
http:/ /algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

http:/ /algs4.cs.princeton.edu

Algorithms

Modified by: Dr. Fahed Jubair and Dr. Ramzi Saifan

Computer Engineering Department

University of Jordan

ROBERT SEDGEWICK | KEVIN WAYNE

ANALYSIS OF ALGORITHMS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ introduction

‣ mathematical models

‣ order-of-growth classifications

‣ theory of algorithms

‣ memory

ANALYSIS OF ALGORITHMS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Predict performance.

Compare algorithms.

Provide guarantees.

Primary practical reason: avoid performance bugs.

Reasons to analyze algorithms

4

client gets poor performance because programmer

did not understand performance characteristics

Q. Will my program be able to solve a large practical input?

The challenge

5

Why is my program so slow ? Why does it run out of memory ?

6

Scientific method applied to analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.

・Observe some feature of the natural world.

・Hypothesize a model that is consistent with the observations.

・Predict events using the hypothesis.

・Verify the predictions by making further observations.

・Validate by repeating until the hypothesis and observations agree.

Feature of the natural world. Computer itself.

7

Example: 3-SUM

3-SUM. Given N distinct integers, how many triples sum to exactly zero?

Context. Deeply related to problems in computational geometry.

% more 8ints.txt

8

30 -40 -20 -10 40 0 10 5

% java ThreeSum 8ints.txt

4

a[i] a[j] a[k] sum

30 -40 10 0

30 -20 -10 0

-40 40 0 0

-10 0 10 0

1

2

3

4

public class ThreeSum

{

public static int count(int[] a)

{

int N = a.length;

int count = 0;

for (int i = 0; i < N; i++)

for (int j = i+1; j < N; j++)

for (int k = j+1; k < N; k++)

if (a[i] + a[j] + a[k] == 0)

count++;

return count;

}

public static void main(String[] args)

{

In in = new In(args[0]);

int[] a = in.readAllInts();

StdOut.println(count(a));

}

}
8

3-SUM: brute-force algorithm

check each triple

for simplicity, ignore

integer overflow

9

Measuring the running time

client code

public static void main(String[] args)

{

In in = new In(args[0]);

int[] a = in.readAllInts();

Stopwatch stopwatch = new Stopwatch();

StdOut.println(ThreeSum.count(a));

double time = stopwatch.elapsedTime();

StdOut.println("elapsed time " + time);

}

public class Stopwatch

Stopwatch() create a new stopwatch

double elapsedTime() time since creation (in seconds)

(part of stdlib.jar)

Run the program for various input sizes and measure running time.

10

Empirical analysis

N time (seconds)
†

250 0

500 0

1,000 0.1

2,000 0.8

4,000 6.4

8,000 51.1

16,000 ?

Standard plot. Plot running time T (N) vs. input size N.

11

Data analysis

Log-log plot. Plot running time T (N) vs. input size N using log-log scale.

Regression. Fit straight line through data points: a N b.

Hypothesis. The running time is about 1.006 10 –10 N 2.999
seconds.

12

Data analysis

power law

slope

lg(T (N)) = b lg N + c

b = 2.999

c = -33.2103

T (N) = a N b, where a = 2 c

3 orders

of magnitude

13

Prediction and validation

Hypothesis. The running time is about 1.006 10 –10 N 2.999
seconds.

Predictions.

・51.0 seconds for N = 8,000.

・408.1 seconds for N = 16,000.

Observations.

validates hypothesis!

N time (seconds)
†

8,000 51.1

8,000 51

8,000 51.1

16,000 410.8

14

Experimental algorithmics

System independent effects.

・Algorithm.

・Input data.

System dependent effects.

・Hardware: CPU, memory, cache, …

・Software: compiler, interpreter, garbage collector, …

・System: operating system, network, other apps, …

determines constant

in power law

determines exponent

in power law

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ Introduction

‣ mathematical models

‣ order-of-growth classifications

‣ theory of algorithms

‣ memory

ANALYSIS OF ALGORITHMS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

16

Mathematical models for running time

Total running time: sum of cost frequency for all operations.

・Need to analyze program to determine set of operations.

・Cost depends on machine, compiler.

・Frequency depends on algorithm, input data.

In principle, accurate mathematical models are available.

Donald Knuth

1974 Turing Award

Challenge. How to estimate constants.

Cost of basic operations

17

† Running OS X on Macbook Pro 2.2GHz with 2GB RAM

operation example nanoseconds
†

integer add a + b 2.1

integer multiply a * b 2.4

integer divide a / b 5.4

floating-point add a + b 4.6

floating-point multiply a * b 4.2

floating-point divide a / b 13.5

sine Math.sin(theta) 91.3

arctangent Math.atan2(y, x) 129

...

Observation. Most primitive operations take constant time.

Caveat. Non-primitive operations often take more than constant time.

Cost of basic operations

18

operation example nanoseconds
†

variable declaration int a c1

assignment statement a = b c2

integer compare a < b c3

array element access a[i] c4

array length a.length c5

1D array allocation new int[N] c6 N

2D array allocation new int[N][N] c7 N 2

Q. How many instructions as a function of input size N ?

19

Example: 1-SUM

int count = 0;

for (int i = 0; i < N; i++)

if (a[i] == 0)

count++;

operation frequency

variable declaration 2

assignment statement 2

less than compare N + 1

equal to compare N

array access N

increment N to 2 N

N array accesses

Q. How many instructions as a function of input size N ?

operation frequency

variable declaration N + 2

assignment statement N + 2

less than compare ½ (N + 1) (N + 2)

equal to compare ½ N (N − 1)

array access N (N − 1)

increment ½ N (N − 1) to N (N − 1)

tedious to count exactly

20

Example: 2-SUM

int count = 0;

for (int i = 0; i < N; i++)

for (int j = i+1; j < N; j++)

if (a[i] + a[j] == 0)

count++;

Cost model. Use some basic operation as a proxy for running time.

operation frequency

variable declaration N + 2

assignment statement N + 2

less than compare ½ (N + 1) (N + 2)

equal to compare ½ N (N − 1)

array access N (N − 1)

increment ½ N (N − 1) to N (N − 1)

22

Simplification 1: cost model

cost model = array accesses

int count = 0;

for (int i = 0; i < N; i++)

for (int j = i+1; j < N; j++)

if (a[i] + a[j] == 0)

count++;

・Estimate running time (or memory) as a function of input size N.

・Ignore lower order terms.

– when N is large, terms are negligible

– when N is small, we don't care

Ex 1. ⅙ N 3 + 20 N + 16 ~ ⅙ N 3

Ex 2. ⅙ N 3 + 100 N 4/3 + 56 ~ ⅙ N 3

Ex 3. ⅙ N 3
- ½ N 2 + ⅓ N ~ ⅙ N 3

23

Simplification 2: tilde notation

discard lower-order terms

(e.g., N = 1000: 166.67 million vs. 166.17 million)

・Estimate running time (or memory) as a function of input size N.

・Ignore lower order terms.

– when N is large, terms are negligible

– when N is small, we don't care

24

Simplification 2: tilde notation

operation frequency tilde notation

variable declaration N + 2 ~ N

assignment statement N + 2 ~ N

less than compare ½ (N + 1) (N + 2) ~ ½ N 2

equal to compare ½ N (N − 1) ~ ½ N 2

array access N (N − 1) ~ N 2

increment ½ N (N − 1) to N (N − 1) ~ ½ N 2 to ~ N 2

Q. Approximately how many array accesses as a function of input size N ?

A. ~ N 2
array accesses.

Bottom line. Use cost model and tilde notation to simplify counts.

int count = 0;

for (int i = 0; i < N; i++)

for (int j = i+1; j < N; j++)

if (a[i] + a[j] == 0)

count++;

25

Example: 2-SUM

"inner loop"

Q. Approximately how many array accesses as a function of input size N ?

A. ~ ½ N 3
array accesses.

Bottom line. Use cost model and tilde notation to simplify counts.

int count = 0;

for (int i = 0; i < N; i++)

for (int j = i+1; j < N; j++)

for (int k = j+1; k < N; k++)

if (a[i] + a[j] + a[k] == 0)

count++;

26

Example: 3-SUM

"inner loop"

In principle, accurate mathematical models are available.

In practice,

・Formulas can be complicated.

・Advanced mathematics might be required.

・Exact models best left for experts.

Bottom line. We use approximate models in this course: T(N) ~ c N 3
.

TN = c1 A + c2 B + c3 C + c4 D + c5 E
A = array access

B = integer add

C = integer compare

D = increment

E = variable assignment

Mathematical models for running time

27

frequencies

(depend on algorithm, input)

costs (depend on machine, compiler)

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ introduction

‣ mathematical models

‣ order-of-growth classifications

‣ theory of algorithms

‣ memory

ANALYSIS OF ALGORITHMS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Definition. If f (N) ~ c g(N) for some constant c > 0, then the order of growth

of f (N) is g(N).

・Ignores leading coefficient.

・Ignores lower-order terms.

Ex. The order of growth of the running time of this code is N 3.

Typical usage. With running times.

Common order-of-growth classifications

29

int count = 0;

for (int i = 0; i < N; i++)

for (int j = i+1; j < N; j++)

for (int k = j+1; k < N; k++)

if (a[i] + a[j] + a[k] == 0)

count++;

where leading coefficient

depends on machine, compiler, JVM, ...

Good news. The set of functions

1, log N, N, N log N, N 2, N 3, and 2N

suffices to describe the order of growth of most common algorithms.

Common order-of-growth classifications

30

Common order-of-growth classifications

31

order of

growth

name typical code framework description example T(2N) / T(N)

1 constant a = b + c; statement

add two

numbers

1

log N logarithmic
while (N > 1)

{ N = N / 2; ... }

divide in half binary search ~ 1

N linear
for (int i = 0; i < N; i++)

{ ... }

loop

find the

maximum

2

N log N linearithmic [see mergesort lecture]

divide

and conquer

mergesort ~ 2

N 2 quadratic

for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++)

{ ... }

double loop

check all

pairs

4

N 3 cubic

for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++)

for (int k = 0; k < N; k++)

{ ... }

triple loop

check all

triples

8

2N exponential [see combinatorial search lecture]

exhaustive

search

check all

subsets

T(N)

Bottom line. Need linear or linearithmic alg to keep pace with Moore's law.

Practical implications of order-of-growth

32

growth

rate

problem size solvable in minutes

1970s 1980s 1990s 2000s

1 any any any any

log N any any any any

N millions

tens of

millions

hundreds of

millions

billions

N log N

hundreds of

thousands

millions millions

hundreds of

millions

N
2

hundreds thousand thousands

tens of

thousands

N
3

hundred hundreds thousand thousands

2
N

20 20s 20s 30

33

Binary search demo

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

lo

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

hi

successful search for 33

Binary search demo

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

lo

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

himid

successful search for 33

Binary search demo

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

lo

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

himid

successful search for 33

Binary search demo

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

lo

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

himid

successful search for 33

Binary search demo

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

lo = hi

mid

return 4

successful search for 33

38

Binary search: Java implementation

Trivial to implement?

・First binary search published in 1946.

・First bug-free one in 1962.

・Bug in Java's Arrays.binarySearch() discovered in 2006.

Invariant. If key appears in the array a[], then a[lo] key a[hi].

public static int binarySearch(int[] a, int key)

{

int lo = 0, hi = a.length-1;

while (lo <= hi)

{

int mid = lo + (hi - lo) / 2;

if (key < a[mid]) hi = mid - 1;

else if (key > a[mid]) lo = mid + 1;

else return mid;

}

return -1;

}

one "3-way compare"

39

Binary search: mathematical analysis

Proposition. Binary search uses at most 1 + log N key compares to search in

a sorted array of size N.

Def. T (N) = # key compares to binary search a sorted subarray of size ≤ N.

Binary search recurrence. T (N) ≤ T (N / 2) + 1 for N > 1, with T (1) = 1.

Pf sketch. [assume N is a power of 2]

left or right half

(floored division)

possible to implement with one

2-way compare (instead of 3-way)

T (N) ≤ T (N / 2) + 1 [given]

≤ T (N / 4) + 1 + 1 [apply recurrence to first term]

≤ T (N / 8) + 1 + 1 + 1 [apply recurrence to first term]

⋮

≤ T (N / N) + 1 + 1 + … + 1 [stop applying, T(1) = 1]

= 1 + log N

Algorithm.

・Step 1: Sort the N (distinct) numbers.

・Step 2: For each pair of numbers a[i]

and a[j], binary search for -(a[i] + a[j]).

Analysis. Order of growth is N 2 log N.

・Step 1: N 2
with insertion sort.

・Step 2: N 2 log N with binary search.

An N2 log N algorithm for 3-SUM

40

only count if

a[i] < a[j] < a[k]

to avoid

double counting

binary search

(-40, -20) 60

(-40, -10) 50

(-40, 0) 40

(-40, 5) 35

(-40, 10) 30

⋮ ⋮

(-20, -10) 30

⋮ ⋮

(-10, 0) 10

⋮ ⋮

(10, 30) -40

(10, 40) -50

(30, 40) -70

input

30 -40 -20 -10 40 0 10 5

sort

-40 -20 -10 0 5 10 30 40

Comparing programs

Hypothesis. The sorting-based N 2 log N algorithm for 3-SUM is significantly

faster in practice than the brute-force N 3
algorithm.

Guiding principle. Typically, better order of growth faster in practice.

41

N time (seconds)

1,000 0.14

2,000 0.18

4,000 0.34

8,000 0.96

16,000 3.67

32,000 14.88

64,000 59.16

N time (seconds)

1,000 0.1

2,000 0.8

4,000 6.4

8,000 51.1

ThreeSum.java

ThreeSumDeluxe.java

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ Introduction

‣ mathematical models

‣ order-of-growth classifications

‣ theory of algorithms

‣ memory

ANALYSIS OF ALGORITHMS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Best case. Lower bound on cost.

・Determined by “easiest” input.

・Provides a goal for all inputs.

Worst case. Upper bound on cost.

・Determined by “most difficult” input.

・Provides a guarantee for all inputs.

Average case. Expected cost for random input.

・Need a model for “random” input.

・Provides a way to predict performance.

Types of analyses

43

Ex 1. Array accesses for brute-force 3-SUM.

Best: ~ ½ N 3

Average: ~ ½ N 3

Worst: ~ ½ N 3

Ex 2. Compares for binary search.

Best: ~ 1

Average: ~ lg N

Worst: ~ lg N

this course

45

Commonly-used notations in the theory of algorithms

notation provides example shorthand for used to

Big Theta
asymptotic order

of growth

Θ(N2)

½ N 2

10 N 2

5 N 2 + 22 N log N + 3N

⋮

classify

algorithms

Big Oh Θ(N2) and smaller O(N2)

10 N 2

100 N

22 N log N + 3 N

⋮

develop

upper bounds

Big Omega Θ(N2) and larger Ω(N2)

½ N 2

N 5

N 3 + 22 N log N + 3 N

⋮

develop

lower bounds

Goals.

・Establish “difficulty” of a problem and develop “optimal” algorithms.

・Ex. 1-SUM = “Is there a 0 in the array? ”

Upper bound.

・Ex. Brute-force algorithm for 1-SUM: Look at every array entry.

・Running time of the optimal algorithm for 1-SUM is O(N).

Lower bound.

・Ex. Have to examine all N entries.

・Running time of the algorithm for 1-SUM is Ω(N).

Optimal algorithm.

・Lower bound equals upper bound (to within a constant factor).

・Ex. Brute-force algorithm for 1-SUM is Θ(N).

Theory of algorithms: example 1

46

Goals.

・Establish “difficulty” of a problem and develop “optimal” algorithms.

・Ex. 3-SUM.

Upper bound. A specific algorithm.

・Ex. Brute-force algorithm for 3-SUM.

・Running time of the optimal algorithm for 3-SUM is O(N 3).

Theory of algorithms: example 2

47

Goals.

・Establish “difficulty” of a problem and develop “optimal” algorithms.

・Ex. 3-SUM.

Upper bound. A specific algorithm.

・Ex. Improved algorithm for 3-SUM.

・Running time of the improved algorithm for 3-SUM is O(N2 log N).

Lower bound.

・Running time of the improved algorithm for 3-SUM is Ω(N2).

・Running time of a magical optimal algorithm for solving 3-SUM is Ω(N).

(why?)

Open problems.

・Optimal algorithm for 3-SUM?

・Subquadratic algorithm for 3-SUM?

Theory of algorithms: example 2

48

Start.

・Develop an algorithm.

・Prove a lower bound.

Gap?

・Lower the upper bound (discover a new algorithm).

・Raise the lower bound (more difficult).

Golden Age of Algorithm Design.

・1970s-.

・Steadily decreasing upper bounds for many important problems.

・Many known optimal algorithms.

Caveats.

・Overly pessimistic to focus on worst case?

・Need better than “to within a constant factor” to predict performance.

Algorithm design approach

49

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ introduction

‣ mathematical models

‣ order-of-growth classifications

‣ theory of algorithms

‣ memory

ANALYSIS OF ALGORITHMS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

51

Basics

Bit. 0 or 1.

Byte. 8 bits.

Megabyte (MB). 1 million or 2
20

bytes.

Gigabyte (GB). 1 billion or 2
30

bytes.

64-bit machine. We assume a 64-bit machine with 8-byte pointers.

・Can address more memory.

・Pointers use more space. some JVMs "compress" ordinary object

pointers to 4 bytes to avoid this cost

NIST most computer scientists

52

Typical memory usage for primitive types and arrays

type bytes

boolean 1

byte 1

char 2

int 4

float 4

long 8

double 8

primitive types

type bytes

char[] 2 N + 24

int[] 4 N + 24

double[] 8 N + 24

one-dimensional arrays

type bytes

char[][] ~ 2 M N

int[][] ~ 4 M N

double[][] ~ 8 M N

two-dimensional arrays

Object overhead. 16 bytes.

Reference. 8 bytes.

Padding. Each object uses a multiple of 8 bytes.

Ex 1. A Date object uses 32 bytes of memory.

53

Typical memory usage for objects in Java

4 bytes (int)

4 bytes (int)

16 bytes (object overhead)

32 bytes

4 bytes (int)

4 bytes (padding)

8 bytes (reference to array)

4 bytes (int)

4 bytes (int)

2N + 24 bytes (char[] array)

16 bytes (object overhead)

2N + 64 bytes

4 bytes (int)

4 bytes (padding)

54

Object overhead. 16 bytes.

Reference. 8 bytes.

Padding. Each object uses a multiple of 8 bytes.

Ex 2. A virgin String of length N uses ~ 2N bytes of memory.

Typical memory usage for objects in Java

Total memory usage for a data type value:

・Primitive type: 4 bytes for int, 8 bytes for double, …

・Object reference: 8 bytes.

・Array: 24 bytes + memory for each array entry.

・Object: 16 bytes + memory for each instance variable.

・Padding: round up to multiple of 8 bytes.

Shallow memory usage: Don't count referenced objects.

Deep memory usage: If array entry or instance variable is a reference,

count memory (recursively) for referenced object.

55

Typical memory usage summary

+ 8 extra bytes per inner class object

(for reference to enclosing class)

http:/ /algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

http:/ /algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Modified by: Dr. Fahed Jubair and Dr. Ramzi Saifan

Computer Engineering Department

University of Jordan

STACKS AND QUEUES

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Fundamental data types.

・Value: collection of objects.

・Operations: insert, remove, test if empty.

・Intent is clear when we insert.

・Which item do we remove?

Stack. Examine the item most recently added.

Queue. Examine the item least recently added.

pop

push
stack

2

Stacks and queues

LIFO = "last in first out"

FIFO = "first in first out"

enqueue dequeue

queue

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ stacks

‣ resizing arrays

‣ queues

‣ generics

STACKS AND QUEUES

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Warmup API. Stack of strings data type.

Warmup client. Reverse sequence of strings from standard input.

5

Stack API

poppush

public class StackOfStrings

StackOfStrings() create an empty stack

void push(String item) insert a new string onto stack

String pop()

remove and return the string

most recently added

boolean isEmpty() is the stack empty?

int size() number of strings on the stack

9

Stack: linked-list implementation

・Maintain pointer first to first node in a singly-linked list.

・Push new item before first.

・Pop item from first.

first

of best the was it null

top of stack

Maintain pointer to first node in a linked list; insert/remove from front.

push("to")

push("be")

push("or")

push("not")

push("to")

pop()

push("be")

pop()

pop()

10

Stack: linked-list representation

first

insert at front

of linked list

remove from front

of linked list

11

public class LinkedStackOfStrings

{

private Node first = null;

private class Node

{

String item;

Node next;

}

public boolean isEmpty()

{ return first == null; }

public void push(String item)

{

Node oldfirst = first;

first = new Node();

first.item = item;

first.next = oldfirst;

}

public String pop()

{

String item = first.item;

first = first.next;

return item;

}

}

Stack: linked-list implementation in Java

private inner class

(access modifiers for instance

variables don't matter)

12

Stack push: linked-list implementation

inner class

private class Node

{

String item;

Node next;

}

13

Stack pop: linked-list implementation

inner class

private class Node

{

String item;

Node next;

}

Proposition. Every operation takes constant time in the worst case.

Proposition. A stack with N items uses ~ 40 N bytes.

Remark. This accounts for the memory for the stack

(but not the memory for strings themselves, which the client owns).

14

Stack: linked-list implementation performance

8 bytes (reference to String)

8 bytes (reference to Node)

16 bytes (object overhead)

40 bytes per stack node

8 bytes (inner class extra overhead)

inner class

private class Node

{

String item;

Node next;

}

・Use array s[] to store N items on stack.

・push(): add new item at s[N].

・pop(): remove item from s[N-1].

Defect. Stack overflows when N exceeds capacity. [stay tuned]

it was the best of times null null null null

0 1 2 3 4 5 6 7 8 9

16

Fixed-capacity stack: array implementation

s[]

N capacity = 10

top of stack

public class FixedCapacityStackOfStrings

{

private String[] s;

private int N = 0;

public FixedCapacityStackOfStrings(int capacity)

{ s = new String[capacity]; }

public boolean isEmpty()

{ return N == 0; }

public void push(String item)

{ s[N++] = item; }

public String pop()

{ return s[--N]; }

}

17

Fixed-capacity stack: array implementation

decrement N;

then use to index into array

a cheat

(stay tuned)

use to index into array;

then increment N

18

Overflow and underflow.

・Underflow: throw exception if pop from an empty stack.

