Algorithms

Analysis of Algorithms

Modified by: Dr. Fahed Jubair and Dr. Ramzi Saifan
Computer Engineering Department
University of Jordan

ANALYSIS OF ALGORITHMS

- introduction
mathempatical models

Robert Sedgewick | Kevin Wayne

Reasons to analyze algorithms

Predict performance.

Compare algorithms.

Provide guarantees.

Primary practical reason: avoid performance bugs.
client gets poor performance because programmer did not understand performance characteristics

The challenge

Q. Will my program be able to solve a large practical input?

Why is my program so slow?
Why does it run out of memory ?

Scientific method applied to analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.

- Observe some feature of the natural world.
" Hypothesize a model that is consistent with the observations.
" Predict events using the hypothesis.
- Verify the predictions by making further observations.
" Validate by repeating until the hypothesis and observations agree.

Feature of the natural world. Computer itself.

Example: 3-Sum

3-Sum. Given N distinct integers, how many triples sum to exactly zero?

```
% more 8ints.txt
8
30-40 -20 -10 40 0 10 5
% java ThreeSum 8ints.txt
4
```

	$a[i]$	$a[j]$	$a[k]$	sum
	30	-40	10	0
1	30	-20	-10	0
2	-40	40	0	0
3	-10	0	10	0

4

Context. Deeply related to problems in computational geometry.

3-Sum: brute-force algorithm

```
public class ThreeSum
{
    public static int count(int[] a)
    {
        int N = a.length;
        int count = 0;
        for (int i = 0; i < N; i++)
        for (int j = i+1; j < N; j++)
                for (int k = j+1; k < N; k++)
                if (a[i] + a[j] + a[k] == 0)
                count++;
        return count;
    }
    public static void main(String[] args)
    {
        In in = new In(args[0]);
        int[] a = in.readAllInts();
        StdOut.println(count(a));
    }
}
```


Measuring the running time

```
    public class Stopwatch
        (part of stdlib.jar)
                            Stopwatch() create a new stopwatch
doub7e elapsedTime() time since creation (in seconds)
public static void main(String[] args)
{
    In in = new In(args[0]);
    int[] a = in.readA11Ints();
    Stopwatch stopwatch = new Stopwatch();
    StdOut.print7n(ThreeSum.count(a));
    doub7e time = stopwatch.elapsedTime();
    StdOut.println("elapsed time " + time);
}
```


Empirical analysis

Run the program for various input sizes and measure running time.

N	time (seconds) ${ }^{\dagger}$
250	0
500	0
1,000	0.1
2,000	0.8
4,000	6.4
8,000	51.1
16,000	$?$

Data analysis

Standard plot. Plot running time $T(N)$ vs. input size N.

Data analysis

Log-log plot. Plot running time $T(N)$ vs. input size N using log-log scale.

Regression. Fit straight line through data points: $a N^{b}$.
Hypothesis. The running time is about $1.006 \times 10^{-10} \times N^{2.999}$ seconds.

Prediction and validation

Hypothesis. The running time is about $1.006 \times 10^{-10} \times N^{2.999}$ seconds.

Predictions.

- 51.0 seconds for $N=8,000$.
- 408.1 seconds for $N=16,000$.

Observations.

N	time (seconds) \dagger
8,000	51.1
8,000	51
8,000	51.1
16,000	410.8

validates hypothesis!

Experimental algorithmics

System independent effects.

- Algorithm.
- Input data.

determines exponent

in power law

System dependent effects.

- Hardware: CPU, memory, cache, ...
- Software: compiler, interpreter, garbage collector, ...
- System: operating system, network, other apps, ...

ANALYSIS OF ALGORITHMS

Algorithms

Robert Sedgewick । Kevin Wayne

Mathematical models for running time
Total running time: sum of cost \times frequency for all operations.

- Need to analyze program to determine set of operations.
- Cost depends on machine, compiler.
- Frequency depends on algorithm, input data.

In principle, accurate mathematical models are available.

Cost of basic operations

Challenge. How to estimate constants.

operation	example	nanoseconds †
integer add	$a+b$	2.1
integer multiply	$a * b$	2.4
integer divide	a / b	5.4
floating-point add	$a+b$	4.6
floating-point multiply	$a * b$	4.2
floating-point divide	a / b	13.5
sine	Math.sin(theta)	91.3
arctangent	Math. $\operatorname{atan} 2(y, x)$	129
\cdots	\ldots	\ldots

Cost of basic operations

Observation. Most primitive operations take constant time.

operation	example	nanoseconds \dagger
variable declaration	int a	c_{1}
assignment statement	$\mathrm{a}=\mathrm{b}$	c_{2}
integer compare	$\mathrm{a}<\mathrm{b}$	c_{3}
array element access	$\mathrm{a}[\mathrm{i}]$	c_{4}
array length	a. length	c_{5}
1D array allocation	new $\mathrm{int}[\mathrm{N}]$	$c_{6} N$
2D array allocation	new $\mathrm{int}[\mathrm{N}][\mathrm{N}]$	$c_{7} N^{2}$

Caveat. Non-primitive operations often take more than constant time.

Example: 1-Sum

Q. How many instructions as a function of input size N ?

Example: 2-Sum

Q. How many instructions as a function of input size N ?

```
int count = 0;
for (int i = 0; i < N; i++)
    for (int j = i+1; j < N; j++)
        if (a[i] +a[j] =- 0)
            count++;
                0+1+2+\ldots+(N-1)=\frac{1}{2}N(N-1)
        operation
        frequency
                                    =( ( N
variable declaration
\[
N+2
\]
assignment statement
\[
N+2
\]
less than compare equal to compare array access increment
\[
\begin{gathered}
1 / 2(N+1)(N+2) \\
1 / 2 N(N-1) \\
N(N-1) \\
1 / 2 N(N-1) \text { to } N(N-1)
\end{gathered}
\]

\section*{Simplification 1: cost model}

Cost model. Use some basic operation as a proxy for running time.


\section*{Simplification 2: tilde notation}
- Estimate running time (or memory) as a function of input size \(N\).
- Ignore lower order terms.
- when \(N\) is large, terms are negligible
- when \(N\) is small, we don't care
\begin{tabular}{lll} 
Ex 1. & \(1 / 6 N^{3}+20 N+16\) & \(\sim 1 / 6 N^{3}\) \\
Ex 2. & \(1 / 6 N^{3}+100 N^{4 / 3}+56\) & \(\sim 1 / 6 N^{3}\) \\
Ex 3. & \(1 / 6 N^{3}-1 / 2 N^{2}+1 / 3 N\) & \(\sim 1 / 6 N^{3}\)
\end{tabular}
discard lower-order terms
(e.g., \(N=1000\) : 166.67 million vs. 166.17 million)


Leading-term approximation

\section*{Simplification 2: tilde notation}
- Estimate running time (or memory) as a function of input size \(N\).
- Ignore lower order terms.
- when \(N\) is large, terms are negligible
- when \(N\) is small, we don't care
\begin{tabular}{|c|c|c|}
\hline operation & frequency & tilde notation \\
\hline variable declaration & \(N+2\) & \(\sim N\) \\
\hline assignment statement & \(N+2\) & \(\sim N\) \\
\hline less than compare & \(1 / 2(N+1)(N+2)\) & \(\sim 1 / 2 N^{2}\) \\
\hline equal to compare & \(1 / 2 N(N-1)\) & \(\sim 1 / 2 N^{2}\) \\
\hline array access & \(N(N-1)\) & \(\sim N^{2}\) \\
\hline increment & \(1 / 2 N(N-1)\) to \(N(N-1)\) & \(\sim 1 / 2 N^{2}\) to \(\sim N^{2}\) \\
\hline
\end{tabular}

\section*{Example: 2-Sum}
Q. Approximately how many array accesses as a function of input size \(N\) ?
```

int count = 0;
for (int i = 0; i < N; i++)
for (int j = i+1; j < N; j++)
if (a[i] +a[j] =- 0)
count++;
0+1+2+···+(N-1)=\frac{1}{2}N(N-1)
=((N

```
A. \(\sim N^{2}\) array accesses.

Bottom line. Use cost model and tilde notation to simplify counts.

\section*{Example: 3-Sum}
Q. Approximately how many array accesses as a function of input size \(N\) ?
```

int count = 0;
for (int i = 0; i < N; i++)
for (int j = i+1; j < N; j++)
for (int k = j+1; k < N; k++) \longleftarrow
A. $\sim 1 / 2 N^{3}$ array accesses.

$$
\begin{aligned}
\binom{N}{3} & =\frac{N(N-1)(N-2)}{3!} \\
& \sim \frac{1}{6} N^{3}
\end{aligned}
$$

```

Bottom line. Use cost model and tilde notation to simplify counts.

Mathematical models for running time
In principle, accurate mathematical models are available.

In practice,
- Formulas can be complicated.
- Advanced mathematics might be required.
- Exact models best left for experts.


Bottom line. We use approximate models in this course: \(T(N) \sim c N^{3}\).

\section*{ANALYSIS OF ALGORITHMS}

\section*{Algorithms}

Robert Sedgewick । Kevin Wayne
http://algs4.cs.princeton.edu

\section*{Common order-of-growth classifications}

Definition. If \(f(N) \sim c g(N)\) for some constant \(c>0\), then the order of growth of \(f(N)\) is \(g(N)\).
- Ignores leading coefficient.
- Ignores lower-order terms.

Ex. The order of growth of the running time of this code is \(N^{3}\).
```

int count = 0;
for (int i = 0; i < N; i++)
for (int j = i+1; j < N; j++)
for (int k = j+1; k < N; k++)
if (a[i] + a[j] + a[k] == 0)
count++;

```

Typical usage. With running times.

\section*{Common order-of-growth classifications}

Good news. The set of functions
\(1, \log N, N, N \log N, N^{2}, N^{3}\), and \(2^{N}\)
suffices to describe the order of growth of most common algorithms.


\section*{Common order-of-growth classifications}
\begin{tabular}{|c|c|c|c|c|c|}
\hline order of growth & name & typical code framework & description & example & \(T(2 N) / \mathrm{T}(N)\) \\
\hline 1 & constant & \(\mathrm{a}=\mathrm{b}+\mathrm{c} ;\) & statement & add two numbers & 1 \\
\hline \(\log N\) & logarithmic & \[
\begin{gathered}
\text { while }(N>1) \\
\{\quad N=N / 2 ; \ldots
\end{gathered}
\] & divide in half & binary search & \(\sim 1\) \\
\hline \(N\) & linear & \[
\begin{gathered}
\text { for (int } i=0 ; i<N ; i++) \\
\{\cdots
\end{gathered}
\] & loop & find the maximum & 2 \\
\hline \(N \log N\) & linearithmic & [see mergesort lecture] & divide and conquer & mergesort & \(\sim 2\) \\
\hline \(N^{2}\) & quadratic & ```
for (int i = 0; i < N; i++)
    for (int j = 0; j < N; j++)
        { ... }
``` & double loop & check all pairs & 4 \\
\hline \(N^{3}\) & cubic & ```
for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 for (int k = 0; k < N; k++)
 { ... }
``` & triple loop & check all triples & 8 \\
\hline \(2^{N}\) & exponential & [see combinatorial search lecture] & exhaustive search & check all subsets & \(T(N)\) \\
\hline
\end{tabular}

\section*{Practical implications of order-of-growth}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
growth \\
rate
\end{tabular}} & \multicolumn{4}{|c|}{problem size solvable in minutes} \\
\hline & 1970s & 1980s & 1990s & 2000s \\
\hline 1 & any & any & any & any \\
\hline \(\log N\) & any & any & any & any \\
\hline \(N\) & millions & tens of millions & hundreds of millions & billions \\
\hline \(N \log N\) & hundreds of thousands & millions & millions & hundreds of millions \\
\hline \(\mathrm{N}^{2}\) & hundreds & thousand & thousands & tens of thousands \\
\hline \(\mathrm{N}^{3}\) & hundred & hundreds & thousand & thousands \\
\hline \(2^{N}\) & 20 & 20s & 20s & 30 \\
\hline
\end{tabular}

Bottom line. Need linear or linearithmic alg to keep pace with Moore's law.

\section*{Binary search demo}

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.
- Too small, go left.
- Too big, go right.
- Equal, found.
successful search for 33
\begin{tabular}{ccccccccccccccc}
6 & 13 & 14 & 25 & 33 & 43 & 51 & 53 & 64 & 72 & 84 & 93 & 95 & 96 & 97 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\(\uparrow\) & & & & & & & & & & & & & & \(\uparrow\) \\
।0 & & & & & & & & & & & & & & \\
1.
\end{tabular}

\section*{Binary search demo}

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.
- Too small, go left.
- Too big, go right.
- Equal, found.
successful search for 33
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 6 & 13 & 14 & 25 & 33 & 43 & 51 & 53 & 64 & 72 & 84 & 93 & 95 & 96 & 97 \\
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\hline \(\uparrow\) & & & & & & & \[
\uparrow
\] & & & & & & & \(\uparrow\) \\
\hline Io & & & & & & & mid & & & & & & & hi \\
\hline
\end{tabular}

\section*{Binary search demo}

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.
- Too small, go left.
- Too big, go right.
- Equal, found.
successful search for 33
\begin{tabular}{cccccccccccccccc}
6 & 13 & 14 & 25 & 33 & 43 & 51 & 53 & 64 & 72 & 84 & 93 & 95 & 96 & 97 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\(\uparrow\) & & & \(\uparrow\) & & & \(\uparrow\) & & & & & & & & \\
lo & & & & mid & & & hi & & & & & & & & \\
& & & & & & & &
\end{tabular}

\section*{Binary search demo}

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.
- Too small, go left.
- Too big, go right.
- Equal, found.
successful search for 33

\section*{Binary search demo}

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.
- Too small, go left.
- Too big, go right.
- Equal, found.


Binary search: Java implementation

Trivial to implement?
- First binary search published in 1946.
- First bug-free one in 1962.
- Bug in Java's Arrays.binarySearch() discovered in 2006.
```

public static int binarySearch(int[] a, int key)
{
int lo = 0, hi = a.length-1;
while (lo <= hi)
{
int mid = 1o + (hi - 1o) / 2;
if (key < a[mid]) hi = mid - 1;
else if (key > a[mid]) lo = mid + 1;
else return mid;
}
return -1;
}

```

Invariant. If key appears in the array \(a[]\), then \(a[1 o] \leq\) key \(\leq a[h i]\).

\section*{Binary search: mathematical analysis}

Proposition. Binary search uses at most \(1+\log N\) key compares to search in a sorted array of size \(N\).

Def. \(T(N)=\) \# key compares to binary search a sorted subarray of size \(\leq N\).

Binary search recurrence. \(T(N) \leq T(N / 2)+1\) for \(N>1\), with \(T(1)=1\).
left or right half possible to implement with one
(floored division) 2-way compare (instead of 3-way)
Pf sketch. [assume \(N\) is a power of 2]
```

T(N) \leq T(N/2) + 1 [given]
\leqT(N/4)+1 +1 [apply recurrence to first term]
\leqT(N/8)+1+1+1 [apply recurrence to first term]
!
\leqT(N/N)+1+1+···+1 [stop applying, T(1)=1]
= 1+ log N

```

\section*{An \(N^{2} \log N\) algorithm for 3-Sum}

Algorithm.
- Step 1: Sort the \(N\) (distinct) numbers.
- Step 2: For each pair of numbers a[i] and \(a[j]\), binary search for \(-(a[i]+a[j])\).

Analysis. Order of growth is \(N^{2} \log N\).
- Step 1: \(N^{2}\) with insertion sort.
- Step 2: \(N^{2} \log N\) with binary search.


Comparing programs

Hypothesis. The sorting-based \(N^{2} \log N\) algorithm for 3-Sum is significantly faster in practice than the brute-force \(N^{3}\) algorithm.
\begin{tabular}{|c|c|c|c|}
\hline \(\mathbf{N}\) & time (seconds) & & N \\
\hline 1,000 & 0.1 & time (seconds) \\
\hline 2,000 & 0.8 & 1,000 & 0.14 \\
\hline 4,000 & 6.4 & 2,000 & 0.18 \\
\hline 8,000 & 51.1 & 4,000 & 0.34 \\
\hline \multicolumn{5}{|c|}{ ThreeSum.java } & 8,000 & 0.96 \\
\hline & & 16,000 & 3.67 \\
\hline
\end{tabular}

ThreeSumDeluxe.java
Guiding principle. Typically, better order of growth \(\Rightarrow\) faster in practice.

\section*{ANALYSIS OF ALGORITHMS}

\section*{Algorithms}

Robert Sedgewick । Kevin Wayne

\section*{Types of analyses}

Best case. Lower bound on cost.
- Determined by "easiest" input.
- Provides a goal for all inputs.

Worst case. Upper bound on cost.
" Determined by "most difficult" input.
- Provides a guarantee for all inputs.

Average case. Expected cost for random input.
" Need a model for "random" input.
- Provides a way to predict performance.

Ex 1. Array accesses for brute-force 3-Sum.
\begin{tabular}{ll} 
Best: & \(\sim 1 / 2 N^{3}\) \\
Average: & \(\sim 1 / 2 N^{3}\) \\
Worst: & \(\sim 1 / 2 N^{3}\)
\end{tabular}

Ex 2. Compares for binary search.
\begin{tabular}{ll} 
Best: & \(\sim 1\) \\
Average: & \(\sim \lg N\) \\
Worst: & \(\sim \lg N\)
\end{tabular}

Commonly-used notations in the theory of algorithms
\begin{tabular}{|c|c|c|c|c|}
\hline notation & provides & example & shorthand for & used to \\
\hline Big Theta & asymptoticiciliorder of growth & \(\Theta\left(N^{2}\right)\) & \[
\begin{gathered}
1 / 2 N^{2} \\
10 N^{2} \\
5 N^{2}+22 N \log N+3 \mathrm{~N}
\end{gathered}
\] & classify algorithms \\
\hline Big Oh & \(\Theta\left(N^{2}\right)\) and smaller & \(\mathrm{O}\left(N^{2}\right)\) & \[
\begin{gathered}
10 N^{2} \\
100 N \\
22 N \log N+3 N
\end{gathered}
\] & develop upper bounds \\
\hline Big Omega & \(\Theta\left(N^{2}\right)\) and larger & \(\Omega\left(N^{2}\right)\) & \[
\begin{gathered}
1 / 2 N^{2} \\
N^{5} \\
N^{3}+22 N \log N+3 N
\end{gathered}
\] & develop lower bounds \\
\hline
\end{tabular}

Theory of algorithms: example 1
Goals.
" Establish "difficulty" of a problem and develop "optimal" algorithms.
" Ex. 1-Sum = "Is there a 0 in the array?"

\section*{Upper bound.}
- Ex. Brute-force algorithm for 1-Sum: Look at every array entry.
- Running time of the optimal algorithm for 1-Sum is \(\mathrm{O}(N)\).

Lower bound.
- Ex. Have to examine all \(N\) entries.
- Running time of the algorithm for 1-Sum is \(\Omega(N)\).

Optimal algorithm.
- Lower bound equals upper bound (to within a constant factor).
- Ex. Brute-force algorithm for \(1-S u m\) is \(\Theta(N)\).

Theory of algorithms: example 2

Goals.
" Establish "difficulty" of a problem and develop "optimal" algorithms.
- Ex. 3-Sum.

Upper bound. A specific algorithm.
- Ex. Brute-force algorithm for 3-Sum.
- Running time of the optimal algorithm for 3-Sum is \(\mathrm{O}\left(N^{3}\right)\).

Theory of algorithms: example 2
Goals.
" Establish "difficulty" of a problem and develop "optimal" algorithms.
- Ex. 3-Sum.

Upper bound. A specific algorithm.
- Ex. Improved algorithm for 3-Sum.
- Running time of the improved algorithm for 3 -Sum is \(\mathrm{O}\left(N^{2} \log N\right)\).

Lower bound.
- Running time of the improved algorithm for 3-Sum is \(\Omega\left(N^{2}\right)\).
- Running time of a magical optimal algorithm for solving 3-Sum is \(\Omega(N)\). (why?)

Open problems.
- Optimal algorithm for 3-Sum?
- Subquadratic algorithm for 3-Sum?

Algorithm design approach

\section*{Start.}
- Develop an algorithm.
- Prove a lower bound.

\section*{Gap?}
- Lower the upper bound (discover a new algorithm).
- Raise the lower bound (more difficult).

Golden Age of Algorithm Design.
- 1970s-
- Steadily decreasing upper bounds for many important problems.
- Many known optimal algorithms.

\section*{Caveats.}
- Overly pessimistic to focus on worst case?
" Need better than "to within a constant factor" to predict performance.

\section*{ANALYSIS OF ALGORITHMS}

\section*{Algorithms}

Robert Sedgewick \| Kevin Wayne
http://algs4.cs.princeton.edu

\section*{Basics}

Bit. 0 or 1.
Byte. 8 bits.


Megabyte (MB). 1 million or \(2^{20}\) bytes.
Gigabyte (GB). 1 billion or \(2^{30}\) bytes.


64-bit machine. We assume a 64-bit machine with 8 -byte pointers.
- Can address more memory.
- Pointers use more space.
some JVMs "compress" ordinary object pointers to 4 bytes to avoid this cost

\section*{Typical memory usage for primitive types and arrays}
\begin{tabular}{|c|c|}
\hline type & bytes \\
\hline boolean & 1 \\
\hline byte & 1 \\
\hline char & 2 \\
\hline int & 4 \\
\hline float & 4 \\
\hline long & 8 \\
\hline double & 8 \\
\hline
\end{tabular}
primitive types
\begin{tabular}{cc} 
type & bytes \\
char[] & \(2 N+24\) \\
int[] & \(4 N+24\) \\
doub7e[] & \(8 N+24\) \\
one-dimensional arrays \\
type & \(\sim 2 M N\) \\
char[][] & \(\sim 4 M N\) \\
int[][] & \(\sim 8 M N\)
\end{tabular}

Typical memory usage for objects in Java
Object overhead. 16 bytes.
Reference. 8 bytes.
Padding. Each object uses a multiple of 8 bytes.

Ex 1. A Date object uses 32 bytes of memory.
```

public class Date
{
private int day;
private int month;
private int year;
;

```


16 bytes (object overhead)

4 bytes (int)
4 bytes (int)
4 bytes (int)
4 bytes (padding)
32 bytes

Typical memory usage for objects in Java
Object overhead. 16 bytes.
Reference. 8 bytes.
Padding. Each object uses a multiple of 8 bytes.

Ex 2. A virgin String of length \(N\) uses \(\sim 2 N\) bytes of memory.
```

public class String
{
private char[] value;
private int offset;
private int count;
private int hash;
}

```

```

16 bytes (object overhead)
8 bytes (reference to array)
2N+24 bytes (char[] array)
4 bytes (int)
4 bytes (int)
4 bytes (int)
4 bytes (padding)

```
\(2 N+64\) bytes

\section*{Typical memory usage summary}

Total memory usage for a data type value:
- Primitive type: 4 bytes for int, 8 bytes for double, ...
- Object reference: 8 bytes.
- Array: 24 bytes + memory for each array entry.
- Object: 16 bytes + memory for each instance variable.
- Padding: round up to multiple of 8 bytes.
+8 extra bytes per inner class object (for reference to enclosing class)

Shallow memory usage: Don't count referenced objects.

Deep memory usage: If array entry or instance variable is a reference, count memory (recursively) for referenced object.

\section*{Algorithms}

\section*{STACKS AND QUEUES}

Modified by: Dr. Fahed Jubair and Dr. Ramzi Saifan Computer Engineering Department

University of Jordan

\section*{Stacks and queues}

Fundamental data types.
- Value: collection of objects.
- Operations: insert, remove, test if empty.
- Intent is clear when we insert.
- Which item do we remove?


Stack. Examine the item most recently added.
LIFO = "last in first out"
Queue. Examine the item least recently added.
FIFO = "first in first out"

\section*{Stacks and Queues}

\section*{Algorithms}

Robert Sedgewick \| Kevin Wayne

\section*{Stack API}

Warmup API. Stack of strings data type.


Warmup client. Reverse sequence of strings from standard input.

\section*{Stack: linked-list implementation}
- Maintain pointer first to first node in a singly-linked list.
- Push new item before first.
- Pop item from first.


\section*{Stack: linked-list representation}

Maintain pointer to first node in a linked list; insert/remove from front.


\section*{Stack: linked-list implementation in Java}
```

public class LinkedStackOfStrings
{
private Node first = nul1;
private class Node
{
String item;
Node next;
}
public boolean isEmpty()
{ return first == null; }
public void push(String item)
{
Node oldfirst = first;
first = new Node();
first.item = item;
first.next = oldfirst;
}
public String pop()
{
String item = first.item;
first = first.next;
return item;
}
}

```
private inner class
(access modifiers for instance variables don't matter)

\section*{Stack push: linked-list implementation}
save a link to the list
Node oldfirst = first;

inner class
private class Node \{

String item;
Node next;
\}
create a new node for the beginning
\[
\text { first }=\text { new Node(); }
\]

set the instance variables in the new node
\[
\begin{aligned}
& \text { first.item }=\text { "not"; } \\
& \text { first.next }=\text { oldfirst; }
\end{aligned}
\]


\section*{Stack pop: linked-list implementation}
save item to return
String item = first.item;
delete first node
first = first.next;

return saved item
return item;

\section*{Stack: linked-list implementation performance}

Proposition. Every operation takes constant time in the worst case.

Proposition. A stack with \(N\) items uses \(\sim 40 N\) bytes .
```

inner class
private class Node
{
String item;
Node next;
}

```

```

16 bytes (object overhead)
8 bytes (inner class extra overhead)
8 bytes (reference to String)
8 bytes (reference to Node)

```

40 bytes per stack node

Remark. This accounts for the memory for the stack (but not the memory for strings themselves, which the client owns).

Fixed-capacity stack: array implementation
- Use array s[] to store N items on stack.
- push(): add new item at \(\mathrm{s}[\mathrm{N}]\).
- pop(): remove item from \(s[\mathrm{~N}-1]\).


Defect. Stack overflows when \(N\) exceeds capacity. [stay tuned]

Fixed-capacity stack: array implementation


\section*{Stack considerations}

Overflow and underflow.
- Underflow: throw exception if pop from an empty stack.
- Overflow: use resizing array for array implementation. [stay tuned]

Null items. We allow null items to be inserted.

Loitering. Holding a reference to an object when it is no longer needed.
```

pub1ic String pop()
{ return s[--N]; }
loitering

```
```

 public String pop()
 {
 String item = s[--N];
 s[N] = nul1;
 return item;
 }
this version avoids "loitering":
garbage collector can reclaim memory for an
object only if no outstanding references

```

\section*{Stacks and Queues}

\section*{Algorithms}

Robert Sedgewick । Kevin Wayne

\section*{Stack: resizing-array implementation}

Problem. Requiring client to provide capacity does not implement API!
Q. How to grow and shrink array?

First try.
- push(): increase size of array \(s[]\) by 1.
- pop(): decrease size of array s[] by 1.

Too expensive.
- Need to copy all items to a new array, for each operation.
- Array accesses to insert first \(N\) items \(=N+(2+4+\ldots+2(N-1)) \sim N^{2}\).

1 array access \(2(k-1)\) array accesses to expand to size \(k\) per push (ignoring cost to create new array)

Challenge. Ensure that array resizing happens infrequently.

\section*{Stack: resizing-array implementation}
Q. How to grow array?
" "repeated doubling"
A. If arrav is full, create a new arrav of twice the size, and copy items.
```

