

CPE432: Computer Architecture

and Organization (2)

Course Introduction
Prof. Gheith Abandah

غيث علي عبندة. د.أ

Outline

• Course Information

• Textbook and References

• Course Objectives and Outcomes

• Course Topics

• Policies

• Grading

• Important Dates

2

Course Information

• Instructor: Prof. Gheith Abandah

• Email: abandah@ju.edu.jo

• Office: CPE 406

• Home page: http://www.abandah.com/gheith

• Facebook group:

https://www.facebook.com/groups/549894571732525/

• Prerequisites: CPE 335: Computer Architecture and
Organization (1)

• Office hours: Sun – Wed: 10:30-11:30

3

http://www.abandah.com/gheith
https://www.facebook.com/groups/549894571732525/

Textbook and References
• Patterson and Hennessy. Computer Organization & Design: The

Hardware/Software Interface, RISC-V ed., Morgan Kaufmann,
Elsevier Inc., 2018.

• References:
– Hennessy and Patterson, Computer Architecture: A Quantitative Approach,

6th ed., Morgan Kaufmann, Elsevier Inc., 2017.

– J. P. Shen and M. H. Lipasti. Modern Processor Design: Fundamentals of
Superscalar Processors, Mc Graw Hill, 2005.

– D. Culler and J.P. Singh with A. Gupta. Parallel Computer Architecture: A
Hardware/Software Approach, Morgan Kaufmann, 1998.

– J. Hayes. Computer Architecture and Organization, 3rd ed., McGraw-Hill,
1998.

• Course slides at: http://www.abandah.com/gheith/?page_id=2518

4

http://www.abandah.com/gheith/?page_id=2518

Course Objectives

• Introduce students to the technological changes in designing and
building processors and computers.

• Introduce students to the advanced techniques used in modern
processors including pipelining, branch prediction, dynamic and
speculative execution, multiple issue, multithreading, and
software optimizations.

• Introduce the students to the basic concepts and technologies
used in designing memory and storage systems including cache,
main memory, virtual memory, and secondary memory.

• Introduce the students to the various approaches in parallel
processing including SIMD extensions, vector processors, GPUs,
multicore processors, shared memory multiprocessors, clusters,
and message-passing multicomputers.

5

Course Outcomes

• Understand and analyze the performance of single-
processor architectures, as well as multiprocessor
architectures [1].

• Understand and analyze the performance of memory
hierarchy levels [1].

• Understand the technological improvements and the
effect of these improvements on modern computers
[4].

• Survey research papers that describe contemporary
issues in computer design [4, 7].

6

Course Topics

• Introduction

• Computer Technology and Performance (1.5-1.11)

• Processor: Instruction-Level Parallelism (4.6‒4.11,
4.14‒4.15)

Midterm Exam

• Memory Hierarchy (5.1‒5.11, 5.13, 5.16‒5.17)

• Parallel Processors (6.1‒6.8, 6.10‒6.14)

Final Exam

7

Policies

• Attendance is required

• All submitted work must be yours

• Cheating will not be tolerated

• Open-book exams

• Join the facebook group

• Check department announcements at:
http://www.facebook.com/pages/Computer-
Engineering-Department/369639656466107

8

http://www.facebook.com/pages/Computer-Engineering-Department/369639656466107

Grading

• Participation 10%

• Research Project 10%

• Midterm Exam 30%

• Final Exam 50%

9

Important Dates

Sun 11 Oct, 2020 First Lecture

Sun 6 Dec, 2020 Midterm Exam

Thu 7 Jan, 2020 Project Report Due

Thu 14 Jan, 2021 Last Date to Withdraw

Sun 17 Jan, 2021 Last Lecture

Jan 19 – 11, 2021 Final Exam Period

10

COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

RISC-V

 Edition

Chapter 1

Computer Abstractions

and Technology

Adapted by Prof. Gheith Abandah

Content

1.2 Eight Great Ideas in Computer Architecture

(Review)

1.5 Technologies for Building Processors and

Memory

1.6 Performance (Review)

1.7 The Power Wall

1.8 The Sea Change: The Switch from

Uniprocessors to Multiprocessors

1.9 Real Stuff: Benchmarking the Intel Core i7

1.10 Fallacies and Pitfalls

1.11 Concluding Remarks

 Chapter 1 — Computer Abstractions and Technology — 2

Eight Great Ideas

 Design for Moore’s Law

 Use abstraction to simplify design

 Make the common case fast

 Performance via parallelism

 Performance via pipelining

 Performance via prediction

 Hierarchy of memories

 Dependability via redundancy

Chapter 1 — Computer Abstractions and Technology — 3

§
1
.2

 E
ig

h
t G

re
a
t Id

e
a
s
 in

 C
o
m

p
u
te

r A
rc

h
ite

c
tu

re

Content

1.2 Eight Great Ideas in Computer Architecture

(Review)

1.5 Technologies for Building Processors and

Memory

1.6 Performance (Review)

1.7 The Power Wall

1.8 The Sea Change: The Switch from

Uniprocessors to Multiprocessors

1.9 Real Stuff: Benchmarking the Intel Core i7

1.10 Fallacies and Pitfalls

1.11 Concluding Remarks

 Chapter 1 — Computer Abstractions and Technology — 4

Chapter 1 — Computer Abstractions and Technology — 5

Technology Trends

 Electronics

technology

continues to evolve

 Increased capacity

and performance

 Reduced cost

Year Technology Relative performance/cost

1951 Vacuum tube 1

1965 Transistor 35

1975 Integrated circuit (IC) 900

1995 Very large scale IC (VLSI) 2,400,000

2013 Ultra large scale IC 250,000,000,000

DRAM capacity

§
1
.5

 T
e
c
h
n
o
lo

g
ie

s
 fo

r B
u
ild

in
g
 P

ro
c
e
s
s
o
rs

 a
n
d
 M

e
m

o
ry

Semiconductor Technology

 Silicon: semiconductor

 Add materials to transform properties:

 Conductors

 Insulators

 Switch

Chapter 1 — Computer Abstractions and Technology — 6

Chapter 1 — Computer Abstractions and Technology — 7

Manufacturing ICs

 Yield: proportion of working dies per wafer

Chapter 1 — Computer Abstractions and Technology — 8

Intel Core i7 Wafer

 300mm wafer, 280 chips, 32nm technology

 Each chip is 20.7 x 10.5 mm

Chapter 1 — Computer Abstractions and Technology — 9

Integrated Circuit Cost

 Nonlinear relation to area and defect rate

 Wafer cost and area are fixed

 Defect rate determined by manufacturing process

 Die area determined by architecture and circuit design

2area/2)) Diearea per (Defects(1

1
Yield

area Diearea Wafer waferper Dies

Yield waferper Dies

 waferper Cost
die per Cost









Content

1.2 Eight Great Ideas in Computer Architecture

(Review)

1.5 Technologies for Building Processors and

Memory

1.6 Performance (Review)

1.7 The Power Wall

1.8 The Sea Change: The Switch from

Uniprocessors to Multiprocessors

1.9 Real Stuff: Benchmarking the Intel Core i7

1.10 Fallacies and Pitfalls

1.11 Concluding Remarks

 Chapter 1 — Computer Abstractions and Technology — 10

Chapter 1 — Computer Abstractions and Technology — 11

Response Time and Throughput

 Response time

 How long it takes to do a task

 Throughput

 Total work done per unit time

 e.g., tasks/transactions/… per hour

 How are response time and throughput affected

by

 Replacing the processor with a faster version?

 Adding more processors?

 We’ll focus on response time for now…

Chapter 1 — Computer Abstractions and Technology — 12

Relative Performance

 Define Performance = 1/Execution Time

 “X is n time faster than Y”

n XY

YX

time Executiontime Execution

ePerformancePerformanc

 Example: time taken to run a program

 10s on A, 15s on B

 Execution TimeB / Execution TimeA

= 15s / 10s = 1.5

 So A is 1.5 times faster than B

Chapter 1 — Computer Abstractions and Technology — 13

Measuring Execution Time

 Elapsed time

 Total response time, including all aspects
 Processing, I/O, OS overhead, idle time

 Determines system performance

 CPU time

 Time spent processing a given job
 Discounts I/O time, other jobs’ shares

 Comprises user CPU time and system CPU
time

 Different programs are affected differently by
CPU and system performance

Chapter 1 — Computer Abstractions and Technology — 14

CPU Clocking

 Operation of digital hardware governed by a

constant-rate clock

Clock (cycles)

Data transfer

and computation

Update state

Clock period

 Clock period: duration of a clock cycle

 e.g., 250ps = 0.25ns = 250×10–12s

 Clock frequency (rate): cycles per second

 e.g., 4.0GHz = 4000MHz = 4.0×109Hz

Chapter 1 — Computer Abstractions and Technology — 15

CPU Time

 Performance improved by

 Reducing number of clock cycles

 Increasing clock rate

 Hardware designer must often trade off clock

rate against cycle count

Rate Clock

Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU





Chapter 1 — Computer Abstractions and Technology — 16

Instruction Count and CPI

 Instruction Count for a program

 Determined by program, ISA and compiler

 Average cycles per instruction

 Determined by CPU hardware

 If different instructions have different CPI

 Average CPI affected by instruction mix

Rate Clock

CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio per CyclesCount nInstructioCycles Clock








Chapter 1 — Computer Abstractions and Technology — 17

CPI in More Detail

 If different instruction classes take different

numbers of cycles





n

1i

ii)Count nInstructio(CPICycles Clock

 Weighted average CPI














n

1i

i
i

Count nInstructio

Count nInstructio
CPI

Count nInstructio

Cycles Clock
CPI

Relative frequency

Chapter 1 — Computer Abstractions and Technology — 18

Performance Summary

 Performance depends on

 Algorithm: affects IC, possibly CPI

 Programming language: affects IC, CPI

 Compiler: affects IC, CPI

 Instruction set architecture: affects IC, CPI, Tc

The BIG Picture

cycle Clock

Seconds

nInstructio

cycles Clock

Program

nsInstructio
Time CPU 

Content

1.2 Eight Great Ideas in Computer Architecture

(Review)

1.5 Technologies for Building Processors and

Memory

1.6 Performance (Review)

1.7 The Power Wall

1.8 The Sea Change: The Switch from

Uniprocessors to Multiprocessors

1.9 Real Stuff: Benchmarking the Intel Core i7

1.10 Fallacies and Pitfalls

1.11 Concluding Remarks

 Chapter 1 — Computer Abstractions and Technology — 19

Chapter 1 — Computer Abstractions and Technology — 20

Power Trends

 In CMOS IC technology

§
1
.7

 T
h
e
 P

o
w

e
r W

a
ll

FrequencyVoltageload CapacitivePower 2 

×1000 ×30 5V → 1V

Chapter 1 — Computer Abstractions and Technology — 21

Reducing Power

 Suppose a new CPU has

 85% of capacitive load of old CPU

 15% voltage and 15% frequency reduction

0.520.85
FVC

0.85F0.85)(V0.85C

P

P 4

old

2

oldold

old

2

oldold

old

new 





 The power wall

 We can’t reduce voltage further

 We can’t remove more heat

 How else can we improve performance?

