase	locking.

a.

In	the	centralized	multi-version	2PL	scheme,	read-only	transactions

never	wait.	But	in	Spanner,	reads	may	have	to	wait.	Explain	why.

b.

Using	an	older	timestamp	for	the	snapshot	can	reduce	waits,	but	has

some	drawbacks.	Explain	why,	and	what	the	drawbacks	are.

23.20

Merkle	trees	can	be	made	short	and	fat	(like	B+-trees)	or	thin	and	tall	(like	binary	search	trees).	Which

option	would	be	better	if	you	are	comparing	data	across	two	sites	that	are	geographically	separated,	and
why?

23.21

Why	is	the	notion	of	term	important	when	an	election	is	used	to	choose	a	coordinator?	What	are	the
analogies	between	elections	with	terms	and	elections	used	in	a	democracy?

23.22

For	correct	execution	of	a	replicated	state	machine,	the	actions	must	be	deterministic.	What	could	happen
if	an	action	is	non-deterministic?

Further	Reading

Textbook	coverage	of	distributed	transaction	processing,	including	concurrency	control	and	the	two-phase
and	three-phase	commit	protocols,	is	provided	by	[Bernstein	and	Goodman	(1981)]	and	[Bernstein	and
Newcomer	(2009)].	Textbook	discussions	of	distributed	databases	are	offered	by	[Ozsu	and	Valduriez
(2010)].	A	collection	of	papers	on	data	management	on	cloud	systems	is	in	[Ooi	and	Parthasarathy	(2009)].

Further	Reading

1169

The	implementation	of	the	transaction	concept	in	a	distributed	database	is	presented	by	[Gray	(1981)]	and
[Traiger	et	al.	(1982)].	The	2PC	protocol	was	developed	by	[Lampson	and	Sturgis	(1976)].	The	three-phase
commit	protocol	is	from	[Skeen	(1981)].	Techniques	for	non-blocking	two-phase	commit	based	on
consensus,	called	Paxos	Commit,	are	described	in	[Gray	and	Lamport	(2004)].

Chain	replication	was	initially	proposed	by	[van	Renesse	and	Schneider	(2004)]

and	an	optimized	version	of	was	proposed	by	[Terrace	and	Freedman	(2009)].

Distributed	optimistic	concurrency	control	is	described	in	[Agrawal	et	al.	(1987)],	while	distributed
snapshot	isolation	is	described	in	[Binnig	et	al.	(2014)]	and	[Schenkel	et	al.	(1999)].	The	externally
consistent	distributed	multi-version	2PL	scheme	used	in	Spanner	is	described	in	[Corbett	et	al.	(2013)].

The	CAP	theorem	was	conjectured	by	[Brewer	(2000)],	and	was	formalized	and	proved	by	[Gilbert	and
Lynch	(2002)].	[Cooper	et	al.	(2008)]	describe	Yahoo!’s	PNUTS	system,	including	its	support	for
asynchronous	maintenance	of	replicas	using	a	publish-subscribe	system.	Parallel	view	maintenance	is
described	in	[Chen	et	al.

(2004)]	and	[Zhang	et	al.	(2004)],	while	asynchronous	view	maintenance	is	described	in	[Agrawal	et	al.
(2009)].	Transaction	processing	in	federated	database	systems	is	discussed	in	[Mehrotra	et	al.	(2001)].

Paxos	is	described	in	[Lamport	(1998)];	Paxos	is	based	on	features	from	several	earlier	protocols,
reference	in	[Lamport	(1998)].	Google’s	Chubby	lock	service,	which	is	based	on	Paxos,	is	described	by
[Burrows	(2006)].	The	widely	used	ZooKeeper	system	for	distributed	coordination	is	described	in	[Hunt	et
al.	(2010)],	and	the	consensus	protocol	(also	known	as	atomic	broadcast	protocol)	used	in	ZooKeeper	is
described	in	[Junqueira	et	al.	(2011)].	The	Raft	consensus	protocol	is	described	in	[Ongaro	and
Ousterhout	(2014)].

Bibliography

[Agrawal	et	al.	(1987)]

D.	Agrawal,	A.	Bernstein,	P.	Gupta,	and	S.	Sengupta,	“Distributed

optimistic	concurrency	control	with	reduced	rollback”,	Distributed	Computing,	Volume	2,	Number	1
(1987),	pages	45–59.

[Agrawal	et	al.	(2009)]

P.	Agrawal,	A.	Silberstein,	B.	F.	Cooper,	U.	Srivastava,	and	R.	Ra-

makrishnan,	“Asynchronous	view	maintenance	for	VLSD	databases”,	In	Proc.	of	the	ACM

SIGMOD	Conf.	on	Management	of	Data	(2009),	pages	179–192.

[Bernstein	and	Goodman	(1981)]

P.	A.	Bernstein	and	N.	Goodman,	“Concurrency	Control

in	Distributed	Database	Systems”,	ACM	Computing	Surveys,	Volume	13,	Number	2	(1981),	pages	185–
221.

[Bernstein	and	Newcomer	(2009)]

P.	A.	Bernstein	and	E.	Newcomer,	Principles	of	Transaction

Processing,	2nd	edition,	Morgan	Kaufmann	(2009).

[Binnig	et	al.	(2014)]

C.	Binnig,	S.	Hildenbrand,	F.	FÃ¤rber,	D.	Kossmann,	J.	Lee,	and

N.	May,	“Distributed	snapshot	isolation:	global	transactions	pay	globally,	local	transactions

1170

Chapter	23

Parallel	and	Distributed	Transaction	Processing

pay	locally”,	VLDB	Journal,	Volume	23,	Number	6	(2014),	pages	987–1011.

[Brewer	(2000)]

E.	A.	Brewer,	“Towards	Robust	Distributed	Systems	(Abstract)”,	In	Proc.	of	the	ACM	Symposium	on
Principles	of	Distributed	Computing	(2000),	page	7.

[Burrows	(2006)]

M.	Burrows,	“The	Chubby	Lock	Service	for	Loosely-Coupled	Distributed

Systems”,	In	Symp.	on	Operating	Systems	Design	and	Implementation	(OSDI)	(2006),	pages	335–350.

[Chen	et	al.	(2004)]

S.	Chen,	B.	Liu,	and	E.	A.	Rundensteiner,	“Multiversion-based	view

maintenance	over	distributed	data	sources”,	ACM	Transactions	on	Database	Systems,	Volume	29,	Number
4	(2004),	pages	675–709.

[Cooper	et	al.	(2008)]

B.	F.	Cooper,	R.	Ramakrishnan,	U.	Srivastava,	A.	Silberstein,	P.	Bo-

hannon,	H.-A.	Jacobsen,	N.	Puz,	D.	Weaver,	and	R.	Yerneni,	“PNUTS:	Yahoo!’s	Hosted	Data	Serving
Platform”,	Proceedings	of	the	VLDB	Endowment,	Volume	1,	Number	2	(2008),	pages	1277–1288.

[Corbett	et	al.	(2013)]

J.	C.	Corbett	et	al.,	“Spanner:	Google’s	Globally	Distributed

Database”,	ACM	Trans.	on	Computer	Systems,	Volume	31,	Number	3	(2013).

[Gilbert	and	Lynch	(2002)]

S.	Gilbert	and	N.	Lynch,	“Brewer’s	Conjecture	and	the	Feasibil-

ity	of	Consistent,	Available,	Partition-Tolerant	Web	Services”,	SIGACT	News,	Volume	33,	Number	2	(2002),
pages	51–59.

[Gray	(1981)]

J.	Gray,	“The	Transaction	Concept:	Virtues	and	Limitations”,	In	Proc.	of	the	International	Conf.	on	Very
Large	Databases	(1981),	pages	144–154.

[Gray	and	Lamport	(2004)]

J.	Gray	and	L.	Lamport,	“Consensus	on	transaction	commit”,

ACM	Transactions	on	Database	Systems,	Volume	31,	Number	1	(2004),	pages	133–160.

[Hunt	et	al.	(2010)]

P.	Hunt,	M.	Konar,	F.	Junqueira,	and	B.	Reed,	“ZooKeeper:	Wait-free

Coordination	for	Internet-scale	Systems”,	In	USENIX	Annual	Technical	Conference	(USENIX

ATC)	(2010),	pages	11–11.

[Junqueira	et	al.	(2011)]

F.	P.	Junqueira,	B.	C.	Reed,	and	M.	Serafini,	“Zab:	High-perfor-

mance	broadcast	for	primary-backup	systems”,	In	IEEE/IFIP	41st	International	Conference	on	Dependable
Systems	Networks	(DSN)	(2011),	pages	245–256.

[Lamport	(1998)]

L.	Lamport,	“The	Part-Time	Parliament”,	ACM	Trans.	Comput.	Syst.	,	Volume	16,	Number	2	(1998),	pages
133–169.

[Lampson	and	Sturgis	(1976)]

B.	Lampson	and	H.	Sturgis,	“Crash	Recovery	in	a	Distributed

Data	Storage	System”,	Technical	report,	Computer	Science	Laboratory,	Xerox	Palo	Alto	Research	Center,
Palo	Alto	(1976).

[Mehrotra	et	al.	(2001)]

S.	Mehrotra,	R.	Rastogi,	Y.	Breitbart,	H.	F.	Korth,	and	A.	Silber-

schatz,	“Overcoming	Heterogeneity	and	Autonomy	in	Multidatabase	Systems.”,	Inf.	Comput.	,	Volume	167,
Number	2	(2001),	pages	137–172.

[Ongaro	and	Ousterhout	(2014)]

D.	Ongaro	and	J.	K.	Ousterhout,	“In	Search	of	an	Under-

standable	Consensus	Algorithm”,	In	USENIX	Annual	Technical	Conference	(USENIX	ATC)	(2014),	pages
305–319.

Further	Reading

1171

[Ooi	and	Parthasarathy	(2009)]

B.	C.	Ooi	and	S.	Parthasarathy,	“Special	Issue	on	Data	Man-

agement	on	Cloud	Computing	Platforms”,	IEEE	Data	Engineering	Bulletin,	Volume	32,	Number	1	(2009).

[Ozsu	and	Valduriez	(2010)]

T.	Ozsu	and	P.	Valduriez,	Principles	of	Distributed	Database	Sys-

tems,	3rd	edition,	Prentice	Hall	(2010).

[Schenkel	et	al.	(1999)]

R.	Schenkel,	G.	Weikum,	N.	Weisenberg,	and	X.	Wu,	“Federated

Transaction	Management	with	Snapshot	Isolation”,	In	Eight	International	Workshop	on	Foundations	of
Models	and	Languages	for	Data	and	Objects,	Transactions	and	Database	Dynamics	(1999),	pages	1–25.

[Skeen	(1981)]

D.	Skeen,	“Non-blocking	Commit	Protocols”,	In	Proc.	of	the	ACM	SIGMOD

Conf.	on	Management	of	Data	(1981),	pages	133–142.

[Terrace	and	Freedman	(2009)]

J.	Terrace	and	M.	J.	Freedman,	“Object	Storage	on	CRAQ:

High-Throughput	Chain	Replication	for	Read-Mostly	Workloads”,	In	USENIX	Annual	Technical	Conference
(USENIX	ATC)	(2009).

[Traiger	et	al.	(1982)]

I.	L.	Traiger,	J.	N.	Gray,	C.	A.	Galtieri,	and	B.	G.	Lindsay,	“Transactions	and	Consistency	in	Distributed
Database	Management	Systems”,	ACM	Transactions	on	Database	Systems,	Volume	7,	Number	3	(1982),
pages	323–342.

[van	Renesse	and	Schneider	(2004)]

R.	van	Renesse	and	F.	B.	Schneider,	“Chain	Replication

for	Supporting	High	Throughput	and	Availability”,	In	Symp.	on	Operating	Systems	Design	and
Implementation	(OSDI)	(2004),	pages	91–104.

[Zhang	et	al.	(2004)]

X.	Zhang,	L.	Ding,	and	E.	A.	Rundensteiner,	“Parallel	multisource

view	maintenance”,	VLDB	Journal,	Volume	13,	Number	1	(2004),	pages	22–48.

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

PART	9

ADVANCED	TOPICS

Chapter	24	provides	further	details	about	the	index	structures	we	covered	in	Chapter	14.	In	particular,
this	chapter	provides	detailed	coverage	of	the	LSM	tree	and	its	variants,	bitmap	indices,	and	spatial
indexing,	all	of	which	were	covered	in	brief	in	Chapter	14.	The	chapter	also	provides	detailed	coverage	of
dynamic	hashing	techniques.

Chapter	25	discusses	a	number	of	tasks	involved	in	application	development.	Applications	can	be	made	to
run	significantly	faster	by	performance	tuning,	which	consists	of	finding	and	eliminating	bottlenecks	and
adding	appropriate	hardware	such	as	memory	or	disks.	Application	performance	is	evaluated	using
benchmarks,	which	are	standardized	sets	of	tasks	that	help	to	characterize	the	performance	of	database
systems.	Another	important	aspect	of	application	development	is	testing,	which	requires	the	generation	of
database	states	and	test	inputs,	followed	by	checking	that	the	actual	outputs	of	a	query	or	a	program	on
the	test	input	match	the	expected	outputs.

Lastly,	standards	are	very	important	for	application	development.	A	variety	of	standards	have	been
proposed	that	affect	database-application	development.	We	outline	several	of	these	standards	in	this
chapter.

Chapter	26	covers	blockchain	technology	from	a	database	perspective.	This	chapter	identifies	the	ways	in
which	blockchain	databases	differ	from	the	traditional	databases	covered	elsewhere	in	this	text	and	shows
how	these	distinguishing	features	are	implemented.	Although	blockchain	systems	are	often	associated
with	Bitcoin,	this	chapter	goes	beyond	Bitcoin-style	algorithms	and	implementation	to	focus	on
alternatives	that	are	more	suited	to	an	enterprise	database	environment.

1173

C	H	A	P	T	E	R	24

Advanced	Indexing	Techniques

We	studied	the	concept	of	indexing,	as	well	as	a	number	of	different	index	structures	in	Chapter	14.	While
some	index	structures,	such	as	B+-trees,	were	covered	in	detail,	others	such	as	hashing,	write-optimized
indices,	bitmap	indices,	and	spatial	indices	were	only	briefly	outlined	in	Chapter	14.	In	this	chapter	we
provide	further	details	of	these	index	structures.	We	provide	detailed	coverage	of	the	LSM	tree	and	its
variants.	We	then	provide	a	detailed	description	of	bitmap	indices.	Next,	we	provide	more	detailed
coverage	of	spatial	indexing,	covering	quad	trees	and	R-trees	in	more	detail.	Finally,	we	cover	hashing,
with	detailed	coverage	of	dynamic	hashing	techniques.

24.1

Bloom	Filter

A	Bloom	filter	is	a	probabilistic	data	structure	that	can	check	for	membership	of	a	value	in	a	set	using
very	little	space,	but	at	a	small	risk	of	overestimating	the	set	of	elements	that	are	in	the	set.	A	Bloom	filter
is	basically	a	bitmap.	If	the	set	has	n	values,	the	associated	bitmap	has	a	few	times	n	(typically	10	n)	bits;
the	Bloom	filter	also	has	associated	with	it	several	hash	functions.	We	assume	initially	that	there	is	only
one	hash	function	h().

The	bits	in	the	bitmap	are	all	initially	set	to	0;	subsequently,	each	value	in	the	set	is	read,	and	the	hash
function	h(v)	is	computed	on	the	element	v,	with	the	range	of	the	function	being	1	to	10	n.	The	bit	at

position	h(v)	is	then	set	to	1.	This	is	repeated	for	every	element	v.	To	check	if	a	particular	value	v	is
present	in	the	set,	the	hash	function	h(v)	is	computed.	If	bit	h(v)	in	the	Bloom	filter	is	equal	to	0,	we	can
infer	that	v	cannot	possibly	be	in	the	set.	However,	if	bit	h(v)	is	equal	to	1,	v	may	be	present	in	the	set.

Note	that	with	some	probability,	the	bit	h(v)	may	be	1	even	if	v	is	not	present,	if	some	other	value	v′,
present	in	the	set	has	h(v′)	=	h(v).	Thus,	a	lookup	for	v	results	in	a	false	positive.

To	reduce	the	chance	of	false	positives,	Bloom	filters	use	k	independent	hash	functions	h	(),	i	=	1	..k,	for
some	k	>	1;	for	each	value	v	in	the	set,	bits	corresponding	to	i

h	(v),	i	=	1	..k	are	all	set	to	1	in	the	bitmap.	When	querying	the	Bloom	filter	with	a	i

1175

1176

Chapter	24

Advanced	Indexing	Techniques

given	value	v	the	same	k	hash	functions	are	used	to	identify	k	bit	locations;	the	value	v	is	determined	to	be
absent	if	even	one	of	these	bits	has	a	0	value.	Otherwise	the	value	is	judged	to	be	potentially	present.	For
example,	if	the	bitmap	has	10	n	bits,	where	n	is	the	number	of	values	in	the	set,	and	k	=	7	hash	functions
are	used,	the	false	positive	rate	would	be	about	1%.

24.2

Log-Structured	Merge	Tree	and	Variants

As	we	saw	in	Section	14.8,	B+-tree	indices	are	not	efficient	for	workloads	with	a	very	high	number	of
writes,	and	alternative	index	structures	have	been	proposed	to	handle	such	workloads.	We	saw	a	brief
description	of	two	such	index	structures,	the	log-structured	merge	tree	or	LSM	tree	and	its	variants,	in
Section	14.8.1,	and	the	buffer	tree,	in	Section	14.8.2.	In	this	section	we	provide	further	details	of	the	LSM
tree	and	its	variants.	To	help	with	the	discussions,	we	repeat	some	of	the	basic	material	we	presented	in
Section	14.8.1.

The	key	idea	of	the	log-structured	merge	tree	(LSM	tree)	is	to	replace	random	I/O

operations	during	tree	inserts,	updates,	and	deletes	with	a	smaller	number	of	sequential	I/O	operations.
Our	initial	description	focuses	on	index	inserts	and	lookups;	we	describe	how	to	handle	updates	and
deletes	later	in	the	section.

An	LSM	tree	consists	of	several	B+-trees,	starting	with	an	in-memory	tree,	called	L	,	and	on-disk	trees	L	,
L	,	…	,	L	for	some	k,	where	k	is	called	the	level.	Figure	24.1

0

1

2

k

depicts	the	structure	of	an	LSM	tree	for	k	=	3.

An	index	lookup	is	performed	by	using	separate	lookup	operations	on	each	of	the	trees	L	,	…	,	L	,	and
merging	the	results	of	the	lookups.	(We	assume	here	that	there	0

k

are	no	updates	or	deletes;	we	will	discuss	how	to	perform	lookups	in	the	presence	of	updates/deletes
later.)

L	0

Memory

L	1

Disk

L	2

L	3

Figure	24.1	Log-structured	merge	tree	with	three	levels.

24.2

Log-Structured	Merge	Tree	and	Variants

1177

24.2.1

Insertion	into	LSM	Trees

When	a	record	is	first	inserted	into	an	LSM	tree,	it	is	inserted	into	the	in-memory	B+-

tree	structure	L	.	A	fairly	large	amount	of	memory	space	is	allocated	for	this	tree.	As	the	0

tree	grows	to	fill	the	memory	allocated	to	it,	we	need	to	move	data	from	the	in-memory	structure	to	a	B+-
tree	on	disk.

If	tree	L	is	empty,	the	entire	in-memory	tree	L	is	written	to	disk	to	create	the	1

0

initial	tree	L	.	However,	if	L	is	not	empty,	the	leaf	level	of	L	is	scanned	in	increasing	1

1

0

key	order,	and	entries	are	merged	with	the	leaf	level	entries	of	L	(also	scanned	in	1

increasing	key	order).	The	merged	entries	are	used	to	create	a	new	B+-tree	using	the	bottom-up	build
process.	The	new	tree	with	the	merged	entries	then	replaces	the	old	L	.

1

In	either	case,	after	entries	of	L	have	been	moved	to	L	,	all	entries	in	L	are	deleted.

0

1

0

Inserts	can	then	be	made	to	the	now	empty	L	.

0

Note	that	all	entries	in	the	leaf	level	of	the	old	L	tree,	including	those	in	leaf	nodes	1

that	do	not	have	any	updates,	are	copied	to	the	new	tree	instead	of	being	inserted	into	the	existing	L	tree
node.	This	gives	the	following	benefits:

1

•	The	leaves	of	the	new	tree	are	sequentially	located,	avoiding	random	I/O	during	subsequent	merges.

•	The	leaves	are	full,	avoiding	the	overhead	of	partially	occupied	leaves	that	can	occur	with	page	splits.

There	is,	however,	a	cost	to	using	the	LSM	structure:	the	entire	contents	of	the	tree	are	copied	each	time
a	set	of	entries	from	L	are	copied	into	L	.

0

1

If	the	tree	structure	is	implemented	on	top	of	a	distributed	file	system	(Section	21.6),	copying	data	to	a
new	tree	is	often	unavoidable,	since	most	distributed	file	systems	do	not	support	updates	to	an	already
created	block.

To	ensure	we	get	a	benefit	for	cases	where	the	index	size	on	disk	is	much	bigger	than	the	in-memory
index,	the	maximum	size	of	L	is	chosen	as	k	times	the	target	size	1

of	L	,	for	some	k.	Similarly,	the	maximum	size	of	each	L

is	set	to	k	times	the	target

0

i+1

size	of	L	.	Once	a	particular	L	reaches	its	maximum	size,	its	entries	are	merged	into	the	i

i

next	component	L

.	When	L

reaches	its	target	size,	its	entries	are	in	turn	merged

i+1

i+1

into	L

,	and	so	on.

i+2

Note	that	if	each	leaf	of	L	has	m	entries,	m∕	k	entries	would	map	to	a	single	leaf	i

node	of	L

.	The	value	of	k	is	chosen	to	ensure	that	m∕	k	is	some	reasonable	number,	i+1

say	10.	Let	M	denote	the	size	of	L	.	Then,	the	size	of	a	tree	at	level	L	is	kiM	.	The	0

i

total	number	of	levels	r	is	thus	roughly	log	(I	∕	M)	where	I	is	the	total	size	of	the	index	k

entries.

Let	us	now	consider	the	number	of	I/O	operations	required	with	a	multiple-level	LSM	tree.	At	each	L	,	m∕
k	inserts	are	performed	using	only	one	I/O	operation.	On	i

the	other	hand,	each	entry	gets	inserted	once	at	each	level	L	.	Thus,	the	total	number	i

of	I/O	operations	for	each	insert	is	(k∕	m)	log	(I∕	M).	Thus,	as	long	as	the	number	of	k

1178

Chapter	24

Advanced	Indexing	Techniques

levels	r	=	log	(I∕	M)	is	less	than	m∕	k,	the	overall	number	of	I/O	operations	per	insert	k

is	reduced	by	using	an	LSM	tree	as	compared	to	direct	insertion	into	a	B+-tree.

If,	for	example,	r	=	10	and	k	=	10,	the	in-memory	index	needs	to	be	greater	than	1%	of	the	total	index	size
to	get	a	benefit	in	terms	of	the	number	of	I/O	operations	required	for	inserts.	(As	before,	the	benefit	of
reduced	seeks	is	available	even	if	the	L	0

is	significantly	smaller.)

If	the	number	of	levels	is	greater	than	m∕	k,	even	if	there	is	no	benefit	in	terms	of	number	of	I/O
operations,	there	can	still	be	savings	since	sequential	I/O	is	used	instead	of	random	I/O.	In	Section	24.2.4
we	describe	a	variant	of	the	LSM	tree	which	further	reduces	the	overhead	on	write	operations,	at	the	cost
of	adding	overhead	on	read	operations.

One	way	to	avoid	creating	large	LSM	trees	with	many	levels	is	to	range	partition	the	relation	and	create
separate	LSM	trees	on	each	partition.	Such	partitioning	is	natural	in	a	parallel	environment,	as	we	saw
earlier	in	Section	21.2.	In	particular,	in	such	environments,	a	partition	can	be	dynamically	repartitioned
into	smaller	pieces	whenever	it	becomes	too	large,	as	we	saw	in	Section	21.3.3.	With	such	repartitioning,

the	size	of	each	LSM	tree	can	be	kept	small	enough	to	avoid	having	a	large	number	of	levels.	There	is	a
price	for	such	partitioning:	each	partition	requires	its	own	L	tree	in	memory.	As	a	0

result,	although	it	can	be	used	in	a	centralized	setting,	the	partitioning	approach	best	fits	a	parallel
environment	where	resources	such	as	processing	nodes	can	be	added	as	the	load	increases.

24.2.2

Rolling	Merges

We	assumed	for	simplicity	that	when	a	particular	level	is	full,	its	entries	are	entirely	merged	with	the	next
level.	This	would	result	in	more	I/O	load	during	merges	with	an	unused	I/O	capacity	between	merges.	To
avoid	this	problem,	merging	is	done	on	a	continuous	basis;	this	is	called	rolling	merge.

With	rolling	merge,	a	few	pages	of	L	are	merged	into	corresponding	pages	of	L

i

i+1

at	a	time,	and	removed	from	L	.	This	is	done	whenever	L	becomes	close	to	its	target	i

i

size,	and	it	results	in	L	shrinking	a	bit	to	return	to	its	target	size.	When	L	grows	again,	i

i

the	rolling	merge	restarts	from	a	point	at	the	leaf	level	of	L	just	after	where	the	earlier	i

rolling	merge	stopped,	so	the	scan	is	sequential.	When	the	end	of	the	L	tree	is	reached,	i

the	scan	starts	again	at	the	beginning	of	the	tree.	Such	a	merge	is	called	a	rolling	merge	since	records	are
moved	from	one	level	to	another	on	a	continuous	basis.

The	number	of	leaves	merged	at	a	time	is	kept	high	enough	to	ensure	that	the	seek	time	is	small
compared	to	the	time	to	transfer	data	from	and	to	disk.

24.2.3

Handling	Deletes	and	Updates

So	far	we	have	only	described	inserts	and	lookups.	Deletes	are	handled	in	an	interesting	manner.	Instead
of	directly	finding	an	index	entry	and	deleting	it,	deletion	results	in	insertion	of	a	new	deletion	entry	that
indicates	which	index	entry	is	to	be	deleted.	The

24.2

Log-Structured	Merge	Tree	and	Variants

1179

L

Memory

0

1

k

L

L

0

0

Disk

1

k

L

L

1

1

1

L

k

2

L	2

Figure	24.2	stepped-merge	index

process	of	inserting	a	deletion	entry	is	identical	to	the	process	of	inserting	a	normal	index	entry.

However,	lookups	have	to	carry	out	an	extra	step.	As	mentioned	earlier,	lookups	retrieve	entries	from	all
the	trees	and	merge	them	in	sorted	order	of	key	value.	If	there	is	a	deletion	entry	for	some	entry,	both	of
them	would	have	the	same	key	value.	Thus,	a	lookup	would	find	both	the	deletion	entry	and	the	original
entry	for	that	key,	which	is	to	be	deleted.	If	a	deletion	entry	is	found,	the	to-be-deleted	entry	should	be
filtered	out	and	not	returned	as	part	of	the	lookup	result.

When	trees	are	merged,	if	one	of	the	trees	contains	an	entry,	and	the	other	had	a	matching	deletion	entry,
the	entries	get	matched	up	during	the	merge	(both	would	have	the	same	key),	and	are	both	discarded.

Updates	are	handled	in	a	manner	similar	to	deletes,	by	inserting	an	update	entry.

Lookups	need	to	match	update	entries	with	the	original	entries	and	return	the	latest	value.	The	update	is
actually	applied	during	a	merge,	when	one	tree	has	an	entry	and	another	has	its	matching	update	entry;
the	update	is	applied	during	the	merge,	and	the	update	entry	is	discarded.

24.2.4

The	Stepped-Merge	Index

We	now	consider	a	variant	of	the	LSM	tree,	which	has	multiple	trees	at	each	level	instead	of	one	tree	per
level	and	performs	inserts	in	a	slightly	different	manner.	This	structure	is	shown	in	Figure	24.2.	We	call
the	structure	a	stepped-merge	index,	following	the	terminology	in	an	early	paper	that	introduced	it.	In	the
developer	community,	the	basic	LSM	tree,	the	stepped-merge	index,	and	several	other	variants	are	all
referred	to	as	LSM	trees.	We	use	the	terms	stepped-merge	index	and	basic	LSM	tree	to	clearly	identify
which	variant	we	are	referring	to.

1180

Chapter	24

Advanced	Indexing	Techniques

24.2.4.1

Insertion	Algorithm

In	the	stepped-merge	index,	incoming	data	are	initially	stored	in	memory,	in	an	L	tree,	0

in	a	manner	similar	to	the	LSM	tree.	However,	when	the	tree	reaches	its	maximum	size,	instead	of
merging	it	into	an	L	tree,	the	in-memory	L	tree	is	written	to	disk.	When	1

0

the	in-memory	tree	again	reaches	its	maximum	size,	it	is	again	written	to	disk.	Thus,	we	may	have
multiple	L	trees	on	disk,	which	we	shall	refer	to	as	L	1,	L	2	and	so	forth.

0

0

0

Each	of	the	Li	trees	is	a	B+-tree	and	can	be	written	to	disk	using	only	sequential	I/O

0

operations.

If	this	process	is	repeated,	after	a	while	we	would	have	a	large	number	of	trees,	each	as	large	as	memory,
stored	on	disk.	Lookups	would	then	have	to	pay	a	high	price,	since	they	would	have	to	search	through
each	of	the	tree	structures,	incurring	separate	I/O	costs	on	each	search.

To	limit	the	overhead	on	lookups,	once	the	number	of	on-disk	trees	at	a	level	Li	reaches	some	limit	k,	all
the	trees	at	a	level	are	merged	together	into	one	combined	new	tree	structure	at	the	next	level	L

.	The	leaves	of	the	trees	at	level	L	are	read

i+1

i

sequentially,	and	the	keys	merged	in	sorted	order,	and	the	level	L

tree	is	constructed

i+1

using	standard	techniques	for	bottom-up	construction	of	B+-trees.	As	before,	the	merge	operation	avoids
random	I/O	operations,	since	it	reads	the	individual	tree	structures	sequentially	and	writes	the	resultant
merged	tree	also	sequentially.

Once	a	set	of	trees	are	merged	into	a	single	new	tree,	future	queries	can	search	the	merged	tree;	the
original	trees	can	then	be	deleted	(after	ensuring	any	ongoing	searches	have	completed).

The	benefit	of	the	stepped-merge	index	scheme	as	compared	to	the	basic	LSM	tree	is	that	index	entries
are	written	out	only	once	per	level.	With	the	basic	LSM	tree,	each	time	a	tree	at	level	L	is	merged	into	a
tree	at	level	L

,	the	entire	contents	of	the	L

i

i+1

i+1

tree	is	read	and	written	back	to	disk.	Thus,	on	average,	each	record	is	read	and	written	back	k∕2	times	at
each	level	of	an	LSM	tree	for	a	total	of	klog	(I∕	M)	I/O	operations.	In	k

contrast,	with	stepped-merge	index,	each	record	is	written	to	disk	once	per	layer,	and	read	again	when
merging	into	the	next	layer,	for	a	total	of	approximately	2	log	(I	∕	M)	k

I/O	operations.	Thus,	the	stepped-merge	index	incurs	significantly	less	cost	for	updates.

The	total	number	of	bytes	written	(across	all	levels)	on	account	of	inserting	an	entry,	divided	by	the	size	of
entry,	is	called	the	write	amplification.	To	calculate	the	write	amplification	of	the	LSM	trees	and	the
stepped-merge	index,	we	can	modify	the	above	formulae	for	I/O	operations	by	ignoring	the	reads.	For	a
B+-tree	where	each	leaf	gets	on	average	only	one	update	before	it	is	written	back,	the	write	amplification
would	be	the	size	of	the	page	divided	by	the	size	of	the	index	entry.

For	a	B+-tree,	if	a	page	has	100	entries,	the	write	amplification	would	be	100.	With	k	=	5,	and	I	=	100	M,
we	would	have	log	(100)	=	3	levels.	The	write	amplification	of	5

an	LSM	tree	would	then	be	5∕2×3	=	7	.	5.	The	write	amplification	of	the	stepped-merge	index	would	be	3.
With	k	=	10,	the	tree	would	have	log	(100)	=	2	levels,	leading	to	a	10

write	amplification	of	2	for	stepped-merge	index,	and	10	for	an	LSM	tree.

24.2

Log-Structured	Merge	Tree	and	Variants

1181

Note	that	like	the	basic	LSM	tree,	the	stepped-merge	index	also	requires	no	random	I/O	operations	during
insertion,	in	contrast	to	a	B+-tree	insertion.	Thus,	the	performance	of	B+-trees	would	be	worse	than	what
the	write	amplification	number	above	indicates.

Merging	can	be	optimized	as	follows:	While	merging	k	trees	at	a	particular	level	L	,	into	a	level	L

tree,	trees	at	levels	L	,	j	<	i	can	also	be	merged	in	at	the	same	time.

i

i+1

j

Entries	in	these	trees	can	thus	entirely	skip	one	or	more	levels	of	the	stepped-merge	index.	Further,	if	the
system	has	idle	capacity,	trees	at	a	level	L	can	be	merged	even	i

if	there	are	fewer	than	k	trees	at	that	level.	In	a	situation	where	there	is	a	long	period	of	time	with	very
few	inserts,	and	the	system	load	is	light,	trees	across	all	levels	could	potentially	get	merged	into	a	single
tree	at	some	level	r.

24.2.4.2

Lookup	Operations	Using	Bloom	Filters

Lookup	operations	in	stepped-merge	index	have	to	separately	search	each	of	the	trees.

Thus,	compared	to	the	basic	LSM	scheme,	the	stepped-merge	index	increases	the	burden	on	lookups,
since	in	the	worst	case	lookups	need	to	access	k	trees	at	each	level,	leading	to	a	total	of	k	∗	log	(I∕	M)
tree	lookups,	instead	of	log	(I∕	M)	tree	lookups	in	k

k

the	worst	case	with	a	basic	LSM	tree.

For	workloads	with	a	significant	fraction	of	reads,	this	overhead	can	be	unacceptable.	For	example,	with
the	stepped-merge	index	with	I	=	100	M	and	k	=	5,	a	single	lookup	requires	15	tree	traversals,	while	the
LSM	tree	would	require	3	tree	traversals.

Note	that	for	the	common	case	where	each	key	value	occurs	in	only	one	tree,	only	one	of	the	traversals
would	find	a	given	search	key,	while	all	the	other	traversals	would	fail	to	find	the	key.

To	reduce	the	cost	of	point	lookups	(i.e.,	lookups	of	a	given	key	value),	most	systems	use	a	Bloom	filter	to
check	if	a	tree	can	possibly	contain	the	given	key	value.	One	Bloom	filter	is	associated	with	each	tree,	and
it	is	built	on	the	set	of	key	values	in	the	tree.	To	check	if	a	particular	tree	may	contain	a	search	key	v,	the
key	v	is	looked	up	in	the	Bloom	filter.	If	the	Bloom	filter	indicates	that	the	key	value	is	absent,	it	is
definitely	not	present	in	the	tree,	and	lookup	can	skip	that	tree.	Otherwise,	the	key	value	may	be	present
in	the	tree,	which	must	be	looked	up.

A	Bloom	filter	with	10	n	bits,	where	the	tree	has	n	elements,	and	using	7	hash	functions	would	give	a	false
positive	rate	of	1	percent.	Thus,	for	a	lookup	on	a	key	that	is	present	in	the	index,	on	average	just	slightly
more	than	one	tree	would	be	accessed.

Thus,	lookup	performance	would	be	only	slightly	worse	than	on	a	regular	B+-tree.

The	Bloom	filter	check	thus	works	very	well	for	point	lookups,	allowing	a	significant	fraction	of	the	trees
to	be	skipped,	as	long	as	sufficient	memory	is	available	to	store	all	the	Bloom	filters	in	memory.	With	I	key
values	in	the	index,	approximately	10	I	bits	of	memory	will	be	required.	To	reduce	the	main	memory
overhead,	some	of	the	Bloom	filters	may	be	stored	on	flash	storage.

Note	that	for	range	lookups,	the	Bloom	filter	optimization	cannot	be	used,	since	there	is	no	unique	hash
value.	Instead,	all	trees	must	be	accessed	separately.

1182

Chapter	24

Advanced	Indexing	Techniques

24.2.5

LSM	Trees	For	Flash	Storage

LSM	trees	were	initially	designed	to	reduce	the	write	and	seek	overheads	of	hard	disks.

Flash	disks	have	a	relatively	low	overhead	for	random	I/O	operations	since	they	do	not	require	seek,	and
thus	the	benefit	of	avoiding	random	I/O	that	LSM	tree	variants	provide	is	not	particularly	important	with
flash	disks.

However,	recall	that	flash	memory	does	not	allow	in-place	update,	and	writing	even	a	single	byte	to	a	page
requires	the	whole	page	to	be	rewritten	to	a	new	physical	location;	the	original	location	of	the	page	needs
to	be	erased	eventually,	which	is	a	relatively	expensive	operation.	The	reduction	in	write	amplification
using	LSM	tree	variants,	as	compared	to	traditional	B+-trees,	can	provide	substantial	performance
benefits	when	LSM	trees	are	used	with	flash	storage.

24.3

Bitmap	Indices

As	we	saw	in	Section	14.9,	a	bitmap	index	is	a	specialized	type	of	index	designed	for	easy	querying	on
multiple	keys.	Bitmaps	work	best	for	attributes	that	take	only	a	small	number	of	distinct	values.

For	bitmap	indices	to	be	used,	records	in	a	relation	must	be	numbered	sequentially,	starting	from,	say,	0.
Given	a	number	n,	it	must	be	easy	to	retrieve	the	record	numbered	n.	This	is	particularly	easy	to	achieve
if	records	are	fixed	in	size	and	allocated	on	consecutive	blocks	of	a	file.	The	record	number	can	then	be
translated	easily	into	a	block	number	and	a	number	that	identifies	the	record	within	the	block.

Recall	that	column-oriented	storage,	described	in	Section	13.6,	stores	attributes	in	arrays,	allowing
efficient	access	of	the	attribute	of	the	i	th	record,	for	any	given	i.	Bitmap	indices	are	thus	particularly
useful	with	columnar	storage.

We	use	as	a	running	example	a	relation	instructor	info,	which	has	an	attribute	gender,	which	can	take
only	values	m	(male)	or	f	(female),	and	an	attribute	income	level,	where	income	has	been	broken	up	into	5
levels:	L	1:	0-9999,	L	2:	10,	000-19,	999,	L	3:	20,	000-39,	999,	L	4:	40,	000-74,	999,	and	L	5:	75,	000	−	∞.

24.3.1

Bitmap	Index	Structure

As	we	saw	in	Section	14.9,	a	bitmap	is	simply	an	array	of	bits.	In	its	simplest	form,	a	bitmap	index	on	the
attribute	A	of	relation	r	consists	of	one	bitmap	for	each	value	that	A	can	take.	Each	bitmap	has	as	many
bits	as	the	number	of	records	in	the	relation.	The	i	th	bit	of	the	bitmap	for	value	v	is	set	to	1	if	the	record
numbered	i	has	the	value	v	for	j

j

attribute	A.	All	other	bits	of	the	bitmap	are	set	to	0.

In	our	example,	there	is	one	bitmap	for	the	value	m	and	one	for	f.	The	i	th	bit	of	the	bitmap	for	m	is	set	to
1	if	the	gender	value	of	the	record	numbered	i	is	m.	All	other	bits	of	the	bitmap	for	m	are	set	to	0.
Similarly,	the	bitmap	for	f	has	the	value	1	for	bits	corresponding	to	records	with	the	value	f	for	the	gender
attribute;	all	other	bits	have

24.3

Bitmap	Indices

1183

Bitmaps	for	gender

Bitmaps	for

record

income_level

ID

gender

income_level

m

10010

number

L1

10100

0

76766

m

L1

f

01101

1

22222

f

L2

L2

01000

2

12121

f

L1

L3

00001

3

15151

m

L4

L4

00010

4

58583

f

L3

L5

00000

Figure	24.3	Bitmap	indices	on	relation	instructor	info.

the	value	0.	Figure	24.3	shows	an	example	of	bitmap	indices	on	a	relation	instructor	info

We	now	consider	when	bitmaps	are	useful.	The	simplest	way	of	retrieving	all	records	with	value	m	(or
value	f)	would	be	to	simply	read	all	records	of	the	relation	and	select	those	records	with	value	m	(or	f,
respectively).	The	bitmap	index	doesn’t	really	help	to	speed	up	such	a	selection.	While	it	would	allow	us	to
read	only	those	records	for	a	specific	gender,	it	is	likely	that	every	disk	block	for	the	file	would	have	to	be
read	anyway.

In	fact,	bitmap	indices	are	useful	for	selections	mainly	when	there	are	selections	on	multiple	keys.
Suppose	we	create	a	bitmap	index	on	attribute	income	level,	which	we	described	earlier,	in	addition	to	the
bitmap	index	on	gender.

Consider	now	a	query	that	selects	women	with	income	in	the	range	$10,000	to	$19,	999.	This	query	can
be	expressed	as

select	*

from	instructor	info

where	gender	=	'f'	and	income	level	=	'L2';

To	evaluate	this	selection,	we	fetch	the	bitmaps	for	gender	value	f	and	the	bitmap	for	income	level	value	L
2	and	perform	an	intersection	(logical-and)	of	the	two	bitmaps.	In	other	words,	we	compute	a	new	bitmap
where	bit	i	has	value	1	if	the	i	th	bit	of	the	two	bitmaps	are	both	1	and	has	a	value	0	otherwise.	In	the
example	in	Figure	24.3,	the	intersection	of	the	bitmap	for	gender	=	 	(01101)	and	the	bitmap	for	income
level	=	L	2

(01000)	gives	the	bitmap	01000.

Since	the	first	attribute	can	take	two	values,	and	the	second	can	take	five	values,	we	would	expect	only
about	1	in	10	records,	on	an	average,	to	satisfy	a	combined	condition	on	the	two	attributes.	If	there	are
further	conditions,	the	fraction	of	records	satisfying	all	the	conditions	is	likely	to	be	quite	small.	The
system	can	then	compute	the	query	result	by	finding	all	bits	with	value	1	in	the	intersection	bitmap	and
retrieving	the	cor-

1184

Chapter	24

Advanced	Indexing	Techniques

responding	records.	If	the	fraction	is	large,	scanning	the	entire	relation	would	remain	the	cheaper
alternative.

Another	important	use	of	bitmaps	is	to	count	the	number	of	tuples	satisfying	a	given	selection.	Such
queries	are	important	for	data	analysis.	For	instance,	if	we	wish	to	find	out	how	many	women	have	an
income	level	L	2,	we	compute	the	intersection	of	the	two	bitmaps	and	then	count	the	number	of	bits	that
are	1	in	the	intersection	bitmap.

We	can	thus	get	the	desired	result	from	the	bitmap	index,	without	even	accessing	the	relation.

Bitmap	indices	are	generally	quite	small	compared	to	the	actual	relation	size.	Records	are	typically	at
least	tens	of	bytes	to	hundreds	of	bytes	long,	whereas	a	single	bit	represents	the	record	in	a	bitmap.	Thus,
the	space	occupied	by	a	single	bitmap	is	usually	less	than	1	percent	of	the	space	occupied	by	the	relation.
For	instance,	if	the	record	size	for	a	given	relation	is	100	bytes,	then	the	space	occupied	by	a	single
bitmap	will	be	1	of	1	percent	of	the	space	occupied	by	the	relation.	If	an	attribute	A	of	the	relation	8

can	take	on	only	one	of	eight	values,	a	bitmap	index	on	attribute	A	would	consist	of	eight	bitmaps,	which
together	occupy	only	1	percent	of	the	size	of	the	relation.

Deletion	of	records	creates	gaps	in	the	sequence	of	records,	since	shifting	records	(or	record	numbers)	to
fill	gaps	would	be	extremely	expensive.	To	recognize	deleted	records,	we	can	store	an	existence	bitmap,	in
which	bit	i	is	0	if	record	i	does	not	exist	and	1	otherwise.	We	shall	see	the	need	for	existence	bitmaps	in
Section	24.3.2.	Insertion	of	records	should	not	affect	the	sequence	numbering	of	other	records.	Therefore,
we	can	do	insertion	either	by	appending	records	to	the	end	of	the	file	or	by	replacing	deleted	records.

24.3.2

Efficient	Implementation	of	Bitmap	Operations

We	can	compute	the	intersection	of	two	bitmaps	easily	by	using	a	for	loop:	the	i	th	iteration	of	the	loop
computes	the	and	of	the	i	th	bits	of	the	two	bitmaps.	We	can	speed	up	computation	of	the	intersection
greatly	by	using	bit-wise	and	instructions	supported	by	most	computer	instruction	sets.	A	word	usually
consists	of	32	or	64	bits,	depending	on	the	architecture	of	the	computer.	A	bit-wise	and	instruction	takes
two	words	as	input	and	outputs	a	word	where	each	bit	is	the	logical	and	of	the	bits	in	corresponding
positions	of	the	input	words.	What	is	important	to	note	is	that	a	single	bit-wise	and	instruction	can
compute	the	intersection	of	32	or	64	bits	at	once.

If	a	relation	had	1	million	records,	each	bitmap	would	contain	1	million	bits,	or	equivalently	128	kilobytes.
Only	31,250	instructions	are	needed	to	compute	the	intersection	of	two	bitmaps	for	our	relation,	assuming
a	32-bit	word	length.	Thus,	computing	bitmap	intersections	is	an	extremely	fast	operation.

Just	as	bitmap	intersection	is	useful	for	computing	the	and	of	two	conditions,	bitmap	union	is	useful	for
computing	the	or	of	two	conditions.	The	procedure	for	bitmap	union	is	exactly	the	same	as	for
intersection,	except	we	use	bit-wise	or	instructions	instead	of	bit-wise	and	instructions.

24.3

Bitmap	Indices

1185

The	complement	operation	can	be	used	to	compute	a	predicate	involving	the	negation	of	a	condition,	such
as	not	(income-level	=	L	1).	The	complement	of	a	bitmap	is	generated	by	complementing	every	bit	of	the
bitmap	(the	complement	of	1	is	0	and	the	complement	of	0	is	1).	It	may	appear	that	not	(income	level	=	L
1)	can	be	implemented	by	just	computing	the	complement	of	the	bitmap	for	income	level	L	1.	If	some
records	have	been	deleted,	however,	just	computing	the	complement	of	a	bitmap	is	not	sufficient.	Bits
corresponding	to	such	records	would	be	0	in	the	original	bitmap	but	would	become	1	in	the	complement,
although	the	records	don’t	exist.	A	similar	problem	also	arises	when	the	value	of	an	attribute	is	null.	For
instance,	if	the	value	of	income	level	is	null,	the	bit	would	be	0	in	the	original	bitmap	for	value	L	1	and	1	in
the	complement	bitmap.

To	make	sure	that	the	bits	corresponding	to	deleted	records	are	set	to	0	in	the	result,	the	complement
bitmap	must	be	intersected	with	the	existence	bitmap	to	turn	off	the	bits	for	deleted	records.	Similarly,	to
handle	null	values,	the	complement	bitmap	must	also	be	intersected	with	the	complement	of	the	bitmap
for	the	value	null.1

Counting	the	number	of	bits	that	are	1	in	a	bitmap	can	be	done	quickly	by	a	clever	technique.	We	can
maintain	an	array	with	256	entries,	where	the	i	th	entry	stores	the	number	of	bits	that	are	1	in	the	binary
representation	of	i.	Set	the	total	count	initially	to	0.	We	take	each	byte	of	the	bitmap,	use	it	to	index	into
this	array,	and	add	the	stored	count	to	the	total	count.	The	number	of	addition	operations	is	1	of	the
number	8

of	tuples,	and	thus	the	counting	process	is	very	efficient.	A	large	array	(using	216	=

65,536	entries),	indexed	by	pairs	of	bytes,	would	give	even	higher	speedup,	but	at	a	higher	storage	cost.

24.3.3

Bitmaps	and	B+-Trees

Bitmaps	can	be	combined	with	regular	B+-tree	indices	for	relations	where	a	few	attribute	values	are
extremely	common,	and	other	values	also	occur,	but	much	less	frequently.	In	a	B+-tree	index	leaf,	for	each
value	we	would	normally	maintain	a	list	of	all	records	with	that	value	for	the	indexed	attribute.	Each
element	of	the	list	would	be	a	record	identifier,	consisting	of	at	least	32	bits,	and	usually	more.	For	a	value
that	occurs	in	many	records,	we	store	a	bitmap	instead	of	a	list	of	records.

Suppose	a	particular	value	v	occurs	in	1	of	the	records	of	a	relation.	Let	N	be	i

16

the	number	of	records	in	the	relation,	and	assume	that	a	record	has	a	64-bit	number	identifying	it.	The
bitmap	needs	only	1	bit	per	record,	or	N	bits	in	total.	In	contrast,	the	list	representation	requires	64	bits
per	record	where	the	value	occurs,	or	64	∗	N∕16	=

4	N	bits.	Thus,	a	bitmap	is	preferable	for	representing	the	list	of	records	for	value	v	.

i

In	our	example	(with	a	64-bit	record	identifier),	if	fewer	than	1	in	64	records	have	a	particular	value,	the
list	representation	is	preferable	for	identifying	records	with	that	1Handling	predicates	such	as	is	unknown
would	cause	further	complications,	which	would	in	general	require	use	of	an	extra	bitmap	to	track	which
operation	results	are	unknown.

1186

Chapter	24

Advanced	Indexing	Techniques

value,	since	it	uses	fewer	bits	than	the	bitmap	representation.	If	more	than	1	in	64

records	have	that	value,	the	bitmap	representation	is	preferable.

Thus,	bitmaps	can	be	used	as	a	compressed	storage	mechanism	at	the	leaf	nodes	of	B+-trees	for	those
values	that	occur	very	frequently.

24.4

Indexing	of	Spatial	Data

As	we	saw	in	Section	14.10.1,	indices	are	required	for	efficient	access	to	spatial	data,	and	such	indices
must	efficiently	support	queries	such	as	range	and	nearest	neighbor	queries.	We	also	gave	a	brief
overview	of	k-d	trees,	quadtrees,	and	R-trees;	we	also	briefly	described	how	to	answer	range	queries
using	k-d	trees.	In	this	section	we	provide	further	details	of	quadtrees	and	R-trees.

As	mentioned	in	Section	14.10.1,	in	addition	to	indexing	of	points,	spatial	indices	must	also	support
indexing	of	regions	of	space	such	as	line	segments,	rectangles,	and	other	polygons.	There	are	extensions
of	k-d	trees	and	quadtrees	for	this	task.	However,	a	line	segment	or	polygon	may	cross	a	partitioning	line.
If	it	does,	it	has	to	be	split	and	represented	in	each	of	the	subtrees	in	which	its	pieces	occur.	Multiple
occurrences	of	a	line	segment	or	polygon	caused	by	such	splits	can	result	in	inefficiencies	in	storage,	as
well	as	inefficiencies	in	querying.	R-trees	were	developed	to	support	efficient	indexing	of	such	structures.

24.4.1

Quadtrees

An	alternative	representation	for	two-dimensional	data	are	a	quadtree.	An	example	of	the	division	of
space	by	a	quadtree	appears	in	Figure	24.4.	Each	node	of	a	quadtree	is	Figure	24.4	Division	of	space	by
a	quadtree.

24.4

Indexing	of	Spatial	Data

1187

associated	with	a	rectangular	region	of	space.	The	top	node	is	associated	with	the	entire	target	space.
Each	nonleaf	node	in	a	quadtree	divides	its	region	into	four	equal-sized	quadrants,	and	correspondingly
each	such	node	has	four	child	nodes	corresponding	to	the	four	quadrants.	Leaf	nodes	have	between	zero
and	some	fixed	maximum	number	of	points.	Correspondingly,	if	the	region	corresponding	to	a	node	has
more	than	the	maximum	number	of	points,	child	nodes	are	created	for	that	node.	In	the	example	in	Figure
24.4,	the	maximum	number	of	points	in	a	leaf	node	is	set	to	1.

This	type	of	quadtree	is	called	a	PR	quadtree,	to	indicate	it	stores	points,	and	that	the	division	of	space	is
divided	based	on	regions,	rather	than	on	the	actual	set	of	points	stored.	We	can	use	region	quadtrees	to
store	array	(raster)	information.	A	node	in	a	region	quadtree	is	a	leaf	node	if	all	the	array	values	in	the
region	that	it	covers	are	the	same.	Otherwise,	it	is	subdivided	further	into	four	children	of	equal	area	and
is	therefore	an	internal	node.	Each	node	in	the	region	quadtree	corresponds	to	a	subarray	of	values.

The	subarrays	corresponding	to	leaves	either	contain	just	a	single	array	element	or	have	multiple	array
elements,	all	of	which	have	the	same	value.

24.4.2

R-Trees

A	storage	structure	called	an	R-tree	is	useful	for	indexing	of	objects	such	as	points,	line	segments,
rectangles,	and	other	polygons.	An	R-tree	is	a	balanced	tree	structure	with	the	indexed	objects	stored	in
leaf	nodes,	much	like	a	B+-tree.	However,	instead	of	a	range	of	values,	a	rectangular	bounding	box	is
associated	with	each	tree	node.	The	bounding	box	of	a	leaf	node	is	the	smallest	rectangle	parallel	to	the
axes	that	contains	all	objects	stored	in	the	leaf	node.	The	bounding	box	of	internal	nodes	is,	similarly,	the
smallest	rectangle	parallel	to	the	axes	that	contains	the	bounding	boxes	of	its	child	nodes.	The	bounding
box	of	an	object	(such	as	a	polygon)	is	defined,	similarly,	as	the	smallest	rectangle	parallel	to	the	axes	that
contains	the	object.

Each	internal	node	stores	the	bounding	boxes	of	the	child	nodes	along	with	the	pointers	to	the	child
nodes.	Each	leaf	node	stores	the	indexed	objects	and	may	optionally	store	the	bounding	boxes	of	the
objects;	the	bounding	boxes	help	speed	up	checks	for	overlaps	of	the	rectangle	with	the	indexed	objects	—
if	a	query	rectangle	does	not	overlap	with	the	bounding	box	of	an	object,	it	cannot	overlap	with	the	object,
either.

(If	the	indexed	objects	are	rectangles,	there	is	no	need	to	store	bounding	boxes,	since	they	are	identical	to
the	rectangles.)

Figure	24.5	shows	an	example	of	a	set	of	rectangles	(drawn	with	a	solid	line)	and	the	bounding	boxes
(drawn	with	a	dashed	line)	of	the	nodes	of	an	R-tree	for	the	set	of	rectangles.	Note	that	the	bounding
boxes	are	shown	with	extra	space	inside	them,	to	make	them	stand	out	pictorially.	In	reality,	the	boxes
would	be	smaller	and	fit	tightly	on	the	objects	that	they	contain;	that	is,	each	side	of	a	bounding	box	B
would	touch	at	least	one	of	the	objects	or	bounding	boxes	that	are	contained	in	B.

The	R-tree	itself	is	at	the	right	side	of	Figure	24.5.	The	figure	refers	to	the	coordinates	of	bounding	box	i
as	BB	in	the	figure.

i

1188

Chapter	24

Advanced	Indexing	Techniques

A

B

1

C

BB1

BB2

BB3

G

3

H

A	B	C

D	E	F

G	H	I

I

D

2

E

F

Figure	24.5	An	R-tree.

We	shall	now	see	how	to	implement	search,	insert,	and	delete	operations	on	an	R-tree.

•	Search.	As	the	figure	shows,	the	bounding	boxes	associated	with	sibling	nodes	may	overlap;	in	B+-trees,
k-d	trees,	and	quadtrees,	in	contrast,	the	ranges	do	not	overlap.	A	search	for	objects	containing	a	point
therefore	has	to	follow	all	child	nodes	whose	associated	bounding	boxes	contain	the	point;	as	a	result,
multiple	paths	may	have	to	be	searched.	Similarly,	a	query	to	find	all	objects	that	intersect	a	given	object
has	to	go	down	every	node	where	the	associated	rectangle	intersects	the	given	object.

•	Insert.	When	we	insert	an	object	into	an	R-tree,	we	select	a	leaf	node	to	hold	the	object.	Ideally	we
should	pick	a	leaf	node	that	has	space	to	hold	a	new	entry,	and	whose	bounding	box	contains	the	bounding
box	of	the	object.	However,	such	a	node	may	not	exist;	even	if	it	did,	finding	the	node	may	be	very
expensive,	since	it	is	not	possible	to	find	it	by	a	single	traversal	down	from	the	root.	At	each	internal	node
we	may	find	multiple	children	whose	bounding	boxes	contain	the	bounding	box	of	the	object,	and	each	of
these	children	needs	to	be	explored.	Therefore,	as	a	heuristic,	in	a	traversal	from	the	root,	if	any	of	the
child	nodes	has	a	bounding	box	containing	the	bounding	box	of	the	object,	the	R-tree	algorithm	chooses
one	of	them	arbitrarily.	If	none	of	the	children	satisfy	this	condition,	the	algorithm	chooses	a	child	node
whose	bounding	box	has	the	maximum	overlap	with	the	bounding	box	of	the	object	for	continuing	the
traversal.

Once	the	leaf	node	has	been	reached,	if	the	node	is	already	full,	the	algorithm	performs	node	splitting
(and	propagates	splitting	upward	if	required)	in	a	manner	very	similar	to	B+-tree	insertion.	Just	as	with
B+-tree	insertion,	the	R-tree	insertion	algorithm	ensures	that	the	tree	remains	balanced.	Additionally,	it
ensures	that	the

24.4

Indexing	of	Spatial	Data

1189

bounding	boxes	of	leaf	nodes,	as	well	as	internal	nodes,	remain	consistent;	that	is,	bounding	boxes	of
leaves	contain	all	the	bounding	boxes	of	the	objects	stored	at	the	leaf,	while	the	bounding	boxes	for
internal	nodes	contain	all	the	bounding	boxes	of	the	children	nodes.

The	main	difference	of	the	insertion	procedure	from	the	B+-tree	insertion	procedure	lies	in	how	the	node
is	split.	In	a	B+-tree,	it	is	possible	to	find	a	value	such	that	half	the	entries	are	less	than	the	midpoint	and
half	are	greater	than	the	value.	This	property	does	not	generalize	beyond	one	dimension;	that	is,	for	more
than	one	dimension,	it	is	not	always	possible	to	split	the	entries	into	two	sets	so	that	their	bounding	boxes
do	not	overlap.	Instead,	as	a	heuristic,	the	set	of	entries	S	can	be	split	into	two	disjoint	sets	S	and	S	so
that	the	bounding	boxes	of	S	and	1

2

1

S	have	the	minimum	total	area;	another	heuristic	would	be	to	split	the	entries	into	2

two	sets	S	and	S	in	such	a	way	that	S	and	S	have	minimum	overlap.	The	two	1

2

1

2

nodes	resulting	from	the	split	would	contain	the	entries	in	S	and	S	,	respectively.

1

2

The	cost	of	finding	splits	with	minimum	total	area	or	overlap	can	itself	be	large,	so	cheaper	heuristics,
such	as	the	quadratic	split	heuristic,	are	used.	(The	heuristic	gets	its	name	from	the	fact	that	it	takes	time
quadratic	in	the	number	of	entries.)	The	quadratic	split	heuristic	works	this	way:	First,	it	picks	a	pair	of
entries	a	and	b	from	S	such	that	putting	them	in	the	same	node	would	result	in	a	bounding	box	with	the
maximum	wasted	space;	that	is,	the	area	of	the	minimum	bounding	box	of	a	and	b	minus	the	sum	of	the
areas	of	a	and	b	is	the	largest.	The	heuristic	places	the	entries	a	and	b	in	sets	S	and	S	,	respectively.

1

2

It	then	iteratively	adds	the	remaining	entries,	one	entry	per	iteration,	to	one	of	the	two	sets	S	or	S	.	At
each	iteration,	for	each	remaining	entry	e,	let	i	denote

1

2

e,1

the	increase	in	the	size	of	the	bounding	box	of	S	if	e	is	added	to	S	and	let	i	1

1

e,2

denote	the	corresponding	increase	for	S	.	In	each	iteration,	the	heuristic	chooses	2

one	of	the	entries	with	the	maximum	difference	of	i

and	i

and	adds	it	to	S	if

e,1

e,2

1

i

is	less	than	i	,	and	to	S	otherwise.	That	is,	an	entry	with	“maximum	prefere,1

e,2

2

ence”	for	S	or	S	is	chosen	at	each	iteration.	The	iteration	stops	when	all	entries	1

2

have	been	assigned,	or	when	one	of	the	sets	S	or	S	has	enough	entries	that	all	1

2

remaining	entries	have	to	be	added	to	the	other	set	so	the	nodes	constructed	from	S	and	S	both	have	the
required	minimum	occupancy.	The	heuristic	then	adds	all	1

2

unassigned	entries	to	the	set	with	fewer	entries.

•	Deletion.	Deletion	can	be	performed	like	a	B+-tree	deletion,	borrowing	entries	from	sibling	nodes,	or
merging	sibling	nodes	if	a	node	becomes	underfull.	An	alternative	approach	redistributes	all	the	entries	of
underfull	nodes	to	sibling	nodes,	with	the	aim	of	improving	the	clustering	of	entries	in	the	R-tree.

See	the	bibliographical	references	for	more	details	on	insertion	and	deletion	operations	on	R-trees,	as
well	as	on	variants	of	R-trees,	called	R∗-trees	or	R+-trees.

The	storage	efficiency	of	R-trees	is	better	than	that	of	k-d	trees	or	quadtrees,	since	an	object	is	stored
only	once,	and	we	can	ensure	easily	that	each	node	is	at	least	half

1190

Chapter	24

Advanced	Indexing	Techniques

full.	However,	querying	may	be	slower,	since	multiple	paths	have	to	be	searched.	Spatial	joins	are	simpler
with	quadtrees	than	with	R-trees,	since	all	quadtrees	on	a	region	are	partitioned	in	the	same	manner.
However,	because	of	their	better	storage	efficiency	and	their	similarity	to	B-trees,	R-trees	and	their
variants	have	proved	popular	in	database	systems	that	support	spatial	data.

24.5

Hash	Indices

We	described	the	concepts	of	hashing	and	hash	indices	in	Section	14.5.	We	provide	further	details	in	this
section.

24.5.1

Static	Hashing

As	in	Section	14.5,	let	K	denote	the	set	of	all	search-key	values,	and	let	B	denote	the	set	of	all	bucket
addresses.	A	hash	function	h	is	a	function	from	K	to	B.	Let	h	denote	a	hash	function.	Recall	that	in	a	hash
index,	buckets	contain	index	entries,	with	pointers	to	records,	while	in	a	hash	file	organization,	actual
records	are	stored	in	the	buckets.	All	the	other	details	remain	the	same,	so	we	do	not	explicitly
differentiate	between	these	two	versions	henceforth.	We	use	the	term	hash	index	to	denote	hash	file
organizations	as	well	as	secondary	hash	indices.

Figure	24.6	shows	a	secondary	hash	index	on	the	instructor	file,	for	the	search	key	ID.	The	hash	function
in	the	figure	computes	the	sum	of	the	digits	of	the	ID	modulo	8.	The	hash	index	has	eight	buckets,	each	of
size	2	(realistic	indices	would	have	much	larger	bucket	sizes).	One	of	the	buckets	has	three	keys	mapped
to	it,	so	it	has	an	overflow	bucket.	In	this	example,	ID	is	a	primary	key	for	instructor,	so	each	search	key
has	only	one	associated	pointer.	In	general,	multiple	pointers	can	be	associated	with	each	key.

Hash	indices	can	efficiently	answer	point	queries,	which	retrieve	records	with	a	specified	value	for	a
search	key.	However,	they	cannot	efficiently	answer	range	queries,	which	retrieve	all	records	whose
search	key	value	lies	in	a	range	(lb,	ub).	The	difficulty	arises	because	a	good	hash	function	assigns	values
randomly	to	buckets.	Thus,	there	is	no	simple	notion	of	“next	bucket	in	sorted	order.”	The	reason	we
cannot	chain	buckets	together	in	sorted	order	on	A	is	that	each	bucket	is	assigned	many	search-key
values.

i

Since	values	are	scattered	randomly	by	the	hash	function,	the	values	in	the	specified	range	are	likely	to	be
scattered	across	many	or	all	of	the	buckets.	Therefore,	we	have	to	read	all	the	buckets	to	find	the
required	search	keys.

Recall	that	deletion	is	done	as	follows:	If	the	search-key	value	of	the	record	to	be	deleted	is	K	,	we
compute	h(K),	then	search	the	corresponding	bucket	for	that	record,	i

i

and	delete	the	record	from	the	bucket.	Deletion	of	a	record	is	efficient	if	there	are	not	many	records	with
a	given	key	value.	However,	in	the	case	of	a	hash	index	on	a	key	with	many	duplicates,	a	large	number	of
entries	with	the	same	key	value	may	have	to	be	scanned	to	find	the	entry	for	the	record	that	is	to	be
deleted.	The	complexity	can	in	the	worst	case	be	linear	in	the	number	of	records.

24.5

Hash	Indices

1191

bucket	0

76766

bucket	1

45565

76543

bucket	2

22222

76766

Crick

Biology

72000

10101

Srinivasan

Comp.	Sci.

65000

45565

Katz

Comp.	Sci.

75000

bucket	3

83821

Brandt

Comp.	Sci.

92000

10101

98345

Kim

Elec.	Eng.

80000

12121

Wu

Finance

90000

bucket	4

76543

Singh

Finance

80000

32343

El	Said

History

60000

58583

Califieri

History

62000

15151

Mozart

Music

40000

bucket	5

22222

Einstein

Physics

95000

15151

58583

33465

Gold

Physics

87000

33456

98345

bucket	6

83821

bucket	7

12121

32343

Figure	24.6	Hash	index	on	search	key	ID	of	instructor	file.

Recall	also	that	with	static	hashing,	the	set	of	buckets	is	fixed	at	the	time	the	index	is	created.	If	the
relation	grows	far	beyond	the	expected	size,	hash	indices	would	be	quite	inefficient	due	to	long	overflow
chains.	We	could	rebuild	the	hash	index	using	a	larger	number	of	buckets.	Such	rebuilding	can	be
triggered	when	the	number	of	records	exceeds	the	estimated	number	by	some	margin,	and	the	index	is
rebuilt	with	a	number	of	buckets	that	is	a	multiple	of	the	original	number	of	buckets	(say	by	a	factor	of	1.5
to	2).	Such	rebuilding	is	in	fact	done	in	many	systems	with	in-memory	hash	indices.

