7 QWERGUNIT

Chapter 1

Introduction to Microprocessors
Part |

Note: These slides are adapted from more than
a site/reference

Instructor:
Dr. Khalid A. Darabkh

Computer Structure

Address bus

Hp < Data bus

MWTC - -
MRDC *—

negey!

{OWC _T_
IGRC e X o
Y vy !
Read-only Read/write
memory memaory Keyboard Printer
ROM RAM

Peripheral device is a computer device, such as a CD-ROM drive or printer, that is
not part of the essential computer, i.e., the memory and microprocessor.
Peripheral devices can be external -- such as a mouse, keyboard, printer, monitor,
external scanner -- or internal, such as a CD-ROM drive, CD-R/W drive

Block Diagram of Microprocessor System

FTiIGAVUNk Wl

BV T W WS

—————e e - -

/_
> :
1/0 Microprocessor / Memory
Buscs
B
———— Da{ -
= Data 00011001
A\ Input \/ N \\I[. \\l, 1 00
iM @/\ _ 0@,0\&6 = Add-- S 111 110
e AT e 01101011
o 11101001
Y W T
Data j f‘afcu,ate g ? 01100011
Data P s, o LT = 10011001
\\‘/”"- “’0-» “~—— [oto11010
; Output — 19\1\3 ¥ oy
p ’ M “ ' 0100 0QtL11
//54-—
Microprocessor Memory

Block Diagram of Microprocessor System Cont.

ENIAC - The first electronic computer

* 1945: The first computer prototype using
vacuum tubes, ENIAC (Electronic Numerical
Integrator and Computer) was designed to
calculate trajectory tables for the U.S. Army
during World War Il, but it was not completed
until three months after the war.

ENIAC - The first electronic computer

Q%Nf

f__. ._..,......

! x.

ENIAC - The first electronic computer

B T i i
i C -
- - e ‘ : :'-__
B :"-"-‘- - By
- : e

T o
- o

g

Clock

* Synchronizes all CPU and BUS operations

* Machine (clock) cycle measures time of a
single operation

* Clock is used to trigger events

Clocking Methodology

* An edge-triggered clocking methodology means that any values stores in the
machine are updated (changed) only on a clock edge.
* A level-triggered clocking methodology means that any values stores in the machine

are updated only on the high level (level 1 not zero) of the clock cycle.
9

Clock Cont.

Cycle time = time between ticks = seconds per cycle
Clock rate (frequency) = cycles per second

1HZ =1 cycle/sec

1 MHZ = one million cycles per second

A 200 MHz clock has a cycle time =5 nanoseconds

10

What is inside Computer

The internal working of every computer can be broken down
into three parts:

1. CPU

2. Memory

3.1/0 (input / output devices)

The function of the CPU is to execute (process) information
stored in memory.

The function of the 1/O devices such as the keyboard and
video monitor is to provide a means of communicating with
the CPU. The CPU is connected to memory and |/O through
strips of wire called a bus.

What is inside Computer Cont.

The bus inside a computer carries information from place to
place just as a street bus carries people from place to place.

Components of the computer are connected by Buses.

A bus in the simplest form is a set of wires that used to carry
information in the form of electrical signals between CPU and
memory and CPU and |/O

Example: VAX has a 32-bit address bus and a 32-bit data bus

What is inside Computer Cont.

In every computer there are three types of buses:
1. Address bus

2. Data bus

3. Control (Signal) bus

* For a device (memory or I/O) to be recognized by the CPU, it must
be assigned an address. The address assigned to a given device
must be unique; no two devices are allowed to have the same
address.

e The CPU puts the address (of course in binary) on the address bus,
and the decoding circuitry finds the device. Then the CPU uses the
data bus either to get data from that device or to send data to it.

 The control buses are used to provide read or write signals to the
device to indicate if the CPU is asking for information or sending
information.

More about data bus:

Since data buses are used to carry information in and out of a
CPU, the more data buses available, the better the CPU.

More data buses mean a more expensive CPU and computer.

The average size of data buses in CPUs varies between 8 and
64.

Data buses are bi-directional, since the CPU must use them
either to receive or to send data.

The processing power of a computer is related to the size of
its buses, since an 8-bit bus can send out 1 byte a time, but
al6-bit bus can send out 2 bytes at a time, which is twice as
fast.

More about data bus:

There are two types of data bus :

Internal data bus (back side bus): which is a bus between CPU
and cache

External data bus (front side bus): which is a bus between
cache and memory

Note: backside and front side buses are always different. The
first runs at processor speed (connecting processor with
cache) and the other is designed to match lower speed
devices like memories and |/Os

More about address bus:

 The address bus is unidirectional bus which means that the CPU
uses the address bus only to send out addresses.

* The total number of memory locations addressable by a given CPU
is always equal to 2 to the power x, where x is the number of
address bits, regardless of the size of the data bus.

Main Memory

A linear list of memory cells. Each cell holds a data word.
A word could be a byte (ex. VAX), 2 bytes, 4 bytes.....
All memories share two organizational features:-

1) Each information unit is the same size.

2) An information unit has a numbered address associated
with it by which it can be uniquely referenced.

A memory cell is characterized by two things:-
1) An address
2) Content

Main Memory (Cont.)

Memory is used to store programs and data.

Memory should be

CPU Memory large and fast.
large amounts time-critical
of code and data applications

» Fast memories are expensive, slow memories are cheap.

» A fast and large memory results in an expensive system.

What is inside CPU?

A program stored in memory provides instructions to the CPU
to perform an action. It is the function of the CPU to fetch
these instructions from memory and execute them. To
perform the actions of fetch and execute, all CPUs are
equipped with recourses such as the following:

1. Registers, the CPU uses registers to store information
temporarily. The information could be two values to be
processed, or the address of the value needed to be fetched
from memory. Registers inside CPU can be 8-bit, 16-bit, 32-
bit, or even 64-bit registers, depends on the CPU.

Two kinds of registers exist:

A. Special purpose register: hold program state; they usually
include the program counter (instruction pointer), stack
pointer, and status register (processor status word).

Inside CPU (Cont.)

Note: the function of the program counter is to point to the address of the
next instruction to be executed.

B. General purpose registers: Can store both data and addresses, i.e.,
they are combined Data/Address registers.

2. The CPU also has what is called ALSU.

3. Control Unit (CU): decodes each machine instruction and sends signal to
other components for carrying out the instruction.

More Explanation about (3): The function of the instruction decoder is to
interpret the instruction fetched into the CPU. One can think of the
instruction decoder as a kind of dictionary, storing the meaning of each
instruction and what steps the CPU should take upon receiving a given
instruction.

Internal working of computers

« To demonstrate some of the concepts discussed above, a
step-by-step analysis of the process a CPU would go through
to add three numbers is given next.

* Assume that an imaginary CPU has registers called A, B, C and
D. It has an 8-bit data bus and a 16-bit address bus. Therefore,
the CPU can access memory from address 0000 to FFFF.

Move value 21H into register A BOH 21H
Add value 42H to register A 04H 42H
Add value 12H to register A 04H 12H

Internal working of computers (Cont.)

* If the program to perform the actions listed above is stored in
memory locations starting at 1400H, the following would
represent the contents for each memory address location:

Memory address

1400
1401
1402
1403
1404
1405
1406

Contents of memory address

B0 the code for moving a value to register A
21 the value to be moved

04 the code for adding a value to register A
42 the value to be added

04 the code for adding a value to register A
12 the value to be added

F4 the code for halt

MICRO PROCESSOR

Control Unit
Instruction decoder

Code Code
data
1400 CODE 1
BO Move to
1401 21 DATA 1 A
04 Add to
1402 04 CODE 2 A

HAIt

1403 42 DATA 2

1404 04 CODE 3

1405 21 DATA 3

1406 F4 CODE 4

Internal working of computers (Cont.)

* The actions performed by the CPU to run the program above
would be as follows:

 1.The CPU's program counter can have a value between 0000
and FFFFH. The program counter must be set to the value
1400H, indicating the address of the first instruction code to
be executed.

e 2.The CPU puts 1400H on the address bus and sends it out.
The memory circuitry finds the location while the CPU
activates the READ signal, indicating to memory that it wants
the byte at location 1400H. This causes the contents of
memory locations 1400H, which is BO, to be put on the data
bus and brought into the CPU.

Internal working of computers (Cont.)

3. The CPU decodes the instruction BO with the help of its
instruction decoder dictionary. When it finds the definition for that
instruction it knows it must bring into register A of the CPU the byte
in the next memory location. Therefore, it commands its controller
circuitry to do exactly that. When it brings in value 21H from
memory location 1401H, it makes sure that the doors of all registers
are closed except register A. Therefore, when value 21H comes into
CPU it will go directly into register A. After completing one
instruction, the program counter points to the address of the next
instruction to be executed, which in this case is 1402H. Address
1402 is sent out on the address bus to fetch the next instruction.

Internal working of computers (Cont.)

4. From memory location 1402H it fetches code 04H. After
decoding, the CPU knows that it must add to the contents of
register A the byte sitting at the next address (1403). After it
brings the value (in this case 42H) into the CPU, it provides the
contents of register A along with this value to the ALU to
perform the addition. It then takes the result of the addition
from the ALU's output and puts it in register A. Meanwhile the
program counter becomes 1404, the address of the next
instruction.

Internal working of computers (Cont.)

5. Address 1404H is put on the address bus and the code is
fetched into the CPU, decoded, and executed. This code is

again adding a value to register A. the program counter is
updated to 1406H.

6. Finally, the contents of address 1406 are fetched in and
executed. This HALT instruction tells the CPU to stop
incrementing the program counter and asking for the next
instruction. In the absence of the HALT, the CPU would
continue updating the program counter and fetching
instructions.

Major Categories of Programming Languages

Machine Language (First-generation Language)

Most basic level of programming languages. Uses binary
coded instruction.

Assembly Language (Second-generation Language)

They are sometimes called symbolic languages, because
symbols are used to represent operation codes and storage
locations.

Major Categories of Programming Languages (Cont.)

e Assembly Language:

 1.lsasymbolic code that allows mnemonics for machine
language instructions and symbolic names for memory
locations?

 Example:

* Instead of using “1100 000”, we write the symbol ADD to
mean the same thing.

e 2. It is a programming language in which instructions
correspond closely to the individual machine instructions that
are carried by a particular computer. So assembly language,
like machine language, is machine dependent

Programming Languages (Cont.)

3. Assembly language uses symbols to represent the operation codes
while a special notation is used to represent the different addressing
modes.

4. A translator is used to translate the assembly code into machine code.
This translator is called an assembler.

High-Level Languages (Third-generation Languages)

Use instructions called statements that closely resemble human language
or standard notation of mathematics.

Fourth-generation Languages:

A variety of programming languages that is more non-procedural and
conversational. The programmers specify the result they want, while the
computer determines the sequence of instructions that will accomplish
these results. Example: SQL

Programming Languages (Cont.)

GHAPTER 1

TABLE 1—2 Many modern Intel and Motorola mibroprocessors.

Manufacturer Part Number Data Bus Width Memory Size
Intel 8048 8 2K internal

8051 8 8K internal

8085A 8 64K

8086 16 1M

80388 8 M

8096 16 8K internal

80186 16 1M

80188 8 1M

80251 8 16K internal

80286 16 16081

80386EX 16 S84M

80386DX 32 4G

80386SL 16 32mM

80386SLC 16 32M + 8K cache

803865 X 16 16M

80486DX/DX2 32 4G + 8K cache

80486S X 32 4G + 8K cache

804860DX4 32 4G + 16 cache

Pentium 64 4G + 16K cache

Pentium OverDrive 32 4G + 16K cache

Peantium Pro 64 64G + 16K L1 cache +
256K L2 cache

Pentium il 64 64G + 32K L1 cache +
256K L2 cache

Pentium Ilii 64 64G + 32K L1 cache +
256K L2 cache

Pentium 4 64 64G+32K L1 cache+

512K L2 cache (or larger)
(1T for 64-bit extensions)

Pentium4 D 64 1T + 32K L1 cache + 2 or
(Dual Care) 4 M L2 cache
Core2 64 1T + 32K L1 cache + a stiared
20r4 M L2 cache
ltanium (Dual Core) 128 1T +2.5ML1 and L2 cache
+ 24 M L3 cache
Motorola 6800 8 64K
6805 8 2K
6809 8 64K
68000 16 16M
68008D 8 4N
68008Q 8 1M
68010 16 16M
68020 32 4G
68030 32 4G + 256 cache
68040 32 4G + 8K cache
68050 32 Proposed, but never released
68060 64 4G + 16K cache

PowerPC G4 4G + 32K cache

Conceptual views of the 80486, Pentium
microprocessors.

CPU |Coprocessor
8K
L1 Cache

80486DX

Two execution engines.
It can execute up to two
instructions simultaneously.

\ 4

CPU1| CPU2| Copro

16K L1 Cache

Pentium

Conceptual views of the Pentium Pro, Pentium I,
Pentium lll, Pentium 4, and Core2 microprocessors.

Three execution engines. It can execute up to three instructions at a time.

- P —

CPU1|CPU2 |[CPU3| Copro CPU1| CPU2 |CPU3| Copro

16K L1 Cache 32K L1 Cache

256K L2 Cache

512K L2 Cache
Pentium Pro or
236K L2 Cache

Pentium Il, Pentium 1,
Pentium 4, or Core2 Module

Structure of Pentium Microprocessors

Beginning with the 80486, the microprocessor contained a numeric
coprocessor that allowed it to perform complex arithmetic using floating-
point arithmetic. The numeric coprocessor, which is similar to a calculator
chip, was an additional component in the 8086- through the 80386-based
personal computers.

Pentium Pro uses three execution engines, to execute up to three
instructions at a time.

Recent modifications to Pentium 4 and Core2 include a 64-bit core and
multiple cores.

64-bit modification allows address of over 4G bytes of memory through a
64-bit address

Biggest advancement is inclusion of multiple cores.
— each core executes a separate task in a program

Increases speed of execution if program is written to take advantage of
multiple cores.

— called multithreaded applications

Intel manufactures dual and quad core versions; number of cores will
likely increase to eight or even sixteen.

Instruction Set Architecture (ISA)

The ISA is the interface between hardware and software.

The ISA serves as an abstraction layer between the HW and SW
— Software doesn’t need to know how the processor is implemented
— Any processor that implements the ISA appears equivalent

Software
ISA
Proc #1 Proc #2

An ISA enables processor innovation without changing software
— This is how Intel has made billions of dollars.

Before ISAs, software was re-written/re-compiled for each new machine.

36

RISC vs. CISC

RISC = Reduced Instruction Set Computer

— Term coined at Berkeley, ideas pioneered by IBM, Berkeley, Stanford

RISC characteristics:

— Load-store architecture
— Fixed-length instructions (typically 32 bits)
— Simple operations

RISC examples: MIPS, SPARC, IBM/Motorola PowerPC,
Compagq Alpha, ARM, SH4, HP-PA, ...

CISC = Complex Instruction Set Computer

— Term referred to non-RISC architectures

CISC characteristics:

— Register-memory architecture
— Variable-length instructions
— Complex operations

CISC examples: Intel 80x86, VAX, IBM 360, ...

What is Superscalar?

What is Pipelining? A way of speeding up execution of
instructions. Key idea: overlap execution of multiple
instructions

The term superscalar refers to a machine that designed
to improve the performance of the execution of scalar
instructions.

There are multiple independent instruction pipelines in
a superscalar processor.

Each pipeline consists of multiple stages, can handle
multiple instructions at a time.

Multiple pipelines introduce a new level of parallelism,
enabling multiple streams of instructions to be
processed at a time.

What is Superscalar? (Cont.)

A superscalar CPU architecture implements a form of
parallelism called instruction-level parallelism within a single
processor.

It thereby allows faster CPU throughput than would otherwise
be possible at the same clock rate.

Attempts to find nearby instructions that are independent of
one another and can be executed in parallel.

A superscalar processor executes more than one instruction
during a clock cycle by simultaneously dispatching multiple
instructions to redundant functional units on the processor.
Each functional unit is not a separate CPU core but an
execution resource within a single CPU such as an arithmetic
logic unit, a bit shifter, or a multiplier.

Alternative Approach: VLIW

e Alternative Approach: VLIW (Very Long Instruction Word):

* VLIW architectures rely on compile-time detection of
parallelism b the compiler analysis the program and detects
operations to be executed in parallel; such operations are
packed into one “large” instruction.

 No hardware is needed for run-time detection of parallelism
like the case of superscalar processor.

The microprocessor-Based Personal Computer

Memory system

System

Buses

Dynamic RAM (DRAM)
Static RAM (SRAM)
Cache

Read-only (ROM)
Flash memory
EEPROM

SDRAM

RAMBUS

DDR DRAM

Microprocessor

8086
8088
80186
80188
80286
80386
80486
Pentium
Pentium Pro
Pentium Il
Pentium Il
Pentium 4

I/0O system

Printer

Serial communications
Floppy disk drive
Hard disk drive
Mouse

CD-ROM drive
Plotter

Keyboard
Monitor

Tape backup
Scanner

DVD

FIGURE 1-6 The block diagram of a microprocessor-based computer system.

What are 1/O Devices ?

I/O Devices (Peripherals) : They are The Part of a computer
that communication with the outside world .

Their Main Characteristics are :
1. Behavior: (Input , Output or Storage).
2. Partner : Either Human or Machine.

3. Data Rate : The peak rate at which data can be transferred
between I/0O device and the main memory.

What are 1/O Devices? Cont.

Device Behavior Partner Data Rate
(KB/sec)
Keyboard Input Human 0.01
Mouse Input Human 0.02
Voice Input Input Human 0.02
Voice Output Output Human 0.60
Modem | Input/ Output Machine 2.00-38.00
Floppy Disk Storage Machine 100.00
Magnetic disk Storage Machine 2000.0-10,000.0

Chapter 1

Introduction to Microprocessors
Part I

Note: These slides are adapted from more than
a site/reference

Instructor:
Dr. Khalid A. Darabkeh

The Memory and I/O System

 The memory structure of all Intel-based
personal computers are similar

 The memory system is divided into three
main parts:

-TPA Transient program area (640 K bytes)
- System area (384 K bytes)
- XMS Extended memory system.

The type of microprocessor determines
whether an extended memory system exists

Y

INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER

FIGURE 1-7 The memory]
map of the personal computer.

Extended memory

15M bytes in the 80286 or 80386SX
— 31M bytes in the 80386SL/SLC

63M bytes in the 80386EX
(\/\/ 4095M bytes in the 80386DX, 80486, and Pentium
/\/\/ 64G bytes in the Pentium Pro, Pentium I, Pentium I,

and Pentium 4

System area
384K bytes

— 1M bytes of real (conventional) memory

TPA
640K bytes

FIGURE 1-8 The memory OFFFF
map of the TPA in a personal MSDOS program
computer. (Note that this map 9FFFO
will vary between systems.)

TPA Transient Programming Area

Free TPA

\/‘/\
T~ ——

08E30
COMMAND.COM
08490
Device drivers
such as MOUSE.SYS
02530
MSDOS program
01160
10.8YS program
00700
DOS communications area
00500
BIOS communications area
00400

How does the O/S stop program X?
Answer: It issues an /nferrupt. 00000

Interrupt vectors

The TPA

The transient program area (TPA) holds the DOS (Disk Operating System) and
other programs that control the computer system

BIOS (Basic I/O System) is a collection of programs stored in either a ROM or
flash memory that operates many of the I/O devices connected to your
computer.

The 10.SYS is a program that loads into the TPA from the disk whenever an
MSDOS system is started. The 10.SYS contains programs that allow DOS to
use the keyboard, Video display, printer, and other I/O devices often found in the
computer system.

The 10.SYS program links DOS to the programs stored in the system BIOS
ROM found in the system area.

A device driver is a program that controls a particular type of device that is
attached to your computer. There are device drivers for printers, displays, CD-
ROM readers, diskette drives, and so on. When you buy an operating system,
many device drivers are built into the product. However, if you later buy a new
type of device that the operating system didn't anticipate, you'll have to install
the new device driver. A device driver essentially converts the more general
input/output instructions of the operating system to messages that the device
type can understand.

DOS Device drivers are normally files that have an extension of .SYS, such as
MOUSE.SYS.

In DOS version 3.2 and later, the files have an extension of .EXE, such as
EMM386.EXE. Note that even though these files are not used by Wlndows they
are still used to execute DOS applications, even with Windows XP.

The TPA Cont.

The COMMAND.COM program (command processor)
controls the operation of the computer from the keyboard
when operated in the DOS mode. The COMMAND.COM
program processes the DOS commands as they are typed
from the keyboard. For example, if DIR is typed, the
COMMAND.COM program displays a directory of the disk
files in the current disk directory.

If COMMAND.COM is erased, the computer cannot be used
from the keyboard in DOS mode.

Windows uses a file called SYTEM.INI to load drivers used by
Windows.

In Windows XP and newer, a registry is added to contain
information about the system and drivers used.

You can view the registry with the REGEDIT program.

Note: The system BIOS and DOS communication areas
contain transient data used by programs to access 1/O
devices and the internal features of the computer system.

The System Area

The system area contains programs in either ROM or Flash memory,
and areas for read/write (RAM) memory for data storage.

The first area of the system space contains video display RAM and
video control programs on ROM or flash memory.

The size and amount of memory used depends on the type of the video
display adapter.

A video card, also known as a graphics accelerator card, display
adapter, or graphics card. Your system's video card is the component
responsible for producing the visual output from your computer. Virtually
all programs produce visual output; the video card is the piece of
hardware that takes that output and tells the monitor which of the dots
on the screen to light up (and in what color) to allow you to see it.

The video BIOS, located on a ROM or flash memory, contains programs
the control the DOS video display.

System BIOS ROM is also located in the top of the system area. This
ROM controls the operation of the basic I/O devices connected to the
computer system. it does not control the operation of the video system,
which has its own BIOS ROM.

FIGURE 1-9 The system FFFFF
area of a typical personal BIOS system AOM
computer.
FO000
BASIC language ROM
(only on early PCs)
EQ0CO
Free area
Hard disk controller ROM
C8000 LAN controller ROM
Video BIOS ROM
C0000
Video RAM
(text area)
BOOOO |uvcocemcccccccccccmrccccamanemamanand
Video RAM
(graphics area)
A0000

Windows System

 The Windows memory map appears in Figure 1-
10 and has two main areas, a TPA and a system
area. The difference between it and the DOS
memory map are the sizes and locations of
these areas.

* The Windows TPA is the first 2G bytes from
00000000H to 7FFFFFFFH

 The windows system area is the last 2G bytes of
memory from 80000000H to FFFFFFFFH

FIGURE 1-10 The memory
map used by Windows XP.

FFFFFFFE

80000000
TFFFFFFE

Windows Systems Area

Windows Transient Program Area

/O Space

* /O Space. The I/O (input/output) space in a computer
system extends from |/O port 0000H to port FFFFH. (An
I/O port address is similar to a memory address, except
that instead of addressing memory, it addresses an |/O
device.)

 The I/O devices allow the microprocessor to
communicate between itself and the outside world. The
I/O space allows the computer to access up to 64K
different 8-bit I/0O devices, 32K different 16-bit devices. or
16K different 32-bit devices. A great number of these
locations are available for expansion in most computer
systems.

AR

Memory-mapped I/O

« With memory-mapped |/O, one address
space is divided into two parts.

— Some addresses refer to physical
memory locations.

— Other addresses actually reference
peripherals.

Memory

/O

Memory

FFFFF

00000

VY

The Microprocessor

The microprocessor (CPU Central Processing
Unit), is the controlling element in a computer
system.

The microprocessor controls memory and |/O
through a series of connections called buses.

The buses select an I/O and memory device,
transfer data between an I/O device or memory
and microprocessor, and control the |I/O and
memory system

Memory and I/O are controlled through
Instructions that are stored in the memory and
executed by the microprocessor

* The microprocessor perform three main
tasks for the computer system:

1- data transfer
2- simple arithmetic and logic operations
3- program flow via simple decision.

The power of the microprocessor is its
capability to execute billions of millions of
iInstructions per second

Tables 1-4 and 1-5 shows the arithmetic and
logic operations for Intel family of
MmIiCroprocessor.

1

TABLE 1-4 Simple
arithmetic and logic
operations.

TABLE 1-5 Decisions
found in the 8086-
Pentium 4
MICroprocessors.

Operation Comment

Addition

Subtraction

Multiplication

Division

AND Logical multiplication

OR Logic addition

NOT Logical inversion

NEG Arithmetic inversion

Shift

Rotate

Decision Comment

Zero Test a number for zero or not-zero

Sign Test a number for positive or negative

Carry Test for a carry after addition or a borrow after
subtraction

Parity Test a number for an even or an odd number of
ones

Overflow Test for an overflow that indicates an invalid result

after a signed addition or a signed subtraction

ARY

Two's Comp. Subtraction

« To subtract two's complement nuinbers we first
negate the second nuiniber and then add the
corresponding bits of both numbers.

« For example:

3 = 0011 -3 =1101 -3 =1101 3 = 0011

-2=0010 --2=1110 -2=0010 --2=1110

pecome
3 =0011 =3 = 7101 -3 =1101 3 =0011
+-2=14110 + 2=0010 +-2=-1110 + 2 =0010

= 0001 -1 =1111 -6 =1011

= 0101

&}

Overfiow

= When adding or sublitracting nuimbers, the sum or
difference can go beyond th=2 range of
representable nuinbers.

This is known as oveiflow. For exampls, for two's
compleent numbers,

5=0101 -5 ="1011 5 =0101 -5 =1011
+6=0110 +-6="1010 --6="1010 -+6 =0110

-5 =1011 5=0101 521011 5= 0101

« Oveiflow creatles an incoirect resuit that should be
detecled.

YA

2’5 Comp - Detecting Overflow

When adding two's coniiplement numbers,
overflow wili anly occur if

— 1the nuimbers beinyg added have the saine sign
— the sign of theresull is Jdifferent
If we paifonm the addition
an- i an-2 e a1 aD
+ b 'IL'n—Z"' bi bl)

=_5n—15n-2"' sl sl:l
Overllovw can be detecled as

V= Uy) "’!’n S T PP R £ PP bn—l Sy -1
Cverflow can also be deiecled as
Vo= Ca@Cy -

where ¢, ,and ¢, are the ¢carry in and carry out
of tha inost significant bit,

Unsigned - Detecting Overfiow

For unsigned numbers, overflow occurs if there
is carry outl of the most significant bit.
| S
IFor exampie,
10001 =9
+1000=0
=001 =1
With the MIPS architeciure
— Overflow exceplions occur jor two’s complemnent arithinelic
» add, sub, addi
— Qverilow exceptiviis do not vceur for unsigned arithinetic
» addu, subu, addiu

Y4

Buses Revisited

A common group of wires that interconnect components
In a computer system is called a Bus.

Three buses exist for this transfer of information:
address, data, and control.

Address Bus — selects a location in the memory or a
specific I/0 device

Data Bus — transfers data between the microprocessor
and the memory or 1/O

Control Bus — selects I/0O or memory and causes a read
or a write

Figure 1-12 shows how these buses interconnect
various system components

Control BUS

* The control bus contains lines that select the memory or
I/O and cause them to perform a read or write operation.
In most computer systems, there are four control bus
connections: MRDC (memory read control), MWTC
(memory write control), /ORC (I/O read control), and
/OWC (I/O write control).

* Note that the overbar indicates that the control signal is
active-low; that is, it is active when a logic zero appears
on the control line. For example, /OWC =0, the
microprocessor is writing data from the data bus to an
I/O device whose address appears on the address bus.

Y

Unicode

Many Windows-based applications use the
Unicode system to store alphanumeric data.

This system stores each character as a 16-bit
data.

The code 0000H to OOFFH are the same as
standard ASCII code.

The remaining codes, 0100H-FFFFH, are used
to store all special characters from many
worldwide character sets.

Yy

EXAMPLE 1-18

0000 42 61 72 72 79 NAMES DB 'Barry B. Brey'
20 42 2E 20 42
72 65 78

Q00D 57 68 65 72 65 MESS DB 'Where can it be?’
20 63 61 6E 20
69 74 20 62 65
3F

001D 57 68 61 74 20 WHAT DB 'What is on first.'
69 73 20 6F 6E

20 66 69 72 73 If an earlier version of C++ is
74 2F used, then the string is defined
| with a CString for MS Visual
_ C++ instead of a String *. The
EXAMPLE 1-19 A symbol indicates that String
CString NAMES = "Barry B. Brey" is a member of the garbage
collection heap for managing
CString MESS = "Where can it be?" the storage.

CString WHAT = "What 1s on first."
3

BCD (Binary-Coded Decimal) Data

« BCD is stored in either Packed (two digits
per byte) or unpacked (one digits per byte)

« BCD are not suitable for complex
arithmetic

* The range extends from 0-9 decimal.

TABLE 1-10 Packed and unpacked BCD data.

Decimal Packed Unpacked
12 0001 0010 0000 0001 0000 0010
623 0000 0110 0010 0011 0000 0110 0000 0010 0000 0011
910 0000 1001 0001 0000 0000 1001 0000 0001 0000 0006

 Example 1-20 shows how to use assembler to define both
packed and unpacked BCD data. Example 1-21 shows how to
do this using Visual C++ and char or bytes.

EXAMPLE 1-20

0000 03 04 05
0003 07 08

0005 37 34
0007 03 45

EXAMPLE 1-21

;Unpacked BCD data (least-significant data first)

NUMB1 DB

3,4,5 ;defines number 543
NUMB2 DB 7,8

;defines number 87

r

:Packed BCD data (least-significant data first)

NUMB3 DB 37H,34H ;defines number 3437
NUMB4 DB 3,45H ' ;defines number 4503

/ /Unpacked BCD data (least-significant data first)

//

char Numbl = 3,4,5; :defines number 543
char Numb2 = 7,8 ;defines number 87
/7

//Packed BCD data (least-significant data first)
!/

char Numb3
char Numb4

0x37,0x34 ;defines number 3437
3, 0x45 :defines number 4503

I

Yo

Hexadecimal Integers

Binary values are represented in hexadecimal.

Table 1-5 Binary, Decimal, and Hexadecimal Equivalents.

Binary Decimal Hexadecimal Binary Decimal | Hexadecimal
0000 0 0 1000 8 8
0001 l l 1001 0 9
0010 2 2 1010 10 A
0011 3 3 1011 11 B
0100 4 4 1100 12 C
0101 5 5 1101 13 D
0110 § 6 1110 14 E
0111 7 7 [111) F

26

Signed Integers

The highest bit indicates the sign. 1 = negative,
0 = positive

sign bit
1 1 1 110 | 1 110 Negative
cjojo0o 0110110 Positive

If the highest digit of a hexadecimal integer is > 7, the value is negative.
Examples: 8A, C5, A2, 9D

27

Forming the Two's Complement

* Negative numbers are stored in two's
complement notation

* Represents the additive Inverse

Starting value 00000001
Step 1: reverse the bits 11111110
Step 2: add 1 to the value from Step 1 11111110

+00000001
Sum: two’s complement representation 11111111

Note that 00000001 + 11111111 = 00000000

28

Ranges of Signhed Integers

The highest bit is reserved for the sign. This limits the range:

Storage Type Range (low-high) Powers of 2
Signed byte —128 to +127 2"t 2" -1
Signed word —32,768 to +32.767 2B weP-1
Signed doubleword —2,147.483,648 t0 2,147.483,647 2o 2 - 1)
Signed quadword —9,223,372,036,854,775,808 to 2% 0 (2% - 1)
+9,223,372,036,854,775,807

Practice: What is the largest positive value that may be stored in 20 bits?

29

Integer Storage Sizes

byte

Standard sizes: Lo
doubleword ‘ 32 ‘
quadword ‘ 64

Table 1-4 Ranges of Unsigned Integers.

Storage Type Range (low-high) Powers of 2
Unsigned byte 0 to 255 Dto (28— 1)

Unsigned word 0 to 65,535 Oto (26— 1)
Unsigned doubleword 0 to 4,294,967,295 Ot (222 -1)
Unsigned quadword 0to 18.446.744.073.709.551.615 Ot i_E'E‘J'— [)

What is the largest unsigned integer that may be stored in 20 bits?

30

Byte-Sized Data

Byte-sized data are stored as unsigned
and signed integers

The difference in this form is the weight of
the leftmost bit position. Its value is 128 for
the unsigned integer and minus 128 for
the signed integer.

Unsigned integer range in value from 0O0H
to FFH (0-255).

Signed integers range in value from -128
to O to +127.

)

Byte-Sized Data: Example

using assembler
EXAMPLE 1-24

;Unsigned byte-sized data

0000 FE DATA1l DB 254 ;define 254 decimal

0001 87 DATAZ DB 87H rdefine 87 hexadecimal

0002 47 DATA3 DB 71 rdefine 71 decimal

'

;Signed byte-sized data

0003 9C DATA4 DB -100 ;define -100 decimal

0004 64 DATAS DB +100 ;define +100 decimal
0005 FF DATA6 DB -1 rdefine -1 decimal

0006 38 DATA7 DB 56 ;define 56 decimal

Y

Byte-Sized Data: Example
using MS Visual C++
EXAMPLE 1-25

//Unsigned byte-sized data

//

unsigned char Datal = 254; //define 254 decimal
unsigned char DataZ2 = 0x87; //define 87 hexadecimal
unsigned char Data3 = 71 //define 71 decimal

//

//Signed byte-sized data

//

char Datad4 = -100; //define -100 decimal
char Datab = +100; //define +100 decimal
char Data6 = -1; //define -1 decimal

char Data7 56; //define 56 decimal

\RJ

Word-Sized data

A word (16 bit) is Formed with two bytes of data.

The least significant byte is always stored in the
lowest-numbered memory location, and the
most significant byte is stored in the highest.

This method of storing a number is called the
little endian format. (used with Intel family of
microprocessor)

In the big endian format (used with Motrola
family of microprocessor and MIPS machine)
The lowest memory location contains the most
significant byte .

Ye

o0 <
[{s] [v0] 8] e} o <t ol O «©
» o o < S - <+ o ©
s 2233238 883 e e~
(a) Unsigned word

3003H
3002H
3001H 12H High-order byte
3000H 34H Low-order byte
2FFFH

/_/\/

(b) The contents of memory location 3000H and 3001H are the word 1234H.

FIGURE 1-15 The storage format for a 16-bit word in (a) a register and (b) two bytes of memory.

Binary weights

Yo

Word-Sized Data: Example
using assembler and MS Visual C++

EXAMPLE 126

;Unsigned word-sized data

DATA]1l DW

0000 O09FO0 2544 ;define

c002 87AC DATAZ DW 87ACH ;define

0004 02C6 DATAZ DW 710 ;define
; Signed word-sized data

0006 CBAS DATA4d DW —13400 ;define

co0os8 00Ce6 DATAS DWW +198 ;define

000A FFEF DATAGLE DW -1 sdefine

EXAMPLE 127

//Unsigned word-sized data

//

unsigned short Datal = 2544; //define

unsigned short DataZ = 0x87AC //define

unsigned short Data3 = 710;: //define

//

//S8Signed word-sized data

//

short Datad4d = —-13400; //define

short Data5 = +198; //define

short Data6 = -1; //define

2544 decimal
87AC hexadecimal
710 decimal

—13400 decimal
+198 decimal
-1 decimal

2544 decimal
87AC hexadecimal
710 decimal

—13400 decimal
+198 decimal

-1 decimal Ll

Doubleword-Sized Data

* Requires four bytes of memory because it
IS a 32-bit number.

« Appear as a product after a multiplication
and also as a dividend before a division.

* Lsb is stored in the lowest numbered
memory location and msb is stored in the
highest-numbered memory location using
the little endian format.

