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Course Information

• Instructor: Prof. Gheith Abandah 

• Email: abandah@ju.edu.jo 

• Office: CPE 406 

• Home page: http://www.abandah.com/gheith

• Facebook group:

https://www.facebook.com/groups/549894571732525/

• Prerequisites: CPE 335: Computer Architecture and 
Organization (1) 

• Office hours: Sun – Wed:  10:30-11:30
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Textbook and References
• Patterson and Hennessy. Computer Organization & Design: The 

Hardware/Software Interface, RISC-V ed., Morgan Kaufmann, 
Elsevier Inc., 2018.

• References:
– Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 

6th ed., Morgan Kaufmann, Elsevier Inc., 2017. 

– J. P. Shen and M. H. Lipasti. Modern Processor Design: Fundamentals of 
Superscalar Processors, Mc Graw Hill, 2005.

– D. Culler and J.P. Singh with A. Gupta. Parallel Computer Architecture: A 
Hardware/Software Approach, Morgan Kaufmann, 1998. 

– J. Hayes. Computer Architecture and Organization, 3rd ed., McGraw-Hill, 
1998.

• Course slides at: http://www.abandah.com/gheith/?page_id=2518
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Course Objectives

• Introduce students to the technological changes in designing and 
building processors and computers. 

• Introduce students to the advanced techniques used in modern 
processors including pipelining, branch prediction, dynamic and 
speculative execution, multiple issue, multithreading, and 
software optimizations.

• Introduce the students to the basic concepts and technologies 
used in designing memory and storage systems including cache, 
main memory, virtual memory, and secondary memory.

• Introduce the students to the various approaches in parallel 
processing including SIMD extensions, vector processors, GPUs, 
multicore processors, shared memory multiprocessors, clusters, 
and message-passing multicomputers.
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Course Outcomes

• Understand and analyze the performance of single-
processor architectures, as well as multiprocessor 
architectures [1].

• Understand and analyze the performance of memory 
hierarchy levels [1].

• Understand the technological improvements and the 
effect of these improvements on modern computers 
[4].

• Survey research papers that describe contemporary 
issues in computer design [4, 7].
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Course Topics

• Introduction

• Computer Technology and Performance (1.5-1.11)

• Processor: Instruction-Level Parallelism (4.6‒4.11, 
4.14‒4.15)

Midterm Exam

• Memory Hierarchy (5.1‒5.11, 5.13, 5.16‒5.17)

• Parallel Processors (6.1‒6.8, 6.10‒6.14)

Final Exam
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Policies

• Attendance is required

• All submitted work must be yours

• Cheating will not be tolerated

• Open-book exams

• Join the facebook group

• Check department announcements at: 
http://www.facebook.com/pages/Computer-
Engineering-Department/369639656466107
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Grading

• Participation 10%

• Research Project 10%

• Midterm Exam 30% 

• Final Exam 50% 
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Important Dates

Sun 11 Oct, 2020 First Lecture

Sun 6 Dec, 2020 Midterm Exam

Thu 7 Jan, 2020 Project Report Due

Thu 14 Jan, 2021 Last Date to Withdraw

Sun 17 Jan, 2021 Last Lecture

Jan 19 – 11, 2021 Final Exam Period
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COMPUTER ORGANIZATION AND DESIGN 
The Hardware/Software Interface 

RISC-V 

 Edition 

Chapter 1 

Computer Abstractions 

and Technology 

 

Adapted by Prof. Gheith Abandah 



Content 

1.2 Eight Great Ideas in Computer Architecture 

(Review) 

1.5 Technologies for Building Processors and 

Memory 

1.6 Performance (Review) 

1.7 The Power Wall 

1.8 The Sea Change: The Switch from 

Uniprocessors to Multiprocessors 

1.9 Real Stuff: Benchmarking the Intel Core i7 

1.10 Fallacies and Pitfalls 

1.11 Concluding Remarks 

 Chapter 1 — Computer Abstractions and Technology — 2 



Eight Great Ideas 

 Design for Moore’s Law 

 Use abstraction to simplify design 

 Make the common case fast 

 Performance via parallelism 

 Performance via pipelining 

 Performance via prediction 

 Hierarchy of memories 

 Dependability via redundancy 

Chapter 1 — Computer Abstractions and Technology — 3 
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Content 

1.2 Eight Great Ideas in Computer Architecture 

(Review) 

1.5 Technologies for Building Processors and 

Memory 

1.6 Performance (Review) 

1.7 The Power Wall 

1.8 The Sea Change: The Switch from 

Uniprocessors to Multiprocessors 

1.9 Real Stuff: Benchmarking the Intel Core i7 

1.10 Fallacies and Pitfalls 

1.11 Concluding Remarks 

 Chapter 1 — Computer Abstractions and Technology — 4 



Chapter 1 — Computer Abstractions and Technology — 5 

Technology Trends 

 Electronics 

technology 

continues to evolve 

 Increased capacity 

and performance 

 Reduced cost 

Year Technology Relative performance/cost 

1951 Vacuum tube 1 

1965 Transistor 35 

1975 Integrated circuit (IC) 900 

1995 Very large scale IC (VLSI) 2,400,000 

2013 Ultra large scale IC 250,000,000,000 

DRAM capacity 
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Semiconductor Technology 

 Silicon:  semiconductor 

 Add materials to transform properties: 

 Conductors 

 Insulators 

 Switch 

Chapter 1 — Computer Abstractions and Technology — 6 



Chapter 1 — Computer Abstractions and Technology — 7 

Manufacturing ICs 

 Yield: proportion of working dies per wafer 



Chapter 1 — Computer Abstractions and Technology — 8 

Intel Core i7 Wafer 

 300mm wafer, 280 chips, 32nm technology 

 Each chip is 20.7 x 10.5 mm 



Chapter 1 — Computer Abstractions and Technology — 9 

Integrated Circuit Cost 

 Nonlinear relation to area and defect rate 

 Wafer cost and area are fixed 

 Defect rate determined by manufacturing process 

 Die area determined by architecture and circuit design 

2area/2)) Diearea per (Defects(1

1
Yield

area Diearea Wafer waferper Dies

Yield waferper Dies

 waferper Cost
die per Cost











Content 

1.2 Eight Great Ideas in Computer Architecture 

(Review) 

1.5 Technologies for Building Processors and 

Memory 

1.6 Performance (Review) 

1.7 The Power Wall 

1.8 The Sea Change: The Switch from 

Uniprocessors to Multiprocessors 

1.9 Real Stuff: Benchmarking the Intel Core i7 

1.10 Fallacies and Pitfalls 

1.11 Concluding Remarks 

 Chapter 1 — Computer Abstractions and Technology — 10 



Chapter 1 — Computer Abstractions and Technology — 11 

Response Time and Throughput 

 Response time 

 How long it takes to do a task 

 Throughput 

 Total work done per unit time 

 e.g., tasks/transactions/… per hour 

 How are response time and throughput affected 

by 

 Replacing the processor with a faster version? 

 Adding more processors? 

 We’ll focus on response time for now… 



Chapter 1 — Computer Abstractions and Technology — 12 

Relative Performance 

 Define Performance = 1/Execution Time 

 “X is n time faster than Y” 

n XY

YX

time Executiontime Execution

ePerformancePerformanc

 Example: time taken to run a program 

 10s on A, 15s on B 

 Execution TimeB / Execution TimeA 

= 15s / 10s = 1.5 

 So A is 1.5 times faster than B 



Chapter 1 — Computer Abstractions and Technology — 13 

Measuring Execution Time 

 Elapsed time 

 Total response time, including all aspects 
 Processing, I/O, OS overhead, idle time 

 Determines system performance 

 CPU time 

 Time spent processing a given job 
 Discounts I/O time, other jobs’ shares 

 Comprises user CPU time and system CPU 
time 

 Different programs are affected differently by 
CPU and system performance 



Chapter 1 — Computer Abstractions and Technology — 14 

CPU Clocking 

 Operation of digital hardware governed by a 

constant-rate clock 

Clock (cycles) 

Data transfer 

and computation 

Update state 

Clock period 

 Clock period: duration of a clock cycle 

 e.g., 250ps = 0.25ns = 250×10–12s 

 Clock frequency (rate): cycles per second 

 e.g., 4.0GHz = 4000MHz = 4.0×109Hz 



Chapter 1 — Computer Abstractions and Technology — 15 

CPU Time 

 Performance improved by 

 Reducing number of clock cycles 

 Increasing clock rate 

 Hardware designer must often trade off clock 

rate against cycle count 

Rate Clock

Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU







Chapter 1 — Computer Abstractions and Technology — 16 

Instruction Count and CPI 

 Instruction Count for a program 

 Determined by program, ISA and compiler 

 Average cycles per instruction 

 Determined by CPU hardware 

 If different instructions have different CPI 

 Average CPI affected by instruction mix 

Rate Clock

CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio per CyclesCount nInstructioCycles Clock










Chapter 1 — Computer Abstractions and Technology — 17 

CPI in More Detail 

 If different instruction classes take different 

numbers of cycles 
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Chapter 1 — Computer Abstractions and Technology — 18 

Performance Summary 

 Performance depends on 

 Algorithm: affects IC, possibly CPI 

 Programming language: affects IC, CPI 

 Compiler: affects IC, CPI 

 Instruction set architecture: affects IC, CPI, Tc 

The BIG Picture 

cycle Clock

Seconds

nInstructio

cycles Clock

Program

nsInstructio
Time CPU 
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1.5 Technologies for Building Processors and 

Memory 
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1.7 The Power Wall 

1.8 The Sea Change: The Switch from 

Uniprocessors to Multiprocessors 
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1.10 Fallacies and Pitfalls 

1.11 Concluding Remarks 

 Chapter 1 — Computer Abstractions and Technology — 19 



Chapter 1 — Computer Abstractions and Technology — 20 

Power Trends 

 In CMOS IC technology 
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Chapter 1 — Computer Abstractions and Technology — 21 

Reducing Power 

 Suppose a new CPU has 

 85% of capacitive load of old CPU 

 15% voltage and 15% frequency reduction 

0.520.85
FVC
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 The power wall 

 We can’t reduce voltage further 

 We can’t remove more heat 

 How else can we improve performance? 
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Chapter 1 — Computer Abstractions and Technology — 23 

Uniprocessor Performance 
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Constrained by power, instruction-level parallelism, 

memory latency 



Chapter 1 — Computer Abstractions and Technology — 24 

Multiprocessors 

 Multicore microprocessors 

 More than one processor per chip 

 Requires explicitly parallel programming 

 Compare with instruction level parallelism 

 Hardware executes multiple instructions at once 

 Hidden from the programmer 

 Hard to do 

 Programming for performance 

 Load balancing 

 Optimizing communication and synchronization 
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1.2 Eight Great Ideas in Computer Architecture 

(Review) 
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Chapter 1 — Computer Abstractions and Technology — 26 

SPEC CPU Benchmark 

 Programs used to measure performance 
 Supposedly typical of actual workload 

 Standard Performance Evaluation Corp (SPEC) 
 Develops benchmarks for CPU, I/O, Web, … 

 SPEC CPU2006 
 Elapsed time to execute a selection of programs 

 Negligible I/O, so focuses on CPU performance 

 Normalize relative to reference machine 

 Summarize as geometric mean of performance ratios 
 CINT2006 (integer) and CFP2006 (floating-point) 

n

n

1i

iratio time Execution




Chapter 1 — Computer Abstractions and Technology — 27 

CINT2006 for Intel Core i7 920 



Chapter 1 — Computer Abstractions and Technology — 28 

SPEC Power Benchmark 

 Power consumption of server at different 

workload levels 

 Performance: ssj_ops/sec 

 Power: Watts (Joules/sec) 
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Chapter 1 — Computer Abstractions and Technology — 29 

SPECpower_ssj2008 for Xeon X5650 
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Chapter 1 — Computer Abstractions and Technology — 31 

Pitfall: Amdahl’s Law 

 Improving an aspect of a computer and 

expecting a proportional improvement in 

overall performance 
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 Example: multiply accounts for 80s/100s 

 How much improvement in multiply performance to 

get 5× overall? 

