

CPE432: Computer Architecture

and Organization (2)

Course Introduction
Prof. Gheith Abandah

غيث علي عبندة. د.أ

Outline

• Course Information

• Textbook and References

• Course Objectives and Outcomes

• Course Topics

• Policies

• Grading

• Important Dates

2

Course Information

• Instructor: Prof. Gheith Abandah

• Email: abandah@ju.edu.jo

• Office: CPE 406

• Home page: http://www.abandah.com/gheith

• Facebook group:

https://www.facebook.com/groups/549894571732525/

• Prerequisites: CPE 335: Computer Architecture and
Organization (1)

• Office hours: Sun – Wed: 10:30-11:30

3

http://www.abandah.com/gheith
https://www.facebook.com/groups/549894571732525/

Textbook and References
• Patterson and Hennessy. Computer Organization & Design: The

Hardware/Software Interface, RISC-V ed., Morgan Kaufmann,
Elsevier Inc., 2018.

• References:
– Hennessy and Patterson, Computer Architecture: A Quantitative Approach,

6th ed., Morgan Kaufmann, Elsevier Inc., 2017.

– J. P. Shen and M. H. Lipasti. Modern Processor Design: Fundamentals of
Superscalar Processors, Mc Graw Hill, 2005.

– D. Culler and J.P. Singh with A. Gupta. Parallel Computer Architecture: A
Hardware/Software Approach, Morgan Kaufmann, 1998.

– J. Hayes. Computer Architecture and Organization, 3rd ed., McGraw-Hill,
1998.

• Course slides at: http://www.abandah.com/gheith/?page_id=2518

4

http://www.abandah.com/gheith/?page_id=2518

Course Objectives

• Introduce students to the technological changes in designing and
building processors and computers.

• Introduce students to the advanced techniques used in modern
processors including pipelining, branch prediction, dynamic and
speculative execution, multiple issue, multithreading, and
software optimizations.

• Introduce the students to the basic concepts and technologies
used in designing memory and storage systems including cache,
main memory, virtual memory, and secondary memory.

• Introduce the students to the various approaches in parallel
processing including SIMD extensions, vector processors, GPUs,
multicore processors, shared memory multiprocessors, clusters,
and message-passing multicomputers.

5

Course Outcomes

• Understand and analyze the performance of single-
processor architectures, as well as multiprocessor
architectures [1].

• Understand and analyze the performance of memory
hierarchy levels [1].

• Understand the technological improvements and the
effect of these improvements on modern computers
[4].

• Survey research papers that describe contemporary
issues in computer design [4, 7].

6

Course Topics

• Introduction

• Computer Technology and Performance (1.5-1.11)

• Processor: Instruction-Level Parallelism (4.6‒4.11,
4.14‒4.15)

Midterm Exam

• Memory Hierarchy (5.1‒5.11, 5.13, 5.16‒5.17)

• Parallel Processors (6.1‒6.8, 6.10‒6.14)

Final Exam

7

Policies

• Attendance is required

• All submitted work must be yours

• Cheating will not be tolerated

• Open-book exams

• Join the facebook group

• Check department announcements at:
http://www.facebook.com/pages/Computer-
Engineering-Department/369639656466107

8

http://www.facebook.com/pages/Computer-Engineering-Department/369639656466107

Grading

• Participation 10%

• Research Project 10%

• Midterm Exam 30%

• Final Exam 50%

9

Important Dates

Sun 11 Oct, 2020 First Lecture

Sun 6 Dec, 2020 Midterm Exam

Thu 7 Jan, 2020 Project Report Due

Thu 14 Jan, 2021 Last Date to Withdraw

Sun 17 Jan, 2021 Last Lecture

Jan 19 – 11, 2021 Final Exam Period

10

COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

RISC-V

 Edition

Chapter 1

Computer Abstractions

and Technology

Adapted by Prof. Gheith Abandah

Content

1.2 Eight Great Ideas in Computer Architecture

(Review)

1.5 Technologies for Building Processors and

Memory

1.6 Performance (Review)

1.7 The Power Wall

1.8 The Sea Change: The Switch from

Uniprocessors to Multiprocessors

1.9 Real Stuff: Benchmarking the Intel Core i7

1.10 Fallacies and Pitfalls

1.11 Concluding Remarks

 Chapter 1 — Computer Abstractions and Technology — 2

Eight Great Ideas

 Design for Moore’s Law

 Use abstraction to simplify design

 Make the common case fast

 Performance via parallelism

 Performance via pipelining

 Performance via prediction

 Hierarchy of memories

 Dependability via redundancy

Chapter 1 — Computer Abstractions and Technology — 3

§
1
.2

 E
ig

h
t G

re
a
t Id

e
a
s
 in

 C
o
m

p
u
te

r A
rc

h
ite

c
tu

re

Content

1.2 Eight Great Ideas in Computer Architecture

(Review)

1.5 Technologies for Building Processors and

Memory

1.6 Performance (Review)

1.7 The Power Wall

1.8 The Sea Change: The Switch from

Uniprocessors to Multiprocessors

1.9 Real Stuff: Benchmarking the Intel Core i7

1.10 Fallacies and Pitfalls

1.11 Concluding Remarks

 Chapter 1 — Computer Abstractions and Technology — 4

Chapter 1 — Computer Abstractions and Technology — 5

Technology Trends

 Electronics

technology

continues to evolve

 Increased capacity

and performance

 Reduced cost

Year Technology Relative performance/cost

1951 Vacuum tube 1

1965 Transistor 35

1975 Integrated circuit (IC) 900

1995 Very large scale IC (VLSI) 2,400,000

2013 Ultra large scale IC 250,000,000,000

DRAM capacity

§
1
.5

 T
e
c
h
n
o
lo

g
ie

s
 fo

r B
u
ild

in
g
 P

ro
c
e
s
s
o
rs

 a
n
d
 M

e
m

o
ry

Semiconductor Technology

 Silicon: semiconductor

 Add materials to transform properties:

 Conductors

 Insulators

 Switch

Chapter 1 — Computer Abstractions and Technology — 6

Chapter 1 — Computer Abstractions and Technology — 7

Manufacturing ICs

 Yield: proportion of working dies per wafer

Chapter 1 — Computer Abstractions and Technology — 8

Intel Core i7 Wafer

 300mm wafer, 280 chips, 32nm technology

 Each chip is 20.7 x 10.5 mm

Chapter 1 — Computer Abstractions and Technology — 9

Integrated Circuit Cost

 Nonlinear relation to area and defect rate

 Wafer cost and area are fixed

 Defect rate determined by manufacturing process

 Die area determined by architecture and circuit design

2area/2)) Diearea per (Defects(1

1
Yield

area Diearea Wafer waferper Dies

Yield waferper Dies

 waferper Cost
die per Cost

Content

1.2 Eight Great Ideas in Computer Architecture

(Review)

1.5 Technologies for Building Processors and

Memory

1.6 Performance (Review)

1.7 The Power Wall

1.8 The Sea Change: The Switch from

Uniprocessors to Multiprocessors

1.9 Real Stuff: Benchmarking the Intel Core i7

1.10 Fallacies and Pitfalls

1.11 Concluding Remarks

 Chapter 1 — Computer Abstractions and Technology — 10

Chapter 1 — Computer Abstractions and Technology — 11

Response Time and Throughput

 Response time

 How long it takes to do a task

 Throughput

 Total work done per unit time

 e.g., tasks/transactions/… per hour

 How are response time and throughput affected

by

 Replacing the processor with a faster version?

 Adding more processors?

 We’ll focus on response time for now…

Chapter 1 — Computer Abstractions and Technology — 12

Relative Performance

 Define Performance = 1/Execution Time

 “X is n time faster than Y”

n XY

YX

time Executiontime Execution

ePerformancePerformanc

 Example: time taken to run a program

 10s on A, 15s on B

 Execution TimeB / Execution TimeA

= 15s / 10s = 1.5

 So A is 1.5 times faster than B

Chapter 1 — Computer Abstractions and Technology — 13

Measuring Execution Time

 Elapsed time

 Total response time, including all aspects
 Processing, I/O, OS overhead, idle time

 Determines system performance

 CPU time

 Time spent processing a given job
 Discounts I/O time, other jobs’ shares

 Comprises user CPU time and system CPU
time

 Different programs are affected differently by
CPU and system performance

Chapter 1 — Computer Abstractions and Technology — 14

CPU Clocking

 Operation of digital hardware governed by a

constant-rate clock

Clock (cycles)

Data transfer

and computation

Update state

Clock period

 Clock period: duration of a clock cycle

 e.g., 250ps = 0.25ns = 250×10–12s

 Clock frequency (rate): cycles per second

 e.g., 4.0GHz = 4000MHz = 4.0×109Hz

Chapter 1 — Computer Abstractions and Technology — 15

CPU Time

 Performance improved by

 Reducing number of clock cycles

 Increasing clock rate

 Hardware designer must often trade off clock

rate against cycle count

Rate Clock

Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU

Chapter 1 — Computer Abstractions and Technology — 16

Instruction Count and CPI

 Instruction Count for a program

 Determined by program, ISA and compiler

 Average cycles per instruction

 Determined by CPU hardware

 If different instructions have different CPI

 Average CPI affected by instruction mix

Rate Clock

CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio per CyclesCount nInstructioCycles Clock

Chapter 1 — Computer Abstractions and Technology — 17

CPI in More Detail

 If different instruction classes take different

numbers of cycles

n

1i

ii)Count nInstructio(CPICycles Clock

 Weighted average CPI

n

1i

i
i

Count nInstructio

Count nInstructio
CPI

Count nInstructio

Cycles Clock
CPI

Relative frequency

Chapter 1 — Computer Abstractions and Technology — 18

Performance Summary

 Performance depends on

 Algorithm: affects IC, possibly CPI

 Programming language: affects IC, CPI

 Compiler: affects IC, CPI

 Instruction set architecture: affects IC, CPI, Tc

The BIG Picture

cycle Clock

Seconds

nInstructio

cycles Clock

Program

nsInstructio
Time CPU

Content

1.2 Eight Great Ideas in Computer Architecture

(Review)

1.5 Technologies for Building Processors and

Memory

1.6 Performance (Review)

1.7 The Power Wall

1.8 The Sea Change: The Switch from

Uniprocessors to Multiprocessors

1.9 Real Stuff: Benchmarking the Intel Core i7

1.10 Fallacies and Pitfalls

1.11 Concluding Remarks

 Chapter 1 — Computer Abstractions and Technology — 19

Chapter 1 — Computer Abstractions and Technology — 20

Power Trends

 In CMOS IC technology

§
1
.7

 T
h
e
 P

o
w

e
r W

a
ll

FrequencyVoltageload CapacitivePower 2

×1000 ×30 5V → 1V

Chapter 1 — Computer Abstractions and Technology — 21

Reducing Power

 Suppose a new CPU has

 85% of capacitive load of old CPU

 15% voltage and 15% frequency reduction

0.520.85
FVC

0.85F0.85)(V0.85C

P

P 4

old

2

oldold

old

2

oldold

old

new

 The power wall

 We can’t reduce voltage further

 We can’t remove more heat

 How else can we improve performance?