However,	doing	so	can	cause	significant	disruption	to	normal	processing	with	large	relations,	since	a	large
number	of	records	have	to	be	reindexed;	the	disruption	is	particularly	marked	with	disk-resident	data.	In
this	section	we	discuss	dynamic	hashing	techniques	that	allow	hash	indices	to	grow	gradually,	without
causing	disruption.

1192

Chapter	24

Advanced	Indexing	Techniques

24.5.1.1

Hash	Functions

The	worst	possible	hash	function	maps	all	search-key	values	to	the	same	bucket.	Such	a	function	is
undesirable	because	all	the	records	have	to	be	kept	in	the	same	bucket.	A	lookup	has	to	examine	every
such	record	to	find	the	one	desired.	An	ideal	hash	function	distributes	the	stored	keys	uniformly	across	all
the	buckets,	so	that	every	bucket	has	the	same	number	of	records.

Since	we	do	not	know	at	design	time	precisely	which	search-key	values	will	be	stored	in	the	file,	we	want
to	choose	a	hash	function	that	assigns	search-key	values	to	buckets	in	such	a	way	that	the	distribution	has
these	qualities:

•	The	distribution	is	uniform.	That	is,	the	hash	function	assigns	each	bucket	the	same	number	of	search-
key	values	from	the	set	of	all	possible	search-key	values.

•	The	distribution	is	random.	That	is,	in	the	average	case,	each	bucket	will	have	nearly	the	same	number
of	values	assigned	to	it,	regardless	of	the	actual	distribution	of	search-key	values.	More	precisely,	the	hash
value	will	not	be	correlated	to	any	externally	visible	ordering	on	the	search-key	values,	such	as	alphabetic
ordering	or	ordering	by	the	length	of	the	search	keys;	the	hash	function	will	appear	to	be	random.

As	an	illustration	of	these	principles,	let	us	choose	a	hash	function	for	the	instructor	file	using	the	search
key	dept	name.	The	hash	function	that	we	choose	must	have	the	desirable	properties	not	only	on	the
example	instructor	file	that	we	have	been	using,	but	also	on	an	instructor	file	of	realistic	size	for	a	large
university	with	many	departments.

Assume	that	we	decide	to	have	26	buckets,	and	we	define	a	hash	function	that	maps	names	beginning
with	the	i	th	letter	of	the	alphabet	to	the	i	th	bucket.	This	hash	function	has	the	virtue	of	simplicity,	but	it
fails	to	provide	a	uniform	distribution,	since	we	expect	more	names	to	begin	with	such	letters	as	B	and	R
than	Q	and	X,	for	example.

Now	suppose	that	we	want	a	hash	function	on	the	search	key	salary.	Suppose	that	the	minimum	salary	is
$30,000	and	the	maximum	salary	is	$130,000,	and	we	use	a	hash	function	that	divides	the	values	into	10
ranges,	$30,000	–	$40,000,	$40,001	–	$50,000,	and	so	on.	The	distribution	of	search-key	values	is	uniform
(since	each	bucket	has	the	same	number	of	different	salary	values)	but	is	not	random.	Records	with
salaries	between	$60,001	and	$70,000	are	far	more	common	than	are	records	with	salaries	between
$30,001	and	$40,000.	As	a	result,	the	distribution	of	records	is	not	uniform

—	some	buckets	receive	more	records	than	others	do.	If	the	function	has	a	random	distribution,	even	if
there	are	such	correlations	in	the	search	keys,	the	randomness	of	the	distribution	will	make	it	very	likely
that	all	buckets	will	have	roughly	the	same	number	of	records,	as	long	as	each	search	key	occurs	in	only	a
small	fraction	of	the	records.	(If	a	single	search	key	occurs	in	a	large	fraction	of	the	records,	the	bucket
containing	it	is	likely	to	have	more	records	than	other	buckets,	regardless	of	the	hash	function	used.)

24.5

Hash	Indices

1193

bucket	0

bucket	4

12121	Wu

Finance

90000

76543	Singh

Finance

80000

bucket	1

bucket	5

15151

Mozart

Music

40000

76766	Crick

Biology

72000

bucket	2

bucket	6

32343	El	Said

History

80000

10101	Srinivasan	Comp.	Sci.	65000

58583	Califieri

History

60000

45565	Katz

Comp.	Sci.	75000

83821	Brandt

Comp.	Sci.	92000

bucket	3

bucket	7

22222	Einstein

Physics

95000

33456	Gold

Physics

87000

98345	Kim

Elec.	Eng.	80000

Figure	24.7	Hash	organization	of	instructor	file,	with	dept	name	as	the	key.

Typical	hash	functions	perform	computation	on	the	internal	binary	machine	representation	of	characters
in	the	search	key.	A	simple	hash	function	of	this	type	first	computes	the	sum	of	the	binary	representations
of	the	characters	of	a	key,	then	returns	the	sum	modulo	the	number	of	buckets.

Figure	24.7	shows	the	application	of	such	a	scheme,	with	eight	buckets,	to	the	instructor	file,	under	the
assumption	that	the	i	th	letter	in	the	alphabet	is	represented	by	the	integer	i.

The	following	hash	function	is	a	better	alternative	for	hashing	strings.	Let	s	be	a	string	of	length	n,	and	let
s[i]	denote	the	i	th	byte	of	the	string.	The	hash	function	is	defined	as:

s[0]	∗	31(n−1)	+	s[1]	∗	31(n−2)	+	⋯	+	s[n	−	1]

The	function	can	be	implemented	efficiently	by	setting	the	hash	result	initially	to	0	and	iterating	from	the
first	to	the	last	character	of	the	string,	at	each	step	multiplying	the	hash	value	by	31	and	then	adding	the
next	character	(treated	as	an	integer).	The	above	expression	would	appear	to	result	in	a	very	large
number,	but	it	is	actually	computed	with	fixed-size	positive	integers;	the	result	of	each	multiplication	and
addition	is	thus	automatically	computed	modulo	the	largest	possible	integer	value	plus	1.	The	result	of	the
above	function	modulo	the	number	of	buckets	can	then	be	used	for	indexing.

1194

Chapter	24

Advanced	Indexing	Techniques

Hash	functions	require	careful	design.	A	bad	hash	function	may	result	in	lookup	taking	time	proportional
to	the	number	of	search	keys	in	the	file.	A	well-designed	function	gives	an	average-case	lookup	time	that

is	a	(small)	constant,	independent	of	the	number	of	search	keys	in	the	file.

24.5.1.2

Handling	of	Bucket	Overflows

So	far,	we	have	assumed	that,	when	a	record	is	inserted,	the	bucket	to	which	it	is	mapped	has	space	to
store	the	record.	If	the	bucket	does	not	have	enough	space,	a	bucket	overflow	is	said	to	occur.	Bucket
overflow	can	occur	for	several	reasons,	as	we	outlined	in	Section	14.5.

•	Insufficient	buckets.	The	number	of	buckets,	which	we	denote	n	,	must	be	chosen	B

such	that	n

>	n	∕	f	,	where	n	denotes	the	total	number	of	records	that	will	be	B

r

r

r

stored	and	f	denotes	the	number	of	records	that	will	fit	in	a	bucket.	This	designa-r

tion	assumes	that	the	total	number	of	records	is	known	when	the	hash	function	is	chosen.

•	Skew.	Some	buckets	are	assigned	more	records	than	are	others,	so	a	bucket	may	overflow	even	when
other	buckets	still	have	space.	This	situation	is	called	bucket	skew.	Skew	can	occur	for	two	reasons:

1.	Multiple	records	may	have	the	same	search	key.

2.	The	chosen	hash	function	may	result	in	nonuniform	distribution	of	search	keys.

So	that	the	probability	of	bucket	overflow	is	reduced,	the	number	of	buckets	is	chosen	to	be	(n	∕	f)	∗	(1	+
d),	where	d	is	a	fudge	factor,	typically	around	0	.	2.	Some	r

r

space	is	wasted:	About	20	percent	of	the	space	in	the	buckets	will	be	empty.	But	the	benefit	is	that	the
probability	of	overflow	is	reduced.

Despite	allocation	of	a	few	more	buckets	than	required,	bucket	overflow	can	still	occur.	As	we	saw	in
Section	14.5,	we	handle	bucket	overflow	by	using	overflow	buckets.

We	must	also	change	the	lookup	algorithm	slightly	to	handle	overflow	chaining,	to	look	at	the	overflow
buckets	in	addition	to	the	main	bucket.

The	form	of	hash	structure	that	we	have	just	described	is	called	closed	addressing	(or,	less	commonly,
closed	hashing).	Under	an	alternative	approach	called	open	addressing	(or,	less	commonly,	open	hashing),
the	set	of	buckets	is	fixed,	and	there	are	no	overflow	chains.	Instead,	if	a	bucket	is	full,	the	system	inserts
records	in	some	other	bucket	in	the	initial	set	of	buckets	B.	One	policy	is	to	use	the	next	bucket	(in	cyclic
order)	that	has	space;	this	policy	is	called	linear	probing.	Other	policies,	such	as	computing	further	hash
functions,	are	also	used.	Open	addressing	has	been	used	to	construct	symbol	tables	for	compilers	and
assemblers,	but	closed	addressing	is	preferable	for	database	systems.	The	reason	is	that	deletion	under
open	addressing	is	troublesome.

Usually,	compilers	and	assemblers	perform	only	lookup	and	insertion	operations	on

24.5

Hash	Indices

1195

their	symbol	tables.	However,	in	a	database	system,	it	is	important	to	be	able	to	handle	deletion	as	well	as
insertion.	Thus,	open	addressing	is	of	only	minor	importance	in	database	implementation.

An	important	drawback	to	the	form	of	hashing	that	we	have	described	is	that	we	must	choose	the	hash
function	when	we	implement	the	system,	and	it	cannot	be	changed	easily	thereafter	if	the	file	being
indexed	grows	or	shrinks.	Since	the	function	h	maps	search-key	values	to	a	fixed	set	B	of	bucket
addresses,	we	waste	space	if	B	is	made	large	to	handle	future	growth	of	the	file.	If	B	is	too	small,	the
buckets	contain	records	of	many	different	search-key	values,	and	bucket	overflows	can	occur.	As	the	file
grows,	performance	suffers.	We	study	in	Section	24.5.2	how	the	number	of	buckets	and	the	hash	function

can	be	changed	dynamically.

24.5.2

Dynamic	Hashing

As	we	have	seen,	the	need	to	fix	the	set	B	of	bucket	addresses	presents	a	serious	problem	with	the	static
hashing	technique	of	the	previous	section.	Most	databases	grow	larger	over	time.	If	we	are	to	use	static
hashing	for	such	a	database,	we	have	three	classes	of	options:

1.	Choose	a	hash	function	based	on	the	current	file	size.	This	option	will	result	in	performance
degradation	as	the	database	grows.

2.	Choose	a	hash	function	based	on	the	anticipated	size	of	the	file	at	some	point	in	the	future.	Although
performance	degradation	is	avoided,	a	significant	amount	of	space	may	be	wasted	initially.

3.	Periodically	reorganize	the	hash	structure	in	response	to	file	growth.	Such	a	reorganization	involves
choosing	a	new	hash	function,	recomputing	the	hash	function	on	every	record	in	the	file,	and	generating
new	bucket	assignments.	This	reorganization	is	a	massive,	time-consuming	operation.	Furthermore,	it	is
necessary	to	forbid	access	to	the	file	during	reorganization.

Several	dynamic	hashing	techniques	allow	the	hash	function	to	be	modified	dynamically	to	accommodate
the	growth	or	shrinkage	of	the	database.	In	this	section	we	describe	one	form	of	dynamic	hashing,	called
extendable	hashing.	The	bibliographical	notes	provide	references	to	other	forms	of	dynamic	hashing.

24.5.2.1

Data	Structure

Extendable	hashing	copes	with	changes	in	database	size	by	splitting	and	coalescing	buckets	as	the
database	grows	and	shrinks.	As	a	result,	space	efficiency	is	retained.

Moreover,	since	the	reorganization	is	performed	on	only	one	bucket	at	a	time,	the	resulting	performance
overhead	is	acceptably	low.

1196

Chapter	24

Advanced	Indexing	Techniques

hash	prefix

i

i

1

00..

01..

bucket	1

10..

i2

11..

…

bucket	2

i3

bucket	address	table

bucket	3

…

Figure	24.8	General	extendable	hash	structure.

With	extendable	hashing,	we	choose	a	hash	function	h	with	the	desirable	properties	of	uniformity	and
randomness.	However,	this	hash	function	generates	values	over	a	relatively	large	range	—	namely,	b-bit
binary	integers.	A	typical	value	for	b	is	32.

We	do	not	create	a	bucket	for	each	hash	value.	Indeed,	232	is	over	4	billion,	and	that	many	buckets	is
unreasonable	for	all	but	the	largest	databases.	Instead,	we	create	buckets	on	demand,	as	records	are
inserted	into	the	file.	We	do	not	use	the	entire	b	bits	of	the	hash	value	initially.	At	any	point,	we	use	i	bits,
where	0	≤	i	≤	b.	These	i	bits	are	used	as	an	offset	into	an	additional	table	of	bucket	addresses.	The	value
of	i	grows	and	shrinks	with	the	size	of	the	database.

Figure	24.8	shows	a	general	extendable	hash	structure.	The	i	appearing	above	the	bucket	address	table	in
the	figure	indicates	that	i	bits	of	the	hash	value	h(K)	are	required	to	determine	the	correct	bucket	for	K.
This	number	will	change	as	the	file	grows.	Although	i	bits	are	required	to	find	the	correct	entry	in	the
bucket	address	table,	several	consecutive	table	entries	may	point	to	the	same	bucket.	All	such	entries	will
have	a	common	hash	prefix,	but	the	length	of	this	prefix	may	be	less	than	i.	Therefore,	we	associate	with
each	bucket	an	integer	giving	the	length	of	the	common	hash	prefix.	In	Figure	24.8

the	integer	associated	with	bucket	j	is	shown	as	i	.	The	number	of	bucket-address-table	j

entries	that	point	to	bucket	j	is

2(i	−	i)

j

24.5

Hash	Indices

1197

24.5.2.2

Queries	and	Updates

We	now	see	how	to	perform	lookup,	insertion,	and	deletion	on	an	extendable	hash	structure.

To	locate	the	bucket	containing	search-key	value	K	,	the	system	takes	the	first	i	l

high-order	bits	of	h(K),	looks	at	the	corresponding	table	entry	for	this	bit	string,	and	l

follows	the	bucket	pointer	in	the	table	entry.

To	insert	a	record	with	search-key	value	K	,	the	system	follows	the	same	procedure	l

for	lookup	as	before,	ending	up	in	some	bucket—say,	j.	If	there	is	room	in	the	bucket,	the	system	inserts
the	record	in	the	bucket.	If,	on	the	other	hand,	the	bucket	is	full,	it	must	split	the	bucket	and	redistribute
the	current	records,	plus	the	new	one.	To	split	the	bucket,	the	system	must	first	determine	from	the	hash
value	whether	it	needs	to	increase	the	number	of	bits	that	it	uses.

•	If	i	=	i	,	only	one	entry	in	the	bucket	address	table	points	to	bucket	j.	Therefore,	j

the	system	needs	to	increase	the	size	of	the	bucket	address	table	so	that	it	can	include	pointers	to	the	two
buckets	that	result	from	splitting	bucket	j.	It	does	so	by	considering	an	additional	bit	of	the	hash	value.	It
increments	the	value	of	i	by	1,	thus	doubling	the	size	of	the	bucket	address	table.	It	replaces	each	entry
with	two	entries,	both	of	which	contain	the	same	pointer	as	the	original	entry.	Now	two	entries	in	the
bucket	address	table	point	to	bucket	j.	The	system	allocates	a	new	bucket	(bucket	z)	and	sets	the	second
entry	to	point	to	the	new	bucket.	It	sets	ij	and	i	to	i.	Next,	it	rehashes	each	record	in	bucket	j	and,
depending	on	the	first	i	z

bits	(remember	the	system	has	added	1	to	i),	either	keeps	it	in	bucket	j	or	allocates	it	to	the	newly	created
bucket.

The	system	now	reattempts	the	insertion	of	the	new	record.	Usually,	the	attempt	will	succeed.	However,	if
all	the	records	in	bucket	j,	as	well	as	the	new	record,	have	the	same	hash-value	prefix,	it	will	be	necessary
to	split	a	bucket	again,	since	all	the	records	in	bucket	j	and	the	new	record	are	assigned	to	the	same
bucket.	If	the	hash	function	has	been	chosen	carefully,	it	is	unlikely	that	a	single	insertion	will	require	that
a	bucket	be	split	more	than	once,	unless	there	are	a	large	number	of	records	with	the	same	search	key.	If
all	the	records	in	bucket	j	have	the	same	search-key	value,	no	amount	of	splitting	will	help.	In	such	cases,
overflow	buckets	are	used	to	store	the	records,	as	in	static	hashing.

•	If	i	>	i	,	then	more	than	one	entry	in	the	bucket	address	table	points	to	bucket	j.

j

Thus,	the	system	can	split	bucket	j	without	increasing	the	size	of	the	bucket	address	table.	Observe	that
all	the	entries	that	point	to	bucket	j	correspond	to	hash	prefixes	that	have	the	same	value	on	the	leftmost	i
bits.	The	system	allocates	a	new	bucket	j

(bucket	z),	and	sets	i	and	i	to	the	value	that	results	from	adding	1	to	the	original	j

z

i	value.	Next,	the	system	needs	to	adjust	the	entries	in	the	bucket	address	table	j

that	previously	pointed	to	bucket	j.	(Note	that	with	the	new	value	for	i	,	not	all	j

the	entries	correspond	to	hash	prefixes	that	have	the	same	value	on	the	leftmost	ij	bits.)	The	system
leaves	the	first	half	of	the	entries	as	they	were	(pointing	to	bucket

1198

Chapter	24

Advanced	Indexing	Techniques

dept_name

h(dept_name)

Biology

0010	1101	1111	1011	0010	1100	0011	0000

Comp.	Sci.

1111	0001	0010	0100	1001	0011	0110	1101

Elec.	Eng.

0100	0011	1010	1100	1100	0110	1101	1111

Finance

1010	0011	1010	0000	1100	0110	1001	1111

History

1100	0111	1110	1101	1011	1111	0011	1010

Music

0011	0101	1010	0110	1100	1001	1110	1011

Physics

1001	1000	0011	1111	1001	1100	0000	0001

Figure	24.9	Hash	function	for	dept	name.

j),	and	sets	all	the	remaining	entries	to	point	to	the	newly	created	bucket	(bucket	z).	Next,	as	in	the
previous	case,	the	system	rehashes	each	record	in	bucket	j,	and	allocates	it	either	to	bucket	j	or	to	the
newly	created	bucket	z.

The	system	then	reattempts	the	insert.	In	the	unlikely	case	that	it	again	fails,	it	applies	one	of	the	two
cases,	i	=	i	or	i	>	i	,	as	appropriate.

j

j

Note	that,	in	both	cases,	the	system	needs	to	recompute	the	hash	function	on	only	the	records	in	bucket	j.

To	delete	a	record	with	search-key	value	K	,	the	system	follows	the	same	procedure	l

for	lookup	as	before,	ending	up	in	some	bucket—say,	j.	It	removes	both	the	search	key	from	the	bucket
and	the	record	from	the	file.	The	bucket,	too,	is	removed	if	it	becomes	empty.	Note	that,	at	this	point,
several	buckets	can	be	coalesced,	and	the	size	of	the	bucket	address	table	can	be	cut	in	half.	The
procedure	for	deciding	on	which	buckets	can	be	coalesced	and	how	to	coalesce	buckets	is	left	to	you	to	do
as	an	exercise.	The	conditions	under	which	the	bucket	address	table	can	be	reduced	in	size	are	also	left	to
you	as	an	exercise.	Unlike	coalescing	of	buckets,	changing	the	size	of	the	bucket	address	table	is	a	rather
expensive	operation	if	the	table	is	large.	Therefore	it	may	be	worthwhile	to	reduce	the	bucket-address-
table	size	only	if	the	number	of	buckets	reduces	greatly.

To	illustrate	the	operation	of	insertion,	we	use	the	instructor	file	and	assume	that	the	search	key	is	dept
name	with	the	32-bit	hash	values	as	appear	in	Figure	24.9.	Assume	that,	initially,	the	file	is	empty,	as	in
Figure	24.10.	We	insert	the	records	one	by	one.	To	hash	prefix

0

0

bucket	address	table

bucket	1

Figure	24.10	Initial	extendable	hash	structure.

24.5

Hash	Indices

1199

hash	prefix

1

1

15151	Mozart

Music

40000

bucket	address	table

1

10101	Srinivasan	Comp.	Sci.	65000

12121	Wu

Finance

90000

Figure	24.11	Hash	structure	after	three	insertions.

illustrate	all	the	features	of	extendable	hashing	in	a	small	structure,	we	shall	make	the	unrealistic
assumption	that	a	bucket	can	hold	only	two	records.

We	insert	the	record	(10101,	Srinivasan,	Comp.	Sci.,	65000).	The	bucket	address	table	contains	a	pointer
to	the	one	bucket,	and	the	system	inserts	the	record.	Next,	we	insert	the	record	(12121,	Wu,	Finance,
90000).	The	system	also	places	this	record	in	the	one	bucket	of	our	structure.

When	we	attempt	to	insert	the	next	record	(15151,	Mozart,	Music,	40000),	we	find	that	the	bucket	is	full.
Since	i	=	i	,	we	need	to	increase	the	number	of	bits	that	we	0

use	from	the	hash	value.	We	now	use	1	bit,	allowing	us	21	=	2	buckets.	This	increase	in	the	number	of	bits
necessitates	doubling	the	size	of	the	bucket	address	table	to	two	entries.	The	system	splits	the	bucket,
placing	in	the	new	bucket	those	records	whose	search	key	has	a	hash	value	beginning	with	1,	and	leaving
in	the	original	bucket	the	other	records.	Figure	24.11	shows	the	state	of	our	structure	after	the	split.

hash	prefix

2

1

15151	Mozart

Music

40000

2

12121	Wu

Finance

90000

bucket	address	table

22222	Einstein

Physics

95000

2

10101	Srinivasan	Comp.	Sci.	65000

Figure	24.12	Hash	structure	after	four	insertions.

1200

Chapter	24

Advanced	Indexing	Techniques

1

hash	prefix

15151	Mozart

Music

40000

3

3

22222	Einstein

Physics

95000

33456

Gold

Physics

87000

3

12121	Wu

Finance

90000

bucket	address	table

2

10101	Srinivasan

Comp.	Sci.	65000

32343	El	Said

History

60000

Figure	24.13	Hash	structure	after	six	insertions.

1

15151

Mozart

Music

40000

hash	prefix

3

3

22222	Einstein

Physics

95000

33456	Gold

Physics

87000

3

12121	Wu

Finance

90000

3

bucket	address	table

32343

El	Said

History

60000

3

10101	Srinivasan

Comp.	Sci.

65000

45565	Katz

Comp.	Sci.

75000

Figure	24.14	Hash	structure	after	seven	insertions.

24.5

Hash	Indices

1201

Next,	we	insert	(22222,	Einstein,	Physics,	95000).	Since	the	first	bit	of	h(Physics)	is	1,	we	must	insert	this
record	into	the	bucket	pointed	to	by	the	“1”	entry	in	the	bucket	address	table.	Once	again,	we	find	the
bucket	full	and	i	=	i	.	We	increase	the	number	1

of	bits	that	we	use	from	the	hash	to	2.	This	increase	in	the	number	of	bits	necessitates	doubling	the	size	of
the	bucket	address	table	to	four	entries,	as	in	Figure	24.12.	Since	the	bucket	of	Figure	24.11	for	hash
prefix	0	was	not	split,	the	two	entries	of	the	bucket	address	table	of	00	and	01	both	point	to	this	bucket.

For	each	record	in	the	bucket	of	Figure	24.11	for	hash	prefix	1	(the	bucket	being	split),	the	system
examines	the	first	two	bits	of	the	hash	value	to	determine	which	bucket	of	the	new	structure	should	hold
it.

Next,	we	insert	(32343,	El	Said,	History,	60000),	which	goes	in	the	same	bucket	as	Comp.	Sci.	The
following	insertion	of	(33456,	Gold,	Physics,	87000)	results	in	a	bucket	overflow,	leading	to	an	increase	in
the	number	of	bits	and	a	doubling	of	the	size	of	the	bucket	address	table	(see	Figure	24.13).

The	insertion	of	(45565,	Katz,	Comp.	Sci.,	75000)	leads	to	another	bucket	overflow;	this	overflow,
however,	can	be	handled	without	increasing	the	number	of	bits,	since	the	bucket	in	question	has	two
pointers	pointing	to	it	(see	Figure	24.14).

Next,	we	insert	the	records	of	“Califieri”,	“Singh”,	and	“Crick”	without	any	bucket	overflow.	The	insertion
of	the	third	Comp.	Sci.	record	(83821,	Brandt,	Comp.	Sci.,	1

15151	Mozart

Music

40000

76766	Crick

Biology

72000

hash	prefix

3

3

22222	Einstein

Physics

95000

33456	Gold

Physics

87000

3

12121	Wu

Finance

90000

76543	Singh

Finance

80000

3

32343	El	Said

History

60000

58583

History

62000

bucket	address	table

Califieri

3

10101	Srinivasan	Comp.	Sci.

65000

83821	Brandt

Comp.	Sci.

92000

45565	Katz

Comp.	Sci.

75000

Figure	24.15	Hash	structure	after	11	insertions.

1202

Chapter	24

Advanced	Indexing	Techniques

2

15151

Mozart

Music

40000

76766

Crick

Biology

72000

2

98345

Kim

Elec.	Eng.

80000

hash	prefix

3

3

22222	Einstein

Physics

95000

33456	Gold

Physics

87000

3

12121	Wu

Finance

90000

76543

Singh

Finance

80000

bucket	address	table

3

32343

El	Said

History

60000

58583

Califieri

History

62000

3

10101	Srinivasan	Comp.	Sci.

65000

83821	Brandt

Comp.	Sci.

92000

45565	Katz

Comp.	Sci.

75000

Figure	24.16	Extendable	hash	structure	for	the	instructor	file.

92000),	however,	leads	to	another	overflow.	This	overflow	cannot	be	handled	by	increasing	the	number	of
bits,	since	there	are	three	records	with	exactly	the	same	hash	value.	Hence	the	system	uses	an	overflow
bucket,	as	in	Figure	24.15.	We	continue	in	this	manner	until	we	have	inserted	all	the	instructor	records	of
Figure	14.1.	The	resulting	structure	appears	in	Figure	24.16.

24.5.2.3

Static	Hashing	versus	Dynamic	Hashing

We	now	examine	the	advantages	and	disadvantages	of	extendable	hashing,	compared	with	static	hashing.
The	main	advantage	of	extendable	hashing	is	that	performance	does	not	degrade	as	the	file	grows.
Furthermore,	there	is	minimal	space	overhead.

Although	the	bucket	address	table	incurs	additional	overhead,	it	contains	one	pointer	for	each	hash	value
for	the	current	prefix	length.	This	table	is	thus	small.	The	main	space	saving	of	extendable	hashing	over
other	forms	of	hashing	is	that	no	buckets	need	to	be	reserved	for	future	growth;	rather,	buckets	can	be
allocated	dynamically.

A	disadvantage	of	extendable	hashing	is	that	lookup	involves	an	additional	level	of	indirection,	since	the
system	must	access	the	bucket	address	table	before	accessing	the

24.6

Summary

1203

bucket	itself.	This	extra	reference	has	only	a	minor	effect	on	performance.	Although	the	hash	structures
that	we	discussed	in	Section	24.5.1	do	not	have	this	extra	level	of	indirection,	they	lose	their	minor
performance	advantage	as	they	become	full.	A	further	disadvantage	of	extendable	hashing	is	the	cost	of
periodic	doubling	of	the	bucket	address	table.

The	bibliographical	notes	also	provide	references	to	another	form	of	dynamic	hashing	called	linear
hashing,	which	avoids	the	extra	level	of	indirection	associated	with	extendable	hashing,	at	the	possible
cost	of	more	overflow	buckets.

24.5.3

Comparison	of	Ordered	Indexing	and	Hashing

We	have	seen	several	ordered-indexing	schemes	and	several	hashing	schemes.	We	can	organize	files	of
records	as	ordered	files	by	using	index-sequential	organization	or	B+-

tree	organizations.	Alternatively,	we	can	organize	the	files	by	using	hashing.	Finally,	we	can	organize	them
as	heap	files,	where	the	records	are	not	ordered	in	any	particular	way.

Each	scheme	has	advantages	in	certain	situations.	A	database-system	implementor	could	provide	many
schemes,	leaving	the	final	decision	of	which	schemes	to	use	to	the	database	designer.	However,	such	an
approach	requires	the	implementor	to	write	more	code,	adding	both	to	the	cost	of	the	system	and	to	the
space	that	the	system	occupies.

Most	database	systems	support	B+-trees	for	indexing	disk-based	data,	and	many	databases	also	support
B+-tree	file	organization.	However,	most	databases	do	not	support	hash	file	organizations	or	hash	indices
for	disk-based	data.	One	of	the	important	reasons	is	the	fact	that	many	applications	benefit	from	support
for	range	queries.	A	second	reason	is	the	fact	that	B+-tree	indices	handle	relation	size	increases
gracefully,	via	a	series	of	node	splits,	each	of	which	is	of	low	cost,	in	contrast	to	the	relatively	high	cost	of
doubling	of	the	bucket	address	table,	which	extendable	hashing	requires.

Another	reason	for	preferring	B+-trees	is	the	fact	that	B+-trees	give	good	worst-case	bounds	for	deletion
operations	with	duplicate	keys,	unlike	hash	indices.

However,	hash	indices	are	used	for	in-memory	indexing,	if	range	queries	are	not	common.	In	particular,
they	are	widely	used	for	creating	temporary	in-memory	indices	while	processing	join	operations	using	the
hash-join	technique,	as	we	see	in	Section	15.5.5.

24.6

Summary

•	The	key	idea	of	the	log	structured	merge	tree	is	to	replace	random	I/O	operations	during	tree	inserts,
updates,	and	deletes	with	a	smaller	number	of	sequential	I/O

operations.

•	Bitmap	indices	are	specialized	indices	designed	for	easy	querying	on	multiple	keys.

Bitmaps	work	best	for	attributes	that	take	only	a	small	number	of	distinct	values.

1204

Chapter	24

Advanced	Indexing	Techniques

•	A	bitmap	is	an	array	of	bits.	In	its	simplest	form,	a	bitmap	index	on	the	attribute	A	of	relation	r	consists
of	one	bitmap	for	each	value	that	A	can	take.	Each	bitmap	has	as	many	bits	as	the	number	of	records	in
the	relation.

•	Bitmap	indices	are	useful	for	selections	mainly	when	there	are	selections	on	multiple	keys.

•	An	important	use	of	bitmaps	is	to	count	the	number	of	tuples	satisfying	a	given	selection.	Such	queries
are	important	for	data	analysis.

•	Indices	are	required	for	efficient	access	to	spatial	data	and	must	efficiently	support	queries	such	as
range	and	nearest	neighbor	queries.

•	A	quadtree	is	an	alternative	representation	for	two-dimensional	data	where	the	space	is	divided	by	a
quadtree.	Each	node	of	a	quadtree	is	associated	with	a	rectangular	region	of	space.

•	An	R-tree	is	a	storage	structure	that	is	useful	for	indexing	of	objects	such	as	points,	line	segments,
rectangles,	and	other	polygons.	An	R-tree	is	a	balanced	tree	structure	with	the	indexed	objects	stored	in
leaf	nodes,	much	like	a	B+-tree.	However,	instead	of	a	range	of	values,	a	rectangular	bounding	box	is
associated	with	each	tree	node.

•	Static	hashing	uses	hash	functions	in	which	the	set	of	bucket	addresses	is	fixed.

Such	hash	functions	cannot	easily	accommodate	databases	that	grow	significantly	larger	over	time.

•	Dynamic	hashing	techniques	allow	the	hash	function	to	be	modified.	One	example	is	extendable	hashing,
which	copes	with	changes	in	database	size	by	splitting	and	coalescing	buckets	as	the	database	grows	and
shrinks.

Review	Terms

•	Log-structured	merge	tree	(LSM	tree)

•	Region	quadtrees

•	Rolling	merge

•	R-tree

•	Deletion	entry

•	Bounding	box

•	Stepped-merge	index

•	Quadratic	split

•	Write	amplification

•	Bucket	overflow

•	Bloom	filter

•	Skew

•	Bitmap

•	Closed	addressing

•	Bitmap	index

•	Closed	hashing

•	Existence	bitmap

•	Open	addressing

•	Quadtree

•	Open	hashing

Practice	Exercises

1205

•	Dynamic	hashing

•	Linear	hashing

•	Extendable	hashing

Practice	Exercises

24.1

Both	LSM	trees	and	buffer	trees	(described	in	Section	14.8.2)	offer	benefits	to	write-intensive	workloads,
compared	to	normal	B+-trees,	and	buffer	trees	offer	potentially	better	lookup	performance.	Yet	LSM	trees
are	more	frequently	used	in	Big	Data	settings.	What	is	the	most	important	reason	for	this	preference?

24.2

Consider	the	optimized	technique	for	counting	the	number	of	bits	that	are	set	in	a	bitmap.	What	are	the
tradeoffs	in	choosing	a	smaller	versus	a	larger	array	size,	keeping	cache	size	in	mind?

24.3

Suppose	you	want	to	store	line	segments	in	an	R-tree.	If	a	line	segment	is	not	parallel	to	the	axes,	the
bounding	box	for	it	can	be	large,	containing	a	large	empty	area.

•	Describe	the	effect	on	performance	of	having	large	bounding	boxes	on	queries	that	ask	for	line
segments	intersecting	a	given	region.

•	Briefly	describe	a	technique	to	improve	performance	for	such	queries	and	give	an	example	of	its	benefit.
Hint:	You	can	divide	segments	into	smaller	pieces.

24.4

Give	a	search	algorithm	on	an	R-tree	for	efficiently	finding	the	nearest	neighbor	to	a	given	query	point.

24.5

Give	a	recursive	procedure	to	efficiently	compute	the	spatial	join	of	two	relations	with	R-tree	indices.
(Hint:	Use	bounding	boxes	to	check	if	leaf	entries	under	a	pair	of	internal	nodes	may	intersect.)

24.6

Suppose	that	we	are	using	extendable	hashing	on	a	file	that	contains	records	with	the	following	search-
key	values:

2,	3,	5,	7,	11,	17,	19,	23,	29,	31

Show	the	extendable	hash	structure	for	this	file	if	the	hash	function	is	h(x)	=	x	mod	8	and	buckets	can
hold	three	records.

24.7

Show	how	the	extendable	hash	structure	of	Exercise	24.6	changes	as	the	result	of	each	of	the	following
steps:

a.

Delete	11.

b.

Delete	31.

c.

Insert	1.

1206

Chapter	24

Advanced	Indexing	Techniques

d.

Insert	15.

24.8

Give	pseudocode	for	deletion	of	entries	fromAVi	an	extendable	hash	structure,	including	details	of	when
and	how	to	coalesce	buckets.	Do	not	bother	about	reducing	the	size	of	the	bucket	address	table.

24.9

Suggest	an	efficient	way	to	test	if	the	bucket	address	table	in	extendable	hashing	can	be	reduced	in	size
by	storing	an	extra	count	with	the	bucket	address	table.

Give	details	of	how	the	count	should	be	maintained	when	buckets	are	split,	coalesced,	or	deleted.	(Note:
Reducing	the	size	of	the	bucket	address	table	is	an	expensive	operation,	and	subsequent	inserts	may
cause	the	table	to	grow	again.	Therefore,	it	is	best	not	to	reduce	the	size	as	soon	as	it	is	possible	to	do	so,
but	instead	do	it	only	if	the	number	of	index	entries	becomes	small	compared	to	the	bucket-address-table
size.)

Exercises

24.10

The	stepped	merge	variant	of	the	LSM	tree	allows	multiple	trees	per	level.	What	are	the	tradeoffs	in
having	more	trees	per	level?

24.11

Suppose	you	want	to	use	the	idea	of	a	quadtree	for	data	in	three	dimensions.

How	would	the	resultant	data	structure	(called	an	octtree)	divide	up	space?

24.12

Explain	the	distinction	between	closed	and	open	hashing.	Discuss	the	relative	merits	of	each	technique	in
database	applications.

24.13

What	are	the	causes	of	bucket	overflow	in	a	hash	file	organization?	What	can	be	done	to	reduce	the
occurrence	of	bucket	overflows?

24.14

Why	is	a	hash	structure	not	the	best	choice	for	a	search	key	on	which	range	queries	are	likely?

24.15

Our	description	of	static	hashing	assumes	that	a	large	contiguous	stretch	of	disk	blocks	can	be	allocated
to	a	static	hash	table.	Suppose	you	can	allocate	only	C	contiguous	blocks.	Suggest	how	to	implement	the
hash	table,	if	it	can	be	much	larger	than	C	blocks.	Access	to	a	block	should	still	be	efficient.

Further	Reading

The	log-structured	merge	(LSM)	tree	is	presented	in	[O’Neil	et	al.	(1996)],	while	the	stepped	merge	tree
is	presented	in	[Jagadish	et	al.	(1997)].	[Vitter	(2001)]	provides	an	extensive	survey	of	external-memory
data	structures	and	algorithms.

Bitmap	indices	are	described	in	[O’Neil	and	Quass	(1997)].	They	were	first	introduced	in	the	IBM	Model
204	file	manager	on	the	AS	400	platform.	They	provide	very

Further	Reading

1207

large	speedups	on	certain	types	of	queries	and	are	today	implemented	in	most	database	systems.

[Samet	(2006)]	provides	a	textbook	coverage	of	spatial	data	structures.	[Bentley	(1975)]	describes	the	k-d
tree,	and	[Robinson	(1981)]	describes	the	k-d-B	tree.	The	R-tree	was	originally	presented	in	[Guttman
(1984)].

Discussions	of	the	basic	data	structures	in	hashing	can	be	found	in	[Cormen	et	al.

(2009)].	Extendable	hashing	was	introduced	by	[Fagin	et	al.	(1979)].	Linear	hashing	was	introduced	by
[Litwin	(1978)]	and	[Litwin	(1980)].

Bibliography

[Bentley	(1975)]

J.	L.	Bentley,	“Multidimensional	Binary	Search	Trees	Used	for	Associative	Searching”,	Communications	of
the	ACM,	Volume	18,	Number	9	(1975),	pages	509–517.

[Cormen	et	al.	(2009)]

T.	Cormen,	C.	Leiserson,	R.	Rivest,	and	C.	Stein,	Introduction	to	Algorithms,	3rd	edition,	MIT	Press	(2009).

[Fagin	et	al.	(1979)]

R.	Fagin,	J.	Nievergelt,	N.	Pippenger,	and	H.	R.	Strong,	“Extendible

Hashing	—	A	Fast	Access	Method	for	Dynamic	Files”,	ACM	Transactions	on	Database	Systems,	Volume	4,
Number	3	(1979),	pages	315–344.

[Guttman	(1984)]

A.	Guttman,	“R-Trees:	A	Dynamic	Index	Structure	for	Spatial	Searching”,	In	Proc.	of	the	ACM	SIGMOD
Conf.	on	Management	of	Data	(1984),	pages	47–57.

[Jagadish	et	al.	(1997)]

H.	V.	Jagadish,	P.	P.	S.	Narayan,	S.	Seshadri,	S.	Sudarshan,	and

R.	Kanneganti,	“Incremental	Organization	for	Data	Recording	and	Warehousing”,	In	Proceedings	of	the
23rd	International	Conference	on	Very	Large	Data	Bases,	VLDB	’97	(1997),	pages	16–25.

[Litwin	(1978)]

W.	Litwin,	“Virtual	Hashing:	A	Dynamically	Changing	Hashing”,	In	Proc.	of	the	International	Conf.	on	Very
Large	Databases	(1978),	pages	517–523.

[Litwin	(1980)]

W.	Litwin,	“Linear	Hashing:	A	New	Tool	for	File	and	Table	Addressing”,	In	Proc.	of	the	International	Conf.
on	Very	Large	Databases	(1980),	pages	212–223.

[O’Neil	and	Quass	(1997)]

P.	O’Neil	and	D.	Quass,	“Improved	Query	Performance	with

Variant	Indexes”,	In	Proc.	of	the	ACM	SIGMOD	Conf.	on	Management	of	Data	(1997),	pages	38–49.

[O’Neil	et	al.	(1996)]

P.	O’Neil,	E.	Cheng,	D.	Gawlick,	and	E.	O’Neil,	“The	Log-structured

Merge-tree	(LSM-tree)”,	Acta	Inf.	,	Volume	33,	Number	4	(1996),	pages	351–385.

[Robinson	(1981)]

J.	Robinson,	“The	k-d-B	Tree:	A	Search	Structure	for	Large	Multidimen-

sional	Indexes”,	In	Proc.	of	the	ACM	SIGMOD	Conf.	on	Management	of	Data	(1981),	pages	10–18.

[Samet	(2006)]

H.	Samet,	Foundations	of	Multidimensional	and	Metric	Data	Structures,	Morgan	Kaufmann	(2006).

1208

Chapter	24

Advanced	Indexing	Techniques

[Vitter	(2001)]

J.	S.	Vitter,	“External	Memory	Algorithms	and	Data	Structures:	Dealing	with	Massive	Data”,	ACM
Computing	Surveys,	Volume	33,	(2001),	pages	209–271.

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

C	H	A	P	T	E	R	25

Advanced	Application

Development

There	are	a	number	of	tasks	in	application	development.	We	saw	in	Chapter	6	to	Chapter	9	how	to	design
and	build	an	application.	One	of	the	aspects	of	application	design	is	the	performance	one	expects	out	of
the	application.	In	fact,	it	is	common	to	find	that	once	an	application	has	been	built,	it	runs	slower	than
the	designers	wanted	or	handles	fewer	transactions	per	second	than	they	required.	An	application	that
takes	an	excessive	amount	of	time	to	perform	requested	actions	can	cause	user	dissatisfaction	at	best	and
be	completely	unusable	at	worst.

Applications	can	be	made	to	run	significantly	faster	by	performance	tuning,	which	consists	of	finding	and
eliminating	bottlenecks	and	adding	appropriate	hardware	such	as	memory	or	disks.	There	are	many
things	an	application	developer	can	do	to	tune	the	application,	and	there	are	things	that	a	database-
system	administrator	can	do	to	speed	up	processing	for	an	application.

Benchmarks	are	standardized	sets	of	tasks	that	help	to	characterize	the	performance	of	database	systems.
They	are	useful	to	get	a	rough	idea	of	the	hardware	and	software	requirements	of	an	application,	even
before	the	application	is	built.

Applications	must	be	tested	as	they	are	being	developed.	Testing	requires	generation	of	database	states
and	test	inputs,	and	verifying	that	the	outputs	match	the	expected	outputs.	We	discuss	issues	in
application	testing.	Legacy	systems	are	application	systems	that	are	outdated	and	usually	based	on	older-
generation	technology.	However,	they	are	often	at	the	core	of	organizations	and	run	mission-critical
applications.	We	outline	issues	in	interfacing	with	and	issues	in	migrating	away	from	legacy	systems,
replacing	them	with	more	modern	systems.

Standards	are	very	important	for	application	development,	especially	in	the	age	of	the	internet,	since
applications	need	to	communicate	with	each	other	to	perform	useful	tasks.	A	variety	of	standards	have
been	proposed	that	affect	database-application	development,	which	we	outline	in	this	chapter.
Organizations	often	store	information	about	users	in	directory	systems.	Applications	often	use	such
directory	systems	to	authenticate	users	and	to	get	basic	information	about	users,	such	as	user	categories
(e.g.,	1209

1210

Chapter	25

Advanced	Application	Development

student,	instructor,	and	so	on).	We	briefly	describe	the	architecture	of	directory	systems.

25.1

Performance	Tuning

Tuning	the	performance	of	a	system	involves	adjusting	various	parameters	and	design	choices	to	improve
its	performance	for	a	specific	application.	Various	aspects	of	a	database-system	design	—	ranging	from
high-level	aspects	such	as	the	schema	and	transaction	design	to	database	parameters	such	as	buffer	sizes,
down	to	hardware	issues	such	as	number	of	disks	—	affect	the	performance	of	an	application.	Each	of
these	aspects	can	be	adjusted	so	that	performance	is	improved.

25.1.1

Motivation	for	Tuning

Applications	sometimes	exhibit	poor	performance,	with	queries	taking	a	long	time	to	complete,	leading	to
users	being	unable	to	carry	out	tasks	that	they	need	to	do.	We	describe	a	few	real-world	examples	that	we
have	seen,	including	their	causes	and	how	tuning	fixed	the	problems.

In	one	of	the	applications,	we	found	that	users	were	experiencing	long	delays	and	time-outs	in	the	web
applications.	On	monitoring	the	database,	we	found	that	the	CPU

usage	was	very	high,	with	negligible	disk	and	network	usage.	Further	analysis	of	queries	running	on	the
database	showed	that	a	simple	lookup	query	on	a	large	relation	was	using	a	full	relation	scan,	which	was
quite	expensive.	Adding	an	index	to	the	attribute	used	in	the	lookup	drastically	reduced	the	execution
time	of	the	query	and	a	key	performance	problem	vanished	immediately.

In	a	second	application,	we	found	that	a	query	had	very	poor	performance.	Examining	the	query,	we	found
that	the	programmer	had	written	an	unnecessarily	complicated	query,	with	several	nested	subqueries,	and
the	optimizer	produced	a	bad	plan	for	the	query,	as	we	realized	after	observing	the	query	plan.	To	fix	the
problem,	we	rewrote	the	query	using	joins	instead	of	nested	subqueries,	that	is,	we	decorrelated	the
query;	this	change	greatly	reduced	the	execution	time.

In	a	third	application,	we	found	that	the	application	fetched	a	large	number	of	rows	from	a	query,	and
issued	another	database	query	for	each	row	that	it	fetched.

This	resulted	in	a	large	number	of	separate	queries	being	sent	to	the	database,	resulting	in	poor
performance.	It	is	possible	to	replace	such	a	large	number	of	queries	with	a	single	query	that	fetches	all
required	data,	as	we	see	later	in	this	section.	Such	a	change	improved	the	performance	of	the	application
by	an	order	of	magnitude.

In	a	fourth	application,	we	found	that	while	the	application	performed	fine	under	light	load	during	testing,
it	completely	stopped	working	when	subjected	to	heavy	load	when	it	was	used	by	actual	users.	In	this
case,	we	found	that	in	some	of	the	interfaces,	programmers	had	forgotten	to	close	JDBC	connections.
Databases	typically	support	only	a	limited	number	of	JDBC	connections,	and	once	that	limit	was	reached,
the	application	was	unable	to	connect	to	the	database,	and	thus	it	stopped	working.

25.1

Performance	Tuning

1211

Ensuring	that	connections	were	closed	fixed	this	problem.	While	this	was	technically	a	bug	fix,	not	a
tuning	action,	we	thought	it	is	a	good	idea	to	highlight	this	problem	since	we	have	found	many
applications	have	this	problem.	Connection	pooling,	which	keeps	database	connections	open	for	use	by
subsequent	transactions,	is	a	related	application	tuning	optimization,	since	it	avoids	the	cost	of	repeated
opening	and	closing	of	database	connections.

It	is	also	worth	pointing	out	that	in	several	cases	above	the	performance	problems	did	not	show	up	during
testing,	either	because	the	test	database	was	much	smaller	than	the	actual	database	size	or	because	the
testing	was	done	with	a	much	lighter	load	(number	of	concurrent	users)	than	the	load	on	the	live	system.
It	is	important	that	performance	testing	be	done	on	realistic	database	sizes,	with	realistic	load,	so
problems	show	up	during	testing,	rather	than	on	a	live	system.

25.1.2

Location	of	Bottlenecks

The	performance	of	most	systems	(at	least	before	they	are	tuned)	is	usually	limited	primarily	by	the
performance	of	one	or	a	few	components,	called	bottlenecks.	For	instance,	a	program	may	spend	80
percent	of	its	time	in	a	small	loop	deep	in	the	code,	and	the	remaining	20	percent	of	the	time	on	the	rest
of	the	code;	the	small	loop	then	is	a	bottleneck.	Improving	the	performance	of	a	component	that	is	not	a
bottleneck	does	little	to	improve	the	overall	speed	of	the	system;	in	the	example,	improving	the	speed	of
the	rest	of	the	code	cannot	lead	to	more	than	a	20	percent	improvement	overall,	whereas	improving	the
speed	of	the	bottleneck	loop	could	result	in	an	improvement	of	nearly	80	percent	overall,	in	the	best	case.

Hence,	when	tuning	a	system,	we	must	first	try	to	discover	what	the	bottlenecks	are	and	then	eliminate
them	by	improving	the	performance	of	system	components	causing	the	bottlenecks.	When	one	bottleneck
is	removed,	it	may	turn	out	that	another	component	becomes	the	bottleneck.	In	a	well-balanced	system,
no	single	component	is	the	bottleneck.	If	the	system	contains	bottlenecks,	components	that	are	not	part	of
the	bottleneck	are	underutilized,	and	could	perhaps	have	been	replaced	by	cheaper	components	with
lower	performance.

For	simple	programs,	the	time	spent	in	each	region	of	the	code	determines	the	overall	execution	time.
However,	database	systems	are	much	more	complex,	and	query	execution	involves	not	only	CPU	time,	but
also	disk	I/O	and	network	communication.	A	first	step	in	diagnosing	problems	to	use	monitoring	tools
provided	by	operating	systems	to	find	the	usage	level	of	the	CPU,	disks,	and	network	links.

It	is	also	important	to	monitor	the	database	itself,	to	find	out	what	is	happening	in	the	database	system.
For	example,	most	databases	provide	ways	to	find	out	which	queries	(or	query	templates,	where	the	same
query	is	executed	repeatedly	with	different	constants)	are	taking	up	the	maximum	resources,	such	as
CPU,	disk	I/O,	or	network	capacity.	In	addition	to	hardware	resource	bottlenecks,	poor	performance	in	a
database	system	may	potentially	be	due	to	contention	on	locks,	where	transactions	wait	in	lock

1212

Chapter	25

Advanced	Application	Development

Note	25.1	DATABASE	PERFORMANCE	MONITORING	TOOLS

Most	database	systems	provide	view	relations	that	can	be	queried	to	monitor	database	system
performance.	For	example,	PostgreSQL	provides	view	relations	pg	stat	statements	and	pgpgrowlocks	to
monitor	resource	usage	of	SQL	statements	and	lock	contention	respectively.	MySQL	supports	a	command
show	pro-cessinfo	that	can	be	used	to	monitor	what	transactions	are	currently	executing	and	their
resource	usage.	Microsoft	SQL	Server	provides	stored	procedures	sp	monitor,	sp	who,	and	sp	lock	to
monitor	system	resource	usage.	The	Oracle	Database	SQL

Tuning	Guide,	available	online,	provides	details	of	similar	views	in	Oracle.

queues	for	a	long	time.	Again,	most	databases	provide	mechanisms	to	monitor	lock	contention.

Monitoring	tools	can	help	detect	where	the	bottleneck	lies	(such	as	CPU,	I/O,	or	locks),	and	to	locate	the
queries	that	are	causing	the	maximum	performance	problems.	In	this	chapter,	we	discuss	a	number	of
techniques	that	can	be	used	to	fix	performance	problems,	such	as	adding	required	indices	or	materialized
views,	rewriting	queries,	rewriting	applications,	or	adding	hardware	to	improve	performance.

To	understand	the	performance	of	database	systems	better,	it	is	very	useful	to	model	database	systems	as
queueing	systems.	A	transaction	requests	various	services	from	the	database	system,	starting	from	entry
into	a	server	process,	disk	reads	during	execution,	CPU	cycles,	and	locks	for	concurrency	control.	Each	of
these	services	has	a	queue	associated	with	it,	and	small	transactions	may	spend	most	of	their	time	waiting
in	queues	—	especially	in	disk	I/O	queues	—	instead	of	executing	code.	Figure	25.1

illustrates	some	of	the	queues	in	a	database	system.	Note	that	each	lockable	item	has	a	separate	queue	in
the	concurrency	control	manager.	The	database	system	may	have	a	single	queue	at	the	disk	manager	or
may	have	separate	queues	for	different	disks	in	case	the	disks	are	directly	controlled	by	the	database.	The
transaction	queue	is	used	by	the	database	system	to	control	the	admission	of	new	queries	when	the
number	of	requests	exceeds	the	number	of	concurrent	query	execution	tasks	that	the	database	allows.

As	a	result	of	the	numerous	queues	in	the	database,	bottlenecks	in	a	database	system	typically	show	up	in
the	form	of	long	queues	for	a	particular	service,	or,	equivalently,	in	high	utilizations	for	a	particular
service.	If	requests	are	spaced	exactly	uniformly,	and	the	time	to	service	a	request	is	less	than	or	equal	to
the	time	before	the	next	request	arrives,	then	each	request	will	find	the	resource	idle	and	can	therefore
start	execution	immediately	without	waiting.	Unfortunately,	the	arrival	of	requests	in	a	database	system	is
never	so	uniform	and	is	often	random.

If	a	resource,	such	as	a	disk,	has	a	low	utilization,	then	when	a	request	is	made,	the	resource	is	likely	to
be	idle,	in	which	case	the	waiting	time	for	the	request	will	be	0.	Assuming	uniformly	randomly	distributed
arrivals,	the	length	of	the	queue	(and

25.1

Performance	Tuning

1213

concurrency-control

manager

…

lock

lock

request

grant

CPU	manager

transaction

transaction

source

manager

transaction

page

queue

reply

page

request

page

disk	manager

request

buffer

manager

page

reply

…

Figure	25.1	Queues	in	a	database	system.

correspondingly	the	waiting	time)	goes	up	exponentially	with	utilization;	as	utilization	approaches	100
percent,	the	queue	length	increases	sharply,	resulting	in	excessively	long	waiting	times.	The	utilization	of
a	resource	should	be	kept	low	enough	that	queue	length	is	short.	As	a	rule	of	the	thumb,	utilizations	of

around	70	percent	are	considered	to	be	good,	and	utilizations	above	90	percent	are	considered	excessive,
since	they	will	result	in	significant	delays.	To	learn	more	about	the	theory	of	queueing	systems,	generally
referred	to	as	queueing	theory,	you	can	consult	the	references	cited	in	the	bibliographical	notes.

25.1.3

Tuning	Levels

Tuning	is	typically	done	in	the	context	of	applications,	and	can	be	done	at	the	database	system	layer,	or
outside	the	database	system.

Tuning	at	layers	above	the	database	is	application	dependent,	and	is	not	our	focus,	but	we	mention	a	few
such	techniques.	Profiling	application	code	to	find	code	blocks	that	have	a	heavy	CPU	consumption,	and
rewriting	them	to	reduce	CPU	load	is	an	option	for	CPU	intensive	applications.	Application	servers	often
have	numerous	parameters	that	can	be	tuned	to	improve	performance,	or	to	ensure	that	the	application
does	not	run	out	of	memory.	Multiple	application	servers	that	work	in	parallel	are	often

1214

Chapter	25

Advanced	Application	Development

used	to	handle	higher	workloads.	A	load	balancer	is	used	to	route	requests	to	one	of	the	application
servers;	to	ensure	session	continuity,	requests	from	a	particular	source	are	always	routed	to	the	same
application	server.	Connection	pooling	(described	in	Section	9.7.1)	is	another	widely	technique	to	reduce
the	overhead	of	database	connection	creation.	Web	application	interfaces	may	be	tuned	to	improve
responsiveness,	for	example	by	replacing	legacy	web	interfaces	by	ones	based	on	JavaScript	and	Ajax
(described	in	Section	9.5.1.3).

Returning	to	database	tuning,	database	administrators	and	application	developers	can	tune	a	database
system	at	three	levels.

The	highest	level	of	database	tuning,	which	is	under	the	control	of	application	developers,	includes	the
schema	and	queries.	The	developer	can	tune	the	design	of	the	schema,	the	indices	that	are	created,	and
the	transactions	that	are	executed	to	improve	performance.	Tuning	at	this	level	is	comparatively	system
independent.

The	second	level	consists	of	the	database-system	parameters,	such	as	buffer	size	and	checkpointing
intervals.	The	exact	set	of	database-system	parameters	that	can	be	tuned	depends	on	the	specific
database	system.	Most	database-system	manuals	provide	information	on	what	database-system
parameters	can	be	adjusted,	and	how	you	should	choose	values	for	the	parameters.	Well-designed
database	systems	perform	as	much	tuning	as	possible	automatically,	freeing	the	user	or	database
administrator	from	the	burden.	For	instance,	in	many	database	systems	the	buffer	size	is	fixed	but
tunable.	If	the	system	automatically	adjusts	the	buffer	size	by	observing	indicators	such	as	page-fault
rates,	then	the	database	administrator	will	not	have	to	worry	about	tuning	the	buffer	size.

The	lowest	level	is	at	the	hardware	level.	Options	for	tuning	systems	at	this	level	include	replacing	hard
disks	with	solid-state	drives	(which	use	flash	storage),	adding	more	disks	or	using	a	RAID	system	if	disk
I/O	is	a	bottleneck,	adding	more	memory	if	the	disk	buffer	size	is	a	bottleneck,	or	moving	to	a	system	with
more	processors	if	CPU

usage	is	a	bottleneck.

The	three	levels	of	tuning	interact	with	one	another;	we	must	consider	them	together	when	tuning	a
system.	For	example,	tuning	at	a	higher	level	may	result	in	the	hardware	bottleneck	changing	from	the
disk	system	to	the	CPU,	or	vice	versa.	Tuning	of	queries	and	the	physical	schema	is	usually	the	first	step
to	improving	performance.

Tuning	of	database	system	parameters,	in	case	the	database	system	does	automate	this	task,	can	also	be
done	in	parallel.	If	performance	is	still	poor,	tuning	of	logical	schema	and	tuning	of	hardware	are	the	next
logical	steps.

25.1.4

Tuning	of	Physical	Schema

Tuning	of	the	physical	schema,	such	as	indices	and	materialized	views,	is	the	least	disruptive	mode	of
tuning,	since	it	does	not	affect	application	code	in	any	way.	We	now	study	different	aspects	of	tuning	of
the	physical	schema.

25.1

Performance	Tuning

1215

25.1.4.1

Tuning	of	Indices

We	can	tune	the	indices	in	a	database	system	to	improve	performance.	If	queries	are	the	bottleneck,	we
can	often	speed	them	up	by	creating	appropriate	indices	on	relations.	If	updates	are	the	bottleneck,	there
may	be	too	many	indices,	which	have	to	be	updated	when	the	relations	are	updated.	Removing	indices
may	speed	up	certain	updates.

The	choice	of	the	type	of	index	also	is	important.	Some	database	systems	support	different	kinds	of
indices,	such	as	hash	indices,	B+-tree	indices,	and	write-optimized	indices	such	as	LSM	trees	(Section
24.2).	If	range	queries	are	common,	B+-tree	indices	are	preferable	to	hash	indices.	If	the	system	has	a
very	high	write	load,	but	a	relatively	low	read	load,	write-optimized	LSM	tree	indices	may	be	preferable	to
B+-tree	indices.

Whether	to	make	an	index	a	clustered	index	is	another	tunable	parameter.	Only	one	index	on	a	relation
can	be	made	clustered,	by	storing	the	relation	sorted	on	the	index	attributes.	Generally,	the	index	that
benefits	the	greatest	number	of	queries	and	updates	should	be	made	clustered.

To	help	identify	what	indices	to	create,	and	which	index	(if	any)	on	each	relation	should	be	clustered,	most
commercial	database	systems	provide	tuning	wizards;	these	are	described	in	more	detail	in	Section
25.1.4.4.	These	tools	use	the	past	history	of	queries	and	updates	(called	the	workload)	to	estimate	the
effects	of	various	indices	on	the	execution	time	of	the	queries	and	updates	in	the	workload.
Recommendations	on	what	indices	to	create	are	based	on	these	estimates.

25.1.4.2

Using	Materialized	Views

Maintaining	materialized	views	can	greatly	speed	up	certain	types	of	queries,	in	particular	aggregate
queries.	Recall	the	example	from	Section	16.5	where	the	total	salary	for	each	department	(obtained	by
summing	the	salary	of	each	instructor	in	the	department)	is	required	frequently.	As	we	saw	in	that
section,	creating	a	materialized	view	storing	the	total	salary	for	each	department	can	greatly	speed	up
such	queries.

Materialized	views	should	be	used	with	care,	however,	since	there	is	not	only	space	overhead	for	storing
them	but,	more	important,	there	is	also	time	overhead	for	maintaining	materialized	views.	In	the	case	of
immediate	view	maintenance,	if	the	updates	of	a	transaction	affect	the	materialized	view,	the	materialized
view	must	be	updated	as	part	of	the	same	transaction.	The	transaction	may	therefore	run	slower.	In	the
case	of	deferred	view	maintenance,	the	materialized	view	is	updated	later;	until	it	is	updated,	the
materialized	view	may	be	inconsistent	with	the	database	relations.	For	instance,	the	materialized	view
may	be	brought	up	to	date	when	a	query	uses	the	view,	or	periodically.

Using	deferred	maintenance	reduces	the	burden	on	update	transactions.

The	database	administrator	is	responsible	for	the	selection	of	materialized	views	and	for	view-
maintenance	policies.	The	database	administrator	can	make	the	selection	manually	by	examining	the
types	of	queries	in	the	workload	and	finding	out	which	queries	need	to	run	faster	and	which
updates/queries	may	be	executed	more	slowly.

From	the	examination,	the	database	administrator	may	choose	an	appropriate	set	of

1216

Chapter	25

Advanced	Application	Development

materialized	views.	For	instance,	the	administrator	may	find	that	a	certain	aggregate	is	used	frequently,
and	choose	to	materialize	it,	or	may	find	that	a	particular	join	is	computed	frequently,	and	choose	to
materialize	it.

However,	manual	choice	is	tedious	for	even	moderately	large	sets	of	query	types,	and	making	a	good
choice	may	be	difficult,	since	it	requires	understanding	the	costs	of	different	alternatives;	only	the	query
optimizer	can	estimate	the	costs	with	reasonable	accuracy	without	actually	executing	the	query.	Thus,	a
good	set	of	views	may	be	found	only	by	trial	and	error	—	that	is,	by	materializing	one	or	more	views,

running	the	workload,	and	measuring	the	time	taken	to	run	the	queries	in	the	workload.	The
administrator	repeats	the	process	until	a	set	of	views	is	found	that	gives	acceptable	performance.

A	better	alternative	is	to	provide	support	for	selecting	materialized	views	within	the	database	system
itself,	integrated	with	the	query	optimizer.	This	approach	is	described	in	more	detail	in	Section	25.1.4.4.

25.1.4.3

Horizontal	Partitioning	of	Relation	Schema

Horizontal	partitioning	of	relations	is	widely	used	for	parallel	and	distributed	storage	and	query
processing.	However,	it	can	also	be	used	in	a	centralized	system	to	improve	queries	and	updates	by
breaking	up	the	tuples	of	a	relation	into	partitions.

For	example,	suppose	that	a	database	stores	a	large	relation	that	has	a	date	attribute,	and	most
operations	work	on	data	inserted	within	the	past	few	months.	Suppose	now	that	the	relation	is	partitioned
on	the	date	attribute,	with	one	partition	for	each	(year,	month)	combination.	Then,	queries	that	contain	a
selection	on	date,	such	as	date='201806-01',	need	access	only	partitions	that	could	possibly	contain	such
tuples,	skipping	all	other	partitions.

More	importantly,	indices	could	be	created	independently	on	each	partition.	Suppose	an	index	is	created
on	an	attribute	ID,	with	a	separate	index	on	each	partition.	A	query	that	specifies	selection	on	ID,	along
with	a	date	or	a	date	range,	need	look	up	the	index	on	only	those	partitions	that	match	the	specified	date
or	date	range.	Since	each	partition	is	smaller	than	the	whole	relation,	the	indices	too	are	smaller,
speeding	up	index	lookup.	Index	insertion	is	also	much	faster,	since	the	index	size	is	much	smaller	than	an
index	on	the	entire	relation.	And	most	importantly,	even	as	the	total	data	size	grows,	the	partition	size
never	grows	beyond	some	limit,	ensuring	that	the	performance	of	such	queries	does	not	degrade	with
time.

There	is	a	cost	to	such	partitioning:	queries	that	do	not	contain	a	selection	on	the	partitioning	attribute
need	to	individually	access	each	of	the	partitions,	potentially	slowing	down	such	queries	significantly.	If
such	queries	are	rare,	the	benefits	of	partitioning	outweigh	the	costs,	making	them	an	attractive
technique	for	optimization.

Even	if	the	database	does	not	support	partitioning	internally,	it	is	possible	to	replace	a	relation	r	by
multiple	physical	relations	r	,	r	,	…	,	r	,	and	the	original	relation	r	1

2

n

is	defined	by	the	view	r	=	r	∪	r	∪	…	∪	r	.	Suppose	that	the	database	optimizer	knows	1

2

n

25.1

Performance	Tuning

1217

the	predicate	defining	each	r	(in	our	example,	the	date	range	corresponding	to	each	i

r).	Then	the	optimizer	can	replace	a	query	on	r	that	includes	a	selection	on	the	parti-i

tioning	attribute	(date,	in	our	example),	with	a	query	on	the	only	relevant	r	s.	Indices	i

would	have	to	be	created	separately	on	each	of	the	r	s.

i

25.1.4.4

Automated	Tuning	of	Physical	Design

Most	commercial	database	systems	today	provide	tools	to	help	the	database	administrator	with	index	and
materialized	view	selection	and	other	tasks	related	to	physical	database	design	such	as	how	to	partition
data	in	a	parallel	database	system.

These	tools	examine	the	workload	(the	history	of	queries	and	updates)	and	suggest	indices	and	views	to

be	materialized.	The	database	administrator	may	specify	the	importance	of	speeding	up	different	queries,
which	the	tool	takes	into	account	when	selecting	views	to	materialize.	Often	tuning	must	be	done	before
the	application	is	fully	developed,	and	the	actual	database	contents	may	be	small	on	the	development
database	but	are	expected	to	be	much	larger	on	a	production	database.	Thus,	some	tuning	tools	also	allow
the	database	administrator	to	specify	information	about	the	expected	size	of	the	database	and	related
statistics.

Microsoft’s	Database	Tuning	Assistant,	for	example,	allows	the	user	to	ask	“what	if”	questions,	whereby
the	user	can	pick	a	view,	and	the	optimizer	then	estimates	the	effect	of	materializing	the	view	on	the	total
cost	of	the	workload	and	on	the	individual	costs	of	different	types	of	queries	and	updates	in	the	workload.

