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PrefaCe

The basic structure and philosophy of the previous editions of Signals, Systems, and 
Transforms are retained in the fifth edition. Many end-of-chapter problems have 
been revised and numerous new problems are provided. several of these new prob-
lems illustrate real-world concepts in digital communications, filtering, and control 
theory. The end-of-chapter problems are organized so that multiple similar prob-
lems are provided. The answer to at least one of each set of similar problems is 
provided in appendix h. The intent is to allow students to develop confidence by 
gaining immediate feedback about their understanding of new material and con-
cepts. all MaTlaB examples have been updated to ensure compatibility with the 
student version r2012. We have added the following changes to the fifth edition:

•	 Presentation	of	the	properties	of	the	Fourier	transform	is	revised	and	rearranged	
in Chapter 5.

•	 A	new	subsection	on	the	design	and	analysis	of	active	filters	is	added	in	Chapter	6.
•	 Sampling	of	continuous-time	signals	and	reconstruction	of	signals	from	sample	

data are now collocated in Chapter 6.
•	 A	new	subsection	on	quantization	error	is	added	to	Chapter	6.
•	 A	 new	 subsection	 on	 system	 step-response	 calculation	 and	 analysis	 using	 the	

laplace transform is added to Chapter 7.
•	 A	new	subsection	on	system	frequency-response	calculation	and	analysis	using	

the z-transform is added to Chapter 11.
•	 A	 new	 example,	 showing	 frequency-response	 analysis	 of	 a	 finite-impulse- 

response (Fir) filter using the discrete-time Fourier transform (DTFT), is added 
in Chapter 12.

•	 A	new	example,	showing	the	use	of	the	discrete	Fourier	transform	(DFT)	to	im-
plement a Fir filter, is added in Chapter 12.

•	 Several	new	examples	and	MATLAB®	applications	are	provided.
•	 All	end-of-chapter	problem	sets	have	been	revised.		The	problems	for	each	chapter	

are now grouped according the applicable section of the chapter.

a companion website at http://www.ee.washington.edu/class/SST_textbook/
textbook.html contains sample laboratories, lecture notes for Chapters 1–7 and 

xix

http://www.ee.washington.edu/class/SST_textbook/textbook.html
http://www.ee.washington.edu/class/SST_textbook/textbook.html


xx Preface

Chapters 9–12, and the MaTlaB files listed in the textbook as well as several ad-
ditional MaTlaB files. it also contains a link to a second website at http://www.
ee.washington.edu/class/235dl/, which contains interactive versions of the lecture 
notes for Chapters 1–7. here, students and professors can find worked-out solu-
tions to all the examples in the lecture notes, as well as animated demonstrations of 
various concepts including transformations of continuous-time signals, properties of 
continuous-time systems (including numerous examples on time-invariance), con-
volution, sampling, and aliasing. additional examples for discrete-time material will 
be added as they are developed.

This book is intended to be used primarily as a text for junior-level students 
in engineering curricula and for self-study by practicing engineers. it is assumed 
that the reader has had some introduction to signal models, system models, and 
differential equations (as in, for example, circuits courses and courses in mathematics), 
and some laboratory work with physical systems.

The authors have attempted to consistently differentiate between signal and 
system models and physical signals and systems. although a true understanding of 
this difference can be acquired only through experience, readers should understand 
that there are usually significant differences in performance between physical sys-
tems and their mathematical models.

We have attempted to relate the mathematical results to physical systems that 
are familiar to the readers (e.g., the simple pendulum) or physical systems that stu-
dents can visualize (e.g., a picture in a picture for television). The descriptions of 
these physical systems, given in Chapter 1, are not complete in any sense of the 
word; these systems are introduced simply to illustrate practical applications of the 
mathematical procedures presented.

Generally, practicing engineers must, in some manner, validate their work. To 
introduce the topic of validation, the results of examples are verified, using different 
procedures, where practical. Many homework problems require verification of the re-
sults. hence, students become familiar with the process of validating their own work.

The software tool MaTlaB is integrated into the text in two ways. First, in 
appropriate examples, MaTlaB programs are provided that will verify the com-
putations. Then, in appropriate homework problems, the student is asked to verify 
the calculations using MaTlaB. This verification should not be difficult because 
MaTlaB programs given in examples similar to the problems are applicable. 
hence, another procedure for verification is given. The MaTlaB programs given  
in the examples may be downloaded from http://www.ee.washington.edu/class/
SST_textbook/textbook.html. students can alter data statements in these programs 
to apply them to the end-of-chapter problems. This should minimize programming 
errors. hence, another procedure for verification is given. however, all references 
to MaTlaB may be omitted, if the instructor or reader so desires.

laplace transforms are covered in Chapter 7 and z-transforms are covered in 
Chapter 11. at many universities, one or both transforms are introduced prior to 
the signals and systems courses. Chapters 7 and 11 are written such that the material 
can be covered anywhere in the signals and systems course, or they can be omitted 
entirely, except for required references.

http://www.ee.washington.edu/class/235dl/
http://www.ee.washington.edu/class/235dl/
http://www.ee.washington.edu/class/SST_textbook/textbook.html
http://www.ee.washington.edu/class/SST_textbook/textbook.html
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The more advanced material has been placed toward the end of the chapters 
wherever possible. hence, this material may be omitted if desired. For example, 
sections 3.7, 3.8, 4.6, 5.4, 7.9, 10.7, 12.6, and 12.7 could be omitted by instructors 
without loss of continuity in teaching. Further, Chapters 8 and 13 can be skipped if 
a professor does not wish to cover state-space material at the undergraduate level.

The material of this book is organized into two principal areas: continuous-time  
signals and systems, and discrete-time signals and systems. some professors  
prefer to cover first one of these topics, followed by the second. other professors 
prefer to cover continuous-time material and discrete-time material simultaneously.  
The authors have taken the first approach, with the continuous-time material cov-
ered in Chapters 2–8, and the discrete-time material covered in Chapters 9–13.  
The material on discrete-time concepts is essentially independent of the material 
on continuous-time concepts so that a professor or reader who desires to study the 
discrete-time material first could cover Chapters 9–11 and 13 before Chapters 2–8. 
The material may also be arranged such that basic continuous-time material and 
discrete-time material are intermixed. For example, Chapters 2 and 9 may be cov-
ered simultaneously and Chapters 3 and 10 may also be covered simultaneously.

in Chapter 1, we present a brief introduction to signals and systems, followed 
by short descriptions of several physical continuous-time and discrete-time systems. 
in addition, some of the signals that appear in these systems are described. Then a 
very brief introduction to MaTlaB is given.

in Chapter 2, we present general material basic to continuous-time signals 
and systems; the same material for discrete-time signals and systems is presented in 
Chapter 9. however, as stated above, Chapter 9 can be covered before Chapter 2 or 
simultaneously with Chapter 2. Chapter 3 extends this basic material to continuous-
time linear time-invariant systems, while Chapter 10 does the same for discrete-time 
linear time-invariant systems.

Presented in Chapters 4, 5, and 6 are the Fourier series and the Fourier trans-
form for continuous-time signals and systems. The laplace transform is then de-
veloped in Chapter 7. state variables for continuous-time systems are covered in 
Chapter 8; this development utilizes the laplace transform.

The z-transform is developed in Chapter 11, with the discrete-time Fourier 
transform and the discrete Fourier transform presented in Chapter 12. however, 
Chapter 12 may be covered prior to Chapter 11. The development of the discrete-
time Fourier transform and discrete Fourier transform in Chapter 12 assumes that 
the reader is familiar with the Fourier transform. state variables for discrete-time 
systems are given in Chapter 13. This material is independent of the state variables 
for continuous-time systems of Chapter 8.

in appendix a, we give some useful integrals and trigonometric identities.  
in general, the table of integrals is used in the book, rather than taking the longer 
approach of integration by parts. leibnitz’s rule for the differentiation of an integral  
and l’hôpital’s rule for indeterminate forms are given in appendix B and are ref-
erenced in the text where needed. appendix C covers the closed forms for certain  
geometric series; this material is useful in discrete-time signals and systems.  
in appendix D, we review complex numbers and introduce euler’s relation, in 



xxii Preface

appendix e the solution of linear differential equations with constant coefficients, 
and in appendix F partial-fraction expansions. Matrices are reviewed in appendix 
G; this appendix is required for the state-variable coverage of Chapters 8 and 13. 
as each matrix operation is defined, MaTlaB statements that perform the opera-
tion are given. appendix h provides solutions to selected chapter problems so that 
students can check their work independently. appendix i lists the references for the 
entire text, arranged by chapter.

This book may be covered in its entirety in two 3-semester-hour courses, or in 
quarter courses of approximately the equivalent of 6 semester hours. With the omis-
sion of appropriate material, the remaining parts of the book may be covered with 
fewer credits. For example, most of the material of Chapters 2, 3, 4, 5, 6, 8, 9, 10, 11, 
and 12 has been covered in one 4-semester-hour course. The students were already 
familiar with some linear-system analysis and the laplace transform.

We wish to acknowledge the many colleagues and students at auburn Uni-
versity, the University of evansville, and the University of Washington who have 
contributed to the development of this book. in particular, the first author wishes 
to express thanks to Professors Charles M. Gross, Martial a. honnell, and Charles 
l. rogers of auburn University for many stimulating discussions on the topics in 
this book, and to Professor roger Webb, director of the school of electrical en-
gineering at the Georgia institute of Technology, for the opportunity to teach the 
signal and system courses at Georgia Tech. The second author wishes to thank Pro-
fessors Dick Blandford and William Thayer for their encouragement and support 
for this effort, and Professor David Mitchell for his enthusiastic discussions of the 
subject matter. The third author wishes to thank the professors and many students 
in ee235 and ee341 at the University of Washington who contributed comments to 
this book and interactive website, in particular Professors Mari ostendorf and Mani 
soma, eddy Ferré, Wai shan lau, Bee ngo, sanaz namdar, Jessica Tsao, and anna 
Margolis. We would like to thank the reviewers who provided invaluable comments 
and suggestions, including the following reviewers of the fifth edition: sos agaian, 
University of Texas, san antonio, Tokunbo ogunfunmi, santa Clara University, 
and k. sivakumar, Washington state University. The interactive website was devel-
oped under a grant from the Fund for the improvement of Postsecondary education 
(FiPse), U.s. Department of education.

Charles l. PhilliPs

Auburn University

John M. Parr

University of Evansville

eve a. riskin

University of Washington
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1

In this book, we consider the topics of signals and systems as related to engineering. 
These topics involve the modeling of physical signals by mathematical functions, the 
modeling of physical systems by mathematical equations, and the solutions of the equa-
tions when excited by the functions.

 1.1 ModelIng

Engineers must model two distinct physical phenomena. First, physical systems 
are  modeled by mathematical equations. For systems that contain no sampling 
 (continuous-time, or analog, systems), we prefer to use ordinary differential equa-
tions with constant coefficients; a wealth of information is available for the analy-
sis and the design of systems of this type. Of course, the equation must accurately 
model the physical systems. An example of the model of a physical system is a linear 
electric-circuit model of Figure 1.1:

 L 
di1t2

dt
+ Ri1t2 +

1
C L

t

-∞
i1t2dt = v1t2. (1.1)

Another example is Newton’s second law,

 f1t2 = M 
d2x1t2

dt2 , (1.2)

1 IntroductIon

L R

C

i(t)

v(t) �
�

Figure 1.1  Example circuit.



2 Introduction    Chap. 1

where f1t2 is the force applied to the mass M and x1t2 is the resulting displacement 
of the mass.

A second physical phenomenon to be modeled is called signals. Physical 
 signals are modeled by mathematical functions. One example of a physical sig-
nal is the voltage that is applied to the speaker in a radio. Another example 
is the temperature at a designated point in a particular room. This signal is a 
function of time because the temperature varies with time. We can express this 
 temperature as

 temperature at a point = u1t2, (1.3)

where u1t2 has the units of, for example, degrees Celsius.
Consider again Newton’s second law. Equation (1.2) is the model of a physical 

system, and f1t2 and x1t2 are models of physical signals. Given the signal (function) 
f1t2, we solve the model (equation) (1.2) for the signal (function) x1t2. In analyzing 
physical systems, we apply mathematics to the models of systems and signals, not 
to the physical systems and signals. The usefulness of the results depends on the 
 accuracy of the models.

In this book, we usually limit signals to having one independent variable. We 
choose this independent variable to be time, t, without loss of generality. Signals are 
divided into two natural categories. The first category to be considered is continuous-
time, or simply, continuous, signals. A signal of this type is defined for all values of 
time. A continuous-time signal is also called an analog signal. A continuous-time 
signal is illustrated in Figure 1.2(a).

0

�T 0 T 2T 3T

4T 5T

6T nT

t

Amplitude

Amplitude

(a)

(b)
Figure 1.2  (a) Continuous-time signal; 
(b) discrete-time signal.
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The second category for signals is discrete-time, or simply, discrete, signals. 
A discrete signal is defined at only certain instants of time. For example, suppose 
that a signal f1t2 is to be processed by a digital computer. [This operation is called 
digital signal processing (DSP).] Because a computer can operate only on numbers 
and not on a continuum, the continuous signal must be converted into a sequence 
of numbers by sampling. If a signal f1t2 is sampled every T seconds, the number 
sequence f1nT2, n =c, -2, -1, 0, 1, 2, c, is available to the computer. This 
 sequence of numbers is called a discrete-time signal. Insofar as the computer is con-
cerned, f1nT2 with n a noninteger does not exist (is not available). A discrete-time 
signal is illustrated in Figure 1.2(b).

We define a continuous-time system as one in which all signals are continuous 
time. We define a discrete-time system as one in which all signals are discrete time. 
Both continuous-time and discrete-time signals appear in some physical systems; 
we call these systems hybrid systems, or sampled-data systems. An example of a 
sampled-data system is an automatic aircraft-landing system, in which the control 
functions are implemented on a digital computer.

The mathematical analysis of physical systems can be represented as in 
Figure 1.3 [1]. We first develop mathematical models of the physical systems and 
signals involved. One procedure for finding the model of a physical system is to 
use the laws of physics, as, for example, in (1.1). Once a model is developed, the 
equations are solved for typical excitation functions. This solution is compared with 
the response of the physical system with the same excitation. If the two responses 
are approximately equal, we can then use the model in analysis and design. If not, 
we must improve the model.

Improving the mathematical model of a system usually involves making the 
models more complex and is not a simple step. Several iterations of the process 
illustrated in Figure 1.3 may be necessary before a model of adequate accuracy 
 results. For some simple systems, the modeling may be completed in hours; for very 
complex systems, the modeling may take years. An example of a complex model is 
that of NASA’s shuttle; this model relates the position and attitude of the shuttle to 

Physical
system

Problem formulation

Solution translation

Mathematical
models of systems

and signals

Mathematical
solution of
equations

Conceptional
aspects

Figure 1.3  Mathematical solutions of 
physical problems.
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the engine thrust, the wind, the positions of the control surfaces (e.g., the rudder), 
and so on. As an additional point, for complex models of this type, the equations 
can be solved only by computer.

This book contains two main topics: (1) continuous-time signals and sys-
tems and (2) discrete-time signals and systems. Chapters 2 through 8 cover 
continuous-time signals and systems, while Chapters 9 through 13 cover 
 discrete-time signals and systems. The material may be covered in the order of 
the chapters, in which continuous-time topics and discrete-time topics are cov-
ered separately. Alternatively, the basic material of the two topics may be inter-
mixed, with Chapters 2 and 9 covered simultaneously, followed by Chapters 3 
and 10 covered simultaneously.

 1.2 contInuous-tIMe PhysIcal systeMs

In this section, we discuss several continuous-time physical systems. The descrip-
tions are simplified; references are given that contain more complete descriptions. 
The systems described in this and the next section are used in examples throughout 
the remainder of the book.

We have already given the model of a rigid mass M in a frictionless 
environment,

[eq(1.2)] f1t2 = M 
d2x1t2

dt2 ,

where f1t2 is the force applied to the mass and x1t2 is the displacement of the mass 
that results from the force applied. This model is a second-order linear differential 
equation with constant coefficients.

Linearity is defined in Section 2.7. As we will see, an equation (or system) is 
linear if the principle of superposition applies. Otherwise, the equation is nonlinear.

Next we discuss several physical systems.

electric circuits

In this section, we give models for some electric-circuit elements [2]. We begin with 
the model for resistance, given by

 v1t2 = Ri1t2, or i1t2 =
1
R

 v1t2, (1.4)

where the voltage v1t2 has the units of volts (V), the current i1t2 has the units of 
amperes (A), and the resistance R has the units of ohms 1Ω2. This model is repre-
sented by the standard circuit symbol given in Figure 1.4. The dashed lines in this 
figure indicate that the elements are parts of circuits. For example, the resistance 
must be a part of a circuit, or else v1t2 is identically zero.
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The model for inductance is given by

 v1t2 = L 
di1t2

dt
, or i1t2 =

1
L L

t

- ∞
v1t2dt, (1.5)

where v1t2 and i1t2 are as defined earlier and L is the inductance in henrys. The 
model for capacitance is given by

 v1t2 =
1
C L

t

-∞
i1t2dt, or i1t2 = C 

dv1t2
dt

, (1.6)

where C is the capacitance in farads. The symbols for inductance and capacitance 
are also given in Figure 1.4.

For the ideal voltage source in Figure 1.4, the voltage at the terminals of the 
source is v1t2, independent of the circuit connected to these terminals. The current 
i1t2 that flows through the voltage source is determined by the circuit connected 
to the source. For the ideal current source, the current that flows through the cur-
rent source is i1t2, independent of the circuit connected to the source. The voltage 
v1t2 that appears at the terminals of the current source is  determined by the circuit 
 connected to these terminals.

Consider now a circuit that is an interconnection of the elements shown in 
Figure 1.4. The circuit equations are written using the models given in the figure 
along with Kirchhoff’s voltage and current laws. Kirchhoff’s voltage law may be 
stated as follows:

The algebraic sum of voltages around any closed loop in an electric circuit is zero.

Kirchhoff’s current law may be stated as follows:

The algebraic sum of currents into any junction in an electric circuit is zero.

Resistance
i(t)

i(t)
Voltage source Current source

R L Cv(t)

v(t) v(t)i(t)

v(t) � i(t)R

Inductance
i(t)

v(t)

Capacitance
i(t)

v(t)

v(t) � L
di(t)

dt
v(t) �           i( ) d  � v(0) 1

C

t

0

� ��

Figure 1.4  Electric-circuit elements. (From 
C. L. Phillips and R. D. Harbor, Feedback 
Control Systems, 3d ed., Prentice Hall,  
Upper Saddle River, NJ, 1995.)
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operational amplifier circuits

A device called an operational amplifier (or op amp) [3] is commonly used in circuits 
for processing analog electrical signals. We do not investigate the internal structure 
of this amplifier, but instead present only its terminal characteristics.

We denote an operational amplifier by the circuit symbol of Figure 1.5(a). The 
circles indicate amplifier terminals, and the dashed lines indicate connections exter-
nal to the amplifier. The signal-input terminals are labeled with a minus sign for the 
inverting input and a plus sign for the noninverting input. The power-supply termi-
nals are labeled V+ for the positive dc voltage and V- for the negative dc voltage. 
The op amp is normally shown as in Figure 1.5(b), with the power-supply terminals 
omitted. In this circuit, vd(t) is the input voltage to be amplified and the amplified 
voltage output is vo(t).

The operational amplifier is designed and constructed such that the input im-
pedance is very high, resulting in the input currents i-(t) and i+(t) in Figure 1.5(b) 
being very small. Additionally, the amplifier gain [the ratio vo(t)>vd(t)] is very large 
(on the order of 105 or larger). This large gain results in a very small allowable input 
voltage if the amplifier is to operate in its linear range (not saturated).

�

�

�

�

(a)

(b)

vo(t)

vd(t)

i�(t)

i�(t)

Operational
amplifier

V�

V�

Figure 1.5  Operational amplifier.
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For this discussion, we assume that the amplifier is ideal, which is suffi-
ciently accurate for most purposes. The ideal op amp has zero input currents 
[i-1t2 = i+1t2 = 0]. Additionally, the ideal amplifier operates in its linear range 
with infinite gain, resulting in the input voltage vd1t2 being zero.

Because the op amp is a very high-gain device, feedback is usually added for 
stabilization. The feedback is connected from the output terminal to the inverting 
input terminal (the minus terminal). This connection results in negative, or stabiliz-
ing, feedback and tends to prevent saturation of the op amp.

An example of a practical op-amp circuit is given in Figure 1.6. In this circuit, 
vi1t2 is the circuit input voltage and vo1t2 the circuit output voltage. Because vd1t2 
in Figure 1.5(b) is assumed to be zero, the equation for the input loop in Figure 1.6 
is given by

 vi1t2 - i1t2Ri = 0 1 i1t2 =
vi1t2

Ri
. (1.7)

Also, because i-(t) in Figure 1.5(b) is zero, the current through Rf  in Figure 1.6 is 
equal to that through Ri. The equation for the outer loop is then

 vi1t2 - i1t2Ri - i1t2Rf - vo1t2 = 0.

Using (1.7), we express this equation as

 vi1t2 - vi1t2 -
vi1t2

Ri
 Rf - vo1t2 = 0 1

vo1t2
vi1t2 = -

Rf

Ri
. (1.8)

This circuit is then a voltage amplifier. The ratio Rf>Ri is a positive real number; 
hence, the amplifier voltage gain vo1t2 >vi1t2 is a negative real number. The model 
(1.8) is a linear algebraic equation.

A second practical op-amp circuit is given in Figure 1.7. We use the preceding 
procedure to analyze this circuit. Because the input loop is unchanged, (1.7) applies, 
with Ri = R. The equation of the outer loop is given by

 vi1t2 - i1t2R -
1
C

  L
t

-∞
 i1t2dt - vo1t2 = 0. (1.9)

�

�

vo(t)vi (t)

i(t)

i(t)

Ri

Rf

Figure 1.6  Practical voltage amplifier.



8 Introduction    Chap. 1

Substitution of (1.7) into (1.9) yields

 vi1t2 - vi1t2 -
1

RC
  L

t

-∞
 vi1t2dt - vo1t2 = 0. (1.10)

Thus, the equation describing this circuit is given by

 v01t2 = -  

1
RC

  L
t

-∞
 vi1t2dt. (1.11)

This circuit is called an integrator or an integrating amplifier; the output voltage is 
the integral of the input voltage multiplied by a negative constant 1-1/RC2. This 
 integrator is a commonly used circuit in analog signal processing and is used in 
 several examples in this book.

If the positions of the resistance and the capacitance in Figure 1.7 are inter-
changed, the op-amp circuit of Figure 1.8 results. We state without proof that the 
equation of this circuit is given by

 vo1t2 = -RC 
dvi1t2

dt
. (1.12)

(The reader can show this by using the previous procedure.) This circuit is called a 
differentiator, or a differentiating amplifier; the output voltage is the derivative of the 
input voltage multiplied by a negative constant 1-RC2. The differentiator has lim-
ited use in analog signal processing, because the derivative of a signal that changes 

�

�

vo(t)vi (t)

i(t)

i(t)

C

R

Figure 1.8  Differentiating amplifier.
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i(t)
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Figure 1.7  Integrating amplifier.
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rapidly is large. Hence, the differentiator amplifies any high-frequency noise in vi(t). 
However, some practical applications require the use of a differentiator. For these 
applications, some type of high-frequency filtering is usually required before the dif-
ferentiation, to reduce high-frequency noise.

simple Pendulum

We now consider a differential-equation model of the simple pendulum, which is 
illustrated in Figure 1.9. The angle of the pendulum is denoted as u, the mass of the 
pendulum bob is M, and the length of the (weightless) arm from the axis of rotation 
to the center of the bob is L.

The force acting on the bob of the pendulum is then Mg, where g is the gravi-
tational acceleration, as shown in Figure 1.9. From physics we recall the equation of 
motion of the simple pendulum:

 ML 
d2u1t2

dt2 = -Mg sin u1t2. (1.13)

This model is a second-order nonlinear differential equation; the term sin u(t) is 
 nonlinear. (Superposition does not apply.)

We have great difficulty in solving nonlinear differential equations; how-
ever, we can linearize (1.13). The power-series expansion for sin u is given (from 
Appendix D) by

 sin u = u -
u3

3!
+

u5

5!
 -  g. (1.14)

For u small, we can ignore all terms except the first one, resulting in sin u ≈ u when 
u is expressed in radians. The error in this approximation is less than 10 percent 
for u = 45° (p/4 radians), is less than 1 percent for u = 14° (0.244 radians), and 
 decreases as u becomes smaller. We then express the model of the pendulum as, 
from (1.13) and (1.14),

 
d2u1t2

dt2 +
g

L
 u1t2 = 0 (1.15)

L
�

Mg Figure 1.9  Simple pendulum.
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for u small. This model is a second-order linear differential equation with constant 
coefficients.

This derivation illustrates both a linear model (1.15) and a nonlinear model 
(1.13) and one procedure for linearizing a nonlinear model. Models (1.13) and 
(1.15) have unusual characteristics because friction has been ignored. Energy given 
to the system by displacing the bob and releasing it cannot be dissipated. Hence, we 
expect the bob to remain in motion for all time once it has been set in motion. Note 
that these comments relate to a model of a pendulum, not to the physical device. If 
we want to model a physical pendulum more accurately, we must, as a minimum, 
include a term in (1.13) and (1.15) for friction.

dc Power supplies

Power supplies that convert an ac voltage (sinusoidal voltage) into a dc voltage 
(constant voltage) [3] are required in almost all electronic equipment. Shown in 
Figure 1.10 are voltages that appear in certain dc power supplies in which the ac 
voltage is converted to a nonnegative voltage.

The voltage in Figure 1.10(a) is called a half-wave rectified signal. This signal is 
generated from a sinusoidal signal by replacing the negative half cycles of the sinu-
soid with a value of zero. The positive half cycles are unchanged. In this figure, T0 is 
the period of the waveform (the time of one cycle).

The signal in Figure 1.10(b) is called a full-wave rectified signal. This signal is 
generated from a sinusoidal signal by the amplitude reversal of each negative half 
cycle. The positive half cycles are unchanged. Note that the period T0 of this signal is 
one-half that of the sinusoid and, hence, one-half that of the half-wave rectified signal.

Usually, these waveforms are generated by the use of diodes. The circuit sym-
bol for a diode is given in Figure 1.11(a). An ideal diode has the voltage–current 
characteristic shown by the heavy line in Figure 1.11(b). The diode allows current 

0

�T0

�T0

�2T0 0 T0

T0/2 2T0T0

2T0 3T0 4T0 t

t

(a)

(b)

Vm

v(t)

Vm

v(t)

Figure 1.10  Rectified signals:  
(a) half wave; (b) full wave.
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to flow unimpeded in the direction of the arrowhead in its symbol and blocks current 
flow in the opposite direction. Hence, the ideal diode is a short circuit for current 
flow in the direction of the arrowhead [when v1t2 tends to be positive] and an open 
circuit for current flow in the opposite direction [when v1t2 is negative]. The diode is 
a nonlinear device; therefore, many circuits that contain diodes are nonlinear circuits.

One circuit for a power supply is given in Figure 1.12(a). The power-supply 
load is represented by the resistance RL, and the voltage across this load is the half-
wave rectified signal of Figure 1.12(b). The load current iL1t2 is the load voltage 
vL1t2 divided by RL; iL1t2 is also shown in Figure 1.12(b). We see then that the volt-
age across the load is unidirectional; however, this voltage is not constant.

A practical dc power supply is illustrated in Figure 1.13. The inductor–capacitor 
(LC) circuit forms a low-pass filter and is added to the circuit to filter out the voltage 
variations so that the load voltage vL1t2 is approximately constant.

A circuit that uses four diodes to generate a full-wave rectified signal is given in 
Figure 1.14. The diodes A and D conduct when the source voltage is positive, and the 
diodes B and C conduct when the source voltage is negative. However, the current 

i(t)
i(t)

i(t) � 0

v(t)

v(t) � 0

v(t)

(a) (b)
Figure 1.11  (a) Diode; (b) ideal diode 
characteristic.
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(b) Figure 1.12  Half-wave rectifier.
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through the load resistance RL is unidirectional, in the direction shown. Hence, the 
voltage across the load is a full-wave rectified signal, as shown in Figure 1.10(b). As 
in the half-wave rectified case in Figure 1.13, a filter is usually added to make the load 
voltage approximately constant.

analogous systems

We introduce analogous systems with two examples. The model of a rigid mass M in 
a frictionless environment is given in (1.2):

 M 
d2x1t2

dt2 = f1t2. (1.16)

Here, f1t2 is the force applied to the mass and x1t2 is the displacement of the mass 
that results from the applied force. We represent this system with Figure 1.15(a).

Consider next the circuit of Figure 1.15(b), in which a voltage v(t) is applied to 
an inductance. The loop equation is given by

 L 
di1t2

dt
= v1t2. (1.17)

Recall that i1t2 = dq1t2 >dt, where q1t2 is charge. Hence, we can express the loop 
equation (1.17) as

 L 
d2q1t2

dt2 = v1t2. (1.18)

C

A B

D

RL

iL(t)
�

ac
voltage
source

Figure 1.14  Full-wave rectifier.
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iL(t)

vL(t)�
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Figure 1.13  Practical dc power supply.
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We see that the model for the mass in (1.16) and for the circuit in (1.18) are of 
the same mathematical form; these two systems are called analogous systems. We 
define analogous systems as systems that are modeled by equations of the same 
mathematical form.

As a second example, consider the LC circuit in Figure 1.16, which is excited 
by initial conditions. The loop equation for this circuit is given by

 L 
di1t2

dt
+

1
C

  L
t

-∞
 i1t2dt = 0. (1.19)

Expressing this equation as a function of charge q(t) yields

 
d2q1t2

dt2 +
1

LC
 q1t2 = 0. (1.20)

Recall the linearized equation for a simple pendulum:

[eq(1.15)] 
d2u1t2

dt2 +
g

L
 u1t2 = 0.

Comparing the last two equations, we see that the pendulum and the LC  circuit are 
analogous systems.

In the two preceding examples, analogous electrical circuits are found for 
two mechanical systems. We can also find analogous thermal systems, analogous 
fluidic systems, and so on. Suppose that we know the characteristics of the LC 
 circuit; we then know the characteristics of the simple pendulum. We can transfer 
our knowledge of the characteristics of circuits to the understanding of other types  

L

i(t)

f(t)

x(t)

v(t)

(b)(a)

M
�
�

Figure 1.15  Analogous systems.

LC

i(t)

Figure 1.16  LC circuit.
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of physical systems. This process can be generalized further; for example, we study 
the characteristics of a second-order linear differential equation with constant 
coefficients, with the knowledge that many different physical systems have these 
characteristics.

 1.3 saMPlers and dIscrete-tIMe PhysIcal systeMs

We now describe a physical sampler and some discrete-time physical systems. In 
many applications, we wish to apply a continuous-time signal to a discrete-time 
 system. This operation requires the sampling of the continuous-time signal; we con-
sider first an analog-to-digital converter, which is one type of physical sampler. This 
device is used extensively in the application of continuous-time physical signals to 
digital computers, either for processing or for data storage.

analog-to-digital converter

We begin with a description of a digital-to-analog converter (D/A or DAC), since 
this device is usually a part of an analog-to-digital converter (A/D or ADC). We as-
sume that the D/A receives a binary number every T seconds, usually from a digital 
computer. The D/A converts the binary number to a constant voltage equal to the 
value of that number and outputs this voltage until the next binary number appears 
at the D/A input. The D/A is represented in block diagram as in Figure 1.17(a), and 
a typical response is depicted in Figure 1.17(b). We do not investigate the internal 
operation of the D/A.

Next we describe a comparator, which is also a part of an A/D. A comparator 
and its characteristics are depicted in Figure 1.18. The input voltage vi1t2 is com-
pared with a reference voltage vr1t2. If vi1t2 is greater than vr1t2, the comparator 

0 T t
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(a)

D/A

e(t)

e(t)

e(0)

e(0), e(T),
e(2T), . . .

e(T)

e(2T)

2T

Binary
numbers

Figure 1.17  Digital-to-analog converter.
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Figure 1.18  Comparator.
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Figure 1.19  Counter-ramp analog-to-digital converter. (From C. L. Phillips and H. T. Nagle, Digital Control Systems  
Analysis and Design, 3d ed., Prentice Hall, Upper Saddle River, NJ, 1995.)

outputs logic 1; for example, logic 1 is approximately 5 V for TTL (transistor-to-
transistor logic). If vi1t2 is less than vr1t2, the comparator outputs logic zero, which is 
less than 1 V for TTL. The comparator is normally shown with the signal ground of 
Figure 1.18 omitted; however, all voltages are defined relative to the signal ground.

Several different circuits are used to implement analog-to-digital convert-
ers, with each circuit having different characteristics. We now describe the internal 
 operation of a particular circuit. The counter-ramp A/D is depicted in Figure 1.19(a), 
with the device signals illustrated in Figure 1.19(b) [4]. The n-bit counter be-
gins the count at value zero when the start-of-conversion (SOC) pulse arrives  
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from the controlling device (usually, a digital computer). The count increases by 
one with the arrival of each clock pulse. The n-bit D/A converts the count to a 
 voltage VR.

The analog input voltage Vx, which is to be converted to binary, is compared 
with VR. When VR becomes greater than Vx, the comparator outputs a logic 0, which 
halts the clock input through an AND gate. The end-of-conversion (EOC) pulse 
then signals to the controlling device that the conversion is complete. At this time, 
the controlling device reads the counter output, which is a binary number that is 
 approximately equal to the analog input Vx. The advantages and disadvantages of 
this converter are discussed in Ref. 4.

numerical Integration

In Section 1.2, we considered the integration of a voltage signal by operational-
amplifier circuits. We now consider numerical integration, in which we use a digital 
computer to integrate a physical signal.

Suppose that we wish to integrate a voltage signal x1t2 numerically. Integration 
by a digital computer requires use of a numerical algorithm. In general, numerical 
algorithms are based on approximating a signal that has an unknown integral with 
a signal that has a known integral. Hence, all numerical integration algorithms are 
approximate in nature.

We illustrate numerical integration with Euler’s rule, which is depicted in 
Figure 1.20. Euler’s rule approximates the area under the curve x1t2 by the sum 
of the rectangular areas shown. In this figure, the step size H (the width of each 
rectangle) is called the numerical-integration increment. The implementation of this 
algorithm requires that x1t2 be sampled every H seconds, resulting in the number 
sequence x1nH2, with n an integer. Usually, the sampling is performed using an 
analog-to-digital converter.

Let

 y1t2 = L
t

0
 x1t2dt. (1.21)

0 (n � 1)H (n � 1)HnH t

x(t)

Figure 1.20  Euler’s rule.
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The integral of x1t2 from t = 0 to t = nH in Figure 1.20 can be expressed as the 
integral from t = 0 to t = (n - 1)H plus the integral from 1n - 12H to nH. Thus, 
in (1.21),

  y1t2 � t = nH = y1nH2 = L
nH

0
x1t2dt  

  = L
1n - 12H

0
 x1t2dt + L

nH

1n - 12H
 x1t2dt (1.22)

  ≈ y[1n - 12H] + Hx[1n - 12H].  

Ignoring the approximations involved, we express this equation as

 y1nH2 = y[1n - 12H] + Hx[1n - 12H]. (1.23)

However, y1nH2 is only an approximation to the integral of x1t2 at t = nH. 
Equation (1.23) is called a first-order linear difference equation with constant coef-
ficients. Usually, the factor H that multiplies the independent variable n in (1.23) is 
omitted, resulting in the equation

 y[n] - y[n - 1] = Hx[n - 1]. (1.24)

We can consider the numerical integrator to be a system with the input x[n] and 
output y[n] and the difference-equation model (1.24). A system described by a dif-
ference equation is called a discrete-time system.

Many algorithms are available for numerical integration [5]. Most of these 
 algorithms have difference equations of the type (1.23). Others are more complex 
and cannot be expressed as a single difference equation. Euler’s rule is seldom used 
in practice, because faster or more accurate algorithms are available. Euler’s rule is 
presented here because of its simplicity.

Picture in a Picture

We now consider a television system that produces a picture in a picture [6]. This 
system is used in television to show two frames simultaneously, where a smaller 
picture is superimposed on a larger picture. Consider Figure 1.21, where an analog 
TV picture is depicted as having six lines. (The actual number of lines is greater 
than 500.) Suppose that the picture is to be reduced in size by a factor of three and 
inserted into the upper right corner of a second picture.

First, the lines of the picture are digitized (sampled). In Figure 1.21, each 
line produces six samples (the actual number can be more than 2000), which are 
called picture elements (pixels). Both the number of lines and the number of sam-
ples per line must be reduced by a factor of three to reduce the size of the picture. 
Assume that the samples retained for the reduced picture are the four circles in 
Figure 1.21. (In practical cases, the total number of pixels retained may be greater 
than 100,000.)
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Now let the digitized full picture in Figure 1.21 represent a different picture; 
the four pixels of the reduced picture then replace the four pixels in the upper 
right corner of the full picture. The inserted picture is outlined by the dashed 
lines.

The generation of a picture in a picture is more complex than as described 
here, but we do see the necessity to reduce the number of samples in a given 
line. Note that the information content of the signal is reduced, since information 
(samples) is discarded. We can investigate the reduction of information only after 
mathematical models are developed for the process of converting a continuous-
time signal to a discrete-time signal by sampling. This reduction in the number of 
samples as indicated in Figure 1.21, called time scaling, is discussed in Section 9.2. 
The effects of sampling on the information content of a signal are discussed in 
Chapter 6.

compact discs

We next discuss compact discs (CDs). These discs store large amounts of data in 
a sampled form. We initially consider the audio compact disc (CD) [7]. The audio 
CD is a good example of a practical system in which the emphasis in sampling is on 
maintaining the quality of the audio signal. A continuous-time signal to be stored 
on a CD is first passed through an analog antialiasing bandpass filter with a band-
width of 5 to 20,000 Hz. This is because humans typically can hear frequencies only 
up to about 20 kHz. Any frequency component above 20 kHz would be inaudible 
to most people and therefore can be removed from the signal without noticeable 
degradation in the quality of the music. The filtered signal is then sampled by an 
analog-to-digital converter at the rate of fs = 44,100 Hz; hence, fs>2 = 22,050 Hz. 
The data format used in storage of the samples includes error-correcting bits and is 
not discussed here.

The audio CD stores data for up to 74 minutes of playing time. For stereo 
music, two channels (signals) must be stored. The disc stores 650 megabytes of data, 
with the data stored on a continuous track that spirals outward. So that data from 

TV picture
Digitized

TV picture

Reduced
TV picture

Lines Pixels

Figure 1.21  Television picture within a picture.
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the CD may be read at a constant rate, the angular velocity of the motor driving the 
disk must decrease in time as the radius of the track increases in order to maintain 
a constant linear velocity. The speed of the motor varies from 200 rpm down to  
50 rpm.

As a comparison, computer hard disks store data in circular tracks. These 
disks rotate at a constant speed, which is commonly 3600 rpm; hence, the data rate 
varies according to the radius of the track being read. High-speed CD-ROM drives 
use constant angular velocities as high as 12,000 rpm.

Because the data stored on the CD contain error-correcting bits, the CD 
player must process these data to reproduce the original samples. This processing is 
rather complex and is not discussed here.

The audio CD player contains three servos (closed-loop control systems). One 
servo controls the speed of the motor that rotates the disc, such that the data are 
read off the disc at a rate of 44,100 samples per second. The second servo points the 
laser beam at the required position on the CD, and the third servo keeps the laser 
beam focused on this position.

The digital video disc (DVD) is a popular medium for viewing movies and 
television programs. It stores sampled video and audio and allows for high-quality 
playback. Over two hours of video can be stored on one DVD. The DVD uses video 
compression to fit this much data on one disc. (We will discuss the mathematics 
used in some video-compression algorithms in Chapter 12.)

sampling in telephone systems

In this section, we consider the sampling of telephone signals [8]. The empha-
sis in these sampling systems is to reduce the number of samples required, even 
though the quality of the audio is degraded. Telephone signals are usually sampled 
at fs = 8000 Hz. This sampling allows the transmission of a number of telephone 
 signals simultaneously over a single pair of wires (or in a single communications 
channel), as described next.

A telephone signal is passed through an analog antialiasing filter with a pass-
band of 200 to 3200 Hz, before sampling. Frequencies of less than 200 Hz are at-
tenuated by this filter, to reduce the 60-Hz noise coupled into telephones circuits 
from ac power systems. The 3200-Hz cutoff frequency of the filter ensures that no 
significant frequency aliasing occurs, because fs>2 = 4000 Hz. However, the band-
pass filter severely reduces the quality of the audio in telephone conversations; this 
reduction in quality is evident in telephone conversations.

The sampling of a telephone signal is illustrated in Figure 1.22. The pulses are 
of constant width; the amplitude of each pulse is equal to the value of the telephone 
signal at that instant. This process is called pulse-amplitude modulation; the infor-
mation is carried in the amplitudes of the pulses.

Several pulse-amplitude-modulated signals can be transmitted simultaneously 
over a single channel, as illustrated in Figure 1.23. In this figure, the numeral 1 denotes 
the samples of the first telephone signal, 2 denotes the samples of the second one, and 
so on. The process depicted in Figure 1.23 is called time-division multiplexing because 
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the signals are separated in time. This figure is simplified somewhat; information must 
be included with the signal that enables the receiving circuits to assign the pulses to the 
correct signals. This process is called synchronization.

If the sampling is performed by an analog-to-digital converter, the sample 
 values are in binary and the process is called pulse-code modulation. Figure 1.24 
 illustrates the hardware of a time-division-multiplexed telephone system. The 
control signals switch each telephone signal to the analog-to-digital converter in  
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Figure 1.23  Time-division multiplexing.
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Figure 1.24  Multiplexed pulse-code-modulated telephone transmission.
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order and then command the A/D to sample. The receiving circuits separate out the 
synchronizing information and switch the pulses, in order, to the correct digital-to-
analog converter.

In pulse-width modulation, the sampling process produces a rectangular pulse 
of constant amplitude and variable width, with the pulse width proportional to the 
signal amplitude. In delta modulation, the output of the sampling process is the dif-
ference in the present sample and the previous sample. All four sampling processes 
are used in telephone communications.

data-acquisition system

Data-acquisition systems are instrumentation systems in which the taking of mea-
surements is controlled automatically by a computer. A typical system is illustrated 
in Figure 1.25. In this figure, we have assumed that measurements from n different 
sensors are to be recorded in computer memory. The computer controls the mul-
tiplexer and, hence, determines which measurement is recorded at a given time. In 
some large data-acquisition systems, the number of sensors is greater than 1000.

When switching occurs in the input multiplexer in Figure 1.25, the transient 
circuit is often modeled as in Figure 1.26(a). The sensor is modeled as a Thévenin 
equivalent circuit [9], with (constant) source voltage Vs and source resistance Rs. 
The voltage vad1t2 is the voltage internal to the analog-to-digital converter that is 
converted to a binary number. (See Figure 1.19.) Resistance Ra is the equivalent 
resistance of the circuit from the input terminals to the voltage vad1t2, and Ca repre-
sents the stray capacitance in the circuit. Generally, the resistance of the remainder 
of the circuit at the voltage vad(t) is sufficiently large that it can be ignored.

The voltage vad(t) exponentially approaches the constant value Vs of the sen-
sor, as shown in Figure 1.26(b). The initial value of vad(t) (that value at the instant 
of switching) is, in general, unknown; a value is given in Figure 1.26(b). The tran-
sient term in vad1t2 is of the form Ve-t>t, with V constant and the time constant 
t = 1Rs + Ra2Ca. (Time constants are discussed in Section 2.3.) Theoretically, this 
term never goes to zero and the system never reaches steady state. We see then that 
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Figure 1.25  Data-acquisition system.
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the accuracy of the measurement is affected by the length of elapsed time between 
the switching in the multiplexer and conversion by the A/D. To increase the ac-
curacy of the recorded measurements, in some systems the conversion is delayed 
nine time constants 19t2 after the circuit is switched. Hence, the transient term has 
decayed to Ve-9 = 0.000123V, or to approximately 0.01 percent of its initial value.

 1.4 MatlaB and sIMulInK

The mathematical computer program MATLAB® [10] and the related simulation 
computer program SIMULINK® [11] are used throughout this book to illustrate com-
puter programs available for calculations and simulations. No instructions are given 
here for the use of these programs; that is beyond the scope of this book. If the 
reader is interested in these programs, instruction books and online help are avail-
able. Much experience is necessary for one to become proficient in these programs. 
However, proficiency is well worth the effort, because any realistic calculations in 
engineering require the use of such programs.

Programs using the symbolic mathematics of MATLAB are included. The sym-
bolic math is powerful and is worth the effort required to learn it. For example, Laplace, 
Fourier, and z-transforms, along with the inverse transforms, can be calculated.

Programs and diagrams from MATLAB and SIMULINK are given for many 
of the examples in this book. Results are also presented for certain examples, but 
these results may not be in the form that the programs display.

Students are asked to verify many problem results with MATLAB. The pro-
grams required have been given in appropriate examples; usually, students are not 
asked to write new programs.

t
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Figure 1.26  Transient circuit.
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As stated in Chapter 1, engineers must model two distinct physical phenomena. 
The first is physical systems, which can be modeled by mathematical equations. For 
example, continuous-time, or analog, systems (systems that contain no sampling) 
can be modeled by ordinary differential equations with constant coefficients. An 
example of such a system is a linear electrical circuit. Of course, it is important to 
remember that the accuracy of these mathematical models may vary.

A second physical phenomenon to be modeled is called a signal. Physical sig-
nals are modeled by mathematical functions. One example of a physical signal is the 
voltage that is applied to the speaker in a radio. Another example is the temperature 
at a designated point in a particular room. This signal is a function of time, since the 
temperature varies with time. We can express this temperature as

 temperature at a point = u1t2, (2.1)

where u1t2 has the units of, for example, degrees Celsius. To be more precise in this ex-
ample, the temperature in a room is a function of time and of space. We may designate 
a point in a room in the rectangular coordinates x, y, and z. Equation (2.1) then becomes

 temperature in a room = u1x, y, z, t2, (2.2)

where the point in a room is identified by the three space coordinates x, y, and z. 
The signal in (2.1) is a function of one independent variable, whereas the signal in 
(2.2) is a function of four independent variables.

In this book, we limit signals to having one independent variable (except in 
Section 12.7, where we briefly discuss images that are functions of two dimensions). 
In general, this independent variable will be time t. Signals are divided into two 
natural categories. The first category to be considered is continuous-time signals, 
or simply, continuous signals. A signal of this type is defined for all values of time. 
A continuous-time signal is also called an analog signal. A continuous-time system is 
a system in which only continuous-time signals appear.

There are two types of continuous time signals. A continuous-time signal 
x1t2 can be a continuous-amplitude signal, for which the time-varying amplitude 

2 Continuous-time 
signAls And systems
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can assume any value. A continuous-time signal may also be a discrete-amplitude  
signal, which can assume only certain defined amplitudes. An example of a discrete-
amplitude continuous-time signal is the output of a digital-to-analog converter. (See 
Figure 1.17.) For example, if the binary signal into the digital-to-analog converter 
is represented by eight bits, the output-signal amplitude can assume only 28 = 256 
different values.

The second category for signals is discrete-time signals, or simply, discrete sig-
nals. A discrete signal is defined at only certain instants of time. For example, sup-
pose that a signal f1t2 is to be processed by a digital computer. [This operation is 
called digital signal processing (DSP).] Since a computer can operate on only a num-
ber and not a continuum, the continuous signal must be converted into a  sequence of 
numbers by sampling. This sequence of numbers is called a discrete-time signal. Like 
continuous-time signals, discrete-time signals can be either continuous  amplitude or 
discrete amplitude. These signals are described in detail in Chapter 9. A discrete-
time system is a system in which only discrete-time signals appear.

In some physical systems, both continuous-time and discrete-time signals 
 appear. We call these systems hybrid, or sampled-data, systems. An example is an 
automatic aircraft-landing system, in which the signals that control the aircraft are 
calculated by a digital computer. We do not consider hybrid systems in this book. 
Continuous-time signals and systems are introduced in this chapter, with discrete-
time signals and systems introduced in Chapter 9.

 2.1 trAnsformAtions of Continuous-time signAls

In this chapter, we consider functions of the independent variable time t, such as 
x1t2; the variable time can assume all values: - ∞ 6 t 6 ∞ . Later we will consider 
the case that x1t2 can be complex, but time t is always real.

We begin by considering six transformations on a real function of the real 
variable, denoted as x1t2. The first three are transformations in time, and the sec-
ond three are transformations in amplitude. These transformations are especially 
useful in the applications of Fourier series in Chapter 4 and in applications of the 
Fourier transforms, the z-transform, and the Laplace transform in later chapters.

time transformations

We first consider the transformation of time reversal.

Time Reversal
In time reversal, we create a new, transformed signal y1t2 by replacing t with - t in the 
original signal, x1t2. Hence,

 y1t2 = x1- t2, (2.3)

where y1t2 denotes the transformed signal. The result of the time-reversal transforma-
tion is that for any particular value of time, t = t0,  y1t02 = x1- t02, and y1- t02 = x1t02.



Sec. 2.1    Transformations of Continuous-Time Signals 25

An example of time reversal is given in Figure 2.1 in which the time-reversed 
signal, y1t2, is the mirror image of the original signal, x1t2, reflected about the verti-
cal axis. We shall see later, when we study convolution in Chapter 3, that one applica-
tion of time reversal is in calculating the responses of systems to input signals.

A real-life example of time reversal is playing music on a CD backwards. Many people 
play popular music recordings in reverse. A number of musicians, from the Beatles, to 
Pink Floyd, to Frank Zappa, have included backwards tracks in their music.

In general, we must verify any analysis or design in engineering. For the pro-
cedures of this section, we can assign a value of t = t0 and find y1t02, where t0 is a 
chosen fixed value of time. Next, we let t = - t0 and find x1- t02. If the time reversal 
is correct, then y1t02 must equal x1- t02. Testing the values in Figure 2.1 verifies the 
results of the example.

Next we consider time scaling.

Time Scaling
Given a signal x1t2, a time-scaled version of this signal is

 y1t2 = x1at2, (2.4)

where a is a real constant.

Figure 2.2(a) shows a signal x1t2. As examples of time scaling, we plot the 
signals y11t2 = x12t2 and y21t2 = x10.1t2.

Figure 2.2(b) shows the transformed signal y11t2. A comparison of the plots 
of x1t2 and y11t2 shows that for any particular value of time t = t0,  y11t02 = x12t02 
and x1t02 = y11t0/22. It is seen that y11t2 is a time-compressed (sped-up) version 
of x1t2.

Figure 2.2(c) shows the second transformed signal y21t2 = x10.1t2. A com-
parison of the plots of x1t2 and y21t2 shows that for any particular value of time 
t = t0,  y21t02 = x10.1t02 and x1t02 = y2110t02. It is seen that y21t2 is a time-stretched 
(slowed-down) version of x1t2.
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Figure 2.1  Time reversal of a signal.



26 Continuous-Time Signals and Systems    Chap. 2

From the development just described, we see that the time-scaled signal x1at2 
is compressed in time for � a � 7 1 and is expanded in time for � a � 6 1. One appli-
cation of independent-variable scaling is the design of certain filters, as we will see 
later when we study filter design in Chapter 6.

The wavelet transform, a focus of much current research in signal processing, uses 
time-scaling to analyze signals simultaneously in both the time and the frequency do-
mains. The wavelet transform is the basis of JPEG2000, the new standard for image 
compression. See www.jpeg.org for more information.
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A real-life example of time scaling is listening to an answering-machine message on fast 
forward. This speeds up the signal in time and increases the pitch, or frequency content 
of the speaker’s voice. A second example would be playing a forty-five-revolutions- 
per-minute (45-rpm) analog recording at 33 rpm. This would both slow down the signal 
in time and decrease the pitch of the signal. Conversely, playing a 33-rpm recording at 
45 rpm would speed up the signal and increase the pitch of the voice.

Next we consider time shifting.

Time Shifting
Given a signal x1t2, a time-shifted version of this signal is

 y1t2 = x1t - t02, (2.5)

where t0 is a constant.

Note that y1t02 = x102. Hence, if t0 is positive, the shifted signal y1t2 is delayed 
in time [shifted to the right relative to x1t2]. If t0 is negative, y1t2 is advanced in time 
(shifted to the left). Consider the signal in Figure 2.3(a). We wish to plot the time-
shifted signals y11t2 = x1t - 22 and y21t2 = x1t + 12. The transformed signals are 
plotted in Figure 2.3(b) and (c).

As a second example of time shifting, for the signal

 x1t2 = e-t cos13t - p�22,

the time-shifted signal is given by

 y1t2 = x1t - t02 = e-1t - t02cos131t - t02 - p�22 = et0e-tcos13t - 3t0 - p�22.

As will be shown later, one application of time shifting is in calculating the 
responses of systems to input signals.

We now develop a general approach to independent-variable transformations. 
The three transformations in time just considered are of the general form

 y1t2 = x1at + b2. (2.6)

In this equation, a and b are real constants. For clarity, we let t denote time in 
the original signal. The transformed t-axis equation is found from

 t = at + b 1  t =
t

a
-  

b
a

. (2.7)

For example,

 y1t2 = x1-2t + 32.

The value a = -2 yields time reversal (the minus sign) and time scaling 1 � a � = 22. 
The value b = 3 yields a time shift. The transformed t-axis equation for this example 
is found from (2.7):

 t = -2t + 3 1  t = -
t

2
+

3
2

.
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An example of the transformation in (2.6) and (2.7) is now given.

 exAmple 2.1 time transformation of a signal

Consider the signal x1t2 in Figure 2.4(a). We wish to plot the transformed signal

 y1t2 = xa1 -  
t
2
b .
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Figure 2.3  Time-shifted signals.
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This transformation has reversal, scaling, and shifting. First, we solve the transformation for 
the variable t:

 t = 1 -  
t
2

1 t = 2 - 2t.

The t-axis is shown below the time axis in Figure 2.4(a), and Figure 2.4(b) gives the desired 
plot of the transformed signal. As always, we should check our work. For any particular value 
of time, t = t0, we can write, from (2.7),

 y1t02 = x1at0 + b2   and  x1t02 = ya t0

a
-  

b
a
b .

Choosing t0 = 1 as an easily identifiable point in x1t2 from Figure 2.4(a), we calculate

 x112 = y12 - 21122 = y102.

Again choosing t0 = 1, we calculate

 y112 = xa1 -  
1
2
b = xa1

2
b .

Both calculated points confirm the correct transformation. ■

A general approach for plotting transformations of the independent variable 
is as follows:

 1. On the plot of the original signal, replace t with t.

 2. Given the time transformation t = at + b, solve for t =
t

a
-  

b
a

.
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Figure 2.4  Signals for Example 2.1.
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 3. Draw the transformed t-axis directly below the t@axis.
 4. Plot y1t2 on the t-axis.

Three transformations of time (the independent variable) have been  described. 
Three equivalent transformations of the amplitude of a signal (the dependent vari-
able) are now defined.

Amplitude transformations

We now consider signal-amplitude transformations. One application of these 
transformations is in the amplification of signals by physical amplifiers. Some 
amplifiers not only amplify signals, but also add (or remove) a constant, or dc, 
value. A second use of amplitude transformations is given in Chapter 4, in applica-
tions of Fourier series. Amplitude transformations follow the same rules as time 
transformations.

The three transformations in amplitude are of the general form

 y1t2 = Ax1t2 + B, (2.8)

where A and B are constants. For example, consider y1t2 = -3x1t2 - 5. The 
value A = -3 yields amplitude reversal (the minus sign) and amplitude  scaling 
1 � A � = 32, and the value B = -5 shifts the amplitude of the signal. Many  
physical amplifiers invert the input signal in addition to amplifying the signal. 
(The gain is then a negative number.) An example of amplitude scaling is now 
given.

 exAmple 2.2 Amplitude transformation of a signal

Consider the signal of Example 2.1, which is shown again in Figure 2.5(a). Suppose that this 
signal is applied to an amplifier that has a gain of 3 and introduces a bias (a dc value) of -1, 
as shown in Figure 2.5(b). We wish to plot the amplifier output signal

 y1t2 = 3x1t2 - 1.

We first plot the transformed amplitude axis, as shown in Figure 2.5(a). For example, 
when x1t2 = 1, y1t2 = 2. Figure 2.5(c) shows the desired plot of the transformed signal 
y1t2. ■

 exAmple 2.3 time and amplitude transformation of a signal

Next we consider the signal

 y1t2 = 3xa1 -  
t
2
b - 1,
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which has (1) the time transformation of Example 2.1 and Figure 2.4 and (2) the amplitude 
transformation of Example 2.2 and Figure 2.5(c). To plot this transformed signal, we first 
transform the amplitude axis, as shown in Figure 2.5(c). The t-axis of Figure 2.4(a) is redrawn 
in Figure 2.5(c) to facilitate the time transformation.
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t
2
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Figure 2.5  Signals for Examples 2.2 and 2.3.
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The signal is then plotted on the t-axis, as shown in Figure 2.5(d). To verify one point, let 
t = 1. From Figure 2.5(d), y112 = 0.5. From Figure 2.5(a),

 3x11 -  t>22 - 1 2
t = 1

= 310.52 - 1 = 0.5,

and the point is verified. ■

In summary, the six transformations defined in this section are (a) reversal, 
scaling, and shifting with respect to time; and (b) reversal, scaling, and shifting with 
respect to amplitude. These transformations are listed in Table 2.1. All six transfor-
mations have applications in signal and system analysis.

 2.2 signAl ChArACteristiCs

In this section, certain characteristics of continuous-time signals are defined. These 
characteristics are needed for later derivations in signal and system analysis.

even and odd signals

We first define the signal characteristics of even symmetry and odd symmetry. By 
definition, the function (signal) is even if

 xe1t2 = xe1- t2. (2.9)

An even function has symmetry with respect to the vertical axis; the signal for 
t 6 0 is the mirror image of the signal for t 7 0. The function x1t2 = cos vt is 
even because cos vt = cos 1-vt2. Another example of an even function is given 
in Figure 2.6.

By definition, a function is odd if

 xo1t2 = -xo1- t2. (2.10)

An odd function has symmetry with respect to the origin. The function x1t2 = sin vt 
is odd because sin vt = -sin1-vt2. Another example of an odd function is given 
in Figure 2.7.

Table 2.1  Transformations of Signals

name y 1t 2
Time reversal x1- t2
Time scaling x1at2
Time shifting x1t - t02
Amplitude reversal -x1t2
Amplitude scaling Ax1t2
Amplitude shifting x1t2 + B
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Any signal can be expressed as the sum of an even part and an odd part; that is,

 x1t2 = xe1t2 + xo1t2, (2.11)

where xe1t2 is even and xo1t2 is odd. Replacing t with - t in this equation yields

 x1- t2 = xe1- t2 + xo1- t2 = xe1t2 - xo1t2 (2.12)

from (2.9) and (2.10). Adding (2.11) and (2.12) and dividing by 2 yields

 xe1t2 = 1
2 [x1t2 + x1- t2]. (2.13)

This equation is used to solve for the even part of a function x1t2. Subtracting (2.12) 
from (2.11) and dividing by 2 yields

 xo1t2 = 1
2 [x1t2 - x1- t2], (2.14)

which is used to find the odd part of a function.
The average value Ax of a signal x1t2 is defined as

 Ax =  lim
T S  ∞

1
2T L

T

-T

x1t2  dt.

The average value of a signal is contained in its even function, since the average 
value of a bounded odd function is zero.
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� 2 Figure 2.6  Even signal.

A

�A

xo(t)

1 20 t�1�2

Figure 2.7  Odd signal.
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Even and odd functions have the following properties:

 1. The sum of two even functions is even.
 2. The sum of two odd functions is odd.
 3. The sum of an even function and an odd function is neither even nor odd.
 4. The product of two even functions is even.
 5. The product of two odd functions is even.
 6. The product of an even function and an odd function is odd.

These properties are easily proved. An example is given to illustrate some of the 
relations developed thus far in this section.

 exAmple 2.4 even and odd signals

We consider the signal x1t2 of Example 2.1. This signal is given again in Figure 2.8(a). The 
time-reversed signal x1- t2 is also given. The two signals are added and scaled in amplitude 
by 0.5 to yield the even signal xe1t2 of (2.13). This even signal is plotted in Figure 2.8(b). 
Next, x1- t2 is subtracted from x1t2, and the result is amplitude scaled by 0.5 to yield the odd 
signal xo1t2 of (2.14). This odd signal is plotted in Figure 2.8(c). For verification, we see that 
adding xe1t2 and xo1t2 yields the signal x1t2. ■

As will be shown in Chapter 5 and later chapters, even-function and  odd- 
function properties aid us in understanding and applying the Fourier transform to 
system and signal analysis. These properties are useful in both the continuous-time 
Fourier transform and the discrete-time Fourier transform. In addition, these prop-
erties are useful in both the development and the applications of the Fourier series, 
as shown in Chapter 4.

periodic signals

Next we consider the important topic of periodic functions. By definition, a continuous-
time signal x1t2 is periodic if

 x1t2 = x1t + T2, T 7 0 (2.15)

for all t, where the constant T is the period. A signal that is not periodic is said to be 
aperiodic. In (2.15), we replace t with 1t + T2, resulting in

 x1t + T2 = x1t + 2T2.

This equation is also equal to x1t2 from (2.15). By repeating this substitution, we 
see that a periodic function satisfies the equation

 x1t2 = x1t + nT2,
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  Figure 2.8  Signals for Example 2.4.

where n is any integer. Hence, a periodic signal with period T 7 0 is also  periodic 
with period nT.

The minimum value of the period T 7 0 that satisfies the definition 
x1t2 = x1t + T2 is called the fundamental period of the signal and is denoted as T0. 
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With T0 in seconds, the fundamental frequency in hertz (the number of periods per 
second) and the fundamental frequency in rad/s are given by

 f0 =
1
T0

 Hz, v0 = 2pf0 =
2p
T0

  rad>s, (2.16)

respectively.
Examples of periodic signals are the sinusoids xc1t2 = cos vt and xs1t2 = sin vt. 

The movement of a clock pendulum is periodic, as is the voltage used for ac electric-
power distribution. Both signals are usually modeled as  sinusoids, even though nei-
ther is exactly sinusoidal. The movement of the earth is periodic, with periods of one 
day and of one year (approximately). Most physical signals that are dependent on the 
earth’s movement, such as the time of sunrise and average temperatures, are usually 
modeled as sinusoids.

A third example of a periodic signal is given in Figure 2.9. This signal, called 
a sawtooth wave, is useful in sweeping a beam of electrons across the face of a 
cathode ray tube (CRT). If a CRT uses an electric field to sweep the beam of elec-
trons, the signal of Figure 2.9 is a voltage; if a magnetic field is used, the signal is 
a current.

A special case of a periodic function is that of x1t2 equal to a constant. A 
constant satisfies the definition x1t2 = x1t + T2 for any value of T. Because there 
is no smallest value of T, the fundamental period of a constant signal is not defined. 
However, it is sometimes convenient to consider a constant signal A to be the limit-
ing case of the sinusoid x1t2 = A  cos vt, with v approaching zero. For this case, the 
period T is unbounded.

Two examples concerning periodic functions will now be given.

 exAmple 2.5 periodic signals

In this example, we test two functions for periodicity. The function x1t2 = esin t is periodic 
because

 x1t + T2 = esin1t + T2 = esin t = x1t2,

with sin1t + T2 = sin  t for T = 2p. The function x1t2 = tesin  t is not periodic, since

 x1t + T2 = 1t + T2esin1t + T2 = 1t + T2esin  t ≠ x1t2

for T = 2p. A factor in the last function is periodic, but the function itself is aperiodic. ■

1

x(t)

10 2 t�1   Figure 2.9  Sawtooth waveform.
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 exAmple 2.6 power-supply periodic signals

Power supplies that convert an ac voltage (sinusoidal voltage) into a dc voltage (constant 
voltage) are required in almost all electronic equipment that do not use batteries. Shown in 
Figure 2.10 are voltages that commonly appear in certain power supplies. (See Section 1.2.)

The voltage in Figure 2.10(a) is called a half-wave rectified signal. This signal is gener-
ated from a sinusoidal signal by replacing the negative half cycles of the sinusoid with a volt-
age of zero. The positive half cycles are unchanged.

The signal in Figure 2.10(b) is called a full-wave rectified signal. This signal is generated 
from a sinusoidal signal by the amplitude reversal of each negative half cycle. The positive 
half cycles are unchanged. Note that the period of this signal is one-half that of the sinusoid 
and, hence, one-half that of the half-wave rectified signal.

It is necessary in the analysis and design of these power supplies to express these  signals 
as mathematical functions. These mathematical functions will be written after the definitions 
of some additional signals are presented.

the sum of continuous-time periodic signals

The sum of continuous-time periodic signals is periodic if and only if the ratios of 
the periods of the individual signals are ratios of integers. If a sum of N periodic 
signals is periodic, the fundamental period can be found as follows [1]:

 1. Convert each period ratio, T01�T0i
, 2 … i … N, to a ratio of integers, where 

T01 is the period of the first signal considered and T0i is the period of one of 
the other N - 1 signals. If one or more of these ratios is not rational, then 
the sum of signals is not periodic.

0

�T0

�T0

�2T0 0 T0

T0/2 2T0T0

2T0 3T0 4T0 t

t

(a)

(b)

Vm

v(t)

Vm

v(t)

 
  Figure 2.10  (a) Half-wave and (b) full-wave 
 rectified signals.

 ■
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 2. Eliminate common factors from the numerator and denominator of each 
ratio of integers.

 3. The fundamental period of the sum of signals is T0 = k0T01, where k0 is 
the least common multiple of the denominators of the individual ratios of 
integers.

 exAmple 2.7 sum of periodical signals

Three periodic signals 3x11t2 = cos13.5t2,  x21t2 = sin12t2,  and x31t2 = 2  cos17t
6 24  are 

summed to form v1t2. The signal v1t2 is shown in Figure 2.11(a). To determine whether 
v1t2 is periodic, we must see if the ratios of the periods of x11t2,  x21t2, and x31t2 are ratios 
of integers:

 T01 =
2p
v1

=
2p
3.5

, T02 =
2p
v2

=
2p
2

, and T03 =
2p
v3

=
2p
7�6

 .

t

w(t)

0

0 20 40

(b)

60
�4

4

2

�2

t

v(t)

0 20 40

(a)

60
�4

�2

0

2

4

Figure 2.11  The sums of (a) three periodic 
signals and (b) four periodic signals.
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The ratios of periods are

 
T01

T02
=

2p�3.5

2p�2
=

2
3.5

=
4
7

  and  
T01

T03
=

2p�3.5

2p�(7/6)
=

7�6

3.5
=

7
21

.

Both are ratios of integers; therefore, v1t2 is periodic.
The period of v1t2 is determined by first eliminating any common factors from the nu-

merator and denominator of each ratio of periods. In this case, we have no common factor in 
the ratio T01�T02

, but the ratio T01�T03
 has a common factor of 7. After eliminating the common 

factor, we have T01�T03
= 1�3.

The next step is to find the least common multiple of the denominators of the ratios. In 
this case, the least common multiple is n1 = 3 * 7 = 21.

The fundamental period of v1t2 is T0 = n1T01 = 21 *
2p
3.5

= 12p1s2. This period can 

be confirmed by examination of Figure 2.11(a).

Another signal, x41t2 = 3sin15pt2, is added to v1t2 to give w1t2 = x11t2 + x21t2 +
x31t2 + x41t2.

This sum of four periodic signals is shown in Figure 2.11(b). The periodicity of this new 
sum of signals must be determined as was done previously for v1t2. The addition of x41t2 
gives the ratio of periods,

 
T01

T04
=

2p�3.5

2p�5p
=

5p
3.5

.

Since p is an irrational number, this ratio is not rational. Therefore, the signal w1t2 is not 
periodic. ■

In this section, the properties of evenness, oddness, and periodicity have been 
 defined. In the next section, we consider certain signals that commonly appear in 
models of physical systems.

 2.3 Common signAls in engineering

In this section, models of signals that appear naturally in a wide class of physical 
systems are presented. One such signal, the sinusoid, was mentioned in Section 2.2.

We begin this section with an example. We prefer to model continuous-time 
physical systems with ordinary linear differential equations with constant coeffi-
cients when possible (when this model is of sufficient accuracy). A signal that ap-
pears often in these models is one whose time rate of change is directly proportional 
to the signal itself. An example of this type of signal is the differential equation

 
dx1t2

dt
= ax1t2, (2.17)

where a is constant. The solution of this equation is the exponential  function 
x1t2 = x102eat for t Ú 0, which can be verified by direct substitution in (2.17). 
An example is the current in the resistance–inductance (RL) circuit of Figure 2.12:
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 L 
di1t2

dt
+ Ri1t2 = 0 1

di1t2
dt

= -
R
L

 i1t2.

For this circuit, in (2.17) a = -R/L. The current is then i1t2 = i102e-Rt/L, where 
i102 is the initial current.

For the RL circuit, i102, R, and L are all real. It is sometimes convenient in the 
 exponential function

 x1t2 = Ceat (2.18)

to consider the case that parameters C and a can be complex. Complex signals  cannot 
appear in physical systems. However, the solutions of many differential equations 
are simplified by assuming that complex signals can appear both as  excitations and 
in the solutions. Then, in translating the results back to physical systems, only the 
real part or the imaginary part of the solution is used.

An important relation that is often applied in analyses which involve complex 
exponential functions is Euler’s relation, given by

 eju = cos u + j  sin u. (2.19)

(See Appendix D.) Replacing u in (2.19) with -u yields

 e-ju = cos1-u2 + j  sin1-u2 = cos u - j  sin u, (2.20)

since the cosine function is even and the sine function is odd. The sum of (2.19) and 
(2.20) can be expressed as

 cos u =
eju + e-ju

2
, (2.21)

and the difference of (2.19) and (2.20) can be expressed as

 sin u =
eju - e-ju

2j
. (2.22)

The four relations (2.19), (2.20), (2.21), and (2.22) are so useful in signal and system 
analysis that they should be memorized.

The complex exponential in (2.19) can also be expressed in polar form as

 eju = 1∠u, (2.23)

R L

i(t)

  Figure 2.12  RL circuit.
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where the notation R ∠u signifies the complex function of magnitude R at the 
angle u. To prove (2.23), consider, from (2.19),

 � eju � = [cos2u + sin2u]1/2 = 1

and

 arg eju = tan-1 c sin u
cos u

d = u, (2.24)

where arg1 #2 denotes the angle of 1 #2. Three cases for exponential functions will 
now be investigated.

CAse 1

C and a real

For the first case, both C and a are real for the exponential x1t2 = Ceat. The product 1at2 is 
unitless; hence, the units of a are the reciprocal of those of t. The units of C are the same as 
those of x1t2.

The signal x1t2 = Ceat is plotted in Figure 2.13 for C 7 0 with a 7 0, a 6 0, 
and a = 0. For a 7 0, the signal magnitude increases monotonically without limit 
with increasing time. For a 6 0, the signal magnitude decreases monotonically to-
ward zero as time increases. For a = 0, the signal is constant.

For a 6 0, the signal decays toward zero, but does not reach zero in finite 
time. To aid us in differentiating between exponentials that decay at different rates, 
we express the exponential as, for a 6 0,

 x1t2 = Ceat = Ce-t/t, t 7 0. (2.25)

The constant parameter t is called the time constant of the exponential.
For example, for x1t2 = Ce-2t with t in seconds, the time constant is t = 0.5  s. 

As a second example, the absorption of certain drugs into the human body is mod-
eled as being  exponential with time constants that can be in hours or even days. For 
a third example, voltages and currents in microcircuits can have time constants in 
nanoseconds.

C

0 t

a � 0

Ceat Ceat Ceat

C

0 t

a � 0 C

0 t

a � 0

Figure 2.13  Exponential signals.
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The time constant of an exponential signal is illustrated in Figure 2.14. The 
derivative of x1t2 in (2.25) at t = 0 is given by

 
dx1t2

dt
`
t = 0

= -  
C
t

e-t/t `
t = 0

= -
C
t

.

If the signal continued to decay from t = 0 at this rate, it would be zero at t = t. 
Actually, the value of the signal at t = t is equal to 0.368 C; that is, the signal has 
decayed to 36.8 percent of its amplitude after t seconds. This result is general; the 
signal x1t2 = Ce-t/t at time t1 + t is equal to 0.368Ce-t1/t, or 0.368x1t12. The inter-
ested reader can show this.

Table 2.2 illustrates the decay of an exponential as a function of the time con-
stant t. While infinite time is required for an exponential to decay to zero, the expo-
nential decays to less than 2 percent of its amplitude in 4t units of time and to less 
than 1 percent in 5t units of time.

In most applications, in a practical sense the exponential signal can be ignored 
after four or five time constants. Recall that the models of physical phenomena are 
never exact. Hence, in many circumstances, high accuracy is unnecessary either in 
the parameters of a system model or in the amplitudes of signals.

CAse 2

C Complex, a imaginary

Next we consider the case that C is complex and a is imaginary—namely,

 x1t2 = Ceat; C = Aejf = A∠f, a = jv0, (2.26)

Table 2.2  Exponential Decay

t e-t/T

0 1.0
t 0.3679
2t 0.1353
3t 0.0498
4t 0.0183
5t 0.0067

Ce�t/�

C

0 t�   Figure 2.14  Signal illustrating the time constant.
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where A, f, and v0 are real and constant. The complex exponential signal x1t2 can be 
 expressed as

  x1t2 = Ae jfe jv0t = Ae j1v0t + f2  

  = A cos1v0t + f2 + jA sin1v0 t + f2 (2.27)

from Euler’s relation in (2.19). In (2.27), all factors are real, except, of course, j = 1-1. 
The sinusoids are periodic, with frequency v0 and period T0 = 2p/v0. Hence, the complex 
exponential is also periodic. (See Problem 2.12.) A plot of the real part of (2.27) is given in 
Figure 2.15.

With respect to (2.27), we make the following definition:

Harmonically Related Complex exponentials
Harmonically related complex exponentials are a set of functions with frequencies 
 related by integers, of the form

 xk1t2 = Akejkv0t, k = {1, {2, c. (2.28)

We will make extensive use of harmonically related complex exponentials later 
when we study the Fourier series representation of periodic signals.

CAse 3

Both C and a Complex

For this case, the complex exponential x1t2 = Ceat has the parameters

 x1t2 = Ceat; C = Aejf; a = s0 + jv0, (2.29)

where A, f, s, and v0 are real and constant. The complex exponential signal can then be 
expressed as

  x1t2 = Aejfe1s0 + jv02t = Aes0t e j1v0t + f2  
  = Aes0 t cos 1v0t + f2 + jAes0t sin 1v0t + f2 (2.30)
  = xr1t2 + jxi1t2.  

In this expression, both xr1t2 = Re[x1t2] and xi1t2 = Im[x1t2] are real. The notation Re[ # ] 
denotes the real part of the expression, and Im[ # ] denotes the imaginary part. Plots of the real 
part of (2.30) are given in Figure 2.16 for f = 0. Figure 2.16(a) shows the case that s0 7 0. 

A cos (   0t �   )�        �

A cos �

�T0 0

A

�A

T0 t2T0

  Figure 2.15  Sinusoidal signal.
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Figure 2.16(b) shows the case that s0 6 0; this signal is called an underdamped  sinusoid. For 
s0 = 0 as in Figure 2.15, the signal is called an undamped sinusoid.

In Figure 2.16(a), by definition, the envelope of the signal is {Aes0t. Because both the 
 cosine function and the sine function have magnitudes that are less than or equal to unity, in 
(2.30),

 -Aes0t F xr1t2 F Aes0t,  -Aes0t F xi1t2 F Aes0t. (2.31)

For the case that the sinusoid is damped 1s0 6 02, the envelope can be expressed as {Ae-t/t; 
we say that this damped sinusoid has a time constant of t seconds.

The signals defined in this section appear in the responses of a wide class of physical 
systems. In terms of circuit analysis, the real exponential of Case 1 appears in the transient, 
or natural, response of RL and RC circuits. The undamped sinusoid of Case 2 appears in the 
transient response of LC circuits (no resistance), and the underdamped sinusoid of Case 3 
can appear in the transient response of RLC circuits.

A physical circuit always has resistance. Hence, an undamped sinusoid can appear in 
the natural response of a physical circuit only if the circuit is designed to replace the energy, 
in each cycle, that is dissipated in the resistance in that cycle. This operation also appears in 
a pendulum clock, where the mainspring exactly replaces the energy lost to friction in each 
cycle of the pendulum’s swing.

 exAmple 2.8 time constants and a data-acquisition system

Data-acquisition systems are instrumentation systems in which the taking of measurements 
is controlled automatically by a computer. (See Section 1.3.) In these systems, it is often nec-
essary to switch the sensor circuits on command from the computer, before the taking of 
measurements. When switching occurs, the circuits used in the measurement  process must 
be  allowed to settle to steady state before the reading is taken. Usually, the transient terms 
in these circuits are exponential signals of the form Ce-t/t, with C and t real. To  increase 
the accuracy of the measurements, in some systems the measurement is delayed nine 
time constants 19t2 after the circuit is switched. Hence, the transient term has decayed to 
Ce-9 = 0.000123C, or to approximately 0.01 percent of its initial value. ■

Ae   0t cos    0t�             � 0 � 0�

Ae   0t�  

�Ae   0t�  

(a)

Ae   0t cos    0t�             � 0 � 0�

(b)

t t

Figure 2.16  Real part of a complex exponential.
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 2.4 singulArity funCtions

In this section, we consider a class of functions called singularity functions. We define 
a singularity function as one that is related to the impulse function (to be defined in 
this section) and associated functions. Two singularity functions are emphasized in 
this section: the unit step function and the unit impulse function. We begin with the 
unit step function.

unit step function

The unit step function, denoted as u1t2, is usually employed to switch other signals 
on or off. The unit step function is defined as

 u1t2 = e1, t 7 0
0, t 6 0

, (2.32)

where the independent variable is denoted as t. In the study of signals, we choose the 
independent variable to be a linear function of time. For example, if t = 1t - 52, 
the unit step is expressed as

 u1t - 52 = e1, t - 5 7 0 1 t 7 5
0, t - 5 6 0 1 t 6 5

.

This unit step function has a value of unity for t 7 5 and a value of zero for t 6 5. 
The general unit step is written as u1t - t02, with

 u1t - t02 = e1, t 7 t0
0, t 6 t0

.

A plot of u1t - t02 is given in Figure 2.17 for a value of t0 7 0.
The unit step function has the property

 u1t - t02 = [u1t - t02]2 = [u1t - t02]k, (2.33)

with k any positive integer. This property is based on the relations 102k = 0 and 
112k = 1, k = 1, 2, c. A second property is related to time scaling:

 u1at - t02 = u1t - t0>a2, a ≠ 0. (2.34)

(See Problem 2.21.)
Note that we have not defined the value of the unit step function at the 

point that the step occurs. Unfortunately, no standard definition exists for this 
value. As is sometimes done, we leave this value undefined; some authors define 
the value as zero, and some define it as one-half, while others define the value as 
unity.
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As previously stated, the unit step is often used to switch functions. An example 
is given by

  cos vt u1t2 = e cos vt, t 7 0
0, t 6 0

.

The unit step allows us mathematically to switch this sinusoidal function on at t = 0. 
Another example is v1t2 = 12u1t2 volts; this function is equal to 0 volts for t 6 0 
and to 12 volts for t 7 0. In this case, the unit step function is used to switch a 12-V 
source.

Another useful switching function is the unit rectangular pulse, rect(t/T), 
which is defined as

 rect1t/T2 = e1, -T/2 6 t 6 T/2
0, otherwise

.

This function is plotted in Figure 2.18(a). It can be expressed as three different func-
tions of unit step signals:

 rect1t/T2 = c u1t + T/22 - u1t - T/22
u1T/2 - t2 - u1-T/2 - t2.
u1t + T/22u1T/2 - t2

 (2.35)

These functions are plotted in Figure 2.18(b), (c), and (d).
The time-shifted rectangular pulse function is given by

 rect[1t - t02/T ] = e1, t0 - T/2 6 t 6 t0 + T/2
0, otherwise

. (2.36)

This function is plotted in Figure 2.19. Notice that in both (2.35) and (2.36) the rect-
angular pulse has a duration of T seconds.

The unit rectangular pulse is useful in extracting part of a signal. For example, 
the signal x1t2 =  cos t has a period T0 = 2p>v = 2p. Consider a signal composed 

u(t � t0)

t0 t

1

0 Figure 2.17  Unit step function.
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Figure 2.18  Unit rectangular pulse.
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of one period of this cosine function beginning at t = 0, and zero for all other time. 
This signal can be expressed as

 x1t2 = 1cos t2[u1t2 - u1t - 2p2] = e cos t, 0 6 t 6 2p
0, otherwise

.

The rectangular-pulse notation allows us to write

 x1t2 =  cos t rect[1t - p2/2p].

This sinusoidal pulse is plotted in Figure 2.20. Another example of writing the equa-
tion of a signal using unit step functions will now be given.

 exAmple 2.9 equations for a half-wave rectified signal

Consider again the half-wave rectified signal described in Section 1.2 and Example 2.6, and 
shown again as v1t2 in Figure 2.21. We assume that v1t2 is zero for t 6 0 in this example. If a 
system containing this signal is to be analyzed or designed, the signal must be expressed as a 
mathematical function. In Figure 2.21, the signal for 0 F t F T0 can be written as

 v11t2 = 1Vm sin v0t2[u1t2 - u1t - T0 /22]
  = Vm sin 1v0t2rect[1t - T0/42/1T0/22],

rect [(t � t0)/T ]

t0 t

1

0 T
2

t0 �
T
2

t0 �
   Figure 2.19  Time-shifted rectangular  

function.

x(t)

t

1

0 � 2�

�1
   Figure 2.20  The function 

x1t2 = cos t rect[1t - p2/2p].
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where T0 = 2p/v0. This signal, v11t2, is equal to the half-wave rectified signal for 0 F t F T0 
and is zero elsewhere. Thus, the half-wave rectified signal can be expressed as a sum of 
shifted signals,

  v1t2 = v11t2 + v11t - T02 + v11t - 2T02 + c  

  = a
∞

k = 0
v11t - kT02,  (2.37)

since v11t - T02 is v11t2 delayed by one period, v11t - 2T02 is v11t2 delayed by two pe-
riods, and so on. If the half-wave rectified signal is specified as periodic for all time, the 
lower limit in (2.37) is changed to negative infinity. As indicated in this example, express-
ing a periodic signal as a mathematical function often requires the summation of an infinity 
of terms. ■

unit impulse function

Engineers have found great use for j = 1-1, even though this is not a real number 
and cannot appear in nature. Electrical engineering analysis and design utilizes j ex-
tensively. In the same manner, engineers have found great use for the unit impulse 
function, d1t2, even though this function cannot appear in nature. In fact, the impulse 
function is not a mathematical function in the usual sense [2]. The unit impulse func-
tion is also called the Dirac delta function. The impulse function was introduced by 
Nobel Prize winning physicist Paul Dirac.

To introduce the impulse function, we begin with the integral of the unit step 
function; this integral yields the unit ramp function

 f1t2 = L
t

0
u(t - t0)dt = L

t

t0

dt = t 2
t0

t

= [t - t0]u(t - t02, (2.38)

where [t - t0]u1t - t02, by definition, is the unit ramp function. In (2.38), the 
factor u1t - t02  in the result is necessary, since the value of the integral is zero 
for t 6 t0. The unit step function and the unit ramp function are illustrated in 
Figure 2.22.

v(t)

t

Vm

0 T0/2 T0 2T0
  Figure 2.21  Half-wave rectified signal.
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Note that in Figure 2.22 and in (2.38), the unit step function is the derivative 
of the unit ramp function. We have no mathematical problems in (2.38) or in the 
derivative of (2.38). However, problems do occur if we attempt to take the second 
derivative of (2.38). We now consider this derivative.

The result of differentiating the unit step function u1t - t02 is not a function in 
the usual mathematical sense. The derivative is undefined at the only point, t = t0, 
where it is not zero. (See Figure 2.22.) However, this derivative has been shown, 
by the rigorous mathematical theory of distributions [2–6], to be very useful in the 
modeling and analysis of systems. We now consider this derivative as the limit of a 
derivative that does exist.

No signal can change instantaneously in a physical system, since this change, 
in general, represents an instantaneous transfer of energy. Hence, we can consider 
the function f1t2 in Figure 2.23(a) to be a more accurate model of a physical step 
function. We can differentiate this function and the resulting derivative is the rect-
angular pulse g1t2 of Figure 2.23(b); that is,

 g1t2 =
df1t2

dt
.

The practical function f1t2 in Figure 2.23(a) approaches the unit step function 
u1t - t02 if we allow P to approach zero. For this case, the width of g1t2 approaches 
zero and the amplitude becomes unbounded. However, the area under g1t2 remains 
constant at unity, since this area is independent of the pulse width P.

We often call the limit of g1t2 in Figure 2.23(b) as P approaches zero the unit 
impulse function. Hence, with d1t - t02 denoting the unit impulse function, we can 
employ the concept that

 lim
PS0 g1t2 = d1t - t02 (2.39)

u(t � t0)

t0 t

1

0

[t � t0]u(t � t0)

t0 t0 � 1 t

1

0   Figure 2.22  Integral of the unit step function.
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to convey a mental image of the unit impulse function. However, the impulse func-
tion is not a function in the ordinary sense, since it is zero at every point except t0, 
where it is unbounded. However, the area under a unit impulse function is well 
defined and is equal to unity. On the basis of these properties, we define the unit 
impulse function d1t - t02 by the relations

 d1t - t02 = 0, t ≠ t0; 

 L
∞

- ∞
d1t - t02dt = 1. (2.40)

We depict the impulse function as a vertical arrow as shown in Figure 2.23(c), where 
the number written beside the arrow denotes the multiplying constant of the unit 
impulse function. For example, for the function 5d1t - t02, that number is 5. This 
multiplying constant is called the weight of the impulse. The amplitude of the im-
pulse function at t = t0 is unbounded, while the multiplying factor (the weight) is 
the area under the impulse function.

The definition of the impulse function (2.40) is not mathematically rigorous 
[3]; we now give the definition that is. For any function f1t2 that is continuous at 
t = t0, d1t - t02 is defined by the integral

 L
∞

- ∞
f1t2d1t - t02dt = f1t02. (2.41)

f(t)

t0 t

1

0 t0 �  �

(a)

g(t)

t0 t0 t0 �  �

(b)

1
�

t0 t0

1

(c)

(t � t0)�

  Figure 2.23  Generation of an impulse function.
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The impulse function is defined by its properties rather than by its values. The two 
definitions of the impulse function, (2.40) and (2.41), are not exactly equivalent; 
use of the rectangular pulse in defining the impulse function is not mathematically 
rigorous and must be used with caution [4]. However, (2.40) allows us to derive in a 
simple, nonrigorous manner some of the properties of the impulse function (2.41). 
In addition, (2.40) is useful when applying the impulse function in signal and system 
analysis.

We say that the impulse function d1t - t02 “occurs” at t = t0 because this con-
cept is useful. The quotation marks are used because the impulse function (1) is not an 
ordinary function and (2) is defined rigorously only under the integral in (2.41). The 
operation in (2.41) is often taken one step further; if f1t2 is continuous at t = t0, then

 f1t2d1t - t02 = f1t02d1t - t02. (2.42)

The product of a continuous-time function f1t2 and d1t - t02 is an impulse with its 
weight equal to f1t2 evaluated at time t0, the time that the impulse occurs. Equations 
(2.41) and (2.42) are sometimes called the sifting property of the impulse function. 
This result can be reasoned by considering the impulse function, d1t - t02, to have 
a value of zero, except at t = t0. Therefore, the only value of f1t2 that is significant 
in the product f1t2d1t - t02 is the value at t = t0, f1t02.

One practical use of the impulse function (2.41) is in modeling sampling 
 operations, since the result of sampling is the selection of a value of the function at a 
particular instant of time. The sampling of a time signal by an analog-to-digital con-
verter (a hardware device described in Section 1.2) such that samples of the signal 
can be either processed by a digital computer or stored in the memory of a digital 
computer is often modeled as in (2.41). If the model of sampling is based on the 
impulse function, the sampling is said to be ideal, because an impulse function can-
not appear in a physical system. However, as we will see later, ideal sampling can 
accurately model physical sampling in many applications.

Table 2.3 lists the definition and several properties of the unit impulse func-
tion. See Refs. 2 through 6 for rigorous proofs of these properties. The properties 

Table 2.3  Properties of the Unit Impulse Function

 1. L
∞

- ∞
f1t2d1t - t02dt = f1t02, f1t2 continuous at t = t0

 2. L
∞

- ∞
f1t - t02d1t2dt = f1- t02, f1t2 continuous at t = - t0

 3. f1t2d1t - t02 = f1t02d1t - t02, f1t2 continuous at t = t0

 4. d1t - t02 =
d
dt

 u1t - t02

 5. u1t - t02 = L
t

- ∞
d1t - t02dt = e 1, t 7 t0

0, t 6 t0

 6. L
∞

- ∞
d1at - t02dt =

1
� a � L

∞

- ∞
da t -   

t0

a
bdt

 7. d1- t2 = d1t2
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listed in Table 2.3 are very useful in the signal and system analysis to be covered 
later.

 exAmple 2.10 integral evaluations for impulse functions

This example illustrates the evaluation of some integrals containing impulse functions, using 
Table 2.3, for f(t) given in Figure 2.24(a). First, from Property 1 in Table 2.3 with t0 = 0,

 L
∞

- ∞
f1t2d1t2dt = f102 = 2,

and the value of the integral is equal to the value of f(t) at the point at which the impulse 
function occurs. Next, for Figure 2.24(b), from Property 2 in Table 2.3,

 L
∞

- ∞
f1t - 12d1t2dt = f1-12 = 3.

As a third example, for Figure 2.24(c),

 L
∞

- ∞
f1t2d1t - 12dt = f112 = 1,

from Property 1 in Table 2.3. For Figure 2.24(d),

 L
∞

- ∞
f1t - 12d1t - 12dt = f102 = 2,

f(t)

t

4

2

1

0 2�2

(a)

(t)�

f(t � 1)

t

4

1

0 1 32�1

(b)

(t)�

f(t)

t

4

2 1

0 21�2 �1

(c)

(t � 1)�

(t � 1)�

f(t � 1)

t

4

1

0 1 32�1

(d)   Figure 2.24  Signals for Example 2.10.
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from Property 1 in Table 2.3. We have considered all possible combinations of delaying the 
functions. In each case, the value of the integral is that value of f(t) at which the impulse func-
tion occurs.

As a final example, consider the effects of time scaling the impulse function,

 L
∞

- ∞
f1t2d14t2dt =

1
4 L

∞

- ∞
f1t2d1t2dt =

f102
4

=
1
2

,

from Property 6 in Table 2.3. ■

Property 6 is considered further in Problem 2.20.
In this section, we have defined two signals, the step and impulse functions, 

that are used extensively in signal and system analysis. These signals belong to 
a class called singularity functions; singularity functions are the set of functions 
obtained by integrating and differentiating the impulse function (or the step 
function).

 2.5 mAthemAtiCAl funCtions for signAls

In Example 2.9, we wrote the equation of a half-wave rectified signal by using unit 
step functions. This topic is considered further in this section. First, we consider an 
example.

 exAmple 2.11 plotting signal waveforms

In this example, we consider a signal given in mathematical form:

 f1t2 = 3u1t2 + tu1t2 - [t - 1]u1t - 12 - 5u1t - 22. (2.43)

The terms of f(t) are plotted in Figure 2.25(a), and f(t) is plotted in Figure 2.25(b). We now 
verify these plots. The four terms of f(t) are evaluated as

  3u1t2 = e3, t 7 0
0, t 6 0

;

  tu1t2 = e t, t 7 0
0, t 6 0

;

  1t - 12u1t - 12 = e t - 1, t 7 1
0, t 6 1

;

  5u1t - 22 = e5, t 7 2
0, t 6 2

.
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Using these functions and (2.43), we can write the equations for f(t) (as the sum of four 
terms) over each different range:

  t 6 0, f1t2 = 0 + 0 - 0 - 0 = 0 ;

 0 6 t 6 1,  f1t2 = 3 + t - 0 - 0 = 3 + t ;

 0 6 t 6 2,  f1t2 = 3 + t - 1t - 12 - 0 = 4 ;

 2 6 t,  f1t2 = 3 + t - 1t - 12 - 5 = -1 .

The graph of f(t) given in Figure 2.25(b) is correct. ■
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0 1
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�2

3u(t)

tu(t)

t (s)

f(t)

�(t � 1) u(t � 1)

�5u(t � 2)

2 3 4

1 t (s)2 3 4

(a)

(b)

Figure 2.25  Signal for Example 2.11.
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Example 2.11 illustrates the construction of waveforms composed only of 
straight-line segments. Recall the general equation of a straight line:

 y - y0 = m[x - x0]. (2.44)

In this equation, y is the ordinate (vertical axis), x is the abscissa (horizontal axis), m 
is the slope and is equal to dy/dx, and 1x0, y02 is any point on the line.

A technique is now developed for writing the equations for functions com-
posed of straight-line segments. An example is given in Figure 2.26. The slopes of 
the segments are denoted as mi. The signal is zero for t 6 t0. For t 6 t1, the equa-
tion of the signal, denoted as x01t2, is given by

 x01t2 = m0[t - t0]u1t - t02; t 6 t1 , (2.45)

where x01t2 = x1t2 for t 6 t1.
To write the equation of the signal for t 6 t2, first we set the slope to zero by 

subtracting the slope m0:

 x11t2 = x01t2 - m0[t - t1]u1t - t12. (2.46)

Next we add the term required to give the slope m1,

 x21t2 = x11t2 + m1[t - t1]u1t - t12, (2.47)

with x21t2 = x1t2 for t 6 t2. Then, from the last three equations, for t 6 t2,

  x21t2 = m0[t - t0]u1t - t02 - m0[t - t1]u1t - t12 + m1[t - t1]u1t - t12
  = m0[t - t0]u1t - t02 + [m1 - m0][t - t1]u1t - t12; t 6 t2. (2.48)

This result is general. When the slope of a signal changes, a ramp function is added 
at that point, with the slope of this ramp function equal to the new slope minus the 
previous slope 1m1 - m02. At any point that a step occurs in the signal, a step func-
tion is added. An example using this procedure is now given.

 exAmple 2.12 equations for straight-line-segments signal

The equation for the signal in Figure 2.27 will be written. The slope of the signal changes 
from 0 to 3 for a change in slope of 3, beginning at t = -2. The slope changes from 3 to -3 at 
t = -1, for a change in slope of -6. At t = 1, the slope becomes 0 for a change in slope of 3. 

t0 t1

m0 m2m1

t2 t

x(t)

 Figure 2.26  Signal.
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The function steps from -3 to 0 at t = 3, for a change in amplitude of 3. Hence, the equation 
for x1t2 is given by

 x1t2 = 3[t + 2]u1t + 22 - 6[t + 1]u1t + 12 + 3[t - 1]u1t - 12 + 3u1t - 32.

To verify this result, we write the equation for each segment of the signal, using the proce-
dure illustrated in Example 2.11:

  t 6 -2,  f1t2 = 0 - 0 + 0 + 0 = 0;

  -2 6 t 6 -1,  f1t2 = 3[t + 2] - 0 + 0 + 0 = 3[t + 2];

  -1 6 t 6 1,  f1t2 = 3[t + 2] - 6[t + 1] + 0 + 0 = -3t;

  1 6 t 6 3,  f1t2 = [-3t] + 3[t - 1] + 0 = -3;

  3 6 t,    f1t2 = [-3] + 3 = 0.

We see that the equation is correct. ■

Next, an example of constructing the equation for a practical periodic wave-
form will be given. A problem in the design of circuits to drive a cathode ray tube 
(CRT), such as are used in analog oscilloscopes, computer monitors, and televi-
sion sets, is the generation of a constant lateral velocity for the electron beam 
as the beam sweeps across the face of the CRT. This problem was mentioned in 
Section 2.2. Control of the electron beam may be by either an electric field (set up 
by a voltage) or a magnetic field (set up by a current). In either case, a linear wave-
form, as shown in Figure 2.28, must be generated. For electric-field deflection, the 
waveform of Figure 2.28 is a voltage, and this is the case for the next example.

 exAmple 2.13 the equation for a sawtooth waveform

We wish to write the equation of the sawtooth waveform, as shown in Figure 2.28. The 
value T is the time required to sweep the electron beam from 0 volts to its maximum voltage, 
V. From (2.44),

 v1t2 =
V
T

 t, 0 6 t 6 T.

We can multiply this pulse by the unit rectangular pulse to force v1t2 to be zero for all other 
values of time, with the final result

 v(t) =
V
T

 t[u(t) - u(t - T)] =
V
T

 t rectJ ¢ t -
T
2
≤nT R . (2.49)

�2 �1

�3

3

1 2 3 t

x(t)

0

 Figure 2.27  Signal for Example 2.12.
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Recall from (2.35) that the rectangular pulse can also be expressed as other functions of unit 
step signals. ■

 exAmple 2.14 the equation for a sawtooth waveform

This example is a continuation of Example 2.13. The results of that example are used to write 
the equation of the periodic waveform of Figure 2.29. This waveform, called a sawtooth wave 
because of its appearance, is used to sweep an electron beam repeatedly across the face of the 
CRT. From Example 2.13, the equation of the sawtooth pulse for 0 6 t 6 T  is

[eq(2.49)] v1(t) =
V
T

 t[u(t) - u(t - T)] =
V
T

 t rectJ ¢ t -
T
2
≤nT R . 

Note that this pulse has been denoted as v11t2. Hence, as in the case of the half-wave rectified 
signal of Example 2.9 and (2.37), the pulse from T 6 t 6 2T  is v11t - T2:

  v1(t - T) =
V
T

[t - T][u(t - T) - u(t - 2T)]

  =
V
T

[t - T] rectJ ¢ t -
3T
2
≤nT R .

The interested reader can plot this function to show its correctness. In a similar manner, the 
pulse from kT 6 t 6 1k + 12T  is v11t - kT2:

 v11t - kT2 =
V
T

[t - kT][u1t - kT2 - u1t - kT - T2]. (2.50)

This equation applies for k either positive or negative. Hence, the equation for the sawtooth 
wave of Figure 2.29 is

V

t�T 0 T 2T

v(t)

  Figure 2.29  Sawtooth waveform.

V

0 T t

v(t)

  Figure 2.28  Linear sweep voltage.
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 v1t2 = a
∞

k = - ∞
v11t - kT2,

where v11t - kT2 is defined in (2.50). ■

This section presents a procedure for writing equations for signals, with 
 emphasis on signals composed only of straight-line segments. The procedure is 
practical, since many physical signals are modeled in this manner.

 2.6 Continuous-time systems

In this section, we present some of the properties of continuous-time systems. 
Recall that we define a continuous-time system as one in which no sampled signals 
(no discrete-time signals) appear.

We begin with a definition of a system that is suitable for this book.

System
A system is a process for which cause-and-effect relations exist.

For our purposes, the cause is the system input signal, the effect is the system output 
signal, and the relations are expressed as equations (the system model). We often refer 
to the input signal and the output signal as simply the input and the output, respectively.

An example of a physical system is an electric heater; for example, electric 
heaters have wide applications in the chemical processing industry. The input signal 
is the ac voltage, v1t2, applied to the heater. We consider the output signal to be the 
temperature, u1t2, of a certain point in space that is close to the heater. One repre-
sentation of this system is the block diagram shown in Figure 2.30. The units of the 
input are volts, and the units of the output are degrees Celsius. The input signal is 
sinusoidal. If the system has settled to steady state, the output signal (the tempera-
ture) is (approximately) constant.

A second example of a physical system is a voltage amplifier such as that used in 
public-address systems. The amplifier input signal is a voltage that represents speech, 
music, and so on. We prefer that the output signal be of exactly the same form, but 
with amplitude scaled to a higher voltage (and higher energy level). However, any 
physical system will change (distort) a signal. If the distortion is insignificant, we as-
sume that the output signal of the amplifier is simply the input signal multiplied by 
a constant. We call an amplifier that introduces no distortion an ideal amplifier. The 
block diagram of Figure 2.31 represents an ideal amplifier with a gain of 10.

System

Electric
heater

Voltage Degrees
Celsius

v(t) (t)�

  Figure 2.30  System.
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One representation of a general system is by a block diagram as shown in 
Figure 2.32. The input signal is x1t2, and the output signal is y1t2. The system may 
be denoted by the equation

 y1t2 = T [x1t2], (2.51)

where the notation T[ # ] indicates a transformation. This notation does not indicate 
a function; that is, T[x1t2] is not a mathematical function into which we substitute 
x1t2 and directly calculate y1t2. The explicit set of equations relating the input x1t2 
and the output y1t2 is called the mathematical model, or simply, the model, of the 
system. Given the input x1t2, this set of equations must be solved to obtain y1t2. For 
continuous-time systems, the model is usually a set of differential equations.

Often, we are careless in speaking of systems. Generally, when we use the 
word system, we are referring to the mathematical model of a system, not the physi-
cal system itself. This is common usage and will be followed in this book. If we are 
referring to a physical system, we call it a physical system if any confusion might 
otherwise occur. An example of a system will now be given.

 exAmple 2.15 transformation notation for a circuit

Consider the circuit of Figure 2.33. We define the system input as the voltage source v1t2 
and the system output as the inductor voltage vL1t2. The transformation notation for the 
system is

 vL1t2 = T [v1t2]. (2.52)

The equations that model the system are given by

 L
di1t2

dt
+ Ri1t2 = v1t2

Multiply
by 10

x(t) y(t) � 10x(t)

  Figure 2.31  Ideal amplifier.

System
x(t) y(t)

  Figure 2.32  Representation of a general system.

L

Ri(t)

v(t) �
�

vL(t)

  Figure 2.33  RL circuit.
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and 

 vL1t2 = L
di1t2

dt
. (2.53)

Hence, the transformation notation of (2.52) represents the explicit equations of (2.53). This 
model, (2.53), is two equations, with the first a first-order linear differential equation with 
constant coefficients. (L and R are constants.) ■

We now discuss further the difference between a physical system and a model 
of that system. Suppose that we have a physical circuit with an inductor, a resistor, 
and some type of voltage source connected in series. Equation (2.53) may or may 
not be an accurate model for this physical system. Developing accurate models 
for physical systems can be one of the most difficult and time-consuming tasks for 
engineers. For example, the model that related the thrust from the engines to the 
attitude (pitch angle) of the Saturn V rocket booster stage for the NASA space 
program in the 1970s was a 27th-order differential equation.

As a final point, consider again the circuit diagram of Figure 2.33. Engineers 
can be very careless in diagrams of this type. The diagram may represent either

 1. the physical interconnections of a power supply, a coil, and a resistor or
 2. a circuit model of a physical system that contains any number of physical 

devices (not necessarily three).

Hence, often, we do not differentiate between drawing a wiring diagram for 
physical elements and drawing a circuit model. This carelessness can lead to confu-
sion, even for experienced engineers.

interconnecting systems

In this section, the system-transformation notation of (2.51) will be used to specify 
the interconnection of systems. First, we define three block-diagram elements. The 
first element is a block as shown in Figure 2.34(a); this block is a graphical represen-
tation of a system described by (2.51). The second element is a circle that represents 
a summing junction as shown in Figure 2.34(b). The output signal of the junction is 
defined to be the sum of the input signals. The third element is a circle that repre-
sents a product junction, as shown in Figure 2.34(c). The output signal of the junc-
tion is defined to be the product of the input signals.

We next define two basic connections for systems. The first is the parallel con-
nection and is illustrated in Figure 2.35(a). Let the output of System 1 be y11t2 and 
that of System 2 be y21t2. The output signal of the total system is then given by

 y1t2 = y11t2 + y21t2 = T1[x1t2] + T2[x1t2] = T[x1t2]. (2.54)

The notation for the total system is y1t2 = T[x1t2].
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The second basic connection for systems is illustrated in Figure 2.35(b). This 
connection is called the series, or cascade, connection. In this figure, the output sig-
nal of the first system is y11t2 = T1[x1t2], and the total-system output signal is

 y1t2 = T2[y11t2] = T21T1[x1t2]2 = T[x1t2]. (2.55)

The system equations of (2.54) and (2.55) cannot be simplified further until the 
mathematical models for the two systems are known.

The preceding analysis is based on the assumption that the interconnection of 
systems does not change the characteristics of any of the systems. This point can be 

x(t) y(t) � T [x(t)]

(a)

(b)

(c)

x1(t)

x2(t) y(t) � x1(t) � x2(t) � x3(t)

x3(t)

�

x1(t) y(t) � x1(t) � x2(t)

x2(t)

�

  Figure 2.34  Block-diagram elements.
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  Figure 2.35  Basic connections of systems.
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illustrated with the cascade connection of two RL circuits in Figure 2.36. The equa-
tion of the current i(t) in the first circuit is independent of the second circuit, pro-
vided that the isolation amplifier has a very high input impedance (usually, a good 
approximation). For this case, the current into the input terminals of the amplifier 
is negligible compared with i(t), and the system characteristics of the first circuit 
are not affected by the presence of the second circuit. If the isolation amplifier is 
removed, R2 and L2 affect the voltage across L1, and the system model for v11t2 as 
a function of v(t) changes. When we draw an interconnection of systems, such as in 
Figures 2.34 and 2.35, the implicit assumption is made that the characteristics of all 
systems are unaffected by the presence of the other systems.

An example illustrating the interconnection of systems will now be given.

 exAmple 2.16 interconnections for a system

Consider the system of Figure 2.37. Each block represents a system, with a number given to 
identify the system. The circle with the symbol * denotes the multiplication of the two input 
signals. We can write the following equations for the system:

 y31t2 = y11t2 + y21t2 = T1[x1t2] + T2[x1t2]

and

 y41t2 = T3[y31t2] = T31T1[x1t2] + T2[x1t2]2.

Thus,

 y1t2 = y41t2 * y51t2 = [T31T1[x1t2] + T2[x1t2]2]T4[x1t2]. (2.56)

This equation denotes only the interconnection of the systems. The mathematical model of 
the total system depends on the mathematical models of the individual systems. ■

Isolation
amplifier

�
�

R1 R2

L1 L2

i(t)

v(t) v1(t) v2(t)

 
  Figure 2.36  Cascade connection of two  
circuits.
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x(t)
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y5(t)

y3(t) y4(t)
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Figure 2.37  System for Example 2.16.
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feedback system

We now consider an important system connection called a feedback-control system 
that is used in automatic control. By the term automatic control, we mean control 
without the intervention of human beings. An example of an automatic control 
system is the temperature-control system in a home or office. A second example 
is a system that lands aircraft automatically (without intervention of the pilot) at 
airports.

The basic configuration of a feedback-control system is given in Figure 2.38. 
The plant is the physical system to be controlled. The controller is a physical system 
inserted by the design engineers to give the total system certain desired characteris-
tics. The sensor measures the signal to be controlled, and the input signal represents 
the desired output. The error signal e(t) is a measure of the difference between the 
desired output, modeled as x(t), and the measurement of the output y(t). We write 
the equations of this system as

 e1t2 = x1t2 - T3[y1t2]

and

 y1t2 = T2[m1t2] = T21T1[e1t2]2. (2.57)

Hence, we can express the output signal as

 y1t2 = T2[T11x1t2 - T3[y1t2]2]. (2.58)

The system output is expressed as a function of both the system input and the system 
output, as is always the case for feedback systems. We cannot further simplify rela-
tionship (2.58) without knowing the mathematical models of the three subsystems. 
A simple example of the model of a feedback control system is now given.

 exAmple 2.17 interconnections for a feedback system

In the feedback-control system of Figure 2.38, suppose that the controller and the sensor can 
be modeled as simple gains (amplitude scaling). These models are adequate in some physical 
control systems. Thus,

 m1t2 = T1[e1t2] = K1e1t2

1 2

3

�

y3(t)

y(t)m(t)
Controller Plant

Sensor

e(t)x(t) �

�

Figure 2.38  Feedback-control system.
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and

 y31t2 = T3[y1t2] = K3y1t2,

where K1 and K3 are real constants. Now,

 e1t2 = x1t2 - K3y1t2,

and thus,

 m1t2 = K1e1t2 = K1x1t2 - K1K3y1t2.

Suppose also that the plant is modeled as a first-order differentiator such that

 y1t2 = T2[m1t2] =
dm1t2

dt
.

Hence,

 y1t2 =
d
dt

 [K1x1t2 - K1K3y1t2] = K1 
dx1t2

dt
- K1K3 

dy1t2
dt

.

This equation is the system model and can be expressed as

 K1K3 
dy1t2

dt
+ y1t2 = K1 

dx1t2
dt

.

The system is modeled by a first-order linear differential equation with constant coefficients. ■ 

This section covers a general procedure for representing the interconnection 
of systems. In addition, two mathematical models are developed.

In Example 2.17, the term linear was used without being defined. Linearity is 
one of the most important properties that a system can have. This property, along 
with several other system properties, is defined in the next section.

 2.7 properties of Continuous-time systems

In Section 2.6, continuous-time systems were introduced. In this section, we define 
some of the properties, or characteristics, of these systems. These definitions allow 
us to test the mathematical representation of a system to determine its properties.

When testing for the existence of a property, it is often much easier to estab-
lish that a system does not exhibit the property in question. To prove that a system 
does not have a particular property, we need to show only one counterexample. To 
prove that a system does have the property, we must present an analytical argument 
that is valid for an arbitrary input.
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In the following relation, x1t2 denotes the input signal and y1t2 denotes the 
output signal of a system.

 x1t2 S y1t2. (2.59)

We read this notation as “x1t2 produces y1t2”; it has the same meaning as the block 
diagram of Figure 2.32 and the transformation notation

[eq(2.51)] y1t2 = T[x1t2]. 

The following are the six properties of continuous-time systems:

Memory
A system has memory if its output at time t0, y1t02, depends on input values other than 
x1t02. Otherwise, the system is memoryless.

A system with memory is also called a dynamic system. An example of a  system with 
memory is an integrating amplifier, described by

 y1t2 = KL
t

- ∞
x1t2dt. (2.60)

(See Section 1.2.) The output voltage y1t2 depends on all past values of the input 
voltage x1t2, as we can see by examining the limits of integration. A capacitor also 
has memory if its current is defined to be the input and its voltage the output:

 v1t2 =
1
C L

t

- ∞
i1t2dt.

The voltage across the capacitor at time t0 depends on the current i1t2 for all time 
before t0. Thus, the system has memory.

A memoryless system is also called a static system. An example of a memory-
less system is the ideal amplifier defined earlier. With x1t2 as its input and y1t2 as 
its output, the model of an ideal amplifier with (constant) gain K is given by

 y1t2 = Kx1t2
for all t. A second example is resistance, for which v1t2 = Ri1t2. A third  example is 
a squaring circuit, such that

 y1t2 = x21t2. (2.61)

Clearly, a system y11t2 = 5x1t2 would be memoryless, whereas a second system 
y21t2 = x1t + 52 has memory, because y21t02 depends on the value of x1t0 + 52, 
which is five units of time ahead of t0.

Invertibility
A system is said to be invertible if distinct inputs result in distinct outputs.
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For an invertible system, the system input can be determined uniquely from its out-
put. As an example, consider the squaring circuit mentioned earlier, which is de-
scribed by

 y1t2 = x21t2 1 x1t2 = {3y1t2. (2.62)

Suppose that the output of this circuit is constant at 4 V. The input could be either 
+2 V or -2 V. Hence, this system is not invertible. An example of an invertible 
system is an ideal amplifier of gain K:

 y1t2 = Kx1t2 1 x1t2 =
1
K

 y1t2. (2.63)

A definition related to invertibility is the inverse of a system. Before giving 
this definition, we define the identity system to be that system for which the output is 
equal to its input. An example of an identity system is an ideal amplifier with a gain 
of unity. We now define the inverse of a system.

Inverse of a System
The inverse of a system (denoted by T ) is a second system (denoted by Ti) that, when 
cascaded with the system T, yields the identity system.

The notation for an inverse transformation is then

 y1t2 = T[x1t2] 1 x1t2 = Ti[y1t2]. (2.64)

Hence, Ti[ # ] denotes the inverse transformation. If a system is invertible, we can 
find the unique x1t2 for each y1t2 in (2.64). We illustrate an invertible system in 
Figure 2.39. In this figure,

 z1t2 = T2[y1t2] = Ti11T1[x1t2]2 = x1t2, (2.65)

where T21 # 2 = Ti11 # 2, the inverse of system T11 # 2.
A simple example of the inverse of a system is an ideal amplifier with gain 5. 

Note that we can obtain the inverse system by solving for x1t2 in terms of y1t2:

 y1t2 = T[x1t2] = 5x1t2 1 x1t2 = Ti[y1t2] = 0.2y1t2. (2.66)

The inverse system is an ideal amplifier with gain 0.2.
A transducer is a physical device used in the measurement of physical vari-

ables. For example, a thermistor (a temperature-sensitive resistor) is one device 
used to measure temperature. To determine the temperature, we measure the re-
sistance of a thermistor and use the known temperature-resistance characteristic of 
that thermistor to determine the temperature.

z(t) � x(t)System
1

Inverse
of

system 1

x(t) y(t)

  Figure 2.39  Inverse system.
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The discussion in the preceding paragraph applies to transducers in general. In 
measuring physical variables (signals), we measure the effect of the physical variable 
on the transducer. We must be able to determine the input to the transducer (the 
physical variable) by measuring the transducer’s output (the effect of the physical 
variable). This cause-and-effect relationship must be invertible. A sensor is a trans-
ducer followed by its inverse system and is illustrated in Figure 2.40.

A glass-bulb thermometer is a second example of a transducer. The glass bulb is the 
system, and the scale attached to the bulb is the inverse system. A change in tempera-
ture causes a change in the density of the liquid in the bulb. As a result, the level in the 
column of liquid changes. The calibrated scale then converts the liquid level to units of 
temperature.

The output signal of the inverse system seldom has the same units as the sys-
tem input signal; however, the amplitudes of the two signals are equal.

Causality
A system is causal if the output at any time t0 is dependent on the input only for t … t0.

A causal system is also called a nonanticipatory system. All physical systems are 
causal.

A filter is a physical device (system) for removing certain unwanted components from 
a signal. We can design better filters for a signal if all past values and all future values 
of the signal are available. In real time (as the signal occurs in the physical system), we 
never know the future values of a signal. However, if we record a signal and then filter 
it, the “future” values of the signal are available. Thus, we can design better filters if 
the filters are to operate only on recorded signals; of course, the filtering is not per-
formed in real time.

A system described by

 y1t2 = x1t - 22, (2.67)

with t in seconds, is causal, since the present output is equal to the input of 2 s ago. 
For example, we can realize this system by recording the signal x1t2 on magnetic 
tape. The playback head is then placed 2 s downstream on the tape from the record-
ing head. A system described by (2.67) is called an ideal time delay. The form of the 
signal is not altered; the signal is simply delayed.

A system described by

 y1t2 = x1t + 22 (2.68)

Thermistor
Temperature Temperature

Sensor

Resistance

Inverse
of

thermistor

  Figure 2.40  Temperature sensor.
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is not causal, since, for example, the output at t = 0 is equal to the input at t = 2 s. 
This system is an ideal time advance, which is not physically realizable.

Another example of a causal system is illustrated in Figure 2.41. In this system, 
a time delay of 30 s is followed by a time advance of 25 s. Hence, the total system is 
causal and can be realized physically. However, the time-advance part of the system 
is not causal, but it can be realized if preceded by a time delay of at least 25 s. An 
example of this type of system is the non–real-time filtering described earlier.

stability

We now define stability. Many definitions exist for the stability of a system; we give 
the bounded-input–bounded-output (BIBO) definition.

bIbO Stability
A system is stable if the output remains bounded for any bounded input.

By definition, a signal x1t2 is bounded if there exists a number M such that

 � x1t2 � F M for all t. (2.69)

Hence, a system is bounded-input bounded-output stable if, for a number R,

 � y1t2 � F R for all t (2.70)

for all x1t2 such that (2.69) is satisfied. Bounded x1t2 and y1t2 are illustrated in Figure 
2.42. To determine BIBO stability for a given system, given any value M in (2.69), a 
value R (in general, a function of M) must be found such that (2.70) is satisfied.

There are a number of common misconceptions in the determination of BIBO 
stability. First, we point out that it is only the amplitude of the input and output sig-
nals that must be finite. The time index t runs from - ∞  to ∞  because both signals 
are defined for all time. Second, it is important to recognize that if the input x1t2 is 
unbounded, the output of even a BIBO stable system can be expected to become 
unbounded. In a sense, BIBO stability means that if a system is used responsibly 
(i.e., the input is bounded), then the system will behave predictably (i.e., not blow 
up). We will see a simple test for BIBO stability in Chapter 3 (3.45).

An ideal amplifier, as shown in Figure 2.31 where y1t2 = 10x1t2, is stable 
because in (2.69) and (2.70)

 � y1t2 � … R = 10M.

In this system, if x1t2 is bounded, then y1t2 can never be more than 10 times the 
value of x1t2. Thus, this system is BIBO stable.

Delay
30 s

x(t) x(t � 30) x(t � 5)

z(t � 25)z(t)

System

Advance
25 s

   Figure 2.41  Causal system with a  
noncausal component.
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A squaring circuit

 y1t2 = x2 1t2 (2.71)

is stable because y1t2 is bounded for any bounded input. In (2.69) and (2.70),

 � y1t2 � … R = M2.

Consider the system modeled by the circuit shown in Figure 2.33, with R = 0. If we 
consider the ideal voltage source v1t2 as the input and the circuit current i1t2 as the 
output, then the output is described by the equation

 i1t2 =
1
L L

t

- ∞

v1t2dt. (2.72)

If the input is v1t2 = u1t2, a unit step, the output is i1t2 = 1
Ltu1t2, a ramp function, 

which is unbounded. In this example, the input is bounded as required by (2.69), but 
the output is unbounded and thus does not satisfy the condition for BIBO stability 
given in (2.70):

 lim
tS ∞

y1t2 = lim
tS ∞

1
L

 t = ∞ .

(a)

x(t)

t

t

M

�M

(b)

y(t)

R

�R

  Figure 2.42  Bounded functions.
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Therefore, the circuit is not BIBO stable. However, if the input to the circuit is the 
decaying exponential

 v1t2 = e-atu1t2, a 7 0,

shown in Figure 2.43(a), then

 i1t2 =
1

aL
 11 - e-at2u1t2,

which is shown in Figure 2.43(b) (for the particular case that aL = 1) and is 
bounded for all time. Therefore, the system response is bounded for some inputs, 
but unbounded for others. A system with this characteristic is not BIBO stable, but 
is sometimes said to be marginally stable.

Stability is a basic property required of almost all physical systems. Generally, 
a system that is not stable cannot be controlled and is of no value. An example of an 
unstable system is a public address system that has broken into oscillation; the out-
put of this system is unrelated to its input. A second example of an unstable system 
has been seen several times in television news segments: the first stage of a space 
booster or a missile that went out of control (unstable) and had to be destroyed.

Time Invariance
A system is said to be time invariant if a time shift in the input signal results only in the 
same time shift in the output signal.

For a time-invariant system for which the input x(t) produces the output 
y1t2, y1t2 = T[x1t2], x1t - t02 produces y1t - t02. That is,

 y1t - t02 = T[x1t - t02] (2.73)

(a)

v(t)

at

1

0.8

0.6

0.4

0.2

0
0 0.5 1 1.5 2.5 3 3.5 4 4.52 5

(b)

i(t)

at

1

0.8

0.6

0.4

0.2

0
0 0.5 1 1.5 2.5 3 3.5 4 4.52 5

   Figure 2.43  (a) System input signal;  
(b) bounded output signal.
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for all t0, where T[x1t - t02] indicates the transformation that describes the system’s 
input–output relationship. In other words, a time-invariant system does not change 
with time; if it is used today, it will behave the same way as it would next week or 
next year. A time-invariant system is also called a fixed system.

A test for time invariance is illustrated in Figure 2.44. In Figure 2.44(a), the 
signal y1t - t02 is obtained by delaying y1t2 by t0 seconds. We define yd1t2 in 
Figure 2.44(b) as the system output for the delayed input x1t - t02, such that

 yd1t2 = T [x1t - t02].

The system in Figure 2.44 is time invariant, provided that

 y1t - t02 = yd1t2. (2.74)

A system that is not time invariant is time varying.
As an example of time invariance, consider the system

 y1t2 = ex1t2.

From (2.73) and (2.74),

 yd1t2 = y1t2 `
x1t - t02,

= ex1t - t02 = y1t2 `
t - t0,

and the system is time invariant.
Consider next the system

 y1t2 = e-tx1t2.

In (2.73) and (2.74),

 yd1t2 = y1t2 `
x1t - t02

= e-tx1t - t02

and

 y1t2 `
t - t0

= e-1t - t02x1t - t02.

The last two expressions are not equal; therefore, (2.74) is not satisfied, and the 
system is time varying.

y(t � t0)
System

Delay
t0

x(t) y(t)

(a)

yd(t)Delay
t0

System
x(t) x(t � t0)

(b)   Figure 2.44  Test for time invariance.
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 exAmple 2.18 test for time invariance

Figure 2.45(a) illustrates the test for time invariance (2.73) for a system that performs a 
time reversal on the input signal. The input signal chosen for the test is a unit step function, 
x1t2 = u1t2. In the top branch of Figure 2.45(a), we first reverse u(t) to obtain y1t2 = u1- t2 
and then delay it by 1 s to form y1t - 12 = u1- 1t - 122 = u11 - t2. In the bottom branch 
of the diagram, we first delay the input by 1 s to form u1t - 12 and then reverse in time to 
form yd1t2 = u1- t - 12. The signals for this system are shown in Figure 2.45(b). Because 
yd1t2 ≠ y1t - 12, the time-reversal operation is not time invariant. Intuitively, this makes 
sense because a time shift to the right before a time reversal will result in a time shift to the 
left after the time reversal. ■

time-reversal one-second
delay

y(t) � x(�t) � u(�t) y(t � 1) � x(�(t � 1)) � u(1� t)

one-second
delay time-reversal

x(t � 1) � u(t � 1)

x(�t) � u(�t)

t

x(t) � u(t)

yd(t) � x(�t � 1) � u(�t � 1)

(a)

(b)

�1 1

x(1 � t) � u(1 � t)

t�1 1

x(t � 1) � u(t � 1)

t�1 1

x(�1 � t) � u(�1 � t)

t�1 1

Figure 2.45  Time invariance test for Example 2.18.
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A time-varying system has characteristics that vary with time. The manner in 
which this type of system responds to a particular input depends on the time that the 
input is applied.

An example of a time-varying physical system is the booster stage of the NASA shuttle. 
Newton’s second law applied to the shuttle yields

 fz1t2 = M1t2d2z1t2
dt2 ,

where the force fz1t2 is the engine thrust in the z-axis direction developed by burning 
fuel, M1t2 is the mass of the shuttle, and z1t2 is the position along the z-axis. The mass 
decreases as the fuel burns and, hence, is a function of time.

In designing controllers for automatic control systems, we sometimes intentionally use 
time-varying gains to improve the system characteristics. Of course, time-varying gains 
result in a time-varying system. For example, the control system that automatically lands 
aircraft on U.S. Navy aircraft carriers uses time-varying gains [7]. The time-varying 
gains are based on time-to-touchdown, and the gains increase as the time-to-touchdown 
 decreases. This increase in gain results in a decreased time-of-response in correcting 
 errors in the plane’s flight path.

linearity

The property of linearity is one of the most important properties that we consider. 
Once again, we define the system input signal to be x1t2 and the output signal to be 
y1t2.

linear System
A system is linear if it meets the following two criteria:

 1. Additivity: If x11t2 S y11t2 and x21t2 S y21t2, then

 x11t2 + x21t2 S y11t2 + y21t2. (2.75)

 2. Homogeneity: If x11t2 S y11t2, then

 ax11t2 S ay11t2, (2.76)

where a is a constant. The criteria must apply for all x11t2 and x21t2 and for all a.

These two criteria can be combined to yield the principle of superposition. A system 
satisfies the principle of superposition if, with the inputs and outputs as just defined,

 a1x11t2 + a2x21t2 S a1y11t2 + a2y21t2, (2.77)

where a1 and a2 are constants. A system is linear if and only if it satisfies the prin-
ciple of superposition.

No physical system is linear under all operating conditions. However, a physi-
cal system can be tested by using (2.77) to determine ranges of operation for which 
the system is approximately linear.
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An example of a linear system is an ideal amplifier, described by y1t2 = Kx1t2. 
An example of a nonlinear system is the squaring circuit mentioned earlier:

 y1t2 = x21t2.

For inputs of x11t2 and x21t2, the outputs are

 x11t2 S x1
21t2 = y11t2

and

 x21t2 S x2
21t2 = y21t2. (2.78)

However, the input [x11t2 + x21t2] produces the output

 x11t2 + x21t2 S [x11t2 + x21t2]2 = x1
21t2 + 2x11t2x21t2 

 + x2
21t2 = y11t2 + y21t2 + 2x11t2x21t2, (2.79)

and [x11t2 + x21t2] does not produce [y11t2 + y21t2]. Hence, the squaring circuit is 
nonlinear.

A linear time-invariant (LTI) system is a linear system that is also time invari-
ant. The LTI system, for both continuous-time and discrete-time systems, is the type 
that is emphasized in this book.

An important class of continuous-time LTI systems consists of those that can 
be modeled by linear differential equations with constant coefficients. An example 
of this type of system is the RL circuit of Figure 2.33, modeled by

[eq(2.53)] L
di1t2

dt
+ Ri1t2 = v1t2. 

This type of system is discussed in detail in Chapter 3.

 exAmple 2.19 determining the properties of a particular system

The characteristics for the system

 y1t2 = sin 12t2  x1t2

are now investigated. Note that this system can be considered to be an amplifier with a 
time-varying gain that varies between -1 and 1—that is, with the gain K1t2 = sin 2t and 
y1t2 = K1t2x1t2. The characteristics are as follows:

 1. This system is memoryless, because the output is a function of the input at only the 
 present time.

 2. The system is not invertible, because, for example, y1p2 = 0, regardless of the value of 
the input. Hence, the system has no inverse.
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 3. The system is causal, because the output does not depend on the input at a future time.
 4. The system is stable, the output is bounded for all bounded inputs, because the multiplier 

sin 12t2 has a maximum value of 1. If 0 x1t2 0 F M, 0  y1t2 0 F M, also.
 5. The system is time varying. From (2.73) and (2.74),

 yd1t2 = y1t2 `
x1t - t02

=  sin 2t x1t - t02

and 

 y1t2 `
t - t0

=  sin 21t - t02x1t - t02.

 6. The system is linear, since

 a1x11t2 + a2x21t2 S  sin 2t[a1x11t2 + a2x21t2] = a1 sin 2tx11t2 + a2 sin 2tx21t2
  = a1y11t2 + a2y21t2.  ■

 exAmple 2.20 testing for linearity by using superposition

As a final example, consider the system described by the equation y1t2 = 3x1t2, a linear 
amplifier. This system is easily shown to be linear by the use of superposition. However, 
the system y1t2 = [3x1t2 + 1.5], an amplifier that adds a dc component, is nonlinear. By 
superposition,

 y1t2 = 3[a1x11t2 + a2x21t2] + 1.5 ≠ a1y11t2 + a2y21t2.

This system is not linear, because a part of the output signal is independent of the input 
 signal. ■

Analysis similar to that of Example 2.20 shows that systems with nonzero ini-
tial conditions are not linear. They can be analyzed as linear systems only if the 
nonzero initial conditions are treated as inputs to the system.

In this section, several important properties of continuous-time systems have 
been defined; these properties allow us to classify systems. For example, probably the 
most important general system properties are linearity and time invariance, since the 
analysis and design procedures for LTI systems are simplest and easiest to apply. We 
continually refer back to these general system properties for the remainder of this book.

summAry

In this chapter, we introduce continuous-time signals and systems, with emphasis 
placed on the modeling of signals and the properties of systems.

First, three transformations of the independent variable time are defined: 
 reversal, scaling, and shifting. Next, the same three transformations are defined 
with respect to the amplitude of signals. A general procedure is developed for han-
dling all six transformations. These transformations are important with respect to 
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time signals, and as we will see in Chapter 5, they are equally important as transfor-
mations in frequency.

The signal characteristics of evenness, oddness, and periodicity are defined 
next. These three characteristics appear often in the study of signals and systems.

Models of common signals that appear in physical systems are then defined. 
The signals considered are exponential signals and sinusoids whose amplitudes vary 
exponentially. Singularity functions are defined; the unit step and the unit impulse 
functions are emphasized. These two functions will prove to be very useful not only 
in the time domain, but also in the frequency domain.

Table 2.4  Key Equations of Chapter Two

equation title equation number equation

Independent-variable transformation (2.6) y1t2 = x1at + b2
Signal-amplitude transformation (2.8) y1t2 = Ax1t2 + B

Even part of a signal (2.13) xe1t2 = 1
2 [x1t2 + x1- t2]

Odd part of a signal (2.14) xo1t2 = 1
2 [x1t2 - x1- t2]

Definition of periodicity (2.15) x1t2 = x1t + T2, T 7 0

Fundamental frequency in hertz and  
 radians/second

 
(2.16) f0 =

1
T0

  Hz, v0 = 2pf0 =
2p
T0

 rad>s

Exponential function (2.18) x1t2 = Ceat

Euler’s relation (2.19) e ju = cos u + j sin u

Cosine equation (2.21) cos u =
eju + e-ju

2

Sine equation (2.22) sin u =
eju - e-ju

2j

Complex exponential in polar form (2.23) and (2.24) eju = 1∠u  and arg  eju = tan-1Jsin u
cos u

R = u

Unit step function (2.32) u1t2 = e 1, t 7 0
0, t 6 0

Unit impulse function (2.40) d1t - t02 = 0, t ≠ t0;

L
∞

- ∞
d1t - t02dt = 1

Sifting property of unit impulse  
 function (2.41) L

∞

- ∞
f1t2d1t - t02dt = f1t02

Multiplication property of unit impulse  
 function (2.42) f1t2d1t - t02 = f1t02d1t - t02

Test for time invariance (2.73) y1t2 `
t - t0

= y1t2 `
x1t - t02

Test for linearity (2.77) a1x11t2 + a2x21t2 S a1y11t2 + a2y21t2
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Procedures are developed for expressing certain types of signals as mathemat-
ical functions. Nonsinusoidal periodic functions are introduced, and a technique for 
writing equations for these periodic signals is presented.

A general technique is then given for expressing the output of a continuous-
time system that is an interconnection of systems. An example is given of a feedback-
control system. Several important properties of systems are defined, and procedures 
are given to determine whether a system possesses these properties.

This chapter is devoted to continuous-time signals and systems. In Chapter 9, 
the same topics are developed as they relate to discrete-time signals and systems. 
Many of the topics are identical; however, in some cases, there are significant differ-
ences. (See Table 2.4.)

proBlems

section 2.1

 2.1. The signals in Figure P2.1 are zero except as shown.

(a) For the signal x1t2 of Figure P2.1(a), plot
 (i) x1- t/32 (ii) x13t - 62
 (iii) x13 +  t2 (iv) x12 - t2

 Verify your results by checking at least two points.

3�3

2

1

x(t)

t

(a)

(b)

(c)

3 6 9�3�6

�3�6

3

2
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x(t)

t

3 90

0

0

�2

2

x(t)

t6

  Figure P2.1   
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(b) Repeat Part (a) for the signal x1t2 of Figure P2.1(b).
(c) Repeat Part (a) for the signal x1t2 of Figure P2.1(c).

 2.2. The signals in Figure P2.1 are zero except as shown.

(a) For the signal x1t2 of Figure P2.1(a), plot
 (i) 4x1t2 - 2 (ii) 2x1t2 + 2
 (iii) 2x12t2 + 2 (iv) -4x1t2 + 2

 Verify your results by checking at least two points.
(b) Repeat Part (a) for the signal x1t2 of Figure P2.1(b).
(c) Repeat Part (a) for the signal x1t2 of Figure P2.1(c).

 2.3. Given the two signals in Figure P2.3,

(a) Express x21t2 as a function of x11t2.
(b) Verify your result by checking at least three points in time.

 2.4. Given the signals x1t2 and y1t2 in Figure P2.4,

(a) Express y1t2 as a function of x1t2.
(b) Verify your results by checking at least three points in time.
(c) Express x1t2 as a function of y1t2.
(d) Verify the results of part (c) by checking at least three points in time.

section 2.2

 2.5. Plot the even and odd parts of the signal of

(a) Figure P2.1(a)
(b) Figure P2.1(b)

2
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x1(t)

t

(a)

(b)

�1

�1 1 2 3 4�2

4
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x2(t)

t

�2

�0.5 0.5 1 1.5 2�1 2.5

  Figure P2.3  
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(c) Figure P2.1(c)
(d) Figure P2.4(a)
(e) Verify your results using (2.11).

 2.6. For each of the signals given, determine mathematically if the signal is even, odd, or 
neither. Sketch the waveforms to verify your results.

(a) x(t) = -4t

(b) x(t) = e-|t|
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  Figure P2.4   
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(c) x1t2 = 5 cos 3t

(d) x1t2 = sin13t + 3p
2 2

(e) x1t2 = u1t2 - u1- t2
(f) x1t2 = -u1t - 12 + u1- t - 12

 2.7. The average value Ax of a signal x1t2 is given by

 Ax =  lim 
T S  ∞

1
2T

 L
T

-T
 x1t2dt.

  Let xe1t2 be the even part and xo1t2 be the odd part of x1t2.

(a) Show that

  lim 
T S  ∞

1
2T

 L
T

-T
 xo1t2dt = 0.

(b) Show that

  lim 
T S  ∞

1
2T

 L
T

-T
xe1t2dt = Ax.

(c) Show that xo(0) = 0 and xe(0) = x(0).

 2.8. Give proofs of the following statements:

(a) The sum of two even functions is even.
(b) The sum of two odd functions is odd.
(c) The sum of an even function and an odd function is neither even nor odd.
(d) The product of two even functions is even.
(e) The product of two odd functions is even.
(f) The product of an even function and an odd function is odd.

 2.9. Given in Figure P2.9 are the parts of a signal x1t2 and its odd part xo1t2, for t Ú 0 only; 
that is, x1t2 and xo1t2 for t 6 0 are not given. Complete the plots of x1t2 and xo1t2, 
and give a plot of the even part, xe1t2, of x1t2. Give the equations used for plotting 
each part of the signals.

 2.10. Prove mathematically that the signals given are periodic. For each signal, find the fun-
damental period T0 and the fundamental frequency v0.

(a) x1t2 = 7 sin3t

(b) x1t2 = sin18t +  30°2
(c) x1t2 = e j2t

(d) x1t2 = cos 12t2 + sin 15t2
(e) x1t2 = e-j110t + p>32

(f) x1t2 = e-j15t - e j 20t
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 2.11. For each signal, if it is periodic, find the fundamental period T0 and the fundamental 
frequency v0. Otherwise, prove that the signal is not periodic.

(a) x1t2 = cos 3t + sin 5t.
(b) x1t2 = cos t + sin pt.
(c) x1t2 = cos 13t2 + sin 19t2
(d) x1t2 = cos 13pt2 + sin 14pt2 + cos 15t2
(e) x1t2 = cos 14pt2 + sin 16pt2 + e j5pt

(f) x1t2 = cos 13t + 30°2 + ej 2t + sin 13pt2

 2.12. (a) Consider the signal

 5sin 115t - 60°2 + 2 sin 17t2
 If this signal is periodic, find its fundamental period T0 and its fundamental 

 frequency v0. Otherwise, prove that the signal is not periodic.
(b) Repeat Part (a) for the signal

 x1t2 = cos 1pt2 + 5e-j15t + sin 17t2

(c) Repeat Part (a) for the signal x1t2 = sin 1pt2 + cos 13t2
(d) Repeat Part (a) for the signal x41t2 = x11t2 + x21t2 + x31t2, where

x11t2 =  cos 14pt2,  x21t2 = a
∞

n = - ∞
recta t +  n/2

0.2
b , and x31t2 = 4 sin a5p

7
-

p

4
b .

21

2

1

–1

x(t)

t

(a)

1

x0(t)

t

(b)   Figure P2.9   
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 2.13. Suppose that x11t2 is periodic with period T1 and that x21t2 is periodic with period T2.

(a) Show that the sum

 x1t2 = x11t2 + x21t2
 is periodic only if the ratio T1>T2 is equal to a ratio of two integers k2>k1.
(b) Find the fundamental period T0 of x1t2, for T1>T2 = k2>k1.

section 2.3

 2.14. Use MATLAB to plot x1t2 when x1t2 is:

(a) 5e- t/2 (b) 5e-2t

(c) 5e
t/2 (d) 511 - e- t/22

(e) 511 - e-2t2  (f) 51ej2t - e-j2t2
(g) 5e-2t1ej 2t - e-j 2 t2 (h) 5e-0.5t1ej2t - e-j2t2

 2.15. Use Euler’s relation to show that

(a) cos (u + f) = cos u cos f -  sin u sin f
(b) sin (u + f) = cos u cos f +  sin u sin f

(c) cos u cos f =
1
2

 [cos (u + f) + cos (u - f)]

(d) sin u cos f =
1
2

 [sin (u + f) + sin (u - f)]

 2.16. Use Euler’s relation to with the following functions in the form x1t2 = A cos 1v0t + f2.

(a) x1t2 = 3 cos 12t2 + sin 12t2
(b) x1t2 = 4 cos 14pt2 + 3sin 14pt2
(c) x1t2 = A cos 1v0t2 + B sin 1v0t2

section 2.4

 2.17. Find L
∞

- ∞
d(at - b) sin 2(t - c)dt

  where a 7 0. Hint: Use a change of variables.

 2.18. Express the following in terms of x1t2:

(a) y(t) = L
∞

- ∞
x(t)[d(t + 5) - d(t - 5)]dt

(b) y1t2 = L
∞

- ∞
x1t2ej pt/2d12t - 32dt

 2.19. (a) Prove the time-scaling relation in Table 2.3:

 L
∞

- ∞
d1at2dt =

1
0 a 0  L

∞

- ∞
d1t2dt.

 (Hint: Use a change of variable.)
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(b) Prove the following relation from Table 2.3:

 u1t - t02 = L
t

- ∞
d1t - t02dt.

(c) Evaluate the following integrals:

 (i) L
∞

- ∞
cos12t2d1t2dt

 (ii) L
∞

- ∞
cos[21t - p/42]d1t - p/42dt

 (iii) L
∞

- ∞
sin12t2d1t - p/62dt

 (iv) L
∞

- ∞
sin[1t - p/42]d1t - p/22dt

 (v) L
∞

- ∞
sin[1t - p/62]d12t - 2p/32dt

 2.20. Express the following functions in the general form of the unit step function 
u1{ t - t02:

(a) u12t +  62 (b) u1-3t +  62
(c) u1t/3 + 12 (d) u1t/3 - 1/22

  In each case, sketch the function derived.

 2.21. Express the following signals in terms of u1t -  t02. Sketch each expression to verify 
the results.

(a) u1- t2 (b) tu1- t2
(c) u1- t + 22 (d) (t - 2)u(- t + 2)
(e) 12 - t2u1- t + 22

section 2.5

 2.22. Given

x1t2 = 41t + 22u1t + 22 - 4tu1t2 - 4u1t - 22 - 41t - 42u1t - 42 + 41t - 52u1t - 52
(a) Sketch x1t2.
(b) Find and sketch x12t -  42.

 2.23. Given

 x1t2 = 3u1t + 32 - u1t2 + 3u1t - 32 - 5u1t -  62
(a) Sketch x1t2.
(b) Find and sketch x13t - 62.

 2.24. Write a mathematical model for x1t2 shown in Figure P2.24.
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 2.25. Consider the triangular pulse of Figure P2.25(a)

(a) Write a mathematical function for this waveform.
(b) Verify the results of Part (a) using the procedure of Example 2.12.
(c) Write a mathematical function for the triangular wave of Figure P2.25(b), using the 

results of Part (a).

 2.26. Consider the trapezoidal pulse of Figure P2.26(a)

(a) Write a mathematical function for this waveform.
(b) Verify the results of Part(a) using the procedure of Example 2.12.
(c) Write a mathematical function for the waveform of Figure P2.26(b), using the 

 results of Part (a).
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  Figure P2.24   
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section 2.6

 2.27. (a)  Express the output y1t2 as a function of the input and the system transformations, 
in the form of (2.56), for the system of Figure P2.27(a).

(b) Repeat Part (a) for the case that the summing junction with inputs y31t2 and y51t2 
is replaced with a multiplication junction, such that its output is the product of 
these two signals.

(c) Repeat Part (a) for the system of Figure P2.27(b).
(d) Repeat Part (b) for the case that the summing junction with inputs y31t2, y41t2, and 

y51t2 is replaced with a multiplication junction, such that its output is the product 
of these three signals.

 2.28. Consider the feedback system of Figure P2.28. Express the output signal as a function 
of the transformation of the input signal, in the form of (2.58).

 2.29. Consider the feedback system of Figure P2.29. Express the output signal as a function 
of the transformation of the input signal, in the form of (2.58). The minus sign at the 
summing junction indicates that the signal is subtracted.

section 2.7

 2.30. (a) Determine whether the system described by

 y(t) = L
t + 1

t
x1t - a2dt,

31�1�2�3 2

(a)

(b)
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3

x1(t)
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3

x2(t)

t6 7 8 9

Figure P2.26
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 (where a is a constant) is
 (i) memoryless, (ii) invertible,
 (iii) stable, (iv) time invariant, and
 (v) linear.

(b) For what values of the constant a is the system causal?
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 2.31. (a) Determine whether the system described by

 y1t2 = cos [x1t - 22]

 is

 (i) memoryless, (ii) invertible,
 (iii) causal, (iv) stable,
 (v) time invariant, and (vi) linear.

(b) Repeat Part (a) for y1t2 = 3x13t + 32.

(c) Repeat Part (a) for y1t2 = ln [x1t2].

(d) Repeat Part (a) for y1t2 = etx1t2.
(e) Repeat Part (a) for y1t2 = 5x1t2 - 3

(f) Repeat Part (a) for y1t2 = L
t

- ∞
x12t2dt

(g) Repeat Part (a) for y(t) = L
∞

- ∞
x(t)e-jvtdt

(h) Repeat Part (a) for y1t2 = L
t

t - 1
x1t2dt.

 2.32. (a)  You are given an LTI system. The response of the system to an input x1(t) =
u(t) -  u(t -  1) is a function y11t2. Write the response of the system to the input 
x21t2 in Figure P2.32 in terms of y1(t).

(b) You are given another LTI system with the input shown in Figure P2.32. Find the 
output y21t2 in terms of the system’s output, y11t2, if y11t2 is in response to the 
input x1(t) = u(t) + u(t - 1) - 2u(t - 2).

 2.33. (a) Determine whether the ideal time delay y(t) = x(t -  t0) is:

 (i) memoryless, (ii) invertible,
 (iii) causal, (iv) stable,
 (v) time invariant, and (vi) linear.

 2.34. Let h1t2 denote the response of a system for which the input signal is the unit impulse 
function d1t2. Suppose that h1t2 for a causal system has the given even part he(t) for 
t 7 0:

 he1t2 = t[u1t2 - u1t - 12] + 2u1t - 22, t 7 0.

  Find h1t2 for all time, with your answer expressed as a mathematical function.
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  Figure P2.32  
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 2.35. (a)  Sketch the characteristic y versus x for the system y1t2  =  |x1t2|. Determine 
whether this system is:

 (i) memoryless, (ii) invertible,
 (iii) causal, (iv) stable,
 (v) time invariant, and (vi) linear.

(b) Repeat Part (a) for

 y(t) = ex1t2, x Ú 0
0, x 6 0

(c) Repeat Part (a) for

 y(t) = •
1 x1t26 -1
x1t2, � x1t2 … 1
-1, x1t2 7 1

(d) Repeat Part (a) for

 y(t) = f 4, x 7 2
3, 1 6 x … 1
2, 0 6 x … 1
1, -1 6 x … 0
0, x … -1
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Continuous-time Linear 
time-invariant systems3

in Chapter 2, several characteristics of continuous-time systems were defined. We 
now restate two of these characteristics; systems with these two characteristics are 
investigated extensively in this chapter.

Consider a system described by

 x1t2 S y1t2. (3.1)

This system is time invariant if a time shift of the input results in the same time shift 
of the output—that is, if

 x1t - t02 S y1t - t02, (3.2)

where t0 is an arbitrary constant.
For the system of (3.1), let

 x11t2 S y11t2, x21t2 S y21t2. (3.3)

This system is linear, provided that the principle of superposition applies:

 a1x11t2 + a2x21t2 S a1y11t2 + a2y21t2. (3.4)

This property applies for all constants a1 and a2 and for all signals x11t2 and x21t2.
In this chapter, we consider continuous-time systems that are both linear and 

time invariant. We will refer to these systems as continuous-time LTI (linear time-
invariant) systems. We have several reasons for emphasizing these systems:

1. Many physical systems can be modeled accurately as LTI systems. For 
 example, the basic electric-circuit models of the resistance, inductance, and capaci-
tance are LTI models.

2. We can solve mathematically the equations that model LTI systems for 
both continuous-time and discrete-time systems. No general procedures exist for the 
mathematical solution of the describing equations of non-LTI systems.

3. Much information is available for both the analysis and design of LTI systems. 
This is especially true for system design. In fact, in preliminary design stages for non-
LTI physical systems, we often fit an LTI model to the physical system so as to have a 
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starting point for the design. The LTI model may not be very accurate, but the use of an 
LTI model allows us to initiate the design process with standard design procedures.

4. We can sometimes model a general signal x1t2 as a sum of functions:

 x1t2 = x11t2 + x21t2 + g.

The functions x11t2, x21t2, c  are standard functions for which it is much easier 
to find an LTI system response than it is to find the response to x1t2. The system 
response is then the sum of the responses to the standard functions,

 y1t2 = y11t2 + y21t2 + g,

where yi1t2 is the response to xi1t2, i = 1, 2, c. This is a key attribute of lin-
ear time-invariant systems that will be used when we consider Fourier analysis in 
Chapter 4.

 3.1 impuLse representation of Continuous-time 
signaLs

In this section, a relationship is developed that expresses a general signal x1t2 as a 
function of an impulse function. This relationship is useful in deriving general prop-
erties of continuous-time linear time-invariant (LTI) systems.

Recall that two definitions of the impulse function are given in Section 2.4. 
The first definition is, from (2.40),

 L
∞

- ∞
d1t - t02dt = 1, (3.5)

and the second one is, from (2.41),

 L
∞

- ∞
x1t2d1t - t02dt = x1t02. (3.6)

The second definition requires that x1t2 be continuous at t = t0. According to (3.6), 
if x1t2 is continuous at t = t0, the sifting property of impulse functions can be stated 
as from (2.42),

 x1t2d1t - t02 = x1t02d1t - t02. (3.7)

We now derive the desired relationship. From (3.7), with t0 = t,

 x1t2d1t - t2 = x1t2d1t - t2.

From (3.5), we use the preceding result to express x1t2 as an integral involving an 
impulse function:

  L
∞

- ∞
x1t2d1t - t2dt = L

∞

- ∞
x1t2d1t - t2dt

  = x1t2L
∞

- ∞
d1t - t2dt = x1t2.
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We rewrite this equation as

 x1t2 = L
∞

- ∞
x1t2d1t - t2dt. (3.8)

This equation is the desired result, in which a general signal x1t2 is expressed as a 
function of an impulse function. We use this expression for x1t2 in the next section.

 3.2 ConvoLution for Continuous-time Lti systems

An equation relating the output of a continuous-time LTI system to its input is 
 developed in this section. We begin the development by considering the system 
shown in Figure 3.1, for which

 x1t2 S y1t2.

A unit impulse function d1t2 is applied to the system input. Recall the description 
(3.5) of this input signal; the input signal is zero at all values of time other than 
t = 0, at which time the signal is unbounded.

With the input an impulse function, we denote the LTI system response in 
Figure 3.1 as h1t2; that is,

 d1t2 S h1t2. (3.9)

Because the system is time invariant, the response to a time-shifted impulse func-
tion, d1t - t02, is given by

 d1t - t02 S h1t - t02.

The notation h1 #2 will always denote the unit impulse response.
We now derive an expression for the output of an LTI system in terms of its 

unit impulse response h1t2 of (3.9).

LTI
System

x(t) � �  (t � k�)� y(t) � �h(t � k�)

x(t) �   (t � �)�

x(t) �   (t)�

LTI
System

y(t) � h(t � �)

LTI
System

y(t) � h(t)

Figure 3.1  Impulse response of  
an LTI system.
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We show that a system’s response to any input signal, x1t2, is expressed as an 
integral involving only the input function and the system’s impulse response func-
tion, h1t2. This interaction between the input signal and the impulse response func-
tion is called convolution.

Convolution can be visualized as an extended application of superposition. 
For an LTI system, the system’s response to an impulse input is always the same 
form, regardless of the time that the impulse is applied. As shown in Figure 3.1, the 
impulse response is shifted in time by ∆ seconds to correspond to the time that the 
impulse input is applied.

According to the principle of superposition, an LTI system’s total response to 
a sum of inputs is the sum of the responses to each individual input. It follows that if 
the input is a sum of weighted, time-shifted impulses

 x1t2 = a
∞

k = 0
∆d1t - k∆2, (3.10)

then the output signal is a sum of weighted, time-shifted impulse responses

 y1t2 = a
∞

k = 0
∆h1t - k∆2. (3.11)

 exampLe 3.1 sum of impulse responses

Consider the system with the impulse response h1t2 = e-tu1t2, as shown in Figure 3.2(a). 
This system’s response to an input of x1t2 = d1t - 12 would be y1t2 = h1t - 12 =
e-1t - 12u1t - 12, as shown in Figure 3.2(b). If the input signal is a sum of weighted, time-
shifted impulses as described by (3.10), separated in time by ∆ = 0.1 1s2 so that

 x1t2 = a
∞

k = 0
0.1d1t - 0.1k2,

as shown in Figure 3.2(c), then, according to (3.11), the output is

 y1t2 = a
∞

k = 0
0.1h1t - 0.1k2 = 0.1 a

∞

k = 0
e-1t - 0.1k2u1t - 0.1k2.

This output signal is plotted in Figure 3.2(d).
Now consider that the weights of the impulses in the input function vary as a function 

of time so that

 x1t2 = a
∞

k = - ∞
v1k∆2d1t - k∆2∆.

Applying the linearity property of scalar multiplication, we see that the output signal in 
 response to this input is

 y1t2 = a
∞

k = - ∞
v1k∆2h1t - k∆2∆.
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If the time shift between impulses approaches zero, then discrete time variable k∆ becomes a 
continuous-time variable (which we denote by the symbol t), the time increment ∆ becomes 
the time-differential dt, and the summation becomes an integral [1], so that

 y1t2 = lim
∆ S0

 a
∞

k = - ∞
v1k∆2h1t - k∆2∆ = L

∞

- ∞

v1t2h1t - t2dt.

In addition, the input signal becomes

 x1t2 = lim
∆ S0

 a
∞

k = - ∞
v1k∆2d1t - k∆2∆ = L

∞

- ∞

v1t2d1t - t2dt. (3.12)
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Figure 3.2  Impulse responses for  
the system of Example 3.1.



Sec. 3.2    Convolution for Continuous-Time LTI Systems 95

We can also use the sifting property to write this input signal as

 x1t2 = L
∞

- ∞
v1t2d1t - t2dt = v1t2.

So we can now write

 y1t2 = L
∞

- ∞
x1t2h1t - t2dt, (3.13)

which is the result that we are seeking. ■

This result is fundamental to the study of LTI systems, and its importance 
cannot be overemphasized. The system response to any input x1t2 is expressed as 
an integral involving only the input function and the system response to an impulse 
function h1t2. From this result, we see the importance of impulse functions to the 
investigation of LTI systems.