A%

3 3
© ® ¥ B Qg o 0
g a2Ingengang
TR RRBE s N9 uB IR oo
N o 0 % N O WN®OFTIN O NT OM O D o o ©
TR G g 0N D DT g N5 0 F NN O ©
A - T T S S 7 L Rt~ L RV 2 - Y+ VI 7« S = S = B = S+ A . (R AV <) . ,
- B 88 2T FTarDODA~-O@O®- o0 F A~ 0N~ © O® - 0 <+ & —-+—"Binaryweights
{a) Unsigned doubleword
00103H 12H High-order byte
00102H 34H
00101H 56H
00100H 78H -— Low-order byte
000FFH

(b) The contents of memory location 00100H-00103H are the doubleword 12345678H.

FIGURE 1-16 The storage format for a 32-bit word in (a) a register and (b} four bytes of memory.

YA

Doubleword-Sized Data: Example

using assembler (using DD or DWORD) and MS
Visual C++

EXAMPLE 1-28

;Unsigned doubleword-sized data

0000 0003E1CO DATAL1l DD 254400 ;define 254400 decimal
0004 87AC1234 DATAZ DD 87AC1234H ;define 87AC1234 hexadecimal

0008 00000046 DATA3 DD 70 ;define 70 decimal

r

;1 Signed doubleword-sized data

000cC FFEB8058 DATA4 DD —1343400 ;define -1343400 decimal
0010 000000C6 DATAS DD +198 ;define +198 decimal
0014 FFFFFFFF DATA6 DD -1 ;define -1 decimal

EXAMPLE 1-29

//Unsigned doubleword-sized data
//

unsigned int Datal = 254400; //define 254400 decimal
unsigned int Data2 = 0x87AC1234; //define 87AC1234 hexadecimal
unsigned int Data3 = 70; //define 70 decimal

/7

//Signed doubleword-sized data

/7

int Datad = -1343400; //define -1342400 decimal

int Datab5 = +198; //define +198 decimal

int Data6 = —-1; //define -1 decimal

Y4

Real Floating-point Numbers Scientific
Notation

+ 34.38§x 102 %3
‘ Significand I ‘ Exponent I

+ 3.4383 x 103=3438.3 Normalized form: Only one
digit before the decimal point

+3.4383000E+03 = 3438.3 ‘ Floating point notation I

‘ 8 digit significand can only represent 8 significant digits I

Binary Floating Point Numbers

‘+ 101.1101 I

=1x22+ 0x2T+ 1x29+ 1 x27+ 1x22+ 0x23+ 1x2%
= 4 + 0 + 1 + 12 + 14 + 0 + 1/16
=5.8125

‘ +1.011101 E+2 I Normalized so that the binary point

immediately follows the leading digit

Note: First digit is always non-zero
--> First digit is always one.

&)

IEEE Standard 754 For Floating Point Format

31 30 23 22 0
8 bits 23 bits

‘ Exponent I ‘ Significand or Mantissa I

0: Positive Biased by 127. Leading ‘1’ is implied, but not
1: Negative represented

Number = -15 * (1 + Sig) x 25127

« Allows representation of numbers in range 2-1%7 to 2*128

« Since the significand always starts with ‘1’, we don’t have to represent it
explicitly
— Significand is effectively 24 bits

|IEEE 754 Double Precision Format

52 51

32

63 62

11 Dbit

S

D bits

. ™ Exponent | Bias:1023

>‘ Significand I
0

32

b

ts

Number = -15 * (1 + Sig) x 251023

« Allows representation of numbers in range 2-1023tg 2+1024

« Larger significand means more precision
« Takes two registers to hold one number

conversion

Convert 5.75 to Single-Precision IEEE Floating Point

1. Convert 5.75,, to Binary ---> 101.11,,

2. Normalize > 1.0111 x 22
N

‘ Significand I Exponent I

4. Add 127 (bias) to exponent. Exponent = 129,,= 10000001,

3. Sign = 0 (positive).

5. Express significand as 24 bits
Sig = 1.01110000000000000000000

6. Remove leading one from significand, leaving 23 bits
Sig =.01110000000000000000000

7. Put in proper bit fields
Number = 0 10000001 01110000000000000000000 = 0x40B80000

¢¢

TABLE 1-11 Single-precision real numbers.

Decimal Binary Normalized Sign Biased Exponent Mantissa
+12 1100 1.1x23 0 10000010 10000000 00000000 00000000
-12 1100 1.1x2° 1 10000010 10000000 060000000 00000000
+100 1100100 1.1001 x 2° 0 10000101 10010000 00000000 00000000
-1.75 1.11 1.11 x 20 1 01111111 11000000 00000000 00000000
+0.25 0.01 1.0x272 0 01111101 00000000 00000000 00000000
+0.0 0 0 0 00000000 00000000 00000000 00000000

IIEEE is the Institute of Electrical and Electronic Engineers.

¢o

Directives for storing FP

» Short — single precision (32 bit)
— Real4 or Define Double (DD), DWORD

* Long — double precision (64 bits)
— Real8 or define Quadwords (DQ)

» Extended — extended precision (80 bits)
— Real10 or Define temporary (D T)

2

Floating-Point

3130 23 22 0
S Exp. Fraction
N CY
63 62 5251
S Exp. Fraction
]
(b)
79 78 64 63
|
S Exp. 1 Fraction
°
(c)

Note: S = sign-bit and Exp. = exponent

Floating-Point Formats

In the assembler

DA’
DA’

'AA DD 23.4
'AB DQ -345.0

DA’
In C++

‘AR DQ 3.5E2

float DataC = 23.4;

dou
dou

ble DataD = -345;
ble Datak = 3.5e2;

DD to define single precision 32-bit number

DQ to define

double precision 32-bit number

¢EA

Chapter 2

The Microprocessor and Its
Architecture

Note: Adapted from Barry B. Brey (Author Slides)

Instructor:
Dr. Khalid A. Darabkeh

The Intel /I/l/cropmcessors 8086/8088, 80186/80188, 80286, 80386, 80486P ntium,

I E{o IS\ ~crium Pro Processor, Pentium 1, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
. grch/tgctgre Programm/ng and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

Introduction

 The microprocessor as a programmable
device.

* The architecture of Intel microprocessors.

* Ways that the family members address the
memory system.

« Addressing modes are described for the real,
protected, and flat modes of operation.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

INTERNAL MICROPROCESSOR
ARCHITECTURE

* Before a program is written or instruction
Investigated, internal configuration of the
microprocessor must be known.

* In a multiple core microprocessor each core
contains the same programming model.

 Each core runs a separate task or thread
simultaneously.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV e 1YW crtium Pro Processor, Pentium If, Pentium, 4, and Cor’ez W/'t/7] 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

The Programming Model

e 8086 through Core2 consider two types of
registers:
e program visible.

— registers are used during programming and are
specified by the instructions

e program invisible.

— not addressable directly during applications
programming

The Intel M/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

I E{o IS\ ~crium Pro Processor, Pentium 1, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A\/Cliifecture, Pfogramm/ng and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

The Programming Model Cont.

e 80286 and above contain program-invisible
registers to control and operate protected
memory.

— and other features of the microprocessor

e 80386 through Core2 microprocessors
contain full 32-bit internal architectures.

e 8086 through the 80286 are fully upward-
compatible to the 80386 through Core2.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

Figure 2—1 The programming model of the 8086 through the Core2
microprocessor including the 64-bit extensions.

8-bit
names
32-bit ﬁ:
names names
. [
E A A AX AL Accumulator
' |
|
BH BX BL Base index
EBX]l
CcX CL Count
ECX CH 1
DH DX DL Data
EDX 1
ESP SP Stack pointer
EBP BP Base pointer
EDI Dl Destination index
ESI Si Source index
EIP 1P Instruction pointer
EFLAGS FLAGS Flags
Ccs Code
DS Data
ES Extra
ss Stack
FS
GS
The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition

Upper Saddle River, New Jersey 07458 « All rights reserved.
Barry B. Brey

Accessing Parts of Registers

e Use 8-bit name, 16-bit name, or 32-bit name
o Applies to EAX, EBX, ECX, and EDX

32-bit 16-bit 8-bit (high) 8-bit (low)
EAX AX AH AL
EBX BX BH BL
ECX CX CH CL
EDX DX DH DL

AH AL

AX

EAX

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions
e

Architecture, Programming, and Interfacing, Eighth Edition

Barry B. Brey

Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 « All rights reserved.

Multipurpose (General) Registers

e The top portion of the programming model
contains the general purpose registers: EAX,
EBX, ECX, EDX, EBP, ESI, and EDI.

e These registers, although general in nature,
each have special purposes and names.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

« RAX - a 64-bit register (RAX), a 32-bit register
(accumulator) (EAX), a 16-bit register (AX),
or as either of two 8-bit registers (AH and AL).

e The accumulator is used for instructions such
as multiplication, division, and some of the
adjustment instructions.

* Intel plans to expand the address bus to 52
bits to address 4P (peta) bytes of memory.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

e RBX, addressable as RBX, EBX, BX, BH, BL.

— BX register (base index) sometimes holds offset
address of a location in the memory system in all
versions of the microprocessor

e RCX, as RCX, ECX, CX, CH, or CL.

—a (count) general-purpose register that also holds
the count for various instructions

« RDX, as RDX, EDX, DX, DH, or DL.

— a (data) general-purpose register

— holds a part of the result from a multiplication
or part of dividend before a division

The Intel M/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

I E{o IS\ ~crium Pro Processor, Pentium 1, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A\/Cliifecture, Pfogramm/ng and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

« RBP, as RBP, EBP, or BP.

— points to a memory (base pointer) location
for memory data transfers

e RDI addressable as RDI, EDI, or DI.

— often addresses (destination index) string
destination data for the string instructions

e RSI used as RSI, ESI, or SI.

—the (source index) register addresses source
string data for the string instructions

— like RDI, RSI also functions as a general-
purpose register

The Intel M/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

I E{o IS\ ~crium Pro Processor, Pentium 1, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A\/Cliifecture, Pfogramm/ng and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

e R8 - R15 found in the Pentium 4 and Core?2 if
64-bit extensions are enabled.

— data are addressed as 64-, 32-, 16-, or 8-bit
sizes and are of general purpose

* Most applications will not use these registers
until 64-bit processors are common.
— the 8-bit portion is the rightmost 8-bit only

— bits 8 to 15 are not directly addressable as
a byte

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

FIGURE 2—1 The programming 64-hit Names 32-bil Names 16-bit Names 8-bit Names

model of the 8086 through the /
Core2 microprocessor including /

the 64-bit extensions. RAX EAX AX AL Al
RBX EBX BX o BL
RCX ECX CX cH cL
RDX EDX DX DH DL
RBP EBP BP
RSl ESI Sl
RDI EDI Dl
RSP ESP SP
64 bits -
- 32 bits .
-——— 16 bits
R8
R9
R10
R11
R12
R13
R14
R15
RFLAGS I | EFLAGS IFLAGS l
RIP I | EIP ||P |
cs
DS
ES
ss
FS
Gs

The Intel Microprocessors: 8086/8088, 80186/30188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
= ,;rch/z‘;cz‘gre Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

Index and Base Registers

e Some registers have only a 16-bit name for

their lower half:

32-bit 16-bit
ESI SI
EDI DI
EBP BP
ESP SP

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions
el Architecture, Programming, and Interfacing, Eighth Edition

Barry B. Brey

Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 « All rights reserved.

Special-Purpose Registers

* Include RIP, RSP, and RFLAGS

— segment registers include CS, DS, ES, SS, FS,
and GS

— Note: Although it is theoretically possible to store data in the segment registers, this is never a good
idea. The segment registers have a very special purpose - pointing at accessible blocks of memory.

 RIP addresses the next instruction in a section
of memory.
— defined as (instruction pointer) a code segment

« RSP addresses an area of memory called
the stack.
—the (stack pointer) stores data through this

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
— S Architecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

« RFLAGS indicate the condition of the
microprocessor and control its operation.

* Figure 2—-2 shows the flag reqisters of all
versions of the microprocessor.

* Flags are upward-compatible from the
8086/8088 through Core?2 .

* The rightmost five and the overflow flag are
changed by most arithmetic and logic
operations.

— although data transfers do not affect them

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el Architecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

Figure 2-2 The EFLAG and FLAG register counts for the entire 8086 and Pentium
microprocessor family.

31 21 20 19 18 17 16 14 13 12 11 10 9 8 7 6 4 2 0
ID [VIP|VIF|AC|VM|RF NT 'Cf 'OOP olp|l1|T]|s]|z A P G

- 8086/8088/80186/80188————»

- 80286 >~

e 80386/8986DX ——————»

- 80486SX -

= Pentium/Pentium 4 ——»

* Flags never change for any data transfer or
program control operation.

 Some of the flags are also used to control
features found in the microprocessor.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
. grch/tgcté/re Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry rey

* Flag bits, with a brief description of function.

 C (carry) holds the carry after addition or
borrow after subtraction.

— also indicates error conditions

* P (parity) is the count of ones in a number
expressed as even or odd. Logic O for odd
parity; logic 1 for even parity.

— If a number contains three binary one bits, it has
odd parity
— If a number contains no one bits, it has even

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON Pent/qm Pro Processor, Peﬁf/um 11, Pentium, 4 anq’ Core2 W/th 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el Architecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

* A (auxiliary carry) holds the carry (half-carry)
after addition or the borrow after subtraction
between bit positions 3 and 4 of the result.

e Z (zero) shows that the result of an arithmetic
or logic operation is zero.

e S (sign) flag holds the arithmetic sign of the
result after an arithmetic or logic instruction
executes.

T (trap) The trap flag enables trapping
through an on-chip debugging feature.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

* | (iInterrupt) controls operation of the INTR
(Interrupt request) input pin.

D (direction) selects increment or decrement
mode for the DI and/or Sl registers.

* O (overflow) occurs when signed numbers
are added or subtracted.

— an overflow indicates the result has exceeded
the capacity of the machine

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
— S Architecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

* |OPL used in protected mode operation
to select the privilege level for I/O devices.

 NT (nested task) flag indicates the current
task Is nested within another task in protected
mode operation.

* RF (resume) used with debugging to control
resumption of execution after the next
Instruction.

VM (virtual mode) flag bit selects virtual
mode operation in a protected mode system.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

 AC, (alignment check) flag bit activates if a
word or doubleword is addressed on a non-
word or non-doubleword boundary.

* VIF Is a copy of the Interrupt flag bit available
to the Pentium 4—(virtual interrupt)

* VIP (virtual) provides information about a
virtual mode interrupt for (interrupt pending)
Pentium.

— used In multitasking environments to provide
virtual interrupt flags

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

ID (identification) flag indicates that the
Pentium microprocessors support the CPUID
Instruction.

— CPUID Instruction provides the system with
iInformation about the Pentium microprocessor

The Intel M/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

I E{o IS\ ~crium Pro Processor, Pentium 1, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A\/Cliifecture, Pfogramm/ng and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

Segment Registers

 Generate memory addresses when combined
with other registers in the microprocessor.

e Four or six segment registers in various
versions of the microprocessor.

* A segment register functions differently in real
mode than in protected mode.

* Following is a list of each segment register,
along with its function in the system.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

 CS (code) segment holds code (programs
and procedures) used by the microprocessor.

DS (data) contains most data used by a
program.

— Data are accessed by an offset address or
contents of other registers that hold the offset
address

 ES (extra) an additional data segment used
by some instructions to hold destination data.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

o SS (stack) defines the area of memory used
for the stack.

— stack entry point is determined by the stack
segment and stack pointer registers

— the BP register also addresses data within
the stack segment

The Intel M/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

I E{o IS\ ~crium Pro Processor, Pentium 1, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A\/Cliifecture, Pfogramm/ng and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

 FS and GS segments are supplemental
segment registers available in 80386—Core?2
MICroprocessors.
— allow two additional memory segments for

access by programs

* Windows uses these segments for internal
operations, but no definition of their usage
IS available.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
el Architecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

REAL MODE MEMORY
ADDRESSING

e 80286 and above operate In either the real or
protected mode.

 Real mode operation allows addressing of
only the first 1M byte of memory space—even
In Pentium 4 or Core2 microprocessor.
— the first 1M byte of memory is called the real

memory, conventional memory, or DOS
memory system

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
e e grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

Segments and Offsets

* All real mode memory addresses must consist
of a segment address plus an offset address.

—segment address defines the beginning address
of any 64K-byte memory segment

— offset address selects any location within the
64K byte memory segment
* Next slide shows how the segment plus

offset addressing scheme selects a memory
location.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

Figure 2—-3 The real mode memory-addressing scheme, using a segment address
plus an offset.

Real mode memory

o~ — this shows a memory
segment beginning at
10000H, ending at
" location IFFFFH

\FFFF * 64K bytes in length

1F000 Offset = FO0O0

ol — also shows how an
Segment register
S) e offset address, called a
displacement, of
FOOOH selects location
e 1FO00H in the memory

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
e ’ngh’tgdé”e Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry rey

* Once the beginning address is known, the
ending address Is found by adding FFFFH.

— because a real mode segment of memory Is 64K
In length

* The offset address Is always added to the
segment starting address to locate the data.

e Segment and offset address is sometimes
written as 1000:2000.

—a segment address of 1000H; an offset of 2000H

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON Pent/qm Pro Processor, Pept/um 11, Pentium, 4 anq’ Core2 W/th 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

Segmented Memory

Segmented 7®

EO0000 8000:FFFF

memory DO0000
addressing: coooo

one segment

BOOOO
absolute
] A0000
(linear) 9550
. >
addressisa 8o 2
- - 70000 N
combination @
_ 60000 S
of a 16-bit s ® 8000:0250
® 0250
segment oL 2
Val e a d d e d 30000 8000:0000
U 20000 T T
to a 16-bit 10000 g o
o1s
offset 00000
| The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
Pentium Pro Processor, Pentium Il, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el Architecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

Calculating Linear Addresses

* Gilven a segment address, multiply it by 16
(10H) (add a hexadecimal zero to the right),
and add it to the offset

 Example: convert 08F1:0100 to a linear
address

Adjusted Segment value: O 8 F 1 0

Add the offset: 0100
Linear address: 09010
The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON Pentium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
el Architecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

Effective Address Calculations

« EA = segment x 10H plus offset
(a) 10023 = 10000 + 0023
(b) ABC34 = AAFOO + 0134
(c) 21FFO0=12000 + FFFO

Example (a) contained 1000 in the segment
register, example (b) contained a AAFO in the
segment register, and example (c) contained a
1200 In the segment register.

/7 tel Microprocessors. 8086/8088, 80186/80188 80286, 80386, 80486 Pentium,

PEARSGN ium Pro Pro essor, P ntium /1, Pent Hum, 4 and Core2 'th 64—b/'t Extensions Copyright ©2009 by Pearson Education, Inc.
- Arch/tect rogramming, and Interfacing, gh th Editi Upper Saddle River, New Jersey 07458 « All rights reserved.

Barry B. Brey

Effective Address Calculations
cont.

What linear address corresponds to the segment/offset
address 028F:.00307

028F0 + 0030 = 02920

Always use hexadecimal notation for addresses.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
e ,grch/tgcté/re Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry rey

Effective Address Calculations
cont.

What segment addresses correspond to the linear address
28F30h?

Many different segment-offset addresses can produce the
linear address 28F30h. For example:

28F0:0030, 28F3:0000, 28B0:0430, . ..

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el Architecture, Programming, and Interfacing, Eighth Edition

Upper Saddle River, New Jersey 07458 « All rights reserved.
Barry B. Brey

Default Segment and Offset
Registers

* The microprocessor has rules that apply to
segments whenever memory Is addressed.

— these define the segment and offset register
combination

 The code segment register defines the start
of the code segment.

 The instruction pointer locates the next
Instruction within the code segment.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

 Another of the default combinations is the
stack.

— stack data are referenced through the stack
segment at the memory location addressed by

either the stack pointer (SP/ESP) or the pointer
(BP/EBP)

* Figure 2—4 shows a system that contains four
memory segments.

—a memory segment can touch or overlap if 64K
bytes of memory are not required for a segment

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

THBLED-) gt e
bt seqmentan oeAen Ot Special Pupose

oftset corbinations, " - i
5 P Instruclion address

5 SPorfp alack address
05 BX.O1 S| an-or 164t number Data Adress

ko Olforsting instructios oling destination adress
.-‘\

The Intel /I/l/cropmcessors 8086/8088, 80186/80188, 80286, 80386, 80486P ntium,
N OIS W ~crium Pro Processor, Pentium Il, Pentium, 4, and CoreZ with 64-bit Exten, Copyright ©2009 by Pearson Education, Inc.
el A/chitecture, Programm/ng and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

THE MICROPROCESSOR AND 173 ARCHITECTURE

TABLE2-4 Default
32-bit segmentand Segment Offset Special Purpose

offset combinations, =
CS EIP Instruction address

55 ESP or EBP olack address

DS EAX, EBX, ECX, EDX, ES!. EDI, Data address
an 8- or 32-bit number

ES EDIfor string instructions Slring destination address
FS No default General address
(GS No default General address

e = 2 ﬁ —_ ==

allows DOS programs 1o he relocated in 1
K programs caled in e memory system, [t also allows proerams wri ;
iphys by system, [Lalso allows proa;] -
g oy allows programs written 1o func
. g de lo operale i a protected mode system. A relocatable
drogram 15 one ‘hut can be placed inte anv aren ¢ :
L I,_, am 15 one "ot can be placed into any area of memory and executed without change
clocatable data are data that can be placed in any area of memory and used without any Ch:l]’lﬂf; to

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
Copyright ©2009 by Pearson Education, Inc.

PEARSON Pentium Pro Processor, Pentium Il, Pentium, 4, and CoreZ2 with 64-bit Extensions
el Architecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

Figure 2—-4 A memory system showing the placement of four memory segments.

FFFFF

B NN
SRFFF

4500
£BFFF

4000
£3FFF

34000
TIFFF
S0

2FFFF

20000
\FFFF

1 D
OFFFF

)

Momary

Extra

— (s 0]es

Slack

Cala

— think of segments as
windows that can be
moved over any area
of memory to access
data or code

— a program can have
more than four or six
segments,

 but only access four or
Six segments at a time

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions
el A rchifecture, Programming, and Interfacing, Eighth Edition

Barry B. Brey

Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 « All rights reserved.

Figure 2-5 An application program containing a code, data, and stack segment
loaded into a DOS system memory.

Imaginary sida

mtatts ey —a program placed In
I N memory by DOS is loaded

In the TPA at the first
available area of memory
above drivers and other TPA

programs
e o —area Is indicated by a free-

| sl — === pointer maintained by DOS
nE= - e) i
e — program loading is handled
i — - [6ab F |cs

e automatically by the
o program loader within DOS

GG

The Intel M/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

I E{o IS\ ~crium Pro Processor, Pentium 1, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A\/Cliifecture, Programm/ng and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

Segment and Offset Addressing
Scheme Allows Relocation

o Segment plus offset addressing allows DOS
programs to be relocated in memory.

 Arelocatable program is one that can be
placed into any area of memory and executed
without change.

 Relocatable data are data that can be placed
In any area of memory and used without any
change to the program.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

 Because memory Is addressed within a
segment by an offset address, the memory
segment can be moved to any place in the
memory system without changing any of the
offset addresses.

* Only the contents of the segment register
must be changed to address the program
In the new area of memory.

* Windows programs are written assuming that
the first 2G of memory are available for code
and data.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
el Architecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

INTRODUCTION TO PROTECTED
MODE MEMORY ADDRESSING

* Allows access to data and programs located
within & above the first 1M byte of memory.

 Protected mode is where Windows operates.

 In place of a segment address, the segment
register contains a selector that selects a
descriptor from a descriptor table.

 The descriptor describes the memory
segment’s location, length, and access rights.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV e 1YW crtium Pro Processor, Pentium If, Pentium, 4, and Cor’ez W/'thl 64-bit éxtens/ons Copyright ©2009 by Pearson Education. Inc.
el Architecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

Selectors and Descriptors

 The descriptor Is located in the segment
register & describes the location, length, and
access rights of the segment of memory.
— It selects one of 8192(64k/8) descriptors from one
of two tables of descriptors

 In protected mode, this segment number can
address any memory location in the system
for the code segment.

 Indirectly, the register still selects a memory
segment, but not directly as in real mode.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
e e grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

 Global descriptors contain segment
definitions that apply to all programs.

e Local descriptors are usually unique to an
application.

— a global descriptor might be called a system
descriptor, and local descriptor an application
descriptor

e Figure 2—6 shows the format of a descriptor
for the 80286 through the Core?2.

— each descriptor Is 8 bytes in length

— global and local descriptor tables are a
maximum of 64K bytes in length

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
e e grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

Table 1-6 The Intel family of microprocessor bus and memory sizes.

Microprocessor Dala Bus Width Address Bus Width Memory .
BUEEG |6 20 1
2088 2 20 1M
SU186 16 20 1M
EE-1EE 8 20 1M
80286 16 24 16M
BO3BBSX 16 24 16M
80386DX 32 32 4G
80386EX 16 26 G4
80486 32 32 43
Fentium 344 32 4G
Pentium Pro-Core2 64 32 4G
Pentium Pro—Core2 64 36 64G
(if extended addressing is enabled)
Pentium 4 and Core2 G4 40 1T
with 64-bil extensions enabled
ltanium 28 40 1T

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
- ,;rch/z‘;cz‘gre Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry rey

Figure 2—6 The 80286 through Core2 64-bit descriptors.

80286 .
0000 0000 0000 D000 Access Hights Base 4
B23 B16
Base Limit 0
B1i5 BO | L1& LD
Offset
- 80386-P4 a
Base G|D Limit Access Rights Base 4
B31 B24 L18 L6 B23 B16
Base Lirnit 0
B15 BO | L15 LD
Otfset
a1 64-bit P4 9
00000000 |G[ofc|5| 0000 | Accessmights | oooooooo | ¢
0000 0000 0000 0000 0000 0000 0000 0000 0
Offset

Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 « All rights reserved.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
EARSO N Pentium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions

I"
Architecture, Programming, and Interfacing, Eighth Edition
Barry B. Brey

 The base address of the descriptor indicates
the starting location of the memory segment.

« The segment limit contains the last address
found In a segment.

 The G, or granularity bit allows a segment
length of 4K to 4G bytes.
— G=0; limit is 00000H to FFFFFH

— G=1; limit is appended with FFF; 00000FFF to
FFFFFFFF

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
e e grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

 The AV bit, in the 80386 and above descriptor, Is
used by some operating systems to indicate that the
segment is available (AV=1) or not available
(AV=0). The D bit indicates how the 80386 through
the Core2 instructions access register and memory
data in the protected or real mode. If D=0, the
Instructions are 16-bit instructions, compatible with
8086-80286 microprocessor. This means that the
Instructions use 16-bit offset addresses and 16-bit
register by default. This mode Is often called the 16-
bit instruction mode or DOS mode. If D=1, the
Instructions are 32-bit instructions. By default, the
32-bit instruction mode assumes that all offset
addresses and all reglsters are 32-bit.

T/? Intel Micr p/’ S0rs. 808 /8088, 80186/ 8 86P Hum,

PEARSGN tium Pro Processor, Pe” ium 1, Pentium, dc 2 wil /7 b E ions Copyright ©2009 by Pearson Education, Inc.
- ’g htB tB P g amming, and In { rfac g Eghth Editio Upper Saddle River, New Jersey 07458 « All rights reserved.
ry ey

* In the 64-bit descriptor, the L bit (probably means large,
but Intel calls it the 64-bit) selects 64-bit addresses in a
Pentium 4 or Core2 with 64-bit extensions when L=1 and
32-bit compatibility mode when L=0.

* In 64-bit protected operation, the code segment register Is
still used to select a section of code from the memory.

* Notice that the 64-bit descriptor has no limit or base
address. It only contains an access rights byte and the
control bits.

* In 64-bit mode, there is no segment or limit in the
descriptor and the base address of the segment, although
not placed in the descriptor, is 00 0000 O000H. This means
that all code segments start at address zero for 64-bit
operation. There is no limit checks for a 64-bit code
segment

The Intel Micr p/’ S 8086/8088, 80186/80188, 80286, 80386, 80486P ntium,

PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Cor 2"'/”7641”51’ Copyright ©2009 by Pearson Education, Inc.
- ’g htB tB P g mmng and Interfacing, Eighth Editio Upper Saddle River, New Jersey 07458 « All rights reserved.
ry ey

| A= 0 Sagimand nal accossad
-
| A =1 Segment has been accessad
|
= | E =0 Descriplor describes a data sagmaent

ED =0 Segment expands upward (data segment)

EL = 1 Segmenl expands downward [slack segment)
W =0 Dala may not be written

Wo=1 Dala may be wrillen

T E =1 Descnptor describes code segment

2 =0 lgnore descriplor privilege leval
C =1 Abide by privilege level

A =0 Code segment may nol be read

' H =1 Code segment may ho read
w =0 Syslem descriptor
-, &
S =1 Code or data segment descriplor

LP = Sels the descriptor privilege level

[
= Descriptor is undalinaed
I Sagmenl contains g valid haze and limit

10 O

o . b " L T s o I ¥
te; Some of tha letlers used to describe the bits in the access rights byles vary in Inlel documentation

RE 2-7 The access rights byle for the 80286 through Core2 descriptor.

The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
Pentium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.

Architecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.
Barry B. Brey

PEARSON

Selector TI{ RPL

RPL = Requested privilege level where
00 is the highest and 11 is the lowest

TI =0 Global descriptor lable
TI=1 Local descriptor table

. oalects one descriptor from 8192 descriptors
in gither the global or the local descriptor table

'FIGURE 2-8 The contents of a segment register during protected mode operation of the
80286 through Core2 microprocessors.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
= ,;rch/z‘;cz‘gre Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry rey

 The access rights byte controls access to the
protected mode segment. This byte describes how
the segment functions in the system. The access
rights byte allows complete control over the
segment. If the segment is a data segment, the
direction of growth Is specified. If the segment grows
beyond its limit, the microprocessor’s operating
system program is interrupted, indicating a general
protection fault. You can even specify whether a
data segment can be written or Is write-protected.
The code segment is also controlled in a similar
fashion.

The Intel M/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
I E{o IS\ ~crium Pro Processor, Pentium 1, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A\/Cliifecture, Programm/ng and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

 Figure 2-8 shows how the segment register functions in
the protected mode system.

« The segment contains a 13-bit selector field, a table
selector bit, and a requested privilege field. The 13-bit
selector chooses on of the 8192 descriptors from the
descriptor table. The T1 bit selects either the global
descriptor table (T1=0) or the local descriptor table (T=1).
The requested privilege level (RPL) requests the access
privilege level of a memory segment. The highest
privilege level is 00 and the lowest is 11. if the requested
privilege level matches or is higher in priority that the
privilege level set by the access rights byte, access is
granted. for example, if the requested privilege level is 10
and the access rights byte sets the segment privilege
level at 11, access is granted.

The Intel Micr p/’ S 8086/8088, 80186/80188, 80286, 80386, 80486P ntium,

PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Cor 2"'/”7641”51’ Copyright ©2009 by Pearson Education, Inc.
- ’g htB tB P g mmng and Interfacing, Eighth Editio Upper Saddle River, New Jersey 07458 « All rights reserved.
ry ey

e Operating systems operate in a 16- or 32-bit
environment.

e DOS uses a 16-bit environment.

 Most Windows applications use a 32-bit
environment called WIN32.

« MSDOS/PCDOS & Windows 3.1 operating
systems require 16-bit instruction mode.

 Instruction mode Is accessible only Iin a
protected mode system such as Windows
Vista.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

* Figure 2-9 shows how the segment register,
containing a selector, chooses a descriptor
from the global descriptor table.

 The entry In the global descriptor table selects
a segment in the memory system.

* Descriptor zero is called the null descriptor,
must contain all zeros, and may not be used
for accessing memory.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el Architecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

Figure 2—-9 Using the DS register to select a description from the global descriptor
table. In this example, the DS register accesses memory locations 00100000H-

0O01000FFH as a data seament.

Memaory system

FFFFFF
Global descriptor table
|
e
.----""-u.___.--""il
—— |
100100
1000FF
00 — Data segment
Q0
Descriptor 1 g 2
1
5 - 100000
OFFFFF
0 o
D5 0 0
| 0008 }|—— Eif — e R
Ry —— .,.--—--..._______.___
'."-_—____.r'._"
Q00000
The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
|-. EARSO N Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
Architecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

Flat Mode Memory

« The memory system in a Pentium-based computer
(Pentium 4 or Core 2) that uses 64-bit extensions uses a
flat mode memory system.

o A flat mode memory system is one in which there is no segmentation.

— does not use a segment register to address a location in the
memory

— The segment register is used to select a descriptor from the
descriptor table that defines the access bytes and control bits.

* First byte address is at 00 0000 O000H; the last location is at FF FFFF
FFFFH.

— address is 40-bits
« The segment register still selects the privilege level of the software.
« The offset address is the actual physical address in 64-bit mode.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
. grch/tgcté/re Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry rey

 Real mode system iIs notavailable if the
processor operates in the 64-bit mode.

* Protection and paging are allowed in the 64-
bit mode.

 The CS reqister is still used in the protected
mode operation in the 64-bit mode.

 Most programs today are operated in the 1A32
compatible mode.
— current software operates properly, but this will

change in a few years as memory becomes
larger and most people have 64-bit computers

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

Program-invisible registers

 The global and local descriptor tables are
found in the memory. In order to access and
specify the address of these tables, the
80286-Core2 contain program-invisible
registers. There registers control the
microprocessor when operated in the
protected mode.

* \When the protected mode operation Is
desired, the address of the global descriptor
and its limit are loaded into the GDTR (global

descriptor table register).
The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
e e grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

Program-invisible registers Cont.

 The location of the local descriptor table is
selected from the global descriptor table.
One of the global descriptors is set up to
address the local descriptor table. To
access the local descriptor table, the LDTR
(local descriptor table register) is loaded
with a selector, just as a segment register
IS loaded with a selector.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

SUMMARY

* The programming model of the 8086
through 80286 contains 8- and 16-bit
registers.

* The programming model of the 80386 and
above contains 8-, 16-, and 32-bit extended
registers as well as two additional 16-bit
segment registers: FS and GS.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

SUMMARY (cont)
e 8-bit reqgisters are AH, AL, BH, BL, CH, CL,
DH, and DL.
o 16-bit registers are AX, BX, CX, DX, SP,
BP, DI, and SI.

 The segment registers are CS, DS, ES, SS,
FS, and GS.

o 32-bit extended reqgisters are EAX, EBX,
ECX, EDX, ESP, EBP, EDI, and ESI.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

SUMMARY (cont.)

* The 64-bit registers in a Pentium 4 with 64-
bit extensions are RAX, RBX, RCX, RDX,
RSP, RBP, RDI, RSI, and R8 through R15.

 In addition, the microprocessor contains an
Instruction pointer (IP/EIP/RIP) and flag
register (FLAGS, EFLAGS, or RFLAGS).

« All real mode memory addresses are a
combination of a segment address plus an
offset address.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

SUMMARY (cont.)

* The starting location of a segment Is
defined by the 16-bit number in the
segment register that is appended with a
hexadecimal zero at its rightmost end.

* The offset address is a 16-bit number
added to the 20-bit seg-ment address to
form the real mode memory address.

 All instructions (code) are accessed by the
combination of CS (segment ad-dress) plus
IP or EIP (offset address).

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

SUMMARY (cont.)

e Data are normally referenced through a
combination of the DS (data segment) and
either an offset address or the contents of a
register that contains the offset address.

 The 8086-Core2 use BX, DI, and Sl as
default offset registers for data if 16-bit
registers are selected.

 The 80386 and above can use the 32-bit
registers EAX, EBX, ECX, EDX, EDI, and
ESI| as default offset reqgisters for data.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

SUMMARY (cont.)

* Protected mode operation allows memory
above the first 1M byte to be accessed by
the 80286 through the Core?2

MICroprocessors.

e This extended memory system (XMS) Is
accessed via a segment address plus an
offset address, just as in the real mode.

