Computer
Design

7OWERGUNIT

CPE432: Computer Architecture
and Organization (2)

Course Introduction

Outline

Course Information

Textbook and References

Course Objectives and Outcomes
Course Topics

Policies

Grading

Important Dates

Course Information

Instructor: Prof. Gheith Abandah

Email: abandah@ju.edu.jo

Office: CPE 406

Home page: http://www.abandah.com/gheith

Facebook group:
https://www.facebook.com/groups/549894571732525/

Prerequisites: CPE 335: Computer Architecture and
Organization (1)

Office hours: Sun — Wed: 10:30-11:30

http://www.abandah.com/gheith
https://www.facebook.com/groups/549894571732525/

Textbook and References

* Patterson and Hennessy. Computer Organization & Design: The
Hardware/Software Interface, RISC-V ed., Morgan Kaufmann,
Elsevier Inc., 2018.

» References:

— Hennessy and Patterson, Computer Architecture: A Quantitative Approach,
6th ed., Morgan Kaufmann, Elsevier Inc., 2017.

— J. P. Shen and M. H. Lipasti. Modern Processor Design: Fundamentals of
Superscalar Processors, Mc Graw Hill, 2005.

— D. Culler and J.P. Singh with A. Gupta. Parallel Computer Architecture: A
Hardware/Software Approach, Morgan Kaufmann, 1998.

— J. Hayes. Computer Architecture and Organization, 3rd ed., McGraw-Hill,
1998.

e Course slides at: http://www.abandah.com/gheith/?page id=2518

http://www.abandah.com/gheith/?page_id=2518

Course Objectives

Introduce students to the technological changes in designing and
building processors and computers.

Introduce students to the advanced techniques used in modern
processors including pipelining, branch prediction, dynamic and
speculative execution, multiple issue, multithreading, and
software optimizations.

Introduce the students to the basic concepts and technologies
used in designing memory and storage systems including cache,
main memory, virtual memory, and secondary memory.

Introduce the students to the various approaches in parallel
processing including SIMD extensions, vector processors, GPUs,
multicore processors, shared memory multiprocessors, clusters,

and message-passing multicomputers.
5

Course Outcomes

Understand and analyze the performance of single-
processor architectures, as well as multiprocessor
architectures [1].

Understand and analyze the performance of memory
hierarchy levels [1].

Understand the technological improvements and the
effect of these improvements on modern computers
[4].

Survey research papers that describe contemporary
issues in computer design [4, 7].

Course Topics

Introduction
Computer Technology and Performance (1.5-1.11)

Processor: Instruction-Level Parallelism (4.6-4.11,
4.14-4.15)

Midterm Exam
Memory Hierarchy (5.1-5.11, 5.13, 5.16-5.17)
Parallel Processors (6.1-6.8, 6.10-6.14)
Final Exam

Policies

Attendance is required

All submitted work must be yours
Cheating will not be tolerated
Open-book exams

Join the facebook group

Check department announcements at:
http://www.facebook.com/pages/Computer-
Engineering-Department/369639656466107

http://www.facebook.com/pages/Computer-Engineering-Department/369639656466107

Participation
Research Project
Midterm Exam

Final Exam

Grading

10%
10%
30%
50%

Important Dates

Sun 11 Oct, 2020
Sun 6 Dec, 2020
Thu 7 Jan, 2020
Thu 14 Jan, 2021
Sun 17 Jan, 2021
Jan 19 -11, 2021

First Lecture
Midterm Exam
Project Report Due
Last Date to Withdraw
Last Lecture

Final Exam Period

10

M< COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter 1

Computer Abstractions
and Technology

Adapted by Prof. Gheith Abandah

RISC-V
Edition

Content

1.2 Eight Great Ideas in Computer Architecture
(Review)

1.5 Technologies for Building Processors and
Memory

1.6 Performance (Review)
1.7 The Power Wall

1.8 The Sea Change: The Switch from
Uniprocessors to Multiprocessors

1.9 Real Stuff: Benchmarking the Intel Core i/
1.10 Fallacies and Pitfalls
1.11 Concluding Remarks

M(Chapter 1 — Computer Abstractions and Technology — 2

Eight Great Ideas

Design for Moore’s Law

Use abstraction to simplify design
Make the common case fast
Performance via parallelism
Performance via pipelining
Performance via prediction
Hierarchy of memories

Dependability via redundancy

Chapter 1 — Computer Abstractions and Technology — 3

Content

1.5 Technologies for Building Processors and
Memory

1.6 Performance (Review)
1.7 The Power Wall

1.8 The Sea Change: The Switch from
Uniprocessors to Multiprocessors

1.9 Real Stuff: Benchmarking the Intel Core i/
1.10 Fallacies and Pitfalls
1.11 Concluding Remarks

M< Chapter 1 — Computer Abstractions and Technology — 4

Technology Trends

Electronics
technology
continues to evolve :

=]
< 1000

Increased capacity
and performance

Reduced cost

10,000,000
1,000,000 4
= 100,000

10,000

100

10

16K

64K

4G
2G
1G

512M
. a1 256M

64M
4aM

1M

T T T T T T T T T T T T T T T T T 1
1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

Year of introduction

DRAM capacity

Year | Technology Relative performance/cost
1951 | Vacuum tube 1
1965 | Transistor 35
1975 | Integrated circuit (IC) 900
1995 | Very large scale IC (VLSI) 2,400,000
2013 | Ultra large scale IC 250,000,000,000

Chapter 1 — Computer Abstractions and Technology — 5

Semiconductor Technology

Silicon: semiconductor

Add materials to transform properties:
Conductors
Insulators
Switch

Chapter 1 — Computer Abstractions and Technology — 6

Manufacturing ICs

Blank
Silicon ingot wafers
() — | Slicer —» @ — 20 to 40
processing steps
Tested dies Tested Patterned wafers
0O wafer T
Bond die t DDDEDDDED /8 Waf -
ond die to : afer \ / \
package OOXOO 2l q tester pann)
OO0ono QL] (un
l OO \ =~
Packaged dies Tested packaged dies

_» Part _»___ Ship to
tester customers

Yield: proportion of working dies per wafer

Chapter 1 — Computer Abstractions and Technology — 7

Intel Core 17 Wafer

300mm wafer, 280 chips, 32nm technology
Each chip is 20.7 x 10.5 mm

Chapter 1 — Computer Abstractions and Technology — 8

Integrated Circuit Cost

Cost per wafer
Dies per wafer x Yield

Cost per die =

Dies per wafer ~ Wafer area/Die area

1

Yield = _ >
(1+ (Defects per areaxDie area/2))

Nonlinear relation to area and defect rate
Wafer cost and area are fixed
Defect rate determined by manufacturing process
Die area determined by architecture and circuit design

Chapter 1 — Computer Abstractions and Technology — 9

Content

1.6 Performance (Review)
1.7 The Power Wall

1.8 The Sea Change: The Switch from
Uniprocessors to Multiprocessors

1.9 Real Stuff: Benchmarking the Intel Core i/
1.10 Fallacies and Pitfalls
1.11 Concluding Remarks

Chapter 1 — Computer Abstractions and Technology — 10

Response Time and Throughput

Response time
How long it takes to do a task

Throughput

Total work done per unit time
e.g., tasks/transactions/... per hour

How are response time and throughput affected
by
Replacing the processor with a faster version?
Adding more processors?

We’ll focus on response time for now...

Chapter 1 — Computer Abstractions and Technology — 11

Relative Performance

Define Performance = 1/Execution Time
“Xis ntime faster than Y”

Performance, /Performance,
= Execution time , /Execution time , =n

Example: time taken to run a program
10son A, 15son B

Execution Timeg / Execution Time,
=15s/10s=1.5

So Ais 1.5 times faster than B

Chapter 1 — Computer Abstractions and Technology — 12

Measuring Execution Time

Elapsed time
Total response time, including all aspects
Processing, 1/0, OS overhead, idle time
Determines system performance
CPU time
Time spent processing a given job
Discounts |/O time, other jobs’ shares
Comprises user CPU time and system CPU
time
Different programs are affected differently by
CPU and system performance

Chapter 1 — Computer Abstractions and Technology — 13

CPU Clocking

Operation of digital hardware governed by a
constant-rate clock

«—Clock period—»

Clock (cycles) [
Data transfer
and computation < >< >< >
Update state O O O

Clock period: duration of a clock cycle
e.g., 250ps = 0.25ns = 250%10-1°s

Clock frequency (rate): cycles per second
e.g., 4.0GHz = 4000MHz = 4.0x10%Hz

Chapter 1 — Computer Abstractions and Technology — 14

CPU Time

CPU Time = CPU Clock Cyclesx Clock Cycle Time

_ CPUClock Cycles
Clock Rate

Performance improved by
Reducing number of clock cycles
ncreasing clock rate

Hardware designer must often trade off clock
rate against cycle count

Chapter 1 — Computer Abstractions and Technology — 15

Instruction Count and CPI

Clock Cycles = Instructio n Count x Cycles per Instructio n
CPU Time =Instructio n Count x CPIx Clock Cycle Time

B Instructio n Count x CPI
Clock Rate

Instruction Count for a program
Determined by program, ISA and compiler

Average cycles per instruction
Determined by CPU hardware

If different instructions have different CPI
Average CPI affected by instruction mix

Chapter 1 — Computer Abstractions and Technology — 16

CPI in More Detall

If different instruction classes take different
numbers of cycles

Clock Cycles=» (CPI, xInstruction Count;)
i=1

Weighted average CPI

lock I L Instruction Count.
CP| — Cloc _Cyces -Y[cpi . ,
Instruction Count “= Instruction Count

Relative frequency

Chapter 1 — Computer Abstractions and Technology — 17

Performance Summary

CPU Time — Instructions Clock cycles Seconds

X
Program Instruction Clock cycle

Performance depends on
Algorithm: affects IC, possibly CPI
Programming language: affects IC, CPI
Compiller: affects IC, CPI
Instruction set architecture: affects IC, CPI, T,

Chapter 1 — Computer Abstractions and Technology — 18

Content

1.7 The Power Wall

1.8 The Sea Change: The Switch from
Uniprocessors to Multiprocessors

1.9 Real Stuff: Benchmarking the Intel Core i/
1.10 Fallacies and Pitfalls
1.11 Concluding Remarks

Chapter 1 — Computer Abstractions and Technology — 19

Power Trends

10,000 667 3300 3400 T 120
T
T 1000 - =
z 180 Z
p 77 =
§ 1001 --ﬁu“é
= 16
§ o|B—a [
33 41 40 T%
1 1—@ *— | | | | | | | 0
28 28 23 58 E5 ESccefsqgg 58f oEs
§T 8T 8T 52 E£T 2§52 228 528 5tE8 539§
o>~ Jg E=N5rfNO0gROE—O—

In CMOS IC technology

Power = Capacitive load x VVoltage * xFrequency

\ \ \

x30 5V — 1V

x1000

Chapter 1 — Computer Abstractions and Technology — 20

Reducing Power

Suppose a new CPU has
85% of capacitive load of old CPU
15% voltage and 15% frequency reduction

Pow Cuax0.85%x(V, ,x0.85)° xF,,x0.85

new

> =0.85% =0.52
Poig Coia X Voig XFog

The power wall
We can’t reduce voltage further
We can’t remove more heat

How else can we improve performance?

Chapter 1 — Computer Abstractions and Technology — 21

Content

1.8 The Sea Change: The Switch from
Uniprocessors to Multiprocessors

1.9 Real Stuff: Benchmarking the Intel Core i/
1.10 Fallacies and Pitfalls
1.11 Concluding Remarks

Chapter 1 — Computer Abstractions and Technology — 22

Uniprocessor Performance

100,000

Intal Xeon 4 cores 3.6 GHz (Boost to 4.0)
Intal Cora i7 4 cores 3.4 GHz (boost to 2.8 GHz)

Intal Xeon & cores, 3.3 GHz (boost to 3.6 GHz) 34,067
Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz) 1 000
Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz) _"_,:‘154 120"
Intal Core Duo Extremea 2 cores, 2.0 GHz o ! '

Intal Cora 2 Extrame 2 coras, 2.9 GHz

0 - - o oo e o o e o o AMD Athlon 64, 2.8 GHz -3
AMD Athlon, 26 GHz _ -~
Intel Xeon EE 3.2 GHz

Irtal DESOERY R motherbaard (3.06 GHz, Pantium 4 procassor with Hy per-thraading Technology)
IBM Powerd, 1.3 GHz
Intel WCB20 motherboard, 1.0 GHz Pantium 1l procassor

Profassional Workstation XP1000, 857 MHz 21264A
4000 - ee e e Diital AlohaSever 8400 G575, 575 Mbz 21264,

...

e e e T -

Perdormance (vs. WAX-11/780)

IBM RSE000/540, 30 MHzZ
MIPS M2000, 25 MHz
MIPS M/120, 16.7 MHz
O pm e e s e

1.5, VAX-11/785

I I T T T I T T T T T T T T I I
1978 1980 1982 1984 1988 1988 1980 1902 1994 1908 1908 2000 2002 2004 200 2008 2010 2mz 2014

Constrained by power, instruction-level parallelism,
memory latency

Chapter 1 — Computer Abstractions and Technology — 23

MORGAN KAUFMANN

<
A

Multiprocessors

Multicore microprocessors
More than one processor per chip

Requires explicitly parallel programming

Compare with instruction level parallelism
Hardware executes multiple instructions at once
Hidden from the programmer

Hard to do
Programming for performance
Load balancing
Optimizing communication and synchronization

Chapter 1 — Computer Abstractions and Technology — 24

Content

1.2 Eight Great Ideas in Computer Architecture
(Review)

1.5 Technologies for Building Processors and
Memory

1.6 Performance (Review)
1.7 The Power Wall

1.8 The Sea Change: The Switch from
Uniprocessors to Multiprocessors

1.9 Real Stuff: Benchmarking the Intel Core i/
1.10 Fallacies and Pitfalls
1.11 Concluding Remarks

Chapter 1 — Computer Abstractions and Technology — 25

nnnnnnnnnnnn

SPEC CPU Benchmark

Programs used to measure performance
Supposedly typical of actual workload

Standard Performance Evaluation Corp (SPEC)
Develops benchmarks for CPU, 1/O, Web, ...

SPEC CPU2006

Elapsed time to execute a selection of programs
Negligible 1/0O, so focuses on CPU performance

Normalize relative to reference machine

Summarize as geometric mean of performance ratios
CINT2006 (integer) and CFP2006 (floating-point)

ri/ | | Execution time ratio,

I=1

Chapter 1 — Computer Abstractions and Technology — 26

CINT2006 for Intel Core 17 920

<
A

Instruction Clock cycle time Time Time

Description Name Count x 10° (seconds x 10-9) | (seconds) | (seconds) | SPECratio
Interpreted string processing | perl 2252 0.60 0.376 508 9770 19.2
Block-sorting bzip2 2390 0.70 0.376 629 2650 15.4
comprassion
GMNU C compiler gco 794 1.20 0.376 358 8050 225
Combinatorial optimization mct 221 2.66 0.376 221 9120 41.2
Go game (Al) g0 1274 1.10 0.376 527 10490 19.9
Search gene sequence himmer 2616 0.60 0.376 590 9330 15.8
Chess game (Al) sieng 1948 0.80 0.376 586 12100 20.7
Quantum computer libguantum 659 0.44 0.376 109 20720 190.0
simulation
Video comprassion h2&4ave 3793 0.50 0,378 713 22130 31.0
Discrete event omnetpp 367 2.10 0.376 290 5250 21.5
simulation library
Games/path finding astar 1250 1.00 0.376 470 7020 14.9
XML parsing xalanchmk 1045 0.70 0.376 275 6900 25.1
Geometric mean - - - - - = 25.7

M<

MORGAN KAUFMANN

Chapter 1 — Computer Abstractions and Technology — 27

SPEC Power Benchmark

Power consumption of server at different
workload levels

Performance: ss| _ops/sec
Power: Watts (Joules/sec)

10 10
Overall ssj_ops per Watt :(Zssj_ops ij / (Z powerij
i=0 i=0

Chapter 1 — Computer Abstractions and Technology — 28

SPECpower ssj2008 for Xeon X5650

Performance Average Power
Target Load % (ss]_ops) (Watts)

100% 865,618 258

90pk 786,688 242

80% 698,051 224

70% 607,826 204

60% 521,391 185

50% 436,757 170

40% 345,919 157

30% 262,071 146

20% 176,061 135

10% 86,784 121

0% 0 80

Overall Sum 4,787,166 1,922
Yssj_ops/Epower = 2,490

Chapter 1 — Computer Abstractions and Technology — 29

Content

1.2 Eight Great Ideas in Computer Architecture
(Review)

1.5 Technologies for Building Processors and
Memory

1.6 Performance (Review)
1.7 The Power Wall

1.8 The Sea Change: The Switch from
Uniprocessors to Multiprocessors

1.9 Real Stuff: Benchmarking the Intel Core i7
1.10 Fallacies and Pitfalls
1.11 Concluding Remarks

Chapter 1 — Computer Abstractions and Technology — 30

nnnnnnnnnnnn

Pitfall: Amdahl’s Law

Improving an aspect of a computer and
expecting a proportional improvement in
overall performance

T

affected +T
; ff d
improvemen t factor """

T

improved =

Example: multiply accounts for 80s/100s

How much improvement in multiply performance to
get 5% overall?