The	automatic	selection	of	indices	and	materialized	views	is	usually	implemented	by	enumerating
different	alternatives	and	using	the	query	optimizer	to	estimate	the	costs	and	benefits	of	selecting	each
alternative	by	using	the	workload.	Since	the	number	of	design	alternatives	and	the	potential	workload
may	be	extremely	large,	the	selection	techniques	must	be	designed	carefully.

The	first	step	is	to	generate	a	workload.	This	is	usually	done	by	recording	all	the	queries	and	updates	that
are	executed	during	some	time	period.	Next,	the	selection	tools	perform	workload	compression,	that	is,
create	a	representation	of	the	workload	using	a	small	number	of	updates	and	queries.	For	example,
updates	of	the	same	form	can	be	represented	by	a	single	update	with	a	weight	corresponding	to	how
many	times	the	update	occurred.	Queries	of	the	same	form	can	be	similarly	replaced	by	a	representative
with	appropriate	weight.	After	this,	queries	that	are	very	infrequent	and	do	not	have	a	high	cost	may	be
discarded	from	consideration.	The	most	expensive	queries	may	be	chosen	to	be	addressed	first.	Such
workload	compression	is	essential	for	large	workloads.

With	the	help	of	the	optimizer,	the	tool	would	come	up	with	a	set	of	indices	and	materialized	views	that
could	help	the	queries	and	updates	in	the	compressed	workload.

Different	combinations	of	these	indices	and	materialized	views	can	be	tried	out	to	find	the	best
combination.	However,	an	exhaustive	approach	would	be	totally	impractical,	since	the	number	of	potential
indices	and	materialized	views	is	already	large,	and	each

1218

Chapter	25

Advanced	Application	Development

Note	25.2	TUNING	TOOLS

Tuning	tools,	such	as	the	Database	Engine	Tuning	Advisor	provided	by	SQL	Server	and	the	SQL	Tuning
Advisor	of	Oracle,	provide	recommendations	such	as	what	indices	or	materialized	views	to	add,	or	how	to
partition	a	relation,	to	improve	performance.	These	recommendations	can	then	be	accepted	and
implemented	by	a	database	administrator.

Auto	Tuning	in	Microsoft	Azure	SQL	can	automatically	create	and	drop	indices	to	improve	query
performance.	A	risk	with	automatically	changing	the	physical	schema	is	that	some	queries	may	perform
poorly.	For	example,	an	optimizer	may	choose	a	plan	using	a	newly	created	index,	assuming,	based	on
wrong	estimates	of	cost,	that	the	new	plan	is	cheaper	than	the	plan	used	before	the	index	was	created.	In
reality,	the	query	may	run	slower	using	the	new	plan,	which	may	affect	users.	The	“force	last	good	plan”
feature	can	monitor	query	performance	after	any	change	such	as	addition	of	an	index,	and	if	performance
is	worse,	it	can	force	the	database	to	use	the	old	plan	before	the	change	(as	long	as	it	is	still	valid).

Oracle	also	provides	auto	tuning	support,	for	example	recommending	if	an	index	should	be	added,	or
monitoring	the	use	of	a	query	to	decide	if	it	should	be	optimized	for	fetching	only	a	few	rows	or	for
fetching	all	rows	(the	best	plan	may	be	very	different	if	only	the	first	few	rows	are	fetched	or	if	all	rows
are	fetched).

subset	of	these	is	a	potential	design	alternative,	leading	to	an	exponential	number	of	alternatives.
Heuristics	are	used	to	reduce	the	space	of	alternatives,	that	is,	to	reduce	the	number	of	combinations
considered.

Greedy	heuristics	for	index	and	materialized	view	selection	operate	as	follows:	They	estimate	the	benefits
of	materializing	different	indices	or	views	(using	the	optimizer’s	cost	estimation	functionality	as	a
subroutine).	They	then	choose	the	index	or	view	that	gives	either	the	maximum	benefit	or	the	maximum
benefit	per	unit	space	(i.e.,	benefit	divided	by	the	space	required	to	store	the	index	or	view).	The	cost	of
maintaining	the	index	or	view	must	be	taken	into	account	when	computing	the	benefit.	Once	the	heuristic
has	selected	an	index	or	view,	the	benefits	of	other	indices	or	views	may	have	changed,	so	the	heuristic
recomputes	these	and	chooses	the	next	best	index	or	view	for	materialization.	The	process	continues	until
either	the	available	disk	space	for	storing	indices	or	materialized	views	is	exhausted	or	the	cost	of

maintaining	the	remaining	candidates	is	more	than	the	benefit	to	queries	that	could	use	the	indices	or
views.

Real-world	index	and	materialized-view	selection	tools	usually	incorporate	some	elements	of	greedy
selection	but	use	other	techniques	to	get	better	results.	They	also	support	other	aspects	of	physical
database	design,	such	as	deciding	how	to	partition	a	relation	in	a	parallel	database,	or	what	physical
storage	mechanism	to	use	for	a	relation.

25.1

Performance	Tuning

1219

25.1.5

Tuning	of	Queries

The	performance	of	an	application	can	often	be	significantly	improved	by	rewriting	queries	or	by
changing	how	the	application	issues	queries	to	the	database.

25.1.5.1

Tuning	of	Query	Plans

In	the	past,	optimizers	on	many	database	systems	were	not	particularly	good,	so	how	a	query	was	written
would	have	a	big	influence	on	how	it	was	executed,	and	therefore	on	the	performance.	Today’s	advanced
optimizers	can	transform	even	badly	written	queries	and	execute	them	efficiently,	so	the	need	for	tuning
individual	queries	is	less	important	than	it	used	to	be.	However,	sometimes	query	optimizers	choose	bad
plans	for	one	of	several	reasons,	which	we	describe	next.

Before	checking	if	something	needs	to	be	tuned	in	the	plan	for	a	query,	it	is	useful	to	find	out	what	plan	is
being	used	for	the	query.	Most	databases	support	an	explain	command,	which	allows	you	to	see	what	plan
is	being	used	for	a	query.	The	explain	command	also	shows	the	statistics	that	the	optimizer	used	or
computed	for	different	parts	of	the	query	plan,	and	estimates	of	the	costs	of	each	part	of	a	query	plan.
Variants	of	the	explain	command	also	execute	the	query	and	get	actual	tuple	counts	and	execution	time
for	different	parts	of	the	query	plan.

Incorrect	statistics	are	often	the	reason	for	the	choice	of	a	bad	plan.	For	example,	if	the	optimizer	thinks
that	the	relations	involved	in	a	join	have	very	few	tuples,	it	may	choose	nested	loops	join,	which	would	be
very	inefficient	if	the	relations	actually	have	a	large	number	of	tuples.

Ideally,	database	statistics	should	be	updated	whenever	relations	are	updated.	However,	doing	so	adds
unacceptable	overhead	to	update	queries.	Instead,	databases	either	periodically	update	statistics	or	leave
it	to	the	system	administrator	to	issue	a	command	to	update	statistics.	Some	databases,	such	as
PostgreSQL	and	MySQL	support	a	command	called	analyze,1	which	can	be	used	to	recompute	statistics.
For	example,	analyze	instructor	would	recompute	statistics	for	the	instructor	relation,	while	analyze	with
no	arguments	would	recompute	statistics	for	all	relations	in	PostgreSQL.	It	is	highly	recommended	to	run
this	command	after	loading	data	into	the	database,	or	after	making	a	significant	number	of	inserts	or
deletes	on	a	relation.

Some	databases	such	as	Oracle	and	Microsoft	SQL	Server	keep	track	of	inserts	and	deletes	to	relations,
and	they	update	statistics	whenever	the	relation	size	changes	by	a	significant	fraction,	making	execution
of	the	analyze	command	unnecessary.

Another	reason	for	poor	performance	of	queries	is	the	lack	of	required	indices.	As	we	saw	earlier,	the
choice	of	indices	can	be	done	as	part	of	the	tuning	of	the	physical	schema,	but	examining	a	query	helps	us
understand	what	indices	may	be	useful	to	speed	up	that	query.

Indices	are	particularly	important	for	queries	that	fetch	only	a	few	rows	from	a	large	relation,	based	on	a
predicate.	For	example,	a	query	that	finds	students	in	a	department	1The	command	is	called	analyze	table
in	the	case	of	MySQL.

1220

Chapter	25

Advanced	Application	Development

may	benefit	from	an	index	on	the	student	relation	on	the	attribute	dept	name.	Indices	on	join	attributes
are	often	very	useful.	For	example,	if	the	above	query	also	included	a	join	of	student	with	takes	on	the
attribute	takes.ID,	an	index	on	takes.ID	could	be	useful.

Note	that	databases	typically	create	indices	on	primary-key	attributes,	which	can	be	used	for	selections	as
well	as	joins.	For	example,	in	our	university	schema,	the	primary-key	index	on	takes	has	ID	as	its	first
attribute	and	may	thus	be	useful	for	the	above	join.

Complex	queries	containing	nested	subqueries	are	not	optimized	very	well	by	many	optimizers.	We	saw
techniques	for	nested	subquery	decorrelation	in	Section	16.4.4.	If	a	subquery	is	not	decorrelated,	it	gets
executed	repeatedly,	potentially	resulting	in	a	great	deal	of	random	I/O.	In	contrast,	decorrelation	allows
efficient	set-oriented	operations	such	as	joins	to	be	used,	minimizing	random	I/O.	Most	database	query
optimizers	incorporate	some	forms	of	decorrelation,	but	some	can	handle	only	very	simple	nested
subqueries.	The	execution	plan	chosen	by	the	optimizer	can	be	found	as	described	in	Chapter	16.	If	the
optimizer	has	not	succeeded	in	decorrelating	a	nested	subquery,	the	query	can	be	decorrelated	by
rewriting	it	manually.

25.1.5.2

Improving	Set	Orientation

When	SQL	queries	are	executed	from	an	application	program,	it	is	often	the	case	that	a	query	is	executed
frequently,	but	with	different	values	for	a	parameter.	Each	call	has	an	overhead	of	communication	with	the
server,	in	addition	to	processing	overheads	at	the	server.

For	example,	consider	a	program	that	steps	through	each	department,	invoking	an	embedded	SQL	query
to	find	the	total	salary	of	all	instructors	in	the	department:	select	sum(salary)

from	instructor

where	dept	name=	?

If	the	instructor	relation	does	not	have	a	clustered	index	on	dept	name,	each	such	query	will	result	in	a
scan	of	the	relation.	Even	if	there	is	such	an	index,	a	random	I/O

operation	will	be	required	for	each	dept	name	value.

Instead,	we	can	use	a	single	SQL	query	to	find	total	salary	expenses	of	each	department:

select	dept	name,	sum(salary)

from	instructor

group	by	dept	name;

This	query	can	be	evaluated	with	a	single	scan	of	the	instructor	relation,	avoiding	random	I/O	for	each
department.	The	results	can	be	fetched	to	the	client	side	using	a	single	round	of	communication,	and	the
client	program	can	then	step	through	the	results	to	find	the	aggregate	for	each	department.	Combining
multiple	SQL	queries	into	a	single

25.1

Performance	Tuning

1221

PreparedStatement	pStmt	=	conn.prepareStatement(

"insert	into	instructor	values(?,?,?,?)");

pStmt.setString(1,	"88877");

pStmt.setString(2,	"Perry");

pStmt.setInt(3,	"Finance");

pStmt.setInt(4,	125000);

pStmt.addBatch();

pStmt.setString(1,	"88878");

pStmt.setString(2,	"Thierry");

pStmt.setInt(3,	"Physics");

pStmt.setInt(4,	100000);

pStmt.addBatch();

pStmt.executeBatch();

Figure	25.2	Batch	update	in	JDBC.

SQL	query	as	above	can	reduce	execution	costs	greatly	in	many	cases	—	for	example,	if	the	instructor
relation	is	very	large	and	has	a	large	number	of	departments.

The	JDBC	API	also	provides	a	feature	called	batch	update	that	allows	a	number	of	inserts	to	be	performed
using	a	single	communication	with	the	database.	Figure	25.2

illustrates	the	use	of	this	feature.	The	code	shown	in	the	figure	requires	only	one	round	of	communication
with	the	database,	when	the	executeBatch()	method	is	executed,	in	contrast	to	similar	code	without	the
batch	update	feature	that	we	saw	in	Figure	5.2.	In	the	absence	of	batch	update,	as	many	rounds	of
communication	with	the	database	are	required	as	there	are	instructors	to	be	inserted.	The	batch	update
feature	also	enables	the	database	to	process	a	batch	of	inserts	at	once,	which	can	potentially	be	done
much	more	efficiently	than	a	series	of	single	record	inserts.

Another	technique	used	widely	in	client-server	systems	to	reduce	the	cost	of	communication	and	SQL
compilation	is	to	use	stored	procedures,	where	queries	are	stored	at	the	server	in	the	form	of	procedures,
which	may	be	precompiled.	Clients	can	invoke	these	stored	procedures	rather	than	communicate	a	series
of	queries.

25.1.5.3

Tuning	of	Bulk	Loads	and	Updates

When	loading	a	large	volume	of	data	into	a	database	(called	a	bulk	load	operation),	performance	is	usually
very	poor	if	the	inserts	are	carried	out	as	separate	SQL	insert	statements.	One	reason	is	the	overhead	of
parsing	each	SQL	query;	a	more	important	reason	is	that	performing	integrity	constraint	checks	and	index
updates	separately	for	each	inserted	tuple	results	in	a	large	number	of	random	I/O	operations.	If	the
inserts	were	done	as	a	large	batch,	integrity-constraint	checking	and	index	update	can	be	done

1222

Chapter	25

Advanced	Application	Development

in	a	much	more	set-oriented	fashion,	reducing	overheads	greatly;	performance	improvements	of	an	order
of	magnitude	or	more	are	not	uncommon.

To	support	bulk	load	operations,	most	database	systems	provide	a	bulk	import	utility	and	a	corresponding
bulk	export	utility.	The	bulk-import	utility	reads	data	from	a	file	and	performs	integrity	constraint
checking	as	well	as	index	maintenance	in	a	very	efficient	manner.	Common	input	and	output	file	formats
supported	by	such	bulk	import/export	utilities	include	text	files	with	characters	such	as	commas	or	tabs
separating	attribute	values,	with	each	record	in	a	line	of	its	own	(such	file	formats	are	referred	to	as

comma-separated	values	or	tab-separated	values	formats).	Database-specific	binary	formats	as	well	as
XML	formats	are	also	supported	by	bulk	import/export	utilities.	The	names	of	the	bulk	import/export
utilities	differ	by	database.	In	PostgreSQL,	the	utilities	are	called	pg	dump	and	pg	restore	(PostgreSQL
also	provides	an	SQL	command	copy,	which	provides	similar	functionality).	The	bulk	import/export	utility
in	Oracle	is	called	SQL*Loader,	the	utility	in	DB2	is	called	load,	and	the	utility	in	SQL	Server	is	called	bcp
(SQL	Server	also	provides	an	SQL	command	called	bulk	insert).

We	now	consider	the	case	of	tuning	of	bulk	updates.	Suppose	we	have	a	relation	funds	received(dept
name,	amount)	that	stores	funds	received	(say,	by	electronic	funds	transfer)	for	each	of	a	set	of
departments.	Suppose	now	that	we	want	to	add	the	amounts	to	the	balances	of	the	corresponding
department	budgets.	In	order	to	use	the	SQL

update	statement	to	carry	out	this	task,	we	have	to	perform	a	look	up	on	the	funds	received	relation	for
each	tuple	in	the	department	relation.	We	can	use	subqueries	in	the	update	clause	to	carry	out	this	task,
as	follows:	We	assume	for	simplicity	that	the	relation	funds	received	contains	at	most	one	tuple	for	each
department.

update	department	set	budget	=	budget	+

(select	amount

from	funds	received

where	funds	received.dept	name	=	department.	dept	name)	where	exists(

select	*

from	funds	received

where	funds	received.dept	name	=	department.	dept	name);	Note	that	the	condition	in	the	where	clause
of	the	update	ensures	that	only	accounts	with	corresponding	tuples	in	funds	received	are	updated,	while
the	subquery	within	the	set	clause	computes	the	amount	to	be	added	to	each	such	department.

There	are	many	applications	that	require	updates	such	as	that	illustrated	above.

Typically,	there	is	a	table,	which	we	shall	call	the	master	table,	and	updates	to	the	master	table	are
received	as	a	batch.	Now	the	master	table	has	to	be	correspondingly	updated.

SQL:2003	introduced	a	special	construct,	called	the	merge	construct,	to	simplify	the	task	of	performing
such	merging	of	information.	For	example,	the	preceding	update	can	be	expressed	using	merge	as
follows:

25.1

Performance	Tuning

1223

merge	into	department	as	A

using

(select	*

from	funds	received)	as	F

on	(A.	dept	name	=	F	.	dept	name)

when	matched	then

update	set	budget	=	budget	+	F.amount;

When	a	record	from	the	subquery	in	the	using	clause	matches	a	record	in	the	department	relation,	the
when	matched	clause	is	executed,	which	can	execute	an	update	on	the	relation;	in	this	case,	the	matching
record	in	the	department	relation	is	updated	as	shown.

The	merge	statement	can	also	have	a	when	not	matched	then	clause,	which	permits	insertion	of	new
records	into	the	relation.	In	the	preceding	example,	when	there	is	no	matching	department	for	a	funds
received	tuple,	the	insertion	action	could	create	a	new	department	record	(with	a	null	building)	using	the
following	clause:	when	not	matched	then

insert	values	(F.dept	name,	null,	F.budget)

Although	not	very	meaningful	in	this	example,2	the	when	not	matched	then	clause	can	be	quite	useful	in
other	cases.	For	example,	suppose	the	local	relation	is	a	copy	of	a	master	relation,	and	we	receive	updated
as	well	as	newly	inserted	records	from	the	master	relation.	The	merge	statement	can	update	matched
records	(these	would	be	updated	old	records)	and	insert	records	that	are	not	matched	(these	would	be
new	records).

Not	all	SQL	implementations	support	the	merge	statement	currently;	see	the	respective	system	manuals
for	further	details.

25.1.6

Tuning	of	the	Logical	Schema

Performance	of	queries	can	sometimes	be	improved	by	tuning	of	the	logical	schema.

For	example,	within	the	constraints	of	the	chosen	normal	form,	it	is	possible	to	partition	relations
vertically.	Consider	the	course	relation,	with	the	schema:	course	(course	id,	title,	dept	name,	credits)	for
which	course	id	is	a	key.	Within	the	constraints	of	the	normal	forms	(BCNF	and	3NF),	we	can	partition	the
course	relation	into	two	relations:	course	credit	(course	id,	credits)

course	title	dept	(course	id,	title,	dept	name)	2A	better	action	here	would	have	been	to	insert	these
records	into	an	error	relation,	but	that	cannot	be	done	with	the	merge	statement.

1224

Chapter	25

Advanced	Application	Development

The	two	representations	are	logically	equivalent,	since	course	id	is	a	key,	but	they	have	different
performance	characteristics.

If	most	accesses	to	course	information	look	at	only	the	course	id	and	credits,	then	they	can	be	run	against
the	course	credit	relation,	and	access	is	likely	to	be	somewhat	faster,	since	the	title	and	dept	name
attributes	are	not	fetched.	For	the	same	reason,	more	tuples	of	course	credit	will	fit	in	the	buffer	than
corresponding	tuples	of	course,	again	leading	to	faster	performance.	This	effect	would	be	particularly
marked	if	the	title	and	dept	name	attributes	were	large.	Hence,	a	schema	consisting	of	course	credit	and
course	title	dept	would	be	preferable	to	a	schema	consisting	of	the	course	relation	in	this	case.

On	the	other	hand,	if	most	accesses	to	course	information	require	both	dept	name	and	credits,	using	the
course	relation	would	be	preferable,	since	the	cost	of	the	join	of	course	credit	and	course	title	dept	would

be	avoided.	Also,	the	storage	overhead	would	be	lower,	since	there	would	be	only	one	relation,	and	the
attribute	course	id	would	not	be	replicated.

The	column	store	approach	to	storing	data	are	based	on	vertical	partitioning	but	takes	it	to	the	limit	by
storing	each	attribute	(column)	of	the	relation	in	a	separate	file,	as	we	saw	in	Section	13.6.	Note	that	in	a
column	store	it	is	not	necessary	to	repeat	the	primary-key	attribute	since	the	i	th	row	can	be
reconstructed	by	taking	the	i	th	entry	for	each	desired	column.	Column	stores	have	been	shown	to
perform	well	for	several	data-warehouse	applications	by	reducing	I/O,	improving	cache	performance,
enabling	greater	gains	from	data	compression,	and	allowing	effective	use	of	CPU	vector-processing
capabilities.

Another	trick	to	improve	performance	is	to	store	a	denormalized	relation,	such	as	a	join	of	instructor	and
department,	where	the	information	about	dept	name,	building,	and	budget	is	repeated	for	every
instructor.	More	effort	has	to	be	expended	to	make	sure	the	relation	is	consistent	whenever	an	update	is
carried	out.	However,	a	query	that	fetches	the	names	of	the	instructors	and	the	associated	buildings	will
be	speeded	up,	since	the	join	of	instructor	and	department	will	have	been	precomputed.	If	such	a	query	is
executed	frequently,	and	has	to	be	performed	as	efficiently	as	possible,	the	denormalized	relation	could	be
beneficial.

Materialized	views	can	provide	the	benefits	that	denormalized	relations	provide,	at	the	cost	of	some	extra
storage.	A	major	advantage	to	materialized	views	over	denormalized	relations	is	that	maintaining
consistency	of	redundant	data	becomes	the	job	of	the	database	system,	not	the	programmer.	Thus,
materialized	views	are	preferable,	whenever	they	are	supported	by	the	database	system.

Another	approach	to	speed	up	the	computation	of	the	join	without	materializing	it	is	to	cluster	records
that	would	match	in	the	join	on	the	same	disk	page.	We	saw	such	clustered	file	organizations	in	Section
13.3.3.

25.1.7

Tuning	of	Concurrent	Transactions

Concurrent	execution	of	different	types	of	transactions	can	sometimes	lead	to	poor	performance	because
of	contention	on	locks.	We	first	consider	the	case	of	read-write

25.1

Performance	Tuning

1225

contention,	which	is	more	common,	and	then	consider	the	case	of	write-write	contention.

As	an	example	of	read-write	contention,	consider	the	following	situation	on	a	banking	database.	During
the	day,	numerous	small	update	transactions	are	executed	almost	continuously.	Suppose	that	a	large
query	that	computes	statistics	on	branches	is	run	at	the	same	time.	If	the	query	performs	a	scan	on	a
relation,	it	may	block	out	all	updates	on	the	relation	while	it	runs,	and	that	can	have	a	disastrous	effect	on
the	performance	of	the	system.

Several	database	systems	—	Oracle,	PostgreSQL,	and	Microsoft	SQL	Server,	for	example	—	support
snapshot	isolation,	whereby	queries	are	executed	on	a	snapshot	of	the	data,	and	updates	can	go	on
concurrently.	(Snapshot	isolation	is	described	in	detail	in	Section	18.8.)	Snapshot	isolation	should	be	used,
if	available,	for	large	queries,	to	avoid	lock	contention	in	the	above	situation.	In	SQL	Server,	executing	the
statement	set	transaction	isolation	level	snapshot

at	the	beginning	of	a	transaction	results	in	snapshot	isolation	being	used	for	that	transaction.	In	Oracle
and	PostgreSQL,	using	the	keyword	serializable	in	place	of	the	keyword	snapshot	in	the	above	command
has	the	same	effect,	since	these	systems	actually	use	snapshot	isolation	(serializable	snapshot	isolation,	in
the	case	of	PostgreSQL	version	9.1	onwards)	when	the	isolation	level	is	set	to	serializable.

If	snapshot	isolation	is	not	available,	an	alternative	option	is	to	execute	large	queries	at	times	when
updates	are	few	or	nonexistent.	However,	for	databases	supporting	web	sites,	there	may	be	no	such	quiet
period	for	updates.

Another	alternative	is	to	use	weaker	levels	of	consistency,	such	as	the	read	committed	isolation	level,
whereby	evaluation	of	the	query	has	a	minimal	impact	on	concurrent	updates,	but	the	query	results	are
not	guaranteed	to	be	consistent.	The	application	semantics	determine	whether	approximate	(inconsistent)
answers	are	acceptable.

We	now	consider	the	case	of	write-write	contention.	Data	items	that	are	updated	very	frequently	can
result	in	poor	performance	with	locking,	with	many	transactions	waiting	for	locks	on	those	data	items.

Such	data	items	are	called	update	hot	spots.

Update	hot	spots	can	cause	problems	even	with	snapshot	isolation,	causing	frequent	transaction	aborts
due	to	write-validation	failures.	A	commonly	occurring	situation	that	results	in	an	update	hot	spot	is	as
follows:	transactions	need	to	assign	unique	identifiers	to	data	items	being	inserted	into	the	database,	and
to	do	so	they	read	and	increment	a	sequence	counter	stored	in	a	tuple	in	the	database.	If	inserts	are
frequent,	and	the	sequence	counter	is	locked	in	a	two-phase	manner,	the	tuple	containing	the	sequence
counter	becomes	a	hot	spot.

One	way	to	improve	concurrency	is	to	release	the	lock	on	the	sequence	counter	immediately	after	it	is
read	and	incremented;	however,	after	doing	so,	even	if	the	transaction	aborts,	the	update	to	the	sequence
counter	should	not	be	rolled	back.	To	understand	why,	suppose	T	increments	the	sequence	counter,	and
then	T	increments	the	1

2

sequence	counter	before	T	commits;	if	T	then	aborts,	rolling	back	its	update,	either	1

1

1226

Chapter	25

Advanced	Application	Development

by	restoring	the	counter	to	the	original	value	or	by	decrementing	the	counter,	will	result	in	the	sequence
value	used	by	T	getting	reused	by	a	subsequent	transaction.

2

Most	databases	provide	a	special	construct	for	creating	sequence	counters	that	implement	early,	non-two-
phase	lock	release,	coupled	with	special-case	treatment	of	undo	logging	so	that	updates	to	the	counter	are
not	rolled	back	if	the	transaction	aborts.	The	SQL	standard	allows	a	sequence	counter	to	be	created	using
the	command:	create	sequence	counter1;

In	the	above	command,	counter1	is	the	name	of	the	sequence;	multiple	sequences	can	be	created	with
different	names.	The	syntax	to	get	a	value	from	the	sequence	is	not	standardized;	in	Oracle,
counter1.nextval	would	return	the	next	value	of	the	sequence,	after	incrementing	it,	while	the	function
call	nextval	(’	counter1’)	would	have	the	same	effect	in	PostgreSQL,	and	DB2	uses	the	syntax	nextval	for
counter1.

The	SQL	standard	provides	an	alternative	to	using	an	explicit	sequence	counter,	which	is	useful	when	the
goal	is	to	give	unique	identifiers	to	tuples	inserted	into	a	relation.	To	do	so,	the	keyword	identity	can	be
added	to	the	declaration	of	an	integer	attribute	of	a	relation	(usually	this	attribute	would	also	be	declared
as	the	primary	key).	If	the	value	for	that	attribute	is	left	unspecified	in	an	insert	statement	for	that
relation,	a	unique	new	value	is	created	automatically	for	each	newly	inserted	tuple.	A	non-two-phase
locked	sequence	counter	is	used	internally	to	implement	the	identity	declaration,	with	the	counter
incremented	each	time	a	tuple	is	inserted.	Several	databases,	including	DB2	and	SQL	Server	support	the
identity	declaration,	although	the	syntax	varies.	PostgreSQL	supports	a	data	type	called	serial,	which
provides	the	same	effect;	the	PostgreSQL	type	serial	is	implemented	by	transparently	creating	a	non-two-
phase	locked	sequence.

It	is	worth	noting	that	since	the	acquisition	of	a	sequence	number	by	a	transaction	cannot	be	rolled	back
if	the	transaction	aborts	(for	reasons	discussed	earlier),	transaction	aborts	may	result	in	gaps	in	the
sequence	numbers	in	tuples	inserted	in	the	database.

For	example,	there	may	be	tuples	with	identifier	value	1001	and	1003,	but	no	tuple	with	value	1002,	if	the
transaction	that	acquired	the	sequence	number	1002	did	not	commit.	Such	gaps	are	not	acceptable	in
some	applications;	for	example,	some	financial	applications	require	that	there	be	no	gaps	in	bill	or	receipt
numbers.	Database	provided	sequences	and	automatically	incremented	attributes	should	not	be	used	for
such	applications,	since	they	can	result	in	gaps.	A	sequence	counter	stored	in	normal	tuples,	which	is
locked	in	a	two-phase	manner,	would	not	be	susceptible	to	such	gaps	since	a	transaction	abort	would
restore	the	sequence	counter	value,	and	the	next	transaction	would	get	the	same	sequence	number,
avoiding	a	gap.

Long	update	transactions	can	cause	performance	problems	with	system	logs	and	can	increase	the	time
taken	to	recover	from	system	crashes.	If	a	transaction	performs	many	updates,	the	system	log	may
become	full	even	before	the	transaction	completes,	in	which	case	the	transaction	will	have	to	be	rolled
back.	If	an	update	transaction	runs	for	a	long	time	(even	with	few	updates),	it	may	block	deletion	of	old
parts	of	the	log,

25.1

Performance	Tuning

1227

if	the	logging	system	is	not	well	designed.	Again,	this	blocking	could	lead	to	the	log	getting	filled	up.

To	avoid	such	problems,	many	database	systems	impose	strict	limits	on	the	number	of	updates	that	a
single	transaction	can	carry	out.	Even	if	the	system	does	not	impose	such	limits,	it	is	often	helpful	to
break	up	a	large	update	transaction	into	a	set	of	smaller	update	transactions	where	possible.	For	example,
a	transaction	that	gives	a	raise	to	every	employee	in	a	large	corporation	could	be	split	up	into	a	series	of
small	transactions,	each	of	which	updates	a	small	range	of	employee-ids.	Such	transactions	are	called
minibatch	transactions.	However,	minibatch	transactions	must	be	used	with	care.	First,	if	there	are
concurrent	updates	on	the	set	of	employees,	the	result	of	the	set	of	smaller	transactions	may	not	be
equivalent	to	that	of	the	single	large	transaction.

Second,	if	there	is	a	failure,	the	salaries	of	some	of	the	employees	would	have	been	increased	by
committed	transactions,	but	salaries	of	other	employees	would	not.	To	avoid	this	problem,	as	soon	as	the
system	recovers	from	failure,	we	must	execute	the	transactions	remaining	in	the	batch.

Long	transactions,	whether	read-only	or	update,	can	also	result	in	the	lock	table	becoming	full.	If	a	single
query	scans	a	large	relation,	the	query	optimizer	would	ensure	that	a	relation	lock	is	obtained	instead	of
acquiring	a	large	number	of	tuple	locks.

However,	if	a	transaction	executes	a	large	number	of	small	queries	or	updates,	it	may	acquire	a	large
number	of	locks,	resulting	in	the	lock	table	becoming	full.

To	avoid	this	problem,	some	databases	provide	for	automatic	lock	escalation;	with	this	technique,	if	a
transaction	has	acquired	a	large	number	of	tuple	locks,	tuple	locks	are	upgraded	to	page	locks,	or	even
full	relation	locks.	Recall	that	with	multiple-granularity	locking	(Section	18.3),	once	a	coarser-level	lock	is
obtained,	there	is	no	need	to	record	finer-level	locks,	so	tuple	lock	entries	can	be	removed	from	the	lock
table,	freeing	up	space.	On	databases	that	do	not	support	lock	escalation,	it	is	possible	for	the	transaction
to	explicitly	acquire	a	relation	lock,	thereby	avoiding	the	acquisition	of	tuple	locks.

25.1.8

Tuning	of	Hardware

Hardware	bottlenecks	could	include	memory,	I/O,	CPU	and	network	capacity.	We	focus	on	memory	and	I/O
tuning	in	this	section.	The	availability	of	processors	with	a	large	number	of	CPU	cores,	and	support	for
multiple	CPUs	on	a	single	machine	allows	system	designers	to	choose	the	CPU	model	and	number	of	CPUs
to	meet	the	CPU	requirements	of	the	application	at	an	acceptable	cost.	How	to	tune	or	choose	between
CPU	and	network	interconnect	options	is	a	topic	outside	the	domain	of	database	tuning.

Even	in	a	well-designed	transaction	processing	system,	each	transaction	usually	has	to	do	at	least	a	few
I/O	operations,	if	the	data	required	by	the	transaction	are	on	disk.

An	important	factor	in	tuning	a	transaction	processing	system	is	to	make	sure	that	the	disk	subsystem	can
handle	the	rate	at	which	I/O	operations	are	required.	For	instance,	consider	a	hard	disk	that	supports	an
access	time	of	about	10	milliseconds,	and	average	transfer	rate	of	25	to	100	megabytes	per	second	(a
fairly	typical	disk	today).	Such	a	disk

1228

Chapter	25

Advanced	Application	Development

would	support	a	little	under	100	random-access	I/O	operations	of	4	kilobytes	each	per	second.	If	each
transaction	requires	just	two	I/O	operations,	a	single	disk	would	support	at	most	50	transactions	per
second.

An	obvious	way	to	improve	performance	is	to	replace	a	hard	disk	with	a	solid-state	drive	(SSD),	since	a
single	SSD	can	support	tens	of	thousands	of	random	I/O	operations	per	second.	A	drawback	of	using	SSDs
is	that	they	cost	a	lot	more	than	hard	disks	for	a	given	storage	capacity.	Another	way	to	support	more
transactions	per	second	is	to	increase	the	number	of	disks.	If	the	system	needs	to	support	n	transactions
per	second,	each	performing	two	I/O	operations,	data	must	be	striped	(or	otherwise	partitioned)	across	at

least	n∕50	hard	disks	(ignoring	skew),	or	n∕5000	SSDs,	if	the	SSD	supports	10,000	random	I/O	operations
per	second.

Notice	here	that	the	limiting	factor	is	not	the	capacity	of	the	disk,	but	the	speed	at	which	random	data	can
be	accessed	(limited	in	a	hard	disk	by	the	speed	at	which	the	disk	arm	can	move).	The	number	of	I/O
operations	per	transaction	can	be	reduced	by	storing	more	data	in	memory.	If	all	data	are	in	memory,
there	will	be	no	disk	I/O	except	for	writes.	Keeping	frequently	used	data	in	memory	reduces	the	number	of
disk	I/Os	and	is	worth	the	extra	cost	of	memory.	Keeping	very	infrequently	used	data	in	memory	would	be
a	waste,	since	memory	is	much	more	expensive	than	disk.

The	question	is,	for	a	given	amount	of	money	available	for	spending	on	disks	or	memory,	what	is	the	best
way	to	spend	the	money	to	achieve	the	maximum	number	of	transactions	per	second?	A	reduction	of	one
I/O	per	second	saves:

(price	per	disk	drive)∕(access	per	second	per	disk)

Thus,	if	a	particular	page	is	accessed	once	in	m	seconds,	the	saving	due	to	keeping	it	in	memory	is	1	times
the	above	value.	Storing	a	page	in	memory	costs:	m

(price	per	megabyte	of	memory)∕(pages	per	megabyte	of	memory)	Thus,	the	break-even	point	is:

1	∗

price	per	disk	drive

=	price	per	megabyte	of	memory

m

access	per	second	per	disk

pages	per	megabyte	of	memory

We	can	rearrange	the	equation	and	substitute	current	values	for	each	of	the	above	parameters	to	get	a
value	for	m;	if	a	page	is	accessed	more	frequently	than	once	in	m	seconds,	it	is	worth	buying	enough
memory	to	store	it.

As	of	2018,	hard-disk	technology	and	memory	and	disk	prices	(which	we	assume	to	be	about	$50	for	a	1-
terabyte	disk	and	$80	for	16-gigabytes	of	memory)	give	a	value	of	m	around	4	hours	for	4-kilobytes	pages
that	are	randomly	accessed;	that	is,	if	a	page	on	hard	disk	is	accessed	at	least	once	in	4	hours,	it	makes
sense	to	purchase	enough	memory	to	cache	it	in	memory.	Note	that	if	we	use	larger	pages,	the	time
decreases;	for	example,	a	page	size	of	16-kilobytes	will	lead	to	a	value	of	m	of	1	hour	instead	of	4

hours.

25.1

Performance	Tuning

1229

With	disk	and	memory	cost	and	speeds	as	of	the	1980/1990s,	the	corresponding	value	was	5	minutes	with
4-kilobytes	pages.	Thus,	a	widely	used	rule	of	thumb,	called	the	five	minute	rule,	which	said	that	data
should	be	cached	in	memory	if	it	is	accessed	more	frequently	than	once	in	5	minutes.

With	SSD	technology	and	prices	as	of	2018	(which	we	assume	to	be	around	$500

for	a	800	gigabytes	SSD,	which	supports	67,000	random	reads	and	20,000	random	writes	per	second),	if
we	make	the	same	comparison	between	keeping	a	page	in	memory	versus	fetching	it	from	SSD,	the	time
comes	to	around	7	minutes	with	4-kilobyte	pages.

That	is,	if	a	page	on	SSD	is	accessed	more	frequently	than	once	in	7	minutes,	it	is	worth	purchasing
enough	memory	to	cache	it	in	memory.

For	data	that	are	sequentially	accessed,	significantly	more	pages	can	be	read	per	second.	Assuming	1
megabyte	of	data	are	read	at	a	time,	the	breakeven	point	for	hard	disk	currently	is	about	2.5	minutes.
Thus,	sequentially	accessed	data	on	hard	disk	should	be	cached	in	memory	if	they	are	used	at	least	once
in	2.5	minutes.	For	SSDs,	the	breakeven	point	is	much	smaller,	at	1.6	seconds.	In	other	words,	there	is
little	benefit	in	caching	sequentially	accessed	data	in	memory	unless	it	is	very	frequently	accessed.

The	above	rules	of	thumb	take	only	the	number	of	I/O	operations	per	second	into	account	and	do	not
consider	factors	such	as	response	time.	Some	applications	need	to	keep	even	infrequently	used	data	in

memory	to	support	response	times	that	are	less	than	or	comparable	to	disk-access	time.

Since	SSD	storage	is	more	expensive	than	disk,	one	way	to	get	faster	random	I/O

for	frequently	used	data,	while	paying	less	for	storing	less	frequently	used	data,	is	to	use	the	flash-as-
buffer	approach.	In	this	approach,	flash	storage	is	used	as	a	persistent	buffer,	with	each	block	having	a
permanent	location	on	disk,	but	stored	in	flash	instead	of	being	written	to	disk	as	long	as	it	is	frequently
used.	When	flash	storage	is	full,	a	block	that	is	not	frequently	used	is	evicted	and	flushed	back	to	disk	if	it
was	updated	after	being	read	from	disk.	Disk	subsystems	that	provide	hard	disks	along	with	SSDs	that	act
as	buffers	are	commercially	available.	A	rule	of	thumb	for	deciding	how	much	SSD	storage	to	purchase	is
that	a	4-kilobyte	page	should	be	kept	on	SSD,	instead	of	hard	disk,	if	it	is	accessed	more	frequently	than
once	in	a	day	(the	computation	is	similar	to	the	case	of	caching	in	main	memory	versus	fetching	from
disk/SSD).	Note	that	in	such	a	setup,	the	database	system	cannot	control	what	data	reside	in	which	part	of
the	storage.

If	the	storage	system	allows	direct	access	to	SSDs	as	well	as	hard	disks,	the	database	administrator	can
control	the	mapping	of	relations	or	indices	to	disks	and	allocate	frequently	used	relations/indices	to	flash
storage.	The	tablespace	feature,	supported	by	most	database	systems,	can	be	used	to	control	the	mapping
by	creating	a	tablespace	on	flash	storage	and	assigning	desired	relations	and	indices	to	that	tablespace.
Controlling	the	mapping	at	a	finer	level	of	granularity	than	a	relation,	however,	requires	changes	to	the
database-system	code.

Another	aspect	of	tuning	is	whether	to	use	RAID	1	or	RAID	5.	The	answer	depends	on	how	frequently	the
data	are	updated,	since	RAID	5	is	much	slower	than	RAID	1	on

1230

Chapter	25

Advanced	Application	Development

random	writes:	RAID	5	requires	2	reads	and	2	writes	to	execute	a	single	random	write	request.	If	an
application	performs	r	random	reads	and	w	random	writes	per	second	to	support	a	particular	throughput
rate,	a	RAID	5	implementation	would	require	r	+	4	w	I/O	operations	per	second,	whereas	a	RAID	1
implementation	would	require	r	+	2	w	I/O

operations	per	second.	We	can	then	calculate	the	number	of	disks	required	to	support	the	required	I/O
operations	per	second	by	dividing	the	result	of	the	calculation	by	100

I/O	operations	per	second	(for	current-generation	disks).	For	many	applications,	r	and	w	are	large	enough
that	the	(r	+	w)∕100	disks	can	easily	hold	two	copies	of	all	the	data.	For	such	applications,	if	RAID	1	is
used,	the	required	number	of	disks	is	actually	less	than	the	required	number	of	disks	if	RAID	5	is	used!
Thus,	RAID	5	is	useful	only	when	the	data	storage	requirements	are	very	large,	but	the	update	rates,	and
particularly	random	update	rates,	are	small.

25.1.9

Performance	Simulation

To	test	the	performance	of	a	database	system	even	before	it	is	installed,	we	can	create	a	performance-
simulation	model	of	the	database	system.	Each	service	shown	in	Figure	25.1,	such	as	the	CPU,	each	disk,
the	buffer,	and	the	concurrency	control,	is	modeled	in	the	simulation.	Instead	of	modeling	details	of	a
service,	the	simulation	model	may	capture	only	some	aspects	of	each	service,	such	as	the	service	time	—
that	is,	the	time	taken	to	finish	processing	a	request	once	processing	has	begun.	Thus,	the	simulation	can
model	a	disk	access	from	just	the	average	disk-access	time.

Since	requests	for	a	service	generally	have	to	wait	their	turn,	each	service	has	an	associated	queue	in	the
simulation	model.	A	transaction	consists	of	a	series	of	requests.

The	requests	are	queued	up	as	they	arrive	and	are	serviced	according	to	the	policy	for	that	service,	such
as	first	come,	first	served.	The	models	for	services	such	as	CPU	and	the	disks	conceptually	operate	in
parallel,	to	account	for	the	fact	that	these	subsystems	operate	in	parallel	in	a	real	system.

Once	the	simulation	model	for	transaction	processing	is	built,	the	system	administrator	can	run	a	number
of	experiments	on	it.	The	administrator	can	use	experiments	with	simulated	transactions	arriving	at
different	rates	to	find	how	the	system	would	behave	under	various	load	conditions.	The	administrator
could	run	other	experiments	that	vary	the	service	times	for	each	service	to	find	out	how	sensitive	the
performance	is	to	each	of	them.	System	parameters,	too,	can	be	varied,	so	that	performance	tuning	can	be
done	on	the	simulation	model.

25.2

Performance	Benchmarks

As	database	servers	become	more	standardized,	the	differentiating	factor	among	the	products	of	different
vendors	is	those	products’	performance.	Performance	benchmarks	are	suites	of	tasks	that	are	used	to
quantify	the	performance	of	software	systems.

25.2

Performance	Benchmarks

1231

25.2.1

Suites	of	Tasks

Since	most	software	systems,	such	as	databases,	are	complex,	there	is	a	good	deal	of	variation	in	their
implementation	by	different	vendors.	As	a	result,	there	is	a	significant	amount	of	variation	in	their
performance	on	different	tasks.	One	system	may	be	the	most	efficient	on	a	particular	task;	another	may
be	the	most	efficient	on	a	different	task.

Hence,	a	single	task	is	usually	insufficient	to	quantify	the	performance	of	the	system.

Instead,	the	performance	of	a	system	is	measured	by	suites	of	standardized	tasks,	called	performance
benchmarks.

Combining	the	performance	numbers	from	multiple	tasks	must	be	done	with	care.

Suppose	that	we	have	two	tasks,	T	and	T	,	and	that	we	measure	the	throughput	of	a	1

2

system	as	the	number	of	transactions	of	each	type	that	run	in	a	given	amount	of	time	—

say,	1	second.	Suppose	that	system	A	runs	T	at	99	transactions	per	second	and	T	at	1

2

1	transaction	per	second.	Similarly,	let	system	B	run	both	T	and	T	at	50	transactions	1

2

per	second.	Suppose	also	that	a	workload	has	an	equal	mixture	of	the	two	types	of	transactions.

If	we	took	the	average	of	the	two	pairs	of	numbers	(i.e.,	99	and	1,	versus	50	and	50),	it	might	appear	that
the	two	systems	have	equal	performance.	However,	it	is	wrong	to	take	the	averages	in	this	fashion	—	if	we
ran	50	transactions	of	each	type,	system	A	would	take	about	50	.	5	seconds	to	finish,	whereas	system	B
would	finish	in	just	2	seconds!

The	example	shows	that	a	simple	measure	of	performance	is	misleading	if	there	is	more	than	one	type	of
transaction.	The	right	way	to	average	out	the	numbers	is	to	take	the	time	to	completion	for	the	workload,
rather	than	the	average	throughput	for	each	transaction	type.	We	can	then	compute	system	performance
accurately	in	transactions	per	second	for	a	specified	workload.	Thus,	system	A	takes	50	.	5∕100,	which	is	0
.	505

seconds	per	transaction,	whereas	system	B	takes	0	.	02	seconds	per	transaction,	on	average.	In	terms	of
throughput,	system	A	runs	at	an	average	of	1	.	98	transactions	per	second,	whereas	system	B	runs	at	50
transactions	per	second.	Assuming	that	transactions	of	all	the	types	are	equally	likely,	the	correct	way	to
average	out	the	throughputs	on	different	transaction	types	is	to	take	the	harmonic	mean	of	the
throughputs.	The	harmonic	mean	of	n	throughputs	t	,	t	,	…	,	t	is	defined	as:	1

2

n

n

1	+	1	+	⋯	+	1

t

t

t

1

2

n

For	our	example,	the	harmonic	mean	for	the	throughputs	in	system	A	is	1	.	98.	For	system	B,	it	is	50.
Thus,	system	B	is	approximately	25	times	faster	than	system	A	on	a	workload	consisting	of	an	equal
mixture	of	the	two	example	types	of	transactions.

25.2.2

Database-Application	Classes

Online	transaction	processing	(OLTP)	and	decision	support,	including	online	analytical	processing	(OLAP),
are	two	broad	classes	of	applications	handled	by	database	systems.

These	two	classes	of	tasks	have	different	requirements.	High	concurrency	and	clever

1232

Chapter	25

Advanced	Application	Development

techniques	to	speed	up	commit	processing	are	required	for	supporting	a	high	rate	of	update	transactions.
On	the	other	hand,	good	query-evaluation	algorithms	and	query	optimization	are	required	for	decision
support.	The	architecture	of	some	database	systems	has	been	tuned	to	transaction	processing;	that	of
others,	such	as	the	Teradata	series	of	parallel	database	systems,	has	been	tuned	to	decision	support.
Other	vendors	try	to	strike	a	balance	between	the	two	tasks.

Applications	usually	have	a	mixture	of	transaction-processing	and	decision-support	requirements.	Hence,
which	database	system	is	best	for	an	application	depends	on	what	mix	of	the	two	requirements	the
application	has.

Suppose	that	we	have	throughput	numbers	for	the	two	classes	of	applications	separately,	and	the
application	at	hand	has	a	mix	of	transactions	in	the	two	classes.	We	must	be	careful	even	about	taking	the
harmonic	mean	of	the	throughput	numbers	because	of	interference	between	the	transactions.	For
example,	a	long-running	decision-support	transaction	may	acquire	a	number	of	locks,	which	may	prevent
all	progress	of	update	transactions.	The	harmonic	mean	of	throughputs	should	be	used	only	if	the
transactions	do	not	interfere	with	one	another.

25.2.3

The	TPC	Benchmarks

The	Transaction	Processing	Performance	Council	(TPC)	has	defined	a	series	of	benchmark	standards	for
database	systems.

The	TPC	benchmarks	are	defined	in	great	detail.	They	define	the	set	of	relations	and	the	sizes	of	the
tuples.	They	define	the	number	of	tuples	in	the	relations	not	as	a	fixed	number,	but	rather	as	a	multiple	of
the	number	of	claimed	transactions	per	second,	to	reflect	that	a	larger	rate	of	transaction	execution	is
likely	to	be	correlated	with	a	larger	number	of	accounts.	The	performance	metric	is	throughput,
expressed	as	transactions	per	second	(TPS).	When	its	performance	is	measured,	the	system	must	provide
a	response	time	within	certain	bounds,	so	that	a	high	throughput	cannot	be	obtained	at	the	cost	of	very
long	response	times.	Further,	for	business	applications,	cost	is	of	great	importance.	Hence,	the	TPC
benchmark	also	measures	performance	in	terms	of	price	per	TPS.	A	large	system	may	have	a	high	number
of	transactions	per	second,	but	it	may	be	expensive	(i.e.,	have	a	high	price	per	TPS).	Moreover,	a	company
cannot	claim	TPC	benchmark	numbers	for	its	systems	without	an	external	audit	that	ensures	that	the
system	faithfully	follows	the	definition	of	the	benchmark,	including	full	support	for	the	ACID	properties	of
transactions.

The	first	in	the	series	was	the	TPC-A	benchmark,	which	was	defined	in	1989.	This	benchmark	simulates	a
typical	bank	application	by	a	single	type	of	transaction	that	models	cash	withdrawal	and	deposit	at	a	bank
teller.	The	transaction	updates	several	relations	—	such	as	the	bank	balance,	the	teller’s	balance,	and	the
customer’s	balance	—

and	adds	a	record	to	an	audit-trail	relation.	The	benchmark	also	incorporates	communication	with
terminals,	to	model	the	end-to-end	performance	of	the	system	realistically.

The	TPC-B	benchmark	was	designed	to	test	the	core	performance	of	the	database	system,	along	with	the
operating	system	on	which	the	system	runs.	It	removes	the	parts

25.2

Performance	Benchmarks

1233

of	the	TPC-A	benchmark	that	deal	with	users,	communication,	and	terminals,	to	focus	on	the	backend
database	server.	Neither	TPC-A	nor	TPC-B	is	in	use	today.

The	TPC-C	benchmark	was	designed	to	model	a	more	complex	system	than	the	TPC-A	benchmark.	The
TPC-C	benchmark	concentrates	on	the	main	activities	in	an	order-entry	environment,	such	as	entering
and	delivering	orders,	recording	payments,	checking	status	of	orders,	and	monitoring	levels	of	stock.	The
TPC-C	benchmark	is	still	widely	used	for	benchmarking	online	transaction	processing	(OLTP)	systems.

The	more	recent	TPC-E	benchmark	is	also	aimed	at	OLTP	systems	but	is	based	on	a	model	of	a	brokerage
firm,	with	customers	who	interact	with	the	firm	and	generate	transactions.	The	firm	in	turn	interacts	with
financial	markets	to	execute	transactions.

The	TPC-D	benchmark	was	designed	to	test	the	performance	of	database	systems	on	decision-support
queries.	Decision-support	systems	are	becoming	increasingly	important	today.	The	TPC-A,	TPC-B,	and
TPC-C	benchmarks	measure	performance	on	transaction-processing	workloads	and	should	not	be	used	as
a	measure	of	performance	on	decision-support	queries.	The	D	in	TPC-D	stands	for	decision	support.	The
TPC-D

benchmark	schema	models	a	sales/distribution	application,	with	parts,	suppliers,	customers,	and	orders,
along	with	some	auxiliary	information.	The	sizes	of	the	relations	are	defined	as	a	ratio,	and	database	size
is	the	total	size	of	all	the	relations,	expressed	in	gigabytes.	TPC-D	at	scale	factor	1	represents	the	TPC-D
benchmark	on	a	1-gigabyte	database,	while	scale	factor	10	represents	a	10-gigabyte	database.	The
benchmark	workload	consists	of	a	set	of	17	SQL	queries	modeling	common	tasks	executed	on	decision-
support	systems.	Some	of	the	queries	make	use	of	complex	SQL	features,	such	as	aggregation	and	nested
queries.

The	benchmark’s	users	soon	realized	that	the	various	TPC-D	queries	could	be	significantly	speeded	up	by
using	materialized	views	and	other	redundant	information.

There	are	applications,	such	as	periodic	reporting	tasks,	where	the	queries	are	known	in	advance,	and
materialized	views	can	be	selected	carefully	to	speed	up	the	queries.	It	is	necessary,	however,	to	account
for	the	overhead	of	maintaining	materialized	views.

The	TPC-H	benchmark	(where	˝	represents	ad	hoc)	is	a	refinement	of	the	TPC-D

benchmark.	The	schema	is	the	same,	but	there	are	22	queries,	of	which	16	are	from	TPC-D.	In	addition,
there	are	two	updates,	a	set	of	inserts,	and	a	set	of	deletes.	TPC-H	prohibits	materialized	views	and	other
redundant	information	and	permits	indices	only	on	primary	and	foreign	keys.	This	benchmark	models	ad
hoc	querying	where	the	queries	are	not	known	beforehand,	so	it	is	not	possible	to	create	appropriate
materialized	views	ahead	of	time.	A	variant,	TPC-R	(where	R	stands	for	“reporting”),	which	is	no	longer	in
use,	allowed	the	use	of	materialized	views	and	other	redundant	information.

The	TPC-DS	benchmark	is	a	follow-up	to	the	TPC-H	benchmark	and	models	the	decision-support	functions
of	a	retail	product	supplier,	including	information	about	customers,	orders,	and	products,	and	with
multiple	sales	channels	such	as	retail	stores	and	online	sales.	It	has	two	subparts	of	the	schema,
corresponding	to	ad	hoc	querying	and	reporting,	similar	to	TPC-H	and	TPC-R.	There	is	a	query	workload,
as	well	as	a	data	maintenance	workload.

1234

Chapter	25

Advanced	Application	Development

TPC-H	and	TPC-DS	measure	performance	in	this	way:	The	power	test	runs	the	queries	and	updates	one	at
a	time	sequentially,	and	3600	seconds	divided	by	the	geometric	mean	of	the	execution	times	of	the	queries
(in	seconds)	gives	a	measure	of	queries	per	hour.	The	throughput	test	runs	multiple	streams	in	parallel,
with	each	stream	executing	all	22	queries.	There	is	also	a	parallel	update	stream.	Here	the	total	time	for
the	entire	run	is	used	to	compute	the	number	of	queries	per	hour.

The	composite	query	per	hour	metric,	which	is	the	overall	metric,	is	then	obtained	as	the	square	root	of
the	product	of	the	power	and	throughput	metrics.	A	composite	price/performance	metric	is	defined	by
dividing	the	system	price	by	the	composite	metric.

There	are	several	other	TPC	benchmarks,	such	as	a	data	integration	benchmark	(TPC-DI),	benchmarks	for
big	data	systems	based	on	Hadoop/Spark	(TPCx-HS),	and	for	back-end	processing	of	internet-of-things
data	(TPCx-IoT).

25.3

Other	Issues	in	Application	Development

In	this	section,	we	discuss	two	issues	in	application	development:	testing	of	applications	and	migration	of
applications.

25.3.1

Testing	Applications

Testing	of	programs	involves	designing	a	test	suite,	that	is,	a	collection	of	test	cases.

Testing	is	not	a	one-time	process,	since	programs	evolve	continuously,	and	bugs	may	appear	as	an
unintended	consequence	of	a	change	in	the	program;	such	a	bug	is	referred	to	as	program	regression.
Thus,	after	every	change	to	a	program,	the	program	must	be	tested	again.	It	is	usually	infeasible	to	have	a
human	perform	tests	after	every	change	to	a	program.	Instead,	expected	test	outputs	are	stored	with	each
test	case	in	a	test	suite.

Regression	testing	involves	running	the	program	on	each	test	case	in	a	test	suite	and	checking	that	the
program	generates	the	expected	test	output.

In	the	context	of	database	applications,	a	test	case	consists	of	two	parts:	a	database	state	and	an	input	to
a	specific	interface	of	the	application.

SQL	queries	can	have	subtle	bugs	that	can	be	difficult	to	catch.	For	example,	a	query	may	execute	a	join
when	it	should	have	performed	an	outer	join	(i.e.,	r	⋈	s,	when	it	should	have	actually	performed	r	⟕	s).
The	difference	between	these	two	queries	would	be	found	only	if	the	test	database	had	an	r	tuple	with	no
matching	s	tuple.	Thus,	it	is	important	to	create	test	databases	that	can	catch	commonly	occurring	errors.
Such	errors	are	referred	to	as	mutations,	since	they	are	usually	small	changes	to	a	query	(or	program).	A
test	case	that	produces	different	outputs	on	an	intended	query	and	a	mutant	of	the	query	is	said	to	kill	the
mutant.	A	test	suite	should	have	test	cases	that	kill	(most)	commonly	occurring	mutants.

If	a	test	case	performs	an	update	on	the	database,	to	check	that	it	executed	properly	one	must	verify	that
the	contents	of	the	database	match	the	expected	contents.	Thus,

25.3

Other	Issues	in	Application	Development

1235

the	expected	output	consists	not	only	of	data	displayed	on	the	user’s	screen,	but	also	(updates	to)	the
database	state.

Since	the	database	state	can	be	rather	large,	multiple	test	cases	would	share	a	common	database	state.
Testing	is	complicated	by	the	fact	that	if	a	test	case	performs	an	update	on	the	database,	the	results	of
other	test	cases	run	subsequently	on	the	same	database	may	not	match	the	expected	results.	The	other
test	cases	would	then	be	erroneously	reported	as	having	failed.	To	avoid	this	problem,	whenever	a	test
case	performs	an	update,	the	database	state	must	be	restored	to	its	original	state	after	running	the	test.

Testing	can	also	be	used	to	ensure	that	an	application	meets	performance	requirements.	To	carry	out	such
performance	testing,	the	test	database	must	be	of	the	same	size	as	the	real	database	would	be.	In	some
cases,	there	is	already	existing	data	on	which	performance	testing	can	be	carried	out.	In	other	cases,	a
test	database	of	the	required	size	must	be	generated;	there	are	several	tools	available	for	generating	such
test	databases.	These	tools	ensure	that	the	generated	data	satisfy	constraints	such	as	primary-	and
foreign-key	constraints.	They	may	additionally	generate	data	that	look	meaningful,	for	example,	by
populating	a	name	attribute	using	meaningful	names	instead	of	random	strings.	Some	tools	also	allow
data	distributions	to	be	specified;	for	example,	a	university	database	may	require	a	distribution	with	most
students	in	the	range	of	18	to	25	years	and	most	faculty	in	the	range	of	25	to	65	years.

Even	if	there	is	an	existing	database,	organizations	usually	do	not	want	to	reveal	sensitive	data	to	an
external	organization	that	may	be	carrying	out	the	performance	tests.	In	such	a	situation,	a	copy	of	the

real	database	may	be	made,	and	the	values	in	the	copy	may	be	modified	in	such	a	way	that	any	sensitive
data,	such	as	credit-card	numbers,	social	security	numbers,	or	dates	of	birth,	are	obfuscated.	Obfuscation
is	done	in	most	cases	by	replacing	a	real	value	with	a	randomly	generated	value	(taking	care	to	also
update	all	references	to	that	value,	in	case	the	value	is	a	primary	key).	On	the	other	hand,	if	the
application	execution	depends	on	the	value,	such	as	the	date	of	birth	in	an	application	that	performs
different	actions	based	on	the	date	of	birth,	obfuscation	may	make	small	random	changes	in	the	value
instead	of	replacing	it	completely.

25.3.2

Application	Migration

Legacy	systems	are	older-generation	application	systems	that	are	still	in	use	despite	being	obsolete.	They
continue	in	use	due	to	the	cost	and	risk	in	replacing	them.	For	example,	many	organizations	developed
applications	in-house,	but	they	may	decide	to	replace	them	with	a	commercial	product.	In	some	cases,	a
legacy	system	may	use	old	technology	that	is	incompatible	with	current-generation	standards	and
systems.	Some	legacy	systems	in	operation	today	are	several	decades	old	and	are	based	on	technologies
such	as	databases	that	use	the	network	or	hierarchical	data	models,	or	use	Cobol	and	file	systems	without
a	database.	Such	systems	may	still	contain	valuable	data	and	may	support	critical	applications.

Replacing	legacy	applications	with	new	applications	is	often	costly	in	terms	of	both	time	and	money,	since
they	are	often	very	large,	consisting	of	millions	of	lines	of	code

1236

Chapter	25

Advanced	Application	Development

developed	by	teams	of	programmers,	often	over	several	decades.	They	contain	large	amounts	of	data	that
must	be	ported	to	the	new	application,	which	may	use	a	completely	different	schema.	Switchover	from	an
old	to	a	new	application	involves	retraining	large	numbers	of	staff.	Switchover	must	usually	be	done
without	any	disruption,	with	data	entered	in	the	old	system	available	through	the	new	system	as	well.

Many	organizations	attempt	to	avoid	replacing	legacy	systems	and	instead	try	to	interoperate	them	with
newer	systems.	One	approach	used	to	interoperate	between	relational	databases	and	legacy	databases	is
to	build	a	layer,	called	a	wrapper,	on	top	of	the	legacy	systems	that	can	make	the	legacy	system	appear	to
be	a	relational	database.

The	wrapper	may	provide	support	for	ODBC	or	other	interconnection	standards	such	as	OLE-DB,	which
can	be	used	to	query	and	update	the	legacy	system.	The	wrapper	is	responsible	for	converting	relational
queries	and	updates	into	queries	and	updates	on	the	legacy	system.

When	an	organization	decides	to	replace	a	legacy	system	with	a	new	system,	it	may	follow	a	process
called	reverse	engineering,	which	consists	of	going	over	the	code	of	the	legacy	system	to	come	up	with
schema	designs	in	the	required	data	model	(such	as	an	E-R	model	or	an	object-oriented	data	model).
Reverse	engineering	also	examines	the	code	to	find	out	what	procedures	and	processes	were
implemented,	in	order	to	get	a	high-level	model	of	the	system.	Reverse	engineering	is	needed	because
legacy	systems	usually	do	not	have	high-level	documentation	of	their	schema	and	overall	system	design.

When	coming	up	with	a	new	system,	developers	review	the	design	so	that	it	can	be	improved	rather	than
just	reimplemented	as	is.	Extensive	coding	is	required	to	support	all	the	functionality	(such	as	user
interface	and	reporting	systems)	that	was	provided	by	the	legacy	system.	The	overall	process	is	called	re-
engineering.

When	a	new	system	has	been	built	and	tested,	the	system	must	be	populated	with	data	from	the	legacy
system,	and	all	further	activities	must	be	carried	out	on	the	new	system.	However,	abruptly	transitioning
to	a	new	system,	which	is	called	the	big-bang	approach,	carries	several	risks.	First,	users	may	not	be
familiar	with	the	interfaces	of	the	new	system.	Second,	there	may	be	bugs	or	performance	problems	in	the
new	system	that	were	not	discovered	when	it	was	tested.	Such	problems	may	lead	to	great	losses	for
companies,	since	their	ability	to	carry	out	critical	transactions	such	as	sales	and	purchases	may	be
severely	affected.	In	some	extreme	cases	the	new	system	has	even	been	abandoned,	and	the	legacy
system	reused,	after	an	attempted	switchover	failed.

An	alternative	approach,	called	the	chicken-little	approach,	incrementally	replaces	the	functionality	of	the
legacy	system.	For	example,	the	new	user	interfaces	may	be	used	with	the	old	system	in	the	back	end,	or
vice	versa.	Another	option	is	to	use	the	new	system	only	for	some	functionality	that	can	be	decou-pled
from	the	legacy	system.	In	either	case,	the	legacy	and	new	systems	coexist	for	some	time.	There	is
therefore	a	need	for	developing	and	using	wrappers	on	the	legacy	system	to	provide	required	functionality
to	interoperate	with	the	new	system.	This	approach	therefore	has	a	higher	development	cost.

25.4

Standardization

1237

25.4

Standardization

Standards	define	the	interface	of	a	software	system.	For	example,	standards	define	the	syntax	and
semantics	of	a	programming	language,	or	the	functions	in	an	application-program	interface,	or	even	a
data	model	(such	as	the	object-oriented	database	standards).	Today,	database	systems	are	complex,	and
they	are	often	made	up	of	multiple	independently	created	parts	that	need	to	interact.	For	example,	client
programs	may	be	created	independently	of	backend	systems,	but	the	two	must	be	able	to	interact	with
each	other.	A	company	that	has	multiple	heterogeneous	database	systems	may	need	to	exchange	data
between	the	databases.	Given	such	a	scenario,	standards	play	an	important	role.

Formal	standards	are	those	developed	by	a	standards	organization	or	by	industry	groups	through	a	public
process.	Dominant	products	sometimes	become	de	facto	standards,	in	that	they	become	generally
accepted	as	standards	without	any	formal	process	of	recognition.	Some	formal	standards,	like	many
aspects	of	the	SQL-92	and	SQL:1999

standards,	are	anticipatory	standards	that	lead	the	marketplace;	they	define	features	that	vendors	then
implement	in	products.	In	other	cases,	the	standards,	or	parts	of	the	standards,	are	reactionary	standards,
in	that	they	attempt	to	standardize	features	that	some	vendors	have	already	implemented,	and	that	may
even	have	become	de	facto	standards.	SQL-89	was	in	many	ways	reactionary,	since	it	standardized
features,	such	as	integrity	checking,	that	were	already	present	in	the	IBM	SAA	SQL	standard	and	in	other
databases.

Formal	standards	committees	are	typically	composed	of	representatives	of	the	vendors	and	of	members
from	user	groups	and	standards	organizations	such	as	the	International	Organization	for	Standardization
(ISO)	or	the	American	National	Standards	Institute	(ANSI),	or	professional	bodies,	such	as	the	Institute	of
Electrical	and	Electronics	Engineers	(IEEE).	Formal	standards	committees	meet	periodically,	and
members	present	proposals	for	features	to	be	added	to	or	modified	in	the	standard.	After	a	(usually
extended)	period	of	discussion,	modifications	to	the	proposal,	and	public	review,	members	vote	on
whether	to	accept	or	reject	a	feature.	Some	time	after	a	standard	has	been	defined	and	implemented,	its
shortcomings	become	clear	and	new	requirements	become	apparent.	The	process	of	updating	the
standard	then	begins,	and	a	new	version	of	the	standard	is	usually	released	after	a	few	years.	This	cycle
usually	repeats	every	few	years,	until	eventually	(perhaps	many	years	later)	the	standard	becomes
technologically	irrelevant	or	loses	its	user	base.