Content

1.2 Eight Great Ideas in Computer Architecture

(Review)

1.5 Technologies for Building Processors and

Memory

1.6 Performance (Review)

1.7 The Power Wall

1.8 The Sea Change: The Switch from

Uniprocessors to Multiprocessors

1.9 Real Stuff: Benchmarking the Intel Core i7

1.10 Fallacies and Pitfalls

1.11 Concluding Remarks

 Chapter 1 — Computer Abstractions and Technology — 22

Chapter 1 — Computer Abstractions and Technology — 23

Uniprocessor Performance
§
1
.8

 T
h
e
 S

e
a
 C

h
a
n
g
e
: T

h
e
 S

w
itc

h
 to

 M
u
ltip

ro
c
e
s
s
o
rs

Constrained by power, instruction-level parallelism,

memory latency

Chapter 1 — Computer Abstractions and Technology — 24

Multiprocessors

 Multicore microprocessors

 More than one processor per chip

 Requires explicitly parallel programming

 Compare with instruction level parallelism

 Hardware executes multiple instructions at once

 Hidden from the programmer

 Hard to do

 Programming for performance

 Load balancing

 Optimizing communication and synchronization

Content

1.2 Eight Great Ideas in Computer Architecture

(Review)

1.5 Technologies for Building Processors and

Memory

1.6 Performance (Review)

1.7 The Power Wall

1.8 The Sea Change: The Switch from

Uniprocessors to Multiprocessors

1.9 Real Stuff: Benchmarking the Intel Core i7

1.10 Fallacies and Pitfalls

1.11 Concluding Remarks

 Chapter 1 — Computer Abstractions and Technology — 25

Chapter 1 — Computer Abstractions and Technology — 26

SPEC CPU Benchmark

 Programs used to measure performance
 Supposedly typical of actual workload

 Standard Performance Evaluation Corp (SPEC)
 Develops benchmarks for CPU, I/O, Web, …

 SPEC CPU2006
 Elapsed time to execute a selection of programs

 Negligible I/O, so focuses on CPU performance

 Normalize relative to reference machine

 Summarize as geometric mean of performance ratios
 CINT2006 (integer) and CFP2006 (floating-point)

n

n

1i

iratio time Execution

Chapter 1 — Computer Abstractions and Technology — 27

CINT2006 for Intel Core i7 920

Chapter 1 — Computer Abstractions and Technology — 28

SPEC Power Benchmark

 Power consumption of server at different

workload levels

 Performance: ssj_ops/sec

 Power: Watts (Joules/sec)

10

0i

i

10

0i

i powerssj_ops Wattper ssj_ops Overall

Chapter 1 — Computer Abstractions and Technology — 29

SPECpower_ssj2008 for Xeon X5650

Content

1.2 Eight Great Ideas in Computer Architecture

(Review)

1.5 Technologies for Building Processors and

Memory

1.6 Performance (Review)

1.7 The Power Wall

1.8 The Sea Change: The Switch from

Uniprocessors to Multiprocessors

1.9 Real Stuff: Benchmarking the Intel Core i7

1.10 Fallacies and Pitfalls

1.11 Concluding Remarks

 Chapter 1 — Computer Abstractions and Technology — 30

Chapter 1 — Computer Abstractions and Technology — 31

Pitfall: Amdahl’s Law

 Improving an aspect of a computer and

expecting a proportional improvement in

overall performance

§
1
.1

0
 F

a
lla

c
ie

s
 a

n
d
 P

itfa
lls

20
80

20
n

 Can’t be done!

unaffected
affected

improved T
factor timprovemen

T
T

 Example: multiply accounts for 80s/100s

 How much improvement in multiply performance to

get 5× overall?

 Corollary: make the common case fast

Chapter 1 — Computer Abstractions and Technology — 32

Fallacy: Low Power at Idle

 Look back at i7 power benchmark

 At 100% load: 258W

 At 50% load: 170W (66%)

 At 10% load: 121W (47%)

 Google data center

 Mostly operates at 10% – 50% load

 At 100% load less than 1% of the time

 Consider designing processors to make

power proportional to load

Chapter 1 — Computer Abstractions and Technology — 33

Pitfall: MIPS as a Performance Metric

 MIPS: Millions of Instructions Per Second

 Doesn’t account for

 Differences in ISAs between computers

 Differences in complexity between instructions

6
6

6

10CPI

rate Clock

10
rate Clock

CPIcount nInstructio

count nInstructio

10time Execution

count nInstructio
MIPS

 CPI varies between programs on a given CPU

Content

1.2 Eight Great Ideas in Computer Architecture

(Review)

1.5 Technologies for Building Processors and

Memory

1.6 Performance (Review)

1.7 The Power Wall

1.8 The Sea Change: The Switch from

Uniprocessors to Multiprocessors

1.9 Real Stuff: Benchmarking the Intel Core i7

1.10 Fallacies and Pitfalls

1.11 Concluding Remarks

 Chapter 1 — Computer Abstractions and Technology — 34

Chapter 1 — Computer Abstractions and Technology — 35

Concluding Remarks

 Cost/performance is improving

 Due to underlying technology development

 Execution time: the best performance
measure

 Power is a limiting factor

 Use parallelism to improve performance

§
1
.1

1
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

RISC-V

 Edition

Chapter 4

The Processor

Adapted by Prof. Gheith Abandah

Contents

4.6 Pipelined Datapath and Control (Review)

4.7 Data Hazards: Forwarding versus Stalling

4.8 Control Hazards

4.9 Exceptions

4.10 Parallelism via Instructions

4.11 Real Stuff: The ARM Cortex-A53 and Intel

Core i7 Pipelines

4.14 Fallacies and Pitfalls

4.15 Concluding Remarks

Chapter 4 — The Processor — 2

Contents

4.6 Pipelined Datapath and Control (Review)

 Five-Stage Pipeline

 Pipeline Control

 Pipeline Hazards

Chapter 4 — The Processor — 3

Five-Stage Pipeline

F: Fetch instruction from the instruction

memory

D: Decode instruction and read operands

E: Execute operation or calculate address

M: Memory access

W: Write result to the register

Chapter 4 — The Processor — 4

Chapter 4 — The Processor — 5

Five-Stage Pipeline

Chapter 4 — The Processor — 6

Pipelined Control

 Control signals derived from instruction

 As in single-cycle implementation

Chapter 4 — The Processor — 7

Pipelined Control

Chapter 4 — The Processor — 8

Hazards

 Situations that prevent starting the next
instruction in the next cycle

 Structure hazards

 A required resource is busy

 Data hazard

 Need to wait for previous instruction to
complete its data read/write

 Control hazard

 Deciding on control action depends on
previous instruction

Contents

4.6 Pipelined Datapath and Control (Review)

4.7 Data Hazards: Forwarding versus Stalling

4.8 Control Hazards

4.9 Exceptions

4.10 Parallelism via Instructions

4.11 Real Stuff: The ARM Cortex-A53 and Intel

Core i7 Pipelines

4.14 Fallacies and Pitfalls

4.15 Concluding Remarks

Chapter 4 — The Processor — 9

Contents

4.7 Data Hazards: Forwarding versus Stalling

 Data Hazards in ALU Instructions

 Load-Use Data Hazard

 Code Scheduling

Chapter 4 — The Processor — 10

Chapter 4 — The Processor — 11

Data Hazards in ALU Instructions

 Consider this sequence:

 sub x2, x1,x3
and x12,x2,x5
or x13,x6,x2
add x14,x2,x2
sd x15,100(x2)

 There are multiple true data dependencies,

read-after-write (RAW), on register x2.

 We can resolve hazards with stalls or

forwarding.

§
4
.7

 D
a
ta

 H
a
z
a
rd

s
: F

o
rw

a
rd

in
g
 v

s
. S

ta
llin

g

Chapter 4 — The Processor — 12

Dependencies & Forwarding

Chapter 4 — The Processor — 13

Forwarding Paths

Chapter 4 — The Processor — 14

Load-Use Data Hazard

 Can’t always avoid stalls by forwarding

 If value not computed when needed

 Can’t forward backward in time!

Chapter 4 — The Processor — 15

Load-Use Hazard Detection

 Check when using instruction is decoded
in ID stage

 ALU operand register numbers in ID stage
are given by

 IF/ID.RegisterRs1, IF/ID.RegisterRs2

 Load-use hazard when

 ID/EX.MemRead and
 ((ID/EX.RegisterRd = IF/ID.RegisterRs1) or
 (ID/EX.RegisterRd = IF/ID.RegisterRs1))

 If detected, stall and insert bubble

Chapter 4 — The Processor — 16

How to Stall the Pipeline

 Force control values in ID/EX register

to 0

 EX, MEM and WB do nop (no-operation)

 Prevent update of PC and IF/ID register

 Using instruction is decoded again

 Following instruction is fetched again

 1-cycle stall allows MEM to read data for ld

 Can subsequently forward to EX stage

Chapter 4 — The Processor — 17

Load-Use Data Hazard

Stall inserted

here

Chapter 4 — The Processor — 18

Datapath with Hazard Detection

Chapter 4 — The Processor — 19

Stalls and Performance

 Stalls reduce performance

 But are required to get correct results

 Compiler can arrange code to avoid

hazards and stalls

 Requires knowledge of the pipeline structure

The BIG Picture

Chapter 4 — The Processor — 20

Code Scheduling to Avoid Stalls

 Reorder code to avoid use of load result in

the next instruction

 C code for a = b + e; c = b + f;

ld x1, 0(x0)

ld x2, 8(x0)

add x3, x1, x2

sd x3, 24(x0)

ld x4, 16(x0)

add x5, x1, x4

sd x5, 32(x0)

stall

stall

ld x1, 0(x0)

ld x2, 8(x0)

ld x4, 16(x0)

add x3, x1, x2

sd x3, 24(x0)

add x5, x1, x4

sd x5, 32(x0)

11 cycles 13 cycles

Contents

4.6 Pipelined Datapath and Control (Review)

4.7 Data Hazards: Forwarding versus Stalling

4.8 Control Hazards

4.9 Exceptions

4.10 Parallelism via Instructions

4.11 Real Stuff: The ARM Cortex-A53 and Intel

Core i7 Pipelines

4.14 Fallacies and Pitfalls

4.15 Concluding Remarks

Chapter 4 — The Processor — 21

Contents

4.8 Control Hazards

 Branch Hazards

 Reducing Branch Delay

 Branch Prediction

 Dynamic Branch Prediction

 Calculating Branch Target

 Imprecise Exceptions

Chapter 4 — The Processor — 22

Chapter 4 — The Processor — 23

Branch Hazards

 If branch outcome determined in MEM

§
4
.8

 C
o
n
tro

l H
a
z
a
rd

s

PC

Flush these

instructions

(Set control

values to 0)

Chapter 4 — The Processor — 24

Reducing Branch Delay

 Move hardware to determine outcome to ID

stage

 Target address adder

 Register comparator

 Example: branch taken
 36: sub x10, x4, x8
40: beq x1, x3, 16 // PC-relative branch
 // to 40+16*2=72
44: and x12, x2, x5
48: orr x13, x2, x6
52: add x14, x4, x2
56: sub x15, x6, x7
 ...
72: ld x4, 50(x7)

Chapter 4 — The Processor — 25

Example: Branch Taken

Chapter 4 — The Processor — 26

Example: Branch Taken

Chapter 4 — The Processor — 27

Branch Prediction

 Longer pipelines can’t readily determine

branch outcome early

 Stall penalty becomes unacceptable

 Predict outcome of branch

 Only stall if prediction is wrong

 In RISC-V pipeline

 Can predict branches not taken

 Fetch instruction after branch, with no delay

Chapter 4 — The Processor — 28

More-Realistic Branch Prediction

 Static branch prediction

 Based on typical branch behavior

 Example: loop and if-statement branches

 Predict backward branches taken

 Predict forward branches not taken

 Dynamic branch prediction

 Hardware measures actual branch behavior

 e.g., record recent history of each branch

 Assume future behavior will continue the trend

 When wrong, stall while re-fetching, and update history

Chapter 4 — The Processor — 29

Dynamic Branch Prediction

 In deeper and superscalar pipelines, branch

penalty is more significant

 Use dynamic prediction

 Branch prediction buffer (aka branch history table)

 Indexed by recent branch instruction addresses

 Stores outcome (taken/not taken)

 To execute a branch

 Check table, expect the same outcome

 Start fetching from fall-through or target

 If wrong, flush pipeline and flip prediction

Branch History Table (BHT)

Chapter 4 — The Processor — 30

Table size = n × 2k bits

Chapter 4 — The Processor — 31

1-Bit Predictor: Shortcoming

 Inner loop branches mispredicted twice!

outer: …
 …
inner: …
 …
 beq …, …, inner
 …
 beq …, …, outer

 Mispredict as taken on last iteration of

inner loop

 Then mispredict as not taken on first

iteration of inner loop next time around

Chapter 4 — The Processor — 32

2-Bit Predictor

 Only change prediction on two successive

mispredictions

Chapter 4 — The Processor — 33

Calculating the Branch Target

 Even with predictor, still need to calculate

the target address

 1-cycle penalty for a taken branch

 Branch target buffer

 Cache of target addresses

 Indexed by PC when instruction fetched

 If hit and instruction is branch predicted taken, can

fetch target immediately

Branch Target Buffer (BTB)

