Form 1

4．Given the following execution times in seconds of three benchmarks（ $B 1, B 2$ ，and $B 3$ ）on a reference computer and a computer under test．What is the geometric mean of the relative performance（approximated to one decimal point）？
－Reference computer： 10 for $\mathrm{B} 1,15$ for $\mathrm{B} 2,12$ for B 3
－Computer under test： 5 for B1， 10 for B2， 4 for B3
（5 Points）
－
2.1
2.0
2.2

ค 1.9
「 1.8
5．Assume that you have a five－stage pipelined processor similar to the one studied in the class．This processor has no forwarding paths to the execution stage and resolves data hazards through stalls．But as usual，data written in the register file in the first half of a cycle can be read in the second half on the same cycle．How many cycles are needed to fetch and complete execution the following five RISC－V instructions？
sub x2，x1，x3
and $\times 12, x 2, x 5$
or $x 13, x 6, x 2$
add $\times 14, \times 2, \times 2$
sd $\times 15,100(\times 14)$
（5 Points）
「 10 cycles
「 11 cycles
12 cycles
－ 13 cycles
None of the other options
6．A processor has a 2 －bit branch history table．The size of this table is 8 K bits．How many address bits are needed to access this table？
（5 Points）
－ 12 bits
c 13 bits
r 14 bits
r 11 bits
None of the other options
7．Assume that the following code sequence is executed by a dynamic quad－issue pipelined processor．This processor uses reservation stations，reorder buffer，and four common data
buses to execute the instructions out of order. The fetch stage takes one cycle and the issue stage takes one cycle. The integer latency is 1 cycle, and the memory latency is 2 cycles (1 cycle for address calculation and 1 cycle for data memory access). The processor has two address calculation units, two memory access units, and two integer ALU units.
How many cycles are needed to fetch and complete execution of the following eight RISCV instructions?
Id $\times 1,8(\mathrm{x} 2)$
sd $\mathrm{x} 3,0(\mathrm{x} 1$)
sub $\times 11, \times 3, \times 1$
and $x 12, x 4, x 11$
add $\times 7, \times 5, x 6$
sub $\times 8, \times 5, \times 6$
sub $\times 13, \times 4, \times 4$
and $\mathrm{x} 14, \mathrm{x} 11, \mathrm{x} 3$
(5 Points)
C 8 cycles
r 9 cycles
「 10 cycles

- 11 cycles

None of the other options
8.A DDR2-SDRAM chip has four banks. Each bank is organized as 16 K rows by 8 K columns array with a data width of 16 bits. What is the capacity of this chip?
(5 Points)
512 Mbits
r 1 Gbits
2 Gbits
4 Gbits

- None of the other options
9.Assume that you have an 8 -way set associative cache that has 1 K sets with 64 -byte blocks. What is the tag field width if the address width is 64 bits?
(5 Points)
- 48 bits

45 bits
54 bits
r 42 bits
None of the other options
10.Assume that you have a computer that has a 32 -bit virtual address and $64-\mathrm{KB}$ pages. Given the contents of the shown fully-associative TLB, what is the translation of the virtual address 00010002 to physical address? (All numbers in this question are in hexadecimal)

No．V Tag Physical Page No．
ニニニニニニニニニニニニニニニニニニニニ＝
010001 AAAA
110002 BBBB
212000 CCCC
310000 DDDD
410003 EEEE
（5 Points）
－AAAA0002
\bigcirc BBBB0001
© 0002AAAA
「 0001BBBB
None of the other options
11．To have a speedup of 10 using 16 processors，what should be the parallelizable fraction？
（5 Points）
－ 96%
4\％
62．5\％
「 37．5\％
None of the other options
12．What is the peak performance in Giga floating－point operations per second （GFLOPs／sec）for a processor that has the following double－precision floating－point specifications？
－ 32 cores
－4．0 GHz clock
－Has two 512－bit SIMD units
－Supports pipelined fused multiply－add operations
（5 Points）
＊ 4096 GFLOPs／sec
r 2048 GFLOPs／sec
C 1024 GFLOPs／sec
${ }^{\circ} 512$ GFLOPs／sec
None of the other options
13．Assume that you have a hypercube interconnection network that connects 128 nodes．
What is the maximum latency？
（5 Points）
－ 7 hops
© 6 hops
${ }^{C} 5$ hops

8 hops
None of the other options

Form 2

4.Given the following execution times in seconds of three benchmarks ($\mathrm{B} 1, \mathrm{~B} 2$, and B 3) on a reference computer and a computer under test. What is the geometric mean of the relative performance (approximated to one decimal point)?