The result in (3.13) is called the convolution integral. We denote this integral 
with an asterisk, as in the following notation:

 y1t2 = L
∞

- ∞
x1t2h1t - t2dt = x1t2*h1t2. (3.14)

Next we derive an important property of the convolution integral by making a 
change of variables in (3.13); let s = 1t - t2. Then t = 1t - s2 and dt = -ds. 
Equation (3.13) becomes

  y1t2 = L
∞

- ∞
x1t2h1t - t2dt = L

- ∞

∞
x1t - s2h1s2[-ds]

  = L
∞

- ∞
x1t - s2h1s2ds.

Next we replace s with t in the last integral, and thus the convolution can also be 
expressed as

 y1t2 = L
∞

- ∞
x1t2h1t - t2dt = L

∞

- ∞
x1t - t2h1t2dt. (3.15)

The convolution integral is symmetrical with respect to the input signal x1t2 and the 
impulse response h1t2, and we have the property

 y1t2 = x1t2*h1t2 = h1t2*x1t2. (3.16)

We derive an additional property of the convolution integral by considering the 
convolution integral for a unit impulse input; that is, for x1t2 = d1t2,

 y1t2 = d1t2*h1t2.
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By definition, this output is equal to h1t2, the impulse response:

 y1t2 = d1t2*h 1t2 = h 1t2. (3.17)

This property is independent of the functional form of h1t2. Hence, the convolution 
of any function g1t2 with the unit impulse function yields that function g1t2. Because 
of the time-invariance property, the general form of (3.17) is given by

 y1t - t02 = d1t - t02*h1t2 = h1t - t02.

This general property may be stated in terms of a function g1t2 as

 d1t2*g1t2 = g1t2 

and (3.18)

 d1t - t02*g1t2 = g1t - t02*d1t2 = g1t - t02.

The second relationship is based on (3.16).
Do not confuse convolution with multiplication. From Table 2.3, the multipli-

cation property (sifting property) of the impulse function is given by

 d1t - t02g1t2 = g1t02d1t - t02
and

 g1t - t02d1t2 = g1- t02d1t2.

The convolution integral signifies that the impulse response of an LTI discrete 
system, h1t2, contains a complete input–output description of the system. If this  impulse 
response is known, the system response to any input can be found, using (3.16).

The results thus far are now summarized:

 1. A general signal x1t2 can be expressed as a function of an impulse function:

 [eq(3.8)] x1t2 = L
∞

- ∞
x1t2d1t - t2dt.

 2. By definition, for a continuous-time LTI system,

 d1t2 S h1t2. (3.19)

The system response y1t2 for a general input signal x1t2 can be expressed as

 [eq(3.15)]  y1t2 = L
∞

- ∞
x1t2h1t - t2dt

  = L
∞

- ∞
x1t - t2h1t2dt.
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Examples are now given that illustrate the convolution integral for certain 
systems.

 exampLe 3.2 impulse response of an integrator

Consider the system of Figure 3.3. The system is an integrator, in which the output is the 
integral of the input:

 y1t2 = L
t

- ∞
x1t2dt. (3.20)

This equation is the mathematical model of the system. We use the integral symbol in a block 
to denote the integrator. The system is practical and can be realized as an electronic cir-
cuit with an operational amplifier, a resistor, and a capacitor, as described in Section 1.2. 
Integrating amplifiers of this type are used extensively in analog signal processing and in 
closed-loop control systems.

We see that the impulse response of this system is the integral of the unit impulse func-
tion, which is the unit step function:

 h1t2 = L
t

- ∞
d1t2dt = u1t2 = b0, t 6 0

1, t 7 0 
.

We will now use the convolution integral to find the system response for the unit ramp input, 
x1t2 = tu 1t2. From (3.14),

 y1t2 = x1t2*h1t2 = tu1t2*u1t2 = L
∞

- ∞
tu1t2u1t - t2dt.

In this integral, t is considered to be constant. The unit step u1t2 is zero for t 6 0; hence, the 
lower limit on the integral can be increased to zero with u1t2 removed from the integrand:

 y1t2 = L
∞

0
tu1t - t2dt.

In addition, the unit step u1t - t2 is defined as

 u1t - t2 = b0, t 7 t
1, t 6 t

 .

The upper limit on the integral can then be reduced to t, and thus,

 y1t2 = L
t

0
tdt =

t2

2
2 t
0

=
t2

2
 u1t2.

x(t) y(t)�
Integrator

y(t) � �t    

x( ) d� �
�� Figure 3.3  System for Example 3.2.
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This result is easily verified from the system equation, (3.20): 

 y1t2 = L
t

- ∞
x1t2dt = L

t

- ∞
tu1t2dt = L

t

0
tdt =

t2

2
 u1t2. ■

Example 3.2 illustrates that the convolution integral can be used to find the 
output of an LTI system, given its input. The example also illustrates that as a prac-
tical matter, other methods are used; the convolution integral is seldom the most 
efficient procedure for finding the response of a system. Instead, the convolution 
integral is normally used in developing the properties of LTI systems and in devel-
opments involving the use of LTI systems. In practice, computer solutions of the 
system equations, called system simulations, are used to find system responses. Four 
additional examples in convolution will now be given.

 exampLe 3.3 Convolution for the system of example 3.1

Consider the system of Example 3.1 for the case that the time increment between impulses 
approaches zero. If we let ∆ = 0.1, the input signal in Example 3.1 can be written as

 x1t2 = a
∞

k = 0
 0.1d1t - 0.1k2 = a

∞

k = - ∞
u1k∆2d1t - k∆21∆2,

because u1k∆2 = 0 for k 6 0 and u1k∆2 = 1 for k Ú  1. From (3.12), as ∆ S 0, the input 
signal becomes

 x1t2 = L
∞

- ∞

u1t2d1t - t2dt = u1t2.

From (3.18), the output signal is calculated from

 y1t2 = L
∞

- ∞

x1t2h1t - t2dt = L
∞

- ∞

u1t2e-1t - t2u1t - t2dt.

Because u1t2 = 0 for t 6 0, and u1t - t2 = 0 for t 7 t, this convolution integral can be 
rewritten as

 y1t2 = L
t

0

e-1t - t2dt = e-tL
t

0

etdt = 11 - e-t2u1t2.

The output signal is plotted in Figure 3.4. Compare this result with the summation result 
shown in Figure 3.2(d). 

0.5

1

0

y(t)

20 4 6 8 10 t
Figure 3.4  System output signal for  
Example 3.3. ■
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 exampLe 3.4 graphical evaluation for the response of an integrator

This example is a continuation of Example 3.2. The output for that system (an integrator) will 
be found graphically. The graphical solution will indicate some of the important properties 
of convolution. Recall from Example 3.2 that the impulse response of the system is the unit 
step function; that is, h1t2 = u1t2. To find the system output, we evaluate the convolution 
integral

 y1t2 = L
∞

- ∞
x1t2h1t - t2dt.

Note that the integration is with respect to t; hence, t is considered to be constant. Note also 
that the impulse response is time reversed to yield h1-t2, and then time shifted to yield 
h1t - t2. These signal manipulations are illustrated in Figure 3.5.

The function h1t - t2 can also be found directly by the variable-transformation proce-
dures of Section 2.1. To obtain h1t - t2, first change the variable of the impulse response to 
be s, yielding h1s2, as shown in Figure 3.5(a). (We use the variable s, since the variables t and 
t are already used.) Next we solve for t:

 t - t = s 1 t = t - s.

1

1

0
(c)

1

t � 1 t �

h(t �   )�

0
(b)

�1 �

�

h(�  )�

0

(a)

t � 1 � t � st

1

h( )
s
�

s
�

Figure 3.5  Impulse response  
factor for convolution.
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The t-axis is plotted in Figure 3.5(a) and is the same as the axis of h1t - t2 in 
Figure 3.5(c).

Shown in Figure 3.6(a) is the first term of the convolution integral, x1t2 = tu1t2. 
Figure  3.6(b) shows the second term of the integral, h1t - t2, for t 6 0. The product of 
these two functions is zero; hence, the value of the integral [and of y1t2] is zero for t 6 0. 
Figure 3.6(c) shows the second term of the convolution integral for t 7 0, and Figure 3.6(d) 
shows the product of the functions, x1t2h1t - t2, of Figure 3.6(a) and (c). Therefore, from 
the convolution integral, y1t2 is the area under the function in Figure 3.6(d). Because the 
product function is triangular, the area is equal to one-half the base times the height:

 y1t2 =
1
2

 1t21t2 =
t2

2
, t 7 0.

This value is the same as that found in Example 3.2. ■

0

1

(d)
t �

x( ) h(t �   )��

1

0

1

(c)
t

1

�

h(t �   )�

0
(b)

t �

h(t �  )�

0
(a)

�

x( )�

Figure 3.6  Convolution for Example 3.4.
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 exampLe 3.5 a system with a rectangular impulse response

As a third example, let the impulse response for an LTI system be rectangular, as shown 
in Figure 3.7. We will later use this system in the study of certain types of sampling of 
 continuous-time signals. Furthermore, this system is used in the modeling of digital-to-analog 
converters. Note that one realization of this system consists of an integrator, an ideal time 
delay, and a summing junction, as shown in Figure 3.8. The reader can show that the impulse 
response of the system is the rectangular pulse of Figure 3.7.

The input to this system is specified as

  x1t2 = d1t + 32 + 3e-0.5tu1t2
  = x11t2 + x21t2

and is also plotted in Figure 3.7. We have expressed the input as the sum of two functions; by 
the linearity property, the response is the sum of the responses to each input function. Hence,

 
x11t2 S y11t2
x21t2 S y21t2 r , x1t2 S y11t2 + y21t2.

h(t)

x(t)

1

0 2 t

0 t�3

3

1
3e�0.5t

Figure 3.7  Input signal and  
impulse response for Example 3.5.

x(t) y(t)
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�

Ideal time
delay of 2

Figure 3.8  System for Example 3.5.
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The system response to the impulse function is obtained from (3.18):

 y11t2 = h1t2*d1t + 32 = h1t + 32 = u1t + 32 - u1t + 12.

To determine the response to x21t2, we plot h1t - t2, as shown in Figure 3.9(a). This plot is 
obtained by time reversal and time shifting. Three different integrations must be performed 
to evaluate the convolution integral:

 1. The first integration applies for t F 0, as shown in Figure 3.9(a), and is given by

  y21t2 = L
∞

- ∞
x21t2h1t - t2dt = L

0

- ∞
102h1t - t2dt

 + L
∞

0
x21t2 102dt = 0, t F 0.
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Figure 3.9  Signals for Example 3.5.
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 2. The second integration applies for 0 F t F 2 and is illustrated in Figure 3.9(b):

  y21t2 = L
∞

- ∞
x21t2h1t - t2dt = L

0

- ∞
102h1t - t2dt

  + L
t

0
3e-0.5tdt + L

∞

t
x21t2102dt

  =
3e-0.5t

-0.5
2
0

t

= 611 - e-0.5t2, 0 F t F 2.

 3. Figure 3.9(c) applies for 2 F t F ∞ :

  y21t2 = L
t

t - 2
3e-0.5tdt =

3e-0.5t

-0.5
2
t - 2

t

= 61e-0.51t - 22 - e-0.5t2

  = 6e-0.5t1e1 - 12 = 10.31e-0.5t, 2 F t 6 ∞ .

The output y1t2 is plotted in Figure 3.10.

 ■

In Example 3.5, the time axis is divided into three ranges. Over each range, the 
convolution integral reduces to the form

 y1t2 = L
tb

ta

x1t2h1t - t2dt, ti F t F tj, (3.21)

where the limits ta and tb are either constants or functions of time t. The integral ap-
plies for the range ti F t F tj, where ti and tj are constants. Hence, three different 
integrals of the form of (3.21) are evaluated.

 exampLe 3.6 a system with a time-delayed exponential impulse response

Consider a system with an impulse response of h1t2 = e-tu1t - 12 and an input signal 
x1t2 = etu1-1 - t2. The system’s impulse response and the input signal are shown in 
Figure 3.11(a) and (b), respectively. The system’s output is y1t2 = x1t2*h1t2, from (3.16).
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Figure 3.10  Output signal for Example 3.5.
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Figure 3.11  Convolution signals for Example 3.6.
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To calculate the system output, we perform a quasi-graphical convolution tech-
nique. First, sketch the time-reversed, time-shifted impulse response function, h1t - t2, as 
shown in Figure 3.11(c). From this sketch, it is seen that the signal h1t - t2 will be non-
zero over the interval - ∞ 6 t … 1t - 12 and for other values of t, h1t - t2 will be zero. 
The input signal, x1t2, is zero for t 7 -1, so both functions in the product x1t2h1t - t2 
will be nonzero only for t … 0. Next, evaluate the convolution integral for the time interval 
- ∞ 6  t … 1t - 12, t … 0. During this interval, both exponential functions are nonzero and 
the output is given by

 y1t2 = L
t - 1

- ∞

ete-1t - t2dt = L
t - 1

- ∞

e-te2tdt =
e-2et

2
, - ∞  6  t … 0.

Because x1t2 is zero for t 7 -1, for t 7 0, the output signal is given by

 y1t2 = L
-1

- ∞

ete-1t - t2dt = e-tL
-1

- ∞

e2tdt =
e-2e-t

2
, t 7 0.

The output signal, y1t2, is plotted in Figure 3.11(d). It is an even function of time,  because in 
this example, x1t2 = h1- t2. ■

In this section, the convolution integral for continuous-time LTI systems is 
developed. This integral is fundamental to the analysis and design of LTI systems 
and is also used to develop general properties of these systems. To illustrate convo-
lution, we evaluate the integral first by a strictly mathematical approach and then by 
a quasi-graphical approach.

 3.3 properties of ConvoLution

The convolution integral of (3.14) has three important properties:

1. Commutative property. As stated in (3.15), the convolution integral is 
symmetrical with respect to x1t2 and h1t2:

 x1t2*h1t2 = h1t2*x1t2. (3.22)

An illustration of this property is given in Figure 3.12. This figure includes a com-
mon representation of an LTI system as a block containing the impulse response. 
The outputs for the two systems in Figure 3.12 are equal, from (3.22).

2. Associative property. The result of the convolution of three or more 
functions is independent of the order in which the convolution is performed. For 
example,

 [x1t2*h11t2]*h21t2 = x1t2*[h11t2*h21t2] = x1t2*[h21t2*h11t2]. (3.23)

The proof of this property involves forming integrals and a change of variables 
and is not given here. (See Problem 3.8.) This property is illustrated with the two 
cascaded systems in Figure 3.13(a). For cascaded LTI systems, the order of the 
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connection may be changed with no effect on the system impulse response (the 
input–output characteristics). Note that the two cascaded systems in Figure 3.13(b) 
may be  replaced with a single system with the impulse response h1t2, given by, from 
(3.22) and (3.23),

 h1t2 = h11t2*h21t2 = h21t2*h11t2. (3.24)

It follows that for m cascaded systems, the impulse response of the total system is 
given by

 h1t2 = h11t2*h21t2* g *hm1t2. (3.25)

3. Distributive property. The convolution integral satisfies the following 
 relationship:

 x1t2*h11t2 + x1t2*h21t2 = x1t2*[h11t2 + h21t2]. (3.26)

This property is developed directly from the convolution integral, (3.14),

x1t2*h11t2 + x1t2*h21t2 = L
∞

- ∞
x1t2h11t - t2dt + L

∞

- ∞
x1t2h21t - t2dt 

 = L
∞

- ∞
x1t2[h11t - t2 + h21t - t2]dt  

 = x1t2*[h11t2 + h21t2].  (3.27)

The two systems in parallel in Figure 3.14 illustrate this property, with the output 
given by

 y1t2 = x1t2*h11t2 + x1t2*h21t2 = x1t2*[h11t2 + h21t2]. (3.28)

h(t)
x(t) y(t)

x(t)
h(t) y(t)

Figure 3.12  Commutative property.
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h1(t)
y(t)

(b)

h1(t)
x(t)

h2(t)
y(t)

h1(t) � h2(t)
x(t) y(t)

Figure 3.13  Associative property.
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Therefore, the total system impulse response is the sum of the impulse responses:

 h1t2 = h11t2 + h21t2. (3.29)

In summary,

 1. the impulse response completely describes the input–output characteristics 
of a continuous-time LTI system, and

 2. the commutative, associative, and distributive properties give the rules for 
determining the impulse response of an interconnection of LTI systems.

Note that all results in this section were proved for LTI systems only. An 
 example of the use of these properties will now be given.

 exampLe 3.7 impulse response for an interconnection of systems

We wish to determine the impulse response of the system of Figure 3.15(a) in terms of the 
impulse responses of the four subsystems. First, from (3.29), the impulse response of the par-
allel systems 1 and 2 is given by

 ha1t2 = h11t2 + h21t2,

as shown in Figure 3.15(b). From (3.24), the effect of the cascaded connection of system a and 
system 3 is given by

 hb1t2 = ha1t2*h31t2 = [h11t2 + h21t2]*h31t2,

as shown in Figure 3.15(c). We add the effect of the parallel system 4 to give the total-system 
impulse response, as shown in Figure 3.15(d):

 h1t2 = hb1t2 + h41t2 = [h11t2 + h21t2]*h31t2 + h41t2. ■

This section gives three properties of convolution. Based on these proper-
ties, a procedure is developed for calculating the impulse response of an LTI sys-
tem composed of subsystems, where the impulse responses of the subsystems are 
known. This procedure applies only for linear time-invariant systems. An equiv-
alent and simpler procedure for finding the impulse response of the total system 
in terms of its subsystem impulse responses is the transfer-function approach. The 

h1(t)

h2(t)

x(t) y(t)
h1(t) � h2(t)

y(t)x(t)
�

Figure 3.14  Distributive property.
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transfer-function approach is introduced later in this chapter and is generalized by 
application of the Fourier transform of Chapters 5 and 6 and the Laplace transform 
of Chapter 7.

 3.4 properties of Continuous-time Lti systems

In Section 2.7, several properties of continuous-time systems are defined. In this 
section, we investigate these properties as related to linear time-invariant systems.

The input–output characteristics of a continuous-time LTI system are com-
pletely described by its impulse response h1t2. Hence, all properties of a system can 

(a)

(b)

h1(t)

h2(t)

h4(t)

h3(t)
x(t) y(t)

� �

h4(t)

y(t)

h3(t)

�
x(t)

h1(t) � h2(t)

(c)

(d)

h4(t)

y(t)
�

x(t)

[h1(t) � h2(t)] � h3(t)

y(t)x(t)
[h1(t) � h2(t)] � h3(t) � h4(t)

Figure 3.15  System for Example 3.7.
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be determined from h1t2. From (3.15), for the input signal x1t2, the output signal 
y1t2 is given by

 y1t2 = L
∞

- ∞
x1t2h1t - t2dt. (3.30)

This characteristic of LTI systems will be used to derive certain properties for these 
systems. We begin by considering the memory property.

memoryless systems

Recall that a memoryless (static) system is one whose current value of output 
 depends only on the current value of input; that is, the current value of the output 
does not depend on either past values or future values of the input. Let the present 
time be t1. From (3.30),

 y1t12 = L
∞

- ∞
x1t2h1t1 - t2dt. (3.31)

We compare this with the definition of the unit impulse function, (3.6):

[eq(3.6)] L
∞

- ∞
x1t2d1t - t02dt = x1t02.

This equation is not changed by replacing d1t - t02 with d1t0 - t2 (Table 2.3):

 L
∞

- ∞
x1t2d1t0 - t2dt = x1t02.

Comparing this equation with (3.31), we see that h1t2 must be equal to the impulse 
function Kd1t2, where K is a constant, resulting in

 y1t12 = L
∞

- ∞
x1t2Kd1t1 - t2dt = Kx1t12.

Hence, an LTI system is memoryless if and only if h1t2 = Kd1t2—that is, if 
y1t2 = Kx1t2. A memoryless LTI system can be considered to be an ideal ampli-
fier, with y1t2 = Kx1t2. If the gain is unity 1K = 12, the identity system results.

invertibility

A continuous-time LTI system with the impulse response h1t2 is invertible if its 
input can be determined from its output. An invertible LTI system is depicted in 
Figure 3.16. For this system,

 x1t2*h1t2*hi1t2 = x1t2, (3.32)
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where hi1t2 is the impulse response of the inverse system. From (3.17),

 x1t2*d1t2 = x1t2. (3.33)

From (3.32) and (3.33),

 h1t2*hi1t2 = d1t2. (3.34)

Thus, an LTI system with the impulse response h1t2 is invertible only if the function 
hi1t2 can be found that satisfies (3.34). Then, the inverse system has the impulse 
response hi1t2.

We do not present a procedure for determining hi1t2, given h1t2. We perform 
this manipulation most efficiently by using the Fourier transform of Chapter 5 or 
the Laplace transform of Chapter 7.

Causality

A continuous-time LTI system is causal if the current value of the output depends 
on only the current and past values of the input. Because the unit impulse function 
d1t2 occurs at t = 0, the impulse response h1t2 of a causal system must be zero for 
t 6 0. In addition, a signal that is zero for t 6 0 is called a causal signal. The convo-
lution integral for a causal LTI system can then be expressed as

 y1t2 = L
∞

- ∞
x1t - t2h1t2dt = L

∞

0
x1t - t2h1t2dt. (3.35)

If the impulse response is expressed as h1t - t2, this function is zero for 
1t - t2 6 0, or for t 7 t. The second form of the convolution integral can then be 
expressed as

 y1t2 = L
∞

- ∞
x1t2h1t - t2dt = L

t

- ∞
x1t2h1t - t2dt. (3.36)

Notice that (3.36) makes it clear that for a causal system, the output, y1t2, depends 
on values of the input only up to the present time, t, and not on future inputs.

In summary, for a causal continuous-time LTI system, the convolution inte-
gral can be expressed in the two forms

 y1t2 = L
∞

0
x1t - t2h1t2dt = L

t

- ∞
x1t2h1t - t2dt. (3.37)

h(t)
x(t)

hi(t)
y(t) � x(t)

Inverse
systemSystem

Figure 3.16  LTI invertible system.
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stability

Recall that a system is bounded-input–bounded-output (BIBO) stable if the  output 
remains bounded for any bounded input. The boundedness of the input can be 
 expressed as

 ∙ x1t2 ∙ 6 M for all t,

where M is a real constant. Then, from (3.15), we can write

 ∙ y1t2 ∙  = 2 L ∞

- ∞
x1t - t2h1t2dt 2 F L

∞

- ∞
∙ x1t - t2h1t2 ∙ dt 

  = L
∞

- ∞
∙ x1t - t2 ∙ ∙ h1t2 ∙ dt  (3.38)

  F L
∞

- ∞
M ∙ h1t2 ∙ dt = ML

∞

- ∞
∙ h1t2∙ dt, 

since

 2 L ∞

- ∞
x11t2x21t2dt 2 F L

∞

- ∞
∙ x11t2x21t2 ∙ dt.

Thus, because M is finite, y1t2 is bounded if

 L
∞

- ∞
∙ h1t2 ∙ dt 6 ∞ . (3.39)

If h1t2 satisfies this condition, it is said to be absolutely integrable. It can be shown 
that this requirement is also sufficient. (See Problem 3.15.) Thus, for an LTI system 
to be BIBO stable, the impulse response h1t2 must be absolutely integrable, as in 
(3.39). For an LTI causal system, this criterion reduces to

 L
∞

0
∙ h1t2 ∙ dt 6 ∞ . (3.40)

 exampLe 3.8 stability for an Lti system derived

We will determine the stability of the causal LTI system that has the impulse response given by

 h1t2 = e-3tu1t2.

In (3.40),

 L
∞

- ∞
∙ h1t2 ∙ dt = L

∞

0
e-3t dt =

e-3t

-3
2
0

∞

=
1
3

6 ∞ ,
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and this system is stable. For h1t2 = e3tu1t2,

 L
∞

- ∞
∙ h1t2 ∙ dt = L

∞

0
e3tdt =

e3t

3
2
0

∞

,

which is unbounded at the upper limit. Hence, this system is not stable. ■

 exampLe 3.9 stability for an integrator examined

As a second example, consider an LTI system such that h1t2 = u1t2. From Example 3.2, this 
system is an integrator, with the output equal to the integral of the input:

 y1t2 = L
t

- ∞
x1t2dt.

We determine the stability of this system from (3.40), since the system is causal:

 L
∞

0
∙ h1t2 ∙ dt = L

∞

0
dt = t 2

0

∞

.

This function is unbounded, and thus the system is not BIBO stable. ■

unit step response

As has been stated several times, the impulse response of a system, h1t2, completely 
specifies the input–output characteristics of that system; the convolution integral,

[eq(3.30)] y1t2 = L
∞

- ∞
x1t2h1t - t2dt,

allows the calculation of the output signal y1t2 for any input signal x1t2.
Suppose that the system input is the unit step function, u1t2. From (3.30), with 

s1t2 denoting the unit step response, we obtain

 s1t2 = L
∞

- ∞
u1t2h1t - t2dt = L

∞

0
h1t - t2dt, (3.41)

because u1t2 is zero for t 6 0. If the system is causal, h1t - t2 is zero for 
1t - t2 6 0, or for t 7 t, and

 s1t2 = L
t

0
h1t2dt. (3.42)

We see, then, that the unit step response can be calculated directly from the unit 
impulse response, with the use of either (3.41) or (3.42).
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If (3.41) or (3.42) is differentiated (see Leibnitz’s rule, Appendix B), we obtain

 h1t2 =
ds1t2

dt
 . (3.43)

Thus, the unit impulse response can be calculated directly from the unit step response, 
and we see that the unit step response also completely describes the input–output 
characteristics of an LTI system.

 exampLe 3.10 step response from the impulse response

Consider again the system of Example 3.8, which has the impulse response given by

 h1t2 = e-3tu1t2.

Note that this system is causal. From (3.42), the unit step response is then

 s1t2 = L
t

0
h1t2dt = L

t

0
e-3t dt =

e-3t

-3
2
0

t

=
1
3
11 - e-3t2u1t2.

We can verify this result by differentiating s1t2 to obtain the impulse response. From (3.43), 
we get

 h1t2 =
ds1t2

dt
=

1
3
11 - e-3t2d1t2 +

1
3
1-e-3t21-32u1t2

  = e-3tu1t2.

Why does 11 - e-3t2d1t2 = 0? [See (2.42).] ■

In this section, the properties of memory, invertibility, causality, and stability 
are considered with respect to LTI systems. Of course, by definition, these systems 
are linear and time invariant. An important result is that the BIBO stability can 
always be determined from the impulse response of a system, by (3.39). It is then 
shown that the impulse response of an LTI system can be determined from its unit 
step response.

 3.5 DifferentiaL-equation moDeLs

Some properties of LTI continuous-time systems were developed in earlier sections of 
this chapter, with little reference to the actual equations that are used to model these 
systems. We now consider the most common model for LTI systems. Continuous-
time LTI systems are usually modeled by ordinary linear differential equations with 
constant coefficients. We emphasize that we are considering the models of physical 
systems, not the physical systems themselves.
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In Section 2.3, we considered the system model given by

 
dy1t2

dt
= ay1t2, (3.44)

where a is constant. The system input x1t2 usually enters this model in the form

 
dy1t2

dt
- ay1t2 = bx1t2, (3.45)

where a and b are constants and y1t2 is the system output signal. The order of the 
system is the order of the differential equation that models the system. Hence, 
(3.45) is a first-order system.

Equation (3.45) is an ordinary linear differential equation with constant coeffi-
cients. The equation is ordinary, since no partial derivatives are involved. The equation 
is linear, since the equation contains the dependent variable and its derivative to the 
first degree only. One of the coefficients in the equation is equal to unity, one is -a, 
and one is b; hence, the equation has constant coefficients.

We now test the linearity of (3.45), using superposition. Let yi1t2 denote the 
solution of (3.45) for the excitation xi1t2, for i = 1, 2. By this, we mean that

 
dyi1t2

dt
- ayi1t2 = bxi1t2, i = 1, 2. (3.46)

We now show that the solution [a1y11t2 + a2y21t2] satisfies (3.45) for the excitation 
[a1x11t2 + a2x21t2], by direct substitution into (3.45):

 
d
dt

[a1y11t2 + a2y21t2] - a[a1y11t2 + a2y21t2] = b[a1x11t2 + a2x21t2].

This equation is rearranged to yield

 a1Jdy11t2
dt

- ay11t2 - bx11t2R + a2Jdy21t2
dt

- ay21t2 - bx21t2R = 0. (3.47)

Because, from (3.46), each term is equal to zero, the differential equation satisfies 
the principle of superposition and hence is linear.

Next, we test the model for time invariance. In (3.45), replacing t with 1t - t02 
results in the equation

 
dy1t - t02

dt
- ay1t - t02 = bx1t - t02. (3.48)

Delaying the input by t0 delays the solution by the same amount; this system is then 
time invariant.
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A simple example of an ordinary linear differential equation with constant 
coefficients is the first-order differential equation

 
dy1t2

dt
+ 2y1t2 = x1t2. (3.49)

This equation could model the circuit of Figure 3.17, namely,

 L 
di1t2

dt
+ Ri1t2 = v1t2,

with L = 1H, R = 2Ω, y1t2 = i1t2, and x1t2 = v1t2.
The general form of an nth-order linear differential equation with constant 

coefficients is

an 
dny1t2

dtn + an - 1 
dn - 1y1t2

dtn - 1 + g + a1 
dy1t2

dt
+ a0y1t2

 = bm 
dmx1t2

dtm + bm - 1 
dm - 1x1t2

dtm - 1 + g + b1 
dx1t2

dt
+ b0x1t2,

where a0, c , an and b0, c , bm are constants and an ≠ 0. We limit these con-
stants to having real values. This equation can be expressed in the more compact form

 a
n

k = 0
ak 

dky1t2
dtk = a

m

k = 0
bk 

dkx1t2
dtk . (3.50)

It is easily shown by the preceding procedure that this equation is both linear and 
time invariant. Many methods of solution exist for (3.50); in this section, we review 
briefly one of the classical methods. In subsequent chapters, the solution by trans-
form methods is developed.

solution of Differential equations

The method of solution of (3.50) presented here is called the method of undeter-
mined coefficients [2] and requires that the general solution y1t2 be expressed as the 
sum of two functions:

 y1t2 = yc1t2 + yp1t2. (3.51)

�
� L

R

i(t)

v(t)

Figure 3.17  RL circuit.
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In this equation, yc1t2 is called the complementary function and yp1t2 is a particular 
solution. For the case that the differential equation models a system, the comple-
mentary function is usually called the natural response, and the particular solution, 
the forced response. We will use this notation. We only outline the method of solu-
tion; this method is presented in greater detail in Appendix E for readers requiring 
more review. The solution procedure is given as three steps:

1. Natural response. Assume yc1t2 = Cest to be the solution of the homoge-
neous equation. Substitute this solution into the homogeneous equation [(3.50) with 
the right side set to zero] to determine the required values of s.

2. Forced response. Assume that yp1t2 is a weighted sum of the mathemati-
cal form of x1t2 and its derivatives which are different in form from x1t2. Three 
examples are given:

  x1t2 = 5 1 yp1t2 = P;

  x1t2 = 5e-7t 1 yp1t2 = Pe-7t;

  x1t2 = 2 cos 3t 1 yp1t2 = P1 cos 3t + P2 sin 3t.

This solution procedure can be applied only if yp1t2 contains a finite number of terms.
3. Coefficient evaluation. Solve for the unknown coefficients Pi of the forced 

response by substituting yp1t2 into the differential equation (3.50). Then use the 
general solution (3.51) and the initial conditions to solve for the unknown coeffi-
cients Ci of the natural response.

 exampLe 3.11 system response for a first-order Lti system

As an example, we consider the differential equation given earlier in the section, but with 
x1t2 constant; that is,

 
dy1t2

dt
+ 2y1t2 = 2

for t G 0, with y102 = 4. In Step 1, we assume the natural response yc1t2 = Cest. Then we 
substitute yc1t2 into the homogeneous equation:

 
dyc1t2

dt
+ 2yc1t2 = 0 1 1s + 22Cest = 0 1  s = -2.

The natural response is then yc1t2 = Ce-2t, where C is yet to be determined.
Because the forcing function is constant, and since the derivative of a constant is zero, 

the forced response in Step 2 is assumed to be

 yp1t2 = P,

where P is an unknown constant. Substitution of the forced response yp1t2 into the differen-
tial equation yields

 
dP
dt

+ 2P = 0 + 2P = 2,
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or yp1t2 = P = 1. From (3.51), the general solution is

 y1t2 = yc1t2 + yp1t2 = Ce-2t + 1.

We now evaluate the coefficient C. The initial condition is given as y102 = 4. The 
general solution y1t2 evaluated at t = 0 yields

 y102 = yc102 + yp102 = [Ce-2t + 1] 2
t = 0

  = C + 1 = 4 1 C = 3.

The total solution is then

 y1t2 = 1 + 3e-2t.

This solution is verified with the MATLAB program

dsolve('Dy+2*y=2, y(0)=4')
ezplot(y)

If this example is not clear, the reader should study Appendix E. ■

 exampLe 3.12 verification of the response of example 3.11

We now verify the solution in Example 3.11 by substitution into the differential equation. 
Thus,

 
dy1t2

dt
+ 2y1t2 2

y = 1 + 3e-2t
= -6e-2t + 211 + 3e-2t2 = 2,

and the solution checks. In addition,

 y102 = 11 + 3e-2t2 2
t = 0

= 1 + 3 = 4,

and the initial condition checks. Hence, the solution is verified. ■

general Case

Consider the natural response for the nth-order system

[eq(3.50)] a
n

k = 0
ak 

dky1t2
dtk = a

m

k = 0
bk 

dkx1t2
dtk .
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The homogeneous equation is formed from (3.50) with the right side set to zero. 
That is,

 an 
dny1t2

dtn + an - 1 
dn - 1y1t2

dtn - 1 + g + a1 
dy1t2

dt
+ a0y1t2 = 0, (3.52)

with an ≠ 0. The natural response yc1t2 must satisfy this equation.
We assume that the solution of the homogeneous equation is of the form 

yc1t2 = Cest. Note that, in (3.52),

  yc1t2 = Cest;  

  
dyc1t2

dt
= Csest;  

  
d2yc1t2

dt2 = Cs2est; 

 f; 

  
dnyc1t2

dtn = Csnest. (3.53)

Substitution of these terms into (3.52) yields

 1ansn + an - 1s
n - 1 + g + a1s + a02Cest = 0. (3.54)

If we assume that our solution yc1t2 = Cest is nontrivial 1C ≠ 02, then, from 
(3.54),

 ansn + an - 1s
n - 1 + g + a1s + a0 = 0. (3.55)

This equation is called the characteristic equation, or the auxiliary equation, for the 
differential equation (3.50). The polynomial may be factored as

 ansn + an - 1s
n - 1 + g+ a1s + a0 

  = an1s - s121s - s22 g1s - sn2 = 0. (3.56)

Hence, n values of s, denoted as si, 1 F i F n, satisfy the equation; that is, 
yci1t2 = Cie

sit for the n values of si in (3.56) satisfies the homogeneous equation 
(3.52). Since the differential equation is linear, the sum of these n solutions is also a 
solution. For the case of no repeated roots, the solution of the homogeneous equa-
tion (3.52) may be expressed as

 yc1t2 = C1e
s1t + C2e

s2t + g + Cnesnt. (3.57)

See Appendix E for the case that the characteristic equation has repeated roots.
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relation to physical systems

We wish now to relate the general solution of differential-equation models to the 
response of physical systems. We, of course, assume that the differential-equation 
model of a physical system is reasonably accurate.

From these developments, we see that the natural-response part of the general 
solution of the linear differential equation with constant coefficients is independent 
of the forcing function x1t2; the natural response is dependent only on the  structure 
of the system [the left side of (3.50)], and hence the term natural response. It is 
also called the unforced response, or the zero-input response. This component of 
the  response is always present, independent of the manner in which the system is 
excited. However, the amplitudes Ci of the terms depend on both the initial condi-
tions and the excitation. The factors esit in the natural response are called the modes 
of the system.

The forced response of (3.51), yp1t2, is also called the zero-state response of 
the system. In this application, the term zero state means zero initial conditions. The 
forced response is a function of both the system structure and the excitation, but is 
independent of the initial conditions.

For almost all LTI models of physical systems, the natural response 
 approaches zero with increasing time; then, only the forced part of the response 
remains. (The requirement for this to occur is that the system be BIBO stable.) For 
this reason, we sometimes refer to the natural response as the transient  response 
and the forced  response as the steady-state response. When we refer to the steady-
state response of a stable LTI system, we are speaking of the forced response of 
the system differential equation. For a stable system, the steady-state response is 
the system response for the case that the input signal has been applied for a very 
long time.

 exampLe 3.13 time constant for the system of example 3.11

For the first-order system of Example 3.11, the solution is given by

 y1t2 = yc1t2 + yp1t2 = 3e-2t + 1.

The natural response is the term 3e-2t, and the system has one mode, e-2t. The steady-state 
response is the term 1. The system response is plotted in Figure 3.18. The time constant in this 
response is t = 1

2 = 0.5. (See Section 2.3.) Therefore, the natural response can be  ignored 
after approximately 2.0 units of time 14t2, leaving only the steady-state response. (See 
Section 2.3.) ■

In this section, we consider systems modeled by linear differential equa-
tions with constant coefficients. A classical-solution procedure for these equations 
is  reviewed. The components of the solution are then related to attributes of the 
 response of a physical system.
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 3.6 terms in the naturaL response

We now relate the terms of the natural response (complementary function) of a 
continuous-time LTI system to the signals that were studied in Section 2.3. The 
mathematical forms of the terms in the natural response are determined by the 
roots of the characteristic equation:

[eq(3.56)] ansn + an - 1s
n - 1 + g + a1s + a0

 = an1s - s121s - s22 g 1s - sn2 = 0.

With the roots distinct, the natural response is given by

[eq(3.57)] yc1t2 = C1e
s1t + C2e

s2t + g + Cnesnt.

Hence, the general term is given by Cie
sit, where esit is called a system mode. The root 

si of the characteristic equation may be real or complex. However, since the coef-
ficients of the characteristic equation are real, complex roots must occur in complex 
conjugate pairs. We now consider some of the different forms of the modes that can 
appear in the natural response.

si Real
If si is real, the resulting term in the natural response is exponential in form.

si Complex
If si is complex, we let

 si = si + jvi,

and the mode is given by

 Cie
sit = Cie

1si + jvi2t = Cie
sitejvit. (3.58)

Because the natural response yc1t2 must be real, two of the terms of yc1t2 can be 
 expressed as, with Ci = ∙ Ci ∙ ejui,

4

3

2

1

0 1 2 3 t

y(t)

yc(t)

yp(t)

Figure 3.18  Response of a first-order system.
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 Cie
sit + 1Cie

sit2* = ∙ Ci ∙ ejuiesitejvit + ∙ Ci ∙ e-juiesite-jvit  

  = ∙ Ci ∙ esitej1vit + ui2 + ∙ Ci ∙ esite-j1vit + ui2 

  = 2 ∙ Ci ∙ esitcos 1vit + ui2  (3.59)

by Euler’s relation. If si is zero, this function is an undamped sinusoid. If si is nega-
tive, the function in (3.59) is a damped sinusoid and approaches zero as t approaches 
infinity; the envelope of the function is 2 ∙ Ci ∙ esi. If si is positive, the function becomes 
 unbounded as t approaches infinity, with the envelope 2 ∙ Ci ∙ esit.

Real roots of the characteristic equation then give real exponential terms in the 
natural response, while complex roots give sinusoidal terms. These relationships are 
illustrated in Figure 3.19, in which the symbols *  denote characteristic-equation root 
 locations.

We see, then, that the terms that were discussed in Section 2.3 appear in the 
natural response of an LTI system. These terms are independent of the type of excita-
tion applied to the system.

stability

We now consider the stability of a causal continuous-time LTI system. As stated 
earlier, the general term in the natural response is of the form Cie

sit, where si is 
a root of the system characteristic equation. The magnitude of this term is given 
by ∙ Ci ∙ ∙ esit ∙ , from (3.59). If si is negative, the magnitude of the term approaches 
zero as t approaches infinity. However, if si is positive, the magnitude of the term 
 becomes unbounded as t approaches infinity. Hence, si 7 0 denotes instability.

Recall that the total solution of a constant-coefficient linear differential equa-
tion is given by

[eq(3.51)] y1t2 = yc1t2 + yp1t2.

Recall also that, for stable systems, the forced response yp1t2 is of the same math-
ematical form as the input x1t2. Hence, if x1t2 is bounded, yp1t2 is also bounded. If 
the real parts of all roots of the characteristic equation satisfy the relation si 6 0, 
each term of the natural response is also bounded. Consequently, the necessary and 
sufficient condition for a causal continuous-time LTI system to be BIBO stable is 

�

�

s

Figure 3.19  Characteristic equation  
root locations.
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that the roots of the system characteristic equation all have negative real parts. As 
indicated in Figure 3.19, the natural response of a stable system will approach zero 
as time increases.

 exampLe 3.14 stability of an rL circuit

Consider the resistance and inductance (RL) circuit shown in Figure 3.17. A differential 
equation model for this circuit is

 L 
di1t2

dt
+ Ri1t2 = v1t2.

The characteristic equation of this system model is s + R/L = 0. The characteristic root is 
s = -R/L, and the system mode is e-   RL t. From the system mode (or the characteristic root), 
we can see that the system is stable for R 7 0. If R = 0, then s = 0, the system mode does 
not approach zero with increasing time, and the system is not stable. When the real part of a 
characteristic root of a system is zero, the system is said to be marginally stable. The response 
of a marginally stable system may become unbounded for some inputs. For this marginally 
stable system, the model becomes

 L 
di1t2

dt
= v1t2,

which has the solution

 i1t2 =
1
L L

t

- ∞
v1t2dt.

From this result, we can see that if the input to this marginally stable system is an impulse, 
then the response is a constant current. If the input voltage is sinusoidal, then the response 
is also  sinusoidal. However, if the input is a unit step function, the response is a current that 
becomes unbounded as time increases. We further illustrate the determination of stability 
with an  example. ■

 exampLe 3.15 modes of a second-order Lti system

Suppose that a causal system is described by the differential equation

 
d2y1t2

dt2 + 1.25 
dy1t2

dt
+ 0.375y1t2 = x1t2.

From (3.52) and (3.55), the system characteristic equation is

 s2 + 1.25s + 0.375 = 1s + 0.7521s + 0.52 = 0.

This system is stable, because the two roots, -0.75 and -0.5, are negative real numbers. The 
natural response is given by

 yc1t2 = C1e
-0.75t + C2e

-0.5t,

and this function approaches zero as t approaches infinity.
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Consider a second causal system described by the differential equation

 
d2y1t2

dt2 + 0.25 
dy1t2

dt
- 0.375y1t2 = x1t2.

The system characteristic equation is given by

 s2 + 0.25s - 0.375 = 1s + 0.7521s - 0.52 = 0.

This system is unstable, since one of the roots, at s = 0.5, is a positive real number. The natu-
ral response is given by

 yc1t2 = C1e
-0.75t + C2e

0.5t.

The instability is evident in the mode e0.5t, which will grow without bound as t increases. ■

Note the information contained in the system characteristic equation. The 
first system of Example 3.15 has two time constants, with t1 = 1>0.75 = 1.33, 
t2 = 1>0.5 = 2, and no oscillations in the transient response (no complex roots). 
The larger time constant is t2; the transient response of the system will die out in 
 approximately 4t2 = 8 units of time. The characteristic equation for the system of 
the second example denotes instability.

For high-order systems, a computer must be used to find the roots of the 
system characteristic equation. For example, suppose that a system characteristic 
equation is given by

 s3 + 7s2 + 14s + 8 = 0.

A MATLAB program that calculates the equation roots is

n = [1 7 14 8];
r = roots (n)
result: r = – 4 – 2 – 1

Hence, the system is stable with three time constants: 0.25 s, 0.5 s, and 1 s.
A second example is the characteristic equation

 s3 + s2 + 2s + 8 = 0.

A MATLAB program for this system is then

n = [1 1 2 8];
r = roots (n)
result: r = –20.5 + 1.9365i0.5 – 1.9365i

This system is unstable, because the two roots, s = 0.5 { j1.9365, have posi-
tive real parts.

In this section, the terms of the natural response of an LTI system are shown 
to be of the form of the signals studied in Section 2.3. Then relationships of both the 
transient response and BIBO stability to characteristic-equation zero locations are 
developed.
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 3.7 system response for CompLex-exponentiaL inputs

First in this section, we consider further the linearity property for systems. Then 
the response of continuous-time LTI systems to a certain class of input signals is 
derived.

Linearity

Consider the continuous-time LTI system depicted in Figure 3.20. This system is 
 denoted by

 x1t2 S y1t2. (3.60)

For an LTI system, (3.60) can be expressed as the convolution integral

 y1t2 = L
∞

- ∞
x1t - t2h1t2dt. (3.61)

The functions H1s2, y1t2, and h1t2 are all real for models of physical systems.
Suppose now that we consider two real inputs xi1t2, i = 1, 2. Then, in (3.60),

 xi1t2 S yi1t2, i = 1, 2. (3.62)

Thus, yi1t2, i = 1, 2, are real, from (3.61). Because the system of (3.60) is linear, the 
principle of superposition applies, and it follows that

 a1x11t2 + a2x21t2 S a1y11t2 + a2y21t2. (3.63)

No restrictions exist on the constants a1 and a2 in (3.63); hence, these constants 
may be chosen to be complex. For this development, we choose the constants to be

 a1 = 1, a2 = j = 2-1.

With this choice, the superposition property of (3.63) becomes

 x11t2 + jx21t2 S y11t2 + jy21t2. (3.64)

This result may be stated as follows: For a linear system model with a complex input 
signal, the real part of the input produces the real part of the output, and the imagi-
nary part of the input produces the imaginary part of the output.

h(t)
x(t) y(t)

Figure 3.20  LTI system.
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Complex inputs for Lti systems

The response of an LTI system to the complex-exponential input

 x1t2 = Xest (3.65)

is now investigated. For the general case, both X and s are complex. We investigate 
the important case that the system of (3.61) and Figure 3.20 is stable and is modeled 
by an nth-order linear differential equation with constant coefficients. The expo-
nential input of (3.65) is assumed to exist for all time; hence, the steady-state system 
response will be found. In other words, we will find the forced response for a dif-
ferential equation with constant coefficients for a complex-exponential input signal.

The differential-equation model for an nth-order LTI system is

 [eq(3.50)] a
n

k = 0
ak 

dky1t2
dtk = a

m

k = 0
bk 

dkx1t2
dtk ,

where all ai and bi are real constants and an ≠ 0. For the complex-exponential ex-
citation of (3.65), recall from Section 3.5 that the forced response (steady-state re-
sponse) of (3.50) is of the same mathematical form; hence,

 yss1t2 = Yest, (3.66)

where yss1t2 is the steady-state response and Y is a complex constant to be deter-
mined [s is known from (3.65)]. We denote the forced response as yss1t2 rather than 
yp1t2, for clarity. From (3.65) and (3.66), the terms of (3.50) become

  aoyss1t2 = a0Yest    b0x1t2 = b0Xest  

  a1 
dyss1t2

dt
= a1sYest    b1 

dx1t2
dt

= b1sXest  

  a2 
d2yss1t2

dt2 = a2s
2Yest    b2 

d2x1t2
dt2 = b2s

2Xest  

 f f 

  an 
dnyss1t2

dtn = ansnYest    bm 
dmx1t2

dtm = bmsmXest (3.67)

These terms are substituted into (3.50), resulting in the equation

 1ansn + an - 1s
n - 1 + g+ a1s + a02Yest

 = 1bmsm + bm - 1s
m - 1 + g+ b1s + b02Xest. (3.68)

The only unknown in the steady-state response yss1t2 of (3.66) is Y. In (3.68), the 
factor est cancels, and Y is given by

 Y = Jbmsm + bm - 1s
m - 1 + g+ b1s + b0

ansn + an - 1s
n - 1 + g+ a1s + a0

RX = H1s2X. (3.69)
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It is standard practice to denote the ratio of polynomials as

 H1s2 =
bmsm + bm - 1s

m - 1 + g+ b1s + b0

ansn + an - 1s
n - 1 + g+ a1s + a0

. (3.70)

We show subsequently that this function is related to the impulse response h1t2. 
The function H1s2 is called a transfer function and is said to be nth order. The order 
of a transfer function is the same as that of the differential equation upon which the 
transfer function is based.

We now summarize this development. Consider an LTI system with the trans-
fer function H1s2, as given in (3.69) and (3.70). If the system excitation is the com-
plex exponential Xes1t, the steady-state response is given by, from (3.66) and (3.69),

 x1t2 = Xes1t S yss1t2 = XH1s12es1t. (3.71)

The complex-exponential solution in (3.71) also applies for the special case of sinu-
soidal inputs. Suppose that, in (3.71), X = ∙ X ∙ ejf and s1 = jv1, where f and v1 are 
real. Then

 x1t2 = Xes1t = ∙ X ∙ ejfejv1t = ∙ X ∙ ej1v1t + f2  

  = ∙ X ∙cos 1v1t + f2 + j ∙ X ∙sin1v1t + f2. (3.72)

Since, in general, H1jv12 is also complex, we let H1jv12 = ∙ H1jv12 ∙ ejuH. The right 
side of (3.71) can be expressed as

 yss1t2 = XH1jv12ejv1t = ∙ X ∙ ∙ H1jv12 ∙ ej1v1t + f + uH2

  = ∙ X ∙ ∙ H1jv12 ∙ [cos [v1t + f + ∠H1jv12] + jsin [v1t + f + ∠H1jv12]],

with uH = ∠H1jv12. From (3.64), since the real part of the input signal produces 
the real part of the output signal,

 ∙ X ∙ cos1v1t + f2 S ∙ X ∙ ∙ H1jv12 ∙ cos [v1t + f + ∠H1jv12]. (3.73)

This result is general for an LTI system and is fundamental to the analysis of LTI 
systems with periodic inputs; its importance cannot be overemphasized.

Suppose that a system is specified by its transfer function H1s2. To obtain 
the system differential equation, we reverse the steps in (3.67) through (3.70). In 
fact, in H1s2 the numerator coefficients bi are the coefficients of dix1t2 >dti, and the 
denominator coefficients ai are the coefficients of diy1t2 >dti; we can consider the 
transfer function to be a shorthand notation for a differential equation. Therefore, 
the system differential equation can be written directly from the transfer function 
H1s2; consequently, H1s2 is a complete description of the input–output character-
istics of a system, regardless of the input function. For this reason, an LTI system 
can be represented by the block diagram in Figure 3.21 with the system transfer 
function given inside the block. It is common engineering practice to specify an LTI 
system in this manner.
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The form of the transfer function in (3.70), which is a ratio of polynomials, is 
called a rational function. The transfer function of a continuous-time LTI system 
described by a linear differential equation with constant coefficients, as in (3.50), 
will always be a rational function.

We now consider two examples to illustrate the preceding developments.

 exampLe 3.16 transfer function of a servomotor

In this example, we illustrate the transfer function by using a physical device. The device is a 
servomotor, which is a dc motor used in position control systems. An example of a physical 
position-control system is the system that controls the position of the read/write heads on 
a computer hard disk. In addition, the audio compact-disc (CD) player has three position-
control systems. (See Section 1.3.)

The input signal to a servomotor is the armature voltage e1t2, and the output signal is 
the motor-shaft angle u1t2. The commonly used transfer function of a servomotor is second 
order and is given by [3]

 H1s2 =
K

s2 + as
,

where K and a are motor parameters and are determined by the design of the motor. This 
motor can be represented by the block diagram of Figure 3.22, and the motor differential 
equation is

 
d2u1t2

dt2 + a 
du1t2

dt
= Ke1t2.

This common model of a servomotor is second order and is of adequate accuracy in most 
applications. However, if a more accurate model is required, the model order is usually 
 increased to three [3]. The second-order model ignores the inductance in the armature cir-
cuit, while the third-order model includes this inductance. 

H(s)
x(t) y(t)

Figure 3.21  LTI system.

 exampLe 3.17 sinusoidal response of an Lti system

In this example, we calculate the system response of an LTI system with a sinusoidal excita-
tion. Consider a system described by the second-order differential equation

 
d2y1t2

dt2 + 3 
dy1t2

dt
+ 2y1t2 = 10x1t2.

e(t)   (t)�

Servomotor

Armature
voltage

Shaft
angle

K
s2 � as

Figure 3.22  System for Example 3.16. ■
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Hence, from (3.70), the transfer function is given by

 H1s2 =
10

s2 + 3s + 2
.

Suppose that the system is excited by the sinusoidal signal x1t2 = 5 cos 12t + 40°2. In (3.73),

 H1s2 2
s = j2

 X =
10

s2 + 3s + 2
2
s = j2

15∠40°2 =
50∠40°

-4 + j6 + 2

  =
50∠40°
-2 + j6

=
50∠40°

6.325∠108.4°
= 7.905e-j68.4°.

Thus, from (3.73), the system response is given by

 yss1t2 = 7.905 cos 12t - 68.4°2.

Note the calculation required:

 H1j22 =
10

1j222 + 31j22 + 2
= 1.581∠-108.4°.

From (3.73), the steady-state response can be written directly from this numerical value for 
the transfer function: 

 yss1t2 = 11.5812152cos 12t + 40° - 108.4°2
  = 7.905 cos 12t - 68.4°2.  ■

A MATLAB program for the calculations in this example is

n = [0 0 10];d = [1 3 2];
h = polyval (n,2*j) / polyval (d,2*j);
ymag = 5*abs (h)
yphase = 40 + angle (h)*180/pi
results: ymag = 7.9057 yphase = -68.4349

Consider now the case in which the input function is a sum of complex exponentials:

 x1t2 = a
N

k = 1
Xkeskt. (3.74)

By superposition, from (3.71), the response of an LTI system with the transfer func-
tion H1s2 is given by

 yss1t2 = a
N

k = 1
XkH1sk2eskt. (3.75)

We illustrate this result with an example.
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 exampLe 3.18 transfer function used to calculate Lti system response

Suppose that the input to the stable LTI system in Figure 3.21, with the transfer function 
H1s2, is given by

 x1t2 = 8 - 5e-6t + 3 cos 14t + 30°2.

In terms of a complex-exponential input Xest, the first term in the sum is constant 1s = 02, 
the second term is a real exponential 1s = -62, and the third term is the real part of a com-
plex exponential with s = j4, from (3.72). From (3.75), the steady-state response is given by

 yss1t2 = 8H102 - 5H1-62e-6t + 3Re[H1j42ej14t + 30°2].

The sinusoidal-response term can also be simplified somewhat from (3.73), with the resulting 
output given by

 yss1t2 = 8H102 - 5H1-62e-6t + 3 ∙ H1j42 ∙  cos [4t + 30° + ∠H1j42].

This expression is the forced response for the differential equation (system) whose transfer 
function is H1s2. Note that the order of the differential equation does not significantly in-
crease the complexity of the procedure; the only effect is that the numerical evaluation of 
H1s2 for a given value of s is somewhat more difficult for higher-order systems. ■

impulse response

Recall that when the impulse response of an LTI system was introduced, the nota-
tion h1 #2 was reserved for the impulse response. In (3.71), the notation H1 #2 is used 
to describe the transfer function of an LTI system. It will now be shown that the 
transfer function H1s2 is directly related to the impulse response h1t2, and H1s2 
can be calculated directly from h1t2.

For the excitation x1t2 = est, the convolution integral (3.15) yields the system 
response:

 y1t2 = L
∞

- ∞
h1t2x1t - t2dt = L

∞

- ∞
h1t2es1t - t2dt 

  = estL
∞

- ∞
h1t2e-stdt. (3.76)

In (3.71), the value of s1 is not constrained and can be considered to be the variable s. 
From (3.71) and (3.76),

 y1t2 = estL
∞

- ∞
h1t2e-stdt = H1s2est,

and we see that the impulse response and the transfer function of a continuous-time 
LTI system are related by
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 H1s2 = L
∞

- ∞
h1t2e-stdt. (3.77)

This equation is the desired result. Table 3.1 summarizes the results developed in 
this section.

We can express these developments in system notation:

 est S H1s2est. (3.78)

We see that a complex exponential input signal produces a complex exponential 
output signal.

It is more common in practice to describe an LTI system by the transfer func-
tion H1s2 rather than by the impulse response h1t2. However, we can represent 
LTI systems with either of the block diagrams given in Figure 3.23, with H1s2 and 
h1t2 related by (3.77).

Those readers familiar with the bilateral Laplace transform will recognize 
H1s2 in (3.77) as the Laplace transform of h1t2. Furthermore, with s = jv, H1jv2 
in (3.77) is the Fourier transform of h1t2. We see then that both the Laplace trans-
form (covered in Chapter 7) and the Fourier transform (covered in Chapter 5) 
 appear naturally in the study of LTI systems.

We considered the response of LTI systems to complex-exponential inputs 
in this section, which led us to the concept of transfer functions. Using the transfer 
function approach, we can easily find the system response to inputs that are con-
stant, real exponential, and sinusoidal. As a final point, the relationship between the 
transfer function of a system and its impulse response was derived.

 3.8 BLoCk Diagrams

Figure 3.23 gives two block-diagram representations of a system. In this section, 
we consider a third block-diagram representation. The purpose of this block dia-
gram is to give an internal structure to systems, in addition to the usual input–output 

h(t)
x(t) y(t)

H(s)
x(t) y(t)

H(s) � �   h(t)e�st dt
��

�

Figure 3.23  LTI system.

Table 3.1  Input–Output Functions for an LTI System

H1s2 = L
∞

- ∞
h1t2e-stdt

Xes1t S XH1s12es1t;  X = ∙ X ∙ ejf

∙ X ∙ cos 1v1t + f2 S ∙ X ∙ ∙ H1jv12 ∙ cos [v1t + f + lH1jv12]
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description of Figure 3.23. This block diagram is used in cases in which we are 
 interested not only in the output signal, but also in the internal operation of a sys-
tem. The block diagram is also useful in physical implementations of analog filters.

The block-diagram representation of the differential equations that model a sys-
tem requires that we have a block to denote integration. As was done in Example 3.2, 
we use a block containing an integral sign for this purpose, as shown in Figure 3.24. 
The input–output description of this block is given by

 x1t2 S y1t2 = L
t

- ∞
x1t2dt. (3.79)

The procedure developed here involves finding a block diagram constructed 
of  certain defined elements, including integrators, that satisfies a given differential 
equation. An example will now be given to illustrate this procedure. Then a general 
procedure will be developed.

 exampLe 3.19 simulation diagram for a first-order Lti system

Earlier in this chapter, we considered a continuous-time system described by the differential 
equation

 
dy1t2

dt
+ 2y1t2 = x1t2.

Hence, the system transfer function is given by

 H1s2 =
1

s + 2
 .

A block diagram that satisfies this differential equation will now be constructed. First, we 
write the differential equation as

 
dy1t2

dt
= -2y1t2 + x1t2. (3.80)

If the output of an integrator is y1t2, its input must be dy1t2/dt. We then draw a block diagram 
containing an integrator such that the integrator input is the right side of (3.80); then the out-
put of the integrator is y1t2. The result is given in Figure 3.25(a). Hence, this block diagram 
satisfies (3.80). The block diagram of Figure 3.25(a) gives both the input–output model and 
an internal model of the system, while that of Figure 3.25(b) gives only the input–output 
model of the same system. Both representations are used in practice.

�x(t)
y(t) � �   x(  ) d

��

t

� �

Figure 3.24  Representation of integration.
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In Example 3.19, a block diagram for a differential equation, based on an inte-
grator, was constructed for a first-order differential equation. Figure 3.25(a) shows 
the three components used in constructing block diagrams of this type:

 1. integrators
 2. summing devices (the circle)
 3. gains (the block with a gain of -2)

Figure 3.25(a) is also useful in realizing analog filters. If the result of an 
 analog-filter design is the transfer function H1s2 = 1> 1s + 22, we can implement 
the filter as a physical device by using an integrator and amplifiers (including sum-
ming amplifiers), as shown in Figure 3.25(a).

An analog computer is an electronic device that is used to solve differen-
tial equations by the interconnection of electronics circuits that (1) integrate 
signals, (2) sum signals, and (3) amplify (or attenuate) signals. The system of 
Figure 3.25(a) can be programmed directly on an analog computer, and the 
result will be the solution of the system differential equation for an applied 
voltage input function x1t2. A simulation is a machine solution of the equations 
that model a system. The analog computer is used for analog simulations of 
continuous-time systems.

If the integrator of Figure 3.25(a) is replaced with a numerical integrator, the 
resulting equations can be programmed on a digital computer, yielding a numeri-
cal solution of the differential equation. In this case, we have a machine solution, 
called a digital simulation, of the differential-equation model. For these reasons, 
block diagrams of the type given in Figure 3.25(a) are sometimes called simulation 
diagrams. One procedure for constructing either an analog simulation or a digi-
tal simulation of a system is, first, to draw a simulation diagram that is based on 
integrators.

(b)

x(t) y(t)1
s � 2

(a)

dy(t)
dt �

�2

x(t) y(t)

�2y(t)

�

Figure 3.25  System for Example 3.19. ■
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In general, we construct simulation diagrams using integrators; we can also con-
struct these diagrams by using differentiators. However, we generally do not use differ-
entiators to construct system simulations. Differentiators amplify any high-frequency 
noise present in a simulation, while integrators amplify any low-frequency noise. 
Generally, high-frequency noise is more of a problem than low-frequency noise. These 
characteristics will be evident when the Fourier transform is covered in Chapter 5.

A particular procedure will now be developed for the construction of simula-
tion diagrams. First, it should be stated that, given a differential equation, there is 
no unique simulation diagram for that equation. It can be shown that an unbounded 
number of simulation diagrams can be drawn for a given differential equation. Only 
two standard forms for simulation diagrams are given here. This topic is investi-
gated in greater detail in Chapter 8.

As stated in Section 3.7, an nth-order linear differential equation with  constant 
coefficients can be expressed as

[eq(3.50)] a
n

k = 0
ak 

dky1t2
dtk = a

m

k = 0
bk 

dkx1t2
dtk  ,

where x1t2 is the excitation, y1t2 is the response, and a0,  c , an and b0,  c , bm are 
constants, with an ≠ 0.

As an example of the two standard forms for simulation diagrams to be cov-
ered, first a second-order differential equation will be considered. Then we develop 
the two forms for the nth-order equation of (3.50).

We consider a second-order differential equation of the form

 a2  
d2y1t2

dt2 + a1 
dy1t2

dt
+ a0y1t2 = b2  

d2x1t2
dt2 + b2  

dx1t2
dt

+ b0x1t2. (3.81)

To develop the simulation diagrams, we note that the double integral of the second 
derivative of y1t2 with respect to time is y1t2. We write this double integral as

 y12 - 221t2 = L
t

- ∞
JLt

- ∞

d2y1s2
ds2 ds Rdt = y1t2,

where the notation y1k - n21t2 indicates the nth integral of the kth derivative of y1t2. 
With this notation, the double integral of the three terms on the left side of (3.81) 
can be written as

 y12 - 221t2 = y1021t2 = L
t

- ∞ L
t

- ∞

d2y1s2
ds2  ds dt = y1t2;

 y11 - 221t2 = y1-121t2 = L
t

- ∞ L
t

- ∞

dy1s2
ds

 ds dt = L
t

- ∞
y1t2dt;

 y10 - 221t2 = y1-221t2 = L
t

- ∞ L
t

- ∞
y1s2ds dt.

Note then that y1-i21t2 is the ith integral of y1t2.
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Direct form i

The double integral of the differential equation of (3.81) yields

 a2y1t2 + a1y1-121t2 + a0y1-221t2 = b2x1t2 + b1x1-121t2 + b0x1-221t2. (3.82)

We denote the right side of this equation as w1t2:

 w1t2 = b2x1t2 + b1x1-121t2 + b0x1-221t2.

We realize w1t2 by the block diagram shown in Figure 3.26(a). Then (3.82) becomes

 a2y1t2 + a1y1-121t2 + a0y1-221t2 = w1t2.

Solving this equation for y1t2 yields

 y1t2 =
1
a2

 [w1t2 - a1y1-121t2 - a0y1-221t2]. (3.83)

This equation is realized by the system of Figure 3.26(b). The total realization is the 
series (cascade) connection of the systems of Figure 3.26(a) and (b), as shown in 
Figure 3.26(c). This simulation diagram realizes (3.81) and is called either the direct 
form I realization or the direct form I simulation diagram.

Direct form ii

We derive second standard form for realizing a differential equation with integra-
tors by manipulating the direct form I shown in Figure 3.26(c). This system is seen 
to be two cascaded systems, where one system realizes w1t2 and the other realizes 
y1t2 as a function of w1t2. Because the systems are linear, the order of the two 
systems can be reversed without affecting the input–output characteristics (see 
Figure 3.13); the result of this reversal is shown in Figure 3.27(a). In this figure, 
the same signal is integrated by the two sets of cascaded integrators; hence, the 
outputs of the integrators labeled 1 are equal, as are the outputs of the integrators 
labeled 2. Thus, one set of the cascaded integrators can be eliminated. The final 
system is given in Figure 3.27(b), and only two integrators are required. This form 
for the simulation diagram is called the direct form II realization.

nth-order realizations

Consider again the nth-order differential equation:

[(eq(3.50)] a
n

k = 0
ak 

dky1t2
dtk = a

m

k = 0
bk 

dkx1t2
dtk  .
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To derive an integrator form of the simulation diagram, each side is integrated n 
times, resulting in the equation

 a
n

k = 0
aky1k - n21t2 = a

m

k = 0
bkx1k - n21t2.

Solving this equation for y1t2 yields

 y1t2 =
1
an

 J a
m

k = 0
bxx1k - n21t2 - a

n - 1

k = 0
aky1k - n21t2R . (3.84)
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Figure 3.26  Direct form I realization of a second-order system.
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Using the procedure illustrated with this second-order system, we draw the simula-
tion diagrams for the direct form I and the direct form II in Figures 3.28 and 3.29, 
respectively, for m = n.

It can be shown that at least n integrators are required to realize an nth-order 
differential equation. If a realization has n integrators, the realization is minimal. 
Otherwise, the realization is nonminimal. The direct form I is nonminimal, and the 
direct form II is minimal.

practical Considerations

We now discuss some practical considerations. Suppose that, for example, the form I 
simulation diagram of Figure 3.26(c) is constructed for a second-order mechanical 
system and that y1t2 is the position variable. Then velocity is dy1t2>dt and accelera-
tion is d2y1t2>dt2. Generally, we must solve for these variables in a simulation, and 
we obtain this information by requiring the outputs of two integrators to be these 
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�

�
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�
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Figure 3.27  Direct form II realization of 
a second-order system.
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variables. However, neither form I nor form II meet these requirements. Forms I 
and II are useful conceptually for a general system; however, in practice these two 
forms are seldom used in writing simulations of systems. Instead, simulations are 
constructed such that the output of each integrator is a physical variable, as much as 
is possible. This topic is discussed further in Example 3.20 and in Chapter 8.

 exampLe 3.20 simulation diagrams for a system from the differential equation model

A second-order LTI system is described by the differential equation

 
d2y1t2

dt2 + 6 
dy1t2

dt
+ 36y1t2 = 20x1t2

where y1t2 represents position, 
dy1t2

dt
 velocity, and 

d2y1t2
dt2  acceleration of a rotating 

 mechanical component of the system. The system input is represented by x1t2.

x(t) y(t)w(t)
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bn�1
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b0 Figure 3.28  Direct form I for an nth-order  
system.
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From (3.50) we can define a0 = 36, a1 = 6, a2 = 1, b0 = 20, b1 = 0, and b2 = 0. Using these 
values, and Figure 3.29, we draw the direct form II block diagram of the system as shown in 
Figure 3.30(a).

In Figure 3.30(a), the outputs of the integrators do not directly represent position, 
 velocity, and acceleration, However, the simulation diagram can be redrawn in the canonical 
form shown in Figure 3.30(b) where the integration outputs do represent position, velocity, 
and acceleration. ■

A second important practical consideration was mentioned earlier in this sec-
tion. We can construct simulations by using either differentiators or integrators, or 
combinations of the two. However, differentiators amplify high-frequency noise, 
while integrators attenuate high-frequency noise. Hence, integrators are almost al-
ways used, either as electronic circuits or as numerical algorithms. Also, because of 
these noise problems, we try to avoid the use of differentiators in any applications 
in physical systems. Sometimes we cannot avoid using differentiators; these systems 
usually have noise problems.

Two procedures for representing the internal model of a system, given its 
input–output description, are presented in this section. These models are useful in 
realizing analog filters and in developing analog and digital simulations of a system. 

x(t) y(t)
bn �
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�

�

�
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Figure 3.29  Direct form II for an 
nth-order system.
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However, in simulating a system, we prefer an internal model such that the outputs 
of the integrators represent physical variables, as much as possible.

summary

In this chapter, we consider continuous-time linear time-invariant (LTI) systems. First, 
it is shown that a continuous-time signal can be expressed as a function of an impulse 
function. This representation is in the form of an integral and allows us to describe the 
input–output characteristics of an LTI system in terms of its impulse  response.

Describing a system by its impulse response is basic to the analysis and design 
of LTI systems; the impulse response gives a complete input–output description of 
an LTI system. It is shown that the input x1t2, the impulse response h1t2, and the 
output y1t2 are related by the convolution integral:

 y1t2 = L
∞

- ∞
x1t2h1t - t2dt = L

∞

- ∞
x1t - t2h1t2dt.

The importance of the impulse response of an LTI system cannot be over-
emphasized. It is also shown that the impulse response of an LTI system can be 

�

�

y(t)x(t)
0

0
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1/1
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� �
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� �20
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�

–36

(b)

(a)

Figure 3.30  Simulation diagrams for Example 3.20.



Table 3.2  Key Equations of Chapter 3

equation title equation number equation

Unit impulse response
(3.9) d1t2 S h1t2

Convolution integral (3.15) y1t2 = L
∞

- ∞
x1t2h1t - t2dt = L

∞

- ∞
x1t - t2h1t2dt

Convolution with a unit impulse (3.18) d1t2*g1t2 = g1t2
Convolution integral of an inverse system (3.32) x1t2*h1t2*hi1t2 = x1t2

Convolution integral of a causal system (3.37) y1t2 = L
∞

0
x1t2h1t - t2dt = L

t

- ∞
x1t2h1t - t2dt

Condition on impulse response for BIBO stability (3.39) L
∞

- ∞
∙ h1t2 ∙dt 6 ∞

Derivation of step response from impulse response (3.41) s1t2 = L
∞

- ∞
u1t2h1t - t2dt = L

∞

0
h1t - t2dt

Derivation of impulse response from step response (3.43) h1t2 =
ds1t2

dt

Linear differential equation with constant coefficients (3.50) a
n

k = 0
 
dky1t2

dtk
= a

m

k = 0
bk 

dkx1t2
dtk

Characteristic equation (3.55) ansn + an - 1s
n - 1 + g + a1s + a0 = 0

Solution of homogeneous equation (3.57) yc1t2 = C1e
s1t + C2e

s2t + g + Cnesn t

Transfer function (3.70) H1s2 =
bmsm + bm - 1s

m - 1 + g + b1s + b0

ansn + an - 1s
n - 1 + g + a1s + a0

Steady-state response to a complex exponential input (3.71) x1t2 = Xes1t S yss1t2 = XH1s12es1t

Steady-state response to a sinusoidal input (3.73) ∙ X ∙ cos 1v1 t + f2 S ∙ X ∙ ∙ H1jv12
∙  cos [v1t + f + ∠H1jv12]

Input expressed as sum of complex exponentials (3.74) x1t2 = a
N

k = 1
Xkeskt

Output expressed as sum of complex exponentials (3.75) yss1t2 = a
N

k = 1
XkH1sk2eskt

Transfer function expressed as integral of impulse response (3.77) H1s2 = L
∞

- ∞
h1t2e-stdt

140
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derived from its step response. Hence, the input–output description of a system is 
also contained in its step response.

Next, the general system properties of an LTI system are investigated. These 
include memory, invertibility, causality, and stability.

A general procedure for solving linear differential equations with constant co-
efficients is reviewed. This procedure leads to a test to determine the BIBO stability 
for a causal LTI system.

The most common method of modeling LTI systems is by ordinary linear dif-
ferential equations with constant coefficients; many physical systems can be mod-
eled accurately by these equations. The concept of representing system models by 
simulation diagrams is developed. Two simulation diagrams, direct forms I and II, 
are given. However, an unbounded number of simulation diagrams exist for a given 
LTI system. This topic is considered further in Chapter 8.

A procedure for finding the response of differential-equation models of LTI 
systems is given for the case that the input signal is a complex-exponential function. 
Although this signal cannot appear in a physical system, the procedure has wide 
 application in models of physical systems.

proBLems

section 3.2

 3.1. Consider the integrator in Figure P3.1. This system is described in Example 3.1 and has 
the impulse response h1t2 = u1t2.

(a) Using the convolution integral, find the system response when the input x1t2 is

 (i) u1t - 22  (ii) e-2tu1t2
 (iii) tu1t2  (iv) 1t + 12u1t + 12
 (v) e e-2t,  t Ú 0

e2t,  t 6 0
  (vi) t2u1t2

 (vii) 1t - 12u1t - 12 (viii) u1t2 - u1t - 52
(b) Verify the results of Part (a) using the system equation

 y1t2 = L
t

- ∞
x1t2dt.

x(t) ��
y(t) � �t

    x(  ) d� �

�
Figure P3.1 

 3.2. For the LTI system of Figure P3.2(a), the input signal is x1t2 and the impulse response 
is h1t2. For each of the cases listed below, use the convolution integral to find the 
 output y1t2. The referenced signals are shown in Figures P3.2(b)–(g).

(a) x1t2 in 1b2, h1t2 in 1d2 (b) x1t2 in 1b2, h1t2 in 1f2
(c) x1t2 in 1b2, h1t2 in 1e2 (d) x1t2 in 1e2, h1t2 in 1c2
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(e) x1t2 in 1e2, h1t2 in 1d2 (f ) x1t2 in 1f2, h1t2 in 1e2
(g) x1t2 in 1b2, h1t2 in 1g2 (h) x1t2 in 1g2, h1t2 in 1f2

(b)

2

420 t

(f)

(c)

(a)

h(t)
x(t) y(t)

3

1

3210 t

2

20 t

(g)

2

20 t

(d)

2

1/2 cycle of
2 sin    t

10 t

�

1/2 cycle of
2 cos    t�

(e)

2

–2

10 t

Figure P3.2  

 3.3. (a)  Suppose that the system of Figure P3.2(a) has the impulse response h1t2 given in 
Figure P3.3(a). The system input is the unit step function x1t2 = u1t2. Find and 
sketch the system output y1t2.

(b) Repeat Part (a) if the system input is x1t2 shown in Figure P3.3(b).
(c) Repeat Part (a) if the system input is x1t2 shown in Figure P3.3(c).
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 3.4. For the system of Figure P3.2(a), let x1t2 = u1t - t02 and h1t2 = u1t - t12, with 
t1 7 t0. Find and plot the system output y1t2.

 3.5. For the system of Figure P3.2(a), the input signal is x1t2, the output signal is y1t2, and 
the impulse response is h1t2. For each of the cases that follow, find and plot the output 
y1t2. The referenced signals are given in Figure P3.3.

(a) x1t2 in 1a2, h1t2 in 1b2
(b) x1t2 in 1a2, h1t2 in 1c2
(c) x1t2 in 1a2, h1t2 in 1a2
(d) x1t2 in 1b2, h1t2 in 1b2
(e) x1t2 in 1b2, h1t2 in 1c2
(f) x1t2 in 1c2, h1t2 in 1c2
(g) x1t2 in 1a2, h1t2 in 1b2, where a and b are assigned by your instructor.

1

h(t)

t2 310

(a)

1

x(t)

t2 3 410

(b)

1

x(t)

t0.250

(c) Figure P3.3  
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 3.6. For the system of Figure P3.2(a), suppose that x1t2 and h1t2 are identical and as shown 
in Figure P3.6.

(a) Find the output y1t2 only at the times t = 0,  1,  2, and 2.667. Solve this problem by 
inspection.

(b) To verify the results in Part (a), solve for and sketch y1t2 for all time.

2

–2

t31 20 4 5

Figure P3.6  

2

1

x(t)

t2 310

(a)

(b)

2

1

3

h(t)

t2 4310

Figure P3.7  

 3.7. A continuous-time LTI system has the input x1t2 and the impulse  response h1t2, as 
shown in Figure P3.7. Note that h1t2 is a delayed function.

(a) Find the system output y1t2 for only 4 F t F 5.
(b) Find the maximum value of the output.
(c) Find the ranges of time for which the output is maximum.
(d) Solve for and sketch y1t2 for all time, to verify all results.



Chap. 3    Problems 145

 3.8. For the system of Figure P3.2(a), the input signal is x1t2, the output signal is y1t2, and 
the impulse response is h1t2. For each of the following cases find y1t2:

(a) x1t2 = etu1- t2 and h1t2 = 2u1t2 - u1t - 12 - u1t - 22.
(b) x1t2 = u11 - t2, h1t2 = e-tu1t - 12.
(c) x1t2 = u1- t2, h1t2 = e-t[u1t2 - u1t - 4002].
(d) x1t2 = e-tu1t2, h1t2 = u1t - 12 - u1t - 32.
(e) x1t2 = e-at[u1t2 - u1t - 22] and h1t2 = u1t - 22.
(f) x1t2 = etu1- t2, h1t2 = 2u11 - t2.

 3.9. Find x11t2*x21t2, where

 x11t2 = 2u1t + 22 - 2u1t - 22

  and

 x21t2 = c 0, t 6 -4
e- ∙t∙, -4 … t … 4
0, t 7 4.

section 3.3

 3.10. Show that the convolution of three signals can be performed in any order by showing 
that

 [f1t2*g1t2]*h1t2 = f1t2*[g1t2*h1t2].

  (Hint: Form the required integrals, use a change of variables. In one approach to this 
problem, the function

 L
∞

- ∞
g1t2 c L

∞

- ∞
h1t - t - s2f1s2ds ddt

  appears in an intermediate step.)

 3.11. (a)  Consider the two-LTI system cascaded in Figure P3.11. The impulse responses 
of the two systems are identical, with h11t2 = h21t2 = e-tu1t2. Find the impulse 
 response of the total system.

(b) Repeat Part (a) for the case that h11t2 = h21t2 = d1t2.
(c) Repeat Part (a) for the case that h11t2 = h21t2 = d1t - 12.
(d) Repeat Part (a) for the case that h11t2 = h21t2 = u1t - 22 - u1t - 42.

h1(t)
x(t) y(t)

h2(t)
Figure P3.11  

 3.12. Consider the LTI system of Figure P3.12.

(a) Express the system impulse response as a function of the impulse responses of the 
subsystems.
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(b) Let

 h11t2 = h41t2 = u1t2

and

 h21t2 = h31t2 = 5d1t2, h51t2 = e-2tu1t2.

Find the impulse response of the system.

 3.13. Consider the LTI system of Figure P3.13.

(a) Express the system impulse response as a function of the impulse responses of the 
subsystems.

(b) Let

 h11t2 = h31t2 = 2d1t2

and

 h21t2 = h41t2 = u1t2, h51t2 = 2u1t2.

Find the impulse response of the system.
(c) Give the characteristics of each block in Figure P3.13. For example, block 1 is an 

amplifier with a gain of 2.
(d) Let x1t2 = d1t2. Give the time function at the output of each block.
(e) Use the result in Part (b) to verify the result in (d).

h1(t)

x(t)

h2(t)

h5(t)

h3(t) h4(t)
y(t)

� �

Figure P3.12  
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 3.14. Suppose that the system of Figure P3.2(a) is described by each of the following system 
equations. For each case, find the impulse response of the system by letting x1t2 = d1t2 
to obtain y1t2 = h1t2:

(a) y1t2 = x1t - 72

(b) y1t2 = L
t

- ∞
x1t - 72dt

(c) y1t2 = L
t

- ∞
c L

s

- ∞
x1t - 72dt dds

section 3.4

 3.15. It is shown in Section 3.4 that the necessary condition for a continuous-time LTI sys-
tem to be bounded-input bounded-output stable is that the impulse response h1t2 must 
be absolutely integrable; that is,

 L
∞

- ∞
∙ h1t2 ∙dt 6 ∞ .

  Show that any system that does not satisfy this condition is not BIBO stable; that is, 
show that this condition is also sufficient. [Hint: Assume a bounded input.]

 x1t - t2 = e1, h1t2 7 0
-1, h1t2 6 0

.

 3.16. An LTI system has the impulse response

 h1t2 = etu1- t - 12.

(a) Determine whether this system is causal.
(b) Determine whether this system is stable.
(c) Find and sketch the system response to the unit step input x1t2 = u1t2.
(d) Repeat Parts (a), (b), and (c) for h1t2 = etu1t - 12.

 3.17. Consider a system described by the equation

 y1t2 =  cos14t2x1t2.

(a) Is this system linear?
(b) Is this system time invariant?
(c) Determine the response to the input d1t2.
(d) Determine the response to the input d1t - p/2 2. From examining this result, is it 

evident that this system is not time invariant?

 3.18. Determine the stability and the causality for the LTI systems with the following  impulse 
responses.

(a) h1t2 = e-tu1t - 12 (b) h1t2 = e1t - 12u1t - 12
(c) h1t2 = et sin 1-5t2u1- t2 (d) h1t2 = etu11 - t2
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(e) h1t2 = e11 - t2u11 - t2 (f) h1t2 = e-t cos13t2u1t2
(g) h1t2 =  cos 13t2u1t2 (h) h1t2 = te-3tu1t2

 3.19. Consider an LTI system with the input and output related by

 y1t2 = L
t

- ∞
et - tx1t2dt.

(a) Find the system impulse response h1t2 by letting x1t2 = d1t2.
(b) Is this system causal? Why?
(c) Determine the system response y1t2 for the input shown in Figure P3.19(a).
(d) Consider the interconnections of the LTI systems given in Figure P3.19(b), where 

h1t2 is the function found in Part (a). Find the impulse response of the total system.
(e) Solve for the response of the system of Part (d) to the input of Part (c) by doing the 

following:

 (i) Using the results of Part (c). This output can be written by inspection.
 (ii) Using the results of Part (d) and the convolution integral.

x(t)

h(t)

  (t � 1)� �h(t)

(b)

(a)

�1 0

1

t

�

Figure P3.19  

 3.20. (a) Given an LTI system with the output

 y1t2 = L
t

- ∞
e-21t - t2x1t - 12dt,

 (i) Find the impulse response of this system by letting x1t2 = d1t2.
 (ii) Is this system causal?
 (iii) Is this system stable?

(b) Repeat Part (a) for the system with output

 y1t2 = L
t

- ∞
e-1t + t2x1t + 12dt.
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(c) Repeat Part (a) for the system with output

 y1t2 = L
∞

- ∞
e-1t + t2x1t + 12dt.

 3.21. An LTI system has the impulse response

 h1t2 = u1t + 12 - u1t - 32.

(a) Determine whether this system is causal.
(b) Determine whether this system is stable.
(c) Find and sketch the system response to the input

 x1t2 = d1t - 12 - 2d1t + 12.

 3.22. An LTI system has the impulse response

 h1t2 = u1t2 - 2u1t - 12 + u1t - 22.

(a) Determine whether this system is causal.
(b) Determine whether this system is stable.
(c) Find and sketch the system response to the input

 x1t2 = d1t - 12 - 2d1t - 22.

 3.23. An LTI system has the impulse response

 h1t2 = t[u1t + t12 - u1t - t22].

(a) For what values of t1 and t2 is this system causal?
(b) For what values of t1 and t2 is this system stable?

 3.24. An LTI system has the impulse response

 h1t2 = e-atu1t - 12,

  where a 7 0.

(a) Determine whether this system is causal.
(b) Determine whether this system is stable.
(c) Repeat Parts (a) and (b) for h1t2 = e-at u1t + 12, where a 6 0.

section 3.5

 3.25. Find the responses of systems described by the following differential equations with 
the initial conditions given. For each case, show that the response satisfies the differen-
tial equation and the initial conditions:

(i)  
dy1t2

dt
+ 3y1t2 = 3u1t2, y102 = -1

 (ii) 
dy1t2

dt
+ 3y1t2 = 3e-2tu1t2, y102 = 2
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(iii) 
dy1t2

dt
+ 10y1t2 = e-tu1t2, y102 = 2

(iv) 
d2y1t2

dt2 + 6 
dy1t2

dt
+ 5y1t2 = 10 u1t2, y102 = -1,

dy1t2
dt

 `
t = 0

= 0

(v) - .7
d
dt

 y1t2 + y1t2 = 3e3t, y102 = -1

(vi) -10 
dy1t2

dt
+ 10y1t2 = 20 cos 1t2u1t2, y102 = -10

(vii) 
d2y1t2

dt2 +
dy1t2

dt
+ 2y1t2 = 3 u1t2, y102 = 2, 

dy1t2
dt

 `
t = 0

= 1

 3.26. Consider the LTI system of Figure P3.26. Let

 h11t2 = 2u1t2, h21t2 = 0.5d1t2.

  Hence, system 1 is an integrator and system 2 is an amplifier with gain 0.5. Use a con-
volution approach to find the differential-equation model of this system.

�

�

h1(t)
x(t) y(t)

h2(t)
Figure P3.26  

 3.27. Suppose that the following differential equations are models of physical systems. Find 
the modes for each system. Is the system stable?

(a) 
d2

dt2 y1t2 - 2.5 
d
dt

 y1t2 + y1t2 = x1t2

(b) 
d2y1t2

dt2 + 9y1t2 = x1t2

(c) 
d2y1t2

dt2 + 3.5 
dy1t2

dt
- 2y1t2 = 3x1t2 + 2 

dx1t2
dt

(d) 
d3y1t2

dt3 + 5 
d2y1t2

dt2 + 4 
dy1t2

dt
+ 3y1t2 = x1t2

(e) 
d3y1t2

dt3 + 2 
d2y1t2

dt2 + 4 
dy1t2

dt
+ 8y1t2 = 17x1t2

(f) 
d3y1t2

dt3 + 2 
d2y1t2

dt2 + 4 
dy1t2

dt
+ 16y1t2 = 32x1t2

section 3.7

 3.28. Indicate whether the following transfer functions for LTI systems are stable:

(a) H1s2 =
101s + 32

1s + 121s + 221s + 42 =
10s + 30

s3 + 7s2 + 14s + 8
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(b) H1s2 =
1

s2 + 1.5s - 1

(c) H1s2 =
10

s2 + 2s

(d) H1s2 =
s + 16

s3 + 2s2 + 8s + 32

(e) H1s2 =
s + 16

s3 + 2s2 + 8s + 16

(f) H1s2 =
s + 8

s3 + 2s2 + 4s + 8

 3.29. Suppose that the differential equations in Problem 3.25 are models of physical systems.

(a) For each system, give the system modes.
(b) For each system, give the time constants of the system modes.
(c) A unit step u(t) is applied to each system. After how long in time will the system 

output become approximately constant? How did you arrive at your answer?
(d) Repeat Parts (a), (b), and (c) for the transfer function of Problem 3.27(b).

 3.30. A system has the transfer function

 H1s2 =
1

0.01s2 + 1
 .

(a) Find the system modes. These modes are not real, even though the system is a 
model of a physical system.

(b) Express the natural response as the sum of the modes of Part (a) and as a real 
function.

(c) The input e-tu1t2 is applied to the system, which is initially at rest (zero initial con-
ditions). Find an expression for the system output.

(d) Show that the result in Part (c) satisfies the system differential equation and the 
initial conditions.

 3.31. (a)  Consider the system of Figure P3.31. The input signal x1t2 = 3 is applied at t = 0. 
Find the value of y1t2 at a very long time after the input is applied.

 (i) H1s2 =
10

s + 4

 (ii) H1s2 =
2s + 5

s2 + 2s + 10
(b) Repeat Part (a) for the input signal x1t2 = 3e4tu1t2.
(c) Repeat Part (a) for the input signal x1t2 = 3 cos 4t. Use MATLAB to check your 

calculations.

y(t)x(t)
H(s)

Figure P3.31  
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(d) Repeat Part (a) for the input signal x1t2 = 3ej4t.
(e) Repeat Part (a) for the input signal x1t2 = 3  sin  4t. Use MATLAB to check your 

calculations.
(f) How are the responses of Parts (c) and (e) related?
(g)  (i) Find the time constants of the two systems in Part (a).

  (ii) In this problem, quantify the expression “a very long time.”

 3.32. For the system of Figure 3.31, the transfer function is known to be of the form

 H1s2 =
K

s + a
 .

  With the notation x1t2 S y1t2, the following steady-state response is measured:

 2 cos 4t S 5 cos14t - 45°2.

(a) Find the transfer-function parameters K and a.

(b) Verify the results in Part (a) using MATLAB.
(c) Repeat Parts (a) and (b) with the input–output result

 2  cos  3t S  2.222  cos 13t - 56.31°2.

 3.33. Draw the direct form I and the direct form II block diagrams for each of the following 
system equations:

(a) 2 
dy1t2

dt
+ 3y1t2 = 5x1t2

(b) 
dy1t2

dt
= x1t2 + 2 

dx1t2
dt

+ 3L
t

- ∞
x1t2dt

(c) 
d2y1t2

dt2 + 0.01 
dy1t2

dt
+ 0.5y1t2 = 3 

d2x1t2
dt2 + 4 

dx1t2
dt

+ 5x1t2

(d) 
d3y1t2

dt3 + 3 
d2y1t2

dt2 + 6 
dy1t2

dt
+ 9y1t2 = 2 

d3x1t2
dt3 + 4 

d2x1t2
dt2 + 6 

dx1t2
dt

+ 8x1t2

 3.34. Consider the system simulation diagram of Figure P3.34. This figure shows a 
 simulation-diagram form used in the area of automatic control.

x(t)

y(t)
5

� �

�1

4

�2

3

�

�

Figure P3.34  
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(a) Find the differential equation of the system.
(b) Is this one of the two forms given in Section 3.8? If so, which one?

 3.35. (a)  For the LTI system of Figure P3.35(a), show that the system transfer function H(s) 
is given by

 H1s2 = H11s2H21s2,

where the transfer functions are as defined in (3.77).
(b) For the LTI system of Figure P3.35(b), show that the system transfer function H(s) 

is given by

 H1s2 = H11s2 + H21s2,

where the transfer functions are as defined in (3.77).

h1(t)

(b)

h2(t)h1(t) h2(t)

(a)

y(t)

y(t)

x(t)

x(t)

�

Figure P3.35  

 3.36. Using the results of Problem 3.35, do the following:

(a) Find the transfer function for the system of Figure P3.12.
(b) Find the transfer function for the system of Figure P3.13.
(c) Find the transfer function for the system of Figure P3.26.

 3.37. Assume that the systems involved are LTI, with the ith system having the impulse re-
sponse hi1t2. Using the results of Problem 3.35,

(a) Find the transfer functions for the system of Figure P2.28.
(b) Find the transfer function for the system of Figure P2.29.
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A common engineering analysis technique is the partitioning of complex 
 problems into simpler ones. The simpler problems are then solved, and the total 
solution becomes the sum of the simpler solutions. One example is the use of a 
Taylor’s series expansion, in which a function f1t2 is expressed as a constant, plus a 
ramp function, plus a parabolic function, and so on:

 f1t2 = f102 + f′102t + f ″102 t2

2!
+ g . (4.1)

In this equation,

 f′102 =
df1t2

dt
2
t = 0

; f ″102 =
d2f1t2

dt2
2
t = 0

.

We solve the problem involving f1t2 by considering only the constant, then con-
sidering only the ramp function, and so on. The final solution is the sum of these 
solutions.

Three requirements must be satisfied for a solution as described earlier to be 
both valid and useful. First, we must be able to express the problem as a number of 
simpler problems. Next, the problem must be linear, such that the solution for the 
sum of functions is equal to the sum of the solutions when we consider only one 
function at a time.

The third requirement is that the contributions of the simpler solutions to the 
total solution must become negligible after we consider only a few terms; otherwise, 
the advantage may be lost if a very large number of simple solutions is required.

This method of partitioning a complex problem into simpler problems some-
times has an additional advantage. We may have insight into the simpler problems 
and can thus gain insight into the complex problem; in some cases, we are interested 
only in this insight and may not actually generate the simpler solutions.
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As an example, consider again the Taylor’s series. Suppose that the input sig-
nal to a physical system that has a linear model is a complicated function for which 
the response is difficult to calculate. However, it may be that we can, with adequate 
accuracy, consider the input function to be the constant term plus the ramp function 
of the Taylor’s series and that we can calculate rather easily the system response 
for a constant input and for a ramp input. Hence, we have the approximate system 
 response for the complex function. For example, the procedure just described is 
used in investigating steady-state errors in feedback-control systems [1].

In the foregoing paragraph, the term adequate accuracy is used. As  engineers, 
we must never lose sight of the fact that the mathematics that we employ is a means 
to an end and is not the end itself. Engineers apply mathematical procedures to 
the analysis and design of physical systems. A physical system cannot be  modeled 
 exactly. Hence, even though the mathematical equations that model physical 
 systems can sometimes be solved exactly, these exact results will apply only ap-
proximately to a given physical system. If care is used in employing approximations 
in the mathematics, the results are both useful and accurate in the application to 
physical systems.

In this chapter, we consider one of the most important procedures in signal 
and linear time-invariant (LTI) system analysis; this procedure is used to express 
a complicated periodic signal as a sum of simpler signals. The simpler signals are 
orthogonal functions, most commonly sinusoids, and the resulting sum is called the 
Fourier series, or the Fourier expansion. As we shall see, the requirement of signal 
periodicity is relaxed in Chapter 5, where the Fourier series is modified to yield the 
Fourier transform.

 4.1 ApproximAting periodic FunctionS

In the study of Fourier series, we consider the independent variable of the functions 
involved to be time; for example, we consider a function x1t2, where t represents 
time. However, all the procedures developed in this chapter apply if the indepen-
dent variable is other than time.

In this section, we consider two topics. First, periodic functions are investigated 
in some detail. Next, the approximation of a nonsinusoidal periodic function with a 
sinusoid is investigated.

periodic Functions

We define a function x1t2 to be periodic, with the period T, if the relationship 
x1t2 = x1t + T2 is satisfied for all t. For example, the function cos vt is periodic 
1v = 2pf = 2p>T2, because

 cos v1t + T2 = cos 1vt + vT2 = cos 1vt + 2p2 = cos vt.
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Another example is shown in Figure 4.1, where the function is constructed of 
 connected straight lines. Periodic functions have the following properties (see 
Section 2.2):

 1. Periodic functions are assumed to exist for all time; in the equation 
x1t2 = x1t + T2, we do not limit the range of t.

 2. A function that is periodic with period T is also periodic with period nT, 
where n is any integer. Hence for a periodic function,

 x1t2 = x1t + T2 = x1t + nT2, (4.2)

with n any integer.
 3. We define the fundamental period T0 as the minimum value of the period 

T 7 0 that satisfies x1t2 = x1t + T2. The fundamental frequency is defined 
as v0 = 2pf0 = 2p>T0. For the units of T0 in seconds, the units of v0 are 
radians per second 1rad/s2 and of f0 are hertz (Hz).

The second property is seen for the function of Figure 4.1 and also for cos vt, 
since

 cos v1t + nT2 = cos1vt + nvT2 = cos1vt + n2p2 = cos vt.

We usually choose the period T to be the fundamental period T0; however, any 
value nT0, with n an integer, satisfies the definition of periodicity.

Approximating periodic Functions

Consider again the periodic signal of Figure 4.1. Suppose that this function is the input 
to a stable LTI system and we wish to find the steady-state response. It is quite diffi-
cult to find the exact steady-state response for this input signal, since the mathematical 
description of the signal is a sum of ramp functions. However, we may be able, with 
adequate accuracy, to approximate this signal by a sinusoid, as indicated in Figure 4.2. 
Then the approximate response will be the sinusoidal steady-state response of the linear 
system, which is relatively easy to calculate. [See (3.73).]

0 T/2 T�T/2 t

x(t)

Figure 4.1  Periodic function.
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Generally, in approximations of the type just discussed, we choose the  sinusoidal 
function that is “best” in some sense. The word best is in quotation marks because 
we are free to define the criterion that determines what is best. A  common proce-
dure for choosing a best approximation is to minimize a function of the  difference 
 between the original signal and its approximation—that is, to minimize the error in 
the  approximation. In the approximation of x1t2 in Figure 4.2 by the signal B1 sin v0 t, 
we define the error of the approximation as

 e1t2 = x1t2 - B1 sin v0t (4.3)

and choose B1 such that some function of this error is minimized.
We denote the function of error to be minimized as J[e(t)]. A very common 

function used in minimization is the mean-square error. By definition, minimization 
of the mean-square error of (4.3) is the minimization of the function

 J[e1t2] =
1
T0 L

T0

0
e21t2dt =

1
T0 L

T0

0
[x1t2 - B1 sin v0t]

2dt. (4.4)

The minimization process involves choosing the value of B1 such that J[e(t)] is mini-
mized. The function J[e(t)] is called the cost function, or simply, the cost. The result 
of its minimization is a value for B1 such that no other value will result in a smaller 
error function (4.4).

For minimization, we differentiate (4.4), using Leibnitz’s rule from Appendix B, 
and set the result to zero:

 
0   J[e1t2]

0   B1
= 0 =

1
T0 L

T0

0
2[x1t2 - B1 sin v0 t]1-sin v0 t2dt. (4.5)

This equation is rearranged to yield

  L
T0

0
x1t2 sin v0 t dt = B1L

T0

0
 sin2v0 t dt  

   = B1L
T0

0

1
211 - cos 2v0 t2dt =

B1

2 L
T0

0
dt =

B1T0

2
 , (4.6)

0 T/2 T�T/2 t

x(t)
Sinusoidal approximation

Figure 4.2  Sinusoidal approximation for a periodic function.
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since the integral of a sinusoid over an integer number of periods is zero. In (4.6), 
we used the trigonometric identity from Appendix A:

  sin2a = 1
211 - cos 2a2.

From (4.5), the second derivative of the cost function is given by

 
0  

2J[e1t2]

0     B1
2 =

2
T0 L

T0

0
 sin2 v0 t dt 7 0. (4.7)

The second derivative is positive; thus if (4.6) is satisfied, the mean-square error is 
minimized (not maximized).

Solving (4.6) for B1 yields

 B1 =
2
T0 L

T0

0
x1t2 sin v0t dt. (4.8)

This value minimizes the mean-square error. Note that this result is general and 
is not limited by the functional form of x1t2. Given a periodic function x1t2 with 
the period T0, the best approximation, in a mean-square-error sense, of any peri-
odic function x1t2 by the sinusoid B1 sin v0t is to choose B1 to satisfy (4.8), where 
v0 = 2p>T0. We next consider an example.

 exAmple 4.1 mean-square minimization

We now find the best approximation, in a mean-square sense, of the square wave of Figure 4.3(a) 
by a sine wave. From (4.8),

  B1 =
2
T0 L

T0

0
x1t2 sin v0t dt

  =
2
T0 L

T0>2

0
112 sin v0t dt +

2
T0 L

T0

T0>2
1-12 sin v0t dt,

since

 x1t2 = b 1, 0 6 t 6 T0 >2
-1, T0 >2 6 t 6 T0 .

Therefore,

  B1 =
2
T0

 c -cos v0t

v0

2
0

T0>2
+

cos v0t

v0

2
T0>2

T0

d

  =
1
p

 1-cos p + cos 0 + cos 2p -  cos p2 =
4
p

 ,

since

 v0t 2
t = T0>2

= ¢2p
T0

≤ ¢T0

2
≤ = p, v0T0 = 2p.
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Hence, the best approximation of a square wave with unity amplitude by the function 
B1 sin v0t is to choose B1 = 4>p; we used the minimum mean-square error as the criterion 
for best. Shown in Figure 4.3(b) is the square wave and the approximating sine wave, and 
Figure 4.3(c) shows the error in the approximation. This error is given by

 e1t2 = x1t2 -
4
p

 sin v0 t = c 1 -
4
p

 sin v0t, 0 6 t 6 T0 >2

-1 -
4
p

 sin v0t, T0 >2 6 t 6 T0

 . 

■

Figure 4.3(c) illustrates very well why we minimize the average squared error 
rather than the average error. In this figure, we see that the average error is zero, 
while the approximation is not an especially good one. Furthermore, any value of B1 
will give an average error of zero, with large values of negative error canceling large 
values of positive error. However, the squared error is a nonnegative function, and 
no cancellation can occur.

Other error functions can give reasonable results in the minimization proce-
dure; one example is the average value of the magnitude of e1t2:

 Jm[e1t2] =
1
T0 L

T0

0
� e1t2 � dt.

0

1

�1

T0/2 T0 3T0/2�T0/2 t

x(t)
x(t)

sin    t4
�

(b)

�

0

1

�1

T0 t

e(t)

(c)

0

1

�1

T0/2 T0 3T0/2�T0/2 t

x(t)

(a)

Figure 4.3  Functions for Example 4.1.
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However, we choose to use the mean-square error, which is mathematically trac-
table and leads us to the Fourier series; the Fourier series is defined in the next 
section.

 4.2 Fourier SerieS

To introduce the Fourier series, we consider the sum

 x1t2 = 10 + 3 cos v0t + 5 cos12v0t + 30°2 + 4  sin 3v0t. (4.9)

This signal is easily shown to be periodic with period T0 = 2p>v0. We now ma-
nipulate this signal into a different mathematical form, using Euler’s relation from 
Appendix D:

  x1t2 = 10 +
3
2

 [ejv0t + e-jv0t]

  +
5
2

 [ej12v0t + 30°2 + e-j12v0t + 30°2] +
4
2j

 [ej3v0t - e-j3v0t],

or

  x1t2 = 12ejp>22e-j3v0t + 12.5e-jp>62e-j2v0t + 1.5e-jv0t 

  + 10 + 1.5ejv0t + 12.5ejp>62ej2v0t + 12e-jp>22ej3v0t. (4.10)

This equation can be expressed in the compact form

  x1t2 = C-3e
-j3v0t + C-2e

-j2v0t + C-1e
-jv0t + C0 + C1e

jv0t + C2e
j2v0t + C3e

j3v0t

  = a
3

k = -3
Ckejkv0t.

The coefficients Ck for this series of complex exponential functions are listed in 
Table 4.1. Note that Ck = C-k

* , where the asterisk indicates the complex conjugate.
We see then that a sum of sinusoidal functions can be converted to a sum of 

complex exponential functions. Note that even though some of the terms are com-
plex, the sum is real. As shown next, (4.10) is one form of the Fourier series.

Table 4.1  Coefficients for Example 4.2

K Ck C-k

0 10 —
1 1.5 1.5
2 2.5∠30° 2.5∠-30°
3 2∠-90° 2∠90°
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Fourier Series

Given a real periodic signal x1t2, a harmonic series for this signal is defined as

 x1t2 = a
∞

k = - ∞
Ckejkv0t; Ck = C-k

* . (4.11)

The frequency v0 is called the fundamental frequency or the first harmonic, and the 
frequency kv0 is called the kth harmonic. If the coefficients Ck and the signal x1t2 
in (4.11) are related by an equation to be developed later, this harmonic series is a 
Fourier series. For this case, the summation (4.11) is called the complex exponential 
form, or simply the exponential form, of the Fourier series; the coefficients Ck are 
called the Fourier coefficients. Equation (4.10) is an example of a Fourier series in 
the exponential form. We next derive a second form of the Fourier series.

The general coefficient Ck in (4.11) is complex, as indicated in Table 4.1, with 
C-k equal to the conjugate of Ck. The coefficient Ck can be expressed as

 Ck = � Ck � ejuk,

with - ∞  6   k 6  ∞ . Since C-k = Ck
*, it follows that u-k = -uk. For a given value of 

k, the sum of the two terms of the same frequency kv0 in (4.11) yields

  C-ke-jkv0t + Ckejkv0t = � Ck � e-juke-jkv0t + � Ck � ejukejkv0t 

  = � Ck � [e-j1kv0t + uk2 + ej1kv0t + uk2]  

  = 2 � Ck � cos1kv0t + uk2.  (4.12)

Hence, given the Fourier coefficients Ck, we can easily find the combined trigono-
metric form of the Fourier series:

 x1t2 = C0 + a
∞

k = 1
2 � Ck � cos1kv0t + uk2. (4.13)

A third form of the Fourier series can be derived from (4.13). From 
Appendix A, we have the trigonometric identity

 cos1a + b2 = cos a cos b -  sin a sin b. (4.14)

The use of this identity with (4.13) yields

  x1t2 = C0 + a
∞

k = 1
2 � Ck � cos1kv0t + uk2  

  = C0 + a
∞

k = 1
[2 � Ck � cos uk cos kv0t - 2 � Ck �  sin uk sin kv0t]. (4.15)
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From Euler’s relationship, we define the coefficients Ak and Bk implicitly via the 
formula

  2Ck = 2 � Ck � ejuk  

  = 2 � Ck � cos uk + j2 � Ck �  sin uk = Ak - jBk, (4.16)

where Ak and Bk are real. Substituting (4.16) into (4.15) yields the trigonometric 
form of the Fourier series

 x1t2 = A0 + a
∞

k = 1
[Ak cos kv0t + Bk sin kv0t], (4.17)

with A0 = C0. The original work of Joseph Fourier (1768–1830) involved the series 
in this form.

The three forms of the Fourier series [(4.11), (4.13), (4.17)] are listed in Table 4.2. 
Also given is the equation for calculating the coefficients; this equation is developed 
later. From (4.16), the coefficients of the three forms are related by

 2Ck = Ak - jBk; Ck = � Ck � ejuk; C0 = A0. (4.18)

Recall that Ak and Bk are real and, in general, Ck is complex.

Fourier coefficients

Next, the calculation of the Fourier coefficients Ck, given x1t2, is considered. Several 
approaches may be taken to deriving the equation for Ck. We take the approach of 
assuming that the complex-exponential form of the Fourier series is valid—that is, 
that the coefficients Ck can be found which satisfy the equation

[eq(4.11)] x1t2 = a
∞

k = - ∞
Ckejkv0t,

Table 4.2  Forms of the Fourier Series

name equation

Exponential a
∞

k = - ∞
Ckejkv0t; Ck = � Ck � ejuk, C-k = Ck

*

Combined trigonometric
C0 + a

∞

k = 1
2 � Ck � cos1kv0t + uk2

Trigonometric
A0 + a

∞

k = 1
1Ak cos kv0t + Bk sin kv0t2

2Ck = Ak - jBk, C0 = A0

Coefficients
Ck =

1
T0 LT0

x1t2e-jkv0tdt
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where x1t2 is a periodic function with the fundamental frequency v0. We consider 
the convergence of the right side of (4.11) in the next section. First, each side of 
equation (4.11) is multiplied by e-jnv0t, with n an integer, and then integrated from 
t = 0 to t = T0:

 L
T0

0
x1t2e-jnv0t  dt = L

T0

0
J a

∞

k = - ∞
Ckejkv0tR e-jnv0t dt.

Interchanging the order of summation and integration on the right side yields the 
equation

 L
T0

0
x1t2e-jnv0t dt = a

∞

k = - ∞
CkJLT0

0
ej1k - n2v0t dtR . (4.19)

Using Euler’s relation, we can express the general term in the summation on the 
right side as

CkL
T0

0
ej1k - n2v0t dt = CkL

T0

0
cos1k - n2v0t dt + jCkL

T0

0
 sin1k - n2v0t dt. (4.20)

The second term on the right side of this equation is zero, since the sine function is 
integrated over an integer number of periods. The same is true for the first term on 
the right side, except for k = n. For this case,

 CkL
T0

0
cos1k - n2v0t dt 2

k = n
= CnL

T0

0
dt = CnT0. (4.21)

Hence, the right side of (4.19) is equal to CnT0, and (4.19) can be expressed as

 L
T0

0
x1t2e-jnv0t dt = CnT0.

This equation is solved for Cn:

 Cn =
1
T0 L

T0

0
x1t2e-jnv0t dt. (4.22)

This is the desired relation between x1t2 and the Fourier coefficients Cn. It can be 
shown that this equation minimizes the mean-square error defined in Section 4.1 [2].
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The equation for the Fourier coefficients is simple, because, in (4.19),

 CkL
T0

0
ejkv0te-jnv0t dt = 0, k ≠ n.

These two complex-exponential functions are said to be orthogonal over the inter-
val 10, T02. In general, two functions f1t2 and g1t2 are orthogonal over the interval 
1a, b2 if

 L
b

a
f1t2g1t2  dt = 0.

Orthogonal functions other than complex exponentials exist, and these functions 
may be used in a manner similar to that in (4.11) and (4.22) to express a general 
function as a series [2]. We do not consider this general topic further.

Equation (4.22) is the desired result and gives the coefficients of the  exponential 
form of the Fourier series as a function of the periodic signal x1t2. The coefficients 
of the two trigonometric forms of the Fourier series are given in Table 4.2. Because 
the integrand in (4.22) is periodic with the fundamental period T0, the limits on the 
integral can be generalized to t1 and t1 + T0, where t1 is arbitrary. We express this 
by writing T0 at the lower limit position of the integral and leaving the upper limit 
position blank:

 Ck =
1
T0 LT0

x1t2e-jkv0t dt. (4.23)

We now consider the coefficient C0. From (4.23),

 C0 =
1
T0 LT0

x1t2 dt.

Hence, C0 is the average value of the signal x1t2. This average value is also called 
the dc value, a term that originated in circuit analysis. For some waveforms, the dc 
value can be found by inspection.

The exponential form and the combined trigonometric form of the Fourier 
series are probably the most useful forms. The coefficients of the exponential form 
are the most convenient to calculate, while the amplitudes of the harmonics are 
directly available in the combined trigonometric form. We will usually calculate Ck 
from (4.23); if the amplitudes of the harmonics are required, these amplitudes are 
equal to 2 � Ck � , except that the dc amplitude is C0.

In this section, we define the Fourier series for a periodic function and derive 
the equation for calculating the Fourier coefficients. Table 4.2 gives the three forms 
for the Fourier series. Examples of calculating the Fourier coefficients are given in 
the next section.
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 4.3 Fourier SerieS And Frequency SpectrA

In this section, we present three examples of Fourier series. These examples lead us 
to the important concept of the frequency spectra of periodic signals. Then, a table 
of Fourier series for some common signals is given.

 exAmple 4.2 Fourier series of a square wave

Consider the square wave of Figure 4.4. This signal is common in physical systems. For exam-
ple, this signal appears in many electronic oscillators as an intermediate step in the generation 
of a sinusoid.

We now calculate the Fourier coefficients of the square wave. Because

 x1t2 = b V, 0 6 t 6 T0>2
-V, T0>2 6 t 6 T0

 ,

from (4.23), it follows that

  Ck =
1
T0 LT0

x1t2e-jkv0t dt

  =
V
T0 L

T0>2

0
e-jkv0t dt -

V
T0 L

T0

T0>2
e-jkv0t dt

  =
V

T01- jkv02  Je-jkv0t 2
0

T0>2
- e-jkv0 t 2

T0>2

T0 R  

.

The values at the limits are evaluated as

 v0t 2
t = T0>2

=
2p
T0

 
T0

2
= p; v0T0 = 2p.

Therefore,

 Ck =
jV

2pk
1e-jkp - e-j0 - e-jk2p + e-jkp2 

 
= c -

2jV

kp
=

2V
kp

∠-90°, k odd

0, k even
 , (4.24)

0

V

�V

T0/2 T0 3T0/2�T0/2 t

x(t)

Figure 4.4  Square wave with amplitude V.
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with C0 = 0. The value of C0 is seen by inspection, since the square wave has an average 
value of zero. Also, C0 can be calculated from (4.24) by L’Hôpital’s rule, Appendix B.

The exponential form of the Fourier series of the square wave is then

 x1t2 = a
∞

k = - ∞
k odd

2V
kp

e-jp>2ejkv0t. (4.25)

The combined trigonometric form is given by

 x1t2 = a
∞

k = 1
k odd 

4V
kp

 cos1kv0t - 90°2 (4.26)

from (4.13). Hence, the first harmonic has an amplitude of 4V>p, the third harmonic 4V>3p, 
the fifth harmonic 4V>5p, and so on. The calculation of C1 is verified with the MATLAB 
program

syms C1 ker t
w0=2*pi; k=1;
ker=exp (-j*k*w0*t);
C1=int (ker, 0, 0.5) +int (-ker, 0.5, 1)
double (C1)

Equation (4.26) is easily converted to the trigonometric form, because cos1a - 90°2 =  sin a. 
Hence,

 x1t2 = a
∞

k = 1  
k odd

4V
kp

 sin kv0t. 

■

Frequency Spectra

For the square wave, the amplitudes of the harmonics decrease by the factor 1/k, 
where k is the number of the harmonic. For a graphical display of the harmonic con-
tent of a periodic signal, we plot a frequency spectrum of the signal. A frequency spec-
trum is generally a graph that shows, in some manner, the amplitudes 12 � Ck �2 and 
the phases (arg Ck) of the harmonic terms of a periodic signal. Given in Figure 4.5 is 
a frequency spectrum that shows a magnitude plot (the magnitude spectrum) and a 
phase plot (the phase spectrum) of 2Ck = 2 � Ck � ejuk versus frequency for the square 
wave of Example 4.2. These plots are called line spectra, because the amplitudes and 
phases are indicated by vertical lines.

A second method for displaying the frequency content of a periodic signal 
is a plot of the Fourier coefficients Ck. This plot shows � Ck �  and uk as line spectra 
versus frequency and is plotted for both positive and negative frequency. The plot 
for the square wave of Example 4.2 is given in Figure 4.6. Even though the plots 
of Figures 4.5 and 4.6 are different, the same information is given. If harmonics for 
both positive frequency and negative frequency are shown, the plots must be for 
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4V
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Figure 4.5  Frequency spectrum for a square wave.
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Figure 4.6  Frequency spectrum for a square wave.
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the coefficients Ck of the complex exponentials. If harmonics for only positive fre-
quency are shown, the plots are of the coefficients 2Ck of the sinusoids.

The usefulness of the frequency spectrum is evident from the square-wave 
spectrum of Figure 4.5. It was mentioned in Example 4.2 that some electronic os-
cillators generate a square wave as an intermediate step to producing a sinusoidal 
signal. We now discuss this case as an example.

 exAmple 4.3 Filtering for an electronic oscillator

From Figure 4.5, we see that a sinusoid of frequency v0 is present in a square wave. Hence, in 
the oscillator, we must remove (filter out) the frequencies at 3v0, 5v0, and so on, to produce 
a sinusoid of frequency of v0.

The electronic oscillator can be depicted by the system of Figure 4.7. The input signal 
to the filter is a square wave, and its output signal is a sinusoid of the same frequency. The 
engineers designing the oscillator of Figure 4.7 have the two design tasks of (1) designing the 
square-wave generator and (2) designing the filter. We introduce filter design in Chapter 6. 
The system of Figure 4.7 is used in many oscillators, because the square wave is easy to gen-
erate and the higher frequencies are not difficult to filter out. A filter of the type required is 
analyzed mathematically in Section 4.5. 

Square-wave
generator Filter

Figure 4.7  Electronic oscillator. ■

We next consider a second physical system that illustrates frequency spectra.

 exAmple 4.4 Filtering in a pendulum clock

We now consider a pendulum clock, with the pendulum depicted in Figure 4.8(a). The 
pendulum was discussed in Section 1.2. From physics, we know that the motion of a simple 
pendulum u1t2  approximates a sinusoid, as shown in Figure 4.8(b). The mainspring of the 
clock applies periodic pulses of force at one of the extreme points of each swing of the 
pendulum, as indicated in Figure 4.8(a). We can approximate this force with the signal 
f1t2  of Figure 4.8(c). This force will have a Fourier series, with a spectrum as indicated in 
Figure 4.8(d).

We now consider the pendulum to be a system with the input f1t2  and the output u1t2, 
as shown in Figure 4.9. It is evident that this system filters the higher harmonics of the force 
signal to produce a sinusoid of frequency v0. In the electronic oscillator of Example 4.3, a 
 filter was added to remove the higher harmonics. For the pendulum clock, the pendulum 
itself is a mechanical filter that removes the higher harmonics. ■

Note that in discussing the pendulum, we used the concept of frequency spec-
tra to understand the operation of the clock, without deriving a model or assigning 
numbers to the system. We can see the importance of concepts in engineering. Of 
course, for design, we must have mathematical models and numerical values for 
parameters.
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In the analysis of a system with a periodic input of the type shown in Figure 4.8(c), 
we may be able to approximate the pulses as impulse functions, with the weight of each 
impulse function equal to the area under a pulse. As a second example of calculating 
Fourier coefficients, we consider a train of impulse functions.

f(t), applied
force

(t)�

t

f(t)

t

(t)�

2�Ck�

�0 2�0 3� �00

(a)

(b)

(c)

(d) Figure 4.8  Operation of a pendulum clock.

Displacement

(t)�

Force

f(t)
Pendulum

Figure 4.9  Pendulum as a system.
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 exAmple 4.5 Fourier series for an impulse train

The Fourier series for the impulse train shown in Figure 4.10 will be calculated. From (4.23),

  Ck =
1
T0 LT0

x1t2e-jkv0tdt

  =
1
T0 L

T0>2

-T0>2
d1t2e-jkv0t dt =

1
T0

 e-jkv0t 2
t = 0

=
1
T0

.

This result is based on the property of the impulse function

[eq(2.41)] L
∞

- ∞
f1t2d1t - t02dt = f1t02,

provided that f1t2 is continuous at t = t0. The exponential form of the Fourier series is 
given by

 x1t2 = a
∞

k = - ∞

1
T0

 ejkv0t. (4.27)

A line spectrum for this function is given in Figure 4.11. Because the Fourier coefficients are 
real, no phase plot is given. From (4.13), the combined trigonometric form for the train of 
impulse functions is given by 

 x1t2 =
1
T0

+ a
∞

k = 1

2
T0

 cos kv0t. ■

1 1 1 1 1

• • •• • •

x(t)

�2T0 �T0 0 2T0 tT0 Figure 4.10  Impulse train.

1
T0

• • •• • •

Ck

��2 0� 2 0�� 0� 0�0
Figure 4.11  Frequency spectrum for an  
impulse train.
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Note that this is also the trigonometric form.
A comparison of the frequency spectrum of the square wave (Figure 4.6) with 

that of the train of impulse functions (Figure 4.11) illustrates an important prop-
erty of impulse functions. For the square wave, the amplitudes of the harmonics 
decrease by the factor 1/k, where k is the harmonic number. Hence, we expect that 
the higher harmonics can be ignored in most situations and that a finite sum of the 
harmonics is usually adequate to represent a square wave. This statement cannot 
be applied to the impulse train. The amplitudes of the harmonics remain constant 
for all harmonic frequencies. Hence, usually all harmonics must be considered for a 
train of impulse functions. This point is considered further in the next section.

Given in Table 4.3 are the Fourier coefficients of seven periodic signals that 
are important in engineering applications. Since the coefficient C0 is the average, 
or dc, value of the signal, this value is not unique for a particular form of a periodic 
signal. For example, if we add a constant value to a sawtooth signal, the result is still 
a sawtooth signal, with only the average value C0 changed. This point is covered in 
greater detail in Section 4.6.

A MATLAB program that verifies the first three coefficients of the triangular 
wave in Table 4.3 is

syms Ck ker t
for k=1 : 3

w0=2*pi;
ker=exp (−j*k*w0*t);
Ck=int (2*t*ker, 0, 0.5) + int (2* (1 - t) * ker, 0.5, 1);
simplify (Ck)

end

This program can also be written in the general variable k, but the results must be 
simplified. The coefficients of the remaining signals in Table 4.3 can be derived by 
altering this program in an appropriate manner.

As a final example in this section, we consider the important case of a train of 
rectangular pulses.

 exAmple 4.6 Frequency spectrum of a rectangular pulse train

For this example, the frequency spectrum of the rectangular pulse train of Figure 4.12 will be 
plotted. This waveform is common in engineering. The clock signal in a digital computer is a 
rectangular pulse train of this form. Also, in communications, one method of modulation is to 
vary the amplitudes of the rectangular pulses in a pulse train according to the information to 
be transmitted. This method of modulation, called pulse-amplitude modulation, is described 
in Sections 1.3 and 6.6.

From Table 4.3, the Fourier series for this signal is given by

 x1t2 = a
∞

k = - ∞

TX0

T0
 sinc 

Tkv0

2
 ejkv0t, (4.28)
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Table 4.3  Fourier Series for Common Signals

Name

1.

2.

3.

4.

5.

6.

7.

Waveform C0 CommentsCk, k � 0

Square
wave

0
�T0 T0 t

�X0

X0

x(t)

0

Ck � 0,
k even

Ck � 0,
k even

Ck� 0,
k odd, except

and

Sawtooth

Triangular
wave

Full-wave
rectified

Half-wave
rectified

Rectangular
wave

Impulse
train

2X0

  k�
�j

X0

4C1 � �j

X0
4C�1 � j

�2X0

(  k)2�

�2X0

(4k2 � 1)�

�X0

(k2 � 1)�

X0

2   k�
j

�T
2

TX0

T0

X0
T0

X0
T0

�
X0

�
2X0

sinc
TX0

T0 2
Tk   0�

�
2

Tk   0�

T0

Tk�

X0
2

X0
2

T
2

�T0 2T0T0 t

X0

x(t)

0

�T0 T0

�T0�2T0 T0 2T0 3T0 4T0

t

t

X0

x(t)

0

X0

x(t)

0

�T0 T0 2T0 t

X0

x(t)

0

�T0 T0 2T0 t

X0

x(t)

0

�T0 T0 2T0 t

X0 X0 X0 X0

x(t)

0
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where T is the width of the rectangular pulses and sinc x is defined as

 sinc x =
 sin x

x
. (4.29)

The coefficients of the combined trigonometric form of the Fourier series are given by

 2 � Ck � =
2TX0

T0

2 sinc 
Tkv0

2
2 , uk = b0, sinc Tkv0>2 7 0

180°, sinc Tkv0>2 6 0
.

We obtain the envelope of the magnitude characteristic by replacing kv0 with v:

 envelope =
2TX0

T0

2 sinc 
Tv
2

2 .
Note that, by L’Hôpital’s rule, lim

xS0 
sinc x = 1. The first zero of the envelope occurs at

  sin Tv>2 =  sin p,

or v = 2p>T. This value of v is not necessarily a harmonic frequency. The frequency spec-
trum for this pulse train is plotted in Figure 4.13. ■

The function sinc x appears often in signal and system analysis; we now inves-
tigate this function further. The definition

 sinc x =
sin x

x
 (4.30)

is not standard; however, mathematicians normally use this definition. [The defi-
nition sinc x =  sin     1px2 >px is also used in engineering. MATLAB uses this 
 definition.] As stated, the sinc x function has a value of unity at x = 0. For x ≠ 0, 
sinc x has zeros at the points at which sin x is zero—that is, at x = {p, {2p, c. 
The magnitude and the angle characteristics for sinc x are plotted in Figure 4.14.

 exAmple 4.7 the sinc function in mAtlAB

The function sinc (x) in MATLAB results in the calculation of sin1px2/px. To apply the sinc 
function as defined in (4.30) in MATLAB, use the command sinc1x/p2. This will result in the 
calculation of sin1x2/x. ■

• • •• • •

x(t)

�T0 T0 2T0

0

t

X0

�T
2

T
2

Figure 4.12  Rectangular pulse train.
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TX0
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�0
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180  

Figure 4.13  Spectrum for a  
rectangular pulse train.
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Figure 4.14  Plot of sinc x.
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In Figure 4.14, the angle of Ck is zero for sinc x positive and 180° (or -180°) for 
sinc x negative. Table 4.4 gives the maximum values of the magnitude characteristic 
in each half-cycle, for � x � 6 5p. For x large, since the maximum magnitude of sin x 
is unity, the maximum magnitude of sinc x is approximately 1/x. For example, in the 
vicinity of x = 25, the maximum magnitude of sinc x is approximately 1>25 = 0.04. 
Values of 1/x are also given in Table 4.4.

In this section, we introduce one of the basic concepts of signals and systems 
engineering, that of frequency spectra. Many analysis and design procedures for 
signals and systems are based on this concept. We expand on this concept in the 
remainder of this chapter, and in Chapter 5 extend the concept to aperiodic signals.

 4.4 propertieS oF Fourier SerieS

In this section, some properties of the Fourier series are stated. These properties are 
then discussed, with examples for illustration.

Any single-valued periodic function x1t2 that satisfies the Dirichlet conditions 
can be expanded into a Fourier series. The Dirichlet conditions are [2]

 1. x1t2 has at most a finite number of discontinuities in one period;
 2. x1t2 has at most a finite number of maxima and minima in one period;
 3. x1t2 is bounded.

The third condition has been expanded to include singularity functions and may be 
stated as [3]

3a. LT0

� x1t2 � dt 6 ∞. 

Any function of time that appears in physical systems will satisfy these conditions.
Several properties of the Fourier series will now be given. The readers inter-

ested in the proofs of these properties should see Refs. 2, 4, and 5. For x1t2 satisfy-
ing the Dirichlet conditions 1, 2, and 3, the following are true:

1. The Fourier series converges to the value of x1t2 at every point of conti-
nuity where x1t2 has a right-hand and a left-hand derivative, whether these deriva-
tives are the same or different. The right-hand derivative of x1t2 at t = ta is defined 
as the derivative as t approaches ta from the right. The left-hand derivative is the 
 derivative as t approaches ta from the left.

Table 4.4  Peak Values of Sinc x

x � sinc x � 1/x

 0.0 1.0   —
 4.493 0.2172 0.2226
 7.725 0.1284 0.1294
10.90 0.0913 0.0917
14.07 0.0709 0.0711
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2. If x1t2 has a discontinuity at a point, the Fourier series converges to the 
mean of the limits approached by x1t2 from the right and from the left; that is, at 
every point ta,

 a
∞

k = - ∞
Ckejkv0ta =

x1ta
-2 + x1ta

+2
2

, (4.31)

where x1ta
-2 is the limiting value of x1t2 as t approaches ta from the left and x1ta

+2 
is the limiting value from the right. Note that (4.31) is also satisfied for ta a point of 
continuity. When x1t2 contains a jump such as a step function, this means that the 
Fourier series converges to the midpoint of the change.

3. Almost any continuous function x1t2 of period T0 can be uniformly ap-
proximated by a truncated Fourier series with any preassigned degree of accuracy, 
where the series is given by

 xN1t2 = a
N

k = -N
Ckejkv0t = C0 + a

N

k = 1
2 � Ck � cos1kv0t + uk2. (4.32)

This property applies to any continuous periodic function that we might encounter 
in the practice of engineering. We define the error of the approximation by the 
truncated series of (4.32) as

 e1t2 = x1t2 - xN1t2. (4.33)

This property states that the magnitude of the error, � e1t2 � , may be bounded by any 
nonzero value by the choice of N sufficiently large.

4. Consider further the error of approximation in (4.33), with the coefficients 
given by (4.23). We minimize the mean-square error, defined as

 mean@square error =
1
T0 LT0

e21t2dt. (4.34)

That is, no other choice of coefficients in the harmonic series (4.32) will produce a 
smaller mean-square error in (4.34). This property is discussed in Section 4.2.

5. A sum of trigonometric functions of v0t that is periodic is its own Fourier 
series.

6. The Fourier coefficient of the kth harmonic for x1t2 always decreases in 
magnitude at least as fast as 1/k, for sufficiently large k. If x1t2 has one or more 
discontinuities in a period, the coefficients can decrease no faster than this. If the 
nth derivative of x1t2 is the first derivative that contains a discontinuity, and if all 
derivatives through the nth satisfy the Dirichlet conditions, then the Fourier coef-
ficients approach zero as 1>kn + 1, for sufficiently large k.

7. The Fourier series of a periodic sum of periodic functions is equal to the 
sum of the Fourier series for the functions. Of course, the sum of the periodic func-
tions must be periodic; if not, the sum does not have a Fourier series.

The first property is illustrated by the triangular wave of Table 4.3. The Fourier 
series converges to x1t2 for every value of t, although at two points each cycle, the 
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left-hand and right-hand derivatives are not equal (at t = 0 and at t = T0>2, for 
example).

The second property is illustrated by the square wave of Example 4.2 and 
Table 4.3. In Example 4.2, the Fourier series is calculated to be

 x1t2 = a
∞

k  = 1
k  odd

4V
kp

 cos1kv0t - 90°2 = a
∞

k  = 1
k  odd

4V
kp

 sin kv0t. (4.35)

At t = nT0>2 with n an integer, sin kv0t = sin knp = 0 for all k. Thus, the Fourier 
series is equal to zero at t = nT0>2, which is the average value of the discontinuities 
at these points.

The third property is important, since it states that almost any continuous pe-
riodic function can be approximated by a truncated Fourier series to any degree of 
accuracy.

Figure 4.15 illustrates the errors for the square wave of (4.35). Shown is a posi-
tive half-cycle of the square wave and (a) the first harmonic, (b) the sum of the first 
and third harmonics, and (c) the sum through the ninth harmonic. The reduction in 
error by adding higher harmonics is evident.

Figure 4.15 also illustrates the Gibbs phenomenon. The ripples in the waveform 
of the series become narrower as the number of terms used becomes larger. However, 
the amplitudes of the ripple nearest each discontinuity do not approach zero, but in-
stead, approach approximately 9 percent of the height of the discontinuity [2].

We now illustrate the fifth property with an example. The function

 x1t2 = cos 2t + 3 cos 4t

is periodic and, hence, has a Fourier series. Property 5 states that this sum of har-
monic sinusoids is its own Fourier series. If we calculate the Fourier coefficients for 
x1t2, using (4.23), we find that C1 = C-1 = 0.5, C2 = C-2 = 1.5, and Ck = 0 for all 
other k. (See Problem 4.1.)

Amplitude (b) (c)

Square wave

(a)

V

V/2

0 T0/4 T0/2 t

Figure 4.15  Truncated sums for a half-cycle of a square wave.
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Property 6 is illustrated by the square wave of Table 4.3 and Example 4.2, 
where the Fourier coefficients were calculated to be

 Ck =
c 2V

jpk
, k odd

0, k even
.

The square wave has discontinuities, and the harmonics approach zero as 1/k, as k 
approaches infinity.

However, the Fourier coefficients for the train of impulse functions of 
Example  4.5 and Table 4.3 do not satisfy Property 6. These coefficients are 
 calculated in Example 4.5 to be Ck = 1>T0 for all k and do not approach zero as k 
approaches infinity. This is not surprising, since an impulse function is not bounded. 
Hence, the Dirichlet condition 3 is violated, and Property 6 does not apply for this 
periodic function.

In this section, seven properties of Fourier series are given without proof. 
These properties are useful in the application of Fourier series in both analysis and 
design.

 4.5 SyStem AnAlySiS

In this section, we consider the analysis of stable LTI systems with periodic inputs. 
In the Fourier series representation of the input signal, the sinusoidal components 
are periodic for all time and it is assumed that the initial input was applied at time 
t S - ∞ . Therefore, it is assumed that the transient response has reached steady-
state, and since the systems are stable, the natural responses can be ignored; only 
the steady-state responses are determined.

The system linearity allows the use of superposition. Since a periodic input 
signal can be represented as a sum of complex exponential functions, the system 
response can be represented as the sum of steady-state responses to these complex 
exponential functions. We can also represent the periodic input signal as a sum of 
 sinusoidal functions; the system response is then a sum of steady-state sinusoidal 
responses. In either case, it will be shown that we must consider the variation of 
the system sinusoidal response with frequency. This variation is called the system 
frequency response. The analysis procedure developed in this section does not give a 
good indication of a plot of the steady-state response as a function of time; instead, 
it yields the frequency spectrum of the output signal.

We begin by considering the LTI system of Figure 4.16, and we use the stan-
dard notation for systems:

 x1t2 S y1t2. (4.36)

x(t) y(t)
h(t)

Figure 4.16  LTI system.
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Table 3.1, Section 3.7, gives the steady-state input–output functions for a complex-
exponential input or a sinusoidal input to an LTI system with the transfer function 
H1s2; we repeat these functions in Table 4.5.

From Table 4.5, for a complex-exponential input,

 Xes1t S XH1s12es1t, (4.37)

where both s1 and X may be complex. For a periodic input x1t2, we can represent 
x1t2 by its Fourier series in the exponential form. From (4.37), with s1 = jkv0, the 
system representation of (4.36) becomes

 x1t2 = a
∞

k = - ∞
Ckxe

jkv0t S yss1t2 = a
∞

k = - ∞
H1 jkv02  Ckxe

jkv0t, (4.38)

where yss1t2 is the steady-state output signal. In general, both Ckx and H1jkv02 are 
complex. Thus, the periodic output can be represented as a Fourier series with the 
coefficients

 yss1t2 = a
∞

k = - ∞
Ckye

jkv0t, Cky = H1 jkv02  Ckx. (4.39)

This equation gives the Fourier coefficients of the output signal y1t2 as a function 
of the Fourier coefficients of the input signal x1t2 and the system transfer function 
H1 jv2. H1 jv2 is also called the system frequency response.

From (4.13), the combined trigonometric form of the Fourier series for the 
input signal is

 x1t2 = C0x + a
∞

k = 1
2 � Ckx � cos1kv0t + ukx2. (4.40)

From Table 4.5, the steady-state sinusoidal response for an LTI system is expressed 
as

 � X � cos 1v1t + f2 S � X � � H1 jv12 � cos [v1t + f + ∠H1jv12]. (4.41)

Hence, by superposition, the steady-state system output for the periodic input sig-
nal (4.40) is given by

 yss1t2 = C0y + a
∞

k = 1
2 � Cky � cos1kv0t + uky2, (4.42)

Table 4.5  Input–Output Functions for an LTI System

H1s2 = L
∞

- ∞
h1t2e-stdt

Xes1t S XH1s12es1t; X = � X � ejf

� X � cos1v1t + f2 S � X � � H1jv12 � cos[v1t + f + ∠H1jv12]
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where, from (4.40) and (4.41),

 Cky = � Cky � ∠uky = H1 jkv02Ckx. (4.43)

This equation is identical to the one given in (4.39), since both equations yield Cky. 
An example is now presented to illustrate these relationships.

 exAmple 4.8 lti system response for a square-wave input

Suppose that for the LTI system of Figure 4.16, the impulse response and the transfer func-
tion are given by

 h1t2 = e-tu1t2 3 H1s2 =
1

s + 1
.

For example, the interested reader can show that the circuit of Figure 4.17 has this transfer 
function, with x1t2 = vi1t2  and y1t2 = vo1t2. Suppose that the input signal x1t2 is the square 
wave of Figure 4.18, where t is in seconds. Since the fundamental period is T0 = 2p, the 
fundamental frequency is v0 = 2p>T0 = 1 rad>s and kv0 = k. From Table 4.3, the Fourier 
series of x1t2 is given by

 x1t2 = C0x + a
∞

k = - ∞
k ≠ 0

Ckx e
jkv0t = 2 + a

∞

k = - ∞
k odd

4
pk

 e-jp>2ejkt.

�
�

vi(t)

1 H

1 � vo(t)

Figure 4.17  RL circuit.

�� 2� 3��0 t

x(t)

4

Figure 4.18  Input signal for Example 4.8.
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Now,

 H1jkv02 �v0 = 1 =
1

1 + jk
=

121 + k2
∠tan-11-k2.

For k odd, from (4.39),

 Cky = H1jkv02Ckx =
121 + k2

 c 4
pk

d  ∠-p>2 - tan-11k2

and

 C0y = H1j02C0x = 112122 = 2.

Table 4.6 gives the first four nonzero Fourier coefficients of the output y(t). The Fourier co-
efficients for the output signal decrease in magnitude as 1>k2 for large k, since, for this case, 
both � Ckx �  and � H1jkv02 �  decrease as 1/k. Hence, the system attenuates the high harmonics 
relative to the low harmonics. A system with this characteristic is called a low-pass system.

A MATLAB program that implements the complex calculations of Table 4.6 is

n = [0 1];
d = [1 1];
w = 1:2:5;
h = freqs (n, d, w);
ckx = 4 ./ (pi*w) .* exp(-j*pi/2);
cky = h .* ckx;
ckymag = abs(cky);
ckyphase = angle(cky)*180/pi;
results: ckymag = 0.9003 0.1342 0.0499
ckyphase = −135.0000 −161.5651 −168.6901

The period followed by a mathematical operator indicates the operation on the two arrays, 
element by element. These symbols must be bracketed by spaces. ■

Table 4.6  Fourier Coefficients for Example 4.8

k H 1 jkv0 2 ckx cky � ckx � � cky �

0 1 2 2 2 2

1 122
∠-45°

4
p

∠-90°
4

p22
∠-135°

1.273 0.900

3 1210
∠-71.6°

4
3p

∠-90°
4

3p210
∠-161.6°

0.424 0.134

5 1226
∠-78.7°

4
5p

∠-90°
4

5p226
∠-168.7°

0.255 0.050
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The system in Example 4.8 has the transfer function H1s2 = 1> 1s + 12 and is 
low pass. At the harmonic frequencies kv0 = k, from Example 4.8,

 H1jkv02 � v0 = 1 =
121 + k2

 ∠tan-11-k2. (4.44)

The plot of this function in Figure 4.19 shows graphically the system frequency 
 response. This plot can be verified with the following MATLAB program:

n = [0 1];
d = [1 1];
w = 0:0.25:5;
h = freqs(n, d, w);
hmag = abs(h);
hphase = angle(h)*180/pi;
plot(w, hmag)
plot(w, hphase)
[w', hmag', hphase']

The last statement gives a table of frequency, and the magnitude and phase of the 
frequency response.

The low-pass nature of the system is evident from Figure 4.19, because 
� H1jkv02 �  (called the system gain at the frequency kv0) approaches zero as kv0 
approaches infinity. As shown in Figure 4.19, only isolated points have meaning 
for periodic inputs. However, as shown in Chapters 5 and 6, the total frequency re-
sponse has meaning with respect to aperiodic inputs. Table 4.7 gives the frequency 
response for the system of Example 4.8, as calculated by the MATLAB program.

0 1 2 3 4 5 6

0.5

1.0

�H(j  )��

�

0
1 2 3 4 5 6

�

�45

�90

H(j  )�

Figure 4.19  Frequency response for 
Example 4.8.
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 exAmple 4.9 plot of the response for example 4.8

In this example, we plot the system time response of Example 4.8. From Example, 4.8 and 
Table 4.6, the response y1t2 for the square-wave input is found to be

 y1t2 = 2 + 1.800 cos1t - 135°2 + 0.268 cos13t - 161.6°2 + 0.100 cos15t - 168.7°2

for terms through the fifth harmonic. This function is plotted by the MATLAB program

t = 0:.1:7;
y = 2 + 1.8*cos(t − 2.356) + .268*cos(3*t − 2.82) ...

+ .1*cos(5*t − 2.944);
plot(t, y)

(MATLAB requires that the cosine argument be in radians.) The result is plotted in 
Figure 4.20. The dashed curve is explained later. Note that the form of this function is not 
evident from the Fourier series.

The analysis in Examples 4.8 and 4.9 gives the approximate system steady-state re-
sponse. The time constant t of the system (see Section 2.3) is determined from

 h1t2 = e-tu1t2 = e-t>tu1t2. (4.45)

Table 4.7  Frequency Response for Example 4.8

V ∣H 1 jV 2 ∣ ∠H 1 jV 2
0 1.0000   0
0.2500 0.9701 -14.0362
0.5000 0.8944 -26.5651
0.7500 0.8000 -36.8699
1.0000 0.7071 -45.0000
1.2500 0.6247 -51.3402
1.5000 0.5547 -56.3099
1.7500 0.4961 -60.2551
2.0000 0.4472 -63.4349
2.2500 0.4061 -66.0375
2.5000 0.3714 -68.1986
2.7500 0.3417 -70.0169
3.0000 0.3162 -71.5651
3.2500 0.2941 -72.8973
3.5000 0.2747 -74.0546
3.7500 0.2577 -75.0686
4.0000 0.2425 -75.9638
4.2500 0.2290 -76.7595
4.5000 0.2169 -77.4712
4.7500 0.2060 -78.1113
5.0000 0.1961 -78.6901
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Hence, t = 1 s, and the system reaches approximate steady state in 4t = 4 s. Because the 
period of the square wave in Figure 4.18 is 2p seconds, the system reaches approximate 
steady state in less than one period after the square wave is applied. ■

We now consider the exact response for the system of Example 4.8. The char-
acteristic equation of the system is the denominator of the transfer function, set to 
zero:

 s + 1 = 0 1 s = -1.

Hence, from (3.61), the natural response for the system is given by

 yc1t2 = Cest 2
s = -1

= Ce-t. (4.46)

With the square wave of Figure 4.18 applied, the input signal over a half-cycle is 
either constant (equal to 4) or zero. Hence, from Section 3.5, the total response over 
any half-cycle is of the form

 y1t2 = yc1t2 + yp1t2 = Ce-t + P, (4.47)

where the initial value of y(t) is that value of y(t) at the end of the preceding half-
cycle, and P is either 4 or 0. The response is then of the form shown in Figure 4.21, 
where Ymax  is the steady-state maximum value and Ymin  is the steady-state minimum 
value. It is assumed that the square wave is applied at t = 0, and hence the response 
includes the transient response. This system is simulated, and the simulation results 
for the steady state are shown in Figure 4.20, along with the steady-state output de-
termined in Example 4.8 via the Fourier series. We see, then, the effects of ignoring 
the higher harmonics in the Fourier series for this example.

y(t)

t (s)

4

3

2

1

Exact result

Fourier series

0 1 2 3 4 5 6
Figure 4.20  Steady-state response for  
the system of Example 4.8.
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Three points are now given concerning Example 4.9:

 1. The Fourier-series approach gives the amplitudes and phases of the sinusoi-
dal components (the frequency spectrum) of the output signal. However, 
the variation of the output signal with time is not evident, as illustrated in 
the examples.

 2. Even with this simple system, numerical integration (a system simulation) 
is the simplest method for finding the system output as a function of time. 
For complex systems, simulations are almost always used to determine a 
system’s time response.

 3. For a physical signal, a spectrum analyzer can be used to determine the sig-
nal spectrum. A spectrum analyzer is an electronic instrument designed to 
determine signal spectra.

This section develops a steady-state analysis procedure for LTI systems with 
periodic inputs. The procedure does not give a plot of the time response; instead, 
the frequency spectra of the output is calculated.

This procedure introduces us to the frequency response of LTI systems, which 
is one of the most important concepts of LTI system analysis and design. The fre-
quency-response concept is extended to aperiodic signals in Chapters 5 and 6.

 4.6 Fourier SerieS trAnSFormAtionS

Table 4.3 gives the Fourier coefficients for seven common signals. We now give two 
procedures that extend the usefulness of this table. In developing these procedures, 
we will use the notation of (4.38),

 x1t2 = a
∞

k = - ∞
Ckxe

jkv0t.

y(t)

t (s)

Ymax

Ymin

0 �2 �4

Figure 4.21  Total response for the system of Example 4.8.
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Amplitude transformations

As stated earlier, a constant offset in the amplitude of a periodic function will affect 
only the C0 coefficient of the Fourier series. For example, the Fourier series for the 
triangular wave of Table 4.3 is given by

 x1t2 =
X0

2
+ a

∞

k = - ∞
k odd

-2X0

1pk22 ejkv0t. (4.48)

The triangular waveform, shifted down in amplitude by X0>2, is shown in Figure 4.22. 
We denote this signal as y1t2, and its Fourier series is then

 y1t2 = x1t2 -
X0

2
= a

∞

k = - ∞
k odd

-2X0

1pk22 ejkv0t. (4.49)

The average value of this signal is zero; this is verified by inspection of Figure 4.22.
If the amplitude of a signal in Table 4.3, is offset by a constant amount, 

the Fourier coefficients for the offset signal are those given in Table 4.3, with C0 
 adjusted by the value of the offset.

Recall from Section 2.1 that, from (2.8), the general amplitude transformation 
of a signal x1t2 is given by

 y1t2 = Ax1t2 + B, (4.50)

with A and B constants and y1t2 the transformed signal. As indicated earlier, for a 
Fourier series, B affects only the average value C0. The constant A affects all coef-
ficients, since the substitution of the Fourier series for x1t2 into (4.50) yields

y1t2 = C0y + a
∞

k = - ∞
k ≠ 0

Ckye
jkv0t  

 = AJC0x + a
∞

k = - ∞
k ≠ 0

Ckxe
jkv0tR + B = 1AC0x + B2 + a

∞

k = - ∞
k ≠ 0

ACkxe
jkv0t, (4.51)

y(t)

t

2
X0

2
X0�

�T0 T0

Figure 4.22  Triangular wave.



Sec. 4.6    Fourier Series Transformations 187

where Ckx denotes the Fourier coefficients for x1t2 and Cky denotes those for y1t2. 
Therefore,

 C0y = AC0x + B

and

 Cky = ACkx, k ≠ 0, (4.52)

and the effects of the amplitude transformation of (4.50) are given by (4.52). An 
example illustrating an amplitude transformation will now be given.

 exAmple 4.10 Amplitude transformation for a Fourier series

Consider the sawtooth signal x1t2 of Figure 4.23(a). From Table 4.3, the Fourier series is 
given by

 x1t2 =
X0

2
+ a

∞

k = - ∞
k ≠ 0

X0

2pk
ejp>2ejkv0t.

We wish to find the Fourier series for the sawtooth signal y1t2 of Figure 4.23(b). First, note 
that the total amplitude variation of x1t2 (the maximum value minus the minimum value) is 
X0, while the total variation of y1t2 is 4. Also note that we invert x1t2 to get y1t2, yielding 
A = -4>X0 in (4.50). (The division by X0 normalizes the amplitude variation to unity.) In 
 addition, if x1t2 is multiplied by -4>X0, this signal must be shifted up in amplitude by one 
unit to form y1t2. Thus, in (4.50),

 y1t2 = Ax1t2 + B = -
4

X0
x1t2 + 1.

(a)

x(t)

t

X0

�T0 T0 2T00

(b)

y(t)

t�T0 T0 2T00

1

�3

Figure 4.23  Sawtooth wave.
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We can check this relation by testing it for several values of x1t2. Then, from (4.52),

 C0y = AC0x + B = ¢ -
4

X0
≤  

X0

2
+ 1 = -1

and

 Cky = ACkx = ¢-
4

X0
≤ X0

2pk
 ejp>2 =

2
pk

 e-jp>2, k ≠ 0.

Note that the value C0y can be checked by inspection, from the symmetry of the signal. ■

time transformations

Next, we investigate the effects on the Fourier coefficients of certain time transfor-
mations. In this section, we use the symbol t to represent time for the original signal 
such as those shown in Table 4.3. We reserve t to represent time for the transformed 
signal. Hence, the original signal is denoted as x1t2 and the transformed signal as 
y1t2. From (2.6), the general time transformation is

 t = at + b, (4.53)

where a and b are constants. Then,

 y1t2 = x1at + b2. (4.54)

This general transformation is considered in Problem 4.28; here, we consider only 
the two cases of a = -1, b = 0 and a = 1, b = - t0.

For a = -1 and b = 0, we have y1t2 = x1- t2, or time reversal. Then

  y1t2   = a
∞

k = - ∞
Ckye

jkv0t = x1- t2 

    = a
∞

k = - ∞
Ckxe

-jkv0t.  (4.55)

To express this series in the standard form, we replace k with -k to obtain

 y1t2 = a
∞

k = - ∞
C-kxe

jkv0t = a
∞

k = - ∞
Ckx

* ejkv0t, (4.56)

since C-k = Ck
*. Hence, for time reversal, only the angles of the Fourier coefficients 

are affected, with

 Cky = Ckx
* . (4.57)
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The case of a = 1 and b = - t0 in (4.54) results in a time shift. A time delay 
results for t0 7 0, and a time advance results for t0 6 0. Now,

  y1t2 = x1t - t02 = x1t2 2
t = t - t0

= a
∞

k = - ∞
Ckxe

jkv0t 2
t = t - t0

 

  = a
∞

k = - ∞
Ckxe

jkv01t - t02 = a
∞

k = - ∞
1Ckxe

-jkv0t02ejkv0t.  (4.58)

Hence, the effect of a time delay of t0 on the Fourier coefficients is given by

 Cky = Ckxe
-jkv0t0. (4.59)

The effect of a time shift is to change the angles of the Fourier coefficients. This 
result is expected, since time shifting a sinusoid affects only its phase.

The effects on Fourier coefficients of amplitude and time transformations are 
listed in Table 4.8. In this table, the Fourier coefficients Ckx are known and Cky are 
the coefficients of the transformed signal. An example is given now.

 exAmple 4.11 Amplitude and time transformations for a Fourier series

We again consider the sawtooth waveform of Example 4.10 and Figure 4.23. Hence,

 x1t2 =
X0

2
+ a

∞

k = - ∞
k ≠ 0

X0

2pk
eip>2 ejkv0t.

We first ignore the amplitude transformation and consider the signal y1t2 in Figure 4.23(b) to 
be time reversed to yield y11t2 = x1- t2; thus, from Table 4.8,

 Cky1 = Ckx
* =

X0

2pk
 e-jp>2, k ≠ 0.

For k = 0, C0y1 = C0x = X0>2. The amplitude scaling of y11t2 is expressed as

 y1t2 =
4

X0
 y11t2 - 3 = Ay11t2 + B.

Table 4.8  Amplitude and Time Transformations

Amplitude y1t2 = Ax1t2 + B

C0y = AC0x + B

Cky = ACkx, k ≠ 0

Time t = - t 1 Cky = Ckx
*

t = t - t0 1 Cky = Ckxe
-jkv0t0
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We can verify this result by testing the signal at several different values of time. Then, from 
Table 4.8,

 C0y = AC0y1 + B = ¢ 4
X0

≤ 
X0

2
- 3 = -1

and

 Cky = ACky1 =
4

X0
 

X0

2pk
 e-jp>2 =

2
pk

 e-jp>2, k ≠ 0.

These results check those of Example 4.10, where these coefficients were calculated using 
only an amplitude-reversal approach. ■

In this section, we consider amplitude and time transformations of periodic 
signals, so as to extend the usefulness of Table 4.3. A second procedure for ex-
tending the usefulness of the table is stated in Section 4.4; the Fourier series of 
a sum of periodic signals is equal to the sum of the Fourier series of the signals, 
provided that the sum is periodic. If the sum is not periodic, it does not have a 
Fourier series.

SummAry

In this chapter, we introduce the Fourier series, which is a representation of a peri-
odic signal by an infinite sum of harmonically related sinusoids. The Fourier series 
is presented in three forms: the exponential form, the combined trigonometric form, 
and the trigonometric form.

Several properties of the Fourier series are discussed. The Fourier series was 
introduced using the property that the Fourier series minimizes the mean-square 
error between a periodic function and its series.

The Fourier series of seven periodic functions that occur in engineering prac-
tice are given in Table 4.3. Procedures to expand the usefulness of this table are ap-
plied. These procedures include the independent variable transformations and the 
amplitude transformations discussed in Chapter 2.

Frequency spectra give graphical representations of Fourier series. The spec-
tra are generated by plotting the coefficients of either the exponential form or the 
combined trigonometric form of the Fourier series versus frequency. The plots for 
the combined trigonometric form give the amplitudes of the sinusoidal harmonic 
components directly.

As the final topic, the analysis of linear time-invariant systems with periodic 
inputs is presented. The basis of this analysis is the sinusoidal steady-state response 
of a system. The system response is the sum of the responses for each harmonic, by 
superposition. This analysis procedure yields the frequency spectrum of the output 
signal; however, it does not give a good indication of a plot of this signal as a func-
tion of time. See Table 4.9.



Chap. 4    Problems 191

proBlemS

Section 4.2

 4.1. For a real periodic signal x1t2, the trigonometric form of its Fourier series is given by

 x1t2 = A0 + a
∞

k = 1
[Ak cos kvot + Bk sin kvot].