20 = 80 +20 Can’t be done!

n
Corollary: make the common case fast

Chapter 1 — Computer Abstractions and Technology — 31

Fallacy: Low Power at Idle

Look back at I7 power benchmark
At 100% load: 258W
At 50% load: 170W (66%)
At 10% load: 121W (47%)

Google data center
Mostly operates at 10% — 50% load
At 100% load less than 1% of the time

Consider designing processors to make
power proportional to load

Chapter 1 — Computer Abstractions and Technology — 32

Pitfall: MIPS as a Performance Metric

MIPS: Millions of Instructions Per Second

Doesn’t account for
Differences in ISAs between computers
Differences in complexity between instructions

Instruction count

MIPS = , _ -
Execution time x10
B Instruction count _ Clock rate
~ Instruction count x CPI <105 ~ CPIx10°
Clock rate

CPI varies between programs on a given CPU

Chapter 1 — Computer Abstractions and Technology — 33

Content

1.2 Eight Great Ideas in Computer Architecture
(Review)

1.5 Technologies for Building Processors and
Memory

1.6 Performance (Review)
1.7 The Power Wall

1.8 The Sea Change: The Switch from
Uniprocessors to Multiprocessors

1.9 Real Stuff: Benchmarking the Intel Core i7
1.10 Fallacies and Pitfalls
1.11 Concluding Remarks

Chapter 1 — Computer Abstractions and Technology — 34

nnnnnnnnnnnnnn

Concluding Remarks

Cost/performance Is improving
Due to underlying technology development

Execution time: the best performance
measure

Power Is a limiting factor
Use parallelism to improve performance

Chapter 1 — Computer Abstractions and Technology — 35

M< COMPUTER ORGANIZATION AND DESIGN riscv

The Hardware/Software Interface =dition

Chapter 4

The Processor

Adapted by Prof. Gheith Abandah

Contents

4.6 Pipelined Datapath and Control (Review)
4.7 Data Hazards: Forwarding versus Stalling
4.8 Control Hazards

4.9 Exceptions

4.10 Parallelism via Instructions

4.11 Real Stuff: The ARM Cortex-A53 and Intel
Core i7 Pipelines

4.14 Fallacies and Pitfalls
4.15 Concluding Remarks

Chapter 4 — The Processor — 2

Contents

4.6 Pipelined Datapath and Control (Review)
~lve-Stage Pipeline

Pipeline Control

Pipeline Hazards

Chapter 4 — The Processor — 3

Five-Stage Pipeline

F: Fetch instruction from the instruction
memory

D: Decode instruction and read operands
E:. Execute operation or calculate address
M: Memory access

W: Write result to the register

Chapter 4 — The Processor — 4

Five-Stage Pipeline

PCSrc
IF/ID ID/EX EX/MEM MEM/WB
4 AddSum >
Shift Branch
left 1 I_:
L0 RegWrite
M |
u PC »| Address 15 ' Read
X 5 register 1 Read - Mem\Write
> 1 3 data 1 |
: - Re?dt X - MemtoReg
Instruction _ = register Read
memory > — Write Reglstersgﬁa dz . > »-| Address data =
- i ata
»| register Data
—| Write memory
data
N | Write
. w " | data
Instruction |
[31-0] 32 imm | 64 T
| . YT\ Gen - MemRead
nstruction
[30, 14-12]
Instruction
[11-7] o ALUOp o _

MORGAN KAUFMANN

/g\ M(Chapter 4 — The Processor — 5

Pipelined Control

Control signals derived from instruction
As In single-cycle implementation

N\ "lwB
Instruction >~
— Control E M | WB
EX . M WB
IF/ID ID/EX EX/IMEM MEM/WB

Chapter 4 — The Processor — 6

Pipelined Control

PCSrc

ID/IEX
ws LEXJMEM
WwB
Control M L MEM/WB
> EX M WB [—
IF/ID
4 . Add Sum
Shift Branch
2 left 1 L
S ALUSrc 3_
o
s |
0 o i)
M = g
u PC »| Address 5 Read 5 s
x 5 register 1 Read > 2 £
1 3 data 1 [}
% »| Read ZeroH— — =
Instruction = register 2 ALU 5y Read
memory —e Wite Registers_ N - 6M result [T~ Address data [T 1M
register data 2 u | Data u
_ o | write X memory 0"
data >\l
_ Write
"] data
Instruction
[31-0] 32 Imm | 64
A Gen — MemRead
Instruction
[30, 14-12] > | control
Instruction
[11-7] - .

/Z\ M< Chapter 4 — The Processor — 7

MORGAN KAUFMANN

Hazards

Situations that prevent starting the next
Instruction in the next cycle

Structure hazards
A required resource is busy
Data hazard

Need to walt for previous instruction to
complete its data read/write

Control hazard

Deciding on control action depends on
previous Iinstruction

Chapter 4 — The Processor — 8

Contents

4.7 Data Hazards: Forwarding versus Stalling
4.8 Control Hazards

4.9 Exceptions

4.10 Parallelism via Instructions

4.11 Real Stuff: The ARM Cortex-A53 and Intel
Core i7 Pipelines

4.14 Fallacies and Pitfalls
4.15 Concluding Remarks

Chapter 4 — The Processor — 9

Contents

4.7 Data Hazards: Forwarding versus Stalling
Data Hazards in ALU Instructions
Load-Use Data Hazard
Code Scheduling

Chapter 4 — The Processor — 10

Data Hazards in ALU Instructions

Consider this sequence:

sub , X1,x3
and x12,x”,x5
or x13,x6,

add x14, x”,

sd x15,100(x2)

There are multiple true data dependencies
read-after-write (RAW), on register x2.

We can resolve hazards with stalls or
forwarding.

Chapter 4 — The Processor — 11

Dependencies & Forwarding

<
A

.

Time (in clock cycles)
Value of CC1 CC2 CC3 CC4 CC5 CCé6
register x2: 10 10 10 10 10/-20 =20
Program
execution

order
(in instructions) = =

1~ — 1
sub x2, x1, x3 IM LR_eg — —[DM— Regj

AL

rﬁ o
and x12, x2, x5 IM —E{R’_eg I_DWI_E Ee_gj

or x13, x6, x2

add x14, x2, x2

sd x15, 100(X2)

M<

MORGAN KAUFMANN

!

CC7 CcC38 CC9
-20 -20 -20

LS

DM —Regi
— 1

Chapter 4 — The Processor — 12

Forwarding Paths

ID/EX EX/MEM

L

Registers A ForwardA

——— > :/W
o— U r
o>

x

> ALU ———

MEM/WB

Data
memory

Y

Y

L

ForwardB

Rs1
Rs2
Rd

EX/MEM_.RegisterRd

.
e

~ Forwarding

MEM/WB.RegisterRd

> unit /=

Chapter 4 — The Processor — 13

Load-Use Data Hazard

Can’t always avoid stalls by forwarding
If value not computed when needed
Can’t forward backward in time!

Program

execution 200 400 600 800 1000 1200 1400
order Time . . . T .

(in instructions) R
Id x1, 0(x2) IF —E: ID

sub x4, x1, x5

WB |
bubble bubble
O O

Chapter 4 — The Processor — 14

Load-Use Hazard Detection

Check when using instruction Is decoded
in ID stage

ALU operand register numbers in ID stage
are given by

IF/ID.RegisterRsl, IF/ID.RegisterRs2
Load-use hazard when

ID/EX.MemRead and
((ID/EX.RegisterRd = IF/ID.RegisterRs1) or
(ID/EX.RegisterRd = IF/ID.RegisterRsl))

If detected, stall and insert bubble

Chapter 4 — The Processor — 15

How to Stall the Pipeline

Force control values in ID/EX register
to 0

EX, MEM and WB do nop (no-operation)

Prevent update of PC and IF/ID reqister
Using instruction is decoded again
Following instruction is fetched again

1-cycle stall allows MEM to read data for 1d
Can subsequently forward to EX stage

Chapter 4 — The Processor — 16

Load-Use Data Hazard

Time (in clock cycles) >
CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC38 CC9 CC 10

Program
execution
order

(in instructions) _ _ _

Id %2, 20(x1) M 'FEeE:
L —

and becomes nop IM — —E{Reg

L_ |

bubble / Stall inserted
here

and x4, x2, x5 IM

-[DM

or x8, x2, x6 IM F-Reg >
L

s

, add x9, x4, x2 IM I FH-Re

L —

DM Reg!
]

Chapter 4 — The Processor — 17

Datapath with Hazard Detection

Hazard ID/EX.MemRead
- detection -
. —\ unit /
- 3
% ID/EX
m we EX/MEM
i »(Control M - \WB thEMNVB
= IF/ID 0 - —
% 1 EX M WB
a
)
> > M
» U >
S > _ X
i 3 Registers U{ForwardA » 1 M
: @ g N ALU u
PC Instruction N = > M
memory R u Data X
" memo
> X ry
ForwardB
IF/ID.RegisterRs1 N -
IF/ID.RegisterRs2 _
IF/ID.RegisterRd N Rd _ _
Rs1 Forwarding
Rs2 unit). -

MORGAN KAUFMANN

/g\ M(Chapter 4 — The Processor — 18

Stalls and Performance

Stalls reduce performance
But are required to get correct results

Compiler can arrange code to avoid
hazards and stalls

Requires knowledge of the pipeline structure

Chapter 4 — The Processor — 19

Code Scheduling to Avoid Stalls

Reorder code to avoid use of load result in
the next instruction

Ccodefora =b + e; c=Db + f;

1d x1, 0(x0) 1d
14 (2)800) 1¢
— add X3, le:::> 1d

stall

sd x3, 24(x0) add
1d (x4)16(x0 sd
T — add x5, x13(x4) add
sd x5, 32(x0) sd x5, 32(x0)
13 cycles 11 cycles

Chapter 4 — The Processor — 20

Contents

4.8 Control Hazards
4.9 Exceptions
4.10 Parallelism via Instructions

4.11 Real Stuff: The ARM Cortex-A53 and Intel
Core i7 Pipelines

4.14 Fallacies and Pitfalls
4.15 Concluding Remarks

Chapter 4 — The Processor — 21

Contents

4.8 Control Hazards
Branch Hazards
Reducing Branch Delay
Branch Prediction
Dynamic Branch Prediction
Calculating Branch Target
Imprecise Exceptions

Chapter 4 — The Processor — 22

Branch Hazards

If branch outcome determined in MEM

Time (in clock cycles)

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC38 CcC9

Program
execution
order

(in instructions)

40 beq x1, x0, 16 El.—I—D

44 and x12, X2, X5

Flush these
> instructions

(Set control
values to 0)

48 or x13, x6, x2

52 add x14, x2, x2

—

72 1d x4, 100(x7)

Chapter 4 — The Processor — 23

Reducing Branch Delay

Move hardware to determine outcome to ID
stage

Target address adder

Register comparator

Example: branch taken

36: sub x10, x4, x8
40: beq x1, x3, 16 // PC-relative branch
// to 40+16%2=72

44: and x12, x2, x5
48: orr x13, x2, X6
52: add x14, x4, x2
56: sub x15, x6, x7

72: ié' x4, 50(x7)

Chapter 4 — The Processor — 24

Example: Branch Taken

| | | 1
and x12, x2, x5 i beq x1, x3, 16 3 sub x10, x4, x8 3 before<1> E before<2>

l l l |

| | | 1

| | | 1

IF.Flush | ! ! :

: l l |

: / Hazard 1 | \

detection] ! ! |

unit J | | !

ID/EX ! |

| 1

M e EX/MEM I

1

L »1Control T u M V"E MEM/WB
X i
’ 72 0 EX - M WB
b x4
Regi | S
i |79 ~(m
u
N o XS_ Data X
memory
g 10 "
L
: Forwarding X
: unit i +
|

Clock 3

MORGAN KAUFMANN

; M< Chapter 4 — The Processor — 25

Example: Branch Taken

S Id x4, 50(x7) | Bubble (nop) | beq x1, x3, 16 ' sub x10, before<1>
Flus ! ! ! !
E Hazard E E E
detection | T ' '
unit) : : :
ID/EX
M "’WB ExninEM
| Control u M ~[wel MENIU\NB
Y '
@7 0 EX
Shift :
left 1
Registers

i

o]
@
=

Forwarding
unit T

Clock 4

MORGAN KAUFMANN

; M< Chapter 4 — The Processor — 26

Branch Prediction

Longer pipelines can’t readily determine
branch outcome early

Stall penalty becomes unacceptable

Predict outcome of branch
Only stall if prediction is wrong
In RISC-V pipeline
Can predict branches not taken
Fetch instruction after branch, with no delay

Chapter 4 — The Processor — 27

More-Realistic Branch Prediction

Static branch prediction
Based on typical branch behavior

Example: loop and if-statement branches
Predict backward branches taken
Predict forward branches not taken

Dynamic branch prediction
Hardware measures actual branch behavior
e.g., record recent history of each branch

Assume future behavior will continue the trend
When wrong, stall while re-fetching, and update history

Chapter 4 — The Processor — 28

Dynamic Branch Prediction

In deeper and superscalar pipelines, branch
penalty is more significant

Use dynamic prediction
Branch prediction buffer (aka branch history table)
Indexed by recent branch instruction addresses
Stores outcome (taken/not taken)

To execute a branch
Check table, expect the same outcome
Start fetching from fall-through or target
If wrong, flush pipeline and flip prediction

Chapter 4 — The Processor — 29

Branch History Table (BHT)

One-Level Branch Predictor

1 -bit counter
Branch Address
HEEEEEE

k bits /f - ~ prediction
bits

Table size = n x 2K bits

Chapter 4 — The Processor — 30

1-Bit Predictor: Shortcoming

Inner loop branches mispredicted twice!

outer: ..

inner: ..

beq .., .., inner|—

beq .., .., outer

Mispredict as taken on last iteration of
Inner loop

Then mispredict as not taken on first
iteration of inner loop next time around

Chapter 4 — The Processor — 31

2-Bit Predictor

Only change prediction on two successive
mispredictions

Not taken

Not taken\ ‘ Taken
Not taken

Predict not taken
Taken g

Chapter 4 — The Processor — 32

Taken

Calculating the Branch Target

Even with predictor, still need to calculate
the target address

1-cycle penalty for a taken branch

Branch target buffer
Cache of target addresses

Indexed by PC when instruction fetched

If hit and instruction is branch predicted taken, can
fetch target immediately

Chapter 4 — The Processor — 33

Branch Target Buffer (BTB)

PC of instruction to fetch

Number of
entries
in branch-
largel
buffar
Mo: instruction is
not predicted to be Branch
branch; proceed normally predicted
laken or
¥es: then instruction is branch and predicted untaken

PC should be used as the next PC

Chapter 4 — The Processor — 34

Contents

4.9 Exceptions
4.10 Parallelism via Instructions

4.11 Real Stuff: The ARM Cortex-A53 and Intel
Core i7 Pipelines

4.14 Fallacies and Pitfalls
4.15 Concluding Remarks

Chapter 4 — The Processor — 35

Contents

4.9 Exceptions

Exce
Hanc
Exce
Exce

ptions and Interrupts
ling Exceptions
ptions in a Pipeline

ption Example

Multiple Exceptions

Chapter 4 — The Processor — 36

Exceptions and Interrupts

“Unexpected” events requiring change
In flow of control

Different ISAs use the terms differently

Exception

Arises within the CPU
e.g., undefined opcode, syscall, ...

