Instructions: Time 15 minutes. Open book and notes exam. No electronics. Please answer all problems in the space provided and limit your answer to the space provided. No questions are allowed.
<Good Luck>

P1. A processor costs $\$ 200$, consumes 100 W , and has $200-\mathrm{mm}^{2}$ die area.
a- What is the expected new power consumption if its clock frequency is increased from 2 GHz to 3 GHz ?

The solution is:

The new power consumption $=100 \mathrm{~W} \times 3 \mathrm{GHz} / 2 \mathrm{GHz}$

$$
=150 \mathrm{~W}
$$

b- An engineer considers improving the performance of this processor by adding additional circuits. What is the expected new processor cost if its die area increases to $300 \mathrm{~mm}^{2}$?

The solution is:

The new cost $=\$ 200 \times(300 / 200)^{2}$
$=\$ 200 \times 2.25$
$=\$ 450$
c- In the 1990s, the uniprocessor performance used to improve by an average of 52% annually. Currently, this improvement is less than 5\%. Give three reasons for this slowdown in improvement.

The solution is:

1. The power wall; end of Dennard scaling; cannot reduce the supply voltage and increase the clock frequency.
2. Hitting Amdahl's law limitations; cannot exploit more instruction level parallelism.
3. Slowdown in Moore's law; cannot get increases in the transistor budgets as fast as before.

P2. Assume that the 5-stage pipelined processor studied in the class resolves branch instructions in the decode stage and solves data hazards through forwarding and stalls.
a- Use the pipeline diagram below to show how this processor executes the instructions shown below. Use arrows to show the forwarding actions needed.

Instruction		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ld $\times 31,0(\times 20)$	\mathbf{F}	\mathbf{D}	\mathbf{E}	\mathbf{M}	\mathbf{W}											
sub $\times 31, \times 21, \times 31$		\mathbf{F}	\mathbf{D}	\mathbf{D}	$\mathbf{} \mathbf{E}$	\mathbf{M}	\mathbf{W}									
sd $\times 31,0(\times 20)$			\mathbf{F}	\mathbf{F}	\mathbf{D}	\mathbf{E}	\mathbf{M}	\mathbf{W}								
addi $\times 20, \times 20,-8$					\mathbf{F}	\mathbf{D}	\mathbf{E}	\mathbf{M}	\mathbf{W}							
blt $\times 23, \times 20$, Loop						\mathbf{F}	\mathbf{D}	${ }^{\mathbf{V}} \mathbf{D}$	\mathbf{E}	\mathbf{M}	\mathbf{W}					

a- Draw on the following diagram arrows that specify the needed forwarding paths for the above code.