- Reference computer: 10 for B1, 15 for B2, 12 for B3
- Computer under test: 5 for B1, 12 for B2, 4 for B3
(5 Points)
C 2.1
- 2.0
2.2

ค 1.9
「 1.8
5.Assume that you have a five-stage pipelined processor similar to the one studied in the class. This processor has no forwarding paths to the execution stage and resolves data hazards through stalls. But as usual, data written in the register file in the first half of a cycle can be read in the second half on the same cycle. How many cycles are needed to fetch and complete execution the following five RISC-V instructions?
sub x2, x1, x3
and $x 12, \times 3, x 5$
or $x 13, x 6, x 2$
add x14, x2, x2
sd x15, 100(x14)
(5 Points)
「 10 cycles
© 11 cycles

- 12 cycles
- 13 cycles

None of the other options
6.A processor has a 2 -bit branch history table. The size of this table is 4 K bits. How many address bits are needed to access this table?
(5 Points)
12 bits
13 bits
C 14 bits

- 11 bits

None of the other options
7.Assume that the following code sequence is executed by a dynamic quad-issue pipelined processor. This processor uses reservation stations, reorder buffer, and four common data
buses to execute the instructions out of order. The fetch stage takes one cycle and the issue stage takes one cycle. The integer latency is 1 cycle, and the memory latency is 2 cycles (1 cycle for address calculation and 1 cycle for data memory access). The processor has two address calculation units, two memory access units, and two integer ALU units.
How many cycles are needed to fetch and complete execution of the following eight RISCV instructions?
Id $\times 1,8(\mathrm{x} 2)$
sd $\mathrm{x} 3,0(\mathrm{x} 1$)
sub $\times 11, \times 3, x 1$
and $x 12, x 4, x 1$
add $\times 7, \times 5, x 6$
sub $\times 8, \times 5, \times 6$
sub $\times 13, \times 4, \times 4$
and $\mathrm{x} 14, \mathrm{x} 11, \mathrm{x} 3$
(5 Points)
C 8 cycles
© 9 cycles

- 10 cycles
- 11 cycles

None of the other options
8.A DDR2-SDRAM chip has four banks. Each bank is organized as 16 K rows by 8 K columns array with a data width of 8 bits. What is the capacity of this chip?
(5 Points)
r 512 Mbits
ค 1 Gbits
2 Gbits

- 4 Gbits

None of the other options
9.Assume that you have an 8 -way set associative cache that has 8 K sets with 64 -byte blocks. What is the tag field width if the address width is 64 bits?
(5 Points)
48 bits

- 45 bits

54 bits
r 42 bits
None of the other options
10.Assume that you have a computer that has a 32 -bit virtual address and $64-\mathrm{KB}$ pages. Given the contents of the shown fully-associative TLB, what is the translation of the virtual address 00020001 to physical address? (All numbers in this question are in hexadecimal)

No．V Tag Physical Page No．
ニニニニニニニニニニニニニニニニニニニニ＝
010001 AAAA
110002 BBBB
212000 CCCC
310000 DDDD
410003 EEEE
（5 Points）
AAAA0002
－BBBB0001
© 0002AAAA
r 0001BBBB
N None of the other options
11．To have a speedup of 10 using 16 processors，what should be the serial fraction？
（5 Points）
「 96\％
－ 4%
62．5\％
－37．5\％
None of the other options
12．What is the peak performance in Giga floating－point operations per second （GFLOPs／sec）for a processor that has the following double－precision floating－point specifications？
－ 32 cores
－4．0 GHz clock
－Has two 256－bit SIMD units
－Supports pipelined fused multiply－add operations
（5 Points）
4096 GFLOPs／sec
＊ 2048 GFLOPs／sec
C 1024 GFLOPs／sec
「 512 GFLOPs／sec
None of the other options
13．Assume that you have a hypercube interconnection network that connects 512 nodes．
What is the maximum latency？
（5 Points）
「 7 hops
C 6 hops
${ }^{C} 5$ hops

C 8 hops

- None of the other options

الامتحان النهائي التعويضي

4．أقسم بالله أنني لم أقدم أو أتلق أية مساعدة من أحد و لم أشهد أية حالة غش خلال هذا الامتحان ولـو أخالف تعليمات هذا الامتحان

```
أق
لا أقسم
```

