0907432 Computer Design (Spring 2019) <u>Ouiz 1</u>

الاسم: رقم الشعبة: 1

<u>Instructions</u>: Time **15** minutes. Open book and notes exam. No electronics. Please answer all problems in the space provided and limit your answer to the space provided. **No questions are allowed**.

<Good Luck>

P1. A program spends 80% of its execution time executing floating-point instructions. How much you need to speed up these instructions in order to get an overall speedup of 4.0?

The solution using Amdahl's law is:

Overall Speedup = 1 / (1-f + f/s)

4.0 = 1 / (0.2 + 0.8/s)

0.2 + 0.8/s = 1 / 4.0 = 0.25

0.8/s = 0.05

s = 0.8/0.05 = 16

P2. Unroll the following loop two times and use the table below to schedule the unrolled loop efficiently for the static dual-issue processor described in the class.

```
Loop: ld x31,0(x20) // x31=array element add x31,x31,x21 // add scalar in x21 sd x31,0(x20) // store result addi x20,x20,-8 // decrement pointer blt x22,x20,Loop // branch if x22 < x20
```

	ALU/branch	Load/store	Cycle
Loop:		ld x31,0(x20)	1
	addi x20,x20,-16	ld x30,-8(x20)	2
	add x31,x31,x21		3
	add x30,x30,x21	sd x31,16(x20)	4
	blt x22,x20,Loop	sd x30,8(x20)	5
			6
			7