Chapter 4 — The Processor — 34

Contents

4.6 Pipelined Datapath and Control (Review)

4.7 Data Hazards: Forwarding versus Stalling

4.8 Control Hazards

4.9 Exceptions

4.10 Parallelism via Instructions

4.11 Real Stuff: The ARM Cortex-A53 and Intel

Core i7 Pipelines

4.14 Fallacies and Pitfalls

4.15 Concluding Remarks

Chapter 4 — The Processor — 35

Contents

4.9 Exceptions

 Exceptions and Interrupts

 Handling Exceptions

 Exceptions in a Pipeline

 Exception Example

 Multiple Exceptions

Chapter 4 — The Processor — 36

Chapter 4 — The Processor — 37

Exceptions and Interrupts

 “Unexpected” events requiring change

in flow of control

 Different ISAs use the terms differently

 Exception

 Arises within the CPU

 e.g., undefined opcode, syscall, …

 Interrupt

 From an external I/O controller

 Dealing with them without sacrificing

performance is hard

§
4
.9

 E
x
c
e
p
tio

n
s

Chapter 4 — The Processor — 38

Handling Exceptions

 Save PC of offending (or interrupted) instruction
 In RISC-V: Supervisor Exception Program Counter

(SEPC)

 Save indication of the problem
 In RISC-V: Supervisor Exception Cause Register

(SCAUSE)

 64 bits, but most bits unused
 Exception code field: 2 for undefined opcode, 12 for hardware

malfunction, …

 Jump to handler
 Assume at 0000 0000 1C09 0000hex

Chapter 4 — The Processor — 39

An Alternate Mechanism

 Vectored Interrupts

 Handler address determined by the cause

 Exception vector address to be added to a
vector table base register:

 Undefined opcode 00 0100 0000two

 Hardware malfunction: 01 1000 0000two

 …: …

 Instructions either

 Deal with the interrupt, or

 Jump to real handler

Chapter 4 — The Processor — 40

Handler Actions

 Read cause, and transfer to relevant
handler

 Determine action required

 If restartable

 Take corrective action

 use SEPC to return to program

 Otherwise

 Terminate program

 Report error using SEPC, SCAUSE, …

Chapter 4 — The Processor — 41

Exceptions in a Pipeline

 Another form of control hazard

 Consider malfunction on add in EX stage
add x1, x2, x1

 Prevent x1 from being clobbered

 Complete previous instructions

 Flush add and subsequent instructions

 Set SEPC and SCAUSE register values

 Transfer control to handler

 Similar to mispredicted branch

 Use much of the same hardware

Chapter 4 — The Processor — 42

Pipeline with Exceptions

Chapter 4 — The Processor — 43

Exception Properties

 Restartable exceptions

 Pipeline can flush the instruction

 Handler executes, then returns to the

instruction

 Refetched and executed from scratch

 PC saved in SEPC register

 Identifies causing instruction

Chapter 4 — The Processor — 44

Exception Example

 Exception on add in
 40 sub x11, x2, x4
44 and x12, x2, x5
48 orr x13, x2, x6
4c add x1, x2, x1
50 sub x15, x6, x7
54 ld x16, 100(x7)
…

 Handler
 1C090000 sd x26, 1000(x10)
1c090004 sd x27, 1008(x10)
…

Chapter 4 — The Processor — 45

Exception Example

Chapter 4 — The Processor — 46

Exception Example

Chapter 4 — The Processor — 47

Multiple Exceptions

 Pipelining overlaps multiple instructions

 Could have multiple exceptions at once

 Simple approach: deal with exception from

earliest instruction

 Flush subsequent instructions

 “Precise” exceptions

 In complex pipelines

 Multiple instructions issued per cycle

 Out-of-order completion

 Maintaining precise exceptions is difficult!

Chapter 4 — The Processor — 48

Imprecise Exceptions

 Just stop pipeline and save state

 Including exception cause(s)

 Let the handler work out

 Which instruction(s) had exceptions

 Which to complete or flush

 May require “manual” completion

 Simplifies hardware, but more complex handler

software

 Not feasible for complex multiple-issue

out-of-order pipelines

Contents

4.6 Pipelined Datapath and Control (Review)

4.7 Data Hazards: Forwarding versus Stalling

4.8 Control Hazards

4.9 Exceptions

4.10 Parallelism via Instructions

4.11 Real Stuff: The ARM Cortex-A53 and Intel

Core i7 Pipelines

4.14 Fallacies and Pitfalls

4.15 Concluding Remarks

Chapter 4 — The Processor — 49

Contents

4.10 Parallelism via Instructions

 Instruction-Level Parallelism (ILP)

 Multiple Issue

 Static Multiple Issue

 VLIW

 Scheduling Static Multiple Issue

 Loop Unrolling

 Dynamic Multiple Issue

 Register Renaming

 Speculation

 Why Do Dynamic Scheduling

Chapter 4 — The Processor — 50

Chapter 4 — The Processor — 51

Instruction-Level Parallelism (ILP)

 Pipelining: executing multiple instructions in
parallel

 To increase ILP
 Deeper pipeline

 Less work per stage shorter clock cycle

 Multiple issue
 Replicate pipeline stages multiple pipelines

 Start multiple instructions per clock cycle

 CPI < 1, so use Instructions Per Cycle (IPC)

 E.g., 4GHz 4-way multiple-issue

 16 BIPS, peak CPI = 0.25, peak IPC = 4

 But dependencies reduce this in practice

§
4
.1

0
 P

a
ra

lle
lis

m
 v

ia
 In

s
tru

c
tio

n
s

Chapter 4 — The Processor — 52

Multiple Issue

 Static multiple issue

 Compiler groups instructions to be issued together

 Packages them into “issue slots”

 Compiler detects and avoids hazards

 Dynamic multiple issue

 CPU examines instruction stream and chooses

instructions to issue each cycle

 Compiler can help by reordering instructions

 CPU resolves hazards using advanced techniques at

runtime

Chapter 4 — The Processor — 53

Static Multiple Issue

 Compiler groups instructions into “issue

packets”

 Group of instructions that can be issued on a

single cycle

 Determined by pipeline resources required

 Think of an issue packet as a very long

instruction

 Specifies multiple concurrent operations

 Very Long Instruction Word (VLIW)

VILW

Chapter 4 — The Processor — 54

Chapter 4 — The Processor — 55

Scheduling Static Multiple Issue

 Compiler must remove some/all hazards

 Reorder instructions into issue packets

 No dependencies with a packet

 Possibly some dependencies between

packets

 Varies between ISAs; compiler must know!

 Pad with nop if necessary

Chapter 4 — The Processor — 56

RISC-V with Static Dual Issue

 Two-issue packets

 One ALU/branch instruction

 One load/store instruction

 64-bit aligned

 ALU/branch, then load/store

 Pad an unused instruction with nop

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

Chapter 4 — The Processor — 57

RISC-V with Static Dual Issue

Chapter 4 — The Processor — 58

Hazards in the Dual-Issue RISC-V

 More instructions executing in parallel

 EX data hazard

 Forwarding avoided stalls with single-issue

 Now can’t use ALU result in load/store in same packet

 add x10, x0, x1
ld x2, 0(x10)

 Split into two packets, effectively a stall

 Load-use hazard

 Still one cycle use latency, but now two instructions

 More aggressive scheduling required

Forwarding in Dual-Issue RISC-V

 In addition to forwarding from M and W to

E, there are additional forwarding paths

among the two pipelines, e.g.:

 From W in memory pipeline to E in ALU

pipeline
 ld x31, 0(x20)
add x31, x31, x21

 From M in ALU pipeline to M in memory

pipeline
 add x31, x31, x21
sd x31, 0(x20)

Chapter 4 — The Processor — 59

Chapter 4 — The Processor — 60

Scheduling Example

 Schedule this for dual-issue RISC-V
Loop: ld x31,0(x20) // x31=array element
 add x31,x31,x21 // add scalar in x21
 sd x31,0(x20) // store result
 addi x20,x20,-8 // decrement pointer
 blt x22,x20,Loop // branch if x22 < x20

ALU/branch Load/store cycle

Loop: nop ld x31,0(x20) 1

addi x20,x20,-8 nop 2

add x31,x31,x21 nop 3

blt x22,x20,Loop sd x31,8(x20) 4

 IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

Chapter 4 — The Processor — 61

Loop Unrolling

 Replicate loop body to expose more

parallelism

 Reduces loop-control overhead

 Use different registers per replication

 Called “register renaming”

 Avoid loop-carried “anti-dependencies”

 Store followed by a load of the same register

 Aka “name dependence”, write-after-read

 Or “output dependence”, write-after-write

 Reuse of a register name

Unrolling Steps

1. Replicate the loop instructions n times

2. Remove unneeded loop overhead

3. Modify instructions

4. Rename registers

5. Schedule instructions

Chapter 4 — The Processor — 62

Chapter 4 — The Processor — 63

Loop Unrolling Example

 IPC = 14/8 = 1.75

 Closer to 2, but at cost of registers and code size

ALU/branch Load/store cycle

Loop: addi x20,x20,-32 ld x28, 0(x20) 1

nop ld x29, 24(x20) 2

add x28,x28,x21 ld x30, 16(x20) 3

add x29,x29,x21 ld x31, 8(x20) 4

add x30,x30,x21 sd x28, 32(x20) 5

add x31,x31,x21 sd x29, 24(x20) 6

nop sd x30, 16(x20) 7

blt x22,x20,Loop sd x31, 8(x20) 8

Chapter 4 — The Processor — 64

Dynamic Multiple Issue

 “Superscalar” processors

 CPU decides whether to issue 0, 1, 2, …

each cycle

 Avoiding structural and data hazards

 Avoids the need for compiler scheduling

 Though it may still help

 Code semantics ensured by the CPU

Chapter 4 — The Processor — 65

Dynamic Pipeline Scheduling

 Allow the CPU to execute instructions out

of order to avoid stalls

 But commit result to registers in order

 Example

 ld x31,20(x21)
add x1,x31,x2
sub x23,x23,x3
andi x5,x23,20

 Can start sub while add is waiting for ld

Chapter 4 — The Processor — 66

Dynamically Scheduled CPU

Results also sent

to any waiting

reservation stations

Reorders buffer for

register writes
Can supply

operands for

issued instructions

Preserves

dependencies

Hold pending

operands

Pipeline Stages

F: Fetch from instr. memory (IM) to instr. queue (IQ).

I: Issue from IQ to reservation stations (RS), reading

ready operands from register file (RF).

E: Execute when functional unit (FU) is free and

instr. In RS has ready operands.

W: Write result from FU through common data bus

(CDB) to reorder buffer (ROB) and RS.

C: Commit results in order from ROB to RF and

memory

 Loads have FIAMWC, stores have FIAC. A:

Address calculation

Chapter 4 — The Processor — 67

Chapter 4 — The Processor — 68

Register Renaming

 Reservation stations and reorder buffer
effectively provide register renaming

 On instruction issue to reservation station

 If operand is available in register file or
reorder buffer
 Copied to reservation station

 No longer required in the register; can be
overwritten

 If operand is not yet available
 It will be provided to the reservation station by a

function unit

 Register update may not be required

Examples

 Assume superscalar processor of degree 3

 Name dependence (WAR)

 mul x1,x2,x3
add x4,x1,x5
ld x5,16(x21)

 Output dependence (WAW)

 mul x1,x2,x3
add x4,x1,x5
ld x1,16(x21)

 Chapter 4 — The Processor — 69

Chapter 4 — The Processor — 70

Speculation

 “Guess” what to do with an instruction

 Start operation as soon as possible

 Check whether guess was right

 If so, complete the operation

 If not, roll-back and do the right thing

 Common to static and dynamic multiple issue

 Examples

 Speculate on branch outcome

 Roll back if path taken is different

 Speculate on load

 Roll back if location is updated

Chapter 4 — The Processor — 71

Compiler/Hardware Speculation

 Compiler can reorder instructions

 e.g., move load before branch

 Can include “fix-up” instructions to recover

from incorrect guess

 Hardware can look ahead for instructions

to execute

 Buffer results until it determines they are

actually needed

 Flush buffers on incorrect speculation

Chapter 4 — The Processor — 72

Branch Speculation

 Predict branch and continue issuing

 Don’t commit until branch outcome

determined

 Example: Assume a superscalar

processor of degree 2 and the branch

prediction is not taken.

 ld x1,0(x20)
beq x1,x2,Skip
I3
I4

Chapter 4 — The Processor — 73

Load Speculation

 Avoid load and cache miss delay

 Load before completing outstanding stores

 Predict the effective address or loaded value

 Bypass stored values to load unit

 Don’t commit load until speculation cleared

 Example: Superscalar of degree 3.

 ld x1,0(x20)
sd x2,0(x1)
ld x3,0(x21)

Chapter 4 — The Processor — 74

Speculation and Exceptions

 What if exception occurs on a
speculatively executed instruction?

 e.g., speculative load before null-pointer
check

 Static speculation

 Can add ISA support for deferring exceptions

 Dynamic speculation

 Can buffer exceptions until instruction
completion (which may not occur)

Exceptions Examples

 Assume superscalar processor of degree 3

with 2 address calculation units

 E1: Predict branch as not take, but resolve

to taken. The ld has exception in M.

 beq x1,x2,L1
ld x5,16(x21)

 E2: Assume first sd has exemption in C.

 ld x1,0(x20)
sd x1,0(x21)
sd x2,16(x21)

 Chapter 4 — The Processor — 75

Chapter 4 — The Processor — 76

Why Do Dynamic Scheduling?