public ResizingArrayStackOfStrings()
{ s = new String[1]; }
public void push(String item)
{
if (N == s.length) resize(2 * s.length);
s[N++] = item;
}
private void resize(int capacity)
{
String[] copy = new String[capacity];
for (int i = 0; i < N; i++)
copy[i] = s[i];
s = copy;
}

```

Array accesses to insert first \(\mathrm{N}=2^{i}\) items.


\section*{Stack: amortized cost of adding to a stack}

Cost of inserting first N items. \(N+(2+4+8+\ldots+N) \sim 3 N\).
\begin{tabular}{cc}
\(\uparrow\) & \(\uparrow\) \\
1 array access \\
per push & k array accesses to double to size k \\
(ignoring cost to create new array)
\end{tabular}


\section*{Stack: resizing-array implementation}
Q. How to shrink array?

First try.
- push(): double size of array s[] when array is full.
- pop(): halve size of array s[] when array is one-half full.

Too expensive in worst case.
- Consider push-pop-push-pop-... sequence when array is full.
- Each operation takes time proportional to \(N\).


\section*{Stack: resizing-array implementation}
Q. How to shrink array?

Efficient solution.
- push(): double size of array s[] when array is full.
- pop(): halve size of array s[] when array is one-quarter full.
```

public String pop()
{
String item = s[--N];
s[N] = null;
if (N > 0 \&\& N == s.length/4) resize(s.length/2);
return item;
}

```

Invariant. Array is between \(25 \%\) and \(100 \%\) full.

\section*{Stack resizing-array implementation: performance}

Amortized analysis. Starting from an empty data structure, average running time per operation over a worst-case sequence of operations.

Proposition. Starting from an empty stack, any sequence of \(M\) push and pop operations takes time proportional to \(M\).

order of growth of running time for resizing stack with \(\mathbf{N}\) items

Stack resizing-array implementation: memory usage

Proposition. Uses between \(\sim 8 N\) and \(\sim 32 N\) bytes to represent a stack with \(N\) items.
- \(\sim 8 N\) when full.
- \(\sim 32 \mathrm{~N}\) when one-quarter full.
```

public class ResizingArrayStackOfStrings
{
private String[] s; \longleftarrow < bytes }\times\mathrm{ array size
private int N = 0;
}

```

Remark. This accounts for the memory for the stack (but not the memory for strings themselves, which the client owns).

\section*{Stack implementations: resizing array vs. linked list}

Tradeoffs. Can implement a stack with either resizing array or linked list; client can use interchangeably. Which one is better?

Linked-list implementation.
- Every operation takes constant time in the worst case.
- Uses extra time and space to deal with the links.

Resizing-array implementation.
- Every operation takes constant amortized time.
- Less wasted space.


\section*{Stacks and Queues}

\section*{Algorithms}

Robert Sedgewick । Kevin Wayne
http://algs4.cs.princeton.edu

\section*{Queue API}
public class QueueOfStrings
\begin{tabular}{cc} 
QueueOfStrings() & create an empty queue \\
void enqueue(String item) & insert a new string onto queue \\
String dequeue() & remove and return the string \\
least recently added
\end{tabular}

Queue: linked-list representation
Maintain pointer to first and last nodes in a linked list; remove from front; insert at end.


\section*{Queue: linked-list implementation in Java}
```

public class LinkedQueueOfStrings
{
private Node first, last;
private class Node
{ /* same as in LinkedStackOfStrings */ }
public boolean isEmpty()
{ return first == null; }
public void enqueue(String item)
{
Node oldlast = last;
last = new Node();
last.item = item;
last.next = nul1;
if (isEmpty()) first = last;
else oldlast.next = last;
}
public String dequeue()
{
String item = first.item;
first = first.next;
if (isEmpty()) last = null;
return item;
}
}

```

\section*{Queue enqueue: linked-list implementation}
save a link to the last node
Node old1ast = 1ast;

inner class
private class Node \{

String item;
Node next;
\}
create a new node for the end
\[
\begin{aligned}
& \text { last = new Node(); } \\
& \text { last.item = "not"; }
\end{aligned}
\]

link the new node to the end of the list
old1ast.next = 1ast;


\section*{Queue dequeue: linked-list implementation}
save item to return
String item = first.item;
delete first node
```

first = first.next;

```
inner class
private class Node
\{
    String item;
    Node next;
\}

return saved item return item;

Remark. Identical code to linked-list stack pop().

Queue: resizing-array implementation
- Use array q[] to store items in queue.
- enqueue(): add new item at q[tail].
- dequeue(): remove item from \(q\) [head].
- Update head and tail modulo the capacity.
- Add resizing array.

Q. How to resize?

\section*{Stacks and Queues}

\section*{Algorithms}

Robert Sedgewick । Kevin Wayne

\section*{Parameterized stack}

We implemented: StackOfStrings.
We also want: StackOfURLs, StackOfInts, StackOfVans, ....

Attempt 1. Implement a separate stack class for each type.
- Rewriting code is tedious and error-prone.
- Maintaining cut-and-pasted code is tedious and error-prone.
@\#\$*! most reasonable approach until Java 1.5.

\section*{Parameterized stack}

We implemented: StackOfStrings.
We also want: StackOfURLs, StackOfInts, StackOfVans, ....

Attempt 2. Implement a stack with items of type Object.
- Casting is required in client.
- Casting is error-prone: run-time error if types mismatch.
```

StackOfObjects s = new StackOfObjects();
Apple a = new Apple();
Orange b = new Orange();
s.push(a);
s.push(b);
a = (Apple) (s.pop());

```

\section*{Parameterized stack}

We implemented: StackOfStrings.
We also want: StackOfURLs, StackOfInts, StackOfVans, ....

Attempt 3. Java generics.
- Avoid casting in client.
- Discover type mismatch errors at compile-time instead of run-time.


Guiding principles. Welcome compile-time errors; avoid run-time errors.

Generic stack: linked-list implementation
```

public class LinkedStackOfStrings
{
private Node first = nul1;
private class Node
{
String item;
Node next;
}
public boolean isEmpty()
{ return first == nul1; }
public void push(String item)
{
Node oldfirst = first;
first = new Node();
first.item = item;
first.next = oldfirst;
}

```
    pub7ic String pop()
    \{
first \(=\) first.next;
return item;


Generic stack: array implementation
the way it should be
```

public class FixedCapacityStackOfStrings
private String[] s;
private int N = 0;
public ..StackOfStrings(int capacity)
{ s = new String[capacity]; }
public boolean isEmpty()
{ return N == 0; }
public void push(String item)
{ s[N++] = item; }
public String pop()
{ return s[--N]; }
}
pub1ic class FixedCapacityStack<Item>
{
private Item[] s;
private int N = 0;
public FixedCapacityStack(int
capacity)
{ s = new Item[capacity]; }
publif boolean isEmpty()
{ Meturn N == 0; }
public void push(Item item)
{ s[N++] = item; }
public Item pop()
{ return s[--N]; }
}

```

Generic stack: array implementation
the way it is
```

public class FixedCapacityStackOfStrings
private String[] s;
private int N = 0;
pub1ic ..StackOfStrings(int capacity)
{ s = new String[capacity]; }
public boolean isEmpty()
{ return N == 0; }
public void push(String item)
{ s[N++] = item; }
{

```
    public String pop()
    \{ return s[--N]; \}
\}
    pub7ic class FixedCapacityStack<Item>
    \{
        private Item[] s;
        private int \(N=0\);
    pub7ic FixedCapacityStack(int
        capacity)
    \{ \(s=\) Item[]) new Object[capacity];
    \}
    public boolean isEmpty()
    return \(N=0 ; \quad\}\)
    public void push(Item item)
    \{ \(\quad s[N++]=\) item; \(\}\)
    public Item pop()
    \{ return s[--N]; \}
the ugly cast \(\}\)

Generic data types: autoboxing
Q. What to do about primitive types?

Wrapper type.
- Each primitive type has a wrapper object type.
- Ex: Integer is wrapper type for int.

Autoboxing. Automatic cast between a primitive type and its wrapper.
```

Stack<Integer> s = new Stack<Integer>();
s.push(17); // s.push(Integer.valueOf(17));
int a = s.pop(); // int a = s.pop().intValue();

```

Bottom line. Client code can use generic stack for any type of data.

\section*{Java collections library}

List interface. java.util.List is API for a sequence of items.
```

pub1ic interface List<Item> implements Iterable<Item>

```
\begin{tabular}{|c|c|c|}
\hline & List() & create an empty list \\
\hline boolean & isEmpty () & is the list empty? \\
\hline int & size() & number of items \\
\hline void & add(Item item) & append item to the end \\
\hline Item & get(int index) & return item at given index \\
\hline Item & remove(int index) & return and delete item at given index \\
\hline boolean & contains(Item item) & does the list contain the given item? \\
\hline
\end{tabular}
```

Iterator<Item> iterator() iterator over all items in the list

```

Implementations. java.uti1.ArrayList uses resizing array; java.util.LinkedList uses linked list. \(\longleftrightarrow\) caveat: only some

\section*{Java collections library}
java.util.Stack.
- Supports push(), pop(), and iteration.
- Extends java.util.Vector, which implements java.util.List interface from previous slide, including get() and remove().

Java 1.3 bug report (June 27, 2001)

The iterator method on java.util.Stack iterates through a Stack from the bottom up. One would think that it should iterate as if it were popping off the top of the Stack.
status (closed, will not fix)
```

It was an incorrect design decision to have Stack extend Vector ("is-a"
rather than "has-a"). We sympathize with the submitter but cannot fix
this because of compatibility.

```

Java collections library
java.util.Stack.
- Supports push(), pop(), and iteration.
- Extends java.uti1.Vector, which implements java.uti1.List interface from previous slide, including get() and remove().

java.uti1.Queue. An interface, not an implementation of a queue.

\section*{Algorithms}

\section*{Elementary Sorts}

Modified by: Dr. Fahed Jubair and Dr. Ramzi Saifan
Computer Engineering Department
University of Jordan

\section*{Sorting problem}

\section*{Ex. Student records in a university.}
\begin{tabular}{|l|c|c|c|c|c|}
\hline & Chen & 3 & A & \(991-878-4944\) & 308 Blair \\
\hline & Rohde & 2 & A & \(232-343-5555\) & 343 Forbes \\
\hline & Gazsi & 4 & B & \(766-093-9873\) & 101 Brown \\
\hline & Furia & 1 & A & \(766-093-9873\) & 101 Brown \\
\hline & Kanaga & 3 & B & \(898-122-9643\) & 22 Brown \\
\hline & Andrews & 3 & A & \(664-480-0023\) & 097 Little \\
\hline
\end{tabular}

Sort. Rearrange array of \(N\) items into ascending order.
\begin{tabular}{|c|c|c|c|c|}
\hline Andrews & 3 & A & \(664-480-0023\) & 097 Little \\
\hline Battle & 4 & C & \(874-088-1212\) & 121 Whitman \\
\hline Chen & 3 & A & \(991-878-4944\) & 308 Blair \\
\hline Furia & 1 & A & \(766-093-9873\) & 101 Brown \\
\hline Gazsi & 4 & B & \(766-093-9873\) & 101 Brown \\
\hline Kanaga & 3 & B & \(898-122-9643\) & 22 Brown \\
\hline Rohde & 2 & A & \(232-343-5555\) & 343 Forbes \\
\hline
\end{tabular}

\section*{Sorting applications}


Library of Congress numbers


FedEx packages


\section*{Total order}

Goal. Sort any type of data (for which sorting is well defined).

A total order is a binary relation \(\leq\) that satisfies:
- Antisymmetry: if both \(v \leq w\) and \(w \leq v\), then \(v=w\).
- Transitivity: if both \(v \leq w\) and \(w \leq x\), then \(v \leq x\).
- Totality: either \(v \leq w\) or \(w \leq v\) or both.

Ex.
- Standard order for natural and real numbers.
- Chronological order for dates or times.
- Alphabetical order for strings.

No transitivity. Rock-paper-scissors.
No totality. PU course prerequisites.

violates transitivity

violates totality

\section*{Comparable interface}

Comparab7e interface: sort using a type's natural order.
```

public class Date implements Comparable<Date>
{
private final int month, day, year;
public Date(int m, int d, int y)
{
month = m;
day = d;
year = y;
}
public int compareTo(Date that)
{
if (this.year < that.year) return -1;
if (this.year > that.year) return +1;
if (this.month < that.month) return -1;
if (this.month > that.month) return +1;
if (this.day < that.day) return -1;
if (this.day > that.day) return +1;
return 0;

```

\section*{Comparable API}

Implement compareTo() so that v.compareTo(w)
- Defines a total order.
- Returns a negative integer, zero, or positive integer if \(v\) is less than, equal to, or greater than \(w\), respectively.
- Throws an exception if incompatible types (or either is nul1).

less than (return -1)

equal to (return 0 )

greater than (return +1)

Built-in comparable types. Integer, Doub7e, String, Date, File, ... User-defined comparable types. Implement the Comparable interface.

\section*{ElEmENTARY SORTS}

\section*{Algorithms}

Robert Sedgewick । Kevin Wayne

\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

initial

\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

remaining entries

\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

remaining entries

\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

remaining entries

\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].


\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].


\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].


\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].


\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].


\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].


\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].


\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].


\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].


\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].


\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].


\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].


\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].


\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].


\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].


\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].


\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].


\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].


\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].


\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].


\section*{Selection sort demo}
- In iteration \(\mathbf{i}\), find index min of smallest remaining entry.
- Swap a[i] and a[min].


\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].


\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].


\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].


\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

in final order

\section*{Selection sort demo}
- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].
sorted

\section*{Two useful sorting abstractions}

Helper functions. Refer to data through compares and exchanges.

Less. Is item v less than w?
```

private static boolean less(Comparable v, Comparable w)
{ return v.compareTo(w) < 0; }

```

Exchange. Swap item in array \(a[]\) at index \(i\) with the one at index \(j\).
```

private static void exch(Comparable[] a, int i, int j)
{
Comparable swap = a[i];
a[i] = a[j];
a[j] = swap;
}

```

Selection sort: Java implementation
```

public class Selection
{
public static void sort(Comparable[] a)
{
int N = a.length;
for (int i = 0; i < N; i++)
{
int min = i;
for (int j = i+1; j < N; j++)
if (less(a[j], a[min]))
min = j;
exch(a, i, min);
}
}
private static boolean less(Comparable v, Comparable w)
{ /* as before */ }
private static void exch(Comparable[] a, int i, int j)
{ /* as before */ }
}

```

\section*{Selection sort: mathematical analysis}

Proposition. Selection sort uses \((N-1)+(N-2)+\ldots+1+0 \sim N^{2} / 2\) compares and \(N\) exchanges.


Trace of selection sort (array contents just after each exchange)

Running time insensitive to input. Quadratic time, even if input is sorted. Data movement is minimal. Linear number of exchanges.

\section*{Selection sort: animations}

algorithm position
in final order
not in final order
http://www.sorting-algorithms.com/se1ection-sort

\section*{Selection sort: animations}

20 partially-sorted items

http://www.sorting-algorithms.com/selection-sort

\section*{ElEmENTARY SORTS}

\section*{Algorithms}

Robert Sedgewick । Kevin Wayne

\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.

\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.

in ascending order
not yet seen

\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.

not yet seen

\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.

\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.


\section*{Insertion sort demo}
- In iteration i, swap a[i] with each larger entry to its left.
\[
\begin{aligned}
& \text { sorted }
\end{aligned}
\]

Insertion sort: Java implementation
```

public class Insertion
{
public static void sort(Comparable[] a)
{
int N = a.length;
for (int i = 0; i < N; i++)
for (int j = i; j > 0; j--)
if (less(a[j], a[j-1]))
exch(a, j, j-1);
else break;
}
private static boolean less(Comparable v, Comparable w)
{ /* as before */ }
private static void exch(Comparable[] a, int i, int j)
{ /* as before */ }
}

```

Insertion sort: mathematical analysis
Proposition. To sort a randomly-ordered array with distinct keys, insertion sort uses \(\sim 1 / 4 N^{2}\) compares and \(\sim_{1 / 4} N^{2}\) exchanges on average.

Pf. Expect each entry to move halfway back.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{i} & \multicolumn{11}{|c|}{a[]} & \multirow[b]{4}{*}{entries in gray do not move} \\
\hline & j & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 910 & \\
\hline & & S & 0 & R & T & E & X & A & M & P & L E & \\
\hline 1 & 0 & 0 & S & R & T & E & X & A & M & P & L E & \\
\hline 2 & 1 & 0 & R & S & T & E & X & A & M & P & L E & \\
\hline 3 & 3 & 0 & R & S & T & E & X & A & M & P & L E & \\
\hline 4 & 0 & E & 0 & R & S & T & X & A & M & P & L E & entry in red is a [j] \\
\hline 5 & 5 & E & 0 & R & S & T & X & A & M & P & L E & \\
\hline 6 & 0 & A & E & 0 & R & S & T & X & M & P & L E & \\
\hline 7 & 2 & A & E & M & 0 & R & S & T & X & P & L E & entries in black \\
\hline 8 & 4 & A & E & M & 0 & P & R & S & T & X & L & moved one position \\
\hline 9 & 2 & A & E & L & M & 0 & P & R & S & T & X E & right for insertion \\
\hline 10 & 2 & A & E & E & L & M & 0 & P & R & S & T X & \\
\hline & & A & E & E & L & M & 0 & P & R & S & & \\
\hline
\end{tabular}

Trace of insertion sort (array contents just after each insertion)

Insertion sort: analysis

Best case. If the array is in ascending order, insertion sort makes \(N-1\) compares and 0 exchanges.
A E E L M O PR S TX

Worst case. If the array is in descending order (and no duplicates), insertion sort makes \(\sim 1 / 2 N^{2}\) compares and \(\sim 1 / 2 N^{2}\) exchanges.
\[
X T S R P O M L F E A
\]

\section*{Insertion sort: animation}

40 random items


\section*{Insertion sort: animation}

40 reverse-sorted items

\(\Delta\)
algorithm position
in order
not yet seen

\section*{Insertion sort: animation}

40 partially-sorted items

- algorithm position
in order
not yet seen

\section*{ElEmENTARY SORTS}

\section*{Algorithms}

Robert Sedgewick । Kevin Wayne

How to shuffle an array
Goal. Rearrange array so that result is a uniformly random permutation.
all permutations equally likely

How to shuffle an array
Goal. Rearrange array so that result is a uniformly random permutation.
all permutations equally likely


\section*{Shuffle sort}
- Generate a random real number for each array entry.
- Sort the array.
useful for shuffling
columns in a spreadsheet
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{|lll|}
\hline 2 & \(\%\) & \\
\hline & \(\%\) & \\
& \(\%\) & \\
& & ¢ \\
\hline
\end{tabular} &  &  & \begin{tabular}{|cc|}
\hline \(5 \%\) & \(\%\) \\
4 & \\
\(\%\) & \(\%\) \\
\hline
\end{tabular} & \begin{tabular}{|cc|}
\hline \(6 \%\) & \(\%\) \\
\(\%\) & \\
\(\%\) & \(\%\) \\
\(\%\) & \(\%\) \\
\hline
\end{tabular} &  &  & \[
\begin{array}{|cc|}
\hline 9 \% & \% \\
\% & \% \\
\% & \% \\
\% & \psi^{+} \\
\%
\end{array}
\] &  \\
\hline 0.8003 & 0.9706 & 0.9157 & 0.9649 & 0.1576 & 0.4854 & 0.1419 & 0.4218 & 0.9572 \\
\hline
\end{tabular}

\section*{Shuffle sort}
- Generate a random real number for each array entry.
- Sort the array.
useful for shuffling
columns in a spreadsheet


\section*{Shuffle sort}
- Generate a random real number for each array entry.
- Sort the array.
useful for shuffling
columns in a spreadsheet


Proposition. Shuffle sort produces a uniformly random permutation.

Knuth shuffle demo
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].

\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].


\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].


\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].


\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].


\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].


\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].


\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].


\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].


\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].


\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].


\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].


\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and \(i\) uniformly at random.
- Swap a[i] and a[r].


\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].


\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].


\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and \(i\) uniformly at random.
- Swap a[i] and a[r].


\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].


\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].


\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].


\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].


\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].


\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].


\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].


\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].


\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].


\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].
shuffled

\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].
shuffled

Knuth shuffle
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].
shuffled

\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].

Proposition. [Fisher-Yates 1938] Knuth shuffling algorithm produces a uniformly random permutation of the input array in linear time.

\section*{Knuth shuffle}
- In iteration i, pick integer \(r\) between 0 and i uniformly at random.
- Swap a[i] and a[r].
```

public class StdRandom
{
public static void shuffle(Object[] a)
{
int N = a.length;
for (int i = 0; i < N; i++)
{
int r = StdRandom.uniform(i + 1);
exch(a, i, r);
}
}
}

```

\section*{Algorithms}

\section*{Mergesort and quicksort}

\section*{Two classic sorting algorithms: mergesort and quicksort}

Critical components in the world's computational infrastructure.
- Full scientific understanding of their properties has enabled us to develop them into practical system sorts.
- Quicksort honored as one of top 10 algorithms of \(20^{\text {th }}\) century in science and engineering.

Mergesort. [this lecture]


Quicksort. [next lecture]
(S, 号号

\section*{Mergesort and quicksort}

\section*{Algorithms}

Robert Sedgewick । Kevin Wayne
http://algs4.cs.princeton.edu

\section*{Mergesort}

Basic plan.
- Divide array into two halves.
- Recursively sort each half.
- Merge two halves.
\begin{tabular}{rllllllllllllllll} 
input & \(M\) & \(E\) & \(R\) & \(G\) & \(E\) & \(S\) & 0 & \(R\) & \(T\) & \(E\) & \(X\) & \(A\) & \(M\) & \(P\) & \(L\) & \(E\) \\
sort left half & \(E\) & \(E\) & \(G\) & \(M\) & \(O\) & \(R\) & \(R\) & \(S\) & \(T\) & \(E\) & \(X\) & \(A\) & \(M\) & \(P\) & \(L\) & \(E\) \\
sort right half & \(E\) & \(E\) & \(G\) & \(M\) & \(O\) & \(R\) & \(R\) & \(S\) & \(A\) & \(E\) & \(E\) & \(L\) & \(M\) & \(P\) & \(T\) & \(X\) \\
merge results & \(A\) & \(E\) & \(E\) & \(E\) & \(E\) & \(G\) & \(L\) & \(M\) & \(M\) & 0 & \(P\) & \(R\) & \(R\) & \(S\) & \(T\) & \(X\)
\end{tabular}


\section*{Mergesort: Java implementation}
```

public class Merge
{
private static void merge(...)
{ /* as before */ }
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
if (hi <= lo) return;
int mid = 10 + (hi - 1o) / 2;
sort(a, aux, lo, mid);
sort(a, aux, mid+1, hi);
merge(a, aux, lo, mid, hi);
}
pub1ic static void sort(Comparable[] a)
{
Comparable[] aux = new Comparable[a.length];
sort(a, aux, 0, a.length - 1);
}
}

```


\section*{Merging: Java implementation}
private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi) \{
```