5．A processor runs on a $2-\mathrm{GHz}$ clock， 1 －volt power supply，and consumes 50 W dynamic power．What is the consumed dynamic power when the processor runs a turbo mode of 4 GHz and 1.4 volts？
（5 Points）
－ 196 W
c 140 w
100 W
70 W
None of the other options
6．Assume that you have a five－stage pipelined processor similar to the one studied in the class．This processor resolves data hazards through stalls and forwarding．However，it does not have forwarding paths to the execution stage from the memory stage．How many cycles are needed to fetch and complete execution the following five RISC－V instructions？ sub $\times 2, \times 1$ ，x3
and $\mathrm{x} 12, \mathrm{x} 2, \mathrm{x} 5$
or $x 13, x 6, x 2$
add $\times 14, \times 2, \times 2$
sd x15，100（x14）
（5 Points）
「 10 cycles
－ 11 cycles
欠 12 cycles
「 13 cycles
None of the other options
7．A processor has a 128 －entry branch target buffer．What is the approximate size of this buffer if the address width is 64 bits？
（5 Points）
512 bytes
ก 1 Kbytes
－ 2 Kbytes
256 bytes
None of the other options
8.Assume that the following code sequence is executed by a dynamic dual-issue pipelined processor. This processor uses reservation stations, reorder buffer, and four common data buses to execute the instructions out of order. The fetch stage takes one cycle and the issue stage takes one cycle. The integer latency is 1 cycle, and the memory latency is 2 cycles (1 cycle for address calculation and 1 cycle for data memory access). The processor one address calculation unit, one memory access unit, and one integer ALU unit. How many cycles are needed to fetch and complete execution of the following eight RISC-V instructions?
Id $\mathrm{x} 1,8(\mathrm{x} 2)$
sd $x 3,0(x 1)$
sub $x 11, x 3, x 1$
and $x 12, x 4, x 11$
add $x 7, x 5, x 6$
sub $x 8, x 5, x 6$
sub $x 13, x 4, x 4$
and $x 14, x 11, x 3$
(5 Points)

- 12 cycles

13 cycles
14 cycles
r 11 cycles
None of the other options
9.A DDR2-SDRAM chip has four banks and 4 Gbits capacity. What is the typical width of its address bus if its data width is 16 bits?
(5 Points)

- 14 bits

28 bits
c 16 bits
c 32 bits
C None of the other options
10.Assume that you have an 8 -way set associative cache that has 1 K sets with 64 -byte blocks. What is the set index of the hexadecimal address 1234A438? (The answers below are in binary)
(5 Points)

- 1010010000

0000111000
r 0001001000110100
© 1001010010000
None of the other options

11．Assume that you have the following four entries in a page table and you must replace one of the corresponding physical page．Which one you are likely to replace？
No．Valid Dirty Ref．
＝ニニニニニニニニニニニニニ＝＝
0100
1000
2110
3101
（5 Points）
－The physical page of entry no． 0
The physical page of entry no． 1
The physical page of entry no． 2
The physical page of entry no． 3
None of the other options
12．Assume that the following loop is executed N iterations．How many vector RISC－V instructions are needed to executed this loop if N is less than the vector register width？
fld f0，a（x3）
addi x5，x19， 512
loop：fld f1，0（x19）
fld $\mathrm{f} 2,0$（x20）
fadd．d f1，f1，f2
fsd f1，0（x19）
fmul．d f1，f0，f1
fsd f1，0（x21）
addi $\times 19, \times 19,8$
addi $\times 20, \times 20,8$
addi $\times 21, \times 21,8$
bltu x19，x5，loop
（5 Points）
55 vector instructions
－ 6 vector instructions
7 vector instructions
8 vector instructions
${ }^{c}$ None of the other options
13．What is the arithmetic intensity of the following loop？
fld f0，a（x3）
addi $\times 5, \times 19,512$
loop：fld f1，0（x19）
fld $\mathrm{f} 2,0(\mathrm{x} 20)$
fadd．d f1，f1，f2
fsd f1，0（x19）
fmul.d f1, f0, f1
fsd f1, 0(x21)
addi $\times 19, \times 19,8$
addi $\times 20, \times 20,8$
addi x21, x21, 8
bltu x19, x5, loop

- $1 / 16$

1/8
「 $1 / 4$
${ }^{\circ} 1 / 2$
None of the other options
14.Assume that you have a torus interconnection network that connects 256 nodes. What is the bisection bandwidth?
(5 Points)

- The bandwidth of 32 links

The bandwidth of 16 blinks
The bandwidth of 8 links
The bandwidth of 256 links
None of the other options