 In the protected mode, the segment starting
address Is stored in a descriptor that is
selected by the segment register.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

SUMMARY (cont.)

« A protected mode descriptor contains a
base address, limit, and access rights byte.

 The base address locates the starting
address of the memory segment; the limit
defines the last location of the segment.

* The access rights byte defines how the
memory segment Is accessed via a
program.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
el Architecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

SUMMARY (cont.)

e The 80286 microprocessor allows a
memory segment to begin at any of its 16M
bytes of memory using a 24-bit base
address.

 The 80386 and above allow a memory
segment to begin at any of its 4G bytes of
memory using 32-bit base address.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
el Architecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

SUMMARY (cont.)

e The limit is a 16-bit number in the 80286
and a 20-bit number in the 80386 and
above. This allows an 80286 memory
segment limit of 64K bytes, and an 80386
and above memory segment limit of either
1M bytes (G=0) or 4G bytes (G=1). The L
bit selects 64-bit address operation in the
code descriptor.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
el Architecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

SUMMARY

 The flat mode memory contains 1T byte of
memory using a 40-bit address.

 In the future, Intel plans to increase the
address width to 52 bits to access 4P bytes
of memory.

* The flat mode is only available in the
Pentium 4 and Core2 that have their 64-bit

extensions enabled.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
el Architecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

o Intel rocessors

m H Il"'al' mﬁﬁ BME‘E‘ F'El'lﬂl..lm Fﬂﬂ“um Fm
~rocessor, Emm' antium 4, and Core2 with 64-bit Extensions

II!:HII:h ,r.*. nming, and Interfaclng
. A w A l EIGHTH EDITION
.: EJ . o ﬂll 1"

Barry B. Brey

e

TR PEARSON

essing Modes

Chapter 3

Addressing Modes

Note: Adapted from Barry B. Brey (Author Slides)

Instructor:
Dr. Khalid A. Darabkeh

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV e 1YW entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A\ rchifecture, Programming, and Interfacing, Eighth Edition 2 Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

Introduction

 Efficient software development for the
microprocessor requires a complete familiarity
with the addressing modes employed by each
instruction.

* This chapter explains the operation of the
stack memory so that the PUSH and POP
instructions and other stack operations will
be understood.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW entium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
—— ,;rch/fz;cté/re, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.
arry B. Brey

Assembly Language

Each statement in an assembly language
program consists of four parts or fields.

LABEL OPCODE OQPERAND COMMENT
DATA1 DB 23H ;define DATAl as a byte of 23H
START: MOV AL, BL ;copy BL into AL

 The leftmost field is called the /abel.

— used to identify the name of a memory location
used for storing data and for other purposes

 All labels must begin with a letter or one of the
following special characters: @, $, -, or ?.

— a label may any length from 1 to 35 characters .

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW entium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
— ,I;lrch/f;cié/re, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.
arry B. Brey

* The next field to the right is the opcode field
or operation code.

— designed to hold the instruction, or opcode

—the MOV part of the move data instruction is an
example of an opcode

» Right of the opcode field is the operand field.

— contains information used by the opcode

—the MOV AL,BL instruction has the opcode MOV
and operands AL and BL

 The comment field, the final field, contains a
comment about the instruction(s).

— comments always begin with a semicolon (;)

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Pro P f um 1, Pentium, 4, and CoreZ with 54“5”6’"5"0”5 Copyright ©2009 by Pearson Education, In
il Architectur P g amming, and Interfacing, Eighth Editio ° Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

C.

Example of MASM program

EXAMPLE 3-2
0000

0100 B8 0000
0103 BB (0000
0106 B9 0000
0109 8B FO
010B 8B F8
010D 8B EB

.MODEL TINY
,CODE
. STARTUP

MOV AX, 0
MOV BX, 0
MOV CX, 0

MOV SI,AX
MOV DI, AX
MOV BP, AX

.EXIT
END

schoose single segment model
:start of code segment
;start of program

;place 0000H into AX
;place 0000H into BX
;place 0000H into CX

;copy AX Into SI
;copy AX into DI
;copy AX 1nto BP

;exit to DOS
;end of program

Tiny program always assembled as a command (.COM)
program

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

Architecture, Programming, and Inferfacing, Eighth Edition
Barry B. Brey

PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions
e

Copyright ©2009 by Pearson Education, Inc.
1 Upper Saddle River, New Jersey 07458 « All rights reserved.

3—-1 DATA ADDRESSING MODES

« MOV instruction is a common and flexible
Instruction.

— provides a basis for explanation of data-
addressing modes

* Figure 3—1 illustrates the MOV instruction and
defines the direction of data flow.

* Source is to the right and destination the left,
next to the opcode MOV.

—an opcode, or operation code, tells the
microprocessor which operation to perform

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW entium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
— ,I;lrch/f;cié/re, Programming, and Interfacing, Eighth Edition v Upper Saddle River, New Jersey 07458 « Al rights reserved.
arry B. Brey

Figure 3—-1 The MOV instruction showing the source, destination,
and direction of data flow.

MOV AX,BX
A

o Source
Destination

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW entium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A\ rchifecture, Programming, and Interfacing, Eighth Edition A Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

MOV really moves nothing. MOV copies the
source into the destination. It probably should
be named COP for copy, but it is not.

* Figure 3—2 shows all possible variations of the
data-addressing modes using MOV.

* These data-addressing modes are found with
all versions of the Intel microprocessor.

— except for the scaled-index-addressing mode,
found only in 80386 through Core2

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
il Architectur P g amming, and Interfacing, Eighth Editio q Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

Figure 3—2 8086—Core2 data-addressing modes.

Type Instruction Sourcs Address Generation Desiinalion
: Figapetisr
RAesgisies MOW B0 BX o “‘ﬂ""
. [RELE Rrgeties
Irrrnediate MOV CH,24H o o pLow
Pmainy
Diresct MOV [1234H]AX i DS = 10H + DISP addreas
10000H + 1234H 11234H
Flesgisier irdinect MOV [BX]CL “ﬂg'fm' D5 = 10 + B aciiradn
TDCHNOH + D30 TER
Base-plus-index MOY B «51]BF H"EP“ | . DEx10H+BX+S5l £ ackiress
10000H + DE00H + 0200H 10500H
RAngister relative MOV CL[BX+4] acidrees DSxtoH+BX+4 | Fogswe
10304H 10000H + D300H + 4 cL
Base relathe-plus-incex MOV ARFAY[BNSILDN WD! [. DS=10H+ARRAY «BX+S1 _ e
OG0 & VOKMOH 4 O30 + 0L200M 11500
Sealed index MOV [EBX+2 = ESILAX ““E‘“ DS = 10H + EBX + 2 = ESH R e remie
10000H + 0O00DS00H + 00000400H 107008

Motes: EEX = DOOINGN0H, ESI = DOOOIZ00H, ARRAY = 1000, and DS = 10004

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW entium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
— Qrch/teBcté/re Programming, and Interfacing, Eighth Edition V. Upper Saddle River, New Jersey 07458 « Al rights reserved.
arry rey

|- Register Addressing

* The most common form of data addressing.
— once register names learned, easiest to apply.

* The microprocessor contains these 8-bit
register names used with register addressing:
AH, AL, BH, BL, CH, CL, DH, and DL.

* 16-bit register names: AX, BX, CX, DX, SP,
BP, Sl, and DI.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW entium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
— S Architecture, Programming, and Interfacing, Eighth Edition 3 Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

Source Destination

Register BX M Register AX

Type Instruction
Register MOV AX,BX

Register Addressing Mode

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el Archifecture, Programming, and Interfacing, Eighth Edition \Y Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

* In 80386 & above, extended 32-bit register
names are. EAX, EBX, ECX, EDX, ESP,

EBP, EDI, and ESI.

* Important for instructions to use registers that

are the same size.

— never mix an 8-bit with a 16-bit register, an 8- or a
16-bit register with a 32-bit register

— this is not allowed by the microprocessor and
results in an error when assembled

The Intel Micr p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
il Architectur P g amming, and Interfacing, Eighth Editio Y Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

Examples of registered-addressed instructions

Assembly Language Size Operation
MOV AL,BL 8 bits Copies BL into AL
MOV CH,CL 8 bits Copies CL into CH
MOV AX,CX 16 bits Copies CX into AX
MOV SP.BP 16 bits Copies BP into SP
MOV DS,AX 16 bits Copies AX into DS
MOV SI,DlI 16 bits Copies Dl into Si
MOV BX,ES 16 bits Copies ES into BX
MOV ECX,EBX 32 bits Copies EBX into ECX
MOV ESPEDX 32 bits Copies EDX into ESP
MOV DS,CX 16 bits Copies CX into DS
MOV ES,DS — Not allowed (segment to segment)
MOV BL,DX — Not allowed (mixed sizes)
MOV C§,AX — Not allowed (the code segment register

may hot be the destination register)

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions
e SN

Architecture, Programming, and Inferfacing, Eighth Edition

Barry B. Brey

Copyright ©2009 by Pearson Education, Inc.
Ak Upper Saddle River, New Jersey 07458 « All rights reserved.

Figure 3—3 The effect of executing the MOV BX, CX instruction at the point just
before the BX register changes. Note that only the rightmost 16 bits of register

EBXc Register array

EAX
EBX 2 23 4 7 6 AF<
ECX 11AC 1 2 3 4 1 23 4

Register array

After execution
EAX
EBX 2 5 3 4 1 2 3 4 <
ECX 11 A C 1 2 3 4 1 2 3 4

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW entium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
et Q’Ch’f;dére Programming, and Interfacing, Eighth Edition Vo Upper Saddle River, New Jersey 07458 « All rights reserved.
arry rey

* Figure 3—3 shows the operation of the MOV
BX, CX instruction.

* The source register’'s contents do not change.
— the destination register’'s contents do change

* The contents of the destination register or
destination memory location change for all

Instructions except the CMP and TEST
iInstructions.

« The MOV BX, CX instruction does not affect
the leftmost 16 bits of register EBX.

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSDN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
- ’; htB tB P g amming, and Interfacing, Eighth Editio N Upper Saddle River, New Jersey 07458 « All rights reserved.
rry ey

II- Immediate Addressing

* Term /mmediate implies that data immediately
follow the hexadecimal opcode in the memory.

Source Destination

Dat
3 EI;I M Register CH

Type Instruction
Immediate MOV CH,3AH

Immediate Addressing Mode

The Intel Micr p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
il Architectur P g amming, and Interfacing, Eighth Editio Y Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

- Immediate data are constant data

— data transferred from a register or memory
location are variable data

* Immediate addressing operates upon a byte or
word of data.

* Figure 3—4 shows the operation of a MOV
EAX,13456H instruction.

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
il Architectur P g amming, and Interfacing, Eighth Editio YA Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

Figure 3—4 The operation of the MOV EAX,13456H instruction. This instruction
copies the immediate data (13456H) into EAX.

Register array Program
EAX 3333 6 2 9 1 ‘L MOV EAX,13456H
EBX 13456H —= J
e o —— e —TN
Reqister array
EAX 0 0 0 1 3 4 5 6 ‘\
After
Execution
EBX
I

* As with the MOV instruction illustrated in
Figure 3—3, the source data overwrites the

destination data.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
IV IIe 1YW entium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A\ rchifecture, Programming, and Interfacing, Eighth Edition V4 Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

* In symbolic assembly language, the symbol #
precedes immediate data in some
assemblers.

— MOV AX,#3456H instruction is an example

* Most assemblers do not use the # symbol,
but represent immediate data as in the MOV
AX,3456H instruction.

— an older assembler used with some Hewlett-
Packard logic development does, as may others

—In this text, the # is not used for immediate data

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
- ’; htB tB P g amming, and Interfacing, Eighth Editio Y. Upper Saddle River, New Jersey 07458 « All rights reserved.
rry ey

* The symbolic assembler portrays immediate
data in many ways.

* The letter H appends hexadecimal data.
* If hexadecimal data begin with a letter, the

assembler requires the data start with a O.

— to represent a hexadecimal F2, OF2H is used
In assembly language

* Decimal data are represented as it is and
require no special codes or adjustments.

—an example is the 100 decimal in the
MOV AL,100 instruction

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
- ’; htB tB P g amming, and Interfacing, Eighth Editio A3 Upper Saddle River, New Jersey 07458 « All rights reserved.
rry ey

* An ASCII-coded character or characters may
be depicted in the immediate form if the ASCI|
data are enclosed in apostrophes.

— be careful to use the apostrophe (“) for ASCII
data and not the single quotation mark ()

» Binary data are represented if the binary
number is followed by the letter B.

— In some assemblers, the letter Y

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
- ’; htB tB P g amming, and Interfacing, Eighth Editio A Upper Saddle River, New Jersey 07458 « All rights reserved.
rry ey

Examples of iImmediate addressing using the MOV
Instruction

Assembly Language Size Operation
MOV BL,44 8 bits Copies 44 decimal (2CH) into BL
MOV AX 44H 16 bits Copies 0044H into AX
MOV SI,0 16 bits Copies 0000H into SI

MOV CH,100 8 bits Copies 100 decimal (64H) into CH
MOV AL, A 8 bits Copies ASCII A into AL

MOV AX, 'AB’ 16 bits Copies ASCH BA™ into AX

MOV CL,11001110B 8 bits Copies 11001110 binary into CL
MOV EBX,12340000H 32 bits Copies 12340000H into EBX
MOV ESI 12 32 bits Copies 12 decimal into ESI

MOV EAX,100B 32 bits Copies 100 binary into EAX

The Intel Micr p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSGN Pentium Pro Pro P f um 1, Pentium, 4, and Core2 with 64“5"“9”5""”5 Copyright ©2009 by Pearson Education, Inc.
- 'é htB iB P g amming, and Interfacing, Eighth Editio Yy Upper Saddle River, New Jersey 07458 « All rights reserved.
ry ey

lll- Direct Data Addressing

* Direct addressing moves a byte or word
between a memory location and a register.

* Applied to many instructions

* Two basic forms of direct data addressing:

1. Direct addressing, which applies to a MOV
between a memory location and AL, AX, or EAX

2. Displacement addressing, which applies to
almost any instruction in the instruction set

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW entium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
el A\ rchifecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

» Both forms of addressing are identical
except that direct addressing is used to
transfer data between EAX, AX, or AL and
memory; displacement addressing is used
with any register-memory transfer.

* Direct addressing requires 3 bytes of
memory, whereas displacement addressing

requires 4 bytes.

The Intel Micr p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
il Architectur P g amming, and Interfacing, Eighth Editio vo Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

» Address is formed by adding the displacement
to the default data segment (DS) address or
an alternate segment address.

Source Destination
Memory
Register AX P- Address
11234 H
Address Generation

DS x10H + DISP =
10000H+1234H =11234H

Note : DS = 1000H

Type Instruction
Direct MOV [12334H],AX

The Inte/ /I/l/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON [RiSRCCla v, Pentium /i, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programm/ng and Interfacing, Eighth Edition ' Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

a. Direct Addressing

* Direct addressing with a MOV instruction
transfers data between a memory location,
located within the data segment, and the AL
(8-bit), AX (16-bit), or EAX (32-bit) register.
— usually a 3-byte long instruction

« MOV AL,DATA loads AL from the data
segment memory location DATA (1234H).

— DATA is a symbolic memory location, while
1234H is the actual hexadecimal location

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pent/'L'/m Pro Processor, Pe'm‘/'um /I, Pentium, 4 anq’ Core2 W/th 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A\ rchifecture, Programming, and Interfacing, Eighth Edition Yy Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

Figure 3-5 The operation of the MOV AL,[1234H] instruction when DS=1000H .

Memory
11235H
AH AL
EAX 8AH < 8AH 8 A |11234H
EBX 11233H
ECX 11232H

 This instruction transfers a copy contents of
memory location 11234H into AL.

— the effective address is formed by adding
1234H (the offset address) and 10000H
(the data segment address of 1000H times
10H) in a system operating in the real mode

The Inte/ /I/l/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON [RiSRCCla v, Pentium /i, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programm/ng and Interfacing, Eighth Edition YA Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

Note the difference between

MOV AX, 1234H
and

MOV AX,[1234H)]

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition Y4 Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

TABLE 3-3 Direct-addressed instructions using EAX, AX, and AL.
e

Assembly Language Size Operation

MOV AL,NUMBER 8 bits Copies the byte contents of data segment memory
location NUMBER into AL

MOV AX,COW 16 bits Copies the word contents of data segment memory

location COW into AX

MOV EAX, WATER* 32 bits Copies the doubleword contents of data segment
location WATER into EAX

MOV NEWS,AL 8 bits Copies AL into byte memory location NEWS

MOV THERE,AX 16 bits Copies AX into word memory location THERE

MOV HOME,EAX* 32 bits Copies EAX into doubleword memory location HOME

MOV ES:[2000H],AL 8 bits Copies AL into extra segment memory at offset address
2000H

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
IV e YW entium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el Archifecture, Programming, and Interfacing, Eighth Edition v, Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

b. Displacement Addressing

* Almost identical to direct addressing, except
the instruction is 4 bytes wide instead of 3.

* In 80386 through Pentium 4, this instruction
can be up to 7 bytes wide if a 32-bit register
and a 32-bit displacement are specified.

* This type of direct data addressing is much
more flexible because most instructions use |it.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW entium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
—~ S Architecture, Programming, and Interfacing, Eighth Edition) Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

TABLE 3-4 Examples of direct data addressing using a displacement.

#

Assembly Language Size Operation

MOV CH,DOG 8 bits Copies the byte contents of data segment memory
location DOG into CH

MOV CH,DS:[1000H]* 8 bits Copies the byte contents of data segment memory offset |
address 1000H into CH

MOV ES,DATA6 16 bits Copies the word contents of data segment memory
location DATAG into ES

MOV DATA7,BP 16bits Copies BP into data segment memory location DATA7

MOV NUMBER,SP 16 bits Copies SP into data segment memory location NUMBER

MOV DATA1,EAX 3bits Copies EAX into data segment memory location DATA1

MOV EDI,.SUM1 32 bits Copies the doubleword contents of data segment

memory location SUM1 into EDI

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

p EARSO N Pentium Pro Processor, Pentium Il, Pentium, 4, and CoreZ2 with 64-bit Extensions . .
Architecture, Programming, and Interfacing, Eighth Edition Copyright ©2009 by Pearson Education, Inc.

Barry B. Brey vy Upper Saddle River, New Jersey 07458 « All rights reserved.

EXAMPLE 3-6

0000

0000 10
0001 00
0002 0000
0004 AAAA

0000

0017 A0 0000 R
001A 8A 26 0001 R
001E A3 0002 R
0021 8B 1E 0004 R

DATAL
DATAZ
DATA3
DATA4

.MODEL SMALI
.DATA

DB 10H

DB O

DW O

DW OAARAH

.CODE
. STARTUP

MOV AL, DATAl
MOV AH, DATA2
MOV DATA3, AX
MOV BX,DATA4

LEXIT
END

:choose small model
:start data segment

;place 10H into DATAI
;place 00H into DATA2
:place 0000H into DATA3
;place AAAAH into DATA4

:start code segment
;start program

;copy DATALl into AL
;copy DATA2 into AH
;copy AX into DATA3
rcopy DATA4 into BX

;exit to DOS
:end program listing

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and CoreZ2 with 64-bit Extensions
el Archifecture, Programming, and Interfacing, Eighth Edition

Barry B. Brey

Y

Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 « All rights reserved.

* Note the difference in number of bytes used

* The first instruction is direct addressing uses
only 3 bytes with AL register

* The second instruction is displacement
addressing uses 4 bytes with CL register

Q000 AD 1234 R MOV AL,DS:[1234H]
0003 BA OE 1234 R MOV CL,DS:[1234H]
The Intel Micr pr S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
Pentium Pro Pro P t um Il Pentium, 4, and Core2 with 64thxtens/ons Copyright ©2009 by Pearson Education, Inc.
— /\/C/ifeClUr P g amming, and Interfacing, Eighth Editio v Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

V- Register Indirect Addressing

* Allows data to be addressed at any memory
location through an offset address held in any
of the following registers: BP, BX, DI, and Sl.

* In addition, 80386 and above allow register

iIndirect addressing with any extended register
except ESP.

MOV [BX],CX
Address = DS x 10H + BX

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW entium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
el A\ rchifecture, Programming, and Interfacing, Eighth Edition

Yo Upper Saddle River, New Jersey 07458 « All rights reserved.
Barry B. Brey

Memory location = DS x 10 + BX = 01000+0300 = 10300

Source Destination

Memory

Register CL pH Address
10300H

Address Generation

DSx10H + BX =
10000H +0300H = 10300H

Note : DS = 1000H

Type Instruction
Register indirect MOV [BX],CL

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition v Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

Note the difference between

MOV BX , CX
and
MOV [BX],CX

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition vy Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

Figure 3—6 The operation of the MOV AX,[BX] instruction when BX =
1000H and DS = 0100H. Note that this instruction is shown after the
contents of memory are transferred to AX.

Memory location = DS x 10 + BX = 01000+1000 = 00002000 and 00002001

|

00002002

EAX AH AL 3412 2

3 4 1 2 \ 4 00002001
EBX 10 0 0 1000 2000 1 2 00002000

ECX
00001002
CS 00001001
*1000 =
DS 0100 00001000
*After DS is appended with a 0.
The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON Pentium Pro Processor, Pentium Il, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition A Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

* The data segment (DS) is used by default
with register indirect addressing or any other
mode that uses BX, DI, or S| to address
memory.

* If the BP register addresses memory, the
stack segment (SS) is used by default.

— these settings are considered the default for
these four index and base registers

* For the 80386 and above, EBP addresses
memory in the stack segment by default.

« EAX, EBX, ECX, EDX, EDI, and ES| address
memory in the data segment by fault.

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSDN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
- ’; htB tB P g amming, and Interfacing, Eighth Editio Y4 Upper Saddle River, New Jersey 07458 « All rights reserved.
rry ey

* When using a 32-bit reqgister to address
memory in the real mode, contents of the
register must never exceed 0000FFFFH
(Why?).

* In the protected mode, any value can be used

In a 32-bit register that is used to indirectly
address memory.

— as long as it does not access a location outside
the segment, dictated by the access rights byte

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
- ’; htB tB P g amming, and Interfacing, Eighth Editio £ Upper Saddle River, New Jersey 07458 « All rights reserved.
rry ey

* Note that the instruction MOV [DI],10H is
ambiguous.

* |n some cases, indirect addressing requires
specifying the size of the data by the special
assembler directive BYTE PTR, WORD PTR,
DWORD PTR, or QWORD PTR.

— these directives indicate the size of the memory
data addressed by the memory pointer (PTR)

« The directives are with instructions that address
a memory location through a pointer or index
register with immediate data.

.- MOV BYTE PTR[DI],10H is totally clear.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
— ,;rch/tgcté/re, Programming, and Inferfacing, Eighth Edition) Upper Saddle River, New Jersey 07458 « Al rights reserved.
arry B. Brey

* Indirect addressing often allows a program to
refer to tabular data located in memory.

* Figure 3—7 shows the table and the BX
register used to sequentially address each
location in the table.

* To accomplish this task, load the starting
location of the table into the BX register
with a MOV immediate instruction.

 After initializing the starting address of the
table, use register indirect addressing to
store the 50 samples sequentially.

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSDN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
il Architectur P g amming, and Interfacing, Eighth Editio £ Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

Figure 3—7 An array (TABLE) containing 50 bytes that are
Indirectly addressed through register BX.

Memory
Table + 49
Table + 2
Table + 1
EBX 0000 TABLE - Table
The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
IV IIe 1YW entium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A\ rchifecture, Programming, and Interfacing, Eighth Edition v Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

TABLE 3-5 Examples of register indirect addressing.

L T

Assembly Language Size Operation

MOV CX,[BX] 16 bits Copies the word contents of the data segment memory
location addressed by BX into CX

MOV [BP],DL* 8 bits Copies DL into the stack segment memory location
addressed by BP

MOV [DI],BH 8 bits Copies BH into the data segment memory location
addressed by DI

MOV [DI],[BX] — Memory-to-memory transfers are not allowed except with
string instructions

MOV AL,[EDX] 8 bits Copies the byte contents of the data segment memory
location addressed by EDX into AL

MOV ECX,[EBX] 32 bits Copies the doubleword contents of the data segment

memory location addressed by EBX into ECX

*Data addressed by BP or EBP are in the stack segment by default, while other indirect addressed instructions
use the data segment by default.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

P EARSO N Pentium Pro Processor, Pentium I, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
/é\rch/tgctgre Programming, and Interfacing, Eighth Edition £ Upper Saddle River, New Jersey 07458 « All rights reserved.
arry rey

EXAMPLE 3-7

0000

0000

0000

0017
001a
001cC
001F
0022
0022
0026
0028
0029
002A

0032 [
0000
]

B8 0000
8E CO

B8 0000 R
B9 0032

26: A1 046C
89 07

43

43

E2 F6

.MODEL SMALL
.DATA

DATAS DW

AGAIN:

50 DUP(?) ;setup

.CODE

. STARTUP

MOV 2X,0

MOV ES,AX

MOV BX,OFFSET DATAS
MOV CX,50

MOV AX,ES:[046CH]
MOV [BX],AX

INC BX

INC BX

LOOP AGAIN

.EXIT

END

:select small model
;start data segment

array of 50 words

;start code segment
;start program

;address segment 0000 with ES
;address DATAS array with BX
;load counter with 50

;get clock wvalue
;save clock wvalue in DATAS
;increment BX to next element

;repeat 50 times

;exit to DOS
;end program listing

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and CoreZ2 with 64-bit Extensions
el Archifecture, Programming, and Interfacing, Eighth Edition

Barry B. Brey

Copyright ©2009 by Pearson Education, Inc.
o Upper Saddle River, New Jersey 07458 « All rights reserved.

* The table information contains 50 samples
(taken from memory location 0000:046C.
Location 0000:046C contains a counter in
DOS maintained by the real-time clock)

 The LOOP instruction repeats the loop and
decrements (subtracts 1 from) the counter
(CX); if CXis not zero, LOOP causes a jJump
to memory location AGAIN. If CX becomes
zero, no jump occurs and this sequence of
iInstructions ends.

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSDN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
- ’; htB tB P g amming, and Interfacing, Eighth Editio £ Upper Saddle River, New Jersey 07458 « All rights reserved.
rry ey

V- Base-Plus-Index Addressing

« Similar to indirect addressing because it
indirectly addresses memory data.

* The base register often holds the beginning
location of a memory array.

— the index register holds the relative position
of an element in the array

— whenever BP addresses memory data, both the
stack segment register and BP generate the
effective address

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW entium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
— grch/f;cté/re, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.
arry B. Brey

Locating Data with Base-Plus-Index
Addressing

* Figure 3—8 shows how data are addressed by
the MOV DX,[BX + DI] instruction when the
microprocessor operates in the real mode.

* The Intel assembler requires this addressing
mode appear as [BX][DI] instead of [BX + DI].

 The MOV DX,[BX + DlI] instruction is MOV
DX,[BX][DI] for a program written for the Intel
ASM assembler.

Intel Microprocessors.: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

The
PEARSON Pem‘/'L'/m Pro Processor, Pe'nt/um /1, Pentium, 4 anq’ Core2 M(/'t.h 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition <A Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

Figure 3-8 An example showing how the base-plus-index addressing
mode functions for the MOV DX,[BX + DI] instruction. Notice that
memory address 02010H is accessed because DS=0100H, BX=1000H
and DI=0010H.

Address =DS x 10 + BX + DI = 01000+01000+0010 = 02010H and 02011H

Memory
D, T—

02015H
EAX

02014H
EBX 1 0 0 0 02013H
ECX 02012H

A 02011H
EDX A B 0 3 ./I ABO3
\I 0 3 02010H —=+—

0200FH
ESP Y
EBP

1000H
ESI
0010H 2010H
EDI 0010 —'é)—"o
1010H
4 1000H
DS = 10H
The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
Pentium Pro Processor, Pentium I, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A\ rchifecture, Programming, and Interfacing, Eighth Edition T Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

VI- Register Relative Addressing

« Similar to base-plus-index addressing and
displacement addressing.

— data in a segment of memory are addressed by
adding the displacement to the contents of a base
or an index register (BP, BX, DI, or Sl)

* Figure 3—10 shows the operation of the MOV
AX,[BX+1000H] instruction.

* A real mode segment is 64K bytes long.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW entium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
— grch/f;cté/re, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.
arry B. Brey

Figure 3—10 The operation of the MOV AX, [BX+1000H] instructon, when

BX=0100H and DS=0200H .
Address Generation = DS X 10H + [BX + offset] = 02000+100+1000=3100H and

3101H

Memory
e ——— |
Register array
A 101H
EAX Pl AO| 76 <__ A076 2 319
eex| 0000 [o01] 00 I OR L] (SR 255
|~ - 0100H
1000H
1100H e ——

DS x 10H

@L&

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
T' TN AIe) W entium Pro Processor, Pentium Ii, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
Architecture, Programming, and Interfacing, Eighth Edition o) Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

VIl- Base Relative-Plus-Index
Addressing

» Similar to base-plus-index addressing.
— adds a displacement

— uses a base register and an index register to
form the memory address

* This type of addressing mode often addresses
a two-dimensional array of memory data.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

Addressing Data with Base
Relative-Plus-Index

» Least-used addressing mode.

* Figure 3—12 shows how data are referenced if
the instruction executed by the microprocessor
is MOV AX,[BX + S| + 100H].

— displacement of 100H adds to BX and Sl to form
the offset address within the data segment

* This addressing mode is too complex for
frequent use in programming.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
— ,;rch/tgcté/re, Programming, and Inferfacing, Eighth Edition ov Upper Saddle River, New Jersey 07458 « Al rights reserved.
arry B. Brey

Figure 3—12 An example of base relative-plus-index
addressing using a MOV AX,[BX+SI+100H] instruction.
Note: DS=1000H

Memory
Register array

L A3 |10131H

EAX A3l 16 /N A316
\J 16 |10130H =—
EBX 00|20
ECX
EDX
0020H

ESP
EBP nozm-l 0130H
ESI 0010 |

0010H 10130H

0100H ps % 10H

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition ot Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

TABLE 3-8 Example base relative-plus-index instructions.

M

Assembly Language Size Operation

MOV DH,{BX+DI+20H] 8 bits Copies the byte contents of the data segment memory location
addressed by the sum of BX, DI and 20H into DH

MOV AX,FILE[BX+DI] 16 bits Copies the word contents of the data segment memory location
addressed by the sum of FILE, BX and Dl into AX

MOV LIST[BP+DI],CL 8 bits Copies CL into the stack segment memory location addressed
by the sum of LIST, BP, and D

MOV LIST[BP+S!+4],DH 8 bits Copies DH into the stack segment memory location addressed

by the sum of LIST, BP, SI, and 4

MOV EAXFILE[EBX+ECX+2] 32 bits Copies the doubleword contents of the memory location
addressed by the sum of FILE, EBX, ECX, and 2 into EAX

W

The Intel /I/l/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON KecRlla s r, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions c . .
et Architecture, Pro ramming, and Interfacing, Eighth Copyright ©2009 by Pearson Education, Inc.
g 9 g, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.

Barry B. Brey

Scaled-Index Addressing

* Unique to 80386 - Core2 microprocessors.

— uses two 32-bit reqgisters (a base register and
an index register) to access the memory

* The second register (index) is multiplied by a
scaling factor.

— the scaling factor can be 1x, 2x, 4x, 8x

* A scaling factor of is implied and need not be

iIncluded in the assembly language instruction
(MOV AL,[EBX + ECX]).

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
— ,;rch/tgcté/re, Programming, and Inferfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.
arry B. Brey

TABLE 3-8 Examples of scaled-index addressing.

e

Assembly Language Size Operation

MOV EAX [EBX+4ECX] 32bits Copies the doubleword contents of the data segment memory
location addressed by the sum of 4 times ECX plus EBX into EAX

MOV [EAK+2'EDI+100HCX 16bits Copies CX into the data segment memory location addressed by
the sum of EAX; 100H, and 2 times EDI

MOV AL [EBP+2'EDI+2) Bbis Copies the byte contents of the stack segment memory location
addressed by the sum of EBP, 2, and 2 times EDI into AL

MOVEAXARRAYI'ECK] 32bits Copies the doubleword contents of the data segment memory
location addressed by the sum of ARRAY and 4 times ECX into EAX

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV e YW entium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el Archifecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.
Barry B. Brey

3—-3 STACK MEMORY-ADDRESSING
MODES

* The stack plays an important role in all
MICroprocessors.

— holds data temporarily and stores return
addresses used by procedures

« Stack memory is LIFO (last-in, first-out)
memory

— describes the way data are stored and removed
from the stack

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW entium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
— grch/f;cté/re, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.
arry B. Brey

- Data are placed on the stack with a PUSH
Instruction; and removed with a POP instruction.

 The Call instruction also uses the stack to hold the
return address for the procedures and a RET (return)
instruction to remove the return address from the

stack.

« Stack memory is maintained by two registers:
— the stack pointer (SP or ESP)
— the stack segment register (SS)

 Whenever a word of data is pushed onto the stack,

-The high-order 8 bits are placed in the location
addressed by SP — 1.

-The low-order 8 bits are placed in the location
addressed by SP — 2

The Intel Micr ,0/' S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSDN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
il Architectur P g amming, and Interfacing, Eighth Editio °q Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

* The SP is decremented by 2 so the next word
Is stored in the next available stack location.
— the SP/ESP register always points to an area of

memory located within the stack segment.

* In protected mode operation, the SS register
holds a selector that accesses a descriptor for
the base address of the stack segment.

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
- ’; htB tB P g amming, and Interfacing, Eighth Editio T Upper Saddle River, New Jersey 07458 « All rights reserved.
rry ey

(a) PUSH BX places the contents of BX onto the stack;

Whenever a word of data is pushed onto the stack,
-The high-order 8 bits are placed in the location addressed by SP — 1
-The low-order 8 bits are placed in the location addressed by SP — 2

after the daita are stored by a PUSH, the contents of the SP register
decrement by two

Memory
Register array —]
EAX -
SP-1
EBX 1234 1234 _J\ 12 I
j/' 34 |je—r
ECX - SP-2
EDX
/—/V‘.
ESP +
o

SS x10H

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and CoreZ2 with 64-bit Extensions
e A rchifecture, Programming, and Interfacing, Eighth Edition

Barry B. Brey

Copyright ©2009 by Pearson Education, Inc.
0 Upper Saddle River, New Jersey 07458 « All rights reserved.

(b) POP CX removes data from the stack and places them
Into CX. Instruction is shown after execution.
When data are popped from the stack,

- The low-order 8 bits are removed from the location addressed by

SP.

- The high-order 8 bits are removed from the location addressed by
SP+1; the SP register is incremented by 2

Register array

Memory
EAX N
After execution
SP+2
EBX
SP+1
ECX 12 34<lL 1234 12 <
EDX 34
ﬁ

ESP ——?
o rr——

SS x 10H

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and CoreZ2 with 64-bit Extensions
e A rchifecture, Programming, and Interfacing, Eighth Edition

Barry B. Brey

Copyright ©2009 by Pearson Education, Inc.
1y Upper Saddle River, New Jersey 07458 « All rights reserved.

 Note that PUSH and POP store or retrieve
words of data—never bytes—in 8086 - 80280.

80386 and above allow words or doublewords
to be transferred to and from the stack.

» Data may be pushed onto the stack from any
16-bit register or segment register.

—in 80386 and above, from any 32-bit extended
register

« Data may be popped off the stack into any
register or any segment register except CS.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

« PUSHA and POPA instructions push or pop
all of the registers, except segment registers,
on the stack.

* These instructions are not available on early
8086/8088 processors.

» 80386 and above allow extended registers to
be pushed or popped.

— 64-bit mode for Pentium and Core2 does not
contain a PUSHA or POPA instruction

The Intel Micr p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
il Architectur P g amming, and Interfacing, Eighth Editio it Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

TABLE 3-11 Example PUSH and POP instructions.