 for (int k = 1o; k <= hi; k++)
 aux[k] = a[k];
 copy
 int i = lo, j = mid+1;
for (int k = 1o; k <= hi; k++)
{
if (i > mid) a[k] = aux[j++];
else if (j > hi) a[k] = aux[i++];
else if (less(aux[j], aux[i])) a[k] = aux[j++];
else a[k] = aux[i++];
}

```
\}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 10 & & & i & mid & & \multicolumn{3}{|c|}{j} & hi \\
\hline aux[] & A & G & L & 0 & R & H & I & M & S & T \\
\hline
\end{tabular}


\section*{Abstract in-place merge demo}

Goal. Given two sorted subarrays \(a[10]\) to \(a[m i d]\) and \(a[m i d+1]\) to \(a[h i]\), replace with sorted subarray \(a[1 o]\) to a[hi].


\section*{Merging demo}

Goal. Given two sorted subarrays \(a[1 \mathrm{o}]\) to \(\mathrm{a}[\mathrm{mid}]\) and \(\mathrm{a}[\mathrm{mid}+1]\) to \(a[h i]\), replace with sorted subarray \(a[1 o]\) to a[hi].
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline E & E & G & M & R & A & C & E & R & T \\
\hline
\end{tabular}
copy to auxiliary array
aux[]


\section*{Merging demo}

Goal. Given two sorted subarrays \(a[10]\) to \(a[m i d]\) and \(a[m i d+1]\) to \(a[h i]\), replace with sorted subarray \(a[1 o]\) to a[hi].
\begin{tabular}{l|lllll|lllll} 
aux & E & E & G & \(M\) & R & A & \(C\) & \(E\) & R & T
\end{tabular}

\section*{Merging demo}

Goal. Given two sorted subarrays \(a[1 \mathrm{o}]\) to \(\mathrm{a}[\mathrm{mid}]\) and \(\mathrm{a}[\mathrm{mid}+1]\) to \(a[h i]\), replace with sorted subarray \(a[1 o]\) to a[hi].
compare minimum in each subarray
\begin{tabular}{ccccccccc}
\(\operatorname{aux}[]\) & \(E\) & \(E\) & \(G\) & \(M\) & \(R\) & \(A\) & \(C\) & \(E\)
\end{tabular}\(\quad R \quad\) T

\section*{Merging demo}

Goal. Given two sorted subarrays \(a[1 \mathrm{o}]\) to \(\mathrm{a}[\mathrm{mid}]\) and \(\mathrm{a}[\mathrm{mid}+1]\) to \(a[h i]\), replace with sorted subarray \(a[1 o]\) to a[hi].

compare minimum in each subarray
\[
\begin{array}{llllllllll}
\operatorname{aux}[] & E & E & G & M & R & A & C & E & R
\end{array}
\]

\section*{Merging demo}

Goal. Given two sorted subarrays \(a[1 \mathrm{o}]\) to \(\mathrm{a}[\mathrm{mid}]\) and \(\mathrm{a}[\mathrm{mid}+1]\) to \(a[h i]\), replace with sorted subarray \(a[1 o]\) to a[hi].
a[] A
k
compare minimum in each subarray
\[
\begin{array}{ccccccccc}
\operatorname{aux}[] & E & E & G & M & R & A & C & E
\end{array} \quad R \quad \begin{gathered}
\text { i }
\end{gathered}
\]

\section*{Merging demo}

Goal. Given two sorted subarrays \(a[1 \mathrm{o}]\) to \(\mathrm{a}[\mathrm{mid}]\) and \(\mathrm{a}[\mathrm{mid}+1]\) to \(a[h i]\), replace with sorted subarray \(a[1 o]\) to a[hi].

compare minimum in each subarray
\[
\begin{array}{llllllllll}
\operatorname{aux}[] & E & E & G & M & R & A & C & E & R
\end{array}
\]

\section*{Merging demo}

Goal. Given two sorted subarrays \(a[1 \mathrm{o}]\) to \(\mathrm{a}[\mathrm{mid}]\) and \(\mathrm{a}[\mathrm{mid}+1]\) to \(a[h i]\), replace with sorted subarray \(a[1 o]\) to a[hi].
a[] A C

> k
compare minimum in each subarray


E R T
i
j

\section*{Merging demo}

Goal. Given two sorted subarrays \(a[1 \mathrm{o}]\) to \(\mathrm{a}[\mathrm{mid}]\) and \(\mathrm{a}[\mathrm{mid}+1]\) to \(a[h i]\), replace with sorted subarray \(a[1 o]\) to a[hi].
compare minimum in each subarray

i
j

\section*{Merging demo}

Goal. Given two sorted subarrays \(a[1 \mathrm{o}]\) to \(\mathrm{a}[\mathrm{mid}]\) and \(\mathrm{a}[\mathrm{mid}+1]\) to \(a[h i]\), replace with sorted subarray \(a[1 o]\) to a[hi].
a[] A C E
compare minimum in each subarray


\section*{Merging demo}

Goal. Given two sorted subarrays \(a[1 \mathrm{o}]\) to \(\mathrm{a}[\mathrm{mid}]\) and \(\mathrm{a}[\mathrm{mid}+1]\) to \(a[h i]\), replace with sorted subarray \(a[1 o]\) to a[hi].

compare minimum in each subarray

i
j

\section*{Merging demo}

Goal. Given two sorted subarrays \(a[1 \mathrm{o}]\) to \(\mathrm{a}[\mathrm{mid}]\) and \(\mathrm{a}[\mathrm{mid}+1]\) to \(a[h i]\), replace with sorted subarray \(a[1 o]\) to a[hi].
a[] A C E E
compare minimum in each subarray


\section*{Merging demo}

Goal. Given two sorted subarrays \(a[1 \mathrm{o}]\) to \(\mathrm{a}[\mathrm{mid}]\) and \(\mathrm{a}[\mathrm{mid}+1]\) to \(a[h i]\), replace with sorted subarray \(a[1 o]\) to a[hi].
a[] A C E E E
compare minimum in each subarray


\section*{Merging demo}

Goal. Given two sorted subarrays \(a[1 \mathrm{o}]\) to \(\mathrm{a}[\mathrm{mid}]\) and \(\mathrm{a}[\mathrm{mid}+1]\) to \(a[h i]\), replace with sorted subarray \(a[1 o]\) to a[hi].
a[] A C E E E
compare minimum in each subarray


\section*{Merging demo}

Goal. Given two sorted subarrays \(a[1 \mathrm{o}]\) to \(\mathrm{a}[\mathrm{mid}]\) and \(\mathrm{a}[\mathrm{mid}+1]\) to \(a[h i]\), replace with sorted subarray \(a[1 o]\) to a[hi].
a[] \begin{tabular}{lllllllllll} 
A & \(C\) & \(E\) & \(E\) & \(E\) & \(G\) & \(C\) & \(E\) & \(R\) & T \\
\hline
\end{tabular}
compare minimum in each subarray

j

\section*{Merging demo}

Goal. Given two sorted subarrays \(a[1 \mathrm{o}]\) to \(\mathrm{a}[\mathrm{mid}]\) and \(\mathrm{a}[\mathrm{mid}+1]\) to \(a[h i]\), replace with sorted subarray \(a[1 o]\) to a[hi].

\section*{a[] \\ \(\square\)}
compare minimum in each subarray



\section*{Merging demo}

Goal. Given two sorted subarrays \(a[1 \mathrm{o}]\) to \(\mathrm{a}[\mathrm{mid}]\) and \(\mathrm{a}[\mathrm{mid}+1]\) to \(a[h i]\), replace with sorted subarray \(a[1 o]\) to a[hi].

compare minimum in each subarray

i j

\section*{Merging demo}

Goal. Given two sorted subarrays \(a[1 \mathrm{o}]\) to \(\mathrm{a}[\mathrm{mid}]\) and \(\mathrm{a}[\mathrm{mid}+1]\) to \(a[h i]\), replace with sorted subarray \(a[1 o]\) to a[hi].

\section*{a[] \\ \(\square\) \\ E E \\ E G \\ M}
compare minimum in each subarray
aux[]


\section*{Merging demo}

Goal. Given two sorted subarrays \(a[1 \mathrm{o}]\) to \(\mathrm{a}[\mathrm{mid}]\) and \(\mathrm{a}[\mathrm{mid}+1]\) to \(a[h i]\), replace with sorted subarray \(a[1 o]\) to a[hi].
a[] A C \(\quad\) C \(\quad\) E \(\quad\) E \(\quad\) G \(\quad\) M \(\quad\) R
compare minimum in each subarray
aux[]

i
j

\section*{Merging demo}

Goal. Given two sorted subarrays \(a[1 \mathrm{o}]\) to \(\mathrm{a}[\mathrm{mid}]\) and \(\mathrm{a}[\mathrm{mid}+1]\) to \(a[h i]\), replace with sorted subarray \(a[1 o]\) to a[hi].
\begin{tabular}{lllllllll} 
all & \(A\) & \(C\) & \(E\) & \(E\) & \(E\) & \(G\) & \(M\) & \(R\)
\end{tabular}
one subarray exhausted, take from other
aux[]


\section*{Merging demo}

Goal. Given two sorted subarrays \(a[1 \mathrm{o}]\) to \(\mathrm{a}[\mathrm{mid}]\) and \(\mathrm{a}[\mathrm{mid}+1]\) to \(a[h i]\), replace with sorted subarray \(a[1 o]\) to a[hi].
\begin{tabular}{lllllllllll} 
a[ & \(A\) & \(C\) & \(E\) & \(E\) & \(E\) & \(G\) & \(M\) & \(R\) & \(R\)
\end{tabular}
one subarray exhausted, take from other


\section*{Merging demo}

Goal. Given two sorted subarrays \(a[1 \mathrm{o}]\) to \(\mathrm{a}[\mathrm{mid}]\) and \(\mathrm{a}[\mathrm{mid}+1]\) to \(a[h i]\), replace with sorted subarray \(a[1 o]\) to a[hi].
a[] A C \(\quad\) E \(\quad \mathrm{E} \quad \mathrm{E} \quad \mathrm{G} \quad \mathrm{M} \quad \mathrm{R} \quad \mathrm{R}\)
one subarray exhausted, take from other
aux[]



\section*{Merging demo}

Goal. Given two sorted subarrays \(a[1 \mathrm{o}]\) to \(\mathrm{a}[\mathrm{mid}]\) and \(\mathrm{a}[\mathrm{mid}+1]\) to \(a[h i]\), replace with sorted subarray \(a[1 o]\) to a[hi].

one subarray exhausted, take from other


\section*{Merging demo}

Goal. Given two sorted subarrays \(a[1 \mathrm{o}]\) to \(\mathrm{a}[\mathrm{mid}]\) and \(\mathrm{a}[\mathrm{mid}+1]\) to \(a[h i]\), replace with sorted subarray \(a[1 o]\) to a[hi].
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline A & C & E & E & E & G & M & R & R & T \\
\hline
\end{tabular}
both subarrays exhausted, done
aux[]

i

\section*{Abstract in-place merge demo}

Goal. Given two sorted subarrays \(a[10]\) to \(a[m i d]\) and \(a[m i d+1]\) to \(a[h i]\), replace with sorted subarray \(a[1 o]\) to a[hi].


\section*{Merging: Java implementation}
```

private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
{
for (int k = 1o; k <= hi; k++)
aux[k] = a[k];
int i = lo, j = mid+1;
for (int k = 1o; k <= hi; k++)
{
if (i > mid) a[k] = aux[j++];
else if (j > hi) a[k] = aux[i++];
else if (less(aux[j], aux[i])) a[k] = aux[j++];
else a[k] = aux[i++];
}
}

```

\begin{tabular}{l|l|l|l|l|l|l} 
& & & \\
a[] & A & G & H & I & L & M
\end{tabular}

Mergesort: trace

result after recursive call

\section*{Mergesort: animation}

50 random items


A algorithm position in order
current subarray
not in order
http://www.sorting-algorithms.com/merge-sort

\section*{Mergesort: animation}

50 reverse-sorted items

http://www.sorting-algorithms.com/merge-sort

\section*{Mergesort: number of compares}

Proposition. Mergesort uses \(\leq N \lg N\) compares to sort an array of length \(N\).

Pf sketch. The number of compares \(C(N)\) to mergesort an array of length \(N\) satisfies the recurrence:


We solve the recurrence when \(N\) is a power of 2 :
(analysis cleaner in this case)
\[
D(N)=2 D(N / 2)+N, \text { for } N>1 \text {, with } D(1)=0 .
\]

\section*{Divide-and-conquer recurrence: proof by picture}

Proposition. If \(D(N)\) satisfies \(D(N)=2 D(N / 2)+N\) for \(N>1\), with \(D(1)=0\), then \(D(N)=N \lg N\).

Pf 1. [assuming \(N\) is a power of 2]


\section*{Mergesort: empirical analysis}

Running time estimates:
- Laptop executes \(10^{8}\) compares/second.
- Supercomputer executes \(10^{12}\) compares/second.


Bottom line. Good algorithms are better than supercomputers.

\section*{Mergesort: number of array accesses}

Proposition. Mergesort uses \(\leq 6 N \lg N\) array accesses to sort an array of length \(N\).

Pf sketch. The number of array accesses \(A(N)\) satisfies the recurrence:
\[
A(N) \leq A(\lceil N / 2\rceil)+A(\lfloor N / 2\rfloor)+6 N \text { for } N>1, \text { with } A(1)=0 .
\]

Key point. Any algorithm with the following structure takes \(N \log N\) time:
```

public static void linearithmic(int N)
{
if (N == 0) return;
linearithmic(N/2); \longleftarrow solve two problems
linearithmic(N/2); «
1inear(N);
}

```

Notable examples. FFT, hidden-line removal, Kendall-tau distance, ...

Mergesort analysis: memory
Proposition. Mergesort uses extra space proportional to \(N\). Pf. The array aux[] needs to be of length \(N\) for the last merge.


Def. A sorting algorithm is in-place if it uses \(\leq c \log N\) extra memory. Ex. Insertion sort, selection sort.

Challenge 1 (not hard). Use aux[] array of length \(\sim 1 / 2 N\) instead of \(N\). Challenge 2 (very hard). In-place merge. [Kronrod 1969]

\section*{Mergesort: practical improvements}

Use insertion sort for small subarrays.
- Mergesort has too much overhead for tiny subarrays.
- Cutoff to insertion sort for \(\approx 10\) items.
```

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
if (hi <= 1o + CUTOFF - 1)
{
Insertion.sort(a, lo, hi);
return;
}
int mid = 10 + (hi - 1o) / 2;
sort (a, aux, lo, mid);
sort (a, aux, mid+1, hi);
merge(a, aux, lo, mid, hi);
}

```

\section*{Mergesort: practical improvements}

Stop if already sorted.
- Is largest item in first half \(\leq\) smallest item in second half?
- Helps for partially-ordered arrays.
```

A B C D E F G H I J M N O P Q R S T U V
A B C D E F G H I J M N O P Q R S T U V

```
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
\{
    if (hi <= 10) return;
    int mid = 10 + (hi - 1o) / 2;
    sort (a, aux, lo, mid);
    sort (a, aux, mid+1, hi);
    if (!1ess(a[mid+1], a[mid])) return;
    merge(a, aux, lo, mid, hi);
\}

\section*{Mergesort and quicksort}

\section*{Algorithms}

Robert Sedgewick । Kevin Wayne
http://algs4.cs.princeton.edu

Sort countries by gold medals
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline NOC * & Gold & - & Silver & - & Bronze & \(\stackrel{\rightharpoonup}{*}\) & Total & * \\
\hline [1] United States (USA) & 46 & & 29 & & 29 & & 104 & \\
\hline - China (CHN)§ & 38 & & 28 & & 22 & & 88 & \\
\hline 1010 Great Britain (GBR)* & 29 & & 17 & & 19 & & 65 & \\
\hline \(\square\) Russia (RUS)§ & 24 & & 25 & & 32 & & 81 & \\
\hline : 0 \% South Korea (KOR) & 13 & & 8 & & 7 & & 28 & \\
\hline - Germany (GER) & 11 & & 19 & & 14 & & 44 & \\
\hline - France (FRA) & 11 & & 11 & & 12 & & 34 & \\
\hline - Italy (ITA) & 8 & & 9 & & 11 & & 28 & \\
\hline - Hungary (HUN)§ & 8 & & 4 & & 6 & & 18 & \\
\hline [-6. Australia (AUS) & 7 & & 16 & & 12 & & 35 & \\
\hline
\end{tabular}

Sort countries by total medals
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline NOC * & Gold & * & Silver & - & Bronze & \(\stackrel{\rightharpoonup}{*}\) & Total & - \\
\hline 䛒 U United States (USA) & 46 & & 29 & & 29 & & 104 & \\
\hline - China (CHN)§ & 38 & & 28 & & 22 & & 88 & \\
\hline - Russia (RUS)§ & 24 & & 25 & & 32 & & 81 & \\
\hline 120, Great Britain (GBR)* & 29 & & 17 & & 19 & & 65 & \\
\hline - Germany (GER) & 11 & & 19 & & 14 & & 44 & \\
\hline - Japan (JPN) & 7 & & 14 & & 17 & & 38 & \\
\hline [-1.7 Australia (AUS) & 7 & & 16 & & 12 & & 35 & \\
\hline - France (FRA) & 11 & & 11 & & 12 & & 34 & \\
\hline \% © South Korea (KOR) & 13 & & 8 & & 7 & & 28 & \\
\hline - Italy (ITA) & 8 & & 9 & & 11 & & 28 & \\
\hline
\end{tabular}

\section*{Comparator interface}

Comparator interface: sort using an alternate order.
public interface Comparator<Key>
```

int compare(Key v, Key w) comparekeys v and w

```

Required property. Must be a total order.
\begin{tabular}{|cc|}
\hline string order & example \\
natural order & Now is the time pre-1994 order for \\
case insensitive & is Now the time digraphs ch and II and rr \\
Spanish language & café cafetero cuarto churro nube ñoño \\
British phone book & McKinley Mackintosh \\
\hline
\end{tabular}

Comparator interface: system sort

To use with Java system sort:
- Create Comparator object.
- Pass as second argument to Arrays. sort().


Bottom line. Decouples the definition of the data type from the definition of what it means to compare two objects of that type.

\section*{Comparator interface: implementing}

To implement a comparator:
- Define a (nested) class that implements the Comparator interface.
- Implement the compare() method.
```

public class Student
{
private final String name;
private final int section;
public static class ByName implements Comparator<Student>
{
public int compare(Student v, Student w)
{ return v.name.compareTo(w.name); }
}
public static class BySection implements Comparator<Student>
{
public int compare(Student v, Student w)
{ return v.section - w.section; }
}
}

```

Comparator interface: implementing

To implement a comparator:
- Define a (nested) class that implements the Comparator interface.
- Implement the compare() method.

Arrays.sort(a, new Student.ByName());
\begin{tabular}{|c|c|c|c|c|}
\hline Andrews & 3 & A & \(664-480-0023\) & 097 Little \\
\hline Battle & 4 & C & \(874-088-1212\) & 121 Whitman \\
\hline Chen & 3 & A & \(991-878-4944\) & 308 Blair \\
\hline Fox & 3 & A & \(884-232-5341\) & 11 Dickinson \\
\hline Furia & 1 & A & \(766-093-9873\) & 101 Brown \\
\hline Gazsi & 4 & B & \(766-093-9873\) & 101 Brown \\
\hline Kanaga & 3 & B & \(898-122-9643\) & 22 Brown \\
\hline Rohde & 2 & A & \(232-343-5555\) & 343 Forbes \\
\hline
\end{tabular}

Arrays.sort(a, new Student.BySection());
\begin{tabular}{|c|c|c|c|c|}
\hline Furia & 1 & A & \(766-093-9873\) & 101 Brown \\
\hline Rohde & 2 & A & \(232-343-5555\) & 343 Forbes \\
\hline Andrews & 3 & A & \(664-480-0023\) & 097 Little \\
\hline Chen & 3 & A & \(991-878-4944\) & 308 Blair \\
\hline Fox & 3 & A & \(884-232-5341\) & 11 Dickinson \\
\hline Kanaga & 3 & B & \(898-122-9643\) & 22 Brown \\
\hline Battle & 4 & C & \(874-088-1212\) & 121 Whitman \\
\hline Gazsi & 4 & B & \(766-093-9873\) & 101 Brown \\
\hline
\end{tabular}

Comparator interface: implementing
To implement a comparator:
- Define a (nested) class that implements the Comparator interface.
- Implement the compare() method.
```

public class Student
{
public static final Comparator<Student> BY_NAME = new ByName();
public static final Comparator<Student> BY_SECTION = new BySection();
private final String name;
private final int section;
one Comparator for the class
privatestatic Class ByName implements Comparator<Student>
{
public int compare(Student v, Student w)
{ return v.name.compareTo(w.name); }
}
private static class BySection implements Comparator<Student>
{
public int compare(Student v, Student w)
{ return v.section - w.section; }
}

Comparator interface: implementing

To implement a comparator:

- Define a (nested) class that implements the Comparator interface.
- Implement the compare() method.
- Provide access to Comparator.

Arrays.sort(a, Student.BY_NAME);

Andrews	3	A	$664-480-0023$	097 Little
Battle	4	C	$874-088-1212$	121 Whitman
Chen	3	A	$991-878-4944$	308 Blair
Fox	3	A	$884-232-5341$	11 Dickinson
Furia	1	A	$766-093-9873$	101 Brown
Gazsi	4	B	$766-093-9873$	101 Brown
Kanaga	3	B	$898-122-9643$	22 Brown
Rohde	2	A	$232-343-5555$	343 Forbes

Arrays.sort(a, Student.BY_SECTION);

Furia	1	A	$766-093-9873$	101 Brown
Rohde	2	A	$232-343-5555$	343 Forbes
Andrews	3	A	$664-480-0023$	097 Little
Chen	3	A	$991-878-4944$	308 Blair
Fox	3	A	$884-232-5341$	11 Dickinson
Kanaga	3	B	$898-122-9643$	22 Brown
Battle	4	C	$874-088-1212$	121 Whitman
Gazsi	4	B	$766-093-9873$	101 Brown

Mergesort and quicksort

Algorithms

Robert Sedgewick । Kevin Wayne
http://algs4.cs.princeton.edu

Stability

A typical application. First, sort by name; then sort by section.

Selection.sort(a, new Student.ByName());

Andrews	3	A	$664-480-0023$	097 Little
Battle	4	C	$874-088-1212$	121 Whitman
Chen	3	A	$991-878-4944$	308 Blair
Fox	3	A	$884-232-5341$	11 Dickinson
Furia	1	A	$766-093-9873$	101 Brown
Gazsi	4	B	$766-093-9873$	101 Brown
Kanaga	3	B	$898-122-9643$	22 Brown
Rohde	2	A	$232-343-5555$	343 Forbes

Selection.sort(a, new Student.BySection());

Furia	A	A	$766-093-9873$	101 Brown
Rohde	2	A	$232-343-5555$	343 Forbes
Chen	3	A	$991-878-4944$	308 Blair
Fox	3	A	$884-232-5341$	11 Dickinson
Andrews	3	A	$664-480-0023$	097 Little
Kanaga	3	B	$898-122-9643$	22 Brown
Gazsi	4	B	$766-093-9873$	101 Brown
Battle	4	C	$874-088-1212$	121 Whitman

@\#\%\&@! Students in section 3 no longer sorted by name.

A stable sort preserves the relative order of items with equal keys.

Q. Which sorts are stable?

A. Need to check algorithm (and implementation).
sorted by time

Chicago	09:00:00
Phoenix	$09: 00: 03$
Houston	$09: 00: 13$
Chicago	$09: 00: 59$
Houston	$09: 01: 10$
Chicago	$09: 03: 13$
Seatt7e	$09: 10: 11$
Seatt7e	$09: 10: 25$
Phoenix	$09: 14: 25$
Chicago	$09: 19: 32$
Chicago	$09: 19: 46$
Chicago	$09: 21: 05$
Seatt7e	$09: 22: 43$
Seatt7e	$09: 22: 54$
Chicago	$09: 25: 52$
Chicago	$09: 35: 21$
Seatt7e	$09: 36: 14$
Phoenix	$09: 37: 44$

sorted by location (not stable)
$\left.\begin{aligned} & \text { Chicago 09:25:52 } \\ & \text { Chicago 09:03:13 } \\ & \text { Chicago 09:21:05 } \\ & \text { Chicago 09:19:46 } \\ & \text { Chicago 09:19:32 } \\ & \text { Chicago 09:00:00 } \\ & \text { Chicago 09:35:21 } \\ & \text { Chicago 09:00:59 } \\ & \text { Houston 09:01:10 } \\ & \text { Houston 09:00:13 } \\ & \text { Phoenix 09:37:44 } \\ & \text { Phoenix 09:00:03 } \\ & \text { Phoenix } 09: 14: 25 \\ & \text { Seattle } 09: 10: 25 \\ & \text { Seattle } 09: 36: 14 \\ & \text { Seattle } 09: 22: 43 \\ & \text { Seattle } 09: 10: 11 \\ & \text { sorted } \\ & \text { Seattle } 09: 22: 54\end{aligned} \right\rvert\, \quad$ time
sorted by location (stable)
Chicago 09:00:00
Chicago 09:00:59
Chicago 09:03:13
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Chicago 09:25:52
Chicago 09:35:21
Houston 09:00:13
Houston 09:01:10
Phoenix 09:00:03
Phoenix 09:14:25
Phoenix 09:37:44
Seattle 09:10:11
Seattle 09:10:25
Seattle 09:22:43
Seattle 09:22:54
Seattle 09:36:14

Stability: selection sort

Proposition. Selection sort is not stable.

```
public class Selection
{
    public static void sort(Comparable[] a)
    {
        int N = a.length;
        for (int i = 0; i < N; i++)
        {
            int min = i;
            for (int j = i+1; j < N; j++)
            if (less(a[j], a[min]))
                min = j;
                exch(a, i, min);
        }
    }
}
```

i	\min	0	1	2
0	2	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	$\mathrm{~A}_{3}$
1	1	$\mathrm{~A}_{3}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$
2	2	$\mathrm{~A}_{3}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$
		$\mathrm{~A}_{3}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$

Pf by counterexample. Long-distance exchange can move one equal item past another one.

Stability: insertion sort

Proposition. Insertion sort is stable.

```
public class Insertion
{
        public static void sort(Comparable[] a)
        {
            int N = a.length;
            for (int i = 0; i < N; i++)
            for (int j = i; j > 0 && less(a[j], a[j-1]); j--)
                exch(a, j, j-1);
    }
}
\begin{tabular}{ccccccc}
\(\mathbf{i}\) & \(\mathbf{j}\) & 0 & 1 & 2 & 3 & 4 \\
\hline 0 & 0 & \(\mathrm{~B}_{1}\) & \(\mathrm{~A}_{1}\) & \(\mathrm{~A}_{2}\) & \(\mathrm{~A}_{3}\) & \(\mathrm{~B}_{2}\) \\
1 & 0 & \(\mathrm{~A}_{1}\) & \(\mathrm{~B}_{1}\) & \(\mathrm{~A}_{2}\) & \(\mathrm{~A}_{3}\) & \(\mathrm{~B}_{2}\) \\
2 & 1 & \(\mathrm{~A}_{1}\) & \(\mathrm{~A}_{2}\) & \(\mathrm{~B}_{1}\) & \(\mathrm{~A}_{3}\) & \(\mathrm{~B}_{2}\) \\
3 & 2 & \(\mathrm{~A}_{1}\) & \(\mathrm{~A}_{2}\) & \(\mathrm{~A}_{3}\) & \(\mathrm{~B}_{1}\) & \(\mathrm{~B}_{2}\) \\
4 & 4 & \(\mathrm{~A}_{1}\) & \(\mathrm{~A}_{2}\) & \(\mathrm{~A}_{3}\) & \(\mathrm{~B}_{1}\) & \(\mathrm{~B}_{2}\) \\
& & \(\mathrm{~A}_{1}\) & \(\mathrm{~A}_{2}\) & \(\mathrm{~A}_{3}\) & \(\mathrm{~B}_{1}\) & \(\mathrm{~B}_{2}\)
\end{tabular}
```

Pf. Equal items never move past each other.

Stability: mergesort

Proposition. Mergesort is stable.

```
public class Merge
{
    private static void merge(...)
    { /* as before */ }
    private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
    {
        if (hi <= lo) return;
        int mid = 1o + (hi - lo) / 2;
        sort(a, aux, lo, mid);
        sort(a, aux, mid+1, hi);
        merge(a, aux, lo, mid, hi);
    }
    public static void sort(Comparable[] a)
    { /* as before */ }
}
```

Pf. Suffices to verify that merge operation is stable.

Stability: mergesort

Proposition. Merge operation is stable.

```
private static void merge(...)
{
    for (int k = 1o; k <= hi; k++)
        aux[k] = a[k];
    int i = 1o, j = mid+1;
    for (int k = lo; k <= hi; k++)
    {
        if (i > mid) a[k] = aux[j++];
        else if (j > hi) a[k] = aux[i++];
        else if (less(aux[j], aux[i])) a[k] = aux[j++];
        else a[k] = aux[i++];
    }
}
\begin{tabular}{ccccc}
0 & 1 & 2 & 3 & 4 \\
\(\mathrm{~A}_{1}\) & \(\mathrm{~A}_{2}\) & \(\mathrm{~A}_{3}\) & B & D
\end{tabular}\(\quad\)\begin{tabular}{ccccccc}
5 & 6 & 7 & 8 & 9 & 1 \\
\\
\(\mathrm{~A}_{4}\) & \(\mathrm{~A}_{5}\) & C & E & F & G
\end{tabular}
```

Pf. Takes from left subarray if equal keys.

Mergesort and quicksort

Algorithms

Robert Sedgewick । Kevin Wayne

Quicksort

Basic plan.

- Shuffle the array.
- Partition so that, for some j
- entry $a[j]$ is in place
- no larger entry to the left of j
- no smaller entry to the right of j
- Sort each subarray recursively.

Quicksort: Java implementation

```
public class Quick
{
    private static int partition(Comparable[] a, int lo, int hi)
    { /* see previous slide */ }
    public static void sort(Comparable[] a)
    {
        StdRandom.shuff1e(a);
        sort(a, 0, a.length - 1);
    }
    private static void sort(Comparable[] a, int lo, int hi)
    {
        if (hi <= lo) return;
        int j = partition(a, lo, hi);
        sort(a, lo, j-1);
        sort(a, j+1, hi);
    }
}
```


Quicksort partitioning demo

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < $a[1 o]$).
- Scan j from right to left so long as (a[j] > $a[1 o]$).
- Exchange a[i] with a[j].

K	R	A	T	E	L	E	P	U	I	M	Q	C	X	0	S
\uparrow	\uparrow														\dagger
Іo															j

Quicksort partitioning demo

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < $a[1 o]$).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

| K | R | A | T | E | L | E | P | U | I | M | Q | C | X | O | S |
| :---: |
| \uparrow | \uparrow | | | | | | | | | | | | | | |
| lo | i | | | | | | | | | | | | | | |

Quicksort partitioning demo

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < $a[1 o]$).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

| K | R | A | T | E | L | E | P | U | I | M | Q | C | X | O | S | |
| :---: |
| \uparrow | \uparrow | | | | | | | | | | | | | | | |
| lo | i | | | | | | | | | | | | | | | |

Quicksort partitioning demo

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < $a[1 o]$).
- Scan j from right to left so long as (a[j] > $a[1 o]$).
- Exchange a[i] with a[j].

| K | R | A | T | E | L | E | P | U | I | M | Q | C | X | O | S | |
| :---: |
| \uparrow | \uparrow | | | | | | | | | | | | | | | |
| lo | i | | | | | | | | | | | | | | | |

Quicksort partitioning demo

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < $a[1 o]$).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

K	C	A	T	E	L	E	P	U	I	M	Q	R	X	0	S
\uparrow	\uparrow											\uparrow			
Io	i											j			

Quicksort partitioning demo

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < $a[1 o]$).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

| K | C | A | T | E | L | E | P | U | I | M | Q | R | X | O | S | |
| :--- |
| \uparrow | | \uparrow | | | | | | | | | | | | | | |
| lo | | i | | | | | | | | | | | | | | |

Quicksort partitioning demo

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < $a[1 o]$).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

K	C	A	T	E	L	E	P	U	I	M	Q	R	X	0	S
\uparrow			\uparrow									\uparrow			
10			i									j			

stop i scan because a[i] >= a[lo]

Quicksort partitioning demo

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < $a[1 o]$).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

K	C	A	T	E	L	E	P	U	1	M	Q	R	X	O	S
\uparrow			\uparrow								\uparrow				
10			i								j				

Quicksort partitioning demo

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < $a[1 o]$).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

| K | C | A | T | E | L | E | P | U | I | M | Q | R | X | O |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\quad S

Quicksort partitioning demo

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < $a[1 o]$).
- Scan j from right to left so long as (a[j] > $a[1 o]$).
- Exchange a[i] with a[j].