  Express the exponential form Fourier coefficients Ck in terms of Ak and Bk.

 4.2. Consider the Fourier series for the periodic functions given.

(i) x1t2 =  sin 4t +  cos 8t + 7 +  cos 16t

(ii) x1t2 =  cos2 t

(iii) x1t2 = 3 + 5 cos t + 6 sin 12t + p/42
(iv) x1t2 = -10 + 3 cos 1t2 + 7 sin 14.5t2
(v) x1t2 = 110 cos 1377t2
(vi) x1t2 = 41cos 2t21sin 4t2
(vii) x1t2 = 4 sin214t2 +  cos 116t2

 (a) Find the Fourier coefficients of the exponential form for each signal.
 (b)  Find the Fourier coefficients of the combined trigonometric form for each 

signal.

Table 4.9  Key Equations of Chapter 4

equation title equation number equation

Exponential form of Fourier series (4.11) x1t2 = a
∞

k = - ∞
Ckejkv0t; Ck = C-k

*

Combined trigonometric form of  
 Fourier series

(4.13) x1t2 = C0 + a
∞

k = 1
2 � Ck � cos1kv0t + uk2

Trigonometric form of Fourier series (4.17)  x1t2 = A0 + a
∞

k = 1
[Akcos kv0t + Bk sin kv0t]

Relation of different forms of Fourier 
 coefficients

(4.18) 2Ck = Ak - jBk; Ck = � Ck � ejuk; C0 = A0

Fourier series coefficients formula (4.23) Ck =
1
T0 LT0

x1t2e-jkv0t dt

Sinc function (4.29) sinc x =
 sin x

x

Steady-state output expressed as  
 Fourier series

(4.38) x1t2 = a
∞

k = - ∞
Ckxe

jkv0t S yss1t2 = a
∞

k = - ∞
H1jkv02Ckxe

jkv0t

Fourier coefficients of output signal (4.39)
yss1t2 = a

∞

k = - ∞
Ckye

jkv0t, Cky = H1jkv02Ckx
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 4.3. (a) Determine whether the functions given can be represented by a Fourier series.
 (i) x1t2 =  cos 13t2  +   sin 15t2
 (ii) x1t2 =  cos 1t2 + sin 1pt2
 (iii) x1t2 =  cos 12t2 + sin 14t2 + e j8t

 (iv) x1t2 = 2 cos 14t + 30°2 - 5 cos 16t - 45°2
 (v) x1t2 = 0 6 cos 14pt2 0

(b) For those signals in Part (a) that can be represented by a Fourier series, find the 
coefficients of all harmonics, expressed in exponential form.

 4.4. This problem will help illustrate the orthogonality of exponentials. Calculate the fol-
lowing integrals:

(a) L
2p

0
 sin21t2dt

(b) L
2p

0
 sin212t2dt

(c) L
2p

0
 sin 1t2 sin 12t2dt

(d) Explain how the results of Parts (a), (b), and (c) illustrate the orthogonality of 
exponentials.

 4.5. (a)  Find all integer values of m and n such that  cos mv0t and  cos nv0t are orthogonal 
over the range T0, where v0 = 2p/T0.

(b) Find all integer values of m and n such that  cos mv0t and sin nv0t are orthogonal 
over the range T0.

(c) Find all integer values of m and n such that  sin mv0t and  sin nv0t are orthogonal 
over the range T0.

 4.6. Use (4.23) to calculate the Fourier coefficients for exponential form for the signals in 
Figure P4.6. Evaluate C0 for each waveform, and verify these values directly from the 
waveform; L’Hôpital’s rule is useful in some cases.

 4.7. Use (4.23) to find the Fourier coefficients for the exponential form for the signals of 
Figure P4.7.

 4.8. Consider the waveforms xc1t2 and xd1t2 in Figure P4.6. Let the sum of these signals be 
xs1t2. Then xs1t2 is the same waveform of Example 4.2, except for the average value. 
Show that the Fourier coefficients of xs1t2 are equal to those of x1t2 in Example 4.2, 
except for the average value.

 4.9. A signal has half-wave symmetry if x1t - T0/22 = -x1t2. For example,  sin  v0t has 
half-wave symmetry, as does the triangular wave of Figure P4.7(a). Show that a signal 
with half-wave symmetry has no even harmonics; that is, Ck = 0, k = 0,  2,  4,  6, c.

 4.10. Given the periodic signal x1t2 = a
∞

n = - ∞
n odd

[u1t - 2n2 - u1t - 2n - 12]

(a) Find its fundamental frequency.
(b) Find the Fourier coefficients of the exponential form.
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(c)
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Section 4.3

 4.11. Find the combined trigonometric form of the Fourier series for the following signals in 
Table 4.3:
(a) Square wave
(b) Sawtooth wave
(c) Triangular wave
(d) Rectangular wave
(e) Full-wave rectified wave
(f) Half-wave rectified wave
(g) Impulse train

 4.12. Use (4.23) and the integral tables in Appendix A to verify the Fourier coefficients for 
the following signals in Table 4.3:
(a) Square wave
(b) Sawtooth wave
(c) Triangular wave
(d) Rectangular wave
(e) Full-wave rectified wave
(f) Half-wave rectified wave
(g) Impulse train

Verify each preceding result, using the symbolic mathematics of MATLAB. 
Simplify each expression to agree with Table 4.3.

(h) Use the results of Parts (a) and (b) to show that all the Fourier coefficients of x1t2 
in Part (c) are zero except for C0 = A.

 4.13. Use Table 4.3 to calculate Fourier coefficients for exponential form for the signals in 
Figure P4.7.

 4.14. (a)  Use Table 4.3 to find the exponential form of the Fourier series of the impulse 
train in Figure P4.14. The magnitude of the weight of each impulse function is 
unity, with the signs of the weights alternating.

(b) Verify the results of Part (a) by calculating the Fourier coefficients using (4.23).

 4.15. (a) Sketch the frequency spectrum for the square wave of Table 4.3, for X0 = 10.
(b) Repeat Part (a) for the sawtooth wave.
(c) Repeat Part (a) for the triangular wave.
(d) Repeat Part (a) for the full-wave rectified signal.
(e) Repeat Part (a) for the half-wave rectified signal.
(f) Repeat Part (a) for the rectangular wave.
(g) Repeat Part (a) for the impulse train.

 4.16. (a)  Sketch the frequency spectrum for the signal of Figure P4.6(a), showing the dc 
component and the first four harmonics.

(b) Repeat Part (a) for the signal of Figure P4.6(b).
(c) Repeat Part (a) for the signal of Figure P4.6(c).
(d) Repeat Part (a) for the signal of Figure P4.6(d).
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(e) Repeat Part (a) for the signal of Figure P4.6(e).
(f) Repeat Part (a) for the signal of Figure P4.6(f).

 4.17. (a)  Sketch the frequency spectrum for the signal of Figure P4.7(a), showing the  
dc component and the first four harmonics.

(b) Repeat Part (a) for the signal of Figure P4.7(b).
(c) Repeat Part (a) for the signal of Figure P4.7(c).

 4.18. Given v0 = p, C0 = 2, C1 = 1, C3 =  12 e
jp
4 , and C-3 =  12 e

-jp
4 , find the signal x1t2 with 

these Fourier coefficients. This is an example of signal synthesis.

 4.19. Find the Fourier coefficients of x1t2 = Σk = - ∞ , k even
∞ [u1t - k2 - u1t - 1 - k2].

Section 4.4

 4.20. Consider the signals in Figure P4.7. For k sufficiently large, the Fourier coefficient of 
the kth harmonic decreases in magnitude at the rate of 1/km. Use the properties in 
Section 4.4 to find m for the signals shown in the following figures:

(a) Figure P4.7(a)
(b) Figure P4.7(b)
(c) Figure P4.7(c)
(d) Figure P4.7(d)
(e) Figure P4.7(e)
(f) Figure P4.7(f)

  Check your results using Table 4.3.

Section 4.5

 4.21. Consider the system of Figure P4.21, with

 H1s2 =
10

s + 5
 .

H(s)
y(t)x(t)

Figure P4.21  
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Figure P4.14  

(a) The input x1t2 is the square wave of Table 4.3, with X0 = 20 and T0 = 3. For the 
output y1t2, find the numerical values for the dc component and the first, second, 
and third harmonics of the combined trigonometric form of the Fourier series.
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(b) Verify the results in Part (a) using MATLAB.
(c) Repeat Parts (a) and (b) for the sawtooth wave of Table 4.3.
(d) Repeat Parts (a) and (b) for the triangular wave of Table 4.3.
(e) Repeat Parts (a) and (b) for the full-wave rectified signal of Table 4.3.
(f) Repeat Parts (a) and (b) for the half-wave rectified signal of Table 4.3.
(g) Repeat Parts (a) and (b) for the rectangular wave of Table 4.3. Let the width of the 

pulse be unity, that is, w = 1.
(h) Repeat Parts (a) and (b) for the impulse train of Table 4.3.

 4.22. Consider the system of Figure P4.21, with

 H1s2 =
12

s + 6
 .

(a) The sawtooth wave of Table 4.3 is applied to this system, with T0 = 2  s. Find the 
ratio of the amplitude of the first harmonic in the output signal to the amplitude 
of the first harmonic in the input without solving for the amplitude of the first har-
monic in the output.

(b) Without solving for the first and second harmonics in the output signal, find the 
ratio of the amplitudes of the first and second harmonics.

(c) Verify the results using MATLAB.
(d) Repeat Parts (a), (b), and (c) with T0 = 0.2  s.
(e) Repeat Parts (a), (b), and (c) with T0 = 20  s.
(f) Comment on the differences in the results of Parts (a), (b), and (c) and correspond-

ing parts of (d), and (e).

 4.23. Consider the RC circuit of Figure P4.23:
(a) The square wave of Table 4.3 is applied to the input of this circuit, with T0 = 2p  s 

and X0 = 10 V. Solve for the frequency spectrum of the output signal. Give nu-
merical values for the amplitudes and phases of the first three nonzero sinusoidal 
harmonics.

(b) Verify the results in Part (a) using MATLAB.
(c) Let the input of the circuit be as in Part (a), but with a dc value of 20 V added to the 

square wave. Solve for the frequency spectrum of the output signal. Give numeri-
cal values for the dc component and the first three nonzero sinusoidal harmonics.

(d) Is the circuit low pass? Why?
(e) The period of the square wave is changed to T0 = 2p. State the effects of this 

change on the answers to Parts (a) and (c), without solving these parts again. Give 
the reasons for your answers.

2 �

Input

�

�

�

�

Output0.25 F

Figure P4.23  
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 4.24. Consider the RL circuit of Figure P4.24.

2 �

Input

�

�

�

�

Output0.25 H

Figure P4.24  

h(t)
y(t)x(t)

Figure P4.25  

(a) The square wave of Table 4.3 is applied to the input of this circuit, with T0 =  p/2 s 
and X0 = 10 V. Solve for the frequency spectrum of the output signal. Give 
 numerical values for the amplitudes and phases of the first three nonzero sinusoi-
dal harmonics.

(b) Verify the results in Part (a) using MATLAB.
(c) Let the input of the circuit be as in Part (a), but with a dc value of 20 V added to the 

square wave. Solve for the frequency spectrum of the output signal. Give numeri-
cal values for the dc component and the first three nonzero sinusoidal harmonics.

(d) Is the circuit low pass? Why?
(e) The period of the square wave is changed to T0 = 2p. State the effects of this 

change on the answers to Parts (a) and (c), without solving these parts again. Give 
the reasons for your answers.

 4.25. Consider the system of Figure P4.25, with h1t2 = e-atu1t2.

(a) For what values of a will the system be BIBO stable?
(b) Assume that the system is BIBO stable. The input signal is x1t2 =  sin t +  cos 3t. 

Find y1t2.

 4.26. Consider the system of Figure P4.25 with h1t2 = ae-atu1t2, a 7 0. This is a low-pass 
system.
(a) The input is x1t2 =  sin212t2. Find y1t2. Notice that the higher frequency compo-

nents are attenuated more than the lower frequency components.
(b) Repeat Part (a) with a = 2 and x1t2 = 10 + 5 cos 12t2 + 5 cos 18t2. Notice how 

much more the highest frequency component is attenuated relative to the lower 
frequency components.

 4.27. Consider the system of P4.25, with h1t2 = e-atu1t2, where a 7 0. The input signal is 
x1t2 = a ∞

k = 1cos1kt2. Find y1t2.

 4.28. The signal shown in Figure P4.28 is the input to an ideal bandpass filter with a gain of 
2 for 1125 … f … 1450 Hz and zero for all other frequencies. Write a mathematical 
expression for the frequency spectrum of the filter’s output signal.
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Section 4.6

 4.29. A periodic signal x1t2 is expressed as an exponential Fourier Series:

 x1t2 = a
∞

k = - ∞
Ckejkv0t.

  Show that the Fourier Series for xn1t2 = x1t - t02 is given by

 xn1t2 = a
∞

k = - ∞
Cn kejkv0t,

  in which

0Cn k 0 = 0Ck 0  and ∠Cn k = ∠Ck - kv0t0.

 4.30. Consider the general time transformation,

 y1t2 = x1at + b2.

  Show that the Fourier coefficients for the signaly1t2are given by

 Cky = eCkx e
jkw0b, a 7 0

[Ckx e
jkw0b]*, a 6 0

,

  where Ckx are the Fourier coefficients for x1t2.

 4.31. (a)  For the full-wave rectified signal in Table 4.3, prove that for y1t2 = x1- t2, the 
Fourier coefficients are unaffected.

(b) For the full-wave rectified signal in Table 4.3, find the Fourier coefficients for 
y1t2 = x1t - T0/22.

 4.32. Use Table 4.3 to find the Fourier coefficients for the exponential form for the signals of 
Figure P4.7.

 4.33. Consider the signals of Figures P4.7 (a) and (d).
(a) Change the period of xa1t2 to T0 = 0.2p. Use Table 4.3 to find the Fourier coeffi-

cients of the exponential form for this signal.
(b) Use Table 4.3 to find the Fourier coefficients of the exponential form for xd1t2.
(c) Consider the signal

 x1t2 = a1xa1t2 + b1xd1t - t2,

where xa1t2 is defined in Part (a). By inspection of Figures P4.7 (a) and (d), find 
a1, b1, and t such that x1t2 is constant for all time; that is, x1t2 = A, where A is a 
constant. In addition, evaluate A.

0�0.004 0.004 0.008

4
… …

g(t)

t Figure P4.28  
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 4.34. Let xa1t2 be the half-wave rectified signal in Table 4.3. Let xb1t2 be the same signal 
delayed by T0/2.
(a) Find the coefficients in the exponential form for xb1t2. Hint: Consider time delay.
(b) Show that the Fourier coefficients of the sum [xa1t2 + xb1t2] are those of the full-

wave rectified signal in Table 4.3.

 4.35. Find the Fourier series in complex exponential form for the signal shown in Figure P4.35.

f(t)

t0

1

1 2 3 4 5

2

�1

�1�2�3�4

�2
Figure P4.35  
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g(t)

t

Figure P4.36  

 4.36. Find the Fourier series in complex exponential form for the signal shown in Figure P4.36.
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The Fourier TransForm5

The Fourier transform is a method of representing mathematical models of signals 
and systems in the frequency domain. We begin to get a hint of this process as we 
represent periodic time-domain signals in terms of their harmonic frequency, compo-
nents, using the Fourier series. The Fourier transform is an extension of this concept.

Engineers use the Fourier transform to simplify the mathematical analysis of 
signals and systems and for explaining physical phenomena mathematically. It is 
widely used in the field of electrical engineering, especially in the study of electronic 
communication signals and systems. For this reason, every student of electrical 
 engineering should become familiar with the Fourier transform and its applications.

In this chapter, the Fourier transform is introduced in a way that will give 
each student an understanding of its mathematical basis and a glimpse at its utility 
in the analysis and design of linear signals and systems. The relationship between 
the Fourier transform and the Fourier series is presented with the intent to give the 
reader an intuitive feeling for the Fourier transform. Mathematical properties of the 
Fourier transform are presented with the emphasis on application of the properties 
rather than formal, mathematical proof.

 5.1 DeFiniTion oF The Fourier TransForm

We approach the definition of the Fourier transform by first considering the Fourier 
series, which is described in Chapter 4; there the Fourier series is defined, in the 
 exponential form, as

[eq(4.11)] f1t2 = a
∞

k = -∞
Ckejkv0t,

where

[eq(4.23)] Ck =
1
T0 LT0

f1t2e-jkv0tdt.
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In previous chapters, we denote a general, continuous-time signal as x1t2. It 
is important for engineers to be able to work with a variety of notations. Therefore, 
for a variation, in this chapter we denote the general signal as f1t2.

Previously, we considered how a periodic signal such as the one shown in 
Figure 5.1(a) can be represented by its harmonic components in a Fourier series. 
Now we consider the consequences of lengthening the period of the periodic signal, 
as shown in Figure 5.1(b) and (c). Note that, as indicated in Figure 5.1, the process 
we are considering is simply making the period longer and longer until finally the 
period becomes infinite and the waveform in Figure 5.1(c) is never repeated.

Consider the exponent of the exponential function contained in the integrand 
of (4.23). The quantity kv0 changes by an amount v0 as k is incremented. Let us 
define this incremental change in frequency as

 ∆v = 1k + 12v0 - kv0 = v0.

Because v0 = 2p/T0, the incremental change in frequency becomes smaller as T0, 
the period of the waveform, grows longer. In the limit as T0 approaches infinity, the 
frequency difference ∆v becomes the frequency differential dv:

 lim
T0S ∞

2p
T0

= dv.

Also, the quantity kv0 = 2pk>T0 approaches kdv as T0 becomes infinite. Since k 
is infinitely variable over integer values, the product kdv becomes the continuous 
frequency variable v. Now we can rewrite (4.23) as

  Ck∞ = lim
T0S ∞

1
2p

 
2p
T0 L

T0>2

-T0>2
f1t2e-1jk2p>T02t dt

0

(a)

f(t)

t

T
V

T1

0

(b)

f(t)

t

T
V

T2 � 4T1

(c)

f(t)

t

T

T0          �

Figure 5.1  Rectangular pulse trains.
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  =
1

2p
 JL ∞

- ∞
f1t2e-jvt dtR  dv.

The function in brackets in the preceding equation is defined as the Fourier transform 
and is written as

 f{ f1t2} = F1v2 = L
∞

- ∞
f1t2e-jvt dt. (5.1)

We can write Ck∞ = 11/2p2F1v2dv and, therefore, from (4.11),

 f1t2 = a
∞

k = -∞
 

1
2p

 F1v2dvejkv0t =
1

2p
 a

∞

k = -∞
F1v2ejkv0tdv.

Under these conditions, the summation becomes an integral, and the equation for 
f1t2 can be rewritten as

 f1t2 =
1

2pL
∞

- ∞
F1v2ejvt dv = F -1{F1v2}, (5.2)

where we use the relationship lim
T0S ∞

kv0 = v as before.

Equations (5.1) and (5.2) define the Fourier transform and the inverse Fourier 
transform, respectively:

[eq(5.1)] f{ f1t2} = F1v2 = L
∞

- ∞
f1t2e-jvt dt

and

[eq(5.2)] f -1{F1v2} = f1t2 =
1

2pL
∞

- ∞
F1v2ejvt dv.

Together, these equations are called a transform pair, and their relationship is often 
represented in mathematical notation as

f1t2 ·f F1v2.

 example 5.1 physical significance of the Fourier transform

To appreciate the physical significance of the derivation of the Fourier transform pair (5.1) 
and (5.2), we consider the rectangular pulse train of Figure 5.1. In Example 4.6, we consid-
ered the exponential Fourier series representation of the periodic signal

 f1t2 = a
∞

k = -∞
Ckejkv0 t = a

∞

k = -∞
 
T
T0

 V sinc ¢Tkv0

2
≤ejkv0t, (5.3)
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where sinc1x2 = sin1x2/x. The magnitude of each harmonic is seen to vary according to the 
sinc function as shown in Figure 5.2(a), in which T0Ck is plotted versus the frequency v. The 
reason for plotting T0Ck will become evident later.

Now consider the effect of increasing the period of the signal from T0 = T1 to 
T0 = T2 = 4T1. Because v0 = 2p/T0, the components of the spectrum become closer  together 
along the frequency axis as the period increases; therefore, ∆v = v0 decreases. This is illus-
trated in Figure 5.2(b).

(a)

(b)

(c)

T0Ck

TV

0 ��2   
T

�2   
T1

�0 �

T0Ck

TV

0 ��2   
T

�2   
T2

�0 �

TV

0 ��2   
T

Figure 5.2  Frequency spectra of rectangular pulse trains.
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As T0 S ∞ , the separation between the components becomes infinitesimally small; in 
other words, ∆v becomes dv. Therefore, the summation shown in (5.3) becomes an integra-
tion, and the frequency spectrum becomes a continuous curve.

The complex coefficient of each harmonic in the frequency spectrum of each signal is

 Ck =
T
T0

 V sinc¢Tkv0

2
≤.

The magnitude of each coefficient is inversely proportional to the period of the signal. As the 
period approaches infinity, the magnitude of each harmonic will approach zero; however, for 
each of the signals shown, the relative magnitude of the signal’s harmonics is determined by 
the sinc function. To illustrate this more clearly, Figure 5.2 actually shows plots of

 T0Ck = TV sinc¢Tkv0

2
≤

versus v (for v G 0) rather than the true frequency spectra of the signals.
Note in Figure 5.2 that the envelopes of all the plots are the same. The plots are 

changed only by the frequency components of the signals coming closer together as the peri-
ods increase. It should be noted that sinc1kTv/22 goes to zero only when the argument of the 
sinc function is an integer multiple of p. Therefore, the zero crossings of the envelopes occur 
at frequencies of v = 2pn/T, n = 1, 2, 3, c, regardless of the period T0. ■

The continuous frequency spectrum shown in Figure 5.3 is a graphical repre-
sentation of the Fourier transform of a single rectangular pulse of amplitude V and 
duration T (which can also be considered to be a periodic pulse of infinite period). 
The analytical expression for the Fourier transform is found by (5.1). The rectangu-
lar pulse can be described mathematically as the sum of two step functions:

 f1t2 = Vu1t + T/22 - Vu1t - T/22.

To simplify the integration in (5.1), we can recognize that f1t2 has a value of V 
 during the period -T/2 6 t 6 + T/2 and is zero for all other times. Then,

  F1v2 = L
+T/2

-T/2
Ve-jvt dt = VJ e-jvt

- jv
 2

-T/2

+T/2R
f(t) � V rect (t/T)

t0

V

T
2

�
T
2

F(  ) � TV sinc (T   /2)

0
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T

�
�2   

T
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T
�

�4   
T
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Figure 5.3  A rectangular pulse and its Fourier transform.
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  = V J e-jTv/2 - e+jTv/2

- jv
R =

TV
vT/2

 J ejTv/2 - e-jTv/2

j2
R

  = TVJ sin1Tv/22
Tv/2

R = TV sinc1Tv/22,

and we have derived our first Fourier transform:

 f{V [u1t + T/22 - u1t - T/22]} = TV sinc1Tv/22.

Note that the Fourier transform of the nonperiodic rectangular pulse has the 
same form as the envelope of the Fourier series representation of the periodic rect-
angular pulse train derived in Example 4.6 and Table 4.3.

The waveforms of Example 5.1, the rectangular pulse and the sinc function, 
play important roles in signal representation and analysis. Many important wave-
forms, such as a digital “1” or a radar pulse, can be approximated by a rectangular 
pulse similar to the one used in the example. Because of the frequent use of the 
rectangular pulse in the study of communication signals, it is often defined with a 
special function name, such as

 rect1t/T2 = [u1t + T/22 - u1t - T/22].

Therefore, in our table of transform pairs we will list

 rect1t/T2 ·f T sinc1Tv/22 (5.4)

as representing the transform pair shown in Figure 5.3.

 example 5.2 a maTlaB program to create a rectangular pulse and its Fourier Transform

MATLAB program for new example in Section 5.1
>> syms t w
% Create and plot x(t) = rect(t/2).
>> x=4*(heaviside(1–t)-heaviside(-1-t))
>> ezplot(x,-4,4)
% Compute and plot X(v), the Fourier transform of x(t) = rect(t/2).
>> X=fourier(x)
>> figure(2), ezplot(X,-6,6),hold ■

The transform pair (5.4) is valid even though we have not yet taken into con-
sideration the fact that some waveforms do not have Fourier transforms.

Sufficient conditions for the existence of the Fourier transform are similar to 
those given earlier for the Fourier series. They are the Dirichlet conditions:

 1. On any finite interval,
a. f1t2 is bounded;

 b. f1t2 has a finite number of maxima and minima; and
 c. f1t2 has a finite number of discontinuities.
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 2. f1t2 is absolutely integrable; that is,

 L
∞

- ∞
� f1t2 � dt 6  ∞ .

Note that these are sufficient conditions and not necessary conditions. Use of 
the Fourier transform for the analysis of many useful signals would be impossible if 
these were necessary conditions.

Any useful signal f1t2 that meets the condition

 E = L
∞

- ∞
� f1t2 � 2 dt 6  ∞  (5.5)

is absolutely integrable. In (5.5), E is the energy associated with the signal, which 
can be seen if we consider the signal f1t2 to be the voltage across a 1 - Ω resistor. 
The power delivered by f1t2 is then

 p1t2 = � f1t2 � 2/R = � f1t2 � 2,

and the integral of power over time is energy.
A signal that meets the condition of containing finite energy is known as 

an energy signal. Energy signals generally include nonperiodic signals that have a 
 finite time duration (such as the rectangular function, which is considered in several 
 examples) and signals that approach zero asymptotically so that f1t2 approaches 
zero as t approaches infinity.

An example of a mathematical function that does not have a Fourier trans-
form, because it does not meet the Dirichlet condition of absolute integrability, is 
f1t2 = e-t. However, the frequently encountered signal f1t2 = e-tu1t2 does meet 
the Dirichlet conditions and does have a Fourier transform.

We have mentioned the use of Fourier transforms of useful signals that do not 
meet the Dirichlet conditions. Many signals of interest to electrical engineers are 
not energy signals and are, therefore, not absolutely integrable. These include the 
unit step function, the signum function, and all periodic functions. It can be shown 
that signals that have infinite energy, but contain a finite amount of power, and 
meet the other Dirichlet conditions do have valid Fourier transforms [1–3].

A signal that meets the condition

 P = lim
TS ∞

 
1
T L

T/2

-T/2
� f1t2 � 2 dt 6  ∞  (5.6)

is called a power signal.
The power computed by (5.6) is called normalized average power. In electrical 

signal analysis, normalized power is defined as the power that a signal delivers to a 
1Ω load. By the normalized power definition, the signal f1t2 in (5.6) can represent 
either voltage or current as an electrical signal, because

 P = Vrms
2 = Irms

2  when R = 1Ω.
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The concept of normalized average power is often used to describe the 
strength of communication signals.

The step function, the signum function, and periodic functions that meet the 
Dirichlet conditions except for absolute integrability are power signals. We will see 
that the Fourier transforms that we derive for power signals contain impulse func-
tions in the frequency domain. This is a general characteristic of power signals and 
can serve to distinguish the frequency spectrum of a power signal from that of an 
energy signal.

For practical purposes, for the signals or functions we may wish to analyze as 
engineers, we can use the rule that if we can draw a picture of the waveform f1t2, 
then it has a Fourier transform. In fact, some waveforms that we cannot accurately 
draw pictures of (such as the impulse function) have Fourier transforms. All physi-
cally realizable signals have Fourier transforms.

The impulse function, in fact, provides a building block for several of the more 
important transform pairs. Consider the waveform

 f1t2 = Ad1t - t02,

which represents an impulse function of weight A that is nonzero only at time t = t0, 
as illustrated in Figure 5.4(a). (See Section 2.4.) The Fourier transform of this wave-
form is

 F1v2 = f {Ad1t - t02} = L
∞

- ∞
Ad1t - t02e-jvt dt.

Recall the sifting property of the impulse function described in (2.41), namely, that

 L
∞

- ∞
f1t2d1t - t02dt = f1t02,

(a)

f(t) � A   (t � t0)�

0 t0 t

A

�

��

�

�F(  ) � Ae�j   t0� �F(  )� � A�

�

�   
t0
�

t0
�

(b)

A

F(  ) � �   t0�          �

Figure 5.4  An impulse function and its frequency spectra.
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for f1t2 continuous at t = t0. Using this property of the impulse function to evaluate 
the Fourier transform integral, we find that

 f{Ad1t - t02} = Ae-jvt0. (5.7)

This transform pair is shown in Figure 5.4, where it can be seen that F1v2 has a 
constant magnitude, A, at all frequencies and a phase angle that is a linear function 
of frequency with a slope of - t0. The sawtooth look of the phase plot is a result of 
the phase angle being plotted modulo 2p (i.e., -vt0 = -vt0 + 2pn for any integer 
value of n).

A special case of the impulse function considered previously is the unit  impulse 
function occurring at t = 0:

 f1t2 = d1t2.

From (5.7), with A = 1 and t0 = 0, it is seen that

 d1t2 ·f 1. (5.8)

While we are dealing with the impulse function, let’s consider the case of an 
impulse function in the frequency domain. We have

 F1v2 = d1v -  v02,

which is defined in the same way as (2.40) d1t2 � t = v. Therefore, d1v2 has the same 
properties as described for d1t2 in Section 2.4:

  d1v -  v02 = eundefined, v = v0

0, v ≠ v0
,

  L
∞

- ∞
 d1v -  v02dv = 1,

  F1v2d1v -  v02 = F1v02d1v -  v02,

  L
∞

- ∞
 F1v2d1v -  v02dv = F1v02, etc.

The inverse Fourier transform of this impulse function is found from (5.2):

 f1t2 = f-1{F1v2} = f-1{d1v -  v02} =
1

2pL
∞

- ∞
d1v -  v02ejvtdv.

After applying the sifting property of the impulse function, we have

 f1t2 = f-1{d1v -  v02} =
1

2p
 ejv0t,

which is recognized to be a complex phasor of constant magnitude that rotates in 
phase at a frequency of v0 rad/s.
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The Fourier transform pair

 e jv0 t ·f 2pd1v - v02 (5.9)

is illustrated in Figure 5.5, where the rotating phasor in the time domain is repre-
sented in Figure 5.5(a) by separate plots of magnitude and phase angle.

Equations (5.7), (5.8), and (5.9) provide three more transform pairs that can 
be placed in a Fourier transform table, along with the transform pair from (5.4), 
for future use. Additional transform pairs can often be developed more easily by 
using those already known. Before deriving any additional transform pairs for  
our table, however, we will consider some special properties of the Fourier 
transform.

 5.2 properTies oF The Fourier TransForm

The Fourier transform has several properties that can greatly simplify its use in 
 signal and system analysis. Table 5.1 gives a listing of properties of the Fourier 
transform that are commonly used by engineers. Selected properties are explained 
in this section.

The Fourier transform properties are usually stated here with examples 
of their use, but without further proof. Proofs of selected properties are given 
as problems at the end of this chapter. References 3 through 9 are recom-
mended for those who wish to study the formal mathematical proofs of any or all 
properties.
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�f(t) �
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�

Figure 5.5  Time-domain plots and frequency spectra of ejv0 t.
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linearity

Because the Fourier transform (5.1) is an integral of f1t2 and its inverse (5.2) is an 
integral of F1v2, and because integration is a linear operation, it can be reasoned 
that the Fourier transform is a linear operation. The linearity property of the Fourier 
transform states that if we are given the transform pairs

 f11t2 ·f F11v2 and f21t2 ·f F21v2,

then

 [af11t2 + bf21t2] ·f [aF11v2 + bF21v2], (5.10)

where a and b are constants. In words, the principle of superposition applies to the 
Fourier transform.

 example 5.3 The linearity property of the Fourier transform

We can make use of the property of linearity to find the Fourier transforms of some types of 
waveforms. For example, consider

 f1t2 = B cos v0 t.

Table 5.1  Fourier Transform Properties

operation Time Function Fourier Transform

Linearity af11t2 + bf21t2 aF11v2 + bF21v2
Time shift f1t - t02 F1v2e-jvt0

Time reversal f1- t2 F1-v2

Time scaling f1at2 1
� a �

 F ¢v
a
≤

Time transformation f1at - t02
1

� a �
 F ¢v

a
≤e - jvt0 >a

Duality F1t2 2pf1-v2
Frequency shift f1t2ejv0 t F1v-v02
Convolution f11t2*f21t2 F11v2F21v2

Modulation (Multiplication) f11t2f21t2 1
2p

F11v2*F21v2

Integration L
t

- ∞
f1t2dt

1
jv

F1v2 + pF102d1v2

Differentiation in time dn[f1t2]

dtn

1jv2nF1v2

Differentiation in Frequency 1- jt2nf1t2 dn[F1v2]

dvn

Symmetry f1t2 real F1-v2 = F *1v2
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Using Euler’s relation,

 cos a =
eja + e-ja

2
 ,

we can rewrite the expression for f1t2 as

 f1t2 =
B
2

 [ejv0 t + e-jv0 t ] =
B
2

 ejv0 t +
B
2

 e-jv0 t.

Now we recognize that f1t2 is a linear combination of two rotating phasors. Equation (5.9) 
provides the Fourier transform pair for a rotating phasor; therefore, we use (5.9) and the 
property of linearity to find that

  f{B cos v0t} =
B
2

 F {e jv0t} +
B
2

 F {e-jv0t}

  = pBd1v - v02 + pBd1v + v02,

or

 Bcos v0t ·f
pB[d1v - v02 + d1v + v02], (5.11)

which adds another entry to our list of Fourier transform pairs. ■

Time scaling

The time-scaling property provides that if

f1t2 ·f F1v2,

then, for a constant scaling factor a,

 f1at2 ·f 1
� a �

 F av
a
b . (5.12)

We prove this by considering the defining equation (5.1) for the Fourier transform 
with the appropriate substitution of variables:

 f { f1at2} = L
∞

- ∞
f1at2e-jvt dt.

If the substitution t = at is made, with a 7 0, then dt = a dt and the equation can 
be rewritten as

 f { f1t2} =
1
a L

∞

- ∞
f1t2e-j1v/a2t dt.
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Comparison of this result with (5.1) yields

 f { f1at2} =
1
a

 F1v/a2.

The absolute value sign on the scaling factor, a, allows (5.12) to be applicable when 
a has either positive or negative values. (See Problem 5.13.)

 example 5.4 The time-scaling property of the Fourier transform

We now find the Fourier transform of the rectangular waveform

g1t2 = rect12t/T12.

From the result of Example 5.1,

[eq(5.4)] V rect 1t/T2 ·f  TV sinc 1Tv/22,

it is seen that g1t2 is simply the particular case where T = T1, the time@scaling factor a = 2, 
and V = 1, as shown in Figure 5.6(a). Applying the time-scaling property to the transform 
pair obtained in (5.4) results in

 g1t2 = f12t2,

where

 f1t2 = rect 1t/T12.
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Figure 5.6  Rectangular pulses and their frequency spectra.



214 The Fourier Transform    Chap. 5

Therefore, from (5.12),

 G1v2 =
1
2

 F1v/22 =
T1

2
 sinc ¢vT1

4
≤.

This result is illustrated in Figure 5.6(b).
The following MATLAB program illustrates the duration–bandwidth relationship:

% This program displays the relationship of the magnitude frequency 
spectra of two
% rectangular pulses to illustrate the time-scaling property
syms t w
% Create a rectangular pulse with amplitude and pulse-width = l.
T = 0.5;
xl = (heaviside (T-t)-heaviside(-T-t));
% Plot the rectangular pulse, xl(t).
figure(l), ezplot(xl, [-3,3]), grid, title('xl = rect (t/l)')
%
% Create and plot a rectangular pulse with amplitude = l and pulse-
% width = 0.2.
T = 0.l
x2 = (heaviside(T-t)-heaviside(-T-t));
figure (2), ezplot (x2, [-1,1]), grid, title ('x2 = rect (t/0.2)')
%
% Compute and plot the Fourier transforms of the two rectangular pulses.
Xl = fourier(xl);
X2 = fourier(x2);
ezplot (Xl,-20,20), grid, title ('Xl = F (xl)')
ezplot (X2,-100,100), grid, title ('X2 = F (x2)') ■

Example 5.4 and the waveforms shown in Figure 5.6 give insight into an impor-
tant physical relationship between the time domain and the frequency domain, which 
is implied by the time-scaling property. Notice how the frequency spectrum of the 
signal spreads as the time-domain waveform is compressed. This implies that a pulse 
with a short time duration contains frequency components with significant magnitudes 
over a wider range of frequencies than a pulse with longer time duration does. In the 
study of communication systems, this reciprocal relationship between time-domain 
waveforms and their frequency spectra is an important consideration. This is known 
as the duration-bandwidth relationship and is discussed in greater detail in Chapter 6.

Time shifting

The property of time shifting previously appeared in the Fourier transform of the 
impulse function (5.7) derived in Section 5.1, although it was not recognized at that 
time. This property is stated mathematically as

 f1t - t02 ·f F1v2e-jvt0, (5.13)

where the symbol t0 represents the amount of shift in time.
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 example 5.5 The time-shifting property of the Fourier transform

We now find the Fourier transform of the impulse function, which occurs at time zero. 
From (5.8),

 f{d1t2} = L
∞

- ∞
d1t2e-jvtdt = e-jvt 2

t = 0
= 1.

If the impulse function is shifted in time so that it occurs at time t0 instead of at t = 0, we see 
from the time-shifting property (5.13) that

 f{d1t - t02} = 112e-jvt0 = e-jvt0,

which is recognized as the same result obtained in (5.7). ■

 example 5.6 Fourier transform of a time-delayed sinusoidal signal

Consider the time-shifted cosine wave of frequency v = 200p and a delay of 1.25 ms in its 
propagation:

 x1t2 = 10 cos [200p1t - 1.25 * 10-32].

This signal can be viewed as a phase-shifted cosine wave where the amount of phase shift is 
p/4 radians:

 x1t2 = 10 cos1200pt - p/42.

Using the linearity and time-shifting property, we find the Fourier transform of this delayed 
cosine wave:

 f{x1t2} = X1v2 = 10 f {cos 1200pt2}e-j.00125v

  = 10p[d1v - 200p2 + d1v + 200p2]e-j.00125v

  = 10p[d1v - 200p2e-jp/4 + d1v + 200p2ejp/4].

The rotating phasor, e-j.00125v, is reduced to the two fixed phasors shown in the final equation, 
because the frequency spectrum has zero magnitude except at v = 200p and v = -200p. 
Recall, from Table 2.3, that

 F1v2d1v - v02 = F1v02d1v - v02.

Notice that the phase shift of -p/4 radians, which is the result of the 1.25-ms delay in the 
propagation of the cosine wave, is shown explicitly in the frequency spectrum. ■

Time reversal

The time reversal property is derived directly from the time scaling property by let-
ting a = -1:

 f1- t2 =
1

� -1 �
 F a v

-1
b = F1-v2. (5.14)
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 example 5.7 Fourier transform of a time-reversed function

Consider the time-shifted impulse function,

 g1t2 = d1- t - t02.

From Example 5.6 it is seen that if f1t2 = d1t - t02, then F1v2 = e-jvt0. It is also seen that

 g1t2 = f1- t2.

Therefore the time reversal property can be applied to find

 G1v2 = ejvt0. ■

Time Transformation

The properties of time scaling and time shifting can be combined into a more general 
property of time transformation. The concept of the time-transformation property 
was introduced in Section 2.2, and for the Fourier series in Section 4.6.

Let

 t = at - t0 ,

where a is a scaling factor and t0 is a time shift. Application of the time-scaling prop-
erty (5.12) gives

 f1at2 ·f 1
� a �

 F¢v
a
≤.

Application of the time-shift property (5.13) to this time-scaled function gives 
us the time-transformation property:

 f1at - t02 ·f 1
� a �

 F ¢v
a
≤e-jt01v/a2. (5.15)

 example 5.8 The time-transformation property of the Fourier transform

Consider the rectangular pulse shown in Figure 5.7(a). We will find the Fourier transform 
of this function by using a known Fourier transform and the time-transformation property. 
Given the rectangular pulse of Figure 5.7(b), we easily determine the Fourier transform from 
(5.4) to be

 F1v2 = sinc1v/22.

The magnitude and phase F1v2 are plotted separately in Figure 5.7(c). From Figure 5.7(a) 
and (b), we write

 g1t2 = 3 rect [1t - 42/2] = 3f10.5t - 22.



Sec. 5.2    Properties of the Fourier Transform 217

Then, using the time-transformation property (5.15) with a = 0.5 and t0 = 2 and the linearity 
property to account for the magnitude scaling, we can write

 G1v2 = 6 sinc1v2e-j4v.

The magnitude and phase plots of G1v2 are shown in Figure 5.7(d) for comparison with the 
plots of F1v2. Note the effect of the time shift on the phase of G1v2. The step changes of p 
radians in the phase occur because of the changes in the algebraic sign of the sinc function. ■

For signals such as G1v2 in Example 5.8 that have a phase angle that changes 
continuously with frequency, it is usually desirable to plot the magnitude and phase 
of the Fourier transform separately. These plots simplify the sketch and display the 
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information in a way that is easier to interpret. These separate plots are called the 
magnitude spectrum and phase spectrum, respectively, of the signal.

Duality

The symmetry of the Fourier transformation and its inverse in the variables t and v 
can be seen by comparing (5.1) and (5.2):

[eq.(5.1)]  f{ f1t2} = F1v2 = L
∞

- ∞
f1t2e-jvt dt;

[eq.(5.2)]  f-1{F1v2} = f1t2 =
1

2pL
∞

- ∞
F1v2ejvtdv.

The duality property, which is sometimes known as the symmetry property, is stated as

 F1t2 ·f 2pf1-v2 when f1t2 ·f F1v2. (5.16)

This property states that if the mathematical function f1t2 has the Fourier trans-
form F1v2 and a function of time exists such that

 F1t2 = F1v2 2
v = t

,

then f{F1t2} = 2pf1-v2, where f1-v2 = f1t2 2
t = -v

.

 example 5.9 The duality property of the Fourier transform

We now find the inverse Fourier transform of the waveform shown in Figure 5.8(a), using the 
transform pair derived in Example 5.1. Figure 5.8(a) shows a rectangular waveform, but in 
the frequency domain rather than in the time domain.

Our task now is to find the time-domain waveform that has such a frequency spectrum. 
The waveform of Figure 5.8(a) can be described as

 F1v2 = A[u1v + b2 - u1v - b2],

or

 F1v2 = A rect1v/2b2.

Compare this waveform description with the transform pair (5.4):

 V rect1t/T2 ·f TV sinc1vT/22.

According to the duality property, we write

 TV sinc1Tt/22 ·f 2pV rect1-v/T2.
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Because the waveform is an even function of frequency—in other words, F1-v2 = F1v2—we 
can rewrite the equation that describes the waveform as

 2pf1-v2 = 2pA rect1v/2b2,

where we have substituted T = 2b and V = A. The duality property can be used with these 
values substituted into (5.4) to determine that

 F1t2 = 2b A sinc1bt2.

The transform pair

 
Ab

p
 sinc 1bt2 ·f A rect1v/2b2

is shown in Figures 5.8(b) and (a), respectively. ■

The duality property is demonstrated by the following MATLAB program:

% Duality Property Example
syms t w
x=4* (heaviside (1-t) -heaviside (-1-t))
X=fourier (x)
ezplot (x,-4,4),pause
ezplot (X,-7,7),pause
Y=(heaviside (l-w) -heaviside (-l-w))
y=ifourier (Y)
ezplot (Y,-4,4),pause
ezplot (y,-7,7)

The duality property can be quite useful for the derivation of new trans-
form pairs based on the knowledge of established transform pairs, as shown in 
Example 5.9.
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Figure 5.8  A rectangular pulse in the frequency domain.
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Convolution

The convolution property states that if

 f11t2 ·f F11v2 and f2 ·f F21v2,

then convolution of the time-domain waveforms has the effect of multiplying their 
frequency-domain counterparts. Thus,

 f11t2*f21t2 ·f F11v2F21v2, (5.17)

where

 f11t2*f21t2 = L
∞

- ∞
f11t2f21t - t2dt = L

∞

- ∞
f11t - t2f21t2dt.

Also, by applying the duality property to (5.17), it is shown that multiplication of 
time-domain waveforms has the effect of convolving their frequency-domain repre-
sentations. This is sometimes called the multiplication property,

 f11t2f21t2 ·f 1
2p  F11v2*F21v2, (5.18)

where

 F11v2*F21v2 = L
∞

- ∞
F11l2F21v - l2dl = L

∞

- ∞
F11v - l2F21l2dl.

Engineers make frequent use of the convolution property in analyzing the interac-
tion of signals and systems.

 example 5.10 The time-convolution property of the Fourier transform

Chapter 3 discusses the response of linear time-invariant systems to input signals. A block dia-
gram of a linear system is shown in Figure 5.9(a). If the output of the system in response to an 
impulse function at the input is described as h1t2, then h1t2 is called the impulse response of 
the system. The output of the system in response to any input signal can then be determined 
by convolution of the impulse response, h1t2, and the input signal, x1t2:

 y1t2 = x1t2*h1t2 = L
∞

- ∞
x1t2h1t - t2dt.

Using the convolution property of the Fourier transform, we can find the frequency spectrum 
of the output signal from

 Y1v2 = X1v2H1v2,



Sec. 5.2    Properties of the Fourier Transform 221

where

 h1t2 ·f
H1v2, x1t2 ·f X1v2, and y1t2 ·f Y1v2.

The function H1v2 is the system transfer function discussed in Section 4.5. A block diagram 
of the signal/system relationship in the frequency domain is shown in Figure 5.9(b). ■

The application described in Example 5.10 and other applications of the con-
volution property are explored more fully in Chapter 6.

Frequency shifting

The frequency shifting property is stated mathematically as

 x1t2ejv0t ·f X1v - v02. (5.19)

This property was demonstrated in the derivation of (5.9), without our having rec-
ognized it.

Also, by applying the duality property to (5.17), it is shown that multiplica-
tion of time-domain waveforms has the effect of convolving their frequency-domain 
representations. This is sometimes called the modulation property and sometimes 
called the multiplication property.

 example 5.11 The modulation property of the Fourier transform

Consider two signals such as

 g11t2 = 2 cos1200pt2   and  g21t2 = 5 cos11000pt2

that are multiplied to give

 g3 1t2 = g11t2g2 1t2 = 10 cos1200pt2cos11000pt2.

The modulation (multiplication) property can be applied to find

 G31v2 =
1

2p
 G11v2*G21v2.

x(t) y(t) � x(t) � h(t)
h(t)

(a)

(b)

H(  )�
X(  )� Y(  ) � X(  )H(  )� � �

Figure 5.9  A linear time-invariant system.
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Applying (5.11), we find

G11v2 = 2p[d1v - 200p2 + d1v + 200p2] and
G21v2 = 5p[d1v - 1000p2 + d1v + 1000p2].

Then

 G31v2 = 5p[d1v - 200p2 + d1v + 200p2]*[d1v - 1000p2 + d1v + 1000p2]

  = 5p c d1v - 200p2*d1v - 1000p2 + d1v + 200p2*d1v - 1000p2
+d1v - 200p2*d1v + 1000p2 + d1v + 200p2*d1v + 1000p2 d .

Each of the convolutions in the solution for G31v2 is of the general form

 d1v + v12*d1v + v22 = L
∞

- ∞
d1l + v12d1l - v - v22dl.

Because the second impulse function in the convolution integral is non-zero only when 
l = v + v2, we see that

d1v + v12*d1v + v22 = d1v + v1 + v22L
∞

- ∞
d1l - v - v22dl = d1v + v1 + v22.

We can apply this result for each of the convolutions involved in computing G31v2 to get

 G31v2 = 5p[d1v - 800p2 + d1v - 800p2 + d1v - 1200p2 + d1v - 1200p2].

Referring again to (5.11) we see that 

 g31t2 = 5 cos1800pt2 + 5 cos11200pt2. ■

 example 5.12 The frequency-shift property of the Fourier transform

In the generation of communication signals, often two signals such as

 g11t2 = 2 cos1200pt2 and g21t2 = 5 cos11000pt2

are multiplied together to give

 g31t2 = g11t2g21t2 = 10 cos1200pt2cos11000pt2.

We can use the frequency-shifting property to find the frequency spectrum of g31t2. We 
 rewrite the product waveform g31t2 by using Euler’s identity on the second cosine factor:

  g31t2 = 10 cos1200pt2 
e j 1000pt + e- j 1000pt

2

  = 5 cos1200pt2ej1000pt + 5 cos1200pt2e-j1000pt.
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The Fourier transform of this expression is found from the properties of linearity (5.10), 
 frequency shifting (5.19), and the transform of cos 1v0t2 from (5.11):

  G31v2 = 5p[d1v - 200p - 1000p2 + d1v + 200p - 1000p2]

   + 5p[d1v - 200p + 1000p2 + d1v + 200p + 1000p2].

In final form, we write

 G31v2 = 5p[d1v - 1200p2 + d1v - 800p2 + d1v + 800p2 + d1v + 1200p2].

The frequency spectra of g11t2, g21t2, and g31t2 are shown in Figure 5.10.
It is of interest to engineers that the inverse Fourier transform of G31v2 is

  g31t2 = f-1{5p[d1v - 1200p2 + d1v + 1200p2]}

  + f-1{5p[d1v - 800p2 + d1v + 800p2]}

  = 5 cos 1200pt + 5 cos 800pt.

The product of two sinusoidal signals has produced a sum of two sinusoidal signals. (This is 
also seen from trigonometric identities.) One has the frequency that is the sum of the fre-
quencies of the two original signals, whereas the other has the frequency that is the difference 
of the two original frequencies. This characteristic is often used in the process of generating 
signals for communication systems and in applications such as radar and sonar.
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These results are confirmed by the following MATLAB program:

% This MATLAB program finds the Fourier transform of the product
% of two sinusoidal signals using the symbolic math function 
% "fourier".
%
syms t
g1=2*cos(200*pi*t)
g2=5*cos(1000*pi*t)
% Multiply the two sinusoidal signals,'g3 = g1*g2='
g3=g1*g2
% Compute the Fourier transform,'G3=fourier(g3)'
G3=fourier(g3) ■

Time integration

If

 f1t2 ·f F1v2,

then

 g1t2 = L
t

- ∞
f1t2dt ·f F1v2

jv
+ pF102d1v2 = G1v2, (5.20)

where

 F102 = F1v2 `
v = 0

= L
∞

- ∞
f1t2dt,

from (5.1). If f1t2 has a nonzero time-averaged value (dc value), then F102 ≠ 0.
The time-integration property of the Fourier transform will now be proved. 

Consider the convolution of a generic waveform f1t2 with a unit step function:

 f1t2*u1t2 = L
∞

- ∞
f1t2u1t - t2dt.

The unit step function u1t - t2 has a value of zero for t 6 t and a value of 1 for 
t 7 t. This can be restated as

 u1t - t2 = e1, t 6 t
0, t 7 t

,

and, therefore,

 f1t2*u1t2 = L
t

- ∞
f1t2dt. (5.21)

The integration property yields

 L
t

- ∞
f1t2dt ·f F1v2

jv
+ pF102d1v2.
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The factor F(0) in the second term on the right follows from the sifting prop-
erty (2.42) of the impulse function.

 example 5.13 The time-integration property of the Fourier transform

Figure 5.1l(a) shows a linear system that consists of an integrator. As discussed in Section 1.2, this 
can be physically realized electronically by a combination of an operational amplifier, resistors, 
and capacitors. The input signal is a pair of rectangular pulses as shown in Figure 5.11(b). Using 
time-domain integration we can see that the output signal would be a triangular waveform, as 
shown in Figure 5.11(c). We wish to know the frequency spectrum of the output signal. We have 
not derived the Fourier transform of a triangular wave; however, we do know the Fourier trans-
form of a rectangular pulse such as is present at the input of the system. Using the properties of 
linearity and time shifting, we can write the input signal as

 x1t2 = A  rect c t + t1/2
t1

 d - A rect c t - t1/2
t1

 d

and

 y1t2 = L
t

- ∞
x1t2dt.

The Fourier transform of x1t2 is

  X1v2 = At1 sinc1t1v/22[e jvt1/2 - e-jvt1/2]
  = 2jAt1 sinc1t1v/22 sin1t1v/22
  = jvAt1

2 sinc1t1v/22 c sin1t1v/22
t1v/2

d
  = jvAt1

2 sinc21t1v/22.

t�t1

t1

0

�A

A

x(t)

(b)

�x(t)
y(t) � �   x(  ) d

��

t

� �

(·) dt

At1

�t1 t1 t

y(t) 

(a)

(c)

�
t1

� �4
t1

� �2
t1
�2

t1
�4

t1
�6

At2
1

Y(  )�

(d)

Figure 5.11  System and waveforms for Example 5.13.
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Next, we use the time-integration property to find

 Y1v2 =
1
jv

 X1v2 + pX102d1v2.

We determine that X102 = 0 by examination of x1t2. Therefore, the frequency spectrum of 
the output signal is given by

 Y1v2 = At1
2 sinc21t1v/22.

This frequency spectrum is sketched in Figure 5.11(d). ■

Triangular waveforms, such as the one shown in Figure 5.11(c), are sometimes 
generalized and named as functions. There is no universally accepted nomenclature 
for these triangular waveforms. We will define the triangular pulse as

 tri1t/T2 = µ 1 -
� t �
T

, � t � 6 T

0, � t � G T
.

Therefore, the triangular pulse shown in Figure 5.11(c) is written as At1 tri1t/t12.
Notice that the triangular pulse tri1t/T2 has a time duration of 2T seconds, in 

contrast to the rectangular pulse rect1t/T2 which has a time duration of T seconds. 
From the result of Example 5.13 we write another Fourier transform pair:

 tri1t/T2 ·f T sinc21T v/22. (5.22)

Time Differentiation

If

 f1t2 ·f F1v2,

then

 
d[ f1t2]

dt
 ·f jvF1v2. (5.23)

The differentiation property can be stated more generally for the nth derivative as

 
dn[ f1t2]

dtn ·f 1 jv2nF1v2. (5.24)

This property can be proven easily by differentiating both sides of  (5.2) with respect 
to time. This proof is assigned as Problem 5.4(e).

 example 5.14 Fourier transform of the signum function

We now find the Fourier transform of the signum function shown in Figure 5.12(a):

 f1t2 = sgn1t2.
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The derivation of F1v2 is simplified by means of the differentiation property. The time 
 derivative of sgn(t) is shown in Figure 5.12(b) and is given by

 
d[ f1t2]

dt
= 2d1t2.

Because d1t2 ·f 1 (5.8),

 jvF1v2 = 2.

1

0

0

2

�1

(a)

(b)

�F(  )��

F(  )�

�

�

(d)

(c)

t

t

0

0

�1 1

2

�
2

�
�
2

d[sgn(t)]
dt

df(t)
dt� � 2  (t)�

sgn(t) �
1, t � 0
0, t � 0
�1, t � 0

Figure 5.12  Finding the frequency spectrum  
of the signum function.
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From this result, it is determined that

 F1v2 =
2
jv

+ kd1v2,

where the term kd1v2 is nonzero only at v = 0 and accounts for the time-averaged value of 
f1t2. In the general case, this term must be included; otherwise, the time-derivative  operation 
implied by the expression jvF1v2 would cause a loss of this information about the time-
averaged value of f1t2. In this particular case, the time-averaged value of sgn1t2 is zero. 
Therefore, k = 0 in our expression for the Fourier transform of sgn1t2. This gives another 
pair for our Fourier transform table:

 sgn1t2 ·f 2
jv

. (5.25)

Figures 5.12(c) and (d) are sketches of the magnitude and phase frequency spectrum, respec-
tively, of the signum function. ■

 example 5.15 The time-differentiation property of the Fourier transform

The frequency spectrum of the signal shown in Figure 5.13(a) will be found. The fig-
ure shows a waveform w1t2  for which we have not previously determined a Fourier 
 transform. The differentiation property of the Fourier transform can be used to simplify 
the process. Figure 5.13(b) shows x1t2, the first derivative of w1t2  with respect to time. 
This waveform can be described as a set of three rectangular pulses; however, the prob-
lem can be simplified even further by taking a second derivative with respect to time to 
get y1t2, the result shown in Figure 5.13(c). An equation for this waveform can easily be 
written as

  y1t2 =
A

b - a
 d1t + b2 -

bA
a1b - a2  d1t + a2

   +
bA

a1b - a2  d1t - a2 -
A

1b - a2  d1t - b2,

and the Fourier transform found from Table 5.2:

  Y1v2 =
A

b - a
 ejvb -

A
b - a

 e-jvb

 -  
bA

a1b - a2  ejva +
bA

a1b - a2  e-jva.

Using Euler’s identity, we can rewrite this as

  Y1v2 =
j2A

b - a
 sin1bv2 -

j2bA

a1b - a2  sin1av2

  =
jv2Ab

b - a
 
sin1bv2

bv
-

jv2bA

b - a
 
sin1av2

av
 .
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Figure 5.13  A waveform, w1t2,  
and its derivatives.

Because x1t2 = L
t

- ∞
y1t2dt the time integration property yields

 Y1v2 = jvX1v2
or

 X1v2 =
1
jv

 Y1v2 + kd1v2, (5.26)
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Table 5.2  Fourier Transform Pairs

Time Domain signal Fourier Transform

f1t2 L
∞

- ∞
f1t2e-jvtdt

1
2pL

∞

- ∞
F1v2ejvtdv F1v2

d1t2 1

Ad1t - t02 Ae-jvt0

u1t2 pd1v2 +
1
jv

1 2pd1v2
K 2pKd1v2
sgn1t2 2

jv

ejv0 t 2pd1v - v02
cos v0t p[d1v - v02 + d1v + v02]

sin v0t
p

j
 [d1v - v02 - d1v + v02]

rect1t/T2 Tsinc 1vT/22

cos 1v0t2u1t2 p

2
 [d1v - v02 + d1v + v02] +

jv

v0
2 - v2

sin1v0t2u1t2 p

2j
 [d1v - v02 - d1v + v02] +

v0

v0
2 - v2

rect1t/T2cos1v0t2 T
2

 Jsinc ¢ 1v - v02T

2
≤ + sinc ¢ 1v + v02T

2
≤ R

b

p
 sinc1bt2 rect1v/2b2

tri1t/T2 T sinc21T v/22
 sinc21Tt/22 2p

T
 tri1v/T2

e-atu1t2, Re{a} 7 0 1
a + jv

te-atu1t2, Re{a} 7 0 ¢ 1
a + jv

≤2

tn - 1e-atu1t2, Re{a} 7 0 1n - 12!

1a + jv2n

e-a�t�, Re{a} 7 0 2a

a2 + v2

a
∞

n = -∞
g1t - nT02 a

∞

n = -∞
v0G1nv02d1v - nv02, v0 =

2p
T0

a
∞

n = -∞
g1t - nT02 = a

∞

k = -∞
Ckejkv0t 2p a

∞

n = - ∞
Cnd1v - nv02, v0 =

2p
T0

dT1t2 a
∞

k = -∞
v0d1v - kv02
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where, because the time-averaged value of x1t2 is seen by inspection to be zero, k = 0. Thus,

 X1v2 =
2Ab

b - a
 [sinc1bv2 -  sinc1av2].

Similarly,

 W1v2 =
1
jv

 X1v2 + kd1v2, (5.27)

where again, for x1t2 the time-average value is zero. Therefore, X102 = 0, and

  W1v2 =
2Ab

jv1a - b2  [sinc1av2 - sinc1bv2]

  =
2Ab

v1a - b2  [sinc1av2 - sinc1bv2]e-jp/2. ■

One must be careful (as we were) in using the time-differentiation property 
as in Example 5.15. Suppose that the waveform w1t2 were imposed on a nonzero 
dc level (time-averaged value). The time derivative of that waveform is exactly 
the same, as shown in Figure 5.13(b). Because no information about the time-
averaged value of w1t2 remains once the derivative is taken, the method used 
earlier would give erroneous results unless we were careful to account for the 
time-averaged value of the original function. This problem will be investigated 
further later.

The approach used in Example 5.15 suggests a method by which engineers 
can write an equation for an existing physical waveform by approximating it with 
straight-line segments. Information about the frequency spectrum of the waveform 
can then be determined by use of the Fourier transform and its properties.

Frequency Differentiation

The time-differentiation property given by (5.24) has a dual for the case of differen-
tiation in the frequency domain. If

 f1t2 ·f F1v2,

then

 1- jt2nf1t2 ·f dnF1v2
dvn . (5.28)

This is easily shown by differentiating both sides of the equation that defines the 
Fourier transform (5.1) with respect to v:

 
dF1v2

dv
= L

∞

-∞
[1- jt2f1t2]e-jvt dt.
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This equation then defines the Fourier transform pair

 1- jt2f1t2 ·f d[F1v2]

dv
.

This result is easily extended to yield (5.28).

symmetry

The symmetry property of the Fourier transform applies for real-valued functions 
of time for which a Fourier transform exists. The symmetry property is described by 
the equation

 F1-v2 = F*1v2, for real@valued f1t2. (5.29)

This property is sometimes called the conjugate property. The proof of this prop-
erty is shown by finding the complex conjugate of the Fouier transform integral

 F*1v2 = L
∞

- ∞
[ f1t2e-jvt]*dt = L

∞

- ∞
f *1t2ejvt dt.

Because f1t2 is real, f *1t2 = f1t2, and therefore

 F*1v2 = L
∞

- ∞
f1t2ejvtdt = F1-v2.

The symmetry property is usually applicable for engineering applications 
because signals that exist in physical systems are generally real-valued.

 example 5.16 The symmetry property of the Fourier transform

Derive the Fourier transform of x1t2 = e2tu1- t2.
In Table 5.2 we find the transform pair

 e-atu1t2,  a 7 0 = f1t2 ·f F1v2 =
1

a + jv
.

It is seen that x1t2 = f1- t2 with a = 2 and that f(t) is a real-valued function. Therefore the 
symmetry property can be applied to yield

 X1v2 = F *1v2 = F1-v2 =
1

2 - jv
 .

This result can also be easily derived using the Fourier integral:

 X1v2 = L
∞

- ∞
e2tu1- t2e-jvtdt = L

0

- ∞
e12 - jv2tdt =

1
2 - jv

 . ■
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summary

Several useful, key properties of the Fourier transform are described and used in 
examples. Additional examples of the application of these properties are given in 
subsequent sections of this chapter, as we use them to derive Fourier transforms for 
time-domain signals.

A concise listing of Fourier transform properties is given by Table 5.1. Proofs 
of these and other properties of the Fourier transform can be found in Refs. 3 to 9.

 5.3 Fourier TransForms oF Time FunCTions

In Sections 5.1 and 5.2, we define the Fourier transform and its inverse. We list and 
apply several important properties of the Fourier transform and, in the process, de-
rive the Fourier transforms of several time-domain signals. In this section, we derive 
additional Fourier transform pairs for future reference.

DC level

Equation (5.9) gives the transform pair

 ejv0t ·f 2pd1v -  v02.

If we allow v0 = 0, we have

 1 ·f 2pd1v2, (5.30)

which, along with the linearity property, allows us to write the Fourier transform of 
a dc signal of any magnitude:

 K ·f 2pKd1v2. (5.31)

By comparing this transform pair with that of an impulse function in the time 
domain,

[eq(5.8)] d1t2 ·f 1,

we see another illustration of the duality property (5.16).

unit step Function

The Fourier transform of the unit step function can be derived easily by a consider-
ation of the Fourier transform of the signum function developed in (5.25):

[eq(5.25)] sgn1t2 ·f 2
jv

.
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As illustrated in Figure 5.14, the unit step function can be written in terms of 
the signum function:

 u1t2 = 1
2[1 + sgn1t2].

Combining the linearity property with (5.25) and (5.31) yields

 u1t2 ·f
pd1v2 +

1
jv

. (5.32)

switched Cosine

The switched cosine, as shown in Figure 5.15, is simply a cosine wave that is “turned 
on” at t = 0. Mathematically, this waveform can be described as the product of a 
cosine (which exists for all time, - ∞ 6 t 6 ∞) and a unit step function (which is 
nonzero only for t 7 0):

 f1t2 = cos1v0t2u1t2.

By applying Euler’s identity, we can rewrite this function as

 f1t2 =
ejv0t + e-jv0t

2
 u1t2 = 1

2 e
jv0tu1t2 + 1

2e-jv0tu1t2.

We now apply the linearity property (5.10) and the frequency, shifting property 
(5.19) to the Fourier transform of the unit step function (5.32) to yield

 cos1v0t2u1t2 ·f p

2
[d1v -  v02 + d1v + v02] +

jv

v0
2 - v2 . (5.33)

pulsed Cosine

The pulsed cosine is shown in Figure 5.16. This waveform is encountered in various 
electronic communication systems and in detection systems such as radar and sonar. 
It can be expressed as the product of a rectangular function and a cosine wave,

(a) (b)

1

t

�1

sgn(t)

1

t

u(t) � 1
2 [1 � sgn(t)]

Figure 5.14  The signum function and the unit step function.
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 f1t2 = rect1t/T2cos1v0t2,

where rect1t/T2 is indicated by the dashed lines in Figure 5.16(a).
The derivation of this transform pair could be conducted much like that of 

the switched cosine, using the frequency-shift property. However, for the sake of 
variety, we will use a different method for this one. Because the time-domain signal 
is described as the product of two signals for which we already know the Fourier 
transforms, the convolution property can be used to find the transform we are 
seeking.

From (5.4), we have

 rect1t/T2 ·f T sinc1vT/22,

 cos(   0t)u(t) �

1

0 t
0�

�
0�

�2
0�

�3
0�

�4

Figure 5.15  A switched cosine  
waveform.
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Figure 5.16  A pulsed cosine waveform and its frequency spectrum.
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and from (5.11),

 cos 1v0t2 ·f p[d1v -  v02 + d1v + v02].

Then, applying the convolution equation (5.18), we have

 F1v2 =
T
2 L

∞

- ∞
[d1v -  l -  v02 + d1v -  l + v02]sinc 1lT/22dl.

Because of the sifting property of the impulse function, (2.41), the integrand has a 
nonzero value only when l = v -  v0 and l = v + v0. Therefore, the convolution 
integral is easily evaluated, and the transform pair is found to be

 rect1t/T2cos1v0t2 ·f T
2

 Jsinc 
1v -  v02T

2
+ sinc 

1v + v02T

2
R . (5.34)

The frequency spectrum of the signal is shown in Figure 5.16(b). The sinc 
waveforms generated by the rectangular pulse are shifted in frequency so that one 
sinc pulse is centered at v0 and another at -v0. Each of the sinc pulses has one-half 
the magnitude of the single sinc function that represents the Fourier transform of 
rect(t/T). Since each of the sinc waveforms has nonzero frequency components over 
an infinite range of frequencies, there will be some overlap of frequency compo-
nents from the two sinc waveforms in F1v2. However, if v0 W 2p/T, the effect of 
the overlap is usually negligible in practical applications. Notice that the bandwidth 
of the sinc waveform is inversely proportional to the time duration of the time-
domain rectangular pulse.

exponential pulse

The signal f1t2 = e-atu1t2, a 7 0, is shown in Figure 5.17(a). The Fourier trans-
form of this signal will be derived directly from the defining Equation (5.1):

 F1v2 = L
∞

- ∞
e-atu1t2e-jvtdt = L

∞

0
e-1a + jv2tdt =

1
a + jv

.

The frequency spectra of this signal are shown in Figures 5.17(b) and (c).
It can be shown that this derivation applies also for a complex, with Re{a} 7 0. 

Therefore, the transform pair can be written as

 e-atu1t2, Re{a} 7 0 ·f 1
a + jv

. (5.35)

Fourier Transforms of periodic Functions

In Chapter 4, we determined that a periodic function of time could be represented 
by its Fourier series,

[eq(4.11)] f1t2 = a
∞

k = -∞
Ckejkv0t,
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Figure 5.17  An exponential waveform 
and its frequency spectrum.

where

[eq(4.23)] Ck =
1
T0 LT0

f1t2e-jkv0tdt .

We now will derive a method of determining the Fourier transform of periodic signals.
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By (5.1), the Fourier transform of (4.11) yields

 F1v2 = L
∞

- ∞
J a

∞

k = -∞
Cke jkv0tR e-jvtdt = a

∞

k = -∞
CkL

∞

- ∞
1e jkv0t2e-jvtdt.

From (5.9) and (5.10),

 a
∞

k = - ∞
Cke jkv0 t ·f 2p a

∞

k = - ∞
Ckd1v - kv02. (5.36)

This gives us the important result that the frequency spectrum of a periodic 
signal is a series of impulse functions in the frequency domain located at integer 
multiples (harmonics) of the fundamental frequency of the periodic wave. The 
weight of each impulse function is the complex coefficient of that harmonic in the 
Fourier series, multiplied by 2p.

We now express (5.36) in a different form. We find that we can use the Fourier 
transform to determine the complex coefficient, Ck, for a periodic function f1t2.

First, we define another function, which we will call the generating function, 
g1t2, such that

 g1t2 = b f1t2, -T0 / 2 F t F T0 / 2
0, elsewhere

, (5.37)

where T0 = 2p/v0 is the fundamental period of the waveform. In other words, g1t2 
is equal to f1t2 for one period of the wave, centered about t = 0, but is not re-
peated. This allows us to express the periodic function, f1t2, as an infinite summa-
tion of the time-shifted generating function, g1t2:

 f1t2 = a
∞

n = -∞
g1t - nT02. (5.38)

Because from (3.18),

 g1t2*d1t - t02 = g1t - t02,

(5.38) can be expressed as

 f1t2 = a
∞

n = -∞
g1t2*d1t - nT02 = g1t2* a

∞

n = -∞
d1t - nT02.

The train of impulse functions is expressed by its Fourier series

 a
∞

n = -∞
d1t - nT02 = a

∞

n = -∞
Cne jnv0t,

where

 Cn =
1
T0 L

T0>2

-T0>2
J a

∞

m = -∞
d1t - mT02R e- jnv0t dt.
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Within the limits of integration, the impulse function will be nonzero only for 
m = 0. Therefore,

 Cn =
1
T0 L

T0>2

-T0>2
d1t2dt =

1
T0

 .

Hence, according to the convolution property of the Fourier transform (5.17),

 F1v2 = G1v2f e 1
T0

a
∞

n = -∞
e jnv0t f =

2p
T0

G1v2 a
∞

n = -∞
d1v -  nv02,

where G1v2 is the transform of the generating signal described by (5.37). Because of 
the sifting property of the impulse function, F1v2 will have nonzero values only when 
v is an integer multiple of the fundamental frequency of the periodic signal

 v = nv0, n = 0, {1, {2, c.

Therefore, we can rewrite the equation for the Fourier transform of a periodic signal

 f1t2 = a
∞

n = -∞
g1t - nT02

as

 F1v2 = a
∞

n = -∞
v0G1nv02d1v -  nv02. (5.39)

We see then that frequency spectra of periodic signals are made up of dis-
crete frequency components in the form of impulses occurring at integer multiples 
(harmonics) of the fundamental frequency of the signal. We find the weight of each 
impulse by multiplying the Fourier transform of the generating function, evaluated 
at that harmonic frequency, by the fundamental frequency of the periodic signal. 
Hence, the Fourier transform of a periodic signal is given by both (5.36) and (5.39).

 example 5.17 The Fourier transform of a periodic signal

We now find the Fourier transform of the periodic train of rectangular pulses shown in 
Figure 5.18(a). The generating function in this case can be recognized as a familiar function 
from previous examples:

 g1t2 = A rect1t/T2.

From (5.4),

 G1v2 = AT sinc1Tv/22.

Substituting this into (5.39) yields the Fourier transform of the periodic train of rectangular 
pulses:

 F1v2 = a
∞

k = -∞
ATv0 sinc1kv0T/22d1v -  kv02.



240 The Fourier Transform    Chap. 5

This frequency spectrum is sketched in Figure 5.18(b). The dashed curve indicates the weights 
of the impulse functions. Note that in the distribution of impulses in frequency, Figure 5.18(b) 
shows the particular case that T0 = 4T. ■

 example 5.18 The frequency spectrum of a periodic impulse signal

The frequency spectrum of the train of impulses shown in Figure 5.19(a) will be found. This 
signal is described mathematically as

 f1t2 = a
∞

n = -∞
d1t - nT02.

The generating function is

 g1t2 = d1t2,
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Figure 5.18  A periodic signal and its frequency spectrum.
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and therefore,

 G1v2 = 1.

Inserting this into (5.39), we get

 F1v2 = a
∞

n = -∞
v0d¢v -  nv0≤ = a

∞

n = -∞

2p
T0

dav -
2pn
T0

b ,

which is a train of impulses in the frequency domain, as shown in Figure 5.19(b). 
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Figure 5.19  A train of impulses and its  
frequency spectrum. ■

summary

In this section, we calculate the Fourier transform of several time functions. The 
results of these derivations and the Fourier transforms of other time functions 
 encountered in engineering practice are summarized in Table 5.2.

 5.4 appliCaTion oF The Fourier TransForm

Frequency response of linear systems

Fourier transforms can be used to simplify the calculation of the response of linear 
systems to input signals. For example, Fourier transforms allow the use of algebraic 
equations to analyze systems that are described by linear, time-invariant differential 
equations.
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Consider the simple circuit shown in Figure 5.20(a), where v11t2 is the input 
signal and v21t2 is the output signal. This circuit can be described by the differential 
equations

 v11t2 = Ri1t2 + L 
di1t2

dt
 and v21t2 = L 

di1t2
dt

.

If we take the Fourier transform of each equation, using the properties of 
 linearity and time derivative, we get

 V11v2 = RI1v2 + jvLI1v2 and V21v2 = jvLI1v2.

From the first equation, we solve algebraically for I1v2:

 I1v2 =
1

R + jvL
V11v2.

Substituting this result into the second equation yields

 V21v2 =
jvL

R + jvL
V11v2,

which relates the output voltage of the system to the input voltage.
We define a function

 H1v2 =
jvL

R + jvL
 (5.40)

and write the input–output relationship for the system as

 V21v2 = H1v2V11v2, (5.41)

or

 H1v2 =
V21v2
V11v2  . (5.42)

Ri(t)

�H(  )
V2(  ) � V1(  )H(  )� � �V1(  )�

(a)

(b)

Lv1(t) v2(t)

Figure 5.20  An electrical network and its 
block diagram.
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Because the quantity H1v2 determines the output of the circuit for any given 
input signal, it is commonly called the transfer function of the system. The relation-
ship of (5.41) is illustrated in Figure 5.20(b).

The function H1v2 in (5.40) gives mathematically the variation of the input–
output relationship of the circuit with frequency. Therefore, H1v2 is also called the 
frequency response function of the system.

The frequency response function H1v2 is the same as the transfer function of 
(3.75) when jv is substituted for s.

We can determine the frequency response experimentally, and somewhat la-
boriously, by applying a sinusoidal signal to the input of the circuit and measuring 
the magnitude and phase of the input and output signals. This process is repeated 
for different frequencies so that a large set of measurements is acquired over a wide 
range of frequencies. Since (5.42) can be expressed in polar form as

 H1v2 = � H1v2 � ∠f1v2 =
� V21v2 � ∠V2

� V11v2 � ∠V1
=

� V21v2 �
� V11v2 �

∠V2 - V1,

a plot of the ratio of the magnitudes of the input and output signals � V21v2 � / � V11v2 �  
versus frequency yields a plot of � H1v2 � . A plot of the difference between the 
 recorded phase angles 1∠V2 - ∠V12 versus frequency yields a plot of f1v2.

 example 5.19 The frequency response of a system

An engineering professor required a student to determine the frequency response of the 
circuit shown in Figure 5.21(a). The student decided to spend some time in the laboratory 
 collecting data, using the experimental system shown in Figure 5.21(b). The student pro-
ceeded by measuring the input and output signals with a dual-trace oscilloscope, as shown in 
Figure 5.21(c). A series of measurements was taken at a progression of frequency settings on 
the function generator that produced the input signal. For each frequency setting, the student 
set the amplitude of v11t2 to 1 V. Therefore, the input waveform at each frequency setting, 
vx, could be written as

 v11t2 = cos vxt.

The student then measured the amplitude of v21t2, using the oscilloscope, and  
recorded it. Because a sinusoidal input to a linear system forces a sinusoidal output of the 
same frequency, but generally differing in amplitude and phase, the student knew that the 
output signal would be of the form

 v21t2 = A2 cos1vxt + f22.

Thus, he determined that the amplitude ratio is

 � H1vx2 � =
� V21vx2 �
� V11vx2 �

= A2.
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By measuring and recording the time lag between zero-crossing points on the output sinu-
soid relative to the input, the student was able to calculate the phase difference, using the 
equation

 f2 =
t1 - t2

Tx
* 360°.

1   F�0.01 H

v1(t) � cos   xt� v2(t) � A2 cos (  xt �   2)� �

(a)

(b)

(c)

1 k�v1(t) v2(t)

Function
generator

Linear
network

Sweep
A

Sweep
B

Oscilloscope

1 V Sweep
A

Sweep
B

t1 t2

t1 t2

Tx

Tx

Ax

Figure 5.21  Illustrations for Example 5.19.
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As shown in Figure 5.21(c), t1 and t2 are the times, of the zero crossings of the input and out-
put waveforms, respectively, and Tx is the period of the waveforms at the frequency currently 
being used.

To confirm that the data were correct, the student reviewed his circuit analysis notes 
and then derived the transfer function of the network, applying sinusoidal-steady-state circuit 
analysis techniques:

  H1v2 =
R

R + jvL + 1/jvC
=

j1R/L2v
-v2 + 1/LC + j1R/L2v

  =
j104v

-v2 + 108 + j104v

  =
1

1 + j1v2 - 1082/104v
 .

The student wrote the transfer function in polar form as

 H1v2 = � H1v2 � ejf1v2,

where

 � H1v2 � =
1

[1 + [1v2 - 1082/104v]2]1/2

and

 f1v2 = - tan-1[1v2 - 1082/104v].

The student then plotted the magnitude and phase versus frequency, as shown in Figure 5.22.
The experimental data from the physical system compared reasonably well with 

the calculated data, but did not coincide exactly with the plots of Figure 5.22. This is to be 
 expected, since the mathematical model used to compute the data can never describe the 
physical system perfectly. ■

A widely used technique for displaying the frequency response of systems is 
the Bode plot. Bode plots most commonly consist of one semi-logarithmic plot of 
the magnitude frequency response (in decibels) and a separate semi-logarithmic 
plot of the phase frequency response (in degrees), both plotted versus frequency on 
log10 scale.

 example 5.20 Bode plots of a system’s frequency response

The frequency response function used in Example 5.19 can be written as

 H1v2 =
1041jv2

1 jv22 + 1041 jv2 + 108.

With H1v2 written in this form, the numerator and denominator coefficient vectors for use 
in computing the frequency response with MATLAB are

 num = [104 0] and den = [1 104 108].
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The transfer function is generated in MATLAB by the command

 H = tf1num, den2
Using the results of Example 5.21, we choose to calculate and plot the frequency re-

sponse over the frequency range 103 … v … 1051rad/s2.
The MATLAB command

bode(H,{1e3,1e5})

causes MATLAB to produce the Bode plots shown in Figure 5.23. ■

We have established that the output of a linear system can be expressed in the 
frequency domain as the product of the system’s transfer function and the Fourier 
transform of the input signal

[eq(5.41)] V21v2 = H1v2V11v2.

0.1
1.0 1.41.2 1.91.6 2.72.3 3.73.1 5.14.4

Frequency (krad/s)
7.06.0 9.98.4 14.012.0 19.016.0

0.2

0.3

0.4

0.5

0.6

M
ag

ni
tu

de
 r

at
io 0.7

0.8

0.9

1

�60
1.0 1.41.2 1.91.6 2.72.3 3.73.1 5.14.4

Frequency (krad/s)
7.06.0 9.98.4 14.012.0 19.016.0

�50

�40

�30

�10

10

P
ha

se
 d

if
fe

re
nc

e

30

50

70

90

80

60

40

20

0

�20

Figure 5.22  Magnitude ratio and phase  
difference plots.



Sec. 5.4    Application of the Fourier Transform 247

(a)

103
�90

�60

0

P
ha

se
 A

ng
le

 (
de

g)

Phase Bode Plot

30

60

90

104

Frequency (rad/s)

(b)

105

�30

103
�18

�14

�16

�12

�10M
ag

ni
tu

de
 (

dB
)

Magnitude Bode Plot

�6

�8

0

2

�2

�4

104

Frequency (rad/s)
105

Figure 5.23  Bode plots for  
Example 5.20.



248 The Fourier Transform    Chap. 5

Consider now the result when the input is an impulse function v11t2 = d1t2. In this 
case, V11v2 = 1 and, therefore, V21v2 = H1v2. In other words, the transform of 
the output is exactly equal to the transfer function when the input is an impulse. 
Considering this, we call the inverse Fourier transform of the transfer function the 
impulse response, denoted by h1t2. Thus,

 h1t2 ·f H1v2.

Using the convolution property to find the inverse Fourier transform of (5.41) 
yields

 v21t2 = v11t2*h1t2 = L
∞

- ∞
v11t2h1t - t2dt. (5.43)

Of course, this agrees with the convolution integral in (3.13).
If we know the impulse response or its Fourier transform, the transfer func-

tion of a linear system, we can find the output for any given input by evaluating 
either (5.41) or (5.43).

 example 5.21 using the Fourier transform to find the response of a system to an input signal

Consider the system shown in Figure 5.24(a). The electrical network in the diagram responds 
to an impulse of voltage at the input, x1t2 = d1t2, with an output of h1t2 = 11/RC2e-t/RCu1t2, 
as shown in Figure 5.24(b). Our task is to determine the frequency spectrum of the output of 
this system for a step function input of voltage. Thus, x1t2 = Vu1t2, as shown in Figure 5.24(c). 
Because the impulse response of this linear network is known, the output response to any input 
can be determined by evaluating the convolution integral:

 y1t2 = x1t2*h1t2 = L
∞

- ∞
x1t2h1t - t2dt.

This looks like an onerous task; however, we are saved by the convolution property of the 
Fourier transform. From (5.17),

 Y1v2 = f{x1t2*h1t2} = X1v2H1v2.

From Table 5.2, the Fourier transforms of h1t2 and x1t2 are found to be

 H1v2 = f{11/RC2e-t/RCu1t2} =
1

1 + jvRC

and

 X1v2 = f{Vu1t2} = V J 1
jv

+ pd1v2 R .
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Therefore,

 Y1v2 = V J 1
1 + jvRC

R J 1
jv

+ pd1v2 R = V J 1
jv11 + jvRC2 +

pd1v2
1 + jvRC

R .

Partial fraction expansion of the first term in brackets (see Appendix F) gives

 Y1v2 = V J -RC
1 + jvRC

+
1
jv

+
pd1v2

1 + jvRC
R .

The impulse function in the third term in brackets has a nonzero value only at v = 0; at 
v = 0, the denominator has a value of 1; hence, the equation is further simplified to

 Y1v2 = V J -RC
1 + jvRC

+
1
jv

+ pd1v2 R .

Electrical
network

h(t)

x(t) y(t)

(a)

1
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1
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1
RC

h(t) �

x(t) � Vu(t)

 V

0 1
RC

0

(b)

t

(c)

t

e�t/RCu(t)

y(t)

 V

(d)

t

Figure 5.24  Illustrations for Example 5.21.
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This equation describes the frequency spectrum of the output signal of the network when the 
input is a step function of magnitude V.

The time-domain representation of the output can now be found:

 y1t2 = f-1{Y1v2} = V Jf-1e 1
jv

+ pd1v2 f  -  f-1e 1
11/RC2 + jv

fR .

Using the transform pairs listed in Table 5.2, we find that

 u1t2 ·f
1

jv
+ pd1v2 and e-t/RCu1t2 ·f 1

11/RC2 + jv
.

Therefore, the time-domain expression for the output of the network is

 y1t2 = V11 - e-t>RC2u1t2.

The output waveform is shown in Figure 5.24(d).
This example, which yields what is probably a familiar result for those who have 

studied electrical circuit analysis, shows the utility of the convolution property in system 
analysis. ■

Frequency spectra of signals

The Fourier transform can be used to analyze the frequency spectrum of any physi-
cal signal that can be described mathematically. The following example illustrates 
the procedure for a signal that is often present in electronic systems.

 example 5.22 The frequency spectrum of a rectified sinusoidal signal

The half-wave rectifier described in Section 1.2 is shown in Figure 5.25. The rectifier circuit 
is a nonlinear system and therefore cannot be described by a frequency response function. 
However, the signal at the output of the rectifier, shown in Figure 5.26(c), can be described 
by a Fourier transform.

The half-wave rectified signal, v11t2, shown in Figure 5.26(c) is described by the prod-
uct of the full cosine wave, vs1t2, shown in Figure 5.26(a) and the train of rectangular pulses, 
f1t2, shown in Figure 5.26(b).

Diode

RL
Load

v1(t)
ac

voltage
source

1

�

Figure 5.25  Half-wave rectifier.
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After some relatively simple algebraic manipulation, we find V11v2 by using the fre-
quency shift and linearity properties of the Fourier transform:

  v11t2 = f1t2B cos1v1t2 = f1t2B
2

 [ejv1t + e-jv1t]

  =
B
2

 f1t2ejv1t +
B
2

 f1t2e-jv1t.

Using Table 5.1, we see that

 V11v2 =
B
2

 F1v -  v12 +
B
2

 F1v + v12.

In Example 5.16, we found the Fourier transform of a train of rectangular pulses such as f1t2 
to be

 F1v2 = a
∞

n = -∞
AT v0 sinc1nTv0/ 22d1v -  nv02.

�B

B

t

vs(t) � B cos    1(t)�

f(t) = rect�
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n ���

t � nT1
T

0 T1 2T1 t�T
2

T
2

(a)

(b)

v1(t)

0�T1 T1 t2T1

(c)

T1 =       ,T = 2
�
�
1

T1
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Figure 5.26  Waveforms for Example 5.22.
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For the particular signal we are now considering, A = 1, T = T1/2, and v0 = v1 = 2p/T1; 
therefore,

 F1v2 = a
∞

n = -∞
p  sinc1np>22d1v -  nv12.

Thus,

 V11v2 =
Bp

2 a
∞

n = -∞
sinc1np/22[d1v -  v1 - nv12 + d1v + v1 - nv12].

The frequency spectrum of the half-wave rectified signal is shown in Figure 5.27. ■

It should be noted that the availability of an ideal rectifier is assumed in the 
previous example. Measured voltages from actual circuits cannot be expected to 
match exactly the results of Example 5.22.

summary

In this section, we consider two of the many engineering applications of the Fourier 
transform. We define the frequency response of a system as the Fourier transform of 
the impulse response. We also use the term transfer function as a pseudonym for the 
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Figure 5.27  Frequency spectra for  
Example 5.22.
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system frequency response function because it describes the relationship between the 
input signal and the output signal of a system in the frequency domain. A more com-
plete discussion of applications of the Fourier transform is provided in Chapter 6.

 5.5 energy anD power DensiTy speCTra

In this section, we define and show application for the energy spectral density 
function and the power spectral density function. These two functions are used to 
 determine the energy distribution of an energy signal or the power distribution of a 
power  signal, in the frequency spectrum. Knowledge of the energy or power distri-
bution of a  signal can be quite valuable in the analysis and design of communication 
systems, for example.

energy Density spectrum

An energy signal is defined in Section 5.1 as a waveform, f1t2, for which

 [eq(5.5)] E = L
∞

- ∞
� f1t2 � 2 dt 6  ∞ ,

where E is the energy associated with the signal. It is noted in that section that en-
ergy signals generally include aperiodic signals that have a finite time duration and 
signals that approach zero asymptotically as t approaches infinity.

If the signal is written in terms of its Fourier transform,

 f1t2 =
1

2pL
∞

- ∞
F1v2ejvtdv,

its energy equation can be rewritten as

 E = L
∞

- ∞
f1t2J 1

2pL
∞

- ∞
F1v2ejvtdv Rdt.

The order of integration can be rearranged so that

 E =
1

2pL
∞

- ∞
F1v2JL ∞

- ∞
f1t2ejvtdtRdv.

The term in brackets is similar to the defining equation for the Fourier transform 
(5.1); the difference is the sign of the exponent. Substitution of -v for v in the 
Fourier transform equation yields

 F1-v2 = L
∞

- ∞
f1t2ejvtdt.
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Substituting this result into the energy (5.5) yields

 E =
1

2pL
∞

- ∞
F1v2F1-v2dv.

For signals f1t2 that are real valued (this includes all voltage and current waveforms 
that can be produced by a physical circuit),

 F1-v2 = F*1v2,

where F*1v2 is the complex conjugate of the function F1v2. Hence,

 E =
1

2pL
∞

- ∞
F1v2F*1v2dv =

1
2pL

∞

- ∞
� F1v2 � 2dv.

The final, important result that we want to recognize is that

 E = L
∞

- ∞
� f1t2 � 2 dt =

1
2pL

∞

- ∞
� F1v2 � 2dv. (5.44)

The relationship described by (5.44) is known as Parseval’s theorem. It can be 
shown that (5.44) is valid for both real- and complex-valued signals.

Because the function � F1v2 � 2 is a real and even function of frequency, we can 
rewrite the energy equation in the frequency spectrum as

 E =
1

2pL
∞

- ∞
� F1v2 � 2 dv =

1
pL

∞

0
� F1v2 � 2dv.

The energy spectral density function of the signal f1t2 is defined as

 ef1v2 K
1
p

� F1v2 � 2 =
1
p

 F1v2F1v2* (5.45)

and describes the distribution of signal energy over the frequency spectrum. With 
the energy density function thus defined, the energy equation (5.44) can be rewrit-
ten as

 E = L
∞

0
ef1v2dv. (5.46)

 example 5.23 energy spectral density of a rectangular pulse

For the rectangular waveform shown in Figure 5.28(a), we have previously found the fre-
quency spectrum to be described by the sinc function shown in Figure 5.28(b). We now find 
the energy spectral density. The magnitude of this curve is squared and divided by 2p to form 
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the frequency spectrum of the energy from (5.44); the result is shown in Figure 5.28(c). Next, 
we fold the energy frequency spectrum about the v = 0 axis and add the frequency com-
ponents as they overlap. This result is shown in Figure 5.28(d), which is a plot of the energy 
spectral density, ef1v2, of the rectangular waveform.

We find the energy contained in some band of frequencies of particular interest by 
finding the area under the energy spectral density curve over that band of frequencies. 
For example, in Figure 5.28(d), the amount of energy contained in the band of frequencies 
 between v1 and v2 is the shaded area under the curve. This energy content can be found 
mathematically by evaluating

 EB = L
v2

v1

ef1v2dv. ■

f(t)

A

�T
2

T
2

t

F(  )

AT

�4� 2� �

�

(a) (b)

(c)

(d)

2
T

�� 0

A2T 2

1
2�

2�

�

4
T

� �

�F(  )�2

� 2 �2�� 1 �1

2 
T
� 4 

T
�0

A2T 2

�

1
� �

�

�F(  )�2ef (�) �

�2�1

T
�2�

T T
4�
T

Figure 5.28  A rectangular voltage pulse and its energy spectrum.
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power Density spectrum

Next, we consider signals that have infinite energy but contain a finite amount of 
power. For these signals, the normalized average signal power is finite:

 P = lim
TS ∞

1
T L

T
2

- T
2

 � f1t2 � 2dt 6  ∞ . (5.47)

Such signals are called power signals.
The step function, the signum function, and all periodic functions are exam-

ples of power signals. As the reader might already have reasoned, power signals are 
often employed in real-life applications, because many physical systems make use 
of periodic waveforms.

A problem with working in the frequency domain in the case of power signals 
arises from the fact that power signals have infinite energy and, therefore, may not 
be Fourier transformable. To overcome this problem, a version of the signal that is 
truncated in time is employed. The signal fT1t2 shown in Figure 5.29(c) is a trun-
cated version of the signal f1t2. The truncation can be achieved by multiplying the 
signal f1t2 as shown in Figure 5.29(a) by a rectangular pulse having unity amplitude 
and duration T, as shown in Figure 5.29(b). The truncated signal

 fT1t2 = f1t2 rect1t/T2

(a)

f(t)

t

(b)

(c)

fT (t)

�T/2 T/2

t

�T/2 0

rect (t/T )

T/2 t

Figure 5.29  The time truncation 
of a power signal.
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has finite energy. This signal meets the other Dirichlet conditions and, therefore, 
has a Fourier transform:

 fT1t2 ·f FT1v2.

In working with power signals, it is often desirable to know how the total 
power of the signal is distributed in the frequency spectrum. This can be determined 
by the development of a power spectral density function similar to the energy spec-
tral density function considered earlier. We begin by writing the power equation in 
terms of the truncated signal:

 P = lim
TS ∞

1
T L

∞

- ∞
 � fT1t2 � 2 dt.

Note that the limits of integration have been changed from (5.47). This is justified, 
because fT1t2 has zero magnitude for � t � 7 T/2.

Because fT1t2 has finite energy, the integral term can be recognized as the 
total energy contained in the truncated signal:

 E = L
∞

- ∞
� fT1t2 � 2 dt.

By Parseval’s theorem (5.44), the energy can be expressed in terms of fT1t2 to get

 E = L
∞

- ∞
� fT1t2 � 2dt =

1
2pL

∞

- ∞
� FT1v2 � 2 dv.

The frequency-domain expression of the energy in the signal can be substituted into 
the power equation to yield

 P = lim
TS ∞

1
2pT L

∞

- ∞
� FT1v2 � 2 dv. (5.48)

As the duration of the rectangular pulse increases, it can be seen that the en-
ergy of the signal will also increase. In the limit, as T approaches infinity, the energy 
will become infinite also. For the average power of the signal to remain finite, the 
energy of the signal must increase at the same rate as T, the duration of the signal. 
Under this condition, it is permissible to interchange the order of the limiting action 
on T and the integration over v so that

 P =
1

2pL
∞

- ∞
lim

TS ∞

1
T

� FT1v2 � 2dv.

In this form of the average power equation, the integrand is called the power spec-
tral density and is denoted by the symbol

 pf1v2 K lim
TS ∞

1
T

� FT1v2 � 2. (5.49)



258 The Fourier Transform    Chap. 5

In terms of the power spectral density function, the equation for normalized aver-
age signal power is

 P =
1

2pL
∞

- ∞
pf 1v2dv =

1
pL

∞

0
pf1v2dv, (5.50)

because pf 1v2 is an even function.
For periodic signals, the normalized average power can be determined from 

the Fourier series as

 P = a
∞

k = -∞
� Ck � 2 = C0

2 + 2 a
∞

k = 1
� Ck � 2. (5.51)

Using the relationship shown in (5.36),

 � F1kv02 � = 2p � Ck � .

We write the normalized average power of a signal f1t2 in terms of the Fourier 
transform as

 P = ¢ 1
2p

≤2

a
∞

k = -∞
� F1kv02 � 2 =

1
4p2 � F102 � 2 +

1
2p2 a

∞

k = 1
� F1kv02 � 2. (5.52)

It is seen that for a periodic signal, the power distribution over any band of frequen-
cies can be determined from the Fourier transform of the signal.

 example 5.24 power spectral density of a periodic signal

The magnitude frequency spectrum of a periodic signal is shown in Figure 5.30(a). According 
to (5.52), the power spectral density can be displayed by squaring the magnitude of each 
discrete frequency component and dividing by 4p2. This result is shown in Figure 5.30(b). It 
should be noted that the values of the spectral components at frequencies above 1000 rad/s 
are small in magnitude, but not zero as may be implied by Figure 5.30(b).

The normalized average power in the frequency band �v � F 1000 rad>s is found by 
summing the power of the discrete frequency components in that range:

 116.7 + 2172.0 + 13.02 = 286.7 W. ■

power and energy Transmission

The input–output relationship of a system

 G1v2 = H1v2F1v2 (5.53)

can also be expressed in terms of the energy or power spectral densities of the input 
and output signals. First, we conjugate both sides of (5.53):

 G*1v2 = [H1v2F1v2]* = H*1v2F*1v2.
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Multiplying both sides of the equation by (5.53) yields

 G1v2G*1v2 = H1v2H*1v2F1v2F*1v2,

or

 � G1v2 � 2 = � H1v2 � 2 � F1v2 � 2. (5.54)

If both sides on this expression are divided by p and the equivalents from 
(5.45) are substituted, we have an expression that describes the transmission of 
 energy through a linear system:

 eg1v2 = � H1v2 � 2ef1v2. (5.55)

For the case that the input to a system is a power signal, the time-averaging opera-
tion can be applied to both sides of (5.54):

 lim
TS ∞

1
T

� GT1v2 � 2 = � H1v2 � 2 lim
TS ∞

1
T

� FT1v2 � 2 .
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Figure 5.30  Power spectral density of a periodic signal.
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Then, from (5.49),

 pg1v2 = � H1v2 � 2pf1v2. (5.56)

Usually, the exact content of an information signal in a communications sys-
tem cannot be predicted; however, its power spectral density can be determined 
statistically. Thus, (5.54) is often used in the analysis and design of these systems.

 example 5.25 power spectral density of a system’s output signal

A signal x1t2 with power spectral density shown in Figure 5.31(a) is the input to a linear sys-
tem with the frequency response plotted in Figure 5.31(b). The power spectral density of the 
output signal, y1t2, is determined by application of (5.56).

Because the power spectral density of the input signal is a discrete-frequency function,

 py1v2 = px1v2 � H1v2 � 2

can be determined by evaluating the equation at only those frequencies where the power 
spectral density of x1t2 is nonzero. For example, to determine the power density in the out-
put signal at v = 60 1rad>s2, from the frequency response of the linear system, we find that 
� H1602 � = 0.7071; therefore, � H1602 � 2 = 0.5. From Figure 5.31(a), px1602 = 7.84. We 
calculate py1v2 = 3.92. These calculations are repeated for all frequencies of interest.

The power spectral density of the output signal is plotted in Figure 5.31(c). ■

summary

In this section, we define the energy spectral density function

[eq(5.45)] ef1v2 K
1
p

� F1v2 � 2,

which describes the distribution of the energy in an energy signal in the frequency 
spectrum, and the power spectral density function

[eq(5.49)] pf1v2 K lim
TS ∞

1
T

� FT1v2 � 2,

which describes the distribution of the power in a power signal in the frequency 
spectrum.

The input–output relationship for an energy signal transmitted through a linear 
system is determined to be

[eq(5.55)] eg1v2 = � H1v2 � 2 ef1v2,

where ef1v2 is the energy spectral density of the input signal and eg1v2 is the 
 energy spectral density of the output signal.
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The input–output relationship for a power signal transmitted through a linear 
system is shown to be

[eq(5.56)] pg1v2 = � H1v2 � 2 pf1v2,

where pf1v2 is the power spectral density of the input signal and pg1v2 is the 
power spectral density of the output signal.
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Figure 5.31  Plots for Example 5.25.
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summary

In this chapter, we define the Fourier transform (5.1) and the inverse Fourier trans-
form (5.2).

The sufficient conditions for the existence of the integral (5.1) are called 
the Dirichlet conditions. In general, the Fourier transform of f1t2 exists if it is 
reasonably well behaved (if we could draw a picture of it) and if it is absolutely 

Table 5.3  Key Equations of Chapter 5

equation Title equation number equation

Fourier transform (5.1) f5f1t26 = F1v2 = L
∞

- ∞
f1t2e-jvtdt

Inverse Fourier transform (5.2) f1t2 =
1

2p
 L

∞

- ∞
F1v2e jvtdv = F -15F1v26

Linearity property (5.10) af11t2 + bf21t2 ·f aF11v2 + bF21v2
Time-transformation property (5.15) f1at - t02 ·f 1

� a �
 F av

a
be-jt01v/a2

Duality property (5.16) F1t2 ·f 2pf1-v2 when f1t2 ·f F1v2
Convolution property (5.17) f11t2*f21t2 ·f F11v2F21v2

Multiplication property (5.18) f11t2 f21t2 ·f 1
2p

 F11v2*F21v2

Frequency-shifting property (5.19) x1t2ejv0t ·f X1v - v02
Fourier transform of periodic signal (5.36) a

∞

k = - ∞
Ckejkv0t ·f 2p a

∞

k = - ∞
Ckd1v - kv02 or

a
∞

k = - ∞
g1t - kT02 ·f

v0 a
∞

k = - ∞
G1nv02d1v - kv02, v0 =

2p
T0

Frequency response function (5.43) H1v2 = �5h1t26, H1v2 =
Y1v2
X1v2

Energy spectral density (5.45) ef 1v2 =
1
p

� F1v2 � 2 =
1
p

 F1v2F*1v2

Signal energy (5.46) E = L
∞

0
ef1v2dv

Power spectral density (5.49) pf1v2 = lim
TS ∞

1
T

� FT1v2 � 2

Signal power (5.50) P =
1
p

 L
∞

0
pf1v2dv

Energy and (5.55) eg1v2 = � H1v2 � 2ℰf 1v2
Power transmission (5.56) pg1v2 = � H1v2 � 2pf 1v2



Chap. 5    Problems 263

integrable. These conditions are sufficient, but not necessary. It is shown that 
many practical signals that do not fit these conditions do, in fact, have Fourier 
transforms.

The Fourier transform of a time-domain signal is called the frequency spec-
trum of the signal. The frequency spectrum is often plotted in two parts: � F1v2 �  is 
plotted as the magnitude spectrum, and arg[F1v2] is plotted as the phase spectrum. 
A third representation of the frequency spectrum is a plot of � F1v2 � 2, which is 
called the energy spectrum.

Several useful properties of the Fourier transform are introduced and are 
listed in Table 5.1. Fourier transforms of several time-domain functions are derived 
and are listed in Table 5.2.

The Fourier transform of the impulse response of a linear system is shown to 
be the system’s frequency response, which is also the transfer function of the  system 
in the frequency domain. This leads to the important result that if a system with 
transfer function H1v2 has an input signal X1v2, the Fourier transform of the out-
put signal Y1v2 is given by the product of the transfer function and the Fourier 
transform of the input function.

Energy and power spectral densities are defined by (5.45) and (5.49), 
respectively.

The usefulness of the energy and power spectral density functions in the anal-
ysis of systems and signals is discussed. An important application is the study of 
power-signal transmission through a linear system. In this case, the equation for the 
power spectral density of the output signal is given in terms of the system transfer 
function and the power spectral density of the input signal.

Several additional applications of the Fourier transform are discussed in 
Chapter 6. See Table 5.3.

proBlems

section 5.1

 5.1. Use the definition of the Fourier transform (5.1) to find the transform of the following 
time signals:

(a) f1t2 = 11 - e-bt2u1t2
(b) f1t2 = A cos1v0t + f2
(c) f1t2 = eatu1- t2, a 7 0
(d) f1t2 = Cd1t + t02

 5.2. Find the Fourier transform for each of the following signals, using the Fourier integral:

(a) x1t2 = A[u1t2 - u1t - b2]
(b) x1t2 = e-t[u1t2 - u1t - 52]
(c) x1t2 = At[u1t2 - u1t - b2]
(d) x1t2 = 3 cos13pt2 rect1t/32
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section 5.2

 5.3. Use the table of Fourier transforms (Table 5.2) and the table of properties (Table 5.1) 
to find the Fourier transform of each of the signals listed in Problem 5.1. Do not use the 
Fourier integral (5.1).

 5.4. Use the table of Fourier transforms (Table 5.2) and the table of properties (Table 5.1) 
to find the Fourier transforms of each of the signals in Problem 5.2.

 5.5. The Fourier transform of B cos1v0t2 is given in Equation (5.11). Derive the Fourier 
transform of 2 sin110t2 using:
(a) The differentiation property.
(b) The time-shift property.

 5.6. Prove mathematically that the following properties of the Fourier transform described 
in Table 5.1 are valid:

(a) Linearity
(b) Time shifting
(c) Duality
(d) Frequency shifting
(e) Time differentiation
(f) Time convolution
(g) Time-scale property

 5.7. Find the Fourier transform of the following signals:

(a) x1t2 = sinc2t

(b) x1t2 = e-4�t�

(c) x1t2 = sincaat
2

 b

(d) x1t2 =
4

14 - jt22 

 5.8. Show that the time-scaling property of the Fourier transform, with a constant, is valid. 
That is, show that

 f1at2  ·f F1v/a2
� a �

.

section 5.3

 5.9. Find and sketch the Fourier transform of the following time-domain signals.

(a) Ae-bt cos1v0t2u1t2, Re5b6 7 0
(b) 6 sinc10.5t2
(c) A sin1v1t2 + B cos1v2t2
(d) 3 rect[1t - 22/6]
(e) 4 sin150t2[u1t2 - u1t - 22]
(f ) 6tri[1t - 32/4]
(g) 9 sinc2112t2
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 5.10. Find the frequency spectra of the signals shown in Figure P5.10.
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2

(b)
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gb(t)

�30 �20 �10

10

20

(d)

10 20 30 t (ms)

gd(t)

Figure P5.10  

 5.11. Given

 e- �t� ·f 2

v2 + 1
,

  find the Fourier transform of the following:

(a) 
d
dt

 e- �t�

(b) 
1

2p1t2 + 12
(c) 

4 cos12t2
t2 + 1
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 5.12. (a)  Find and compare the frequency spectra of ga1t2 and gc1t2 shown in Figures P5.10(a) 
and (c), respectively.

(b) Find and compare the frequency spectra of the waveforms gb1t2 and gd1t2 shown 
in Figure P5.10(b) and (d), respectively.

 5.13. (a)  Use the time-derivative and linearity properties to find the Fourier transform of 
the triangular waveform shown in Figure P5.13(a).

(b) Use the time-derivative and linearity properties to find the Fourier transform of 
the trapezoidal signal shown in Figure P5.13(b).

A

a

(a)
�a

f(t)

f(t)

t (s)

t

1

2

1086420
(b) Figure P5.13  

 5.14. (a) Consider a linear, time-invariant system with impulse response

 h1t2 =
0.1 sin110t2

t
.

 Find the system output y1t2 if the input is x1t2 = cos112t2 + sin16t2.
(b) Find the system output if the input is changed to 5 sinc 21t2.

 5.15. Find the following convolutions:

(a) sinc1t2*sinc12t2
(b) sinc212t2*sinc1t2
(c) sinc12t2*ejtsinc1t2

 5.16. Given x11t2 = sinc21t2 and x21t2 = ejAtx11t2, specify the range of values of A, where 
A is a real number and A ∈ 1- ∞ , ∞ 2, such that x11t2*x21t2 is nonzero.

 5.17. Determine the Fourier transforms of the signals shown in Figure P5.17. (Use the 
 property tables to minimize the effort.)
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 5.18. Determine the time-domain functions that have the frequency spectra shown in 
Figure P5.18.
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 5.19. The signal g1t2 has the Fourier transform

 G1v2 =
6 + j 2v

8 - v2 + j6v
.

  Find the Fourier transform of the following functions:

(a) g12t2

(b) 
dg1t2

dt

(c) g13t - 62
(d) g1- t2
(e) e-j100tg1t2

(f) L
t

- ∞
g1t2dt

 5.20. (a)  Find and sketch the frequency spectrum of the half-wave rectified cosine wave-
form shown in Figure P5.20(a).

(b) Find and sketch the frequency spectrum of the full-wave rectified cosine wave 
form shown in Figure P5.20(b).

(c) Compare the results of Parts (a) and (b).
(d) How would the frequency spectra be changed if the period of each waveform in 

Parts (a) and (b) was halved?

�8 �6 �4 �2 2
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... ...

Figure P5.20  

 5.21. (a) The periodic signal gp1t2 is shown in Figure P5.21. Find and sketch Gp1v2.
(b) How would the frequency spectrum change if the period of the waveform was 

doubled?
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 5.22. Show that the inverse Fourier Transform of X1v2 = a
∞

k = - ∞
2pCkd1v - kv02 is 

x1t2 = a
∞

k = - ∞
Ck e

jkv0t.

section 5.4

 5.23. (a) For the electrical network shown in Figure P5.23(a), complete the following:
 (i) Determine the frequency response function.
 (ii) Sketch the magnitude and phase frequency response.
 (iii) Find the impulse response function for this network.

(b) Repeat Part (a) for the circuit of P5.23(b)
(c) Repeat Part (a) for the circuit of P5.23(c).
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 5.24. Find the frequency spectrum of the signal v21t2 that is produced at the output termi-
nals of the circuit when the signal v11t2 =  sin 150t2 volts is applied to the input termi-
nals of the electrical network shown in:

(a) Figure P5.23(a)
(b) Figure P5.23(b).
(c) Figure P5.23(c).

 5.25. The pulsed cosine signal shown in Figure P5.25 is “on” for two cycles and then “off” for 
a period of time equivalent to 18 cycles of the cosine wave. The signal is periodic and 
the frequency of the cosine wave is 200p rad/s.

(a) Sketch the frequency spectrum for this signal.
(b) How would the frequency spectrum change if the frequency of the cosine wave was 

doubled?
(c) How would the frequency spectrum change if the “off” time was halved?

190 200 210 t  (ms)�10 0 10 20
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Figure P5.25  
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 5.26. The signal v11t2 = 10 rect(t/2) is applied to the input of the network with the fre-
quency response H1v2 = rect1v/6p2 as shown in Figure P5.26. Determine and sketch 
the frequency spectrum of the output signal V21v2. (This filter is not physically realiz-
able. See Section 6.1.)

section 5.5

 5.27. What percentage of the total energy in the energy signal f1t2 = e-tu1t2 is contained in 
the frequency band?

(a) -7  rad/s F v F 7  rad/s?
(b) -1  rad/s F v F 1 rad/s?
(c) -0.2 rad/s … v … 0.2 rad/s?
(d) 1 rad/s … v … 7 rad/s?
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 5.28. (a)  A power signal with the power spectral density shown in Figure P5.28(a) is the 
input to a linear system with the frequency response shown in Figure P5.28(b). 
Calculate and sketch the power spectral density of the system’s output signal.

(b) Calculate and sketch the power spectral density of the system’s output signal if the 
signal shown in Figure P5.28(c) is applied at the input.
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 5.29. The signal v11t2 = 2 cos110t2 + 4 cos120t2 is applied to the circuit shown in 
Figure P5.23(a). Determine the power spectral density of the output signal v21t2.
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In this chapter, several engineering applications of the Fourier transform are con-
sidered. The mathematical basis and several properties of the Fourier transform are 
presented in Chapter 5. We present additional examples of how the Fourier trans-
form, and the frequency domain in general, can be used to facilitate the analysis and 
design of signals and systems. Particularly important presentations in this chapter 
are the frequency domain analyses of sampling and data reconstruction.

 6.1 Ideal FIlters

The concept of the transfer function, which is one of the ways the Fourier transform 
is applied to the analysis of systems, is discussed in Chapter 5:

[eq(5.42)] H1v2 =
V21v2
V11v2 .

Here, V11v2 is the Fourier transform of the input signal to a system and V21v2 is the 
Fourier transform of the output signal. Consideration of this concept leads us to the 
idea of developing transfer functions for special purposes. Filtering is one of those spe-
cial purposes that is often applied in electronic signal processing. Figure 6.1 shows the 
frequency-response characteristics of the four basic types of filters: the ideal low-pass 
filter, the ideal high-pass filter, the ideal bandpass filter, and the ideal bandstop filter.

These ideal filters have transfer functions such that the frequency components 
of the input signal that fall within the passband are passed to the output without 
modification, whereas the frequency components of the input signal that fall into 
the stopband are completely eliminated from the output signal.

Consider the frequency response shown in Figure 6.1(a). This is the magnitude 
frequency spectrum of an ideal low-pass filter. As can be seen, this filter has a unity 
magnitude frequency response for frequency components such that �v � F vc and zero 
frequency response for �v � 7 vc. The range of frequencies �v � F vc is called the 
passband of the filter, and the range of frequencies �v � 7 vc is called the stopband. 

applIcatIons oF the FourIer 
transForm6
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The output of this filter consists only of those frequency components of the input signal 
that are within the passband. Figure 6.2 illustrates the effect of the ideal low-pass filter 
on an input signal.

Filters are used to eliminate unwanted components of signals. For example, 
the high-frequency noise shown to be present in V11v2 in Figure 6.2(b) is outside 
the passband (in the stopband). Therefore, this noise is not passed through the filter 
to V21v2, and the desired portion of the signal is passed unaltered by the filter. This 
filtering process is illustrated in Figure 6.2(c) and (d).

It should be noted that the filters described previously are called ideal filters. 
As with most things we call ideal, they are not physically attainable. However, the 
concept of the ideal filter is very helpful in the analysis of linear system operation, 
because it greatly simplifies the mathematics necessary to describe the process.

That ideal filters are not possible to construct physically can be demonstrated 
by reconsideration of the frequency response of the ideal low-pass filter. The trans-
fer function of this filter can be written as

 H1v2 = rect1v/2vc2.
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Figure 6.1  Frequency responses of four  
types of ideal filters.
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Therefore, from Table 5.2, its impulse response is

 h1t2 = F -1{H1v2} = 1vc/p2 sinc (vc t),

as sketched in Figure 6.3. It is seen that the impulse response for this ideal filter 
begins long before the impulse occurs at t = 0 (theoretically, at t = - ∞ ). Systems 
such as this, which respond to an input before the input is applied, are called non-
causal systems, as discussed in Chapters 2 and 3. Of course, the physical existence 
of noncausal systems is impossible. However, the concept of noncausal systems, 
such as ideal filters, can be useful during the initial stages of a design or analy-
sis effort. The following examples illustrate some applications of the ideal filter 
concept:

�V1(  )��

�  c� c� �

Ideal
low-pass

filter

v2(t)v1(t)

V0

(a)

(b)

(c)

Noise Noise

Information
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Information
signal

�H(  )��

�V2(  )��

�  c� c� �

(d)

�  c� c� �

A

AV0

Figure 6.2  An ideal low-pass filter used to  
eliminate noise.
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 example 6.1 application of an ideal high-pass filter

Two signals,

 g11t2 = 2 cos1200pt2 and g21t2 = 5 cos11000pt2,

have been multiplied together as described in Example 5.9. The product is the signal

 g31t2 = 5 cos11200pt2 + 5 cos1800pt2.

For this example, assume that a certain application requires

 g41t2 = 3 cos11200pt2.

This can be obtained from g31t2 by a high-pass filter. The Fourier transform of g41t2 is found, 
from Table 5.2, to be

 G41v2 = 3p[d1v - 1200p2 + d1v + 1200p2].

Similarly, the Fourier transform of g31t2 is found by Table 5.2 and the linearity property:

  G31v2 = 5p[d1v - 800p2 + d1v + 800p2]

  + 5p[d1v - 1200p2 + d1v + 1200p2].

The frequency spectra of g41t2 and g31t2 are shown in Figure 6.4(a) and (b), respectively. It 
can be seen that if the frequency components of G31v2 at v = {1200p are multiplied by 
0.6, and if the frequency components at v = {800p are multiplied by zero, the result will 
be the desired signal, G41v2. An ideal high-pass filter that will accomplish this is shown in 
Figure 6.4(c). The filtering process can be written mathematically as

 G41v2 = G31v2H11v2,

where

 H11v2 = 0.6[1 - rect1v/2vc2], 800p 6 vc 6 1200p. ■

(a)

(b)

1

H(  )�

�  c� c� �

h(t)

0 t

c�
�

Figure 6.3  The impulse response of an  
ideal low-pass filter.
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 example 6.2 application of an ideal low-pass filter

We work with the signals from Example 6.1. Assume this time that an application requires a 
signal

 g51t2 = 4 cos1800pt2.

This can be obtained from g31t2 by a low-pass filter. The Fourier transform of g51t2 is

 G51v2 = 4p[d1v - 800p2 + d1v + 800p2].

The frequency spectrum of g51t2 is shown in Figure 6.5. To pass the frequency components of 
G31v2 at v = + - 800p with an output amplitude of 4p requires a gain of 0.8, as shown in 
the ideal low-pass filter in Figure 6.6. Again, the filtering process is written as

 G51v2 = G31v2H21v2,

�G4(  )��

3� 3�

�1200� �800� 800� 1200�0 �

�G3(  )��

�H1(  )��

5� 5� 5� 5�

�1200� �800� 800� 1200�0 ��  c�

�1200� �800� 800� 1200�0

0.6

��  c� c�

(a)

(b)

(c) Figure 6.4  Figure for Example 6.1.
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��800 �800 �

�4 �4

Figure 6.5  Frequency spectrum for  
Example 6.2.
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where 

 H21v2 = .8 rect1v/2vc2, vc 7 800p. ■

 example 6.3 multiplication of two signals

The multiplication of two signals, as considered in Examples 6.1 and 6.2, is a simple math-
ematical concept, and there are some integrated circuit devices that will accomplish this func-
tion. One way we generate the product of two signals by using basic electronic components 
is shown in Figure 6.7. The square-law device shown in Figure 6.7 is an approximation of the 
effect of passing the signal through a nonlinear device such as an amplifier biased near the 
saturation level [1]. The output of the square-law device is the square of the input signal. In 
the system shown, the input to the device is

 w1t2 = C1 cos1v1t2 + C2 cos1v2t2.

Therefore, the output signal is

 x1t2 = w

21t2 = C1
2 cos21v1t2 + 2C1C2 cos1v1t2 cos1v2t2 + C2

2 cos21v2t2.

Using the trigonometric identity of Appendix A, namely,

 cos2f = 1
2[1 + cos 2f],

we can rewrite the output of the square-law device as

  x1t2 = 1
2C1

2 [1 + cos12v1t2] + 2C1C2cos1v1t2cos1v2t2
  + 1

2C2
2[1 + cos12v2t2].

As shown in Example 5.9 [or by use of another trigonometric identity, 2 cos a cos b =  
cos1a - b2 + cos1a + b2], the second term of this expression can be rewritten as

 2C1C2 cos1v1t2 cos1v2t2 = C1C2 cos [1v1 + v22t] + C1C2 cos [1v1 - v22t].

�H2(  )��

��800 �800 ��c��  c

.8

��1200 �1200

Figure 6.6  Frequency response for filter of Example 6.2.

w(t) x(t) � w2(t) 
Square-law

device
Figure 6.7  Block diagram of a square-law device.
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Now the output of the square-law device is given by

  x1t2 = 1
2[C1

2 + C2
2] + 1

2C1
2cos12v1t2 + 1

2C2
2cos12v2t2

  + C1C2cos [1v1 + v22t] + C1C2cos [1v1 - v22t].

The Fourier transform of this signal is found, from Table 5.2 and the linearity property, to be

  X1v2 = p[C1
2 + C2

2]d1v2 +
p

2
 C1

2[d1v - 2v12 + d1v2 + 2v1]

  +
p

2
 C2

2[d1v - 2v22 + d1v + 2v22]

  + C1C2 p[d1v - v1 + v22 + d1v + v1 - v22]

  + C1C2 p[d1v - v1 - v22 + d1v + v1 + v22].

If the signals considered in Example 6.1 are added together to form the input to the system 
in Figure 6.7, then

 w1t2 = g11t2 + g21t2 = 2 cos1200pt2 + 5 cos11000pt2

and

 x1t2 = 4 cos 21200pt2 + 20 cos1200pt2 cos11000pt2 + 25 cos 211000pt2.

The Fourier transform of the signal x1t2 is

  X1v2 = 29p1v2 + 2p[d1v - 400p2 + d1v + 400p2]

  + 12.5p[d1v - 2000p2 + d1v + 2000p2]

  + 10p[d1v - 800p2 + d1v + 800p2]

  + 10p[d1v - 1200p2 + d1v + 1200p2].

The frequency spectrum of x1t2 is shown graphically in Figure 6.8(a).
If we desire the output of the system to be

 y1t2 = 3 cos1800pt2,

as in Example 6.1, we require that

 Y1v2 = 3p[d1v - 800p2 + d1v + 800p2].

This result can be achieved by multiplying X1v2 by a transfer function H1v2 such that the 
frequency components in the ranges 400p 6 v 6 1200p and -1200p 6 v 6 -400p are 
multiplied by 0.3 and the frequency components outside those ranges are multiplied by zero. 
The frequency response of an ideal bandpass filter that accomplishes this multiplication is 
shown in Figure 6.8(b). Figure 6.8(c)s shows the frequency spectrum of the system’s output 
signal.
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Examples 6.1 and 6.2 illustrate the concept of modifying signals by the appli-
cation of filters. The filters considered in this section are ideal filters. It was shown 
that ideal filters are not physically realizable. Therefore, the results shown in these 
examples are not achievable with physical systems. However, the results can be ap-
proximated by physical systems, and the concept of the ideal filter is useful for sim-
plifying the analysis and design processes.

 6.2 real FIlters

The ideal filters described in Section 6.1 are not physically realizable. This was shown 
by examining the inverse Fourier transform of the frequency-domain functions that 
describe the ideal low-pass filter frequency response. The impulse response of the 
ideal low-pass filter implies a noncausal system. Similar analyses could be used to 
show that the ideal bandpass, ideal high-pass, and ideal bandstop filters are also 
physically unrealizable.
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Figure 6.8  Figure for Example 6.3. ■
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RC low-pass Filter

Figure 6.9 shows the schematic diagram of an RC low-pass filter. We now find the 
frequency response function of this electrical network and show that it is an approxi-
mation of the ideal low-pass filter.

To find the frequency-response function, we begin by writing the differential 
equations that describe the voltages and current in the circuit:

 vi1t2 = Ri1t2 +
1
C L

t

-∞
i1t2dt; vo1t2 =

1
C L

t

-∞
i1t2dt.

After finding the Fourier transform of each equation, term by term, we have

 Vi1v2 = RI1v2 +
1

jvC
 I1v2, Vo1v2 =

1
jvC

 I1v2.

Therefore, the frequency-response function that describes the relationship between 
the input voltage vi1t2 and the output voltage vo1t2 in the frequency domain is

 H1v2 =
Vo1v2
Vi1v2 =

1
1 + jvRC

.

If we define the cutoff frequency of this simple filter as

 vc =
1

RC
 ,

the frequency response function can be rewritten as

 H1v2 =
1

1 + jv/vc
= � H1v2 � ejΦ1v2. (6.1)

The magnitude and phase frequency spectra of the filter are described by the 
equations

 � H1v2 � =
121 + 1v/vc22

 and Φ1v2 = -arctan1v/vc2,

respectively. The magnitude frequency spectrum of the filter is shown in Figure 6.10.

�

�

v i(t) C

R

�

�

vo(t)

Figure 6.9  An RC low-pass filter.
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It should be noted that at the frequency v = vc, the magnitude ratio between 
the input and output signals is

 � H1vc2 � =
� Vo1vc2 �
� Vi1vc2 �

=
122

.

The ratio of the normalized power (normalized average power is defined in Section 5.1) 
of the input and output signals is given by

 � H1vc2 � 2 =
� Vo1vc2 � 2

� Vi1vc2 � 2 =
1
2

.

Because of this relationship, the cutoff frequency of this type of filter is often called 
the half-power frequency.

Let’s compare the polar form of H1v2 as given in (6.1) with the form of the 
Fourier transform of a time-shifted function

[eq(5.13)] f1t - t02 ·f  F1v2e-jvt0.

We might suspect that the phase angle, Φ1v2 is somehow related to a time shift 
caused by this circuit as a signal is processed through it. This is indeed true. The time 
shift involved is called the phase delay, and it is a function of the signal frequency. 
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Figure 6.10  Frequency spectrum of an RC low-pass filter.
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This time delay (or phase shift if we consider the frequency-domain manifestation) 
is a characteristic of all physically realizable filters. Generally, the more closely a 
physical filter approximates an ideal filter, the more time delay (negative phase 
shift) is present in the output signal.

It is apparent from a comparison of the magnitude frequency spectrum of 
the RC low-pass filter, shown in Figure 6.10, with those of the ideal low-pass filter, 
shown in Figure 6.11, that the RC low-pass filter is a relatively crude approximation 
of the ideal low-pass filter. The magnitude ratio of the RC low-pass filter decreases 
gradually as the frequency increases, instead of remaining flat, for 0 F  v F  vc. 
Also, the magnitude ratio is finite instead of zero for v 7 vc. Engineers who de-
sign analog electronic filters try to achieve a “good-enough” approximation to the 
ideal filter by designing for a “flat-enough” frequency response in the passband and 
a “steep-enough” roll-off at the cutoff frequency. One of the filter designs that is 
commonly used to satisfy these criteria is the Butterworth filter.

Butterworth Filter

The general form of the magnitude frequency-response function for the Butterworth 
filter is

 � H1v2 � =
121 + 1v/vc22N

, (6.2)

where N is called the “order” of the filter. In other words, N is the order of the dif-
ferential equation needed to describe the dynamic behavior of the filter in the time 
domain. By comparing (6.1) and (6.2), we can see that the RC low-pass filter is a 
first-order Butterworth filter.

Figure 6.12(a) and (b) show RLC realizations of second- and third-order 
Butterworth filters, respectively. The values of the electrical components are 
 determined by the desired cutoff frequency, vc, as indicated in the figure. It is left 
as an exercise for the student to confirm that the circuits shown in Figure 6.12 have 
magnitude spectra described by (6.2).

�H(  )��

� �/  c

1

�1 1
Figure 6.11  Frequency spectrum of an  
ideal low-pass filter.
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Magnitude spectra for low-pass Butterworth filters of various orders are 
shown in Figure 6.13. It can be seen from the figure that for each value of N, the 
magnitude spectrum has the same cutoff frequency, vc.

 example 6.4 matlaB program to show frequency response of Butterworth filters

The frequency response of normalized Butterworth filters of various orders can be generated 
by the following MATLAB program:

% This MATLAB program generates a Butterworth filter of
% specified order and displays the Bode plot of the
% magnitude frequency response.
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Figure 6.12  Butterworth filters.
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N = input('Specify the order of the filter:')
z_p_k = 'The zeros, poles and multiplying constant.'
[z,p,k]=buttap(N), pause
num_den='The numerator and denominator coefficients.'
[num,den]=zp2tf(z,p,k),pause
[mag,phase,w]=bode(num,den);
plot(w,mag)
title([Magnitude Bode plot ',num2str(N),...
   'th order Butterworth filter'])
xlabel('omega')
ylabel('Magnitude') ■

 example 6.5 design of a second-order Butterworth filter

The input signal, v11t2, to the filter network shown in Figure 6.14 is a rectified cosine voltage 
signal with a peak amplitude of 33.94 V and a frequency of 377 rad/s. Using the results of 
Example 5.18, we find the half-wave rectified cosine signal to have the frequency spectrum

 V11v2 = 53.31 a
∞

n = -∞
sinc1np>22[d1v - 1n + 123772 + d1v - 1n - 123772].

The frequency spectrum of the rectifier output signal is plotted in Figure 6.15(a). We now 
design a physically realizable filter to minimize all frequency components except the dc 
 component at v = 0. The filter and load circuit shown in Figure 6.14 will be designed as a 
second-order Butterworth filter with a cutoff frequency of 100 rad/s. Because we are dealing 
with a filter that is implemented with a physically realizable electrical circuit, the imped-
ance of the filter will distort the rectified cosine signal if the filter is connected directly to 
the rectifier circuit. In order to simplify the discussion that follows, we will assume that the 
rectified cosine signal at the input to the filter circuit is the output of an isolation amplifier, as 
 discussed in Section 2.6 and shown in Figure 2.36.

A second-order Butterworth filter has a magnitude frequency response described by

 � H1v2 � =
121 + 1v/vc24

=
vc

22v4 + vc
4
. (6.3)

The frequency response function of the filter circuit is

 H1v2 =
1

1 - v2LC + jvL/R
,

�

�

v i(t)
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�

vo(t)C
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RL

Figure 6.14  A practical filter.
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which has the magnitude frequency response

 � H1v2 � =
1/LCCv4 + 11/LC22 + v2J 11/RC22 -

2
LC

R . (6.4)

By comparing (6.3) and (6.4), we can see that the RLC filter will match the Butterworth form 
if we choose

 vc = A 1
LC
 and L = 2R2C.

If we assume a load resistance

 R = 1 kΩ

and calculate the inductor and capacitor values to give a cutoff frequency of 100 rad/s, we 
find that

 L = 14.14 H and C = 7.07 mF.

The frequency response of this filter is plotted in Figure 6.15(b). Figure 6.15(c) shows the 
magnitude frequency response of the filter’s output signal,

 � Vo1v2 � = � H1v2 � � V11v2 � .

It can be seen that non-dc components have been reduced in magnitude by the Butterworth 
filter, but not completely eliminated as they would be if an ideal filter were available. (See 
the results in Example 6.1.) ■

The following example of an application of a Butterworth filter shows the 
 effect of filtering in both the time and frequency domains.

 example 6.6 Butterworth filter simulation

Figure 6.16(a) shows a SIMULINK simulation of a simple system. The signal generator 
block is set to generate a square wave with magnitude of 1 V and fundamental frequency 
of 100 rad/s. The analog Butterworth filter block is set to simulate a fourth-order low-pass 
Butterworth filter with a cutoff frequency of 150 rad/s. The filter transfer function is derived 
by the MATLAB command, butter(n,Wn,‘s’) with N = 4 and Wn = 150.

Scope 2 displays the filter’s input signal. Scope 1 displays the filter’s output signal. The 
filter input and output signals are shown in Figure 6.16(b) and (c), respectively.

Figure 6.16(d) shows an approximation of the magnitude frequency spectra of the filter 
input and output. The stem plot shows the magnitude frequency spectrum of the output  signal. 
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The dashed curve indicates the magnitude frequency spectrum of the input signal. From the 
plots in Figure 6.16(d), it is seen that the high-frequency components 1v 7 200 rad/s2 of the 
output signal are reduced in magnitude by the filter. ■

It can be confirmed that each of the low-pass Butterworth filters described can 
be converted to a high-pass Butterworth filter with the same cutoff frequency by 
replacing each capacitor with an inductor so that

 Li =
1

Civc
2, (6.5)

and each inductor with a capacitor so that

 Cj =
1

Ljvc
2 . (6.6)
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Figure 6.16  SIMULINK diagram and plots for Example 6.6.
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 example 6.7 design of a third-order high-pass Butterworth filter

A high-pass filter with load resistance 1 kΩ and cutoff frequency 2 kHz is to be designed. A 
third-order Butterworth filter will be used. We can convert the circuit of Figure 6.12(b) to a 
third-order Butterworth high-pass filter by making the substitutions described in (6.5) and 
(6.6). Substituting the values specified for the load resistance and cutoff frequency into the 
circuit element expressions (6.5) and (6.6), we find that

 L1 = 2R0 /vc = 0.159 H, L2 = 2R0/3vc = 0.053 H, and C1 = 3/4 R0vc = 60 nF.

After making the substitutions described, we obtain the desired high-pass filter circuit, as 
shown in Figure 6.17.

�

�

i(t)

�

�

1 k�

0.159 H

60 nF

0.053 H o(t)

Figure 6.17  Filter for Example 6.7. ■

Bandpass Filters

The filters we have examined are described primarily as low-pass filters. By using a 
nonlinear frequency transformation, low-pass filter designs can be transformed into 
bandpass filters [2]. The frequency-response function of the bandpass filter can be 
found from

 HB1v2 = HL1vL2 2
vL = vc1v2 - vuvl2/v1vu - vl2

, (6.7)

where HL1vL2 is the frequency response function of the low-pass filter to be trans-
formed. The frequency variable of the low-pass filter has been designated as vL; vc 
is the cutoff frequency of the low-pass filter. The upper and lower cutoff frequencies 
of the bandpass filter are denoted by vu and vl, respectively.

 example 6.8 transformation of a low-pass Butterworth filter into a bandpass filter

We will now apply the transformation equation (6.7) to the design of a bandpass filter with an 
upper cutoff frequency of 4 krad/s and a lower cutoff frequency of 100 rad/s. We will trans-
form the first-order Butterworth (RC low-pass) filter. From (6.1),

 HL1v2 =
1

1 + jvL/vc
.

Therefore, from (6.7),

 HB1v2 =
1

1 + j1v2 - vuvl2/v1vu - vl2
=

1

1 + j1v2 - 4 * 1052/v13.9 * 1032 .
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With a little algebraic manipulation, the transfer function can be written as

 HB1v2 =
1

1 + j12.56 * 10-42v + 1/j19.75 * 10-32v.

The RLC circuit shown in Figure 6.18 has a frequency response function of the form HB1v2. 
For that circuit,

 H1v2 =
V21v2
V11v2 =

R
R + jvL + 1/jvC

=
1

1 + jvL/R + 1/jvRC
.

We now see that the bandpass filter can be realized by the choice of appropriate values for 
R, L, and C so that the terms of the denominator of H1v2 match the corresponding terms in 
the denominator of HB1v2. For example, if we choose L = 1 H, we can calculate the other 
component values as

 R = 3.9  kΩ and C = 2.5 mF. ■

active Filters

Analog filters are more commonly implemented using operational amplifiers  
(op-amps) rather than passive circuits such as those discussed earlier in this section. 
Figure 6.19(a) shows an active filter circuit (the power-supply connections have 
been omitted to simplify the presentation). The resistor, Rf, and capacitor, Cf, con-
nected in parallel in the feedback path provide frequency selection. The circuit is in 
inverting amplifier form, so the frequency response of the circuit is given by

 H1v2 =
vo

vi
=

Zf

Zi
 (6.8)

where

 Zf =
1

1/Rf + jvCf
=

Rf

1 + jvRf Cf
 and Zi = Ri.

Therefore,

 H1v2 = -
Rf /Ri

1 + jvRfCf
=

Rf /Ri31 + 1vRf Cf22
 ∠1p - tan-11RfCf22. (6.9)

If Ri = Rf , it is seen by comparing (6.9) with (6.1) that with the exception 
of the additional phase angle contributed by inverted gain, this active filter is the 
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Figure 6.18  Figure for Example 6.8.
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equivalent of the simple RC low-pass filter of Figure 6.9 with the cut off frequency, 
vc = 1/RfCf. By comparing (6.9) with (6.2) it is seen that this circuit is also a first-
order Butterworth filter.

Figure 6.19(b) shows an active, second-order, low-pass Butterworth filter cir-
cuit and Figure 6.19(c) shows an active, second-order, high-pass Butterworth filter. 
For each circuit, the cut off frequency is determined as vc = 1/RC, where the values 
chosen for R and C are then used to determine the component values to be used in 
the circuit. The design of Butterworth filters is presented in Appendix H.

By application of Kirchhoff’s current law and nodal analysis to the circuit of 
Figure 6.19(b), it can be shown that

 H1v2 =
Vo1v2
Vi1v2 =

1
1 + jv12RC - 1vRC22. (6.10)
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Therefore,

 � H1v2 � =
131 + 1vRC24

. (6.11)

Comparison of (6.11) with (6.2) shows this circuit to be a Butterworth low-
pass filter of order 2 with half-power frequency

 vc = 1/RC. (6.12)

 example 6.9 active Butterworth low-pass filter design

Design an active, second-order, low-pass filter with a cut off frequency vc = 40 k-rad/s.
From (6.12) we see that

 RC =  
1

40,000
= 25 * 10-6 1 C =

25 * 10-6

R
.

If we choose R = 10 kΩ, then C = 2.5 nF. To complete the design, we can now com-
pute the capacitor component values to be used in the filter. The filter in the feedback path 
should have value

 Cf = 12 * 2.5 * 10-9 ≈ 3.5 nF.

The capacitor in the ground leg should have the value

 Cg =
2.5 * 10-912

 ≈ 1.8 nF.

It must be recognized that the values of Cf  and Cg are rounded to the nearest one-tenth 
nano-Farad. Also, the designer must recognize that these values will be essentially impossible 
to match exactly with physical capacitors. Therefore, the cut off frequency of a physical filter 
base on this design cannot be expected to be exactly 40 k rad/s. ■

summary

The ideal filters considered in Section 6.1 are not physically realizable. However, the 
concept of the ideal filter is useful in the initial stages of system analysis and design.

The filter design process can be viewed as an attempt to approximate the 
 frequency response of an ideal filter with a physical system. Two standard meth-
ods of achieving this approximation are the Butterworth and Chebyschev filter 
designs.

Physically realizable systems must be causal; that is, their impulse response 
cannot begin before the impulse occurs. To approximate the amplitude frequency 
response of ideal (noncausal) filters, the impulse response of the physical filter 
must be similar to the impulse response of the ideal filter, but delayed in time. 
This time delay results in a negative phase shift in the frequency response of the 
physical filter.
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 6.3 BandWIdth relatIonshIps

One of the concerns of an engineer in designing an electronic system is the 
 frequency bandwidth requirement. The Fourier transform provides a means of 
determining the bandwidth of signals and systems. You will recall that we have 
sometimes called the Fourier transform of a signal its frequency spectrum. By ex-
amination of the frequency spectrum of a signal, the bandwidth can be determined. 
However, there are several definitions of bandwidth from which to choose. We 
will describe three definitions that may be useful in our study. The definitions ex-
plained later are equally valid, and any one of them may be the best to use for a 
particular application.

Absolute bandwidth is B = v2 - v1, as illustrated by Figure 6.20. The fre-
quency spectrum is nonzero only within the band of frequencies, v1 F  v F  v2. 
Note that v1 and v2 are both taken as positive frequencies for the bandpass signal in 
Figure 6.20(a). For the baseband signal shown in Figure 6.20(b), v1 = 0. Therefore, 
for both bandpass and baseband signals, the bandwidth is defined by the range of 
positive frequencies for which the frequency spectrum of the signal is nonzero. As 
we have seen from our earlier derivations of frequency spectra, absolute bandwidth 
is not applicable for some signals, because they are nonzero over an infinite range 
of frequencies. For example, the Fourier transform of the rectangular pulse has 
 non-zero values over the entire frequency spectrum.

Three-dB bandwidth, or half-power bandwidth, is illustrated by Figure 6.21. 
It is defined as the range of frequencies for which the magnitude of the frequency 
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(b)

�F(  )��
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Figure 6.20  Absolute bandwidth of signals.
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spectrum is no less than 1/22 times the maximum value within the range. The term 
3-dB bandwidth comes from the relationship

 20 log10 ¢ 122
≤ = -3 dB,

where dB is the abbreviation for decibel. The term half-power refers to the fact that 
if the magnitude of voltage or current is divided by 22, the power delivered to a 
load by that signal is halved, because

 P =
Vrms

2

R
= Irms

2  R.

This is a widely used definition of bandwidth and one that most electrical engineer-
ing students are familiar with from their circuit analysis courses.

Null-to-null bandwidth, or zero-crossing bandwidth, is shown in Figure 6.22. It 
is defined as the range of frequencies B = v2 - v1. The frequency of the first null  
(zero magnitude) in the frequency spectrum above vm is labeled v2, and for band-
pass signals, v1, is the frequency of the first null below vm, where vm is the frequency 
at which the spectrum has its maximum magnitude. For baseband signals such as the 
one shown in Figure 6.22(b), v1 = 0. For baseband signals, this definition of band-
width is sometimes called the first-null bandwidth.

Null-to-null bandwidth is applicable only to cases where there is a definite 
zero value (null) in the magnitude frequency spectrum. However, it is a useful defi-
nition, because some widely used waveforms—the rectangular pulse, for example—
have nulls in their frequency spectra.
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Figure 6.21  3-dB or half-power bandwidth.
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 example 6.10 Bandwidth of a rectangular pulse

Determine the bandwidth of the rectangular pulse shown in Figure 6.23(a). The first 
step is to find the frequency spectrum by applying the Fourier transform. Examination 
of the frequency spectrum, shown in Figure 6.23(b), leads us quickly to the conclusion 
that the  absolute bandwidth as described previously is not applicable for this waveform. 
However, we  may choose to use either the half-power bandwidth or the null-to-null 
bandwidth to describe this signal, as long as we are consistent and remember which defi-
nition we are using. Figure 6.23(c) shows both half-power and null-to-null bandwidths 
for this signal:

  Bnull = v2 = 2p/T;

  B3dB = v1.  ■

Note that whichever definition of bandwidth we use in Example 6.10, the 
bandwidth increases as the duration of the rectangular pulse decreases. In other 
words, the bandwidth of the signal is an inverse function of its time duration. This 
is generally true, and this is a key point for engineering students to remember. The 
time duration of a signal and its frequency bandwidth are inversely related. Also, any 
time that a signal makes a sudden change of magnitude in the time domain, it has 
a wide bandwidth in frequency domain. Conversely, if a signal must have a narrow 
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Figure 6.22  Null-to-null and first-null bandwidth.



Sec. 6.4    Sampling Continuous-Time Signals 295
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Figure 6.23  The frequency spectrum of a rectangular pulse.

bandwidth, its values must change gradually in time. Two signals that illustrate the 
limits of this principle are the impulse function, which has zero time duration and 
infinite bandwidth, and the sinusoid, which changes values very smoothly and grad-
ually in time (all of its derivatives exist) and has a single frequency component (zero 
bandwidth).

 6.4 samplIng contInuous-tIme sIgnals

The sampling of continuous-time signals is an important topic. The analysis and 
design of digital communication systems, digital controllers, etc, require an under-
standing of the sampling process and its results.

Consider a continuous-time signal f1t2. We define sampling as the genera-
tion of an ordered number sequence by taking values of f1t2 at specified instants of 
time. Hence, sampling generates a number sequence f1t12, f1t22, f1t32, . . . , where 
the tm are the instants at which sampling occurs. Note that we are considering f1t2 
only at a set of fixed points in time.
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A good physical example of the sampling operation under consideration is 
that implemented in hardware by an analog-to-digital converter (A/D or ADC). An 
analog-to-digital converter is an electronic device used to sample physical voltage 
signals. A common application of an analog-to-digital converter is the sampling of 
signals for processing by a digital computer.

An A/D is illustrated in Figure 6.24. The computer initiates the sampling 
 operation by sending the A/D a control signal in the form of a pulse. The input 
signal f1t2 is sampled at the instant, tm, that the pulse arrives, and the sample is 
 converted into a binary number. Hence, the continuous-time signal f1t2 is now 
 represented by a discrete-time binary code. This code is then transmitted to the 
computer for processing.

In most cases, continuous-time signals are sampled at equal increments of 
time. The sample increment, called the sample period, is usually denoted as Ts. 
Hence, the sampled signal values available in the computer are f1nTs2, where n is 
an integer.

Impulse sampling

The ideal impulse sampling operation is modeled by Figure 6.25 and is seen to be 
a modulation process (modulation is discussed in Section 6.7), in which the carrier 
signal dT1t2 is defined as the train of impulse functions:

 dT1t2 = a
∞

n = -∞
d1t - nTS2. (6.13)

An illustration of dT1t2 appears as Figure 5.19(a) if T0 in the figure is replaced by 
Ts. (We justify this model later.) The output of the modulator, denoted by fs1t2, is 
given by

 fs1t2 = f1t2dT1t2 = f1t2 a
∞

n = -∞
d1t - nTS2 = a

∞

n = -∞
f1nTS2d1t - nTS2. (6.14)

Ideal sampling is illustrated in Figure 6.26. Figures 6.26(a) and (b) show a 
 continuous-time signal, f1t2, and the ideal sampling function, dT1t2, respectively. 
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Figure 6.24  An analog-to-digital converter.
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Figure 6.25  Impulse sampling.
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The sampled signal fs1t2 is illustrated in Figure 6.26(c) where the heights of the 
impulses are varied to imply graphically their variation in weight. Actually, all im-
pulses have unbounded height, but each impulse in the sampled signal has its weight 
determined by the value of f1t2 at the instant that the impulse occurs.

We make two observations relative to fs1t2. First, because impulse functions 
appear in this signal, it is not the exact model of a physical signal. The second ob-
servation is that the mathematical sampling operation does correctly result in the 
desired sampled sequence f1nTs2 as weights of a train of impulses. It is shown in 
Section 6.6 that the modeling of the sampling operation using impulse functions is 
mathematically valid, even though fs1t2 cannot appear in a physical system.

To investigate the characteristics of the sampling operation in Figure 6.25 and 
(6.14), we begin by taking the Fourier transform of fs1t2. From Table 5.2,

 dT1t2 = a
∞

n = -∞
d1t - nTS2 ·f

vS a
∞

k = -∞
d1v - kvS2, (6.15)
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Figure 6.26  Generation of a sampled-data signal.



298 Applications of the Fourier Transform    Chap. 6

where vs = 2p/Ts is the sampling frequency in radians/second. The sampling fre-
quency in hertz is given by fs = 1/Ts; therefore, vs = 2pfs.

Recall that the Fourier transform of an impulse function in time is not an im-
pulse function in frequency; however, the Fourier transform of a train of periodic 
impulse functions in time is a train of impulse functions in frequency, just as the 
Fourier transform of any periodic signal is a sequence of impulse in frequency.

From Table 5.1, multiplication in the time domain results in convolution in the 
frequency domain. Then, from (6.14) and (6.15),

 Fs1v2 =
1

2p
 F1v2* cvs a

∞

k = -∞
d1v - kvS2 d =

1
Ts

 a
∞

k = -∞
F1v2*d1v - kvS2. (6.16)

Recall that because of the convolution property of the impulse function [see (3.23)],

 F1v2*d1v - kvS2 = F1v - kvS2.

Thus, the Fourier transform of the impulse-modulated signal (6.14) is given by

 Fs1v2 =
1
Ts

 a
∞

k = -∞
F1v - kvS2. (6.17)

Frequency domain characteristics of the sampling operation are now derived from 
this result.

We first let the frequency spectrum of the signal f1t2 be limited such that 
F1v2 = 0 for  �v � 7 vB. [This is illustrated in Figure 6.27(a).] We assume that 
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Figure 6.27  The frequency spectrum of a sampled-data signal.
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the highest frequency in F1v2 is less than one-half the sampling frequency; that is, 
vB 6 vS/2. From (6.17), we see that the effect of sampling f1t2 is to replicate the 
frequency spectrum of F1v2 about the frequencies kvS, k = {1, {2, {3, c. This 
result is illustrated in Figure 6.27(b) for the signal of Figure 6.27(a). For this case, 
we can, theoretically, recover the signal f1t2 exactly from its samples using an ideal 
low-pass filter. We call the recovery of a signal from its samples data reconstruction. 
Data reconstruction will be discussed, as an application of the Fourier transform, in 
Chapter 6.

The frequency vS/2 is called the Nyquist frequency. One of the requirements 
for sampling is that the sampling frequency must be chosen such that vS 7 2vM, 
where vM is the highest frequency in the frequency spectrum of the signal to be 
sampled. This is stated in Shannon’s sampling theorem [1].

shannon’s sampling theorem

A function of time f1t2, which contains no frequency components greater than fM 
hertz, is determined uniquely by the values of f1t2 at any set of points spaced 
TM>21TM = 1>fM2 seconds apart. Hence, according to Shannon’s sampling theo-
rem, we must take at least two samples per cycle of the highest frequency component  
in f1t2.

Figure 6.28 illustrates the requirement that the sampling frequency must 
be properly chosen. In Figure 6.28 the continuous sine wave represents a signal 
f1t2 =  sin10.9pt2. The black dots on stems represent the sampled values  obtained 
by sampling the signal with a sampling period, TS = 2.5 seconds; therefore, 
vS = 2p/2.5 = 0.8p 1rad/s2. Note that vS 6 2vM. The dashed sine wave represents 
the signal that would be recovered from the sample data. It is seen that because 
the signal was sampled with a sampling frequency less than the Nyquist frequency 
1vS 6 2vM2, the signal recovered from the sample data is not the original signal. 
Instead, a signal g1t2 = sin10.3pt2 is recovered from the sample data even though 
that signal was not part of the original signal, f1t2.

This phenomenon, wherein an erroneous signal is recovered from sample data 
because the sampling frequency was too low, is called aliasing. A familiar example 
of aliasing is seen in a movie or television program when the wheels of a car that is 
traveling at high speed appear to be rotating at a slower speed. This is caused by the 
relatively low sampling rate of the camera.

practical sampling

Shannon’s theorem is not directly applicable to practical situations, because it 
 requires samples of the signal for all time, both past and future. In the practical case, 
generally the sample period TS is chosen to be much less than TM>21vS 77 2vM2.

A signal limited in frequency cannot be limited in time; hence, a physical 
signal cannot be limited in frequency as shown in Figure 6.27(a), since it must 
then exist for all time. However, physical signals do exist such that the ampli-
tude of the frequency spectrum above a certain frequency is so small as to be 
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negligible. The practical requirement for sampling a signal is that the magnitude 
of the frequency spectrum of the signal be insignificant at frequencies greater 
than vS/2.

Note the importance of the Fourier transform in determining the characteris-
tic of sampling. The frequency domain clearly shows the effects of sampling a signal 
and the requirement for selecting the sampling frequency so that the signal can be 
recovered from the sample data.

 6.5 reconstructIon oF sIgnals From sample data

In many systems, continuous-time signals are sampled to create a sequence of 
 discrete-time values for use in digital systems, as discussed in Section 5.4. In many 
applications, there also exists the need to convert discrete-time sample data into 
continuous-time signals. For example, as discussed in Chapter 1, an audio compact 
disc (CD) player converts binary data stored on the CD into a continuous-time 
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Figure 6.28  An illustration of aliasing.
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signal to drive the speakers. The process of converting discrete-time sample data 
into a continuous-time signal is called signal reconstruction.

The frequency-domain result of sampling an analog signal with an ideal sam-
pling function is discussed in Section 5.4. If a continuous-time signal with the fre-
quency spectrum F1v2 shown in Figure 6.29(a) is sampled by multiplying it by an 
ideal sampling function (5.39), the frequency spectrum of the sampled-data signal is 
shown in Figure 6.29(b). Since, as shown in Figure 6.29(b), the sampled signal fre-
quency spectrum is made up of an infinite number of copies of the frequency spec-
trum of the original continuous signal, modified only in magnitude, the information 
contained in the original signal can, theoretically, be recovered from the sampled 
signal by filtering the sample data signal, f    S1t2, with an ideal low-pass filter. The 
frequency response of such a filter is shown in Figure 6.29(c). The effect of this filter 
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Figure 6.29  The frequency spectrum of a sampled-data signal.
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is to multiply the frequency components of the input signal that fall into the filter’s 
pass band by the factor TS and to eliminate all frequency components that fall out-
side the passband. The output of the filter is then a baseband continuous signal 
containing all the information of the original signal.

Interpolating Function

The frequency response function of the ideal low-pass filter with the frequency 
spectrum shown in Figure 6.29(c) is

 H1v2 = Ts rect1v/vs2.

Using Table 5.2, we find that the impulse response of this filter is

 h1t2 = sinc1vst/22.

The function sinc1vs t/22 is called the ideal interpolating function. The convolution 
of this ideal interpolating function with the impulse samples,

[eq(5.40)] xS1t2 = a
∞

n = -∞
x1nTs2d1t - nTs2,

results in perfect reconstruction of the original continuous-time signal:

 x1t2 = xS1t2*sinc1vst/22 = a
∞

n = -∞
x1nTS2sinc1vS1t - nTs2/22.

Figure 6.30 shows the partial reconstruction of a signal, x1t2 = 11 - e-t>102u1t2, 
from samples taken with a sampling period, TS = 11s2. The first five interpolat-
ing functions are shown. The bold curve plots the sum of the first 20 interpolating 
functions. The bold curve would approach an exact plot of x1t2 as the number of 
interpolating functions summed together became larger.

As discussed in Section 6.1, the ideal low-pass filter is noncausal and its im-
pulse response is of infinite duration. Therefore, it is physically unrealizable. It fol-
lows that a system with the ideal interpolating function as its impulse response is 
also physically unrealizable. However, like ideal filters, the ideal interpolating func-
tion can be approximated by physical systems.