 Corollary: make the common case fast 



Chapter 1 — Computer Abstractions and Technology — 32 

Fallacy: Low Power at Idle 

 Look back at i7 power benchmark 

 At 100% load: 258W 

 At 50% load: 170W (66%) 

 At 10% load: 121W (47%) 

 Google data center 

 Mostly operates at 10% – 50% load 

 At 100% load less than 1% of the time 

 Consider designing processors to make 

power proportional to load 



Chapter 1 — Computer Abstractions and Technology — 33 

Pitfall: MIPS as a Performance Metric 

 MIPS: Millions of Instructions Per Second 

 Doesn’t account for 

 Differences in ISAs between computers 

 Differences in complexity between instructions 

6
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10CPI

rate Clock

10
rate Clock

CPIcount nInstructio

count nInstructio

10time Execution
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 CPI varies between programs on a given CPU 
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Chapter 1 — Computer Abstractions and Technology — 35 

Concluding Remarks 

 

 Cost/performance is improving 

 Due to underlying technology development 

 Execution time: the best performance 
measure 

 Power is a limiting factor 

 Use parallelism to improve performance 
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COMPUTER ORGANIZATION AND DESIGN 
The Hardware/Software Interface 

RISC-V 

 Edition 

Chapter 4 

The Processor 

 

Adapted by Prof. Gheith Abandah 

 



Contents 

4.6 Pipelined Datapath and Control (Review) 

4.7 Data Hazards: Forwarding versus Stalling 

4.8 Control Hazards 

4.9 Exceptions 

4.10 Parallelism via Instructions 

4.11 Real Stuff: The ARM Cortex-A53 and Intel 

Core i7 Pipelines 

4.14 Fallacies and Pitfalls 

4.15 Concluding Remarks 

Chapter 4 — The Processor — 2 



Contents 

4.6 Pipelined Datapath and Control (Review) 

 Five-Stage Pipeline 

 Pipeline Control 

 Pipeline Hazards 

  

Chapter 4 — The Processor — 3 



Five-Stage Pipeline 

 

F: Fetch instruction from the instruction 

memory 

D: Decode instruction and read operands 

E: Execute operation or calculate address 

M: Memory access 

W: Write result to the register 

Chapter 4 — The Processor — 4 



Chapter 4 — The Processor — 5 

Five-Stage Pipeline 



Chapter 4 — The Processor — 6 

Pipelined Control 

 Control signals derived from instruction 

 As in single-cycle implementation 



Chapter 4 — The Processor — 7 

Pipelined Control 



Chapter 4 — The Processor — 8 

Hazards 

 Situations that prevent starting the next 
instruction in the next cycle 

 Structure hazards 

 A required resource is busy 

 Data hazard 

 Need to wait for previous instruction to 
complete its data read/write 

 Control hazard 

 Deciding on control action depends on 
previous instruction 



Contents 

4.6 Pipelined Datapath and Control (Review) 

4.7 Data Hazards: Forwarding versus Stalling 

4.8 Control Hazards 

4.9 Exceptions 
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4.14 Fallacies and Pitfalls 

4.15 Concluding Remarks 
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Contents 

4.7 Data Hazards: Forwarding versus Stalling 

 Data Hazards in ALU Instructions 

 Load-Use Data Hazard 

 Code Scheduling 

  

Chapter 4 — The Processor — 10 



Chapter 4 — The Processor — 11 

Data Hazards in ALU Instructions 

 Consider this sequence: 

 sub  x2, x1,x3 
and  x12,x2,x5 
or   x13,x6,x2 
add  x14,x2,x2 
sd   x15,100(x2) 

 There are multiple true data dependencies, 

read-after-write (RAW), on register x2. 

 We can resolve hazards with stalls or 

forwarding. 
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Chapter 4 — The Processor — 12 

Dependencies & Forwarding 



Chapter 4 — The Processor — 13 

Forwarding Paths 



Chapter 4 — The Processor — 14 

Load-Use Data Hazard 

 Can’t always avoid stalls by forwarding 

 If value not computed when needed 

 Can’t forward backward in time! 



Chapter 4 — The Processor — 15 

Load-Use Hazard Detection 

 Check when using instruction is decoded 
in ID stage 

 ALU operand register numbers in ID stage 
are given by 

 IF/ID.RegisterRs1, IF/ID.RegisterRs2 

 Load-use hazard when 

 ID/EX.MemRead and 
  ((ID/EX.RegisterRd = IF/ID.RegisterRs1) or 
   (ID/EX.RegisterRd = IF/ID.RegisterRs1)) 

 If detected, stall and insert bubble 



Chapter 4 — The Processor — 16 

How to Stall the Pipeline 

 Force control values in ID/EX register 

to 0 

 EX, MEM and WB do nop (no-operation) 

 Prevent update of PC and IF/ID register 

 Using instruction is decoded again 

 Following instruction is fetched again 

 1-cycle stall allows MEM to read data for ld 

 Can subsequently forward to EX stage 



Chapter 4 — The Processor — 17 

Load-Use Data Hazard 

Stall inserted 

here 



Chapter 4 — The Processor — 18 

Datapath with Hazard Detection 



Chapter 4 — The Processor — 19 

Stalls and Performance 

 Stalls reduce performance 

 But are required to get correct results 

 Compiler can arrange code to avoid 

hazards and stalls 

 Requires knowledge of the pipeline structure 

The BIG Picture 



Chapter 4 — The Processor — 20 

Code Scheduling to Avoid Stalls 

 Reorder code to avoid use of load result in 

the next instruction 

 C code for a = b + e; c = b + f; 

ld  x1, 0(x0) 

ld  x2, 8(x0) 

add  x3, x1, x2 

sd  x3, 24(x0) 

ld  x4, 16(x0) 

add  x5, x1, x4 

sd  x5, 32(x0) 

stall 

stall 

ld  x1, 0(x0) 

ld  x2, 8(x0) 

ld  x4, 16(x0) 

add  x3, x1, x2 

sd  x3, 24(x0) 

add  x5, x1, x4 

sd  x5, 32(x0) 

11 cycles 13 cycles 



Contents 

4.6 Pipelined Datapath and Control (Review) 

4.7 Data Hazards: Forwarding versus Stalling 

4.8 Control Hazards 

4.9 Exceptions 
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Contents 

4.8 Control Hazards 

 Branch Hazards 

 Reducing Branch Delay 

 Branch Prediction 

 Dynamic Branch Prediction 

 Calculating Branch Target 

 Imprecise Exceptions 

  

  

Chapter 4 — The Processor — 22 



Chapter 4 — The Processor — 23 

Branch Hazards 

 If branch outcome determined in MEM 
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instructions 

(Set control 

values to 0) 



Chapter 4 — The Processor — 24 

Reducing Branch Delay 

 Move hardware to determine outcome to ID 

stage 

 Target address adder 

 Register comparator 

 Example: branch taken 
 36:  sub  x10, x4, x8 
40:  beq  x1,  x3, 16  // PC-relative branch 
                       // to 40+16*2=72 
44:  and  x12, x2, x5 
48:  orr  x13, x2, x6 
52:  add  x14, x4, x2 
56:  sub  x15, x6, x7 
     ... 
72:  ld   x4, 50(x7) 



Chapter 4 — The Processor — 25 

Example: Branch Taken 



Chapter 4 — The Processor — 26 

Example: Branch Taken 



Chapter 4 — The Processor — 27 

Branch Prediction 

 Longer pipelines can’t readily determine 

branch outcome early 

 Stall penalty becomes unacceptable 

 Predict outcome of branch 

 Only stall if prediction is wrong 

 In RISC-V pipeline 

 Can predict branches not taken 

 Fetch instruction after branch, with no delay 



Chapter 4 — The Processor — 28 

More-Realistic Branch Prediction 

 Static branch prediction 

 Based on typical branch behavior 

 Example: loop and if-statement branches 

 Predict backward branches taken 

 Predict forward branches not taken 

 Dynamic branch prediction 

 Hardware measures actual branch behavior 

 e.g., record recent history of each branch 

 Assume future behavior will continue the trend 

 When wrong, stall while re-fetching, and update history 



Chapter 4 — The Processor — 29 

Dynamic Branch Prediction 

 In deeper and superscalar pipelines, branch 

penalty is more significant 

 Use dynamic prediction 

 Branch prediction buffer (aka branch history table) 

 Indexed by recent branch instruction addresses 

 Stores outcome (taken/not taken) 

 To execute a branch 

 Check table, expect the same outcome 

 Start fetching from fall-through or target 

 If wrong, flush pipeline and flip prediction 



Branch History Table (BHT) 

Chapter 4 — The Processor — 30 

Table size = n × 2k bits 



Chapter 4 — The Processor — 31 

1-Bit Predictor: Shortcoming 

 Inner loop branches mispredicted twice! 

outer: … 
       … 
inner: … 
       … 
       beq …, …, inner 
       … 
       beq …, …, outer 

 Mispredict as taken on last iteration of 

inner loop 

 Then mispredict as not taken on first 

iteration of inner loop next time around 



Chapter 4 — The Processor — 32 

2-Bit Predictor 

 Only change prediction on two successive 

mispredictions 



Chapter 4 — The Processor — 33 

Calculating the Branch Target 

 Even with predictor, still need to calculate 

the target address 

 1-cycle penalty for a taken branch 

 Branch target buffer 

 Cache of target addresses 

 Indexed by PC when instruction fetched 

 If hit and instruction is branch predicted taken, can 

fetch target immediately 



Branch Target Buffer (BTB) 

Chapter 4 — The Processor — 34 
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4.9 Exceptions 

 Exceptions and Interrupts 

 Handling Exceptions 

 Exceptions in a Pipeline 

 Exception Example 

 Multiple Exceptions 

Chapter 4 — The Processor — 36 



Chapter 4 — The Processor — 37 

Exceptions and Interrupts 

 “Unexpected” events requiring change 

in flow of control 

 Different ISAs use the terms differently 

 Exception 

 Arises within the CPU 

 e.g., undefined opcode, syscall, … 

 Interrupt 

 From an external I/O controller 

 Dealing with them without sacrificing 

performance is hard 
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Chapter 4 — The Processor — 38 