Content

1.2 Eight Great Ideas in Computer Architecture

(Review)

1.5 Technologies for Building Processors and

Memory

1.6 Performance (Review)

1.7 The Power Wall

1.8 The Sea Change: The Switch from

Uniprocessors to Multiprocessors

1.9 Real Stuff: Benchmarking the Intel Core i7

1.10 Fallacies and Pitfalls

1.11 Concluding Remarks

 Chapter 1 — Computer Abstractions and Technology — 22

Chapter 1 — Computer Abstractions and Technology — 23

Uniprocessor Performance
§
1
.8

 T
h
e
 S

e
a
 C

h
a
n
g
e
: T

h
e
 S

w
itc

h
 to

 M
u
ltip

ro
c
e
s
s
o
rs

Constrained by power, instruction-level parallelism,

memory latency

Chapter 1 — Computer Abstractions and Technology — 24

Multiprocessors

 Multicore microprocessors

 More than one processor per chip

 Requires explicitly parallel programming

 Compare with instruction level parallelism

 Hardware executes multiple instructions at once

 Hidden from the programmer

 Hard to do

 Programming for performance

 Load balancing

 Optimizing communication and synchronization

Content

1.2 Eight Great Ideas in Computer Architecture

(Review)

1.5 Technologies for Building Processors and

Memory

1.6 Performance (Review)

1.7 The Power Wall

1.8 The Sea Change: The Switch from

Uniprocessors to Multiprocessors

1.9 Real Stuff: Benchmarking the Intel Core i7

1.10 Fallacies and Pitfalls

1.11 Concluding Remarks

 Chapter 1 — Computer Abstractions and Technology — 25

Chapter 1 — Computer Abstractions and Technology — 26

SPEC CPU Benchmark

 Programs used to measure performance
 Supposedly typical of actual workload

 Standard Performance Evaluation Corp (SPEC)
 Develops benchmarks for CPU, I/O, Web, …

 SPEC CPU2006
 Elapsed time to execute a selection of programs

 Negligible I/O, so focuses on CPU performance

 Normalize relative to reference machine

 Summarize as geometric mean of performance ratios
 CINT2006 (integer) and CFP2006 (floating-point)

n

n

1i

iratio time Execution


Chapter 1 — Computer Abstractions and Technology — 27

CINT2006 for Intel Core i7 920

Chapter 1 — Computer Abstractions and Technology — 28

SPEC Power Benchmark

 Power consumption of server at different

workload levels

 Performance: ssj_ops/sec

 Power: Watts (Joules/sec)

















 



10

0i

i

10

0i

i powerssj_ops Wattper ssj_ops Overall

Chapter 1 — Computer Abstractions and Technology — 29

SPECpower_ssj2008 for Xeon X5650

Content

1.2 Eight Great Ideas in Computer Architecture

(Review)

1.5 Technologies for Building Processors and

Memory

1.6 Performance (Review)

1.7 The Power Wall

1.8 The Sea Change: The Switch from

Uniprocessors to Multiprocessors

1.9 Real Stuff: Benchmarking the Intel Core i7

1.10 Fallacies and Pitfalls

1.11 Concluding Remarks

 Chapter 1 — Computer Abstractions and Technology — 30

Chapter 1 — Computer Abstractions and Technology — 31

Pitfall: Amdahl’s Law

 Improving an aspect of a computer and

expecting a proportional improvement in

overall performance

§
1
.1

0
 F

a
lla

c
ie

s
 a

n
d
 P

itfa
lls

20
80

20 
n

 Can’t be done!

unaffected
affected

improved T
factor timprovemen

T
T 

 Example: multiply accounts for 80s/100s

 How much improvement in multiply performance to

get 5× overall?

 Corollary: make the common case fast

Chapter 1 — Computer Abstractions and Technology — 32

Fallacy: Low Power at Idle

 Look back at i7 power benchmark

 At 100% load: 258W

 At 50% load: 170W (66%)

 At 10% load: 121W (47%)

 Google data center

 Mostly operates at 10% – 50% load

 At 100% load less than 1% of the time

 Consider designing processors to make

power proportional to load

Chapter 1 — Computer Abstractions and Technology — 33

Pitfall: MIPS as a Performance Metric

 MIPS: Millions of Instructions Per Second

 Doesn’t account for

 Differences in ISAs between computers

 Differences in complexity between instructions

6
6

6

10CPI

rate Clock

10
rate Clock

CPIcount nInstructio

count nInstructio

10time Execution

count nInstructio
MIPS












 CPI varies between programs on a given CPU

Content

1.2 Eight Great Ideas in Computer Architecture

(Review)

1.5 Technologies for Building Processors and

Memory

1.6 Performance (Review)

1.7 The Power Wall

1.8 The Sea Change: The Switch from

Uniprocessors to Multiprocessors

1.9 Real Stuff: Benchmarking the Intel Core i7

1.10 Fallacies and Pitfalls

1.11 Concluding Remarks

 Chapter 1 — Computer Abstractions and Technology — 34

Chapter 1 — Computer Abstractions and Technology — 35

Concluding Remarks

 Cost/performance is improving

 Due to underlying technology development

 Execution time: the best performance
measure

 Power is a limiting factor

 Use parallelism to improve performance

§
1
.1

1
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

RISC-V

 Edition

Chapter 4

The Processor

Adapted by Prof. Gheith Abandah

Contents

4.6 Pipelined Datapath and Control (Review)

4.7 Data Hazards: Forwarding versus Stalling

4.8 Control Hazards

4.9 Exceptions

4.10 Parallelism via Instructions

4.11 Real Stuff: The ARM Cortex-A53 and Intel

Core i7 Pipelines

4.14 Fallacies and Pitfalls

4.15 Concluding Remarks

Chapter 4 — The Processor — 2

Contents

4.6 Pipelined Datapath and Control (Review)

 Five-Stage Pipeline

 Pipeline Control

 Pipeline Hazards

Chapter 4 — The Processor — 3

Five-Stage Pipeline

F: Fetch instruction from the instruction

memory

D: Decode instruction and read operands

E: Execute operation or calculate address

M: Memory access

W: Write result to the register

Chapter 4 — The Processor — 4

Chapter 4 — The Processor — 5

Five-Stage Pipeline

Chapter 4 — The Processor — 6

Pipelined Control

 Control signals derived from instruction

 As in single-cycle implementation

Chapter 4 — The Processor — 7

Pipelined Control

Chapter 4 — The Processor — 8

Hazards

 Situations that prevent starting the next
instruction in the next cycle

 Structure hazards

 A required resource is busy

 Data hazard

 Need to wait for previous instruction to
complete its data read/write

 Control hazard

 Deciding on control action depends on
previous instruction

Contents

4.6 Pipelined Datapath and Control (Review)

4.7 Data Hazards: Forwarding versus Stalling

4.8 Control Hazards

4.9 Exceptions

4.10 Parallelism via Instructions

4.11 Real Stuff: The ARM Cortex-A53 and Intel

Core i7 Pipelines

4.14 Fallacies and Pitfalls

4.15 Concluding Remarks

Chapter 4 — The Processor — 9

Contents

4.7 Data Hazards: Forwarding versus Stalling

 Data Hazards in ALU Instructions

 Load-Use Data Hazard

 Code Scheduling

Chapter 4 — The Processor — 10

Chapter 4 — The Processor — 11

Data Hazards in ALU Instructions

 Consider this sequence:

 sub x2, x1,x3
and x12,x2,x5
or x13,x6,x2
add x14,x2,x2
sd x15,100(x2)

 There are multiple true data dependencies,

read-after-write (RAW), on register x2.

 We can resolve hazards with stalls or

forwarding.

§
4
.7

 D
a
ta

 H
a
z
a
rd

s
: F

o
rw

a
rd

in
g
 v

s
. S

ta
llin

g

Chapter 4 — The Processor — 12

Dependencies & Forwarding

Chapter 4 — The Processor — 13

Forwarding Paths

Chapter 4 — The Processor — 14

Load-Use Data Hazard

 Can’t always avoid stalls by forwarding

 If value not computed when needed

 Can’t forward backward in time!

Chapter 4 — The Processor — 15

Load-Use Hazard Detection

 Check when using instruction is decoded
in ID stage

 ALU operand register numbers in ID stage
are given by

 IF/ID.RegisterRs1, IF/ID.RegisterRs2

 Load-use hazard when

 ID/EX.MemRead and
 ((ID/EX.RegisterRd = IF/ID.RegisterRs1) or
 (ID/EX.RegisterRd = IF/ID.RegisterRs1))

 If detected, stall and insert bubble

Chapter 4 — The Processor — 16

How to Stall the Pipeline

 Force control values in ID/EX register

to 0

 EX, MEM and WB do nop (no-operation)

 Prevent update of PC and IF/ID register

 Using instruction is decoded again

 Following instruction is fetched again

 1-cycle stall allows MEM to read data for ld

 Can subsequently forward to EX stage

Chapter 4 — The Processor — 17

Load-Use Data Hazard

Stall inserted

here

Chapter 4 — The Processor — 18

Datapath with Hazard Detection

Chapter 4 — The Processor — 19

Stalls and Performance

 Stalls reduce performance

 But are required to get correct results

 Compiler can arrange code to avoid

hazards and stalls

 Requires knowledge of the pipeline structure

The BIG Picture

Chapter 4 — The Processor — 20

Code Scheduling to Avoid Stalls

 Reorder code to avoid use of load result in

the next instruction

 C code for a = b + e; c = b + f;

ld x1, 0(x0)

ld x2, 8(x0)

add x3, x1, x2

sd x3, 24(x0)

ld x4, 16(x0)

add x5, x1, x4

sd x5, 32(x0)

stall

stall

ld x1, 0(x0)

ld x2, 8(x0)

ld x4, 16(x0)

add x3, x1, x2

sd x3, 24(x0)

add x5, x1, x4

sd x5, 32(x0)

11 cycles 13 cycles

Contents

4.6 Pipelined Datapath and Control (Review)

4.7 Data Hazards: Forwarding versus Stalling

4.8 Control Hazards

4.9 Exceptions

4.10 Parallelism via Instructions

4.11 Real Stuff: The ARM Cortex-A53 and Intel

Core i7 Pipelines

4.14 Fallacies and Pitfalls

4.15 Concluding Remarks

Chapter 4 — The Processor — 21

Contents

4.8 Control Hazards

 Branch Hazards

 Reducing Branch Delay

 Branch Prediction

 Dynamic Branch Prediction

 Calculating Branch Target

 Imprecise Exceptions

Chapter 4 — The Processor — 22

Chapter 4 — The Processor — 23

Branch Hazards

 If branch outcome determined in MEM

§
4
.8

 C
o
n
tro

l H
a
z
a
rd

s

PC

Flush these

instructions

(Set control

values to 0)

Chapter 4 — The Processor — 24

Reducing Branch Delay

 Move hardware to determine outcome to ID

stage

 Target address adder

 Register comparator

 Example: branch taken
 36: sub x10, x4, x8
40: beq x1, x3, 16 // PC-relative branch
 // to 40+16*2=72
44: and x12, x2, x5
48: orr x13, x2, x6
52: add x14, x4, x2
56: sub x15, x6, x7
 ...
72: ld x4, 50(x7)

Chapter 4 — The Processor — 25

Example: Branch Taken

Chapter 4 — The Processor — 26

Example: Branch Taken

Chapter 4 — The Processor — 27

Branch Prediction

 Longer pipelines can’t readily determine

branch outcome early

 Stall penalty becomes unacceptable

 Predict outcome of branch

 Only stall if prediction is wrong

 In RISC-V pipeline

 Can predict branches not taken

 Fetch instruction after branch, with no delay

Chapter 4 — The Processor — 28

More-Realistic Branch Prediction

 Static branch prediction

 Based on typical branch behavior

 Example: loop and if-statement branches

 Predict backward branches taken

 Predict forward branches not taken

 Dynamic branch prediction

 Hardware measures actual branch behavior

 e.g., record recent history of each branch

 Assume future behavior will continue the trend

 When wrong, stall while re-fetching, and update history

Chapter 4 — The Processor — 29

Dynamic Branch Prediction

 In deeper and superscalar pipelines, branch

penalty is more significant

 Use dynamic prediction

 Branch prediction buffer (aka branch history table)

 Indexed by recent branch instruction addresses

 Stores outcome (taken/not taken)

 To execute a branch

 Check table, expect the same outcome

 Start fetching from fall-through or target

 If wrong, flush pipeline and flip prediction

Branch History Table (BHT)

Chapter 4 — The Processor — 30

Table size = n × 2k bits

Chapter 4 — The Processor — 31

1-Bit Predictor: Shortcoming

 Inner loop branches mispredicted twice!

