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Course Information

• Instructor: Prof. Gheith Abandah 

• Email: abandah@ju.edu.jo 

• Office: CPE 406 

• Home page: http://www.abandah.com/gheith

• Facebook group:

https://www.facebook.com/groups/549894571732525/

• Prerequisites: CPE 335: Computer Architecture and 
Organization (1) 

• Office hours: Sun – Wed:  10:30-11:30
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Textbook and References
• Patterson and Hennessy. Computer Organization & Design: The 

Hardware/Software Interface, RISC-V ed., Morgan Kaufmann, 
Elsevier Inc., 2018.

• References:
– Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 

6th ed., Morgan Kaufmann, Elsevier Inc., 2017. 

– J. P. Shen and M. H. Lipasti. Modern Processor Design: Fundamentals of 
Superscalar Processors, Mc Graw Hill, 2005.

– D. Culler and J.P. Singh with A. Gupta. Parallel Computer Architecture: A 
Hardware/Software Approach, Morgan Kaufmann, 1998. 

– J. Hayes. Computer Architecture and Organization, 3rd ed., McGraw-Hill, 
1998.

• Course slides at: http://www.abandah.com/gheith/?page_id=2518
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Course Objectives

• Introduce students to the technological changes in designing and 
building processors and computers. 

• Introduce students to the advanced techniques used in modern 
processors including pipelining, branch prediction, dynamic and 
speculative execution, multiple issue, multithreading, and 
software optimizations.

• Introduce the students to the basic concepts and technologies 
used in designing memory and storage systems including cache, 
main memory, virtual memory, and secondary memory.

• Introduce the students to the various approaches in parallel 
processing including SIMD extensions, vector processors, GPUs, 
multicore processors, shared memory multiprocessors, clusters, 
and message-passing multicomputers.
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Course Outcomes

• Understand and analyze the performance of single-
processor architectures, as well as multiprocessor 
architectures [1].

• Understand and analyze the performance of memory 
hierarchy levels [1].

• Understand the technological improvements and the 
effect of these improvements on modern computers 
[4].

• Survey research papers that describe contemporary 
issues in computer design [4, 7].
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Course Topics

• Introduction

• Computer Technology and Performance (1.5-1.11)

• Processor: Instruction-Level Parallelism (4.6‒4.11, 
4.14‒4.15)

Midterm Exam

• Memory Hierarchy (5.1‒5.11, 5.13, 5.16‒5.17)

• Parallel Processors (6.1‒6.8, 6.10‒6.14)

Final Exam
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Policies

• Attendance is required

• All submitted work must be yours

• Cheating will not be tolerated

• Open-book exams

• Join the facebook group

• Check department announcements at: 
http://www.facebook.com/pages/Computer-
Engineering-Department/369639656466107
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Grading

• Participation 10%

• Research Project 10%

• Midterm Exam 30% 

• Final Exam 50% 

9



Important Dates

Sun 11 Oct, 2020 First Lecture

Sun 6 Dec, 2020 Midterm Exam

Thu 7 Jan, 2020 Project Report Due

Thu 14 Jan, 2021 Last Date to Withdraw

Sun 17 Jan, 2021 Last Lecture

Jan 19 – 11, 2021 Final Exam Period
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COMPUTER ORGANIZATION AND DESIGN 
The Hardware/Software Interface 

RISC-V 

 Edition 

Chapter 1 

Computer Abstractions 

and Technology 

 

Adapted by Prof. Gheith Abandah 



Content 

1.2 Eight Great Ideas in Computer Architecture 

(Review) 

1.5 Technologies for Building Processors and 

Memory 

1.6 Performance (Review) 

1.7 The Power Wall 

1.8 The Sea Change: The Switch from 

Uniprocessors to Multiprocessors 

1.9 Real Stuff: Benchmarking the Intel Core i7 

1.10 Fallacies and Pitfalls 

1.11 Concluding Remarks 

 Chapter 1 — Computer Abstractions and Technology — 2 



Eight Great Ideas 

 Design for Moore’s Law 

 Use abstraction to simplify design 

 Make the common case fast 

 Performance via parallelism 

 Performance via pipelining 

 Performance via prediction 

 Hierarchy of memories 

 Dependability via redundancy 

Chapter 1 — Computer Abstractions and Technology — 3 
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Content 

1.2 Eight Great Ideas in Computer Architecture 

(Review) 

1.5 Technologies for Building Processors and 

Memory 

1.6 Performance (Review) 

1.7 The Power Wall 

1.8 The Sea Change: The Switch from 

Uniprocessors to Multiprocessors 

1.9 Real Stuff: Benchmarking the Intel Core i7 

1.10 Fallacies and Pitfalls 

1.11 Concluding Remarks 

 Chapter 1 — Computer Abstractions and Technology — 4 



Chapter 1 — Computer Abstractions and Technology — 5 

Technology Trends 

 Electronics 

technology 

continues to evolve 

 Increased capacity 

and performance 

 Reduced cost 

Year Technology Relative performance/cost 

1951 Vacuum tube 1 

1965 Transistor 35 

1975 Integrated circuit (IC) 900 

1995 Very large scale IC (VLSI) 2,400,000 

2013 Ultra large scale IC 250,000,000,000 

DRAM capacity 
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Semiconductor Technology 

 Silicon:  semiconductor 

 Add materials to transform properties: 

 Conductors 

 Insulators 

 Switch 

Chapter 1 — Computer Abstractions and Technology — 6 



Chapter 1 — Computer Abstractions and Technology — 7 

Manufacturing ICs 

 Yield: proportion of working dies per wafer 



Chapter 1 — Computer Abstractions and Technology — 8 

Intel Core i7 Wafer 

 300mm wafer, 280 chips, 32nm technology 

 Each chip is 20.7 x 10.5 mm 



Chapter 1 — Computer Abstractions and Technology — 9 

Integrated Circuit Cost 

 Nonlinear relation to area and defect rate 

 Wafer cost and area are fixed 

 Defect rate determined by manufacturing process 

 Die area determined by architecture and circuit design 

2area/2)) Diearea per (Defects(1

1
Yield

area Diearea Wafer waferper Dies

Yield waferper Dies

 waferper Cost
die per Cost







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Content 

1.2 Eight Great Ideas in Computer Architecture 

(Review) 

1.5 Technologies for Building Processors and 

Memory 

1.6 Performance (Review) 

1.7 The Power Wall 

1.8 The Sea Change: The Switch from 

Uniprocessors to Multiprocessors 

1.9 Real Stuff: Benchmarking the Intel Core i7 

1.10 Fallacies and Pitfalls 

1.11 Concluding Remarks 

 Chapter 1 — Computer Abstractions and Technology — 10 



Chapter 1 — Computer Abstractions and Technology — 11 

Response Time and Throughput 

 Response time 

 How long it takes to do a task 

 Throughput 

 Total work done per unit time 

 e.g., tasks/transactions/… per hour 

 How are response time and throughput affected 

by 

 Replacing the processor with a faster version? 

 Adding more processors? 

 We’ll focus on response time for now… 



Chapter 1 — Computer Abstractions and Technology — 12 

Relative Performance 

 Define Performance = 1/Execution Time 

 “X is n time faster than Y” 

n XY

YX

time Executiontime Execution

ePerformancePerformanc

 Example: time taken to run a program 

 10s on A, 15s on B 

 Execution TimeB / Execution TimeA 

= 15s / 10s = 1.5 

 So A is 1.5 times faster than B 



Chapter 1 — Computer Abstractions and Technology — 13 

Measuring Execution Time 

 Elapsed time 

 Total response time, including all aspects 
 Processing, I/O, OS overhead, idle time 

 Determines system performance 

 CPU time 

 Time spent processing a given job 
 Discounts I/O time, other jobs’ shares 

 Comprises user CPU time and system CPU 
time 

 Different programs are affected differently by 
CPU and system performance 



Chapter 1 — Computer Abstractions and Technology — 14 

CPU Clocking 

 Operation of digital hardware governed by a 

constant-rate clock 

Clock (cycles) 

Data transfer 

and computation 

Update state 

Clock period 

 Clock period: duration of a clock cycle 

 e.g., 250ps = 0.25ns = 250×10–12s 

 Clock frequency (rate): cycles per second 

 e.g., 4.0GHz = 4000MHz = 4.0×109Hz 



Chapter 1 — Computer Abstractions and Technology — 15 

CPU Time 

 Performance improved by 

 Reducing number of clock cycles 

 Increasing clock rate 

 Hardware designer must often trade off clock 

rate against cycle count 

Rate Clock

Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU







Chapter 1 — Computer Abstractions and Technology — 16 

Instruction Count and CPI 

 Instruction Count for a program 

 Determined by program, ISA and compiler 

 Average cycles per instruction 

 Determined by CPU hardware 

 If different instructions have different CPI 

 Average CPI affected by instruction mix 

Rate Clock

CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio per CyclesCount nInstructioCycles Clock





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Chapter 1 — Computer Abstractions and Technology — 17 

CPI in More Detail 

 If different instruction classes take different 

numbers of cycles 





n

1i

ii )Count nInstructio(CPICycles Clock

 Weighted average CPI 














n

1i

i
i

Count nInstructio

Count nInstructio
CPI

Count nInstructio

Cycles Clock
CPI

Relative frequency 



Chapter 1 — Computer Abstractions and Technology — 18 

Performance Summary 

 Performance depends on 

 Algorithm: affects IC, possibly CPI 

 Programming language: affects IC, CPI 

 Compiler: affects IC, CPI 

 Instruction set architecture: affects IC, CPI, Tc 

The BIG Picture 

cycle Clock

Seconds

nInstructio

cycles Clock

Program

nsInstructio
Time CPU 



Content 

1.2 Eight Great Ideas in Computer Architecture 

(Review) 

1.5 Technologies for Building Processors and 

Memory 

1.6 Performance (Review) 

1.7 The Power Wall 

1.8 The Sea Change: The Switch from 

Uniprocessors to Multiprocessors 

1.9 Real Stuff: Benchmarking the Intel Core i7 

1.10 Fallacies and Pitfalls 

1.11 Concluding Remarks 
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Chapter 1 — Computer Abstractions and Technology — 20 

Power Trends 

 In CMOS IC technology 
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Chapter 1 — Computer Abstractions and Technology — 21 

Reducing Power 

 Suppose a new CPU has 

 85% of capacitive load of old CPU 

 15% voltage and 15% frequency reduction 

0.520.85
FVC

0.85F0.85)(V0.85C

P

P 4

old

2

oldold

old

2

oldold

old

new 





 The power wall 

 We can’t reduce voltage further 

 We can’t remove more heat 

 How else can we improve performance? 
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1.2 Eight Great Ideas in Computer Architecture 
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1.5 Technologies for Building Processors and 

Memory 

1.6 Performance (Review) 

1.7 The Power Wall 

1.8 The Sea Change: The Switch from 

Uniprocessors to Multiprocessors 

1.9 Real Stuff: Benchmarking the Intel Core i7 

1.10 Fallacies and Pitfalls 

1.11 Concluding Remarks 
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Chapter 1 — Computer Abstractions and Technology — 23 