Assembly Language Operation
POPF Removes a word from the stack and places it into the flag register
POPFD Removes a doubleword from the stack and places it into the
EFLAG register
PUSHF Copies the flag register to the stack
PUSHFD Copies the EFLAG register to the stack
PUSH AX Copies the AX register to the stack
POP BX Removes a word from the stack and places it into the BX register
PUSH DS Copies the DS register to the stack
PUSH 1234H Copies a word-sized 1234H to the stack
POP CS This instruction is illegal

PUSH WORD PTR[BX]

Copies the word contents of the data segment memory location
addressed by BX onto the stack

PUSHA Copies AX, CX, DX, BX, SP, BP, DI and Sl to the stack

POPA Removes the word contents for the following registers from the
stack: Sl, DI, BP, SP, BX, DX, CX, and AX

PUSHAD Copies EAX, ECX, EDX, EBX, ESP, EBP, EDI, and ESI to the stack

POPAD Removes the doubleword contents for the following registers from
the stack: ESI, EDI, EBP, ESP, EBX, EDX, ECX, and EAX

POP EAX Removes a doubleword from the stack and places it into the EAX
register

PUSH EDI Copies EDI to the stack

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON Pentium Pro Processor, Pentium Il, Pentium, 4, and CoreZ2 with 64-bit Extensions
el Archifecture, Programming, and Interfacing, Eighth Edition <0

Barry B. Brey

Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 « All rights reserved.

Data may be popped off the stack into any register or
any segment register except CS.

The Infel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

|:. EARS C' l\ Pentium Pro Processor, Pentium Il, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.

Architecture, Programming, and Interfacing, Eighth Edition
Barry B. Brey

Upper Saddle River, New Jersey 07458 « All rights reserved.

PEARSON

Example

I SS =33500H and the 5P is FEFLEL,

**(a) Calculate the physical address of the stack.

(c) Calculate the upper range of the stack segment.

(b) Calculate the lower range. : - - -
(d) Show the logical ddL[lf,‘m of the stack.

Solution:
(a) 44FFE (3500[) + FFLE) : (b) 35000 (35000 + 0000) r
d) 3500:FFFE ' -

(c) 44FFF (55000 + FEEE) : (

Example 5o
Acsuining that SP.= 1236, AX.= 24B6, DI = 85C2, and DX = ;.I i.:'_*,, shiow the contents of the stack as

*each of the following iu:iu'u;lmm, exeouted: _ _, 3 SO
PUSH AX Ay s : iy A

T

PUSH: DX il S e

Solution; 3 | *5 SN Rl o i e
47 s = . 1 s Lt S bl Pl M ol Pl o e o el
oesas | | | 5F i
T BN23R . e e ® | Gl st
351253 13 |1 s |20 [B | i BB HESBT e
FLiiage-. S [B6. B6 B6
WE—— |
5811235 7, A N 3 g 24 |

e — 1
FlT"".H] Aher : Alar After
PLISHAX BUSH O PLSH DX

5P <1236 5P = 1234 S = 1212 5P = 1220

L
£
E L |
el
L

The Infel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

p EARSO N Pentium Pro Processor, Pentium I, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
Architecture, Programming, and Interfacing, Eighth Edition

Upper Saddle River, New Jersey 07458 « All rights reserved.
Barry B. Brey

Example

SS:18FC
. S8:18FD.
- SS:18FE,

-1900

oo
£

S5 1BFR:

PR e
POP DX
i PEP . BX
Solution:. | '
SS:1BFA - [~23
S5:16FB 14

=P = 18FA

Alter
FOPCX

culed:

- SP=18FG .. °
La=1423

| 1: , e
i bk ! 2 e =
| & 0
E-B P2 "'": -
i =]
Alter Alter
FOF DX FOFBX '
SP= {BFE ~. GP = 1000
Dx=2Ce8" BX = Feg1~ - -

Assuiling that the stack 1s as shown below and <] |
AESBILNE that th ;%cL1§a{auuurxhquu.amiﬁ’::IEPﬂqshﬂﬂ'um
lers as each of the followine instructions is exe

contents of the stack and rewis.

i

The Infel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON

Barry B. Brey

Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions
Architecture, Programming, and Interfacing, Eighth Edition

Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 « All rights reserved.

Note about DATA ALLOCATION

Example:
1 To declare and initialize an integer array of 8 elements:
marks DW 0,0,0,0,0,0,0,0

d What if we want to declare and initialize to zero an array of
200 elements?

d Assembler provides a directive to do this (DUP
directive)
d Marks DW 200 DUP (0)
O Table1 DW 10 DUP(?) ; 10 words uninitialized
d Name1 DB 30DUP (*?") ; 30 bytes each initialized to ?

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el Archifecture, Programming, and Interfacing, Eighth Edition V. Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

Multiple initializations (cont)

 The DUP directive may also be nested
J Examples

stars DB 4 DUP (3 DUP (‘*), 2 DUP (‘?’), 5 DUP (‘1))

Reserves 40 bytes space and initializes it as
FERQANNPFEXRUNF=2 I T***2211111

matrix DW 10 DUP (5 DUP (0))

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el Archifecture, Programming, and Interfacing, Eighth Edition vy Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

Chapter 4

Data Movement Instructions

Note: These slides are prepared from more than
a site/reference

Instructor:
Dr. Khalid A. Darabkeh

Introduction

dThis chapter concentrates on the data

movement instructions.

JThe data movement instructions
include MOV, MOVSX, MOVZX, PUSH,

POP, BSWAP, XCHG, XLAT, IN, OU
LDS, LES, LFS, LGS, LSS, LAHF, SA
AString instructions: MOVS, LO
STOS, INS, and OUTS.

T, LEA,
HF.

DS,

Instruction Format

16-bit instruction mode

Opcode
1-2 byles

MOD-REG-ARM
0=1 bytes

01 bytes

Displacement

Immediate
0-2 bytes

(a)

Override prefixes
J2-bit instruction mode (BO386 through Pentium 4 only)

Address size * : Operand size
: O-1bytes ! : 0-1bytes :

Opcode
1-2 bytes

- -

MOD-REG-R/M
0-1 bytes

FIGURE 4-1

(D)

The formats

FIGURE 4-2 Byte 1 of
many machine language
instructions, showing the
position of the D- and W-bits.

Opcode

he B086-Pentium 4 instructions. (a

: Scaled-index

Immediate
0-4 bytes

Displacement
04 bytes

e 16-bit form and (b) the 32-bit form.

D — Data flow
D=1: R'M—=>REG

Opcode

D=0: REG=>R/M
W — Weight
W=0; 8-bit

W=1: 16 or 32 bit

Register-size Prefixes

 Default size
— 16-bit instruction mode (either real or protected mode) uses

8- and 16-bit register and addressing modes by default
— 32-bit instruction mode (protected mode only) uses
8- and 32-bit register and addressing modes by default

* Toggle register size
— operate in 16-bit instruction mode and
« a 16-bit register i1s used
— register-size prefix is absent
* a 32-bit register is used
— register-size prefix (66H) 1s appended
— operate In 32-bit instruction mode and
« a 32-bit register is used
— register-size prefix is absent
« a 16-bit register i1s used
— register-size prefix (66H) 1s appended

The address size-prefix (67H) is used in a similar fashion.

Byte 1: The Opcode

DOpcode

Mon REG RMd

[:' I|' I'.

*Opcode: selects the operation performed by the pP

— 1 or 2 bytes long for most (not all) machine instructions
— addition, subtraction, move, and so on

*Direction (D) of data flow
—D=0: REG field — R/M field
—D=1: REG field «

R/M field

*Word (W) flag: whether the data are a byte or others
—W=0: byte

=1:

below 80366 (16-bit instruction mode): word

« [n 80386 and above (32-bit instruction or protecied mode)
— word (if with register-size prefix, 66H)

— double word (if no register-size prefix)

Byte 2: MOD +REG+RM 17 T

MOD(mode), REG(register) and RiM(regmterﬁmemnry)
+MQD: specify the addressing mode

16-hit inslruction mode

+ All 8-bit displacements are sign-extended into f-;-’-:llﬁmﬂ o ;f;:lﬂﬂ?”
16-bit displacements (length=2 bytes) o sign-atandsd displacamant
00H-7FH (positive) — 0000H-007FH 10 1621 deplcenent
80H-FFH (negative) — FF80H-FFFFH ———
J2<Dit instraction mode (30386-Pantium 4)
MOD Fuarchion

00 Mo displacement
01 B-bit sign-sxtandad displacemant
10 32-bit displacement
11 RMis a ragislar
REG and RiM twhan MOD = 11)
Coda W=0{BWsl W=1{Wordl W=7 Doubleward)

*REG and R/M ey AL AX EAX

] i a0 oL CX ECK
register assignments oo 0ol DX EDX
i BL BX EBX
100 AH aF ESF
10 CH EP EBP

1M OH = ESI

111 BH Ol ECI

L] i/

Figure 4-4: MOV BP, SP (=8BEC)

D

W

Opeode

fiaioioitio

1

Opcoda = MOV

0 = Transfar to registar (REG)
W =Ward

MOD = BM I a register

REG = BP

R = 5P

Moo

1 =

.I

1

REG

3

1

R

1i0i0

FIGURE 44 The BBEC Instruction placed into Byle 1 and 2 farmats from Figuras 42 and 4-2

This instuchan is a MOV BE 2P

References

16-bit instruction mode
W00 Funchon
00 Mo displacement
01 B-bit sign-extandad displacamant
10 16-bit displacemeant
11 RIM is & ragister

REG and R/M fwhan MOD =11

Code W=0[Byel W=1/Wordl W= 1 Doubleward)
Q0d AL AX EAX

ac4 Gl CX ECX

{110 0L CX ECX

o BL BX EBX

W AH 5p ESP

M CH 5P EEP

10 DH g ES|

11 BH DI EDI

16-bit R'M Memory-Addressing Modes

HFIE _R Els_ . Ft:?.ll_
+MOD = 11 .
- MOD=00 and R/M=101 RIM Code Addrassing Mode
« [DI] b0 08 [AX+3]]
-MOD=01 or 10, and R/M=101 N e
« [DI + displacement] 011 35:{BP+DI]
100 0SS
101 D3:|0I]
10 55.[BF]"
111 DS:[BY]
‘Hoe. See text section, Special
Addressing Mods

» Special addressing mode: only a displacement

—MOD=00 and R/M=110 (no displacement and SS:[BP]")
since we cannot use addressing mode [BF] without a
displacement

Figure 4-5: MOV DL, [DI] (=8A15)

Oipoode O W Mo REG R
tioieioi1iof|1]oa oioloitioltial
Qpeade = MOV
D = Transfer to register (REG)
W= Byte
MCD = Mo displacemsnt
REG = DL
R = D&:|DN)
FIGURE 4-5 A MOV DL, [D] instruction converlad 1o 18 maching language formm.
REfE rences = RiM Code Addrasaing Mode
Coda W= (Byfa)
000 AL 0c DS |BX+5]
001 CL am DS |BX+H)
410 0L ¢10 S5 [BP+35)
16-hit instruction mode 011 EL WL S5:4BP+DI]
o) AH 100 Ds:[S]
MO0 FLaCHon L 101 050
00 Mo displacement 101 CH 110 E-S-[E-F']‘
01 B-bit sign-axtanded displacamant 110 DH 111 DE.'lE'r?;J
10 16-hit displacement 111 EH i

11 RIM is a registsr

‘Nore See texl section, Special

Addressing kods.

Figure 4-6: MOV [1000H], DL (=88161000H)

Oipooda O W MO0 REG Rl
tioiaini1inlafo oiofoirinf1irio
| Byle 1 Byte 2
Displacarment—I oy Displacament—high
pioipioioioinio oiofoitioininio
Byla 3 - Byta 4 '
Opcads = MOV Special addressmg mc?de:
D = Transfer from registar (REG) Whenever an instruction has only
:’:;ﬂﬁ?f;ﬁ - o A displacement, the MOD field is
R = I =1 § I.-I :I .]
REG = L bkl Always a 00 and the R/M field is always
RM = DS:|BF] 110.

Displacement = 1000H

FIGURE 4=6 Thea MOV [1000H].DL instruction usas the spacial addrassing meodls,

Figure 4-7: MOV [BP], DL (=885600H)

Opode D W MOD REG RiM
tioiainitiofo]o oirloiiiel1irio
Bl | Byla 2

B-bit displacemen . .
: Special addressing mode:

b i oa B RR 8 i y You cannot actually use address
—— — mode [BP] without a

displacement in machine
Oncads = MOV language.
[= Trarefer from registar {REG)
W = Byle
MCD = because B/IM & [BP] (spacial addressing)
REG= 0L
R = DS [EF)

Displacament = J0H

FIGURE 4-T The MOV [EF].DL instruction convertad ta binary maching language.

Immediate instruction
« Figure 4-9: MOV WORD PTR [BX+1000H], 1234H

Opeide W MCD RM
11{|t]|:|1| | 1;.-;. .;.25.5.3.15121 RiM Coce Addressing Mode
— mwl - T E— 000 DS:[BX+S]
e e 3 25
| Byle 3 T ' Eyta 4 ' 101 DS:[0)

110 S8 [B8)"
111 D5 [BX]

Diata—low Data—high

oioititioitioiol {ofoioirioioi1io

Byte & Byle B
Opoode = MOV (mmediats)
W ="Word
MO = 15-hit displacamar
REG = 000 (riod ugad in inimediste addressing)
R = DS [BX]
Displacemant = 1000H
Clata = 1224H

Segment MOV Instructions

+ a special set of register bits ~ ABLE4S Ssumentieg

ister selection. Code Sagmant Ragister
(REG) selects the segment 000 ES
register ‘Mote: MO CS RUM(1E) ang D0 G5

FOP C5 are not allowsd by 010 s

the microprocessor, Tha FS o1 DS

anvd 53 segrents are only avall 40 Fg

able to the 80286-Pentium 4 10 Ge

MICIOEracass0ns, -

* Figure 4-10: MOV BX, CS (8C CBH)

I MO0 REG Rifd
tioioiaitivfo]o tirfoie o
Opcada = MOAY
MOD = KM 5 a registe
REG =CS
Rl = B

FIGURE 410 A MOV Bx.CS insiruction convertad o binary machine languags.

32-bit Addressing Mode

+ 32-bit instruction mode, or 16-bit instruction mode by

using address-size prefix 67H

» Example: 80386 and above Rl Code Funetion
operated in the 16-bit instruction ot E:EEEE
MOV EAX, [EBX+4*ECX] ot 05 (EDX
=67 66 86 04 8B H 100 Uié-[st, s-:alli_-u-inde-x biyte
67H: address size I -
66H: register size 11 DS:[EDI]
BE!H [}pﬂ[jde:’] [:II:]-I:I’] [::I;| D:1, W:l ‘More: See text section, Spacial Addressing Mode.
04H: MOD=00, REG=000, R/M=100 T —
8BH: 55=10, index=001, Base=011 EAX
The scaled-index byte ECXK
CRN Index Base EDX
' : N EBX
ESP
index and base both 3 Egr
contain register numbers 00 =1 10= x4 ED)

M=« 11==§

4-3 Load Effective Address

Load-effective address instructions.

Operation

Loads AX with the address of NUMB

Loads EAX with the address of NUMB

Loads DS and DI with the 32-bit contents of data segment memory location LIST
Loads DS and EDI with the 48-bit contents of data segment memory location LIST
Loads ES and BX with the 32-bit contents of data segment memory location CAT
Loads FS and DI with the 32-bit contents of data segment memory location DATA!
Loads GS and S! with the 32-bit contents of data segment memory location DATAS
Loads SS and SP with the 32-bit contents of memory location MEM

#‘

LDS, LES, LFS, LGS and LSS

Data segment

1FFFF
EAX
EBX 6 F2A — —
-—_——\-.‘___-_-_
Jd 0 11003
coF 0o 11002
EBF 12 11001
ES| 7 A 11000 +—mm
-——l—-_'—-__-
EDI 1000 e
B
1000
CS
¥
DS 1000 o+
10000 10000
e — 11000

FIGURE 4-15 The LDS BX,[DI] instruction loads register BX from addresses 11000H and
11001H and register DS from locations 11002H and 11003H. This instruction is shown at the
point just before DS changes to 3000H and BX changes to 127AH.

4—-4 STRING DATA TRANSFERS

e Five string data transfer instructions: LODS, STOS,
MOVS, INS, and OUTS.

e Each allows data transfers as a single byte, word,
or doubleword.

e Before the string instructions are presented, the
operation of the D flag-bit (direction), DI, and SI
must be understood as they apply to the string
instructions.

The Direction Flag

 The direction flag (D, located in the flag register)
selects the auto-increment or the auto-decrement
operation for the DI and Sl registers during string
operations.

— used only with the string instructions

e The CLD instruction clears the D flag and the STD
Instruction sets it .

— CLD instruction selects the auto-increment mode and
STD selects the auto-decrement mode

DI and S|

e During execution of string instruction, memory
accesses occur through DI and Sl registers.

— DI offset address accesses data in the extra segment
for all string instructions that use it

— S| offset address accesses data by default
in the data segment

e Operating in 32-bit mode EDI and ESI registers are
used in place of DI and SI.

— this allows string using any memory location in
the entire 4G-byte protected mode address space

[.LODS Instruction

Assembly Language Operation

LODSB AL =DS:[SI]; SI=Sl£1

LODSW AX =DS:[SI); S| =812

LDDSD EAX = DS[S'], SI =5|+4 Data sagmert

LODS LIST AL = DS:[SI]; Sl = Sl £ 1 (if LIST is a byte) 1FFFF

LODS DATA1 AX = DS:[SI], Sl = S| + 2 (if DATA1 is a word)

LODS FROG EAX = DS:[SI); SI=S1£4 (f FROGIis a dnublewurtﬂ —
Note: The segment can be overridden with a segment override prefix as in V"_—\'
LODS ES:DATAA4.

Aee—— " | AD 11001
EAX AQ32 R ADEE_| o i
m——— e v |
e
——
ESP
EBP
ESl 1000
={s] 10000
e]
oS 10000
e S 10000 ‘é} 11000

FIGURE 416 The cparation of the LODSW instruction if DS = 1000H, D = 0, 11000H = 32,
and 11001H = AD. This instruction is shown after AX is loaded from memory, but betore 51 in-
crements by 2.

STOS

e Stores AL, AX, or EAX at the extra segment
memory location addressed by the DI register.

* STOSB (stores a byte) stores the byte in AL at the

extra segment memory location addressed by DI.
DI=DIx1

e STOSW (stores a word) stores AX in the memory
location addressed by DI. DI=DI+2

o After the byte (AL), word (AX), or doubleword
(EAX) is stored, contents of DI increment or
decrement.

STOS with a REP

* The repeat prefix (REP) is added to any string data
transfer instruction except LODS. It doesn't make any
sense to perform a repeated LODS operation.

— REP prefix causes CX to decrement by 1 each time the
string instruction executes; after CX decrements, the string
instruction repeats

e If CXreaches a value of O, the instruction terminates

and the program continues.

e |f CXisloaded with 100 and a REP STOSB instruction
executes, the microprocessor automatically repeats
the STOSB 100 times.

STOS: summary

STOS Instruction

Assembly Language Operation
STOSB ES:[DI] = AL; DI =DI + 1
STOSW ES[DIj=AX;Di=DI+2
STOSD ES:[DI] = EAX; DI=DIl + 4
STOS LIST ES:[DI] = AL; DI = DI £ 1 (if list is a byte)
STOS DATA3 ES:[DIl = AX; DI = DI = 2 (if DATAS is a word)
STOS DATA4 ES:[DI] = EAX; DI = DI £ 4 (if DATA4 is a doubleword)

MOVS

Transfers a byte, word, or doubleword from data segment
addressed by Sl to extra segment location addressed by
DlI.

— pointers are incremented or decremented, as dictated by the
direction flag

Only the source operand (Sl), located in the data segment
may be overridden so another segment may be used.

The destination operand (DI) must always be located in
the extra segment.

The only memory-to-memory transfer allowed.

 MOVSB transfers byte from data segment to
extra segment.

e MOVSW transfers word from data segment to
extra segment.

MOVS: Summary

MOYVS Instructions

s The only mstruction for memory to memory movement

TABLE 4-13 Forms of the MOVS instruction.

Assembly Language Operation

MOVSB ES:[DI] = DS:[SI]; DI = DI + 1; Sl = Sl + 1 (byte transferred)

MOVSW ES:[DI] = DS:[SI]; DI = DI £ 2; Sl = Sl £ 2 (word transferred)

MOVSD ES:[DI] = DS:[SI]; DI = DI + 4; Sl = Sl + 4 (doubleword
transferred)

MOVS BYTE1,BYTEZ ES:[DI] =DS:[SI]; DI=DI+1;SI=Sl £ 1 (if BYTE1 and BYTE2
are bytes)

MOVS WORD1,WORD2 ES:[DI] = DS:[SI]; DI=DI + 2, 51 = Sl + 2 (if WORD1 and

WORDZ2 are words)

MOVS DWORD1, DWORD2 ES:[DI] = DS:[SI]; DI = DI £ 4; Sl = Sl + 4 (if DWORD1 and
DWORD2 are doublewords)

Example

DATSEG segment

DATA1 db 'ABCDEFGHIJKLMNOPQRST'
DATA2 db 20 DUP(?)

DATSEG ENDS

CODE_SEG SEGMENT
ASSUME CS:CODE_SEG, DS:DATSEG
MAINPROC FAR
MOV AX, DATSEG
MOV ES, AX
MOV DS, AX
CLD
MOV SI, OFFSET DATA1
MOV DI, OFFSET DATA2
MOV CX,20
REP MOVSB
MAIN ENDP
CODE_SEG ENDS
END MAIN

INS Instruction (not on 8086/88)

= Transfers a byte, word or doubleword of data from an IO
device mnto the ES:DI

Assembly Language Operation
INSB ES:[DI] = [DX]; DI = DI + 1 (byte transferred)
INSW ES:[DI] = [DX]; DI = DI + 2 (word transferred)
INSD ES:[DI] = [DX]; DI = DI £ 4 (doubleword transferred)
INS LIST ES:[DI] = [DX]; DI = DI £ 1 (if LIST is a byte)
INS DATA4 ES:[DI] = [DX]; DI = DI + 2 (if DATA4 is a word)
INS DATAS ES:[DI] = [DX]; DI = DI £ 4 (if DATAS is a doubleword)

Note: |DX] indicates that DX contains the |/O device address. These instructions are not
available on the 8086/8088 microprocessors.

EXAMPLE 4-7

:Using the REP INSE to input data to a memory array
0ooo0 BF QQO00 R MOV DI, OFFSET LISTS raddress array
ooo3 BA 03AC MOV ¥, 3ACH jaddress I1/0
000&a FC CLD rauto-increment
Qo007 B9 0032 Mo CX,50 :1lpad count

000A F3i/6C REP INSB ;input data

INS: More

 Transfers a byte, word, or doubleword of data
from an 1/O device into the extra segment
memory location addressed by the DI register.

— |/O address is contained in the DX register

e Useful for inputting a block of data from an
external 1/O device directly into the memory.

 One application transfers data from a disk drive to
memory.

— disk drives are often considered and interfaced
as |I/0 devices in a computer system

Three basic forms of the INS.

INSB inputs data from an 8-bit 1/O device and
stores it in a memory location indexed by DI.

INSW instruction inputs 16-bit I/O data and stores
it in a word-sized memory location.

INSD instruction inputs a doubleword.

These instructions can be repeated using the REP
prefix

— allows an entire block of input data to be stored
in the memory from an I/O device

OUTS Instruction (not on 8086/88)

= Transters a byte, word or doubleword of data from DS:SI to an
[/O device

Assembly Language Operation
QUTSB [DX] = DS:[SI]; Sl = Sl £ 1 (byte transferred)
OUTSW [DX] = DS:[SI]; SI = S| + 2 (word transferred)
OUTSD [DX] = DS:[SI]; SI = S| + 4 (doubleword transferred)
OUTS DATA7 [DX] = DS:[SI]; Sl = Sl + 1 (if DATA7 is a byte)
QUTS DATAS [DX] = DS:[SI]; Sl = Sl + 2 (if DATAS8 is a word)
QUTS DATAS [DX] = DS:[SI]; Sl = Sl + 4 (if DATA9 is a doubleword)

e ————

Note: [DX] indicates that DX contains the I/O device address. These instructions are not
available on the 8086/8088 microprocessors.

EXAMPLE 4-8

:Using the REP OUTS to output data from a memory array
0000 BE 00&4 R MO S5I,0FFSET ARRAY jaddress array
0003 BA 03AC MOV DX, 3ACH . address T/0
000e FC CLD ;auto-increment
0007 B9 0064 MOV CX,100 ;load count

Qo00A F3/6E REF OUTSE

OUTS : More

Transfers a byte, word, or doubleword of data from the
data segment memory location address by Sl to an 1/0O
device.

— 1/O device addressed by the DX register as with the INS
instruction

OUTSB
OUTSW
OUTSD

INS and OUTS instructions not available on 8086/8088
Mmicroprocessors.

4-5 Miscellaneous Data Tx Instructions

s XCHG (Exchange) Instruction

TABLE 4-16 Forms of the XCHG instruction.

Assembly Language Operation
XCHG AL,CL Exchanges the contents of AL with CL
XCHG CX,BP Exchanges the contents of CX with BP
XCHG EDX ESI Exchanges the contents of EDX with ESI

XCHG AL DATAZ2 Exchanges the contents of AL with data segment memory location DATj
m XLAT (Translate) Instruction

EXAMPLE 4-9

oDoaon
00aa
0o0o4
o008
QD0A
aooo

Qa17
Q019
401c
001D

iF

TF
00

BO
BE
o7
Al

;Using an XLAT to convert from BCD to T-segment code

MODEL SMALL rselect SMALL model

DATA retart of DATA segment
05 SB AF TAELE DE AFH, &6, 5BH, 4FH :T7T-segment lookup table
ED TD 27 DE GEH, BDH, TDH, 27H
&F (WIE] TFH, 6FH
CODET DB Iy ;resaerve for result
.CODE ;start of CODE sagment
L ETARRTUR rgtart of program
a4 MO AL, 4 ;load test data
aa00 R BEONS BX, OFFSET TAELE raddress lockup table
RLAT roonvert to T-segment
000A R MO CODET , AL isave T-segment code

SEXIT saxit to DOS

END rend of file

XCHG : More

Exchanges contents of a register with any other register or
memory location.

— cannot exchange segment registers or
memory-to-memory data

Exchanges are byte-, word-, or doubleword and use any
addressing mode except immediate addressing.

XCHG using the 16-bit AX register with another 16-bit
register, is most efficient exchange.

XCHG AL,[DI] identical to XCHG [DlI], AL
Example: XCHG AL, CL; XCHG CX, BP; XCHG AL,DATA2

XLAT : More

e Converts the contents of the AL register into a
number stored in a memory table.

— performs the direct table lookup technique often used
to convert one code to another

e An XLAT instruction first adds the contents of AL to
BX to form a memory address within the data
segment.

— copies the contents of this address into AL

— The only instruction that adds an 8-bit to a 16-bit
number

Example

There is often a need in computer applications for a table that holds some important
information. To access the elements of the table, 8088/86 —Core2 microprocessors
provide the XLAT (translate) instruction.

The table is commonly referred to as a look-up table.

Assume that one needs a table for the values of x2, where x is between 0 and 9.
First the table is generated and stored in memory:

SQUR_TABLE DB 0,1,4,9,16,25,36,49,64,81

Now one can access the square of any number form 0 to 9 by the use of XLAT. To do
that, the register BX must have the offset address of the look-up table, and the number
whose square is sought must be in AL register.

Then after the execution of XLAT, the AL register will have the square of the number.
The following shows ho to get the square of 5 from the table:
MOV BX, OFFSET SQUR_TABLE
MOV AL,05
XLAT
After execution of this program, the AL register will have 25 (19H), the square of 5.
In fact, XLAT is equivalent to the following code:
SUB AH,AH ; AH=0
MOV SI,AX ; SI=00X
MOV AL,[BX+Sl] ; Get the Slth entry from beginning of the table pointed at by BX.

IN and OUT

e [N & OUT instructions perform |/O operations.

 Contents of AL, AX, or EAX are transferred only
between 1/O device and microprocessor.

— an IN instruction transfers data from an external I/O
device into AL, AX, or EAX

— an OUT transfers data from AL, AX, or EAX to an
external 1/O device

e Only the 80386 and above contain EAX

Two forms of I/O device (port) addressing:

Fixed-port addressing allows data transfer between AL,
AX, or EAX using an 8-bit I/O port address.

— port number follows the instruction’s opcode

Variable-port addressing allows data transfers between
AL, AX, or EAX and a 16-bit port address.

— the I/O port number is stored in register DX,
which can be changed (varied) during the execution of a
program.

The port address appears on the address bus during an
|/O operation. And extended by zeros in the case of 8-bit
port address.

In and OUT (2)

Microprocessor-based system

(Port data)
Contents of register AX Data bus (D0-D15)
(Port address)
0019H Address bus (A0-A15)

(Port control)

= |OWC

FIGURE 4-18 The signals found in the microprocessor-based system for an OUT 19H,AX
instruction.

IN and OUT

= For data exchange between a microprocessor and I'O devices

Assembly Language

Operation

IN AL,p8
IN AX,p8

IN EAX,p8

IN AL,DX

IN AX,DX

IN EAX,DX
OUT p8,AL
OUT p8,AX
OUTp8,EAX
OUT DX,AL
OUT DX,AX
OUT DX,EAX

8-bits are input to AL from |/O port p8
16-bits are input to AX from I/O port p8
32-bits are input to EAX from /O port p8
8-bits are input to AL from |/O port DX
16-bits are input to AX from |/O port DX
32-bits are input to EAX from I/O port DX
8-bits are output from AL to I/O port p8
16-bits are output from AX to I/O port p8
32-bits are output from EAX to I/O port p8
8-bits are output from AL to I/O port DX
16-bits are output from AX to I/O port DX
32-bits are output from EAX to IO port DX

Note: p8 = an 8-bit I/O port number and DX = the 16-bit port address held in DX.

Miscellancous Data Tx Instructions

m MOVSX (move with sign extend) — in x386+
s MOVZX (move with zero extend) — in x386+
s BSWAP (byte swap; 14, 2 < 3) — 1n x486+

m CMOYV (conditional move) — in Pentium+

MOVSX: Move and sign extend BSWAP :Takes the contents of any 32-bit
MOVZX: Move and zero extend register and swaps the first byte with the
Found only in 386 and above fourth, and the second with the third.
Examples: BSWAP (byte swap) is available only in
MOVSX CX,AL; MOVSX BX,DATA1; 80486—Pentium 4 microprocessors

MOVZX EBP,DI; MOVZX EAX, DATA3; ~ Example: BSWAP EAX

TAE!.E 4-19 The MOVSX
and :MOVZX instructions.

Assembly Language

Operation

MOVSX CX,BL
MOVS> ECX,AX
MOVSX BX,DATA1
MOVSX EAX,[EDI]

MOVSX RAX,[RDI]

MOVZXx DX,AL
MOVZX EBP,DI
MOVZX DX,DATA2
MOVZX EAX,DATA3
MOVZX RBX,ECX

Sign-extends BL into CX
Sign-extends AX into ECX
Sign-extends the byte at DATA1 into BX

Sign-extends thhe word at the data segment memary
location addressed by EDI into EAX

Sign-extends the doubleword at address RDI into
RAX (€4-bit mode)

Zero-extends AL inio DX

Zero-extends DI into EBP

Zero-extends the byte at DATA2 into DX
Zero-extends the word at DATA3 into EAX
Zero-extends ECX irnto RBX

CMOV (Conditional Move)

Many variations of the CMOV instruction.

— these move the data only if the condition is true
New to the Pentium-above
CMOVZ instruction moves data only if the result from

some prior instruction was a zero.

— destination is limited to only a 16- or 32-bit register, but the

source can be a 16- or 32-bit register or memory location
Because this is a new instruction, you cannot use it with
the assembler unless the .686 switch is added to the
program

TABLE 4-20 The conditional move instructions.

CMOVP or CMOVPE

Move if parity or move if parity even

Assembly Language Flag(s) Tesied Operation
CMOVB C=1 Move if below
CMOVAE C=0 Move if above or eq:al
CMOVBE Z=1ier C= Move if below or equ:al
CMQGVA Z=0andC=0 Move of above
CMOVE or CMOVZ Z=1 Move if equal or movz if zero
CMOVNE or CMOVNZ Z=0 Move if not equal or move if not zero
CMOVL Sl=0 Move if less than
CMOVLE Z=10rS!=0 Move if less than or equal
CMOVG Z=0and&=0 Move if greater than
CMOVGE S=0 Move if greater than or equal
CMOVS S=1 Move if sign (negative)
CMOVNS S=0 Move if no sign (positive)
CcMOVvC C=1 Move if carry
CMOVNC C=0 Move ii no carry
CMOVO Q=1 Move ii overflow
CMQVNO Q=10 Move if no overflow

P=1

P=0

CMOVNP or CMOVPO

Move if no parity or move if parity odd

CMOVA 16, r/mi16
CMOVA r32, r/m32

CMOVAE r16, r/m16
CMOVAE r32, r/m32

CMOVB r16, r/mi16
CMOVB r32, r/m32

CMOVBE r16, r/mi6
CMOVBE r32, r/m32

CMOVCrl16, r/mi16
CMOVC r32, r/m32

CMOVE r16, r/mi6
CMOVE r32, r/m32

CMOVcc

Move if above (CF=0 and ZF=0)
Move if above (CF=0 and ZF=0)
Move if above or equal (CF=0)
Move if above or equal (CF=0)

Move if below (CF=1)
Move if below (CF=1)

Move if below or equal (CF=1 or ZF=1)
Move if below or equal (CF=1 or ZF=1)

Move if carry (CF=1)
Move if carry (CF=1)

Move if equal (ZF=1)
Move if equal (ZF=1)

CMOVecc: Example

.Model Tiny
.686

.code
.startup

MOV BX,0AAO0H

MOV DX,0BBOOH

CMOVAE DX,BX ; Now: DX =0AAOO0H
.exit
END

4-6 Segment Override Prefix

Assembly Language Segment Accessed Default Segment
MOV AX,DS:[BP] Data Stack

MOV AX,ES:[BP] Extra Stack

MOV AX,SS:[DlI] Stack Data

MOV AX,CS:LIST Code Data

MOV AX,ES:[SI] Extra Data

LODS ES:DATA1 Data Extra

MOV EAX,FS:DATAZ2 Data FS

MOV BL,GS:[ECX] Data GS

UThe segment override prefix, which may be added to almost any instruction in

Any memory addressing mode, allows the programmer to deviate from the default
segment.
UThe segment override prefix is an additional byte that appends the front of an
instruction to select an alternate segment register.
UThe only instructions that cannot be prefixed are the jump and call instructions that
must use the code segment register for address generation.

4-7 Assembler Directives

Processor Specific: .286, .286P... .586, .586P
Co-processor Specific: .287, .387

ASM Specific: .model, .startup, .exit

Data definition: DB, DW, DWord, DD, DQ, DT
Start definition: macro, proc, segment, stack, struc
End definition: endm, endp, ends, end

Classifiers: byte, word, ptr, near, far, equ, offset

Coding Classifiers: org, usel6, use32

4—7 ASSEMBLER DETAIL

e The assembler can be used in two ways:
— Models: unique to a particular assembler

— full-segment definitions that allow complete control
over the assembly process and are universal to all
assemblers

* |n most cases, the inline assembler found in
Visual is used for developing assembly code for
use in a program

— occasions require separate assembly modules using
the assembler

Directives

Pseudo-operations

Indicate how an operand or section of a program is to be processed
by the assembler.

— some generate and store information in the memory; others do not
The DB directive stores bytes of data in the memory.