 Why not just let the compiler schedule

code?

 Not all stalls are predicable

 e.g., cache misses

 Can’t always schedule around branches

 Branch outcome is dynamically determined

 Different implementations of an ISA have

different latencies and hazards

Chapter 4 — The Processor — 77

Does Multiple Issue Work?

 Yes, but not as much as we’d like

 Programs have real dependencies that limit ILP

 Some dependencies are hard to eliminate

 e.g., pointer aliasing

 Some parallelism is hard to expose

 Limited window size during instruction issue

 Memory delays and limited bandwidth

 Hard to keep pipelines full

 Speculation can help if done well

The BIG Picture

Chapter 4 — The Processor — 78

Power Efficiency

 Complexity of dynamic scheduling and

speculations requires power

 Multiple simpler cores may be better

Contents

4.6 Pipelined Datapath and Control (Review)

4.7 Data Hazards: Forwarding versus Stalling

4.8 Control Hazards

4.9 Exceptions

4.10 Parallelism via Instructions

4.11 Real Stuff: The ARM Cortex-A53 and Intel

Core i7 Pipelines

4.14 Fallacies and Pitfalls

4.15 Concluding Remarks

Chapter 4 — The Processor — 79

Cortex A53 and Intel i7
Processor ARM A53 Intel Core i7 920

Market Personal Mobile Device Server, cloud

Thermal design power 100 milliWatts

(1 core @ 1 GHz)

130 Watts

Clock rate 1.5 GHz 2.66 GHz

Cores/Chip 4 (configurable) 4

Floating point? Yes Yes

Multiple issue? Dynamic Dynamic

Peak instructions/clock cycle 2 4

Pipeline stages 8 14

Pipeline schedule Static in-order Dynamic out-of-order

with speculation

Branch prediction Hybrid 2-level

1st level caches/core 16-64 KiB I, 16-64 KiB D 32 KiB I, 32 KiB D

2nd level caches/core 128-2048 KiB 256 KiB (per core)

3rd level caches (shared) (platform dependent) 2-8 MB

Chapter 4 — The Processor — 80

§
4
.1

1
 R

e
a
l S

tu
ff: T

h
e
 A

R
M

 C
o
rte

x
-A

5
3
 a

n
d
 In

te
l C

o
re

 i7
 P

ip
e
lin

e
s

ARM Cortex-A53 Pipeline

Chapter 4 — The Processor — 81

ARM Cortex-A53 Performance

Chapter 4 — The Processor — 82

Core i7 Pipeline

Chapter 4 — The Processor — 83

Core i7 Performance

Chapter 4 — The Processor — 84

Contents

4.6 Pipelined Datapath and Control (Review)

4.7 Data Hazards: Forwarding versus Stalling

4.8 Control Hazards

4.9 Exceptions

4.10 Parallelism via Instructions

4.11 Real Stuff: The ARM Cortex-A53 and Intel

Core i7 Pipelines

4.14 Fallacies and Pitfalls

4.15 Concluding Remarks

Chapter 4 — The Processor — 85

Chapter 4 — The Processor — 86

Fallacies

 Pipelining is easy (!)

 The basic idea is easy

 The devil is in the details

 e.g., detecting data hazards

 Pipelining is independent of technology

 So why haven’t we always done pipelining?

 More transistors make more advanced techniques

feasible

 Pipeline-related ISA design needs to take account of

technology trends

 e.g., predicated instructions

§
4
.1

4
 F

a
lla

c
ie

s
 a

n
d
 P

itfa
lls

Chapter 4 — The Processor — 87

Pitfalls

 Poor ISA design can make pipelining

harder

 e.g., complex instruction sets (VAX, IA-32)

 Significant overhead to make pipelining work

 IA-32 micro-op approach

 e.g., complex addressing modes

 Register update side effects, memory indirection

 e.g., delayed branches

 Advanced pipelines have long delay slots

Contents

4.6 Pipelined Datapath and Control (Review)

4.7 Data Hazards: Forwarding versus Stalling

4.8 Control Hazards

4.9 Exceptions

4.10 Parallelism via Instructions

4.11 Real Stuff: The ARM Cortex-A53 and Intel

Core i7 Pipelines

4.14 Fallacies and Pitfalls

4.15 Concluding Remarks

Chapter 4 — The Processor — 88

Chapter 4 — The Processor — 89

Concluding Remarks

 Pipelining improves instruction throughput

using parallelism

 More instructions completed per second

 Latency for each instruction not reduced

 Hazards: structural, data, control

 Multiple issue and dynamic scheduling (ILP)

 Dependencies limit achievable parallelism

 Complexity leads to the power wall

§
4
.1

4
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

RISC-V

 Edition

Chapter 5

Large and Fast:

Exploiting Memory

Hierarchy

Adapted by Prof. Gheith Abandah

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache

5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies

5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

Principle of Locality

 Programs access a small proportion of

their address space at any time

 Temporal locality

 Items accessed recently are likely to be

accessed again soon

 e.g., instructions in a loop, induction variables

 Spatial locality

 Items near those accessed recently are likely

to be accessed soon

 E.g., sequential instruction access, array data

§
5
.1

 In
tro

d
u
c
tio

n

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Taking Advantage of Locality

 Memory hierarchy

 Store everything on disk

 Copy recently accessed (and nearby)

items from disk to smaller DRAM memory

 Main memory

 Copy more recently accessed (and

nearby) items from DRAM to smaller

SRAM memory

 Cache memory attached to CPU

Memory Hierarchy

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Memory Hierarchy Levels

 Block (aka line): unit of copying

 May be multiple words

 If accessed data is present in

upper level

 Hit: access satisfied by upper level

 Hit ratio: hits/accesses

 If accessed data is absent

 Miss: block copied from lower level

 Time taken: miss penalty

 Miss ratio: misses/accesses

= 1 – hit ratio

 Then accessed data supplied from

upper level

Contents

5.1 Introduction

5.2 Memory Technologies

 Introduction

 SRAM

 DRAM

 Flash

 Disk Storage

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

Memory Technology (2012)

 Static RAM (SRAM)

 0.5ns – 2.5ns, $2000 – $1000 per GB

 Dynamic RAM (DRAM)

 50ns – 70ns, $10 – $20 per GB

 Flash memory

 5,000ns – 50,000ns, $0.75 – $1.00 per GB

 Magnetic disk

 5ms – 20ms, $0.05 – $0.10 per GB

 Ideal memory

 Access time of SRAM

 Capacity and cost/GB of disk

§
5
.2

 M
e
m

o
ry

 T
e
c
h
n
o
lo

g
ie

s

SRAM Technology

 Static RAM

 6-8 transistors per bit

 Fast but not dense

 Often has standby mode

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

DRAM Technology

 Data stored as a charge in a capacitor

 Single transistor used to access the charge

 Must periodically be refreshed

 Read contents and write back

 Performed on a DRAM “row”

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Classic DRAM

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

Classic DRAM

 Low bandwidth

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

Advanced DRAM Organization

 Access an entire row and save it in a row

buffer.

 Fast page mode: supply successive

words from the row buffer with reduced

latency

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

Advanced DRAM Organization

 Synchronous DRAM (SDRAM) has a

counter that increments the column

address using a clock signal.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Advanced DRAM Organization

 Double data rate (DDR) SDRAM

 Transfer on rising and falling clock edges

 Quad data rate (QDR) SDRAM

 Separate DDR inputs and outputs

Micron 1Gb DDR-SDRAM

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

MT46V128M8 – 32 Meg X 8 X 4 Banks, Datasheet

https://www.micron.com/~/media/documents/products/data-sheet/dram/ddr1/1gb_ddr.pdf

Micron 1Gb DDR-SDRAM

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

DRAM Generations

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

DRAM Generations

0

50

100

150

200

250

300

'80 '83 '85 '89 '92 '96 '98 '00 '04 '07

Trac

Tcac

Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50

DRAM Performance Factors

 Row buffer

 Allows several words to be read and refreshed in

parallel

 Synchronous DRAM

 Allows for consecutive accesses in bursts without

needing to send each address

 Improves bandwidth

 DRAM banking

 Allows simultaneous access to multiple DRAMs

 Improves bandwidth

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21

Increasing Memory Bandwidth

 To get 16-byte block:

 a. One-word wide memory
 Miss penalty = 4×(1 + 15 + 1) = 68 bus cycles

 Bandwidth = 16 bytes / 68 cycles = 0.24 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22

Increasing Memory Bandwidth

 b. 4-word wide memory
 Miss penalty = 1 + 15 + 1 = 17 bus cycles

 Bandwidth = 16 bytes / 17 cycles = 0.94 B/cycle

 c. 4-bank interleaved memory
 Miss penalty = 1 + 15 + 4×1 = 20 bus cycles

 Bandwidth = 16 bytes / 20 cycles = 0.8 B/cycle

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23

Increasing Memory Bandwidth

 d. DDR-SDRAM
 Miss penalty = 1 + 15 + 4×0.5 = 18 bus cycles

 Bandwidth = 16 bytes / 18 cycles = 0.89 B/cycle

Chapter 6 — Storage and Other I/O Topics — 24

Flash Storage

 Nonvolatile semiconductor storage

 100× – 1000× faster than disk

 Smaller, lower power, more robust

 But more $/GB (between disk and DRAM)

Chapter 6 — Storage and Other I/O Topics — 25

Flash Types

 NOR flash: bit cell like a NOR gate

 Random read/write access

 Used for instruction memory in embedded systems

 NAND flash: bit cell like a NAND gate

 Denser (bits/area), but block-at-a-time access

 Cheaper per GB

 Used for USB keys, media storage, …

 Flash bits wears out after 1000’s of accesses

 Not suitable for direct RAM or disk replacement

 Wear leveling: remap data to less used blocks

Chapter 6 — Storage and Other I/O Topics — 26

Disk Storage

 Nonvolatile, rotating magnetic storage

Chapter 6 — Storage and Other I/O Topics — 27

Disk Sectors and Access

 Each sector records
 Sector ID

 Data (512 bytes, 4096 bytes proposed)

 Error correcting code (ECC)
 Used to hide defects and recording errors

 Synchronization fields and gaps

 Access to a sector involves
 Queuing delay if other accesses are pending

 Seek: move the heads

 Rotational latency

 Data transfer

 Controller overhead

Chapter 6 — Storage and Other I/O Topics — 28

Disk Access Example

 Given
 512B sector, 15,000rpm, 4ms average seek

time, 100MB/s transfer rate, 0.2ms controller
overhead, idle disk

 Average read time
 4ms seek time

+ ½ / (15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
= 6.2ms

 If actual average seek time is 1ms
 Average read time = 3.2ms

Chapter 6 — Storage and Other I/O Topics — 29

Disk Access Example 2

 Given
 15,000rpm, 2MB/cylinder

 Sustainable peak transfer rate?