Uniprocessor Performance 
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Constrained by power, instruction-level parallelism, 

memory latency 



Chapter 1 — Computer Abstractions and Technology — 24 

Multiprocessors 

 Multicore microprocessors 

 More than one processor per chip 

 Requires explicitly parallel programming 

 Compare with instruction level parallelism 

 Hardware executes multiple instructions at once 

 Hidden from the programmer 

 Hard to do 

 Programming for performance 

 Load balancing 

 Optimizing communication and synchronization 



Content 

1.2 Eight Great Ideas in Computer Architecture 

(Review) 

1.5 Technologies for Building Processors and 

Memory 

1.6 Performance (Review) 

1.7 The Power Wall 

1.8 The Sea Change: The Switch from 

Uniprocessors to Multiprocessors 

1.9 Real Stuff: Benchmarking the Intel Core i7 

1.10 Fallacies and Pitfalls 

1.11 Concluding Remarks 
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Chapter 1 — Computer Abstractions and Technology — 26 

SPEC CPU Benchmark 

 Programs used to measure performance 
 Supposedly typical of actual workload 

 Standard Performance Evaluation Corp (SPEC) 
 Develops benchmarks for CPU, I/O, Web, … 

 SPEC CPU2006 
 Elapsed time to execute a selection of programs 

 Negligible I/O, so focuses on CPU performance 

 Normalize relative to reference machine 

 Summarize as geometric mean of performance ratios 
 CINT2006 (integer) and CFP2006 (floating-point) 

n

n

1i

iratio time Execution




Chapter 1 — Computer Abstractions and Technology — 27 

CINT2006 for Intel Core i7 920 



Chapter 1 — Computer Abstractions and Technology — 28 

SPEC Power Benchmark 

 Power consumption of server at different 

workload levels 

 Performance: ssj_ops/sec 

 Power: Watts (Joules/sec) 
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Chapter 1 — Computer Abstractions and Technology — 29 

SPECpower_ssj2008 for Xeon X5650 
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Chapter 1 — Computer Abstractions and Technology — 31 

Pitfall: Amdahl’s Law 

 Improving an aspect of a computer and 

expecting a proportional improvement in 

overall performance 
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 Example: multiply accounts for 80s/100s 

 How much improvement in multiply performance to 

get 5× overall? 

 Corollary: make the common case fast 



Chapter 1 — Computer Abstractions and Technology — 32 

Fallacy: Low Power at Idle 

 Look back at i7 power benchmark 

 At 100% load: 258W 

 At 50% load: 170W (66%) 

 At 10% load: 121W (47%) 

 Google data center 

 Mostly operates at 10% – 50% load 

 At 100% load less than 1% of the time 

 Consider designing processors to make 

power proportional to load 



Chapter 1 — Computer Abstractions and Technology — 33 

Pitfall: MIPS as a Performance Metric 

 MIPS: Millions of Instructions Per Second 

 Doesn’t account for 

 Differences in ISAs between computers 

 Differences in complexity between instructions 

6
6

6

10CPI

rate Clock

10
rate Clock

CPIcount nInstructio

count nInstructio

10time Execution
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MIPS
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 CPI varies between programs on a given CPU 
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Chapter 1 — Computer Abstractions and Technology — 35 

Concluding Remarks 

 

 Cost/performance is improving 

 Due to underlying technology development 

 Execution time: the best performance 
measure 

 Power is a limiting factor 

 Use parallelism to improve performance 
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COMPUTER ORGANIZATION AND DESIGN 
The Hardware/Software Interface 

RISC-V 

 Edition 

Chapter 4 

The Processor 

 

Adapted by Prof. Gheith Abandah 

 



Contents 

4.6 Pipelined Datapath and Control (Review) 

4.7 Data Hazards: Forwarding versus Stalling 

4.8 Control Hazards 

4.9 Exceptions 

4.10 Parallelism via Instructions 

4.11 Real Stuff: The ARM Cortex-A53 and Intel 

Core i7 Pipelines 

4.14 Fallacies and Pitfalls 

4.15 Concluding Remarks 

Chapter 4 — The Processor — 2 



Contents 

4.6 Pipelined Datapath and Control (Review) 

 Five-Stage Pipeline 

 Pipeline Control 

 Pipeline Hazards 

  

Chapter 4 — The Processor — 3 



Five-Stage Pipeline 

 

F: Fetch instruction from the instruction 

memory 

D: Decode instruction and read operands 

E: Execute operation or calculate address 

M: Memory access 

W: Write result to the register 

Chapter 4 — The Processor — 4 



Chapter 4 — The Processor — 5 

Five-Stage Pipeline 



Chapter 4 — The Processor — 6 

Pipelined Control 

 Control signals derived from instruction 

 As in single-cycle implementation 



Chapter 4 — The Processor — 7 

Pipelined Control 



Chapter 4 — The Processor — 8 

Hazards 

 Situations that prevent starting the next 
instruction in the next cycle 

 Structure hazards 

 A required resource is busy 

 Data hazard 

 Need to wait for previous instruction to 
complete its data read/write 

 Control hazard 

 Deciding on control action depends on 
previous instruction 



Contents 

4.6 Pipelined Datapath and Control (Review) 

4.7 Data Hazards: Forwarding versus Stalling 

4.8 Control Hazards 

4.9 Exceptions 

4.10 Parallelism via Instructions 

4.11 Real Stuff: The ARM Cortex-A53 and Intel 

Core i7 Pipelines 

4.14 Fallacies and Pitfalls 

4.15 Concluding Remarks 
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Contents 

4.7 Data Hazards: Forwarding versus Stalling 

 Data Hazards in ALU Instructions 

 Load-Use Data Hazard 

 Code Scheduling 

  

Chapter 4 — The Processor — 10 



Chapter 4 — The Processor — 11 

Data Hazards in ALU Instructions 

 Consider this sequence: 

 sub  x2, x1,x3 
and  x12,x2,x5 
or   x13,x6,x2 
add  x14,x2,x2 
sd   x15,100(x2) 

 There are multiple true data dependencies, 

read-after-write (RAW), on register x2. 

 We can resolve hazards with stalls or 

forwarding. 
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Chapter 4 — The Processor — 12 

Dependencies & Forwarding 



Chapter 4 — The Processor — 13 

Forwarding Paths 



Chapter 4 — The Processor — 14 

Load-Use Data Hazard 

 Can’t always avoid stalls by forwarding 

 If value not computed when needed 

 Can’t forward backward in time! 



Chapter 4 — The Processor — 15 

Load-Use Hazard Detection 

 Check when using instruction is decoded 
in ID stage 

 ALU operand register numbers in ID stage 
are given by 

 IF/ID.RegisterRs1, IF/ID.RegisterRs2 

 Load-use hazard when 

 ID/EX.MemRead and 
  ((ID/EX.RegisterRd = IF/ID.RegisterRs1) or 
   (ID/EX.RegisterRd = IF/ID.RegisterRs1)) 

 If detected, stall and insert bubble 



Chapter 4 — The Processor — 16 

How to Stall the Pipeline 

 Force control values in ID/EX register 

to 0 

 EX, MEM and WB do nop (no-operation) 

 Prevent update of PC and IF/ID register 

 Using instruction is decoded again 

 Following instruction is fetched again 

 1-cycle stall allows MEM to read data for ld 

 Can subsequently forward to EX stage 



Chapter 4 — The Processor — 17 

Load-Use Data Hazard 

Stall inserted 

here 



Chapter 4 — The Processor — 18 

Datapath with Hazard Detection 



Chapter 4 — The Processor — 19 

Stalls and Performance 

 Stalls reduce performance 

 But are required to get correct results 

 Compiler can arrange code to avoid 

hazards and stalls 

 Requires knowledge of the pipeline structure 

The BIG Picture 



Chapter 4 — The Processor — 20 

Code Scheduling to Avoid Stalls 

 Reorder code to avoid use of load result in 

the next instruction 

 C code for a = b + e; c = b + f; 

ld  x1, 0(x0) 

ld  x2, 8(x0) 

add  x3, x1, x2 

sd  x3, 24(x0) 

ld  x4, 16(x0) 

add  x5, x1, x4 

sd  x5, 32(x0) 

stall 

stall 

ld  x1, 0(x0) 

ld  x2, 8(x0) 

ld  x4, 16(x0) 

add  x3, x1, x2 

sd  x3, 24(x0) 

add  x5, x1, x4 

sd  x5, 32(x0) 

11 cycles 13 cycles 
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Contents 

4.8 Control Hazards 

 Branch Hazards 

 Reducing Branch Delay 

 Branch Prediction 

 Dynamic Branch Prediction 

 Calculating Branch Target 

 Imprecise Exceptions 
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Branch Hazards 

 If branch outcome determined in MEM 
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Chapter 4 — The Processor — 24 

Reducing Branch Delay 

 Move hardware to determine outcome to ID 

stage 

 Target address adder 

 Register comparator 

 Example: branch taken 
 36:  sub  x10, x4, x8 
40:  beq  x1,  x3, 16  // PC-relative branch 
                       // to 40+16*2=72 
44:  and  x12, x2, x5 
48:  orr  x13, x2, x6 
52:  add  x14, x4, x2 
56:  sub  x15, x6, x7 
     ... 
72:  ld   x4, 50(x7) 



Chapter 4 — The Processor — 25 

Example: Branch Taken 



Chapter 4 — The Processor — 26 

Example: Branch Taken 



Chapter 4 — The Processor — 27 

Branch Prediction 

 Longer pipelines can’t readily determine 

branch outcome early 

 Stall penalty becomes unacceptable 

 Predict outcome of branch 

 Only stall if prediction is wrong 

 In RISC-V pipeline 

 Can predict branches not taken 

 Fetch instruction after branch, with no delay 



Chapter 4 — The Processor — 28 

More-Realistic Branch Prediction 

 Static branch prediction 

 Based on typical branch behavior 

 Example: loop and if-statement branches 

 Predict backward branches taken 

 Predict forward branches not taken 

 Dynamic branch prediction 

 Hardware measures actual branch behavior 

 e.g., record recent history of each branch 

 Assume future behavior will continue the trend 

 When wrong, stall while re-fetching, and update history 



Chapter 4 — The Processor — 29 

Dynamic Branch Prediction 

 In deeper and superscalar pipelines, branch 

penalty is more significant 

 Use dynamic prediction 

 Branch prediction buffer (aka branch history table) 

 Indexed by recent branch instruction addresses 

 Stores outcome (taken/not taken) 

 To execute a branch 

 Check table, expect the same outcome 

 Start fetching from fall-through or target 

 If wrong, flush pipeline and flip prediction 



Branch History Table (BHT) 

Chapter 4 — The Processor — 30 

Table size = n × 2k bits 
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1-Bit Predictor: Shortcoming 

 Inner loop branches mispredicted twice! 