This concept of recovering the information from a sampled-data signal by use 
of an ideal low-pass filter (or ideal interpolating function) is valid only under the 
condition that there is no overlap in the sampled signal’s frequency spectrum such 
as that shown in Figure 6.31(b). If there is overlap in frequency, then some spectral 
components will be added to the original signal and it will be distorted. A low-pass 
filter can be used to reconstruct a continuous-time signal, but it will not reproduce 
the original signal. The reconstructed signal will contain extraneous frequency 
components that were not present in the original signal. This erroneous informa-
tion caused by the overlapping frequency components is called aliasing. Aliasing is 
 discussed in Section 5.4.
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 example 6.11 sampling frequency selection

An electronic signal is to be sampled so that the discrete-time values can be recorded and 
recovered for later analysis. It is known that the highest-frequency component that can ever 
be present in the signal is 20,000 Hz.

Initially, a sampling rate of 30 kHz was chosen and the sampled data were recorded. 
An  attempt was made to recover the signal by an ideal low-pass filter with a cutoff frequency 
of 20 kHz. It was discovered that the recovered signal contained distortion caused by unex-
pectedly strong high-frequency components.

The problem can be explained with the use of the frequency spectrum sketch shown in 
Figure 6.31(a). When this signal is sampled with a sampling frequency of 30 kHz, the sampled 
data signal has the Fourier transform sketched in Figure 6.31(b). The frequency components 
between 10 and 20 kHz overlap and add together to increase the magnitude of the frequency 
spectrum in that frequency range. The same effect is seen in the frequency ranges 40 to 
50 kHz, -10 to -20 kHz, and so on.

By increasing the sampling rate to 40 kHz, which is twice the highest-frequency com-
ponent of the signal, the “overlap” in the frequency spectrum of the sampled-data signal is 
eliminated. The pattern seen in Figure 6.31(c) shows that when the sampling frequency is 
40 kHz or greater, the form of the original continuous signal’s spectrum is repeated about 
each integer multiple of the sampling frequency. Because there is now no overlap, the original 
signal can be recovered accurately by an ideal low-pass filter. (As described in Section 1.3, the 
sampling frequency for music signals recorded on compact discs is 44.1 kHz.) ■

According to Shannon’s sampling theorem [7], to avoid aliasing and allow for 
complete reconstruction of the continuous signal, the sampling frequency must be 
greater than twice vM, the highest-frequency component of the signal to be sam-
pled; that is, vS 7 2vM. The frequency 2vM is known as the Nyquist rate.

digital-to-analog conversion

Consider the signal reconstruction illustrated in Figure 6.32(a) and (b). We can 
write the equation for the D/A output as

xp1t2 = c + x102[u1t2 - u1t - TS2] + x1TS2[u1t - TS2 - u1t - 2TS2]

 + x12TS2[u1t - 2TS2 - u1t - 3TS2] + c. (6.18)
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Figure 6.32  A sampled-data system 
and signals.



This signal can be expressed as the summation

 xp1t2 = a
∞

n = -∞
x1nTS2[u1t - nTS2 - u1t - 1n + 12TS2]. (6.19)

Consider now the general term of xp1t2, which we will denote as gn1t2; that is,

 gn1t2 = x1nTS2[u1t - nTS2 - u1t - 1n + 12TS2]. (6.20)

This signal is realized by the system output in Figure 6.33, where the system has the 
impulse response

 h1t2 = u1t2 - u1t - TS2. (6.21)

For the system of Figure 6.33, the input signal is the impulse function 
x1nTS2d1t - nTS2 and the output is gn1t2 in (6.20). If the input signal is the sampled 
data signal,

 xS1t2 = a
∞

n = -∞
x1nTS2d1t - nTS2,

the system output is, by superposition, Equation (6.19). Thus, the system of Figure 
6.34(a) can be modeled by an impulse modulator cascaded with the system with the 
impulse response of (6.21), as shown in Figure 6.34(b). The signal-reconstruction 
system in this figure is called a zero-order hold.

The system of Figure 6.34(b) is an accurate model of the system of Figure 6.34(a). 
However, the impulse modulator does not model the A/D, and the zero-order hold 
does not model the D/A. This point is discussed in more detail next.
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Figure 6.33  Signal reconstruction.
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As a final point, consider the output of the impulse modulator:

 xS1t2 = a
∞

n = -∞
x1nTS2d1t - nTS2.

From Table 5.2, the Fourier transform for a time-shifted impulse function is

 d1t - t02 ·f e-jvt0.

Hence, using the linearity property of the Fourier transform, we find the Fourier 
transform of xS1t2 to be

 XS1v2 = a
∞

n = -∞
x1nTS2e-jnTSv. (6.22)

Here, we note that (6.22) is an alternative expression for the same Fourier trans-
form given by (5.43). The relationship between the two forms of XS1v2 is such that 
(6.22) is to (5.43) as the Fourier series in time is to a signal that is periodic in time.

The impulse response of the zero-order hold of Figure 6.34(b) is given by 
(6.21). Using the time-shift property of the Fourier transform, we find the frequency 
response function of the zero-order hold to be

 H1v2 =
1 - e-jTSv

jv
. (6.23)

Using Euler’s relation and algebraic manipulation, we can rewrite (6.23) as

 H1v2 = TS sinc1pv/vS2e-jpv/vS.

The output of the sampler and data-hold is, then, from Figure 6.34(b),

 Xp1v2 = XS1v2H1v2 = a
∞

n = -∞
x1nTS2e-jnTSv # TS sinc1pv/vS2e-jpv/vS. (6.24)

The magnitude frequency response of the zero-order hold is plotted in Figure 6.35. 
From (6.23) and Figure 6.35, it is seen that the zero-order hold is not a close approx-
imation of an ideal low-pass filter. Frequency components of XS1v2 above vS/2 
will be diminished by the zero-order hold, but not eliminated. Additional low-pass 
filtering can be used to make xp1t2 a closer approximation of x1t2.

The sampler and data-hold can be modeled as shown in Figure 6.36. The 
 device shown as a switch is called an ideal sampler. The output of the ideal sampler 
is the train of impulse functions xS1t2 and is not a physical signal. However, the 
input x1t2 and the output xp1t2 of the overall system are physical signals, and the 
complete system accurately models the physical hardware.

Quantization error

In a system such as the one shown in Figure 6.34(a) each sample value in the signal 
designated x1nTs2 must be converted into a binary number so that it can be pro-
cessed in a digital computer. In the conversion from a sample value to its binary 



representation there generally are errors introduced because the binary number can 
only represent a discrete number of values. If N binary bits are used to represent 
each sample value, then the binary number must equal one of 2N discrete values. 
The error created by this conversion is called quantization error. For example, if 
the binary signal out of an analog-to-digital converter is represented by 8 bits, the 
 output-signal amplitude can assume only 28 = 256 different values. Figure 6.37 
shows the effect of converting sample values into binary numbers using three bits, 
so that only 23 = 8 different levels are used to represent sample values ranging from 
-10 volts to 10 volts. Because the voltage range of the sample values is 20 volts, the 
binary signal consists only of values that are integer multiples of 20/8 = 2.5 volts. 
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In the plot shown in Figure 6.37, data 1 represents the sampled values and data 2 
indicates the discrete-amplitude sequence of 3-bit binary numbers used to represent 
the measured data.

Usually to simplify the introduction of concepts to be considered, we will not 
consider quantization errors. Quantization error, or quantization noise, is an impor-
tant factor in digital systems design, but is beyond the scope of this text.

In summary, the representation of the physical sampling and signal- 
reconstruction system of Figure 6.34(a) by the model of Figures 6.33(b) and 6.34 
is mathematically valid. Hence, we may use the impulse model for the sampling 
of physical signals for the case that the sampling results in the number sequence 
x1nTS2, n = 0, {1, {2, {3, c. The signal can be reconstructed as shown in 
Figure 6.32(b). The device that reconstructs sampled signals in this manner is called 
a zero-order hold. Other types of data holds can be constructed [2] and are equally 
valid for the modeling process. The only change in Figure 6.36 is in the transfer 
function for the data hold. Further discussion of these data holds is beyond the 
scope of this book.

 6.6 sInusoIdal amplItude modulatIon

Modulation is the process used to shift the frequency of an information signal so 
that the resulting signal is in the desired frequency band. There are several rea-
sons why it is important to do so. One reason is that the human voice is dominated 
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by frequency components of less than 1 kHz. If we were to attempt to transmit 
a human voice signal by the propagation of electromagnetic (radio) waves, we 
would encounter several problems. Two of the more obvious problems are as 
follows:

 1. Antenna length requirement. For efficient radiation, an antenna must  
be longer than l/10. l is the wavelength of the signal to be radiated,  
given by

 l = c>fc,

where c is the speed of light and fc is the frequency of the signal. For a  signal 
of 1 kHz,

 l = 3 * 1081m/s2/1 * 10311/s2 = 300 km.

Therefore, the antenna for this system must be more than 30 km in length! 
After considering the wavelength formula, it becomes apparent that by in-
creasing the frequency of the signal, we can decrease the antenna length 
required.

 2. Interference from other signals. If two communicators wished to transmit 
messages at the same time in the same geographical area, using the base-
band frequency, there would be interference between the two signals. To 
avoid this, the two signal sources can be separated in frequency by shifting 
each information signal to an assigned frequency band. In the United States, 
frequency band allocation is controlled by the Federal Communications 
Commission (FCC). Table 6.1 shows a few of the FCC frequency band 
assignments.

It can be seen that a solution to both of these problems is to shift the frequency 
of the information signal to some higher, assigned frequency for radio transmission. 
The process for doing this is called modulation.

Table 6.1  FCC Frequency Band Assignments

Frequency Band designation typical uses

3–30 kHz Very low frequency (VLF) Long-range navigation
30–300 kHz Low frequency (LF) Marine communications
300–3000 kHz Medium frequency (MF) AM radio broadcasts
3–30 MHz High frequency (HF) Amateur radio; telephone
30–300 MHz Very high frequency (VHF) VHF television; FM radio
0.3–3 GHz Ultrahigh frequency (UHF) UHF television; radar
3–30 GHz Superhigh frequency (SHF) Satellite communications
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modulation.

We consider some of the commonly used methods of modulation. Probably 
the simplest method in concept is double-sideband, suppressed-carrier, amplitude 
modulation (DSB/SC-AM). This modulation technique will be studied first.

DSB/SC-AM is accomplished by multiplying the information (message) sig-
nal, m1t2, by a sinusoidal signal called the carrier signal, c1t2, which is at the desired 
frequency for efficient radio transmission. This process is illustrated in Figure 6.38. 
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Figure 6.38(d) shows the signal out of the multiplier circuit. It is simply a cosine 
wave with the frequency of c1t2 and with the amplitude varying directly with the 
information signal m1t2:

 x1t2 = m1t2c1t2 = m1t2 cos1vct2.

Using Euler’s identity for the cosine wave, we write this as

  x1t2 = m1t2 * 1
2[e jvct + e-jvct]

  = 1
2 m1t2e jvct + 1

2m1t2e-jvct.

Using the frequency-shifting theorem of the Fourier transform (5.18), we write the 
frequency spectrum of the modulated signal as

 X1v2 = 1
2[M1v - vc2 + M1v + vc2]. (6.25)

The magnitude frequency spectra of m1t2 and x1t2 are shown in Figure 6.39. 
It can be seen that X1v2 contains the spectral distribution of M1v2, except that 
the magnitude is divided by 2 and centered about vc and -vc, rather than all being 
centered about v = 0.

A

(a)

M(  )�

��  B��  c�   B�   c�

�  c� �

(b)

X(  )�

A
2

�  c �   B� ��  c �   B� �   c�   c �   B� �  c �   B� �

Figure 6.39  The frequency spectrum of the DSB/SC-AM signal.
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 example 6.12 matlaB program to generate a dsB/sc-am signal and frequency spectrum

The following MATLAB program generates a DSB/SC-AM signal and its frequency 
spectrum:

% This MATLAB program generates a DSB/SC-AM signal and
% its Fourier transform using symbolic math.
%
% Define symbolic variables to be used.

syms t w

% generate the message signal m(t)=2cos(20pit)+sin(4pit)
'The message signal is:'
m= 2*cos(20*pi*t) + sin(4*pi*t)

% modulate a carrier signal, cos(200pit), with m(t).
'The DSB/SC modulated signal at carrier frequency 100pi (rad/s) is:'

c = m.*cos(100*pi*t)

% use the symbolic “fourier” function to calculate the Fourier
% transform of the modulated signal.
'The Fourier transform of the DSB/SC signal is:'
Cw = fourier(c)

The following MATLAB program generates and plots a DSB/SC-AM signal and its  frequency 
spectrum numerically:

% This MATLAB program generates and plots a DSB/SC-AM signal and
% its frequency spectrum numerically.

% generate a time vector of 256 elements in .01s steps.
t = .01*(1:256);

% generate the message signal m(t)=2cos(20pit)+sin(4pit)
m= 2*cos(20*pi*t) + sin(4*pi*t);
%Display the message signal

subplot(3,1,1), plot(t,m), title('The message signal m(t)'),grid

% modulate a carrier signal, cos(200pit), with m(t).

c = m.*cos(100*pi*t);

%Display the message signal

subplot(3,1,2), plot(t,c), title('DSB/SC-AM Signal'), grid

% use the fft function to approximate the Fourier

% transform of the modulated signal.

CF = fft(c,256);

%generate a frequency vector of 256 elements.

f = 2*pi*(1:256)/(256*.01);

% plot the magnitude spectrum of the modulated signal

%Display the message signal

subplot(3,1,3), plot(f, abs(CF)), title('DSB/SC-AM Frequency 
Spectrum'), grid, grid ■

To make the message suitable for human ears on the receiving end of the com-
munication link, the modulation process must be reversed. This process is called 
demodulation.
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Demodulation can be accomplished in much the same way that the modula-
tion was done. First, the received signal, which we assume to be the same as the 
transmitted signal, x1t2, is multiplied by a “local oscillator” signal. The local oscil-
lator is tuned to produce a sinusoidal wave at the same frequency as the carrier 
wave in the transmitter. Because of this requirement to match the local-oscillator 
frequency to the carrier frequency, this demodulation technique is classified as syn-
chronous detection. As shown in Figure 6.40(a),

 y1t2 = x1t2cos1vct2.
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Again using Euler’s identity and the frequency-shifting property of the Fourier 
transform, we find that

 Y1v2 = 1
2[X1v - vc2 + X1v + vc2].

Substituting in X1v2 in terms of M1v2 from (6.25), we have

 Y1v2 = 1
2M1v2 + 1

4M1v - 2vc2 + 1
4M1v + 2vc2,

which is illustrated in Figure 6.40(b). The remainder of the demodulation process is ac-
complished by passing y1t2 through a low-pass filter with an ideal frequency response, 
as shown in Figure 6.40(c). The effect of the filter is to double the magnitude of the 
frequency components of the input signal that are within the passband of the filter, 
-vB F  v F  vB, and to eliminate all frequency components outside the passband. 
The output signal from the filter is, theoretically, an exact reproduction of the informa-
tion signal, m1t2. This can be seen by comparing the frequency spectrum of the de-
modulated signal, Mn 1v2 shown in Figure 6.40(d) with M1v2 shown in Figure 6.39(a).

Another, more commonly encountered type of amplitude modulation is dou-
ble-sideband modulation with a carrier component in the frequency spectrum of the 
modulated signal (DSB/WC). Commercial AM radio broadcasts use this method. 
Figure 6.41 illustrates a technique for DSB/WC-AM modulation. In this method, 
the modulated signal is described mathematically as

 s1t2 = [1 + kam1t2]c1t2, (6.26)

where m1t2 is the message signal and c1t2 is the carrier signal

 c1t2 = Ac cos1vct2.

The amplitude sensitivity, ka, is chosen such that

 1 + kam1t2 7 0

at all times. The modulated signal can be rewritten as

 s1t2 = Ac cos1vct2 + kaAcm1t2 cos1vct2,

and its frequency spectrum is given by

 S1v2 = Ac p[d1v - vc2 + d1v + vc2]

 +
kaAc

2
 [M1v - vc2 + M1v + vc2]. (6.27)

From Figure 6.42 it is seen that the modulated signal is a sinusoidal signal with an 
amplitude that varies in time according to the amplitude of the message signal m1t2.

From (6.27) and Figure 6.42(d), we see that the frequency spectrum of the 
 modulated signal contains the carrier-signal frequency component in addition to the 

m(t)

c(t) � Ac cos    ct�

s(t) � Ac [1 � kam(t)] cos    ct�
� �ka

Figure 6.41  A system for amplitude  
modulation.
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 frequency-shifted message signal. Hence, the nomenclature of this  modulation tech-
nique is double-sideband, with-carrier, amplitude modulation (DSB/WC-AM). Because 
the use of this technique is so widespread, it is often called simply, but less precisely, AM.

The distinct frequency component at the carrier frequency in the AM signal 
contains no information and therefore can be considered a waste of power in the 
transmitted signal. However, the presence of this carrier frequency component 
makes it possible to demodulate and recover the message signal, m1t2, without 
 requiring a “local oscillator” at the receiver to generate a carrier frequency signal as 
was described for DSB/SC-AM.

 example 6.13 matlaB program to generate a dsB/Wc-am signal and frequency spectrum

The following MATLAB program generates a DSB/WC-AM signal and its frequency 
 spectrum:

This MATLAB program generates a DSB/WC-AM signal and displays it
in both the time and frequency domain.

% First, generate a time vector of N discrete times.
N=159;
dt=0.0001*2*pi;
t=dt*(1:N);

% Generate the message signal m(t)=3sin(500t)
m=3*sin(500*t);

%Display the message signal
subplot (2,2,1), plot(t,m), title ('The message signal m(t)'),grid

%Generate the carrier signal c(t)=1cos(1500t)
c=cos(1500*t);

% Generate the amplitude modulated signal, x(t)=[1+km(t)]c(t),
% using a modulation index of ka=0.3
ka = 0.3;
x=(1+ka*m).*c;

%Plot the DSB/WC-AM signal

subplot(2,2,2), plot(t,x), title('DSB/WC-AM Signal'),grid

% Use the fft function (explained in Chapter 12) to approximate
% the Fourier transform of the signals.
Mw=fft(m);
Cw=fft(c);
Xw=fft(x);
%Generate a frequency vector.
limw = 20;
w=2*pi*(0:2*limw)/(N*dt);
%
% Prepare the frequency spectra data for plotting (the magnitude
% is adjusted to approximate the weight of the impulses in the
% Fourier transform)
M=zeros(size(w));
X=zeros(size(w));
for n=1:length(w)
       M(n)=2/N*pi*abs(Mw(n));
       X(n)=2/N*pi*abs(Xw(n));
end
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% Display the magnitude frequency spectrum of m(t).
subplot(2,2,3), stem(w,M), xlabel('Frequency Spectrum of
m(t)'),grid

% Display the magnitude frequency spectrum of x(t).
subplot(2,2,4), stem(w,X), xlabel('Frequency Spectrum
of x(t)'),grid ■

Frequency-division multiplexing

As stated previously, commercial AM radio is an example of sinusoidal amplitude 
modulation. It is also an example of frequency-division multiplexing. Frequency-
division multiplexing allows the transmission of multiple signals over a single me-
dium by separating the signals in frequency.

Frequency-division multiplexing is illustrated in Figure 6.43. This figure shows 
a frequency band with three modulated signals representing three DSB/SC ampli-
tude modulated signals.

It is assumed that each transmission Yi1v2, i = 1, 2, 3, is assigned a carrier 
frequency that is sufficiently separated from the adjacent (in frequency) carrier fre-
quencies, to prevent the signals from overlapping in the frequency domain.

Figure 6.43 shows three modulated signals at the carrier frequencies of vc1, vc2, 
and vc3. Each signal is represented with a different frequency spectrum to differen-
tiate clearly among the three signals. The three modulation systems are as shown 
in Figure 6.44. The three modulating signals are denoted as x11t2, x21t2, and x31t2; 
the modulated signals are y11t2, y21t2, and y31t2. The frequency spectra of the three 
signals Y11v2, Y21v2, and Y31v2 are shown in Figure 6.43. The three signals appear 
simultaneously in time, but are separated in frequency.
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Figure 6.43  Frequency-division  
multiplexed signals.

x1(t)

x2(t)

x3(t)

y1(t)

y2(t)

y3(t)

cos    c1t�

�

w(t)
� �

�

cos    c2t�

cos    c3t�

Figure 6.44  System for frequency-division 
multiplexing.



318 Applications of the Fourier Transform    Chap. 6

The information signals are recovered at the receiving end by bandpass filters. 
The first signal x11t2 requires a bandpass filter with the center frequency of vc1 
and a bandwidth that is both sufficiently wide to recover yn11t2 and sufficiently nar-
row to reject the other signals. This filtering is illustrated in Figure 6.45 by H11v2, 
and yn11t2 is approximately equal to y11t2 for practical filtering. After the three sig-
nals are separated at the receiving end, the information signals can be recovered by 
 synchronous demodulation, as described earlier. Figure 6.45 depicts synchronous 
demodulation. In this figure, xn11t2 is approximately equal to x11t2. For ideal filter-
ing, yn11t2 = y11t2 and xn11t2 = x11t2.

It is seen that a bandpass filter that can be tuned (the center frequency 
can be changed) is required for a receiver to allow the direct selection of one 
of several  frequency-multiplexed signals. Tunable bandpass filters are difficult 
to implement. This problem is averted for commercial AM radio receivers by 
superheterodyning. The principle of the superheterodyne receiver is shown in 
Figure 6.46. Rather than a tunable bandpass filter, a tunable oscillator is used to 
shift the information from the carrier frequency to a chosen, constant frequency 
vi1t2 = 2pfi. This frequency is called the intermediate frequency. For commer-
cial AM radio, the standard intermediate frequency is fi = 455 kHz. The receiver 
can then employ fixed bandpass filters with a center frequency of vi. For com-
mercial AM radio receivers, two or more cascaded stages of bandpass filtering 
are usually used, where each stage is a second-order bandpass filter. The in-
formation signal is demodulated from the  intermediate-frequency signal, which 
has the same frequency band, regardless of the carrier frequency of the selected 
incoming signal.

w(t)
�

cos    c1(t)�

H1(  )�

H1(  )�

y1(t)ˆ
H2(  )�

x1(t)ˆ

�   c1��   c1� 0

1

H2(  )�

�0

2

Figure 6.45  System for demodulation of  
FDM signals.
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 6.7 pulse-amplItude modulatIon

In the previous section, we considered amplitude modulation with sinusoidal carrier 
signals. In this section, we present a modulation procedure, called pulse-amplitude mod-
ulation (PAM), based on a different type of carrier signal. The carrier signal is a train 
of rectangular pulses rather than a sinusoid. The sinusoidal carrier signal c1t2 used in 
Section 6.6 is shown in Figure 6.47(a). Figure 6.47(b) shows a pulse carrier signal p1t2 
as used in pulse-amplitude modulation, with the frequency of the carrier fc = 1/Tc.

A system that implements pulse-amplitude modulation is given in Figure 6.48. 
Note that this system is identical to that presented in Section 6.6 for DSB/SC-AM, 
except that the pulse carrier signal p1t2 is used instead of the sinusoidal carrier sig-
nal, c1t2. A typical natural-top pulse-amplitude-modulated signal y1t2 is shown in 
Figure 6.48(b). We use both the Fourier series and the Fourier transform to analyze 
this system.

The analysis begins with the Fourier series of the pulse train p1t2 shown in 
Figure 6.47(b). From Table 4.3, the exponential form of the Fourier series for this 
signal is given by

 p1t2 = a
∞

k = -∞
Cke jkvct, Ck =

T
Tc

 sinc1kvcT/22, (6.28)

Lowpass
filter

Bandpass
filter

y(t) y1(t)

cos [(  c �   1)t]�      �

�

Figure 6.46  A superheterodyne  
demodulator.

c(t)

p(t)

0

(a)

(b)

0

1

�Tc�2Tc 2Tc t

t

Tc

�Tc Tc

T
2�

T
2 Figure 6.47  Carriers signals for amplitude 

modulation.



320 Applications of the Fourier Transform    Chap. 6

where vc = 2p/Tc. The combined trigonometric form of this series is given by

 p1t2 = C0 + a
∞

k = 1
2 � Ck �  cos1kvct + uk2, (6.29)

where uk = arg Ck. It is seen from (6.29) that pulse-amplitude modulation can be 
considered to be a variation of sinusoidal amplitude modulation, with the carrier 
signal a sum of sinusoids rather than a single sinusoid. From (6.29), the modulator 
output in Figure 6.48 is

  y1t2 = x1t2p1t2 = x1t2 cC0 + a
∞

k = 1
 2 � Ck �  cos1kvct + uk2 d

  = C0x1t2 + a
∞

k = 1
2 � Ck � x1t2 cos1kvct + uk2. (6.30)

Next, we assume that x1t2 is bandlimited, as shown in Figure 6.49(a), with X1v2 = 0 
for v 7 vM. This assumption allows us to show in a clear manner the properties of 
pulse amplitude modulation. Just as seen previously for DSB/SC-AM, the effect of 
the multiplications by cos1kvct + uk2 in (6.30) is replication of the frequency spec-
trum X1v2 about the center frequencies {kvc, k = 1, 2, c. This effect is illus-
trated in Figure 6.49(b). The frequency spectrum of the pulse-amplitude-modulated 
signal y1t2 is multiplied by Ck, which is given in (6.28). Hence, the frequency spec-
trum of Y1v2 is that of Figure 6.49(a), multiplied by Ck. The final result is as given 
in Figure 6.49(c). Each replication is an undistorted version of X1v2, because Ck is 
constant for each value of k.

The mathematical derivation of the preceding results will now be given. The 
Fourier transform for p1t2 for both (6.28) and (6.29) is given by

 P1v2 = a
∞

k = -∞
2pCkd1v - kvc2, Ck =

T
Tc

 sinc1kvcT/22, (6.31)
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and the modulated signal is then a convolution in frequency:

 Y1v2 =
1

2p
X1v2*P1v2 = a

∞

k = -∞
CkX1v - kvc2. (6.32)

We see then that each term in Figure 6.49(b) is multiplied by Ck, resulting in 
Figure 6.49(c).

An important application of pulse-amplitude modulation is in the time-division 
multiplexing of signals, which is presented next.

time-division multiplexing

In Section 6.6, we considered frequency-division multiplexing, in which multiple sig-
nals are transmitted simultaneously through the same channel. These signals are 
separated in frequency, but not in time. For this reason, the signals may be recov-
ered with bandpass filters.

Here we consider a second method of multiplexing, which is called time-divi-
sion multiplexing, or simply, time multiplexing. For this procedure, multiple signals 
are transmitted in the same channel, with the signals separated in time, but not in 
frequency. Each signal is pulse-amplitude modulated as described earlier, with no 
overlap in time of the signals.

Figure 6.50(a) illustrates a simple system for the pulse-amplitude modulation 
and time-division multiplexing of three signals. The electronic switches are con-
trolled by the signals s11t2, s21t2, and s31t2, which are depicted in Figure 6.50(b), so 
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Figure 6.49  Frequency spectra for pulse amplitude modulation.



322 Applications of the Fourier Transform    Chap. 6

that the circuit is completed to the three modulation signals, in order. At the receiv-
ing end of the transmission, another electronic switch, which is synchronized with the 
multiplexer switch, is used to demultiplex (separate) the time-division-multiplexed 
signal into three separate signals. The signal yi1t2 is the pulse-amplitude-modulated 
signal of xi1t2, i = 1, 2, 3. The demodulation of yi1t2 is accomplished with a low-pass 
filter, as shown in Figure 6.50(c). Note that no bandpass filters are required in the de-
modulation of pulse-amplitude-modulated signals. Note also that from Figure 6.49, 
each signal must be bandlimited such that vM 6 vc/2.

The telephone system in the United States uses time-division multiplexing. 
As shown in Figure 6.51, the rate at which each conversation is sampled is 8 kHz. 
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Figure 6.50  A system for time-division multiplexing.
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Audio signals (human conversations) have a spectrum that runs to approximately 
20 kHz. To ensure proper separation of the pulse-modulated signal in the frequency 
domain, these conversations are passed through a bandpass filter with a lower cut-
off frequency of 200 Hz and an upper cutoff frequency of 3.2 kHz. This filtering 
degrades the audio quality of telephone conversations. However, the frequency 
limitation allows the information content of the voice signal to be used to amplitude 
modulate a train of rectangular pulses with a relatively long period. The PAM signal 
can then be interleaved in time with PAM signals from several other conversations 
for transmission over a single communication circuit.

Flat-top pam

Thus far, we have produced the PAM signal by multiplying a carrier signal made up 
of a train of rectangular pulses by an analog message signal. We now study another 
process for producing a PAM signal. In this case, we use discrete sampled values of 
the message signal to modulate the carrier signal. The result will be an amplitude-
modulated train of rectangular pulses known as flat-top PAM. Practically, a flat-top 
PAM signal can be produced by an electronic sample-and-hold circuit such as that 
shown in Figure 6.52(a) [6].

The analog signal to be sampled is applied to the input terminals. A gating 
pulse causes the FET (field-effect transistor) sampling switch to conduct briefly, 
but long enough for the capacitor to charge up to the voltage level of the input 
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Figure 6.51  Pulse-amplitude modulation with TDM.
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signal. Once the gating pulse is terminated, the sampling switch is “closed,” and the 
capacitor remains charged at a constant voltage level until a second gating pulse 
causes the discharging switch to conduct and provide a low-resistance discharge 
path. The output signal can be approximated as a train of rectangular pulses, as 
shown in Figure 6.52(b).

For mathematical analysis of flat-top PAM signal generation, we can model 
the sample-and-hold circuit as a linear system that has the impulse response shown 
in Figure 6.53:

 h1t2 = rectJ t - T/2
T

R .

The input to the linear system is then modeled as the sampled-data signal (5.40):

 mS1t2 = m1t2dT1t2 = a
∞

n = -∞
m1nTs2d1t - nTs2.

Sampling
switch

Sampling gate
pulse

Sampling gate pulse
applied to

sampling switch

Discharging
gate pulse

Discharging
switch

Discharge gate pulse
applied to discharging switch

�

�

m(t)

m(t)

(a)

(b)

�

�

s(t)

s(t)

C

0 T Ts 2Ts 3TsTs �T t

Figure 6.52  A flat-top pulse-amplitude 
modulation system.
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The output signal is given by

 s1t2 = h1t2 * ms1t2 = h1t2 * m1t2 a
∞

n = -∞
d1t - nTs2.

The frequency spectrum of the output signal can be determined by finding the 
Fourier transform of the last equation by the convolution property:

  S1v2 = H1v2J 1
2p

 M1v2 * a
∞

n = -∞
vsd1v - nvs2 R

  =
1
TS

 H1v2J a
∞

n = -∞
M1v - nvs2 R

  =
T
Ts

 sinc1vT/22J a
∞

n = -∞
M1v - nvs2 R e-jvT/2.

This frequency spectrum is illustrated in Figure 6.54. The reader is encouraged to 
compare the frequency spectrum of the flat-top PAM signal with that of the natural-
top PAM signal shown in Figure 6.49(c).

Notice that the original continuous-time signal can be approximately recov-
ered by filtering the sampled signal with a low-pass filter with cutoff frequency 
vM 6 vc 6 vs/2.
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Figure 6.54  Frequency spectra for flat-top PAM.
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proBlems

section 6.1

 6.1. (a) Show mathematically that the ideal low-pass filter is not physically realizable.
(b) Show mathematically that the ideal high-pass filter is not physically realizable.
(c) Show mathematically that the ideal bandpass filter is not physically realizable.

 6.2. As illustrated in Figure P6.2, the periodic square wave is the input signal to an ideal 
low-pass filter with the frequency spectrum shown. Find the output signal if the input 
signal has a period of

(a) 40 ms
(b) 20 ms

summary

In this chapter, we look at several ways that the Fourier transform can be applied 
to the analysis and design of signals and systems. The applications considered here 
demonstrate the use of the Fourier transform as an analysis tool.

We consider the duration–bandwidth relationship and find that the band-
width of a signal is inversely proportional to its time duration. We see that if a signal 
changes values rapidly in time, it has a wide bandwidth in frequency.

Four basic types of ideal filters are presented. Applications are shown for the 
concepts of the ideal low-pass, ideal high-pass, ideal bandpass, and ideal bandstop 
filters. Although these ideal filters are not physically realizable, it is shown that the 
concept of an ideal filter can simplify the early stages of a system analysis or design.

Butterworth filters are presented as standard filter designs that provide physi-
cally realizable approximations of ideal filters. Examples show how these filters can 
be realized by electrical circuits.

Signal reconstruction is presented as an application of filtering and as the pro-
cess of convolving the sample-data signal with an interpolating function.

Two techniques of sinusoidal modulation (DSB/SC-AM and DSB/WC-AM) 
and two types of pulse-amplitude modulation (natural and flat-top) are presented 
to demonstrate applications of the Fourier transform to the study of communication 
systems and signals.

See Table 6.2.

Table 6.2  Key Equations of Chapter 6

equation title equation number equation

Fourier transform of sampled signal (6.22) XS1v2 = a
∞

n = -∞
x1nTS2e-jnTSv

Frequency spectrum of  
 cosine-modulated signal

 
(6.25) X1v2 = 1

2[M1v - vc2 + M1v + vc2]
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(c) 30 ms
(d) 15 ms
(e) 10 ms
(f) 7.5 ms

Sketch each of the output signals.

Ideal low-
pass filter 0

1
y(t)x(t)

x(t)

0

1

T 2T t

�180� 180� �

�H(  )��

T
4

T
4�

Figure P6.2  

 6.3. You are given an input signal x1t2, which is plotted in Figure P6.3. You are given two 
different filters: One is a low-pass filter and one is a high-pass filter. The input signal 
x1t2 is filtered with each of these two filters, and the two  outputs are also plotted in 
Figure P6.3.

(a) Is Filter A a low-pass or high-pass filter? Explain your answer.
(b) Is Filter B a low-pass or high-pass filter? Explain your answer.
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 6.4. Consider a system where the signal X1v2 as shown in Figure 6.8(a) is applied as the 
input to a bandpass filter with lower cutoff frequency vL = 0.6p krad/s and upper 
 cutoff frequency vU = 1.4p krad/s. Write a mathematical expression for the filter’s 
output, y1t2.

section 6.2

 6.5. Calculate the frequency response of the circuit shown in Figure P6.5 and determine 
what type of ideal filter is approximated by this circuit.

vi(t) vo(t)

� �

� �

CL

R

Figure P6.5  

 6.6. Calculate the frequency response of the circuits shown in Figure P6.6(a), (b), and (c) 
and determine what type of ideal filter is approximated by each circuit.
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 6.7. Show mathematically that the circuit shown in Figure 6.12(a) is a second-order 
Butterworth filter.

 6.8. Find component values for the circuit shown in Figure 6.12(a) that make it a second-
order Butterworth filter with a 3-dB bandwidth of

(a) 10 kHz;
(b) 1 kHz.

 6.9. Design a high-pass Butterworth filter with a lower half-power frequency of 1 kHz by 
modifying the circuit of Figure 6.12(a).

 6.10. The circuit shown in Figure P6.10 is a Butterworth filter.

(a) Determine the order of the filter.
(b) What is the 3-dB bandwidth of the filter if R = 10 kΩ and C = 10 nF?
(c) Design a low-pass Butterworth filter with a cut-off frequency of 1 kHz by modify-

ing the circuit of Part (b).
(d) Design a high-pass Butterworth filter with a cutoff frequency of 20 kHz by modify-

ing the circuit of Figure P6.10 and choosing appropriate component values.

vi(t) 1.414 C

R

vo(t)

� �

�
�

R
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�
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Figure P6.10  
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 6.11. Use MATLAB and SIMULINK to show y1t2 if the ideal low-pass filter of Problem 
6.2 is replaced by an RC low-pass (first-order Butterworth) filter with vc = 200p. (See 
Example 6.6.)

 6.12. Use MATLAB and SIMULINK to simulate an electrical power supply. The input sig-
nal can be generated as a full-wave rectified sinusoid. The power supply voltage is to be 
generated by filtering the rectified sinusoid. See Figure P6.12.

(a) Let vS1t2 = 110 cos1120pt2 use a second-order Butterworth filter.
(b) Let vS1t2 = 110 cos1120pt2 use a fourth-order Butterworth filter.
(c) Draw Bode plots of the frequency response of the two filters of Parts (a) and (b).
(d) Plot the output voltage of each of the filters of Parts (a) and (b).
(e) Calculate the magnitude and phase of the frequency component of the output of 

each filter of Parts (a) and (b) at v = 120p1rad/s2.
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 6.14. Find the absolute bandwidth of each of the following signals:

(a) 200 sinc1200t2
(b) 200 sinc1200t2cos1600t2
(c) sinc21200t2
(d) sinc21200t2cos1600t2

 6.15. Determine the bandwidth for each of the following signals and state which of the band-
width definitions (absolute, half-power, first-null, or null-to-null) the bandwidth that 
you have found is based upon.

(a) rect1t/2002
(b) e-10tu1t2
(c) 20 sinc120t2
(d) 20 sinc140p2cos1200pt2
(e) rect1100pt2cos12000pt2

section 6.4

 6.16. Find the minimum sampling frequency that can be used to obtain samples of each sig-
nal listed below. Assume ideal system components.

(a) v1t2 = sin1200t2
(b) r1t2 = rect[1200t]
(c) w1t2 = sin1400t2 - 4 cos1100pt2 + 30 cos1200pt2
(d) x1t2 = 25 sinc1250t2
(e) y1t2 = 25 sinc21250t2
(f) z1t2 = 7 cos1200pt2u1t2

 6.17. The continuous signal m1t2 = 2 cos1400pt2 + 6 cos1900pt2 is sampled using an ideal 
sampling function.

(a) Sketch the frequency spectrum of the sampled-data signal if TS = 11ms2.
(b) Sketch the frequency spectrum of the sampled-data signal if TS = 0.51ms2.
(c) Determine the minimum satisfactory sampling frequency.

section 6.3

 6.13. (a)  Find and compare the first-null bandwidth of the three triangular pulses shown in 
Figure P6.13.

(b) What general conclusions can be drawn from the time–bandwidth relationship of 
these signals?
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 6.18. (a)  Plot the ideally sampled signal and its frequency spectrum for the signal of 
Problem 6.16(c) for sampling frequencies of 50, 150, and 250 Hz.

(b) Discuss the suitability of these sampling frequencies for the ideal system.
(c) Repeat Parts (a) and (b) for the signal of Problem 6.16(d).
(d) Repeat Parts (a) and (b) for the signal of Problem 6.16(e).

 6.19. The signal x1t2 with Fourier Transform X1v2 = tri1 v
vc2 is sampled with three differ-

ent impulse trains with periods T1 = p
vc, T2 = p

2vc
, and T3 = 2p

vc  . Find and sketch the 
sampled spectrum for each case. Which case or cases experience aliasing?

 6.20. The Fourier transform X1v2 of a signal x1t2 appears in Figure P6.20. The signal x1t2 
is sampled with an impulse train p1t2 to form a new signal xn1t2 = x1t2p1t2. The 
Fourier transform of p1t2 is P1v2 = 4Σk = - ∞

∞ d1v - 4k2. Sketch the Fourier trans-
form of xn1t2.
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 6.21. A signal x1t2 = cos 2p4 t is sampled with a periodic impulse train p1t2 = 1
pΣk = - ∞

∞ d1t - kT2 
to form a signal y1t2 = x1t2p1t2.

(a) What constraint must be placed on T to avoid aliasing in the sampled signal y1t2?
(b) The signal x1t2 is now sampled with a new periodic impulse train p=1t2  =

1
p Σk = -∞

∞ d1t - k2 to form a new signal z1t2 = x1t2p=1t2. Sketch Z1v2, the Fourier 
transform of z1t2.

section 6.5

 6.22. A signal x1t2 = cos13p
4 t2 is sampled with an impulse train p1t2 =  1

p Σk = -∞
∞ d1t - 2k2 

to form a signal y1t2 = x1t2p1t2.

(a) Is the sampling theorem violated? Why or why not?
(b) The signal y1t2 is filtered with a filter A1v2 to form Yn 1v2 = Y1v2A1v2, where

 A1v2 = e1, �v �  …  p
0, �v � 7 p.

 Find yn1t2, the inverse Fourier transform of Yn 1v2.
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 6.23. Two signals with amplitude frequency spectra shown in Figure P6.23(a) and (b) are to 
be sampled using an ideal sampler.

(a) Sketch the spectra of the resulting signals for �v � F 500p rad/s when sampling 
periods of 10, 25, and 50 ms are used.

(b) Which of the sampling frequencies is acceptable for use if the signal of Figure 6.23(a) 
is to be reconstructed using an ideal low-pass filter?

(c) Which of the sampling frequencies is acceptable for use if the signal of 
Figure 6.23(b) is to be reconstructed using an ideal low-pass filter?

1
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(a)

�100 �

F1(  )�

1

150
(b)

�150 �

F2(  )�

Figure P6.23  

 6.24. The signal f1t2 = cos1150pt2 is sampled with an impulse train with period T = 8 ms.

(a) Find and sketch the sampled spectrum.
(b) Can the signal be reconstructed by using a low-pass filter? Explain your answer.

 6.25. An input signal x1t2 = cos v0t is sampled using an ideal sampling function with 
T = 8p

7v0
 . The sampled signal is then filtered with an ideal low-pass filter H1v2 =

recta v

3v0
 b  to form an output signal y1t2.

(a) Sketch the Fourier Transform of the sampled signal.
(b) Determine y1t2. Has aliasing occurred?

 6.26. An input signal sin vot is sampled with an ideal sampling function and a signal is recon-
structed from its samples using an ideal low-pass filter with vc = vs. For each of the 
following cases, what frequency would the reconstructed signal have? Verify this using 
MATLAB.

(a) fo = 50 Hz and  fs = 90 Hz.
(b) fo = 50 Hz and  fs = 120 Hz.
(c) fo = 100 Hz and  fs = 150 Hz.
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 6.27. Consider the system shown in Figure P6.27.

(a) Give the constraints on x1t2 and T such that x1t2 can be reconstructed (approxi-
mately) from xp1t2.

(b) Give the frequency response H1v2 such that y1t2 = x1t2, provided that x1t2 and 
T satisfy the constraints in Part (a).

(c) Let x1t2 = cos1200pt2. If T = 0.004 s, list all frequency components of xp1t2 less 
than 700 Hz.

(d) Let x1t2 = cos12pfxt2. Find a value of fx ≠ 100 Hz such that the same frequencies 
appear in xp1t2 as in Part (c).
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section 6.6

 6.28. For the system of Figure P6.28, sketch A1v2, B1v2, C1v2, and Y1v2. Show all ampli-
tudes and frequencies.

 6.29. For the system of Figure P6.29, sketch A1v2, B1v2, C1v2, and Y1v2. Show magni-
tudes and frequencies.
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 6.30. For the system of Figure P6.30, with c11t2 = c21t2 = cos1vct2, sketch Y1v2 and 
Z1v2. Identify all amplitudes and frequencies of importance.
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 6.31. For the system of Figure P6.30, with c11t2 = cos1vct2 and c21t2 = sin1vct2, sketch 
Y1v2 and Z1v2. Identify all amplitudes and frequencies of importance.

 6.32. A signal m1t2 = 5 cos11000pt2 modulates a sinusoidal carrier signal c1t2 = cos1104pt2 
using DSB/SC-AM modulation techniques.

(a) Sketch the resulting modulated signal, x1t2 = m1t2c1t2.
(b) Derive the frequency spectrum of the modulated signal.
(c) Sketch the frequency spectrum, X1v2.

 6.33. A signal m1t2 = 5 cos11000pt2 is used to modulate a carrier signal c1t2 = cos1104pt2 
using DSB/WC-AM modulation techniques with ka = 0.18.

(a) Sketch the resulting modulated signal.
(b) Derive the frequency spectrum of the modulated signal.
(c) Sketch the frequency spectrum, S1v2.

 6.34. The signal with the frequency spectrum shown in Figure P6.34(a) is used to pulse 
 amplitude modulate the signal p1t2 shown in Figure P6.34(b). Sketch the modulated 
signal’s magnitude frequency spectrum.

 6.35. The system shown in Figure P6.35 is used to time-division multiplex a number of PAM 
signals. The pulses are obtained by sampling audio signals containing maximum fre-
quencies of 3,400 Hz, with a sampling rate of 8 kHz.

(a) If the pulses are 10 ms in duration, how many PAM signals can be multiplexed?
(b) If the pulses are 10 ms in duration, what is the first-null bandwidth of the TDM 

signal?
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 6.36. Find and sketch the frequency spectrum of the flat-topped PAM signal result-
ing from modulating the signal p1t2, shown in Figure P6.34(b), with a signal 
m1t2 = 10 sinc2120pt2.
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Figure P6.35  
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In this chapter, we study the Laplace transform, which is one of several important 
transforms used in linear-system analysis. One purpose of a transform is to con-
vert operations of one type into operations of a different type. These different 
types of operations can offer certain advantages; for example, certain characteris-
tics of the original operations may be more evident from the transformed opera-
tions. Another advantage may be that the transformed operations are simpler to 
perform.

The Laplace transform offers significant advantages. When possible, we model 
continuous-time physical systems with linear differential equations with constant 
coefficients (when such models are sufficiently accurate). The Laplace transform of 
these equations gives us a good description of the characteristics of the equations 
(the model) and, hence, of the physical system. In addition, the transformed dif-
ferential equations are algebraic and, hence, are easier to manipulate; in particular, 
the transformed equations are easier to solve. When we use the Laplace transform 
to solve differential equations, the solutions are functions of the Laplace-transform 
variable s rather than of the time variable t. As a consequence, we must have a 
method for converting from functions of s back to functions of t; this procedure is 
called the inverse Laplace transform.

Several important properties of the Laplace transform are derived in this 
chapter. These derivations are not mathematically rigorous (see Ref. 1, p. 8); we 
have chosen to not include rigorous mathematical proofs. Hence, for some proper-
ties, certain constraints apply that are not evident from the derivations. However, 
these constraints will be stated; see Refs. 1 through 4 for rigorous mathematical 
derivations related to all aspects of the Laplace transform.

As a final point, we state once again that all mathematical procedures apply 
directly to the models of physical systems, not to the physical systems themselves. 
The relevancy of mathematical results to a particular physical system depends on 
the accuracy of the model. No equation models a physical system exactly; hence, we 
speak only of a model having sufficient accuracy. The term sufficient depends on the 
particular application.

The LapLace Transform7
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 7.1 DefInITIons of LapLace Transforms

We begin by defining the direct Laplace transform and the inverse Laplace trans-
form. We usually omit the term direct and call the direct Laplace transform simply 
the Laplace transform. By definition, the (direct) Laplace transform F1s2 of a time 
function is f1t2 given by the integral

 lb[ f1t2] = Fb1s2 = L
∞

- ∞
f1t2e-stdt, (7.1)

where lb[ # ] indicates the Laplace transform. Definition (7.1) is called the bilateral, or 
two-sided, Laplace transform—hence, the subscript b. Notice that the bilateral Laplace 
transform integral becomes the Fourier transform integral if s is replaced by jv. The 
Laplace transform variable is complex, s = s + jv. We can rewrite (7.1) as

 F1s2 = L
∞

∞
f1t2e - 1s + jv2tdt = L

∞

- ∞
1f1t2e-st2e-jvdt

to show that the bilateral Laplace transform of a signal f1t2 can be interpreted as 
the Fourier transform of that signal multiplied by an exponential function e-st.

The inverse Laplace transform is given by

 f1t2 = l-1[F1s2] =
1

2pj L
c+j ∞

c - j ∞
F1s2est ds, j = 1-1, (7.2)

where l-1[ # ] indicates the inverse Laplace transform. The reason for omitting the 
subscript on F1s2 in the inverse transform is given later. The parameter c in the 
 limits of the integral in (7.2) is defined in Section 7.3. Equation (7.2) is called the 
complex inversion integral. Equations (7.1) and (7.2) are called the bilateral Laplace-
transform pair. The bilateral Laplace transform is discussed more thoroughly in 
Section 7.8.

We now modify Definition (7.1) to obtain a form of the Laplace transform 
that is useful in many applications. First, we express (7.1) as

 lb[ f1t2] = Fb1s2 = L
0

- ∞
f1t2e-stdt + L

∞

0
f1t2e-st dt. (7.3)

Next, we define f1t2 to be zero for t 6 0, such that the first integral in (7.3) is zero. The 
resulting transform, called the unilateral, or single-sided Laplace transform, is given by

 l[ f1t2] = F1s2 = L
∞

0
f1t2e-st dt, (7.4)

where l[ # ] denotes the unilateral Laplace transform. This transform is usually 
called, simply, the Laplace transform, and we follow this custom. We refer to the 
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transform of (7.1) as the bilateral Laplace transform. We take the approach of mak-
ing the unilateral transform a special case of the bilateral transform. This approach 
is not necessary; we could start with (7.4), with f1t2 = 0 for t 6 0, as a definition.

The equation for the inverse Laplace transform, (7.2), is the same for both 
the bilateral and unilateral Laplace transforms, and thus F1s2 is not subscripted. In 
addition, the inverse Laplace transform of the unilateral Laplace transform, (7.4), 
gives the function f1t2 for all time and, in particular, gives the value f1t2 = 0, t 6 0 
[3]. Equations (7.2) and (7.4) form the Laplace-transform pair.

The Laplace-transform variable s is complex, and we denote its real part as s 
and its imaginary part as v; that is,

 s = s + jv.

Figure 7.1 shows the complex plane commonly called the s-plane.
If f1t2 is Laplace transformable [if the integral in (7.4) exists], evaluation of 

(7.4) yields a function F1s2. Evaluation of the inverse transform with F1s2, using the 
complex inversion integral, (7.2), then yields f1t2. We denote this relationship with

 f1t2 ·l F1s2. (7.5)

SIm(s)

Re(s)

� � 0

�

� � 0

� � 0

� � 0

� � 0

� � 0

� � 0

� � 0

�j

Figure 7.1  The s-plane.
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As we see later, we seldom, if ever, use the complex inversion integral (7.2) 
to find the inverse transform, because of the difficulty in evaluating the integral. A 
simpler procedure is presented in Section 7.6.

If f1t2 has a discontinuity at t = ta, the complex inversion integral gives the 
average of the discontinuity; that is,

 f1ta2 =
f1ta

-2 + f1ta
+2

2
, (7.6)

where f1ta
-2 is the limiting value of f1t2 from the left as t approaches ta, and f1ta

+2 
is the limiting value from the right. For example, suppose that f1t2 is the function 
depicted in Figure 7.2, which steps from a value of 5 to a value of 10 at t = 1. Hence, 
f11-2 = 5 and f11+2 = 10; then f(1) in (7.6) is equal to 7.5.

For the unilateral Laplace transform, evaluation of the complex inversion 
 integral (7.2) yields

 l-1[F1s2] = c f1t2, t 7 0
f10+2 >2, t = 0
0, t 6 0

 (7.7)

from (7.6). In (7.7), f10+2 is the limiting value of f1t2 as t approaches zero from the 
right.

Two important properties of the Laplace transform are now demonstrated. 
Consider the function f1t2 = f11t2 + f21t2. The Laplace transform of f1t2 is given by

  l[ f1t2] = l[ f11t2 + f21t2] = L
∞

0
[  f11t2 + f21t2]e-st dt

  = L
∞

0
f11t2e-st dt + L

∞

0
f21t2e-st dt  (7.8)

  = l[ f11t2] + l[ f21t2] = F11s2 + F21s2,

and we see that the Laplace transform of a sum of two functions is equal to the sum 
of the Laplace transforms of the two functions. We extend this property to the sum 

f(t)

10

1

5

0 t

Figure 7.2  Function with a discontinuity.
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of any number of functions by replacing f21t2 in the previous derivation with the 
sum f31t2 + f41t2, and so on.

A second property is derived by considering the Laplace transform of 
f1t2 = af51t2, where a is any constant:

  l[af51t2] = L
∞

0
af51t2e-stdt = aL

∞

0
f51t2e-stdt

  = al[ f51t2] = aF51s2.  (7.9)

Thus, the Laplace transform of a constant multiplied by a function is equal to the 
constant multiplied by the Laplace transform of the function. A transform with the 
properties (7.8) and (7.9) is said to be a linear transform; the Laplace transform is 
then a linear transform. These two properties are often stated as a single equation,

 l[a1 f11t2 + a2 f21t2] = a1F11s2 + a2F21s2, (7.10)

where a1 and a2 are any constants.
Conditions for the existence of the unilateral Laplace transform are now 

given, but not proved. For a given f1t2, if real constants M and a exist such that

 ∙ f1t2 ∙ 6 Meat, (7.11)

for t greater than some finite value t0, f1t2 is called an exponential-order function; 
the unilateral Laplace transform exists if f1t2 is of exponential order [3].

In this section, the unilateral and bilateral Laplace transforms are defined. 
Care is taken in the definitions to reduce possible confusion in the use of the 
 transforms. The definitions are mathematical; hence, we rely heavily on mathema-
ticians for these definitions and for proper use of the transforms, as given in Refs. 
1 through 4.

 7.2 exampLes

In this section, two examples of the derivation of Laplace transforms are presented, 
followed by an example illustrating the use of the Laplace transform.

Before presenting the first example, we recall the unit step function, u1t - t02:

 u1t - t02 = b1, t 7 t0
0, t 6 t0

 . (7.12)

This function is illustrated in Figure 7.3. As stated in Chapter 2, no standard exists 
for assigning the value of u1t - t02 at t = t0; we use the definition of the unit step 
function in Ref. 2 and do not define the value at the instant that the step occurs. 
This reference states that this choice does not affect the Laplace integral (7.4).
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 exampLe 7.1 Laplace transform of a unit step function

The Laplace transform of the unit step function is now derived for the step occurring at 
t = 0. From (7.4) and (7.12),

  l[u1t2] = L
∞

0
u1t2e-stdt = L

∞

0
e-stdt

  =
e-st

-s
2
0

∞

=
-1
s
J lim

tS ∞ 
e-st - 1R .

Hence, the Laplace transform of the unit step function exists only if the real part of s is 
greater than zero. We denote this by

 l[u1t2] =
1
s
, Re1s2 7 0,

where Re1 #2 denotes the real part of 1 #2. We then have the transform pair

 u1t2 ·l 1
s
. (7.13)

 ■

 exampLe 7.2 Laplace transform of an exponential function

We next derive the Laplace transform of the exponential function f1t2 = e-at. From (7.4),

  F1s2 = L
∞

0
e-ate-st dt = L

∞

0
e-1s + a2t dt

  =
e-1s + a2t

- 1s + a2 2 0∞ =
-1

s + a
 J lim

tS ∞ 
e-1s + a2t - 1R .

This transform exists only if Re1s + a2 is positive. Hence,

 l[e-at ] =
1

s + a
, Re1s + a2 7 0,

and we have the Laplace transform pair

 e-at ·l 1
s + a

. (7.14)

u(t � t0)

t0

1

0 t Figure 7.3  Unit step function.
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This transform is verified with the MATLAB program

syms f t a
f = exp (–a*t)
laplace (f) ■

As seen from Examples 7.1 and 7.2, the Laplace transforms of the exponen-
tial function e-at and the unit step function u1t2 have conditions for existence. The 
Laplace transform of any function f1t2, denoted as F1s2, generally has similar con-
ditions for existence. The conditions for existence of a Laplace transform establish 
a region in the s-plane called the region of convergence (ROC). The parameter c in 
the inversion integral (7.2) must be chosen so that the path of integration for (7.2) 
lies in the ROC. Because we do not use (7.2), we generally omit stating the ROC. In 
addition, in the derivations that follow, conditions for the existence of integrals are 
usually not stated; these conditions are evident from the derivation. However, when 
we introduce the bilateral Laplace transform in Section 7.8, the region of conver-
gence of the transforms must be considered.

A short table of Laplace transforms is constructed from Examples 7.1 and 7.2 
and is given as Table 7.1. Note that the functions f1t2 are valid only for t 7 0. From 
the complex-inversion integral (7.2), the inverse Laplace transform of F1s2 has a 
convergence value of zero for t 6 0.

Generally, a table of Laplace transforms is used to find inverse Laplace trans-
forms, rather than the inversion integral of (7.2). In any transform pair

 f1t2 ·l F1s2,

given f1t2, the transform is F1s2; given F1s2, the inverse transform is f1t2. This 
operation requires that the transformation in either direction be unique. [See Ref. 
3 for the rare (and insignificant) exceptions to uniqueness.] For example, in (7.14),

[eq(7.14)] e-at ·l 1
s + a

.

The Laplace transform of e-at is 1> 1s + a2; the inverse transform of 1> 1s + a2 is 
e-at for t 7 0. This procedure of using a table to find inverse Laplace transforms is 
illustrated in Section 7.3.

Table 7.1  Two Laplace Transforms

f  1t 2 , t + 0 F 1x 2
u1t2 1

s

e-at 1
s + a
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We now use the Laplace transform to solve a simple circuit. First, the Laplace 
transform of an operation, that of differentiation, must be derived. We begin with 
the Laplace transform of a function f1t2, (7.4):

[eq(7.4)] l[ f1t2] = L
∞

0
f1t2e-st dt.

We evaluate this integral by parts (see Appendix A), with

 u = f1t2, dv = e-st dt.

Then,

 du =
df1t2

dt
dt, v =

e-st

-s
 .

Hence, in (7.4),

  l[ f1t2] = F1s2 = -
1
s

f1t2e-st 2
0

∞

+ L
∞

0

df1t2
dt

 
e-st

s
 dt

  =
1
s

  [-0 + f102] +
1
s L

∞

0

df1t2
dt

e-stdt.

The second term on the right side in this equation contains the Laplace transform 
of the derivative of f1t2 as a factor, and solving this equation for this factor yields

 lJdf1t2
dt

R = sF1s2 - f102.

Recall that, in general, l-1[F1s2] = f1t2 is discontinuous at t = 0. [See (7.7).] In 
addition, the value of f102 (value at a point) cannot affect the Laplace transform. 
For these reasons, this theorem must be stated in terms of f10+2 (see Ref. 3 for a 
discussion of this point):

 lJdf1t2
dt

R = sF1s2 - f10+2. (7.15)

We now demonstrate the use of the Laplace transform in solving for the cur-
rent in an electric circuit. Consider the RL circuit in Figure 7.4, where V is constant.

�

�

R

V L

i(t)t � 0

Figure 7.4  RL circuit.
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The loop equation for this circuit is given by

 L
di1t2

dt
+ Ri1t2 = Vu1t2, t 7 0,

because the switch is closed at t = 0. The Laplace transform of this equation yields, 
from (7.15) and Table 7.1,

 L[sI1s2 - i10+2] + RI1s2 =
V
s

 , (7.16)

since L[Vu1t2] = VL[u1t2], with V constant. Note that the linearity property of the 
Laplace transform, given in (7.10), is used in deriving (7.16). We know that the ini-
tial current, i10+2, is zero; the current i1t2 is zero for negative time, since the switch 
is open for t 6 0 and the current in an inductance cannot change instantaneously.

Solving the loop equation of (7.16) for I1s2 yields

 I1s2 =
V

s1Ls + R2 =
V/L

s1s + R/L2 
.

The inverse Laplace transform of I1s2 is the desired current i1t2, t 7 0. However, 
the transform for I1s2 is not given in Table 7.1. In cases such as this, we use partial-
fraction expansions (see Appendix F) to express a Laplace transform as a sum of 
simpler terms that are in the table. We can express I1s2 as

 I1s2 =
V/L

s1s + R/L2 =
a
s

+
b

s + R/L
.

The expansion on the right side of this equation is called a partial-fraction expan-
sion, where the values a and b that satisfy this equation are to be found. To find 
these values, we recombine terms on the right side to yield

 I1s2 =
V/L

s1s + R/L2 =
as + aR/L + bs

s1s + R/L2 =
1a + b2s + aR /L

s1s + R /L2  .

Equating numerator coefficients yields

  a + b = 0  6 a  = -b ;

  
aR
L

=
V
L
  6 a =

V
R

 .

Thus, the partial-fraction expansion for I1s2 is given by

 I1s2 =
V/R

s
-

V/R
s + R/L

 .

This result is checked by recombining the terms. Table 7.1 gives i1t2 as

 i1t2 =
V
R

 11 - e-1R>L2t2, t 7 0 .
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The initial condition i10+2 = 0 is satisfied by i1t2. Also, substitution of i1t2 into 
the differential equation satisfies that equation. Thus, we have solved a first-order 
 differential equation via the Laplace transform.

Note the following points from the preceding example:

 1. A differential equation with constant coefficients is transformed into an 
 algebraic equation.

 2. The algebraic equation is solved for l[i1t2] = I1s2, which is a function of 
the Laplace transform variable s.

 3. A table of transforms, rather than the inversion integral of (7.2), is used to 
find the inverse transform.

 4. In general, a partial-fraction expansion is required to expand complicated 
functions of s into the simpler functions that appear in tables of Laplace 
transforms (see Appendix F).

 5. The solution of a differential equation by the Laplace transform does not 
require separate solutions of the complementary functions and the particu-
lar integral (see Appendix E); the general solution is obtained directly.

We expand on these conclusions in the developments of the sections that follow.

 7.3 LapLace Transforms of funcTIons

The unilateral Laplace transform is defined by

[eq(7.4)] l[ f1t2] = F1s2 = L
∞

0
f1t2e-st dt,

and the inverse Laplace transform by

[eq(7.2)] f1t2 =
1

2pj L
c+j ∞

c-j ∞
F1s2est ds.

If f11t2 in (7.4) yields F11s2, then F11s2 in (7.2) yields the same f11t2. The value of c 
in the limits of the integral in (7.2) must be chosen to be real and in the region of con-
vergence of the integral in (7.4). For example, Example 7.1 shows that for the Laplace 
transform of the unit step function u1t2, the region of convergence in the complex 
plane is Re1s2 7 0; hence, in (7.2), c must be greater than zero. The minimum value 
of c for a particular transform is called its abscissa of absolute convergence [3].

As stated previously, we seldom use the integral in (7.2) to determine the in-
verse transform; hence, the region of convergence is of secondary importance to us. 
In fact, we seldom state the region of convergence when we give a Laplace transform. 
However, the reader should be aware that a particular Laplace transform does have 
a region of convergence.
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We now derive several commonly used transforms. First, consider the impulse 
function, which was defined in Section 2.4. From (2.41), the rigorous definition of 
the unit impulse function d1t2 is

 L
∞

- ∞
f1t2d1t - t02 dt = f1t02, (7.17)

with f1t2 continuous at t = t0. From (2.40), a nonrigorous, but very useful, definition 
of the unit impulse function is

 L
∞

-∞
d1t - t02dt = 1  with  d1t - t02 = 0, t ≠ t0. (7.18)

From (7.17), for t0 G 0 (see Ref. 3), the Laplace transform of the unit impulse 
function is given by

 l[d1t - t02] = L
∞

0
d1t - t02e-stdt = e-st 2

t = t0
= e-t0s.

Hence, we have the Laplace transform pair

 d1t - t02 ·l e-t0 s. (7.19)

For the unit impulse function occurring at t = 0 1t0 = 02,

 d1t2 ·l 1.

Next, we derive some other transform pairs. Recall the pair

[eq(7.14)] e-at ·l 1
s + a

.

We now use this transform to find the transforms of certain sinusoidal functions. By 
Euler’s relation,

 cos bt =
ejbt + e-jbt

2
 .

Hence,
 l[cos bt] = 1

2[l[ejbt] + l[e-jbt]]

by the linearity property, (7.10). Then, from (7.14),

 l[cos bt] =
1
2

 J 1
s - jb

+
1

s + jb
R =

s + jb + s - jb

21s - jb21s + jb2 =
s

s2 + b2 .

By the same procedure, because sin bt = 1ejbt - e-jbt2 >2j,

  l[sin bt] =
1
2j

[l[ejbt] - l[e-jbt]] =
1
2j

 J 1
s - jb

-
1

s + jb
R

  =
s + jb - s + jb

2j1s - jb21s + jb2 =
b

s2 + b2 .
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The foregoing procedure can also be used for sinusoids with exponentially 
varying amplitudes. Now,

 e-atcos bt = e-atJ ejbt + e-jbt

2
R =

e-1a - jb2t + e-1a + jb2t

2
;

thus,

  l[e-at cos bt] =
1
2
J 1

s + a - jb
+

1
s + a + jb

R
  =

s + a + jb + s + a - jb

21s + a - jb21s + a + jb2 =
s + a

1s + a22 + b2 .

Note the two transform pairs

 cos bt ·l s

s2 + b2

and

 e-atcos bt ·l s + a

1s + a22 + b2 .

We see that for these two functions, the effect of multiplying a time function by the 
exponential function e-at is to replace s with 1s + a2 in the Laplace transform. We 
now show that this property is general; that is,

 l[e-atf1t2]  = L
∞

0
e-atf1t2e-stdt = L

∞

0
f1t2e-1s + a2tdt

  = F1s2 2
sds + a

= F1s + a2,  (7.20)

where F1s2 = L[ f1t2] and the notation s d 1s + a2 indicates that s is replaced 
with 1s + a2. Using the transform pair for sin bt and this theorem, we see that

 sin bt ·l b

s2 + b2 .

Therefore,

 e-at sin bt ·l b

1s + a22 + b2.

The last transform is that of the product of two time functions. Note that

 l[e-at sin bt] ≠ l[e-at ]l[sin bt].
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This result is general; that is,

 l[ f11t2f21t2] ≠ l[ f11t2]l[ f21t2].

The Laplace transform of the product of functions is not equal to the product of the 
transforms. We now derive an additional transform as an example.

 exampLe 7.3 Laplace transform of a unit ramp function

We now find the Laplace transform of the unit ramp function f1t2 = t :

 l[t] = L
∞

0
te-stdt.

From the table of integrals, Appendix A,

 Lueudu = eu1u - 12 + C.

Then, letting u = -st, we get

  L
∞

0
te-stdt =

1

1-s22 L
∞

0
1-st2e1-st2 d1-st2 =

1

s2 e-st1-st - 12 2
0

∞

  =
1

s2 [0 - 1-12] =
1

s2, Re1s2 7 0,

since, by L’Hôpital’s rule, Appendix B, the function at the upper limit is zero:

 lim
tS ∞

t
e st = lim

tS ∞

1
sest = 0.

Thus, in this example, we have developed the transform pair

 t ·l 1

s2 .

This transform is verified with the MATLAB program

syms f t
f=t;
laplace (f) ■

In this section, we have developed several Laplace transform pairs. These 
pairs, in addition to several others, are given in Table 7.2. The last column in this 
table gives the region of convergence (ROC) for each transform. In the next sec-
tion, we derive several properties for the Laplace transform. It is then shown that 
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these properties allow additional transform pairs to be derived easily. Also, these 
properties aid us in solving linear differential equations with constant coefficients.

 7.4 LapLace Transform properTIes

In Sections 7.1 through 7.3, two properties were derived for the Laplace transform. 
These properties are

[eq(7.10)] l[a1 f11t2 + a2 f21t2] = a1F11s2 + a2F21s2
and

[eq(7.20)] l[e-atf1t2] = F1s2 2
sds + a

= F1s + a2.

Equation (7.10) is the linearity property. Equation (7.20) is sometimes called the 
complex shifting property, since multiplication by e-at in the time domain results in 

Table 7.2  Laplace Transforms

f 1t 2 , t G 0 f 1s 2 roc

 1. d1t2 1 All s

 2. u1t2 1
s

Re1s2 7 0

 3. t 1

s2
Re1s2 7 0

 4. tn n!

sn + 1
Re1s2 7 0

 5. e-at 1
s + a

Re1s2 7 -a

 6. te-at 1

1s + a22
Re1s2 7 -a

 7. tn e-at n!

1s + a2n + 1
Re1s2 7 -a

 8. sin bt b

s2 + b2
Re1s2 7 0

 9. cos bt s

s2 + b2
Re1s2 7 0

10. e-at sin bt b

1s + a22 + b2
Re1s2 7 -a

11. e-at cos bt s + a

1s + a22 + b2
Re1s2 7 -a

12. t sin bt 2bs

1s2 + b222
Re1s2 7 0

13. t cos bt s2 - b2

1s2 + b222
Re1s2 7 0
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a shift in the s-plane variable by the amount a. Of course, in general, s = s + jv is 
complex, and a may also be complex.

real shifting

Next, a property relating to shifting in the time domain is derived. Consider the time 
function f1t2 illustrated in Figure 7.5(a). We let f1t2 be a ramp function, for simplic-
ity, but the results that follow apply for any time function. We now consider various 
ways of shifting time functions.

Figure 7.5(b) is a plot of f1t2u1t2, where u1t2 is the unit step function. Hence,

 f1t2u1t2 = b f1t2, t 7 0
0, t 6 0

 .

f(t)

0

(a)

t

f(t) u(t)

0

(b)

t

f(t � t0)

0 t0

(c)

t

f(t � t0) u(t)

0

(d)

tt0

f(t � t0) u(t � t0)

0

(e)

tt0

Figure 7.5  Examples of shifted functions.
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Figure 7.5(c) shows a plot of the function f1t - t02, where t0 is the amount of the 
shift in time, with t0 7 0. The function f1t - t02u1t2 is shown in Figure 7.5(d), and 
the function f1t - t02u1t - t02 is given in Figure 7.5(e). For this last function,

 f1t - t02u1t - t02 = b f1t - t02, t 7 t0
0, t 6 t0

 .

The reader should note carefully the differences in the functions in Figure 7.5. 
Because we have defined the Laplace transform for t Ú  0  only, the Laplace transform 
of f1t2 requires the function in Figure 7.5(b). Notice that the function of Figure 7.5(e) 
differs from the function of Figure 7.5(b) only by a time-shift. We now derive a prop-
erty that relates the Laplace transform of the function of Figure 7.5(e) to that of the 
function of Figure 7.5(b).

The Laplace transform of the function of Figure 7.5(e) is given by

  l[ f1t - t02u1t - t02] = L
∞

0
f1t - t02u1t - t02e-st dt

  = L
∞

t0

f1t - t02e-stdt.

We make the change of variable 1t - t02 = t. Hence, t = 1t + t02, dt = dt, and it 
follows that

  l[ f1t - t02u1t - t02]  = L
∞

0
f1t2e-s1t + t02 dt 

    = e-t0sL
∞

0
f1t2e-stdt. (7.21)

Because t is the variable of integration and can be replaced with t, the integral on 
the right side of (7.21) is F1s2. Hence, the Laplace transform of the shifted time 
function is given by

 l[ f1t - t02u1t - t02] = e-t0sF1s2, (7.22)

where t0 G 0 and l[ f1t2] = F1s2. This relationship, called the real-shifting, or real-
translation, property, applies only for a function of the type shown in Figure 7.5(e); 
it is necessary that the shifted function be zero for time less than t0, the amount of 
the shift. Three examples are now given to illustrate this property.

 exampLe 7.4 Laplace transform of a delayed exponential function

Consider the exponential function shown in Figure 7.6(a), which has the equation

 f1t2 = 5e-0.3t,

where t is in seconds. This function delayed by 2 s and multiplied by u1t - 22 is shown in 
Figure 7.6(b); the equation for this delayed exponential function is given by

 f11t2 = 5e-0.31t - 22u1t - 22.
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From Table 7.2 and (7.22), 

 l[ f11t2] = F11s2 = e-2sF1s2 =
5e-2s

s + 0.3
 . ■

 exampLe 7.5 Laplace transform of a more complex delayed function

Consider now the function of Figure 7.6(c), which is the exponential of Figure 7.6(a) with no 
delay, but with a value of zero for t 6 2 s. The equation for this function is

 f21t2 = 5e-0.3t u1t - 22.

This equation is not of the form of (7.22), but can be manipulated into that form as follows:

  f21t2 = 5e-0.3t u1t - 22[e0.3122e-0.3122]
  = 15e-0.62e-0.31t - 22u1t - 22 = 2.744e-0.31t - 22u1t - 22.

Hence, f21t2 is now of the form required in (7.22), and F21s2 is given by 

 F21s2 = l[ f21t2] =
2.744e-2s

s + 0.3
 . ■

f(t)

0

(a)

t2

2.744

2.744

5.0

f(t � 2) u(t � 2)

0

(b)

t2

5.0

f(t) u(t � 2)

0

(c)

t2

Figure 7.6  Shifted functions for Examples 7.4 and 7.5.
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Example 7.5 illustrates the manipulation of a function into the form of (7.22) 
such that the real-shifting property applies. The alternative to this procedure is to 
integrate the defining integral of the Laplace transform. A third example of using 
the real-shifting property is given next.

 exampLe 7.6 Laplace transform of a straight-line-segments function

It is sometimes necessary to construct complex waveforms from simpler waveforms, as dis-
cussed in Chapter 2. As an example, we find the Laplace transform of the signal in Figure 7.7. 
The procedure of Section 2.5 is used to write the equation of this signal. We write this equa-
tion in four steps, in which fi1t2, i = 1, 2, 3 are the results of the first three steps, respectively.

 1. The slope of the function changes from 0 to 10 at t = 1:

 f11t2 = 101t - 12u1t - 12.

 2. The slope of the function changes from 10 to 0 at t = 2:

 f21t2 = f11t2 - 101t - 22u1t - 22.

 3. The function steps by -3 at t = 2:

 f31t2 = f21t2 - 3u1t - 22.

 4. The function steps by -7 at t = 3:

f1t2 = f31t2 - 7u1t - 32
  = 101t - 12u1t - 12 - 101t - 22u1t - 22 - 3u1t - 22 - 7u1t - 32. (7.23)

We verify this function (as the sum of four terms) as follows:

  t 6 1,   f1t2 = 0 - 0 - 0 - 0 = 0;

  1 6 t 6 2, f1t2 = 101t - 12 - 0 - 0 - 0 = 101t - 12;

  2 6 t 6 3, f1t2 = 101t - 12 - 101t - 22 - 3 - 0 = 7;

  3 6 t,   f1t2 = 7 - 7 = 0.

f (t)

t20 1 3

10

7

Figure 7.7  Complex waveform.
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Hence, the equation agrees with the figure. Each term in f1t2, (7.23), is of the form required 
by the real-shifting property:

[eq(7.22)] l[ f1t - t02u1t - t02] = e-t0sF1s2.

The Laplace transform of f1t2 is, then, from (7.23) and Table 7.2,

 F1s2 =
10e-s

s2 -
10e-2s

s2 -
3e-2s

s
-

7e-3s

s
 .

These terms can be combined to yield 

 F1s2 =
10e-s - 10e-2s - 3se-2s - 7se-3s

s2  . ■

We make two points relative to this example. First, complicated Laplace 
transforms can occur for complex waveforms. For signals of this type, the function 
f1t2 should be written as a sum of terms such that each term is of the form required 
in the real-shifting property, (7.22). Otherwise, the definition, (7.4), must be inte-
grated to find the Laplace transform.

As the second point, note from Table 7.2 that all transforms listed are ratios of 
two polynomials in s. A ratio of polynomials is called a rational function. Any sum 
of the signals in Table 7.2 generally yields a rational function of higher order. The 
appearance of an exponential function of s in a Laplace transform generally results 
from delayed time functions.

Differentiation

We next consider two of the most useful properties of the Laplace transform, which 
are related to differentiation and integration. The differentiation property was de-
rived in Section 7.2 and is, from (7.15),

 lJdf1t2
dt

R = sF1s2 - f10 +2. (7.24)

Property (7.24) is now extended to higher-order derivatives. The Laplace 
transform of the second derivative of f1t2 can be expressed as

 lJd2f1t2
dt2 R = lJdf′1t2

dt
R , f′1t2 =

df1t2
dt

 . (7.25)

Then, replacing f1t2 with f′1t2 in (7.24), we can express (7.25) as

 lJd2f1t2
dt2 R = sl[ f′1t2] - f ′10+2,
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where f′10 +2 is the value of df(t)/dt as t S 0 + . Substituting (7.24) into the last equa-
tion yields the Laplace transform of the second derivative of a function:

lJd2f1t2
dt2 R = s[sF1s2 - f10+2] - f′10+2 = s2F1s2 - sf10+2 - f′10+2. (7.26)

By the same procedure,

 lJd3f1t2
dt3 R = lJdf″1t2

dt
R = sl[ f ″1t2] - f ″10+2, (7.27)

where f ″10+2 is the value of d2f1t2/dt2 as t S 0 + . Then, from (7.26) and (7.27),

 lJd3f1t2
dt3 R = s3F1s2 - s2f10+2 - sf′10+2 - f ″10+2. (7.28)

It is seen that this procedure can be extended to the nth derivative of f1t2, 
with the result

 lJdnf1t2
dtn R = snF1s2 - sn - 1f10+2 - sn - 2f′10+2

  - g- sf 1n - 2210+2 - f 1n - 1210+2, (7.29)

where f 1i210+2 is the value of dif1t2/dti as t S 0 + .
A rigorous proof of (7.29) shows that f′102, c, f 1n - 12102 must exist and that 

f 1n21t2 must also exist. [No discontinuities are allowed in f 1n - 121t2.] In particular, 
this property, (7.29), does not apply to any derivatives of the unit step function [3].

Some problems can occur in (7.29) with the notation for initial conditions. The 
problems appear in systems in which initial conditions change instantaneously. For 
that case, the initial conditions in (7.29) are denoted as f 1i210-2; this notation indi-
cates the initial conditions before the instantaneous change, and f 1i210+2 indicates 
the initial condition after the instantaneous change [3]. This topic is discussed fur-
ther in Section 7.6, after material is covered that allows us to present an illustrative 
example.

 exampLe 7.7 Illustration of the differentiation property

Consider the Laplace transform of sin bt, from Table 7.2:

 l[sin bt] =
b

s2 + b2 .

Now, sin bt can also be expressed as

 sin bt = -
1
b

 
d
dt

 1cos bt2.
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We use this result to find l[sin bt]. From the differentiation property (7.24) and Table 7.2,

  l[sin bt] = lJ -
1
b

 
d
dt
1cos bt2 R

  = -  
1
b
c sl[cos bt] - cos bt 2

tS0 +
d

  = -  
1
b
Js 

s

s2 + b2 - 1R =
b

s2 + b2.

Hence, we get the same transform for sin bt by both the direct transform and the  differentiation 
property. ■

Example 7.7 illustrates the differentiation property; however, the principal 
use of this property is in the analysis and solution of differential equations, as is 
developed later.

Integration

The property for the integral of a function f1t2 is now derived. Let the function g1t2 
be expressed by

 g1t2 = L
t

0
f1t2 dt.

We wish to find the Laplace transform of g1t2 in terms of the Laplace transform of 
f1t2. Consider the Laplace transform of g1t2:

 l[g1t2] = l c L
t

0
f1t2 dt d = L

∞

0
JL t

0
f1t2dtR e-st dt. (7.30)

We integrate this expression by parts (see Appendix A), with

 u = L
t

0
 f1t2dt, dv = e-stdt.

Using Leibnitz’s rule of Appendix B to find du yields

 du = f1t2dt, v =
e-st

-s
 .

Thus, from (7.30),

  lJL t

0
f1t2dtR =

e-st

-s L
t

0
f1t2  dt 2

t = 0

∞

+
1
s L

∞

0
f1t2e-stdt

  = -[0 - 0] +
1
s
F1s2.
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For the first term on the right side, the exponential function is zero at the upper 
limit, and the integral is zero at the lower limit. With F1s2 = l[ f1t2], the property 
for integration is then

 lJL t

0
f1t2dtR =

1
s

 F1s2. (7.31)

We illustrate this property with an example.

 exampLe 7.8 Illustration of the integration property

Consider the following relationship, for t 7 0:

 L
t

0
u1t2dt = t 2

0

t

= t.

The Laplace transform of the unit step function is 1/s, from Table 7.2. Hence, from (7.31),

 l[t] = lJL t

0
u1t2 dt R =

1
s

 l[u1t2] =
1
s
 
1
s

=
1

s2 ,

which is the Laplace transform of f1t2 = t. Note that this procedure can be extended to find 
the Laplace transform of tn, for n any positive integer. ■

Five properties of the Laplace transform have thus far been derived: linearity, 
complex shifting, real shifting, differentiation, and integration. Additional proper-
ties are derived in the next section.

 7.5 aDDITIonaL properTIes

Four additional properties of the Laplace transform are derived in this section; then 
a table of properties is given.

multiplication by t

To derive the first property, consider

 l[tf1t2] = L
∞

0
tf1t2e-st dt. (7.32)

With F1s2 = l[ f1t2], we can write, using Leibnitz’s rule,

 -
dF1s2

ds
= -

d
ds

 c L
∞

0
f1t2e-st dt d = L

∞

0
tf1t2e-st dt. (7.33)
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From (7.32) and (7.33), we have the multiplication-by-t property:

 l[tf1t2] = -  
dF1s2

ds
. (7.34)

An example that illustrates this property is given next.

 exampLe 7.9 Illustration of the multiplication-by-t property

We now derive the transform of f1t2 = t cos t. From Table 7.2,

 l[cos bt] =
s

s2 + b2 .

Then, from (7.34),

  l1tcos bt2 = -
d
ds

J s

s2 + b2 R
  = -

1s2 + b22112 - s12s2
1s2 + b222

  =
s2 - b2

1s2 + b222 ,

which agrees with the transform given in Table 7.2. Two more examples of the value of this 
property are

 l[t2] = -
d
ds

  l[t] = -
d
ds

J 1

s2 R =
2

s3 =
2!

s3

and 

 l[t3] = -
d
ds

 J 2

s3 R =
2 # 3

s4 =
3

s4 . ■

Initial Value

We define the initial value of f1t2, f10+2, as the limit of f1t2 as t approaches zero 
from the right. The initial-value property allows us to find f10+2 directly from F1s2, 
without first finding the inverse transform f1t2. To derive this property, consider 
the Laplace transform of the derivative of f1t2, from (7.24):

 lJdf1t2
dt

R = L
∞

0

df1t2
dt

 e-stdt = sF1s2 - f10+2. (7.35)

We take the limit of this relation as s approaches infinity, for s real and positive:

 lim
sS ∞ L

∞

0

df1t2
dt

 e-stdt = lim
sS ∞

[sF1s2 - f10 +2].
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The limiting process for the left side can be taken inside the integral, and thus the 
integrand is zero because of the exponential function. As a result,

 0 = lim
sS ∞

[sF1s2 - f10+2].

Because f10+2 is independent of s, we can write

 f10+2 = lim
sS ∞

sF1s2, (7.36)

with s real and positive [4]. This result is the initial-value property of the Laplace 
transform and is useful in linear system analysis. A rigorous-derivation of (7.36) 
shows that f1t2 must be continuous for t G 0, except for possibly a finite number of 
finite jumps over any finite interval [4].

final Value

Consider again the Laplace transform of the derivative of f1t2, given in (7.35). We 
let s approach zero, with the result

  lim
sS0

 lJdf1t2
dt

R = lim
sS0 L

∞

0

df1t2
dt

 e-stdt = L
∞

0

df1t2
dt

 dt

  = lim
tS ∞

[ f1t2] - f10+2, (7.37)

where the limiting operation shown is taken inside the integral, with

 lim
sS0

 e-st = 1.

Also, from (7.35),

 lim
sS0 lJdf1t2

dt
R = lim

sS0
 [sF1s2 - f10+2]. (7.38)

Equating the right sides of (7.37) and (7.38) yields

 lim
TS ∞  

f1t2 = lim
sS0

 sF1s2. (7.39)

This is the final-value property, and a rigorous proof requires that f1t2 have a final 
value and be continuous for t G 0, except for possibly a finite number of finite 
jumps over any finite interval [4]. If f1t2 does not have a final value, the right side 
of (7.39) may still give a finite value, which is incorrect. Hence, care must be used in 
applying (7.39).

 exampLe 7.10 Illustrations of initial- and final-value properties

Examples of the initial-value property and the final-value property are now given. Consider 
first the unit step function, which has both an initial value and a final value of unity. Because 
l[u1t2] = 1/s, from (7.36) we have

 f10+2 = lim
sS ∞  

sF1s2 = lim
sS ∞

 s 
1
s

= lim
sS ∞

1 = 1
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and from (7.39),

 lim
tS ∞

 f1t2 = lim
sS0

 sF1s2 = lim
sS0 

1 = 1.

Consider next the function sin bt, where, from Table 7.2,

 l[sin bt] =
b

s2 + b2 .

The initial value of sin bt is zero, and the final value is undefined. From (7.36), the initial 
value is

 f10+2 = lim
sS ∞

 sF1s2 = lim
sS ∞

bs

s2 + b2 = lim
sS ∞

bs

s2 = 0,

which is the correct value. Application of the final-value property (7.39) yields

 lim
TS ∞

f1t2 = lim
sS0

 sF1s2 = lim
sS0

bs

s2 + b2 = 0,

which is not correct. Recall that the final-value property is applicable only if f1t2 has a 
final value. This example illustrates that care must be exercised in  applying the final-value 
 property. ■

Time Transformation

Time transformations were introduced in Section 2.1. We now consider the effect 
of these transformations on the Laplace transform of a function; the result is a com-
bined property of real shifting and time scaling.

For a function f1t2, the general independent-variable transformation is given 
by t = 1at - b2, yielding

 f1at - b2 = f1t2 2
t = at - b

= ft1t2. (7.40)

Since we are considering the single-sided Laplace transform, we require that a 7 0 
and b G 0. As in real shifting, (7.22), we also require that f1at - b2 be multiplied 
by the shifted unit step function u1at - b2.

We wish to express Ft1s2 as a function of F1s2 = l[ f1t2]. From (7.40),

  Ft1s2 = l[ f1at - b2u1at - b2]

  = L
∞

0
f1at - b2u1at - b2e-st dt. (7.41)

We make the change of variable

 t = at - b 1 t =
t + b

a
; dt =

dt
a

 .
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Then, from (7.41),

  Ft1s2 = L
∞

-b
f1t2u1t2e-s1t + b2/a 

dt
a

  =
e-sb/a

a L
∞

0
f1t2e-1s/a2tdt =

e-sb/a

a
 F ¢ s

a
≤,

and the time-transformation property is shown by the transform pair

 f1at - b2u1at - b2 l·
e-  bs

a

a
 F1s/a2. (7.42)

This property is now illustrated with an example.

 exampLe 7.11 Illustration of time shifting and time transformation

Consider the function sin 3t. From Table 7.2,

 f1t2 = sin 3t ·l 3

s2 + 9
= F1s2.

We wish to find the Laplace transform of

 ft1t2 = sinJ3¢4t -
p

6
≤ Ru¢4t -

p

6
≤.

From (7.40), a = 4 and b = p/6. Then, from (7.42),

 Ft1s2 =
e-sp>24

4
 F ¢ s

4
≤ =

e-sp/24

4
 

3

1s/422 + 9
=

12e-sp/24

s2 + 144
 .

To check this result, consider

 sinJ3¢4t -
p

6
≤ Ru¢4t -

p

6
≤ = sinJ12¢ t -

p

24
≤ Ru¢ t -

p

24
≤,

since u1at - b2 = u1t - b/a2. From Table 7.2 and the real-shifting property, (7.22),

  lJsinJ3¢4t -
p

6
≤ Ru¢4t -

p

6
≤ R = lJsinJ12¢ t -

p

24
≤ Ru¢ t -

p

24
≤ R

  = e-sp/24 l[sin 12t] =
12e-sp/24

s2 + 144
 ,

and the transform is verified. ■
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Several properties of the Laplace transform have been developed. These 
properties are useful in generating tables of Laplace transforms and in applying 
the Laplace transform to the solutions of linear differential equations with con-
stant coefficients. Because we prefer to model continuous-time physical systems 
with linear differential equations with constant coefficients, these properties are 
useful in both the analysis and design of linear time-invariant physical systems. 
Table 7.3 gives the derived properties for the Laplace transform, plus some addi-
tional properties. The derivations of some of these additional properties are given 
as problems at the end of this chapter, or are derived later when the properties 
are used.

Table 7.3  Laplace Transform Properties

name property

 1. Linearity, (7.10) l[a1 f11t2 + a2 f21t2] = a1F11s2 + a2F21s2

 2. Derivative, (7.15) lJdf1t2
dt

R = sF1s2 - f10+2

 3. nth-order derivative, (7.29) lJdnf1t2
dtn R = snF1s2 - sn - 1f10+2

- g- sf 1n - 2210+2 - f 1n - 1210+2

 4. Integral, (7.31) lJ L
t

0
f1t2dt R =

F1s2
s

 5. Real shifting, (7.22) l[ f1t - t02u1t - t02] = e-t0sF1s2
 6. Complex shifting, (7.20) l[e-atf1t2] = F1s + a2
 7. Initial value, (7.36) lim

tS0 +  f1t2 = lim
sS ∞

 sF1s2

 8. Final value, (7.39) lim
tS ∞

 f1t2 = lim 
sS0

sF1s2

 9. Multiplication by t, (7.34) l[tf1t2] = -
dF1s2

ds

10. Time transformation, (7.42) 1a 7 0; b G 02 l[ f1at - b2u1at - b2] =
e-sb>a

a
 F ¢ s

a
≤

11. Convolution  l-1[F11s2F21s2] = L
t

0
f11t - t2f21t2 dt

  = L
t

0
f11t2f21t - t2dt

12. Time periodicity l[ f1t2] =
1

1 - e-sT
 F11s2, where

  [ f1t2 = f1t + T2], t G 0 F11s2 = L
T

0
f1t2e-st dt
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 7.6 response of LTI sysTems

In this section, we apply the Laplace transform to the calculation of time responses 
of LTI systems. This procedure is based on finding the inverse Laplace transform 
by the use of partial fractions and transform tables. It is assumed that the reader is 
 familiar with partial-fraction expansions; those who are unfamiliar with this topic 
are referred to Appendix F. We begin this section with an example of a problem 
with initial conditions that was mentioned in Section 7.4.

Initial conditions

Consider the RL circuit of Figure 7.8(a) Let R = 1Ω and L = 1H. The loop equa-
tion for this circuit is given by

 
di1t2

dt
+ i1t2 = v1t2.

The Laplace transform of this equation yields

 sI1s2 - i10+2 + I1s2 = V1s2, (7.43)

where i10+2 is the initial current. Solving for the transformed current I1s2 yields

 I1s2 =
V1s2 + i10+2

s + 1
 . (7.44)

�
�

R

v(t) L

i(t)

i(t)

i(0�)

A0

(a)

(b)

0 t

Figure 7.8  (a) RL circuit and (b) response.
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We now let the voltage source in Figure 7.8(a) be an impulse function, with 
v1t2 = A0d1t2. Then V1s2 = A0, and for t 7 0, the current i1t2 is given by

 I1s2 =
A0 + i10+2

s + 1
1 i1t2 = [A0 + i10+2]e-t. (7.45)

This current is plotted in Figure 7.8(b). From either the initial-value property and 
I1s2 or directly from i1t2, the current i10+2 is given by

 i10+2 = A0 + i10+2. (7.46)

We see that

 1. an inconsistency exists, since the two values denoted as i10+2 in (7.46) are 
not equal; and

 2. the effect of the impulse function is to change the current instantaneously.

We have a problem in defining what is meant by the term initial conditions. Doetsch 
in Ref. 3 suggests that the initial current of the differentiation property in (7.43) 
be denoted as i10-2 for the case that the initial condition changes instantaneously. 
The current i10+2 is then the value found by the initial-value property (7.36) and 
is the correct value. Note that no problem exists if the initial condition does not 
change instantaneously.

For clarity, we use the notation t = 0- to denote initial conditions before 
 instantaneous changes occur. This notation results in (7.46) being expressed as

 i10+2 = A0 + i10-2.

If no instantaneous changes occur, we have no problem and all initial conditions are 
denoted as occurring at t = 0+. Many authors state that the initial conditions in the 
differentiation property actually occur at t = 0- for all cases, and they change the 
lower limit of the unilateral-transform integral to t = 0-. However, this approach 
leads to a different inconsistency. The inversion formula gives zero for all values for 
t 6 0. [See (7.7).] Hence, any variable evaluated by the Laplace-transform pair is 
zero at t = 0-.

Next, we consider transfer functions.

Transfer functions

As stated earlier, we prefer to model continuous-time systems with linear differential 
equations with constant coefficients. The models are then linear and time invariant. 
(See Section 3.5.) The general equation for the nth-order LTI model is given by

 a
n

k = 0
 ak

dky1t2
dtk = a

n

k = 0
 bk

dkx1t2
dtk , (7.47)
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where x1t2 is the input signal, y1t2 is the output signal, and the constants ak, bk, and 
n are parameters of the system.

We now derive the transfer-function model for (7.47). From (7.29), recall the 
differentiation property:

 lJdkf1t2
dtk R = skF1s2 - sk - 1f10+2 - g- f 1k - 1210+2.

Initial conditions must be ignored when we derive transfer functions, because a sys-
tem with non-zero initial conditions is not linear. The transfer function shows the 
relationship between the input signal and the output signal for a linear system. The 
differentiation property is then

 lJdkf1t2
dtk R = skF1s2.

We use this property to take the transform of (7.47):

 a
n

k = 0
akskY1s2 = a

n

k = 0
bkskX1s2.

Expanding this equation gives

[ansn + an - 1s
n - 1 + g + a1s + a0]Y1s2

  = [bnsn + bn - 1s
n - 1 + g+ b1s + b0]X1s2. (7.48)

The system transfer function H1s2 is defined as the ratio Y1s2/X1s2, from 
(7.48). Therefore, the transfer function for the model of (7.47) is given by

 H1s2 =
Y1s2
X1s2 =

bnsn + bn - 1s
n - 1 + g+ b1s + b0

ansn + an - 1s
n - 1 + g+ a1s + a0

. (7.49)

For this case, the transfer function is a rational function (a ratio of polynomials). 
Note that this transfer function is identical to that derived in Chapter 3; however, 
the derivation in Chapter 3 applies only for a complex-exponential input signal. 
The transfer function (7.49) applies for any input that has a Laplace transform and, 
hence, is a generalization of that of Chapter 3. An example is now given.

 exampLe 7.12 LTI system response using Laplace transforms

Consider again the RL circuit of Figure 7.8, and let R = 4 Ω and L = 0.5H. The loop equa-
tion for this circuit is given by

 0.5 
di1t2

dt
+ 4i1t2 = v1t2.
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The Laplace transform of the loop equation (ignoring initial conditions) is given by

 10.5s + 42I1s2 = V1s2.

We define the circuit input to be the voltage v1t2 and the output to be the current i1t2; hence, 
the transfer function is

 H1s2 =
I1s2
V1s2 =

1
0.5s + 4

 .

Note that we could have written the transfer function directly from the loop equation and 
Equations (7.47) and (7.49).

Now we let v1t2 = 12u1t2. The transformed current is given by

 I1s2 = H1s2V1s2 =
1

0.5s + 4
 
12
s

=
24

s1s + 82  .

The partial-fraction expansion of I1s2 is then

 I1s2 =
24

s1s + 82 =
k1

s
+

k2

s + 8
 ,

where (see Appendix F)

 k1 = sJ 24
s1s + 82 R s = 0

=
24

s + 8
2
s = 0

= 3

and

 k2 = 1s + 82J 24
s1s + 82 R s = -8

=
24
s
2
s = -8

= -3.

Thus,

 I1s2 =
24

s1s + 82 =
3
s

+
-3

s + 8
 ,

and the inverse transform, from Table 7.2, yields

 i1t2 = 3[1 - e-8t]

for t 7 0.
This inverse transform is verified with the MATLAB program

syms F s
F=24 / ( s* (s+8) )
ilaplace (F)

Note from the circuit that the initial current is i102 = 0. The Laplace-transform solu-
tion gives i10+2 = 0; this value is also found from the initial-value property:

 i10+2 = lim 
sS ∞

sI1s2 = lim
sS ∞  

24
s + 8

= 0.
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Hence, the current does not change instantaneously. The solution can be verified by the sub-
stitution of i1t2 into the loop differential equation.

This system was simulated with SIMULINK. The block diagram from the simulation 
is given in Figure 7.9(a), and the response is given in Figure 7.9(b). We see that the system 
time constant is 0.125 s. Hence, the transient part of the response becomes negligible after 
approximately four times this time constant, or 0.5 s. Figure 7.9(b) shows this. In addition, the 
final value of i1t2 is 3, which is also evident in the figure. ■

If the numerator and denominator polynomials in (7.49) are presented in 
product-of-sums form, the transfer function is shown as

 H1s2 =
K1s - z121s - z22 g1s - zm2
1s - p121s - p22 g1s - pn2  . (7.50)

In (7.50), K = bm>an, where bm is the coefficient of the highest-order power of s 
in the numerator polynomial, as shown in (7.49). In the transfer functions of many 
physical systems, m 6 n [i.e., in application of (7.49), bn and often some of the other 
bi may have a value of zero]. If the function is evaluated with s = zi, 1 … i … m, we 
find H1zi2 = 0. Therefore, the zi are called zeros of the transfer function. If H1s2 
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is evaluated with s = pi, 1 … i … n, we find that this causes a divide by zero and 
H1pi2 is undefined. Because H1pi2 becomes undefined, the pi are called poles of the 
transfer function.

 exampLe 7.13 poles and zeros of a transfer function

A transfer function is given in the form of (7.49) as

 H1s2 =
4s + 8

2s2 + 8s + 6
 .

The transfer function is rewritten in the form of (7.50) as

 H1s2 =
21s + 22

1s + 121s + 32  .

We now see that this transfer function has one zero at s = -2 and two poles located at 
s = -1 and s = -3. The poles and the zero of the transfer function are plotted in the  
s-plane in Figure 7.10. It is standard practice to plot zeros with the symbol    and poles with 
the symbol * .

SIm(s)

Re(s)

�

�j

�3 �2 �1

Figure 7.10  
■
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convolution

The transfer function of an LTI system described by an nth-order linear differential 
equation with constant coefficients was just derived. The result in (7.49) is a rational 
function. We next consider the more general case of the convolution integral, which 
was derived in Section 3.2. The convolution property of the single-sided Laplace 
transform is given in Table 7.3. We now derive this property.

From Section 3.2, the convolution integral is given by

 y1t2 = x1t2*h1t2 = L
∞

- ∞
x1t2h1t - t2 dt, (7.51)

where x1t2 is the system input, y1t2 is the system output, and h1t2 is the system 
 impulse response, as shown in Figure 7.11(a). For the single-sided Laplace trans-
form, both x1t2 and h1t2 are zero for t less than zero; hence, we consider only causal 
systems. The convolution integral for this case can be expressed as

 x1t2*h1t2   = L
∞

- ∞
x1t2u1t2h1t - t2u1t - t2 dt

    = L
∞

0
x1t2h1t - t2u1t - t2 dt.  (7.52)

The Laplace transform of this integral is given by

 l[x1t2*h1t2] = L
∞

0
JL ∞

0
x1t2h1t - t2u1t - t2dtR  e-stdt

  = L
∞

0
x1t2JL ∞

0
h1t - t2u1t - t2e-stdtR  dt, (7.53)

where, in the last step, the order of integration has been reversed. The integral in-
side the brackets in the last expression is the Laplace transform of the delayed func-
tion h1t - t2u1t - t2; that is,

 L
∞

0
h1t - t2u1t - t2e-stdt = l[h1t - t2u1t - t2] = e-ts H1s2,

h(t)
x(t) y(t)

H(s)
X(s) Y(s)

(a)

(b) Figure 7.11  LTI system.
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from Table 7.3. We can then write (7.53) as

 l[x1t2*h1t2]  = L
∞

0
x1t2H1s2e-st dt

    = H1s2L
∞

0
x1t2e-st dt = H1s2X1s2, (7.54)

and we see that convolution in the time-domain transforms into multiplication in 
the s-domain.

In the foregoing derivation, the convolution integral gives the response of an 
LTI system as depicted in Figure 7.11(a). For this system, from (7.54),

 y1t2 = h1t2*x1t2 1 Y1s2 = H1s2X1s2. (7.55)

The block diagram for the transformed relationship is given in Figure 7.11(b); this 
block diagram is defined by (7.55).

It is seen from this development that the transfer function H1s2 is the Laplace 
transform of the system impulse response h1t2:

 H1s2 = L
∞

0
h1t2e-st dt. (7.56)

Hence, the system impulse response h1t2 is the inverse Laplace transform of the 
transfer function H1s2. Consequently, we can specify an LTI continuous-time sys-
tem by three mathematical relationships:

 1. the system differential equation, as in (7.47);
 2. the system transfer function H1s2;
 3. the system impulse response h1t2.

Usually, in practice, the transfer function is specified. However, given any one of 
these three models, we can calculate the other two. We now give examples of calcu-
lating the time response of LTI systems by the transfer-function approach, in which 
the transfer function is not a rational function.

 exampLe 7.14 response of LTI system from the impulse response

The unit step response is calculated for an LTI system with the impulse response h1t2 given 
in Figure 7.12(a). We express this function as

 h1t2 = u1t2 - u1t - 12.

A practical application of a system with this transfer function is in digital-to-analog converters.
Using the real-shifting property, we find the Laplace transform of h1t2 to be

 H1s2 =
1 - e-s

s
 .
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Note that this transfer function is not a rational function. From (7.55), the system output 
Y1s2 is then

 Y1s2 = H1s2X1s2 =
1 - e-s

s
 
1
s

=
1

s2 [1 - e-s].

From the Laplace transform table and the real-shifting property, we find the system output 
to be

 y1t2 = tu1t2 - [t - 1]u1t - 12.

This inverse transform is verified with the MATLAB program

syms F s
F = ( 1-exp (-s) ) / (s^2)
ilaplace (F)

The results of running this program contains the expression Heaviside 1t - 12, which is the 
MATLAB expression for the unit step function u1t - 12.

This response is shown in Figure 7.12(b). ■

Transforms with complex poles

We next consider a transformed function that has a pair of complex poles. Suppose 
that F1s2 is nth-order with two complex poles. For convenience, we let the other 
1n - 22 poles be real, so that

 F1s2 =
N1s2

1s - p121s - p221s - p32g1s - pn2  ,

where N1s2 is the numerator polynomial. Let p1 = a - jb and p2 = a + jb; 
then, with the order of the numerator less than that of the denominator, the partial-
fraction expansion for F1s2 can be written as

 F1s2 =
k1

s - a + jb
+

k2

s - a - jb
+

k3

s - p3
+ g +

kn

s - pn
 . (7.57)

The coefficients k1 and k2 can be evaluated by the usual partial-fraction expan-
sion. These coefficients are complex valued, and k2 is the conjugate of k1. Thus, the 

h(t)

1

t0 1

(a) (b)

y(t)

1

t0 1

Figure 7.12  Signals for Example 7.14.
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inverse transform of (7.57) has two terms that are complex; however, the sum of 
these two terms must be real. This sum is not a convenient form. We now present 
a different procedure for finding the inverse transform, such that all terms are real.

In (7.57), we evaluate k1 and k2 from

 k1 = 1s - a + jb2F1s2 2
s = a - jb

= ∙ k1 ∙ e ju

and

 k2 = 1s - a - jb2F1s2 2
s = a + jb

= ∙ k1 ∙ e-ju. (7.58)

Let f11t2 be the sum of the inverse transforms of the first two terms of (7.57):

 f11t2 = ∙ k1 ∙ ejue1a - jb2t + ∙ k1 ∙ e-jue1a + jb2t.

Using Euler’s relation, we can express this relation as

 f11t2 = 2 ∙ k1 ∙ eat J e-j1bt - u2 + e j1bt - u2

2
R

  = 2 ∙ k1 ∙ eatcos 1bt - u2.  (7.59)

Note that, in (7.58), b should be chosen positive, such that b in (7.59) is positive. The 
sinusoidal expression in (7.59) is a more convenient form than the sum of complex 
exponential functions. An example illustrating this procedure is given next.

 exampLe 7.15 Inverse Laplace transform involving complex poles

We now find the response of a system with the transfer function

 H1s2 =
3s + 1

s2 + 2s + 5

to the input x1t2 = e-3t. We have

 Y1s2 = H1s2X1s2 =
3s + 1

s2 + 2s + 5
 

1
s + 3

 =
3s + 1

[1s + 122 + 22]1s + 32

 =
k1

s + 1 + j2
+

k2

s + 1 - j2
+

k3

s + 3
 ,

and p1 = a - jb = -1 - j2, p2 = -1 + j2, and p3 = -3. For the pole at s = -3,

 k3 =
3s + 1

s2 + 2s + 5
2
s = -3

=
-9 + 1

9 - 6 + 5
= -1.
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For the complex poles, from (7.58), p1 = a - jb = -1 - j2. Hence, a = -1, b = 2, and

  k1 = 1s + 1 + j22Y1s2 2
s = -1 - j2

=
3s + 1

1s + 1 - j221s + 32  2
s = -1 - j2

  =
31-1 - j22 + 1

1-1 - j2 + 1 - j221-1 - j2 + 32 =
-2 - j6

- j412 - j22  .

Thus,

 k1 =
6.325∠-108.4°

14∠-90°12.828∠-45°2 = 0.559∠26.6°. 

Then, in (7.59), 2 ∙ k1 ∙ = 1.118, u = 26.6°, and for t 7 0,

 y1t2 = 1.118e-t cos 12t - 26.6°2 - e-3t.

We can verify this result by finding its transform. The partial-fraction expansion can be veri-
fied by the MATLAB program

n = [0 0 3 1];
d1 = [1 2 5];
d2 = [1 3];
d = conv (d1,d2);
[r,p,k] = residue (n,d)
result:    r = −1 0.5−0.25j 0.5+0.25j
           p = −3 −1+2j −1−2j
           k = 0
k1mag = abs ( r(3) )
k1phase = angle ( r(3))*180/pi
result: k1mag = 0.5590 k1phase = 26.5651

The statement d = conv1d1, d22 multiplies the two polynomials. Why was r(3) chosen as k1 
rather than r(2)? This is an important point. ■

This MATLAB program finds y1t2 using the symbolic math toolbox:

syms Y s
Y=(3*s+1)/(((s+1)^2+2^2)*(s+3))
ilaplace(Y)

We wish to make two points relative to Example 7.15. First, the example 
 illustrates one procedure for finding the inverse Laplace transform of functions 
that contain sinusoids. Other procedures are available; however, the foregoing 
procedure has the advantage that the amplitudes and phases of sinusoids are 
evident.

The second point is that complex poles in a transfer function result in sinu-
soidal terms (or complex-exponential terms) in the system’s natural response. Of 
course, real poles in the transfer function result in real exponential terms in the 
system response.
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functions with repeated poles

We next illustrate the inverse transform of a function with a repeated pole.

 exampLe 7.16 Inverse transform involving repeated poles

The unit step response of a system with the third-order transfer function

 
Y1s2
X1s2 = H1s2 =

4s2 + 4s + 4

s3 + 3s2 + 2s

will be found. Hence, x1t2 = u1t2 and X1s2 = 1>s. The system output is then

 Y1s2 = H1s2X1s2 =
4s2 + 4s + 4

s3 + 3s2 + 2s
 ¢1

s
≤.

Because this function is not in Table 7.2, we must find its partial-fraction expansion:

 Y1s2 =
4s2 + 4s + 4

s21s + 121s + 22 =
k1

s2 +
k2

s
+

k3

s + 1
+

k4

s + 2
 .

We solve first for k1, k3, and k4:

  k1 =
4s2 + 4s + 4

1s + 121s + 22 2 s = 0
=

4
2

= 2;

  k3 =
4s2 + 4s + 4

s21s + 22
2
s = -1

=
4 - 4 + 4
112112 = 4;

  k4 =
4s2 + 4s + 4

s21s + 12
2
s = -1

=
16 - 8 + 4
1421-12 = -3.

We calculate k2 by Equation (F.8) of Appendix F:

  k2 =
d
ds

 [s2Y1s2]s = 0 =
d
ds

 J4s2 + 4s + 4

s2 + 3s + 2
R

s = 0

  =
1s2 + 3s + 2218s + 42 - 14s2 + 4s + 4212s + 32

[s2 + 3s + 2]2
2
s = 0

  =
122142 - 142132

4
= -1.

The partial-fraction expansion is then

 Y1s2 =
4s2 + 4s + 4

s21s2 + 3s + 22 =
2

s2 +
-1
s

+
4

s + 1
+

-3
s + 2

 ,
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which yields the output signal

 y1t2 = 2t - 1 + 4e-t - 3e-2t,

for t 7 0. The following MATLAB program verifies the partial-fraction expansion:

n = [0 0 4 4 4];
d = [1 3 2 0 0];
[r,p,k] = residue (n,d)
result: r = −3 4 −1 2
         p = −2 −1 0 0
         k = 0 ■

This MATLAB program verifies the results of Example 7.16 using the 
Symbolic Math Toolbox.

% Syms s t
% The system transfer function:
H=(4*s^2+4*s+4)/(s^3+3*s^2+2*s)
% The Laplace transform of the input signal:
X=1/s
% Calculate the Laplace transform of the system output signal.
Y=H*X
% Determine the time-domain output signal by finding the inverse Laplace 
transform.
y=ilaplace(Y)

In this section, the Laplace-transform solution of differential equations with 
constant coefficients is demonstrated. This procedure transforms these differential 
equations into algebraic equations. The algebraic equations are then solved, and par-
tial-fraction expansions are used to transform the solutions back to the time domain. 
For the case that initial conditions are ignored, this method of solution leads us to 
the transfer-function representation of LTI systems. The transfer-function approach 
is a standard procedure for the analysis and design of LTI systems. An important 
use of transfer functions is in the determination of an LTI system’s characteristics. 
For example, the transfer function gives us the modes of the system and, hence, the 
nature of the system’s transient response, as we will show in the next section.

 7.7 LTI sysTems characTerIsTIcs

In this section, we consider the properties of causality, stability, invertibility, and 
frequency response for LTI systems, relative to the Laplace transform.

causality

The unilateral Laplace transform requires that any time function be zero for t 6 0. 
Hence, the impulse response h1t2 must be zero for negative time. Because this is 
also the requirement for causality, the unilateral transform can be applied to causal 
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systems only. The bilateral Laplace transform, introduced in Section 7.8, must be 
employed for noncausal systems.

stability

We now relate bounded-input bounded-output (BIBO) stability to transfer func-
tions. Recall the definition of BIBO stability:

bIbO Stability
A system is stable if the output remains bounded for all time for any bounded input.

We express the transfer function of an nth-order system as

[eq(7.49)]  H1s2 =
Y1s2
X1s2 =

bnsn + bn - 1s
n - 1 + g+ b1s + b0

ansn + an - 1s
n - 1 + g + a1s + a0

 ,

where an ≠ 0. The denominator of this transfer function can be factored as

 ansn + an - 1s
n - 1 + g+ a1s + a0 = an1s - p121s - p22g1s - pn2. (7.60)

The zeros of this polynomial are the poles of the transfer function, where, by defini-
tion, the poles of a function H1s2 are the values of s at which H1s2 is unbounded.

We can express the output Y1s2 in (7.49) as

 Y1s2 =
bnsn + bn - 1s

n - 1 + g + b1s + b0

an1s - p121s - p22 g 1s - pn2 X1s2,

  =
k1

s - p1
+

k2

s - p2
+ g +

kn

s - pn
+ Yx1s2, (7.61)

where Yx1s2 is the sum of the terms in this expansion that originate in the poles of 
the input X1s2. Hence, Yx1s2 is the forced response. We have assumed in (7.61) 
that H1s2 has no repeated poles. We have also assumed in the partial-fraction ex-
pansion of (7.61) that bn = 0. If bn ≠ 0 a constant term, bn>an will appear in the 
partial-fraction expansion. (See Appendix F.) As discussed in Section 7.6, in the 
mathematical models of many physical systems, bn = 0.

The inverse transform of (7.61) yields

  y1t2 = k1e
p1t + k2e

p2t + g + knepnt + yx1t2 

  = yc1t2 + yx1t2.  (7.62)

The terms of yc1t2 originate in the poles of the transfer function; yc1t2 is called the 
system’s natural response. (See Section 3.5.) The natural response is always present 
in the system output, independent of the form of the input signal x1t2. Each term 
of the natural response, epit, is called a mode of the system. In the classical solution 
of differential equations discussed in Section 3.5, yc1t2 is called the complementary 
function and yx1t2 is called the particular solution.
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If the input x1t2 is bounded, the forced response yx1t2 will remain bounded 
because yx1t2 is of the functional form of x1t2; that is, Yx1s2 has the same poles 
as X1s2. Thus, the output becomes unbounded only if at least one of the natural-
response terms, kie

pit, becomes unbounded. This unboundedness can occur only if 
the real part of at least one pole pi is non-negative.

We see from the preceding discussion that an LTI system is stable, provided 
that all poles of the system transfer function are in the left half of the s-plane—that 
is, provided that Re1pi2 6 0, i = 1, 2, c, n. Recall that we derived this result in 
Section 3.6 by taking a different approach. The stable region for the poles of H1s2 
in the s-plane is illustrated in Figure 7.13.

The system characteristic equation is, by definition, the denominator polyno-
mial of the transfer function set to zero; that is, the characteristic equation is (7.60), 
set to zero:

ansn + an - 1s
n - 1 + g+ a1s + a0 = an1s - p121s - p22g1s - pn2 = 0. (7.63)

Hence, an LTI system, is stable provided that all roots of its characteristic equation 
(poles of its transfer function) are in the left half-plane. We now illustrate system 
stability with an example.

 exampLe 7.17 stability of an LTI system

A much-simplified transfer function for the booster stage of the Saturn V rocket, used in trips 
to the moon, is given by

 H1s2 =
0.9402

s2 - 0.0297
=

0.9402
1s + 0.17221s - 0.1722  ,

where the system input was the engine thrust and the system output was the angle of the 
rocket relative to the vertical. The system modes are e-0.172t and e0.172t; the latter mode is obvi-
ously unstable. A control system was added to the rocket, such that the overall system was 
stable and responded in an acceptable manner. ■

Stable
region

s

Figure 7.13  Stable region for poles of H1s2.
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Invertibility

We restate the definition of the inverse of a system from Section 2.7 in terms of 
transfer functions.

Inverse of a System
The inverse of an LTI system H1s2 is a second system Hi1s2 that, when cascaded with 
H1s2, yields the identity system.

Thus, Hi1s2 is defined by the equation

 H1s2Hi1s2 = 1 1 Hi1s2 =
1

H1s2  . (7.64)

These systems are illustrated in Figure 7.14.
We now consider the characteristics of the inverse system, assuming that the 

transfer function H1s2 of a causal system can be expressed as in (7.49):

 H1s2 =
bnsn + bn - 1s

n - 1 + g + b0

ansn + an - 1s
n - 1 + g + a0

 . (7.65)

Hence, the inverse system has the transfer function

 Hi1s2 =
ansn + an - 1s

n - 1 + g + a0

bnsn + bn - 1s
n - 1 + g + b0

 . (7.66)

This inverse system is also causal because (7.66) is a unilateral transfer function. 
Note that the differential equation of the inverse system can easily be written from 
(7.66), since the coefficients of the transfer function are also the coefficients of the 
system differential equation. (See Section 7.6.)

Next, we investigate the stability of the inverse system. For the system of (7.65) 
to be stable, the poles of the transfer function H1s2 must lie in the left half of the 
s-plane. For the inverse system of (7.66) to be stable, the poles of Hi1s2 [the zeros 
of H1s2] must also lie in the left half-plane. Thus, both a system and its inverse are 
stable, provided that the poles and zeros of the system transfer function are in the 
left half-plane.

System

H(s)

Hi (s) � 1/H(s)

Inverse
system

Hi (s)
X(s) Y(s) � X(s)

Figure 7.14  System with its inverse.
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frequency response

Recall from (5.1) the definition of the Fourier transform:

 F1v2 = f[ f(t)] = L
∞

- ∞
f1t2e-jvt dt. (7.67)

From Section 5.5, using the Fourier transform, we find that the transfer function for 
a causal system with the impulse response h1t2 is given by

 Hf1v2 = f[h1t2] = L
∞

0
h1t2e-jvt dt. (7.68)

Comparing this transfer function with that based on the Laplace transform, namely,

 Hl1s2 = l[h1t2] = L
∞

0
h1t2e-st dt, (7.69)

we see that the two transfer functions are related by

 Hf1v2 = Hl1s2 2
s = jv

= Hl1jv2. (7.70)

Here we have subscripted the transfer functions for clarity, and we see a prob-
lem in notation. If we do not subscript the transfer functions, (7.70) is expressed 
as H1v2 = H1jv2, which is inconsistent, to say the least. However, in using the 
Fourier transform, we commonly denote the frequency response as H1v2. When 
using the Laplace transform, we commonly denote the same frequency response as 
H1jv2. The reader should note this inconsistency; it is not likely to be changed. We 
will use the same confusing custom here.

For the system of (7.49), the frequency response is given by

 H1jv2 =
Y1jv2
X1jv2 =

bn1jv2n + bn - 11jv2n - 1 + g + b11jv2 + b0

an1jv2n + an - 11jv2n - 1 + g + a11jv2 + a0
 . (7.71)

Recall from Sections 3.7 and 5.5 that this frequency response can be measured  
experimentally on a stable physical system. With the input x1t2 = cos vt, from (3.73), 
the steady-state output is given by

 yss1t2 = ∙ H1jv2 ∙  cos  1vt + arg H1jv22, (7.72)

where arg H1 jv2 is the angle of the complex function H1 jv2. Hence, by  measuring 
the steady-state response for a sinusoidal input signal, we can obtain the frequency 
response of a system.
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Generally, for a physical system, the frequency response approaches zero as 
the input frequency becomes very large. However, in (7.71),

 lim
vS ∞

H1 jv2 =
bn

an
 . (7.73)

Hence, for the model of (7.71) to be accurate at higher frequencies, bn = 0 and the 
order of the numerator of H1s2 must be less than the order of its denominator. For 
this reason, quite often, we specify, for the general transfer function, that the nu-
merator order is less than that of the denominator.

Because frequency response is covered in detail in Section 5.5, we do not re-
peat that coverage here. Readers not familiar with this material should study that 
section, while keeping (7.70) in mind.

 exampLe 7.18 plotting the frequency response from the transfer function

The Bode plots of the frequency response of the system considered in Example 7.15,

 H1s2 =
3s + 1

s2 + 2s + 5
,

can be calculated and plotted with the following MATLAB program:

% This MATLAB program computes the Bode Diagram of the frequency
% response of the system discussed in Examples 7.15 and 7.18.
% H(s)=(3s+1)/(s^2+2s+5)
num=[3 1];
den=[1 2 5];
bode(num,den)
% The resulting plots show the magnitude frequency response of the system
% in decibels (dB) and the phase frequency response in degrees
% both are plotted versus frequency in rad/sec on a logarithmic scale. ■

step response

Because the step response, s(t), is the integral of the impulse response, h(t) 
(3.42), and because a step function can be approximated more accurately than an 
impulse function as an input to a physical system the step response of a system 
is commonly used to analyze the system’s performance. This analysis technique 
is relatively easy to apply to physical systems because a step function can usu-
ally be approximated as an input signal and the output signal can often be easily 
measured.

If a mathematical model for a system is available, the step response of the 
system can be calculated using the Laplace transform. Also, if the Laplace trans-
form transfer function is available, the system’s step response can be calculated and 
 plotted in MATLAB.



Sec. 7.7    LTI Systems Characteristics 381

 exampLe 7.19 calculation and plotting of the step response from the transfer function

We now calculate the step response of the system of Examples 7.15 and 7.18. The transfer 
function of the system is given as

 H1s2 =
3s + 1

s2 + 2s + 5
 .

Applying the convolution property, with a unit step function as the system’s input 
x1t2 = u1t2, we derive

 X1s2 = l{u1t2} = 1/s

 Y1s2 = X1s2H1s2 =
3s + 1

s1s2 + 2s + 52  .

We can derive the time-domain step response by finding the inverse Laplace transform 
of Y(s). We can do this using a partial fraction expansion and Table 5.2:

 Y1s2 =
k1

s
+

k2

s + 1 - j 2
+

k2
*

s + 1 + j 2
 .

We calculate the numerator constants by the method of residues to get

 k1 = 0.2, k2 = -0.1 - j0.7 = 0.7071e-j1.7127, and k2
* = -0.1 + j0.7 = 0.7071e j1.7127.

Then the step response of this system is

  y1t2 = l-1e 0.2
s

+
0.7071e-j1.7127

s + 1 - j2
+

0.7071e j1.7127

s + 1 + j2
 f

  = [0.2 + 0.7071e-j1.7127 e1-1 + j22t + 0.7071ej1.7127e1-1 - j22t ]u1t2
  = 0.2u1t2 + 0.7071e-t[ej12t - 1.71272 + e-j12t - 1.71272]u1t2
  = 0.2u1t2 + 1.4142e-t cos 12t - 98.13°2u1t2.

The numerator constants for the partial fraction expansion can be calculated, or verified, by 
MATLAB.

% This MATLAB program computes values needed for the partial fraction 
 expansion of the step
% response of the system of Example 7.19.
% enter the numerator and denominator coefficients of the Laplace 
transform
% step response function.
num = [3 1], den=[1 2 5 0]
% Compute the numerator constants and denominator roots using the method 
% of residues.
[r, p, k]=residue(num,den)

The step response can be calculated and plotted by MATLAB.

% This MATLAB program computes and plots the step response
% for Example 7.19.
% enter vectors with the numerator and denominator coefficients of H(s).
num = [3 1], den = [1 2 5]
% Compute and plot the unit-step response of the system.
step(num,den).
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The step response is plotted in Figure 7.15. ■

In this section, the characteristics of causality, stability, invertibility, and fre-
quency response are investigated for LTI systems. It is shown that stability can 
always be determined for systems modeled by linear differential equations with 
constant coefficients. This type of system is stable if and only if the poles of its 
transfer function are all inside the left half-plane.

 7.8 BILaTeraL LapLace Transform

Recall the definition of the bilateral Laplace transform:

[eq(7.1)] Fb1s2 = lb[  f1t2] = L
∞

- ∞
f1t2e-st dt

and

[eq(7.2)] f1t2 = lb
-1[Fb1s2] =

1
2pj

 L
c + j ∞

c - j ∞
Fb1s2est ds.

The difference between the unilateral transform and the bilateral transform is that 
the bilateral transform includes negative time. For example, in system analysis, 
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Figure 7.15  System step response for Example 7.19.



Sec. 7.8    Bilateral Laplace Transform 383

we choose t = 0 as that time during which some significant event occurs, such as 
switching in an electrical circuit. Then we solve for the resulting system response, 
for t G 0. The unilateral Laplace transform is used for this case.

The bilateral Laplace transform is used when results are needed for negative 
time as well as for positive time. In this section, we consider the bilateral Laplace 
transform.

We introduce the bilateral Laplace transform by example. First, we find the 
transform for f1t2 = e-atu1t2, with a real. This signal is plotted in Figure 7.16(a), 
for a 7 0. Of course, since f1t2 = 0 for t 6 0, the bilateral transform of this signal 
is identical to its unilateral transform:

 Fb1s2 = lb[e-atu1t2] = L
∞

- ∞
e-atu1t2e-st dt

  = L
0

- ∞
0e-st dt + L

∞

0
e-ate-st dt =

e-1s + a2t

- 1s + a2 2 0∞
  =

1
s + a

, Re1s + a2 7 0 or Re1s2 7 -a.  (7.74)

This transform exists for s in the half-plane defined by Re1s2 7 -a. [If a is com-
plex, this inequality is Re1s2 7 Re1-a2.] As we will see, we must state the region 
of convergence (ROC) for each bilateral Laplace transform. The ROC for (7.74) is 
plotted in Figure 7.16(b), with the function’s pole also shown. Neither the boundary 
of the ROC 1Re1s2 = -a2 nor the pole is in the ROC.

0 t

(a)

(b)

1

a � 0

�a

e�atu(t)

s

ROC

–pole
  location

Figure 7.16  Signal and ROC for e-atu1t2.
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Consider next the exponential function f1t2 = -e-atu1- t2, with a real. This 
function is plotted in Figure 7.17(a) for a 7 0. For this case,

 Fb1s2 = lb[-e-atu1- t2] = L
∞

- ∞
-e-atu1- t2e-st dt

  = L
0

- ∞
-e-ate-stdt + L

∞

0
0e-stdt =

e-1s + a2t

s + a
2
- ∞

0

  =
1

s + a
, Re1s + a2 6 0 or Re1s2 6 -a. (7.75)

This transform exists in the half-plane Re1s2 6 -a. [Re1s2 6 Re1-a2 for a 
 complex.] This ROC is plotted in Figure 7.17(b), along with the pole of F1s2. As 
described earlier, neither the boundary nor the pole is in the ROC.

Note the differences in the ROCs of the last two transforms, from 
Figures 7.16(b) and 7.16(b). The two transforms are equal, but the signals are not 
equal. Hence, a time function is defined by both the transform and the ROC. The 
ROC must be given for a bilateral transform.

region of convergence

As noted, the region of convergence of a bilateral transform is of primary impor-
tance. We first further illustrate ROCs with examples. Then some properties of 
ROCs are given.

 exampLe 7.20 Bilateral Laplace transform of a signal

Consider the function

 f1t2 = f11t2 + f21t2 = 2e-5tu1t2 + e-4tu1- t2.

(b)

a � 0

�a

�e�atu(�t)
s

ROC

0

(a)

1

t

Figure 7.17  Signal and ROC for -e-atu1t2.
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From (7.74),

 Fb11s2 = lb[2e-5tu1t2] =
2

s + 5
, Re1s2 7 -5 ;

and from (7.75),

 Fb21s2 = lb[e-4tu1- t2] =
-1

s + 4
, Re1s2 6 -4.

For Fb1s2 to converge, both Fb11s2 and Fb21s2 must also converge; therefore, the ROC of 
Fb1s2 is the intersection of the ROC of Fb11s2 and Fb21s2. Thus,

 Fb1s2 =
2

s + 5
-

1
s + 4

=
s + 3

s2 + 9s + 20
, -5 6 Re1s2 6 -4.

The ROC is shown in Figure 7.18, along with the poles of Fb1s2. 

s

ROC

�1�2�3�4�5 0

Figure 7.18  ROC for Example 7.20. ■

 exampLe 7.21 Bilateral Laplace transform with roc different

Consider now

 f1t2 = f11t2 + f21t2 = e-4tu1t2 + 2e-5tu1- t2.

Note that this function is similar to that of the last example, except that now 2e-5t is the function 
for negative time and e-4t is the function for positive time. Thus, from (7.74) and (7.75), we have

 Fb11s2 = lb[e-4tu1t2] =
1

s + 4
, Re1s2 7 -4

and

 Fb21s2 = lb[2e-5tu1- t2] =
-2

s + 5
, Re1s2 6 -5.

Then, lb[ f1t2] exists for -4 6 Re1s2 6 -5; no values of s satisfy this inequality. Hence, the 
bilateral Laplace transform for f1t2 does not exist. ■
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 exampLe 7.22 Bilateral Laplace transform with roc different

Consider next

 f1t2 = f11t2 + f21t2 = 2e-5tu1t2 + e-4tu1t2.

For this function, the bilateral transform and the unilateral transform are equal. Therefore, 
from Table 7.2,

  Fb11s2 = l[2e-5 tu1t2] =
2

s + 5
, Re1s2 7 -5 ;

  Fb21s2 = l[e-4 tu1t2] =
1

s + 4
, Re1s2 7 -4 ;

and

 Fb1s2 =
2

s + 5
+

1
s + 4

=
3s + 13

s2 + 9s + 20
, -4 6 Re1s2.

The ROC is given in Figure 7.19, along with the poles of the function.

�4

s

�5

ROC

Figure 7.19  ROC for Example 7.22. ■

The unilateral Laplace transform of a sum of functions exists if the transform 
of each term of the sum exists. Example 7.21 shows that the bilateral transform of a 
sum of functions may not exist, even though the transform of each term of the sum 
does exist.

Note in Figures 7.16 through 7.19 that the poles of the Laplace transforms 
are not in the ROCs. This is a general property; by definition, the Laplace integral 
does not converge at a pole of the transform. Hence, the poles of a transform always 
occur either on the boundary or outside of the ROC.

Bilateral Transform from unilateral Tables

We next consider a procedure for finding bilateral Laplace transforms from a uni-
lateral Laplace-transform table, such as Table 7.2. Any table of unilateral trans-
forms can be used, provided that ROCs are included in the table.
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We first give four definitions relative to functions:

1. A function f1t2 is right sided if f1t2 = 0 for t 6 t0, where t0 can be positive 
or negative. For example, u1t + 102 is right sided because

 u1t + 102 = b0, t 6 -10
1, t 7 -10

.

A second example is shown in Figure 7.20(a).

2. A function f1t2 is left sided if f1t2 = 0 for t 7 t0, where t0 can be positive 
or negative. For example, u1- t + 102 is left sided because

 u1- t + 102 = b1, t 6 10
0, t 7 10

.

A second example is shown in Figure 7.20(b).

3. A function f1t2 is two sided if it is neither right sided nor left sided. For 
 example, cos t is two sided.

t0 t

f(t)

0

(a)

t0 t

f(t)

0

(b)

t0 t

f(t)

0

(c)

t1
Figure 7.20  Signal types: (a) right sided;  
(b) left sided; (c) finite duration.
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4. A function is of finite duration if it is both right sided and left sided. For 
example, [u1t2 - u1t - 102] is of finite duration. A second example is illustrated in 
Figure 7.20(c).

For a function f1t2, we now define the two functions f +1t2 and f -1t2:

 f +1t2 = f1t2u1t2; f -1t2 = f1t2u1- t2.

Hence, f +1t2 is right sided and f -1t2 is left sided. Thus, f1t2 can be expressed as

 f1t2 = f +1t2 + f -1t2 1 Fb1s2 = Fb
+1s2 + Fb

-1s2, (7.76)

provided that the transform of the sum exists. For the right-sided function f +1t2, 
the bilateral transform Fb

+1s2 is that given in the unilateral tables, with the ROC as 
given.

For the left-sided function f -1t2, we make the substitutions

 lb[ f -1t2] = L
0

- ∞
f -1t2e-st dt 2

s = -sc

t = -tc

= L
∞

0
f -1- tc2e-sctc dtc. (7.77)

Thus, the bilateral transform of f -1t2 is the unilateral transform of f -1- t2, with s 
replaced with -s. If the ROC for the unilateral transform of f -1- t2 is Re1s2 7 a, 
the ROC of the bilateral transform of f -1t2 is Re1-s2 7 a, or Re1s2 6  -a. In 
summary, to find the bilateral Laplace transform of the left-sided function f -1t2,

 1. Find the unilateral Laplace transform of Fb1
- 1s2 = l[ f -1- t2], with ROC 

Re1s2 7 a.
 2. The bilateral transform is then

 Fb
-1s2 = lb[ f -1t2u1- t2] = Fb1

- 1-s2, Re1s2 6 -a.

The bilateral transform of f1t2 is the sum given in (7.76). We now consider an 
 example of this procedure.

 exampLe 7.23 Bilateral Laplace transform by the general approach

Consider again the function of Example 7.20:

 f1t2 = 2e-5tu1t2 + e-4tu1- t2.

From (7.76), f +1t2 = 2e-5tu1t2, and from Table 7.2,

 Fb
+1s2 = l[2e-5tu1t2] =

2
s + 5

 , Re1s2 7 -5.

From Step 1 of the foregoing procedure, f -1- t2 = e4tu1t2, and from Table 7.2,

 Fb1
- 1-s2 = l[e4tu1t2] =

1
s - 4

 , Re1s2 7 4.
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From Step 2,

 Fb
-1s2 = lb[e-4tu1- t2] =

1
-s - 4

 , Re1s2 6 -4.

The bilateral transform is then Fb
+ 1s2 + Fb

-1s2:

 Fb1s2 =
2

s + 5
-

1
s + 4

=
s + 3

s2 + 9s + 20
 , -5 6 Re1s2 6 -4,

as derived in Example 7.20 by integration. ■

Inverse Bilateral Laplace Transform

We have seen in this section that specifying a bilateral transform Fb1s2 is not suffi-
cient; the ROC of the transform must also be given. The complex inversion integral 
for the inverse bilateral transform is given by

[eq(7.2)] f1t2 = lb
-1[Fb1s2] =

1
2pj L

c + j ∞

c - j ∞
Fb1s2est ds.

The value of c in the limits of the integral is chosen as a real value in the ROC. 
However, this integral is seldom used, except in derivations. As in the case for the 
unilateral Laplace transform, we use tables to evaluate the inverse bilateral Laplace 
transform.

We develop this procedure by considering again the functions of Example 7.23. 
In that example, the bilateral Laplace transform of the right-sided function 2e-5tu1t2 
is found to be

 Fb11s2 = lb[2e-5tu1t2] =
2

s + 5
, Re1s2 7 -5.

Fb11s2 has a pole at s = -5, which is to the left of the ROC. An examination of the 
unilateral Laplace-transform table, Table 7.2, shows that the poles of each s-plane 
function in this table are to the left of the ROCs. This is a general property:

1. The poles of the transform for a right-sided function are always to the left 
of the ROC of the transform. Figure 7.21 illustrates the poles and the ROC of a 
right-sided function.

Next we consider the left-sided function e-4tu1- t2. From Example 7.23,

 Fb21s2 = lb[e-4tu1- t2] =
-1

s + 4
, Re1s2 6 -4.

Fb21s2  has a pole at s = -4, which is to the right of the ROC. The proce-
dure for finding the bilateral transform of a left-sided function, given before 
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Example 7.23, shifts the ROC to the left of the poles of the transform. This is 
a general property:

2. The poles of the transform for a left-sided function are always to the right 
of the ROC of the transform. Figure 7.22 illustrates the poles and the ROC of a left-
sided function.

In summary, knowing the poles and the ROC, we express a bilateral transform 
as a sum of functions, using a partial-fraction expansion. The sum of those terms 
with poles to the left of the ROC form a right-sided function, and the sum of those 
terms with poles to the right of the ROC form a left-sided function. The inverse 
transform of each sum of functions is found from a unilateral-transform table. An 
example is given next.

 exampLe 7.24 Inverse bilateral Laplace transform

Consider the Laplace transform

 Fb1s2 =
s + 4

s2 + 3s + 2
=

s + 4
1s + 121s + 22 , -2 6 Re1s2 6 -1.

First, we must calculate the partial-fraction expansion of Fb1s2.

 Fb1s2 =
s + 4

1s + 121s + 22 =
3

s + 1
+

-2
s + 2

, -2 6 Re1s2 6 -1.

s

ROC

–pole locations
Figure 7.21  Pole locations for a right-sided  
function.

s

ROC

–pole locations
Figure 7.22  Pole locations for a left-sided  
function.
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The poles and the ROC are plotted in Figure 7.23. The pole at s = -1 is to the right of the 
ROC and is the transform of the left-sided term f -1t2. Thus,

 f -1t2 = lb
-1J 3

s + 1
R = -3e-tu1- t2.

The pole at s = -2 is to the left of the ROC and is the transform of the right-sided term 
f +1t2. Hence,

 f +1t2 = lb
-1J -2

s + 2
R = -2e-2t u1t2.

The inverse transform is then the sum of these two functions:

 f1t2 = -3e-tu1- t2 - 2e-2t u1t2. ■

In this section, we have defined the bilateral Laplace transform; then, exam-
ples of the transform and the inverse transform are given. The ROC for a bilateral 
transform must always be given, because the inverse transform is dependent on 
the ROC.

 7.9 reLaTIonshIp of The LapLace Transform 
To The fourIer Transform

In this section, we note a conflicting notation between the Laplace transform and 
the Fourier notation. The definition of the unilateral Laplace transform is given by

[eq(7.4)] l[ f1t2] = F1s2 = L
∞

0
f1t2e-st dt.

We now let f1t2 equal zero for t 6 0; that is, we can write f1t2 = f1t2u1t2. Thus, 
we can express (7.4) as

 l[ f1t2] = F1s2 = L
∞

- ∞
f1t2e-stdt. (7.78)

s
ROC

�1�2

Figure 7.23  ROC for Example 7.24.
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As an aside, we note that this is the equation of the bilateral Laplace transform.
The definition of the Fourier transform is

[eq(5.4)] f[ f1t2] = F1v2 = L
∞

- ∞
f1t2e-jvt dt.

Evaluating (7.78) for s = jv yields

 F1s2 2
jv

= F1jv2 = L
∞

- ∞
f1t2e-jvt dt. (7.79)

The integrals in (5.4) and (7.79) are equal, and we see an inconsistent notation in 
these two equations:

 F1v2 ≟ F1jv2. (7.80)

However, this conflicting notation is standard; the reader should be aware of it.
A second point is that, for f1t2 as defined earlier (7.78), we can write

 f[ f1t2u1t2] = l[f1t2u1t2] 2
s = jv

, (7.81)

provided that each transform exists.

summary

The unilateral and the bilateral Laplace transforms are introduced in this chapter. 
We take the approach of developing the unilateral transform as a special case of the 
 bilateral transform. The unilateral transform is used in the analysis and design of 
 linear time-invariant (LTI) continuous-time systems that are causal. This transform 
is especially useful in understanding the characteristics and in the design of these 
systems.

The unilateral transform is emphasized in this chapter. A table of transforms 
and a table of properties are developed for the unilateral transform. System analysis 
using the unilateral transform is then demonstrated.

The bilateral Laplace transform is useful in the steady-state analysis of LTI 
continuous-time systems, and in the analysis and design of noncausal systems. A 
procedure is developed for finding bilateral transforms from a unilateral trans-
form table. Then some properties of the bilateral transform are derived. See 
Table 7.4.
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Table 7.4  Key Equations of Chapter 7

equation Title equation number equation

Bilateral Laplace transform (7.1) lb[f1t2] = Fb1s2 = L
∞

- ∞
f1t2e-st dt

Inverse Laplace transform (7.2) f1t2 = l-1[F1s2] =
1

2pj L
c + j ∞

c - j ∞
F1s2est ds, j = 2-1

Unilateral Laplace transform (7.4) l[f1t2] = F1s2 = L
∞

0
f1t2e-st dt

Transfer function (7.49) H1s2 =
Y1s2
X1s2 =

bnsn + bn - 1s
n - 1 + g + b1s + b0

ansn + an - 1s
n - 1 + g + a1s + a0

 proBLems

section 7.2

 7.1. Sketch the time functions given. Then use the definition of the Laplace transform (7.4) 
and the table of integrals in Appendix A to calculate the Laplace transforms of the 
time functions.

(a) 5u1t - 22
(b) Ku1t - a2, a 7 0
(c) 6[u1t - 12 - u1t - 32]
(d) 61t - 12u14 - t2
(e) Ku1t - a2u1b - t2, where b 7 a 7 0
(f) 6e-2tu1t - 12

 7.2. Consider the waveform f1t2 in Figure P7.2.

(a) Write a mathematical expression for f1t2.
(b) Find the Laplace transform for this waveform, using (7.4) and the table of integrals 

in Appendix A.

0 2 4

�5

5

10

f (t)

t(s)

Figure P7.2  

 7.3. Consider the waveform f1t2 in Figure P7.3. This waveform is one cycle of a sinusoid for 
0 … t … 6 s and is zero elsewhere.

(a) Write a mathematical expression for f1t2.
(b) Find the Laplace transform for this waveform, using (7.4).
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section 7.3

 7.4. Use the definition of the Laplace transform (7.4) to verify the following Laplace 
transforms:

(a) l [sin1bt2] =
b

s2 + b2

(b) l [t sin bt] =
2bs

1s2 + b222

(c) l [tu1t2] =
1

s2

(d) l [teat] =
1

1s - a22

(e) l [e-atcos1bt2] =
s + a

1s + a22 + b2

(f) l [eatsin 1bt2] =
b

1s - a22 + b2

 7.5. Use the symbolic mathematics toolbox of MATLAB to verify the Laplace transforms 
listed in Problem 7.4.

section 7.4

 7.6. (a)  Find the Laplace transform of  cos h1at2 = 1eat + e-at2/2, using the Laplace trans-
form tables.

(b) Use the Laplace transform of cos bt to verify the results in Part (a).
(c) Repeat Parts (a) and (b) for sin h at = 1eat - e-at2/2.

 7.7. Consider the waveform f1t2 in Figure P7.3. This waveform is one cycle of a sinusoid for 
0 … t … 6 s and is zero elsewhere.

(a) Write a mathematical expression for f1t2.
(b) Find the Laplace transform for this waveform, using Tables 7.2 and 7.3.

 7.8. Consider the waveform f1t2 in Figure P7.2.

(a) Write a mathematical expression for f1t2.
(b) Find the Laplace transform for this waveform, using Tables 7.2 and 7.3.

0 3 6

�100

100

f(t)

t (s)

Figure P7.3  



Chap. 7     Problems 395

 7.9. (a) Sketch the time functions given.

 (i) 2e-3t u1t - 52
 (ii) -2e-3t u1t - 12
 (iii) -5e-atu1t - b2
 (iv) -Ke-c1t - a2 u1t - b2

(b) Use Tables 7.2 and 7.3 to find the Laplace transforms.

 7.10. Use the transform and properties tables to find the Laplace transforms of the time 
functions given. Manipulate the time functions as required.

(a) 5u1t - 22u13 - t2
(b) 3tu1t - 22
(c) 3u1t - 32u1t - 22
(d) 3t[u1t - 12 - u1t - 32]
(e) 3t[u1t - a2 - u1t - b2],  a 7 0,  b 7 0,  a 6 b.
(f) Verify your answers for (a)–(d) using MATLAB.

 7.11. Consider the triangular voltage waveform v1t2 shown in Figure P7.11.

(a) Express v1t2 mathematically.
(b) Use the real-shifting property to find l5v1t26.
(c) Sketch the first derivative of v1t2.
(d) Find the Laplace transform of the first derivative of v1t2.
(e) Use the results of Part (d) and the integral property to verify the results of  

Parts (b) and (d).
(f) Use the derivative property and the result of Part (b) to verify the results of  

Parts (b) and (d).

1

10 2 t(s)

v(t) (V)

Figure P7.11  

 7.12. Use the derivative property to find l [sin 2pt] from l[cos bt] = s/1s2 + b22.

section 7.5

 7.13. (a) Given l[u1t2] = 1/s, use the multiplication-by-t property to find l[tu1t2].
(b) Repeat Part (a) for l5t[u1t2 - u1t - b26.

 7.14. Given the Laplace transform

 V1s2 =
9s

1s + 221s + 32  ,

(a) Find the initial value of v1t2, v10 +2, the initial value property
(b) Find the final value of v1t2 by the final value property.
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 7.15. Given the Laplace transform

 V1s2 =
s + 3

s1s + 22 ,

(a) Find the initial value of v1t2, v10 +2, by the initial value property;
(b) Find the final value of v1t2 by the final value property.

 7.16. Use the time-translation property to find the Laplace transforms of the functions listed 
below.

(a) Ku1t - a2, a 7 0
(b) 6e-2tu1t - 12
(c) 11 - e-4t2u1t - 22
(d) Verify your answers for (b) and (c) using MATLAB.

section 7.6

 7.17. Find the inverse Laplace transforms of the functions given. Express all sinusoidal func-
tions in the form f1t2 = ke-atcos1bt + u2. Verify all partial-fraction expansions using 
MATLAB.

(a) F1s2 =
5

s1s + 22
(b) F1s2 =

s + 2
s1s + 121s + 32

(c) F1s2 =
51s + 22
s2 + 25

(d) F1s2 =
1

s1s2 + 42
(e) F1s2 =

6

s21s2 + 92
(f) F1s2 =

101s + 22
s2 + 10s + 34

(g) F1s2 =
64

1s + 1221s2 + 6s + 252
 7.18. Given the Laplace transform

 V1s2 =
s

1s + 121s + 22  ,

(a) Find the initial value of v1t2, v10 +2, by finding v1t2 = l-1[V1s2].
(b) Find the final value of v1t2 by finding v1t2 = l-1[V1s2].

 7.19. Given the Laplace transform

 V1s2 =
s + 3

s1s + 22 ,
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(a) Find the initial value of v1t2, v10 + 2, by finding v1t2 = l-1[V1s2].
(b) Find the final value of v1t2 by finding v1t2 = l-1[V1s2].

 7.20. Find the inverse Laplace transforms of the functions given. Accurately sketch the time 
functions.

(a) F1s2 =
3e-2s

s1s + 32
(b) F1s2 =

311 - e-2s2
s1s + 32

 7.21. Find the inverse Laplace transforms of the functions given. Sketch the time functions.

(a) F1s2 =
e-2s

s1s + 12
(b) F1s2 =

1 - e-s

s1s + 12
(c) F1s2 = 21e-3s - e-5s2
(d) F1s2 =

1 - e-5s

s1s + 52
 7.22. Consider the LTI systems described by the following differential equations.

(i)   
d2y1t2

dt2 + 5 
dy1t2

dt
+ 4y1t2 = 2x1t2

(ii)  
d2y1t2

dt2 + 5 
dy1t2

dt
+ 6y1t2 = 2 

dx1t2
dt

+ 8x1t2

(iii) 
d3y1t2

dt3 + 6
d2y1t2

dt2 + 11
dy1t2

dt
+ 6y1t2 = 6x1t2

(iv) 
d3y1t2

dt3 -
d2y1t2

dt2 + 2y1t2 = 2 
dx1t2

dt
- 6x1t2

(v)  
d3y1t2

dt3 + 5 
d2y1t2

dt2 + 5 
dy1t2

dt
+ y1t2 = 2x1t2

(a) Find the unit impulse response h1t2 for each system.
(b) Verify all partial-fraction expansions using MATLAB.
(c) Find the unit step response s1t2 for each system.
(d) To verify your results, show that the functions in Parts (a) and (c) satisfy the 

equation

 h1t2 =
ds1t2

dt
 ,

 relating the impulse response h1t2 and the step response s1t2.

 7.23. (a)  You are given a linear, time-invariant (LTI) system that produces an output 
y1t2 = e-atu1t2 to an input x1t2 = e-btu1t2 where a 7 0 and b 7 0. Find the 
 impulse response h1t2 of the system.

(b) You are given a linear, time-invariant (LTI) system that produces an output 
y1t2 = e-at cos1bt2u1t2 to an input x1t2 = u1t2 where a 7 0 and b 7 0. Find the 
impulse response h1t2 of the system
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 7.24. In Chapter 3, direct convolution was used to solve for the output of LTI systems. 
For the following inputs and impulse responses, find the output using Laplace 
transforms.

(a) Problem 3.1(ii) where x1t2 = e-2tu1t2 and h1t2 = u1t2.
(b) Problem 3.8(d) where x1t2 = e-tu1t2 and h1t2 = u1t - 12 - u1t - 32. You may 

find the time-shift property to be useful.

section 7.7

 7.25. For each of the systems of Problem 7.22, determine

(a) stability (use MATLAB as required)
(b) the system modes
(c) the inverse system’s transfer function

 7.26. Consider a second-order system with the transfer function H1s2. For each part, 
 include a pole-zero plot and the system modes. Give a transfer function H1s2  such 
that

(a) the system is unstable
(b) the system is stable
(c) the system’s natural response does not contain a damped sinusoid
(d) the system’s natural response contains a damped sinusoid
(e) the system’s natural response contains an undamped sinusoid
(f) the system’s frequency response approaches a constant at very high frequencies
(g) the system’s frequency response approaches zero at very high frequencies

 7.27. You are given a system with impulse response h1t2 = ebtu1t2,  b 7 0.

(a) Is the system bounded-input bounded-output stable?
(b) You now hook the system up into a feedback system as shown in Figure P7.27. Find 

the new system transfer function from the input x1t2 to the output y1t2.
(c) Finally, find the range of the parameter A such that the system is bounded-input 

bounded-output stable.

�

A

x(t)

A y(t)

h(t) y(t)
w(t)�

�

Figure P7.27  

 7.28. (a)  Compute and plot the impulse response of each system of Problem 7.22 using 
MATLAB.

(b) Compute and plot the step response of each system of Problem 7.22 using MATLAB.
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section 7.8

 7.29. Find the bilateral Laplace transforms of the following functions, giving the ROCs.

(a) e-2t u1t2
(b) e-2t u1t - 12
(c) -e-2t u1- t2
(d) e-2t u1- t - 12
(e) e-2tu1t + 12
(f) e-2tu11 - t2

 7.30. Sketch each waveform, and find its bilateral Laplace transform and its ROC for each of 
the signals given. If the transform does not exist, simply state that

(a) f1t2 = e-4tu1t2 + e2tu1- t2
(b) f1t2 = e2tu1t2 + e-4tu1- t2
(c) f1t2 = e4tu1t2 + e2tu1- t2
(d) f1t2 = e-2tu1t2 + e-4tu1- t2

 7.31. Consider the function

 f1t2 = e e2t, -1 =6 t  =6  3
0, otherwise

 ,

(a) Calculate the bilateral Laplace transform of this function, using definition (7.1), 
and give its ROC.

(b) This function can be expressed as

 f1t2 = e2t[u1t + 12 - u1t - 32].

 Use tables to find its bilateral transform and its ROC.
(c) This function can be expressed as

 f1t2 = e2t[u13 - t2 - u1-1 - t2]

  Use tables to find its bilateral transform and its ROC.

 7.32. Find the inverse Laplace transform of the function

 F1s2 =
s + 9

s1s + 12
  for the following regions of convergence:

(a) Re1s2 6 -1
(b) Re1s2 7 0
(c) -1 6 Re1s2 6 0
(d) Give the final values of the functions of Parts (a), (b), and (c).

 7.33. Given a Laplace transform

 X1s2 =
1s + 32

1s + 121s - 12  ,
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  complete the following:

(a) Find all possible inverse bilateral Laplace transforms.
(b) Sketch the region of convergence in each case.
(c) Label each time function as causal, noncausal, or two-sided.
(d) Label each time function as BIBO stable or not BIBO stable.
(e) Give the final values of the functions for each case.

 7.34. Given the bilateral Laplace transform

 Fb1s2 =
2

s - 1
+

4
s + 2

-
1

s + 3
 ,

(a) Sketch all possible regions of convergence for this function and show the poles of 
Fb1s2on each sketch.

(b) Find the inverse Fourier transform for each region of convergence.

 7.35. You are given a transfer function

 H1s2 =
1

1s + a21s + b2  ,

  where H1s2 is the Laplace transform of a time function h1t2.

(a) If h1t2 were causal, over what range of values of a and b would the system be 
BIBO stable? State the Region of Convergence.

(b) If h1t2 were two-sided, over what range of values of a and b would the system be 
BIBO stable? State the Region of Convergence.

(c) If h1t2 were noncausal, over what range of values of a and b would the system be 
BIBO stable? State the Region of Convergence.

 7.36. Find the inverse Laplace transform of

 H1s2 =
s + 1

s2 + 6s + 8
 ,

  where -4 6 Re1s2 6 -2.

 7.37. You are given a Laplace transform

 H1s2 =
1

1s + 1021s + 521s - 32  ,

  where

 -5 6 Re1s2 6 3.

  Label each of the three poles as coming from a left-sided time function or right-sided 
time function.
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State VariableS for 
ContinuouS-time SyStemS8

in Chapter 3, the modeling of continuous-time linear time-invariant (LTI) systems 
by linear differential equations with constant coefficients was presented. We con-
sidered the form I and the form II representations (simulation diagrams) for these 
systems. The form I representation requires 2n integrators for an nth-order system, 
while the form II representation requires n integrators.

In this chapter, we expand these representations. This leads us to a system 
model that is a set of n first-order coupled differential equations for an nth-order 
system. These models are called state-variable models, or, more simply, state models.

The state-variable model has several advantages:

1. An internal structure of the system is given, in addition to the input–output 
model. Thus, a state-variable model is more general than an input–output model, 
such as a transfer function.

2. Most numerical-integration algorithms are based on this type of model. 
Hence, a state model is usually required for the numerical solution of the system 
equations by a digital computer.

3. The modeling of nonlinear systems by means of state variables is a rela-
tively simple extension of state-variable modeling for linear systems. Consequently, 
the digital-computer integration of nonlinear differential equations is rather easily 
performed.

4. Certain system analysis and design procedures have been developed on 
the basis of state-variable models. For example, many optimal system-design proce-
dures require a state model.