This	section	gives	a	very	high-level	overview	of	different	standards,	concentrating	on	the	goals	of	the
standard.	Detailed	descriptions	of	the	standards	mentioned	in	this	section	appear	in	the	bibliographic
notes	for	this	chapter,	available	online.

25.4.1

SQL	Standards

Since	SQL	is	the	most	widely	used	query	language,	much	work	has	been	done	on	standardizing	it.	ANSI
and	ISO,	with	the	various	database	vendors,	have	played	a	leading

1238

Chapter	25

Advanced	Application	Development

role	in	this	work.	The	SQL-86	standard	was	the	initial	version.	The	IBM	Systems	Application	Architecture
(SAA)	standard	for	SQL	was	released	in	1987.	As	people	identified	the	need	for	more	features,	updated
versions	of	the	formal	SQL	standard	were	developed,	called	SQL-89	and	SQL-92.

The	SQL:1999	version	of	the	SQL	standard	added	a	variety	of	features	to	SQL.	We	have	seen	many	of
these	features	in	earlier	chapters.

Subsequent	versions	of	the	SQL	standard	include	the	following:

•	SQL:2003,	which	is	a	minor	extension	of	the	SQL:1999	standard.	Some	features	such	as	the	SQL:1999
OLAP	features	(Section	11.3.3)	were	specified	as	an	amend-ment	to	the	earlier	version	of	the	SQL:1999
standard,	instead	of	waiting	for	the	release	of	SQL:2003.

•	SQL:2006,	which	added	several	features	related	to	XML.

•	SQL:2008,	which	introduced	only	minor	extensions	to	the	SQL	language	such	as	extensions	to	the	merge
clause.

•	SQL:2011,	which	added	a	number	of	temporal	extensions	to	SQL,	including	the	ability	to	associate	time
periods	with	tuples,	optionally	using	existing	columns	as	start	and	end	times,	and	primary	key	definitions
based	on	the	time	periods.	The	extensions	support	deletes	and	updates	with	associated	periods;	such
deletes	and	updates	may	result	in	modification	of	the	time	period	of	existing	tuples,	along	with	deletes	or
inserts	of	new	tuples.	A	number	of	operators	related	to	time	periods,	such	as	overlaps	and	contains,	were
also	introduced	in	SQL:2011.

In	addition,	the	standard	provided	a	number	of	other	features,	such	as	further	extensions	to	the	merge
construct,	extensions	to	the	window	constructs	that	were	introduced	in	earlier	versions	of	SQL,	and
extensions	to	limit	the	number	of	results	fetched	by	a	query,	using	a	fetch	clause.

•	SQL:2016,	which	added	a	number	of	features	related	to	JSON	support,	and	support	for	the	aggregate
operation	listagg,	which	concatenates	attributes	from	a	group	of	tuples	into	a	string.

It	is	worth	mentioning	that	most	of	the	new	features	are	supported	by	only	a	few	database	systems,	and
conversely	most	database	systems	support	a	number	of	features	that	are	not	part	of	the	standard.

25.4.2

Database	Connectivity	Standards

The	ODBC	standard	is	a	widely	used	standard	for	communication	between	client	applications	and
database	systems	and	defines	APIs	in	several	languages.	The	JDBC	standard	for	communication	between
Java	applications	and	databases	was	modeled	on	ODBC

and	provides	similar	functionality.

ODBC	is	based	on	the	SQL	Call	Level	Interface	(CLI)	standards	developed	by	the	X/Open	industry
consortium	and	the	SQL	Access	Group,	but	it	has	several	extensions.

25.4

Standardization

1239

The	ODBC	API	defines	a	CLI,	an	SQL	syntax	definition,	and	rules	about	permissible	sequences	of	CLI
calls.	The	standard	also	defines	conformance	levels	for	the	CLI	and	the	SQL	syntax.	For	example,	the	core
level	of	the	CLI	has	commands	to	connect	to	a	database,	to	prepare	and	execute	SQL	statements,	to	get
back	results	or	status	values,	and	to	manage	transactions.	The	next	level	of	conformance	(level	1)	requires
support	for	catalog	information	retrieval	and	some	other	features	over	and	above	the	core-level	CLI;	level
2	requires	further	features,	such	as	the	ability	to	send	and	retrieve	arrays	of	parameter	values	and	to
retrieve	more	detailed	catalog	information.

ODBC	allows	a	client	to	connect	simultaneously	to	multiple	data	sources	and	to	switch	among	them,	but
transactions	on	each	are	independent;	ODBC	does	not	support	two-phase	commit.

A	distributed	system	provides	a	more	general	environment	than	a	client	–

server	system.	The	X/Open	consortium	has	also	developed	the	X/Open	XA	standards	for	interoperation	of
databases.	These	standards	define	transaction-management	primitives	(such	as	transaction	begin,
commit,	abort,	and	prepare-to-commit)	that	compliant	databases	should	provide;	a	transaction	manager
can	invoke	these	primitives	to	implement	distributed	transactions	by	two-phase	commit.	The	XA	standards
are	independent	of	the	data	model	and	of	the	specific	interfaces	between	clients	and	databases	to
exchange	data.	Thus,	we	can	use	the	XA	protocols	to	implement	a	distributed	transaction	system	in	which
a	single	transaction	can	access	relational	as	well	as	object-oriented	databases,	yet	the	transaction
manager	ensures	global	consistency	via	two-phase	commit.

There	are	many	data	sources	that	are	not	relational	databases,	and	in	fact	may	not	be	databases	at	all.
Examples	are	flat	files	and	email	stores.	Microsoft’s	OLE-DB

is	a	C++	API	with	goals	similar	to	ODBC,	but	for	nondatabase	data	sources	that	may	provide	only	limited
querying	and	update	facilities.	Just	like	ODBC,	OLE-DB	provides	constructs	for	connecting	to	a	data
source,	starting	a	session,	executing	commands,	and	getting	back	results	in	the	form	of	a	rowset,	which	is
a	set	of	result	rows.

The	ActiveX	Data	Objects	(ADO)	and	ADO.NET	APIs,	created	by	Microsoft,	provide	an	interface	to	access

data	from	not	only	relational	databases,	but	also	some	other	types	of	data	sources,	such	as	OLE-DB	data
sources.

25.4.3

Object	Database	Standards

Standards	in	the	area	of	object-oriented	databases	(OODB)	have	so	far	been	driven	primarily	by	OODB
vendors.	The	Object	Database	Management	Group	(ODMG)	was	a	group	formed	by	OODB	vendors	to
standardize	the	data	model	and	language	interfaces	to	OODBs.	ODMG	is	no	longer	active.	JDO	is	a
standard	for	adding	persistence	to	Java.

There	were	several	other	attempts	to	standardize	object	databases	and	related	object-based	technologies
such	as	services.	However,	most	were	not	widely	adopted,	and	they	are	rarely	used	anymore.

Object-relational	mapping	technologies,	which	store	data	in	relational	databases	at	the	back	end	but
provide	programmers	with	an	object-based	API	to	access	and	manip-

1240

Chapter	25

Advanced	Application	Development

ulate	data,	have	proven	quite	popular.	Systems	that	support	object-relational	mapping	include	Hibernate,
which	supports	Java,	and	the	data	layer	of	the	popular	Django	Web	framework,	which	is	based	on	the
Python	programming	language.	However,	there	are	no	widely	accepted	formal	standards	in	this	area.

25.5

Distributed	Directory	Systems

Consider	an	organization	that	wishes	to	make	data	about	its	employees	available	to	a	variety	of	people	in
the	organization;	examples	of	the	kinds	of	data	include	name,	designation,	employee-id,	address,	email
address,	phone	number,	fax	number,	and	so	on.	Such	data	are	often	shared	via	directories,	which	allow
users	to	browse	and	search	for	desired	information.

In	general,	a	directory	is	a	listing	of	information	about	some	class	of	objects	such	as	persons.	Directories
can	be	used	to	find	information	about	a	specific	object,	or	in	the	reverse	direction	to	find	objects	that
meet	a	certain	requirement.

A	major	application	of	directories	today	is	to	authenticate	users:	applications	can	collect	authentication
information	such	as	passwords	from	users	and	authenticate	them	using	the	directory.	Details	about	the
user	category	(e.g.,	is	the	user	a	student	or	an	instructor),	as	well	as	authorizations	that	a	user	has	been
given,	may	also	be	shared	through	a	directory.	Multiple	applications	in	an	organization	can	then
authenticate	users	using	a	common	directory	service	and	user	category	and	authorization	information
from	the	directory	to	provide	users	only	with	data	that	they	are	authorized	to	see.

Directories	can	be	used	for	storing	other	types	of	information,	much	like	file	system	directories.	For
instance,	web	browsers	can	store	personal	bookmarks	and	other	browser	settings	in	a	directory	system.	A
user	can	thus	access	the	same	settings	from	multiple	locations,	such	as	at	home	and	at	work,	without
having	to	share	a	file	system.

25.5.1

Directory	Access	Protocols

Directory	information	can	be	made	available	through	web	interfaces,	as	many	organizations,	and	phone
companies	in	particular,	do.	Such	interfaces	are	good	for	humans.

However,	programs	too	need	to	access	directory	information.

Several	directory	access	protocols	have	been	developed	to	provide	a	standardized	way	of	accessing	data
in	a	directory.	The	most	widely	used	among	them	today	is	the	Lightweight	Directory	Access	Protocol
(LDAP).

All	the	types	of	data	in	our	examples	can	be	stored	without	much	trouble	in	a	database	system	and
accessed	through	protocols	such	as	JDBC	or	ODBC.	The	question	then	is,	why	come	up	with	a	specialized
protocol	for	accessing	directory	information?

There	are	at	least	two	answers	to	the	question.

•	First,	directory	access	protocols	are	simplified	protocols	that	cater	to	a	limited	type	of	access	to	data.
They	evolved	in	parallel	with	the	database	access	protocols.

25.5

Distributed	Directory	Systems

1241

•	Second,	and	more	important,	directory	systems	provide	a	simple	mechanism	to	name	objects	in	a
hierarchical	fashion,	similar	to	file	system	directory	names,	which	can	be	used	in	a	distributed	directory
system	to	specify	what	information	is	stored	in	each	of	the	directory	servers.	For	example,	a	particular
directory	server	may	store	information	for	Bell	Laboratories	employees	in	Murray	Hill,	while	another	may
store	information	for	Bell	Laboratories	employees	in	Bangalore,	giving	both	sites	autonomy	in	controlling
their	local	data.	The	directory	access	protocol	can	be	used	to	obtain	data	from	both	directories	across	a
network.	More	important,	the	directory	system	can	be	set	up	to	automatically	forward	queries	made	at
one	site	to	the	other	site,	without	user	intervention.

For	these	reasons,	several	organizations	have	directory	systems	to	make	organizational	information
available	online	through	a	directory	access	protocol.	Information	in	an	organizational	directory	can	be
used	for	a	variety	of	purposes,	such	as	to	find	addresses,	phone	numbers,	or	email	addresses	of	people,	to
find	which	departments	people	are	in,	and	to	track	department	hierarchies.

As	may	be	expected,	several	directory	implementations	find	it	beneficial	to	use	relational	databases	to
store	data	instead	of	creating	special-purpose	storage	systems.

25.5.2

LDAP:	Lightweight	Directory	Access	Protocol

In	general	a	directory	system	is	implemented	as	one	or	more	servers,	which	service	multiple	clients.
Clients	use	the	API	defined	by	the	directory	system	to	communicate	with	the	directory	servers.	Directory
access	protocols	also	define	a	data	model	and	access	control.	The	X.500	directory	access	protocol,	defined
by	the	International	Organization	for	Standardization	(ISO),	is	a	standard	for	accessing	directory
information.	However,	the	protocol	is	rather	complex	and	is	not	widely	used.	The	Lightweight	Directory
Access	Protocol	(LDAP)	provides	many	of	the	X.500	features,	but	with	less	complexity,	and	is	widely	used.
In	addition	to	several	open-source	implementations,	the	Microsoft	Active	Directory	system,	which	is	based
on	LDAP,	is	used	in	a	large	number	of	organizations.

In	the	rest	of	this	section,	we	shall	outline	the	data	model	and	access	protocol	details	of	LDAP.

25.5.2.1

LDAP	Data	Model

In	LDAP,	directories	store	entries,	which	are	similar	to	objects.	Each	entry	must	have	a	distinguished
name	(DN),	which	uniquely	identifies	the	entry.	A	DN	is	in	turn	made	up	of	a	sequence	of	relative
distinguished	names	(RDNs).	For	example,	an	entry	may	have	the	following	distinguished	name:

cn=Silberschatz,	ou=Computer	Science,	o=Yale	University,	c=USA

As	you	can	see,	the	distinguished	name	in	this	example	is	a	combination	of	a	name	and	(organizational)
address,	starting	with	a	person’s	name,	then	giving	the	organizational	unit	(ou),	the	organization	(o),	and
country	(c).	The	order	of	the	components	of	a	distinguished	name	reflects	the	normal	postal	address
order,	rather	than	the	reverse

1242

Chapter	25

Advanced	Application	Development

order	used	in	specifying	path	names	for	files.	The	set	of	RDNs	for	a	DN	is	defined	by	the	schema	of	the
directory	system.

Entries	can	also	have	attributes.	LDAP	provides	binary,	string,	and	time	types,	and	additionally	the	types
tel	for	telephone	numbers,	and	PostalAddress	for	addresses	(lines	separated	by	a	“$”	character).	Unlike
those	in	the	relational	model,	attributes	are	multivalued	by	default,	so	it	is	possible	to	store	multiple
telephone	numbers	or	addresses	for	an	entry.

LDAP	allows	the	definition	of	object	classes	with	attribute	names	and	types.	Inheritance	can	be	used	in
defining	object	classes.	Moreover,	entries	can	be	specified	to	be	of	one	or	more	object	classes.	It	is	not

necessary	that	there	be	a	single	most-specific	object	class	to	which	an	entry	belongs.

Entries	are	organized	into	a	directory	information	tree	(DIT),	according	to	their	distinguished	names.
Entries	at	the	leaf	level	of	the	tree	usually	represent	specific	objects.

Entries	that	are	internal	nodes	represent	objects	such	as	organizational	units,	organizations,	or	countries.
The	children	of	a	node	have	a	DN	containing	all	the	RDNs	of	the	parent,	and	one	or	more	additional
RDNs.	For	instance,	an	internal	node	may	have	a	DN	c=USA,	and	all	entries	below	it	have	the	value	USA
for	the	RDN	c.

The	entire	distinguished	name	need	not	be	stored	in	an	entry.	The	system	can	generate	the	distinguished
name	of	an	entry	by	traversing	up	the	DIT	from	the	entry,	collecting	the	RDN=value	components	to	create
the	full	distinguished	name.

Entries	may	have	more	than	one	distinguished	name	—	for	example,	an	entry	for	a	person	in	more	than
one	organization.	To	deal	with	such	cases,	the	leaf	level	of	a	DIT

can	be	an	alias	that	points	to	an	entry	in	another	branch	of	the	tree.

25.5.2.2

Data	Manipulation

Unlike	SQL,	LDAP	does	not	define	either	a	data-definition	language	or	a	data-manipulation	language.
However,	LDAP	defines	a	network	protocol	for	carrying	out	data	definition	and	manipulation.	Users	of
LDAP	can	either	use	an	application-programming	interface	or	use	tools	provided	by	various	vendors	to
perform	data	definition	and	manipulation.	LDAP	also	defines	a	file	format	called	LDAP	Data	Interchange
Format	(LDIF)	that	can	be	used	for	storing	and	exchanging	information.

The	querying	mechanism	in	LDAP	is	very	simple,	consisting	of	just	selections	and	projections,	without	any
join.	A	query	must	specify	the	following:

•	A	base—that	is,	a	node	within	a	DIT—by	giving	its	distinguished	name	(the	path	from	the	root	to	the
node).

•	A	search	condition,	which	can	be	a	Boolean	combination	of	conditions	on	individual	attributes.	Equality,
matching	by	wild-card	characters,	and	approximate	equality	(the	exact	definition	of	approximate	equality
is	system	dependent)	are	supported.

•	A	scope,	which	can	be	just	the	base,	the	base	and	its	children,	or	the	entire	subtree	beneath	the	base.

25.6

Summary

1243

•	Attributes	to	return.

•	Limits	on	number	of	results	and	resource	consumption.

The	query	can	also	specify	whether	to	automatically	dereference	aliases;	if	alias	dereferences	are	turned
off,	alias	entries	can	be	returned	as	answers.

We	omit	further	details	of	query	support	in	LDAP	but	note	that	LDAP	implementations	support	an	API	for
querying/updating	LDAP	data	and	may	additionally	support	web	services	for	querying	LDAP	data.

25.5.2.3

Distributed	Directory	Trees

Information	about	an	organization	may	be	split	into	multiple	DITs,	each	of	which	stores	information	about
some	entries.	The	suffix	of	a	DIT	is	a	sequence	of	RDN=value	pairs	that	identify	what	information	the	DIT
stores;	the	pairs	are	concatenated	to	the	rest	of	the	distinguished	name	generated	by	traversing	from	the
entry	to	the	root.	For	instance,	the	suffix	of	a	DIT	may	be	o=Nokia,	c=USA,	while	another	may	have	the
suffix	o=Nokia,	c=India.	The	DITs	may	be	organizationally	and	geographically	separated.

A	node	in	a	DIT	may	contain	a	referral	to	another	node	in	another	DIT;	for	instance,	the	organizational
unit	Bell	Labs	under	o=Nokia,	c=USA	may	have	its	own	DIT,	in	which	case	the	DIT	for	o=Nokia,	c=USA
would	have	a	node	ou=Bell	Labs	representing	a	referral	to	the	DIT	for	Bell	Labs.

Referrals	are	the	key	component	that	help	organize	a	distributed	collection	of	directories	into	an

integrated	system.	When	a	server	gets	a	query	on	a	DIT,	it	may	return	a	referral	to	the	client,	which	then
issues	a	query	on	the	referenced	DIT.	Access	to	the	referenced	DIT	is	transparent,	proceeding	without	the
user’s	knowledge.	Alternatively,	the	server	itself	may	issue	the	query	to	the	referred	DIT	and	return	the
results	along	with	locally	computed	results.

The	hierarchical	naming	mechanism	used	by	LDAP	helps	break	up	control	of	information	across	parts	of
an	organization.	The	referral	facility	then	helps	integrate	all	the	directories	in	an	organization	into	a
single	virtual	directory.

Although	it	is	not	an	LDAP	requirement,	organizations	often	choose	to	break	up	information	either	by
geography	(for	instance,	an	organization	may	maintain	a	directory	for	each	site	where	the	organization
has	a	large	presence)	or	by	organizational	structure	(for	instance,	each	organizational	unit,	such	as
department,	maintains	its	own	directory).	Many	LDAP	implementations	support	master–slave	and
multimaster	replication	of	DITs.

25.6

Summary

•	Tuning	of	the	database-system	parameters,	as	well	as	the	higher-level	database	design	—	such	as	the
schema,	indices,	and	transactions	—	is	important	for	good	performance.	Tuning	is	best	done	by	identifying
bottlenecks	and	eliminating	them.

1244

Chapter	25

Advanced	Application	Development

•	Database	tuning	can	be	done	at	the	level	of	schema	and	queries,	at	the	level	of	database	system
parameters,	and	at	the	level	of	hardware.	Database	systems	usually	have	a	variety	of	tunable	parameters,
such	as	buffer	sizes.

•	The	right	choice	of	indices	and	materialized	views,	and	the	use	of	horizontal	partitioning	can	provide
significant	performance	benefits.	Tools	for	automated	tuning	based	on	workload	history	can	help
significantly	in	such	tuning.	The	set	of	indices	and	materialized	views	can	be	appropriately	chosen	to
minimize	overall	cost.	Vertical	partitioning,	and	columnar	storage	can	lead	to	significant	benefits	in	online
analytical	processing	systems.

•	Transactions	can	be	tuned	to	minimize	lock	contention;	snapshot	isolation	and	sequence	numbering
facilities	supporting	early	lock	release	are	useful	tools	for	reducing	read-write	and	write-write	contention.

•	Hardware	tuning	includes	choice	of	memory	size,	the	use	of	SSDs	versus	magnetic	hard	disks,	and
increasingly,	the	number	of	CPU	cores.

•	Performance	benchmarks	play	an	important	role	in	comparisons	of	database	systems,	especially	as
systems	become	more	standards	compliant.	The	TPC	benchmark	suites	are	widely	used,	and	the	different
TPC	benchmarks	are	useful	for	comparing	the	performance	of	databases	under	different	workloads.

•	Applications	need	to	be	tested	extensively	as	they	are	developed	and	before	they	are	deployed.	Testing
is	used	to	catch	errors	as	well	as	to	ensure	that	performance	goals	are	met.

•	Legacy	systems	are	systems	based	on	older-generation	technologies	such	as	nonrelational	databases	or
even	directly	on	file	systems.	Interfacing	legacy	systems	with	new-generation	systems	is	often	important
when	they	run	mission-critical	systems.

Migrating	from	legacy	systems	to	new-generation	systems	must	be	done	carefully	to	avoid	disruptions,
which	can	be	very	expensive.

•	Standards	are	important	because	of	the	complexity	of	database	systems	and	their	need	for
interoperation.	Formal	standards	exist	for	SQL.	De	facto	standards,	such	as	ODBC	and	JDBC,	and
standards	adopted	by	industry	groups	have	played	an	important	role	in	the	growth	of	client	–	server
database	systems.

•	Distributed	directory	systems	have	played	an	important	role	in	many	applications,	and	can	be	viewed	as
distributed	databases.	LDAP	is	widely	used	for	authentication	and	for	tracking	employee	information	in
organizations.

Review	Terms

•	Performance	tuning

•	Queueing	systems

•	Bottlenecks

•	Tuning	of	physical	schema

Practice	Exercises

1245

•	Tuning	of	indices

•	The	TPC	benchmarks

•	Materialized	views

°	TPC-C

•	Immediate	view	maintenance

°	TPC-D

•	Deferred	view	maintenance

•	Tuning	of	physical	design

°	TPC-E

•	Workload

°	TPC-H

•	Tuning	of	queries

°	TPC-DS

•	Set	orientation

•	Regression	testing

•	Batch	update	(JDBC)

•	Killing	mutants

•	Bulk	load

•	Application	migration

•	Bulk	update

•	Legacy	systems

•	Merge	statement

•	Reverse	engineering

•	Tuning	of	logical	schema

•	Re-engineering

•	Tunable	parameters

•	Standardization

•	Tuning	of	concurrent	transactions

°	Formal	standards

•	Sequences

•

°	De	facto	standards

Minibatch	transactions

•	Tuning	of	hardware

°	Anticipatory	standards

•	Five	minute	rule

°	Reactionary	standards

•	Performance	simulation

•	Database	connectivity	standards

•	Performance	benchmarks

•	X/Open	XA	standards

•	Service	time

•	Object	database	standards

•	Throughput

•	XML-based	standards

•	Database-application	classes

•	LDAP

•	OLTP

•	Directory	information	tree

•	Decision	support

•	Distributed	directory	trees

Practice	Exercises

25.1

Find	out	all	performance	information	your	favorite	database	system	provides.

Look	for	at	least	the	following:	what	queries	are	currently	executing	or	executed	recently,	what	resources
each	of	them	consumed	(CPU	and	I/O),	what	fraction	of	page	requests	resulted	in	buffer	misses	(for	each
query,	if	available),	and	what	locks	have	a	high	degree	of	contention.	Also	get	information	about	CPU,	I/O
and	network	utilization,	including	the	number	of	open	network	connections	using	your	operating	system
utilities.

1246

Chapter	25

Advanced	Application	Development

25.2

Many	applications	need	to	generate	sequence	numbers	for	each	transaction.

a.

If	a	sequence	counter	is	locked	in	two-phase	manner,	it	can	become	a

concurrency	bottleneck.	Explain	why	this	may	be	the	case.

b.

Many	database	systems	support	built-in	sequence	counters	that	are	not

locked	in	two-phase	manner;	when	a	transaction	requests	a	sequence

number,	the	counter	is	locked,	incremented	and	unlocked.

i.

Explain	how	such	counters	can	improve	concurrency.

ii.

Explain	why	there	may	be	gaps	in	the	sequence	numbers	belonging

to	the	final	set	of	committed	transactions.

25.3

Suppose	you	are	given	a	relation	r(a,	b,	c).

a.

Give	an	example	of	a	situation	under	which	the	performance	of	equal-

ity	selection	queries	on	attribute	a	can	be	greatly	affected	by	how	r	is	clustered.

b.

Suppose	you	also	had	range	selection	queries	on	attribute	b.	Can	you	cluster	r	in	such	a	way	that	the
equality	selection	queries	on	r.a	and	the	range	selection	queries	on	r.b	can	both	be	answered	efficiently?
Explain	your	answer.

c.

If	clustering	as	above	is	not	possible,	suggest	how	both	types	of	queries	can	be	executed	efficiently	by
choosing	appropriate	indices.

25.4

When	a	large	number	of	records	are	inserted	into	a	relation	in	a	short	period	of	time,	it	is	often
recommended	that	all	indices	be	dropped,	and	recreated	after	the	inserts	have	been	completed.

a.

What	is	the	motivation	for	this	recommendation?

b.

Dropping	and	recreation	of	indices	can	be	avoided	by	bulk-updating	of

the	indices.	Suggest	how	this	could	be	done	efficiently	for	B+-tree	indices.

c.

If	the	indices	were	write-optimized	indices	such	as	LSM	trees,	would	this	advice	be	meaningful?

25.5

Suppose	that	a	database	application	does	not	appear	to	have	a	single	bottleneck;	that	is,	CPU	and	disk
utilization	are	both	high,	and	all	database	queues	are	roughly	balanced.	Does	that	mean	the	application
cannot	be	tuned	further?

Explain	your	answer.

25.6

Suppose	a	system	runs	three	types	of	transactions.	Transactions	of	type	A	run	at	the	rate	of	50	per
second,	transactions	of	type	B	run	at	100	per	second,	and	transactions	of	type	C	run	at	200	per	second.
Suppose	the	mix	of	transactions	has	25	percent	of	type	A,	25	percent	of	type	B,	and	50	percent	of	type	C.

Exercises

1247

a.

What	is	the	average	transaction	throughput	of	the	system,	assuming

there	is	no	interference	between	the	transactions?

b.

What	factors	may	result	in	interference	between	the	transactions	of	different	types,	leading	to	the
calculated	throughput	being	incorrect?

25.7

Suppose	an	application	programmer	was	supposed	to	write	a	query

select	*

from	r	natural	left	outer	join	s;

on	relations	r(A,	B)	and	s(B,	C),	but	instead	wrote	the	query	select	*

from	r	natural	join	s;

a.

Give	sample	data	for	r	and	s	on	which	both	queries	would	give	the	same	result.

b.

Give	sample	data	for	r	and	s	where	the	two	queries	would	give	different	results,	thereby	exposing	the
error	in	the	query,

25.8

List	some	benefits	and	drawbacks	of	an	anticipatory	standard	compared	to	a	reactionary	standard.

25.9

Describe	how	LDAP	can	be	used	to	provide	multiple	hierarchical	views	of	data,	without	replicating	the
base-level	data.

Exercises

25.10

Database	tunning:

a.

What	are	the	three	broad	levels	at	which	a	database	system	can	be	tuned	to	improve	performance?

b.

Give	two	examples	of	how	tuning	can	be	done	for	each	of	the	levels.

25.11

When	carrying	out	performance	tuning,	should	you	try	to	tune	your	hardware	(by	adding	disks	or
memory)	first,	or	should	you	try	to	tune	your	transactions	(by	adding	indices	or	materialized	views)	first.
Explain	your	answer.

25.12

Suppose	that	your	application	has	transactions	that	each	access	and	update	a	single	tuple	in	a	very	large
relation	stored	in	a	B+-tree	file	organization.	Assume	that	all	internal	nodes	of	the	B+-tree	are	in	memory,
but	only	a	very	small	fraction	of	the	leaf	pages	can	fit	in	memory.	Explain	how	to	calculate	the	minimum
number	of	disks	required	to	support	a	workload	of	1000	transactions

1248

Chapter	25

Advanced	Application	Development

per	second.	Also	calculate	the	required	number	of	disks,	using	values	for	disk	parameters	given	in	Section
12.3.

25.13

What	is	the	motivation	for	splitting	a	long	transaction	into	a	series	of	small	ones?	What	problems	could

arise	as	a	result,	and	how	can	these	problems	be	averted?

25.14

Suppose	the	price	of	memory	falls	by	half,	and	the	speed	of	disk	access	(number	of	accesses	per	second)
doubles,	while	all	other	factors	remain	the	same.

What	would	be	the	effect	of	this	change	on	the	5-minute	and	1-minute	rule?

25.15

List	at	least	four	features	of	the	TPC	benchmarks	that	help	make	them	realistic	and	dependable	measures.

25.16

Why	was	the	TPC-D	benchmark	replaced	by	the	TPC-H	and	TPC-R	bench-

marks?

25.17

Explain	what	application	characteristics	would	help	you	decide	which	of	TPC-C,	TPC-H,	or	TPC-R	best
models	the	application.

25.18

Given	that	the	LDAP	functionality	can	be	implemented	on	top	of	a	database	system,	what	is	the	need	for
the	LDAP	standard?

Further	Reading

[Harchol-Balte	(2013)]	provides	textbook	coverage	of	queuing	theory	from	a	computer	science
perspective.

Information	about	tuning	support	in	IBM	DB2,	Oracle	and	Microsoft	SQL	Server	may	be	found	in	their
respective	manuals	online,	as	well	as	in	numerous	books.	[Shasha	and	Bonnet	(2002)]	provides	detailed
coverage	of	database	tuning	principles.	[O’Neil	and	O’Neil	(2000)]	provides	a	very	good	textbook
coverage	of	performance	measurement	and	tuning.	The	5-minute	and	1-minute	rules	are	described	in
[Gray	and	Graefe	(1997)],	[Graefe	(2008)],	and	[Appuswamy	et	al.	(2017)].

An	early	proposal	for	a	database-system	benchmark	(the	Wisconsin	benchmark)	was	made	by	[Bitton	et	al.
(1983)].	The	TPC-A,	TPC-B,	and	TPC-C	benchmarks	are	described	in	[Gray	(1991)].	An	online	version	of	all
the	TPC	benchmark	descriptions,	as	well	as	benchmark	results,	is	available	on	the	World	Wide	Web	at	the
URL

www.tpc.org;	the	site	also	contains	up-to-date	information	about	new	benchmark	proposals.

The	XData	system	(www.cse.iitb.ac.in/infolab/xdata)	provides	tools	for	generating	test	data	to	catch	errors
in	SQL	queries,	as	well	as	for	grading	student	SQL	queries.

A

number

of

standards

documents,

including

several

parts

of

the

SQL

standard,

can

be

found

on

the

ISO/IEC

website

(standards.iso.org/ittf/PubliclyAvailableStandards/index.html).

Information

about	ODBC,	OLE-DB,	ADO,	and	ADO.NET	can	be	found	on	the	web	site

Further	Reading

1249

www.microsoft.com/data.	A	wealth	of	information	on	XML-based	standards	and	tools	is	available	online	on
the	web	site	www.w3c.org.

Bibliography

[Appuswamy	et	al.	(2017)]

R.	Appuswamy,	R.	Borovica,	G.	Graefe,	and	A.	Ailamaki,	“The

Five	minute	Rule	Thirty	Years	Later	and	its	Impact	on	the	Storage	Hierarchy”,	In	Proceedings	of	the	7th
International	Workshop	on	Accelerating	Analytics	and	Data	Management	Systems	Using	Modern
Processor	and	Storage	Architectures	(2017).

[Bitton	et	al.	(1983)]

D.	Bitton,	D.	J.	DeWitt,	and	C.	Turbyfill,	“Benchmarking	Database

Systems:	A	Systematic	Approach”,	In	Proc.	of	the	International	Conf.	on	Very	Large	Databases	(1983),
pages	8–19.

[Graefe	(2008)]

G.	Graefe,	“The	Five-Minute	Rule	20	Years	Later:	and	How	Flash	Memory

Changes	the	Rules”,	ACM	Queue,	Volume	6,	Number	4	(2008),	pages	40–52.

[Gray	(1991)]

J.	Gray,	The	Benchmark	Handbook	for	Database	and	Transaction	Processing	Systems,	2nd	edition,	Morgan
Kaufmann	(1991).

[Gray	and	Graefe	(1997)]

J.	Gray	and	G.	Graefe,	“The	Five-Minute	Rule	Ten	Years	Later,

and	Other	Computer	Storage	Rules	of	Thumb”,	SIGMOD	Record,	Volume	26,	Number	4

(1997),	pages	63–68.

[Harchol-Balte	(2013)]

M.	Harchol-Balte,	Performance	Modeling	and	Design	of	Computer	Sys-

tems:	Queueing	Theory	in	Action,	Cambridge	University	Press	(2013).

[O’Neil	and	O’Neil	(2000)]

P.	O’Neil	and	E.	O’Neil,	Database:	Principles,	Programming,	Per-

formance,	2nd	edition,	Morgan	Kaufmann	(2000).

[Shasha	and	Bonnet	(2002)]

D.	Shasha	and	P.	Bonnet,	Database	Tuning:	Principles,	Experi-

ments,	and	Troubleshooting	Techniques,	Morgan	Kaufmann	(2002).

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

C	H	A	P	T	E	R	26

Blockchain	Databases

At	the	most	basic	level,	a	blockchain	provides	an	alternative	data	format	for	storing	a	database,	and	its
paradigm	for	transaction	processing	enables	a	high	level	of	decentralization.

A	major	application	of	blockchain	technology	is	in	the	creation	of	digital	ledgers.

A	ledger	in	the	financial	world	is	a	book	of	financial	accounts,	that	keeps	track	of	transactions.	For
example,	each	time	you	deposit	or	withdraw	money	from	your	account,	an	entry	is	added	to	a	ledger
maintained	by	the	bank.	Since	the	ledger	is	maintained	by	the	bank,	a	customer	of	the	bank	implicitly
trusts	the	bank	to	not	cheat	by	adding	unauthorized	transactions	to	the	ledger,	such	as	an	unauthorized
withdrawal,	or	modifying	the	ledger	by	deleting	transactions	such	as	a	deposit.

Blockchain-based	distributed	ledgers	maintain	a	ledger	cooperatively	among	several	parties,	in	such	a
way	that	each	transaction	is	digitally	signed	as	proof	of	authenticity,	and	further,	the	ledger	is	maintained
in	such	a	way	that	once	entries	are	added,	they	cannot	be	deleted	or	modified	by	one	party,	without
detection	by	others.

Blockchains	form	a	key	foundation	of	Bitcoin	and	other	cryptocurrencies.	Although	much	of	the
technology	underlying	blockchains	was	initially	developed	in	the	1980s	and	1990s,	blockchain	technology
gained	widespread	popular	attention	in	the	2010s	as	a	result	of	boom	(and	subsequent	bust)	in	Bitcoin
and	other	cryptocurrencies.

However,	beyond	the	many	cryptocurrency	schemes,	blockchains	can	provide	a	secure	data-storage	and
data-processing	foundation	for	business	applications,	without	requiring	complete	trust	in	any	one	party.

For	example,	consider	a	large	corporation	and	its	suppliers,	all	of	whom	maintain	data	about	where
products	and	components	are	located	at	any	time	as	part	of	the	manufacturing	process.	Even	if	the
organizations	are	presumed	trustworthy,	there	may	a	situation	where	one	of	them	has	a	strong	incentive
to	cheat	and	rewrite	the	record.	A	blockchain	can	help	protect	from	such	fraudulent	updates.	Ownership
documents,	such	as	real-estate	deeds,	are	another	example	of	the	potential	for	blockchain	use.	Criminals
may	commit	real-estate	fraud	by	creating	fake	ownership	deeds,	which	could	allow	them	to	sell	a	property
that	they	do	not	own,	or	could	allow	the	same	property	to	be	sold	multiple	times	by	an	actual	owner.
Blockchains	can	help	verify	the	authenticity	of	digitally	represented	ownership	documents;	blockchains
can	also	ensure	that	once	an	owner	has	sold	a	property,	the	1251

1252

Chapter	26

Blockchain	Databases

owner	cannot	sell	it	again	to	another	person	without	getting	detected.	The	security	provided	by	the
blockchain	data	structure	makes	it	possible	to	allow	the	public	to	view	these	real-estate	records	without
putting	them	at	risk.	We	describe	other	applications	for	blockchains	later	in	the	chapter.

In	this	chapter,	we	shall	look	at	blockchain	from	a	database	perspective.	We	shall	identify	the	ways	in
which	blockchain	databases	differ	from	the	traditional	databases	we	have	studied	elsewhere	in	this	book
and	show	how	these	distinguishing	features	are	implemented.	We	shall	consider	alternatives	to	Bitcoin-
style	algorithms	and	implementation	that	are	more	suited	to	an	enterprise	database	environment.	With
this	database-oriented	focus,	we	shall	not	consider	the	financial	implications	of	cryptocurrencies,	nor	the
issues	of	managing	one’s	holding	of	such	currencies	via	a	cryptocurrency	wallet	or	exchange.

26.1

Overview

Before	we	study	blockchains	in	detail,	we	first	give	an	overview	of	cryptocurrencies,	which	have	driven
the	development	and	usage	of	blockchains.	We	note,	however,	that	blockchains	have	many	uses	beyond
cryptocurrencies.

Traditional	currencies,	also	known	as	“fiat	currencies”	are	typically	issued	by	a	central	bank	of	a	country,
and	guaranteed	by	the	government	of	that	country.	Currency	notes	are	at	one	level	just	a	piece	of	paper;
the	only	reason	they	are	of	value	is	that	the	government	that	issues	the	currency	guarantees	the	value	of
the	currency,	and	users	trust	the	government.	Today,	although	financial	holdings	continue	to	be
denominated	in	terms	of	a	currency,	most	of	the	financial	holdings	are	not	physically	present	as	currency
notes;	they	are	merely	entries	in	the	ledger	of	a	bank	or	other	financial	institution.

Users	of	the	currency	are	forced	to	trust	the	organization	that	maintains	the	ledger.

A	cryptocurrency	is	a	currency	created	purely	online,	and	recorded	in	a	way	that	does	not	require	any	one
organization	(or	country)	to	be	totally	trusted.	This	term	arises	from	the	fact	that	any	such	scheme	has	to
based	on	encryption	technologies.	Since	any	digital	information	can	be	copied	easily,	unlike	currency
notes,	any	cryptocurrency	scheme	must	be	able	to	prevent	“double	spending”	of	money.	To	solve	this
problem,	cryptocurrencies	use	ledgers	to	record	transactions.	Further,	the	ledgers	are	stored	a	secure,
distributed	infrastructure,	with	no	requirement	to	trust	any	one	party.	These	two	key	concepts,
decentralization	and	trustlessness,	are	fundamental	to	cryptocurrencies.

Cryptocurrenies	typically	aim,	like	regular	currency,	and	unlike	credit	card	or	debit	card	transactions,	to
provide	transaction	anonymity,	to	preserve	the	privacy	of	users	of	the	currency.	However,	since
cryptocurrency	blockchains	are	public	data	analytics	may	be	used	to	compromise	or	limit	anonymity.

Bitcoin,	which	was	the	first	successful	cryptocurrency,	emerged	with	the	publication	of	a	paper	by	Satoshi
Nakamoto1	in	2008	and	the	subsequent	publication	of	the	open-source	Bitcoin	code	in	2009.	The	ideas	in
the	original	bitcoin	paper	solved	1Satoshi	Nokamoto	is	a	pseudonym	for	a	person	or	group	that
anonymously	created	Bitcoin.

26.1

Overview

1253

a	number	of	problems,	and	thereby	allowed	cryptocurrencies,	which	had	earlier	been	considered
impractical,	to	become	a	reality.

However,	the	underlying	concepts	and	algorithms	in	many	cases	go	back	decades	in	their	development.
The	brilliance	of	Nakamoto’s	work	was	a	combination	of	innovation	and	well-architected	use	of	prior
research.	The	successes	of	Bitcoin	prove	the	value	of	this	contribution,	but	the	target	—	an	anonymous,
trustless,	fully	distributed	concurrency	—	drove	many	technical	decisions	in	directions	that	work	less	well
in	a	database	setting.	The	Further	Reading	section	at	the	end	of	the	chapter	cites	key	historical	papers	in
the	development	of	these	ideas.

At	its	most	basic	level,	a	blockchain	is	a	linked	list	of	blocks	of	data	that	can	be	thought	of	as	constituting
a	log	of	updates	to	data.	What	makes	blockchain	technology	interesting	is	that	blockchains	can	be
managed	in	a	distributed	manner	in	such	a	way	that	they	are	highly	tamper	resistant,	and	cannot	be	easily
modified	or	manipulated	by	any	one	participant,	except	by	appending	digitally	signed	records	to	the
blockchain.

In	a	business	setting,	trustless	distributed	control	is	valuable,	but	absolute	anonymity	runs	counter	to
both	principles	of	accounting	and	regulatory	requirements.

This	leads	to	two	main	scenarios	for	the	use	of	blockchains.	Bitcoin’s	blockchain	is	referred	to	as	a	public
blockchain,	since	it	allows	any	site	to	join	and	participate	in	the	tasks	of	maintaining	the	blockchain.	In
contrast,	most	enterprise	blockchains	are	more	restricted	and	referred	to	as	permissioned	blockchains.	In
a	permissioned	blockchain,	participation	is	not	open	to	the	public.	Access	is	granted	by	a	permissioning
authority,	which	may	be	an	enterprise,	a	consortium	of	enterprises,	or	a	government	agency.

Bitcoin	introduced	a	number	of	ideas	that	made	public	blockchains	practical,	but	these	have	a	significant
cost	in	terms	of	CPU	power	(and	thereby,	electrical	power)	needed	to	run	the	blockchain,	as	well	as
latencies	in	processing	transactions.	By	relaxing	Bitcoin’s	strong	assumptions	about	trustlessness	and
anonymity,	it	is	possible	to	overcome	many	of	the	inefficiencies	and	high	latencies	of	the	Bitcoin	model
and	design	blockchains	that	further	the	goals	of	enterprise	data	management.

In	this	chapter,	we	begin	by	looking	at	the	classic	blockchain	structure	as	used	in	Bitcoin	and	use	that	to
introduce	the	key	distinguishing	properties	of	a	blockchain.

Achieving	many	of	these	properties	relies	upon	one-way	cryptographic	hash	functions.

These	hash	functions	are	quite	different	from	those	used	in	Chapter	24	as	a	means	of	indexing	databases.
Cryptographic	hash	functions	need	to	have	some	specific	mathematical	properties	such	as	the	following:
given	a	data	value	x	and	a	hash	function	h,	it	must	be	relatively	easy	to	compute	h(x)	but	virtually
impossible	to	find	x	given	h(x).

When	a	blockchain	is	stored	distributed	across	multiple	systems,	an	important	issue	is	to	ensure	that	the
participating	systems	agree	on	what	are	the	contents	of	the	blockchain,	and	what	gets	added	to	it	at	each
step.	When	participants	trust	each	other,	but	may	be	vulnerable	to	failure,	consensus	techniques	that	we
studied	earlier	in	Section	23.8	can	be	used	to	ensure	that	all	participants	agree	on	the	contents	of	a	log
(and	a	blockchain	is,	at	its	core,	a	log).	However,	reaching	agreement	on	what	data	get	added	to	a
blockchain	is	much	more	challenging	when	participants	in	the	blockchain	do	not	trust	each	other	and
have	no	centralized	control.	The	basic	consensus	algorithms	are

1254

Chapter	26

Blockchain	Databases

not	applicable	in	such	a	setting.	For	example,	an	attacker	could	create	a	large	number	of	systems,	each	of
which	joins	the	blockchain	as	a	participant;	the	attacker	could	thereby	control	a	majority	of	the
participating	systems.	Any	decision	based	on	a	majority	can	then	be	controlled	by	the	attacker,	who	can
force	decisions	that	can	tamper	with	the	contents	of	the	blockchain.	The	tamper	resistance	property	of	the
blockchain	would	then	be	compromised.

We	begin	by	describing	the	energy-intensive	approach	of	Bitcoin,	but	we	then	consider	a	variety	of
alternative,	more	efficient	approaches	used	in	other	cryptocurrencies.

Finally,	we	consider	approaches	based	on	Byzantine-consensus	algorithms,	which	are	consensus
algorithms	that	are	resistant	to	some	fraction	of	the	participating	nodes	not	just	failing,	but	also	lying	and
attempting	to	disrupt	consensus.	Byzantine	consensus	is	well-suited	to	an	enterprise	blockchain
environment,	and	can	be	used	if	the	blockchain	is	permissioned,	that	is,	some	organization	controls	who
can	have	permission	to	access	the	blockchain.	Byzantine	consensus	is	an	old	problem	and	solutions	have
been	around	for	many	years.	However,	the	special	constraints	of	blockchain	databases	have	led	to	some
newer	approaches	to	this	problem.	References	to	more	details	on	Byzantine	consensus	techniques	may	be
found	in	the	Further	Reading	section	at	the	end	of	the	chapter.

Blockchain	databases	store	more	than	just	currency-based	debit-credit	transactions.	Like	any	database,

they	may	store	a	variety	of	types	of	data	about	the	enterprise.

A	traditional	blockchain	data	organization	makes	it	difficult	to	retrieve	such	data	efficiently,	but	pairing	a
blockchain	with	a	traditional	database	or	building	the	blockchain	on	top	of	a	database	can	enable	faster
query	processing.	We	shall	explore	a	variety	of	means	of	speeding	up	not	only	queries	but	also	update
transactions,	both	within	the	blockchain	itself	and	by	performing	certain	operations	“off	chain”	and
adding	them	in	bulk	to	the	blockchain	at	a	later	time.

After	covering	blockchain	algorithms,	we	shall	explore	(in	Section	26.8)	some	of	the	most	promising
applications	of	blockchain	databases.

26.2

Blockchain	Properties

At	its	most	basic	level,	a	blockchain	is	a	linked	list	of	blocks	of	data.	A	distinguishing	feature	of	the
blockchain	data	structure	is	that	the	pointers	in	the	linked	list	include	not	only	the	identifier	of	the	next
older	block,	but	also	a	hash	of	that	older	block.	This	structure	is	shown	in	Figure	26.1.	The	initial	block,	or
genesis	block,	is	shown	as	block	0	in	the	figure.	It	is	set	up	by	the	creator	of	the	blockchain.	Each	time	a
block	is	added	to	the	chain,	it	includes	the	pair	of	values	(pointer-to-previous-block,	hash-of-previous-
block).	As	a	result,	any	change	made	to	block	is	easily	detected	by	comparing	a	hash	of	that	block	to	the
hash	value	contained	in	the	next	block	in	the	chain.	The	hash	value	in	the	next	block	could	be	changed,
but	then	the	block	after	that	would	also	have	to	be	changed,	and	so	on.

26.2

Blockchain	Properties

1255

h(block	0)

h(block	n	-	1)

.	.	.

data

data

data

block	0

block	1

block	n

genesis	block

Figure	26.1	Blockchain	data	structure.

This	hash-validated	pointer	format	in	a	blockchain	makes	tampering	with	a	blockchain	hard.	To	make
tampering	virtually	impossible,	it	is	necessary	to	ensure	that	any	tampering	with	the	blockchain	is	easily
detected	and	that	the	correct	version	of	the	blockchain	is	easily	determined.	To	achieve	this,	the	hash
function	must	have	certain	mathematical	properties	that	we	shall	discuss	shortly.	Further,	the	chain	itself
must	be	replicated	and	distributed	among	many	independent	nodes	so	that	no	single	node	or	small	group
of	nodes	can	tamper	with	the	blockchain.	Since	the	blockchain	is	replicated	across	multiple	nodes,	a
distributed	consensus	algorithm	needs	to	be	used	to	maintain	agreement	regarding	the	correct	current
state	of	the	blockchain.	In	this	way,	even	if	some	nodes	try	to	tamper	with	the	blockchain	contents,	as	long
as	a	majority	are	honest,	making	decisions	based	on	a	majority	vote	can	ensure	the	integrity	of	the
blockchain.

The	above	approach	works	if	the	set	of	nodes	that	participates	in	the	blockchain	is	controlled	in	some
fashion	that	makes	it	difficult	for	an	adversary	to	control	a	majority	of	the	nodes.	However,	such	control
goes	against	the	goal	of	not	have	any	central	control,	and	is	viewed	as	unacceptable	in	public	blockchains
such	as	Bitcoin,	which	are	based	on	public	blockchains	in	which	the	number	of	participating	nodes	may
change	continuously.	Any	computer	may	download	the	blockchain	and	attempt	to	add	blocks	(the	code	for
implementing	blockchains	is	available	in	open	source).	As	a	result,	a	majority-based	approach	can	be
overwhelmed	by	an	adversary	who	sets	up	a	large	number	of	low-cost	computers	as	nodes.	Such	an	attack
is	called	a	Sybil	attack.

The	way	in	which	consensus	is	achieved	among	independent	nodes	varies	among	blockchains.	The
variations	address	trade-offs	between	performance	(latency	and	throughput)	and	robustness	to
adversarial	attacks	on	the	consensus	mechanism,	including	Sybil	attacks.	When	we	addressed	distributed
consensus	in	Chapter	23,	we	assumed	that	a	single	organization	controlled	the	entire	distributed	system,
and	so	the	consensus	algorithm	had	to	tolerate	only	possible	failures	of	nodes	or	the	network	that	were
fail-stop,	where	participants	do	not	behave	in	an	adversarial	manner.

In	a	typical	blockchain	application,	the	chain	is	shared	among	multiple	independent	organizations.	In	the
extreme	case,	for	example	Bitcoin,	anyone	can	set	up	a	node	and	participate,	possibly	for	nefarious
purposes.	This	implies	that	the	types	of	failure	that	may	occur	are	not	just	cases	where	a	device	or	system
stops	working,	but	also	cases

1256

Chapter	26

Blockchain	Databases

where	a	system	remains	operational	but	behaves	in	an	adversarial	manner.	In	most	enterprise	settings,
the	blockchain	is	permissioned,	providing	some	control	over	the	set	of	participants,	but	still	without	direct
controls	to	prevent	malicious	behavior.

A	node	participating	in	a	blockchain	fully	needs	to	participate	in	the	consensus	mechanism	and	maintain
its	own	replica	of	the	blockchain.	Such	a	node	is	called	a	full	node.	In	some	applications,	there	is	a	need
for	low-cost	nodes	that	submit	updates	to	the	blockchain,	but	do	not	have	the	storage	or	computational
power	to	participate	in	the	consensus	process.	Such	a	node	is	called	a	light	node.

We	discuss	blockchain	consensus	algorithms	in	detail	in	Section	26.4.	Blockchain	consensus	algorithms
can	be	placed	into	one	of	several	broad	categories:

•	Proof	of	work:	Proof	of	work,	which	is	described	in	detail	in	Section	26.4.1,	provides	a	solution	to	Sybil
attacks	by	making	it	very	expensive	for	an	attacker	to	control	a	majority	of	the	nodes.	Specifically,	the
nodes	agree	that	the	next	block	on	the	blockchain	will	be	added	by	the	first	node	to	solve	a	certain	hard
mathematical	problem.	This	is	referred	to	as	mining	a	block.	Proof-of-work	algorithms	are	robust	to
adversarial	behavior	as	long	as	the	adversary	does	not	control	more	than	half	the	computing	power	in	the
entire	network.	To	ensure	this	requirement,	the	problems	are	made	intentionally	hard,	and	require	a	lot	of
computational	effort.

Thus,	robustness	comes	at	the	price	of	a	huge	amount	of	otherwise	useless	computation	along	with	the
price	of	electricity	needed	to	carry	out	the	computation.

•	Proof	of	stake:	Proof	of	stake,	which	is	described	in	Section	26.4.2,	provides	another	solution	to	Sybil
attacks.	Here,	the	nodes	agree	to	select	the	next	node	to	add	a	block	to	the	blockchain	based	on	an
amount	of	the	blockchain’s	currency	owned	or	held	in	reserve	by	a	node.

•	Byzantine	consensus:	Byzantine	consensus	does	not	solve	the	problem	of	Sybil	attacks,	but	can	be	used
in	non-public	blockchains,	where	entry	of	nodes	to	the	system	can	be	controlled.	While	some	nodes	may
behave	maliciously,	it	is	assumed	that	a	substantial	majority	are	honest.	In	Byzantine	consensus,
described	in	Section	26.4.3,	the	next	node	to	add	a	block	to	the	blockchain	is	decided	by	an	algorithm
from	the	class	of	algorithms	referred	to	as	Byzantine-consensus	algorithms.

Like	the	basic	consensus	algorithms	we	described	earlier	in	Section	23.8,	these	algorithms	achieve
agreement	by	message	passing,	but	unlike	those	algorithms,	these	algorithms	can	tolerate	some	number
of	nodes	being	malicious	by	either	disrupting	consensus	or	trying	to	cause	an	incorrect	consensus	to	be
reached.	This	approach	requires	significantly	more	messages	to	be	exchanged	than	in	the	case	of	the
basic	consensus	algorithms	of	Section	26.4.3,	but	this	is	a	worthwhile	trade-off	for	the	ability	for	a	system
to	work	correctly	in	the	presence	of	a	certain	number	of	malicious	nodes.

•	Other	approaches:	There	are	several	other	less	widely	used	consensus	mechanisms,	some	of	which	are
variants	of	the	preceding	mechanisms.	These	include	proof	of

26.2

Blockchain	Properties

1257

activity,	proof	of	burn,	proof	of	capacity,	and	proof	of	elapsed	time.	See	the	Further	Reading	section	at	the
end	of	the	chapter	for	details.

Another	way	to	damage	a	blockchain	besides	attempting	to	alter	blocks	is	to	add	a	new	block	to	a	block
other	than	the	most	recent	one.	This	is	called	a	fork.	Forking	may	occur	due	to	malicious	activity,	but
there	are	two	sources	of	nonmalicious	forks:	1.	Two	distinct	nodes	may	add	a	new	block	after	the	most
recent	block,	but	they	do	it	so	close	together	in	time	that	both	are	added	successfully,	thus	creating	a
forked	chain.	These	accidental	forks	are	resolved	by	a	protocol	rule	that	nodes	always	attempt	to	add
blocks	to	the	end	of	the	longest	chain.	This	probabilistically	limits	these	accidental	forks	to	a	short	length.
The	blocks	on	the	shorter	forks	are	said	to	be	orphaned,	and	the	contents	of	those	blocks	will	get	inserted
on	the	real	chain	later	if	those	contents	are	not	already	there.

2.	A	majority	of	blockchain	users	may	agree	to	fork	the	blockchain	in	order	to	change	some	aspect	of	the
blockchain	protocol	or	data	structure.	This	is	a	rare	event	and	one	that,	when	it	has	occurred	in	major
blockchains,	has	caused	major	controversy.	Such	a	fork	is	said	to	be	a	soft	fork	if	prior	blocks	are	not
invalidated	by	the	fork.	That	is,	the	old	version	of	the	blockchain	software	will	recognize	blocks	from	the
new	version	as	valid.	This	permits	a	gradual	transition	from	the	old	version	of	the	blockchain	software	to
the	new	version.	In	a	hard	fork,	the	old	version	of	the	blockchain	software	will	deem	blocks	from	the	new
version	to	be	invalid.	After	a	hard	fork,	if	the	old	version	of	the	blockchain	software	remains	in	use,	it	will
lead	to	a	separate	blockchain	with	different	contents.

Because	of	the	possibility	of	orphaned	blocks,	it	may	be	necessary	to	wait	for	several	additional	blocks	to
be	added	before	it	is	safe	to	assume	s	block	will	not	be	orphaned.

Note	26.1	on	page	1258	presents	a	few	examples	of	notable	blockchain	forks.

So	far,	we	have	not	said	much	about	the	actual	data	in	the	blocks.	The	contents	of	blocks	vary	by
application	domain.	In	a	cryptocurrency	application,	the	most	common	data	found	in	blocks	are	basic
currency-transfer	transactions.	Since	any	node	can	add	a	block,	there	needs	to	be	a	way	to	ensure	that
transactions	entered	are	in	fact	genuine.	This	is	achieved	via	a	technique	called	a	digital	signature	that
allows	a	user	to

“sign”	a	transaction	and	allows	every	node	to	verify	that	signature.	This	prevents	fake	transactions	from
being	added	to	the	chain	and	prevents	participants	in	the	transaction	from	subsequently	denying	their
involvement	in	the	transaction.	This	latter	property	is	referred	to	as	irrefutability.

Transactions	are	broadcast	to	all	nodes	participating	in	the	blockchain;	when	a	node	adds	a	block	to	the
chain,	the	block	contains	all	transactions	received	by	the	node	that	have	not	already	been	added	to	the
chain.

The	users	who	submit	transactions	may	be	known	to	the	blockchain	administrator	in	a	permissioned
blockchain,	but	in	a	public	blockchain	like	Bitcoin,	there	is	no	direct

1258

Chapter	26

Blockchain	Databases

Note	26.1	Blockchain	Fork	Examples

There	have	been	several	notable	forks	of	major	blockchains.	We	list	a	few	here.

•	Hard	fork:	Bitcoin/Bitcoin	Cash:	Bitcoin’s	built-in	block-size	limit	was	an	acknowledged	problem	in	the
Bitcoin	community	but	agreeing	on	a	solution	proved	controversial.	A	hard	fork	in	August	2017	created	a
new	cryptocurrency,	Bitcoin	Cash,	with	a	larger	block-size	limit.	Holders	of	Bitcoin	at	the	time	of	the	fork
received	an	equal	amount	of	Bitcoin	Cash,	and	thus	could	spend	both.

•	Soft	fork:	Bitcoin	SegWit:	SegWit	(short	for	segregated	witness)	moves	certain	transaction-signature
data	(referred	to	as	witness	data)	outside	the	block.	This	allows	more	transactions	per	block	while
retaining	the	existing	block	size	limit.

The	relocated	witness	data	are	needed	only	for	transaction	validation.	SegWit	was	introduced	in	August
2017	via	a	soft	fork.	This	was	a	soft	fork	because	the	old	blocks	were	recognized	as	valid	and	nodes	not
yet	upgraded	were	able	to	retain	a	high	degree	of	compatibility.

•	Hard	fork:	Ethereum/Ethereum	Classic:	This	fork	arose	from	the	failure	of	a	crowd-funded	venture-
capital	operation	running	as	a	smart	contract	in	the	Ethereum	blockchain.	Its	code	contained	a	design
flaw	that	enabled	a	hack	in	2016	that	stole	ether	valued	in	the	tens	of	millions	of	U.S.	dollars.	A
controversial	hard	fork	refunded	the	stolen	funds,	but	opponents	of	the	fork,	believing	in	the	inviolabilty
of	blockchain	immutability,	retained	the	original	blockchain	and	created	Ethereum	Classic.

connection	between	a	user	ID	and	any	real-world	entity.	This	anonymity	property	is	a	key	feature	of
Bitcoin,	but	its	value	is	diminished	because	of	the	possibility	to	tie	a	user	ID	to	some	off-chain	activity,
thereby	de-anonymizing	the	user.	De-anonymization	can	occur	if	the	user	enters	into	a	transaction	with	a
user	whose	user	ID	has	already	been	de-anonymized.	De-anonymization	can	occur	also	via	data	mining	on
the	blockchain	data	and	correlating	on-chain	activity	by	a	specific	user	ID	with	the	“real-world”	activity	of
a	specific	individual.

Finally,	a	feature	of	blockchains	is	the	ability	to	store	executable	code,	referred	to	as	a	smart	contract.	A
smart	contract	can	implement	complex	transactions,	take	action	at	some	point	in	the	future	based	on
specified	conditions,	and,	more	generally,	encode	a	complex	agreement	among	a	set	of	users.	Blockchains
differ	not	only	in	the	language	used	for	smart	contracts	but	also	in	the	power	of	the	language	used.	Many
are	Turing	complete,	but	some	(notably,	Bitcoin)	have	more	limited	power.	We	discuss	smart	contracts,
including	how	and	when	their	code	is	executed,	in	Section	26.6.

26.3

Achieving	Blockchain	Properties	via	Cryptographic	Hash	Functions

1259

We	summarize	this	discussion	by	listing	a	set	of	properties	of	blockchains:2

•	Decentralization:	In	a	public	blockchain,	control	of	the	blockchain	is	by	majority	consensus	with	no
central	controlling	authority.	In	a	permissioned	blockchain,	the	degree	of	central	control	is	limited,
typically	only	to	access	authorization	and	identity	management.	All	other	actions	happen	in	a
decentralized	manner.

•	Tamper	Resistance:	Without	gaining	control	over	a	majority	of	the	blockchain	network,	it	is	infeasible	to
change	the	contents	of	blocks.

•	Irrefutability:	Activity	by	a	user	on	a	blockchain	is	signed	cryptographically	by	the	user.	These
signatures	can	be	validated	easily	by	anyone	and	thus	prove	that	the	user	indeed	is	responsible	for	the
transaction.

•	Anonymity:	Users	of	a	blockchain	have	user	IDs	that	are	not	tied	directly	to	any	personally	identifying
information,	though	anonymity	may	be	compromised	indirectly.	Permissioned	blockchains	may	offer	only
limited	anonymity	or	none	at	all.

26.3

Achieving	Blockchain	Properties	via	Cryptographic	Hash

Functions

In	this	section,	we	focus	on	the	use	of	cryptographic	hash	functions	to	ensure	some	of	the	properties	of
blockchains.	We	begin	with	a	discussion	of	special	types	of	hash	function	for	which	it	is	infeasible	to
compute	the	inverse	function	or	find	hash	colli-sions.	We	show	how	these	concepts	extend	to	public-key
encryption,	which	we	first	saw	in	Section	9.9.	We	then	show	how	cryptographic	hash	functions	can	be
used	to	ensure	the	anonymity,	irrefutability,	and	tamper-resistance	properties.	We	show	how	hash
functions	are	used	in	mining	algorithms	later	in	Section	26.4.1.

26.3.1

Properties	of	Cryptographic	Hash	Functions

In	Section	14.5,	hash	functions	were	used	as	a	means	of	accessing	data.	Here,	we	use	hash	functions	for	a
very	different	set	of	purposes,	and	as	a	result,	we	shall	need	hash	functions	with	additional	properties
beyond	those	discussed	earlier.

A	hash	function	h	takes	input	from	some	(large)	domain	of	values	and	generates	as	its	output	a	fixed-
length	bit	string.	Typically,	the	cardinality	of	the	domain	is	much	larger	than	the	cardinality	of	the	range.

Furthermore,	the	hash	function	must	have	a	uniform	distribution,	that	is,	each	range	value	must	be
equally	probable	given	random	input.	A	hash	function	h	is	collision	resistant	if	it	is	infeasible	to	find	two
distinct	values	x	and	y	such	that	h(x)	=	h(y).	By	infeasible,	we	mean	that	there	is	strong	mathematical
2These	properties	pertain	to	blockchains,	but	not	to	most	cryptocurrency	exchanges.	Most	exchanges
hold	not	only	customers’	data	but	also	their	keys,	which	means	that	a	hack	against	the	exchange’s
database	can	result	in	theft	of	users’	private	keys.

1260

Chapter	26

Blockchain	Databases

evidence,	if	not	an	actual	proof,	that	there	is	no	way	to	find	two	distinct	values	x	and	y	such	that	h(x)	=	h(
y)	that	is	any	better	than	random	guessing.

The	current	standard	choice	of	a	cryptographic	hash	function	is	called	SHA-256,	a	function	that	generates
output	256	bits	in	length.	This	means	that	given	a	value	x,	the	chance	that	a	randomly	chosen	y	will	hash
to	the	same	value	to	which	x	hashes	is	1∕2256.	This	means	that	even	using	the	fastest	computers,	the
probability	of	a	successful	guess	is	effectively	zero.3

The	collision-resistance	property	contributes	to	the	tamper	resistance	of	a	blockchain	in	a	very	important
way.	Suppose	an	adversary	wishes	to	modify	a	block	B.	Since	the	next-newer	block	after	B	contains	not
only	a	pointer	to	B	but	also	the	hash	of	B,	any	modification	to	B	must	be	such	that	the	hash	of	B	remains
unchanged	after	the	modification	in	order	to	avoid	having	to	modify	also	that	next-newer	block.	Finding
such	a	modification	is	infeasible	if	the	hash	function	has	the	collision-resistance	property,	and,	therefore,
any	attempt	to	tamper	with	a	block	requires	changing	all	newer	blocks	in	the	chain.

A	second	important	property	that	we	require	of	a	cryptographic	hash	function	is	irreversibility,	which
means	that	given	only	h(x),	it	is	infeasible	to	find	x.	The	term	irreversible	comes	from	the	property	that,
given	x,	it	is	easy	to	compute	h(x),	but	given	only	h(x),	it	is	infeasible	to	find	h−1(h(x)).	The	next	section
shows	how	this	concept	is	applied	to	blockchains.4

26.3.2

Public-Key	Encryption,	Digital	Signatures,	and	Irrefutability

Section	9.9	described	two	categories	of	encryption	methods:	private-key	encryption,	where	users	share	a
secret	key,	and	public-key	encryption,	where	each	user	has	two	keys,	a	public	key	and	a	private	key.	The
main	problem	with	private-key	encryption	is	that	users	must	find	a	way	at	the	outset	to	share	the	secret
private	key.	Public-key	encryption	allows	users	who	have	never	met	to	communicate	securely.	This
property	of	public-key	encryption	is	essential	to	blockchain	applications	that	serve	arbitrarily	large
communities	of	users	worldwide.

Each	user	U	has	a	public	key	E	and	a	private	key	D	.	A	message	encrypted	using	E

i

i

i

i

can	be	decrypted	only	with	the	key	D	,	and,	symmetrically,	a	message	encrypted	using	i

D	can	be	decrypted	only	with	the	key	E	,	If	user	u	wishes	to	send	a	secure	message	x	to	i

i

1

U	,	U	encrypts	x	using	the	public	key	E	of	user	U	.	Only	U	has	the	key	D	to	decrypt	2

1

2

2

2

2

the	result.	For	this	to	work,	the	specific	function	used	must	have	the	irreversibility	property	so	that	given
a	public	key	E	it	is	infeasible	to	compute	the	inverse	function,	i

32256	is	larger	than	1077.	If	a	computer	could	make	one	guess	per	cycle	it	would	take	more	than	1067
seconds	to	have	a	50	percent	chance	of	guessing	correctly.	That	translates	to	more	than	1059	years.	To
put	that	in	context,	astronomers	predict	that	the	sun	will	have	grown	in	size	to	envelop	Earth	within	1010
years.