outer: … 
       … 
inner: … 
       … 
       beq …, …, inner 
       … 
       beq …, …, outer 

 Mispredict as taken on last iteration of 

inner loop 

 Then mispredict as not taken on first 

iteration of inner loop next time around 
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2-Bit Predictor 

 Only change prediction on two successive 

mispredictions 
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Calculating the Branch Target 

 Even with predictor, still need to calculate 

the target address 

 1-cycle penalty for a taken branch 

 Branch target buffer 

 Cache of target addresses 

 Indexed by PC when instruction fetched 

 If hit and instruction is branch predicted taken, can 

fetch target immediately 



Branch Target Buffer (BTB) 
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Exceptions and Interrupts 

 “Unexpected” events requiring change 

in flow of control 

 Different ISAs use the terms differently 

 Exception 

 Arises within the CPU 

 e.g., undefined opcode, syscall, … 

 Interrupt 

 From an external I/O controller 

 Dealing with them without sacrificing 

performance is hard 
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Handling Exceptions 

 Save PC of offending (or interrupted) instruction 
 In RISC-V: Supervisor Exception Program Counter 

(SEPC) 

 

 Save indication of the problem 
 In RISC-V: Supervisor Exception Cause Register 

(SCAUSE) 

 64 bits, but most bits unused 
 Exception code field: 2 for undefined opcode, 12 for hardware 

malfunction, … 

 Jump to handler 
 Assume at 0000 0000 1C09 0000hex 
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An Alternate Mechanism 

 Vectored Interrupts 

 Handler address determined by the cause 

 Exception vector address to be added to a 
vector table base register: 

 Undefined opcode  00 0100 0000two 

 Hardware malfunction: 01 1000 0000two 

 …:    … 

 Instructions either 

 Deal with the interrupt, or 

 Jump to real handler 
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Handler Actions 

 Read cause, and transfer to relevant 
handler 

 Determine action required 

 If restartable 

 Take corrective action 

 use SEPC to return to program 

 Otherwise 

 Terminate program 

 Report error using SEPC, SCAUSE, … 
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Exceptions in a Pipeline 

 Another form of control hazard 

 Consider malfunction on add in EX stage 
add x1, x2, x1 

 Prevent x1 from being clobbered 

 Complete previous instructions 

 Flush add and subsequent instructions 

 Set SEPC and SCAUSE register values 

 Transfer control to handler 

 Similar to mispredicted branch 

 Use much of the same hardware 
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Pipeline with Exceptions 
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Exception Properties 

 Restartable exceptions 

 Pipeline can flush the instruction 

 Handler executes, then returns to the 

instruction 

 Refetched and executed from scratch 

 PC saved in SEPC register 

 Identifies causing instruction 
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Exception Example 

 Exception on add in 
 40 sub  x11, x2, x4 
44 and  x12, x2, x5 
48 orr  x13, x2, x6 
4c add  x1,  x2, x1 
50 sub  x15, x6, x7 
54 ld   x16, 100(x7) 
… 

 Handler 
 1C090000 sd  x26, 1000(x10) 
1c090004   sd  x27, 1008(x10) 
… 
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Exception Example 
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Exception Example 
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Multiple Exceptions 

 Pipelining overlaps multiple instructions 

 Could have multiple exceptions at once 

 Simple approach: deal with exception from 

earliest instruction 

 Flush subsequent instructions 

 “Precise” exceptions 

 In complex pipelines 

 Multiple instructions issued per cycle 

 Out-of-order completion 

 Maintaining precise exceptions is difficult! 
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Imprecise Exceptions 

 Just stop pipeline and save state 

 Including exception cause(s) 

 Let the handler work out 

 Which instruction(s) had exceptions 

 Which to complete or flush 

 May require “manual” completion 

 Simplifies hardware, but more complex handler 

software 

 Not feasible for complex multiple-issue 

out-of-order pipelines 
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Instruction-Level Parallelism (ILP) 

 Pipelining: executing multiple instructions in 
parallel 

 To increase ILP 
 Deeper pipeline 

 Less work per stage  shorter clock cycle 

 Multiple issue 
 Replicate pipeline stages  multiple pipelines 

 Start multiple instructions per clock cycle 

 CPI < 1, so use Instructions Per Cycle (IPC) 

 E.g., 4GHz 4-way multiple-issue 

 16 BIPS, peak CPI = 0.25, peak IPC = 4 

 But dependencies reduce this in practice 
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Multiple Issue 

 Static multiple issue 

 Compiler groups instructions to be issued together 

 Packages them into “issue slots” 

 Compiler detects and avoids hazards 

 Dynamic multiple issue 

 CPU examines instruction stream and chooses 

instructions to issue each cycle 

 Compiler can help by reordering instructions 

 CPU resolves hazards using advanced techniques at 

runtime 
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Static Multiple Issue 

 Compiler groups instructions into “issue 

packets” 

 Group of instructions that can be issued on a 

single cycle 

 Determined by pipeline resources required 

 Think of an issue packet as a very long 

instruction 

 Specifies multiple concurrent operations 

  Very Long Instruction Word (VLIW) 



VILW 
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Scheduling Static Multiple Issue 

 Compiler must remove some/all hazards 

 Reorder instructions into issue packets 

 No dependencies with a packet 

 Possibly some dependencies between 

packets 

 Varies between ISAs; compiler must know! 

 Pad with nop if necessary 
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RISC-V with Static Dual Issue 

 Two-issue packets 

 One ALU/branch instruction 

 One load/store instruction 

 64-bit aligned 

 ALU/branch, then load/store 

 Pad an unused instruction with nop 

Address Instruction type Pipeline Stages 

n ALU/branch IF ID EX MEM WB 

n + 4 Load/store IF ID EX MEM WB 

n + 8 ALU/branch IF ID EX MEM WB 

n + 12 Load/store IF ID EX MEM WB 

n + 16 ALU/branch IF ID EX MEM WB 

n + 20 Load/store IF ID EX MEM WB 
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RISC-V with Static Dual Issue 
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Hazards in the Dual-Issue RISC-V 

 More instructions executing in parallel 

 EX data hazard 

 Forwarding avoided stalls with single-issue 

 Now can’t use ALU result in load/store in same packet 

 add  x10, x0, x1 
ld   x2, 0(x10) 

 Split into two packets, effectively a stall 

 Load-use hazard 

 Still one cycle use latency, but now two instructions 

 More aggressive scheduling required 



Forwarding in Dual-Issue RISC-V 

 In addition to forwarding from M and W to 

E, there are additional forwarding paths 

among the two pipelines, e.g.: 

 From W in memory pipeline to E in ALU 

pipeline 
 ld   x31, 0(x20)  
add  x31, x31, x21 

 From M in ALU pipeline to M in memory 

pipeline 
 add  x31, x31, x21  
sd   x31, 0(x20) 
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Scheduling Example 

 Schedule this for dual-issue RISC-V 
Loop: ld   x31,0(x20)     // x31=array element 
      add  x31,x31,x21    // add scalar in x21 
      sd   x31,0(x20)     // store result 
      addi x20,x20,-8     // decrement pointer 
      blt  x22,x20,Loop   // branch if x22 < x20 

ALU/branch Load/store cycle 

Loop: nop ld  x31,0(x20)  1 

addi x20,x20,-8  nop 2 

add  x31,x31,x21 nop 3 

blt  x22,x20,Loop sd  x31,8(x20) 4 

 IPC = 5/4 = 1.25 (c.f. peak IPC = 2) 
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Loop Unrolling 

 Replicate loop body to expose more 

parallelism 

 Reduces loop-control overhead 

 Use different registers per replication 

 Called “register renaming” 

 Avoid loop-carried “anti-dependencies” 

 Store followed by a load of the same register 

 Aka “name dependence”, write-after-read 

 Or “output dependence”, write-after-write  

 Reuse of a register name 



Unrolling Steps 

 

1. Replicate the loop instructions n times 

2. Remove unneeded loop overhead 

3. Modify instructions 

4. Rename registers 

5. Schedule instructions 
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Loop Unrolling Example 

 IPC = 14/8 = 1.75 

 Closer to 2, but at cost of registers and code size 

ALU/branch Load/store cycle 

Loop: addi x20,x20,-32 ld  x28, 0(x20) 1 

nop ld  x29, 24(x20) 2 

add x28,x28,x21 ld  x30, 16(x20) 3 

add x29,x29,x21 ld  x31, 8(x20) 4 

add x30,x30,x21 sd  x28, 32(x20) 5 

add x31,x31,x21 sd  x29, 24(x20) 6 

nop sd  x30, 16(x20) 7 

blt x22,x20,Loop sd  x31, 8(x20) 8 
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Dynamic Multiple Issue 

 “Superscalar” processors 

 CPU decides whether to issue 0, 1, 2, … 

each cycle 

 Avoiding structural and data hazards 

 Avoids the need for compiler scheduling 

 Though it may still help 

 Code semantics ensured by the CPU 
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Dynamic Pipeline Scheduling 

 Allow the CPU to execute instructions out 

of order to avoid stalls 

 But commit result to registers in order 

 Example 

 ld   x31,20(x21) 
add  x1,x31,x2 
sub  x23,x23,x3 
andi x5,x23,20 

 Can start sub while add is waiting for ld 
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Dynamically Scheduled CPU 

Results also sent 

to any waiting 

reservation stations 

Reorders buffer for 

register writes 
Can supply 

operands for 

issued instructions 

Preserves 

dependencies 

Hold pending 

operands 



Pipeline Stages 

F: Fetch from instr. memory (IM) to instr. queue (IQ). 

I: Issue from IQ to reservation stations (RS), reading 

ready operands from register file (RF). 

E: Execute when functional unit (FU) is free and 

instr. In RS has ready operands. 

W: Write result from FU through common data bus 

(CDB) to reorder buffer (ROB) and RS. 