K	C	A	T	E	L	E	P	U	I	M	Q	R	X	0	S
\uparrow			\uparrow						\uparrow						
Io			i						j						

Quicksort partitioning demo

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < $a[1 o]$).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

K	C	A	1	E	L	E	P	U	T	M	Q	R	X	0	S
\uparrow			\uparrow						\uparrow						
10			i						j						

Quicksort partitioning demo

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < $a[1 o]$).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

K	C	A	I	E	L	E	P	U	T	M	Q	R	X	0	S
\uparrow				\uparrow					\uparrow						
lo				i					j						

Quicksort partitioning demo

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < $a[1 o]$).
- Scan j from right to left so long as (a[j] > $a[1 o]$).
- Exchange a[i] with a[j].

K	C	A	I	E	L	E	P	U	T	M	Q	R	X	0	S
\uparrow					\uparrow				\uparrow						
lo					i				j						

Quicksort partitioning demo

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < $a[1 o]$).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

K	C	A	1	E	L	E	P	U	T	M	Q	R	X	0	S
\uparrow					\uparrow			\uparrow							
10					i			j							

Quicksort partitioning demo

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < $a[1 o]$).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

K	C	A	I	E	L	E	P	U	T	M	Q	R	X	0	S
\uparrow					\uparrow		\uparrow								
Io					i		j								

Quicksort partitioning demo

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < $a[1 o]$).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

K	C	A	I	E	L	E	P	U	T	M	Q	R	X	0	S
\uparrow					\uparrow	\uparrow									
Io					i	j									

Quicksort partitioning demo

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < $a[1 o]$).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

K	C	A	I	E	E	L	P	U	T	M	Q	R	X	0	S
\uparrow					\uparrow	\uparrow									
Io					1	j									

Quicksort partitioning demo

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < $a[1 o]$).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

K	C	A	I	E	E	L	P	U	T	M	Q	R	X	0	S
\uparrow						$\uparrow \uparrow$									
Io						i j									

Quicksort partitioning demo

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < $a[1 o]$).
- Scan j from right to left so long as (a[j] > a[lo]).
- Exchange a[i] with a[j].

K	C	A	1	E	E	L	P	U	T	M	Q	R	X	0	S
\uparrow					\uparrow	\uparrow									
10					j	i									

Quicksort partitioning demo

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < $a[1 o]$).
- Scan j from right to left so long as (a[j] > $a[1 o]$).
- Exchange a[i] with a[j].

When pointers cross.

- Exchange a[1o] with a[j].

K	C	A	I	E	E	L	P	U	T	M	Q	R	X	0	S
\uparrow					\uparrow	\uparrow									
Io					j	i									

Quicksort partitioning demo

Repeat until i and j pointers cross.

- Scan i from left to right so long as (a[i] < $a[1 o]$).
- Scan j from right to left so long as (a[j] > $a[1 o]$).
- Exchange a[i] with a[j].

When pointers cross.

- Exchange a[1o] with a[j].

E	C	A	I	E	K	L	P	U	T	M	Q	R	X	0	S
\uparrow					\uparrow										\uparrow
Io					j										hi

Quicksort: Java code for partitioning

```
private static int partition(Comparable[] a, int lo, int hi)
{
    int i = lo, j = hi+1;
    while (true)
    {
        while (less(a[++i], a[lo]))
            if (i == hi) break; find item on left to swap
        while (less(a[lo], a[--j]))
            if (j == lo) break;
        if (i >= j) break;
        exch(a, i, j);
    }
```

 swap with partitioning item
 \(\operatorname{exch}(a, 10, j)\); return index of item now known to be in place
 return j;
 \}

during

after

Quicksort animation

50 random items

Quicksort: implementation details

Partitioning in-place. Using an extra array makes partitioning easier (and stable), but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is trickier than it might seem.

Preserving randomness. Shuffling is needed for performance guarantee. Equivalent alternative. Pick a random partitioning item in each subarray.

Quicksort: best-case analysis

Best case. Number of compares is $\sim N \lg N$.

Quicksort: worst-case analysis

Worst case. Number of compares is $\sim 1 / 2 N^{2}$.

Quicksort: summary of performance characteristics

Quicksort is a randomized algorithm.

- Guaranteed to be correct.
- Running time depends on random shuffle.

Average case. Expected number of compares is $\sim 1.39 N \lg N$.

- 39\% more compares than mergesort.
- Faster than mergesort in practice because of less data movement.

Best case. Number of compares is $\sim N \lg N$.
Worst case. Number of compares is $\sim 1 / 2 N^{2}$.
[but more likely that lightning bolt strikes computer during execution]

Quicksort: empirical analysis

Running time estimates:

- Home PC executes 10^{8} compares/second.
- Supercomputer executes 10^{12} compares/second.

	insertion sort (${ }^{2}$)			mergesort ($\mathrm{N} \log \mathrm{N}$)			quicksort ($\mathrm{N} \log \mathrm{N}$)		
computer	thousand	million	billion	thousand	million	billion	thousand	million	billion
home	instant	2.8 hours	317 years	instant	1 second	18 min	instant	0.6 sec	12 min
super	instant	1 second	1 week	instant	instant	instant	instant	instant	instant

Lesson 1. Good algorithms are better than supercomputers.
Lesson 2. Great algorithms are better than good ones.

Quicksort properties

Proposition. Quicksort is an in-place sorting algorithm.
Pf.

- Partitioning: constant extra space.
- Depth of recursion: logarithmic extra space (with high probability).
can guarantee logarithmic depth by recurring
on smaller subarray before larger subarray (requires using an explicit stack)

Proposition. Quicksort is not stable.
Pf. [by counterexample]

\mathbf{i}	\mathbf{j}	0	1	2	3
		$\mathrm{~B}_{1}$	C_{1}	C_{2}	$\mathrm{~A}_{1}$
1	3	$\mathrm{~B}_{1}$	C_{1}	C_{2}	$\mathrm{~A}_{1}$
1	3	$\mathrm{~B}_{1}$	$\mathrm{~A}_{1}$	C_{2}	C_{1}
0	1	$\mathrm{~A}_{1}$	$\mathrm{~B}_{1}$	C_{2}	C_{1}

Quicksort: practical improvements

Insertion sort small subarrays.

- Even quicksort has too much overhead for tiny subarrays.
- Cutoff to insertion sort for ≈ 10 items.

```
private static void sort(Comparable[] a, int lo, int hi)
{
    if (hi <= 1o + CUTOFF - 1)
    {
        Insertion.sort(a, 1o, hi);
        return;
    }
    int j = partition(a, lo, hi);
    sort(a, lo, j-1);
    sort(a, j+1, hi);
}
```


Sorting summary

	inplace?	stable?	best	average	worst	remarks
selection	\checkmark		$1 / 2 N^{2}$	$1 / 2 N^{2}$	$1 / 2 N^{2}$	N exchanges
insertion	\checkmark	\checkmark	N	$1 / 4 N^{2}$	$1 / 2 N^{2}$	use for small N or partially ordered
merge	\checkmark	\checkmark	$1 / 2 N \lg N$	$N \lg N$	$N \lg N$	$N \log N$ guarantee; stable
quick	\checkmark		$N \lg N$	$2 N \ln N$	$1 / 2 N^{2}$	$N \log N$ probabilistic guarantee;
fastest in practice						

Goal. Given an array of N items, find the $k^{\text {th }}$ smallest item.
Ex. Min $(k=0)$, $\max (k=N-1)$, median $(k=N / 2)$.

Applications.

- Order statistics.
" Find the "top k."

Use theory as a guide.

- Easy $N \log N$ upper bound. How?
- Easy N lower bound. Why?

Which is true?

- $N \log N$ lower bound?
- N upper bound?

is selection as hard as sorting?
is there a linear-time algorithm?

Quick-select

Partition array so that:

- Entry a[j] is in place.
- No larger entry to the left of j.
- No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k. public static Comparable select(Comparable[] a, int k)
\{

```
StdRandom.shuffle(a);
int lo = 0, hi = a.length - 1;
while (hi > lo)
{
    int j = partition(a, lo, hi);
    if (j < k) lo = j + 1;
    else if (j > k) hi = j - 1;
    else return a[k];
}
return a[k];
```


Quick-select demo

Partition array so that:

- Entry a[j] is in place.
- No larger entry to the left of j.
- No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.
select element of rank $k=5$

0	1	2	3	4	5	6	7	8	9	10	11	12	13
50	21	28	65	39	59	56	22	95	12	90	53	32	77

Quick-select demo

Partition array so that:

- Entry a[j] is in place.
- No larger entry to the left of j.
- No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.
partition on leftmost entry

$$
k=5
$$

Quick-select demo

Partition array so that:

- Entry a[j] is in place.
- No larger entry to the left of j.
- No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.
partitioned array

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
22	21	28	33	39	32	12			56	90	53	59	77	65

Quick-select demo

Partition array so that:

- Entry a[j] is in place.
- No larger entry to the left of j.
- No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.
can safely ignore right subarray

0	1	2	3	4	5	6	7	8	9	10	11	12	13
$\mathbf{2 2}$	21	28	33	39	32	12	50	95	56	90	53	59	77

Quick-select demo

Partition array so that:

- Entry a[j] is in place.
- No larger entry to the left of j.
- No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.
partition on leftmost entry

$$
k=5
$$

Quick-select demo

Partition array so that:

- Entry a[j] is in place.
- No larger entry to the left of j.
- No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.
partitioned array

0	1	2	3	4	5	6	7	8	9	10	11	12	13
12	21	22	33	39	32	28	50	95	56	90	53	59	77

Quick-select demo

Partition array so that:

- Entry a[j] is in place.
- No larger entry to the left of j.
- No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.
can safely ignore left subarray

0	1	2	3	4	5	6	7	8	9	10	11	12	13
12	21	22	33	39	32	28	50	95	56	90	53	59	77

Quick-select demo

Partition array so that:

- Entry a[j] is in place.
- No larger entry to the left of j.
- No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.
partition on leftmost entry

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
12	21	22	33		32	28	50	95	56	90	53	59	77	65

Quick-select demo

Partition array so that:

- Entry a[j] is in place.
- No larger entry to the left of j.
- No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.
partitioned array

0	1	2	3	4	5	6	7	8	9	10	11	12	13
12	21	22	32	28	33	39	50	95	56	90	53	59	77

Quick-select demo

Partition array so that:

- Entry a[j] is in place.
- No larger entry to the left of j.
- No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.
stop: partitioning item is at index k

0	1	2	3	4	5	6	7	8	9	10	11	12	13
12	21	22	32	28	30	39	50	95	56	90	53	59	77

Quick-select: mathematical analysis

Proposition. Quick-select takes linear time on average.

Pf sketch.

- Intuitively, each partitioning step splits array approximately in half: $N+N / 2+N / 4+\ldots+1 \sim 2 N$ compares

Algorithms

PRIORITY QUEUES

Modified by: Dr. Fahed Jubair and Dr. Ramzi Saifan
Computer Engineering Department
University of Jordan

PRIORITY QUEUES

- API and elementary implementations

Algorithms

Robert Sedgewick । Kevin Wayne

Collections

A collection is a data types that store groups of items.

data type	key operations	data structure
stack	PUSH, POP	linked list, resizing array
queue	ENQUEUE, DEQUEUE	linked list, resizing array
priority queue	INSERT, DeLETE-MAX	binary heap
symbol table	PUT, GET, DeLETE	BST, hash table
set	ADD, CONTAINS, DELETE	BST, hash table

" Show me your code and conceal your data structures, and I shall continue to be mystified. Show me your data structures, and I won't usually need your code; it'll be obvious." - Fred Brooks

Priority queue

Collections. Insert and delete items. Which item to delete?

Stack. Remove the item most recently added.
Queue. Remove the item least recently added.
Randomized queue. Remove a random item.

Priority queue. Remove the largest (or smallest) item.

operation	argument	return value
insert	P	
insert	Q	
insert	E	
remove max		Q
insert	X	
insert	A	
insert	M	
remove max		X
insert insert	P	
insert	L	
remove max	E	P

Priority queue applications

- Event-driven simulation.
- Numerical computation.
- Data compression.
- Graph searching.
- Number theory.
- Artificial intelligence.
- Statistics.
- Operating systems.
- Computer networks.
- Discrete optimization.
- Spam filtering.
[customers in a line, colliding particles]
[reducing roundoff error]
[Huffman codes]
[Dijkstra's algorithm, Prim's algorithm]
[sum of powers]
[A* search]
[online median in data stream]
[load balancing, interrupt handling]
[web cache]
[bin packing, scheduling]
[Bayesian spam filter]

Generalizes: stack, queue, randomized queue.

Priority queue API

Requirement. Generic items are Comparable.

public class MaxPQ<Key extends Comparable<Key>>		
	MaxPQ()	create an empty priority queue
	MaxPQ(Key[] a)	create a priority queue with given keys
void	insert(Key v)	insert a key into the priority queue
Key	de7Max()	return and remove the largest key
boolean	isEmpty ()	is the priority queue empty?
Key	$\max ()$	return the largest key
int	size()	number of entries in the priority queue

Priority queue API

Requirement. Generic items are Comparable.

	MinPQ()	create an empty priority queue
	MinPQ(Key[] a)	create a priority queue with given keys
void	insert(Key v)	insert a key into the priority queue
Key	delMin()	return and remove the smallest key
boolean	isEmpty ()	is the priority queue empty?
Key	$\min ()$	return the smallest key
int	size()	number of entries in the priority queue

Priority queue: unordered array implementation

```
public class UnorderedArrayMaxPQ<Key extends Comparable<Key>>
{
    private Key[] pq; // pq[i] = ith element on pq
    private int N; // number of elements on pq
    public UnorderedArrayMaxPQ(int capacity)
    { pq = (Key[]) new Comparable[capacity]; }
    pub1ic boolean isEmpty(){ return N == 0; }
    public void insert(Key x)
    { pq[N++] = x; }
    public Key delMax()
    {
        int max = 0;
        for (int i = 1; i < N; i++)
            if (less(max, i)) max
        exch(max, N-1); to prevent loitering
```

 return pq[--N];
 \}
 \}

Priority queue elementary implementations
Challenge. Implement all operations efficiently.

implementation	insert	del max	\max
unordered array	1	N	N
ordered array	N	1	1
goal	$\log N$	$\log N$	$\log N$

order of growth of running time for priority queue with \mathbf{N} items

Priority Queues

Robert Sedgewick । Kevin Wayne

Complete binary tree

Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Perfectly balanced, except for bottom level.

complete tree with $\mathrm{N}=16$ nodes (height =4)

Property. Height of complete tree with N nodes is $\lfloor\lg N\rfloor$.
Pf. Height increases only when N is a power of 2 .

Binary heap representations
Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered binary tree.

- Keys in nodes.
- Parent's key no smaller than children's keys.

Array representation.

- Indices start at 1.
- Take nodes in level order.
- No explicit links needed!

Binary heap properties

Proposition. Largest key is a[1], which is root of binary tree.

Proposition. Can use array indices to move through tree.

- Parent of node at k is at $\mathrm{k} / 2$.
- Children of node at k are at $2 k$ and $2 k+1$.

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
heap ordered

| T | P | R | N | H | O | A | E | I | G |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
insert S

$$
\begin{array}{lllllllllll}
\mathrm{T} & \mathrm{P} & \mathrm{R} & \mathrm{~N} & \mathrm{H} & \mathrm{O} & \mathrm{~A} & \mathrm{E} & \mathrm{I} & \mathrm{G}
\end{array}
$$

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
insert S

$$
\begin{array}{lllllllllll}
\mathrm{T} & \mathrm{P} & \mathrm{R} & \mathrm{~N} & \mathrm{H} & \mathrm{O} & \mathrm{~A} & \mathrm{E} & \mathrm{I} & \mathrm{G} & \mathrm{~S}
\end{array}
$$

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
insert S

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
insert S

T S R N P O A E I G H

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
heap ordered

T S R N P O A E I G H

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
remove the maximum

$\begin{array}{lllllllllll}\text { T } & \text { S } & \text { R } & \text { N } & \text { P } & \text { O } & \text { A } & \text { E } & \text { I } & \text { G } & \text { H }\end{array}$

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
remove the maximum

$$
\begin{array}{lllllllllll}
\mathrm{T} & \mathrm{~S} & \mathrm{R} & \mathrm{~N} & \mathrm{P} & \mathrm{O} & \mathrm{~A} & \mathrm{E} & \mathrm{I} & \mathrm{G} & \mathrm{H}
\end{array}
$$

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
remove the maximum

| H | S | R | N | P | O | A | E | I | G | T |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
remove the maximum

$$
\begin{array}{l|l|l|l|l|l|l|ll}
H & S & R & N & P & O & A & E & I \\
G & T
\end{array}
$$

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
remove the maximum

$$
\begin{array}{lllllllllll}
\mathrm{S} & \mathrm{H} & \mathrm{R} & \mathrm{~N} & \mathrm{P} & \mathrm{O} & \mathrm{~A} & \mathrm{E} & \mathrm{I} & \mathrm{G} & \mathrm{~T} \\
1 & 2 & & & & & & & & &
\end{array}
$$

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
remove the maximum

$$
\begin{array}{lllllllllll}
\hline \mathrm{S} & \mathrm{P} & \mathrm{R} & \mathrm{~N} & \mathrm{H} & \mathrm{O} & \mathrm{~A} & \mathrm{E} & \mathrm{I} & \mathrm{G} & \mathrm{~T} \\
\hline 1 & 2 & & & 5 & & & & & &
\end{array}
$$

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
heap ordered

$$
\begin{array}{llllllllll}
S & P & R & N & H & O & A & E & I & G
\end{array}
$$

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
remove the maximum

$$
\begin{array}{l|l|l|l|l|l|l|l|l}
\text { S } & \text { P } & R & N & H & O & A & E & I \\
\hline
\end{array}
$$

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
remove the maximum

$$
\begin{array}{l|l|l|l|l|l|l|l|l|}
\hline S & P & R & N & H & O & A & E & I \\
\hline
\end{array}
$$

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
remove the maximum

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
remove the maximum

$$
\begin{array}{l|l|l|l|l|l|l|l|l}
\text { G } & \mathrm{P} & \mathrm{R} & \mathrm{~N} & \mathrm{H} & \mathrm{O} & \mathrm{~A} & \mathrm{E} & \mathrm{I} \\
\hline
\end{array}
$$

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
remove the maximum

| R | P | G | N | H | O | A | E | I | S |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | | 3 | | | | | | | |

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
remove the maximum

| R | P | O | N | H | G | A | E | I | S |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | | 3 | | | 6 | | | | |

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
heap ordered

R	P	O	N	H	G	A	E	I

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
insert S


```
R P
```


Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
insert S


```
R P
```


Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
insert S

| R | P | O | N | S | G | A | E | I | H |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
insert S

R	S	O	N	P	G	A	E	I

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
insert S

S	R	O	N	P	G	A	E	I
	H							
1	2			5				

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.
heap ordered

$$
\begin{array}{lllllllllll}
S & R & O & N & P & G & A & E & \text { I } & \text { H }
\end{array}
$$

Promotion in a heap

Scenario. Child's key becomes larger key than its parent's key.

To eliminate the violation:

- Exchange key in child with key in parent.
- Repeat until heap order restored.

```
private void swim(int k)
{
    while (k > 1 && 1ess(k/2, k))
    {
        exch(k, k/2);
        k = k/2; parent of node at k is at k/2
    }
}
```


Peter principle. Node promoted to level of incompetence.

Insertion in a heap

Insert. Add node at end, then swim it up. Cost. At most $\lg N$ compares.

```
public void insert(Key x)
```

\{
$\mathrm{pq}[++\mathrm{N}]=\mathrm{x}$;
swim(N);
\}

Demotion in a heap

Scenario. Parent's key becomes smaller than one (or both) of its children's.

To eliminate the violation:

- Exchange key in parent with key in larger child.
- Repeat until heap order restored.
private void sink(int k)
\{
while (2*k <= N)
\{
int $j=2 * k ;$
if (j < N \&\& less(j, j+1)) j++;
if (!less(k, j)) break;
exch(k, j);
k = j;

are 2 k and $2 \mathrm{k}+1$
\}
\}
Power struggle. Better subordinate promoted.

Delete the maximum in a heap

Delete max. Exchange root with node at end, then sink it down.
Cost. At most $2 \lg N$ compares.

```
public Key delMax()
{
    Key max = pq[1];
    exch(1, N--);
    sink(1); \longleftarrow prevent loitering
    pq[N+1] = nul1;
    return max;
}
```


Binary heap: Java implementation

```
pub1ic class MaxPQ<Key extends Comparable<Key>>
{
    private Key[] pq;
    private int N;
    public MaxPQ(int capacity)
    { pq = (Key[]) new Comparable[capacity+1]; }
    public boolean isEmpty()
    { return N == 0; }
    public void insert(Key key)
    public Key delMax()
    { /* see previous code */ }
    private void swim(int k)
    private void sink(int k)
    { /* see previous code */ }
    private boolean less(int i, int j)
    { return pq[i].compareTo(pq[j]) < 0; }
    private void exch(int i, int j)
    { Key t = pq[i]; pq[i] = pq[j]; pq[j] = t; }
```


Priority queues implementation cost summary

implementation	insert	del \max	\max
unordered array	1	N	N
ordered array	N	1	1
binary heap	$\log N$	$\log N$	1
order-of-growth of running time for priority queue with \mathbf{N} items			

Binary heap: practical improvements

Multiway heaps.

- Complete d-way tree.
- Parent's key no smaller than its children's keys.
- Swim takes $\log _{d} N$ compares; sink takes $d \log _{d} N$ compares.

3-way heap

Priority queues implementation cost summary

implementation	insert	del max	max
unordered array	1	N	N
ordered array	N	1	1
binary heap	$\log N$	$\log N$	1
d-ary heap	$\log _{d} N$	$d \log _{d} N$	1
Fibonacci	1	$\log N^{\dagger}$	1
Brodal queue	1	$\log N$	1
impossible	1	1	1

order-of-growth of running time for priority queue with \mathbf{N} items

Binary heap considerations

Underflow and overflow.

- Underflow: throw exception if deleting from empty PQ.
- Overflow: add no-arg constructor and use resizing array.

Minimum-oriented priority queue.

- Replace less() with greater().
leads to $\log N$
- Implement greater().

Other operations.

- Remove an arbitrary item.
- Change the priority of an item.
 can implement efficiently with sink() and swim()

PRIORITY QUEUES

Algorithms

Robert Sedgewick । Kevin Wayne

Sorting with a binary heap

Q. What is this sorting algorithm?

```
public void sort(String[] a)
{
    int N = a.length;
    MaxPQ<String> pq = new MaxPQ<String>();
    for (int i = 0; i < N; i++)
        pq.insert(a[i]);
    for (int i = N-1; i >= 0; i--)
        a[i] = pq.de7Max();
}
```

Q. What are its properties?
A. $N \log N$, extra array of length N, not stable.

Heapsort intuition. A heap is an array; do sort in place.

Heapsort

Basic plan for in-place sort.

- View input array as a complete binary tree.
- Heap construction: build a max-heap with all N keys.
- Sortdown: repeatedly remove the maximum key.
keys in arbitrary order

$\begin{array}{lllllllllll}S & O & R & T & E & X & A & M & P & L & E\end{array}$
build max heap (in place)

sorted result (in place)

Heapsort: Java implementation

```
public class Heap
{
    public static void sort(Comparable[] a)
    {
        int N = a.length;
        for (int k = N/2; k >= 1; k--)
            sink(a, k, N);
        while (N > 1)
        {
            exch(a, 1, N);
            sink(a, 1, butN);
        }
    }
```

 private static void sink(Comparable[] a, int k, int N)
 \{ /* as before *
 private static booleam less(Comparable[] a, int i, int j)
 \{ /* as before */ \} but convert from 1 -based
 indexing to 0 -base indexing

Heapsort demo

Heap construction. Build max heap using bottom-up method.
we assume array entries are indexed 1 to N
array in arbitrary order

S	O	R	T	E	X	A	M	P	L	E
1	2	3	4	5	6	7	8	9	10	11

Heapsort demo

Heap construction. Build max heap using bottom-up method.