BYTE PTR indicates the size of the data referenced by a pointer or
index register.

Inline assembler which is a part of VC++ does not use directives
Complex sections of assembly code are still written using MASM.

By default the assembler accepts 8086/8088 instructions, unless the
program is processed by MP selection switches

Storing Data in a Memory Segment

e DB, DW, and DD are most often used with MASM
to define and store memory data.

e If a numeric coprocessor executes software in the
system, the DQ (define quadword) and DT (define
ten bytes) directives are also common.

e These directives label a memory location with a
symbolic name and indicate its size.

e Memory is reserved for use in the future by using
a question mark (?) as an operand for a DB, DW,
or DD directive.

— when ? is used in place of a numeric or ASCII value,
the assembler sets aside a location and does not
initialize it to any specific value

— DUP: creates array with or without initial values

e |tisimportant that word-sized data are placed at
word boundaries and doubleword-sized data are
placed at doubleword boundaries.

— if not, the microprocessor spends additional
time accessing these data types

ASSUME, EQU, and ORG

e Equate directive (EQU) equates a numeric, ASCII,
or label to another label.

— equates make a program clearer and simplify
debugging

— EX: TEN EQU 10
MOV AL, TEN

e The ORG (origin) statement changes the starting
offset address of the data or code segments.

e At times, the origin of data or the code must be

assigned to an absolute offset address with the
ORG statement.

e ASSUME tells the assembler what names have

been chosen for the code, data, extra, and stack
segments.

— Used only with full-segment definition

Example

DATSEG segment

DATA1 db 'ABCDEFGHIJKLMINOPQRST’
ORG 30H

DATA2 db 20 DUP(?)

DATSEG ENDS

CODE_SEG SEGMENT
ASSUME CS:CODE_SEG, DS:DATSEG
MAINPROC FAR
MOV AX, DATSEG
MOV ES, AX
MOV DS, AX
CLD
MOV SI, OFFSET DATA1
MOV DI, OFFSET DATA2
MOV CX,20
REP MOVSB
MAIN ENDP
CODE_SEG ENDS
END MAIN

PROC and ENDP

Indicate start and end of a procedure (subroutine).
— they force structure because the procedure is clearly defined

Both the PROC and ENDP directives require a label to
indicate the name of the procedure.

RET instruction executed the end of the proc.

USES directive indicates which registers are used by the
proc.

— The assembler automatically save and restore them using the
stack instructions.

— EX: PRC1 PROC USES AX BX CX

— Use .LISTALL directive to view all instruction generated by
assembler

e The PROC directive, which indicates the start of a
procedure, must also be followed with a NEAR or
FAR.

— A NEAR procedure is one that resides in the same code
segment as the program, often considered to be /ocal

— A FAR procedure may reside at any location in the
memory system, considered global

e The term global denotes a procedure that can be
used by any program.

* [ocal defines a procedure that is only used by the
current program.

CODE_SEG

assme cscooe seo, osomses PROC and ENDP: Summary

MAIN PROC FAR
MOV AX, DATSEG
MOQV ES, AX
MOQV DS, AX
CALL SUBR1
CALL SUBR2
CALL SUBR3
MAIN ENDP If version 6.x of the Microsoft MASM assembler
SUBRL PROC Program is available, the PROC directive specifies
And automatically saves any registers used within the
Procedure. The USES statement indicates which
SUBR1 ENDP Registers are used by the procedure, so that the
SUBR? PROC Assembler can automatically save them before your

Procedure begins and restore them before the
Procedure ends with the RET instruction.

SUBR2 ENDP

SUBR3 PROC For example, the PRC1 PROC USES AX BX CX statement

automatically pushes AX, BX,and CX on the stack before
the procedure begins and pops them form the stack

SUBR3 ENDP before the RET instruction executes at the end of the

CODE_SEG

ENDS procedure.
END MAIN

Memory Organization

e The assembler uses two basic formats for
developing software:

— one method uses models; the other uses full-segment
definitions

e Memory models are unique to MASM.
* The models are easier to use for simple tasks.

 The full-segment definitions offer better control
over the assembly language task and are
recommended for complex programs.

Models

There are many models available to the MASM assembler, ranging
from tiny to huge.

.MODEL memsize

— TINY: all software and data fit into 64kb memory segment. Useful for small
programs. assembled as a command (.COM) program

— SMALL: one data segment with one code segment for a total of 128kb of
memory. assembled as an execute (.EXE) program

Start of segments: .CODE, .DATA, .STACK

Start of instructions and load segment registers with segment
addresses: .STARTUP

Exit to DOS: .EXIT
End of file: END
MP selection : .386, .486, .586, .686 ..

Full-Segment Definitions

e Group names: ‘STACK’, ‘CODE’, and ‘DATA’ are used
so that CodeView effectively used to debug the
program.

 Use assume directive before the program begins.

 The program loader does not automatically
initialize DS and ES. These registers must be
loaded in the program.

 To access CodeView, type CV, followed by the file
name at the DOS command line; if operating
from Programmer’s WorkBench, select Debug

under the Run menu.

e |f the group name is not placed in a program,
CodeView can still be used to debug a program,

but the program will not be de
symbolic form.

ougged in

EXAMPLE 3-2

0000

0100
0103
0106

0109
010B
010D

B8 0000
BB 0000
B9 0000

8B F0
8B F8
8B E8

Examples

MODEL TINY
.CODE
. STARTUP

MOV AX, 0
MOV BX, 0
MOV CX, 0

MOV SI,AX
MOV DI, AX
MOV BP,AX

.EXIT
END

schoose single segment model
rstart of code segment
;start of program

;place 0000H into AX
;place 0000H into BX
;place 0000H into CX

;copy AX into SI
;copy AX 1into DI
;copy AX into BP

;exit to DOS
;end of program

EXAMPLE 3-6

0000

0000
0001
0002
0004

0000

0017
001A
001E
0021

10
00
0000
AAAR

A0 0G00 R
8A 26 0001 R
A3 0002 R
8B 1E 0004 R

.MODEL SMALL
.DATA

DATALl DB
DATAZ DB
DATA3 DW
DATA4 DW

10H

0

0
CAARAH

.CODE
.STARTUP

MOV
MOV
MOV
MOV

AL, DATAL
AH, DATAZ2
DATA3, AX
BX, DATA4

.EXIT

END

;choose small model
;start data segment

;place 10H into DATAI
;:place 00H into DATAZ2
;place 0000H into DATA3
;place AAAAH into DATA4

;start code segment
;start program

;copy DATAl into AL
;copy DATA2 into AH
;copy AX into DATA3
;copy DATA4 into BX

;exit to DOS
;end program listing

STACK_SEG SEGMENT ‘STACK’
DW 100H DUP(?)
STACK_SEG ENDS

DATA_SEG SEGMENT ‘DATA’
LISTA DB 100 DUP(?)
LISTB DB 100 DUP(?)

DATA_SEG ENDS

CODE_SEG SEGMENT ‘CODF’
ASSUME CS:CODE_SEG, DS:DATA_SEG, SS:STACK_SEG
MAIN PROC FAR
MOV AX, DATA_SEG
MOV ES, AX
MOV DS, AX
CLD
MOV SI, OFFSET LISTA
MOV DI, OFFSET LISTB
MOV CX, 100
REP MOVSB
MAIN ENDP
CODE_SEG ENDS
END MAIN

-—-- Jdata segment -----

nams2 S=EGMENT
DATAT DW 2345H
CATAZ A% S8r4H
~=SULT DW ?
nams2 =NDS

;-=--- COde segment —--

nams SEGMENT

MAIN PROC FAR
ASSUME ...

MOV DS,AX
MAN =NDP

nams3 =NDS
=ND MAIN

MQV AX nams2

;SIMPLIFIED FORMAT
.MODEL SMALL
STACK 34

1

.DATA
DATA1 DW 2345H
DATA2 DW 98r4H

?

RESULT DW

‘CODE

MAIN: MOV AX @DATA
MOV DS.AX

———

SND MAIN

Figure 2-3. ~ull vs, Simolified Segmant Dafi;

Intel and MASM documentation

Very Useful Link:

http://web.sau.edu/LillisKkevinM/csci240/masmdocs/

http://web.sau.edu/LillisKevinM/csci240/masmdocs/
http://web.sau.edu/LillisKevinM/csci240/masmdocs/

SUMMARY

e Data movement instructions transfer data
between registers, a register and mem-ory, a
register and the stack, memory and the stack,
the accumulator and 1/0O, and the flags and the

stack.

e Memory-to-memory transfers are allowed only
with the MOVS instruction.

SUMMARY (cont.)

e Data movement instructions include MOV,
PUSH, POP, XCHG, XLAT, IN, OUT, LEA, LOS, LES,
LSS, LGS, LFS, LAHF, SAHF, and the following
string instruc-tions: LODS, STOS, MOVS, INS,
and OUTS.

e The first byte of an instruction contains the
opcode, which specifies the operation
performed by the microprocessor.

e The opcode may be preceded by one or more
override prefixes.

SUMMARY (cont.)

e The D-bit, located in many instructions, selects
the direction of data flow.

e The W-bit, found in most instructions, selects
the size of the data transfer.

e MOD selects the addressing mode of operation
for a machine language instruc-tion's R/M field.

e A 3-bit binary register code specifies the REG
and R/M fields when the MOD = 11.

SUMMARY (cont.)

e The 8-bit registers are AH, AL, BH, BL, CH, CL,
DH, and DL.

e The |6-bit registers are AX, BX, CX, DX, SP, BP, DI,
and Sl.

e The 32-bit registers are EAX, EBX, ECX, EDX, ESP,
EBP, EDI, and ESI.

e To access the 64-bit registers, a new prefix is
added called the REX prefix that contains a
fourth bit.

SUMMARY (cont.)

e By default, all memory-addressing modes
address data in the data segment unless BP or
EBP addresses memory.

e The BP or EBP register addresses data in the
stack segment.

e The segment registers are addressed only by
the MOV, PUSH, or POP instruc-tions.

e The instruction may transfer a segment register
to a 16-bit register, or vice versa.

SUMMARY (cont.)

e The 80386 through the Pentium 4 include two
additional segment registers, FS & GS.

e Data are transferred between a register or a
memory location and the stack by the PUSH
and POP instructions.

e Variations of these instructions allow
immediate data to be pushed onto the stack,
the flags to be transferred between the stack;
all 16-bit registers can transferr between the
stack and registers.

SUMMARY (cont.)

e Opcodes that transfer data between the stack
and the flags are PUSHF and POPF.

e Opcodes that transfer all the 16-bit registers
between the stack and the registers are PUSHA
and POPA.

* In 80386 and above, PUSHFD and POPFD
transfer the contents of the EFLAGS between
the microprocessor and the stack, and PUSHAD
and POPAD transfer all the 32-bit registers.

SUMMARY (cont.)

e The PUSHA and POPA in-structions are invalid
in the 64-bit mode.

e LEA, LDS, and LES instructions load a register or
registers with an effective ad-dress.

e The LEA instruction loads any 16-bit register
with an effective address; LDS and LES load any
16-bit register and either DS or ES with the
effective address.

SUMMARY (cont.)

 In 80386 and above, additional instructions
include LFS, LGS, and LSS, which load a 16-bit
register and FS, GS, or SS.

e String data transfer instructions use either or
both DI and SI to address memory. .

e The DI offset address is located in the extra
segment, and the S| offset address is located in
the data segment.

e |f 80386-Core2 operates in protected mode, ESI
& EDI are used with string instructions.

SUMMARY (cont.)

e The direction flag (D) chooses the auto-
increment or auto-decrement mode of op-
eration for DI and Sl for string instructions.

e To clear D to O, use the CLD instruction to select
the auto-increment mode; to set D to 1, use the
STD instruction to select the auto-decrement
mode.

e Either/both DI and Sl increment/decrement by
1 for a byte operation, by 2 for a word
operation, and 4 for doubleword operation.

SUMMARY (cont.)

e LODS loads AL, AX, or EAX with data from the
memory location addressed by Sl; STOS stores
AL, AX, or EAX in the memory location
addressed by DI; and MOVS transfers a byte, a
word, or a doubleword from the memory
location addressed by Sl into the location
addressed by DI.

SUMMARY (cont.)

e INS inputs data from an 1/O device addressed
by DX and stores it in the memory location

addressed by DI.
e The OUTS instruction outputs the contents of

the memory location addressed by Sl and sends
it to the 1/0 device addressed by DX.

SUMMARY (cont.)

The REP prefix may be attached to any string
Instruction to repeat it.

The REP prefix repeats the string instruction the
number of times found in register CX.

Arithmetic and logic operators can be used in
assembly language.

An example is MOV AX,34*3, which loads AX
with 102.

SUMMARY (cont.)

e Translate (XLAT) converts the data in AL into a

number stored at the memory loca-tion
addressed by BX plus AL.

e [N and OUT transfer data between AL, AX, or
EAX and an external I/O device.

e The address of the I/O device is either stored
with the instruction (fixed-port addressing) or
in register DX (variable-port addressing).

SUMMARY (cont.)

e The Pentium Pro-Core2 contain a new
instruction called CMOV, or conditional move.

e This instruction only performs the move if the
condition is true.

e The segment override prefix selects a different
segment register for a memory lo-cation than
the default segment.

SUMMARY (cont.)

e Assembler directives DB (define byte), DW
(define word), DD (define doubleword), and
DUP (duplicate) store data in the memory
system.

e The EQU (equate) directive allows data or
labels to be equated to labels.

e The SEGMENT directive identifies the start of a
memory segment and ENDS iden-tifies the end
of a segment when full-segment definitions are
In use.

SUMMARY (cont.)

e The ASSUME directive tells the assembler what
segment names you have as-signed to CS, DS,
ES, and SS when full-segment definitions are in
effect.

e |In the 80386 and above, ASSUME also indicates
the segment name for FS and GS.

e The PROC and ENDP directives indicate the
start and end of a procedure.

SUMMARY (cont.)

e The assembler assumes that software is being
developed for the 8086/8088 mi-croprocessor
unless the .286, .386, .486, .586, or .686
directive is used to select one of these other
MIiCroprocessors.

e This directive follows the .MODEL statement to
use the 16-bit instruction mode and precedes it
for the 32-bit instruction mode.

SUMMARY

e Memory models can be used to shorten the
program slightly, but they can cause problems
for larger programs.

e Also be aware that memory models are not
compatible with all assembler programs.

3086/8 ,; 8 h 180286, 80386, 80486 Pentium, Pentium Pro
dracessor. Pentiv ar Li‘iﬁ"ﬂ and Core2 with 64-bit Extenslnrm

EIGHTH EDITION

Barry B. Brey

—

AT RS PEARSON

hmetic and Logic Instructions

Chapter 5

Arithmetic and Logic
Instructions
Note: Most of slides are adapted from Barry B.
Brey (Author Slides)

Instructor:
Dr. Khalid A. Darabkeh

The Intel /I/l/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON [RSRllCra v, Pentium /I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A\rchifecture, Programm/ng and Interfacing, Eighth Edition 2 Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

Introduction

* We examine the arithmetic and logic
iInstructions. The arithmetic instructions
Include addition, subtraction, multiplication,
division, comparison, negation, increment, and
decrement.

* The logic instructions include AND, OR,
Exclusive-OR, NOT, shifts, rotates, and the
logical compare (TEST).

The Intel Micra ,D/' s 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON KecRlla s P f um Il, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rChifectur Pg mmg and Interfacing, Eighth Edition v ;

Upper Saddle River, New Jersey 07458 « All rights reserved.
Barry B. Brey

Chapter Objectives

Upon completion of this chapter, you will be able to:

* Use arithmetic and logic instructions to
accomplish simple binary, BCD, and AS-CII
arithmetic.

* Use AND, OR, and Exclusive-OR to
accomplish binary bit manipulation.

 Use the shift and rotate instructions.

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54b’EXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
il Architectur P g amming, and Interfacing, Eighth Editio ¢ Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

Chapter Objectives (cont.)

Upon completion of this chapter, you will be able to:

* Explain the operation of the 80386 through
the Core2 exchange and add, compare and
exchange, double-precision shift, bit test,
and bit scan instructions.

 Check the contents of a table for a match with
the string instructions.

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54b’EXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
- ’; htB tB P g amming, and Interfacing, Eighth Editio ° Upper Saddle River, New Jersey 07458 « All rights reserved.
rry ey

5-1 ADDITION, SUBTRACTION AND
COMPARISON

* The bulk of the arithmetic instructions found in
any microprocessor include addition,
subtraction, and comparison.

* Addition, subtraction, and comparison
iInstructions are illustrated.

* Also shown are their uses in manipulating
register and memory data.

The / tel Micre p/‘ 8086/8088 80186/80188, 80286, 80386, 80486 Pentium,

PEARSGN Pentium Pro Pro P ium 1, Pentium, 4, and Core2 with 54 bit Extensions Copyright ©2009 by Pearson Education, Inc.
- ’; htB tB P g ammi g and Inte 'f cing, Eighth Editio 1 Upper Saddle River, New Jersey 07458 « All rights reserved.
rry ey

Addition

« Addition (ADD) appears in many forms in the
MICroprocessor.

* A second form of addition, called add-with-carry, is
Introduced with the ADC instruction.

* The only types of addition n70f allowed are memory-
to-memory and segment register.
— segment registers can only be moved, pushed,
or popped
* Increment instruction (INC) is a special type of
addition that adds 1 to a number.

 See table 5.1

The Intel /I/l/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON [RSRllCra v, Pentium /I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
et glrch/tgcté/re Programm/ng and Interfacing, Eighth Edition v Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

« Add the content of several registers.

« When arithmetic and logic instructions execute, contents of
the flag register change.
— interrupt, trap, and other flags do not change

« Any ADD instruction modifies the contents of the sign, zero,
carry, auxiliary carry, parity, and overflow flags.

« EX: ADD AX, BX
ADD AX, CX
ADD AX, DX

 Immediate addition is employed whenever constant or known

data are added.

 EX: MOV DL, 12H
ADD DL, 33H

)

The sum 45H is stored in DL. Flags changes, as follows:

Z = 0 (result not zero) S = 0 (result positive)
C =0 (no carry) P =0 (odd parity)
A = 0 (no half carry) O = 0 (no overflow)

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and CoreZ2 with 64-bit Extensions
el A rchifecture, Programming, and Interfacing, Eighth Edition A

Barry B. Brey

Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 « All rights reserved.

« Moves memory data to be added to a register.
« EX: MOV DI, OFFSET NUMB

MOV AL, O

ADD AL, [DI]

ADD AL, [DI+1]

‘Memory arrays are sequential lists of data.
EX: MOV AL, O

MOV SlI, 3

ADD AL, ARRAY|[SI]

ADD AL, ARRAY[SI+2]

ADD AL, ARRAY[SI+4]

The Intel Micr ,0/' S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSDN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
il Architectur P g amming, and Interfacing, Eighth Editio q Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

Array Addition
 Memory arrays are sequential lists of data.

Ex: Suppose we want to add elements 3, 5,
and 7 of an area of memory called ARRAY.
EXAMPLE 5-4 |

0000 BRO
0002 BE
0005 02
0009 02
000D 02

00

0003

84 0000 R
84 0002 R
84 0004 R

MOV
MOV
ADD
ADD
ADD

AL,0O ;clear sum
S1,3 ~ ;address element 3
AL ,ARRAY[SI] ;add element 3

AL,ARRAY[SI+2] ;add element 5
AL,ARRAY[SI+4] ;add element 7

« EX: Suppose that an array of data contains 16-bit
number, to add elements 3, 5, and 7 of an area of
memory called ARRAY a scaled-index form

addressing is used.

The Intel /I/l/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON [l
el A chifecture, Programm/ng and Interfacing, Eighth Edition

Barry B. Brey

r, Pentium /I, Pentium, 4, and CoreZ2 with 64-bit Extensions

Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 « All rights reserved.

EXAMPLE 5-5

0000 66{BB
0006 66|B9
000C 67&8B
0010 66|B9
0016 67&03
001A 66|B0
0020 67&03

00000000 R
00000003
04 4B
00000005
04 4B
00000007
04 4B

MOV
MOV
MOV
MOV
ADD
MOV

- ADD

EBX, OFFSET ARRAY ;address ARRAY
ECX,3 ;address element 3
AX, [EBX+2*ECX] ;get element 3
ECX,5 jaddress element 5
AX, [EBX+2*ECX] ;add element 5
ECX,7 ;address element 7
AX, [EBX+2*ECX] ;add element 7

EBX is loaded with the address ARRAY, and
ECX holds the array element number.

» The scaling factor is used to multiply the
contents of the ECX reqister by 2 to address

words of data.

The Intel /I/l/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

r, Pentium /I, Pentium, 4, and CoreZ2 with 64-bit Extensions

PEARSON [l
el A chifecture, Programm/ng and Interfacing, Eighth Edition

Barry B. Brey

Copyright ©2009 by Pearson Education, Inc.
AR Upper Saddle River, New Jersey 07458 « All rights reserved.

TABLE 5-1 Example addition instructions.

Assembly Language S Operation

ADD AL,BL AL = AL + BL

ADD CX,Dl CX=CX +DI

ADD EBP,EAX EBP = EBP + EAX

ADD CL,44H CL =CL + 44H

ADD BX,245FH BX = BX + 245FH

ADD EDX,12345H EDX = EDX + 12345H

ADD [BX],AL AL adds to the byte contents of the data segment memory location
addressed by BX with the sum stored in the same memory location

ADD CL,[BP] f The byte contents of the stack segment memory location addressed
by BP add to CL with the sum stored in CL

ADD AL,[EBX] The byte contents of the data segment memory location addressed

by EBX add to AL with the sum stored in AL

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
g /é\rch/tgctgre Programming, and Interfacing, Eighth Edition VY Upper Saddle River, New Jersey 07458 « All rights reserved.
arry rey

Assembly Language Operation

ADD BX,[SI+2] The word contents of the data segment memory location addressed
by St + 2 add to BX with the sum stored in BX

ADD CL,TEMP The byte contents of data segment memory location TEMP add to
CL with the sum stored in CL

ADD BX, TEMPIDI] The word contents of the data segment memory location addressed
by TEMP + DI add to BX with the sum stored in BX

ADD [BX+DI],DL DL adds to the byte contents of the data segment memory location
addressed by BX + DI with the sum stored in the same memory
location

ADDBYTE PTRIDI],3 A 3 adds to the byte contents of the data segment memory location
addressed by DI with the sum stored in the same location

ADD BX,[EAX+2*ECX] The word contents of the data segment memory location addressed
by EAX plus 2 times ECX add to BX with the sum stored in BX

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV e YW entium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
g /él;cr':ztgctginrogrammmg and Interfacing, Eighth Edition Y Upper Saddle River, New Jersey 07458 « All rights reserved.

* The INC instruction adds 1 to any register or memory
location, except a segment register.

* The size of the data must be described by using the BYTE
PTR, WORD PTR, DWORD PTR, or QWORD PTR
directives.

* The assembler program cannot determine if the INC [DI]
Instruction is a byte-, word-, or doubleword-sized
Increment.

 EX:INCBL, INC SP, INC EAX, INC BYTE PTR[BX],
INC data1; see also ex 5.6.

« Affect the same flags except the C flag.

* Increment twice or add 2, the same but use INC if you want
to preserve the C flag

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
et ,;rch/tgcté/re, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

TABLE 5-2 Example increment instructions.
L ..

Assembly Language Operation

INC BL BL=BL + 1

INC SP SP=SP + 1

INC EAX EAX = EAX + 1

INC BYTE PTR[BX] Adds 1 to the byte contents of the data segment memory location

- addressed by BX

INC WORD PTRI[S!] Adds 1 to the word contents of the data segment memory location
addressed by Si

INC DWORD PTR[ECX] Adds 1 to the doubleword contents of the data segment memory
location addressed by ECX

INC DATA1 Adds 1 to the contents of data segment memory location DATA1

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

P EARSO N Pentium Pro Processor, Pentium I, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
Arch/tecté/re Programming, and Inferfacing, Eighth Edition Vo Upper Saddle River, New Jersey 07458 « Al rights reserved.
Barry B. Brey

 ADC adds the bit in the carry flag (C) to the operand
data.

— mainly appears in software that adds numbers
wider than 16 or 32 bits in the 80386—Core?2

— like ADD, ADC affects the flags after the addition
« EX: ADC AL, AH; ADC CX, BX; ADC DH, [BX]
* Fig 5.1 illustrate an example:

— cannot be easily performed without adding the carry flag bit
because the 8086—80286 only

adds 8- or 16-bit numbers

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON Penf/l'/m Pro Processor, Pe'nt/um /1, Pentium, 4 anq’ Core2 M(/'t.h 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition ' Upper Saddle River, New Jersey 07458 « Al rights reserved.
Barry B. Brey

Figure 5-1 Addition-with-carry showing how the carry flag
(C) links the two 16-bit additions into one 32-bit addition.
ADD AX,CX
ADC BX,DX

CF

A
(ADC) 17

BX

-+ DX

(ADD)

AX

CX

-
BX AX
The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
IV IIe 1YW entium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A\ rchifecture, Programming, and Interfacing, Eighth Edition VY Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

* Exchange and add (XADD) appears in 80486
and continues through the CoreZ2.

« XADD instruction adds the source to the
destination and stores the sum in the
destination, as with any addition.

— after the addition takes place, the original value of
the destination is copied into the source operand

* One of the few instructions that change the

source.
The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
—~ S Archifecture, Programming, and Interfacing, Eighth Edition YA Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

Subtraction

* Many forms of subtraction (SUB) appear in the
instruction set.

— these use any addressing mode with 8-, 16-, or
32-bit data

— a special form of subtraction (decrement, or DEC)
subtracts 1 from any register or memory location

 Numbers that are wider than 16 bits or 32 bits
must occasionally be subtracted.

— the subtract-with-borrow instruction (SBB)
performs this type of subtraction

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSDN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
- ’; htB tB P g amming, and Interfacing, Eighth Editio 14 Upper Saddle River, New Jersey 07458 « All rights reserved.
rry ey

» After each subtraction, the microprocessor modifies the
contents of the flag register.
— flags change for most arithmetic/logic operations

+ Ex: SUB BX, CX

« The microprocessor also allows immediate operands for the
subtraction of constant data.

« Ex: MOV CH, 22H
SUB CH,44H; flags: z=0, c=1; A=1; s=1; P=1; O=0

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el Archifecture, Programming, and Interfacing, Eighth Edition Y. Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

TABLE 5-4 _Example subtraction instructions.

Assembly Language Operation
SUB CL,BL CL=CL~BL
SUB AX,SP AX=AX-SP
SUB ECX,EBP ECX =ECX-EBP
SuUB DH,6FH DH = DH - 6FH
SuB AX,0CCCCH AX = AX - 0CCCCH
SUB ESI,2000300H ESI = ES| — 2000300H
SUB [DI1},CH Subtracts CH from the byte contents of the data segment memory
addressed by DI and stores the difference in the same memory
location
SUB CH,[BP] Subtracts the byte contents of the stack segment memory location
| .) addressed by BP from CH and stores the difference in CH
SUB AH,TEMP Subtracts the byte contents of memory location TEMP from AH and
stores the difference in AH
SUB DI, TEMPIESI] Subtracts the word contents of the data segment memory location
addressed by TEMP plus ESI from DI and stores the difference in DI
SUB ECX,DATA1 Subtracts the doubleword contents of memory location DATA1 from

ECX and stores the difference in ECX

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV e YW entium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
g /é\rch/tgctgre Programming, and Interfacing, Eighth Edition A3 Upper Saddle River, New Jersey 07458 « All rights reserved.
arry rey

Decrement Subtraction
Subtracts 1 from a register/memory location.

TABLE 5-5 Example decrement instructions.

Assembly Language Operation
DEC BH BH=BH-1
DEC CX CX=CX-1
DEC EDX EDX =EDX -1
DEC BYTE PTR[DI] Subtracts 1 from the byte contents of the data segment memory
location addressed by DI
DEC WORD PTR[BP] Subtracts 1 from the word contents of the stack segment
memory location addressed by BP
DEC DWORD PTRIEBX] ~ Subtracts 1 from the doubleword contents of the data segment
memory location addressed by EBX
DEC NUMB Subtracts 1 from the contents of data segment memory
- location NUMB -
The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386‘ 80486 Pentium, . .
| P 0 s e e 2L e Edcatn v

Barry B. Brey

A subtraction-with-borrow (SBB) instruction functions as a
regular subtraction, except that the carry flag (C), which
holds the borrow, also subtracts from the difference.

— most common use is subtractions wider than 16 bits in
the 8086—80286 microprocessors or wider than 32 bits in
the 80386—Core?2.

— wide subtractions require borrows to propagate through
the subtraction, just as wide additions propagate the
carry

Ex:SBB AH, AL; SBB AX,BX; SBB CL,Z;
SBB BYTE PTR[DI], 3

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
et glrch/tgcté/re Programming, and Interfacing, Eighth Edition Yy Upper Saddle River, New Jersey 07458 « All rights reserved.
arry rey

Figure 5-2 Subtraction-with-borrow showing how the carry
flag (C) propagates the borrow.

SuUB AX,DI

SBB BX,SI

CF

(SBB) } Tv (SUB)
BX AX

BX E— AX

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW entium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A\ rchifecture, Programming, and Interfacing, Eighth Edition Y Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

e

TABLE 5-6 Example subtraction-with-borrow instructions.

X

Assembly Language = Operation
SBB AH,AL AH = AH - AL —carry
SBB AX,BX - AX = AX —~BX - carry
SBB EAX,ECX - EAX = EAX — ECX — carry
SBB CL,2 CL=CL-2-carry
SBB BYTE PTR[DI],3 Both 3 and carry subtract from the data segment memory location
- addressed by DI * .
SBB [DI]L,AL Both AL and carry subtract from the data segment memory location
addressed by DI ;
SBB DI,[BP+2] Both carry and the word contents of the stack segment memory
location addressed by BP plus 2 subtract from DI
- SBB AL,[EBX+ECX] Both carry and the byte contents of the data segment memory

location addressed by EBX plus ECX subtract from AL

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON ZenZL;m /;’ro P:gcessor Pentium //d /;’e;ﬁ;z;m 4, a,|75d Cr‘]orqeé éwfh 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
= il \rchitecture, Programming, and Interfacing, Eighth Edition vo Upper Saddle River, New Jersey 07458 « All rights reserved.

Barry B. Brey

* The comparison instruction (CMP) is a subtraction
that changes only the flag bits.

— destination operand never changes

« Useful for checking the contents of a register or a
memory location against another value.

A CMP is normally followed by a conditional jump
instruction, which tests the condition of the flag bits.

« See table 5-7 for examples.
« EX: CMP AL, 10H

JAE NEXT ; jump if above or equal

The Intel /I/l/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON [RSRllCra v, Pentium /I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
et glrch/tgcté/re Programm/ng and Interfacing, Eighth Edition AR Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

abed
x

T&BfE 5-7 Example comparison instructions.
- — - R . M

Assembly Language Operation
CMP CL,BL CL-BL
CMP AX,SP - AX-SP
CMP EBPESI EBP - ESI
CMP AX,2000H AX —2000H
CMP [DI],CH CH subtracts from the byte contents of the data segment memory
‘ location addressed by D :
CMP CL,[BP] The byte contents of the stack segment memory location addressed
by BP subtracts from CL -
CMP AH,TEMP The byte contents of data segment memory location TEMP subtracts
from AH
CMP DI, TEMP[BX] The word contents of the data segment memory location addressed
- by TEMP plus BX subtracts from DI
CMP AL,[EDI+ESI] The byte contents of the data segment memory location addressed

by EDI plus ESI subtracts from AL

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

P EARSO N Pentium Pro Processor, Pentium I, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
Architecture, Programming, and Interfacing, Eighth Edition Yy Upper Saddle River, New Jersey 07458 « Al rights reserved.
Barry B. Brey

Compare and Exchange (80486—
Core2 Processors Only)

« Compare and exchange instruction
(CMPXCHG) compares the destination
operand with the accumulator.

— found only in 80486 - Core2 instruction sets
* If they are equal, the source operand is copied

to the destination; if not equal, the destination
operand is copied into the accumulator.

— instruction functions with 8-, 16-, or 32-bit data

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54b’EXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
il Architectur P g amming, and Interfacing, Eighth Editio YA Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

« CMPXCHG CX,DX instruction is an example
of the compare and exchange instruction.

— this compares the contents of CX with AX

—if CX equals AX, DX is copied into AX; if CX
is not equal to AX, CX is copied into AX

— also compares AL with 8-bit data and EAX with
32-bit data if the operands are either 8- or 32-bit
* This instruction has a bug that will cause the
operating system to crash.

— more information about this flaw can be obtained
at www.intel.com

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54b’EXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
- ’; htB tB P g amming, and Interfacing, Eighth Editio ¥4 Upper Saddle River, New Jersey 07458 « All rights reserved.
rry ey

5-2 MULTIPLICATION AND DIVISION

 Earlier 8-bit microprocessors could not multiply
or divide without the use of a program that
multiplied or divided by using a series of shifts
and additions or subtractions.

— manufacturers were aware of this inadequacy,
they incorporated multiplication and division into
the instruction sets of newer microprocessors.

* Pentium—CoreZ2 contains special circuitry to do
multiplication in as few as one clocking period.

— over 40 clocking periods in earlier processors

The Intel Micr ,0/' S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSDN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
il Architectur P g amming, and Interfacing, Eighth Editio Y. Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

Multiplication

* Performed on bytes, words, or doublewords,
— can be signed (IMUL) or unsigned integer (MUL)
 Affected flags are C, and O.

— Set: if higher byte of result not zero
— Reset: the result fit exactly the lower half.

* Product after a multiplication always a double-width
product.

— two 8-bit numbers multiplied generate a 16-bit product; two
16-bit numbers generate a 32-bit;

two 32-bit numbers generate a 64-bit product

— In 64-bit mode of Pentium 4, two 64-bit numbers are
multiplied to generate a 128-bit product

The Intel /I/l/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON [RSRllCra v, Pentium /I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
et glrch/tgcté/re Programm/ng and Interfacing, Eighth Edition) Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

* With 8-bit multiplication, the multiplicand is
always in the AL register, signed or unsigned.

— multiplier can be any 8-bit register or memory
location
* Immediate multiplication is not allowed unless
the special signed immediate multiplication
instruction appears in a program.

* The multiplication instruction contains one
operand because it always multiplies the
operand times the contents of register AL.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
— ,;rch/tgcté/re, Programming, and Inferfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.
arry B. Brey

TABLE 5-8 Example 8-bit multiplication instructions.

B .=,

Assembly Language Operation
MUL CL AL is multiplied by CL,; the unsigned product is in AX
IMUL DH AL is multiplied by DH; the signed product is in AX
IMUL BYTE PTR[BX] AL is multiplied by the byte contents of the data segment memory
location addressed by BX; the signed product is in AX
MUL TEMP AL is multiplied by the byte contents of data segment memory
location TEMP; the unsigned product is in AX
EXAMPLE 5-13
0000 B3 05 MOV BL,5 ; load data
0002 B1 0OA MOV CL,10
0004 8A C1 MOV AL, CL ;position data
0006 F6 E3 MUL BL ;multiply
0008 8B DO MOV DX,AX ;position product

AX = BL X CL after multiplication

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el Archifecture, Programming, and Interfacing, Eighth Edition vy Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

* Word multiplication is very similar to byte
multiplication.

« AX contains the multiplicand instead of AL.
— 32-bit product appears in DX-AX instead of AX
* The DX register always contains the most

significant 16 bits of the product; AX contains
the least significant 16 bits.

* As with 8-bit multiplication, the choice of the
multiplier is up to the programmer.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
et ,;rch/tgcté/re, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

* |In 80386 and above, 32-bit multiplication is
allowed because these microprocessors
contain 32-bit registers.

— can be signed or unsigned by using IMUL and
MUL instructions

» Contents of EAX are multiplied by the operand
specified with the instruction.