4This	property	has	long	been	used	for	storing	passwords.	Rather	than	storing	user	passwords	in	clear
text,	leaving	them	susceptible	to	being	stolen,	hashes	are	kept	instead.	Then,	when	a	user	logs	in	and
enters	a	password,	the	hash	of	that	password	is	computed	and	compared	to	the	stored	value.	Were	an
attacker	to	steal	the	hashes,	that	attacker	would	still	lack	the	actual	passwords,	and,	if	the	hash	function
in	use	has	the	irreversibility	property,	then	it	is	infeasible	for	the	hacker	to	reverse-engineer	the	user
passwords.

26.3

Achieving	Blockchain	Properties	via	Cryptographic	Hash	Functions

1261

that	is,	to	find	D	.	This	creates	a	mechanism	for	users	who	have	never	met	to	share	i

secret	messages.

Suppose	now	that	instead	of	seeking	to	send	a	secret	message,	user	U	wishes	to	1

“sign”	a	document	x.	User	U	can	encrypt	x	using	the	private	key	D	.	Since	this	key	is	1

1

private,	no	one	besides	U	could	have	computed	that	value,	but	anyone	can	verify	the	1

signature	by	decrypting	using	the	public	key	of	U	,	that	is,	E	.	This	provides	a	public	1

1

proof	that	user	U	has	signed	document	x.

1

In	blockchain	applications,	the	concept	of	a	digital	signature	is	used	to	validate	transactions.	Observe	that
the	linkage	of	blocks	in	the	blockchain,	using	a	pointer	and	the	hash	of	block	to	which	the	pointer	points,
means	that	a	user	can	sign	an	entire	chain	simply	by	signing	the	hash	of	the	newest	block	in	the	chain.
See	the	Further	Reading	section	at	the	end	of	the	chapter	for	references	to	the	mathematics	of	public-key
encryption.

26.3.3

Simple	Blockchain	Transactions

In	our	discussion	of	database	transactions	in	Chapter	17,	we	described	a	transaction	as	a	sequence	of
steps	that	read	and/or	write	data	values	from	the	database.	That	concept	of	a	transaction	is	based	on	a
data	model	where	there	is	a	single	store	of	data	values	that	are	accessed	by	transactions.	A	blockchain,	in
its	simplest	form,	is	more	closely	an	analog	of	a	database	log	in	that	it	records	the	actual	transactions	and
not	just	final	data	values.	That	analogy	breaks	down,	however,	in	most	blockchains,	because	transactions
are	either	fully	independent	or	depend	explicitly	on	each	other.	The	model	we	describe	here	corresponds
to	simple	Bitcoin	transactions.

As	an	example,	consider	two	users,	A	and	B,	and	assume	A	wishes	to	pay	B	10	units	of	some	currency.	If
this	were	a	traditional	banking	application	with	a	fiat	currency	such	as	the	U.S.	dollar,	the	transaction
implementing	this	transfer	would	read	A’s	account	balance,	decrement	it	by	10,	and	write	that	value	to
the	database,	and	then	read	B’s	balance,	add	10,	and	write	that	value	to	the	database.	In	a	blockchain-
based	system,	this	transaction	is	specified	in	a	different	manner.

Rather	than	referencing	data	items,	a	Bitcoin-style	blockchain	transaction	references	users	and	other
transactions.	Users	are	referenced	by	their	user	ID.	User	A	would	locate	a	transaction	or	set	of
transactions	from	past	history	T	,	T	,	…	,	T	that	paid	A	a	1

2

n

total	of	at	least	10	units	of	the	currency.	A	would	then	create	a	transaction	T	that	takes	the	output	(i.e.,
the	amount	paid	to	A)	by	those	transactions	as	input,	and	as	its	output	pays	10	units	of	the	currency	to	B
and	the	remainder	back	to	A	as	the	“change.”	The	original	transactions	T	,	T	,	…	,	T	are	then	treated	as
having	been	spent.

1

2

n

Thus,	each	transaction	indicates	how	much	money	has	been	paid	to	whom;	the	currency	balance	of	a	user
A	is	defined	by	a	set	of	unspent	transactions	that	have	paid	money	to	A.	Assuming	A	is	honest,	those
transactions’	outputs	(i.e.,	the	output	of	T	,	T	,	…	,	T)	would	not	have	been	spent	already	by	A	in	a
previous	transaction.	If	1

2

n

A	were	indeed	dishonest	and	T	attempted	to	spend	the	output	of	some	T	a	second	1

time,	T	would	be	a	double-spend	transaction.	Double-spend	transactions	and	other	in-

1262

Chapter	26

Blockchain	Databases

valid	transactions	are	detected	in	the	mining	process	that	we	discuss	in	Section	26.4,	by	keeping	track	of
all	unspent	transactions	and	verifying	that	each	transaction	T	that	i

is	input	to	T	is	unspent	when	T	is	executed.	After	T	is	executed,	each	such	T	is	treated	i

as	spent.

Ethereum	uses	a	different	and	more	powerful	model,	where	the	blockchain	maintains	state	(including
current	balance)	for	each	account	in	the	system.	Transactions	update	the	state,	and	can	transfer	funds
from	one	account	to	another.	The	model	used	in	Ethereum	is	discussed	in	Section	26.5.

A	Bitcoin-style	transaction	T	specifies:

•	The	input	transactions	T	,	T	,	…	,	T	.

1

2

n

•	The	set	of	users	being	paid	and	the	amount	to	be	paid	to	each,	which	in	our	example	is	10	units	to	B	and
the	remainder	to	A.5

•	A’s	signature	of	the	transaction,	to	prove	that	A	in	fact	authorized	this	transaction.

•	A	more	complex	transaction	might	include	executable	code	as	part	of	its	specification,	but	we	shall	defer
that	to	Section	26.6.

•	Data	to	be	stored	in	the	blockchain;	the	data	must	be	under	some	size,	which	is	blockchain	dependent.

The	transaction	model	described	here	is	quite	distinct	from	that	of	a	traditional	database	system	in	a
variety	of	ways,	including:

•	Existing	data	items	are	not	modified.	Instead,	transactions	add	new	information.

As	a	result,	not	only	the	current	state	but	also	the	history	leading	to	the	current	state	are	fully	visible.

•	Conflicts	in	transaction	ordering	are	prevented.	If	conflicts	occur,	the	transaction	causing	a	conflict	is
detected	and	deemed	invalid	as	part	of	the	process	of	adding	a	block	to	the	chain,	described	in	Section

26.4.

•	Although	the	blockchain	is	a	distributed	system,	a	transaction	is	created	locally.

It	becomes	part	of	the	permanent,	shared	blockchain	only	through	the	mining	process.	This	is,	in	effect,	a
form	of	deferred	transaction	commit.

•	Dependencies	of	one	transaction	upon	another	are	stated	explicitly	in	a	transaction	since	a	transaction
lists	those	transactions	whose	outputs	it	uses	as	input.	If	we	view	this	in	terms	of	the	precedence	graph
introduced	in	Chapter	17,	our	example	would	include	precedence-graph	edges	T	→	T	,	T	→	T	,	…	,	T	→	T	.

1

2

n

•	There	is	no	explicit	concurrency	control.	Much	of	the	need	for	concurrency	control	is	eliminated	by	the
maintenance	of	a	complete	history	and	the	direct	sequencing	5In	a	real	system,	there	may	also	be	a
payout	to	the	miner	of	the	transaction,	that	is,	the	node	that	adds	the	block	to	the	blockchain,	as	we
discuss	in	Section	26.4.

26.4

Consensus

1263

of	transactions.	Thus,	there	is	no	contention	for	the	current	value	of	any	database	data	item.

This	Bitcoin-based	example	is	not	the	only	way	blockchain	systems	manage	transaction	ordering.	We	shall
see	another	example	when	we	consider	smart	contracts	in	Section	26.6.

The	fact	that	data	may	be	stored	in	the	blockchain	makes	the	blockchain	more	than	just	a	tamper-
resistant	transaction	log.	It	allows	for	the	representation	of	any	sort	of	information	that	might	be	stored	in
a	traditional	database.	In	Section	26.5.2,	we	shall	see	how	this	capability,	particularly	in	blockchains	with
a	concept	of	blockchain	state,	makes	the	blockchain	a	true	database.

26.4

Consensus

Because	the	blockchain	is	replicated	at	all	participating	nodes,	each	time	a	new	block	is	added,	all	nodes
must	eventually	agree	first	on	which	node	may	propose	a	new	block	and	then	agree	on	the	actual	block
itself.

In	a	traditional	distributed	database	system,	the	consensus	process	is	simplified	by	the	fact	that	all
participants	are	part	of	one	controlling	organization.	Therefore,	the	distributed	system	can	implement
global	concurrency	control	and	enforce	two-phase	commit	to	decide	on	transaction	commit	or	abort.	In	a
blockchain,	there	may	be	no	controlling	organization,	as	is	the	case	for	a	public	blockchain	like	Bitcoin.	In
the	case	of	a	permissioned	blockchain,	there	may	be	a	desire	to	have	a	high	degree	of	decentralized
control	in	all	matters	except	the	actual	permissioning	of	participants,	which	is	managed	by	the
organization	controlling	the	permissioned	blockchain.

When	transactions	are	created,	they	are	broadcast	to	the	blockchain	network.

Nodes	may	collect	a	set	of	transactions	to	place	in	a	new	block	to	be	added	to	the	chain.

The	consensus	mechanisms	used	in	blockchains	fall	roughly	into	two	categories:	1.	Those	where	the	nodes
reach	agreement	on	one	node	to	add	the	next	block.	These	typically	use	Byzantine	consensus	(Section
26.4.3).

2.	Those	where	the	blockchain	is	allowed	temporarily	to	fork	by	allowing	multiple	nodes	to	create	a	block
following	the	last	block	in	the	chain.	In	this	approach,	nodes	attempt	to	add	blocks	to	the	longest	linear
subchain.	Those	blocks	not	on	that	longest	chain	are	orphaned	and	not	considered	part	of	the	blockchain.
To	avoid	a	massive	number	of	forks	being	created,	this	approach	limits	the	rate	at	which	blocks	may	be
added	so	that	the	expected	length	of	orphaned	branches	is	short.	These	typically	use	proof-of-work
(Section	26.4.1)	or	proof-of-stake	(Section	26.4.2).

A	node	that	adds	a	block	to	the	chain	must	first	check	that	block	of	transactions.	This	entails	checking
that:

1264

Chapter	26

Blockchain	Databases

•	Each	transaction	is	well-formed.

•	The	transaction	is	not	double-spending	by	using	as	input	(i.e.,	spending)	currency	units	that	have	been
used	already	by	a	prior	transaction.	To	do	so,	each	node	must	track	the	set	of	all	unspent	currency	units
(transactions),	and	look	up	this	set	for	each	transaction	T	to	ensure	that	all	the	currency	units	that	are
inputs	to	T	are	unspent.

•	The	transaction	is	correctly	signed	by	the	submitting	user.

When	a	node	is	selected	to	add	a	block	to	the	chain,	that	block	is	propagated	to	all	nodes,	and	each
checks	the	block	for	validity	before	adding	it	to	its	local	copy	of	the	chain.

We	next	need	to	consider	the	question	of	why	any	node	would	want	to	use	its	resources	for	mining,	that	is
to	carry	out	the	work	needed	to	append	blocks	to	the	chain.	Mining	is	a	service	to	the	blockchain	network
as	a	whole,	and	so	miners	are	paid	(in	the	currency	of	the	blockchain)	for	their	efforts.	There	are	two
sources	of	payment	to	miners:

1.	A	fee	paid	by	the	system	in	new	coins	in	the	currency	of	the	blockchain.

2.	A	fee	included	by	the	submitter	of	the	transaction.	In	this	case	the	output	of	the	transaction	includes	an
additional	output	representing	a	payment	to	the	miner	of	the	block	containing	the	transaction.	Users	are
incented	to	include	fees	since	such	fees	incent	miners	to	include	their	transactions	preferentially	in	new
blocks.

The	exact	means	of	paying	miners	varies	among	blockchains.

In	this	section,	we	look	at	various	ways	to	achieve	consensus.	We	begin	by	assuming	a	public	blockchain
and	describe	consensus	based	on	two	approaches:	proof-of-work	and	proof-of-stake.	We	then	consider
permissioned	blockchains	that	in	many	cases	choose	to	use	a	consensus	mechanism	based	on	Byzantine
consensus.

26.4.1

Proof	of	Work

Proof-of-work	consensus	is	designed	for	public	blockchains	in	which	the	number	of	participating	nodes	is
changing	continuously.	Any	computer	may	download	the	blockchain	and	attempt	to	add	blocks.	As	a
result,	a	majority-based	approach	can	be	overwhelmed	by	an	adversary	who	sets	up	a	large	number	of
low-cost	computers	as	nodes.	As	mentioned	earlier,	such	an	attack	is	called	a	Sybil	attack.	Instead,	proof-
of-work	requires	a	node	to	solve	a	computationally	hard,	but	not	infeasible,	mathematical	problem.	An
attacker	cannot	overwhelm	a	blockchain	network	simply	by	adding	inexpensive	nodes.

Rather,	the	attacker	would	need	to	have	access	to	computation	capacity	that	forms	a	majority	of	the
network’s	total	computation	capacity,	a	task	that	is	much	more	difficult	and	costly	than	launching	a	Sybil
attack.

26.4

Consensus

1265

The	computationally	hard	problem	is	based	on	the	concept	of	cryptographic	hashing.	A	node	that	wishes
to	mine	a	block	B	as	the	next	block	needs	to	find	a	value,	called	a	nonce,	that,	when	concatenated	to	B
and	the	hash	of	the	previous	block,	hashes	to	a	value	less	than	a	preset	target	value	specified	for	the
blockchain.	The	nonce	is	typically	a	32-bit	value.	If	the	target	is	set	very	low,	say	to	4,	and	assuming	the
usual	256-bit	hash,	a	miner	would	have	only	a	1∕2254	chance	of	succeeding	for	a	single	choice	for	the
nonce.

If	the	target	were	set	very	high,	say	to	2255,	the	miner	would	have	a	50	percent	chance	of	success.
Blockchain	implementations	are	designed	to	vary	the	target	so	as	to	control	the	rate	of	mining	of	blocks
across	the	whole	system.	This	variability	allows	the	system	to	adjust	as	computation	power	increases
whether	due	to	hardware	advances	or	due	to	additional	nodes	joining	the	network.	The	target	times	vary
for	different	blockchains.

Bitcoin	targets	having	some	node	in	the	system	successfully	mine	a	block	every	10

minutes.	Ethereum	targeted	a	mining	time	of	10	to	15	seconds	with	its	proof-of-work	mechanism.	As	of
late	2018,	Ethereum	is	moving	to	a	proof-of-stake	mechanism	and	is	expected	to	target	a	slightly	faster
rate.	While	faster	may	appear	to	be	better,	note	that	if	mining	occurs	at	a	faster	rate	than	the	time	it	takes
to	propagate	a	new	block	throughout	the	network,	the	probability	of	forks	and	orphaned	blocks	increases.

Now	that	we	have	seen	how	proof-of-work	mining	works,	let	us	recall	the	properties	we	stated	about
cryptographic	hash	functions.	If	there	were	an	efficient	algorithm	for	finding	a	nonce	that	results	in	a
hash	less	than	the	target,	miners	might	find	nonces	too	quickly.	Therefore,	the	hash	function	must	ensure
that	there	is	no	better	way	to	find	a	nonce	than	simply	trying	each	possible	nonce	value	in	turn.	This	leads
us	to	require	one	additional	property	for	cryptographic	hash	functions,	the	puzzle-friendliness	property.

This	property	requires	that	given	a	value	k,	for	any	n-bit	value	y	it	is	infeasible	to	find	a	value	x	such	that
h(x‖	k)	=	y	in	time	significantly	less	that	2	n,	where	‖	denotes	concatenation	of	bit	strings.

Proof-of-work	mining	is	controversial.	On	the	positive	side,	for	a	large	network,	it	would	be	highly	costly
for	an	adversary	to	obtain	enough	computational	power	to	dominate	mining.	However,	on	the	negative
side,	the	amount	of	energy	used	in	mining	is	huge.	Estimates	as	this	chapter	is	being	written	suggest	that
Bitcoin	mining	worldwide	consumes	about	1	percent	of	the	power	consumed	by	the	United	States,	or
more	than	the	entire	consumption	of	several	nations,	for	example	Ireland.	The	large	amount	of
computation	needed	has	created	incentives	to	design	special-purpose	computing	chips	for	mining	and
incentives	to	locate	large	mining	installations	near	sources	of	cheap	power	sources.

These	concerns	are	causing	a	movement	to	alternatives,	such	as	proof-of-stake,	which	we	discuss	next.
These	concerns	have	led	also	to	interest	in	alternative	forms	of	proof-of-work	that,	for	example,	require
having	a	large	amount	of	main	memory	in	order	quickly	to	find	a	nonce.	Memory-intensive	schemes	retain
the	cost	barrier	of	proof-of-work	while	reducing	the	energy	waste.	They	are	a	subject	of	current	research.

Furthermore,	we	shall	see	that	for	enterprise	permissioned-blockchain	applications,	much	less	costly
means	of	consensus	are	possible.

1266

Chapter	26

Blockchain	Databases

In	practice,	a	group	of	users	may	unite	to	form	a	mining	pool,	which	is	a	consortium	that	works	together
to	mine	blocks	and	then	shares	the	proceeds	among	its	members.

26.4.2

Proof	of	Stake

The	concept	of	proof-of-stake	is	to	allow	nodes	holding	a	large	stake	in	the	currency	of	the	blockchain	to
be	chosen	preferentially	to	add	blocks.	This	rule	cannot	be	applied	absolutely,	since	then	a	single	largest
stakeholder	would	control	the	chain.	Instead,	the	probability	of	mining	success,	using	proof-of-work,	is
made	higher	for	nodes	in	proportion	to	their	stake.	By	adjusting	both	the	stake	requirements	and	the
mining	difficulty,	it	remains	possible	to	control	the	rate	at	which	blocks	are	mined.

There	are	a	wide	variety	of	proof-of-stake	schemes.	They	may	include	measurement	not	only	of	overall
stake,	but	also	the	total	time	a	stake	has	been	held.	They	may	require	that	the	stake	or	some	fraction	of	it
be	held	inactive	for	some	period	of	time	in	the	future.

Properly	tuning	a	proof-of-stake	mechanism	is	difficult.	Not	only	are	there	more	parameters	to	consider
than	in	proof-of-work,	but	also	one	must	guard	against	a	situation	where	there	is	too	little	cost	penalty	for
an	adversary	to	add	blocks	to	a	fork	other	than	the	longest	one.

26.4.3

Byzantine	Consensus

An	important	alternative	to	work-	or	stake-based	consensus	is	message-based	consensus.	Message-based
consensus	is	widely	used	in	distributed	database	systems.	As	we	noted	earlier,	the	basic	consensus
protocols	do	not	work	for	blockchain	consensus	because	it	cannot	be	assumed	that	there	are	no	malicious
nodes.

Message-based	systems	aim	to	achieve	consensus	via	a	majority	vote.	Such	systems	are	vulnerable	to	a
Sybil	attack.	In	an	enterprise	permissioned	blockchain,	in	which	users	have	to	be	granted	permission	to
participate,	Sybil	attacks	are	not	possible	since	the	permissioning	authority	can	easily	deny	permission
when	a	malicious	user	attempts	to	add	an	excessive	number	of	nodes.	However,	even	in	this	setting,	one
cannot	assume	every	user	is	totally	honest.

For	example,	consider	a	supply-chain	blockchain	in	which	all	suppliers	enter	data	on	the	chain	pertaining
to	each	item	being	supplied	either	to	another	supplier	or	the	ultimate	manufacturer	of	an	end-user
product.	Some	supplier	might	choose	to	falsify	data	for	its	own	advantage,	but,	when	a	fraud	investigation
begins,	that	supplier	may	then	seek	to	fork	the	blockchain	to	cover-up	its	fraud.	Thus,	even	absent	the
possibility	of	Sybil	attacks,	there	remains	the	possibility	of	adversarial	behavior.	It	is	difficult	to	anticipate
every	possible	form	of	adversarial	behavior.

For	this	reason,	we	model	this	situation	using	the	concept	of	Byzantine	failure	in	which	it	is	assumed	that
a	“failed”	node	can	behave	in	an	arbitrary	manner,	and	the	network	of	non-failed	nodes	must	be	robust	to
all	such	misbehavior,	including	misbehavior	that	takes	exactly	the	needed	set	of	steps	to	sabotage	the
network.	The	assumption	of

26.5

Data	Management	in	a	Blockchain

1267

Byzantine	failure	is	quite	different	from	the	assumption	made	by	consensus	protocols,	where	the	only	type
of	failure	considered	is	the	absence	of	function,	that	is,	the	only	way	a	node	or	network	link	fails	to	stop
working	and	thus	do	nothing.	This	is	referred	to	as	a	fail-stop	model	and	precludes	any	malicious	behavior.

In	Section	23.8,	we	discussed	distributed	consensus	protocols,	notably	Paxos	and	Raft.	These	protocols
depend	on	the	fail-stop	assumption,	but	allow	agreement	using	majority	rule	(in	contrast,	2PC	requires
unanimity	of	agreement).	For	Byzantine	consensus,	we	must	seek	a	form	of	majority	rule	that	overcomes
not	only	the	failure	of	a	minority	of	nodes,	but	also	the	possible	malicious	behavior	of	that	minority.	For
example,	a	malicious	node	n	may	tell	node	n	that	it	desires	to	commit	a	transaction,	but	1

2

tell	n	that	it	desires	to	abort	the	transaction.	As	one	might	expect,	achieving	consensus	3

in	the	face	of	such	malicious	nodes	requires	a	higher	cost	in	the	number	of	messages	sent	to	achieve
agreement,	but	in	a	blockchain,	that	higher	cost	is	acceptable	since	it	can	be	much	lower	than	the	cost	of
proof-of-work	or	proof-of-stake	mining.

The	development	of	Byzantine	consensus	algorithms	began	in	the	early	1980s;	see	the	Further	Reading
section	at	the	end	of	the	chapter	for	references.	There	has	been	much	theoretical	work	relating	the
number	of	rounds	of	messaging,	the	total	number	of	messages	sent,	and	the	fraction	of	the	nodes	that	can
be	malicious	without	causing	the	protocol	to	fail.	Early	work	made	assumptions	about	network	behavior,
such	as	the	time	it	takes	to	deliver	a	message	or	that	the	network	behaves	in	a	highly	synchronous
manner.	Modern	Byzantine	consensus	algorithms	are	based	on	real-world	assumptions	and	incorporate
cryptographic	signatures	to	guard	against	forged	messages.	The	degree	of	synchronization	is	reduced,	but
truly	asychronous	fault-tolerant	consensus	is	provably	impossible.	One	widely	used	approach,	called
Practical	Byzantine	Fault	Tolerance,	tolerates	malicious	failure	of	up	to	⌊	n−1	⌋	nodes	and	is	viewed	as
providing	an	acceptable	3

level	of	performance.	Other	protocols	are	referenced	in	the	Further	Reading	section	at	the	end	of	the
chapter.

26.5

Data	Management	in	a	Blockchain

Until	now	we	have	not	been	concerned	about	the	efficiency	of	looking	up	information	in	a	blockchain.
While	individual	users	can	track	their	unspent	transactions,	that	is	not	sufficient	to	validate	a	block.	Each
node	needs	to	be	able	to	check	each	transaction	in	a	block	to	see	if	it	was	already	spent.	In	principle,	that
could	be	done	by	searching	the	entire	blockchain,	but	that	is	far	too	costly	since	it	could	involve	searching
backwards	to	the	very	first	block	in	the	chain.	In	this	section,	we	shall	consider	data	structures	to	make
such	lookups	efficient.

Furthermore,	not	every	blockchain	uses	a	transaction	model	in	which	transaction	inputs	are	restricted	to
be	the	direct	output	of	other	transactions.	Some,	notably	Ethereum,	allow	for	the	maintenance	of	a	state
for	each	user	(account,	in	Ethereum	parlance)	that	holds	the	account	balance	(in	the	Ethereum	currency,
Ether)	and	some

1268

Chapter	26

Blockchain	Databases

associated	storage.	This	transaction	and	data	model	comes	closer	to	that	of	a	database	system.	Simply
storing	this	information	in	a	database,	however,	would	not	preserve	the	blockchain	properties	we	listed	in
Section	26.2.	In	this	section,	we	consider	this	richer	model	and	how	it	can	be	represented	physically
either	via	specialized	data	structures	or	with	the	help	of	database	system	concepts.

26.5.1

Efficient	Lookup	in	a	Blockchain

As	we	noted	earlier,	in	order	to	validate	a	Bitcoin-style	transaction,	a	node	needs	to	check	three	items:

1.	The	transaction	is	syntactically	well	formed	(proper	data	format,	sum	of	inputs	equals	sum	of	outputs,
and	so	on).	This	is	relatively	straightforward.

2.	The	transaction	is	signed	by	the	user	submitting	it.	This	is	a	matter	of	ensuring	that	the	signature,
which	should	have	been	produced	by	the	user	submitting	the	transaction	using	her	or	his	private	key,	can
be	decrypted	with	that	user’s	public	key	to	obtain	the	transaction	itself.	This	is	not	a	highly	costly	step.

3.	The	transaction’s	inputs	have	not	been	spent	already.	This	entails	looking	up	each	individual	input
transaction	in	the	blockchain.	These	transactions	could	be	anywhere	in	the	blockchain	since	they	can	be
arbitrarily	old.	Without	a	good	means	of	performing	this	lookup,	this	step	would	be	prohibitively	costly.

To	test	for	an	input	transaction	having	been	used	already,	it	is	necessary	to	be	able	to	check	that
transaction	did	not	appear	earlier	as	input	to	another	transaction.	Thus,	it	suffices	for	each	node	to
maintain	an	index	on	all	unspent	transactions.	Entries	in	this	index	point	to	the	location	of	the
corresponding	transaction	in	the	blockchain,	allowing	the	details	of	the	input	transaction	to	be	validated.

Bitcoin,	like	many	other	blockchains,	facilitates	lookup	and	validation	by	storing	transactions	within	a
block	in	a	Merkle	tree,	which	we	discussed	in	Section	23.6.6.	In	that	section,	we	noted	that	a	Merkle	tree
enables	the	efficient	verification	of	a	collection	(transactions,	in	the	case	of	a	blockchain)	that	may	have
been	corrupted	by	a	malicious	user.	In	a	blockchain,	there	are	optimizations	to	the	Merkle	tree	possible,
such	as	trun-cating	the	tree	to	remove	subtrees	consisting	solely	of	spent	transactions.	This	reduces
significantly	the	space	requirements	for	nodes	to	store	the	full	blockchain.	Space	is	a	major	consideration
since	major	blockchains	grow	faster	that	one	gigabyte	per	month,	a	rate	likely	to	increase	as	blockchain
applications	grow.

The	Merkle-tree	structure	is	particularly	useful	for	light	nodes	(i.e.,	nodes	that	do	not	store	the	entire
blockchain)	since	they	need	to	retain	only	the	root	hash	of	the	tree	for	verification.	A	full	node	can	then
provide	any	needed	data	to	the	light	node	by	providing	those	data	plus	the	hashes	needed	for	the	light
node	to	verify	that	the	provided	data	are	consistent	with	its	stored	hash	value	(see	Section	23.6.6).

26.6

Smart	Contracts

1269

26.5.2

Maintaining	Blockchain	State

The	simple	blockchain	transaction	model	of	Section	26.3.3	showed	how	a	basic	Bitcoin	transaction	works.
There	are	more	complex	transactions	possible	in	Bitcoin,	but	they	follow	the	same	pattern	of	a	set	of	input
transactions	and	a	set	of	payments	to	users.

In	this	section,	we	look	at	the	model	used	by	certain	other	blockchains,	notably	Ethereum,	that	maintain	a
state	that	holds	the	balance	in	each	account.	Transactions	move	currency	units	(ether	in	Ethereum)
among	accounts.	Since	transactions	are	serialized	into	blocks	by	miners,	there	is	no	need	for	concurrency-
control	protocols	like	those	of	Chapter	18.	Each	block	contains	a	sequence	of	transactions	but	also
contains	the	state	as	it	existed	after	execution	of	transactions	in	the	block.	It	would	be	wasteful	to
replicate	the	entire	state	in	each	block	since	the	modest	number	of	transactions	in	one	block	are	likely	to
change	a	relatively	small	fraction	of	the	overall	state.	This	creates	a	need	for	a	data	structure	allowing
better	use	of	storage.

Recall	that	transactions	within	a	block	are	stored	in	a	Merkle	tree.	State	is	stored	similarly.	This	would
appear	to	offer	the	possibility	of	saving	space	by	allowing	pointers	(plus	the	associated	hash)	back	to
earlier	blocks	for	those	parts	of	the	state	that	are	unchanged.	The	only	challenge	here	is	that	it	must	be
possible	not	only	to	change	tree	nodes,	but	also	to	insert	and	delete	them.	A	variant	of	the	Merkle-tree
data	structure,	called	a	Merkle-Patricia	tree,	is	used	for	this	purpose	in	some	blockchains,	including

Ethereum.	This	data	structure	allows	for	efficient	key-based	search	in	the	tree.	Instead	of	actually
deleting	and	inserting	tree	nodes,	a	new	tree	root	is	created	and	the	tree	itself	structured	so	as	to
reference	(and	thus	reuse)	subtrees	of	prior	trees.	Those	prior	trees	are	immutable,	so	rather	than	making
new	parent	pointer	(which	we	can’t	do),	a	leaf-to-root	path	is	generated	by	reversing	a	root-to-leaf	path
that	is	easily	obtained	in	the	Merkle-Patricia	tree	structure.	Details	of	this	data	structure	can	be	found	in
the	references	in	the	Further	Reading	section	at	the	end	of	the	chapter.

Corda,	Hyperledger	Fabric,	and	BigchainDB	are	examples	of	blockchains	that	use	a	database	to	store
state	and	allow	querying	of	that	state.	Fabric	and	BigchainDB	use	NoSQL	databases.	Corda	uses	an
embedded-SQL	database.	In	contrast,	Ethereum	state	is	stored	in	a	key-value	store.

26.6

Smart	Contracts

So	far,	we	have	focused	on	simple	funds-transfer	transactions.	Actual	blockchain	transactions	can	be	more
complex	because	they	may	include	executable	code.	Blockchains	differ	not	only	in	the	supported
language(s)	for	such	code,	but	also,	and	more	importantly,	in	the	power	of	those	languages.	Some
blockchains	offer	Turing-complete	languages,	that	is,	languages	that	can	express	all	possible
computations.	Others	offer	more	limited	languages.

26.6.1

Languages	and	Transactions

Bitcoin	uses	a	language	of	limited	power	that	is	suitable	for	defining	many	standard	types	of	conditional
funds-transfer	transactions.	Key	to	this	capability	is	its	multisig

1270

Chapter	26

Blockchain	Databases

instruction,	which	requires	m	of	n	specified	users	to	approve	the	transfer.	This	enables	escrow
transactions	in	which	a	trusted	third	party	resolves	any	dispute	between	the	two	parties	to	the	actual
transfer.	It	also	enables	grouping	several	transactions	between	two	users	into	one	larger	transaction
without	having	to	submit	each	component	transaction	separately	to	the	blockchain.	Because	adding
transactions	to	the	blockchain	has	a	time	delay	and	a	cost	in	transaction	fees,	this	feature	is	quite
important.	This	concept	has	been	extended	in	off-chain	processing	systems,	which	we	discuss	in	Section
26.7.

Ethereum	as	well	as	most	blockchains	targeting	enterprise	applications	include	a	language	that	is	Turing
complete.	Many	use	familiar	programming	languages	or	variants	based	heavily	on	such	languages.	This
would	seem	like	an	obvious	advantage	over	less-powerful	languages,	but	it	comes	at	some	risk.	Whereas	it
is	impossible	to	write	an	infinite	loop	in	Bitcoin’s	language,	it	is	possible	to	do	so	in	any	Turing-complete
language.	A	malicious	user	could	submit	a	transaction	that	encodes	an	infinite	loop,	thereby	consuming	an
arbitrarily	large	amount	of	resources	for	any	node	attempting	to	include	that	transaction	in	a	newly	mined
block.	Testing	code	for	termination,	the	halting	problem,	is	a	provably	unsolvable	problem	in	the	general
case.	Even	if	the	malicious	user	avoids	an	infinite	loop,	that	user	could	submit	code	that	runs	for	an
exceptionally	long	time,	again	consuming	miner	resources.	The	solution	to	this	problem	is	that	users
submitting	a	transaction	agree	to	pay	the	miner	for	code	execution,	with	an	upper	bound	placed	on	the
payment.	This	limits	the	amount	of	total	execution	to	some	bounded	amount	of	time.

The	decentralized	nature	of	a	blockchain	leads	to	an	incentive	system	for	users	to	convince	miners	to
include	their	transaction	and	thus	execute	their	code.	Ethereum’s	solution	is	based	on	the	concept	of	gas,
so	named	as	to	provide	an	analogy	to	automobile	fuel.	Each	instruction	consumes	a	fixed	amount	of	gas.
Gas	consumption	in	a	transaction	is	governed	by	three	parameters:

1.	Gas	price:	the	amount	of	ether	the	user	is	offering	to	pay	the	miner	for	one	unit	of	gas.

2.	Transaction	gas	limit:	the	upper	bound	on	transaction	gas	consumption.	Transactions	that	exceed	their
gas	limit	are	aborted.	The	miner	keeps	the	payment,	but	the	transaction	actions	are	never	committed	to
the	blockchain.

3.	Block	gas	limit:	a	limit	in	the	blockchain	system	itself	on	the	sum	over	all	transactions	in	a	block	of	their
transaction	gas	limits.

A	user	who	sets	a	gas	price	too	low	may	face	a	long	wait	to	find	a	miner	willing	to	include	the	transaction.
Setting	the	gas	price	too	high	results	in	the	user	overpaying.

Another	hard	choice	is	that	of	the	gas	limit.	It	is	hard	to	set	the	limit	to	the	precise	amount	of	gas	that	the
contract	will	use.	A	user	who	sets	the	limit	too	low	risks	transaction	failure,	while	a	user	who,	fearing
“running	out	of	gas,”	sets	the	transaction	gas	limit	excessively	high	may	find	that	miners	are	unwilling	to
include	the	transaction	because	it	consumes	too	large	a	fraction	of	the	block	gas	limit.	The	result	of	this	is
an

26.6

Smart	Contracts

1271

interesting	problem	for	transaction	designers	in	optimizing	for	both	cost	and	speed	of	mining.

In	a	Bitcoin-style	transaction,	transaction	ordering	is	explicit.	In	a	state-based	blockchain	like	Ethereum,
there	is	no	explicit	concept	of	input	transactions.	However,	there	may	be	important	reasons	why	a	smart
contract	may	wish	to	enforce	a	transaction	order.	For	transactions	coming	from	the	same	account,
Ethereum	forces	those	transactions	to	be	mined	in	the	order	in	which	the	account	created	them	by	means
of	an	account	nonce	associated	with	the	transaction.	An	account	nonce	is	merely	a	sequence	number
associated	with	each	transaction	from	an	account,	and	the	set	of	transactions	from	an	account	must	have
consecutive	sequence	numbers.	Two	transactions	from	an	account	cannot	have	the	same	sequence
number,	and	a	transaction	is	accepted	only	after	the	transaction	with	the	previous	sequence	number	has
been	accepted,	thus	preventing	any	cheating	in	transaction	ordering.	If	the	transactions	to	be	ordered	are
from	different	accounts,	they	need	to	be	designed	such	that	the	second	transaction	in	the	ordering	would
fail	to	validate	until	after	the	first	transaction	is	processed.

The	fact	that	miners	must	run	the	smart-contract	code	of	transactions	they	wish	to	include	in	a	block,	and
that	all	full	nodes	must	run	the	code	of	all	transactions	in	mined	blocks,	regardless	of	which	node	mined
the	block,	leads	to	a	concern	about	security.	Code	is	run	in	a	safe	manner,	usually	on	a	virtual	machine
designed	in	the	style	of	the	Java	virtual	machine.	Ethereum	has	its	own	virtual	machine,	called	the	EVM.
Hyperledger	executes	code	in	Docker	containers.

26.6.2

External	Input

A	smart	contract	may	be	defined	in	terms	of	external	events.	As	a	simple	example,	consider	a	crop-
insurance	smart	contract	for	a	farmer	that	pays	the	farmer	an	amount	of	money	dependent	on	the	amount
of	rainfall	in	the	growing	season.	Since	the	amount	of	rainfall	in	any	future	season	is	not	known	when	the
smart	contract	is	written,	that	value	cannot	be	hard-coded.	Instead,	input	must	be	taken	from	an	external
source	that	is	trusted	by	all	parties	to	the	smart	contract.	Such	an	external	source	is	called	an	oracle.6

Oracles	are	essential	to	smart	contracts	in	many	business	applications.	The	fact	that	the	oracle	must	be
trusted	is	a	compromise	on	the	general	trustlessness	of	a	blockchain	environment.	However,	this	is	not	a
serious	compromise	in	the	sense	that	only	the	parties	to	a	contract	need	to	agree	on	any	oracles	used	and,
once	that	agreement	is	made,	the	agreement	is	coded	into	the	smart	contract	and	is	immutable	from	that
point	forward.

Corruption	of	an	oracle	after	it	is	coded	into	an	operating	smart	contract	is	a	real	problem.	This	issue
could	be	left	as	an	externality	for	the	legal	system	but	ideally,	a	process	for	settlement	of	future	disputes
would	be	coded	into	the	contract	in	a	variety	of	ways.	For	example,	parties	to	the	contract	could	be
required	to	send	the	contract	6This	term	is	rooted	in	ancient	Greek	culture	and	bears	no	relationship	to
the	company	by	the	same	name.

1272

Chapter	26

Blockchain	Databases

certification	messages	periodically,	and	code	could	be	written	defining	actions	to	be	taken	in	case	a	party
fails	to	recertify	its	approval	of	the	oracle.

Direct	external	output	from	a	smart	contract	is	problematic	since	such	output	would	have	to	occur	during
its	execution	and	thus	before	the	corresponding	transaction	is	added	to	the	blockchain.	Ethereum,	for
example,	deals	with	this	by	allowing	a	smart	contract	to	emit	events	that	are	then	logged	in	the
blockchain.	The	public	visibility	of	the	blockchain	then	allows	the	actions	of	the	smart	contract	to	trigger
activity	external	to	the	blockchain.

26.6.3

Autonomous	Smart	Contracts

In	many	blockchains,	including	Ethereum,	smart	contracts	can	be	deployed	as	independent	entities.	Such
smart	contracts	have	their	own	account,	balance,	and	storage.	This	allows	users	(or	other	smart
contracts)	to	use	services	provided	by	a	smart	contract	and	to	send	or	receive	currency	from	a	smart
contract.

Depending	on	how	a	specific	smart	contract	is	coded,	a	user	may	be	able,	by	design,	to	control	the	smart
contract	by	sending	it	messages	(transactions).	A	smart	contract	may	be	coded	so	that	it	operates
indefinitely	and	autonomously.	Such	a	contract	is	referred	to	as	a	distributed	autonomous	organization
(DAO).7	DAOs,	once	established,	are	difficult	to	control	and	manage.	There	is	no	way	to	install	bug	fixes.
In	addition,	there	are	many	unanswered	questions	about	legal	and	regulatory	matters.	However,	the
ability	to	create	these	entities	that	communicate,	store	data,	and	do	business	independent	of	any	user	is
one	of	the	most	powerful	features	of	the	blockchain	concept.	In	an	enterprise	setting,	smart	contracts
operate	under	some	form	of	control	by	an	organization	or	a	consortium.

A	smart	contract	may	be	used	to	create	a	currency	on	top	of	another	currency.

Ethereum	often	serves	as	the	base	blockchain	as	this	allows	the	rich	existing	ecosystem	for	Ethereum	to
be	leveraged	to	provide	underlying	infrastructure.	Such	higher-level	currency	units	are	called	tokens,	and
the	process	of	creating	such	currencies	is	referred	to	as	an	initial	coin	offering	(ICO).	An	important	added
benefit	of	using	an	existing	blockchain	as	the	basis	for	a	token	is	that	it	is	then	possible	to	reuse	key
elements	of	the	user	infrastructure,	most	importantly	the	wallet	software	users	need	to	store	tokens.	The
ERC-20	Ethereum	standard	for	tokens	is	widely	used.	More	recent	standards,	including	ERC-223,	ERC-
621,	ERC-721,	ERC-777,	and	ERC-827,	are	discussed	in	the	references	in	the	Further	Reading	section	at
the	end	of	the	chapter.

The	relative	ease	of	creating	an	ICO	has	made	it	an	important	method	of	funding	new	ventures,	but	this
has	also	led	to	several	scams,	resulting	in	attempts	by	governments	to	regulate	this	fundraising
methodology.

Beyond	fundraising,	an	important	application	of	smart	contracts	is	to	create	independent,	autonomous
service	providers	whose	operation	is	controlled	not	by	humans	7The	general	use	of	DAO	is	distinct	from	a
specific	distributed	autonomous	organization	called	“The	DAO”.	The	DAO

was	a	crowdfunded	venture-capital	operation	that	failed	due	to	a	bug	that	enabled	a	major	theft	of	funds
(see	Note	26.1

on	page	1258).

26.6

Smart	Contracts

1273

but	by	source	code,	often	open-source.	In	this	way,	trustless	services	that	do	not	require	their	users	to
trust	any	person	or	organization	can	be	created.	As	we	noted	earlier,	a	fully	autonomous	contract	cannot
be	stopped	or	modified.	Thus,	bugs	last	forever,	and	the	contract	can	continue	as	long	as	it	can	raise
enough	currency	to	support	its	operation	(i.e.,	for	Ethereum,	earn	enough	ether	to	pay	for	gas).	These
risks	suggest	that	some	compromise	on	the	concept	of	trustlessness	may	make	sense	in	smart-contract
design,	such	as	giving	the	contract	creator	the	ability	to	send	a	self-destruct	message	to	the	contract.

26.6.4

Cross-Chain	Transactions

Up	to	this	point,	we	have	assumed	implicitly	that	a	blockchain	transaction	is	limited	to	one	specific
blockchain.	If	one	wished	to	transfer	currency	from	an	account	on	one	blockchain	to	another	account	that
is	on	a	different	blockchain,	not	only	is	there	the	issue	that	the	currencies	are	not	the	same,	but	also	there
is	the	problem	that	the	two	blockchains	have	to	agree	on	the	state	of	this	cross-chain	transaction	at	each
point	in	time.

We	have	seen	a	related	problem	for	distributed	databases.	If	a	single	organization	controls	the	entire
distributed	system,	then	two-phase	commit	can	be	used.	However,	if	the	system	is	controlled	by	multiple
organizations	as	in	the	federated	systems	discussed	in	Section	23.5.3,	coordination	is	more	difficult.	In	the
blockchain	setting,	the	high	level	of	autonomy	of	each	system	and	the	requirement	of	immutability	set	an
even	higher	barrier.

The	simplest	solution	is	to	use	a	trusted	intermediary	organization	that	operates	much	like	one	that
exchanges	traditional	fiat	currencies.

If	both	users	have	accounts	on	both	blockchains,	a	trustless	transaction	can	be	defined	by	creating
transactions	on	each	chain	for	the	required	funds	transfer	that	are	designed	such	that	if	one	transaction	is
added	to	its	blockchain	its	smart-contract	code	reveals	a	secret	that	ensures	that	other	transactions
cannot	be	canceled.	Techniques	used	include	the	following,	among	others:

•	Time-lock	transactions	that	reverse	after	a	certain	period	of	time	unless	specific	events	occur.

•	Cross-chain	exchange	of	Merkle-tree	headers	for	validation	purposes.

A	risk	in	these	techniques	is	the	possibility	that	a	successfully	mined	transaction	winds	up	on	an	orphaned
fork,	though	there	are	ways	to	mitigate	these	risks.	The	details	are	system	specific.	See	the	Further
Reading	section	at	the	end	of	the	chapter.

A	more	general	solution	is	to	create	a	smart	contract	that	implements	a	market	similar	conceptually	to	a
stock	exchange	in	which	willing	buyers	and	sellers	are	matched.

Such	a	contract	operates	in	the	role	of	trusted	intermediary	rather	than	a	human-run	bank	or	brokerage
as	would	be	used	for	fiat	currencies.	The	technical	issues	in	cross-chain	transactions	remain	an	area	of
active	research.

1274

Chapter	26

Blockchain	Databases

26.7

Performance	Enhancement

At	a	high	level,	a	blockchain	system	may	be	viewed	as	having	three	major	components:	1.	Consensus
management:	Proof-of-work,	proof-of-stake,	Byzantine	consensus,	or	some	hybrid	approach.	Transaction
processing	performance	is	dominated	by	the	performance	of	consensus	management.

2.	State-access	management:	Access	methods	to	retrieve	current	blockchain	state,	ranging	from	a	simple
index	to	locate	transactions	from	a	specific	account-id	or	user	ID,	to	key-value	store	systems,	to	a	full	SQL
interface.

3.	Smart	contract	execution:	The	environment	that	runs	the	(possibly	compiled)	smart-contract	code,
typically	in	a	virtualized	environment	for	security	and	safety.

The	rate	of	transaction	processing,	referred	to	as	throughput,	in	blockchain	systems	is	significantly	lower
than	in	traditional	database	systems.	Traditional	database	systems	are	able	to	process	simple	funds-
transfer	transactions	at	peak	rates	on	the	order	of	tens	of	thousands	of	transactions	per	second.
Blockchain	systems’	rates	are	less;	Bitcoin	processes	less	than	10	per	second,	and	Ethereum,	at	present,
only	slightly	more	than	10	per	second.8	The	reason	is	that	techniques	such	as	proof-of-work	limit	the
number	of	blocks	that	can	be	added	to	the	chain	per	unit	time,	with	Bitcoin	targeting	one	block	every	10
minutes.	A	block	may	contain	multiple	transactions,	so	the	transaction	processing	rate	is	significantly
more	than	1	in	10	minutes,	but	is	nevertheless	limited.

In	most	applications,	transaction	throughput	is	not	the	only	performance	metric.	A	second	and	often	more
important	metric	is	transaction	latency,	or	response	time.	Here,	the	distributed	consensus	required	by
blockchain	systems	presents	a	serious	problem.

As	an	example,	we	consider	Bitcoin’s	design	in	which	the	mining	rate	is	maintained	close	to	1	block	every
10	minutes.	That	alone	creates	significant	latency,	but	added	to	that	is	the	need	to	wait	for	several
subsequent	blocks	to	be	mined	so	as	to	reduce	the	probability	that	a	fork	will	cause	the	transaction’s
block	to	be	orphaned.	Using	the	usual	recommendation	of	waiting	for	6	blocks,	we	get	a	true	latency	of	1
hour.	Such	response	times	are	unacceptable	for	interactive,	real-time	transaction	processing.	In	contrast,
traditional	database	systems	commit	individual	transactions	and	can	easily	achieve	millisecond	response
time.

These	transaction	processing	performance	issues	are	primarily	issues	due	to	consensus	overhead	with
public	blockchains.	Permissioned	blockchains	are	able	to	use	faster	message-based	Byzantine	consensus
algorithms,	but	other	performance	issues	still	remain,	and	are	continuing	to	be	addressed.

8At	the	time	of	publication,	Ethereum’s	architects	are	contemplating	advocating	a	fork	to	allow	faster,
lower-overhead	mining.

26.7

Performance	Enhancement

1275

26.7.1

Enhancing	Consensus	Performance

There	are	two	primary	approaches	to	improve	the	performance	of	blockchain	consensus:

1.	Sharding:	distributing	the	task	of	mining	new	blocks	to	enable	parallelism	among	nodes.

2.	Off-chain	transaction	processing:	Trusted	systems	that	process	transactions	internally	without	putting
them	on	the	blockchain.	These	transactions	are	grouped	into	a	single	transaction	that	is	then	placed	on
the	blockchain.	This	grouping	may	occur	with	some	agreed-upon	periodicity	or	occur	only	at	the
termination	of	the	agreement.

Sharding	is	the	partitioning	of	the	accounts	in	a	blockchain	into	shards	that	are	mined	separately	in
parallel.	In	the	case	where	a	transaction	spans	shards,	a	separate	transaction	is	run	on	each	shard	with	a
special	system-internal	cross-shard	transaction	recorded	to	ensure	that	both	parts	of	the	given	transaction
are	committed.	The	overhead	of	the	cross-shard	transaction	is	low.	There	are	some	risks	resulting	from
the	fact	that	splitting	the	mining	nodes	up	by	shard	results	in	smaller	sets	of	miners	that	are	then	more
vulnerable	to	attack	since	the	cost	to	attack	a	smaller	set	of	miners	is	less.

However,	there	are	ways	to	mitigate	this	risk.

Off-chain	transactions	require	deployment	of	a	separate	system	to	manage	those	transactions.	The	best
known	of	these	is	the	Lightning	network,	which	not	only	speeds	blockchain	transactions	via	off-chain
processing	but	also	can	process	certain	cross-chain	transactions.	Lightning	promises	transaction
throughput	and	latency	at	traditional	database-system	rates,	but	provides	this	at	the	cost	of	some	degree
of	anonymity	and	immutability	(i.e.,	transactions	that	commit	off-chain,	but	are	rejected	at	the
blockchain).	By	increasing	the	frequency	of	transaction	confirmations	to	the	blockchain,	one	can	decrease
the	loss	of	immutability	at	the	price	of	reduced	performance	improvement.

26.7.2

Enhancing	Query	Performance

Some	blockchain	systems	offer	little	more	than	an	index	on	user	or	account	identifiers	to	facilitate	looking
up	unspent	transactions.	This	suffices	for	a	simple	funds-transfer	transaction.	Complex	smart	contracts,
however,	may	need	to	execute	general-purpose	queries	against	the	stored	current	state	of	the	blockchain.
Such	queries	may	perform	the	equivalent	of	join	queries,	whose	optimization	we	studied	at	length	in
Chapter	16.	However,	the	structure	of	blockchain	systems,	in	which	state-access	management	may	be
separate	from	the	execution	engine	may	limit	the	use	of	database-style	query	optimization.	Furthermore,
the	data	structures	used	for	state	representation,	such	as	the	Merkle-Patricia	tree	structure	we	saw	in
Section	26.5.2,	may	limit	the	choice	of	algorithms	to	implement	join-style	queries.

1276

Chapter	26

Blockchain	Databases

Blockchain	systems	built	on	a	traditional	or	a	NoSQL	database	keep	state	information	within	that
database	and	allow	smart	contracts	to	run	higher-level	database-style	queries	against	that	state.	Those
advantages	come	at	the	cost	of	using	a	database-storage	format	that	may	lack	the	rigorous	cryptographic
protection	of	a	true	blockchain.	A	good	compromise	is	for	the	database	to	be	hosted	by	a	trusted	provider
with	updates	going	not	only	to	the	database	but	also	to	the	blockchain,	thus	enabling	any	user	who	so
wishes	to	validate	the	database	against	the	secure	blockchain.

26.7.3

Fault-Tolerance	and	Scalability

Performance	in	the	presence	of	failures	is	a	critical	aspect	of	a	blockchain	system.

In	traditional	database	systems,	this	is	measured	by	the	performance	of	the	recovery	manager	and,	as	we
saw	in	Section	19.9,	the	ARIES	recovery	algorithm	is	designed	to	optimize	recovery	time.	A	blockchain
system,	in	contrast,	uses	a	consensus	mechanism	and	a	replication	strategy	designed	for	continuous
operation	during	failures	and	malicious	attacks,	though	perhaps	with	lower	performance	during	such

periods.	Therefore,	besides	measuring	throughput	and	latency,	one	must	also	measure	how	these
performance	statistics	change	in	times	of	failure	or	attack.

Scalability	is	a	performance	concern	in	any	distributed	system	as	we	saw	in	Chapter	20.	The	architectural
differences	between	blockchain	systems	and	parallel	or	distributed	database	systems	introduce
challenges	in	both	the	measure	of	scaleup	and	its	optimization.	We	illustrate	the	differences	by
considering	the	relative	scalability	of	2PC

and	Byzantine	consensus.	In	2PC,	a	transaction	accessing	a	fixed	number	of	nodes,	say	five,	needs	only
the	agreement	of	these	five	nodes,	regardless	of	the	number	of	nodes	in	the	system.	If	we	scale	the	system
up	to	more	nodes,	that	transaction	still	needs	only	those	five	nodes	to	agree	(unless	the	scaling	added	a
replica	site).	Under	Byzantine	consensus,	every	transaction	needs	the	agreement	of	a	majority	of	the	non-
failed	nodes,	and	so,	the	number	of	nodes	that	must	agree	not	only	starts	much	larger	but	also	grows
faster	as	the	network	scales.

The	Further	Reading	section	at	the	end	of	the	chapter	provides	references	that	deal	with	the	emerging
issue	of	blockchain	performance	measurement	and	optimization.

26.8

Emerging	Applications

Having	seen	how	blockchains	work	and	the	benefits	they	offer,	we	can	look	at	areas	where	blockchain
technology	is	currently	in	use	or	may	be	used	in	the	near	future.

Applications	most	likely	to	benefit	from	the	use	of	a	blockchain	are	those	that	have	high-value	data,
including	possibly	historical	data,	that	need	to	be	kept	safe	from	malicious	modification.	Updates	would
consist	mostly	of	appends	in	such	applications.

Another	class	of	applications	that	are	likely	to	benefit	area	those	that	involve	multiple	cooperating	parties,
who	trust	each	other	to	some	extent,	but	not	fully,	and	desire	to	have	a	shared	record	of	transactions	that
are	digitally	signed,	and	are	kept	safe	from	tampering.	In	this	latter	case,	the	cooperating	parties	could
include	the	general	public.

26.8

Emerging	Applications

1277

Below,	we	provide	a	list	of	several	application	domains	along	with	a	short	explanation	of	the	value
provided	by	a	blockchain	implementation	of	the	application.	In	some	cases,	the	value	added	by	a
blockchain	is	a	novel	capability;	in	others,	the	value	added	is	the	ability	to	do	something	that	could	have
been	done	previously	only	at	prohibitive	cost.

•	Academic	certificates	and	transcripts:	Universities	can	put	student	certificates	and	transcripts	on	a
public	blockchain	secured	by	the	student’s	public	key	and	signed	digitally	by	the	university.	Only	the
student	can	read	the	records,	but	the	student	can	then	authorize	access	to	those	records.	As	a	result,
students	can	obtain	certificates	and	transcripts	for	future	study	or	for	prospective	employers	in	a	secure
manner	from	a	public	source.	This	approach	was	prototyped	by	MIT	in	2017.

•	Accounting	and	audit:	Double-entry	bookkeeping	is	a	fundamental	principle	of	accounting	that	helps
ensure	accurate	and	auditable	records.	A	similar	benefit	can	be	gained	from	cryptographically	signed
blockchain	entries	in	a	digital	distributed	ledger.	In	particular,	the	use	of	a	blockchain	ensures	that	the
ledger	is	tamperproof,	even	against	insider	attacks	and	hackers	who	may	gain	control	of	the	database.

Also,	if	the	enterprise’s	auditor	is	a	participant,	then	ledger	entries	can	become	visible	immediately	to
auditors,	enabling	a	continuous	rather	than	periodic	audit.

•	Asset	management:	Tracking	ownership	records	on	a	blockchain	enables	verifiable	access	to	ownership
records	and	secure,	signed	updates.	As	an	example,	real-estate	ownership	records,	a	matter	of	public
record,	could	be	made	accessible	to	the	public	on	a	blockchain,	while	updates	to	those	records	could	be
made	only	by	transactions	signed	by	the	parties	to	the	transaction.	A	similar	approach	can	be	applied	to
ownership	of	financial	assets	such	as	stocks	and	bonds.	While	stock	exchanges	manage	trading	of	stocks
and	bonds,	long	term	records	are	kept	by	depositories	that	users	must	trust.	Blockchain	can	help	track
such	assets	without	having	to	trust	a	depository.

•	E-government:	A	single	government	blockchain	would	eliminate	agency	duplication	of	records	and
create	a	common,	authoritative	information	source.	A	highly	notable	user	of	this	approach	is	the
government	of	Estonia,	which	uses	its	blockchain	for	taxation,	voting,	health,	and	an	innovative	“e-
Residency”	program.

•	Foreign-currency	exchange:	International	financial	transactions	are	often	slow	and	costly.	Use	of	an
intermediary	cryptocurrency	can	enable	blockchain-based	foreign-currency	exchange	at	a	relative	rapid
pace	with	full,	irrefutable	traceabil-ity.	Ripple	is	offering	such	capability	using	the	XRP	currency.

•	Health	care:	Health	records	are	notorious	for	their	nonavailability	across	health-care	providers,	their
inconsistency,	and	their	inaccuracy	even	with	the	increased	use	of	electronic	health	records.	Data	are
added	from	a	large	number	of	sources	and	the	provenance	of	materials	used	may	not	be	well	documented
(see	discussion	of	supply	chains	below).	A	unified	blockchain	is	suitable	for	distributed	update,

1278

Chapter	26

Blockchain	Databases

and	cryptographic	data	protection,	unlockable	by	the	patient’s	private	key,	would	enable	access	to	a
patient’s	full	health	record	anytime,	anywhere	in	an	emergency.

The	actual	records	may	be	kept	offchain,	but	the	blockchain	acts	as	the	trusted	mechanism	for	accessing
the	data.

•	Insurance	claims:	The	processing	of	insurance	claims	is	a	complex	workflow	of	data	from	the	scene	of
the	claim,	various	contractors	involved	in	repairs,	statements	from	witnesses,	etc.	A	blockchain’s	ability	to
capture	data	from	many	sources	and	distribute	it	rapidly,	accurately,	and	securely,	promises	efficiency	and
accuracy	gains	in	the	insurance	industry.

•	Internet	of	things:	The	Internet	of	Things	(IoT)	is	a	term	that	refers	to	systems	of	many	interacting
devices	(“things”),	including	within	smart	buildings,	smart	cities,	self-monitoring	civil	infrastructure,	and
so	on.	These	devices	could	act	as	nodes	that	can	pass	blockchain	transactions	into	the	network	without
having	to	ensure	the	transmission	of	data	reaches	a	central	server.	In	the	late	2010s,	research	is
underway	to	see	if	this	data-collection	approach	can	be	effective	in	lowering	costs	and	increasing
performance.	Adding	so	many	entries	to	a	blockchain	in	a	short	period	of	time	may	suggest	a	replacement
of	the	chain	data	structure	with	a	directed,	acyclic	graph.	The	Iota	blockchain	is	an	example	of	one	such
system,	where	the	graph	structure	is	called	a	tangle.

•	Loyalty	programs	and	aggregation	of	transactions:	There	are	a	variety	of	situations	where	a	customer	or
user	makes	multiple	purchases	from	the	same	vendor,	such	as	within	a	theme	park,	inside	a	video	game,
or	from	a	large	online	retailer.

These	vendors	could	create	internal	cryptocurrencies	in	a	proprietary,	permissioned	blockchain,	with
currency	value	pegged	to	a	fiat	currency	like	the	dollar.

The	vendor	gains	by	replacing	credit-card	transactions	with	vendor-internal	transactions.	This	saves
credit-card	fees	and	allows	the	vendor	to	capture	more	of	the	valuable	customer	data	coming	from	these
transactions.	The	same	concept	can	apply	to	retail	loyalty	points,	exemplified	by	airline	frequent-flyer
miles.	It	is	costly	for	vendors	to	maintain	these	systems	and	coordinate	with	partner	vendors	in	the
program.	A	blockchain-based	system	allows	the	hosting	vendor	to	distribute	the	workload	among	the
partners	and	allows	transactions	to	be	posted	in	a	decentralized	manner,	releaving	the	vendor	from	have
to	run	its	own	online	transaction	processing	system.	In	the	late	2010s,	business	strategies	were	being
tested	around	these	concepts.

•	Supply	chain:	Blockchain	enables	every	participant	in	a	supply	chain	to	log	every	action.	This	facilitates
tracking	the	movement	of	every	item	in	the	chain	rather	than	only	aggregates	like	crates,	shipments,	etc.
In	the	event	of	a	recall,	the	set	of	affected	products	can	be	pinpointed	to	a	smaller	set	of	products	and
done	so	quickly.	When	a	quality	issue	suggests	a	recall,	some	supply-chain	members	may	be	tempted	to
cover	up	their	role,	but	the	immutability	of	the	blockchain	prevents	record	falsification	after	the	fact.

26.9

Summary

1279

•	Tickets	for	events:	Suppose	a	person	A	has	bought	tickets	for	an	event,	but	now	wishes	to	sell	them,	and
B	buys	the	ticket	from	A.	Given	that	tickets	are	all	sold	online,	B	would	need	to	trust	that	the	ticket	given
by	A	is	genuine,	and	A	has	not	already	sold	the	ticket,	that	is,	the	ticket	has	not	been	double-spent.	If
ticket	transactions	are	carried	out	on	a	blockchain,	double-spending	can	be	detected	easily.

Tickets	can	be	verified	if	they	are	signed	digitally	by	the	event	organizer	(whether	or	not	they	are	on	a
blockchain).

•	Trade	finance:	Companies	often	depend	on	loans	from	banks,	issued	through	letters	of	credits,	to
finance	purchases.	Such	letters	of	credit	are	issued	against	goods	based	on	bills	of	lading	indicating	that
the	goods	are	ready	for	shipment.	The	ownership	of	the	goods	(title)	is	then	transferred	to	the	buyer.
These	transactions	involve	multiple	parties	including	the	seller,	buyer,	the	buyer’s	bank,	the	seller’s	bank,
a	shipping	company	and	so	forth,	which	trust	each	other	to	some	extent,	but	not	fully.	Traditionally,	these
processes	were	based	on	physical	documents	that	have	to	be	signed	and	shipped	between	parties	that
may	be	anywhere	on	the	globe,	resulting	in	significant	delays	in	these	processes.	Blockchain	technology
can	be	used	to	keep	these	documents	in	a	digital	form,	and	automate	these	processes	in	a	way	that	is
highly	secure	yet	very	fast	(at	least	compared	to	processing	of	physical	documents).

Other	applications	beyond	those	we	have	listed	continue	to	emerge.

26.9

Summary

•	Blockchains	provide	a	degree	of	privacy,	anonymity,	and	decentralization	that	is	hard	to	achieve	with	a
traditional	database.

•	Public	blockchains	are	accessibly	openly	on	the	internet.	Permissioned	blockchains	are	managed	by	an
organization	and	usually	serve	a	specific	enterprise	or	group	of	enterprises.

•	The	main	consensus	mechanisms	for	public	blockchains	are	proof-of-work	and	proof-of-stake.	Miners
compete	to	add	the	next	block	to	the	blockchain	in	exchange	for	a	reward	of	blockchain	currency.

•	Many	permissioned	blockchains	use	a	Byzantine	consensus	algorithm	to	choose	the	node	to	add	the	next
block	to	the	chain.

•	Nodes	adding	a	block	to	the	chain	first	validate	the	block.	Then	all	full	nodes	maintaining	a	replica	of
the	chain	validate	the	new	block.

•	Key	blockchain	properties	include	irrefutability	and	tamper	resistance.

•	Cryptographic	hash	functions	must	exhibit	collision	resistance,	irreversibility,	and	puzzle	friendliness.

1280

Chapter	26

Blockchain	Databases

•	Public-key	encryption	is	based	on	a	user	having	both	a	public	and	private	key	to	enable	both	the
encryption	of	data	and	the	digital	signature	of	documents.

•	Proof-of-work	requires	a	large	amount	of	computation	to	guess	a	successful	nonce	that	allows	the	hash
target	to	be	met.	Proof-of-stake	is	based	on	ownership	of	blockchain	currency.	Hybrid	schemes	are
possible.

•	Smart	contracts	are	executable	pieces	of	code	in	a	blockchain.	In	some	chains,	they	may	operate	as
independent	entities	with	their	own	data	and	account.	Smart	contracts	may	encode	complex	business
agreements	and	they	may	provide	ongoing	services	to	nodes	participating	in	the	blockchain.

•	Smart	contracts	get	input	from	the	outside	world	via	trusted	oracles	that	serve	as	a	real-time	data
source.

•	Blockchains	that	retain	state	can	serve	in	a	manner	similar	to	a	database	system	and	may	benefit	from
the	use	of	database	indexing	methods	and	access	optimization,	but	the	blockchain	structure	may	place
limits	on	this.

Review	Terms

•	Public	and	permissioned	blockchain

•	Double	spend

•	Cryptographic	hash

•	Orphaned	block

•	Mining

•	Nonce

•	Light	and	full	nodes

•	Block	validation

•	Proof-of-work

•	Merkle	tree

•	Proof-of-stake

•	Patricia	tree

•	Byzantine	consensus

•	Bitcoin

•	Tamper	resistance

•	Ethereum

•	Collision	resistance

•	Gas

•	Irreversibility

•	Smart	contract

•	Public-key	encryption

•	Oracles

•	Digital	signature

•	Cross-chain	transaction

•	Irrefutability

•	Sharding

•	Forks:	hard	and	soft

•	Off-chain	processing

Practice	Exercises

26.1

What	is	a	blockchain	fork?	List	the	two	types	of	fork	and	explain	their	differences.

Exercises

1281

26.2

Consider	a	hash	function	h(x)	=	x	mod	2256,	that	is,	the	hash	function	returns	the	last	256	bits	of	x.

Does	this	function	have

a.

collision	resistance

b.

irreversibility

c.

puzzle	friendliness

Why	or	why	not?

26.3

If	you	were	designing	a	new	public	blockchain,	why	might	you	choose	proof-of-stake	rather	than	proof-of-
work?

26.4

If	you	were	designing	a	new	public	blockchain,	why	might	you	choose	proof-of-work	rather	than	proof-of-
stake?

26.5

Explain	the	distinction	between	a	public	and	a	permissioned	blockchain	and	when	each	would	be	more
desirable.

26.6

Data	stored	in	a	blockchain	are	protected	by	the	tamper-resistance	property	of	a	blockchain.	In	what	way
is	this	tamper	resistance	more	secure	in	practice	than	the	security	provided	by	a	traditional	enterprise
database	system?

26.7

In	a	public	blockchain,	how	might	someone	determine	the	real-world	identity	that	corresponds	to	a	given
user	ID?

26.8

What	is	the	purpose	of	gas	in	Ethereum?

26.9

Suppose	we	are	in	an	environment	where	users	can	be	assumed	not	to	be	malicious.	In	that	case,	what
advantages,	if	any,	does	Byzantine	consensus	have	over	2PC?