S	O	R	T	E	X	A	M	P	L	E
					6	7	8	9	10	11

Heapsort demo

Heap construction. Build max heap using bottom-up method.
sink 5

S O
R
T
E
A
M

5

Heapsort demo

Heap construction. Build max heap using bottom-up method.
sink 5

S	O	R	T	L	X	A	M	P	E	E

Heapsort demo

Heap construction. Build max heap using bottom-up method.
sink 5

$$
\begin{array}{ll|l|l|l|l|l|l|l}
\text { S } & \mathrm{O} & \mathrm{R} & \mathrm{~T} & \mathrm{~L} & \mathrm{X} & \mathrm{~A} & \mathrm{M} & \mathrm{P}
\end{array} \mathrm{E}
$$

Heapsort demo

Heap construction. Build max heap using bottom-up method.
sink 4

S	O	R	T	L	X	A	M	P	E	E

Heapsort demo

Heap construction. Build max heap using bottom-up method.
sink 4

$$
\begin{array}{llllll|l|l|l|l|l}
\mathrm{S} & \mathrm{O} & \mathrm{R} & \mathrm{~T} & \mathrm{~L} & \mathrm{X} & \mathrm{~A} & \mathrm{M} & \mathrm{P} & \mathrm{E} & \mathrm{E} \\
\hline
\end{array}
$$

Heapsort demo

Heap construction. Build max heap using bottom-up method.
sink 3

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|l}
\hline S & O & R & T & L & X & A & M & P & E & E
\end{array}
$$

Heapsort demo

Heap construction. Build max heap using bottom-up method.
sink 3

S	O	X	T	L	R	A	M	P	E	E

Heapsort demo

Heap construction. Build max heap using bottom-up method.
sink 3

$$
\begin{array}{l|l|l|l|l|l|l|ll}
\text { S } & O & X & T & L & A & A & M & P \\
\hline
\end{array}
$$

Heapsort demo

Heap construction. Build max heap using bottom-up method.
sink 2

S	O	X	T	L	R	A	M	P	E

Heapsort demo

Heap construction. Build max heap using bottom-up method.
sink 2

S	T	X	O	L	R	A	M	P

Heapsort demo

Heap construction. Build max heap using bottom-up method.
sink 2

S	T	X	P	L	R	A	M	O	E	E
	2		4					9		

Heapsort demo

Heap construction. Build max heap using bottom-up method.
sink 2

S	T	X	P	L	R

A M O E
E

Heapsort demo

Heap construction. Build max heap using bottom-up method.
sink 1

$$
\begin{array}{lllllllllll}
\text { S } & \mathrm{T} & \mathrm{X} & \mathrm{P} & \mathrm{~L} & \mathrm{R} & \mathrm{~A} & \mathrm{M} & \mathrm{O} & \mathrm{E} & \mathrm{E}
\end{array}
$$

Heapsort demo

Heap construction. Build max heap using bottom-up method.
sink 1

$$
\begin{array}{lllllllllll}
X & T & S & P & L & R & A & M & O & E & E
\end{array}
$$

Heapsort demo

Heap construction. Build max heap using bottom-up method.

$$
\begin{array}{lllllllllll}
X & T & S & P & L & R & A & M & O & E & E
\end{array}
$$

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 11

X	T	S	P	L	R	A	M	O

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 11

E	T	S	P	L	R	A	M	O	E	X

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
sink 1

E	T	S	P	L	R	A	M	O	E	X
1										

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
sink 1

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|l}
\hline \text { T } & \text { E } & \text { S } & \text { P } & \text { L } & \text { R } & \text { A } & \text { M } & \text { O } & \text { E } & \text { X } \\
\hline 1 & 2 & & & & & & & & & \\
\hline
\end{array}
$$

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
sink 1

T	P	S	E	L	R	A	M	O	E	X
1	2		4							

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
sink 1

T	P	S	O	L	R	A	M	E	E	X
1	2		4					9		

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

$$
\begin{array}{llllllllllll}
\mathrm{T} & \mathrm{P} & \mathrm{~S} & \mathrm{O} & \mathrm{~L} & \mathrm{R} & \mathrm{~A} & \mathrm{M} & \mathrm{E} & \mathrm{E} & \mathrm{X}
\end{array}
$$

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 10

E	P	S	O	L	R	A	M	E	T	X
1										10

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
sink 1

E	P	S	O	L	R	A	M	E	T	X
1										

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
sink 1

S	P	E	O	L	R	A	M	E	T	X

1
3

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
sink 1

S	P	R	O	L	E	A	M	E	T	X
1		3			6					

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|l}
\hline S & P & R & O & L & E & A & M & E & T & X
\end{array}
$$

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 9

S	P	R	O	L	E	A	M	E	T	X
1								9		

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 9

E	P	R	O	L	E	A	M	S	T	X
1									9	

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
sink 1

E	P	R	O	L	E	A	M	S	T	X
1										

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
sink 1

R	P	E	O	L	E	A	M	S	T	X
1		3								

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l}
\hline R & P & E & O & L & E & A & M & S & T
\end{array}
$$

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 8

R	P	E	O	L	E	A	M
1							8

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 8

M	P	E	O	L

A
R
8

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
sink 1

\square

M	P	E	O	L	E	A	R	S	T	X

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
sink 1

P	M	E	O	L	E	A	R	S	T	X
1	2									

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
sink 1

P	O	E	M	L	E	A	R	S	T	X
1	2		4							

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

| P | O | E | M | L | E | A | R | S | T |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 7

P	O	E	M	L	E	A	R	S	T	X
1						7				

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 7

A	O	E	M	L	E	P	R	S	T

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
sink 1

\square
A O E M L E
R
S
T
X
1

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
sink 1

\square

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
sink 1

O	M	E	A	L	E	P	R	S	T	X
1	2		4							

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
sink 1

$$
\begin{array}{l|l|l|l|l|l|l|l|ll}
\hline O & M & E & A & L & E & P & R & S & T
\end{array}
$$

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 6

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 6

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
sink 1

E	M	E	A	L	O	P	R	S	T	X
1										

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
sink 1

M	E	E	A	L	O	P	R	S	T	X
1	2									

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
sink 1

M	L	E	A	E	O	P	R	S	T	X
1	2			5						

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 5

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 5

$$
\begin{array}{llll}
R & S & T & X
\end{array}
$$

$$
P
$$

E	L	E	A	M	O	P	R	S	T	X
1				5						

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
sink 1

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
sink 1

L	E	E	A	M	O	P	R	S	T	X
1	2									

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

$\begin{array}{lllllllllll}\text { L } & \text { E } & \text { E } & \text { A } & \text { M } & \text { O } & \text { P } & \text { R } & \text { S } & \text { T } & \text { X }\end{array}$

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 4

L	E	E	A	M	O	P	R	S	T	X
1			4							

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 4

A	E	E	L	M	O	P	R	S	T	X
1						4				

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
sink 1

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
sink 1

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 3

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 3

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
sink 1

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 2

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
exchange 1 and 2

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
end of sortdown phase

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.
array in sorted order

50 random items

algorithm position in order not in order

Heapsort: mathematical analysis

Proposition. Heap construction uses $\leq 2 N$ compares and $\leq N$ exchanges.
Proposition. Heapsort uses $\leq 2 N \lg N$ compares and exchanges.
algorithm can be improved to $\sim 1 \mathrm{~N} \lg \mathrm{~N}$
Significance. In-place sorting algorithm with $N \log N$ worst-case.

- Mergesort: no, linear extra space.
$\longleftarrow \quad$ in-place merge possible, not practical
- Quicksort: no, quadratic time in worst case.
- Heapsort: yes!
$N \log N$ worst-case quicksort possible,
not practical

Bottom line. Heapsort is optimal for both time and space, but:

- Inner loop longer than quicksort's.
- Makes poor use of cache.
- Not stable.

Sorting algorithms: summary

	inplace?	stable?	best	average	worst	remarks
selection	\checkmark		$1 / 2 N^{2}$	$1 / 2 N^{2}$	$1 / 2 N^{2}$	
insertion	\checkmark	\checkmark	N	$1 / 4 N^{2}$	$1 / 2 N^{2}$	use for small N or partially ordered
merge		\checkmark	\checkmark	$1 / 2 N \lg N$	$N \lg N$	$N \lg N$

Algorithms

Symbol Tables

- API

elementary implementations

Algorithms

Robert Sedgewick । Kevin Wayne

Symbol tables

Key-value pair abstraction.

- Insert a value with specified key.
- Given a key, search for the corresponding value.

Ex. DNS lookup.

- Insert domain name with specified IP address.
- Given domain name, find corresponding IP address.

domain name	IP address
www.cs.princeton.edu	128.112 .136 .11
www.princeton.edu	128.112 .128 .15
www.yale.edu	130.132 .143 .21
www.harvard.edu	128.103 .060 .55
www.simpsons.com	209.052 .165 .60
key	\uparrow

Symbol table applications

application	purpose of search	key	value
dictionary	find definition	word	definition
book index	find relevant pages	term	list of page numbers
file share	find song to download	name of song	computer ID
financial account	process transactions	account number	transaction details
web search	find relevant web pages	keyword	list of page names
compiler	find properties of variables	variable name	type and value
routing table	route Internet packets	destination	best route
DNS	find IP address	domain name	IP address
reverse DNS	find domain name	IP address	domain name
genomics	find markers	DNA string	known positions
file system	find file on disk	filename	location on disk

Symbol tables: context
Also known as: maps, dictionaries, associative arrays.

Generalizes arrays. Keys need not be between 0 and $N-1$.

Language support.

- External libraries: C, VisualBasic, Standard ML, bash, ...
- Built-in libraries: Java, C\#, C++, Scala, ...
- Built-in to language: Awk, Perl, PHP, Tcl, JavaScript, Python, Ruby, Lua.

table is the only
primitive data structure

Basic symbol table API

Associative array abstraction. Associate one value with each key.
public class ST<Key, Value>

Conventions

- Values are not nu11. 〔 Java allows null value
- Method get() returns null if key not present.
- Method put() overwrites old value with new value.

Intended consequences.

- Easy to implement contains().

```
public boolean contains(Key key)
{ return get(key) != nul1; }
```

- Can implement lazy version of delete().

```
public void delete(Key key)
{ put(key, nul1); }
```

Keys and values

Value type. Any generic type.

Key type: several natural assumptions.

- Assume keys are Comparable, use compareTo().
- Assume keys are any generic type, use equals() to test equality.

Best practices. Use immutable types for symbol table keys.

- Immutable in Java: Integer, Double, String, java.io.File, ...
- Mutable in Java: StringBuilder, java.net.URL, arrays, ...

Equality test

All Java classes inherit a method equals().

Java requirements. For any references x, y and z :

- Reflexive: x.equals (x) is true.
- Symmetric: x.equals(y) iff y.equals(x).
- Transitive: if $x . e q u a l s(y)$ and $y . e q u a l s(z)$, then $x . e q u a 1 s(z)$.
- Non-null: x.equals(null) is false.

Default implementation. ($x==y$)
Customized implementations. Integer, Double, String, java.io. File, ...
User-defined implementations. Some care needed.

Implementing equals for user-defined types

Seems easy.

```
public class Date implements
Comparable<Date>
{
    private final int month;
    private final int day;
    private final int year;
    public boolean equals(Date that)
    {
        if (this.day != that.day ) return false;
        if (this.month != that.month) return false;
        if (this.year != that.year ) return false;
        return true;
    }
}
```


Implementing equals for user-defined types

Seems easv. but reauires some care.
public final class Date implements
Comparable<Date>
\{
private final int month;
private final int day;
private final int year;
public boolean equals(Object y)
\{
if ($y==$ this) return true;
if (y == null) return false;
if (y.getClass() != this.getClass()) return false;

Date that = (Date) y ;
if (this.day != that.day) return false;
if (this.month != that.month) return false;
if (this.year != that.year) return false; return true;
\}
must be Object.
Why?
optimize for true object equality
check for nul1
objects must be in the same class
(religion: getClass() vs. instanceof)
cast is guaranteed to succeed
check that all significant fields are the same

Equals design

"Standard" recipe for user-defined types.

- Optimization for reference equality.
- Check against null.
- Check that two objects are of the same type and cast.
- Compare each significant field:
- if field is a primitive type, use ==
- if field is an object, use equals()
\longleftarrow but use Double.compare() with double
- if field is an array, apply to each entry

```
(or otherwise deal with -0.0 and NaN)
apply rule recursively
can use Arrays.deepEqua1s(a, b)
but not a.equals(b)
```


Best practices.

- Compare fields mostly likely to differ first.
- Make compareTo() consistent with equals().


```
    x.equals(y) if and only if (x.compareTo(y) == 0)
```


Symbol Tables

Algorithms

Robert Sedgewick । Kevin Wayne

Sequential search in a linked list

Data structure. Maintain an (unordered) linked list of key-value pairs.

Search. Scan through all keys until find a match.
Insert. Scan through all keys until find a match; if no match add to front.

Trace of linked-list ST implementation for standard indexing client

Elementary ST implementations: summary

ST implementation	guarantee		average case		key interface
	search	insert	search hit	insert	
sequential search (unordered list)	N	N	$N / 2$	N	equals()

Challenge. Efficient implementations of both search and insert.

Binary search in an ordered array
Data structure. Maintain an ordered array of key-value pairs.

Rank helper function. How many keys $<k$?

	keys[]										
	0	1	2	3	4	5	6	7	8	9	
successful search for \mathbf{P}	A	C	E	H	L	M	P	R	S	X	
lo hi m	A	C	E	H	L	M	P	R	S	X	entries in black
$\begin{array}{lll}5 & 9 & 7\end{array}$	A	C	E	H	L	M	P	R	S	X	are a[10..hi]
565	A	C	E	H	L	M	P	R			
666	A	C	E	H	L	M	P	R	S	X	red is a [m]

unsuccessful search for \mathbf{Q}

Binary search: Java implementation

```
public Value get(Key key)
{
    if (isEmpty()) return null;
    int i = rank(key);
    if (i < N && keys[i].compareTo(key) == 0) return vals[i];
    else return null;
}
private int rank(Key key)
                                    number of keys < key
{
    int lo = 0, hi = N-1;
    while (lo <= hi)
    {
        int mid = 10 + (hi - 1o) / 2;
        int cmp = key.compareTo(keys[mid]);
        if (cmp < 0) hi = mid - 1;
            else if (cmp > 0) lo = mid + 1;
            else return mid;
    }
    return 1o;
}
```

Binary search: trace of standard indexing client
Problem. To insert, need to shift all greater keys over.

Elementary ST implementations: summary

ST implementation	guarantee		average case		key interface
	search	insert	search hit	insert	
sequential search (unordered list)	N	N	$N / 2$	N	equals()
binary search (ordered array)	$\log N$	$2 * N$	$\log N$	N	compareTo()

Challenge. Efficient implementations of both search and insert.

Symbol Tables

Algorithms

Robert Sedgewick । Kevin Wayne

Examples of ordered symbol table API

$$
\begin{aligned}
& \min () \longrightarrow 09: 00: 00 \quad \text { Chicago } \\
& \text { 09:00:03 Phoenix } \\
& \text { 09:00:13 } \rightarrow \text { Houston } \\
& \text { get (09:00:13) 09:00:59 Chicago } \\
& \text { 09:01:10 Houston } \\
& \text { floor(09:05:00) } \longrightarrow 09: 03: 13 \text { Chicago } \\
& \text { 09:10:11 Seattle } \\
& \text { select (7) } \longrightarrow 09: 10: 25 \text { Seattle } \\
& \text { 09:14:25 Phoenix } \\
& \text { 09:19:32 Chicago } \\
& \text { 09:19:46 Chicago } \\
& \text { keys(09:15:00, 09:25:00) } \longrightarrow 09: 21: 05 \text { Chicago } \\
& \text { 09:22:43 Seattle } \\
& \text { 09:22:54 Seattle } \\
& \text { 09:25:52 Chicago } \\
& \text { ceiling(09:30:00) } \longrightarrow 09: 35: 21 \text { Chicago } \\
& \text { 09:36:14 Seattle } \\
& \max () \longrightarrow 09: 37: 44 \text { Phoenix } \\
& \text { size(09:15:00, 09:25:00) is } 5 \\
& \text { rank(09:10:25) is } 7
\end{aligned}
$$

Ordered symbol table API

```
public class ST<Key extends Comparable<Key> Value>
```


Binary search: ordered symbol table operations summary

search	sequential search	binarysisp searc h
insert / delete	N	$\log N$
min / max	N	N
floor / ceiling	N	1
rank	N	$\log N$
select	N	1
ordered iteration	$N \log N$	N

order of growth of the running time for ordered symbol table operations

Algorithms

Modified by: Dr. Fahed Jubair and Dr. Ramzi Saifan
Computer Engineering Department
University of Jordan

Binary Search Trees

Binary Search Trees

Algorithms

Robert Sedgewick । Kevin Wayne

Binary search trees

Definition. A BST is a binary tree in symmetric order.

A binary tree is either:

- Empty.
- Two disjoint binary trees (left and right).

Symmetric order. Each node has a key, and every node's key is:

- Larger than all keys in its left subtree.
- Smaller than all keys in its right subtree.

BST representation in Java

Java definition. A BST is a reference to a root Node.

A Node is composed of four fields:

- A Key and a value.
- A reference to the left and right subtree.


```
private class Node
{
    private Key key;
    private Value val;
    private Node left, right;
    public Node(Key key, Value val)
    {
        this.key = key;
        this.val = val;
    }
}
Key and Value are generic types; Key is Comparab7e
```


Binary search tree

BST implementation (skeleton)

```
public class BST<Key extends Comparable<Key>, Value>
{
    private Node root;
    private class Node
    { /* see previous slide */ }
    public void put(Key key, Value val)
    { /* see next slides */ }
    public Value get(Key key)
    { /* see next slides */ }
    public void delete(Key key)
    { /* see next slides */ }
    public Iterable<Key> iterator()
    { /* see next slides */ }
}
```

Binary search tree demo

Search. If less, go left; if greater, go right; if equal, search hit.
successful search for H

Binary search tree demo

Search. If less, go left; if greater, go right; if equal, search hit.

Binary search tree demo

Search. If less, go left; if greater, go right; if equal, search hit.
successful search for H

Binary search tree demo

Search. If less, go left; if greater, go right; if equal, search hit.
successful search for H

Binary search tree demo

Search. If less, go left; if greater, go right; if equal, search hit.
successful search for H

Binary search tree demo

Search. If less, go left; if greater, go right; if equal, search hit.
unsuccessful search for G

Binary search tree demo

Search. If less, go left; if greater, go right; if equal, search hit.

Binary search tree demo

Search. If less, go left; if greater, go right; if equal, search hit.
unsuccessful search for G

Binary search tree demo

Search. If less, go left; if greater, go right; if equal, search hit.
unsuccessful search for G

Binary search tree demo

Search. If less, go left; if greater, go right; if equal, search hit.
unsuccessful search for G

Binary search tree demo

Search. If less, go left; if greater, go right; if equal, search hit.
unsuccessful search for G

Binary search tree demo

Insert. If less, go left; if greater, go right; if null, insert.

insert G

Binary search tree demo

Insert. If less, go left; if greater, go right; if null, insert.

Binary search tree demo

Insert. If less, go left; if greater, go right; if null, insert.
insert G

Binary search tree demo

Insert. If less, go left; if greater, go right; if null, insert.
insert G

Binary search tree demo

Insert. If less, go left; if greater, go right; if null, insert.
insert G

Binary search tree demo

Insert. If less, go left; if greater, go right; if null, insert.
insert G

Binary search tree demo

Insert. If less, go left; if greater, go right; if null, insert.
insert G

Binary search tree demo

Insert. If less, go left; if greater, go right; if null, insert.

insert G

BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.

```
public Value get(Key key)
{
    Node x = root;
    while (x != null)
    {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else if (cmp == 0) return x.val;
    }
    return nul1;
}
```

Cost. Number of compares is equal to $1+$ depth of node.

BST insert: Java implementation

Put. Associate value with key.

```
public void put(Key key, Value val)
{ root = put(root, key, val); }
private Node put(Node x, Key key, Value val)
{
    if (x == nul1) return new Node(key, val);
    int cmp = key.compareTo(x.key);
    if (cmp < 0)
        x.left = put(x.left, key, val);
    else if (cmp > 0)
        x.right = put(x.right, key, val);
    else if (cmp == 0)
        x.va1 = va1;
    return x;
}
```

Cost. Number of compares is equal to $1+$ depth of node.

BST insert

Put. Associate value with key.

Search for key, then two cases:

- Key in tree \Rightarrow reset value.
- Key not in tree \Rightarrow add new node.
inserting L

Insertion into a BST

Tree shape

- Many BSTs correspond to same set of keys.
- Number of compares for search/insert is equal to $1+$ depth of node.

Bottom line. Tree shape depends on order of insertion.

BST insertion: random order visualization

Ex. Insert keys in random order.

ST implementations: summary

implementation	guarantee		average case		operations on keys
	search	insert	search hit	insert	
sequential search (unordered list)	N	N	$1 / 2 N$	N	equals()
binary search (ordered array)	$\lg N$	N	$\lg N$	$1 / 2 N$	compareTo()
BST	N	N	$1.39 \lg N$	$1.39 \lg N$	compareTo()

Binary Search Trees

Algorithms

Robert Sedgewick । Kevin Wayne

Minimum and maximum

Minimum. Smallest key in table.
Maximum. Largest key in table.

Q. How to find the min / max?

Floor and ceiling

Floor. Largest key \leq a given key.
Ceiling. Smallest key \geq a given key.

Q. How to find the floor / ceiling?

Computing the floor

Case 1. [k equals the key in the node] The floor of k is k.

Case 2. [k is less than the key in the node] The floor of k is in the left subtree.

Case 3. [k is greater than the key in the node] The floor of k is in the right subtree (if there is any key $\leq k$ in right subtree); otherwise it is the key in the node.

Computing the floor

```
public Key floor(Key key)
{
    Node x = floor(root, key);
    if (x == null) return null;
    return x.key;
}
private Node floor(Node x, Key key)
{
    if (x == nul1) return nul1;
    int cmp = key.compareTo(x.key);
    if (cmp == 0) return x;
    if (cmp < 0) return floor(x.left, key);
    Node t = floor(x.right, key);
    if (t != null) return t;
    else return x;
}
```


finding $\mathrm{floor}(\mathrm{G})$

G is greater than E so
floor (G) could be
 subtree is nul1

Rank and select

Q. How to implement size(), rank() and select() efficiently?
A. In each node, we store the number of nodes in the subtree rooted at that node; to implement size(), return the count at the root.

BST implementation: subtree counts

```
private class Node
{
    private Key key;
    private Value val;
    private Node left;
    private Node right;
    private int count;
}
```

```
public int size()
```

public int size()
{ return size(root); }
{ return size(root); }
private int size(Node x)
private int size(Node x)
{
{
if (x == nul1) return 0;
if (x == nul1) return 0;
return x.count;
return x.count;
}

```
}
```

number of nodes in subtree
private Node put(Node x, Key key, Value val)
\{
if ($x==$ nul1) return new Node(key, val, 1);
int cmp = key.compareTo(x.key);
if (cmp < 0) x.left = put(x.left, key, val);
else if (cmp > 0) x.right = put(x.right, key, val);
else if $(c m p==0) x \cdot v a l=v a l$;
$x . \operatorname{count}=1+\operatorname{size}(x .1 e f t)+\operatorname{size}(x . r i g h t) ;$
return x;
\}

Rank

Rank. How many keys $<k$?

Easy recursive algorithm (3 cases!)


```
public int rank(Key key)
{ return rank(key, root); }
private int rank(Key key, Node x)
{
    if (x == null) return 0;
    int cmp = key.compareTo(x.key);
    if (cmp < 0) return rank(key, x.left);
    else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
    else if (cmp == 0) return size(x.left);
}
```


Selection

Select. Key of given rank.

```
public Key select(int k)
{
    if (k < 0) return null;
    if (k >= size()) return null;
    Node x = select(root, k);
    return x.key;
}
private Node select(Node x, int k)
{
    if (x == nul1) return null;
    int t = size(x.left);
    if (t > k)
        return select(x.left, k);
    else if (t < k)
        return select(x.right, k-t-1);
    else if (t == k)
        return x;
}
```

finding select(3)
the key of rank 3

Inorder traversal

- Traverse left subtree.
- Enqueue key.
- Traverse right subtree.

```
public Iterable<Key> keys()
{
    Queue<Key> q = new Queue<Key>();
    inorder(root, q);
    return q;
}
private void inorder(Node x, Queue<Key> q)
{
    if (x == nul1) return;
    inorder(x.1eft, q);
    q.enqueue(x.key);
    inorder(x.right, q);
}
```

Property. Inorder traversal of a BST yields keys in ascending order.

Inorder traversal

- Traverse left subtree.
- Enqueue key.
- Traverse riaht subtree.

inorder(S)
inorder(E)
inorder (A)
enqueue A
inorder (C)
enqueue C
enqueue E
inorder (R)
inorder (H)
enqueue H
inorder (M)
enqueue M
enqueue R
enqueue S
inorder (X)
enqueue X

BST: ordered symbol table operations summary

order of growth of running time of ordered symbol table operations

Binary Search Trees

Algorithms

Robert Sedgewick । Kevin Wayne

ST implementations: summary

implementation	guarantee			average case			ordered ops?	operations on keys
	search	insert	delete	search hit	insert	delete		
sequential searchispel (linked list)	N	N	N	$1 / 2 N$	N	$1 / 2 N$		equals()
binary searchicel (ordered array)	$\lg N$	N	N	$\lg N$	$1 / 2 N$	$1 / 2 N$	\checkmark	compareTo()
BST	N	N	N	$1.39 \lg N$	$1.39 \lg N$?	\checkmark	compareTo()

Next. Deletion in BSTs.

Deleting the minimum

To delete the minimum key:

- Go left until finding a node with a null left link.
- Replace that node by its right link.
- Update subtree counts.

```
public void deleteMin()
{ root = deleteMin(root); }
private Node deleteMin(Node x)
{
    x.left = deleteMin(x.left);
    x.count = 1 + size(x.left) + size(x.right);
    return x;
}
```

```
    if (x.left == nul1) return x.right;
```

```
    if (x.left == nul1) return x.right;
```


update links and node counts after recursive calls

Hibbard deletion

To delete a node with key k : search for node t containing key k .

Case 0. [0 children] Delete t by setting parent link to null.

Hibbard deletion

To delete a node with key k : search for node t containing key k .

Case 1. [1 child] Delete t by replacing parent link.

Hibbard deletion

To delete a node with key k : search for node t containing key k .