Handling Exceptions 

 Save PC of offending (or interrupted) instruction 
 In RISC-V: Supervisor Exception Program Counter 

(SEPC) 

 

 Save indication of the problem 
 In RISC-V: Supervisor Exception Cause Register 

(SCAUSE) 

 64 bits, but most bits unused 
 Exception code field: 2 for undefined opcode, 12 for hardware 

malfunction, … 

 Jump to handler 
 Assume at 0000 0000 1C09 0000hex 



Chapter 4 — The Processor — 39 

An Alternate Mechanism 

 Vectored Interrupts 

 Handler address determined by the cause 

 Exception vector address to be added to a 
vector table base register: 

 Undefined opcode  00 0100 0000two 

 Hardware malfunction: 01 1000 0000two 

 …:    … 

 Instructions either 

 Deal with the interrupt, or 

 Jump to real handler 



Chapter 4 — The Processor — 40 

Handler Actions 

 Read cause, and transfer to relevant 
handler 

 Determine action required 

 If restartable 

 Take corrective action 

 use SEPC to return to program 

 Otherwise 

 Terminate program 

 Report error using SEPC, SCAUSE, … 



Chapter 4 — The Processor — 41 

Exceptions in a Pipeline 

 Another form of control hazard 

 Consider malfunction on add in EX stage 
add x1, x2, x1 

 Prevent x1 from being clobbered 

 Complete previous instructions 

 Flush add and subsequent instructions 

 Set SEPC and SCAUSE register values 

 Transfer control to handler 

 Similar to mispredicted branch 

 Use much of the same hardware 



Chapter 4 — The Processor — 42 

Pipeline with Exceptions 



Chapter 4 — The Processor — 43 

Exception Properties 

 Restartable exceptions 

 Pipeline can flush the instruction 

 Handler executes, then returns to the 

instruction 

 Refetched and executed from scratch 

 PC saved in SEPC register 

 Identifies causing instruction 



Chapter 4 — The Processor — 44 

Exception Example 

 Exception on add in 
 40 sub  x11, x2, x4 
44 and  x12, x2, x5 
48 orr  x13, x2, x6 
4c add  x1,  x2, x1 
50 sub  x15, x6, x7 
54 ld   x16, 100(x7) 
… 

 Handler 
 1C090000 sd  x26, 1000(x10) 
1c090004   sd  x27, 1008(x10) 
… 



Chapter 4 — The Processor — 45 

Exception Example 



Chapter 4 — The Processor — 46 

Exception Example 



Chapter 4 — The Processor — 47 

Multiple Exceptions 

 Pipelining overlaps multiple instructions 

 Could have multiple exceptions at once 

 Simple approach: deal with exception from 

earliest instruction 

 Flush subsequent instructions 

 “Precise” exceptions 

 In complex pipelines 

 Multiple instructions issued per cycle 

 Out-of-order completion 

 Maintaining precise exceptions is difficult! 



Chapter 4 — The Processor — 48 

Imprecise Exceptions 

 Just stop pipeline and save state 

 Including exception cause(s) 

 Let the handler work out 

 Which instruction(s) had exceptions 

 Which to complete or flush 

 May require “manual” completion 

 Simplifies hardware, but more complex handler 

software 

 Not feasible for complex multiple-issue 

out-of-order pipelines 
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4.10 Parallelism via Instructions 

 Instruction-Level Parallelism (ILP) 

 Multiple Issue 

 Static Multiple Issue 

 VLIW 

 Scheduling Static Multiple Issue 

 Loop Unrolling 

 Dynamic Multiple Issue 

 Register Renaming 

 Speculation 

 Why Do Dynamic Scheduling 
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Instruction-Level Parallelism (ILP) 

 Pipelining: executing multiple instructions in 
parallel 

 To increase ILP 
 Deeper pipeline 

 Less work per stage  shorter clock cycle 

 Multiple issue 
 Replicate pipeline stages  multiple pipelines 

 Start multiple instructions per clock cycle 

 CPI < 1, so use Instructions Per Cycle (IPC) 

 E.g., 4GHz 4-way multiple-issue 

 16 BIPS, peak CPI = 0.25, peak IPC = 4 

 But dependencies reduce this in practice 
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Multiple Issue 

 Static multiple issue 

 Compiler groups instructions to be issued together 

 Packages them into “issue slots” 

 Compiler detects and avoids hazards 

 Dynamic multiple issue 

 CPU examines instruction stream and chooses 

instructions to issue each cycle 

 Compiler can help by reordering instructions 

 CPU resolves hazards using advanced techniques at 

runtime 
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Static Multiple Issue 

 Compiler groups instructions into “issue 

packets” 

 Group of instructions that can be issued on a 

single cycle 

 Determined by pipeline resources required 

 Think of an issue packet as a very long 

instruction 

 Specifies multiple concurrent operations 

  Very Long Instruction Word (VLIW) 



VILW 
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Scheduling Static Multiple Issue 

 Compiler must remove some/all hazards 

 Reorder instructions into issue packets 

 No dependencies with a packet 

 Possibly some dependencies between 

packets 

 Varies between ISAs; compiler must know! 

 Pad with nop if necessary 
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RISC-V with Static Dual Issue 

 Two-issue packets 

 One ALU/branch instruction 

 One load/store instruction 

 64-bit aligned 

 ALU/branch, then load/store 

 Pad an unused instruction with nop 

Address Instruction type Pipeline Stages 

n ALU/branch IF ID EX MEM WB 

n + 4 Load/store IF ID EX MEM WB 

n + 8 ALU/branch IF ID EX MEM WB 

n + 12 Load/store IF ID EX MEM WB 

n + 16 ALU/branch IF ID EX MEM WB 

n + 20 Load/store IF ID EX MEM WB 
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RISC-V with Static Dual Issue 
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Hazards in the Dual-Issue RISC-V 

 More instructions executing in parallel 

 EX data hazard 

 Forwarding avoided stalls with single-issue 

 Now can’t use ALU result in load/store in same packet 

 add  x10, x0, x1 
ld   x2, 0(x10) 

 Split into two packets, effectively a stall 

 Load-use hazard 

 Still one cycle use latency, but now two instructions 

 More aggressive scheduling required 



Forwarding in Dual-Issue RISC-V 

 In addition to forwarding from M and W to 

E, there are additional forwarding paths 

among the two pipelines, e.g.: 

 From W in memory pipeline to E in ALU 

pipeline 
 ld   x31, 0(x20)  
add  x31, x31, x21 

 From M in ALU pipeline to M in memory 

pipeline 
 add  x31, x31, x21  
sd   x31, 0(x20) 
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Scheduling Example 

 Schedule this for dual-issue RISC-V 
Loop: ld   x31,0(x20)     // x31=array element 
      add  x31,x31,x21    // add scalar in x21 
      sd   x31,0(x20)     // store result 
      addi x20,x20,-8     // decrement pointer 
      blt  x22,x20,Loop   // branch if x22 < x20 

ALU/branch Load/store cycle 

Loop: nop ld  x31,0(x20)  1 

addi x20,x20,-8  nop 2 

add  x31,x31,x21 nop 3 

blt  x22,x20,Loop sd  x31,8(x20) 4 

 IPC = 5/4 = 1.25 (c.f. peak IPC = 2) 
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Loop Unrolling 

 Replicate loop body to expose more 

parallelism 

 Reduces loop-control overhead 

 Use different registers per replication 

 Called “register renaming” 

 Avoid loop-carried “anti-dependencies” 

 Store followed by a load of the same register 

 Aka “name dependence”, write-after-read 

 Or “output dependence”, write-after-write  

 Reuse of a register name 



Unrolling Steps 

 

1. Replicate the loop instructions n times 

2. Remove unneeded loop overhead 

3. Modify instructions 

4. Rename registers 

5. Schedule instructions 
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Loop Unrolling Example 

 IPC = 14/8 = 1.75 

 Closer to 2, but at cost of registers and code size 

ALU/branch Load/store cycle 

Loop: addi x20,x20,-32 ld  x28, 0(x20) 1 

nop ld  x29, 24(x20) 2 

add x28,x28,x21 ld  x30, 16(x20) 3 

add x29,x29,x21 ld  x31, 8(x20) 4 

add x30,x30,x21 sd  x28, 32(x20) 5 

add x31,x31,x21 sd  x29, 24(x20) 6 

nop sd  x30, 16(x20) 7 

blt x22,x20,Loop sd  x31, 8(x20) 8 
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Dynamic Multiple Issue 

 “Superscalar” processors 

 CPU decides whether to issue 0, 1, 2, … 

each cycle 

 Avoiding structural and data hazards 

 Avoids the need for compiler scheduling 

 Though it may still help 

 Code semantics ensured by the CPU 



Chapter 4 — The Processor — 65 

Dynamic Pipeline Scheduling 

 Allow the CPU to execute instructions out 

of order to avoid stalls 

 But commit result to registers in order 

 Example 

 ld   x31,20(x21) 
add  x1,x31,x2 
sub  x23,x23,x3 
andi x5,x23,20 

 Can start sub while add is waiting for ld 
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Dynamically Scheduled CPU 

Results also sent 

to any waiting 

reservation stations 

Reorders buffer for 

register writes 
Can supply 

operands for 

issued instructions 

Preserves 

dependencies 

Hold pending 

operands 



Pipeline Stages 

F: Fetch from instr. memory (IM) to instr. queue (IQ). 

I: Issue from IQ to reservation stations (RS), reading 

ready operands from register file (RF). 

E: Execute when functional unit (FU) is free and 

instr. In RS has ready operands. 

W: Write result from FU through common data bus 

(CDB) to reorder buffer (ROB) and RS. 