・Overflow: use resizing array for array implementation. [stay tuned]

Null items. We allow null items to be inserted.

Loitering. Holding a reference to an object when it is no longer needed.

Stack considerations

this version avoids "loitering":

garbage collector can reclaim memory for an

object only if no outstanding references

public String pop()

{

String item = s[--N];

s[N] = null;

return item;

}

loitering

public String pop()

{ return s[--N]; }

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ stacks

‣ resizing arrays

‣ queues

‣ generics

STACKS AND QUEUES

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

20

Stack: resizing-array implementation

Problem. Requiring client to provide capacity does not implement API!

Q. How to grow and shrink array?

First try.

・push(): increase size of array s[] by 1.

・pop(): decrease size of array s[] by 1.

Too expensive.

・Need to copy all items to a new array, for each operation.

・Array accesses to insert first N items = N + (2 + 4 + … + 2(N – 1)) ~ N 2
.

Challenge. Ensure that array resizing happens infrequently.

infeasible for large N

1 array access

per push

2(k–1) array accesses to expand to size k

(ignoring cost to create new array)

21

Q. How to grow array?

A. If array is full, create a new array of twice the size, and copy items.

Array accesses to insert first N = 2
i
items. N + (2 + 4 + 8 + … + N) ~ 3N.

Stack: resizing-array implementation

"repeated doubling"

public ResizingArrayStackOfStrings()

{ s = new String[1]; }

public void push(String item)

{

if (N == s.length) resize(2 * s.length);

s[N++] = item;

}

private void resize(int capacity)

{

String[] copy = new String[capacity];

for (int i = 0; i < N; i++)

copy[i] = s[i];

s = copy;

}

1 array access

per push

k array accesses to double to size k

(ignoring cost to create new array)

Cost of inserting first N items. N + (2 + 4 + 8 + … + N) ~ 3N.

22

Stack: amortized cost of adding to a stack

1 array access

per push

k array accesses to double to size k

(ignoring cost to create new array)

23

Q. How to shrink array?

First try.

・push(): double size of array s[] when array is full.

・pop(): halve size of array s[] when array is one-half full.

Too expensive in worst case.

・Consider push-pop-push-pop-… sequence when array is full.

・Each operation takes time proportional to N.

Stack: resizing-array implementation

to be or not to null null nullN = 5

to be or notN = 4

to be or not to null null nullN = 5

to be or notN = 4

24

Q. How to shrink array?

Efficient solution.

・push(): double size of array s[] when array is full.

・pop(): halve size of array s[] when array is one-quarter full.

Invariant. Array is between 25% and 100% full.

Stack: resizing-array implementation

public String pop()

{

String item = s[--N];

s[N] = null;

if (N > 0 && N == s.length/4) resize(s.length/2);

return item;

}

26

Amortized analysis. Starting from an empty data structure, average

running time per operation over a worst-case sequence of operations.

Proposition. Starting from an empty stack, any sequence of M push and

pop operations takes time proportional to M.

Stack resizing-array implementation: performance

best worst amortized

construct 1 1 1

push 1 N 1

pop 1 N 1

size 1 1 1

doubling and

halving operations

order of growth of running time

for resizing stack with N items

28

Proposition. Uses between ~ 8 N and ~ 32 N bytes to represent a stack

with N items.

・~ 8 N when full.

・~ 32 N when one-quarter full.

Remark. This accounts for the memory for the stack

(but not the memory for strings themselves, which the client owns).

Stack resizing-array implementation: memory usage

public class ResizingArrayStackOfStrings

{

private String[] s;

private int N = 0;

…

}

8 bytes × array size

Tradeoffs. Can implement a stack with either resizing array or linked list;

client can use interchangeably. Which one is better?

Linked-list implementation.

・Every operation takes constant time in the worst case.

・Uses extra time and space to deal with the links.

Resizing-array implementation.

・Every operation takes constant amortized time.

・Less wasted space.

29

Stack implementations: resizing array vs. linked list

to be or not null null null nullN = 4

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ stacks

‣ resizing arrays

‣ queues

‣ generics

STACKS AND QUEUES

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

32

Queue API

public class QueueOfStrings

QueueOfStrings() create an empty queue

void enqueue(String item) insert a new string onto queue

String dequeue()

remove and return the string

least recently added

boolean isEmpty() is the queue empty?

int size() number of strings on the queue

enqueue

dequeue

Maintain pointer to first and last nodes in a linked list;

remove from front; insert at end.

34

Queue: linked-list representation

insert at end

of linked list

remove from front

of linked list

first

last

enqueue("to")

enqueue("be")

enqueue("or")

enqueue("not")

enqueue("to")

dequeue()

enqueue("be")

dequeue()

dequeue()

37

Queue: linked-list implementation in Java

public class LinkedQueueOfStrings

{

private Node first, last;

private class Node

{ /* same as in LinkedStackOfStrings */ }

public boolean isEmpty()

{ return first == null; }

public void enqueue(String item)

{

Node oldlast = last;

last = new Node();

last.item = item;

last.next = null;

if (isEmpty()) first = last;

else oldlast.next = last;

}

public String dequeue()

{

String item = first.item;

first = first.next;

if (isEmpty()) last = null;

return item;

}

}

special cases for

empty queue

38

Queue enqueue: linked-list implementation

inner class

private class Node

{

String item;

Node next;

}

Remark. Identical code to linked-list stack pop().

39

Queue dequeue: linked-list implementation

inner class

private class Node

{

String item;

Node next;

}

41

Queue: resizing-array implementation

・Use array q[] to store items in queue.

・enqueue(): add new item at q[tail].

・dequeue(): remove item from q[head].

・Update head and tail modulo the capacity.

・Add resizing array.

Q. How to resize?

q[]

head tail capacity = 10

null null the best of times null null null null

0 1 2 3 4 5 6 7 8 9

front of queue back of queue

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ stacks

‣ resizing arrays

‣ queues

‣ generics

STACKS AND QUEUES

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

44

Parameterized stack

We implemented: StackOfStrings.

We also want: StackOfURLs, StackOfInts, StackOfVans, ….

Attempt 1. Implement a separate stack class for each type.

・Rewriting code is tedious and error-prone.

・Maintaining cut-and-pasted code is tedious and error-prone.

@#$*! most reasonable approach until Java 1.5.

We implemented: StackOfStrings.

We also want: StackOfURLs, StackOfInts, StackOfVans, ….

Attempt 2. Implement a stack with items of type Object.

・Casting is required in client.

・Casting is error-prone: run-time error if types mismatch.

StackOfObjects s = new StackOfObjects();

Apple a = new Apple();

Orange b = new Orange();

s.push(a);

s.push(b);

a = (Apple) (s.pop());

45

Parameterized stack

run-time error

46

Parameterized stack

We implemented: StackOfStrings.

We also want: StackOfURLs, StackOfInts, StackOfVans, ….

Attempt 3. Java generics.

・Avoid casting in client.

・Discover type mismatch errors at compile-time instead of run-time.

Guiding principles. Welcome compile-time errors; avoid run-time errors.

Stack<Apple> s = new Stack<Apple>();

Apple a = new Apple();

Orange b = new Orange();

s.push(a);

s.push(b);

a = s.pop();

compile-time error

type parameter

public class LinkedStackOfStrings

{

private Node first = null;

private class Node

{

String item;

Node next;

}

public boolean isEmpty()

{ return first == null; }

public void push(String item)

{

Node oldfirst = first;

first = new Node();

first.item = item;

first.next = oldfirst;

}

public String pop()

{

String item = first.item;

first = first.next;

return item;

}

public class Stack<Item>

{

private Node first = null;

private class Node

{

Item item;

Node next;

}

public boolean isEmpty()

{ return first == null; }

public void push(Item item)

{

Node oldfirst = first;

first = new Node();

first.item = item;

first.next = oldfirst;

}

public Item pop()

{

Item item = first.item;

first = first.next;

return item;

}

47

Generic stack: linked-list implementation

generic type name

public class FixedCapacityStackOfStrings

{

private String[] s;

private int N = 0;

public ..StackOfStrings(int capacity)

{ s = new String[capacity]; }

public boolean isEmpty()

{ return N == 0; }

public void push(String item)

{ s[N++] = item; }

public String pop()

{ return s[--N]; }

}

public class FixedCapacityStack<Item>

{

private Item[] s;

private int N = 0;

public FixedCapacityStack(int

capacity)

{ s = new Item[capacity]; }

public boolean isEmpty()

{ return N == 0; }

public void push(Item item)

{ s[N++] = item; }

public Item pop()

{ return s[--N]; }

}

48

Generic stack: array implementation

the way it should be

@#$*! generic array creation not allowed in Java

49

Generic stack: array implementation

public class FixedCapacityStack<Item>

{

private Item[] s;

private int N = 0;

public FixedCapacityStack(int

capacity)

{ s = (Item[]) new Object[capacity];

}

public boolean isEmpty()

{ return N == 0; }

public void push(Item item)

{ s[N++] = item; }

public Item pop()

{ return s[--N]; }

}
the ugly cast

the way it is

public class FixedCapacityStackOfStrings

{

private String[] s;

private int N = 0;

public ..StackOfStrings(int capacity)

{ s = new String[capacity]; }

public boolean isEmpty()

{ return N == 0; }

public void push(String item)

{ s[N++] = item; }

public String pop()

{ return s[--N]; }

}

53

Generic data types: autoboxing

Q. What to do about primitive types?

Wrapper type.

・Each primitive type has a wrapper object type.

・Ex: Integer is wrapper type for int.

Autoboxing. Automatic cast between a primitive type and its wrapper.

Bottom line. Client code can use generic stack for any type of data.

Stack<Integer> s = new Stack<Integer>();

s.push(17); // s.push(Integer.valueOf(17));

int a = s.pop(); // int a = s.pop().intValue();

66

Java collections library

List interface. java.util.List is API for a sequence of items.

Implementations. java.util.ArrayList uses resizing array;

java.util.LinkedList uses linked list.

public interface List<Item> implements Iterable<Item>

List() create an empty list

boolean isEmpty() is the list empty?

int size() number of items

void add(Item item) append item to the end

Item get(int index) return item at given index

Item remove(int index) return and delete item at given index

boolean contains(Item item) does the list contain the given item?

Iterator<Item> iterator() iterator over all items in the list

...

caveat: only some

operations are efficient

67

Java collections library

java.util.Stack.

・Supports push(), pop(), and iteration.

・Extends java.util.Vector, which implements java.util.List

interface from previous slide, including get() and remove().

The iterator method on java.util.Stack iterates through a Stack from

the bottom up. One would think that it should iterate as if it were

popping off the top of the Stack.

Java 1.3 bug report (June 27, 2001)

It was an incorrect design decision to have Stack extend Vector ("is-a"

rather than "has-a"). We sympathize with the submitter but cannot fix

this because of compatibility.

status (closed, will not fix)

68

Java collections library

java.util.Stack.

・Supports push(), pop(), and iteration.

・Extends java.util.Vector, which implements java.util.List

interface from previous slide, including get() and remove().

java.util.Queue. An interface, not an implementation of a queue.

http:/ /algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

http:/ /algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

ELEMENTARY SORTS

Modified by: Dr. Fahed Jubair and Dr. Ramzi Saifan

Computer Engineering Department

University of Jordan

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Ex. Student records in a university.

Sort. Rearrange array of N items into ascending order.

3

Sorting problem

item

key

Chen 3 A 991-878-4944 308 Blair

Rohde 2 A 232-343-5555 343 Forbes

Gazsi 4 B 766-093-9873 101 Brown

Furia 1 A 766-093-9873 101 Brown

Kanaga 3 B 898-122-9643 22 Brown

Andrews 3 A 664-480-0023 097 Little

Battle 4 C 874-088-1212 121 Whitman

Andrews 3 A 664-480-0023 097 Little

Battle 4 C 874-088-1212 121 Whitman

Chen 3 A 991-878-4944 308 Blair

Furia 1 A 766-093-9873 101 Brown

Gazsi 4 B 766-093-9873 101 Brown

Kanaga 3 B 898-122-9643 22 Brown

Rohde 2 A 232-343-5555 343 Forbes

4

Sorting applications

playing cards

Library of Congress numbers

contacts

FedEx packages

Goal. Sort any type of data (for which sorting is well defined).

A total order is a binary relation ≤ that satisfies:

・Antisymmetry: if both v ≤ w and w ≤ v, then v = w.

・Transitivity: if both v ≤ w and w ≤ x, then v ≤ x.

・Totality: either v ≤ w or w ≤ v or both.

Ex.

・Standard order for natural and real numbers.

・Chronological order for dates or times.

・Alphabetical order for strings.

No transitivity. Rock-paper-scissors.

No totality. PU course prerequisites.

11

Total order

violates transitivity

COS 126

COS 226 COS 217

COS 423 COS 333

violates totality

Comparable interface: sort using a type's natural order.

12

Comparable interface

public class Date implements Comparable<Date>

{

private final int month, day, year;

public Date(int m, int d, int y)

{

month = m;

day = d;

year = y;

}

…

public int compareTo(Date that)

{

if (this.year < that.year) return -1;

if (this.year > that.year) return +1;

if (this.month < that.month) return -1;

if (this.month > that.month) return +1;

if (this.day < that.day) return -1;

if (this.day > that.day) return +1;

return 0;

}

natural order

Implement compareTo() so that v.compareTo(w)

・Defines a total order.

・Returns a negative integer, zero, or positive integer

if v is less than, equal to, or greater than w, respectively.

・Throws an exception if incompatible types (or either is null).

Built-in comparable types. Integer, Double, String, Date, File, ...

User-defined comparable types. Implement the Comparable interface.

13

Comparable API

greater than (return +1)

v

w

less than (return -1)

v

w

equal to (return 0)

v w

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ selection sort

‣ insertion sort

‣ shuffling

ELEMENTARY SORTS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

18

initial

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

remaining entries

i

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

i min

remaining entries

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

i min

remaining entries

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

remaining entriesin final order

i

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

remaining entries

i min

in final order

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

remaining entriesin final order

i

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

remaining entries

i min

in final order

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

remaining entriesin final order

i

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

remaining entries

i min

in final order

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order remaining entries

i min

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

in final order

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

sorted

Helper functions. Refer to data through compares and exchanges.

Less. Is item v less than w ?

Exchange. Swap item in array a[] at index i with the one at index j.

50

Two useful sorting abstractions

private static boolean less(Comparable v, Comparable w)

{ return v.compareTo(w) < 0; }

private static void exch(Comparable[] a, int i, int j)

{

Comparable swap = a[i];

a[i] = a[j];

a[j] = swap;

}

51

Selection sort: Java implementation

public class Selection

{

public static void sort(Comparable[] a)

{

int N = a.length;

for (int i = 0; i < N; i++)

{

int min = i;

for (int j = i+1; j < N; j++)

if (less(a[j], a[min]))

min = j;

exch(a, i, min);

}

}

private static boolean less(Comparable v, Comparable w)

{ /* as before */ }

private static void exch(Comparable[] a, int i, int j)

{ /* as before */ }

}

Selection sort: mathematical analysis

Proposition. Selection sort uses (N- 1) + (N- 2) + ... + 1 + 0 ~ N 2 / 2 compares

and N exchanges.

Running time insensitive to input. Quadratic time, even if input is sorted.

Data movement is minimal. Linear number of exchanges.

52

Selection sort: animations

53

http://www.sorting-algorithms.com/selection-sort

20 random items

in final order

not in final order

algorithm position

Selection sort: animations

54

in final order

not in final order

algorithm position

http://www.sorting-algorithms.com/selection-sort

20 partially-sorted items

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ selection sort

‣ insertion sort

‣ shuffling

ELEMENTARY SORTS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

57

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seen

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

in ascending order not yet seen

ij

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seen

j

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

not yet seenin ascending order

ij

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seen

j

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seen

j

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seen

j

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seenin ascending order

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seen

j

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seen

j

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seen

j

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seen

j

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seenin ascending order

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seen

j

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seen

j

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seenin ascending order

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seen

j

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seen

j

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seen

j

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seen

j

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seen

j

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seenin ascending order

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seen

j

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seen

j

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seen

j

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seen

j

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seen

j

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seen

j

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seen

j

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seenin ascending order

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seen

j

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seen

j

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

i

not yet seenin ascending order

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

ij

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

ij

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

ij

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

ij

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

ij

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

sorted

Insertion sort: Java implementation

99

public class Insertion

{

public static void sort(Comparable[] a)

{

int N = a.length;

for (int i = 0; i < N; i++)

for (int j = i; j > 0; j--)

if (less(a[j], a[j-1]))

exch(a, j, j-1);

else break;

}

private static boolean less(Comparable v, Comparable w)

{ /* as before */ }

private static void exch(Comparable[] a, int i, int j)

{ /* as before */ }

}

Proposition. To sort a randomly-ordered array with distinct keys,

insertion sort uses ~ ¼ N 2
compares and ~ ¼ N 2

exchanges on average.

Pf. Expect each entry to move halfway back.

Insertion sort: mathematical analysis

100

Best case. If the array is in ascending order, insertion sort makes

N – 1 compares and 0 exchanges.

Worst case. If the array is in descending order (and no duplicates),

insertion sort makes ~ ½ N 2
compares and ~ ½ N 2

exchanges.

Insertion sort: analysis

101

X T S R P O M L F E A

A E E L M O P R S T X

Insertion sort: animation

102

in order

not yet seen

algorithm position

http://www.sorting-algorithms.com/insertion-sort

40 random items

Insertion sort: animation

103

http://www.sorting-algorithms.com/insertion-sort

40 reverse-sorted items

in order

not yet seen

algorithm position

Insertion sort: animation

104

40 partially-sorted items

http://www.sorting-algorithms.com/insertion-sort

in order

not yet seen

algorithm position

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ selection sort

‣ insertion sort

‣ shuffling

ELEMENTARY SORTS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Goal. Rearrange array so that result is a uniformly random permutation.

How to shuffle an array

125

all permutations

equally likely

Goal. Rearrange array so that result is a uniformly random permutation.

How to shuffle an array

126

all permutations

equally likely

・Generate a random real number for each array entry.

・Sort the array.

Shuffle sort

127

0.14190.1576 0.42180.48540.8003 0.9157 0.95720.96490.9706

useful for shuffling

columns in a spreadsheet

・Generate a random real number for each array entry.

・Sort the array.

Shuffle sort

128

0.1419 0.1576 0.4218 0.4854 0.8003 0.9157 0.9572 0.9649 0.9706

useful for shuffling

columns in a spreadsheet

・Generate a random real number for each array entry.

・Sort the array.

Proposition. Shuffle sort produces a uniformly random permutation.

Shuffle sort

129

assuming real numbers

uniformly at random (and no ties)

useful for shuffling

columns in a spreadsheet

0.1419 0.1576 0.4218 0.4854 0.8003 0.9157 0.9572 0.9649 0.9706

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle demo

132

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

i r

not yet seen

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

i r

not yet seen

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

not yet seenshuffled

i

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

ir

not yet seenshuffled

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

ir

not yet seenshuffled

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

not yet seenshuffled

i

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

r i

not yet seenshuffled

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

ir

not yet seenshuffled

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

not yet seenshuffled

i

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

ir

not yet seenshuffled

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

ir

not yet seenshuffled

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

not yet seenshuffled

i

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

not yet seenshuffled

ir

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

not yet seenshuffled

ir

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

not yet seenshuffled

i

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

not yet seenshuffled

ir

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

not yet seenshuffled

ir

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

not yet seenshuffled

i

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

not yet seenshuffled

ir

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

not yet seenshuffled

ir

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

not yet seenshuffled

i

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

not yet seenshuffled

ir

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

not yet seenshuffled

ir

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

not yet seenshuffled

i

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

shuffled

ir

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

shuffled

ir

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

shuffled

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Proposition. [Fisher-Yates 1938] Knuth shuffling algorithm produces a

uniformly random permutation of the input array in linear time.

Knuth shuffle

160

assuming integers

uniformly at random

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

161

between 0 and i

public class StdRandom

{

...

public static void shuffle(Object[] a)

{

int N = a.length;

for (int i = 0; i < N; i++)

{

int r = StdRandom.uniform(i + 1);

exch(a, i, r);

}

}

}

http:/ /algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

http:/ /algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

MERGESORT AND QUICKSORT

Modified by: Dr. Fahed Jubair and Dr. Ramzi Saifan

Computer Engineering Department

University of Jordan

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

2

Two classic sorting algorithms: mergesort and quicksort

Critical components in the world’s computational infrastructure.

・Full scientific understanding of their properties has enabled us

to develop them into practical system sorts.

・Quicksort honored as one of top 10 algorithms of 20
th

century

in science and engineering.

Mergesort. [this lecture]

Quicksort. [next lecture]

...

...

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ mergesort

‣ comparators

‣ stability

‣ quicksort

MERGESORT AND QUICKSORT

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Basic plan.

・Divide array into two halves.

・Recursively sort each half.

・Merge two halves.

4

Mergesort

5

Mergesort: Java implementation

lo mid hi

10 11 12 13 14 15 16 17 18 19

public class Merge

{

private static void merge(...)