outer: …
 …
inner: …
 …
 beq …, …, inner
 …
 beq …, …, outer

 Mispredict as taken on last iteration of

inner loop

 Then mispredict as not taken on first

iteration of inner loop next time around

Chapter 4 — The Processor — 32

2-Bit Predictor

 Only change prediction on two successive

mispredictions

Chapter 4 — The Processor — 33

Calculating the Branch Target

 Even with predictor, still need to calculate

the target address

 1-cycle penalty for a taken branch

 Branch target buffer

 Cache of target addresses

 Indexed by PC when instruction fetched

 If hit and instruction is branch predicted taken, can

fetch target immediately

Branch Target Buffer (BTB)

Chapter 4 — The Processor — 34

Contents

4.6 Pipelined Datapath and Control (Review)

4.7 Data Hazards: Forwarding versus Stalling

4.8 Control Hazards

4.9 Exceptions

4.10 Parallelism via Instructions

4.11 Real Stuff: The ARM Cortex-A53 and Intel

Core i7 Pipelines

4.14 Fallacies and Pitfalls

4.15 Concluding Remarks

Chapter 4 — The Processor — 35

Contents

4.9 Exceptions

 Exceptions and Interrupts

 Handling Exceptions

 Exceptions in a Pipeline

 Exception Example

 Multiple Exceptions

Chapter 4 — The Processor — 36

Chapter 4 — The Processor — 37

Exceptions and Interrupts

 “Unexpected” events requiring change

in flow of control

 Different ISAs use the terms differently

 Exception

 Arises within the CPU

 e.g., undefined opcode, syscall, …

 Interrupt

 From an external I/O controller

 Dealing with them without sacrificing

performance is hard

§
4
.9

 E
x
c
e
p
tio

n
s

Chapter 4 — The Processor — 38

Handling Exceptions

 Save PC of offending (or interrupted) instruction
 In RISC-V: Supervisor Exception Program Counter

(SEPC)

 Save indication of the problem
 In RISC-V: Supervisor Exception Cause Register

(SCAUSE)

 64 bits, but most bits unused
 Exception code field: 2 for undefined opcode, 12 for hardware

malfunction, …

 Jump to handler
 Assume at 0000 0000 1C09 0000hex

Chapter 4 — The Processor — 39

An Alternate Mechanism

 Vectored Interrupts

 Handler address determined by the cause

 Exception vector address to be added to a
vector table base register:

 Undefined opcode 00 0100 0000two

 Hardware malfunction: 01 1000 0000two

 …: …

 Instructions either

 Deal with the interrupt, or

 Jump to real handler

Chapter 4 — The Processor — 40

Handler Actions

 Read cause, and transfer to relevant
handler

 Determine action required

 If restartable

 Take corrective action

 use SEPC to return to program

 Otherwise

 Terminate program

 Report error using SEPC, SCAUSE, …

Chapter 4 — The Processor — 41

Exceptions in a Pipeline

 Another form of control hazard

 Consider malfunction on add in EX stage
add x1, x2, x1

 Prevent x1 from being clobbered

 Complete previous instructions

 Flush add and subsequent instructions

 Set SEPC and SCAUSE register values

 Transfer control to handler

 Similar to mispredicted branch

 Use much of the same hardware

Chapter 4 — The Processor — 42

Pipeline with Exceptions

Chapter 4 — The Processor — 43

Exception Properties

 Restartable exceptions

 Pipeline can flush the instruction

 Handler executes, then returns to the

instruction

 Refetched and executed from scratch

 PC saved in SEPC register

 Identifies causing instruction

Chapter 4 — The Processor — 44

Exception Example

 Exception on add in
 40 sub x11, x2, x4
44 and x12, x2, x5
48 orr x13, x2, x6
4c add x1, x2, x1
50 sub x15, x6, x7
54 ld x16, 100(x7)
…

 Handler
 1C090000 sd x26, 1000(x10)
1c090004 sd x27, 1008(x10)
…

Chapter 4 — The Processor — 45

Exception Example

Chapter 4 — The Processor — 46

Exception Example

Chapter 4 — The Processor — 47

Multiple Exceptions

 Pipelining overlaps multiple instructions

 Could have multiple exceptions at once

 Simple approach: deal with exception from

earliest instruction

 Flush subsequent instructions

 “Precise” exceptions

 In complex pipelines

 Multiple instructions issued per cycle

 Out-of-order completion

 Maintaining precise exceptions is difficult!

Chapter 4 — The Processor — 48

Imprecise Exceptions

 Just stop pipeline and save state

 Including exception cause(s)

 Let the handler work out

 Which instruction(s) had exceptions

 Which to complete or flush

 May require “manual” completion

 Simplifies hardware, but more complex handler

software

 Not feasible for complex multiple-issue

out-of-order pipelines

Contents

4.6 Pipelined Datapath and Control (Review)

4.7 Data Hazards: Forwarding versus Stalling

4.8 Control Hazards

4.9 Exceptions

4.10 Parallelism via Instructions

4.11 Real Stuff: The ARM Cortex-A53 and Intel

Core i7 Pipelines

4.14 Fallacies and Pitfalls

4.15 Concluding Remarks

Chapter 4 — The Processor — 49

Contents

4.10 Parallelism via Instructions

 Instruction-Level Parallelism (ILP)

 Multiple Issue

 Static Multiple Issue

 VLIW

 Scheduling Static Multiple Issue

 Loop Unrolling

 Dynamic Multiple Issue

 Register Renaming

 Speculation

 Why Do Dynamic Scheduling

Chapter 4 — The Processor — 50

Chapter 4 — The Processor — 51

Instruction-Level Parallelism (ILP)

 Pipelining: executing multiple instructions in
parallel

 To increase ILP
 Deeper pipeline

 Less work per stage  shorter clock cycle

 Multiple issue
 Replicate pipeline stages  multiple pipelines

 Start multiple instructions per clock cycle

 CPI < 1, so use Instructions Per Cycle (IPC)

 E.g., 4GHz 4-way multiple-issue

 16 BIPS, peak CPI = 0.25, peak IPC = 4

 But dependencies reduce this in practice

§
4
.1

0
 P

a
ra

lle
lis

m
 v

ia
 In

s
tru

c
tio

n
s

Chapter 4 — The Processor — 52

Multiple Issue

 Static multiple issue

 Compiler groups instructions to be issued together

 Packages them into “issue slots”

 Compiler detects and avoids hazards

 Dynamic multiple issue

 CPU examines instruction stream and chooses

instructions to issue each cycle

 Compiler can help by reordering instructions

 CPU resolves hazards using advanced techniques at

runtime

Chapter 4 — The Processor — 53

Static Multiple Issue

 Compiler groups instructions into “issue

packets”

 Group of instructions that can be issued on a

single cycle

 Determined by pipeline resources required

 Think of an issue packet as a very long

instruction

 Specifies multiple concurrent operations

  Very Long Instruction Word (VLIW)

VILW

Chapter 4 — The Processor — 54

Chapter 4 — The Processor — 55

Scheduling Static Multiple Issue

 Compiler must remove some/all hazards

 Reorder instructions into issue packets

 No dependencies with a packet

 Possibly some dependencies between

packets

 Varies between ISAs; compiler must know!

 Pad with nop if necessary

Chapter 4 — The Processor — 56

RISC-V with Static Dual Issue

 Two-issue packets

 One ALU/branch instruction

 One load/store instruction

 64-bit aligned

 ALU/branch, then load/store

 Pad an unused instruction with nop

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

Chapter 4 — The Processor — 57

RISC-V with Static Dual Issue

Chapter 4 — The Processor — 58

Hazards in the Dual-Issue RISC-V

 More instructions executing in parallel

 EX data hazard

 Forwarding avoided stalls with single-issue

 Now can’t use ALU result in load/store in same packet

 add x10, x0, x1
ld x2, 0(x10)

 Split into two packets, effectively a stall

 Load-use hazard

 Still one cycle use latency, but now two instructions

 More aggressive scheduling required

Forwarding in Dual-Issue RISC-V

 In addition to forwarding from M and W to

E, there are additional forwarding paths

among the two pipelines, e.g.:

 From W in memory pipeline to E in ALU

pipeline
 ld x31, 0(x20)
add x31, x31, x21

 From M in ALU pipeline to M in memory

pipeline
 add x31, x31, x21
sd x31, 0(x20)

Chapter 4 — The Processor — 59

Chapter 4 — The Processor — 60

Scheduling Example

 Schedule this for dual-issue RISC-V
Loop: ld x31,0(x20) // x31=array element
 add x31,x31,x21 // add scalar in x21
 sd x31,0(x20) // store result
 addi x20,x20,-8 // decrement pointer
 blt x22,x20,Loop // branch if x22 < x20

ALU/branch Load/store cycle

Loop: nop ld x31,0(x20) 1

addi x20,x20,-8 nop 2

add x31,x31,x21 nop 3

blt x22,x20,Loop sd x31,8(x20) 4

 IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

Chapter 4 — The Processor — 61

Loop Unrolling

 Replicate loop body to expose more

parallelism

 Reduces loop-control overhead

 Use different registers per replication

 Called “register renaming”

 Avoid loop-carried “anti-dependencies”

 Store followed by a load of the same register

 Aka “name dependence”, write-after-read

 Or “output dependence”, write-after-write

 Reuse of a register name

Unrolling Steps

1. Replicate the loop instructions n times

2. Remove unneeded loop overhead

3. Modify instructions

4. Rename registers

5. Schedule instructions

Chapter 4 — The Processor — 62

Chapter 4 — The Processor — 63

Loop Unrolling Example

 IPC = 14/8 = 1.75

 Closer to 2, but at cost of registers and code size

ALU/branch Load/store cycle

Loop: addi x20,x20,-32 ld x28, 0(x20) 1

nop ld x29, 24(x20) 2

add x28,x28,x21 ld x30, 16(x20) 3

add x29,x29,x21 ld x31, 8(x20) 4

add x30,x30,x21 sd x28, 32(x20) 5

add x31,x31,x21 sd x29, 24(x20) 6

nop sd x30, 16(x20) 7

blt x22,x20,Loop sd x31, 8(x20) 8

Chapter 4 — The Processor — 64

Dynamic Multiple Issue

 “Superscalar” processors

 CPU decides whether to issue 0, 1, 2, …

each cycle

 Avoiding structural and data hazards

 Avoids the need for compiler scheduling

 Though it may still help

 Code semantics ensured by the CPU

Chapter 4 — The Processor — 65

Dynamic Pipeline Scheduling

 Allow the CPU to execute instructions out

of order to avoid stalls

 But commit result to registers in order

 Example

 ld x31,20(x21)
add x1,x31,x2
sub x23,x23,x3
andi x5,x23,20

 Can start sub while add is waiting for ld

Chapter 4 — The Processor — 66

Dynamically Scheduled CPU

Results also sent

to any waiting

reservation stations

Reorders buffer for

register writes
Can supply

operands for

issued instructions

Preserves

dependencies

Hold pending

operands

Pipeline Stages

F: Fetch from instr. memory (IM) to instr. queue (IQ).

I: Issue from IQ to reservation stations (RS), reading

ready operands from register file (RF).

E: Execute when functional unit (FU) is free and

instr. In RS has ready operands.

W: Write result from FU through common data bus

(CDB) to reorder buffer (ROB) and RS.