Analysis and design via state-variable models require the use of matrix math-
ematics. The required mathematics is reviewed in Appendix G, and related terms 
used in this chapter are defined there.
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 8.1 State-Variable modeling

We introduce state-variable modeling with an example. Consider the RLC circuit 
of Figure 8.1. We consider the source voltage vi1t2 to be the circuit input and the 
capacitor voltage vc1t2 to be the circuit output. The circuit is described by the two 
equations

 L 
di1t2

dt
+ Ri1t2 + vc1t2 = vi1t2 (8.1)

and

 vc1t2 =  
1
C L

t

- ∞
i1t2dt. (8.2)

The two unknown variables are i1t2 and vc1t2.
We first convert (8.2) into a differential equation by differentiation, using 

Leibnitz’s rule of Appendix B:

 
dvc1t2

dt
=

1
C

 i1t2. (8.3)

Next we define two state variables, or, more simply, states,

  x11t2 = i1t2 
and (8.4)

  x21t2 = vc1t2,

where xi1t2 is the common notation for state variables. For this system, we choose 
as the two state variables the physical variables that represent the circuit’s energy 
storage [Li21t2 >2 and Cvc

21t2 >2]. This is one procedure used for choosing the state 
variables for a system; other procedures are discussed later in this chapter.

Next, we substitute the state variables of (8.4) into the system differential 
equations (8.1) and (8.3), yielding

  L 
dx11t2

dt
+ Rx11t2 + x21t2 = vi1t2

  
dx21t2

dt
=

1
C

x11t2.

�

�
C vc(t)vi(t)

i(t)RL

Figure 8.1  Example circuit.
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These two equations are solved for the derivative terms

  
dx11t2

dt
= -  

R
L

x11t2 -
1
L

x21t2 +
1
L

 vi1t2 

and (8.5)

  
dx21t2

dt
=

1
C

x11t2.

In addition to these coupled first-order differential equations, an equation that re-
lates the system output to the state variables is required. Because the output signal 
is the capacitor voltage vc1t2, the output equation is given by

 y1t2 = vc1t2 = x21t2, (8.6)

where we denote the system output with the common notation y1t2.
To simplify the notation, the overdot is used to indicate the first derivative; for 

example, x# 11t2 = dx11t2 >dt. Then (8.5) is expressed as

 x
#
11t2 = -  

R
L

 x11t2 -
1
L

 x21t2 +
1
L

 vi1t2 

and (8.7)

 x
#
21t2 =

1
C

 x11t2.

As a further simplification in notation, the state equations are written in a vector-
matrix format. From (8.6) and (8.7),

 Jx# 11t2
x# 21t2 R = ≥

-
R
L

-
1
L

1
C

0
¥ c x11t2

x21t2 d + C 1
L
0
Svi1t2 

and (8.8)

 y1t2 = [0 1]Jx11t2
x21t2 R .

These then are state equations for the circuit of Figure 8.1. As we discuss in 
Section 8.6, this set is not unique; that is, we can choose other variables to be the 
states of the system.

The standard form for the state equations of a continuous-time LTI system is 
given by

 x
# 1t2 = ax1t2 + bu1t2 

and (8.9)

 y1t2 = Cx1t2 + du1t2,



404 State Variables for Continuous-Time Systems    Chap. 8

where boldface denotes vectors and matrices. The vector x
# 1t2 is the time derivative 

of the vector x1t2. In these equations,

 x1t2 = 1n * 12  state vector for an nth-order system;
 u1t2 = 1r * 12  input vector composed of the system input signals;
 y1t2 = 1p * 12  output vector composed of the defined output signals;

 a = 1n * n2 system matrix;
 b = 1n * r2  input matrix;
 C = 1p * n2 output matrix;
 d = 1p * r2  matrix that represents the direct coupling between the system  

  inputs and the system outputs.

Expanding the vectors in (8.9) yields

  x
# 1t2 = ≥

x
#
11t2

x
#
21t2
f

x
#
n1t2

¥ ; x1t2 = ≥
x11t2
x21t2
f

xn1t2
¥ ; 

(8.10)

  u
# 1t2 = Du11t2

u21t2
f

ur1t2
T ; y1t2 = D y11t2

y21t2
f

yp1t2
T .

It is standard notation to denote the input functions as ui1t2. Unfortunately, this 
notation is also used for singularity functions, and confusion can result.

We illustrate the ith state equation in (8.9) as

  x#11t2 = ai1x11t2 + ai2x21t2 + g + ainxn1t2 
(8.11)  + bi1u11t2 + g + birur1t2

and the ith output equation in (8.9) as

  yi1t2 = ci1x11t2 + ci2x21t2 + g + cinxn1t2 
(8.12)  + di1u11t2 + g + dirur1t2.

We now define the state of a system:

The state of a system at any time t0 is the information that, together with all inputs for 
t G t0, determines the behavior of the system for t G t0.

It will be shown that the state vector x1t2 of the standard form (8.9) satisfies this defi-
nition. Note that for a differential equation, the initial conditions satisfy this definition.

We refer to the two matrix equations of (8.9) as the state equations of a sys-
tem. The first equation, a differential equation, is called the state equation, and the 
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second one, an algebraic equation, is called the output equation. The state equation 
is a first-order matrix differential equation, and the state vector x1t2 is its solution. 
Given knowledge of x1t2 and the input vector u1t2, the output equation yields the 
output y1t2. The output equation is a linear algebraic matrix equation.

In the state equations (8.9), only the first derivatives of the state variables may 
appear on the left side of the equation, and no derivatives of either the states or the 
inputs may appear on the right side. No derivatives may appear in the output equa-
tion. Valid first-order coupled equations that model an LTI system may be writ-
ten without following these rules; however, those equations are not in the standard 
form.

The standard form of the state equations, (8.9), allows more than one input 
and more than one output. Systems with more than one input or more than one 
output are called multivariable systems. For a single-input system, the matrix b is an 
1n * 12 column vector and the input is the scalar u1t2. For a single-output system, 
the matrix C is a 11 * n2 row vector and the output is the scalar y1t2. An example 
is now given to illustrate a multivariable system.

 example 8.1 State variables for a second-order system

Consider the system described by the coupled differential equations

  y
#
11t2 + 2y11t2 - 3y21t2 = 4u11t2 - u2t

and

  y
#
21t2 + 2y21t2 + y11t2 = u11t2 + 5u21t2,

where u11t2 and u21t2 are system inputs and y11t2 and y21t2 are system outputs. We define 
the outputs as the states. Thus,

 x11t2 = y11t2; x21t2 = y21t2.

From the system differential equations, we write the state equations

  x
#
11t2 = -2x11t2 + 3x21t2 + 4u11t2 - u21t2

and

  x
#
21t2 = -x11t2 - 2x21t2 + u11t2 + 5u21t2

and the output equations

  y11t2 = x11t2

and

  y21t2 = x21t2.
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These equations may be written in vector-matrix form as

  x
# 1t2 = J -2 3

-1 -2
Rx1t2 + J4 -1

1 5
Ru1t2

and

  y1t2 = J1 0
0 1

Rx1t2.

Thus, we have derived a set of state equations for the system given. ■

In Example 8.1, suppose that the equations model a mechanical system. 
Suppose further that both y11t2 and y21t2 are displacements in the system. Then 
the state variables represent physical signals within the system. Generally, we prefer 
that the state variables be physically identifiable variables, but this is not necessary; 
this topic is developed further in Section 8.6.

When the equations of a physical system are written from physical laws, gen-
erally a set of coupled first- and second-order differential equations results. In this 
situation, we usually choose the state variables as illustrated in Example 8.1. Each 
first-order equation results in one state, and each second-order equation results in 
two states. For example, suppose that we have a five-loop circuit in which three 
of the loop equations are second order and two are first order. This circuit is then 
modeled with eight state variables, with six from the three second-order equations 
and two from the two first-order equations.

We have introduced in this section the standard form of the state model of 
a continuous-time LTI system. We illustrated the state model with two systems 
 described by differential equations. Next we consider a method for obtaining the 
state model directly from the system-transfer function H1s2. In general, this method 
does not result in the state variables being physical signals.

 8.2 Simulation diagramS

In Section 8.1, we presented two methods of finding the state model of a system 
directly from the system differential equations. The procedure presented in those 
examples is very useful and is employed in many practical situations. If we write the 
system equations from the laws of physics, the result generally is a set of  differential 
equations of the type displayed in Example 8.1—that is, a set of coupled second- 
order differential equations. However, certain methods for obtaining models of 
physical systems, called system-identification procedures [1], result in a transfer func-
tion rather than differential equations. In this section, we present a procedure for 
obtaining a state model from a transfer function. Since a transfer function  implies a 
single-input single-output system, the input is the scalar u1t2 and the output is the 
scalar y1t2.
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The procedure presented here is based on the form II representation, or simula-
tion diagram, of a system; this form was developed in Section 3.8. This simulation dia-
gram, repeated in Figure 8.2, represents an nth-order system with the transfer function

 H1s2 =
Y1s2
U1s2 =

bnsn + bn - 1s
n - 1 + g + b1s + b0

sn + an - 1s
n - 1 + g + a1s + a0

 , (8.13)

where U1s2 is the (transform of the) input and Y1s2 is the output. Note that the de-
nominator coefficient an has been normalized to unity. If this coefficient is not unity 
for a given transfer function, we divide both numerator and denominator by an to 
obtain (8.13). Equation (8.13) can be expressed as

  1sn + an - 1s
n - 1 + g + a1s + a02Y1s2  

(8.14)
  = 1bnsn + bn - 1s

n - 1 + g + b1s + b02U1s2.

Using either the procedures of Chapter 3 or the inverse Laplace transform, we write 
the system differential equation,

 a
n

k = 0
ak

dky1t2
dtk = a

n

k = 0
bk

dku1t2
dtk  , (8.15)

� ��a1 b1

�a0 b0

�

�

� ��an�2 bn�2

�

� ��an�1 bn�1

� �bn

x1(t)

x 1(t)

x n�2(t)

x n�1(t)

x n(t)
.

xn�1(t)

xn(t)

y(t)u(t)

x2(t)

.

.

.

Figure 8.2  Direct form II for an nth-order  
system.
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with an = 1. Thus, the system modeled by the transfer function of (8.13) has the dif-
ferential equation model of (8.15). Recall that initial conditions are ignored when 
we use the Laplace transform to derive (8.14); hence, the initial conditions must be 
ignored when we find the inverse Laplace transform of (8.14).

We now give a procedure for writing the state model of the system of (8.13), 
(8.15), and Figure 8.2. First, we label each integrator output in Figure 8.2 as a state 
variable, as shown in the figure. If the output of an integrator is xi1t2, its input must 
be x# i1t2, also shown in Figure 8.2. We then write equations for the input signals to 
the integrators from Figure 8.2:

 x# 11t2 = x21t2; 

 x# 21t2 = x31t2;
 f
 x# n - 11t2 = xn1t2;

 x# n1t2 = -a0 

x11t2 - a1x21t2 - g -an - 2xn - 11t2
  -an - 1xn1t2 + u1t2. (8.16)

The equation for the output signal is, from Figure 8.2,

  y1t2 = 1b0 - a0bn2x11t2 + 1b1 - a1bn2x21t2 

  + g + 1bn - 1 - an - 1bn2xn1t2 + bnu1t2. (8.17)

We now write (8.16) and (8.17) as matrix equations:

 x# 1t2 = E 0 1 0 g 0 0
0 0 1 g 0 0
f f f f f
0 0 0 g 0 1

-a0 -a1 -a2 g -an - 2 -an - 1

Ux1t2 + E 0
0
f
0
1

Uu1t2; 

(8.18)
  y1t2 = [1b0 - a0bn2  1b1 - a1bn2 g 1bn - 1 - an - 1bn2]x1t2 + bnu1t2.

Note that the state equations can be written directly from the transfer function 
(8.13) or from the differential equation (8.15), because the coefficients ai and bi are 
given in these two equations. The intermediate step of drawing the simulation dia-
gram is not necessary. An example using this procedure is now given.

 example 8.2 State equations from a transfer function

Suppose that we have a single-input single-output system with the transfer function

 H1s2 =
Y1s2
U1s2 =

5s + 4

s2 + 3s + 2
=

b1s + b0

s2 + a1s + a0
 .

The state equations are written directly from (8.18):

  x# 1t2 = c 0 1
-2 -3

d x1t2 + c 0
1
du1t2;

 
  y1t2 = [4 5]x1t2.  (8.19)
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The form II simulation diagram is given in Figure 8.3, with the numerical parameters and the 
state variables as shown. The state model (8.19) is verified directly from this diagram.

MATLAB is useful for converting system models from transfer function form to 
state equations. The program

num = [5 4], den = [1  3  2]
[A,B,C,D] = tf2ss(num,den)

produces the set of state matrices

 A = c -3 -2
1 0

d , B = c 1
0
d , C = [5 4], and D = [0].

It is obvious that the A, B, and C matrices displayed by MATLAB differ from those shown in 
(8.19). This results from the default assignment of state variables in the program for tf2ss in 
MATLAB. The state matrices computed by MATLAB are correct if the order of state vari-
ables, x1 and x2, is reversed. The state matrices computed in MATLAB can be transformed 
into the form shown in (8.19) by a similarity transformation. Similarity transformations will 
be discussed in Section 8.6. ■

The state model of (8.18) is required for certain design procedures for feedback-
control systems. In that application, (8.18) is called the control canonical form [2, 3].

The procedure just used to write (8.18) from Figure 8.2 can be used to write 
the state equations of any system, given any form of a simulation diagram for that 
system; that is, the form II realization is not required. In this procedure, the integra-
tor outputs are chosen as the states; hence, the integrator inputs are the derivatives 
of the states. The equations are then written for the integrator inputs x# i1t2 and the 
system output y1t2 as functions of the system input u1t2, the integrator outputs 
xi1t2, and the system parameters. We now discuss this procedure further.

In a simulation diagram, a signal is altered when transmitted through an inte-
grator; hence, its designation is changed. We denote x# i1t2 as the input to an integra-
tor, and xi1t2 as the integrator output. The state-equation procedure is simplified by 
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Figure 8.3  Second-order system.
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omitting the integrators from the diagram; the equations are written directly from 
the remaining diagram. This omission is especially useful in complex simulation dia-
grams. The system of Figure 8.3, with the integrators omitted, is shown in Figure 8.4. 
Note that all signals are shown in this figure. In addition, the effects of the integra-
tors are included, by the designations xi1t2 and x# i1t2.

The final step of the procedure is to write the equations for the integrator in-
puts and the system outputs on the diagram as functions of the system inputs, the in-
tegrator outputs, and the system parameters. The results for Figure 8.4 are given by

  x# 11t2 = x21t2,

  x# 21t2 = -2x11t2 - 3x21t2 + u1t2,

and

  y1t2 = 4x11t2 + 5x21t2.

These equations check those obtained in Example 8.2, by (8.18). A second example 
of this procedure will now be given.

 example 8.3 State equations from a simulation diagram

We now write the state equations for the simulation diagram of Figure 8.5(a). Note that this 
diagram is not one of the two standard forms developed in Chapter 3. This form is sometimes 
used to realize analog filters, in which the integrators are implemented using operational 
 amplifiers [2].

The system has two integrators and is second order. First, we redraw the simulation 
diagram with the state variables shown and the integrators removed. The result is given in 
Figure 8.5(b). From this diagram, we write the state equations in matrix format:

  x
# 1t2 = J -2 3

0 -4
Rx1t2 + J1

2
Ru1t2;  y1t2 = [5 6]x1t2. ■

In Section 8.1, a procedure was given for writing state equations from differ-
ential equations. In this section, a procedure is developed for writing state equations 
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Figure 8.4  Second-order system.
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directly from a transfer function. This procedure is then extended to writing state 
equations directly from a simulation diagram.

A model of a physical system can be specified by

 1. differential equations;
 2. a transfer function;
 3. a simulation diagram;
 4. state equations.

We have illustrated all four models in this section and Section 8.1. In Section 8.5, 
we give a procedure for obtaining the transfer function from the state equations. 
However, first we consider the solution of state equations.

�
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Figure 8.5  System for Example 8.3.
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 8.3 Solution of State equationS

We have developed procedures for writing the state equations for an LTI system, 
given the system differential equation, the transfer function, or the simulation dia-
gram. In this section, we present two methods for solving state equations.

laplace-transform Solution

The standard form for the state equation is given by

 x# = ax1t2 + bu1t2. (8.20)

This equation will now be solved with the use of Laplace transform. Consider the 
first of the n scalar equations in (8.20), namely,

  x# 11t2 = a11x11t2 + a12x21t2 + g + a1nxn1t2 
(8.21)  + b11u11t2 + g + b1rur1t2,

where aij and bij are the appropriate elements in the a and b matrices. Recall from 
Table 7.3 the Laplace transform of a derivative:

 l[x# 11t2] = sX11s2 - x1102.

Note that, for convenience, we have omitted the plus exponent on x1102. (This is stan-
dard practice.) The Laplace transform of the first state equation, (8.21), is given by

  sX11s2 - x1102 = a11X11s2 + a12X21s2 + g + a1nXn1s2 
(8.22)  + b11U11s2 + g + b1rUr1s2.

We will find the complete solution; hence, the initial condition x1102 is included. 
The second equation in (8.20) is given by

  x# 21t2 = a21x11t2 + a22x21t2 + g + a2nxn1t2 + b21u11t2 + g + b2rur1t2,

which has the Laplace transform

 sX21s2 - x2102 = a21X11s2 + a22X21s2 + g + a2nXn1s2 
(8.23)  + b21U11s2 + g + b2rUr1s2.

The Laplace transform of the remaining 1n - 22 equations in (8.20) yields the 
same form as (8.22) and (8.23). We see then that these transformed equations may 
be written in matrix form as

 sx1s2 - x102 = ax1s2 + bu1s2.

We wish to solve this equation for x(s); to do this, we rearrange the last equation:

 sx1s2 - ax1s2 = x102 + bu1s2. (8.24)

It is necessary to factor x(s) in the left side to solve this equation. First, the term sx(s) 
must be written as six(s), where i is the identity matrix. (See Appendix G.) Then,

 six1s2 - ax1s2 = 1si - a2x1s2 = x102 + bu1s2. (8.25)
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This additional step is necessary, since the subtraction of the matrix a from the 
scalar s is not defined; we cannot factor x(s) directly in (8.24). Equation (8.25) may 
now be solved for x(s):

 x1s2 = 1si - a2-1x102 + 1si - a2-1bu1s2. (8.26)

The state vector x(t) is the inverse Laplace transform of this equation.
To develop a general relationship for the solution, we define the state transi-

tion matrix �1t2 as

 �1t2 = l-1[�1s2] = l-1[1si - a2-1]. (8.27)

This matrix �1t2 is also called the fundamental matrix. The matrix �1s2 =  
1si - a2-1 is called the resolvant of a [3]. Note that for an nth-order system, the 
state transition matrix is of order 1n * n2.

The inverse Laplace transform of a matrix, as in (8.27), is defined as the inverse 
transform of the elements of the matrix. Solving for �1t2 in (8.27) is in general difficult, 
time consuming, and prone to error. A more practical procedure for calculating the 
state vector x(t) is by computer simulation. Next, an example is presented to illustrate 
the calculation in (8.27).

 example 8.4 State transition matrix for a second-order system

We use the system of Example 8.2, described by the transfer function

 H1s2 =
Y1s2
U1s2 =

5s + 4

s2 + 3s + 2
 .

From Example 8.2, the state equations are given by

[eq(8.19)]  x# 1t2 = J 0 1
-2 -3

Rx1t2 + J0
1
Ru1t2;

  y1t2 = [4 5]x1t2.

To find the state transition matrix, we first calculate the matrix 1si - a2:

 si - a = sJ1 0
0 1

R - J 0 1
-2 -3

R = J s -1
2 s + 3

R .

We next calculate the adjoint of this matrix (see Appendix G):

 Adj1si - a2 = Js + 3 1
-2 s

R .
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The determinant of 1si - a2 is given by

  det1si - a2 = s1s + 32 - 1-12  122
  = s2 + 3s + 2 = 1s + 12  1s + 22.

The inverse matrix is the adjoint matrix divided by the determinant:

  �1s2 = 1si - a2-1 = ≥
s + 3

1s + 12  1s + 22
1

1s + 12  1s + 22
-2

1s + 12  1s + 22
s

1s + 12  1s + 22
¥

  = D 2
s + 1

+
-1

s + 2
1

s + 1
+

-1
s + 2

-2
s + 1

+
2

s + 2
-1

s + 1
+

2
s + 2

T .

The state transition matrix is the inverse Laplace transform of this matrix:

 �1t2 = J 2e-t - e-2t e-t - e-2t

-2e-t + 2e-2t -e-t + 2e-2tR .

The following MATLAB program computes the resolvant and state-transition matrices for 
this example:

% This MATLAB program verifies the calculations of Example 8.4.
%
% Designate the symbolic variables to be used.
syms s t
% Enter the numerator and denominator coefficient arrays.
n=[5 4];
d=[1 3 2];
% Show the transfer function.
Hs=tf(n,d)
% Convert the system into a state-variable model.
[A,B,C,D]=tf2ss(n,d);
% Perform a similarity transformation to put the
% model in control-canonical form.
% (Similarity transformations are discussed in Section 8.6).
T=[0 1;1 0];
[A,B,C,D]=ss2ss(A,B,C,D,T)
% Form the Identity matrix.
I=[1 0;0 1];
% Compute Phi(s).
Phis=inv(s*I-A);
'The resolvant matrix, Phi(s)='
pretty(Phis)
% Compute phi(t), the state-transition matrix.
phit=ilaplace(Phis);
'The state-transition matrix, phi(t)='
pretty(phit). ■
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Recall from Sections 3.5 and 7.7 that the system characteristic equation is the 
denominator of the transfer function set to zero. For the system of Example 8.4, the 
characteristic equation is then

 s2 + 3s + 2 = 1s + 12  1s + 22 = 0.

Hence, the modes of the system are e-t and e-2t. These modes are evident in the 
state transition matrix �1t2. The modes of a system always appear in the state tran-
sition matrix; hence, the system’s stability is evident from �1t2.

Recall the complete solution of the state equation from (8.26):

  x1s2 = 1si - a2-1x102 + 1si - a2-1bu1s2 
(8.28)  = �1s2x102 + �1s2bu1s2.

Note that the resolvant matrix �1s2 is basic to the solution of the state equations.
We illustrate the complete solution with an example; then a different form of 

the solution is presented.

 example 8.5 total response for second-order state equations

Consider again the system of Example 8.4. We have

 x# 1t2 = J 0 1
-2 -3

Rx1t2 + J0
1
Ru1t2

and

 y1t2 = [4 5]x1t2,

with the resolvant matrix

 �1s2 = 1si - a2-1 = ≥
s + 3

1s + 12  1s + 22
1

1s + 12  1s + 22
-2

1s + 12  1s + 22
s

1s + 12  1s + 22
¥ .

Suppose that the input signal is a unit step function. Then U1s2 = 1>s, and the second term 
in (8.28) becomes

  1si - a2-1bU1s2 = ≥
s + 3

1s + 12  1s + 22
1

1s + 12  1s + 22
-2

1s + 12  1s + 22
s

1s + 12  1s + 22
¥ c 0

1
d 1>s

  = D 1
s1s + 12  1s + 22

1
1s + 12  1s + 22

T = D 1>2

s
+

-1
s + 1

+
1>2

s + 2
1

s + 1
+

-1
s + 2

T .
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For t 7 0, the inverse Laplace transform of this vector yields

 l-1[1si - a2-1bU1s2] = J1
2 - e-t + 1

2e-2t

e-t - e-2t R .

The state transition matrix was derived in Example 8.4. Hence, the complete solution of the 
state equations is, from (8.28) and Example 8.4,

  x1t2 = �1t2x102 + l-1[1si - a2-1bU1s2]

  = c 2e-t - e-2t e-t - e-2t

-2e-t + 2e-2t -e-t + 2e-2t d c
x1102
x2102 d + c

1
2 - e-t + 1

2e-2t

e-t - e-2t d ,

and the state variables are given by

  x11t2 = 12e-t - e-2t2x1102 + 1e-t - e-2t2x2102 + 1
2

  - e-t + 1
2e-2t = 1

2 + [2x1102 + x2102 - 1]e-t

  + [-x1102 - x2102 + 1
2]e-2t.

In a like manner,

  x21t2 = 1-2e-t + 2e-2t2x1102 + 1-e-t + 2e-2t2x2102
  + e-t - e-2t = [-2x1102 - x2102 + 1]e-t + [2x1102 + 2x2102 - 1]e-2t.

The output is given by

  y1t2 = 4x11t2 + 5x21t2 = 2 + [-2x1102 - x2102 + 1]e-t

  + [6x1102 + 6x2102 - 3]e-2t.

The first-row element of �1t2x102 can be calculated directly with the MATLAB program

S = dsolve('Dx1 = x2,Dx2 = -2*x1-3*x2,x1(0) = x10,x2(0) = x20')
S.x1
S.x2

The second-row element can be calculated in the same manner. ■

The solution of state equations is long and involved, even for a second-order 
system. The necessity for reliable machine solutions, such as digital-computer simu-
lations, is evident. Almost all system analysis and design software have simulation 
capabilities; the simulations are usually based on state models. As an example, a 
SIMULINK simulation is now discussed.

 example 8.6 SIMULINK simulation

The system of Example 8.5 was simulated with SIMULINK. The block diagram from the simu-
lation is given in Figure 8.6(a), and the response y1t2 is given in Figure 8.6(b). From Example 
8.5, we see that the two system time constants are 0.5 s and 1 s. Hence, the transient part of 
the response becomes negligible after approximately four times the larger time constant, or 
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four seconds. Figure 8.6(b) shows this. In addition, the final value of y1t2 is 2, which is also 
evident in this figure. ■

Convolution Solution

The complete solution of the state equations is expressed as

[eq(8.26)] x1s2 = 1si - a2-1x102 + 1si - a2-1bU1s2.

A second form for this solution is now developed. The second term in the right 
side of (8.26) is a product of two terms in the Laplace variable s. Thus, the inverse 
Laplace transform of this term can be expressed as a convolution integral. (See 
Table 7.3.) The inverse Laplace transform of (8.26) is then

  x1t2 = �1t2x102 + L
t

0
�1t - t2bu1t2dt 

(8.29)

  = �1t2x102 + L
t

0
�1t2bu1t - t2dt.

This solution has two terms. The first term is referred to as either the zero-input 
term or the initial-condition term, and the second term is called either the zero-state 
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term or the forced response. Equation (8.29) is sometimes called the convolution 
solution of the state equation.

The solution in (8.29) is quite difficult to calculate, except for the simplest of sys-
tems. The system of the preceding example is now used to illustrate this calculation.

 example 8.7 Convolution solution for second-order state equations

In Example 8.5, the input was a unit step function. From (8.29), with u1t2 = 1 for t 7 0, the 
second term becomes

  L
t

0
�1t - t2bu1t2dt = L

t

0
J 2e-1t - t2 - e-21t - t2 e-1t - t2 - e-21t - t2

-2e-1t - t2 + 2e-21t - t2 -e-1t - t2 + 2e-21t - t2 R J0
1
Rdt

  = D L
t

0
1e-1t - t2 - e-21t - t2dt

L
t

0
a -e-1t - t2 + 2e-21t - t2dt

T = J 1e-tet - 1
2e-2t e2t20

t

1-e-tet + e-2t e2t20
t R

  = J 11 - e-t2 - 1
211 - e-2t2

1-1 + e-t2 + 11 - e-2t2 R = J1
2 - e-t + 1

2e-2t

e-t - e-2t R .

This result checks that of Example 8.5. Only the forced response is derived here. The initial-
condition term of the solution is the function F1t2x102 in (8.29), which was evaluated in 
Example 8.5; it is not repeated here. ■

The complete solution to the state equations was derived in this section. This 
solution may be evaluated either by the Laplace transform or by a combination of 
the Laplace transform and the convolution integral. Either procedure is long, time 
consuming, and prone to errors.

infinite Series Solution

As just shown, the state transition matrix can be evaluated with the use of the 
Laplace transform. An alternative procedure for this evaluation is now developed.

One method of solution of homogeneous differential equations is to assume as 
the solution an infinite power series with unknown coefficients. The infinite series is 
then substituted into the differential equation to evaluate the unknown coefficients. 
This method is now used to find the state transition matrix as an infinite series.

We begin by considering all system inputs to be zero. Thus, from (8.9), the 
state equation may be written as

 x# 1t2 = ax1t2, (8.30)

with the solution

 x1t2 = F1t2x102, (8.31)

from (8.29).
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Because we are solving for the vector x(t), the state transmission matrix is as-
sumed to be of the form

 �1t2 = K0 + K1t + K2t
2 + K3t

3 + g

so that

  x1t2 = 1K0 + K1t + K2t
2 + K3t

3 +  g2x102 

  = Ja∞
i = 0

Kit
iRx102 = F1t2x102, (8.32)

where the n * n matrices Ki are unknown and t is the scalar time. Differentiating 
this equation yields

 x# 1t2 = 1K1 + 2K2t + 3K3t
2 +  g2x102. (8.33)

Substituting (8.33) and (8.32) into (8.30) yields

  x# 1t2 = 1K1 + 2K2t + 3K3t
2 +  g2x102

 
(8.34)  = a1K0 + K1t + K2t

2 + K3t
3 +  g2x102.

Evaluating (8.32) at t = 0 yields x102 = K0x102; hence, K0 = i. We next 
equate the coefficients of t i for i = 0, 1, 2,  g, in (8.34). The resulting equations 
are, with K0 = i,

  K1 = aK0    1 K1 = a;  

  2K2 = aK1 = a2  1 K2 =
a2

2!
;

  3K3 = aK2 =
a3

2!
 1 K3 =

a3

3!
;

 f          f  . (8.35)

Thus, from (8.32) and (8.35),

 �1t2 = i + a1t2 + a2 
t2

2!
+ a3 

t3

3!
+  g. (8.36)

It can be shown that this series is convergent [4].
In summary, we can express the complete solution for state equations as

[eq(8.29)] x1t2 = �1t2x102 + L
t

0
�1t - t2bu1t2 dt,
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with the state transition matrix F1t2 given either by (8.36) or by

[eq(8.27)] �1t2 = l-1[�1s2] = l-1[1si - a2-1].

Because of the similarity of (8.36) and the Taylor’s series for the scalar 
exponential

 ekt = 1 + kt + k2 
t2

2!
+ k3 

t3

3!
+ g, (8.37)

the state transition matrix is often written, for notational purposes only, as the ma-
trix exponential

 �1t2 = exp at. (8.38)

The matrix exponential is defined by (8.36) and (8.38). An example is given next that 
illustrates the calculation of the state transition matrix, using the series in (8.36).

 example 8.8 Series solution for second-order state equations

To give an example for which the series in (8.36) has a finite number of terms, we consider 
the movement of a rigid mass in a frictionless environment. The system model is given by

 f1t2 = M 
d2x1t2

dt2  ,

where M is the mass, x1t2 the displacement, and f1t2 the applied force. For convenience, we 
let M = 1. We choose the state variables as the position and the velocity of the mass such that

  x11t2 = x1t2,

  x21t2 = x# 1t2 = x# 11t2,

and

 x# 21t2 = x
$1t2 = f1t2,

where the last equation is obtained from the system model. The state equations are then

 x# 1t2 = J0 1
0 0

Rx1t2 + J0
1
R f1t2.

Then, in (8.36),

 a = J0 1
0 0

R , a2 = J0 1
0 0

R J0 1
0 0

R = J0 0
0 0

R ,

and

 a3 = aa2 = 0.
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In a like manner,

 an = a2an - 2 = 0; n G 3.

Thus, the state transition matrix is, from (8.36),

 �1t2 = i + at = J1 0
0 1

R + J0 1
0 0

R t = J1 t
0 1

R ,

and the states are given by

 x1t2 = �1t2x102 = J1 t
0 1

Rx102 = Jx1102 + tx2102
x2102 R .

This example was chosen to give a simple calculation. In general, evaluating the matrix expo-
nential is quite involved. The calculation of �1t2 in this example is easily checked with the 
use of Laplace transforms. (See Problem 8.18.) ■

The series expansion of �1t2 is well suited to evaluation on a digital computer 
if �1t2 is to be evaluated at only a few instants of time. The series expansion is also 
useful in the analysis of digital control systems [5, 6]. However, as a practical matter, 
the time response of a system should be evaluated by simulation, such as is given in 
Example 8.6.

In this section, two expressions for the solution of state equations are derived. 
The first, (8.26), expresses the solution as a Laplace transform, while the second, 
(8.29), expresses the solution as a convolution. The state-transition matrix is found 
either by the Laplace transform, (8.27), or by the series (8.36).

 8.4 propertieS of the State-tranSition matrix

Three properties of the state-transition matrix will now be derived. First, for an 
unforced system, from (8.29),

 x1t2 = �1t2x102 1 x102 = �102x102; (8.39)

hence, the first property is given by

 �102 = i, (8.40)

where i is the identity matrix. This property can be used in verifying the calculation 
of �1t2.

The second property is based on time invariance. From (8.39), with t = t1,

 x1t12 = �1t12x102. (8.41)

Suppose that we consider t = t1 to be the initial time and x1t12 to be the initial con-
ditions. Then, at t2 seconds later than t1, from (8.39), (8.41), and the time invariance 
of the system,

 x1t2 + t12 = �1t22x1t12 = �1t22�1t12x102.
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Figure 8.7 shows the points on the time axis. Also, from (8.39), with t = t1 + t2,

 x1t2 + t12 = �1t2 + t12x102.

From the last two equations, we see the second property:

 �1t1 + t22 = �1t12�1t22. (8.42)

We can derive the third property from the second property by letting t1 = t 
and t2 = - t. Then, in (8.42),

 �1t - t2 = �1t2�1- t2 = �102 = i,

from (8.40). Thus,

 �-11t2 = �1- t2. (8.43)

It can be shown that �-11t2 always exists for t finite [7].
In summary, the three properties of the state transition matrix are given by

[eq(8.40)]  �102 = i;

[eq(8.42)]  �1t1 + t22 = �1t12�1t22;

[eq(8.43)]  �-11t2 = �1- t2.

An example illustrating these properties will now be given.

 example 8.9 illustrations of properties of the state transition matrix

We use the state transition matrix from Example 8.4 to illustrate the three properties:

 �1t2 = J2e-t - e-2t e-t - e-2t

-2e-t + 2e-2t -e-t + 2e-2tR .

From (8.40),

 �102 = J2e0 - e0 e0 - e0

-2e0 + 2e0 -e0 + 2e0R = J1 0
0 1

R = i,

0 t1

t2

t2 � t1 t Figure 8.7  Time axis.
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and the first property is satisfied. The second property, (8.41), yields

 �1t12�1t22 = J 2e-t1 - e-2t1 e-t1 - e-2t1

-2e-t1 + 2e-2t1 -e-t1 + 2e-2t1
R * J 2e-t2 - e-2t2 e-t2 - e-2t2

-2e-t2 + 2e-2t2 -e-t2 + 2e-2t2
R .

The (1, 1) element of the product matrix is given by

  11, 12 element = [2e-t1 - e-2t1][2e-t2 - e-2t2]

  + [e-t1 - e-2t1][-2e-t2 + 2e-2t2] = [4e-1t1 + t22 - 2e-12t1 + t22

  - 2e-1t1 + 2t22 + e-21t1 + t22] + [-2e-1t1 + t22 + 2e-12t1 + t22

  + 2e-1t1 + 2t22 - 2e-21t1 + t22].

Combining these terms yields

 11, 12 element = 2e-1t1 + t22 - e-21t1 + t22, (8.44)

which is the (1, 1) element of �1t1 + t22. The other three elements of the product matrix can 
be verified in a like manner.

To illustrate the third property, (8.43), we assume that the property is true. Hence,

 �1t2�1- t2 = J 2e-t - e-2t e-t - e-2t

-2e-t + 2e-2t -e-t + 2e-2tR * J 2et - e2t et - e2t

-2et + 2e2t -et + 2e2tR = i.

As with the last property, we test only the (1, 1) element of the product. This product is given 
in (8.44); in this equation, we let t1 = t and t2 = - t, with the result

 11, 12 element = 2e-1t - t2 - e-21t - t2 = 1,

as expected. In a like manner, the other three elements of the product matrix can be 
verified. ■

In this section, three properties of the state-transition matrix are developed. 
Property (8.40), �102 = i, is easily applied as a check of the calculation of a state-
transition matrix.

 8.5 tranSfer funCtionS

A procedure was given in Section 8.2 for writing the state equations of a system 
from the system transfer function. In this section, we investigate the calculation of 
the transfer function from state equations.

The standard form of the state equations is given by

  x# 1t2 = ax1t2 + bu1t2
and

  y1t2 = Cx1t2 + Du1t2 (8.45)
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for a single-input single-output system. The Laplace transform of the first equation 
in (8.45) yields [see (8.24)]

 sx1s2 = ax1s2 + bU1s2. (8.46)

Because we are interested in the transfer function, the initial conditions are ignored. 
Collecting terms for x(s) yields

 1si - a2x1s2 = bU1s2; (8.47)

thus, x(s) is given by

 x1s2 = 1si - a2-1bU1s2. (8.48)

The Laplace transform of the output equation in (8.45) yields

 Y1s2 = Cx1s2 + DU1s2. (8.49)

From (8.48) and (8.49), the input–output relationship for the system is given by

 Y1s2 = [C1si - a2-1b + D]U1s2. (8.50)

Because the system transfer function is defined by the equation Y1s2 = H1s2U1s2, 
from (8.50), we see that the transfer function is given by

 H1s2 =
Y1s2
U1s2 = C1si - a2-1b + D = C�1s2b + D. (8.51)

Because C is 11 * n2, 1si - a2-1 is 1n * n2, and b is 1n * 12, the product 
C1si - a2-1b is 11 * 12, or a scalar, as required. An example is given to illustrate 
this result.

 example 8.10 transfer function from state equations

Consider the system of the earlier examples with the transfer function

 H1s2 =
Y1s2
U1s2 =

5s + 4

s2 + 3s + 2
 .

The state equations were found in Example 8.2 to be

[eq(8.19)]  x# 1t2 = J 0 1
-2 -3

Rx1t2 + J0
1
Ru1t2;

  y1t2 = [4 5]x1t2.

The resolvant matrix 1si - a2-1 was calculated in Example 8.5. Then, from (8.51) and 
Example 8.5, with D = 0,
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  H1s2 = C1si - a2-1b

  = [4 5]≥
s + 3

s2 + 3s + 2

1

s2 + 3s + 2
-2

s2 + 3s + 2

s

s2 + 3s + 2

¥ c 0
1
d

  = [4 5]≥
1

s2 + 3s + 2
s

s2 + 3s + 2

¥ =
5s + 4

s2 + 3s + 2
 .

This transfer function checks the one given. ■

Although (8.51) does not appear to be useful in calculating the transfer func-
tion for higher order systems, relatively simple computer algorithms exist for evalu-
ating the resolvant matrix 1si - a2-1 [3]. For many practical systems, the system 
differential equations are written from the laws of physics. State equations are then 
written from these differential equations. Then, a digital-computer algorithm such 
as the one mentioned is used to calculate the transfer function. Most system analysis 
and design software packages have programs for finding a state model from a trans-
fer function and for finding the transfer function from a state model. Almost all 
analysis and design software use transfer functions or state models. The following 
MATLAB program solves Example 8.10:

A=[0 1;-2 -3];B=[0;1];C=[4 5];D=0;
[n,d]=ss2tf(A,B,C,D)
Hs=tf(n,d)

Stability

We saw in Section 7.7 that bounded-input bounded-output (BIBO) stability can be 
determined from the transfer function of an LTI system. The transfer function of 
(8.51) can be expressed as a rational function:

 H1s2 = C1si - a2-1b + D =
bnsn + g + b1s + b0

sn + g + a1s + a0
 . (8.52)

From Section 7.7, this system is BIBO stable, provided that all poles of H1s2 are in 
the left half-plane. The poles of the transfer function are the zeros of the denomina-
tor polynomial in (8.52).

The transfer function H1s2 can be expressed as

 C1si - a2-1b + D = C c adj1si - a2
det1si - a2 db + D. (8.53)
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Hence, the denominator polynomial of H1s2 is the determinant of 1si - a2; the 
poles of the transfer function are the roots of

 det1si - a2 = 0. (8.54)

This equation is then the system characteristic equation. Note that the stability is a 
function only of the system matrix a and is not affected by b, C, or D. In fact, (8.54) 
is the characteristic equation of a multivariable system, which has more than one 
input and more than one output. We now consider an example illustrating stability.

 example 8.11 Stability from state equations

We consider the second-order system of Figure 8.8, and we wish to find the range of the 
parameter a for which this system is stable. We write the state equations directly from 
Figure 8.8:

 x# 1t2 = J -2 -a
1 -4

Rx1t2.

We have ignored the input and output terms because stability is independent of these terms. 
From (8.54), the characteristic equation is given by

 det1si - a2 = detJs + 2 a
-1 s + 4

R = s2 + 6s + 8 + a = 0.

The zeros of this polynomial are given by

 s =
-6 { 236 - 418 + a2

2
=

-6 { 24 - 4a
2

= -3 { 21 - a.

�

�

5

62

�a

�2

�4

u(t) y(t)

�

�
x2(t) x2(t)

x1(t) x1(t)
.

.

Figure 8.8  System for Example 8.11.
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The system is stable, provided that the real parts of these two roots are negative—that is, 
provided that

 21 - a 6 3 1 1 - a 6 9 1 -8 6 a,

or a 7 -8. We test this result by letting a = -8. The roots of the characteristic equation are 
then

 s = -3 { 21 - 1-82 = -3 { 3.

The roots are at 0 and -6. The root at s = 0 is on the stability boundary in the s-plane, as 
we would suspect. If we decrease the value of a from -8, this root moves into the right half-
plane and the system is unstable. A MATLAB program that calculates the roots for a = -8 
is given by

A=[−2 8;1 −4];
c=poly (A)
r=roots (c)
result: c=1 6 0 r=0 −6 ■

In this section, a procedure is developed for calculating the transfer function 
of a system from its state equations. The procedure can be implemented on a com-
puter and is used extensively in the practice of engineering for calculating transfer 
functions of high-order systems. As a final point, it is shown that the characteristic 
polynomial of a system is equal to det1si - a2; hence, this determinant is used to 
determine the modes of a system. The modes determine the stability of a system 
and the transient characteristics of a stable system.

 8.6 Similarity tranSformationS

In this chapter, procedures have been presented for finding a state-variable model 
from system differential equations, from system transfer functions, and from system 
simulation diagrams. In this section, a procedure is given for finding a different state 
model from a given state model. It will be shown that a system has an unlimited 
number of state models. However, while the internal characteristics are different, 
each state model for a system will have the same input–output characteristics (same 
transfer function).

transformations

The state model of an LTI single-input, single-output system is given by

 x# 1t2 = ax1t2 + bu1t2 
(8.55)and

 y1t2 = Cx1t2 + Du1t2,

and the transfer function is given by, from (8.51),

 H1s2 =
Y1s2
U1s2 = C1si - a2-1b + D. (8.56)



428 State Variables for Continuous-Time Systems    Chap. 8

As we show in this section, an unlimited number of combinations of the matrices a, 
b, and C and the scalar D will satisfy (8.56) for a given H1s2.

Suppose that we are given a state model for an nth-order system as in (8.55). 
We define an n * 1 state vector v(t), such that the elements of v(t) are linear com-
binations of the elements of x(t); that is,

  v11t2 = q11x11t2 + q12x21t2 + g + q1nxn1t2;

  v21t2 = q21x11t2 + q22x21t2 + g + q2nxn1t2;

  f (8.57)

  vn1t2 = qn1x11t2 + qn2x21t2 + g + qnnxn1t2,

where the coefficients qjj are constants. This equation can be written in matrix 
form as

 v1t2 = qx1t2 = p-1x1t2, (8.58)

where the matrix q = [qij] has been defined as the inverse of a matrix p, to satisfy 
common notation. We require that q have an inverse; the choice of the qij in (8.57) 
must result in the n equations being independent. From (8.58), the state vector x(t) 
can be expressed as

 x1t2 = pv1t2, (8.59)

where the p matrix is called a transformation matrix, or simply, a transformation. 
An example is given next.

 example 8.12 State-variable transformation for a second-order system

Consider the system of Example 8.2, which has the transfer function

 H1s2 =
Y1s2
U1s2 =

5s + 4

s2 + 3s + 2
.

From Example 8.2, the state equations are given by

[eq(8.19)]  x# 1t2 = c 0 1
-2 -3

d x1t2 + c 0
1
du1t2;

  y1t2 = [4 5]x1t2.

We arbitrarily define the elements of v(t) as

 v11t2 = x11t2 + x21t2
and

 v21t2 = x11t2 + 2x21t2.
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Thus, from (8.58),

 v1t2 = qx1t2 = c 1 1
1 2

d x1t2

and

 p-1 = q = c 1 1
1 2

d 1 p = c 2 -1
-1 1

d .

The components of x1t2 = pv1t2 are then

  x11t2 = 2v11t2 - v21t2;

  x21t2 = -v11t2 + v21t2.

It is seen from this example that, given v(t) and the transformation p = q-1, we can 
solve for x(t). Or, given the vector x(t) and the transformation q, we can solve for the 
vector v(t). ■

Example 8.12 illustrates the transformation from one state vector to a different 
state vector. This transformation alters the internal model of the system (the state 
model) in such a manner as to leave the input–output model of the system (the trans-
fer function) unchanged. This transformation is called a similarity transformation. 
The details of similarity transformations are now developed.

Assume that we are given the state equations (8.55) and a similarity transfor-
mation (8.59). Both equations are repeated:

[eq(8.55)]  x# 1t2 = ax1t2 + bu1t2;

  y1t2 = Cx1t2 + Du1t2;

[eq(8.59)]  x1t2 = pv1t2.

Substituting (8.59) into the state equation in (8.55) yields

 pv# 1t2 = apv1t2 + bu1t2. (8.60)

Solving this equation for v# 1t2 results in the state model for the state vector v(t):

  v# 1t2 = p-1apv1t2 + p-1 bu1t2. (8.61)

Using (8.59), we find that the output equation in (8.55) becomes

  y1t2 = Cpv1t2 + Du1t2. (8.62)

We have the state equations expressed as a function of the state vector x(t) in (8.55) 
and as a function of the transformed state vector v(t) in (8.61) and (8.62).

The state equations as a function of v(t) can be expressed in the standard 
format as

 v# 1t2 = a
v
v1t2 + b

v
u1t2
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and

 y1t2 = C
v
v1t2 + D

v
u1t2, (8.63)

where the subscript indicates the transformed matrices. The matrices for the vector 
x(t) are not subscripted. From (8.61), (8.62), and (8.63), the transformed matrices 
are given by

  a
v

= p-1ap, b
v

= p-1b, 

  C
v

= Cp, and D
v

= D.  (8.64)

An example is given to illustrate the derivations.

 example 8.13 Similarity transformation for a second-order system

Consider the system of Example 8.12. The state equations for the state vector v(t) will be 
derived. From Example 8.12,

  x# 1t2 = ax1t2 + bu1t2 = c 0 1
-2 -3

d x1t2 + c 0
1
du1t2

and

  y1t2 = Cx1t2 = [4 5]x1t2,

with the similarity transformation

 p-1 = q = c 1 1
1 2

d 1 p = c 2 -1
-1 1

d .

From (8.64), the system matrices for v(t) are given by

  a
v

= p-1ap = c 1 1
1 2

d c 0 1
-2 -3

d c 2 -1
-1 1

d

  = c -2 -2
-4 -5

d c 2 -1
-1 1

d = c -2 0
-3 -1

d ;

  b
v

= p-1b = c 1 1
1 2

d c 0
1
d = c 1

2
d ;

  C
v

= Cp = [4 5] c 2 -1
-1 1

d = [3 1].

The transformed state equations are then

  v# 1t2 = a
v
v1t2 + b

v
u1t2 = c -2 0

-3 -1
d v1t2 + c 1

2
du1t2 

(8.65)and

  y1t2 = C
v
v1t2 = [3 1]v1t2.
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A MATLAB Program that performs the matrix multiplications is given by

A=[0 1;-2 -3];B=[0;1];C=[4 5];D=0;T=[1 1;1 2];
sys=ss(A,B,C,D)
[n,d]=ss2tf(A,B,C,D);
Hs=tf(n,d)
[Av,Bv,Cv,Dv]=ss2ss(A,B,C,D,T) ■

For the system in Example 8.13, the simulation diagram for the x(t)-state vec-
tor is given in Figure 8.3 and is repeated in Figure 8.9(a). The simulation diagram 
for the v(t)-state vector is given in Figure 8.9(b); this diagram satisfies the v# 1t2@state 
equations (8.65). We show later that the transfer functions of the two simulation 
diagrams are equal; however, note the differences in the internal structures.

(a)

x2(t)

�

�

�3 5

�2 4

y(t)

�

u(t)
�

�

x2(t)

x1(t)

x1(t)

�

�

3

2

�3

�2

�1

u(t) y(t)

�

�
v2(t) v2(t)

v1(t) v1(t)

(b)

.

.

.

.

Figure 8.9  Simulation diagrams for 
Example 8.13.
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Example 8.13 gives two state models for the same system. If a different trans-
formation matrix p (that has an inverse) had been chosen, a third model would 
result. In fact, for each different transformation p that has an inverse, a different 
state model results. Thus, an unlimited number of state models exists for a given 
system transfer function. The choice of the state model for a given system can be 
based on the natural state variables (position, velocity, current, voltage, etc.), on 
ease of analysis and design, and so on.

To check the state model developed in Example 8.13, we now derive the trans-
fer function.

 example 8.14 transfer function for the system of example 8.13

The transformed state equations of Example 8.13 are given by

  v# 1t2 = a
v
1t2 + b

v
u1t2 = c -2 0

-3 -1
d v1t2 + c 1

2
du1t2

and

  y1t2 = C
v
v1t2 = [3 1]v1t2.

From (8.56), the transfer function of this system is given by

 H
v
1s2 = C

v
1si - a

v
2-1b

v
.

First, we calculate 1si - a
v
2-1. Now,

 si - a
v

= s c 1 0
0 1

d - c -2 0
-3 -1

d = c s + 2 0
3 s + 1

d .

Therefore,

 det 1si - a2 = 1s + 22  1s + 12 = s2 + 3s + 2.

Then, letting det 1si - a2 = ∆1s2 for convenience, we have

 1si - a2-1 =
adj 1si - a2
det 1si - a2 = ≥

s + 1
∆1s2 0

-3
∆1s2

s + 2
∆1s2

¥ ,

and the transfer function is given by

  H
v
1s2 = C

v
1si - a

v
2-1b

v

  = [3 1]≥
s + 1
∆1s2 0

-3
∆1s2

s + 2
∆1s2

¥ c 1
2
d
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  = [3 1]C s + 1
∆1s2

2s + 1
∆1s2

S =
5s + 4

s2 + 3s + 2
.

This transfer function is the same as that used in Example 8.2 to derive the x(t)-state model. 
The following MATLAB statements, when appended to the program in Example 8.13, verify 
the results of this example:

[n d]=ss2tf(Av,Bv,Cv,Dv)
Hs=tf(n,d) ■

properties

Similarity transformations have been demonstrated through an example. Certain 
important properties of these transformations are derived next. Consider first the 
determinant of 1si - a

v
2. From (8.64),

  det 1si - a
v
2 = det 1si - p-1ap2 = det 1sp-1ip - p-1ap2

  = det [p-11si - a2p].  (8.66)

For two square matrices,

 det r1r2 = det r1 det r2. (8.67)

Then (8.66) becomes

 det 1si - a
v
2 = det p-1det 1si - a2 det p. (8.68)

For a matrix r, r-1r = i. Then,

 det r-1r = det r-1det r =  det i = 1. (8.69)

Thus, (8.68) yields the first property:

 det 1si - a
v
2 = det 1si - a2 det p-1det p = det 1si - a2. (8.70)

The roots of det 1si - a2 are the characteristic values, or the eigenvalues, of 
a. (See Appendix G.) From (8.70), the eigenvalues of a

v
 are equal to those of a. 

Because the transfer function is unchanged under a similarity transformation, and 
since the eigenvalues of a are the poles of the system transfer function, we are not 
surprised that they are unchanged.

A second property can be derived as follows: From (8.64),

 det a
v

= det p-1ap = det p-1 det a det p = det a. (8.71)

The determinant of a
v
 is equal to the determinant of a. This property can also be 

seen from the fact that the determinant of a matrix is equal to the product of its 
eigenvalues. (See Appendix G.)
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The third property of a similarity transformation can also be seen from the 
fact that the eigenvalues of a

v
, are equal to those of a. Because the trace (sum of 

the diagonal elements) of a matrix is equal to the sum of the eigenvalues,

 tr a
v

= tra. (8.72)

A fourth property was demonstrated in Example 8.14. Because the transfer 
function is unchanged under a similarity transformation,

 C
v
1si - a

v
2-1 b

v
+ D

v
= C 1si - a2-1 b + D. (8.73)

The proof of this property is left as an exercise. (See Problem 8.25.)
To summarize the properties of similarity transforms, we first let l1, l2, c , ln 

be the eigenvalues of the n * n matrix a. Then, for the similarity transformation,

 a
v

= p-1ap.

 1. The eigenvalues of a and a
v
 are equal:

  det 1si - a2 = det 1si - a
v
2

  = 1s - l12  1s - l22g1s - ln2. (8.74)

 2. The determinants of a and a
v
 are equal:

 deta = deta
v

= l1l2gln. (8.75)

 3. The traces of a and a
v
 are equal:

 tra = tra
v

= l1 + l2 + g + ln. (8.76)

 4. The following transfer functions are equal:

 C
v
1si - a

v
2-1b

v
+ D

v
= C1si - a2-1b + D. (8.77)

Property 4 was illustrated in Example 8.14. Properties 1 through 3 are illus-
trated in the next example.

 example 8.15 illustrations of properties of similarity transformations

The similarity transformation of Example 8.13 is used to illustrate the first three properties 
just developed. From Example 8.13, the matrices A and a

v
 are given by

 a = c 0 1
-2 -3

d ; a
v

= c -2 0
-3 -1

d .
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Then, for the first property, (8.74),

 det1si - a2 = 2 s -1
2 s + 3

2 = s2 + 3s + 2;

 det1si - a
v
2 = 2 s + 2 0

3 s + 1
2 = s2 + 3s + 2.

Next, the eigenvalues are found. From

 det1si - a2 = s2 + 3s + 2 = 1s + 12  1s + 22,

we obtain l1 = -1, l2 = -2.
For the second property, (8.75), the determinants of the two matrices are given by

 � a � = 2 0 1
-2 -3

2 = 2; � a
v
� = 2 -2 0

-3 -1
2 = 2,

and both determinants are equal to the product of the eigenvalues.
For the third property, (8.76), the traces of the two matrices are the sums of the diagonal 

elements

 tra = 0 + 1-32 = -3; tra
v

= -2 + 1-12 = -3.

Thus, the traces are equal to the sum of the eigenvalues. ■

The eigenvalues of an n * n matrix can be found with the MATLAB program 
in Example 8.11. The following MATLAB program also calculates eigenvalues:

A=[0 1;-2 -3], Av=[-2 0;-3 -1]
'Compare the coeficients of the characteristic polynomials'
poly(A), poly(Av)
'Compare the eigenvalues of the two matrices’
eig(A), eig(Av)
'Compare the traces of the two matrices'
trace(A), trace(Av)

In this section, we develop similarity transformations for state equations. It 
is shown that any system has an unbounded number of state models. However, all 
state models for a given system have the same transfer function. As a final topic, 
four properties of similarity transformations for state equations are derived.

Summary

In earlier chapters, we specified the model of a continuous-time LTI system by a 
differential equation or a transfer function. In both cases, the system input–output 
characteristics are given. In this chapter, a third model, the state-variable model, 
is developed. This model is a set of coupled first-order differential equations. The 
state model can be specified either by state equations or by a simulation diagram.
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The state model gives an internal model of a system, in addition to the input–
output characteristics. Methods are presented in this chapter to derive any one of 
the three models from any other one.

It is also demonstrated in this chapter that a state model for a given system 
is not unique. Similarity transformations may be used to develop any number 
of different state models from a given state model. The different state models 
have the same input–output characteristics, while the internal models are all 
different.

A state model of a continuous-time LTI system is required for applying cer-
tain types of analysis and design procedures [2]. State models are especially useful 
in computer-aided analysis and design.

See Table 8.1.

Table 8.1  Key Equations of Chapter 8

equation title equation number equation

State equations of LTI system (8.9) x# 1t2 = ax1t2 + bu1t2
y1t2 = Cx1t2 + du1t2

State equations in control-
canonical form (8.18)  x# 1t2 = E 0 1 0 g 0 0

0 0 1 g 0 0
f f f f f
0 0 0 g 0 1

-a0 -a1 -a2 g -an - 2 -an - 1

U x1t2 + E 0
0
f
0
1

Uu1t2

 y1t2 = [1b0 - a0bn2  1b1 - a1bn2 g 1bn - 1 - an - 1bn2]x1t2 + bnu1t2
State-transition matrix (8.27) F1t2 = l-1[F1s2] = l-1[1si - a2-1]

Solution of state equation (8.28)  x1s2 = 1si - a2-1x102 + 1si - a2-1bu1s2
 = �1s2x102 + �1s2bu1s2

Convolution solution of state 
 equation (8.29)  x1t2 = �1t2x102 + L

t

0
�1t - t2bu1t2dt

 = �1t2x102 + L
t

0
�1t2bu1t - t2dt

Matrix exponential (8.38) �1t2 = exp at

Transfer function (8.51) H1s2 =
Y1s2
U1s2 = C1si - a2-1b + D = CF1s2b + D

State vector transformation (8.59) x1t2 = pv1t2
State equations (similarity 

transformation)
(8.63) v# 1t2 = a

v
v1t2 + b

v
u1t2

y1t2 = C
v
v1t2 + D

v
u1t2

Transformed matrices (8.64)  a
v

= p-1ap, b
v

= p-1b

 C
v

= Cp, and D
v

= D
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problemS

Section 8.1

 8.1. Consider the RL circuit of Figure P8.1. The circuit input is the voltage vi1t2.

(a) Write the state equations for the circuit, with the state variable equal to the  current 
i1t2 and the output equal to the resistance voltage vR1t2.

(b) Write the state equations for the circuit, with both the state variable and the output 
equal to vR1t2.

�
�

vR(t)R

Li(t)

vi(t)

Figure P8.1  

 8.2. Consider the RLC circuit of Figure P8.2. The circuit input voltage is vi1t2.

(a) Write the state equations for the circuit, with the state variables equal to the 
current i1t2, the capacitor voltage vC1t2, and the output equal to vC1t2.

(b) Write the state equations of the circuit, with the state variables equal to i1t2 and 
vC1t2, and the output equal to i1t2.

�

�
C vC(t)vi(t)

i(t)

R

L

vR(t)

Figure P8.2  

 8.3. Find a set of state equations for each of the systems described by the following differ-
ential equations:

(a) y# 1t2 + ay1t2 = bu1t2
(b) y# 1t2 - 2y1t2 = 4u1t2
(c) y

$1t2 + 5y# 1t2 + 6y1t2 = 4u1t2
(d) 5y

$1t2 + 2y# 1t2 + 9y1t2 = 3u1t2
(e) y

$
11t2 + 5y# 11t2 + 6y11t2 - 3y21t2 = 4u11t2 - u21t2

y# 21t2 + 2y21t2 + 8y11t2 = 2u11t2 + 3u21t2
(f ) y# 11t2 + 3y11t2 + 2y21t2 = u11t2 - 5u21t2

y
$

21t2 - 9y# 2 + 16y21t2 - 12y11t2 = 3u11t2 + 2u21t2

Section 8.2

 8.4. (a) Draw a simulation diagram for the system described by the transfer function

 
Y1s2
U1s2 = H1s2 =

6
s + 4

 .

(b) Write the state equations for the simulation diagram of Part (a).
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(c) Give the system differential equation for the simulation diagram of Part (a).
(d) Repeat Parts (a), (b), and (c) for the transfer function

 
Y1s2
U1s2 = H1s2 =

50s

s2 + 3s + 1
 .

(e) Repeat Parts (a) through (c) for the transfer function

 
Y1s2
U1s2 = H1s2 =

800

s3 + 20s2 + 80s + 120
 .

 8.5. (a) Draw a simulation diagram for the system described by the differential equation

 2y# 1t2 + 4y1t2 = 8u1t2.

(b) Write the state equations for the simulation diagram of Part (a).
(c) Give the system transfer function for the simulation diagram of Part (a).
(d) Use MATLAB to verify the results in Part (c).
(e) Repeat Parts (a) through (d) for the differential equation

 y
$1t2 - 8y# 1t2 + 12y1t2 = 40u1t2.

(f) Repeat Parts (a) through (d) for the differential equation

 y
$1t2 + 20y

$1t2 + 10y# 1t2 + 15y1t2 = 50u1t2.

Section 8.3

 8.6. Consider the system described by the state equation model

 x# 1t2 = c -4 5
0 1

d x1t2 + c 0
1
du1t2; y1t2 = [1 1]x1t2 + 2u1t2.

(a) Find the system output for u1t2 = 0 and the initial states given by x102 = [10]T.
(b) Find the unit step response of the system, with x102 = 0, using (8.28) and y1t2 =

Cx1t2 + Du1t2.
(c) Find the system response with the initial conditions of Part (a) and the input of 

Part (b). Verify that the response has the correct initial condition.
(d) Use SIMULINK to verify the results of Part (c).

 8.7. Consider the system described by the state equation model

 x# 1t2 = c -6 -5
1 0

d x1t2 + c 0
2
du1t2,

 y1t2 = [1 1]x1t2 + 2u1t2.

(a) Find the system output for u1t2 = 0 and the initial states given by x102 = c 1
0
d .

(b) Find the unit step response of the system, with x102 = 0, using (8.28) and y1t2 =
Cx1t2 + Du1t2.

(c) Find the system response with the initial conditions of (a) and the input of (b).
(d) Use SIMULINK to verify the results of Part (c).
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 8.9. Consider the system of Figure P8.9.

 8.8. Consider the system of Figure P8.8.

(a) Write the state equations, with the output of the integrator as the state.
(b) Find the state transition matrix.
(c) Find the system output for u1t2 = 0 and the initial state given by x102 = 2.
(d) Find the system unit step response, with x102 = 0, using (8.28) and y1t2 = Cx1t2

+  Du1t2.
(e) Find the system response, with the initial conditions given in Part (c) and the input 

in Part (d).
(f) Use SIMULINK to verify the results of Part (e).

u(t) y(t)

�

4

�5 3

�

Figure P8.8  

�

�

u(t) y(t)

7

�6

�3

4

62

�

�

Figure P8.9  

(a) Write the state equations with the outputs of the integrators as the states.
(b) Find the state transition matrix.
(c) Find the system output for u1t2 = 0 and the initial states given by x102 = [1 0]T.
(d) Find the system unit step response, with x102 = 0, using (8.28) and y1t2 = Cx1t2

+  Du1t2.
(e) Find the system response, with the initial conditions given in Part (c) and the input 

in Part (d).
(f) Use SIMULINK to verify the results of Part (e).

 8.10. For the system of Example 8.8, the state equation is given by

 x# 1t2 = c 0 1
0 0

d x1t2 + c 0
1
du1t2.
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Use the Laplace transform to show that the state transition matrix is given by

 �1t2 c 1 t
0 1

d .

 8.11. Consider the system described by the state equations

 x# 1t2 = c 0 0
1 0

d x1t2 + c 1
1
du1t2; y1t2 = [0 1]x1t2.

(a) Find the state transition matrix.
(b) Verify the results of Part (a), using the series of (8.36).
(c) Find the initial-condition response for x102 = [1 2]T.
(d) Verify the calculation of the state vector x(t) in Part (c), by substitution in the 

equation x# 1t2 = ax1t2.
(e) Calculate the system unit step response, with x102 = 0, using (8.28) and y1t2 =  

Cx1t2 + Du1t2.
(f ) Verify the results of Parts (c) and (e), using SIMULINK.

 8.12. Consider the system described by the state equations

 x# 1t2 = -4x1t2 + 5u1t2,

 y1t2 = 3x1t2.

(a) Find the state transition matrix.
(b) Verify the results of Part (a), using the series of (8.36). Recall the series expansion 

of the exponential function in (8.37).
(c) Find the initial-condition response for x102 = 1.
(d) Verify the calculation of the state x1t2 in Part (c), by substitution in the equation 

1t2 = Ax1t2.
(e) Calculate the system unit step response, with x102 = 0, using (8.28).
(f) Verify the results of Parts (c) and (e), using SIMULINK.

Section 8.5

 8.13. (a)  Write the state equations for the system modeled by the simulation diagram of 
Figure P8.8.

(b) Use the results of Part (a) to find the system-transfer function.
(c) Use MATLAB to verify the results in Part (b).
(d) Use the system transfer function to draw a simulation diagram that is different 

from that of Figure P8.8.

 8.14. (a)  Write the state equations for the system modeled by the simulation diagram of 
Figure P8.9.

(b) Use the results of Part (a) to find the system-transfer function.
(c) Use MATLAB to verify the results in Part (b).
(d) Use the system transfer function to draw a simulation diagram that is different 

from that of Figure P8.9.
(e) Write the state equations for the simulation diagram of Part (d).
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(f ) Use the results of Part (e) to calculate the system transfer function, which will 
verify the results of Part (e).

(g) Check the results of Part (f) using MATLAB.

 8.15. Figure P8.15 gives the simulation diagram of an automatic control system. The plant 
is the system that is controlled, and the compensator is an added system to give the 
closed-loop system certain specified characteristics.

�

�2 4

x2

x3

x1

�

�

�1

�

�

�

�

�
u(t) y(t)

m(t)e(t)

�4 2

�3 5

PlantCompensator

Figure P8.15  

(a) Write the state equations for the plant only, with input m1t2 and output y1t2.
(b) Give the transfer function Hp1s2 for the plant.
(c) Write the differential equation for the plant.
(d) Write the state equations for the compensator only, with input e1t2 and output 

m1t2.
(e) Give the transfer function Hc1s2 for the compensator.
(f) Write the differential equation for the compensator.
(g) Write the state equations for the closed-loop system, with input u1t2 and output 

y1t2. Choose as states those of Parts (a) and (d). These equations can be written 
directly from the simulation diagram.

(h) Give the transfer function H1s2 for the closed-loop system.
(i) Write the differential equation for the closed-loop system.
( j) Verify the results of Part (h) using MATLAB.
(k) It can be shown that the closed-loop transfer function is given by

 
Y1s2
U1s2 = H1s2 =

Hc1s2Hp1s2
1 + Hc1s2Hp

 .

Verify your results in Part (h) by showing that this equation is satisfied by the derived 
transfer functions in Parts (b) and (e).
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 8.16. Given a system described by the state equations

 x# 1t2 = c -4 5
0 1

d  x1t2 + c 0
1
du1t2; y1t2 = [1 1]x1t2 + 2u1t2.

(a) Draw a simulation diagram of this system.
(b) Find the transfer function directly from the state equations.
(c) Use MATLAB to verify the results in Part (b).
(d) Draw a different simulation diagram of the system.
(e) Write the state equations of the simulation diagram of Part (d).
(f) Verify the simulation diagram of Part (d) by showing that its transfer function is 

that of Part (b)
(g) Verify the results of Part (f) using MATLAB.
(h) Repeat Parts (a) through (g) for the state equations

 x# 1t2 = -2x1t2 + 4u1t2;

 y1t2 = x1t2.

(i) Repeat Parts (a) through (g) for the state equations

 x# 1t2 = £
0 1 0
0 0 1
1 1 - 1

§ x1t2 £
0
0
2
§u1t2; y1t2 = [1 0 0]x1t2.

 8.17. Given a system described by the state equations

 x# 1t2 = c -6 - 5
1 0

d x1t2 + c 0
2
du1t2,

 y1t2 = [1 1]x1t2 + 2u1t2.

(a) Draw a simulation diagram of this system.
(b) Find the transfer function directly from the state equations.
(c) Use MATLAB to verify the results in Part (b).
(d) Draw a different simulation diagram of the system.
(e) Write the state equations of the simulation diagram of Part (d).
(f) Verify the simulation diagram of Part (d) by showing that its transfer function is 

that of Part (b)
(g) Verify the results of Part (f) using MATLAB.
(h) Repeat Parts (a) through (g) for the state equations

 x# 1t2 = -4x1t2 + 6u1t2;

 y1t2 = x1t2.

(i) Repeat Parts (a) through (g) for the state equations

 x# 1t2 = £
0 1 0
0 0 1
1 0 1

§ x1t2 £
2
0
0
§u1t2; y1t2 = [0 0 1]x1t2.
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 8.18. Consider the RL circuit of Figure P8.1. Parts of this problem are repeated from 
Problem 8.1. Use those results if available.

(a) Write the state equations of the circuit, with both the state variable and the output 
equal to the resistance voltage vR1t2.

(b) Use the results of Part (a) to find the circuit transfer function.
(c) Use the s-plane impedance approach to verify the transfer function of Part (b). 

Recall that for the impedance approach, the impedance of the resistance is R and 
of the inductance is sL.

 8.19. Consider the RLC circuit of Figure P8.2. Parts of this problem are repeated from 
Problem 8.2. Use those results if available.

(a) Write the state equations of the circuit, with the state variables equal to the current 
i1t2 and the capacitor voltage vC1t2, and the output equal to the vC1t2.

(b) Use the results of Part (a) to find the circuit transfer function.
(c) Use the s-plane impedance approach to verify the transfer function of Part (b). 

Recall that for the impedance approach, the impedance of the inductance is sL and 
of the capacitance is 1/(sC).

 8.20. Consider the RLC circuit of Problem 8.2. Parts of this problem are repeated from 
Problem 8.2. Use those results if available.

(a) Write the state equations of the circuit, with the state variables equal to the current 
i1t2 and the capacitor voltage vC1t2, and the output equal to the i1t2.

(b) Use the results of Part (a) to find the circuit transfer function.
(c) Use the s-plane impedance approach to verify the transfer function of Part (b). 

Recall that for the impedance approach, the impedance of the inductance is sL and 
of the capacitance is 1/(sC).

Section 8.6

 8.21. Consider the system of Problem 8.16, given by

  x# 1t2 = c -4 5
0 1

d x1t2 + c 0
1
du1t2;

  y1t2 = [1 1]x1t2 + 2u1t2.

(a) Find the transfer function for this system.
(b) Use a similarity transformation to find a control canonical state model for this 

system.
(c) Use MATLAB to check the results in Part (b).
(d) Calculate the transfer function of Part (b). This function should equal that of Part (a).
(e) Verify the results of Part (d), using MATLAB.
(f) You have just verified Property 4, (8.77), of similarity transformations. Verify the 

other three properties in (8.74), (8.75), and (8.76).

 8.22. Consider the system given by

 x# 1t2 = c 0 1
-5 - 4

d x1t2 + c 0
1
du1t2; y1t2 = [2 0]x1t2.
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(a) Find the transfer function for this system.
(b) Use a similarity transformation to find a different state model for this system.
(c) Use MATLAB to check the results in Part (b).
(d) Calculate the transfer function of Part (b). This function should equal that of Part (a).
(e) Verify the results of Part (d), using MATLAB.
(f) You have just verified Property 4, (8.77), of similarity transformations. Verify the 

other three properties in (8.74), (8.75), and (8.76).

 8.23. Consider the system of Problem 8.12

 x# 1t2 = -4x1t2 + 5u1t2;
 y1t2 = 3x1t2.

(a) Find the transfer function for this system.
(b) Use a similarity transformation to find a different state model for this system.
(c) Use MATLAB to check the results in Part (b).
(d) Calculate the transfer function of Part (b). This function should equal that of Part (a).
(e) Verify the results of Part (d), using MATLAB.
(f) You have just verified Property 4, (8.77), of similarity transformations. Verify the 

other three properties in (8.74), (8.75), and (8.76).
(g) From the results of this problem, explain the general effects of a similarity trans-

formation on a first-order system.

 8.24. Consider the system of Problem 8.17(i) given by

  x# 1t2 = £
0 1 0
0 0 1
1 0 1

§  x1t2 £
2
0
0
§u1t2;

  y1t2 = [0 0 1]x1t2
(a) Find the transfer function for this system.
(b) Find a different state model for this system, using the transformation

 p = C1 1 0
0 0 1
1 0 0

S .

(c) Use MATLAB to check the results in Part (b).
(d) Calculate the transfer function of Part (b). This function should equal that of Part (a).
(e) You have just verified Property 4, (8.77), of similarity transformations. Verify the 

other three properties in (8.74), (8.75), and (8.76), without finding the eigenvalues.
(f) Verify the results of Part (d) using MATLAB.

 8.25. Show that for the similarity transformation of (8.64),

 C
v
1si - a

v
2-1b

v
+ D

v
= C1si - a2-1b + D.
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 8.26. Consider the system of Problem 8.21.

(a) Determine if this system is stable.
(b) Give the system modes.
(c) Use MATLAB to find the system’s eigenvalues.

 8.27. Consider the system of Problem 8.22.

(a) Determine if this system is stable.
(b) Give the system modes.
(c) Use MATLAB to find the system’s eigenvalues.

 8.28. Consider the system of Problem 8.24.

(a) Use MATLAB to determine if this system is stable.
(b) Give the system modes.
(c) Use MATLAB to find the system’s eigenvalues.
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In this chapter, we first consider discrete-time signals, or, more simply, discrete 
signals. A discrete-time signal is defined only at discrete instants of time. We 
denote a discrete-time signal as x[n], where the independent variable n may  
assume only  integer values. As a second topic in this chapter, we consider  
discrete-time systems, or, simply, discrete systems. A discrete-time system is  
defined as one in which all signals are discrete time. This chapter follows closely 
the outline of Chapter 2.

As stated, a discrete signal is defined at only discrete instants of time. 
For example, suppose that a continuous-time signal f1t2  is to be processed by 
a digital computer. [This operation is called digital signal processing (DSP).] 
Because a computer can operate only on a number, the continuous-time signal 
must first be converted to a sequence of numbers. This conversion process is 
called sampling. If the signal is sampled at regular increments of time T, the 
number sequence f1nT2, n = c, -2, -1, 0, 1, 2, c, results. The time incre-
ment T is called the sampling period. (Since there is little danger of confusion 
in this and following  chapters, the symbol T is used to denote the sampling pe-
riod, instead of TS as in Chapters 5 and 6.) The sampling process is illustrated 
in Figure 9.1(a), where each sample value is represented by a dot at the end of 
a vertical line.

The hardware normally used in sampling is represented in Figure 9.1(b). As 
described in Chapter 1, an analog-to-digital converter (A/D or ADC) is an elec-
tronic circuit that samples a voltage signal and converts each sample into a binary 
number; the binary numbers can then be transmitted to a digital computer for pro-
cessing or for storage. Hence, an A/D is used to generate and transmit the number 
sequence f1nT2 to the computer. The instants that samples are taken are deter-
mined by timing pulses from the computer.

A word is in order concerning notation. The notation f1t2 indicates a 
 continuous-time signal. The notation f1nT2 indicates the value of f1t2 at t = nT. 
The notation f [n] denotes a discrete-time signal that is defined only for n an integer. 
Parentheses indicate continuous time; brackets indicate discrete time. However, 

DIscrete-tIme sIgnals 
anD systems9
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this notation is not universal; it is used here in an attempt to differentiate between 
f1nT2 and f [n]. If f [n] is obtained from f1t2 by sampling every T seconds, then

 f1nT2 = f1t2 � t = nT

and

 f [n] = f1t2 � t = nT ≠ f1t2 � t = n. (9.1)

Figure 9.1(c) illustrates a total system for digital signal processing. The sampler con-
verts the continuous-time signal f1t2 into the discrete-time signal f1nT2 = f [n]; the 
output of the processor is the signal g[n]. While f1t2 is defined for all time, g[n] is 
defined only for n an integer; for example, g[1.2] simply does not exist.

A discrete-time signal x[n] can be a continuous-amplitude signal, for which the 
amplitude can assume any value - ∞ 6 x[n] 6 ∞ . A second class of discrete-time 
signals is a discrete-amplitude signal, for which x[n] can assume only certain defined 
amplitudes. A discrete-amplitude discrete-time signal is also called a digital signal.

An example of a discrete-amplitude discrete-time signal is the output of an 
analog-to-digital converter. (See Figure 1.19.) For example, if the binary signal 
out of an analog-to-digital converter is represented by eight bits, the output-signal 
 amplitude can assume only 28 = 256 different values (see Quantization Error). A 
second example of a discrete-amplitude discrete-time signal is any signal internal to 
a digital computer.

(a)

(b)

(c)

f(t) f(nT)Analog-to-digital
converter Data to

computer

Timing signal
from computer

f(t) f [n] g[n]

f(nT)
Sampler Digital

processor

A/D Computer

�2T �T T 3T t2T
0

f(t) f(nT)

Amplitude

Figure 9.1  Hardware diagram for sampling  
and processing.
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In summary, a discrete-time signal is an ordered sequence of numbers. The 
sequence is usually expressed as { f [n]}, where this notation denotes the sequence 
c, f [-2], f [-1], f [0], f [1], f [2], c. We usually consider f [n], for n a noninteger, 
to be undefined.

Some of the reasons that engineers are interested in discrete-time signals are 
as follows:

 1. Sampling is required if we are to use digital signal processing, which is much 
more versatile than analog signal processing.

 2. Many communication systems are designed on the basis of the transmission 
of discrete-time signals, for a variety of reasons.

 3. Sampling a signal allows us to store the signal in discrete memory.
 4. The outputs of certain sensors that measure physical variables are discrete-

time signals.
 5. Complex strategies for automatically controlling physical systems require 

digital-computer implementation. The controlling signals from the com-
puter are discrete time.

 6. Many consumer products such as CDs, DVDs, digital cameras, and MP3 
players use digital signals.

 9.1 DIscrete-tIme sIgnals anD systems

In this section, we introduce by example discrete-time signals. We use numerical 
integration as the example. Suppose that we wish to integrate a voltage signal, x1t2, 
using a digital computer. Integration by a digital computer requires that we use a 
numerical algorithm. In general, numerical algorithms are based on approximating 
a signal with an unknown integral with a signal that has a known integral. Hence, all 
integration algorithms are approximate in nature.

We use Euler’s rule (discussed in Section 1.3), which is depicted in Figure 9.2. 
Euler’s rule approximates the area under the curve x1t2 by the sum of the rectangu-
lar areas shown. In this figure, the step size H (the width of each rectangle) is called 
the numerical-integration increment. The implementation of this algorithm requires 
that x1t2 be sampled every H seconds, resulting in the number sequence x1nH2, 
with n an integer.

••• •••

(n � 1)H nH0 t

x(t)

(n � 1)H Figure 9.2  Euler integration.
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Let y1t2 be the following integral of x1t2:

 y1t2 = L
t

0
x1t2dt. (9.2)

The integral of x1t2 from t = 0 to t = nH in Figure 9.2 can be expressed as the inte-
gral for t = 0 to t = 1n - 12H plus the integral from 1n - 12H to nH. Thus, in (9.2),

  y1t2 � t = nH = y1nH2 = L
nH

0
x1t2dt

  = L
1n - 12H

0
x1t2dt + L

nH

1n - 12H
x1t2dt

  ≈  y[1n - 12H] + Hx[1n - 12H].  (9.3)

Ignoring the approximations involved, we expressed this equation as

 y1nH2 = y[1n - 12H] + Hx[1n - 12H]. (9.4)

However, y1nH2 is only an approximation to the integral of x1t2 at t = nH.
In the notation for discrete-time signals discussed earlier, (9.4) is expressed as

 y[n] = y[n - 1] + Hx[n - 1]. (9.5)

An equation of this type is called a difference equation. A general Nth-order linear 
difference equation with constant coefficients is of the form

  y[n] = b1y[n - 1] + b2y[n - 2] + g + bNy[n - N]
  + a0x[n] + a1x[n - 1] + g+ aNx[n - N ],  (9.6)

where the coefficients ai and bi, i = 1, 2, c, N, are constants. Replacing n with 
1n + N2, we can also express this difference equation as

  y[n + N ] = b1y[n + N - 1] + b2y[n + N - 2] + g+ bNy[n]

  + a0x[n + N ] + a1x[n + N - 1] + g+ aNx[n].  (9.7)

The formats of both (9.6) and (9.7) are used in specifying difference equations. In 
this chapter, we consider discrete-time signals of the type of x[n] and y[n] in (9.6) 
and (9.7) and discrete systems described by difference equations. However, we do 
not limit the difference equations to being linear.

 example 9.1 Difference-equation solution

As an example of the solution of a difference equation, consider the numerical integration of 
a unit step function u1t2 by the use of Euler’s rule in (9.5). The continuous unit step function 
is defined as

 u1t2 = b1, t 7 0
0, t 6 0.
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We will assume that the initial condition y(0) is zero; that is, y102 = 0. Sampling a unit step 
function yields x1nH2 = 1 for n G 0, and thus x[n] = 1 for n G 0. (We have assumed that 
x[0] = 1.) From (9.5), the difference equation to be solved is

 y[n] = y[n - 1] + Hx[n - 1].

This equation is solved iteratively, beginning with n = 1:

  y[1] = y[0] + Hx[0] = 0 + H = H;

  y[2] = y[1] + Hx[1] = H + H = 2H;

  y[3] = y[2] + Hx[2] = 2H + H = 3H;

  f
  y[n] = y[n - 1] + Hx[n - 1] = 1n - 12H + H = nH.

Thus, y1nH2 = nH. The exact integral of the unit step function gives the result

 y1t2 = L
t

0
u1t2dt = L

t

0
dt = t 2

0

t

= t, t 7 0,

and y1t2 evaluated at t = nH is equal to nH. Hence, Euler’s rule gives the exact value for 
the integral of the unit step function. In general, the Euler rule is not exact. The reader may 
wish to consider why the results are exact, by constructing a figure of the form of Figure 9.2 
for the unit step function. ■

From Figure 9.2, we see that the integral of a general function x1t2 by Euler’s 
rule yields the summation of x[k] multiplied by the constant H:

 y[n] = Hx[0] + Hx[1] + Hx[2] + g+ Hx[n - 1] = H a
n - 1

k = 0
x[k]. (9.8)

Hence, we see that in this case, there is a relation between integration in continu-
ous time and summation in discrete time. This relation carries over to many other 
situations.

Unit step and Unit Impulse Functions

We begin the study of discrete-time signals by defining two signals. First, the  
discrete-time unit step function u[n] is defined by

 u[n] = b1, n G 0
0, n 6 0.

 (9.9)

Recall that this definition applies for n an integer only. The unit step function is 
illustrated in Figure 9.3. Dots at the end of a vertical line are used to denote the 
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values of a discrete signal, as shown in Figure 9.3. The time-shifted unit step func-
tion is denoted as u[n - n0], where n0 is an integer and

 u[n - n0] = b1, n G n0

0, n 6 n0.
 (9.10)

This function is also plotted in Figure 9.3 for n0 positive.
The second signal to be defined is the discrete-time unit impulse function d[n], 

also called the unit sample function. By definition, the discrete-time unit impulse 
function is given by

 d[n] = b1, n = 0
0, n ≠ 0.

 (9.11)

This function is plotted in Figure 9.4. Note that the discrete-time impulse function is 
well behaved mathematically and presents none of the problems of the continuous-
time impulse function. In fact, the discrete-time unit impulse function can be  expressed 
as the difference of two step functions:

 d[n] = u[n] - u[n - 1]. (9.12)

This result is seen by plotting u[n] and -u[n - 1]. The shifted unit impulse function 
is defined by

 d[n - n0] = b1, n = n0

0, n ≠ n0
 (9.13)

and is also plotted in Figure 9.4, for n0 7 0.

�2 �1 0

u[n]

1

1 2 3 n

••• •••

u[n � n0]

n�1 0 1 n0 � 1 n0 n0 � 1

••• ••• •••

1

Figure 9.3  Discrete-time unit step functions.

�2 �1 0

1

1 2 n

••• •••

[n]� � [n � n0]

n�1 0 1 n0 � 1 n0 n0 � 1

••• ••• •••

1

Figure 9.4  Discrete-time unit impulse functions.
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equivalent Operations

We now compare certain operations on discrete-time signals with equivalent 
 operations on continuous-time signals. First, integration in continuous time is 
 considered to be equivalent to summation in discrete time. This is illustrated in 
Figure 9.5, where the discrete-time signal is assumed to be generated by sampling a 
continuous-time signal. By Euler’s rule, we see that

 L
t

-∞
x1t2dt 3 H a

n

k = -∞
x[k], (9.14)

where t = nH.
In a like manner, we can approximate the slope of a continuous-time signal 

x1t2 with the samples x[n], by the relation

 
dx1t2

dt
2
t = kH

≈
x[k] - x[k - 1]

H
. (9.15)

This relation is illustrated in Figure 9.6. The numerator in the right side of (9.15) is 
called the first difference, which is considered to be the equivalent operation to the 
first derivative of a continuous-time signal:

 
dx1t2

dt
3 x[n] - x[n - 1]. (9.16)

x[n]

0 H 2H 3H nH

�3H �2H �H

Figure 9.5  Summation yielding  
approximate integration.

Approximation
for derivative

x[n]

0 k � 1 nk
Figure 9.6  Approximate differentiation.
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Equivalent operations with impulse functions are given by

 x1t2d1t2 = x102d1t2 3 x[n]d[n] = x[0]d[n] (9.17)

[see (9.11)], where d1t2 is the continuous-time unit impulse function. Equivalent 
operations with impulse and step functions are given by

 d1t2 =
du1t2

dt
3 d[n] = u[n] - u[n - 1] (9.18)

[see (9.12)], and

 u1t2 = L
t

-∞
d1t2dt 3 u[n] = a

n

k = -∞
d[k]. (9.19)

As an example of this summation, let n = 3:

  u[3] = a
3

k = -∞
d[k] = g+ d[-1] + d[0] + d[1] + d[2] + d[3]

  = d[0] = 1.

Recall that d[0] = 1 and d[n] = 0 for n ≠ 0. These equivalent operations are  
summarized in Table 9.1.

In this section, we have introduced discrete-time signals and systems. In addition, 
a difference equation, which models an integrator, was solved. A general method for 
solving linear difference equations with constant coefficients is given in Chapter 10.

 9.2 transFOrmatIOns OF DIscrete-tIme sIgnals

In this section, we consider six transformations on a discrete-time signal x[n]. Three 
transformations are on the independent variable n and the other three on the 
 dependent variable x[ #  ].

Table 9.1  Equivalent Operations

continuous time Discrete time

1. L
t

-∞
x1t2dt a

n

k = -∞
x[k]

2. 
dx1t2

dt
x[n] - x[n - 1]

3. x1t2d1t2 = x102d1t2 x[n]d[n] = x[0]d[n]

4. d1t2 =
du1t2

dt
d[n] = u[n] - u[n - 1]

5. u1t2 = L
t

-∞
d1t2dt u[n] = a

n

k = -∞
d[k]
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In naming the transformations for discrete signals, we continue to use the term 
discrete time, or simply time, for the discrete-increment variable n, because, gener-
ally, we are considering sampled signals. For sampled signals, we use n to denote the 
time t = nT, with T the sample period.

time transformations

First, we consider the three time transformations. In these transformations, for clar-
ity we let m denote discrete time in the original signal and n denote discrete time in 
the transformed signal.

Time Reversal
To time-reverse a signal x[m], we replace the independent variable m with -n. Hence, 
we are considering

 y[n] = x[m] 2
m = -n

= x[-n], (9.20)

where y[n] denotes the transformed signal. This operation has the effect of creating the 
mirror image of x[m] about the vertical axis.

We will see in Chapter 10 that one application of time reversal is in calculating the 
responses for certain types of systems.

An example of time reversal is given in Figure 9.7, where the time variable n 
has been changed to m in the original signal. In this figure, from (9.20), n = -m, 
and the n-axis is shown directly below the m-axis. Hence, we plot the transformed 
signal by plotting y[n] versus n. This plot is also given in Figure 9.7.

x[m]

0 2 3

3

m1�3�4 �1

2

1

�2

0 �2 �3 n � �m�134 12

y[n] � x[�n]

0 2 3

3

2

1

n41�3 �1�2
Figure 9.7  Signals illustrating  
time reversal.
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Time Scaling
Given a signal x[n], a time-scaled version of this signal is

 y[n] = x[m] 2
m = an

= x[an], (9.21)

where we consider only the cases that a = k or a = 1/k for integer values of k. Note 
again that the time variable for the original signal has been changed to m, for clarity.

Figure 9.8(a) shows a signal x[m], and we will plot the time-scaled signals 

y1[n] = x[2n] and y2[n] = x3n
3
4 . For the first transformation,

 m = 2n 1 n =
m
2

.

The m
2  axis is shown directly below the m-axis in Figure 9.8(a). Note that m/2 is not 

an integer for m odd; thus, the values of x[m] for m odd do not appear in y[n]. In the 
time-scaled signal x[an], signal information is lost for a = k G 2. This is  illustrated 
in Figure 9.8(a) and (b), where the values of x[m] for m odd do not  appear in x[2n].

x[m]

0 2 3

3

m1�3�4 �1

2

1

�2

0 6 9 n2 � 3m3�9�12 �3�6

0 n1 � m/2�2 �1

y2[n] � x[n/3]

0

3

1

2

(c)

2 3 6�6 1�3 �1�2�5 �4

1

54

y1[n] � x[2n]

0

(b)(a)

2

3

n1�1

2

�2

Figure 9.8  Signals illustrating time scaling.
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One historical application of this type of time scaling is the television picture 
in a picture, described in Section 1.3. We now review that description.

Consider Figure 9.9, where a much simplified analog TV picture is depicted as 
having six lines. Suppose that the picture is to be reduced in size by a factor of 3 and 
superimposed on another picture.

First, the lines of the picture, which are voltage signals, are sampled. In Figure 9.9, 
each line produces six samples, which are called picture elements (or pixels). Both the 
number of lines and the number of samples per line must be reduced by three. Suppose 
that the samples retained for the reduced picture are the four circled in Figure 9.9.

Now let the digitized full picture represent a different picture in Figure 9.9; 
the four pixels of the reduced picture then replace the four pixels in the upper right-
hand corner of the full picture. The inserted picture is outlined by the dashed lines. 
The generation of a picture in a picture is more complex than as described, but we 
can see the necessity to reduce the number of samples in a given line; the reduction 
shown in Figure 9.9 does illustrate a practical case of time scaling.

Next, we plot the signal y2[n] = x[n/3] for the signal of Figure 9.8(a). Hence,

 
n
3

= m 1 n = 3m.

The 3m axis is also shown below the m-axis in Figure 9.8(a). The signal y2[n] is plotted 
in Figure 9.8(c). It is seen then that for a = 1/k in x[an], the values of x[n/k] are not 
defined at all discrete increments. For x[n/3] in Figure 9.8(c), the values of y2[n] are 
undefined at n = {1, {2, {4, {5, and so on. If the signal x[n/3] is to be used, all 
values must be defined; the missing values are usually assigned according to some logi-
cal rule, such as an interpolation scheme. However, if the signal x[n/3] is used in real 
time, extrapolation must be used; at n = 0, for example, y2[3] is not known. The val-
ues y2[1] and y2[2] cannot be calculated by interpolation without our knowing y2[3].

Time Shifting
Given a signal x[m], a time-shifted version of this signal is x[n - n0], where n0 is an 
integer constant. Hence,

 y[n] = x[m] 2
m = n - n0

= x[n - n0]. (9.22)

As will be seen in Chapter 10, one application of time shifting is in the calculation of 
the responses of certain types of systems.

Lines

TV picture

Pixels

Digitized
TV picture

Reduced
TV picture

Figure 9.9  Television picture within a picture.
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As an example of time shifting, consider

 x[m] = am cos 1pm/42u[m].

The time-shifted signal x[n - 3] is x[m] delayed by three sample periods and is 
given by

  x[n - 3] = an - 3cos ¢p1n - 32
4

≤u[n - 3] = an - 3 cos ¢pn
4

-
3p
4
≤u[n - 3].

Shown in Figure 9.10 is another signal x[n], along with y1[n] = x[n - 2] and 
y2[n] = x[n + 1]. The n1-axis and the n2-axis are obtained from

 m = n - 2 1 n1 = m + 2,

 m = n + 1 1 n2 = m - 1.

0

(a)

(b)

�1�2�3�4 1 2 3
m

n1 � m � 2

x[n]
m

3

1

2

210�1�2 3 4 5 n

y1[n] � x[n � 2]

3

1

2

0 2 31�1�2 54

n2 � m � 1�3 �1 0�2�4�5 21

(c)

�1�2�3�4�5 0 1 2 n

y2[n] � x[n � 1]

3

1

2

n

Figure 9.10  Time-shifted signals.
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Both the n1-axis and the n2-axis are plotted in Figure 9.10(a), and the 
 transformed signals are given in Figure 9.10(b) and (c).

For the shifted signal x[n - n0], x[0] occurs at n = n0. Hence, if n0 is positive, 
the signal is shifted to the right (delayed in time) on a plot of the signal; if n0 is nega-
tive, the signal is shifted to the left (advanced in time).

Thus far, three transformations in time have been defined and are of the 
 general form

 y[n] = x[m] 2
m = an + b

= x[an + b]. (9.23)

In this equation, a is an integer or the reciprocal of an integer, and b is an integer. 
For example,

 y[n] = x[an + b] = x[-3n + 2].

The value a = -3 yields time reversal (the minus sign) and time scaling 1 � a � = 32. 
The value b = 2 yields a time shift. An example of a time transformation will now 
be given.

 example 9.2 time transformation of a discrete signal

Consider the discrete signal x[n] in Figure 9.11(a). We wish to plot the time-transformed 
 signal for the transformation m = 2 - n, which has time reversal and time shifting. Then

 y[n] = x[m] 2
m = 2 - n

= x[2 - n].

x[m]

0 2 3 m1

2

1

�1�2

2 0

(a)

(b)

�1 n � 2 � m134

x[2 � n]

0 2 3

2

n41

1

�1

Figure 9.11  Signals for Example 9.2.
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The transformation is expressed as

 m = 2 - n 1 n = 2 - m.

Table 9.2 gives values of n for significant values of m. Because only four points are involved, 
y[n] is also included in this table. In Figure 9.11(a), the n-axis is shown directly below the 
m-axis. The n-axis values are given in the third column of Table 9.2.

Next we plot y[n] = x[2 - n] versus n to show the transformed signal. This plot can be 
made directly from Figure 9.11(a) or from Table 9.2, and is shown in Figure 9.11(b). ■

Example 9.2 illustrates two procedures for plotted time-transformed signals. 
We can draw the n-axis below the plot of the signal, as in Figure 9.11(a), or we can 
 construct a table like Table 9.2.

amplitude transformations

Next we consider the three transformations on the amplitude axis. Amplitude trans-
formations follow the same rules as time transformations.

The three transformations in amplitude are of the general form

 y[n] = Ax[n] + B, (9.24)

where A and B are constants that are not necessarily integers; for example,

 y[n] = -3.1x[n] - 5.75.

The value A = -3.1 yields amplitude reversal (the minus sign) and amplitude  
scaling 1 � A � = 3.12, and the value B = -5.75 gives amplitude shifting and changes 
the dc level (the average value) of the signal. An example of amplitude scaling is 
now given.

 example 9.3 amplitude transformations of a discrete signal

Consider again the signal of Example 9.2 and Figure 9.11(a). This signal is repeated in 
Figure 9.12(a). We will plot the transformed signal

 y[n] = 3 - 2x[n].

Table 9.2  Values for Example 9.2

m x[m] n = 2 − m y 3n 4
-1 2 3 2
  0 1 2 1
  1 0 1 0
  2 2 0 2
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Hence, in Figure 9.12(a), the amplitude axis (the vertical axis) is replaced with the 
13 - 2x[n]2@axis, as shown in Figure 9.12(a). Table 9.3 gives the equivalent values of y[n] for 
significant values of x[n], and these values are shown on the vertical axis added to Figure 9.12(a). 
This information yields the desired plot of the transformed signal y[m] in Figure 9.12(b). ■

y[m]

0

2

3 m1

2

1
�1

�2

2 0

(b)

�1 n � 2 � m134

3

�1

x[n]

0 2 3 n1

(a)

�2

2

1

�1

y[n]

�1

3

1

y[n]

0 2

3

n1

2

1

�1

(c)
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Figure 9.12  Signals for Examples 9.3  
and 9.4.

Table 9.3   Values for 
Example 9.3

x[n] 3 - 2x 3n 4
0   3
1   1
2 -1
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 example 9.4 time and amplitude transformations of a discrete signal

Next we consider the signal

 y[n] = 3 - 2x[2 - n],

which has the time transformation of Example 9.2 and Figure 9.11 and the amplitude trans-
formation of Example 9.3 and Figure 9.12. To plot this transformed signal, we can first 
transform the amplitude axis as shown in Figure 9.12(b) and then redraw the n-axis of 
Figure 9.11(a) in Figure 9.12(b) as shown. The signal is then plotted on the n-axis, as shown 
in Figure 9.12(c). This result can be verified by substituting values of n into the transforma-
tion. For example,

 n = 0: y[0] = 3 - 2x[2 - 0] = 3 - 2122 = -1

and

 n = 2: y[2] = 3 - 2x[2 - 2] = 3 - 2112 = 1,

which check two of the values in Figure 9.12(c). ■

The following MATLAB program performs time and amplitude transforma-
tion for Example 9.4:

% This MATLAB program performs the time and amplitude transformation for
% Example 9.4.
% Establish vectors of sufficient length for both x(n) and n.
n=[-10:10];
x=zeros(1,length(n));
% Enter nonzero values for x(n).
x(10)=2; x(11)=1; x(13)=2;
% Plot x(n).
figure(1),stem(n(1,5:17),x(1,5:17),'fill'),grid,xlabel('n'),ylabel('x(n)')
for k = 3:21

xt(k)=3-2*x(13-n(k));

end
figure(2),stem(n(1,5:17),xt(1,5:17),'fill'),grid,xlabel('n'),ylabel('xt(n)')

In summary, the six transformations defined are reversal, scaling, and shifting 
with respect to time; and reversal, scaling, and shifting with respect to amplitude. 
These operations are listed in Table 9.4.
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 9.3 characterIstIcs OF DIscrete-tIme sIgnals

In Section 2.2, some useful characteristics of continuous-time signals were defined. 
We now consider the same characteristics for discrete-time signals.

even and Odd signals

In this section, we define even and odd signals (functions). A discrete-time signal 
xe[n] is even if

 xe[n] = xe[-n], (9.25)

and the signal xo[n] is odd if

 xo[n] = -xo[-n]. (9.26)

Any discrete-time signal x[n] can be expressed as the sum of an even signal 
and an odd signal:

 x[n] = xe[n] + xo[n]. (9.27)

To show this, we replace n with -n to yield

 x[-n] = xe[-n] + xo[-n] = xe[n] - xo[n]. (9.28)

The sum of (9.27) and (9.28) yields the even part of x[n]:

 xe[n] = 1
21x[n] + x[-n]2. (9.29)

The subtraction of (9.28) from (9.27) yields the odd part of x[n]:

 xo[n] = 1
21x[n] - x[-n]2. (9.30)

These two equations are used to find the even part and the odd part of a discrete-
time signal. Note that the sum of (9.29) and (9.30) yields (9.27).

Table 9.4  Transformations of Signals

name y[n]

Time reversal x[-n]
Time scaling x[an]
Time shifting x[n - n0]
Amplitude reversal -x[n]
Amplitude scaling � A � x[n]
Amplitude shifting x[n] + B
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The average value, or mean value, of a discrete-time signal is given by

 Ax = lim
NS ∞

1
2N + 1 a

N

k = -N
x[k]. (9.31)

As is the case of continuous-time signals, the average value of a discrete-time signal 
is contained in its even part, and the average value of an odd signal is always zero. 
(See Problem 9.11.)

Even and odd signals have the following properties:

 1. The sum of two even signals is even.
 2. The sum of two odd signals is odd.
 3. The sum of an even signal and an odd signal is neither even nor odd.
 4. The product of two even signals is even.
 5. The product of two odd signals is even.
 6. The product of an even signal and an odd signal is odd.

These properties are easily proved. (See Problem 9.12.) An example of even and 
odd signals is now given.

 example 9.5 even and odd functions

The even and the odd parts of the discrete-time signal x[n] of Figure 9.13(a) will be  
found. Since the signal has only six nonzero values, a strictly mathematical approach is used. 
Table 9.5 gives the solution, using (9.29) and (9.30). All values not given in this table are 
zero. The even and odd parts of x[n] are plotted in Figure 9.13.

Three characteristics are evident from Table 9.5:

 1. The sum of all values of xo[n] is zero, since, for any value of n, from (9.26) it follows that

 xo[n] + xo[-n] = xo[n] - xo[n] = 0.

  Note also that xo[0] is always zero.
 2. Summed over all nonzero values,

 gx[n] = gxe[n] = 15.

  (See Problem 9.11.)
 3. The sum of xe[n] and xo[n] is equal to x[n] for each value of n, from (9.27).

These three characteristics allow us to check the results of this example.
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Figure 9.13  Signals for Example 9.5.

Table 9.5  Values for Example 9.5

n x[n] x 3 -n 4 xe 3n 4 xo 3n 4
-3 3 0 1.5   1.5
-2 2 3 2.5 -0.5
-1 1 3 2 -1
  0 3 3 3   0
  1 3 1 2   1
  2 3 2 2.5   0.5
  3 0 3 1.5 -1.5

 ■
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signals periodic in n

We now consider periodic discrete-time signals. By definition, a discrete-time signal 
x[n] is periodic with period N if

 x[n + N] = x[n]. (9.32)

Of course, both n and N are integers.
We first consider the case that the signal x[n] is obtained by sampling a 

 sinusoidal signal x1t2 = cos 1v0t2 every T seconds; that is, x[n] = x1nT2. [T is the 
sample period and not the period of x1t2.] For x[n] to be periodic, from (9.32),

  x[n] = cos 1nv0T2 = x[n + N] = cos [1n + N2v0T]

  = cos1nv0T + Nv0T2.

Hence, Nv0T must be equal to 2pk, where k is an integer, because cos1u +2pk2=  
cos u. Therefore,

 2pk = Nv0T = N 
2p
T0

T 1
k
N

=
T
T0

 , (9.33)

where T0 = 2p/v0 is the fundamental period of the continuous-time sinusoid. Thus, 
the ratio of the sample period T to the period of the sinusoid T0 must be a ratio of 
integers; that is, T/T0 must be rational.

The result in (9.33) can also be expressed as

 NT = kT0. (9.34)

This relation states that there must be exactly N samples in k periods of the signal 
cos1v0t2. This statement applies to the sampling of any periodic continuous-time 
signal x1t2.

In summary, the sampled signal x[n] = cos1nv0T2 is periodic if exactly N 
samples are taken in exactly every k periods, where N and k are integers. Note the 
surprising conclusion that the sampling of a periodic continuous-time signal does 
not necessarily result in a periodic discrete-time signal. We now give an example.

 example 9.6 sampling of a sinusoid

In this example, we will consider sampling the periodic signal x1t2 = sin pt, which has the 
period T0 = 2p/v0 = 2 s. First, we sample with the period T = 0.5 s. There are exactly four 
samples for each period of sinusoid; in (9.34), kT0 = 112  122 = 2 s and NT = 410.52 = 2 s. 
The signals are illustrated in Figure 9.14(a).

Next, we sample with the period T = 3
8T0 = 0.75 s. In this case, we have exactly eight 

samples in every three periods 18T = 3T02, or in every 6 s. These signals are illustrated in 
Figure 9.14(b).

As a final example, we sample a triangular wave that is periodic with a period of 
T0 = 2 s. This signal is sampled with sample period T =  54T0  =  2.5 s, as shown in Figure 
9.14(c). In this case, there is less than one sample per period of the triangular wave; however, 
the discrete-time signal is periodic, with four samples for every five periods of the triangular 
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wave 14T = 5T02. This last example illustrates that these results apply for any sampled peri-
odic signal, and not just for sinusoidal signals. ■

In the previous discussion, the sampled signals are real. However, the results 
apply directly for the sampled complex exponential signal

 e jv0t 2
t = nT

= e jv0nT = x[n]. (9.35)

Then, for this signal to be periodic,

 e jnv0T = x[n] = x[n + N ] = e j1n + N2v0T = e jnv0Te jNv0T. (9.36)

Hence, for periodicity, e jNv0T = e j2pk, since e j2pk is equal to unity. The requirement 
that Nv0T = 2pk is the same as in (9.33).

We next consider the discrete-time complex exponential signal that is not nec-
essarily obtained by sampling a continuous-time signal. We express the signal as

 x[n] = ejΩ0n = 1lΩ0n. (9.37)

This signal can be represented in the complex plane as a vector of unity magnitude 
at the angles Ω0n, as shown in Figure 9.15. The projection of this vector onto the 
real axis is cos 1Ω0n2 and onto the imaginary axis is sin1Ω0n2, since

 ejΩ0n = cos1Ω0n2 + j sin1Ω0n2.

0 2 4 6

(c)

8 10 t(s)

0 2

(b)

(a)

4 6 t(s)

20 t(s)

Figure 9.14  Periodic signals for Example 9.6.
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If we make the change of variable Ω0 = v0T in (9.37), we have the complex 
exponential signal of (9.35), and all the preceding conclusions apply directly. The 
variable Ω has the units of radians; we refer to Ω as normalized discrete frequency, 
or simply, frequency. For sampled signals, real frequency v and discrete frequency 
Ω are related by vT = Ω.

We now consider (9.37) in a different manner. The complex exponential signal 
of (9.37) is periodic, provided that

 x[n] = ejΩ0 n = x[n + N] = ej1Ω0 n + Ω0 N2 = ej1Ω0 n + 2pk2, (9.38)

where k is an integer. Thus, periodicity requires that

 Ω0N = 2pk 1 Ω0 =
k
N

2p, (9.39)

so that Ω0 must be expressible as 2p multiplied by a rational number. For example, 
x[n] = cos12n2 is not periodic, since Ω0 = 2. The signal x[n] = cos10.1pn2 is peri-
odic, since Ω0 = 0.1p. For this case, k = 1, and N = 20 satisfies (9.39).

As a final point, from (9.39), the complex exponential signal ejΩ0n is periodic 
with N samples per period, provided that the integer N satisfies the equation

 N =
2pk
Ω0

 . (9.40)

In this equation, k is the smallest positive integer that satisfies this equation, such that 
N is an integer greater than unity. For example, for the signal x[n] = cos10.1pn2, 
the number of samples per period is

 N =
2pk
0.1p

= 20k = 20, k = 1. (9.41)

1 Re

n � 0

n � 1

n � 2

e j�0n

2 �0

�0

•••

Im

Figure 9.15  Representation of the  
complex exponential.
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Plotting this signal as in Figure 9.15 yields 20 vectors 1N = 202 per one revolution 
1k = 12.

For the signal x[n] = cos15pn2, the number of samples per period is

 N =
2pk
5p

= 0.4k = 2, k = 5.

For k 6 5, N is not an integer. Plotting this signal as in Figure 9.15 yields two vec-
tors 1N = 22 per five revolutions 1k = 52. Beginning at n = 0, the first two vec-
tors are 1l0° and 1l5p; the next vector is 1l10p = 1l0°, which is the first vector 
repeated.

For a final example, consider the signal x[n] = cos12pn2. Then

 N =
2pk
2p

= k, (9.42)

and this equation is satisfied for N = k = 1. This signal can be expressed as

 x[n] = cos12pn2 = 1.

Hence, the discrete-time signal is constant.

signals periodic in æ

The conditions for the complex exponential signal ejΩ0n to be periodic in n were just 
developed. However, this signal is always periodic in the discrete-frequency vari-
able Ω. Consider this signal with Ω0 replaced with1Ω0 + 2p2—that is,

 ej1Ω0 + 2p2n = ejΩ0nej2pn = ejΩ0n (9.43)

(since ej2pn = 1). Hence, the signal ejΩ0n is periodic in Ω with period 2p, inde-
pendent of the value of Ω0. Of course, the sinusoidal signal cos1Ω0n + u2 is also 
 periodic in Ω with period 2p. This property has a great impact on the sampling of 
signals, as shown in Chapters 5 and 6.

Note that periodic continuous-time signals are not periodic in frequency. For 
example, for the complex exponential signal,

 ej1v + a2t = ejvt ejat ≠ ejvt, a ≠ 0.

To summarize, we have demonstrated two properties of discrete-time sinu-
soids that continuous-time sinusoids do not have. We now illustrate these proper-
ties. The continuous-time sinusoid cos1vt + 02 is always periodic, independent of v.  
Also, cos1v1t2 is equal to cos1v2t2 only for v1 = v2. However, the discrete-time 
 sinusoid cos1Ω0n2 has the following properties:
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 1. cos1Ω0n2 is periodic only if, from (9.39),

 
Ω0

2p
=

k
N

 ,

  where k and N are integers.
 2. cos1Ω0n2 is periodic in Ω with period 2p; that is, with k any integer,

 cos1Ω0n2 = cos1Ω0 + 2pk2n.

Of course, the same properties apply to cos1Ω0n + u2 and ejΩ0n.
In this section, the properties of even and odd were defined with respect to 

discrete-time signals. These properties are useful in the applications of the discrete-
time Fourier transform, as shown in Chapter 12. Next, the properties of periodic 
discrete-time signal were investigated. The property that a discrete-time sinusoid is 
periodic in frequency has great implications with respect to the sampling of contin-
uous-time signals, as shown in Chapters 5 and 6.

 9.4 cOmmOn DIscrete-tIme sIgnals

In Section 2.3, we defined some common continuous-time signals that occur in 
the transient response of certain systems. In this section, equivalent discrete-time 
 signals are introduced; these signals can appear in the transient response of certain 
discrete-time systems.

One such signal, the sinusoid, was mentioned in Section 9.3. For example, a 
digital computer can be programmed to output a discrete-time sinusoid to gener-
ate an audible tone of variable frequency. The discrete-time sinusoidal signal is 
transmitted from the computer to a digital-to-analog converter (D/A), which is 
an electronic circuit that converts binary numbers into a continuous-time voltage 
 signal. (See Section 1.3.) This voltage is then applied through a power amplifier to a 
speaker. The operation is depicted in Figure 9.16. A timing chip in the computer is 
used to determine the sample period T and, hence, the frequency of the tone.

We now use an example of a system to introduce a common discrete-time 
signal. The block shown in Figure 9.17(a) represents a memory device that stores a 
number. Examples of this device are shift registers or memory locations in a digital 
computer. Every T seconds, we shift out the number stored in the device. Then 
a different number is shifted into the device and stored. If we denote the num-
ber shifted into the device as x[n], the number just shifted out must be x[n - 1].  
A  device used in this manner is called an ideal time delay. The term ideal indicates 
that the numbers are not altered in any way, but are only delayed.

Suppose that we connect the ideal time delay in the system shown in Figure 
9.17(b). The number shifted out of the delay is multiplied by the constant a to form 
the next number to be stored, resulting in the system equation

 x[n] = ax[n - 1]. (9.44)
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Suppose that at the first instant (denoted as n = 0), the number unity is stored in 
the delay; that is, x[0] = 1. We now iteratively solve for x[n], n 7 0, using (9.44) 
(recall that the ideal time delay outputs its number every T seconds):

  x[1] = ax[0] = a ;

  x[2] = ax[1] = a2;

  x[3] = ax[2] = a3;

  f;

  x[n] = ax[n - 1] = an.

Thus, this system generates the signal x[n] = an for the initial condition x[0] = 1.

0 1 2

(b) (c)

n t

x[n]

Digital-
to-analog
converter

Power
amplifier

From
computer

x[n] xv(t)

xv(t)

D/A K

Speaker

(a)

0 T 2T

Figure 9.16  Computer generation of a tone.

D

Ideal time
delay

x [n] x [n � 1]

D

Ideal time
delay

Multiplication

a

(b)

x [n] x [n � 1]

ax [n � 1]

(a) Figure 9.17  Discrete-time system.
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A MATLAB program that simulates this system for a = 0.9 is given by

a=0.9;
x(1)=1;
for m=2:5
    x(m)=a*x(m-1);
end
x
result:x=1 0.9 0.81 0.729 0.6561

Recall that MATLAB requires subscripts to be positive integers. Hence, this pro-
gram evaluates the function 10.92n, for n = 1, 2, 3, 4 or m = 2, 3, 4, 5.

We now investigate the characteristics of the discrete signal x[n] = an. This sig-
nal can be expressed as a discrete-time exponential function if we let a = eb. Then

 x[n] = an = 1eb2n = ebn. (9.45)

For example, for the signal x[n] = 0.9n, we solve the equation

 0.9 = eb 1 b = ln 0.9 = -0.105,

and thus,

 x[n] = 0.9n = e-0.105n.

We generally refer to the signal an as a discrete-time exponential signal.
Quite often, discrete signals are generated by the sampling of continuous signals.  

Suppose that we sample an exponential signal x1t2 = e-st every t = T seconds, 
with s 7 0:

 x[n] = e-snT = 1e-sT2n = 1a2n. (9.46)

The continuous-time exponential signal has a time constant t, where, from (2.25),

 e-st = e-t/t 1 t =
1
s

 . (9.47)

Hence, in (9.46),

 x[n] = 1e-T/t2n = an. (9.48)

The ratio of t/T, the number of samples per time constant, is normally not an integer. 
From (9.48),

 e-T/t = a 1
t

T
=

-1
ln a

 . (9.49)

Thus, we can assign a time constant

 t =
-T
ln a
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to the discrete exponential signal an, provided that the discrete signal is based on a 
sampling process.

 example 9.7 time constant of a discrete exponential signal

For the discrete-time signal x[n] = 10.82n, from (9.49),

 
t

T
=

-1
ln 0.8

= 4.48 1 t = 4.48T.

Hence, there are 4.48 samples per time constant. Assuming that an exponential decays to a 
negligible amplitude after four time constants (see Section 2.3), this signal can be ignored for

 nT 7 4t = 414.48T2 ≈ 18T

or for n 7 18 samples. ■

We now generalize the exponential signal

 x[n] = Can (9.50)

by considering the cases that both parameters C and a can be complex. Of course, 
complex signals cannot appear in nature. However, as is the case for differential 
equations, the solutions of many difference equations are simplified under the 
 assumption that complex signals can appear both as excitations and as solutions. 
Then, in translating the results back to the physical world, only the real parts or the 
imaginary parts of complex functions are used. We now consider three cases of the 
discrete complex exponential signal.

case 1 

C and a real

For the first case, consider the signal x[n] = Can, with both C and a real. This signal is plot-
ted in Figure 9.18 for both C and a positive. For a 7 1, the signal increases exponentially 
with increasing n. For 0 6 a 6 1, the signal decreases exponentially with increasing n. For
a = 1, x[n] = C112n = C, and the signal is constant.

x [n] � Can

C

a � 1
n

x [n] � Can

C

 0 � a � 1
n

x [n] � Can

C

a � 1
n

Figure 9.18  Discrete-time exponential signals.
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Figure 9.19 gives the three cases for a 6 0. Consider, for example, x[n] = 1-22n. 
Beginning with n = 0, the number sequence for x[n] is 1, -2, 4, -8, 16, -32, c. Hence, the 
number sequence is exponential with alternating sign. Letting a = -a with a positive, we obtain

 x[n] = Can = C1-a2n = C1-12nan = 1-12nxa[n], (9.51)

where xa[n] denotes the exponential signals plotted in Figure 9.18. Hence, the signals of 
Figure 9.19 have the same magnitudes as those of Figure 9.18, but with alternating signs.

case 2 

C complex, a complex, with Unity magnitude

Next we consider the case that C and a are complex, with

 C = Aejf = A∠f, a = ejΩ0, (9.52)

where A, f, and Ω0 are real and constant. As defined in Section 9.3, Ω is the normalized 
discrete-frequency variable. The complex exponential signal x[n] can be expressed as

  x[n]  = AejfejΩ0n = Aej1Ω0n + f2

  = Acos1Ω0n + f2 + jA sin1Ω0n + f2, (9.53)

from Euler’s relation in Appendix D. Recall from Section 9.3 that the sinusoids in (9.53) are 
periodic only for Ω0 = 2pk/N, with k and N integers. [See (9.39).] A plot of the real part of 
(9.53) is given in Figure 9.20, for f = 0.

x [n] � Can

�C

C

a � �1

n

x [n] � Can

�C

C

�1 � a � 0

n

�C

C

a � �1

x [n] � Can

n

Figure 9.19  Discrete-time exponential signals.

n

�A

A
A cos �0n

Figure 9.20  Undamped discrete-time  
sinusoidal signal.
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case 3

Both C and a complex

For this case, the complex exponential x[n] = Can has the parameters

 C = Aejf, a = eΣ0 + jΩ0. (9.54)

The complex exponential signal x[n] can then be expressed as

  x[n]  = Aejfe1Σ0 + jΩ02n = AeΣ0nej1Ω0n + f2

  = AeΣ0ncos1Ω0n + f2 + jAeΣ0n sin1Ω0n + f2. (9.55)

Plots of the real part of (9.55) are given in Figure 9.21 for f = 0. Figure 9.21(a) shows the 
case that Σ0 7 0, and Figure 9.21(b) shows the case that Σ0 6 0. The envelopes of the sinu-
soids are given by AeΣ0n.

Consider again the exponential signal of (9.51). Since cos np = 1-12n, (9.51) can be 
expressed as

 x[n] = Can = Can1-12n = Cancos1np2 (9.56)

with a = -a 7 0. Hence, the signal x[n] = Can, with a real and negative, can be considered 
to be the result of sampling a sinusoidal signal exactly twice per cycle.

As a final point in this section, suppose that we sample the signal x1t2, with the  
result that

 x[n] = es0tcos1v0t2 2
t = nT

= es0 nTcos1v0nT2. (9.57)

Comparing this result with the discrete signal in (9.55), we see that the continuous-time signal 
parameters are related to the discrete-time parameters by

 Σ0 = s0T, Ω0 = v0T. (9.58)

We can consider the discrete complex exponential of (9.55) to be the result of sampling a 
continuous-time complex exponential signal of the form

 x1t2 = Ae1s0 + jv02t

every T seconds, with the change of variables of (9.58).

�Ae�0n

Ae�0n
Ae�0n cos �0n Ae�0n cos �0n

A A

n

�0 � 0

n

�0 � 0

Figure 9.21  Real part of a complex exponential signal.
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In this section, discrete-time signals were, for the most part, considered to be the re-
sult of sampling continuous-time signals. This is often the case. However, in many cases the 
discrete-time signals are generated directly in the discrete form. For example, the input to 
a digital filter is often obtained by the sampling of a continuous-time signal. However, the 
output of the  filter is calculated from a difference equation and does not exist in a continu-
ous form.

 9.5 DIscrete-tIme systems

In this section, we define some general notation for discrete-time systems. Recall 
that we define a discrete-time system as one in which all signals are discrete time 
(number sequences). This section follows closely Section 2.6.

We begin by repeating the definition of a system given in Section 2.6:

System
A system is a process for which cause-and-effect relations exist.

For our purposes, the cause is the system input signal and the effect is the system 
output signal. Often, we refer to the input signal and the output signal as, simply, 
the input and the output, respectively.

An example of a discrete-time system is the Euler integrator described in 
Section 9.1, with the difference equation

[eq(9.5)] y[n] = y[n - 1] + Hx[n - 1].

In this equation, x[n] is the input signal to the numerical integrator and y[n] is the 
output signal. A digital control system is a system controlled by a digital  computer 
without the intervention of human beings. An example is an automatic landing 
system for commercial aircraft. Certain types of digital filters employed in digital 
control systems utilize an integrator as one of the basic components of the filter. 
The Euler integrator is used in some of these filters. A second popular integrator is 
based on the trapezoidal rule. (See Problem 9.22.)

For the integrator of (9.5), the input signal is x[n] and the output signal is y[n]. 
We can represent this system by the block diagram of Figure 9.22. We can also rep-
resent this integrator as a transformation:

 y[n] = T1x[n]2. (9.59)

This notation represents a transformation and not a function; that is, T(x[n]) is not a 
mathematical function into which we substitute x[n] and directly calculate y[n]. The 
set of equations relating the input x[n] and the output y[n] is called a mathematical 
model, or, simply, a model, of the system. Given the input x[n], this set of equations 
must be solved to obtain y[n]. For discrete-time systems, the model is usually a set 
of difference equations.

System
x [n]

Input

y[n]

Output Figure 9.22  Block diagram for a discrete-time system.
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As stated earlier, we are often careless in speaking of systems. Generally, 
when we use the word system, we are referring to the mathematical model of a 
physical system, not the physical system itself. This is common usage and is followed 
in this book. If we are referring to a physical system, we will call it a physical system 
if any confusion can occur. An example will now be given.

 example 9.8 a low-pass digital filter

A low-pass digital filter is one that attenuates the higher frequencies relative to the lower 
frequencies in its input signal. In effect, the filter removes the higher frequencies in a signal, 
while passing the lower frequencies. This filter can be represented in general form by the 
transformation

 y[n] = T1x[n]2.

For example, the difference equation of a simple low-pass digital filter, called an a@filter [1],  
is given by

 y[n] = 11 - a2y[n - 1] + ax[n], (9.60)

where 0 6 a 6 1. Choices of the parameter a and the sample period T determine the range 
of frequencies that the filter will pass. One application of this filter is in the reduction of high-
frequency noise in a radar signal. For example, this filter is employed in the automatic land-
ing system for carrier-based aircraft [1]. One type of digital filter used in closed-loop control 
systems has the difference equation

 y[n] = -a1y[n - 1] + b0x[n] + b1x[n - 1].

The filter parameters a1, b0, and b1 are chosen by the system designer to give the con-
trol system certain desired characteristics. ■

Interconnecting systems

We define two basic connections for systems. The first, the parallel connection, is 
illustrated in Figure 9.23. The circle in this figure denotes the summation of signals. 

System
1

System
2

�
y[n]

y1[n]

y2[n]

x[n]

Figure 9.23  Parallel connection of systems.
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Let the output of System 1 be y1[n] and that of System 2 be y2[n]. The output signal 
of the total system, y[n], is given by

 y[n] = y1[n] + y2[n] = T11x[n]2 + T21x[n]2 = T1x[n]2, (9.61)

where y[n] = T1x[n]2 is the notation for the total system.
The second basic connection for systems is illustrated in Figure 9.24. This con-

nection is called the series, or cascade, connection. In this figure, the output signal of 
the first system is y1[n] = T11x[n]2, and the total system output signal is

 y[n] = T21y1[n]2 = T21T11x[n]22 = T1x[n]2. (9.62)

An example illustrating the interconnection of systems is now given.

 example 9.9 Interconnection of a discrete system

Consider the system of Figure 9.25. Each block represents a system, with a number given to 
identify each system. We can write the following equations for the system:

 y3[n] = T11x[n]2 + T21x[n]2

and

 y4[n] = T31y3[n]2 = T31T11x[n]2 + T21x[n]22.

Thus,

  y[n] = y2[n] + y4[n]

  = T21x[n]2 + T31T11x[n]2 + T21x[n]22 = T1x[n]2.

This equation denotes only the interconnection of the systems. The mathematical model of 
the total system will depend on the models of the individual subsystems.

System
1

System
2

y1[n] y[n]x[n]

Figure 9.24  Series, or cascade, connection  
of systems.
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x [n] y [n]

y4[n]

y2[n]

Figure 9.25  System for Example 9.9. ■
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 9.6 prOpertIes OF DIscrete-tIme systems

In Section 9.5, the Euler integrator and the a@filter were given as examples of  
discrete-time systems. In this section, we present some of the characteristics and 
properties of discrete-time systems.

In the following, x[n] denotes the input of a system and y[n] denotes the out-
put. We show this relationship symbolically by the notation

 x[n] S y[n]. (9.63)

As with continuous-time systems, we read this relation as x[n] produces y[n]. 
Relationship (9.63) has the same meaning as

[eq(9.59)] y[n] = T(x[n]).

The definitions to be given are similar to those listed in Section 2.7 for continuous-
time systems.

systems with memory

We first define a system that has memory:

Memory
A system has memory if its output at time n0, y[n0], depends on input values other than 
x[n0]. Otherwise, the system is memoryless.

For a discrete signal x[n], time is represented by the discrete increment variable n. 
An example of a simple memoryless discrete-time system is the equation

 y[n] = 5x[n].

A memoryless system is also called a static system.
A system with memory is also called a dynamic system. An example of a sys-

tem with memory is the Euler integrator of (9.5):

 y[n] = y[n - 1] + Hx[n - 1].

Recall from Section 9.1 and (9.8) that this equation can also be expressed as

 y[n] = H a
n - 1

k = -∞
x[k], (9.64)

and we see that the output depends on all past values of the input.
A second example of a discrete system with memory is one whose output is 

the average of the last two values of the input. The difference equation describing 
this system is

 y[n] = 1
2[x[n] + x[n - 1]]. (9.65)
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This system can be represented as shown in Figure 9.26. Note the ideal delay in this 
figure. (See Figure 9.17.) This equation is an averaging filter; one application is in a 
system for generating a picture in a picture for television. (See references, Section 1.3.)

A third example of a discrete system with memory is one that calculates a 20-day 
running average of the Dow Jones industrial average for the U.S. stock market. The 
difference equation for the system is given by

 y[n] = 1
20 a

19

k = 0
x[n - k]. (9.66)

In this equation, x[n] is the Dow Jones average for today, x[n - 1] is the Dow 
Jones average for yesterday, and so on; and y[n] is the average for the last 20 days. 
A block-diagram model of this system of the form of Figure 9.26 contains 19 delays. 
In a digital-computer implementation of this algorithm, the delays are realized by 
19 memory locations.

Equation (9.66) can be considered to be a digital filter, with the output a 
 filtered version of the daily average. All of the considerable theory of digital filtering 
can be employed to determine the characteristics of this system. For example, what 
are the effects of random fluctuations in the daily average on the 20-day average? If 
a significant change occurs in the daily average, what is the delay before this change 
becomes evident in the 20-day average? The definitions in this section allow us to 
classify systems so as to be better able to answer questions such as these. In addition, 
the discrete Fourier transform (covered in Chapter 12) allows us to determine the 
characteristics of systems such as this.

Invertibility

We now define invertibility:

Invertibility
A system is said to be invertible if distinct inputs result in distinct outputs.

A second definition of invertibility is that the input of an invertible system can be 
determined from its output. For example, the memoryless system described by

 y[n] = � x[n] �

is not invertible. The inputs of +2 and -2 produce the same output of +2.

0.5

D

Delay

�
x [n]

x [n � 1]

y [n]

Figure 9.26  Averaging system.
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Inverse of a system

Invertibility is related to the inverse of a system.

Inverse of a System
The inverse of a system T is a second system Ti that, when cascaded with T, yields the 
identity system.

The identity system is defined by the equation y[n] = x[n]. Consider the two sys-
tems of Figure 9.27. System Ti is the inverse of system T if

 y[n] = Ti[T1x[n]2] = x[n]. (9.67)

causality

All physical systems are causal, whether continuous or discrete.

Causal Systems
A system is causal if the output at any time is dependent on the input only at the pres-
ent time and in the past.

We have defined the unit delay as a system with an input of x[n] and an output of 
x[n - 1], as shown in Figure 9.17. An example of a noncausal system is the unit 
 advance, which has an input of x[n] and an output of x[n + 1]. Another example of 
a noncausal system is an averaging system, given by

 y[n] = 1
3[x[n - 1] + x[n] + x[n + 1]],

which requires us to know a future value, x[n + 1], of the input signal in order to 
calculate the current value, y[n], of the output signal.

We denote the unit advance with the symbol D-1. A realizable system that 
contains a unit advance is the system of Figure 9.28. We realize it by first delaying 
a signal and then advancing it. However, we cannot advance a signal more than it 
has been delayed. Although this system may appear to have no application, the pro-
cedure is used in filtering signals “off line,” or in nonreal time. If we store a signal 
in computer memory, we know “future” values of the signal relative to the value 

System
T(•)

System
Ti(•)

x [n] y [n] � x [n]

Figure 9.27  Identity system.

D

Unit
delay

D

Unit
delay

x [n] x [n � 1] x [n � 1]
D�1

Unit
advance

x [n � 2]

Figure 9.28  Realizable system with a unit advance.
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that we are considering at this instant. A second example is in modeling physical 
systems that contain more than one sampler, in which the samplers operate at the 
same frequency, but are not synchronized, or operate at different frequencies [1]. 
In cases such as these, we can speak of time advances. However, the signal out of a 
total system cannot be advanced relative to the signal into that system.

stability

We give the same stability definition for discrete-time systems as for continuous-
time systems.

bIbO Stability
A system is stable if the output remains bounded for any bounded input.

This is the bounded-input bounded-output (BIBO) definition of stability. By defini-
tion, a signal x[n] is bounded if there exists a number M such that

 � x[n] � F M for all n. (9.68)

Hence, a system is bounded-input bounded-output stable if, for a number R,

 � y[n] � F R for all n, (9.69)

for all x[n] such that (9.68) is satisfied. To determine BIBO stability, R [in general, a 
function of M in (9.68)] must be found such that (9.69) is satisfied.

Note that the Euler integrator of (9.5), 

[eq(9.5)] y[n] = y[n - 1] + Hx[n - 1],

is not BIBO stable; if the signal to be integrated has a constant value of unity, the 
output increases without limit as n increases. [See (9.64).] It was shown in Chapter 2 
that a continuous-time integrator is also not stable.

time Invariance

The definition of time invariance is the same as that for continuous-time systems.

Time-lnvariant System
A system is said to be time invariant if a time shift in the input results only in the same 
time shift in the output.

In this definition, the discrete increment n represents time. For a time-invariant sys-
tem for which the input x[n] produces the output y[n], the input x[n - n0] produces 
y[n - n0], or

 x[n] S y[n]

and

 x[n - n0] S y[n - n0]. (9.70)
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A test for time invariance is given by

 y[n] 2
n - n0

= y[n] 2
x[n - n0]

, (9.71)

provided that y[n] is expressed as an explicit function of x[n]. This test is illustrated 
in Figure 9.29. The signal y[n - n0] is obtained by delaying y[n] by n0. Define yd[n] 
as the system output for the delayed input x[n - n0], such that

 x[n - n0] S yd[n].

The system is time invariant, provided that

 y[n - n0] = yd[n]. (9.72)

A system that is not time-invariant is time varying. An example of a time-invariant 
system is y1[n] = ex[n], whereas y2[n] = enx[n] is time varying.

linearity

The property of linearity is one of the most important properties that we consider. Once 
again, we define the system input signal to be x[n] and the output signal to be y[n].

linear System
A system is linear if it meets the following two criteria:

 1. Additivity. If x1[n] S y1[n] and x2[n] S y2[n], then

 x1[n] + x2[n] S y1[n] + y2[n]. (9.73)

 2. Homogeneity. If x[n] S y[n], then, with a constant,

 ax[n] S ay[n]. (9.74)

The criteria must be satisfied for all x[n] and all a.

These two criteria can be combined to yield the principle of superposition. 
A system satisfies the principle of superposition if

 a1x1[n] + a2x2[n] S a1y1[n] + a2y2[n], (9.75)

System

System

Delay
n0

x [n] y[n] y [n � n0]

x [n � n0] yd[n]
Delay

n0

x [n]

(a)

(b) Figure 9.29  Test for time invariance.
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where a1 and a2 are arbitrary constants. A system is linear if it satisfies the prin-
ciple of superposition. No physical system is linear under all operating conditions. 
However, a physical system can be tested with the use of (9.75) to determine ranges 
of operation for which the system is approximately linear.

An example of a linear operation (system) is that of multiplication by a con-
stant K, described by y[n] = Kx[n]. An example of a nonlinear system is the opera-
tion of squaring a signal,

 y[n] = x2[n].

For inputs of x1[n] and x2[n], the outputs of the squaring system are

 x1[n] S y1[n] = x1
2[n]

and

 x2[n] S y2[n] = x2
2[n]. (9.76)

However, the input 1x1[n] + x2[n]2 produces the output

  x1[n] + x2[n]  S 1x1[n] + x2[n]22 = x1
2[n] + 2x1[n]x2[n]

     + x2
2[n] = y1[n] + y2[n] + 2x1[n]x2[n]. (9.77)

A linear time-invariant (LTI) system is a linear system that is also time invariant. 
LTI systems, for both continuous-time and discrete-time systems, are emphasized in 
this book.

An important class of LTI discrete-time systems are those that are modeled 
by linear difference equations with constant coefficients. An example of this type of 
system is the Euler integrator described earlier in this section:

 y[n] - y[n - 1] = Hx[n - 1].

In this equation, x[n] is the input, y[n] is the output, and the numerical-integration 
increment H is constant.

The general forms of an nth-order linear difference equation with constant 
coefficients are given by (9.6) and (9.7). Equation (9.6) is repeated here:

  y[n] = b1y[n - 1] + b2y[n - 2] + g + bNy[n - N]

  + a0x[n] + a1x[n - 1] + g+ aNx[n - N].

This difference equation is said to be of order N. The second version of this general 
equation is obtained by replacing n with 1n + N2. [See (9.7).]
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 example 9.10 Illustrations of discrete-system properties

The properties will be investigated for the system described by the equation

 y[n] = Jn + 2.5
n + 1.5

R 2

x[n].

Note that the output y[n] is equal to the input x[n] multiplied by a value that varies with n 
(time). For n = 0, the multiplier is 2.778; as � n �  becomes large, the multiplier approaches 
unity.

 1. This system is memoryless, since the output is a function of the input at the present time 
only.

 2. The system is invertible, since we can solve for x[n]:

 x[n] = Jn + 1.5
n + 2.5

R 2

y[n].

  Given y[n] for any n, we can find x[n].
 3. The system is causal, since the output does not depend on the input at a future time.
 4. The system is stable, since the output is bounded for all bounded inputs. For � x[n] � F M, 

it is easily shown that (see Problem 9.26)

 � y[n] � F R = 9M.

 5. The system is time varying, since an input applied at n = 0 produces an output different 
from that of the same input applied at n = 1.

 6. The system is linear, since, by superposition,

  a1x1[n] + a2x2[n] S Jn + 2.5
n + 1.5

R 2

1a1x1[n] + a2x2[n]2

  = a1Jn + 2.5
n + 1.5

R 2

x1[n] + a2Jn + 2.5
n + 1.5

R 2

x2[n]

  = a1y1[n] + a2y2[n].  ■

This section defines certain properties for discrete-time systems. Probably the 
most important properties are linearity and time invariance. We can always deter-
mine the BIBO stability of LTI systems described by difference equations. No such 
statement can be made for other models. In addition, most digital-filter design pro-
cedures apply for LTI filters only.

sUmmary

This chapter introduces discrete-time signals and systems. For a discrete-time 
signal x[n], the discrete increment n represents time. First, three transformations 
of the independent time variable n are defined: reversal, scaling, and shifting. 
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Next, the same three transformations are defined with respect to the amplitude 
of signals. A general procedure is developed for determining the effects of all six 
transformations. These transformations are important with respect to signals; they 
are equally important as transformations for functions of frequency. Frequency 
transformations are covered when the discrete Fourier transformation is defined 
in Chapter 12.

The signal characteristics of evenness, oddness, and periodicity are de-
fined next. These three characteristics appear often in the study of signals and 
systems.

Models of common signals that appear in certain types of physical systems 
are defined next. These signals included exponential signals and sinusoids whose 
 amplitudes may vary exponentially. The impulse function is defined for discrete-time 
signals and is seen to be an ordinary function. It is shown that these discrete-time 
signals can be considered to be generated by the sampling of continuous-time signals. 
The study of periodic discrete signals is seen to be more complex than that of peri-
odic continuous signals.

A general technique is given for expressing the output of a discrete-time 
 system that is an interconnection of subsystems. As a final topic, some general prop-
erties of discrete-time systems are defined: memory, invertibility, causality, stability, 
time invariance, and linearity. For the remainder of this book, systems that are both 
linear and time invariant will be emphasized.

See Table 9.6.

Table 9.6  Key Equations of Chapter 9

equation title equation number equation

DT unit step function (9.9)
u[n] = b 1, n G 0

0, n 6 0

DT unit impulse function (9.11)
d[n] = b 1, n = 0

0, n ≠ 0

DT independent-variable transformation (9.23) y[n] = x[m] 2
m = an + b

= x[an + b]

DT signal-amplitude transformation (9.24) y[n] = Ax[n] + B

Even part of a DT signal (9.29) xe[n] = 1
21x[n] + x[-n]2

Odd part of a DT signal (9.30) xo[n] = 1
21x[n] - x[-n]2

Definition of DT periodicity (9.32) x[n + N] = x[n]

Requirement for DT periodicity (9.39) Ω0N = 2pk 1 Ω0 =
k
N

 2p

DT exponential function (9.50) x[n] = Can

DT test for time invariance (9.70) x[n] S y[n]; x[n - n0] S y[n - n0]

DT test for linearity (9.75) a1x1[n] + a2x2[n] S a1y1[n] + a2y2[n]z
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prOBlems

section 9.1

 9.1. Determine which of the following discrete-time functions is different:

(a) x4[n] = d[n - 1] + d[n] + d[n + 1] + d[n + 2]
(b) x2[n] = Σk = - 1

3 d[n - k]
(c) x3[n] = 1 for n ∈ [-1, 0, 1, 2], and 0 otherwise
(d) x1[n] = u[n + 1] - u[n - 3]

 9.2. (a)  What is the difference between the unit step function u[n + 2] and the time-scaled 
function u[2n + 4]?

(b) Repeat Part (a) for u[n] and u[n/3].

section 9.2

 9.3. The discrete-time signals in Figure P9.3 are zero except as shown.

(a) For the signal xa[n] of Figure P9.3(a), plot the following:
 (i)  xa[2n] (ii) xa[-n/2]
 (iii) xa[-n] (iv) xa[2 - n]
 (v)  xa[n - 2] (vi) xa[-2 - n]

(b) Repeat Part (a) for the signal xb[n] of Figure P9.3(b).
(c) Repeat Part (a) for the signal xc[n] of Figure P9.3(c).
(d) Repeat Part (a) for the signal xd[n] of Figure P9.3(d).

0 65 n

1

(c)

2

3

4

••••••

1
2
3
4

xc[n]

�2
�1

�1

�2�3�4

0 6 75 n1

(b)

2 3 4

••••••

1
2
3

xb[n]

�2
�1

�1�2

�3�4�5�6

0 6 7 85 n1

(d)

2 3 4

••••••

1
2
3

xd[n]

�2
�1

�1�2�3�4�5�6

0�1 6 75 n

1

(a)

2 3 4 •••••• 1
2
3

xa[n]

�2
�1

�2�3�4�5�6

Figure P9.3  
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 9.5. The signals in Figure P9.4 are zero except as shown.

(a) For the signal xa[n] of Figure P9.4(a), plot the following:
 (i)  xa[-n]u[n] (ii)  xa[n]u[-n]
 (iii) xa[n]u[n - 2] (iv) xa[n]u[2 - n]
 (v)  xa[n]d[n - 1] (vi) xa[n] 1d[n] + d[n - 2]2

(b) Repeat Part (a) for the signal xb[n] of Figure P9.4(b).
(c) Repeat Part (a) for the signal xc[n] of Figure P9.4(c).
(d) Repeat Part (a) for the signal xd[n] of Figure P9.4(d).

 9.6. Given a signal x[n] = d[n] + 2d[n - 1] + 3d[n - 2] + 3d[n - 3] + 2d[n - 4] +  
d[n - 5] + d[n - 6] + 2d[n - 7] + 3d[n - 8], each of the following functions 
yi[n] can be written as a function of x[n] with time scaling and time shifting; that is, 
yi[n] = x[ain + bi]. For each of the following parts, find the parameters ai and bi:

(a) y1[n] = d[n] + 3d[n - 1] + d[n - 2]
(b) y2[n] = 2d[n] + 3d[n - 1] + d[n - 2] + 2d[n - 3]
(c) y3[n] = 3d[n - 1] + d[n - 2] + 3d[n - 3]

 9.4. The signals in Figure P9.4 are zero except as shown.

(a) For the signal xa[n] of Figure P9.4(a), plot the following:
 (i)   xa[-n] (ii)   xa[-2n]
 (iii)  xa[n - 3] (iv)   xa[3 - n]
 (v)   xa[-1 + n/2] (vi)   xa[n/2]
 (vii) xa[2n + 1] (viii) xa[-1 - n]

(b) Repeat Part (a) for the signal xb[n] of Figure P9.4(b).
(c) Repeat Part (a) for the signal xc[n] of Figure P9.4(c).
(d) Repeat Part (a) for the signal xd[n] of Figure P9.4(d).

3

(a)

n

1 2 ••••••
2

�4

xa[n]

�2�1 0

3

(c)

n

1
2 4

••••••
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�4

xc[n]

�2
�1

0 3

(d)

n1 2 4

••••••

4
2

xd[n]

�2�1 0

3

(b)

n1 2

••••••
2

�4

xb[n]

�2
�1

0

Figure P9.4  
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 9.7. (a)  For the general case of transformations of discrete signals, given x[n], xt[n] can be 
expressed as

 xt[n] = Ax[an + n0] + B,

 where a is rational and n0 is an integer. Solve this expression for x[n].
(b) For the signals shown in Figure P9.7, express x2[n] as a function of x1[n].
(c) Suppose that for the signal of Figure P9.7,

 x1[n] = 0.5x3[-n + 1] + 2.

 Sketch x3[n].
(d) Verify the results of Part (b) by checking at least three points in time.
(e) Verify the results of Part (c) by checking at least three points in time.

3 n

1 2 ••••••

4
2

�2

x1[n]

�2�1�3 210 n

••••••

2
1

x2[n]

�2�1�3�4

Figure P9.7  

section 9.3

 9.8. (a) Find the even and odd parts of x1[n] in Figure P9.7.
(b) Find the even and odd parts of x2[n] in Figure P9.7.

 9.9. (a) Plot the even and odd parts of the signal of Figure P9.4(a).
(b) Repeat Part (a) for the signal of Figure P9.4(b).
(c) Repeat Part (a) for the signal of Figure P9.4(c).
(d) Repeat Part (a) for the signal of Figure P9.4(d).

 9.10. (a)  For each of the signals given, determine mathematically whether the signal is even, 
odd, or neither.

 (i)  x[n] = 2 (ii)  x[n] = 2u[n]
 (iii) x[n] = 122 |n| (iv) x[n] = 5 + 0.9n + 0.9-n

 (v)   x[n] = cos10.1n2 (vi) x[n] = cos10.1n - p/62
(b) Sketch the signals and verify the results of Part (a).
(c) Find the even part and the odd part of each of the signals.

 9.11. (a)  Given in Figure P9.11 are the parts of a signal x[n] and its even part xe[n], for only 
n G 0. Note that xe[n] = 1, n G 0. Complete the plots of x[n] and xe[n], and give a 
plot of the odd part, xo[n], of the signal. Give the equations used for plotting each 
part of the signals.

(b) In Figure P9.11, let x[0] = 0, with all other values unchanged. Give the changes in 
this case for the results of Part (a).
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• • •

Figure P9.11  

 9.12. Let xe[n] and xo[n] be the even and odd parts, respectively, of x[n].

(a) Show that xo[0] = 0 and that xe[0] = x[0].
(b) Show that

 a
∞

n = - ∞
xo[n] = 0.

(c) Show that

 a
∞

n = - ∞
x[n] = a

∞

n = - ∞
xe[n].

(d) Do the results of Part (c) imply that

 a
n2

n = n1

x[n] = a
n2

n = n1

xe[n],

 where n1 and n2 are any integers? Why?

 9.13. Give proofs of the following statements:

(a) The sum of two even functions is even.
(b) The sum of two odd functions is odd.
(c) The sum of an even function and an odd function is neither even nor odd.
(d) The product of two even functions is even.
(e) The product of two odd functions is even.
(f) The product of an even function and an odd function is odd.

 9.14. (a) Determine which of the given signals are periodic:
 (i)  x[n] = cos1pn2 (ii)  x[n] = -3 sin10.01pn2
 (iii) x[n] = cos13pn/2 + p2 (iv) x[n] = sin13.15n2
 (v)   x[n] = 1 + cos1pn/22 (vi) x[n] = sin13.15pn2

(b) For those signals in Part (a) that are periodic, determine the number of samples 
per period.
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 9.15. Suppose that the signals x1[n], x2[n], and x3[n] are given by

 x1[n] = cos10.2pn2, x2[n] = cos10.125pn2, and x3[n] = cos1.4pn2.

(a) Determine whether x1[n] is periodic. If so, determine the number of samples per 
fundamental period.

(b) Determine whether x2[n] is periodic. If so, determine the number of samples per 
fundamental period.

(c) Determine whether x3[n] is periodic. If so, determine the number of samples per 
fundamental period.

(d) Determine whether the sum of x1[n], x2[n], and x3[n] is periodic. If so, determine 
the number of samples per fundamental period.

 9.16. Consider the discrete-time signals that follow. For each signal, determine the fundamen-
tal period N0 if the signal is periodic; otherwise, prove that the signal is not periodic.

(a) x[n] = ej5pn/7          (b) x[n] = ej5n/2

(c) x[n] = ej2pn              (d) x[n] = ej5n/p

(e) x[n] = cos15pn/72          (f ) x[n] = ej0.5n

(g) x[n] = ej3pn/7 + ej5pn/9      (h) x[n] = ej3pn/7 + ej0.5pn + cos15pn/92
(i) x[n] = ej.3n + ej2pn

 9.17. (a)  A continuous-time signal x1t2 = cospt is sampled every T seconds, resulting in  
the discrete-time signal x[n] = x1nT2. Determine whether the sampled signal is 
periodic for

 (i)  T = 1 s (ii)  T = 0.1 s
 (iii) T = 0.125 s (iv) T = 0.130 s
 (v)  T = 5 s (vi) T =  43  s

(b) For those sampled signals in Part (a) that are periodic, find the number of periods 
of x1t2 in one period of x[n].

(c) For those sampled signals in Part (a) that are periodic, find the number of samples 
in one period of x[n].

 9.18. A continuous-time signal x1t2 is sampled at a 10-Hz rate, with the resulting discrete-
time signals as given. Find the time constant t for each signal, and the frequency v of 
the sinusoidal signals.

(a) x[n] = 1.72n

(b) x[n] = 1- .72n

(c) x[n] = 1.52n cos13n2
(d) x[n] = 1.12n sin10.2n + 12

 9.19. The trapezoidal rule for numerical integration is defined in Figure P9.19. The value of the 
integral at t = kT is equal to its value at t = 1k - 12T plus the trapezoidal area shown.

(a) Write a difference equation relating y[k], the numerical integral of x1t2, to x[k] for 
this integrator.

(b) Write a MATLAB program that integrates e-t, 0 F t F 5 s, with T = 0.1 s, using 
trapezoidal integration.

(c) Run the program in Part (b), and verify the result.
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t(k � 1)T kT

x(t)

Figure P9.19  

section 9.4

 9.20. In Figure P9.20, four discrete-time signals are plotted. Match each sinusoid listed below 
with one of the signals plotted in Figure P9.20.

(a) x1[n] = 3 cos12pn2        (b) x2[n] = 5 cos1pn2
(c) x3[n] = 5 cos1pn/22      (d) x4[n] = 5 sin1pn2
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Figure P9.20  

section 9.5

 9.21. (a)  Consider the feedback system of Figure P9.21. Express the output signal as a func-
tion of the transformation of the input signal, in the form of (9.61).

(b) Draw a block diagram, as in Figure P9.21, for a system described by

 y[n] = T21T11x[n] - y[n]2 - y[n]2.

1

32

4

�

x [n] � m [n] y[n]
�

Figure P9.21  
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 9.22. (a) Draw a block diagram, as in Figure 9.25, for a system described by

 ya[n] = T1x[n]2 = T21x[n] + T11x[n]22 + T31T11x[n]22.

(b) Repeat Part (a) for

 yb[n] = ya[n] + x[n].

 9.23. (a)  Express the output y1t2 as a function of the input and the system transformations, 
in the form of (9.61) for the system of Figure P9.23(a).

(b) Repeat (a) for the system of Figure P9.23(b).
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y5[n]

y3[n]
��

Figure P9.23  
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3

4

�

x [n] �

�

�
�

m [n] y[n]

Figure P9.24  

 9.24. Consider the feedback system of Figure P9.24. Express the output signal as a function 
of the transformation of the input signal, in the form of (9.61).
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section 9.6

 9.25. (a) Determine whether the system described by 

y[n] = sin1x[n -  1]2 is 

 (i)    Memoryless (ii)   Invertible
 (iii) Causal (iv) Stable
 (v)   Time invariant (vi) Linear

(b) Repeat Part (a) for y[n] = ln x[n]
(c) Repeat Part (a) for

 y[n] =  
sin x[n]

x[n]
 .

 Note that  lim 
xS0

1sin x2/x must be considered.
(d) Repeat Part (a) for y[n] = ex[n].
(e) Repeat Part (a) for y[n] = enx[n].
(f ) Repeat Part (a) for y[n] = 3x[n] + 2.

 9.26. The system described by the linear difference equation

 y[n] + 3y[n - 1] = 2x[n],     n Ú 0,

  with constant coefficients can be shown to be invertible and unstable. Determine 
whether this system is

(a) Memoryless
(b) Time invariant
(c) Linear

 9.27. (a) Determine whether the summation operation, defined by 

 y[n] = a
n

k = - ∞
x[k], is 

 (i)  Memoryless (ii)  Invertible
 (iii) Causal (iv) Stable
 (v)   Time invariant (vi) Linear

(b) Repeat Part (a) for the averaging filter

 y[n] =  12 [x[n] + x[n - 1]].

(c) Repeat part (a) for the running average filter (M 7 0 is an integer)

 y[n] =  
1
3

 a
1

k = - 1
x[n - k].

 9.28. For the system of Example 9.10, show that for |x[n]| F M, |y[n]| F 9M.
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 9.29. (a) Given the system y[n] = |x[n]|, determine whether this system is
 (i)   Memoryless (ii)  Invertible
 (iii) Causal (iv) Stable
 (v)   Time invariant (vi) Linear

(b) Repeat Part (a) for

 y[n] = e3x[n], x[n] 6 0
0, x[n] G 0

.

(c) Repeat Part (a) for

 y[n] = c -10, x[n] 6 -1
10x[n], |x[n]| F 1.
10, x[n] 7 1

(d) Repeat Part (a) for

 y[n] = e 2, 2 6 x[n]
1, 1 6 x[n] F 2
0, 0 6 x[n] F 1.
-1 -1 6 x[n] F 0
-2, x[n] F -1

 9.30. Let h[n] denote the response of a system for which the input signal is the unit im-
pulse function d[n]. Suppose that h[n] for a causal system has the given even part 
he[n] for n G 0:

 he[n] = c 0, n = 0
1, n = 1.
2, n F 2

  Find h[n] for all time, with your answer expressed as a mathematical function.
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In Chapter 3, we developed important properties of continuous-time linear time-
invariant (LTI) systems; those developments are applied to discrete-time LTI sys-
tems in this chapter. In one sense, discrete-time systems are easier to analyze and 
design, since difference equations are easier to solve than are differential equations. 
In a different sense, discrete-time systems are more difficult to analyze and design, 
since the system characteristics are periodic in frequency. (See Section 9.3.)

In Chapter 9, several properties of discrete-time systems were defined. We 
now restate two of these properties.

Consider first time invariance. We denote a discrete-time system with input 
x[n] and output y[n] by

 x[n] S y[n]. (10.1)

This system is time invariant if the only effect of a time shift of the input signal is the 
same time shift of the output signal; that is, in (10.1),

 x[n - n0] S y[n - n0], (10.2)

where n0 is an arbitrary integer.
Next linearity is reviewed. For the system of (10.1), suppose that

 x1[n] S y1[n], x2[n] S y2[n]. (10.3)

This system is linear, provided that the principle of superposition applies:

 a1x1[n] + a2x2[n] S a1y1[n] + a2y2[n]. (10.4)

This property applies for all constants a1 and a2, and for all signals x1[n] and x2[n].
In this chapter, we consider only discrete-time systems that are both linear and 

time invariant. We refer to these systems as discrete-time LTI systems. We have 
several reasons for emphasizing these systems:

 1. Many physical systems can be modeled accurately as LTI systems. For ex-
ample, most digital filters are designed to be both linear and time invariant.