{ /* as before */ }

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)

{

if (hi <= lo) return;

int mid = lo + (hi - lo) / 2;

sort(a, aux, lo, mid);

sort(a, aux, mid+1, hi);

merge(a, aux, lo, mid, hi);

}

public static void sort(Comparable[] a)

{

Comparable[] aux = new Comparable[a.length];

sort(a, aux, 0, a.length - 1);

}

}

6

Merging: Java implementation

A G L O R H I M S T

A G H I L M

i j

k

lo himid

aux[]

a[]

private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)

{

for (int k = lo; k <= hi; k++)

aux[k] = a[k];

int i = lo, j = mid+1;

for (int k = lo; k <= hi; k++)

{

if (i > mid) a[k] = aux[j++];

else if (j > hi) a[k] = aux[i++];

else if (less(aux[j], aux[i])) a[k] = aux[j++];

else a[k] = aux[i++];

}

}

copy

merge

7

Abstract in-place merge demo

E E G M R A C E R T

lo mid mid+1 hi

a[]

sorted sorted

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C E R T

lo mid mid+1 hi

a[]

copy to auxiliary array

aux[]

E E G M R A C E R T

Merging demo

E E G M R A C E R Taux[]

a[] E E G M R A C E R T

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

compare minimum in each subarray

E E G M R A C E R Taux[]

i j

a[] E E G M R A C E R T

k

A

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

compare minimum in each subarray

E E G M R A C E R Taux[]

i j

a[] E E G M R A C E R T

k

A

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C E R Taux[]

i j

A E G M R A C E R Ta[]

k

C

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

compare minimum in each subarray

Merging demo

E E G M R A C E R Taux[]

i j

A E G M R A C E R Ta[]

k

compare minimum in each subarray

C

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C E R Taux[]

i j

A C G M R A C E R Ta[]

k

E

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

compare minimum in each subarray

Merging demo

E E G M R A C E R Taux[]

i j

A C G M R A C E R Ta[]

k

compare minimum in each subarray

E

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C E R Taux[]

i j

A C E M R A C E R Ta[]

k

E

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

compare minimum in each subarray

Merging demo

E E G M R A C E R Taux[]

i j

A C E M R A C E R Ta[]

k

compare minimum in each subarray

E

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C E R Taux[]

i j

A C E E R A C E R Ta[]

k

E

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

compare minimum in each subarray

Merging demo

E E G M R A C E R Taux[]

i j

A C E E R A C E R Ta[]

k

compare minimum in each subarray

E

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C E R Taux[]

i j

A C E E E A C E R Ta[]

k

G

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

compare minimum in each subarray

Merging demo

E E G M R A C E R Taux[]

i j

A C E E E A C E R Ta[]

k

compare minimum in each subarray

G

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C E R Taux[]

i j

A C E E E G C E R Ta[]

k

M

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

compare minimum in each subarray

Merging demo

E E G M R A C E R Taux[]

i j

A C E E E G C E R Ta[]

k

compare minimum in each subarray

M

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C E R Taux[]

i j

A C E E E G M E R Ta[]

k

R

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

compare minimum in each subarray

Merging demo

E E G M R A C E R Taux[]

i j

A C E E E G M E R Ta[]

k

compare minimum in each subarray

R

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C E R Taux[]

i j

A C E E E G M R R Ta[]

k

one subarray exhausted, take from other

R

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C E R Taux[]

i j

A C E E E G M R R Ta[]

k

one subarray exhausted, take from other

R

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C E R Taux[]

i j

A C E E E G M R R Ta[]

k

T

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

one subarray exhausted, take from other

Merging demo

E E G M R A C E R Taux[]

i j

A C E E E G M R R Ta[]

k

one subarray exhausted, take from other

T

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

Merging demo

E E G M R A C E R T

both subarrays exhausted, done

A C E E E G M R R Ta[]

aux[]

i j

k

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

31

Abstract in-place merge demo

A C E E E G M R R Ta[]

sorted

lo hi

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

33

Merging: Java implementation

A G L O R H I M S T

A G H I L M

i j

k

lo himid

aux[]

a[]

private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)

{

for (int k = lo; k <= hi; k++)

aux[k] = a[k];

int i = lo, j = mid+1;

for (int k = lo; k <= hi; k++)

{

if (i > mid) a[k] = aux[j++];

else if (j > hi) a[k] = aux[i++];

else if (less(aux[j], aux[i])) a[k] = aux[j++];

else a[k] = aux[i++];

}

}

copy

merge

35

Mergesort: trace

result after recursive call

Mergesort: animation

36

http://www.sorting-algorithms.com/merge-sort

50 random items

in order

current subarray

algorithm position

not in order

Mergesort: animation

37

http://www.sorting-algorithms.com/merge-sort

50 reverse-sorted items

in order

current subarray

algorithm position

not in order

Proposition. Mergesort uses ≤ N lg N compares to sort an array of length N.

Pf sketch. The number of compares C (N) to mergesort an array of length N

satisfies the recurrence:

C (N) C (N / 2) + C (N / 2) + N for N > 1, with C (1) = 0.

We solve the recurrence when N is a power of 2:

D (N) = 2 D (N / 2) + N, for N > 1, with D (1) = 0.

38

Mergesort: number of compares

left half right half merge

result holds for all N

(analysis cleaner in this case)

Proposition. If D (N) satisfies D (N) = 2 D (N / 2) + N for N > 1, with D (1) = 0,

then D (N) = N lg N.

Pf 1. [assuming N is a power of 2]

39

Divide-and-conquer recurrence: proof by picture

lg N

T(N) = N lg N

N = N

2 (N/2) = N

8 (N/8) = N

⋮

D (N)

4 (N/4) = N

D (N / 2) D (N / 2)

D(N / 8) D(N / 8)D(N / 8) D(N / 8) D(N / 8) D(N / 8)D(N / 8) D(N / 8)

D(N / 4) D(N / 4) D(N / 4) D(N / 4)

⋮

42

Mergesort: empirical analysis

Running time estimates:

・Laptop executes 10
8

compares/second.

・Supercomputer executes 10
12

compares/second.

Bottom line. Good algorithms are better than supercomputers.

insertion sort (N
2
) mergesort (N log N)

computer thousand million billion thousand million billion

home instant 2.8 hours 317 years instant 1 second 18 min

super instant 1 second 1 week instant instant instant

Proposition. Mergesort uses ≤ 6 N lg N array accesses to sort an array of

length N.

Pf sketch. The number of array accesses A (N) satisfies the recurrence:

A (N) A (N / 2) + A (N / 2) + 6 N for N > 1, with A (1) = 0.

Key point. Any algorithm with the following structure takes N log N time:

Notable examples. FFT, hidden-line removal, Kendall-tau distance, …

43

Mergesort: number of array accesses

public static void linearithmic(int N)

{

if (N == 0) return;

linearithmic(N/2);

linearithmic(N/2);

linear(N);

}

solve two problems

of half the size

do a linear amount of work

44

Mergesort analysis: memory

Proposition. Mergesort uses extra space proportional to N.

Pf. The array aux[] needs to be of length N for the last merge.

Def. A sorting algorithm is in-place if it uses c log N extra memory.

Ex. Insertion sort, selection sort.

Challenge 1 (not hard). Use aux[] array of length ~ ½ N instead of N.

Challenge 2 (very hard). In-place merge. [Kronrod 1969]

A C D G H I M N U V

A B C D E F G H I J M N O P Q R S T U V

B E F J O P Q R S T

two sorted subarrays

merged result

45

Mergesort: practical improvements

Use insertion sort for small subarrays.

・Mergesort has too much overhead for tiny subarrays.

・Cutoff to insertion sort for 10 items.

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)

{

if (hi <= lo + CUTOFF - 1)

{

Insertion.sort(a, lo, hi);

return;

}

int mid = lo + (hi - lo) / 2;

sort (a, aux, lo, mid);

sort (a, aux, mid+1, hi);

merge(a, aux, lo, mid, hi);

}

47

Mergesort: practical improvements

Stop if already sorted.

・Is largest item in first half ≤ smallest item in second half?

・Helps for partially-ordered arrays.

A B C D E F G H I J

A B C D E F G H I J M N O P Q R S T U V

M N O P Q R S T U V

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)

{

if (hi <= lo) return;

int mid = lo + (hi - lo) / 2;

sort (a, aux, lo, mid);

sort (a, aux, mid+1, hi);

if (!less(a[mid+1], a[mid])) return;

merge(a, aux, lo, mid, hi);

}

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ mergesort

‣ comparators

‣ stability

‣ quicksort

MERGESORT AND QUICKSORT

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

62

Sort countries by gold medals

63

Sort countries by total medals

Comparator interface: sort using an alternate order.

Required property. Must be a total order.

68

Comparator interface

public interface Comparator<Key>

int compare(Key v, Key w) compare keys v and w

string order example

natural order Now is the time

case insensitive is Now the time

Spanish language café cafetero cuarto churro nube ñoño

British phone book McKinley Mackintosh

pre-1994 order for

digraphs ch and ll and rr

69

Comparator interface: system sort

To use with Java system sort:

・Create Comparator object.

・Pass as second argument to Arrays.sort().

Bottom line. Decouples the definition of the data type from the

definition of what it means to compare two objects of that type.

String[] a;

...

Arrays.sort(a);

...

Arrays.sort(a, String.CASE_INSENSITIVE_ORDER);

...

Arrays.sort(a, Collator.getInstance(new Locale("es")));

...

Arrays.sort(a, new BritishPhoneBookOrder());

...

uses alternate order defined by

Comparator<String> object

uses natural order

To implement a comparator:

・Define a (nested) class that implements the Comparator interface.

・Implement the compare() method.

public class Student

{

private final String name;

private final int section;

...

public static class ByName implements Comparator<Student>

{

public int compare(Student v, Student w)

{ return v.name.compareTo(w.name); }

}

public static class BySection implements Comparator<Student>

{

public int compare(Student v, Student w)

{ return v.section - w.section; }

}

}
71

Comparator interface: implementing

To implement a comparator:

・Define a (nested) class that implements the Comparator interface.

・Implement the compare() method.

Andrews 3 A 664-480-0023 097 Little

Battle 4 C 874-088-1212 121 Whitman

Chen 3 A 991-878-4944 308 Blair

Fox 3 A 884-232-5341 11 Dickinson

Furia 1 A 766-093-9873 101 Brown

Gazsi 4 B 766-093-9873 101 Brown

Kanaga 3 B 898-122-9643 22 Brown

Rohde 2 A 232-343-5555 343 Forbes

72

Comparator interface: implementing

Arrays.sort(a, new Student.ByName()); Arrays.sort(a, new Student.BySection());

Furia 1 A 766-093-9873 101 Brown

Rohde 2 A 232-343-5555 343 Forbes

Andrews 3 A 664-480-0023 097 Little

Chen 3 A 991-878-4944 308 Blair

Fox 3 A 884-232-5341 11 Dickinson

Kanaga 3 B 898-122-9643 22 Brown

Battle 4 C 874-088-1212 121 Whitman

Gazsi 4 B 766-093-9873 101 Brown

To implement a comparator:

・Define a (nested) class that implements the Comparator interface.

・Implement the compare() method.

public class Student

{

public static final Comparator<Student> BY_NAME = new ByName();

public static final Comparator<Student> BY_SECTION = new BySection();

private final String name;

private final int section;

...

private static class ByName implements Comparator<Student>

{

public int compare(Student v, Student w)

{ return v.name.compareTo(w.name); }

}

private static class BySection implements Comparator<Student>

{

public int compare(Student v, Student w)

{ return v.section - w.section; }

}

}
73

Comparator interface: implementing

this technique works here since no danger of overflow

one Comparator for the class

To implement a comparator:

・Define a (nested) class that implements the Comparator interface.

・Implement the compare() method.

・Provide access to Comparator.

Andrews 3 A 664-480-0023 097 Little

Battle 4 C 874-088-1212 121 Whitman

Chen 3 A 991-878-4944 308 Blair

Fox 3 A 884-232-5341 11 Dickinson

Furia 1 A 766-093-9873 101 Brown

Gazsi 4 B 766-093-9873 101 Brown

Kanaga 3 B 898-122-9643 22 Brown

Rohde 2 A 232-343-5555 343 Forbes

74

Comparator interface: implementing

Arrays.sort(a, Student.BY_NAME); Arrays.sort(a, Student.BY_SECTION);

Furia 1 A 766-093-9873 101 Brown

Rohde 2 A 232-343-5555 343 Forbes

Andrews 3 A 664-480-0023 097 Little

Chen 3 A 991-878-4944 308 Blair

Fox 3 A 884-232-5341 11 Dickinson

Kanaga 3 B 898-122-9643 22 Brown

Battle 4 C 874-088-1212 121 Whitman

Gazsi 4 B 766-093-9873 101 Brown

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ mergesort

‣ comparators

‣ stability

‣ quicksort

MERGESORT AND QUICKSORT

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

89

Stability

A typical application. First, sort by name; then sort by section.

@#%&@! Students in section 3 no longer sorted by name.

A stable sort preserves the relative order of items with equal keys.

Selection.sort(a, new Student.ByName());

Andrews 3 A 664-480-0023 097 Little

Battle 4 C 874-088-1212 121 Whitman

Chen 3 A 991-878-4944 308 Blair

Fox 3 A 884-232-5341 11 Dickinson

Furia 1 A 766-093-9873 101 Brown

Gazsi 4 B 766-093-9873 101 Brown

Kanaga 3 B 898-122-9643 22 Brown

Rohde 2 A 232-343-5555 343 Forbes

Selection.sort(a, new Student.BySection());

Furia 1 A 766-093-9873 101 Brown

Rohde 2 A 232-343-5555 343 Forbes

Chen 3 A 991-878-4944 308 Blair

Fox 3 A 884-232-5341 11 Dickinson

Andrews 3 A 664-480-0023 097 Little

Kanaga 3 B 898-122-9643 22 Brown

Gazsi 4 B 766-093-9873 101 Brown

Battle 4 C 874-088-1212 121 Whitman

Q. Which sorts are stable?

A. Need to check algorithm (and implementation).

90

Stability

Proposition. Selection sort is not stable.

Pf by counterexample. Long-distance exchange can move one equal item

past another one.

91

Stability: selection sort

public class Selection

{

public static void sort(Comparable[] a)

{

int N = a.length;

for (int i = 0; i < N; i++)

{

int min = i;

for (int j = i+1; j < N; j++)

if (less(a[j], a[min]))

min = j;

exch(a, i, min);

}

}

}

i min 0 1 2

0 2 B1 B2 A3

1 1 A3 B2 B1

2 2 A3 B2 B1

A3 B2 B1

92

Stability: insertion sort

Proposition. Insertion sort is stable.

Pf. Equal items never move past each other.

public class Insertion

{

public static void sort(Comparable[] a)

{

int N = a.length;

for (int i = 0; i < N; i++)

for (int j = i; j > 0 && less(a[j], a[j-1]); j--)

exch(a, j, j-1);

}

}

i j 0 1 2 3 4

0 0 B1 A1 A2 A3 B2

1 0 A1 B1 A2 A3 B2

2 1 A1 A2 B1 A3 B2

3 2 A1 A2 A3 B1 B2

4 4 A1 A2 A3 B1 B2

A1 A2 A3 B1 B2

94

Stability: mergesort

Proposition. Mergesort is stable.

Pf. Suffices to verify that merge operation is stable.

public class Merge

{

private static void merge(...)

{ /* as before */ }

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)

{

if (hi <= lo) return;

int mid = lo + (hi - lo) / 2;

sort(a, aux, lo, mid);

sort(a, aux, mid+1, hi);

merge(a, aux, lo, mid, hi);

}

public static void sort(Comparable[] a)

{ /* as before */ }

}

Proposition. Merge operation is stable.

Pf. Takes from left subarray if equal keys.

95

Stability: mergesort

private static void merge(...)

{

for (int k = lo; k <= hi; k++)

aux[k] = a[k];

int i = lo, j = mid+1;

for (int k = lo; k <= hi; k++)

{

if (i > mid) a[k] = aux[j++];

else if (j > hi) a[k] = aux[i++];

else if (less(aux[j], aux[i])) a[k] = aux[j++];

else a[k] = aux[i++];

}

}
0 1 2 3 4

A1 A2 A3 B D

5 6 7 8 9

1

0

A4 A5 C E F G

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ mergesort

‣ comparators

‣ stability

‣ quicksort

MERGESORT AND QUICKSORT

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

98

Quicksort

Basic plan.

・Shuffle the array.

・Partition so that, for some j

– entry a[j] is in place

– no larger entry to the left of j

– no smaller entry to the right of j

・Sort each subarray recursively.

99

Quicksort: Java implementation

public class Quick

{

private static int partition(Comparable[] a, int lo, int hi)

{ /* see previous slide */ }

public static void sort(Comparable[] a)

{

StdRandom.shuffle(a);

sort(a, 0, a.length - 1);

}

private static void sort(Comparable[] a, int lo, int hi)

{

if (hi <= lo) return;

int j = partition(a, lo, hi);

sort(a, lo, j-1);

sort(a, j+1, hi);

}

}

shuffle needed for

performance guarantee

(stay tuned)

100

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K R A T E L E P U I M Q C X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K R A T E L E P U I M Q C X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K R A T E L E P U I M Q C X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K R A T E L E P U I M Q C X O S

i j

stop j scan and exchange a[i] with a[j]

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A T E L E P U I M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A T E L E P U I M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A T E L E P U I M Q R X O S

i j

stop i scan because a[i] >= a[lo]

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A T E L E P U I M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A T E L E P U I M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A T E L E P U I M Q R X O S

i j

stop j scan and exchange a[i] with a[j]

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E L E P U T M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E L E P U T M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E L E P U T M Q R X O S

i j

stop i scan because a[i] >= a[lo]

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E L E P U T M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E L E P U T M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E L E P U T M Q R X O S

i j

stop j scan and exchange a[i] with a[j]

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E E L P U T M Q R X O S

i j

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E E L P U T M Q R X O S

i j

stop i scan because a[i] >= a[lo]

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K C A I E E L P U T M Q R X O S

ij

stop j scan because a[j] <= a[lo]

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

When pointers cross.

・Exchange a[lo] with a[j].

lo

K C A I E E L P U T M Q R X O S

ij

pointers cross: exchange a[lo] with a[j]

120

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

When pointers cross.

・Exchange a[lo] with a[j].

lo

E C A I E K L P U T M Q R X O S

hij

partitioned!

121

Quicksort: Java code for partitioning

private static int partition(Comparable[] a, int lo, int hi)

{

int i = lo, j = hi+1;

while (true)

{

while (less(a[++i], a[lo]))

if (i == hi) break;

while (less(a[lo], a[--j]))

if (j == lo) break;

if (i >= j) break;

exch(a, i, j);

}

exch(a, lo, j);

return j;

}

swap with partitioning item

check if pointers cross

find item on right to swap

find item on left to swap

swap

return index of item now known to be in place

Quicksort animation

123

http://www.sorting-algorithms.com/quick-sort

50 random items

in order

current subarray

algorithm position

not in order

124

Quicksort: implementation details

Partitioning in-place. Using an extra array makes partitioning easier

(and stable), but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is trickier

than it might seem.

Preserving randomness. Shuffling is needed for performance guarantee.

Equivalent alternative. Pick a random partitioning item in each subarray.

125

Quicksort: best-case analysis

Best case. Number of compares is ~ N lg N.

random shuffle

initial values

Worst case. Number of compares is ~ ½ N 2
.

126

Quicksort: worst-case analysis

random shuffle

initial values

127

Quicksort: summary of performance characteristics

Quicksort is a randomized algorithm.

・Guaranteed to be correct.

・Running time depends on random shuffle.

Average case. Expected number of compares is ~ 1.39 N lg N.

・39% more compares than mergesort.

・Faster than mergesort in practice because of less data movement.

Best case. Number of compares is ~ N lg N.

Worst case. Number of compares is ~ ½ N 2
.

[but more likely that lightning bolt strikes computer during execution]

128

Quicksort: empirical analysis

Running time estimates:

・Home PC executes 10
8

compares/second.

・Supercomputer executes 10
12

compares/second.

Lesson 1. Good algorithms are better than supercomputers.

Lesson 2. Great algorithms are better than good ones.

insertion sort (N
2
) mergesort (N log N) quicksort (N log N)

computer thousand million billion thousand million billion thousand million billion

home instant 2.8 hours 317 years instant 1 second 18 min instant 0.6 sec 12 min

super instant 1 second 1 week instant instant instant instant instant instant

Proposition. Quicksort is an in-place sorting algorithm.

Pf.

・Partitioning: constant extra space.

・Depth of recursion: logarithmic extra space (with high probability).

Proposition. Quicksort is not stable.

Pf. [by counterexample]

129

Quicksort properties

i j 0 1 2 3

B1 C1 C2 A1

1 3 B1 C1 C2 A1

1 3 B1 A1 C2 C1

0 1 A1 B1 C2 C1

can guarantee logarithmic depth by recurring

on smaller subarray before larger subarray

(requires using an explicit stack)

Insertion sort small subarrays.

・Even quicksort has too much overhead for tiny subarrays.

・Cutoff to insertion sort for 10 items.

private static void sort(Comparable[] a, int lo, int hi)

{

if (hi <= lo + CUTOFF - 1)

{

Insertion.sort(a, lo, hi);

return;

}

int j = partition(a, lo, hi);

sort(a, lo, j-1);

sort(a, j+1, hi);

}

130

Quicksort: practical improvements

132

Sorting summary

inplace? stable? best average worst remarks

selection ✔ ½ N 2 ½ N 2 ½ N 2 N exchanges

insertion ✔ ✔ N ¼ N 2 ½ N 2
use for small N

or partially ordered

merge ✔ ½ N lg N N lg N N lg N
N log N guarantee;

stable

quick ✔ N lg N 2 N ln N ½ N 2
N log N probabilistic guarantee;

fastest in practice

? ✔ ✔ N N lg N N lg N holy sorting grail

133

Interesting Problem: Selection

Goal. Given an array of N items, find the kth
smallest item.

Ex. Min (k = 0), max (k = N - 1), median (k = N / 2).

Applications.

・Order statistics.

・Find the "top k."

Use theory as a guide.

・Easy N log N upper bound. How?

・Easy N lower bound. Why?

Which is true?

・N log N lower bound?

・N upper bound?

is selection as hard as sorting?

is there a linear-time algorithm?

Partition array so that:

・Entry a[j] is in place.

・No larger entry to the left of j.

・No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

134

Quick-select

public static Comparable select(Comparable[] a, int

k)

{

StdRandom.shuffle(a);

int lo = 0, hi = a.length - 1;

while (hi > lo)

{

int j = partition(a, lo, hi);

if (j < k) lo = j + 1;

else if (j > k) hi = j - 1;

else return a[k];

}

return a[k];

}

if a[k] is here

set hi to j-1

if a[k] is here

set lo to j+1

Partition array so that:

・Entry a[j] is in place.

・No larger entry to the left of j.

・No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

135

Quick-select demo

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

50 21 28 65 39 59 56 22 95 12 90 53 32 77 33

select element of rank k = 5

k = 5

Partition array so that:

・Entry a[j] is in place.

・No larger entry to the left of j.

・No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

136

Quick-select demo

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

50 21 28 65 39 59 56 22 95 12 90 53 32 77 33

partition on leftmost entry

k = 5

Partition array so that:

・Entry a[j] is in place.

・No larger entry to the left of j.

・No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

22 21 28 33 39 32 12 50 95 56 90 53 59 77 65

137

Quick-select demo

partitioned array

k = 5

Partition array so that:

・Entry a[j] is in place.

・No larger entry to the left of j.

・No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

22 21 28 33 39 32 12 50 95 56 90 53 59 77 65

138

Quick-select demo

can safely ignore right subarray

k = 5

Partition array so that:

・Entry a[j] is in place.

・No larger entry to the left of j.