C: Commit results in order from ROB to RF and 

memory 

 Loads have FIAMWC, stores have FIAC. A: 

Address calculation 
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Register Renaming 

 Reservation stations and reorder buffer 
effectively provide register renaming 

 On instruction issue to reservation station 

 If operand is available in register file or 
reorder buffer 
 Copied to reservation station 

 No longer required in the register; can be 
overwritten 

 If operand is not yet available 
 It will be provided to the reservation station by a 

function unit 

 Register update may not be required 



Examples 

 Assume superscalar processor of degree 3 

 Name dependence (WAR) 

 mul  x1,x2,x3 
add  x4,x1,x5 
ld   x5,16(x21) 

 

 Output dependence (WAW) 

 mul  x1,x2,x3 
add  x4,x1,x5 
ld   x1,16(x21) 
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Speculation 

 “Guess” what to do with an instruction 

 Start operation as soon as possible 

 Check whether guess was right 

 If so, complete the operation 

 If not, roll-back and do the right thing 

 Common to static and dynamic multiple issue 

 Examples 

 Speculate on branch outcome 

 Roll back if path taken is different 

 Speculate on load 

 Roll back if location is updated 
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Compiler/Hardware Speculation 

 Compiler can reorder instructions 

 e.g., move load before branch 

 Can include “fix-up” instructions to recover 

from incorrect guess 

 Hardware can look ahead for instructions 

to execute 

 Buffer results until it determines they are 

actually needed 

 Flush buffers on incorrect speculation 
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Branch Speculation 

 Predict branch and continue issuing 

 Don’t commit until branch outcome 

determined 

 Example: Assume a superscalar 

processor of degree 2 and the branch 

prediction is not taken. 

 ld   x1,0(x20) 
beq  x1,x2,Skip 
I3 
I4 
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Load Speculation 

 Avoid load and cache miss delay 

 Load before completing outstanding stores 

 Predict the effective address or loaded value 

 Bypass stored values to load unit 

 Don’t commit load until speculation cleared 

 Example: Superscalar of degree 3. 

 ld   x1,0(x20) 
sd   x2,0(x1) 
ld   x3,0(x21) 
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Speculation and Exceptions 

 What if exception occurs on a 
speculatively executed instruction? 

 e.g., speculative load before null-pointer 
check 

 Static speculation 

 Can add ISA support for deferring exceptions 

 Dynamic speculation 

 Can buffer exceptions until instruction 
completion (which may not occur) 



Exceptions Examples 

 Assume superscalar processor of degree 3 

with 2 address calculation units 

 E1: Predict branch as not take, but resolve 

to taken. The ld has exception in M. 

 beq  x1,x2,L1 
ld   x5,16(x21) 

 E2: Assume first sd has exemption in C. 

 ld   x1,0(x20) 
sd   x1,0(x21) 
sd   x2,16(x21) 
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Why Do Dynamic Scheduling? 

 Why not just let the compiler schedule 

code? 

 Not all stalls are predicable 

 e.g., cache misses 

 Can’t always schedule around branches 

 Branch outcome is dynamically determined 

 Different implementations of an ISA have 

different latencies and hazards 
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Does Multiple Issue Work? 

 Yes, but not as much as we’d like 

 Programs have real dependencies that limit ILP 

 Some dependencies are hard to eliminate 

 e.g., pointer aliasing 

 Some parallelism is hard to expose 

 Limited window size during instruction issue 

 Memory delays and limited bandwidth 

 Hard to keep pipelines full 

 Speculation can help if done well 

The BIG Picture 
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Power Efficiency 

 Complexity of dynamic scheduling and 

speculations requires power 

 Multiple simpler cores may be better 
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Cortex A53 and Intel i7 
Processor ARM A53 Intel Core i7 920 

Market Personal Mobile Device Server, cloud 

Thermal design power 100 milliWatts 

(1 core @ 1 GHz) 

130 Watts 

Clock rate 1.5 GHz 2.66 GHz 

Cores/Chip 4 (configurable) 4 

Floating point? Yes Yes 

Multiple issue? Dynamic Dynamic 

Peak instructions/clock cycle 2 4 

Pipeline stages 8 14 

Pipeline schedule Static in-order Dynamic out-of-order 

with speculation 

Branch prediction Hybrid 2-level 

1st level caches/core 16-64 KiB I, 16-64 KiB D 32 KiB I, 32 KiB D 

2nd level caches/core 128-2048 KiB 256 KiB (per core) 

3rd level caches (shared) (platform dependent) 2-8 MB 
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ARM Cortex-A53 Pipeline 
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ARM Cortex-A53 Performance 
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Core i7 Pipeline 
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Core i7 Performance 
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Fallacies 

 Pipelining is easy (!) 

 The basic idea is easy 

 The devil is in the details 

 e.g., detecting data hazards 

 Pipelining is independent of technology 

 So why haven’t we always done pipelining? 

 More transistors make more advanced techniques 

feasible 

 Pipeline-related ISA design needs to take account of 

technology trends 

 e.g., predicated instructions 
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Pitfalls 

 Poor ISA design can make pipelining 

harder 

 e.g., complex instruction sets (VAX, IA-32) 

 Significant overhead to make pipelining work 

 IA-32 micro-op approach 

 e.g., complex addressing modes 

 Register update side effects, memory indirection 

 e.g., delayed branches 

 Advanced pipelines have long delay slots 
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Concluding Remarks 

 

 Pipelining improves instruction throughput 

using parallelism 

 More instructions completed per second 

 Latency for each instruction not reduced 

 Hazards: structural, data, control 

 Multiple issue and dynamic scheduling (ILP) 

 Dependencies limit achievable parallelism 

 Complexity leads to the power wall 
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Principle of Locality 

 Programs access a small proportion of 

their address space at any time 

 Temporal locality 

 Items accessed recently are likely to be 

accessed again soon 

 e.g., instructions in a loop, induction variables 

 Spatial locality 

 Items near those accessed recently are likely 

to be accessed soon 

 E.g., sequential instruction access, array data 
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Taking Advantage of Locality 

 Memory hierarchy 

 Store everything on disk 

 Copy recently accessed (and nearby) 

items from disk to smaller DRAM memory 

 Main memory 

 Copy more recently accessed (and 

nearby) items from DRAM to smaller 

SRAM memory 

 Cache memory attached to CPU 



Memory Hierarchy 
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Memory Hierarchy Levels 

 Block (aka line): unit of copying 

 May be multiple words 

 If accessed data is present in 

upper level 

 Hit: access satisfied by upper level 

 Hit ratio: hits/accesses 

 If accessed data is absent 

 Miss: block copied from lower level 

 Time taken: miss penalty 

 Miss ratio: misses/accesses 

= 1 – hit ratio 

 Then accessed data supplied from 

upper level 
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 Introduction 

 SRAM 

 DRAM 

 Flash 

 Disk Storage 
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Memory Technology (2012) 

 Static RAM (SRAM) 

 0.5ns – 2.5ns, $2000 – $1000 per GB 

 Dynamic RAM (DRAM) 

 50ns – 70ns, $10 – $20 per GB 

 Flash memory 

 5,000ns – 50,000ns, $0.75 – $1.00 per GB 

 Magnetic disk 

 5ms – 20ms, $0.05 – $0.10 per GB 

 Ideal memory 

 Access time of SRAM 

 Capacity and cost/GB of disk 
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SRAM Technology 

 Static RAM 

 6-8 transistors per bit 

 Fast but not dense 

 Often has standby mode 
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DRAM Technology 

 Data stored as a charge in a capacitor 

 Single transistor used to access the charge 

 Must periodically be refreshed 

 Read contents and write back 

 Performed on a DRAM “row” 
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Classic DRAM 
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Classic DRAM 

 

 

 

 

 

 

 

 Low bandwidth 
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Advanced DRAM Organization 

 Access an entire row and save it in a row 

buffer. 

 Fast page mode: supply successive 

words from the row buffer with reduced 

latency 
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Advanced DRAM Organization 

 Synchronous DRAM (SDRAM) has a 

counter that increments the column 

address using a clock signal. 
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Advanced DRAM Organization 

 Double data rate (DDR) SDRAM 

 Transfer on rising and falling clock edges 

 Quad data rate (QDR) SDRAM 

 Separate DDR inputs and outputs 



Micron 1Gb DDR-SDRAM  
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MT46V128M8 – 32 Meg X 8 X 4 Banks, Datasheet 

https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr1/1gb_ddr.pdf


Micron 1Gb DDR-SDRAM  
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DRAM Generations 
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DRAM Generations 

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac

Tcac

Year Capacity $/GB 

1980 64Kbit $1500000 

1983 256Kbit $500000 

1985 1Mbit $200000 

1989 4Mbit $50000 

1992 16Mbit $15000 

1996 64Mbit $10000 

1998 128Mbit $4000 

2000 256Mbit $1000 

2004 512Mbit $250 

2007 1Gbit $50 



DRAM Performance Factors 

 Row buffer 

 Allows several words to be read and refreshed in 

parallel 

 Synchronous DRAM 

 Allows for consecutive accesses in bursts without 

needing to send each address 

 Improves bandwidth 

 DRAM banking 

 Allows simultaneous access to multiple DRAMs 

 Improves bandwidth 
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Increasing Memory Bandwidth 

 To get 16-byte block: 

 a. One-word wide memory 
 Miss penalty = 4×(1 + 15 + 1) = 68 bus cycles 

 Bandwidth = 16 bytes / 68 cycles = 0.24 B/cycle 
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Increasing Memory Bandwidth 

 b. 4-word wide memory 
 Miss penalty = 1 + 15 + 1 = 17 bus cycles 

 Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle 

 c. 4-bank interleaved memory 
 Miss penalty = 1 + 15 + 4×1 = 20 bus cycles 

 Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle 
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Increasing Memory Bandwidth 

 

 d. DDR-SDRAM 
 Miss penalty = 1 + 15 + 4×0.5 = 18 bus cycles 

 Bandwidth = 16 bytes / 18 cycles = 0.89 B/cycle 
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Flash Storage 

 Nonvolatile semiconductor storage 

 100× – 1000× faster than disk 

 Smaller, lower power, more robust 

 But more $/GB (between disk and DRAM) 
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Flash Types 

 NOR flash: bit cell like a NOR gate 

 Random read/write access 

 Used for instruction memory in embedded systems 

 NAND flash: bit cell like a NAND gate 

 Denser (bits/area), but block-at-a-time access 

 Cheaper per GB 

 Used for USB keys, media storage, … 

 Flash bits wears out after 1000’s of accesses 

 Not suitable for direct RAM or disk replacement 

 Wear leveling: remap data to less used blocks 
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Disk Storage 

 Nonvolatile, rotating magnetic storage 
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Disk Sectors and Access 

 Each sector records 
 Sector ID 

 Data (512 bytes, 4096 bytes proposed) 

 Error correcting code (ECC) 
 Used to hide defects and recording errors 

 Synchronization fields and gaps 

 Access to a sector involves 
 Queuing delay if other accesses are pending 

 Seek: move the heads 

 Rotational latency 

 Data transfer 

 Controller overhead 
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Disk Access Example 

 Given 
 512B sector, 15,000rpm, 4ms average seek 

time, 100MB/s transfer rate, 0.2ms controller 
overhead, idle disk 

 Average read time 
 4ms seek time 

+ ½ / (15,000/60) = 2ms rotational latency 
+ 512 / 100MB/s = 0.005ms transfer time 
+ 0.2ms controller delay 
= 6.2ms 

 If actual average seek time is 1ms 
 Average read time = 3.2ms 
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Disk Access Example 2 

 

 Given 
 15,000rpm, 2MB/cylinder 

 Sustainable peak transfer rate? 
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Disk Performance Issues 

 Manufacturers quote average seek time 

 Based on all possible seeks 

 Locality and OS scheduling lead to smaller actual 

average seek times 

 Smart disk controller allocate physical sectors on 

disk 

 Present logical sector interface to host 

 SCSI, ATA, SATA 

 Disk drives include caches 

 Prefetch sectors in anticipation of access 

 Avoid seek and rotational delay 



Contents 

5.1 Introduction 

5.2 Memory Technologies 

5.3 The Basics of Caches 

 Direct Mapped Cache 

 Cache Example 

 Larger Block Sizes 

 Writing to the Cache 

 Example: Intrinsity FastMATH 

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31 



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32 

Cache Memory 

 Cache memory 

 The level of the memory hierarchy closest to 

the CPU 

 Given accesses X1, …, Xn–1, Xn 
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 How do we know if 

the data is present? 