C: Commit results in order from ROB to RF and 

memory 

 Loads have FIAMWC, stores have FIAC. A: 

Address calculation 
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Register Renaming 

 Reservation stations and reorder buffer 
effectively provide register renaming 

 On instruction issue to reservation station 

 If operand is available in register file or 
reorder buffer 
 Copied to reservation station 

 No longer required in the register; can be 
overwritten 

 If operand is not yet available 
 It will be provided to the reservation station by a 

function unit 

 Register update may not be required 



Examples 

 Assume superscalar processor of degree 3 

 Name dependence (WAR) 

 mul  x1,x2,x3 
add  x4,x1,x5 
ld   x5,16(x21) 

 

 Output dependence (WAW) 

 mul  x1,x2,x3 
add  x4,x1,x5 
ld   x1,16(x21) 
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Speculation 

 “Guess” what to do with an instruction 

 Start operation as soon as possible 

 Check whether guess was right 

 If so, complete the operation 

 If not, roll-back and do the right thing 

 Common to static and dynamic multiple issue 

 Examples 

 Speculate on branch outcome 

 Roll back if path taken is different 

 Speculate on load 

 Roll back if location is updated 
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Compiler/Hardware Speculation 

 Compiler can reorder instructions 

 e.g., move load before branch 

 Can include “fix-up” instructions to recover 

from incorrect guess 

 Hardware can look ahead for instructions 

to execute 

 Buffer results until it determines they are 

actually needed 

 Flush buffers on incorrect speculation 
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Branch Speculation 

 Predict branch and continue issuing 

 Don’t commit until branch outcome 

determined 

 Example: Assume a superscalar 

processor of degree 2 and the branch 

prediction is not taken. 

 ld   x1,0(x20) 
beq  x1,x2,Skip 
I3 
I4 
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Load Speculation 

 Avoid load and cache miss delay 

 Load before completing outstanding stores 

 Predict the effective address or loaded value 

 Bypass stored values to load unit 

 Don’t commit load until speculation cleared 

 Example: Superscalar of degree 3. 

 ld   x1,0(x20) 
sd   x2,0(x1) 
ld   x3,0(x21) 
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Speculation and Exceptions 

 What if exception occurs on a 
speculatively executed instruction? 

 e.g., speculative load before null-pointer 
check 

 Static speculation 

 Can add ISA support for deferring exceptions 

 Dynamic speculation 

 Can buffer exceptions until instruction 
completion (which may not occur) 



Exceptions Examples 

 Assume superscalar processor of degree 3 

with 2 address calculation units 

 E1: Predict branch as not take, but resolve 

to taken. The ld has exception in M. 

 beq  x1,x2,L1 
ld   x5,16(x21) 

 E2: Assume first sd has exemption in C. 

 ld   x1,0(x20) 
sd   x1,0(x21) 
sd   x2,16(x21) 
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Why Do Dynamic Scheduling? 

 Why not just let the compiler schedule 

code? 

 Not all stalls are predicable 

 e.g., cache misses 

 Can’t always schedule around branches 

 Branch outcome is dynamically determined 

 Different implementations of an ISA have 

different latencies and hazards 
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Does Multiple Issue Work? 

 Yes, but not as much as we’d like 

 Programs have real dependencies that limit ILP 

 Some dependencies are hard to eliminate 

 e.g., pointer aliasing 

 Some parallelism is hard to expose 

 Limited window size during instruction issue 

 Memory delays and limited bandwidth 

 Hard to keep pipelines full 

 Speculation can help if done well 

The BIG Picture 
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Power Efficiency 

 Complexity of dynamic scheduling and 

speculations requires power 

 Multiple simpler cores may be better 
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Cortex A53 and Intel i7 
Processor ARM A53 Intel Core i7 920 

Market Personal Mobile Device Server, cloud 

Thermal design power 100 milliWatts 

(1 core @ 1 GHz) 

130 Watts 

Clock rate 1.5 GHz 2.66 GHz 

Cores/Chip 4 (configurable) 4 

Floating point? Yes Yes 

Multiple issue? Dynamic Dynamic 

Peak instructions/clock cycle 2 4 

Pipeline stages 8 14 

Pipeline schedule Static in-order Dynamic out-of-order 

with speculation 

Branch prediction Hybrid 2-level 

1st level caches/core 16-64 KiB I, 16-64 KiB D 32 KiB I, 32 KiB D 

2nd level caches/core 128-2048 KiB 256 KiB (per core) 

3rd level caches (shared) (platform dependent) 2-8 MB 
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ARM Cortex-A53 Pipeline 
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ARM Cortex-A53 Performance 
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Core i7 Pipeline 
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Core i7 Performance 
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Fallacies 

 Pipelining is easy (!) 

 The basic idea is easy 

 The devil is in the details 

 e.g., detecting data hazards 

 Pipelining is independent of technology 

 So why haven’t we always done pipelining? 

 More transistors make more advanced techniques 

feasible 

 Pipeline-related ISA design needs to take account of 

technology trends 

 e.g., predicated instructions 
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Pitfalls 

 Poor ISA design can make pipelining 

harder 

 e.g., complex instruction sets (VAX, IA-32) 

 Significant overhead to make pipelining work 

 IA-32 micro-op approach 

 e.g., complex addressing modes 

 Register update side effects, memory indirection 

 e.g., delayed branches 

 Advanced pipelines have long delay slots 
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Concluding Remarks 

 

 Pipelining improves instruction throughput 

using parallelism 

 More instructions completed per second 

 Latency for each instruction not reduced 

 Hazards: structural, data, control 

 Multiple issue and dynamic scheduling (ILP) 

 Dependencies limit achievable parallelism 

 Complexity leads to the power wall 
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Principle of Locality 

 Programs access a small proportion of 

their address space at any time 

 Temporal locality 

 Items accessed recently are likely to be 

accessed again soon 

 e.g., instructions in a loop, induction variables 

 Spatial locality 

 Items near those accessed recently are likely 

to be accessed soon 

 E.g., sequential instruction access, array data 
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Taking Advantage of Locality 

 Memory hierarchy 

 Store everything on disk 

 Copy recently accessed (and nearby) 

items from disk to smaller DRAM memory 

 Main memory 

 Copy more recently accessed (and 

nearby) items from DRAM to smaller 

SRAM memory 

 Cache memory attached to CPU 



Memory Hierarchy 
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Memory Hierarchy Levels 

 Block (aka line): unit of copying 

 May be multiple words 

 If accessed data is present in 

upper level 

 Hit: access satisfied by upper level 

 Hit ratio: hits/accesses 

 If accessed data is absent 

 Miss: block copied from lower level 

 Time taken: miss penalty 

 Miss ratio: misses/accesses 

= 1 – hit ratio 

 Then accessed data supplied from 

upper level 
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Memory Technology (2012) 

 Static RAM (SRAM) 

 0.5ns – 2.5ns, $2000 – $1000 per GB 

 Dynamic RAM (DRAM) 

 50ns – 70ns, $10 – $20 per GB 

 Flash memory 

 5,000ns – 50,000ns, $0.75 – $1.00 per GB 

 Magnetic disk 

 5ms – 20ms, $0.05 – $0.10 per GB 

 Ideal memory 

 Access time of SRAM 

 Capacity and cost/GB of disk 
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SRAM Technology 

 Static RAM 

 6-8 transistors per bit 

 Fast but not dense 

 Often has standby mode 
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DRAM Technology 

 Data stored as a charge in a capacitor 

 Single transistor used to access the charge 

 Must periodically be refreshed 

 Read contents and write back 

 Performed on a DRAM “row” 
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Classic DRAM 
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Classic DRAM 

 

 

 

 

 

 

 

 Low bandwidth 
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Advanced DRAM Organization 

 Access an entire row and save it in a row 

buffer. 

 Fast page mode: supply successive 

words from the row buffer with reduced 

latency 
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Advanced DRAM Organization 

 Synchronous DRAM (SDRAM) has a 

counter that increments the column 

address using a clock signal. 
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Advanced DRAM Organization 

 Double data rate (DDR) SDRAM 

 Transfer on rising and falling clock edges 

 Quad data rate (QDR) SDRAM 

 Separate DDR inputs and outputs 



Micron 1Gb DDR-SDRAM  
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MT46V128M8 – 32 Meg X 8 X 4 Banks, Datasheet 

https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr1/1gb_ddr.pdf


Micron 1Gb DDR-SDRAM  
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DRAM Generations 
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DRAM Generations 

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac

Tcac

Year Capacity $/GB 

1980 64Kbit $1500000 

1983 256Kbit $500000 

1985 1Mbit $200000 

1989 4Mbit $50000 

1992 16Mbit $15000 

1996 64Mbit $10000 

1998 128Mbit $4000 

2000 256Mbit $1000 

2004 512Mbit $250 

2007 1Gbit $50 



DRAM Performance Factors 

 Row buffer 

 Allows several words to be read and refreshed in 

parallel 

 Synchronous DRAM 

 Allows for consecutive accesses in bursts without 

needing to send each address 

 Improves bandwidth 

 DRAM banking 

 Allows simultaneous access to multiple DRAMs 

 Improves bandwidth 
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Increasing Memory Bandwidth 

 To get 16-byte block: 

 a. One-word wide memory 
 Miss penalty = 4×(1 + 15 + 1) = 68 bus cycles 

 Bandwidth = 16 bytes / 68 cycles = 0.24 B/cycle 
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Increasing Memory Bandwidth 

 b. 4-word wide memory 
 Miss penalty = 1 + 15 + 1 = 17 bus cycles 

 Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle 

 c. 4-bank interleaved memory 
 Miss penalty = 1 + 15 + 4×1 = 20 bus cycles 

 Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle 
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Increasing Memory Bandwidth 

 

 d. DDR-SDRAM 
 Miss penalty = 1 + 15 + 4×0.5 = 18 bus cycles 

 Bandwidth = 16 bytes / 18 cycles = 0.89 B/cycle 
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Flash Storage 

 Nonvolatile semiconductor storage 

 100× – 1000× faster than disk 

 Smaller, lower power, more robust 

 But more $/GB (between disk and DRAM) 



Chapter 6 — Storage and Other I/O Topics — 25 

Flash Types 

 NOR flash: bit cell like a NOR gate 

 Random read/write access 

 Used for instruction memory in embedded systems 

 NAND flash: bit cell like a NAND gate 

 Denser (bits/area), but block-at-a-time access 

 Cheaper per GB 

 Used for USB keys, media storage, … 

 Flash bits wears out after 1000’s of accesses 

 Not suitable for direct RAM or disk replacement 

 Wear leveling: remap data to less used blocks 
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Disk Storage 

 Nonvolatile, rotating magnetic storage 
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Disk Sectors and Access 

 Each sector records 
 Sector ID 

 Data (512 bytes, 4096 bytes proposed) 

 Error correcting code (ECC) 
 Used to hide defects and recording errors 

 Synchronization fields and gaps 

 Access to a sector involves 
 Queuing delay if other accesses are pending 

 Seek: move the heads 

 Rotational latency 

 Data transfer 

 Controller overhead 



Chapter 6 — Storage and Other I/O Topics — 28 

Disk Access Example 

 Given 
 512B sector, 15,000rpm, 4ms average seek 

time, 100MB/s transfer rate, 0.2ms controller 
overhead, idle disk 

 Average read time 
 4ms seek time 

+ ½ / (15,000/60) = 2ms rotational latency 
+ 512 / 100MB/s = 0.005ms transfer time 
+ 0.2ms controller delay 
= 6.2ms 

 If actual average seek time is 1ms 
 Average read time = 3.2ms 
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Disk Access Example 2 

 

 Given 
 15,000rpm, 2MB/cylinder 

 Sustainable peak transfer rate? 
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Disk Performance Issues 

 Manufacturers quote average seek time 

 Based on all possible seeks 

 Locality and OS scheduling lead to smaller actual 

average seek times 

 Smart disk controller allocate physical sectors on 

disk 

 Present logical sector interface to host 

 SCSI, ATA, SATA 

 Disk drives include caches 

 Prefetch sectors in anticipation of access 

 Avoid seek and rotational delay 
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Cache Memory 

 Cache memory 

 The level of the memory hierarchy closest to 

the CPU 

 Given accesses X1, …, Xn–1, Xn 
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 How do we know if 

the data is present? 