26.10

Explain	the	benefits	and	potential	risks	of	sharding.

26.11

Why	do	enterprise	blockchains	often	incorporate	database-style	access?

Exercises

26.12

In	what	order	are	blockchain	transactions	serialized?

26.13

Since	blockchains	are	immutable,	how	is	a	transaction	abort	implemented	so	as	not	to	violate
immutability?

26.14

Since	pointers	in	a	blockchain	include	a	cryptographic	hash	of	the	previous	block,	why	is	there	the
additional	need	for	replication	of	the	blockchain	to	ensure	immutability?

26.15

Suppose	a	user	forgets	or	loses	her	or	his	private	key?	How	is	the	user	affected?

1282

Chapter	26

Blockchain	Databases

26.16

How	is	the	difficulty	of	proof-of-work	mining	adjusted	as	more	nodes	join	the	network,	thus	increasing	the
total	computational	power	of	the	network?	Describe	the	process	in	detail.

26.17

Why	is	Byzantine	consensus	a	poor	consensus	mechanism	in	a	public

blockchain?

26.18

Explain	how	off-chain	transaction	processing	can	enhance	throughput.	What	are	the	trade-offs	for	this
benefit?

26.19

Choose	an	enterprise	of	personal	interest	to	you	and	explain	how	blockchain	technology	could	be
employed	usefully	in	that	business.

Tools

One	can	download	blockchain	software	to	create	a	full	node	for	public	blockchains	such	as	Bitcoin
(bitcoin.org)	and	Ethereum	(www.ethereum.org)	and	begin	mining,	though	the	economic	return	for	the
investment	of	power	may	be	questionable.	Tools	exist	also	to	join	mining	pools.	Browsing	tools	exist	to
view	the	contents	of	public	blockchains.	For	some	blockchains,	notably	Ethereum,	it	is	possible	to	install	a
private	copy	of	the	blockchain	software	managing	a	private	blockchain	as	an	educational	tool.

Ethereum	also	offers	a	public	test	network	where	smart	contracts	can	be	debugged	without	the	expense
of	gas	on	the	real	network.

Hyperledger	(www.hyperledger.org)	which	is	supported	by	a	large	consortium	of	companies,	provides	a
wide	variety	of	open	source	blockchain	platforms	and	tools.	Corda	(www.corda.net)	and	BigchainDB
(www.bigchaindb.com)	are	two	other	blockchain	platforms,	with	BigchainDB	having	a	specific	focus	on
blockchain	databases.

Blockchain	based	systems	for	supporting	academic	certificates	and	medical	records,	such	as	Blockcert
and	Medrec	(both	from	MIT),	and	several	other	applications	are	available	online.	The	set	of	tools	for
blockchain	are	evolving	rapidly.	Due	to	the	rapid	rate	of	change	and	development,	as	of	late	2018	we	are
unable	to	identify	a	best	set	of	tools,	beyond	the	few	mentioned	above,	that	we	can	recommend.	We
recommend	you	perform	a	web	search	for	the	latest	tools.

Further	Reading

The	newness	of	blockchain	technology	and	applications	means	that,	unlike	the	more	established	technical
topics	elsewhere	in	this	text,	there	are	fewer	references	in	the	academic	literature	and	fewer	textbooks.
Many	of	the	key	papers	are	published	only	on	the	website	of	a	particular	blockchain.	The	URLs	for	those
references	are	likely	to	change	often.	Thus,	web	searches	for	key	topics	are	a	highly	important	source	for
further	reading.	Here,	we	cite	some	classic	references	as	well	as	URLs	current	as	of	the	publication	date.

Further	Reading

1283

The	original	Bitcoin	paper	[Nakamoto	(2008)]	is	authored	under	a	pseudonym,	with	the	identity	of	the
author	or	authors	still	the	subject	of	speculation.	The	original	Ethereum	paper	[Buterin	(2013)]	has	been
superseded	by	newer	Ethereum	white	papers	(see	ethereum.org),	but	the	original	work	by	Ethereum’s
creator,	Vitalik	Buterin,	remains	interesting	reading.	Solidity,	the	primary	programming	language	for
Ethereum	smart	contracts,	is	discussed	in	solidity.readthedocs.io.	The	ERC-20	standard	is	described	in
[Vogelsteller	and	Buterin	(2013)]	and	the	proposed	(as	of	the	publication	date	of	this	text)	Casper	upgrade
to	the	performance	of	Ethereum’s	consensus	mechanism	appears	in	[Buterin	and	Griffith	(2017)].	Another
approach	to	using	proof-of-stake	is	used	by	the	Cardano	blockchain	(www.cardano.org).

Many	of	the	theoretical	results	that	make	blockchain	possible	were	first	developed	in	the	20th	century.
The	concepts	behind	cryptographic	hash	functions	and	public-key	encryption	were	introduced	in	[Diffie
and	Hellman	(1976)]	and	[Rivest	et	al.	(1978)].

A	good	reference	for	cryptography	is	[Katz	and	Lindell	(2014)].	[Narayanan	et	al.

(2016)]	is	a	good	reference	for	the	basics	of	cryptocurrency,	though	its	focus	is	mainly	on	Bitcoin.	There	is
a	large	body	of	literature	on	Byzantine	consensus.	Early	papers	that	laid	the	foundation	for	this	work
include	[Pease	et	al.	(1980)]	and	[Lamport	et	al.

(1982)].	Practical	Byzantine	fault	tolerance	([Castro	and	Liskov	(1999)])	serves	as	the	basis	for	much	of
the	current	blockchain	Byzantine	consensus	algorithms.	[Mazières	(2016)]	describes	in	detail	a	consensus
protocol	specifically	designed	to	allow	for	open,	rather	than	permissioned,	membership	in	the	consensus

group.	References	pertaining	to	Merkle	trees	appears	in	Chapter	23.	Patricia	trees	were	introduced	in
[Morrison	(1968)].

A	benchmarking	framework	for	permissioned	blockchains	appears	in	[Dinh	et	al.

(2017)].	A	detailed	comparison	of	blockchain	systems	appears	in	[Dinh	et	al.	(2018)].

ForkBase,	a	storage	system	designed	for	improved	blockchain	performance,	is	discussed	in	[Wang	et	al.
(2018)].

The	Lightning	network(lightning.network)	aims	to	accelerate	Bitcoin	transactions	and	provide	some
degree	of	cross-chain	transactions.	Ripple	(ripple.com)	provides	a	network	for	international	fiat	currency
exchange	using	the	XRP	token.	Loopring	(loopring.org)	is	a	cryptocurrency	exchange	platform	that	allows
users	to	retain	control	of	their	currency	without	having	to	surrender	control	to	the	exchange.

Many	of	the	blockchains	discussed	in	the	chapter	have	their	best	descriptions	on	their	respective	web
sites.	These	include	Corda	(docs.corda.net),	Iota	(iota.org),	and	Hyperledger	(www.hyperledger.org).
Many	financial	firms	are	creating	their	own	blockchains,	and	some	of	those	are	publicly	available,
including	J.P.	Morgan’s	Quorum	(www.jpmorgan.com/global/Quorum).

Bibliography

[Buterin	(2013)]

V.	Buterin,	“Ethereum:	The	Ultimate	Smart	Contract	and	Decentralized

Application	Platform”,	Technical	report	(2013).

1284

Chapter	26

Blockchain	Databases

[Buterin	and	Griffith	(2017)]

V.	Buterin	and	V.	Griffith,	“Casper	the	Friendly	Finality	Gad-

get”,	Technical	report	(2017).

[Castro	and	Liskov	(1999)]

M.	Castro	and	B.	Liskov,	“Practical	Byzantine	Fault	Tolerance”,

In	Symp.	on	Operating	Systems	Design	and	Implementation	(OSDI),	USENIX	(1999).

[Diffie	and	Hellman	(1976)]

W.	Diffie	and	M.	E.	Hellman,	“New	Directions	in	Cryptogra-

phy”,	IEEE	Transactions	on	Information	Theory,	Volume	22,	Number	6	(1976).

[Dinh	et	al.	(2017)]

T.	T.	A.	Dinh,	J.	Wang,	G.	Chen,	R.	Liu,	B.	C.	Ooi,	and	K.-L.	Tan,

“BLOCKBENCH:	A	Framework	for	Analyzing	Private	Blockchains”,	In	Proc.	of	the	ACM

SIGMOD	Conf.	on	Management	of	Data	(2017),	pages	1085–1100.

[Dinh	et	al.	(2018)]

T.	T.	A.	Dinh,	R.	Liu,	M.	H.	Zhang,	G.	Chen,	B.	C.	Ooi,	and	J.	Wang,

“Untangling	Blockchain:	A	Data	Processing	View	of	Blockchain	Systems”,	volume	30	(2018),	pages	1366–
1385.

[Katz	and	Lindell	(2014)]

J.	Katz	and	Y.	Lindell,	Introduction	to	Modern	Cryptography,	3rd	edition,	Chapman	and	Hall/CRC	(2014).

[Lamport	et	al.	(1982)]

L.	Lamport,	R.	Shostak,	and	M.	Pease,	“The	Byzantine	Generals

Problem”,	ACM	Transactions	on	Programming	Languages	and	Systems,	Volume	4,	Number	3

(1982),	pages	382–401.

[Mazières	(2016)]

D.	Mazières,	“The	Stellar	Consensus	Protocol”,	Technical	report	(2016).

[Morrison	(1968)]

D.	Morrison,	“Practical	Algorithm	To	Retrieve	Information	Coded	in	Al-

phanumeric”,	Journal	of	the	ACM,	Volume	15,	Number	4	(1968),	pages	514–534.

[Nakamoto	(2008)]

S.	Nakamoto,	“Bitcoin:	A	Peer-to-Peer	Electronic	Cash	System”,	Tech-

nical	report,	Bitcoin.org	(2008).

[Narayanan	et	al.	(2016)]

A.	Narayanan,	J.	Bonneau,	E.	Felten,	A.	Miller,	and	S.	Goldfeder,

Bitcoin	and	Cryptocurrency	Technologies,	Princeton	University	Press	(2016).

[Pease	et	al.	(1980)]

M.	Pease,	R.	Shostak,	and	L.	Lamport,	“Reaching	Agreement	in	the

Presence	of	Faults”,	Journal	of	the	ACM,	Volume	27,	Number	2	(1980),	pages	228–234.

[Rivest	et	al.	(1978)]

R.	L.	Rivest,	A.	Shamir,	and	L.	Adleman,	“A	Method	for	Obtaining

Digital	Signatures	and	Public-Key	Cryptosystems”,	Communications	of	the	ACM,	Volume	21,	Number	2
(1978),	pages	120–126.

[Vogelsteller	and	Buterin	(2013)]

F.	Vogelsteller	and	V.	Buterin,	“ERC-20	Token	Standard”,

Technical	report	(2013).

[Wang	et	al.	(2018)]

S.	Wang,	T.	T.	A.	Dihn,	Q.	Lin,	Z.	Xie,	M.	Zhang,	Q.	Cai,	G.	Chen,

B.	C.	Ooi,	and	P.	Ruan,	“ForkBase:	An	Efficient	Storage	Engine	for	Blockchain	and	Forkable	Applications”,
In	Proc.	of	the	International	Conf.	on	Very	Large	Databases	(2018),	pages	1085–

1100.

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

PART	10

APPENDIX	A

Appendix	A	presents	the	full	details	of	the	university	database	that	we	have	used	as	our	running	example,
including	an	E-R	diagram,	SQL	DDL,	and	sample	data	that	we	have	used	throughout	the	book.	(The	DDL
and	sample	data	are	also	available	on	the	web	site	of	the	book,	db-book.com,	for	use	in	laboratory
exercises.)

1285

A	P	P	E	N	D	I	X	A

Detailed	University	Schema

In	this	appendix,	we	present	the	full	details	of	our	running-example	university	database.

In	Section	A.1	we	present	the	full	schema	as	used	in	the	text	and	the	E-R	diagram	that	corresponds	to	that
schema.	In	Section	A.2	we	present	a	relatively	complete	SQL	data	definition	for	our	running	university
example.	Besides	listing	a	datatype	for	each	attribute,	we	include	a	substantial	number	of	constraints.
Finally,	in	Section	A.3,	we	present	sample	data	that	correspond	to	our	schema.	SQL	scripts	to	create	all
the	relations	in	the	schema,	and	to	populate	them	with	sample	data,	are	available	on	the	web	site	of	the
book,	db-book.com.

A.1

Full	Schema

The	full	schema	of	the	university	database	that	is	used	in	the	text	follows.	The	corresponding	schema
diagram,	and	the	one	used	throughout	the	text,	is	shown	in	Figure	A.1.

classroom(building,	room	number,	capacity)	department(dept	name,	building,	budget)	course(course	id,
title,	dept	name,	credits)	instructor(ID,	name,	dept	name,	salary)	section(course	id,	sec	id,	semester,
year,	building,	room	number,	time	slot	id)	teaches(ID,	course	id,	sec	id,	semester,	year)	student(ID,
name,	dept	name,	tot	cred)	takes(ID,	course	id,	sec	id,	semester,	year,	grade)	advisor(s	ID,	i	ID)

time	slot(time	slot	id,	day,	start	time,	end	time)	prereq(course	id,	prereq	id)

1287

1288

Appendix	A

Detailed	University	Schema

student

takes

ID

ID

name

course_id

dept_name

sec_id

tot_cred

semester

year

grade

section

course

course_id

course_id

department

advisor

sec_id

title

dept_name

s_id

semester

dept_name

i_id

building

year

credits

time_slot

building

budget

room_number

time_slot_id

time_slot_id

day

start_time

end_time

prereq

instructor

classroom

course_id

ID

building

prereq_id

name

room_number

dept_name

capacity

teaches

salary

ID

course_id

sec_id

semester

year

Figure	A.1	Schema	diagram	for	the	university	database.

A.2

DDL

In	this	section,	we	present	a	relatively	complete	SQL	data	definition	for	our	example.

Besides	listing	a	datatype	for	each	attribute,	we	include	a	substantial	number	of	constraints.

create	table	classroom

(building

varchar	(15),

room	number	varchar	(7),

capacity

numeric	(4,0),

primary	key	(building,	room	number));

create	table	department

(dept	name

varchar	(20),

building

varchar	(15),

budget

numeric	(12,2)	check	(budget	>	0),

primary	key	(dept	name));

A.2

DDL

1289

create	table	course

(course	id

varchar	(7),

title

varchar	(50),

dept	name

varchar	(20),

credits

numeric	(2,0)	check	(credits	>	0),

primary	key	(course	id),

foreign	key	(dept	name)	references	department

on	delete	set	null);

create	table	instructor

(ID

varchar	(5),

name

varchar	(20)	not	null,

dept	name

varchar	(20),

salary

numeric	(8,2)	check	(salary	>	29000),

primary	key	(ID),

foreign	key	(dept	name)	references	department

on	delete	set	null);

create	table	section

(course	id

varchar	(8),

sec	id

varchar	(8),

semester

varchar	(6)	check	(semester	in

(’Fall’,	’Winter’,	’Spring’,	’Summer’)),

year

numeric	(4,0)	check	(year	>	1701	and	year	<	2100),

building

varchar	(15),

room	number	varchar	(7),

time	slot	id

varchar	(4),

primary	key	(course	id,	sec	id,	semester,	year),	foreign	key	(course	id)	references	course

on	delete	cascade,

foreign	key	(building,	room	number)	references	classroom	on	delete	set	null);

In	the	preceding	DDL,	we	add	the	on	delete	cascade	specification	to	a	foreign	key	constraint	if	the
existence	of	the	tuple	depends	on	the	referenced	tuple.	For	example,	we	add	the	on	delete	cascade
specification	to	the	foreign	key	constraint	from	section	(which	was	generated	from	weak	entity	section),	to
course	(which	was	its	identifying	relationship).	In	other	foreign	key	constraints	we	either	specify	on	delete
set	null,	which	allows	deletion	of	a	referenced	tuple	by	setting	the	referencing	value	to	null,	or	we	do	not
add	any	specification,	which	prevents	the	deletion	of	any	referenced	tuple.	For	example,	if	a	department	is
deleted,	we	would	not	wish	to	delete	associated	instructors;

1290

Appendix	A

Detailed	University	Schema

the	foreign	key	constraint	from	instructor	to	department	instead	sets	the	dept	name	attribute	to	null.	On
the	other	hand,	the	foreign	key	constraint	for	the	prereq	relation,	shown	later,	prevents	the	deletion	of	a
course	that	is	required	as	a	prerequisite	for	another	course.	For	the	advisor	relation,	shown	later,	we
allow	i	ID	to	be	set	to	null	if	an	instructor	is	deleted	but	delete	an	advisor	tuple	if	the	referenced	student
is	deleted.

create	table	teaches

(ID

varchar	(5),

course	id

varchar	(8),

sec	id

varchar	(8),

semester

varchar	(6),

year

numeric	(4,0),

primary	key	(ID,	course	id,	sec	id,	semester,	year),	foreign	key	(course	id,	sec	id,	semester,	year)
references	section	on	delete	cascade,

foreign	key	(ID)	references	instructor

on	delete	cascade);

create	table	student

(ID

varchar	(5),

name

varchar	(20)	not	null,

dept	name

varchar	(20),

tot	cred

numeric	(3,0)	check	(tot	cred	>=	0),

primary	key	(ID),

foreign	key	(dept	name)	references	department

on	delete	set	null);

create	table	takes

(ID

varchar	(5),

course	id

varchar	(8),

sec	id

varchar	(8),

semester

varchar	(6),

year

numeric	(4,0),

grade

varchar	(2),

primary	key	(ID,	course	id,	sec	id,	semester,	year),	foreign	key	(course	id,	sec	id,	semester,	year)
references	section	on	delete	cascade,

foreign	key	(ID)	references	student

on	delete	cascade);

A.2

DDL

1291

create	table	advisor

(s	ID

varchar	(5),

i	ID

varchar	(5),

primary	key	(s	ID),

foreign	key	(i	ID)	references	instructor	(ID)

on	delete	set	null,

foreign	key	(s	ID)	references	student	(ID)

on	delete	cascade);

create	table	prereq

(course	id

varchar(8),

prereq	id

varchar(8),

primary	key	(course	id,	prereq	id),

foreign	key	(course	id)	references	course

on	delete	cascade,

foreign	key	(prereq	id)	references	course);

The	following	create	table	statement	for	the	table	time	slot	can	be	run	on	most	database	systems,	but	it
does	not	work	on	Oracle	(at	least	as	of	Oracle	version	11),	since	Oracle	does	not	support	the	SQL
standard	type	time.

create	table	timeslot

(time	slot	id

varchar	(4),

day

varchar	(1)	check	(day	in	(’M’,	’T’,	’W’,	’R’,	’F’,	’S’,	’U’)),	start	time

time,

end	time

time,

primary	key	(time	slot	id,	day,	start	time));

The	syntax	for	specifying	time	in	SQL	is	illustrated	by	these	examples:	’08:30’,

’13:55’,	and	’5:30	PM’.	Since	Oracle	does	not	support	the	time	type,	for	Oracle	we	use	the	following
schema	instead:

create	table	timeslot

(time	slot	id

varchar	(4),

day

varchar	(1),

start	hr

numeric	(2)	check	(start	hr	>=	0	and	end	hr	<	24),

start	min

numeric	(2)	check	(start	min	>=	0	and	start	min	<	60),	end	hr

numeric	(2)	check	(end	hr	>=	0	and	end	hr	<	24),

end	min

numeric	(2)	check	(end	min	>=	0	and	end	min	<	60),

primary	key	(time	slot	id,	day,	start	hr,	start	min));	The	difference	is	that	start	time	has	been	replaced	by
two	attributes	start	hr	and	start	min,	and	similarly	end	time	has	been	replaced	by	attributes	end	hr	and
end	min.

1292

Appendix	A

Detailed	University	Schema

These	attributes	also	have	constraints	that	ensure	that	only	numbers	representing	valid	time	values
appear	in	those	attributes.	This	version	of	the	schema	for	time	slot	works	on	all	databases,	including
Oracle.	Note	that	although	Oracle	supports	the	datetime	datatype,	datetime	includes	a	specific	day,
month,	and	year	as	well	as	a	time,	and	is	not	appropriate	here	since	we	want	only	a	time.	There	are	two

alternatives	to	splitting	the	time	attributes	into	an	hour	and	a	minute	component,	but	neither	is	desirable.
The	first	alternative	is	to	use	a	varchar	type,	but	that	makes	it	hard	to	enforce	validity	constraints	on	the
string	as	well	as	to	perform	comparison	on	time.	The	second	alternative	is	to	encode	time	as	an	integer
representing	a	number	of	minutes	(or	seconds)	from	midnight,	but	this	alternative	requires	extra	code
with	each	query	to	convert	values	between	the	standard	time	representation	and	the	integer	encoding.	We
therefore	choose	the	two-part	solution.

A.3

Sample	Data

In	this	section	we	provide	sample	data	for	each	of	the	relations	defined	in	the	previous	section.

building

room	number

capacity

Packard

101

500

Painter

514

10

Taylor

3128

70

Watson

100

30

Watson

120

50

Figure	A.2	The	classroom	relation.

dept	name

building

budget

Biology

Watson

90000

Comp.	Sci.

Taylor

100000

Elec.	Eng.

Taylor

85000

Finance

Painter

120000

History

Painter

50000

Music

Packard

80000

Physics

Watson

70000

Figure	A.3	The	department	relation.

A.3

Sample	Data

1293

Credits

The	photo	of	the	sailboats	in	the	beginning	of	the	chapter	is	due	to	©Pavel	Nesvadba/Shutterstock.

course	id

title

dept	name

credits

BIO-101

Intro.	to	Biology

Biology

4

BIO-301

Genetics

Biology

4

BIO-399

Computational	Biology

Biology

3

CS-101

Intro.	to	Computer	Science

Comp.	Sci.

4

CS-190

Game	Design

Comp.	Sci.

4

CS-315

Robotics

Comp.	Sci.

3

CS-319

Image	Processing

Comp.	Sci.

3

CS-347

Database	System	Concepts

Comp.	Sci.

3

EE-181

Intro.	to	Digital	Systems

Elec.	Eng.

3

FIN-201

Investment	Banking

Finance

3

HIS-351

World	History

History

3

MU-199

Music	Video	Production

Music

3

PHY-101

Physical	Principles

Physics

4

Figure	A.4	The	course	relation.

ID

name

dept	name

salary

10101

Srinivasan

Comp.	Sci.

65000

12121

Wu

Finance

90000

15151

Mozart

Music

40000

22222

Einstein

Physics

95000

32343

El	Said

History

60000

33456

Gold

Physics

87000

45565

Katz

Comp.	Sci.

75000

58583

Califieri

History

62000

76543

Singh

Finance

80000

76766

Crick

Biology

72000

83821

Brandt

Comp.	Sci.

92000

98345

Kim

Elec.	Eng.

80000

Figure	A.5	The	instructor	relation.

1294

Appendix	A

Detailed	University	Schema

course	id

sec	id

semester

year

building

room	number

time	slot	id

BIO-101

1

Summer

2017

Painter

514

B

BIO-301

1

Summer

2018

Painter

514

A

CS-101

1

Fall

2017

Packard

101

H

CS-101

1

Spring

2018

Packard

101

F

CS-190

1

Spring

2017

Taylor

3128

E

CS-190

2

Spring

2017

Taylor

3128

A

CS-315

1

Spring

2018

Watson

120

D

CS-319

1

Spring

2018

Watson

100

B

CS-319

2

Spring

2018

Taylor

3128

C

CS-347

1

Fall

2017

Taylor

3128

A

EE-181

1

Spring

2017

Taylor

3128

C

FIN-201

1

Spring

2018

Packard

101

B

HIS-351

1

Spring

2018

Painter

514

C

MU-199

1

Spring

2018

Packard

101

D

PHY-101

1

Fall

2017

Watson

100

A

Figure	A.6	The	section	relation.

ID

course	id

sec	id

semester

year

10101

CS-101

1

Fall

2017

10101

CS-315

1

Spring

2018

10101

CS-347

1

Fall

2017

12121

FIN-201

1

Spring

2018

15151

MU-199

1

Spring

2018

22222

PHY-101

1

Fall

2017

32343

HIS-351

1

Spring

2018

45565

CS-101

1

Spring

2018

45565

CS-319

1

Spring

2018

76766

BIO-101

1

Summer

2017

76766

BIO-301

1

Summer

2018

83821

CS-190

1

Spring

2017

83821

CS-190

2

Spring

2017

83821

CS-319

2

Spring

2018

98345

EE-181

1

Spring

2017

Figure	A.7	The	teaches	relation.

A.3

Sample	Data

1295

ID

name

dept	name

tot	cred

00128

Zhang

Comp.	Sci.

102

12345

Shankar

Comp.	Sci.

32

19991

Brandt

History

80

23121

Chavez

Finance

110

44553

Peltier

Physics

56

45678

Levy

Physics

46

54321

Williams

Comp.	Sci.

54

55739

Sanchez

Music

38

70557

Snow

Physics

0

76543

Brown

Comp.	Sci.

58

76653

Aoi

Elec.	Eng.

60

98765

Bourikas

Elec.	Eng.

98

98988

Tanaka

Biology

120

Figure	A.8	The	student	relation.

1296

Appendix	A

Detailed	University	Schema

ID

course	id

sec	id

semester

year

grade

00128

CS-101

1

Fall

2017

A

00128

CS-347

1

Fall

2017

A-

12345

CS-101

1

Fall

2017

C

12345

CS-190

2

Spring

2017

A

12345

CS-315

1

Spring

2018

A

12345

CS-347

1

Fall

2017

A

19991

HIS-351

1

Spring

2018

B

23121

FIN-201

1

Spring

2018

C+

44553

PHY-101

1

Fall

2017

B-

45678

CS-101

1

Fall

2017

F

45678

CS-101

1

Spring

2018

B+

45678

CS-319

1

Spring

2018

B

54321

CS-101

1

Fall

2017

A-

54321

CS-190

2

Spring

2017

B+

55739

MU-199

1

Spring

2018

A-

76543

CS-101

1

Fall

2017

A

76543

CS-319

2

Spring

2018

A

76653

EE-181

1

Spring

2017

C

98765

CS-101

1

Fall

2017

C-

98765

CS-315

1

Spring

2018

B

98988

BIO-101

1

Summer

2017

A

98988

BIO-301

1

Summer

2018

null

Figure	A.9	The	takes	relation.

s	id

i	id

00128

45565

12345

10101

23121

76543

44553

22222

45678

22222

76543

45565

76653

98345

98765

98345

98988

76766

Figure	A.10	The	advisor	relation.

A.3

Sample	Data

1297

time	slot	id

day

start	time

end	time

A

M

8:00

8:50

A

W

8:00

8:50

A

F

8:00

8:50

B

M

9:00

9:50

B

W

9:00

9:50

B

F

9:00

9:50

C

M

11:00

11:50

C

W

11:00

11:50

C

F

11:00

11:50

D

M

13:00

13:50

D

W

13:00

13:50

D

F

13:00

13:50

E

T

10:30

11:45

E

R

10:30

11:45

F

T

14:30

15:45

F

R

14:30

15:45

G

M

16:00

16:50

G

W

16:00

16:50

G

F

16:00

16:50

H

W

10:00

12:30

Figure	A.11	The	time	slot	relation.

course	id

prereq	id

BIO-301

BIO-101

BIO-399

BIO-101

CS-190

CS-101

CS-315

CS-101

CS-319

CS-101

CS-347

CS-101

EE-181

PHY-101

Figure	A.12	The	prereq	relation.

1298

Appendix	A

Detailed	University	Schema

time	slot	id

day

start	hr

start	min

end	hr

end	min

A

M

8

0

8

50

A

W

8

0

8

50

A

F

8

0

8

50

B

M

9

0

9

50

B

W

9

0

9

50

B

F

9

0

9

50

C

M

11

0

11

50

C

W

11

0

11

50

C

F

11

0

11

50

D

M

13

0

13

50

D

W

13

0

13

50

D

F

13

0

13

50

E

T

10

30

11

45

E

R

10

30

11

45

F

T

14

30

15

45

F

R

14

30

15

45

G

M

16

0

16

50

G

W

16

0

16

50

G

F

16

0

16

50

H

W

10

0

12

30

Figure	A.13	The	time	slot	relation	with	start	and	end	times	separated	into	hour	and	minute.

Index

aborted	transactions,	805–807,

Advanced	Encryption	Standard

query	processing	and,	723

819–820

(AES),	448,	449

ranking	and,	219–223

abstraction,	2,	9–12,	15

advanced	SQL,	183–231

representation	of,	279

acceptors,	1148,	1152

accessing	from	programming

rollup	and	cube,	227–231

accessing	data.	See	also	security

languages,	183–198

skew	and,	1049–1050

from	application	programs,

aggregate	features,	219–231

of	transactions,	1278

16–17

embedded,	197–198

view	maintenance	and,

concurrent-access	anomalies,

functions	and	procedures,

781–782

7

198–206

windowing	and,	223–226

difficulties	in,	6

JDBC	and,	184–193

aggregation	operation,	57

indices	for,	19

ODBC	and,	194–197

aggregation	switch,	977

recovery	systems	and,

Python	and,	193–194

airlines,	database	applications

910–912

triggers	and,	206–213

for,	3

types	of	access,	15

advertisement	data,	469

Ajax,	423–426,	1015

access	paths,	695

AES	(Advanced	Encryption

algebraic	operations.	See

access	time

Standard),	448,	449

relational	algebra

indices	and,	624,	627–628

after	triggers,	210

aliases,	81,	336,	1242

query	processing	and,	692

aggregate	functions,	91–96

all	construct,	100

storage	and,	561,	566,	567,

basic,	91–92

alter	table,	71,	146

578

with	Boolean	values,	96

alter	trigger,	210

access	types,	624

defined,	91

alter	type,	159

account	nonces,	1271

with	grouping,	92–95

Amdahl’s	law,	974

ACID	properties.	See	atomicity;

having	clause,	95–96

American	National	Standards

consistency;	durability;

with	null	values,	96

Institute	(ANSI),	65,	1237

isolation

aggregation

analysis	pass,	944

Active	Server	Page	(ASP),	405

defined,	277

analytics.	See	data	analytics

active	transactions,	806

entity-relationship	(E-R)

and	connective,	74

ActiveX	DataObjects	(ADO),

model	and,	276–277

and	operation,	89–90

1239

intraoperation	parallelism

anonymity,	1252,	1253,	1258,

adaptive	lock	granularity,

and,	1049

1259

969–970

on	multidimensional	data,

ANSI	(American	National

add	constraint,	146

527–532

Standards	Institute),	65,

ADO	(ActiveX	DataObjects),

partial,	1049

1237

1239

pivoting	and,	226–227,	530

anticipatory	standards,	1237

ADO.NET,	184,	1239

query	optimization	and,	764

anti-join	operation,	108,	776

1299

1300

Index

anti-semijoin	operation,	776–777

standardization	and,

lambda,	504,	1071

Apache

1237–1240

mesh,	976

AsterixDB,	668

testing,	1234–1235

microservices,	994

Cassandra,	477,	489,	668,

tuning	and	(see	performance

multiuser	systems,	962

1024,	1028

tuning)

Non-Uniform	Memory

Flink	project,	504,	508

URLs	and,	405–406

Access,	981,	1063

Giraph	system,	511

user	interfaces	and,	403–405

overview,	961–962

HBase,	477,	480,	489,	668,

web	and,	405–411

parallel	databases,	22,

971,	1024,	1028–1031

application	migration,

970–986

Hive,	494,	495,	500

1035–1036

platform-as-a-service	model,

Jakarta	Project,	416

application	program	interfaces

992–993

Kafka	system,	506,	507,

(APIs)

recovery	systems,	932

1072–1073,	1075,	1137

ADO,	1239

server	system,	962–970,

Spark,	495–500,	508,	511,

ADO.NET,	184,	1239

977–978

1061

application	design	and,	411,

shared	disk,	979,	980,

Storm	stream-processing

413,	416

984–985

system,	506–508

C++,	1239

shared	memory,	21–22,

Tez,	495

database	access	from,	16–17

979–984,	1061–1064

APIs.	See	application	program

Java	(see	Java)

shared	nothing,	979,	980,

interfaces

LDAP,	1243

985–986,	1040–1041,

application	design,	403–453

map	displays	and,	393

1061–1063

application	architectures	and,

MongoDB,	477–479,	482,

single-user	systems,	962

429–434

489,	668,	1024,	1028

software-as-a-service	model,

authentication	and,	441–443

Open	Database	Connectivity

993

business	logic	and,	23,	404,

(see	ODBC)

source-driven,	522

411–412,	430,	431,	445

Python	(see	Python)

storage	area	network,	562

client-server	architecture	and,

Spark,	495–500,	508,	511,

three-tier,	23

404

1061

transaction-server	systems,

client-side	code	and	web

standards	for,	1238–1240

963–968

services,	421–429

system	architectures	and,	962

two-phase	commit	protocol,

common	gateway	interface

Tez,	495

989,	1276

standard	and,	409

web	services	and,	427

two-tier,	23

cookies	and,	410–415,	411n2

application	programmers,	24

wide-area	networks,	989

data	access	layer	and,

application	servers,	23,	416

archival	data,	561

430–434

architectures,	961–995

archival	dump,	931

disconnected	operation	and,

business	logic	and,	23

ARIES

427–428

centralized	databases,

analysis	pass	and,	944

encryption	and,	447–453

962–963

compensation	log	records

HTML	and,	404,	406–408,

client-server	systems,	23,	971

and,	942,	945

426

cloud-based,	990–995,	1026,

data	structures	and,	942–944

HTTP	and,	405–413

1027

dirty	page	table	and,	941–947

JavaScript	and,	404–405,

database	storage,	587–588

fine-grained	locking	and,	947

421–426

data-server	systems,	963–964,

fuzzy	checkpoints	and,	941

Java	Server	Pages	and,	405,

968–970

log	sequence	number	and,

417–418

data	warehousing,	522–523

941–946

mobile	application	platforms,

destination-driven,	522

nested	top	actions	and,	946

428–429

distributed	databases,	22,

optimization	and,	947

performance	and,	434–437

986–989,	1098–1100

physiological	redo	and,	941

security	and,	437–446

hierarchical,	979,	980,	986

recovery	algorithm,	944–946,

servlets	and,	411–421

hypercube,	976–977

1276

Index

1301

redo	pass	and,	944–945

recovery	systems	and,	803,

audit	trails,	445–446

rollback	and,	945–946

912–922

augmentation	rule,	321

savepoints	and,	947

storage	structure	and,

authentication

undo	pass	and,	944–946

804–805

application-level,	441–443

arity,	54

of	transactions,	20–21,	144,

challenge-response	system

Armstrong’s	axioms,	321

481,	800–807,	819–821

and,	451

array	databases,	367

attribute	inheritance,	274–275

digital	certificates	and,

array	types,	366,	367,	378

attributes

451–453

asc	expression,	84

atomic	domains	and,	342–343

digital	signatures	and,	451

as	clause,	79,	81

bitmap	indices	and,	670–672

encryption	and,	450–453

as	of	period	for,	157

classifiers	and,	541–543,	545

single	sign-on	system	and,

ASP	(Active	Server	Page),	405

closure	of	attribute	sets,

442–443

ASP.NET,	417

322–324

smart	cards	and,	451,	451n9

assertions,	152–153

complex,	249–252,	265–267

two-factor,	441–442

asset	management,	1277

composite,	250,	252

web	sessions	and,	410

assignment	operation,	55–56,

decomposition	and,	305–313,

authorization

201

330–335,	339–340

administrators	and,	166

associations

derived,	251,	252

application-level,	443–445

data	mining	and,	541

descriptive,	248

database	design	and,	291

entity	sets	(see	entity	sets)

design	issues	and,	281–282

end-user	information	and,	443

relation	schema	for,	42

discriminator,	259

granting	privileges,	25,

relationship	sets	(see

domain	of,	39–40,	249

166–167,	170–171

relationship	sets)

entity-relationship	diagrams

lack	of	fine-grained,	443–445

rules	for,	546–547

and,	265–267

permissioned	blockchains

associative	property,	749–750

entity-relationship	(E-R)

and,	1253

AsterixDB,	668

model	and,	245,	248–252,

revoking	privileges,	166–167,

asymmetric

274–275,	281–282,

171–173

fragment-and-replicate

342–343

roles	and,	167–169

joins,	1046,	1062

entity	sets	and,	245,	265–267,

row-level,	173

asymmetric-key	encryption,	448

281–282

on	schema,	170

asynchronous	replication,	1122,

extraneous,	325

Security	Assertion	Markup

1135–1138

histograms	and,	758–760

Language	and,	442–443

asynchronous	view	maintenance,

multiple-key	access	and,

SQL	DDL	and,	66

1138–1140

661–663

at-least-once	semantics,	1074

multivalued,	251,	252,	342

sql	security	invoker,	170

at-most-once	semantics,	1074

naming	of,	345–346

storage	manager	and,	19

atomic	commit,	1029

null	values	and,	251–252

transfer	of	privileges,	170–171

atomic	domains,	40,	342–343

partitioning,	479

types	of,	14,	165

atomic	instructions,	966–967

primary	keys	and,	310n4

updates	and,	14,	170,	171

atomicity

prime,	356

on	views,	169–170

cascadeless	schedules	and,

in	relational	model,	39

authorization	graph,	171

820–821

relationship	sets	and,	248

automatic	commit,	144,	144n6,

commit	protocols	and,

search	key	and,	624

822

1100–1110

simple,	250,	265

autonomous	smart	contracts,

defined,	20,	800

single-valued,	251

1272–1273

in	file-processing	systems,	6–7

Unified	Modeling	Language

autonomy,	988

isolation	and,	819–821

and,	289

availability

log	records	and,	913–919

uniquifiers,	649–650

CAP	theorem	and,	1134

recoverable	schedules	and,

value	set	of,	249

distributed	databases	and,

819–820

attribute-value	skew,	1008

987

1302

Index

high	availability,	907,

big-bang	approach,	1236

efficient	implementation	of,

931–933,	987,	1121

BigchainDB,	1269

1184–1185

network	partitions	and,	481,

Big	Data,	467–511

existence,	1184

989

algebraic	operations	and,

intersection	and,	671,	1183

robustness	and,	1121

494–500

processing	speed	and,	662,

trading	off	consistency	for,

comparison	with	traditional

663

1134–1135

databases,	468

scans	of,	698–699

average	latency	time,	566

defined,	467

sequential	records	and,	1182

average	response	time,	809

distributed	file	systems	for,

structure	of,	1182–1184

average	seek	time,	566

472–475,	489

usefulness	of,	671–672

avg	expression,	91–96,	723,

graph	databases	and,	508–511

bit	rot,	575

781–782

key-value	systems	and,	471,

blind	writes,	868

Avro,	490,	499

473,	476–480

B-link	trees,	886

axioms,	321

MapReduce	paradigm	and,

blobs,	156,	193,	594,	652

Azure	Stream	Analytics,	505

481,	483–494

blockchain	databases,

motivations	for,	467–472

1251–1279

backpropagation	algorithm,	545

parallel	and	distributed

anonymity	and,	1252,	1253,

backup.	See	also	recovery	systems

databases	for,	473,

1258,	1259

application	design	and,	450

480–481

applications	for	use,

remote	systems	for,	909,

query	processing	and,

1251–1252,	1276–1279

931–935

470–472

concurrency	control	and,

replica	systems,	212–213

replication	and	consistency

1262–1263

transactions	and,	805

in,	481–482

consensus	mechanisms	for,

backup	coordinators,	1146–1147

sharding	and,	473,	475–476

1254,	1256–1257,

balanced	range-partitioning

sources	and	uses	of,	468–470

1263–1267

vector,	1008–1009

storage	systems,	472–482,	668

cryptocurrencies	and,

balanced	trees,	634

streaming	data,	468,	500–508

1251–1253,	1257

banking

Bigtable,	477,	479–480,	668,

cryptographic	hash	functions

analytics	for,	520–521

1024–1025,	1028–1030

and,	1253,	1259–1263,

database	applications	for,	3,

binary	operations,	48

1265

4,	7,	144

binary	relationship	sets,	249,

data	mining	and,	1256,	1258,

BASE	properties,	1135

283–285

1264–1266

base	query,	217

Bing	Maps,	393

decentralization	and,	1251,

batch	scaleup,	973

Bitcoin

1252,	1259,	1270

batch	update,	1221

anonymity	and,	1253,	1258

digital	ledgers	and,	1251,	1252

Bayesian	classifiers,	543–544

data	mining	and,	1265

digital	signatures	and,	1257,

Bayes’	theorem,	543

1261

BCNF.	See	Boyce–Codd	normal

forking	and,	1258

form

growth	and	development	of,

encryption	and,	1260–1261

BCNF	decomposition	algorithm,

1251–1253

external	input	and,	1271–1272

331–333,	336

language	and,	1269–1270

fault-tolerance	of,	1276

before	triggers,	210

processing	speed,	1274

forking	and,	1257,	1258,	1263

begin	atomic...end,	145,	201,

as	public	blockchain,	1253,

genesis	blocks	and,

208,	209,	211

1255,	1263

1254–1255

begin	transaction	operation,	799

transactions	and,	1261–1263,

irrefutability	and,	1257,	1259

benchmarks.	See	performance

1268–1271

languages	and,	1258,

benchmarks

bit-level	striping,	571–572

1269–1271

bestplan	array,	768–770

bitmap	indices

lookup	in,	1268

biased	protocol,	1124

attributes	and,	670–672

management	of	data	in,

BI	(business	intelligence),	521

B+-trees	and,	1185–1186

1267–1269

Index

1303

orphaned	blocks	and,	1257,

performance	tuning	and,

nonunique	search	keys	and,

1263

1211–1213,	1215,	1227

649–650

performance	enhancement	of,

single	lock-manager	and,	1111

organization	of,	595,

1274–1276

system	architectures	and,	981,

650–652,	697,	697n4

permissioned,	1253–1254,

985

parallel	key-value	stores	and,

1256–1257,	1263,	1266,

bottom-up	B+-tree	construction,

1028

1274

654–655

performance	and,	634,

properties	and	components

bottom-up	design,	273

665–666

of,	1254–1259,	1274

bounding	boxes,	674–675,	1187

queries	on,	637–641,	690

public,	1253,	1255,

Boyce–Codd	normal	form

record	relocation	and,

1257–1259,	1263,	1264

(BCNF)

652–653

query	processing	and,	1254,

comparison	with	third	normal

secondary	indices	and,

1275–1276

form,	318–319

652–653

scalability	of,	1276

decomposition	algorithm	and,

spatial	data	and,	672–673

smart	contracts	and,	1258,

331–333,	336

structure	of,	634–637

1269–1273

defined,	313–315

temporal	data	and,	676

state-based,	1269,	1271

dependency	preservation	and,

tuning	of,	1215

tamper	resistant	nature	of,

315–316

updates	on,	641–649

1253–1255,	1259,	1260

relational	database	design

buckets,	659–661,	1194–1195

transactions	and,	1261–1263,

and,	313–316

buffer	blocks,	910–912

1268–1271,	1273

testing	for,	330–331

buffer	manager,	19,	604–607

block	identifiers,	474–475,	1020

broadcasting,	1055–1056

buffers

blocking	edges,	728

broadcast	join,	1046

database	buffering,	927–929

blocking	factor,	725

BSP	(bulk	synchronous

defined,	604

blocking	operations,	728,	728n7

processing),	510–511

disk	blocks	and,	578,	910

blocking	problem,	1104–1106

B-trees,	comparison	with

double	buffering,	725

block-interleaved	parity

B+-trees,	655–656

force/no-force	policy	and,	927

organization,	573

B+-trees,	634–658

block-level	striping,	572

force	output	and,	912

balanced,	634

block	nested-loop	join,	705–707

log-record,	926–927

bitmap	indices	and,

block-oriented	interface,	560

1185–1186

management	of,	926–930

blocks

bottom-up	construction	of,

operating	system	role	in,

buffer,	910–912

654–655

929–930

dirty,	928–929

bulk	loading	of,	653–655

output	of	blocks	and,

disk,	566–567,	577–580

comparison	with	B-trees,

606–607

evicted,	605

655–656

recovery	systems	and,

file	organization	and,	588

deletion	and,	641,	645–649

926–930

genesis,	1254–1255

extensions	and	variations	of,

reordering	of	writes	and

orphaned,	1257,	1263

650–658

recovery,	609–610

overflow,	598

fanout	and,	635

replacement	strategies,	605,

physical,	910

on	flash	storage,	656–657

607–609

pinned,	605

indexing	strings	and,	653

shared	and	exclusive	locks	on,

Bloom	filters,	667,	1083,

insertion	and,	641–645,	647,

605–606

1175–1176,	1181

649

steal/no-steal	policy	and,	927

Boolean	operations,	89,	96,	103,

internal	nodes	and,	635

storage	and,	604–610

188,	201,	1242.	See

leaf	nodes	of,	635–656,

transaction	servers	and,	965

also	specific	operations

665–669,	673,	674

write-ahead	logging	rule	and,

bottlenecks

in	main	memory,	657–658

926–929

application	design	and,	437

nonleaf	nodes	of,	635–636,

buffer	trees,	668–670

I/O	parallelism	and,	1007

642,	645–656,	663

bugs

1304

Index

application	design	and,	440,

coherency	and,	969,	983–984

centroid,	548,	548n3

1234,	1236

column-oriented	storage	and,

CEP	(complex	event	processing)

debugging,	199n4

612

systems,	504

failure	classification	and,	908

data	servers	and,	968–970

CGI	(common	gateway	interface)

build	input,	713

locks	and,	969

standard,	409

bulk	export	utility,	1222

query	plans	and,	774,	965

chain	replication	protocol,

bulk	insert	utility,	1222

replication	and,	1014n4

1127–1128

bulk	loads,	653–655,	1221–1223

shared-memory	architecture

challenge-response	system,	451

bulk	synchronous	processing

and,	982–984

change	isolation	level,	822

(BSP),	510–511

CAD	(computer-aided	design),

change	relation,	211

bully	algorithm,	1148

390–391,	968

char,	67

business	intelligence	(BI),	521

callable	statements,	190–191

check	clause

business	logic,	23,	198,	404,

call	back,	969

assertions	and,	152–153

411–412,	430–431,	445

Call	Level	Interface	(CLI)

integrity	constraints	and,

business-logic	layer,	430,	431

standards,	197,	1238–1239

147–149,	152–153

business	rules,	431

call	statement,	201

user-defined	types	and,	159

bus	system,	975–976

candidate	keys,	44

check	constraints,	151,	170,	315,

Byzantine	consensus,	1254,

canonical	cover,	324–328

800

1256,	1266–1267,	1276

CAP	theorem,	1134

checkpoint	log	records,	943

Byzantine	failure,	1266–1267

Cartesian-product	operation,

checkpoint	process,	965

50–52

checkpoints

C

Cartesian	products

fuzzy,	922,	930,	941

advanced	SQL	and,	183,	197,

equivalence	and,	748,	749,

recovery	systems	and,

199,	205

755

920–922,	930

application	design	and,	16

join	expressions	and,	135

transaction	servers	and,	965

ODBC	and,	195–196

query	optimization	and,	748,

checksums,	565

struct	declarations	used	by,

749,	755,	763–764,	775

chicken-little	approach,	1236

11n1

SQL	and,	76–79,	81,	127n1,

Chubby,	1150

Unified	Modeling	Language

230

circular	arcs,	388

and,	289

cascadeless	schedules,	820–821

classifiers

C++

cascades,	150,	172,	210

attributes	and,	541–543,	545

advanced	SQL	and,	197,	199,

cascading	rollback,	820–821,

Bayesian,	543–544

205,	206

841–842

data	mining	and,	541–546

application	design	and,	16,

cascading	stylesheet	(CSS)

417

standard,	408

decision-tree,	542

object-oriented	programming

case	construct,	112–113

neural-net,	545–546

and,	377

Cassandra,	477,	489,	668,	1024,

prediction	and,	541–543,

standards	for,	1239

1028

545–546

struct	declarations	used	by,

cast,	155,	159

Support	Vector	Machine,

11n1

catalogs

544–545

Unified	Modeling	Language

application	design	and,	1239

training	instances	and,	541

and,	289

indices	and	(see	indices)

CLI	(Call	Level	Interface)

cache-conscious	algorithms,

query	optimization	and,

standards,	197,	1238–1239

732–733

758–760,	762,	764

click-through,	469

cache	line,	732,	983

SQL	and,	162–163,	192,

client-server	systems

cache	memory,	559

196–197

application	design	and,	404,

cache	misses,	982

system,	602–604,	1009

1221,	1239

caching

centralized	databases,	962–963

recovery	systems	and,	931

application	design	and,

centralized	deadlock	detection,

system	architecture	and,	23,

435–437

1114

971

Index

1305

client-side	scripting	languages,

combine	function,	490

column-oriented	storage	and,

421–429

comma-separated	values,	1222

611,	612

clobs,	156,	193,	594,	652

commit	dependency,	847

data	warehousing	and,	526

closed	addressing,	659,	1194

commit	protocols,	1100–1110

of	disk	block	data,	615n8

closed	hashing,	659,	1194

committed	transactions

prefix,	653

closed	polygons,	388n3

defined,	806

workload	compression,	1217

closed	time	intervals,	675

durability	and,	933–934

computer-aided	design	(CAD),

closure	of	a	set,	312,	320–324

log	records	and,	917

390–391,	968

cloud-based	data	storage,	28,

observable	external	writes

conceptual-design	phase,	17–18,

563,	992–993

and,	807

242

cloud	computing

partially	committed,	806

concurrency	control,	835–894

architecture	for,	990–995,

scheduling	and,	810,	819–820

access	anomalies	and,	7

1026,	1027

updates	and,	874

blind	writes	and,	868

benefits	and	limitations	of,

commit	time,	933–934

blockchain	databases	and,

995

commit	wait,	1130–1131

1262–1263

service	models,	991–995

commit	work,	143–145

commit	protocols	and,	1105

storage	systems	and,	28,	563

common	gateway	interface	(CGI)

consistency	and,	880–885

CLR	(Common	Language

standard,	409

deadlock	handling	and,

Runtime),	206

Common	Language	Runtime

849–853

CLRs	(compensation	log

(CLR),	206

deletion	and,	857–858

records),	922,	942,	945

common	subexpression

distributed	databases	and,

clustering	indices,	625,

elimination,	785

990,	1105,	1111–1120

632–633,	695,	697–698

commutative	property,	747–750

extended	protocols,

cluster	key,	600–601

commute,	1143

1129–1133

cluster	membership,	1158

compare-and-swap,	966

false	cycles	and,	1114–1115

clusters

compatibility	function,	836

in	federated	databases,

data	mining	and,	541,

compatible	relations,	54

1132–1133

548–549

compensating	operation,	892

indices	and,	884–887

hierarchical,	548

compensating	transactions,	805

insertion	and,	857,	858

key-value	storage	systems	and,

compensation	log	records

477

(CLRs),	922,	942,	945

isolation	and,	803–804,

multitable,	595,	598–601

807–812,	823

complete	axioms,	321

system	architecture	and,	978

completeness	constraint,	275

leases	and,	1115–1116

coalesce	function,	114,	155,

complex	attributes,	249–252,

locking	protocols	and,

230–231

265–267

835–848	(see	also	locks)

coalescing	nodes,	641,	886

complex	data	types,	365–394

logical	undo	operations	and,

coarse-grained	parallelism,	963,

object	orientation,	376–382

940–941

970

semi-structured,	365–376

long-duration	transactions

Codd,	Edgar,	26

spatial,	387–394

and,	890–891

code	breaking.	See	encryption

textual,	382–387

in	main-memory	databases,

collision	resistant	hash	functions,

user-defined,	158

887–890

1259–1260

complex	event	processing	(CEP)

multiple	granularity	and,

colocation	of	data,	1068–1069

systems,	504

853–857

column	family,	1025

composite	attributes,	250,	252

multiversion	schemes	and,

column-oriented	storage,

composite	indices,	700

869–872,	1129–1131

525–526,	588,	611–617,

composite	price/performance

with	operations,	891–894

734,	1182

metric,	1234

optimistic,	869

column	stores,	612,	615,	1025,

composite	query	per	hour	metric,

parallel	databases	and,	990

1224

1234

parallel	key-value	stores	and,

combinatorics,	811

compression

1028–1029

1306

Index

phantom	phenomenon	and,

proof-of-work,	1256,

on	specialization,	275–276

827,	858–861,	877–879,

1264–1266

transactions	and,	800

877n5,	885,	887

Raft,	1148,	1155–1158,	1267

Unified	Modeling	Language

predicate	reads	and,	858–861

replication	and,	1016

and,	289

real-time	transaction	systems

Zab,	1152

containers,	992–994

and,	894

consistency

contains	operation,	101

recovery	systems	and,	916

Big	Data	and,	481–482

continuous	queries,	503,	731

replication	and,	1123–1125

CAP	theorem	and,	1134

continuous-stream	data,	731

rollback	and,	841–844,

concurrency	control	and,

conversations,	883

849–850,	853,	868–871

880–885

conversions,	155–156,	469,	843

serializability	and,	836,

cursor	stability	and,	881

cookies,	410–415,	411n2,

840–843,	846–848,	856,

deadlock	and,	838–839

439–440

861–871,	875–887

defined,	20

coordinators,	1099,	1104,

snapshot	isolation	and,

degree-two,	880–881

1106–1107,	1146–1150

872–879,	882,	916,

eventual,	1016,	1139

Corda,	1269

1131–1132

external,	1131

cores,	962–963,	970,	976,

timestamp-based	protocols

file	system	consistency	check,

980–983

and,	861–866,	882

610

core	switch,	977

trends	in,	808

hashing	and,	1013

correlated	evaluation,	775

user	interactions	and,

logical	operations	and,

correlated	subqueries,	101

881–883

936–937

correlation	name,	81,	101

validation	and,	866–869,	882,

replication	and,	1015–1016,

correlation	variables,	81,	775

916

1121–1123,	1133–1146

cost-based	optimizers,	766

concurrency-control	manager,	21

requirement	of,	802

Couchbase,	1024

concurrency-control	schemes,

trading	off	for	availability,

count	function,	91–92,	94,	96,

809

1134–1135

723,	766,	781

concurrent	transactions,

of	transactions,	20,	800,	802,

count	values,	220n11

1224–1227

807–808,	821–823

covering	indices,	663

confidence,	540,	547

user	interactions	and,

crabbing	protocol,	885–886

conflict	equivalence,	815,	815n2

881–883

crashes.	See	also	recovery

conflict	serializability,	813–816

weak	levels	of,	880–883

systems

conformance	levels,	196–197

constraints

actions	following,	923–925

conjunctive	selection,	699–700,

check,	151,	170,	315

algorithms	for,	922–925

747,	762

completeness,	275

ARIES	and,	941–947

connection	pooling,	436

consistency,	13–14

checkpoints	and,	920–922

consensus	protocols

deadlines,	894

failure	classification	and,	908

blockchain	databases	and,

decomposition	and,	336

magnetic	disks	and,	565

1254,	1256–1257,

dependency	preservation	and,

storage	and,	607,	609–610

1263–1267

315–316

transactions	and,	800

Byzantine,	1254,	1256,

entity-relationship	(E-R)

crawling	the	web,	383

1266–1267,	1276

model	and,	253–256,

create	assertion,	153

distributed	databases	and,

275–276

create	cluster,	601

1106–1107,	1150–1161,

foreign	key,	45–46

create	distinct	type,	160

1266,	1267

integrity	(see	integrity

create	domain,	159–160

message-based,	1266

constraints)

create	function,	200,	203,	204,

multiple	consensus	protocol,

keys	and,	258

215

1151

mapping	cardinalities	and,

create	index,	164–165,	664

Paxos,	1152–1155,	1160–1161,

253–256

create	or	replace,	199n4

1267

not	null,	69

create	procedure,	200,	205

proof-of-stake,	1256,	1266

primary	key,	44

create	recursive	view,	218

Index

1307

create	role,	168

DAOs	(distributed	autonomous

phases	of,	17–18,	241–243

create	schema,	163

organizations),	1272,

physical-design	phase	of,	18,

create	sequence	construct,	161

1272n7

242–243

create	table

Dart	language,	428–429

redundancy	in,	243

with	data	clause,	162

data	abstraction,	2,	9–12,	15

relational	(see	relational

default	values	and,	156

data	access	layer,	430–434

database	design)

extensions	for,	162

data	analytics,	519–549.	See	also

schema	evolution	and,	292

integrity	constraints	and,

data	mining

specification	of	functional

146–149

decision-support	systems	and,

requirements	in,	17–18

multitable	clustering	and,	601

519–522

top-down,	273

object-based	databases	and,

defined,	4,	519

user	requirements	in,	17–18,

378–380

OLAP	systems,	520,	527–540

241–242,	274

shipping	SQL	statements	to

overview,	519–521

workflow	and,	291–292

database	and,	187

predictive	models	in,	4–5

database	graph,	846–848

SQL	schema	definition	and,

statistical	analysis,	520,	527

database	instance,	41

68–71

warehousing	and,	519–527

database-management	systems

create	table...as,	162

data-at-rest,	502

(DBMSs)

create	table...like,	162

database	administrators	(DBAs),

defined,	1

create	temporary	table,	214

24–25

objectives	of,	1,	24

create	type,	158–160,	378–380

database-as-a-service	platform,

organizational	data

create	unique	index,	165,	664

993

processing	prior	to,	472

create	view,	138–143,	162,	169

database	design

product-specific	calls	needed

by,	186

credit	bureaus,	521,	521n1

alternatives	in,	243–244,

285–291

databases

cross-chain	transactions,	1273

applications	and	(see

abstraction	and,	2,	9–12,	15

cross	join,	127n1

application	design)

administrators	of,	24–25

cross-site	request	forgery

architecture	of	(see

applications	for,	1–5

(XSRF),	439–440

architectures)

architecture	(see

cross-site	scripting	(XSS),

authorization	requirements

architectures)

439–440

and,	291

array,	367

cross-tabulation,	226–227,

bottom-up,	273

blockchain	(see	blockchain

528–533

buffers	and,	604–610

databases)

CRUD	web	interfaces,	419

client-server	(see	client-server

buffering	and,	927–929

cryptocurrencies,	1251–1253,

systems)

centralized,	962–963

1257.	See	also	Bitcoin

complexity	of,	241

concurrency	control	and	(see

cryptographic	hash	functions,

computer-aided,	390–391

concurrency	control)

1253,	1259–1263,	1265

conceptual-design	phase	of,

defined,	1

CSS	(cascading	stylesheet)

17–18,	242

design	of	(see	database

standard,	408

direct	design	process,	241

design)

C-Store,	615

encryption	and,	447–453

document,	3

cube	construct,	227–231,

engines,	18–21

dumping	and,	930–931

536–538

E-R	model	and	(see

efficiency	of,	1,	2,	5,	9

current	date,	154

entity-relationship	model)

embedded,	198,	962

cursor	stability,	881

functional	requirements	of,

as	file-processing	systems,	5–8

curve	fitting,	546

291

force	output	and,	912

cylinders,	565

incompleteness	in,	243–244

graph,	508–511

Cypher	query	language,	509

logical-design	phase	of,	18,

history	of,	25–28

242

indexing	and	(see	indices)

DAGs	(directed	acyclic	graphs),

normalization	in,	17

languages	for,	13–17

499,	506–507,	1071–1072

overview	of	process,	241–244

locks	and	(see	locks)

1308

Index

main	memory	(see

storage	and,	67

data-transfer	failures,	909

main-memory	databases)

data	dictionary,	14,	19,	602–604

data-transfer	rate,	566,	569

maintenance	for,	25

data	distribution	skew,	1008

data	types.	See	types

modification	of,	108–114,

Data	Encryption	Standard

data	virtualization,	1077

915–916

(DES),	448

data	visualization,	538–540

object-based	(see	object-based

data	files,	19

data	warehousing,	519–527

databases)

data	inconsistency,	6

architecture	for,	522–523

object-oriented,	9,	26,	377,

data	isolation.	See	isolation

column-oriented	storage	and,

431,	1239–1240

data-item	identifiers,	913

525–526

object-relational,	377–381

data	items,	968

components	of,	522–524

parallel	(see	parallel

data	lakes,	527,	1078

database	support	for,

databases)

data-manipulation	language

525–526

purpose	of,	5–8

(DML)

data	integration	vs.,

query	processor	components

application	programs	and,	17

1077–1078

of,	18,	20

compiler,	20

data	lakes	and,	527,	1078

recovery	of	(see	recovery

declarative,	15

deduplication	and,	523

systems)

defined,	13,	15,	66

defined,	519,	522

storage	for	(see	storage)

procedural,	15

ETL	tasks	and,	520,	524

transaction	manager	in,	18–21

SQL	and,	16

fact	tables	and,	524

university	(see	university

storage	manager	and,	19

householding	and,	523

databases)

data	mining,	540–549

merger-purge	operation	and,

user	interaction	with,	4–5,	24

association	rules	and,

523

databases	administrator	(DBA),

546–547

multidimensional	data	and,

171

blockchain	databases	and,

524

database	schema.	See	schemas

1256,	1258,	1264–1266

overview,	519–520

database	writer	process,	965

classifiers	and,	541–546

schemas	used	for,	523–525

data	center	fabric,	978

clustering	and,	541,	548–549

transformation	and	cleansing,

data	centers,	970,	1014–1015

defined,	5,	540

523

data	cleansing,	523

descriptive	patterns	and,	541

updates	and,	523

data	cubes,	529–530

growth	of,	27

datetime	data	type,	154,	531

data-definition	language	(DDL)

models	for,	540

DBAs	(database	administrators),

application	programs	and,	17

overview,	521

24–25

authorization	and,	66

prediction	and,	541

DBMSs.	See

basic	types	supported	by,

regression	and,	546

database-management

67–68

rules	for,	540

systems

in	consistency	constraint

task	types	in,	541

DDL.	See	data-definition

specification,	13–14

text	mining,	549

language

defined,	13,	65

data	models,	8–9.	See	also

DDL	interpreter,	20

dumping	and,	931

specific	models

deadlines,	894

granting	and	revoking

datanodes,	475,	1020

deadlocks

privileges	and,	166

data	parallelism,	1042,	1057

consistency	and,	838–839

indices	and,	67

data	partitioning,	989n5

detection	of,	849,	851–852

integrity	and,	66

data-server	systems,	963–964,

distributed	databases	and,

interpreter,	20

968–970

1111–1115

output	of,	14

DataSet	type,	499

handling	of,	849–853

schema	definition	and,	24,	66,

data	storage	and	definition

prevention	of,	849–851

68–71

language,	13

recovery	and,	849,	851,	853

security	and,	67

data	storage	systems.	See	storage

rollback	and,	853

set	of	relations	in,	66–67

data	streams,	731

starvation	and,	853

SQL	and,	14–15,	65–71

data	striping,	571–572

victim	selection	and,	853

Index

1309

wait-for	graphs	and,	851–852,

deep	learning,	546

desc	expression,	84

1113–1114

deep	neural	networks,	546

descriptive	attributes,	248

debugging,	199n4

de	facto	standards,	1237

descriptive	patterns,	541

decentralization,	1251,	1252,

default	values

DES	(Data	Encryption

1259,	1270

classifiers	and,	545

Standard),	448

decision	support,	521,

privileges	and,	167

design.	See	database	design

1231–1233

setting	reference	field	to,	150

destination-driven	architecture,

decision-support	queries,	521,

user-defined	types	and,	159

522

971

deferred	integrity	constraints,

dicing,	530

decision-support	systems,

151

dictionary	attacks,	449

519–522

deferred-modification	technique,

differentials,	780

decision-support	tasks,	521

915

digital	certificates,	451–453

decision-tree	classifiers,	542

deferred	view	maintenance,	779,

digital	ledgers,	1251,	1252

declarative	DMLs,	15

1215–1216

digital	signatures,	451,	1257,

declarative	queries,	47,

degree	of	relationship	sets,	249

1261

1030–1031

degree-two	consistency,	880–881

digital	video	disks	(DVDs),

declare	statement,	201–203

delete	authorization,	14

560–561

decode,	155–156

deletion

dimension	attributes,	524

decomposition

B+-trees	and,	641,	645–649

dimension	tables,	524

algorithms	for,	330–335

concurrency	control	and,

direct-access	storage,	561

attributes	and,	305–313,

857–858

directed	acyclic	graphs	(DAGs),

330–335,	339–340

database	modification	and,

499,	506–507,	1071–1072

Boyce–Codd	normal	form

108–110

directory	access	protocols,	1084,

and,	313–316,	330–333

hashing	and,	1190,

1240–1243

dependency	preservation	and,

1194–1195,	1198

directory	information	trees

315–316,	329

integrity	constraints	and,	150

(DITs),	1242,	1243

fourth	normal	form	and,

LSM	trees	and,	1178–1179

directory	systems,	1020,

339–341

of	messages,	1110

1084–1086,	1240–1243

functional	dependencies	and,

ordered	indices	and,	624,

dirty	blocks,	928–929

308–313,	330–341

631–632

dirty	page	table,	941–947

higher	normal	forms	and,	319

privileges	and,	166–167

dirty	writes,	822

keys	and,	309–312

R-trees	and,	1189

disable	trigger,	210

lossless,	307–308,	307n1,

shipping	SQL	statements	to

disambiguation,	549

312–313

database	and,	187

disconnected	operation,	427–428

lossy,	307

SQL	schema	definition	and,

multivalued	dependencies

69,	71

discretized	streams,	508

and,	336–341

transactions	and,	801,	826

discriminator	attributes,	259

normalization	theory	and,

triggers	and,	208–209

disjoint	generalization,	279,	290

308

tuples	and,	108–110,	613

disjoint	specialization,	272,	275

notational	conventions	and,

views	and,	142

disjoint	subtrees,	847

309

deletion	entries,	668,	1178–1179

disjunctive	selection,	699,	700,

relational	database	design

delta	relation,	211

762

and,	305–313,	330–341

demand-driven	pipeline,	726–728

disk	arms,	565

third	normal	form	and,

denial-of-service	attacks,	502

disk-arm–scheduling,	578–579

317–319,	333–335

denormalization,	346

disk	blocks,	566–567,	577–580

decomposition	rule,	321

dense	indices,	626–628,	630–631

disk	buffer,	578,	910

decompression,	613,	615n8

dependency	of	transactions,	819

disk	controllers,	565

decorrelation,	777–778

dependency	preservation,

disk	failure,	908

DEC	Rdb,	26

315–316,	328–330

distinct	types,	90,	92,	98–100,

deduplication,	523

derived	attributes,	251,	252

158–160

1310

Index

distinguished	name	(DN),

validation	and,	1119–1120

downgrade,	843

1241–1242

distributed	file	systems,	472–475,

drill	down,	531,	540

distributed	autonomous

489,	1003,	1019–1022

DriverManager	class,	186

organizations	(DAOs),

distributed	hash	tables,	1013

drop	index,	165,	664

1272,	1272n7

distributed-lock	manager,	1112

drop	schema,	163

distributed	consensus	problem,

distributed	query	processing,

drop	table,	69,	71,	190

1106–1107,	1151

1076–1086

drop	trigger,	210

distributed	databases

data	integration	from	multiple

drop	type,	159

architecture	of,	22,	986–989,

sources,	1076–1078

dumping,	930–931

1098–1100

directory	systems	and,

duplicate	elimination,	719–720,

autonomy	and,	988

1084–1086

1049

Big	Data	and,	473,	480–481

join	location	and	join

durability

commit	protocols	and,

ordering	in,	1081–1082

defined,	800

1100–1110

across	multiple	sources,

one-safe,	933

concurrency	control	and,

1080–1084

remote	backup	systems	and,

990,	1105,	1111–1120

optimization	and,	1084

933–934

consensus	in,	1106–1107,

schema	and	data	integration

storage	structure	and,

1150–1161,	1266,	1267

in,	1078–1080

804–805

directory	systems	and,	1020,

semijoin	strategy	and,

of	transactions,	20–21,

1084–1086,	1240–1243

1082–1084

800–807

failure	and,	1104

DITs	(directory	information

two-safe,	934

federated,	988,	1076–1077,

trees),	1242,	1243

two-very-safe,	933

1132–1133

Django	framework,	382,

DVDs	(digital	video	disks),

file	systems	in,	472–475,	489,

419–421,	433–435,	1240

560–561

1003,	1019–1022

DKNF	(domain-key	normal

dynamic	handling	of	join	skew,

global	transactions	and,	988,

form),	341

1048

1098,	1132

DML.	See	data-manipulation

dynamic	hashing,	661,

heterogeneous,	988,	1132

language

1195–1203

homogeneous,	988

DML	compiler,	20

dynamic-programming	algorithm,

leases	and,	1115–1116

DN	(distinguished	name),

767

local	transactions	and,	988,

1241–1242

dynamic	repartitioning,

1098,	1132

DNS	(Domain	Name	Service)