 Where do we look? 
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Direct Mapped Cache 

 Location determined by address 

 Direct mapped: only one choice 

 (Block address) modulo (#Blocks in cache) 

 #Blocks is a 

power of 2 

 Use low-order 

address bits 
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Tags and Valid Bits 

 How do we know which particular block is 

stored in a cache location? 

 Store block address as well as the data 

 Actually, only need the high-order bits 

 Called the tag 

 What if there is no data in a location? 

 Valid bit: 1 = present, 0 = not present 

 Initially 0 
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Cache Example 

 8-blocks, 1 word/block, direct mapped 

 Initial state 

Index V Tag Data 

000 N 

001 N 

010 N 

011 N 

100 N 

101 N 

110 N 

111 N 
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Cache Example 

Index V Tag Data 

000 N 

001 N 

010 N 

011 N 

100 N 

101 N 

110 Y 10 Mem[10110] 

111 N 

Word addr Binary addr Hit/miss Cache block 

22 10 110 Miss 110 
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Cache Example 

Index V Tag Data 

000 N 

001 N 

010 Y 11 Mem[11010] 

011 N 

100 N 

101 N 

110 Y 10 Mem[10110] 

111 N 

Word addr Binary addr Hit/miss Cache block 

26 11 010 Miss 010 
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Cache Example 

Index V Tag Data 

000 N 

001 N 

010 Y 11 Mem[11010] 

011 N 

100 N 

101 N 

110 Y 10 Mem[10110] 

111 N 

Word addr Binary addr Hit/miss Cache block 

22 10 110 Hit 110 

26 11 010 Hit 010 
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Cache Example 

Index V Tag Data 

000 Y 10 Mem[10000] 

001 N 

010 Y 11 Mem[11010] 

011 Y 00 Mem[00011] 

100 N 

101 N 

110 Y 10 Mem[10110] 

111 N 

Word addr Binary addr Hit/miss Cache block 

16 10 000 Miss 000 

3 00 011 Miss 011 

16 10 000 Hit 000 
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Cache Example 

Index V Tag Data 

000 Y 10 Mem[10000] 

001 N 

010 Y 10 Mem[10010] 

011 Y 00 Mem[00011] 

100 N 

101 N 

110 Y 10 Mem[10110] 

111 N 

Word addr Binary addr Hit/miss Cache block 

18 10 010 Miss 010 
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Address Subdivision 
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Example: Larger Block Size 

 64 blocks, 16 bytes/block 

 To what block number does address 1200 

map? 

 Block address = 1200/16 = 75 

 Block number = 75 modulo 64 = 11 

Tag Index Offset 

0 3 4 9 10 63 

4 bits 6 bits 22 bits 
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Block Size Considerations 

 Larger blocks should reduce miss rate 

 Due to spatial locality 

 But in a fixed-sized cache 

 Larger blocks  fewer of them 

 More competition  increased miss rate 

 Larger blocks  pollution 

 Larger miss penalty 

 Can override benefit of reduced miss rate 

 Early restart and critical-word-first can help 
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Block Size Considerations 
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Cache Misses 

 On cache hit, CPU proceeds normally 

 On cache miss 

 Stall the CPU pipeline 

 Fetch block from next level of hierarchy 

 Instruction cache miss 

 Restart instruction fetch 

 Data cache miss 

 Complete data access 



Writing to the Cache 
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Write-Through 

 On data-write hit, could just update the block in 
cache 
 But then cache and memory would be inconsistent 

 Write through: also update memory 

 But makes writes take longer 
 e.g., if base CPI = 1, 10% of instructions are stores, 

write to memory takes 100 cycles 
  Effective CPI = 1 + 0.1×100 = 11 

 Solution: write buffer 
 Holds data waiting to be written to memory 

 CPU continues immediately 
 Only stalls on write if write buffer is already full 
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Write-Back 

 Alternative: On data-write hit, just update 

the block in cache 

 Keep track of whether each block is dirty 

 When a dirty block is replaced 

 Write it back to memory 

 Can use a write buffer to allow replacing block 

to be read first 
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Write Allocation 

 What should happen on a write miss? 

 Alternatives for write-through 

 Allocate on miss: fetch the block 

 Write around: don’t fetch the block 

 Since programs often write a whole block before 

reading it (e.g., initialization) 

 For write-back 

 Usually fetch the block 
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Example: Intrinsity FastMATH 

 Embedded MIPS processor 

 12-stage pipeline 

 Instruction and data access on each cycle 

 Split cache: separate I-cache and D-cache 

 Each 16KB: 256 blocks × 16 words/block 

 D-cache: write-through or write-back 

 SPEC2000 miss rates 

 I-cache: 0.4% 

 D-cache: 11.4% 

 Weighted average: 3.2% 
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Example: Intrinsity FastMATH 
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Measuring Cache Performance 

 Components of CPU time 
 Program execution cycles 

 Includes cache hit time 

 Memory stall cycles 
 Mainly from cache misses 

 With simplifying assumptions: 
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Cache Performance Example 

 Given 
 I-cache miss rate = 2% 

 D-cache miss rate = 4% 

 Miss penalty = 100 cycles 

 Base CPI (ideal cache) = 2 

 Load & stores are 36% of instructions 

 Miss cycles per instruction 
 I-cache: 0.02 × 100 = 2 

 D-cache: 0.36 × 0.04 × 100 = 1.44 

 Actual CPI = 2 + 2 + 1.44 = 5.44 
 Ideal CPU is 5.44/2 =2.72 times faster 
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Average Access Time 

 Hit time is also important for performance 

 Average memory access time (AMAT) 

 AMAT = Hit time + Miss rate × Miss penalty 

 Example 

 CPU with 1ns clock, hit time = 1 cycle, miss 

penalty = 20 cycles, I-cache miss rate = 5% 

 AMAT = 1 + 0.05 × 20 = 2ns 

 2 cycles per instruction 
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Performance Summary 

 When CPU performance increased 

 Miss penalty becomes more significant 

 Decreasing base CPI 

 Greater proportion of time spent on memory 

stalls 

 Increasing clock rate 

 Memory stalls account for more CPU cycles 

 Can’t neglect cache behavior when 

evaluating system performance 
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Associative Caches 

 Fully associative 

 Allow a given block to go in any cache entry 

 Requires all entries to be searched at once 

 Comparator per entry (expensive) 

 n-way set associative 

 Each set contains n entries 

 Block number determines which set 

 (Block number) modulo (#Sets in cache) 

 Search all entries in a given set at once 

 n comparators (less expensive) 
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Associative Cache Example 
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Spectrum of Associativity 

 For a cache with 8 entries 
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Associativity Example 

 Compare 4-block caches 

 Direct mapped, 2-way set associative, 

fully associative 

 Block access sequence: 0, 8, 0, 6, 8 

 Direct mapped 

Block 

address 

Cache 

index 

Hit/miss Cache content after access 

0 1 2 3 

0 0 miss Mem[0] 

8 0 miss Mem[8] 

0 0 miss Mem[0] 

6 2 miss Mem[0] Mem[6] 

8 0 miss Mem[8] Mem[6] 
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Associativity Example 

 2-way set associative 
Block 

address 

Cache 

index 

Hit/miss Cache content after access 

Set 0 Set 1 

0 0 miss Mem[0] 

8 0 miss Mem[0] Mem[8] 

0 0 hit Mem[0] Mem[8] 

6 0 miss Mem[0] Mem[6] 

8 0 miss Mem[8] Mem[6] 

 Fully associative 
Block 

address 

Hit/miss Cache content after access 

0 miss Mem[0] 

8 miss Mem[0] Mem[8] 

0 hit Mem[0] Mem[8] 

6 miss Mem[0] Mem[8] Mem[6] 

8 hit Mem[0] Mem[8] Mem[6] 
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How Much Associativity 

 Increased associativity decreases miss 

rate 

 But with diminishing returns 

 Simulation of a system with 64KB 

D-cache, 16-word blocks, SPEC2000 

 1-way: 10.3% 

 2-way: 8.6% 

 4-way: 8.3% 

 8-way: 8.1% 



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 63 

Set Associative Cache Organization 
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Replacement Policy 

 Direct mapped: no choice 

 Set associative 
 Prefer non-valid entry, if there is one 

 Otherwise, choose among entries in the set 

 Least-recently used (LRU) 
 Choose the one unused for the longest time 

 Simple for 2-way, manageable for 4-way, too hard 
beyond that 

 Random 
 Gives approximately the same performance 

as LRU for high associativity 
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Multilevel Caches 

 Primary cache attached to CPU 

 Small, but fast 

 Level-2 cache services misses from 

primary cache 

 Larger, slower, but still faster than main 

memory 

 Main memory services L-2 cache misses 

 Some high-end systems include L-3 cache 
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Multilevel Cache Example 

 Given 

 CPU base CPI = 1, clock rate = 4GHz 

 Miss rate/instruction = 2% 

 Main memory access time = 100ns 

 With just primary cache 

 Miss penalty = 100ns/0.25ns = 400 cycles 

 Effective CPI = 1 + 0.02 × 400 = 9 
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Example (cont.) 

 Now add L-2 cache 

 Access time = 5ns 

 Global miss rate to main memory = 0.5% 

 Primary miss with L-2 hit 

 Penalty = 5ns/0.25ns = 20 cycles 

 Primary miss with L-2 miss 

 Extra penalty = 500 cycles 

 CPI = 1 + 0.02 × 20 + 0.005 × 500 = 3.9 

 Performance ratio = 9/3.9 = 2.3 
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Multilevel Cache Considerations 

 Primary cache 

 Focus on minimal hit time 

 L-2 cache 

 Focus on low miss rate to avoid main memory 

access 

 Hit time has less overall impact 

 Results 

 L-1 cache usually smaller than a single cache 

 L-1 block size smaller than L-2 block size 
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Interactions with Advanced CPUs 

 Out-of-order CPUs can execute 

instructions during cache miss 

 Pending store stays in load/store unit 

 Dependent instructions wait in reservation 

stations 

 Independent instructions continue 

 Effect of miss depends on program data 

flow 

 Much harder to analyse 

 Use system simulation 
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Interactions with Software 

 Misses depend on 

memory access 

patterns 

 Algorithm behavior 

 Compiler 

optimization for 

memory access 
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Dependability 

 Fault: failure of a 

component 

 May or may not lead 

to system failure 

Service accomplishment 

Service delivered 

as specified 

Service interruption 

Deviation from 

specified service 

Failure Restoration 
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Dependability Measures 

 Reliability: mean time to failure (MTTF) 

 Service interruption: mean time to repair (MTTR) 

 Mean time between failures 

 MTBF = MTTF + MTTR 

 Availability = MTTF / (MTTF + MTTR) 

 Improving Availability 

 Increase MTTF: fault avoidance, fault tolerance, fault 

forecasting 

 Reduce MTTR: improved tools and processes for 

diagnosis and repair 



The Hamming SEC Code 

 Hamming distance 

 Number of bits that are different between two 

bit patterns 

 Minimum distance = 2 provides single bit 

error detection 

 E.g. parity code 

 Minimum distance = 3 provides single 

error correction, 2 bit error detection 
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Encoding SEC 

 To calculate Hamming code: 

 Number bits from 1 on the left 

 All bit positions that are a power 2 are parity 

bits 

 Each parity bit checks certain data bits: 
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Decoding SEC 

 Value of parity bits indicates which bits are 

in error 

 Use numbering from encoding procedure 

 E.g. 