* The 64 bit product is found in EDX-EAX,
where EAX contains the least significant 32
bits of the product.

The Intel Micr p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
il Architectur P g amming, and Interfacing, Eighth Editio Yo Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

TABLE 5-9 Example 16-bit multiplication instructions.

W

Assembly Language Operation

MUL CX AX is multiplied by CX; the unsigned product is in DX-AX

IMUL DI AX is multiplied by Dl; the signed product is in DX-AX

MUL WORD PTRISI] AX is multiplied by the word contents of the data segment memory

location addressed by SI; the unsigned product is in DX-AX

T .

< vt
a

TABLE 5-10. Example 32-bit multiplication instructions.
m

Assembly Language Operation |
MULECX EAX is multiplied by ECX; the unsigned product is in EDX—EAX
IMUL EDI EAX is multiplied by EDI; the signed product is in EDX-EAX
MUL DWORD PTRIESI] EAX is multiplied by the doubleword contents of the data

segment memory location address by ESI; the unsigned
product is in EDX-EAX

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV e YW entium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el Archifecture, Programming, and Interfacing, Eighth Edition v Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

» 80186 - Core2 processors can use a special
version of the multiply instruction.
— Immediate multiplication must be signed,;
— instruction format is different because it contains

three operands

* First operand is 16-bit destination register; the
second a register/memory location with16-bit
multiplicand; the third 8- or 16-bit immediate
data used as the multiplier.
— Ex: IMUL BX, NUMBER,

The Intel Micr ,0/' S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSDN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
il Architectur P g amming, and Interfacing, Eighth Editio YV Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

IMUL CX,DX,12H

Multiplies 12H times DX and leaves a 16-bit
signed product in CX

CX =12 x DX
Another example
IMUL BX,NUMBER,1000H

Multiplies NUMBER times 1000H and leaves
the product in BX

BX =1000H x NUMBER

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
— ,;rch/tgcté/re, Programming, and Inferfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.
arry B. Brey

IMUL—Signed Multiply

Opcode

F6
F7

/2
/3

Fr /o
OF AR /r
OF AF /1

6B
6B

6B

AR

69 /

69/

69 /
60 /

rib
[rib

rib

rih

riw

rid

I iw
rid

Instruction
IMUL r#fm8
IMUL ’m16
IMUL #’m32
IMUL ri8,rim1a
IMUL r32, r/im32

IMUL r16,r/im 16 imm&
IMUL r32 rim32 imm&8

IMUL ri6,immé&
IMUIL r32 immé&

IMUL r16,r/
mil6immie
IMUL r32 1/
m3Z2imm32
IMUL r 16, irmn 16

IMUL r32imm3Z2

Description

AXe AL = r/m byte

DX:AX — AX # r/mword

EDX.EAX — EAX = m doubleword
word register «— word register = £/mword

doubleword register « doubleword register # r/m
doubleword

word register — /mi& = sign-extended immediate byte

doubloword register «— /im32 + sign-cxtended immediate
byte

word register — word register + sign-extended immediate
byte

doubleword register — doubleword register # sign-extended
immediate byte

word register — #m16 + immediate word

doubleword register — r/m32 = immediate doubleword

word register — /16 = immediate word
doubleword register «— #/m32 + immediate doubloword

e

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

SEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and CoreZ2 with 64-bit Extensions
Architecture, Programming, and Interfacing, Eighth Edition
Barry B. Brey

Copyright ©2009 by Pearson Education, Inc.
v Upper Saddle River, New Jersey 07458 « All rights reserved.

Division
* Occurs on 8- or 16-bit and 32-bit numbers
depending on microprocessor.

—signed (IDIV) or unsigned (DIV) integers
* Dividend is always a double-width dividend,
divided by the operand.

* There is no immediate division instruction
available to any microprocessor.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
—~ S Archifecture, Programming, and Interfacing, Eighth Edition <\ Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

* A division can result in two types of errors:

— attempt to divide by zero

— other is a divide overflow, which occurs when a
small number divides into a large number. (ex:
AX=1300 / 2 the result 1500 in AL cause and
overflow)

* In either case, the microprocessor generates
an interrupt if a divide error occurs.

* In most systems, a divide error interrupt
displays an error message on the video
screen.

* No affected flags are defined

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Penf/'L'/m Pro Processor, Pe'nt/um /1, Pentium, 4 anq’ Core2 M(/'t.h 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition) Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

8-Bit Division
« Uses AX to store the dividend divided by the contents of any 8-bit register
or memory location.

* Quotient moves into AL after the division with AH containing a whole
number remainder.

— quotient is positive or negative; remainder always assumes sign of the
dividend; always an integer

* Numbers usually 8 bits wide in 8-bit division .

— the dividend must be converted to a 16-bit wide number in AX ;
accomplished differently for signed and unsigned numbers.

* For the unsigned number, the most significant 8 bits must be cleared to
zero (zero-extended). The MOVZX instruction can be used to zero-extend
a number in the 80386 through the Core2 processors.

« For singed numbers, the least significant 8 bits are sign-extended into the
most 8 bits. In the micro-processor, a special instruction sign-extends AL

to AH, or convert an 8-bit singed number in AL into a 16-bit singed number
in AX. CBW (convert byte to word) instruction performs this conversion.

* |n 80386 through Core2, MOVSX sign-extends a number.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
g grch/tgcté/re Programming, and Interfacing, Eighth Edition £ Upper Saddle River, New Jersey 07458 « All rights reserved.
arry rey

TABLE 5-11 Example 8-bit division instructions.

m

Assembly Language Operation

DIV CL AXis divided by CL; the unsigned quotiént is in AL and the unsigned
remainder is in AH

IDIV BL AXis divided by BL; the signed quotient is in AL and the signed

remainder is in AH

DIV BYTE PTR[BP] AX is divided by the byte contents of the stack segment memory

location addressed by BP; the unsigned quotient is in AL and the
unsigned remainder is in AH

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
g /é\rch/tgctgre Programming, and Interfacing, Eighth Edition £y Upper Saddle River, New Jersey 07458 « All rights reserved.
arry rey

EXAMPLE 5-14

0000 AQ
0003 B4
0005 F6
0009 A2
000C 88

0000 R
00

36 0002 R
0003 R
26 0004 R

MOV
MOV
DIV

MOV
MOV

AL, NUMB
AH,O0
NUMB1
ANSQ, AL
ANSR, AH

;:get NUMB

; zero-extend
;divide by NUMB1
;save quotient
;save remalinder

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and CoreZ2 with 64-bit Extensions
el Archifecture, Programming, and Interfacing, Eighth Edition

Barry B. Brey

£¢

Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 « All rights reserved.

16-Bit Division

« Sixteen-bit division is similar to 8-bit division
— instead of dividing into AX, the 16-bit number is divided into DX—
AX, a 32-bit dividend
* As with 8-bit division, numbers must often be converted to the
proper form for the dividend.

 If a 16-bit unsigned number is placed in AX, DX must be cleared to
Zero

* In the 80386 and above, the number is zero-extended by using the
MOVZX instruction.

« If AXis a 16-bit singed number, the CWD (convert word to
doubleword) instruction sign-extends it into a singed 32-bit number.

* |f the 80386 and above are available, the MOVSX instruction can
also be used to sign-extend a number.

The Intel /I/l/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON [RSRllCra v, Pentium /I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
g grch/tgcté/re Programm/ng and Interfacing, Eighth Edition g0 Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

TABLE 5-12 Example 16-bit division instructions.

L e —.

Assembly Language Operation
DIV CX DX-AX is divided by CX; the unsigned quotient is in AX and the
unsigned remainder is in DX
IDIV SI DX-AX is divided by SlI; the signed quotient is in AX and the signed
remainder is in DX
DIV NUMB DX-AX is divided by the word contents of data segment memory
NUMB; the unsigned quotient is in AX and the unsigned remainder is
in DX
EXAMPLE 5-15
0000 B8 FFOC MOV AX,-100 ;load a -100
0003 B9 0009 MOV CX,9 ;load +9
0006 99 CWD ; sign-extend
0007 F7 F9 - IDIV X

The CWD (convert word to doubleword) converts the -100 in
AX to -100 in DX-AX before the division.

After the division, the result appear in DX-AX as a quotient of -
11 in AX and a remainder of -1 in DX.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
g érch/tgctgre Programming, and Interfacing, Eighth Edition £ Upper Saddle River, New Jersey 07458 « All rights reserved.
arry rey

32-Bit Division

« 80386 - Pentium 4 perform 32-bit division on signed or
unsigned numbers.

— 64-bit contents of EDX-EAX are divided by the operand
specified by the instruction

* leaving a 32-bit quotient in EAX
* and a 32-bit remainder in EDX

« Other than the size of the registers, this instruction functions
In the same manner as the 8- and 16-bit divisions.

« The CDQ (convert doubleword to quadword) instruction is
used before a signed division to convert the 32-bit contents of
EAX into a 64-bit signed number in EDX-EAX.

The Intel Microproc S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSGN Z ;; um Pro PP P f um //0’7 t/fm 4 a Edcr:. - é(’;"m 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
- tB tB rogramming, and Interfacing, Eighth Editi £y Upper Saddle River, New Jersey 07458 « All rights reserved.
rry ey

o

TABLE 5-13 Example 32-bit division instructions.

Assembly Language Operation
DIVECX EDX-EAX is divided by ECX; the unsigned quotient is in EAX and
the unsigned remainder is in EDX
IDIV DATA4 EDX-EAX is divided by the doubleword contents in data segment

memory location DATA4; the signed quotient is in EAX and the
signed remainder is in EDX

DIV DWORD PTR[EDI] EDX-EAX is divided by the doubleword contents of the data |
segment memory location addressed by EDI; the unsigned quotient

is in EAX and the unsigned remainder is in EDX
L .~~~ "~~~ |

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

P EARSO N Pentium Pro Processor, Pentium I, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
/é\rch/tgctgre Programming, and Interfacing, Eighth Edition A Upper Saddle River, New Jersey 07458 « All rights reserved.
arry rey

Could be used to round the quotient or dropped to
truncate the quotient.

* If division is unsigned, rounding requires the
remainder be compared with half the divisor
to decide whether to round up the quotient

 The remainder could also be converted to a
fractional remainder.

DIV BL MOV AX, 13 Suppose that a fractional remainder is
required instead of an integer remainder.

ADD AH,AH MOV BL 2 A fractional remainder is obtained by
DIV BL saving the quotient. Next, the AL register

CMP AH, BL is cleared to zero. The number remaining
MOV ANSQ, AL in AX is now divided by the original

JB NEXT operand to generate a fractional
MOV AL, 0 remainder.

INC AL DIV BL

. MOV ANSR, AL
NEXT:
The Intel /I/l/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
Pentium Pro Processor, Pentium 1, Pentium, 4, and CoreZ with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programm/ng and Interfacing, Eighth Edition <q

Upper Saddle River, New Jersey 07458 « All rights reserved.
Barry B. Brey

« DATSEG segment EX am p I e

- DATA1 db +13,-10,+19,+14,-18,-9,+12,-9,+16
« ORG 0010H

* AVERAGE dw?

+ REMAINDER dw ?

- DATSEG ENDS

« CODE_SEG SEGMENT

. ASSUME CS:CODE_SEG, DS:DATSEG
. MAIN PROC FAR

. MOV AX, DATSEG

. MOV ES, AX

. MOV DS, AX

. MOV CX,9 ; Load counter

. SUB BX,BX ; Clear BX, Used as accumulator
. MOV SI,OFFSET DATA1

. BACK: MOV AL,[S]]

. cBW ; sign extend into AX
. ADD BX,AX

. INC SI

. LOOP BACK

. MOV AX,BX

. CWD

. IDIV CX

. MOV AVERAGE,AX

. MOV REMAINDER,DX

. MAIN ENDP

« CODE_SEG ENDS

« END MAIN

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el Archifecture, Programming, and Interfacing, Eighth Edition 0. Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

5-3 BCD and ASCII Arithmetic

* The microprocessor allows arithmetic
manipulation of both BCD (binary-coded
decimal) and ASCII (American Standard
Code for Information Interchange) data.

« BCD operations occur in systems such as
point-of-sales terminals (e.g., cash registers)
and others that seldom require complex
arithmetic.

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSDN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
il Architectur P g amming, and Interfacing, Eighth Editio o) Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

BCD Arithmetic

* Two arithmetic techniques operate with BCD
data: addition and subtraction.

 DAA (decimal adjust after addition)
instruction follows BCD addition,

 DAS (decimal adjust after subtraction)
follows BCD subtraction.

— both correct the result of addition or subtraction
so itis a BCD number

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
- ’; htB tB P g amming, and Interfacing, Eighth Editio oY Upper Saddle River, New Jersey 07458 « All rights reserved.
rry ey

DAA Instruction

* DAA follows the ADD or ADC instruction to
adjust the result into a BCD resuilt.

 After adding the BL and DL registers, the
result is adjusted with a DAA instruction
before being stored in CL.

DAS Instruction

* Functions as does DAA instruction, except it
follows a subtraction instead of an addition.

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSDN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
- ’; htB tB P g amming, and Interfacing, Eighth Editio oy Upper Saddle River, New Jersey 07458 « All rights reserved.
rry ey

EXAMPLE 5-18

0000 BA 1234 - MOV
0003 BB 3099 MOV

0006 8A C3
0008 02 C2
000A 27

0008 8a C8
000D 9A C7

000F 12 Co

0011 27
0012 8A E8

MOV
ADD
DAA
MOV
MOV
ADC
DAA
MOV

DX, 1234H
BX, 3099H
AL, BL
AL, DL

CL, AL
AL, BH
AL, DH

CH,AL

11load 1234 BCD
11oad 3099 BCD
;sum BL and DL

;answer to CL
ysum BH, DH an carry

ranswer to CH

The Intel /I/l/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
r, Pentium I, Pentium, 4, and CoreZ2 with 64-bit Extensions

PEARSON [l
el A chifecture, Programm/ng and Interfacing, Eighth Edition

Barry B. Brey

Copyright ©2009 by Pearson Education, Inc.

ot Upper Saddle River, New Jersey 07458 « All rights reserved.

Processing Packed BCD Numbers

* Two instructions to process packed BCD
numbers

1.DAA — Decimal Adjust after addition
Used after ADD or ADC instruction

2.DAS — Decimal adjust after subtraction
Used after SUB or SBB instruction

* No support for multiplication or division

The Intel Micr p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54b’EXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
il Architectur P g amming, and Interfacing, Eighth Editio oo Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

Examples

EX: EX:

27/H =00100111 29H = 00101001
34H = 00110100
69H = 01101001

5BH =01011011 ====ememmememmeemeeeee
Should be 61H (add 6) 92H = 10010010

. Should be 98H (add 6)

52H= 01010010
61H= 01100001

B3H= 10110011 should be 113 (add 60H)

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
il Architectur P g amming, and Interfacing, Eighth Editio o1 Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

Summary: The DAA instruction works as
follows:

MOV AL,71H
ADD AL43H :; AL =B4H
DAA - AL=14 Hand CF =1

* |f the least significant four bits in AL are>9 or if
AF=1.it adds 6 to AL and sets AF

* |f the most significant four bits in AL are >9 or
If CF=1, it adds 60 to AL and sets the CF

The Intel Micr p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54b’EXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
il Architectur P g amming, and Interfacing, Eighth Editio ov Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

Summary: The DAS instruction works as
follows:

MOV AL,71H
SUB AL,43H ; AL =2EH
DAS , AL=28 H

* |f the least significant four bits in AL are>9 or if
AF=1, it subtracts 6 from AL and sets AF

* |f the most significant four bits in AL are >9 or
If CF=1, it subtracts 60 from AL and sets the
CF

The Intel Micra ,D/‘ s 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON KecRlla s P f um Il, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rChifectur P g amming, and Interfacing, Eighth Edition N ; ;

Upper Saddle River, New Jersey 07458 « All rights reserved.
Barry B. Brey

ASCII Arithmetic

 ASCII arithmetic instructions function with
coded numbers, value 30H to 39H for 0-9.

* Four instructions in ASCII arithmetic
operations:
— AAA (ASCII adjust after addition)
— AAD (ASCII adjust before division)
— AAM (ASCII adjust after multiplication)
— AAS (ASCII adjust after subtraction)

* These instructions use register AX as the
source and as the destination.

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSDN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
il Architectur P g amming, and Interfacing, Eighth Editio °q Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

BCD Number System

« BCD number system:
* In computer literature one encounters two terms for BCD numbers:
 Unpacked BCD

* In unpacked BCD, the lower 4 bits of the number represent the BCD
number and the rest of the bits are 0.

« Example: 0000 1001 and 0000 0101 are unpacked BCD for 9 and 5,
respectively.

« Packed BCD

* |In the case of packed BCD, a single byte has two BCD numbers in it, one
in the lower 4 bits and one in the upper 4 bits.

« Example: 0101 1001 is packed BCD for 59. It takes only a byte of memory
to store the packed BCD operands.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el Archifecture, Programming, and Interfacing, Eighth Edition 1. Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

ASCIl numbers

ASCII to BCD conversion:

Key ASCII Binary BCD unpacked
(hex) ASCII to unpacked BCD conversion:
0 30 011 0000 0000 0000
1 31 0110001 | 0000 0001 To convert ASCII data to BCD, the programmer must
5 37 0110010 | 00000010 get rid of the tagged “011” in the highest 4 bits of
3 33 0110011 | 00000011 the ASCII. To do that, each ASCIl number is ANDed
4 34 0110100 | 0000 0100 with “0000 1111” (OFH).
5 35 0110101 0000 0101 .
6 36 0110110 | 00000110 ASCIl to packed BCD conversion:
7 37 0110111 | 00000111 o
3 33 011 1000 | 0000 1000 To convert ASCII to packet BCD, it is first converted
9 39 0111001 | 0000 1001 to unpacked BCD (to get rid of 3) and then combined
to make packed BCD. For example, for 9 and 5 the
keyboard gives 39 and 35 receptively. The goal is to
produce 95H or “1001 0101”, which is called packed
BCD.
Key ASCII Unpacked BCD Packed BCD
4 34 0000 0100 0100 0111
7 37 0000 0111 Or 47H
The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
Pentium Pro Processor, Pentium I, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el Archifecture, Programming, and Interfacing, Eighth Edition T Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

AAA Instruction

« ASCII adjust AL after addition.

* Adjusts the sum of two unpacked BCD values to create an unpacked BCD result.
« The AL register is the implied source and destination operand for this instruction.
« only useful when it follows an ADD instruction

« Ex1: MOV AL, ‘5" ; AL=35
. ADD AL, ‘2" ; add to AL 32 the ASCII of 2
. AAA ; changes 67H to O7H
. OR AL, 30 ; OR AL with 30 to get ASCII
« Ex2: 31 + 39 = 6A this ASCII addition should produce two two-digit ASCII result 10 which is
31 30 H.
MOV AX, 31H ; AX=0031H
ADD AL, 39H ; AX = 006AH
AAA ; AX =0100H
ADD AX,3030H ;AX = 3130 which is the ASCII for 10H

Ex3: SUB AH,AH ;AH=00
MOV AL,7" ;AL=37H
MOV BL, ‘5" ;BL=35H
ADD AL,BL ;37H+35H=6CH therefore AL=6C
AAA ; changes 6CH to 02 in AL and AH=CF=1
OR AX, 3030H ;AX=3132 which is the ASCII for 12H

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

|-. EARSO N Pentium Pro Processor, Pentium I, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
glrch/tgcté/re Programming, and Interfacing, Eighth Edition Y Upper Saddle River, New Jersey 07458 « All rights reserved.
arry rey

AAS Instruction

« Adjusts the result of the subtraction of two unpacked BCD values to create a
unpacked BCD result.

« The AL register is the implied source and destination operand for this instruction.

* only useful when it follows an SUB instruction.

EX: 38 — 39 = FF, the result should be FF 39H

MOV AH, O ; AH=0
MOV AL, ‘8 ;AX=0038H
SUB AL, ‘9’ ;AX=00FFH
AAS ;AX=FFO9H
OR AL, 30h ;AX=FF39H
The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
Pentium Pro Processor, Pentium I, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition Ty Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

AAA

IF ((AL AND OFH) = 9) OR (AF = 1)
THEN
AL « (AL + 6);
AH « AH + 1;
AF « 1;
CF « 1:
ELSE
AF « O;
CF « 0;
Fl;
AL « AL AND OFH;

AAS

IF ((AL AND OFH) > 9) OR (AF = 1)
THEN
AL « AL - 6;
AH «— AH-1;
AF « 1;
CF « 1;
ELSE
CF « 0;
AF « 0;
FI;
AL « AL AND OFH:;

Example:
Sub AH,AH : clear AH
e Mov AL,©6’ AL =36H

« Add AL, 7 ; AL =36H+37H = 6DH
 AAA ; AX=0103H
Or AX,3030H ; AL=3133H

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and CoreZ2 with 64-bit Extensions
el A rchifecture, Programming, and Interfacing, Eighth Edition

Barry B. Brey

Copyright ©2009 by Pearson Education, Inc.
1¢ Upper Saddle River, New Jersey 07458 « All rights reserved.

« Example 1: Positive result
Sub AH,AH ; clear AH
Mov AL,9" ; AL =39H
Sub AL, ‘3" ; AL =39H-33H = 06H
AAS ; AX = 0006H
Or AL,30H ; AL=36

 Example 2 : Negative result
Sub AH,AH ; clear AH
Mov AL,’3" ; AL =33H
Sub AL, 9" ; AL =33H-39H = FAH
AAS ; AX=FF04H
Or AL,30H ;AL=34

The Intel /I/l/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON [RSRllCra v, Pentium /I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A\ /Chifecture, Programm/ng and Interfacing, Eighth Edition <0 Upper Saddle River, New Jersey 07458 « Al rights reserved.
Barry B. Brey

AAM Instruction

« Adjusts the result of the multiplication of two unpacked BCD values to create a pair of

unpacked BCD values.

« The AXregister is the implied source and destination.
« The AAMinstruction is only useful when it follows an MUL instruction.

. EX:
« MOVAL,7 :AL=37H
* AND AL,OF ;AL=07 unpacked BCD
« MOVDL,® :DL=36H
« ANDDL,OFH ;DL=06 unpacked BCD
« MUL DL :AX=ALXDL=07*06=002AH=42
« AAM ;AX=0402 (7x6=42 unpacked BCD)
OR AX,3030H :AX=3432H result in ASCII
« EX:
MOV BL, 5
MOV AL, 6
MUL BL - AX=001EH
AAM : AX= 0300H

The AAM instruction is used to adjust the
content of the AL and AH registers after the
AL register has been used to perform the
multiplication of two unpacked BCD bytes.
The CPU uses the following simple logic:

al =al mod 10

ah = al/10

Exceptional case of division regarding where to
save remainder and quotient.

The AAM instruction accomplish
this conversion by dividing AX by
10. the reminder is found in AL,
and the quotient is in AH. Note that
the second byte of the instruction
contains OA (page 174 of your
book). If the OAH is changed to
OBH, the AAM instruction divides
by 11. Thus, be careful.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and CoreZ2 with 64-bit Extensions
el A rchifecture, Programming, and Interfacing, Eighth Edition

Barry B. Brey

Copyright ©2009 by Pearson Education, Inc.
n Upper Saddle River, New Jersey 07458 « All rights reserved.

AAD Instruction

 Appears before a division.

« The AAD instruction requires the AX register contain a two-digit unpacked BCD
number (not ASCII) before executing.

« Before dividing the unpacked BCD by another unpacked BCD, AAD is used to convert
it to HEX. By doing that the quotient and reminder are both in unpacked BCD.

- Ex:
« MOV AX,3539H ;AX=3539 ASCII for 59
« AND AX,0FOFH ; AH=05, AL=09 unpacked BCD data
_] Convert from Two-Byte Unpacked BCD to
- AAD ; AX=003BH hex equivalent of 59 Binary: To convert from a two-byte unpacked
. MOV BH,08H - divide by 08 BCD to a binary number, multiply the most
.) . _ _ significant byte of the BCD by decimal ten (OAH),
DIV BH ; 3B/08 gives AL=07, AH=03 then add the product to the least significant byte.
« OR AX,3030H ; AL=37H (quotient) AH=33H (rem)
Ex: For example,
00001001 00000010 = 01011100
MOV AX, 0307 ; AX=0307H (unpacked BED) base®
AAD ;AX=0025H
MOV BL, 5
DIV BL :AX=0207
The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
Pentium Pro Processor, Pentium Il, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition Ty Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

5-4 BASIC LOGIC INSTRUCTIONS

* Include AND, OR, Exclusive-OR, and NOT.
—also TEST, a special form of the AND instruction
— NEG, similar to the NOT instruction

* Logic operations provide binary bit control in
low-level software.
— allow bits to be set, cleared, or complemented

* Low-level software appears in machine
language or assembly language form and
often controls the I/O devices in a system.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
— ,;rch/tgcté/re, Programming, and Inferfacing, Eighth Edition A Upper Saddle River, New Jersey 07458 « Al rights reserved.
arry B. Brey

 All logic instructions affect the flag bits.

* Logic operations always clear the carry and
overflow flags

— other flags change to reflect the result

* When binary data are manipulated in a
register or a memory location, the rightmost
bit position is always numbered bit O.

— position numbers increase from bit O to the left, to
bit 7 for a byte, and to bit 15 for a word

— a doubleword (32 bits) uses bit position 31 as its
leftmost bit and a quadword (64-bits) position 63

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

AND

* Performs logical multiplication, illustrated by a
truth table.

* AND can replace discrete AND gates if the
speed required is not too great

— normally reserved for embedded control
applications

* In 8086, the AND instruction often executes
In about a microsecond.

— with newer versions, the execution speed is
greatly increased

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSDN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
- ’; htB tB P g amming, and Interfacing, Eighth Editio v Upper Saddle River, New Jersey 07458 « All rights reserved.
rry ey

Figure 5-3 (a) The truth table for the AND operation and (b) the logic symbol of an
AND gate.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

|-. EARSO N Pentium Pro Processor, Pentium I, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
Architecture, Programming, and Interfacing, Eighth Edition vy Upper Saddle River, New Jersey 07458 « Al rights reserved.
Barry B. Brey

* AND clears bits of a binary number.
— called masking

 AND uses any mode except memory-to-
memory and segment register addressing.

* An ASCII number can be converted to BCD
by using AND to mask off the leftmost four
binary bit positions.

— Ex: MOV BX, 3135H
AND BX, OFOFH

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition

vy Upper Saddle River, New Jersey 07458 « All rights reserved.
Barry B. Brey

Figure 5—-4 The operation of the AND function showing how bits of a number are
cleared to zero.

XX XX XXXX Unknown number
e 00001111 Mask
0000 xxxx Result

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition vy Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

TABLE 5-16 Example AND instructions.

%_

Assembly Language Operation

AND AL,BL AL = AL and BL

AND CX,DX CX = CXand DX

AND ECX,EDI ECX = ECX and EDI

AND RDX,RBP RDX = RDX and RBP (64-bit mode)

AND CL,33H CL = CL and 33H

AND DI 4FFFH DI = DI and 4FFFH

AND ESI,34H ESI = ESI and 34H

AND RAX, 1 RAX = RAX and 1 (64-bit mode)

AND AX,[DI] The word contents of the data segment memory location a-ldressed
by DI are ANDed with AX

AND ARRAY([SI],AL The byte contents of the data segment memory location acdressed
by ARRAY plus Sl are ANDed with AL

AND [EAX],CL CL is ANDed with the byte contents of the data segment m :mory

location addressed by ECX

PEARSUN

The Infel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, .
Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.

Architecture, Programming, and Interfacing, Eighth Edition Ve Upper Saddle River, New Jersey 07458 « All rights reserved.
Barry B. Brey

OR

* Performs logical addition
— often called the /nclusive-OR function

* The OR function generates a logic 1 output if
any inputs are 1.
—a 0 appears at output only when all inputs are 0O

* Figure 5—6 shows how the OR gate sets (1)
any bit of a binary number.

* The OR instruction uses any addressing mode
except segment register addressing.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pem‘/'L'/m Pro Processor, Pe'nt/um /1, Pentium, 4 anq’ Core2 M(/'t.h 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition vo Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

Figure 5-5 (a) The truth table for the OR operation and (b) the logic symbol of an OR
gate.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition v Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

Figure 5—-6 The operation of the OR function showing how bits of a number are set to
one.

XX XX XXXX Unknown number
+ 00001111 Mask

XXXX 1111 Result

Example 5.26
MOV AL, 5
MOV BL,7

MUL BL

AAM

OR AX, 3030H

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition vy Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

TABLE 5-17 Example OR instructions.

Assembly Language Operation
OR AH,BL AL = AL or BL

OR SI,DX S| = Slor DX

OR EAX,EBX EAX = EAX or EBX

OR R9,R10 R9 = R9 or R10 (64-bit mode)

OR DH,0A3H DH = DH or 0A3H

OR SP990DH SP = SP or 990DH

OR EBP10 EBP = EBP or 10

OR RBP,1000H RBP = RBP or 1000H (64-bit mode)

OR DX,[BX] DX is ORed with thie word contents of data segmen! memory
location addressed by BX

OR DATES[DI + 2],AL The byte contents of the data segment memory location
addressed by DI plus 2 are ORed with AL

T A SO S ST, LA, O

The Infel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A\ rchitecture, Programming, and Interfacing, Eighth Edition VA Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

Exclusive-OR

» Differs from Inclusive-OR (OR) in that the 1,1
condition of Exclusive-OR produces a 0.

—a 1,1 condition of the OR function produces a 1

* The Exclusive-OR operation exc/udes this
condition; the Inclusive-OR /ncludes it.

* |f inputs of the Exclusive-OR function are both
0 or both 1, the output is O; if the inputs are
different, the output is 1.

 Exclusive-OR is sometimes called a
comparator.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
et ,élrch/tgcté/re, Programming, and Interfacing, Eighth Edition va Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

Figure 5-7 (a) The truth table for the Exclusive-OR operation and (b) the logic
symbol of an Exclusive-OR gate.

(@) (b)

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition As

Upper Saddle River, New Jersey 07458 « All rights reserved.
Barry B. Brey

« XOR uses any addressing mode except
segment register addressing.

* Exclusive-OR is useful if some bits of a
register or memory location must be inverted.

* Figure 5-8 shows how just part of an
unknown quantity can be inverted by XOR.
—when a 1 Exclusive-ORs with X, the result is X
—if a 0 Exclusive-ORs with X, the result is X

« A common use for the Exclusive-OR

Instruction Is to clear a register to zero (xor cH,cH)

— Takes 2 bytes
— Mov takes 3 bytes

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSDN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
- ’; htB tB P g amming, and Interfacing, Eighth Editio AN Upper Saddle River, New Jersey 07458 « All rights reserved.
rry ey

Figure 5—-8 The operation of the Exclusive-OR function showing how bits of a number
are inverted.

XX XX XXXX Unknown number

@0000 1111 Mask

XX XX XXXX Result

Example 5.27

OR CX,0600H ;Set bits 9 and 10
AND CX,0FFFCH ;Clear bits 0 and 1
XOR CX,1000H ;Invert bit 12

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

|-. EARSO N Pentium Pro Processor, Pentium I, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
Architecture, Programming, and Interfacing, Eighth Edition AY Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

TABLE 5-18 Example Exclusive-OR instructions.

Assembly Language Operation
XOR CH,DL CH = CH xor DL
XOR SI,BX Sl = Sl xor BX
XCR EBX,EDI EBX = EBX xor EDI
XOR RAX,RBX RAX = RAX xor KBX (64-bit mode)
XOR AH,UEEH AH = AH xor OEEH
XOR DI,00DDH DI = DI xor 00DDH
XOR ESI,100 ESI = ESI xor 100
XOR R12,20 R12 = R12 xor 20 (64-bit mode)
XOR DX,[SI] DX'is Exclusive-ORed with the word contents of the data segment
memory location addressed by Sl
XOR DEAL[BP+2],AH AH is Exclusive-ORed with the byte contents of the stack segment
memory location addressed by BP plus 2
The Infel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
Pentium Pro Processor, Pentium I, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
Architecture, Programming, and Interfacing, Eighth Edition AY Upper Saddle River, New Jersey 07458 « All rights reserved.

Barry B. Brey

Test and Bit Test Instructions

« TEST performs the AND operation.

— only affects the condition of the flag reqister,
which indicates the result of the test

— functions the same manner as a CMP
— Normally tests a single bit or multiple bits

« Usually followed by either the JZ (jump if zero) or
JNZ (jump if not zero) instruction.
— Z=0 if the bit under test is not zero
— Z=1 if the bit under test is a zero

* The destination operand is normally tested against
iImmediate data (indicating the bit weight).

The Intel /I/l/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON [RSRllCra v, Pentium /I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A\rchifecture, Programm/ng and Interfacing, Eighth Edition Ag Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

« 80386 - Pentium 4 contain additional test
instructions that test single bit positions.

— four different bit test instructions available
 All forms test the bit position in the destination

operand selected by the source operand.
(study table 5-18)

« Ex 5-28
TEST AL/
)
TEST AL,128
)
The Intel Micra ,D/‘ s 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON KecRlla s P f um Il, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rChifectur Pgmmg and Interfacing, Eighth Edition Ao ;

Upper Saddle River, New Jersey 07458 « All rights reserved.
Barry B. Brey

TABLE 5-19 Example |
TEST instructions. Assembly Language Operation

TEST DL,DH DL is Al\Ded with DH

TEST CX,BX CXis ANDed with BX

TEST EDX,ECX EDX is ANDed with ECX

IEST RDX,R15 RDX is ANDed with R15 (64-bit mode)
TEST AH 4 AH is ANDed with 4

TEST EAX,256 EAX is ANDed with 256

The Infel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el Architecture, Programm/ng and Interfacing, Eighth Edition AT Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

NOT and NEG

 The NOT instruction inverts all bits of a byte, word,
or doubleword. One’s complement.

— None of flags affected.

« NEG two’s complements a number.

— the arithmetic sign of a signed number changes from
positive to negative or negative to positive

— The CF flag cleared to 0 if the source operand is O;
otherwise it is set to 1. other flags are set according to the
result.

 The NOT function is considered logical, NEG
function is considered an arithmetic operation.

« NOT and NEG can use any addressing
mode except segment register addressing.

The Intel /I/l/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON [RSRllCra v, Pentium /I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
et grch/tgcté/re Programm/ng and Interfacing, Eighth Edition AY Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

TABLE 5-21 Exaniple NOT and NEG instructions.

B

Assembly Language Operation
NOT CH CH is one’s complemented
NEG CH CH i two's complemented
N=G AX AX is two's complemented
NOT EBX EBX is one’s complemented
NEG ECX ECA is two's complemented
NOT RAX RAX is one’s complemented (64-bit mode)
NOT TEMP The contents of data segment memory location TEMP is one’s
complemented
NOT BYTE PTR[BA] The byte contenls of the data segment memory location
addressed by BX are one’s compleniented
The Infel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, .
Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
Architecture, Programming, and Interfacing, Eighth Edition AA Upper Saddle River, New Jersey 07458 « All rights reserved.

Barry B. Brey

Shift and Rotate

» Shift and rotate instructions manipulate binary
numbers at the binary bit level.

— as did AND, OR, Exclusive-OR, and NOT

 Common applications in low-level software
used to control I/O devices.

* The microprocessor contains a complete
complement of shift and rotate instructions
that are used to shift or rotate any memory
data or register.

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 541”EX[6’”5"0”5 Copyright ©2009 by Pearson Education, Inc.
- ’; htB tB P g amming, and Interfacing, Eighth Editio AR Upper Saddle River, New Jersey 07458 « All rights reserved.
rry ey

Shift

* Position or move numbers to the left or right
within a register or memory location.

— also perform simple arithmetic as multiplication by
powers of 2*7 (left shift) and division by powers of
2" (right shift).