Chapter 6 — Storage and Other I/O Topics — 30

Disk Performance Issues

 Manufacturers quote average seek time

 Based on all possible seeks

 Locality and OS scheduling lead to smaller actual

average seek times

 Smart disk controller allocate physical sectors on

disk

 Present logical sector interface to host

 SCSI, ATA, SATA

 Disk drives include caches

 Prefetch sectors in anticipation of access

 Avoid seek and rotational delay

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

 Direct Mapped Cache

 Cache Example

 Larger Block Sizes

 Writing to the Cache

 Example: Intrinsity FastMATH

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32

Cache Memory

 Cache memory

 The level of the memory hierarchy closest to

the CPU

 Given accesses X1, …, Xn–1, Xn

§
5
.3

 T
h
e
 B

a
s
ic

s
 o

f C
a
c
h
e
s

 How do we know if

the data is present?

 Where do we look?

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 33

Direct Mapped Cache

 Location determined by address

 Direct mapped: only one choice

 (Block address) modulo (#Blocks in cache)

 #Blocks is a

power of 2

 Use low-order

address bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 34

Tags and Valid Bits

 How do we know which particular block is

stored in a cache location?

 Store block address as well as the data

 Actually, only need the high-order bits

 Called the tag

 What if there is no data in a location?

 Valid bit: 1 = present, 0 = not present

 Initially 0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 35

Cache Example

 8-blocks, 1 word/block, direct mapped

 Initial state

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 36

Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Miss 110

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 37

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

26 11 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 38

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 39

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

16 10 000 Hit 000

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 40

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

18 10 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 41

Address Subdivision

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 42

Example: Larger Block Size

 64 blocks, 16 bytes/block

 To what block number does address 1200

map?

 Block address = 1200/16 = 75

 Block number = 75 modulo 64 = 11

Tag Index Offset

0 3 4 9 10 63

4 bits 6 bits 22 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 43

Block Size Considerations

 Larger blocks should reduce miss rate

 Due to spatial locality

 But in a fixed-sized cache

 Larger blocks fewer of them

 More competition increased miss rate

 Larger blocks pollution

 Larger miss penalty

 Can override benefit of reduced miss rate

 Early restart and critical-word-first can help

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 44

Block Size Considerations

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 45

Cache Misses

 On cache hit, CPU proceeds normally

 On cache miss

 Stall the CPU pipeline

 Fetch block from next level of hierarchy

 Instruction cache miss

 Restart instruction fetch

 Data cache miss

 Complete data access

Writing to the Cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 46

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 47

Write-Through

 On data-write hit, could just update the block in
cache
 But then cache and memory would be inconsistent

 Write through: also update memory

 But makes writes take longer
 e.g., if base CPI = 1, 10% of instructions are stores,

write to memory takes 100 cycles
 Effective CPI = 1 + 0.1×100 = 11

 Solution: write buffer
 Holds data waiting to be written to memory

 CPU continues immediately
 Only stalls on write if write buffer is already full

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 48

Write-Back

 Alternative: On data-write hit, just update

the block in cache

 Keep track of whether each block is dirty

 When a dirty block is replaced

 Write it back to memory

 Can use a write buffer to allow replacing block

to be read first

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 49

Write Allocation

 What should happen on a write miss?

 Alternatives for write-through

 Allocate on miss: fetch the block

 Write around: don’t fetch the block

 Since programs often write a whole block before

reading it (e.g., initialization)

 For write-back

 Usually fetch the block

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 50

Example: Intrinsity FastMATH

 Embedded MIPS processor

 12-stage pipeline

 Instruction and data access on each cycle

 Split cache: separate I-cache and D-cache

 Each 16KB: 256 blocks × 16 words/block

 D-cache: write-through or write-back

 SPEC2000 miss rates

 I-cache: 0.4%

 D-cache: 11.4%

 Weighted average: 3.2%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 51

Example: Intrinsity FastMATH

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

 Measuring Cache Performance

 Memory Average Access Time

 Associative Caches

 Multi-level Caches

 Interactions with Advanced CPUs

 Interactions with Software

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 52

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 53

Measuring Cache Performance

 Components of CPU time
 Program execution cycles

 Includes cache hit time

 Memory stall cycles
 Mainly from cache misses

 With simplifying assumptions:

§
5
.4

 M
e
a
s
u
rin

g
 a

n
d
 Im

p
ro

v
in

g
 C

a
c
h
e
 P

e
rfo

rm
a
n
c
e

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 54

Cache Performance Example

 Given
 I-cache miss rate = 2%

 D-cache miss rate = 4%

 Miss penalty = 100 cycles

 Base CPI (ideal cache) = 2

 Load & stores are 36% of instructions

 Miss cycles per instruction
 I-cache: 0.02 × 100 = 2

 D-cache: 0.36 × 0.04 × 100 = 1.44

 Actual CPI = 2 + 2 + 1.44 = 5.44
 Ideal CPU is 5.44/2 =2.72 times faster

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 55

Average Access Time

 Hit time is also important for performance

 Average memory access time (AMAT)

 AMAT = Hit time + Miss rate × Miss penalty

 Example

 CPU with 1ns clock, hit time = 1 cycle, miss

penalty = 20 cycles, I-cache miss rate = 5%

 AMAT = 1 + 0.05 × 20 = 2ns

 2 cycles per instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 56

Performance Summary

 When CPU performance increased

 Miss penalty becomes more significant

 Decreasing base CPI

 Greater proportion of time spent on memory

stalls

 Increasing clock rate

 Memory stalls account for more CPU cycles

 Can’t neglect cache behavior when

evaluating system performance

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 57

Associative Caches

 Fully associative

 Allow a given block to go in any cache entry

 Requires all entries to be searched at once

 Comparator per entry (expensive)

 n-way set associative

 Each set contains n entries

 Block number determines which set

 (Block number) modulo (#Sets in cache)

 Search all entries in a given set at once

 n comparators (less expensive)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 58

Associative Cache Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 59

Spectrum of Associativity

 For a cache with 8 entries

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 60

Associativity Example

 Compare 4-block caches

 Direct mapped, 2-way set associative,

fully associative

 Block access sequence: 0, 8, 0, 6, 8

 Direct mapped

Block

address

Cache

index

Hit/miss Cache content after access

0 1 2 3

0 0 miss Mem[0]

8 0 miss Mem[8]

0 0 miss Mem[0]

6 2 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 61

Associativity Example

 2-way set associative
Block

address

Cache

index

Hit/miss Cache content after access

Set 0 Set 1

0 0 miss Mem[0]

8 0 miss Mem[0] Mem[8]

0 0 hit Mem[0] Mem[8]

6 0 miss Mem[0] Mem[6]

8 0 miss Mem[8] Mem[6]

 Fully associative
Block

address

Hit/miss Cache content after access

0 miss Mem[0]

8 miss Mem[0] Mem[8]

0 hit Mem[0] Mem[8]

6 miss Mem[0] Mem[8] Mem[6]

8 hit Mem[0] Mem[8] Mem[6]

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 62

How Much Associativity

 Increased associativity decreases miss

rate

 But with diminishing returns

 Simulation of a system with 64KB

D-cache, 16-word blocks, SPEC2000

 1-way: 10.3%

 2-way: 8.6%

 4-way: 8.3%

 8-way: 8.1%

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 63

Set Associative Cache Organization

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 64

Replacement Policy

 Direct mapped: no choice

 Set associative
 Prefer non-valid entry, if there is one

 Otherwise, choose among entries in the set

 Least-recently used (LRU)
 Choose the one unused for the longest time

 Simple for 2-way, manageable for 4-way, too hard
beyond that

 Random
 Gives approximately the same performance

as LRU for high associativity

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 65

Multilevel Caches

 Primary cache attached to CPU

 Small, but fast

 Level-2 cache services misses from

primary cache

 Larger, slower, but still faster than main

memory

 Main memory services L-2 cache misses

 Some high-end systems include L-3 cache

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 66

Multilevel Cache Example

 Given

 CPU base CPI = 1, clock rate = 4GHz

 Miss rate/instruction = 2%

 Main memory access time = 100ns

 With just primary cache

 Miss penalty = 100ns/0.25ns = 400 cycles

 Effective CPI = 1 + 0.02 × 400 = 9

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 67

Example (cont.)

 Now add L-2 cache

 Access time = 5ns

 Global miss rate to main memory = 0.5%

 Primary miss with L-2 hit

 Penalty = 5ns/0.25ns = 20 cycles

 Primary miss with L-2 miss

 Extra penalty = 500 cycles

 CPI = 1 + 0.02 × 20 + 0.005 × 500 = 3.9

 Performance ratio = 9/3.9 = 2.3

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 68

Multilevel Cache Considerations

 Primary cache

 Focus on minimal hit time

 L-2 cache

 Focus on low miss rate to avoid main memory

access

 Hit time has less overall impact

 Results

 L-1 cache usually smaller than a single cache

 L-1 block size smaller than L-2 block size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 69

Interactions with Advanced CPUs

 Out-of-order CPUs can execute

instructions during cache miss

 Pending store stays in load/store unit

 Dependent instructions wait in reservation

stations

 Independent instructions continue

 Effect of miss depends on program data

flow

 Much harder to analyse

 Use system simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 70

Interactions with Software

 Misses depend on

memory access

patterns

 Algorithm behavior

 Compiler

optimization for

memory access

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

 Dependability

 Error Correction Codes

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 71

Chapter 6 — Storage and Other I/O Topics — 72

Dependability

 Fault: failure of a

component

 May or may not lead

to system failure

Service accomplishment

Service delivered

as specified

Service interruption

Deviation from

specified service

Failure Restoration

§
5
.5

 D
e
p
e
n
d
a
b
le

 M
e
m

o
ry

 H
ie

ra
rc

h
y

Chapter 6 — Storage and Other I/O Topics — 73

Dependability Measures

 Reliability: mean time to failure (MTTF)

 Service interruption: mean time to repair (MTTR)

 Mean time between failures

 MTBF = MTTF + MTTR

 Availability = MTTF / (MTTF + MTTR)

 Improving Availability

 Increase MTTF: fault avoidance, fault tolerance, fault

forecasting

 Reduce MTTR: improved tools and processes for

diagnosis and repair

The Hamming SEC Code

 Hamming distance

 Number of bits that are different between two

bit patterns

 Minimum distance = 2 provides single bit

error detection

 E.g. parity code

 Minimum distance = 3 provides single

error correction, 2 bit error detection

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 74

Encoding SEC

 To calculate Hamming code:

 Number bits from 1 on the left

 All bit positions that are a power 2 are parity

bits

 Each parity bit checks certain data bits:

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 75

Decoding SEC

 Value of parity bits indicates which bits are

in error

 Use numbering from encoding procedure

 E.g.

 Parity bits = 0000 indicates no error

 Parity bits = 1010 indicates bit 10 was flipped

 Example:

 What will be stored for 1001 1010?

 If you read 0111 0010 1110, is there error?

Correct it.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 76

SEC/DED Code

 Add an additional parity bit for the whole word

(pn)

 Make Hamming distance = 4

 Decoding:

 Let H = SEC parity bits

 H = 0, pn even, no error

 H ≠ 0, pn odd, correctable single bit error

 H = 0, pn odd, error in pn bit

 H ≠ 0, pn even, double error occurred

 ECC DRAM uses SEC/DED with 8 bits

protecting each 64 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 77

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache

5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies

5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 78

Chapter 6 — Storage and Other I/O Topics — 79

RAID

 Redundant Array of Inexpensive
(Independent) Disks
 Use multiple smaller disks (c.f. one large disk)

 Parallelism improves performance

 Plus extra disk(s) for redundant data storage

 Provides fault tolerant storage system
 Especially if failed disks can be “hot swapped”

 RAID 0
 No redundancy (“AID”?)