Interrupt
From an external I/O controller

Dealing with them without sacrificing
performance Is hard

Chapter 4 — The Processor — 37

Handling Exceptions

Save PC of offending (or interrupted) instruction

In RISC-V: Supervisor Exception Program Counter
(SEPC)

Save indication of the problem

In RISC-V: Supervisor Exception Cause Register
(SCAUSE)

64 bits, but most bits unused

Exception code field: 2 for undefined opcode, 12 for hardware
malfunction, ...

Jump to handler
Assume at 0000 0000 1C09 0000,

Chapter 4 — The Processor — 38

An Alternate Mechanism

Vectored Interrupts
Handler address determined by the cause
Exception vector address to be added to a
vector table base register:
Undefined opcode 00 0100 0000
Hardware malfunction: 01 1000 0000

two

two

Instructions either
Deal with the interrupt, or
Jump to real handler

Chapter 4 — The Processor — 39

Handler Actions

Read cause, and transfer to relevant
handler

Determine action required

If restartable

Take corrective action

use SEPC to return to program
Otherwise

Terminate program
Report error using SEPC, SCAUSE, ...

Chapter 4 — The Processor — 40

Exceptions In a Pipeline

Another form of control hazard

Consider malfunction on add in EX stage
add x1, x2, x1
Prevent x1 from being clobbered
Complete previous instructions
Flush add and subsequent instructions
Set SEPC and SCAUSE register values
Transfer control to handler

Similar to mispredicted branch
Use much of the same hardware

Chapter 4 — The Processor — 41

Pipeline with Exceptions

EX.Flush
IF.Flush
ID.Flush
f Hazard 1
detection |« v
unit / + ¥ (W
M
t ID/EX u
Y
e 0> EX/MEM
M - M —
Control > u > M M »|WB MEM/WE
B x _— SCAUSE x - |
e 0 | EX _|—> SEPC | 0+ M w8
}] Shift)
4 left 1 R | m
> ™ u >
—& > >
4 > > X
Registers A, R
N ’ > L ALU {—| L
M ' " ~ y
1C090000 u PC Instruction | - _ u
x memory R M pata ||
] — : | memory ‘
L >
Imm N > >
* Gen >
> »-—p
Forwarding ‘
unit /:

MORGAN KAUFMANN

/g\ M(Chapter 4 — The Processor — 42

Exception Properties

Restartable exceptions
Pipeline can flush the instruction

Handler executes, then returns to the
Instruction

Refetched and executed from scratch

PC saved in SEPC regqister
|dentifies causing instruction

Chapter 4 — The Processor — 43

Exception Example

Exception on

40 sub
44 and
48 orr
50 sub
54 1d
Handler
1C090000
1c090004

N
x11l, x2, x4

x12, x2, X5
x13, x2, X6

x15, x6, x7
x16, 100(x7)

sd x26, 1000(x10)
sd x27, 1008(x10)

Chapter 4 — The Processor — 44

Exception Example

Id x16, 100(x7) : sub x15, x6, x7 : add x1, x2, x1 : orx13,... 1andx12, ...

: l EX.Flush 1 :
IF.Flush : | : :
| ID.Flush | : '
f /" Hazard ! ! !
T.Ldetection . : ' \ :
_unit Ly M : :
v ID/EX u ! !
10 X ! '
[\E M 0~ M EX/MEM !

Control u u w 0 MEM/WB

| - X !
- Z
1C090000 =
1C09000 Data
memory
12
15

Clock 6 : orwarding I :
| unit - j-r :

; M< Chapter 4 — The Processor — 45

MORGAN KAUFMANN

Exception Example

bubble bubble orx13, ...
EX.Flush

sd x26, 1000(x0) bubble (nop)

IF.Flush !
| ID.Flush

! ¢/~ Hazard
ﬁdetection L :
unit / } ; hﬂ
ID/EX u —
0 0 X

0 (EX/MEM
Control 000 M W 00
SCAUSE u
IF |D5 4 serc | 0=\ X M

1G090000 —

nift M

N o f

-

| 13 ALU
1C090000 - | Instr ﬁ
1C050004 me L u Data
memory

M X

Gen

Clock 7

L 1

! orwarding

; ﬂ\r i
1

|

; M(Chapter 4 — The Processor — 46

MORGAN KAUFMANN

Multiple Exceptions

Pipelining overlaps multiple instructions

Could have multiple exceptions at once
Simple approach: deal with exception from
earliest instruction

Flush subsequent instructions
“Precise” exceptions

In complex pipelines
Multiple instructions issued per cycle

Out-of-order completion
Maintaining precise exceptions is difficult!

Chapter 4 — The Processor — 47

Imprecise Exceptions

Just stop pipeline and save state
Including exception cause(s)

Let the handler work out
Which instruction(s) had exceptions
Which to complete or flush

May require “manual” completion

Simplifies hardware, but more complex handler
software

Not feasible for complex multiple-issue
out-of-order pipelines

Chapter 4 — The Processor — 48

Contents

4.10 Parallelism via Instructions

4.11 Real Stuff: The ARM Cortex-A53 and Intel
Core i7 Pipelines

4.14 Fallacies and Pitfalls
4.15 Concluding Remarks

Chapter 4 — The Processor — 49

Contents

4.10 Parallelism via Instructions
Instruction-Level Parallelism (ILP)
Multiple Issue
Static Multiple Issue
VLIW
Scheduling Static Multiple Issue
Loop Unrolling
Dynamic Multiple Issue
Register Renaming
Speculation
Why Do Dynamic Scheduling

Chapter 4 — The Processor — 50

Instruction-Level Parallelism (ILP)

Pipelining: executing multiple instructions Iin
parallel

To increase ILP
Deeper pipeline
Less work per stage = shorter clock cycle
Multiple issue
Replicate pipeline stages = multiple pipelines
Start multiple instructions per clock cycle
CPIl < 1, so use Instructions Per Cycle (IPC)
E.g., 4GHz 4-way multiple-issue
16 BIPS, peak CPI =0.25, peak IPC =4
But dependencies reduce this in practice

Chapter 4 — The Processor — 51

Multiple Issue

Static multiple issue
Compiler groups instructions to be issued together
Packages them into “issue slots”
Compiler detects and avoids hazards

Dynamic multiple issue

CPU examines instruction stream and chooses
Instructions to issue each cycle

Compiler can help by reordering instructions

CPU resolves hazards using advanced techniques at
runtime

Chapter 4 — The Processor — 52

Static Multiple Issue

Compiler groups instructions into “issue
packets”

Group of instructions that can be issued on a
single cycle
Determined by pipeline resources required

Think of an issue packet as a very long
Instruction

Specifies multiple concurrent operations
= Very Long Instruction Word (VLIW)

Chapter 4 — The Processor — 53

VILW

VLIW
(very long instruction word,1024 bits!)

Cache/ | > Feteh |
memory unit Single multiioperation instruction
....................................
EU = 1 pp— EU
- s _""'. - -
Multi-c;p.)eration Register file
instruction

VLIW approach

Chapter 4 — The Processor — 54

Scheduling Static Multiple Issue

Compiler must remove some/all hazards
Reorder instructions into issue packets
No dependencies with a packet

Possibly some dependencies between
packets

Varies between ISAs; compiler must know!
Pad with nop If necessary

Chapter 4 — The Processor — 55

RISC-V with Static Dual Issue

Two-issue packets
One ALU/branch instruction

One load/store instruction

64-bit aligned
ALU/branch, then load/store
Pad an unused instruction with nop

Address | Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n+4 Load/store IF ID EX MEM WB

n+38 ALU/branch IF ID EX MEM WB

n+12 Load/store IF ID EX MEM WB

n+16 ALU/branch IF ID EX MEM | WB
n+ 20 Load/store IF ID EX MEM | WB

Chapter 4 — The Processor — 56

RISC-V with Static Dual Issue

A\

(‘\
" e > =M
u >
4 —»| .
- 7 DALY .
>)
- > > M
> M Registers u .
1C090000 4> u -» Instruction — - %
x memory —) .
> " > —| Write
\ . " data
Data
Imm ALU | | |
"\ Gen Imm | > memory
N/ | Gen > N
U Address

/Z\ M(Chapter 4 — The Processor — 57

MORGAN KAUFMANN

Hazards in the Dual-Issue RISC-V

More instructions executing in parallel

EX data hazard

Forwarding avoided stalls with single-issue

Now can’t use ALU result in load/store in same packet

add , X0, x1
1d x2, 0()

Split into two packets, effectively a stall

Load-use hazard
Still one cycle use latency, but now two instructions

More aggressive scheduling required

Chapter 4 — The Processor — 58

Forwarding in Dual-Issue RISC-V

In addition to forwarding from M and W to
E, there are additional forwarding paths
among the two pipelines, e.g.:

From W in memory pipeline to E in ALU
pipeline

1d %31, 0(x20)

add x31, x31, x21

From M In ALU pipeline to M in memory
pipeline

add x31, x31, x21
sd x31, 0(x20)

Chapter 4 — The Processor — 59

Scheduling Example

Schedule this for dual-issue RISC-V

Loop: 1d ,0(x20)
add x31, ,x21
sd x31,0(x20)
addi x20,x20,-8
blt x22,x20,Loo0p

// X31l=array element
// add scalar in x21
// store result

// decrement pointer
// branch if x22 < x20

ALU/branch Load/store cycle
Loop: 1d ,0(x20) 1
addi x20,x20,-8 2
add x31, ,X21 3
blt x22,x20,Loop sd x31,8(x20) 4

IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

Chapter 4 — The Processor — 60

Loop Unrolling

Replicate loop body to expose more
parallelism

Reduces loop-control overhead

Use different registers per replication
Called “register renaming”

Avoid loop-carried “anti-dependencies’
Store followed by a load of the same register
Aka “name dependence”, write-after-read

Or “output dependence”, write-after-write
Reuse of a register name

Chapter 4 — The Processor — 61

Unrolling Steps

1. Replicate the loop instructions n times
2. Remove unneeded loop overhead

3. Modify instructions

4. Rename registers

5. Schedule Instructions

Chapter 4 — The Processor — 62

Loop Unrolling Example

ALU/branch Load/store cycle
Loop: | addi x20,x20,-32 1d , 0(x20) 1
1d x29, 24(x20) 2
add : ,x21 1d x30, 16(x20) 3
add x29,x29,x21 1d x31, 8(x20) 4
add x30,x30,x21 sd , 32(x20) 5
add x31,x31,x21 sd x29, 24(x20) 6
sd x30, 16(x20) 7
b1t x22,x20,Lo0p sd x31, 8(x20) 8
PC=14/8 =1.75

Closer to 2, but at cost of registers and code size

Chapter 4 — The Processor — 63

Dynamic Multiple Issue

“Superscalar’ processors
CPU decides whetherto issue 0, 1, 2, ...
each cycle

Avoiding structural and data hazards
Avoids the need for compiler scheduling

Though it may still help
Code semantics ensured by the CPU

Chapter 4 — The Processor — 64

Dynamic Pipeline Scheduling

Allow the CPU to execute instructions out
of order to avoid stalls

But commit result to registers in order

Example
1d ,20(x21)
add x1, , X2

sub x23,x23,x3
andi x5,x23,20

Can start sub while add is waiting for Id

Chapter 4 — The Processor — 65

Dynamically Scheduled CPU

/ Preserves

dependencies

Instruction fetch
and decode unit

In-order issue

P

Y Y

Reservation | | Reservation Reservation || Reservation | < Hold pending
station station S station station operands

Functional || oo Integer Floating Load- | oyt-of-order execute

units T point store

—
Results also sent
l to any waiting
reservation stations
— Commit In-order commit

Reorders buffer for unit

register writes

9 Can supply

operands for
issued instructions

/g\ M(Chapter 4 — The Processor — 66

MORGAN KAUFMANN

Pipeline Stages

F: Fetch from instr. memory (IM) to instr. queue (1Q).

I: Issue from IQ to reservation stations (RS), reading
ready operands from register file (RF).

E:. Execute when functional unit (FU) is free and
Instr. In RS has ready operands.

W: Write result from FU through common data bus
(CDB) to reorder buffer (ROB) and RS.

C: Commit results in order from ROB to RF and
memory

Loads have FIAMWC, stores have FIAC. A:
Address calculation

Chapter 4 — The Processor — 67

Register Renaming

Reservation stations and reorder buffer
effectively provide register renaming

On Instruction Issue to reservation station

If operand is available in register file or
reorder buffer
Copied to reservation station

No longer required in the register; can be
overwritten

If operand Is not yet available

It will be provided to the reservation station by a
function unit

Register update may not be required

Chapter 4 — The Processor — 68

Examples

Assume superscalar processor of degree 3

Name dependence (WAR)

mul x1,x2,x3
add x4,x1,x5
1d x5,16(x21)

Output dependence (WAW)

mul x1,x2,x3
add x4,x1,x5
1d x1,16(x21)

Chapter 4 — The Processor — 69

Speculation

“Guess” what to do with an instruction
Start operation as soon as possible

Check whether guess was right
If so, complete the operation
If not, roll-back and do the right thing

Common to static and dynamic multiple issue

Examples
Speculate on branch outcome
Roll back if path taken is different

Speculate on load
Roll back if location is updated

Chapter 4 — The Processor — 70

Compiler/Hardware Speculation

Compiler can reorder instructions
e.g., move load before branch

Can include “fix-up” instructions to recover
from incorrect guess

Hardware can look ahead for instructions
to execute

Buffer results until it determines they are
actually needed

Flush buffers on incorrect speculation

Chapter 4 — The Processor — 71

Branch Speculation

Predict branch and continue issuing

Don’t commit until branch outcome
determined

Example: Assume a superscalar
processor of degree 2 and the branch
prediction Is not taken.

1d x1,0(x20)

beq x1,x2,Skip

I3

T4

Chapter 4 — The Processor — 72

Load Speculation

Avoid load and cache miss delay
Load before completing outstanding stores
Predict the effective address or loaded value
Bypass stored values to load unit

Don’t commit load until speculation cleared

Example: Superscalar of degree 3.

1o x1,0(x20)
SO x2,0(x1)
1o x3,0(x21)

Chapter 4 — The Processor — 73

Speculation and Exceptions

What If exception occurs on a
speculatively executed instruction?

e.g., speculative load before null-pointer
check

Static speculation
Can add ISA support for deferring exceptions

Dynamic speculation

Can buffer exceptions until instruction
completion (which may not occur)

Chapter 4 — The Processor — 74

Exceptions Examples

Assume superscalar processor of degree 3
with 2 address calculation units

E1l: Predict branch as not take, but resolve
to taken. The 1d has exception in M.

beqg x1,x2,L1
1d x5,16(x21)

E2: Assume first sd has exemption in C.

1o x1,0(x20)
SO x1,0(x21)
SO x2,16(x21)

Chapter 4 — The Processor — 75

Why Do Dynamic Scheduling?

Why not just let the compiler schedule
code?

Not all stalls are predicable
e.g., cache misses

Can’t always schedule around branches
Branch outcome is dynamically determined

Different implementations of an ISA have
different latencies and hazards

Chapter 4 — The Processor — 76

Does Multiple Issue Work?

Yes, but not as much as we'd like
Programs have real dependencies that limit ILP

Some dependencies are hard to eliminate
e.g., pointer aliasing

Some parallelism is hard to expose
Limited window size during instruction issue

Memory delays and limited bandwidth
Hard to keep pipelines full

Speculation can help if done well

Chapter 4 — The Processor — 77

Power Efficiency

Complexity of dynamic scheduling and
speculations requires power

Multiple simpler cores may be better

Pipeline Issue Out-of-Order/ Cores/
Microprocessor Year Clock Rate Stages Width Speculation Chlp Power

Intel 486 1989 25 MHz 1 l w
' Intel Pentium 1993 66 MHz 2 No 1 w
' Intel Pentium Pro 1997 200 MHz | 10 3 Yes] 1 29 W
| Intel Pentium 4 Willamette 2001 2000 MHz 22 3 Yes | 1 75 w
'l Intel Pentium 4 Prescott 2004 3600 MHz 31 3 Yes 1 103 | W
' Intel Core 2006 2930 MHz | 14 4 Yes 2 75 | W
' Intel Core i5 Nehalem 2010 3300 MHz 14 4 Yes | 24 87 W
| Intel Core i5 Ivy Bridge 2012 3400 MHz | 14 4 Yes 8 | 7 |w

Chapter 4 — The Processor — 78

Contents

4.11 Real Stuff: The ARM Cortex-A53 and Intel
Core i7 Pipelines

4.14 Fallacies and Pitfalls
4.15 Concluding Remarks

Chapter 4 — The Processor — 79

Cortex A53 and Intel 17

Market
Thermal design power

Clock rate

Cores/Chip

Floating point?