・No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

22 21 28 33 39 32 12 50 95 56 90 53 59 77 65

139

Quick-select demo

partition on leftmost entry

k = 5

Partition array so that:

・Entry a[j] is in place.

・No larger entry to the left of j.

・No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 21 22 33 39 32 28 50 95 56 90 53 59 77 65

140

Quick-select demo

partitioned array

k = 5

Partition array so that:

・Entry a[j] is in place.

・No larger entry to the left of j.

・No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 21 22 33 39 32 28 50 95 56 90 53 59 77 65

141

Quick-select demo

can safely ignore left subarray

k = 5

Partition array so that:

・Entry a[j] is in place.

・No larger entry to the left of j.

・No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 21 22 33 39 32 28 50 95 56 90 53 59 77 65

142

Quick-select demo

partition on leftmost entry

k = 5

Partition array so that:

・Entry a[j] is in place.

・No larger entry to the left of j.

・No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 21 22 32 28 33 39 50 95 56 90 53 59 77 65

143

Quick-select demo

partitioned array

k = 5

Partition array so that:

・Entry a[j] is in place.

・No larger entry to the left of j.

・No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

144

Quick-select demo

stop: partitioning item is at index k

k = 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 21 22 32 28 33 39 50 95 56 90 53 59 77 65

145

Quick-select: mathematical analysis

Proposition. Quick-select takes linear time on average.

Pf sketch.

・Intuitively, each partitioning step splits array approximately in half:

N + N / 2 + N / 4 + … + 1 ~ 2N compares

http:/ /algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

http:/ /algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

PRIORITY QUEUES

Modified by: Dr. Fahed Jubair and Dr. Ramzi Saifan

Computer Engineering Department

University of Jordan

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ API and elementary

implementations

‣ binary heaps

‣ heapsort

PRIORITY QUEUES

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

A collection is a data types that store groups of items.

3

Collections

data type key operations data structure

stack PUSH, POP linked list, resizing array

queue ENQUEUE, DEQUEUE linked list, resizing array

priority queue INSERT, DELETE-MAX binary heap

symbol table PUT, GET, DELETE BST, hash table

set ADD, CONTAINS, DELETE BST, hash table

“ Show me your code and conceal your data structures, and I shall

continue to be mystified. Show me your data structures, and I won't

usually need your code; it'll be obvious.” — Fred Brooks

4

Priority queue

Collections. Insert and delete items. Which item to delete?

Stack. Remove the item most recently added.

Queue. Remove the item least recently added.

Randomized queue. Remove a random item.

Priority queue. Remove the largest (or smallest) item.

5

Priority queue applications

・Event-driven simulation. [customers in a line, colliding particles]

・Numerical computation. [reducing roundoff error]

・Data compression. [Huffman codes]

・Graph searching. [Dijkstra's algorithm, Prim's algorithm]

・Number theory. [sum of powers]

・Artificial intelligence. [A* search]

・Statistics. [online median in data stream]

・Operating systems. [load balancing, interrupt handling]

・Computer networks. [web cache]

・Discrete optimization. [bin packing, scheduling]

・Spam filtering. [Bayesian spam filter]

Generalizes: stack, queue, randomized queue.

6

Priority queue API

Requirement. Generic items are Comparable.

public class MaxPQ<Key extends Comparable<Key>>

MaxPQ() create an empty priority queue

MaxPQ(Key[] a) create a priority queue with given keys

void insert(Key v) insert a key into the priority queue

Key delMax() return and remove the largest key

boolean isEmpty() is the priority queue empty?

Key max() return the largest key

int size() number of entries in the priority queue

Key must be Comparable

(bounded type parameter)

Requirement. Generic items are Comparable.

public class MinPQ<Key extends Comparable<Key>>

MinPQ() create an empty priority queue

MinPQ(Key[] a) create a priority queue with given keys

void insert(Key v) insert a key into the priority queue

Key delMin() return and remove the smallest key

boolean isEmpty() is the priority queue empty?

Key min() return the smallest key

int size() number of entries in the priority queue

7

Priority queue API

12

Priority queue: unordered array implementation

public class UnorderedArrayMaxPQ<Key extends Comparable<Key>>

{

private Key[] pq; // pq[i] = ith element on pq

private int N; // number of elements on pq

public UnorderedArrayMaxPQ(int capacity)

{ pq = (Key[]) new Comparable[capacity]; }

public boolean isEmpty(){ return N == 0; }

public void insert(Key x)

{ pq[N++] = x; }

public Key delMax()

{

int max = 0;

for (int i = 1; i < N; i++)

if (less(max, i)) max = i;

exch(max, N-1);

return pq[--N];

}

}

no generic

array creation

less() and exch()

similar to sorting methods

(but don't pass pq[])

should null out entry

to prevent loitering

13

Priority queue elementary implementations

Challenge. Implement all operations efficiently.

implementation insert del max max

unordered array 1 N N

ordered array N 1 1

goal log N log N log N

order of growth of running time for priority queue with N items

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ API and elementary

implementations

‣ binary heaps

‣ heapsort

PRIORITY QUEUES

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Perfectly balanced, except for bottom level.

Property. Height of complete tree with N nodes is ⎣lg N⎦.

Pf. Height increases only when N is a power of 2.

16

Complete binary tree

complete tree with N = 16 nodes (height = 4)

18

Binary heap representations

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered binary tree.

・Keys in nodes.

・Parent's key no smaller than

children's keys.

Array representation.

・Indices start at 1.

・Take nodes in level order.

・No explicit links needed!

19

Binary heap properties

Proposition. Largest key is a[1], which is root of binary tree.

Proposition. Can use array indices to move through tree.

・Parent of node at k is at k/2.

・Children of node at k are at 2k and 2k+1.

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

20

Binary heap demo

T P R N H O A E I G

R

H O AN

E I G

P

T

heap ordered

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

Binary heap demo

T P R N H O A E I G

R

H O AN

E I G S

P

T

add to heap

insert S

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

Binary heap demo

T P R N H O A E I G S

11

11

R

H O AN

E I G S

P

T

violates heap order

(swim up)

insert S

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

Binary heap demo

11

11

R

H

O AN

E I G

S

P

T

5

5

T P R N S O A E I G H

11

insert S

violates heap order

(swim up)

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

Binary heap demo

11

11

R

H

O AN

E I G

S

P

T

5

5

2

2

T S R N P O A E I G H

11

insert S

violates heap order

(swim up)

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

Binary heap demo

T S R N P O A E I G H

R

H

O AN

E I G

S

P

T

heap ordered

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

Binary heap demo

T S R N P O A E I G H

R

H

O AN

E I G

S

P

T

remove the maximum

1

1

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

Binary heap demo

T S R N P O A E I G H

R

H

O AN

E I G

S

P

T

remove the maximum

1

1

11

11 exchange with root

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

Binary heap demo

H S R N P O A E I G T

R

H

O AN

E I G

S

P

T

remove the maximum

1

1

11

11 exchange with root

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

Binary heap demo

R

H

O AN

E I G

S

P

T

remove the maximum

1

1

violates heap order

(sink down)

H S R N P O A E I G T

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

Binary heap demo

S H R N P O A E I G T

RH

O AN

E I G

S

P

T

remove the maximum

1

1

2

2

violates heap order

(sink down)

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

Binary heap demo

S P R N H O A E I G T

R

O A

P

E I G

S

T

remove the maximum

1

1

2

2

5

5

violates heap order

(sink down)

N H

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

Binary heap demo

S P R N H O A E I G

R

O A

P

E I G

S

H

heap ordered

N

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

Binary heap demo

S P R N H O A E I G

R

O A

P

E I G

S

H

remove the maximum

1

1

N

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

Binary heap demo

S P R N H O A E I G

R

O A

P

E I G

S

H

remove the maximum

1

1

exchange with root

N

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

Binary heap demo

G P R N H O A E I S

R

O A

P

E I

G

S

H

remove the maximum

1

1

exchange with root

10

10

N

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

Binary heap demo

G P R N H O A E I S

R

O A

P

E I

G

S

H

remove the maximum

1

1

violates heap order

(sink down)

N

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

Binary heap demo

R P G N H O A E I S

R

O A

P

E I

G

S

H

remove the maximum

1

1

violates heap order

(sink down)

3

3

N

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

Binary heap demo

R P O N H G A E I S

R

O

A

P

E I

G

S

H

remove the maximum

1

1

violates heap order

(sink down)

3

3

6

6N

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

Binary heap demo

R P O N H G A E I

R

O

A

P

E I

GH

heap ordered

N

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

Binary heap demo

R P O N H G A E I S

R

O

A

P

E I

GH

insert S

S add to heap

10

N

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

Binary heap demo

R P O N H G A E I S

R

O

A

P

E I

GH

insert S

S10

10

violates heap order

(swim up)

N

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

Binary heap demo

R P O N S G A E I H

R

O

A

P

E I

G

H

insert S

S

10

10

violates heap order

(swim up)

5

5N

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

Binary heap demo

R S O N P G A E I H

R

O

AP

E I

G

H

insert S

S

10

10

violates heap order

(swim up)

5

5

2

2

N

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

Binary heap demo

S R O N P G A E I H

R O

AP

E I

G

H

insert S

S

10

10

violates heap order

(swim up)

5

5

2

2

1

1

N

Insert. Add node at end, then swim it up.

Remove the maximum. Exchange root with node at end, then sink it down.

Binary heap demo

S R O N P G A E I H

R O

AP

E I

G

H

heap ordered

S

N

Scenario. Child's key becomes larger key than its parent's key.

To eliminate the violation:

・Exchange key in child with key in parent.

・Repeat until heap order restored.

Peter principle. Node promoted to level of incompetence.

46

Promotion in a heap

private void swim(int k)

{

while (k > 1 && less(k/2, k))

{

exch(k, k/2);

k = k/2;

}

}

parent of node at k is at k/2

Insert. Add node at end, then swim it up.

Cost. At most lg N compares.

47

Insertion in a heap

public void insert(Key x)

{

pq[++N] = x;

swim(N);

}

Scenario. Parent's key becomes smaller than one (or both) of its children's.

To eliminate the violation:

・Exchange key in parent with key in larger child.

・Repeat until heap order restored.

Power struggle. Better subordinate promoted.

48

Demotion in a heap

private void sink(int k)

{

while (2*k <= N)

{

int j = 2*k;

if (j < N && less(j, j+1)) j++;

if (!less(k, j)) break;

exch(k, j);

k = j;

}

}

children of node at k

are 2k and 2k+1

why not smaller child?

Delete max. Exchange root with node at end, then sink it down.

Cost. At most 2 lg N compares.

49

Delete the maximum in a heap

public Key delMax()

{

Key max = pq[1];

exch(1, N--);

sink(1);

pq[N+1] = null;

return max;

}

prevent loitering

50

Binary heap: Java implementation

public class MaxPQ<Key extends Comparable<Key>>

{

private Key[] pq;

private int N;

public MaxPQ(int capacity)

{ pq = (Key[]) new Comparable[capacity+1]; }

public boolean isEmpty()

{ return N == 0; }

public void insert(Key key)

public Key delMax()

{ /* see previous code */ }

private void swim(int k)

private void sink(int k)

{ /* see previous code */ }

private boolean less(int i, int j)

{ return pq[i].compareTo(pq[j]) < 0; }

private void exch(int i, int j)

{ Key t = pq[i]; pq[i] = pq[j]; pq[j] = t; }

}

array helper functions

heap helper functions

PQ ops

fixed capacity

(for simplicity)

51

Priority queues implementation cost summary

implementation insert del max max

unordered array 1 N N

ordered array N 1 1

binary heap log N log N 1

order-of-growth of running time for priority queue with N items

55

Binary heap: practical improvements

Multiway heaps.

・Complete d-way tree.

・Parent's key no smaller than its children's keys.

・Swim takes logd N compares; sink takes d logd N compares.

3-way heap

Y

Z

T

KI

G

A DBJ

E FH

X

R VS

P

C ML

W

Q ON

58

Priority queues implementation cost summary

implementation insert del max max

unordered array 1 N N

ordered array N 1 1

binary heap log N log N 1

d-ary heap logd N d logd N 1

Fibonacci 1 log N † 1

Brodal queue 1 log N 1

impossible 1 1 1

order-of-growth of running time for priority queue with N items

 amortized

why impossible?

59

Binary heap considerations

Underflow and overflow.

・Underflow: throw exception if deleting from empty PQ.

・Overflow: add no-arg constructor and use resizing array.

Minimum-oriented priority queue.

・Replace less() with greater().

・Implement greater().

Other operations.

・Remove an arbitrary item.

・Change the priority of an item.
can implement efficiently with sink() and swim()

leads to log N

amortized time per op

(how to make worst case?)

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ API and elementary

implementations

‣ binary heaps

‣ heapsort

PRIORITY QUEUES

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

64

Sorting with a binary heap

Q. What is this sorting algorithm?

Q. What are its properties?

A. N log N, extra array of length N, not stable.

Heapsort intuition. A heap is an array; do sort in place.

public void sort(String[] a)

{

int N = a.length;

MaxPQ<String> pq = new MaxPQ<String>();

for (int i = 0; i < N; i++)

pq.insert(a[i]);

for (int i = N-1; i >= 0; i--)

a[i] = pq.delMax();

}

65

Heapsort

Basic plan for in-place sort.

・View input array as a complete binary tree.

・Heap construction: build a max-heap with all N keys.

・Sortdown: repeatedly remove the maximum key.

keys in arbitrary order

1 2 3 4 5 6 7 8 9 10 11

S O R T E X A M P L E

build max heap

(in place)

1 2 3 4 5 6 7 8 9 10 11

X T S P L R A M O E E

sorted result

(in place)

1 2 3 4 5 6 7 8 9 10 11

A E E L M O P R S T X

70

Heapsort: Java implementation

public class Heap

{

public static void sort(Comparable[] a)

{

int N = a.length;

for (int k = N/2; k >= 1; k--)

sink(a, k, N);

while (N > 1)

{

exch(a, 1, N);

sink(a, 1, --N);

}

}

private static void sink(Comparable[] a, int k, int N)

{ /* as before */ }

private static boolean less(Comparable[] a, int i, int j)

{ /* as before */ }

private static void exch(Object[] a, int i, int j)

{ /* as before */ }

but convert from 1-based

indexing to 0-base indexing

but make static (and pass arguments)

Heap construction. Build max heap using bottom-up method.

Heapsort demo

S O R T E X A M P L E

1 2 3 4 5 6 7 8 9 10 11

5

10 11

R

E X AT

M P L E

O

S

8 9

4 76

32

1

we assume array entries are indexed 1 to N

array in arbitrary order

Heap construction. Build max heap using bottom-up method.

Heapsort demo

1-node heaps

S O R T E X A M P L E

R

E X AT

M P L E

O

S

8 9 10 11

10 118 9

6 7

76

Heap construction. Build max heap using bottom-up method.

Heapsort demo

sink 5

5

S O R T E X A M P L E

5

R

E X AT

M P L E

O

S

Heap construction. Build max heap using bottom-up method.

Heapsort demo

sink 5

5

10

R

E

X AT

M P

L

E

O

S

S O R T L X A M P E E

5 10

Heap construction. Build max heap using bottom-up method.

Heapsort demo

sink 5

R

E

X AT

M P

L

E

O

S

S O R T L X A M P E E

3-node heap

Heap construction. Build max heap using bottom-up method.

Heapsort demo

sink 4

R

E

X AT

M P

L

E

O

S

S O R T L X A M P E E

4

4

Heap construction. Build max heap using bottom-up method.

Heapsort demo

sink 4

R

E

X AT

M P

L

E

O

S

S O R T L X A M P E E

3-node heap

Heap construction. Build max heap using bottom-up method.

Heapsort demo

sink 3

R

E

X AT

M P

L

E

O

S

S O R T L X A M P E E

3

3

Heap construction. Build max heap using bottom-up method.

Heapsort demo

sink 3

R

E

X

AT

M P

L

E

O

S

S O X T L R A M P E E

3 6

6

3

Heap construction. Build max heap using bottom-up method.

Heapsort demo

sink 3

R

E

X

AT

M P

L

E

O

S

S O X T L A A M P E E

3-node heap

Heap construction. Build max heap using bottom-up method.

Heapsort demo

sink 2

R

E

X

AT

M P

L

E

O

S

S O X T L R A M P E E

2

2

Heap construction. Build max heap using bottom-up method.

Heapsort demo

R

E

X

A

T

M P

L

E

O

S

S T X O L R A M P E E

4

2

2 4

sink 2

Heap construction. Build max heap using bottom-up method.

Heapsort demo

R

E

X

A

T

M

P L

EO

S

S T X P L R A M O E E

9

4

2

2 4 9

sink 2

Heap construction. Build max heap using bottom-up method.

Heapsort demo

sink 2

R

E

X

A

T

M

P L

EO

S

S T X P L R A M O E E

7-node heap

Heap construction. Build max heap using bottom-up method.

Heapsort demo

sink 1

R

E

X

A

T

M

P L

EO

S

S T X P L R A M O E E

1

1

Heap construction. Build max heap using bottom-up method.

Heapsort demo

sink 1

R

E

X

A

T

M

P L

EO

S

X T S P L R A M O E E

1 3

3

1

Heap construction. Build max heap using bottom-up method.

Heapsort demo

R

E

X

A

T

M

P L

EO

S

X T S P L R A M O E E

11-node heap

end of construction phase

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

exchange 1 and 11

T

P

S

X T S P L R A M O E E

1

1

11

11

R

E

A

M

L

O

X

E

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

R

E

A

T

M

P L

O

S

E T S P L R A M O E X

1

1

11

11

X

E

exchange 1 and 11

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

R

E

A

M

P L

O

S

E T S P L R A M O E X

1

1

T

E

sink 1

X

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

R

E

A

T

M

P L

E

O

S

T E S P L R A M O E X

1

1

2

2

sink 1

X

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

R

E

A

T

M

P

LE

O

S

T P S E L R A M O E X

1

1

2

2

4

4

sink 1

X

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

R

E

A

T

M

P

L

E

O

S

T P S O L R A M E E X

1

1

2

2

4

4

9

9

sink 1

X

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

R

E

A

T

M

P

L

E

O

S

T P S O L R A M E E X

X

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

E P S O L R A M E T X

1

1

exchange 1 and 10

10

10 T

P S

O L R A

M E

E

X

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

E P S O L R A M E T X

1

1

sink 1

T

P S

O L R A

M E

E

X

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

S P E O L R A M E T X

1

1

sink 1

T

P

S

O L R A

M E

E

X

3

3

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

S P R O L E A M E T X

1

1

sink 1

T

P

S

O L

R

A

M E

E

X

3

3 6

6

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

S P R O L E A M E T X

T

P

S

O L

R

A

M E

E

X

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

S P R O L E A M E T X

1

1

exchange 1 and 9

T

P

S

O L

R

A

M E

E

X

9

9

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

E P R O L E A M S T X

1

1

exchange 1 and 9

T

P

S

O L

R

A

M

E

E

X

9

9

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

E P R O L E A M S T X

1

1

sink 1

T

P

S

O L

R

A

M

E

E

X

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

R P E O L E A M S T X

1

1

sink 1

T

P

S

O L

R

A

M

E

E

X

3

3

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

R P E O L E A M S T X

T

P

S

O L

R

A

M

E

E

X

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

R P E O L E A M S T X

1

1

exchange 1 and 8

T

P

S

O L

R

A

M

E

E

X

8

8

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

M P E O L E A R S T X

1

1

exchange 1 and 8

T

P

S

O L

R

A

M

E

E

X

8

8

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

M P E O L E A R S T X

1

1

sink 1

T

P

S

O L

R

A

M

E

E

X

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

P M E O L E A R S T X

1

1

sink 1

T

P

S

O L

R

A

M E

E

X

2

2

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

P O E M L E A R S T X

1

1

sink 1

T

P

S

O

L

R

AM

E

E

X

2

2

4

4

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

P O E M L E A R S T X

T

P

S

O

L

R

AM

E

E

X

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

P O E M L E A R S T X

1

1

exchange 1 and 7

T

P

S

O

L

R

AM

E

E

X

7

7

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

A O E M L E P R S T X

1

1

exchange 1 and 7

T

P

S

O

L

R

A

M

E

E

X

7

7

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

A O E M L E P R S T X

1

1

sink 1

T

P

S

O

L

R

A

M

E

E

X

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

O A E M L E P R S T X

1

1

sink 1

T

P

S

O

L

R

A

M

E

E

X

2

2

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

O M E A L E P R S T X

1

1

sink 1

T

P

S

O

L

R

A

M E

E

X

2

2

4

4

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

O M E A L E P R S T X

sink 1

T

P

S

O

L

R

A

M E

E

X

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

O M E A L E P R S T X

1

1

exchange 1 and 6

T

P

S

O

L

R

A

M E

E

X

6

6

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

E M E A L O P R S T X

1

1

exchange 1 and 6

T

P

S

OL

R

A

M E

E

X

6

6

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

E M E A L O P R S T X

T

P

S

OL

R

A

M E

E

X

1

sink 1

1

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

M E E A L O P R S T X

T

P

S

OL

R

A

M

EE

X

1

sink 1

1

2

2

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

M L E A E O P R S T X

T

P

S

O

L

R

A

M

E

E

X

1

sink 1

1

2

2

5

5

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

M L E A E O P R S T X

T

P

S

O

L

R

A

M

E

E

X

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

M L E A E O P R S T X

T

P

S

O

L

R

A

M

E

E

X

1

exchange 1 and 5

1

5

5

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

E L E A M O P R S T X

T

P

S

O

L

R

A M

E

E

X

1

exchange 1 and 5

1

5

5

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

E L E A M O P R S T X

T

P

S

O

L

R

A M

E

E

X

1

1

sink 1

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

L E E A M O P R S T X

T

P

S

O

L

R

A M

EE

X

1

1

sink 1

2

2

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

L E E A M O P R S T X

T

P

S

O

L

R

A M

EE

X

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

L E E A M O P R S T X

T

P

S

O

L

R

A M

EE

X

1 4

4

1

exchange 1 and 4

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

A E E L M O P R S T X

T

P

S

OL

R

A

M

EE

X

1 4

4

1

exchange 1 and 4

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

A E E L M O P R S T X

T

P

S

OL

R

A

M

EE

X

1

1

sink 1

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

E A E L M O P R S T X

T

P

S

OL

R

A

M

E

E

X

1

1

sink 1

2

2

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

E A E L M O P R S T X

T

P

S

OL

R

A

M

E

E

X

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

E A E L M O P R S T X

T

P

S

OL

R

A

M

E

E

X

1

exchange 1 and 3

1

3

3

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

E A E L M O P R S T X

T

P

S

OL

R

A

M

E

E

X

1

exchange 1 and 3

1

3

3

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

E A E L M O P R S T X

T

P

S

OL

R

A

M

E

E

X

1

sink 1

1

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

E A E L M O P R S T X

T

P

S

OL

R

A

M

E

E

X

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

E A E L M O P R S T X

T

P

S

OL

R

A

M

E

E

X

exchange 1 and 2

1 2

2

1

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

A E E L M O P R S T X

T

P

S

OL

R

A

M

E E

X

exchange 1 and 2

1 2

2

1

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

A E E L M O P R S T X

T

P

S

OL

R

A

M

E E

X

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

A E E L M O P R S T X

T

P

S

OL

R

A

M

E E

X

end of sortdown phase

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

A E E L M O P R S T X

T

P

S

OL

R

A

M

E E

X

1 2 3 4 5 6 7 8 9 10 11

array in sorted order

Heapsort animation

143

http://www.sorting-algorithms.com/heap-sort

50 random items

in order

algorithm position

not in order

Proposition. Heap construction uses ≤ 2 N compares and ≤ N exchanges.