C: Commit results in order from ROB to RF and

memory

 Loads have FIAMWC, stores have FIAC. A:

Address calculation

Chapter 4 — The Processor — 67

Chapter 4 — The Processor — 68

Register Renaming

 Reservation stations and reorder buffer
effectively provide register renaming

 On instruction issue to reservation station

 If operand is available in register file or
reorder buffer
 Copied to reservation station

 No longer required in the register; can be
overwritten

 If operand is not yet available
 It will be provided to the reservation station by a

function unit

 Register update may not be required

Examples

 Assume superscalar processor of degree 3

 Name dependence (WAR)

 mul x1,x2,x3
add x4,x1,x5
ld x5,16(x21)

 Output dependence (WAW)

 mul x1,x2,x3
add x4,x1,x5
ld x1,16(x21)

 Chapter 4 — The Processor — 69

Chapter 4 — The Processor — 70

Speculation

 “Guess” what to do with an instruction

 Start operation as soon as possible

 Check whether guess was right

 If so, complete the operation

 If not, roll-back and do the right thing

 Common to static and dynamic multiple issue

 Examples

 Speculate on branch outcome

 Roll back if path taken is different

 Speculate on load

 Roll back if location is updated

Chapter 4 — The Processor — 71

Compiler/Hardware Speculation

 Compiler can reorder instructions

 e.g., move load before branch

 Can include “fix-up” instructions to recover

from incorrect guess

 Hardware can look ahead for instructions

to execute

 Buffer results until it determines they are

actually needed

 Flush buffers on incorrect speculation

Chapter 4 — The Processor — 72

Branch Speculation

 Predict branch and continue issuing

 Don’t commit until branch outcome

determined

 Example: Assume a superscalar

processor of degree 2 and the branch

prediction is not taken.

 ld x1,0(x20)
beq x1,x2,Skip
I3
I4

Chapter 4 — The Processor — 73

Load Speculation

 Avoid load and cache miss delay

 Load before completing outstanding stores

 Predict the effective address or loaded value

 Bypass stored values to load unit

 Don’t commit load until speculation cleared

 Example: Superscalar of degree 3.

 ld x1,0(x20)
sd x2,0(x1)
ld x3,0(x21)

Chapter 4 — The Processor — 74

Speculation and Exceptions

 What if exception occurs on a
speculatively executed instruction?

 e.g., speculative load before null-pointer
check

 Static speculation

 Can add ISA support for deferring exceptions

 Dynamic speculation

 Can buffer exceptions until instruction
completion (which may not occur)

Exceptions Examples

 Assume superscalar processor of degree 3

with 2 address calculation units

 E1: Predict branch as not take, but resolve

to taken. The ld has exception in M.

 beq x1,x2,L1
ld x5,16(x21)

 E2: Assume first sd has exemption in C.

 ld x1,0(x20)
sd x1,0(x21)
sd x2,16(x21)

 Chapter 4 — The Processor — 75

Chapter 4 — The Processor — 76

Why Do Dynamic Scheduling?

 Why not just let the compiler schedule

code?

 Not all stalls are predicable

 e.g., cache misses

 Can’t always schedule around branches

 Branch outcome is dynamically determined

 Different implementations of an ISA have

different latencies and hazards

Chapter 4 — The Processor — 77

Does Multiple Issue Work?

 Yes, but not as much as we’d like

 Programs have real dependencies that limit ILP

 Some dependencies are hard to eliminate

 e.g., pointer aliasing

 Some parallelism is hard to expose

 Limited window size during instruction issue

 Memory delays and limited bandwidth

 Hard to keep pipelines full

 Speculation can help if done well

The BIG Picture

Chapter 4 — The Processor — 78

Power Efficiency

 Complexity of dynamic scheduling and

speculations requires power

 Multiple simpler cores may be better

Contents

4.6 Pipelined Datapath and Control (Review)

4.7 Data Hazards: Forwarding versus Stalling

4.8 Control Hazards

4.9 Exceptions

4.10 Parallelism via Instructions

4.11 Real Stuff: The ARM Cortex-A53 and Intel

Core i7 Pipelines

4.14 Fallacies and Pitfalls

4.15 Concluding Remarks

Chapter 4 — The Processor — 79

Cortex A53 and Intel i7
Processor ARM A53 Intel Core i7 920

Market Personal Mobile Device Server, cloud

Thermal design power 100 milliWatts

(1 core @ 1 GHz)

130 Watts

Clock rate 1.5 GHz 2.66 GHz

Cores/Chip 4 (configurable) 4

Floating point? Yes Yes

Multiple issue? Dynamic Dynamic

Peak instructions/clock cycle 2 4

Pipeline stages 8 14

Pipeline schedule Static in-order Dynamic out-of-order

with speculation

Branch prediction Hybrid 2-level

1st level caches/core 16-64 KiB I, 16-64 KiB D 32 KiB I, 32 KiB D

2nd level caches/core 128-2048 KiB 256 KiB (per core)

3rd level caches (shared) (platform dependent) 2-8 MB

Chapter 4 — The Processor — 80

§
4
.1

1
 R

e
a
l S

tu
ff: T

h
e
 A

R
M

 C
o
rte

x
-A

5
3
 a

n
d
 In

te
l C

o
re

 i7
 P

ip
e
lin

e
s

ARM Cortex-A53 Pipeline

Chapter 4 — The Processor — 81

ARM Cortex-A53 Performance

Chapter 4 — The Processor — 82

Core i7 Pipeline

Chapter 4 — The Processor — 83

Core i7 Performance

Chapter 4 — The Processor — 84

Contents

4.6 Pipelined Datapath and Control (Review)

4.7 Data Hazards: Forwarding versus Stalling

4.8 Control Hazards

4.9 Exceptions

4.10 Parallelism via Instructions

4.11 Real Stuff: The ARM Cortex-A53 and Intel

Core i7 Pipelines

4.14 Fallacies and Pitfalls

4.15 Concluding Remarks

Chapter 4 — The Processor — 85

Chapter 4 — The Processor — 86

Fallacies

 Pipelining is easy (!)

 The basic idea is easy

 The devil is in the details

 e.g., detecting data hazards

 Pipelining is independent of technology

 So why haven’t we always done pipelining?

 More transistors make more advanced techniques

feasible

 Pipeline-related ISA design needs to take account of

technology trends

 e.g., predicated instructions

§
4
.1

4
 F

a
lla

c
ie

s
 a

n
d
 P

itfa
lls

Chapter 4 — The Processor — 87

Pitfalls

 Poor ISA design can make pipelining

harder

 e.g., complex instruction sets (VAX, IA-32)

 Significant overhead to make pipelining work

 IA-32 micro-op approach

 e.g., complex addressing modes

 Register update side effects, memory indirection

 e.g., delayed branches

 Advanced pipelines have long delay slots

Contents

4.6 Pipelined Datapath and Control (Review)

4.7 Data Hazards: Forwarding versus Stalling

4.8 Control Hazards

4.9 Exceptions

4.10 Parallelism via Instructions

4.11 Real Stuff: The ARM Cortex-A53 and Intel

Core i7 Pipelines

4.14 Fallacies and Pitfalls

4.15 Concluding Remarks

Chapter 4 — The Processor — 88

Chapter 4 — The Processor — 89

Concluding Remarks

 Pipelining improves instruction throughput

using parallelism

 More instructions completed per second

 Latency for each instruction not reduced

 Hazards: structural, data, control

 Multiple issue and dynamic scheduling (ILP)

 Dependencies limit achievable parallelism

 Complexity leads to the power wall

§
4
.1

4
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

RISC-V

 Edition

Chapter 5

Large and Fast:

Exploiting Memory

Hierarchy

Adapted by Prof. Gheith Abandah

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache

5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies

5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

Principle of Locality

 Programs access a small proportion of

their address space at any time

 Temporal locality

 Items accessed recently are likely to be

accessed again soon

 e.g., instructions in a loop, induction variables

 Spatial locality

 Items near those accessed recently are likely

to be accessed soon

 E.g., sequential instruction access, array data

§
5
.1

 In
tro

d
u
c
tio

n

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Taking Advantage of Locality

 Memory hierarchy

 Store everything on disk

 Copy recently accessed (and nearby)

items from disk to smaller DRAM memory

 Main memory

 Copy more recently accessed (and

nearby) items from DRAM to smaller

SRAM memory

 Cache memory attached to CPU

Memory Hierarchy

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Memory Hierarchy Levels

 Block (aka line): unit of copying

 May be multiple words

 If accessed data is present in

upper level

 Hit: access satisfied by upper level

 Hit ratio: hits/accesses

 If accessed data is absent

 Miss: block copied from lower level

 Time taken: miss penalty

 Miss ratio: misses/accesses

= 1 – hit ratio

 Then accessed data supplied from

upper level

Contents

5.1 Introduction

5.2 Memory Technologies

 Introduction

 SRAM

 DRAM

 Flash

 Disk Storage

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

Memory Technology (2012)

 Static RAM (SRAM)

 0.5ns – 2.5ns, $2000 – $1000 per GB

 Dynamic RAM (DRAM)

 50ns – 70ns, $10 – $20 per GB

 Flash memory

 5,000ns – 50,000ns, $0.75 – $1.00 per GB

 Magnetic disk

 5ms – 20ms, $0.05 – $0.10 per GB

 Ideal memory

 Access time of SRAM

 Capacity and cost/GB of disk

§
5
.2

 M
e
m

o
ry

 T
e
c
h
n
o
lo

g
ie

s

SRAM Technology

 Static RAM

 6-8 transistors per bit

 Fast but not dense

 Often has standby mode

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

DRAM Technology

 Data stored as a charge in a capacitor

 Single transistor used to access the charge

 Must periodically be refreshed

 Read contents and write back

 Performed on a DRAM “row”

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Classic DRAM

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

Classic DRAM

 Low bandwidth

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

Advanced DRAM Organization

 Access an entire row and save it in a row

buffer.

 Fast page mode: supply successive

words from the row buffer with reduced

latency

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

Advanced DRAM Organization

 Synchronous DRAM (SDRAM) has a

counter that increments the column

address using a clock signal.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Advanced DRAM Organization

 Double data rate (DDR) SDRAM

 Transfer on rising and falling clock edges

 Quad data rate (QDR) SDRAM

 Separate DDR inputs and outputs

Micron 1Gb DDR-SDRAM

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

MT46V128M8 – 32 Meg X 8 X 4 Banks, Datasheet

https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr1/1gb_ddr.pdf

Micron 1Gb DDR-SDRAM

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

DRAM Generations

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

DRAM Generations

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac

Tcac

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50

DRAM Performance Factors

 Row buffer

 Allows several words to be read and refreshed in

parallel

 Synchronous DRAM

 Allows for consecutive accesses in bursts without

needing to send each address

 Improves bandwidth

 DRAM banking

 Allows simultaneous access to multiple DRAMs

 Improves bandwidth

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Increasing Memory Bandwidth

 To get 16-byte block:

 a. One-word wide memory
 Miss penalty = 4×(1 + 15 + 1) = 68 bus cycles

 Bandwidth = 16 bytes / 68 cycles = 0.24 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22

Increasing Memory Bandwidth

 b. 4-word wide memory
 Miss penalty = 1 + 15 + 1 = 17 bus cycles

 Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

 c. 4-bank interleaved memory
 Miss penalty = 1 + 15 + 4×1 = 20 bus cycles

 Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

Increasing Memory Bandwidth

 d. DDR-SDRAM
 Miss penalty = 1 + 15 + 4×0.5 = 18 bus cycles

 Bandwidth = 16 bytes / 18 cycles = 0.89 B/cycle

Chapter 6 — Storage and Other I/O Topics — 24

Flash Storage

 Nonvolatile semiconductor storage

 100× – 1000× faster than disk

 Smaller, lower power, more robust

 But more $/GB (between disk and DRAM)

Chapter 6 — Storage and Other I/O Topics — 25

Flash Types

 NOR flash: bit cell like a NOR gate

 Random read/write access

 Used for instruction memory in embedded systems

 NAND flash: bit cell like a NAND gate

 Denser (bits/area), but block-at-a-time access

 Cheaper per GB

 Used for USB keys, media storage, …

 Flash bits wears out after 1000’s of accesses

 Not suitable for direct RAM or disk replacement

 Wear leveling: remap data to less used blocks

Chapter 6 — Storage and Other I/O Topics — 26

Disk Storage

 Nonvolatile, rotating magnetic storage

Chapter 6 — Storage and Other I/O Topics — 27

Disk Sectors and Access

 Each sector records
 Sector ID

 Data (512 bytes, 4096 bytes proposed)

 Error correcting code (ECC)
 Used to hide defects and recording errors

 Synchronization fields and gaps

 Access to a sector involves
 Queuing delay if other accesses are pending

 Seek: move the heads

 Rotational latency

 Data transfer

 Controller overhead

Chapter 6 — Storage and Other I/O Topics — 28

Disk Access Example

 Given
 512B sector, 15,000rpm, 4ms average seek

time, 100MB/s transfer rate, 0.2ms controller
overhead, idle disk

 Average read time
 4ms seek time

+ ½ / (15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
= 6.2ms

 If actual average seek time is 1ms
 Average read time = 3.2ms

Chapter 6 — Storage and Other I/O Topics — 29

Disk Access Example 2

 Given
 15,000rpm, 2MB/cylinder

 Sustainable peak transfer rate?

