University of Jordan King Abdullah II School of Information Technology Computer Science Department Discrete Mathematics Midterm Exam (2006-2007)

رقم الشعبة:	الرقم الجامعي:	اسم الطالب:
الوقت:	استاذ المادة:	رقم التسلسل في ورقة المحضور:

Note: your answers should be filled in the following Table in capital letters

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Answer															

Q1. Given
$$f(x) = x^2 + 1$$
 " $Z^+ \rightarrow Z$ " and $g(x) = x - 1$ " $Z^+ \rightarrow Z$ " answer the following:
A. fog(x) = (1 mark)

- **B.** Determine whether function f(x) is one-to-one or not? And why? (2 marks)
- C. Determine whether function f(x) is onto or not? And why? (2 marks)

Q2: Show that $P \leftrightarrow Q$ and $(P \land Q) \lor (\neg P \land \neg Q)$ are logically equivalent. (Using Rules) (5 marks)

Q3. Translate the following English statements. Assuming the domain is: all people

T(x): x is a CS teacher S(x): x is a student

C(x,y): x has taken a course with y

N(x): x is nice

A. All CS teachers are perfect and nice.

(2 marks)

B. some student in IT has taken a course with every CS teacher. (2 marks)

Q4: multiple choices (15 marks)

- 1) $|\Phi \times \{a, b\}|$ is equivalent to

 - B. 1
 - $C. \{a,b\}$
 - D. Φ
- 2) $p \rightarrow \neg q$ is equivalent to
 - A. $\neg p \rightarrow q$
 - **B.** $p \leftrightarrow \neg q$
 - $\mathbf{C}.\neg(q \wedge p)$
 - D. None of the above
- 3) let $U = \{x \mid 1 \le x \le 12 \text{ and } x \in Z \}$. Which of these sets are specified by "010111100000" bit string?
 - **A.** {1,3,5,7,9}
 - **B.** {2,4,5,6,7}
 - C. {2,4,6,8,10}
 - **D.** {1,3,8,9,10}
- 4) Which of the following is a true statement?
 - A. $\{\Phi\}$ has no elements
 - B. the cardinality of set X, is the umber of subsets of X
 - C. Φ is a singleton
 - **D.** The power set of set X, is the set of all subsets of X.
- 5) The precedence order of logical connectives, listed in the order of being carried out first to last is correct for which of the following?
 - $A. \neg \land \lor \leftrightarrow$
 - **B.** $\leftrightarrow \neg \land \lor$
 - **C.** ∧¬∨ →
 - D. None of the above
 - 6) Which of the following statement is true?
 - $\mathbf{A}. \Phi \in \{\Phi\}$
- **B.** $\{\Phi\} \in \{\Phi\}$ **C.** $\{\{\Phi\}\} \subset \{\{\Phi\}, \{\Phi\}\}$
- D. None

- 7) Which of the following sets is a power set?
- Α. Φ
- **B.** $\{\Phi, \{a\}\}\$ **C.** $\{\Phi, \{a\}, \{\Phi, a\}\}\$
- D. None

- 8). Let A and B be sets, $A \subseteq B$ if and only if:
- $A. B \subseteq A$
- **B.** $\overline{B} \subseteq \overline{A}$
- $\mathbf{C}.A\subseteq \overline{B}$
- **D.** $\overline{A} \subseteq B$
- 9) Let A be subset of a universal set U, then:
- $\mathbf{A}.A \oplus U = A$
- **B.** $A \oplus U = U$
- $\mathbf{C}.A \oplus U = \overline{A}$
- $\mathbf{D}.A \oplus U = \phi$
- 10) What do you say a bout the sets A and B if we know that A-B=B-A?
- A. $A = \overline{B}$
- **B.** $A \subseteq \overline{B}$
- C. $\overline{A} \subseteq B$
- $\mathbf{D}.\ A=B$
- 11) Let $X = \begin{bmatrix} -5.8 \end{bmatrix} + \begin{bmatrix} 4.8 \end{bmatrix}$, then X given by following value?
- A. 1
- B. 0
- C. -1
- D. None of them
- 12) if A and B are sets such that $A = \{1, 2, 3, 4, 4\}$, $B = \{2, 3, 3, 0\}$ what is the cardinality of A \cup B?
- A. 9
- **B.** 5
- C. 6
- D. None of the above
- 13) Let P(x) denote the sentence: x + y = 4. Which of the following is true in the domain of all integers?
- A. $\forall x \forall y \ p(x,y)$
- **B.** $\exists x \forall y \ p(x,y)$
- C. $\exists y \forall x \ p(x,y)$
- **D.** $\forall y \exists x \ p(x,y)$

- 14) The negation of $\exists x (p(x) \land Q(y))$ is:
- A. $\forall x (\neg p(x) \land \neg Q(y))$
- **B.** $\forall x (\neg p(x) \lor Q(y))$
- C. $\forall x (p(x) \rightarrow \neg Q(y))$
- D. None of the above
- 15) Two sets A and B are said to be disjoint if:
- $A. \quad A = B$
- $B.\quad A\subseteq B \text{ and } B\subseteq A$
- C. $A \cap B = \Phi$
- **D.** $A \cup B = \Phi$