* The microprocessor's instruction set contains
four different shift instructions:

— two are logical; two are arithmetic shifts
* All four shift operations appear in Figure 5-9.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
et ,élrch/tgcté/re, Programming, and Interfacing, Eighth Edition q. Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

Figure 5-9 The shift instructions showing the operation and direction of the shift.

T — logical shifts move O in
c o ? the rightmost bit for a
il - 0 logical left shift;

— The arithmetic shift left is
SAL | |+ = ol identical to the logical
shift left.

= — 0 to the leftmost bit
position for a logical right

D shift
SAR > — arithmetic right shift
1 copies the sign-bit

Sign

oit through the number.

L

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition a3 Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

 Logical shift function with unsigned numbers
 Arithmetic shift function with signed numbers
 Logical shifts multiply or divide unsigned data;

arithmetic shifts multiply or divide signed data.

— a shift left always multiplies by 2 for each bit
position shifted

— a shift right always divides by 2 for each position
— shifting a two places, multiplies or divides by 4

« Segment shift not allowed
* Two forms:

— Immediate shift count (SHR BX, 12)
— CL holds the shift count (SAL DATA, CL)

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
— ,élrch/tgcté/re, Programming, and Inferfacing, Eighth Edition qy Upper Saddle River, New Jersey 07458 « Al rights reserved.
arry B. Brey

Examples

* Multiply the contents of AX by 10 (1010) :
SHL AX,1 ; AX times 2
MOV BX,AX
SHL AX,2 ; AX times 8
ADDAX,BX ; AXtimes 10
* Multiply the contents of AX by 18 (10010) :
SHL AX,1 - AX times 2
MOV BX,AX
SHL AX,3 ; AX times 16
ADDAX,BX ; AXtimes 20
* Multiply the contents of AX by 5 (101) :
MOV BX,AX
SHL AX,2 ; AX times 4
ADDAX,BX ; AXtimes 5
« Multiply by constant using shift left is faster than using MUL operation

« The CF flag contains the value of the last bit shifted out of the destination
operand. The SF, ZF, and PF flags are set according to the result.

The Intel /I/l/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON [RSRllCra v, Pentium /I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A\ /Chifecture, Programm/ng and Interfacing, Eighth Edition qy Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

TABLE 5-22 Example shift instructions.

Assembly Language Operation

SHL AX,1 AX s logically shifted left 1 place

SHR BX,12 BX is logically shilted right 12 places

SHR ECX,10 ECX is logically shifted right 10 places

SHL RAX,50 RAX s logically shifted left 50 places (64-bit mode)

SAL DATA1,CL The contents of data segment memory location DATAT are
arithmetically shifted left the number of spaces specified by CL

SHR RAX,CL RAX is logically shifted right the number of spaces specified by CL
(64-bit mode)

SAH S1.2 Slis arithmetically shifted right 2 places

SAR EDX,14 EDX is arithmetically shifted right 14 places

]"EP.RSUN

The Infel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.

Architecture, Programming, and Interfacing, Eighth Edition ¢ Upper Saddle River, New Jersey 07458 « Al rights reserved.
Barry B. Brey

Rotate

» Positions binary data by rotating information in
a register or memory location, either from one
end to another or through the carry flag.

— used to shift/position numbers wider than 16 bits

» With either type of instruction, the programmer
can select either a left or a right rotate.

» Addressing modes used with rotate are the
same as those used with shifts.

* Rotate instructions appear in Figure 5-10.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
—~ S Archifecture, Programming, and Interfacing, Eighth Edition 90 Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

Figure 5-10 The rotate instructions showing the direction and operation of each

rotate.

Target register or memory

C
RCL - - -
&
ROL - - -
C
RCR N
G
ROR -

Copyright ©2009 by Pearson Education, Inc.

PEARSON
———

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium
Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions

Architecture, Programming, and Interfacing, Eighth Edition
Barry B. Brey

a1

Upper Saddle River, New Jersey 07458 « All rights reserved

* A rotate count can be immediate or located in
register CL.

—if CL is used for a rotate count, it does not change

 Rotate instructions are often used to shift
wide numbers to the left or right.

— Ex: shift the 48 binary number left one position
SHL AX, 1

RCL BX, 1
RCL DX, -

The Intel Micra ,D/‘ s 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON KecRlla s P f um Il, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rChifectur Pgmmg and Interfacing, Eighth Edition

Barry B. Brey

Upper Saddle River, New Jersey 07458 « All rights reserved.

TABLE 5-23 Exaniple rolate instructions.

L | ST T T o AT T P 5 I TN PR TN T A TS A YGRSV, R S Ty . W - T g

Assembly Language Operation

ROL S 14 Sl rotates left 14 places

RCL BL,6 BL rotales left through carry 6 places

ROL ECX, 13 ECX rolates lelt 18 places

ROL RDX,40 RDX rotales lelt 40 places

RCR AH,CL ARt rotates right through carry the number of places specifid by CL

RORWORD PTR[BP),2 The word contents of the stack segment memory location
addressed by BP rolate right 2 places

Lo LR R . WL _I.}__*__-

The Infel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

1—. EARSO N Pentium Pro Processor, Pentium I, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
Architecture, Programming, and Interfacing, Eighth Edition an Upper Saddle River, New Jersey 07458 « Al rights reserved.
Barry B. Brey

Bit Scan Instructions

e Scan through a number searching for the first 1-bit.
— accomplished by shifting the number
— available in 80386—Pentium 4

« BSF scans the number from the leftmost bit toward the right; BSR scans
the number from the rightmost bit toward the left.

— if a 1-bit is encountered, the zero flag is set and the bit position number
of the 1-bit is placed into the destination operand

— if no 1-bit is encountered the zero flag is cleared
— EX:

— |f EAX = 60000000H and BSF EBX,EAX instruction executes, the
number is scanned form the leftmost bit toward the right. The first 1-bit
encountered is at position 30, which is placed into EBX and the zero
flag is set. If the same value of EAX is used for the BSR instruction, the
EBX register is loaded with 29 and the zero flag bit is set.

The Intel /I/l/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON [RSRllCra v, Pentium /I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A\rchifecture, Programm/ng and Interfacing, Eighth Edition a4 Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

5-6 STRING COMPARISONS

» String instructions are powerful because they
allow the programmer to manipulate large
blocks of data with relative ease.

* Block data manipulation occurs with MOVS,
LODS, STOS, INS, and OUTS.

 Additional string instructions allow a section of
memory to be tested against a constant or
against another section of memory.

— SCAS (string scan); CMPS (string compare)

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSDN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54thXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
- ’; htB tB P g amming, and Interfacing, Eighth Editio Voo Upper Saddle River, New Jersey 07458 « All rights reserved.
rry ey

SCAS

« Compares the AL register with a byte block of memory, AX
with a word block, or EAX with a doubleword block of memory.

* Opcode used for byte comparison is SCASB; for word
comparison SCASW, doubleword comparison is SCASD

 In all cases the content of ES memory location addressed by
DI compared with the accumulator (AL, AX, or EAX).

« SCAS uses direction flag (D) to select auto-increment or auto-
decrement operation for DI.

— also repeat if prefixed by conditional repeat prefix

— REPNE : cause the SCAS instruction to repeat until either
CX reaches 0, or until an equal condition exists as the
outcome of the comparison. Another conditional repeat
prefix is REPE (repeat while equal)

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
et glrch/tgcté/re Programming, and Interfacing, Eighth Edition Ve Upper Saddle River, New Jersey 07458 « All rights reserved.
arry rey

Example

* In the data segment:

. DATA1 DB ‘Mr. Gones’

* And in the Code Segment:

. CLD ; DF=0 for increment

. MOV DI, Offset DATA1 ; DI=Array offset

. MOV cx,09 ; Length of array

. MOV AL,'G’ ; Scanning for letter ‘G’

. REPNE SCANSB ; Repeat the scanning if not equal or

until CX becomes zero.

* In the example above, the letter ‘G’ is compared with ‘M’. Since they are no equal,
Dl is incremented and CX is decremented, and the scanning is repeated until the
letter ‘G’ is found or the CX register is zero. In that example, since ‘G’ is found, ZF
is set to 1 (ZF=1), indicating that there is a letter ‘G’ in the array.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el Archifecture, Programming, and Interfacing, Eighth Edition " Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

Example (Cont.)

* In the data segment:

. DATA1 DB ‘Mr. Gones’

* And in the Code Segment:

. CLD ; DF=0 for increment

. MOV DI, Offset DATA1 ; DI=Array offset

. MOV cx,09 ; Length of array

. MOV AL,'G’ ; Scanning for letter ‘G’

. REPNE SCANSB ; Repeat the scanning if not equal or
until CX becomes zero.

. JNE OVER; JUMP if ZF=0

. DEC Dl

. MOV BYTE PTR[DI], ‘J

. OVER:

« The above program scans the name Mr. Gones and replaces the ‘G’ with the letter
‘J.

The Intel /I/l/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentiur,

Barry B. Brey

CMPS

* Always compares two sections of memory data as bytes
(CMPSB), words (CMPSW), or doublewords (CMPSD).

— contents of the data segment memory location addressed
by Sl are compared with contents of extra segment
memory addressed by DI

— CMPS instruction increments/decrements Sl & DI

* Normally used with REPE or REPNE prefix.

— alternates are REPZ (repeat while zero) and REPNZ
(repeat while not zero)

— REPE: cause the CMPS instruction to repeat until either
CX reaches 0, or until an unequal condition exists as the
outcome of the comparison

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
—— glrch/tgcté/re Programming, and Inferfacing, Eighth Edition Yot Upper Saddle River, New Jersey 07458 « Al rights reserved.
arry rey

Example

DATSEG segment

DATA1 DB 'Europe'

DATAZ2 DB 'Euorope’

MESSAGEL DB 'The spelling is correct® ; try this: 'The spelling is correct','$'

MESSAGE2 DB 'Wrong Spelling* ; try this: '"Wrong Spelling','$'
DATSEG ENDS
CODE_SEG SEGMENT
ASSUME CS:CODE_SEG, DS:DATSEG
MAIN PROC FAR
MOV AX, DATSEG
MOV ES, AX
MOV DS, AX
MOV CX,6 ; Load counter
CLD : DF=0 for increment

MOV SI,OFFSET DATA1
MOV DI,OFFSET DATAZ2

REPE CMPSB ; Repeat as long as equal or until CX=0
JE OVER . If ZF=1 then display message 1

MOV DX, Offset MESSAGE?2 ; If ZF=0 then display message 2

JMP DISPLAY

OVER: MOV DX, Offset MESSAGEL1
DISPLAY: MOV AH,09

INT 21H
MAIN ENDP
CODE_SEG ENDS
END MAIN
The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el Archifecture, Programming, and Interfacing, Eighth Edition S Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

DOS Interrupt 21H

 INT 21H option 09: outputting a string of data to the monitor: INT 21H can be
used to send a set of ASCII data to the monitor. To do that, the following registers
must be set: AH=09 and DX = the offset address of the ASCII data to be displayed.
Then INT 21H is invoked. The address of the DX register is an offset address and
DS is assumed to be the data segment.

« INT 21H option 09 will display the ASCII data string pointed by DX until it
encounters the dollar sign ‘$’. In the absence of encountering a dollar sign, DOS
function call 09 will continue to display any garbage that it can find in subsequent
memory locations until it finds ‘$’.

 INT 21H option 02: outputting a single character to the monitor: to do that, 02
is put in AH, and DL is loaded with the character to be displayed and then INT 21H
IS invoked.

MOV AH,02
MOV DL, J’
INT 21H

« This option can also be used to display ‘$’ on the monitor since the string display
option (option 09) will not display ‘$’.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
g grch/tgctgre Programming, and Interfacing, Eighth Edition Ve Upper Saddle River, New Jersey 07458 « All rights reserved.
arry rey

DOS Interrupt 21H

 INT 21H option OAH: Inputting a string of data from the keyboard:

- DATSEG segment

« ORG 0010H

- DATA1DB 6,?,6 DUP (OFFH)
- DATSEG ENDS

- CODE_SEG SEGMENT
+ ASSUME CS:CODE_SEG, DS:DATSEG

- MAINPROC FAR

Assuming the data that was entered through the
Keyboard was “USA” <RETURN>, the content of
Memory locations starting at 0010H would be like this:

0010 0011 0012 0013 0014 0015 0016 0017
06 03 55 53 41 0D FF FF
U S A CR

. MOV AX, DATSEG
. MOV ES, AX Step-by-step analysis:
0010H=06 DOS requires the size of the buffer in the first
’ MOV DS, AX location.)
. MOV AH,0AH 0011H =03 number of letters read excluding CR key
o MOV DX Offset DATA1 0012H: this the ASCII hex for letter U
’ 0013H: this the ASCII hex for letter S
y INT 21H 0014H: this the ASCII hex for letter A
. 0015H: this the ASCII hex for letter CR (carriage return)
« MAIN ENDP
- CODE_SEG ENDS
« END MAIN
The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
Pentium Pro Processor, Pentium Il, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition "y Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

DOS Interrupt 21H

 INT 21H option 01H: Inputting a single character:

« This functions waits until a character is input from the keyboard. After the
interrupt, the input character will be in AL.

e MOV AH, 01 ; Option 01 inputs one character
« INT 21H ; After this interrupt, AL=input character

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe | W entium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el Archifecture, Programming, and Interfacing, Eighth Edition VoA Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

SUMMARY

 Addition (ADD) can be 8, 16, 32, or 64 bits.

* The ADD instruction allows any addressing
mode except segment register addressing.

* Most flags (C, A, S, Z, P, and O) change
when the ADD instruction executes.
A different type of addition, add-with-carry

(ADC), adds two operands and the contents
of the carry flag (C).

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54b’EXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
- ’; htB tB P g amming, and Interfacing, Eighth Editio Ve Upper Saddle River, New Jersey 07458 « All rights reserved.
rry ey

SUMMARY (cont.)

* The 80486 through the Core2 processors
have an additional instruction (XADD) that
combines an addition with an exchange.

* The increment instruction (INC) adds 1 to
the byte, word, or doubleword con-tents of
a register or memory location.

* The INC instruction affects the same flag
bits as ADD except the carry flag.

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54b’EXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
- ’; htB tB P g amming, and Interfacing, Eighth Editio V) Upper Saddle River, New Jersey 07458 « All rights reserved.
rry ey

SUMMARY (cont.)

« BYTE PTR, WORD PTR, DWORD PTR, or
QWORD PTR directives appear with the
INC instruction when contents of a memory
location are addressed by a pointer.

» Subtraction (SUB) is a byte, word,
doubleword, or quadword and is performed
on a register or a memory location.

* The only form of addressing not allowed by
the SUB instruction is segment register
addressing.

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54b’EXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
Rl \/C/ifeCtUr P g amming, and Interfacing, Eighth Editio X% Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

SUMMARY (cont.)

 The subtract instruction affects the same
flags as ADD and subtracts carry if the SBB
form is used.

* The decrement (DEC) instruction subtracts
1 from the contents of a register or a
memory location.

* The only addressing modes not allowed
with DEC are immediate or segment
register addressing.

The Intel Micr pr S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54b’EXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
Rl \/C/ifeCtUr P g amming, and Interfacing, Eighth Editio V1Y Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

SUMMARY (cont.)

 The DEC instruction does not affect the
carry flag and is often used with BYTE
PTR, WORD PTR, DWORD PTR, or
QWORD PTR.

* The comparison (CMP) instruction is a
special form of subtraction that does not
store the difference; instead, the flags
change to reflect the difference.

The Intel Micra ,D/‘ s 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON KecRlla s P f um Il, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rChifectur P g amming, and Interfacing, Eighth Edition Yyv ; ;

Upper Saddle River, New Jersey 07458 « All rights reserved.
Barry B. Brey

SUMMARY (cont.)

 Comparison is used to compare an entire
byte or word located in any register (ex-cept
segment) or memory location.

* An additional comparison instruction
(CMPXCHG), which is a combination of
comparison and exchange instructions, is
found in the 80486-Core2 processors.

* In the Pentium-Core2 processors, the
CMPXCHGS8B instruction compares and
exchanges quadword data.

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54b’EXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
s E——— g‘ htB tB P g amming, and Interfacing, Eighth Editio V)¢ Upper Saddle River, New Jersey 07458 « All rights reserved.
rry ey

SUMMARY (cont.)

* Multiplication is byte, word, or doubleword;
can be signed (IMUL) or un-signed (MUL).

* The 8-bit multiplication always multiplies
register AL by an oper-and with the product
found in AX.

* The 16-bit multiplication always multiplies
register AX by an operand with the product
found in DX-AX.

The Intel Micr p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54b’EXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
il Architectur P g amming, and Interfacing, Eighth Editio Ve Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

SUMMARY (cont.)

* The 32-bit multiply always multiplies
register EAX by an operand with the
product found in EDX-EAX.

* A special IMUL immediate instruction exists
on the 80186-Core2 proces-sors that
contains three operands.

* |[n the Pentium 4 and CoreZ2 with 64-bit
mode enabled, multiplication is 64 bits.

The Intel Micra ,D/' s 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON KecRlla s P f um Il, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rChifectur Pg mmg and Interfacing, Eighth Edition E ;

Upper Saddle River, New Jersey 07458 « All rights reserved.
Barry B. Brey

SUMMARY (cont.)

 Division is byte, word, or doubleword, and it
can be signed (IDIV) or unsigned (DIV).

* For an 8-bit division, the AX register divides
by the operand, after which the quotient
appears in AL and the remainder appears in
AH.

* In the 16-bit division, the DX-AX register
divides by the operand, after which the AX
register contains the quotient and DX
contains the remainder.

The Intel Micr p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54b’EXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
Rl \/C/ifeCtUr P g amming, and Interfacing, Eighth Editio Y Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

SUMMARY (cont.)

* In the 32-bit division, the EDX-EAX register
Is divided by the operand, after which the
EAX register con-tains the quotient and the
EDX register contains the remainder.

* The remainder after a signed division
always assumes the sign of the dividend.

- BCD data add or subtract in packed form by
adjusting the result of the addition with DAA
or the subtraction with DAS.

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54b’EXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
Rl \/C/ifeCtUr P g amming, and Interfacing, Eighth Editio V1A Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

SUMMARY (cont.)

« ASCII data are added, subtracted, multi-
plied, or divided when the operations are
adjusted with AAA, AAS, AAM, and AAD.

 These instructions do not function in the 64-
bit mode.

* The AAM Iinstruction has an interesting
added feature that allows it to convert a
binary number into unpacked BCD.

The Intel Micr ,D/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON [RSRllCra P f um I, Pentium, 4, and Core2 with 64-bif Extensions Copyright ©2009 by Pearson Education, Inc.
el A\ /Chiifectur P g amming, and Interfacing, Eighth Edition Y14 ;

Upper Saddle River, New Jersey 07458 « All rights reserved.
Barry B. Brey

SUMMARY (cont.)

* This instruction converts a binary number
between 00H-63H into unpacked BCD in
AX.

* The AAM instruction divides AX by 10, and

leaves the remainder in AL and quotient in
AH.

 These instructions do not function in the 64-
bit mode.

The Intel Micra ,D/' s 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON KecRlla s P f um Il, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rChifectur Pg mmg and Interfacing, Eighth Edition 'Y, ;

Upper Saddle River, New Jersey 07458 « All rights reserved.
Barry B. Brey

SUMMARY (cont.)

 The AND, OR, and Exclusive-OR
instructions perform logic functions on a
byte, word, or doubleword stored in a
register or memory location.

 All flags change with these instructions,
with carry (C) and overflow (O) cleared.

 The TEST instruction performs the AND
operation, but the logical product is lost.

 This instruction changes the flag bits to
indicate the outcome of the test.

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54b’EXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
e g‘ htB tB P g amming, and Interfacing, Eighth Editio YA Upper Saddle River, New Jersey 07458 « All rights reserved.
rry ey

SUMMARY (cont.)

 The NOT and NEG instructions perform
logical inversion and arithmetic inver-sion.

 The NOT instruction one's complements an
operand, and the NEG in-struction two's
complements an operand.

The Intel Micra ,D/' s 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON KecRlla s P f um Il, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rChifectur P g mmg and Interfacing, Eighth Edition \YY ; ;

Upper Saddle River, New Jersey 07458 « All rights reserved.
Barry B. Brey

SUMMARY (cont.)

* There are eight different shift and rotate
instructions.

 Each of these instructions shifts or rotates a
byte, word, or doubleword register or
memory data.

* These instructions have two operands: The
first is the location of the data shifted or ro-
tated, and the second is an immediate shift
or rotate count or CL.

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54b’EXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
Rl \/C/ifeCtUr P g amming, and Interfacing, Eighth Editio Yy Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

SUMMARY (cont.)

* If the second operand is CL, the CL register
nolds the shift or rotate count.

* In the 80386 through the Core2 processors,
two additional double-precision shifts
(SHRD and SHLD) exist.

* The scan string (SCAS) instruction
compares AL, AX, or EAX with the contents
of the extra segment memory location
addressed by DI.

The Intel Micra p/‘ S 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSGN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 54b’EXte”s’b”5 Copyright ©2009 by Pearson Education, Inc.
s E——— g‘ htB tB P g amming, and Interfacing, Eighth Editio VYt Upper Saddle River, New Jersey 07458 « All rights reserved.
rry ey

SUMMARY (cont.)

* The string compare (CMPS) instruction
compares the byte, word, or doubleword
contents of two sections of memory.

* One section is addressed by DI in the extra
segment, and the other is addressed by Sl
In the data segment.

The Intel Micra ,D/' s 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON KecRlla s P f um Il, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rChifectur Pg mmg and Interfacing, Eighth Edition

VYo Upper Saddle River, New Jersey 07458 « All rights reserved.
Barry B. Brey

SUMMARY

 The SCAS and CMPS instructions repeat
with the REPE or REPNE prefixes.

* The REPE prefix repeats the string
Instruction while an equal condition exists,
and the REPNE repeats the string

iInstruction while a not-equal condition
exists.

The Intel Micra ,D/' s 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON KecRlla s P f um Il, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rChifectur Pg mmg and Interfacing, Eighth Edition

YY1 Upper Saddle River, New Jersey 07458 « All rights reserved.
Barry B. Brey

.I
wIntel Microprocessors
3086/8088, 80186/80188, _;-‘l'r"f; 80386, 80486 Pentium, Pentium Pro
racessor. Pentiu Pentium 4, and Core2 with 64-bit Extensions

Interfacing

llllllll

gram Control Instructions

EIGHTH EDITION

Barry B. Brey

PEARSON

e

Chapter 6

Program Control
Instructions

Note: Most of slides are adapted from Barry B. Brey
(Author Slides)

Instructor:
Dr. Khalid A. Darabkeh

The Intel Micr ,Uf S, 8086/8088, 80186/80188, 80286, 80386, 80486P ntium,
PEARSDN Pentium Pro Pro P f um I, Pentium, 4, and Core2 with 641”51’ Copyright ©2009 by Pearson Education, Inc.
=l A\rchitectur P g amming, and Interfacing, Eighth Editio Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

Introduction

* This chapter explains the program control
Instructions, including the jumps, calls, and
returns instructions.

e This chapter also presents the relational
assembly language statements (.IF, .ELSE,
.ELSEIF, .ENDIF, .WHILE, .ENDW, .REPEAT,
and .UNTIL) that are available in version 6.xXx
and above of MASM or TASM, with version
5.xx set for MASM compatibility.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
e e grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

Chapter Objectives

Upon completion of this chapter, you will be able to:

e Use both conditional and unconditional jump
Instructions to control the flow of a program.

e Use the relational assembly language
statements .IF, .REPEAT, .WHILE, and so
forth in programs.

e Use the call and return instructions to include
procedures Iin the program structure.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON Pent/qm Pro Processor, Pept/um 11, Pentium, 4 anq’ Core2 W/th 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

6-1 THE JUMP GROUP

* Allows programmer to skip program sections
and branch to any part of memory for the
next instruction.

* A conditional jump instruction allows decisions
based upon numerical tests.

—results are held in the flag bits, then tested by
conditional jump instructions

e LOOP and conditional LOOP are also forms
of the jump Instruction.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

Unconditional Jump (JMP)

* Three types: short jump, near jump, far jump.

e Short jump Is a 2-byte instruction that allows
jumps or branches to memory locations within
+127 and —128 bytes.

— from the address following the jump

e 3-byte near jJump allows a branch or jump
within £32K bytes from the instruction in the
current code segment.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
Copyright ©2009 by Pearson Education, Inc.

PEARSON Pentium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions
el A rchifecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

o 5-pyte far jJump allows a jump to any memory
location within the real memory system.

* The short and near jJumps are often called
Intrasegment jumps.

e Far jumps are called intersegment jumps.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

Figure 6-1 The three main forms of the JMP instruction. Note that Disp is either an 8-
or 16-bit signed displacement or distance.

Opcode
(a) E B Disp Short
Opcode
Disp Disp
(b) E 9 o High Near
Opcode
P IP CS CS
(€) E A Low High Low High Far

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
|-. EARSO N Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
Qrch/tgctgre Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry rey

Short Jump

o Called relative jumps because they can be
moved, with related software, to any location
In the current code segment without a change.
— jJump address is not stored with the opcode
—a distance, or displacement, follows the opcode

 The short jump displacement is a distance
represented by a 1-byte signed number whose
value ranges between +127 and —128.

e Short jump Iinstruction appears in Figure 6-2.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
e e grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

Figure 6—2 A short jump to four memory locations beyond the address of the next
Instruction.

—when the microprocessor executes
ey a short jump, the displacement is

..—.—--'_"'--__‘F .
sign-extended and added to the
1000A . . .
10008 Instruction po_mter (IP/EIP) to
10008 generate the jump address
10007 within the current code segment
10006 (Jump to here)
10005
10004 — The instruction
10003 CS = 1000H .
IP = 0002H branches to this
10002 New IP=IP + 4
10001 ” New IP = 0006H new address for
10000 JMP the next instruction
e in the program

The Intel /I/l/cropmcessors 8086/8088, 80186/80188, 80286, 80386, 80486P ntium,
Copyright ©2009 by Pearson Education, Inc

PEARSON Pentium Pro Pro. r, Pentium /I, Pentium, 4, and CoreZ2 with 64-bit Exten: .
. grch/tgctgre Programm/ng and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

 When a jump references an address, a label
normally identifies the address.

 The JMP NEXT Instruction is an example.
— It jumps to label NEXT for the next instruction

— very rare to use an actual hexadecimal address
with any jump instruction

 The label NEXT must be followed by a colon
(NEXT:) to allow an instruction to reference it
— If a colon does not follow, you cannot jump to it

 The only time a colon Is used Is when the
label is used with a jump or call instruction.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

Example

0000 33 db Xor bx, bx
0002 b8 0001 start: mov ax, 1
0005 03 c3 add ax, bx
0007 Eb 17 Jjmp short next

The Short
directive
force a
short
Jump

<skipped memory locations>

Assembles as
short also; most
assemblers
choose the best
form of the JUMP
instruction

0020 8b d8 next: mov bx,ax
0022 eb de jmp start

The Intel /I/l/cropmcessors 8086/8088, 80186/80188, 80286, 80386, 80486P ntium,
N OIS W ~crium Pro Processor, Pentium Il, Pentium, 4, and CoreZ with 64-bit Exten, Copyright ©2009 by Pearson Education, Inc.
el A\/Chitecture, Programm/ng and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.
Barry B. Brey

Near Jump

* A near jJump passes control to an instruction in
the current code segment located within £32K
bytes from the near jump instruction.

— distance is £2G in 80386 and above when
operated In protected mode
 Near jump iIs a 3-byte instruction with opcode
followed by a signed 16-bit displacement.

— 80386 - Pentium 4 displacement is 32 bits and
the near jump is 5 bytes long

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
e e grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

e Signed displacement adds to the instruction
pointer (IP) to generate the jump address.

— because signed displacement is 32K, a near
jump can jump to any memory location within
the current real mode code segment

* The protected mode code segment in the
80386 and above can be 4G bytes long.

— 32-bit displacement allows a near jump to any
location within £2G bytes

* Figure 6-3 illustrates the operation of the real
mode near jump instruction.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
e e grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

Figure 6-3 A near jump that adds the displacement (0002H) to the contents of IP.

Memory

e AT
1000A
10009
10008
10007
10006
10005 | (Jump to here)
10004 CS = 1000H
N ﬁ;;?ggfgoﬂﬁH
10002 00
10001 02 Near jump
10000 JMP

- -

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
T' EARSO N Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
Qrch/tgctgre Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry rey

 The near jump is also relocatable because it
IS also a relative jump.

 This feature, along with the relocatable data
segments, Intel microprocessors ideal for
use in a general-purpose computer system.

e Software can be written and loaded anywhere
In the memory and function without
modification because of the relative jumps
and relocatable data segments.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
el Architecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

Example

0000 33 db XOr bx, bx | ® The letter R denotes relocatable
0002 b80001 start: mov ax, 1 |MmPaddess oro200 |
0005 03 ¢3 add @x, bX| for the aseembler programs ntema
0007 E9 0200 R IMP NeXt | e on assembles as €0 F6 01

which does not appear in the

: : assembler listing. The actual
<skipped memory locations> displacement is 01F6H for this jump.
The assembiler lists the jump address
as 0200 R, so the address is easier

0200 8b d8 next: mov bx,ax| to interpret as software is developed.
: If the linked execution file (.EXE) or
0202 €9 0002 R Jjmp start command file ((COM) is displayed in

hexadecimal code, the jump
instruction appears as E9 F6 01.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
. grch/tgctgre Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry rey

Far Jump

e Obtains a new segment and offset address
to accomplish the jump:

— bytes 2 and 3 of this 5-byte instruction contain
the new offset address

— bytes 4 and 5 contain the new segment address

— In protected mode, the segment address accesses
a descriptor with the base address of the far jump
segment

— offset address, either 16 or 32 bits, contains the
offset address within the new code segment

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
e e grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

Figure 6—4 A far jump instruction replaces the contents of both CS and IP with 4
bytes following the opcode.

Memory
A3129
A3128
A3127 | (Jump to here)
A3126

|

10004 A3 A

10003 00

10002 01 > Far jump

10001 27

10000 JMP P,
e

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
. grch/tgctgre Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry rey

e The far jump instruction sometimes appears
with the FAR PTR directive.

* Another way to obtain a far jump Is to define a
label as a far label

 Alabelis far only if it Is external to the current
code segment or procedure

e The JMP UP instruction references a far label.

e The label UP Is defined as a far label by the
EXTRN UP:FAR directive

 External labels appear in programs that
contain more than one program file.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

* Another way of defining a label as global is to use a
double colon (LABEL::)

 When the program files are joined, the linker inserts
the address for the UP label into the JMP UP
Instruction.

e Also inserts segment address in JIMP START
Instruction.

 The segment address in JIMP FAR PTR START is
listed as ---- R for relocatable; the segment address
iIn JIMP UP is listed as ----E for external. In both
cases, the ---- is filled In by the linker when it links or
joins the program files.

The Intel M/croprocessors 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

I E{o IS\ ~crium Pro Processor, Pentium 1, Pentium, 4, and CoreZ2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
. grch/tgcté/re Programm/ng and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

Example

extern up:far
0000 33 db xor bx, bx .
0002 b8 0001 start: mov ax, 1 filled in by the
0005 03 c3 add ax, bx linker when it
0007 E9 0200 R jmp next finks or joins

the program
files

<skipped memory locations>

0200 8b d8 mov bx,ax
0202 €9 0002 --< jmp far ptr start
0207 ea 0000 ---- E jmp up

nhext:

The Intel /I/l/cropmcessors 8086/8088, 80186/80188, 80286, 80386, 80486P ntium,

N OIS W ~crium Pro Processor, Pentium Il, Pentium, 4, and CoreZ with 64-bit Exten, Copyright ©2009 by Pearson Education, Inc.
el A/chitecture, Programm/ng and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

Jumps with Register Operands

e Jump can also use a 16- or 32-bit register as
an operand.
— automatically sets up as an indirect jump
— address of the jump is in the register specified
by the jJump instruction
* Unlike displacement associated with the near

jump, register contents are transferred directly
Into the instruction pointer.

* An Indirect jump does not add to the
Instruction pointer.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

o JMP AX, for example, copies the contents of
the AX reqister into the IP.

—allows a jump to any location within the current
code segment

e |In 80386 and above, JIMP EAX also jumps to
any location within the current code segment;

— In protected mode the code segment can be 4G
bytes long, so a 32-bit offset address Is needed

e Study example 6-4

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
e e grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

Indirect Jumps Using an Index

e Jump instruction may also use the | | form of
addressing to directly access the jump table.

 The jJump table can contain offset addresses
for near indirect jJumps, or segment and offset
addresses for far indirect jumps.

—also known as a double-indirect jump if the
register jump is called an /nadirect jump

 The assembler assumes that the jump Is near
unless the FAR PTR directive indicates a far
jump Iinstruction.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
——— grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.
arry B. Brey

 Mechanism used to access the jump table Is
iIdentical with a normal memory reference.

— JMP TABLE [S]] instruction points to a jump
address stored at the code segment offset
location addressed by Sl

e Both the register and indirect indexed jump

Instructions usually address a 16-bit offset.

— both types of jumps are near jumps

e If IMP FAR PTR [SI] or IMP TABLE [SI], with
TABLE data defined with the DD directive:

— microprocessor assumes the jump table contains

doubleword, 32-bit addresses (IP and CS)

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
e e grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

Unconditional Jump (JMP) : SUMMARY

e The unconditional jump can take the following forms:

1. SHORT JUMP, which is specified by format “JMP SHORT
label”. This is a jump in which the address of the target
location is within -128 to +127 bytes of memory relative to the
address of the current IP. The target address can be just
direct addressing mode.

« 2. NEAR JUMP, which is the default, has the format “JMP
label”. The target address can be any of the addressing
modes of direct, register indirect, or memory indirect:

e Direct JUMP is exactly like the short jump explained earlier,
except that the target address can be anywhere in the
segment within the range +32767 to -32768 of the current IP.

e NOTE: Most of current assemblers choose the best form of
the JUMP instruction (i.e., either short or near)

The Intel Micr p/’ S 8086/8088, 80186/80188, 80286, 80386, 80486P ntium,

PEARSDN Pentium Pro Pro P f um I, Pentium, 4, and Cor 2W[h64tht Copyright ©2009 by Pearson Education, Inc.
- ’; htB tB P g mmng and Interfacing, Eighth Editio Upper Saddle River, New Jersey 07458 « All rights reserved.
ry ey

Unconditional Jump (JMP) : SUMMARY

* Register Indirect JUMP; the target address is in register. For
example, in “JUMP BX”, IP takes the value of BX.

 Memory Indirect JUMP; Example, “JUMP [DI]” will replace the
IP with the contents of memory locations pointed by DI and
DI+1.

e 3. FAR JUMP which has the format “ JUMP FAR PTR label”.
This is a jump out of the current code segment, meaning that
not only the IP but also the CS is replaced with new values.
The target address can be any of the addressing modes of
direct or memory indirect (JMP FAR PTR [SI]).

The Intel Micr p/’ S 8086/8088, 80186/80188, 80286, 80386, 80486P ntium,

PEARSGN Pentium Pro Pro P [um I, Pentium, 4, and Cor 2"'/”7641”51’ Copyright ©2009 by Pearson Education, Inc.
=l A\rchitectur P g mmng and Interfacing, Eighth Editio Upper Saddle River, New Jersey 07458 « All rights reserved.

Bari yBBy

Conditional Jumps

* Always short jumps in 8086 - 80286.

— limits range to within +127 and —128 bytes from
the location following the conditional jump

e In 80386 and above, conditional jumps are
either short or near jumps (£32K).

— In 64-bit mode of the Pentium 4, the near jump
distance is £2G for the conditional jumps

* Allows a conditional jJump to any location
within the current code segment.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
e e grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

e Conditional jump instructions test flag bits:
—sign (S), zero (Z), carry (C)
— parity (P), overflow (0)

 |f the condition under test is true, a branch to

the label associated with the jump instruction
OCcCurs.