DIscrete-tIme LInear 
tIme-InvarIant systems10
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 2. We can solve the equations that model LTI systems, for both continuous-
time and discrete-time systems. No general procedures exist for the solu-
tion of the describing equations of non-LTI systems.

 3. Much information is available for both the analysis and the design of LTI 
systems. This is especially true for the design of LTI digital filters.

The developments in this chapter are analogous to those of Chapter 3 for 
continuous-time systems. Some of the developments are the same as those 
of Chapter 3, while others differ significantly. Because almost all signals 
and  systems of this chapter are discrete time, we often omit this term in the 
descriptions.

 10.1 ImpuLse representatIon of DIscrete-tIme sIgnaLs

In this section, a relation is developed that expresses a general signal x[n] as a 
function of impulse functions. This relation is useful in deriving properties of LTI 
discrete-time systems.

Recall the definition of the discrete-time impulse function (also called the unit 
sample function):

 d[n - n0] = b1, n = n0

0, n ≠ n0
. (10.5)

An impulse function has a value of unity when its argument is zero; otherwise, its 
value is zero. From this definition, we see that

 x[n]d[n - n0] = x[n0]d[n - n0].

Consider the signal x[n] in Figure 10.1(a). For simplicity, this signal has only 
three nonzero values. We define the following signal, using (10.5):

 x-1[n] = x[n]d[n + 1] = x[-1]d[n + 1] = bx[-1], n = -1
0, n ≠ -1

.

In a like manner, we define the signals

  x0[n] = x[n]d[n] = x[0]d[n] = bx[0], n = 0
0, n ≠ 0

;

  x1[n] = x[n]d[n - 1] = x[1]d[n - 1] = bx[1], n = 1
0, n ≠ 1

.
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These three signals are also shown in Figure 10.1. The only nonzero values of x[n] 
are contained in these three signals; hence, we can express the signal x[n] as

  x[n] = x-1[n] + x0[n] + x1[n]  

  = x[-1]d[n + 1] + x[0]d[n] + x[1]d[n - 1] (10.6)

  = a
1

k = -1
x[k]d[n - k].  

Next, we generalize this development, using the term

 x[k]d[n - k] = bx[k], n = k
0, n ≠ k

. (10.7)

The summation of terms for all k yields the general signal x[n]:

 x[n] = a
∞

k = -∞
x[k]d[n - k]. (10.8)

This relation is useful in the developments in the sections that follow.
The function d[n] is called either the unit sample function or the unit impulse 

function. We use the term impulse function to emphasize the symmetry of the re-
lations between discrete-time impulse functions and systems and continuous-time 
impulse functions and systems.

 10.2 convoLutIon for DIscrete-tIme systems

An equation relating the output of a discrete LTI system to its input will now be 
developed. Consider the system shown in Figure 10.2. A unit impulse function d[n] 
is applied to the system input. Recall that this input is unity for n = 0 and is zero at 
all other values of n.

3

2

1

�3�2�1 0

(a)

1 2 3

x[n]

n

3

2

1

�3�2�1 0

(b)

1 2 3

x�1[n]

n

3

2

1

�3�2�1 0

(c)

1 2 3

x0[n]

n

3

2

1

�3�2�1 0

(d)

1 2 3

x1[n]

n

••• •••

••• •••

••• •••

••• •••

Figure 10.1  Representation of a signal 
with discrete-time impulse functions.
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With the input as described, the LTI system response in Figure 10.2 is denoted 
as h[n]; that is, in standard notation,

 d[n] S h[n]. (10.9)

Since the system is time invariant,

 d[n - k] S h[n - k]. (10.10)

The notation h[ #] will always denote the unit impulse response. Because the system 
is linear, we can multiply each side of (10.10) by x[k], resulting in the relation

 x[k]d[n - k] S x[k]h[n - k]. (10.11)

Recall that the general input x[n] can be expressed as a sum of impulse functions:

[eq(10.8)] x[n] = a
∞

k = -∞
x[k]d[n - k].

Because this input signal is a sum of impulse functions, the output signal is a sum of 
the impulse responses in (10.11) by the linearity property of (10.4), and it follows 
that

 x[n] = a
∞

k = -∞
x[k]d[n - k] S y[n] = a

∞

k = -∞
x[k]h[n - k]. (10.12)

This result is called the convolution sum and is a basic result in the study of discrete-
time LTI systems. We denote this sum with an asterisk:

 y[n] = a
∞

k = -∞
x[k]h[n - k] = x[n]*h[n]. (10.13)

To illustrate a property of the convolution sum, we calculate the output at 
n = 0:

  y[0] = g + x[-2]h[2] + x[-1]h[1] + x[0]h[0] 

  + x[1]h[-1] + x[2]h[-2] + g.  (10.14)

System
h [n][n]�

Figure 10.2  Impulse response of a system.
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Note that the discrete-time variable for x[ #] increases as the discrete variable for 
h[ #] decreases. The general output y[n] is given by

 y[n] = g+ x[-2]h[n + 2] + x[-1]h[n + 1] + x[0]h[n] 

  + x[1]h[n - 1] + g + x[n - 1]h[1] + x[n]h[0]  

  + x[n + 1]h[-1] + x[n + 2]h[-2] + g.  (10.15)

In this summation for y[n], the sum of the arguments in each term is always n. Note 
the symmetry with respect to x[ # ] and h[ # ] in (10.15). We can then express the con-
volution sum as either of two relations:

  y[n] = a
∞

k = -∞
x[k]h[n - k] = x[n]*h[n]  

  = a
∞

k = -∞
h[k]x[n - k] = h[n]*x[n]. (10.16)

This second form can also be derived from the first form by a change of variables. 
(See Problem 10.1.)

We now note a property of the convolution sum. In the convolution sum 
(10.15) for y[n], the general term is x[k1]h[k2], with 1k1 + k22 always equal to n. For 
example, in calculating y[5], x[10]h[-5] is a term in the sum, but x[10]h[-6] is not.

A second property of the convolution sum is derived by letting x[n] = d[n]. 
We have

 y[n] = d[n]*h[n] = h[n], (10.17)

since, by definition, this output is the impulse response. Replacing n with 1n - n02 
in h[n] yields

 d[n]*h[n - n0] = h[n - n0].

Also, because of the time-invariance property, the general form of (10.17) is  
given by

 d[n - n0]*h[n] = h[n - n0].

From the last two equations,

 d[n]*h[n - n0] = h[n - n0] = d[n - n0]*h[n].

No restrictions have been placed on h[n]; hence, h[n] can be replaced with a general 
function g[n], resulting in the second property of the convolution sum:

 d[n]*g[n - n0] = d[n - n0]*g[n] = g[n - n0]. (10.18)
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Do not confuse convolution with multiplication. The multiplication property 
of the impulse function is given by

  d[n]g[n - n0] = g[-n0]d[n]

and

  d[n - n0]g[n] = g[n0]d[n - n0],

because d[0] is the only nonzero value of d[n], - ∞ 6 n 6 ∞ .
From the convolution sum (10.16), we see that if h[n] is known, the system 

response for any input x[n] can be calculated. Hence, the impulse response h[n] of a 
discrete LTI system contains a complete input–output description of the system. We 
now give two examples that illustrate the use of the convolution sum.

 exampLe 10.1 a finite impulse response system

We consider the system depicted in Figure 10.3, in which the blocks labeled D are unit delays. 
We can write the system difference equation directly from the figure:

 y[n] = 1x[n] + x[n - 1] + x[n - 2]2 >3. (10.19)

This system averages the last three inputs. It is a moving-average filter, which has many appli-
cations. We find the impulse response h[n] for this system by applying the input x[n] = d[n]:

 y[n] = h[n] = 1d[n] + d[n - 1] + d[n - 2]2 >3. (10.20)

Thus,

  h[0] = 1d[n] + d[n - 1] + d[n - 2]2 >3 � n = 0 = 11 + 0 + 02 >3 = 1>3;

  h[1] = 1d[n] + d[n - 1] + d[n - 2]2 >3 � n = 1 = 10 + 1 + 02 >3 = 1>3;

  h[2] = 1d[n] + d[n - 1] + d[n - 2]2 >3 � n = 2 = 10 + 0 + 12 >3 = 1>3;

  h[n] = 0, all other n.

This is a finite impulse response (FIR) system; that is, the impulse response con-
tains a finite number of nonzero terms. As an exercise, the reader should trace the signal 
x[n] = d[n] through the system in Figure 10.3 to verify h[n]. (Initially the numbers stored in 
the two  delays must be zero. Otherwise the output also includes an initial-condition response, 
in  addition to the impulse response, by superposition.)

D

�

D

1/3
x [n]

x [n � 1]

x [n � 2]

y [n]

Figure 10.3  Discrete system. ■
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 exampLe 10.2 system response by convolution for an LtI system

We continue Example 10.1 to illustrate the use of the convolution sum. Let the system input 
be given by

  x[1] = 3; x[2] = 4.5;

  x[3] = 6; x[n] = 0, all other n.

The signal x[n] is shown plotted in Figure 10.4(a). From (10.16), the response y[n] is given by

 y[n] = a
∞

k = -∞
x[n - k]h[k].

6

3

x [m]

0 1 2 3 4

(a)

m

n n � 1 n � 2 n � 3 n � 4 k � n � m

1/3

h [k]

�1 0 1 2 3 k

• • • • • • • • • • • •

(b)

6
4.5

3

xt[k] � x[n � k]

n � 4 n � 3 n � 2 n � 1 n k

• • • • • •

(c)

�4 �3 �2 �1 0 1 2 3 k

�4 �3 �2 �1 0 1 2 3 k

1/3

h [k]

6
4.5

3
x [0 � k]

• • • • • •

• • • • • •

Figure 10.4  Signals for Example 10.2.
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We now plot the factor x[n - k]. First, we change the time variable from n to m in Figure 
10.4(a) to yield x[m], to facilitate the plotting. Recall that in the convolution sum, n is consid-
ered constant. Now, from Section 9.2,

 xt[k] = x[m] � m = n - k = x[n - k].

Thus,

 m = n - k 1 k = n - m.

6
4.5

3

1/3

h [k]

�3 �2 �1 0 1 2 3 k

• • • • • •

�3 �2 �1 0 1 2 3 k

• • • • • •

x[1 � k]

�2 �1 0 1 2 3 k

• • • • • •

6
4.5

3

�2 �1 0 1 2 3 k

• • • • • •

x[2 � k]

1/3

h [k]

1

2.5

4.5
3.5

2

n�1 0 1 2 3 4 5 6

y [n]

(d)

(e)

(f) Figure 10.4 (cont.)
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Next, the k-axis is plotted below the m-axis in Figure 10.4(a), resulting in the plot for 
x[n - k] in Figure 10.4(b). The second factor in convolution summation, h[k], was calculated 
in Example 10.1 and is also shown in Figure 10.4(a).

First, the two factors of the convolution summations, x[n - k] and h[k], are plotted 
in Figure 10.4(c) for n = 0. We see that for each nonzero value in one of the signals, the 
other signal has a value in zero. Hence, the product x[n - k]h[k] is zero for n = 0 and all k, 
and it follows that y[0] = 0. Furthermore, we see that y[n] = 0 for all n 6 0, since the plot of 
x[n - k] is shifted to the left for n 6 0.

Figure 10.4(d) gives x[n - k] and h[k] for n = 1. For this value of n,

 x[n - k]h[k] � n = 1, k = 0 = x[1]h[0] = 11>32132 = 1,

and this product is zero for all other k. Thus, y[1] = 1.
Figure 10.4(e) shows x[n - k] and h[k] for n = 2. All product terms of the convolution 

sum are zero, except for k = 0 and k = 1. Then

 y[2] = x[2]h[0] + x[1]h[1] = 1.5 + 1 = 2.5.

Using the same procedure, we see that y[3] = 4.5, y[4] = 3.5, y[5] = 2, and y[n] = 0, 
for n 7 5. The output is then

  y[n] = d[n - 1] + 2.5d[n - 2] + 4.5d[n - 3]

  + 3.5d[n - 4] + 2d[n - 5].

The output signal y[n] is plotted in Figure 10.4(f).
The output can also be calculated from the expansion of the convolution sum:

 y[n] = g + x[n - 3]h[3] + x[n - 2]h[2]

 + x[n - 1]h[1] + x[n]h[0] + x[n + 1]h[-1] + g
 = x[n - 2]h[2] + x[n - 1]h[1] + x[n]h[0].

This expansion has only three nonzero terms, because h[n] is nonzero for only n = 0, 1, 2. As 
a third method of evaluation, the input signal can be traced through the system in Figure 10.3, 
as suggested in Example 10.1. Finally, the results can be verified with the MATLAB program

n=1:5;
x=[3 4.5 6];
h=[1/3 1/3 1/3];
y=conv(x,h)
stem(n,y,'fill'), grid ■

Note that in Examples 10.1 and 10.2, three different descriptions of the system 
are given:

 1. the impulse response in (10.20);
 2. the difference equation in (10.19);
 3. a block diagram in Figure 10.3.

As a practical matter, in technical literature, both the difference equation and a 
block diagram are usually given as the description of a discrete-time system. The 
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impulse response is seldom given directly; instead, the z-transform of the impulse 
response is specified. This topic is introduced in Section 10.7 and is covered in detail 
in Chapter 11.

Example 10.2 concerned a system with a finite impulse response. The next 
example considers a system that has an infinite impulse response.

 exampLe 10.3 calculation of the impulse response of a discrete system

Consider the system of Figure 10.5. This system was also considered in Section 9.4. We write 
the difference equation for this system directly from Figure 10.5:

 y[n] = ay[n - 1] + x[n].

The system unit impulse response is obtained from this equation by applying a unit impulse 
function, with x[0] = 1 and x[n] = 0, n ≠ 0. The system is causal, since the output is a func-
tion of the current and past values of input only. Because x[n] is zero for n 6 0, y[n] is also 
zero over this range of n. Hence, the value stored in the ideal delay at n = 0 in Figure 10.5 is 
zero. Then,

  y[0] = h[0] = ay[-1] + x[0] = a102 + 1 = 1,

  y[1] = h[1] = ay[0] + x[1] = a112 + 0 = a,

  y[2] = h[2] = ay[1] + x[2] = a1a2 + 0 = a2,

  y[3] = h[3] = ay[2] + x[3] = a1a22 + 0 = a3,

  f

and the unit impulse response for this system is

 h[n] = ban, n G 0
0, n 6 0

,

or h[n] = anu[n]. The unit impulse response consists of an unbounded number of terms; this 
system is called an infinite impulse response (IIR) system.

� D

a
ay [n � 1]

y [n � 1]

y [n]

y[n]

x [n]

Figure 10.5  Discrete system. ■
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 exampLe 10.4 step response of a discrete system

For the system of the last example, let a = 0.6; the impulse response is then 
h[n] = 10.62nu[n]. We now find the unit step response of this system, with x[n] = u[n]. From 
(10.16), the system output signal is given by

 y[n] = a
∞

k = -∞
x[n - k]h[k] = a

∞

k = -∞
u[n - k]10.62ku[k] = a

n

k = 0
10.62k, (10.21)

because u[k] = 0 for k 6 0 and u[n - k] = 0 for k 7 n.
Equation (10.21) gives y[n] as a summation, as expected. However, certain summations 

can be expressed in closed form. Appendix C gives a table of summation formulas. The first 
formula in this table is given by

 a
n

k = 0
ak =

1 - an + 1

1 - a
. (10.22)

Note that the right side of this equation is indeterminant for a = 1. However, the summation 
is equal to 1n + 12 for a = 1, from the left side of (10.22). From the summation (10.22) and 
the equation (10.21) for y[n], we have

 y[n] = a
n

k = 0
10.62k =

1 - 10.62n + 1

1 - 0.6
= 2.5[1 - 10.62n + 1], n G 0.

The calculation of values of y[n] yields

  y[0] = 1,  y[5] = 2.383,

  y[1] = 1.6,  f
  y[2] = 1.96,  y[10] = 2.485,

  y[3] = 2.176,  f
  y[4] = 2.306,  y[∞ ] = 2.5.

Note that the steady-state value of y[n] is 2.5. Figure 10.6 gives a plot of y[n]. The expo-
nential nature of this response is evident. (Recall that a signal an is exponential, as shown 

1 2 3 4 5 n0

1.0

2.0

2.5

y[n]

�1

• • •

Figure 10.6  Response for Example 10.4.
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in Section 9.4.) The results of this example can be verified with the following MATLAB 
program:

% This MATLAB program performs the convolution operation of
% Example 10.4.
% Establish the input unit-step function.
x=ones (1,11);
% Compute the system impulse response.
for k = 1:10;
h(k) = 0.6^(k-1);
end
% Convolve the input with the impulse response and plot.
c=conv (x,h);
for k=1:11;

n(k)=k-1;
y(k)=c(k);

end
[n' y']
stem(n, y, 'fill') ■

properties of convolution

We now discuss three properties of the convolution sum that are related to systems:

1. Commutative property. The convolution sum is symmetric with respect to 
x[n] and h[n]:

 x[n]*h[n] = h[n]*x[n]. (10.23)

This property was derived in (10.16) and is illustrated in Figure 10.7. In this figure, 
an LTI system is represented by a block containing the impulse response. The out-
put for each system is identical, from (10.23).

2. Associative property. In the convolution of three signals, the result is the 
same, independent of the order that the convolution is performed. For example,

 1 f [n]*g[n]2*h[n] = f [n]*1g[n]*h[n]2 = 1h[n]*f [n]2*g[n]. (10.24)

The proof of this property is not given. (See Problem 10.13.)
As an example of this property, consider the output of the system of Figure 10.8(a), 

which is given by

 y[n] = y1[n]*h2[n] = 1x[n]*h1[n]2*h2[n].

h [n]
x [n] y [n]

x [n]
h [n] y [n]

Figure 10.7  Commutative property.
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Then, by Property 2,

 1x[n]*h1[n]2*h2[n] = x[n]*1h1[n]*h2[n]2 = x[n]*1h2[n]*h1[n]2. (10.25)

Hence, the order of the two systems of Figure 10.8(a) may be reversed without chang-
ing the input–output characteristics of the total system, as shown in Figure 10.8(a).

Also, from (10.25), the two cascaded systems of Figure 10.8(a) may be re-
placed with a single system with the impulse response

 h[n] = h1[n]*h2[n], (10.26)

such that the input–output characteristics are preserved. This property is illustrated 
in Figure 10.8(b). It follows that for m cascaded LTI systems, the impulse response 
of the total system is given by

 h[n] = h1[n]*h2[n]* g*hm1n2.

3. Distributive property. The convolution sum satisfies the following 
relationship:

 x[n]*h1[n] + x[n]*h2[n] = x[n]*1h1[n] + h2[n]2. (10.27)

We prove this relation by using the convolution sum of (10.13):

  x[n]*h1[n] + x[n]*h2[n] = a
∞

k = -∞
x[k]h1[n - k] + a

∞

k = -∞
x[k]h2[n - k]

  = a
∞

k = -∞
x[k]1h1[n - k] + h2[n - k]2

  = x[n]*1h1[n] + h2[n]2.

This property is illustrated by two systems in parallel as in Figure 10.9, where the 
output is given by

 y[n] = x[n]*h1[n] + x[n]*h2[n] = x[n]*1h1[n] + h2[n]2. (10.28)

h1[n] h2[n]
x[n] y1[n]

(a)

y[n]
h2[n] h1[n]

x[n] y[n]

h1[n] h2[n]
x[n]

(b)

y[n]
h1[n] � h2[n]

x[n] y[n]

Figure 10.8  Associative property.
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Therefore, the total system impulse response is the sum of the impulse responses:

 h[n] = h1[n] + h2[n]. (10.29)

An example of the use of these properties will now be given.

 exampLe 10.5 Impulse response of an interconnected system

We wish to determine the impulse response of the system of Figure 10.10(a), in terms of the 
impulse responses in the subsystems. First, the impulse response of the cascaded systems 1 
and 2 is given by

 ha[n] = h1[n]*h2[n],

as shown in Figure 10.10(b). The effect of the parallel connection of system a with system 3 
is given by

 hb[n] = ha[n] + h3[n] = h1[n]*h2[n] + h3[n],

as shown in Figure 10.10(c). We add the effect of system b cascaded with system 4 to give the 
total system impulse response, as shown in Figure 10.10(d):

 h[n] = hb[n]*h4[n] = 1h1[n]*h2[n] + h3[n]2*h4[n]. ■

It is shown in this section that the response of a discrete-time LTI system 
can be calculated with the convolution sum (10.16), provided that the system im-
pulse response is known. Hence, the input–output characteristics of the system 
are completely specified by its response to an impulse function. Next, a procedure 
is developed for calculating the impulse response of an LTI system composed 
of subsystems, where the impulse responses of the subsystems are known. An 
equivalent and simpler procedure for expressing the input–output characteristics 
of a system in terms of its subsystem input–output characteristics is the transform 
approach. This procedure will be presented when the z-transform is covered in 
Chapter 11.

x[n] y[n]

h1[n]

y[n]

h2[n]

� h1[n] � h2[n]
x[n]

Figure 10.9  Distributive property.
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 10.3 propertIes of DIscrete-tIme LtI systems

In Section 9.6, several properties of discrete-time systems were defined. In this sec-
tion, we consider these properties as related to LTI systems.

The input–output characteristics of a discrete-time LTI system are completely 
described by its impulse response h[n]. For the input signal x[n], the output signal 
y[n] is given by the convolution sum in (10.16):

 y[n] = a
∞

k = -∞
x[k]h[n - k] = a

∞

k = -∞
x[n - k]h[k]. (10.30)

This equation is now used to derive certain properties for LTI systems. We begin 
with the memory property.

�

h1[n] h2[n]

h4[n]
y[n]

h3[n]

x[n]

h1[n] � h2[n]

(a)

� h4[n]
y[n]

h3[n]

x[n]

h1[n] � h2[n] � h3[n] h4[n]
y[n]x[n]

(h1[n] � h2[n] � h3[n]) � h4[n]
y[n]x[n]

(b)

(c)

(d) Figure 10.10  System for Example 10.5.
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memory

Recall that a memoryless (static) system is one whose current value of output de-
pends on only the current value of input. A system with memory is called a dynamic 
system. Expanding the convolution sum of (10.30), we see that for a memoryless 
system,

  y[n] = g + x[n + 2]h[-2] + x[n + 1]h[-1]

 + x[n]h[0] + x[n - 1]h[1] + g = h[0]x[n],

since only x[n] can contribute to the output y[n]. Then h[n] must be zero for n ≠ 0;  
thus, h[n] = Kd[n], where K = h[0] is a constant. An LTI system is memoryless if 
and only if h[n] = Kd[n]. A memoryless LTI system is then a pure gain, described 
by y[n] = Kx[n]. If the gain K is unity 1h[n] = d[n]2, the identity system results.

Invertibility

A system is invertible if its input can be determined from its output. An invertible 
system (impulse response h[n]) cascaded with its inverse system (impulse response 
hi[n]) form the identity system, as shown in Figure 10.11(a). Hence, a discrete-time 
LTI system with impulse response h[n] is invertible if there exists a function hi[n] 
such that

 h[n]*hi[n] = d[n], (10.31)

since the identity system has the impulse response d[n].
We do not present a procedure for finding the impulse response hi[n], given 

h[n]. This problem can be solved with the use of the z-transform of Chapter 11.
A simple example of a noninvertible discrete-time LTI system is given in 

Figure 10.11(b). The output is zero for n even; hence, the input cannot be deter-
mined from the output for n even.

causality

A discrete-time LTI system is causal if the current value of the output depends on 
only the current value and past values of the input. This property can be expressed 
as, for n1 any integer,

 y[n1] = T1x[n]2, n F n1,

x[n] y[n] � x[n]
h[n] hi[n]

(a)

sin [   n/2]      �
y[n]x[n]

(b) Figure 10.11  Illustrations of invertibility.
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in the notation of Section 9.5. Recall that a complete input–output description of 
an LTI system is contained in its impulse response h[n]. Because the unit impulse 
function d[n] is nonzero only at n = 0, the impulse response h[n] of a causal system 
must be zero for n 6 0. The convolution sum for a causal LTI system can then be 
expressed as

  y[n] = a
∞

k = -∞
x[n - k]h[k] = a

∞

k = 0
x[n - k]h[k] 

(10.32)
  = x[n]h[0] + x[n - 1]h[1] + g+ x[0]h[n] + x[-1]h[n + 1] + g. 

If the impulse response is expressed as h[n - k] for a causal system, this response is 
zero for [n - k] 6 0, or for k 7 n. The alternative form of the convolution sum in 
(10.30) can then be expressed as

 y[n] = a
n

k = -∞
x[k]h[n - k] 

  = x[n]h[0] + x[n - 1]h[1] + x[n - 2]h[2] + g. (10.33)

Note that the expanded sums in (10.32) and (10.33) are identical. Notice that 
(10.33) makes it explicit that the output y[n] does not depend on future values of 
the input x[n].

In summary, for a causal discrete-time LTI system, h[n] is zero for n 6 0 and 
the convolution sum can be expressed as

 y[n] = a
∞

k = 0
x[n - k]h[k] = a

n

k = -∞
x[k]h[n - k]. (10.34)

As an additional point, a signal that is zero for n 6 0 is called a causal signal.

stability

Recall that a system is bounded-input bounded-output (BIBO) stable if the output 
remains bounded for any bounded input. The boundedness of the input can be ex-
pressed as

 � x[n] � 6 M,

where M is a real constant. Then we can write

  � y[n] � = 2 a
∞

k = -∞
x[n - k]h[k] 2 F a

∞

k = -∞
� x[n - k]h[k] �  

(10.35)
  = a

∞

k = -∞
� x[n - k] � �h[k] � F a

∞

k = -∞
M � h[k] � = M a

∞

k = -∞
� h[k] � . 
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Since M is finite, it is sufficient that for y[n] to be bounded,

 a
∞

k = -∞
� h[k] � 6 ∞ . (10.36)

If this relation is satisfied, h[n] is said to be absolutely summable.
We now show that (10.36) is necessary. Assume that the summation in (10.36) 

is not bounded. We can choose a bounded input such that x[n] = 1x+[n] + x-[n]2, 
where

  x+[n] = b1, h[n] G 0
0, h[n] 6 0;

 

(10.37)

  x-[n] = b -1, h[n] 6 0
0, h[n] G 0

. 

Hence, x[n] is either 1 or -1 for each n. The resulting output is

 y[n] = a
∞

k = -∞
1x+[n - k] + x-[n - k]2h[k] = a

∞

k = -∞
� h[k] � . (10.38)

This output is unbounded for the bounded input of (10.37), and the system is not 
stable. Thus, the necessary and sufficient condition for an LTI system to be BIBO 
stable is that the impulse response be absolutely summable, as given in (10.36). For 
an LTI causal system, this condition reduces to

 a
∞

k = 0
� h[k] � 6 ∞ . (10.39)

 exampLe 10.6 stability of an LtI discrete system

We now illustrate the preceding properties with some examples. First, let h[n] = 11
22nu[n]. 

This system

 1. has memory (is dynamic), since h[n] ≠ Kd[n];
 2. is causal, because h[n] = 0 for n 6 0;

 3. is stable, because, from Appendix C,

 a
∞

n = -∞
� h[n] � = a

∞

n = 0
¢1

2
≤n

=
1

1 - 1>2
= 2.

Consider next h[n] = 122nu[n]. This system has memory and is causal, for the same 
reasons as for the first system. However, this system is not stable, because

 a
∞

n = -∞
� h[n] � = a

∞

n = 0
2n = 1 + 2 + 4 + 8 + g .

This sum is obviously unbounded.
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As a final example, consider h[n] = 11
22nu[n + 1]. This system has memory. The sys-

tem is not causal, since h[-1] = 2 ≠ 0. The system is stable, because, from earlier,

 a
∞

n = -∞
� h[n] � = a

∞

n = -1
¢1

2
≤n

= 2 +
1

1 - 1>2
= 4. ■

unit step response

We now relate the unit step response to the unit impulse response for an LTI sys-
tem. Suppose that the system input is the unit step function u[n]. We denote the unit 
step response as s[n]. Then, from (10.30),

 s[n] = a
∞

k = -∞
u[n - k]h[k] = a

n

k = -∞
h[k], (10.40)

since u[n - k] is zero for 1n - k2 6 0, or for k 7 n. Hence, the unit step response 
can be calculated directly from the unit impulse response.

From (10.40), we form the first difference for s[n]:

 s[n] - s[n - 1] = a
n

k = -∞
h[k] - a

n - 1

k = -∞
h[k] = h[n]. (10.41)

Thus, the impulse response can be obtained directly from the unit step response; 
consequently, the unit step response also completely describes the input–output 
characteristics of a system.

 exampLe 10.7 step response from the impulse response

Consider again the system of Example 10.4, which has the impulse response

 h[n] = 0.6nu[n]. (10.42)

This system is dynamic, causal, and stable. The unit step response is then, from (10.40),

 s[n] = a
n

k = -∞
h[k] = a

n

k = 0
0.6k.

From Appendix C, we express this series in the closed form

 s[n] = a
n

k = 0
0.6k =

1 - 0.6n + 1

1 - 0.6
 u[n] = 2.511 - 0.6n + 12u[n].

The factor u[n] is necessary, since s[n] = 0 for n 6 0 (causal system). This result verifies that 
of Example 10.4, in which the step response was calculated with the use of the convolution 
summation. Note that the impulse response is obtained from the step response by (10.41); 
hence, for n G 0,

  h[n] = s[n] - s[n - 1]

  = 2.511 - 0.6n + 12u[n] - 2.511 - 0.6n2u[n - 1].
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For n = 0,

 h[0] = 2.511 - 0.62 = 1.

For n G 1,

  h[n] = 2.511 - 0.6n + 1 - 1 + 0.6n2
  = 2.510.6n211 - 0.62 = 0.6n. 

Hence,

 h[n] = 0.6nu[n],

which is the given function. ■

In this section, the properties of memory, invertibility, causality, and stabil-
ity are investigated for discrete-time LTI systems. If a system is memoryless, its 
impulse response is given by h[n] = Kd[n], with K constant. The impulse response 
h[n] of a causal system is zero for n 6 0. A system is stable if its impulse response 
is absolutely summable, as in (10.36). Invertibility is discussed, but no mathematical 
test is developed.

 10.4 DIfference-equatIon moDeLs

In Sections 10.1 through 10.3, certain properties of LTI discrete-time systems are 
developed. We now consider the most common model for systems of this type. LTI 
discrete-time systems are usually modeled by linear difference equations with con-
stant coefficients. We emphasize that models of physical systems are being consid-
ered, not the physical systems themselves. A common discrete-time LTI physical 
system is a digital filter. Digital filters are implemented either by digital hardware 
that is constructed to solve a difference equation or by a digital computer that is 
programmed to solve a difference equation. In either case, the difference-equation 
model is usually accurate, provided that the computer word length is sufficiently 
long that numerical problems do not occur.

In this section, we consider difference-equation models for LTI discrete-time 
systems. Then, two methods are given for solving linear difference equations with 
constant coefficients; the first is a classical procedure and the second is an iterative 
procedure.

Difference-equation models

In Example 10.1 and Figure 10.3, we considered a discrete-time system with the dif-
ference equation

 y[n] = 1x[n] + x[n - 1] + x[n - 2]2 >3. (10.43)
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This is one of the simpler models that we can consider; the current value of the out-
put signal, y[n], is a function of the current value and the last two values of the input 
signal x[n] only, but is not a function of past output values.

We now consider a first-order discrete-time system model in which the current 
value of output, y[n], is a function of the last value of output y[n - 1] and the cur-
rent value of the input x[n]:

 y[n] = ay[n - 1] + bx[n]. (10.44)

The parameters a and b are constants; Equation (10.44) is a linear difference equa-
tion with constant coefficients. One of the coefficients is equal to unity, one is a, and 
one is b.

To show that (10.44) is linear, we use superposition. Suppose that yi[n] is the 
solution of (10.44) for the excitation xi[n], for i = 1, 2. By this, we mean that

 yi[n] = ayi[n - 1] + bxi[n], i = 1, 2. (10.45)

We now show that the solution 1a1y1[n] + a2y2[n]2 satisfies (10.44) for the excita-
tion 1a1x1[n] + a2x2[n]2, by direct substitution into (10.44):

 1a1y1[n] + a2y2[n]2 = a1a1y1[n - 1] + a2y2[n - 1]2 + b1a1x1[n] + a2x2[n]2.

This equation is rearranged to yield

 a11y1[n] - ay1[n - 1] - bx1[n]2 + a21y2[n] - ay2[n - 1] - bx2[n]2 = 0. (10.46)

Each term on the left side is equal to zero, from (10.45); hence, the difference equa-
tion (10.44) satisfies the principle of superposition and is linear. Also, in (10.44), we 
replace n with 1n - n02, yielding

 y[n - n0] = ay[n - n0 - 1] + bx[n - n0]. (10.47)

Thus, an excitation of x[n - n0] produces a response of y[n - n0], and (10.44) is 
also time invariant.

A simple example of a linear difference equation with constant coefficients is 
the first-order equation

 y[n] = 0.6y[n - 1] + x[n].

The equation is first order because the current value of the dependent variable is an 
explicit function of only the most recent preceding value of the dependent variable, 
y[n - 1].

The general form of an Nth-order linear difference equation with constant 
coefficients is, with a0 ≠ 0,

  a0y[n] + a1y[n - 1] + g + aN - 1y[n - N + 1] + aNy[n - N]

  = b0x[n] + b1x[n - 1] + g + bM - 1x[n - M + 1] + bMx[n - M],
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where a0, c, aN and b0, c, bM are constants. We consider only the case that these 
constants are real. The equation is Nth order, since the current value of the depen-
dent variable is an explicit function of the last N preceding values of the dependent 
variable. The general Nth-order equation can be expressed in a more compact form:

 a
N

k = 0
aky[n - k] = a

M

k = 0
bkx[n - k], a0 ≠ 0. (10.48)

It can be shown by these procedures that this equation is both linear and time 
invariant.

classical method

Several methods of solution exist for (10.48); in this section, we present one of the 
classical methods. This method parallels the one given in Appendix E and reviewed 
for differential equations in Section 3.5. In Chapter 11, the solution by transform 
methods (the z-transform) is developed.

In practical situations, we use computers to solve both differential and dif-
ference equations. If the equations model a system, the solution is called a system 
simulation. Computer simulations are not limited to linear constant-coefficient dif-
ference equations; the solution of nonlinear time-varying equations by computer 
generally presents few additional difficulties compared with the solution of linear 
time-invariant equations. However, we have no general analytical techniques for 
the solution of a nonlinear time-varying difference equation, such that the resulting 
solution y[n] is expressed as an explicit function of n.

The method of solution of (10.48) to be presented here requires that the gen-
eral solution y[n] be expressed as the sum of two functions [1]:

 y[n] = yc[n] + yp[n]. (10.49)

In this equation, yc[n] is called the complementary function and yp[n] is a particular 
solution. For the case that the difference equation models a system, the comple-
mentary function is often called the natural response and the particular solution 
the forced response. We will use this notation. A procedure for finding the natural 
response is presented first, and the forced response is then considered.

natural response. To find the natural response, we first write the homoge-
neous equation, which is (10.48) with the left side set equal to zero—that is,

a0y[n] + a1y[n - 1] + g + aN - 1y[n - N + 1] + aN [n - N] = 0,  (10.50)

with a0 ≠ 0. The natural response yc[n] must satisfy this equation. We assume that 
the solution of the homogeneous equation is of the form yc[n] = Czn, where C and 
z are constants to be determined in the solution process.
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We now develop the solution procedure. Note that

  yc[n] = Czn,  

  yc[n - 1] = Czn - 1 = Cz-1zn, 

  yc[n - 2] = Czn - 2 = Cz-2zn, (10.51)

  f 

  yc[n - N] = Czn - N = Cz-Nzn. 

Substitution of these terms into (10.50) yields

  1a0 + a1z
-1 + g + aN - 1z

-1N - 12 + aNz-N2Czn 

  = 1a0z
N + a1z

N - 1 + g + aN - 1z + aN2Cz-Nzn = 0. (10.52)

We assume that our solution yc[n] = Czn is nontrivial 1C ≠ 02; then, from (10.52),

 a0z
N + a1z

N - 1 + g + aN - 1z + aN = 0. (10.53)

This equation is called the characteristic equation, or the auxiliary equation, for the 
difference equation (10.48). Note that the characteristic equation is a polynomial in 
z set to zero. The polynomial may be factored as

a0z
N + a1z

N - 1 + g + aN - 1z + aN = a01z - z121z - z22 g 1z - zN2 = 0.
(10.54)

Hence, N values of z, denoted as zi, i = 1, 2, c , N, satisfy this equation. For the 
case of no repeated roots, the solution of the homogeneous equation (10.50) may 
be expressed as

 yc[n] = C1z1
n + C2z2

n + g + CNzN
n , (10.55)

since the equation is linear. This solution is called the natural response (comple-
mentary function) of the difference equation (10.48) and contains the N unknown 
coefficients C1, C2, c, CN. These coefficients are evaluated in a later step of the 
solution procedure. An example is now given.

 exampLe 10.8 complementary response for an LtI discrete system

As an example, we consider the first-order difference equation given earlier in the section:

 y[n] - 0.6y[n - 1] = x[n].

From (10.53), the characteristic equation is

 a0z + a1 = z - 0.6 = 0 1 z = 0.6 ;

thus, the natural response is

 yc[n] = C10.62n,

where C is yet to be determined. ■
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The unknown constant C cannot be determined until the general (complete) 
solution has been found. The second part of the general solution is investigated 
next.

forced response. The second part of the general solution of a linear differ-
ence equation with constant coefficients,

[eq(10.48)] a
N

k = 0
aky[n - k] = a

M

k = 0
bkx[n - k],

is called a forced response (particular solution) and is denoted by yp[n]. A forced 
response is any function yp[n] that satisfies (10.48)—that is, that satisfies

 a
N

k = 0
akyp[n - k] = a

M

k = 0
bkx[n - k]. (10.56)

The general solution of (10.48) is then the natural response yc[n], which is the solu-
tion of (10.50), plus a forced response yp[n], which is the solution of (10.56):

[eq(10.49)] y[n] = yc[n] + yp[n].

One procedure for evaluating the forced response is to assume that this solu-
tion is the sum of functions of the mathematical form of the excitation x[n] and the 
delayed excitation x[n - k] that differ in form from x[n]. This procedure, called the 
method of undetermined coefficients, applies if the forced response as described has 
a finite number of terms. For example, if

 x[n] = 310.22n,

we would assume the particular function

 yp[n] = P10.22n,

where the coefficient P is to be determined. As a second example, if x[n] = n3, then 
x[n - k] = 1n - k23, which expands into the functional forms n3, n2, n1, and n0.  
For this case, the forced response is chosen as

 yp[n] = P1 + P2n + P3n
2 + P4n

3,

where the Pi, i = 1, c, 4, are unknown. As a third example, if x[n] = cos 2n, the 
forced response is chosen as

 yp[n] = P1 cos 2n + P2 sin 2n,

since a delayed cosine function can be expressed as the sum of a cosine function and 
a sine function.

The unknown coefficients in yp[n] are evaluated by direct substitution of the 
forced response into the difference equation (10.56) and equating coefficients of 
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like mathematical forms that appear on both sides of the equation. An example is 
given next.

 exampLe 10.9 total response for an LtI discrete system

This example is a continuation of Example 10.8. Consider the difference equation

 y[n] - 0.6y[n - 1] = 4u[n].

Because the forcing function is constant, the forced response is chosen as

 yp[n] = P,

where P is constant. Substitution of the forced response into the difference equation yields

 yp[n] - 0.6yp[n - 1] = P - 0.6P = 4 1 P = 10,

or yp[n] = P = 10. From (10.49), the general solution is

 y[n] = yc[n] + yp[n] = C10.62n + 10,

for n G 0. Recall that yc[n] was found in Example 10.8. We now have the problem of evaluat-
ing the unknown coefficient C. The procedure for this evaluation is given next; then the solu-
tion is completed. ■

Once the general solution has been found, as in Example 10.9, the remaining 
N unknown coefficients C1, C2,  c, CN of the natural response (10.55) must be cal-
culated. Thus, we must have N independent conditions to evaluate these unknowns; 
these N conditions are the initial conditions. Generally, the initial conditions can be 
expressed as y[m], y[m + 1],  c, y[m + N - 1], where m is given in the specifica-
tions of the equation, and we solve for y[n], n G m + N. For many cases, m is equal 
to zero, and we solve for y[n] for n G N. We illustrate this procedure by completing 
Example 10.9.

 exampLe 10.10 calculations for example 10.9

For the system of Examples 10.8 and 10.9, suppose that the system is initially at rest; that is, 
the initial conditions are zero. Because the input is u[n] and the system is first order, the re-
quired initial condition is y[0] = 0. The total solution is, from Example 10.9,

 y[n] = C10.62n + 10.

Thus,

 y[0] = 0 = C + 10 1 C = -10,

and the total solution is given by

 y[n] = 10[1 - 10.62n]u[n].
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As a check of this solution, we solve the difference iteratively for the first three unknown 
values.

  y[0] = 0;

  y[1] = 0.6y[0] + 4 = 0.6102 + 4 = 4;

  y[2] = 0.6y[1] + 4 = 0.6142 + 4 = 6.4;

  y[3] = 0.6y[2] + 4 = 0.616.42 + 4 = 7.84.

We now find the first three values from our solution:

  y[0] = 10[1 - 0.60] = 0;

  y[1] = 10[1 - 0.61] = 4;

  y[2] = 10[1 - 0.62] = 6.4;

  y[3] = 10[1 - 0.63] = 7.84.

The solution checks for these values. The difference equation is evaluated by the following 
MATLAB program:

n=[0:9];
y(1)=0;
for m=2:10;
y(m)=0.6*y(m-1)+4;

end
y
stem(n,y,'fill'),grid

What is the relationship of m in this program to n in y[n]?
The steady-state output yss[n] can also be verified. From the solution,

 y[n] = 10[1 - 10.62n]u[n] 1 lim
nS ∞

y[n] = yss[n] = 10.

For the difference equation, as n S ∞ , yss[n - 1] S yss[n], and the difference equation is 
given by

 yss[n] - 0.6yss[n] = 0.4yss[n] = 4 1 yss[n] = 10.

Hence, the steady-state value also checks. ■

The natural-response part of the general solution of a linear difference equa-
tion with constant coefficients,

[eq(10.48)] a
N

k = 0
aky[n - k] = a

M

k = 0
bkx[n - k],

is independent of the forcing function x[n] and is dependent only on the struc-
ture of the system [the left side of (10.48)]; hence, the name natural response. It 
is also called the unforced response, or the zero-input response. In the preceding 
example,

 yc[n] = C10.62n.



Sec. 10.4    Difference-Equation Models 521

The form of this component, 10.62n, is independent of both the input and the ini-
tial conditions; it is a function only of the structure of the system. However, the 
unknown constant C is a function of both the excitation and the initial conditions.

The forced response is also called the zero-state response. In this application, 
the term zero state means zero initial conditions. The forced response is a function 
of the system structure and of the excitation, but is independent of the initial condi-
tions. For almost all models of physical systems, the natural response goes to zero 
with increasing time, and then only the forced part of the response remains. (The re-
quirement for this to occur in an LTI system is that the system be BIBO stable.) For 
this reason, we sometimes refer to the forced response as the steady-state response, 
as in Example 10.10, and the natural response as the transient response. When we 
refer to the steady-state response of a system, we are speaking of the forced re-
sponse of a difference equation. Of course, we find the steady-state response of a 
physical system by applying the excitation, allowing the system to settle into steady 
state, and then measuring the response.

repeated roots. The natural response

[eq(10.55)] yc[n] = C1z1
n + C2z2

n + g + CNzN
n

does not apply if any of the roots of the characteristic equation,

[eq(10.54)] a0z
N + a1z

N - 1 + g + aN - 1z + aN

 = a01z - z121z - z22 g1z - zN2 = 0,

are repeated. Suppose, for example, that a fourth-order difference equation has the 
characteristic equation

 z4 + a1z
3 + a2z

2 + a3z + a4 = 1z - z1231z - z42. (10.57)

The natural response must then be assumed to be of the form

 yc[n] = 1C1 + C2n + C3n
22z1

n + C4z4
n. (10.58)

The remainder of the procedure for finding the general solution is unchanged. For 
the general case of an rth-order root zi in the characteristic equation, the corre-
sponding term in the natural response is

 term = 1C1 + C2n + C3n
2 + g + Crn

r - 12zi
n. (10.59)

solution by Iteration

A difference equation can always be solved by iteration. This procedure was illus-
trated in Example 10.10 and is now developed further.
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The N-order difference equation (10.48) can be expressed as

  y[n] = - a
N

k = 1
aky[n - k] + a

M

k = 0
bkx[n - k]  

  = -a1y[n - 1] - g -aNy[n - N]  (10.60)

  + b0x[n] + b1x[n - 1] + g + bMx[n - M], 

where we have normalized a0 to unity, for convenience. As stated before, the initial 
conditions for this equation are the N values y[m], y[m + 1], c y[m + N - 1].  
To illustrate this procedure, we let m = 0. From (10.60), we solve for y[N]:

  y[N] = -a1y[N - 1] - a2y[N - 2] - g -aNy[0]

  + b0x[N] + b1x[N - 1] + g + bMx[N - M].

Note that all terms on the right side are known. Having found y[N], we can now 
calculate y[N + 1]:

  y[N + 1] = -a1y[N] - a2y[N - 1] - g -aNy[1]

  + b0x[N + 1] + b1x[N] + g + bMx[N - M + 1].

Once again, all terms on the right side are known. Knowing y[N + 1] allows us to 
solve for y[N + 2]:

  y[N + 2] = -a1y[N + 1] - a2y[N] - g -aNy[2]

  + b0x[N + 2] + b1x[N + 1] + g + bMx[N - M + 2].

Using this procedure, we can solve for y[n] for any value of n. This procedure is 
long if we wish to solve for y[n] for n large; however, the procedure is ideally suited 
for solution by digital computer. A simulation for a discrete-time system is usually 
a computer solution of the system difference equation by iteration, as illustrated by 
the MATLAB program in Example 10.10.

In this section, we consider the modeling of discrete-time LTI systems by lin-
ear difference equations with constant coefficients. A classical procedure is given for 
solving these difference equations, resulting in y[n] as an explicit function of n. As 
the final topic, the iterative solution of difference equations is developed. This solu-
tion does not result in y[n] as an explicit function of n, but is easily implemented on a 
digital computer; this implementation is called a system simulation. In addition, the 
iterative-solution procedure applies to time-varying nonlinear difference equations.

 10.5 terms In the naturaL response

We now relate the terms of the natural response (complementary function) of a 
discrete-time LTI system to the signals that were studied in Section 9.4. The math-
ematical forms of the terms in the natural response are determined by the roots of 
the characteristic equation

[eq(10.54)] a0z
N + a1z

N - 1 + g + aN - 1z + aN

 = a01z - z121z - z22 g 1z - zN2 = 0.
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With the roots distinct, the natural response is given by

[eq(10.55)] yc[n] = C1z1
n + C2z2

n + g + CNzN
n .

Hence, the general term is given by Cizi
n, where zi

n is called a system mode. The root 
zi of the characteristic equation may be real or complex. However, because the coef-
ficients of the characteristic equation are real, complex roots must occur in complex 
conjugate pairs. We now consider the different forms of the modes that can appear 
in the natural response.

zi Real and Positive
If zi is real, we let zi = egi with g i real, and

 Cizi
n = Ci1egi2n = Cie

gin (10.61)

with g i = ln zi. This term is exponential in form.

zi Complex, or Real and Negative
If zi is complex, we let

 zi = � zi � ejui = egiejΩi, (10.62)

with g i = ln � zi �  and Ωi = ui. Since the natural response yc[n] must be real, two of the 
terms of yc[n] can be expressed as

  Cizi
n + Ci

*1zi
*2n = � Ci � ejbieg inejΩin + � Ci � e-jbiegine-jΩ in  

  = � Ci � eginej1Ωin + bi2 + � Ci � egine-j1Ωin + bi2 (10.63)

  = 2 � Ci � egin cos1Ωin + bi2,  

where Ci = � Ci � ejbi. If g
i
 is zero, the term is an undamped sinusoid. If g i is real and 

negative, the term is a damped sinusoid, and the term approaches zero as n approaches 
infinity. If g i is real and positive, the term becomes unbounded as n approaches 
infinity.

We see then that the terms that were discussed in detail in Section 9.4 appear 
in the natural response of an LTI discrete-time system. The natural-response terms 
are always present, independent of the type of excitation to the system.

stability

We now relate the stability of a causal discrete-time LTI system to the roots of the 
system characteristic equation. As stated earlier, the general term in the natural 
response is of the form Cizi

n, where zi is a root of the system characteristic equation. 
The magnitude of this term is given by � Ci � � zi �n. If � zi �  is less than unity, the mag-
nitude of the term approaches zero as n approaches infinity. If � zi �  is greater than 
unity, the magnitude of the term becomes unbounded as n approaches infinity.
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The solution of a constant-coefficient linear difference equation is given by

[eq(10.49)] y[n] = yc[n] + yp[n].

Recall also that the forced response yp[n] is of the mathematical form as the system 
input x[n]. Hence, if x[n] is bounded, yp[n] is also bounded. If all roots of the charac-
teristic equation satisfy the relation � zi � 6 1, each term of the natural response yc[n] 
is also bounded. Thus, the necessary and sufficient condition that a causal discrete-
time LTI system is BIBO stable is that � zi � 6 1. We now illustrate the determina-
tion of stability with an example.

 exampLe 10.11 stability of a discrete system

Suppose that a causal system is described by the difference equation

 y[n] - 1.25y[n - 1] + 0.375y[n - 2] = x[n].

From (10.48) and (10.54), the system characteristic equation is

 z2 - 1.25z + 0.375 = 1z - 0.7521z - 0.52 = 0.

A MATLAB program that calculates these roots is

p=[1 -1.25 .375];
r=roots(p)
results: r=0.75 0.5

This system is stable, since the magnitude of each root is less than unity. The natural response 
is given by

 yc[n] = C110.752n + C210.52n.

This function approaches zero as n approaches infinity.
Consider a second causal system described by the difference

 y[n] - 2.5y[n - 1] + y[n - 2] = x[n].

The system characteristic equation is given by

 z2 - 2.5z + 1 = 1z - 221z - 0.52.

The system is unstable, because the root z1 = 2 is greater than unity. The natural response 
is given by

 yc[n] = C1122n + C210.52n.

The instability is evident in the term C1122n. ■
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 10.6 BLock DIagrams

In Section 9.5, the representation of discrete-time systems by block diagrams was in-
troduced. In this section, we extend these representations to LTI systems described 
by difference equations.

The representation of difference equations by block diagrams requires the use 
of an ideal delay, as discussed earlier. We use the block shown in Figure 10.12 to 
represent this delay. Recall that if the signal into an ideal delay is x[n], the signal out 
at that instant is x[n - 1].

We express the operation in Figure 10.12 in the standard form

 x[n] S y[n] = x[n - 1]. (10.64)

One implementation of an ideal delay uses a memory location in a digital computer. 
One digital-computer program segment illustrating this implementation is given by 
the two statements

f
XNMINUS1 = X
X = XN

f

This segment applies to many high-level languages. In this segment, X is the 
memory location, XNMINUS1 is the number shifted out, and XN is the num-
ber shifted in. Note that the delay is not realized if the two statements are 
reversed in order; if the number XN is shifted in first, the number X stored in 
the memory location is overwritten and lost. This delay will now be used in an 
example.

 exampLe 10.12 simulation diagram for a discrete system

In Section 10.4, we considered a discrete-time system described by the difference equation

 y[n] - 0.6y[n - 1] = x[n]. (10.65)

We now find a block diagram, constructed of certain specified elements, that satisfies this 
equation. The difference equation can be written as

 y[n] = 0.6y[n - 1] + x[n].

x[n]
D

x[n � 1]

Figure 10.12  Representation of a delay.



526 Discrete-Time Linear Time-Invariant Systems    Chap. 10

If we assume that y[n] is available, we can realize the right side of this equation by using a 
delay, a multiplication by 0.6, and a summing junction. This is done in the block diagram of 
Figure 10.13, and the loop is completed to satisfy (10.65). Hence, we have constructed a block 
diagram that satisfies the given difference equation. ■

The block diagram of Figure 10.13 can be implemented by a digital computer 
program; for example, one MATLAB program is given by, with x[n] = 4,

ynminus1=0;
for n=0:3

yn=0.6*ynminus1+4
ynminus1=yn;

end
result: yn=4 6.4 7.84 8.704

The first statement sets y[0]. The beginning value of n can be zero, since no sub-
scripting is used explicitly in the program. The variable yn is the current value of 
y[n], and ynminus1 is the current value of y[n - 1]. The first statement in the for 
loop solves the difference equation, while the second one stores y[n - 1] for the 
next iteration. A semicolon at the end of a statement suppresses printing for that 
statement. Hence, only yn is printed for each iteration of the loop. As an exercise, 
the reader can relate each statement to the block diagram of Figure 10.13.

Compare this simulation with the one given in Example 10.10. The variables 
of that simulation were subscripted; these variables are not. Complex simulations 
are normally written in the manner just described, since subscripting variables re-
quires that the variable be stored for each value of the subscript. In the previous 
simulation, only two values, yn and ynminus1, are stored.

A common discrete-time system is a digital filter. If the difference equation 
of Example 10.12 were a digital-filter equation, the given computer program is a 
realization of that filter.

As stated earlier, the block diagram of Figure 10.13 is sometimes called a sim-
ulation diagram. The given MATLAB program is a machine solution to the differ-
ence equation; hence, the program is a digital simulation of the system. One proce-
dure for constructing a simulation of a complex discrete-time system is first to draw 
a simulation diagram that is based on ideal delays, multiplications by constants, and 
summing junctions. The computer program is then written directly from the simula-
tion diagram. For the case that the difference equation represents a digital filter, the 
simulation diagram is also called a programming form.

0.6

0.6y[n � 1]

y[n � 1]

D

y[n]x[n]
�

Figure 10.13  System for Example 10.12.
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two standard forms

It can be shown that an unbounded number of simulation diagrams can be drawn 
for a given difference equation. Two standard forms will be given here. We consider 
some other forms in Chapter 13.

As stated in Section 10.5, with a0 ≠ 0, the general form of an Nth-order linear 
difference equation with constant coefficients is

[eq(10.48)] a
N

k = 0
aky[n - k] = a

M

k = 0
bkx[n - k].

To introduce the standard forms, a second-order difference equation will be consid-
ered. We will then develop the forms for the Nth-order equation of (10.48).

For a second-order system, we can express the difference equation as

a0y[n] + a1y[n - 1] + a2y[n - 2] = b0x[n] + b1x[n - 1] + b2x[n - 2]. (10.66)

We denote the right side of this equation as

 w[n] = b0x[n] + b1x[n - 1] + b2x[n - 2].

A representation of this equation by a block diagram is shown in Figure 10.14(a). 
Then (10.66) becomes

 a0y[n] + a1y[n - 1] + a2y[n - 2] = w[n].

Solving for y[n] yields

 y[n] =
1
a0

[w[n] - a1y[n - 1] - a2y[n - 2]], (10.67)

with a0 ≠ 0. This equation can be realized by the system of Figure 10.14(b). The 
total realization is the cascade (series) connection of the systems in Figure 10.14(a) 
and (b), with the result given in Figure 10.14(c). This block diagram realizes (10.66) 
and is called the direct form I realization.

A second form for realizing a difference equation is now derived by manipu-
lating form I of Figure 10.14(c). The system of this figure is seen to be two systems 
in cascade. The first system has the input x[n] and the output w[n], and the second 
system has the input w[n] and the output y[n]. Because the systems are linear, the 
order of the two systems can be reversed without affecting the input–output charac-
teristics of the total system. The result is shown in Figure 10.15(a).

Note that in Figure 10.15(a), the same signal is delayed by the two sets of 
cascaded delays; hence, the outputs of the delays labeled “1” are equal, as are the 
outputs of the delays labeled “2.” Therefore, one set of the cascaded delays can be 
eliminated. The final system is given in Figure 10.15(b), and we see that only two 
delays are required. This block diagram is called the direct form II realization.
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Consider now the Nth-order difference equation

[eq(10.48)] a
N

k = 0
aky[n - k] = a

M

k = 0
bkx[n - k].

Solving this equation for y[n] yields

 y[n] =
1
a0
J a

M

k = 0
bkx[n - k] - a

N

k = 1
aky[n - k]R , (10.68)

x[n � 1]

b0

D

x[n � 2]

x[n] w[n]

D

�

b1

b2

�

(a)

y[n � 1]

w[n]

D

D

y[n � 2]

y[n]
�

�

(b)

�a2

�a1

1/a0

(c)

x[n � 1]

b0

D

x[n � 1]

y[n � 1]

x[n] w[n]

D D

D

y[n � 1]

y[n]
� �

�b1

b2

�

�a2

�a1

1/a0

Figure 10.14  Direct form I realization of a second-order system.
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with a0 ≠ 0. Using the procedure illustrated with the second-order systems, we 
construct the block diagrams for the direct form I and the direct form II. The block 
diagrams are given in Figures 10.16 and 10.17, for M = N. For M ≠ N, the appro-
priate coefficients in the figures are set to zero.

 exampLe 10.13 a low-pass digital filter

We consider again the a@filter of Example 9.8, Section 9.5. Two applications of this filter are 
in radar-signal processing and in automatic aircraft-landing systems. The purpose of the filter 
is to remove high-frequency noise from the input signal, while passing the lower-frequency 
information in that signal. The filter equation is given by

 y[n] - 11 - a2y[n - 1] = ax[n].

y[n]

(b)

x[n]

D

D

� �

��

1/a0 b0

b1

b2

�a1

�a2

x[n]

D

DD

D

y[n]

�

b2

b1

��

�

b01/a0

�a1

�a2

(a)

2 2

1 1

Figure 10.15  Direct form II realization of a second-order system.
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y[n]w[n]
�

�

�b0

�b1

D

� �b2 �a2

�a1

D D

D

� �bN�1 �aN�1

D D

bN �aN

x[n]
1/a0

Figure 10.16  Direct form I for an  
Nth-order system.

D

D

x[n] y[n]
�� b01/a0

�� b1

D

�a1

�� b2�a2

�� bN�1�aN�1

bN�aN Figure 10.17  Direct form II for an  
Nth-order system.
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This equation is often solved in real time and is then expressed as

 y1nT2 - 11 - a2y1nT - T2 = ax1nT2.

The parameter a and the sample period T determine the frequency range at which noise is 
rejected. The mode of the filter is 11 - a2n; thus, � 1 - a �  must be less than unity for stabil-
ity. For example, letting a = 0.1 results in the filter equation

 y[n] - 0.9y[n - 1] = 0.1x[n].

The form I and form II realizations are given in Figure 10.18. For this filter, the only differ-
ence in the two forms is the movement of the gain of 0.1 from the input of the filter to the 
output. ■

In this section, two standard forms are developed for the realization of differ-
ence equations with constant coefficients. These realizations, also called simulation 
diagrams, or programming forms, are constructed of ideal delays, multiplications by 
constants, and summing junctions. Realizations are discussed in greater detail when 
state variables are introduced in Chapter 13.

 10.7 system response for compLex-exponentIaL Inputs

First, this section considers further the linearity property for systems. Then, the re-
sponse of discrete-time LTI systems to a certain class of input signals is derived.

�

(b)

y[n]x[n]
0.1

0.9

D

y[n]x[n]

(a)

�0.1

0.9

D

Figure 10.18  Realizations of an a@Filter:  
(a) form I; (b) form II.
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Linearity

Consider the discrete-time LTI system depicted in Figure 10.19. This system is de-
noted by

 x[n] S y[n]. (10.69)

From (10.16), this relation can also be expressed as the convolution sum

 y[n] = a
∞

k = -∞
x[n - k]h[k]. (10.70)

The functions x[n], y[n], and h[n] are all real for physical systems.
Consider next two real inputs xi[n], i = 1, 2. In (10.69),

 xi[n] S yi[n], i = 1, 2, (10.71)

and yi[n], i = 1, 2, are real, from (10.70). Since the system of (10.69) is linear, the 
principle of superposition applies, and

 a1x1[n] + a2x2[n] S a1y1[n] + a2y2[n]. (10.72)

No restrictions exist on the constants a1 and a2 in (10.72); hence, these con-
stants may be chosen to be complex. For this development, we choose the constants 
to be

 a1 = 1, a2 = j = 2-1.

The superposition property of (10.72) becomes

 x1[n] + jx2[n] S y1[n] + jy2[n]. (10.73)

This result may be stated as follows: For a complex input function to an LTI system, 
the real part of the input produces the real part of the output, and the imaginary 
part of the input produces the imaginary part of the output.

complex Inputs for LtI systems

The response of an LTI system to the complex-exponential input (see Section 9.4)

 x[n] = Xzn, (10.74)

with X and z constant, is now investigated. For the general case, both X and z 
are complex. We investigate the important case that the system of (10.70) and 
Figure 10.19 is stable and is modeled by an Nth-order linear difference equation 

x[n] y[n]
h[n]

Figure 10.19  LTI system.
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with constant coefficients. The exponential input of (10.74) is assumed to exist 
for all time; hence, the steady-state system response will be found. In other words, 
we will find the forced response for a difference equation with constant coeffi-
cients, for a complex-exponential excitation.

The difference-equation model for an Nth-order LTI system is, with aN ≠ 0,

[eq(10.48)] a
N

k = 0
aky[n - k] = a

M

k = 0
bkx[n - k],

where a0, c, aN and b0, c, bM are real constants. For convenience, we let M = N.  
If this is not the case, certain coefficients must be set to zero.

For the complex-exponential excitation of (10.74), recall from Section 10.4 
that the forced response (steady-state response) of (10.48) is of the same mathemat-
ical form; hence,

 yss[n] = Yzn, (10.75)

where yss[n] is the steady-state response and Y is a complex constant to be deter-
mined. [z is known from (10.74).] We denote the forced response as yss[n] rather 
than yp[n], for clarity. From (10.74) and (10.75), the terms of (10.48) become

  a0yss[n] = a0Yzn;      b0x[n] = b0Xzn;  

  a1yss[n - 1] = a1Yzn - 1     b1x[n - 1] = b1Xzn - 1  

  = a1z
-1Yzn;   = b1z

-1Xzn;  

  a2yss[n - 2] = a2Yzn - 2   b2x[n - 2] = b2Xzn - 2  

  = a2z
-2Yzn;   = b2z

-2Xzn;  

  f   f  

  aNyss[n - N] = aNYzn - N   bNx[n - N] = bNXzn - N  

  = aNz-NYzn;   = bNz-NXzn. (10.76)

These terms are substituted into (10.48), resulting in

  1a0 + a1z
-1 + g + aN - 1z

-N + 1 + aNz-N2Yzn  

  = 1b0 + b1z
-1 + g + bN - 1z

-N + 1 + bNz-N2Xzn. (10.77)

The only unknown in the steady-state response yss[n] of (10.75) is Y. In (10.77), 
the factor zn cancels, and Y is given by

 Y = c b0 + b1z
-1 + g+ bN - 1z

-N + 1 + bNz-N

a0 + a1z
-1 + g+ aN - 1z

-N + 1 + aNz-N dX = H1z2X. (10.78)

It is standard practice to denote the ratio of polynomials as

 H1z2 =
b0 + b1z

-1 + g+ bN - 1z
-N + 1 + bNz-N

a0 + a1z
-1 + g+ aN - 1z

-N + 1 + aNz-N . (10.79)
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(We show later that this function is related to the impulse response h[n].) A second 
common method for specifying the transfer function is given by multiplying the nu-
merator and the denominator of (10.79) by zN:

 H1z2 =
b0z

N + b1z
N - 1 + g + bN - 1z + bN

a0z
N + a1z

N - 1 + g + aN - 1z + aN
. (10.80)

The function H1z2 is called a transfer function and is said to be Nth order. The order 
of a transfer function is the same as that of the difference equation upon which the 
transfer function is based.

We now summarize the foregoing development. Consider an LTI system with 
the transfer function H1z2, as given in (10.79) and (10.80). If the system excitation 
is the complex exponential x[n] = Xz1

n, then, from (10.74), (10.75), and (10.78), the 
steady-state response is given by

 x[n] = Xz1
n S yss[n] = XH1z12z1

n. (10.81)

We now show that the complex-exponential solution in (10.81) also applies 
for the case of sinusoidal inputs. Suppose that, in (10.81), X = � X � ejf and z1 = ejΩ1,  
where f and Ω1 are real. Then,

  x[n] = Xz1
n = � X � ejfejΩ1n = � X � ej1Ω1n + f2  

  = � X � cos1Ω1n + f2 + j � X � sin1Ω1n + f2. (10.82)

Because, in general, H1z12 = H1ejΩi2  is also complex, we let H1ejΩ12 =  
� H1ejΩ12 � ejuH. The right side of (10.81) can be expressed as

  yss[n] = XH1ejΩ12ejΩ1n = � X � � H1ejΩ12 �ej1Ω1n + f + uH2

  = � X � � H1e jΩ12 � [cos1Ω1n + f + uH2 + j sin1Ω1n + f + uH2].

From (10.73) and (10.82), since the real part of the input signal produces the real 
part of the output signal,

 � X � cos1Ω1n + f2 S � X � � H1ejΩ12 � cos1Ω1n + f + uH2. (10.83)

This result is general for an LTI system and is fundamental to the analysis of LTI 
systems with periodic inputs.

Suppose that a system is specified by its transfer function H1z2. To obtain 
the system difference equation, we reverse the steps in (10.76) through (10.79). In 
fact, in H1z2 the numerator coefficients bi are the coefficients of x[n - i], and the 
denominator coefficients ai are the coefficients of y[n - i]; we can then consider the 
transfer function to be a shorthand notation for a difference equation. Therefore, 
the system difference equation can be written directly from the transfer function 
H1z2; consequently, H1z2 is a complete description of the system, regardless of the 
input function. For this reason, an LTI system can be represented by the block dia-
gram in Figure 10.20, with the system transfer function given inside the block. It is 
common engineering practice to specify an LTI system in this manner.
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The form of the transfer function in (10.79) [and (10.80)], which is a ratio of 
polynomials, is called a rational function. The transfer function of a discrete-time 
LTI system described by a linear difference equation with constant coefficients, as 
in (10.48), will always be a rational function.

We now consider three examples to illustrate the preceding developments.

 exampLe 10.14 transfer function for a discrete system

In this example, we illustrate the transfer function, using the a@filter of Example 10.13. The 
difference equation of the a@filter is given by

 y[n] - 11 - a2y[n - 1] = ax[n].

The coefficients, as given in (10.48), are

 a0 = 1, a1 = - 11 - a2, b0 = a.

The filter transfer function is normally given in one of two different ways, from (10.79) 
and (10.80):

 H1z2 =
a

1 - 11 - a2z-1 =
az

z - 11 - a2 .

This transfer function is first order. Figure 10.21 shows the a@filter as a block diagram.

x[n] y[n]
H[z]

Figure 10.20  LTI system.

x[n] y[n]  z�
z � (1�   )� Figure 10.21  a@Filter. ■

 exampLe 10.15 sinusoidal response for a discrete system

In this example, we calculate the system response of an LTI system with a sinusoidal  
excitation. Consider the a@filter of Example 10.14, with a = 0.1. The transfer function is 
given by

 H1z2 =
0.1z

z - 0.9
.

Suppose that the system is excited by the sinusoidal signal x[n] = 5cos10.01n + 20°2. In 
(10.83), with ejΩ1 = ej0.01 = 1l0.573°,

  H1z2 � z = ej0.01X =
0.11ej0.012
ej0.01 - 0.9

 15l20°2

  =
0.5l20.573°

0.99995 + j0.0100 - 0.9
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  =
0.5l20.573°

0.1004l5.71°

  = 4.98l14.86°.

A MATLAB program that performs these calculations is as follows:

n = [.1 0];
d = [1 -.9];
z = exp(.01*j);
h = polyval(n,z)/polyval(d,z);
ymag = 5*abs(h)
yphase = 20 + angle(h)*180/pi
result: ymag = 4.9777 yphase = 14.8596

Thus, from (10.83), the system response is given by

 yss[n] = 4.98cos10.01n + 14.86°2.

Note the calculation required:

 H1ej0.012 =
0.11ej0.012
ej0.01 - 0.9

= 0.996l-5.14°.

The steady-state response can be written directly from this numerical value for the transfer 
function, from (10.83).

  yss[n] = 10.9962152cos10.01n + 20° - 5.14°2 ■

  = 4.98 cos 10.01n + 14.86°2.

 exampLe 10.16 continuation of example 10.15

This example is a continuation of Example 10.15; we will demonstrate the low-pass nature 
of the a@filter. Suppose that the sinusoidal input has the discrete frequency Ω = 3, with the 
input signal given by x[n] = cos13n2. Then z = ej3 = 1l171.9°, and

  H1ej32 =
0.11ej32
ej3 - 0.9

=
0.1l171.9°

1l171.9° - 0.9

  =
0.1l171.9°

1.895l175.7°
= 0.0528l-3.8°.

Thus,

 H1ej0.012 = 0.996l-5.14°, H1ej32 = 0.0528l-3.8°.

The gain of the filter for the discrete frequency Ω = 0.01 is approximately unity, and for 
Ω = 3 is approximately 1

20. Hence, the filter passes frequencies in the vicinity of Ω = 0.01 
and rejects frequencies in the vicinity of Ω = 3. A property of discrete-time systems is that 
the system frequency response is periodic with period Ω = 2p. (See Section 9.3.) Hence, we 
must be careful in drawing general conclusions from this example. The periodic nature of the 
frequency response is considered in greater detail in Chapter 12. ■
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Consider now the case in which the input function is a sum of complex 
exponentials:

 x[n] = a
M

k = 1
Xkzk

n. (10.84)

By superposition and from (10.81), the response of an LTI system with the 
transfer function H1z2 is given by

 yss[n] = a
M

k = 1
XkH1zk2zk

n. (10.85)

stability

It is shown in Section 10.5 that a causal LTI system described by a difference equation 
is BIBO stable, provided that the roots of the characteristic equation, (10.54), all have 
magnitudes less than unity. The polynomial in (10.54) is identical to that in the de-
nominator in H1z2 in (10.80). Hence, the transfer function (10.80) can be expressed as

  H1z2 =
b0z

N + b1z
N - 1 + g+ bN - 1z + bN

a0z
N + a1z

N - 1 + g+ aN - 1z + aN
 

  =
b0z

N + b1z
N - 1 + g+ bN - 1z + bN

a01z - z121z - z22 g1z - zN2 . (10.86)

The values zi (roots of the characteristic equation) are called the poles of the trans-
fer function. Hence, a discrete-time system described by the transfer function H1z2 
is BIBO stable, provided that the transfer-function poles all have magnitudes less 
than one.

sampled signals

The foregoing derivations also apply if the discrete-time signals are obtained by the 
sampling of continuous-time signals. For this case, the discrete frequency Ω and the 
continuous frequency v are related by Ω = vT, where T is the sample period. This 
relation was derived in Section 9.4. Hence, in the preceding equations, for sampled 
signals all equations apply directly, with Ω replaced with vT.

Impulse response

Recall that when the impulse response of an LTI system was introduced, the no-
tation h[ # ] was reserved for the impulse response. In (10.78), the notation H1 # 2 
is used to describe the transfer function of an LTI system. We now show that the 
transfer function H1z2 is directly related to the impulse response h[n], and one can 
be found if the other is known.
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For the complex exponential excitation x[n] = zn, the convolution sum yields 
the system response:

  yss[n] = a
∞

k = -∞
h[k]x[n - k] = a

∞

k = -∞
h[k]zn - k 

  = zn a
∞

k = -∞
h[k]z-k.  (10.87)

In (10.81), the value of z1 is not constrained and can be considered to be the variable z.  
From (10.81) with X = 1, and from (10.87),

 yss[n] = H1z2zn = zn a
∞

k = -∞
h[k]z-k,

and we see that the impulse response and the transfer function of a discrete-time 
LTI system are related by

 H1z2 = a
∞

k = -∞
h[k]z-k. (10.88)

This equation is the desired result. Table 10.1 summarizes the results developed in 
this section.

Those readers familiar with the bilateral z-transform will recognize H1z2 in 
(10.88) as the z-transform of h[n]. Furthermore, with z = ejΩ, H1ejΩ2 in (10.88) 
is the discrete-time Fourier transform of h[n]. We see then that both the z-trans-
form (covered in Chapter 11) and the discrete-time Fourier transform (covered in 
Chapter 12) appear naturally in the study of discrete-time LTI systems.

In practice, it is more common in describing an LTI system to specify the 
transfer function H1z2 rather than the impulse response h[n]. However, we can rep-
resent an LTI system with either of the block diagrams given in Figure 10.22, with 
H1z2 and h[n] related by (10.88).

Table 10.1  Input–Output Functions for an LTI System

H1z2 = a
∞

k = -∞
h[k]z-k

Xz1
n S XH1z12z1

n, X = � X � ejf

� X � cos1Ω1n + f2 S � X � � H1ejΩ12 � cos1Ω1n + f + uH2

x[n] y[n]
h[n]

x[n] y[n]
H[z]

H[z] �  �   h[k]z�k
k � ��

�

Figure 10.22  LTI system.
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In this section, we consider the response of LTI systems to complex-exponen-
tial inputs, which leads us to the concept of transfer functions. Using the transfer-
function approach, we can easily find the system steady-state response to sinusoidal 
inputs. As a final point, the relationship between the transfer function of a system 
and its impulse response is derived.

summary

In this chapter, we consider discrete-time linear time-invariant (LTI) systems. First, 
it is shown that discrete-time signals can be represented as a sum of weighted dis-
crete impulse functions. This representation allows us to model an LTI system in 
terms of its impulse response.

The modeling of a system by its impulse response is basic to the analysis and 
design of LTI systems. The impulse response gives a complete input–output de-
scription of an LTI system. It is shown that through the convolution summation, the 
input x[n], the impulse response h[n], and the output y[n] are related by

 y[n] = a
∞

k = -∞
x[k]h[n - k] = a

∞

k = -∞
x[n - k]h[k].

The importance of the impulse response of an LTI system cannot be overempha-
sized. It is also shown that the impulse response of an LTI system can be derived 
from its step response. Hence, the input–output description of a system is also con-
tained in its step response.

Next, some general properties of LTI systems are discussed. These properties 
include memory, invertibility, causality, and stability.

The most popular method for modeling LTI systems is by ordinary linear dif-
ference equations with constant coefficients. This method is used for physical sys-
tems that can be modeled accurately by these equations. A linear time-invariant 
digital filter is an LTI discrete-time system and, in general, is modeled very accu-
rately by a linear difference equation with constant coefficients.

A general procedure is given for solving linear difference equations with con-
stant coefficients. This procedure leads to a test that determines stability for causal 
discrete-time LTI systems.

Next, a procedure for representing system models by simulation diagrams is 
developed. Two simulation diagrams, the direct forms I and II, are given. However, 
it should be realized that an unbounded number of simulation diagrams exist for 
a given LTI system. In many applications, the simulation diagrams are called pro-
gramming forms.

As the final topic, the response of an LTI system to a sinusoidal input signal is 
derived. This derivation leads to the transfer-function description of an LTI system. 
It is shown in Chapter 11 that the transfer function allows us to find the response of 
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proBLems

section 10.1

 10.1. Consider the signals shown in Figure P10.1.

Table 10.2  Key Equations of Chapter 10

equation title equation number equation

DT unit impulse response (10.9) d[n] S h[n]

DT convolution equation (10.16)  y[n] = a
∞

k = -∞
x[k]h[n - k] = x[n]*h[n]

 = a
∞

k = -∞
h[k]x[n - k] = h[n]*x[n]

Convolution with a DT unit impulse (10.18) d[n]*g[n - n0] = d[n - n0]*g[n] = g[n - n0]

Finite sum of DT exponentials (10.22) a
n

k = 0
ak =

1 - an + 1

1 - a

Convolution sum of a DT inverse system (10.31) h[n]*hi[n] = d[n]

Convolution sum of a DT causal system (10.34) y[n] = a
∞

k = 0
x[n - k]h[k] = a

n

k = -∞
x[k]h[n - k]

Condition on DT impulse response for BIBO stability (10.36) a
∞

k = -∞
� h[k] � 6 ∞

Derivation of DT step response from DT impulse response (10.40) s[n] = a
∞

k = -∞
u[n - k]h[k] = a

n

k = -∞
h[k]

Derivation of DT impulse response from DT step response (10.41) s[n] - s[n - 1] = a
n

k = -∞
h[k] - a

n - 1

k = -∞
h[k] = h[n]

Linear difference equation with constant coefficients (10.48) a
N

k = 0
aky[n - k] = a

M

k = 0
bkx[n - k], a0 ≠ 0

Characteristic equation (10.53) a0z
N + a1z

N - 1 + g+ aN - 1z + aN = 0

Solution of homogeneous equation (10.55) yc[n] = C1z1
n + C2z2

n + g + CNzN
n

(a) Write an expression for xa[n]. The expression will involve the sum of discrete im-
pulse functions.

(b) Write an expression for xb[n].
(c) Write an expression for xc[n].
(d) Write an expression for xd[n].

an LTI system to any input signal. Hence, the transfer function is also a complete 
input–output description of an LTI system.

See Table 10.2.
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(a) Write an expression for xa[n]. The expression will involve the sum of discrete im-
pulse functions.

(b) Write an expression for xb[n].
(c) Write an expression for xc[n].
(d) Write an expression for xd[n].

 10.3. Write an expression for each of the signals plotted in Figure P10.3.

Figure P10.2  
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 10.2. Consider the signals shown in Figure P10.2.
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section 10.2

 10.4. Show that, for any function g[n],

 g[n]*d[n] = g[n].

 10.5. Consider the convolution sum

 y[n] = x[n]*h[n] = a
∞

k = - ∞
x[k]h[n - k].

  Show that this sum can also be expressed as

 y[n] = h[n]*x[n] = a
∞

k = - ∞
h[k]x[n - k].

  (Hint: Use a change of variables.)

 10.6. Given the LTI system of Figure P10.6, with the impulse response h[n] = anu[n], where 
a is a constant. This system is excited with the input x[n] = bnu[n], with b ≠ a and b 
constant.

(a) Find the system response y[n]. Express y[n] in closed form, using the formulas for 
geometric series in Appendix C.

(b) Evaluate y[4], using the results of Part (a).
(c) Verify the results of Part (b) by expanding the convolution sum for y[4], as in (10.15).

Figure P10.6  
h [n]

x [n] y [n]

 10.7. Given the LTI system of Figure P10.6, with the input x[n] and the impulse response 
h[n], where

 x[n] = e1, 1 F n F 6
0, otherwise

  h[n] = e2, -2 F n F 1
0, otherwise

 .

  Parts (a), (b), and (c) are to be solved without finding y[n] for all n.

(a) Solve for the system output at n = 5; that is, find y[5].
(b) Find the maximum value for the output y[n].
(c) Find the values of n for which the output is maximum.
(d) Verify the results by solving for y[n] for all n.
(e) Verify the results of this problem using MATLAB.

 10.8. Consider the LTI system of Figure P10.6, with the input x[n] and the impulse response 
h[n], where

  x[n] = e2, 1 … n … 10 and 20 … n … 29
0, otherwise

  h[n] = e1, 2 … n … 20
0, otherwise.

  Parts (a), (b), and (c) are to be solved without finding y[n] for all n.
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(a) Solve for the system output at n = 8; that is, find y[8].
(b) Find the maximum value for the output y[n].
(c) Find the values of n for which the output is maximum.
(d) Verify the results by solving for y[n] for all n.
(e) Verify the results of this problem using MATLAB.

 10.9. Consider the discrete-time LTI system of Figure P10.6. This system has the impulse 
response

 h[n] = u[n] - u[n - 2],

  and the input signal is given by

 x[n] = d[n + 2] + 310.72n1u[n] - u[n - 5]2.

  Find the system output y[n].

 10.10. (a)  Suppose that the discrete-time LTI system of Figure P10.6 has the impulse re-
sponse h[n] given in Figure P10.10(a). The system input is the unit step function 
x[n] = u[n]. Find the output y[n].

(b) Repeat Part (a) if the system input is x[n] in Figure P10.10(b).
(c) Verify the results in Part (b) using MATLAB.
(d) Repeat Part (a) if the system input is x[n] in Figure P10.10(c).
(e) Verify the results in Part (d) using MATLAB.
(f) Repeat Part (a) if h[n] is the same function as x[n] in Figure P10.10(b); that is, 

h[n] = x[n].
(g) Verify the results in Part (f) using MATLAB.

Figure P10.10  

�1

••• •••

0 1

1

h [n]

2 3

(a)

4 5 6 n

••• •••

�1 0 1

1

x [n]

2 3

(c)

4 5 6 n

••• •••

�1 0 1

1

x [n]

2

(b)

n



Chap. 10    Problems 545

 10.11. A LTI system such as is shown in Figure P10.6 has the impulse response

 h[n] = u[n + 2] - u[n - 2].

  Find the system’s output signal when the input signal is

 x[n] = 10.72nu[n].

 10.12. For the LTI system of Figure P10.6, the input signal is x[n], the output signal is y[n], 
and the impulse response is h[n]. For each of the cases that follow, find the output y[n]. 
The referenced signals are given in Figure P10.12.

Figure P10.12  
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(a) x[n] in (a), h[n] in (b)
(b) x[n] in (a), h[n] in (d)
(c) x[n] in (a), h[n] in (f)
(d) x[n] in (c), h[n] in (b)
(e) x[n] in (e), h[n] in (d)
(f) x[n] in 1a2, h[n] in 1b2, where a and b are assigned by your instructor
(g) Verify the results in each part using MATLAB.
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 10.13. For the system in Figure P10.6, suppose that x[n] and h[n] are identical and as shown in 
Figure P10.12(f).

(a) Find the output y[n] for all n.

(b) Consider the expanded convolution sum of (10.15). Write out this expansion for 
each value of n in Part (a), but include only those terms that are nonzero. Evaluate 
this expansion to verify the results of Part (a).

(c) Verify the results using MATLAB.

 10.14. (a)  Consider the two LTI systems cascaded in Figure P10.14. The impulse responses 
of the two systems are identical, with h1[n] = h2[n] = 10.92nu[n]. Find the impulse 
response of the total system.

Figure P10.14
h1[n]

x [n]
h2[n]

y [n]

(b) Repeat Part (a) for h1[n] = h2[n] = d[n - 2].
(c) Repeat Part (a) for h1[n] = u[n - 1] - u[n - 3].

 10.15. An LTI discrete-time system has the impulse response

 h[n] = 11.22nu[n].

(a) Determine whether this system is causal.
(b) Determine whether this system is stable.
(c) Find the system response to a unit step input x[n] = u[n].
(d) Use MATLAB to verify the results in (c) for n = 0, 1, 2, and 3.
(e) Repeat Parts (a) through (c) for

 h[n] = 11.22nu[-n].

(f) Repeat Parts (a) and (b) for

 h[n] = 10.32nu[-n].

(g) Repeat Parts (a) and (b) for

 h[n] = u[-n].

 10.16. Show that the convolution of three signals can be performed in any order by showing 
that

 1f [n]*g[n]2*h[n] = f [n]*1g[n]*h[n]2.

  (Hint: Form the required summations and use a change of variables.)

 section 10.3

 10.17. Consider an LTI system with the input and output related by

 y[n] = 0.51x[n + 1] + x[n]2.
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 10.18. Consider a system described by the equation

 y[n] = cos10.1pn2x[n].

(a) Is this system linear?
(b) Is this system time invariant?
(c) Determine the impulse response h[n].
(d) Determine the response to the input d[n - 1].
(e) Can a linear time-varying system be described by its impulse response h[n]? Why?

 10.19. Determine the causality and the stability for the systems with the following impulse 
responses:

(a) h[n] = e-3nu[n - 1]
(b) h[n] = e3nu[1 - n]
(c) h[n] = e3nu[n]
(d) h[n] = cos13n2u[n]
(e) h[n] = ne-3nu[n]
(f) h[n] = e-n cos13n2u[n]

 10.20. (a) Consider an LTI system with the output given by

 y[n] = a
∞

k = 0
e-21n - k2x[k - 1].

 Find the impulse response of this system by letting x[n] = d[n] to obtain 
y[n] = h[n].

Figure P10.17  

�h [n]

(b)

h [n]
x[n]

1

�2 �1 0

(a)

1 2 n
[n � 1]�

�

••• •••

(a) Find the system impulse response h[n].
(b) Is this system causal? Why?
(c) Determine the system response y[n] for the input shown in Figure P10.17(a).
(d) Consider the interconnections of the LTI systems given in Figure P10.17(b), 

where h[n] is the function found in Part (a). Find the impulse response of the total 
system.

(e) Solve for the response of the system of Part (d) for the input of Part (c).
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(b) Is this system causal? Why?
(c) Is this system stable? Why?
(d) Repeat Parts (a), (b), and (c) for an LTI system with the output given by

 y[n] = a
0

k = -∞
e-2kx[n - k].

section 10.4

 10.21. Suppose that the system of Figure P10.6 is described by each of the following system 
equations. Find the impulse response of this system by letting x[n] = d[n] to obtain 
y[n] = h[n].

(a) y[n] = x[n + 7] + x[n - 7]

(b) y[n] = a
n - 3

k = -∞
a
∞

k = n
x[k - 2]

 10.22. Suppose that the system of Figure P10.6 is described by each of the following system 
equations. Find the impulse response of this system by letting x[n] = d[n] to obtain 
y[n] = h[n].

(a) y[n] = x[n - 2]

(b) y[n] = a
n

k = -∞
x[k - 5]

(c) y[n] = a
n

k = -∞
 a

k

m = -∞
x[m - 5]

 10.23. (a)  Find the responses for systems described by the following difference equations 
with the initial conditions given:

 (i) y[n] -  
5
6

 y[n - 1] = 2nu[n], y[-1] = 0

 (ii) y[n] = 0.7y[n - 1] = u[n], y[-1] = -3

 (iii) y[n] - 0.7y[n - 1] = e-nu[n], y[-1] = 0

 (iv) y[n] + 1.7y[n - 1] + 0.72y[n - 2] = u[n], y[-1] = 0, y[-2] = 1

 (v) y[n] - 0.7y[n - 1] = cos1n2u[n], y[-1] = -1
(b) Verify that your response satisfies the initial conditions and the difference 

equation.
(c) Use MATLAB to verify your solutions in Parts (a) and (b) by finding y1n2 for 

n = 0, 1, 2, and 3.

section 10.5

 10.24. Determine the stability of each of the systems described below. Use MATLAB as 
required.

(a) 2y[n] - y[n - 1] + 4y[n - 2] = 5x[n]
(b) y[n] = 0.51x[n] + x[n - 1] + 2x[n - 2] + 3x[n - 3]2
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(c) y[n] - 1.88y[n - 1] + 0.99y[n - 3] = 1.5x[n] - 2.5x[n - 1] + 3.3x[n - 2]
(d) y[n] - y[n - 1] + 2y[n - 2] - 3y[n - 3] = 3x[n] - 4x[n - 1] + 5x[n - 2]

-  6x[n - 3]
(e) y[n] - 4y[n - 1] + y[n - 2] = 2x[n] - 5x[n - 2]

 10.25. Consider a causal system with each of the subsequent system characteristic equations.

(a) Give the modes of the system.
(b) Give the natural response for each of the systems.

 (i) z - 0.9 = 0
 (ii) z2 + 1.5z - 1 = 0
 (iii) z2 - 2z + 1 = 0
 (iv) z2 - 1.7z + 0.72 = 0
 (v) z3 - 1 = 0
 (vi) 1z - 0.923 = 0
 (vii) 1z - 0.921z - 1.221z + 0.852 = 0

 10.26. Determine the stability of each of the systems of Problem 10.25.

section 10.6

 10.27. Consider a discrete-time LTI system described by the difference equation

 y[n] - 0.9y[n - 1] = 2.5x[n] - 2x[n - 2].

(a) Draw the form I realization (block diagram) for this system.
(b) Determine the impulse response h[n], 0 F n F 4, for the system.
(c) Verify the results of Part (b) by tracing the impulse function through the block 

diagram of Part (a).
(d) Suppose that the system input is given by

 x[n] = c 1, n = -2
-3, n = 0

2, n = 1

 and x[n] is zero for all other values of n. Express the output y[n] as a function  
of h[n].

(e) Calculate the output y[n] for n = -3, -1, and 1 for x[n] in Part (d) and using the 
results of Part (b).

 10.28. Draw the block diagrams of both the direct forms I and II simulation diagrams for the 
systems with the difference equations listed in Problem 10.24.

 10.29. Consider the system simulation diagram of Figure P10.29. This form is often used in 
automatic control.

(a) Find the difference equation of the system.
(b) Is this one of the two forms given in Section 10.6? If so, give the form.
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 10.30. Consider a system described by the difference equation

 y[n] - 0.7y[n - 1] = 3x[n] - 2.2x[n - 1].

(a) Draw a form I representation for this system.
(b) Draw a form II representation for this system.
(c) Let x[n] = 0.8nu[n] and y[-1] = 0. Solve for y[n] as a function of n.
(d) Write a MATLAB program that solves for y[n], 0 F n F 5, using the form I 

 representation. Run this program to verify the results in Part (c).

 10.31. Consider the MATLAB program for the simulation of an LTI system:

  y(1) = 0;
  for n =1:6; x(n)=0.8^(n-1); end
  for n = 2:6

     y(n)=0.7*y(n-1)+3*x(n)-2.2*x(n-1);
  end
  y

(a) Write the system difference equation.
(b) Draw the form I representation for the system.
(c) Draw the form II representation for the system.
(d) Express the input signal x[n] as a function of n.
(e) Solve for y[n] as a function of n.
(f) Verify the solution in part (e) by running the MATLAB program.

 10.32. For the system described by the MATLAB program of Problem 10.31,

(a) Find the system difference equation.
(b) Find the particular solution for the difference equation, with the excitation x[n] = u[n].
(c) Find the system transfer function.
(d) Use the transfer function to verify the results of Part (b).
(e) Change the MATLAB program such that x[n] = u[n].
(f) Verify the solution in Parts (b) and (d) by running the program. Recall that only 

the steady-state response has been calculated.

 10.33. Consider the simulation diagram in Figure P10.33. The transfer function represented 
by the diagram is given as

 H1z2 =  
0.1z

z - 0.9
 .

  Determine the values of the parameters a and b shown in the diagram.

Figure P10.29  
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Figure P10.33  
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section 10.7

 10.34. (a) Find the transfer function for the difference equation 

y[n] - 0.7y[n - 1] = x[n].

(b) Use the transfer function to find the steady-state response of this system for the 
excitation x[n] =  cos1n2u[n].

(c) Verify the calculations in Part (b) using MATLAB.
(d) Show that the response satisfies the system difference equation.

 10.35. (a)  Find the transfer function for the difference equation 

y[n] - 1.7y[n - 1] +  0.72y[n - 2] = u[n], y[-2] = 1, y[-1] = 0.

(b) Use the transfer function to find the steady-state response of this system for the system.
(c) Use the transfer function found in (a) to find the steady-state response of the system 

for the input

 x[n] = cos1n2.

(d) Verify the calculations in Part (b) using MATLAB.
(e) Show that the responses in (b) and (c) satisfy the system difference equation.

 10.36. Given a system with the transfer function

 H1z2 =  
0.1z

1z - 0.922

(a) Find the system difference equation.
(b) Determine the system modes.
(c) From Part (b), determine the system’s natural response. (Do not solve for the 

 unknown constants.)
(d) Find the system’s steady-state response when x[n] =  cos10.2n2.
(e) Use MATLAB to verify the results of Part (d).
(f) Show that the response found in Part (d) satisfies the system difference equation.
(g) Find the system’s steady-state response when x[n] = cos[10.2p + 0.22n].
(h) Use MATLAB to verify the results of Part (g).
(i) Comment on any significant aspects of the results in Parts (d) and (g).
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In this chapter, we study the z-transform, which is one of several important trans-
forms used in linear-system analysis and design. The z-transform offers significant 
advantages relative to time-domain procedures. When possible, we model discrete-
time physical systems with linear difference equations with constant coefficients; 
one example is a linear time-invariant digital filter. The z-transform of a differ-
ence equation gives us a good description of the characteristics of the equation 
(the model) and, hence, of the physical system. In addition, transformed difference 
equations are algebraic, and therefore easier to manipulate; in particular, the trans-
formed equations are easier to solve.

Using the z-transform to solve a difference equation yields the solution as a 
function of the transform variable z. As a consequence, we must have a method for 
converting functions of the transform variable back to functions of the discrete-time 
variable; the inverse z-transform is used for this purpose.

Several important properties of the z-transform are derived in this chapter. 
These derivations are not mathematically rigorous; such derivations are generally 
beyond the scope of this book. Thus, for some properties, certain constraints apply 
that are not evident from the derivations. However, these constraints will be stated; 
see Refs. 1 and 2 for rigorous mathematical derivations related to all aspects of the 
z-transform.

 11.1 DefInItIons of z-transforms

We begin by defining the direct z-transform and the inverse z-transform. We usu-
ally omit the term direct and call the direct z-transform simply the z-transform. By 
definition, the (direct) z-transform F(z) of a discrete-time function f [n] is given by 
the summation

 zb[ f [n]] = Fb1z2 = a
∞

n = -∞
f [n]z-n, (11.1)

the z-transform11
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where zb[ # ] indicates the z-transform. Expanding the z-transform yields

 Fb1z2 = g + f [-2]z2 + f [-1]z + f [0] + f [1]z-1 + f [2] z-2 + g.

In general, z is complex, with z = g + jΩ. (Recall that the Laplace-transform 
 variable s is also complex, with s = s + jv.)

Definition (11.1) is called the bilateral, or two-sided, z transform—hence, the 
subscript b. The inverse z-transform is given by

 zb
-1[Fb1z2] = f [n] =

1
2pj CΓ

 Fb1z2zn-1 dz, j = 2-1, (11.2)

where zb
-1[ # ] indicates the inverse z-transform and Γ is a particular counterclock-

wise closed path in the z-plane. Equation (11.2) is called the complex inversion in-
tegral. Because of the difficulty of evaluating this integral, we seldom, if ever, use it 
to find inverse transforms. Instead, we use tables, as we do with other transforms.

Equations (11.1) and (11.2) are called the bilateral z-transform pair. We now 
modify definition (11.1) to obtain a form of the z-transform that is useful in many 
applications. First, we express (11.1) as

 zb[ f [n]] = Fb1z2 = a
-1

n = -∞
f [n]z-n + a

∞

n = 0
f [n]z-n. (11.3)

Next, we define f [n] to be zero for n 6 0, such that the first summation in (11.3) is 
zero. The resulting transform is called the unilateral, or single-sided, z-transform, 
and is given by the power series

 z[ f [n]] = F1z2 = a
∞

n = 0
f [n]z-n, (11.4)

where z[ # ] denotes the unilateral z-transform. This transform is usually called, sim-
ply, the z-transform, and we follow this custom. When any confusion can result, we 
refer to the transform of (11.1) as the bilateral z-transform. We take the approach 
of making the unilateral transform a special case of the bilateral transform. This 
 approach is not necessary; we could start with (11.1), with f [n] = 0 for n 6 0, as a 
definition.

The equation for the inverse z-transform, (11.2), is the same for both the bilat-
eral and the unilateral z-transforms. Hence, (11.2) also gives the inverse unilateral  
z-transform, provided that Fb1z2 is replaced with F1z2. In addition, the inverse  
z-transform of the unilateral z-transform gives the function f [n] for all time and, in 
particular, gives the value f [n] = 0, n 6 0 [1].

If f [n] is z-transformable [if the summation in (11.4) exists], evaluating (11.4) 
will yield a function F1z2. The evaluation of the inverse transform of F1z2 by the 
complex inversion integral, (11.2), will then yield f [n]. We denote this relationship 
with

 f [n] z· F1z2. (11.5)
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Two important properties of the z-transform will now be demonstrated. The 
(unilateral) z-transform is used in this derivation; however, it is seen that the deriva-
tion applies equally well to the bilateral z-transform.

Consider the sum f [n] = 1 f1[n] + f2[n]2. From (11.4), the z-transform of f [n] 
is given by

 z[ f [n]]  = z[ f1[n] + f2[n]] = a
∞

n = 0
[ f1[n] + f2[n]]z-n

  = a
∞

n = 0
f1[n]z-n + a

∞

n = 0
f2[n]z-n = F11z2 + F21z2. 

(11.6)

Hence, the z-transform of the sum of two functions is equal to the sum of the  
z-transforms of the two functions. (It is assumed that the involved z-transforms 
exist.) We extend this property to the sum of any number of functions by replacing 
f2[n] in the foregoing derivation with the sum 1f3[n] + f4[n]2, and so on.

To derive a second property of the z-transform, we consider the z-transform 
of af [n], where a is a constant:

 z[af [n]] = a
∞

n = 0
af [n]z-n = a a

∞

n = 0
f [n]z-n = aF1z2. (11.7)

Thus, the z-transform of a function multiplied by a constant is equal to the con-
stant multiplied by the z-transform of the function. A transform with the properties 
(11.6) and (11.7) is said to be a linear transform; the z-transform is then a linear 
transform. These two properties are often stated as a single equation:

 z[a1 f1[n] + a2 f2[n]] = a1F11z2 + a2F21z2. (11.8)

Suppose, in (11.7), that the constant a is replaced with the function g[n]. Then,

 z[ f [n]g[n]] = a
∞

n = 0
f [n]g[n]z-n ≠ a

∞

n = 0
f [n]z-n a

∞

n = 0
g[n]z-n.

Hence,

 z[ f [n]g[n]] ≠ z[ f [n]]z[g[n]]. (11.9)

The z-transform of a product of two functions is not equal to the product of the 
z-transforms of the functions.

In this section, the unilateral and bilateral z-transforms are defined. These 
transforms are a series in the variable z; however, we will see that the series for 
many useful signals can be expressed in closed form. The complex inversion inte-
gral for the inverse z-transform is also given, but we generally use tables for finding 
inverse transforms. The linearity properties of the z-transform are derived in this 
section. In the remainder of the chapter, we develop z-transform analysis from the 
definitions given here.
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 11.2 examples

In this section, we introduce z-transform system analysis with a simple application. 
First, two examples of derivations of z-transforms are presented. Next, the z-transform 
is used to find the step response of a first-order digital filter. The z-transform is then 
developed in more detail in the sections that follow.

two z-transforms

Before presenting the first example, we consider the convergent power series from 
Appendix C:

 a
∞

n = 0
an = 1 + a + a2 + g =

1
1 - a

; � a � 6 1. (11.10)

Any function in Appendix C can be verified by dividing the numerator by the 
 denominator; for (11.10), this division yields

 

1 + a + a2 + a3 + g
1 - a)1         

1 - a       
a       
a - a2      

a2      
a2 - a3   

a3   

g  .

 (11.11)

The series of (11.10) is useful in expressing certain z-transforms in closed 
form (not as a series), as we illustrate subsequently. We prefer to express 
z-transforms in closed form because of the resulting simplifications in manipulating 
these transforms.

Also, we recall the unit step function, u[n - n0]:

 u[n - n0] = b1, n G  n0

0, n 6 n0
. (11.12)

This function is plotted in Figure 11.1 and is used in the next example.

••• •••

1

u[n � n0]

n0 � 1 n0 n0 � 1 n0 � 2 n Figure 11.1  Discrete-time unit step function.
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 example 11.1 z-transform of the unit step function

The z-transform of the unit step function is now derived for the step occurring at n = 0. 
From (11.4) and (11.12),

 z[u[n]] = a
∞

n = 0
u[n]z-n = a

∞

n = 0
112z-n = 1 + z-1 + z-2 + g.

We let a = z-1 in the series (11.10), resulting in the z-transform in closed form:

 a
∞

n = 0
z-n =

1

1 - z-1 =
z

z - 1
.

Hence, the z-transform of the unit step function exists only for � z-1 � 6 1—that is, for z 
outside the unit circle. We then have the z-transform pair:

 u[n] ·z 1

1 - z-1; � z-1 � 6 1. ■

The z-transform of the unit step function illustrates a problem in notation. The 
definition of the z-transform, (11.4), results in a function of z-1; however,  generally, 
our experiences are in working with variables expressed in positive exponents. 
Some authors leave all z-transforms in negative exponents. We choose instead to 
take the additional step to express F1z2 in positive powers of z, because this nota-
tion is more common and, hence, less prone to error. Then, from Example 11.1, we 
express the z-transform of the unit step function as

 u[n] ·z z
z - 1

; � z � 7 1.

 example 11.2 z-transform of an exponential function

We now derive the z-transform of f [n] = an. Recall from Section 9.4 that an is an exponential 
function. From (11.4),

  F1z2 = a
∞

n = 0
anz-n = 1 + az-1 + a2z-2 + g

  = 1 + az-1 + 1az-122 + g.

This series is of the form of (11.10) with � az-1 � 6 1; hence, the z-transform is given by

 z[an] = a
∞

n = 0
1az-12n =

1

1 - az-1 =
z

z - a
; � z � 7 � a � ,

and we have the z-transform pair

 an ·z z
z - a

 ; � z � 7 � a � .
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This transform pair is verified with the MATLAB program

syms n a f F
f=a^n;
F=ztrans(f);
'f= ', pretty(f)
'F = ', pretty(F) ■

In Example 11.2, we could have expressed f [n] as anu[n]. However, the uni-
lateral z-transform requires that f [n] = 0 for n 6 0. If the factor u[n] is not shown 
explicitly, it is understood to be present.

As seen from Examples 11.1 and 11.2, the z-transforms of the unit step 
 function u[n] and the exponential function an have conditions for existence. The 
z-transform of any function f [n], denoted as F1z2, will generally have similar condi-
tions for existence, such that the infinite series

 z[ f [n]] = F1z2 = a
∞

n = 0
f [n]z-n

is convergent. Increasing the magnitude of z increases the likelihood of convergence 
for any f [n], since � z-n �  becomes smaller as n approaches infinity. Hence, the con-
ditions for convergence are of the form � z � 7 � r � , where r is determined by f [n].

The conditions for convergence determine the path Γ in the inversion inte-
gral (11.2). Because we do not use (11.2) to find the inverse z-transform, we gen-
erally  ignore the conditions for convergence. In addition, in the derivations that 
follow, conditions for convergence are usually not stated; these conditions are evi-
dent from the derivation. However, when we introduce the bilateral z-transform in 
Section 11.7, the conditions for convergence must be considered.

From Examples 11.1 and 11.2, a short table of z-transforms is constructed and 
given as Table 11.1. Note in this table that the functions f [n] are zero for n 6 0. Recall 
that the evaluation of the complex-inversion integral (11.2) yields f [n] = 0 for n 6 0.

Generally, we use a z-transform table to find inverse z-transforms, rather than 
using the inversion integral of (11.2). In any transform pair

 f [n] ·z F1z2,

given f  [n], the transform is F1z2; given F1z2, the inverse transform is f [ n]. For 
 example, for the exponential function

 an ·z z
z - a

,

the z-transform of an is z/1z - a2; the inverse transform of z/1z - a2 is an for 
n G 0.

Table 11.1  Two z-Transforms

f [n], n G 0 F   1z 2
u[n] z

z - 1
an z

z - a



558 The z-Transform    Chap. 11

Digital-filter example

We now use the z-transform to solve a first-order difference equation. However, 
first we must derive the real-shifting property of the z-transform. Consider the 
z-transform of a delayed function f [n - n0]u[n - n0] for n0 G 0:

  z[ f [n - n0]u[n - n0]] = a
∞

n = 0
f [n - n0]u[n - n0]z-n

  = a
∞

n = n0

f [n - n0]z
-n

  = f [0]z-n0 + f [1]z-n0-1 + f [2]z-n0-2 + g
  = z-n0[ f [0] + f [1]z-1 + f [2]z-2 + g] = z-n0F1z2.

For n0 G 0, we have the property

 z[ f [n - n0]u[n - n0]] = z-n0F1z2. (11.13)

Of course, n0 must be an integer. We derive the real-shifting property for n0 6 0 in 
Section 11.5.

The difference equation for the a-filter is

 y[n] - 11 - a2y[n - 1] = ax[n], (11.14)

where a is a constant. The value of a is determined by the design specifications for 
the filter. This equation describes a low-pass digital filter that is used in radar-signal 
processing. Recall that this filter was used in several examples in Chapter 10.

First, we take the z-transform of the filter equation (11.14). Using the linearity 
property of (11.8) and the real-shifting property of (11.13), we have

 Y1z2 - 11 - a2z-1Y1z2 = aX1z2, (11.15)

where Y1z2 = z[y[n]] and X1z2 = z[x[n]]. Solving for Y1z2 yields

 Y1z2 =
a

1 - 11 - a2z-1 X1z2 =
az

z - 11 - a2  X1z2.

In Chapter 10, we used a different approach to derive the ratio of output to input, 
and we called this ratio the system-transfer function, denoted as H1z2. We use the 
same notation here:

 
Y1z2
X1z2 = H1z2 =

az
z - 11 - a2  . (11.16)

We represent this linear time-invariant (LTI) discrete-time system by the block 
 diagram of Figure 11.2.
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We now find the unit step response of the a-filter. The input signal is 
X1z2 = z[u[n]] = z/1z - 12, from Table 11.1. Hence, from (11.16), the output of 
the a@filter is given by

 Y1z2 =
az

z - 11 - a2  X1z2 =
az

z - 11 - a2  
z

z - 1
 , (11.17)

and the output y[n] is the inverse z-transform of this function. For the remainder of 
this development, we let a = 0.1, to simplify the calculations.

We note that Table 11.1 does not contain the function in (11.17). As in 
Laplace- and Fourier-transform applications, we must use a partial-fraction expan-
sion to express Y1z2 as the sum of terms that do appear in Table 11.1. A review of 
partial-fraction expansion procedures is given in Appendix F.

One problem occurs in the use of the partial-fraction expansion procedure of 
Appendix F. This is illustrated by the z-transform of the exponential function an:

 an ·z z
z - a

.

This transform has the variable z in the numerator, while the procedure of 
Appendix F yields only a constant in the numerator. We solve this problem by find-
ing the  partial-fraction expansion of Y1z2/z in (11.17), with a = 0.1:

 
Y1z2

z
=

0.1z
1z - 0.92  1z - 12 =

k1

z - 0.9
+

k2

z - 1
.

We now find the constants k1 and k2 by partial-fraction expansion:

  k1 = 1z - 0.92 J 0.1z
1z - 0.92  1z - 12 R z = 0.9

=
0.1z

z - 1
 2

z = 0.9
= -0.9,

  k2 = 1z - 12J 0.1z
1z - 0.92  1z - 12 R z = 1

=
0.1z

z - 0.9
2
z = 1

= 1.

Hence,

 
Y1z2

z
=

-0.9
z - 0.9

+
1

z - 1
.

Multiplying by z and rearranging yields

 Y1z2 =
z

z - 1
-

0.9z
z - 0.9

 ,

X(z) Y(z)
H(z)

Figure 11.2  Discrete-time LTI system.
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and these terms appear in Table 11.1. The unit step response of the a-filter is then

 y[n] = 1 - 0.9n + 1, n G 0.

This result can be verified for the first few values of n by the iterative solution of dif-
ference equation (11.14), with a = 0.1 and y[-1] = 0. A MATLAB program that 
performs the partial-fraction expansion is given by

n=[.1 0];d=[1 -1.9 .9];
[r,p,k]=residue(n,d)

The inverse z-transform can be verified with the MATLAB program

syms Y z
Y=0.1*z^2/ ((z-0.9) * (z-1));
y=iztrans (Y);
'Y(z) = ', pretty(Y)
'y(n) = ', pretty(y)

Note the following points from the preceding example:

 1. A difference equation with constant coefficients is transformed into the 
 algebraic equation (11.15).

 2. The algebraic equation is solved for z[y[n]] = Y1z2 as a function of the 
transform variable z and X1z2.

 3. We use table of transforms to find the inverse transform, rather than using 
the inversion integral of (11.2).

 4. In general, a partial-fraction expansion of Y1z2/z is required to expand 
complicated functions of z into the simpler functions that appear in tables 
of z-transforms.

We expand on these conclusions in the developments of the sections that follow.
In this section, we derive the z-transforms of the unit step function and the 

discrete-exponential function. In both cases, the transforms are expressed in closed 
form. Next, a first-order difference equation is solved with the use of the z-transform. 
In the next section, we derive the z-transforms of additional functions.

 11.3 z-transforms of functIons

The direct unilateral z-transform is defined by

[eq(11.4)] z[ f [n]] = F1z2 = a
∞

n = 0
f [n]z-n

and the inverse z-transform by the inversion integral

 f [n] =
1

2pj CΓ
F1z2zn-1 dz,
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from (11.2). The closed path of integration Γ is determined by the region of conver-
gence of the summation in (11.4).

As stated previously, we seldom use the inversion integral to find inverse trans-
forms; hence, the region of convergence is of secondary importance to us. In fact, 
we seldom state the region of convergence when we give a z-transform. However, 
the reader should be aware that a particular z-transform does have a region of con-
vergence. In addition, the region of convergence must be known for applications of 
the bilateral z-transform (11.1).

We now derive several commonly used z-transforms. First, consider the 
 discrete-impulse function, defined in Section 9.1. From (9.13),

 d[n - n0] = b1, n = n0

0, n ≠ n0
. (11.18)

For n0 G 0, the z-transform of the unit impulse function (unit sample function) is 
given by

 z[d[n - n0]] = a
∞

n = 0
d[n - n0]z

-n = z-n0,

and we have the z-transform pair

 d[n - n0] 4z z-n0. (11.19)

For the unit impulse function occurring at n = 0 1n0 = 0,2,

 d[n] 4z 1. (11.20)

Additional transform pairs will now be derived. Consider the z-transform pair 
from Table 11.1:

 an 4z
z

z - a
. (11.21)

Recall that an is exponential and can be expressed as

 an = 1eb2n = ebn, b = ln a.

Pair (11.21) can then be expressed as

 an = ebn 4z
z

z - a
=

z

z - eb
 . (11.22)

sinusoids

We now consider sinusoidal functions. By Euler’s identity,

 cos bn =
ejbn + e-jbn

2
 .
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Hence,

 z[cos bn] = 1
2 [z[ejbn] + z[e-jbn]],

by the linearity property (11.8). Then, from (11.22), with b = jb,

  z[cos bn] =
1
2

 J z

z - e jb +
z

z - e-jb R =
z
2

 J z - e-jb + z - ejb

1z - ejb21z - e-jb2 R
  =

z
2
J 2z - 1ejb + e-jb2

z2 - 1ejb + e-jb2z + 1
R =

z1z - cos b2
z2 - 2z cos b + 1

 ,

where Euler’s relation was used in the last step. By the same procedure, since 
sin bn = 1ejbn - e-jbn2/2 j,

  z[sin bn] =
1
2j

 J z

z - e jb -
z

z - e-jb R =
z
2j

 J z - e-jb - z + e jb

1z - ejb21z - e-jb2 R
  =

z
2j

 J ejb - e-jb

z2 - 1ejb + e-jb2z + 1
R =

z sin b
z2 - 2z cos b + 1

 .

The foregoing procedure can also be used for sinusoids with exponentially 
varying amplitudes. Because

 e-ancos bn = e-anJ ejbn + e-jbn

2
R =

e-an + jbn + e-an-jbn

2
 ,

it follows that

  z[e-an cos bn] =
1
2

 J z

z - e-a + jb +
z

z - e-a - jb R
  =

z
2

 J z - e-a - jb + z - e-a + jb

1z - e-a + jb21z - e-a - jb2 R
  =

z
2

 J 2z - e-a1e jb + e-jb2
z2 - e-a1e jb + e-jb2z + e-2a R

  =
z1z - e-a cos b2

z2 - 2ze-a cos b + e-2a  .

Note the following transform pairs:

  cos bn 4z
z1z - cos b2

z2 - 2z cos b + 1
,

  e-ancos bn 4z
z1z - e-a cos b2

z2 - 2ze-a cos b + e-2a

  =
zea1zea - cos b2

1zea22 - 2zea cos b + 1
 .



We see that for these two functions, the effect of multiplying cos bn by the exponen-
tial function e-an is to replace z with zea in the z-transform. We now show that this 
property is general:

  z[e-anf [n]] = a
∞

n = 0
e-anf [n]z-n = a

∞

n = 0
f [n]1zea2-n 

  = F1z2 2
zdzea

= F1zea2.  (11.23)

Observe that the notation z d zea is read as “z is replaced with zea.” Using the  
z-transform pair for sin (bn) and (11.23), we see that

  sin bn 4z
z sin b

z2 - 2z cos b + 1
,

  e-an sin bn 4z
zea sin b

1zea22 - 2zea cos b + 1

  =
ze-a sin b

z2 - 2ze-a cos b + e-2a.

We now derive an additional transform as an example.

 example 11.3 z-transform of the unit ramp function

The z-transform of the unit ramp function, f [n] = n, is now derived.

 z[n] = a
∞

n = 0
nz-n = 0 + z-1 + 2z-2 + 3z-3 + g.

We have, from Appendix C, the summation formula

 a
∞

n = 0
nan =

a

11 - a22 ; � a � 6 1.

Hence, letting a = z-1, we have the z-transform

 z[n] = a
∞

n = 0
nz-n =

z-1

11 - z-122 =
z

1z - 122

and the transform pair 

 n 4z
z

1z - 122.
 ■
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The following MATLAB program derives the z-transform of a unit-ramp 
function by symbolic math:

syms n y Y
y=n;
Y=ztrans(y);
'y(n) = ',pretty(y)
'Y(z) = ', pretty(Y)

In this section, we develop several z-transform pairs. These pairs, in addition 
to several others, are given in Table 11.2. The region of convergence (ROC) is given 
for each transform; this information is required later when the bilateral z-transform 
is considered.

In Sections 11.4 and 11.5, we derive several properties for the z-transform. 
It is then shown that these properties easily allow additional transform pairs to be 
 derived. Also, these properties aid us in solving linear difference equations with 
constant coefficients.

Table 11.2  z-Transforms

f [n], n G 0 F 1z 2 roc

1. d[n] 1 All z

2. d[n - n0] z-n0 z ≠ 0

3. u[n] z
z - 1

� z � 7 1

4. n z

1z - 122
� z � 7 1

5. n2 z1z + 12
1z - 123

� z � 7 1

6. an z
z - a

� z � 7 � a �

7. nan az

1z - a22
� z � 7 � a �

8. n2an az1z + a2
1z - a23

� z � 7 � a �

9. sin bn z sin b

z2 - 2z cos b + 1
� z � 7 1

10. cos bn z1z - cos b2
z2 - 2z cos b + 1

� z � 7 1

11. an sin bn az sin b

z2 - 2az cos b + a2
� z � 7 � a �

12. an cos bn z1z - a cos b2
z2 - 2az cos b + a2

� z � 7 � a �



 11.4 z-transform propertIes

In Sections 11.1 through 11.3, three properties are derived for the z-transform. 
These properties are

[eq(11.8)]  z[a1 f1[n] + a2 f2[n]] = a1F11z2 + a2F21z2,

[eq(11.13)]  z[ f [n - n0]u[n - n0]] = z-n0F1z2; n0 G 0,

and

[eq(11.23)] z[e-an f [n]] = F1z2 2
zdzea

= F1zea2,

where F1z2 = z[ f [n]]. Property (11.8) is the linearity property, and Property (11.13) 
is the real-shifting property. Property (11.23) is sometimes called the complex-scaling,  
or frequency-scaling, property, since multiplication by e-an in the time domain  
results in a complex scaling in the z-plane variable. Property (11.23) is also referred 
to as the modulation property. In general, z = g + jΩ is complex, and a may also 
be complex.

real shifting

The shifting property (11.13) applies for a delay in time. In this section, the shifting 
property for an advance in time is derived.

First, consider the discrete-time function f  [n] of Figure 11.3(a). Note that 
f  [n] = -1, n 6 0; f [0] = f [1] = 1; and f  [n] = 1.5, n G 2. We now consider vari-
ous ways of shifting this time function.

Figure 11.3(b) is a plot of f [n]u[n], where u[n] is the unit step function. This is 
the functional form required for the unilateral z-transform, even though we usually 
omit the factor u[n]. Figure 11.3(c) shows a plot of the function f  [n - n0], where 
n0 G 0 is the amount of the delay in time. The function f  [n - n0]u[n] is shown in 
Figure 11.3(d), and the function f  [n - n0]u[n - n0] is given in Figure 11.3(e). For 
this last function,

 f  [n - n0]u[n - n0] = b f  [n - n0]; n G n0

0; n 6 n0
 . (11.24)

The function in Figure 11.3(f) is considered subsequently.
The reader should carefully note the differences in the functions  

in Figure  11.3. The function in Figure 11.3(b) is required for the unilateral  
z-transform of f [n]. Figure 11.3(e) illustrates the function for the real-shifting 
property (11.13).
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We now consider the shifted function f  [n + n0]u[n], n0 7 0. This function is 
illustrated in Figure 11.3(f), for n0 G 2; we see that this shift is an advance in time. 
The z-transform of this function is given by, from (11.4),

  z[ f [n + n0]u[n]] = a
∞

n = 0
[ f [n + n0]u[n]z-n

  = f  [n0] + f  [n0 + 1]z-1 + f  [n0 + 2]z-2 + g.

We multiply the last expression by zn0 z-n0, yielding

  z[ f [n + n0]u[n]] = zn0[ f [n0]z
-n0 + f [n0 + 1]z-1n0 + 12 + f [n0 + 2]z-1n0 + 22 + g]

  = zn0 a
∞

n = n0

f [n]z-n.

The last summation is a part of the z-transform of f [n]. To complete this transform, 
we add and subtract g f  [n]z-n, n = 0, 1, c, 1n0 - 12. Thus,

  z[ f [n + n0]u[n]] = zn0[ a
∞

n = n0

f [n]z-n + a
n0-1

n = 0
f [n]z-n - a

n0-1

n = 0
f [n]z-n] 

  = zn0[F1z2 - a
n0-1

n = 0
f [n]z-n], n0 7 0,  

(11.25)

f [n]u[n]

n

�2 �1

1 2 30

�1

1
1.5

f [n]

n

�2�3 �1

1 2 30

�1

1
1.5

(a) (b)

f [n � n0]u[n]

n�2 �1 0

�1

1
1.5

(d)

f [n � n0]

n

n0 � 1 n0 � 1

n0 � 1n0 n0 � 1n0

�1

1
1.5

(c)

f [n � n0]u[n]

n�2 2�1 10

1
1.5

(f)

f [n � n0]u[n � n0]

n

n0 � 1

n0 � 0 n0 � 2

n0 � 1n0

1
1.5

(e)

Figure 11.3  Shifted functions.



Sec. 11.4    z-Transform Properties 567

and we have the real-shifting property for an advance in time. Because we are con-
sidering the unilateral z-transform, the factor u[n] may be omitted.

Property (11.25) applies only for a time advance of the type illustrated in 
Figure 11.3(f), and Property (11.13) applies only for a time delay of the type illus-
trated in Figure 11.3(e).

 example 11.4 Illustration of time-shifting properties

We now illustrate the time-shifting properties of the z-transform. Consider a discrete-time 
function f [n], which has the first six values given in Table 11.3. Because f [n] is not given in 
functional form, we cannot express its z-transform in closed form.

We now find z[ f  [n]], z[ f  [n - 2]u[n - 2]], and z[ f [n + 2]u[n]]:

  F1z2 = z[ f [n]] = a
∞

n = 0
f[n]z-n  

  = 1 - z-1 - 0.5z-2 + 1.5z-4 + 3.5z-5 + g;  

  z[ f [n - 2]u[n - 2]] = a
∞

n = 0
f [n - 2]u[n - 2]z-n  

  = z-2 - z-3 - 0.5z-4 + 1.5z-6 + 3.5z-7 + g; 

  z[ f [n + 2]] = a
∞

n = 0
f [n + 2]z-n  

  = -0.5 + 1.5z-2 + 3.5z-3 + g.  (11.26)

Note that the time advance of two discrete increments results in the loss of the first two 
samples.

The z-transforms of the two shifted functions, from (11.13) and (11.25), are given by

 z[ f [n - 2]u[n - 2]] = z-2F1z2

and

 z[ f [n + 2]] = z2[F1z2 - 1 + z-1].

The results in (11.26) verify these relations.

Table 11.3  Functions for Example 11.4

n f [n] f  [n − 2]u[n − 2] f  [n + 2]u[n]

0   1   0 -0.5

1 -1   0   0

2 -0.5   1   1.5

3   0 -1   3.5

4   1.5 -0.5   f
5   3.5   0

f   f   f
 ■
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Initial and final Values

The initial-value property relates to finding the initial value of a function, f [0], 
 directly from the z-transform of that function. From the definition of the  
z-transform, (11.4),

 F1z2 = f [0] + f [1]z-1 + f [2]z-2 + g.

We find f [0] from F1z2 by taking its limit as z approaches infinity:

 lim
zS ∞

 F1z2 = lim
zS ∞

 Jf [0] +
f [1]

z
+

f [2]

z2 + g R = f [0].

Thus, the initial-value property is given by

 f [0] = lim
zS ∞

F1z2. (11.27)

The final-value property relates to finding the final (steady-state) value of a 
function directly from its z-transform. This derivation is more involved than that for 
the initial-value property.

We begin the derivation by considering the transform

  z[ f [n + 1] - f [n]] = lim
kS ∞

J a
k

n = 0
f [n + 1]z-n - a

k

n = 0
f [n]z-n R

  = lim
kS ∞

[-f [0] + f [1]11 - z-12 + f [2]1z-1 - z-22 + c

  + f [k]1z-k + 1 - z-k2 + f [k + 1]z-k].

We now take the limit of both sides of this equation as z approaches unity; as a 
 result, the terms 1z-i + 1 - zi2 approach zero. Thus,

 lim
zS1

 z[ f [n + 1] - f [n]] = lim
nS ∞

 [ f [n + 1] - f [0]]. (11.28)

We have replaced k with n on the right side, for clarity, in the remainder of this 
derivation.

From the shifting property (11.25),

 z[ f [n + 1] - f [n]] = z[F1z2 - f [0]] - F1z2 = 1z - 12F1z2 - zf [0],

and thus,

 lim
zS1

 z[ f [n + 1] - f [n]] = lim
zS1

 [1z - 12F1z2 - zf [0]]. (11.29)

Equating the right sides of (11.28) and (11.29) yields

 lim
nS ∞

 [ f [n + 1] - f [0]] = lim
zS1

 [1z - 12F1z2 - z f [0]].
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Because f [0] is a constant, this term cancels and the final-value property is given by

 lim
nS ∞

 f [n] = f [∞ ] = lim
zS1

 1z - 12F1z2, (11.30)

provided that the limit on the left side exists—that is, provided that f [n] has a final 
value. [It is shown later that f [n] has a final value, provided that all poles of F1z2 
are inside the unit circle, except for possibly a single pole at z = 1. In addition, from 
(11.30), if f [n] has a final value, that value is nonzero only for the case that F1z2 has 
a pole at z = 1.]

 example 11.5 Illustrations of initial- and final-value properties

We illustrate the initial- and final-value properties with an example. Consider the unit step 
function u[n]:

 z[u[n]] =
z

z - 1
.

From the initial-value property (11.27),

 f [0] = lim
zS ∞ 

z
z - 1

= lim
zS ∞ 

1
1 - 1/z

= 1.

We know that the final value of u[n] exists; hence, from the final-value property (11.30),

 f [∞ ] = lim
zS1

 1z - 12 
z

z - 1
= lim

zS1
 z = 1.

Both of these values are seen to be correct. ■

 example 11.6 continuation of example 11.5

The sinusoidal function sin1pn/22 is now considered. From Table 11.2,

 z[sin1pn/22] =
z sin1p/22

z2 - 2z cos1p/22 + 1
=

z

z2 + 1
.

From the initial-value property (11.27),

 f [0] = lim
zS ∞

 
z

z2 + 1
= 0,

which is the correct value. From the final-value property (11.30),

 f [∞ ] = lim
zS1

 1z - 12 
z

z2 + 1
= 0,

which is incorrect, because sin1pn/22 oscillates continually and therefore does not have a 
final value. ■

We have now derived several properties of the z-transform. Additional prop-
erties are derived in the next section.
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 11.5 aDDItIonal propertIes

Two additional properties of the z-transform will now be derived; then a table of 
properties will be given.

time scaling

Independent-variable transformations were introduced in Chapter 9. We now 
consider the effects of these discrete-time transformations on the z-transform of a 
function.

Consider first the z-transform of f [m]; for convenience, we now denote dis-
crete time by the variable m:

 F1z2 = z[ f [m]] = a
∞

m = 0
f [m]z-m = f [0] + f [1]z-1 + f [2]z-2 + g.

An example of f [m] is plotted in Figure 11.4(a). We now consider the time-
scaling transformation m = n/k 1n = mk2, where k is a positive integer, and use 
the notation

 ft[n] = f [m] 2
m = n/k

= f [n/k]  (11.31)

as in Section 9.2. The n-axis 1n = mk2 is plotted in Figure 11.4(a), and f [n/k] is 
plotted versus n in Figure 11.4(b).

We now define the z-transform of f  [n/k] as

  z[ f t[n]] = Ft1z2 = z[ f [n/k]]  

  = f [0] + f [1]z-k + f [2]z-2k + g= a
∞

n = 0
f [n]z-kn. (11.32)

Note that this definition sets the values of ft[n] to zero for n ≠ mk, with n a positive 
integer. We see then that

  Ft1z2 = z[ f [n/k]] = a 
∞

n = 0
f [n]z-kn  

  = a
∞

n = 0
f [n]1zk2-n = F1z2 2

zdzk
= F1zk2, (11.33)

where z[ f [n]] = F1z2. Hence, we have the time-scaling property (as defined 
 earlier), for k a positive integer:

 f [n/k] 4z F1zk2. (11.34)

The time scaling m = n/k creates additional sample values, all of which we choose 
to set to zero. The derivations presented here apply for only this choice; other rules can 
be used to assign values for the samples created, and then (11.34) does not apply.
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We do not consider the time scaling f [nk], where k is a positive integer. Recall 
from Chapter 9 that this transform results in the loss of sample values. We now 
 illustrate time scaling with an example.

 example 11.7 Illustration of time-scaling property

Consider the exponential function f [n] = an. From Table 11.2,

 f [n] = an 4z
z

z - a
= F1z2.

We wish to find the z-transform of ft[n] = f  [n/2]. We first find Ft1z2 from its definition; then 
we use property (11.33) for verification.

From definition (11.32),

 z[ f [n/2]] = 1 + az-2 + a2z-4 + g = a
∞

n = 0
anz-2n = a

∞

n = 0
1az-22n.

(a)

(b)

(c)

f [m]

m�2 �1 1 2 3 40

••• •••

n � mk0�k k�2k 2k 3k 4k

2

1

3

ft[n] � f [n/k]

n � mk1 20

•••

••• ••• ••• •••

•••

�k k 2k 3k

2

1

3

f [(n � n0)/k]u[n � n0]

n1 20

•••

•••

•••

n0

2

1

3

k � n0 2k � n0 3k � n0

Figure 11.4  Examples of time shifting and scaling.
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From Appendix C,

 a
∞

n = 0
bn =

1
1 - b

 ; � b � 6 1.

Thus, with b = az-2,

 z[ f [n/2]] =
1

1 - az-2 =
z2

z2 - a
. (11.35)

Direct substitution into the scaling property, (11.33), with k = 2 verifies this result. ■

convolution in time

We now derive the transform for the convolution summation. From (10.13) and the 
definition of convolution,

 x[n]*y[n] = a
∞

k = -∞
x[k]y[n - k] = a

∞

k = 0
x[k]y[n - k], (11.36)

because x[k] is zero for k 6 0. Then, from (11.4),

  z[x[n]*y[n]] = a
∞

n = 0
[ a

∞

k = 0
x[k]y[n - k]]z-n  

  = a
∞

k = 0
x[k][ a

∞

n = 0
y[n - k]z-n], 

(11.37)

where the order of the summations is reversed in the last step. Next, we change vari-
ables on the inner summation, letting m = 1n - k2. Then n = m + k and

  z[x[n]*y[n]] = a
∞

k = 0
x[k]J a

∞

m = -k
y[m]z-m-k R  

  = a
∞

k = 0
x[k]z-k a

∞

m = 0
y[m]z-m = X1z2Y1z2. (11.38)

The lower limit m = -k is changed to m = 0, because y[m] is zero for m 6 0. 
Hence, convolution transforms into multiplication in the z-domain. Examples of 
convolution are given later in this chapter when we consider linear systems.

Several properties of the z-transform have been developed. These properties 
are useful in generating tables of z-transforms and in applying the z-transform to 
the solutions of linear difference equations with constant coefficients. When pos-
sible, we model discrete-time physical systems with linear difference equations with 
constant coefficients; hence, these properties are useful in both the analysis and 
design of linear time-invariant physical systems. Table 11.4 gives properties for the 
z-transform and includes some properties in addition to those derived.
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 11.6 ltI system applIcatIons

In this section, we illustrate some applications of the z-transform to linear time-
invariant (LTI) systems. First, we consider transfer functions, and then certain 
 system properties are investigated.

transfer functions

When possible, we model discrete-time systems with linear difference equations with 
constant coefficients; the model is then linear and time invariant. (See Section 10.4.) 
From (10.48), the general equation for this model is given by

 a
N

k = 0
aky[n - k] = a

M

k = 0
bkx[n - k], (11.39)

where x[n] is the input signal, y[n] is the output signal, N is the system order, and 
the constants ak, bk, N, and M are parameters of the system. For convenience, we let 
M = N. (If this is not the case, certain coefficients must be set to zero.) The expan-
sion of (11.39) yields

a0y[n] + a1y[n - 1] + g + aN-1y[n - 1N - 12] + aNy[n - N]

 = b0x[n] + b1x[n - 1] + g + bN-1 x[n - 1N - 12] + bNx[n - N]. 
(11.40)

From (11.13), for n0 G 0, the time-delay property is given by

 z[ f [n - n0]] = z-n0F1z2, f [n] = 0, n 6 0. (11.41)

Table 11.4  Properties of the z-Transform

name property

1. Linearity, (11.8) �[a1 f1[n] + a2 f2[n]] = a1F11z2 + a2F21z2
2. Real shifting, (11.13) �[ f [n - n0]u[n - n0]] = z-n0F1z2, n0 G 0

3. Real shifting, (11.25) �[ f [n + n0]u[n]] = zn0[F1z2 - a
n0-1

n = 0
f [n]z-n]

4. Complex shifting, (11.23) �[an f [n]] = F1z/a2

5. Multiplication by n �[nf [n]] = -z 
dF1z2

dz
6. Time scaling, (11.33) �[ f [n/k]] = F1zk2, k a positive integer

7. Convolution, (11.38) �[x[n]*y[n]] = X1z2Y1z2

8. Summation �[ a
n

k = 0
f [k]] =

z
z - 1

 F1z2

9. Initial value, (11.27) f [0] = lim
zS ∞

 F1z2
10. Final value, (11.30) f [∞] = lim

zS1
 1z - 12F1z2, if f [∞] exists
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Thus, the z-transform of (11.39), with M = N, yields

 a
N

k = 0
akz-kY1z2 = a

N

k = 0
bkz-kX1z2, (11.42)

where x[n] = y[n] = 0, n 6 0. Expanding (11.42) gives

 [a0 + a1z
-1 + g + aN-1z

-N + 1 + aNz-N]Y1z2 

 = [b0 + b1z
-1 + g + bN-1z

-N + 1 + bNz-N]X1z2. (11.43)

This equation can also be seen directly from (11.40).
By definition, the system transfer function H1z2 is the ratio Y1z2/X1z2. 

Therefore, from (11.43),

  H1z2 =
Y1z2
X1z2 =

b0 + b1z
-1 + g + bN-1z

-N + 1 + bNz-N

a0 + a1z
-1 + g + aN-1z

-N + 1 + aNz-N  

  =
b0z

N + b1z
N-1 + g + bN-1z + bN

a0z
N + a1z

N-1 + g + aN-1z + aN
,  

(11.44)

where the last step is required to express the variable z in positive exponents. Note 
that this transfer function is identical to that derived in Chapter 10, which applies for 
only a complex-exponential input signal. This transfer function, (11.44), applies for 
any input that has a z-transform and, hence, is a generalization of that of Chapter 10. 
An example is now given.

 example 11.8 transfer function of a discrete system

We consider again the a-filter of (11.14), which is depicted in Figure 11.5(a). (See Figure 10.18.) 
The filter equation is given by

 y[n] - 11 - a2y[n - 1] = ax[n].

For this example, we let a = 0.1; then,

 y[n] - 0.9y[n - 1] = 0.1x[n].

The z-transform of this equation yields

 11 - 0.9z-12Y1z2 = 0.1X1z2,

and the transfer function is

 H1z2 =
Y1z2
X1z2 =

0.1

1 - 0.9z-1 =
0.1z

z - 0.9
. (11.45)

Note that we could have written the transfer function directly from (11.39) and (11.44). ■
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It is common when specifying digital filters to give the filter-transfer  function 
H1z2 or the difference equation. For example, the block-diagram specification for 
the a-filter of the last example can be any of the four forms illustrated in Figure 11.5. 
The representation of the time delay by the transfer function z-1 is based on the 
property

 z[y[n - 1]] = z-1z[y[n]] = z-1Y1z2.

Inverse z-transform

Three procedures for finding the inverse z-transform will now be discussed. The 
first procedure involves the use of the complex inversion integral, from (11.2):

 f [n] =
1

2p j CΓ
F1z2zn-1 dz.

This integration is in the complex plane and is usually too complicated to be of 
practical value; hence, we will not use this approach. (See Ref. 3 for applications.)

The second method for finding the inverse z-transform is by partial-fraction 
expansion, in which a function that does not appear in the z-transform tables is 
expressed as a sum of functions that do appear in the tables. Partial-fraction expan-
sions are presented in Appendix F; those readers unfamiliar with this topic should 
read this appendix. We now illustrate the use of partial fractions to find inverse 
z-transforms.

�

�1�

D�
x[n]

y[n]

(a)

y[n � 1]

0.1

0.9

z�1�
X(z)

Y(z)

(c) (d)

X(z) Y(z)

0.1

0.9

D�
x[n]

y[n]

(b)

y[n � 1]

0.1z
z � 0.9

 

Figure 11.5  a-Filter representation.
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 example 11.9 Inverse z-transform by partial-fraction expansion

We solve for the time response of the a-filter of Example 11.8, for the unit step input. From 
Table 11.2, X1z2 = z/1z - 12. From (11.45), the transformed output is given by

 Y1z2 = H1z2X1z2 =
0.1z

z - 0.9
 

z
z - 1

.

We expand Y1z2/z in partial fractions:

 
Y1z2

z
=

0.1z
1z - 0.921z - 12 =

k1

z - 0.9
+

k2

z - 1
.

Then (see Appendix F)

 k1 = 1z - 0.92 J 0.1z
1z - 0.921z - 12 R z = 0.9

=
0.1z

z - 1
2
z = 0.9

= -0.9

and

 k2 = 1z - 12J 0.1z
1z - 0.921z - 12 R z = 1

=
0.1z

z - 0.9
2
z = 1

= 1.

Thus, Y1z2 is given by

 Y1z2 =
0.1z2

1z - 0.921z - 12 =
z

z - 1
-

0.9z
z - 0.9

,

and from Table 11.2, the inverse transform yields

 y[n] = 1 - 0.910.92n = 1 - 0.9 n + 1,

for n G 0. The partial-fraction expansion can be verified by modifying the MATLAB pro-
gram in Section 11.2.

The z-transform solution gives y[0] = 0.1; this value is also found from the initial-value 
property:

 y[0] = lim
zS ∞

 Y1z2 = lim
zS ∞

0.1z2

1z - 0.921z - 12 = 0.1.

As a final point, we verify the first three values of y[n] by the iterative solution of the 
filter difference equation:

  y[n] = 0.9y[n - 1] + 0.1x[n];

  n = 0: y[0] = 0.9102 + 0.1112 = 0.1;

  n = 1: y[1] = 0.910.12 + 0.1112 = 0.19;

  n = 2: y[2] = 0.910.192 + 0.1112 = 0.271.
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The solution yields

  y[n] = 1 - 0.9 n + 1,

  n = 0: y[0] = 1 - 0.9 = 0.1,

  n = 1: y[1] = 1 - 0.81 = 0.19,

and

 n = 2: y[2] = 1 - 0.729 = 0.271,

and these values are verified. The values can also be verified with the following MATLAB 
program:

ynminus1 = 0;
xn = 1;
for n = 0:2;
  yn = 0.9*ynminus1 + 0.1*xn
  ynminus1 = yn;
end
result:yn=0.1 0.19 0.271

In this program, yn = y[n], ynminus1 = y[n - 1], and xn = x[n]. A SIMULINk simulation 
that also verifies the response is illustrated in Figure 11.6. ■

The third procedure for finding inverse transforms is the expansion of a 
transform into a power series of the proper form by long division. This procedure, 

(a)

(b)
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Figure 11.6  SIMULINk simulation for Example 11.9.
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illustrated earlier in this chapter, involves dividing the numerator of the transform 
by its denominator. The result of this division is the power series

 F1z2 =
N 1z2
D 1z2 = f0 + f1 z

-1 + f2 z
-2 + g. (11.46)

Comparing this series with the definition of the unilateral z-transform, we see that 
f [n] in (11.4) is equal to fn in (11.46). We now illustrate this procedure with an 
example.

 example 11.10 Inverse z-transform by long division

The inverse transform in Example 11.9 is now verified by long division. From Example 11.9,

 Y1z2 =
0.1z

z - 0.9
 

z
z - 1

=
0.1z2

z2 - 1.9z + 0.9
.

Dividing the numerator by the denominator yields

 

          0.1 + 0.19z-1 + 0.271z-2 + g
z2 - 1.9z + 0.9)0.1z2                      
         0.1z2 - 0.19z + 0.09
           0.19z - 0.09
           0.19z - 0.361 + 0.171z-1

                0.271 - 0.171z-1

               f

Hence, y[0] = 0.1, y[1] = 0.19, and y[2] = 0.271, which verifies the values found in 
Example 11.9. ■

We see that the power-series method is practical for evaluating only the 
first few values of a function, unless the long division is implemented on a digital 
computer.

complex poles

Thus far, we have considered the inverse transform only for functions that have real 
poles. The same partial-fraction procedure applies for complex poles; however, the 
resulting inverse transform contains complex functions. Of course, the sum of these 
functions is real. In this section, we develop a different procedure that expresses the 
inverse transforms as the sum of real functions.

First, consider the real function

  y[n] = Ae
gn cos1Ωn + u2 =

Ae
gn

2
 [ejΩneju + e-jΩne-ju] 

  =
A
2

 [e1g + jΩ2neju + e1g-jΩ2ne-ju],  
(11.47)
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where g  and Ω are real. From Table 11.2, the z-transform of this function is given 
by

  Y1z2 =
A
2

 J ejuz

z - eg + jΩ +
e-juz

z - eg-jΩ R  

  =
1Aeju/22z

z - eg + jΩ +
1Ae-ju/22z

z - eg-jΩ =
k1z

z - p1
+

k1
*z

z - p1
*, (11.48)

where the asterisk indicates the complex conjugate.
The usual partial-fraction expansion yields terms in the form of (11.48). 

Hence, given k1 and p1 in (11.48), we can solve for the discrete-time function of 
(11.47), using the following relationship from (11.48):

 p1 = egejΩ = eglΩ 1 g = ln  � p1 � ; Ω = arg p1 (11.49)

and

 k1 =
Aeju

2
=

A
2

 lu 1 A = 2 � k1 � ; u = arg k1. (11.50)

Thus, we calculate g  and Ω from the poles, and A and u from the partial-fraction 
expansion. We can then express the inverse transform as the sinusoid of (11.47). An 
illustrative example is given next.

 example 11.11 Inverse z-transform with complex poles

We find the inverse z-transform of the function

  Y1z2 =
-2.753z

z2 - 1.101z + 0.6065
=

-2.753z
1z - 0.550 - j0.55021z - 0.550 + j0.5502

  =
k1z

z - 0.550 - j0.550
+

k1
*z

z - 0.550 + j0.550
.

Dividing both sides by z, we calculate k1:

  k1 = 1z - 0.550 - j0.5502J -2.753
1z - 0.550 - j0.55021z - 0.550 + j0.5502 R z = 0.550 + j0.550

  =
-2.753

21 j0.5502 = 2.50l90°.

From (11.49) and (11.50),

 p1 = 0.550 + j0.550 = 0.7778l45° ,

 g = ln � p1 � = ln 10.77782 = -0.251; Ω = arg p1 =
p

4
,
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and

  A = 2 � k1 � = 212.502 = 5; u = arg k1 =
p

2
.

Hence, from (11.47),

 y[n] = Ae
gn cos1Ωn + u2 = 5e-0.251n cos¢p

4
n +

p

2
≤.

We can verify this result by finding the z-transform of this function, using Table 11.2. The 
partial-fraction expansion can be verified with the following MATLAB program:

n = [0 0 -2.753];
d = [1 -1.101 0.6065];
[r,p,k]=residue(n,d)
result: r=0+2.5001i 0-2.5001i
      p=0.5505+0.5509i 0.5505-0.5509i ■

causality

We next investigate causal LTI systems. Consider the system of Figure 11.7(a). 
This system is a unit advance, with the output equal to the input advanced by one 
discrete-time increment; that is, y[n] = x[n + 1]. For this derivation, we ignore 
initial conditions. Then, the output is given by

 Y1z2 = z[x[n + 1]] = z[X1z2 - x[0]] = zX1z2, (11.51)

from Table 11.4. The unit advance has a transfer function of H1z2 = z and can be 
represented by the block diagram of Figure 11.7(b). In a like manner, it is seen that 
the transfer function of N cascaded unit advances is H1z2 = zN. If we allow N to 
be negative, this transfer function also applies to � N �  unit delays. For example, the 
transfer function for three cascaded advances is z3, and the transfer function for 
three cascaded delays is z-3.

The unit advance is not causal; the system of Figure 11.7 cannot be realized 
physically. Consider the transfer function given by

 H1z2 =
z2 + 0.4z + 0.9

z - 0.6
= z +

z + 0.9
z - 0.6 

, (11.52)

where we can obtain the last function by dividing the numerator of H1z2 by its 
denominator. This system is noncausal, since the system can be represented as 

(a)

x[n] y[n] � x[n � 1]
D�1

(b)

X(z) Y(z) � zX(z)
z

Figure 11.7  Unit advance.
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a unit advance in parallel with a second system that is physically realizable. This 
unit advance appears because the numerator of H1z2 is of higher order than the 
denominator.

It is seen from the preceding development that for a causal system, the 
 numerator of the transfer function H1z2 of (11.44) cannot be of higher order than 
the denominator, when the exponents are positive. If the transfer function H1z2 is 
expressed in negative exponents, as in (11.44), that is, as

 H1z2 =
Y1z2
X1z2 =

b0 + b1z
-1 + g+ bN-1z

-N + 1 + bNz-N

a0 + a1z
-1 + g + aN-1z

-N + 1 + aNz-N  , (11.53)

then the system is causal, provided that a0 ≠ 0.

stability

We now relate bounded-input bounded-output (BIBO) stability of causal systems 
to the system transfer function. Recall the definition of BIBO stability:

bIbO Stability
A system is stable if the output remains bounded for any bounded input.

For an Nth-order discrete-time LTI causal system, the transfer function can 
be expressed as

[eq(11.44)] H1z2 =
Y1z2
X1z2 =

b0z
N + b1z

N-1 + g + bN-1z + bN

a0z
N + a1z

N-1 + g + aN-1z + aN
,

with a0 ≠ 0. The denominator of this transfer function can be factored as

 a0z
N + a1z

N-1 + g+ aN-1z + aN = a01z - p121z - p22  g1z - pN2. (11.54)

The zeros of this polynomial are the poles of the transfer function, where, by defini-
tion, the poles are those values of z for which H1z2 is unbounded.

First, we assume that H1z2 has no repeated poles. We can then express the 
output Y1z2 in (11.44) as

  Y1z2 = H1z2  X1z2 =
b0z

N + b1z
N-1 + g + bN-1z + bN

a01z - p121z - p22 g1z - pN2 X1z2 

  =
k1z

z - p1
+

k2z
z - p2

+ g+
kNz

z - pN
+ Yx1z2,  

(11.55)

where Yx1z2 is the sum of the terms, in the partial-fraction expansion, that originate 
in the poles of the input function X1z2. Hence, Yx1z2 is the forced response.

In the partial fraction expansion of (11.55), it is assumed that the order of 
the numerator of H1z2 is lower than that of the denominator. If the order of the 
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numerator polynomial is equal to or greater than the order of the denominator poly-
nomial, the partial-fraction expansion will include additional terms. [See (F.1).]

The inverse transform of (11.55) yields

 y[n] = k1 p1
n + k2 p2

n + g+ kN pN
n + yx[n] = yn[n] + yx[n]. (11.56)

The terms of yn[n] originate in the poles of the transfer function, and yn[n] is the 
natural response. The natural response is always present in the system output, 
 independent of the form of the input signal x[n]. The factor pi

n in each term of the 
natural response is called a mode of the system.

If the input x[n] is bounded, the forced response yx[n] will remain bounded, 
since yx[n] is of the functional form of x[n]. [Yx1z2 has the same poles as X1z2.] 
Thus, an unbounded output must be the result of at least one of the natural-response 
terms, ki pi

n, becoming unbounded. This unboundedness can occur only if the magni-
tude of at least one pole, � pi � , is greater than unity.

From the preceding discussion, we see the requirement for BIBO stability:

An LTI discrete-time causal system is BIBO stable, provided that all poles of the 
 system transfer function lie inside the unit circle in the z-plane.

The stable region of the z-plane is illustrated in Figure 11.8. This conclusion 
was also reached in Chapter 10 by a different approach.

The stability criterion can be stated in a different way. If a system is stable, the 
poles of its transfer function H1z2 are restricted to the interior of the unit circle. 
Because h[n] is a causal function, the region of convergence of H1z2 includes the unit 
circle and the entire region of the finite plane outside the unit circle, as illustrated in 
Figure 11.9. Hence, the stability criteria can also be stated as follows:

An LTI discrete-time causal system is BIBO stable, provided that the region of conver-
gence of its transfer function includes the unit circle.

z

Unit circle

1

Stable
region

Figure 11.8  Stable region of the z-plane.
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The system characteristic equation is, by definition, the denominator polyno-
mial of the transfer function set to zero. Hence, the characteristic equation is the 
denominator of (11.44) set to zero; that is,

a0z
N + a1z

N-1 + g + aN-1z + aN = a01z - p121z - p22 g1z - pn2 = 0 (11.57)

is the system characteristic equation. The system is stable, provided that the roots of 
the system characteristic equation are inside the unit circle. A similar development 
shows that the same requirements apply if H1z2 has repeated poles. We now illus-
trate system stability with an example.

 example 11.12 stability of a discrete system

Suppose that the transfer function of an LTI system is given by

 H1z2 =
2z2 - 1.6z - 0.90

z3 - 2.5z2 + 1.96z - 0.48
.

The characteristic equation for this system is seen to be

 z3 - 2.5z2 + 1.96z - 0.48 = 1z - 0.521z - 0.821z - 1.22 = 0.

The poles of the transfer function are at 0.5, 0.8, and 1.2, as illustrated in Figure 11.10. Thus, 
the system is unstable because the pole at z = 1.2 is outside the unit circle. The modes of 
the system are 0.5n, 0.8n, and 1.2n; the system is unstable, since lim

nS ∞
1.2n is unbounded. The 

characteristic-equation roots can be calculated with the following MATLAB program:

P = [1 −2.5 1.96 −.48];
r = roots(P)
result: r = 1.2 0.8 0.5 ■

1

z

Unit circle

Poles
of H(z)

Figure 11.9  Region of convergence of a  
stable system.
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Invertibility

Recall from Section 9.6 the definition of the inverse of a system:

Inverse of a System
The inverse of a system H1z2 is a second system Hi1z2 that, when cascaded with H1z2, 
yields the identity system.

Thus, Hi1z2 is defined by the equation

 H1z2Hi1z2 = 1 1 Hi1z2 =
1

H1z2 . (11.58)

These systems are illustrated in Figure 11.11.
We now consider the characteristics of the inverse system. The transfer func-

tion H1z2 of a causal system can be expressed as

 H1z2 =
b0z

M + b1z
M-1 + g + bM

a0z
N + a1z

N-1 + g + aN
 , (11.59)

where the order of the numerator is less than or equal to that of the denominator, or 
M F N. Hence, the inverse system has the transfer function

 Hi1z2 =
a0z

N + a1z
N-1 + g + aN

b0z
M + b1z

M-1 + g + bM
 . (11.60)

0.8

z

Unit circle

0.5 1.21

Figure 11.10  Pole locations for Example 11.12.

X(z)
H(z) Hi(z)

Inverse
systemSystem

Y(z) � X(z)

Hi(z) � 1/H(z) Figure 11.11  System with its inverse.
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This system is causal if N F M. Hence, for both the system and its inverse to be 
causal, M = N.

Next, we consider stability. For the system of (11.59) to be stable, the poles of 
the transfer function must lie inside the unit circle. For the inverse system of (11.60) 
to be stable, the poles of Hi1z2 [the zeros of H1z2] must lie inside the unit circle. 
Hence, for the system of Figure 11.11 to be stable, both the poles and zeros of the 
system must lie inside the unit circle.

In this section, we consider solving for the time response of an LTI system 
by using z-transforms. Generally, we use partial-fraction expansions in the inverse 
transform; however, long division can also be used. The characteristics of causality, 
stability, and invertibility are then investigated for LTI systems. It is shown that sta-
bility can always be determined for systems modeled by linear difference equations 
with constant coefficients. This type of system is stable, provided that the poles of its 
transfer function are all inside the unit circle in the z-plane.

frequency response

In Section 6.4, we see that the frequency spectrum of a sampled function is given by

[(6.17)] Xs1v2 = a
∞

n = -∞
x1nTs2e-jnvTs.

A comparison of (6.17) with the definition of the bilateral z-transform (11.1) shows 
them to be the same for the case

 z = ejvTs,

which restricts z to points on the unit circle in the z-plane. A vector from the origin 
in the z-plane to a point on the unit circle would be

 v = 1∠Ω = ejΩ, Ω = vTs.

To determine the frequency response of a system described by a z-transform trans-
fer function, we let z = ejΩ and evaluate the transfer function for 0 … Ω … p. The 
rationale for this will be explained more fully in Chapter 12. For now, observe that a 
plot of

 z = ejΩ, 0 … Ω … p (11.61)

in the z-plane will plot the upper semi-circle of the unit circle. We can also recognize 
from the definition of Ω, that

 Ω = vTs = v 
2p
vs

= p when v =
vs

2
 .

Therefore, the range of the frequency variable, 0 … Ω … p is the total range of 
frequencies which Shannon’s sampling theorem allows.
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We form the frequency response function as

 H1ejΩ2 = H1z2 0 z = ejΩ. (11.62)

 example 11.13 frequency response from z-transform transfer functions

use matlaB to compute and plot the frequency responses of a discrete-time system and 
its inverse.

A discrete-time system using a sampling period of 0.01 s. is described by its transfer 
function

 H11z2 =
z - 0.5
z - 0.9

 , T = 0.01s.

The inverse system is

 H21z2 = H1
-11z2 =

z - 0.9
z - 0.5

 .

The following matlaB program effectively makes the substitution z S ejΩ, calculates, and 
plots the magnitude frequency response in decibels and the phase frequency response in 
degrees of the system as a Bode plot with the frequency expressed in radians per second.