Case 2. [2 children]

- Find successor x of t .
- Delete the minimum in t's right subtree.
- Put x in t's spot.
$\longleftarrow \quad x$ has no left child
but don't garbage collect x

Hibbard deletion: Java implementation

```
public void delete(Key key)
{ root = delete(root, key); }
private Node delete(Node x, Key key) {
    if (x == null) return null;
    int cmp = key.compareTo(x.key);
    if (cmp < 0) x.left = delete(x.left, key);
    else if (cmp > 0) x.right = delete(x.right, key);
    else {
        if (x.right == null) return x.left;
        if (x.left == null) return x.right;
        Node t = x;
        x = min(t.right);
        x.right = deleteMin(t.right);
        x.left = t.left;
    }
    x.count = size(x.left) + size(x.right) + 1;
    return x;
}

Hibbard deletion: analysis
Unsatisfactory solution. Not symmetric.


Surprising consequence. Trees not random (!) \(\Rightarrow \sqrt{ } N\) per op.
Longstanding open problem. Simple and efficient delete for BSTs.

\section*{ST implementations: summary}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{implementation} & \multicolumn{3}{|c|}{guarantee} & \multicolumn{3}{|c|}{average case} & \multirow[b]{2}{*}{ordered ops?} & \multirow[b]{2}{*}{operations on keys} \\
\hline & search & insert & delete & search hit & insert & delete & & \\
\hline searchispel (linked list) & \(N\) & \(N\) & \(N\) & \(1 / 2 N\) & \(N\) & \(1 / 2 N\) & & equals() \\
\hline searchispiciordered array) & \(\lg N\) & \(N\) & \(N\) & \(\lg N\) & \(1 / 2 N\) & \(1 / 2 N\) & \(\checkmark\) & compareTo() \\
\hline
\end{tabular}

BST
\(N\)
\(N \quad N\)

\(\checkmark\)
compareTo()
other operations also become \(\sqrt{ } \mathrm{N}\)
if deletions allowed

\section*{Algorithms} Hash Tables

Modified by: Dr. Fahed Jubair and Dr. Ramzi Saifan
Computer Engineering Department
University of Jordan

\section*{Symbol table implementations: summary}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{implementation} & \multicolumn{3}{|c|}{guarantee} & \multicolumn{3}{|c|}{average case} & \multirow{2}{*}{ordered ops?} & \multirow{2}{*}{key interface} \\
\hline & search & insert & delete & search hit & insert & delete & & \\
\hline sequential searchise (unordered list) & \(N\) & \(N\) & \(N\) & \(1 / 2 N\) & \(N\) & \(1 / 2 N\) & & equals() \\
\hline binary searchisel (ordered array) & \(\lg N\) & \(N\) & \(N\) & \(\lg N\) & \(1 / 2 N\) & \(1 / 2 N\) & \(\checkmark\) & compareTo() \\
\hline BST & \(N\) & \(N\) & \(N\) & \(1.39 \lg N\) & \(1.39 \lg N\) & \(\sqrt{ } N\) & \(\checkmark\) & compareTo() \\
\hline red-black BST & \(2 \lg N\) & \(2 \lg N\) & \(2 \lg N\) & \(1.0 \lg N\) & \(1.0 \lg N\) & \(1.0 \lg N\) & \(\checkmark\) & compareTo() \\
\hline
\end{tabular}

Optional Read: red-black BST, 3.5 in textbook
Q. Can we do better?
A. Yes, but with different access to the data.

Hashing: basic plan

Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key.

\section*{Issues.}
- Computing the hash function.

- Equality test: Method for checking whether two keys are equal.
- Collision resolution: Algorithm and data structure to handle two keys that hash to the same array index.

Classic space-time tradeoff.
- No space limitation: trivial hash function with key as index.
- No time limitation: trivial collision resolution with sequential search.
- Space and time limitations: hashing (the real world).

\section*{Hash Tables}
- hash functions

\section*{Algorithms}

Robert Sedgewick । Kevin Wayne

Computing the hash function

Idealistic goal. Scramble the keys uniformly to produce a table index.
- Efficiently computable.
- Each table index equally likely for each key.
thoroughly researched problem,
still problematic in practical applications
Ex 1. Phone numbers.
- Bad: first three digits.
- Better: last three digits.


Ex 2. Social Security numbers.
- Bad: first three digits.
- Better: last three digits.

573 = California, 574 = Alaska
(assigned in chronological order within geographic region)

Practical challenge. Need different approach for each key type.

\section*{Java's hash code conventions}

All Java classes inherit a method hashCode(), which returns a 32-bit int.

Requirement. If \(x . e q u a l s(y)\), then ( \(x\).hashCode() \(==y\).hashCode()).
Highly desirable. If !x.equals(y), then (x.hashCode() != y.hashCode()).


Default implementation. Memory address of x .
Legal (but poor) implementation. Always return 17.
Customized implementations. Integer, Double, String, File, URL, Date, ...
User-defined types. Users are on their own.

\section*{Implementing hash code: integers, booleans, and doubles}

\section*{Java library implementations}
```

public final class Integer
{
private final int value;
...
public int hashCode()
{ return value; }
}

```
public final class Boolean
\{
    private final boolean value;
    pub1ic int hashCode()
    \{
        if (value) return 1231;
        else return 1237;
    \}
```

public final class Double
{
private final double value;
...
public int hashCode()
{
1ong bits = doubleToLongBits(value);
return (int) (bits \ (bits >>> 32));
}
}
convert to IEEE 64-bit representation;
xor most significant 32-bits
with least significant 32-bits
Warning: -0.0 and +0.0 have different hash codes

```

Implementing hash code: strings

- Horner's method to hash string of length \(L: L\) multiplies/adds.
- Equivalent to \(h=s[0] \cdot 31^{L-1}+\ldots+s[L-3] \cdot 31^{2}+s[L-2] \cdot 31^{1}+s[L-1] \cdot 31^{0}\).

Ex.
```

String s = "cal1";
int code = s.hashCode();

$$
\begin{aligned}
3045982 & =99 \cdot 31^{3}+97 \cdot 31^{2}+108 \cdot 31^{1}+108 \cdot 31^{0} \\
& =108+31 \cdot(108+31 \cdot(97+31 \cdot(99)))
\end{aligned}
$$

```

\section*{Implementing hash code: strings}

\section*{Performance optimization.}
- Cache the hash value in an instance variable.
- Return cached value.
```

public final class String

```
\{
    private int hash \(=0\);

    private final char[] s;
    public int hashCode()
    \{
        int \(h=\) hash;
        if (h != 0) return h;
    \(\longleftarrow\) return cached value
        for (int \(\mathbf{i}=0 ; \mathbf{i}<\) length(); \(\mathbf{i + +}\) )
            \(h=s[i]+(31 * h) ;\)
        hash = h;
        return h;
    \}
\}
Q. What if hashCode() of string is 0 ?

\section*{Implementing hash code: user-defined types}
```

public final class Transaction implements Comparable<Transaction>
{
private final String who;
private final Date when;
private final double amount;
public Transaction(String who, Date when, double amount)
{ /* as before */ }
public boolean equals(Object y)
{ /* as before */ }
public int hashCode()
{
int hash =17:~n_nenzero constant
hash = 31*hash + who.hashCode();
hash = 31*hash + when.hashCode();
hash = 31*kash + ((Double) amount).hashCode();
typically a small prime
}
}

```

Hash code design
"Standard" recipe for user-defined types.
- Combine each significant field using the \(31 x+y\) rule.
- If field is a primitive type, use wrapper type hashCode().
- If field is null, return 0.
- If field is a reference type, use hashCode().
- If field is an array, apply to each entry.
```

 applies rule recursively
    ```
```

 applies rule recursively
    ```
```

 applies rule recursively
    ```

\section*{Modular hashing}

Hash code. An int between \(-2^{31}\) and \(2^{31}-1\).
Hash function. An int between 0 and \(M-1\) (for use as array index).
typically a prime or power of 2


Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an integer between 0 and \(M-1\).

Bins and balls. Throw balls uniformly at random into \(M\) bins.


Birthday problem. Expect two balls in the same bin after \(\sim \sqrt{\pi M / 2}\) tosses.

Coupon collector. Expect every bin has \(\geq 1\) ball after \(\sim M \ln M\) tosses.

Load balancing. After \(M\) tosses, expect most loaded bin has
\(\Theta(\log M / \log \log M)\) balls.

Uniform hashing assumption
Uniform hashing assumption. Each key is equally likely to hash to an integer between 0 and \(M-1\).

Bins and balls. Throw balls uniformly at random into \(M\) bins.


Hash value frequencies for words in Tale of Two Cities \(\left(\begin{array}{l} \\ =97\end{array}\right)\)

\section*{Hash Tables}

\section*{Algorithms}

Robert Sedgewick । Kevin Wayne

Collisions

Collision. Two distinct keys hashing to same index.
- Birthday problem \(\Rightarrow\) can't avoid collisions unless you have a ridiculous (quadratic) amount of memory.
- Coupon collector + load balancing \(\Rightarrow\) collisions are evenly distributed.


Challenge. Deal with collisions efficiently.

\section*{Separate-chaining symbol table}

Use an array of \(M<N\) linked lists. [H. P. Luhn, IBM 1953]
- Hash: map key to integer \(i\) between 0 and \(M-1\).
- Insert: put at front of \(i^{\text {th }}\) chain (if not already there).
- Search: need to search only \(i^{\text {th }}\) chain.


\section*{Separate-chaining symbol table: Java implementation}
```

pub1ic class SeparateChainingHashST<Key, Value>
{
private int M = 97; // number of chains
private Node[] st = new Node[M]; // array of chains
private static class Node
{
private Object key; \longleftarrow no generic array creation
private Object val;
\longleftarrow
(declare key and value of type Object)
private Node next;
}
private int hash(Key key)
{ return (key.hashCode() \& 0x7ffffffff) % M; }
public Value get(Key key) {
int i = hash(key);
for (Node x = st[i]; x != nul1; x = x.next)
if (key.equals(x.key)) return (Value) x.val;
return null;
}
}

```

\section*{Separate-chaining symbol table: Java implementation}
```

public class SeparateChainingHashST<Key, Value>
{
private int M = 97; // number of chains
private Node[] st = new Node[M]; // array of chains
private static class Node
{
private Object key;
private Object val;
private Node next;
}
private int hash(Key key)
{ return (key.hashCode() \& 0x7ffffffff) % M; }
public void put(Key key, Value val) {
int i = hash(key);
for (Node x = st[i]; x != nul1; x = x.next)
if (key.equals(x.key)) { x.val = val; return; }
st[i] = new Node(key, val, st[i]);
}
}

```

\section*{Analysis of separate chaining}

Proposition. Under uniform hashing assumption, prob. that the number of keys in a list is within a constant factor of \(N / M\) is extremely close to 1.

Consequence. Number of probes for search/insert is proportional to N/M.
- \(M\) too large \(\Rightarrow\) too many empty chains.
- \(M\) too small \(\Rightarrow\) chains too long.
- Typical choice: \(M \sim N / 4 \Rightarrow\) constant-time ops.

Resizing in a separate-chaining hash table

Goal. Average length of list \(N / M=\) constant.
- Double size of array \(M\) when \(N / M \geq 8\).
- Halve size of array \(M\) when \(N / M \leq 2\).
- Need to rehash all keys when resizing.
before resizing

after resizing


Deletion in a separate-chaining hash table
Q. How to delete a key (and its associated value)?
A. Easy: need only consider chain containing key.
before deleting C

after deleting C


\section*{Symbol table implementations: summary}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{implementation} & \multicolumn{3}{|c|}{guarantee} & \multicolumn{3}{|c|}{average case} & \multirow{2}{*}{ordered ops?} & \multirow{2}{*}{key interface} \\
\hline & search & insert & delete & search hit & insert & delete & & \\
\hline sequential search list) & \(N\) & \(N\) & \(N\) & \(1 / 2 N\) & \(N\) & \(1 / 2 N\) & & equals() \\
\hline binary searchsed (ordered array) & \(\lg N\) & \(N\) & \(N\) & \(\lg N\) & \(1 / 2 N\) & \(1 / 2 N\) & \(\checkmark\) & compareTo() \\
\hline BST & \(N\) & \(N\) & \(N\) & \(1.39 \lg N\) & \(1.39 \lg N\) & \(\sqrt{ } N\) & \(\checkmark\) & compareTo() \\
\hline red-black BST & \(2 \lg N\) & \(2 \lg N\) & \(2 \lg N\) & \(1.0 \lg N\) & \(1.0 \lg N\) & \(1.0 \lg N\) & \(\checkmark\) & compareTo() \\
\hline separate chaining & \(N\) & \(N\) & \(N\) & 3-5* & 3-5* & 3-5* & & \begin{tabular}{l}
equals() \\
hashCode()
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
* under uniform hashing assumption
}

\section*{Hash Tables}

\section*{Algorithms}

Robert Sedgewick । Kevin Wayne

\section*{Collision resolution: open addressing}

Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953] When a new key collides, find next empty slot, and put it there.

\[
\text { linear probing }(M=30001, N=15000)
\]

\section*{Linear-probing hash table demo}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.
linear-probing hash table
st[]
\(M=16\)

Linear-probing hash table demo: insert
Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathfrak{i}\) if free; if not try \(\mathfrak{i}+1, \mathfrak{i}+2\), etc.
linear-probing hash table


\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.
```

 insert S
 hash(S)=6
 st[]
 M = 16

```

Linear-probing hash table demo: insert

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathrm{i}+2\), etc.
```

 insert S
 hash(S)=6
    ```
    st[]
\(M=16\)


\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.
```

 insert S
 hash(S)=6
    ```
    st[]
\(M=16\)

Linear-probing hash table demo: insert
Hash. Map key to integer i between 0 and \(\mathrm{M}-1\).
Insert. Put at table index \(\mathfrak{i}\) if free; if not try \(\mathfrak{i}+1, \mathfrak{i}+2\), etc.
linear-probing hash table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline st[] & & & & & & & S & & & & & & & & & \\
\hline
\end{tabular}

\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.


Linear-probing hash table demo: insert

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.


\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.


Linear-probing hash table demo: insert
Hash. Map key to integer i between 0 and \(\mathrm{M}-1\).
Insert. Put at table index \(\mathfrak{i}\) if free; if not try \(\mathfrak{i}+1, \mathfrak{i}+2\), etc.
linear-probing hash table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline st[] & & & & & & & S & & & & E & & & & & \\
\hline
\end{tabular}

\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.
```

 insert A
 hash(A)=4
    ```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline st[] & & & & & & & S & & & & E & & & & & \\
\hline
\end{tabular}
\(M=16\)

\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.
```

 insert }\mp@subsup{}{}{A
 hash(A)=4
    ```
    st[]
\(M=16\)


\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.
```

insert }\mp@subsup{}{}{A
hash(A)=4

```
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\hline & 15 \\
\hline St[] & & & & & A & & S & & & & E & & & & \\
\hline
\end{tabular}
\(M=16\)

Linear-probing hash table demo: insert
Hash. Map key to integer i between 0 and \(\mathrm{M}-1\).
Insert. Put at table index \(\mathfrak{i}\) if free; if not try \(\mathfrak{i}+1, \mathfrak{i}+2\), etc.
linear-probing hash table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline st[] & & & & & A & & S & & & & E & & & & & \\
\hline
\end{tabular}

\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathrm{i}+2\), etc.


\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.


\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.


Linear-probing hash table demo: insert
Hash. Map key to integer i between 0 and \(\mathrm{M}-1\).
Insert. Put at table index \(\mathfrak{i}\) if free; if not try \(\mathfrak{i}+1, \mathfrak{i}+2\), etc.
linear-probing hash table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline st[] & & & & & A & & S & & & & E & & & & R & \\
\hline
\end{tabular}

\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.
```

 insert C
 hash(C)=5
    ```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline \(s t[]\) & & & & & A & & S & & & & E & & & & R & \\
\hline
\end{tabular}
\(M=16\)

\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.
```

 insert C
 hash(C)=5
    ```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline st[] & & & & & A & & S & & & & E & & & & R & \\
\hline = 16 & & & & & & C & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.
```

 insert }\mp@subsup{}{}{C
 hash(C)=5
    ```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline st[] & & & & & A & C & S & & & & E & & & & R & \\
\hline
\end{tabular}
\(M=16\)

Linear-probing hash table demo: insert
Hash. Map key to integer i between 0 and \(\mathrm{M}-1\).
Insert. Put at table index \(\mathfrak{i}\) if free; if not try \(\mathfrak{i}+1, \mathfrak{i}+2\), etc.
linear-probing hash table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline st[] & & & & & A & C & S & & & & E & & & & R & \\
\hline
\end{tabular}

\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.


\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.
```

 insert H
 hash(H)=4
    ```
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\hline st[] & & & & & A & C & S & & & & E & & & & R \\
\hline
\end{tabular}

\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.


\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.


\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.


\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.


Linear-probing hash table demo: insert
Hash. Map key to integer i between 0 and \(\mathrm{M}-1\).
Insert. Put at table index \(\mathfrak{i}\) if free; if not try \(\mathfrak{i}+1, \mathfrak{i}+2\), etc.
linear-probing hash table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline st[] & & & & & A & C & S & H & & & E & & & & R & \\
\hline
\end{tabular}

\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.


\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.


\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.


Linear-probing hash table demo: insert
Hash. Map key to integer i between 0 and \(\mathrm{M}-1\).
Insert. Put at table index \(\mathfrak{i}\) if free; if not try \(\mathfrak{i}+1, \mathfrak{i}+2\), etc.
linear-probing hash table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline \(s t[]\) & & & & & A & C & S & H & & & E & & & & R & X \\
\hline
\end{tabular}

\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.


\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.


\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.


Linear-probing hash table demo: insert
Hash. Map key to integer i between 0 and \(\mathrm{M}-1\).
Insert. Put at table index \(\mathfrak{i}\) if free; if not try \(\mathfrak{i}+1, \mathfrak{i}+2\), etc.
linear-probing hash table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline st[] & & M & & & A & C & S & H & & & E & & & & R & X \\
\hline
\end{tabular}

\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.


\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.


\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.


\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.


Linear-probing hash table demo: insert
Hash. Map key to integer i between 0 and \(\mathrm{M}-1\).
Insert. Put at table index \(\mathfrak{i}\) if free; if not try \(\mathfrak{i}+1, \mathfrak{i}+2\), etc.
linear-probing hash table
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline st [] & P & M & & & A & C & S & H & & & E & & & & & R & X \\
\hline \(\mathrm{M}=16\)
\end{tabular}

\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.


\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.


\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.


\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.


\section*{Linear-probing hash table demo: insert}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Insert. Put at table index \(\mathbf{i}\) if free; if not try \(\mathbf{i}+1, \mathfrak{i}+2\), etc.


Linear-probing hash table demo: insert
Hash. Map key to integer i between 0 and \(\mathrm{M}-1\).
Insert. Put at table index \(\mathfrak{i}\) if free; if not try \(\mathfrak{i}+1, \mathfrak{i}+2\), etc.
linear-probing hash table
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline st [] & P & M & & & A & C & S & H & L & & E & & & & & R & X \\
\hline \(\mathrm{M}=16\)
\end{tabular}

Linear-probing hash table demo: search

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\).
Search. Search table index \(\mathbf{i}\); if occupied but no match, try \(i+1, i+2\), etc.
linear-probing hash table
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline st[] & P & M & & & A & C & S & H & L & & E & & & & R & X \\
\(\mathrm{M}=16\)
\end{tabular}

\section*{Linear-probing hash table demo: search}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Search. Search table index \(\mathbf{i}\); if occupied but no match, try \(\mathbf{i}+1, i+2\), etc.


\section*{Linear-probing hash table demo: search}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Search. Search table index \(\mathbf{i}\); if occupied but no match, try \(\mathbf{i}+1, i+2\), etc.

search hit
(return corresponding value)

Linear-probing hash table demo: search

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\).
Search. Search table index \(\mathbf{i}\); if occupied but no match, try \(i+1, i+2\), etc.
linear-probing hash table
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline st[] & P & M & & & A & C & S & H & L & & E & & & & R & X \\
\(\mathrm{M}=16\)
\end{tabular}

\section*{Linear-probing hash table demo: search}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Search. Search table index \(\mathbf{i}\); if occupied but no match, try \(\mathbf{i}+1, i+2\), etc.


\section*{Linear-probing hash table demo: search}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Search. Search table index \(\mathbf{i}\); if occupied but no match, try \(\mathbf{i}+1, i+2\), etc.


\section*{Linear-probing hash table demo: search}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Search. Search table index \(\mathbf{i}\); if occupied but no match, try \(\mathbf{i}+1, i+2\), etc.


\section*{Linear-probing hash table demo: search}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Search. Search table index \(\mathbf{i}\); if occupied but no match, try \(\mathbf{i}+1, i+2\), etc.


Linear-probing hash table demo: search

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\).
Search. Search table index \(\mathbf{i}\); if occupied but no match, try \(i+1, i+2\), etc.
linear-probing hash table
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline st[] & P & M & & & A & C & S & H & L & & E & & & & R & X \\
\(\mathrm{M}=16\)
\end{tabular}

\section*{Linear-probing hash table demo: search}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Search. Search table index \(\mathbf{i}\); if occupied but no match, try \(\mathbf{i}+1, i+2\), etc.
```

 search K
 hash(K)=5
 st[] P
 M = 16

```

\section*{Linear-probing hash table demo: search}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Search. Search table index \(\mathbf{i}\); if occupied but no match, try \(\mathbf{i}+1, i+2\), etc.


\section*{Linear-probing hash table demo: search}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Search. Search table index \(\mathbf{i}\); if occupied but no match, try \(\mathbf{i}+1, i+2\), etc.


\section*{Linear-probing hash table demo: search}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Search. Search table index \(\mathbf{i}\); if occupied but no match, try \(\mathbf{i}+1, i+2\), etc.
```

 search K
 hash(K)=5
 | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| st[] | P | M | | | A | C | S | H | L | | E | | | | R | X |
| $M=16$ | | | | | | | | K | | | | | | | | |

```

\section*{Linear-probing hash table demo: search}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Search. Search table index \(\mathbf{i}\); if occupied but no match, try \(\mathbf{i}+1, i+2\), etc.
```

 search K
 hash(K)=5
    ```

```

M = 16

```

\section*{Linear-probing hash table demo: search}

Hash. Map key to integer i between 0 and \(\mathrm{M}-1\). Search. Search table index \(\mathbf{i}\); if occupied but no match, try \(\mathbf{i}+1, i+2\), etc.
```

 search K
 hash(K)=5
 | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| st[] | P | M | | | A | C | S | H | L | | E | | | | R | X |
| $M=16$ | | | | | | | | | | K | | | | | | |

search miss
(return null)

```

Linear-probing hash table summary
Hash. Map key to integer i between 0 and \(\mathrm{M}-1\).
Insert. Put at table index \(\mathfrak{i}\) if free; if not try \(\mathfrak{i}+1, \mathfrak{i}+2\), etc.
Search. Search table index \(\mathfrak{i}\); if occupied but no match, try \(\mathfrak{i}+1\), \(\mathfrak{i}+2\), etc.

Note. Array size \(M\) must be greater than number of key-value pairs N .
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline st [] & P & M & & & A & C & S & H & L & & E & & & & R & X \\
\hline \(\mathrm{M}=16\)
\end{tabular}

\section*{Linear-probing symbol table: Java implementation}
```

public class LinearProbingHashST<Key, Value>
{
private int M = 30001;
private Value[] vals = (Value[]) new Object[M];
private Key[] keys = (Key[]) new Object[M];
private int hash(Key key) { /* as before */ }
private void put(Key key, Value val) { /* next slide */ }
public Value get(Key key)
{
for (int i = hash(key); keys[i] != nul1; i = (i+1) % M)
if (key.equals(keys[i]))
return vals[i];
return nul1;
}
}

```

\section*{Linear-probing symbol table: Java implementation}
```

public class LinearProbingHashST<Key, Value>
{
private int M = 30001;
private Value[] vals = (Value[]) new Object[M];
private Key[] keys = (Key[]) new Object[M];
private int hash(Key key) { /* as before */ }
private Value get(Key key) { /* previous slide */ }
public void put(Key key, Value val)
{
int i;
for (i = hash(key); keys[i] != nul1; i = (i+1) % M)
if (keys[i].equals(key))
break;
keys[i] = key;
vals[i] = val;
}
}

```

Knuth's parking problem
Model. Cars arrive at one-way street with \(M\) parking spaces.
Each desires a random space \(i\) : if space \(i\) is taken, try \(i+1, i+2\), etc.
Q. What is mean displacement of a car?


Half-full. With \(M / 2\) cars, mean displacement is \(\sim 3 / 2\).
Full. With \(M\) cars, mean displacement is \(\sim \sqrt{\pi M / 8}\).

\section*{Analysis of linear probing}

Proposition. Under uniform hashing assumption, the average \# of probes in a linear probing hash table of size \(M\) that contains \(N=\alpha M\) keys is:
\[
\begin{array}{cc}
\sim \frac{1}{2}\left(1+\frac{1}{1-\alpha}\right) & \sim \frac{1}{2}\left(1+\frac{1}{(1-\alpha)^{2}}\right) \\
\text { search hit } & \text { search miss / insert }
\end{array}
\]

Pf.

L. Matroduction ana hetinitions. pen madressing is a widely-used technique for keepinis, "symbol tables, The rethod was first used, in 1954 by Stenuel, Amanh, and Rochne in an assemely program tor the thin Tol. An extensive discussion of the method was given by peterson \(\mathrm{i}_{11} 1957\) [I], and frequent references have deen made to it ever since (e.c. Bajay ma Spruth [2], Tversen (3). However, the timint characteristics aspe apparently never been axactiy established, and Indeed the puthor bas heard reports of severen reputaole mathematicians who failea to Ind the solution after some trial. Theresore it is the purpose of this note to Indicate ono way by which the solujion cern be obtained.


\section*{Parameters.}
- \(M\) too large \(\Rightarrow\) too many empty array entries.
- \(M\) too small \(\Rightarrow\) search time blows up.
- Typical choice: \(\alpha=N / M \sim 1 / 2 . \longleftarrow\) \# probes for search hit is about \(3 / 2\)

Resizing in a linear-probing hash table

Goal. Average length of list \(N / M \leq 1 / 2\).
- Double size of array \(M\) when \(N / M \geq 1 / 2\).
- Halve size of array \(M\) when \(N / M \leq 1 / 8\).
- Need to rehash all keys when resizing.


\section*{Deletion in a linear-probing hash table}
Q. How to delete a key (and its associated value)?
A. Requires some care: can't just delete array entries.


\section*{ST implementations: summary}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{implementation} & \multicolumn{3}{|c|}{guarantee} & \multicolumn{3}{|c|}{average case} & \multirow{2}{*}{ordered ops?} & \multirow{2}{*}{key interface} \\
\hline & search & insert & delete & search hit & insert & delete & & \\
\hline sequential search sepl (unordered list) & \(N\) & \(N\) & \(N\) & \(1 / 2 N\) & \(N\) & \(1 / 2 N\) & & equals() \\
\hline binary search array) & \(\lg N\) & \(N\) & \(N\) & \(\lg N\) & \(1 / 2 N\) & \(1 / 2 N\) & \(\checkmark\) & compareTo() \\
\hline BST & \(N\) & \(N\) & \(N\) & \(1.39 \lg N\) & \(1.39 \lg N\) & \(\sqrt{ } N\) & \(\checkmark\) & compareTo() \\
\hline red-black BST & \(2 \lg N\) & \(2 \lg N\) & \(2 \lg N\) & \(1.0 \lg N\) & \(1.0 \lg N\) & \(1.0 \lg N\) & \(\checkmark\) & compareTo() \\
\hline separate chaining & \(N\) & \(N\) & \(N\) & \(3-5\) * & \(3-5\) * & \(3-5\) * & & \begin{tabular}{l}
equals() \\
hashCode()
\end{tabular} \\
\hline linear probing & \(N\) & \(N\) & \(N\) & \(3-5\) * & \(3-5\) * & \(3-5\) * & & \begin{tabular}{l}
equals() \\
hashCode()
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
* under uniform hashing assumption
}

\section*{Algorithms}


\section*{Undirected Graphs}

\section*{ \\ Algorithms}

Robert Sedgewick I Kevin Wayne

Computer Engineering Department
University of Jordan

\section*{Undirected Graphs}
- introduction

\section*{Algorithms}

Robert Sedgewick । Kevin Wayne

\section*{Undirected graphs}

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?
- Thousands of practical applications.
- Hundreds of graph algorithms known.
- Interesting and broadly useful abstraction.
- Challenging branch of computer science and discrete math.


\section*{Graph applications}
\begin{tabular}{|c|c|c|}
\hline graph & vertex & edge \\
\hline communication & telephone, computer & fiber optic cable \\
\hline circuit & gate, register, processor & wire \\
\hline mechanical & joint & rod, beam, spring \\
\hline financial & stock, currency & transactions \\
\hline transportation & intersection & street \\
\hline internet & class C network & connection \\
\hline game & board position & legal move \\
\hline social relationship & neuron & friendship \\
\hline neural network & protein & synapse \\
\hline protein network & atom & protein-protein interaction \\
\hline molecule & &
\end{tabular}

Graph terminology

Path. Sequence of vertices connected by edges.
Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.


\section*{Some graph-processing problems}
\begin{tabular}{|c|c|}
\hline problem \\
s-t path & description \\
\hline shortest s-t path & What is the shortest path between \(s\) and \(t ?\) \\
\hline cycle & Is there a cycle in the graph? \\
\hline Euler cycle & Is there a cycle that uses each edge exactly once? \\
\hline Hamilton cycle & Is there a cycle that uses each vertex exactly once? \\
\hline connectivity & Is there a way to connect all of the vertices ?
\end{tabular}

Challenge. Which graph problems are easy? difficult? intractable?

\section*{Undirected Graphs}

\section*{Algorithms}

Robert Sedgewick । Kevin Wayne

Graph representation

\section*{Vertex representation.}
- This lecture: use integers between 0 and \(V-1\).
- Applications: convert between names and integers with symbol table.


Anomalies.

public class Graph
Graph(int V)
create an empty graph with \(V\) vertices
Graph(In in) create a graph from input stream
void addEdge(int v, int w)
add an edge \(v-w\)
Iterable<Integer> adj(int v)
vertices adjacent to \(v\)
int V() number of vertices
int E() number of edges
```