 Where do we look? 
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Direct Mapped Cache 

 Location determined by address 

 Direct mapped: only one choice 

 (Block address) modulo (#Blocks in cache) 

 #Blocks is a 

power of 2 

 Use low-order 

address bits 
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Tags and Valid Bits 

 How do we know which particular block is 

stored in a cache location? 

 Store block address as well as the data 

 Actually, only need the high-order bits 

 Called the tag 

 What if there is no data in a location? 

 Valid bit: 1 = present, 0 = not present 

 Initially 0 



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 35 

Cache Example 

 8-blocks, 1 word/block, direct mapped 

 Initial state 

Index V Tag Data 

000 N 

001 N 

010 N 

011 N 

100 N 

101 N 

110 N 

111 N 
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Cache Example 

Index V Tag Data 

000 N 

001 N 

010 N 

011 N 

100 N 

101 N 

110 Y 10 Mem[10110] 

111 N 

Word addr Binary addr Hit/miss Cache block 

22 10 110 Miss 110 
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Cache Example 

Index V Tag Data 

000 N 

001 N 

010 Y 11 Mem[11010] 

011 N 

100 N 

101 N 

110 Y 10 Mem[10110] 

111 N 

Word addr Binary addr Hit/miss Cache block 

26 11 010 Miss 010 
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Cache Example 

Index V Tag Data 

000 N 

001 N 

010 Y 11 Mem[11010] 

011 N 

100 N 

101 N 

110 Y 10 Mem[10110] 

111 N 

Word addr Binary addr Hit/miss Cache block 

22 10 110 Hit 110 

26 11 010 Hit 010 
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Cache Example 

Index V Tag Data 

000 Y 10 Mem[10000] 

001 N 

010 Y 11 Mem[11010] 

011 Y 00 Mem[00011] 

100 N 

101 N 

110 Y 10 Mem[10110] 

111 N 

Word addr Binary addr Hit/miss Cache block 

16 10 000 Miss 000 

3 00 011 Miss 011 

16 10 000 Hit 000 
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Cache Example 

Index V Tag Data 

000 Y 10 Mem[10000] 

001 N 

010 Y 10 Mem[10010] 

011 Y 00 Mem[00011] 

100 N 

101 N 

110 Y 10 Mem[10110] 

111 N 

Word addr Binary addr Hit/miss Cache block 

18 10 010 Miss 010 
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Address Subdivision 



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42 

Example: Larger Block Size 

 64 blocks, 16 bytes/block 

 To what block number does address 1200 

map? 

 Block address = 1200/16 = 75 

 Block number = 75 modulo 64 = 11 

Tag Index Offset 

0 3 4 9 10 63 

4 bits 6 bits 22 bits 
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Block Size Considerations 

 Larger blocks should reduce miss rate 

 Due to spatial locality 

 But in a fixed-sized cache 

 Larger blocks  fewer of them 

 More competition  increased miss rate 

 Larger blocks  pollution 

 Larger miss penalty 

 Can override benefit of reduced miss rate 

 Early restart and critical-word-first can help 
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Block Size Considerations 
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Cache Misses 

 On cache hit, CPU proceeds normally 

 On cache miss 

 Stall the CPU pipeline 

 Fetch block from next level of hierarchy 

 Instruction cache miss 

 Restart instruction fetch 

 Data cache miss 

 Complete data access 
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Write-Through 

 On data-write hit, could just update the block in 
cache 
 But then cache and memory would be inconsistent 

 Write through: also update memory 

 But makes writes take longer 
 e.g., if base CPI = 1, 10% of instructions are stores, 

write to memory takes 100 cycles 
  Effective CPI = 1 + 0.1×100 = 11 

 Solution: write buffer 
 Holds data waiting to be written to memory 

 CPU continues immediately 
 Only stalls on write if write buffer is already full 
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Write-Back 

 Alternative: On data-write hit, just update 

the block in cache 

 Keep track of whether each block is dirty 

 When a dirty block is replaced 

 Write it back to memory 

 Can use a write buffer to allow replacing block 

to be read first 
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Write Allocation 

 What should happen on a write miss? 

 Alternatives for write-through 

 Allocate on miss: fetch the block 

 Write around: don’t fetch the block 

 Since programs often write a whole block before 

reading it (e.g., initialization) 

 For write-back 

 Usually fetch the block 
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Example: Intrinsity FastMATH 

 Embedded MIPS processor 

 12-stage pipeline 

 Instruction and data access on each cycle 

 Split cache: separate I-cache and D-cache 

 Each 16KB: 256 blocks × 16 words/block 

 D-cache: write-through or write-back 

 SPEC2000 miss rates 

 I-cache: 0.4% 

 D-cache: 11.4% 

 Weighted average: 3.2% 
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Example: Intrinsity FastMATH 
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Measuring Cache Performance 

 Components of CPU time 
 Program execution cycles 

 Includes cache hit time 

 Memory stall cycles 
 Mainly from cache misses 

 With simplifying assumptions: 
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Cache Performance Example 

 Given 
 I-cache miss rate = 2% 

 D-cache miss rate = 4% 

 Miss penalty = 100 cycles 

 Base CPI (ideal cache) = 2 

 Load & stores are 36% of instructions 

 Miss cycles per instruction 
 I-cache: 0.02 × 100 = 2 

 D-cache: 0.36 × 0.04 × 100 = 1.44 

 Actual CPI = 2 + 2 + 1.44 = 5.44 
 Ideal CPU is 5.44/2 =2.72 times faster 
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Average Access Time 

 Hit time is also important for performance 

 Average memory access time (AMAT) 

 AMAT = Hit time + Miss rate × Miss penalty 

 Example 

 CPU with 1ns clock, hit time = 1 cycle, miss 

penalty = 20 cycles, I-cache miss rate = 5% 

 AMAT = 1 + 0.05 × 20 = 2ns 

 2 cycles per instruction 



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 56 

Performance Summary 

 When CPU performance increased 

 Miss penalty becomes more significant 

 Decreasing base CPI 

 Greater proportion of time spent on memory 

stalls 

 Increasing clock rate 

 Memory stalls account for more CPU cycles 

 Can’t neglect cache behavior when 

evaluating system performance 
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Associative Caches 

 Fully associative 

 Allow a given block to go in any cache entry 

 Requires all entries to be searched at once 

 Comparator per entry (expensive) 

 n-way set associative 

 Each set contains n entries 

 Block number determines which set 

 (Block number) modulo (#Sets in cache) 

 Search all entries in a given set at once 

 n comparators (less expensive) 
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Associative Cache Example 
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Spectrum of Associativity 

 For a cache with 8 entries 
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Associativity Example 

 Compare 4-block caches 

 Direct mapped, 2-way set associative, 

fully associative 

 Block access sequence: 0, 8, 0, 6, 8 

 Direct mapped 

Block 

address 

Cache 

index 

Hit/miss Cache content after access 

0 1 2 3 

0 0 miss Mem[0] 

8 0 miss Mem[8] 

0 0 miss Mem[0] 

6 2 miss Mem[0] Mem[6] 

8 0 miss Mem[8] Mem[6] 
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Associativity Example 

 2-way set associative 
Block 

address 

Cache 

index 

Hit/miss Cache content after access 

Set 0 Set 1 

0 0 miss Mem[0] 

8 0 miss Mem[0] Mem[8] 

0 0 hit Mem[0] Mem[8] 

6 0 miss Mem[0] Mem[6] 

8 0 miss Mem[8] Mem[6] 

 Fully associative 
Block 

address 

Hit/miss Cache content after access 

0 miss Mem[0] 

8 miss Mem[0] Mem[8] 

0 hit Mem[0] Mem[8] 

6 miss Mem[0] Mem[8] Mem[6] 

8 hit Mem[0] Mem[8] Mem[6] 



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 62 

How Much Associativity 

 Increased associativity decreases miss 

rate 

 But with diminishing returns 

 Simulation of a system with 64KB 

D-cache, 16-word blocks, SPEC2000 

 1-way: 10.3% 

 2-way: 8.6% 

 4-way: 8.3% 

 8-way: 8.1% 
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Set Associative Cache Organization 
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Replacement Policy 

 Direct mapped: no choice 

 Set associative 
 Prefer non-valid entry, if there is one 

 Otherwise, choose among entries in the set 

 Least-recently used (LRU) 
 Choose the one unused for the longest time 

 Simple for 2-way, manageable for 4-way, too hard 
beyond that 

 Random 
 Gives approximately the same performance 

as LRU for high associativity 
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Multilevel Caches 

 Primary cache attached to CPU 

 Small, but fast 

 Level-2 cache services misses from 

primary cache 

 Larger, slower, but still faster than main 

memory 

 Main memory services L-2 cache misses 

 Some high-end systems include L-3 cache 



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 66 

Multilevel Cache Example 

 Given 

 CPU base CPI = 1, clock rate = 4GHz 

 Miss rate/instruction = 2% 

 Main memory access time = 100ns 

 With just primary cache 

 Miss penalty = 100ns/0.25ns = 400 cycles 

 Effective CPI = 1 + 0.02 × 400 = 9 
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Example (cont.) 

 Now add L-2 cache 

 Access time = 5ns 

 Global miss rate to main memory = 0.5% 

 Primary miss with L-2 hit 

 Penalty = 5ns/0.25ns = 20 cycles 

 Primary miss with L-2 miss 

 Extra penalty = 500 cycles 

 CPI = 1 + 0.02 × 20 + 0.005 × 500 = 3.9 

 Performance ratio = 9/3.9 = 2.3 
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Multilevel Cache Considerations 

 Primary cache 

 Focus on minimal hit time 

 L-2 cache 

 Focus on low miss rate to avoid main memory 

access 

 Hit time has less overall impact 

 Results 

 L-1 cache usually smaller than a single cache 

 L-1 block size smaller than L-2 block size 
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Interactions with Advanced CPUs 

 Out-of-order CPUs can execute 

instructions during cache miss 

 Pending store stays in load/store unit 

 Dependent instructions wait in reservation 

stations 

 Independent instructions continue 

 Effect of miss depends on program data 

flow 

 Much harder to analyse 

 Use system simulation 
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Interactions with Software 

 Misses depend on 

memory access 

patterns 

 Algorithm behavior 

 Compiler 

optimization for 

memory access 
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Dependability 

 Fault: failure of a 

component 

 May or may not lead 

to system failure 

Service accomplishment 

Service delivered 

as specified 

Service interruption 

Deviation from 

specified service 

Failure Restoration 
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Dependability Measures 

 Reliability: mean time to failure (MTTF) 

 Service interruption: mean time to repair (MTTR) 

 Mean time between failures 

 MTBF = MTTF + MTTR 

 Availability = MTTF / (MTTF + MTTR) 

 Improving Availability 

 Increase MTTF: fault avoidance, fault tolerance, fault 

forecasting 

 Reduce MTTR: improved tools and processes for 

diagnosis and repair 



The Hamming SEC Code 

 Hamming distance 

 Number of bits that are different between two 

bit patterns 

 Minimum distance = 2 provides single bit 

error detection 

 E.g. parity code 

 Minimum distance = 3 provides single 

error correction, 2 bit error detection 
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Encoding SEC 

 To calculate Hamming code: 

 Number bits from 1 on the left 

 All bit positions that are a power 2 are parity 

bits 

 Each parity bit checks certain data bits: 
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Decoding SEC 

 Value of parity bits indicates which bits are 

in error 

 Use numbering from encoding procedure 

 E.g. 