% enter the numerator and denominator coefficient arrays.
num = [1 −0.5], den = [1 −0.9]
%enter the sample period
T = 0.01;
% Form the transfer function.
H1 = tf(num, den, T)
%Calculate and plot the Bode plot of the frequency response of H1(z).
figure(1), bode(H1)
% Form the inverse system H2(z).
H2 = tf(den, num, T)
% Calculate and plot the Bode plot of the frequency response of H2(z).
figure(2), bode(H2)

Figures 11.12(a) and (b) contain the Bode plots of the frequency response of the system H1(z) 
and the inverse system H2(z). The plot in Figure 11.12(a) shows that the system described 
by H1(z) has unity gain at low frequencies and decreased gain at higher frequencies. This 
indicates that the system described by H1(z) is a low-pass system. The plot in Figure 11.12(b) 
shows that the system described by H2(z) has low gain at low frequencies and increased gain 
at higher frequencies. This indicates that system described by H1(z) is a high-pass system.

To calculate the system’s response at a single chosen frequency, such as v = 25p 1rad/s2, 
we let

 z = ejΩ = ejvTs = ej125p210.012 = ejp/4

and evaluate

 H11ejp/42 =
e jp/4 - 0.5

e jp/4 - 0.9
=

 cos 1p/42 + j sin 1p/42 - 0.5

 cos 1p/42 + j sin 1p/42 - 0.9
=

0.207 + j0.707

-1.93 + j0.707

  = 1.005∠-0.5511rad2.
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We convert the magnitude to decibels and the phase angle to degrees in order to compare 
our results to the plots in Figure 11.l2(a).

 Magnitude1dB2 = 20 log1011.0052 = 0.43 dB

 Phase 1deg2 = -0.5511rad2 * 180°/p1rad2 = -31.6° ■

 11.7 BIlateral z-transform

In Section 11.1, we define the bilateral z-transform pair

[eq(11.1)] zb[ f [n]] = Fb1z2 = a
∞

n = -∞
f [n]z-n

and

[eq(11.2)] zb
-1[Fb1z2] = f [n] =

1
2pj CΓ

Fb1z2zn-1 dz, j = 2-1,

where zb[ # ] denotes the bilateral z-transform. The path of integration Γ in the 
inverse transform is determined by the region of convergence (ROC) of Fb1z2. 
However, as with the unilateral z-transform, we do not use the inversion integral 
(11.2) to find inverse transforms; instead, we use tables. Nevertheless, as will be 
shown, we must know the region of convergence of Fb1z2 to determine its inverse 
transform.

Because the unilateral z-transform is a special case of the bilateral trans-
form, Table 11.2 applies for the bilateral z-transform of functions for which 
f[n] = 0, n 6 0:that is, for causal functions. For example, from Table 11.2, the 
bilateral z-transform pair for the causal function anu[n] is given by

 anu[n] 4lb
   z

z - a
 ; � z � 7 � a � . (11.63)

As indicated, we must always include the ROC for a bilateral transform.
The exponential function in (11.63) is sketched in Figure 11.13(a), along with 

its ROC, for a real. To illustrate the requirement for specifying the ROC, we will 
derive the bilateral transform of -anu[-n - 1]. This exponential function is plotted 
in Figure 11.13(b), for a real. From (11.1),

  zb[-anu[-n - 1]] = a
∞

n = -∞
-anu[-n - 1]z-n = a

-1

n = -∞
-anz-n  

  = - 1a-1z + a-2z2 + a-3z3 + g2 = a
∞

n = 1
- 1a-1z2n, (11.64)



because u[-n - 1] is zero for n G 0. From Appendix C, we have the convergent 
power series

 a
∞

n = k
bn =

bk

1 - b
; � b � 6 1. (11.65)

We then let b = a-1z and k = 1 from (11.64), resulting in the z-transform

 zb[-anu[-n - 1]] =
-a-1z

1 - a-1z
=

z
z - a

; � a-1z � 6 1. (11.66)

The ROC of this transform can also be expressed as � z � 6 � a �  and is also shown in 
Figure 11.13(b).

We next list the bilateral transform pairs (11.63) and (11.66) together:

 anu[n] 4zb z
z - a

 ; � z � 7 � a � .

 -anu[-n - 1] 4zb z
z - a

 ; � z � 7 � a � .

anu[n]

n1 2 30

a
a2

a3

�1

••• •••

1

(a)

a

z

ROC

�anu[�n � 1]

n�a�3

�a�2

�a�1

�3 �2 �1

0 1

••• •••

(b)

a

z

ROC

Figure 11.13  Exponential functions.
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Note that the two transforms are identical; only the ROCs are different. Hence, for 
this case, the ROC must be known before the inverse transform can be determined. 
This statement is true in general for determining all inverse bilateral z-transforms.

To illustrate the last point with an example, suppose that we are given the 
bilateral z-transform

 Fb1z2 =
z

z - 0.5
 , (11.67)

with the ROC not specified. If the ROC is given by � z � 7 0.5, the inverse transform 
is the function f [n] = 0.5nu[n], from (11.63). If the ROC is given by � z � 6 0.5, the 
inverse transform is the function f [n] = - 10.5n2u[-n - 1], from (11.66). Note that 
the ROC cannot include the pole at z = 0.5, since, by definition, Fb1z2 is unbounded 
(the series does not converge) at a pole. We now consider a second example.

 example 11.14 Bilateral z-transform of unit step functions

Consider the causal unit step function u[n]. From (11.63) with a = 1, we have the transform 
pair

 u[n] 4zb z
z - 1; � z � 7 1. (11.68)

This step function is plotted in Figure 11.14(a).
Next, consider the noncausal unit step function -u[-n - 1]. From (11.66), we have 

the transform pair

 zb[-u[-n - 1]] =
z

z - 1
; � z � 6 1. (11.69)

This step function is plotted in Figure 11.14(b). The z-transforms of both functions are identi-
cal, with ROCs different.

As a final step, consider the difference of the two-step function of (11.68) and 
(11.69):

 u[n] - [-u[-n - 1]] = u[n] + u[-n - 1] = 1. (11.70)

This function is plotted in Figure 11.14(c). However, even though the z-transform is a linear 
transform, the z-transform of the sum of functions in (11.70) is not equal to the sum of the 
z-transforms; that is,

 zb[u[n] + u[-n - 1]] ≠ zb[u[n]] + zb[u[-n - 1]]. (11.71)

The ROCs of the two transforms on the right side have no regions of the z-plane in common; 
hence, no values of z exist for which zb[1] is convergent. Consequently, the z-transform of 
f [n] = 1 for all n does not exist. ■



We now give four useful definitions with respect to functions and the bilateral 
z-transform.

1. A function f [n] is right sided if f [n] = 0 for n 6 n0, where n0 can be a 
positive or a negative integer. For example, u[n + 10] is right sided, because

 u[n + 10] = b0, n 6 -10
1, n G -10

.

A second example is given in Figure 11.15(a).
2. A function f [n] is left sided if f [n] = 0 for n 7 n0, where n0 can be a posi-

tive or a negative integer. For example, u[-n + 10] is left sided, because

 u[-n + 10] = b1, n F  10
0, n 7 10

.

A second example is given in Figure 11.15(b).
3. A function f [n] is two sided if it is neither right sided nor left sided. For 

example, cos(n) is two sided.
4. A function is of finite duration if it is both right sided and left sided. For 

example, 1u[n] - u[n - 10]2 is of finite duration. A second example is given in 
Figure 11.15(c).

We find these definitions useful when working with bilateral transforms.

••••••

0

(c)

�1�2�3 3 n

f [n] � 1

21

1

••••••

1

(a)

0�1�2 n

u [n]

32

1

••••••

0

�1

(b)

�1�2�3

n

�u[�n � 1]

21

Figure 11.14  Unit step functions.
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Bilateral transforms

In Chapter 7, a procedure was given for finding bilateral Laplace transforms from 
unilateral Laplace-transform tables. An equivalent procedure can be developed for 
finding bilateral z-transforms from unilateral z-transform tables. However, this pro-
cedure is complex and prone to error. Instead, a table of bilateral z-transforms is 
given as Table 11.5. A procedure is now given for using this table.

For a function f [n], we define the two functions f +[n] and f -[n]:

 f +[n] = f [n]u[n]; f -[n] = f [n]u[-n - 1].

Hence, f +[n] is right sided and f -[n] is left sided. We express f [n] as

 f [n] = f +[n] + f -[n] 1 Fb1z2 = Fb
+1z2 + Fb

-1z2, (11.72)

provided that Fb1z2 exists. Note that each transform in Table 11.5 can be classified 
as either Fb

+1z2 or Fb
-1z2, except for the last entry. We now consider an example of 

the use of this table.

f [n]

••• •••

(a)

n0 n

f [n]

••• •••

(b)

n0

n

f [n]

••• •••

(c)

n

Figure 11.15  Examples for signals: (a) right sided; (b) left sided; (c) finite duration.



Table 11.5  Bilateral z-Transform

f [n] F 1z 2 roc

1. d[n] 1 All z

2. d[n - n0] z-n0 z ≠ 0, n0 G 0
z ≠ ∞ , n0 6 0

3. u[n] z
z - 1

� z � 7 1

4. nu[n] z

1z - 122
� z � 7 1

5. anu[n] z
z - a

� z � 7 � a �

6. nanu[n] az

1z - a22
� z � 7 � a �

7. an sin1bn2u[n] az sin b

z2 - 2az cos b + a2
� z � 7 � a �

8. an cos1bn2u[n] z1z - a cos b2
z2 - 2az cos b + a2

� z � 7 � a �

9. -u[-n - 1] z
z - 1

� z � 6 1

10. -anu[-n - 1] z
z - a

� z � 6 � a �

11. -nanu[-n - 1] az

1z - a22
� z � 6 � a �

12. a�n�, � a � 6 1 z
z - a

-
z

z - 1/a
� a � 6 z 6 � 1/a �

 example 11.15 Bilateral z-transform of an exponential function

We now find the bilateral z-transform of the two-sided function f [n] = a�n�, using (11.72) and 
Table 11.5. This function is plotted in Figure 11.16 for 0 6 a 6 1. It is assumed that a is real 
for the sketch; however, the following derivation applies for a complex.

For (11.72), we express f [n] as

  f [n] = a�n� = a�n�[u[n] + u[-n - 1]]

  = anu[n] + a-nu[-n - 1] = f +[n] + f -[n].

From Table 11.5,

 F b
+1z2 = zb[ f +[n]] = z[anu[n]] =

z
z - a

; � z � 7 � a � ,

and for the left-sided function,

 F b
-1z2 = zb[ f -[n]] = zb[a-nu[-n - 1]] =

-z
z - 1/a

, � z � 6 1/ � a � .
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Hence, the z-transform of the two-sided function f [n] = a�n� is given by

 zb[a�n�] =
z

z - a
-

z
z - 1/a

; � a � 6 z 6 1/ � a � .

This transform exists only if � a � 6 1. This example verifies the last entry in Table 11.5. ■

regions of convergence

Before we consider the inverse bilateral transform, we investigate further the 
 regions of convergence. We first consider a special case. Suppose that the function 
f [n] is zero, except for n equal to zero and unity; hence, f [n] is of finite duration, and

 Fb1z2 = f [0] + f [1]z-1. (11.73)

This function exists everywhere except at z = 0; hence, the ROC is the entire  
z-plane except for the origin.

Now consider the case that f [n] is zero, except for n = -1 and n = 0; once 
again, f [n] is of finite duration. Then

 Fb1z2 = f [-1]z + f [0]. (11.74)

This function exists everywhere in the finite plane; hence, its ROC is the finite 
plane.

Consider next the case that f [n] is any sequence of finite duration. In general, 
Fb1z2 can have poles only at the origin [as in (11.73)] and at infinity [as in (11.74)]. 
We conclude then that the bilateral z-transform of a finite sequence exists every-
where in the finite z-plane, except possibly at the origin.

From the developments of this section, we see that the ROCs are bounded by 
circles centered at the origin, and possibly excluding the origin. Hence, the ROC of 
a bilateral z-transform is of one of four forms:

 1. the exterior of a circle centered at the origin (right-sided functions), as 
 illustrated in Figure 11.17(a);

 2. the interior of a circle centered at the origin, except for possibly the origin 
(left-sided functions), as illustrated in Figure 11.17(b);

•••

�3

a3
a2

a
1

Exponential

�2

•••

�1 0 1 2 3 n

a�n�

Figure 11.16  Two-sided exponential function.
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Figure 11.17  Possible regions of convergence.

 3. an annular region centered at the origin (two-sided functions), as illustrated 
in Figure 11.17(c);

 4. the entire finite plane, except for possibly the origin (finite-duration 
functions).

In all cases, the ROCs are open regions; that is, the boundaries of the ROCs are not 
parts of these regions. Note that all ROCs can be considered to be special cases of 
Figure 11.17(c).

Finally, we have the property that all poles of transformed functions are exte-
rior to ROCs, since a function is unbounded at a pole of that function. The bound-
aries of the ROCs will always contain poles, possibly with other poles outside the 
ROCs.

Inverse Bilateral transforms

As just stated, the general ROC for a bilateral transform is of the form of Figure 11.17(c). 
The poles inside the ROC belong to right-sided functions, and the poles outside the 
ROC belong to left-sided functions.
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To determine the inverse bilateral transform, we first find the partial-fraction 
expansion of Fb1z2. Then we express Fb1z2 as the sum of two functions, as in (11.72):

 Fb1z2 = Fb
+1z2 + Fb

-1z2 1 f [n] = f +[n] + f -[n]. (11.75)

Here, Fb
+1z2 contains the terms with poles inside the ROC and Fb

-1z2 contains the 
terms with poles outside the ROC. The inverse transforms are then found directly 
in Table 11.5.

Three illustrative examples are now given. In these examples, the bilateral 
z-transforms are identical, with the ROCs different. The bilateral transform used in 
the examples is given by

 Fb1z2 =
2z2 - 0.75z

1z - 0.2521z - 0.52 =
z

z - 0.25
+

z
z - 0.5 

. 

 example 11.16 an inverse bilateral z-transform

Consider first the function

 Fb1z2 =
z

z - 0.25
+

z
z - 0.5

; � z � 7 0.5.

The poles and the ROC are plotted in Figure 11.18. Hence, f [n] is right sided and, from 
Table 11.5, 

 f [n] = zb
-1[Fb1z2] = [0.25n + 0.5n]u[n].

ROC

z

0.25 0.5

Figure 11.18  ROC for Example 11.16. ■

 example 11.17 continuation of example 11.16

Consider next the function 

 Fb1z2 =
z

z - 0.25
+

z
z - 0.5

; � z � 6 0.25.



The poles and the ROC are plotted in Figure 11.19. Hence, f [n] is left sided. From 
Table 11.5,

 f [n] = zb
-1[Fb1z2] = [-0.25n - 0.5n]u[-n - 1]. ■

 example 11.18 continuation of example 11.17

Finally, consider the function 

 Fb1z2 =
z

z - 0.25
+

z
z - 0.5

; 0.25 6 � z � 6 0.5.

The poles and the ROC are plotted in Figure 11.20. The function z/1z - 0.252 is the trans-
form of a right-sided function, and the function z/1z - 0.52 is that of a left-sided function. 
From Table 11.5,

 f [n] = zb
-1[Fb1z2] = 0.25nu[n] - 0.5nu[-n - 1].

ROC

z

0.50.25

Figure 11.19  ROC for Example 11.17.
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In this section, we introduce the bilateral z-transform. The importance of the 
region of convergence is evident. For bilateral transforms, we usually separate a 
function into the sum of a right-sided function and a left-sided function. Tables are 
then used for both the bilateral transform and the inverse bilateral transform.

summary

The unilateral and bilateral z-transforms are introduced in this chapter. The uni-
lateral transform is used in the analysis and design of linear time-invariant (LTI), 
causal discrete-time systems. The unilateral z-transform is especially useful in the 
design of causal digital filters and in understanding their characteristics. It is also 
useful in the analysis of switched LTI discrete-time systems, since this transform 
 allows us to include initial conditions.

The bilateral z-transform is useful in the steady-state analysis of LTI dis-
crete-time systems and in the analysis and design of noncausal systems. Recall that 
noncausal systems are not realizable in real time. However, noncausal systems are 
realizable for the digital processing of recorded signals.

The next chapter involves the discrete-time Fourier transform. This transform 
is the result of applying the Fourier techniques of Chapters 4 through 6 to discrete-
time signals, especially to sampled signals.

See Table 11.6.

Table 11.6  Key Equations of Chapter 11

equation title equation number equation

Bilateral z-transform (11.1) �b[ f [n]] = Fb1z2 = a
∞

n = -∞
f [n]z-n

Inverse bilateral z-transform (11.2) �b
-1[Fb1z2] = f [n] =

1
2pj C

  

Γ
Fb1z2zn-1 dz, j = 2-1

Unilateral z-transform (11.4) �[ f [n]] = F1z2 = a
∞

n = 0
f [n]z-n

Transfer function (11.44)  H1z2 =
Y1z2
X1z2 =

b0 + b1z
-1 + g + bN-1z

-N + 1 + bNz-N

a0 + a1z
-1 + g + aN-1z

-N + 1 + aNz-N

 =
b0z

N + b1z
N-1 + g + bN-1z + bN

a0z
N + a1z

N-1 + g + aN-1z + aN

z-transform of right-sided 
 DT exponential

(11.63) anu[n] 4
zb z

z - a
; � z � 7 � a �

z-transform of left-sided DT 
 exponential

(11.66) �b[-anu[-n - 1]] =
-a-1z

1 - a-1z
=

z
z - a

; � a-1z � 6 1.
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proBlems

section 11.1

 11.1. Use (11.4) to write the z-transform of each of the following functions as a ratio of poly-
nomials in z.

(a) x[n] = 0.5n1u[n] - u[n - 3]2
(b) x[n] = 0.7 cos 1 np/2 21u[n] - u[n - 4]2
(c) x[n] = u[n - 2] - u[n - 5]

 11.2. Given that Z50.5nu[n]6 =
z

z - 0.5
 and Z5nu[n]6 =

z

1z - 122, find Z5[210.52n +

0.5n]u[n]6. Write the z-transform of the sum as a ratio of polynomials in z.

section 11.2

 11.3. Express the unilateral z-transforms of the following functions as rational functions.

(a) 0.9n

(b) 210.82n + 311.12n

(c) 3e-0.1n

(d) 3e-j 0.1n

(e) 0.51e j 0.5n + e-j 0.5n2
(f ) 1-0.92n

 11.4. Write the unilateral z-transform of each function as a ratio of polynomials in z.

(a) u[n - 1]
(b) u1n - m2
(c) 0.3n - 2u1n - 22
(d) 0.3n + 2

(e) 0.3n + 2u[n - 2]

 11.5. (a)  The signal e-5t is sampled every 0.2 s, beginning at t = 0. Find the z-transform of 
the sampled signal.

(b) The signal e-t is sampled every second, beginning at t = 0. Find the z-transform of 
the sampled signal.

(c) Why are the z-transforms found in Parts (a) and (b) identical?
(d) A third function eat is sampled every T seconds. Find two different values of (a, T ) 

such that the z-transforms of the sampled function are identical to those of Parts 
(a) and (b).

section 11.3

 11.6. Express the unilateral z-transform of each of the following functions as a ratio of 
 polynomials in z.

(a)  cos 10.5n2
(b)  sin 10.5n2
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(c) 20 cos 10.5n - p/42
(d) 10e-.2n cos 10.5n2
(e) 10e-0.2n cos 10.5n - p/42
(f) 51-0.92n cos 10.5n2

 11.7. The signals given are sampled every 0.1 s, beginning at t = 0. Find the unilateral  
z-transforms of the sampled functions, with each transform expressed as a rational 
function.

(a) e-t

(b) 2e-2t + 3et

(c) e-0.1t

(d) 3e-jt

(e)  cos1t2
(f) 10e-t cos1t2

 11.8. (a) A function f [n] = A cos  1Ωn2 has the z-transform

 F1z2 =
5z1z - 0.52
z2 - z + 1

 .

Find A and Ω.
(b) A function f1t2 = A cos 1vt2 is sampled every T = 0.001 s, beginning at t = 0. 

The z-transform of the sampled function is given in Part (a). Find A and v.

 11.9. (a)  A function n Anu[n] has the z-transform 
0.25z

1z - 0.2522. Find A.

(b) A function ne-Anu[n] has the z-transform 
0.25z

1z - 0.2522. Find A.

(c) A function An cos 1Ωn2u[n] has the z-transform 
z1z - 2.59812

z2 - 5.1962z - 9
. Find A and Ω.

(d) A function e-An cos 1Ωn2u[n] has the z-transform 
z1z - 2.59812

z2 - 5.1962z - 9
. Find A and Ω.

 11.10. (a) Use the z-transform to evaluate the following series:

 (i) x = a
∞

n = 0
0.5n

 (ii) x = a
∞

n = 2
0.5n

(b) Use the z-transform to evaluate the series

 x = a
∞

n = 0
0.5n cos 10.5n2.
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section 11.4

 11.11. The z-transform of a discrete-time function is given by

 F1z2 =
z

1z - 121z + 12  .

(a) Apply the final-value property to F(z).
(b) Find the inverse z-transform of F(z) and check your result from Part (a).
(c) If your results from Parts (a) and (b) are different, explain why.

 11.12. The z-transform of a discrete-time function f [n] is given by

 F1z2 =
6z1z - 0.52

1z - 121z - 0.421z + 0.42 =
6z2 - 3z

z3 - z2 - 0.16z + 0.16
 .

(a) Apply the final-value property to F1z2.
(b) Check your result in Part (a) by finding the inverse z-transform of F1z2.
(c) Verify the partial fraction expansion in (b) using MATLAB.

 11.13. Given f [n] = anu[n], find the z-transforms of the following:

(a) f [n - 3]u[n - 3]; verify your result by a power series expansion
(b) f [n + 3]u[n]; verify your result by a power series expansion
(c) Evaluate f [n] for n = 0 and n = 3,  f [n - 3]u[n - 3] for n = 3, and f [n + 3]u[n] 

for n = 0 by converting each z-transform function into a power series.
(d) Are the values found in Part (c) consistent? Explain why or why not.

 11.14. A function y[n] has the unilateral z-transform

 Y1z2 =
2z3

z3 - 4z2 + 6z - 8
 .

(a) Find the z-transform of y1[n] = y[n - 2]u[n - 2].
(b) Find the z-transform of y2[n] = y[n + 2]u[n].
(c) Evaluate y[n] for n = 0 and 2, y[n - 2]u[n - 2] for n = 2, and y[n + 2]u[n] for 

n = 0 by expanding the appropriate z-transforms into power series.
(d) Are the values found in Part (c) consistent? Explain why.

 11.15. Consider the z-transforms of discrete-time functions

 X11z2 =
0.7z

1z - 121z - 0.72  ;

 X21z2 =
0.7

1z - 121z - 0.72  ;

 X31z2 =
0.7

z1z - 121z - 0.72  .

(a) Without calculating the inverse transforms, state how x1[n],  x2[n], and x3[n] are related.
(b) Verify the results of Part (a) by finding the inverse transforms.
(c) Verify the partial-fraction expansions in Part (b) using MATLAB.



602 The z-Transform    Chap. 11

 11.16. (a)  Given the following unilateral z-transforms, find the inverse z-transform of each 
function:

 (i) X1z2 =
0.5z

1z - 121z - 0.52

 (ii) X1z2 =
0.5

1z - 121z - 0.52

 (iii) X1z2 =
0.51z + 12

1z - 121z - 0.52

 (iv) X1z2 =
0.5z1z + 12

1z - 121z - 0.52

 (v) X1z2 =
0.5

z1z - 121z - 0.52

 (vi) X1z2 =
12z

z2 - 12z + 1

(b) Verify the partial-fraction expansions in Part (a) using MATLAB.
(c) Evaluate each x [n] in Part (a) for the first three nonzero values.
(d) Verify the results in Part (c) by expanding each X1z2 in Part (a) into a power 

 series using long division.
(e) Use the final-value property to evaluate x[∞ ] for each function in Part (a).
(f) Check the results of Part (e), using each x [n] found in Part (a).

section 11.5

 11.17. Given f [n] = anu[n], find the z-transforms of the following:

(a) f [n/2]
(b) f [n - 2]u[n - 2]; verify your result by a power series expansion.

 11.18. Given f [n] = 3e-2nu[n], find the z-transforms of the following:

(a) f [n/3]
(b) f [n + 3]u[n]; verify your result by a power series expansion.

 11.19. A function y[n] has the unilateral z-transform

 Y1z2 =
2z3

z3 - 4z2 + 6z - 8
 .

Find the z-transform of y1[n] = y[n/2].

 11.20. Given z[4n] = z/1z - 42, find the z-transform of f [n] as given, using only the proper-
ties of z-transforms:

(a) fa[n] = n4n.
(b) fb[n] = n1n - 124n.

Verify the results of Parts (a) and (b) using the z-transform table.
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 11.21. Given the following functions

 f [n] = 2-nu[n], g[n] = 3n u[n], and q[n] = n3nu[n].

Use z-transforms to derive

(a) f [n]*g[n]
(b) f [n]*q[n]
(c) q[n]*g[n]
(d) f [n]*g[n]*q[n]

 11.22. The wavelet transform [4] has recently become popular for various signal-processing 
operations. The analysis step involves applying a series of low-pass filters to the input 
signal. After each application of the filter, the signal is downsampled to retain only 
every other sample point so that the number of wavelet transform coefficients that 
remains is equal to the number of points in the input function.

In the synthesis stage, the wavelet coefficients are repeatedly upsampled and 
 filtered to reconstruct the input signal. This problem will demonstrate that the filtering 
and upsampling steps of the wavelet transform can be interchanged.

To upsample a signal x[n], we form

 xM[n] = ex[ n
M], if n is an integer@multiple of M

0, otherwise.

(a) A filter with impulse response h[n] is applied to a signal x[n] to form y[n]. The 
 signal y[n] is then upsampled by a factor of M to form yM[n]. Find YM1z2.

(b) Next the input signal x[n] is first upsampled by M to form xM[n]. The filter h[n] 
is also upsampled by M to form hM[n] and is then applied to xM[n]. Find the 
z@transform of xM[n]*hM[n].

section 11.6

 11.23. Consider the digital filter shown in Figure P11.23.

X(z) Y(z)0.2z

Digital
filter

z�0.8 Figure P11.23  

(a) Derive the z-transform of the unit-step response, Y(z).
(b) Find the steady-state output in response to a unit-step input.
(c) Find the time-domain unit-step response, y[n].
(d) Use the result of Part (c) to verify your result from Part (b).
(e) Use MATLAB to calculate and plot the unit step response of the system.

 11.24. Consider the digital filter shown in Figure P11.23.

(a) Derive the z-transform of the output, Y(z), when the input is

 x[n] =  cos 1pn/22u[n]S.

(b) Find the time-domain response, y[n] when the input is x[n] given in Part (a).



604 The z-Transform    Chap. 11

(c) Use MATLAB to calculate and plot the response of the system to the input of Part 
(a).

(d) Use the initial-value property to evaluate x[0] for each function in Part (a).
(e) Check the results of Part (g), using each x[n] found in Part (a).

 11.25. Suppose that the difference equation model shown below describes an LTI system:

 y[n] - .75y[n - 1] + 0.125y[n - 2] = x[n];

 when x[n] = e1, n = 0, 1
0, otherwise.

(a) Find the system transfer function H(z).
(b) Find the unit-step response, y[n], of the system of (a).
(c) Use MATLAB to plot the unit-step response of the system.
(d) Verify the value of y[0] in Part (b), using the initial-value property. Does this agree 

with the plotted value from Part (c)?
(e) Will the final-value property give the correct value of y[∞ ]? If your answer is 

yes, find the final value. Otherwise, state why the final-value property is not 
applicable.

 11.26. Consider the following difference equation and excitation:

 y[n] - 0.75y[n - 1] + 0.125y[n - 2] = x[n];

 x[n] = e1, n = 0
0, otherwise.

(a) Find y[n], using the z-transform.
(b) Check the partial-fraction expansions in Part (a) using MATLAB.
(c) Verify the results of Part (a) for n = 0, 1, 2, 3, and 4, by solving the difference 

equation by iteration.
(d) Use MATLAB to check the results in Part (c).
(e) Verify the value of y[0] in Part (a), using the initial-value property.
(f) Will the final-value property give the correct value of y[∞ ]? If your answer is 

yes, find the final value. Otherwise, state why the final-value property is not 
applicable.

 11.27. (a) The difference equation

 y[n] - y[n - 1] + 0.5y[n - 2] = x[n]

 models an LTI system. Find the system transfer function.
(b) Find the unit step response for the system of Part (a).
(c) Use MATLAB to check the partial-fraction expansion in Part (b).
(d) From Part (b), give the values of y[0], y[1], and y[2].
(e) Verify the results of Part (d) by solving the difference equation iteratively.
(f) Verify the results in Part (e) by calculating the system’s unit-step response using 

MATLAB.
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D
x[n] �

� �

�

D

�0.7

�0.1

D

y[n]

Figure P11.28  

 11.28. Consider the block diagram shown in Figure P11.28.

(a) Find the difference equation model for this system.
(b) Find the system transfer function.
(c) Determine the stability of the system.
(d) Find the unit-step response of the system.
(e) If the unit-step response has a finite final value, calculate the final value.
(f) Use MATLAB to calculate and plot the step response. Compare the response 

computed by MATLAB with your results from Parts (d) and (e).

 11.29. Consider the block diagram of a discrete-time system given in Figure P11.29.

az�1
X(z) Y(z)

�

Figure P11.29  

(a) Find the difference-equation model of this system.
(b) Find the system transfer function.
(c) Determine the range of the parameter a for which this system is BIBO stable.
(d) Find the impulse response of this system. Is the answer to Part (c) evident from the 

impulse response? Why?
(e) Let a = 0.5. Find the unit step response for this system.
(f) Let a = 2.0. Find the unit step response for this system.
(g) Check the results of Parts (e) and (f) using MATLAB.

 11.30. A simple way to smooth data is to just take a weighted average of a number of samples. 
Consider an LTI system with input and output related by

 y[n] = ax[n - 1] + 11 - a2x[n].

Assume that all initial conditions are 0.

(a) Find the system impulse response h[n].
(b) Find the impulse response of the system needed to recover x[n] from y[n]. (Hint: 

consider the inverse system.)
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 11.31. Consider a system with the transfer function H1z2.

(a) Give any third-order transfer function such that the system is causal, but not stable.
(b) Give any third-order transfer function such that the system is not causal, but stable.
(c) Give any third-order transfer function such that the system is neither causal nor 

stable.
(d) Give any third-order transfer function such that the system is both causal and 

stable.

 11.32. (a) Determine the stability of the causal systems with the following transfer functions:

 (i) H1z2 =
31z + 0.92

z1z - 0.921z - 1.22
 (ii) H1z2 =

31z - 122

z3 - 1.8z2 + 0.81z

 (iii) H1z2 =
91z - 0.92

z1z + 0.921z - 12
 (iv) H1z2 =

61z - 1.22
1z + 121z - 0.92

 (v) H1z2 =
z - 0.75

z3 - 2.05z2 + z

 Use MATLAB where required.
(b) For each system that is unstable, give a bounded input for which the output is 

unbounded.
(c) Verify the results in Part (b) by finding the unbounded term in the response for 

that input.

 11.33. Given the general system transfer function

 H1z2 =
b0 + b1z

-1 + g+ bMz-M

a0 + a1z
-1 + g+ aNz-N

 .

Show that this system is causal provided that a0 ≠ 0. (Hint: Consider the impulse 
response.)

 11.34. Use MATLAB to compute and plot the frequency response of the system of

(a) Problem 11.23
(b) Problem 11.27
(c) Problem 11.28
(d) Problem 11.29(e)
(e) Problem 11.29(f)

section 11.7

 11.35. Given the discrete-time function

 f [n] = anu[n] - b2nu[-n - 1].
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(a) What condition must hold on a and b for the bilateral z-transform to exist?
(b) Assuming that the preceding condition holds, find the bilateral z-transform and 

region of convergence of f [n].

 11.36. Find the bilateral z-transforms and the regions of convergence for the following 
functions:

(a) 0.7nu[n]
(b) 0.7nu[n - 7]
(c) 0.7nu[n + 7]
(d) -0.7nu[-n - 1]

 11.37. Find the bilateral z-transforms and the regions of convergence for the following 
functions:

(a) 0.8nu[n]
(b) 0.8nu[n - 1]
(c) 0.8nu[n + 1]
(d) 0.8nu[-n]
(e) 0.8nu[-n - 1]
(f) 0.8nu[-n + 1]

 11.38. (a) Find the inverse of the bilateral z-transform

 Fb1z2 =
.6z

1z - 121z - .62

 for the following regions of convergence:
 (i) � z � 6 .6
 (ii) � z � 7 1
 (iii) .6 6 � z � 6 1

(b) Give the final values of the functions of Parts (i) through (iii).
(c) Verify the results of Part (b) using the final-value theorem.

 11.39. (a) Find the inverse of the bilateral z-transform

 Fb1z2 =
1.5z2 - 1.3

1z - 121z - .62

 for the following regions of convergence:
 (i) � z � 6 0.9
 (ii) � z � 7 1
 (iii) 0.9 6 � z � 6 1

(b) Give the final values of the functions of Parts (i) through (iii).
(c) Verify the results of Part (b) using the final-value theorem.
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 11.40. (a) Given the discrete-time function

 f [n] = e 1
1
22n, -10 F n F 20

0, otherwise,

express the bilateral z-transform of this function in closed form (not as a power series).
(b) Find the region of convergence of the transform of Part (a).
(c) Repeat Parts (a) and (b) for the discrete-time function

 f [n] = c 11
32n, -10 F n F 10
11

62n, n Ú 11
0, otherwise.

(d) Repeat Parts (a) and (b) for the discrete-time function

 f [n] = c 11
32n, -10 F n F 0
11

62n, 1 F n F 10
0, otherwise.

 11.41. Consider the bilateral z-transform

 F1z2 =
2z

z - 1
+

4z
z - 0.9

-
z

z - 0.85
 .

(a) Find all possible regions of convergence for this function.
(b) Find the inverse transform for each region of convergence found in Part (a).
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The widespread use of digital devices has greatly increased the importance of 
transforms for number sequences. A continuous-time signal cannot be processed by 
a digital computer. To use a digital computer to process a continuous-time signal, it 
is first necessary to convert the signal into a number sequence by sampling; a digital 
computer can process only numbers (binary codes). The rate of sampling must be 
such that the characteristics of the number sequence are essentially those of the 
continuous-time signal. The choice of sampling rates was discussed in Sections 6.4 
and 6.5.

Once a continuous-time signal has been converted to a number sequence, we 
can use transforms to determine its characteristics. In addition, we can determine 
the characteristics of data-processing algorithms by the use of transforms. One 
transform for number sequences has already been introduced—the z-transform in 
Chapter 11. This transform is applied to discrete signals and systems and is approx-
imately the equivalent of the Laplace transform for continuous-time signals and 
systems.

In this chapter, we define both the discrete-time Fourier transform and the 
discrete Fourier transform. (Note the difference in the names of these transforms.) 
Later, we consider some of the efficient computer algorithms for calculating dis-
crete Fourier transforms. These algorithms fall under the general classification of 
fast Fourier transforms (FFTs). The discrete-time Fourier transform and the dis-
crete Fourier transform are then applied to discrete-time signals and systems and 
are equivalent to the Fourier transform for continuous-time signals and systems. 
The Fourier transform is discussed in Chapters 5 and 6.

In this chapter, we also introduce the discrete cosine transform (DCT). The 
DCT is closely related to the FFT. The DCT finds wide application as the basis of 
the image-compression standard issued by the Joint Photographic Experts Group 
(JPEG). The JPEG algorithm is commonly used on the World Wide Web for 
 compressing images.

Fourier TransForms 
oF DiscreTe-Time signals12
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 12.1 DiscreTe-Time Fourier TransForm

In Section 6.4, we saw that the Fourier transform

[eq(6.17)] Xs1v2 = a
∞

n = -∞
x1nT2e-jnvT

appears in modeling the sampling process. If, in this equation, we make the usual 
substitution x1nT2 = x[n] and make the change of variables vT = Ω, we have the 
defining equation of the discrete-time Fourier transform:

 X1Ω2 = dtf1x[n]2 = a
∞

n = -∞
x[n]e-jnΩ. (12.1)

In this equation, dtf1 #2 denotes the discrete-time Fourier transform and Ω  is 
the discrete-frequency variable. We see then that the discrete-time Fourier trans-
form is inherent in the Fourier-transform model of the sampling operation in 
Figure 6.29.

The inverse discrete-time Fourier transform is defined as

 x[n] = dtf-1[X1Ω2] =
1

2pL
Ω1+2p

Ω1

X1Ω2ejnΩdΩ =
1

2pL2p
X1Ω2e jnΩdΩ, (12.2)

where Ω1 is arbitrary. This is denoted by placing the value 2p directly underneath 
the integral symbol. We show later that the integrand is periodic with period 2p. 
This inversion integral can be derived directly from that of the Fourier transform, 
(5.2) [3]. We denote a discrete-time Fourier transform pair by

 x[n] ·dtf X1Ω2. (12.3)

It is important to note that x[n] is a function of the discrete variable n, while 
the transform X1Ω2 in (12.1) is a function of the continuous variable Ω. Hence, 
X1Ω2 is a continuous function of frequency, while x[n] is a discrete function of 
time.

In general, we obtain the discrete sequence x[n] by sampling a continuous-time 
signal x1t2, or the sequence is interpreted as being the samples of a continuous-
time signal. For this case, the discrete-frequency variable Ω is related to the real- 
frequency variable v by the equation Ω = vT. Hence, we see that discrete frequency 
Ω is a scaled version of real frequency v. Recall that this scaling also appeared in 
the study of discrete-time signals and systems in Chapters 9 and 10. The principal  
application of the discrete-time Fourier transform is in the analysis of sampled 
signals.

Next, we consider two examples of discrete-time Fourier transforms.
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 example 12.1 Discrete-time Fourier transform (DTFT) of a signal

We now find the discrete-time Fourier transform of the function x[n] = anu[n], where

 anu[n] = c an, n G 0
0, n 6 0

 .

Recall from Section 9.4 that this function is exponential in nature. From (12.1),

  X1Ω2 = a
∞

n = -∞
x[n]e-jnΩ = a

∞

n = 0
ane-jnΩ

  = 1 + ae-j Ω + a2e-j 2Ω + g = 1 + ae-jΩ + 1ae-jΩ22 + g.

We now find X1Ω2 in closed form. From Appendix C, we have the geometric series

 a
∞

n = 0
bn = 1 + b + b2 + g =

1
1 - b

; � b � 6 1.

In X1Ω2, we let ae-jΩ = b, resulting in the transform

 X1Ω2 =
1

1 - ae-jΩ; � ae-jΩ � 6 1.

Because � e - jΩ � = � cos Ω - j sin Ω � = 1, this transform exists for � a � 6 1; we then have 
the transform pair

 anu[n] ·dtf 1

1 - ae- j Ω, � a � 6 1.

This transform is valid for either real or complex values of a. The discrete-time Fourier 
transform of anu[n], � a � 7 1, does not exist. ■

 example 12.2 The linearity property of the DTFT

Consider the discrete-time function x[n] = a�n�. This function is plotted in Figure 12.1 for a 
real and 0 6 a 6 1 and can be expressed as

 x[n] = anu[n] + a - nu[-n - 1] = x1[n] + x2[n].

••••••

0�1�2�3 3 n

x[n]

21

1

a

Figure 12.1  A plot of a�n�.
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The transform of x1[n] = anu[n] was found in Example 12.1. For the second term x2[n],

  dtf[a-nu[-n - 1]] = a
∞

n = -∞
[a-nu[-n - 1]]e-njΩ

  = a
-1

n = -∞
1ae jΩ2-n = aejΩ + 1aejΩ22 + 1aejΩ23 + g

  = a
∞

n = 1
1aejΩ2n,

since u[-n - 1] = 0, n 7 -1. From Appendix C, we have the geometric series

 a
∞

n = k
bn = bk + bk + 1 + g =

bk

1 - b
, � b � 6 1.

In X1Ω2, we let aejΩ = b, resulting in the transform

 X1Ω2 =
aejΩ

1 - aejΩ, � aejΩ � 6 1.

Because � e-jΩ � = 1, this transform exists for � a � 6 1. We now use the linearity property of 
the discrete-time Fourier transform (proved in the next section), which states that the trans-
form of a sum of functions is equal to the sum of the transforms, provided that the sum of 
transforms exists:

 X1Ω2 = X11Ω2 + X21Ω2 =
1

1 - ae-jΩ +
a jΩ

1 - ae jΩ, � a � 6 1.

The transform of a�n�, � a � 7 1, does not exist. ■

z-Transform

We now relate the discrete-time Fourier transform to the z-transform. The bilateral 
z-transform is defined in Chapter 11 as

[eq(11.1)] z[x[n]] = X1z2 = a
∞

n = -∞
x[n]z-n.

Table 11.5 lists the bilateral z-transform of several discrete-time functions. Earlier 
in this section, the discrete-time Fourier transform was given by

[eq(12.1)] X1Ω2 = dtf[x[n]] = a
∞

n = -∞
x[n]e - jnΩ.



Sec. 12.1    Discrete-Time Fourier Transform 613

Comparison of (11.1) and (12.1) yields the following relationship between the 
z-transform and the discrete-time Fourier transform:

 dtf[x[n]] = z[x[n]]z = e jΩ. (12.4)

We see from this equation that a table of z-transforms can be used for discrete-time 
Fourier transforms, provided that the discrete-time Fourier transform exists.

Table 12.1 gives several discrete-time Fourier transforms, taken from Table 11.5. 
Several additional transforms that cannot be obtained from the table of z-transforms 
are included.

We state without proof that dtf[x[n]] exists if x[n] is absolutely summable 
[4]—that is, if

 a
∞

n = -∞
� x[n] � 6 ∞ . (12.5)

This condition is sufficient; however, the discrete-time Fourier transforms of some 
functions that do not satisfy this condition do exist. In general, the transforms for 

Table 12.1  Discrete-Time Fourier Transforms

f [n] F 1� 2
 1. d[n] 1

 2. 1 2p a
∞

k = -∞
d1Ω - 2pk2

 3. u[n]
1

1 - e - jΩ
+ a

∞

k = -∞
pd1Ω - 2pk2

 4. anu[n]; � a � 6 1 1

1 - ae - jΩ

 5. nanu[n]; � a � 6 1
aejΩ

1ejΩ - a22

 6. a-nu[-n - 1]; � a � 6 1 aejΩ

1 - aejΩ

 7. ejΩ0n 2p a
∞

k = -∞
d1Ω - Ω0 - 2pk2

 8.  cos[Ω0n] p a
∞

k = -∞
[d1Ω - Ω0 - 2pk2 + d1Ω + Ω0 - 2pk2]

 9.  sin[Ω0n]
p

j
 a

∞

k = -∞
[d1Ω - Ω0 - 2pk2 - d1Ω + Ω0 - 2pk2]

10. x[n] periodic with period N

 x[n] = a
∞

k = -∞
x0[n - kN] X01Ω2 = a

N - 1

n = 0
 x0[n]e-jnΩ

 x[n] =
1
N

 a
N - 1

k = 0
X0a 2pk

N
bej2pk/N X1Ω2 =

2p
N

 a
∞

k = -∞
X0a 2pk

N
 bd1Ω - 2pk/N2
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these functions contain impulse functions in the variable Ω; these transforms are 
discussed later.

The regions of convergence of the z-transforms are given in Table 11.5; these 
regions are annular and of the form a 6 � z � 6 b. To use this table for discrete-time 
Fourier transforms, we make the substitution of (12.4), z = e jΩ. The region of con-
vergence then transforms into

 a 6 � z � 6 b 1 a 6 � ejΩ � 6 b.

Because � ejΩ � = 1, a plot of � ejΩ �  forms the unit circle in the Ω@plane. Hence, 
Table  11.5 becomes a table of discrete-time Fourier transforms for those func-
tions for which the region of convergence includes the unit circle. This property is 
 illustrated in Figure 12.2. In Figure 12.2(a), the unit circle is in the region of conver-
gence, and the discrete-time Fourier transform does exist. In Figure 12.2(b) the unit 
circle is outside the region of convergence, and the discrete-time Fourier transform 
does not exist. An example will now be given.

z z

ROC

(a)

ROC

(b)

a b1 a b 1

Figure 12.2  Regions of convergence in the 
z-plane.

 example 12.3 use of the z-transform to find a DTFT

We wish to find the discrete-time Fourier transform of the function x[n] = nanu[n]. From 
Table 11.5,

 z[nanu[n]] =
az

1z - a22 ; � z � 7 � a � .

Hence, for the discrete-time Fourier transform of nanu[n] to exist, � ejΩ � = 1 7 � a � , and we 
have the transform

 dtf[nanu[n]] =
aejΩ

1ejΩ - a22
; � a � 6 1.

Consider next the discrete-time Fourier transform of cos(bn)u[n]. From Table 11.5,

 z[cos1bn2u[n]] =
z2 - z cos b

z2 - 2z cos b + 1
; � z � 7 1.
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Because the unit circle is not within the given region of convergence, the discrete-time 
Fourier transform of cos(bn)u[n] is not the one given by Table 11.5. However, as we will see, 
this transform does exist. ■

 example 12.4 DTFT analysis of an Fir filter

Figure 12.3 shows a block diagram of a finite-duration impulse response filter (FIR). Each 
of the blocks containing a D represents one sample–period delay. The three transmittances, 
bi, shown are chosen so that the filter meets design specifications. Most practical filters con-
tain many more unit delays and corresponding transmittances.

For this example we will analyze a simple second-order averaging filter. The filter will 
be designed to calculate the average of the current input sample and the two most recent past 
sample values. The output signal is

 y[n] = b0x[n] + b1x[n - 1] + b2x[n - 2].

Because we are calculating a simple average of three sample values, we choose b0 =
b1 = b2 = 1

3. We choose a sampling period of T = 0.01 s. Then

 y[n] =
1
3

 1x[n] + x[n - 1] + x[n - 2]2.

The z-transform of the output signal is

 Y1z2 =
1
3

 [1 + z-1 + z-2]X1z2 =
z2 + z + 1

3z2  X1z2.

From this equation we see that the z-transform transfer function is

 H1z2 =
z2 + z + 1

3z2 =
1
3

 11 + z - 1 + z - 22.

For frequency response analysis of the filter we convert the transfer function into a 
DTFT frequency-response function by substituting z S ejΩ to get

 H1Ω2 =
1
3

 11 + e-jΩ + e-j2Ω2 =
e-j Ω

3
 11 + e-jΩ + e-jΩ2.

�

x[n]

b0 b1 b2

x[n�1] x[n�2]

y[n]

DD

Figure 12.3  FIR filter for Example 12.4.
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We apply Euler’s relation to write

 H1Ω2 =
2e-jΩ

3
 a1

2
+ cos1Ω2 b .

This DTFT frequency-response function allows relatively simple computation of the 
magnitude and phase of the system at selected frequencies. The magnitude and phase of the 
filter’s response at a few selected frequencies are listed in Table 12.2. These calculations 
show the system to be a low-pass filter with a half-power cut off frequency of approximately 
97.6 rad/s.

Table 12.2  Frequency Response Data for Example 12.4

� (rad/sample) V = � (rad/s) ∣ H 1� 2 ∣ j H 1� 2
0   0.0 1   0°
0.976  97.6 0.7071 -55.9°
p

3
104.7 0.66 -60°

p

2
157.1 0.333 -90°

2p
3

209.4 0.0 -120°

2.80 280.0 2.948 -160.4°
p 314.2 0.333 -180°

The frequency response of the filter is calculated and plotted by the following MATLAB 
program.

% This MATLAB program computes the frequency response of an averaging FIR 
filter for
%Example 12.3.
% Enter the numerator and denominator coefficients.
n=[1 1 1], d=[1 0 0]
% Enter the sampling period.
T=0.01
% Derive the transfer function.
Hz = tf(n,d,T)/3
% Create a vector of frequencies 0<=Omega<= pi.
W=[O:pi*T:pi];
% Compute the frequency response of the filter.
M=freqz(n,d,W);
% Compute the magnitude of the frequency response.
mag=abs(M);
% Compute the phase of the frequency response in degrees.
phdeg=angle(M)*180/pi;
% Create the magnitude and phase frequency response plots.
figure(1),plot(W,mag)
figure(2),plot(W,phdeg)

Plots of the magnitude and phase frequency response of the filter are shown in 
Figure 12.4. It is noteworthy that for filters of this type, the phase shift is a linear function of 
frequency.
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 12.2 properTies oF The DiscreTe-Time Fourier 
TransForm

In this section, several properties of the discrete-time Fourier transform are given. 
These properties are based on the defining equations of the transform:

[eq(12.1)] X1Ω2 = a
∞

n = -∞
x[n]e-jnΩ

1
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Figure 12.4  Frequency response plots for Example 12.4. ■
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and

[eq(12.2)] x[n] =
1

2pL2p
X1Ω2e jnΩdΩ.

First, however, we review the relation of the Fourier transform and the discrete-
time Fourier transform. Recall that

 f[xs1t2]vT = Ω = fJ a
∞

n = -∞
x1nT2d1t - nT2 R

vT = Ω
= dtf[x1nT2 = x[n]], (12.6)

from (5.40). We see that the discrete-time Fourier transform can be interpreted as 
the Fourier transform of a train of weighted impulse functions. Hence, the proper-
ties of the Fourier transform given in Chapter 5 apply directly to the discrete-time 
Fourier transform, with the change of variables in (12.6). For some properties, we 
refer to Chapter 5 for the proofs; for other properties, proofs are given.

Before discussing the properties given in Chapter 5, we consider a property 
that is unique to the discrete-time Fourier transform.

periodicity

The discrete-time Fourier transform X1Ω2 is periodic in Ω with period 2p; we dem-
onstrate this from the definition of periodicity, X1Ω2 = X1Ω + 2p2. From (12.1),

  X1Ω + 2p2 = a
∞

n = -∞
x[n]e-jn1Ω + 2p2 = a

∞

n = -∞
x[n]e-jnΩe-j2pn 

  = a
∞

n = -∞
x[n]e - jnΩ = X1Ω2,  (12.7)

because e - j2pn = cos 2pn - j sin 2pn = 1; thus, periodicity is proved. This prop-
erty is very important, and its implications are covered in detail later in this chapter. 
We illustrate this property with an example.

 example 12.5 Demonstration of the periodicity of the DTFT

From Table 12.1, for x[n] = anu[n] with � a � 6 1,

 X1Ω2 =
1

1 - ae-jΩ.

Then,

 X1Ω + 2p2 =
1

1 - ae- j1Ω + 2p2 =
1

1 - ae-jΩe- j 2p
 .

Because e-j2p = cos 2p - j sin 2p = 1,

 X1Ω + 2p2 =
1

1 - ae- jΩ = X1Ω2. ■
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linearity

The linearity property of the Fourier transform states that the Fourier transform 
of a sum of functions is equal to the sum of the Fourier transforms of the func-
tions, provided that the sum exists. The property applies directly to the discrete-
time Fourier transform:

 dtf[a1x1[n] + a2x2[n]] = a1X11Ω2 + a2X21Ω2.

This property was demonstrated in Example 12.2.

Time shift

It is informative to derive the time-shift property from the definition of the discrete-
time Fourier transform. From (12.1),

 dtf[x[n - n0]] = a
∞

n = -∞
x[n - n0]e

-jnΩ.

We make the change of variables 1n - n02 = k on the right side of this equation. 
Then, because n = 1k + n02,

  dtf[x[n - n0]] = a
∞

k = -∞
x[k]e-jΩ1k + n02

  = e - jΩn0 a
∞

k = -∞
x[k]e-jΩk = e-jΩn0X1Ω2.

Thus, the time-shift property is given by

 x[n - n0] ·dtf e-jΩn0X1Ω2. (12.8)

Note also that this property can be written directly from Table 5.1. We illustrate this 
property with a numerical example. 

 example 12.6 illustration of the time-shift property of the DTFT

We find the discrete-time Fourier transform of the sequence shown in Figure 12.5. The 
 sequence is described mathematically by

  x[n] = d[n - 3] + 0.5d[n - 4] + 0.25d[n - 5] + g = a
∞

k = 3
 10.52k - 3 d[n - k]

  = 10.52n - 3u[n - 3].

From Table 12.1, for � a � 6 1,

 dtf[anu[n]] =
1

1 - ae-jΩ.
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Then, from this transform and (12.8),

 dtf[10.52n - 3u[n - 3]] =
e-j3Ω

1 - 0.5e-jΩ. ■

Frequency shift

The time-shift property gives the effects in the frequency domain of a shift in the 
time domain. We now give the time-domain manipulation that results in a shift in 
the frequency domain:

  dtf[ejΩ0nx[n]] = a
∞

n = -∞
ejnΩ0x[n]e - jnΩ

  = a
∞

n = -∞
x[n]e - jn1Ω - Ω02 = X1Ω - Ω02.

This property is then

 ejnΩ0x[n] ·dtf X1Ω - Ω02. (12.9)

Hence, the multiplication of a time-domain signal by the complex exponential ejnΩ0 
results in a shift of Ω0 in the frequency domain.

 example 12.7 application of the frequency-shift property of the DTFT

From Example 12.1,

 an u[n] ·dtf 1

1 - ae-jΩ  , � a � 6 1.

Then, from (12.9),

 ejnΩ0anu[n] ·dtf 1

1 - ae-j1Ω - Ω02 , � a � 6 1. ■

symmetry

We state the symmetry properties of the discrete-time Fourier transform without 
proof. Expressing X1Ω2 in its real and imaginary parts yields

 X1Ω2 = Re[X1Ω2] + j Im[X1Ω2].

••••••

0�1�2�3 3 4 5 n

x[n]

21

1

Figure 12.5  A discrete-time sequence.
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For the case that x[n] is a real-valued sequence, we list the symmetry properties:

   Re[X1Ω2] is even; 

   Im[X1Ω2] is odd;  

   � X1Ω2 �  is even;  

   arg X1Ω2 is odd.  (12.10)

Time reversal

Consider the time-reversed signal x[-n]. Then

 dtf[x[-n]] = a
∞

n = -∞
x[-n]e-jnΩ.

Now let -n = k. It follows that

 dtf[x[-n]] = a
∞

k = -∞
x[k]ejkΩ = a

∞

k = -∞
x[k]e-jk1 - Ω2 = X1- Ω2.

The time-reversal property is then

 x[-n] · X1- Ω2. (12.11)

The effect of time reversal is frequency reversal.

convolution in Time

The time-convolution relation is given by

 dtf[x[n]*y[n]] = X1Ω2Y1Ω2. (12.12)

We derive this relationship because of its importance. Consider the definition of 
convolution, from (10.16):

 x[n]*y[n] = a
∞

k = -∞
x[k]y[n - k].

Then,

 dtf[x[n]*y[n]] = a
∞

n = -∞ 
J a

∞

k = -∞
x[k]y[n - k]R e-jnΩ.

We reverse the order of the summations, yielding

 dtf[x[n]*y[n]] = a
∞

k = -∞
x[k] J a

∞

n = -∞
y[n - k]e-jnΩ R .
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Next, we change variables, letting m = n - k. Then,

  dtf[x[n]*y[n]] = a
∞

k = -∞
x[k]J a

∞

m = -∞
y[m]e-j1m + k2Ω R

  = a
∞

k = -∞
x[k]e-jkΩ a

∞

m = -∞
y[m]e-jmΩ = X1Ω2Y1Ω2,

and the property is proved.

convolution in Frequency

The process of multiplying discrete-time signals, as in modulation, results in an op-
eration called circular convolution (or periodic convolution) for the DTFT of the 
product:

 x[n]y[n] ·dtf a
∞

n = -∞
x[n]y[n]e-jnΩ. (12.13)

We use the inverse discrete-time Fourier transform (12.2) to write

 x[n] =
1

2pL2p
X1Ω2ejnΩdΩ.

After a change of variables in the integral, Ω S u, we use the result to rewrite 
(12.13) as

  x[n]y[n] ·dtf a
∞

n = -∞
J 1

2pL2p
X1u2ejnuduRy[n]e-jnΩ

  =
1

2p a
∞

n = -∞
y[n]JL2p

X1u2e-jn1Ω - u2duR
  =

1
2pL2p

X1u2J a
∞

n = -∞
y[n]e-jn1Ω - u2 Rdu.

From the frequency-shift property,

 a
∞

n = -∞
y[n]e-jn1Ω - u2 = Y1Ω - u2,

and we can now write the convolution-in-frequency property as

  x[n]y[n] ·dtf
1

2pL2p
X1u2Y1Ω - u2du 

  =
1

2p
X1Ω2àY1Ω2, (12.14)

where the mathematical symbol à is used to denote circular convolution.
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We see then that multiplication in time results in circular convolution in fre-
quency. Circular convolution is discussed more thoroughly in Section 12.6.

multiplication by n

This property is given by

 dtf[nx[n]] = j 
dX1Ω2

dΩ
. (12.15)

The proof of this property is given as a problem.

parseval’s Theorem

Parseval’s theorem for discrete-time signals is given by

 a
∞

n = -∞
� x[n] � 2 =

1
2pL2p

� X1Ω2 � 2dΩ, (12.16)

where the integral on the right side is over any range of Ω that is of width 2p. 
[Recall that X1Ω2 is periodic with period 2p.] The left side is the energy of the 
 signal, and � X1Ω2 � 2 is called the energy-density spectrum of the signal.

For convenience, the properties of this section are summarized in Table 12.3.

Table 12.3  Properties of the Discrete-TimeFourier Transform

signal Transform

x[n] X1Ω2 = a
∞

n = -∞
x[n]e - jnΩ

x[n] X1Ω2 = X1Ω + 2p2
a1x1[n] + a2x2[n] a1X11Ω2 + a2X21Ω2
x[n - n0] e - jΩn0X1Ω2
ejnΩ0x[n] X1Ω - Ω02

x[n] real d Re[X1Ω2] is even
Im[X1Ω2] is odd
� X1Ω2 �  is even
argX1Ω2 is odd

x[-n] X1- Ω2
x[n]*y[n] X1Ω2Y1Ω2
x[n]y[n]

1
2p

 X1Ω2*Y1Ω2

nx[n] j 
dX1Ω2

dΩ

Parseval’s theorem: a
∞

n = -∞
� x1n2 � 2 =

1
2pL2p

� X1Ω2 � 2dΩ
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 12.3 DiscreTe-Time Fourier TransForm  
oF perioDic sequences

In this section, we consider the discrete-time Fourier transform of periodic se-
quences. The resulting development leads us to the discrete Fourier transform and 
the fast Fourier transform.

Consider a periodic sequence x[n] with period N, such that x[n] = x[n + N]. 
Of course, N must be an integer. We define x0[n] to be the values of x[n] over the 
period beginning at n = 0, such that

 x0[n] = c x[n], 0 F n F N - 1
0, otherwise

. (12.17)

An example of a periodic sequence is shown in Figure 12.6, with N = 3. In this 
case, x0[n] is the sequence composed of x0[0] = 0, x0[1] = 1, and x0[2] = 1, with 
x0[n] = 0 for all other n.

••••••

0
(a)

�1�2�3 3 4 5 n

x[n]

21

1

••••••

0
(b)

�1�2�3

�6 �3 0 3 6

3 4 5 n

x0[n]

21

1

••••••

(c)
n

1

� [n � 3k]�

�

k � ��

Figure 12.6  A periodic discrete-time 
sequence.



Sec. 12.3    Discrete-Time Fourier Transform of Periodic Sequences  625

From (12.1) and (12.17), the discrete-time Fourier transform of x0[n] is 
given by

  X01Ω2 = a
∞

n = -∞
x0[n]e-jnΩ  

  = x0[0] + x0[1]e-jΩ + x0[2]e-j2Ω + g+ x0[N - 1]e-j1N - 12Ω 

  = a
N - 1

n = 0
x0[n]e-jnΩ.  (12.18)

Hence, X01Ω2 is a finite series in the continuous-frequency variable Ω.
We now find the discrete-time Fourier transform of the periodic sequence 

x[n] as a function of X01Ω2 in (12.18).
We can express the periodic sequence as

 x[n] = x0[n]* a
∞

k = -∞
d[n - kN]. (12.19)

The train of discrete impulses

 a
∞

k = -∞
d[n - kN]

(illustrated in Figure 12.6(c) for the case that N = 3) can be viewed as the sequence 
we generate by sampling a unity amplitude constant signal with the sampling period 
NT. From Table 5.2,

 fs1t2 = a
∞

k = -∞
d1t - kNT2 ·f 2p

NT
 a

∞

k = -∞
d¢v -

2pk
NT

≤ = Fs1v2.

Making the change of variables Ω = vT, we have

 F1Ω2 = Fs1v2 2
Ω = vT

=
2p
NT a

∞

k = -∞
d¢ 1

T
 JΩ -

2pk
N

R ≤.

From the definition of the impulse function, we have the relationship

 L
∞

-∞
d1ax2dx = L

∞

-∞
d1l2d 

l

a
2
l = ax

=
1
a L

∞

-∞
d1l2dl =

1
a

1 d1ax2 =
1
a

 d1x2, a 7 0,

which allows us to write

 F1Ω2 =
2p
NT a

∞

k = -∞
Td¢Ω -

2pk
N

≤ =
2p
N a

∞

k = -∞
d¢Ω -

2pk
N

≤.
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We now have the DTFT pair

 a
∞

k = -∞
d[n - kN] ·dtf

2p
N a

∞

k = -∞
d¢Ω -

2pk
N

≤. (12.20)

Note that the function d[ # ] is the discrete impulse function, and d1 #2 is the 
continuous impulse function. Hence, the discrete-time Fourier transform of a train 
of discrete impulse functions is a train of continuous impulse functions.

Recall from Table 12.3 that convolution in discrete-time n transforms into 
multiplication in frequency Ω. Then, from (12.19) and (12.20), the discrete-time 
Fourier transform of x[n] can be written as

 X1Ω2 = dtf[x[n]] = dtfJx0[n]*J a
∞

k = -∞
d[n - kN ]R R  

and (12.21)

 X1Ω2 =
2p
N a

∞

k = -∞
X01Ω2d¢Ω -

2pk
N

≤,

with the term X01Ω2 moved inside the summation as shown. Using the property of 
the continuous impulse function from Table 2.3,

 f1t2d1t - t02 = f1t02d1t - t02, (12.22)

we write (12.21) as

 X1Ω2 =
2p
N a

∞

k = -∞
X0¢ 2pk

N
≤d¢Ω -

2pk
N

≤. (12.23)

Recall from Table 12.3 that a discrete-time Fourier transform is always peri-
odic with period 2p; thus, X01Ω2 is periodic. Therefore, the Fourier transform of 
a sequence x[n], which is periodic with period N, results in a function X1Ω2 that is 
periodic with period 2p. Furthermore, the N distinct values of x[n], 0 F n F N - 1, 
transform into N distinct values of X012pk/N2, 0 F k F N - 1 in frequency.

Figure 12.7 gives an example of X1Ω2 in (12.23). For convenience, we have 
assumed that X01Ω2 is real and triangular. We also assume that N = 3 for this ex-
ample. The discrete-time Fourier transform of x[n], X1Ω2 of (12.23), is then as 
shown in Figure 12.7(b). In this figure, the lengths of the arrows denote the weights 
of the impulse functions. The period of X1Ω2 is 2p, with an impulse function oc-
curring every Ω = 2p/3. Hence, the values x[0], x[1], and x[2] completely describe 
the periodic function x[n], and the values X102, X12p/32, and X14p/32 completely 
describe the periodic function X1Ω2.

Next, we derive the inverse discrete-time Fourier transform of (12.23). 
From (12.2),
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  dtf-1[X1Ω2] = x[n] =
1

2pL
2p

0
X1Ω2e jΩndΩ   

  =
1

2pL
2p

0
J2p

N a
∞

k = -∞
 X0¢ 2pk

N
≤d¢Ω -

2pk
N

≤ R e jΩndΩ (12.24)

  =
1
N a

N - 1

k = 0
X0¢ 2pk

N
≤ej2pkn/N.  

The result is obtained from the property of the impulse function

 L
b

a
f1t2d1t - t02dt = Jf1t02, a F t0 F b

0, otherwise
.

In (12.24), only the impulse functions d1Ω2, d1Ω - 2p/N2, c, d1Ω - 2p[N - 1]/N2  
occur between 0 F Ω 6 2p.

In summary, for a periodic sequence x[n] = x[n + N],

[eq(12.23)] X1Ω2 =
2p
N a

∞

k = -∞
X0¢ 2pk

N
≤d¢Ω -

2pk
N

≤
and

[eq(12.24)] x[n] =
1
N

 a
N - 1

k = 0
X0¢ 2pk

N
≤e j2pkn/N,

where, from (12.18),

 X01Ω2 = a
N - 1

n = 0
x0[n]e-jnΩ. (12.25)

There are N distinct values of x[n] and N distinct values of X012pk/N2. An example 
is now given to illustrate these developments.

••• •••

(a)

X0(�)

�   � ��2     � �2  �0

1

••• •••

(b)

X(�)

�   � �
�2     � �2  � 3  �04  �

3�
2  �
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4  �
3

8  �
3

2  �
3

3
�

2  �
3

Figure 12.7  Discrete-time Fourier 
transform of a periodic signal.
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 example 12.8 calculation of the DTFT of a periodic sequence

Consider again the periodic signal x[n] of Figure 12.6. For this signal, N = 3, x0[0] = 0, 
x0[1] = 1, and x0[2] = 1. From (12.25), the discrete-time Fourier transform of x0[n] is 
given by

  X01Ω2 = a
N - 1

n = 0
x0[n]e-jnΩ = 0e-j 0 + 112e-jΩ + 112e-j 2Ω

  = e - jΩ + e - j2Ω.

This transform is periodic and the real part of X01Ω2 is plotted in Figure 12.8. From (12.23), 
the discrete-time Fourier transform of x[n] is then

 X1Ω2 =
2p
3 a

∞

k = -∞
X0¢2pk

3
≤d¢Ω -

2pk
3

≤,

where the three distinct values of X01 #2 are given by

  X0102 = ej102 + ej 2102 = 2,

  X0¢2p
3
≤ = e-j2p/3 + e-j4p/3 = 1l-120° + 1l-240°

  = -0.5 - j0.866 - 0.5 + j0.866 = -1,

and

  X0¢4p
3
≤ = e-j4p/3 + e-j8p/3

  = -0.5 - j0.866 - 0.5 + j0.866 = -1.

Re{X0(�)}

�

�2     � 2  ��   � ��1.5        � �0.5        � 0.5     � 1.5     �0

0

0.5

�0.5

�1

�1.5

1

1.5

2

Figure 12.8  X01Ω2 for Example 12.8.
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The frequency spectrum for X1Ω2 is plotted in Figure 12.9. For this case, X012pk/N2 are all 
real.

We now calculate x[n], using the inverse transform. From (12.24),

 x[n] =
1
N

 a
N - 1

k = 0
X0¢2pk

N
≤e j2pkn/N.

Thus,

  x[0] =
1
3
JX0102 + X0¢2p

3
≤ + X0¢4p

3
≤ R =

1
3

 [2 - 1 - 1] = 0;

  x[1] =
1
3

 JX0102 + X0¢2p
3
≤ej2p/3 + X0¢4p

3
≤ej4p/3R

  =
1
3

 [2 + 1-12l120° + 1-12l240° ]

  =
1
3

 [2 + 0.5 - j0.866 + 0.5 + j0.866] = 1;

  x[2] =
1
3

 JX0102 + X0¢2p
3
≤ej4p/3 + X0¢4p

3
≤ej8p/3R

  =
1
3

 [2 + 0.5 - j0.866 + 0.5 + j0.866] = 1.

These values are seen to be correct. ■

In the next section, a transform called the discrete Fourier transform will be 
defined for the distinct values x0[0], x0[1], c, x0[N - 1], it is independent of the 
derivations of this section. However, these derivations give us an interpretation of 
the discrete Fourier transform for cases in which the values of x0[n] are samples 
from a continuous-time signal.

X(�)

�

�6p/3 6p/3�4p/3 4p/3�2p/3 2p/30

0

4p/3

p/3

�p/3

2p/3

�2p/3

p

�p
Figure 12.9  X1Ω2 for Example 12.8.
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 12.4 DiscreTe Fourier TransForm

In Chapters 5 and 6 and in earlier sections of this chapter, we have presented for-
mulas for calculation of Fourier transforms. However, for both the actual Fourier 
transform and the discrete-time Fourier transform, the formulas produce continuous 
functions of frequency. In this section, we develop an approximation of the Fourier 
transform that can be calculated from a finite set of discrete-time samples of an 
analog signal and which produces a finite set of discrete-frequency spectrum values.  
This Fourier transform approximation is well suited for calculation by a digital com-
puter. It is called the discrete Fourier transform (DFT).

To use a digital computer to calculate the Fourier transform of a continuous-
time signal, we must use sampled values of x1t2 in the form of a discrete-time signal 
x[n]. From Section 12.1, we have the discrete-time Fourier transform (DTFT):

[eq(12.1)] X1Ω2 = dif1x[n]2 = a
∞

n = -∞
x[n]e-jnΩ.

The DTFT is computed from discrete-time samples, but X1Ω2 is a continu-
ous function of the frequency variable and cannot be represented exactly in a digi-
tal computer. However, using digital computations, we can approximate X1Ω2 by 
calculating discrete-frequency samples of the continuous-frequency function.

To generate the discrete-frequency samples, we must, for practical reasons, 
limit ourselves to a finite set of discrete-time samples. For the purpose of this devel-
opment, we will let the symbol N represent the number of samples chosen to rep-
resent the discrete-time signal. We choose the value of N sufficiently large so that 
our set of samples adequately represents all of x[n]. We can select our finite set of 
samples by multiplying the infinite set x[n] by a rectangular windowing function [5]:

 wR[n] = b1, n = 0, 1, 2, c , N - 1
0,     otherwise

.

Then the set of samples used to calculate the frequency spectrum is

 xN[n] = x[n]wR[n] = bx[n], n = 0, 1, 2, c , N - 1
0, otherwise

. (12.26)

The frequency spectrum of the signal xN[n] is given by (12.1):

 XN1Ω2 = dtf1xN[n]2 = a
∞

n = -∞
xN[n]e-jnΩ = a

N - 1

n = 0
x[n]e-jnΩ. (12.27)

For the remainder of the development, we consider the set of N samples of xN[n] 
to be the complete signal. We will drop the subscript on xN[n] and refer to the finite 
discrete-time sequence simply as x[n]. This is justified by the assumption that we have 
chosen the finite set of samples so that they adequately represent the entire signal.

We now select N samples of XN1Ω2 to represent the frequency spectrum. We 
could choose more than N samples, but we must choose at least N to avoid creating 
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errors in the inverse transformation. (See Ref. 3 for a detailed explanation.) It is 
general practice to compute the same number of samples (N) of the frequency spec-
trum as were used to represent x[n]. Because the DTFT is periodic in Ω with period 
2p, the N samples are taken from one period of XN1Ω2. The ideally sampled fre-
quency spectrum is given by

  XS1Ω2 = XN1Ω2 a
N - 1

k = 0
d1Ω - 2pk/N2  

  = a
N - 1

k = 0
XN12pk/N2d1Ω - 2pk/N2. (12.28)

In XS1Ω2, the value of the frequency spectrum at each sample frequency is 
shown as the weight of an impulse in frequency. The set of discrete-frequency values  
XN12pk/N2 is the information that we select to represent the frequency spectrum of 
the discrete-time sequence x[n]. Using the convention applied earlier for discrete-
time sequences, we write this discrete-frequency sequence as

 X[k] = XN12pk/N2, k = 0, 1, 2, c, N - 1.

Comparison of the equation for XS1Ω2 with (12.23) shows that the frequency 
spectrum XS1Ω2 has the same form as derived in Section 12.3 for periodic signals. 
(Since X[k] = 0, k ≠ 0, 1, 2,c, N - 1, we could change the limits of summation 
in our equation for XS1Ω2 to - ∞ 6 k 6 ∞ .) In fact, if we use (12.24) to find the in-
verse transformation of XS1Ω2, we will generate a periodic discrete-time sequence, 
xp[n], which has N samples per period. However, since we know that our sampled 
frequency spectrum was generated by a finite, nonperiodic, discrete-time sequence, 
we can limit our inverse transformation, from (12.24), to the N samples from one 
period of xp[n]. We determine our time signal to be

 x[n] =
1
N a

N - 1

k = 0
X[k]ej2pkn/N, n = 0, 1, 2, c, N - 1. (12.29)

The transform pair that we have developed for a set of N discrete-frequency 
samples calculated from a set of N samples of a discrete-time signal is known as the 
discrete Fourier transform (DFT) and the inverse discrete Fourier transform (IDFT), 
respectively:

  X [k] = df[x[n]] = a
N - 1

n = 0
x[n]e-j2pkn/N,  k = 0, 1, 2, c, N - 1;  

  x[n] = df-1[X [k]] =
1
N a

N-1

k = 0
X [k]ej 2pkn/N, n = 0, 1, 2, c, N - 1. (12.30)

The symbol df denotes the discrete Fourier transform. We also use the notation

 x[n] ·df X[k]

to represent this transform pair.
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 example 12.9 calculation of a discrete Fourier transform (DFT)

We consider the case that we have three data points. Hence, for N = 3, the discrete Fourier 
transform, (12.30), is given by

  X [0] = x[0] + x[1] + x[2];  

  X [1] = x[0] + x[1]e-j 2p/3 + x[2]e-j4p/3; (12.31)

  X [2] = x[0] + x[1]e-j4p/3 + x[2]e-j2p/3. 

In the last term in the third equation, e
-j8p

3 = e
-j6p

3 e
-j2p

3 = e
-j2p

3 . The inverse discrete Fourier 
transform, (12.30), is then

  x[0] = 1/31X[0] + X[1] + X[2]2;  

  x[1] = 1/31X[0] + X[1]ej2p/3 + X[2]ej4p/32; (12.32)

  x[2] = 1/31X[0] + X[1]ej4p/3 + X[2]ej2p/32. 

Note the symmetries of the two sets of equations. These equations are normally evaluated by 
computer. A computer program written to evaluate the forward discrete Fourier transform, 
(12.31), can easily be modified to calculate the inverse discrete Fourier transform, (12.32).  
A general computer program allows N to be any integer value. ■

shorthand notation for the DF T

A shorthand notation that is commonly used with the discrete Fourier transform 
will now be given. We define the symbol WN = e-j 2p/N. Equation (12.30) can then 
be expressed as

  X[k] = df[x[n]] = a
N - 1

n = 0
x[n]WN

kn, k = 0, 1, c, N - 1;  

  x[n] = df-1[X[k]] =
1
N

 a
N - 1

k = 0
X[k]WN

-kn, n = 0, 1, c, N - 1. (12.33)

The discrete Fourier transform is normally stated in this form.

Frequency resolution of the DF T

Because the DTFT from which the N frequency samples were taken is periodic with 
period 2p, the discrete frequency spectrum that we compute using the DFT has a 
resolution (separation between samples) of

 ∆Ω = 2p/N. (12.34)

This is illustrated by Figure 12.10 for N = 8, where the unit circle represents one 
12p2 period of the signal’s discrete-time Fourier transform. From this, we see that 
the choice of the number of samples of x[n] used in the calculation determines the 
resolution of the frequency spectrum, or vice-versa; the resolution required in the 
frequency spectrum determines the number of samples of x[n] that we must use.  
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In the event that a fixed number, N1, of time-domain samples is available, but a 
larger number, N2, of frequency-domain samples is required to provide adequate 
resolution, N2 - N1 zeros can be appended to the time sequence. This process is 
called zero padding. We discuss applications of zero padding in Section 12.6.

Figure 12.10 shows a polar plot of W8
k, k = 0, 1, 2, c, 7, in the complex 

plane. Three key observations can be made from this plot:

 1. Adjacent vectors in the sequence are separated by angles of 2p/N radians 
1N = 82.

 2. Each vector in the plot has an opposite of equal magnitude so that the sum 
of the two must be zero, and we can extend this finding to state that

 a
7

k = 0
W8

k = 0.

 3. The vectors are in conjugate pairs, so that each vector has a conjugate mate 
with an angle of equal value, but opposite sign.

Plotted in Figure 12.10, we have the sequence of complex vectors

 W8
0 = 1; W8

1 = 1e-jp/4; W8
2 = 1e-jp/2; W8

3 = 1e-j3p/4;  c; W8
7 = 1e-j7p/4.
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Figure 12.10  Polar plot of W8
k.
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If we evaluate W8
kn = 1W8

k2n, n = 0, 1, 2, c, N - 1, we have the sequence of vectors

  1W8
02n = 1; 1W8

12n = 1e-jnp/4; 1W8
22n = 1e-jnp/2;

  1W8
32n = 1e-j3np/4; c; 1W8

72n = 1e-j7np/4.

For n = 0, all of the vectors have a value of 1. For n = 1, the vectors are as shown 
in Figure 12.10. For n 7 1, the vectors will repeat the pattern of Figure 12.10. For 
example, if we examine the set of vectors for n = 5, we have

  1W8
025 = 1; 1W8

125 = 1e-j5p/4; 1W8
225 = 1e-j5p/2 = 1e-jp/2;

  1W8
325 = 1e-j15p/4 = 1e-j7p/4; 1W8

425 = 1e-j20p/4 = 1e-jp;

  1W8
525 = 1e-j25p/4 = 1e-jp/4; 1W8

625 = 1e-j30p/4 = 1e-j3p/2; 1W8
725 = 1e-j3p/4.

If we carry this on for all integer values of k, 0 … k … N - 1, and n, 0 … n …  
N - 1, we find that

 a
N - 1

n = 0
WN

0n = N and a
N - 1

n = 0
WN

kn = 0, k = 1, 2, c, N - 1. (12.35)

Validity of the DF T

It will now be shown that the discrete Fourier transform is valid; that is, given N 
values of x[n], the forward transform in (12.30) results in N values, X[k]. If, then, 
these N values, X[k], are substituted in the inverse transform in (12.30), the original 
N values of x[n] are obtained.

We begin by substituting the first equation in (12.30) into the second one. In 
the first equation, n is the summation variable; we change this summation variable 
to m, to avoid confusion with variable n in the second equation. Then

 x[n] =
1
N a

N - 1

k = 0
X [k]WN

-kn =
1
N a

N - 1

k = 0
J a

N - 1

m = 0
x[m]WN

kmRWN
-kn. (12.36)

Next, the order of the summations is reversed:

 x[n] =
1
N a

N - 1

m = 0
x[m] a

N - 1

k = 0
WN

k 1m - n2. (12.37)

From (12.35), we can write

 a
N - 1

k = 0
WN

k 1m - n2 = bN, n = m
0, n ≠ m

.

Thus, (12.37) becomes

 x[n] =
1
N a

N - 1

m = 0
x[m]N � n = m = x[n], (12.38)

and the validity of the discrete Fourier transform is proved.
An example will help us to understand computation of the DFT.
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 example 12.10 calculation of a DFT with a maTlaB program

We wish to find the discrete Fourier transform of the sequence x[n], given by the data in Table 
12.4. For this case, N = 4. From (12.30), with N = 4 and W4 = e-j2p/4 = 1l-90° = - j,

  X [0] = x[0] + x[1] + x[2] + x[3] = 1 + 2 + 3 + 4 = 10,

  X [1] = x[0] + x[1]1- j2 + x[2]1- j22 + x[3]1- j23

  = 1 - j 2 + -3 + j4 = -2 + j 2,

  X [2] = x[0] + x[1]1- j22 + x[2]1- j24 + x[3]1- j26

  = 1 - 2 + 3 - 4 = -2,

and

  X [3] = x[0] + x[1]1- j23 + x[2]1- j26 + x[3]1- j29

  = 1 + j 2 - 3 - j4 = -2 - j2.

The following MATLAB program can be used to confirm the results of this example:

% This MATLAB program computes the DFT using the defining
% equations (12.30) for the transform pair.
N = input ('How many discrete-time samples are in the sequence?')
x = input ('Type the vector of samples, in brackets[...]:')
% Compute the DFT from (12.30)
for k1 = 1:N
   X(k1) = 0;
   k = k1 − 1;
   for n1 = 1:N;
        n = n1 − 1;
        X(k1) = X(k1) + x(n1)*exp(−j*2*pi*k*n/N);
   end
end
x
X

The discrete Fourier transform is also listed in Table 12.4. At this time we make no 
 attempt to give meaning to these values. 

Table 12.4  Values for Example 12.10

n x[n] k X[k]

0 1 0  10
1 2 1 -2 + j2
2 3 2 -2
3 4 3 -2 - j2

■



636 Fourier Transforms of Discrete-Time Signals    Chap. 12

 example 12.11 calculation of an inverse DFT, with maTlaB confirmation

This example is a continuation of the last one. We now find the inverse discrete Fourier trans-
form of X[k] of Table 12.4. From (12.30),

  x[0] = [X [0] + X [1] + X [2] + X [3]]/4

  = [10 + 1-2 + j22 + 1-22 + 1-2 - j22]/4 = 1,

  x[1] = [X [0] + X [1]1j2 + X [2]1j22 + X [3]1j23]/4

  = [10 - j2 - 2 + 2 + j2 - 2]/4 = 2,

  x[2] = [X [0] + X [1]1j22 + X [2]1j24 + X [3]1 j26]/4

  = [10 + 2 - j2 - 2 + 2 + j2]/4 = 3,

and

  x[3] = [X [0] + X [1]1j23 + X [2]1j26 + X [3]1 j29]/4
  = [10 + j2 + 2 + 2 - j2 + 2]/4 = 4,

which are the correct values. Note the symmetries of the calculations of the DFT and its in-
verse. As stated earlier, these symmetries allow the same computer program used to calculate 
the forward transform to calculate the inverse transform, with slight modification:

% This MATLAB program computes the IDFT using the defining
% equations (12.30) for the transform pair.
N = input ('How many discrete-frequency samples are in the sequence?')
X = input ('Type the vector of samples, enclosed in brackets[...]:')
% Compute the IDFT from (12.30)
for n1 = 1:N
    x(n1) = 0;
n = n1 − 1;
    for k1 = 1:N;
      k = k1 − 1;
      x(n1) = x(n1) + X(k1)*exp(j*2*pi*k*n/N)/N;
    end
end
x
X ■

An alternative method is often used for computing the inverse discrete Fourier 
transform (IDFT). The alternative method allows the same algorithm to be used for 
both the DFT and IDFT. The standard IDFT equation is given by

[eq(12.30)] x[n] = df-1[X [k]] =
1
N a

N - 1

k = 0
X [k]ej 2pkn/N.

The alternative method takes advantage of the properties that the complex con-
jugate of a sum is equal to the sum of conjugates and the complex conjugate of a 
product is equal to the product of conjugates. In algebraic form,

 [X + Y]* = X * + Y * and [X Y ]* = X *Y *.
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These properties are used on the IDFT equation to write

 x*[n] =
1
N a

N - 1

k = 0
X *[k][e j 2pkn/N]* =

1
N a

N - 1

k = 0
X *[k]e-j2pkn/N.

From this, we write the alternative inversion formula

 x[n] = [x*[n]]* =
1
N
J a

N - 1

k = 0
X*[k]e-j2pkn/NR *

. (12.39)

The factor in the brackets can be computed by the same algorithm used for compu-
tation of the DFT, except that values of X[k]* are used as the input rather than x[n] 
when we are computing the IDFT. The alternative IDFT procedure is given step by 
step as follows:

 1. Change the sign of the imaginary parts (find the complex conjugate) of 
X [k].

 2. Use the DFT algorithm to find the DFT of X*[k].
 3. Find the complex conjugate of the results of Step 2 for each value of n.
 4. Divide the results of Step 3 by N.

 example 12.12 an alternative method of calculating the inverse DFT

We use the data in Table 12.4 to show the alternative procedure for computation of the 
IDFT. From Table 12.4, we have

 X [k] = [10, -2 + j2, -2, -2 - j2].

From the first step of the inversion procedure, we have

 X*[k] = [10, -2 - j2, -2, -2 + j2].

The second step is to compute the DFT of X*[k]:

  4x*[n] = a
3

k = 0
X*[k]e-j2pkn/4 ;

  4x*[0] = 10 + 1-2 - j22 + 1-22 + 1-2 + j22 = 4;

  4x*[1] = 10 + 1-2 - j22e-jp/2 + 1-22e-jp + 1-2 + j22e-j3p/2

  = 10 + 1- j2  1-2 - j22 + 1-12  1-22 + j1-2 + j22 = 8;

  4x*[2] = 10 + 1-2 - j22e-jp + 1-22e-j2p + 1-2 + j22e-j3p

  = 10 + 1-12  1-2 - j22 + 112  1-22 + 1-12  1-2 + j22 = 12;

  4x*[3] = 10 + 1-2 - j22e-j3p/2 + 1-22e-j3p + 1-2 + j22e-j9p/2

  = 10 + 1j2  1-2 - j22 + 1-12  1-22 + 1- j2  1-2 + j22 = 16.

Because the results of Step 2 are all real valued, finding the complex conjugate as specified in 
Step 3 is not necessary. We divide the results of Step 2 by 4 to complete the evaluation:

 x[n] = [1, 2, 3, 4].

The results are given in Table 12.4. ■
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summary

In the DFT, we have derived a discrete-frequency approximation of the  discrete-time 
Fourier transform. This transform has wide application for digital signal processing. 
We have looked at the mathematical roots of the DFT as well as the practical mean-
ing of the development. Methods of computing the DFT and the IDFT have been 
presented and used in example problems.

In the next section, we study more efficient methods of computing the DFT of 
discrete-time sequences.

 12.5 FasT Fourier TransForm

As seen in Section 12.4, the discrete Fourier transform pair is given by

[eq(12.33)] X[k] = a
N - 1

n = 0
x[n]WN

kn, k = 0, 1, 2, c, N - 1

and

 x[n] =
1
N a

N - 1

k = 0
X [k]WN

-kn, WN = e-j2p/N, n = 0, 1, c, N - 1,

which is readily programmed for calculation by digital computer. From inspection of 
(12.33), we see that for each value of k, computation of X [k] will require N multipli-
cations. Because x[n], and especially X [k], can have complex values, the computation 
of an N-point DFT or the inverse DFT generally requires N2 complex multiplications. 
The thrust of this section will be to develop an algorithm to compute the discrete 
Fourier transform more efficiently. The collection of efficient algorithms that are gen-
erally used to compute the discrete Fourier transform is known as the fast Fourier 
transform (FFT) [6].

Decomposition-in-Time Fast Fourier Transform algorithm

We next develop an efficient algorithm for computing the discrete Fourier trans-
form for cases in which the number of samples to be computed is a power of  
2 1N = 2m2. We start with N = 2 and work our way up to N = 23 = 8 before we try 
to generalize the process. The result of our efforts is known as the decomposition-in-
time, radix-2 FFT.

Starting with a two-point DFT, we have

 X [k] = a
1

n = 0
x[n]W2

nk = x[0]W2
0k + x[1]W2

1k, k = 0, 1.

Because W2
0k = e-j 0 = 1 and W2

1k = e-jpk = 1-12k, we write

  X [0] = x[0] + x[1];
  X [1] = x[0] - x[1].
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In general, for the two-point DFT, we have

 X [k] = x[0] + 1-12kx[1].

The signal flow graph of Figure 12.11 illustrates the process for computing the two-
point DFT. This signal flow graph is known as a butterfly diagram because of its 
shape.

We proceed with the four-point DFT:

 X [k] = a
3

n = 0
x[n]W4

nk = x[0]W4
0k + x[1]W4

1k + x[2]W4
2k + x[3]W4

3k.

As a result of the periodicity of the weighting factor, we can simplify this expression:

  WN
nk = e-j12p/N2nk;

  W4
0k = 1;

  W4
1k = e-j1p/22k = 1- j2k;

  W4
2k = e-jpk = 1-12k;

  W4
3k = W4

2kW4
1k = 1-12kW4

1k.

Using these results, we write

  X[k] = x[0] + x[1]W4
1k + x[2]1-12k + x[3]1-12kW4

1k,

  X[k] = [x[0] + x[2]1-12k] + [x[1] + x[3]1-12k]W4
1k.

To clarify the next step, we define two new variables:

  xe[n] = x[2n], n = 0, 1;

  xo[n] = x[2n + 1], n = 0, 1.

Then,

 X [k] = [xe[0] + xe[1]1-12k ] + [xo[0] + xo[1]1-12k]W4
1k.

The factors in brackets in this equation can be recognized as two-point DFTs:

  Xe[m] = xe[0] + xe[1]1-12m,  m = 0, 1;

  Xo[m] = xo[0] + xo[1]1-12m,  m = 0, 1.

x[0]

x[1] X [1]

X [0]

�1

1

11

Figure 12.11  Butterfly diagram 
for a two-point DFT.
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Note that Xe[k] and Xo[k] are periodic; for example,

 Xe[2] = xe[0] + xe[1]1-122 = Xe[0]

and

 Xe[3] = xe[0] + xe[1]1-123 = Xe[1].

The four-point DFT then is

  X [0] = Xe[0] + Xo[0]W4
1102 = Xe[0] + Xo[0];  

  X [1] = Xe[1] + Xo[1]W4
1112 = Xe[1] + Xo[1]W4

1; 

  X [2] = Xe[0] - Xo[0]W4
1122 = Xe[0] - Xo[0];  

  X [3] = Xe[1] - Xo[1]W4
1132 = Xe[1] - Xo[1]W4

1. (12.40)

Here, the changed term is W4
11k2 for the chosen value k.

We see that the four-point DFT can be computed by the generation of two 
two-point DFTs, followed by a recomposition of terms, as shown in the signal flow 
graph of Figure 12.12. In other words,

[4@point DFT of x[n]] = [2@point DFT of xe[n]] + W4
1k[2@point DFT of xo[n]].

The Equations (12.40) are known as the recomposition equations of the four-point 
DFT.
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xo[1] � x[3]

Xe[0]

Xe[1]

Xo[0]

Xo[1]

X[0]
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X[2]

X[3]
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Figure 12.12  Signal flow graph for a four-point DFT.
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We now proceed with the eight-point DFT:

 X [k] = a
7

n = 0
x[n]W8

nk.

The weighting factors for the eight-point DFT are

  W8
0k = 1;

  W8
1k = e-j1p/42k;

  W8
2k = e-j1p/422k = e-j1p/22k = W4

1k;

  W8
3k = e-j1p/423k = [e-j1p/422k]e-j1p/42k = W8

1kW4
1k;

  W8
4k = e-j1p/424k = e-jpk = W4

2k;

  W8
5k = e-j1p/425k = e-j1p/424ke-j1p/42k = W8

1kW4
2k;

  W8
6k = e-j1p/426k = W4

3k;

  W8
7k = e-j1p/427k = e-j1p/42ke-j1p/426k = W8

1kW4
3k.

Using the weighting factors in the forms given previously, we write the eight-point 
DFT as

  X[k] = x[0] + x[1]W8
1k + x[2]W4

1k + x[3]W8
1kW4

1k + x[4]W4
2k 

  + x[5]W8
1kW4

2k + x[6]W4
3k + x[7]W8

1kW4
3k.  (12.41)

Much as we did in the derivation of the four-point FFT, we define

 xe[n] = x[2n], n = 0, 1, 2, 3

and

 xo[n] = x[2n + 1], n = 0, 1, 2, 3.

Using these newly defined variables, we write (12.41) as

  X [k] = [xe[0] + xe[1]W4
1k + xe[2]W4

2k + xe[3]W4
3k]

  + W8
1k[xo[0] + xo[1]W4

1k + xo[2]W4
2k + xo[3]W4

3k].

In this form, we recognize the factors in brackets as the four-point DFTs of xe[n] 
and xo[n], respectively. Therefore, it is seen that the eight-point FFT is found by 
the recomposition of two four-point FFTs. Figure 12.13 illustrates the procedure for 
computing the eight-point FFT.

In general, the N-point, radix-2 FFT is computed by the recomposition of two 
(N/2)-point FFTs. The generalized procedure is illustrated in Figure 12.14.

As we said at the start of this discussion, our reason for deriving the FFT algo-
rithm is for computational efficiency in calculating the DFT. Table 12.5 shows the 
number of complex multiplications required for both the DFT and the FFT for sev-
eral values of N. We see that the increased efficiency of the radix-2 FFT algorithm 
becomes more significant as the number of points in the DFT becomes larger.
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Table 12.5   DFT and FFT Comparison (Number of 
Complex Multiplications Required)

N standard DFT FFT

2 4 1
4 16 4
8 64 12

16 256 32
32 1,024 80
64 4,096 192

128 16,384 448
256 65,536 1,024
512 262,144 2,304

1,024 1,048,576 5,120

N (a power of 2) N2 N
2

 log2 N [6]

x[0]
xe[0]

x[2]
xe[1]

x[4]
xe[2]

x[6]

X[0]

X[1]
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Xe[0]

Xe[1]
Four-point

DFT

(See Figure
12.12 for
details)
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�1

Recomposition
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(See Figure
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details)
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Xo[3] W3
8

�1W2
8

�1W1
8

�1W0
8

Figure 12.13  Decomposition-in-time 
fast Fourier transform.
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Figure 12.14  Butterfly diagram for an N-point FFT.
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 example 12.13 The decomposition-in-time method of calculating the FFT

The decomposition-in-time (DIT) method of the FFT will be used to compute the DFT of the 
discrete sequence listed in Table 12.4:

 x[n] = [1, 2, 3, 4].

Referring to Figure 12.12 for the four-point FFT, we find the following:

  Xe[0] = x[0] + x[2] = 1 + 3 = 4;

  Xe[1] = x[0] - x[2] = 1 - 3 = -2;

  Xo[0] = x[1] + x[3] = 2 + 4 = 6;

  Xo[1] = x[1] - x[3] = 2 - 4 = -2.

Thus,

  X[0] = Xe[0] + Xo[0] = 4 + 6 = 10,

  X[1] = Xe[1] + W4
1Xo[1] = -2 + 1- j2  1-22 = -2 + j2,

  X[2] = Xe[0] - Xo[0] = 4 - 6 = -2,

and

 X[3] = Xe[1] - W4
1Xo[1] = -2 - 1j2  1-22 = -2 - j2,

which is in agreement with the results found in Example 12.10 and listed in Table 12.4. ■

Decomposition-in-Frequency Fast Fourier Transform

The idea behind the decomposition-in-frequency (DIF) FFT algorithm is similar to 
that of the decomposition-in-time (DIT) FFT presented previously. The DIT FFT 
and the DIF FFT require the same number of complex multiplications to compute. 
We begin the derivation of the DIF FFT with the equation of the standard DFT, 
namely,

 X [k] = a
N - 1

n = 0
x[n]WN

kn, k = 0, 1, 2, c, N - 1,

and divide the summation in half, so that

 X [k] = a
1N/22 - 1

n = 0
x[n]WN

kn + a
N - 1

n = 1N/22
x[n]WN

kn, k = 0, 1, 2, c, N - 1.

Next, we rewrite the second summation as

 a
N - 1

n = 1N/22
x[n]WN

kn = a
1N/22 - 1

n = 0
x[n + N/2]WN

k 1n + N/22 = a
1N/22 - 1

n = 0
x[n + N/2]WN

knWN
kN/2,
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where

 WN
kN/2 = e-j12pk/N2N/2 = e-jpk = 1-12k = b 1, k even

-1, k odd
.

We now have

 X [k] = a
1N/22 - 1

n = 0
[x[n] + 1-12kx[n + N/2]]WN

kn, k = 0, 1, 2, c, N - 1,

which we decompose into the two frequency sequences

 X [2k] = a
1N/22 - 1

n = 0
[x[n] + x[n + N/2]]WN

2kn, k = 0, 1, 2, c, 
N
2

- 1

and

 X[2k + 1] = a
1N/22 - 1

n = 0
[x[n] - x[n + N/2]]WN

12k + 12n, k = 0, 1, c,
N
2

- 1.

Now we consider the weighting factors of the two sequences:

 WN
2kn = WN/2

kn  and WN
12k + 12n = WN/2

kn WN
n .

Then,

  X [2k] = a
1N/22-1

n = 0
[x[n] + x[n + N/2]]WN/2

kn ,  k = 0, 1, 2, c, 
N
2

- 1; 

  X [2k + 1] = a
1N/22-1

n = 0
[[x[n] - x[n + N/2]]WN

n ]WN/2
kn ,  k = 0, 1, c, 

N
2

- 1.  (12.42)

Each of the frequency sequences of (12.42) can be recognized as an (N/2)-point DFT:

  X [2k] =
N
2
@point DFT of [x[n] + x[n + N/2]];

  X [2k + 1] =
N
2
@point DFT of [x[n] - x[n + N/2]]WN

n .

Figure 12.15 shows the butterfly diagram for the DIF FFT algorithm. Figure 12.16 
illustrates the DIF FFT process for a four-point DIF FFT.

 example 12.14 The decomposition-in-frequency method of calculating the FFT

The decomposition-in-frequency (DIF) method of the FFT will be used to compute the DFT 
of the discrete sequence

 x[n] = [1, 2, 3, 4]
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listed in Table 12.4. Referring to Figure 12.16 for the four-point DIF FFT, we find the 
following:

  X1[0] = x[0] + x[2] = 1 + 3 = 4;

  X1[1] = W4
0[x[1] + x[3]] = 2 + 4 = 6;

  X2[0] = x[0] - x[2] = 1 - 3 = -2;

  X2[1] = W4
1[x[1] - x[3]] = - j[2 - 4] = j2.

Hence,

  X [0] = X1[0] + X1[1] = 4 + 6 = 10,

  X [1] = X2[0] + X2[1] = -2 + j2 = -2 + j2,

  X [2] = X1[0] - X1[1] = 4 - 6 = -2,

1

1

1

1

WN
n

x[n] x[n] � x  n � N
2

�1
x  n � N

2
WN

nx[n] � x  n � N
2

Figure 12.15  A decomposition-in-frequency FFT flow diagram.
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x[1] X[2]
[x[1] � x[3]] W4

0

X1[1]

X2[1]

x[2] X[1]

x[0] � x[2]

W4
1

�1

�1

�1

�1

W 
0
4

x[3] X[3]
[x[1] � x[3]] W4

1

Figure 12.16  A four-point decomposition-in-frequency FFT.
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and

 X[3] = X2[0] - X2[1] = -2 - j2 = -2 - j2,

which is in agreement with the previous results found in Examples 12.10 and 12.13 and listed 
in Table 12.4. ■

summary

In this section, we have presented some efficient algorithms for computation 
of the discrete Fourier transform (DFT). These algorithms are collectively 
known as the fast Fourier transform (FFT). In most practical applications, such 
as those considered in the next section, the DFT is computed with an FFT 
algorithm.

 12.6 applicaTions oF The DiscreTe Fourier TransForm

In this section, we look at several typical applications of the discrete Fourier trans-
form. The primary application is to approximate the Fourier transform of signals. 
The other applications we consider—convolution, filtering, correlation, and energy 
spectral density estimation—are all based on the DFT being an approximation of 
the Fourier transform.

calculation of Fourier Transforms

In Section 12.4, we introduced the DFT as a discrete-frequency approximation of 
the discrete-time Fourier transform (DTFT). The DFT is also used to calculate 
 approximations of the Fourier transforms of analog signals.

The steps required for the calculation of the DFT as an approximation of the 
Fourier transform follow. (Steps 1 and 2 can be done in reverse order.)

1. Determine the resolution required for the DFT to be useful for its  intended 
purpose. The discrete frequency resolution is determined by

 ∆Ω =
2p
N

and establishes a lower limit on N, the number of sample values of the  signal 
 required for the DFT computation.

2. Determine the sampling frequency required to sample the analog signal so 
as to avoid aliasing. Shannon’s sampling theorem establishes the requirement

 vs 7 2vM,

where vM is the highest significant frequency component of the analog signal.
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3. Accumulate N samples of the analog signal over a period of NT seconds 
1T = 2p/vs2. If the DFT calculation of Step 4 is to be computed with the use of 
a radix-2 DFT, then N must be an integer power of 2. (In some cases, the set of 
samples will be fixed. In that case, zero padding can be used to  create a total of N 
elements.)

4. Calculate the DFT. This can be done with (12.33) directly; but more 
often, an FFT algorithm, as described in Section 12.5, is used to execute the 
calculation.

If these steps are executed properly, the resulting DFT should be a good 
approximation of the Fourier transform of the analog signal. We now look at 
some examples of the process and point out some details that must be taken into 
consideration.

 example 12.15 using the FFT to approximate the Fourier transform

The Fourier transform of the rectangular pulse shown in Figure 12.17(a) will be computed. 
From our previous study of the Fourier transform, we see that this waveform can be de-
scribed as

 f1t2 = rect[1t - 12/2].

From Tables 5.1 and 5.2, we determine that

 F1v2 = 2  sinc1v2e-jv.

t

�

0

1

f(t) � rect [(t � 1)/2]

1 2

2

��� ��4

�F(  )��

���2

�2 �4

(a)

(b)

F( )�

Figure 12.17  A rectangular pulse and its Fourier transform.
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F1v2 is sketched in Figure 12.17(b). From Figure 12.17(b), we see that the frequency spec-
trum has its first null at v = p rad/s. We also see that, although the frequency spectrum does 
not have an absolute bandwidth, the magnitude of the sidelobes decreases with frequency. We 
choose a sampling frequency of vs = 10p rad/s. This requires a sampling period of T = 0.2 s. 
We choose to use 16 samples for the computation. Therefore, the discrete-frequency resolu-
tion of our calculated frequency spectrum will be 2p

16 . The discrete-time sequence of samples 
f [n] is shown in Figure 12.18(a). The 16-point, radix-2 FFT is used to calculate the DFT. The 
magnitude of the discrete-frequency sequence is shown in Figure 12.18(b).

Because the DFT is calculated from discrete-time samples, we must multiply � F [k] �  
by the sampling period T to cancel out the factor of 1/T inherent to the Fourier transform of 
sampled signals (5.42).

We now want to see how good an approximation of F1v2 we have in the T F [k] that 
we compute from the 16 samples of f1t2. This will be determined by calculating the value of 
y[m] at a few frequencies 1v 6 vs/22 that correspond to a value of k in F [k]. Table 12.6 gives 
a comparison of the values.

From Table 12.6 and Figure 12.19, we see that the Fourier-transform approximation 
found by computing the DFT is not perfect. Although the approximation is reasonably 
 accurate for samples where v 6 vs/2 = 15.708 rad/s, there are some errors in both magni-
tude and phase.

The results shown in Table 12.6 and Figure 12.19 can be reproduced by the following 
MATLAB program:

% This MATLAB program reproduces the results of
% Example 12.15.
Ts=0.2
fn=[1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0];
n=[0:length(fn)−1];
figure(1),stem(n,fn,'fill'),grid
Fk=fft(fn,length(fn));
w=2*pi/length(fn)/Ts*n;
Ft=2*sin(w).*exp(j*w)./w;
Ft(1)=2;
' k omega (w) |F(w)| Ts*|F[k]| phase(F(w)) phase(F[k])'
[n', w’, abs(Ft)', Ts*abs(Fk)', angle(Ft)', angle(Fk)']
figure(2),stem(w,Ts*abs(Fk),'filled'),hold,plot(w,abs(Ft),'r+'),
title('Fast Fourier Transform')
grid, xlabel('omega'), ylabel('magnitude'),hold ■

One source of error such as that seen in Example 12.15 is the “windowing,” 
or truncation, of the periodic extension of the discrete-time sequence implied in the 
DFT development. This windowing has the effect of multiplying the periodic exten-
sion of the sequence x[n] by a sequence that represents samples of a rectangular pulse 
with duration NT. The effect we have just described is illustrated in Figure 12.20. In 
Figure 12.20(a), we see a nonperiodic, ideally sampled signal x1nT2. Figure 12.20(b) 
shows the periodic extension of the signal that is implicit in the DFT implementation. 
The rectangular windowing function is shown in Figure 12.20(c). The product of the 
windowing function and the periodic extension results in the discrete-time sequence 
x[n]. The sequence x[n] contains the values of xp1nT2 for 0 F  n F  N - 1. x[n] 
represents one period of the periodic extension of the original signal. These are the 
values used to calculate X [k] from (12.33). From this presentation, we see that the 
DFT we calculate not only is based on sampled values of the analog signal, but also 
involves a convolution with the Fourier transform of the windowing function.
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Figure 12.18  A sampled rectangular pulse and its 16-point DFT.
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This implied multiplication of the periodic extension of the sampled signal 
by the windowing function results in the phenomenon called spectrum-leakage 
 distortion, which arises from the spectrum spreading that develops from truncat-
ing a signal. This phenomenon can be illustrated by the truncated cosine shown in 
Figure 12.21(a). This signal is the product of a cosine wave and a rectangular pulse, 
as shown in Figure 12.21(b). From our previous study of the Fourier transform and 
Table 5.2, we know that

 cos1v1t2 ·f
p[d1v - v12 + d1v + v12]

and

 rect1t/T2 ·f Tsinc1Tv/22,

as shown in Figure 12.21(c). From the Fourier transform properties (Table 5.1),

 f11t2f21t2 ·f 1
2p

 F11v2*F21v2.

Table 12.6  Fourier Transform and DFT Approximation

k V ∣ F 1V 2 ∣ T ∣ F[k] ∣ % error lF 1V 2 lF[k]

0  0 2.000 2.2000  10.0   0   0
1  1.9635 0.9411 0.8524   9.4 -1.9635 -1.9635
2  3.9270 0.3601 0.4828  34.1 -0.7854 -0.7854
3  5.8905 0.1299 0.0702  45.9 -2.7489   0.3927
4  7.8540 0.2546 0.2000  21.5 -1.5708 -1.5708
5  9.8175 0.0780 0.2359 202.6 -0.3927 -0.3927
6 11.7810 0.1200 0.0828  31.0 -2.3562   0.7854
7 13.7445 0.1344 0.1133  15.7 -1.1781 -1.1781
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The frequency spectrum of the truncated cosine is shown in Figure 12.21(d). From 
this figure, we see that the frequency spectrum of the truncated cosine is spread 
across all frequencies. It is this spreading, caused by the truncation of the signal, 
that causes spectrum-leakage distortion in the DFT.

Several alternative window shapes, other than the rectangular window we 
have used, have been developed to alleviate spectrum-leakage distortion. The two 
best known are the Hamming window, proposed by Richard W. Hamming, and the 
Hanning window, named for Julius von Hann [5].

The Hamming window is given by the equation

 w[n] = 0.54 - 0.46 cos¢ 2pn
N - 1

≤, 0 F  n F  N - 1 (12.43)

and the Hanning window by

 w[n] = 0.50 - 0.50 cos¢ 2pn
N - 1

≤, 0 F  n F  N - 1. (12.44)

Figure 12.22 shows an example of the Hamming window and the Hanning win-
dow for a 32-point sequence. It can be seen that both of these windowing functions 
gradually approach zero at the limits of the sequence rather than cut off abruptly, 

x(nT)

nT

(a)

(b)

(c)

w [n]

xp(nT)

nT

nN � 10

n

x[n]

Figure 12.20  Periodic extension and windowing of a sequence.
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as the rectangular window does. This gradual change in the time domain results 
in a  narrower bandwidth in the frequency domain and, therefore, less spectrum- 
leakage distortion in the DFT. The next example demonstrates the effect of 
spectrum- leakage distortion and the difference in spectrum-leakage distortion that 
is made by changing the shape of the window.

 example 12.16 comparison of windowing functions on the accuracy of the FFT

The Fourier transform of the signal x1t2 = cos110pt2 is to be approximated by calculating 
the DFT.
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Figure 12.21  Spectrum spreading effect of windowing.
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 1. It has been determined that a discrete-frequency resolution of ∆Ω F  0.1 is required 
for our purpose. This is equivalent to ∆Ω = 2p/62.83. Because we plan to use a 
radix-2 FFT for the DFT calculation, we choose a 64-point FFT. This will result in a 
 discrete-frequency resolution of ∆Ω = p/32. To calculate a 64-point FFT, we must use 
64 samples of the signal 1N = 642.
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Figure 12.22  (a) Hamming window; (b) Hanning window.
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 2. The signal is absolutely bandlimited. Actually, it contains only one frequency compo-
nent at v = 10p rad/s. The Nyquist frequency for this signal is 20p rad/s. We arbitrarily 
choose to sample the signal at vs = 100p rad/s 1T = 0.02 s2, which is five times the 
minimum sampling frequency.

 3. Figure 12.23(a) shows the sampled data sequence. We are now assuming a rectangular 
window of NT = 1642  10.022 = 1.28 s duration.

 4. The DFT is calculated by a 64-point FFT algorithm. Figure 12.23(b) shows the discrete-
frequency sequence. We see in Figure 12.23(b) the evidence of spectrum spreading. We know 
that the frequency spectrum of the original analog signal has discrete-frequency components 
at v = 10p only. The DFT shows nonzero frequency components throughout the spectrum.

A Hanning window will be used to reduce the errors in the DFT caused by spectrum 
spreading. Figure 12.23(c) shows the discrete-time sequence x[n] produced with the use of 
the Hanning window. Figure 12.23(d) shows the new discrete-frequency spectrum. It is seen 
that the spectrum-leakage distortion is reduced by the use of a Hanning window instead of a 
 rectangular window.

The results shown in this example can be reproduced by the following MATLAB program:

% This MATLAB program reproduces the results of
% Example 12.16.
win = input ('Is window to be:(1) rectangular or (2) Hanning?')
Ts=1/50;
t = Ts*(0:63);
for n = 1:64
    xn(n) = cos(10*pi*t(n));
end
if win == 2
xw = hanning(64)'.*xn;
else
   xw = xn;
end
figure(1), stem(t,xw,'filled'), title('Windowed Time Sequence')
grid, xlabel('seconds'), ylabel('magnitude')
X = fft(xw,64);
w = 2/Ts*(-32:31)/64;
figure(2),stem(w, Ts*abs(fftshift(X)),'filled'),title('Magnitude of 
T*F[k]')
grid,xlabel('omega/pi'),ylabel('magnitude') ■

We see that the DFT can give a good approximation of the Fourier transform. 
The errors in the Fourier transform approximation can be reduced by choosing a 
windowing function that causes less spectrum-leakage distortion. Increasing the 
sampling rate and increasing the number of samples used in the calculation also 
tend to decrease errors. Problems at the end of this chapter provide the opportunity 
for the student to investigate various ways of decreasing errors when using the DFT 
to approximate the Fourier transform.

convolution

The convolution of two discrete-time signals is described by the equation

[eq(10.16)] x[n]*h[n] = a
∞

m = -∞
x[m]h[n - m].
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Figure 12.23  Plots for Example 12.16.
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We call this linear convolution. In this section, we discuss another convolution op-
eration for discrete-time sequences, called circular convolution.

First, we determine the time-domain process corresponding to the product of 
two discrete Fourier-transform functions. If

 Y [k] = X[k]H[k],

then what is the relationship among y[n], x[n], and h[n]?  We approach the answer 
to this question by beginning with the definition of the DFT:

[eq(12.30)]

  X [k] = df[x[n]] = a
N - 1

n = 0
x[n]e-j2pkn/N;

  x[n] = df-1[X[k]] =
1
N a

N - 1

k = 0
X [k]ej2pkn/N.

Using (12.30), we write the transform equation for H[k]. We have

  H[k] = a
N - 1

m = 0
h[m]e-j2pkm/N, m = 0, 1, 2, c, N - 1;

  Y[k] = J a
N - 1

n = 0
x[n]e-j2pkn/NR J a

N - 1

m = 0
h[m]e-j2pkm/NR ;

  y[n] =
1
N a

N - 1

k = 0
J a

N - 1

l = 0
x[l]e-j2pkl/NR J a

N - 1

m = 0
h[m]e-j2pkm/NR ej2pkn/N;

  y[n] =
1
N a

N - 1

l = 0
x[l] a

N - 1

m = 0
h[m]J a

N - 1

k = 0
ej2pk1n - l - m2/NR .

From (12.35), we see that the term in brackets can be evaluated as

 a
N - 1

k = 0
ej2pk1n - l - m2/N = bN, n - l - m = 0

0, otherwise

and, therefore,

 y[n] =
1
N a

N - 1

l = 0
x[l] a

N - 1

m = 0
h[m]Nd[n - l - m].

Because the impulse function is zero except when m = n - l, we can rewrite the 
equation as

 y[n] = a
N - 1

l = 0
x[l]h[n - l], (12.45)

which is clearly related to the equation for linear convolution (10.16). However, the 
summation is over only one period rather than for all time. This equation represents 
the process called periodic convolution, or circular convolution. In this book, we 
usually use the latter title.
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The symbol à is used to signify the operation of circular convolution as 
 described by (12.45):

 y[n] = x[n]àh[n] = a
N - 1

l = 0
x[l]h[n - l]. (12.46)

In this development, we have established the discrete Fourier transform pair:

 x[n]àh[n] ·df X[k]H[k]. (12.47)

The process of (12.46) is called circular convolution because it is easily 
(if  sometimes tediously) evaluated by using two concentric circles, as shown in 
Figure 12.24. We can evaluate the circular convolution of (12.46) by writing the 
N values of x[n], equally spaced at angles of 2p/N around the outer circle in a 
counterclockwise direction. The N values of h[n] are then written, equally spaced 
at angles of 2p/N in a clockwise direction on the inner circle. We calculate y[0] 
by multiplying the corresponding values on each radial line and then adding the 
products. We find succeeding values of y[n] in the same way after rotating the 
inner circle counterclockwise through the angle 2pn/N and finding the sum of 
products of the corresponding values. The circular convolution process is demon-
strated in the next example.

 example 12.17 circular convolution of two discrete sequences

We wish to evaluate the circular convolution of the sequences

 x1[n] = [1, 2, 3, 4]; x2[n] = [0, 1, 2, 3];

 y[n] = x1[n]àx2[n].

We will do this by two methods—first, by using the circular convolution process as described 
previously and, second, by using the DFT and IDFT.

x[6]x[2]

x[7]x[1]

x[0]

h[0]

h[4]

h[6]

h[7]

h[2]

h[1]

h[5] h[3]

x[4]

x[5]x[3]

Figure 12.24  Circular convolution.



Sec. 12.6    Applications of the Discrete Fourier Transform 659

The first value in the convolution sequence, y[0], is calculated from Figure 12.25(a):

 y[0] = 112102 + 122132 + 132122 + 112142 = 16.

The inner circle is rotated counterclockwise through 2p/4 = p/2 radians to form Figure 
12.25(b) for calculation of the second term:

 y[1] = 112112 + 122142 + 132132 + 102122 = 18.

The inner circle is rotated counterclockwise an additional p/2 radians to form Figure 12.25(c) 
for calculation of the third term:

 y[2] = 122112 + 132142 + 102132 + 112122 = 16.

Repeating the process for the fourth term, we have

 y[3] = 132112 + 102142 + 112132 + 122122 = 10.
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Figure 12.25  Circular convolution for Example 12.17.
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Note that the sequence

 y[n] = [16, 18, 16, 10]

is not the same as would result from linear convolution of the two sequences. Linear convolu-
tion would give

 x1[n]*x2[n] = [0, 1, 4, 10, 16, 17, 12].

It is seen that circular convolution yields a four-element sequence, whereas linear convolu-
tion yields seven elements.

The DFT and IDFT can be used to compute the circular convolution of the two 
 sequences. From (12.47),

 Y[k] = X1[k]X2[k],

where

 X1[k] = df {x1[n]} = [10, -2 + j2, -2, -2 - j2],

as found in Example 12.10, and

 X2[k] = df5x2[n]6 = [6, -2 + j2, -2, -2 - j2].

The two discrete-frequency sequences are multiplied term by term to find

  Y[k] = [1102162, 1-2 + j221-2 + j22, 1-221-22, 1-2 - j221-2 - j22]

  = [60, - j8, 4, j8].

Then,

 y[n] = tdf 5Y [k]6 = [16, 18, 16, 10],

as was found from circular convolution of the discrete-time sequence. ■

In Example 12.17, we saw that circular convolution did not yield the same 
 sequence as linear convolution. This is generally the case. Circular convolution 
of two N-sample sequences yields an N-sample sequence. Linear convolution of 
an N1@sample sequence with an N2@sample sequence yields an 1N1 + N2 - 12@ 
sample sequence. (These last two statements were illustrated in Example 12.17.)

The circular convolution of two sequences of lengths N1 and N2, respectively, 
can be made equal to the linear convolution of the two sequences by zero padding 
both sequences so that they both consist of N1 + N2 - 1 samples.

 example 12.18 circular convolution with zero padding

We shall make the circular convolution of the two sequences given in Example 12.17, namely,

 x1[n] = [1, 2, 3, 4] and x2[n] = [0, 1, 2, 3],

equal to the linear convolution by zero padding both sequences so that each has 4 + 4 - 1 = 7 
samples:

 x′  1[n] = [1, 2, 3, 4, 0, 0, 0]  and  x′   2[n] = [0, 1, 2, 3, 0, 0, 0].
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The circular convolution process is illustrated in Figure 12.26 and results in

 y′[n] = [0, 1, 4, 10, 16, 17, 12].

This is the result shown in Example 12.17 for linear convolution of the two four-sample 
 sequences.
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for Example 12.18. ■
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The procedure of zero-padding sequences so that the circular convolution 
result is the same as the linear convolution of the original sequences is important 
in signal processing applications. This procedure allows us to use DFTs of two 
 sequences to compute their linear convolution.

 example 12.19 linear convolution using the DFT

We shall compute the linear convolution of the two sequences given in Example 12.17,

 x1[n] = [1, 2, 3, 4] and x2[n] = [0, 1, 2, 3],

using the DFT. We begin by zero padding so that each sequence consists of N1 + N2 - 1 = 7 
samples:

 x′  1[n] = [1, 2, 3, 4, 0, 0, 0] and x′   2 [n] = [0, 1, 2, 3, 0, 0, 0].

The DFTs of the two sequences are

  X′  1[k] = [10, -2.0245 - j6.2240, 0.3460 + j2.4791, 0.1784 - j2.4220,  
  0.1784 + j2.4220, 0.3460 - j2.4791, -2.0245 - j6.2240]

and

  X′2[k] = [6, -2.5245 - j4.0333, -0.1540 + j2.2383, -0.3216 - j1.7950,

  -0.3216 + j1.7950, -0.1540 - j2.2383, -2.5245 + j4.0333].

We find Y′[k] by multiplying the corresponding elements of the two discrete-frequency 
sequences:

  Y′[k] = [60, -19.9928 + j23.8775, -5.6024 + j0.3927, -5.8342 - j0.8644,

  -4.4049 + j0.4585, -5.6024 - j0.3927, -19.9928 + j23.8775].

Now we find the IDFT to complete the convolution calculation:

 tdf5Y′[k]6 = y′[n] = [0, 1, 4, 10, 16, 17, 12].

The following MATLAB program can be used to reproduce the results of this example:

% This MATLAB program reproduces the results of
% Example 12.19.
x1 = [1 2 3 4];
x2 = [0 1 2 3];
y = conv(x1,x2);
% Zero-pad the vectors to 7 elements each.
x1p = zeros(1:7);, x1p(1:4) = x1(1:4);
x2p = zeros(1:7);, x2p(1:4) = x2(1:4);
X1 = fft(x1p,7);
X2 = fft(x2p,7);
Y = X1.*X2;
yp = ifft(Y);
y
yp ■
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The discovery that we can use the DFTs of two sequences to compute their 
convolution is an important result for signal processing, as shown in examples to fol-
low. We should now consider the computational efficiency of calculating a convolu-
tion by the DFT rather than the direct method. Figure 12.27 shows a block-diagram 
representation of the convolution process by the DFT method. In this system, both 
DFTs and the IDFT are computed with the use of a radix-2 FFT algorithm. The two 
N-element sequences to be convolved are extended by zero padding so that each of 
the extended sequences contains 2N - 1 elements. To simplify the algebra without 
significant loss of accuracy, we consider that each sequence has 2N elements when 
we calculate the number of multiplications required to complete the convolution 
calculation. If we assume that the discrete-time samples can take on complex val-
ues, computing the FFT of each extended sequence requires N log212N2 complex 
multiplications. The IFFT calculation will also require N log212N2 complex multi-
plications. Multiplication of the two discrete-frequency sequences, X1[k] * X2[k], 
requires 2N complex multiplications. This adds up to a total of

 3N log212N2 + 2N

complex multiplications in computing the convolution of two N-element sequences 
by the DFT method.

Direct convolution of the two sequences requires N2 complex multiplications. 
If we assume that N is chosen as a power of 2, so that a radix-2 FFT can be used, the 
DFT method is more efficient for N G 32.

For long-duration discrete-time sequences, a block of arbitrary length may be 
selected for the purpose of estimating the Fourier transform. In other words, we can 
choose to use any N consecutive values of a long sequence to compute the DFT. 
This concept is discussed in more detail in the next section.

Filtering

An important application of the DFT is the filtering of signals. If we review the 
convolution process, we see that if x[n] represents the signal input to a filter with 
discrete-time impulse response h[n], then the output signal can be calculated by 
linear convolution:

[eq(10.16)] y[n] = x[n]*h[n] = a
∞

m = -∞
x[m]h[n - m].

Zero padding
N1 � 1 zeros DFT IDFT

x1[n]

x1[n] � x2[n]

X�2[k] Y [k]

N2
samples

x�2[n]

N1 � N2 � 1
samples

Zero padding
N2 � 1 zeros DFT

x1[n] X�1[k]

N1
samples

x�1[n]

N1 � N2 � 1
samples

y [n]
�

Figure 12.27  Block diagram of convolution using DFTs.
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If the input signal, x[n], has N1 samples and the impulse-response sequence has 
N2 samples, the convolution can be computed with the DFT if we first extend both 
sequences by zero padding so that they each contain N1 + N2 - 1 elements.  
This was discussed previously in the section on convolution. If we let x′[n] and 
h′[n] represent the extended sequences of the input signal and the impulse re-
sponse, respectively, we can use the convolution property of the DFT to find

 x[n]*h[n] = x′[n]*h′[n] ·DF
X′[k]H′[k].

Therefore,

 Y[k] = X′[k]H′[k]

and

 y[n] = tdf5X′[k]H′[k]6,

as shown in Figure 12.28.

 example 12.20 application of the DFT in filtering

Apply the FIR averaging filter of Example 12.4, shown in Figure 12.3, to smooth a signal 
using the DFT.

The difference equation of the averaging filter is given by

 y[n] =
1
3
1x[n] + x[n - 1] + x[n - 2]2.

The impulse response of the filter is found by letting x[n] = d[n]:

 h[n] =
1
3

 1d[n] + d[n - 1] + d[n - 2]2.

The impulse response of the filter is plotted in Figure 12.29(a).
The signal sequence w[n] shown in Figure 12.29(b) is the desired signal, but the input 

signal x[n] has been corrupted by interference as shown in Figure 12.29(c). The averaging 
filter is applied to reduce the higher frequency interference.

To accomplish the filtering using DFTs, we first zero pad the sequences so that 
N Ú Nh + Nx - 1. Since both sequences have 20 elements this requires N Ú 39. In order to 

(precomputed
and stored)

DFT IDFT
X�[k] Y [k]x�[n]

DFT
H�[k]h�[n]

y[n] � x[n] � h[n]
� Figure 12.28  Block diagram of 

filtering using DFTs.
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use a radix 2 fft to compute the DFTs we choose to use N = 64. The equations for calculating 
the DFTs of the impulse response of the filter and the input signal are:

 H=1k2 = dft5h=[n]6 = a
63

n = 0
h=[n]W64

kn, k = 0, 1, c, 63

 X=1k2 = dft5x=[n]6 = a
63

n = 0
x=[n]W64

kn, k = 0, 1, c, 63.

To calculate the DFT of the output signal, applying (12.47), we multiply the DFTs of the 
zero-padded sequences:

 Y1k2 = H=1k2X=1k2.

The output sequence is then found by calculating the inverse DFT of Y1k2:

 y[n] =
1
N

 a
63

k = 0
Y[k]WN

kn, n = 0, 1, c, 63.

The first 20 elements of y[n], plotted in Figure 12.23(d) show that much of the interference is 
eliminated by the filter and y[n] ≈ x[n] as desired.

The calculations described in this example and the plots shown in Figure 12.20 are 
 accomplished by the MATLAB program.

% This MATLAB program performs the calculations and plots for Example 12.20.
% Select a sampling period, a number of samples, and create a sample number 
vector,; generate the desired signal w[n] and the
% corrupted signal x[n].
T=0.01;
N=20;
m = [0:N–1];
for k=1:N
w(k)=sin(20*pi*m(k)*T);
x(k)=w(k)+cos(1000*m(k)*T);
end
% Create the impulse sequence for the FIR averaging filter.
h=zeros(size(m));
for k=1:3;
  h(k)=1/3;
end
figure(1), stem(m, h)
figure(2), stem(m, w)
figure(3), stem(m, x)
% Zero pad the filter sequence and the input signal to N = 64 and compute 
their DFTs, 
H(k) and % W(k), using a radix 2 fft algorithm
Hk=fft(h, 64);
Wk=fft(w, 64);
% Compute the convolution y[n[=x[n]*h[n] by multiplying W(k)H(k) and 
 computing the IDFT.
Y=Wk.*Hk;
y= ifft(Y);
% Select the first N elements of y[n] for plotting.
for n=1:N
yN(n)=y(n);
end
figure(4),stem(m, yN) ■
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The illustrated use of the DFT in filtering is limited to relatively short signal 
sequences. Because all sample values of the signal must be accumulated before the 
process begins, the system would require a great deal of memory for the storage of 
samples from long-duration signals. Also, long time delays would be encountered 
in generating the output signal, because there is no output until the entire input se-
quence is accumulated and processed. One method of alleviating these limitations 
is called block filtering.

In block filtering, the long input sequence is divided into blocks of appropriate 
length for DFT calculation. Figure 12.30 shows how the blocks of data are prepared 
for block filtering by the overlap-add technique. The blocks of input data are cho-
sen so that they do not overlap in time. Each block of the input sequence contains  
N samples.

As shown in Figure 12.30, the unit impulse response of the filter is a se-
quence of M samples. The convolution of h[n] and xb[n] produces a sequence of 
M + N - 1 samples. Therefore, both sequences must be zero padded for each to 
contain M + N - 1 elements so that circular convolution (using the DFTs of the 
two sequences) can be employed to make the calculation. The output sequences 
yb[n] are M + N - 1 in length and therefore overlap when they are fit together 
in the NT-duration time periods to which they are restricted. The elements in the 
intervals

  n = N  to  N + M - 2,
  n = 2N  to  2N + M - 2,

 f
  n = kN  to  kN + M - 2

overlap in time and must be added together to form the output sequence y[n].

Figure 12.30  Signal preparation for block filtering.
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 example 12.21 Block filtering

For the filter with the unit impulse response,

 h[n] = [1, 1],

block filtering is to be used to compute the output sequence. The block filter system is shown 
in Figure 12.31, where the inputs to the FFT operations are seen to be the zero-padded im-
pulse response and the zero-padded block of signal data.

The input signal sequence x[n] = [3, 1, 2, -1, -2, 1, 1.5, 2, 0.5, 2] is shown in 
Figure 12.32.

We will perform block filtering by using a four-point DFT. The four-point DFT is 
c hosen for this example so that the calculations will remain relatively simple and so that a 
radix-2 FFT can be used for the computations.

Because the unit impulse response has M = 2 elements, we break the input sequence 
into blocks of N = 3 elements. Then the convolution has four elements and can be computed 
by the four-point FFT. To compute the convolution result with the DFT, we first extend the 
two sequences so that each has

 N + M - 1 = 3 + 2 - 1 = 4

elements. This means that the circular convolution of the extended sequences is equal to the 
linear convolution of the original sequences. In mathematical terms, if

 h′[n] ·df H′[k] and xb′[n] ·df X′b[k],

then the output sequence for each block of input is given by

 yb[n] = h[n]*xb[n] = h′[n]*xb′[n] ·df H′[k]X′b[k].

Figure 12.32  A discrete-time sequence 
to be block filtered.0 1
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Figure 12.31  A block  
filtering system.
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We implement the block filter system by first extending the unit impulse response of 
the filter to four elements by zero padding. We then compute the four-point DFT to find 
which is stored for use with each block of the input signal.

We proceed by extending each three-element block of the input sequence, as it is 
 received, to four elements by zero padding. The DFT of each block of input data is then com-
puted. Finally, the DFT of the output sequence for each block of the input is computed as

 Yb[k] = H′[k]Xb′[k],

and the output sequence for each block of input data is

 yb[n] = tdf5Yb[k]6.

Because yb[k] is a four-point DFT, yb[n] is a four-element sequence. Therefore, as we fit the 
block outputs together to find the total output sequence, we must fit a series of four-element 
sequences into three-element time slots. There is an overlap of data elements that results in 
the fourth element of each sequence being summed with the first element of the following 
sequence. Figure 12.33 illustrates the process just described. Figure 12.33(a) and (b) show the 

Figure 12.33  Block filter output  
sequences.
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block-filtered output sequences for the first two blocks. Figure 12.33(c) shows the total out-
put signal computed from the block outputs. The sequence shown for y[n] in Figure 12.33(c) 
is identical to the sequence that we would calculate by convolving the original input sequence 
x[n] with the filter’s unit impulse response h[n].

The following MATLAB program performs the calculations described in this example:

% Enter the input sequence.
xn=[3 1 2 -1 -2 1 1.5 2 0.5 2]
% Enter the impulse response.
hn=[1 1]
% Select the 3-element blocks of input data.
xb1=[xn(1) xn(2) xn(3)]
xb2=[xn(4) xn(5) xn(6)]
xb3=[xn(7) xn(8) xn(9)]
% zero pad the blocks to 4 elements
xb1p=[xb1 0]
xb2p=[xb2 0]
xb3p=[xb3 0]
% zero pad hn to 4 elements
hp=[hn 0 0]
% Compute the DFT of each zero-padded block of input data.
X1=fft(xb1p);
X2=fft(xb2p);
X3=fft(xb3p);
% Compute the DFT of the zero-padded impulse response.
Hp=fft(hp)
% Multiply the H[k] and X[k]to calculate Y[k] for each block.
Y1=Hp.*X1;
Y2=Hp.*X2;
Y3=Hp.*X3;
% Compute IDFT[Y[k]] = y[n], for each block of output data.
y1=ifft(Y1);
y2=ifft(Y2);
y3=ifft(Y3);
% Shift each block of output into the proper time slot.
y1s=[y1 0 0 0 0 0 0];
y2s=[0 0 0 y2 0 0 0];
y3s=[0 0 0 0 0 0 y3];
% Add the shifted, zero-padded output blocks to form the output signal.
y=y1s+y2s+y3s;
% Display the first 9 elements of the output signal.
yp=y(1,1:9)
% Calculate the output signal using convolution to compare results.
yn=conv(hn,xn)
% Prepare data for plotting.
y1sp=y1s(1,1:9);
y2sp=y2s(1,1:9);
n=0:8;
stem(n,y1sp,'filled')
figure(2)
stem(n,y2sp, 'filled')
figure(3)
stem(n,yp,'filled') ■

We see that the DFT is useful for filtering discrete-time sequences. For cases 
where the input sequence is too long to allow the convolution operation to be 
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computed directly, we have discussed the overlap-add method of block filtering. 
Block filtering allows us to break the input sequence into manageable-length 
sequences for convolution with the filter’s unit impulse response.

correlation

The correlation of signals is a signal-processing technique often used in estimating 
the frequency content of a noisy signal. Correlation is also used for detection of tar-
gets in a radar or sonar signal. Correlation is divided into two cases: cross-correlation, 
which is the correlation of two different signals, and autocorrelation, which is the cor-
relation of a signal with itself.

The cross-correlation operation is described by the equation

 Rxy[p] = a
∞

m = -∞
x[m]y[p + m]. (12.48)

We see that (12.48) is much like (10.16), the equation we used to define discrete-
time convolution. In performing graphical correlation, we do essentially the same 
operations as in convolution, except that y[m] is not reversed before we begin shift-
ing the sequence in time.

 example 12.22 cross-correlation by a graphical technique

We will compute the cross-correlation of the two sequences

 x1[n] = [1, 2, 3, 4] and x2[n] = [0, 1, 2, 3]

by using graphical techniques. Figure 12.34 illustrates the process. We can see that

 Rx1x2
[p] = 0, � p � 7 3.

We find the nonzero values by shifting x2[p + m] along the scale for -3 F p F 3 and calcu-
lating the sum of products of concurrent values: 

  Rx1x2
[0] = 132142 + 122132 + 112122 + 102112 = 20;

  Rx1x2
[4] = Rx1x2

[-3] = 132102 + 122102 + 112102 + 102102 = 0;
  Rx1x2

[3] = 132112 + 122102 + 112102 + 102102 = 3;
  Rx1x2

[2] = 132122 + 122112 + 112102 + 102102 = 8;
  Rx1x2

[1] = 132132 + 122122 + 112112 + 102112 = 14;
  Rx1x2

[-1] = 132102 + 122142 + 112132 + 102122 = 11;

  Rx1x2
[-2] = 132102 + 122102 + 112142 + 102132 = 4.  ■

We see that the correlation process is much like convolution. Like circular 
convolution, we can use circular correlation of extended sequences to find the cor-
relation of two sequences. If the two sequences each have N samples, they must be 
extended to 2N - 1 samples by zero padding. The circular correlation process is 
explained in detail in the next example.
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Figure 12.34  Illustration of the cross  
correlation process.
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 example 12.23 cross-correlation by circular correlation

We will compute the cross-correlation of the two sequences

 x1[n] = [1, 2, 3, 4] and x2[n] = [0, 1, 2, 3]

by using the circular correlation technique. The first step is to extend the two sequences by 
zero padding so that each has N1 + N2 - 1 elements:

 x′  1[n] = [1, 2, 3, 4, 0, 0, 0] and x′   2[n] = [0, 1, 2, 3, 0, 0, 0].

Figure 12.35 illustrates the process of circular correlation. The two concentric circles are 
 divided into arcs of 2p/1N1 + N2 - 12 radians. The two extended discrete-time sequences 

Figure 12.35  Illustration of circular  
correlation.
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are then arranged on the two concentric circles, as shown in Figure 12.35(a). Both sequences 
are written in the clockwise direction, with x′1[n] on the outer circle and x′2[n] on the inner. 
From Figure 12.35(a), we compute the sum of products of corresponding elements for p = 0.

The inner circle is then rotated counterclockwise one step at a time, and the sums of 
products are calculated as follows for succeeding values of p [see Figure 12.35(b) through (g)]:

 Rx1x2
[0] = 102112 + 112122 + 122132 + 132142 + 102102 + 102102 + 102102 = 20;

 Rx1x2
[1] = 112112 + 122122 + 132132 + 102142 + 102102 + 102102 + 102102 = 14;

 Rx1x2
[2] = 122112 + 132122 + 102132 + 102142 + 102102 + 102102 + 112102 = 8;

 Rx1x2
[3] = 132112 + 102122 + 102132 + 102142 + 102102 + 112102 + 122102 = 3;

 Rx1x2
[4] = 102112 + 102122 + 102132 + 102142 + 112102 + 122102 + 132102 = 0;

 Rx1x2
[5] = 102112 + 102122 + 102132 + 112142 + 122102 + 132102 + 102102 = 4;

 Rx1x2
[6] = 102112 + 102122 + 112132 + 122142 + 132102 + 102102 + 102102 = 11.

The cross-correlation sequence computed by circular correlation appears to be different 
from the result of linear correlation calculated in Example 12.22. However, we recognize 
that, like circular convolution, circular correlation results in a periodic sequence. In this case, 
the period of the correlation sequence is N1 + N2 - 1 = 7. Therefore, Rx1x2

[p - 7] =  Rx1x2
[p] 

and the sequence can be rewritten for Rx1x2
[p - 7], beginning with p = 4 to match the linear 

correlation results. ■

Equation (12.48) can be rewritten as

 Rxy[ p] = a
∞

n = -∞
x[n]y[ p - 1-n2] = x[-n]*y[n]. (12.49)

In working with discrete-time sequences, we usually use a finite number, N, of sam-
ples. In doing this, we implicitly assume that the signal is periodic with period NT, as 
discussed previously. If the signal is periodic, then

 x[-n] = x[N - n], 0 F n F N - 1.

From (12.49), we see that the algorithm we have used for discrete convolution can 
be used to compute the correlation if we reorder the appropriate sequence before 
we begin.

We can make use of the DFT in the computation of correlation just as we used 
it for convolution calculations. Recall that, for the DFT method of computing the 
convolution to be valid, the discrete-time sequences were zero padded so that each 
contained 2N - 1 elements. The same zero padding is necessary to allow the DFT 
to be used to calculate the correlation. Taking the DFT of both sides of (12.49) after 
zero padding the two sequences, we have

 df5Rxy[p]6 = df5x[-n]*y[n]6 = df5x′[-n]6 * df5y′[n]6.

Let m = -n; then

 df5x′[-n]6 = a
N - 1

k = 0
x′[m]e-j2pk1-m2/N = X′[-k]
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and

 df5Rxy[p]6 = X′[-k]Y′[k].

If the discrete-time sequence x[n] is real valued, as sequences consisting of sample 
values of physical signals always are, then it can be shown that

 X′[-k] = X′*[k].

Therefore, the correlation function can be derived from

  Rxy[ p] = tdf5X′[-k]Y′[k]6 

  = tdf5X′*[k]Y′[k]6. (12.50)

We must take note of the fact that Ryx ≠ Rxy. Reversing the order of the sig-
nals in the correlation equation gives

 Ryx[ p] = a
∞

n = -∞
y[n]x[ p - 1-n2] = x[n]*y[-n]. (12.51)

If the calculation is by the DFT method, then

 Ryx[ p] = tdf5X′[k]Y′[-k]6 = tdf5X′[k]Y′*[k]6. (12.52)

 example 12.24 cross-correlation with the DFT

The cross-correlation of the two discrete-time sequences given in Example 12.22 will be 
 calculated by the DFT method.

Zero padding is used to extend the two sequences so that

 x′1[n] = [1, 2, 3, 4, 0, 0, 0] and x′2[n] = [0, 1, 2, 3, 0, 0, 0].

We compute the DFT of each sequence, using an FFT algorithm to get

  X′1[k] = [10, -2.0245 - j6.2240, 0.3460 + j2.4791, 0.1784 - j2.4220,
  0.1784 - j2.4220, 0.3460 - j2.4791, -2.0245 + j6.2240];
  X′2[k] = [6, -2.5245 - j4.0333, -0.1540 + j2.2383, -0.3216 - j1.7950,
  -0.3216 + j1.7950, -0.1540 - j2.2383, -2.5245 + j4.0333].

We write the conjugates of the two discrete-frequency sequences, for use in implementing 
(12.51) and (12.52):

  X=
1*[k] = [10, -2.0245 + j6.2240, 0.3460 - j2.4791, 0.1784 + j2.4220,

  0.1784 - j2.4220, 0.3460 + j2.4791, -2.0245 - j6.2240];
  X=

2*[k] = [6, -2.5245 + j4.0333, -0.1540 - j2.2383, -0.3216 + j1.7950,

  -0.3216 - j1.7950, -0.1540 + j2.2383, -2.5245 - j4.0333].
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To compute Rx1x2
[ p], we calculate X′1*[k]X′2[k] by multiplying the corresponding elements 

of the two sequences to get

  DF5Rx1x2
[ p]6 = [60, 30.2141 - j7.5469, 5.458 + j1.1562, 4.2901 - j1.0991,

  4.201 + j1.0991, 5.458 - j1.1562, 30.2141 + j7.5469].

We use the IFFT algorithm to find the inverse discrete Fourier transform:

 Rx1x2
[p] = [20, 14, 8, 3, 0, 4, 11].

We see that this is the same result found by circular convolution in Example 12.23. If we 
 recall that Rx1x2

[p - 7] = Rx1x2
[p], we see that this can be rewritten to give the same results as 

are found by linear correlation in Example 12.22.
The results of the computations just described can be confirmed by the following 

MATLAB program:

% This MATLAB program confirms the results of
% Example 12.24.
% Type in the vectors end zero-pad them.
x1 = [1 2 3 4];
x1p = [1 2 3 4 0 0 0];
x2 = [0 1 2 3];
x2p = [0 1 2 3 0 0 0];
% Form x2(-n)
N = length(x1);
for n = 1:N
     x1r(n) = x1(N + 1 - n);
end
% Use the convolution method to compute
% the correlation.
ypc = conv(x1r,x2);
% Use the DFT method to compute the correlation.
X2 = fft(x2p,7);
X1 = fft(x1p,7);
X1c = conj(X1);
Y = X1c.*X2;
y = ifft(Y);
% Compare the results of the two solutions.
ypc
y

Next we calculate Rx2x1
[ p]. From (12.52), we obtain

 df5Rx2x1
[ p]6 = X′1[k]X′2*[k];

  Rx2x1
[ p] = tdf5[60, 30.2141 + j 7.5469, 5.458 - j1.1562, 4.2901 + j 1.0991,

  4.201 - j1.0991, 5.458 + j1.562, 3.2141 - j7.5469]6
  = [20, 11, 4, 0, 3, 8, 14].

We see that this is not the same sequence as Rx1x2
[p]. ■

Some properties of correlation were discussed earlier. We list a few of the 
more important properties in Table 12.7.
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energy spectral Density estimation

An important application of autocorrelation is in the estimation of the energy 
 spectral density of signals. From the energy spectral density, we learn the various 
frequency components that make up the signal and their relative strengths. The pro-
cess of autocorrelation helps to eliminate the random components of noisy signals 
while accentuating the valid components of the signal’s frequency spectrum.

For this application, we define another function, the sample estimate of the 
autocorrelation, as

 rN[ p] =
1
N a

N - 1

n = 0
x[n]x[p + n], p = 0, 1, c, N - 1. (12.53)

We see that this is similar to the correlation function (12.48), except for the division 
by N and the fact that the range of n is restricted to the range 0 F n F N - 1.

The energy spectral density estimate is given by

 Sx[k] = df5rN[ p]6 =
1
N

 X[k]X*[k]. (12.54)

The function defined by (12.54) is also called the periodogram spectrum estimate.
In practice, the sequence x[n] of (12.53) is often selected from a long sequence 

of sampled values of a continuous-time signal. We break the long sequence into a 
set of shorter sequences, xm[n], using a windowing function. This can be done in a 
manner similar to that discussed in the section on block filtering. Usually, however, 
the short sequences, xm[n], are chosen so that they overlap in time, as shown in 
Figure 12.36. The autocorrelation of the short sequences is then feasible, and the 
sample estimate of the autocorrelation is calculated for each xm[n] from (12.53):

 rNm[ p] =
1
N a

N - 1

n = 0
xm[n]xm[ p + n],  p = 0, 1, c, N - 1.

An FFT algorithm is then used to compute the energy spectral density esti-
mate (12.54) for that sample sequence

 Sxm[k] = df5rNm[ p]6.

Table 12.7  Properties of Correlation

 Rxy[p] = Ryx[-p]
 Rxx[p] = Rxx[-p]
Rxy[p] = x[-n]*y[n]
Ryx[p] = x[n]*y[-n]
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In the averaging periodogram method, the energy spectral density sequences, 
Sxm[k], for several sample sequences are averaged together to give the periodogram 
estimate

 Sx =
1
M a

∞

m = 0
Sxm[k]. (12.55)

summary

In this section, we look at applications of the DFT. We saw ways that we can use 
the DFT for digital signal processing in and for providing an estimate of the Fourier 
transform of a signal.

 12.7 The DiscreTe cosine TransForm

Closely related to the DFT is the discrete cosine transform (DCT). Instead of the 
exponential kernel (or basis function)

 e-j2pkn/N

of the DFT, the DCT uses a cosine kernel (or basis function)

 cos12pkn/N2.

In two dimensions, the DCT is the basis of the image-compression standard issued 
by the Joint Photographic Experts Group (JPEG). The JPEG algorithm is com-
monly used on the World Wide Web for compressing images. Any image that you 
download that has a .jpg extension has been compressed with JPEG. The DCT is 

Figure 12.36  Blocks of data for a periodogram spectrum estimate.
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also used in the MPEG standard for video compression and in many streaming 
video players.

Let f [i, j] be a pixel block of size M * N. Its two-dimensional DCT, F  [u, v], is

  F [u, v] =
22MN

* C1u2C1v2 a
M - 1

i = 0
a

N - 1

j = 0
f [i, j] 

  *   cos112i + 12up/2M2cos112j + 12vp/2N2, (12.56)

where

 C1x2 = c 122
, x = 0

1, x ≠ 0
.

The inverse MXN DCT f [i, j] is recovered as

  f [i, j] =
22MN

a
M - 1

u = 0
 a
N - 1

v = 0
C1u2C1v2F [u, v]  

  *  cos112i + 12up/2M2cos112j + 12vp/2N2. (12.57)

For the JPEG standard, f [i, j] is a pixel block of size 8 * 8. Then, from (12.56), 
its two-dimensional DCT, F [u, v], is

  f [u, v] =
1
4

* C1u2C1v2a
7

i = 0
a

7

j = 0
F [i, j]cos112i + 12up/162 

  * cos112j + 12vp/162. (12.58)

The inverse 8 * 8 DCT f1i, j2 is recovered as

  f [i, j] =
1
4 a

7

u = 0
a

7

v = 0
C1u2C1v2F [u, v]  

  * cos112i + 12up/162cos112j + 12vp/162. (12.59)

In the JPEG standard, first the input image is level shifted. (For an eight-bit 
image, the value 128 is subtracted from each pixel.) Then the image is divided into 
8 * 8 pixel blocks. The 64 DCT coefficients F [u, v] are then uniformly scalar quan-
tized. The lowest frequency DC term, F [0, 0], is coded predictively on the basis of the 
DC terms from previous 8 * 8 image blocks, and the remaining 63 DCT coefficients 
are coded in a zigzag pattern by means of lossless compression.
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The DCT works well for image compression because it provides energy com-
paction. This means that the energy in the spatial, or image, domain is typically 
concentrated in a smaller number of DCT coefficients; hence, the low-magnitude 
DCT coefficients can be coded at very low bit rates without degrading the image 
quality significantly.

As an example, Figure 12.37 shows the basis functions of the two-dimensional 
DCT for an 8 * 8 image matrix of pixels [8]. Notice that the lowest frequency basis 
function (upper left-hand corner) is completely smooth, while the highest frequency 
basis function (lower right-hand corner) varies the most from dark to light in both 
the horizontal and vertical directions. The DCT coefficients can be seen as the 
“weights” assigned to the basis functions.

Figures 12.38 (a) and (b) show the progression of image quality as only the lowest 
1 and 6 DCT coefficients, respectively, are included in the reconstructed images of a 
tortoise shell cat named Bean. Notice that even with 1 DCT coefficient, the image is 
clearly recognizable as a tortoise shell cat. The image with just 6 reconstructed DCT 
coefficients is virtually indistinguishable from the original image of Bean which is 
shown in Figure 12.38(c).

For more information on the JPEG standard, see www.jpeg.org. For compre-
hensive presentation of the DCT, see Ref. 7.

Figure 12.37  The basis functions for the two-dimensional discrete cosine transform.

www.jpeg.org
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Figure 12.38  (a) Bean’s image, reconstructed using only the lowest one DCT coefficient.

Figure 12.38  (b) Bean’s image, reconstructed using the lowest six DCT coefficients.
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summary

In this chapter, we consider the frequency spectrum of discrete-time signals. First, 
we look at the discrete-time Fourier transform (DTFT). We see that the DTFT 
is a scaled version of the Fourier transform of a discrete-time signal. We also see 
that the DTFT is a continuous function of frequency and, therefore, is not useful 
for digital computer calculations. Because of this limitation, a discrete-frequency 
 approximation of the DTFT is more often used.

The discrete Fourier transform (DFT) is a discrete-frequency approximation 
of the DTFT. It consists of computed samples of the DTFT. The DFT is computed 
from a sequence of N discrete-time values and results in N discrete frequency values.  
The discrete-frequency values of the DFT are separated in frequency by 2p/NT 
(rad/s), where T is the sampling period of the discrete-time sequence.

There exist several well-known efficient algorithms for computing the DFT on 
a digital computer. These are collectively known as the fast Fourier transform (FFT).

A few practical applications of the DFT for signal processing and analysis are 
considered, including approximation of the Fourier transform, convolution, filter-
ing, and spectrum estimation.

In the final section of the chapter, the discrete cosine transform is introduced.
See Table 12.8.

Figure 12.38  (c) Cropped, original, 10 megapixel image of Bean.
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Table 12.8  Key Equations of Chapter 12

equation Title equation number equation

Discrete-time Fourier  
 transform (12.1) X1Ω2 = dtf1x[n]2 = a

∞

n = -∞
x[n]e-jnΩ

Inverse discrete-time  
 Fourier transform (12.2) x[n] = dtf-1[X1Ω2] =

1
2pL

Ω1 + 2p

Ω1

X1Ω2ejnΩdΩ =
1

2pL2p
X1Ω2ejnΩdΩ

Relation of Fourier  
 transform of  sampled  
 signal  to DTFT

 
(12.6)

f [xs1t2]vT = Ω = f J a
∞

n = -∞
x1nT2d1t - nT2R

vT = Ω
= dtf[x1nT2 = x[n]]

Periodicity of DTFT (12.7) X1Ω + 2p2 = X1Ω2
One period of a  
 periodic signal 1x0[n]2 (12.17) x0[n] = c x[n], 0 F n F N - 1

0, otherwise

Periodic signal in terms 
 of x0[n]

 
(12.19)

x[n] = x0[n] * a
∞

k = -∞
d[n - kN]

DTFT of DT impulse  
 train

 
(12.20) a

∞

k = -∞
d[n - kN] ·

dtf 2p
N a

∞

k = -∞
d¢Ω -

2pk
N

≤
DTFT of periodic signal (12.23) X1Ω2 =

2p
N a

∞

k = -∞
X0¢2pk

N
≤d¢Ω -

2pk
N

≤
DFT and IDFT (12.30)  X[k] = df[x[n]] = a

N - 1

n = 0
x[n]e-j2pkn/N,  k = 0, 1, 2, c , N - 1

 x[n] = df-1[X [k]] =
1
N

 a
N - 1

k = 0
X [k]e  

j2pkn/N,  n = 0, 1, 2, c, N - 1

DFT and IDFT with  
 shorthand notation (12.33)  X[k] = df[x[n]] = a

N - 1

n = 0
x[n]WN

kn,  k = 0, 1, c, N - 1

 x[n] = df-1[X [k]] =
1
N

 a
N - 1

k = 0
 X  [k]WN

-kn,  n = 0, 1, c, N - 1

Orthogonality of DT  
 exponentials (12.35) a

N - 1

n = 0
WN

0n = N and a
N - 1

n = 0
WN

kn = 0,  k = 1, 2, c, N - 1

Circular convolution (12.46) y[n] = x[n] * h[n] = a
N - 1

l = 0
x[l]h[n - l]

DFT of circular  
 convolution

 
(12.47)

x[n] * h[n] ·
df

X[k]H[k]
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proBlems

section 12.1

 12.1. Find the discrete-time Fourier transform (DTFT) of each signal shown in Figure P12.1.

 12.2. Given a filter with impulse response

 h[n] = d[n] + 2d[n - 1] + d[n - 2],

Figure P12.1  
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Figure P12.1 (cont.)

(a) Find H1Ω2, the DTFT of h[n].
(b) Find the phase of H1Ω2 and simplify as much as possible. (Because h[n] is a symmetric, 

finite impulse response (FIR) filter, H1Ω2 has linear phase.)

 12.3. Given an FIR filter described by the difference equation.

 y[n] = 0.25x[n - 1] + 0.5x[n - 2] + 0.25x[n - 3],

(a) Find H1Ω2, the DTFT of h[n].
(b) Find the phase of H1Ω2 and simplify as much as possible. Is this a linear-phase filter?

section 12.2

 12.4. (a)  Use Tables 12.1 and 12.3 of discrete-time Fourier transform to find the frequency 
spectra of the signals listed subsequently.