1010–1013

locks	and,	1111–1116

system,	1084,	1085

dynamic	SQL,	66,	184,	201

nodes	and,	987

Docker,	995

Dynamo,	477,	489,	1024

partitions	and,	1104–1105

document	databases,	3

persistent	messaging	and,

Document	Object	Model

Eclipse,	416

1108–1110,	1137

(DOM),	423

e-commerce,	streaming	data	and,

query	optimization	and,	1084

document	stores,	477,	1023

501

query	processing	and,

domain	constraints,	13–14,	146

edge	switches,	977

1076–1086

domain-key	normal	form

efficiency	of	databases,	1,	2,	5,	9

recovery	and,	1105

(DKNF),	341

e-government,	1277

replication	and,	987,

Domain	Name	Service	(DNS)

elasticity,	992,	1010,	1024

1121–1128

system,	1084,	1085

election	algorithms,	1147

sharing	data	and,	988

domain	of	attributes,	39–40,	249

elevator	algorithm,	578

sites	and,	986

double	buffering,	725

embedded	databases,	198,	962

snapshot	isolation	and,

double-pipelined	hash-join,	731

embedded	multivalued

1131–1132

double-pipelined	join	technique,

dependencies,	341

timestamps	and,	1116–1118

730–731

embedded	SQL,	66,	184,

transaction	processing	in,

double-spend	transactions,

197–198,	965,	1269

989–990,	1098–1100

1261–1262,	1264

empty	relations	test,	101–102

Index

1311

encryption

Unified	Modeling	Language

entity-relationship	(E-R)

Advanced	Encryption

and,	289–291

model	and,	244–246,

Standard,	448,	449

for	university	enterprise,

261–264,	281–283

applications	of,	447–453

263–264

extension	of,	245

asymmetric-key,	448

with	weak	entity	set,	260

hierarchies	of,	273,	275

authentication	and,	450–453

entity-relationship	(E-R)	model,

identifying,	259

blockchain	databases	and,

244–291

primary	keys	and,	257

1260–1261

aggregation	and,	276–277

properties	of,	244–246

challenge-response	system

alternative	notations	for

relationship	sets	and,

and,	451

modeling	data,	285–291

246–249,	282–283

database	support	and,

atomic	domains	and,	342–343

removing	redundancy	in,

449–450

attributes	and,	245,	248–252,

261–264

dictionary	attacks	and,	449

274–275,	281–282,

representation	of,	265–268

digital	certificates	and,

342–343

strong,	259,	265–267

451–453

constraints	and,	253–256,

subclass,	274

digital	signatures	and,	451

275–276

superclass,	274

nonrepudiation	and,	451

database	design	and	(see

Unified	Modeling	Language

prime	numbers	and,	449

database	design)

and,	288–291

private-key,	1260–1261

design	issues	and,	279–285

value	and,	245

public-key,	448–449,

development	of,	244

weak,	259–260,	267–268

1260–1261

entries,	1241

diagrams	(see

Rijndael	algorithm	and,	448

equality-generating	dependencies,

entity-relationship

symmetric-key,	448

337

diagrams)

techniques	of,	447–449

equi-depth	histograms,	759

entity	sets	and,	244–246,

end	transaction	operation,	799

equi-joins,	704,	707–713,	718,

261–264,	281–283

end-user	information,	443

722,	730,	1043

extended	features,	271–279

enterprise	information,	database

equivalence

generalization	and,	273–274

applications	for,	2–4

conflict,	815,	815n2

mapping	cardinalities	and,

entities,	243,	244,	247–248

cost	analysis	and,	771

252–256

entity	group,	1031

enumeration	of	expressions,

normalization	and,	344–345

entity	recognition,	549

755–757

overview,	8

entity-relationship	(E-R)

join	ordering	and,	754–755

primary	keys	and,	256–260

diagrams

relational	algebra	and,	58,

redundancy	and,	261–264

aggregation	and,	279

747–757

relationship	sets	and,

alternative	notations	for

transformation	examples	for,

modeling	data,	285–291

246–249,	282–285

752–754

common	mistakes	in,

schemas	and,	244,	246,

view,	818,	818n4

280–281

269–270,	277–279

equivalence	rules,	747–752,	754,

complex	attributes	and,

specialization	and,	271–273

771

265–267

Unified	Modeling	Language

equivalent	queries,	58

defined,	244

and,	288–291

equi-width	histograms,	759

entity	sets	and,	245–246,

entity	sets

erase	block,	568

265–268

alternative	notations	for,

E-R	diagrams.	See

generalization	and,	278–279

285–291

entity-relationship	diagrams

participation	illustrated	by,

attributes	and,	245,	265–267,

E-R	model.	See	entity-relationship

255

281–282

(E-R)	model

reduction	to	relational

defined,	245

escape,	83

schema,	264–271,	277–279

design	issues	and,	281–283

Ethereum,	1258,	1262,	1265,

relationship	sets	and,

entity-relationship	diagrams

1267–1272,	1274

247–250,	268–271

and,	245–246,	265–268

Ethernet,	978

1312

Index

ETL	(extract,	transform	and

external	sort-merge	algorithm,

by	buffer	manager,	19

load)	tasks,	520,	524

701–704

data	warehousing	and,	526

evaluation	primitive,	691

extract,	transform	and	load

large-object	types	and,	156,

eventual	consistency,	1016,	1139

(ETL)	tasks,	520,	524

158

every	function,	96

extraneous	attributes,	325

prefetching,	969

evicted	blocks,	605

extraneous	functional

storage	and,	567,	572,	587

exactly-once	semantics,	1074

dependencies,	324

fiat	currencies,	1252,	1273

except	all,	89,	97

Fiber	Channel	FC	interface,	563

factorials,	811

except	clause,	216

Fiber	Channel	Protocol,	978

fact	tables,	524

except	construct,	102

fifth	normal	form,	341

failed	transactions,	806,	907,

exception	conditions,	202

file	headers,	590–591

909

exceptions,	187

file	manager,	19

fail-stop	assumption,	908,	1267

except	operation,	88–89

file	organization,	588–602

failure	recovery,	21

exchange-operator	model,

blobs,	156,	193,	594,	652

false	cycles,	1114–1115

1055–1057

blocks	and,	579,	588

false	positives,	1083

exclusive	locks

B+-tree,	595,	650–652,	697,

false	values,	96

biased	protocol	and,	1124

697n4

fanout,	635

concurrency	control	and,

clobs,	156,	193,	594,	652

fat-tree	topology,	977

835–843,	888,	892,	893

distributed,	472–475,	489,

fault	tolerance

degree-two	consistency	and,

1003,	1019–1022

blockchain	databases	and,

880

fixed-length	records	and,

1276

graph-based	protocols	and,

589–592

geographic	distribution	and,

846–847

hash,	595,	659

1027

multiple	granularity	and,

interconnection	networks

heap	file	organization,

854–855

and,	978

595–597

multiversion,	871

MapReduce	paradigm	and,

indexing	and	(see	indices)

recovery	systems	and,	916

1060–1061

journaling	systems,	610

transactions	and,	825,	928

in	query-evaluation	plans,

large	objects	and,	594–595

exclusive-mode	locks,	835,	842

1059–1061

multitable	clustering,	595,

EXEC	SQL,	197

replicated	state	machines	and,

598–601

execute	privilege,	169–170

1158–1161

null	values	and,	593

execution	skew,	1007,	1008,

shared-disk	architecture	and,

partitioning	and,	601–602

1043

984

pointers	and,	588,	591,

existence	bitmaps,	1184

with	streaming	data,

594–598,	601

existence	dependence,	259

1074–1076

reorganization,	598

exists	construct,	101,	102,	108

updates	and,	1138

sequential,	595,	597–598

expiration	of	leases,	1115

fault-tolerant	key-value	store,

variable-length	records	and,

explain	command,	746

1160

592–594

explicit	locks,	854

fault-tolerant	lock	manager,	1160

file-processing	systems,	5–8

extendable	hashing,	661,	1195,

federated	distributed	databases,

file	scans,	695–697,	704–707,

1196

988,	1076–1077,

727

Extensible	Markup	Language.

1132–1133

file	system	consistency	check,	610

See	XML

fetching.	See	also	information

financial	sector,	database

extension	of	entity	sets,	245

retrieval

applications	for,	3,	1279

extent	(blocks),	579

advanced	SQL	and,	187–188,

fine-grained	locking,	947

external	consistency,	1131

193,	195–197,	202,	205,

fine-grained	parallelism,	963,	970

external	data,	1077

222

firm	deadlines,	894

external	language	routines,

application	design	and,

first	committer	wins,	874

203–206

421–427,	431,	437,	1218,

first	normal	form	(1NF),

external	sorting,	701

1229

342–343

Index

1313

first	updater	wins,	874–875

query	optimization	and,

hash	(see	hash	functions)

five	minute	rule,	1229

775–777

language	constructs	for,

fixed-length	records,	589–592

rename	operation	and,	79,

201–203

fixed	point	of	recursive	view

81–82

syntax	and,	199,	201–205

definition,	217

set	operations	and,	85–89

writing	in	SQL,	198–206

flash-as-buffer	approach,	1229

on	single	relation,	71–74

fuzzy	checkpoints,	922,	930,	941

flash	memory,	567–570

string	operations	and,	82–83

fuzzy	dump,	931

cost	of,	560

subqueries	and,	104–105

fuzzy	lookup,	523

erase	block	and,	568

full	nodes,	1256,	1268

hybrid,	569–570

full	outer	joins,	132–136,	722

gas	concept	for	transactions,

indexing	on,	656–657

functional	dependencies

1270–1271

LSM	trees	and,	1182

algorithms	for	decomposition

GAV	(global-as-view)	approach,

NAND,	567–568

using,	330–335

1078–1079

NOR,	567

attribute	set	closure	and,

generalization

wear	leveling	and,	568

322–324

attribute	inheritance	and,

flash	translation	layer,	568

augmentation	rule	and,	321

274–275

flatMap	function,	496–498

axioms	and,	321

bottom-up	design	and,	273

flexible	schema,	366

Boyce–Codd	normal	form

disjoint,	279,	290

FlinkCEP,	504

and,	313–316,	330–333

entity-relationship	(E-R)

float,	67

canonical	cover	and,	324–328

model	and,	273–274

Flutter	framework,	428

closure	of	a	set,	320–324

overlapping,	279,	290

followers,	1155

decomposition	rule	and,	321

partial,	275

forced	output,	607,	912

dependency	preservation	and,

representation	of,	278–279

force	policy,	927

315–316,	328–330

subclass	set	and,	274

for	clause,	534

extraneous,	324

superclass	set	and,	274

for	each	row	clause,	207–210,

higher	normal	forms	and,	319

top-down	design	and,	273

212

keys	and,	309–312

total,	275

for	each	statement	clause,	76,

lossless	decomposition	and,

Generalized	Search	Tree	(GiST),

209–210

312–313

670

foreign-currency	exchange,	1277

multivalued,	336–341

genesis	blocks,	1254–1255

foreign	keys,	45–46,	69–70,

notational	conventions	and,

geographically	distributed

148–150,	267–268,	268n5

309

storage,	1026–1027

foreign	tables,	1077

pseudotransitivity	rule	and,

geographic	data

forking,	1257,	1258,	1263

321

applications	of,	391–392

formal	standards,	1237

reflexivity	rule	and,	321

examples	of,	387

fourth	normal	form	(4NF),	336,

in	schema	design,	145

overlays	and,	393

339–341

theory	of,	320–330

raster	data,	392

fragment-and-replicate	joins,

third	normal	form	and,

representation	of,	392–393

1046–1047,	1062

317–319,	333–335

subtypes	of,	390

fragmentation,	579

transitivity	rule	and,	321

topographical,	393

free	lists,	591

trivial,	311

vector	data,	392–393

free-space	maps,	596–597

union	rule	and,	321

geographic	information	systems,

from	clause

functionally	determined

387

aggregate	functions	and,

attributes,	322–324

geometric	data,	388–390

91–96

functional	query	language,	47

getColumnCount	method,

basic	SQL	queries	and,	71–79

functions.	See	also	specific

191–192

on	multiple	relations,	74–79

functions

getConnection	method,	186,

in	multiset	relational	algebra,

declaring,	199–201

186n1

97

external	language	routines

getFloat	method,	188

null	values	and,	90

and,	203–206

get	function,	477–479

1314

Index

GET	method,	440

grouping	sets	construct,	230,	538

data	structure	and,	1195–1196

getString	method,	188

growing	phase,	841,	843

defined,	624

GFS.	See	Google	File	System

Gustafson’s	law,	974

dynamic	hashing	and,	661,

GiST	(Generalized	Search	Tree),

1195–1203

hackers.

670

See	security

extendable	hashing	and,	661

Hadoop	File	System	(HDFS),

Glassfish,	416

file	organization	and,	595,

473–475,	489–493,	971,

global-as-view	(GAV)	approach,

659

1020–1022

1078–1079

insufficient	buckets	and,	1194

Halloween	problem,	785

global	indices,	1017–1019

linear	hashing	and,	661,	1203

handlers,	202

Global	Positioning	System

hard	deadlines,	894

in	main	memory,	658–659

(GPS),	1130

hard	disk	drives	(HDDs).	See

overflow	chaining	and,

global	schema,	1076,	1078–1079

magnetic	disks

659–660

global	transactions,	988,	1098,

hard	disks,	26

skew	and,	660,	1194

1132

hard	forks,	1257,	1258

static	hashing	and,	661,

global	wait-for	graphs,

hardware	RAID,	574–576

1190–1195,	1202–1203

1113–1114

hardware	threads,	982

tuning	of,	1215

Google

hardware	tuning,	1227–1230

hash	join

application	design	and,

harmonic	mean,	1231

basics	of,	712–714

406–408,	410,	428–429

hash	file	organization,	595,	659

build	input	and,	713

Bigtable,	477,	479–480,	668,

hash	functions

cost	of,	715–717

1024

Bloom	filters	and,	1175–1176

hybrid,	717–718

PageRank	from,	385–386,

closed,	659,	1194

overflows	and,	715

493,	510

collision	resistant,	1259–1260

pipelining	and,	728–731

Pregel	system	developed	by,

consistent,	1013

probe	input	and,	713

511

cryptographic,	1253,

query	optimization	and,	769,

Spanner,	1160–1161

1259–1263,	1265

771

Google	File	System	(GFS),	473,

defined,	624,	659

query	processing	and,

474,	1020,	1022

deletion,	1190,	1194–1195,

712–718,	786,	1063

Google	Maps,	393

1198

recursive	partitioning	and,

GPS	(Global	Positioning

dynamic,	661,	1195–1203

714–715

System),	1130

extendable,	661,	1195,	1196

GPUs	(graphics	processing

skewed	partitioning	and,	715

insertion,	1194–1195,

units),	1064

hash	partitioning,	476,

1197–1202

grant	command,	170

1005–1007

irreversibility	of,	1260

granted	by	current	role,	172–173

hash-table	overflow,	715

joins	and,	1045

grant	privileges,	166–167,

hash	trees.

linear,	661,	1203

See	Merkle	trees

170–171

having	clause,	95–96,	104–105,

lookup,	1197,	1198,

graph-based	protocols,	846–848

142

1202–1203

graph	databases,	508–511

open,	1194

HBase,	477,	480,	489,	668,	971,

graphics	processing	units

partitioning	and,	1045

1024,	1028–1031

(GPUs),	1064

passwords	and,	1260n4

HDDs	(hard	disk	drives).	See

GraphX,	511

queries	and,	624,	1197–1202

magnetic	disks

group	by	clause,	92–96,	105,

static,	661,	1190–1195,

HDFS.	See	Hadoop	File	System

142,	221,	227–230

1202–1203

head-disk	assemblies,	565

group	by	construct,	534,

updates	and,	624,	1197–1202

health	care,	blockchain

536–537

hash	indices

applications	for,	1277–1278

group	by	cube,	536

bucket	overflow	and,

heap	files,	595–597,	1203

group	by	rollup,	537

659–660,	1194–1195

heart-beat	messages,	1147

group-commit	technique,	925

comparison	with	ordered

heterogeneous	distributed

grouping	function,	536–537

indices,	1203

databases,	988,	1132

Index

1315

heuristics,	766,	771–774,	786,

HTTP.	See	HyperText	Transfer

IDE	(integrated	development

1189

Protocol

environment),	416

Hibernate	system,	382,

hybrid	disk	drives,	569–570

idempotent	operations,	937

431–433,	1240

hybrid	hash	join,	717–718

identifiers

hierarchical	architecture,	979,

hybrid	merge-join	algorithm,	712

block,	474–475,	1020

980,	986

hybrid	OLAP	(HOLAP),	535

data-item,	913

hierarchical	clustering,	548

hybrid	row/column	stores,	615

indices	and,	700

hierarchical	data	models,	26

hypercubes,	976–977

log	records	and,	913

hierarchies

Hyperledger	Fabric,	1269,	1271

query	processing	and,	700

cross-tabulation	and,	532

hyperlinks,	385–386

selection	and,	700

on	dimensions,	531

HyperText	Markup	Language

transaction,	913

of	entity	sets,	273,	275

(HTML)

identifying	entity	sets,	259

relational	representation	of,

application	design	and,	404,

identifying	relationship,	259–260

533

406–408,	426

identity	declaration,	1226

transitive	closures	on,	214

client-side	scripting	and,	421

identity	specification,	161

high	availability,	907,	931–933,

Java	Server	Pages	and,

identity	theft,	447

417–418

987,	1121

IDF	(inverse	document

security	and,	439,	440

high	availability	proxy,	932–933

frequency),	384

server-side	scripting	and,

higher-level	locks,	935–936

IEEE	(Institute	of	Electrical	and

416–418

higher	normal	forms,	319

Electronics	Engineers),

stylesheets	and,	408

histograms

1237

web	sessions	and,	408–411

attributes	and,	758–760

if	clauses,	212

HyperText	Transfer	Protocol

distribution	approximated	by,

if-then-else	statements,	202

(HTTP)

543

immediate-modification

application	design	and,

equi-depth,	759

technique,	915

405–413

equi-width,	759

immediate	view	maintenance,

connectionless	nature	of,

examples	of,	758–759,	1009

779,	1215–1216

409–410

join	size	estimation	and,

man-in-the-middle	attacks

imperative	query	language,	47

763–764

and,	442

implicit	locks,	854–855

percentile-based,	223

Representation	State	Transfer

incompleteness	in	database

random	samples	and,	761

and,	426

design,	243–244

range-partitioning	vectors

security	and,	440,	452

inconsistent	data,	6

and,	1009

hyper-threading,	982

inconsistent	state,	802,	803,	812

selection	size	estimation	and,

hypervisor,	994

in	construct,	99

760

incremental	view	maintenance,

Hive,	494,	495,	500

IBM	DB2

779–782

HOLAP	(hybrid	OLAP),	535

advanced	SQL	and,	206

increment	lock,	892–893

Hollerith,	Herman,	25

history	of,	26

increment	operation,	892

homogeneous	distributed

limit	clause	in,	222

independent	parallelism,

databases,	988

query	optimization	and,	774,

1054–1055

hopping	window,	505

783

indexed	nested-loop	join,

horizontal	partitioning,	1004,

Spatial	Extender,	388

707–708,	728

1216–1217

statistical	analysis	and,	761

index	entries,	626

host	language,	16,	197

trigger	syntax	and,	212

indexing	strings,	653

hot-spare	configuration,	933

types	and	domains	supported

index-locking	protocol,	860

hot	swapping,	575

by,	160

index-locking	technique,	860

householding,	523

ICOs	(initial	coin	offerings),

index	records,	626

HTML.	See	HyperText	Markup

1272

index	scans,	696,	698–699,	769,

Language

IDEF1X	standard,	288

769n2

1316

Index

index-sequential	files,	625,

parallel,	1017–1019

Ingres	system,	26

634–635

performance	tuning	and,	1215

inheritance

indices,	623–676,	1175–1203

pointers	and,	700

attribute,	274–275

access	time	and,	624,

primary,	625,	695,	1017–1018

multiple,	275

627–628

query	processing	and,

single,	275

access	types	and,	624

695–697

tables	and,	379–380

basic	concepts	related	to,

record	relocation	and,

types	and,	378–379

623–624

652–653

initial	coin	offerings	(ICOs),

bitmap	(see	bitmap	indices)

search	keys	and,	624–634

1272

Bloom	filters	and,	667,

secondary,	625,	632–633,

initialization	vector,	449

1175–1176,	1181

652–653,	695–698,

initially	deferred	integrity

B+-tree	(see	B+-trees)

1017–1019

constraints,	151

buffer	trees	and,	668–670

selection	operation	and,

inner	joins,	132–136,	771

bulk	loading	of,	653–655

695–697,	783

inner	relation,	704

clustering,	625,	632–633,

sequential,	625,	634–635

insert	authorization,	14

695,	697–698

sorting	and,	701–704

insertion

comparisons	and,	698–699

space	overhead	and,	624,

algorithm	for,	1180–1181

composite,	700

627–628,	634,	1202

B+-trees	and,	641–645,	647,

concurrency	control	and,

sparse,	626–632

649

884–887

spatial	data	and,	672–675,

concurrency	control	and,	857,

covering,	663

1186–1190

858

creation	of,	664–665,

SQL	DDL	and,	67

database	modification	and,

884–885

stepped-merge,	667,

110–111

defined,	19

1179–1181

default	values	and,	156

definition	in	SQL,	164–165,

of	temporal	data,	675–676

hashing	and,	1194–1195,

664–665

updates	and,	630–632

1197–1202

deletion	time	and,	624,

write-optimized	structures,

LSM	trees	and,	1177–1178,

631–632,	641,	645–649

665–670

1180–1181

dense,	626–628,	630–631

in-doubt	transactions,	1105

ordered	indices	and,	624,

on	flash	storage,	656–657

infeasibility,	1259–1260

630–631

Generalized	Search	Tree,	670

Infiniband	standard,	978

prepared	statements	and,

global,	1017–1019

information	extraction,	549

188–190

hash	(see	hash	indices)

information	retrieval.	See	also

privileges	and,	166–167

identifiers	and,	700

queries

R-trees	and,	1188–1189

insertion	time	and,	624,

defined,	382

shipping	SQL	statements	to

630–631,	641–645,	647,

keywords	and,	383

database	and,	187

649

measuring	effectiveness	of,

SQL	schema	definition	and,

inverted,	721

386

69

key-value	stores	and,	1028

PageRank	and,	385–386

transactions	and,	801,	826

linear	search	and,	695

precision	and,	386

views	and,	141–143

local,	1017

recall	and,	386

instances,	12,	309,	547.	See	also

LSM	trees	and,	666–668,

relevance	ranking	and,

training	instances

1176–1182,	1215

383–386

instead	of	feature,	143

in	main	memory,	657–658

stop	words	and,	385

Institute	of	Electrical	and

materialized	views	and,	783

structured	data	queries	and,

Electronics	Engineers

multilevel,	628–630

386–387

(IEEE),	1237

multiple-key	access	and,

TF-IDF	approach	and,

insurance	claims,	1278

633–634,	661–663

384–385

integrated	development

nonclustering,	625,	695

infrastructure-as-a-service	model,

environment	(IDE),	416

ordered	(see	ordered	indices)

991

integrity	constraints

Index

1317

add,	146

join	expressions	and,	125–136

inverse	document	frequency

alter	table	and,	146

large-object	types	and,	156,

(IDF),	384

assertions	and,	152–153

158

inverted	indices,	721

assigning	names	to,	151

roles	and,	167–169

I/O	operations	per	second

authorization,	14

schemas,	catalogs,	and

(IOPS),	567,	577,	578,

check	clause	and,	147–149,

environments,	162–163

693n3

152–153

transactions	and,	143–145

I/O	parallelism

create	table	and,	146–149

type	conversion	and

hashing	and,	1005–1007

deferred,	151

formatting	functions,

partitioning	techniques	and,

domain,	13–14

155–156

1004–1007

examples	of,	145

user-defined	types	and,

range	scheme	and,	1005,	1007

in	file-processing	systems,	6

158–160

round-robin	scheme	and,

foreign	keys	and,	148–150

views	and,	137–143

1005,	1006

functional	dependencies	(see

internal	nodes,	635

IoT	(Internet	of	Things),	470,

functional	dependencies)

International	Organization	for

1278

not	null,	146,	150

Standardization	(ISO),	65,

irrefutability,	1257,	1259

primary	keys	and,	147,	148

1237,

irreversibility,	1260

referential,	14,	46,	149–153,

1241

IS	(intention-shard)	mode,	855

207–208,	800

Internet.	See	World	Wide	Web

is	not	null,	89,	90

schema	diagrams	of,	46–47

Internet	of	Things	(IoT),	470,

is	not	unknown,	90

on	single	relation,	146

1278

is	null,	89

spatial,	391

interoperation	parallelism,	1040,

ISO	(International	Organization

SQL	and,	14–15,	66,	145–153

1052–1055

for	Standardization),	65,

unique,	147

interquery	parallelism,	1039

1237,

user-defined	types	and,

intersect	all,	88,	97

1241

159–160

intersection	of	bitmaps,	671,

isolation

violation	during	transactions,

1183

atomicity	and,	819–821

151–152

intersection	operation,	750,	782

cascadeless	schedules	and,

integrity	manager,	19

intersect	operation,	54–55,

820–821

Intel,	569,	1064

87–88

concurrency	control	and,

intention-exclusive	(IX)	mode,

interval	data	type,	154

803–804,	807–812,	823

855

intra-node	partitioning,	1004

of	data,	6

intention	lock	modes,	855

intraoperation	parallelism

defined,	800

intention-shard	(IS)	mode,	855

aggregation	and,	1049

factorials	and,	811

interconnection	networks,

defined,	1040

975–979

duplicate	elimination	and,

improved	throughput	and,

interesting	sort	order,	770

1049

808

interference,	974,	1232

map	and	reduce	operations

inconsistent	state	and,	803

intermediate	keys,	1050

and,	1050–1052

levels	of,	821–826

intermediate	SQL,	125–173

parallel	external	sort-merge

locking	and,	823–825

authorization	and,	165–173

and,	1042–1043

multiple	versions	and,

create	table	extensions	and,

parallel	join	and,	1043–1048

825–826

162

parallel	sort	and,	1041–1043

read	committed,	1225

data/time	types	in,	154

projection	and,	1049

recoverable	schedules	and,

default	values	and,	156

range-partitioning	sort	and,

819–820

generating	unique	key	values

1041–1042

resource	allocation	and,	808

and,	160–161

selection	and,	1049

serializability	and,	821–826

index	definition	in,	164–165

intraquery	parallelism,	1039

snapshot	(see	snapshot

integrity	constraints	and,

invalidation	reports,	1141

isolation)

145–153

invalidation	timestamps,	873n3

timestamps	and,	825

1318

Index

of	transactions,	800–804,

mapping	to	data	models,	480

equi-joins,	704,	707–713,	718,

807–812,	819–826

as	semi-structured	data

722,	730,	1043

utilization	and,	808

model,	8,	27

fragment-and-replicate,

wait	time	and,	808–809

SQL	in	support	of,	369–370

1046–1047,	1062

is	unknown,	90

for	transferring	data,	423

full	outer,	132–136,	722

iteration,	201–202,	214–216

Java	Server	Pages	(JSP)

hash	(see	hash	join)

iterators,	727

application	design	and,	405,

hybrid	merge,	712

IX	(intention-exclusive)	mode,

417–418

inner,	132–136,	771

855

security	and,	440

inner	relation	of,	704

server-side	scripting	and,

left	outer,	131–136,	722

Jakarta	Project,	416

417–418

merge-join,	708–712,	1045

Java.	See	also	JDBC	(Java

servlets	and,	417–418

minimization	and,	784

Database	Connectivity)

Java	Servlets,	411–416,	419,	424

natural	(see	natural	joins)

advanced	SQL	and,	183,	197,

nested	loop	(

JBoss,	416

see	nested-loop

199,	205

join)

JDBC	(Java	Database

application	design	and,	16,

ordering,	754–755

Connectivity),	184–193

417

outer,	57,	131–136,	722–723,

blob	column	and,	193

metadata	and,	191–193

765,	782

caching	and,	435–436

object-oriented	programming

outer	relation	of,	704

callable	statements	and,

and,	377

parallel,	1043–1048

190–191

object-relational	mapping

partitioned,	714–715,

clob	column	and,	193

system	for,	382

1043–1046

connecting	to	database,

Resilient	Distributed	Dataset

query	processing	and,

185–186

and,	496–498

704–719,	722–723,

corresponding	interface

Unified	Modeling	Language

1081–1082

defined	by,	17

and,	289

right	outer,	132–136,	722

exception	and	resource

Java	Database	Connectivity.	See

semijoin	operation,	108,	776,

management,	187

JDBC

1082–1084

metadata	features	and,

Java	2	Enterprise	Edition

size	estimation	and,	762–764

191–193

(J2EE),	416

skew	in,	1047–1048

prepared	statements	and,

JavaScript

sort-merge-join,	708–712

188–190

application	design	and,

spatial,	394

protocol	information,	186

404–405,	421–426

spatial	data	and,	719

retrieving	query	results,

input	validation	and,	422–423

streaming	data	and,	506

187–188

interfacing	with	web	services,

theta,	748–749

shipping	SQL	statements	to,

423–426

types	and	conditions,

186–187

Representation	State	Transfer

130–131,	136

and,	426,	427

updatable	result	sets	and,	193

view	maintenance	and,	780

responsive	user	interfaces

web	sessions	and,	409

join	skew	avoidance,	1048

and,	423

join	conditions,	130–131

join	using	operation,	129–130

security	and,	439

join	dependencies,	341

journaling	file	systems,	610

JavaScript	Object	Notation

join	operation,	52–53

JSON.	See	JavaScript	Object

(JSON)

joins

Notation

applications	for	use,	368–369

ant-ijoin	operation,	108,	776

JSP.	See	Java	Server	Pages

defined,	368

anti-semijoin	operation,

J2EE	(Java	2	Enterprise

emergence	of,	27

776–777

Edition),	416

encoding	results	with,	426

broadcast,	1046

jukebox	systems,	561

example	of,	368,	369

complex,	718

flexibility	of,	367–368

cost	analysis	and,	710–712,

Kafka	system,	506,	507,

key-value	stores	and,	1024

767–770

1072–1073,	1075,	1137

Index

1319

k-d	B	trees,	674

lambda	architecture,	504,	1071

linear	scaleup,	972–973

KDD	(knowledge	discovery	in

language	constructs,	201–203

linear	search,	695

databases),	540

Language	Integrated	Query

linear	speedup,	972

k-d	trees,	673–674

(LINQ),	198

line	segments,	388–390

kernel	functions,	545

LANs.	See	local-area	networks

linestrings,	388,	390

keys

large	object	storage,	594–595

Linked	Data	project,	376,	1080

candidate,	44

large-object	types,	156,	158

LINQ	(Language	Integrated

cluster	key,	600–601

LastLSN,	943,	946

Query),	198

constraints	and,	258

latches,	886,	928

load	balancers,	934–935,	1214

encryption	and,	448–449,

latch-free	data	structure,

load	barrier,	983

451–453

888–890

local-area	networks	(LANs),	977,

equality	on,	697

latency,	989

978,	985,	989

foreign,	45–46,	69–70,

latent	failure,	575

local-as-view	(LAV)	approach,

148–150,	267–268,	268n5

lateral	clause,	105

1079

functional	dependencies	and,

LAV	(local-as-view)	approach,

local	autonomy,	988

309–312

1079

local	indices,	1017

intermediate,	1050

lazy	generation	of	tuples,	727

local	schema,	1076

multiple	access,	633–634,

lazy	propagation	of	updates,

localtimestamp,	154

661–663

1122,	1136

local	transactions,	988,	1098,

partitioning,	475–476

LDAP	Data	Interchange	Format

1132

primary	(see	primary	keys)

(LDIF),	1242

local	wait-for	graphs,	1113

reduce,	485

LDAP	(Lightweight	Directory

lock	conversions,	843

in	relational	model,	43–46

Access	Protocol),	442,

lock-free	data	structure,	890

search	(see	search	keys)

1085,

locking	protocols

smart	cards	and,	451

1240–1243

B-link	tree,	886

superkeys,	43–44,	257–258,

leaders,	1155

concurrency	control	and,

309–310,	312

leaf	nodes,	635–656,	665–669,

835–848

unique	values,	160–161

673,	674

defined,	839

key-value	locking,	887

learners,	1148,	1153

distributed	lock-manager,

key-value	maps,	366–367

leases,	1115–1116,	1147

1112

key-value	storage	systems

least	recently	used	(LRU)

graph-based,	846–848

Big	Data	and,	471,	473,

strategy,	605,	607

implementation	of,	844–846

476–480

ledgers,	digital,	1251,	1252

index,	860

clusters	and,	477

left-deep	join	orders,	773

key-value,	887

document,	477,	1023

left	outer	join,	131–136,	722

multiple	granularity,	856–857

fault	tolerant,	1160

legacy	systems,	1035–1036

next-key,	887

parallel,	1003,	1023–1031

legal	instance,	309

single	lock-manager,	1111

replication	and,	476

LevelDB,	668

transactions	and,	823–825

social-networking	sites	and,

Lightning	network,	1275

two-phase,	841–844,	871–872,

471

light	nodes,	1256,	1268

1129–1131

wide-column,	1023

Lightweight	Directory	Access

lock	managers,	844–845,	965,

keyword	queries,	383,	385–387,

Protocol	(LDAP),	442,

1160

721

1085,

lock	point,	841

killing	the	mutant,	1234

1240–1243

locks

knowledge	discovery	in	databases

like	operator,	82–83

adaptive	granularity	and,

(KDD),	540

limit	clause,	222

969–970

knowledge	graphs,	374–375,

linear	hashing,	661,	1203

caching	and,	969

386–387,	549

linearizability,	1121

call	back	and,	969

knowledge	representation,	368

linear	probing,	1194

compatibility	function	and,

Kubernetes,	995

linear	regression,	546

836

1320

Index

deadlocks	(see	deadlocks)

logical	operations

parallel	key-value	stores	and,

de-escalation	and,	970

concurrency	control	and,

1028

distributed	databases	and,

940–941

performance	tuning	and,	1215

1111–1116

consistency	and,	936–937

rolling	merges	and,	1178

escalation	and,	857,	1227

defined,	935

stepped-merge	indices	and,

exclusive	(see	exclusive	locks)

early	lock	release	and,

1179–1181

explicit,	854

935–941

updates	and,	1178–1179

false	cycles	and,	1114–1115

idempotent,	937

write-optimized	structure	of,

fine-grained,	947

log	records	and,	936–940

666–668

granting	of,	836,	840–841

rollback	and,	937–939

log	writer	process,	965

growing	phase	and,	841,	843

logical	routing	of	tuples,

long-duration	transactions,

higher-level,	935–936

506–507,	1071–1073

890–891

implicit,	854–855

logical	schema,	12–13,

lookup

increment,	892–893

1223–1224

in	blockchain	databases,	1268

intention	modes	and,	855

logical	undo	operations,	935–941

Bloom	filters	and,	667,	1181

leases,	1115–1116,	1147

concurrency	control	and,

log	of	transactions,	805

logical	undo	operations	and,

884–887

log	processing,	486–488

935–941

data-storage	systems	and,	480

log	records

lower-level,	935–936

fuzzy,	523

ARIES	and,	941–946

multiple	granularity	and,

hashing	and,	1197,	1198,

buffering	and,	926–927

853–857

1202–1203

checkpoint,	943

multiversion	schemes	and,

indices	and,	630,	637,

compensation,	922,	942,	945

871–872,	1129–1131

640–641,	645–651,

database	modification	and,

predicate,	828,	861,	861n1

656–661,	666–669,	676

915–916

recovery	systems	and,

LSM	trees	and,	1181

force/no-force	policy	and,	927

935–941

query	optimization	and,	769

identifiers	and,	913

request	operation	and,

query	processing	and,	698,

logical	undo	operations	and,

835–841,	844–846,

707

936–940

849–853,	886

lossless	decomposition,	307–308,

old/new	values	and,	913

shared,	825,	835,	854,	880,

307n1,	312–313

1124

physical,	936

lossy	decompositions,	307

shrinking	phase	and,	841,	843

recovery	systems	and,

lost	update	problem,	1016

starvation	and,	853

913–919,	926–927

lost	updates,	874

timeouts	and,	850–851

redo	operation	and,	915–919

lower-level	locks,	935–936

timestamps	and,	861–866

steal/no-steal	policy	and,	927

loyalty	programs,	1278

transaction	servers	and,

undo	operation	and,	915–919

LRU	(least	recently	used)

965–968

write-ahead	logging	rule	and,

strategy,	605,	607

true	matrix	value	and,	836

926–929

LSM	trees.	See	log-structured

wait-for	graph	and,	851–852,

log	sequence	number	(LSN),

merge	trees

1113–1114

941–946

LSN	(log	sequence	number),

lock	table,	844,	845,	967

log-structured	merge	(LSM)

941–946

log	disks,	610

trees,	1176–1182

log	force,	927

basic,	1179

machine-learning	algorithms,	495

logical	clock,	1118

Bloom	filters	and,	1181

magnetic	disks,	563–567

logical	counter,	862

deletion	and,	1178–1179

access	time	and,	561,	566,	567

logical-design	phase,	18,	242

for	flash	storage,	1182

blocks	and,	566–567

logical	error,	907

insertion	into,	1177–1178,

capacity	of,	560

logical	level	of	abstraction,	9–12

1180–1181

checksums	and,	565

logical	logging,	936

levels	of,	1176

crashes	and,	565

logically	implied	schema,	320

lookup	and,	1181

data-transfer	rate	and,	566

Index

1321

disk	controller	and,	565

markup	languages.	See	specific

non-volatile	random-access,

failure	classification	and,	908

languages

579–580

hybrid,	569–570

massively	parallel	systems,	970

optical,	560–561

mean	time	to	failure	and,	567

master	nodes,	1012,	1136

overflows	and,	715

performance	measures	of,

master	replica,	1016

query	costs	and,	697

565–567

master	sites,	1026

query	processing	in,	731–734

physical	characteristics	of,

master-slave	replication,	1137

recovery	systems	and,

563–565

master	table,	1222

910–912

read-write	heads	and,

match	clause,	509

storage	class,	569,	588,	948

564–565

materialization,	724–725

memory	barrier,	983–984

recording	density	and,	565

materialized	edges,	728

merge-join,	708–712,	1045

sectors	and,	564–566

materialized	views

merge-purge	operation,	523

seek	time	and,	566,	566n2,

aggregation	and,	781–782

merging

567

defined,	140,	778

duplicate	elimination	and,

sizes	of,	563

719–720

index	selection	and,	783

main	memory,	559–560,

exchange-operator	model	and,

join	operation	and,	780

657–658

1055–1057

parallel	maintenance	of,

ordered,	1056

main-memory	databases

1069–1070

parallel	external	sort-merge,

accessing	data	in,	910

performance	tuning	and,

1042–1043

concurrency	control	in,

1215–1216

performance	tuning	and,

887–890

projection	and,	780–781

1222–1223

recovery	in,	947–948

query	optimization	and,

query	processing	and,

storage	in,	588,	615–617

778–783

701–704,	708–712

majority	protocol,	1123–1126

selection	and,	780–781

random,	1056

management	of	data.	See

view	maintenance	and,	140,

rolling	merge,	1178

database-management

779–782

Merkle-Patricia	trees,	1269,

systems

max	function,	91–92,	105,	723,

1275

(DBMSs)

766,	782

Merkle	trees,	1143–1146,	1268,

man-in-the-middle	attacks,	442

maximum	margin	line,	544

1269

manufacturing,	database

mean	time	between	failures

mesh	system,	976

applications	for,	3,	5

(MTBF),	567n3

MESI	protocol,	984

many-to-many	mapping,	253–255

mean	time	to	data	loss,	571

message-based	consensus,	1266

many-to-one	mapping,	252–255

mean	time	to	failure	(MTTF),

message	delivery	process,

map	function,	483–494,	510.	See

567,	567n3

1109–1110

also	MapReduce	paradigm

mean	time	to	repair,	571

metadata,	14,	191–193,	470,

mapping	cardinalities,	252–256

measure	attributes,	524

602–604,	1020–1022

MapReduce	paradigm,	483–494

mediators,	1077

microservices	architecture,	994

development	of,	27,	481

memcached	system,	436–437,

Microsoft

fault	tolerance	and,

482

application	design	and,	417,

1060–1061

memoization,	771

442

in	Hadoop,	489–493

memory.	See	also	storage

Database	Tuning	Assistant,

intraoperation	parallelism

bulk	loading	of	indices	and,

1217

and,	1050–1052

653–655

query	languages	developed	by,

log	processing	and,	486–488

cache,	559	(see	also	caching)

538

parallel	processing	of	tasks,

data	access	and,	910–912

query	optimization	and,	783

488–489

flash,	560,	567–570,	656–657

StreamInsight,	504

SQL	on,	493–494

force	output	and,	912

Microsoft	SQL	Server

word	count	program	and,

magnetic-disk,	560,	563–567

advanced	SQL	and,	206

483–486,	484n2,	490–492

main,	559–560,	657–658

implements,	160

1322

Index

limit	clause	in,	222

intention-exclusive	mode	and,

MySQL

performance	monitoring

855

attributes	and,	149n8

tools,	1212

intention-shared	mode	and,

growth	of,	27

performance	tuning	tools,

855

joins	and,	133n4

1218

locking	protocol	and,

LSM	trees	and,	668

procedural	languages

856–857

performance	monitoring

supported	by,	199

request	operation	and,	854,

tools,	1212

snapshot	isolation	and,	1225

855

string	operations	and,	82

spatial	data	and,	388,	390

shared	and	intention-exclusive

unique	key	values	in,	161

string	operations	and,	82

mode	and,	855

min	function,	91–92,	723,	766,

tree	architecture	and,

naÃ¯ve	Bayesian	classifiers,	543

782

853–857

naÃ¯ve	users,	24

minibatch	transactions,	1227

multiple	inheritance,	275

namenode,	475,	1020

minimal	equivalence	rules,	754

multiple-key	access,	633–634,

NAND	flash	memory,	567–568

mining	pools,	1266.	See	also	data

661–663

NAS	(network	attached	storage),

mining

multiprogramming,	809

563,	934

minus,	88n7

multiquery	optimization,

natural	join	operation,	57

mirroring,	571–573,	576,	577

785–786

natural	joins,	126–136

mobile	application	platforms,

multiset	except,	88n7

on	condition	and,	130–131

428–429

multiset	relational	algebra,	80,

conditions	and,	130–131

mobile	phone	applications,	469

97,	108,	136,	747

full	outer,	132–136,	722

models	for	data	mining,	540

multiset	types,	366

inner,	132–136,	771

model-view-controller	(MVC)

multisig	instruction,	1269–1270

left	outer,	131–136,	722

architecture,	429–430

multitable	clustering	file

outer,	57,	131–136

MOLAP	(multidimensional

organization,	595,

right	outer,	132–136,	722

OLAP),	535

598–601

navigation	systems,	database

MonetDB,	367,	615

multitasking,	961,	963

applications	for,	3

MongoDB,	477–479,	482,	489,

multiuser	systems,	962

nearest-neighbor	queries,	394,

668,	1024,	1028

multivalued	attributes,	251,	252,

672,	674

monotonic	queries,	218

342

nearness	queries,	394

Moore’s	law,	980n4

multivalued	data	types,	366–367

negation,	762

most	recently	used	(MRU)

multivalued	dependencies,

Neo4j	graph	database,	509,	510

strategy,	608–609

336–341

nested	data	types,	367–368

MRU	(most	recently	used)

multiversion	concurrency	control

nested-loop	join

strategy,	608–609

(MVCC),	869–872

block,	705–707

MTBF	(mean	time	between

multiversion	timestamp-ordering

indexed,	707–708,	728

failures),	567n3

scheme,	870–871,	1118

parallel,	1045–1046

MTTF	(mean	time	to	failure),

multiversion	two-phase	locking

query	optimization	and,	768,

567,	567n3

(MV2PL)	protocol,

769,	771,	773

multidimensional	data,	524,

871–872,

query	processing	and,

527–532

1129–1131

704–708,	713–719,	722,

multidimensional	OLAP

mutations,	1234

786

(MOLAP),	535

mutual	exclusion,	965,	967

nested	subqueries,	98–107

multilevel	indices,	628–630

MVCC	(multiversion	concurrency

from	clause	and,	104–105

multimaster	replication,	1137

control),	869–872

with	clause	and,	105–106

multiple	consensus	protocol,	1151

MVC	(model-view-controller)

duplicate	tuples	and,	103

multiple	granularity

architecture,	429–430

empty	relations	test	and,

concurrency	control	and,

MV2PL	(multiversion	two-phase

101–102

853–857

locking)	protocol,	871–872,

optimization	of,	774–778,

hierarchy	of,	854

1129–1131

1220

Index

1323

scalar,	106–107

ring	architecture	and,	976

in	conceptual-design	process,

set	operations	and,	98–101

splitting	of,	641–645,	886

17

nesting,	854,	946

straggler,	1060–1061

denormalization,	346

NetBeans,	416

updates	and,	641–647

entity-relationship	(E-R)

network	attached	storage	(NAS),

virtual,	1009–1010

model	and,	344–345

563,	934

no-force	policy,	927

performance	and,	346

network	latency,	969

nonbinary	relationship	sets,

relational	database	design

network	partition,	481,	989,

283–285

and,	308

989n5,	1104–1105

non-blocking	two-phase	commit,

NoSQL	systems,	28,	473,	477,

network	round-trip	time,	969

1161

1269,	1276

networks

nonces,	1265,	1271

no-steal	policy,	927

deep	neural,	546

nonclustering	indices,	625,	695

not	connective,	74

interconnection,	975–979

nondeclarative	actions,	183

not	exists	construct,	101–102,

local	area,	977,	978,	985,	989

non	first-normal-form	(NFNF),

108,	218

spatial,	390

367

notifications,	436

wide-area,	989

nonleaf	nodes,	635–636,	642,

not	in	construct,	99,	100

neural-net	classifiers,	545–546

645–656,	663

not	null,	69,	89–90,	142,	146,

new	value,	913

nonprocedural	DMLs,	15

150,	159

next-key	locking	protocols,	887

nonprocedural	languages,	15,	16,

not	operation,	89–90

next	method,	188

18,	26

not	unique	construct,	103

nextval	for,	1226

nonrepudiation,	451

null	bitmap,	593

NFNF	(non	first-normal-form),

Non-Uniform	Memory	Access

null	rejecting	property,	751

367

(NUMA),	981,	1063

null	values

nodes

nonunique	search	keys,	632,	637,

aggregation	with,	96

in	blockchain	databases,

640,	649–650

attributes	and,	251–252

1255–1257,	1263–1268

Non-Volatile	Memory	Express

defined,	40,	67

coalescing,	641,	886

(NVMe)	interface,	562

file	organization	and,	593

datanodes,	475,	1020

non-volatile	random-access

integrity	constraints	and,

defined,	468

memory	(NVRAM),

145–147,	150

distributed	databases	and,

579–580,	948

SQL	and,	89–90

987

non-volatile	storage,	560,	562,

temporal	data	and,	347

failure	of,	1103–1104

587–588,	804,	908–910,

triggers	and,	209

full,	1256,	1268

930–931

user-defined	types	and,	159

in	Hadoop	File	System,	474,

non-volatile	write	buffers,

NUMA	(Non-Uniform	Memory

475

579–580

Access),	981,	1063

internal,	635

NOR	flash	memory,	567

numeric,	67,	70

leaf,	635–656,	665–669,	673,

normal	forms

nvarchar,	68

674

atomic	domains	and,	342–343

NVMe	(Non-Volatile	Memory

leases	and,	1115–1116

Boyce–Codd,	313–316,

Express)	interface,	562

light,	1256,	1268

330–333,	336

NVRAM	(non-volatile

master,	1012,	1136

domain-key,	341

random-access	memory),

mesh	architecture	and,	976

fifth,	341

579–580,	948

multiple	granularity	and,

first,	342–343

N-way	merge,	702

853–857

fourth,	336,	339–341

namenode,	475,	1020

higher,	319

OAuth	protocol,	443

nonleaf,	635–636,	642,

join	dependencies	and,	341

obfuscation,	1235

645–656,	663

project-join,	341

object-based	databases

operation,	506–507

second,	316n8,	341–342,	356

array	types	and,	378

in	parallel	databases,	970

third,	317–319,	333–335

complex	data	types	and,

primary,	1123

normalization

376–382

1324

Index

inheritance	and,	378–380

OLAP.	See	online	analytical

open	hashing,	1194

mapping	and,	377,	381–382

processing

OpenID	protocol,	443

overview,	9

old	value,	913

open	polygons,	388n3

reference	types	and,	380–381

OLE-DB,	1239

open	time	intervals,	675

object	classes,	1242

OLTP	(online	transaction

operation	consistent	state,

Object	Database	Management

processing),	4,	521,

936–937

Group	(ODMG),

1231–1232

operation	nodes,	506–507

1239–1240

OMG	(Object	Management

operation	serializability,	885

Object	Management	Group

Group),	288

operator	trees,	724,	1040

(OMG),	288

on	condition,	130–131

optical	storage,	560–561

object	of	triples,	372

on	delete	cascade,	150,	210,

optimistic	concurrency	control,

object-oriented	databases

268n5

869

(OODB),	9,	26,	377,	431,

1NF	(first	normal	form),

optimistic	concurrency	control

1239–1240

342–343

without	read	validation,

object-relational	databases,

one-to-many	mapping,	252–255

883,

377–381

one-to-one	mapping,	252–254

891

defined,	377

online	analytical	processing

optimization	cost	budget,	774

(OLAP),	527–540

reference	types	and,	380–381

Oracle

aggregation	on

advanced	SQL	and,	206

table	inheritance	and,

multidimensional	data,

application	server,	416

379–380

527–532

database	design	and,	443n6,

type	inheritance	and,

cross-tabulation	and,	528–533

444–445

378–379

data	cubes	and,	529–530

decode	function	in,	155

user-defined	types,	378

defined,	520,	530

Event	Processing,	504

object-relational	data	models,	27,

dicing	and,	530

GeoRaster	extension,	367

376–382

drill	down	and,	531,	540

history	of,	26

object-relational	mapping

hybrid,	535

JDBC	interface	and,	185,	186

(ORM),	377,	381–382,

implementation	of,	535

keywords	in,	81n3,	88n7

431–434,

multidimensional,	535

limit	clause	in,	222

1239–1240

performance	benchmarks

nested	subqueries	and,	104

observable	external	writes,	807

and,	1231–1232

performance	monitoring

ODBC	(Open	Database

relational,	535

tools,	1212

Connectivity)

reporting	and	visualization

performance	tuning	tools,

advanced	SQL	and,	194–197

tools,	538–540

1218

API	defined	by,	194–195

rollup	and,	530–531,	536–538

procedural	languages

application	interfaces	defined

slicing	and,	530

supported	by,	199

by,	17

in	SQL,	533–534,	536–538

query-evaluation	plans	and,

caching	and,	436

online	index	creation,	884–885

746

conformance	levels	and,

online	storage,	561

query	optimization	and,	773,

196–197

online	transaction	processing

774,	783

standards	for,	1238–1239

(OLTP),	4,	521,

reference	types	and,	380

type	definition	and,	196

1231–1232

set	and	array	types	supported

web	sessions	and,	409

on	update	cascade,	150

by,	367

ODMG	(Object	Database

OODB.	See	object-oriented

snapshot	isolation	and,	1225

Management	Group),

databases

Spatial	and	Graph,	388

1239–1240

open	addressing,	1194

statistical	analysis	and,	761

off-chain	transactions,	1275

Open	Database	Connectivity.	See

syntax	supported	by,	204,

offline	storage,	561

ODBC

212,	218,	218n9

OGC	(Open	Geospatial

Open	Geospatial	Consortium

transactions	and,	822,	826,

Consortium),	388

(OGC),	388

872–873,	879

Index

1325

types	and	domains	supported

coarse-grain,	963,	970

parallel	external	sort-merge,

by,	160

concurrency	control	and,	990

1042–1043

Virtual	Private	Database,	173,

defined,	480

parallel	indices,	1017–1019

444–445

exchange-operator	model	and,

parallelism

oracles,	1271–1272

1055–1057

coarse-grained,	963

ORC,	490,	499,	613–614

fine-grain,	963,	970

data,	1042,	1057

or	connective,	74

hierarchical,	979,	980,	986

fine-grained,	963

order	by	clause,	83–84,

indices	in,	1017–1019

improvement	of	performance

219–222,	534

interconnection	networks

via,	571–572

ordered	indices,	624–634

and,	975–979

independent,	1054–1055

comparison	with	hash

interference	and,	974

interoperation,	1040,

indices,	1203

interoperation	parallelism

1052–1055

defined,	624

and,	1040,	1052–1055

interquery,	1039

dense,	626–628,	630–631

interquery	parallelism	and,

intraoperation,	1040–1052

multilevel,	628–630

1039

intraquery,	1039

secondary,	625,	632–633

intraoperation	parallelism

I/O	(see	I/O	parallelism)

sequential,	625,	634–635

and,	1040–1052

Single	Instruction	Multiple

sparse,	626–632

intraquery	parallelism	and,

Data,	1064

techniques	for,	624

1039

parallel	joins,	1043–1048

updates	and,	630–632

I/O	parallelism	and,

fragment-and-replicate,

ordered	merge,	1056

1004–1007

1046–1047,	1062

ORM.	See	object-relational

key-value	stores	and,

hash,	1045

mapping

1023–1031

nested-loop,	1045–1046

or	operation,	89–90

massively	parallel,	970

partitioned,	1043–1046

orphaned	blocks,	1257,	1263

motivation	for,	970–971

skew	in,	1047–1048

outer-join	operation,	57,

operator	trees	and,	1040

parallel	key-value	stores,

131–136,	722–723,	765,

partitioning	techniques	and,

1023–1031

782

1004–1007

atomic	commit	and,	1029

outer	relation,	704

performance	measures	for,

concurrency	control	and,

outer	union	operations,	229n16

971–974

1028–1029

outsourcing,	28

pipelines	and,	1053–1054

data	representation	and,

overflow	avoidance,	715

query	optimization	and,

1024–1025

overflow	blocks,	598

1064–1070

defined,	1003

overflow	buckets,	659–660,

replication	and,	1013–1016

elasticity	and,	1024

1194–1195

response	time	and,	971–972

failures	and,	1029–1030

overflow	chaining,	659–660

scaleup	and,	972–974

geographically	distributed,

overflow	resolution,	715

shared	disk,	979,	980,

1026–1027

overlapping	generalization,	279,

984–985

index	structure	and,	1028

290

shared	memory,	979–984,

managing	without	declarative

overlapping	specialization,	272,

1061–1064

queries,	1030–1031

275

shared	nothing,	979,	980,

overview,	1023–1024

overlays,	393

985–986,	1040–1041,

performance	optimizations

1061–1063

and,	1031

page	(blocks),	567

skew	and,	974,	1007–1013,

storing	and	retrieving	data,

PageLSN,	942–945

1043,	1062

1025–1028

PageRank,	385–386

speedup	and,	972–974

support	for	transactions,

page	shipping,	968

start-up	costs	and,	974,	1066

1028–1030

parallel	databases

throughput	and,	971

parallel	processing,	437,

architecture	of,	22,	970–986

transaction	processing	in,

488–489

Big	Data	and,	473,	480–481

989–990

parallel	query	plans

1326

Index

choosing,	1066–1068

horizontal,	1004,	1216–1217

benchmarks	(see	performance

colocation	of	data	and,

intra-node,	1004

benchmarks)

1068–1069

joins	and,	714–715,

of	blockchain	databases,

cost	of,	1065–1066

1043–1046

1274–1276

evaluation	of,	1052–1061

network,	481,	989,	989n5,

B+-trees	and,	634,	665–666

materialized	views	and,

1104–1105

caching	and,	435–437

1069–1070

parallel	databases	and,

data-transfer	rate	and,	566

space	for,	1064–1065

1004–1007

denormalization	for,	346

parallel	sort,	1041–1043

point	queries	and,	1006

improvement	via	parallelism,

parameterized	views,	200

query	optimization	and,	1065

571–572

parameter	style	general,	205

range,	476,	1005,	1007,	1178

magnetic	disk	storage	and,

parametric	query	optimization,

recursive,	714–715

565–567

786

of	relation	schema,	1216–1217

mean	time	to	failure	and,	567,

parity	bits,	572,	574,	577

round-robin,	1005,	1006

567n3

Parquet,	490,	499

scanning	a	relation	and,	1006

monitoring	tools,	1212

parsing

sharding	and,	473,	475–476,

parallel	databases	and,

application	design	and,	418

1275

971–974

bulk	loads	and,	1221–1223

skew	and,	715,	1007–1013

parallel	key-value	stores	and,

query	processing	and,

topic-partition,	1073

1031

689–690

vertical,	1004

parallel	processing	and,	437

partial	aggregation,	1049

virtual	node,	1009–1010

response	time	(see	response

partial	dependency,	356

partition	tables,	1011–1014

time)

partial	failure,	909

passwords

seek	time	and,	566,	566n2,

partial	generalization,	275

application	design	and,	403,

567,	692,	710

partially	committed	transactions,

411,	414,	432,	450–451

sequential	indices	and,

806

dictionary	attacks	and,	449

634–635

partial	participation,	255

distributed	databases	and,

testing,	1235

partial	rollback,	853

1240

throughput	(see	throughput)

partial	schedules,	819

hash	functions	and,	1260n4

tuning	(see	performance

partial	specialization,	275

leakage	of,	440–441

tuning)

participation	in	relationship	sets,

man-in-the-middle	attacks

web	applications	and,

247

and,	442

405–411

partitioning	attribute,	479

one-time,	441

performance	benchmarks,

partitioning	keys,	475–476

single	sign-on	system	and,

1230–1234

partitioning	vector,	1005

442–443

database-application	classes

partitions

SQL	and,	163,	186,	196

and,	1231–1232

balanced	range,	1008–1009

storage	and,	602,	603

data,	989n5

unencrypted,	414n4

defined,	1230

defined,	1100

path	expressions,	372,	381

suites	of	tasks	and,	1231

distributed	databases	and,

pattern	matching,	504

of	Transaction	Processing

1104–1105

Paxos	protocol,	1152–1155,

Performance	Council,

distributed	file	systems	and,

1160–1161,	1267

1232–1234

473

PCIe	interface,	562

performance	tuning,	1210–1230

dynamic	repartitioning,

pen	drives,	560

automated,	1217–1218

1010–1013

performance

bottleneck	locations	and,

exchange-operator	model	and,

access	time	and,	561,

1211–1213,	1215,	1227

1055–1057

566–567,	578,	624,

bulk	loads	and,	1221–1223

file	organization	and,

627–628,	692

of	concurrent	transactions,

601–602

application	design	and,

1224–1227

hash,	476,	1005–1007,	1045

434–437

of	hardware,	1227–1230

Index

1327

horizontal	partitioning	of

cost	per	byte,	560,	561,

concurrency	control	and,

relation	schema,

566n2,	569,	576

886,	888,	889

1216–1217

disk-block	access	and,

query	processing	and,	697,

indices	and,	1215

577–580

698,	700,	708

levels	of,	1213–1214

flash	memory,	560,	567–570,

recovery	systems	and,	914,

materialized	views	and,

656–657

945

1215–1216

hierarchy	of,	561,	562

redistribution	of,	646

motivation	for,	1210–1211

indices	and,	630n2

SQL	basics	and,	193,	205

parameter	adjustment	and,

interfaces	for,	562–563

storage	and,	588,	591,

1210,	1213–1215,	1220,

magnetic	disks,	560,	563–567

594–598,	601

1228,	1230

main	memory,	559–560

point	queries,	1006,	1190

physical	design	and,

optical	storage,	560–561

polygons,	388–390,	388n3,	393

1217–1218

RAID,	562,	570–577

polylines,	388–389,	388n3

of	queries,	1219–1223

solid-state	drives,	18,	560

population,	547

RAID	and,	1214,	1229–1230

tape	storage,	561

PostgreSQL

of	schema,	1214–1218,

volatility	of,	560,	562

advanced	SQL	and,	206

1223–1224

physiological	redo	operations,

array	types	on,	378

set	orientation	and,

941

concurrency	control	and,	873,

1220–1221

Pig	Latin,	494

879

simulation	and,	1230

pin	count,	605

Generalized	Search	Tree	and,

tools	for,	1218

pinned	blocks,	605

670

updates	and,	1221–1223,

pin	operations,	605

growth	of,	27

1225–1227

pipelined	edges,	728

heap	file	organization	and,

period	declaration,	157

pipeline	stage,	728

596

Perl,	206

pipelining,	724–731

JDBC	interface	and,	185

permissioned	blockchains,

benefits	of,	726

JSON	and,	370

1253–1254,	1256–1257,

for	continuous-stream	data,

performance	monitoring

1263,	1266,

731

tools,	1212

1274

demand-driven,	726–728

PostGIS	extension,	367,	388,

persistent	messaging,	990,	1016,

evaluation	algorithms	for,

390

1108–1110,	1137

728–731

procedural	languages

Persistent	Storage	Module

implementation	of,	726–728

supported	by,	199

(PSM),	201

parallelism	and,	1053–1054

query-evaluation	plans	and,

phantom	phenomenon,	827,

producer-driven,	726–728

746

858–861,	877–879,	877n5,

uses	for,	691–692,	724,	725

query	processing	and,	692,

885,	887

pivot	attribute,	227

694,	698–699

PHP,	405,	417,	418

pivot	clause,	227,	534

set	and	array	types	supported

physical	blocks,	910

pivoting,	226–227,	530

by,	367

physical	data	independence,

pivot-table,	226–227,	528–529

snapshot	isolation	and,	1225

9–10,	13

PJNF	(project-join	normal	form),

statistical	analysis	and,	761

physical-design	phase,	18,

341

transaction	management	in,

242–243

plan	caching,	774

822,	826

physical	equivalence	rules,	771

platform-as-a-service	model,

types	and	domains	supported

physical	level	of	abstraction,	9,

992–993

by,	160

11,	12,	15

platters,	563,	565

unique	key	values	in,	161

physical	logging,	936

PL/SQL,	199,	204

P	+	Q	redundancy	schema,	573,

physical	schema,	12,	13

pointers.	See	also	indices

574

physical	storage	systems,

blockchain	databases	and,

Practical	Byzantine	Fault

559–580

1254–1255,	1261,	1269

Tolerance,	1267

cache	memory,	559

B+-tree	(see	B+-trees)

precedence	graph,	816–817

1328

Index

precision,	386

procedural	languages,	47n3,	184,

punctuations,	503–504

precision	locking,	861n1

199,	204

pushing	data,	727

predicate	locking,	828,	861,

procedures

put	function,	477,	478

861n1

declaring,	199–201

puzzle	friendliness,	1265

predicate	of	triples,	372

external	language	routines

PWA	(Progressive	Web	Apps),

predicate	reads,	858–861

and,	203–206

429

prediction,	541–543,	545–546

language	constructs	for,

Python

predictive	models,	4–5

201–203

advanced	SQL	and,	183,

preemption,	850

syntax	and,	199,	201–205

193–194,	206

prefetching,	969

writing	in	SQL,	198–206

application	design	and,	16,

prefix	compression,	653

process	monitor	process,	965

405,	416,	419

Pregel	system,	511

producer-driven	pipeline,

object-oriented	programming

prepared	statements,	188–190

726–728

and,	377

presentation	layer,	429

programming	languages.	See	also

object-relational	mapping

price	per	TPS,	1232

specific

system	for,	382

primary	copy,	1123

languages

web	services	and,	424

primary	indices,	625,	695,

accessing	SQL	from,	183–198

1017–1018

mismatch	and,	184

quadratic	split	heuristic,	1189

primary	keys

object-oriented,	377

quads,	376

attributes	and,	310n4

variable	operation	of,	184

quadtrees,	392,	674,	1186–1187

defined,	44

Progressive	Web	Apps	(PWA),

queries.	See	also	information

entity-relationship	(E-R)

429

retrieval

model	and,	256–260

projection

ADO.NET	and,	184

functional	dependencies	and,

intraoperation	parallelism

basic	structure	of	SQL

313

and,	1049

queries,	71–79

integrity	constraints	and,	147,

query	optimization	and,	764

on	B+-trees,	637–641,	690

148

query	processing	and,	720

caching	and,	435–437

in	relational	model,	44–46

view	maintenance	and,

Cartesian	product	and,

SQL	schema	definition	and,

780–781

76–79,	81,	230

68–70

project-join	normal	form	(PJNF),

compilation	of,	733

primary	nodes,	1123

341

continuous,	503,	731

primary	site,	931

project	operation,	49–50

correlated	subqueries	and,

primary	storage,	561

proof-of-stake	consensus,	1256,

101

prime	attributes,	356

1266

cost	of	(see	query	cost)

privacy,	438,	446,	1252

proof-of-work	consensus,	1256,

decision-support,	521,	971

private-key	encryption,

1264–1266

declarative,	1030–1031

1260–1261

proposers,	1148,	1152

defined,	15

privileges

proximity	of	terms,	385

deletion	and,	108–110

all,	166

PR	quadtrees,	1187

equivalent,	58

defined,	165

pseudotransitivity	rule,	321

evaluation	of	(see

execute,	169–170

PSM	(Persistent	Storage

query-evaluation	plans)

granting,	166–167,	170–171

Module),	201

hash	functions	and,	624,

public,	167

public	blockchains,	1253,	1255,

1197–1202

references,	170

1257–1259,	1263,	1264

indices	and,	623,	695–697,

revoking,	166–167,	171–173

public-key	encryption,	448–449,

707–708

select,	171,	172

1260–1261

insertion	and,	110–111

transfer	of,	170–171

publish-subscribe	(pub-sub)

intermediate	SQL	and	(see

update,	170

systems,	507,	1072,

intermediate	SQL)

probe	input,	713

1137–1139

JDBC	and,	184–193

procedural	DMLs,	15

pulling	data,	727

join	expressions	and,	125–136

Index

1329

keyword,	383,	385–387,	721

query	cost

distributed,	1084

languages	(see	query

optimization	and,	745–746,

equivalence	and,	747–757

languages)

757–766

estimating	statistics	of

metadata	and,	191–193

processing	and,	692–695,

expression	results,	757–766

monotonic,	218

697,	702–704,	710–712,

heuristics	in,	766,	771–774,

multiple-key	access	and,

715–717

786

661–663

query-evaluation	engine,	20

hybrid	hash	join	and,	717–718

on	multiple	relations,	74–79

query-evaluation	plans

indexed	nested-loop	join	and,

nearest-neighbor,	394,	672,

choice	of,	766–778

707–708

674

cost	of,	1065–1066

join	minimization	and,	784

nested	subqueries,	98–107

defined,	691

materialized	views	and,

null	values	and,	89–90

expressions	and,	724–731

778–783

ODBC	and,	194–197

fault	tolerance	in,	1059–1061

multiquery,	785–786

optimization	of	(see	query

materialization	and,	724–725

nested	subqueries	and,

optimization)

optimization	and	(see	query

774–778,	1220

PageRank	and,	385–386

optimization)

parallel	databases	and,

performance	tuning	of,

parallel	(see	parallel	query

1064–1070

1219–1223

plans)

parametric,	786

point,	1006,	1190

performance	tuning	of,

plan	choice	for,	766–778

processing	(see	query

1219–1220

projection	and,	764

processing)

pipelining	and,	691–692,

relational	algebra	and,

programming	language	access

724–731

743–749,	752,	755

and,	183–198

relational	algebra	and,

role	in	query	processing,	689,

Python	and,	193–194

690–691

690

range,	638,	672,	674,	1006,

resource	consumption	and,

set	operations	and,	764–765

1190

694–695,	1065–1066

shared	scans	and,	785–786

read	only,	1039

response	time	and,	694–695

top-	K,	784

recursive,	213–218

role	in	query	processing,	689,

transformations	and,	747–757

region,	393–394

690

updates	and,	784–785

rename	operation	and,	79,

viewing,	746

query	processing,	689–734

81–82

query-execution	engine,	691

adaptive,	786–787

ResultSet	object	and,	185,

query-execution	plans,	691

aggregation	and,	723

187–188,	191–193,

query	languages.	See	also	specific

basic	steps	of,	689,	690

638–639

languages

Big	Data	and,	470–472

retrieving	results,	187–188

accessing	from	programming

blockchain	databases	and,

scalar	subqueries,	106–107

languages,	183–198

1254,	1275–1276

security	and,	437–446

categorization	of,	47

comparisons	and,	698–699

servlets	and,	411–421

Cypher,	509

cost	analysis	of,	692–695,

set	operations	and,	85–89,

defined,	15,	47

697,	702–704,	710–712,

98–101

in	relational	model,	47–48

715–717

on	single	relation,	71–74

SPARQL,	375–376

CPU	speeds	and,	692

spatial,	393–394

stream,	503–506

DDL	interpreter	in,	20

spatial	graph,	394

query	optimization,	743–787

defined,	689

streaming	data	and,	502–506,

adaptive,	786–787

distributed	databases	and,

1070–1071

aggregation	and,	764

1076–1086

string	operations	and,	82–83

Cartesian	product	and,	748,

DML	compiler	in,	20

transaction	servers	and,	965

749,	755,	763–764,	775

duplicate	elimination	and,

universal	Turing	machines

cost	analysis	and,	745–746,

719–720

and,	16

757–766

evaluation	of	expressions,

views	and,	137–143

defined,	20,	691,	743

724–731

1330

Index

file	scans	and,	695–697,

range-partitioning	vector,

buffer	management	and,

704–707,	727

1008–1009

926–930

hashing	and,	712–718,	1063

range	queries,	638,	672,	674,

checkpoints	and,	920–922,

history	of,	26–27

1006,	1190

930

identifiers	and,	700

ranking,	219–223,	383–386

commit	protocols	and,	1105

indices	and,	695–697

raster	data,	392

concurrency	control	and,	916

join	operation	and,	704–719,

RDDs	(Resilient	Distributed

data	access	and,	910–912

722–723,	1081–1082

Datasets),	496–499,	1061

database	modification	and,

materialization	and,	724–725

RDF.	See	Resource	Description

915–916

in	memory,	731–734

Framework

distributed	databases	and,

operation	evaluation	and,

RDMA	(remote	direct	memory

1105

690–691

access),	979

early	lock	release	and,

parsing	and	translation	in,

RDNs	(relative	distinguished

935–941

689–690

names),	1241–1242

fail-stop	assumption	and,	908,

pipelining	and,	691–692,

reactionary	standards,	1237

1267

724–731

React	Native	framework,	428

failure	and,	907–909,

PostgreSQL	and,	692,	694,

read-ahead,	578

930–932

698–699

read	authorization,	14

force/no-force	policy	and,	927

projection	and,	720

read	committed,	821,	880,	1225

logical	undo	operations	and,

recursive	partitioning	and,

read	cost,	1127–1128

935–941

714–715

read	one,	write	all	copies

log	records	and,	913–919,

relational	algebra	and,

protocol,	1125

926–927

689–691

read	one,	write	all	protocol,	1125

log	sequence	number	and,

scalability	of,	471–472

read	only	queries,	1039

941–946

selection	operation	and,

read-only	transactions,	871

main-memory	databases	and,

695–700

read	phase,	866

947–948

set	operations	and,	720–722

read	quorum,	1124

redo	operation	and,	915–919,

on	shared-memory

read	uncommitted,	821

922–925

architecture,	1061–1064

read-write	contention,

remote	backup,	909,	931–935

sorting	and,	701–704

1224–1225

rollback	and,	916–919,	922

SQL	and,	689–690,	701,	720

ready	state,	989,	1102

shadow-copy	scheme	and,	914

syntax	and,	689

real,	double	precision,	67

snapshot	isolation	and,	916

query	processor,	18,	20

real-time	transaction	systems,

steal/no-steal	policy	and,	927

query-server	systems,	963

894

storage	and,	908–912,

queueing	systems,	1212–1213

rebuild	performance,	576

920–922,	930–931

queueing	theory,	1213

recall,	386

successful	completion	and,

quorum	consensus	protocol,

RecLSN,	942–945

909

1124–1125

reconciliation	of	updates,

transactions	and,	21,	803,	805

Raft	protocol,	1148,	1155–1158,

1142–1143

triggers	and,	212–213

1267

reconfiguration,	1128

undo	operation	and,	915–919,

RAID.	See	redundant	arrays	of

record-based	models,	8

922–925

independent	disks

record	relocation,	652–653

write-ahead	logging	rule	and,

random	access,	567,	578

recovery	manager,	21

926–929

randomized	retry,	1148

recovery	systems,	907–948

recovery	time,	933

random	merge,	1056

actions	following	crashes,

recursive	partitioning,	714–715

random	samples,	761

923–925

recursive	queries,	213–218

range	partitioning,	476,	1005,

algorithms	for,	922–925,

iteration	and,	214–216

1007,	1178

944–946,	1276

SQL	and,	216–218

range-partitioning	sort,

ARIES,	941–947,	1276

transitive	closure	and,

1041–1042

atomicity	and,	803,	912–922

214–216

Index

1331

recursive	relationship	sets,

referencing	new	row	as	clause,

relational-algebra	expressions,	50

247–248

207,	208

relational	database	design,

Redis,	436–437,	482,	1024

referencing	new	table	as	clause,

303–351

redistribution	of	pointers,	646

210

atomic	domains	and,	342–343

redo-only	log	records,	918

referencing	old	row	as	clause,

Boyce–Codd	normal	form

redo	operation,	915–919,

208

and,	313–316

922–925,	941

referencing	old	table	as	clause,

closure	of	a	set	and,	312,

redo	pass,	944–945

210

320–324

redo	phase,	923,	924

referencing	relation,	45–46

decomposition	and,	305–313,

reduceByKey	function,	498

referential	integrity,	14,	46,

330–341

reduce	function,	483–494,	510.