// degree of vertex v in graph G
public static int degree(Graph G, int v)
{
int degree = 0;
for (int w : G.adj(v))
degree++;
return degree;
}

```

\section*{Graph API: sample client}

Graph input format.
\begin{tabular}{|c|c|}
\hline tinyG.txt & \% java Test tinyG.txt \\
\hline \[
\begin{array}{r}
-13 \\
13
\end{array} \underbrace{-}
\] & \[
0-6
\] \\
\hline 05 & 0-2 \\
\hline (1) (7) & 0-1 \\
\hline 912 (1) & 0-5 \\
\hline \(\begin{array}{lll}64 \\ 54 & \text { (1) }\end{array}\) & 1-0 \\
\hline 02 & 2-0 \\
\hline 1112 (5) (12) & 2 \\
\hline 910 & 3-5 \\
\hline 06 & 3-4 \\
\hline 78 & 3-4 \\
\hline 911 & : \\
\hline 53 & 12-11 \\
\hline & 12-9 \\
\hline In in = new In(args[0]); & read graph from \\
\hline Graph G = new Graph(in); & input stream \\
\hline for (int \(v=0\); \(v<G . V()\); v++) & \\
\hline for (int w : G.adj (v)) & \\
\hline StdOut.println(v + "-" + w) ; & print out each \\
\hline
\end{tabular}

\section*{Graph representation: set of edges}

Maintain a list of the edges (linked list or array).

\begin{tabular}{rr}
0 & 1 \\
0 & 2 \\
0 & 5 \\
0 & 6 \\
3 & 4 \\
3 & 5 \\
4 & 5 \\
4 & 6 \\
7 & 8 \\
9 & 10 \\
9 & 11 \\
9 & 12 \\
11 & 12
\end{tabular}
Q. How long to iterate over vertices adjacent to \(v\) ?

Graph representation: adjacency matrix
Maintain a two-dimensional \(V\)-by- \(V\) boolean array;
for each edge \(v-w\) in graph: \(\operatorname{adj}[v][w]=\operatorname{adj}[w][v]=\) true.

Q. How long to iterate over vertices adjacent to \(v\) ?

Graph representation: adjacency lists

Maintain vertex-indexed array of lists.

Q. How long to iterate over vertices adjacent to \(v\) ?


\section*{Graph representations}

In practice. Use adjacency-lists representation.
- Algorithms based on iterating over vertices adjacent to \(v\).
- Real-world graphs tend to be sparse.
huge number of vertices,
small average vertex degree


\section*{Graph representations}

In practice. Use adjacency-lists representation.
- Algorithms based on iterating over vertices adjacent to \(v\).
- Real-world graphs tend to be sparse.
huge number of vertices,
small average vertex degree
\begin{tabular}{|c|c|c|c|c|}
\hline representation & space & add edge & \begin{tabular}{c} 
edge between \\
v and w?
\end{tabular} & \begin{tabular}{c} 
iterate over vertices \\
adjacent to v?
\end{tabular} \\
\hline list of edges & \(E\) & 1 & \(E\) & \(E\) \\
\hline adjacency matrix & \(V^{2}\) & \(1 *\) & 1 & \(V\) \\
\hline adjacency lists & \(E+V\) & 1 & \(\operatorname{degree}(v)\) & \(\operatorname{degree}(v)\) \\
\hline
\end{tabular}
* disallows parallel edges

Adjacency-list graph representation: Java implementation
```

public class Graph
{
private final int V;
private Bag<Integer>[] adj;
public Graph(int V)
{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>();
}
public void addEdge(int v, int w)
{
adj[v].add(w);
adj[w].add(v);
}
public Iterable<Integer> adj(int v)
{ return adj[v]; }
}

```

\section*{Undirected Graphs}

\section*{Algorithms}

Robert Sedgewick । Kevin Wayne

\section*{Maze exploration}

Maze graph.
- Vertex = intersection.
- Edge = passage.


Goal. Explore every intersection in the maze.

\section*{Trémaux maze exploration}

\section*{Algorithm.}
- Unroll a ball of string behind you.
- Mark each visited intersection and each visited passage.
- Retrace steps when no unvisited options.


\section*{Depth-first search}

Goal. Systematically traverse a graph.
Idea. Mimic maze exploration.
function-call stack acts as ball of string

\section*{DFS (to visit a vertex v) \\ Mark vas visited. \\ Recursively visit all unmarked \\ vertices w adjacent to v .}

Typical applications.
- Find all vertices connected to a given source vertex.
- Find a path between two vertices.

Design challenge. How to implement?

Depth-first search: data structures

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\section*{Data structures.}
- Boolean array marked[] to mark visited vertices.
- Integer array edgeTo[] to keep track of paths. (edgeTo \([w]==v\) ) means that edge \(v-w\) taken to visit \(w\) for first time
- Function-call stack for recursion.

\section*{Depth-first search: Java implementation}
```

public class DepthFirstPaths
{
private boolean[] marked;
private int[] edgeTo;
private int s;
public DepthFirstPaths(Graph G, int s)
{
dfs(G, s);
}
private void dfs(Graph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (!marked[w])
{
dfs(G, w);
edgeTo[w] = v;
}
}
}

```

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

graph G

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc} 
v & marked[] & edgeTo[] \\
\hline 0 & F & - \\
1 & F & - \\
2 & F & - \\
3 & F & - \\
4 & F & - \\
5 & F & - \\
6 & F & - \\
7 & F & - \\
8 & \(F\) & - \\
9 & \(F\) & - \\
10 & \(F\) & - \\
11 & \(F\) & - \\
12 & \(F\) & -
\end{tabular}

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc} 
v & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & \(F\) & - \\
2 & \(F\) & - \\
3 & \(F\) & - \\
4 & \(F\) & - \\
5 & \(F\) & - \\
6 & \(F\) & - \\
7 & \(F\) & - \\
8 & \(F\) & - \\
9 & \(F\) & - \\
10 & \(F\) & - \\
11 & \(F\) & 44
\end{tabular}

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & F & - \\
3 & F & - \\
4 & F & - \\
5 & F & - \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & F & - \\
3 & F & - \\
4 & F & - \\
5 & F & - \\
6 & T & 0 \\
7 & \(F\) & - \\
8 & \(F\) & - \\
9 & \(F\) & - \\
10 & \(F\) & - \\
11 & \(F\) & - \\
12 & \(F\) & -
\end{tabular}

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & F & - \\
3 & F & - \\
4 & T & 6 \\
5 & F & - \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & - \\
\hline
\end{tabular}

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc} 
v & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & F & - \\
3 & F & - \\
4 & T & 6 \\
5 & T & 4 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc} 
v & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & F & - \\
3 & T & 5 \\
4 & T & 6 \\
5 & T & 4 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & F & - \\
3 & T & 5 \\
4 & T & 6 \\
5 & T & 4 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc} 
v & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & F & - \\
3 & T & 5 \\
4 & T & 6 \\
5 & T & 4 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline & T & - \\
0 & F & - \\
1 & F & - \\
2 & T & 5 \\
3 & T & 6 \\
4 & T & 4 \\
5 & T & 0 \\
6 & F & - \\
7 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline & T & - \\
0 & F & - \\
1 & F & - \\
2 & T & 5 \\
3 & T & 6 \\
4 & T & 4 \\
5 & T & 0 \\
6 & F & - \\
7 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc} 
v & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & F & - \\
3 & T & 5 \\
4 & T & 6 \\
5 & T & 4 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc} 
v & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & F & - \\
3 & T & 5 \\
4 & T & 6 \\
5 & T & 4 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & F & - \\
3 & T & 5 \\
4 & T & 6 \\
5 & T & 4 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & - \\
\hline
\end{tabular}

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline & T & - \\
0 & F & - \\
1 & F & - \\
2 & T & 5 \\
3 & T & 6 \\
4 & T & 4 \\
5 & T & 0 \\
6 & F & - \\
7 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & F & - \\
3 & T & 5 \\
4 & T & 6 \\
5 & T & 4 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & - \\
\hline
\end{tabular}

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc} 
v & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & F & - \\
3 & T & 5 \\
4 & T & 6 \\
5 & T & 4 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & - \\
\hline
\end{tabular}

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & T & 0 \\
3 & T & 5 \\
4 & T & 6 \\
5 & T & 4 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & T & 0 \\
3 & T & 5 \\
4 & T & 6 \\
5 & T & 4 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & T & 0 \\
3 & T & 5 \\
4 & T & 6 \\
5 & T & 4 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & - \\
\hline
\end{tabular}

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & T & 0 \\
2 & T & 0 \\
3 & T & 5 \\
4 & T & 6 \\
5 & T & 4 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & T & 0 \\
2 & T & 0 \\
3 & T & 5 \\
4 & T & 6 \\
5 & T & 4 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & - \\
\hline
\end{tabular}

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & T & 0 \\
2 & T & 0 \\
3 & T & 5 \\
4 & T & 6 \\
5 & T & 4 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & T & 0 \\
2 & T & 0 \\
3 & T & 5 \\
4 & T & 6 \\
5 & T & 4 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

Depth-first search: properties
Proposition. DFS marks all vertices connected to \(s\) in time proportional to the sum of their degrees (plus time to initialize the marked[] array).

Pf. [correctness]
- If \(w\) marked, then \(w\) connected to \(s\) (why?)
- If \(w\) connected to \(s\), then \(w\) marked. (if \(w\) unmarked, then consider last edge on a path from \(s\) to \(w\) that goes from a marked vertex to an unmarked one).

Pf. [running time]
Each vertex connected to \(s\) is visited once.


\section*{Depth-first search: properties}

Proposition. After DFS, can check if vertex \(v\) is connected to \(s\) in constant time and can find \(v-s\) path (if one exists) in time proportional to its length.

Pf. edgeTo[] is parent-link representation of a tree rooted at vertex s.
```

public boolean hasPathTo(int v)
{ return marked[v]; }
public Iterable<Integer> pathTo(int v)
{
if (!hasPathTo(v)) return null;
Stack<Integer> path = new tack<Integer>();
for (int x = v; x != s; x = edgeTo[x])
path.push(x);
path.push(s);
return path;
}

```


\section*{Undirected Graphs}

\section*{Algorithms}

Robert Sedgewick । Kevin Wayne

\section*{Breadth-first search}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

BFS (from source vertex s)
Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:
- remove the least recently added vertex v
- add each of v's unvisited neighbors to the queue,
and mark them as visited.


\section*{Breadth-first search: Java implementation}
```

public class BreadthFirstPaths
{
private boolean[] marked;
private int[] edgeTo;
private int[] distTo;
private void bfs(Graph G, int s) {
Queue<Integer> q = new Queue<Integer>();
q.enqueue(s);
marked[s] = true;
distTo[s] = 0;
while (!q.isEmpty()) {
int v = q.dequeue();
for (int w : G.adj(v)) {
if (!marked[w]) {
q.enqueue(w);
marked[w] = true;
edgeTo[w] = v;
distTo[w] = distTo[v] + 1;
}
}
}
}

```

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

tinyCG.txt


graph G

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 3 } & 0 & - & 0 \\
1 & - & - \\
2 & - & - \\
3 & - & - \\
4 & - & - \\
5 & - & -
\end{tabular}
add 0 to queue

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 3 } & 0 & - & 0 \\
1 & - & - \\
2 & - & - \\
3 & - & - \\
& 4 & - & - \\
0 & 5 & - & - \\
& & &
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 3 } & 0 & - & 0 \\
1 & & \\
2 & 0 & 1 \\
3 & - & - \\
4 & - & - \\
5 & - & -
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{|c|c|c|c|}
\hline queue & v & edgeTo[] & distTo[] \\
\hline & 0 & - & 0 \\
\hline & 1 & \(\underline{0}\) & 1 \\
\hline & 2 & 0 & 1 \\
\hline & 3 & - & - \\
\hline & 4 & - & - \\
\hline & 5 & - & - \\
\hline
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 4 } & 0 & - & 0 \\
& 0 & 0 & 1 \\
& 1 & 0 & 1 \\
\hline 1 & 2 & - & - \\
\hline 2 & 5 & 0 & 1 \\
\hline & & & - \\
\hline
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{c|ccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\hline & 0 & - & 0 \\
& 1 & 0 & 1 \\
& 2 & 0 & 1 \\
\hline 5 & 3 & - & - \\
\hline 1 & 4 & - & - \\
\hline 2 & 5 & 0 & 1 \\
\hline
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 4 } & 0 & - & 0 \\
& 1 & 0 & 1 \\
\hline 5 & 2 & 0 & 1 \\
\hline 1 & 3 & - & - \\
\hline 2 & 5 & - & - \\
\hline & & & 1 \\
\hline
\end{tabular}

Breadth-first search demo

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\hline & 0 & - & 0 \\
& 1 & 0 & 1 \\
& 2 & 0 & 1 \\
& 3 & - & - \\
\hline 5 & 4 & - & - \\
\hline 1 & 5 & 0 & 1 \\
\hline
\end{tabular}

Breadth-first search demo

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 4 } & 0 & - & 0 \\
& 1 & 0 & 1 \\
& 2 & 0 & 1 \\
\hline 5 & 4 & - & - \\
\hline 1 & 5 & 0 & 1 \\
\hline
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 4 } & 0 & - & 0 \\
& 1 & 0 & 1 \\
& 2 & 2 & 2 \\
\hline 5 & 4 & - & - \\
\hline 1 & 5 & 0 & 1 \\
\hline
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{c|ccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\hline & 0 & - & 0 \\
& 1 & 0 & 1 \\
& 2 & 0 & 1 \\
\hline 3 & 3 & 2 & 2 \\
\hline 5 & 4 & - & - \\
\hline 1 & 5 & 0 & 1 \\
\hline
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{c|ccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\hline & 0 & - & 0 \\
\hline 4 & 1 & 0 & 1 \\
& 2 & 0 & 1 \\
\hline 3 & 3 & 2 & 2 \\
\hline 5 & 4 & 2 & 2 \\
\hline 1 & 5 & 0 & 1 \\
\hline
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{c|ccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 4 } & 0 & - & 0 \\
\hline 4 & 1 & 0 & 1 \\
\hline 3 & 2 & 0 & 1 \\
\hline 5 & 3 & 2 & 2 \\
\hline 1 & 4 & 2 & 2 \\
\hline & 5 & 0 & 1 \\
\hline
\end{tabular}
dequeue 1

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{c|ccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 4 } & 0 & - & 0 \\
\hline & 1 & 0 & 1 \\
\hline 4 & 2 & 0 & 1 \\
\hline & 3 & 2 & 2 \\
\hline 3 & 4 & 2 & 2 \\
\hline 5 & 5 & 0 & 1 \\
\hline
\end{tabular}
dequeue 1

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{c|ccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\hline & 0 & - & 0 \\
& 1 & 0 & 1 \\
\hline & 2 & 0 & 1 \\
\hline 4 & 3 & 2 & 2 \\
\hline 3 & 4 & 2 & 2 \\
\hline 5 & 5 & 0 & 1 \\
\hline & & & \\
\hline
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{c|ccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\hline & 0 & - & 0 \\
& 1 & 0 & 1 \\
\hline & 2 & 0 & 1 \\
\hline 4 & 3 & 2 & 2 \\
\hline 3 & 4 & 2 & 2 \\
\hline 5 & 5 & 0 & 1 \\
\hline & & & \\
\hline
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{c|ccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 3 - 4 } & 0 & - & 0 \\
& 1 & 0 & 1 \\
\hline 4 & 2 & 0 & 1 \\
\hline 3 & 3 & 2 & 2 \\
\hline & 4 & 2 & 2 \\
\hline 5 & 5 & 0 & 1 \\
\hline
\end{tabular}
dequeue 5

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 4 } & 0 & - & 0 \\
& 0 & 0 & 1 \\
& 1 & 0 & 1 \\
\hline & 2 & 2 & 2 \\
\hline 4 & 4 & 2 & 2 \\
\hline 3 & 5 & 0 & 1 \\
\hline
\end{tabular}
dequeue 5

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 4 } & 0 & - & 0 \\
& 0 & 0 & 1 \\
& 1 & 0 & 1 \\
\hline & 2 & 2 & 2 \\
\hline 4 & 4 & 2 & 2 \\
\hline 3 & 5 & 0 & 1 \\
\hline
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{|c|c|c|c|}
\hline queue & v & edgeTo[] & distTo[] \\
\hline & 0 & - & 0 \\
\hline & 1 & 0 & 1 \\
\hline & 2 & 0 & 1 \\
\hline & 3 & 2 & 2 \\
\hline 4 & 4 & 2 & 2 \\
\hline 3 & 5 & 0 & 1 \\
\hline
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 1 - 4 } & 0 & - & 0 \\
& 1 & 0 & 1 \\
& 2 & 0 & 1 \\
& 3 & 2 & 2 \\
\hline 4 & 4 & 2 & 2 \\
\hline 3 & 5 & 0 & 1 \\
\hline
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 1 - 4 } & 0 & - & 0 \\
& 1 & 0 & 1 \\
2 & 0 & 1 \\
3 & 2 & 2 \\
& 4 & 2 & 2 \\
& 5 & 0 & 1 \\
\hline 4 & & & \\
\hline
\end{tabular}
dequeue 3

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 4 } & 0 & - & 0 \\
1 & 0 & 1 \\
& 2 & 0 & 1 \\
& 2 & 2 & 2 \\
& 4 & 2 & 2 \\
4 & 5 & 0 & 1
\end{tabular}
dequeue 3

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\hline \multirow{4}{*}{0} & - & 0 \\
& 1 & 0 & 1 \\
& 2 & 0 & 1 \\
3 & 2 & 2 \\
& 4 & 2 & 2 \\
\hline 4 & 5 & 0 & 1 \\
& & & \\
\hline
\end{tabular}
dequeue 3

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\hline \multirow{4}{*}{0} & - & 0 \\
& 1 & 0 & 1 \\
& 2 & 0 & 1 \\
3 & 2 & 2 \\
& 4 & 2 & 2 \\
\hline 4 & 5 & 0 & 1 \\
& & & \\
\hline
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 1 - 4 } & 0 & - & 0 \\
& 1 & 0 & 1 \\
2 & 0 & 1 \\
3 & 2 & 2 \\
& 4 & 2 & 2 \\
& 5 & 0 & 1 \\
4 & & &
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{ccc} 
queue & \(\mathbf{v}\) & edgeTo[]
\end{tabular} \begin{tabular}{ccc} 
distTo[] \\
\cline { 2 - 3 } & 0 & - \\
1 & 0 & 1 \\
2 & 0 & 1 \\
3 & 2 & 2 \\
4 & 2 & 2 \\
5 & 0 & 1
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{ccc} 
queue & \(\mathbf{v}\) & edgeTo[]
\end{tabular} \begin{tabular}{ccc} 
distTo[] \\
\cline { 2 - 3 } & 0 & - \\
1 & 0 & 1 \\
2 & 0 & 1 \\
3 & 2 & 2 \\
4 & 2 & 2 \\
5 & 0 & 1
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

\begin{tabular}{ccc} 
queue & \(\mathbf{v}\) & edgeTo[]
\end{tabular} \begin{tabular}{ccc} 
distTo[] \\
\cline { 2 - 3 } & 0 & - \\
1 & 0 & 1 \\
2 & 0 & 1 \\
3 & 2 & 2 \\
4 & 2 & 2 \\
5 & 0 & 1
\end{tabular}

\section*{Breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices adjacent to \(v\) and mark them.

v edgeTo[] distTo[]
\begin{tabular}{lll}
0 & - & 0 \\
1 & 0 & 1 \\
2 & 0 & 1 \\
3 & 2 & 2 \\
4 & 2 & 2 \\
5 & 0 & 1
\end{tabular}

Breadth-first search properties
Q. In which order does BFS examine vertices?
A. Increasing distance (number of edges) from \(s\).
queue always consists of \(\geq 0\) vertices of distance \(k\) from \(s\),
followed by \(\geq 0\) vertices of distance \(k+1\)

Proposition. In any connected graph \(G\), BFS computes shortest paths from \(s\) to all other vertices in time proportional to \(E+V\).

graph G


\section*{Undirected Graphs}

\section*{Algorithms}

Robert Sedgewick । Kevin Wayne

\section*{Connectivity queries}

Def. Vertices \(v\) and \(w\) are connected if there is a path between them.

Goal. Preprocess graph to answer queries of the form is v connected to \(w\) ? in constant time.
```

public class CC

```
CC(Graph G) find connected components in \(G\)
```

boolean connected(int v, int w) arevand w connected?
int count() number of connected components
int id(int v) (between 0 and count() - 1)

```

Connected components
The relation "is connected to" is an equivalence relation:
- Reflexive: \(v\) is connected to \(v\).
- Symmetric: if \(v\) is connected to \(w\), then \(w\) is connected to \(v\).
- Transitive: if \(v\) connected to \(w\) and \(w\) connected to \(x\), then \(v\) connected to \(x\).

Def. A connected component is a maximal set of connected vertices.


Remark. Given connected components, can answer queries in constant timé.

\section*{Finding connected components with DFS}
```

public class CC
{
private boolean[] marked;
private int[] id;
private int count;
public CC(Graph G)
{
marked = new boolean[G.V()];
id = new int[G.V()];
for (int v = 0; v < G.V(); v++)
{
if (!marked[v])
{
dfs(G, v);
count++;
}
}
}
public int count()
public int id(int v)
public boolean connected(int v, int w)
private void dfs(Graph G, int v)

```

\section*{Finding connected components with DFS (continued)}
```