 Parity bits = 0000 indicates no error 

 Parity bits = 1010 indicates bit 10 was flipped 

 Example: 

 What will be stored for 1001 1010? 

 If you read 0111 0010 1110, is there error? 

Correct it. 
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SEC/DED Code 

 Add an additional parity bit for the whole word 

(pn) 

 Make Hamming distance = 4 

 Decoding: 

 Let H = SEC parity bits 

 H = 0, pn even, no error 

 H ≠ 0, pn odd, correctable single bit error 

 H = 0, pn odd, error in pn bit 

 H ≠ 0, pn even, double error occurred 

 ECC DRAM uses SEC/DED with 8 bits 

protecting each 64 bits 
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RAID 

 Redundant Array of Inexpensive 
(Independent) Disks 
 Use multiple smaller disks (c.f. one large disk) 

 Parallelism improves performance 

 Plus extra disk(s) for redundant data storage 

 Provides fault tolerant storage system 
 Especially if failed disks can be “hot swapped” 

 RAID 0 
 No  redundancy (“AID”?) 

 Just stripe data over multiple disks 

 But it does improve performance 
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RAID 1 & 2 

 RAID 1: Mirroring 

 N + N disks, replicate data 

 Write data to both data disk and mirror disk 

 On disk failure, read from mirror 

 RAID 2: Error correcting code (ECC) 

 N + E disks (e.g., 10 + 4) 

 Split data at bit level across N disks 

 Generate E-bit ECC 

 Too complex, not used in practice 
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RAID 3: Bit-Interleaved Parity 

 N + 1 disks 

 Data striped across N disks at byte level 

 Redundant disk stores parity 

 Read access 

 Read all disks 

 Write access 

 Generate new parity and update all disks 

 On failure 

 Use parity to reconstruct missing data 

 Not widely used 
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RAID 4: Block-Interleaved Parity 

 N + 1 disks 

 Data striped across N disks at block level 

 Redundant disk stores parity for a group of blocks 

 Read access 

 Read only the disk holding the required block 

 Write access 

 Just read disk containing modified block, and parity disk 

 Calculate new parity, update data disk and parity disk 

 On failure 

 Use parity to reconstruct missing data 

 Not widely used 
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RAID 3 vs RAID 4 
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RAID 5: Distributed Parity 

 N + 1 disks 
 Like RAID 4, but parity blocks distributed 

across disks 
 Avoids parity disk being a bottleneck 

 Widely used 
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RAID 6: P + Q Redundancy 

 N + 2 disks 

 Like RAID 5, but two lots of parity 

 Greater fault tolerance through more 

redundancy 

 Multiple RAID 

 More advanced systems give similar fault 

tolerance with better performance 

 Example RAID 51 
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RAID Summary 

 

 RAID can improve performance and 

availability 

 High availability requires hot swapping 

 Assumes independent disk failures 

 Too bad if the building burns down! 
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Virtual Machines 

 Host computer emulates guest operating system 

and machine resources 

 Improved isolation of multiple guests 

 Avoids security and reliability problems 

 Aids sharing of resources 

 Virtualization has some performance impact 

 Feasible with modern high-performance comptuers 

 Examples 

 IBM VM/370 (1970s technology!) 

 VMWare 

 Microsoft Virtual PC 
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Virtual Machines 
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Virtual Machine Monitor 

 Maps virtual resources to physical 
resources 

 Memory, I/O devices, CPUs 

 Guest code runs on native machine in user 
mode 

 Traps to VMM on privileged instructions and 
access to protected resources 

 Guest OS may be different from host OS 

 VMM handles real I/O devices 

 Emulates generic virtual I/O devices for guest 
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Instruction Set Support 

 User and System modes 

 Privileged instructions only available in 
system mode 

 Trap to system if executed in user mode 

 All physical resources only accessible 
using privileged instructions 

 Including page tables, interrupt controls, I/O 
registers 
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Virtual Memory 

 Use main memory as a “cache” for 
secondary (disk) storage 
 Managed jointly by CPU hardware and the 

operating system (OS) 

 Programs share main memory 
 Each gets a private virtual address space 

holding its frequently used code and data 

 Protected from other programs 

 CPU and OS translate virtual addresses to 
physical addresses 
 VM “block” is called a page 

 VM translation “miss” is called a page fault 
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Address Translation 

 Fixed-size pages (e.g., 4K) 
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Page Fault Penalty 

 On page fault, the page must be fetched 

from disk 

 Takes millions of clock cycles 

 Handled by OS code 

 Try to minimize page fault rate 

 Fully associative placement 

 Smart replacement algorithms 
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Page Tables 

 Stores placement information 

 Array of page table entries, indexed by virtual 
page number 

 Page table register in CPU points to page 
table in physical memory 

 If page is present in memory 

 PTE stores the physical page number 

 Plus other status bits (referenced, dirty, …) 

 If page is not present 

 PTE can refer to location in swap space on 
disk 



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 98 

Translation Using a Page Table 
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Mapping Pages to Storage 
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Replacement and Writes 

 To reduce page fault rate, prefer least-
recently used (LRU) replacement 
 Reference bit (aka use bit) in PTE set to 1 on 

access to page 

 Periodically cleared to 0 by OS 

 A page with reference bit = 0 has not been 
used recently 

 Disk writes take millions of cycles 
 Block at once, not individual locations 

 Write through is impractical 

 Use write-back 

 Dirty bit in PTE set when page is written 
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Fast Translation Using a TLB 

 Address translation would appear to require 

extra memory references 

 One to access the PTE 

 Then the actual memory access 

 But access to page tables has good locality 

 So use a fast cache of PTEs within the CPU 

 Called a Translation Look-aside Buffer (TLB) 

 Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 

cycles for miss, 0.01%–1% miss rate 

 Misses could be handled by hardware or software 
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Fast Translation Using a TLB 
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TLB Misses 

 If page is in memory 

 Load the PTE from memory and retry 

 Could be handled in hardware 
 Can get complex for more complicated page table 

structures 

 Or in software 
 Raise a special exception, with optimized handler 

 If page is not in memory (page fault) 

 OS handles fetching the page and updating 
the page table 

 Then restart the faulting instruction 
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TLB Miss Handler 

 TLB miss indicates 

 Page present, but PTE not in TLB 

 Page not preset 

 Must recognize TLB miss before 

destination register overwritten 

 Raise exception 

 Handler copies PTE from memory to TLB 

 Then restarts instruction 

 If page not present, page fault will occur 
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Page Fault Handler 

 Use faulting virtual address to find PTE 

 Locate page on disk 

 Choose page to replace 

 If dirty, write to disk first 

 Read page into memory and update page 

table 

 Make process runnable again 

 Restart from faulting instruction 
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TLB and Cache Interaction 

 If cache tag uses 

physical address 

 Need to translate 

before cache lookup 

 Alternative: use virtual 

address tag 

 Complications due to 

aliasing 

 Different virtual 

addresses for shared 

physical address 
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Memory Protection 

 Different tasks can share parts of their 

virtual address spaces 

 But need to protect against errant access 

 Requires OS assistance 

 Hardware support for OS protection 

 Privileged supervisor mode (aka kernel mode) 

 Privileged instructions 

 Page tables and other state information only 

accessible in supervisor mode 

 System call exception (e.g., ecall in RISC-V) 
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The Memory Hierarchy 

 Common principles apply at all levels of 

the memory hierarchy 

 Based on notions of caching 

 At each level in the hierarchy 

 Block placement 

 Finding a block 

 Replacement on a miss 

 Write policy 
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The BIG Picture 
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Block Placement 

 Determined by associativity 

 Direct mapped (1-way associative) 

 One choice for placement 

 n-way set associative 

 n choices within a set 

 Fully associative 

 Any location 

 Higher associativity reduces miss rate 

 Increases complexity, cost, and access time 



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 111 

Finding a Block 

 Hardware caches 
 Reduce comparisons to reduce cost 

 Virtual memory 
 Full table lookup makes full associativity feasible 

 Benefit in reduced miss rate 

Associativity Location method Tag comparisons 

Direct mapped Index 1 

n-way set 

associative 

Set index, then search 

entries within the set 

n 

Fully associative Search all entries #entries 

Full lookup table 0 
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Replacement 

 Choice of entry to replace on a miss 

 Least recently used (LRU) 

 Complex and costly hardware for high associativity 

 Random 

 Close to LRU, easier to implement 

 Virtual memory 

 LRU approximation with hardware support 



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 113 

Write Policy 

 Write-through 
 Update both upper and lower levels 

 Simplifies replacement, but may require write 
buffer 

 Write-back 
 Update upper level only 

 Update lower level when block is replaced 

 Need to keep more state 

 Virtual memory 
 Only write-back is feasible, given disk write 

latency  
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Sources of Misses 

 Compulsory misses (aka cold start misses) 

 First access to a block 

 Capacity misses 

 Due to finite cache size 

 A replaced block is later accessed again 

 Conflict misses (aka collision misses) 

 In a non-fully associative cache 

 Due to competition for entries in a set 

 Would not occur in a fully associative cache of 
the same total size 
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Cache Design Trade-offs 

Design change Effect on miss rate Negative performance 

effect 

Increase cache size Decrease capacity 

misses 

May increase access 

time 

Increase associativity Decrease conflict 

misses 

May increase access 

time 

Increase block size Decrease compulsory 

misses 

Increases miss 

penalty. For very large 

block size, may 

increase miss rate 

due to pollution. 
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Cache Control 

 Example cache characteristics 

 Direct-mapped, write-back, write allocate 

 Block size: 4 words (16 bytes) 

 Cache size: 16 KB (1024 blocks) 

 32-bit byte addresses 

 Valid bit and dirty bit per block 

 Blocking cache 

 CPU waits until access is complete 
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Tag Index Offset 

0 3 4 13 14 31 

4 bits 10 bits 18 bits 
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Interface Signals 

Cache CPU Memory 

Read/Write 

Valid 

Address 

Write Data 

Read Data 

Ready 

32 

32 

32 

Read/Write 

Valid 

Address 

Write Data 

Read Data 

Ready 

32 

128 

128 

Multiple cycles 

per access 
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Finite State Machines 