Chapter 6 — Storage and Other I/O Topics — 30

Disk Performance Issues

 Manufacturers quote average seek time

 Based on all possible seeks

 Locality and OS scheduling lead to smaller actual

average seek times

 Smart disk controller allocate physical sectors on

disk

 Present logical sector interface to host

 SCSI, ATA, SATA

 Disk drives include caches

 Prefetch sectors in anticipation of access

 Avoid seek and rotational delay

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

 Direct Mapped Cache

 Cache Example

 Larger Block Sizes

 Writing to the Cache

 Example: Intrinsity FastMATH

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32

Cache Memory

 Cache memory

 The level of the memory hierarchy closest to

the CPU

 Given accesses X1, …, Xn–1, Xn

§
5
.3

 T
h
e
 B

a
s
ic

s
 o

f C
a
c
h
e
s

 How do we know if

the data is present?

 Where do we look?

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 33

Direct Mapped Cache

 Location determined by address

 Direct mapped: only one choice

 (Block address) modulo (#Blocks in cache)

 #Blocks is a

power of 2

 Use low-order

address bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 34

Tags and Valid Bits

 How do we know which particular block is

stored in a cache location?

 Store block address as well as the data

 Actually, only need the high-order bits

 Called the tag

 What if there is no data in a location?

 Valid bit: 1 = present, 0 = not present

 Initially 0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 35

Cache Example

 8-blocks, 1 word/block, direct mapped

 Initial state

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 36

Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Miss 110

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 37

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

26 11 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 38

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 39

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

16 10 000 Hit 000

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 40

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

18 10 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 41

Address Subdivision

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42

Example: Larger Block Size

 64 blocks, 16 bytes/block

 To what block number does address 1200

map?

 Block address = 1200/16 = 75

 Block number = 75 modulo 64 = 11

Tag Index Offset

0 3 4 9 10 63

4 bits 6 bits 22 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 43

Block Size Considerations

 Larger blocks should reduce miss rate

 Due to spatial locality

 But in a fixed-sized cache

 Larger blocks  fewer of them

 More competition  increased miss rate

 Larger blocks  pollution

 Larger miss penalty

 Can override benefit of reduced miss rate

 Early restart and critical-word-first can help

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 44

Block Size Considerations

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 45

Cache Misses

 On cache hit, CPU proceeds normally

 On cache miss

 Stall the CPU pipeline

 Fetch block from next level of hierarchy

 Instruction cache miss

 Restart instruction fetch

 Data cache miss

 Complete data access

Writing to the Cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 46

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 47

Write-Through

 On data-write hit, could just update the block in
cache
 But then cache and memory would be inconsistent

 Write through: also update memory

 But makes writes take longer
 e.g., if base CPI = 1, 10% of instructions are stores,

write to memory takes 100 cycles
 Effective CPI = 1 + 0.1×100 = 11

 Solution: write buffer
 Holds data waiting to be written to memory

 CPU continues immediately
 Only stalls on write if write buffer is already full

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 48

Write-Back

 Alternative: On data-write hit, just update

the block in cache

 Keep track of whether each block is dirty

 When a dirty block is replaced

 Write it back to memory

 Can use a write buffer to allow replacing block

to be read first

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 49

Write Allocation

 What should happen on a write miss?

 Alternatives for write-through

 Allocate on miss: fetch the block

 Write around: don’t fetch the block

 Since programs often write a whole block before

reading it (e.g., initialization)

 For write-back

 Usually fetch the block

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 50

Example: Intrinsity FastMATH

 Embedded MIPS processor

 12-stage pipeline

 Instruction and data access on each cycle

 Split cache: separate I-cache and D-cache

 Each 16KB: 256 blocks × 16 words/block

 D-cache: write-through or write-back

 SPEC2000 miss rates

 I-cache: 0.4%

 D-cache: 11.4%

 Weighted average: 3.2%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 51

Example: Intrinsity FastMATH

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

 Measuring Cache Performance

 Memory Average Access Time

 Associative Caches

 Multi-level Caches

 Interactions with Advanced CPUs

 Interactions with Software

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 52

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 53

Measuring Cache Performance

 Components of CPU time
 Program execution cycles

 Includes cache hit time

 Memory stall cycles
 Mainly from cache misses

 With simplifying assumptions:

§
5
.4

 M
e
a
s
u
rin

g
 a

n
d
 Im

p
ro

v
in

g
 C

a
c
h
e
 P

e
rfo

rm
a
n
c
e

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory





Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 54

Cache Performance Example

 Given
 I-cache miss rate = 2%

 D-cache miss rate = 4%

 Miss penalty = 100 cycles

 Base CPI (ideal cache) = 2

 Load & stores are 36% of instructions

 Miss cycles per instruction
 I-cache: 0.02 × 100 = 2

 D-cache: 0.36 × 0.04 × 100 = 1.44

 Actual CPI = 2 + 2 + 1.44 = 5.44
 Ideal CPU is 5.44/2 =2.72 times faster

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 55

Average Access Time

 Hit time is also important for performance

 Average memory access time (AMAT)

 AMAT = Hit time + Miss rate × Miss penalty

 Example

 CPU with 1ns clock, hit time = 1 cycle, miss

penalty = 20 cycles, I-cache miss rate = 5%

 AMAT = 1 + 0.05 × 20 = 2ns

 2 cycles per instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 56

Performance Summary

 When CPU performance increased

 Miss penalty becomes more significant

 Decreasing base CPI

 Greater proportion of time spent on memory

stalls

 Increasing clock rate

 Memory stalls account for more CPU cycles

 Can’t neglect cache behavior when

evaluating system performance

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 57

Associative Caches

 Fully associative

 Allow a given block to go in any cache entry

 Requires all entries to be searched at once

 Comparator per entry (expensive)

 n-way set associative

 Each set contains n entries

 Block number determines which set

 (Block number) modulo (#Sets in cache)

 Search all entries in a given set at once

 n comparators (less expensive)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 58

Associative Cache Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 59

Spectrum of Associativity

 For a cache with 8 entries

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 60

Associativity Example

 Compare 4-block caches

 Direct mapped, 2-way set associative,

fully associative

 Block access sequence: 0, 8, 0, 6, 8

 Direct mapped

Block

address

Cache

index

Hit/miss Cache content after access

0 1 2 3

0 0 miss Mem[0]

8 0 miss Mem[8]

0 0 miss Mem[0]

6 2 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 61

Associativity Example

 2-way set associative
Block

address

Cache

index

Hit/miss Cache content after access

Set 0 Set 1

0 0 miss Mem[0]

8 0 miss Mem[0] Mem[8]

0 0 hit Mem[0] Mem[8]

6 0 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

 Fully associative
Block

address

Hit/miss Cache content after access

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 62

How Much Associativity

 Increased associativity decreases miss

rate

 But with diminishing returns

 Simulation of a system with 64KB

D-cache, 16-word blocks, SPEC2000

 1-way: 10.3%

 2-way: 8.6%

 4-way: 8.3%

 8-way: 8.1%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 63

Set Associative Cache Organization

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 64

Replacement Policy

 Direct mapped: no choice

 Set associative
 Prefer non-valid entry, if there is one

 Otherwise, choose among entries in the set

 Least-recently used (LRU)
 Choose the one unused for the longest time

 Simple for 2-way, manageable for 4-way, too hard
beyond that

 Random
 Gives approximately the same performance

as LRU for high associativity

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 65

Multilevel Caches

 Primary cache attached to CPU

 Small, but fast

 Level-2 cache services misses from

primary cache

 Larger, slower, but still faster than main

memory

 Main memory services L-2 cache misses

 Some high-end systems include L-3 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 66

Multilevel Cache Example

 Given

 CPU base CPI = 1, clock rate = 4GHz

 Miss rate/instruction = 2%

 Main memory access time = 100ns

 With just primary cache

 Miss penalty = 100ns/0.25ns = 400 cycles

 Effective CPI = 1 + 0.02 × 400 = 9

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 67

Example (cont.)

 Now add L-2 cache

 Access time = 5ns

 Global miss rate to main memory = 0.5%

 Primary miss with L-2 hit

 Penalty = 5ns/0.25ns = 20 cycles

 Primary miss with L-2 miss

 Extra penalty = 500 cycles

 CPI = 1 + 0.02 × 20 + 0.005 × 500 = 3.9

 Performance ratio = 9/3.9 = 2.3

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 68

Multilevel Cache Considerations

 Primary cache

 Focus on minimal hit time

 L-2 cache

 Focus on low miss rate to avoid main memory

access

 Hit time has less overall impact

 Results

 L-1 cache usually smaller than a single cache

 L-1 block size smaller than L-2 block size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 69

Interactions with Advanced CPUs

 Out-of-order CPUs can execute

instructions during cache miss

 Pending store stays in load/store unit

 Dependent instructions wait in reservation

stations

 Independent instructions continue

 Effect of miss depends on program data

flow

 Much harder to analyse

 Use system simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 70

Interactions with Software

 Misses depend on

memory access

patterns

 Algorithm behavior

 Compiler

optimization for

memory access

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

 Dependability

 Error Correction Codes

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 71

Chapter 6 — Storage and Other I/O Topics — 72

Dependability

 Fault: failure of a

component

 May or may not lead

to system failure

Service accomplishment

Service delivered

as specified

Service interruption

Deviation from

specified service

Failure Restoration

§
5
.5

 D
e
p
e
n
d
a
b
le

 M
e
m

o
ry

 H
ie

ra
rc

h
y

Chapter 6 — Storage and Other I/O Topics — 73

Dependability Measures

 Reliability: mean time to failure (MTTF)

 Service interruption: mean time to repair (MTTR)

 Mean time between failures

 MTBF = MTTF + MTTR

 Availability = MTTF / (MTTF + MTTR)

 Improving Availability

 Increase MTTF: fault avoidance, fault tolerance, fault

forecasting

 Reduce MTTR: improved tools and processes for

diagnosis and repair

The Hamming SEC Code

 Hamming distance

 Number of bits that are different between two

bit patterns

 Minimum distance = 2 provides single bit

error detection

 E.g. parity code

 Minimum distance = 3 provides single

error correction, 2 bit error detection

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 74

Encoding SEC

 To calculate Hamming code:

 Number bits from 1 on the left

 All bit positions that are a power 2 are parity

bits

 Each parity bit checks certain data bits:

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 75

Decoding SEC

 Value of parity bits indicates which bits are

in error

 Use numbering from encoding procedure

 E.g.

 Parity bits = 0000 indicates no error

 Parity bits = 1010 indicates bit 10 was flipped

 Example:

 What will be stored for 1001 1010?

 If you read 0111 0010 1110, is there error?

Correct it.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 76

SEC/DED Code

 Add an additional parity bit for the whole word

(pn)

 Make Hamming distance = 4

 Decoding:

 Let H = SEC parity bits

 H = 0, pn even, no error

 H ≠ 0, pn odd, correctable single bit error

 H = 0, pn odd, error in pn bit

 H ≠ 0, pn even, double error occurred

 ECC DRAM uses SEC/DED with 8 bits

protecting each 64 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 77

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache

5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies

5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 78

Chapter 6 — Storage and Other I/O Topics — 79

RAID

 Redundant Array of Inexpensive
(Independent) Disks
 Use multiple smaller disks (c.f. one large disk)

 Parallelism improves performance

 Plus extra disk(s) for redundant data storage

 Provides fault tolerant storage system
 Especially if failed disks can be “hot swapped”

 RAID 0
 No redundancy (“AID”?)