public int count()
{ return count; }
public int id(int v)
{ return id[v]; }
public boolean connected(int v, int w)
{ return id[v] == id[w]; }
private void dfs(Graph G, int v)
{
marked[v] = true;
id[v] = count;
for (int w : G.adj(v))
if (!marked[w])
dfs(G, w);
}

```

Connected components demo

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc} 
v & marked[] & id[] \\
\hline 0 & \(F\) & - \\
1 & \(F\) & - \\
2 & \(F\) & - \\
3 & \(F\) & - \\
4 & \(F\) & - \\
5 & \(F\) & - \\
6 & \(F\) & - \\
7 & \(F\) & - \\
8 & \(F\) & - \\
9 & \(F\) & - \\
10 & \(F\) & - \\
11 & \(F\) & - \\
12 & \(F\) & -
\end{tabular}

Connected components demo

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & T & 0 \\
1 & \(F\) & - \\
2 & \(F\) & - \\
3 & \(F\) & - \\
4 & \(F\) & - \\
5 & \(F\) & - \\
6 & \(F\) & - \\
7 & \(F\) & - \\
8 & \(F\) & - \\
9 & \(F\) & - \\
10 & \(F\) & - \\
11 & \(F\) & - \\
12 & \(F\) & -
\end{tabular}

Connected components demo

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & T & 0 \\
1 & F & - \\
2 & F & - \\
3 & F & - \\
4 & F & - \\
5 & F & - \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

Connected components demo

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & T & 0 \\
1 & F & - \\
2 & F & - \\
3 & F & - \\
4 & F & - \\
5 & F & - \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

Connected components demo

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & T & 0 \\
1 & F & - \\
2 & F & - \\
3 & F & - \\
4 & T & 0 \\
5 & F & - \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

Connected components demo

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc} 
v & marked[] & id[] \\
\hline 0 & T & 0 \\
1 & F & - \\
2 & F & - \\
3 & F & - \\
4 & T & 0 \\
5 & T & 0 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

Connected components demo

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & T & 0 \\
1 & F & - \\
2 & F & - \\
3 & T & 0 \\
4 & T & 0 \\
5 & T & 0 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

Connected components demo

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & T & 0 \\
1 & F & - \\
2 & F & - \\
3 & T & 0 \\
4 & T & 0 \\
5 & T & 0 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

Connected components demo

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & T & 0 \\
1 & F & - \\
2 & F & - \\
3 & T & 0 \\
4 & T & 0 \\
5 & T & 0 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

Connected components demo

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & T & 0 \\
1 & F & - \\
2 & F & - \\
3 & T & 0 \\
4 & T & 0 \\
5 & T & 0 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

Connected components demo

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & T & 0 \\
1 & F & - \\
2 & F & - \\
3 & T & 0 \\
4 & T & 0 \\
5 & T & 0 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

Connected components demo

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & T & 0 \\
1 & F & - \\
2 & F & - \\
3 & T & 0 \\
4 & T & 0 \\
5 & T & 0 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & T & 0 \\
1 & F & - \\
2 & F & - \\
3 & T & 0 \\
4 & T & 0 \\
5 & T & 0 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & T & 0 \\
1 & F & - \\
2 & F & - \\
3 & T & 0 \\
4 & T & 0 \\
5 & T & 0 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & T & 0 \\
1 & F & - \\
2 & F & - \\
3 & T & 0 \\
4 & T & 0 \\
5 & T & 0 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

Connected components demo

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & T & 0 \\
1 & F & - \\
2 & F & - \\
3 & T & 0 \\
4 & T & 0 \\
5 & T & 0 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & T & 0 \\
1 & F & - \\
2 & F & - \\
3 & T & 0 \\
4 & T & 0 \\
5 & T & 0 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & T & 0 \\
1 & F & - \\
2 & T & 0 \\
3 & T & 0 \\
4 & T & 0 \\
5 & T & 0 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc} 
v & marked[] & id[] \\
\hline 0 & T & 0 \\
1 & F & - \\
2 & T & 0 \\
3 & T & 0 \\
4 & T & 0 \\
5 & T & 0 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & T & 0 \\
1 & F & - \\
2 & T & 0 \\
3 & T & 0 \\
4 & T & 0 \\
5 & T & 0 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & T & 0 \\
1 & T & 0 \\
2 & T & 0 \\
3 & T & 0 \\
4 & T & 0 \\
5 & T & 0 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & T & 0 \\
1 & T & 0 \\
2 & T & 0 \\
3 & T & 0 \\
4 & T & 0 \\
5 & T & 0 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & T & 0 \\
1 & T & 0 \\
2 & T & 0 \\
3 & T & 0 \\
4 & T & 0 \\
5 & T & 0 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

Connected components demo

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).


\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & \(\top\) & 0 \\
1 & \(\top\) & 0 \\
2 & \(\top\) & 0 \\
3 & \(\top\) & 0 \\
4 & \(T\) & 0 \\
5 & \(T\) & 0 \\
6 & \(T\) & 0 \\
7 & \(F\) & - \\
8 & \(F\) & - \\
9 & \(F\) & - \\
10 & \(F\) & - \\
11 & \(F\) & - \\
12 & \(F\) & -
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).


\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & \(\top\) & 0 \\
1 & \(\top\) & 0 \\
2 & \(\top\) & 0 \\
3 & \(\top\) & 0 \\
4 & \(\top\) & 0 \\
5 & \(T\) & 0 \\
6 & \(T\) & 0 \\
7 & \(T\) & 1 \\
8 & \(T\) & 1 \\
9 & \(F\) & - \\
10 & \(F\) & - \\
11 & \(F\) & - \\
12 & \(F\) & -
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & \(\top\) & 0 \\
1 & \(\top\) & 0 \\
2 & \(\top\) & 0 \\
3 & \(\top\) & 0 \\
4 & \(\top\) & 0 \\
5 & \(\top\) & 0 \\
6 & \(\top\) & 0 \\
7 & \(T\) & 1 \\
8 & \(T\) & 1 \\
9 & \(F\) & - \\
10 & \(F\) & - \\
11 & \(F\) & - \\
12 & \(F\) & -
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & \(\top\) & 0 \\
1 & \(\top\) & 0 \\
2 & \(\top\) & 0 \\
3 & \(\top\) & 0 \\
4 & \(\top\) & 0 \\
5 & \(\top\) & 0 \\
6 & \(\top\) & 0 \\
7 & \(T\) & 1 \\
8 & \(T\) & 1 \\
9 & \(F\) & - \\
10 & \(F\) & - \\
11 & \(F\) & - \\
12 & \(F\) & -
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & \(\top\) & 0 \\
1 & \(\top\) & 0 \\
2 & \(\top\) & 0 \\
3 & \(\top\) & 0 \\
4 & \(\top\) & 0 \\
5 & \(\top\) & 0 \\
6 & \(\top\) & 0 \\
7 & \(T\) & 1 \\
8 & \(T\) & 1 \\
9 & \(F\) & - \\
10 & \(F\) & - \\
11 & \(F\) & - \\
12 & \(F\) & -
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & \(\top\) & 0 \\
1 & \(\top\) & 0 \\
2 & \(\top\) & 0 \\
3 & \(\top\) & 0 \\
4 & \(\top\) & 0 \\
5 & \(\top\) & 0 \\
6 & \(\top\) & 0 \\
7 & \(\top\) & 1 \\
8 & \(\top\) & 1 \\
9 & \(F\) & - \\
10 & \(F\) & - \\
11 & \(F\) & - \\
12 & \(F\) & -
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & \(\top\) & 0 \\
1 & \(\top\) & 0 \\
2 & \(\top\) & 0 \\
3 & \(T\) & 0 \\
4 & \(T\) & 0 \\
5 & \(T\) & 0 \\
6 & \(T\) & 0 \\
7 & \(T\) & 1 \\
8 & \(T\) & 1 \\
9 & \(T\) & 2 \\
10 & \(F\) & - \\
11 & \(F\) & - \\
12 & \(F\) & -
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & \(\top\) & 0 \\
1 & \(\top\) & 0 \\
2 & \(\top\) & 0 \\
3 & \(\top\) & 0 \\
4 & \(\top\) & 0 \\
5 & \(\top\) & 0 \\
6 & \(\top\) & 0 \\
7 & \(\top\) & 1 \\
8 & \(\top\) & 1 \\
9 & \(T\) & 2 \\
10 & \(F\) & - \\
11 & \(T\) & 2 \\
12 & \(F\) & -
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

marked[]
\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & \(\top\) & 0 \\
1 & \(\top\) & 0 \\
2 & \(\top\) & 0 \\
3 & \(\top\) & 0 \\
4 & \(\top\) & 0 \\
5 & \(\top\) & 0 \\
6 & \(\top\) & 0 \\
7 & \(\top\) & 1 \\
8 & \(\top\) & 1 \\
9 & \(T\) & 2 \\
10 & \(F\) & - \\
11 & \(\top\) & 2 \\
12 & \(F\) & -
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & \(\top\) & 0 \\
1 & \(\top\) & 0 \\
2 & \(\top\) & 0 \\
3 & \(\top\) & 0 \\
4 & \(\top\) & 0 \\
5 & \(\top\) & 0 \\
6 & \(\top\) & 0 \\
7 & \(\top\) & 1 \\
8 & \(\top\) & 1 \\
9 & \(\top\) & 2 \\
10 & \(F\) & - \\
11 & \(\top\) & 2 \\
12 & \(\top\) & 2
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

marked[]
\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & \(\top\) & 0 \\
1 & \(\top\) & 0 \\
2 & \(\top\) & 0 \\
3 & \(\top\) & 0 \\
4 & \(\top\) & 0 \\
5 & \(\top\) & 0 \\
6 & \(\top\) & 0 \\
7 & \(\top\) & 1 \\
8 & \(\top\) & 1 \\
9 & \(\top\) & 2 \\
10 & \(F\) & - \\
11 & \(\top\) & 2 \\
12 & \(\top\) & 2
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

marked[]
\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & \(\top\) & 0 \\
1 & \(\top\) & 0 \\
2 & \(\top\) & 0 \\
3 & \(\top\) & 0 \\
4 & \(\top\) & 0 \\
5 & \(\top\) & 0 \\
6 & \(\top\) & 0 \\
7 & \(\top\) & 1 \\
8 & \(\top\) & 1 \\
9 & \(\top\) & 2 \\
10 & \(F\) & - \\
11 & \(\top\) & 2 \\
12 & \(\top\) & 2
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

marked[]
\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & \(\top\) & 0 \\
1 & \(\top\) & 0 \\
2 & \(\top\) & 0 \\
3 & \(\top\) & 0 \\
4 & \(\top\) & 0 \\
5 & \(\top\) & 0 \\
6 & \(\top\) & 0 \\
7 & \(\top\) & 1 \\
8 & \(\top\) & 1 \\
9 & \(T\) & 2 \\
10 & \(F\) & - \\
11 & \(T\) & 2 \\
12 & \(T\) & 2
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

marked[]
\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & \(\top\) & 0 \\
1 & \(\top\) & 0 \\
2 & \(\top\) & 0 \\
3 & \(\top\) & 0 \\
4 & \(\top\) & 0 \\
5 & \(\top\) & 0 \\
6 & \(\top\) & 0 \\
7 & \(\top\) & 1 \\
8 & \(\top\) & 1 \\
9 & \(T\) & 2 \\
10 & \(F\) & - \\
11 & \(T\) & 2 \\
12 & \(T\) & 2
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

marked[]
\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & \(\top\) & 0 \\
1 & \(\top\) & 0 \\
2 & \(\top\) & 0 \\
3 & \(\top\) & 0 \\
4 & \(\top\) & 0 \\
5 & \(\top\) & 0 \\
6 & \(\top\) & 0 \\
7 & \(\top\) & 1 \\
8 & \(\top\) & 1 \\
9 & \(\top\) & 2 \\
10 & \(\top\) & 2 \\
11 & \(\top\) & 2 \\
12 & \(\top\) & 2
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

marked[]
\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & \(\top\) & 0 \\
1 & \(\top\) & 0 \\
2 & \(\top\) & 0 \\
3 & \(\top\) & 0 \\
4 & \(\top\) & 0 \\
5 & \(\top\) & 0 \\
6 & \(\top\) & 0 \\
7 & \(\top\) & 1 \\
8 & \(\top\) & 1 \\
9 & \(\top\) & 2 \\
10 & \(\top\) & 2 \\
11 & \(\top\) & 2 \\
12 & \(\top\) & 2
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

marked[]
\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & \(\top\) & 0 \\
1 & \(\top\) & 0 \\
2 & \(\top\) & 0 \\
3 & \(\top\) & 0 \\
4 & \(\top\) & 0 \\
5 & \(\top\) & 0 \\
6 & \(\top\) & 0 \\
7 & \(\top\) & 1 \\
8 & \(\top\) & 1 \\
9 & \(\top\) & 2 \\
10 & \(\top\) & 2 \\
11 & \(T\) & 2 \\
12 & \(\top\) & 2
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & \(\top\) & 0 \\
1 & \(\top\) & 0 \\
2 & \(\top\) & 0 \\
3 & \(\top\) & 0 \\
4 & \(\top\) & 0 \\
5 & \(\top\) & 0 \\
6 & \(\top\) & 0 \\
7 & \(\top\) & 1 \\
8 & \(\top\) & 1 \\
9 & \(\top\) & 2 \\
10 & \(\top\) & 2 \\
11 & \(\top\) & 2 \\
12 & \(\top\) & 2
\end{tabular}

\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).


\section*{Connected components demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & id[] \\
\hline 0 & T & 0 \\
1 & T & 0 \\
2 & T & 0 \\
3 & T & 0 \\
4 & T & 0 \\
5 & T & 0 \\
6 & T & 0 \\
7 & T & 1 \\
8 & T & 1 \\
9 & T & 2 \\
10 & T & 2 \\
11 & T & 2 \\
12 & T & 2
\end{tabular}

\section*{Algorithms}


\section*{Directed Graphs}
- introduction
digłap吊A AP

\section*{Algorithms}

Robert Sedgewick | Kevin Wayne

\section*{Directed graphs}

Digraph. Set of vertices connected pairwise by directed edges.


\section*{Digraph applications}
\begin{tabular}{|c|c|c|}
\hline digraph & vertex & directed edge \\
\hline transportation & street intersection & one-way street \\
\hline web & web page & hyperlink \\
\hline food web & species & predator-prey relationship \\
\hline WordNet & synset & hypernym \\
\hline scheduling & task & bank \\
\hline financial & person & person \\
\hline cell phone & board position & placed call \\
\hline infectious disease & journal article & legal moven \\
\hline game & object & citation \\
\hline citation & class & pointer \\
\hline object graph & code block & inherits from \\
\hline inheritance hierarchy & & \\
\hline control flow & & \\
\hline
\end{tabular}

\section*{Some digraph problems}

\section*{problem}
description

\section*{\(s \rightarrow t\) path}

Is there a path from s to \(t\) ?
shortest \(\mathbf{s} \rightarrow\) t path
directed cycle
topological sort
strong connectivity
transitive closure

\section*{PageRank}

What is the importance of a web page?

\section*{Directed Graphs}

Wintroduction
- digraph API

\section*{Algorithms}

Robert Sedgewick | Kevin Wayne

\section*{Digraph API}

\section*{Almost identical to Graph API.}

\section*{public class Digraph}
\begin{tabular}{|c|c|c|}
\hline & Digraph(int V) & create an empty digraph with \(V\) vertices \\
\hline & Digraph(In in) & create a digraph from input stream \\
\hline void & addEdge(int v, int w) & add a directed edge \(v \rightarrow w\) \\
\hline Iterable<Integer> & adj(int v) & vertices pointing from \(v\) \\
\hline int & V() & number of vertices \\
\hline int & E() & number of edges \\
\hline Digraph & reverse() & reverse of this digraph \\
\hline String & toString() & string representation \\
\hline
\end{tabular}
\begin{tabular}{rr}
\multicolumn{1}{r}{ tinyDG.txt } \\
\(\rightarrow 13\) & \(\ldots E\) \\
22 & \(\sim\) \\
4 & 2 \\
2 & 3 \\
3 & 2 \\
6 & 0 \\
0 & 1 \\
2 & 0 \\
11 & 12 \\
12 & 9 \\
9 & 10 \\
9 & 11 \\
7 & 9 \\
10 & 12 \\
11 & 4 \\
4 & 3 \\
3 & 5 \\
6 & 8 \\
8 & 6 \\
\(\vdots\) &
\end{tabular}
\% java Digraph tinyDG.txt
0->5
\(0->1\)
\(2->0\)
\(2->3\)
3->5
\(3->2\)
\(4->3\)
\(4->2\)
\(5->4\)
\(\vdots\)
11->4
\(11->12\)
12->9
```

In in = new In(args[0]);
Digraph G = new Digraph(in);
for (int v = 0; v < G.V(); v++)
for (int w : G.adj(v))
StdOut.print7n(v + "->" + w);

```
read digraph from input stream
print out each edge (once)

Digraph representation: adjacency lists
Maintain vertex-indexed array of lists.


\section*{Digraph representations}

In practice. Use adjacency-lists representation.
- Algorithms based on iterating over vertices pointing from \(v\).
- Real-world digraphs tend to be sparse.
huge number of vertices,
small average vertex degree
\begin{tabular}{|c|c|c|c|c|}
\hline representation & space & \begin{tabular}{c} 
insert edgespiffrom \\
v to w
\end{tabular} & \begin{tabular}{c} 
edge from \\
v to w?
\end{tabular} & \begin{tabular}{c} 
iterate over vertices \\
pointing from v?
\end{tabular} \\
\hline list of edges & \(E\) & 1 & \(E\) & \(E\) \\
\hline adjacency matrix & \(V^{2}\) & \(1^{\dagger}\) & 1 & \(V\) \\
\hline adjacency lists & \(E+V\) & 1 & outdegree \((v)\) & outdegree \((v)\) \\
\hline
\end{tabular}
\({ }^{\dagger}\) disallows parallel edges

Adjacency-lists graph representation (review): Java implementation
```

public class Graph
{
private final int V;
private final Bag<Integer>[] adj;
public Graph(int V)
{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < v; v++)
adj[v] = new Bag<Integer>();
}
public void addEdge(int v, int w)
{
adj[v].add(w);
adj[w].add(v);
}
public Iterable<Integer> adj(int v)
{ return adj[v]; }
}

```

Adjacency-lists digraph representation: Java implementation
```

public class Digraph
{
private final int V;
private final Bag<Integer>[] adj;
public Digraph(int V)
{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>();
}
public void addEdge(int v, int w)
{
adj[v].add(w);
}
public Iterable<Integer> adj(int v)
{ return adj[v]; }
}

```

\section*{Directed Graphs}

\section*{Algorithms}

Robert Sedgewick | Kevin Wayne

\section*{Reachability}

Problem. Find all vertices reachable from \(s\) along a directed path.


Depth-first search in digraphs

Same method as for undirected graphs.
- Every undirected graph is a digraph (with edges in both directions).
- DFS is a digraph algorithm.

DFS (to visit a vertex v)
Mark v as visited.
Recursively visit all unmarked
vertices \(w\) pointing from v .

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices pointing from \(v\).

a directed graph
\(2 \rightarrow 3\)
\(3 \rightarrow 2\)
\(6 \rightarrow 0\)
\(0 \rightarrow 1\)
\(2 \rightarrow 0\)
\(11 \rightarrow 12\)
\(12 \rightarrow 9\)
\(9 \rightarrow 10\)
\(9 \rightarrow 11\)
\(8 \rightarrow 9\)
\(10 \rightarrow 12\)
\(11 \rightarrow 4\)
\(4 \rightarrow 3\)
\(3 \rightarrow 5\)
\(6 \rightarrow 8\)
\(8 \rightarrow 6\)
\(5 \rightarrow 4\)
\(0 \rightarrow 5\)
\(6 \rightarrow 4\)

\section*{Directed depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices pointing from \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline 0 & F & - \\
1 & F & - \\
2 & F & - \\
3 & F & - \\
4 & F & - \\
5 & F & - \\
6 & F & - \\
7 & F & - \\
8 & \(F\) & - \\
9 & \(F\) & - \\
10 & \(F\) & - \\
11 & \(F\) & - \\
12 & \(F\) & -
\end{tabular}

\section*{Directed depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices pointing from \(v\).

\begin{tabular}{ccc} 
v & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & F & - \\
3 & F & - \\
4 & F & - \\
5 & F & - \\
6 & F & - \\
7 & F & - \\
8 & \(F\) & - \\
9 & \(F\) & - \\
10 & \(F\) & - \\
11 & \(F\) & - \\
12 & \(F\) & -
\end{tabular}

\section*{Directed depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices pointing from \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & F & - \\
3 & F & - \\
4 & F & - \\
5 & T & 0 \\
6 & F & - \\
7 & \(F\) & - \\
8 & \(F\) & - \\
9 & \(F\) & - \\
10 & \(F\) & - \\
11 & \(F\) & - \\
12 & \(F\) & -
\end{tabular}

\section*{Directed depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices pointing from \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & F & - \\
3 & F & - \\
4 & T & 5 \\
5 & T & 0 \\
6 & F & - \\
7 & \(F\) & - \\
8 & \(F\) & - \\
9 & \(F\) & - \\
10 & \(F\) & - \\
11 & \(F\) & - \\
12 & \(F\) & -
\end{tabular}

\section*{Directed depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices pointing from \(v\).

\begin{tabular}{ccc} 
v & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & F & - \\
3 & T & 4 \\
4 & T & 5 \\
5 & T & 0 \\
6 & F & - \\
7 & F & - \\
8 & F & - \\
9 & \(F\) & - \\
10 & \(F\) & - \\
11 & \(F\) & - \\
12 & \(F\) & -
\end{tabular}

\section*{Directed depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices pointing from \(v\).

\begin{tabular}{ccc} 
v & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & F & - \\
3 & T & 4 \\
4 & T & 5 \\
5 & T & 0 \\
6 & F & - \\
7 & F & - \\
8 & F & - \\
9 & \(F\) & - \\
10 & \(F\) & - \\
11 & \(F\) & - \\
12 & \(F\) & -
\end{tabular}

\section*{Directed depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices pointing from \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & T & 3 \\
3 & T & 4 \\
4 & T & 5 \\
5 & T & 0 \\
6 & F & - \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & - \\
\hline
\end{tabular}

\section*{Directed depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices pointing from \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & T & 3 \\
3 & T & 4 \\
4 & T & 5 \\
5 & T & 0 \\
6 & F & - \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Directed depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices pointing from \(v\).

\begin{tabular}{ccc} 
v & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & T & 3 \\
3 & T & 4 \\
4 & T & 5 \\
5 & T & 0 \\
6 & F & - \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & \(F\) & -
\end{tabular}

\section*{Directed depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices pointing from \(v\).

\begin{tabular}{ccc} 
v & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & T & 3 \\
3 & T & 4 \\
4 & T & 5 \\
5 & T & 0 \\
6 & F & - \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Directed depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices pointing from \(v\).

\begin{tabular}{ccc} 
v & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & T & 3 \\
3 & T & 4 \\
4 & T & 5 \\
5 & T & 0 \\
6 & F & - \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Directed depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices pointing from \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & T & 3 \\
3 & T & 4 \\
4 & T & 5 \\
5 & T & 0 \\
6 & F & - \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Directed depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices pointing from \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & T & 3 \\
3 & T & 4 \\
4 & T & 5 \\
5 & T & 0 \\
6 & F & - \\
7 & \(F\) & - \\
8 & \(F\) & - \\
9 & \(F\) & - \\
10 & \(F\) & - \\
11 & \(F\) & - \\
12 & \(F\) & -
\end{tabular}

\section*{Directed depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices pointing from \(v\).

\begin{tabular}{ccc} 
v & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & F & - \\
2 & T & 3 \\
3 & T & 4 \\
4 & T & 5 \\
5 & T & 0 \\
6 & F & - \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & - \\
\hline
\end{tabular}

\section*{Directed depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices pointing from \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline 0 & & - \\
1 & T & 0 \\
2 & T & 3 \\
3 & T & 4 \\
4 & T & 5 \\
5 & T & 0 \\
6 & F & - \\
7 & F & - \\
8 & F & - \\
9 & \(F\) & - \\
10 & \(F\) & - \\
11 & \(F\) & - \\
12 & \(F\) & -
\end{tabular}

\section*{Directed depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices pointing from \(v\).

\begin{tabular}{ccc} 
v & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & T & 0 \\
2 & T & 3 \\
3 & T & 4 \\
4 & T & 5 \\
5 & T & 0 \\
6 & F & - \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Directed depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices pointing from \(v\).

\begin{tabular}{ccc} 
v & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & T & 0 \\
2 & T & 3 \\
3 & T & 4 \\
4 & T & 5 \\
5 & T & 0 \\
6 & F & - \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}

\section*{Directed depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices pointing from \(v\).


\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\) as visited.
- Recursively visit all unmarked vertices pointing from \(v\).


\section*{Depth-first search (in undirected graphs)}

\section*{Recall code for undirected graphs.}
```

public class DepthFirstSearch
{
private boolean[] marked;

```
    public DepthFirstSearch (Graph G, int s)
    \{
        marked \(=\) new boolean[G.V()];
        dfs(G, s);
    \}
    private void dfs(Graph G, int v)
    \{
        marked[v] = true;
        for (int w : G.adj(v))
        if (!marked[w]) dfs(G, w);
    \}
    public boolean visited(int v)
    \{ return marked[v]; \}
\}


\section*{Depth-first search (in directed graphs)}

Code for directed graphs identical to undirected one.
[substitute Digraph for Graph]
```

public class DirectedDFS
{
private boolean[] marked;
public DirectedDFS(Digraph G, int s)
{
marked = new boolean[G.V()];
dfs(G, s);
}
private void dfs(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (!marked[w]) dfs(G, w);
}
public boolean visited(int v)
{ return marked[v]; }
}

```

\section*{Reachability application: mark-sweep garbage collector}

Every data structure is a digraph.
- Vertex = object.
- Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).


\section*{Reachability application: mark-sweep garbage collector}

Mark-sweep algorithm. [McCarthy, 1960]
- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).


Breadth-first search in digraphs
Same method as for undirected graphs.
- Every undirected graph is a digraph (with edges in both directions).
- BFS is a digraph algorithm.

BFS (from source vertex s)
Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:
- remove the least recently added vertex v
- for each unmarked vertex pointing from v: add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges) from \(s\) to all other vertices in a digraph in time proportional to \(E+V\).

\section*{Directed breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices pointing from \(v\) and mark them.

\(\stackrel{\text { tinyDG2.txt }}{6}\)\begin{tabular}{ll}
6 \\
5 & 0 \\
2 & 4 \\
3 & 2 \\
1 & 2 \\
0 & 1 \\
4 & 3 \\
3 & 5 \\
0 & 2
\end{tabular}
graph G

\section*{Directed breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices pointing from \(v\) and mark them.

\begin{tabular}{cccc} 
queue & v & edgeTo[] & distTo[] \\
\cline { 2 - 3 } & 0 & - & 0 \\
1 & - & - \\
2 & - & - \\
3 & - & - \\
4 & - & - \\
5 & - & -
\end{tabular}

\section*{Directed breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices pointing from \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
& 0 & - & 0 \\
& 1 & - & - \\
& 2 & - & - \\
& 3 & - & - \\
0 & 5 & - & - \\
& & - & - \\
& & &
\end{tabular}

\section*{Directed breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices pointing from \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 3 } & 0 & - & 0 \\
1 & & \\
2 & 0 & 1 \\
3 & - & - \\
4 & - & - \\
5 & - & -
\end{tabular}

\section*{Directed breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices pointing from \(v\) and mark them.

\begin{tabular}{|c|c|c|c|}
\hline queue & v & edgeTo[] & distTo[] \\
\hline & 0 & - & 0 \\
\hline & 1 & \(\underline{0}\) & 1 \\
\hline & 2 & 0 & 1 \\
\hline & 3 & - & - \\
\hline & 4 & - & - \\
\hline & 5 & - & - \\
\hline
\end{tabular}

\section*{Directed breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices pointing from \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 4 } & 0 & - & 0 \\
& 1 & 0 & 1 \\
& 2 & 0 & 1 \\
\hline 1 & 4 & - & - \\
\hline 2 & 5 & - & - \\
& & & - \\
\hline
\end{tabular}

\section*{Directed breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices pointing from \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 4 } & 0 & - & 0 \\
& 1 & 0 & 1 \\
& 2 & 0 & 1 \\
1 & 4 & - & - \\
\hline 2 & 5 & - & - \\
& & & - \\
\hline
\end{tabular}

\section*{Directed breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices pointing from \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 4 } & 0 & - & 0 \\
1 & 0 & 1 \\
& 0 & 1 \\
& 0 & 2 & 2 \\
& 4 & - & - \\
1 & 5 & - & - \\
& & &
\end{tabular}

\section*{Directed breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices pointing from \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 4 } & 0 & - & 0 \\
& 1 & 0 & 1 \\
& 2 & 0 & 1 \\
\hline 4 & 4 & - & - \\
\hline 1 & 5 & - & - \\
\hline
\end{tabular}

\section*{Directed breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices pointing from \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 4 } & 0 & - & 0 \\
& 1 & 0 & 1 \\
& 2 & 0 & 1 \\
4 & 4 & - & - \\
\hline 1 & 5 & - & - \\
\hline
\end{tabular}

\section*{Directed breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices pointing from \(v\) and mark them.

\begin{tabular}{|c|c|c|c|}
\hline queue & v & edgeTo[] & distTo[] \\
\hline & 0 & - & 0 \\
\hline & 1 & 0 & 1 \\
\hline & 2 & 0 & 1 \\
\hline & 3 & - & - \\
\hline & 4 & 2 & 2 \\
\hline 4 & 5 & - & - \\
\hline
\end{tabular}

\section*{Directed breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices pointing from \(v\) and mark them.

\begin{tabular}{|c|c|c|c|}
\hline queue & & To & tTo \\
\hline & 0 & - & 0 \\
\hline & 1 & 0 & 1 \\
\hline & 2 & 0 & 1 \\
\hline & 3 & - & - \\
\hline & 4 & 2 & 2 \\
\hline & 5 & - & - \\
\hline 4 & & & \\
\hline
\end{tabular}

\section*{Directed breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices pointing from \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 4 } & 0 & - & 0 \\
1 & 0 & 1 \\
2 & 0 & 1 \\
3 & - & - \\
4 & 2 & 2 \\
4 & - & -
\end{tabular}

\section*{Directed breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices pointing from \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 3 } & 0 & - & 0 \\
1 & 0 & 1 \\
2 & 4 & 3 \\
3 & - & - \\
4 & 2 & 2 \\
5 & - & -
\end{tabular}

\section*{Directed breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices pointing from \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 4 } & 0 & - & 0 \\
1 & 0 & 1 \\
2 & 0 & 1 \\
3 & 4 & 3 \\
4 & 2 & 2 \\
& 5 & - & - \\
\hline
\end{tabular}

\section*{Directed breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices pointing from \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\hline \multirow{4}{*}{0} & - & 0 \\
& 1 & 0 & 1 \\
& 2 & 0 & 1 \\
& 3 & 4 & 3 \\
& 4 & 2 & 2 \\
\hline 3 & 5 & - & - \\
& & & \\
\hline
\end{tabular}

\section*{Directed breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices pointing from \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 3 } & 0 & - & 0 \\
1 & 0 & 1 \\
2 & 0 & 1 \\
3 & 4 & 3 \\
4 & 3 & 4 \\
5 & - & -
\end{tabular}

\section*{Directed breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices pointing from \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 4 } & 0 & - & 0 \\
1 & 0 & 1 \\
& 2 & 0 & 1 \\
3 & 4 & 3 \\
& 4 & 2 & 2 \\
5 & 5 & 3 & 4 \\
& & & \\
\hline
\end{tabular}

\section*{Directed breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices pointing from \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 4 } & 0 & - & 0 \\
1 & 0 & 1 \\
& 2 & 0 & 1 \\
3 & 4 & 3 \\
& 4 & 2 & 2 \\
5 & 5 & 3 & 4 \\
& & & \\
\hline
\end{tabular}

\section*{Directed breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices pointing from \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 3 } & 0 & - & 0 \\
1 & 0 & 1 \\
2 & 0 & 1 \\
3 & 4 & 3 \\
4 & 2 & 2 \\
5 & 3 & 4
\end{tabular}

\section*{Directed breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices pointing from \(v\) and mark them.

\begin{tabular}{ccc} 
queue & \(\mathbf{v}\) & edgeTo[] \\
& distTo[] \\
\hline 0 & - & 0 \\
1 & 0 & 1 \\
2 & 0 & 1 \\
3 & 4 & 3 \\
4 & 2 & 2 \\
5 & 3 & 4
\end{tabular}

\section*{Directed breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices pointing from \(v\) and mark them.

\begin{tabular}{cccc} 
queue & \(\mathbf{v}\) & edgeTo[] & distTo[] \\
\cline { 2 - 3 } & 0 & - & 0 \\
1 & 0 & 1 \\
2 & 0 & 1 \\
3 & 4 & 3 \\
4 & 2 & 2 \\
5 & 3 & 4
\end{tabular}

\section*{Directed breadth-first search demo}

Repeat until queue is empty:
- Remove vertex \(v\) from queue.
- Add to queue all unmarked vertices pointing from \(v\) and mark them.

\begin{tabular}{ccc}
\(\mathbf{v}\) & edgeTo[] & distTo[] \\
\hline 0 & - & 0 \\
1 & 0 & 1 \\
2 & 0 & 1 \\
3 & 4 & 3 \\
4 & 2 & 2 \\
5 & 3 & 4
\end{tabular}```