 Use an FSM to 
sequence control steps 

 Set of states, transition 
on each clock edge 
 State values are binary 

encoded 

 Current state stored in a 
register 

 Next state 
= fn (current state, 
  current inputs) 

 Control output signals 
= fo (current state) 
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Cache Controller FSM 

Could 

partition into 

separate 

states to 

reduce clock 

cycle time 
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Cache Coherence Problem 

 Suppose two CPU cores share a physical 
address space 
 Write-through caches 
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Time 

step 

Event CPU A’s 

cache 

CPU B’s 

cache 

Memory 

0 0 

1 CPU A reads X 0 0 

2 CPU B reads X 0 0 0 

3 CPU A writes 1 to X 1 0 1 
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Coherence Defined 

 Informally: Reads return most recently 
written value 

 Formally: 

 P writes X; P reads X (no intervening writes) 
 read returns written value 

 P1 writes X; P2 reads X (sufficiently later) 
 read returns written value 
 c.f. CPU B reading X after step 3 in example 

 P1 writes X, P2 writes X 
 all processors see writes in the same order 
 End up with the same final value for X 
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Cache Coherence Protocols 

 Operations performed by caches in 
multiprocessors to ensure coherence 

 Migration of data to local caches 
 Reduces bandwidth for shared memory 

 Replication of read-shared data 
 Reduces contention for access 

 Snooping protocols 

 Each cache monitors bus reads/writes 

 Directory-based protocols 

 Caches and memory record sharing status of 
blocks in a directory 
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Invalidating Snooping Protocols 

 Cache gets exclusive access to a block 
when it is to be written 

 Broadcasts an invalidate message on the bus 

 Subsequent read in another cache misses 
 Owning cache supplies updated value 

CPU activity Bus activity CPU A’s 

cache 

CPU B’s 

cache 

Memory 

0 

CPU A reads X Cache miss for X 0 0 

CPU B reads X Cache miss for X 0 0 0 

CPU A writes 1 to X Invalidate for X 1 0 

CPU B read X Cache miss for X 1 1 1 
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Memory Consistency 

 When are writes seen by other processors 
 “Seen” means a read returns the written value 

 Can’t be instantaneously 

 Assumptions 
 A write completes only when all processors have seen 

it 

 A processor does not reorder writes with other 
accesses 

 Consequence 
 P writes X then writes Y 
 all processors that see new Y also see new X 

 Processors can reorder reads, but not writes 
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Multilevel On-Chip Caches 
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2-Level TLB Organization 
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Supporting Multiple Issue 

 Both have multi-banked caches that allow 

multiple accesses per cycle assuming no 

bank conflicts 

 Other optimizations 

 Return requested word first 

 Non-blocking cache 

 Hit under miss 

 Miss under miss 

 Data prefetching 
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Pitfalls 

 Byte vs. word addressing 

 Example: 32-byte direct-mapped cache, 

4-byte blocks 

 Byte 36 maps to block 1 

 Word 36 maps to block 4 

 Ignoring memory system effects when 

writing or generating code 

 Example: iterating over rows vs. columns of 

arrays 

 Large strides result in poor locality 
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Pitfalls 

 In multiprocessor with shared L2 or L3 

cache 

 Less associativity than cores results in conflict 

misses 

 More cores  need to increase associativity 

 Using AMAT to evaluate performance of 

out-of-order processors 

 Ignores effect of non-blocked accesses 

 Instead, evaluate performance by simulation 



Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 135 

Pitfalls 

 Extending address range using segments 

 E.g., Intel 80286 

 But a segment is not always big enough 

 Makes address arithmetic complicated 

 Implementing a VMM on an ISA not 

designed for virtualization 

 E.g., non-privileged instructions accessing 

hardware resources 

 Either extend ISA, or require guest OS not to 

use problematic instructions 
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Concluding Remarks 

 Fast memories are small, large memories are 
slow 
 We really want fast, large memories  

 Caching gives this illusion  

 Principle of locality 
 Programs use a small part of their memory space 

frequently 

 Memory hierarchy 
 L1 cache  L2 cache  …  DRAM memory 
 disk 

 Memory system design is critical for 
multiprocessors 
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Introduction 

 Goal: connecting multiple computers 
to get higher performance 

 Multiprocessors 

 Scalability, availability, power efficiency 

 Task-level (process-level) parallelism 

 High throughput for independent jobs 

 Parallel processing program 

 Single program run on multiple processors 

 Multicore microprocessors 

 Chips with multiple processors (cores) 
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Hardware and Software 

 Hardware 

 Serial: e.g., Pentium 4 

 Parallel: e.g., quad-core Xeon e5345 

 Software 

 Sequential: e.g., matrix multiplication 

 Concurrent: e.g., operating system 

 Sequential/concurrent software can run on 
serial/parallel hardware 

 Challenge: making effective use of parallel 
hardware 
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What We’ve Already Covered 

 §2.11: Parallelism and Instructions 

 Synchronization 

 §3.6: Parallelism and Computer Arithmetic 

 Subword Parallelism 

 §4.10: Parallelism and Advanced 
Instruction-Level Parallelism 

 §5.10: Parallelism and Memory 
Hierarchies 

 Cache Coherence 
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Parallel Programming 

 Parallel software is the problem 

 Need to get significant performance 

improvement 

 Otherwise, just use a faster uniprocessor, 

since it’s easier! 

 Difficulties 

 Partitioning 

 Coordination 

 Communications overhead 
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Amdahl’s Law 

 Sequential part can limit speedup 

 Example: 100 processors, 90× speedup? 

 Tnew = Tparallelizable/100 + Tsequential 

   

 Solving: Fparallelizable = 0.999 

 Need sequential part to be 0.1% of original 

time 

90
/100F)F(1

1
Speedup

ableparallelizableparalleliz





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Scaling Example 

 Workload: sum of 10 scalars, and 10 × 10 matrix 
sum 
 Speed up from 10 to 100 processors 

 Single processor: Time = (10 + 100) × tadd 

 10 processors 
 Time = 10 × tadd + 100/10 × tadd = 20 × tadd 

 Speedup = 110/20 = 5.5 (55% of potential) 

 100 processors 
 Time = 10 × tadd + 100/100 × tadd = 11 × tadd 

 Speedup = 110/11 = 10 (10% of potential) 

 Assumes load can be balanced across 
processors 
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Scaling Example (cont) 

 What if matrix size is 100 × 100? 

 Single processor: Time = (10 + 10000) × tadd 

 10 processors 

 Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd 

 Speedup = 10010/1010 = 9.9 (99% of potential) 

 100 processors 

 Time = 10 × tadd + 10000/100 × tadd = 110 × tadd 

 Speedup = 10010/110 = 91 (91% of potential) 

 Assuming load balanced 
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Strong vs Weak Scaling 

 Strong scaling: problem size fixed 

 As in example 

 Weak scaling: problem size proportional to 

number of processors 

 10 processors, 10 × 10 matrix 

 Time = 20 × tadd 

 100 processors, 32 × 32 matrix 

 Time = 10 × tadd + 1000/100 × tadd = 20 × tadd 

 Constant performance in this example 
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Instruction and Data Streams 

 An alternate classification 

Data Streams 

Single Multiple 

Instruction 

Streams 

Single SISD: 

Intel Pentium 4 

SIMD: SSE 

instructions of x86 

Multiple MISD: 

No examples today 

MIMD: 

Intel Xeon e5345 

 SPMD: Single Program Multiple Data 

 A parallel program on a MIMD computer 

 Conditional code for different processors 
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Vector Processors 

 Highly pipelined function units 

 Stream data from/to vector registers to units 

 Data collected from memory into registers 

 Results stored from registers to memory 

 Example: Vector extension to RISC-V 

 v0 to v31: 32 × 64-element registers, (64-bit elements) 

 Vector instructions 

 fld.v, fsd.v: load/store vector 

 fadd.d.v: add vectors of double 

 fadd.d.vs: add scalar to each element of vector of double 

 Significantly reduces instruction-fetch bandwidth 
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Example: DAXPY (Y = a × X + Y) 

  Conventional RISC-V code: 

       fld    f0,a(x3)     // load scalar a 

       addi   x5,x19,512   // end of array X 

 loop: fld    f1,0(x19)    // load x[i] 

       fmul.d f1,f1,f0     // a * x[i] 

       fld    f2,0(x20)    // load y[i] 

       fadd.d f2,f2,f1     // a * x[i] + y[i] 

       fsd    f2,0(x20)    // store y[i] 

       addi   x19,x19,8    // increment index to x 

       addi   x20,x20,8    // increment index to y 

       bltu   x19,x5,loop  // repeat if not done 

  Vector RISC-V code: 

 fld       f0,a(x3)    // load scalar a 

       fld.v     v0,0(x19)   // load vector x 

       fmul.d.vs v0,v0,f0    // vector-scalar multiply 

       fld.v     v1,0(x20)   // load vector y 

       fadd.d.v  v1,v1,v0    // vector-vector add 

       fsd.v     v1,0(x20)   // store vector y 
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Vector vs. Scalar 

 Vector architectures and compilers 

 Simplify data-parallel programming 

 Explicit statement of absence of loop-carried 
dependences 
 Reduced checking in hardware 

 Regular access patterns benefit from 
interleaved and burst memory 

 Avoid control hazards by avoiding loops 

 More general than ad-hoc media 
extensions (such as MMX, SSE) 

 Better match with compiler technology 
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SIMD 

 Operate elementwise on vectors of data 

 E.g., MMX and SSE instructions in x86 
 Multiple data elements in 128-bit wide registers 

 All processors execute the same 
instruction at the same time 

 Each with different data address, etc. 

 Simplifies synchronization 

 Reduced instruction control hardware 

 Works best for highly data-parallel 
applications 
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Vector vs. Multimedia Extensions 

 Vector instructions have a variable vector width, 

multimedia extensions have a fixed width 

 Vector instructions support strided access, 

multimedia extensions do not 

 Vector units can be combination of pipelined and 

arrayed functional units: 
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Multithreading 

 Performing multiple threads of execution in 
parallel 
 Replicate registers, PC, etc. 

 Fast switching between threads 

 Fine-grain multithreading 
 Switch threads after each cycle 

 Interleave instruction execution 

 If one thread stalls, others are executed 

 Coarse-grain multithreading 
 Only switch on long stall (e.g., L2-cache miss) 

 Simplifies hardware, but doesn’t hide short stalls 
(eg, data hazards) 
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Simultaneous Multithreading 

 In multiple-issue dynamically scheduled 
processor 

 Schedule instructions from multiple threads 

 Instructions from independent threads execute 
when function units are available 

 Within threads, dependencies handled by 
scheduling and register renaming 

 Example: Intel Pentium-4 HT 

 Two threads: duplicated registers, shared 
function units and caches 
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Multithreading Example 
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Future of Multithreading 

 Will it survive? In what form? 