 Just stripe data over multiple disks

 But it does improve performance

Chapter 6 — Storage and Other I/O Topics — 80

RAID 1 & 2

 RAID 1: Mirroring

 N + N disks, replicate data

 Write data to both data disk and mirror disk

 On disk failure, read from mirror

 RAID 2: Error correcting code (ECC)

 N + E disks (e.g., 10 + 4)

 Split data at bit level across N disks

 Generate E-bit ECC

 Too complex, not used in practice

Chapter 6 — Storage and Other I/O Topics — 81

RAID 3: Bit-Interleaved Parity

 N + 1 disks

 Data striped across N disks at byte level

 Redundant disk stores parity

 Read access

 Read all disks

 Write access

 Generate new parity and update all disks

 On failure

 Use parity to reconstruct missing data

 Not widely used

Chapter 6 — Storage and Other I/O Topics — 82

RAID 4: Block-Interleaved Parity

 N + 1 disks

 Data striped across N disks at block level

 Redundant disk stores parity for a group of blocks

 Read access

 Read only the disk holding the required block

 Write access

 Just read disk containing modified block, and parity disk

 Calculate new parity, update data disk and parity disk

 On failure

 Use parity to reconstruct missing data

 Not widely used

Chapter 6 — Storage and Other I/O Topics — 83

RAID 3 vs RAID 4

Chapter 6 — Storage and Other I/O Topics — 84

RAID 5: Distributed Parity

 N + 1 disks
 Like RAID 4, but parity blocks distributed

across disks
 Avoids parity disk being a bottleneck

 Widely used

Chapter 6 — Storage and Other I/O Topics — 85

RAID 6: P + Q Redundancy

 N + 2 disks

 Like RAID 5, but two lots of parity

 Greater fault tolerance through more

redundancy

 Multiple RAID

 More advanced systems give similar fault

tolerance with better performance

 Example RAID 51

Chapter 6 — Storage and Other I/O Topics — 86

RAID Summary

 RAID can improve performance and

availability

 High availability requires hot swapping

 Assumes independent disk failures

 Too bad if the building burns down!

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache

5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies

5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 87

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 88

Virtual Machines

 Host computer emulates guest operating system

and machine resources

 Improved isolation of multiple guests

 Avoids security and reliability problems

 Aids sharing of resources

 Virtualization has some performance impact

 Feasible with modern high-performance comptuers

 Examples

 IBM VM/370 (1970s technology!)

 VMWare

 Microsoft Virtual PC

§
5
.6

 V
irtu

a
l M

a
c
h
in

e
s

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 89

Virtual Machines
§
5
.6

 V
irtu

a
l M

a
c
h
in

e
s

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 90

Virtual Machine Monitor

 Maps virtual resources to physical
resources

 Memory, I/O devices, CPUs

 Guest code runs on native machine in user
mode

 Traps to VMM on privileged instructions and
access to protected resources

 Guest OS may be different from host OS

 VMM handles real I/O devices

 Emulates generic virtual I/O devices for guest

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 91

Instruction Set Support

 User and System modes

 Privileged instructions only available in
system mode

 Trap to system if executed in user mode

 All physical resources only accessible
using privileged instructions

 Including page tables, interrupt controls, I/O
registers

Contents

…

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

 Introduction

 Page Tables

 Fast Translation Using a TLB

 Memory Protection

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 92

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 93

Virtual Memory

 Use main memory as a “cache” for
secondary (disk) storage
 Managed jointly by CPU hardware and the

operating system (OS)

 Programs share main memory
 Each gets a private virtual address space

holding its frequently used code and data

 Protected from other programs

 CPU and OS translate virtual addresses to
physical addresses
 VM “block” is called a page

 VM translation “miss” is called a page fault

§
5
.7

 V
irtu

a
l M

e
m

o
ry

Sharing the Physical Memory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 94

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 95

Address Translation

 Fixed-size pages (e.g., 4K)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 96

Page Fault Penalty

 On page fault, the page must be fetched

from disk

 Takes millions of clock cycles

 Handled by OS code

 Try to minimize page fault rate

 Fully associative placement

 Smart replacement algorithms

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 97

Page Tables

 Stores placement information

 Array of page table entries, indexed by virtual
page number

 Page table register in CPU points to page
table in physical memory

 If page is present in memory

 PTE stores the physical page number

 Plus other status bits (referenced, dirty, …)

 If page is not present

 PTE can refer to location in swap space on
disk

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 98

Translation Using a Page Table

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 99

Mapping Pages to Storage

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 100

Replacement and Writes

 To reduce page fault rate, prefer least-
recently used (LRU) replacement
 Reference bit (aka use bit) in PTE set to 1 on

access to page

 Periodically cleared to 0 by OS

 A page with reference bit = 0 has not been
used recently

 Disk writes take millions of cycles
 Block at once, not individual locations

 Write through is impractical

 Use write-back

 Dirty bit in PTE set when page is written

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 101

Fast Translation Using a TLB

 Address translation would appear to require

extra memory references

 One to access the PTE

 Then the actual memory access

 But access to page tables has good locality

 So use a fast cache of PTEs within the CPU

 Called a Translation Look-aside Buffer (TLB)

 Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100

cycles for miss, 0.01%–1% miss rate

 Misses could be handled by hardware or software

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 102

Fast Translation Using a TLB

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 103

TLB Misses

 If page is in memory

 Load the PTE from memory and retry

 Could be handled in hardware
 Can get complex for more complicated page table

structures

 Or in software
 Raise a special exception, with optimized handler

 If page is not in memory (page fault)

 OS handles fetching the page and updating
the page table

 Then restart the faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 104

TLB Miss Handler

 TLB miss indicates

 Page present, but PTE not in TLB

 Page not preset

 Must recognize TLB miss before

destination register overwritten

 Raise exception

 Handler copies PTE from memory to TLB

 Then restarts instruction

 If page not present, page fault will occur

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 105

Page Fault Handler

 Use faulting virtual address to find PTE

 Locate page on disk

 Choose page to replace

 If dirty, write to disk first

 Read page into memory and update page

table

 Make process runnable again

 Restart from faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 106

TLB and Cache Interaction

 If cache tag uses

physical address

 Need to translate

before cache lookup

 Alternative: use virtual

address tag

 Complications due to

aliasing

 Different virtual

addresses for shared

physical address

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 107

Memory Protection

 Different tasks can share parts of their

virtual address spaces

 But need to protect against errant access

 Requires OS assistance

 Hardware support for OS protection

 Privileged supervisor mode (aka kernel mode)

 Privileged instructions

 Page tables and other state information only

accessible in supervisor mode

 System call exception (e.g., ecall in RISC-V)

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache

5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies

5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 108

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 109

The Memory Hierarchy

 Common principles apply at all levels of

the memory hierarchy

 Based on notions of caching

 At each level in the hierarchy

 Block placement

 Finding a block

 Replacement on a miss

 Write policy

§
5
.8

 A
 C

o
m

m
o
n
 F

ra
m

e
w

o
rk

 fo
r M

e
m

o
ry

 H
ie

ra
rc

h
ie

s

The BIG Picture

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 110

Block Placement

 Determined by associativity

 Direct mapped (1-way associative)

 One choice for placement

 n-way set associative

 n choices within a set

 Fully associative

 Any location

 Higher associativity reduces miss rate

 Increases complexity, cost, and access time

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 111

Finding a Block

 Hardware caches
 Reduce comparisons to reduce cost

 Virtual memory
 Full table lookup makes full associativity feasible

 Benefit in reduced miss rate

Associativity Location method Tag comparisons

Direct mapped Index 1

n-way set

associative

Set index, then search

entries within the set

n

Fully associative Search all entries #entries

Full lookup table 0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 112

Replacement

 Choice of entry to replace on a miss

 Least recently used (LRU)

 Complex and costly hardware for high associativity

 Random

 Close to LRU, easier to implement

 Virtual memory

 LRU approximation with hardware support

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 113

Write Policy

 Write-through
 Update both upper and lower levels

 Simplifies replacement, but may require write
buffer

 Write-back
 Update upper level only

 Update lower level when block is replaced

 Need to keep more state

 Virtual memory
 Only write-back is feasible, given disk write

latency

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 114

Sources of Misses

 Compulsory misses (aka cold start misses)

 First access to a block

 Capacity misses

 Due to finite cache size

 A replaced block is later accessed again

 Conflict misses (aka collision misses)

 In a non-fully associative cache

 Due to competition for entries in a set

 Would not occur in a fully associative cache of
the same total size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 115

Cache Design Trade-offs

Design change Effect on miss rate Negative performance

effect

Increase cache size Decrease capacity

misses

May increase access

time

Increase associativity Decrease conflict

misses

May increase access

time

Increase block size Decrease compulsory

misses

Increases miss

penalty. For very large

block size, may

increase miss rate

due to pollution.

Data Cache Miss Rate

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 116

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache

5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies

5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 117

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 118

Cache Control

 Example cache characteristics

 Direct-mapped, write-back, write allocate

 Block size: 4 words (16 bytes)

 Cache size: 16 KB (1024 blocks)

 32-bit byte addresses

 Valid bit and dirty bit per block

 Blocking cache

 CPU waits until access is complete

§
5
.9

 U
s
in

g
 a

 F
in

ite
 S

ta
te

 M
a
c
h
in

e
 to

 C
o
n
tro

l A
 S

im
p
le

 C
a
c
h
e

Tag Index Offset

0 3 4 13 14 31

4 bits 10 bits 18 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 119

Interface Signals

Cache CPU Memory

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

32

32

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

128

128

Multiple cycles

per access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 120

Finite State Machines

 Use an FSM to
sequence control steps

 Set of states, transition
on each clock edge
 State values are binary

encoded

 Current state stored in a
register

 Next state
= fn (current state,
 current inputs)

 Control output signals
= fo (current state)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 121

Cache Controller FSM

Could

partition into

separate

states to

reduce clock

cycle time

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache

5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies

5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 122

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 123

Cache Coherence Problem

 Suppose two CPU cores share a physical
address space
 Write-through caches

§
5
.1

0
 P

a
ra

lle
lis

m
 a

n
d
 M

e
m

o
ry

 H
ie

ra
rc

h
ie

s
: C

a
c
h
e
 C

o
h
e
re

n
c
e

Time

step

Event CPU A’s

cache

CPU B’s

cache

Memory

0 0

1 CPU A reads X 0 0

2 CPU B reads X 0 0 0

3 CPU A writes 1 to X 1 0 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 124

Coherence Defined

 Informally: Reads return most recently
written value

 Formally:

 P writes X; P reads X (no intervening writes)
 read returns written value

 P1 writes X; P2 reads X (sufficiently later)
 read returns written value
 c.f. CPU B reading X after step 3 in example

 P1 writes X, P2 writes X
 all processors see writes in the same order
 End up with the same final value for X

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 125

Cache Coherence Protocols

 Operations performed by caches in
multiprocessors to ensure coherence

 Migration of data to local caches
 Reduces bandwidth for shared memory

 Replication of read-shared data
 Reduces contention for access

 Snooping protocols

 Each cache monitors bus reads/writes

 Directory-based protocols

 Caches and memory record sharing status of
blocks in a directory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 126

Invalidating Snooping Protocols

 Cache gets exclusive access to a block
when it is to be written

 Broadcasts an invalidate message on the bus

 Subsequent read in another cache misses
 Owning cache supplies updated value

CPU activity Bus activity CPU A’s

cache

CPU B’s

cache

Memory

0

CPU A reads X Cache miss for X 0 0

CPU B reads X Cache miss for X 0 0 0

CPU A writes 1 to X Invalidate for X 1 0

CPU B read X Cache miss for X 1 1 1

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 127

Memory Consistency

 When are writes seen by other processors
 “Seen” means a read returns the written value

 Can’t be instantaneously

 Assumptions
 A write completes only when all processors have seen

it

 A processor does not reorder writes with other
accesses

 Consequence
 P writes X then writes Y
 all processors that see new Y also see new X