 (i) f11t2 = 8 cos12pt2 + 4 sin14pt2, sampled with Ts = 0.1 s.
 (ii) f2[n] = 5 cos [0.5pn]u[n].
 (iii) f31t2 = 2 sin13pt2 + 3 cos15pt2, T = 0.1 s.
 (iv) f4[n] = 3 cos [0.6pn].

(b) Plot the magnitude and phase frequency spectra of each of the signals listed over 
the frequency range �v � F 2vs.

 12.5. Prove the linearity property of the DTFT.

 12.6. Prove that DTF 5nx[n]6 = j 
dX1Ω2

dΩ
 .

 12.7. (a)  Given a discrete-time function y[n] = x[n - 2], where x[n] has DTFT X1Ω2, find 
Y1Ω2, the DTFT of y[n], in terms of X1Ω2.

(b) Repeat Part (a) for the discrete-time function y[n] = x[-n].
(c) Repeat Part (a) for the discrete-time function y[n] = x[-n + 3].
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section 12.3

 12.8. Given x0[n] = d[n] + d[n - 2] + d[n - 4], find X01Ω2 and X1Ω2 (the DTFT of the 
periodic version of x0[n]). Assume N = 5.

 12.9. Find the DTFT of

 x[n] = a
∞

k = -∞
12d[n - 8k] + d[n - 8k + 2]2.

 12.10. Consider a discrete-time periodic function x[n] with DTFT

 X1Ω2 =
2p
4

 a
∞

- ∞
X0a2pk

4
 bdaΩ -  

2pk
4

 b .

The values of X012pk
4 2 are

 X0a
2pk

4
 b = d 4, k = 0

0, k = 1
4, k = 2
0, k = 3.

Find x0[n], where x0[n] is one period of x[n], that is,

 x0[n] = ex[n], 0 … n … N - 1
0, otherwise.

 12.11. Consider a discrete-time periodic function x[n] with DTFT

 X1Ω2 =
2p
4

 a
∞

- ∞
X0a

2pk
4

 bdaΩ -  
2pk

4
b .

The values of X012pk
4 2 are

 X0a
2pk

4
b = d 7, k = 0

3 - j2, k = 1
3, k = 2

3 + j2, k = 3.

Find x0[n], where x0[n] is one period of x[n], that is,

 x0[n] = ex[n], 0 … n … N - 1
0, otherwise.
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 12.12. We wish to design a finite impulse response (FIR) filter h[n]. We have the following 
constraints on the DTFT H1Ω2 of the filter:

 H1Ω2 = f 0, Ω = 0

1, Ω =
p

2
0, Ω = p

1,    Ω =
-p

2

Find an h[n] that satisfies these constraints. This is known as frequency sampling.

section 12.4

 12.13. (a) Compute the eight-point DFT of the sequence shown in Figure P12.1(a)
(b) Use MATLAB to confirm the results of Part (a).

 12.14. (a)  Compute the eight-point DFT of the sequence shown in Figure P12.1(b)
(b) Use MATLAB to confirm the results of Part (a).

 12.15. (a) Compute the eight-point DFT of the sequence shown in Figure P12.1(c).
(b) Use MATLAB to confirm the results of Part (a).

 12.16. (a)  Compute the eight-point DFT of the sequence shown in Figure P12.1(d).
(b) Use MATLAB to confirm the results of Part (a).

 12.17. The signal x1t2 = rect[1t - 22/4] is shown in Figure P12.17.

(a) Compute the four-point DFT of the signal when it is sampled with Ts = 2 ms. Plot 
the magnitude and phase spectra.

(b) Use MATLAB to compute the 8-point DFT of the signal when it is sampled with 
Ts = 1 ms. Plot the magnitude and phase spectra.

(c) Use MATLAB to compute the 16-point DFT of the signal when it is sampled with 
Ts = 0.5 ms. Plot the magnitude and phase spectra.

(d) Use MATLAB to compute the 32-point DFT of the signal when it is sampled with 
Ts = 0.25 ms. Plot the magnitude and phase spectra.

(e) Compare the results of Parts (a), (b), (c), and (d). Comment on their relationship.

section 12.5

 12.18. (a)  Draw the four-point FFT signal-flow diagram, and use it to solve for the DFT of 
the sequence shown in Figure P12.18.

(b) Use MATLAB to confirm the results of Part (a).

Figure P12.17  t(ms)

x(t)

�4 �3 �2 �1 0

1

1 2 3 4
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Figure P12.18  0�1�2�3�4 3 4 n

f [n]

21

2

1

 12.19. (a)  Four sample values of a discrete-time signal are given as x[n] = [4, 2, 1, 0]. Draw a 
four-point FFT signal flow diagram and use it to solve for the DFT of the sequence.

(b) Use MATLAB to confirm the results of Part (a).

 12.20. (a)  Draw an eight-point DIT FFT signal-flow diagram, and use it to solve for the DFT 
of the sequence shown in Figure P12.1(a).

(b) Use MATLAB to confirm the results of Part (a).

 12.21. (a)  Draw an eight-point DIF FFT signal-flow diagram and use it to solve for the DFT 
of the sequence shown in Figure P12.1(a).

(b) Use MATLAB to confirm the results of Part (a).

 12.22. (a)  Draw an eight-point DIT FFT signal-flow diagram, and use it to solve for the DFT 
of the sequence shown in Figure P12.1(c).

(b) Use MATLAB to confirm the results of Part (a).

 12.23. (a)  Draw an eight-point DIF FFT signal-flow diagram and use it to solve for the DFT 
of the sequence shown in Figure P12.1(c).

(b) Use MATLAB to confirm the results of Part (a).

section 12.6

 12.24. The signal x1t2 = 5 cos18pt2 is sampled eight times starting at t = 0 with sampling 
period T = 0.1 s.

(a) Compute the DFT of this sequence.
(b) Use MATLAB to confirm the results of Part (a).
(c) Determine the Fourier transform of x1t2 and compare it with the results of Parts 

(a) and (b). Explain the differences.

 12.25. The signal x1t2 = 3 sin110pt2 is sampled four times starting at t = 0 with sampling 
period T = 0.05 s.

(a) Compute the DFT of this sequence.
(b) Use MATLAB to confirm the results of Part (a).
(c) Determine the Fourier transform of x1t2 and compare it with the results of Parts 

(a) and (b). Explain the differences.
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 12.26. Repeat Problems 12.24(a) and (b) after multiplying the sequence x[n] by a  eight-point 
Hanning window. Discuss the differences between this DFT and that found in 
Problem 12.24.

 12.27. Repeat Problems 12.25(a) and (b) after multiplying the sequence x[n] by a  eight-point 
Hanning window. Discuss the differences between this DFT and that found in 
Problem 12.25.

 12.28. The DFT of the analog signal f1t2 = 7 cos1100 t2 cos140 t2 is to be computed.

(a) What is the minimum sampling frequency to avoid aliasing?
(b) If a sampling frequency of vs = 300  rad/s is used, how many samples must be 

taken to give a frequency resolution of 1 rad/s?

 12.29. The DFT of the analog signal f1t2 = 12 cos1120p t2 cos120p t2 is to be computed.

(a) What is the minimum sampling frequency to avoid aliasing?
(b) If a sampling frequency of vs = 300p rad/s is used, how many samples must be 

taken to give a frequency resolution of 1 rad/s?

 12.30. An analog signal is sampled at 2048 equally spaced times in one second and its DFT is 
computed.

(a) What is the separation in rad/s between successive frequency components?
(b) What is the highest frequency that can be allowed in the analog signal if aliasing is 

to be prevented?

 12.31. Given the two four-point sequences

 x[n] = [-2, -1, 0, 2] and y[n] = [-1, -2, -1, -3],

find the following:

(a) x[n]*y[n], the linear convolution;
(b) x[n]ày[n], the circular convolution;
(c) Rxy[p], the cross-correlation of x[n] and y[n];
(d) Ryx[p], the cross-correlation of y[n] and x[n];
(e) Rxx[p], the autocorrelation of x[n];
(f) Use MATLAB to confirm the results of Parts (a) through (e).

 12.32. Given the two four-point sequences

 x[n] = [-1, -2,  1,  3] and y[n] = [-2, -1,  0,  2],

find the following:

(a) x[n]*y[n], the linear convolution;
(b) x[n] à y[n], the circular convolution;
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(c) Rxy[p], the cross-correlation of x[n] and y[n];
(d) Ryx[p], the cross-correlation of y[n] and x[n];
(e) Rxx[p], the autocorrelation of x[n];
(f) Use MATLAB to confirm the results of Parts (a) through (e).

 12.33. Extend the sequences given in Problem 12.31 by zero padding, and perform circular 
convolution on the extended sequences so that the result equals that obtained by linear 
convolution of the original sequences.

 12.34. Extend the sequences given in Problem 12.32 by zero padding, and perform circular 
convolution on the extended sequences so that the result equals that obtained by linear 
convolution of the original sequences.

 12.35. The four-point DFTs of x[n] and h[n] are

 X[k] = [12, -2 - j2, 0, -2 + j2]

and

 H[k] = [2.3, 0.51 - j0.81, 0.68, 0.51 + j0.81].

Find the value of y[2], where y[n] = x[n]*h[n].

 12.36. The four-point DFTs of two discrete-time signals are

 X[k] = [22, -4 + j2, -6, -4 - j  2]

and

 Y[k] = [8, -2 - j2, 0, -2 + j2].

(a) If v[n] = x[n]*y[n], find v[2].
(b) If w[n] = x[n] à y[n], find w[2].
(c) Find Rxy[2].
(d) Find Ryx[2].
(e) Find Rxx[2].
(f) Calculate the periodogram spectral estimate of the signal x[n].

section 12.7

 12.37. Use a full-frame, two-dimensional discrete cosine transform (2D-DCT) to implement 
a simple image compression algorithm. (The 2D-DCT and the inverse 2D-DCT are 
implemented in MATLAB by the commands dct2 and idc2, respectively.)

(a) Select a gray-scale image and read it into MATLAB.
(b) Compute the image’s DCT coefficients using the dct2 command.
(c) Use the idct2 command to find the inverse of the image’s DCT. Convert the recov-

ered image to uint8 and display it to ensure that you can recover the image.
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(d) Write a MATLAB function to accept an input argument for the percentage of 
DCT coefficients corresponding to the lowest horizontal and vertical frequencies 
(i.e., the upper left portion of the matrix of DCT coefficients) that are retained. 
The rest of the coefficients will be set to zero for a very crude form of signal com-
pression. Using this function with the input argument set to 50, 25, 15, 10, 5, and 
1% successively, compute the inverse DCT and display the image for each case.

 (i) At what percentage does degradation of the image become noticeable?
 (ii)  Why are the lower frequency coefficients retained instead of the higher fre-

quency coefficients?
(e) Print out and turn in:

 (i) The original image
 (ii) The image with just 1% of the DCT coefficients
 (iii) The image for which you notice degradation of the image quality.
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We introduced state-variable models for continuous-time systems in Chapter 8. 
State-variable models for discrete-time systems are introduced in this chapter. Although 
the development here closely parallels that of Chapter 8, that material is not a prerequi-
site for this chapter.

In Chapter 10, the modeling of discrete-time linear time-invariant (LTI) sys-
tems by linear difference equations with constant coefficients was discussed. We con-
sidered the representation of these systems by block diagrams, using the form I and 
form II simulation diagrams. The form I representation required 2N delays for an 
Nth-order system, while the form II representation required N delays. In this chap-
ter, we expand this representation considerably. This will lead us to a system model 
that is set of N first-order coupled difference equations to represent an Nth-order 
system. These models are called state-variable models, or, simply, state models.

State-variable models have the following advantages:

1. An internal structure of the system is given, in addition to the input–output 
model. Thus, a state-variable model is more general than an input–output model, 
such as a transfer function.

2. The modeling of nonlinear time-varying systems with the use of state vari-
ables is a relatively simple extension of state-variable modeling of LTI systems.

3. State-variable models are required for certain analysis and design proce-
dures. These models have wide applications in the design of computer-controlled 
continuous-time systems [1, 2].

4. State-variable theory leads us to many different implementations of a 
given digital filter. For a given filter, certain implementations may have advantages 
over other implementations, in terms of numerical accuracy, random-noise genera-
tion, and so on.

Analysis and design via state-variable models require the use of matrix math-
ematics. The required mathematics are reviewed in Appendix G; the terms relating 
to matrices used in this chapter are defined in that appendix.

State VariableS for 
DiScrete-time SyStemS13
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 13.1 State-Variable moDeling

In Chapters 9 and 10, we introduced the modeling of discrete-time systems by dif-
ference equations. If the discrete-time systems are linear and time invariant (LTI), 
we can represent these systems by transfer functions. Let the notation z[ # ] denote 
the z-transform. For an LTI system with an input of U1z2 = z[u[n]] and output of 
Y1z2 = z[y[n]], we can write, from Chapter 10,

 Y1z2 = H1z2U1z2, (13.1)

where H1z2 is the system transfer function. This discrete-time system can be rep-
resented by either of the two block diagrams of Figure 13.1. The impulse response 
h[n] and the transfer function H1z2 are related by H1z2 = z[h[n]]. We use the 
variable u[n] to denote the input in (13.1), since we use the variable x[n] to denote 
state variables. The use of u[n] as the symbol for the general input function can 
lead to confusion, because that symbol is also used for the discrete-time unit step 
function. However, this is the notation commonly used for the input signal in state-
variable models.

We now introduce state variables by an example; then a general development 
will be given. Consider a system modeled by the second-order linear difference 
equation with constant coefficients:

 y[n + 2] - 0.7y[n + 1] + 0.9y[n] = 2u[n]. (13.2)

In this equation, u[n] is the input and y[n] is the output. We commonly write differ-
ence equations for state models in terms of advances rather than delays. Of course, 
we can also write (13.2) as

 y[n] - 0.7y[n - 1] + 0.9y[n - 2] = 2u[n - 2] (13.3)

by replacing n with 1n - 22 in (13.2).
Ignoring the initial conditions, from Table 11.4 we find that the z-transform of 

(13.2) yields

 1z2 - 0.7z + 0.92Y1z2 = 2U1z2.

Hence, the transfer function is given by

 H1z2 =
Y1z2
U1z2 =

2
z2 - 0.7z + 0.9

. (13.4)

u[n] y[n] U[z] Y(z)
h[n] H(z)

H(z) �    [h[n]] Figure 13.1  LTI system.
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Equations (13.2) and (13.4) give a difference-equation model and the transfer-function 
model, respectively, of the system. We will now derive a third model.

For (13.2), we define two state variables

 x1[n] = y[n] 

and (13.5)

 x2[n] = y[n + 1] = x1[n + 1].

We now write (13.2) as

 y[n + 2] = 0.7y[n + 1] - 0.9y[n] + 2u[n].

Using (13.5), we express this equation as

  x2[n + 1] = y[n + 2] = 0.7y[n + 1] - 0.9y[n] + 2u[n] 

  = 0.7x2[n] - 0.9x1[n] + 2u[n].  
(13.6)

Hence, we have the state equations from (13.5) and (13.6):

  x1[n + 1] = x2[n];  

  x2[n + 1] = -0.9x1[n] + 0.7x2[n] + 2u[n]; (13.7)

  y[n] = x1[n].  

We can derive the difference equation (13.2) from (13.7) by reversing the preceding 
steps. Hence, (13.7) is a model of the system that has the same input–output char-
acteristics as (13.2).

The first two equations in (13.7) are coupled first-order difference equations, 
and the third equation relates the state variables to the output variable. The equa-
tions are normally written in vector-matrix form:

  Jx1[n + 1]
x2[n + 1]

R = J 0  1
-0.9 0.7

R Jx1[n]
x2[n]

R + J0
2
Ru[n]; 

  y[n] = [1 0]Jx1[n]
x2[n]

R .  

(13.8)

These equations form a complete set of state equations for the system of (13.2). As 
we discuss in Section 13.6, this set is not unique; that is, we can define other vari-
ables to be the states of the system.

The standard form of the state equations of a discrete-time LTI system is 
given by

 x[n + 1] = ax[n] + bu[n] 

and (13.9)

 y[n] = cx[n] + Du[n],
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where boldface type denotes vectors and matrices. In these equations,

 x[n] = 1N * 12 state vector for an Nth@order system;
 u[n] = 1r * 12 vector composed of the system input signals;
 y[n] = 1p * 12 vector composed of the defined output signals;

 a = 1N * N2 system matrix;
 b = 1N * r2 input matrix;
 c = 1p * N2 output matrix;
 D = 1p * r2  matrix that represents the direct coupling between the input and 

the output.

Expanding the vectors in (13.9) yields

  x[n + 1] = Dx1[n + 1]
x2[n + 1]
f
xN[n + 1]

T ,    x[n] = Dx1[n]
x2[n]
f
xN[n]

T , 

(13.10)

  u[n] = Du1[n]
u2[n]
f

ur[n]

T ,  and  y[n] = D y1[n]
y2[n]
f

yp[n]

T .  

As stated earlier, it is standard notation to denote the input functions as ui[n]. We 
 illustrate the ith state equation in (13.9):

  xi[n + 1] = ai1x1[n] + ai2x2[n] + g + aiNxN[n] 

  + bi1u1[n] + g + birur[n].  (13.11)

The ith output equation is

  yi[n] = ci1x1[n] + ci2x2[n] + g + ciNxN[n] 

  + di1u1[n] + g + dirur[n].  (13.12)

We now define the state of a system:

The state of a system at any time n0 is the information that, together with all inputs for 
n G n0, determines the behavior of the system for n G n0.

It will be shown that the state vector x[n] of the standard form of the state-variable 
equations, (13.9), satisfies this definition.

We refer to the two matrix equations of (13.9) as the state equations of the 
system. The first equation, a difference equation, is called the state equation, and the 
second one, an algebraic equation, is called the output equation. The state equation 
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is a first-order matrix difference equation, and the state vector x[n] is its solution. 
Given knowledge of x[n] and the input vector u[n], the output equation, which is 
 algebraic, yields the output y[n].

In the state equation in (13.9), the only variables that may appear on the left 
side of the equation are xi[n + 1], and the only variables that may appear on the 
right side are xi[n] and ui[n]. Only yi[n], xi[n], and ui[n] may appear in the output 
equation (no xi[n + 1] or ui[n + 1]). Valid equations that model an LTI system can 
be written without following these rules; however, those equations will not be in the 
standard form.

The standard form of the state equations, (13.9), allows for more than one 
input and more than one output. Systems with more than one input or more than 
one output are called multivariable systems. For a single-input system, the matrix 
b is an 1N * 12 column matrix and the input is the scalar u[n]. For a single-output 
system, the matrix c is a 11 * N2 row matrix and the output is the scalar y[n]. An 
example is now given to illustrate a multivariable system.

 example 13.1 State variables for a third-order discrete system

Consider the system described by the coupled difference equations

 y1[n + 2] + 2y1[n] + 3y2[n] = u1[n] + 9u2[n]

and

 y2[n + 1] + 4y2[n] - 6y1[n + 1] = 5u1[n],

where u1[n] and u2[n] are the input signals and y1[n] and y2[n] are the output signals. We de-
fine the states as the outputs, and, where necessary, the advanced outputs. Thus,

 x1[n] = y1[n]; x2[n] = y1[n + 1] = x1[n + 1]; x3[n] = y2[n].

From the system difference equations, we write

  y1[n + 2] = x2[n + 1] = -2y1[n] - 3y2[n] + u1[n] + 9u2[n]

  = -2x1[n] - 3x3[n] + u1[n] + 9u2[n];

  y2[n + 1] = x3[n + 1] = -4y2[n] + 6y1[n + 1] + 5u1[n]

  = 6x2[n] - 4x3[n] + 5u1[n].

We rewrite the state equations in the following order:

  x1[n + 1] = x2[n];

  x2[n + 1] = -2x1[n] - 3x3[n] + u1[n] + 9u2[n];

  x3[n + 1] = 6x2[n] - 4x3[n] + 5u1[n].

The output equations are

 y1[n] = x1[n]
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and

 y2[n] = x3[n].

These equations may be written in vector-matrix form as

 x[n + 1] = C 0 1 0
-2 0 -3

0 6 -4
Sx[n] + C0 0

1 9
5 0

Su[n]

and

 y[n] = J1 0 0
0 0 1

Rx[n].

Thus, we have derived a set of state equations for the system given. ■

We introduce in this section the standard form of the state model of an LTI 
discrete-time system. We illustrate the state model with two systems described by 
difference equations. In the next section, we develop a procedure for obtaining the 
state model directly from the system transfer function H1z2.

 13.2 Simulation DiagramS

In Section 13.1, we presented two examples of finding the state model of a system 
directly from the system difference equations. The procedure in those examples is 
useful. In this section, we extend that procedure, to present a state model that is 
obtained directly from the transfer function of a system.

The procedure is based on the form II representation, or simulation diagram, 
of a system, as given in Section 10.6. The simulation diagram, repeated in Figure 13.2, 
represents an Nth-order system with the transfer function

 H1z2 =
Y1z2
U1z2 =

b0z
N + b1z

N-1 + g + bN-1z + bN

zN + a1z
N-1 + g + aN-1z + aN

 , (13.13)

where U1z2 is the (transform of the) input and Y1z2 is the output. Note that the 
denominator coefficient a0 has been normalized to unity. If this coefficient is not 
unity for a given transfer function, we divide both numerator and denominator by a0 
to obtain (13.13). Hence, (13.13) is general.

Equation (13.13) can be expressed as

  1zN + a1z
N-1 + g + aN-1z + aN2Y1z2  

  = 1b0z
N + b1z

N-1 + g + bN-1z + bN2U1z2. (13.14)
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Using either the procedures of Chapter 10 or the inverse z-transform, we write the 
system difference equation as

  y[n + N] + a1y[n + N - 1] + g + aN - 1y[n + 1] + aNy[n]

  = b0u[n + N] + b1u[n + N - 1] + g + bN - 1u[n + 1] + bNu[n].

This equation can be written in the compact notation

 a
N

k = 0
aky[n + N - k] = a

N

k = 0
bku[n + N - k], (13.15)

with a0 = 1. Thus, the system modeled by the transfer function (13.13) has the dif-
ference equation of (13.15). Recall that initial conditions are ignored in deriving the 
transfer function (13.13); hence, the initial conditions must be ignored when finding 
its inverse z-transform.

We now give a procedure for writing the state model for the system of (13.13) 
and Figure 13.2. First, we label the output of each delay in Figure 13.2 as a state 
variable, as shown in the figure. If the output of a delay is xi[n], its input must be 

u[n] y[n]

xN[n + 1]

xN � 1[n + 1]

xN � 2[n + 1]

x1[n]

x1[n + 1]

xN � 1[n]

xN[n]

b0 �

b1 �

b2 �

�a1

�a2

�aN�1 bN�1

�aN

�

�

�

�

�

bN

D

D

D

Figure 13.2  Direct form II for an  
Nth-order system.
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xi[n + 1]. Next, the signals xi[n + 1] are added to the simulation  diagram, as shown. 
We then write the equations for the input signals to the delays of Figure 13.2:

  x1[n + 1] = x2[n];  

  x2[n + 1] = x3[n];  

 f (13.16)

  xN - 1[n + 1] = xN[n]; 

  xN[n + 1] = -aNx1[n] - aN - 1x2[n] - g -a2xN - 1[n] - a1xN[n] + u[n]. 

From Figure 13.2, the equation for the output signal is

  y[n] = 1bN - aNb02x1[n] + 1bN - 1 - aN - 1b02x2[n] 

  + g + 1b1 - a1b02xN[n] + b0u[n]. (13.17)

We now write (13.16) and (13.17) as matrix equations:

 x[n + 1] = E 0 1 0 g 0 0
0 0 1 g 0 0
f f f f f
0 0 0 g 0 1

-aN -aN-1 -aN-2 g -a2 -a1

Ux[n] + E 0
0
f
0
1

Uu[n]; (13.18)

  y[n] = [1bN - aNb021bN - 1 - aN - 1b02 g 1b1 - a1b02]x[n] + b0u[n]. 

Note that the state equations can be written directly from the transfer function 
(13.13) or from the difference equation (13.15), since the coefficients ai and bi are 
given in these two equations. The intermediate step of drawing the simulation dia-
gram is not necessary. An example is now given.

 example 13.2 State equations from a transfer function

Suppose that we have a system with the transfer function

 H1z2 =
2z2 + 3z + 1.5

z2 - 1.1z + 0.8
=

b0z
2 + b1z + b2

z2 + a1z + a2
.

We write the state equations directly from (13.18):

  x[n + 1] = J0 1
-0.8 1.1

Rx[n] + J0
1
Ru[n];  

  y[n] = [11.5 - 0.8 * 2213 + 1.1 * 22]x[n] + 2u[n] 

  = [-0.1 5.2]x[n] + 2u[n].  (13.19)
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The form II simulation diagram is given in Figure 13.3, with the numerical parameters and the 
state variables as shown. The state model (13.19) is verified directly from this diagram. ■

The procedure for writing (13.19) from Figure 13.2 can be used to write 
the state equations, given any form of a simulation diagram for that system; that 
is, the form II realization is not required. In this procedure, the delay outputs 
are chosen as the states; hence, the delay inputs are the states advanced by one 
discrete-time increment. The equations are then written for the delay inputs 
xi[n + 1] and the system output y[n] as functions of the system input u[n], the 
delay outputs xi[n], and the system parameters. We now discuss this procedure 
further.

In a simulation diagram, a signal is altered when transmitted through a delay, 
and hence, its designation is changed. We denote xi[n + 1] as the input to a delay, 
and xi[n] is then the delay output. The state-equation procedure is simplified by 
omitting the delays from the diagram; the equations are written directly from the 
remaining diagram. This omission is especially useful in complex simulation dia-
grams. The system of Figure 13.3, with the delays omitted, is shown in Figure 13.4. 
Note that all signals are shown in this figure. In addition, the effects of the delays 
are  included, by the designations xi[n + 1] and xi[n].

The final step of the procedure is to write the equations for the delay 
 inputs and the system outputs on the diagram as functions of the system inputs, 
the delay outputs, and the system parameters. The results for Figure 13.4 are 
given by

  x1[n + 1] = x2[n];

  x2[n + 1] = -0.8x1[n] + 1.1x2[n] + u[n];

x2[n � 1]

b0

D

D

�a1

2

1.1

b1

3

�a2

�0.8

b2

1.5

y[n]u[n]

�

� �

�

x2[n]

x1[n � 1]

x1[n]

Figure 13.3  Second-order system.
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  y[n] = 11.5 - 1.62x1[n] + 13 + 2.22x2[n] + 2u[n]

  = -0.1x1[n] + 5.2x2[n] + 2u[n].

These equations check those obtained in Example 13.2, using (13.18). A second 
example of this procedure is now given.

 example 13.3 State equations from a simulation diagram

We now write the state equations for the simulation diagram of Figure 13.5(a). Note that 
this diagram is not one of the two standard forms developed in Chapter 10. This system has 
two delays, and the system is second order. First, we redraw the simulation diagram with the 
state variables shown and the delays removed. The result is given in Figure 13.5(b). From this 
diagram, we write the state equations in the matrix format: 

  x[n + 1] = J0.9 0.7
0 0.96

Rx[n] + J1
2
Ru[n];

  y[n] = [1.5 2.5]x[n].  ■

In Section 13.1, a procedure was given for writing state equations from differ-
ence equations. In this section, a procedure is developed for writing state equations 
directly from a transfer function. This procedure is then extended to writing state 
equations directly from a simulation diagram.

A model of a discrete-time physical system can be specified by

 1. difference equations,
 2. a transfer function,

x2[n � 1]

2

1.1 3

�0.8 1.5

y[n]u[n]

�

� �

�

x2[n]

x1[n � 1]

x1(n)

Figure 13.4  Second-order system.
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 3. a simulation diagram, and
 4. state equations.

We have illustrated all four models in this section and Section 13.1. In Section 13.5, 
we give a procedure for obtaining the transfer function from the state equations. 
However, first we consider the solution of state equations.

1.5D

2.52

0.7

D

0.9

0.96

u[n]
y[n]

�

�

�

y[n]�

x2[n � 1]

x1[n � 1]

x2[n]

x1[n]

1.5

2.52

0.7

0.9

0.96

u[n]

�

�

x2[n � 1]

x1[n �1]

x2[n]

x1[n]

(a)

(b) Figure 13.5  System for Example 13.3.



Sec. 13.3    Solution of State Equations 703

 13.3 Solution of State equationS

We have developed procedures for writing the state equations for a system, given 
the system difference equations, a transfer function, or a simulation diagram. In this 
section, we present two methods for finding the solution of state equations.

recursive Solution

Consider the state equations

 x[n + 1] = ax[n] + bu[n] 

and (13.20)

 y[n] = cx[n] + Du[n].

We assume that the initial state vector x[0] is known and that the input vector u[n] 
is known for n G 0. In a recursive manner, we write, for n = 1,

 x[1] = ax[0] + bu[0]

and for n = 2,

  x[2] = ax[1] + bu[1]

  = a1ax[0] + bu[0]2 + bu[1]

  = a2x[0] + abu[0] + bu[1].

In a like manner, we can show that

  x[3] = a3x[0] + a2bu[0] + abu[1] + bu[2];

  x[4] = a4x[0] + a3bu[0] + a2bu[1] + abu[2] + bu[3].

We see from this pattern that the general solution is given by

  x[n] = anx[0] + an - 1bu[0] + an - 2bu[1] + g + abu[n - 2] + bu[n - 1] 

  = anx[0] + a
n - 1

k = 0
a1n - 1 - k2bu[k],  (13.21)

where a0 = i. We define the state-transition matrix �[n] from this solution:

 �[n] = an. (13.22)

This matrix is also called the fundamental matrix. From (13.21), the solution can 
then be expressed as

 x[n] = �[n]x[0] + a
n - 1

k = 0
�[n - 1 - k]bu[k]; (13.23)
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and from (13.20), the output vector is given by

  y[n] = cx[n] + Du[n]  

  = c�[n]x[0] + a
n - 1

k = 0
c�[n - 1 - k]bu[k] + Du[n]. (13.24)

Note that the summation in (13.24) is a convolution sum. This is not surprising, 
because the output signal y[n] for an LTI system is expressed as a convolution sum 
in (10.13).

The complete solution of the state equations is given in Equation (13.24). 
However, in practice, we generally do not solve for �[n] as a function of n. Instead, 
we calculate the solution of state equations recursively on a digital computer, using 
the state equations. An example is now given to illustrate the recursive nature of the 
solution.

 example 13.4 recursive solution of state equations

Consider the discrete-time system with the transfer function

 H1z2 =
z + 3

z2 - 5z + 6
=

b1z + b2

z2 + a1z + a2
.

From (13.18), we write the state equations

  x[n + 1] = J 0 1
-6 5

Rx[n] + J0
1
Ru[n];

  y[n] = [3 1]x[n].

Assume that the initial state is x[0] = [2 2]T and that the input signal is a unit step function, 
such that u[n] = 1 for n G 0. We obtain the recursive solution by evaluating the state equa-
tions first for n = 1, next for n = 2, then for n = 3, and so on:

  x[1] = J 0 1
-6 5

Rx[0] + J0
1
Ru[0] = J 0 1

-6 5
R J2

2
R + J0

1
R 112 = J 2

-1
R ;

  y[1] = [3 1]J 2
-1

R = 5

and

  x[2] = J 0 1
-6 5

R J 2
-1

R + J0
1
R = J -1

-16
R ;

  y[2] = [3 1]J -1
-16

R = -19.
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Also,

  x[3] = J 0 1
-6 5

R J -1
-16

R + J0
1
R = J -16

-73
R ;

  y[3] = [3 1]J -16
-73

R = -121.

Hence, we can recursively determine the states and the output at successive time instants. 
This procedure is well suited to digital computer implementation. ■

In Example 13.4, the output appears to be diverging, which indicates an unstable 
system. Recall from Section 10.5 that the system characteristic equation is the denomi-
nator of the transfer function set to zero; that is,

 z2 - 5z + 6 = 1z - 221z - 32 = 0.

We can see that the transfer-function poles occur at z = 2 and z = 3, which are 
outside the unit circle; hence, the system is unstable. The modes of the system are 
given by 122n and 132n, and the instability is evident.

A MATLAB program that performs this recursive solution in the last exam-
ple is as follows:

A = [0 1;-6 5] ;B = [0;1] ;C = [3 1] ;
xn = [2;2] ;
for n = 0:3
  yn = C*xn
   xnplus1 = A*xn+B*1;
   xn = xnplus1;
end
result: y = 8 5 -19 -121

z-transform Solution

The general solution of the state equations

 x[n + 1] = ax[n] + bu[n], (13.25)

developed before, is given by

[eq(13.23)] x[n] = �[n]x[0] + a
n - 1

k = 0
�[n - 1 - k]bu[k],

where the state-transition matrix is �[n] = an. We now show that this solution can 
also be found by a z-transform approach.

Recall the z-transform property of Table 11.4:

 z1xi[n + 1]2 = zXi1z2 - zxi[0].
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The first scalar equation of (13.25) is given by

  x1[n + 1] = a11x1[n] + a12x2[n] + g+ a1NxN[n] 

  + b11u1[n] + g+ b1rur[n]. (13.26)

The z-transform of this equation yields

  zX11z2 - zx1[0] = a11X11z2 + a12X21z2 + g + a1NXN1z2 

  + b11U11z2 + g + b1rUr1z2.  (13.27)

We will find the complete solution; hence, the initial condition x1[0] is included. The 
second equation in (13.25) is given by

  x2[n + 1] = a21x1[n] + a22x2[n] + g + a2NxN[n] 

  + b21u1[n] + g + b2rur[n],  (13.28)

which has the z-transform

  zX21z2 - zx2[0] = a21X11z2 + a22X21z2 + g + a2NXN1z2 

  + b21U11z2 + g + b2rUr1z2.  (13.29)

The z-transform of the remaining 1n - 22 equations in (13.25) yield equations 
of the same form. We see, then, that these transformed equations may be written in 
matrix form as

 zx1z2 - zx[0] = ax1z2 + bu1z2.

We wish to solve this equation for x(z); to do this, we collect all terms containing 
x(z) on the left side of the equation:

 zx1z2 - ax1z2 = zx[0] + bu1z2. (13.30)

It is necessary to factor x(z) in the left side to solve this equation. First, the term 
zx(z) is written as zix(z), where i is the identity matrix (see Appendix G):

 zix1z2 - ax1z2 = 1zi - a2x1z2 = zx[0] + bu1z2. (13.31)

This additional step is necessary, since the subtraction of the matrix a from the sca-
lar z is not defined; we cannot factor x(z) directly in (13.30). Equation (13.31) may 
now be solved for x(z):

 x1z2 = z1zi - a2-1x[0] + 1zi - a2-1bu1z2. (13.32)

The solution x[n] is the inverse z-transform of this equation.
Comparing (13.32) and (13.23), we see that the state transition matrix �[n] is 

given by

 �[n] = z-1[�1z2] = z-1[z1zi - a2-1]. (13.33)
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The matrix �1z2 = z1zi - a2-1 is called the resolvant of a [3]. Note that for 
an Nth-order system, the state transition matrix is an N * N matrix. The inverse  
z-transform of a matrix, as in (13.32), is defined as the inverse transform of the elements 
of the matrix. A computer algorithm is available for calculating z1zi - a2-1 [3].

Finding the inverse z-transforms indicated in (13.32), in general, is difficult, 
time consuming, and prone to error. A more practical procedure for calculating the 
state vector x[n] is a recursive computer solution, as described earlier. An example 
is now presented to illustrate the calculation of a state transition matrix.

 example 13.5 transition matrix for a second-order system

We use the system of Example 13.4. From this example, the state equations are given by

 x[n + 1] = J 0 1
-6 5

Rx[n] + J0
1
Ru[n]

and

 y[n] = [3 1]x[n].

To find the state transition matrix, we first calculate the matrix 1zi - a2:

 zi - a = zJ1 0
0 1

R - J 0 1
-6 5

R = Jz -1
6 z - 5

R .

To find the inverse of this matrix, we calculate its adjoint matrix (see Appendix G):

 Adj1zi - a2 = Jz - 5 1
-6 z

R .

The determinant of 1zi - a2 is given by

  det1zi - a2 = z1z - 52 - 1-12162
  = z2 - 5z + 6 = 1z - 221z - 32.

As we will show later, this determinant is always equal to the denominator of the transfer 
function. The inverse of a matrix is the adjoint matrix divided by the determinant:

  z1zi - a2-1 = D z1z - 52
1z - 221z - 32  

z
1z - 221z - 32

-6z
1z - 221z - 32  

z2

1z - 221z - 32
T

  = D 3z
z - 2

+
-2z

z - 3
 

- z
z - 2

+
z

z - 3
6z

z - 2
+

-6z
z - 3

 
-2z

z - 2
+

3z
z - 3

T .

The state transition matrix is the inverse z-transform of this matrix. Thus, from Table 11.2,

 �[n] = J 3122n - 2132n - 122n + 132n

6122n - 6132n - 2122n + 3132n R .
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We see that the state transition matrix for a second-order system is a 2 * 2 matrix. In a like 
manner, the state transition matrix for an Nth-order system is N * N.

This MATLAB program performs the computation of Φ[n]:

syms z n A I2 Phiz phin
A=[0 1;-6 5]
I2=[1 0;0 1];
Phiz=z*inv(z*I2-A)
phin=iztrans(Phiz) ■

Note that in Example 13.5, the modes of the system are evident in the state- 
transition matrix. This will always be the case, because the denominator of the elements 
of the resolvant matrix z1zi - a2-1 is always the denominator of the transfer func-
tion. This property of the state transition matrix will be proved in Section 13.4.

The complete solution of the state equations is given by

[eq(13.32)] x1z2 = z1zi - a2-1x[0] + 1zi - a2-1bu1z2.

We now illustrate the complete solution with an example.

 example 13.6 z-transform solution of state equations

Consider the same system as described in Examples 13.4 and 13.5. The state equations are 
given by

  x[n + 1] = J 0 1
-6 5

Rx[n] + J0
1
Ru[n];

  y[n] = [3 1]x[n],

with

 1zi - a2-1 = D z - 5
1z - 221z - 32

1
1z - 221z - 32

-6
1z - 221z - 32

z
1z - 221z - 32

T .

Suppose that a unit step function is applied as the input. Then, U1z2 = z/1z - 12 from 
Table 11.2, and the second term in (13.32) becomes

  1zi - a2-1bU1z2 = D z - 5
1z - 221z - 32

1
1z - 221z - 32

-6
1z - 221z - 32

z
1z - 221z - 32

T J0
1
R z

z - 1

  = D z
1z - 121z - 221z - 32

z2

1z - 121z - 221z - 32
T = D z/2

z - 1
+

-z
z - 2

+
z/2

z - 3
z/2

z - 1
+

-2z
z - 2

+
3z/2

z - 3

T .
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The inverse z-transform of this matrix is, from Table 11.2, for n G 0,

 z-1[1zi - a2-1bU1z2] = D 1
2

- 122n +
1
2
132n

1
2

- 2122n +
3
2
132n

T .

The state transition matrix was derived in Example 13.4. Hence, from (13.32), the complete 
solution of the state equations is

  x[n] = z-1[z1zi - a2-1x[0] + 1zi - a2-1bu1z2]

  = J3122n - 2132n - 122n + 132n

6122n - 6132n -2122n + 132n R Jx1[0]
x2[0]

R + D 1
2

- 122n +
1
2
132n

1
2

- 2122n +
3
2
132n

T ,

and the state variables are given by

  x1[n] = [3122n - 2132n]x1[0] + [- 122n + 132n]x2[0] +
1
2

- 122n +
1
2

 132n

  =
1
2

+ 13x1[0] - x2[0] - 12122n + a -2x1[0] + x2[0] +
1
2
b132n

and

  x2[n] = [6122n - 6132n]x1[0] + [-2122n + 3132n]x2[0] +
1
2

- 2122n +
3
2

 132n

  =
1
2

+ 16x1[0] - 2x2[0] - 22122n

  + ¢ -6x1[0] + 3x2[0] +
3
2
≤132n.

For example, for x[0] = [2 2]T as in Example 13.4, and for n = 3,

  x1[3] =
1
2

+ 13122 - 2 - 121223 + ¢-2122 + 2 +
1
2
≤1323

  =
1
2

+ 24 -
81
2

= -16;

  x2[3] =
1
2

+ 16122 - 2122 - 221223 + ¢-6122 + 3122 +
3
2
≤1323

  =
1
2

+ 48 -
243
2

= -73;

  y[3] = 3x1[3] + x2[3] = 31-162 + 1-732 = -121.
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These values check those calculated in Example 13.4. It is seen that calculating the solution of 
the state equations by the z-transform is long and involved, even for a second-order  system. 
The necessity for reliable digital computer solutions is evident. A SIMULINk simulation is 
 illustrated in Figure 13.6. Note the large value of the magnitude of the output; this results 
from the system being unstable. ■

In this section, two expressions for the solution of state equations are derived. 
The first, (13.23), expresses the solution in the discrete-time domain, while the sec-
ond, (13.32), expresses the solution as a z-transform. The state-transition matrix is 
found either by matrix multiplication, (13.22), or the z-transform, (13.33).

 13.4 propertieS of the State tranSition matrix

Three properties of the state transition matrix are derived in this section. First, for 
an unforced system, from (13.23),

 x[n] = �[n]x[0] 1 x[0] = �[0]x[0],

and, hence,

 �[0] = i, (13.34)

where i is the identity matrix. This property can be used in the verification of the 
calculation of �[n].

(b)

(a)

yout
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Figure 13.6  SIMULINk simulation for Example 13.6.
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Next, from (13.22), �[n] = an. Thus, the second property is seen to be

 �[n1 + n2] = an1 + n2 = an1an2 = �[n1]�[n2]. (13.35)

The third property is derived from the relationships

 �[-n] = a-n = [an]-1 = �-1[n].

Consequently,

 �-1[n] = �[-n]. (13.36)

In summary, the three properties of the state transition matrix are given by the 
following equations:

[eq(13.34)]  �[0] = i;

[eq(13.35)]  �[n1 + n2] = �[n1]�[n2];

[eq(13.36)]  �-1[n] = �[-n].

An example illustrating these properties is now given.

 example 13.7 illustration of properties of a state transition matrix

We use the state transition matrix from Example 13.6 to illustrate the three properties:

 �[n] = J3122n - 2132n - 122n + 132n

6122n - 6132n -2122n + 3132n R .

From (13.34), the first property is satisfied:

 �[0] = J31220 - 21320 - 1220 + 1320

61220 - 61320 -21220 + 31320R = J1 0
0 1

R = i.

The second property, (13.35), yields

  �[n1]�[n2] = J3122n1 - 2132n1 - 122n1 + 132n1

6122n1 - 6132n1 -2122n1 + 3132n1
R

  * J3122n2 - 2132n2 - 122n2 + 132n2

6122n2 - 6132n2 -2122n2 + 3132n2
R .
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The (1, 1) element of the product is given by

  11, 12 element = [3122n1 - 2132n1][3122n2 - 2132n2]

  + [- 122n1 + 132n1][6122n2 - 6132n2] = 9122n1 + n2

  - 6122n1132n2 - 6122n2132n1 + 4132n1 + n2 - 6122n1 + n2

  + 6122n1132n2 + 6122n2132n1 - 6132n1 + n2.

Combining these terms yields

 11, 12 element = 3122n1 + n2 - 2132n1 + n2, (13.37)

which is the (1, 1) element of �[n1 + n2]. In a like manner, the other three elements of the 
product matrices can be verified.

To illustrate the third property, (13.36), we assume that the property is true for this 
example. Hence,

  �[n]�[-n] = J3122n - 2132n - 122n + 132n

6122n - 6132n -2122n + 3132n R
  * J3122-n - 2132-n - 122-n + 132-n

6122-n - 6132-n -2122-n + 3132-n R = i.

As with the last property, we test only the (1, 1) element of the product. From (13.37), with 
n1 = n and n2 = -n,

  11, 12 element = 3122n-n - 2132n-n

  = 3 - 2 = 1.

In a like manner, the other three elements of the product matrix can be verified. ■

In this section, three properties of the state transition matrix are developed. 
The first property, �[0] = i, is easily applied as a check of the calculation of a state-
transition matrix.

 13.5 tranSfer functionS

A procedure was given in Section 13.2 for writing state equations of a system from 
the transfer function. In this section, we investigate the calculation of transfer func-
tions from state equations.

The standard form of the state equations is given by

  x[n + 1] = ax[n] + bu[n]

and

  y[n] = cx[n] + Du[n] (13.38)
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for a single-input single-output system. The z-transform of the first equation in 
(13.38) yields [see (13.30)]

 zx1z2 = ax1z2 + bU1z2. (13.39)

Because we are interested in the transfer function, the initial conditions are ignored. 
Collecting terms for x(z) yields

 1zi - a2x1z2 = bU1z2, (13.40)

and thus, x(z) is given by

 x1z2 = 1zi - a2-1bU1z2. (13.41)

The z-transform of the output equation in (13.38) yields

 Y1z2 = cx1z2 + DU1z2. (13.42)

From (13.41) and (13.42), the input–output relationship for the system is given by

 Y1z2 = [c1zi - a2-1b + D]U1z2. (13.43)

Since the system transfer function is defined by the equation Y1z2 = H1z2U1z2, 
we see that the transfer function is given by

 H1z2 =
Y1z2
U1z2 = c1zi - a2-1b + D = c�1z2b + D. (13.44)

Because c is 1 * N,  1zi - a2-1 is N * N, and b is N * 1, the product 
c1zi - a2-1b is 1 * 1 or a scalar, as required. An example is given to illustrate this  
result.

 example 13.8 transfer function from state equations

Consider the system of Examples 13.4 and 13.5, which has the transfer function

 H1z2 =
Y1z2
U1z2 =

z + 3

z2 - 5z + 6
.

The state equations were found to be

  x[n + 1] = J 0 1
-6 5

Rx[n] + J0
1
Ru[n];

  y[n] = [3 1]x[n].
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The resolvant matrix 1zi - a2-1 was calculated in Example 13.5. Then, from (13.44) and 
Example 13.5, with D = 0,

  H1z2 = c1zi - a2-1b

  = [3 1]D z - 5

z2 - 5z + 6

1

z2 - 5z + 6
-6

z2 - 5z + 6

z

z2 - 5z + 6

T J0
1
R

  = [3 1]D 1

z2 - 5z + 6
z

z2 - 5z + 6

T =
z + 3

z2 - 5z + 6
.

This transfer function checks the one given.  ■

Although (13.44) does not appear to be useful in calculating the transfer func-
tion for higher-order systems, relatively simple computer algorithms exist for evalu-
ating the resolvant matrix 1zi - a2-1 [3]. A MATLAB program that performs the 
calculations of Example 13.8 is given by

A=[0 1;-6 5],B=[0;1],C=[3 1],D=0
[num,den]=ss2tf(A,B,C,D)
Hz=tf(num,den,  –1)

Stability

We saw in Section 11.6 that bounded-input bounded-output (BIBO) stability can be 
determined from the transfer function of an LTI system. From (13.13), the transfer 
function of (13.44) can be expressed as a rational function:

 H1z2 = c1zi - a2-1b + D =
b0z

N + g + bN-1z + bN

zN + g + aN-1z + aN
. (13.45)

From Section 11.6, this system is BIBO stable, provided that all poles of H1z2 are 
inside the unit circle, where the poles of the transfer function are the zeros of the 
denominator polynomial in (13.45).

The transfer function H1z2 can be expressed as

 c1zi - a2-1b + D = cJ adj1zi - a2
det1zi - a2 Rb + D. (13.46)

Hence, the denominator polynomial of H1z2 is the determinant of 1zi - a2; the 
poles of the transfer function are the roots of

 det1zi - a2 = 0. (13.47)

This equation is then the system characteristic equation. Note that stability is a 
function only of the system matrix a and is not affected by b, c, or D. In fact, 



Sec. 13.6    Similarity Transformations 715

(13.47) is also the characteristic equation of a multivariable system, which has 
more than one input or more than one output. We now consider an example il-
lustrating stability.

 example 13.9 Stability from state equations

We consider the system of Example 13.8. The state equation is given by

 x[n + 1] = J 0 1
-6 5

Rx[n].

We have ignored the input and output terms, since stability is independent of these terms. 
From (13.47), the characteristic equation is given by

  det1zi - a2 = detJz -1
6 z - 5

R
  = z2 - 5z + 6 = 1z - 221z - 32 = 0.

The roots are at z = 2 and z = 3. Both poles are outside the unit circle; hence, the system is 
unstable, as is noted following Example 13.4. A MATLAB program that calculates the sys-
tem characteristic equation is given by

A=[0,1;-6 5]
charpoly=poly(A)
charroots=roots (charpoly)  ■

In this section, a procedure is developed for calculating the transfer function 
of a system from its state equations. The procedure can be implemented on a com-
puter and is used extensively in the practice of engineering for calculating transfer 
functions of high-order systems. As a final point, it is shown that the characteristic 
polynomial of a system is equal to det1zi - a2; hence, this determinant calculates 
the modes of a system. These modes determine the stability of a system and the 
characteristics of the transient response of a stable system.

 13.6 Similarity tranSformationS

In this chapter so far, procedures have been presented for finding a state-variable 
model from the system difference equations, the system-transfer function, or a 
 system-simulation diagram. In this section, a procedure is given for finding different 
state models from a given state model. It is seen that a system has an unlimited num-
ber of state models. The state models have the same input–output characteristics 
(same transfer function), whereas the internal characteristics are different.

The procedure is identical to that developed in Section 8.6 for a continuous-
time system; thus, only the results are reviewed. The state model for a discrete-time 
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single-input, single-output system is given by

  x[n + 1] = ax[n] + bu[n]; 

  y[n] = cx[n] + Du[n], (13.48)

and the transfer function for this model is, from (13.44),

 H1z2 =
Y1z2
U1z2 = c1zi - a2-1b + D. (13.49)

The similarity transformation is defined by

 v[n] = qx[n] = p-1x[n] 1 x[n] = pv[n], (13.50)

where v(n) are the new state variables. The transformed state equations are then

 v[n + 1] = a
v
v[n] + b

v
u[n]

and

 y[n] = c
v
v[n] + D

v
u[n], (13.51)

where the transformed matrices for the v(n)-states are

  a
v

= p-1ap, bv = p-1b, 

  cv = cp, and D
v

= D.  (13.52)

Three examples illustrating similarity transformations for discrete-time systems are 
now given. A MATLAB program that performs the calculations in these examples 
is given in Example 13.12.

 example 13.10 State-variable transformation for a second-order system

Consider the system of Example 13.4, which has the transfer function

 H1z2 =
Y1z2
U1z2 =

z + 3

z2 - 5z + 6
.

From Example 13.4, the state equations are given by

 x[n + 1] = J 0 1
-6 5

Rx[n] + J0
1
Ru[n]

and

 y[n] = [3 1]x[n].
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We arbitrarily define the elements of v[n] as follows:

  v1[n] = x1[n];

  v2[n] = x1[n] + x2[n].

Thus, from (13.50),

 v[n] = qx[n] = J1 0
1 1

Rx[n]

and

 p-1 = q = J1 0
1 1

R 1 p = J 1 0
-1 1

R .

Hence, the components of x[n] = pv[n] can be expressed as

  x1[n] = v1[n];

  x2[n] = -v1[n] + v2[n].

It is seen from this example that, given the vector v[n] and the transformation p = q-1, we 
can solve for the vector x[n]. Or, given the vector x[n] and the transformation q, we can solve 
for the vector v[n]. ■

 example 13.11 Similarity transformation for a second-order system

This example is a continuation of the last example. From (13.52), the system matrices for the 
transformed matrices become

  a
v

= p-1ap = J1 0
1 1

R J 0 1
-6 5

R J 1 0
-1 1

R
  = J 0 1

-6 6
R J 1 0

-1 1
R = J -1 1

-12 6
R ,

  b
v

= p-1b = J1 0
1 1

R J0
1
R = J0

1
R ,

and

 c
v

= cp = [3 1]J 1 0
-1 1

R = [2 1].

The transformed state equations are then

 v[n + 1] = a
v
v[n] + b

v
u[n] = J -1 1

-12 6
Rv[n] + J0

1
Ru[n]
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and 

 y[n] = c
v
v[n] = [2 1]v[n]. ■

 example 13.12 transfer function for system of example 13.11

To verify the state model of Example 13.11, we now derive the transfer function. From (13.44),

 H
v
1z2 = c

v
1zi - a

v
2-1b

v
.

First, we calculate 1zi - a
v
2-1. Hence,

 zi - a
v

= zJ1 0
0 1

R - J -1 1
-12 6

R = Jz + 1 -1
12 z - 6

R .

Therefore,

 det1zi - a2 = z2 - 5z - 6 + 12 = z2 - 5z + 6.

Then, letting det1zi - a2 = ∆1z2, we obtain

 1zi - a2-1 =
adj1zi - a2
det1zi - a2 = D z - 6

∆1z2
1

∆1z2
-12

∆1z2
z + 1
∆1z2

T .

Thus, the transfer function is given by

  H
v
1z2 = c

v
1zi - a

v
2-1b

v

  = [2 1]D z - 6
∆1z2

1
∆1z2

-12
∆1z2

z + 1
∆1z2

T J0
1
R

  = J2z - 24
∆1z2

z + 3
∆1z2 R J0

1
R =

z + 3

z2 - 5z + 6
 , 

and the transfer function is as given in Example 13.10. The following MATLAB program 
performs the calculations of Examples 13.11 and 13.12:

A=[0 1;−6 5];B=[0;1];C=[3 1];D=0;P=[1 0;1 1];
sys1=ss(A,B,C,D,−1)
sys2=ss2ss(sys1,P)
[num,den]=ss2tf(A,B,C,D,1);
Hz=tf(num,den,−1) ■
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properties

Similarity transformations have been demonstrated through examples. Certain 
 important properties of these transformations are derived next. Consider first the 
determinant of 1zi - a

v
2. From (13.52),

  det1zi - a
v
2 = det1zi - p-1ap2 = det1zp-1ip - p-1ap2 

  = det[p-11zi - a2p].  (13.53)

For two square matrices,

 det r1r2 = det r1 det r2. (13.54)

Then we can express (13.53) as

 det1zi - a
v
2 = det p-1 det1zi - a2 det p, (13.55)

because, for a matrix r, r-1r = i. Thus,

 det r-1r = det r-1 det r = det i = 1. (13.56)

Hence, (13.55) yields the first property:

 det1zi - a
v
2 = det1zi - a2. (13.57)

The roots of det1zi - a2 are the characteristic values, or the eigenvalues, of a.  
(See Appendix G.) Thus, the eigenvalues of a

v
 are equal to those of a, from 

(13.57). Since the transfer function is unchanged under a similarity transformation, 
and since the eigenvalues are the poles of the transfer function, we are not surprised 
that they are unchanged.

A second property is now derived. From (13.57) with z = 0,

 det a
v

= det a. (13.58)

The determinant of a
v
 is equal to the determinant of a. This property can also be 

seen from the fact that the determinant of a matrix is equal to the product of its ei-
genvalues. (See Appendix G.)

The third property of a similarity transformation can also be seen from the 
fact that the eigenvalues of a

v
 and of a are equal. The trace (sum of the diagonal 

elements) of a matrix is equal to the sum of the eigenvalues; hence,

 tr a
v

= tr a. (13.59)

A fourth property was demonstrated in Example 13.12. Since the transfer 
function is unchanged under a similarity transformation,

 c
v
1zi - a

v
2-1b

v
+ D

v
= c1zi - a2-1b + D. (13.60)

The proof of this property is left as an exercise.
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To summarize the properties of similarity transforms, we first let l1, l2, c, lN 
denote the eigenvalues of the matrix a. Then, for the similarity transformation of 
(13.51) and (13.52), the following are true:

 1. The eigenvalues of a and a
v
 are equal:

  det1zi - a2 = det1zi - a
v
2  

  = 1z - l121z - l22 g1z - lN2. (13.61)

 2. The determinants of a and a
v
 are equal:

 det a = det a
v

= l1l2 g lN. (13.62)

 3. The traces of a and a
v
 are equal:

 tr a = tr a
v

= l1 + l2 + g + lN. (13.63)

 4. The following transfer functions are equal:

 c
v
1zi - a

v
2-1b

v
+ D

v
= c1zi - a2-1b + D. (13.64)

Summary

In earlier chapters, we specified the model of a discrete-time LTI system by a dif-
ference equation or a transfer function. In both cases, the system input–output 
characteristics are given. In this chapter, a third model, the state-variable model, is 
 developed. This model is a set of coupled first-order difference equations. The state 
model can be specified either by state equations or by a simulation diagram.

The state model gives an internal model of a system, in addition to the input–
output characteristics. Methods are presented in this chapter to derive any one of 
the three models from any other one.

It is also demonstrated that a state model for a given system is not unique. 
Similarity transformations may be used to develop any number of different state 
models from a given state model. The different state models have the same input–
output characteristics, while the internal models are all different.

A state model of a discrete-time LTI system is required for applying certain 
types of analysis and design procedures [1, 2]. State models are especially useful in 
computer-aided analysis and design.

See Table 13.1.
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Table 13.1  Key Equations of Chapter 13

 
equation title

equation  
number

 
equation

State equations of DT LTI system (13.9) x[n + 1] = ax[n] + bu[n]

and

y[n] = cx[n] + Du[n]

State equations in matrix form (13.18)  x[n + 1] = E 0 1 0 g 0 0
0 0 1 g 0 0
f f f f f
0 0 0 g 0 1

-aN -aN-1 -aN-2 g -a2 -a1

U x[n] + E 0
0
f
0
1

Uu[n]

 y[n] = [1bN - aNb021bN-1 - aN-1b02 g 1b1 - a1b02]x[n] + b0u[n]

State-transition matrix (13.22) �[n] = an

Solution of state equation (13.23) x[n] = �[n]x[0] + a
n - 1

k = 0
�[n - 1 - k]bu[k]

Convolution solution of state equation (13.24)  y[n] = cx[n] + Du[n]

 = c�[n]x[0] + a
n - 1

k = 0
c�[n - 1 - k]bu[k] + Du[n]

State-transition matrix (13.33) �[n] = z-1[�1z2] = z-1[z1zi - a2-1]

Transfer function (13.44) H1z2 =
Y1z2
U1z2 = c1zi - a2-1b + D = c�1z2b + D

Simularity transformation (13.50) v[n] = qx[n] = p-1x[n] 1 x[n] = pv[n]

Transformed state equations (13.51) v[n + 1] = a
v
v[n] + b

v
u[n]

and

y[n] = c
v
v[n] + D

v
u[n]

Transformed matrices (13.52)  a
v

= p-1ap,    bv = p-1b

 cv = cp, and  D
v

= D

problemS

Section 13.1

 13.1. Find a set of state equations for each of the systems described by the following differ-
ence equations:

(a) y[n + 1] - 0.8y[n] = 1.9u[n]
(b) y[n] + 0.8y[n - 2] = u[n - 2]
(c) y[n] - 1.75y[n - 1] + 0.72y[n - 2] = 2u[n - 2]
(d) 5y[n + 2] - 8y[n + 1] + 4y[n] = 6u[n]
(e) y1[n + 2] - 1.7y1[n + 1] + 0.72y1[n] - 2y2[n] = 4u1[n] - u2[n]
 y2[n + 1] - 0.85y2[n] + 3y1[n] = 2u1[n] + 3u2[n]
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(f) y1[n + 2] - 1.92y1[n] + 0.94y2[n] = u1[n] - 2u2[n]
 y2[n + 2] - 1.82y2[n + 1] + 0.91y2[n] - 1.7y1[n] = 3u1[n] + 2u2[n]

Section 13.2

 13.2. (a) Draw a simulation diagram for the system described by the transfer function

 
Y1z2
U1z2 =

41z - 0.92
z - 0.8

.

(b) Write the state equations for the simulation diagram of Part (a).
(c) Give the system difference equation.
(d) The MATLAB program

n = [4 −3.6] ;
d = [1 −0.8] ;
[A,B,C,D] = tf2ss(n,d)

generates a set of state equations for Part (a).
 (i) Run this program.
 (ii) Draw a simulation diagram for these state equations.

(e) Repeat Parts (a) through (d) for the transfer function

 
Y1z2
U1z2 = H1z2 =

3z2 + 5

z2 - 1.7z + 0.72
 .

(f) Repeat Parts (a) through (d) for the transfer function

 
Y1z2
U1z2 = H1z2 =

1.72z2 - 2.95z + 1.81

z3 + 2.5z2 - 2.4z + 0.72
 .

 13.3. (a)  Find a state model for the a@filter described by the equation

 y[n + 1] - 11 - a2y[n] = ax[n + 1],

where x[n] is the input signal. Hint: Draw a simulation diagram first.
(b) Verify the results of Part (a) by (i) finding the transfer function from the describing 

equation and (ii) finding the transfer function from the state equations.

 13.4. The simulation diagram for the a - b filter is given in Figure P13.4. This filter is sec-
ond order and is used in radar-signal processing. The input u[n] is the unfiltered target-
position data, the output y[n] is the filtered position data, and the output v[n] is an 
estimate of the target velocity. The parameter T is the sample period. The parameters 
a and b are constants and depend on the design specifications for the filter.

(a) Write the state equations for the filter, with the state variables equal to the outputs 
of the delays and the system outputs equal to y[n] and v[n].

(b) Let b = 0 in Part (a). Show that the resulting equations are equivalent to those of 
the a@filter of Problem 13.3.
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 13.5. (a) Draw a simulation diagram for the system described by the difference equation

 2y[n + 1] - 1.7y[n] = 2.5u[n + 1].

(b) Write the state equations for the simulation diagram of Part (a).
(c) Give the system transfer equation for the simulation diagram of Part (a).
(d) Use the results in Part (b) and MATLAB to verify Part (c).
(e) Repeat Parts (a) through (d) for the difference equation

 y[n + 2] - 1.9y[n + 1] + 0.9y[n] = 1.5u[n].

(f) Repeat Parts (a) through (d) for the difference equation

 y[n + 3] - 1.7y[n + 2] + 2.8y[n + 1] - 0.83y[n] = 2u[n].

Sections 13.3 and 13.4

 13.6. Consider the system of Figure P13.6.

(a) Write the state equations, with the outputs of the delays as the states.
(b) Find the state-transition matrix.
(c) Find the system output for u[n] = 0 and the initial states given by x102 = [1 2]T.
(d) Find the system unit step response, with x102 = 0, using (13.32).
(e) Verify the results of Part (d), using the z-transform and the system-transfer 

function.
(f) Find the system response, with the initial conditions given in Part (c) and the input 

in Part (d).
(g) Verify the results in Part (f) using SIMULINk.

� �

�1 �

y [n]

x1[n]

x2[n]

u [n]

v [n]

�1 �

�

T

D

D

�

/T�

Figure P13.4  
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 13.7. Consider the system of Figure P13.7. Replace the gains of 1.5 and 2.3 with gains of zero 
for this problem.

(a) Write the state equations, with the outputs of the delays as the states.
(b) Find the state-transition matrix.
(c) Find the system output for u[n] = 0 and the initial states given by x102 = [1 5]T.
(d) Find the system unit step response, with x102 = 0, using the z-transform as in (13.32).
(e) Verify the results of Part (d), using the z-transform and the system-transfer function.
(f) Find the system response, with the initial conditions given in Part (c) and the input 

in Part (d).
(g) Verify the results in Part (f) using SIMULINk.

� ��
u [n] y [n]

1.6

0.8

2

2.2

D

0.9 1.9

D

Figure P13.6  

�

�

u [n]
y [n]

D 1.5

0.7

2.4

1.2

D2 1.4

0.8

�

Figure P13.7  

 13.8. (a) Consider the system described by

  x[n + 1] = c 0 1
0 0

d x[n] + c 0
1
du[n];

  y[n] = [1 0]x[n].

 Find the state transition matrix by two different procedures.
(b) Draw a simulation diagram for the system, and describe how the system can be 

realized physically.
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 13.9. Consider the system described by the state equations

  x[n + 1] = c 0 0
1 0

d x[n] + c 1
1
du[n];

  y[n] = [0 1]x[n].

(a) Find the state transition matrix.
(b) Verify the results of Part (a), using a different procedure.
(c) Find the initial-condition response for x102 = [1 2]T.
(d) Verify the calculation of the state vector x[n] in Part (c), by substitution in the 

equation x[n + 1] = ax[n].
(e) Calculate the system unit step response, with x102 = 0, using iteration.
(f) Calculate the system unit step response, with x102 = 0, using (13.32).
(g) Verify the results of Parts (e) and (f), using the system transfer function and the 

z-transform.
(h) Verify the results in Part (g) using MATLAB.

 13.10. Consider the system described by the state equations

  x[n + 1] = 0.9x[n] + u[n];

  y[n] = 2x[n].

(a) Find the state transition matrix.
(b) Find the initial-condition response for x102 = 1.
(c) Verify the calculation of the state x[n] in Part (b), by substitution in the equation 

x[n + 1] = Ax[n].
(d) Calculate the system unit step response, with x102 = 0, using (13.32).
(e) Verify the results of Part (d), using the system-transfer function and the z-transform.
(f) Verify the results in Part (e) using MATLAB.

 13.11. Consider the system of Problem 13.9.

(a) Determine if this system is stable.
(b) Give the system modes.
(c) Use MATLAB to check the results in Part (a).

Section 13.5

 13.12. (a)  Write the state equations for the system modeled by the simulation diagram of 
Figure P13.6.

(b) Use the results of Part (a) to find the system transfer function.
(c) Use MATLAB to check the results in Part (b).
(d) Use the system transfer function to draw a simulation diagram that is different 

from that of Figure P13.6.
(e) Write the state equations for the simulation diagram of Part (d).
(f) Use the results of Part (e) to calculate the system transfer function, which will 

verify the results of Parts (d) and (e).
(g) Use MATLAB to verify the results in Part (f).
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 13.13. (a)  Write the state equations for the system modeled by the simulation diagram of 
Figure P13.7.

(b) Use the results of Part (a) to find the system-transfer function.
(c) Use MATLAB to verify the results in Part (b).
(d) Use the system transfer function to draw a simulation diagram that is different 

from that of Figure P13.7.
(e) Write the state equations for the simulation diagram of Part (d).
(f) Use MATLAB to check the results in Parts (d) and (e).

 13.14. Consider a system described by the state equations

  x[n + 1] = c 1.9 0.8
-1 0

d x[n] + c 0
0.95

du[n];

  y[n] = [1.5 -1.3]x[n] + 2u[n].

(a) Draw a simulation diagram of this system.
(b) Find the transfer function directly from the state equations.
(c) Use MATLAB to verify the results in Part (b).
(d) Draw a different simulation diagram of the system.
(e) Write the state equations of the simulation diagram of Part (d).
(f) Verify the simulation diagram of Part (d) by showing that its transfer function is 

that of Part (b).
(g) Use MATLAB to verify the results in Part (f).
(h) Repeat Parts (a) through (g) for the state equations

  x[n + 1] = 0.9x[n] + 1.1u[n];

  y[n] = x[n].

(i) Repeat Parts (a) through (g) for the state equations

  x[n + 1] = C0 1 0
0 0 1
1 1 1

Sx[n] + C0
0
4
Su[n];

  y[n] = [1 2 0]x[n].

 13.15. Consider the system of Problem 13.14(i).

(a) Use MATLAB to determine if this system is stable.
(b) Give the system modes.

 13.16. Figure P13.16 gives the simulation diagram of an automatic control system. The plant is 
the system that is controlled and is a discrete model of a continuous-time system. The com-
pensator, a digital filter, is a system added to give the closed-loop system certain specified 
characteristics. It can be shown that a system of this type is modeled as shown [1].

(a) Write the state equations for the plant only, with the input m[n] and the output y[n].
(b) Give the transfer function Hp1z2 for the plant.
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(c) Write the difference equation for the plant.
(d) Write the state equations for the compensator only, with the input e[n] and the 

output m[n].
(e) Give the transfer function Hc1z2 for the compensator.
(f) Write the difference equation for the compensator.
(g) Write the state equations for the closed-loop system, with the input u[n] and the 

output y[n]. Choose as states those of Parts (a) and (d).
(h) Give the transfer function H1z2 for the closed-loop system.
(i) Use MATLAB to verify the results in Part (h).
(j) Write the difference equation for the closed-loop system.
(k) It can be shown that the closed-loop transfer function is given by

 
Y1z2
U1z2 = H1z2 =

Hc1z2Hp1z2
1 + Hc1z2Hp1z2  .

Verify your results in Part (h) by showing that this equation is satisfied by the 
 derived transfer functions in Parts (b) and (e).

 13.17. Consider the a-filter of Problem 13.3. Parts of this problem are repeated from Problem 13.3.  
Use those results if available.

(a) Write the state equations of the filter, with the state variable equal to the output y[n].
(b) Use the results of Part (a) to find the filter transfer function.

 13.18. Consider the a - b filter of Figure P13.4. Parts of this problem are repeated from 
Problem 13.4. Use those results if available.

(a) Write the state equations of the filter, with the state variables equal to the delay 
outputs and the output equal to y[n].

� �
y [n]

x3[n]

x1[n]

x2[n]

u
e [n]

D

1.8

Compensator

0.9

�1

�

� �

m [n]

D

D

1.7

Plant

1.5

�1.5�0.6

Figure P13.16  
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(b) Use the results of Part (a) to find the filter-transfer function H1z2 = Y1z2/U1z2.
(c) Show that, with b = 0, the transfer function is that of the a-filter in Problem 13.17(b).

Section 13.6

 13.19. Consider the system of Problem 13.9, given by

  x[n + 1] = c 0 0
1 0

d x[n] + c 1
1
du[n];

  y[n] = [0 1]x[n].

(a) Find the transfer function for this system.
(b) Use a similarity transformation to find a different state model for this system.
(c) Use MATLAB to verify the results of Parts (a) and (b).
(d) Calculate the transfer function of Part (b). This function should equal that of Part (a).
(e) Verify the results in Part (d) using MATLAB.
(f) You have just verified Property 4, (13.64), of similarity transformations. Verify the 

other three properties in (13.61), (13.62), and (13.63).

 13.20. Consider the system of Problem 13.14, given by

  x[n + 1] = c 1.9 0.8
-1 0

d x[n] + c 0
0.95

du[n];

  y[n] = [1.5 -1.3]x[n] + 2u[n].

(a) Find the transfer function for this system.
(b) Use a similarity transformation to find a different state model for this system.
(c) Use MATLAB to verify the results of Parts (a) and (b).
(d) Calculate the transfer function of Part (b). This function should equal that of Part (a).
(e) Verify the results in Part (d) using MATLAB.
(f) You have just verified Property 4, (13.64), of similarity transformations. Verify the 

other three properties in (13.61), (13.62), and (13.63).

 13.21. Consider the system of Figure P13.6.

(a) Write the state equations, with the outputs of the delays as the states.
(b) Find the transfer function for this system.
(c) Use a similarity transformation to find a different state model for this system.
(d) Use MATLAB to verify the results of Parts (a) and (b).
(e) Calculate the transfer function of Part (b). This function should equal that of Part (a).
(f) Verify the results in Part (d) using MATLAB.
(g) You have just verified Property 4, (13.64), of similarity transformations. Verify the 

other three properties in (13.61), (13.62), and (13.63).
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 13.22. (a)  Write the state equations for the system modeled by the simulation diagram of 
Figure P13.7.

(b) Use the results of Part (a) to find the system-transfer function.
(c) Use a similarity transformation to find a different state model for this system.
(d) Use MATLAB to verify the results of Parts (a) and (b).
(e) Calculate the transfer function of Part (b). This function should equal that of 

Part (a).
(f) Verify the results in Part (d) using MATLAB.
(g) You have just verified Property 4, (13.64), of similarity transformations. Verify the 

other three properties in (13.61), (13.62), and (13.63).
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Integrals

 1. Lu dv = uv - Lv du

 2. Leu du = eu + C

 3. Lcos u du =  sin u + C

 4. L  sin u du = -cos u + C

 5. Lueu du = eu1u - 12 + C

 6. Leau cos bu du =
eau1a cos bu + b sin bu2

a2 + b2 + C

 7. Leau sin bu du =
eau1a sin bu - b cos bu2

a2 + b2 + C

 8. Lu cos u du = cos u + u sin u + C

 9. Lu sin u du =  sin u - u cos u + C

Integrals and 
trIgonometrIc 
IdentItIesA
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trIgonometrIc IdentItIes

 1. cos1a { b2 = cos a cos b | sin a sin b

 2. sin 1a { b2 =  sin a cos b { cos a sin b

 3. cos a cos b = 1
2[ cos1a + b2 + cos1a - b2]

 4. sin a sin b = 1
2[ cos1a - b2 - cos1a + b2]

 5. sin a cos b = 1
2[ sin 1a + b2 +  sin 1a - b2]

 6. cos 2a = cos2a -  sin2a = 2  cos2a - 1 = 1 - 2 sin2a

 7. sin 2a = 2 sin a cos a

 8. cos2 a = 1
211 + cos 2a2

 9. sin2 a = 1
211 - cos 2a2
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Leibnitz’s RuLe

Given the integral

 g1t2 = L
b1t2

a1t2
f1t, x2 dx, 

where a1t2 and b1t2 are differentiable in t and f1t, x2 and 0f1t, x2>0t are continuous 
in both t and x, it follows that

 
dg1t2

dt
= L

b1t2

a1t2
 
0   f1t, x2

0   t
 dx + f  [b1t2, t] 

db1t2
dt

- f  [a1t2, t] 
da1t2

dt
. 

 exampLe b.1 

Let

 s1t2 = L
t

-∞
h1t2 dt. 

Then,

 
ds1t2

dt
= L

t

-∞

0   h1t2
0   t

 dt + h1t2 
dt
dt

- h1a2 
da
dt

2
aS -∞

. 

The first and third terms on the right are zero, with the result 

 
ds1t2

dt
= h1t2. ■

Leibnitz’s and 
L’HôpitaL’s RuLesB
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L’Hôpital’s Rule

If the functions f1x2 and g1x2 both vanish for x = a, such that f1x2 >g1x2 assumes 
the indeterminant form 0/0, then

 lim
xSa

 
f1x2
g1x2 = lim

xSa
 
f  ′1x2
g′1x2  , 

provided that the limit exists as x approaches a from one or both sides. This rule also 
applies for the indeterminant form ∞>∞ .
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 1. a
n

k = 0
 ak =

1 - an + 1

1 - a

 2. a
∞

k = 0
 ak =

1
1 - a

; � a � 6 1

 3. a
∞

k = n
 ak =

an

1 - a
; � a � 6 1

 4. a
n2

k = n1

 ak =
an1 - an2 + 1

1 - a
; n2 7 n1

 5. a
∞

k = 0
kak =

a

11 - a22; a 6 1

Summation FormulaS 
For Geometric SerieSC
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A review of complex numbers, complex functions, and Euler’s relation is presented 
in this appendix. It is assumed that the reader has a background in this area.

We begin the review of complex numbers by defining the complex plane [1, 2]. 
The complex plane is shown in Figure D.1. The abscissa in this plane is the real axis, 
denoted by Re; the ordinate is the imaginary axis, denoted by Im. An example of a 
complex number is the number

 s = 3 + j 2,  j = 2-1. (D.1)

We use the engineering notation j for 2-1, rather than i, as used by mathemati-
cians. The complex number s, which is plotted in Figure D.1, can also be expressed as

 s = 3 + j2 = 3 + 2-4.

A third method of expressing s is s = 13, 22.

Complex Numbers aNd 
euler’s relatioND

Im

2

3

1

�1

�2�3 �1 10 2 3 Re

�2

Figure D.1  Complex plane.
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In general, a complex number s can be expressed as

 s = a + jb, (D.2)

where both a and b are real. The real number a is known as the real part of s, which 
is denoted as a = Re1s2. The real number b is known as the imaginary part of s, 
which is denoted as b = Im1s2. Note that the imaginary part of s is b, not jb; the 
imaginary part of a complex number is real. A complex number expressed as in 
(D.2) is said to be in the rectangular form. We will define other forms for a complex 
number later.

The following relationships are seen from the definition of j:

 j = 2-1;     j5 = j1j42 = j;

j2 = -1;     j6 = j21j42 = -1;

j3 = j1j22 = - j;  j7 = - j; 
(D.3)

j4 = 1j222 = 1;  j8 = 1;

  j9 = j

  f
 .    

Also, the reciprocal of j is - j; that is,

 
1
j

=
1
j
 
j

j
=

j

-1
= - j. (D.4)

Complex-Number arithmetiC

All real arithmetic operations apply to complex-number arithmetic, but we must re-
member the definition of j. First, the complex numbers s1 = a + jb and s2 = c + jd 
are equal, or

 s1 = s2 6a + jb = c + jd, (D.5)

if and only if a = c and b = d. Hence, an equation relating complex numbers is in 
fact two equations relating real numbers. The real parts of the numbers must be 
equal, and the imaginary parts of the numbers must also be equal.

Let the complex number s3 be the sum of s1 and s2, where s1 = 2 + j2 and 
s2 = 3 - j1. Then

 s3 = s1 + s2 = 2 + j2 + 3 - j1 = 5 + j1.

This addition can be represented in the complex plane as shown in Figure D.2(a). In 
the summation of complex numbers, the real part of the sum is equal to the sum of 
the real parts, and the imaginary part of the sum is equal to the sum of the imaginary 
parts.
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The difference of the two complex numbers is illustrated by

 s4 = s1 - s2 = 12 + j22 - 13 - j12 = -1 + j3.

In subtraction, the real part of the difference is equal to the difference of the real 
parts, and the imaginary part of the difference is equal to the difference of the imagi-
nary parts. This subtraction in the complex plane is illustrated in Figure D.2(b) and 
can be considered to be the addition of s1 and -s2. Note that the negative of a com-
plex number in the complex plane is that complex number rotated by 180°.

The rules of real multiplication apply to complex multiplication, with the val-
ues of powers of j given by (D.3). For example, let s5 be the product of s1 and s2 

Im

2

3

1

�1

�2�3 �1

s3 � s1 � s2

10 2

(a)

3 4 5 Re

�2

s1

s2

Im

2

3

1

�1

�2�3 �1 10 2

(b)

3 4 5 Re

�2

s1

s2

�s2

s4 � s1 � s2

Figure D.2  Complex number addition and  
subtraction.
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as just defined:

  s5 = s1s2 = 12 + j2213 - j12 = 6 - j2 + j6 - 1  j222

  = 16 + 22 + j16 - 22 = 8 + j4.

This multiplication is performed in MATLAB by

s1 = 2 + j*2; s2 = 3 – j ;
s5 = s1*s2
result: s5 = 8 + 4i

The rules of real division also apply to complex division; however, the pres-
ence of j in the denominator complicates the operation. We often wish to express 
the quotient of two complex numbers as a complex number in rectangular form. 
First, we define the conjugate of a complex number. The conjugate of s = a + jb, 
denoted by s*, is defined as

 s* = 1a + jb2* = a - jb.

We obtain the conjugate of a complex number by changing the sign of its imaginary 
part. A property of complex numbers is that the product of a number with its con-
jugate is real; that is,

 ss* = 1a + jb2  1a - jb2 = a2 + b2. (D.6)

For division of two complex numbers, we multiply both the numerator and 
the denominator by the conjugate of the denominator to express the quotient in 
rectangular form; that is,

 
a + jb

c + jd
=

a + jb

c + jd
 
c - jd

c - jd
=

ac + bd

c2 + d2 + j  
bc - ad

c2 + d2 . (D.7)

As an example, for s1 and s2 as defined earlier,

 
s1

s2
=

2 + j2
3 - j1

=
2 + j2
3 - j1

 
3 + j1
3 + j1

=
6 - 2
9 + 1

+ j  
6 + 2
9 + 1

= 0.4 + j0.8.

The following MATLAB statement performs this division:

s1 = 2+j*2; s2 = 3–j;
s6 = s1/s2
result: s6 = 0.4 + 0.8i

In general, the quotient of two complex numbers can be expressed as

 
s1

s2
=

s1s
*
2

s2s
*
2

=
Re1s1s

*
22

s2s
*
2

+ j 
Im1s1s

*
22

s2s
*
2

. (D.8)
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euler’s relation

Before continuing with the review of complex numbers, it is necessary to develop an 
important relation. Recall, from calculus, the power series [1]

  ex = 1 + x +
x2

2!
+

x3

3!
+ g;

  cos x = 1 -
x2

2!
+

x4

4!
-

x6

6!
+ g;

and

 sin x = x -
x3

3!
+

x5

5!
-

x7

7!
+ g. (D.9)

In each of these functions, x is unitless. For the trigonometric functions, we assign 
the units of radians to x, but recall that radians are unitless. The series of (D.9) are 
valid for x real or complex. Hence, trigonometric functions of complex arguments 
are defined. The functions of (D.9) are complex functions of complex arguments.

Consider now the complex exponential ejy. From (D.9),

 ejy = 1 + jy +
1jy22

2!
+

1jy23

3!
+

1jy24

4!
+

1jy25

5!
+ g .

From (D.3), we can express this complex exponential as

 ejy = J1 -
y2

2!
+

y4

4!
- g R + jJy -

y3

3!
+

y5

5!
- g R ,

and from (D.9),

 ejy = cos y + j sin y. (D.10)

This equation is known as Euler’s relation. If in (D.10), y is replaced with -y, we 
obtain the relation

 e-jy = cos y - j sin y, (D.11)

since cos y is even and sin y is odd. Adding (D.10) and (D.11) yields

 cos y =
ejy + e-jy

2
, (D.12)

and subtracting (D.11) from (D.10) yields
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 sin y =
ejy - e-jy

2j
. (D.13)

The four expressions (D.10) through (D.13) are of such importance that they should 
be memorized. In the engineering use of these four expressions, y is usually real; 
however, these expressions are valid for y complex.

We will again suppose that s is complex. Then

  es = ea + jb = eaejb = ea1cos b + j sin b2 

  = ea cos b + jea sin b.  (D.14)

Thus, the exponential raised to a complex power is itself complex, with the real and 
imaginary parts as given in (D.14). For example, for the value of s1 given previously,

  es1 = e2 + j2 = e21cos 2 + j sin 22

  = e2 cos 114.6° + je2 sin 114.6° = -3.076 + j6.718,

because 1 rad = 57.30°. This evaluation is performed in MATLAB by

exp (2+2*j)
result: –3.0749 + 6.7188i

Conversion between Forms

We now consider expressing a complex number in a form other than the rectangular 
form, based on the foregoing developments. Euler’s relation is given by

 eju = cos u + j sin u.

Letting A and u be real numbers, we see that

  Aeju = A1cos u + j sin u2 = A cos u + jA sin u 

  = a + jb = s.  (D.15)

Thus, a complex number s can be expressed as a real number multiplied by a com-
plex exponential; this form is called the exponential form. For example,

 5ejp>6 = 5  cos 30° + j5 sin 30° = 4.33 + j2.50.

This evaluation is performed in MATLAB by

5*exp(j*pi/6)
result: 4.3301 + 2.5i
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Equation (D.15) gives a procedure for conversion from the exponential form 
of a complex number to the rectangular form. We now develop a procedure for 
converting from the rectangular form to the exponential form. From (D.15), with 
s = a + ib,

 a2 + b2 = A2 cos2u + A2 sin2u = A2,

and thus,

 A = 1a2 + b221>2 = 1[Re1s2]2 + [Im1s2]221>2. (D.16)

In addition,

 
b
a

=
A sin u
A cos u

= tan u,

or

 u = tan-1 
b
a

= tan-1 
Im1s2
Re1s2 . (D.17)

The relationship of the rectangular form to the exponential form is illustrated in the 
complex plane in Figure D.3 and is quadrant dependent.

Im

b

A

Re

�

a Figure D.3  Rectangular form and 
exponential form.
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This appendix presents a procedure for solving linear differential equations with 
constant coefficients. These equations can be expressed as

 a
n

k = 0
ak 

dky1t2
dtk = a

m

k = 0
bk 

dkx1t2
dtk , (E.1)

with ak and bk constants. The solution procedure is called the method of undeter-
mined coefficients.

The method of undetermined coefficients requires that the general solution 
y1t2 be expressed as the sum of two functions [1]:

 y1t2 = yc1t2 + yp1t2. (E.2)

In this equation, yc1t2 is called the complementary function and yp1t2 is a particular 
solution. A procedure for finding the complementary function is presented now, and 
the particular solution will be considered afterwards.

Complementary FunCtion

To find the complementary function, we first write the homogeneous equation, 
which is (E.1) with the left side set equal to zero; that is,

 an 
dny1t2

dtn + an-1 
dn-1y1t2

dtn - 1 + g+ a1 
dy1t2

dt
+ a0y1t2 = 0, (E.3)

with an ≠ 0. The complementary function yc1t2 must satisfy this equation. We 
 assume that the solution of the homogeneous equation is of the form y1t2 = Cest, 
where C and s are constants to be determined. Then

  y1t2 = Cest;  

  
dy1t2

dt
= Csest; 

Solution oF  
DiFFerential 
equationSE
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d2y1t2

dt2 = Cs2est; (E.4)

  f 

  
dny1t2

dtn = Csnest. 

Substitution of these terms into (E.3) yields

 1ansn + an - 1s
n - 1 + g + a1s + a02Cest = 0. (E.5)

If we assume that our solution y1t2 = Cest is nontrivial 1C ≠ 02, then, from (E.5),

 ansn + an - 1s
n - 1 + g + a1s + a0 = 0. (E.6)

The equation is called the characteristic equation, or the auxiliary equation, for the 
differential equation (E.1). The polynomial may be factored as

 ansn + an - 1s
n-1 + g + a1s + a0 = an1s - s121s - s22g1s - sn2 = 0. (E.7)

Hence, n values of s, denoted as si, 1 F i F n, satisfy this equation; that is, 
yi1t2 = Cie

si t for the n values of si in (E.7) satisfies the homogeneous equation (E.3), 
with Ci constant. Because the differential equation is linear, the sum of these solu-
tions is also a solution. For the case of no repeated roots, the solution of the homo-
geneous equation (E.3) may be expressed as

 yc1t2 = C1e
s1t + C2e

s2t + g+ Cnesnt. (E.8)

This solution is called the complementary function of the differential equation (E.1) 
and contains the n unknown coefficients C1, C2, c, Cn. These coefficients are eval-
uated in a later step.

partiCular Solution

The second part of the general solution of a linear differential equation with con-
stant coefficients,

[eq(E.1)] a
n

k = 0
ak 

dky1t2
dtk = a

m

k = 0
bk 

dkx1t2
dtk ,

is called a particular solution, or a particular integral, and is denoted by yp1t2 in (E.2). 
A particular solution is any function yp1t2 that satisfies (E.1); that is, yp satisfies

 a
n

k = 0
ak  

dkyp1t2
dtk = a

m

k = 0
bk 

dkx1t2
dtk . (E.9)
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The general solution of (E.1) is then the sum of the complementary function, (E.8), 
and the particular solution, (E.9), as given in (E.2):

[eq(E.2)] y1t2 = yc1t2 + yp1t2.

One procedure for evaluating the particular solution is to assume that the par-
ticular solution is the sum of functions of the mathematical form of the excitation 
x1t2 and all derivatives of x1t2 that differ in form from x1t2. This procedure is called 
the method of undetermined coefficients and applies if the particular solution as de-
scribed has a finite number of terms. For example, if

 x1t2 = 5e-7t,

we assume the particular function to be

 yp1t2 = Pe-7t,

where the (constant) coefficient P is to be determined. As another example, if 
x1t2 = 170 cos 377t, then we assume the particular function

 yp1t2 = P1 cos 377t + P2 sin 377t,

where the (constant) coefficients P1 and P2 are to be determined. The unknown 
 coefficients in yp1t2 are evaluated by direct substitution of the particular solu-
tion into the differential equation, as in (E.9), and equating coefficients of like 
 mathematical forms that appear on either side of the equation.

General Solution

Once the general solution has been formed, the remaining n unknowns  
C1, C1, cCn of the complementary function (E.8) must be calculated. Thus, we 
must have n independent conditions to evaluate these unknowns, and these are the 
n initial conditions

 y102, 
dy1t2

dt
2
t = 0

, c, 
dyn - 11t2

dtn - 1
2
t = 0

.

repeateD rootS

The complementary function

[eq(E.8)] yc1t2 = C1e
s1t + C2e

s2t + g + Cnesnt
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does not apply if any of the roots of the characteristic equation,

[eq(E.7)]   ansn + an - 1s
n - 1 + g+ a1s + a0 = an1s - s12  1s - s22g1s - sn2 = 0,

are repeated. Suppose, for example, that a fourth-order differential equation has the 
characteristic equation

 s4 + a3s
3 + a2s

2 + a1s + a0 = 1s - s1231s - s42. (E.10)

The complementary function must then be assumed to be of the form

 yc1t2 = 1C1 + C2t + C3t
22es1t + C4e

s4t. (E.11)

The remainder of the procedure for finding the general solution is unchanged. For the 
general case of an rth-order root si in the characteristic equation, the corresponding 
term in the complementary function is

  term = 1C1 + C2t + C3t
2 + g + Crt

r-12esit. (E.12)
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The use of transforms to solve a problem often results in transformed functions 
that do not appear in the table of transforms. In most cases, the function is a ratio 
of polynomials in the transform variable. The ratio of two polynomials is called 
a rational function. We need a procedure for expressing a rational function as a 
sum of lower-order rational functions, such that these lower-order functions do 
appear in transform tables. We now present a method, partial-fraction expansions, 
to accomplish this.

An example of a partial-fraction expansion is the relationship

 
c

1s + a2  1s + b2 =
k1

s + a
+

k2

s + b
.

Given the constants a, b, and c, we wish to find the constants k1 and k2. The right 
side of this equation is called a partial-fraction expansion. A general procedure for 
calculating partial-fraction expansions is now presented. In this development, we 
use the Laplace transform variable s; however, the procedure is independent of the 
specification of the variable and can be used with any appropriate transform.

The general form of the rational functions that we consider is given by

  F1s2 =
bmsm + bm - 1s

m - 1 + g + b1s + b0

sn + an - 1s
n - 1 + g + a1s + a0

 

  = am - nsm - n + am - n - 1s
m - n - 1 + g + a1s + a0 (F.1)

  +
bn - 1s

n - 1 + g + b1s + b0

sn + an - 1s
n - 1 + g + a1s + a0

 

for the case in which the order of the numerator is higher than that of the denomi-
nator. If the numerator order is lower than that of the denominator, the parameters 
ai are all zero. The expansion shown in (F.1) can be performed by long division.

Partial-Fraction 
 ExPansionsF
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Partial-fraction expansions are used in finding the inverse transform of the ra-
tional function on the right side of (F.1). We will present a procedure for expanding 
a rational function as partial fractions. For the general case,

 F1s2 =
bmsm + g + b1s + b0

sn + an-1s
n-1 + g + a1s + a0

=
N1s2
D1s2 , m 6 n, (F.2)

where N1s2 is the numerator polynomial and D1s2 is the denominator polynomial. 
To perform a partial-fraction expansion, first we must find the roots of the denomi-
nator polynomial, D1s2. Then we can express the denominator polynomial as

 D1s2 = 1s - p12  1s - p22g1s - pn2 = q
n

i = 1
1s - pi2, (F.3)

where Π indicates the product of terms and the pi are called the poles of F1s2 [the 
values of s for which F1s2 is unbounded].

We first consider the case that the roots of D1s2 are distinct (i.e., there are no 
repeated roots). The function F1s2 in (F.2) can then be expressed as

 F1s2 =
N1s2
D1s2 =

N1s2

q
n

i = 1
1s - pi2

=
k1

s - p1
+

k2

s - p2
+ g +

kn

s - pn
 . (F.4)

This partial-fraction expansion is completed by calculating the constants 
k1, k2, c, kn. To calculate kj, 1 F j F n, first we multiply F1s2 by the term 1s - pj2:

 1s - pj2F1s2 =
k11s - pj2

s - p1
+ g + kj + g+

kn1s - pj2
s - pn

. (F.5)

If we evaluate this equation at s = pj, all terms on the right are zero except the term kj.  
Therefore,

 kj = 1s - pj2F1s2 � s = pj
,  j = 1, 2, c, n, (F.6)

which is the desired result.
Next, we consider the case that the denominator has repeated roots. For ex-

ample, suppose that the rational function is given by

  F1s2 =
N1s2

1s - p121s - p22r  

  =
k1

s - p1
+

k21

s - p2
+

k22

1s - p222 + g +
k2r

1s - p22r . 
(F.7)



Appen. F    Partial-Fraction  Expansions 751

All terms on the right side of this equation must be included, because combining 
terms of the right side yields the left side. The coefficient for the simple-root term is 
calculated from (F.6), and the coefficients of the repeated-root terms are calculated 
from the equation

 k2j =
1

1r - j2!
 
dr - j

dsr-j  [1s - p22rF1s2] 2
s = p2

 (F.8)

with 0! = 1, and for any function G1s2, d0G1s2 >ds0 = G1s2. This equation is given 
without proof [1].

The preceding developments apply to complex poles as well as real poles. 
 Suppose that F1s2 has a single pair of complex poles at s = a { jb. If we let 
p1 = a - jb and p2 = a + jb, then, with the numerator order of F1s2 less than that 
of the denominator, (F.4) can be written as

 F1s2 =
k1

s - a + jb
+

k2

s - a - jb
+

k3

s - p3
+ g +

kn

s - pn
 . (F.9)

The coefficients k1 and k2 can be evaluated by (F.6), as before. It is seen, however, 
that k1 and k2 are complex valued and that k2 is the conjugate of k1. All of the remain-
ing coefficients are real.
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This appendix presents a brief review of definitions, properties, and the algebra of 
matrices. It is assumed that the reader has a background in this area. Those readers 
interested in more depth are referred to Refs. 1 through 3. MATLAB statements 
are given for performing the mathematical operations, where appropriate.

The study of matrices originated in linear algebraic equations. As an example, 
consider the equations

  x1 + x2 + x3 = 3; 

  x1 + x2 - x3 = 1; (G.1)

  2x1 + x2 + 3x3 = 6. 

In a vector-matrix format, we write these equations as

 C1 1 1
1 1 -1
2 1 3

S Cx1

x2

x3

S = C3
1
6
S . (G.2)

We define the following:

 A = C1 1 1
1 1 -1
2 1 3

S ; x = Cx1

x2

x3

S ; u = C3
1
6
S . (G.3)

Then (G.2) can be expressed as

 Ax = u. (G.4)

In this equation, A is a 3 * 3 (3 rows, 3 columns) matrix, x is a 3 * 1 matrix, and u 
is a 3 * 1 matrix. Usually, matrices that contain only one row or only one column 
are called vectors. A matrix of only one row and one column is a scalar. In (G.1), for 
example, x1 is a scalar. One statement for entering the matrix A into MATLAB is

A = [1 1 1; 1 1 –1; 2 1 3];

Review of MAtRicesG
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The general matrix A is written as

 A = D a11 a12 g a1n

a21 a22 g a2n

f f f f
am1 am2 g amn

T = [a  ij], (G.5)

where [aij] is a convenient notation for the matrix A. This matrix has m rows and n 
columns and, thus, is an m * n matrix. The element aij is the element common to 
the ith row and the jth column.

Some definitions will given next.

Identity Matrix
The identity matrix is an n * n (square) matrix with all main diagonal elements aii 
equal to 1 and all off-diagonal elements aij equal to 0, i ≠ j. For example, the 3 * 3 
identity matrix is

 i = C1 0 0
0 1 0
0 0 1

S . (G.6)

The MATLAB statement for generating the 3 * 3 identity matrix is

I3 = eye(3);

If the matrix A is also n * n, then

 Ai = iA = A. (G.7)

Diagonal Matrix
A diagonal matrix is an n * n matrix with all off-diagonal elements equal to zero:

 D = Cd11 0 0
0 d22 0
0 0 d33

S . (G.8)

Symmetric Matrix
The square matrix A is symmetric if aij = aji for all i and j.

Transpose of a Matrix
To take the transpose of a matrix, interchange the rows and the columns. For example,

 A = Ca11 a12 a13

a21 a22 a23

a31 a32 a33

S  and AT = Ca11 a21 a31

a12 a22 a32

a13 a23 a33

S , (G.9)

where AT denotes the transpose of A. A property of the transpose is

 1AB2T = BTAT. (G.10)
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The transpose in MATLAB is denoted with the apostrophe; that is, A′  is the transpose 
of the matrix A.

Trace
The trace of a square matrix is equal to the sum of its diagonal elements. Given an 
n * n matrix A,

 trace A = tr A = a11 + a22 + g + ann . (G.11)

In MATLAB, the trace is found with

t = trace(A)

Eigenvalues
The eigenvalues (characteristic values) of a square matrix A are the roots of the poly-
nomial equation

 �li - A � = 0, (G.12)

where � # �  denotes the determinant. Equation (G.12) is the characteristic equation of 
the square matrix A.

Eigenvectors
The eigenvectors (characteristic vectors) of a square matrix A are the vectors xi that 
satisfy the equation

 lixi = Axi , (G.13)

where li are the eigenvalues of A.

The eigenvalues and the eigenvectors are calculated in MATLAB with the statement

[v,d] = eig(A)

where d denotes a diagonal matrix with the eigenvalues as the diagonal elements and v 
denotes corresponding eigenvectors.

Properties
Two properties of an n * n matrix A are

 � A � = q
n

i = 1
li

and (G.14)

 tr A = a
n

i = 1
li, 

where Π denotes the product of factors, and g  denotes the sum of terms.

Determinants
With both A and B n * n,

 � AB � = � A � � B � . (G.15)



756 Review of Matrices    Appen. G

The MATLAB statement for the determinant is

d = det(A)

Minor
The minor mij of element aij of an n * n matrix A is the determinant of the 
1n - 12 * 1n - 12 matrix remaining when the ith row and jth column are deleted 
from A. For example, m21 of A in (G.9) is

 m21 = 2 a12 a13

a32 a33

2 = a12a33 - a13a32 . (G.16)

Cofactor
The cofactor cij of the element aij of the square matrix A is given by

 cij = 1-12i + jmij. (G.17)

For (G.16),

 c21 = 1-122 + 11a12a33 - a13a322 = -a12a33 + a13a32. (G.18)

Adjoint
The matrix of cofactors of the matrix A, when transposed, is called the adjoint of A 
(adj A). For A of (G.3),

 adj A = C c11 c12 c13

c21 c21 c23

c32 c32 c33

S T

= C 4 -5 -1
-2 1 1
-2 2 0

S T

. (G.19)

Inverse
The inverse of a square matrix A is given by

 A-1 =
adjA

� A �
 , (G.20)

where A-1 denotes the inverse of A and � A �  denotes the determinant of A. For A of 
(G.3) and (G.19), � A � = -2 and

 A-1 = C -2 1 1
5
2 -1

2 -1
1
2 -1

2 0
S . (G.21)

The MATLAB statement for the inverse is

ainv = inv(A)

Two properties of the inverse matrix are

 A-1A = AA-1 = i 
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and

 1AB2-1 = B-1A-1, (G.22)

where both A and B are n * n. Note that the matrix inverse is defined only for a 
square matrix and exists only if the determinant of the matrix is nonzero. If A has an 
inverse, so does A-1, with 1A-12-1 = A. For A square and � A � ≠ 0,

 1A-12T = 1AT2-1 = A-T (G.23)

and

 � A-1 � =
1

� A �
, (G.24)

where the notation A-T is defined by (G.23).

AlgeBRA of MAtRices

The algebra of matrices must be defined such that the operations indicated in (G.2), 
and any additional operation we may wish to perform, lead us back to (G.1).

Addition
To form the sum of matrices A and B of equal order, we add corresponding elements 
aij and bij, for each ij. For example,

 c 1 2
3 4

d + c 5 6
7 8

d = c 6 8
10 12

d . (G.25)

Multiplication by a Scalar
To multiply a matrix A by a scalar k, multiply each element of A by k, that is, 
kA = [kaij].

Multiplication of Vectors
The multiplication of the 1 * n (row) vector x with an n * 1 (column) vector y is de-
fined as

 [x1x2 gxn]D y1

y2

f
yn

T = x1y1 + x2 y2 + g + xnyn . (G.26)

Multiplication of Matrices
An m * p matrix A may be multiplied by only a p * n matrix B; that is, the number of 
columns of A must equal the number of rows of B. Let

 AB = c,

where c is of order m * n. Then, the ijth element of c is equal to the multiplication 
(as vectors) of the ith row of A with the jth column of B.
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Multiplication in MATLAB is performed by the statement
C = A*B

As an example, consider the product AA-1 from (G.3) and (G.21):

 AA-1 = C1 1 1
1 1 -1
2 1 3

S  C -2 1 1
5
2 -1

2 -1
1
2 -1

2 0
S = C1 0 0

0 1 0
0 0 1

S . (G.27)

otheR RelAtionships

Other important matrix relationships are now given.

Solution of Linear Algebraic Equations
Given the linear equations (G.1) expressed in vector-matrix format (G.4)

 Ax = u,

the solution is

 x = A-1u. (G.28)

MATLAB performs this operation with the statement

x = inv(A)*u

For example, from (G.21), for the equations (G.1),

 x = A-1u = C -2 1 1
5
2 -1

2 -1
1
2 -1

2 0
S C3

1
6
S = C1

1
1
S . (G.29)

This solution is easily verified by substitution back into the original equa-
tions (G.1).

Cramer’s Rule
Given the n linear algebraic equations in vector-matrix form,

 Ax = u,

where A is n * n, x is n * 1, and u is n * 1, the ith component of x is given by

 xi =
� Ai �
� A �

. (G.30)

In this equation, � A �  is the determinant of the matrix A, and � Ai �  is the determinant of 
the matrix formed by replacing the ith column in A with the vector u. Equation (G.30) 
is called Cramer’s rule.
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Differentiation
The derivative of a matrix is obtained by differentiating the matrix element by element. 
For example, let

 x1t2 = c x11t2
x21t2 d . (G.31)

Then, by definition,

 
dx1t2

dt
= x# 1t2 = D dx11t2

dt
dx21t2

dt

T . (G.32)

Integration
The integral of a matrix is obtained by integrating the matrix element by element. For 
(G.31),

 1x1t2dt = J 1x11t2 dt

1x21t2 dt
R . (G.33)
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Chapter 2

 2.1. (a) (ii) 

�3 �2 �1

1

2

21 3

x(�t)

  (iii) 

�6 �5 �4 �3 �1

1

1�2

x(3 � t)
2

 2.3. (a) y1t2 = -2x1-2t + 22 + 2
 2.6. (a) odd

(b) even
(c) even

 2.10. (a)  T0 =
2p
3

, v0 = 3

(b)  T0 =
p

4
, v0 = 8

(c)  T0 = p, v0 = 2
 2.11. (a) periodic, T0 = 2p, v0 = 1

(b) not periodic since there is no common factor of p and 1
 2.16. (a) 3.162 cos12t + 18.4°2

answers to seleCted 
problemsH



762 Answers to Selected Problems    Appen. H

 2.17. 
1
a

 sin2ab
a

- cb
 2.19. (c) (i)  1
   (ii) 1

 2.20. (a) u1t + 32
 2.21. (a) 1 - u1t2

(b) t[1 - u1t2]

 2.25. (a)   x11t2 = 2t[u1t2 - u1t - 12] + 1-2t + 42[u1t - 12 - u1t - 22]
    = 2tu1t2 - 41t - 12u1t - 12 + 21t - 22u1t - 22

(c)  x1t2 = a ∞
k = - ∞ x11t - kT02 = a ∞

k = - ∞ x11t - 2k2
 2.27. (a) y21t2 = T2[T1[x1t2]], y31t2 = T3[T1[x1t2]],

 y1t2 = T2[T1[x1t2]] + T4[T3[T1[x1t2]] + T5[x1t2]]
(b) y1t2 = T3[T2[T1[x1t2]]] + T4[T2[T1[x1t2]]] + T5[T1[x1t2]]

 2.30. (a)  (i) has memory; (ii) not invertible; (iii) stable; (iv) time invariant; 
(v) linear;

(b) Causal for a Ú 1
 2.32. (a) 2y11t + 12 + y11t2
 2.33. (i)  not memoryless unless t0 = 0; (ii) invertible; (iii) causal if t0 Ú 0, other

wise not; (iv) stable; (v) time invariant; (vi) linear
 2.34. h1t2 = 2t [u1t2 - u1t - 12] + 4u1t - 22
 2.35. (a)  (i) memoryless; (ii) not invertible; (iii) causal; (iv) stable; (v) time 

invariant; (vi) not linear;
(c) (i) memoryless; (ii) not invertible; (iii) causal; (iv) stable; (v) time in

variant; (vi) not linear;

Chapter 3

 3.1. (a) (i) 1t - 22u1t - 22
 3.4. 1t - t0 - t12u1t - t0 - t12

 3.5. (a)  y1t2 = e 0,  t 6 0
t,  0 6 t 6 1
1,  1 6 t 6 2

t - 1, 2 6 t 6 3
2,  3 6 t

 3.8. (a)  11 - et-22[u1t - 12 - u1t - 22] + 12 - et-1 - et-22
[u1t2 - u1t - 12] + 12et - et-1 - et-22u1- t2

(b) e-1u12 - t2 + e-1t - 12u1t - 22
(c) 11 - e-4002u1- t2 + 1e-t - e-4002[u1t2 - u1t - 4002]

 3.11. (a) te-tu1t2
(b) d1t2
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 3.12. (a) h1t2 = h11t2* h21t2 + h11t2* h31t2* h41t2 + h41t2* h51t2
(b) h1t2 = 5u1t2 + 5tu1t2 + 1

211 - e-2t2u1t2
 3.14. (a) d1t - 72

(b) u1t - 72
 3.16. (a) not causal

(b) stable

(c) y1t2 = e et, t … -1
e-1, t 7 -1

 3.18. (a) stable, causal
(b) stable, not causal
(c) stable, not causal

 3.20. (a) (i) e-21t - 12u1t - 12, (ii) causal, (iii) stable
 3.21. (a) causal

(b) stable
(c) y1t2 = h1t - 12 - 2h1t + 12 = -2u1t + 22 + u1t2
  +2u1t - 22 - u1t - 42

�1�2 2 3 41

�1

1

2

 3.24. (a) causal
(b) stable
(c) not causal, unstable

 3.25. (i) y1t2 = 1-2e-3t + 12u1t2
   (ii) y1t2 = 13e-2t - e-3t2u1t2
 3.27. (a)  characteristic eqn. is s2 - 2.5s + 1 = 0, roots are 2, 0.5; modes are e2t, 

e0.5t; unstable
(b) characteristic eqn. is s2 + 9 = 0, roots are 3j, -3j; modes are e3jt, e-3jt; 

unstable
 3.28. (a) roots are -1, -2, -4; stable

(b) roots are -2, 0.5; unstable
 3.32. (a) a = 4 and K = 14.14
 3.36. (a) H1s2 = H11s2H21s2 + H11s2H31s2H41s2 + H41s2H51s2
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Chapter 4

 4.2. (i)   (a) C0 = 7, C1 =
1
2j

, C-1 =
-1
2j

, C2 =
1
2

, C-2 =
1
2

, C4 =
1
2

, C-4 =
1
2

,

    Ck = 0 for all other k.
 (b)  C0 = 7, 2 �C1 � = 1, u1 = -p>2, 2 � C2 � = 1, u2 = 0, 2 �C4 � = 1,

u4 = 0, all other coefficients 0.

 (ii)   (a) C0 =
1
2

, C1 =
1
4

, C-1 =
1
4

, Ck = 0 for all other k

  (b)  C0 =
1
2

, 2 �C1 � =
1
2

, u1 = 0, all other coefficients zero

 4.3. (i) (a) yes, (b) C3 =
1
2

, C-3 =
1
2

, C5 =
1
2j

, C-5 =
1
2j

, Ck = 0 for all other k

  (ii) (a) no, aperiodic
 4.4. (a) p

(b) p
(c) 0

 4.6. (a) Ck =
3j

kp
 c 1 - cosakp

2
b d  and

     C0 = limkS0 Ck =
1
p

 a3ja -  
p

2
 sin ak 

p

2
b b

(c)  Ck =
-1

k2p2 [e-jkp1- jkp - 12 + 1] and C0 =
1
2

(e) Ck =
1

p11 - k22  c ejp2 k - jk d

 4.8. (a) x1t2 = a
∞

k = 1
k odd

4X0

pk
  cos1kv0t - 90°2

 4.14. (a) Ck = 10, k odd, Ck = 0, k even
(b) Ck = 5[1 - e-jkp]

 4.15. (a) 2|Ck|

0 �0 3�0 5�0 �

40
� 40

3�
40
5�

Ck

0

�0 3�0 5�0

�

�90�

 4.18. 2 + ejpt + cosa3pt +
p

4
b
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 4.20. (a) m = 2
(b) m = 1
(c) m = 2

 4.21. Cyk = H1jkv02; Cxk =
10

jkv0 + 5
Cxk

 4.23. (a)  C1y = 5.6939∠ - 116.6°, C3y = 1.1771∠ - 146.3°, 
C5y = 0.4729∠ - 158.2°

 4.26. (a) y1t2 =
1
2

-
1
4

 
a

a + jv0
 ej4t -

1
4

 
a

a - jv0
 e-j4t

 4.31. (b) Cyk = Cxke-jkp

 4.32. (a) Ck =
-8

1pk22, k odd, Ck = 0, k even

(b) C0 = 0, Ck =
4j

pk
, k ≠ 0

(c) C0 =
12
p

, Ck =
-12

p14k2 - 12 , k ≠ 0

Chapter 5

 5.1. (a) 
-bv2 + jvb2

v4 + v2b
(b) Apejfd1v - v02 + Ape-jfd1v + v02
(c) 

1
a - jv

(d) Cejvt0

 5.9. (a) F1v2 =

A
2

b + j1v - v02 +

A
2

b - j1v - v02
(b) F1v2 = 12prect1v2

 5.11. (a) 
j2v

v2 + 1

(b) 
1
2

 e- 0v 0

(c) 2p[e- 0v - 2 0 + e- 0v + 2 0]

 5.13. (a) F1v2 = aAsinc2a av
2
b

 5.15. (a) psinc1t2
 5.16. -4 6 A 6 4
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 5.18. (a) g1t2 =
50
p

 sinc1100t2

 5.19. (a) 
1
2

 Gav
2
b =

3 + jv/2

-v2

4
+ j3v + 8

 5.23. (a) (i)   H1v2 =
10

jv + 10

 (ii)  0H1v2 0 =
102v2 + 100

, ∠H1v2 = - tan-1a v

10
b

 (iii) h1t2 = 10e-10tu1t2
 5.24. (a) V21v2 = V11v2H1v2 =

p

j
 c 10

10 + j50
 d1v - 502 -

10
10 - j50

 d1v + 502d
 5.27. (a) 91%
 5.28. (a) Py1v2 = 200d1v + 2002 + 6481v + 1502
  + 6481v - 1502 + 2001v-2002

Chapter 6

 6.2. (a)  Y1v2 = pa 3
n = -3sinc an

2
 pbd1v - n50p2

    y1t2 =
1
2

+
2
p

 cos150pt2 +
2

3p
 cos1150pt2

(b) Y1v2 = pa 1
n = -1sinc an

2
pb  d1v - n100p2

 y1t2 =
1
2

+
2
p

cos1100pt2
 6.3. (a)  is high pass; the output has highfrequency content but the low 

frequency content is removed and the DC value appears to be 0.
(b) is low pass; the output is roughly the same shape as the input but it is 

smoothed and has mainly lowfrequency content.

 6.5. H1v2 =
1

1 + javL
R

-
1

vRC
b

.  This is a bandpass filter.

 6.7. H1v2 =
Vo1v2
Vi1v2 =

1

1 -
v2

v2
c

+ j 
22v
vc

  �H1v2 � =
1C1 -

2v2

v2
c

+
v4

v4
c

+
2v2

v2
c

=
1C1 + c a v

vc
b

2

d
2

  which is a 2nd order Butterworth frequency response function.
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 6.8. (a) for R0 = 1 kΩ: L = 70.7 mH, C = 0.141 mF
 6.13. (b) Shorter time duration results in wider bandwidth.
 6.16. (a) vs 7 400 rad/s
 6.22. (a)  Yes, since the sampling rate vs = p is less than twice the bandwidth 

vb =
3p
4

.

(b) yn1t2 =
1

2p
 c cosap

4
 tb + cosa 3p

4
 tb d

 6.26. (a) 40 Hz and 50 Hz

 6.28. 
�60 �40

0.5
6040

A(�)

  
�50�40

0.5
5040

B(�)

  

�150 �60 60
�50 50

�100
�140

150
140

0.25
C(�)

100

 
�60 60

�50 50

0.25
Y(�)

 6.35. (a) 19 signals can be multiplexed
(b) 785.4 (krad/s)

Chapter 7

 7.1. (a) 
5e-2s

s

 7.2. (a)  f1t2 = 5tu1t2 - 51t - 22u1t - 22 - 15u1t - 22 + 5u1t - 42
(b) F1s2 =

5
s2 -

5
s2 e-2s -

15
s

 e-2s +
5
s

 e-4s

 7.6. (a) F1s2 =
s

s2 - a2

(b) cos1bt2 `
b = aj

=
ejbt + e-jbt

2
`
b = aj

=
e-at + eat

2
= cosh1at2

   L c cos1bt2 d `
b = aj

=
s

s2 + b2 `
b = aj

=
s

s2 - a2
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(c) F1s2 =
a

s2 - a2

 sin1bt2 0 b = aj = jsinh1at2

  jL c sin1bt2 d
b = aj

=
- jb

s2 + b2 `
b = aj

=
a

s2 - a2

 7.10. (a) 5 c e-2s

s
-

e-3s

s
d

(b) 3
e-2s

s2

 7.13. (a) 
1
s2

 7.14. (a) v10+2 = 9
(b) v1∞ 2 = 0

 7.17. (a) 2.511 - e-2t2u1t2
 7.24. (i) (a) stable

  (b) e-t, e-4t

    (c)  Hi1s2 =
1
2

 1s2 + 5s + 42

 7.29. (a) 
1

s + 2
, Re1s2 7 -2

(c) 
1

s - 2
, Re1s2 6 2

(e) 
e8e4s

s + 2
, Re1s2 7 -2

 7.32. (a) f1t2 = -9u1- t2 + 8e-tu1- t2
(b) f1t2 = 9u1t2 - 8e-tu1t2
(c)  f1t2 = -9u1- t2 - 8e-tu1t2
(d) (a) f1∞ 2 = 0; (b) f1∞ 2 = 9; (c) f1∞ 2 = 0

 7.35. (a) Re1a2 7 0  and Re1b2 7 0
(b) Either Re1a2 7 0 and Re1b2 6 0 or Re1a2 6 0 and Re1b2 7 0
(c) Re1a2 6 0 and Re1b2 6 0

 7.36. 
3
2

 e-4tu1t2 +
1
2

 e-2tu1- t2
 7.37. The poles at -10 and -5 come from rightsided time functions, and the pole 

at 3 comes from a leftsided time function.
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Chapter 8

 8.1. (a) x1 = i, vi = u, y = vR

     x# = -
R
L

 x +
1
L

 u

     y = Rx
 8.3. (b) x = y, x# = 2x + 4u

 8.4. (d-b) x# = J 0 1
-1 -3

Rx + J0
1
Ru

  y = [0  50]x

(d-c) y
.# + 3y# + y = 50u#

 8.6. (a) y1t2 = e-4t, t 7 0

(b) y1t2 = -  
1
4

+ 2et +
1
4

 e-4t, t 7 0

 8.13. (a) x# = -5x + 4u
  y = 3x

(b) H1s2 =
12

s + 5

 8.16. (b) H1s2 =
2s2 + 7s + 1
s2 + 3s - 4

 8.18. (a)  x# = -
R
L

x +
1
L

u

  y = Rx

(b) H1s2 =

R
L

s +
R
L

(c) 
VR1s2
Vi1s2 =

R
L

s +
R
L

 8.21. (a) H1s2 =
2s2 + 7s + 1
s2 + 3s - 4

 8.26. (a) not stable
(b) e-4t, et

(c) A = [-4 5; 0  1]; eig1A2
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Chapter 9

 9.3. (a) (i)  d[n + 1] + d[n] - 2d[n - 1] - 2x[n - 1]
 (ii) -  2d[n + 8] - 2d[n + 6] - 2d[n + 4] - 2d[n + 2]

    +  d[n] + d[n - 2] + d[n - 4] + d[n - 6]

 (v) d[n + 1] + d[n] + d[n - 1] + d[n - 2] - 2d[n - 3] - 2d[n - 4]

    -  2d[n - 5] - 2d[n - 6]
 9.8. (a)  xe[n] = -d[n + 2] - d[n - 2] and xo[n]
   = d[n + 2] + 2d[n + 1] - 2d[n - 1] - d[n - 2]

(b)  xe[n] = 1
2d[n + 4] + d[n + 3] + 3

2d[n + 2] + d[n + 1]
  +  d[n - 1] + 3

2d[n - 2] + d[n - 3] + 1
2d[n - 4]

  and xo[n] = 1
2d[n + 4] + d[n + 3]

  +  12d[n + 2] - 1
2d[n - 2] - d[n - 3] - 1

2 d[n - 4]
 9.10. (a) (i)   even

 (ii)  neither
 (iii) odd
 (iv) even
 (v)  even
 (vi) neither

 9.14.  (i) periodic, N0 = 2
  (iv) not periodic

 9.15. (a) periodic, N0 = 10
 9.16. (a) periodic, N0 = 14

(b) not periodic
 9.21. (a) y[n] = T11x[n]2 + T3[T2{x[n] - T41y[n]2}]
 9.25. (a) has memory, not invertible, causal, stable, time invariant, not linear

Chapter 10

 10.1. (a) xa[n] = 2d[n + 1] + 2d[n] - 4d[n - 1] - 4d[n - 2]
 10.7. (a) y[5] = 6

(b) y[3] = 8
(c) n = 2, 3, 4
(d) y[n] = 2d[n + 1] + 4d[n] + 6d[n - 1] + 8d[n - 2] + 8d[n - 3]
  +  8d[n - 4] + 6d[n - 5] + 4d[n - 6] + 2d[n - 7]

 10.9. y[n] = d[n + 2] + d[n + 1] + 310.72n1u[n] - u[n - 5]2
  +  310.72n1u[n - 1] - u[n - 6]2
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 10.14. (a) h[n] = 1n + 1210.92nu[n]
(b) h[n] = d[n + 4]
(c) h[n] = d[n] + 2d[n - 1] + 3d[n - 2] + 2d[n - 3] + d[n - 4]

 10.15. (a) causal
(b) stable

 10.17. (a) h[n] = .5d[n - 1] + .7d[n]
(b) causal
(c) y[n] = 0.7u[n + 1] + 0.5u[n]

 10.19. (a) causal, stable
(c) causal, not stable

 10.21. (a) h[n] = d[n + 7] + d[n - 7]
(b) h[n] = u[n - 3] + u [-n + 2]

 10.23. (i)   y[n] = -  
5
7

 a 5
6
b

n

+
12
7

 122n, n Ú 0

(ii) y[n] = 2.10810.72n - 1.108e-n, n Ú -1

 10.24. (a) not stable
(b) not stable

 10.27. (b) y[0] = 2.5
 y[1] = 2.25
 y[2] = 0.025
 y[3] = 0.0225
 y[4] = 0.02025

 10.34. (a) H1z2 =
z

z - 0.7
(b) yss[n] = 1.168 cos1n - 43.5°2
(d) yss[n] = 0.847 cos n + 0.804 sin n + 0.153 cos n - 0.803 sin n ≈ cos n

Chapter 11

 11.1. (a) x1z2 = 1 + 0.5z-1 + 0.25z-2

 11.3. (a) 
z

z - 0.9

   (b) 
5z - 4.6

z2 - 1.9z + 0.88

 11.7. (a) 
z

z - 0.95

 (b) 
5z2 - 4.617z

z2 - 1.856z + 0.861
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 11.11. (a) f1∞2 =
1
2

 (b) f [n] =
1
2

-
1
2

 1-12n

 11.16. (a) (i) x[n] = u[n] - 0.5nu[n]

 11.17. (a) 
z2

z2 - a

(b) 
1

z1z - a2
 11.23. (a) y1z2 =

0.2z2

1z - 121z - 0.82
(b) y[∞] = 1
(c) y[n] = 1 - 10.82n + 1, n Ú 0

 11.25. (a) 1210.52n - 10.252n2u[n]

 11.31. (a) H1z2 =
z3

1z - 1.123, � z � 7 1.1

(b) H1z2 =
z4

1z - 1.123, � z � 6 1.1

(c) H1z2 =
z4

1z - 0.923, � z � 6 0.9

(d) H1z2 =
z3

1z - 0.923, � z � 7 0.9

 11.36. (a) 
z

z - 0.7
, � z � 7 0.7

(b) 0.77 z-6

z - 0.7
, � z � 7 0.7

(c) 0.7-7 z 8

z - 0.7
, � z � 7 0.7

(d) 
z

z - 0.7
, � z � 6 0.7

(e) 
10.7z28

0.7z - 1
, � z � 7

1
0.7

(f)  
-0.7

z - 0.7
, � z � 6 0.7

 11.38. (a)  (i)  
3
2

 1-u[-n - 1] + 10.62nu[-n - 1]2

     (ii)  
3
2
1u[n] - 10.62nu[n]2

    (iii) 
3
2
1-u[-n - 1] - 0.6nu[n]2
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Chapter 12

 12.1. (a) X1Ω2 =
1

1 - 0.5e- jΩ

 12.4. (a) F11Ω2 = 8p a
∞

k = - ∞
[d1Ω - 0.2p - 2pk + d1Ω + 0.2p - 2pk2]

   -  j  4p a
∞

k = - ∞
[d1Ω - 0.4p - 2pk - d1Ω + 0.4p - 2pk2]

 12.10. [2, 0, 2, 0]

 12.12. c 1
2

, 0, -
1
2

, 0 d

 12.13. (a) X[k] a
7

n = 0
0.5ne-j 

2pnk
8

, k = 0, 1, c, 7

 12.18. (a) [6, - 1 - j1, 0,  -1 + j1]
 12.24. (a) X[k] = [2.50, 2.65 + j0.81, 3.46 + j2.14, 15.44 + j11.99, -5.59,
  15.44 - j11.99, 3.46 - j2.14, 2.65 - j0.81]
 12.31. (a) [2, 5, 4, 5, -1, -2, -6]

(b) [1, 3, -2, 5]
(c) [-2, -4, -1, -2, 5, 5, 6]
(d) [6, 5, 5, -2, -1, -4, -2]
(e) [-4, -2, 2, 9, 2, -2, -4]

 12.36. (a) 30
(b) 38
(c) 12
(d) 30
(e) 60
(f ) [121, 5, 9, 5]

Chapter 13

 13.1. (b) x[n + 1] = c 0 1
-0.8 0

d  x[n] + c0
1
d  u[n]

  y[n] = [1 0] x[n]
 13.2. (b) x[n + 1] = 0.8x[n] + u[n]
     y[n] = -0.4x[n] + 4u[n]

 13.6. (a) x[n + 1] = J 0.8 0
6.08 0.9

R  x[n] + J1
3.2

R  u[n]

  y[n] = [0 1.9] x [n]
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(b) Φ[n] = C0.8n   0
6.08[0.9n - 0.8n] 0.9n S

(c) x[n] = J 0.8n

62.810.92n - 60.810.82n R
    y[n] = 119.310.92n - 115.510.82n, n Ú 0

(d) y[n] = 638.4 + 577.610.82n - 121610.92n, n Ú 0
(f )  y[n] = 638.5 + 462.210.82n - 1096.910.92n, n Ú 0

 13.12. (b) H1z2 =
6.08z + 6.69

1z - 0.821z - 0.92
 13.17. (a) x1[n + 1] = 11 - a2x1[n] + au[n]

(b) y[n] = 11 - a2x1[n] + au[n]

(c) H1z2 =
az

z - 11 - a2
 13.19. (a)  H1z2 =

z + 1
z2
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Some references for particular topics are given throughout this book. Many good 
books in the general area of signals and systems are available. An incomplete list of 
these books is given as Chapter 1 Refs. 12 through 20. Any omission of books from 
this list is inadvertent.

Chapter 1

 1. W. A. Gardner, Introduction to Random Processes. New York: Macmillan, 1986.
 2. C. L. Phillips and R. D. Harbor, Feedback Control Systems, 4th ed. Upper Saddle River, 

NJ: Prentice Hall, 1999.
 3. J. Millman, Microelectronics, 2d ed. New York: McGraw–Hill, 1999.
 4. C. L. Phillips and H. T. Nagle, Digital Control System Analysis and Design, 3d ed. Upper 

Saddle River, NJ: Prentice Hall, 1996.
 5. S. D. Conte and C. deBoor, Elementary Numerical Analysis: An Algorithmic Approach. 

New York: McGraw-Hill, 1982.
 6. M. Burkert et al., “IC Set for a Picture-in-Picture System with On-Chip Memory,” IEEE 

Transactions on Consumer Electronics, February 1990.
 7. L. Buddine and E. Young, The Brady Guide to CD-ROM. Englewood Cliffs, NJ: Prentice 

Hall, 1988.
 8. B. E. Keiser and E. Strange, Digital Telephony and Network Integration. New York: Van 

Nostrand Reinhold, 1995.
 9. J. D. Irwin, Basic Engineering Circuit Analysis, 6th ed. New York: Macmillan, 1999.
 10. Learning MATLAB 6, Natick, MA: The Mathworks, Inc., 2001.
 11. Learning Simulink 4, Natick, MA: The Mathworks, Inc., 2001.
 12. R. A. Gabel and R. A. Roberts, Signals and Linear Systems. New York: Wiley, 1987.
 13. L. B. Jackson, Signals, Systems, and Transforms. Reading, MA: Addison–Wesley, 1991.
 14. B. P. Lathi, Linear Systems and Signals, New York: Berkeley-Cambridge, 1992.
 15. R. J. Mayhan, Discrete-Time and Continuous-Time Linear Systems, 2d ed. Reading, MA: 

Addison–Wesley, 1998.

SignalS and SyStemS referenCeSI
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 16. C. D. McGillem and G. R. Cooper, Continuous and Discrete Signal and System Analysis, 
3d ed. New York: Holt, Rinehart and Winston, 1995.

 17. M. O’Flynn and E. Moriarty, Linear Systems Time Domain and Transform Analysis. 
New York: Harper & Row, 1987.

 18. A. V. Oppenheim and A. S. Willsky, Signals and Systems, 2d ed. Upper Saddle River, NJ: 
Prentice Hall, 1996.

 19. S. S. Soliman and M. D. Srinath, Continuous and Discrete Signals and Systems, 2d ed. 
Upper Saddle River, NJ: Prentice Hall, 1997.

 20. R. E. Ziemer, W. H. Tranter, and S. R. Fannin, Signals and Systems Continuous and 
Discrete, 4th ed. New York: Macmillan, 1998.

Chapter 2

 1. G. Carlson, Signal and Linear System Analysis, 2d ed. New York, John Wiley & Sons, 1998.
 2. G. Doetsch, Guide to the Applications of the Laplace and z-Transforms. London: Van 

Nostrand Reinhold, 1971.
 3. W. Kaplan, Operational Methods for Linear Systems. Reading, MA: Addison–Wesley, 1962.
 4. R. V. Churchill, Operational Mathematics, 3d ed. New York: McGraw–Hill, 1977.
 5. G. Doetsch, Guide to the Applications of Laplace Transforms. London: Van Nostrand 

Reinhold, 1961.
 6. G. Doetsch, Introduction to the Theory and Application of the Laplace Transform. 

New York: Springer–Verlag, 1974.
 7. R. F. Wigginton, Evaluation of OPS-II Operational Program for the Automatic Carrier 

Landing System. Saint Inigoes, MD: Naval Electronic Systems Test and Evaluation 
Facility, 1971.

Chapter 3

 1. F. B. Hildebrand, Advanced Calculus and Applications, 2d ed. Englewood Cliffs, NJ: 
Prentice-Hall, 1976.

 2. G. Birkhoff and G.-C. Rota, Ordinary Differential Equations, 4th ed. New York: Wiley, 
1994.

 3. C. L. Phillips and R. D. Harbor, Feedback Control Systems, 4th ed. Upper Saddle River, 
NJ: Prentice Hall, 1999.

 4. G. Doetsch, Guide to the Applications of the Laplace and z-Transforms. London: Van 
Nostrand Reinhold, 1971.

Chapter 4

 1. C. L. Phillips and R. D. Harbor, Feedback Control Systems, 4th ed. Upper Saddle River, 
NJ: Prentice Hall, 1999.

 2. D. Jackson, Fourier Series and Orthogonal Polynomials. Menosha, WI: Collegiate Press, 
1981.
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 3. A. V. Oppenheim and A. S. Willsky, Signals and Systems. Upper Saddle River, NJ: Prentice 
Hall, 1996.

 4. W. Kaplan, Operational Methods for Linear Systems. Reading, MA: Addison–Wesley, 1962.
 5. R. V. Churchill, Operational Mathematics, 2d ed. New York: McGraw–Hill, 1972.

Chapter 5

 1. R. Bracewell, The Fourier Transform and Its Applications, 2d ed. New York: McGraw–
Hill, 1986.

 2. M. J. Lighthill, Fourier Analysis and Generalised Functions. Cambridge: Cambridge Uni-
versity Press, 1958.

 3. A. Papoulis, The Fourier Integral and Its Applications. New York: McGraw–Hill, 1962.
 4. R. A. Gabel and R. A. Roberts, Signals and Linear Systems. New York: Wiley, 1987.
 5. H. P. Hsu, Fourier Analysis. New York: Simon & Schuster, 1970.
 6. B. P. Lathi, Signals, Systems and Communication. New York: Wiley, 1965.
 7. N. K. Sinha, Linear Systems. New York: Wiley, 1991.
 8. S. S. Soliman and M. D. Srinath, Continuous and Discrete Signals and Systems, 2d ed. 

Upper Saddle River, NJ: Prentice Hall, 1997.
 9. A. V. Oppenheim and A. S. Willsky, Signals and Systems, 2d ed. Upper Saddle River, NJ: 

Prentice Hall, 1996.

Chapter 6

 1. L. W. Couch II, Modern Communication Systems, Upper Saddle River, NJ: Prentice 
Hall, 1995.

 2. G. E. Carlson, Signal and Linear System Analysis. Boston: Houghton Mifflin, 1992.
 3. International Telephone and Telegraph Corporation, Reference Data for Radio Engineers, 

5th ed. Indianapolis, IN: Howard W. Sams, 1973.
 4. C. J. Savant, Jr., M. S. Roden, and G. L. Carpenter, Electronic Design: Circuits and Systems, 

2d ed. Redwood City, CA: Benjamin/Cummings, 1991.
 5. A. B. Williams, Electronic Filter Design Handbook. New York: McGraw–Hill, 1981.
 6. S. Haykin, An Introduction to Analog and Digital Communications. New York: Wiley, 1989.
 7. A. J. Jerri, “The Shannon Sampling Theorem—Its Various Extensions and Applications: 

A Tutorial Review,” Proceedings of IEEE, vol. 65, pp. 1565–1596, 1977.

Chapter 7

 1. R. V. Churchill, Operational Mathematics, 3d ed. New York: McGraw–Hill, 1977.
 2. G. Doetsch, Introduction to the Theory and Application of the Laplace Transform. New 

York: Springer–Verlag, 1970.
 3. G. Doetsch, Guide to the Applications of the Laplace and z-Transforms. New York: Van 

Nostrand Reinhold, 1971.
 4. W. Kaplan, Operational Methods for Linear Systems. Reading, MA: Addison–Wesley, 1962.
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Chapter 8

 1. D. Graupe, Identification of Systems. Huntington, NY: Robert E. Kreiger, 1976.
 2. C. L. Phillips and R. D. Harbor, Feedback Control Systems, 4th ed. Upper Saddle River, 

NJ: Prentice Hall, 1999.
 3. B. Friedlander, Control System Design. New York: McGraw–Hill, 1986.
 4. G. H. Golub and C. F. Van Loan, Matrix Computations, 2d ed. Baltimore, MD: Johns 

Hopkins University Press, 1996.
 5. C. L. Phillips and H. T. Nagle, Digital Control System Analysis and Design, 3d ed. Upper 

Saddle River, NJ: Prentice Hall, 1996.
 6. G. F. Franklin and J. D. Powell, Digital Control of Dynamic Systems. 3d ed. Reading, 

MA: Addison–Wesley, 1997.
 7. W. L. Brogan, Modern Control Theory, 3d ed. Upper Saddle River, NJ: Prentice Hall, 1991.

Chapter 9

  C. L. Phillips and H. T. Nagle, Digital Control System Analysis and Design, 3d ed. Upper 
Saddle River, NJ: Prentice Hall, 1996.

Chapter 10

  L. A. Pipes, Applied Mathematics for Engineers. New York: McGraw–Hill, 1946.

Chapter 11

 1. G. Doetsch, Guide to the Applications of the Laplace and z-Transforms. New York: Van 
Nostrand Reinhold, 1971.

 2. E. I. Jury, Theory and Application of the z-Transform Method. New York: Krieger, 1973.
 3. C. L. Phillips and H. T. Nagle, Digital Control System Analysis and Design, 3d ed. Upper 

Saddle River, NJ: Prentice Hall, 1996.
 4. Martin Vetterli and Jelena Kovačević, Wavelets and Subband Coding, Upper Saddle 

River, NJ: Prentice Hall, 1995.

Chapter 12

 1. H. Nyquist, “Certain Topics in Telegraph Transmission Theory,” Transactions of AIEE, 
vol. 47, April 1928.

 2. C. E. Shannon, “Communication in the Presence of Noise,” Proceedings of the IRE, 
vol. 37, January 1949.

 3. G. E. Carlson, Signal and Linear System Analysis, 2d ed. New York: John S. Wiley & 
Sons, 1998.



Appen. I    Signals and Systems References 779

 4. S. S. Soliman and M. D. Srinath, Continuous and Discrete Signals and Systems, 2d ed. 
Upper Saddle River, NJ: Prentice Hall, 1997.

 5. L. B. Jackson, Signals, Systems and Transforms, Reading, MA: Addison–Wesley, 1991.
 6. R. D. Strum and D. E. Kirk, First Principles of Discrete Systems and Digital Signal Pro-

cessing. Reading, MA: Addison–Wesley, 1988.
 7. K. Sayood, Introduction to Data Compression, 2d ed. San Francisco: Morgan Kaufmann 

Publishers, 2000.
 8. http://ftp.math.hkbu.edu.hk/help/toolbox/images/transfo6.html

Chapter 13

 1. C. L. Phillips and H. T. Nagle, Digital Control Systems, 3d ed. Upper Saddle River, NJ: 
Prentice Hall, 1996.

 2. G. F. Franklin and J. D. Powell, Digital Control of Dynamic Systems, 3d ed. Reading, 
MA: Addison–Wesley, 1997.

 3. B. Friedlander, Control System Design. New York: McGraw–Hill, 1986.

appendix d

 1. R. V. Churchill, J. W. Brown, and R. F. Verkey, Complex Variables and Applications,  
4th ed. New York: McGraw–Hill, 1989.

 2. R. E. Larson and R. P. Hostetler, Algebra and Trigonometry, 2d ed. Lexington, MA: 
D.C. Heath, 1993.

appendix e

 1. W. E. Boyce and R. C. DePrima, Elementary Differential Equations and Boundary Value 
Problems, 2d ed. New York: Wiley, 1992.

appendix f

 1. R. V. Churchill, Operations Mathematics, 2d ed. New York: McGraw-Hill, 1972.

appendix g

 1. F. R. Gantmacher, Theory of Matrices, Vols. I and II. New York: Chelsea, 1959.
 2. G. Strang, Linear Algebra and Its Applications, 2d ed. New York: Academic Press, 1988.
 3. G. H. Golub and C. F. Van Loan, Matrix Computations, 2d ed. Baltimore, MD: Johns 

Hopkins University Press, 1996.

http://ftp.math.hkbu.edu.hk/help/toolbox/images/transfo6.html
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A

Abscissa of absolute convergence, 345
Absolutely integrable, 111, 147, 205, 207, 

262–263
Absolutely summable, 512, 514, 613
Accuracy, adequate, 3, 127, 155, 156
Active Filters, 289–291
Aliasing, 299, 302
Amplifier

differentiating, 8
integrating, 8, 66, 97
operational, 6, 16, 97, 225
voltage, 7

Amplitude modulation:
pulse, 19, 171, 319–325
sinusoidal, 308–319

Amplitude sensitivity, 314
AM radio, 314, 317
Analog computer, 132
Analogous systems, 12–14
Analog signal, 2, 23, 630
Analog simulation, 132
Analog-to-digital converter (A/D, ADC), 

14–16, 20, 21, 52, 296, 446, 447
Aperiodic signal, 35, 175, 185
Autocorrelation, 671, 677–678
Automatic control, 64, 74, 152
Auxiliary equation (See Characteristic  

equation)
Average power, normalized, 207, 257–258, 281
Averaging periodogram method, 678

B

Bandpass signal, 293
Bandwidth

3-dB, 293
absolute, 292, 294
first null, 293
half-power, 292, 294
null-to-null, 293, 294
zero-crossing, 293

Baseband signal, 292, 293
BIBO stability (See Stability)
Bilateral Laplace transform, 130, 337–338, 

382–391
Bilateral z-transform, 538, 552–554, 557, 561, 

564, 588–598
Block diagrams, 130–139, 475, 525–531  

(See also Simulation diagrams)
Block filtering, 667–671
Bode plots, 245–248, 380
Bounded-input–bounded-output (BIBO)

stability, 69, 111
Bounded signals, 69
Butterfly diagrams, 639
Butterworth filters, 282–287

C

Canonical form, 409
Carrier signals, 296, 310, 319
Cathode ray tube (CRT), 36, 57

Index
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Demultiplex, 322
Detection (See Demodulation)
DFT shorthand notation, 632
Difference equations, 449, 514–522, 693–702

solution, 516, 703–710
Differential equations, 113–118, 401

solution, 115–118
Differentiator, 133
Digital filters, 514, 529–530, 558
Digital signal processing, 3, 24, 446
Digital simulation, 132
Diodes, 10, 11
Dirac delta function, 49
Dirichlet conditions, 175, 206
Discrete cosine transform (DCT), 678–683
Discrete Fourier transform (DFT), 630–638, 

646–678
Discrete frequency variable, 610
Discrete-time Fourier transform (DTFT): 

610–617
definition, 610
properties: (See Tables)

convolution in frequency, 622
convolution in time, 621–622
frequency shift, 620
linearity, 619
multiplication by n, 623
periodicity, 618
symmetry, 620–621
time reversal, 621
time shift, 619

z-transform relationship, 612–617
Discrete-time impulse function, 451
Discrete-time samples, 296
Discrete-time signal, 3, 446–485
Discrete-time system, 3, 446–485
Double-sideband modulation (DSB)  

(See Modulation: double-sideband 
modulation)

Duration-bandwidth relationship, 214, 326
Dynamic system (See Systems)

e

Energy compaction, 680
Energy signal, 207, 253
Energy spectral density, 253–260
Energy spectral density estimate, 677–678

Causality, 68, 110, 375–376, 480–481, 
510–551, 580

Causal system, 68, 480, 581
Characteristic equation, 118, 377, 427, 517, 

583, 714–715
Characteristic values (See Eigenvalues)
Circuits, 4, 6–9, 11–16, 19–22
Circular convolution, 622–623, 654–663
Compact disk, 18–19
Complementary function:

difference equations, 516, 517, 522
differential equations, 116

Complex exponential functions (See Signals 
and also Response.)

Complex inversion integral, 338–339, 553
Complex poles, 371–373, 578–580
Continuous-time signal (See Signal)
Continuous-time system (See System)
Control canonical form, 409
Convergence:

discrete-time Fourier transform, 613
Laplace transform, 384–385
z-transform, 560, 564, 582, 588, 594

Converters:
analog-to-digital, 14–16, 18, 20–22, 52, 296, 

446–447
digital-to-analog, 14, 20–21, 24, 101, 

304–306, 370, 469
Convolution:

continuous time, 92–105, 298
properties, 105–108

discrete time, 497–509
properties, 506–509

Correlation, 671–677
Cost function, 157–158
Cross correlation, 671–677
Cutoff frequency, 280–282

d

Data reconstruction, 299, 300–308
DC power supplies, 10–12, 37
DC value, 164, 231 
Decomposition-in-frequency  

FFT, 643–646
Decomposition-in-time FFT, 638–642
Demodulation, synchronous, 313–314, 

318–319
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energy density spectrum, 253–255
existence, 201
power and energy transmission, 258–260
power density spectrum, 256–258
properties (See Tables)

convolution, 220–221
duality, 218–219
frequency differentiation, 231–232
frequency shifting, 221–224
linearity, 211–212, 223, 225
multiplication, 220
time differentiation, 226–231
time integration, 224–226
time scaling, 212–214
time shifting, 214–215
time transformation, 216–218

sampling, 295–300
time functions, 233–241

Frequency band assignments (See Federal 
Communications Commission)

Frequency content of signal (See Frequency 
spectra)

Frequency-division multiplexing, 317–319
Frequency response, 178, 241–250, 272, 280, 

282, 283–284, 379–380
Frequency-response function, 280
Frequency spectra, 165–175, 250–251
Functions (See also Signals)

finite duration, 388, 591
left sided, 386, 387, 591
rational, 127, 251, 262, 535
right sided, 387, 591
two sided, 387, 591

Fundamental frequency, 36, 77, 156, 161
Fundamental matrix (See State transition 

matrix)
Fundamental period, 35, 39, 156

G

Generating function, 238
Gibbs phenomenon, 177

H

Hamming window, 651
Hanning window, 651

Energy transmission, 258–260
Equivalent operations, 452–453
Euler’s relation, 40, 43, 77
Euler’s rule, 16, 448, 450
Even signal:

continuous-time, 33, 34
discrete-time, 462–463

Exponential order, 340

F

Fast Fourier transform, 638–646, 683
Federal Communications Commission 

(FCC), 309
Feedback systems (See Systems)
Filters:

Active (See Active Filters)
bandpass, 272, 288–289, 326
bandstop, 272, 326
Butterworth (See Butterworth filters)
digital (See Digital filters)
high-pass, 272, 275, 279, 326
ideal (See Ideal filters)
low-pass, 272, 275, 276, 280–282, 325
noncausal, 274, 291
RC-lowpass, 280–282
real (See Real filters)
transformation of, 288, 291

Filtering with DFT, 662–670
Final value theorem:

Laplace transform, 359–360
z-transform, 568–569

Finite impulse response (FIR), 500
First difference, 452
Flat-top PAM (See Modulation: flat-top PAM)
Forced response (See Response)
Fourier series, 154–200

coefficients, 162–164
combined trigonometric form, 162
common signals, 172
exponential form, 162
periodic functions, 155–160
properties, 175–178
system analysis, 178–185
transformations, 185–190
trigonometric form, 162

Fourier transform, 201–271
definition, 201
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region of convergence (ROC), 383
system response, 365
unilateral, 337

Linear convolution with DFT, 657
Linear differential equations, 4, 9, 113
Linearity:

continuous-time systems, 75
discrete-time systems, 495

Linearization of systems, 9–10
Local oscillator, 313
LTI system (See Systems)

M

Magnitude frequency spectrum, 258,  
272, 280

MATLAB, 22
Matrix exponential, 420
Mean-square minimization, 158
Modeling, 1–4

difference equations, 17, 449
differential equations, 1, 9, 60, 113–120

Modes (See Systems)
Modulation:

delta modulation, 21
double-sideband modulation, 310, 316
DSB/SC-AM, 310
DSB/WC-AM, 316
flat-top PAM, 323
natural-top PAM, 319
pulse-amplitude modulation (PAM), 19, 

171, 319–325
pulse-code modulation, 20
pulse-width modulation, 21

MPEG, 679
Multiplexing, 19, 317
Multivariable systems, 405, 696

n

Natural response (See Response)
Natural-top PAM, 319
Newton’s law, 1, 74
Nonanticipatory system, 68
Noncausal system, 274, 279
Nonlinear differential equations, 9
Normalized average power, 207, 258, 281

Harmonic series, 161
Homogeneous equation, 116
Hybrid system (See Systems: hybrid)

I

Ideal filters, 272–279
Ideal sampling, 296, 301
Ideal time delay, 68, 101, 469
Identity matrix (See Matrix: identity)
Impulse function:

continuous-time, 49–54
properties, 52

discrete time, 450–452, 626–629
Impulse response (See Response)
Impulse sampling, 296–299, 304
Infinite impulse response (IIR), 504
Integrator (See Systems)
Intermediate frequency, 318
Interpolating function, 302–304
Inverse transforms (See the Transform)
Invertibility (See Systems)
Iterative solution, 522

J

JPEG, 609, 678

L

Laplace transform, 336–400
bilateral, 337, 382
initial conditions, 363
periodic functions, 362
properties: (See Tables)

convolution, 369
differentiation, 343, 354
final value, 359
initial value, 358
integration, 356
linearity, 349
multiplication by t, 357
time scaling, 360, 361
time-shifting, 351, 361
time transformation, 360
variable transformation, 360
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Q

Quantization error, 306–308

R

Ramp function, 50
Rational functions (See Functions)
RC low-pass filter, 280
Real filters, 279–291
Recomposition equations, FFT, 640
Reconstruction, 300
Rectangular pulse (rect), 46, 47, 206
Region of convergence, 384, 594

discrete-time Fourier transform, 613
Laplace transform, 341
z-transform, 560, 564, 582, 588

Repeated poles, 374
Resolvant, 413, 703–704
Response:

complex-exponential inputs, 124, 531
forced, 116, 418, 516, 518, 581
frequency, 379
impulse, 129, 500
initial conditions, 116, 363, 417
natural, 116, 119, 120, 516, 520, 582
steady-state, 119, 125, 178, 521, 533
transient, 119, 521
unforced, 119, 520
unit impulse, 92, 209, 346, 498
unit step, 97, 112, 513
zero-input, 119, 417, 520
zero-state, 119, 417, 521

Rotating phasor (See Phasor)

S

Sample-and-hold circuit, 323
Sampled-data signal (See Signals)
Sampled-data system (See Systems)
Sample estimate of autocorrelation, 677
Sample period, 296, 302
Sampling, 295, 302, 446, 537

ideal (See Ideal sampling)
Sampling theorem, 299, 304
Sensors, 64, 68
Servomotor, 127

Numerical integration, 16, 448
Nyquist rate (Nyquist frequency), 299, 304

O

Odd signal:
continuous-time, 32
discrete-time, 462

Order of system, 114
Orthogonal functions, 164
Oscillators, 165
Overlap-add technique, 667

P

Parseval’s theorem, 254
Partial-fraction expansions, 344, 345
Particular solutions:

difference equations, 514
differential equations, 115

Passband, 272
Pendulum, 9, 10, 13

clock, 36, 44, 168
Periodic convolution (See Circular  

convolution)
Periodic functions (See Signals)
Periodic in frequency, 468
Periodogram spectrum estimate, 677
Phase angle, 209, 217
Phase delay, 281
Phase shift, 215, 282
Phase spectrum, 218
Phasor, rotating, 209, 210, 212, 215
Physical systems (See Systems)
Picture in a picture, 17–18
Pixel, 17
Pixel block, 679
Power series, 553, 577
Power signal, 207, 253
Power spectral density (PSD), 253,  

257–263
Programming forms (See Simulation  

diagrams)
Pulse-amplitude modulation (PAM)  

(See Modulation: pulse-amplitude 
modulation)

Pulsed cosine, 234
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Steady-state response (See Response)
Step function, 45, 205, 449
Step response (See Response)
Stopband, 272
Super-heterodyne, 318
Superposition, 74, 211, 482, 495
Switched cosine, 234
Symmetry, 218, 620
Synchronous detection, 313
Systems:

analog, 1, 12–14, 18–21, 23, 24
analogous, 12, 13
causal, 68, 110, 369, 480, 510, 580
continuous-time, 1–14, 18, 23–89
data-acquisition, 21
differentiator, 8
definition, 450, 475
discrete-time, 14–22, 446–494, 495–551
dynamic, 66, 478
feedback, 64
hybrid, 3, 24
integrator, 17
interconnecting, 61, 476
inverse, 67, 378, 480, 510, 584
linear, 74, 482, 495
LTI:

continuous-time, 90, 108–113, 370
discrete time, 483, 495, 509

memory, 66, 478, 510
memoryless, 109
modes, 119, 523, 582
noncausal, 274
physical, 14–22, 113
sampled-data, 3, 24, 295
square-law device, 277
stability, 69, 111, 121, 376, 425, 481, 511
static, 66, 478
telephone, 19, 322
time invariant, 71, 481
transformation notation, 60, 475

System-identification, 406

T

Tables:
discrete-time Fourier transform, 614

properties, 623
Fourier transforms, 230, 263

properties, 211

Sifting property, impulse function, 52
Signals:

advanced, 69, 458
analog, 2, 6, 8, 23
aperiodic, 34
causal, 110, 480
complex exponential, 40, 124, 161, 466, 531
continuous-amplitude, 23, 447
continuous-time, 18, 23, 446
dc, 30
delayed, 27
digital, 446
discrete amplitude, 24, 447
discrete time, 3, 24, 446
discrete time exponential, 471
envelope, 44, 173
even and odd, 32, 462
exponential, 39, 471, 523
impulse representation, 91, 496
mathematical functions, 23, 54
periodic, 34–39, 155, 465
physical, 1–22, 23
sampled-data, 295, 300
sinusoidal, 43, 469
transformations, 24, 185, 453

Signum function (sgn), 207
Simulation, 132

analog, 132, 410
digital, 132

Simulation diagrams, 132, 406, 526, 697–702
direct form I, 134, 527, 692
direct form II, 134, 407, 527, 692

SIMULINK, 22, 286, 416, 710
Sinc function, 173, 204–206
Singularity functions, 45
Sinusoidal system response, 243
Spectrum analyzer, 185
Spectrum leakage distortion, 650
Square-law device, 277
Stability (See Systems)
State equations:

continuous-time, 401–445
solutions, 411

discrete-time, 692–729
solutions, 703

State transition matrix:
continuous time, 413

properties, 421
discrete time, 703

properties, 710–712
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Unit impulse response (See Impulse response)
Unit ramp function, 48, 49
Unit rectangular function, 46
Unit sample function, 451, 496
Unit step function (See Step function)

V

Video compression, 679

W

Wavelength, 309
Weighting factor, 639, 641
Windowing function, 648

Z

Zero-input response (See Response)
Zero-order hold, 305
Zero padding, 660
z-transform:

bilateral, 553, 588
properties:

convolution, 572, 572
final value, 568, 572
frequency scaling, 565
initial value, 568, 572
linearity, 565, 572
multiplication by n, 572
properties tables (See Tables)
tables (See Tables)
time scaling, 570, 572
time shifting, 567
regions of convergence, 588, 594

unilateral, 552–560, 565–566, 578, 588

Laplace transform, 342, 349
properties, 362

z-transform, bilateral, 563, 591
z-transform, unilateral, 561

properties, 573
Taylor’s series, 420
Telephone systems (See Systems)
Thermistor, 67
Thermometer, 68
Time-average value, 231
Time constant, 21, 41, 471
Time-division multiplexing (TDM),  

19, 322
Time duration, 231
Time invariant (See Systems)
Transfer functions, 107, 126, 221, 243, 364, 

423, 534, 573, 692, 708–710
Transforms:

discrete cosine, 678–682
discrete Fourier, 630–638, 646–678
discrete-time Fourier, 610–617
Fourier (See Fourier Transform)
Laplace, bilateral (See Laplace)
Laplace, unilateral (See Laplace)
z, bilateral (See z-transform)
z, unilateral (See z-transform)

Transformations:
signal (See signals)
similarity, 427–435, 715–720

properties, 433–435, 715–720
systems (See Systems)

Transform, linear, 340
Triangular pulse (tri), 226

U

Undetermined coefficients, 518
Unforced response (See Response)
Unit impulse function (See impulse function)
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