 Just stripe data over multiple disks

 But it does improve performance

Chapter 6 — Storage and Other I/O Topics — 80

RAID 1 & 2

 RAID 1: Mirroring

 N + N disks, replicate data

 Write data to both data disk and mirror disk

 On disk failure, read from mirror

 RAID 2: Error correcting code (ECC)

 N + E disks (e.g., 10 + 4)

 Split data at bit level across N disks

 Generate E-bit ECC

 Too complex, not used in practice

Chapter 6 — Storage and Other I/O Topics — 81

RAID 3: Bit-Interleaved Parity

 N + 1 disks

 Data striped across N disks at byte level

 Redundant disk stores parity

 Read access

 Read all disks

 Write access

 Generate new parity and update all disks

 On failure

 Use parity to reconstruct missing data

 Not widely used

Chapter 6 — Storage and Other I/O Topics — 82

RAID 4: Block-Interleaved Parity

 N + 1 disks

 Data striped across N disks at block level

 Redundant disk stores parity for a group of blocks

 Read access

 Read only the disk holding the required block

 Write access

 Just read disk containing modified block, and parity disk

 Calculate new parity, update data disk and parity disk

 On failure

 Use parity to reconstruct missing data

 Not widely used

Chapter 6 — Storage and Other I/O Topics — 83

RAID 3 vs RAID 4

Chapter 6 — Storage and Other I/O Topics — 84

RAID 5: Distributed Parity

 N + 1 disks
 Like RAID 4, but parity blocks distributed

across disks
 Avoids parity disk being a bottleneck

 Widely used

Chapter 6 — Storage and Other I/O Topics — 85

RAID 6: P + Q Redundancy

 N + 2 disks

 Like RAID 5, but two lots of parity

 Greater fault tolerance through more

redundancy

 Multiple RAID

 More advanced systems give similar fault

tolerance with better performance

 Example RAID 51

Chapter 6 — Storage and Other I/O Topics — 86

RAID Summary

 RAID can improve performance and

availability

 High availability requires hot swapping

 Assumes independent disk failures

 Too bad if the building burns down!

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache

5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies

5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 87

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 88

Virtual Machines

 Host computer emulates guest operating system

and machine resources

 Improved isolation of multiple guests

 Avoids security and reliability problems

 Aids sharing of resources

 Virtualization has some performance impact

 Feasible with modern high-performance comptuers

 Examples

 IBM VM/370 (1970s technology!)

 VMWare

 Microsoft Virtual PC

§
5
.6

 V
irtu

a
l M

a
c
h
in

e
s

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 89

Virtual Machines
§
5
.6

 V
irtu

a
l M

a
c
h
in

e
s

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 90

Virtual Machine Monitor

 Maps virtual resources to physical
resources

 Memory, I/O devices, CPUs

 Guest code runs on native machine in user
mode

 Traps to VMM on privileged instructions and
access to protected resources

 Guest OS may be different from host OS

 VMM handles real I/O devices

 Emulates generic virtual I/O devices for guest

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 91

Instruction Set Support

 User and System modes

 Privileged instructions only available in
system mode

 Trap to system if executed in user mode

 All physical resources only accessible
using privileged instructions

 Including page tables, interrupt controls, I/O
registers

Contents

…

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

 Introduction

 Page Tables

 Fast Translation Using a TLB

 Memory Protection

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 92

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 93

Virtual Memory

 Use main memory as a “cache” for
secondary (disk) storage
 Managed jointly by CPU hardware and the

operating system (OS)

 Programs share main memory
 Each gets a private virtual address space

holding its frequently used code and data

 Protected from other programs

 CPU and OS translate virtual addresses to
physical addresses
 VM “block” is called a page

 VM translation “miss” is called a page fault

§
5
.7

 V
irtu

a
l M

e
m

o
ry

Sharing the Physical Memory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 94

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 95

Address Translation

 Fixed-size pages (e.g., 4K)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 96

Page Fault Penalty

 On page fault, the page must be fetched

from disk

 Takes millions of clock cycles

 Handled by OS code

 Try to minimize page fault rate

 Fully associative placement

 Smart replacement algorithms

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 97

Page Tables

 Stores placement information

 Array of page table entries, indexed by virtual
page number

 Page table register in CPU points to page
table in physical memory

 If page is present in memory

 PTE stores the physical page number

 Plus other status bits (referenced, dirty, …)

 If page is not present

 PTE can refer to location in swap space on
disk

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 98

Translation Using a Page Table

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 99

Mapping Pages to Storage

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 100

Replacement and Writes

 To reduce page fault rate, prefer least-
recently used (LRU) replacement
 Reference bit (aka use bit) in PTE set to 1 on

access to page

 Periodically cleared to 0 by OS

 A page with reference bit = 0 has not been
used recently

 Disk writes take millions of cycles
 Block at once, not individual locations

 Write through is impractical

 Use write-back

 Dirty bit in PTE set when page is written

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 101

Fast Translation Using a TLB

 Address translation would appear to require

extra memory references

 One to access the PTE

 Then the actual memory access

 But access to page tables has good locality

 So use a fast cache of PTEs within the CPU

 Called a Translation Look-aside Buffer (TLB)

 Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100

cycles for miss, 0.01%–1% miss rate

 Misses could be handled by hardware or software

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 102

Fast Translation Using a TLB

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 103

TLB Misses

 If page is in memory

 Load the PTE from memory and retry

 Could be handled in hardware
 Can get complex for more complicated page table

structures

 Or in software
 Raise a special exception, with optimized handler

 If page is not in memory (page fault)

 OS handles fetching the page and updating
the page table

 Then restart the faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 104

TLB Miss Handler

 TLB miss indicates

 Page present, but PTE not in TLB

 Page not preset

 Must recognize TLB miss before

destination register overwritten

 Raise exception

 Handler copies PTE from memory to TLB

 Then restarts instruction

 If page not present, page fault will occur

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 105

Page Fault Handler

 Use faulting virtual address to find PTE

 Locate page on disk

 Choose page to replace

 If dirty, write to disk first

 Read page into memory and update page

table

 Make process runnable again

 Restart from faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 106

TLB and Cache Interaction

 If cache tag uses

physical address

 Need to translate

before cache lookup

 Alternative: use virtual

address tag

 Complications due to

aliasing

 Different virtual

addresses for shared

physical address

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 107

Memory Protection

 Different tasks can share parts of their

virtual address spaces

 But need to protect against errant access

 Requires OS assistance

 Hardware support for OS protection

 Privileged supervisor mode (aka kernel mode)

 Privileged instructions

 Page tables and other state information only

accessible in supervisor mode

 System call exception (e.g., ecall in RISC-V)

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache

5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies

5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 108

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 109

The Memory Hierarchy

 Common principles apply at all levels of

the memory hierarchy

 Based on notions of caching

 At each level in the hierarchy

 Block placement

 Finding a block

 Replacement on a miss

 Write policy

§
5
.8

 A
 C

o
m

m
o
n
 F

ra
m

e
w

o
rk

 fo
r M

e
m

o
ry

 H
ie

ra
rc

h
ie

s

The BIG Picture

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 110

Block Placement

 Determined by associativity

 Direct mapped (1-way associative)

 One choice for placement

 n-way set associative

 n choices within a set

 Fully associative

 Any location

 Higher associativity reduces miss rate

 Increases complexity, cost, and access time

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 111

Finding a Block

 Hardware caches
 Reduce comparisons to reduce cost

 Virtual memory
 Full table lookup makes full associativity feasible

 Benefit in reduced miss rate

Associativity Location method Tag comparisons

Direct mapped Index 1

n-way set

associative

Set index, then search

entries within the set

n

Fully associative Search all entries #entries

Full lookup table 0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 112

Replacement

 Choice of entry to replace on a miss

 Least recently used (LRU)

 Complex and costly hardware for high associativity

 Random

 Close to LRU, easier to implement

 Virtual memory

 LRU approximation with hardware support

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 113

Write Policy

 Write-through
 Update both upper and lower levels

 Simplifies replacement, but may require write
buffer

 Write-back
 Update upper level only

 Update lower level when block is replaced

 Need to keep more state

 Virtual memory
 Only write-back is feasible, given disk write

latency

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 114

Sources of Misses

 Compulsory misses (aka cold start misses)

 First access to a block

 Capacity misses

 Due to finite cache size

 A replaced block is later accessed again

 Conflict misses (aka collision misses)

 In a non-fully associative cache

 Due to competition for entries in a set

 Would not occur in a fully associative cache of
the same total size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 115

Cache Design Trade-offs

Design change Effect on miss rate Negative performance

effect

Increase cache size Decrease capacity

misses

May increase access

time

Increase associativity Decrease conflict

misses

May increase access

time

Increase block size Decrease compulsory

misses

Increases miss

penalty. For very large

block size, may

increase miss rate

due to pollution.

Data Cache Miss Rate

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 116

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache

5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies

5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 117

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 118

Cache Control

 Example cache characteristics

 Direct-mapped, write-back, write allocate

 Block size: 4 words (16 bytes)

 Cache size: 16 KB (1024 blocks)

 32-bit byte addresses

 Valid bit and dirty bit per block

 Blocking cache

 CPU waits until access is complete

§
5
.9

 U
s
in

g
 a

 F
in

ite
 S

ta
te

 M
a
c
h
in

e
 to

 C
o
n
tro

l A
 S

im
p
le

 C
a
c
h
e

Tag Index Offset

0 3 4 13 14 31

4 bits 10 bits 18 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 119

Interface Signals

Cache CPU Memory

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

32

32

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

128

128

Multiple cycles

per access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 120

Finite State Machines

 Use an FSM to
sequence control steps

 Set of states, transition
on each clock edge
 State values are binary

encoded

 Current state stored in a
register

 Next state
= fn (current state,
 current inputs)

 Control output signals
= fo (current state)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 121

Cache Controller FSM

Could

partition into

separate

states to

reduce clock

cycle time

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache

5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies

5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 122

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 123

Cache Coherence Problem

 Suppose two CPU cores share a physical
address space
 Write-through caches

§
5
.1

0
 P

a
ra

lle
lis

m
 a

n
d
 M

e
m

o
ry

 H
ie

ra
rc

h
ie

s
: C

a
c
h
e
 C

o
h
e
re

n
c
e

Time

step

Event CPU A’s

cache

CPU B’s

cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 124

Coherence Defined

 Informally: Reads return most recently
written value

 Formally:

 P writes X; P reads X (no intervening writes)
 read returns written value

 P1 writes X; P2 reads X (sufficiently later)
 read returns written value
 c.f. CPU B reading X after step 3 in example

 P1 writes X, P2 writes X
 all processors see writes in the same order
 End up with the same final value for X

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 125

Cache Coherence Protocols

 Operations performed by caches in
multiprocessors to ensure coherence

 Migration of data to local caches
 Reduces bandwidth for shared memory

 Replication of read-shared data
 Reduces contention for access

 Snooping protocols

 Each cache monitors bus reads/writes

 Directory-based protocols

 Caches and memory record sharing status of
blocks in a directory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 126

Invalidating Snooping Protocols

 Cache gets exclusive access to a block
when it is to be written

 Broadcasts an invalidate message on the bus

 Subsequent read in another cache misses
 Owning cache supplies updated value

CPU activity Bus activity CPU A’s

cache

CPU B’s

cache

Memory

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes 1 to X Invalidate for X 1 0

CPU B read X Cache miss for X 1 1 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 127

Memory Consistency

 When are writes seen by other processors
 “Seen” means a read returns the written value

 Can’t be instantaneously

 Assumptions
 A write completes only when all processors have seen

it

 A processor does not reorder writes with other
accesses

 Consequence
 P writes X then writes Y
 all processors that see new Y also see new X