Multiple issue?

Peak instructions/clock cycle
Pipeline stages

Pipeline schedule

Branch prediction

15t level caches/core

2"d level caches/core

3'd level caches (shared)

Personal Mobile Device

100 milliWatts
(1 core @ 1 GH2z)

1.5 GHz
4 (configurable)
Yes
Dynamic
2
8

Static in-order

Hybrid
16-64 KiB I, 16-64 KiB D
128-2048 KiB
(platform dependent)

Server, cloud
130 Watts

2.66 GHz
4
Yes
Dynamic
4
14

Dynamic out-of-order
with speculation

2-level
32KiB I, 32 KiB D
256 KiB (per core)
2-8 MB

Chapter 4 — The Processor — 8

ARM Cortex-A53 Pipeline

F1 F2 F3 F4 Iss Ex1 Ex2 Wr
Integer execute and load-store
Instruction fetch & predict
-+ | ALU pipe 0 >
Integer
AGU e | Register |—

+ i . ALU pipe 1 »

B [Hybrid file pip

. Predictor
| Instruction N MAC pipe N
Cache : | Writeback
Indirect

- Predictor .
. Divide pipe >
Issue | Load pipe =
L Store pipe >

Instruction Decode Floating Point execute
13-Entry . .
L, Early > Instruction —s» Main .| Late Register
Decode Queue Decode Decode file ALU pipe
D1 D2 D3 F1 F2 F3 F4 F5

MORGAN KAUFMANN

/g\ M(Chapter 4 — The Processor — 81

ARM Cortex-A53 Performance

10.00
B Memory hierarchy stalls
9.00 —— Pipeline stalls 556
M Ideal CPI
8.00
7.00
6.00
5.00
4.00
3.37
3.00
2.14
2.00 1.75 1.76 l
1.33 1.39
104 107 117122 . .
1.00 22 — wm = W =
o 1 H N H B B B B B B BB
hmmer h264ref Ilbquantum perlbench sjeng bzip2 gobmk xalanc mk gcc astar omnetpp mcf

Chapter 4 — The Processor — 82

Core 17 Pipeline

128-Entry ,,{ 32 KB Inst. cache (four-way associative) |«
inst. TLB |4 | v ot macro
(four-way) LTS * -
X fusion, fetch buffer
4
lns;ﬂiion | 18-Entry instruction queus |
hardware [* > » " -
Complex Simple Simple Simple

Mic fv masro-op mMasro-op mMacro-op macro-op

_md“: decoder decoder decoder decoder
—ry¥ v v v
28-Entry micro-op loop stream detect buffer

| Register alias table and allocator |
Retirement L 4
register file 128-Entry Trdur buffer
. 35-Entry reservation station
v v ¥ v v v
ALL ALL Load Store Store ALL
shift shift address | address data shift
1 I
S5E SSE L2 v v S5E
shuffle shuffle Memory order buffer shuffle
ALL ALL ALL
| | |
128-bit 128-bit 128-bit
FMUL FMUL Store FMUL
FON FDIV & load FDIV
I I T
YY VYY v
512-Entry unified 1 64-Entry data TLE 32-KB dual-ported data 266 KB unified |2
L2TLE (4-way) | (4-way associative) | | cache (8-way associative) " cache (eight-way)
v 4
8 MB all core shared and inclusive L3 — Uncore arbiter (handles scheduling and
cache (18-way associative) R B clock/power state differences)

MORGAN KAUFMANN

; M< Chapter 4 — The Processor — 83

Core 17 Performance

B ittt
Stalls, mISSPeCUIauon . Branch misprediction % ® Wasted work %
BT
H |[deal CPI A0 o m m - m mm m o . oo
25 o - =
35% oo oo -
212 =
B0% o mm oo o Rl LaGREEETEEREEEEE -
o __ .
25% e mmmm e e E- L SEEETEEEEEE . -
2%
T I L 20% e e ot EUEEEEEEE -
S 1.5
1.23 15% 4o N NN BRRRL NSNS
1.02 1.08 1% ,
[gy -—-3--3---- - 10% F---=---=-== - ERl RECELEEELTE - -l --- - --- -
B2 i
oes 074 07 o % = N - m-N B B B B R
osg 081

Chapter 4 — The Processor — 84

MORGAN KAUFMANN

Contents

4.14 Fallacies and Pitfalls
4.15 Concluding Remarks

Chapter 4 — The Processor — 85

Fallacies

Pipelining is easy (!)
The basic idea Is easy
The devil is in the details
e.g., detecting data hazards

Pipelining Is independent of technology

So why haven’t we always done pipelining?
More transistors make more advanced techniques
feasible

Pipeline-related ISA design needs to take account of

technology trends
e.g., predicated instructions

Chapter 4 — The Processor — 86

Pitfalls

Poor ISA design can make pipelining
harder
e.g., complex instruction sets (VAX, 1A-32)

Significant overhead to make pipelining work
|A-32 micro-op approach

e.g., complex addressing modes
Register update side effects, memory indirection

e.g., delayed branches
Advanced pipelines have long delay slots

Chapter 4 — The Processor — 87

Contents

4.6 Pipelined Datapath and Control (Review)
4.7 Data Hazards: Forwarding versus Stalling
4.8 Control Hazards

4.9 Exceptions

4.10 Parallelism via Instructions

4.11 Real Stuff: The ARM Cortex-A53 and Intel
Core I/ Pipelines

4.14 Fallacies and Pitfalls
4.15 Concluding Remarks

Chapter 4 — The Processor — 88

Concluding Remarks

Pipelining improves instruction throughput
using parallelism

More instructions completed per second
Latency for each instruction not reduced

Hazards: structural, data, control
Multiple issue and dynamic scheduling (ILP)

Dependencies limit achievable parallelism
Complexity leads to the power wall

Chapter 4 — The Processor — 89

M< COMPUTER ORGANIZATION AND DESIGN riscv

Edition

The Hardware/Software Interface

Chapter 5

Large and Fast:
Exploiting Memory
Hierarchy

Adapted by Prof. Gheith Abandah

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache
5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies
5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Principle of Locality

Programs access a small proportion of
their address space at any time

Temporal locality

ltems accessed recently are likely to be
accessed again soon

e.g., Instructions in a loop, induction variables

Spatial locality

ltems near those accessed recently are likely
to be accessed soon

E.g., sequential instruction access, array data

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

Taking Advantage of Locality

Memory hierarchy
Store everything on disk

Copy recently accessed (and nearby)

items from disk to smaller DRAM memory
Main memory

Copy more recently accessed (and

nearby) items from DRAM to smaller
SRAM memory

Cache memory attached to CPU

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Memory Hierarchy

B volatile B non-volatile

Cloud storage

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

Memory Hierarchy Levels

Block (aka line): unit of copying
May be multiple words

If accessed data is present in
Processor upper level

“ Hit: access satisfied by upper level
W Hit ratio: hits/accesses

If accessed data is absent

. Miss: block copied from lower level
Data is transferred _ _
Y Time taken: miss penalty

Miss ratio; misses/accesses
=1 - hit ratio

Then accessed data supplied from
upper level

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Contents

5.2 Memory Technologies
Introduction
SRAM
DRAM
Flash
Disk Storage

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Memory Technology (2012)

Static RAM (SRAM)

0.5ns — 2.5ns, $2000 — $1000 per GB
Dynamic RAM (DRAM)

50ns — 70ns, $10 — $20 per GB
Flash memory

5,000ns — 50,000ns, $0.75 — $1.00 per GB
Magnetic disk

5ms — 20ms, $0.05 — $0.10 per GB
ldeal memory

Access time of SRAM
Capacity and cost/GB of disk

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

SRAM Technology

Static RAM

6-8 transistors per bit
Fast but not dense
Often has standby mode

IDTE16TSAILA

CMOS Static RAM 16K (16K x it)

‘ v ' Pin Configurations
N \
M, M 20 [Jvee
M, Mg

1o [

18 | Mz

17 [A

P201 4 Have
D201 45 e

14 [as

13 [ar

12 o

0 1 L Ics

=

21

BL

&l

1=
EE?P}.}-}}}

o [
1 O
:
s [
1
s [
s [
r 4
WE []
o [

= O g0 = O oM o L R

£

Z

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

DRAM Technology

Data stored as a charge in a capacitor
Single transistor used to access the charge
Must periodically be refreshed Select —1—

Read contents and write back Storage ___' ﬂ
Performed on a DRAM “row” T et

Column

Rd/Wr

—

J_I

Bank

Act

Pre

Row

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Classic DRAM

Basic DRAM chip

RAS#
Row
Column Add Row O M
Addr FESS || Address emory
Latch decoder array
@ Column Column I Column addr
Address decoder

CAS# Latch
— (M T o

e DRAM access sequence
— Put Row on addr. bus
— Assert RAS# (Row Addr. Strobe) to latch Row
— Put Column on addr. bus
— Wait RAS# to CAS# delay and assert CAS# (Column Addr. Strobe) to latch Col
— Get data on address bus after CL (CAS latency)

13 ‘ Computer Structure 2015 — System

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Classic DRAM

RAS# | [\ /
cas# \ / \ /

Addr (Row1)—({30|.1)—(Row2)—(Co|.2)7

Data ': Data1 "; ,"' Data 2)

Every access - individual

2008-2013 ©5 Maciulevicius

Low bandwidth

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

Advanced DRAM Organization

Access an entire row and save it in arow
buffer.

Fast page mode: supply successive
words from the row buffer with reduced
latency

RAS# _\

CAS#H . \ / \ / \
Addr (Row 1)<Col. 1 }———{Col. 2}—— Col. 3)
Data { Data————{ Datad——— Data3

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

Advanced DRAM Organization

Synchronous DRAM (SDRAM) has a
counter that increments the column
address using a clock signal.

Column Decoder

Addr

Column Address
Counter/Latch

CAS CLK

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

Advanced DRAM Organization

Double data rate (DDR) SDRAM
Transfer on rising and falling clock edges

Quad data rate (QDR) SDRAM
Separate DDR inputs and outputs

SDR| - { &

Single Dat \Ikyle/

signals
M ke
clock cycle

Double Dat \'ky|j
~

e (e
QDR "

~

d Data Rat

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Micron 1Gb DDR-SDRAM

MT46V128M8 — 32 Meg X 8 X 4 Banks,

Column 0

| 1
|]
CKE —hqla— i
kg —»G— i
K —wC——] |
i
\ 1
H]
5% —*G—— Control !
I By loglc "
Wes —w—| i g i
s : E 2 Bank 3 i
RAsF gy Y !
: i
! |
H]
|]
| i
: 1 :
1 ! |
! counter
| | e |
| ! address Tow- Banko !
| = | % |
: o o il 15 memory ?
! i array 1
i " & (16,384 x 1,024 x 16) Data !
! ! V] decoder 8 :
1 ! g |
]
: : '8 | Aean MUK 8 > !
| ! SENSE AMPLIFIERS latch 8 DRVRS | !
i ! » - !
: i ' Dos ! :
i ! -- —- (16,384} generator :
! | | —C4— DQO-DO7
| ! Calumn 0 Das |
! i 2z o QEEIII'IQ + - Input !
> DM mask logic i
| ! Bank d 16 registers : Das
AD-A13, 5| Address —] control i
BAD, BA1 register f— 3 logic WRITE :
4 q]
1 > » 102 . 16 FIFOD I
H » '_I| | and !
i > drivers e oM
i
H]
i Column CLE CLE !
! % decoder out n i
! Column- i
| = M address 10 K 1 !
! counter/ !
! latch i
| 1
|]
H]
| i

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

<
A

MORGAN KAUFMANN

https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr1/1gb_ddr.pdf

<
A

Micron 1Gb DDR-SDRAM

M<

MORGAN KAUFMANN

i
/

I
[¥

E |
Refresh 1_'*
counter — 1/ ROW- 1 Bank 0 u
address row- |\ Bank O
MUX address 16,384 memory
N latch _1{ array
14 & (16,384 x 1,024 x 16)
1 decoder | L
Y ||
SENSE AMPLIFIERS —
oL (16,384)
2 /O gating
e DM mask logic
Bank
_______________________ control
2, logic —
4 g >FI 1nz;|
>
Column
decoder
Column-
N address 1}1
1 counter/ 7
latch

rchy — 17

DRAM Generations

Average column

Total access time to access time to

Year introduced $ per GiB a new row/column existing row
1980 64 Kibibit $1,500,000 250 ns 150 ns
1983 256 Kibibit $500,000 185 ns 100 ns
1985 1 Mebibit $200,000 135 ns 40 ns
1989 4 Mebibit $50,000 110 ns 40 ns
1992 16 Mebibit $15,000 90 ns 30 ns
1996 64 Mebibit $10,000 60 ns 12 ns
1998 128 Mebibit $4,000 60 ns 10 ns
2000 256 Mebibit $1,000 55 ns 7ns
2004 512 Mebibit $250 50 ns 5ns
2007 1 Gibibit $50 45 ns 1.25 ns
2010 2 Gibibit $30 40 ns 1ns
2012 4 Gibibit $1 35 ns 0.8 ns

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

DRAM Generations

——Trac
—=—Tcac

Year Capacity | $/GB 300
1 4Kbit 1500000

980 | 64Kbi $ 250
1983 | 256Kbit | $500000
1985 | 1Mbit $200000 200
1989 | 4Mbit $50000

150 A

1992 | 16Mbit $15000
1996 | 64Mbit $10000 100
1998 | 128Mbit | $4000
2000 | 256Mbit | $1000 >0
2004 | 512Mbit | $250 0
2007 | 1Ghit $50

‘80 '83 '85 '89 '92 '96 '98 '00 '04 '0O7

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

DRAM Performance Factors

Row buffer

Allows several words to be read and refreshed in
parallel

Synchronous DRAM

Allows for consecutive accesses in bursts without
needing to send each address

Improves bandwidth

DRAM banking

Allows simultaneous access to multiple DRAMs
Improves bandwidth

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

Increasing Memory Bandwidth

Processor Processor Processor
__—Multiplexor
Cache Cache
Cache
’/\\ — ,/\\
Bus Bus Bus
\\/, —\/— \\ /’
Memory Memory || Memory || Memory || Memory
bank 0 bank 1 bank 2 bank 3

b. Wider memory organization c. Interleaved memory organization

Memory To get 16-byte block:

a. One-word wide memory
Miss penalty = 4x(1 + 15 + 1) = 68 bus cycles
Bandwidth = 16 bytes / 68 cycles = 0.24 B/cycle

a. One-word-wide
memory organization

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Increasing Memory Bandwidth

Processor Processor Processor
__—Multiplexor
Cache Cache
Cache
’/\\ — ,/\\
Bus Bus Bus
\\/, —\/— \\ /’
Memory Memory || Memory || Memory || Memory
bank 0 bank 1 bank 2 bank 3
b. Wider memory organization c. Interleaved memory organization
Memory b. 4-word wide memory

Miss penalty =1 + 15+ 1 = 17 bus cycles
Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle
c. 4-bank interleaved memory

T o crenmzation Miss penalty = 1 + 15 + 4x1 = 20 bus cycles
Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22

Increasing Memory Bandwidth

d. DDR-SDRAM
Miss penalty =1 + 15 + 4x0.5 = 18 bus cycles
Bandwidth = 16 bytes / 18 cycles = 0.89 B/cycle

CT102464BA160B.C16FER _ crucial’ i

PROOUCT OF CHINA

CT10248480 1500 C14F £
B38 16X DORY 1409 DM

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

Flash Storage

Nonvolatile semiconductor storage
100x — 1000x faster than disk
Smaller, lower power, more robust
But more $/GB (between disk and DRAM)

Chapter 6 — Storage and Other 1/0O Topics — 24

Flash Types

NOR flash: bit cell like a NOR gate

Random read/write access
Used for instruction memory in embedded systems

NAND flash: bit cell like a NAND gate

Denser (bits/area), but block-at-a-time access
Cheaper per GB
Used for USB keys, media storage, ...