Proposition. Heapsort uses ≤ 2 N lg N compares and exchanges.

Significance. In-place sorting algorithm with N log N worst-case.

・Mergesort: no, linear extra space.

・Quicksort: no, quadratic time in worst case.

・Heapsort: yes!

Bottom line. Heapsort is optimal for both time and space, but:

・Inner loop longer than quicksort’s.

・Makes poor use of cache.

・Not stable.

145

Heapsort: mathematical analysis

N log N worst-case quicksort possible,

not practical

in-place merge possible, not practical

algorithm can be improved to ~ 1 N lg N

advanced tricks for improving

147

Sorting algorithms: summary

inplace? stable? best average worst remarks

selection ✔ ½ N 2 ½ N 2 ½ N 2 N exchanges

insertion ✔ ✔ N ¼ N 2 ½ N 2
use for small N

or partially ordered

merge ✔ ½ N lg N N lg N N lg N
N log N guarantee;

stable

quick ✔ N lg N 2 N ln N ½ N 2
N log N probabilistic guarantee;

fastest in practice

heap ✔ N 2 N lg N 2 N lg N
N log N guarantee;

in-place

? ✔ ✔ N N lg N N lg N holy sorting grail

http:/ /algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

http:/ /algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

SYMBOL TABLES

Modified by: Dr. Fahed Jubair and Dr. Ramzi Saifan

Computer Engineering Department

University of Jordan

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ API

‣ elementary implementations

‣ ordered operations

SYMBOL TABLES

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

3

Symbol tables

Key-value pair abstraction.

・Insert a value with specified key.

・Given a key, search for the corresponding value.

Ex. DNS lookup.

・Insert domain name with specified IP address.

・Given domain name, find corresponding IP address.

key

domain name IP address

www.cs.princeton.edu 128.112.136.11

www.princeton.edu 128.112.128.15

www.yale.edu 130.132.143.21

www.harvard.edu 128.103.060.55

www.simpsons.com 209.052.165.60

value

5

Symbol table applications

application purpose of search key value

dictionary find definition word definition

book index find relevant pages term list of page numbers

file share find song to download name of song computer ID

financial account process transactions account number transaction details

web search find relevant web pages keyword list of page names

compiler find properties of variables variable name type and value

routing table route Internet packets destination best route

DNS find IP address domain name IP address

reverse DNS find domain name IP address domain name

genomics find markers DNA string known positions

file system find file on disk filename location on disk

6

Symbol tables: context

Also known as: maps, dictionaries, associative arrays.

Generalizes arrays. Keys need not be between 0 and N – 1.

Language support.

・External libraries: C, VisualBasic, Standard ML, bash, ...

・Built-in libraries: Java, C#, C++, Scala, ...

・Built-in to language: Awk, Perl, PHP, Tcl, JavaScript, Python, Ruby, Lua.

table is the only

primitive data structure

every object is an

associative array

every array is an

associative array

Associative array abstraction. Associate one value with each key.

public class ST<Key, Value>

ST() create an empty symbol table

void put(Key key, Value val) put key-value pair into the table

Value get(Key key) value paired with key

boolean contains(Key key) is there a value paired with key?

void delete(Key key) remove key (and its value) from table

boolean isEmpty() is the table empty?

int size() number of key-value pairs in the table

Iterable<Key> keys() all the keys in the table

7

Basic symbol table API

a[key] = val;

a[key]

8

Conventions

・Values are not null.

・Method get() returns null if key not present.

・Method put() overwrites old value with new value.

Intended consequences.

・Easy to implement contains().

・Can implement lazy version of delete().

public boolean contains(Key key)

{ return get(key) != null; }

public void delete(Key key)

{ put(key, null); }

Java allows null value

9

Keys and values

Value type. Any generic type.

Key type: several natural assumptions.

・Assume keys are Comparable, use compareTo().

・Assume keys are any generic type, use equals() to test equality.

Best practices. Use immutable types for symbol table keys.

・Immutable in Java: Integer, Double, String, java.io.File, …

・Mutable in Java: StringBuilder, java.net.URL, arrays, ...

10

Equality test

All Java classes inherit a method equals().

Java requirements. For any references x, y and z:

・Reflexive: x.equals(x) is true.

・Symmetric: x.equals(y) iff y.equals(x).

・Transitive: if x.equals(y) and y.equals(z), then x.equals(z).

・Non-null: x.equals(null) is false.

Default implementation. (x == y)

Customized implementations. Integer, Double, String, java.io.File, …

User-defined implementations. Some care needed.

do x and y refer to

the same object?

equivalence

relation

Seems easy.

public class Date implements

Comparable<Date>

{

private final int month;

private final int day;

private final int year;

...

public boolean equals(Date that)

{

if (this.day != that.day) return false;

if (this.month != that.month) return false;

if (this.year != that.year) return false;

return true;

}

}

Implementing equals for user-defined types

11

check that all significant

fields are the same

Seems easy, but requires some care.

public final class Date implements

Comparable<Date>

{

private final int month;

private final int day;

private final int year;

...

public boolean equals(Object y)

{

if (y == this) return true;

if (y == null) return false;

if (y.getClass() != this.getClass())

return false;

Date that = (Date) y;

if (this.day != that.day) return false;

if (this.month != that.month) return false;

if (this.year != that.year) return false;

return true;

}

}

Implementing equals for user-defined types

12

check for null

optimize for true object equality

must be Object.

Why?

objects must be in the same class

(religion: getClass() vs. instanceof)

check that all significant

fields are the same

cast is guaranteed to succeed

13

Equals design

"Standard" recipe for user-defined types.

・Optimization for reference equality.

・Check against null.

・Check that two objects are of the same type and cast.

・Compare each significant field:

– if field is a primitive type, use ==

– if field is an object, use equals()

– if field is an array, apply to each entry

Best practices.

・Compare fields mostly likely to differ first.

・Make compareTo() consistent with equals().

apply rule recursively

can use Arrays.deepEquals(a, b)

but not a.equals(b)

x.equals(y) if and only if (x.compareTo(y) == 0)

but use Double.compare() with double

(or otherwise deal with -0.0 and NaN)

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ API

‣ elementary implementations

‣ ordered operations

SYMBOL TABLES

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Data structure. Maintain an (unordered) linked list of key-value pairs.

Search. Scan through all keys until find a match.

Insert. Scan through all keys until find a match; if no match add to front.

19

Sequential search in a linked list

Challenge. Efficient implementations of both search and insert.

20

Elementary ST implementations: summary

ST implementation

guarantee average case

key

interface

search insert search hit insert

sequential search

(unordered list)

N N N / 2 N equals()

21

Binary search in an ordered array

Data structure. Maintain an ordered array of key-value pairs.

Rank helper function. How many keys < k ?

A C E H L M P R S X
successful search for P

unsuccessful search for Q

22

Binary search: Java implementation

public Value get(Key key)

{

if (isEmpty()) return null;

int i = rank(key);

if (i < N && keys[i].compareTo(key) == 0) return vals[i];

else return null;

}

private int rank(Key key)

{

int lo = 0, hi = N-1;

while (lo <= hi)

{

int mid = lo + (hi - lo) / 2;

int cmp = key.compareTo(keys[mid]);

if (cmp < 0) hi = mid - 1;

else if (cmp > 0) lo = mid + 1;

else if (cmp == 0) return mid;

}

return lo;

}

number of keys < key

Problem. To insert, need to shift all greater keys over.

24

Binary search: trace of standard indexing client

25

Elementary ST implementations: summary

Challenge. Efficient implementations of both search and insert.

ST implementation

guarantee average case

key

interface

search insert search hit insert

sequential search

(unordered list)

N N N / 2 N equals()

binary search

(ordered array)

log N 2*N log N N compareTo()

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ API

‣ elementary implementations

‣ ordered operations

SYMBOL TABLES

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

28

Examples of ordered symbol table API

29

Ordered symbol table API

public class ST<Key extends Comparable<Key>, Value>

...

Key min() smallest key

Key max() largest key

Key floor(Key key) largest key less than or equal to key

Key ceiling(Key key) smallest key greater than or equal to key

int rank(Key key) number of keys less than key

Key select(int k) key of rank k

void deleteMin() delete smallest key

void deleteMax() delete largest key

int size(Key lo, Key hi) number of keys between lo and hi

Iterable<Key> keys() all keys, in sorted order

Iterable<Key> keys(Key lo, Key hi) keys between lo and hi, in sorted order

30

Binary search: ordered symbol table operations summary

sequential

search

binary searc

h

search N log N

insert / delete N N

min / max N 1

floor / ceiling N log N

rank N log N

select N 1

ordered iteration N log N N

order of growth of the running time for ordered symbol table operations

http:/ /algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

http:/ /algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

BINARY SEARCH TREES

Modified by: Dr. Fahed Jubair and Dr. Ramzi Saifan

Computer Engineering Department

University of Jordan

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ BSTs

‣ ordered operations

‣ deletion

BINARY SEARCH TREES

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Definition. A BST is a binary tree in symmetric order.

A binary tree is either:

・Empty.

・Two disjoint binary trees (left and right).

Symmetric order. Each node has a key,

and every node’s key is:

・Larger than all keys in its left subtree.

・Smaller than all keys in its right subtree.

3

Binary search trees

Java definition. A BST is a reference to a root Node.

A Node is composed of four fields:

・A Key and a Value.

・A reference to the left and right subtree.

4

BST representation in Java

smaller keys larger keys

private class Node

{

private Key key;

private Value val;

private Node left, right;

public Node(Key key, Value val)

{

this.key = key;

this.val = val;

}

}

Key and Value are generic types; Key is Comparable

public class BST<Key extends Comparable<Key>, Value>

{

private Node root;

private class Node

{ /* see previous slide */ }

public void put(Key key, Value val)

{ /* see next slides */ }

public Value get(Key key)

{ /* see next slides */ }

public void delete(Key key)

{ /* see next slides */ }

public Iterable<Key> iterator()

{ /* see next slides */ }

}

5

BST implementation (skeleton)

root of BST

Search. If less, go left; if greater, go right; if equal, search hit.

6

Binary search tree demo

successful search for H

X

RA

C H

E

S

M

Search. If less, go left; if greater, go right; if equal, search hit.

7

Binary search tree demo

black nodes could

match the search key

compare H and S

(go left)

H

successful search for H

X

RA

C H

E

S

M

Search. If less, go left; if greater, go right; if equal, search hit.

8

Binary search tree demo

X

RA

C H

E

S

M

H

compare H and E

(go right)

successful search for H

Search. If less, go left; if greater, go right; if equal, search hit.

9

Binary search tree demo

X

RA

C H

E

S

M

H compare H and R

(go left)

successful search for H

Search. If less, go left; if greater, go right; if equal, search hit.

10

Binary search tree demo

X

RA

C H

E

S

M

H compare H and H

(search hit)

successful search for H

Search. If less, go left; if greater, go right; if equal, search hit.

11

Binary search tree demo

unsuccessful search for G

X

RA

C H

E

S

M

Search. If less, go left; if greater, go right; if equal, search hit.

12

Binary search tree demo

compare G and S

(go left)

X

RA

C H

E

S

M

G

unsuccessful search for G

Search. If less, go left; if greater, go right; if equal, search hit.

13

Binary search tree demo

X

RA

C H

E

S

M

G

compare G and E

(go right)

unsuccessful search for G

Search. If less, go left; if greater, go right; if equal, search hit.

14

Binary search tree demo

X

RA

C H

E

S

M

G compare G and R

(go left)

unsuccessful search for G

Search. If less, go left; if greater, go right; if equal, search hit.

15

Binary search tree demo

X

RA

C H

E

S

M

G compare G and H

(go left)

unsuccessful search for G

Search. If less, go left; if greater, go right; if equal, search hit.

16

Binary search tree demo

X

RA

C H

E

S

M

unsuccessful search for G

G

no more tree

(search miss)

Insert. If less, go left; if greater, go right; if null, insert.

17

Binary search tree demo

insert G

X

RA

C H

E

S

M

Insert. If less, go left; if greater, go right; if null, insert.

18

Binary search tree demo

compare G and S

(go left)

X

RA

C H

E

S

M

G

insert G

Insert. If less, go left; if greater, go right; if null, insert.

19

Binary search tree demo

X

RA

C H

E

S

M

G

compare G and E

(go right)

insert G

Insert. If less, go left; if greater, go right; if null, insert.

20

Binary search tree demo

X

RA

C H

E

S

M

G compare G and R

(go left)

insert G

Insert. If less, go left; if greater, go right; if null, insert.

21

Binary search tree demo

X

RA

C H

E

S

M

G compare G and H

(go left)

insert G

Insert. If less, go left; if greater, go right; if null, insert.

22

Binary search tree demo

X

RA

C H

E

S

M

insert G

G

no more tree

(insert here)

G

Insert. If less, go left; if greater, go right; if null, insert.

23

Binary search tree demo

insert G

G

X

RA

C H

E

S

M

no more tree

(insert here)

Insert. If less, go left; if greater, go right; if null, insert.

24

Binary search tree demo

X

RA

C H

E

S

M

insert G

G

Get. Return value corresponding to given key, or null if no such key.

Cost. Number of compares is equal to 1 + depth of node.

28

BST search: Java implementation

public Value get(Key key)

{

Node x = root;

while (x != null)

{

int cmp = key.compareTo(x.key);

if (cmp < 0) x = x.left;

else if (cmp > 0) x = x.right;

else if (cmp == 0) return x.val;

}

return null;

}

Put. Associate value with key.

Cost. Number of compares is equal to 1 + depth of node.

29

BST insert: Java implementation

public void put(Key key, Value val)

{ root = put(root, key, val); }

private Node put(Node x, Key key, Value val)

{

if (x == null) return new Node(key, val);

int cmp = key.compareTo(x.key);

if (cmp < 0)

x.left = put(x.left, key, val);

else if (cmp > 0)

x.right = put(x.right, key, val);

else if (cmp == 0)

x.val = val;

return x;

}

Put. Associate value with key.

Search for key, then two cases:

・Key in tree ⇒ reset value.

・Key not in tree ⇒ add new node.

30

BST insert

・Many BSTs correspond to same set of keys.

・Number of compares for search/insert is equal to 1 + depth of node.

Bottom line. Tree shape depends on order of insertion.

31

Tree shape

32

BST insertion: random order visualization

Ex. Insert keys in random order.

36

ST implementations: summary

implementation

guarantee average case

operations

on keys

search insert search hit insert

sequential search

(unordered list)

N N ½ N N equals()

binary search

(ordered array)

lg N N lg N ½ N compareTo()

BST N N 1.39 lg N 1.39 lg N compareTo()

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ BSTs

‣ ordered operations

‣ deletion

BINARY SEARCH TREES

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Minimum. Smallest key in table.

Maximum. Largest key in table.

Q. How to find the min / max?

Minimum and maximum

39

max

min

Floor. Largest key ≤ a given key.

Ceiling. Smallest key ≥ a given key.

Q. How to find the floor / ceiling?

Floor and ceiling

40

floor(D)

ceiling(Q)

floor(G)

Case 1. [k equals the key in the node]

The floor of k is k.

Case 2. [k is less than the key in the node]

The floor of k is in the left subtree.

Case 3. [k is greater than the key in the node]

The floor of k is in the right subtree

(if there is any key ≤ k in right subtree);

otherwise it is the key in the node.

Computing the floor

41

Computing the floor

42

public Key floor(Key key)

{

Node x = floor(root, key);

if (x == null) return null;

return x.key;

}

private Node floor(Node x, Key key)

{

if (x == null) return null;

int cmp = key.compareTo(x.key);

if (cmp == 0) return x;

if (cmp < 0) return floor(x.left, key);

Node t = floor(x.right, key);

if (t != null) return t;

else return x;

}

Q. How to implement size(), rank() and select() efficiently?

A. In each node, we store the number of nodes in the subtree rooted at

that node; to implement size(), return the count at the root.

43

Rank and select

44

BST implementation: subtree counts

private Node put(Node x, Key key, Value val)

{

if (x == null) return new Node(key, val, 1);

int cmp = key.compareTo(x.key);

if (cmp < 0) x.left = put(x.left, key, val);

else if (cmp > 0) x.right = put(x.right, key, val);

else if (cmp == 0) x.val = val;

x.count = 1 + size(x.left) + size(x.right);

return x;

}

private class Node

{

private Key key;

private Value val;

private Node left;

private Node right;

private int count;

}

number of nodes in subtree

public int size()

{ return size(root); }

private int size(Node x)

{

if (x == null) return 0;

return x.count;

}

initialize subtree

count to 1

45

Rank

Rank. How many keys < k ?

Easy recursive algorithm (3 cases!)

public int rank(Key key)

{ return rank(key, root); }

private int rank(Key key, Node x)

{

if (x == null) return 0;

int cmp = key.compareTo(x.key);

if (cmp < 0) return rank(key, x.left);

else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);

else if (cmp == 0) return size(x.left);

}

Select. Key of given rank.

Selection

46

public Key select(int k)

{

if (k < 0) return null;

if (k >= size()) return null;

Node x = select(root, k);

return x.key;

}

private Node select(Node x, int k)

{

if (x == null) return null;

int t = size(x.left);

if (t > k)

return select(x.left, k);

else if (t < k)

return select(x.right, k-t-1);

else if (t == k)

return x;

}

・Traverse left subtree.

・Enqueue key.

・Traverse right subtree.

Property. Inorder traversal of a BST yields keys in ascending order.

Inorder traversal

47

public Iterable<Key> keys()

{

Queue<Key> q = new Queue<Key>();

inorder(root, q);

return q;

}

private void inorder(Node x, Queue<Key> q)

{

if (x == null) return;

inorder(x.left, q);

q.enqueue(x.key);

inorder(x.right, q);

}

・Traverse left subtree.

・Enqueue key.

・Traverse right subtree.

Inorder traversal

48

function call stack

inorder(S)

inorder(E)

inorder(A)

enqueue A

inorder(C)

enqueue C

enqueue E

inorder(R)

inorder(H)

enqueue H

inorder(M)

enqueue M

enqueue R

enqueue S

inorder(X)

enqueue X

A

C

E

H

M

R

S

X

S

S E

S E A

S E A C

S E R

S E R H

S E R H M

S X

queuerecursive calls

49

BST: ordered symbol table operations summary

Sequential

search

Binary search BST

search N lg N h

insert N N h

min / max N 1 h

floor / ceiling N lg N h

rank N lg N h

select N 1 h

ordered iteration N log N N N

h = height of BST

(proportional to log N

if keys inserted in random order)

order of growth of running time of ordered symbol table operations

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ BSTs

‣ ordered operations

‣ deletion

BINARY SEARCH TREES

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

52

ST implementations: summary

Next. Deletion in BSTs.

implementation

guarantee average case

ordered

ops?

operations

on keys

search insert delete search hit insert delete

sequential

search (linked

list)

N N N ½ N N ½ N equals()

binary

search (ordered

array)

lg N N N lg N ½ N ½ N ✔ compareTo()

BST N N N 1.39 lg N 1.39 lg N ? ? ? ✔ compareTo()

To delete the minimum key:

・Go left until finding a node with a null left link.

・Replace that node by its right link.

・Update subtree counts.

54

Deleting the minimum

public void deleteMin()

{ root = deleteMin(root); }

private Node deleteMin(Node x)

{

if (x.left == null) return x.right;

x.left = deleteMin(x.left);

x.count = 1 + size(x.left) + size(x.right);

return x;

}

To delete a node with key k: search for node t containing key k.

Case 0. [0 children] Delete t by setting parent link to null.

55

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 1. [1 child] Delete t by replacing parent link.

56

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 2. [2 children]

・Find successor x of t.

・Delete the minimum in t's right subtree.

・Put x in t's spot.

57

Hibbard deletion

x has no left child

but don't garbage collect x

still a BST

58

Hibbard deletion: Java implementation

public void delete(Key key)

{ root = delete(root, key); }

private Node delete(Node x, Key key) {

if (x == null) return null;

int cmp = key.compareTo(x.key);

if (cmp < 0) x.left = delete(x.left, key);

else if (cmp > 0) x.right = delete(x.right, key);

else {

if (x.right == null) return x.left;

if (x.left == null) return x.right;

Node t = x;

x = min(t.right);

x.right = deleteMin(t.right);

x.left = t.left;

}

x.count = size(x.left) + size(x.right) + 1;

return x;

}

no right child

replace with

successor

search for key

update subtree

counts

no left child

59

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

Surprising consequence. Trees not random (!) √N per op.

Longstanding open problem. Simple and efficient delete for BSTs.

implementation

guarantee average case

ordered

ops?

operations

on keys

search insert delete search hit insert delete

sequential

search (linked

list)

N N N ½ N N ½ N equals()

binary

search (ordered

array)

lg N N N lg N ½ N ½ N ✔ compareTo()

BST N N N 1.39 lg N 1.39 lg N √N ✔ compareTo()

60

ST implementations: summary

other operations also become √N

if deletions allowed

http:/ /algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

http:/ /algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

HASH TABLES

Modified by: Dr. Fahed Jubair and Dr. Ramzi Saifan

Computer Engineering Department

University of Jordan

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Symbol table implementations: summary

Q. Can we do better?

A. Yes, but with different access to the data.

2

implementation

guarantee average case

ordered

ops?

key

interface

search insert delete search hit insert delete

sequential

search (unordered

list)

N N N ½ N N ½ N equals()

binary

search (ordered

array)

lg N N N lg N ½ N ½ N ✔ compareTo()

BST N N N 1.39 lg N 1.39 lg N √ N ✔ compareTo()

red-black BST 2 lg N 2 lg N 2 lg N 1.0 lg N 1.0 lg N 1.0 lg N ✔ compareTo()

Optional Read: red-black BST, 3.5 in textbook

3

Hashing: basic plan

Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key.