— If false, next seqguential step In program executes
— for example, a JC will jump If the carry bit Is set

* Most conditional jump instructions are
straightforward as they often test one flag bit.

— although some test more than one

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON Pent/qm Pro Processor, Pept/um 11, Pentium, 4 anq’ Core2 W/th 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

 Because both signed and unsigned numbers
are used In programming.

e Because the order of these numbers Is
different, there are two sets of conditional
jump Instructions for magnitude comparisons.

 16- and 32-bit numbers follow the same order
as 8-bit numbers, except that they are larger.

* Figure 6-5 shows the order of both signed
and unsigned 8-bit numbers.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON Pent/qm Pro Processor, Pept/um 11, Pentium, 4 anq’ Core2 W/th 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

Figure 6-5 Signed and unsigned numbers follow different orders.

255 FFH +127 7FH

254 FEH +126 7EH
e T —
s T il

132 84H +2 02H

131 83H +1 01H

130 82H +0 00H

129 81H —1 FFH

128 80H -2 FEH
e e Ty
—-"‘_—-—\‘H —-‘h__—\:-..n

4 04H ~124 84H

3 03H -125 83H

2 02H -126 82H

1 01H -127 81H

0 00H -128 80H

Unsigned numbers

Signed numbers

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions
el Architecture, Programming, and Interfacing, Eighth Edition

Barry B. Brey

Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 « All rights reserved.

 When signed numbers are compared, use the
JG, JL, JGE, JLE, JE, and JNE Instructions.

—terms greater than and /ess than refer to signed
numbers

 \When unsigned numbers are compared, use
the JA, JB, JAE, JBE, JE, and JNE
Instructions.

—terms above and below refer to unsigned
numbers

 Remaining conditional jumps test individual
flag bits, such as overflow and parity.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
—— grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.
arry B. Brey

 Remaining conditional jumps test individual
flag bits, such as overflow and parity.

— notice that JE has an alternative opcode JZ
o All Instructions have alternates, but many

aren’t used In programming because they
don’t usually fit the condition under test.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON Pent/ym Pro Processor, Pepﬂllm 11, Pentium, 4 anq’ Core2 W/th 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

O pococe

i
73
T2
TE
ri-
E=
E3
T4
7F
7D
TC
TE
TE
72
73
i
73
75
TE
TC
7D
TF
71
7B
7o
=
7O
TA
TA
B
Ta
!
OF
oF
OF
oF
OF
oF
OF
oF

iy
iy
iy
iy
iy
ciy
ciy
iy
cit»
i)
i
ciy
ity
iy
ity
i
Lol 3
iy
ciy
ol i)
[l
i
iy
iy
iy
ity
iy
cir
ciy
cir
iy
ity
87
83
82
85
82
84
24
8F

cwrod
ol B B el |
cwiod
ol B B el |
cwrod
ol B B el |
cwiod
Cwod

Instructiorn

J& o reils Jurmp
JAE reds Jurmp
JB refd Jurmp
JBE refs Jurmp
JZ ref& Jurmp
JTH T reld Jurmp
JEC XS rel3 JLurmip
JE rels Jurmp
J&E rals Jurmp
JESE ef& Jurmp
JL reis Jurmp
JLE r=iZ8 Jump
N I = Jurmp
JHAE refs Jurmp
JHB reld Jurmp
JNB E refs Jurmp
JMC el Jurmp
JMNE refs Jurmp
JMGE rals Jurmp
JHMGE relZ Jump
JHL relfs Jurmp
JMLE medld Jurmp
IR rals Jurmp
JMNFP refs Jurmp
IS reld Jurmp
JME refs Jurmp
JO rels Jurmp
JF ref& Jurmp
JPE refs Jump
JF Oy refd Jurmp
JS rels Jurmp
JF rels Jurmp
JAa relT 822 Jurmp
JAaE red TE6532 Jurmp
JB ref T&s/32 JLurmip
JBE relffT6,/322 Jurmp
JC ref 1832 Jump
JE refT8/32 Jurmp
JZ red V5722 Jurmp
J & el T 5522 Jurmp

short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short

short i
short i
short i
short i

short
short
short
short
short

Descriptiom

if
it
if
it
it
it
if
it
it
it
it
if
it
it
it
if
iif
if
it
if
it
if

it
it
it
it
it

abowe (CF=0 and ZF=0)

abowve or equal (SF=0)

Irelow (CF=1)

below or equal (CTF=1 or ZF=1)
carry (CTF=1)

X oregister is O

ECE register is O

equal {ZF=1)

greater (ZF=0 and SF=OF)
greater or equal (SF=0F)

less (SF==COF)

less or egual (ZF=1 or SF==0OF)

not abowe (CF=1 or ZF=1)

not abowve or equal ({SF=1)

not below (CFRF=0)

not beloww or eqgqual CCRF=0 and ZF=0)
not carry (ZSF=0)

not equal (ZF=0)

not greater (ZF=1 or SF==0F)

not gareater or equal (SF==0F)

not less (SF=0OF)

not less or equal (ZF=0 and SF=0F)
not owvarflow (COF=07)

not parity {(PF=073

not sign {SF=0)

not zero (ZF=0}
ovwertfiow {(OF=1})
parity (PF=1)
parity ewven {(PF=1)
parity odd (FF=0O)
sigan (SF=1)

short if zerm (ZFF = 1)

if abowe (CSF=0 and ZF=0}

iT above or egual (CF=0)

it below (CSRF=170

it bhaelow or eqgqual (CFRF=1 or ZF=1)
if carry (ZF=1)

it equal (ZF=1)

it O (ZF=1)

near
neaEr
near
neaEr
near
near
near
neaEr

it greater (ZF=0 and SF=0OF)

Barry B. Brey

LOOP

A combination of a decrement CX and the
JNZ conditional jump.

e |n 8086 - 80286 LOOP decrements CX.
—If CX =0, It Jumps to the address indicated
by the label
— If CX becomes 0, the next sequential instruction
executes
e |n 80386 and above, LOOP decrements
either CX or ECX, depending upon instruction

mode.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
Copyright ©2009 by Pearson Education, Inc.

PEARSON Pentium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions
el A rchifecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

e |In 16-bit instruction mode, LOOP uses CX: In
the 32-bit mode, LOOP uses ECX.

— default Is changed by the LOOPW (using CX) and
LOOPD (using ECX) instructions 80386 - Core2

* In 64-bit mode, the loop counter is in RCX.
—and Is 64 bits wide

 There Is no direct move from segment register
to segment register instruction.

o Study example 6-7

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
e e grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

Conditional L OOPs

e LOQOP Instruction also has conditional forms:
LOOPE and LOOPNE

« LOOPE (loop while equal) instruction jumps
If CX I= 0 while an equal condition exists.

— will exit loop If the condition is not equal or the
CX register decrements to O

« LOOPNE (loop while not equal) jumps if CX
I= 0 while a not-equal condition exists.

— will exit loop if the condition Is equal or the CX
register decrements to O

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
—— grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.
arry B. Brey

* In 80386 - Core2 processors, conditional
LOOP can use CX or ECX as the counter.

— LOOPEW/LOOPED or LOOPNEW/LOOPNED
override the instruction mode If needed

o Under 64-bit operation, the loop counter uses
RCX and is 64 bits in width

e Alternates exist for LOOPE and LOOPNE.
— LOOPE same as LOOPZ
— LOOPNE Instruction is the same as LOOPNZ

* In most programs, only the LOOPE and
LOOPNE apply.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV e 1YW crtium Pro Processor, Pentium If, Pentium, 4, and Cor’ez W/'[/7] 64-bit é)(tensmns Copyright ©2009 by Pearson Education. Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

DATSEG segment EXA M P L E

DATA1 DB '123485559BCDEFGHIJK'
MESSAGE1 DB 'FOUND','$'
MESSAGE2 DB 'NOT FOUND','$'
DATSEG ENDS
CODE_SEG SEGMENT
ASSUME CS:CODE_SEG, DS:DATSEG
MAIN PROC FAR
MOV AX, DATSEG
MOV ES, AX
MOV DS, AX
MOV AH, 01; Option 01 inputs one character
INT 21H ; After this interrupt, AL=input character
MOV CX,19
MOV Sl,offset DATAL
GO: MOV BL,[S]]
INC SI
CMP AL,BL
LOOPNE GO
JE FOUND ;ZF=1
MOV DX, Offset MESSAGE?2
JMP NOTFOUND
FOUND: MOV DX, Offset MESSAGE1
NOTFOUND: MOV AH,09
INT 21H
MAIN ENDP
CODE_SEG ENDS
END MAIN

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

P EARSO N Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
’ngh’tgdé”e Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry rey

6—2 CONTROLLING THE FLOW OF
THE PROGRAM

e Easier to use assembly language statements
AF, .ELSE, .ELSEIF, and .ENDIF to control the
flow of the program than to use the correct
conditional jump statement.

— these statements always indicate a special
assembly language command to MASM
e Control flow assembly language statements

beginning with a period available to MASM
version 6.xx, and not to earlier versions.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

e Other statements developed include
REPEAT-UNTIL and .WHILE—-.ENDW.

—the dot commands do not function using
the Visual C++ Inline assembler

* Never use uppercase for assembly language
commands with the inline assembler.

— some of them are reserved by C++ and will
cause problems

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

EXAMPLE 6-8(a)

-IF AL >= 'A' & AL <= 'F°
sSUB AL, 7

.ENDIF

SUB AL, 30H

M

Operator Function
== Equal or the same as
I= Not equal
> Greater than
>= Greater than or equal
< Less than
<= Less than or equal

& Bit test

! l.ogical inversion
&& Logical AND

| Logical OR

I OR

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
e ,grch/tgcté/re Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry rey

WHILE Loops

e Used with a condition to begin the loop.

—the .ENDW statement ends t
e The .BREAK and .CONTIN

ne loop
UJE statements are

available for use with the w
— .BREAK Is often followed by

nile loop.
IF to select the break

condition as in .BREAK .IF AL == ODH

— .CONTINUE can be used to allow a DO-.WHILE
loop to continue If a certain condition is met

e The .BREAK and .CONTINUE commands
function the same manner in C++.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions
el A\ rchitecture, Programming, and Interfacing, Eighth Edition

Barry B. Brey

Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 « All rights reserved.

REPEAT-UNTIL Loops

* A series of instructions is repeated until some
condition occurs.

e The .REPEAT statement defines the start of
the loop.

—end Is defined with the .UNTIL statement, which
contains a condition

 An .UNTILCXZ instruction uses the LOOP
Instruction to check CX for a repeat loop.

— .UNTILCXZ uses the CX register as a counter
to repeat a loop a fixed number of times

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
e e grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

6—-3 PROCEDURES

e A procedure Is a group of instructions that
usually performs one task.
— subroutine, method, or function is an
Important part of any system’s architecture

e A procedure Is a reusable section of the
software stored in memory once, used as
often as necessary.

— saves memory space and makes it easier to
develop software

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

* Disadvantage of procedure Is time It takes the
computer to link to, and return from it.
— CALL links to the procedure; the RET (return)
Instruction returns from the procedure
 CALL pushes the address of the instruction
following the CALL (return address) on the
stack.
— the stack stores the return address when a
procedure Is called during a program
 RET Iinstruction removes an address from the
stack so the program returns to the instruction
following the CALL.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
el Architecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

* A procedure begins with the PROC directive
and ends with the ENDP directive.

— each directive appears with the procedure name

« PROC is followed by the type of procedure:
— NEAR or FAR

* In MASM version 6.x, the NEAR or FAR type
can be followed by the USES statement.

— USES allows any number of registers to be

automatically pushed to the stack and popped
from the stack within the procedure

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition

Upper Saddle River, New Jersey 07458 « All rights reserved.
Barry B. Brey

* Procedures that are to be used by all software
(global) should be written as far procedures.

* Procedures that are used by a given task
(local) are normally defined as near
procedures.

* Most procedures are near procedures.

 Near RET pop a 16-bit number from the stack
and save It into the IP.

 Far RET pop a 32-bit number from the stack
and save It into the IP and CS.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

EXAMPLE 6-14

0000
Q000
0002
0004
0006
0007
0007
Q007
0009
000B
000D
O000E

000E
0011
0013
0015

001B

03
03
03
C3

03

03

03
CB

03
03
03

C3
Cl
c2

C3
C1l

c2.

C3
Cl
C2

SUMS

SUMS
SUMS1

SUMS1

SUMS3

SUMS

PROC
ADD
ADD
ADD
RET
ENDP

AX, BX
AX,CX
AX,DX

FAR

AX,BX
AX,CX
AX,DX

NEAR

AX,BX
AX,CX
AX,DX

USE BX CX DX

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

Architecture, Programming, and Interfacing, Eighth Edition

PEARSON Pentium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions
R

Barry B. Brey

Copyright ©2009 by Pearson Education, Inc.

Upper Saddle River, New Jersey 07458 « All rights reserved.

CALL

e Transfers the flow of the program to the
procedure.

e CALL instruction differs from the jump
Instruction because a CALL saves a return
address on the stack.

e The return address returns control to the
Instruction that immediately follows the
CALL in a program when a RET Instruction
executes.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe YW cntium Pro Processor, Pentium 1l, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
et grch/fgcfgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

Near CALL

e 3 bytes long.
— the first byte contains the opcode; the second
and third bytes contain the displacement

 When the near CALL executes, It first pushes
the offset address of the next instruction onto
the stack.
— offset address of the next instruction appears in
the Instruction pointer (IP or EIP)

* It then adds displacement from bytes 2 & 3
to the IP to transfer control to the procedure.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON Pent/qm Pro Processor, Pept/um 11, Pentium, 4 anq’ Core2 W/th 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

 \Why save the IP or EIP on the stack?
— the Instruction pointer always points to the
next instruction in the program

e For the CALL instruction, the contents of
IP/EIP are pushed onto the stack.

— program control passes to the instruction
following the CALL after a procedure ends

* Figure 6—6 shows the return address (IP)
stored on the stack and the call to the
procedure.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

Figure 6—6 The effect of a near CALL on the stack and the
Instruction pointer.

AFFFF

AFFFE
SP —» AFFFD

11003
11002
11001
11000

10004
10003
10002
10001
10000

Memaory

00

03

(Procedure)

OF

Fe

CALL

Stack
SP before CALL = FFFF
55 before CALL = ADDO
IF before CALL = 0003
Mear CALL

PEARSON Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions
S

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

Architecture, Programming, and Interfacing, Eighth Edition

Barry B. Brey

Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 « All rights reserved.

Far CALL

e 5-byte Instruction contains an opcode followed
by the next value for the IP and CS registers.
— bytes 2 and 3 contain new contents of the IP
— bytes 4 and 5 contain the new contents for CS

 Far CALL places the contents of both IP and
CS on the stack before jumping to the address
Indicated by bytes 2 through 5.

e This allows far CALL to call a procedure
located anywhere Iin the memory and return
from that procedure.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON Pent/z./m Pro Processor, Pept/um 11, Pentium, 4 anq’ Core2 W/th 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el Architecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

* Figure 6—7 shows how far CALL calls a far
procedure.

— contents of IP and CS are pushed onto the stack

 The program branches to the procedure.

— A variant of far call exists as CALLF, but should
be avoided In favor of defining the type of call
iInstruction with the PROC statement

* In 64-bit mode a far call is to any memory
location and information placed onto the stack

IS an 8-byte number.

— the far return instruction retrieves an 8-byte return

address from the stack and places it into RIP

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

Figure 67 The effect of a far CALL instruction.

AFFFF
AFFFE
AFFFD
AFEFC
SP —s= AFFFB

11003
11002
11001
11000

10004
10003
10002
10007
10000

Memory

o —]

10

O

o0

05
L~
- —

{Procadure)

CALL

Stack

Far CALL

SP bafore CALL = FFFF
55 before CALL = ADDD
IP before CALL = 0005

/

PEARSON Pentium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions
S

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

Architecture, Programming, and Interfacing, Eighth Edition

Barry B. Brey

Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 « All rights reserved.

CALLs with Register Operands

 An example CALL BX, which pushes the
contents of IP onto the stack.

— then jumps to the offset address, located In
register BX, in the current code segment

* Always uses a 16-bit offset address, stored in
any 16-bit register except segment registers.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
e e grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

EXAMPLE 6-15

;A DOS program that displays OK using the DISP procedure.

-
¥

.MODEL TINY ;select tiny model
0000 .CODE ;start code segment
.STARTUP ;start program
0100 BB 0110 R MOV BX,OFFSET DISP ;load BX with offset DISP
0103 B2 4F | .~ MOV DL, 'O :display O
0105 FF D3 CALL BX
0107 B2 4B MOV DL, 'K’ ;display K
0109 FF D3 CALL BX
LEXTIT
0110 DISP PROC NEAR
0110 B4 02 MOV AH, 2 ;select function 2
0112 CD 21 INT 21H ;execute DOS function 2
0114 C3 RET
0115 DISP ENDP
: END
The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
//Zen/t;um Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Qopyright ©2009 by Pearson Education, Inc.
rchitecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.

Barry B. Brey

CALLs with Indirect Memory
Addresses

o Particularly useful when different subroutines
need to be chosen in a program.

— selection process is often keyed with a number
that addresses a CALL address in a lookup table

* Essentially the same as the indirect jump that
used a lookup table for a jump address.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
e e grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

RET

* Removes a 16-bit number (near return) from
the stack placing it in IP, or removes a 32-bit
number (far return) and places it in IP & CS.

— near and far return instructions in procedure’s
PROC directive

— automatically selects the proper return instruction
e Figure 6—8 shows how the CALL instruction

links to a procedure and how RET returns in
the 8086—Core2 operating in the real mode.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,
PEARSON Pent/qm Pro Processor, Peﬁt/um /I, Pentium, 4 anc_/ Core2 W/th 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A\ rchitecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

Figure 6-8 The effect of a near return instruction on the

stack and instruction pointer.

Memaory
--_._ﬂ'"'__-f_—
SP —» AFFFF
AFFFE 00 Stack
AFFFD 03
e
11003 RET Near RET
11002
11001
11000 SP before CALL = FFFD
e S5 before CALL = ADOO
—_— | IP before CALL = 1004
10004
10003 (Return here)
10002 OF
10001 FF
10000 CALL

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

Copyright ©2009 by Pearson Education, Inc.

T' EARSO N Pentium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions
Upper Saddle River, New Jersey 07458 « All rights reserved.

Architecture, Programming, and Interfacing, Eighth Edition
Barry B. Brey

 Another form of return adds a number to the
contents of the stack pointer (SP) after the
return address Is removed from the stack.

e A return that uses an immediate operand Is
ideal for use in a system that uses the C/C++
or PASCAL calling conventions.

— these conventions push parameters on the
stack before calling a procedure

 If the parameters are discarded upon return,
the return instruction contains the number of
bytes pushed to the stack as parameters.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
el A rchifecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

 Parameters are addressed on the stack by
using the BP register, which by default
addresses the stack segment.

e Parameter stacking is common in procedures
written for C++ or PASCAL by using the C++
or PASCAL calling conventions.

e Variants of the return instruction:
— RETN and RETF

e Variants should also be avoided in favor of
using the PROC statement to define the type
of call and return.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
— S Architecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « Al rights reserved.

Barry B. Brey

EXAMPLE 617

0000
0003
0006
0007
0008

0071
0071
0072
0074
0077
007A
007B
007E

B8
BB
50
53
E8

55
8B
8B
03
5D
Cc2

001E
0028

0066

EC
46 04
46 06

0004

ADDM

ADDM

MOV
MOV
PUSH
PUSH
CALL

PROC
PUSH

MOV

MOV
ADD
POP
RET -
ENDP

AX, 30
BX, 40
AX
BX

'ADDM

NEAR

BP

BP, SP
AX,.[BP+4]
AX, [BP+6]
BP

4

;stack parameter 1
;stack parameter 2
;add stack parameters

;save BP

;address stack with BP
;get parameter 1

;add parameter 2
;restore BP

;return, dump parameters

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

PEARSON Pentium Pro Processor, Pentium Il, Pentium, 4, and Core2 with 64-bit Extensions
el Architecture, Programming, and Interfacing, Eighth Edition

Barry B. Brey

Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458 « All rights reserved.

SUMMARY (cont.)

* There are three types of unconditional jump
Instructions: short, near, and far.

e The short jump allows a branch to within
+127 and -128 bytes. The near jump (using
a displacement of £32K) allows a jump to
any location in the current code segment
(intrasegment). The far jump allows a jump
to any location in the memory system
(intersegment).

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

SUMMARY (cont.)

 Whenever a label appears with a JMP
Instruction or conditional jump, the label,
located In the label field, must be followed
by a colon (LABEL:). For example, the JMP
DOGGY instruction jumps to memory
location DOGGY..

e The displacement that follows a short or
near jump Is the distance from the next
Instruction to the jJump location.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
el Architecture, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 All rights reserved.

Barry B. Brey

SUMMARY (cont.)

 Indirect jJumps are available in two forms:
(1) jump to the location stored In a register
and (2) jump to the location stored in a
memory word (near indi-rect) or doubleword
(far indirect).

e Conditional jJumps are all short jumps that
test one or more of the flag bits: C, Z, O, P,
or S. If the condition Is true, a jump occurs;
If the condition Is false, the next sequential
Instruction executes.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

SUMMARY (cont.)

 The 80386 and above allow a 16-bit signed
displacement for the conditional jump
Instructions.

* In 64-bit mode, the displacement is 32 bits
allowing a range of £2G.

* A special conditional jump instruction
(LOOP) decrements CX and jumps to the
label when CX is not 0.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

SUMMARY (cont.)

 The .IF and .ENDIF statements are useful
In assembly language for making decisions.

* The instructions cause the assembler to
generate conditional jump statements that
modify the flow of the program.

e The .WHILE and .ENDW statements allow
an assembly language program to use the
WHILE construction, and the .REPEAT and
.UNTIL statements allow use of the
REPEAT-UNTIL construct.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

SUMMARY (cont.)

* Procedures are groups of instructions that
perform one task and are used from any
point in a program.

 The CALL instruction links to a procedure
and the RET instruction returns from a
procedure. In assembly language, the
PROC directive defines the name and type
of procedure.

e The ENDP directive declares the end of the
procedure.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

SUMMARY (cont.)

e The CALL construction Is a combination of
a PUSH and a JMP instruction.

 When CALL executes, It pushes the return
address on the stack and then jJumps to the
procedure.

 Anear CALL places the contents of IP on
the stack, and a far CALL places both IP
and CS on the stack.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education. Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

SUMMARY (cont.)

 The RET instruction returns from a
procedure by removing the return address
from the stack and placing it into IP (near
return), or IP and CS (far return).

 Interrupts are either software instructions
similar to CALL or hardware signals used to
call procedures. This process interrupts the
current program and calls a procedure.

» After the procedure, a special IRET
Instruction returns control to the software.

The Intel Microprocessors. 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium,

IV IIe 1YW Fcntium Pro Processor, Pentium I, Pentium, 4, and Core2 with 64-bit Extensions Copyright ©2009 by Pearson Education, Inc.
s v grch/tgctgre, Programming, and Interfacing, Eighth Edition Upper Saddle River, New Jersey 07458 « All rights reserved.
arry B. Brey

	Chapter 1
	The Memory and I/O System
	Slide Number 3
	Slide Number 4
	The TPA
	The TPA Cont.
	The System Area
	Slide Number 8
	Windows System
	Slide Number 10
	I/O Space
	Memory-mapped I/O
	The Microprocessor
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Buses Revisited
	Control BUS
	Unicode
	Slide Number 23
	BCD (Binary-Coded Decimal) Data
	Slide Number 25
	Hexadecimal Integers
	Signed Integers
	Forming the Two's Complement
	Ranges of Signed Integers
	Integer Storage Sizes
	Byte-Sized Data
	Byte-Sized Data: Example�using assembler
	Byte-Sized Data: Example�using MS Visual C++
	Word-Sized data
	Slide Number 35
	Word-Sized Data: Example�using assembler and MS Visual C++
	Doubleword-Sized Data
	Slide Number 38
	Doubleword-Sized Data: Example�using assembler (using DD or DWORD) and MS Visual C++
	Real Floating-point Numbers Scientific Notation
	Binary Floating Point Numbers
	IEEE Standard 754 For Floating Point Format
	IEEE 754 Double Precision Format
	Conversion
	Slide Number 45
	Directives for storing FP
	Floating-Point
	Floating-Point Formats
	Chapter 2
	Introduction
	 INTERNAL MICROPROCESSOR ARCHITECTURE
	The Programming Model
	The Programming Model Cont.
	Figure 2–1 The programming model of the 8086 through the Core2 microprocessor including the 64-bit extensions.
	Accessing Parts of Registers
	Multipurpose (General) Registers
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Index and Base Registers
	Special-Purpose Registers
	Slide Number 16
	Figure 2–2 The EFLAG and FLAG register counts for the entire 8086 and Pentium microprocessor family.
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Segment Registers
	Slide Number 25
	Slide Number 26
	Slide Number 27
	REAL MODE MEMORY ADDRESSING
	Segments and Offsets
	Figure 2–3 The real mode memory-addressing scheme, using a segment address plus an offset.
	Slide Number 31
	Segmented Memory
	Calculating Linear Addresses
	Effective Address Calculations
	Effective Address Calculations�Cont.
	Effective Address Calculations�Cont.
	Default Segment and Offset Registers
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Figure 2–4 A memory system showing the placement of four memory segments.�
	Figure 2–5 An application program containing a code, data, and stack segment loaded into a DOS system memory.�
	Segment and Offset Addressing Scheme Allows Relocation
	Slide Number 44
	INTRODUCTION TO PROTECTED MODE MEMORY ADDRESSING�
	Selectors and Descriptors
	Slide Number 47
	Table 1–6 The Intel family of microprocessor bus and memory sizes. �
	Figure 2–6 The 80286 through Core2 64-bit descriptors.�
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Figure 2–9 Using the DS register to select a description from the global descriptor table. In this example, the DS register accesses memory locations 00100000H–001000FFH as a data segment.
	Flat Mode Memory
	Slide Number 61
	Program-invisible registers
	Program-invisible registers Cont.
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	Chapter 3: Addressing Modes
	Chapter 3
	Introduction
	Slide Number 4
	Slide Number 5
	Example of MASM program
	3–1 DATA ADDRESSING MODES
	Figure 3–1 The MOV instruction showing the source, destination, and direction of data flow.�
	Slide Number 9
	Figure 3–2 8086–Core2 data-addressing modes.�
	I- Register Addressing
	Slide Number 12
	Slide Number 13
	Examples of registered-addressed instructions
	Figure 3–3 The effect of executing the MOV BX, CX instruction at the point just before the BX register changes. Note that only the rightmost 16 bits of register EBX change.�
	Slide Number 16
	II- Immediate Addressing
	Slide Number 18
	Figure 3–4 The operation of the MOV EAX,13456H instruction. This instruction copies the immediate data (13456H) into EAX.�
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Examples of immediate addressing using the MOV instruction
	III- Direct Data Addressing
	Slide Number 25
	Slide Number 26
	a. Direct Addressing
	Figure 3–5 The operation of the MOV AL,[1234H] instruction when DS=1000H .�
	Slide Number 29
	Slide Number 30
	b. Displacement Addressing
	Slide Number 32
	Slide Number 33
	Slide Number 34
	IV- Register Indirect Addressing
	�Memory location = DS x 10 + BX = 01000+0300 = 10300�
	Slide Number 37
	Figure 3–6 The operation of the MOV AX,[BX] instruction when BX = 1000H and DS = 0100H. Note that this instruction is shown after the contents of memory are transferred to AX.�Memory location = DS x 10 + BX = 01000+1000 = 00002000 and 00002001�
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Figure 3–7 An array (TABLE) containing 50 bytes that are indirectly addressed through register BX.�
	Slide Number 44
	Slide Number 45
	Slide Number 46
	V- Base-Plus-Index Addressing
	Locating Data with Base-Plus-Index Addressing
	Figure 3–8 An example showing how the base-plus-index addressing mode functions for the MOV DX,[BX + DI] instruction. Notice that memory address 02010H is accessed because DS=0100H, BX=1000H and DI=0010H.�Address = DS x 10 + BX + DI = 01000+01000+0010 = 02010H and 02011H
	VI- Register Relative Addressing
	Figure 3–10 The operation of the MOV AX, [BX+1000H] instructon, when BX=0100H and DS=0200H .�Address Generation = DS X 10H + [BX + offset] = 02000+100+1000=3100H and 3101H
	VII- Base Relative-Plus-Index Addressing
	Addressing Data with Base Relative-Plus-Index
	Figure 3–12 An example of base relative-plus-index addressing using a MOV AX,[BX+SI+100H] instruction. Note: DS=1000H�
	Slide Number 55
	Scaled-Index Addressing
	Slide Number 57
	3–3 STACK MEMORY-ADDRESSING MODES
	Slide Number 59
	Slide Number 60
	(a) PUSH BX places the contents of BX onto the stack;�Whenever a word of data is pushed onto the stack,� -The high-order 8 bits are placed in the location addressed by SP – 1 � -The low-order 8 bits are placed in the location addressed by SP – 2�after the data are stored by a PUSH, the contents of the SP register decrement by two�
	(b) POP CX removes data from the stack and places them into CX. Instruction is shown after execution.�When data are popped from the stack, � - The low-order 8 bits are removed from the location addressed by � SP. � - The high-order 8 bits are removed from the location addressed by � SP+1; the SP register is incremented by 2��
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Chapter 4
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	4–4 STRING DATA TRANSFERS
	The Direction Flag
	DI and SI
	Slide Number 20
	STOS
	STOS with a REP
	Slide Number 23
	MOVS
	Slide Number 25
	MOVS: Summary
	Example
	Slide Number 28
	INS: More
	Slide Number 30
	Slide Number 31
	OUTS : More
	Slide Number 33
	XCHG : More
	XLAT : More
	Example
	IN and OUT
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	CMOV (Conditional Move)
	Slide Number 44
	CMOVcc
	CMOVcc: Example
	Slide Number 47
	Slide Number 48
	4–7 ASSEMBLER DETAIL
	Directives
	Storing Data in a Memory Segment
	Slide Number 52
	ASSUME, EQU, and ORG
	Slide Number 54
	Example
	PROC and ENDP
	Slide Number 57
	Slide Number 58
	Memory Organization
	Models
	Full-Segment Definitions
	Slide Number 62
	Examples
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Intel and MASM documentation
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	Chapter 5: Arithmetic and Logic Instructions
	Chapter 5
	Introduction
	Chapter Objectives
	Chapter Objectives
	5-1 ADDITION, SUBTRACTION AND COMPARISON
	Addition
	Register Addition
	Memory-to-Register Addition
	Array Addition
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Increment Addition
	Slide Number 15
	Addition-with-Carry
	Figure 5–1 Addition-with-carry showing how the carry flag (C) links the two 16-bit additions into one 32-bit addition.� ADD AX,CX� ADC BX,DX
	Exchange and Add for the 80486–Core2 Processors
	Subtraction
	Register Subtraction
	Slide Number 21
	Decrement Subtraction�Subtracts 1 from a register/memory location.�
	Subtraction-with-Borrow
	Figure 5–2 Subtraction-with-borrow showing how the carry flag (C) propagates the borrow.� SUB AX,DI� SBB BX,SI
	Slide Number 25
	Comparison
	Slide Number 27
	Compare and Exchange (80486–Core2 Processors Only)
	Slide Number 29
	5-2 MULTIPLICATION AND DIVISION
	Multiplication
	8-Bit Multiplication
	Slide Number 33
	16-Bit Multiplication
	32-Bit Multiplication
	Slide Number 36
	A Special Immediate 16-Bit Multiplication
	Slide Number 38
	Slide Number 39
	Division
	Slide Number 41
	8-Bit Division
	Slide Number 43
	Slide Number 44
	16-Bit Division
	Slide Number 46
	32-Bit Division
	Slide Number 48
	The Remainder
	Example
	5-3 BCD and ASCII Arithmetic
	BCD Arithmetic
	DAA Instruction
	Slide Number 54
	Processing Packed BCD Numbers
	Slide Number 56
	Slide Number 57
	Slide Number 58
	ASCII Arithmetic
	BCD Number System�
	Slide Number 61
	AAA Instruction
	Slide Number 63
	Slide Number 64
	Slide Number 65
	AAM Instruction
	Slide Number 67
	5-4 BASIC LOGIC INSTRUCTIONS
	Slide Number 69
	AND
	Figure 5–3 (a) The truth table for the AND operation and (b) the logic symbol of an AND gate.�
	Slide Number 72
	Figure 5–4 The operation of the AND function showing how bits of a number are cleared to zero.�
	Slide Number 74
	OR
	Figure 5–5 (a) The truth table for the OR operation and (b) the logic symbol of an OR gate.�
	Figure 5–6 The operation of the OR function showing how bits of a number are set to one.�
	Slide Number 78
	Exclusive-OR
	Figure 5–7 (a) The truth table for the Exclusive-OR operation and (b) the logic symbol of an Exclusive-OR gate.�
	Slide Number 81
	Figure 5–8 The operation of the Exclusive-OR function showing how bits of a number are inverted.�
	Slide Number 83
	Test and Bit Test Instructions
	Slide Number 85
	Slide Number 86
	NOT and NEG
	Slide Number 88
	Shift and Rotate
	Shift
	Figure 5–9 The shift instructions showing the operation and direction of the shift.�
	Slide Number 92
	Examples	
	Slide Number 94
	Rotate
	Figure 5–10 The rotate instructions showing the direction and operation of each rotate.�
	Slide Number 97
	Slide Number 98
	Bit Scan Instructions
	5-6 STRING COMPARISONS
	SCAS
	Example
	Example (Cont.)
	CMPS
	Example
	DOS Interrupt 21H
	DOS Interrupt 21H
	DOS Interrupt 21H
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	Chapter 6: Program Control Instructions
	Chapter 6
	Introduction
	Chapter Objectives
	6–1 THE JUMP GROUP
	Unconditional Jump (JMP)
	Slide Number 7
	Figure 6–1 The three main forms of the JMP instruction. Note that Disp is either an 8- or 16-bit signed displacement or distance.�
	Short Jump
	Figure 6–2 A short jump to four memory locations beyond the address of the next instruction.�
	Slide Number 11
	Example
	Near Jump
	Slide Number 14
	Figure 6–3 A near jump that adds the displacement (0002H) to the contents of IP.�
	Slide Number 16
	Example
	Far Jump
	Figure 6–4 A far jump instruction replaces the contents of both CS and IP with 4 bytes following the opcode.�
	Slide Number 20
	Slide Number 21
	Example
	Jumps with Register Operands
	Slide Number 24
	Indirect Jumps Using an Index
	Slide Number 26
	Unconditional Jump (JMP) : SUMMARY
	Unconditional Jump (JMP) : SUMMARY
	Conditional Jumps
	Slide Number 30
	Slide Number 31
	Figure 6–5 Signed and unsigned numbers follow different orders.�
	Slide Number 33
	Slide Number 34
	Slide Number 35
	LOOP
	Slide Number 37
	Conditional LOOPs
	Slide Number 39
	Slide Number 40
	6–2 CONTROLLING THE FLOW OF THE PROGRAM
	Slide Number 42
	Slide Number 43
	WHILE Loops
	REPEAT-UNTIL Loops
	6–3 PROCEDURES
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	CALL
	Near CALL
	Slide Number 53
	Figure 6–6 The effect of a near CALL on the stack and the instruction pointer.�
	Far CALL
	Slide Number 56
	Figure 6–7 The effect of a far CALL instruction.�
	CALLs with Register Operands
	Slide Number 59
	CALLs with Indirect Memory Addresses
	RET
	Figure 6–8 The effect of a near return instruction on the stack and instruction pointer.�
	Slide Number 63
	Slide Number 64
	Slide Number 65
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY
	SUMMARY