Flash bits wears out after 1000’s of accesses
Not suitable for direct RAM or disk replacement
Wear leveling: remap data to less used blocks

Chapter 6 — Storage and Other 1/0 Topics — 25

Disk Storage

Nonvolatile, rotating magnetic storage

cylinder

Chapter 6 — Storage and Other 1/0 Topics — 26

Disk Sectors and Access

Each sector records
Sector ID

Data (512 bytes, 4096 bytes proposed)

Error correcting code (ECC)
Used to hide defects and recording errors

Synchronization fields and gaps
Access to a sector involves
Queuing delay if other accesses are pending
Seek: move the heads
Rotational latency
Data transfer
Controller overhead

Chapter 6 — Storage and Other 1/0O Topics — 27

Disk Access Example

Given

512B sector, 15,000rpm, 4ms average seek
time, 100MB/s transfer rate, 0.2ms controller
overhead, idle disk

Average read time

4ms seek time

+ %, [(15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay

= 6.2ms

If actual average seek time is 1ms
Average read time = 3.2ms

Chapter 6 — Storage and Other 1/0 Topics — 28

Disk Access Example 2

Given
15,000rpm, 2MB/cylinder

Sustainable peak transfer rate?

Chapter 6 — Storage and Other 1/0 Topics — 29

Disk Performance Issues

Manufacturers quote average seek time
Based on all possible seeks

Locality and OS scheduling lead to smaller actual
average seek times

Smart disk controller allocate physical sectors on
disk

Present logical sector interface to host

SCSI, ATA, SATA

Disk drives include caches
Prefetch sectors in anticipation of access
Avoid seek and rotational delay

Chapter 6 — Storage and Other 1/0 Topics — 30

Contents

5.3 The Basics of Caches
Direct Mapped Cache
Cache Example
Larger Block Sizes
Writing to the Cache
Example: Intrinsity FastMATH

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

Cache Memory

Cache memory

The level of the memory hierarchy closest to
the CPU

Given accesses X, ..., X1, X,
Xfiz X:: How do we know if
the data Is present?
- - Where do we look?

a. Before the reference to X,, b. After the reference to X,

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32

Direct Mapped Cache

Location determined by address

Direct mapped: only one choice
(Block address) modulo (#Blocks in cache)

OOOOOOOO
OOOOOOOO
OOOOOOOO

9 #Blocks Is a
X power of 2
Use low-order
y / r \ . | address bits

00001 00101 01001 01101 10001 10101 11001 11101
Memory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 33

Tags and Valid Bits

How do we know which particular block is
stored In a cache location?

Store block address as well as the data
Actually, only need the high-order bits
Called the tag

What if there Is no data In a location?
Valid bit: 1 = present, O = not present
Initially O

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 34

Cache Example

8-blocks, 1 word/block, direct mapped
Initial state

Index
000
001
010
011
100
101
110
111

Tag Data

ZlIZ2|1Z2|1Z2|1Z2|Z2(2|Z2|<

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 35

Cache Example

Word addr Binary addr Hit/miss | Cache block
22 10 110 Miss 110

Index
000
001
010
011
100
101

Tag Data

Z|lIZ2|1Z2|1Z2|1Z2|2|<

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 36

Cache Example

Word addr Binary addr Hit/miss | Cache block

26 11 010 Miss 010

Index V Tag Data

000 N

001 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 37

Cache Example

Word addr Binary addr Hit/miss | Cache block
22 10 110 Hit 110
26 11 010 Hit 010

Index
000
001
010
011
100
101
110
111

Tag Data

11 Mem([11010]

10 Mem[10110]

Z|I<|IZ2|I1Z2|Z2|<[(Z2|Z2|<

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 38

Cache Example

Word addr Binary addr Hit/miss | Cache block

16 10 000 Miss 000
3 00 011 Miss 011
16 10 000 Hit 000

Index V Tag Data

001 N

010 Y 11 Mem[11010]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 39

Cache Example

Word addr Binary addr Hit/miss | Cache block

18 10 010 Miss 010

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 40

Address Subdivision

<
A

Address (showing bit positions)

6362 ----131211 ----2 10
Byte
offset
" Jd52 Jd10
it
h Tag
Index Data
Index Valid Tag Data
0
1
2
i J ®
1021
1022
1023
452 \\32
(=
M(Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 41

Example: Larger Block Size

64 blocks, 16 bytes/block

To what block number does address 1200
map?

Block address =|1200/16] = 75
Block number = 75 modulo 64 = 11

63 10 9 4 3 0

Tag Index | Offset
22 bits 6 bits 4 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42

Block Size Considerations

Larger blocks should reduce miss rate
Due to spatial locality

But In a fixed-sized cache

Larger blocks = fewer of them
More competition = increased miss rate

Larger blocks = pollution
Larger miss penalty

Can override benefit of reduced miss rate
Early restart and critical-word-first can help

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 43

Block Size Considerations

10%

/

L USSP
rate
\ / 16K
——
<\
y — e -0 o 64K
=7
0% . —h f A 256K
16 32 64 128 256

Block size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 44

Cache Misses

On cache hit, CPU proceeds normally

On cache miss
Stall the CPU pipeline
Fetch block from next level of hierarchy

Instruction cache miss
Restart instruction fetch

Data cache miss
Complete data access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 45

Writing to the Cache

cpu_req.addr
(showing bit positions)

cpu_req.data

s B vl W81 5 1 mem_data.data
..,.“-13 10 2 Byte r F l L] +* * [] L3 * » L 3 +
Tag Index offset Mux) (Musx) (Mux) (Mux)
I I I I
18 bits Data Write
e J128
V D Tag [~
Data
|| 1024
— | entries
r
418 4 128
Data Read
i Block offset r h'
Hit ock offse it
32
Data

M(Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 46

MORGAN KAUFMANN

Write-Through

On data-write hit, could just update the block In
cache

But then cache and memory would be inconsistent
Write through: also update memory

But makes writes take longer

e.g., if base CPI = 1, 10% of instructions are stores,
write to memory takes 100 cycles
Effective CPI =1+ 0.1x100 =11

Solution: write buffer
Holds data waiting to be written to memory

CPU continues immediately
Only stalls on write if write buffer is already full

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 47

Write-Back

Alternative: On data-write hit, just update
the block in cache

Keep track of whether each block is dirty

When a dirty block is replaced
Write it back to memory

Can use a write buffer to allow replacing block
to be read first

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 48

Write Allocation

What should happen on a write miss?

Alternatives for write-through

Allocate on miss: fetch the block

Write around: don’t fetch the block

Since programs often write a whole block before
reading it (e.qg., initialization)

For write-back
Usually fetch the block

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 49

Example: Intrinsity FastMATH

Embedded MIPS processor

12-stage pipeline

Instruction and data access on each cycle
Split cache: separate |I-cache and D-cache

Each 16KB: 256 blocks x 16 words/block
D-cache: write-through or write-back

SPEC2000 miss rates
|-cache: 0.4%
D-cache: 11.4%
Weighted average: 3.2%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 50

Example: Intrinsity FastMATH

Address (showing bit positions)

31 -+ 1413:.--65-:210
. 418 48 44 Byte Data
I_ilt Tag offset 1
Index Block offset
18 bits 512 bhits
V Tag Data
A
256
° entries
e Y
J18 432 432 432
(=
~
Mux
(o)
J4.32

/g\ M< Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 51

MORGAN KAUFMANN

Contents

5.4 Measuring and Improving Cache Performance
Measuring Cache Performance
Memory Average Access Time
Associative Caches
Multi-level Caches
Interactions with Advanced CPUs
Interactions with Software

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 52

Measuring Cache Performance

Components of CPU time
Program execution cycles
Includes cache hit time
Memory stall cycles
Mainly from cache misses

With simplifying assumptions:

Memory stall cycles

_ Memory accesses
Program

x Miss rate x Miss penalty

Instructions Misses .
— X x Miss penalty

Program Instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 53

Cache Performance Example

Given
|-cache miss rate = 2%
D-cache miss rate = 4%
Miss penalty = 100 cycles
Base CPI (ideal cache) = 2
Load & stores are 36% of instructions

Miss cycles per instruction
|-cache: 0.02 x 100 =2
D-cache: 0.36 x 0.04 x 100 = 1.44
Actual CPI=2+2+1.44 =5.44
ldeal CPU Is 5.44/2 =2.72 times faster

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 54

Average Access Time

Hit time Is also important for performance

Average memory access time (AMAT)
AMAT = Hit time + Miss rate x Miss penalty

Example

CPU with 1ns clock, hit time = 1 cycle, miss
penalty = 20 cycles, |I-cache miss rate = 5%
AMAT =1+ 0.05 x 20 = 2ns

2 cycles per instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 55

Performance Summary

When CPU performance increased
Miss penalty becomes more significant

Decreasing base CPI

Greater proportion of time spent on memory
stalls

Increasing clock rate
Memory stalls account for more CPU cycles

Can’t neglect cache behavior when
evaluating system performance

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 56

Assoclative Caches

Fully associative
Allow a given block to go in any cache entry
Requires all entries to be searched at once
Comparator per entry (expensive)

/-way set associative
Each set contains 77 entries

Block number determines which set
(Block number) modulo (#Sets in cache)

Search all entries in a given set at once
/1 comparators (less expensive)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 57

Assoclative Cache Example

Direct mapped Set associative Fully associative
Block# 01234567 Set# 0 1 2 3
Data Data Data
1 1 1
T Ta Ta
ag 2 I 2 J 2

o s TTTTTTT]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 58

Spectrum of Associativity

For a cache with 8 entries

One-way set associative
(direct mapped)

Block Tag Data

(1) Two-way set associative
5 Set Tag Data Tag Data
3 0

4 1

5 2

6 3

7

Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data
0

1

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

M(Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 59

MORGAN KAUFMANN

Assoclativity Example

Compare 4-block caches

Direct mapped, 2-way set associative,
fully associative

Block access sequence: 0, 8,0, 6, 8

Direct mapped

Block Cache Hit/miss Cache content after access
address index 0 1 2 3
0 0 miss
8 0 miss Mem[8]
0 0 miss Mem|[O0]
6 2 miss Mem[0]
8 0 miss Mem[8] Mem|[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 60

Assoclativity Example

2-way set associative

Block Cache Hit/miss Cache content after access
address index Set 0 Set 1
0 0 miss
8 0 miss Mem]O]
0 0 hit Mem|[O0] Mem|[8]
6 0 miss Mem[0] Mem|[6]
8 0 miss Mem[8] Mem|[6]

Fully associative

Block Hit/miss Cache content after access
address
0 miss
8 miss Mem]O]
0 hit Mem][O] Mem[8]
6 miss Mem]O] Mem|8]
8 hit Mem]O] Mem[8] Mem|[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 61

How Much Associativity

Increased associativity decreases miss
rate
But with diminishing returns

Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
1-way: 10.3%
2-way: 8.6%
4-way: 8.3%
3-way: 8.1%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 62

Set Associative Cache Organization

Address
3130---12111098---3210

J22 48
Tag
Index
Index V Tag Data V Tag Data V Tag Data V Tag Data
0
1
2
® L [] [] L q L ® p []
253
254
255
422 32
(= (= (= (=

Hj | =——Ha-to-1 muttiplexo)

Hit Data

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 63

Replacement Policy

Direct mapped: no choice

Set associative
Prefer non-valid entry, if there is one
Otherwise, choose among entries in the set

Least-recently used (LRU)

Choose the one unused for the longest time

Simple for 2-way, manageable for 4-way, too hard
beyond that

Random

Gives approximately the same performance
as LRU for high associativity

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 64

Multilevel Caches

Primary cache attached to CPU
Small, but fast

Level-2 cache services misses from
primary cache

Larger, slower, but still faster than main
memory

Main memory services L-2 cache misses
Some high-end systems include L-3 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 65

Multilevel Cache Example

Given
CPU base CPI = 1, clock rate = 4GHz
Miss rate/instruction = 2%
Main memory access time = 100ns

With just primary cache
Miss penalty = 100ns/0.25ns = 400 cycles
Effective CPI =1+ 0.02 x 400 =9

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 66

Example (cont.)

Now add L-2 cache

Access time = 5ns
Global miss rate to main memory = 0.5%

Primary miss with L-2 hit
Penalty = 5ns/0.25ns = 20 cycles

Primary miss with L-2 miss
Extra penalty = 500 cycles

CPI=1+0.02%x20+0.005x500=3.9
Performance ratio = 9/3.9=2.3

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 67

Multilevel Cache Considerations

Primary cache
Focus on minimal hit time

L-2 cache

Focus on low miss rate to avoid main memory
access

Hit time has less overall impact
Results

L-1 cache usually smaller than a single cache
L-1 block size smaller than L-2 block size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 68

Interactions with Advanced CPUs

Out-of-order CPUs can execute
Instructions during cache miss
Pending store stays in load/store unit

Dependent instructions wait in reservation
stations

Independent instructions continue
Effect of miss depends on program data
flow
Much harder to analyse
Use system simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 69

Interactions with Software

Misses depend on
memory access
patterns

Algorithm behavior

Compller
optimization for
memory access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 70

Contents

5.5 Dependable Memory Hierarchy
Dependabillity
Error Correction Codes

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 71

Dependabllity

Service accomplishment
Service delivered
as specified

Fault: failure of a
component
Restoration Failure May or may not lead

\ / to system failure

Service interruption
Deviation from
specified service

Chapter 6 — Storage and Other 1/0O Topics — 72

Dependability Measures

Reliability: mean time to failure (MTTF)
Service interruption: mean time to repair (MTTR)

Mean time between faillures
MTBF = MTTF + MTTR

Availability = MTTF / (MTTF + MTTR)

Improving Availability
Increase MTTF: fault avoidance, fault tolerance, fault
forecasting
Reduce MTTR: improved tools and processes for
diagnosis and repair

Chapter 6 — Storage and Other 1/0 Topics — 73

The Hamming SEC Code

Hamming distance

Number of bits that are different between two
bit patterns

Minimum distance = 2 provides single bit
error detection

E.g. parity code
Minimum distance = 3 provides single
error correction, 2 bit error detection

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 74

Encoding SEC

To calculate Hamming code:
Number bits from 1 on the left

All bit positions that are a power 2 are parity
bits
Each parity bit checks certain data bits:

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

Encoded date bits | p1 p2 d4 = p8
pl | X X X X X X
Parity p2 X | X X | X X | X
covgrt‘ate pd X XXX X
p8 X [X [X [X | X

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 75

Decoding SEC

Value of parity bits indicates which bits are
INn error
Use numbering from encoding procedure
E.g.
Parity bits = 0000 indicates no error
Parity bits = 1010 indicates bit 10 was flipped

Example:
What will be stored for 1001 10107?

If you read 0111 0010 1110, is there error?
Correct It.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 76

SEC/DED Code

Add an additional parity bit for the whole word
(Pn)

Make Hamming distance = 4
Decoding:
Let H = SEC parity bits

H =0, p, even, no error

H # 0, p,, odd, correctable single bit error
H =0, p, odd, error in p, bit
H # 0, p, even, double error occurred

ECC DRAM uses SEC/DED with 8 bits
protecting each 64 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 77

Contents

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache
5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies
5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 78

RAID

Redundant Array of Inexpensive
(Independent) Disks

Use multiple smaller disks (c.f. one large disk)
Parallelism improves performance
Plus extra disk(s) for redundant data storage

Provides fault tolerant storage system
Especially if failed disks can be “hot swapped”

RAID O

No redundancy (“AlD™?)
Just stripe data over multiple disks

But it does improve performance

Chapter 6 — Storage and Other 1/0O Topics — 79

RAID 1 & 2

RAID 1: Mirroring

N + N disks, replicate data
Write data to both data disk and mirror disk
On disk failure, read from mirror

RAID 2: Error correcting code (ECC)
N + E disks (e.g., 10 + 4)
Split data at bit level across N disks
Generate E-bit ECC
Too complex, not used In practice

Chapter 6 — Storage and Other 1/0 Topics — 80

RAID 3: Bit-Interleaved Parity

N + 1 disks
Data striped across N disks at byte level
Redundant disk stores parity

Read access
Read all disks

Write access
Generate new parity and update all disks

On failure
Use parity to reconstruct missing data

Not widely used

Chapter 6 — Storage and Other 1/0 Topics — 81

RAID 4: Block-Interleaved Parity

N + 1 disks
Data striped across N disks at block level
Redundant disk stores parity for a group of blocks

Read access
Read only the disk holding the required block

Write access
Just read disk containing modified block, and parity disk
Calculate new parity, update data disk and parity disk

On fallure
Use parity to reconstruct missing data

Not widely used

Chapter 6 — Storage and Other 1/0O Topics — 82

RAID 3 vs RAID 4

New Data 1. Read 2.Read 3.Read New Data1.Read 2.Read
DO’ DO D1 D2 D3 P D D1 D2 D3 P

o'| | Do
!
XOR
XOR
DO

XOR
DO" | | D1 D2 | | D3 P’ "1 | D1 D2 | | D3 P’

4 Write 5.Write 3.Write 4 Write

Chapter 6 — Storage and Other 1/0 Topics — 83

RAID 5: Distributed Parity

N + 1 disks

Like RAID 4, but parity blocks distributed
across disks

Avoids parity disk being a bottleneck
Widely used

D D D o s S Ry S S Ry S R
0 1 2 3 PO 0 1 2 3 PO
4 5 6 7 P1 4 5 6 P1 7
8 9 10 11 P2 8 9 P2 10 11
12 13 14 15 P3 12 P3 13 14 15
16 17 18 19 P4 P4 16 17 18 19
20 21 22 23 P5 20 21 22 23 P5

RAID 4 RAID 5

Chapter 6 — Storage and Other 1/0O Topics — 84

RAID 6: P + Q Redundancy

N + 2 disks
Like RAID 5, but two lots of parity

Greater fault tolerance through more
redundancy

Multiple RAID

More advanced systems give similar fault
tolerance with better performance

Example RAID 51

a2 ezl |
LPY | A3 | B3

Chapter 6 — Storage and Other 1/0 Topics — 85

RAID Summary

RAID can improve performance and
availability
High availability requires hot swapping
Assumes independent disk failures
Too bad if the building burns down!