 Processors can reorder reads, but not writes

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache

5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies

5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 128

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 129

Multilevel On-Chip Caches
§
5
.1

3
 T

h
e
 A

R
M

 C
o
rte

x
-A

5
3
 a

n
d
 In

te
l C

o
re

 i7
 M

e
m

o
ry

 H
ie

ra
rc

h
ie

s

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 130

2-Level TLB Organization

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 131

Supporting Multiple Issue

 Both have multi-banked caches that allow

multiple accesses per cycle assuming no

bank conflicts

 Other optimizations

 Return requested word first

 Non-blocking cache

 Hit under miss

 Miss under miss

 Data prefetching

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache

5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies

5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 132

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 133

Pitfalls

 Byte vs. word addressing

 Example: 32-byte direct-mapped cache,

4-byte blocks

 Byte 36 maps to block 1

 Word 36 maps to block 4

 Ignoring memory system effects when

writing or generating code

 Example: iterating over rows vs. columns of

arrays

 Large strides result in poor locality

§
5
.1

6
 F

a
lla

c
ie

s
 a

n
d
 P

itfa
lls

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 134

Pitfalls

 In multiprocessor with shared L2 or L3

cache

 Less associativity than cores results in conflict

misses

 More cores  need to increase associativity

 Using AMAT to evaluate performance of

out-of-order processors

 Ignores effect of non-blocked accesses

 Instead, evaluate performance by simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 135

Pitfalls

 Extending address range using segments

 E.g., Intel 80286

 But a segment is not always big enough

 Makes address arithmetic complicated

 Implementing a VMM on an ISA not

designed for virtualization

 E.g., non-privileged instructions accessing

hardware resources

 Either extend ISA, or require guest OS not to

use problematic instructions

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 136

Concluding Remarks

 Fast memories are small, large memories are
slow
 We really want fast, large memories 

 Caching gives this illusion 

 Principle of locality
 Programs use a small part of their memory space

frequently

 Memory hierarchy
 L1 cache  L2 cache  …  DRAM memory
 disk

 Memory system design is critical for
multiprocessors

§
5
.1

7
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

RISC-V

 Edition

Chapter 6

Parallel Processors from

Client to Cloud

Adapted by Prof. Gheith Abandah

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 2

Introduction

 Goal: connecting multiple computers
to get higher performance

 Multiprocessors

 Scalability, availability, power efficiency

 Task-level (process-level) parallelism

 High throughput for independent jobs

 Parallel processing program

 Single program run on multiple processors

 Multicore microprocessors

 Chips with multiple processors (cores)

§
6
.1

 In
tro

d
u
c
tio

n

Chapter 6 — Parallel Processors from Client to Cloud — 3

Hardware and Software

 Hardware

 Serial: e.g., Pentium 4

 Parallel: e.g., quad-core Xeon e5345

 Software

 Sequential: e.g., matrix multiplication

 Concurrent: e.g., operating system

 Sequential/concurrent software can run on
serial/parallel hardware

 Challenge: making effective use of parallel
hardware

Chapter 6 — Parallel Processors from Client to Cloud — 4

What We’ve Already Covered

 §2.11: Parallelism and Instructions

 Synchronization

 §3.6: Parallelism and Computer Arithmetic

 Subword Parallelism

 §4.10: Parallelism and Advanced
Instruction-Level Parallelism

 §5.10: Parallelism and Memory
Hierarchies

 Cache Coherence

Chapter 6 — Parallel Processors from Client to Cloud — 5

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 6

Contents

6.2 The Difficulty of Creating Parallel Programs

 Parallel Programming

 Amdahl’s Law

 Scaling

 Strong and Weak Scaling

Chapter 6 — Parallel Processors from Client to Cloud — 7

Parallel Programming

 Parallel software is the problem

 Need to get significant performance

improvement

 Otherwise, just use a faster uniprocessor,

since it’s easier!

 Difficulties

 Partitioning

 Coordination

 Communications overhead

§
6
.2

 T
h
e
 D

iffic
u
lty

 o
f C

re
a
tin

g
 P

a
ra

lle
l P

ro
c
e
s
s
in

g
 P

ro
g
ra

m
s

Chapter 6 — Parallel Processors from Client to Cloud — 8

Amdahl’s Law

 Sequential part can limit speedup

 Example: 100 processors, 90× speedup?

 Tnew = Tparallelizable/100 + Tsequential



 Solving: Fparallelizable = 0.999

 Need sequential part to be 0.1% of original

time

90
/100F)F(1

1
Speedup

ableparallelizableparalleliz






Chapter 6 — Parallel Processors from Client to Cloud — 9

Scaling Example

 Workload: sum of 10 scalars, and 10 × 10 matrix
sum
 Speed up from 10 to 100 processors

 Single processor: Time = (10 + 100) × tadd

 10 processors
 Time = 10 × tadd + 100/10 × tadd = 20 × tadd

 Speedup = 110/20 = 5.5 (55% of potential)

 100 processors
 Time = 10 × tadd + 100/100 × tadd = 11 × tadd

 Speedup = 110/11 = 10 (10% of potential)

 Assumes load can be balanced across
processors

Chapter 6 — Parallel Processors from Client to Cloud — 10

Scaling Example (cont)

 What if matrix size is 100 × 100?

 Single processor: Time = (10 + 10000) × tadd

 10 processors

 Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd

 Speedup = 10010/1010 = 9.9 (99% of potential)

 100 processors

 Time = 10 × tadd + 10000/100 × tadd = 110 × tadd

 Speedup = 10010/110 = 91 (91% of potential)

 Assuming load balanced

Chapter 6 — Parallel Processors from Client to Cloud — 11

Strong vs Weak Scaling

 Strong scaling: problem size fixed

 As in example

 Weak scaling: problem size proportional to

number of processors

 10 processors, 10 × 10 matrix

 Time = 20 × tadd

 100 processors, 32 × 32 matrix

 Time = 10 × tadd + 1000/100 × tadd = 20 × tadd

 Constant performance in this example

Chapter 6 — Parallel Processors from Client to Cloud — 12

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 13

Contents

6.3 SISD, MIMD, SIMD, SPMD, and Vector

 Flynn’s Classification

 Vector Processors

 SIMD Instruction Extensions

Chapter 6 — Parallel Processors from Client to Cloud — 14

Instruction and Data Streams

 An alternate classification

Data Streams

Single Multiple

Instruction

Streams

Single SISD:

Intel Pentium 4

SIMD: SSE

instructions of x86

Multiple MISD:

No examples today

MIMD:

Intel Xeon e5345

 SPMD: Single Program Multiple Data

 A parallel program on a MIMD computer

 Conditional code for different processors

Chapter 6 — Parallel Processors from Client to Cloud — 15

§
6
.3

 S
IS

D
, M

IM
D

, S
IM

D
, S

P
M

D
, a

n
d
 V

e
c
to

r

Vector Processors

 Highly pipelined function units

 Stream data from/to vector registers to units

 Data collected from memory into registers

 Results stored from registers to memory

 Example: Vector extension to RISC-V

 v0 to v31: 32 × 64-element registers, (64-bit elements)

 Vector instructions

 fld.v, fsd.v: load/store vector

 fadd.d.v: add vectors of double

 fadd.d.vs: add scalar to each element of vector of double

 Significantly reduces instruction-fetch bandwidth

Chapter 6 — Parallel Processors from Client to Cloud — 16

Example: DAXPY (Y = a × X + Y)

 Conventional RISC-V code:

 fld f0,a(x3) // load scalar a

 addi x5,x19,512 // end of array X

 loop: fld f1,0(x19) // load x[i]

 fmul.d f1,f1,f0 // a * x[i]

 fld f2,0(x20) // load y[i]

 fadd.d f2,f2,f1 // a * x[i] + y[i]

 fsd f2,0(x20) // store y[i]

 addi x19,x19,8 // increment index to x

 addi x20,x20,8 // increment index to y

 bltu x19,x5,loop // repeat if not done

 Vector RISC-V code:

 fld f0,a(x3) // load scalar a

 fld.v v0,0(x19) // load vector x

 fmul.d.vs v0,v0,f0 // vector-scalar multiply

 fld.v v1,0(x20) // load vector y

 fadd.d.v v1,v1,v0 // vector-vector add

 fsd.v v1,0(x20) // store vector y

Chapter 6 — Parallel Processors from Client to Cloud — 17

Vector vs. Scalar

 Vector architectures and compilers

 Simplify data-parallel programming

 Explicit statement of absence of loop-carried
dependences
 Reduced checking in hardware

 Regular access patterns benefit from
interleaved and burst memory

 Avoid control hazards by avoiding loops

 More general than ad-hoc media
extensions (such as MMX, SSE)

 Better match with compiler technology

Chapter 6 — Parallel Processors from Client to Cloud — 18

SIMD

 Operate elementwise on vectors of data

 E.g., MMX and SSE instructions in x86
 Multiple data elements in 128-bit wide registers

 All processors execute the same
instruction at the same time

 Each with different data address, etc.

 Simplifies synchronization

 Reduced instruction control hardware

 Works best for highly data-parallel
applications

Chapter 6 — Parallel Processors from Client to Cloud — 19

Vector vs. Multimedia Extensions

 Vector instructions have a variable vector width,

multimedia extensions have a fixed width

 Vector instructions support strided access,

multimedia extensions do not

 Vector units can be combination of pipelined and

arrayed functional units:

Chapter 6 — Parallel Processors from Client to Cloud — 20

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 21

Multithreading

 Performing multiple threads of execution in
parallel
 Replicate registers, PC, etc.

 Fast switching between threads

 Fine-grain multithreading
 Switch threads after each cycle

 Interleave instruction execution

 If one thread stalls, others are executed

 Coarse-grain multithreading
 Only switch on long stall (e.g., L2-cache miss)

 Simplifies hardware, but doesn’t hide short stalls
(eg, data hazards)

§
6
.4

 H
a
rd

w
a
re

 M
u
ltith

re
a
d
in

g

Chapter 6 — Parallel Processors from Client to Cloud — 22

Simultaneous Multithreading

 In multiple-issue dynamically scheduled
processor

 Schedule instructions from multiple threads

 Instructions from independent threads execute
when function units are available

 Within threads, dependencies handled by
scheduling and register renaming

 Example: Intel Pentium-4 HT

 Two threads: duplicated registers, shared
function units and caches

Chapter 6 — Parallel Processors from Client to Cloud — 23

Multithreading Example

Chapter 6 — Parallel Processors from Client to Cloud — 24

Future of Multithreading

 Will it survive? In what form?