 Parity bits = 0000 indicates no error 

 Parity bits = 1010 indicates bit 10 was flipped 

 Example: 

 What will be stored for 1001 1010? 

 If you read 0111 0010 1110, is there error? 

Correct it. 
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SEC/DED Code 

 Add an additional parity bit for the whole word 

(pn) 

 Make Hamming distance = 4 

 Decoding: 

 Let H = SEC parity bits 

 H = 0, pn even, no error 

 H ≠ 0, pn odd, correctable single bit error 

 H = 0, pn odd, error in pn bit 

 H ≠ 0, pn even, double error occurred 

 ECC DRAM uses SEC/DED with 8 bits 

protecting each 64 bits 
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RAID 

 Redundant Array of Inexpensive 
(Independent) Disks 
 Use multiple smaller disks (c.f. one large disk) 

 Parallelism improves performance 

 Plus extra disk(s) for redundant data storage 

 Provides fault tolerant storage system 
 Especially if failed disks can be “hot swapped” 

 RAID 0 
 No  redundancy (“AID”?) 

 Just stripe data over multiple disks 

 But it does improve performance 
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RAID 1 & 2 

 RAID 1: Mirroring 

 N + N disks, replicate data 

 Write data to both data disk and mirror disk 

 On disk failure, read from mirror 

 RAID 2: Error correcting code (ECC) 

 N + E disks (e.g., 10 + 4) 

 Split data at bit level across N disks 

 Generate E-bit ECC 

 Too complex, not used in practice 
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RAID 3: Bit-Interleaved Parity 

 N + 1 disks 

 Data striped across N disks at byte level 

 Redundant disk stores parity 

 Read access 

 Read all disks 

 Write access 

 Generate new parity and update all disks 

 On failure 

 Use parity to reconstruct missing data 

 Not widely used 
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RAID 4: Block-Interleaved Parity 

 N + 1 disks 

 Data striped across N disks at block level 

 Redundant disk stores parity for a group of blocks 

 Read access 

 Read only the disk holding the required block 

 Write access 

 Just read disk containing modified block, and parity disk 

 Calculate new parity, update data disk and parity disk 

 On failure 

 Use parity to reconstruct missing data 

 Not widely used 
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RAID 3 vs RAID 4 
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RAID 5: Distributed Parity 

 N + 1 disks 
 Like RAID 4, but parity blocks distributed 

across disks 
 Avoids parity disk being a bottleneck 

 Widely used 
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RAID 6: P + Q Redundancy 

 N + 2 disks 

 Like RAID 5, but two lots of parity 

 Greater fault tolerance through more 

redundancy 

 Multiple RAID 

 More advanced systems give similar fault 

tolerance with better performance 

 Example RAID 51 
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RAID Summary 

 

 RAID can improve performance and 

availability 

 High availability requires hot swapping 

 Assumes independent disk failures 

 Too bad if the building burns down! 
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Virtual Machines 

 Host computer emulates guest operating system 

and machine resources 

 Improved isolation of multiple guests 

 Avoids security and reliability problems 

 Aids sharing of resources 

 Virtualization has some performance impact 

 Feasible with modern high-performance comptuers 

 Examples 

 IBM VM/370 (1970s technology!) 

 VMWare 

 Microsoft Virtual PC 
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Virtual Machines 
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Virtual Machine Monitor 

 Maps virtual resources to physical 
resources 

 Memory, I/O devices, CPUs 

 Guest code runs on native machine in user 
mode 

 Traps to VMM on privileged instructions and 
access to protected resources 

 Guest OS may be different from host OS 

 VMM handles real I/O devices 

 Emulates generic virtual I/O devices for guest 
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Instruction Set Support 

 User and System modes 

 Privileged instructions only available in 
system mode 

 Trap to system if executed in user mode 

 All physical resources only accessible 
using privileged instructions 

 Including page tables, interrupt controls, I/O 
registers 
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Virtual Memory 

 Use main memory as a “cache” for 
secondary (disk) storage 
 Managed jointly by CPU hardware and the 

operating system (OS) 

 Programs share main memory 
 Each gets a private virtual address space 

holding its frequently used code and data 

 Protected from other programs 

 CPU and OS translate virtual addresses to 
physical addresses 
 VM “block” is called a page 

 VM translation “miss” is called a page fault 
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Sharing the Physical Memory 
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Address Translation 

 Fixed-size pages (e.g., 4K) 
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Page Fault Penalty 

 On page fault, the page must be fetched 

from disk 

 Takes millions of clock cycles 

 Handled by OS code 

 Try to minimize page fault rate 

 Fully associative placement 

 Smart replacement algorithms 
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Page Tables 

 Stores placement information 

 Array of page table entries, indexed by virtual 
page number 

 Page table register in CPU points to page 
table in physical memory 

 If page is present in memory 

 PTE stores the physical page number 

 Plus other status bits (referenced, dirty, …) 

 If page is not present 

 PTE can refer to location in swap space on 
disk 
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Translation Using a Page Table 
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Mapping Pages to Storage 
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Replacement and Writes 

 To reduce page fault rate, prefer least-
recently used (LRU) replacement 
 Reference bit (aka use bit) in PTE set to 1 on 

access to page 

 Periodically cleared to 0 by OS 

 A page with reference bit = 0 has not been 
used recently 

 Disk writes take millions of cycles 
 Block at once, not individual locations 

 Write through is impractical 

 Use write-back 

 Dirty bit in PTE set when page is written 



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 101 

Fast Translation Using a TLB 

 Address translation would appear to require 

extra memory references 

 One to access the PTE 

 Then the actual memory access 

 But access to page tables has good locality 

 So use a fast cache of PTEs within the CPU 

 Called a Translation Look-aside Buffer (TLB) 

 Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 

cycles for miss, 0.01%–1% miss rate 

 Misses could be handled by hardware or software 
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Fast Translation Using a TLB 
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TLB Misses 

 If page is in memory 

 Load the PTE from memory and retry 

 Could be handled in hardware 
 Can get complex for more complicated page table 

structures 

 Or in software 
 Raise a special exception, with optimized handler 

 If page is not in memory (page fault) 

 OS handles fetching the page and updating 
the page table 

 Then restart the faulting instruction 
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TLB Miss Handler 

 TLB miss indicates 

 Page present, but PTE not in TLB 

 Page not preset 

 Must recognize TLB miss before 

destination register overwritten 

 Raise exception 

 Handler copies PTE from memory to TLB 

 Then restarts instruction 

 If page not present, page fault will occur 
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Page Fault Handler 

 Use faulting virtual address to find PTE 

 Locate page on disk 

 Choose page to replace 

 If dirty, write to disk first 

 Read page into memory and update page 

table 

 Make process runnable again 

 Restart from faulting instruction 
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TLB and Cache Interaction 

 If cache tag uses 

physical address 

 Need to translate 

before cache lookup 

 Alternative: use virtual 

address tag 

 Complications due to 

aliasing 

 Different virtual 

addresses for shared 

physical address 
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Memory Protection 

 Different tasks can share parts of their 

virtual address spaces 

 But need to protect against errant access 

 Requires OS assistance 

 Hardware support for OS protection 

 Privileged supervisor mode (aka kernel mode) 

 Privileged instructions 

 Page tables and other state information only 

accessible in supervisor mode 

 System call exception (e.g., ecall in RISC-V) 
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The Memory Hierarchy 

 Common principles apply at all levels of 

the memory hierarchy 

 Based on notions of caching 

 At each level in the hierarchy 

 Block placement 

 Finding a block 

 Replacement on a miss 

 Write policy 
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Block Placement 

 Determined by associativity 

 Direct mapped (1-way associative) 

 One choice for placement 

 n-way set associative 

 n choices within a set 

 Fully associative 

 Any location 

 Higher associativity reduces miss rate 

 Increases complexity, cost, and access time 
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Finding a Block 

 Hardware caches 
 Reduce comparisons to reduce cost 

 Virtual memory 
 Full table lookup makes full associativity feasible 

 Benefit in reduced miss rate 

Associativity Location method Tag comparisons 

Direct mapped Index 1 

n-way set 

associative 

Set index, then search 

entries within the set 

n 

Fully associative Search all entries #entries 

Full lookup table 0 
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Replacement 

 Choice of entry to replace on a miss 

 Least recently used (LRU) 

 Complex and costly hardware for high associativity 

 Random 

 Close to LRU, easier to implement 

 Virtual memory 

 LRU approximation with hardware support 
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Write Policy 

 Write-through 
 Update both upper and lower levels 

 Simplifies replacement, but may require write 
buffer 

 Write-back 
 Update upper level only 

 Update lower level when block is replaced 

 Need to keep more state 

 Virtual memory 
 Only write-back is feasible, given disk write 

latency  
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Sources of Misses 

 Compulsory misses (aka cold start misses) 

 First access to a block 

 Capacity misses 

 Due to finite cache size 

 A replaced block is later accessed again 

 Conflict misses (aka collision misses) 

 In a non-fully associative cache 

 Due to competition for entries in a set 

 Would not occur in a fully associative cache of 
the same total size 
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Cache Design Trade-offs 

Design change Effect on miss rate Negative performance 

effect 

Increase cache size Decrease capacity 

misses 

May increase access 

time 

Increase associativity Decrease conflict 

misses 

May increase access 

time 

Increase block size Decrease compulsory 

misses 

Increases miss 

penalty. For very large 

block size, may 

increase miss rate 

due to pollution. 