Chapter 6 — Storage and Other 1/0 Topics — 86

Contents

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache
5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies
5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 87

Virtual Machines

Host computer emulates guest operating system
and machine resources

Improved isolation of multiple guests
Avoids security and reliability problems
Aids sharing of resources

Virtualization has some performance impact
Feasible with modern high-performance comptuers

Examples
IBM VM/370 (1970s technology!)
VMWare
Microsoft Virtual PC

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 88

Virtual Machines

e N o N\

Virtual Machine Virtual Machine Virtual Machine

\ DN 2 y

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 89

Virtual Machine Monitor

Maps virtual resources to physical
resources

Memory, I/O devices, CPUs

Guest code runs on native machine in user
mode

Traps to VMM on privileged instructions and
access to protected resources

Guest OS may be different from host OS

VMM handles real |/O devices
Emulates generic virtual I/O devices for guest

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 90

Instruction Set Support

User and System modes

Privileged Instructions only available in
system mode
Trap to system if executed in user mode

All physical resources only accessible
using privileged instructions

Including page tables, interrupt controls, 1/0O
registers

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 91

Contents

5.7 Virtual Memory
Introduction
Page Tables
Fast Translation Using a TLB
Memory Protection

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 92

Virtual Memory

Use main memory as a “cache” for
secondary (disk) storage

Managed jointly by CPU hardware and the
operating system (OS)
Programs share main memory

Each gets a private virtual address space
holding its frequently used code and data

Protected from other programs
CPU and OS translate virtual addresses to
physical addresses

VM “block” is called a page

VM translation “miss” is called a page fault

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 93

Sharing the Physical Memory

Process 1 Progsical RAM
Virtual Address (12GB example)

i Space(dGa)

! " PAE Exr.
Process 2
U Vinual Address

I Space (4GB

' 4GB
e 6
v Limit

Virvual Address

. Space(aGB)

Flgwe3

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 94

Address Translation

Fixed-size pages (e.g., 4K)

Virtual address

Virtual addresses Physical addresses AT A6 45 A4 43 «ovvvveeiininininnn. 1514131211 1098 «-coeevve-- 3210
Address translation

Virtual page number Page offset

(Translation)

B9 3837 crrrereiadiriiiiiiin 1514 13 12 11 1098“", 3210

Disk addresses

Physical page number Page offset

Physical address

MORGAN KAUFMANN

/g\ M(Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 95

Page Fault Penalty

On page fault, the page must be fetched
from disk

Takes millions of clock cycles
Handled by OS code
Try to minimize page fault rate

Fully associative placement
Smart replacement algorithms

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 96

Page Tables

Stores placement information

Array of page table entries, indexed by virtual
page number

Page table register in CPU points to page
table in physical memory

If page Is present in memory
PTE stores the physical page number
Plus other status bits (referenced, dirty, ...)

If page Is not present

PTE can refer to location in swap space on
disk

1 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 97

Translation Using a Page Table

Page table register

Virtual address
A7 46 45 44 43 -« vivvaiiiniiiaiiiiias 1514 1312 11 10 9 8------- 3210
Virtual page number Page offset
{36 12
Valid Physical page number
® L
Page table
428
If 0 then page is not
present in memory
39 38 37 15141312 11 1098 3210
Physical page humber Page offset

Physical address

/g\ M(Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 98

MORGAN KAUFMANN

Mapping Pages to Storage

Virtual page
number
| Page table
Physical page or Physical memory
Valid disk address
1 ~—
1 —
1 —_
1 — |
0 by /
=1 }\/ .
1 *~——
0 (V4 />/
1 ¢ </ Disk storage
1 :</ \ o
0 ~
1 . \\'] |
S
I |
S
I |
~N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 99

Replacement and Writes

To reduce page fault rate, prefer least-
recently used (LRU) replacement

Reference bit (aka use bit) in PTE setto 1 on
access to page

Periodically cleared to O by OS

A page with reference bit = 0 has not been
used recently

Disk writes take millions of cycles
Block at once, not individual locations
Write through Is impractical
Use write-back
Dirty bit iIn PTE set when page is written

1 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 100

Fast Translation Using a TLB

Address translation would appear to require
extra memory references

One to access the PTE

Then the actual memory access

But access to page tables has good locality
So use a fast cache of PTEs within the CPU
Called a Translation Look-aside Buffer (TLB)

Typical: 16-512 PTEs, 0.5-1 cycle for hit, 10-100
cycles for miss, 0.01%—-1% miss rate

Misses could be handled by hardware or software

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 101

Fast Translation Using a TLB

TLB

Virtual page Physical page

number Valid Dirty Ref Tag address

| |
1[0]1 .
1(1]1 .. Physical memory
KK . y
1101 -
0(0[0
11071 o

Page table

Physical page
Valid Dirty Ref or disk address

701 —

100 « :

o010 — Disk storage
1[0]1 — <
51615 — —
1[0]1 o« 7 | |
1101 - L

0[0]0 | !
111 <7 - |
NI 7 S
0/0]0 —

111 7

/g\ M(Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 102

MORGAN KAUFMANN

TLB Misses

If page Is In memory
Load the PTE from memory and retry

Could be handled in hardware

Can get complex for more complicated page table
structures

Or In software
Raise a special exception, with optimized handler
If page Is not In memory (page fault)

OS handles fetching the page and updating
the page table

Then restart the faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 103

TLB Miss Handler

TLB miss indicates
Page present, but PTE not in TLB
Page not preset

Must recognize TLB miss before

destination register overwritten
Raise exception

Handler copies PTE from memory to TLB
Then restarts instruction
If page not present, page fault will occur

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 104

Page Fault Handler

Use faulting virtual address to find PTE
Locate page on disk

Choose page to replace
If dirty, write to disk first

Read page into memory and update page
table

Make process runnable again
Restart from faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 105

TLB and Cache Interaction

e 10 0a 2 10 If cache tag uses

Virtual page number Page offset -
e physical address
LB T g— - i Need to translate
ren el O | before cache lookup
@-._
e— . . .
Alternative: use virtual
Physical page nurlr;be;r_ | Page offset addreSS tag
Physical address ta Physical acg:lar;;g index Block Byte . .
i o |Cerer o P Complications due to
aliasing
T 152 ata Different virtual
Valid Tag
addresses for shared
Cache | | | physical address

=
Cache hit

J32

Data

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 106

Memory Protection

Different tasks can share parts of their
virtual address spaces

But need to protect against errant access
Requires OS assistance

Hardware support for OS protection
Privileged supervisor mode (aka kernel mode)
Privileged instructions

Page tables and other state information only
accessible in supervisor mode

System call exception (e.g., ecall in RISC-V)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 107

Contents

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache
5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies
5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 108

The Memory Hierarchy

Common principles apply at all levels of
the memory hierarchy

Based on notions of caching

At each level in the hierarchy
Block placement
Finding a block
Replacement on a miss
Write policy

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 109

Block Placement

Determined by associativity

Direct mapped (1-way associative)
One choice for placement

n-way set associative
n choices within a set

Fully associative
Any location
Higher associativity reduces miss rate

Increases complexity, cost, and access time

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 110

Finding a Block

Associativity Location method Tag comparisons
Direct mapped Index 1
n-way set Set index, then search | n
associative entries within the set
Fully associative Search all entries #entries
Full lookup table 0
Hardware caches

Reduce comparisons to reduce cost

Virtual memory

Full table lookup makes full associativity feasible
Benefit in reduced miss rate

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 111

Replacement

Choice of entry to replace on a miss

Least recently used (LRU)
Complex and costly hardware for high associativity

Random
Close to LRU, easier to implement
Virtual memory

LRU approximation with hardware support

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 112

Write Policy

Write-through
Update both upper and lower levels

Simplifies replacement, but may require write
buffer

Write-back

Update upper level only
Update lower level when block is replaced
Need to keep more state

Virtual memory

Only write-back Is feasible, given disk write
latency

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 113

Sources of Misses

Compulsory misses (aka cold start misses)
First access to a block

Capacity misses
Due to finite cache size
A replaced block is later accessed again

Conflict misses (aka collision misses)
In a non-fully associative cache
Due to competition for entries in a set

Would not occur in a fully associative cache of
the same total size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 114

Cache Design Trade-offs

Design change

Effect on miss rate

Negative performance
effect

Increase cache size

Decrease capacity
misses

May increase access
time

Increase associativity

Decrease conflict
misses

May increase access
time

Increase block size

Decrease compulsory
misses

Increases miss
penalty. For very large
block size, may
Increase miss rate
due to pollution.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 115

Data Cache Miss Rate

BB s i e o e e s
12% -
L 9% A
o
79}
R
= 6% A
3% -
O 1 1 | 1
One-way Two-way Four-way Eight-way
Associativity

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 116

Contents

5.9 Using a Finite-State Machine to Control a Simple Cache
5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies
5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 117

Cache Control

Example cache characteristics
Direct-mapped, write-back, write allocate
Block size: 4 words (16 bytes)

Cache size: 16 KB (1024 blocks)
32-bit byte addresses
Valid bit and dirty bit per block

Blocking cache
CPU waits until access is complete

31 1413 4 3 0

Tag Index | Offset
18 bits 10 bits 4 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 118

Interface Signals

CPU

Cache

Read/Write

Valid

Address 32 R
Write Data % R
Read Data 2
Ready

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 119

Read/Write

Valid

Address 3 R
Write Data 128
Read Data *%°

Ready

/

Multiple cycles
per access

Memory

Finite State Machines

Use an FSM to
seqguence control steps

Set of states, transition
on each clock edge

control logic
State values are binary
encoded

Current state stored in a
register , E

Next state T | A

= 7, (current state, o o e[S o

current inputs)

Control output signals
= £, (current state)

Datapath control outputs

Outputs <

|—'

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 120

Cache Controller FSM

Cache Hit

Idle - Compare Tag
Mark Cache Ready (f Valid &8 Hit PR Could
- =\ Set Valid, SetTag, .. .
Valid CPU request if Write Set Dirty partltlon INto
Separate
states to
reduce clock
Cache Cache .
Miss Miss cycle time
and and
Old Block Old Block
is Clean is Dirty
Y

Write-Back

Write Old
Block to

Allocate

Read new block
from Memory

Memory Ready

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 121

Contents

5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies
5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 122

Cache Coherence Problem

Suppose two CPU cores share a physical
address space

Write-through caches

Time | Event CPUA's CPU B’s Memory
step cache cache

0 0

1 CPU Areads X 0 0

2 | CPUBreads X 0 0 0

3 CPU A writes 1 to X 1 0 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 123

Coherence Defined

Informally: Reads return most recently
written value

Formally:

P writes X; P reads X (no intervening writes)
= read returns written value

P, writes X; P, reads X (sufficiently later)

= read returns written value
c.f. CPU B reading X after step 3 in example

P, writes X, P, writes X

= all processors see writes in the same order
End up with the same final value for X

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 124

Cache Coherence Protocols

Operations performed by caches in
multiprocessors to ensure coherence

Migration of data to local caches
Reduces bandwidth for shared memory

Replication of read-shared data
Reduces contention for access

Snooping protocols
Each cache monitors bus reads/writes

Directory-based protocols

Caches and memory record sharing status of
blocks In a directory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 125

Invalidating Snooping Protocols

Cache gets exclusive access to a block
when it is to be written

Broadcasts an invalidate message on the bus

Subsequent read in another cache misses
Owning cache supplies updated value

CPU activity Bus activity CPU A’s CPUB’s Memory
cache cache
0
CPU Areads X Cache miss for X 0 0
CPU B reads X Cache miss for X 0 0 0
CPU A writes 1 to X | Invalidate for X 1 0
CPU B read X Cache miss for X 1 1 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 126

Memory Consistency

When are writes seen by other processors
“Seen” means a read returns the written value
Can’t be instantaneously

Assumptions
A write completes only when all processors have seen
it
A processor does not reorder writes with other
accesses

Consequence

P writes X then writes Y
— all processors that see new Y also see new X

Processors can reorder reads, but not writes

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 127

Contents

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies
5.16 Fallacies and Pitfalls
5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 128

Multilevel On-Chip Caches

<
A

M<

MORGAN KAUFMANN

L1 cache organization

Split instruction and data caches

Split instruction and data caches

L1 cache size

Configurable 16 to 64 KiB each
for instructions/data

32 KiB each for instructions/data per
core

L1 cache associativity

Two-way (I), four-way (D) set
associative

Four-way (I), eight-way (D) set
associative

L1 replacement

Random

Approximated LRU

L1 block size

64 bytes

64 bytes

L1 write policy

Write-back, variable allocation
policies (default is Write-allocate)

Write-back, No-write-allocate

L1 hit time (load-use)

Two clock cycles

Four clock cycles, pipelined

L2 cache organization

Unified (instruction and data)

Unified (instruction and data) per core

L2 cache size

128 KiB to 2 MiB

256 KiB (0.25 MiB)

L2 cache associativity

16-way set associative

8-way set associative

L2 replacement

Approximated LRU

Approximated LRU

L2 block size

64 bytes

64 bytes

L2 write policy

Write-back, Write-allocate

Write-back, Write-allocate

L2 hit time

12 clock cycles

10 clock cycles

L3 cache
organization

Unified (instruction and data)

L3 cache size

8 MiB, shared

L3 cache
associativity

16-way set associative

L3 replacement

Approximated LRU

L3 block size

64 bytes

L3 write policy

Write-back, Write-allocate

L3 hit time

35 clock cycles

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

2-Level TLB Organization

Virtual address | 48 bits 48 bits

Physical address | 40 bits 44 bits

Page size Variable: 4, 16, 64 KiB, 1, 2 MiB, 1 GiB| Variable: 4 KiB, 2/4 MiB

TLB organization | 1 TLB for instructions and 1 TLB 1 TLB for instructions and 1 TLB for
for data per core data per core

Both micro TLBs are fully associative, |Both L1 TLBs are four-way set
with 10 entries, round robin associative, LRU replacement
replacement

64-entry, four-way set-associative TLBs
L1 I-TLB has 128 entries for small

TLB misses handled in hardware pages, seven per thread for large pages

L1 D-TLB has 64 entries for small
pages, 32 for large pages

The L2 TLB is four-way set associative,
LRU replacement

The L2 TLB has 512 entries

TLB misses handled in hardware

MORGAN KAUFMANN

/Z\ M< Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 130

Supporting Multiple Issue

Both have multi-banked caches that allow
multiple accesses per cycle assuming no
bank conflicts

Other optimizations
Return requested word first

Non-blocking cache
Hit under miss
Miss under miss

Data prefetching

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 131

Contents

5.16 Fallacies and Pitfalls
5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 132

Pitfalls

Byte vs. word addressing

Example: 32-byte direct-mapped cache,
4-byte blocks

Byte 36 maps to block 1
Word 36 maps to block 4

lgnoring memory system effects when
writing or generating code

Example: iterating over rows vs. columns of
arrays

Large strides result in poor locality

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 133

Pitfalls

In multiprocessor with shared L2 or L3
cache

Less associativity than cores results in conflict
misses

More cores = need to increase associativity

Using AMAT to evaluate performance of
out-of-order processors

Ignores effect of non-blocked accesses
Instead, evaluate performance by simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 134