 Processors can reorder reads, but not writes

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache

5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies

5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 128

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 129

Multilevel On-Chip Caches
§
5
.1

3
 T

h
e
 A

R
M

 C
o
rte

x
-A

5
3
 a

n
d
 In

te
l C

o
re

 i7
 M

e
m

o
ry

 H
ie

ra
rc

h
ie

s

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 130

2-Level TLB Organization

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 131

Supporting Multiple Issue

 Both have multi-banked caches that allow

multiple accesses per cycle assuming no

bank conflicts

 Other optimizations

 Return requested word first

 Non-blocking cache

 Hit under miss

 Miss under miss

 Data prefetching

Contents

5.1 Introduction

5.2 Memory Technologies

5.3 The Basics of Caches

5.4 Measuring and Improving Cache Performance

5.5 Dependable Memory Hierarchy

5.11 Redundant Arrays of Inexpensive Disks

5.6 Virtual Machines

5.7 Virtual Memory

5.8 A Common Framework for Memory Hierarchy

5.9 Using a Finite-State Machine to Control a Simple Cache

5.10 Cache Coherence

5.13 The ARM Cortex-A53 and Intel Core i7 Memory Hierarchies

5.16 Fallacies and Pitfalls

5.17 Concluding Remarks

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 132

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 133

Pitfalls

 Byte vs. word addressing

 Example: 32-byte direct-mapped cache,

4-byte blocks

 Byte 36 maps to block 1

 Word 36 maps to block 4

 Ignoring memory system effects when

writing or generating code

 Example: iterating over rows vs. columns of

arrays

 Large strides result in poor locality

§
5
.1

6
 F

a
lla

c
ie

s
 a

n
d
 P

itfa
lls

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 134

Pitfalls

 In multiprocessor with shared L2 or L3

cache

 Less associativity than cores results in conflict

misses

 More cores need to increase associativity

 Using AMAT to evaluate performance of

out-of-order processors

 Ignores effect of non-blocked accesses

 Instead, evaluate performance by simulation

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 135

Pitfalls

 Extending address range using segments

 E.g., Intel 80286

 But a segment is not always big enough

 Makes address arithmetic complicated

 Implementing a VMM on an ISA not

designed for virtualization

 E.g., non-privileged instructions accessing

hardware resources

 Either extend ISA, or require guest OS not to

use problematic instructions

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 136

Concluding Remarks

 Fast memories are small, large memories are
slow
 We really want fast, large memories

 Caching gives this illusion

 Principle of locality
 Programs use a small part of their memory space

frequently

 Memory hierarchy
 L1 cache L2 cache … DRAM memory
 disk

 Memory system design is critical for
multiprocessors

§
5
.1

7
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

COMPUTER ORGANIZATION AND DESIGN
The Hardware/Software Interface

RISC-V

 Edition

Chapter 6

Parallel Processors from

Client to Cloud

Adapted by Prof. Gheith Abandah

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 2

Introduction

 Goal: connecting multiple computers
to get higher performance

 Multiprocessors

 Scalability, availability, power efficiency

 Task-level (process-level) parallelism

 High throughput for independent jobs

 Parallel processing program

 Single program run on multiple processors

 Multicore microprocessors

 Chips with multiple processors (cores)

§
6
.1

 In
tro

d
u
c
tio

n

Chapter 6 — Parallel Processors from Client to Cloud — 3

Hardware and Software

 Hardware

 Serial: e.g., Pentium 4

 Parallel: e.g., quad-core Xeon e5345

 Software

 Sequential: e.g., matrix multiplication

 Concurrent: e.g., operating system

 Sequential/concurrent software can run on
serial/parallel hardware

 Challenge: making effective use of parallel
hardware

Chapter 6 — Parallel Processors from Client to Cloud — 4

What We’ve Already Covered

 §2.11: Parallelism and Instructions

 Synchronization

 §3.6: Parallelism and Computer Arithmetic

 Subword Parallelism

 §4.10: Parallelism and Advanced
Instruction-Level Parallelism

 §5.10: Parallelism and Memory
Hierarchies

 Cache Coherence

Chapter 6 — Parallel Processors from Client to Cloud — 5

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 6

Contents

6.2 The Difficulty of Creating Parallel Programs

 Parallel Programming

 Amdahl’s Law

 Scaling

 Strong and Weak Scaling

Chapter 6 — Parallel Processors from Client to Cloud — 7

Parallel Programming

 Parallel software is the problem

 Need to get significant performance

improvement

 Otherwise, just use a faster uniprocessor,

since it’s easier!

 Difficulties

 Partitioning

 Coordination

 Communications overhead

§
6
.2

 T
h
e
 D

iffic
u
lty

 o
f C

re
a
tin

g
 P

a
ra

lle
l P

ro
c
e
s
s
in

g
 P

ro
g
ra

m
s

Chapter 6 — Parallel Processors from Client to Cloud — 8

Amdahl’s Law

 Sequential part can limit speedup

 Example: 100 processors, 90× speedup?

 Tnew = Tparallelizable/100 + Tsequential

 Solving: Fparallelizable = 0.999

 Need sequential part to be 0.1% of original

time

90
/100F)F(1

1
Speedup

ableparallelizableparalleliz

Chapter 6 — Parallel Processors from Client to Cloud — 9

Scaling Example

 Workload: sum of 10 scalars, and 10 × 10 matrix
sum
 Speed up from 10 to 100 processors

 Single processor: Time = (10 + 100) × tadd

 10 processors
 Time = 10 × tadd + 100/10 × tadd = 20 × tadd

 Speedup = 110/20 = 5.5 (55% of potential)

 100 processors
 Time = 10 × tadd + 100/100 × tadd = 11 × tadd

 Speedup = 110/11 = 10 (10% of potential)

 Assumes load can be balanced across
processors

Chapter 6 — Parallel Processors from Client to Cloud — 10

Scaling Example (cont)

 What if matrix size is 100 × 100?

 Single processor: Time = (10 + 10000) × tadd

 10 processors

 Time = 10 × tadd + 10000/10 × tadd = 1010 × tadd

 Speedup = 10010/1010 = 9.9 (99% of potential)

 100 processors

 Time = 10 × tadd + 10000/100 × tadd = 110 × tadd

 Speedup = 10010/110 = 91 (91% of potential)

 Assuming load balanced

Chapter 6 — Parallel Processors from Client to Cloud — 11

Strong vs Weak Scaling

 Strong scaling: problem size fixed

 As in example

 Weak scaling: problem size proportional to

number of processors

 10 processors, 10 × 10 matrix

 Time = 20 × tadd

 100 processors, 32 × 32 matrix

 Time = 10 × tadd + 1000/100 × tadd = 20 × tadd

 Constant performance in this example

Chapter 6 — Parallel Processors from Client to Cloud — 12

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 13

Contents

6.3 SISD, MIMD, SIMD, SPMD, and Vector

 Flynn’s Classification

 Vector Processors

 SIMD Instruction Extensions

Chapter 6 — Parallel Processors from Client to Cloud — 14

Instruction and Data Streams

 An alternate classification

Data Streams

Single Multiple

Instruction

Streams

Single SISD:

Intel Pentium 4

SIMD: SSE

instructions of x86

Multiple MISD:

No examples today

MIMD:

Intel Xeon e5345

 SPMD: Single Program Multiple Data

 A parallel program on a MIMD computer

 Conditional code for different processors

Chapter 6 — Parallel Processors from Client to Cloud — 15

§
6
.3

 S
IS

D
, M

IM
D

, S
IM

D
, S

P
M

D
, a

n
d
 V

e
c
to

r

Vector Processors

 Highly pipelined function units

 Stream data from/to vector registers to units

 Data collected from memory into registers

 Results stored from registers to memory

 Example: Vector extension to RISC-V

 v0 to v31: 32 × 64-element registers, (64-bit elements)

 Vector instructions

 fld.v, fsd.v: load/store vector

 fadd.d.v: add vectors of double

 fadd.d.vs: add scalar to each element of vector of double

 Significantly reduces instruction-fetch bandwidth

Chapter 6 — Parallel Processors from Client to Cloud — 16

Example: DAXPY (Y = a × X + Y)

 Conventional RISC-V code:

 fld f0,a(x3) // load scalar a

 addi x5,x19,512 // end of array X

 loop: fld f1,0(x19) // load x[i]

 fmul.d f1,f1,f0 // a * x[i]

 fld f2,0(x20) // load y[i]

 fadd.d f2,f2,f1 // a * x[i] + y[i]

 fsd f2,0(x20) // store y[i]

 addi x19,x19,8 // increment index to x

 addi x20,x20,8 // increment index to y

 bltu x19,x5,loop // repeat if not done

 Vector RISC-V code:

 fld f0,a(x3) // load scalar a

 fld.v v0,0(x19) // load vector x

 fmul.d.vs v0,v0,f0 // vector-scalar multiply

 fld.v v1,0(x20) // load vector y

 fadd.d.v v1,v1,v0 // vector-vector add

 fsd.v v1,0(x20) // store vector y

Chapter 6 — Parallel Processors from Client to Cloud — 17

Vector vs. Scalar

 Vector architectures and compilers

 Simplify data-parallel programming

 Explicit statement of absence of loop-carried
dependences
 Reduced checking in hardware

 Regular access patterns benefit from
interleaved and burst memory

 Avoid control hazards by avoiding loops

 More general than ad-hoc media
extensions (such as MMX, SSE)

 Better match with compiler technology

Chapter 6 — Parallel Processors from Client to Cloud — 18

SIMD

 Operate elementwise on vectors of data

 E.g., MMX and SSE instructions in x86
 Multiple data elements in 128-bit wide registers

 All processors execute the same
instruction at the same time

 Each with different data address, etc.

 Simplifies synchronization

 Reduced instruction control hardware

 Works best for highly data-parallel
applications

Chapter 6 — Parallel Processors from Client to Cloud — 19

Vector vs. Multimedia Extensions

 Vector instructions have a variable vector width,

multimedia extensions have a fixed width

 Vector instructions support strided access,

multimedia extensions do not

 Vector units can be combination of pipelined and

arrayed functional units:

Chapter 6 — Parallel Processors from Client to Cloud — 20

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 21

Multithreading

 Performing multiple threads of execution in
parallel
 Replicate registers, PC, etc.

 Fast switching between threads

 Fine-grain multithreading
 Switch threads after each cycle

 Interleave instruction execution

 If one thread stalls, others are executed

 Coarse-grain multithreading
 Only switch on long stall (e.g., L2-cache miss)

 Simplifies hardware, but doesn’t hide short stalls
(eg, data hazards)

§
6
.4

 H
a
rd

w
a
re

 M
u
ltith

re
a
d
in

g

Chapter 6 — Parallel Processors from Client to Cloud — 22

Simultaneous Multithreading

 In multiple-issue dynamically scheduled
processor

 Schedule instructions from multiple threads

 Instructions from independent threads execute
when function units are available

 Within threads, dependencies handled by
scheduling and register renaming

 Example: Intel Pentium-4 HT

 Two threads: duplicated registers, shared
function units and caches

Chapter 6 — Parallel Processors from Client to Cloud — 23

Multithreading Example

Chapter 6 — Parallel Processors from Client to Cloud — 24

Future of Multithreading

 Will it survive? In what form?

 Power considerations simplified

microarchitectures

 Simpler forms of multithreading

 Tolerating cache-miss latency

 Thread switch may be most effective

 Multiple simple cores might share

resources more effectively

Chapter 6 — Parallel Processors from Client to Cloud — 25

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 26

Shared Memory

 SMP: shared memory multiprocessor

 Hardware provides single physical

address space for all processors

 Synchronize shared variables using locks

 Memory access time

 UMA (uniform) vs. NUMA (nonuniform)

Chapter 6 — Parallel Processors from Client to Cloud — 27

§
6
.5

 M
u
ltic

o
re

 a
n
d
 O

th
e
r S

h
a
re

d
 M

e
m

o
ry

 M
u
ltip

ro
c
e
s
s
o
rs

Example: Sum Reduction

 Sum 64,000 numbers on 64 processor UMA
 Each processor has ID: 0 ≤ Pn ≤ 63

 Partition 1000 numbers per processor

 Initial summation on each processor

 sum[Pn] = 0;
 for (i = 1000*Pn;
 i < 1000*(Pn+1); i += 1)
 sum[Pn] += A[i];

 Now need to add these partial sums
 Reduction: divide and conquer

 Half the processors add pairs, then quarter, …

 Need to synchronize between reduction steps

Chapter 6 — Parallel Processors from Client to Cloud — 28

Example: Sum Reduction

half = 64;

do

 synch();

 if (half%2 != 0 && Pn == 0)

 sum[0] += sum[half-1];

 /* Conditional sum needed when half is odd;

 Processor0 gets missing element */

 half = half/2; /* dividing line on who sums */

 if (Pn < half) sum[Pn] += sum[Pn+half];

while (half > 1);

Chapter 6 — Parallel Processors from Client to Cloud — 29

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 30

History of GPUs

 Early video cards

 Frame buffer memory with address generation for

video output

 3D graphics processing

 Originally high-end computers (e.g., SGI)