Issues.

・Computing the hash function.

・Equality test: Method for checking whether two keys are equal.

・Collision resolution: Algorithm and data structure

to handle two keys that hash to the same array index.

Classic space-time tradeoff.

・No space limitation: trivial hash function with key as index.

・No time limitation: trivial collision resolution with sequential search.

・Space and time limitations: hashing (the real world).

hash("times") = 3

??

0

1

2

3 "it"

4

5

hash("it") = 3

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ hash functions

‣ separate chaining

‣ linear probing

HASH TABLES

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

5

Computing the hash function

Idealistic goal. Scramble the keys uniformly to produce a table index.

・Efficiently computable.

・Each table index equally likely for each key.

Ex 1. Phone numbers.

・Bad: first three digits.

・Better: last three digits.

Ex 2. Social Security numbers.

・Bad: first three digits.

・Better: last three digits.

Practical challenge. Need different approach for each key type.

thoroughly researched problem,

still problematic in practical applications

573 = California, 574 = Alaska

(assigned in chronological order within geographic region)

key

table

index

6

Java’s hash code conventions

All Java classes inherit a method hashCode(), which returns a 32-bit int.

Requirement. If x.equals(y), then (x.hashCode() == y.hashCode()).

Highly desirable. If !x.equals(y), then (x.hashCode() != y.hashCode()).

Default implementation. Memory address of x.

Legal (but poor) implementation. Always return 17.

Customized implementations. Integer, Double, String, File, URL, Date, …

User-defined types. Users are on their own.

x.hashCode()

x

y.hashCode()

y

7

Implementing hash code: integers, booleans, and doubles

public final class Integer

{

private final int value;

...

public int hashCode()

{ return value; }

}

convert to IEEE 64-bit representation;

xor most significant 32-bits

with least significant 32-bits

Warning: -0.0 and +0.0 have different hash codes

public final class Double

{

private final double value;

...

public int hashCode()

{

long bits = doubleToLongBits(value);

return (int) (bits ^ (bits >>> 32));

}

}

public final class Boolean

{

private final boolean value;

...

public int hashCode()

{

if (value) return 1231;

else return 1237;

}

}

Java library implementations

・Horner's method to hash string of length L: L multiplies/adds.

・Equivalent to h = s[0] · 31L–1 + … + s[L – 3] · 312 + s[L – 2] · 311 + s[L – 1] · 310
.

Ex.

public final class String

{

private final char[] s;

...

public int hashCode()

{

int hash = 0;

for (int i = 0; i < length(); i++)

hash = s[i] + (31 * hash);

return hash;

}

}

8

Implementing hash code: strings

3045982 = 99·31
3

+ 97·31
2

+ 108·31
1

+ 108·31
0

= 108 + 31· (108 + 31 · (97 + 31 · (99)))

(Horner's method)

String s = "call";

int code = s.hashCode();

char Unicode

… …

'a' 97

'b' 98

'c' 99

… ...

Java library implementation

Performance optimization.

・Cache the hash value in an instance variable.

・Return cached value.

Q. What if hashCode() of string is 0?

public final class String

{

private int hash = 0;

private final char[] s;

...

public int hashCode()

{

int h = hash;

if (h != 0) return h;

for (int i = 0; i < length(); i++)

h = s[i] + (31 * h);

hash = h;

return h;

}

}

9

Implementing hash code: strings

return cached value

cache of hash code

store cache of hash code

10

Implementing hash code: user-defined types

public final class Transaction implements Comparable<Transaction>

{

private final String who;

private final Date when;

private final double amount;

public Transaction(String who, Date when, double amount)

{ /* as before */ }

...

public boolean equals(Object y)

{ /* as before */ }

public int hashCode()

{

int hash = 17;

hash = 31*hash + who.hashCode();

hash = 31*hash + when.hashCode();

hash = 31*hash + ((Double) amount).hashCode();

return hash;

}

}

typically a small prime

nonzero constant

for primitive types,

use hashCode()

of wrapper type

for reference types,

use hashCode()

11

Hash code design

"Standard" recipe for user-defined types.

・Combine each significant field using the 31x + y rule.

・If field is a primitive type, use wrapper type hashCode().

・If field is null, return 0.

・If field is a reference type, use hashCode().

・If field is an array, apply to each entry.

In practice. Recipe works reasonably well; used in Java libraries.

In theory. Keys are bitstring; "universal" hash functions exist.

Basic rule. Need to use the whole key to compute hash code;

consult an expert for state-of-the-art hash codes.

or use Arrays.deepHashCode()

applies rule recursively

Hash code. An int between -231 and 231 - 1.

Hash function. An int between 0 and M - 1 (for use as array index).

12

Modular hashing

typically a prime or power of 2

private int hash(Key key)

{ return key.hashCode() % M; }

bug

private int hash(Key key)

{ return Math.abs(key.hashCode()) % M; }

private int hash(Key key)

{ return (key.hashCode() & 0x7fff ffff) % M; }

correct

1-in-a-billion bug

hashCode() of "polygenelubricants" is -2
31

x.hashCode()

x

hash(x)

13

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an

integer between 0 and M - 1.

Bins and balls. Throw balls uniformly at random into M bins.

Birthday problem. Expect two balls in the same bin after ~ π M / 2 tosses.

Coupon collector. Expect every bin has ≥ 1 ball after ~ M ln M tosses.

Load balancing. After M tosses, expect most loaded bin has

Q (log M / log log M) balls.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

14

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an

integer between 0 and M - 1.

Bins and balls. Throw balls uniformly at random into M bins.

Java's String data uniformly distribute the keys of Tale of Two Cities

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ hash functions

‣ separate chaining

‣ linear probing

HASH TABLES

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

17

Collisions

Collision. Two distinct keys hashing to same index.

・Birthday problem can't avoid collisions unless you have

a ridiculous (quadratic) amount of memory.

・Coupon collector + load balancing collisions are evenly distributed.

Challenge. Deal with collisions efficiently.

hash("times") = 3

??

0

1

2

3 "it"

4

5

hash("it") = 3

Use an array of M < N linked lists. [H. P. Luhn, IBM 1953]

・Hash: map key to integer i between 0 and M - 1.

・Insert: put at front of ith
chain (if not already there).

・Search: need to search only ith
chain.

18

Separate-chaining symbol table

public class SeparateChainingHashST<Key, Value>

{

private int M = 97; // number of chains

private Node[] st = new Node[M]; // array of chains

private static class Node

{

private Object key;

private Object val;

private Node next;

...

}

private int hash(Key key)

{ return (key.hashCode() & 0x7fffffff) % M; }

public Value get(Key key) {

int i = hash(key);

for (Node x = st[i]; x != null; x = x.next)

if (key.equals(x.key)) return (Value) x.val;

return null;

}

}

Separate-chaining symbol table: Java implementation

19

no generic array creation

(declare key and value of type Object)

array doubling and

halving code omitted

public class SeparateChainingHashST<Key, Value>

{

private int M = 97; // number of chains

private Node[] st = new Node[M]; // array of chains

private static class Node

{

private Object key;

private Object val;

private Node next;

...

}

private int hash(Key key)

{ return (key.hashCode() & 0x7fffffff) % M; }

public void put(Key key, Value val) {

int i = hash(key);

for (Node x = st[i]; x != null; x = x.next)

if (key.equals(x.key)) { x.val = val; return; }

st[i] = new Node(key, val, st[i]);

}

}

Separate-chaining symbol table: Java implementation

20

Proposition. Under uniform hashing assumption, prob. that the number of

keys in a list is within a constant factor of N / M is extremely close to 1.

Consequence. Number of probes for search/insert is proportional to N / M.

・M too large too many empty chains.

・M too small chains too long.

・Typical choice: M ~ N / 4 ⇒ constant-time ops.

21

Analysis of separate chaining

Goal. Average length of list N / M = constant.

・Double size of array M when N / M ≥ 8.

・Halve size of array M when N / M ≤ 2.

・Need to rehash all keys when resizing.

22

Resizing in a separate-chaining hash table

A B C D E F G H I J

K L M N O P

0

1

K I

P N L E
0

1

2

3

before resizing

after resizing

J F C B

O M H G D

A

x.hashCode() does not change

but hash(x) can change

st[]

st[]

Q. How to delete a key (and its associated value)?

A. Easy: need only consider chain containing key.

23

Deletion in a separate-chaining hash table

before deleting C

K I

P N L
0

1

2

3

J F C B

O M

st[]

K I

P N L

J F B

O M

after deleting C

0

1

2

3

st[]

Symbol table implementations: summary

24

* under uniform hashing assumption

implementation

guarantee average case

ordered

ops?

key

interface

search insert delete search hit insert delete

sequential

search (unordered

list)

N N N ½ N N ½ N equals()

binary

search (ordered

array)

lg N N N lg N ½ N ½ N ✔ compareTo()

BST N N N 1.39 lg N 1.39 lg N √ N ✔ compareTo()

red-black BST 2 lg N 2 lg N 2 lg N 1.0 lg N 1.0 lg N 1.0 lg N ✔ compareTo()

separate chaining N N N 3-5 * 3-5 * 3-5 *
equals()

hashCode()

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ hash functions

‣ separate chaining

‣ linear probing

HASH TABLES

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953]

When a new key collides, find next empty slot, and put it there.

27

Collision resolution: open addressing

null

null

linear probing (M = 30001, N = 15000)

jocularly

listen

suburban

browsing

st[0]

st[1]

st[2]

st[30000]

st[3]

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

linear-probing hash table

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

linear-probing hash table

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(S) = 6

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

SS

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(S) = 6

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S

S

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(S) = 6

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S

S

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S

linear-probing hash table

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(E) = 10

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

E

S

E

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(E) = 10

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

E

S

E

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(E) = 10

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

E

S E

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S E

linear-probing hash table

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(A) = 4

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

A

S E

A

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(A) = 4

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

A

S E

A

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(A) = 4

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

A

S EA

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA

linear-probing hash table

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(R) = 14

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

R

S EA

R

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(R) = 14

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

R

S EA

R

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(R) = 14

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

R

S EA R

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA R

linear-probing hash table

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(C) = 5

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

C

S EA R

C

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(C) = 5

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

C

S EA

C

R

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(C) = 5

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

C

S EA C R

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C R

linear-probing hash table

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(H) = 4

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

H

S EA C

H

R

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(H) = 4

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

H

S EA C

H

R

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(H) = 4

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

H

S EA C

H

R

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(H) = 4

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

H

S EA C

H

R

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(H) = 4

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

H

S EA C

H

R

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(H) = 4

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

H

S EA C H R

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C H R

linear-probing hash table

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(X) = 15

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

X

S EA C H R

X

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(X) = 15

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

X

S EA C H R

X

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(X) = 15

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

X

S EA C H R X

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C H R X

linear-probing hash table

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(M) = 1

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

M

S EA C H R X

M

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(M) = 1

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

M

S EA C H R X

M

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(M) = 1

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

M

S EA C H R XM

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C H R XM

linear-probing hash table

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(P) = 14

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

P

S EA C H R XM

P

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(P) = 14

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

P

S EA C H R XM

P

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(P) = 14

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

P

S EA C H R XM

PP

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(P) = 14

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

P

S EA C H R XMP

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C H R XMP

linear-probing hash table

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(L) = 6

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

L

S EA C H R XMP

L

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(L) = 6

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

L

S EA C H R XMP

L

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(L) = 6

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

L

S EA C H R XMP

L

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(L) = 6

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

L

S EA C H R XMP

L

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

insert

hash(L) = 6

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

L

S EA C H R XMP L

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear-probing hash table demo: insert

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C H R XMP L

linear-probing hash table

Hash. Map key to integer i between 0 and M-1.

Search. Search table index i; if occupied but no match, try i+1, i+2, etc.

Linear-probing hash table demo: search

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C H R XMP L

linear-probing hash table

Hash. Map key to integer i between 0 and M-1.

Search. Search table index i; if occupied but no match, try i+1, i+2, etc.

Linear-probing hash table demo: search

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C H R XMP L

search

hash(E) = 10

EE

Hash. Map key to integer i between 0 and M-1.

Search. Search table index i; if occupied but no match, try i+1, i+2, etc.

Linear-probing hash table demo: search

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C H R XMP L

search

hash(E) = 10

E

E

search hit

(return corresponding value)

Hash. Map key to integer i between 0 and M-1.

Search. Search table index i; if occupied but no match, try i+1, i+2, etc.

Linear-probing hash table demo: search

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C H R XMP L

linear-probing hash table

L

Hash. Map key to integer i between 0 and M-1.

Search. Search table index i; if occupied but no match, try i+1, i+2, etc.

Linear-probing hash table demo: search

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C H R XMP L

search

hash(L) = 6

L

Hash. Map key to integer i between 0 and M-1.

Search. Search table index i; if occupied but no match, try i+1, i+2, etc.

Linear-probing hash table demo: search

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C H R XMP L

search

hash(L) = 6

L

L

Hash. Map key to integer i between 0 and M-1.

Search. Search table index i; if occupied but no match, try i+1, i+2, etc.

Linear-probing hash table demo: search

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C H R XMP L

search

hash(L) = 6

L

L

Hash. Map key to integer i between 0 and M-1.

Search. Search table index i; if occupied but no match, try i+1, i+2, etc.

Linear-probing hash table demo: search

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C H R XMP L

search

hash(L) = 6

L

L

search hit

(return corresponding value)

Hash. Map key to integer i between 0 and M-1.

Search. Search table index i; if occupied but no match, try i+1, i+2, etc.

Linear-probing hash table demo: search

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C H R XMP L

linear-probing hash table

K

Hash. Map key to integer i between 0 and M-1.

Search. Search table index i; if occupied but no match, try i+1, i+2, etc.

Linear-probing hash table demo: search

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C H R XMP L

search

hash(K) = 5

K

Hash. Map key to integer i between 0 and M-1.

Search. Search table index i; if occupied but no match, try i+1, i+2, etc.

Linear-probing hash table demo: search

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C H R XMP L

search

hash(K) = 5

K

K

Hash. Map key to integer i between 0 and M-1.

Search. Search table index i; if occupied but no match, try i+1, i+2, etc.

Linear-probing hash table demo: search

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C H R XMP L

search

hash(K) = 5

K

K

Hash. Map key to integer i between 0 and M-1.

Search. Search table index i; if occupied but no match, try i+1, i+2, etc.

Linear-probing hash table demo: search

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C H R XMP L

search

hash(K) = 5

K

K

Hash. Map key to integer i between 0 and M-1.

Search. Search table index i; if occupied but no match, try i+1, i+2, etc.

Linear-probing hash table demo: search

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C H R XMP L

search

hash(K) = 5

K

K

Hash. Map key to integer i between 0 and M-1.

Search. Search table index i; if occupied but no match, try i+1, i+2, etc.

Linear-probing hash table demo: search

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C H R XMP L

search

hash(K) = 5

K

K

search miss

(return null)

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Search. Search table index i; if occupied but no match, try i+1, i+2, etc.

Note. Array size M must be greater than number of key-value pairs N.

91

Linear-probing hash table summary

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C H R XMP L

public class LinearProbingHashST<Key, Value>

{

private int M = 30001;

private Value[] vals = (Value[]) new Object[M];

private Key[] keys = (Key[]) new Object[M];

private int hash(Key key) { /* as before */ }

private void put(Key key, Value val) { /* next slide */ }

public Value get(Key key)

{

for (int i = hash(key); keys[i] != null; i = (i+1) % M)

if (key.equals(keys[i]))

return vals[i];

return null;

}

}

Linear-probing symbol table: Java implementation

92

array doubling and

halving code omitted

public class LinearProbingHashST<Key, Value>

{

private int M = 30001;

private Value[] vals = (Value[]) new Object[M];

private Key[] keys = (Key[]) new Object[M];

private int hash(Key key) { /* as before */ }

private Value get(Key key) { /* previous slide */ }

public void put(Key key, Value val)

{

int i;

for (i = hash(key); keys[i] != null; i = (i+1) % M)

if (keys[i].equals(key))

break;

keys[i] = key;

vals[i] = val;

}

}

Linear-probing symbol table: Java implementation

93

Model. Cars arrive at one-way street with M parking spaces.

Each desires a random space i : if space i is taken, try i + 1, i + 2, etc.

Q. What is mean displacement of a car?

Half-full. With M / 2 cars, mean displacement is ~ 3 / 2.

Full. With M cars, mean displacement is ~ p M / 8 .

95

Knuth's parking problem

displacement = 3

Proposition. Under uniform hashing assumption, the average # of probes

in a linear probing hash table of size M that contains N = a M keys is:

Pf.

Parameters.

・M too large too many empty array entries.

・M too small search time blows up.

・Typical choice: α = N / M ~ ½.

96

Analysis of linear probing

search hit search miss / insert

probes for search hit is about 3/2

probes for search miss is about 5/2

Goal. Average length of list N / M ≤ ½.

・Double size of array M when N / M ≥ ½.

・Halve size of array M when N / M ≤ ⅛.

・Need to rehash all keys when resizing.

97

Resizing in a linear-probing hash table

keys[]

0 1 2 3 4 5 6 7

E S R A

1 0 3 2
vals[]

keys[]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A S E R

2 0 1 3vals[]

after resizing

before resizing

Q. How to delete a key (and its associated value)?

A. Requires some care: can't just delete array entries.

98

Deletion in a linear-probing hash table

keys[]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P M A C S H L E R X

10 9 8 4 0 5 11 12 3 7
vals[]

before deleting S

keys[]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P M A C H L E R X

10 9 8 4 5 11 12 3 7
vals[]

after deleting S ?

doesn't work, e.g., if hash(H) = 4

ST implementations: summary

99

* under uniform hashing assumption

implementation

guarantee average case

ordered

ops?

key

interface

search insert delete search hit insert delete

sequential

search (unordered

list)

N N N ½ N N ½ N equals()

binary

search (ordered

array)

lg N N N lg N ½ N ½ N ✔ compareTo()

BST N N N 1.39 lg N 1.39 lg N √ N ✔ compareTo()

red-black BST 2 lg N 2 lg N 2 lg N 1.0 lg N 1.0 lg N 1.0 lg N ✔ compareTo()

separate chaining N N N 3-5 * 3-5 * 3-5 *
equals()

hashCode()

linear probing N N N 3-5 * 3-5 * 3-5 *
equals()

hashCode()

http:/ /algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

http:/ /algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

UNDIRECTED GRAPHS

Modified by: Dr. Fahed Jubair and Dr. Ramzi Saifan

Computer Engineering Department

University of Jordan

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ introduction

‣ graph API

‣ depth-first search

‣ breadth-first search

‣ connected components

‣ challenges

UNDIRECTED GRAPHS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

・Thousands of practical applications.

・Hundreds of graph algorithms known.

・Interesting and broadly useful abstraction.

・Challenging branch of computer science and discrete math.

3

Undirected graphs

13

Graph applications

graph vertex edge

communication telephone, computer fiber optic cable

circuit gate, register, processor wire

mechanical joint rod, beam, spring

financial stock, currency transactions

transportation intersection street

internet class C network connection

game board position legal move

social relationship person friendship

neural network neuron synapse

protein network protein protein-protein interaction

molecule atom bond

14

Graph terminology

Path. Sequence of vertices connected by edges.

Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.

15

Some graph-processing problems

Challenge. Which graph problems are easy? difficult? intractable?

problem description

s-t path Is there a path between s and t ?

shortest s-t path What is the shortest path between s and t ?

cycle Is there a cycle in the graph ?

Euler cycle Is there a cycle that uses each edge exactly once ?

Hamilton cycle Is there a cycle that uses each vertex exactly once ?

connectivity Is there a way to connect all of the vertices ?

biconnectivity Is there a vertex whose removal disconnects the graph ?

planarity Can the graph be drawn in the plane with no crossing edges ?

graph isomorphism Do two adjacency lists represent the same graph ?

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ introduction

‣ graph API

‣ depth-first search

‣ breadth-first search

‣ connected components

‣ challenges

UNDIRECTED GRAPHS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Vertex representation.

・This lecture: use integers between 0 and V – 1.

・Applications: convert between names and integers with symbol table.

Anomalies.

A

G

E

CB

F

D

20

Graph representation

symbol table

0

6

4

21

5

3

21

Graph API

public class Graph

Graph(int V) create an empty graph with V vertices

Graph(In in) create a graph from input stream

void addEdge(int v, int w) add an edge v-w

Iterable<Integer> adj(int v) vertices adjacent to v

int V() number of vertices

int E() number of edges

// degree of vertex v in graph G

public static int degree(Graph G, int v)

{

int degree = 0;

for (int w : G.adj(v))

degree++;

return degree;

}

22

Graph input format.

Graph API: sample client

% java Test tinyG.txt

0-6

0-2

0-1

0-5

1-0

2-0

3-5

3-4

⋮

12-11

12-9

In in = new In(args[0]);

Graph G = new Graph(in);

for (int v = 0; v < G.V(); v++)

for (int w : G.adj(v))

StdOut.println(v + "-" + w);

read graph from

input stream

print out each

edge (twice)

Maintain a list of the edges (linked list or array).

Q. How long to iterate over vertices adjacent to v ?

23

Graph representation: set of edges

0 1

0 2

0 5

0 6

3 4

3 5

4 5

4 6

7 8

9 10

9 11

9 12

11 12

87

109

1211

0

6

4

21

5

3

Maintain a two-dimensional V-by-V boolean array;

for each edge v–w in graph: adj[v][w] = adj[w][v] = true.

Q. How long to iterate over

vertices adjacent to v ?