Pitfalls

Extending address range using segments
E.g., Intel 80286
But a segment is not always big enough
Makes address arithmetic complicated

Implementing a VMM on an ISA not
designed for virtualization

E.qg., non-privileged instructions accessing
hardware resources

Either extend ISA, or require guest OS not to
use problematic instructions

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 135

Concluding Remarks

Fast memories are small, large memories are
slow

We really want fast, large memories ®
Caching gives this illusion ©

Principle of locality

Programs use a small part of their memory space
frequently

Memory hierarchy

L1 cache <+ L2 cache « ... & DRAM memory
<> disk

Memory system design Is critical for
multiprocessors

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 136

M< COMPUTER ORGANIZATION AND DESIGN riscv

b
The Hardware/Software Interface on

Chapter 6

Parallel Processors from
Client to Cloud

Adapted by Prof. Gheith Abandah

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies
6.10 Multiprocessor Benchmarks and Performance Models
6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU
6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 2

Introduction

Goal: connecting multiple computers
to get higher performance

Multiprocessors
Scalability, availability, power efficiency

Task-level (process-level) parallelism
High throughput for independent jobs
Parallel processing program
Single program run on multiple processors

Multicore microprocessors
Chips with multiple processors (cores)

Chapter 6 — Parallel Processors from Client to Cloud — 3

Hardware and Software

Hardware

Serial: e.g., Pentium 4

Parallel: e.g., quad-core Xeon 5345
Software

Sequential: e.g., matrix multiplication

Concurrent: e.g., operating system
Sequential/concurrent software can run on
serial/parallel hardware

Challenge: making effective use of parallel
hardware

Chapter 6 — Parallel Processors from Client to Cloud — 4

What We’ve Already Covered

§2.11: Parallelism and Instructions
Synchronization

§3.6: Parallelism and Computer Arithmetic
Subword Parallelism

§4.10: Parallelism and Advanced
Instruction-Level Parallelism

§5.10: Parallelism and Memory
Hierarchies

Cache Coherence

Chapter 6 — Parallel Processors from Client to Cloud — 5

Contents

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies
6.10 Multiprocessor Benchmarks and Performance Models
6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU
6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 6

Contents

6.2 The Difficulty of Creating Parallel Programs
Parallel Programming
Amdahl’'s Law
Scaling
Strong and Weak Scaling

Chapter 6 — Parallel Processors from Client to Cloud — 7

Parallel Programming

Parallel software is the problem
Need to get significant performance
Improvement
Otherwise, just use a faster uniprocessor,
since it's easier!
Difficulties
Partitioning
Coordination
Communications overhead

Chapter 6 — Parallel Processors from Client to Cloud — 8

Amdahl’s Law

Sequential part can limit speedup

Example: 100 processors, 90x speedup?
T = Tparallelizablelloo +T

1
(1-F

new sequential

Speedup = 90

paralleliable) + Fpara”e“ablellOO
parallelizable = 0.999

Need sequential part to be 0.1% of original
time

Solving: F

Chapter 6 — Parallel Processors from Client to Cloud — 9

Scaling Example

Workload: sum of 10 scalars, and 10 x 10 matrix
sum

Speed up from 10 to 100 processors
Single processor: Time = (10 + 100) x t_g,4
10 processors
Time =10 xt_44 + 100/10 x t_44 = 20 x t_yq
Speedup = 110/20 = 5.5 (55% of potential)
100 processors
Time =10 x t_44 + 100/100 x t_, =11 x t_4
Speedup = 110/11 = 10 (10% of potential)

Assumes load can be balanced across
Processors

Chapter 6 — Parallel Processors from Client to Cloud — 10

Scaling Example (cont)

What if matrix size is 100 x 100?
Single processor: Time = (10 + 10000) x t_,4
10 processors

Time =10 x t_44 + 10000/10 x t_44 = 1010 x t_4
Speedup = 10010/1010 = 9.9 (99% of potential)

100 processors
Time =10 x t_,, + 10000/100 x t 4, = 110 x t_ 4
Speedup = 10010/110 = 91 (91% of potential)

Assuming load balanced

Chapter 6 — Parallel Processors from Client to Cloud — 11

Strong vs Weak Scaling

Strong scaling: problem size fixed
As In example

Weak scaling: problem size proportional to
number of processors
10 processors, 10 x 10 matrix
Time =20 x t gy,
100 processors, 32 x 32 matrix
Time = 10 x t 4y + 1000/100 % t_4q = 20 % t_yq
Constant performance In this example

Chapter 6 — Parallel Processors from Client to Cloud — 12

Contents

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies
6.10 Multiprocessor Benchmarks and Performance Models
6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU
6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 13

Contents

6.3 SISD, MIMD, SIMD, SPMD, and Vector
Flynn’s Classification
Vector Processors
SIMD Instruction Extensions

Chapter 6 — Parallel Processors from Client to Cloud — 14

Instruction and Data Streams

An alternate classification

Data Streams

Single Multiple
Instruction | Single SISD: SIMD: SSE
Streams Intel Pentium 4 Instructions of x86
Multiple | MISD: MIMD:
No examples today | Intel Xeon e5345

SPMD: Single Program Multiple Data

A parallel program on a MIMD computer
Conditional code for different processors

Chapter 6 — Parallel Processors from Client to Cloud — 15

Vector Processors

Highly pipelined function units

Stream data from/to vector registers to units
Data collected from memory into registers
Results stored from registers to memory

Example: Vector extension to RISC-V
vO to v31: 32 x 64-element registers, (64-bit elements)

Vector instructions
fld.v, fsd.v: load/store vector
fadd.d.v: add vectors of double
fadd.d.vs: add scalar to each element of vector of double

Significantly reduces instruction-fetch bandwidth

Chapter 6 — Parallel Processors from Client to Cloud — 16

Example: DAXPY (Y =a x X +Y)

Conventional RISC-V code:
fl1d f0,a(x3) // load scalar a
addi x5,x19,512 // end of array X
Toop: fld f1,0(x19) // load x[i]

fmul.d // a * x[i]

fld // load y[i]

fadd. // a * x[i] + y[il

fsd // store y[i]

addi // increment index to Xx

addi x20,x20,8 // increment index to y
bltu x19,x5,1loop // repeat if not done

Vector RISC-V code:
fl1d f0,a(x3) // load scalar a
fld.v v0,0(x19) // load vector x
fmul.d.vs vO,vO0,f0 // vector-scalar multiply
fld.v v1l,0(x20) // load vector y
fadd.d.v v1,vl,v0 // vector-vector add
fsd.v v1l,0(x20) // store vector y

Chapter 6 — Parallel Processors from Client to Cloud — 17

Vector vs. Scalar

Vector architectures and compilers
Simplify data-parallel programming

Explicit statement of absence of loop-carried
dependences

Reduced checking in hardware

Regular access patterns benefit from
Interleaved and burst memory

Avoid control hazards by avoiding loops

More general than ad-hoc media
extensions (such as MMX, SSE)

Better match with compiler technology

Chapter 6 — Parallel Processors from Client to Cloud — 18

SIMD

Operate elementwise on vectors of data

E.g., MMX and SSE instructions in x86
Multiple data elements in 128-bit wide registers

All processors execute the same
Instruction at the same time

Each with different data address, etc.
Simplifies synchronization
Reduced instruction control hardware

Works best for highly data-parallel
applications

Chapter 6 — Parallel Processors from Client to Cloud — 19

Vector vs. Multimedia Extensions

Vector instructions have a variable vector width,
multimedia extensions have a fixed width

Vector instructions support strided access,
multimedia extensions do not

Vector units can be combination of pipelined and
arrayed functional units: =TT T

Al9] B[9] FP add FP add FP add FP add
A[8] B8] pipe 0 pipe 1 pipe 2 pipe 3
m| [erm I [|
Al6] B[6] Vector Vector Vector Vector
A[5] B[5] registers: registers: registers: registers:
1 elements elements elements elements
Al4]| |B[4] 0,4,8, ... 1,509, .. 2,6,10, ... 3,7, 11, ...
A Bl IR P
Al2]| |B[2]
— FP mul FP mul FP mul FP mul
All] B[1] pipe 0 pipe 1 pipe 2 pipe 3
e .
C[0] Vector load store unit

Chapter 6 — Parallel Processors from Client to Cloud — 20

Contents

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models
6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU
6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 21

Multithreading

Performing multiple threads of execution in
parallel

Replicate registers, PC, etc.
Fast switching between threads

Fine-grain multithreading
Switch threads after each cycle
Interleave instruction execution
If one thread stalls, others are executed

Coarse-grain multithreading

Only switch on long stall (e.g., L2-cache miss)

Simplifies hardware, but doesn’t hide short stalls
(eg, data hazards)

Chapter 6 — Parallel Processors from Client to Cloud — 22

Simultaneous Multithreading

In multiple-issue dynamically scheduled
Processor
Schedule instructions from multiple threads

Instructions from independent threads execute
when function units are available

Within threads, dependencies handled by
scheduling and register renaming

Example: Intel Pentium-4 HT

Two threads: duplicated registers, shared
function units and caches

Chapter 6 — Parallel Processors from Client to Cloud — 23

Multithreading

Issue slots ——
Thread A

Thread B

Time

Issue slots ——

Coarse MT Fine MT
Time [N 1 |
[| HER
HEE 1] |
HE
HE B
]|
] =
HEE
|

Chapter 6 — Parallel Processors from Client to Cloud — 24

Example

Thread C

Thread D

w
=
3

Future of Multithreading

Wil it survive? In what form?

Power considerations = simplified
microarchitectures

Simpler forms of multithreading

Tolerating cache-miss latency
Thread switch may be most effective

Multiple simple cores might share
resources more effectively

Chapter 6 — Parallel Processors from Client to Cloud — 25

Contents

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models
6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU
6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 26

Shared Memory

SMP: shared memory multiprocessor

Hardware provides single physical
address space for all processors

Synchronize shared variables using locks

Memory access time
UMA (uniform) vs. NUMA (nonuniform)

Processor Processor - Processor

Interconnection Network

A
Y

Memory I/O

Chapter 6 — Parallel Processors from Client to Cloud — 27

Example: Sum Reduction

Sum 64,000 numbers on 64 processor UMA
Each processor has ID: 0 < Pn <63
Partition 1000 numbers per processor
Initial summation on each processor
sum[Pn] = O;
for (1 = 1000*Pn;
1 < 1000*(Pn+1); 1 += 1)
sum[Pn] += A[1];
Now need to add these partial sums
Reduction: divide and conquer
Half the processors add pairs, then quarter, ...

Need to synchronize between reduction steps

Chapter 6 — Parallel Processors from Client to Cloud — 28

Example: Sum Reduction

(half = 1)[0][1

(half = 2) [o][1][2][3

half = 64; s
do (half = 4) [0][1][2 ;?fﬁg]e 7

synch();
it (half%2 !'= 0 && Pn == 0)
sum[0] += sum[half-1];
/% Conditional sum needed when half is odd;
ProcessorQ gets missing element */
half = half/2; /* dividing 1ine on who sums */
if (Pn < half) sum[Pn] += sum[Pn+half];
while Chalf > 1);

Chapter 6 — Parallel Processors from Client to Cloud — 29

Contents

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models
6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU
6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 30

History of GPUs

Early video cards

Frame buffer memory with address generation for
video output

3D graphics processing
Originally high-end computers (e.g., SGI)
Moore’s Law = lower cost, higher density
3D graphics cards for PCs and game consoles

Graphics Processing Units

Processors oriented to 3D graphics tasks

Vertex/pixel processing, shading, texture mapping,
rasterization

Chapter 6 — Parallel Processors from Client to Cloud — 31

Graphics in the System

Intel
CPU

A
Front Side Bus
Y

x16 PCI-Express Link

North | DDR2
display Bridge | Memory
x4 PCI-Express Link # 128-bit
derivative y 667 MT/s
GPU AMD
Memory South CPU
CPU Bridge CPU
core
A f
Front Side Bus : i 128-bit

! internal bus 667 MT/s
Bridge Bridge Memory

A

v PClBus 1

J x16 PCI-Express Link ¢ HyperTransport 1.03

\
South Framebuffer _ Chipset
Bridge Memory display

/
iy
VGA GPU
LAN UART _{ZI Display Memory

Chapter 6 — Parallel Processors from Client to Cloud — 32

MORGAN KAUFMANN

GPU Architectures

Processing is highly data-parallel
GPUs are highly multithreaded

Use thread switching to hide memory latency
Less reliance on multi-level caches

Graphics memory is wide and high-bandwidth
Trend toward general purpose GPUs

Heterogeneous CPU/GPU systems
CPU for sequential code, GPU for parallel code

Programming languages/APIs
DirectX, OpenGL

C for Graphics (Cg), High Level Shader Language
(HLSL)

Compute Unified Device Architecture (CUDA)

Chapter 6 — Parallel Processors from Client to Cloud — 33

Example: NVIDIA Fermi

Multiple SIMD processors, each as shown:

Instruction register
| [

Y ¥ ¥ ¥ Y y Y Y Y Y Y Y Y ¥ ¥ ¥

0 % % R e

Regi- | Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg
sters

1Kx32 | 1Kx 32 [1Kx 32 [1Kx32 | TKx 32 [1Kx32 | 1Kx32 [1Kx32 [1Kx 32 | 1IKx 32 [1Kx32 [1Kx32 | 1TKx32 [1Kx 32 | 1Kx32 | 1K= 32

Load Load Load Load | Load | Load Load Load Load Load | Load | Load Load Load Load | Load
store store store store store store store store store store store store store store store store
unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit unit

Y Y

Address coalescing unit Interconnection network
A [
\ *
To Global
Local Memory
. Memo
64 KiB Y

/Z\ M(Chapter 6 — Parallel Processors from Client to Cloud — 34

MORGAN KAUFMANN

Example: NVIDIA Fermi

SIMD Processor: 16 SIMD lanes

SIMD Iinstruction
Operates on 32 element wide threads

Dynamically scheduled on 16-wide processor
over 2 cycles

32K x 32-bit registers spread across lanes
64 registers per thread context

Chapter 6 — Parallel Processors from Client to Cloud — 35

GPU Memory Structures

CUDA Thread

%——{ Per-CUDA Thread Private Memory

Thread block

Per-Block
Local Memory

Grid 0 Sequence
oL LELCT L0 (% L (ad
2 22 2 2 22
[« [4 LELELT [
BEREE N)])]
CLCeeieee (A (4 LeL
FPFPPrrrres FPFPEPRRFRY
— — — Inter-Grid Synchronization — — — GPU Memory
Grid 1
LECCLELCEE CLELEL CELEL
) =] 230
L L Lo L [« («
| o air oy G
ErEFErr] EFr) 2 23X 3, el
CCC L erete (Ao CLCCC e ey .. £
FFFFFFFPFFY FEFFFFFFFFF FFFFFFFFFey FEEEE ¥

MORGAN KAUFMANN

/g\ M(Chapter 6 — Parallel Processors from Client to Cloud — 36

Classifying GPUs

Don't fit nicely into SIMD/MIMD model

Conditional execution in a thread allows an
illusion of MIMD

But with performance degredation

Need to write general purpose code with care

Static: Discovered Dynamic: Discovered
at Compile Time at Runtime
Instruction-Level VLIW Superscalar
Parallelism
Data-Level SIMD or Vector Tesla Multiprocessor
Parallelism

Chapter 6 — Parallel Processors from Client to Cloud — 37

Putting GPUs into Perspective
GPU

SIMD processors 4108 810 16
SIMD lanes/processor 2104 8to 16
Multithreading hardware support for 2to4 16 to 32
SIMD threads

Typical ratio of single precision to 2:1 2:1
double-precision performance

Largest cache size 8 MB 0.75 MB
Size of memory address 64-bit 64-bit
Size of main memory 8 GB to 256 GB 4 GB to 6 GB
Memory protection at level of page Yes Yes
Demand paging Yes No
Integrated scalar processor/SIMD Yes No
processor

Cache coherent Yes No

Chapter 6 — Parallel Processors from Client to Cloud — 38

Guide to GPU Terms

<
A

M<

MORGAN KAUFMANN

Maore descriptive | Closast nH tarm Official CUDAS
Vectorizable Vectorizabls Loop A vectorizable loop, sxecutad on the GPLL mads

@ Loop up of one or mors Thresd Blocks bodies of

i vedtorized loop) that can execute in parallel.

o

E Body of Body of a Thread Block A vectorized loop exscuted on a multith readed

B Vectorized Loop | (St p-Mined) SIMD Procsssor, made up of one or moms threads

= Vectorized Loop of SIMD instructions. They can communicate via

E Lozal Memaory.