149–153,	207–208,	800

design	process,	343–347

See	also	MapReduce

referer,	440

features	of	good	designs,

paradigm

referrals,	1243

303–308

reduce	key,	485

ref	from	clause,	380

first	normal	form	and,

redundancy

reflexivity	rule,	321

342–343

in	database	design,	243

region	quadtrees,	1187

fourth	normal	form	and,	336,

entity-relationship	(E-R)

region	queries,	393–394

339–341

model	and,	261–264

regression,	546,	1234

functional	dependencies	and,

in	file-processing	systems,	6

reification,	376

308–313,	320–330

reliability	improvement	via,

reintegration,	1128

larger	schemas	and,	330,	346

570–571

relation,	defined,	39

multivalued	dependencies

of	schemas,	269–270

relational	algebra,	48–58

and,	336–341

redundant	arrays	of	independent

antijoin	operation,	108

naming	of	attributes	and

disks	(RAID),	570–577

assignment	operation,	55–56

relationships	in,	345–346

bit-level	striping	and,	571–572

Big	Data	and,	494–500

normalization	and,	308

block-level	striping	and,	572

Cartesian-product	operation,

second	normal	form	and,

hardware	issues,	574–576

50–52

316n8,	341–342,	356

hot	swapping	and,	575

equivalence	and,	58,	747–757

smaller	schemas	and,	305,

levels,	572–574,	572n4,	573n6,

expression	transformation

308,	344

576–577

and,	747–757

temporal	data	modeling	and,

mirroring	and,	571–573,	576,

join	operation,	52–53

347–351

577

motivation	for,	495–496

third	normal	form	and,

parity	bits	and,	572,	574,	577

multiset,	80,	97,	108,	136,	747

317–319

performance	improvement	via

predefined	functions

relational	model,	37–59

parallelism,	571–572

supported	by,	48n4

conceptual-design	process	for,

performance	tuning	and,

project	operation,	49–50

17

1214,	1229–1230

query	optimization	and,

disadvantages	of,	26

purpose	of,	562

743–749,	752,	755

history	of,	26

rebuild	performance	of,	576

query	processing	and,

keys	for,	43–46

recovery	systems	and,	909

689–691

object-relational,	27,	376–382

reliability	improvement	via

rename	operation,	56–57

operations	in,	48–58

redundancy,	570–571

select	operation,	49

overview,	8,	37

scrubbing	and,	575

semijoin	operation,	108,

query	languages	in,	47–48

software	RAID,	574,	575

1082–1084

schema	diagrams	for,	46–47

striping	data	and,	571–572

set	operations,	53–55

schema	in	(see	relational

re-engineering,	1236

in	Spark,	495–500,	508

schema)

referenced	relation,	45–46

SQL	operations	and,	80

SQL	language	in,	13

references,	149–150

on	streams,	504,	506–508

structure	of,	37–40

references	privilege,	170

unary	vs.	binary	operations

tables	in,	9,	10,	37–40

reference	types,	380–381

in,	48

tuples	in,	39,	41,	43–46

1332

Index

relational	OLAP	(ROLAP),	535

naming	of,	345–346

key-value	storage	systems	and,

relational	schema

nonbinary,	283–285

476

Boyce–Codd	normal	form

participation	in,	247

location	of,	1014–1015

and,	313–316,	330–333

primary	keys	and,	257–259

majority	protocol	and,

canonical	cover	and,	324–328

recursive,	247–248

1123–1126

database	design	process	and,

redundancy	and,	269–270

master	replica,	1016

343–347

representation	of,	268–269

master-slave,	1137

decomposition	and,	305–313

ternary,	249,	250,	284

multimaster,	1137

defined,	41

Unified	Modeling	Language

parallel	databases	and,

in	first	normal	form,	342–343

and,	288–291

1013–1016

fourth	normal	form	and,

relations	(tables),	8

primary	copy,	1123

339–341

relative	distinguished	names

quorum	consensus	protocol

functional	dependencies	and,

(RDNs),	1241–1242

and,	1124–1125

308–313,	320–330

relevance

reconfiguration	and

horizontal	partitioning	of,

hyperlinks	and,	385–386

reintegration,	1128

1216–1217

PageRank	and,	385–386

sharding	and,	476

logically	implied,	320

TF-IDF	approach	and,

state	machines	and,

multivalued	dependencies

384–385

1158–1161

and,	336–341

relevance	ranking,	383–386

synchronous,	522–523,	1136

reduction	of

reliability,	improvement	via

two-phase	commit	protocol

entity-relationship

redundancy,	570–571

and,	1016

diagrams	to,	264–271,

remapping	bad	sectors,	565

update-anywhere,	1137

277–279

remote	backup	systems,	909,

updates	and,	1015–1016

redundancy	in,	243

931–935

view	maintenance	and,

temporal	data	and,	347–351

remote	direct	memory	access

1138–1140

third	normal	form	and,

(RDMA),	979

report	generators,	538–540

317–319,	333–335

rename	operation,	56–57,	79,

Representation	State	Transfer

for	university	databases,

81–82

(REST),	426–427

41–43,	303–305

renewing	leases,	1115

request	forgery,	439–440

relation	instance,	39,	41

reorganization	of	files,	598

relation	scans,	769

repeatable	read,	821

request	operation

relationship	instance,	246–247

repeating	history,	924

deadlock	handling	and,

relationships,	defined,	246

repeat	loop,	214–216,	323

849–853

relationship	sets

repeat	statements,	201

locks	and,	835–841,	844–846,

alternative	notations	for,

replication

849–853,	886

285–291

asynchronous,	1122,

multiple	granularity	and,	854,

atomic	domains	and,	342–343

1135–1138

855

binary,	249,	283–285

biased	protocol	and,	1124

multiversion	schemes	and,

combination	of	schemas	and,

Big	Data	and,	481–482

871

270–271

caching,	1014n4

snapshot	isolation	and,	874

degree	of,	249

chain	replication	protocol,

timestamps	and,	861

descriptive	attributes	and,	248

1127–1128

Resilient	Distributed	Datasets

design	issues	and,	282–285

concurrency	control	and,

(RDDs),	496–499,	1061

entity-relationship	diagrams

1123–1125

resolution	of	conflicting	updates,

and,	247–250,	268–271

consistency	and,	1015–1016,

1142–1143

entity-relationship	(E-R)

1121–1123,	1133–1146

resource	consumption,	694–695,

model	and,	246–249,

data	centers	and,	1014–1015

1065–1066

282–285

distributed	databases	and,

Resource	Description	Framework

mapping	cardinalities	and,

987,	1121–1128

(RDF)

252–256

failure	and,	1125–1128

defined,	372

Index

1333

graph	representation	of,

ARIES	and,	945–946

scalar	subqueries,	106–107

374–375

cascading,	820–821,	841–842

scaleup,	972–974

n-ary	relationships	and,	376

concurrency	control	and,

scanning	a	relation,	1006

overview,	368

841–844,	849–850,	853,

scheduling

reification	in,	376

868–871

disk-arm,	578–579

SPARQL	and,	375–376

logical	operations	and,

query	optimization	and,	1065

triple	representation	and,

937–939

transactions	and,	810–811,

372–374

partial,	853

811n1

resources,	in	RDF,	372

recovery	systems	and,

schema	diagrams,	46–47

response	time

916–919,	922

schemas

application	design	and,

remote	backup	systems	and,

alternative	notations	for

434–435,	1229,	1232

933

modeling	data,	285–291

blockchain	databases	and,

timestamps	and,	862–865

authorization	on,	170

1274

total,	853

basic	SQL	query	structures

parallel	databases	and,

transactions	and,	143–145,

and,	71–79

971–972

193,	196,	805–806,	922,

combination	of,	270–271

partitioning	and,	1007

937–939,	945–946

composite	attributes	in,	250

query-evaluation	plans	and,

undo	operation	and,	916–919,

concurrency	control	and	(see

694–695

937–939

concurrency	control)

query	processing	and,

rollback	work,	143–145

creation	of,	24

694–695

rolling	merge,	1178

data	mining,	540–549

skew	and,	1066

rollup	clause,	228

data	warehousing,	523–525

storage	and,	572

rollup	construct,	227–231,

defined,	12

transactions	and,	808–809

530–531,	536–538

entity-relationship	diagrams

response	time	cost	model,	1066

rotational	latency	time,	566

and,	264–271,	277–279

responsive	user	interfaces,	423

round-robin	scheme,	1005,	1006

entity-relationship	(E-R)

routers,	1012–1013

REST	(Representation	State

model	and,	244,	246,

row-level	authorization,	173

Transfer),	426–427

269–270,	277–279

row-oriented	storage,	611,	615

restriction,	172,	328,	339–340

evolution	of,	292

row	stores,	612,	615

ResultSet	object,	185,	187–188,

flexibility	of,	366

R-timestamp,	862,	865,	870

191–193,	638–639

global,	1076,	1078–1079

R-trees,	663,	670,	674–676,

resynchronization,	575

integration	of,	1076,

1187–1190

reverse	engineering,	1236

1078–1080

Ruby	on	Rails,	417,	419

revoke	privileges,	166–167,

intermediate	SQL	and,

rules	for	data	mining,	540

171–173

162–163

runs,	701–702

right	outer	join,	132–136,	722

larger,	330,	346

runstats,	761

rigorous	two-phase	locking

local,	1076

protocol,	842,	843

SAML	(Security	Assertion

locks	and	(see	locks)

Rijndael	algorithm,	448

Markup	Language),

logical,	12–13,	1223–1224

ring	system,	976

442–443

performance	tuning	of,

robustness,	1121,	1125–1126

SAN.	See	storage	area	network

1214–1218,	1223–1224

ROLAP	(relational	OLAP),	535

sandbox,	205

physical,	12,	13

roles

SAP	HANA,	615,	1132

physical-organization

authorization	and,	167–169

SAS	(Serial	Attached	SCSI)

modification	of,	25

entity,	247–248

interface,	562

P	+	Q	redundancy,	573,	574

indicators	associated	with,

SATA	(Serial	ATA)	interface,

recovery	systems	and	(see

268

562,	568,	569

recovery	systems)

Unified	Modeling	Language

savepoints,	947

redundancy	of,	269–270

and,	289

scalability,	471–472,	477,	482,

relational	(see	relational

rollback

1276

schema)

1334

Index

relationship	sets	and,

audit	trails	and,	445–446

set	membership	and,	98–99

268–269

authentication	(see

set	operations	and,	85–89

shadow-copy,	914

authentication)

on	single	relation,	71–74

smaller,	305,	308,	344

authorization	(see

string	operations	and,	82–83

snowflake,	524

authorization)

select	distinct,	72–73,	90,

SQL	DDL	and,	24,	66,	68–71

of	blockchain	databases,

99–100,	142

star,	524–525

1253–1255,	1259

select-from-where

strong	entity	sets	and,

concurrency	control	and	(see

deletion	and,	108–110

265–267

concurrency	control)

function/procedure	writing

subschemas,	12

cross-site	scripting	and,

and,	199–206

timestamps	and,	861–866

439–440

insertion	and,	110–111

for	university	databases,

dictionary	attacks	and,	449

join	expressions	and,	125–136

1287–1288

encryption	and,	447–453

natural	joins	and,	126–130

version-numbering,	1141

end-user	information	and,	443

nested	subqueries	and,

version-vector,	1141–1142

in	file-processing	systems,	7

98–107

weak	entity	sets	and,	267–268

GET	method	and,	440

updates	and,	111–114

SciDB,	367

integrity	manager	and,	19

views	and,	137–143

SCM	(storage	class	memory),

locks	and	(see	locks)

selection

569,	588,	948

man-in-the-middle	attacks

comparisons	and,	698–699

SCOPE,	494

and,	442

complex,	699–700

scope	clause,	380

passwords	(see	passwords)

conjunctive,	699–700,	747,

scripting	languages,	404–405,

privacy	and,	438,	446

762

416–418,	421,	439

request	forgery	and,	439–440

disjunctive,	699,	700,	762

scrubbing,	575

single	sign-on	system	and,

equivalence	and,	747–757

SCSI	(small-computer-system

442–443

file	scans	and,	695–697,

interconnect),	562,	563

SQL	DDL	and,	67

704–707,	727

search	keys

SQL	injection	and,	438–439

identifiers	and,	700

B+-trees	and,	634–650

unique	identification	and,

indices	and,	695–697,	783

hashing	and,	1190–1195,

446,	446n8

intraoperation	parallelism

1197–1199

Security	Assertion	Markup

and,	1049

index	creation	and,	664

Language	(SAML),

linear	search	and,	695

nonunique,	632,	637,	640,

442–443

size	estimation	and,	760,	762

649–650

seek	time,	566,	566n2,	567,	692,

view	maintenance	and,

ordered	indices	and,	624–634

710

780–781

storage	and,	595,	597–598

select	all,	73

selectivity,	762

uniquifiers	and,	649–650

select	authorization,	privileges

select	operation,	49

search	operation,	1188

and,	166–167

select	privilege,	171,	172

secondary	indices,	625,

select	clause

semijoin	operation,	108,	776,

632–633,	652–653,

aggregate	functions	and,

1082–1084

695–698,

91–96

semi-structured	data	models,

1017–1019

attribute	specification	in,	83

365–376

secondary	site,	931

basic	SQL	queries	and,	71–79

flexible	schema	and,	366

secondary	storage,	561

on	multiple	relations,	74–79

history	of,	8,	27

second	normal	form	(2NF),

in	multiset	relational	algebra,

JSON,	8,	27,	367–370

316n8,	341–342,	356

97

knowledge	representation

sectors,	564–566

null	values	and,	90

and,	368

security

OLAP	and,	534,	536–537

motivations	for	use	of,

abstraction	levels	and,	12

ranking	and,	220–222

365–366

application	design	and,

rename	operation	and,	79,

multivalued,	366–367

437–446

81–82

nested,	367–368

Index

1335

overview,	366–368

services,	994

shared-memory	architecture,

RDF	and	knowledge	graphs,

service	time,	1230

21–22,	979–984,

368,	372–376

servlets,	411–421

1061–1064

XML,	8,	27,	367–368,

alternative	server-side

shared-mode	locks,	835

370–372

frameworks,	416–421

shared-nothing	architecture,	979,

sensor	data,	470,	501

example	of,	411–413

980,	985–986,	1040–1041,

sentiment	analysis,	549

life	cycle	and,	415–416

1061–1063

Sequel,	65

server-side	scripting	and,

shared	scans,	785–786

sequence	counters,	1226

416–418

Sherpa/PNUTS,	477,	1024,

sequential-access	storage,	561,

sessions	and,	413–415

1026,	1028–1030

567,	578

support	for,	416

show	warnings,	746

sequential	computation,	974

web	application	frameworks

shrinking	phase,	841,	843

sequential	file	organization,	595,

and,	418–419

shuffle	step,	486,	1061

597–598

session	window,	505

SIMD	(Single	Instruction

Serial	ATA	(SATA)	interface,

set	autocommit	off,	144

Multiple	Data),	1064

562,	568,	569

set	clause,	113

simple	attributes,	250,	265

Serial	Attached	SCSI	(SAS)

set	default,	150

simulation	model,	1230

interface,	562

set-difference	operation,	55,	750

single	inheritance,	275

serializability

set	null,	150

Single	Instruction	Multiple	Data

blind	writes	and,	868

set	operations

(SIMD),	1064

concurrency	control	and,

except,	88–89

single	lock-manager,	1111

836,	840–843,	846–848,

intersect,	54–55,	87–88,	750

single	sign-on	system,	442–443

856,	861–871,

nested	subqueries	and,

single-user	systems,	962

875–887

98–101

single-valued	attributes,	251

conflict,	813–816

query	optimization	and,

sites,	986

isolation	and,	821–826

764–765

SIX	(shared	and

operation,	885

query	processing	and,

intention-exclusive)	mode,

order	of,	817

720–722

855

performance	tuning	and,	1225

set	comparison	and,	99–101

skew

precedence	graph	and,

set	difference,	55

aggregation	and,	1049–1050

816–817

union,	53–54,	86–87,	750

attribute-value,	1008

in	the	real	world,	824

data	distribution,	1008

snapshot	isolation	and,

set	orientation,	1220–1221

875–879

set	role,	172

in	distribution	of	records,	660

topological	sorting	and,

set	statement,	201,	209

execution,	1007,	1008,	1043

817–818

set	transaction	isolation	level

hash	indices	and,	1194

transactions	and,	812–819,

serializable,	822

in	joins,	1047–1048

821–826

set	types,	366,	367

parallel	databases	and,	974,

view,	818–819,	867–868

shadow-copy	scheme,	914

1007–1013,	1043,	1062

serializable	schedules,	811,	812

shadowing,	571

partitioning	and,	715,

serializable	snapshot	isolation

shadow	paging,	914

1007–1013

(SSI)	protocol,	878

SHA-256	hash	function,	1260

response	time	and,	1066

server-side	scripting,	416–418

sharding,	473,	475–476,	1275

write	skew,	876–877

server	systems,	962–970

shard	key,	479

slicing,	530

categorization	of,	963–964

shared	and	intention-exclusive

sliding	window,	505

data-server,	963–964,

(SIX)	mode,	855

slotted-page	structure,	593

968–970

shared-disk	architecture,	979,

small-computer-system

defined,	962

980,	984–985

interconnect	(SCSI),	562,

transaction-server,	963–968

shared	locks,	825,	835,	854,

563

tree-like,	977–978

880,	1124

smart	cards,	451,	451n9

1336

Index

smart	contracts,	1258,

sparse	column	data

SQL	(Structured	Query

1269–1273

representation,	366

Language),	65–114

snapshot	isolation

sparse	indices,	626–632

advanced	(see	advanced	SQL)

concurrency	control	and,

spatial	data

aggregate	functions	and,

872–879,	882,	916,

design	databases,	390–391

91–96

1131–1132

geographic,	387,	390–393

application-level

distributed,	1131–1132

geometric,	388–390

authorization	and,

performance	tuning	and,	1225

indexing	of,	672–675,

443–445

recovery	systems	and,	916

1186–1190

application	programs	and,

serializability	and,	875–879

joins	over,	719

16–17

transactions	and,	825–826,

quadtrees,	392,	674,

attribute	specification	in

1136

1186–1187

select	clause,	83

validation	and,	874–875

queries	and,	393–394

authorization	and,	66

snowflake	schema,	524

R-trees,	663,	670,	674–676,

basic	types	supported	by,

social-networking	sites

1187–1190

67–68

Big	Data	and,	467,	470

triangulation	and,	388,	393

blobs	and,	156,	193,	594,	652

database	applications	for,	2,

spatial	data	indices,	672–675

bulk	loads	and,	1221–1223

3,	27

clobs	and,	156,	193,	594,	652

spatial	graph	queries,	394

key-value	store	and,	471

create	table	and,	68–71

spatial	graphs,	390

streaming	data	and,	502

database	modification	and,

spatial-integrity	constraints,	391

soft	deadlines,	894

108–114

spatial	join,	394

soft	forks,	1257,	1258

data	definition	for	university

spatial	networks,	390

software-as-a-service	model,	993

databases,	69–71,

specialization

software	RAID,	574,	575

1288–1292

attribute	inheritance	and,

solid-state	drives	(SSDs),	18,

DDL	and,	14–15,	65–71

274–275

560,	568–570,	693n3,

decision-support	systems	and,

constraints	on,	275–276

1229

521

disjoint,	272,	275

some	construct,	100,	100n10

deletion	and,	108–110

entity-relationship	(E-R)

some	function,	96

DML	and,	16,	66

model	and,	271–273

sophisticated	users,	24

dumping	and,	931

overlapping,	272,	275

sorting

dynamic,	66,	184,	201

partial,	275

cost	analysis	of,	702–704

embedded,	66,	184,	197–198,

single	entity	set	and,	274

duplicate	elimination	and,

965,	1269

superclass-subclass

719–720

index	creation	and,	164–165,

relationship	and,	272

external	sort-merge	algorithm,

664–665

total,	275

701–704

injection	and,	189,	438–439

parallel	external	sort-merge,

specification	of	functional

inputs	and	outputs	in,	747

1042–1043

requirements,	17–18,	242

insertion	and,	110–111

query	processing	and,

speedup,	972–974

integrity	constraints	and,

701–704

splitting	nodes,	641–645,	886

14–15,	66,	145–153

range-partitioning,	1041–1042

SQL	Access	Group,	1238

intermediate	(see

topological,	817–818

SQLAlchemy,	382

intermediate	SQL)

sort-merge-join	algorithm,

SQL/DS,	26

isolation	levels	and,	821–826

708–712

SQL	environment,	163

JSON	and,	369–370

sound	axioms,	321

SQL	injection,	189,	438–439

limitations	of,	468,	472

source-driven	architecture,	522

SQLite,	668

on	MapReduce,	493–494

space	overhead,	624,	627–628,

SQLLoader,	1222

MySQL	(see	MySQL)

634,	1202

SQL	MED,	1077

nested	subqueries	and,

Spark,	495–500,	508,	511,	1061

sql	security	invoker,	170

98–107

SPARQL,	375–376

sqlstate,	205

nonstandard	syntax	and,	204

Index

1337

NoSQL	systems,	28,	473,	477,

database	connectivity,

bit-level	striping	and,	571–572

1269,	1276

1238–1239

blockchain	(see	blockchain

null	values	and,	89–90

de	facto,	1237

databases)

OLAP	in,	533–534,	536–538

defined,	1237

block-level	striping	and,	572

ordering	display	of	tuples

formal,	1237

buffers	and,	19,	604–610

and,	83–84

ISO,	65,	1237,	1241

byte	amounts	of,	18

overview,	65–66

object-oriented,	1239–1240

checkpoints	and,	920–922,

PostgreSQL	(see

ODBC,	1238–1239

930

PostgreSQL)

reactionary,	1237

cloud-based,	28,	563,

prepared	statements	and,

SQL,	65,	1237–1238

992–993

188–190

X/Open	XA,	1239

column-oriented,	525–526,

prevalence	of	use,	13

star	schema,	524–525

588,	611–617,	734,	1182

query	processing	and,

start-up	costs,	974,	1066

crashes	and,	607,	609–610

689–690,	701,	720

start	with/connect	by	prior

data	access	and,	910–912

query	structure,	71–79

syntax,	218

data-dictionary,	602–604

relational	algebra	and,	80

starved	transactions,	841,	853

data	mining	and,	27,	540–549

rename	operation	and,	79,

state-based	blockchains,	1269,

data-transfer	rate	and,	566,

81–82

1271

569

ResultSet	object	and,	185,

state	machines,	1158–1161

in	decision-support	systems,

187–188,	191–193,

Statement	object,	186–187,	189

519–520

638–639

state	of	execution,	727

direct-access,	561

schemas	and,	24,	66,	68–71

static	hashing,	661,	1190–1195,

distributed	(see	distributed

security	and,	438–439

1202–1203

databases)

set	operations	and,	85–89

statistical	analysis,	520,	527

distributed	file	systems	for,

standards	for,	65,	1237–1238

statistics,	757–766

472–475,	489,	1003,

stream	extensions	to,

catalog	information	and,

1019–1022

504–506

758–760

dumping	and,	930–931

string	operations	and,	82–83

computing,	761

durability	and,	804–805

System	R	and,	26

join	size	estimation	and,

elasticity	of,	1010

System	R	project	and,	65

762–764

file	manager	for,	19

theoretical	basis	of,	48

maintaining,	761

file	organization	and,

transactions	and,	66,

number	of	distinct	values	and,

588–602

143–145,	965

765–766

force	output	and,	912

updates	and,	111–114

selection	size	estimation	and,

geographically	distributed,

views	and,	66,	137–143,

760,	762

1026–1027

169–170

steal	policy,	927

hard	disks	for,	26

where-clause	predicates	and,

stepped-merge	indices,	667,

integrity	manager	and,	19

84–85

1179–1181

key-value,	471,	473,	476–480,

XML	and,	372

stock	market,	streaming	data

1003,	1023–1031

SSDs.	See	solid-state	drives

and,	501

of	large	objects,	594–595

SSI	(serializable	snapshot

stop	words,	385

log	disks,	610

isolation)	protocol,	878

storage,	587–617

in	main-memory	databases,

stable	storage,	804–805,

access	time	and,	561,	566,

588,	615–617

908–910

567,	578

mirroring	and,	571–573,	576,

stale	messages,	1149

architecture	for,	587–588

577

stalls	in	processing,	733

archival,	561

non-volatile,	560,	562,

standards

atomicity	and,	804–805

587–588,	804,	908–910,

ANSI,	65,	1237

authorization	and,	19

930–931

anticipatory,	1237

backup	(see	backup)

offline,	561

CLI,	197,	1238–1239

Big	Data	and,	472–482,	668

online,	561

1338

Index

outsourcing,	28

defined,	500

symmetric	fragment-and-replicate

parallel	(see	parallel

fault	tolerance	with,

joins,	1046

databases)

1074–1076

symmetric-key	encryption,	448

physical	(see	physical	storage

processing,	468,	1070–1076

synchronous	replication,

systems)

querying,	502–506,

522–523,	1136

pointers	and,	588,	591,

1070–1071

syntax,	199,	201–205,	689

594–598,	601

routing	of	tuples	and,

sys	context	function,	173

primary,	561

1071–1073

system	architecture.	See

punched	cards	for,	25

stream	query	languages,

architecture

random	access,	567,	578

503–506

system	catalogs,	602–604,	1009

recovery	systems	and,

strict	two-phase	locking	protocol,

system	clock,	862

908–912,	920–922,

842,	843

system	error,	907

930–931

string	operations

System	R,	26,	65,	772–773,

redundant	arrays	of

aggregate,	91

772n3

independent	disks,	562

escape,	83

response	time	and,	572

JDBC	and,	184–193

table	alias,	81

row-oriented,	611,	615

like,	82–83

table	functions,	200

R-trees	and,	1189–1190

lower	function,	82

table	inheritance,	379–380

scrubbing	and,	575

query	result	retrieval	and,	188

table	partitioning,	601–602

secondary,	561

similar	to,	83

tables

seek	time	and,	566,	566n2,

trim,	82

defined,	1011

567,	692,	710

upper	function,	82

dimension,	524

sequential	access,	561,	567,

stripe,	613–614

dirty	page,	941–947

578

striping	data,	571–572

distributed	hash,	1013

sharding	and,	473,	475–476

strong	entity	sets,	259,	265–267

fact,	524

SQL	DDL	and,	67

Structured	Query	Language.	See

foreign,	1077

stable,	804–805,	908–910

SQL

partition,	1011–1014

striping	data	and,	571–572

structured	types,	158–160

pivot-table,	226–227,

structure	and	access-method

stylesheets,	408

528–529

definition,	24

subject	of	triples,	372

in	relational	model,	9,	10,

tertiary,	561

sublinear	scaleup,	973

37–40

transaction	manager	for,	19

sublinear	speedup,	972

in	SQL	DDL,	14–15

volatile,	560,	562,	804,	908

subschemas,	12

transition,	210

wallets	and,	450

suffix,	1243

tablets,	1011,	1025

warehousing	(see	data

sum	function,	91,	139,	228,	536,

tablet	server,	1025

warehousing)

723,	766,	781

tab-separated	values,	1222

storage	area	network	(SAN),

superclass-subclass	relationship,

tag	library,	418

562,	563,	570,	934,	985

272,	274

tags,	370–372,	406–407,	418,

storage	class	memory	(SCM),

superkeys,	43–44,	257–258,

440

569,	588,	948

309–310,	312

tamper	resistance,	1253–1255,

storage	manager,	18–20

supersteps,	510

1259,	1260

store	barrier,	983

superusers,	166

tangles,	1278

stored	functions/procedures,

supply	chains,	1266,	1278

tape	storage,	561

1031

support,	547

Tapestry,	419

straggler	nodes,	1060–1061

Support	Vector	Machine	(SVM),

tasks,	1051–1052.	See	also

streaming	data,	500–508

544–545

workflow

algebraic	operations	and,	504,

swap	space,	929

Tcl,	206

506–508

Sybase	IQ,	615

telecommunications,	database

applications	of,	500–502

Sybil	attacks,	1255,	1256,	1264,

applications	for,	3

continuous,	731

1266

temporal	data,	347–351,	347n10

Index

1339

temporal	data	indices,	675–676

tickets	and	ticketing,	1133,	1279

training	instances,	541,	543,	546

temporal	validity,	157

tiles,	392

transaction	control,	66

term	frequency	(TF),	384

time	intervals,	675–676

transaction	coordinators,	1099,

termination	of	transactions,	806

time-lock	transactions,	1273

1104,	1106–1107

terms,	384,	1149

timestamps

transaction	identifiers,	913

ternary	relationship	sets,	249,

concurrency	control	and,

transaction	managers,	18–21,

250,	284

861–866,	882

1098–1099

tertiary	storage,	561

for	data-storage	systems,	480

Transaction	Processing

test-and-set,	966

defined,	154

Performance	Council

test	suites,	1234–1235

distributed	databases	and,

(TPC),	1232–1234

text	mining,	549

1116–1118

transactions,	799–828

textual	data,	382–387.	See	also

generation	of,	1117–1118

aborted,	805–807,	819–820

information	retrieval

invalidation,	873n3

actions	following	crashes,

keyword	queries,	383,

logical	clock,	1118

923–925

386–387

logical	counter	and,	862

active,	806

overview,	382

multiversion	schemes	and,

aggregation	of,	1278

relevance	ranking	and,

870–871

alternative	models	of

383–386

nondeterministic,	508n3

processing,	1108–1110

Tez,	495

ordering	scheme	and,

association	rules	and,

TF-IDF	approach,	384–385

862–864,	870–871,	1118

546–547

TF	(term	frequency),	384

rollback	and,	862–865

atomicity	of,	20–21,	144,	481,

then	clause,	212

snapshot	isolation	and,	873,

800–807,	819–821

theta-join	operations,	748–749

873n2

begin/end	operations	and,

third	normal	form	(3NF),

system	clock	and,	862

799

317–319,	333–335

Thomas’	write	rule	and,

blockchain,	1261–1263,

Thomas’	write	rule,	864–866

864–866

1268–1271,	1273

threads,	965,	982,	1062

transactions	and,	825

cascadeless	schedules	and,

3D-XPoint	memory	technology,

tuples	and,	502,	503,	505

820–821

569

time	to	completion,	1231

check	constraints	and,	800

3NF	decomposition	algorithm,

timezone,	154

commit	protocols	and,

334–335

TIN	(triangulated	irregular

1100–1110

3NF	synthesis	algorithm,	335

network),	393

committed	(see	committed

3NF	(third	normal	form),

tokens,	1272

transactions)

317–319,	333–335

Tomcat	Server,	416

commit	work	and,	143–145

three-phase	commit	(3PC)

top-down	design,	273

compensating,	805

protocol,	1107

topic-partition	system,	1073

concept	of,	799–801

three-tier	architecture,	23

top-	K	optimization,	784

concurrency	control	and	(see

throughput

topographical	information,	393

concurrency	control)

application	design	and,

topological	sorting,	817–818

concurrent,	1224–1227

1230–1232,	1234

toss-immediate	strategy,	608

consistency	of,	20,	800,	802,

in	blockchain	databases,	1274

total	failure,	909

807–808,	821–823

harmonic	mean	of,	1231

total	generalization,	275

crashes	and,	800

improved,	808

total	rollback,	853

cross-chain,	1273

parallel	databases	and,	971

total	specialization,	275

data	mining,	540–549

range	partitioning	and,	1007

TPC	(Transaction	Processing

defined,	20,	799

storage	and,	572

Performance	Council),

distributed,	989–990,

system	architectures	and,	963,

1232–1234

1098–1100

971

TPS	(transactions	per	second),

double-spend,	1261–1262,

transactions	and,	808

1232

1264

throughput	test,	1234

tracks,	564

durability	of,	20–21,	800–807

1340

Index

failure	of,	806,	907,	909,	1100

time-lock,	1273

directory	information,	1242,

force/no-force	policy	and,	927

timestamps	and,	861–866

1243

gas	concept	for,	1270–1271

two-phase	commit	protocol

disjoint	subtrees,	847

global,	988,	1098,	1132

and,	989,	1016,	1276

Generalized	Search	Tree,	670

in-doubt,	1105

as	unit	of	program	execution,

k-d,	673–674

integrity	constraint	violation

799

k-d	B,	674

and,	151–152

update,	871

left-deep	join,	773

isolation	of,	800–804,

validation	and,	866–869

LSM,	666–668,	1028,

807–812,	819–826

wait-for	graph	and,	851–852,

1176–1182,	1215

killing,	807

1113–1114

Merkle,	1143–1146,	1268,

local,	988,	1098,	1132

write-ahead	logging	rule	and,

1269

locks	and	(see	locks)

926–929

Merkle-Patricia,	1269,	1275

log	of	(see	log	records)

write	operations	and,	826

multiple	granularity	and,

long-duration,	890–891

transaction	scaleup,	973

853–857

minibatch,	1227

transactions-consistent	snapshot,

operator,	724,	1040

multiversion	schemes	and,

1136

quadratic	split	heuristic	and,

869–872,	1129–1131

transaction-server	systems,

1189

observable	external	writes

963–968

quadtrees,	392,	674,

and,	807

transactions	per	second	(TPS),

1186–1187

off-chain,	1275

1232

R,	663,	670,	674–676,

online,	4,	521

transaction	time,	347n10

1187–1190

performance	tuning	of,

TransactSQL,	199

tree	topology,	977

1224–1227

transfer	of	control,	932–933

triangulated	irregular	network

persistent	messaging	and,

transformations

(TIN),	393

990,	1016,	1108–1110,	1137

data	warehousing	and,	523

triangulation,	388,	393

read-only,	871

equivalence	rules	and,

triggers

real-time	systems,	894

747–752

alter,	210

recoverable	schedules	and,

examples	of,	752–754

defined,	206

819–820

join	ordering	and,	754–755

disable,	210

recovery	systems	and,	21,

query	optimization	and,

drop,	210

803,	805

747–757

need	for,	206–207

remote	backup	systems	and,

relational	algebra	and,

nonstandard	syntax	and,	212

931–935

747–757

recovery	and,	212–213

restarting,	807

transition	tables,	210

in	SQL,	207–210

rollback	and,	143–145,	193,

transition	variables,	207

transition	tables	and,	210

196,	805–806,	922,

transitive	closure,	214–216

when	not	to	use,	210–213

937–939,	945–946

transitive	dependencies,	317n9,

trim,	82

scalability	and,	471

356

triple	representation,	372–374

serializability	and,	812–819,

transitivity	rule,	321

trivial	functional	dependencies,

821–826

translation,	query	processing

311

shadow-copy	scheme	and,	914

and,	689–690

true	predicate,	76

simple	model	for,	801–804

translation	table,	568

true	values,	96,	101

as	SQL	statements,	826–828

tree-like	server	systems,	977–978

try-with-resources	construct,	187,

starved,	841,	853

tree-like	topology,	977

187n3

states	of,	805–807

tree	protocol,	846–848

tumbling	window,	505

steal/no-steal	policy	and,	927

trees

tuning.	See	performance	tuning

storage	structure	and,

B	(see	B-trees)

tuning	wizards,	1215

804–805

B+	(see	B+-trees)

tuple-generating	dependencies,

support	for,	1028–1030

B-link,	886

337

terminated,	806

decision-tree	classifiers,	542

tuples

Index

1341

aggregate	functions	and,

two-phase	locking	protocol,

university	databases

91–96

841–844,	871–872,

abstraction	levels	for,	11–12

in	Cartesian-product

1129–1131

application	design	and,	2–3,

operation,	51,	52

two-tier	architecture,	23

5–7,	403–404,	431,

defined,	39

type	inheritance,	378–379

442–444

deletion	and,	108–110,	613

types

atomic	domains	and,	343

duplicate,	103

blobs,	156,	193,	594,	652

Big	Data	and,	499–500

eager	generation	of,	726,	727

clobs,	156,	193,	594,	652

blockchain,	1277

insertion	and,	110–111

complex	(see	complex	data

buffer-replacement	strategies

join	operation	for,	52–53	(see

types)

and,	607–609

also	joins)

large-object,	156,	158

Cartesian	product	and,	76–79

lazy	generation	of,	727

performance	tuning	and,	1226

combination	of	schemas	and,

logical	routing	of,	506–507,

reference,	380–381

270–271

1071–1073

user-defined,	158–160,	378

complex	attributes	and,

ordering	display	of,	83–84

249–252

physical	routing	of,

UML	(Unified	Modeling

concurrency	control	and,	879

1072–1073

Language),	288–291

consistency	constraints	for,	6,

pipelining	and,	691–692,

unary	operations,	48

13–15

724–731

undo	operation

decomposition	and,	305–307,

query	optimization	and	(see

concurrency	control	and,

310–312

query	optimization)

940–941

deletion	requests	and,

query	processing	and	(see

logical,	936–941

109–110

query	processing)

recovery	systems	and,

design	issues	for,	346–347

ranking	and,	219–223

915–919,	922–925

distributed,	988

reconstruction	costs,	612–613

rollback	and,	916–919,

entities	in,	243–246,

relational	algebra	and,

937–939

265–268,	281–283

747–757

undo	pass,	944–946

entity-relationship	diagram

in	relational	model,	39,	41,

undo	phase,	923–925

for,	263–264

43–46

Unified	Modeling	Language

full	schema	for,	1287–1288

select	operation	for,	49

(UML),	288–291

set	operations	and,	54–55,

functions	and	procedures	for,

uniform	resource	locators

85–89

198–199

(URLs),	405–406

streaming	data	and,	501–503,

union	all,	86,	97,	217n8

generalization	and,	273–274

505–507,	1071–1073

union	of	sets,	54,	750

hash	functions	and,

timestamps	and,	502,	503,

union	operation,	53–54,	86–87,

1190–1193

505

228

incompleteness	of,	243–244

updates	and,	111–114,	613

union	rule,	321

indices	and,	625–628,	664,

views	and,	137–143

unique	construct,	103,	147

1017–1018

windowing	and,	223–226

unique	key	values,	160–161

insertion	requests	and,

tuple	variables,	81

unique-role	assumption,	345

110–111

Turing-complete	languages,

uniquifiers,	649–650

integrity	constraints	for,

1258,	1269,	1270

United	States

145–153

two-factor	authentication,

address	format	used	in,	250n1

mapping	cardinalities	and,

441–442

identification	numbers	in,	447

253–256

2NF	(second	normal	form),

primary	keys	in,	44–45

multivalued	dependencies

316n8,	341–342,	356

privacy	laws	in,	995

and,	336

two-phase	commit	(2PC)

universal	front	end,	404

query	optimization	and,

protocol,	989,	1016,

Universal	Serial	Bus	(USB)	slots,

751–755,	775–778

1101–1107,	1161,

560

query	processing	and,

1276

universal	Turing	machines,	16

690–691,	704,	723–724

1342

Index

recursive	queries	and,

EXEC	SQL	and,	197

common	gateway	interface

213–214,	217–218

hashing	and,	624,	1197–1202

standard	and,	409

redundancy	in,	243,	261–264,

inconsistent,	1140–1142

cookies	and,	410–415,	411n2,

269–270

indices	and,	630–632

439–440

relational	algebra	for,	49–58

insertion	time	and,	641–645,

CRUD,	419

relational	model	for,	9,	10,

647,	649

data	access	layer	and,

37–47

lazy	propagation	of,	1122,

430–434

relational	schema	for,	41–43,

1136

disconnected	operation	and,

303–305

log	records	and,	913–914,

427–428

relationship	sets	and,

917–918

front-end	component	of,	404

246–249,	268–269,

lost,	874

HTTP	(see	HyperText

282–283

LSM	trees	and,	1178–1179

Transfer	Protocol)

roles	and	authorizations	for,

mobile	application	platforms

performance	tuning	and,

167–169

and,	428–429

1221–1223,	1225–1227

sample	data	for,	1292–1298

for	naÃ¯ve	users,	24

privileges	and,	166–167

specialization	and,	271–273

presentation	layer	and,	429

query	optimization	and,

SQL	data	definition	for,

responsive,	423

784–785

69–71,	1288–1292

security	and,	437–446

reconciliation	of,	1142–1143

SQL	queries	for,	16

for	sophisticated	users,	24

replication	and,	1015–1016

storage	and,	589–591,

storage	and,	562–563

shipping	SQL	statements	to

597–601

Web	services	(see	World

database	and,	187

transactions	and,	144,

Wide	Web)

snapshot	isolation	and,

826–827

web	services	and,	426–429

873–879

triggers	and,	211–213

user	requirements	in	database

triggers	and,	208,	212

triple	representation	of,

design,	17–18,	241–242,

tuples	and,	111–114,	613

373–374

274

of	views,	140–143

unique	key	values	for,	160–161

utilization	of	resources,	808

user	interfaces	for,	24

update	transactions,	871

views	and,	141–143

upgrade,	843

validation

University	of	California,

URLs	(uniform	resource

concurrency	control	and,

Berkeley,	26

locators),	405–406

866–869,	882

Unix,	83,	914

U.S.	National	Institute	for

distributed,	1119–1120

unknown	values,	89–90,	96

Standards	and	Technology,

first	committer	wins	and,	874

unpartitioned	site,	1056

288

first	updater	wins	and,

unpin	operations,	605

USB	(Universal	Serial	Bus)	slots,

874–875

updatable	result	sets,	193

560

phases	of,	866

update-anywhere	replication,

user-defined	types,	158–160,	378

recovery	systems	and,	916

1137

user-interface	layer,	429

snapshot	isolation	and,

update	hot	spots,	1225

user	interfaces

874–875

updates

application	architectures	and,

test	for,	868

authorization	and,	14,	170,

429–434

view	serializability	and,

171

application	programs	and,

867–868

batch,	1221

403–405

validation	phase,	866

on	B+-trees,	641–649

back-end	component	of,	404

valid	interval,	870

complexity	of,	647–649

business-logic	layer	and,	430,

valid	time,	157,	347–350,

database	modification	and,

431

347n10

111–114

client-server	architecture	and,

value	for	entity	set	attributes,	245

data	warehousing	and,	523

404

value	set	of	attributes,	249

deletion	time	and,	641,

client-side	scripting	and,

varchar,	67–68,	70

645–649

421–429

variable-length	records,	592–594

Index

1343

variety	of	data,	468

volatile	storage,	560,	562,	804,

security	and,	445

VBScript,	417

908

set	operations	and,	85–89

vector	data,	392–393

volume	of	data,	468

on	single	relation,	71–74

vector	processing,	612

VPD	(Virtual	Private	Database),

string	operations	and,	82–83

Vectorwise,	615

173,	444–445

transactions	and,	824,

velocity	of	data,	468

826–827

wait-die	scheme,	850,	1112

verification	of	contents,	1145

while	loop,	196

wait-for	graphs,	851–852,

version	numbering,	1141

while	statements,	201

1113–1114

versions	period	for,	157

wide-area	networks	(WANs),	989

WAL	(write-ahead	logging),

version-vector	scheme,

wide	column	data	representation,

926–929,	934

1141–1142

366

WANs	(wide-area	networks),	989

Vertica,	615

wide-column	stores,	1023

weak	entity	sets,	259–260,

vertical	partitioning,	1004

windows	and	windowing,

267–268

223–226,	502–506

view	definition,	66

wear	leveling,	568

WiredTiger,	1028

view	equivalence,	818,	818n4

web	application	frameworks,

wireframe	models,	390

view	level	of	abstraction,	10–12

418–419

with	check	option,	143

view	maintenance,	140,	779–782,

web-based	services,	database

with	clause,	105–106,	217

1138–1140,	1215–1216

applications	for,	3

with	data	clause,	162

views

web	crawlers,	383

with	grant	option,	170–171

authorization	on,	169–170

Weblogic	Application	Server,	416

with	recursive	clause,	217

with	check	option,	143

WebObjects,	419

with	timezone	specification,	154

create	view,	138–143,	162,

web	servers,	408–411

witness	data,	1258

169

web	services,	423–429

word	count	program,	483–486,

deferred	maintenance	and,

defined,	426

484n2,	490–492

779,	1215–1216

disconnected	operation	and,

workers,	1051

defined,	137–138

427–428

interfacing	with,	423–426

workflow

deletion	and,	142

mobile	application	platforms,

business-logic	layer	and,	431

immediate	maintenance	and,

428–429

database	design	and,	291–292

779,	1215–1216

web	sessions,	408–411

distributed	transaction

insertion	and,	141–143

WebSphere	Application	Server,

processing	and,	1110

materialized	(see	materialized

416

management	systems	for,	990

views)

when	clause,	212

workload,	783,	1215,	1217

performance	tuning	and,

when	statement,	208

workload	compression,	1217

1215–1216

where	clause

work	stealing,	1048,	1062

SQL	queries	and,	138–139

aggregate	functions	and,

World	Wide	Web

update	of,	140–143

91–96

application	design	and,

view	serializability,	818–819,

basic	SQL	queries	and,	71–79

405–411

867–868

between	comparison,	84

cookies	and,	410–415,	411n2,

virtual	machines	(VMs),	970,

on	multiple	relations,	74–79

439–440

991–994

in	multiset	relational	algebra,

encryption	and,	447–453

virtual	nodes,	1009–1010

97

growth	of,	467

Virtual	Private	Database	(VPD),

not	between	comparison,	84

HTML	and	(see	HyperText

173,	444–445

null	values	and,	89–90

Markup	Language)

virtual	processor	approach,

predicates,	84–85

HTTP	and	(see	HyperText

1010n3

query	optimization	and,

Transfer	Protocol)

Visual	Basic,	184,	206

774–777

impact	on	database	systems,

visualization	tools,	538–540

ranking	and,	222

27

VMs	(virtual	machines),	970,

rename	operation	and,	79,

security	and,	437–446

991–994

81–82

servers	and	sessions,	408–411

1344

Index

URLs	and,	405–406

write	quorum,	1124

for	transferring	data,	423

WORM	(write	once,	read-many)

write	skew,	876–877

X/Open	XA	standards,	1239

disks,	561,	1022

write-write	contention,	1225

XOR	operation,	448

wound-wait	scheme,	850

W-timestamp,	862,	865,	870

XPath,	372

wrappers,	1077,	1236

XQuery,	372

X.500	directory	access	protocol,

XSRF	(cross-site	request

write-ahead	logging	(WAL),

1241

forgery),	439–440

926–929,	934

XML	(Extensible	Markup

XSS	(cross-site	scripting),

write	amplification,	1180

Language)

439–440

write	once,	read-many	(WORM)

emergence	of,	27

disks,	561,	1022

flexibility	of,	367–368

Yahoo	Message	Bus	service,

write	operations,	826

as	semi-structured	data

1137–1138

write-optimized	index	structures,

model,	8,	27

665–670

SQL	in	support	of,	372

Zab	protocol,	1152

write	phase,	866

tags	and,	370–372

ZooKeeper,	1150,	1152

Document	Outline
Cover
Title	Page
Copyright	Page
Dedication
About	the	Authors
Contents
Preface
Acknowledgments
Chapter	1	Introduction

1.1	Database-System	Applications
1.2	Purpose	of	Database	Systems
1.3	View	of	Data
1.4	Database	Languages
1.5	Database	Design
1.6	Database	Engine
1.7	Database	and	Application	Architecture
1.8	Database	Users	and	Administrators
1.9	History	of	Database	Systems
1.10	Summary
Exercises
Further	Reading

PART	ONE	RELATIONAL	LANGUAGES
Chapter	2	Introduction	to	the	Relational	Model

2.1	Structure	of	Relational	Databases
2.2	Database	Schema
2.3	Keys
2.4	Schema	Diagrams
2.5	Relational	Query	Languages
2.6	The	Relational	Algebra
2.7	Summary
Exercises
Further	Reading

Chapter	3	Introduction	to	SQL
3.1	Overview	of	the	SQL	Query	Language
3.2	SQL	Data	Definition
3.3	Basic	Structure	of	SQL	Queries
3.4	Additional	Basic	Operations
3.5	Set	Operations
3.6	Null	Values
3.7	Aggregate	Functions
3.8	Nested	Subqueries
3.9	Modification	of	the	Database
3.10	Summary
Exercises
Further	Reading

Chapter	4	Intermediate	SQL
4.1	Join	Expressions
4.2	Views
4.3	Transactions
4.4	Integrity	Constraints
4.5	SQL	Data	Types	and	Schemas
4.6	Index	Definition	in	SQL
4.7	Authorization
4.8	Summary
Exercises
Further	Reading

Chapter	5	Advanced	SQL
5.1	Accessing	SQL	from	a	Programming	Language
5.2	Functions	and	Procedures
5.3	Triggers
5.4	Recursive	Queries
5.5	Advanced	Aggregation	Features
5.6	Summary
Exercises

Further	Reading
PART	TWO	DATABASE	DESIGN

Chapter	6	Database	Design	Using	the	E-R	Model
6.1	Overview	of	the	Design	Process
6.2	The	Entity-Relationship	Model
6.3	Complex	Attributes
6.4	Mapping	Cardinalities
6.5	Primary	Key
6.6	Removing	Redundant	Attributes	in	Entity	Sets
6.7	Reducing	E-R	Diagrams	to	Relational	Schemas
6.8	Extended	E-R	Features
6.9	Entity-Relationship	Design	Issues
6.10	Alternative	Notations	for	Modeling	Data
6.11	Other	Aspects	of	Database	Design
6.12	Summary
Exercises
Further	Reading

Chapter	7	Relational	Database	Design
7.1	Features	of	Good	Relational	Designs
7.2	Decomposition	Using	Functional	Dependencies
7.3	Normal	Forms
7.4	Functional-Dependency	Theory
7.5	Algorithms	for	Decomposition	Using	Functional	Dependencies
7.6	Decomposition	Using	Multivalued	Dependencies
7.7	More	Normal	Forms
7.8	Atomic	Domains	and	First	Normal	Form
7.9	Database-Design	Process
7.10	Modeling	Temporal	Data
7.11	Summary
Exercises
Further	Reading

PART	THREE	APPLICATION	DESIGN	AND	DEVELOPMENT
Chapter	8	Complex	Data	Types

8.1	Semi-structured	Data
8.2	Object	Orientation
8.3	Textual	Data
8.4	Spatial	Data
8.5	Summary
Exercises
Further	Reading

Chapter	9	Application	Development
9.1	Application	Programs	and	User	Interfaces
9.2	Web	Fundamentals
9.3	Servlets
9.4	Alternative	Server-Side	Frameworks
9.5	Client-Side	Code	and	Web	Services
9.6	Application	Architectures
9.7	Application	Performance
9.8	Application	Security
9.9	Encryption	and	Its	Applications
9.10	Summary
Exercises
Further	Reading

PART	FOUR	BIG	DATA	ANALYTICS
Chapter	10	Big	Data

10.1	Motivation
10.2	Big	Data	Storage	Systems
10.3	The	MapReduce	Paradigm
10.4	Beyond	MapReduce:	Algebraic	Operations
10.5	Streaming	Data
10.6	Graph	Databases
10.7	Summary
Exercises
Further	Reading

Chapter	11	Data	Analytics
11.1	Overview	of	Analytics
11.2	Data	Warehousing
11.3	Online	Analytical	Processing

11.4	Data	Mining
11.5	Summary
Exercises
Further	Reading

PART	FIVE	STORAGE	MANAGEMENT	AND	INDEXING
Chapter	12	Physical	Storage	Systems

12.1	Overview	of	Physical	Storage	Media
12.2	Storage	Interfaces
12.3	Magnetic	Disks
12.4	Flash	Memory
12.5	RAID
12.6	Disk-Block	Access
12.7	Summary
Exercises
Further	Reading

Chapter	13	Data	Storage	Structures
13.1	Database	Storage	Architecture
13.2	File	Organization
13.3	Organization	of	Records	in	Files
13.4	Data-Dictionary	Storage
13.5	Database	Buffer
13.6	Column-Oriented	Storage
13.7	Storage	Organization	in	Main-Memory	Databases
13.8	Summary
Exercises
Further	Reading

Chapter	14	Indexing
14.1	Basic	Concepts
14.2	Ordered	Indices
14.3	B+-Tree	Index	Files
14.4	B+-Tree	Extensions
14.5	Hash	Indices
14.6	Multiple-Key	Access
14.7	Creation	of	Indices
14.8	Write-Optimized	Index	Structures
14.9	Bitmap	Indices
14.10	Indexing	of	Spatial	and	Temporal	Data
14.11	Summary
Exercises
Further	Reading

PART	SIX	QUERY	PROCESSING	AND	OPTIMIZATION
Chapter	15	Query	Processing

15.1	Overview
15.2	Measures	of	Query	Cost
15.3	Selection	Operation
15.4	Sorting
15.5	Join	Operation
15.6	Other	Operations
15.7	Evaluation	of	Expressions
15.8	Query	Processing	in	Memory
15.9	Summary
Exercises
Further	Reading

Chapter	16	Query	Optimization
16.1	Overview
16.2	Transformation	of	Relational	Expressions
16.3	Estimating	Statistics	of	Expression	Results
16.4	Choice	of	Evaluation	Plans
16.5	Materialized	Views
16.6	Advanced	Topics	in	Query	Optimization
16.7	Summary
Exercises
Further	Reading

PART	SEVEN	TRANSACTION	MANAGEMENT
Chapter	17	Transactions

17.1	Transaction	Concept
17.2	A	Simple	TransactionModel
17.3	Storage	Structure

17.4	Transaction	Atomicity	and	Durability
17.5	Transaction	Isolation
17.6	Serializability
17.7	Transaction	Isolation	and	Atomicity
17.8	Transaction	Isolation	Levels
17.9	Implementation	of	Isolation	Levels
17.10	Transactions	as	SQL	Statements
17.11	Summary
Exercises
Further	Reading

Chapter	18	Concurrency	Control
18.1	Lock-Based	Protocols
18.2	Deadlock	Handling
18.3	Multiple	Granularity
18.4	Insert	Operations,	Delete	Operations,	and	Predicate	Reads
18.5	Timestamp-Based	Protocols
18.6	Validation-Based	Protocols
18.7	Multiversion	Schemes
18.8	Snapshot	Isolation
18.9	Weak	Levels	of	Consistency	in	Practice
18.10	Advanced	Topics	in	Concurrency	Control
18.11	Summary
Exercises
Further	Reading

Chapter	19	Recovery	System
19.1	Failure	Classification
19.2	Storage
19.3	Recovery	and	Atomicity
19.4	Recovery	Algorithm
19.5	Buffer	Management
19.6	Failure	with	Loss	of	Non-Volatile	Storage
19.7	High	Availability	Using	Remote	Backup	Systems
19.8	Early	Lock	Release	and	Logical	Undo	Operations
19.9	ARIES
19.10	Recovery	in	Main-Memory	Databases
19.11	Summary
Exercises
Further	Reading

PART	EIGHT	PARALLEL	AND	DISTRIBUTED	DATABASES
Chapter	20	Database-System	Architectures

20.1	Overview
20.2	Centralized	Database	Systems
20.3	Server	System	Architectures
20.4	Parallel	Systems
20.5	Distributed	Systems
20.6	Transaction	Processing	in	Parallel	and	Distributed	Systems
20.7	Cloud-Based	Services
20.8	Summary
Exercises
Further	Reading

Chapter	21	Parallel	and	Distributed	Storage
21.1	Overview
21.2	Data	Partitioning
21.3	Dealing	with	Skew	in	Partitioning
21.4	Replication
21.5	Parallel	Indexing
21.6	Distributed	File	Systems
21.7	Parallel	Key-Value	Stores
21.8	Summary
Exercises
Further	Reading

Chapter	22	Parallel	and	Distributed	Query	Processing
22.1	Overview
22.2	Parallel	Sort
22.3	Parallel	Join
22.4	Other	Operations
22.5	Parallel	Evaluation	of	Query	Plans
22.6	Query	Processing	on	Shared-Memory	Architectures

22.7	Query	Optimization	for	Parallel	Execution
22.8	Parallel	Processing	of	Streaming	Data
22.9	Distributed	Query	Processing
22.10	Summary
Exercises
Further	Reading

Chapter	23	Parallel	and	Distributed	Transaction	Processing
23.1	Distributed	Transactions
23.2	Commit	Protocols
23.3	Concurrency	Control	in	Distributed	Databases
23.4	Replication
23.5	Extended	Concurrency	Control	Protocols
23.6	Replication	with	Weak	Degrees	of	Consistency
23.7	Coordinator	Selection
23.8	Consensus	in	Distributed	Systems
23.9	Summary
Exercises
Further	Reading

PART	NINE	ADVANCED	TOPICS
Chapter	24	Advanced	Indexing	Techniques

24.1	Bloom	Filter
24.2	Log-Structured	Merge	Tree	and	Variants
24.3	Bitmap	Indices
24.4	Indexing	of	Spatial	Data
24.5	Hash	Indices
24.6	Summary
Exercises
Further	Reading

Chapter	25	Advanced	Application	Development
25.1	Performance	Tuning
25.2	Performance	Benchmarks
25.3	Other	Issues	in	Application	Development
25.4	Standardization
25.5	Distributed	Directory	Systems
25.6	Summary
Exercises
Further	Reading

Chapter	26	Blockchain	Databases
26.1	Overview
26.2	Blockchain	Properties
26.3	Achieving	Blockchain	Properties	via	Cryptographic	Hash	Functions
26.4	Consensus
26.5	Data	Management	in	a	Blockchain
26.6	Smart	Contracts
26.7	Performance	Enhancement
26.8	Emerging	Applications
26.9	Summary
Exercises
Further	Reading

PART	TEN	APPENDIX	A
Appendix	A	Detailed	University	Schema
Index