 Power considerations  simplified 

microarchitectures 

 Simpler forms of multithreading 

 Tolerating cache-miss latency 

 Thread switch may be most effective 

 Multiple simple cores might share 

resources more effectively 
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Shared Memory 

 SMP: shared memory multiprocessor 

 Hardware provides single physical 

address space for all processors 

 Synchronize shared variables using locks 

 Memory access time 

 UMA (uniform) vs. NUMA (nonuniform) 
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Example: Sum Reduction 

 Sum 64,000 numbers on 64 processor UMA 
 Each processor has ID: 0 ≤ Pn ≤ 63 

 Partition 1000 numbers per processor 

 Initial summation on each processor 

  sum[Pn] = 0; 
  for (i = 1000*Pn; 
       i < 1000*(Pn+1); i += 1) 
    sum[Pn] += A[i]; 

 Now need to add these partial sums 
 Reduction: divide and conquer 

 Half the processors add pairs, then quarter, … 

 Need to synchronize between reduction steps 
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Example: Sum Reduction 

half = 64; 

do 

  synch(); 

  if (half%2 != 0 && Pn == 0) 

    sum[0] += sum[half-1]; 

    /* Conditional sum needed when half is odd; 

       Processor0 gets missing element */ 

  half = half/2; /* dividing line on who sums */ 

  if (Pn < half) sum[Pn] += sum[Pn+half]; 

while (half > 1); 
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History of GPUs 

 Early video cards 

 Frame buffer memory with address generation for 

video output 

 3D graphics processing 

 Originally high-end computers (e.g., SGI) 

 Moore’s Law  lower cost, higher density 

 3D graphics cards for PCs and game consoles 

 Graphics Processing Units 

 Processors oriented to 3D graphics tasks 

 Vertex/pixel processing, shading, texture mapping, 

rasterization 
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Graphics in the System 
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GPU Architectures 

 Processing is highly data-parallel 
 GPUs are highly multithreaded 

 Use thread switching to hide memory latency 
 Less reliance on multi-level caches 

 Graphics memory is wide and high-bandwidth 

 Trend toward general purpose GPUs 
 Heterogeneous CPU/GPU systems 

 CPU for sequential code, GPU for parallel code 

 Programming languages/APIs 
 DirectX, OpenGL 

 C for Graphics (Cg), High Level Shader Language 
(HLSL) 

 Compute Unified Device Architecture (CUDA) 
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Example: NVIDIA Fermi 

 Multiple SIMD processors, each as shown: 
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Example: NVIDIA Fermi 

 SIMD Processor: 16 SIMD lanes 

 SIMD instruction 

 Operates on 32 element wide threads 

 Dynamically scheduled on 16-wide processor 
over 2 cycles 

 32K x 32-bit registers spread across lanes 

 64 registers per thread context 
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GPU Memory Structures 
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Classifying GPUs 

 Don’t fit nicely into SIMD/MIMD model 

 Conditional execution in a thread allows an 
illusion of MIMD 
 But with performance degredation 

 Need to write general purpose code with care 

Static: Discovered 

at Compile Time 

Dynamic: Discovered 

at Runtime 

Instruction-Level 

Parallelism 

VLIW Superscalar 

Data-Level 

Parallelism 

SIMD or Vector Tesla Multiprocessor 

Chapter 6 — Parallel Processors from Client to Cloud — 37 



Putting GPUs into Perspective 

Chapter 6 — Parallel Processors from Client to Cloud — 38 

Feature Multicore with SIMD GPU 

SIMD processors 4 to 8 8 to 16 

SIMD lanes/processor 2 to 4 8 to 16 

Multithreading hardware support for 

SIMD threads 

2 to 4 16 to 32 

Typical ratio of single precision to 

double-precision performance 

2:1 2:1 

Largest cache size 8 MB 0.75 MB 

Size of memory address 64-bit 64-bit 

Size of main memory 8 GB to 256 GB 4 GB to 6 GB 

Memory protection at level of page Yes Yes 

Demand paging Yes No 

Integrated scalar processor/SIMD 

processor 

Yes No 

Cache coherent Yes No 



Guide to GPU Terms 
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Message Passing 

 Each processor has private physical 
address space 

 Hardware sends/receives messages 
between processors 

§
6
.7

 C
lu

s
te

rs
, W

S
C

, a
n
d
 O

th
e
r M

e
s
s
a
g
e
-P

a
s
s
in

g
 M

P
s
 

Chapter 6 — Parallel Processors from Client to Cloud — 41 



Loosely Coupled Clusters 

 Network of independent computers 

 Each has private memory and OS 

 Connected using I/O system 

 E.g., Ethernet/switch, Internet 

 Suitable for applications with independent tasks 

 Web servers, databases, simulations, … 

 High availability, scalable, affordable 

 Problems 

 Administration cost (prefer virtual machines) 

 Low interconnect bandwidth 

 c.f. processor/memory bandwidth on an SMP 
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Sum Reduction (Again) 

 Sum 64,000 on 64 processors 

 First distribute 1000 numbers to each 

 The do partial sums 

  sum = 0; 
for (i = 0; i<1000; i += 1) 
  sum += AN[i]; 

 Reduction 

 Half the processors send, other half receive 

and add 

 The quarter send, quarter receive and add, … 
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Sum Reduction (Again) 

 Given send() and receive() operations 

 limit = 64; half = 64;/* 64 processors */ 
do 
  half = (half+1)/2; /* send vs. receive 
                        dividing line */ 
  if (Pn >= half && Pn < limit) 
    send(Pn - half, sum); 
  if (Pn < (limit/2)) 
    sum += receive(); 
  limit = half; /* upper limit of senders */ 
while (half > 1); /* exit with final sum */ 

 Send/receive also provide synchronization 

 Assumes send/receive take similar time to addition 

Chapter 6 — Parallel Processors from Client to Cloud — 44 



Grid Computing 

 Separate computers interconnected by 

long-haul networks 

 E.g., Internet connections 

 Work units farmed out, results sent back 

 Can make use of idle time on PCs 

 E.g., SETI@home, World Community Grid 
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Interconnection Networks 

 Network topologies 

 Arrangements of processors, switches, and links 
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Bus Ring 

2D Mesh 

N-cube (N = 3) 

Fully connected 
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Multistage Networks 
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Network Characteristics 

 Performance 

 Latency per message (unloaded network) 

 Throughput 
 Link bandwidth 

 Total network bandwidth 

 Bisection bandwidth 

 Congestion delays (depending on traffic) 

 Cost 

 Power 

 Routability in silicon 
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Parallel Benchmarks 

 Linpack: matrix linear algebra 

 SPECrate: parallel run of SPEC CPU programs 
 Job-level parallelism 

 SPLASH: Stanford Parallel Applications for 
Shared Memory 
 Mix of kernels and applications, strong scaling 

 NAS (NASA Advanced Supercomputing) suite 
 computational fluid dynamics kernels 

 PARSEC (Princeton Application Repository for 
Shared Memory Computers) suite 
 Multithreaded applications using Pthreads and 

OpenMP 
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Code or Applications? 

 Traditional benchmarks 

 Fixed code and data sets 

 Parallel programming is evolving 

 Should algorithms, programming languages, 
and tools be part of the system? 

 Compare systems, provided they implement a 
given application 

 E.g., Linpack, Berkeley Design Patterns 

 Would foster innovation in approaches to 
parallelism 
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Modeling Performance 

 Assume performance metric of interest is 
achievable GFLOPs/sec 

 Measured using computational kernels from 
Berkeley Design Patterns 

 Arithmetic intensity of a kernel 

 FLOPs per byte of memory accessed 

 For a given computer, determine 

 Peak GFLOPS (from data sheet) 

 Peak memory bytes/sec (using Stream 
benchmark) 
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Roofline Diagram 

Attainable GPLOPs/sec 

= Max ( Peak Memory BW × Arithmetic Intensity, Peak FP Performance ) 
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Comparing Systems 

 Example: Opteron X2 vs. Opteron X4 

 2-core vs. 4-core, 2× FP performance/core, 2.2GHz 

vs. 2.3GHz, 1 × 2 SIMD vs. 2 ×  2 SIMD 

 Same memory system 

 To get higher performance 

on X4 than X2 

 Need high arithmetic intensity 

 Or working set must fit in X4’s 

2MB L-3 cache 
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Optimizing Performance 

 Optimize FP performance 

 Balance adds & multiplies 

 Improve superscalar ILP 
and use of SIMD 
instructions 

 Optimize memory usage 

 Software prefetch 
 Avoid load stalls 

 Memory affinity 
 Avoid non-local data 

accesses 
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Optimizing Performance 

 Choice of optimization depends on 

arithmetic intensity of code 

 Arithmetic intensity is 

not always fixed 

 May scale with 

problem size 

 Caching reduces 

memory accesses 

 Increases arithmetic 

intensity 
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i7-960 vs. NVIDIA Tesla 280/480 
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Rooflines 
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Benchmarks 
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Performance Summary 

Chapter 6 — Parallel Processors from Client to Cloud — 62 

 GPU (480) has 4.4 X the memory bandwidth 

 Benefits memory bound kernels 

 GPU has 13.1 X the single precision throughout, 2.5 X 

the double precision throughput 

 Benefits FP compute bound kernels 

 CPU cache prevents some kernels from becoming 

memory bound when they otherwise would on GPU 

 GPUs offer scatter-gather, which assists with kernels 

with strided data 

 Lack of synchronization and memory consistency 

support on GPU limits performance for some kernels 
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Multi-threading DGEMM 

Chapter 6 — Parallel Processors from Client to Cloud — 64 
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 Use OpenMP: 

 
void dgemm (int n, double* A, double* B, double* C) 

{ 

#pragma omp parallel for 

 for ( int sj = 0; sj < n; sj += BLOCKSIZE ) 

  for ( int si = 0; si < n; si += BLOCKSIZE ) 

   for ( int sk = 0; sk < n; sk += BLOCKSIZE ) 

    do_block(n, si, sj, sk, A, B, C); 

} 



Multithreaded DGEMM 
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Multithreaded DGEMM 
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Fallacies 

 Amdahl’s Law doesn’t apply to parallel 

computers 

 Since we can achieve linear speedup 

 But only on applications with weak scaling 

 Peak performance tracks observed 

performance 

 Marketers like this approach! 

 But compare Xeon with others in example 

 Need to be aware of bottlenecks 
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Pitfalls 

 Not developing the software to take 

account of a multiprocessor architecture 

 Example: using a single lock for a shared 

composite resource 

 Serializes accesses, even if they could be done in 

parallel 

 Use finer-granularity locking 
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Concluding Remarks 

 Goal: higher performance by using multiple 

processors 

 Difficulties 

 Developing parallel software 

 Devising appropriate architectures 

 SaaS importance is growing and clusters are a 

good match 

 Performance per dollar and performance per 

Joule drive both mobile and WSC 
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Concluding Remarks (con’t) 

 SIMD and vector 

operations match 

multimedia applications 

and are easy to 

program 

 

 Adding 2 cores/chip 

every 2 years. 

 Doubling SIMD 

operations every 4 

years. 
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