? Sequence of One iteration of CLIDA Thread A vertical cut of a thread of SIMD instuctions
SIMD Lane a Secalar Loop cormesponding to one eement sxscutsd by one
Operatians SIMD Lare. Result is storsd depending on mask

arl predicats regjster.

- A Thread of Thread of Vector Warp A traditional thread, but it contains just SIMD

ki SIMD Instructions instructions that are exscuted on & mukltithreadsd

5 Irstructions SIMD Procsssaor. Results stored depending on &

z perzlement mask.

E SIMD Vector Instruction | PTX Instruction A single SIMD instruction sxecutsd across SIMD
Iretruction Lanss.

Multithresded [Multithreaded) Streaming A multithreaded SIMD Procsssor sxscutes
SIMD Vector Processor Multiprecessor threads of SIMD instructions, ndspendent of
Processor other SIMD Processors.,

Thread Black Sealar Processor Giga Thread Aszsigns multipke Thread Blocks (bodiss of

g Scheduler Engine vedtorized loop) to rultithreadsd SIMD

= Procassors,

£ SIMD Thread Thread scheduler | Warp Scheduler Hardware unit that schedules and issuss threads

o Scheduler in a Multithreaded of SIMD instructions when they ars ready to

H P execute; includes a scosboard to track SIMD

g Thread emscution.

o SIMD Lane Vector lane Thread Processor A SIMD Lane executes the opsrations in a thread
of SIMD instructions on a single elemsnt. Results
stored depending on mask,

GPU Mamory Main Memary Global Memary DRAM remory accessible by all multithreaded

Y SIMD Procsssors ina GPL.

-

= Lezal Mamony Leszal Mamory Shared Mamary Fast local SRAM for one multithreadsd SIMD

E‘ Processor, unavailabls to other SIMD Precessors.

&

= SIMD Lane Vector Lans Thread Frocessor Registers in a single SIMD Lane allocatsd across
Registers Redisters Registers a full thr=ad block kody of vectorized loop).

Chapter 6 — Parallel Processors from Client to Cloud — 39

Contents

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models
6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU
6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 40

Message Passing

Each processor has private physical
address space

Hardware sends/receives messages
between processors

Processor Processor Processor
\ J\ y
Y A\ Y
Cache Cache Cache
A A A
Y Y Y
Memory Memory Memory
A A A
Y Y Y
Interconnection Network

Chapter 6 — Parallel Processors from Client to Cloud — 41

Loosely Coupled Clusters

Network of independent computers
Each has private memory and OS

Connected using I/O system
E.g., Ethernet/switch, Internet

Suitable for applications with independent tasks
Web servers, databases, simulations, ...
High availability, scalable, affordable

Problems
Administration cost (prefer virtual machines)

Low interconnect bandwidth
c.f. processor/memory bandwidth on an SMP

Chapter 6 — Parallel Processors from Client to Cloud — 42

Sum Reduction (Again)

Sum 64,000 on 64 processors

First distribute 1000 numbers to each
The do partial sums
sum = 0;
for (1 = 0; 1<1000; 1 += 1)
sum += AN[1];
Reduction

Half the processors send, other half receive
and add

The quarter send, quarter receive and add, ...

Chapter 6 — Parallel Processors from Client to Cloud — 43

Sum Reduction (Again)

Given send() and receive() operations

Timit = 64; half = 64;/* 64 processors */
do
half = (half+1)/2; /* send vs. receive
dividing line */
if (Pn >= half & Pn < 1imit)
send(Pn - half, sum);
if (Pn < (1imit/2))
sum += receive();
Timit = half; /* upper 1imit of senders */
while (half > 1); /* exit with final sum */

Send/recelive also provide synchronization
Assumes send/receive take similar time to addition

Chapter 6 — Parallel Processors from Client to Cloud — 44

Grid Computing

Separate computers interconnected by
long-haul networks

E.g., Internet connections

Work units farmed out, results sent back
Can make use of idle time on PCs

E.g., SETI@home, World Community Grid

Chapter 6 — Parallel Processors from Client to Cloud — 45

Contents

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models
6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU
6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 46

Interconnection Networks

Network topologies
Arrangements of processors, switches, and links

I S S S S T

Bus Ring

52

N-cube (N = 3)

AN N N

U wUat

Fully connected

Chapter 6 — Parallel Processors from Client to Cloud — 47

Multistage Networks

L.— — .
PR N
?_A?_AL?_A?_L?_A?_A?_A?_A - - —1
Po -
yhalakalalalalala : —YY—
SN ESLSEIESESISESES —" .
——|Pg—__| || L >
Nhakakakalalakala — X X
— iy talSRaEaaTSEars -
N[akalakalalalalaka r’— -]
,Dpﬁrrrrrrrr
NCakalakakalalalaka
a. Crossbar b. Omega network
'y
A
A ?‘?——‘ C
B 1 D

c. Omega network switch box

/g\ M(Chapter 6 — Parallel Processors from Client to Cloud — 48

MORGAN KAUFMANN

Network Characteristics

Performance
Latency per message (unloaded network)

Throughput
Link bandwidth
Total network bandwidth
Bisection bandwidth

Congestion delays (depending on traffic)
Cost
Power
Routability in silicon

Chapter 6 — Parallel Processors from Client to Cloud — 49

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies
6.10 Multiprocessor Benchmarks and Performance Models
6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU
6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 50

Parallel Benchmarks

Linpack: matrix linear algebra

SPECrate: parallel run of SPEC CPU programs
Job-level parallelism

SPLASH: Stanford Parallel Applications for

Shared Memory
Mix of kernels and applications, strong scaling

NAS (NASA Advanced Supercomputing) suite
computational fluid dynamics kernels

PARSEC (Princeton Application Repository for

Shared Memory Computers) suite

Multithreaded applications using Pthreads and
OpenMP

Chapter 6 — Parallel Processors from Client to Cloud — 51

Code or Applications?

Traditional benchmarks
Fixed code and data sets

Parallel programming is evolving

Should algorithms, programming languages,
and tools be part of the system?

Compare systems, provided they implement a
given application

E.g., Linpack, Berkeley Design Patterns

Would foster innovation in approaches to
parallelism

Chapter 6 — Parallel Processors from Client to Cloud — 52

Modeling Performance

Assume performance metric of interest Is
achievable GFLOPs/sec

Measured using computational kernels from
Berkeley Design Patterns

Arithmetic intensity of a kernel
FLOPs per byte of memory accessed

For a given computer, determine
Peak GFLOPS (from data sheet)

Peak memory bytes/sec (using Stream
penchmark)

Chapter 6 — Parallel Processors from Client to Cloud — 53

Roofline Diagram

A

64.0

32.0
© . .

eak floating-point performance

§ 16.0 P gporp
d.) L]
o
o 8.0
g 8
—
&
© 4.0
o
©
£ : H
§ 20 i Kernel 1 : Kernel 2
< i (Memory i (Computation

1.0 + Bandwidth : limited)

2 limited) :
0.5 >

Vg Yy s 1 2 4 8 16
Arithmetic Intensity: FLOPs/Byte Ratio

Attainable GPLOPs/sec
= Max (Peak Memory BW x Arithmetic Intensity, Peak FP Performance)

Chapter 6 — Parallel Processors from Client to Cloud — 54

Comparing Systems

Example: Opteron X2 vs. Opteron X4

2-core vs. 4-core, 2x FP performance/core, 2.2GHz
vs. 2.3GHz, 1 x 2 SIMD vs. 2 x 2 SIMD

Same memory system

128.0 } Opteron X4 (Ba@na)

cio { To get higher performance
32.0 / on X4 than X2

% 16.0 Need high arithmetic intensity
o 80 /\/ Or working set must fit in X4’s
% 4.0 Opteron X2 2MB L-3 cache
< 20

1.0

0.5

g Wy 1, 12 4 8 16
Actual FLOPbyte ratio

Chapter 6 — Parallel Processors from Client to Cloud — 55

Optimizing Performance

Optimize FP performance -
Balance adds & multiplies

Improve superscalar ILP
and use of SIMD

Instructions

32.0

d

8.0

4.0

Attainable GFLOPs/s

2.0

1.0

0.5
Y

Optimize memory usage

Software prefetch
Avoid load stalls

Memory affinity
Avoid non-local data

aCCesses

32.0

16.0

Attainable GFLOPs/second
n B fos]
o o o

—_
o

o
n

AMD Opteron

Qpeak floating-point performance

i
\,ﬂx*
Q;*i 1. Fl. Pt. imbalance

2. Without ILP or SIMD

Tp 1 2 4 8 16
Arithmetic Intensity: FLOPs/Byte Ratio

AMD Opteron

Ty 1 2 4 8 16
Arithmetic Intensity: FLOPs/Byte Ratio

Chapter 6 — Parallel Processors from Client to Cloud — 56

Optimizing Performance

Choice of optimization depends on
arithmetic intensity of code

A

Arithmetic intensity Is
e NOL AlWAYS fixed
. 4 5 May scale with
% 00 | 4 problem size

Caching reduces
memory accesses

Increases arithmetic
Intensity

Kernel 2
1.0 :

0.5 : - -
Vg T4 12 1 2 4 8 16

Arithmetic Intensity: FLOPs/Byte Ratio

Chapter 6 — Parallel Processors from Client to Cloud — 57

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies
6.10 Multiprocessor Benchmarks and Performance Models
6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU
6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 58

<
A

17-960 vs. NVIDIA Tesla 280/480

Cora i7- Ratio Ratio
GTX 480 280/i7| 480/i7

Number of processing elements (cores or SMs)

Clock frequency (GHz) 3.2 1.3 1.4 0.41 0.44
Die size 263 576 520 2.2 2.0
Technology Intel 45 nm TCMS 65 nm TCMS 40 nm 1.6 1.0
Power (chip, not module) 130 130 167 1.0 1.3
Transistors 700 M 1400 M 3100 M 2.0 4.4
Memory brandwith (GBytes/sec) 32 141 177 4.4 bbb
Single frecision SIMD width 4 8 32 2.0 8.0
Dobule precision SIMD with 2 1 16 0.5 8.0
Peak Single frecision scalar FLOPS (GFLOP/sec) 26 117 63 4.6 2.5
Peak Single frecision s SIMD FLOPS (GFLOP/Sec) 102 311 to 933 515t0 1344 |[3.0-9.1 |6.613.1
(SP 1 add or multiply) N.A. (311) (515) (3.0) (6.6)
(SP 1 instruction fused) N.A (622) (1344) (6.1) (13.1)
(face SP dual issue fused) N.A (933) N.A (9.1) -
Peal double frecision SIMD FLOPS (GFLOP/sec) 51 78 515 1.5 10.1

M<

MORGAN KAUFMANN

Chapter 6 — Parallel Processors from Client to Cloud — 59

Rooflines

Core i7 960
128 A (Nehalem)] [108 A . NVIDIA GTX280
[51.2GF/s @‘b\c’
64 Double Precision - 64 ,\q’,‘ Poak — 78 GF/s |
& Double Precision
32 32 | @
\ @
® RS @
o 16 © g 16
(o] P (]
z 5 z
5] 8 %\@ 15} 8
4 4
2 2
1 > 1 >
1/8 1/4 172 1 2 4 8 16 32 1/8 14 12 1 2 4 8 16 32
Arithmetic intensity Arithmetic intensity
Core i7 960
1024 A (Nehalem) 1024 A NVIDIA GTX280
512 512 624 GF/s —|
Single Precision
256 256
102.4 GF/s %
\¥
128 Single Precision ” 128 q:\CQQ’ 78GF/s |
P ;_ﬁ o Double Precision
o 64 O 64 &
— '\\QJ
S 51.2 GF/s % S
& 3 &° Double Precision 3
<
o>
16 N 16
-\@é{\
8) 8
4 > 4 >
178 1/4 172 1 2 <4 8 16 32 178 1/4 12 1 2 <4 8 16 32
Arithmetic intensity Arithmetic intensity

MORGAN KAUFMANN

; M< Chapter 6 — Parallel Processors from Client to Cloud — 60

Benchmarks
“m

SGEMM GFLOP/sec

MC Billion paths/sec 0.8 1.4 1.8
Conv Million pixels/sec 1250 3500 2.8
FFT GFLOP/sec 714 213 3.0
SAXPY GBytes/sec 16.8 88.8 5.3
LBM Million lookups/sec 85 426 5.0
Solv Frames/sec 103 52 0.5
SpMV GFLOP/sec 4.9 9.1 1.9
GJK Frames/sec 67 1020 15.2
Sort Million elements/sec 250 198 0.8
RC Frames/sec S) 8.1 1.6
Search Million queries/sec 50 90 1.8
Hist Million pixels/sec 1517 2583 1.7
Bilat Million pixels/sec 83 475 5.7

Chapter 6 — Parallel Processors from Client to Cloud — 61

Performance Summary

GPU (480) has 4.4 X the memory bandwidth
Benefits memory bound kernels

GPU has 13.1 X the single precision throughout, 2.5 X
the double precision throughput
Benefits FP compute bound kernels

CPU cache prevents some kernels from becoming
memory bound when they otherwise would on GPU

GPUs offer scatter-gather, which assists with kernels
with strided data

Lack of synchronization and memory consistency
support on GPU limits performance for some kernels

Chapter 6 — Parallel Processors from Client to Cloud — 62

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies
6.10 Multiprocessor Benchmarks and Performance Models
6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU
6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 63

Multi-threading DGEMM

Use OpenMP:

vold dgemm (int n, double* A, double* B, double* C)
{
fpragma omp parallel for
for (int sj = 0; sj < n; sj += BLOCKSIZE)
for (int si = 0; si < n; si += BLOCKSIZE)
for (int sk = 0; sk < n; sk += BLOCKSIZE)
do block(n, si, sj, sk, A, B, C);

Chapter 6 — Parallel Processors from Client to Cloud — 64

Multithreaded DGEMM

14 -

13 ooy

12 4 __iA
R PP
10 oo L.

O o

960 X 960
480 X 480
—m— 160 X 160

Speedup relative to 1 core

—e—32X32

Threads

/Z\ M< Chapter 6 — Parallel Processors from Client to Cloud — 65

MORGAN KAUFMANN

Multithreaded DGEMM

32x32 = 160x160 m 480x480m 960x960

200

150

100

GFLOPS

50

Chapter 6 — Parallel Processors from Client to Cloud — 66

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies
6.10 Multiprocessor Benchmarks and Performance Models
6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU
6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 67

Fallacies

Amdahl’'s Law doesn’t apply to parallel
computers

Since we can achieve linear speedup
But only on applications with weak scaling

Peak performance tracks observed
performance

Marketers like this approach!

But compare Xeon with others in example
Need to be aware of bottlenecks

Chapter 6 — Parallel Processors from Client to Cloud — 68

Pitfalls

Not developing the software to take
account of a multiprocessor architecture

Example: using a single lock for a shared
composite resource

Serializes accesses, even if they could be done in
parallel

Use finer-granularity locking

Chapter 6 — Parallel Processors from Client to Cloud — 69

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies
6.10 Multiprocessor Benchmarks and Performance Models
6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU
6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 70

Concluding Remarks

Goal: higher performance by using multiple
processors

Difficulties
Developing parallel software
Devising appropriate architectures

SaaS importance Is growing and clusters are a
good match

Performance per dollar and performance per
Joule drive both mobile and WSC

Chapter 6 — Parallel Processors from Client to Cloud — 71

Concluding Remarks (con’t)

SIMD and vector 1000
. MIMD*SIMD (32b)
operatlons match s« MIMD*SIMD (64b)
multimedia applications SIMD (32b)
—— SIMD (64 b)
and are easy to e VIND

program g
Adding 2 cores/chip g
every 2 years. 5 ok
Doubling SIMD

operations every 4

years.

1 | | | |
2003 2007 2011 2015 2019 2023

Chapter 6 — Parallel Processors from Client to Cloud — 72