Data Cache Miss Rate 
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Cache Control 

 Example cache characteristics 

 Direct-mapped, write-back, write allocate 

 Block size: 4 words (16 bytes) 

 Cache size: 16 KB (1024 blocks) 

 32-bit byte addresses 

 Valid bit and dirty bit per block 

 Blocking cache 

 CPU waits until access is complete 
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Tag Index Offset 

0 3 4 13 14 31 

4 bits 10 bits 18 bits 
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Interface Signals 

Cache CPU Memory 

Read/Write 

Valid 

Address 

Write Data 

Read Data 

Ready 

32 

32 

32 

Read/Write 

Valid 

Address 

Write Data 

Read Data 

Ready 

32 

128 

128 

Multiple cycles 

per access 



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 120 

Finite State Machines 

 Use an FSM to 
sequence control steps 

 Set of states, transition 
on each clock edge 
 State values are binary 

encoded 

 Current state stored in a 
register 

 Next state 
= fn (current state, 
  current inputs) 

 Control output signals 
= fo (current state) 
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Cache Controller FSM 

Could 

partition into 

separate 

states to 

reduce clock 

cycle time 
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Cache Coherence Problem 

 Suppose two CPU cores share a physical 
address space 
 Write-through caches 
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Time 

step 

Event CPU A’s 

cache 

CPU B’s 

cache 

Memory 

0 0 

1 CPU A reads X 0 0 

2 CPU B reads X 0 0 0 

3 CPU A writes 1 to X 1 0 1 
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Coherence Defined 

 Informally: Reads return most recently 
written value 

 Formally: 

 P writes X; P reads X (no intervening writes) 
 read returns written value 

 P1 writes X; P2 reads X (sufficiently later) 
 read returns written value 
 c.f. CPU B reading X after step 3 in example 

 P1 writes X, P2 writes X 
 all processors see writes in the same order 
 End up with the same final value for X 
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Cache Coherence Protocols 

 Operations performed by caches in 
multiprocessors to ensure coherence 

 Migration of data to local caches 
 Reduces bandwidth for shared memory 

 Replication of read-shared data 
 Reduces contention for access 

 Snooping protocols 

 Each cache monitors bus reads/writes 

 Directory-based protocols 

 Caches and memory record sharing status of 
blocks in a directory 
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Invalidating Snooping Protocols 

 Cache gets exclusive access to a block 
when it is to be written 

 Broadcasts an invalidate message on the bus 

 Subsequent read in another cache misses 
 Owning cache supplies updated value 

CPU activity Bus activity CPU A’s 

cache 

CPU B’s 

cache 

Memory 

0 

CPU A reads X Cache miss for X 0 0 

CPU B reads X Cache miss for X 0 0 0 

CPU A writes 1 to X Invalidate for X 1 0 

CPU B read X Cache miss for X 1 1 1 
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Memory Consistency 

 When are writes seen by other processors 
 “Seen” means a read returns the written value 

 Can’t be instantaneously 

 Assumptions 
 A write completes only when all processors have seen 

it 

 A processor does not reorder writes with other 
accesses 

 Consequence 
 P writes X then writes Y 
 all processors that see new Y also see new X 

 Processors can reorder reads, but not writes 
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Multilevel On-Chip Caches 
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2-Level TLB Organization 
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Supporting Multiple Issue 

 Both have multi-banked caches that allow 

multiple accesses per cycle assuming no 

bank conflicts 

 Other optimizations 

 Return requested word first 

 Non-blocking cache 

 Hit under miss 

 Miss under miss 

 Data prefetching 
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Pitfalls 

 Byte vs. word addressing 

 Example: 32-byte direct-mapped cache, 

4-byte blocks 

 Byte 36 maps to block 1 

 Word 36 maps to block 4 

 Ignoring memory system effects when 

writing or generating code 

 Example: iterating over rows vs. columns of 

arrays 

 Large strides result in poor locality 
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Pitfalls 

 In multiprocessor with shared L2 or L3 

cache 

 Less associativity than cores results in conflict 

misses 

 More cores  need to increase associativity 

 Using AMAT to evaluate performance of 

out-of-order processors 

 Ignores effect of non-blocked accesses 

 Instead, evaluate performance by simulation 
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Pitfalls 

 Extending address range using segments 

 E.g., Intel 80286 

 But a segment is not always big enough 

 Makes address arithmetic complicated 

 Implementing a VMM on an ISA not 

designed for virtualization 

 E.g., non-privileged instructions accessing 

hardware resources 

 Either extend ISA, or require guest OS not to 

use problematic instructions 
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Concluding Remarks 

 Fast memories are small, large memories are 
slow 
 We really want fast, large memories  

 Caching gives this illusion  

 Principle of locality 
 Programs use a small part of their memory space 

frequently 

 Memory hierarchy 
 L1 cache  L2 cache  …  DRAM memory 
 disk 

 Memory system design is critical for 
multiprocessors 
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Introduction 

 Goal: connecting multiple computers 
to get higher performance 

 Multiprocessors 

 Scalability, availability, power efficiency 

 Task-level (process-level) parallelism 

 High throughput for independent jobs 

 Parallel processing program 

 Single program run on multiple processors 

 Multicore microprocessors 

 Chips with multiple processors (cores) 
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Hardware and Software 

 Hardware 

 Serial: e.g., Pentium 4 

 Parallel: e.g., quad-core Xeon e5345 

 Software 

 Sequential: e.g., matrix multiplication 

 Concurrent: e.g., operating system 

 Sequential/concurrent software can run on 
serial/parallel hardware 

 Challenge: making effective use of parallel 
hardware 
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What We’ve Already Covered 

 §2.11: Parallelism and Instructions 

 Synchronization 

 §3.6: Parallelism and Computer Arithmetic 

 Subword Parallelism 

 §4.10: Parallelism and Advanced 
Instruction-Level Parallelism 

 §5.10: Parallelism and Memory 
Hierarchies 

 Cache Coherence 
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Contents 

6.2 The Difficulty of Creating Parallel Programs 

 Parallel Programming 

 Amdahl’s Law 

 Scaling 

 Strong and Weak Scaling 
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Parallel Programming 

 Parallel software is the problem 

 Need to get significant performance 

improvement 

 Otherwise, just use a faster uniprocessor, 

since it’s easier! 

 Difficulties 

 Partitioning 

 Coordination 

 Communications overhead 
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Amdahl’s Law 

 Sequential part can limit speedup 

 Example: 100 processors, 90× speedup? 

 Tnew = Tparallelizable/100 + Tsequential 

   

 Solving: Fparallelizable = 0.999 

 Need sequential part to be 0.1% of original 

time 

90
/100F)F(1

1
Speedup

ableparallelizableparalleliz
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Scaling Example 

 Workload: sum of 10 scalars, and 10 × 10 matrix 
sum 
 Speed up from 10 to 100 processors 

 Single processor: Time = (10 + 100) × tadd 

 10 processors 
 Time = 10 × tadd + 100/10 × tadd = 20 × tadd 

 Speedup = 110/20 = 5.5 (55% of potential) 

 100 processors 
 Time = 10 × tadd + 100/100 × tadd = 11 × tadd 

 Speedup = 110/11 = 10 (10% of potential) 

 Assumes load can be balanced across 
processors 
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Scaling Example (cont) 

 What if matrix size is 100 × 100? 

 Single processor: Time = (10 + 10000) × tadd 

 10 processors 

 Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd 

 Speedup = 10010/1010 = 9.9 (99% of potential) 

 100 processors 

 Time = 10 × tadd + 10000/100 × tadd = 110 × tadd 

 Speedup = 10010/110 = 91 (91% of potential) 

 Assuming load balanced 
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Strong vs Weak Scaling 

 Strong scaling: problem size fixed 

 As in example 

 Weak scaling: problem size proportional to 

number of processors 

 10 processors, 10 × 10 matrix 

 Time = 20 × tadd 

 100 processors, 32 × 32 matrix 

 Time = 10 × tadd + 1000/100 × tadd = 20 × tadd 

 Constant performance in this example 
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Contents 

6.3 SISD, MIMD, SIMD, SPMD, and Vector 

 Flynn’s Classification 

 Vector Processors 

 SIMD Instruction Extensions 
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Instruction and Data Streams 

 An alternate classification 

Data Streams 

Single Multiple 

Instruction 

Streams 

Single SISD: 

Intel Pentium 4 

SIMD: SSE 

instructions of x86 

Multiple MISD: 

No examples today 

MIMD: 

Intel Xeon e5345 

 SPMD: Single Program Multiple Data 

 A parallel program on a MIMD computer 

 Conditional code for different processors 
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Vector Processors 

 Highly pipelined function units 

 Stream data from/to vector registers to units 

 Data collected from memory into registers 

 Results stored from registers to memory 

 Example: Vector extension to RISC-V 

 v0 to v31: 32 × 64-element registers, (64-bit elements) 

 Vector instructions 

 fld.v, fsd.v: load/store vector 

 fadd.d.v: add vectors of double 

 fadd.d.vs: add scalar to each element of vector of double 

 Significantly reduces instruction-fetch bandwidth 
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Example: DAXPY (Y = a × X + Y) 

  Conventional RISC-V code: 

       fld    f0,a(x3)     // load scalar a 

       addi   x5,x19,512   // end of array X 

 loop: fld    f1,0(x19)    // load x[i] 

       fmul.d f1,f1,f0     // a * x[i] 

       fld    f2,0(x20)    // load y[i] 

       fadd.d f2,f2,f1     // a * x[i] + y[i] 

       fsd    f2,0(x20)    // store y[i] 

       addi   x19,x19,8    // increment index to x 

       addi   x20,x20,8    // increment index to y 

       bltu   x19,x5,loop  // repeat if not done 

  Vector RISC-V code: 

 fld       f0,a(x3)    // load scalar a 

       fld.v     v0,0(x19)   // load vector x 

       fmul.d.vs v0,v0,f0    // vector-scalar multiply 

       fld.v     v1,0(x20)   // load vector y 

       fadd.d.v  v1,v1,v0    // vector-vector add 

       fsd.v     v1,0(x20)   // store vector y 
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Vector vs. Scalar 

 Vector architectures and compilers 

 Simplify data-parallel programming 

 Explicit statement of absence of loop-carried 
dependences 
 Reduced checking in hardware 

 Regular access patterns benefit from 
interleaved and burst memory 

 Avoid control hazards by avoiding loops 

 More general than ad-hoc media 
extensions (such as MMX, SSE) 

 Better match with compiler technology 
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SIMD 

 Operate elementwise on vectors of data 

 E.g., MMX and SSE instructions in x86 
 Multiple data elements in 128-bit wide registers 

 All processors execute the same 
instruction at the same time 

 Each with different data address, etc. 

 Simplifies synchronization 

 Reduced instruction control hardware 

 Works best for highly data-parallel 
applications 
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Vector vs. Multimedia Extensions 

 Vector instructions have a variable vector width, 

multimedia extensions have a fixed width 

 Vector instructions support strided access, 

multimedia extensions do not 

 Vector units can be combination of pipelined and 

arrayed functional units: 
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Multithreading 

 Performing multiple threads of execution in 
parallel 
 Replicate registers, PC, etc. 

 Fast switching between threads 

 Fine-grain multithreading 
 Switch threads after each cycle 

 Interleave instruction execution 

 If one thread stalls, others are executed 

 Coarse-grain multithreading 
 Only switch on long stall (e.g., L2-cache miss) 

 Simplifies hardware, but doesn’t hide short stalls 
(eg, data hazards) 
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Simultaneous Multithreading 

 In multiple-issue dynamically scheduled 
processor 

 Schedule instructions from multiple threads 

 Instructions from independent threads execute 
when function units are available 

 Within threads, dependencies handled by 
scheduling and register renaming 

 Example: Intel Pentium-4 HT 

 Two threads: duplicated registers, shared 
function units and caches 
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Multithreading Example 
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Future of Multithreading 

 Will it survive? In what form? 