 Power considerations  simplified

microarchitectures

 Simpler forms of multithreading

 Tolerating cache-miss latency

 Thread switch may be most effective

 Multiple simple cores might share

resources more effectively

Chapter 6 — Parallel Processors from Client to Cloud — 25

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 26

Shared Memory

 SMP: shared memory multiprocessor

 Hardware provides single physical

address space for all processors

 Synchronize shared variables using locks

 Memory access time

 UMA (uniform) vs. NUMA (nonuniform)

Chapter 6 — Parallel Processors from Client to Cloud — 27

§
6
.5

 M
u
ltic

o
re

 a
n
d
 O

th
e
r S

h
a
re

d
 M

e
m

o
ry

 M
u
ltip

ro
c
e
s
s
o
rs

Example: Sum Reduction

 Sum 64,000 numbers on 64 processor UMA
 Each processor has ID: 0 ≤ Pn ≤ 63

 Partition 1000 numbers per processor

 Initial summation on each processor

 sum[Pn] = 0;
 for (i = 1000*Pn;
 i < 1000*(Pn+1); i += 1)
 sum[Pn] += A[i];

 Now need to add these partial sums
 Reduction: divide and conquer

 Half the processors add pairs, then quarter, …

 Need to synchronize between reduction steps

Chapter 6 — Parallel Processors from Client to Cloud — 28

Example: Sum Reduction

half = 64;

do

 synch();

 if (half%2 != 0 && Pn == 0)

 sum[0] += sum[half-1];

 /* Conditional sum needed when half is odd;

 Processor0 gets missing element */

 half = half/2; /* dividing line on who sums */

 if (Pn < half) sum[Pn] += sum[Pn+half];

while (half > 1);

Chapter 6 — Parallel Processors from Client to Cloud — 29

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 30

History of GPUs

 Early video cards

 Frame buffer memory with address generation for

video output

 3D graphics processing

 Originally high-end computers (e.g., SGI)

 Moore’s Law  lower cost, higher density

 3D graphics cards for PCs and game consoles

 Graphics Processing Units

 Processors oriented to 3D graphics tasks

 Vertex/pixel processing, shading, texture mapping,

rasterization

§
6
.6

 In
tro

d
u
c
tio

n
 to

 G
ra

p
h
ic

s
 P

ro
c
e
s
s
in

g
 U

n
its

Chapter 6 — Parallel Processors from Client to Cloud — 31

Graphics in the System

Chapter 6 — Parallel Processors from Client to Cloud — 32

GPU Architectures

 Processing is highly data-parallel
 GPUs are highly multithreaded

 Use thread switching to hide memory latency
 Less reliance on multi-level caches

 Graphics memory is wide and high-bandwidth

 Trend toward general purpose GPUs
 Heterogeneous CPU/GPU systems

 CPU for sequential code, GPU for parallel code

 Programming languages/APIs
 DirectX, OpenGL

 C for Graphics (Cg), High Level Shader Language
(HLSL)

 Compute Unified Device Architecture (CUDA)

Chapter 6 — Parallel Processors from Client to Cloud — 33

Example: NVIDIA Fermi

 Multiple SIMD processors, each as shown:

Chapter 6 — Parallel Processors from Client to Cloud — 34

Example: NVIDIA Fermi

 SIMD Processor: 16 SIMD lanes

 SIMD instruction

 Operates on 32 element wide threads

 Dynamically scheduled on 16-wide processor
over 2 cycles

 32K x 32-bit registers spread across lanes

 64 registers per thread context

Chapter 6 — Parallel Processors from Client to Cloud — 35

GPU Memory Structures

Chapter 6 — Parallel Processors from Client to Cloud — 36

Classifying GPUs

 Don’t fit nicely into SIMD/MIMD model

 Conditional execution in a thread allows an
illusion of MIMD
 But with performance degredation

 Need to write general purpose code with care

Static: Discovered

at Compile Time

Dynamic: Discovered

at Runtime

Instruction-Level

Parallelism

VLIW Superscalar

Data-Level

Parallelism

SIMD or Vector Tesla Multiprocessor

Chapter 6 — Parallel Processors from Client to Cloud — 37

Putting GPUs into Perspective

Chapter 6 — Parallel Processors from Client to Cloud — 38

Feature Multicore with SIMD GPU

SIMD processors 4 to 8 8 to 16

SIMD lanes/processor 2 to 4 8 to 16

Multithreading hardware support for

SIMD threads

2 to 4 16 to 32

Typical ratio of single precision to

double-precision performance

2:1 2:1

Largest cache size 8 MB 0.75 MB

Size of memory address 64-bit 64-bit

Size of main memory 8 GB to 256 GB 4 GB to 6 GB

Memory protection at level of page Yes Yes

Demand paging Yes No

Integrated scalar processor/SIMD

processor

Yes No

Cache coherent Yes No

Guide to GPU Terms

Chapter 6 — Parallel Processors from Client to Cloud — 39

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 40

Message Passing

 Each processor has private physical
address space

 Hardware sends/receives messages
between processors

§
6
.7

 C
lu

s
te

rs
, W

S
C

, a
n
d
 O

th
e
r M

e
s
s
a
g
e
-P

a
s
s
in

g
 M

P
s

Chapter 6 — Parallel Processors from Client to Cloud — 41

Loosely Coupled Clusters

 Network of independent computers

 Each has private memory and OS

 Connected using I/O system

 E.g., Ethernet/switch, Internet

 Suitable for applications with independent tasks

 Web servers, databases, simulations, …

 High availability, scalable, affordable

 Problems

 Administration cost (prefer virtual machines)

 Low interconnect bandwidth

 c.f. processor/memory bandwidth on an SMP

Chapter 6 — Parallel Processors from Client to Cloud — 42

Sum Reduction (Again)

 Sum 64,000 on 64 processors

 First distribute 1000 numbers to each

 The do partial sums

 sum = 0;
for (i = 0; i<1000; i += 1)
 sum += AN[i];

 Reduction

 Half the processors send, other half receive

and add

 The quarter send, quarter receive and add, …

Chapter 6 — Parallel Processors from Client to Cloud — 43

Sum Reduction (Again)

 Given send() and receive() operations

 limit = 64; half = 64;/* 64 processors */
do
 half = (half+1)/2; /* send vs. receive
 dividing line */
 if (Pn >= half && Pn < limit)
 send(Pn - half, sum);
 if (Pn < (limit/2))
 sum += receive();
 limit = half; /* upper limit of senders */
while (half > 1); /* exit with final sum */

 Send/receive also provide synchronization

 Assumes send/receive take similar time to addition

Chapter 6 — Parallel Processors from Client to Cloud — 44

Grid Computing

 Separate computers interconnected by

long-haul networks

 E.g., Internet connections

 Work units farmed out, results sent back

 Can make use of idle time on PCs

 E.g., SETI@home, World Community Grid

Chapter 6 — Parallel Processors from Client to Cloud — 45

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 46

Interconnection Networks

 Network topologies

 Arrangements of processors, switches, and links

§
6
.8

 In
tro

d
u
c
tio

n
 to

 M
u
ltip

ro
c
e
s
s
o
r N

e
tw

o
rk

 T
o
p
o
lo

g
ie

s

Bus Ring

2D Mesh

N-cube (N = 3)

Fully connected

Chapter 6 — Parallel Processors from Client to Cloud — 47

Multistage Networks

Chapter 6 — Parallel Processors from Client to Cloud — 48

Network Characteristics

 Performance

 Latency per message (unloaded network)

 Throughput
 Link bandwidth

 Total network bandwidth

 Bisection bandwidth

 Congestion delays (depending on traffic)

 Cost

 Power

 Routability in silicon

Chapter 6 — Parallel Processors from Client to Cloud — 49

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 50

Parallel Benchmarks

 Linpack: matrix linear algebra

 SPECrate: parallel run of SPEC CPU programs
 Job-level parallelism

 SPLASH: Stanford Parallel Applications for
Shared Memory
 Mix of kernels and applications, strong scaling

 NAS (NASA Advanced Supercomputing) suite
 computational fluid dynamics kernels

 PARSEC (Princeton Application Repository for
Shared Memory Computers) suite
 Multithreaded applications using Pthreads and

OpenMP

§
6
.1

0
 M

u
ltip

ro
c
e
s
s
o
r B

e
n
c
h
m

a
rk

s
 a

n
d
 P

e
rfo

rm
a
n
c
e
 M

o
d
e
ls

Chapter 6 — Parallel Processors from Client to Cloud — 51

Code or Applications?

 Traditional benchmarks

 Fixed code and data sets

 Parallel programming is evolving

 Should algorithms, programming languages,
and tools be part of the system?

 Compare systems, provided they implement a
given application

 E.g., Linpack, Berkeley Design Patterns

 Would foster innovation in approaches to
parallelism

Chapter 6 — Parallel Processors from Client to Cloud — 52

Modeling Performance

 Assume performance metric of interest is
achievable GFLOPs/sec

 Measured using computational kernels from
Berkeley Design Patterns

 Arithmetic intensity of a kernel

 FLOPs per byte of memory accessed

 For a given computer, determine

 Peak GFLOPS (from data sheet)

 Peak memory bytes/sec (using Stream
benchmark)

Chapter 6 — Parallel Processors from Client to Cloud — 53

Roofline Diagram

Attainable GPLOPs/sec

= Max (Peak Memory BW × Arithmetic Intensity, Peak FP Performance)

Chapter 6 — Parallel Processors from Client to Cloud — 54

Comparing Systems

 Example: Opteron X2 vs. Opteron X4

 2-core vs. 4-core, 2× FP performance/core, 2.2GHz

vs. 2.3GHz, 1 × 2 SIMD vs. 2 × 2 SIMD

 Same memory system

 To get higher performance

on X4 than X2

 Need high arithmetic intensity

 Or working set must fit in X4’s

2MB L-3 cache

Chapter 6 — Parallel Processors from Client to Cloud — 55

Optimizing Performance

 Optimize FP performance

 Balance adds & multiplies

 Improve superscalar ILP
and use of SIMD
instructions

 Optimize memory usage

 Software prefetch
 Avoid load stalls

 Memory affinity
 Avoid non-local data

accesses

Chapter 6 — Parallel Processors from Client to Cloud — 56

Optimizing Performance

 Choice of optimization depends on

arithmetic intensity of code

 Arithmetic intensity is

not always fixed

 May scale with

problem size

 Caching reduces

memory accesses

 Increases arithmetic

intensity

Chapter 6 — Parallel Processors from Client to Cloud — 57

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 58

i7-960 vs. NVIDIA Tesla 280/480
§
6
.1

1
 R

e
a
l S

tu
ff: B

e
n
c
h
m

a
rk

in
g
 a

n
d
 R

o
o
flin

e
s
 i7

 v
s
. T

e
s
la

Chapter 6 — Parallel Processors from Client to Cloud — 59

Rooflines

Chapter 6 — Parallel Processors from Client to Cloud — 60

Benchmarks

Chapter 6 — Parallel Processors from Client to Cloud — 61

Performance Summary

Chapter 6 — Parallel Processors from Client to Cloud — 62

 GPU (480) has 4.4 X the memory bandwidth

 Benefits memory bound kernels

 GPU has 13.1 X the single precision throughout, 2.5 X

the double precision throughput

 Benefits FP compute bound kernels

 CPU cache prevents some kernels from becoming

memory bound when they otherwise would on GPU

 GPUs offer scatter-gather, which assists with kernels

with strided data

 Lack of synchronization and memory consistency

support on GPU limits performance for some kernels

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 63

Multi-threading DGEMM

Chapter 6 — Parallel Processors from Client to Cloud — 64

§
6
.1

2
 G

o
in

g
 F

a
s
te

r: M
u
ltip

le
 P

ro
c
e
s
s
o
rs

 a
n
d
 M

a
trix

 M
u
ltip

ly

 Use OpenMP:

void dgemm (int n, double* A, double* B, double* C)

{

#pragma omp parallel for

 for (int sj = 0; sj < n; sj += BLOCKSIZE)

 for (int si = 0; si < n; si += BLOCKSIZE)

 for (int sk = 0; sk < n; sk += BLOCKSIZE)

 do_block(n, si, sj, sk, A, B, C);

}

Multithreaded DGEMM

Chapter 6 — Parallel Processors from Client to Cloud — 65

Multithreaded DGEMM

Chapter 6 — Parallel Processors from Client to Cloud — 66

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 67

Fallacies

 Amdahl’s Law doesn’t apply to parallel

computers

 Since we can achieve linear speedup

 But only on applications with weak scaling

 Peak performance tracks observed

performance

 Marketers like this approach!

 But compare Xeon with others in example

 Need to be aware of bottlenecks

§
6
.1

3
 F

a
lla

c
ie

s
 a

n
d
 P

itfa
lls

Chapter 6 — Parallel Processors from Client to Cloud — 68

Pitfalls

 Not developing the software to take

account of a multiprocessor architecture

 Example: using a single lock for a shared

composite resource

 Serializes accesses, even if they could be done in

parallel

 Use finer-granularity locking

Chapter 6 — Parallel Processors from Client to Cloud — 69

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 70

Concluding Remarks

 Goal: higher performance by using multiple

processors

 Difficulties

 Developing parallel software

 Devising appropriate architectures

 SaaS importance is growing and clusters are a

good match

 Performance per dollar and performance per

Joule drive both mobile and WSC

§
6
.1

4
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

Chapter 6 — Parallel Processors from Client to Cloud — 71

Concluding Remarks (con’t)

 SIMD and vector

operations match

multimedia applications

and are easy to

program

 Adding 2 cores/chip

every 2 years.

 Doubling SIMD

operations every 4

years.

Chapter 6 — Parallel Processors from Client to Cloud — 72