 Moore’s Law lower cost, higher density

 3D graphics cards for PCs and game consoles

 Graphics Processing Units

 Processors oriented to 3D graphics tasks

 Vertex/pixel processing, shading, texture mapping,

rasterization

§
6
.6

 In
tro

d
u
c
tio

n
 to

 G
ra

p
h
ic

s
 P

ro
c
e
s
s
in

g
 U

n
its

Chapter 6 — Parallel Processors from Client to Cloud — 31

Graphics in the System

Chapter 6 — Parallel Processors from Client to Cloud — 32

GPU Architectures

 Processing is highly data-parallel
 GPUs are highly multithreaded

 Use thread switching to hide memory latency
 Less reliance on multi-level caches

 Graphics memory is wide and high-bandwidth

 Trend toward general purpose GPUs
 Heterogeneous CPU/GPU systems

 CPU for sequential code, GPU for parallel code

 Programming languages/APIs
 DirectX, OpenGL

 C for Graphics (Cg), High Level Shader Language
(HLSL)

 Compute Unified Device Architecture (CUDA)

Chapter 6 — Parallel Processors from Client to Cloud — 33

Example: NVIDIA Fermi

 Multiple SIMD processors, each as shown:

Chapter 6 — Parallel Processors from Client to Cloud — 34

Example: NVIDIA Fermi

 SIMD Processor: 16 SIMD lanes

 SIMD instruction

 Operates on 32 element wide threads

 Dynamically scheduled on 16-wide processor
over 2 cycles

 32K x 32-bit registers spread across lanes

 64 registers per thread context

Chapter 6 — Parallel Processors from Client to Cloud — 35

GPU Memory Structures

Chapter 6 — Parallel Processors from Client to Cloud — 36

Classifying GPUs

 Don’t fit nicely into SIMD/MIMD model

 Conditional execution in a thread allows an
illusion of MIMD
 But with performance degredation

 Need to write general purpose code with care

Static: Discovered

at Compile Time

Dynamic: Discovered

at Runtime

Instruction-Level

Parallelism

VLIW Superscalar

Data-Level

Parallelism

SIMD or Vector Tesla Multiprocessor

Chapter 6 — Parallel Processors from Client to Cloud — 37

Putting GPUs into Perspective

Chapter 6 — Parallel Processors from Client to Cloud — 38

Feature Multicore with SIMD GPU

SIMD processors 4 to 8 8 to 16

SIMD lanes/processor 2 to 4 8 to 16

Multithreading hardware support for

SIMD threads

2 to 4 16 to 32

Typical ratio of single precision to

double-precision performance

2:1 2:1

Largest cache size 8 MB 0.75 MB

Size of memory address 64-bit 64-bit

Size of main memory 8 GB to 256 GB 4 GB to 6 GB

Memory protection at level of page Yes Yes

Demand paging Yes No

Integrated scalar processor/SIMD

processor

Yes No

Cache coherent Yes No

Guide to GPU Terms

Chapter 6 — Parallel Processors from Client to Cloud — 39

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 40

Message Passing

 Each processor has private physical
address space

 Hardware sends/receives messages
between processors

§
6
.7

 C
lu

s
te

rs
, W

S
C

, a
n
d
 O

th
e
r M

e
s
s
a
g
e
-P

a
s
s
in

g
 M

P
s

Chapter 6 — Parallel Processors from Client to Cloud — 41

Loosely Coupled Clusters

 Network of independent computers

 Each has private memory and OS

 Connected using I/O system

 E.g., Ethernet/switch, Internet

 Suitable for applications with independent tasks

 Web servers, databases, simulations, …

 High availability, scalable, affordable

 Problems

 Administration cost (prefer virtual machines)

 Low interconnect bandwidth

 c.f. processor/memory bandwidth on an SMP

Chapter 6 — Parallel Processors from Client to Cloud — 42

Sum Reduction (Again)

 Sum 64,000 on 64 processors

 First distribute 1000 numbers to each

 The do partial sums

 sum = 0;
for (i = 0; i<1000; i += 1)
 sum += AN[i];

 Reduction

 Half the processors send, other half receive

and add

 The quarter send, quarter receive and add, …

Chapter 6 — Parallel Processors from Client to Cloud — 43

Sum Reduction (Again)

 Given send() and receive() operations

 limit = 64; half = 64;/* 64 processors */
do
 half = (half+1)/2; /* send vs. receive
 dividing line */
 if (Pn >= half && Pn < limit)
 send(Pn - half, sum);
 if (Pn < (limit/2))
 sum += receive();
 limit = half; /* upper limit of senders */
while (half > 1); /* exit with final sum */

 Send/receive also provide synchronization

 Assumes send/receive take similar time to addition

Chapter 6 — Parallel Processors from Client to Cloud — 44

Grid Computing

 Separate computers interconnected by

long-haul networks

 E.g., Internet connections

 Work units farmed out, results sent back

 Can make use of idle time on PCs

 E.g., SETI@home, World Community Grid

Chapter 6 — Parallel Processors from Client to Cloud — 45

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 46

Interconnection Networks

 Network topologies

 Arrangements of processors, switches, and links

§
6
.8

 In
tro

d
u
c
tio

n
 to

 M
u
ltip

ro
c
e
s
s
o
r N

e
tw

o
rk

 T
o
p
o
lo

g
ie

s

Bus Ring

2D Mesh

N-cube (N = 3)

Fully connected

Chapter 6 — Parallel Processors from Client to Cloud — 47

Multistage Networks

Chapter 6 — Parallel Processors from Client to Cloud — 48

Network Characteristics

 Performance

 Latency per message (unloaded network)

 Throughput
 Link bandwidth

 Total network bandwidth

 Bisection bandwidth

 Congestion delays (depending on traffic)

 Cost

 Power

 Routability in silicon

Chapter 6 — Parallel Processors from Client to Cloud — 49

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 50

Parallel Benchmarks

 Linpack: matrix linear algebra

 SPECrate: parallel run of SPEC CPU programs
 Job-level parallelism

 SPLASH: Stanford Parallel Applications for
Shared Memory
 Mix of kernels and applications, strong scaling

 NAS (NASA Advanced Supercomputing) suite
 computational fluid dynamics kernels

 PARSEC (Princeton Application Repository for
Shared Memory Computers) suite
 Multithreaded applications using Pthreads and

OpenMP

§
6
.1

0
 M

u
ltip

ro
c
e
s
s
o
r B

e
n
c
h
m

a
rk

s
 a

n
d
 P

e
rfo

rm
a
n
c
e
 M

o
d
e
ls

Chapter 6 — Parallel Processors from Client to Cloud — 51

Code or Applications?

 Traditional benchmarks

 Fixed code and data sets

 Parallel programming is evolving

 Should algorithms, programming languages,
and tools be part of the system?

 Compare systems, provided they implement a
given application

 E.g., Linpack, Berkeley Design Patterns

 Would foster innovation in approaches to
parallelism

Chapter 6 — Parallel Processors from Client to Cloud — 52

Modeling Performance

 Assume performance metric of interest is
achievable GFLOPs/sec

 Measured using computational kernels from
Berkeley Design Patterns

 Arithmetic intensity of a kernel

 FLOPs per byte of memory accessed

 For a given computer, determine

 Peak GFLOPS (from data sheet)

 Peak memory bytes/sec (using Stream
benchmark)

Chapter 6 — Parallel Processors from Client to Cloud — 53

Roofline Diagram

Attainable GPLOPs/sec

= Max (Peak Memory BW × Arithmetic Intensity, Peak FP Performance)

Chapter 6 — Parallel Processors from Client to Cloud — 54

Comparing Systems

 Example: Opteron X2 vs. Opteron X4

 2-core vs. 4-core, 2× FP performance/core, 2.2GHz

vs. 2.3GHz, 1 × 2 SIMD vs. 2 × 2 SIMD

 Same memory system

 To get higher performance

on X4 than X2

 Need high arithmetic intensity

 Or working set must fit in X4’s

2MB L-3 cache

Chapter 6 — Parallel Processors from Client to Cloud — 55

Optimizing Performance

 Optimize FP performance

 Balance adds & multiplies

 Improve superscalar ILP
and use of SIMD
instructions

 Optimize memory usage

 Software prefetch
 Avoid load stalls

 Memory affinity
 Avoid non-local data

accesses

Chapter 6 — Parallel Processors from Client to Cloud — 56

Optimizing Performance

 Choice of optimization depends on

arithmetic intensity of code

 Arithmetic intensity is

not always fixed

 May scale with

problem size

 Caching reduces

memory accesses

 Increases arithmetic

intensity

Chapter 6 — Parallel Processors from Client to Cloud — 57

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 58

i7-960 vs. NVIDIA Tesla 280/480
§
6
.1

1
 R

e
a
l S

tu
ff: B

e
n
c
h
m

a
rk

in
g
 a

n
d
 R

o
o
flin

e
s
 i7

 v
s
. T

e
s
la

Chapter 6 — Parallel Processors from Client to Cloud — 59

Rooflines

Chapter 6 — Parallel Processors from Client to Cloud — 60

Benchmarks

Chapter 6 — Parallel Processors from Client to Cloud — 61

Performance Summary

Chapter 6 — Parallel Processors from Client to Cloud — 62

 GPU (480) has 4.4 X the memory bandwidth

 Benefits memory bound kernels

 GPU has 13.1 X the single precision throughout, 2.5 X

the double precision throughput

 Benefits FP compute bound kernels

 CPU cache prevents some kernels from becoming

memory bound when they otherwise would on GPU

 GPUs offer scatter-gather, which assists with kernels

with strided data

 Lack of synchronization and memory consistency

support on GPU limits performance for some kernels

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 63

Multi-threading DGEMM

Chapter 6 — Parallel Processors from Client to Cloud — 64

§
6
.1

2
 G

o
in

g
 F

a
s
te

r: M
u
ltip

le
 P

ro
c
e
s
s
o
rs

 a
n
d
 M

a
trix

 M
u
ltip

ly

 Use OpenMP:

void dgemm (int n, double* A, double* B, double* C)

{

#pragma omp parallel for

 for (int sj = 0; sj < n; sj += BLOCKSIZE)

 for (int si = 0; si < n; si += BLOCKSIZE)

 for (int sk = 0; sk < n; sk += BLOCKSIZE)

 do_block(n, si, sj, sk, A, B, C);

}

Multithreaded DGEMM

Chapter 6 — Parallel Processors from Client to Cloud — 65

Multithreaded DGEMM

Chapter 6 — Parallel Processors from Client to Cloud — 66

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 67

Fallacies

 Amdahl’s Law doesn’t apply to parallel

computers

 Since we can achieve linear speedup

 But only on applications with weak scaling

 Peak performance tracks observed

performance

 Marketers like this approach!

 But compare Xeon with others in example

 Need to be aware of bottlenecks

§
6
.1

3
 F

a
lla

c
ie

s
 a

n
d
 P

itfa
lls

Chapter 6 — Parallel Processors from Client to Cloud — 68

Pitfalls

 Not developing the software to take

account of a multiprocessor architecture

 Example: using a single lock for a shared

composite resource

 Serializes accesses, even if they could be done in

parallel

 Use finer-granularity locking

Chapter 6 — Parallel Processors from Client to Cloud — 69

Contents

6.1 Introduction

6.2 The Difficulty of Creating Parallel Programs

6.3 SISD, MIMD, SIMD, SPMD, and Vector

6.4 Hardware Multithreading

6.5 Shared Memory Multiprocessors

6.6 Introduction to Graphics Processing Units

6.7 Clusters and Message-Passing Multiprocessors

6.8 Introduction to Multiprocessor Network Topologies

6.10 Multiprocessor Benchmarks and Performance Models

6.11 Benchmarking Intel Core i7 960 and NVIDIA Tesla GPU

6.12 Multiple Processors and Matrix Multiply

6.13 Fallacies and Pitfalls

6.14 Concluding Remarks

Chapter 6 — Parallel Processors from Client to Cloud — 70

Concluding Remarks

 Goal: higher performance by using multiple

processors

 Difficulties

 Developing parallel software

 Devising appropriate architectures

 SaaS importance is growing and clusters are a

good match

 Performance per dollar and performance per

Joule drive both mobile and WSC

§
6
.1

4
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

Chapter 6 — Parallel Processors from Client to Cloud — 71

Concluding Remarks (con’t)

 SIMD and vector

operations match

multimedia applications

and are easy to

program

 Adding 2 cores/chip

every 2 years.

 Doubling SIMD

operations every 4

years.

Chapter 6 — Parallel Processors from Client to Cloud — 72