0 1 2 3 4 5 6 7 8 9 10 11 12

0
0 1 1 0 0 1 1 0 0 0 0 0 0

1
1 0 0 0 0 0 0 0 0 0 0 0 0

2
1 0 0 0 0 0 0 0 0 0 0 0 0

3
0 0 0 0 1 1 0 0 0 0 0 0 0

4
0 0 0 1 0 1 1 0 0 0 0 0 0

5
1 0 0 1 1 0 0 0 0 0 0 0 0

6
1 0 0 0 1 0 0 0 0 0 0 0 0

7
0 0 0 0 0 0 0 0 1 0 0 0 0

8
0 0 0 0 0 0 0 1 0 0 0 0 0

9
0 0 0 0 0 0 0 0 0 0 1 1 1

10
0 0 0 0 0 0 0 0 0 1 0 0 0

11
0 0 0 0 0 0 0 0 0 1 0 0 124

Graph representation: adjacency matrix

two entries

for each edge

87

109

1211

0

6

4

21

5

3

Maintain vertex-indexed array of lists.

Q. How long to iterate over vertices adjacent to v ?

25

Graph representation: adjacency lists

87

109

1211

0

6

4

21

5

3

In practice. Use adjacency-lists representation.

・Algorithms based on iterating over vertices adjacent to v.

・Real-world graphs tend to be sparse.

26

Graph representations

huge number of vertices,

small average vertex degree

In practice. Use adjacency-lists representation.

・Algorithms based on iterating over vertices adjacent to v.

・Real-world graphs tend to be sparse.

27

Graph representations

representation space add edge

edge between

v and w?

iterate over vertices

adjacent to v?

list of edges E 1 E E

adjacency matrix V 2 1 * 1 V

adjacency lists E + V 1 degree(v) degree(v)

* disallows parallel edges

huge number of vertices,

small average vertex degree

28

Adjacency-list graph representation: Java implementation

public class Graph

{

private final int V;

private Bag<Integer>[] adj;

public Graph(int V)

{

this.V = V;

adj = (Bag<Integer>[]) new Bag[V];

for (int v = 0; v < V; v++)

adj[v] = new Bag<Integer>();

}

public void addEdge(int v, int w)

{

adj[v].add(w);

adj[w].add(v);

}

public Iterable<Integer> adj(int v)

{ return adj[v]; }

}

adjacency lists

(using Bag data type)

create empty graph

with V vertices, Initialize all lists to

empty

add edge v-w

(parallel edges and

self-loops allowed)

iterator for vertices adjacent to v

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ introduction

‣ graph API

‣ depth-first search

‣ breadth-first search

‣ connected components

‣ challenges

UNDIRECTED GRAPHS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

31

Maze exploration

Maze graph.

・Vertex = intersection.

・Edge = passage.

Goal. Explore every intersection in the maze.

intersection passage

Algorithm.

・Unroll a ball of string behind you.

・Mark each visited intersection and each visited passage.

・Retrace steps when no unvisited options.

32

Trémaux maze exploration

Goal. Systematically traverse a graph.

Idea. Mimic maze exploration.

Typical applications.

・Find all vertices connected to a given source vertex.

・Find a path between two vertices.

Design challenge. How to implement?

Depth-first search

Mark v as visited.

Recursively visit all unmarked

vertices w adjacent to v.

DFS (to visit a vertex v)

function-call stack acts as ball of string

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

Data structures.

・Boolean array marked[] to mark visited vertices.

・Integer array edgeTo[] to keep track of paths.

(edgeTo[w] == v) means that edge v-w taken to visit w for first time

・ Function-call stack for recursion.

Depth-first search: data structures

41

Depth-first search: Java implementation

public class DepthFirstPaths

{

private boolean[] marked;

private int[] edgeTo;

private int s;

public DepthFirstPaths(Graph G, int s)

{

...

dfs(G, s);

}

private void dfs(Graph G, int v)

{

marked[v] = true;

for (int w : G.adj(v))

if (!marked[w])

{

dfs(G, w);

edgeTo[w] = v;

}

}

}

marked[v] = true

if v connected to s

find vertices connected to s

recursive DFS does the work

edgeTo[v] = previous vertex

on path from s to v

initialize data structures

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

87

109

1211

0

6

4

21

5

3

Depth-first search demo

42

graph G

87

109

1211

0

6

4

21

5

3

87

109

1211

0

6

4

21

5

3

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

87

109

1211

0

6

4

21

5

3

Depth-first search demo

43

graph G

87

109

1211

0

6

4

21

5

3

87

109

1211

0

6

4

21

5

3

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

F

F

F

F

F

F

F

F

F

F

F

F

F

edgeTo[]

–

–

–

–

–

–

–

–

–

–

–

–

–

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

00 87

109

1211

6

4

21

5

3

Depth-first search demo

44

visit 0

87

109

1211

6

4

21

5

3

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

T

F

F

F

F

F

F

F

F

F

F

F

F

edgeTo[]

–

–

–

–

–

–

–

–

–

–

–

–

–

66

00

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

4

21

5

3

Depth-first search demo

45

visit 6

4

21

5

3

87

109

1211

87

109

1211

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

T

F

F

F

F

F

T

F

F

F

F

F

F

edgeTo[]

–

–

–

–

–

–

0

–

–

–

–

–

–

00

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

6

4

21

5

3

Depth-first search demo

46

visit 6

6

4

21

5

3

6

87

109

1211

87

109

1211

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

T

F

F

F

F

F

T

F

F

F

F

F

F

edgeTo[]

–

–

–

–

–

–

0

–

–

–

–

–

–

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

00

66

4

21

5

3

Depth-first search demo

47

visit 4

4

21

5

3 4

87

109

1211

87

109

1211

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

T

F

F

F

T

F

T

F

F

F

F

F

F

edgeTo[]

–

–

–

–

6

–

0

–

–

–

–

–

–

00

44

66

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

21

5

3

Depth-first search demo

48

visit 5

21

5

3

5

87

109

1211

87

109

1211

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

T

F

F

F

T

T

T

F

F

F

F

F

F

edgeTo[]

–

–

–

–

6

4

0

–

–

–

–

–

–

55

00

44

66

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

21

3

Depth-first search demo

49

visit 3

21

3

87

109

1211

87

109

1211

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

T

F

F

T

T

T

T

F

F

F

F

F

F

edgeTo[]

–

–

–

5

6

4

0

–

–

–

–

–

–

55

00

44

66

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

21

3

Depth-first search demo

50

visit 3

21

3

87

109

1211

87

109

1211

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

T

F

F

T

T

T

T

F

F

F

F

F

F

edgeTo[]

–

–

–

5

6

4

0

–

–

–

–

–

–

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

55

00

44

6621

3

Depth-first search demo

51

3 done

21

3

87

109

1211

87

109

1211

5

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

T

F

F

T

T

T

T

F

F

F

F

F

F

edgeTo[]

–

–

–

5

6

4

0

–

–

–

–

–

–

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

55

00

44

6621

3

Depth-first search demo

52

visit 5

21

87

109

1211

87

109

1211

5

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

T

F

F

T

T

T

T

F

F

F

F

F

F

edgeTo[]

–

–

–

5

6

4

0

–

–

–

–

–

–

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

55

00

44

6621

3

Depth-first search demo

53

visit 5

21

87

109

1211

87

109

1211

5

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

T

F

F

T

T

T

T

F

F

F

F

F

F

edgeTo[]

–

–

–

5

6

4

0

–

–

–

–

–

–

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

5

00

44

6621

3

Depth-first search demo

54

5 done

21

87

109

1211

87

109

1211

5

4

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

T

F

F

T

T

T

T

F

F

F

F

F

F

edgeTo[]

–

–

–

5

6

4

0

–

–

–

–

–

–

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

5

00

44

6621

3

Depth-first search demo

55

visit 4

21

87

109

1211

87

109

12114

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

T

F

F

T

T

T

T

F

F

F

F

F

F

edgeTo[]

–

–

–

5

6

4

0

–

–

–

–

–

–

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

5

00

44

6621

3

Depth-first search demo

56

visit 4

21

87

109

1211

87

109

12114

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

T

F

F

T

T

T

T

F

F

F

F

F

F

edgeTo[]

–

–

–

5

6

4

0

–

–

–

–

–

–

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

4

5

00

6621

3

Depth-first search demo

57

4 done

21

87

109

1211

87

109

12114

6

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

T

F

F

T

T

T

T

F

F

F

F

F

F

edgeTo[]

–

–

–

5

6

4

0

–

–

–

–

–

–

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

6

4

5

00

21

3

Depth-first search demo

58

6 done

21

87

109

1211

87

109

1211

0

6

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

T

F

F

T

T

T

T

F

F

F

F

F

F

edgeTo[]

–

–

–

5

6

4

0

–

–

–

–

–

–

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

4

5

00

621

3

Depth-first search demo

59

visit 0

21

87

109

1211

87

109

1211

0

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

T

F

F

T

T

T

T

F

F

F

F

F

F

edgeTo[]

–

–

–

5

6

4

0

–

–

–

–

–

–

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

4

5

00

621

3

Depth-first search demo

60

visit 2

21

87

109

1211

87

109

1211

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

T

F

T

T

T

T

T

F

F

F

F

F

F

edgeTo[]

–

–

0

5

6

4

0

–

–

–

–

–

–

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

4

5

00

621

3

Depth-first search demo

61

2 done

21

87

109

1211

87

109

1211

0

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

T

F

T

T

T

T

T

F

F

F

F

F

F

edgeTo[]

–

–

0

5

6

4

0

–

–

–

–

–

–

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

4

5

00

621

3

Depth-first search demo

62

visit 0

1

87

109

1211

87

109

1211

0

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

T

F

T

T

T

T

T

F

F

F

F

F

F

edgeTo[]

–

–

0

5

6

4

0

–

–

–

–

–

–

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

4

5

00

621

3

Depth-first search demo

63

visit 1

1

87

109

1211

87

109

1211

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

T

T

T

T

T

T

T

F

F

F

F

F

F

edgeTo[]

–

0

0

5

6

4

0

–

–

–

–

–

–

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

4

5

00

621

3

Depth-first search demo

64

1 done

1

87

109

1211

87

109

1211

0

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

T

T

T

T

T

T

T

F

F

F

F

F

F

edgeTo[]

–

0

0

5

6

4

0

–

–

–

–

–

–

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

00

4

5

621

3

Depth-first search demo

65

0 done

87

109

1211

87

109

1211

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

T

T

T

T

T

T

T

F

F

F

F

F

F

edgeTo[]

–

0

0

5

6

4

0

–

–

–

–

–

–

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

0

4

5

621

3

Depth-first search demo

66

vertices reachable from 0

87

109

1211

87

109

1211

0

1

2

3

4

5

6

7

8

9

10

11

12

v marked[]

T

T

T

T

T

T

T

F

F

F

F

F

F

edgeTo[]

–

0

0

5

6

4

0

–

–

–

–

–

–

Depth-first search: properties

Proposition. DFS marks all vertices connected to s in time proportional to

the sum of their degrees (plus time to initialize the marked[] array).

Pf. [correctness]

・If w marked, then w connected to s (why?)

・If w connected to s, then w marked.

(if w unmarked, then consider last edge

on a path from s to w that goes from a

marked vertex to an unmarked one).

Pf. [running time]

Each vertex connected to s is visited once.

67

Proposition. After DFS, can check if vertex v is connected to s in constant

time and can find v–s path (if one exists) in time proportional to its length.

Pf. edgeTo[] is parent-link representation of a tree rooted at vertex s.

68

Depth-first search: properties

public boolean hasPathTo(int v)

{ return marked[v]; }

public Iterable<Integer> pathTo(int v)

{

if (!hasPathTo(v)) return null;

Stack<Integer> path = new tack<Integer>();

for (int x = v; x != s; x = edgeTo[x])

path.push(x);

path.push(s);

return path;

}

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ introduction

‣ graph API

‣ depth-first search

‣ breadth-first search

‣ connected components

‣ challenges

UNDIRECTED GRAPHS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

78

Breadth-first search

Put s onto a FIFO queue, and mark s as visited.

Repeat until the queue is empty:

- remove the least recently added vertex v

- add each of v's unvisited neighbors to the queue,

and mark them as visited.

BFS (from source vertex s)

79

Breadth-first search: Java implementation

public class BreadthFirstPaths

{

private boolean[] marked;

private int[] edgeTo;

private int[] distTo;

…

private void bfs(Graph G, int s) {

Queue<Integer> q = new Queue<Integer>();

q.enqueue(s);

marked[s] = true;

distTo[s] = 0;

while (!q.isEmpty()) {

int v = q.dequeue();

for (int w : G.adj(v)) {

if (!marked[w]) {

q.enqueue(w);

marked[w] = true;

edgeTo[w] = v;

distTo[w] = distTo[v] + 1;

}

}

}

}

}

initialize FIFO queue of

vertices to explore

found new vertex w

via edge v-w

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

80

graph G

0

4

2

1

5

3

0

4

2

1

5

3

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

81

add 0 to queue

0

4

2

1

5

3

4

2

1

5

3

00

0

1

2

3

4

5

v edgeTo[]

–

–

–

–

–

–

queue distTo[]

0

–

–

–

–

–

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

82

0

4

2

1

5

3

0

4

2

1

5

3

dequeue 0

0

0

1

2

3

4

5

v edgeTo[]

–

–

–

–

–

–

distTo[]

0

–

–

–

–

–

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

83

0

4

2

1

5

3

0

4

2

1

5

3

dequeue 0

22

0

1

2

3

4

5

v edgeTo[]

–

–

–

–

–

–

distTo[]

0

–

–

–

–

–

0 1

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

84

0

4

2

1

5

3

0

4

2

1

5

3

2

dequeue 0

2

11

0

1

2

3

4

5

v edgeTo[]

–

–

0

–

–

–

distTo[]

0

–

1

–

–

–

0 1

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

85

dequeue 0

0

4

2

1

5

3

0

4

2

1

5

3

2

1

2

1

55

0

1

2

3

4

5

v edgeTo[]

–

0

0

–

–

–

distTo[]

0

1

1

–

–

–

0 1

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

86

0 done

0

4

2

1

5

3

4

2

1

5

3

2

1

2

1

5

5

0

0

1

2

3

4

5

v edgeTo[]

–

0

0

–

–

0

distTo[]

0

1

1

–

–

1

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

87

dequeue 2

0

4

2

1

5

3

4

2

1

5

3

2

1

5

1

5

0

1

2

3

4

5

v edgeTo[]

–

0

0

–

–

0

distTo[]

0

1

1

–

–

1

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

88

dequeue 2

0

4

2

1

5

3

4

2

1

5

3

1

5

1

5

0

1

2

3

4

5

v edgeTo[]

–

0

0

–

–

0

distTo[]

0

1

1

–

–

1

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

89

dequeue 2

0

4

2

1

5

3

4

2

1

5

3

1

5

1

5

0

1

2

3

4

5

v edgeTo[]

–

0

0

–

–

0

distTo[]

0

1

1

–

–

1

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

90

dequeue 2

0

4

2

1

5

3

4

2

1

5

3

1

5

1

5

33

0

1

2

3

4

5

v edgeTo[]

–

0

0

–

–

0

distTo[]

0

1

1

–

–

1

2 2

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

91

dequeue 2

0

4

2

1

5

3

4

2

1

5

3

1

5

1

5

3

3

44

0

1

2

3

4

5

v edgeTo[]

–

0

0

2

–

0

distTo[]

0

1

1

2

–

1

2 2

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

92

2 done

0

4

2

1

5

3

4

2

1

5

3

1

5

1

5

3

3

4

4

0

1

2

3

4

5

v edgeTo[]

–

0

0

2

2

0

distTo[]

0

1

1

2

2

1

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

93

dequeue 1

0

4

2

1

5

3

4

1

5

3

1

5

5

3

3

4

4

0

1

2

3

4

5

v edgeTo[]

–

0

0

2

2

0

distTo[]

0

1

1

2

2

1

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

94

dequeue 1

0

4

2

1

5

3

4

1

5

3

5

3

4

5

3

4

0

1

2

3

4

5

v edgeTo[]

–

0

0

2

2

0

distTo[]

0

1

1

2

2

1

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

95

dequeue 1

0

4

2

1

5

3

4

1

5

3

5

5

3

3

4

4

0

1

2

3

4

5

v edgeTo[]

–

0

0

2

2

0

distTo[]

0

1

1

2

2

1

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

96

1 done

0

4

2

1

5

3

4

1

5

3

5

5

3

3

4

4

0

1

2

3

4

5

v edgeTo[]

–

0

0

2

2

0

distTo[]

0

1

1

2

2

1

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

97

dequeue 5

0

4

2

1

5

3

45

3

5

3

3

4

4

0

1

2

3

4

5

v edgeTo[]

–

0

0

2

2

0

distTo[]

0

1

1

2

2

1

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

98

dequeue 5

0

4

2

1

5

3

45

33

3

4

4

0

1

2

3

4

5

v edgeTo[]

–

0

0

2

2

0

distTo[]

0

1

1

2

2

1

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

99

dequeue 5

0

4

2

1

5

3

45

33

3

4

4

0

1

2

3

4

5

v edgeTo[]

–

0

0

2

2

0

distTo[]

0

1

1

2

2

1

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

100

5 done

0

4

2

1

5

3

45

33

3

4

4

0

1

2

3

4

5

v edgeTo[]

–

0

0

2

2

0

distTo[]

0

1

1

2

2

1

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

101

dequeue 3

0

4

2

1

5

3

4

3

3

4

4

0

1

2

3

4

5

v edgeTo[]

–

0

0

2

2

0

distTo[]

0

1

1

2

2

1

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

102

dequeue 3

0

4

2

1

5

3

4

3

4

4

0

1

2

3

4

5

v edgeTo[]

–

0

0

2

2

0

distTo[]

0

1

1

2

2

1

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

103

dequeue 3

0

4

2

1

5

3

4

3

4

4

0

1

2

3

4

5

v edgeTo[]

–

0

0

2

2

0

distTo[]

0

1

1

2

2

1

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

104

dequeue 3

0

4

2

1

5

3

4

3

4

4

0

1

2

3

4

5

v edgeTo[]

–

0

0

2

2

0

distTo[]

0

1

1

2

2

1

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

33

Breadth-first search demo

105

3 done

0

4

2

1

5 44

4

0

1

2

3

4

5

v edgeTo[]

–

0

0

2

2

0

distTo[]

0

1

1

2

2

1

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

106

dequeue 4

0

4

2

1

5

3

4

4

0

1

2

3

4

5

v edgeTo[]

–

0

0

2

2

0

distTo[]

0

1

1

2

2

1

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

107

dequeue 4

0

4

2

1

5

3

4

0

1

2

3

4

5

v edgeTo[]

–

0

0

2

2

0

distTo[]

0

1

1

2

2

1

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

108

dequeue 4

0

4

2

1

5

3

4

0

1

2

3

4

5

v edgeTo[]

–

0

0

2

2

0

distTo[]

0

1

1

2

2

1

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

109

4 done

0

4

2

1

5

3

4

0

1

2

3

4

5

v edgeTo[]

–

0

0

2

2

0

distTo[]

0

1

1

2

2

1

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

110

done

0

4

2

1

5

3

0

1

2

3

4

5

v edgeTo[]

–

0

0

2

2

0

distTo[]

0

1

1

2

2

1

Q. In which order does BFS examine vertices?

A. Increasing distance (number of edges) from s.

Proposition. In any connected graph G, BFS computes shortest paths

from s to all other vertices in time proportional to E + V.

Breadth-first search properties

111

0

4

2

1

5

3

graph G

4

3

dist = 2dist = 1

2

1

5

0

dist = 0

s

queue always consists of ≥ 0 vertices of distance k from s,

followed by ≥ 0 vertices of distance k+1

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ introduction

‣ graph API

‣ depth-first search

‣ breadth-first search

‣ connected components

‣ challenges

UNDIRECTED GRAPHS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Def. Vertices v and w are connected if there is a path between them.

Goal. Preprocess graph to answer queries of the form is v connected to w?

in constant time.

119

Connectivity queries

public class CC

CC(Graph G) find connected components in G

boolean connected(int v, int w) are v and w connected?

int count() number of connected components

int id(int v)

component identifier for v

(between 0 and count() - 1)

The relation "is connected to" is an equivalence relation:

・Reflexive: v is connected to v.

・Symmetric: if v is connected to w, then w is connected to v.

・Transitive: if v connected to w and w connected to x, then v connected to x.

Def. A connected component is a maximal set of connected vertices.