 Power considerations  simplified 

microarchitectures 

 Simpler forms of multithreading 

 Tolerating cache-miss latency 

 Thread switch may be most effective 

 Multiple simple cores might share 

resources more effectively 
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Shared Memory 

 SMP: shared memory multiprocessor 

 Hardware provides single physical 

address space for all processors 

 Synchronize shared variables using locks 

 Memory access time 

 UMA (uniform) vs. NUMA (nonuniform) 
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Example: Sum Reduction 

 Sum 64,000 numbers on 64 processor UMA 
 Each processor has ID: 0 ≤ Pn ≤ 63 

 Partition 1000 numbers per processor 

 Initial summation on each processor 

  sum[Pn] = 0; 
  for (i = 1000*Pn; 
       i < 1000*(Pn+1); i += 1) 
    sum[Pn] += A[i]; 

 Now need to add these partial sums 
 Reduction: divide and conquer 

 Half the processors add pairs, then quarter, … 

 Need to synchronize between reduction steps 
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Example: Sum Reduction 

half = 64; 

do 

  synch(); 

  if (half%2 != 0 && Pn == 0) 

    sum[0] += sum[half-1]; 

    /* Conditional sum needed when half is odd; 

       Processor0 gets missing element */ 

  half = half/2; /* dividing line on who sums */ 

  if (Pn < half) sum[Pn] += sum[Pn+half]; 

while (half > 1); 
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History of GPUs 

 Early video cards 

 Frame buffer memory with address generation for 

video output 

 3D graphics processing 

 Originally high-end computers (e.g., SGI) 

 Moore’s Law  lower cost, higher density 

 3D graphics cards for PCs and game consoles 

 Graphics Processing Units 

 Processors oriented to 3D graphics tasks 

 Vertex/pixel processing, shading, texture mapping, 

rasterization 
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Graphics in the System 
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GPU Architectures 

 Processing is highly data-parallel 
 GPUs are highly multithreaded 

 Use thread switching to hide memory latency 
 Less reliance on multi-level caches 

 Graphics memory is wide and high-bandwidth 

 Trend toward general purpose GPUs 
 Heterogeneous CPU/GPU systems 

 CPU for sequential code, GPU for parallel code 

 Programming languages/APIs 
 DirectX, OpenGL 

 C for Graphics (Cg), High Level Shader Language 
(HLSL) 

 Compute Unified Device Architecture (CUDA) 
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Example: NVIDIA Fermi 

 Multiple SIMD processors, each as shown: 
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Example: NVIDIA Fermi 

 SIMD Processor: 16 SIMD lanes 

 SIMD instruction 

 Operates on 32 element wide threads 

 Dynamically scheduled on 16-wide processor 
over 2 cycles 

 32K x 32-bit registers spread across lanes 

 64 registers per thread context 
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GPU Memory Structures 
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Classifying GPUs 

 Don’t fit nicely into SIMD/MIMD model 

 Conditional execution in a thread allows an 
illusion of MIMD 
 But with performance degredation 

 Need to write general purpose code with care 

Static: Discovered 

at Compile Time 

Dynamic: Discovered 

at Runtime 

Instruction-Level 

Parallelism 

VLIW Superscalar 

Data-Level 

Parallelism 

SIMD or Vector Tesla Multiprocessor 

Chapter 6 — Parallel Processors from Client to Cloud — 37 



Putting GPUs into Perspective 

Chapter 6 — Parallel Processors from Client to Cloud — 38 

Feature Multicore with SIMD GPU 

SIMD processors 4 to 8 8 to 16 

SIMD lanes/processor 2 to 4 8 to 16 

Multithreading hardware support for 

SIMD threads 

2 to 4 16 to 32 

Typical ratio of single precision to 

double-precision performance 

2:1 2:1 

Largest cache size 8 MB 0.75 MB 

Size of memory address 64-bit 64-bit 

Size of main memory 8 GB to 256 GB 4 GB to 6 GB 

Memory protection at level of page Yes Yes 

Demand paging Yes No 

Integrated scalar processor/SIMD 

processor 

Yes No 

Cache coherent Yes No 



Guide to GPU Terms 
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Message Passing 

 Each processor has private physical 
address space 

 Hardware sends/receives messages 
between processors 
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Loosely Coupled Clusters 

 Network of independent computers 

 Each has private memory and OS 

 Connected using I/O system 

 E.g., Ethernet/switch, Internet 

 Suitable for applications with independent tasks 

 Web servers, databases, simulations, … 

 High availability, scalable, affordable 

 Problems 

 Administration cost (prefer virtual machines) 

 Low interconnect bandwidth 

 c.f. processor/memory bandwidth on an SMP 
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Sum Reduction (Again) 

 Sum 64,000 on 64 processors 

 First distribute 1000 numbers to each 

 The do partial sums 

  sum = 0; 
for (i = 0; i<1000; i += 1) 
  sum += AN[i]; 

 Reduction 

 Half the processors send, other half receive 

and add 

 The quarter send, quarter receive and add, … 
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Sum Reduction (Again) 

 Given send() and receive() operations 

 limit = 64; half = 64;/* 64 processors */ 
do 
  half = (half+1)/2; /* send vs. receive 
                        dividing line */ 
  if (Pn >= half && Pn < limit) 
    send(Pn - half, sum); 
  if (Pn < (limit/2)) 
    sum += receive(); 
  limit = half; /* upper limit of senders */ 
while (half > 1); /* exit with final sum */ 

 Send/receive also provide synchronization 

 Assumes send/receive take similar time to addition 
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Grid Computing 

 Separate computers interconnected by 

long-haul networks 

 E.g., Internet connections 

 Work units farmed out, results sent back 

 Can make use of idle time on PCs 

 E.g., SETI@home, World Community Grid 

Chapter 6 — Parallel Processors from Client to Cloud — 45 



Contents 

6.1 Introduction 

6.2 The Difficulty of Creating Parallel Programs 

6.3 SISD, MIMD, SIMD, SPMD, and Vector 

6.4 Hardware Multithreading 

6.5 Shared Memory Multiprocessors 

6.6 Introduction to Graphics Processing Units 

6.7 Clusters and Message-Passing Multiprocessors 

6.8 Introduction to Multiprocessor Network Topologies 

6.10 Multiprocessor Benchmarks and Performance Models 

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU 

6.12 Multiple Processors and Matrix Multiply 

6.13 Fallacies and Pitfalls 

6.14 Concluding Remarks 

Chapter 6 — Parallel Processors from Client to Cloud — 46 



Interconnection Networks 

 Network topologies 

 Arrangements of processors, switches, and links 
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Bus Ring 

2D Mesh 

N-cube (N = 3) 

Fully connected 
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Multistage Networks 
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Network Characteristics 

 Performance 

 Latency per message (unloaded network) 

 Throughput 
 Link bandwidth 

 Total network bandwidth 

 Bisection bandwidth 

 Congestion delays (depending on traffic) 

 Cost 

 Power 

 Routability in silicon 
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Parallel Benchmarks 

 Linpack: matrix linear algebra 

 SPECrate: parallel run of SPEC CPU programs 
 Job-level parallelism 

 SPLASH: Stanford Parallel Applications for 
Shared Memory 
 Mix of kernels and applications, strong scaling 

 NAS (NASA Advanced Supercomputing) suite 
 computational fluid dynamics kernels 

 PARSEC (Princeton Application Repository for 
Shared Memory Computers) suite 
 Multithreaded applications using Pthreads and 

OpenMP 
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Code or Applications? 

 Traditional benchmarks 

 Fixed code and data sets 

 Parallel programming is evolving 

 Should algorithms, programming languages, 
and tools be part of the system? 

 Compare systems, provided they implement a 
given application 

 E.g., Linpack, Berkeley Design Patterns 

 Would foster innovation in approaches to 
parallelism 
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Modeling Performance 

 Assume performance metric of interest is 
achievable GFLOPs/sec 

 Measured using computational kernels from 
Berkeley Design Patterns 

 Arithmetic intensity of a kernel 

 FLOPs per byte of memory accessed 

 For a given computer, determine 

 Peak GFLOPS (from data sheet) 

 Peak memory bytes/sec (using Stream 
benchmark) 
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Roofline Diagram 

Attainable GPLOPs/sec 

= Max ( Peak Memory BW × Arithmetic Intensity, Peak FP Performance ) 
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Comparing Systems 

 Example: Opteron X2 vs. Opteron X4 

 2-core vs. 4-core, 2× FP performance/core, 2.2GHz 

vs. 2.3GHz, 1 × 2 SIMD vs. 2 ×  2 SIMD 

 Same memory system 

 To get higher performance 

on X4 than X2 

 Need high arithmetic intensity 

 Or working set must fit in X4’s 

2MB L-3 cache 
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Optimizing Performance 

 Optimize FP performance 

 Balance adds & multiplies 

 Improve superscalar ILP 
and use of SIMD 
instructions 

 Optimize memory usage 

 Software prefetch 
 Avoid load stalls 

 Memory affinity 
 Avoid non-local data 

accesses 
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Optimizing Performance 

 Choice of optimization depends on 

arithmetic intensity of code 

 Arithmetic intensity is 

not always fixed 

 May scale with 

problem size 

 Caching reduces 

memory accesses 

 Increases arithmetic 

intensity 
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i7-960 vs. NVIDIA Tesla 280/480 
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Rooflines 
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Benchmarks 
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Performance Summary 
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 GPU (480) has 4.4 X the memory bandwidth 

 Benefits memory bound kernels 

 GPU has 13.1 X the single precision throughout, 2.5 X 

the double precision throughput 

 Benefits FP compute bound kernels 

 CPU cache prevents some kernels from becoming 

memory bound when they otherwise would on GPU 

 GPUs offer scatter-gather, which assists with kernels 

with strided data 

 Lack of synchronization and memory consistency 

support on GPU limits performance for some kernels 
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Multi-threading DGEMM 
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 Use OpenMP: 

 
void dgemm (int n, double* A, double* B, double* C) 

{ 

#pragma omp parallel for 

 for ( int sj = 0; sj < n; sj += BLOCKSIZE ) 

  for ( int si = 0; si < n; si += BLOCKSIZE ) 

   for ( int sk = 0; sk < n; sk += BLOCKSIZE ) 

    do_block(n, si, sj, sk, A, B, C); 

} 



Multithreaded DGEMM 
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Multithreaded DGEMM 
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Fallacies 

 Amdahl’s Law doesn’t apply to parallel 

computers 

 Since we can achieve linear speedup 

 But only on applications with weak scaling 

 Peak performance tracks observed 

performance 

 Marketers like this approach! 

 But compare Xeon with others in example 

 Need to be aware of bottlenecks 
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Pitfalls 

 Not developing the software to take 

account of a multiprocessor architecture 

 Example: using a single lock for a shared 

composite resource 

 Serializes accesses, even if they could be done in 

parallel 

 Use finer-granularity locking 
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Concluding Remarks 

 Goal: higher performance by using multiple 

processors 

 Difficulties 

 Developing parallel software 

 Devising appropriate architectures 

 SaaS importance is growing and clusters are a 

good match 

 Performance per dollar and performance per 

Joule drive both mobile and WSC 
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Concluding Remarks (con’t) 

 SIMD and vector 

operations match 

multimedia applications 

and are easy to 

program 

 

 Adding 2 cores/chip 

every 2 years. 

 Doubling SIMD 

operations every 4 

years. 
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