Remark. Given connected components, can answer queries in constant time.
120

Connected components

87

109

1211

0

6

4

21

5

3

v id[]

0 0

1 0

2 0

3 0

4 0

5 0

6 0

7 1

8 1

9 2

10 2

11 2

12 2

3 connected components

123

public class CC

{

private boolean[] marked;

private int[] id;

private int count;

public CC(Graph G)

{

marked = new boolean[G.V()];

id = new int[G.V()];

for (int v = 0; v < G.V(); v++)

{

if (!marked[v])

{

dfs(G, v);

count++;

}

}

}

public int count()

public int id(int v)

public boolean connected(int v, int w)

private void dfs(Graph G, int v)

}

Finding connected components with DFS

run DFS from one vertex in

each component

id[v] = id of component containing v

number of components

see next slide

124

Finding connected components with DFS (continued)

public int count()

{ return count; }

public int id(int v)

{ return id[v]; }

public boolean connected(int v, int w)

{ return id[v] == id[w]; }

private void dfs(Graph G, int v)

{

marked[v] = true;

id[v] = count;

for (int w : G.adj(v))

if (!marked[w])

dfs(G, w);

}

all vertices discovered in

same call of dfs have same id

number of components

id of component containing v

v and w connected iff same id

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

87

109

1211

0

6

4

21

5

3

Connected components demo

125

graph G

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

F

F

F

F

F

F

F

F

F

F

F

F

F

87

109

1211

0

6

4

21

5

3

87

109

1211

0

6

4

21

5

3

–

–

–

–

–

–

–

–

–

–

–

–

–

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

00 87

109

1211

6

4

21

5

3

Connected components demo

126

visit 0

87

109

1211

6

4

21

5

3

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

F

F

F

F

F

F

F

F

F

F

id[]

0

–

–

–

–

–

–

–

–

–

–

–

–

0

–

–

–

–

–

0

–

–

–

–

–

–

66

00

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

4

21

5

3

Connected components demo

127

visit 6

4

21

5

3

87

109

1211

87

109

1211

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

F

F

F

T

F

F

F

F

F

F

id[]

00

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

6

4

21

5

3

Connected components demo

128

visit 6

6

4

21

5

3

6

87

109

1211

87

109

1211

0

–

–

–

–

–

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

F

F

F

T

F

F

F

F

F

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

00

66

4

21

5

3

Connected components demo

129

visit 4

4

21

5

3 4

87

109

1211

87

109

1211

0

–

–

–

0

–

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

F

T

F

T

F

F

F

F

F

F

id[]

00

44

66

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

21

5

3

Connected components demo

130

visit 5

21

5

3

5

87

109

1211

87

109

1211

0

–

–

–

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

F

T

T

T

F

F

F

F

F

F

id[]

55

00

44

66

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

21

3

Connected components demo

131

visit 3

21

3

87

109

1211

87

109

1211

0

–

–

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

T

T

T

T

F

F

F

F

F

F

id[]

55

00

44

66

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

21

3

Connected components demo

132

visit 3

21

3

87

109

1211

87

109

1211

0

–

–

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

T

T

T

T

F

F

F

F

F

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

55

00

44

6621

3

Connected components demo

133

3 done

21

3

87

109

1211

87

109

1211

5

0

–

–

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

T

T

T

T

F

F

F

F

F

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

55

00

44

6621

3

Connected components demo

134

visit 5

21

87

109

1211

87

109

1211

5

0

–

–

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

T

T

T

T

F

F

F

F

F

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

55

00

44

6621

3

Connected components demo

135

visit 5

21

87

109

1211

87

109

1211

5

0

–

–

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

T

T

T

T

F

F

F

F

F

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

5

00

44

6621

3

Connected components demo

136

5 done

21

87

109

1211

87

109

1211

5

4

0

–

–

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

T

T

T

T

F

F

F

F

F

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

5

00

44

6621

3

Connected components demo

137

visit 4

21

87

109

1211

87

109

12114

0

–

–

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

T

T

T

T

F

F

F

F

F

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

5

00

44

6621

3

Connected components demo

138

visit 4

21

87

109

1211

87

109

12114

0

–

–

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

T

T

T

T

F

F

F

F

F

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

4

5

00

6621

3

Connected components demo

139

4 done

21

87

109

1211

87

109

12114

6

0

–

–

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

T

T

T

T

F

F

F

F

F

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

6

4

5

00

21

3

Connected components demo

140

6 done

21

87

109

1211

87

109

1211

0

6

0

–

–

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

T

T

T

T

F

F

F

F

F

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

4

5

00

621

3

Connected components demo

141

visit 0

21

87

109

1211

87

109

1211

0

0

–

–

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

T

T

T

T

F

F

F

F

F

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

4

5

00

621

3

Connected components demo

142

visit 2

21

87

109

1211

87

109

1211

0

–

0

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

T

T

T

T

T

F

F

F

F

F

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

4

5

00

621

3

Connected components demo

143

2 done

21

87

109

1211

87

109

1211

0

0

–

0

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

T

T

T

T

T

F

F

F

F

F

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

4

5

00

621

3

Connected components demo

144

visit 0

1

87

109

1211

87

109

1211

0

0

–

0

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

T

T

T

T

T

F

F

F

F

F

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

4

5

00

621

3

Connected components demo

145

visit 1

1

87

109

1211

87

109

1211

0

0

0

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

F

F

F

F

F

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

4

5

00

621

3

Connected components demo

146

1 done

1

87

109

1211

87

109

1211

0

0

0

0

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

F

F

F

F

F

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

00

4

5

621

3

Connected components demo

147

0 done

87

109

1211

87

109

1211

0

0

0

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

F

F

F

F

F

F

id[]

T

T

T

T

T

T

T

F

F

F

F

F

F

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

Connected components demo

148

connected component: 0 1 2 3 4 5 6

87

109

1211

87

109

1211

connected

component

0

4

5

621

3

0

0

0

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

0

4

5

621

3

Connected components demo

149

check 1 2 3 4 5 6

87

109

1211

87

109

1211

0

0

0

0

0

0

0

–

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

F

F

F

F

F

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

0

4

5

621

3

Connected components demo

150

visit 7

87

109

1211

87

109

1211

0

0

0

0

0

0

0

1

–

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

F

F

F

F

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

0

4

5

621

3

Connected components demo

151

visit 8

87

109

1211

87

109

1211

0

0

0

0

0

0

0

1

1

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

F

F

F

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

0

4

5

621

3

Connected components demo

152

8 done

87

109

1211

7

109

1211

87

0

0

0

0

0

0

0

1

1

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

F

F

F

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

70

4

5

621

3

Connected components demo

153

7 done

8

109

1211

109

1211

7

0

0

0

0

0

0

0

1

1

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

F

F

F

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

70

4

5

621

3

Connected components demo

154

connected component: 7 8

8

109

1211

109

1211

7 8

0

0

0

0

0

0

0

1

1

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

F

F

F

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

70

4

5

621

3

Connected components demo

155

check 8

8

109

1211

109

1211

0

0

0

0

0

0

0

1

1

–

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

F

F

F

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

70

4

5

621

3

Connected components demo

156

visit 9

8

109

1211

109

1211

0

0

0

0

0

0

0

1

1

2

–

–

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

F

F

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

70

4

5

621

3

Connected components demo

157

visit 11

8

109

1211

109

1211

0

0

0

0

0

0

0

1

1

2

–

2

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

F

T

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

70

4

5

621

3

Connected components demo

158

visit 11

8

109

1211

109

1211

0

0

0

0

0

0

0

1

1

2

–

2

–

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

F

T

F

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

70

4

5

621

3

Connected components demo

159

visit 12

8

109

1211

109

1211

0

0

0

0

0

0

0

1

1

2

–

2

2

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

F

T

T

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

70

4

5

621

3

Connected components demo

160

visit 12

8

109

1211

109

1211

0

0

0

0

0

0

0

1

1

2

–

2

2

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

F

T

T

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

70

4

5

621

3

Connected components demo

161

12 done

8

109

1211

109

11 1211

0

0

0

0

0

0

0

1

1

2

–

2

2

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

F

T

T

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

11

70

4

5

621

3

Connected components demo

162

11 done

8

109

12

109

11

9

0

0

0

0

0

0

0

1

1

2

–

2

2

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

F

T

T

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

11

70

4

5

621

3

Connected components demo

163

visit 9

8

109

12

1099

0

0

0

0

0

0

0

1

1

2

–

2

2

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

F

T

T

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

11

70

4

5

621

3

Connected components demo

164

visit 10

8

109

12

109

0

0

0

0

0

0

0

1

1

2

2

2

2

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

T

T

T

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

11

70

4

5

621

3

Connected components demo

165

10 done

8

109

12

9 109

0

0

0

0

0

0

0

1

1

2

2

2

2

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

T

T

T

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

9

11

70

4

5

621

3

Connected components demo

166

9 done

8

10

12

9

0

0

0

0

0

0

0

1

1

2

2

2

2

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

T

T

T

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

70

4

5

621

3

Connected components demo

167

connected component: 9 10 11 12

8

9

11

10

12

0

0

0

0

0

0

0

1

1

2

2

2

2

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

T

T

T

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

70

4

5

621

3

Connected components demo

168

check 10 11 12

8

11 12

109

0

0

0

0

0

0

0

1

1

2

2

2

2

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

T

T

T

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

70

4

5

621

3

Connected components demo

169

done

8

11 12

109

0

0

0

0

0

0

0

1

1

2

2

2

2

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

T

T

T

T

T

T

T

T

T

T

T

T

id[]

http:/ /algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

http:/ /algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

DIRECTED GRAPHS

Modified by: Dr. Fahed Jubair and Dr. Ramzi Saifan

Computer Engineering Department

University of Jordan

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ introduction

‣ digraph API

‣ digraph search

‣ topological sort

‣ strong components (Bonus)

DIRECTED GRAPHS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Digraph. Set of vertices connected pairwise by directed edges.

3

Directed graphs

1

4

9

2

5

3

0

1211

10

1

4

9

2

5

3

0

1211

10

8 76

outdegree = 4

indegree = 2

directed path

from 0 to 2

directed cycle

11

Digraph applications

digraph vertex directed edge

transportation street intersection one-way street

web web page hyperlink

food web species predator-prey relationship

WordNet synset hypernym

scheduling task precedence constraint

financial bank transaction

cell phone person placed call

infectious disease person infection

game board position legal move

citation journal article citation

object graph object pointer

inheritance hierarchy class inherits from

control flow code block jump

12

Some digraph problems

problem description

s→t path Is there a path from s to t ?

shortest s→t path What is the shortest path from s to t ?

directed cycle Is there a directed cycle in the graph ?

topological sort Can the digraph be drawn so that all edges point upwards?

strong connectivity Is there a directed path between all pairs of vertices ?

transitive closure For which vertices v and w is there a directed path from v to w ?

PageRank What is the importance of a web page ?

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ introduction

‣ digraph API

‣ digraph search

‣ topological sort

‣ strong components (Bonus)

DIRECTED GRAPHS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Almost identical to Graph API.

15

Digraph API

public class Digraph

Digraph(int V) create an empty digraph with V vertices

Digraph(In in) create a digraph from input stream

void addEdge(int v, int w) add a directed edge v→w

Iterable<Integer> adj(int v) vertices pointing from v

int V() number of vertices

int E() number of edges

Digraph reverse() reverse of this digraph

String toString() string representation

16

Digraph API

In in = new In(args[0]);

Digraph G = new Digraph(in);

for (int v = 0; v < G.V(); v++)

for (int w : G.adj(v))

StdOut.println(v + "->" + w);

% java Digraph tinyDG.txt

0->5

0->1

2->0

2->3

3->5

3->2

4->3

4->2

5->4

⋮

11->4

11->12

12->9

read digraph from

input stream

print out each

edge (once)

⋮

Maintain vertex-indexed array of lists.

19

Digraph representation: adjacency lists

In practice. Use adjacency-lists representation.

・Algorithms based on iterating over vertices pointing from v.

・Real-world digraphs tend to be sparse.

20

Digraph representations

representation space

insert edge from

v to w

edge from

v to w?

iterate over vertices

pointing from v?

list of edges E 1 E E

adjacency matrix V 2 1† 1 V

adjacency lists E + V 1 outdegree(v) outdegree(v)

huge number of vertices,

small average vertex degree

†
disallows parallel edges

21

Adjacency-lists graph representation (review): Java implementation

public class Graph

{

private final int V;

private final Bag<Integer>[] adj;

public Graph(int V)

{

this.V = V;

adj = (Bag<Integer>[]) new Bag[V];

for (int v = 0; v < V; v++)

adj[v] = new Bag<Integer>();

}

public void addEdge(int v, int w)

{

adj[v].add(w);

adj[w].add(v);

}

public Iterable<Integer> adj(int v)

{ return adj[v]; }

}

adjacency lists

create empty graph

with V vertices

iterator for vertices

adjacent to v

add edge v–w

22

Adjacency-lists digraph representation: Java implementation

public class Digraph

{

private final int V;

private final Bag<Integer>[] adj;

public Digraph(int V)

{

this.V = V;

adj = (Bag<Integer>[]) new Bag[V];

for (int v = 0; v < V; v++)

adj[v] = new Bag<Integer>();

}

public void addEdge(int v, int w)

{

adj[v].add(w);

}

public Iterable<Integer> adj(int v)

{ return adj[v]; }

}

adjacency lists

create empty digraph

with V vertices

add edge vw

iterator for vertices

pointing from v

http:/ /algs4.cs.princeton.eduhttp:/ /algs4.cs.princeton.edu

‣ introduction

‣ digraph API

‣ digraph search

‣ topological sort

‣ strong components (Bonus)

DIRECTED GRAPHS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

25

Reachability

Problem. Find all vertices reachable from s along a directed path.

s

Same method as for undirected graphs.

・Every undirected graph is a digraph (with edges in both directions).

・DFS is a digraph algorithm.

26

Depth-first search in digraphs

Mark v as visited.

Recursively visit all unmarked

vertices w pointing from v.

DFS (to visit a vertex v)

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Depth-first search demo

27

a directed graph

42

23

32

60

01

20

1112

129

910

911

89

1012

114

43

35

68

86

54

05

64

69

1

4

9

2

5

3

0

1211

10

8 76

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Directed depth-first search demo

28

a directed graph

1

4

9

2

5

3

0

1211

10

8 76
0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

F

F

F

F

F

F

F

F

F

F

F

F

F

–

–

–

–

–

–

–

–

–

–

–

–

–

edgeTo[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Directed depth-first search demo

29

visit 0: check 5 and check 1

1

4

9

2

5

3

0

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

marked[]v

T

F

F

F

F

F

F

F

F

F

F

F

F

8 76
–

–

–

–

–

–

–

–

–

–

–

–

–

edgeTo[]

T

F

F

F

F

T

F

F

F

F

F

F

F

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Directed depth-first search demo

30

visit 5: check 4

1

4

9

2

5

3

0

1211

10

8 76
0

1

2

3

4

5

6

7

8

9

10

11

12

–

–

–

–

–

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

T

F

F

F

T

T

F

F

F

F

F

F

F

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Directed depth-first search demo

31

visit 4: check 3 and check 2

1

4

9

2

5

3

0

1211

10

8 76
0

1

2

3

4

5

6

7

8

9

10

11

12

–

–

–

–

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Directed depth-first search demo

32

visit 3: check 5 and check 2

1

4

9

2

5

3

0

1211

10

8 76
T

F

F

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

–

–

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Directed depth-first search demo

33

visit 3: check 5 and check 2

1

4

9

2

5

3

0

1211

10

8 76
T

F

F

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

–

–

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Directed depth-first search demo

34

visit 2: check 0 and check 3

1

4

9

2

5

3

0

1211

10

8 76
T

F

T

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

–

3

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Directed depth-first search demo

35

1

4

9

2

5

3

0

1211

10

8 76
T

F

T

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

–

3

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

visit 2: check 0 and check 3

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices pointing from v.

21

4

9

5

3

0

1211

10

Directed depth-first search demo

36

done 2

1

4

9

5

3

0

1211

10

8 76

3

2

T

F

T

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

–

3

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices pointing from v.

3

1

4

9

2

5

0

1211

10

Directed depth-first search demo

37

done 3

1

4

9

5

0

1211

10

8 76

4

3

T

F

T

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

–

3

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Directed depth-first search demo

38

visit 4: check 3 and check 2

1

4

9

5

0

1211

10

8 76
T

F

T

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

–

3

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices pointing from v.

4

1

9

2

5

3

0

1211

10

Directed depth-first search demo

39

done 4

1

9

5

0

1211

10

8 76

5

4

T

F

T

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

–

3

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices pointing from v.

5

1

4

9

2

3

0

1211

10

Directed depth-first search demo

40

done 5

1

9

0

1211

10

8 76

5

0

T

F

T

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

–

3

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Directed depth-first search demo

41

visit 0: check 5 and check 1

1

9

0

1211

10

8 76
T

F

T

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

–

3

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Directed depth-first search demo

42

visit 1

1

9

0

1211

10

8 76
T

T

T

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

0

3

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

Directed depth-first search demo

43

done 1

9

0

1211

10

8 76

1

0

T

T

T

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

0

3

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

8 76

Directed depth-first search demo

44

done 0

9

0

1211

10

T

T

T

T

T

T

F

F

F

F

F

F

F

0

1

2

3

4

5

6

7

8

9

10

11

12

–

0

3

4

5

0

–

–

–

–

–

–

–

marked[]v edgeTo[]

T

T

T

T

T

T

F

F

F

F

F

F

F

marked[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices pointing from v.

1

4

9

2

5

3

0

1211

10

8 76

Directed depth-first search demo

45

done

9

1211

10

0

1

2

3

4

5

6

7

8

9

10

11

12

–

0

3

4

5

0

–

–

–

–

–

–

–

v edgeTo[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices pointing from v.

T

T

T

T

T

T

F

F

F

F

F

F

F

marked[]

1

9

2

5

3

0

1211

10

8 76

Depth-first search demo

46

reachable from 0

reachable

from vertex 0

0

1

2

3

4

5

6

7

8

9

10

11

12

–

0

3

4

5

0

–

–

–

–

–

–

–

v edgeTo[]

4

Recall code for undirected graphs.

public class DepthFirstSearch

{

private boolean[] marked;

public DepthFirstSearch(Graph G, int s)

{

marked = new boolean[G.V()];

dfs(G, s);

}

private void dfs(Graph G, int v)

{

marked[v] = true;

for (int w : G.adj(v))

if (!marked[w]) dfs(G, w);

}

public boolean visited(int v)

{ return marked[v]; }

}

47

Depth-first search (in undirected graphs)

true if connected to s

constructor marks

vertices connected to s

recursive DFS does the work

client can ask whether any

vertex is connected to s

Code for directed graphs identical to undirected one.

[substitute Digraph for Graph]

public class DirectedDFS

{

private boolean[] marked;

public DirectedDFS(Digraph G, int s)

{

marked = new boolean[G.V()];

dfs(G, s);

}

private void dfs(Digraph G, int v)

{

marked[v] = true;

for (int w : G.adj(v))

if (!marked[w]) dfs(G, w);

}

public boolean visited(int v)

{ return marked[v]; }

} 48

Depth-first search (in directed graphs)

true if path from s

constructor marks

vertices reachable from s

recursive DFS does the work

client can ask whether any

vertex is reachable from s

Every data structure is a digraph.

・Vertex = object.

・Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program

(starting at a root and following a chain of pointers).

50

Reachability application: mark-sweep garbage collector

ro
o

ts

51

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]

・Mark: mark all reachable objects.

・Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).

ro
o

ts

Same method as for undirected graphs.

・Every undirected graph is a digraph (with edges in both directions).

・BFS is a digraph algorithm.

Proposition. BFS computes shortest paths (fewest number of edges)

from s to all other vertices in a digraph in time proportional to E + V.

53

Breadth-first search in digraphs

Put s onto a FIFO queue, and mark s as visited.

Repeat until the queue is empty:

- remove the least recently added vertex v

- for each unmarked vertex pointing from v:

add to queue and mark as visited.

BFS (from source vertex s)

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

54

graph G

0

4

2

1

5

3

0

4

2

1

5

3

6

8

5 0

2 4

3 2

1 2

0 1

4 3

3 5

0 2

tinyDG2.txt

V

E

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

add 0 to queue

0

4

2

1

5

3

4

2

1

5

3

00

0

1

2

3

4

5

v edgeTo[]

–

–

–

–

–

–

distTo[]

0

–

–

–

–

–

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

0

4

2

1

5

3

0

4

2

1

5

3

dequeue 0

0

0

1

2

3

4

5

–

–

–

–

–

–

0

–

–

–

–

–

v edgeTo[] distTo[]queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

0

4

2

1

5

3

0

4

2

1

5

3

dequeue 0: check 2 and check 1

22

0

1

2

3

4

5

–

–

–

–

–

–

queue v edgeTo[] distTo[]

0

–

–

–

–

–

0 1

dequeue 0

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

0

4

2

1

5

3

0

4

2

1

5

3

2

2

11

0

1

2

3

4

5

v edgeTo[]

–

–

0

–

–

–

distTo[]

0

–

1

–

–

–

0 1

queue

dequeue 0: check 2 and check 1

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

0 done

0

4

2

1

5

3

4

2

1

5

3

2

1

2

1

0

0

1

2

3

4

5

v edgeTo[]

–

0

0

–

–

–

distTo[]

0

1

1

–

–

–

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

dequeue 2

0

4

2

1

5

3

4

2

1

5

3

2

1

1

0

1

2

3

4

5

v edgeTo[]

–

0

0

–

–

–

distTo[]

0

1

1

–

–

–

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

–

0

0

–

–

–

0

1

1

–

–

–

Directed breadth-first search demo

dequeue 2: check 4

0

4

2

1

5

3

4

2

1

5

3

1

1

44

0

1

2

3

4

5

v edgeTo[] distTo[]

2 2

queue

dequeue 2

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

2 done

0

4

2

1

5

3

4

2

1

5

3

1

1

4

4

0

1

2

3

4

5

v edgeTo[]

–

0

0

–

2

–

distTo[]

0

1

1

–

2

–

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

dequeue 1

0

4

2

1

5

3

4

1

5

3

1

4

0

1

2

3

4

5

v edgeTo[]

–

0

0

–

2

–

distTo[]

0

1

1

–

2

–

4

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

dequeue 1; check 2

0

4

2

1

5

3

4

1

5

3

4

4

0

1

2

3

4

5

v edgeTo[] distTo[]

–

0

0

–

2

–

0

1

1

–

2

–

queue

dequeue 1

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

1 done

0

4

2

1

5

3

4

1

5

3

4

4

0

1

2

3

4

5

v edgeTo[] distTo[]

–

0

0

–

2

–

0

1

1

–

2

–

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

dequeue 4

0

4

2

1

4

4

0

1

2

3

4

5

v edgeTo[] distTo[]

–

0

0

–

2

–

0

1

1

–

2

–
5

3

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

dequeue 4: check 3

0

4

2

1

4

0

1

2

3

4

5

v edgeTo[] distTo[]

–

0

0

–

2

–

0

1

1

–

2

–

3

5

3333

4 3

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

4 done

0

4

2

1

5 4

0

1

2

3

4

5

v edgeTo[]

–

0

0

4

2

–

distTo[]

0

1

1

3

2

–
5

333

3

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

dequeue 3

0

4

2

1

33

0

1

2

3

4

5

v edgeTo[] distTo[]

5

–

0

0

4

2

–

0

1

1

3

2

–

3

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

dequeue 3: check 5 and check 2

0

4

2

1

33

0

1

2

3

4

5

v edgeTo[] distTo[]

–

0

0

4

2

–

0

1

1

3

2

–
5555

3 4

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

0

4

2

1

5

33

0

1

2

3

4

5

v edgeTo[] distTo[]

–

0

0

4

2

3

0

1

1

3

2

4

5

queue

dequeue 3: check 5 and check 2

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

33

Directed breadth-first search demo

3 done

0

4

2

1

5

0

1

2

3

4

5

v edgeTo[] distTo[]

5

–

0

0

4

2

3

0

1

1

3

2

4

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

dequeue 5

0

4

2

1

5

3

5

5

0

1

2

3

4

5

v edgeTo[] distTo[]

–

0

0

4

2

3

0

1

1

3

2

4

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

dequeue 5: check 0

0

4

2

1

5

3

5

0

1

2

3

4

5

v edgeTo[] distTo[]

–

0

0

4

2

3

0

1

1

3

2

4

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

5 done

55

0

1

2

3

4

5

v edgeTo[] distTo[]
0

4

2

1

3

–

0

0

4

2

3

0

1

1

3

2

4

queue

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

76

done

0

4

2

1

5

3

0

1

2

3

4

5

v edgeTo[] distTo[]

–

0

0

4

2

3

0

1

1

3

2

4

